
help.txt For Vim version 9.1. Last change: 2022 Dec 03

VIM - main help file
k

Move around: Use the cursor keys, or "h" to go left, h l
"j" to go down, "k" to go up, "l" to go right. j

Close this window: Use ":q<Enter>".
Get out of Vim: Use ":qa!<Enter>" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. bars) and hit CTRL-].
With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).

Double-click the left mouse button on a tag, e.g. bars .
Jump back: Type CTRL-O. Repeat to go further back.

Get specific help: It is possible to go directly to whatever you want help
on, by giving an argument to the :help command.
Prepend something to specify the context: help-context

WHAT PREPEND EXAMPLE
Normal mode command :help x
Visual mode command v_ :help v_u
Insert mode command i_ :help i_<Esc>
Command-line command : :help :quit
Command-line editing c_ :help c_
Vim command argument - :help -r
Option ' :help 'textwidth'
Regular expression / :help /[

See help-summary for more contexts and an explanation.
See notation for an explanation of the help syntax.

Search for help: Type ":help word", then hit CTRL-D to see matching
help entries for "word".
Or use ":helpgrep word". :helpgrep

Getting started: Do the Vim tutor, a 30-minute interactive course for the
basic commands, see vimtutor .
Read the user manual from start to end: usr_01.txt

Vim stands for Vi IMproved. Most of Vim was made by Bram Moolenaar, but only
through the help of many others. See credits .
--

doc-file-list Q_ct
BASIC:
quickref Overview of the most common commands you will use
tutor 30-minute interactive course for beginners
copying About copyrights
iccf Helping poor children in Uganda
sponsor Sponsor Vim development, become a registered Vim user
www Vim on the World Wide Web
bugs Where to send bug reports

USER MANUAL: These files explain how to accomplish an editing task.

usr_toc.txt Table Of Contents

Getting Started
usr_01.txt About the manuals
usr_02.txt The first steps in Vim
usr_03.txt Moving around
usr_04.txt Making small changes

help.txt — 1

usr_05.txt Set your settings
usr_06.txt Using syntax highlighting
usr_07.txt Editing more than one file
usr_08.txt Splitting windows
usr_09.txt Using the GUI
usr_10.txt Making big changes
usr_11.txt Recovering from a crash
usr_12.txt Clever tricks

Editing Effectively
usr_20.txt Typing command-line commands quickly
usr_21.txt Go away and come back
usr_22.txt Finding the file to edit
usr_23.txt Editing other files
usr_24.txt Inserting quickly
usr_25.txt Editing formatted text
usr_26.txt Repeating
usr_27.txt Search commands and patterns
usr_28.txt Folding
usr_29.txt Moving through programs
usr_30.txt Editing programs
usr_31.txt Exploiting the GUI
usr_32.txt The undo tree

Tuning Vim
usr_40.txt Make new commands
usr_41.txt Write a Vim script
usr_42.txt Add new menus
usr_43.txt Using filetypes
usr_44.txt Your own syntax highlighted
usr_45.txt Select your language

Writing Vim scripts
usr_50.txt Advanced Vim script writing
usr_51.txt Create a plugin
usr_52.txt Write plugins using Vim9 script

Making Vim Run
usr_90.txt Installing Vim

REFERENCE MANUAL: These files explain every detail of Vim. reference_toc

General subjects
intro.txt general introduction to Vim; notation used in help files
help.txt overview and quick reference (this file)
helphelp.txt about using the help files
index.txt alphabetical index of all commands
help-tags all the tags you can jump to (index of tags)
howto.txt how to do the most common editing tasks
tips.txt various tips on using Vim
message.txt (error) messages and explanations
quotes.txt remarks from users of Vim
todo.txt known problems and desired extensions
develop.txt development of Vim
debug.txt debugging Vim itself
uganda.txt Vim distribution conditions and what to do with your money

Basic editing
starting.txt starting Vim, Vim command arguments, initialisation
editing.txt editing and writing files

help.txt — 2

motion.txt commands for moving around
scroll.txt scrolling the text in the window
insert.txt Insert and Replace mode
change.txt deleting and replacing text
undo.txt Undo and Redo
repeat.txt repeating commands, Vim scripts and debugging
visual.txt using the Visual mode (selecting a text area)
various.txt various remaining commands
recover.txt recovering from a crash

Advanced editing
cmdline.txt Command-line editing
options.txt description of all options
pattern.txt regexp patterns and search commands
map.txt key mapping and abbreviations
tagsrch.txt tags and special searches
windows.txt commands for using multiple windows and buffers
tabpage.txt commands for using multiple tab pages
spell.txt spell checking
diff.txt working with two to eight versions of the same file
autocmd.txt automatically executing commands on an event
eval.txt expression evaluation, conditional commands
builtin.txt builtin functions
userfunc.txt defining user functions
channel.txt Jobs, Channels, inter-process communication
fold.txt hide (fold) ranges of lines

Special issues
testing.txt testing Vim and Vim scripts
print.txt printing
remote.txt using Vim as a server or client
term.txt using different terminals and mice
terminal.txt Terminal window support
popup.txt popup window support
vim9.txt using Vim9 script
vim9class.txt using Vim9 script classes

Programming language support
indent.txt automatic indenting for C and other languages
syntax.txt syntax highlighting
textprop.txt Attaching properties to text for highlighting or other
filetype.txt settings done specifically for a type of file
quickfix.txt commands for a quick edit-compile-fix cycle
ft_ada.txt Ada (the programming language) support
ft_context.txt Filetype plugin for ConTeXt
ft_mp.txt Filetype plugin for METAFONT and MetaPost
ft_ps1.txt Filetype plugin for Windows PowerShell
ft_raku.txt Filetype plugin for Raku
ft_rust.txt Filetype plugin for Rust
ft_sql.txt about the SQL filetype plugin

Language support
digraph.txt list of available digraphs
mbyte.txt multibyte text support
mlang.txt non-English language support
rileft.txt right-to-left editing mode
arabic.txt Arabic language support and editing
farsi.txt Farsi (Persian) editing
hebrew.txt Hebrew language support and editing
russian.txt Russian language support and editing

help.txt — 3

hangulin.txt Hangul (Korean) input mode

GUI
gui.txt Graphical User Interface (GUI)
gui_w32.txt Win32 GUI
gui_x11.txt X11 GUI

Interfaces
if_cscop.txt using Cscope with Vim
if_lua.txt Lua interface
if_mzsch.txt MzScheme interface
if_perl.txt Perl interface
if_pyth.txt Python interface
if_tcl.txt Tcl interface
if_ole.txt OLE automation interface for Win32
if_ruby.txt Ruby interface
debugger.txt Interface with a debugger
netbeans.txt NetBeans External Editor interface
sign.txt debugging signs

Versions
vi_diff.txt Main differences between Vim and Vi
version4.txt Differences between Vim version 3.0 and 4.x
version5.txt Differences between Vim version 4.6 and 5.x
version6.txt Differences between Vim version 5.7 and 6.x
version7.txt Differences between Vim version 6.4 and 7.x
version8.txt Differences between Vim version 7.4 and 8.x
version9.txt Differences between Vim version 8.2 and 9.0

sys-file-list
Remarks about specific systems
os_390.txt OS/390 Unix
os_amiga.txt Amiga
os_beos.txt BeOS and BeBox
os_dos.txt MS-DOS and MS-Windows common items
os_haiku.txt Haiku
os_mac.txt Macintosh
os_mint.txt Atari MiNT
os_msdos.txt MS-DOS (plain DOS and DOS box under Windows)
os_os2.txt OS/2
os_qnx.txt QNX
os_risc.txt RISC-OS
os_unix.txt Unix
os_vms.txt VMS
os_win32.txt MS-Windows

standard-plugin-list
Standard plugins
pi_getscript.txt Downloading latest version of Vim scripts
pi_gzip.txt Reading and writing compressed files
pi_logipat.txt Logical operators on patterns
pi_netrw.txt Reading and writing files over a network
pi_paren.txt Highlight matching parens
pi_spec.txt Filetype plugin to work with rpm spec files
pi_tar.txt Tar file explorer
pi_vimball.txt Create a self-installing Vim script
pi_zip.txt Zip archive explorer

LOCAL ADDITIONS: local-additions
vim_faq.txt Frequently asked questions

--

help.txt — 4

bars Bars example

Now that you've jumped here with CTRL-] or a double mouse click, you can use
CTRL-T, CTRL-O, g<RightMouse>, or <C-RightMouse> to go back to where you were.

Note that tags are within | characters, but when highlighting is enabled these
characters are hidden. That makes it easier to read a command.

Anyway, you can use CTRL-] on any word, also when it is not within |, and Vim
will try to find help for it. Especially for options in single quotes, e.g.
'compatible'.

--

help.txt — 5

help.txt — 6

quickref.txt For Vim version 9.1. Last change: 2024 Mar 03

VIM REFERENCE MANUAL by Bram Moolenaar

Quick reference guide

quickref Contents
tag subject tag subject
Q_ct list of help files Q_re Repeating commands
Q_lr motion: Left-right Q_km Key mapping
Q_ud motion: Up-down Q_ab Abbreviations
Q_tm motion: Text object Q_op Options
Q_pa motion: Pattern searches Q_ur Undo/Redo commands
Q_ma motion: Marks Q_et External commands
Q_vm motion: Various Q_qf Quickfix commands
Q_ta motion: Using tags Q_vc Various commands
Q_sc Scrolling Q_ce Ex: Command-line editing
Q_in insert: Inserting text Q_ra Ex: Ranges
Q_ai insert: Keys Q_ex Ex: Special characters
Q_ss insert: Special keys Q_st Starting Vim
Q_di insert: Digraphs Q_ed Editing a file
Q_si insert: Special inserts Q_fl Using the argument list
Q_de change: Deleting text Q_wq Writing and quitting
Q_cm change: Copying and moving Q_ac Automatic commands
Q_ch change: Changing text Q_wi Multi-window commands
Q_co change: Complex Q_bu Buffer list commands
Q_vi Visual mode Q_sy Syntax highlighting
Q_to Text objects Q_gu GUI commands

Q_fo Folding

--
N is used to indicate an optional count that can be given before the command.
--
Q_lr Left-right motions

h N h left (also: CTRL-H, <BS>, or <Left> key)
l N l right (also: <Space> or <Right> key)
0 0 to first character in the line (also: <Home> key)
^ ^ to first non-blank character in the line
$ N $ to the last character in the line (N-1 lines lower)

(also: <End> key)
g0 g0 to first character in screen line (differs from "0"

when lines wrap)
g^ g^ to first non-blank character in screen line (differs

from "^" when lines wrap)
g$ N g$ to last character in screen line (differs from "$"

when lines wrap)
gm gm to middle of the screen line
gM gM to middle of the line
bar N | to column N (default: 1)
f N f{char} to the Nth occurrence of {char} to the right
F N F{char} to the Nth occurrence of {char} to the left
t N t{char} till before the Nth occurrence of {char} to the right
T N T{char} till before the Nth occurrence of {char} to the left
; N ; repeat the last "f", "F", "t", or "T" N times
, N , repeat the last "f", "F", "t", or "T" N times in

opposite direction
--
Q_ud Up-down motions

quickref.txt — 7

k N k up N lines (also: CTRL-P and <Up>)
j N j down N lines (also: CTRL-J, CTRL-N, <NL>, and <Down>)
- N - up N lines, on the first non-blank character
+ N + down N lines, on the first non-blank character (also:

CTRL-M and <CR>)
_ N _ down N-1 lines, on the first non-blank character
G N G goto line N (default: last line), on the first

non-blank character
gg N gg goto line N (default: first line), on the first

non-blank character
N% N % goto line N percentage down in the file; N must be

given, otherwise it is the % command
gk N gk up N screen lines (differs from "k" when line wraps)
gj N gj down N screen lines (differs from "j" when line wraps)

--
Q_tm Text object motions

w N w N words forward
W N W N blank-separated WORD s forward
e N e forward to the end of the Nth word
E N E forward to the end of the Nth blank-separated WORD
b N b N words backward
B N B N blank-separated WORD s backward
ge N ge backward to the end of the Nth word
gE N gE backward to the end of the Nth blank-separated WORD

) N) N sentences forward
(N (N sentences backward
} N } N paragraphs forward
{ N { N paragraphs backward
]] N]] N sections forward, at start of section
[[N [[N sections backward, at start of section
][N][N sections forward, at end of section
[] N [] N sections backward, at end of section
[(N [(N times back to unclosed '('
[{ N [{ N times back to unclosed '{'
[m N [m N times back to start of method (for Java)
[M N [M N times back to end of method (for Java)
]) N]) N times forward to unclosed ')'
]} N]} N times forward to unclosed '}'
]m N]m N times forward to start of method (for Java)
]M N]M N times forward to end of method (for Java)
[# N [# N times back to unclosed "#if" or "#else"
]# N]# N times forward to unclosed "#else" or "#endif"
[star N [* N times back to start of comment "/*"
]star N]* N times forward to end of comment "*/"

--
Q_pa Pattern searches

/ N /{pattern}[/[offset]]<CR>
search forward for the Nth occurrence of {pattern}

? N ?{pattern}[?[offset]]<CR>
search backward for the Nth occurrence of {pattern}

/<CR> N /<CR> repeat last search, in the forward direction
?<CR> N ?<CR> repeat last search, in the backward direction
n N n repeat last search
N N N repeat last search, in opposite direction
star N * search forward for the identifier under the cursor
N # search backward for the identifier under the cursor

quickref.txt — 8

gstar N g* like "*", but also find partial matches
g# N g# like "#", but also find partial matches
gd gd goto local declaration of identifier under the cursor
gD gD goto global declaration of identifier under the cursor

pattern Special characters in search patterns

meaning magic nomagic
matches any single character . \.

matches start of line ^ ^
matches <EOL> $ $

matches start of word \< \<
matches end of word \> \>

matches a single char from the range [a-z] \[a-z]
matches a single char not in the range [^a-z] \[^a-z]

matches an identifier char \i \i
idem but excluding digits \I \I

matches a keyword character \k \k
idem but excluding digits \K \K

matches a file name character \f \f
idem but excluding digits \F \F

matches a printable character \p \p
idem but excluding digits \P \P

matches a white space character \s \s
matches a non-white space character \S \S

matches <Esc> \e \e
matches <Tab> \t \t
matches <CR> \r \r
matches <BS> \b \b

matches 0 or more of the preceding atom * *
matches 1 or more of the preceding atom \+ \+

matches 0 or 1 of the preceding atom \= \=
matches 2 to 5 of the preceding atom \{2,5} \{2,5}

separates two alternatives \| \|
group a pattern into an atom \(\) \(\)

search-offset Offsets allowed after search command

[num] [num] lines downwards, in column 1
+[num] [num] lines downwards, in column 1
-[num] [num] lines upwards, in column 1
e[+num] [num] characters to the right of the end of the match
e[-num] [num] characters to the left of the end of the match
s[+num] [num] characters to the right of the start of the match
s[-num] [num] characters to the left of the start of the match
b[+num] [num] identical to s[+num] above (mnemonic: begin)
b[-num] [num] identical to s[-num] above (mnemonic: begin)
;{search-command} execute {search-command} next

--
Q_ma Marks and motions

m m{a-zA-Z} mark current position with mark {a-zA-Z}
`a `{a-z} go to mark {a-z} within current file
`A `{A-Z} go to mark {A-Z} in any file
`0 `{0-9} go to the position where Vim was previously exited
`` `` go to the position before the last jump
`quote `" go to the position when last editing this file
`[`[go to the start of the previously operated or put text

quickref.txt — 9

`] `] go to the end of the previously operated or put text
`< `< go to the start of the (previous) Visual area
`> `> go to the end of the (previous) Visual area
`. `. go to the position of the last change in this file
' '{a-zA-Z0-9[]'"<>.}

same as `, but on the first non-blank in the line
:marks :marks print the active marks
CTRL-O N CTRL-O go to Nth older position in jump list
CTRL-I N CTRL-I go to Nth newer position in jump list
:ju :ju[mps] print the jump list

--
Q_vm Various motions

% % find the next brace, bracket, comment, or "#if"/
"#else"/"#endif" in this line and go to its match

H N H go to the Nth line in the window, on the first
non-blank

M M go to the middle line in the window, on the first
non-blank

L N L go to the Nth line from the bottom, on the first
non-blank

go N go go to Nth byte in the buffer
:go :[range]go[to] [off] go to [off] byte in the buffer

--
Q_ta Using tags

:ta :ta[g][!] {tag} jump to tag {tag}
:ta :[count]ta[g][!] jump to [count]'th newer tag in tag list
CTRL-] CTRL-] jump to the tag under cursor, unless changes

have been made
:ts :ts[elect][!] [tag] list matching tags and select one to jump to
:tjump :tj[ump][!] [tag] jump to tag [tag] or select from list when

there are multiple matches
:ltag :lt[ag][!] [tag] jump to tag [tag] and add matching tags to the

location list

:tags :tags print tag list
CTRL-T N CTRL-T jump back from Nth older tag in tag list
:po :[count]po[p][!] jump back from [count]'th older tag in tag list
:tnext :[count]tn[ext][!] jump to [count]'th next matching tag
:tp :[count]tp[revious][!] jump to [count]'th previous matching tag
:tr :[count]tr[ewind][!] jump to [count]'th matching tag
:tl :tl[ast][!] jump to last matching tag

:ptag :pt[ag] {tag} open a preview window to show tag {tag}
CTRL-W_} CTRL-W } like CTRL-] but show tag in preview window
:pts :pts[elect] like ":tselect" but show tag in preview window
:ptjump :ptj[ump] like ":tjump" but show tag in preview window
:pclose :pc[lose] close tag preview window
CTRL-W_z CTRL-W z close tag preview window

--
Q_sc Scrolling

CTRL-E N CTRL-E window N lines downwards (default: 1)
CTRL-D N CTRL-D window N lines Downwards (default: 1/2 window)
CTRL-F N CTRL-F window N pages Forwards (downwards)
CTRL-Y N CTRL-Y window N lines upwards (default: 1)
CTRL-U N CTRL-U window N lines Upwards (default: 1/2 window)
CTRL-B N CTRL-B window N pages Backwards (upwards)

quickref.txt — 10

z<CR> z<CR> or zt redraw, current line at top of window
z. z. or zz redraw, current line at center of window
z- z- or zb redraw, current line at bottom of window

These only work when 'wrap' is off:
zh N zh scroll screen N characters to the right
zl N zl scroll screen N characters to the left
zH N zH scroll screen half a screenwidth to the right
zL N zL scroll screen half a screenwidth to the left

--
Q_in Inserting text

a N a append text after the cursor (N times)
A N A append text at the end of the line (N times)
i N i insert text before the cursor (N times) (also: <Insert>)
I N I insert text before the first non-blank in the line (N times)
gI N gI insert text in column 1 (N times)
o N o open a new line below the current line, append text (N times)
O N O open a new line above the current line, append text (N times)
:startinsert :star[tinsert][!] start Insert mode, append when [!] used
:startreplace :startr[eplace][!] start Replace mode, at EOL when [!] used

in Visual block mode:
v_b_I I insert the same text in front of all the selected lines
v_b_A A append the same text after all the selected lines

--
Q_ai Insert mode keys

insert-index alphabetical index of Insert mode commands

leaving Insert mode:
i_<Esc> <Esc> end Insert mode, back to Normal mode
i_CTRL-C CTRL-C like <Esc>, but do not use an abbreviation
i_CTRL-O CTRL-O {command} execute {command} and return to Insert mode

moving around:
i_<Up> cursor keys move cursor left/right/up/down
i_<S-Left> shift-left/right one word left/right
i_<S-Up> shift-up/down one screenful backward/forward
i_<End> <End> cursor after last character in the line
i_<Home> <Home> cursor to first character in the line

--
Q_ss Special keys in Insert mode

i_CTRL-V CTRL-V {char}.. insert character literally, or enter decimal
byte value

i_<NL> <NL> or <CR> or CTRL-M or CTRL-J
begin new line

i_CTRL-E CTRL-E insert the character from below the cursor
i_CTRL-Y CTRL-Y insert the character from above the cursor

i_CTRL-A CTRL-A insert previously inserted text
i_CTRL-@ CTRL-@ insert previously inserted text and stop

Insert mode
i_CTRL-R CTRL-R {register} insert the contents of a register

i_CTRL-N CTRL-N insert next match of identifier before the
cursor

i_CTRL-P CTRL-P insert previous match of identifier before
the cursor

quickref.txt — 11

i_CTRL-X CTRL-X ... complete the word before the cursor in
various ways

i_<BS> <BS> or CTRL-H delete the character before the cursor
i_ delete the character under the cursor
i_CTRL-W CTRL-W delete word before the cursor
i_CTRL-U CTRL-U delete all entered characters in the current

line
i_CTRL-T CTRL-T insert one shiftwidth of indent in front of

the current line
i_CTRL-D CTRL-D delete one shiftwidth of indent in front of

the current line
i_0_CTRL-D 0 CTRL-D delete all indent in the current line
i_^_CTRL-D ^ CTRL-D delete all indent in the current line,

restore indent in next line
--
Q_di Digraphs

:dig :dig[raphs] show current list of digraphs
:dig :dig[raphs] {char1}{char2} {number} ...

add digraph(s) to the list

In Insert or Command-line mode:
i_CTRL-K CTRL-K {char1} {char2}

enter digraph
i_digraph {char1} <BS> {char2}

enter digraph if 'digraph' option set
--
Q_si Special inserts

:r :r [file] insert the contents of [file] below the cursor
:r! :r! {command} insert the standard output of {command} below the

cursor
--
Q_de Deleting text

x N x delete N characters under and after the cursor
 N delete N characters under and after the cursor
X N X delete N characters before the cursor
d N d{motion} delete the text that is moved over with {motion}
v_d {visual}d delete the highlighted text
dd N dd delete N lines
D N D delete to the end of the line (and N-1 more lines)
J N J join N-1 lines (delete <EOL>s)
v_J {visual}J join the highlighted lines
gJ N gJ like "J", but without inserting spaces
v_gJ {visual}gJ like "{visual}J", but without inserting spaces
:d :[range]d [x] delete [range] lines [into register x]

--
Q_cm Copying and moving text

quote "{char} use register {char} for the next delete, yank, or put
:reg :reg show the contents of all registers
:reg :reg {arg} show the contents of registers mentioned in {arg}
y N y{motion} yank the text moved over with {motion} into a register
v_y {visual}y yank the highlighted text into a register
yy N yy yank N lines into a register
Y N Y yank N lines into a register
p N p put a register after the cursor position (N times)
P N P put a register before the cursor position (N times)

quickref.txt — 12

]p N]p like p, but adjust indent to current line
[p N [p like P, but adjust indent to current line
gp N gp like p, but leave cursor after the new text
gP N gP like P, but leave cursor after the new text

--
Q_ch Changing text

r N r{char} replace N characters with {char}
gr N gr{char} replace N characters without affecting layout
R N R enter Replace mode (repeat the entered text N times)
gR N gR enter virtual Replace mode: Like Replace mode but

without affecting layout
v_b_r {visual}r{char}

in Visual block mode: Replace each char of the
selected text with {char}

(change = delete text and enter Insert mode)
c N c{motion} change the text that is moved over with {motion}
v_c {visual}c change the highlighted text
cc N cc change N lines
S N S change N lines
C N C change to the end of the line (and N-1 more lines)
s N s change N characters
v_b_c {visual}c in Visual block mode: Change each of the selected

lines with the entered text
v_b_C {visual}C in Visual block mode: Change each of the selected

lines until end-of-line with the entered text

~ N ~ switch case for N characters and advance cursor
v_~ {visual}~ switch case for highlighted text
v_u {visual}u make highlighted text lowercase
v_U {visual}U make highlighted text uppercase
g~ g~{motion} switch case for the text that is moved over with

{motion}
gu gu{motion} make the text that is moved over with {motion}

lowercase
gU gU{motion} make the text that is moved over with {motion}

uppercase
v_g? {visual}g? perform rot13 encoding on highlighted text
g? g?{motion} perform rot13 encoding on the text that is moved over

with {motion}

CTRL-A N CTRL-A add N to the number at or after the cursor
CTRL-X N CTRL-X subtract N from the number at or after the cursor

< N <{motion} move the lines that are moved over with {motion} one
shiftwidth left

<< N << move N lines one shiftwidth left
> N >{motion} move the lines that are moved over with {motion} one

shiftwidth right
>> N >> move N lines one shiftwidth right
gq N gq{motion} format the lines that are moved over with {motion} to

'textwidth' length
:ce :[range]ce[nter] [width]

center the lines in [range]
:le :[range]le[ft] [indent]

left-align the lines in [range] (with [indent])
:ri :[range]ri[ght] [width]

right-align the lines in [range]
--

quickref.txt — 13

Q_co Complex changes

! N !{motion}{command}<CR>
filter the lines that are moved over through {command}

!! N !!{command}<CR>
filter N lines through {command}

v_! {visual}!{command}<CR>
filter the highlighted lines through {command}

:range! :[range]! {command}<CR>
filter [range] lines through {command}

= N ={motion}
filter the lines that are moved over through 'equalprg'

== N == filter N lines through 'equalprg'
v_= {visual}=

filter the highlighted lines through 'equalprg'
:s :[range]s[ubstitute]/{pattern}/{string}/[g][c]

substitute {pattern} by {string} in [range] lines;
with [g], replace all occurrences of {pattern};
with [c], confirm each replacement

:s :[range]s[ubstitute] [g][c]
repeat previous ":s" with new range and options

& & Repeat previous ":s" on current line without options
:ret :[range]ret[ab][!] [tabstop]

set 'tabstop' to new value and adjust white space
accordingly

--
Q_vi Visual mode

visual-index list of Visual mode commands.

v v start highlighting characters } move cursor and use
V V start highlighting linewise } operator to affect
CTRL-V CTRL-V start highlighting blockwise } highlighted text
v_o o exchange cursor position with start of highlighting
gv gv start highlighting on previous visual area
v_v v highlight characters or stop highlighting
v_V V highlight linewise or stop highlighting
v_CTRL-V CTRL-V highlight blockwise or stop highlighting

--
Q_to Text objects (only in Visual mode or after an operator)

v_aw N aw Select "a word"
v_iw N iw Select "inner word"
v_aW N aW Select "a WORD "
v_iW N iW Select "inner WORD "
v_as N as Select "a sentence"
v_is N is Select "inner sentence"
v_ap N ap Select "a paragraph"
v_ip N ip Select "inner paragraph"
v_ab N ab Select "a block" (from "[(" to "])")
v_ib N ib Select "inner block" (from "[(" to "])")
v_aB N aB Select "a Block" (from "[{" to "]}")
v_iB N iB Select "inner Block" (from "[{" to "]}")
v_a> N a> Select "a <> block"
v_i> N i> Select "inner <> block"
v_at N at Select "a tag block" (from <aaa> to </aaa>)
v_it N it Select "inner tag block" (from <aaa> to </aaa>)
v_a' N a' Select "a single quoted string"
v_i' N i' Select "inner single quoted string"
v_aquote N a" Select "a double quoted string"

quickref.txt — 14

v_iquote N i" Select "inner double quoted string"
v_a` N a` Select "a backward quoted string"
v_i` N i` Select "inner backward quoted string"

--
Q_re Repeating commands

. N . repeat last change (with count replaced with N)
q q{a-z} record typed characters into register {a-z}
q q{A-Z} record typed characters, appended to register {a-z}
q q stop recording
@ N @{a-z} execute the contents of register {a-z} (N times)
@@ N @@ repeat previous @{a-z} (N times)
:@ :@{a-z} execute the contents of register {a-z} as an Ex

command
:@@ :@@ repeat previous :@{a-z}
:g :[range]g[lobal]/{pattern}/[cmd]

execute Ex command [cmd] (default: ":p") on the lines
within [range] where {pattern} matches

:g :[range]g[lobal]!/{pattern}/[cmd]
execute Ex command [cmd] (default: ":p") on the lines

within [range] where {pattern} does NOT match
:so :so[urce] {file}

read Ex commands from {file}
:so :so[urce]! {file}

read Vim commands from {file}
:sl :sl[eep] [sec]

don't do anything for [sec] seconds
gs N gs goto Sleep for N seconds

--
Q_km Key mapping

:map :ma[p] {lhs} {rhs} map {lhs} to {rhs} in Normal and Visual mode
:map! :ma[p]! {lhs} {rhs} map {lhs} to {rhs} in Insert and Command-line

mode
:noremap :no[remap][!] {lhs} {rhs}

same as ":map", no remapping for this {rhs}
:unmap :unm[ap] {lhs} remove the mapping of {lhs} for Normal and

Visual mode
:unmap! :unm[ap]! {lhs} remove the mapping of {lhs} for Insert and

Command-line mode
:map_l :ma[p] [lhs] list mappings (starting with [lhs]) for

Normal and Visual mode
:map_l! :ma[p]! [lhs] list mappings (starting with [lhs]) for

Insert and Command-line mode
:cmap :cmap/:cunmap/:cnoremap

like ":map!"/":unmap!"/":noremap!" but for
Command-line mode only

:imap :imap/:iunmap/:inoremap
like ":map!"/":unmap!"/":noremap!" but for

Insert mode only
:nmap :nmap/:nunmap/:nnoremap

like ":map"/":unmap"/":noremap" but for
Normal mode only

:vmap :vmap/:vunmap/:vnoremap
like ":map"/":unmap"/":noremap" but for

Visual mode only
:omap :omap/:ounmap/:onoremap

like ":map"/":unmap"/":noremap" but only for
when an operator is pending

quickref.txt — 15

:mapc :mapc[lear] remove mappings for Normal and Visual mode
:mapc :mapc[lear]! remove mappings for Insert and Cmdline mode
:imapc :imapc[lear] remove mappings for Insert mode
:vmapc :vmapc[lear] remove mappings for Visual mode
:omapc :omapc[lear] remove mappings for Operator-pending mode
:nmapc :nmapc[lear] remove mappings for Normal mode
:cmapc :cmapc[lear] remove mappings for Cmdline mode
:mkexrc :mk[exrc][!] [file] write current mappings, abbreviations, and

settings to [file] (default: ".exrc";
use ! to overwrite)

:mkvimrc :mkv[imrc][!] [file]
same as ":mkexrc", but with default ".vimrc"

:mksession :mks[ession][!] [file]
like ":mkvimrc", but store current files,

windows, etc. too, to be able to continue
this session later

--
Q_ab Abbreviations

:abbreviate :ab[breviate] {lhs} {rhs} add abbreviation for {lhs} to {rhs}
:abbreviate :ab[breviate] {lhs} show abbr's that start with {lhs}
:abbreviate :ab[breviate] show all abbreviations
:unabbreviate :una[bbreviate] {lhs} remove abbreviation for {lhs}
:noreabbrev :norea[bbrev] [lhs] [rhs] like ":ab", but don't remap [rhs]
:iabbrev :iab/:iunab/:inoreab like ":ab", but only for Insert mode
:cabbrev :cab/:cunab/:cnoreab like ":ab", but only for

Command-line mode
:abclear :abc[lear] remove all abbreviations
:cabclear :cabc[lear] remove all abbr's for Cmdline mode
:iabclear :iabc[lear] remove all abbr's for Insert mode

--
Q_op Options

:set :se[t] show all modified options
:set :se[t] all show all non-termcap options
:set :se[t] termcap show all termcap options
:set :se[t] {option} set boolean option (switch it on),

show string or number option
:set :se[t] no{option} reset boolean option (switch it off)
:set :se[t] inv{option} invert boolean option
:set :se[t] {option}={value} set string/number option to {value}
:set :se[t] {option}+={value} append {value} to string option, add

{value} to number option
:set :se[t] {option}-={value} remove {value} to string option,

subtract {value} from number option
:set :se[t] {option}? show value of {option}
:set :se[t] {option}& reset {option} to its default value

:setlocal :setl[ocal] like ":set" but set the local value
for options that have one

:setglobal :setg[lobal] like ":set" but set the global value
of a local option

:fix :fix[del] set value of 't_kD' according to
value of 't_kb'

:options :opt[ions] open a new window to view and set
options, grouped by functionality,
a one line explanation and links to
the help

quickref.txt — 16

Short explanation of each option: option-list
'aleph' 'al' ASCII code of the letter Aleph (Hebrew)
'allowrevins' 'ari' allow CTRL-_ in Insert and Command-line mode
'altkeymap' 'akm' obsolete option for Farsi
'ambiwidth' 'ambw' what to do with Unicode chars of ambiguous width
'antialias' 'anti' Mac OS X: use smooth, antialiased fonts
'arabic' 'arab' for Arabic as a default second language
'arabicshape' 'arshape' do shaping for Arabic characters
'autochdir' 'acd' change directory to the file in the current window
'autoindent' 'ai' take indent for new line from previous line
'autoread' 'ar' autom. read file when changed outside of Vim
'autoshelldir' 'asd' change directory to the shell's current directory
'autowrite' 'aw' automatically write file if changed
'autowriteall' 'awa' as 'autowrite', but works with more commands
'background' 'bg' "dark" or "light", used for highlight colors
'backspace' 'bs' how backspace works at start of line
'backup' 'bk' keep backup file after overwriting a file
'backupcopy' 'bkc' make backup as a copy, don't rename the file
'backupdir' 'bdir' list of directories for the backup file
'backupext' 'bex' extension used for the backup file
'backupskip' 'bsk' no backup for files that match these patterns
'balloondelay' 'bdlay' delay in mS before a balloon may pop up
'ballooneval' 'beval' switch on balloon evaluation in the GUI
'balloonevalterm' 'bevalterm' switch on balloon evaluation in the terminal
'balloonexpr' 'bexpr' expression to show in balloon
'belloff' 'bo' do not ring the bell for these reasons
'binary' 'bin' read/write/edit file in binary mode
'bioskey' 'biosk' MS-DOS: use bios calls for input characters
'bomb' prepend a Byte Order Mark to the file
'breakat' 'brk' characters that may cause a line break
'breakindent' 'bri' wrapped line repeats indent
'breakindentopt' 'briopt' settings for 'breakindent'
'browsedir' 'bsdir' which directory to start browsing in
'bufhidden' 'bh' what to do when buffer is no longer in window
'buflisted' 'bl' whether the buffer shows up in the buffer list
'buftype' 'bt' special type of buffer
'casemap' 'cmp' specifies how case of letters is changed
'cdhome' 'cdh' change directory to the home directory by ":cd"
'cdpath' 'cd' list of directories searched with ":cd"
'cedit' key used to open the command-line window
'charconvert' 'ccv' expression for character encoding conversion
'cindent' 'cin' do C program indenting
'cinkeys' 'cink' keys that trigger indent when 'cindent' is set
'cinoptions' 'cino' how to do indenting when 'cindent' is set
'cinscopedecls' 'cinsd' words that are recognized by 'cino-g'
'cinwords' 'cinw' words where 'si' and 'cin' add an indent
'clipboard' 'cb' use the clipboard as the unnamed register
'cmdheight' 'ch' number of lines to use for the command-line
'cmdwinheight' 'cwh' height of the command-line window
'colorcolumn' 'cc' columns to highlight
'columns' 'co' number of columns in the display
'comments' 'com' patterns that can start a comment line
'commentstring' 'cms' template for comments; used for fold marker
'compatible' 'cp' behave Vi-compatible as much as possible
'complete' 'cpt' specify how Insert mode completion works
'completefunc' 'cfu' function to be used for Insert mode completion
'completeopt' 'cot' options for Insert mode completion
'completepopup' 'cpp' options for the Insert mode completion info popup
'completeslash' 'csl' like 'shellslash' for completion
'concealcursor' 'cocu' whether concealable text is hidden in cursor line

quickref.txt — 17

'conceallevel' 'cole' whether concealable text is shown or hidden
'confirm' 'cf' ask what to do about unsaved/read-only files
'conskey' 'consk' get keys directly from console (MS-DOS only)
'copyindent' 'ci' make 'autoindent' use existing indent structure
'cpoptions' 'cpo' flags for Vi-compatible behavior
'cryptmethod' 'cm' type of encryption to use for file writing
'cscopepathcomp' 'cspc' how many components of the path to show
'cscopeprg' 'csprg' command to execute cscope
'cscopequickfix' 'csqf' use quickfix window for cscope results
'cscoperelative' 'csre' Use cscope.out path basename as prefix
'cscopetag' 'cst' use cscope for tag commands
'cscopetagorder' 'csto' determines ":cstag" search order
'cscopeverbose' 'csverb' give messages when adding a cscope database
'cursorbind' 'crb' move cursor in window as it moves in other windows
'cursorcolumn' 'cuc' highlight the screen column of the cursor
'cursorline' 'cul' highlight the screen line of the cursor
'cursorlineopt' 'culopt' settings for 'cursorline'
'debug' set to "msg" to see all error messages
'define' 'def' pattern to be used to find a macro definition
'delcombine' 'deco' delete combining characters on their own
'dictionary' 'dict' list of file names used for keyword completion
'diff' use diff mode for the current window
'diffexpr' 'dex' expression used to obtain a diff file
'diffopt' 'dip' options for using diff mode
'digraph' 'dg' enable the entering of digraphs in Insert mode
'directory' 'dir' list of directory names for the swap file
'display' 'dy' list of flags for how to display text
'eadirection' 'ead' in which direction 'equalalways' works
'edcompatible' 'ed' toggle flags of ":substitute" command
'emoji' 'emo' emoji characters are considered full width
'encoding' 'enc' encoding used internally
'endoffile' 'eof' write CTRL-Z at end of the file
'endofline' 'eol' write <EOL> for last line in file
'equalalways' 'ea' windows are automatically made the same size
'equalprg' 'ep' external program to use for "=" command
'errorbells' 'eb' ring the bell for error messages
'errorfile' 'ef' name of the errorfile for the QuickFix mode
'errorformat' 'efm' description of the lines in the error file
'esckeys' 'ek' recognize function keys in Insert mode
'eventignore' 'ei' autocommand events that are ignored
'expandtab' 'et' use spaces when <Tab> is inserted
'exrc' 'ex' read .vimrc and .exrc in the current directory
'fileencoding' 'fenc' file encoding for multibyte text
'fileencodings' 'fencs' automatically detected character encodings
'fileformat' 'ff' file format used for file I/O
'fileformats' 'ffs' automatically detected values for 'fileformat'
'fileignorecase' 'fic' ignore case when using file names
'filetype' 'ft' type of file, used for autocommands
'fillchars' 'fcs' characters to use for displaying special items
'fixendofline' 'fixeol' make sure last line in file has <EOL>
'fkmap' 'fk' obsolete option for Farsi
'foldclose' 'fcl' close a fold when the cursor leaves it
'foldcolumn' 'fdc' width of the column used to indicate folds
'foldenable' 'fen' set to display all folds open
'foldexpr' 'fde' expression used when 'foldmethod' is "expr"
'foldignore' 'fdi' ignore lines when 'foldmethod' is "indent"
'foldlevel' 'fdl' close folds with a level higher than this
'foldlevelstart' 'fdls' 'foldlevel' when starting to edit a file
'foldmarker' 'fmr' markers used when 'foldmethod' is "marker"
'foldmethod' 'fdm' folding type

quickref.txt — 18

'foldminlines' 'fml' minimum number of lines for a fold to be closed
'foldnestmax' 'fdn' maximum fold depth
'foldopen' 'fdo' for which commands a fold will be opened
'foldtext' 'fdt' expression used to display for a closed fold
'formatexpr' 'fex' expression used with "gq" command
'formatlistpat' 'flp' pattern used to recognize a list header
'formatoptions' 'fo' how automatic formatting is to be done
'formatprg' 'fp' name of external program used with "gq" command
'fsync' 'fs' whether to invoke fsync() after file write
'gdefault' 'gd' the ":substitute" flag 'g' is default on
'grepformat' 'gfm' format of 'grepprg' output
'grepprg' 'gp' program to use for ":grep"
'guicursor' 'gcr' GUI: settings for cursor shape and blinking
'guifont' 'gfn' GUI: Name(s) of font(s) to be used
'guifontset' 'gfs' GUI: Names of multibyte fonts to be used
'guifontwide' 'gfw' list of font names for double-wide characters
'guiheadroom' 'ghr' GUI: pixels room for window decorations
'guiligatures' 'gli' GTK GUI: ASCII characters that can form shapes
'guioptions' 'go' GUI: Which components and options are used
'guipty' GUI: try to use a pseudo-tty for ":!" commands
'guitablabel' 'gtl' GUI: custom label for a tab page
'guitabtooltip' 'gtt' GUI: custom tooltip for a tab page
'helpfile' 'hf' full path name of the main help file
'helpheight' 'hh' minimum height of a new help window
'helplang' 'hlg' preferred help languages
'hidden' 'hid' don't unload buffer when it is abandon ed
'highlight' 'hl' sets highlighting mode for various occasions
'history' 'hi' number of command-lines that are remembered
'hkmap' 'hk' Hebrew keyboard mapping
'hkmapp' 'hkp' phonetic Hebrew keyboard mapping
'hlsearch' 'hls' highlight matches with last search pattern
'icon' let Vim set the text of the window icon
'iconstring' string to use for the Vim icon text
'ignorecase' 'ic' ignore case in search patterns
'imactivatefunc' 'imaf' function to enable/disable the X input method
'imactivatekey' 'imak' key that activates the X input method
'imcmdline' 'imc' use IM when starting to edit a command line
'imdisable' 'imd' do not use the IM in any mode
'iminsert' 'imi' use :lmap or IM in Insert mode
'imsearch' 'ims' use :lmap or IM when typing a search pattern
'imstatusfunc' 'imsf' function to obtain X input method status
'imstyle' 'imst' specifies the input style of the input method
'include' 'inc' pattern to be used to find an include file
'includeexpr' 'inex' expression used to process an include line
'incsearch' 'is' highlight match while typing search pattern
'indentexpr' 'inde' expression used to obtain the indent of a line
'indentkeys' 'indk' keys that trigger indenting with 'indentexpr'
'infercase' 'inf' adjust case of match for keyword completion
'insertmode' 'im' start the edit of a file in Insert mode
'isfname' 'isf' characters included in file names and pathnames
'isident' 'isi' characters included in identifiers
'iskeyword' 'isk' characters included in keywords
'isprint' 'isp' printable characters
'joinspaces' 'js' two spaces after a period with a join command
'jumpoptions' 'jop' specifies how jumping is done
'key' encryption key
'keymap' 'kmp' name of a keyboard mapping
'keymodel' 'km' enable starting/stopping selection with keys
'keyprotocol' 'kpc' what keyboard protocol to use for what terminal
'keywordprg' 'kp' program to use for the "K" command

quickref.txt — 19

'langmap' 'lmap' alphabetic characters for other language mode
'langmenu' 'lm' language to be used for the menus
'langnoremap' 'lnr' do not apply 'langmap' to mapped characters
'langremap' 'lrm' do apply 'langmap' to mapped characters
'laststatus' 'ls' tells when last window has status lines
'lazyredraw' 'lz' don't redraw while executing macros
'linebreak' 'lbr' wrap long lines at a blank
'lines' number of lines in the display
'linespace' 'lsp' number of pixel lines to use between characters
'lisp' automatic indenting for Lisp
'lispoptions' 'lop' changes how Lisp indenting is done
'lispwords' 'lw' words that change how lisp indenting works
'list' show <Tab> and <EOL>
'listchars' 'lcs' characters for displaying in list mode
'loadplugins' 'lpl' load plugin scripts when starting up
'luadll' name of the Lua dynamic library
'macatsui' Mac GUI: use ATSUI text drawing
'magic' changes special characters in search patterns
'makeef' 'mef' name of the errorfile for ":make"
'makeencoding' 'menc' encoding of external make/grep commands
'makeprg' 'mp' program to use for the ":make" command
'matchpairs' 'mps' pairs of characters that "%" can match
'matchtime' 'mat' tenths of a second to show matching paren
'maxcombine' 'mco' maximum nr of combining characters displayed
'maxfuncdepth' 'mfd' maximum recursive depth for user functions
'maxmapdepth' 'mmd' maximum recursive depth for mapping
'maxmem' 'mm' maximum memory (in Kbyte) used for one buffer
'maxmempattern' 'mmp' maximum memory (in Kbyte) used for pattern search
'maxmemtot' 'mmt' maximum memory (in Kbyte) used for all buffers
'menuitems' 'mis' maximum number of items in a menu
'mkspellmem' 'msm' memory used before :mkspell compresses the tree
'modeline' 'ml' recognize modelines at start or end of file
'modelineexpr' 'mle' allow setting expression options from a modeline
'modelines' 'mls' number of lines checked for modelines
'modifiable' 'ma' changes to the text are not possible
'modified' 'mod' buffer has been modified
'more' pause listings when the whole screen is filled
'mouse' enable the use of mouse clicks
'mousefocus' 'mousef' keyboard focus follows the mouse
'mousehide' 'mh' hide mouse pointer while typing
'mousemodel' 'mousem' changes meaning of mouse buttons
'mousemoveevent' 'mousemev' report mouse moves with <MouseMove>
'mouseshape' 'mouses' shape of the mouse pointer in different modes
'mousetime' 'mouset' max time between mouse double-click
'mzquantum' 'mzq' the interval between polls for MzScheme threads
'mzschemedll' name of the MzScheme dynamic library
'mzschemegcdll' name of the MzScheme dynamic library for GC
'nrformats' 'nf' number formats recognized for CTRL-A command
'number' 'nu' print the line number in front of each line
'numberwidth' 'nuw' number of columns used for the line number
'omnifunc' 'ofu' function for filetype-specific completion
'opendevice' 'odev' allow reading/writing devices on MS-Windows
'operatorfunc' 'opfunc' function to be called for g@ operator
'osfiletype' 'oft' no longer supported
'packpath' 'pp' list of directories used for packages
'paragraphs' 'para' nroff macros that separate paragraphs
'paste' allow pasting text
'pastetoggle' 'pt' key code that causes 'paste' to toggle
'patchexpr' 'pex' expression used to patch a file
'patchmode' 'pm' keep the oldest version of a file

quickref.txt — 20

'path' 'pa' list of directories searched with "gf" et.al.
'perldll' name of the Perl dynamic library
'preserveindent' 'pi' preserve the indent structure when reindenting
'previewheight' 'pvh' height of the preview window
'previewpopup' 'pvp' use popup window for preview
'previewwindow' 'pvw' identifies the preview window
'printdevice' 'pdev' name of the printer to be used for :hardcopy
'printencoding' 'penc' encoding to be used for printing
'printexpr' 'pexpr' expression used to print PostScript for :hardcopy
'printfont' 'pfn' name of the font to be used for :hardcopy
'printheader' 'pheader' format of the header used for :hardcopy
'printmbcharset' 'pmbcs' CJK character set to be used for :hardcopy
'printmbfont' 'pmbfn' font names to be used for CJK output of :hardcopy
'printoptions' 'popt' controls the format of :hardcopy output
'prompt' 'prompt' enable prompt in Ex mode
'pumheight' 'ph' maximum height of the popup menu
'pumwidth' 'pw' minimum width of the popup menu
'pythondll' name of the Python 2 dynamic library
'pythonhome' name of the Python 2 home directory
'pythonthreedll' name of the Python 3 dynamic library
'pythonthreehome' name of the Python 3 home directory
'pyxversion' 'pyx' Python version used for pyx* commands
'quickfixtextfunc' 'qftf' function for the text in the quickfix window
'quoteescape' 'qe' escape characters used in a string
'readonly' 'ro' disallow writing the buffer
'redrawtime' 'rdt' timeout for 'hlsearch' and :match highlighting
'regexpengine' 're' default regexp engine to use
'relativenumber' 'rnu' show relative line number in front of each line
'remap' allow mappings to work recursively
'renderoptions' 'rop' options for text rendering on Windows
'report' threshold for reporting nr. of lines changed
'restorescreen' 'rs' Win32: restore screen when exiting
'revins' 'ri' inserting characters will work backwards
'rightleft' 'rl' window is right-to-left oriented
'rightleftcmd' 'rlc' commands for which editing works right-to-left
'rubydll' name of the Ruby dynamic library
'ruler' 'ru' show cursor line and column in the status line
'rulerformat' 'ruf' custom format for the ruler
'runtimepath' 'rtp' list of directories used for runtime files
'scroll' 'scr' lines to scroll with CTRL-U and CTRL-D
'scrollbind' 'scb' scroll in window as other windows scroll
'scrollfocus' 'scf' scroll wheel applies to window under pointer
'scrolljump' 'sj' minimum number of lines to scroll
'scrolloff' 'so' minimum nr. of lines above and below cursor
'scrollopt' 'sbo' how 'scrollbind' should behave
'sections' 'sect' nroff macros that separate sections
'secure' secure mode for reading .vimrc in current dir
'selection' 'sel' what type of selection to use
'selectmode' 'slm' when to use Select mode instead of Visual mode
'sessionoptions' 'ssop' options for :mksession
'shell' 'sh' name of shell to use for external commands
'shellcmdflag' 'shcf' flag to shell to execute one command
'shellpipe' 'sp' string to put output of ":make" in error file
'shellquote' 'shq' quote character(s) for around shell command
'shellredir' 'srr' string to put output of filter in a temp file
'shellslash' 'ssl' use forward slash for shell file names
'shelltemp' 'stmp' whether to use a temp file for shell commands
'shelltype' 'st' Amiga: influences how to use a shell
'shellxescape' 'sxe' characters to escape when 'shellxquote' is (
'shellxquote' 'sxq' like 'shellquote', but include redirection

quickref.txt — 21

'shiftround' 'sr' round indent to multiple of shiftwidth
'shiftwidth' 'sw' number of spaces to use for (auto)indent step
'shortmess' 'shm' list of flags, reduce length of messages
'shortname' 'sn' Filenames assumed to be 8.3 chars
'showbreak' 'sbr' string to use at the start of wrapped lines
'showcmd' 'sc' show (partial) command somewhere
'showcmdloc' 'sloc' where to show (partial) command
'showfulltag' 'sft' show full tag pattern when completing tag
'showmatch' 'sm' briefly jump to matching bracket if insert one
'showmode' 'smd' message on status line to show current mode
'showtabline' 'stal' tells when the tab pages line is displayed
'sidescroll' 'ss' minimum number of columns to scroll horizontal
'sidescrolloff' 'siso' min. nr. of columns to left and right of cursor
'signcolumn' 'scl' when to display the sign column
'smartcase' 'scs' no ignore case when pattern has uppercase
'smartindent' 'si' smart autoindenting for C programs
'smarttab' 'sta' use 'shiftwidth' when inserting <Tab>
'smoothscroll' 'sms' scroll by screen lines when 'wrap' is set
'softtabstop' 'sts' number of spaces that <Tab> uses while editing
'spell' enable spell checking
'spellcapcheck' 'spc' pattern to locate end of a sentence
'spellfile' 'spf' files where zg and zw store words
'spelllang' 'spl' language(s) to do spell checking for
'spelloptions' 'spo' options for spell checking
'spellsuggest' 'sps' method(s) used to suggest spelling corrections
'splitbelow' 'sb' new window from split is below the current one
'splitkeep' 'spk' determines scroll behavior for split windows
'splitright' 'spr' new window is put right of the current one
'startofline' 'sol' commands move cursor to first non-blank in line
'statusline' 'stl' custom format for the status line
'suffixes' 'su' suffixes that are ignored with multiple match
'suffixesadd' 'sua' suffixes added when searching for a file
'swapfile' 'swf' whether to use a swapfile for a buffer
'swapsync' 'sws' how to sync the swap file
'switchbuf' 'swb' sets behavior when switching to another buffer
'synmaxcol' 'smc' maximum column to find syntax items
'syntax' 'syn' syntax to be loaded for current buffer
'tabline' 'tal' custom format for the console tab pages line
'tabpagemax' 'tpm' maximum number of tab pages for -p and "tab all"
'tabstop' 'ts' number of spaces that <Tab> in file uses
'tagbsearch' 'tbs' use binary searching in tags files
'tagcase' 'tc' how to handle case when searching in tags files
'tagfunc' 'tfu' function to get list of tag matches
'taglength' 'tl' number of significant characters for a tag
'tagrelative' 'tr' file names in tag file are relative
'tags' 'tag' list of file names used by the tag command
'tagstack' 'tgst' push tags onto the tag stack
'tcldll' name of the Tcl dynamic library
'term' name of the terminal
'termbidi' 'tbidi' terminal takes care of bi-directionality
'termencoding' 'tenc' character encoding used by the terminal
'termguicolors' 'tgc' use GUI colors for the terminal
'termwinkey' 'twk' key that precedes a Vim command in a terminal
'termwinscroll' 'twsl' max number of scrollback lines in a terminal window
'termwinsize' 'tws' size of a terminal window
'termwintype' 'twt' MS-Windows: type of pty to use for terminal window
'terse' shorten some messages
'textauto' 'ta' obsolete, use 'fileformats'
'textmode' 'tx' obsolete, use 'fileformat'
'textwidth' 'tw' maximum width of text that is being inserted

quickref.txt — 22

'thesaurus' 'tsr' list of thesaurus files for keyword completion
'thesaurusfunc' 'tsrfu' function to be used for thesaurus completion
'tildeop' 'top' tilde command "~" behaves like an operator
'timeout' 'to' time out on mappings and key codes
'timeoutlen' 'tm' time out time in milliseconds
'title' let Vim set the title of the window
'titlelen' percentage of 'columns' used for window title
'titleold' old title, restored when exiting
'titlestring' string to use for the Vim window title
'toolbar' 'tb' GUI: which items to show in the toolbar
'toolbariconsize' 'tbis' size of the toolbar icons (for GTK 2 only)
'ttimeout' time out on mappings
'ttimeoutlen' 'ttm' time out time for key codes in milliseconds
'ttybuiltin' 'tbi' use built-in termcap before external termcap
'ttyfast' 'tf' indicates a fast terminal connection
'ttymouse' 'ttym' type of mouse codes generated
'ttyscroll' 'tsl' maximum number of lines for a scroll
'ttytype' 'tty' alias for 'term'
'undodir' 'udir' where to store undo files
'undofile' 'udf' save undo information in a file
'undolevels' 'ul' maximum number of changes that can be undone
'undoreload' 'ur' max nr of lines to save for undo on a buffer reload
'updatecount' 'uc' after this many characters flush swap file
'updatetime' 'ut' after this many milliseconds flush swap file
'varsofttabstop' 'vsts' a list of number of spaces when typing <Tab>
'vartabstop' 'vts' a list of number of spaces for <Tab>s
'verbose' 'vbs' give informative messages
'verbosefile' 'vfile' file to write messages in
'viewdir' 'vdir' directory where to store files with :mkview
'viewoptions' 'vop' specifies what to save for :mkview
'viminfo' 'vi' use .viminfo file upon startup and exiting
'viminfofile' 'vif' file name used for the viminfo file
'virtualedit' 've' when to use virtual editing
'visualbell' 'vb' use visual bell instead of beeping
'warn' warn for shell command when buffer was changed
'weirdinvert' 'wiv' for terminals that have weird inversion method
'whichwrap' 'ww' allow specified keys to cross line boundaries
'wildchar' 'wc' command-line character for wildcard expansion
'wildcharm' 'wcm' like 'wildchar' but also works when mapped
'wildignore' 'wig' files matching these patterns are not completed
'wildignorecase' 'wic' ignore case when completing file names
'wildmenu' 'wmnu' use menu for command line completion
'wildmode' 'wim' mode for 'wildchar' command-line expansion
'wildoptions' 'wop' specifies how command line completion is done
'winaltkeys' 'wak' when the windows system handles ALT keys
'wincolor' 'wcr' window-local highlighting
'window' 'wi' nr of lines to scroll for CTRL-F and CTRL-B
'winfixbuf' 'wfb' keep window focused on a single buffer
'winfixheight' 'wfh' keep window height when opening/closing windows
'winfixwidth' 'wfw' keep window width when opening/closing windows
'winheight' 'wh' minimum number of lines for the current window
'winminheight' 'wmh' minimum number of lines for any window
'winminwidth' 'wmw' minimal number of columns for any window
'winptydll' name of the winpty dynamic library
'winwidth' 'wiw' minimal number of columns for current window
'wrap' long lines wrap and continue on the next line
'wrapmargin' 'wm' chars from the right where wrapping starts
'wrapscan' 'ws' searches wrap around the end of the file
'write' writing to a file is allowed
'writeany' 'wa' write to file with no need for "!" override

quickref.txt — 23

'writebackup' 'wb' make a backup before overwriting a file
'writedelay' 'wd' delay this many msec for each char (for debug)
'xtermcodes' request terminal codes from an xterm
--
Q_ur Undo/Redo commands

u N u undo last N changes
CTRL-R N CTRL-R redo last N undone changes
U U restore last changed line

--
Q_et External commands

:shell :sh[ell] start a shell
:! :!{command} execute {command} with a shell
K K lookup keyword under the cursor with

'keywordprg' program (default: "man")
--
Q_qf Quickfix commands

:cc :cc [nr] display error [nr] (default is the same again)
:cnext :cn display the next error
:cprevious :cp display the previous error
:clist :cl list all errors
:cfile :cf read errors from the file 'errorfile'
:cgetbuffer :cgetb like :cbuffer but don't jump to the first error
:cgetfile :cg like :cfile but don't jump to the first error
:cgetexpr :cgete like :cexpr but don't jump to the first error
:caddfile :caddf add errors from the error file to the current

quickfix list
:caddexpr :cad add errors from an expression to the current

quickfix list
:cbuffer :cb read errors from text in a buffer
:cexpr :cex read errors from an expression
:cquit :cq quit without writing and return error code (to

the compiler)
:make :make [args] start make, read errors, and jump to first

error
:grep :gr[ep] [args] execute 'grepprg' to find matches and jump to

the first one
--
Q_vc Various commands

CTRL-L CTRL-L clear and redraw the screen
CTRL-G CTRL-G show current file name (with path) and cursor

position
ga ga show ascii value of character under cursor in

decimal, hex, and octal
g8 g8 for utf-8 encoding: show byte sequence for

character under cursor in hex
g_CTRL-G g CTRL-G show cursor column, line, and character

position
CTRL-C CTRL-C during searches: Interrupt the search
dos-CTRL-Break CTRL-Break MS-Windows: during searches: Interrupt the

search
 while entering a count: delete last character
:version :ve[rsion] show version information
:mode :mode N set screen mode to N (obsolete)
:normal :norm[al][!] {commands}

execute Normal mode commands
Q Q switch to "Ex" mode

quickref.txt — 24

:redir :redir >{file} redirect messages to {file}
:silent :silent[!] {command} execute {command} silently
:confirm :confirm {command} quit, write, etc., asking about

unsaved changes or read-only files
:browse :browse {command} open/read/write file, using a

file selection dialog
--
Q_ce Command-line editing

c_<Esc> <Esc> abandon command-line (if 'wildchar' is
<Esc>, type it twice)

c_CTRL-V CTRL-V {char} insert {char} literally
c_CTRL-V CTRL-V {number} enter decimal value of character (up to

three digits)
c_CTRL-K CTRL-K {char1} {char2}

enter digraph (See Q_di)
c_CTRL-R CTRL-R {register} insert the contents of a register

c_<Left> <Left>/<Right> cursor left/right
c_<S-Left> <S-Left>/<S-Right> cursor one word left/right
c_CTRL-B CTRL-B/CTRL-E cursor to beginning/end of command-line

c_<BS> <BS> delete the character in front of the cursor
c_ delete the character under the cursor
c_CTRL-W CTRL-W delete the word in front of the cursor
c_CTRL-U CTRL-U remove all characters

c_<Up> <Up>/<Down> recall older/newer command-line that starts
with current command

c_<S-Up> <S-Up>/<S-Down> recall older/newer command-line from history
c_CTRL-G CTRL-G next match when 'incsearch' is active
c_CTRL-T CTRL-T previous match when 'incsearch' is active
:history :his[tory] show older command-lines

Context-sensitive completion on the command-line:

c_wildchar 'wildchar' (default: <Tab>)
do completion on the pattern in front of the

cursor; if there are multiple matches,
beep and show the first one; further
'wildchar' will show the next ones

c_CTRL-D CTRL-D list all names that match the pattern in
front of the cursor

c_CTRL-A CTRL-A insert all names that match pattern in front
of cursor

c_CTRL-L CTRL-L insert longest common part of names that
match pattern

c_CTRL-N CTRL-N after 'wildchar' with multiple matches: go
to next match

c_CTRL-P CTRL-P after 'wildchar' with multiple matches: go
to previous match

--
Q_ra Ex ranges

:range , separates two line numbers
:range ; idem, set cursor to the first line number

before interpreting the second one

quickref.txt — 25

:range {number} an absolute line number
:range . the current line
:range $ the last line in the file
:range % equal to 1,$ (the entire file)
:range * equal to '<,'> (visual area)
:range 't position of mark t
:range /{pattern}[/] the next line where {pattern} matches
:range ?{pattern}[?] the previous line where {pattern} matches

:range +[num] add [num] to the preceding line number
(default: 1)

:range -[num] subtract [num] from the preceding line
number (default: 1)

--
Q_ex Special Ex characters

:bar | separates two commands (not for ":global" and ":!")
:quote " begins comment

:_% % current file name (only where a file name is expected)
:_# #[num] alternate file name [num] (only where a file name is

expected)
Note: The next seven are typed literally; these are not special keys!

:<abuf> <abuf> buffer number, for use in an autocommand (only where a
file name is expected)

:<afile> <afile> file name, for use in an autocommand (only where a
file name is expected)

:<amatch> <amatch> what matched with the pattern, for use in an
autocommand (only where a file name is expected)

:<cword> <cword> word under the cursor (only where a file name is
expected)

:<cWORD> <cWORD> WORD under the cursor (only where a file name is
expected) (see WORD)

:<cfile> <cfile> file name under the cursor (only where a file name is
expected)

:<sfile> <sfile> file name of a ":source"d file, within that file (only
where a file name is expected)

After "%", "#", "<cfile>", "<sfile>" or "<afile>"
::p :p full path
::h :h head (file name removed)
::t :t tail (file name only)
::r :r root (extension removed)
::e :e extension
::s :s/{pat}/{repl}/ substitute {pat} with {repl}

--
Q_st Starting Vim

-vim vim [options] start editing with an empty buffer
-file vim [options] {file} .. start editing one or more files
-- vim [options] - read file from stdin
-tag vim [options] -t {tag} edit the file associated with {tag}
-qf vim [options] -q [fname] start editing in QuickFix mode,

display the first error

Most useful Vim arguments (for full list see startup-options)

-gui -g start GUI (also allows other options)

-+ +[num] put the cursor at line [num] (default: last line)

quickref.txt — 26

-+c +{command} execute {command} after loading the file
-+/ +/{pat} {file} .. put the cursor at the first occurrence of {pat}
-v -v Vi mode, start ex in Normal mode
-e -e Ex mode, start vim in Ex mode
-R -R Read-only mode, implies -n
-m -m modifications not allowed (resets 'write' option)
-d -d diff mode diff
-b -b binary mode
-l -l lisp mode
-A -A Arabic mode ('arabic' is set)
-F -F Farsi mode ('fkmap' and 'rightleft' are set)
-H -H Hebrew mode ('hkmap' and 'rightleft' are set)
-V -V Verbose, give informative messages
-C -C Compatible, set the 'compatible' option
-N -N Nocompatible, reset the 'compatible' option
-r -r give list of swap files
-r -r {file} .. recover aborted edit session
-n -n do not create a swap file
-o -o [num] open [num] windows (default: one for each file)
-f -f GUI: foreground process, don't fork

Amiga: do not restart Vim to open a window (for
e.g., mail)

-s -s {scriptin} first read commands from the file {scriptin}
-w -w {scriptout} write typed chars to file {scriptout} (append)
-W -W {scriptout} write typed chars to file {scriptout} (overwrite)
-T -T {terminal} set terminal name
-d -d {device} Amiga: open {device} to be used as a console
-u -u {vimrc} read inits from {vimrc} instead of other inits
-U -U {gvimrc} idem, for when starting the GUI
-i -i {viminfo} read info from {viminfo} instead of other files
--- -- end of options, other arguments are file names
--help --help show list of arguments and exit
--version --version show version info and exit
-- - read file from stdin

--
Q_ed Editing a file

Without !: Fail if changes have been made to the current buffer.
With !: Discard any changes to the current buffer.

:edit_f :e[dit][!] {file} edit {file}
:edit :e[dit][!] reload the current file
:enew :ene[w][!] edit a new, unnamed buffer
:find :fin[d][!] {file} find {file} in 'path' and edit it

CTRL-^ N CTRL-^ edit alternate file N (equivalent to ":e #N")
gf gf or]f edit the file whose name is under the cursor
:pwd :pwd print the current directory name
:cd :cd [path] change the current directory to [path]
:cd- :cd - back to previous current directory
:file :f[ile] print the current file name and the cursor

position
:file :f[ile] {name} set the current file name to {name}
:files :files show alternate file names

--
Q_fl Using the argument list argument-list

:args :ar[gs] print the argument list, with the current file
in "[]"

:all :all or :sall open a window for every file in the arg list
:wn :wn[ext][!] write file and edit next file

quickref.txt — 27

:wn :wn[ext][!] {file} write to {file} and edit next file, unless
{file} exists; With !, overwrite existing
file

:wN :wN[ext][!] [file] write file and edit previous file

in current window in new window
:argument :argu[ment] N :sar[gument] N edit file N
:next :n[ext] :sn[ext] edit next file
:next_f :n[ext] {arglist} :sn[ext] {arglist} define new arg list

and edit first file
:Next :N[ext] :sN[ext] edit previous file
:first :fir[st] :sfir[st] edit first file
:last :la[st] :sla[st] edit last file

--
Q_wq Writing and quitting

:w :[range]w[rite][!] write to the current file
:w_f :[range]w[rite] {file} write to {file}, unless it already

exists
:w_f :[range]w[rite]! {file} write to {file}. Overwrite an existing

file
:w_a :[range]w[rite][!] >> append to the current file
:w_a :[range]w[rite][!] >> {file} append to {file}
:w_c :[range]w[rite] !{cmd} execute {cmd} with [range] lines as

standard input
:up :[range]up[date][!] write to current file if modified
:wall :wa[ll][!] write all changed buffers

:q :q[uit] quit current buffer, unless changes have been
made; Exit Vim when there are no other
non-help buffers

:q :q[uit]! quit current buffer always, discard any
changes. Exit Vim when there are no other
non-help buffers

:qa :qa[ll] exit Vim, unless changes have been made
:qa :qa[ll]! exit Vim always, discard any changes
:cq :cq quit without writing and return error code

:wq :wq[!] write the current file and exit
:wq :wq[!] {file} write to {file} and exit
:xit :x[it][!] [file] like ":wq" but write only when changes have

been made
ZZ ZZ same as ":x"
ZQ ZQ same as ":q!"
:xall :xa[ll][!] or :wqall[!]

write all changed buffers and exit

:stop :st[op][!] suspend Vim or start new shell; if 'aw' option
is set and [!] not given write the buffer

CTRL-Z CTRL-Z same as ":stop"
--
Q_ac Automatic Commands

viminfo-file read registers, marks, history at startup, save when exiting.

:rviminfo :rv[iminfo] [file] read info from viminfo file [file]
:rviminfo :rv[iminfo]! [file] idem, overwrite existing info
:wviminfo :wv[iminfo] [file] add info to viminfo file [file]
:wviminfo :wv[iminfo]! [file] write info to viminfo file [file]

quickref.txt — 28

modeline Automatic option setting when editing a file

modeline vim:{set-arg}: .. In the first and last lines of the
file (see 'ml' option), {set-arg} is
given as an argument to ":set"

autocommand Automatic execution of commands on certain events.

:autocmd :au list all autocommands
:autocmd :au {event} list all autocommands for {event}
:autocmd :au {event} {pat} list all autocommands for {event}

with {pat}
:autocmd :au {event} {pat} {cmd} enter new autocommands for {event}

with {pat}
:autocmd :au! remove all autocommands
:autocmd :au! {event} remove all autocommands for {event}
:autocmd :au! * {pat} remove all autocommands for {pat}
:autocmd :au! {event} {pat} remove all autocommands for {event}

with {pat}
:autocmd :au! {event} {pat} {cmd} remove all autocommands for {event}

with {pat} and enter new one
--
Q_wi Multi-window commands

CTRL-W_s CTRL-W s or :split split window into two parts
:split_f :split {file} split window and edit {file} in one of

them
:vsplit :vsplit {file} same, but split vertically
:vertical :vertical {cmd} make {cmd} split vertically

:sfind :sf[ind] {file} split window, find {file} in 'path'
and edit it

:terminal :terminal {cmd} open a terminal window
CTRL-W_] CTRL-W] split window and jump to tag under

cursor
CTRL-W_f CTRL-W f split window and edit file name under

the cursor
CTRL-W_^ CTRL-W ^ split window and edit alternate file
CTRL-W_n CTRL-W n or :new create new empty window
CTRL-W_q CTRL-W q or :q[uit] quit editing and close window
CTRL-W_c CTRL-W c or :clo[se] make buffer hidden and close window
CTRL-W_o CTRL-W o or :on[ly] make current window only one on the

screen

CTRL-W_j CTRL-W j move cursor to window below
CTRL-W_k CTRL-W k move cursor to window above
CTRL-W_CTRL-W CTRL-W CTRL-W move cursor to window below (wrap)
CTRL-W_W CTRL-W W move cursor to window above (wrap)
CTRL-W_t CTRL-W t move cursor to top window
CTRL-W_b CTRL-W b move cursor to bottom window
CTRL-W_p CTRL-W p move cursor to previous active window

CTRL-W_r CTRL-W r rotate windows downwards
CTRL-W_R CTRL-W R rotate windows upwards
CTRL-W_x CTRL-W x exchange current window with next one

CTRL-W_= CTRL-W = make all windows equal height & width
CTRL-W_- CTRL-W - decrease current window height
CTRL-W_+ CTRL-W + increase current window height
CTRL-W__ CTRL-W _ set current window height (default:

quickref.txt — 29

very high)

CTRL-W_< CTRL-W < decrease current window width
CTRL-W_> CTRL-W > increase current window width
CTRL-W_bar CTRL-W | set current window width (default:

widest possible)
--
Q_bu Buffer list commands

:buffers :buffers or :files list all known buffer and file names

:ball :ball or :sball edit all args/buffers
:unhide :unhide or :sunhide edit all loaded buffers

:badd :badd {fname} add file name {fname} to the list
:bunload :bunload[!] [N] unload buffer [N] from memory
:bdelete :bdelete[!] [N] unload buffer [N] and delete it from

the buffer list

in current window in new window
:buffer :[N]buffer [N] :[N]sbuffer [N] to arg/buf N
:bnext :[N]bnext [N] :[N]sbnext [N] to Nth next arg/buf
:bNext :[N]bNext [N] :[N]sbNext [N] to Nth previous arg/buf
:bprevious :[N]bprevious [N] :[N]sbprevious [N] to Nth previous arg/buf
:bfirst :bfirst :sbfirst to first arg/buf
:blast :blast :sblast to last arg/buf
:bmodified :[N]bmod [N] :[N]sbmod [N] to Nth modified buf

--
Q_sy Syntax Highlighting

:syn-on :syntax on start using syntax highlighting
:syn-off :syntax off stop using syntax highlighting

:syn-keyword :syntax keyword {group-name} {keyword} ..
add a syntax keyword item

:syn-match :syntax match {group-name} {pattern} ...
add syntax match item

:syn-region :syntax region {group-name} {pattern} ...
add syntax region item

:syn-sync :syntax sync [ccomment | lines {N} | ...]
tell syntax how to sync

:syntax :syntax [list] list current syntax items
:syn-clear :syntax clear clear all syntax info

:highlight :highlight clear clear all highlight info
:highlight :highlight {group-name} {key}={arg} ..

set highlighting for {group-name}

:filetype :filetype on switch on file type detection, without
syntax highlighting

:filetype :filetype plugin indent on
switch on file type detection, with
automatic indenting and settings

--
Q_gu GUI commands

:gui :gui UNIX: start the GUI
:gui :gui {fname} .. idem, and edit {fname} ..

:menu :menu list all menus

quickref.txt — 30

:menu :menu {mpath} list menus starting with {mpath}
:menu :menu {mpath} {rhs} add menu {mpath}, giving {rhs}
:menu :menu {pri} {mpath} {rhs}

idem, with priorities {pri}
:menu :menu ToolBar.{name} {rhs}

add toolbar item, giving {rhs}
:tmenu :tmenu {mpath} {text} add tooltip to menu {mpath}
:unmenu :unmenu {mpath} remove menu {mpath}

--
Q_fo Folding

'foldmethod' set foldmethod=manual manual folding
set foldmethod=indent folding by indent
set foldmethod=expr folding by 'foldexpr'
set foldmethod=syntax folding by syntax regions
set foldmethod=marker folding by 'foldmarker'

zf zf{motion} operator: Define a fold manually
:fold :{range}fold define a fold for {range} lines
zd zd delete one fold under the cursor
zD zD delete all folds under the cursor

zo zo open one fold under the cursor
zO zO open all folds under the cursor
zc zc close one fold under the cursor
zC zC close all folds under the cursor

zm zm fold more: decrease 'foldlevel'
zM zM close all folds: make 'foldlevel' zero
zr zr reduce folding: increase 'foldlevel'
zR zR open all folds: make 'foldlevel' max.

zn zn fold none: reset 'foldenable'
zN zN fold normal set 'foldenable'
zi zi invert 'foldenable'

quickref.txt — 31

quickref.txt — 32

usr_toc.txt For Vim version 9.1. Last change: 2022 Jun 20

VIM USER MANUAL - by Bram Moolenaar

Table Of Contents user-manual

==
Overview

Getting Started
usr_01.txt About the manuals
usr_02.txt The first steps in Vim
usr_03.txt Moving around
usr_04.txt Making small changes
usr_05.txt Set your settings
usr_06.txt Using syntax highlighting
usr_07.txt Editing more than one file
usr_08.txt Splitting windows
usr_09.txt Using the GUI
usr_10.txt Making big changes
usr_11.txt Recovering from a crash
usr_12.txt Clever tricks

Editing Effectively
usr_20.txt Typing command-line commands quickly
usr_21.txt Go away and come back
usr_22.txt Finding the file to edit
usr_23.txt Editing other files
usr_24.txt Inserting quickly
usr_25.txt Editing formatted text
usr_26.txt Repeating
usr_27.txt Search commands and patterns
usr_28.txt Folding
usr_29.txt Moving through programs
usr_30.txt Editing programs
usr_31.txt Exploiting the GUI
usr_32.txt The undo tree

Tuning Vim
usr_40.txt Make new commands
usr_41.txt Write a Vim script
usr_42.txt Add new menus
usr_43.txt Using filetypes
usr_44.txt Your own syntax highlighted
usr_45.txt Select your language (locale)

Writing Vim script
usr_50.txt Advanced Vim script writing
usr_51.txt Write plugins
usr_52.txt Write larger plugins

Making Vim Run
usr_90.txt Installing Vim

Reference manual
reference_toc More detailed information for all commands

The user manual (an older version) is available as a single, ready to print
HTML and PDF file here:

usr_toc.txt — 33

http://vimdoc.sf.net

==
Getting Started

Read this from start to end to learn the essential commands.

usr_01.txt About the manuals
01.1 Two manuals
01.2 Vim installed
01.3 Using the Vim tutor
01.4 Copyright

usr_02.txt The first steps in Vim
02.1 Running Vim for the First Time
02.2 Inserting text
02.3 Moving around
02.4 Deleting characters
02.5 Undo and Redo
02.6 Other editing commands
02.7 Getting out
02.8 Finding help

usr_03.txt Moving around
03.1 Word movement
03.2 Moving to the start or end of a line
03.3 Moving to a character
03.4 Matching a paren
03.5 Moving to a specific line
03.6 Telling where you are
03.7 Scrolling around
03.8 Simple searches
03.9 Simple search patterns
03.10 Using marks

usr_04.txt Making small changes
04.1 Operators and motions
04.2 Changing text
04.3 Repeating a change
04.4 Visual mode
04.5 Moving text
04.6 Copying text
04.7 Using the clipboard
04.8 Text objects
04.9 Replace mode
04.10 Conclusion

usr_05.txt Set your settings
05.1 The vimrc file
05.2 The example vimrc file explained
05.3 The defaults.vim file explained
05.4 Simple mappings
05.5 Adding a package
05.6 Adding a plugin
05.7 Adding a help file
05.8 The option window
05.9 Often used options

usr_06.txt Using syntax highlighting
06.1 Switching it on

usr_toc.txt — 34

http://vimdoc.sf.net

06.2 No or wrong colors?
06.3 Different colors
06.4 With colors or without colors
06.5 Printing with colors
06.6 Further reading

usr_07.txt Editing more than one file
07.1 Edit another file
07.2 A list of files
07.3 Jumping from file to file
07.4 Backup files
07.5 Copy text between files
07.6 Viewing a file
07.7 Changing the file name

usr_08.txt Splitting windows
08.1 Split a window
08.2 Split a window on another file
08.3 Window size
08.4 Vertical splits
08.5 Moving windows
08.6 Commands for all windows
08.7 Viewing differences with vimdiff
08.8 Various

usr_09.txt Using the GUI
09.1 Parts of the GUI
09.2 Using the mouse
09.3 The clipboard
09.4 Select mode

usr_10.txt Making big changes
10.1 Record and playback commands
10.2 Substitution
10.3 Command ranges
10.4 The global command
10.5 Visual block mode
10.6 Reading and writing part of a file
10.7 Formatting text
10.8 Changing case
10.9 Using an external program

usr_11.txt Recovering from a crash
11.1 Basic recovery
11.2 Where is the swap file?
11.3 Crashed or not?
11.4 Further reading

usr_12.txt Clever tricks
12.1 Replace a word
12.2 Change "Last, First" to "First Last"
12.3 Sort a list
12.4 Reverse line order
12.5 Count words
12.6 Find a man page
12.7 Trim blanks
12.8 Find where a word is used

==
Editing Effectively

usr_toc.txt — 35

Subjects that can be read independently.

usr_20.txt Typing command-line commands quickly
20.1 Command line editing
20.2 Command line abbreviations
20.3 Command line completion
20.4 Command line history
20.5 Command line window

usr_21.txt Go away and come back
21.1 Suspend and resume
21.2 Executing shell commands
21.3 Remembering information; viminfo
21.4 Sessions
21.5 Views
21.6 Modelines

usr_22.txt Finding the file to edit
22.1 The file explorer
22.2 The current directory
22.3 Finding a file
22.4 The buffer list

usr_23.txt Editing other files
23.1 DOS, Mac and Unix files
23.2 Files on the internet
23.3 Encryption
23.4 Binary files
23.5 Compressed files

usr_24.txt Inserting quickly
24.1 Making corrections
24.2 Showing matches
24.3 Completion
24.4 Repeating an insert
24.5 Copying from another line
24.6 Inserting a register
24.7 Abbreviations
24.8 Entering special characters
24.9 Digraphs
24.10 Normal mode commands

usr_25.txt Editing formatted text
25.1 Breaking lines
25.2 Aligning text
25.3 Indents and tabs
25.4 Dealing with long lines
25.5 Editing tables

usr_26.txt Repeating
26.1 Repeating with Visual mode
26.2 Add and subtract
26.3 Making a change in many files
26.4 Using Vim from a shell script

usr_27.txt Search commands and patterns
27.1 Ignoring case
27.2 Wrapping around the file end
27.3 Offsets

usr_toc.txt — 36

27.4 Matching multiple times
27.5 Alternatives
27.6 Character ranges
27.7 Character classes
27.8 Matching a line break
27.9 Examples

usr_28.txt Folding
28.1 What is folding?
28.2 Manual folding
28.3 Working with folds
28.4 Saving and restoring folds
28.5 Folding by indent
28.6 Folding with markers
28.7 Folding by syntax
28.8 Folding by expression
28.9 Folding unchanged lines
28.10 Which fold method to use?

usr_29.txt Moving through programs
29.1 Using tags
29.2 The preview window
29.3 Moving through a program
29.4 Finding global identifiers
29.5 Finding local identifiers

usr_30.txt Editing programs
30.1 Compiling
30.2 Indenting C files
30.3 Automatic indenting
30.4 Other indenting
30.5 Tabs and spaces
30.6 Formatting comments

usr_31.txt Exploiting the GUI
31.1 The file browser
31.2 Confirmation
31.3 Menu shortcuts
31.4 Vim window position and size
31.5 Various

usr_32.txt The undo tree
32.1 Undo up to a file write
32.2 Numbering changes
32.3 Jumping around the tree
32.4 Time travelling

==
Tuning Vim

Make Vim work as you like it.

usr_40.txt Make new commands
40.1 Key mapping
40.2 Defining command-line commands
40.3 Autocommands

usr_41.txt Write a Vim script
41.1 Introduction
41.2 Variables

usr_toc.txt — 37

41.3 Expressions
41.4 Conditionals
41.5 Executing an expression
41.6 Using functions
41.7 Defining a function
41.8 Lists and Dictionaries
41.9 White space
41.10 Line continuation
41.11 Comments
41.12 Fileformat

usr_42.txt Add new menus
42.1 Introduction
42.2 Menu commands
42.3 Various
42.4 Toolbar and popup menus

usr_43.txt Using filetypes
43.1 Plugins for a filetype
43.2 Adding a filetype

usr_44.txt Your own syntax highlighted
44.1 Basic syntax commands
44.2 Keywords
44.3 Matches
44.4 Regions
44.5 Nested items
44.6 Following groups
44.7 Other arguments
44.8 Clusters
44.9 Including another syntax file
44.10 Synchronizing
44.11 Installing a syntax file
44.12 Portable syntax file layout

usr_45.txt Select your language (locale)
45.1 Language for Messages
45.2 Language for Menus
45.3 Using another encoding
45.4 Editing files with a different encoding
45.5 Entering language text

==
Writing Vim script

usr_50.txt Advanced Vim script writing
50.1 Exceptions
50.2 Function with variable number of arguments
50.3 Restoring the view

usr_51.txt Write plugins
51.1 Writing a generic plugin
51.2 Writing a filetype plugin
51.3 Writing a compiler plugin
51.4 Distributing Vim scripts

usr_52.txt Write larger plugins
52.1 Export and import
52.2 Autoloading
52.3 Autoloading without import/export

usr_toc.txt — 38

52.4 Other mechanisms to use
52.5 Using a Vim9 script from legacy script

==
Making Vim Run

Before you can use Vim.

usr_90.txt Installing Vim
90.1 Unix
90.2 MS-Windows
90.3 Upgrading
90.4 Common installation issues
90.5 Uninstalling Vim

==

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_toc.txt — 39

usr_toc.txt — 40

usr_01.txt For Vim version 9.1. Last change: 2023 May 12

VIM USER MANUAL - by Bram Moolenaar

About the manuals

This chapter introduces the manuals available with Vim. Read this to know the
conditions under which the commands are explained.

01.1 Two manuals
01.2 Vim installed
01.3 Using the Vim tutor
01.4 Copyright

Next chapter: usr_02.txt The first steps in Vim
Table of contents: usr_toc.txt

==
01.1 Two manuals

The Vim documentation consists of two parts:

1. The User manual
Task oriented explanations, from simple to complex. Reads from start to
end like a book.

2. The Reference manual
Precise description of how everything in Vim works.

The notation used in these manuals is explained here: notation

JUMPING AROUND

The text contains hyperlinks between the two parts, allowing you to quickly
jump between the description of an editing task and a precise explanation of
the commands and options used for it. Use these two commands:

Press CTRL-] to jump to a subject under the cursor.
Press CTRL-O to jump back (repeat to go further back).

Many links are in vertical bars, like this: bars . The bars themselves may
be hidden or invisible; see below. An option name, like 'number', a command
in double quotes like ":write" and any other word can also be used as a link.
Try it out: Move the cursor to CTRL-] and press CTRL-] on it.

Other subjects can be found with the ":help" command; see help.txt .

The bars and stars are usually hidden with the conceal feature. They also
use hl-Ignore , using the same color for the text as the background. You can
make them visible with:

:set conceallevel=0
:hi link HelpBar Normal
:hi link HelpStar Normal

==
01.2 Vim installed

Most of the manuals assume that Vim has been properly installed. If you

usr_01.txt — 41

didn't do that yet, or if Vim doesn't run properly (e.g., files can't be found
or in the GUI the menus do not show up) first read the chapter on
installation: usr_90.txt .

not-compatible
The manuals often assume you are using Vim with Vi-compatibility switched
off. For most commands this doesn't matter, but sometimes it is important,
e.g., for multi-level undo. An easy way to make sure you are using a nice
setup is to copy the example vimrc file. By doing this inside Vim you don't
have to check out where it is located. How to do this depends on the system
you are using:

Unix:
:!cp -i $VIMRUNTIME/vimrc_example.vim ~/.vimrc

MS-Windows:
:!copy $VIMRUNTIME/vimrc_example.vim $VIM/_vimrc

Amiga:
:!copy $VIMRUNTIME/vimrc_example.vim $VIM/.vimrc

If the file already exists you probably want to keep it.

If you start Vim now, the 'compatible' option should be off. You can check it
with this command:

:set compatible?

If it responds with "nocompatible" you are doing well. If the response is
"compatible" you are in trouble. You will have to find out why the option is
still set. Perhaps the file you wrote above is not found. Use this command
to find out:

:scriptnames

If your file is not in the list, check its location and name. If it is in the
list, there must be some other place where the 'compatible' option is switched
back on.

For more info see vimrc and compatible-default .

Note:
This manual is about using Vim in the normal way. There is an
alternative called "evim" (easy Vim). This is still Vim, but used in
a way that resembles a click-and-type editor like Notepad. It always
stays in Insert mode, thus it feels very different. It is not
explained in the user manual, since it should be mostly
self-explanatory. See evim-keys for details.

==
01.3 Using the Vim tutor tutor vimtutor

Instead of reading the text (boring!) you can use the vimtutor to learn your
first Vim commands. This is a 30-minute tutorial that teaches the most basic
Vim functionality hands-on.

On Unix, if Vim has been properly installed, you can start it from the shell:

vimtutor

On MS-Windows you can find it in the Program/Vim menu. Or execute
vimtutor.bat in the $VIMRUNTIME directory.

usr_01.txt — 42

This will make a copy of the tutor file, so that you can edit it without
the risk of damaging the original.

There are a few translated versions of the tutor. To find out if yours is
available, use the two-letter language code. For French:

vimtutor fr

On Unix, if you prefer using the GUI version of Vim, use "gvimtutor" or
"vimtutor -g" instead of "vimtutor".

For OpenVMS, if Vim has been properly installed, you can start vimtutor from a
VMS prompt with:

@VIM:vimtutor

Optionally add the two-letter language code as above.

On other systems, you have to do a little work:

1. Copy the tutor file. You can do this with Vim (it knows where to find it):

vim --clean -c 'e $VIMRUNTIME/tutor/tutor' -c 'w! TUTORCOPY' -c 'q'

This will write the file "TUTORCOPY" in the current directory. To use a
translated version of the tutor, append the two-letter language code to the
filename. For French:

vim --clean -c 'e $VIMRUNTIME/tutor/tutor.fr' -c 'w! TUTORCOPY' -c 'q'

2. Edit the copied file with Vim:

vim --clean TUTORCOPY

The --clean argument makes sure Vim is started with nice defaults.

3. Delete the copied file when you are finished with it:

del TUTORCOPY

==
01.4 Copyright manual-copyright

The Vim user manual and reference manual are Copyright (c) 1988 by Bram
Moolenaar. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, v1.0 or later. The
latest version is presently available at:

http://www.opencontent.org/openpub/

People who contribute to the manuals must agree with the above copyright
notice.

frombook
Parts of the user manual come from the book "Vi IMproved - Vim" by Steve
Oualline (published by New Riders Publishing, ISBN: 0735710015). The Open
Publication License applies to this book. Only selected parts are included
and these have been modified (e.g., by removing the pictures, updating the
text for Vim 6.0 and later, fixing mistakes). The omission of the frombook
tag does not mean that the text does not come from the book.

Many thanks to Steve Oualline and New Riders for creating this book and

usr_01.txt — 43

http://www.opencontent.org/openpub/

publishing it under the OPL! It has been a great help while writing the user
manual. Not only by providing literal text, but also by setting the tone and
style.

If you make money through selling the manuals, you are strongly encouraged to
donate part of the profit to help AIDS victims in Uganda. See iccf .

==

Next chapter: usr_02.txt The first steps in Vim

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_01.txt — 44

usr_02.txt For Vim version 9.1. Last change: 2021 Apr 24

VIM USER MANUAL - by Bram Moolenaar

The first steps in Vim

This chapter provides just enough information to edit a file with Vim. Not
well or fast, but you can edit. Take some time to practice with these
commands, they form the base for what follows.

02.1 Running Vim for the First Time
02.2 Inserting text
02.3 Moving around
02.4 Deleting characters
02.5 Undo and Redo
02.6 Other editing commands
02.7 Getting out
02.8 Finding help

Next chapter: usr_03.txt Moving around
Previous chapter: usr_01.txt About the manuals

Table of contents: usr_toc.txt

==
02.1 Running Vim for the First Time

To start Vim, enter this command:

gvim file.txt

In UNIX you can type this at any command prompt. If you are running Microsoft
Windows, open a Command Prompt and enter the command.

In either case, Vim starts editing a file called file.txt. Because this
is a new file, you get a blank window. This is what your screen will look
like:

+---------------------------------------+
|# |
|~ |
|~ |
|~ |
|~ |
|"file.txt" [New file] |
+---------------------------------------+

('#' is the cursor position.)

The tilde (~) lines indicate lines not in the file. In other words, when Vim
runs out of file to display, it displays tilde lines. At the bottom of the
screen, a message line indicates the file is named file.txt and shows that you
are creating a new file. The message information is temporary and other
information overwrites it.

THE VIM COMMAND

The gvim command causes the editor to create a new window for editing. If you
use this command:

vim file.txt

usr_02.txt — 45

the editing occurs inside your command window. In other words, if you are
running inside an xterm, the editor uses your xterm window. If you are using
an MS-Windows command prompt window, the editing occurs inside this window.
The text in the window will look the same for both versions, but with gvim you
have extra features, like a menu bar. More about that later.

==
02.2 Inserting text

The Vim editor is a modal editor. That means that the editor behaves
differently, depending on which mode you are in. The two basic modes are
called Normal mode and Insert mode. In Normal mode the characters you type
are commands. In Insert mode the characters are inserted as text.

Since you have just started Vim it will be in Normal mode. To start Insert
mode you type the "i" command (i for Insert). Then you can enter
the text. It will be inserted into the file. Do not worry if you make
mistakes; you can correct them later. To enter the following programmer's
limerick, this is what you type:

iA very intelligent turtle
Found programming UNIX a hurdle

After typing "turtle" you press the <Enter> key to start a new line. Finally
you press the <Esc> key to stop Insert mode and go back to Normal mode. You
now have two lines of text in your Vim window:

+---------------------------------------+
|A very intelligent turtle |
|Found programming UNIX a hurdle |
|~ |
|~ |
| |
+---------------------------------------+

WHAT IS THE MODE?

To be able to see what mode you are in, type this command:

:set showmode

You will notice that when typing the colon Vim moves the cursor to the last
line of the window. That's where you type colon commands (commands that start
with a colon). Finish this command by pressing the <Enter> key (all commands
that start with a colon are finished this way).

Now, if you type the "i" command Vim will display --INSERT-- at the bottom
of the window. This indicates you are in Insert mode.

+---------------------------------------+
|A very intelligent turtle |
|Found programming UNIX a hurdle |
|~ |
|~ |
|-- INSERT -- |
+---------------------------------------+

If you press <Esc> to go back to Normal mode the last line will be made blank.

usr_02.txt — 46

GETTING OUT OF TROUBLE

One of the problems for Vim novices is mode confusion, which is caused by
forgetting which mode you are in or by accidentally typing a command that
switches modes. To get back to Normal mode, no matter what mode you are in,
press the <Esc> key. Sometimes you have to press it twice. If Vim beeps back
at you, you already are in Normal mode.

==
02.3 Moving around

After you return to Normal mode, you can move around by using these keys:

h left hjkl
j down
k up
l right

At first, it may appear that these commands were chosen at random. After all,
who ever heard of using l for right? But actually, there is a very good
reason for these choices: Moving the cursor is the most common thing you do in
an editor, and these keys are on the home row of your right hand. In other
words, these commands are placed where you can type them the fastest
(especially when you type with ten fingers).

Note:
You can also move the cursor by using the arrow keys. If you do,
however, you greatly slow down your editing because to press the arrow
keys, you must move your hand from the text keys to the arrow keys.
Considering that you might be doing it hundreds of times an hour, this
can take a significant amount of time.

Also, there are keyboards which do not have arrow keys, or which
locate them in unusual places; therefore, knowing the use of the hjkl
keys helps in those situations.

One way to remember these commands is that h is on the left, l is on the
right and j points down. In a picture:

k
h l

j

The best way to learn these commands is by using them. Use the "i" command to
insert some more lines of text. Then use the hjkl keys to move around and
insert a word somewhere. Don't forget to press <Esc> to go back to Normal
mode. The vimtutor is also a nice way to learn by doing.

For Japanese users, Hiroshi Iwatani suggested using this:

Komsomolsk
^
|

Huan Ho <--- ---> Los Angeles
(Yellow river) |

v
Java (the island, not the programming language)

==
02.4 Deleting characters

usr_02.txt — 47

To delete a character, move the cursor over it and type "x". (This is a
throwback to the old days of the typewriter, when you deleted things by typing
xxxx over them.) Move the cursor to the beginning of the first line, for
example, and type xxxxxxx (seven x's) to delete "A very ". The result should
look like this:

+---------------------------------------+
|intelligent turtle |
|Found programming UNIX a hurdle |
|~ |
|~ |
| |
+---------------------------------------+

Now you can insert new text, for example by typing:

iA young <Esc>

This begins an insert (the i), inserts the words "A young", and then exits
insert mode (the final <Esc>). The result:

+---------------------------------------+
|A young intelligent turtle |
|Found programming UNIX a hurdle |
|~ |
|~ |
| |
+---------------------------------------+

DELETING A LINE

To delete a whole line use the "dd" command. The following line will
then move up to fill the gap:

+---------------------------------------+
|Found programming UNIX a hurdle |
|~ |
|~ |
|~ |
| |
+---------------------------------------+

DELETING A LINE BREAK

In Vim you can join two lines together, which means that the line break
between them is deleted. The "J" command does this.

Take these two lines:

A young intelligent
turtle

Move the cursor to the first line and press "J":

A young intelligent turtle

==
02.5 Undo and Redo

usr_02.txt — 48

Suppose you delete too much. Well, you can type it in again, but an easier
way exists. The "u" command undoes the last edit. Take a look at this in
action: After using "dd" to delete the first line, "u" brings it back.

Another one: Move the cursor to the A in the first line:

A young intelligent turtle

Now type xxxxxxx to delete "A young". The result is as follows:

intelligent turtle

Type "u" to undo the last delete. That delete removed the g, so the undo
restores the character.

g intelligent turtle

The next "u" command restores the next-to-last character deleted:

ng intelligent turtle

The next "u" command gives you the u, and so on:

ung intelligent turtle
oung intelligent turtle
young intelligent turtle
young intelligent turtle

A young intelligent turtle

Note:
If you type "u" twice, and the result is that you get the same text
back, you have Vim configured to work Vi compatible. Look here to fix
this: not-compatible .

This text assumes you work "The Vim Way". You might prefer to use
the good old Vi way, but you will have to watch out for small
differences in the text then.

REDO

If you undo too many times, you can press CTRL-R (redo) to reverse the
preceding command. In other words, it undoes the undo. To see this in
action, press CTRL-R twice. The character A and the space after it disappear:

young intelligent turtle

There's a special version of the undo command, the "U" (undo line) command.
The undo line command undoes all the changes made on the last line that was
edited. Typing this command twice cancels the preceding "U".

A very intelligent turtle
xxxx Delete very

A intelligent turtle
xxxxxx Delete turtle

A intelligent
Restore line with "U"

A very intelligent turtle
Undo "U" with "u"

A intelligent

usr_02.txt — 49

The "U" command is a change by itself, which the "u" command undoes and CTRL-R
redoes. This might be a bit confusing. Don't worry, with "u" and CTRL-R you
can go to any of the situations you had. More about that in section 32.2 .

==
02.6 Other editing commands

Vim has a large number of commands to change the text. See Q_in and below.
Here are a few often used ones.

APPENDING

The "i" command inserts a character before the character under the cursor.
That works fine; but what happens if you want to add stuff to the end of the
line? For that you need to insert text after the cursor. This is done with
the "a" (append) command.

For example, to change the line

and that's not saying much for the turtle.
to

and that's not saying much for the turtle!!!

move the cursor over to the dot at the end of the line. Then type "x" to
delete the period. The cursor is now positioned at the end of the line on the
e in turtle. Now type

a!!!<Esc>

to append three exclamation points after the e in turtle:

and that's not saying much for the turtle!!!

OPENING UP A NEW LINE

The "o" command creates a new, empty line below the cursor and puts Vim in
Insert mode. Then you can type the text for the new line.

Suppose the cursor is somewhere in the first of these two lines:

A very intelligent turtle
Found programming UNIX a hurdle

If you now use the "o" command and type new text:

oThat liked using Vim<Esc>

The result is:

A very intelligent turtle
That liked using Vim
Found programming UNIX a hurdle

The "O" command (uppercase) opens a line above the cursor.

USING A COUNT

Suppose you want to move up nine lines. You can type "kkkkkkkkk" or you can

usr_02.txt — 50

enter the command "9k". In fact, you can precede many commands with a number.
Earlier in this chapter, for instance, you added three exclamation points to
the end of a line by typing "a!!!<Esc>". Another way to do this is to use the
command "3a!<Esc>". The count of 3 tells the command that follows to triple
its effect. Similarly, to delete three characters, use the command "3x". The
count always comes before the command it applies to.

==
02.7 Getting out

To exit, use the "ZZ" command. This command writes the file and exits.

Note:
Unlike many other editors, Vim does not automatically make a backup
file. If you type "ZZ", your changes are committed and there's no
turning back. You can configure the Vim editor to produce backup
files; see 07.4 .

DISCARDING CHANGES

Sometimes you will make a sequence of changes and suddenly realize you were
better off before you started. Not to worry; Vim has a
quit-and-throw-things-away command. It is:

:q!

Don't forget to press <Enter> to finish the command.

For those of you interested in the details, the three parts of this command
are the colon (:), which enters Command-line mode; the q command, which tells
the editor to quit; and the override command modifier (!).

The override command modifier is needed because Vim is reluctant to throw
away changes. If you were to just type ":q", Vim would display an error
message and refuse to exit:

E37: No write since last change (use ! to override)

By specifying the override, you are in effect telling Vim, "I know that what
I'm doing looks stupid, but I really want to do this."

If you want to continue editing with Vim: The ":e!" command reloads the
original version of the file.

==
02.8 Finding help

Everything you always wanted to know can be found in the Vim help files.
Don't be afraid to ask!

If you know what you are looking for, it is usually easier to search for it
using the help system, instead of using Google. Because the subjects follow
a certain style guide.

Also the help has the advantage of belonging to your particular Vim version.
You won't see help for commands added later. These would not work for you.

To get generic help use this command:

:help

usr_02.txt — 51

You could also use the first function key <F1>. If your keyboard has a <Help>
key it might work as well.

If you don't supply a subject, ":help" displays the general help window.
The creators of Vim did something very clever (or very lazy) with the help
system: They made the help window a normal editing window. You can use all
the normal Vim commands to move through the help information. Therefore h, j,
k, and l move left, down, up and right.

To get out of the help window, use the same command you use to get out of
the editor: "ZZ". This will only close the help window, not exit Vim.

As you read the help text, you will notice some text enclosed in vertical bars
(for example, help). This indicates a hyperlink. If you position the
cursor anywhere between the bars and press CTRL-] (jump to tag), the help
system takes you to the indicated subject. (For reasons not discussed here,
the Vim terminology for a hyperlink is tag. So CTRL-] jumps to the location
of the tag given by the word under the cursor.)

After a few jumps, you might want to go back. CTRL-T (pop tag) takes you
back to the preceding position. CTRL-O (jump to older position) also works
nicely here.

At the top of the help screen, there is the notation *help.txt*. This name
between "*" characters is used by the help system to define a tag (hyperlink
destination).

See 29.1 for details about using tags.

To get help on a given subject, use the following command:

:help {subject}

To get help on the "x" command, for example, enter the following:

:help x

To find out how to delete text, use this command:

:help deleting

To get a complete index of all Vim commands, use the following command:

:help index

When you need to get help for a control character command (for example,
CTRL-A), you need to spell it with the prefix "CTRL-".

:help CTRL-A

The Vim editor has many different modes. By default, the help system displays
the normal-mode commands. For example, the following command displays help
for the normal-mode CTRL-H command:

:help CTRL-H

To identify other modes, use a mode prefix. If you want the help for the
insert-mode version of a command, use "i_". For CTRL-H this gives you the
following command:

:help i_CTRL-H

When you start the Vim editor, you can use several command-line arguments.
These all begin with a dash (-). To find what the -t argument does, for

usr_02.txt — 52

example, use the command:

:help -t

The Vim editor has a number of options that enable you to configure and
customize the editor. If you want help for an option, you need to enclose it
in single quotation marks. To find out what the 'number' option does, for
example, use the following command:

:help 'number'

The table with all mode prefixes can be found below: help-summary .

Special keys are enclosed in angle brackets. To find help on the up-arrow key
in Insert mode, for instance, use this command:

:help i_<Up>

If you see an error message that you don't understand, for example:

E37: No write since last change (use ! to override)

You can use the error ID at the start to find help about it:

:help E37

Summary: help-summary

1) Use Ctrl-D after typing a topic and let Vim show all available topics.
Or press Tab to complete:

:help some<Tab>
More information on how to use the help:

:help helphelp

2) Follow the links in bars to related help. You can go from the detailed
help to the user documentation, which describes certain commands more from
a user perspective and less detailed. E.g. after:

:help pattern.txt
You can see the user guide topics 03.9 and usr_27.txt in the
introduction.

3) Options are enclosed in single apostrophes. To go to the help topic for the
list option:

:help 'list'
If you only know you are looking for a certain option, you can also do:

:help options.txt
to open the help page which describes all option handling and then search
using regular expressions, e.g. textwidth.
Certain options have their own namespace, e.g.:

:help cpo-<letter>
for the corresponding flag of the 'cpoptions' settings, substitute <letter>
by a specific flag, e.g.:

:help cpo-;
And for the 'guioptions' flags:

:help go-<letter>

4) Normal mode commands do not have a prefix. To go to the help page for the
"gt" command:

:help gt

usr_02.txt — 53

5) Insert mode commands start with i_. Help for deleting a word:
:help i_CTRL-W

6) Visual mode commands start with v_. Help for jumping to the other side of
the Visual area:

:help v_o

7) Command line editing and arguments start with c_. Help for using the
command argument %:

:help c_%

8) Ex-commands always start with ":", so to go to the ":s" command help:
:help :s

9) Commands specifically for debugging start with ">". To go to the help
for the "cont" debug command:

:help >cont

10) Key combinations. They usually start with a single letter indicating
the mode for which they can be used. E.g.:

:help i_CTRL-X
takes you to the family of CTRL-X commands for insert mode which can be
used to auto-complete different things. Note, that certain keys will
always be written the same, e.g. Control will always be CTRL.
For normal mode commands there is no prefix and the topic is available at
:h CTRL-<Letter>. E.g.

:help CTRL-W
In contrast

:help c_CTRL-R
will describe what the CTRL-R does when entering commands in the Command
line and

:help v_CTRL-A
talks about incrementing numbers in visual mode and

:help g_CTRL-A
talks about the "g<C-A>" command (e.g. you have to press "g" then
<CTRL-A>). Here the "g" stands for the normal command "g" which always
expects a second key before doing something similar to the commands
starting with "z".

11) Regexp items always start with /. So to get help for the "\+" quantifier
in Vim regexes:

:help /\+
If you need to know everything about regular expressions, start reading
at:

:help pattern.txt

12) Registers always start with "quote". To find out about the special ":"
register:

:help quote:

13) Vim script is available at
:help eval.txt

Certain aspects of the language are available at :h expr-X where "X" is a
single letter. E.g.

:help expr-!
will take you to the topic describing the "!" (Not) operator for Vim
script.
Also important is

:help function-list

usr_02.txt — 54

to find a short description of all functions available. Help topics for
Vim script functions always include the "()", so:

:help append()
talks about the append Vim script function rather than how to append text
in the current buffer.

14) Mappings are talked about in the help page :h map.txt . Use
:help mapmode-i

to find out about the :imap command. Also use :map-topic
to find out about certain subtopics particular for mappings. e.g:

:help :map-local
for buffer-local mappings or

:help map-bar
for how the '|' is handled in mappings.

15) Command definitions are talked about :h command-topic, so use
:help command-bar

to find out about the '!' argument for custom commands.

16) Window management commands always start with CTRL-W, so you find the
corresponding help at :h CTRL-W_letter. E.g.

:help CTRL-W_p
for moving the previous accessed window. You can also access

:help windows.txt
and read your way through if you are looking for window handling
commands.

17) Use :helpgrep to search in all help pages (and also of any installed
plugins). See :helpgrep for how to use it.
To search for a topic:

:helpgrep topic
This takes you to the first match. To go to the next one:

:cnext
All matches are available in the quickfix window which can be opened
with:

:copen
Move around to the match you like and press Enter to jump to that help.

18) The user manual. This describes help topics for beginners in a rather
friendly way. Start at usr_toc.txt to find the table of content (as you
might have guessed):

:help usr_toc.txt
Skim over the contents to find interesting topics. The "Digraphs" and
"Entering special characters" items are in chapter 24, so to go to that
particular help page:

:help usr_24.txt
Also if you want to access a certain chapter in the help, the chapter
number can be accessed directly like this:

:help 10.1
which goes to chapter 10.1 in usr_10.txt and talks about recording
macros.

19) Highlighting groups. Always start with hl-groupname. E.g.
:help hl-WarningMsg

talks about the WarningMsg highlighting group.

20) Syntax highlighting is namespaced to :syn-topic. E.g.
:help :syn-conceal

talks about the conceal argument for the ":syn" command.

usr_02.txt — 55

21) Quickfix commands usually start with :c while location list commands
usually start with :l

22) Autocommand events can be found by their name:
:help BufWinLeave

To see all possible events:
:help autocommand-events

23) Command-line switches always start with "-". So for the help of the -f
command switch of Vim use:

:help -f

24) Optional features always start with "+". To find out about the
conceal feature use:

:help +conceal

25) Documentation for included filetype specific functionality is usually
available in the form ft-<filetype>-<functionality>. So

:help ft-c-syntax
talks about the C syntax file and the option it provides. Sometimes,
additional sections for omni completion

:help ft-php-omni
or filetype plugins

:help ft-tex-plugin
are available.

26) Error and Warning codes can be looked up directly in the help. So
:help E297

takes you exactly to the description of the swap error message and
:help W10

talks about the warning "Changing a readonly file".
Sometimes, however, those error codes are not described, but rather are
listed at the Vim command that usually causes this. So:

:help E128
takes you to the :function command

==

Next chapter: usr_03.txt Moving around

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_02.txt — 56

usr_03.txt For Vim version 9.1. Last change: 2023 Mar 13

VIM USER MANUAL - by Bram Moolenaar

Moving around

Before you can insert or delete text the cursor has to be moved to the right
place. Vim has a large number of commands to position the cursor. This
chapter shows you how to use the most important ones. You can find a list of
these commands below Q_lr .

03.1 Word movement
03.2 Moving to the start or end of a line
03.3 Moving to a character
03.4 Matching a parenthesis
03.5 Moving to a specific line
03.6 Telling where you are
03.7 Scrolling around
03.8 Simple searches
03.9 Simple search patterns
03.10 Using marks

Next chapter: usr_04.txt Making small changes
Previous chapter: usr_02.txt The first steps in Vim

Table of contents: usr_toc.txt

==
03.1 Word movement

To move the cursor forward one word, use the "w" command. Like most Vim
commands, you can use a numeric prefix to move past multiple words. For
example, "3w" moves three words. This figure shows how it works (starting at
the position marked with "x"):

This is a line with example text
x-->-->->----------------->
w w w 3w

Notice that "w" moves to the start of the next word if it already is at the
start of a word.

The "b" command moves backward to the start of the previous word:

This is a line with example text
<----<--<-<---------<--x

b b b 2b b

There is also the "e" command that moves to the next end of a word and "ge",
which moves to the previous end of a word:

This is a line with example text
<----<----x---->------------>
2ge ge e 2e

If you are at the last word of a line, the "w" command will take you to the
first word in the next line. Thus you can use this to move through a
paragraph, much faster than using "l". "b" does the same in the other
direction.

A word ends at a non-word character, such as a ".", "-" or ")". To change

usr_03.txt — 57

what Vim considers to be a word, see the 'iskeyword' option. If you try this
out in the help directly, 'iskeyword' needs to be reset for the examples to
work:

:set iskeyword&
It is also possible to move by white-space separated WORDs. This is not a
word in the normal sense, that's why the uppercase is used. The commands for
moving by WORDs are also uppercase, as this figure shows:

ge b w e
<- <- ---> --->

This is-a line, with special/separated/words (and some more).
<----- <----- --------------------> ----->

gE B W E

With this mix of lowercase and uppercase commands, you can quickly move
forward and backward through a paragraph.

==
03.2 Moving to the start or end of a line

The "$" command moves the cursor to the end of a line. If your keyboard has
an <End> key it will do the same thing.

The "^" command moves to the first non-blank character of the line. The "0"
command (zero) moves to the very first character of the line, and the <Home>
key does the same thing. In a picture ("." indicates a space):

^
<-----------x

.....This is a line with example text
<----------------x x-------------->

0 $

(the "....." indicates blanks here)

The "$" command takes a count, like most movement commands. But moving to
the end of the line several times doesn't make sense. Therefore it causes the
editor to move to the end of another line. For example, "1$" moves you to
the end of the first line (the one you're on), "2$" to the end of the next
line, and so on.

The "0" command doesn't take a count argument, because the "0" would be
part of the count. Unexpectedly, using a count with "^" doesn't have any
effect.

==
03.3 Moving to a character

One of the most useful movement commands is the single-character search
command. The command "fx" searches forward in the line for the single
character x. Hint: "f" stands for "Find".

For example, you are at the beginning of the following line. Suppose you
want to go to the h of human. Just execute the command "fh" and the cursor
will be positioned over the h:

To err is human. To really foul up you need a computer.
---------->--------------->

fh fy

This also shows that the command "fy" moves to the end of the word really.
You can specify a count; therefore, you can go to the "l" of "foul" with

usr_03.txt — 58

"3fl":

To err is human. To really foul up you need a computer.
--------------------->

3fl

The "F" command searches to the left:

To err is human. To really foul up you need a computer.
<---------------------

Fh

The "tx" command works like the "fx" command, except it stops one character
before the searched character. Hint: "t" stands for "To". The backward
version of this command is "Tx".

To err is human. To really foul up you need a computer.
<------------ ------------->

Th tn

These four commands can be repeated with ";". "," repeats in the other
direction. The cursor is never moved to another line. Not even when the
sentence continues.

Sometimes you will start a search, only to realize that you have typed the
wrong command. You type "f" to search backward, for example, only to realize
that you really meant "F". To abort a search, press <Esc>. So "f<Esc>" is an
aborted forward search and doesn't do anything. Note: <Esc> cancels most
operations, not just searches.

==
03.4 Matching a parenthesis

When writing a program you often end up with nested () constructs. Then the
"%" command is very handy: It moves to the matching paren. If the cursor is
on a "(" it will move to the matching ")". If it's on a ")" it will move to
the matching "(".

%
<----->

if (a == (b * c) / d)
<---------------->

%

This also works for [] and {} pairs. (This can be defined with the
'matchpairs' option.)

When the cursor is not on a useful character, "%" will search forward to find
one. Thus if the cursor is at the start of the line of the previous example,
"%" will search forward and find the first "(". Then it moves to its match:

if (a == (b * c) / d)
---+---------------->

%

Other ways to move around code can be found in usr_29.txt .

==
03.5 Moving to a specific line

usr_03.txt — 59

If you are a C or C++ programmer, you are familiar with error messages such as
the following:

prog.c:33: j undeclared (first use in this function)

This tells you that you might want to fix something on line 33. So how do you
find line 33? One way is to do "9999k" to go to the top of the file and "32j"
to go down thirty-two lines. It is not a good way, but it works. A much
better way of doing things is to use the "G" command. With a count, this
command positions you at the given line number. For example, "33G" puts you
on line 33. (For a better way of going through a compiler's error list, see
usr_30.txt , for information on the :make command.)
With no argument, "G" positions you at the end of the file. A quick way to

go to the start of a file use "gg". "1G" will do the same, but is a tiny bit
more typing.

| first line of a file ^
| text text text text |
| text text text text | gg

7G | text text text text |
| text text text text
| text text text text
V text text text text |

text text text text | G
text text text text |
last line of a file V

Another way to move to a line is using the "%" command with a count. For
example "50%" moves you to halfway the file. "90%" goes to near the end.

The previous assumes that you want to move to a line in the file, no matter if
it's currently visible or not. What if you want to move to one of the lines
you can see? This figure shows the three commands you can use:

+---------------------------+
H --> | text sample text |

| sample text |
| text sample text |
| sample text |

M --> | text sample text |
| sample text |
| text sample text |
| sample text |

L --> | text sample text |
+---------------------------+

Hints: "H" stands for Home, "M" for Middle and "L" for Last. Alternatively,
"H" for High, "M" for Middle and "L" for Low.

==
03.6 Telling where you are

To see where you are in a file, there are three ways:

1. Use the CTRL-G command. You get a message like this (assuming the 'ruler'
option is off):

"usr_03.txt" line 233 of 650 --35%-- col 45-52

This shows the name of the file you are editing, the line number where the

usr_03.txt — 60

cursor is, the total number of lines, the percentage of the way through
the file and the column of the cursor.

Sometimes you will see a split column number. For example, "col 2-9".
This indicates that the cursor is positioned on the second character, but
because character one is a tab, occupying eight spaces worth of columns,
the screen column is 9.

2. Set the 'number' option. This will display a line number in front of
every line:

:set number

To switch this off again:

:set nonumber

Since 'number' is a boolean option, prepending "no" to its name has the
effect of switching it off. A boolean option has only these two values,
it is either on or off.

Vim has many options. Besides the boolean ones there are options with
a numerical value and string options. You will see examples of this where
they are used.

3. Set the 'ruler' option. This will display the cursor position in the
lower right corner of the Vim window:

:set ruler

Using the 'ruler' option has the advantage that it doesn't take much room,
thus there is more space for your text.

==
03.7 Scrolling around

The CTRL-U command scrolls down half a screen of text. Think of looking
through a viewing window at the text and moving this window up by half the
height of the window. Thus the window moves up over the text, which is
backward in the file. Don't worry if you have a little trouble remembering
which end is up. Most users have the same problem.

The CTRL-D command moves the viewing window down half a screen in the file,
thus scrolls the text up half a screen.

+----------------+
| some text |
| some text |
| some text |

+---------------+ | some text |
| some text | CTRL-U --> | |
| | | 123456 |
| 123456 | +----------------+
| 7890 |
| | +----------------+
| example | CTRL-D --> | 7890 |
+---------------+ | |

| example |
| example |
| example |
| example |
+----------------+

usr_03.txt — 61

To scroll one line at a time use CTRL-E (scroll up) and CTRL-Y (scroll down).
Think of CTRL-E to give you one line Extra. (If you use MS-Windows compatible
key mappings CTRL-Y will redo a change instead of scroll.)

To scroll forward by a whole screen (except for two lines) use CTRL-F. To
scroll backwards, use CTRL-B. These should be easy to remember: F for
Forwards and B for Backwards.

A common issue is that after moving down many lines with "j" your cursor is at
the bottom of the screen. You would like to see the context of the line with
the cursor. That's done with the "zz" command.

+------------------+ +------------------+
earlier text		earlier text
earlier text		earlier text
earlier text		earlier text
earlier text	zz -->	line with cursor
earlier text		later text
earlier text		later text
line with cursor		later text
+------------------+ +------------------+

The "zt" command puts the cursor line at the top, "zb" at the bottom. There
are a few more scrolling commands, see Q_sc . To always keep a few lines of
context around the cursor, use the 'scrolloff' option.

==
03.8 Simple searches

To search for a string, use the "/string" command. To find the word include,
for example, use the command:

/include

You will notice that when you type the "/" the cursor jumps to the last line
of the Vim window, like with colon commands. That is where you type the word.
You can press the backspace key (backarrow or <BS>) to make corrections. Use
the <Left> and <Right> cursor keys when necessary.

Pressing <Enter> executes the command.

Note:
The characters .*[]^%/\?~$ have special meanings. If you want to use
them in a search you must put a \ in front of them. See below.

To find the next occurrence of the same string use the "n" command. Use this
to find the first #include after the cursor:

/#include

And then type "n" several times. You will move to each #include in the text.
You can also use a count if you know which match you want. Thus "3n" finds
the third match. You can also use a count with "/": "4/the" goes to the
fourth match of "the".

The "?" command works like "/" but searches backwards:

?word

The "N" command repeats the last search the opposite direction. Thus using
"N" after a "/" command searches backwards, using "N" after "?" searches

usr_03.txt — 62

forwards.

IGNORING CASE

Normally you have to type exactly what you want to find. If you don't care
about upper or lowercase in a word, set the 'ignorecase' option:

:set ignorecase

If you now search for "word", it will also match "Word" and "WORD". To match
case again:

:set noignorecase

HISTORY

Suppose you do three searches:

/one
/two
/three

Now let's start searching by typing a simple "/" without pressing <Enter>. If
you press <Up> (the cursor key), Vim puts "/three" on the command line.
Pressing <Enter> at this point searches for three. If you do not press
<Enter>, but press <Up> instead, Vim changes the prompt to "/two". Another
press of <Up> moves you to "/one".

You can also use the <Down> cursor key to move through the history of
search commands in the other direction.

If you know what a previously used pattern starts with, and you want to use it
again, type that character before pressing <Up>. With the previous example,
you can type "/o<Up>" and Vim will put "/one" on the command line.

The commands starting with ":" also have a history. That allows you to recall
a previous command and execute it again. These two histories are separate.

SEARCHING FOR A WORD IN THE TEXT

Suppose you see the word "TheLongFunctionName" in the text and you want to
find the next occurrence of it. You could type "/TheLongFunctionName", but
that's a lot of typing. And when you make a mistake Vim won't find it.

There is an easier way: Position the cursor on the word and use the "*"
command. Vim will grab the word under the cursor and use it as the search
string.

The "#" command does the same in the other direction. You can prepend a
count: "3*" searches for the third occurrence of the word under the cursor.

SEARCHING FOR WHOLE WORDS

If you type "/the" it will also match "there". To only find words that end
in "the" use:

/the\>

The "\>" item is a special marker that only matches at the end of a word.

usr_03.txt — 63

Similarly "\<" only matches at the beginning of a word. Thus to search for
the word "the" only:

/\<the\>

This does not match "there" or "soothe". Notice that the "*" and "#" commands
use these start-of-word and end-of-word markers to only find whole words (you
can use "g*" and "g#" to match partial words).

HIGHLIGHTING MATCHES

While editing a program you see a variable called "nr". You want to check
where it's used. You could move the cursor to "nr" and use the "*" command
and press "n" to go along all the matches.

There is another way. Type this command:

:set hlsearch

If you now search for "nr", Vim will highlight all matches. That is a very
good way to see where the variable is used, without the need to type commands.

To switch this off:

:set nohlsearch

Then you need to switch it on again if you want to use it for the next search
command. If you only want to remove the highlighting, use this command:

:nohlsearch

This doesn't reset the option. Instead, it disables the highlighting. As
soon as you execute a search command, the highlighting will be used again.
Also for the "n" and "N" commands.

TUNING SEARCHES

There are a few options that change how searching works. These are the
essential ones:

:set incsearch

This makes Vim display the match for the string while you are still typing it.
Use this to check if the right match will be found. Then press <Enter> to
really jump to that location. Or type more to change the search string.

:set nowrapscan

This stops the search at the end of the file. Or, when you are searching
backwards, it stops the search at the start of the file. The 'wrapscan'
option is on by default, thus searching wraps around the end of the file.

INTERMEZZO

If you like one of the options mentioned before, and set it each time you use
Vim, you can put the command in your Vim startup file.

Edit the file, as mentioned at not-compatible . Or use this command to
find out where it is:

usr_03.txt — 64

:scriptnames

Edit the file, for example with:

:edit ~/.vimrc

Then add a line with the command to set the option, just like you typed it in
Vim. Example:

Go:set hlsearch<Esc>

"G" moves to the end of the file. "o" starts a new line, where you type the
":set" command. You end insert mode with <Esc>. Then write and close the
file:

ZZ

If you now start Vim again, the 'hlsearch' option will already be set.

==
03.9 Simple search patterns

The Vim editor uses regular expressions to specify what to search for.
Regular expressions are an extremely powerful and compact way to specify a
search pattern. Unfortunately, this power comes at a price, because regular
expressions are a bit tricky to specify.

In this section we mention only a few essential ones. More about search
patterns and commands can be found in chapter 27 usr_27.txt . You can find
the full explanation here: pattern .

BEGINNING AND END OF A LINE

The ^ character matches the beginning of a line. On an English-US keyboard
you find it above the 6. The pattern "include" matches the word include
anywhere on the line. But the pattern "^include" matches the word include
only if it is at the beginning of a line.

The $ character matches the end of a line. Therefore, "was$" matches the
word was only if it is at the end of a line.

Let's mark the places where "/the" matches in this example line with "x"s:

the solder holding one of the chips melted and the
xxx xxx xxx

Using "/the$" we find this match:

the solder holding one of the chips melted and the
xxx

And with "/^the" we find this one:
the solder holding one of the chips melted and the
xxx

You can try searching with "/^the$"; it will only match a single line
consisting entirely of "the". White space does matter here, thus if a line
contains a space after the word, like "the ", the pattern will not match.

MATCHING ANY SINGLE CHARACTER

usr_03.txt — 65

The . (dot) character matches any existing character. For example, the
pattern "c.m" matches a string whose first character is a c, whose second
character is anything, and whose third character is m. Example:

We use a computer that became the cummin winter.
xxx xxx xxx

MATCHING SPECIAL CHARACTERS

If you really want to match a dot, you must avoid its special meaning by
putting a backslash before it.

If you search for "ter.", you will find these matches:

We use a computer that became the cummin winter.
xxxx xxxx

Searching for "ter\." only finds the second match.

==
03.10 Using marks

When you make a jump to a position with the "G" command, Vim remembers the
position from before this jump. This position is called a mark. To go back
where you came from, use this command:

``

This ` is a backtick or open single-quote character.
If you use the same command a second time you will jump back again. That's

because the "`" command is a jump itself, and the position from before this
jump is remembered.

Generally, every time you do a command that can move the cursor further than
within the same line, this is called a jump. This includes the search
commands "/" and "n" (it doesn't matter how far away the match is). But not
the character searches with "fx" and "tx" or the word movements "w" and "e".

Also, "j" and "k" are not considered to be a jump, even when you use a
count to make them move the cursor quite a long way away.

The "``" command jumps back and forth, between two points. The CTRL-O command
jumps to older positions (Hint: O for older). CTRL-I then jumps back to newer
positions (Hint: for many common keyboard layouts, I is just next to O).
Consider this sequence of commands:

33G
/^The
CTRL-O

You first jump to line 33, then search for a line that starts with "The".
Then with CTRL-O you jump back to line 33. Another CTRL-O takes you back to
where you started. If you now use CTRL-I you jump to line 33 again. And
to the match for "The" with another CTRL-I.

| example text ^ |
33G | example text | CTRL-O | CTRL-I

| example text | |
V line 33 text ^ V

usr_03.txt — 66

| example text | |
/^The | example text | CTRL-O | CTRL-I

V There you are | V
example text

Note:
CTRL-I is the same as <Tab>.

The ":jumps" command gives a list of positions you jumped to. The entry which
you used last is marked with a ">".

NAMED MARKS bookmark

Vim enables you to place your own marks in the text. The command "ma" marks
the place under the cursor as mark a. You can place 26 marks (a through z) in
your text. You can't see them, it's just a position that Vim remembers.

To go to a mark, use the command `{mark}, where {mark} is the mark letter.
Thus to move to the a mark:

`a

The command "'mark" (single quotation mark, or apostrophe) moves you to the
beginning of the line containing the mark. This differs from the "`mark"
command, which also moves you to the marked column.

The marks can be very useful when working on two related parts in a file.
Suppose you have some text near the start of the file you need to look at,
while working on some text near the end of the file.

Move to the text at the start and place the s (start) mark there:

ms

Then move to the text you want to work on and put the e (end) mark there:

me

Now you can move around, and when you want to look at the start of the file,
you use this to jump there:

's

Then you can use '' to jump back to where you were, or 'e to jump to the text
you were working on at the end.

There is nothing special about using s for start and e for end, they are
just easy to remember.

You can use this command to get a list of marks:

:marks

You will notice a few special marks. These include:

' The cursor position before doing a jump
" The cursor position when last editing the file
[Start of the last change
] End of the last change

==

usr_03.txt — 67

Next chapter: usr_04.txt Making small changes

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_03.txt — 68

usr_04.txt For Vim version 9.1. Last change: 2021 Feb 22

VIM USER MANUAL - by Bram Moolenaar

Making small changes

This chapter shows you several ways of making corrections and moving text
around. It teaches you the three basic ways to change text: operator-motion,
Visual mode and text objects.

04.1 Operators and motions
04.2 Changing text
04.3 Repeating a change
04.4 Visual mode
04.5 Moving text
04.6 Copying text
04.7 Using the clipboard
04.8 Text objects
04.9 Replace mode
04.10 Conclusion

Next chapter: usr_05.txt Set your settings
Previous chapter: usr_03.txt Moving around

Table of contents: usr_toc.txt

==
04.1 Operators and motions

In chapter 2 you learned the "x" command to delete a single character. And
using a count: "4x" deletes four characters.

The "dw" command deletes a word. You may recognize the "w" command as the
move word command. In fact, the "d" command may be followed by any motion
command, and it deletes from the current location to the place where the
cursor winds up.

The "4w" command, for example, moves the cursor over four words. The "d4w"
command deletes four words.

To err is human. To really foul up you need a computer.
------------------>

d4w

To err is human. you need a computer.

Vim only deletes up to the position where the motion takes the cursor. That's
because Vim knows that you probably don't want to delete the first character
of a word. If you use the "e" command to move to the end of a word, Vim
guesses that you do want to include that last character:

To err is human. you need a computer.
-------->

d2e

To err is human. a computer.

Whether the character under the cursor is included depends on the command you
used to move to that character. The reference manual calls this "exclusive"
when the character isn't included and "inclusive" when it is.

The "$" command moves to the end of a line. The "d$" command deletes from the

usr_04.txt — 69

cursor to the end of the line. This is an inclusive motion, thus the last
character of the line is included in the delete operation:

To err is human. a computer.
------------>

d$

To err is human

There is a pattern here: operator-motion. You first type an operator command.
For example, "d" is the delete operator. Then you type a motion command like
"4l" or "w". This way you can operate on any text you can move over.

==
04.2 Changing text

Another operator is "c", change. It acts just like the "d" operator, except
it leaves you in Insert mode. For example, "cw" changes a word. Or more
specifically, it deletes a word and then puts you in Insert mode.

To err is human
------->

c2wbe<Esc>

To be human

This "c2wbe<Esc>" contains these bits:

c the change operator
2w move two words (they are deleted and Insert mode started)
be insert this text
<Esc> back to Normal mode

You will have noticed something strange: The space before "human" isn't
deleted. There is a saying that for every problem there is an answer that is
simple, clear, and wrong. That is the case with the example used here for the
"cw" command. The c operator works just like the d operator, with one
exception: "cw". It actually works like "ce", change to end of word. Thus
the space after the word isn't included. This is an exception that dates back
to the old Vi. Since many people are used to it now, the inconsistency has
remained in Vim.

MORE CHANGES

Like "dd" deletes a whole line, "cc" changes a whole line. It keeps the
existing indent (leading white space) though.

Just like "d$" deletes until the end of the line, "c$" changes until the end
of the line. It's like doing "d$" to delete the text and then "a" to start
Insert mode and append new text.

SHORTCUTS

Some operator-motion commands are used so often that they have been given a
single-letter command:

x stands for dl (delete character under the cursor)
X stands for dh (delete character left of the cursor)

usr_04.txt — 70

D stands for d$ (delete to end of the line)
C stands for c$ (change to end of the line)
s stands for cl (change one character)
S stands for cc (change a whole line)

WHERE TO PUT THE COUNT

The commands "3dw" and "d3w" delete three words. If you want to get really
picky about things, the first command, "3dw", deletes one word three times;
the command "d3w" deletes three words once. This is a difference without a
distinction. You can actually put in two counts, however. For example,
"3d2w" deletes two words, repeated three times, for a total of six words.

REPLACING WITH ONE CHARACTER

The "r" command is not an operator. It waits for you to type a character, and
will replace the character under the cursor with it. You could do the same
with "cl" or with the "s" command, but with "r" you don't have to press <Esc>
to get back out of insert mode.

there is somerhing grong here
rT rt rw

There is something wrong here

Using a count with "r" causes that many characters to be replaced with the
same character. Example:

There is something wrong here
5rx

There is something xxxxx here

To replace a character with a line break use "r<Enter>". This deletes one
character and inserts a line break. Using a count here only applies to the
number of characters deleted: "4r<Enter>" replaces four characters with one
line break.

==
04.3 Repeating a change

The "." command is one of the simplest yet powerful commands in Vim. It
repeats the last change. For instance, suppose you are editing an HTML file
and want to delete all the tags. You position the cursor on the first <
and delete the with the command "df>". You then go to the < of the next
 and delete it using the "." command. The "." command executes the last
change command (in this case, "df>"). To delete another tag, position the
cursor on the < and use the "." command.

To generate a table of contents
f< find first < --->
df> delete to > -->
f< find next < --------->
. repeat df> --->
f< find next < ------------->
. repeat df> -->

The "." command works for all changes you make, except for "u" (undo), CTRL-R

usr_04.txt — 71

(redo) and commands that start with a colon (:).

Another example: You want to change the word "four" to "five". It appears
several times in your text. You can do this quickly with this sequence of
commands:

/four<Enter> find the first string "four"
cwfive<Esc> change the word to "five"
n find the next "four"
. repeat the change to "five"
n find the next "four"
. repeat the change

etc.

==
04.4 Visual mode

To delete simple items the operator-motion changes work quite well. But often
it's not so easy to decide which command will move over the text you want to
change. Then you can use Visual mode.

You start Visual mode by pressing "v". You move the cursor over the text you
want to work on. While you do this, the text is highlighted. Finally type
the operator command.

For example, to delete from the middle of one word to the middle of another
word:

This is an examination sample of visual mode
---------->

velllld

This is an example of visual mode

When doing this you don't really have to count how many times you have to
press "l" to end up in the right position. You can immediately see what text
will be deleted when you press "d".

If at any time you decide you don't want to do anything with the highlighted
text, just press <Esc> and Visual mode will stop without doing anything.

SELECTING LINES

If you want to work on whole lines, use "V" to start Visual mode. You will
see right away that the whole line is highlighted, without moving around.
When you move left or right nothing changes. When you move up or down the
selection is extended whole lines at a time.

For example, select three lines with "Vjj":

+------------------------+
| text more text |

>> | more text more text | |
selected lines >> | text text text | | Vjj

>> | text more | V
| more text more |
+------------------------+

SELECTING BLOCKS

usr_04.txt — 72

If you want to work on a rectangular block of characters, use CTRL-V to start
Visual mode. This is very useful when working on tables.

name Q1 Q2 Q3
pierre 123 455 234
john 0 90 39
steve 392 63 334

To delete the middle "Q2" column, move the cursor to the "Q" of "Q2". Press
CTRL-V to start blockwise Visual mode. Now move the cursor three lines down
with "3j" and to the next word with "w". You can see the first character of
the last column is included. To exclude it, use "h". Now press "d" and the
middle column is gone.

GOING TO THE OTHER SIDE

If you have selected some text in Visual mode, and discover that you need to
change the other end of the selection, use the "o" command (Hint: o for other
end). The cursor will go to the other end, and you can move the cursor to
change where the selection starts. Pressing "o" again brings you back to the
other end.

When using blockwise selection, you have four corners. "o" only takes you to
one of the other corners, diagonally. Use "O" to move to the other corner in
the same line.

Note that "o" and "O" in Visual mode work very differently from Normal mode,
where they open a new line below or above the cursor.

==
04.5 Moving text

When you delete something with "d", "x", or another command, the text is
saved. You can paste it back by using the "p" command. (The Vim name for
this is put).

Take a look at how this works. First you will delete an entire line, by
putting the cursor on the line you want to delete and typing "dd". Now you
move the cursor to where you want to put the line and use the "p" (put)
command. The line is inserted on the line below the cursor.

a line a line a line
line 2 dd line 3 p line 3
line 3 line 2

Because you deleted an entire line, the "p" command placed the text line below
the cursor. If you delete part of a line (a word, for instance), the "p"
command puts it just after the cursor.

Some more boring try text to out commands.
---->
dw

Some more boring text to out commands.
------->

welp

Some more boring text to try out commands.

usr_04.txt — 73

MORE ON PUTTING

The "P" command puts text like "p", but before the cursor. When you deleted a
whole line with "dd", "P" will put it back above the cursor. When you deleted
a word with "dw", "P" will put it back just before the cursor.

You can repeat putting as many times as you like. The same text will be used.

You can use a count with "p" and "P". The text will be repeated as many times
as specified with the count. Thus "dd" and then "3p" puts three copies of the
same deleted line.

SWAPPING TWO CHARACTERS

Frequently when you are typing, your fingers get ahead of your brain (or the
other way around?). The result is a typo such as "teh" for "the". Vim
makes it easy to correct such problems. Just put the cursor on the e of "teh"
and execute the command "xp". This works as follows: "x" deletes the
character e and places it in a register. "p" puts the text after the cursor,
which is after the h.

teh th the
x p

==
04.6 Copying text

To copy text from one place to another, you could delete it, use "u" to undo
the deletion and then "p" to put it somewhere else. There is an easier way:
yanking. The "y" operator copies text into a register. Then a "p" command
can be used to put it.

Yanking is just a Vim name for copying. The "c" letter was already used
for the change operator, and "y" was still available. Calling this
operator "yank" made it easier to remember to use the "y" key.

Since "y" is an operator, you use "yw" to yank a word. A count is possible as
usual. To yank two words use "y2w". Example:

let sqr = LongVariable *
-------------->

y2w

let sqr = LongVariable *
p

let sqr = LongVariable * LongVariable

Notice that "yw" includes the white space after a word. If you don't want
this, use "ye".

The "yy" command yanks a whole line, just like "dd" deletes a whole line.
Unexpectedly, while "D" deletes from the cursor to the end of the line, "Y"
works like "yy", it yanks the whole line. Watch out for this inconsistency!
Use "y$" to yank to the end of the line.

a text line yy a text line a text line
line 2 line 2 p line 2
last line last line a text line

last line

usr_04.txt — 74

==
04.7 Using the clipboard

If you are using the GUI version of Vim (gvim), you can find the "Copy" item
in the "Edit" menu. First select some text with Visual mode, then use the
Edit/Copy menu item. The selected text is now copied to the clipboard. You
can paste the text in other programs. In Vim itself too.

If you have copied text to the clipboard in another application, you can paste
it in Vim with the Edit/Paste menu item. This works in Normal mode and Insert
mode. In Visual mode the selected text is replaced with the pasted text.

The "Cut" menu item deletes the text before it's put on the clipboard. The
"Copy", "Cut" and "Paste" items are also available in the popup menu (only
when there is a popup menu, of course). If your Vim has a toolbar, you can
also find these items there.

If you are not using the GUI, or if you don't like using a menu, you have to
use another way. You use the normal "y" (yank) and "p" (put) commands, but
prepend "* (double-quote star) before it. To copy a line to the clipboard:

"*yy

To put text from the clipboard back into the text:

"*p

This only works on versions of Vim that include clipboard support. More about
the clipboard can be found in section 09.3 and here: clipboard .

==
04.8 Text objects

If the cursor is in the middle of a word and you want to delete that word, you
need to move back to its start before you can do "dw". There is a simpler way
to do this: "daw".

this is some example text.
daw

this is some text.

The "d" of "daw" is the delete operator. "aw" is a text object. Hint: "aw"
stands for "A Word". Thus "daw" is "Delete A Word". To be precise, the white
space after the word is also deleted (or the white space before the word if at
the end of the line).

Using text objects is the third way to make changes in Vim. We already had
operator-motion and Visual mode. Now we add operator-text object.

It is very similar to operator-motion, but instead of operating on the text
between the cursor position before and after a movement command, the text
object is used as a whole. It doesn't matter where in the object the cursor
was.

To change a whole sentence use "cis". Take this text:

Hello there. This
is an example. Just
some text.

usr_04.txt — 75

Move to the start of the second line, on "is an". Now use "cis":

Hello there. Just
some text.

The cursor is in between the blanks in the first line. Now you type the new
sentence "Another line.":

Hello there. Another line. Just
some text.

"cis" consists of the "c" (change) operator and the "is" text object. This
stands for "Inner Sentence". There is also the "as" ("A Sentence") object.
The difference is that "as" includes the white space after the sentence and
"is" doesn't. If you would delete a sentence, you want to delete the white
space at the same time, thus use "das". If you want to type new text the
white space can remain, thus you use "cis".

You can also use text objects in Visual mode. It will include the text object
in the Visual selection. Visual mode continues, thus you can do this several
times. For example, start Visual mode with "v" and select a sentence with
"as". Now you can repeat "as" to include more sentences. Finally you use an
operator to do something with the selected sentences.

You can find a long list of text objects here: text-objects .

==
04.9 Replace mode

The "R" command causes Vim to enter replace mode. In this mode, each
character you type replaces the one under the cursor. This continues until
you type <Esc>.

In this example you start Replace mode on the first "t" of "text":

This is text.
Rinteresting.<Esc>

This is interesting.

You may have noticed that this command replaced 5 characters in the line with
twelve others. The "R" command automatically extends the line if it runs out
of characters to replace. It will not continue on the next line.

You can switch between Insert mode and Replace mode with the <Insert> key.

When you use <BS> (backspace) to make a correction, you will notice that the
old text is put back. Thus it works like an undo command for the previously
typed character.

==
04.10 Conclusion

The operators, movement commands and text objects give you the possibility to
make lots of combinations. Now that you know how they work, you can use N
operators with M movement commands to make N * M commands!

You can find a list of operators here: operator .

For example, there are many other ways to delete pieces of text. Here are a

usr_04.txt — 76

few common ones:

x delete character under the cursor (short for "dl")
X delete character before the cursor (short for "dh")
D delete from cursor to end of line (short for "d$")
dw delete from cursor to next start of word
db delete from cursor to previous start of word
diw delete word under the cursor (excluding white space)
daw delete word under the cursor (including white space)
dG delete until the end of the file
dgg delete until the start of the file

If you use "c" instead of "d" they become change commands. And with "y" you
yank the text. And so forth.

There are a few common commands to make changes that didn't fit somewhere
else:

~ Change case of the character under the cursor, and move the
cursor to the next character. This is not an operator (unless
'tildeop' is set), thus you can't use it with a motion
command. It does work in Visual mode, where it changes case
for all the selected text.

I Start Insert mode after moving the cursor to the first
non-blank in the line.

A Start Insert mode after moving the cursor to the end of the
line.

==

Next chapter: usr_05.txt Set your settings

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_04.txt — 77

usr_04.txt — 78

usr_05.txt For Vim version 9.1. Last change: 2023 Sep 12

VIM USER MANUAL - by Bram Moolenaar

Set your settings

Vim can be tuned to work like you want it to. This chapter shows you how to
make Vim start with options set to different values. Add plugins to extend
Vim's capabilities. Or define your own macros.

05.1 The vimrc file
05.2 The example vimrc file explained
05.3 The defaults.vim file explained
05.4 Simple mappings
05.5 Adding a package
05.6 Adding a plugin
05.7 Adding a help file
05.8 The option window
05.9 Often used options

Next chapter: usr_06.txt Using syntax highlighting
Previous chapter: usr_04.txt Making small changes

Table of contents: usr_toc.txt

==
05.1 The vimrc file vimrc-intro

You probably got tired of typing commands that you use very often. To start
Vim with all your favorite option settings and mappings, you write them in
what is called the vimrc file. Vim executes the commands in this file when it
starts up.

If you already have a vimrc file (e.g., when your sysadmin has one setup for
you), you can edit it this way:

:edit $MYVIMRC

If you don't have a vimrc file yet, see vimrc to find out where you can
create a vimrc file. Also, the ":version" command mentions the name of the
"user vimrc file" Vim looks for.

For Unix and Macintosh this file is always used and is recommended:

~/.vimrc

For MS-Windows you can use one of these:

$HOME/_vimrc
$VIM/_vimrc

If you are creating the vimrc file for the first time, it is recommended to
put this line at the top:

source $VIMRUNTIME/defaults.vim

This initializes Vim for new users (as opposed to traditional Vi users). See
defaults.vim for the details.

The vimrc file can contain all the commands that you type after a colon. The

usr_05.txt — 79

simplest ones are for setting options. For example, if you want Vim to always
start with the 'incsearch' option on, add this line your vimrc file:

set incsearch

For this new line to take effect you need to exit Vim and start it again.
Later you will learn how to do this without exiting Vim.

This chapter only explains the most basic items. For more information on how
to write a Vim script file: usr_41.txt .

==
05.2 The example vimrc file explained vimrc_example.vim

In the first chapter was explained how the example vimrc (included in the
Vim distribution) file can be used to make Vim startup in not-compatible mode
(see not-compatible). The file can be found here:

$VIMRUNTIME/vimrc_example.vim

In this section we will explain the various commands used in this file. This
will give you hints about how to set up your own preferences. Not everything
will be explained though. Use the ":help" command to find out more.

" Get the defaults that most users want.
source $VIMRUNTIME/defaults.vim

This loads the "defaults.vim" file in the $VIMRUNTIME directory. This sets up
Vim for how most users like it. If you are one of the few that don't, then
comment out this line. The commands are explained below:
defaults.vim-explained

if has("vms")
set nobackup

else
set backup
if has('persistent_undo')

set undofile
endif

endif

This tells Vim to keep a backup copy of a file when overwriting it. But not
on the VMS system, since it keeps old versions of files already. The backup
file will have the same name as the original file with "~" added. See 07.4

This also sets the 'undofile' option, if available. This will store the
multi-level undo information in a file. The result is that when you change a
file, exit Vim, and then edit the file again, you can undo the changes made
previously. It's a very powerful and useful feature, at the cost of storing a
file. For more information see undo-persistence .

The "if" command is very useful to set options
only when some condition is met. More about that in usr_41.txt .

if &t_Co > 2 || has("gui_running")
set hlsearch

endif

usr_05.txt — 80

This switches on the 'hlsearch' option, telling Vim to highlight matches with
the last used search pattern.

augroup vimrcEx
au!
autocmd FileType text setlocal textwidth=78

augroup END

This makes Vim break text to avoid lines getting longer than 78 characters.
But only for files that have been detected to be plain text. There are
actually two parts here. "autocmd FileType text" is an autocommand. This
defines that when the file type is set to "text" the following command is
automatically executed. "setlocal textwidth=78" sets the 'textwidth' option
to 78, but only locally in one file.

The wrapper with "augroup vimrcEx" and "augroup END" makes it possible to
delete the autocommand with the "au!" command. See :augroup .

if has('syntax') && has('eval')
packadd! matchit

endif

This loads the "matchit" plugin if the required features are available.
It makes the % command more powerful. This is explained at
matchit-install .

==
05.3 The defaults.vim file explained defaults.vim-explained

The defaults.vim file is loaded when the user has no vimrc file. When you
create a new vimrc file, add this line near the top to keep using it:

source $VIMRUNTIME/defaults.vim

Or use the vimrc_example.vim file, as explained above.

The following explains what defaults.vim is doing.

if exists('skip_defaults_vim')
finish

endif

Loading defaults.vim can be disabled with this command:
let skip_defaults_vim = 1

This has to be done in the system vimrc file. See system-vimrc . If you
have a user vimrc this is not needed, since defaults.vim will not be loaded
automatically.

set nocompatible

As mentioned in the first chapter, these manuals explain Vim working in an
improved way, thus not completely Vi compatible. Setting the 'compatible'
option off, thus 'nocompatible' takes care of this.

usr_05.txt — 81

set backspace=indent,eol,start

This specifies where in Insert mode the <BS> is allowed to delete the
character in front of the cursor. The three items, separated by commas, tell
Vim to delete the white space at the start of the line, a line break and the
character before where Insert mode started. See 'backspace'.

set history=200

Keep 200 commands and 200 search patterns in the history. Use another number
if you want to remember fewer or more lines. See 'history'.

set ruler

Always display the current cursor position in the lower right corner of the
Vim window. See 'ruler'.

set showcmd

Display an incomplete command in the lower right corner of the Vim window,
left of the ruler. For example, when you type "2f", Vim is waiting for you to
type the character to find and "2f" is displayed. When you press "w" next,
the "2fw" command is executed and the displayed "2f" is removed.

+---+
|text in the Vim window |
|~ |
|~ |
|-- VISUAL -- 2f 43,8 17% |
+---+
^^^^^^^^^^^ ^^^^^^^^ ^^^^^^^^^^
'showmode' 'showcmd' 'ruler'

set wildmenu

Display completion matches in a status line. That is when you type <Tab> and
there is more than one match. See 'wildmenu'.

set ttimeout
set ttimeoutlen=100

This makes typing Esc take effect more quickly. Normally Vim waits a second
to see if the Esc is the start of an escape sequence. If you have a very slow
remote connection, increase the number. See 'ttimeout'.

set display=truncate

Show @@@ in the last line if it is truncated, instead of hiding the whole
line. See 'display'.

set incsearch

usr_05.txt — 82

Display the match for a search pattern when halfway typing it. See
'incsearch'.

set nrformats-=octal

Do not recognize numbers starting with a zero as octal. See 'nrformats'.

map Q gq

This defines a key mapping. More about that in the next section. This
defines the "Q" command to do formatting with the "gq" operator. This is how
it worked before Vim 5.0. Otherwise the "Q" command starts Ex mode, but you
will not need it.

inoremap <C-U> <C-G>u<C-U>

CTRL-U in insert mode deletes all entered text in the current line. Use
CTRL-G u to first break undo, so that you can undo CTRL-U after inserting a
line break. Revert with ":iunmap <C-U>".

if has('mouse')
set mouse=a

endif

Enable using the mouse if available. See 'mouse'.

vnoremap _g y:exe "grep /" .. escape(@", '\\/') .. "/ *.c *.h"<CR>

This mapping yanks the visually selected text and searches for it in C files.
You can see that a mapping can be used to do quite complicated things. Still,
it is just a sequence of commands that are executed like you typed them.

syntax on

Enable highlighting files in color. See syntax .

vimrc-filetype
filetype plugin indent on

This switches on three very clever mechanisms:
1. Filetype detection.

Whenever you start editing a file, Vim will try to figure out what kind of
file this is. When you edit "main.c", Vim will see the ".c" extension and
recognize this as a "c" filetype. When you edit a file that starts with
"#!/bin/sh", Vim will recognize it as a "sh" filetype.
The filetype detection is used for syntax highlighting and the other two
items below.
See filetypes .

2. Using filetype plugin files
Many different filetypes are edited with different options. For example,
when you edit a "c" file, it's very useful to set the 'cindent' option to
automatically indent the lines. These commonly useful option settings are

usr_05.txt — 83

included with Vim in filetype plugins. You can also add your own, see
write-filetype-plugin .

3. Using indent files
When editing programs, the indent of a line can often be computed
automatically. Vim comes with these indent rules for a number of
filetypes. See :filetype-indent-on and 'indentexpr'.

restore-cursor last-position-jump
augroup RestoreCursor

autocmd!
autocmd BufReadPost *
\ let line = line("'\"")
\ | if line >= 1 && line <= line("$") && &filetype !~# 'commit'
\ && index(['xxd', 'gitrebase'], &filetype) == -1
\ | execute "normal! g`\""
\ | endif

augroup END

Another autocommand. This time it is used after reading any file. The
complicated stuff after it checks if the '" mark is defined, and jumps to it
if so. It doesn't do that for a commit or rebase message, which are likely
a different one than last time, and when using xxd(1) to filter and edit
binary files, which transforms input files back and forth, causing them to
have dual nature, so to speak. See also using-xxd .

The backslash at the start of a line is used to continue the command from the
previous line. That avoids a line getting very long. See line-continuation .
This only works in a Vim script file, not when typing commands at the
command line.

command DiffOrig vert new | set bt=nofile | r ++edit # | 0d_ | diffthis
\ | wincmd p | diffthis

This adds the ":DiffOrig" command. Use this in a modified buffer to see the
differences with the file it was loaded from. See diff and :DiffOrig .

set nolangremap

Prevent that the langmap option applies to characters that result from a
mapping. If set (default), this may break plugins (but it's backward
compatible). See 'langremap'.

==
05.4 Simple mappings

A mapping enables you to bind a set of Vim commands to a single key. Suppose,
for example, that you need to surround certain words with curly braces. In
other words, you need to change a word such as "amount" into "{amount}". With
the :map command, you can tell Vim that the F5 key does this job. The command
is as follows:

:map <F5> i{<Esc>ea}<Esc>

Note:
When entering this command, you must enter <F5> by typing four
characters. Similarly, <Esc> is not entered by pressing the <Esc>

usr_05.txt — 84

key, but by typing five characters. Watch out for this difference
when reading the manual!

Let's break this down:
<F5> The F5 function key. This is the trigger key that causes the

command to be executed as the key is pressed.

i{<Esc> Insert the { character. The <Esc> key ends Insert mode.

e Move to the end of the word.

a}<Esc> Append the } to the word.

After you execute the ":map" command, all you have to do to put {} around a
word is to put the cursor on the first character and press F5.

In this example, the trigger is a single key; it can be any string. But when
you use an existing Vim command, that command will no longer be available.
You better avoid that.

One key that can be used with mappings is the backslash. Since you
probably want to define more than one mapping, add another character. You
could map "\p" to add parentheses around a word, and "\c" to add curly braces,
for example:

:map \p i(<Esc>ea)<Esc>
:map \c i{<Esc>ea}<Esc>

You need to type the \ and the p quickly after another, so that Vim knows they
belong together.

The ":map" command (with no arguments) lists your current mappings. At
least the ones for Normal mode. More about mappings in section 40.1 .

==
05.5 Adding a package add-package matchit-install

A package is a set of files that you can add to Vim. There are two kinds of
packages: optional and automatically loaded on startup.

The Vim distribution comes with a few packages that you can optionally use.
For example, the matchit plugin. This plugin makes the "%" command jump to
matching HTML tags, if/else/endif in Vim scripts, etc. Very useful, although
it's not backwards compatible (that's why it is not enabled by default).

To start using the matchit plugin, add one line to your vimrc file:
packadd! matchit

That's all! After restarting Vim you can find help about this plugin:
:help matchit

This works, because when `:packadd` loaded the plugin it also added the
package directory in 'runtimepath', so that the help file can be found.

You can find packages on the Internet in various places. It usually comes as
an archive or as a repository. For an archive you can follow these steps:

1. create the package directory:
mkdir -p ~/.vim/pack/fancy

"fancy" can be any name of your liking. Use one that describes the
package.

2. unpack the archive in that directory. This assumes the top

usr_05.txt — 85

directory in the archive is "start":
cd ~/.vim/pack/fancy
unzip /tmp/fancy.zip

If the archive layout is different make sure that you end up with a
path like this:

~/.vim/pack/fancy/start/fancytext/plugin/fancy.vim
Here "fancytext" is the name of the package, it can be anything
else.

Adding the editorconfig package editorconfig-install

Similar to the matchit package, to load the distributed editorconfig plugin
when Vim starts, add the following line to your vimrc file:

packadd! editorconfig

After restarting your Vim, the plugin is active and you can read about it at:
:h editorconfig.txt

More information about packages can be found here: packages .

==
05.6 Adding a plugin add-plugin plugin

Vim's functionality can be extended by adding plugins. A plugin is nothing
more than a Vim script file that is loaded automatically when Vim starts. You
can add a plugin very easily by dropping it in your plugin directory.
{not available when Vim was compiled without the |+eval| feature}

There are two types of plugins:

global plugin: Used for all kinds of files
filetype plugin: Only used for a specific type of file

The global plugins will be discussed first, then the filetype ones
add-filetype-plugin .

GLOBAL PLUGINS standard-plugin distributed-plugins

When you start Vim, it will automatically load a number of global plugins.
You don't have to do anything for this. They add functionality that most
people will want to use, but which was implemented as a Vim script instead of
being compiled into Vim. You can find them listed in the help index
standard-plugin-list .

For locally installed plugins and packages (which come with a separated help
file) a similar list can be found in the help section local-additions .

Also see load-plugins .

add-global-plugin
You can add a global plugin to add functionality that will always be present
when you use Vim. There are only two steps for adding a global plugin:
1. Get a copy of the plugin.
2. Drop it in the right directory.

GETTING A GLOBAL PLUGIN

Where can you find plugins?

usr_05.txt — 86

- Some are always loaded, you can see them in the directory $VIMRUNTIME/plugin.
- Some come with Vim. You can find them in the directory $VIMRUNTIME/macros

and its sub-directories and under $VIM/vimfiles/pack/dist/opt/.
- Download from the net. There is a large collection on http://www.vim.org.
- They are sometimes posted in a Vim maillist .
- You could write one yourself, see write-plugin .

Some plugins come as a vimball archive, see vimball .
Some plugins can be updated automatically, see getscript .

USING A GLOBAL PLUGIN

First read the text in the plugin itself to check for any special conditions.
Then copy the file to your plugin directory:

system plugin directory
Unix ~/.vim/plugin/
PC $HOME/vimfiles/plugin or $VIM/vimfiles/plugin
Amiga s:vimfiles/plugin
Macintosh $VIM:vimfiles:plugin
Mac OS X ~/.vim/plugin/

Example for Unix (assuming you didn't have a plugin directory yet):

mkdir ~/.vim
mkdir ~/.vim/plugin
cp /tmp/yourplugin.vim ~/.vim/plugin

That's all! Now you can use the commands defined in this plugin.

Instead of putting plugins directly into the plugin/ directory, you may
better organize them by putting them into subdirectories under plugin/.
As an example, consider using "~/.vim/plugin/perl/*.vim" for all your Perl
plugins.

FILETYPE PLUGINS add-filetype-plugin ftplugins

The Vim distribution comes with a set of plugins for different filetypes that
you can start using with this command:

:filetype plugin on

That's all! See vimrc-filetype .

If you are missing a plugin for a filetype you are using, or you found a
better one, you can add it. There are two steps for adding a filetype plugin:
1. Get a copy of the plugin.
2. Drop it in the right directory.

GETTING A FILETYPE PLUGIN

You can find them in the same places as the global plugins. Watch out if the
type of file is mentioned, then you know if the plugin is a global or a
filetype one. The scripts in $VIMRUNTIME/macros are global ones, the filetype
plugins are in $VIMRUNTIME/ftplugin.

usr_05.txt — 87

http://www.vim.org

USING A FILETYPE PLUGIN ftplugin-name

You can add a filetype plugin by dropping it in the right directory. The
name of this directory is in the same directory mentioned above for global
plugins, but the last part is "ftplugin". Suppose you have found a plugin for
the "stuff" filetype, and you are on Unix. Then you can move this file to the
ftplugin directory:

mv thefile ~/.vim/ftplugin/stuff.vim

If that file already exists you already have a plugin for "stuff". You might
want to check if the existing plugin doesn't conflict with the one you are
adding. If it's OK, you can give the new one another name:

mv thefile ~/.vim/ftplugin/stuff_too.vim

The underscore is used to separate the name of the filetype from the rest,
which can be anything. If you use "otherstuff.vim" it wouldn't work, it would
be loaded for the "otherstuff" filetype.

On MS-DOS like filesystems you cannot use long filenames. You would run into
trouble if you add a second plugin and the filetype has more than six
characters. You can use an extra directory to get around this:

mkdir $VIM/vimfiles/ftplugin/fortran
copy thefile $VIM/vimfiles/ftplugin/fortran/too.vim

The generic names for the filetype plugins are:

ftplugin/<filetype>.vim
ftplugin/<filetype>_<name>.vim
ftplugin/<filetype>/<name>.vim

Here "<name>" can be any name that you prefer.
Examples for the "stuff" filetype on Unix:

~/.vim/ftplugin/stuff.vim
~/.vim/ftplugin/stuff_def.vim
~/.vim/ftplugin/stuff/header.vim

The <filetype> part is the name of the filetype the plugin is to be used for.
Only files of this filetype will use the settings from the plugin. The <name>
part of the plugin file doesn't matter, you can use it to have several plugins
for the same filetype. Note that it must end in ".vim".

Further reading:
filetype-plugins Documentation for the filetype plugins and information

about how to avoid that mappings cause problems.
load-plugins When the global plugins are loaded during startup.
ftplugin-overrule Overruling the settings from a global plugin.
write-plugin How to write a plugin script.
plugin-details For more information about using plugins or when your

plugin doesn't work.
new-filetype How to detect a new file type.

==
05.7 Adding a help file add-local-help

If you are lucky, the plugin you installed also comes with a help file. We

usr_05.txt — 88

will explain how to install the help file, so that you can easily find help
for your new plugin.

Let us use the "doit.vim" plugin as an example. This plugin comes with
documentation: "doit.txt". Let's first copy the plugin to the right
directory. This time we will do it from inside Vim. (You may skip some of
the "mkdir" commands if you already have the directory.)

:!mkdir ~/.vim
:!mkdir ~/.vim/plugin
:!cp /tmp/doit.vim ~/.vim/plugin

The "cp" command is for Unix, on MS-Windows you can use "copy".

Now create a "doc" directory in one of the directories in 'runtimepath'.

:!mkdir ~/.vim/doc

Copy the help file to the "doc" directory.

:!cp /tmp/doit.txt ~/.vim/doc

Now comes the trick, which allows you to jump to the subjects in the new help
file: Generate the local tags file with the :helptags command.

:helptags ~/.vim/doc

Now you can use the

:help doit

command to find help for "doit" in the help file you just added. You can see
an entry for the local help file when you do:

:help local-additions

The title lines from the local help files are automagically added to this
section. There you can see which local help files have been added and jump to
them through the tag.

For writing a local help file, see write-local-help .

==
05.8 The option window

If you are looking for an option that does what you want, you can search in
the help files here: options . Another way is by using this command:

:options

This opens a new window, with a list of options with a one-line explanation.
The options are grouped by subject. Move the cursor to a subject and press
<Enter> to jump there. Press <Enter> again to jump back. Or use CTRL-O.

You can change the value of an option. For example, move to the "displaying
text" subject. Then move the cursor down to this line:

set wrap nowrap

When you hit <Enter>, the line will change to:

usr_05.txt — 89

set nowrap wrap

The option has now been switched off.

Just above this line is a short description of the 'wrap' option. Move the
cursor one line up to place it in this line. Now hit <Enter> and you jump to
the full help on the 'wrap' option.

For options that take a number or string argument you can edit the value.
Then press <Enter> to apply the new value. For example, move the cursor a few
lines up to this line:

set so=0

Position the cursor on the zero with "$". Change it into a five with "r5".
Then press <Enter> to apply the new value. When you now move the cursor
around you will notice that the text starts scrolling before you reach the
border. This is what the 'scrolloff' option does, it specifies an offset
from the window border where scrolling starts.

==
05.9 Often used options

There are an awful lot of options. Most of them you will hardly ever use.
Some of the more useful ones will be mentioned here. Don't forget you can
find more help on these options with the ":help" command, with single quotes
before and after the option name. For example:

:help 'wrap'

In case you have messed up an option value, you can set it back to the
default by putting an ampersand (&) after the option name. Example:

:set iskeyword&

NOT WRAPPING LINES

Vim normally wraps long lines, so that you can see all of the text. Sometimes
it's better to let the text continue right of the window. Then you need to
scroll the text left-right to see all of a long line. Switch wrapping off
with this command:

:set nowrap

Vim will automatically scroll the text when you move to text that is not
displayed. To see a context of ten characters, do this:

:set sidescroll=10

This doesn't change the text in the file, only the way it is displayed.

WRAPPING MOVEMENT COMMANDS

Most commands for moving around will stop moving at the start and end of a
line. You can change that with the 'whichwrap' option. This sets it to the
default value:

:set whichwrap=b,s

usr_05.txt — 90

This allows the <BS> key, when used in the first position of a line, to move
the cursor to the end of the previous line. And the <Space> key moves from
the end of a line to the start of the next one.

To allow the cursor keys <Left> and <Right> to also wrap, use this command:

:set whichwrap=b,s,<,>

This is still only for Normal mode. To let <Left> and <Right> do this in
Insert mode as well:

:set whichwrap=b,s,<,>,[,]

There are a few other flags that can be added, see 'whichwrap'.

VIEWING TABS

When there are tabs in a file, you cannot see where they are. To make them
visible:

:set list

Now every tab is displayed as ^I. And a $ is displayed at the end of each
line, so that you can spot trailing spaces that would otherwise go unnoticed.

A disadvantage is that this looks ugly when there are many Tabs in a file.
If you have a color terminal, or are using the GUI, Vim can show the spaces
and tabs as highlighted characters. Use the 'listchars' option:

:set listchars=tab:>-,trail:-

Now every tab will be displayed as ">---" (with more or less "-") and trailing
white space as "-". Looks a lot better, doesn't it?

KEYWORDS

The 'iskeyword' option specifies which characters can appear in a word:

:set iskeyword
iskeyword=@,48-57,_,192-255

The "@" stands for all alphabetic letters. "48-57" stands for ASCII
characters 48 to 57, which are the numbers 0 to 9. "192-255" are the
printable latin characters.

Sometimes you will want to include a dash in keywords, so that commands
like "w" consider "upper-case" to be one word. You can do it like this:

:set iskeyword+=-
:set iskeyword
iskeyword=@,48-57,_,192-255,-

If you look at the new value, you will see that Vim has added a comma for you.
To remove a character use "-=". For example, to remove the underscore:

:set iskeyword-=_
:set iskeyword
iskeyword=@,48-57,192-255,-

usr_05.txt — 91

This time a comma is automatically deleted.

ROOM FOR MESSAGES

When Vim starts there is one line at the bottom that is used for messages.
When a message is long, it is either truncated, thus you can only see part of
it, or the text scrolls and you have to press <Enter> to continue.

You can set the 'cmdheight' option to the number of lines used for
messages. Example:

:set cmdheight=3

This does mean there is less room to edit text, thus it's a compromise.

==

Next chapter: usr_06.txt Using syntax highlighting

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_05.txt — 92

usr_06.txt For Vim version 9.1. Last change: 2021 Nov 07

VIM USER MANUAL - by Bram Moolenaar

Using syntax highlighting

Black and white text is boring. With colors your file comes to life. This
not only looks nice, it also speeds up your work. Change the colors used for
the different sorts of text. Print your text, with the colors you see on the
screen.

06.1 Switching it on
06.2 No or wrong colors?
06.3 Different colors
06.4 With colors or without colors
06.5 Printing with colors
06.6 Further reading

Next chapter: usr_07.txt Editing more than one file
Previous chapter: usr_05.txt Set your settings

Table of contents: usr_toc.txt

==
06.1 Switching it on

It all starts with one simple command:

:syntax enable

That should work in most situations to get color in your files. Vim will
automagically detect the type of file and load the right syntax highlighting.
Suddenly comments are blue, keywords brown and strings red. This makes it
easy to overview the file. After a while you will find that black&white text
slows you down!

If you always want to use syntax highlighting, put the ":syntax enable"
command in your vimrc file.

If you want syntax highlighting only when the terminal supports colors, you
can put this in your vimrc file:

if &t_Co > 1
syntax enable

endif

If you want syntax highlighting only in the GUI version, put the ":syntax
enable" command in your gvimrc file.

==
06.2 No or wrong colors?

There can be a number of reasons why you don't see colors:

- Your terminal does not support colors.
Vim will use bold, italic and underlined text, but this doesn't look
very nice. You probably will want to try to get a terminal with
colors. For Unix, I recommend the xterm from the XFree86 project:
xfree-xterm .

usr_06.txt — 93

- Your terminal does support colors, but Vim doesn't know this.
Make sure your $TERM setting is correct. For example, when using an
xterm that supports colors:

setenv TERM xterm-color

or (depending on your shell):

TERM=xterm-color; export TERM

The terminal name must match the terminal you are using. If it
still doesn't work, have a look at xterm-color , which shows a few
ways to make Vim display colors (not only for an xterm).

- The file type is not recognized.
Vim doesn't know all file types, and sometimes it's near to impossible
to tell what language a file uses. Try this command:

:set filetype

If the result is "filetype=" then the problem is indeed that Vim
doesn't know what type of file this is. You can set the type
manually:

:set filetype=fortran

To see which types are available, look in the directory
$VIMRUNTIME/syntax. For the GUI you can use the Syntax menu.
Setting the filetype can also be done with a modeline , so that the
file will be highlighted each time you edit it. For example, this
line can be used in a Makefile (put it near the start or end of the
file):

vim: syntax=make

You might know how to detect the file type yourself. Often the file
name extension (after the dot) can be used.
See new-filetype for how to tell Vim to detect that file type.

- There is no highlighting for your file type.
You could try using a similar file type by manually setting it as
mentioned above. If that isn't good enough, you can write your own
syntax file, see mysyntaxfile .

Or the colors could be wrong:

- The colored text is very hard to read.
Vim guesses the background color that you are using. If it is black
(or another dark color) it will use light colors for text. If it is
white (or another light color) it will use dark colors for text. If
Vim guessed wrong the text will be hard to read. To solve this, set
the 'background' option. For a dark background:

:set background=dark

And for a light background:

:set background=light

usr_06.txt — 94

Make sure you put this _before_ the ":syntax enable" command,
otherwise the colors will already have been set. You could do
":syntax reset" after setting 'background' to make Vim set the default
colors again.

- The colors are wrong when scrolling bottom to top.
Vim doesn't read the whole file to parse the text. It starts parsing
wherever you are viewing the file. That saves a lot of time, but
sometimes the colors are wrong. A simple fix is hitting CTRL-L. Or
scroll back a bit and then forward again.
For a real fix, see :syn-sync . Some syntax files have a way to make
it look further back, see the help for the specific syntax file. For
example, tex.vim for the TeX syntax.

==
06.3 Different colors :syn-default-override

If you don't like the default colors, you can select another color scheme. In
the GUI use the Edit/Color Scheme menu. You can also type the command:

:colorscheme evening

"evening" is the name of the color scheme. There are several others you might
want to try out. Look in the directory $VIMRUNTIME/colors.

When you found the color scheme that you like, add the ":colorscheme" command
to your vimrc file.

You could also write your own color scheme. This is how you do it:

1. Select a color scheme that comes close. Copy this file to your own Vim
directory. For Unix, this should work:

!mkdir ~/.vim/colors
!cp $VIMRUNTIME/colors/morning.vim ~/.vim/colors/mine.vim

This is done from Vim, because it knows the value of $VIMRUNTIME.

2. Edit the color scheme file. These entries are useful:

term attributes in a B&W terminal
cterm attributes in a color terminal
ctermfg foreground color in a color terminal
ctermbg background color in a color terminal
gui attributes in the GUI
guifg foreground color in the GUI
guibg background color in the GUI

For example, to make comments green:

:highlight Comment ctermfg=green guifg=green

Attributes you can use for "cterm" and "gui" are "bold" and "underline".
If you want both, use "bold,underline". For details see the :highlight
command.

3. Tell Vim to always use your color scheme. Put this line in your vimrc :

colorscheme mine

usr_06.txt — 95

If you want to see what the most often used color combinations look like, use
this command:

:runtime syntax/colortest.vim

You will see text in various color combinations. You can check which ones are
readable and look nice. These aren't the only colors available to you though.
You can specify #rrggbb hex colors and you can define new names for hex
colors in v:colornames like so:

let v:colornames['mine_red'] = '#aa0000'

If you are authoring a color scheme for others to use, it is important
to define these colors only when they do not exist:

call extend(v:colornames, {'mine_red': '#aa0000'}, 'keep')

This allows users of the color scheme to override the precise definition of
that color prior to loading your color scheme. For example, in a .vimrc
file:

runtime colors/lists/css_colors.vim
let v:colornames['your_red'] = v:colornames['css_red']
colorscheme yourscheme

As a color scheme author, you should be able to rely on some color names for
GUI colors. These are defined in `colors/lists/default.vim`. All such files
found on the 'runtimepath' are loaded each time the colorscheme command is
run. A canonical list is provided by the vim distribution, which should
include all X11 colors (previously defined in rgb.txt).

==
06.4 With colors or without colors

Displaying text in color takes a lot of effort. If you find the displaying
too slow, you might want to disable syntax highlighting for a moment:

:syntax clear

When editing another file (or the same one) the colors will come back.

If you want to stop highlighting completely use:

:syntax off

This will completely disable syntax highlighting and remove it immediately for
all buffers. See :syntax-off for more details.

:syn-manual
If you want syntax highlighting only for specific files, use this:

:syntax manual

This will enable the syntax highlighting, but not switch it on automatically
when starting to edit a buffer. To switch highlighting on for the current
buffer, set the 'syntax' option:

:set syntax=ON

==

usr_06.txt — 96

06.5 Printing with colors syntax-printing

In the MS-Windows version you can print the current file with this command:

:hardcopy

You will get the usual printer dialog, where you can select the printer and a
few settings. If you have a color printer, the paper output should look the
same as what you see inside Vim. But when you use a dark background the
colors will be adjusted to look good on white paper.

There are several options that change the way Vim prints:
'printdevice'
'printheader'
'printfont'
'printoptions'

To print only a range of lines, use Visual mode to select the lines and then
type the command:

v100j:hardcopy

"v" starts Visual mode. "100j" moves a hundred lines down, they will be
highlighted. Then ":hardcopy" will print those lines. You can use other
commands to move in Visual mode, of course.

This also works on Unix, if you have a PostScript printer. Otherwise, you
will have to do a bit more work. You need to convert the text to HTML first,
and then print it from a web browser.

Convert the current file to HTML with this command:

:TOhtml

In case that doesn't work:

:source $VIMRUNTIME/syntax/2html.vim

You will see it crunching away, this can take quite a while for a large file.
Some time later another window shows the HTML code. Now write this somewhere
(doesn't matter where, you throw it away later):

:write main.c.html

Open this file in your favorite browser and print it from there. If all goes
well, the output should look exactly as it does in Vim. See 2html.vim for
details. Don't forget to delete the HTML file when you are done with it.

Instead of printing, you could also put the HTML file on a web server, and let
others look at the colored text.

==
06.6 Further reading

usr_44.txt Your own syntax highlighted.
syntax All the details.

==

Next chapter: usr_07.txt Editing more than one file

usr_06.txt — 97

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_06.txt — 98

usr_07.txt For Vim version 9.1. Last change: 2020 Mar 23

VIM USER MANUAL - by Bram Moolenaar

Editing more than one file

No matter how many files you have, you can edit them without leaving Vim.
Define a list of files to work on and jump from one to the other. Copy text
from one file and put it in another one.

07.1 Edit another file
07.2 A list of files
07.3 Jumping from file to file
07.4 Backup files
07.5 Copy text between files
07.6 Viewing a file
07.7 Changing the file name

Next chapter: usr_08.txt Splitting windows
Previous chapter: usr_06.txt Using syntax highlighting

Table of contents: usr_toc.txt

==
07.1 Edit another file

So far you had to start Vim for every file you wanted to edit. There is a
simpler way. To start editing another file, use this command:

:edit foo.txt

You can use any file name instead of "foo.txt". Vim will close the current
file and open the new one. If the current file has unsaved changes, however,
Vim displays an error message and does not open the new file:

E37: No write since last change (use ! to override)

Note:
Vim puts an error ID at the start of each error message. If you do
not understand the message or what caused it, look in the help system
for this ID. In this case:

:help E37

At this point, you have a number of alternatives. You can write the file
using this command:

:write

Or you can force Vim to discard your changes and edit the new file, using the
force (!) character:

:edit! foo.txt

If you want to edit another file, but not write the changes in the current
file yet, you can make it hidden:

:hide edit foo.txt

The text with changes is still there, but you can't see it. This is further

usr_07.txt — 99

explained in section 22.4 : The buffer list.

==
07.2 A list of files

You can start Vim to edit a sequence of files. For example:

vim one.c two.c three.c

This command starts Vim and tells it that you will be editing three files.
Vim displays just the first file. After you have done your thing in this
file, to edit the next file you use this command:

:next

If you have unsaved changes in the current file, you will get an error
message and the ":next" will not work. This is the same problem as with
":edit" mentioned in the previous section. To abandon the changes:

:next!

But mostly you want to save the changes and move on to the next file. There
is a special command for this:

:wnext

This does the same as using two separate commands:

:write
:next

WHERE AM I?

To see which file in the argument list you are editing, look in the window
title. It should show something like "(2 of 3)". This means you are editing
the second file out of three files.

If you want to see the list of files, use this command:

:args

This is short for "arguments". The output might look like this:

one.c [two.c] three.c

These are the files you started Vim with. The one you are currently editing,
"two.c", is in square brackets.

MOVING TO OTHER ARGUMENTS

To go back one file:

:previous

This is just like the ":next" command, except that it moves in the other
direction. Again, there is a shortcut command for when you want to write the
file first:

:wprevious

usr_07.txt — 100

To move to the very last file in the list:

:last

And to move back to the first one again:

:first

There is no ":wlast" or ":wfirst" command though!

You can use a count for ":next" and ":previous". To skip two files forward:

:2next

AUTOMATIC WRITING

When moving around the files and making changes, you have to remember to use
":write". Otherwise you will get an error message. If you are sure you
always want to write modified files, you can tell Vim to automatically write
them:

:set autowrite

When you are editing a file which you may not want to write, switch it off
again:

:set noautowrite

EDITING ANOTHER LIST OF FILES

You can redefine the list of files without the need to exit Vim and start it
again. Use this command to edit three other files:

:args five.c six.c seven.h

Or use a wildcard, like it's used in the shell:

:args *.txt

Vim will take you to the first file in the list. Again, if the current file
has changes, you can either write the file first, or use ":args!" (with !
added) to abandon the changes.

DID YOU EDIT THE LAST FILE?
arglist-quit

When you use a list of files, Vim assumes you want to edit them all. To
protect you from exiting too early, you will get this error when you didn't
edit the last file in the list yet:

E173: 46 more files to edit

If you really want to exit, just do it again. Then it will work (but not when
you did other commands in between).

==
07.3 Jumping from file to file

usr_07.txt — 101

To quickly jump between two files, press CTRL-^ (on English-US keyboards the ^
is above the 6 key). Example:

:args one.c two.c three.c

You are now in one.c.

:next

Now you are in two.c. Now use CTRL-^ to go back to one.c. Another CTRL-^ and
you are back in two.c. Another CTRL-^ and you are in one.c again. If you now
do:

:next

You are in three.c. Notice that the CTRL-^ command does not change the idea
of where you are in the list of files. Only commands like ":next" and
":previous" do that.

The file you were previously editing is called the "alternate" file. When you
just started Vim CTRL-^ will not work, since there isn't a previous file.

PREDEFINED MARKS

After jumping to another file, you can use two predefined marks which are very
useful:

`"

This takes you to the position where the cursor was when you left the file.
Another mark that is remembered is the position where you made the last
change:

`.

Suppose you are editing the file "one.txt". Somewhere halfway through the
file you use "x" to delete a character. Then you go to the last line with "G"
and write the file with ":w". You edit several other files, and then use
":edit one.txt" to come back to "one.txt". If you now use `" Vim jumps to the
last line of the file. Using `. takes you to the position where you deleted
the character. Even when you move around in the file `" and `. will take you
to the remembered position. At least until you make another change or leave
the file.

FILE MARKS

In section 03.10 was explained how you can place a mark in a file with "mx"
and jump to that position with "`x". That works within one file. If you edit
another file and place marks there, these are specific for that file. Thus
each file has its own set of marks, they are local to the file.

So far we were using marks with a lowercase letter. There are also marks
with an uppercase letter. These are global, they can be used from any file.
For example suppose that we are editing the file "foo.txt". Go to halfway
down the file ("50%") and place the F mark there (F for foo):

50%mF

usr_07.txt — 102

Now edit the file "bar.txt" and place the B mark (B for bar) at its last line:

GmB

Now you can use the "'F" command to jump back to halfway foo.txt. Or edit yet
another file, type "'B" and you are at the end of bar.txt again.

The file marks are remembered until they are placed somewhere else. Thus you
can place the mark, do hours of editing and still be able to jump back to that
mark.

It's often useful to think of a simple connection between the mark letter
and where it is placed. For example, use the H mark in a header file, M in
a Makefile and C in a C code file.

To see where a specific mark is, give an argument to the ":marks" command:

:marks M

You can also give several arguments:

:marks MCP

Don't forget that you can use CTRL-O and CTRL-I to jump to older and newer
positions without placing marks there.

==
07.4 Backup files

Usually Vim does not produce a backup file. If you want to have one, all you
need to do is execute the following command:

:set backup

The name of the backup file is the original file with a ~ added to the end.
If your file is named data.txt, for example, the backup file name is
data.txt~.

If you do not like the fact that the backup files end with ~, you can
change the extension:

:set backupext=.bak

This will use data.txt.bak instead of data.txt~.
Another option that matters here is 'backupdir'. It specifies where the

backup file is written. The default, to write the backup in the same
directory as the original file, will mostly be the right thing.

Note:
When the 'backup' option isn't set but the 'writebackup' is, Vim will
still create a backup file. However, it is deleted as soon as writing
the file was completed successfully. This functions as a safety
against losing your original file when writing fails in some way (disk
full is the most common cause; being hit by lightning might be
another, although less common).

KEEPING THE ORIGINAL FILE

If you are editing source files, you might want to keep the file before you
make any changes. But the backup file will be overwritten each time you write
the file. Thus it only contains the previous version, not the first one.

usr_07.txt — 103

To make Vim keep the original file, set the 'patchmode' option. This
specifies the extension used for the first backup of a changed file. Usually
you would do this:

:set patchmode=.orig

When you now edit the file data.txt for the first time, make changes and write
the file, Vim will keep a copy of the unchanged file under the name
"data.txt.orig".

If you make further changes to the file, Vim will notice that
"data.txt.orig" already exists and leave it alone. Further backup files will
then be called "data.txt~" (or whatever you specified with 'backupext').

If you leave 'patchmode' empty (that is the default), the original file
will not be kept.

==
07.5 Copy text between files

This explains how to copy text from one file to another. Let's start with a
simple example. Edit the file that contains the text you want to copy. Move
the cursor to the start of the text and press "v". This starts Visual mode.
Now move the cursor to the end of the text and press "y". This yanks (copies)
the selected text.

To copy the above paragraph, you would do:

:edit thisfile
/This
vjjjj$y

Now edit the file you want to put the text in. Move the cursor to the
character where you want the text to appear after. Use "p" to put the text
there.

:edit otherfile
/There
p

Of course you can use many other commands to yank the text. For example, to
select whole lines start Visual mode with "V". Or use CTRL-V to select a
rectangular block. Or use "Y" to yank a single line, "yaw" to yank-a-word,
etc.

The "p" command puts the text after the cursor. Use "P" to put the text
before the cursor. Notice that Vim remembers if you yanked a whole line or a
block, and puts it back that way.

USING REGISTERS

When you want to copy several pieces of text from one file to another, having
to switch between the files and writing the target file takes a lot of time.
To avoid this, copy each piece of text to its own register.

A register is a place where Vim stores text. Here we will use the
registers named a to z (later you will find out there are others). Let's copy
a sentence to the f register (f for First):

"fyas

The "yas" command yanks a sentence like before. It's the "f that tells Vim
the text should be placed in the f register. This must come just before the
yank command.

Now yank three whole lines to the l register (l for line):

usr_07.txt — 104

"l3Y

The count could be before the "l just as well. To yank a block of text to the
b (for block) register:

CTRL-Vjjww"by

Notice that the register specification "b is just before the "y" command.
This is required. If you would have put it before the "w" command, it would
not have worked.

Now you have three pieces of text in the f, l and b registers. Edit
another file, move around and place the text where you want it:

"fp

Again, the register specification "f comes before the "p" command.
You can put the registers in any order. And the text stays in the register

until you yank something else into it. Thus you can put it as many times as
you like.

When you delete text, you can also specify a register. Use this to move
several pieces of text around. For example, to delete-a-word and write it in
the w register:

"wdaw

Again, the register specification comes before the delete command "d".

APPENDING TO A FILE

When collecting lines of text into one file, you can use this command:

:write >> logfile

This will write the text of the current file to the end of "logfile". Thus it
is appended. This avoids that you have to copy the lines, edit the log file
and put them there. Thus you save two steps. But you can only append to the
end of a file.

To append only a few lines, select them in Visual mode before typing
":write". In chapter 10 you will learn other ways to select a range of lines.

==
07.6 Viewing a file

Sometimes you only want to see what a file contains, without the intention to
ever write it back. There is the risk that you type ":w" without thinking and
overwrite the original file anyway. To avoid this, edit the file read-only.

To start Vim in readonly mode, use this command:

vim -R file

On Unix this command should do the same thing:

view file

You are now editing "file" in read-only mode. When you try using ":w" you
will get an error message and the file won't be written.

When you try to make a change to the file Vim will give you a warning:

usr_07.txt — 105

W10: Warning: Changing a readonly file

The change will be done though. This allows for formatting the file, for
example, to be able to read it easily.

If you make changes to a file and forgot that it was read-only, you can
still write it. Add the ! to the write command to force writing.

If you really want to forbid making changes in a file, do this:

vim -M file

Now every attempt to change the text will fail. The help files are like this,
for example. If you try to make a change you get this error message:

E21: Cannot make changes, 'modifiable' is off

You could use the -M argument to setup Vim to work in a viewer mode. This is
only voluntary though, since these commands will remove the protection:

:set modifiable
:set write

==
07.7 Changing the file name

A clever way to start editing a new file is by using an existing file that
contains most of what you need. For example, you start writing a new program
to move a file. You know that you already have a program that copies a file,
thus you start with:

:edit copy.c

You can delete the stuff you don't need. Now you need to save the file under
a new name. The ":saveas" command can be used for this:

:saveas move.c

Vim will write the file under the given name, and edit that file. Thus the
next time you do ":write", it will write "move.c". "copy.c" remains
unmodified.

When you want to change the name of the file you are editing, but don't
want to write the file, you can use this command:

:file move.c

Vim will mark the file as "not edited". This means that Vim knows this is not
the file you started editing. When you try to write the file, you might get
this message:

E13: File exists (use ! to override)

This protects you from accidentally overwriting another file.

==

Next chapter: usr_08.txt Splitting windows

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_07.txt — 106

usr_08.txt For Vim version 9.1. Last change: 2021 May 20

VIM USER MANUAL - by Bram Moolenaar

Splitting windows

Display two different files above each other. Or view two locations in the
file at the same time. See the difference between two files by putting them
side by side. All this is possible with split windows.

08.1 Split a window
08.2 Split a window on another file
08.3 Window size
08.4 Vertical splits
08.5 Moving windows
08.6 Commands for all windows
08.7 Viewing differences with vimdiff
08.8 Various
08.9 Tab pages

Next chapter: usr_09.txt Using the GUI
Previous chapter: usr_07.txt Editing more than one file

Table of contents: usr_toc.txt

==
08.1 Split a window

The easiest way to open a new window is to use the following command:

:split

This command splits the screen into two windows and leaves the cursor in the
top one:

+----------------------------------+
|/* file one.c */ |
|~ |
|~ |
one.c=============================

|/* file one.c */ |
|~ |
one.c=============================

| |
+----------------------------------+

What you see here is two windows on the same file. The line with "====" is
the status line. It displays information about the window above it. (In
practice the status line will be in reverse video.)

The two windows allow you to view two parts of the same file. For example,
you could make the top window show the variable declarations of a program, and
the bottom one the code that uses these variables.

The CTRL-W w command can be used to jump between the windows. If you are in
the top window, CTRL-W w jumps to the window below it. If you are in the
bottom window it will jump to the first window. (CTRL-W CTRL-W does the same
thing, in case you let go of the CTRL key a bit later.)

CLOSE THE WINDOW

usr_08.txt — 107

To close a window, use the command:

:close

Actually, any command that quits editing a file works, like ":quit" and "ZZ".
But ":close" prevents you from accidentally exiting Vim when you close the
last window.

CLOSING ALL OTHER WINDOWS

If you have opened a whole bunch of windows, but now want to concentrate on
one of them, this command will be useful:

:only

This closes all windows, except for the current one. If any of the other
windows has changes, you will get an error message and that window won't be
closed.

==
08.2 Split a window on another file

The following command opens a second window and starts editing the given file:

:split two.c

If you were editing one.c, then the result looks like this:

+----------------------------------+
|/* file two.c */ |
|~ |
|~ |
two.c=============================

|/* file one.c */ |
|~ |
one.c=============================

| |
+----------------------------------+

To open a window on a new, empty file, use this:

:new

You can repeat the ":split" and ":new" commands to create as many windows as
you like.

==
08.3 Window size

The ":split" command can take a number argument. If specified, this will be
the height of the new window. For example, the following opens a new window
three lines high and starts editing the file alpha.c:

:3split alpha.c

For existing windows you can change the size in several ways. When you have a
working mouse, it is easy: Move the mouse pointer to the status line that
separates two windows, and drag it up or down.

usr_08.txt — 108

To increase the size of a window:

CTRL-W +

To decrease it:

CTRL-W -

Both of these commands take a count and increase or decrease the window size
by that many lines. Thus "4 CTRL-W +" make the window four lines higher.

To set the window height to a specified number of lines:

{height}CTRL-W _

That's: a number {height}, CTRL-W and then an underscore (the - key with Shift
on English-US keyboards).

To make a window as high as it can be, use the CTRL-W _ command without a
count.

USING THE MOUSE

In Vim you can do many things very quickly from the keyboard. Unfortunately,
the window resizing commands require quite a bit of typing. In this case,
using the mouse is faster. Position the mouse pointer on a status line. Now
press the left mouse button and drag. The status line will move, thus making
the window on one side higher and the other smaller.

OPTIONS

The 'winheight' option can be set to a minimal desired height of a window and
'winminheight' to a hard minimum height.

Likewise, there is 'winwidth' for the minimal desired width and
'winminwidth' for the hard minimum width.

The 'equalalways' option, when set, makes Vim equalize the windows sizes
when a window is closed or opened.

==
08.4 Vertical splits

The ":split" command creates the new window above the current one. To make
the window appear at the left side, use:

:vsplit

or:
:vsplit two.c

The result looks something like this:

+--------------------------------------+
/* file two.c */	/* file one.c */
~	~
~	~
~	~
two.c===============one.c=============

| |

usr_08.txt — 109

+--------------------------------------+

Actually, the | lines in the middle will be in reverse video. This is called
the vertical separator. It separates the two windows left and right of it.

There is also the ":vnew" command, to open a vertically split window on a new,
empty file. Another way to do this:

:vertical new

The ":vertical" command can be inserted before another command that splits a
window. This will cause that command to split the window vertically instead
of horizontally. (If the command doesn't split a window, it works
unmodified.)

MOVING BETWEEN WINDOWS

Since you can split windows horizontally and vertically as much as you like,
you can create almost any layout of windows. Then you can use these commands
to move between them:

CTRL-W h move to the window on the left
CTRL-W j move to the window below
CTRL-W k move to the window above
CTRL-W l move to the window on the right

CTRL-W t move to the TOP window
CTRL-W b move to the BOTTOM window

You will notice the same letters as used for moving the cursor. And the
cursor keys can also be used, if you like.

More commands to move to other windows: Q_wi .

==
08.5 Moving windows

You have split a few windows, but now they are in the wrong place. Then you
need a command to move the window somewhere else. For example, you have three
windows like this:

+----------------------------------+
|/* file two.c */ |
|~ |
|~ |
two.c=============================

|/* file three.c */ |
|~ |
|~ |
three.c===========================

|/* file one.c */ |
|~ |
one.c=============================

| |
+----------------------------------+

Clearly the last one should be at the top. Go to that window (using CTRL-W w)
and then type this command:

CTRL-W K

usr_08.txt — 110

This uses the uppercase letter K. What happens is that the window is moved to
the very top. You will notice that K is again used for moving upwards.

When you have vertical splits, CTRL-W K will move the current window to the
top and make it occupy the full width of the Vim window. If this is your
layout:

+---+
/* two.c */	/* three.c */	/* one.c */
~	~	~
~	~	~
~	~	~
~	~	~
~	~	~
two.c=========three.c=========one.c========

| |
+---+

Then using CTRL-W K in the middle window (three.c) will result in:

+---+
|/* three.c */ |
|~ |
|~ |
three.c====================================

|/* two.c */ |/* one.c */ |
|~ |~ |
two.c==================one.c===============

| |
+---+

The other three similar commands (you can probably guess these now):

CTRL-W H move window to the far left
CTRL-W J move window to the bottom
CTRL-W L move window to the far right

==
08.6 Commands for all windows

When you have several windows open and you want to quit Vim, you can close
each window separately. A quicker way is using this command:

:qall

This stands for "quit all". If any of the windows contain changes, Vim will
not exit. The cursor will automatically be positioned in a window with
changes. You can then either use ":write" to save the changes, or ":quit!" to
throw them away.

If you know there are windows with changes, and you want to save all these
changes, use this command:

:wall

This stands for "write all". But actually, it only writes files with
changes. Vim knows it doesn't make sense to write files that were not
changed.

And then there is the combination of ":qall" and ":wall": the "write and
quit all" command:

usr_08.txt — 111

:wqall

This writes all modified files and quits Vim.
Finally, there is a command that quits Vim and throws away all changes:

:qall!

Be careful, there is no way to undo this command!

OPENING A WINDOW FOR ALL ARGUMENTS

To make Vim open a window for each file, start it with the "-o" argument:

vim -o one.txt two.txt three.txt

This results in:

+-------------------------------+
|file one.txt |
|~ |
one.txt========================

|file two.txt |
|~ |
two.txt========================

|file three.txt |
|~ |
three.txt======================

| |
+-------------------------------+

The "-O" argument is used to get vertically split windows.
When Vim is already running, the ":all" command opens a window for each

file in the argument list. ":vertical all" does it with vertical splits.

==
08.7 Viewing differences with vimdiff

There is a special way to start Vim, which shows the differences between two
files. Let's take a file "main.c" and insert a few characters in one line.
Write this file with the 'backup' option set, so that the backup file
"main.c~" will contain the previous version of the file.

Type this command in a shell (not in Vim):

vimdiff main.c~ main.c

Vim will start, with two windows side by side. You will only see the line
in which you added characters, and a few lines above and below it.

VV VV
+---+
|+ +--123 lines: /* a|+ +--123 lines: /* a| <- fold
text	text
text	text
text	text
text	changed text
text	text
text	------------------
text	text

usr_08.txt — 112

| text | text |
| text | text |
|+ +--432 lines: text|+ +--432 lines: text| <- fold
| ~ | ~ |
| ~ | ~ |
main.c~==============main.c==============

| |
+---+

(This picture doesn't show the highlighting, use the vimdiff command for a
better look.)

The lines that were not modified have been collapsed into one line. This is
called a closed fold. They are indicated in the picture with "<- fold". Thus
the single fold line at the top stands for 123 text lines. These lines are
equal in both files.

The line marked with "<- changed line" is highlighted, and the inserted
text is displayed with another color. This clearly shows what the difference
is between the two files.

The line that was deleted is displayed with "---" in the main.c window.
See the "<- deleted line" marker in the picture. These characters are not
really there. They just fill up main.c, so that it displays the same number
of lines as the other window.

THE FOLD COLUMN

Each window has a column on the left with a slightly different background. In
the picture above these are indicated with "VV". You notice there is a plus
character there, in front of each closed fold. Move the mouse pointer to that
plus and click the left button. The fold will open, and you can see the text
that it contains.

The fold column contains a minus sign for an open fold. If you click on
this -, the fold will close.

Obviously, this only works when you have a working mouse. You can also use
"zo" to open a fold and "zc" to close it.

DIFFING IN VIM

Another way to start in diff mode can be done from inside Vim. Edit the
"main.c" file, then make a split and show the differences:

:edit main.c
:vertical diffsplit main.c~

The ":vertical" command is used to make the window split vertically. If you
omit this, you will get a horizontal split.

If you have a patch or diff file, you can use the third way to start diff
mode. First edit the file to which the patch applies. Then tell Vim the name
of the patch file:

:edit main.c
:vertical diffpatch main.c.diff

WARNING: The patch file must contain only one patch, for the file you are
editing. Otherwise you will get a lot of error messages, and some files might
be patched unexpectedly.

The patching will only be done to the copy of the file in Vim. The file on

usr_08.txt — 113

your harddisk will remain unmodified (until you decide to write the file).

SCROLL BINDING

When the files have more changes, you can scroll in the usual way. Vim will
try to keep both the windows start at the same position, so you can easily see
the differences side by side.

When you don't want this for a moment, use this command:

:set noscrollbind

JUMPING TO CHANGES

When you have disabled folding in some way, it may be difficult to find the
changes. Use this command to jump forward to the next change:

]c

To go the other way use:

[c

Prepended a count to jump further away.

REMOVING CHANGES

You can move text from one window to the other. This either removes
differences or adds new ones. Vim doesn't keep the highlighting updated in
all situations. To update it use this command:

:diffupdate

To remove a difference, you can move the text in a highlighted block from one
window to another. Take the "main.c" and "main.c~" example above. Move the
cursor to the left window, on the line that was deleted in the other window.
Now type this command:

dp

The change will be removed by putting the text of the current window in the
other window. "dp" stands for "diff put".

You can also do it the other way around. Move the cursor to the right
window, to the line where "changed" was inserted. Now type this command:

do

The change will now be removed by getting the text from the other window.
Since there are no changes left now, Vim puts all text in a closed fold.
"do" stands for "diff obtain". "dg" would have been better, but that already
has a different meaning ("dgg" deletes from the cursor until the first line).

For details about diff mode, see vimdiff .

==
08.8 Various

The 'laststatus' option can be used to specify when the last window has a

usr_08.txt — 114

statusline:

0 never
1 only when there are split windows (the default)
2 always

Many commands that edit another file have a variant that splits the window.
For Command-line commands this is done by prepending an "s". For example:
":tag" jumps to a tag, ":stag" splits the window and jumps to a
tag.

For Normal mode commands a CTRL-W is prepended. CTRL-^ jumps to the
alternate file, CTRL-W CTRL-^ splits the window and edits the alternate file.

The 'splitbelow' option can be set to make a new window appear below the
current window. The 'splitright' option can be set to make a vertically split
window appear right of the current window.

When splitting a window you can prepend a modifier command to tell where the
window is to appear:

:leftabove {cmd} left or above the current window
:aboveleft {cmd} idem
:rightbelow {cmd} right or below the current window
:belowright {cmd} idem
:topleft {cmd} at the top or left of the Vim window
:botright {cmd} at the bottom or right of the Vim window

==
08.9 Tab pages

You will have noticed that windows never overlap. That means you quickly run
out of screen space. The solution for this is called Tab pages.

Assume you are editing "thisfile". To create a new tab page use this command:

:tabedit thatfile

This will edit the file "thatfile" in a window that occupies the whole Vim
window. And you will notice a bar at the top with the two file names:

+----------------------------------+
| thisfile | /thatfile/ __________X| (thatfile is bold)
|/* thatfile */ |
|that |
|that |
|~ |
|~ |
|~ |
| |
+----------------------------------+

You now have two tab pages. The first one has a window for "thisfile" and the
second one a window for "thatfile". It's like two pages that are on top of
each other, with a tab sticking out of each page showing the file name.

Now use the mouse to click on "thisfile" in the top line. The result is

+----------------------------------+
| /thisfile/ | thatfile __________X| (thisfile is bold)

usr_08.txt — 115

|/* thisfile */ |
|this |
|this |
|~ |
|~ |
|~ |
| |
+----------------------------------+

Thus you can switch between tab pages by clicking on the label in the top
line. If you don't have a mouse or don't want to use it, you can use the "gt"
command. Mnemonic: Goto Tab.

Now let's create another tab page with the command:

:tab split

This makes a new tab page with one window that is editing the same buffer as
the window we were in:

+-------------------------------------+
| thisfile | /thisfile/ | thatfile __X| (thisfile is bold)
|/* thisfile */ |
|this |
|this |
|~ |
|~ |
|~ |
| |
+-------------------------------------+

You can put ":tab" before any Ex command that opens a window. The window will
be opened in a new tab page. Another example:

:tab help gt

Will show the help text for "gt" in a new tab page.

A few more things you can do with tab pages:

- click with the mouse in the space after the last label
The next tab page will be selected, like with "gt".

- click with the mouse on the "X" in the top right corner
The current tab page will be closed. Unless there are unsaved
changes in the current tab page.

- double click with the mouse in the top line
A new tab page will be created.

- the "tabonly" command
Closes all tab pages except the current one. Unless there are unsaved
changes in other tab pages.

For more information about tab pages see tab-page .

==

Next chapter: usr_09.txt Using the GUI

usr_08.txt — 116

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_08.txt — 117

usr_08.txt — 118

usr_09.txt For Vim version 9.1. Last change: 2017 Aug 11

VIM USER MANUAL - by Bram Moolenaar

Using the GUI

Vim works in an ordinary terminal, while gVim has a Graphical User Interface
(GUI). It can do the same things and a few more. The GUI offers menus, a
toolbar, scrollbars and other items. This chapter is about these extra things
that the GUI offers.

09.1 Parts of the GUI
09.2 Using the mouse
09.3 The clipboard
09.4 Select mode

Next chapter: usr_10.txt Making big changes
Previous chapter: usr_08.txt Splitting windows

Table of contents: usr_toc.txt

==
09.1 Parts of the GUI

You might have an icon on your desktop that starts gvim. Otherwise, one of
these commands should do it:

gvim file.txt
vim -g file.txt

If this doesn't work you don't have a version of Vim with GUI support. You
will have to install one first.

Vim will open a window and display "file.txt" in it. What the window looks
like depends on the version of Vim. It should resemble the following picture
(for as far as this can be shown in ASCII!).

+--+
| file.txt + (~/dir) - VIM X | <- window title
+--+
| File Edit Tools Syntax Buffers Window Help | <- menubar
+--+
| aaa bbb ccc ddd eee fff ggg hhh iii jjj | <- toolbar
| aaa bbb ccc ddd eee fff ggg hhh iii jjj |
+--+
| file text | ^ |
| ~ | # |
| ~ | # | <- scrollbar
~	#
~	#
~	#
	V
+--+

The largest space is occupied by the file text. This shows the file in the
same way as in a terminal. With some different colors and another font
perhaps.

THE WINDOW TITLE

usr_09.txt — 119

At the very top is the window title. This is drawn by your window system.
Vim will set the title to show the name of the current file. First comes the
name of the file. Then some special characters and the directory of the file
in parens. These special characters can be present:

- The file cannot be modified (e.g., a help file)
+ The file contains changes
= The file is read-only
=+ The file is read-only, contains changes anyway

If nothing is shown you have an ordinary, unchanged file.

THE MENUBAR

You know how menus work, right? Vim has the usual items, plus a few more.
Browse them to get an idea of what you can use them for. A relevant submenu
is Edit/Global Settings. You will find these entries:

Toggle Toolbar make the toolbar appear/disappear
Toggle Bottom Scrollbar make a scrollbar appear/disappear at the bottom
Toggle Left Scrollbar make a scrollbar appear/disappear at the left
Toggle Right Scrollbar make a scrollbar appear/disappear at the right

On most systems you can tear-off the menus. Select the top item of the menu,
the one that looks like a dashed line. You will get a separate window with
the items of the menu. It will hang around until you close the window.

THE TOOLBAR

This contains icons for the most often used actions. Hopefully the icons are
self-explanatory. There are tooltips to get an extra hint (move the mouse
pointer to the icon without clicking and don't move it for a second).

The "Edit/Global Settings/Toggle Toolbar" menu item can be used to make the
toolbar disappear. If you never want a toolbar, use this command in your
vimrc file:

:set guioptions-=T

This removes the 'T' flag from the 'guioptions' option. Other parts of the
GUI can also be enabled or disabled with this option. See the help for it.

THE SCROLLBARS

By default there is one scrollbar on the right. It does the obvious thing.
When you split the window, each window will get its own scrollbar.

You can make a horizontal scrollbar appear with the menu item
Edit/Global Settings/Toggle Bottom Scrollbar. This is useful in diff mode, or
when the 'wrap' option has been reset (more about that later).

When there are vertically split windows, only the windows on the right side
will have a scrollbar. However, when you move the cursor to a window on the
left, it will be this one that the scrollbar controls. This takes a bit of
time to get used to.

When you work with vertically split windows, consider adding a scrollbar on
the left. This can be done with a menu item, or with the 'guioptions' option:

usr_09.txt — 120

:set guioptions+=l

This adds the 'l' flag to 'guioptions'.

==
09.2 Using the mouse

Standards are wonderful. In Microsoft Windows, you can use the mouse to
select text in a standard manner. The X Window system also has a standard
system for using the mouse. Unfortunately, these two standards are not the
same.

Fortunately, you can customize Vim. You can make the behavior of the mouse
work like an X Window system mouse or a Microsoft Windows mouse. The following
command makes the mouse behave like an X Window mouse:

:behave xterm

The following command makes the mouse work like a Microsoft Windows mouse:

:behave mswin

The default behavior of the mouse on UNIX systems is xterm. The default
behavior on a Microsoft Windows system is selected during the installation
process. For details about what the two behaviors are, see :behave . Here
follows a summary.

XTERM MOUSE BEHAVIOR

Left mouse click position the cursor
Left mouse drag select text in Visual mode
Middle mouse click paste text from the clipboard
Right mouse click extend the selected text until the mouse

pointer

MSWIN MOUSE BEHAVIOR

Left mouse click position the cursor
Left mouse drag select text in Select mode (see 09.4)
Left mouse click, with Shift extend the selected text until the mouse

pointer
Middle mouse click paste text from the clipboard
Right mouse click display a pop-up menu

The mouse can be further tuned. Check out these options if you want to change
the way how the mouse works:

'mouse' in which mode the mouse is used by Vim
'mousemodel' what effect a mouse click has
'mousetime' time between clicks for a double-click
'mousehide' hide the mouse while typing
'selectmode' whether the mouse starts Visual or Select mode

==
09.3 The clipboard

In section 04.7 the basic use of the clipboard was explained. There is one
essential thing to explain about X-windows: There are actually two places to

usr_09.txt — 121

exchange text between programs. MS-Windows doesn't have this.

In X-Windows there is the "current selection". This is the text that is
currently highlighted. In Vim this is the Visual area (this assumes you are
using the default option settings). You can paste this selection in another
application without any further action.

For example, in this text select a few words with the mouse. Vim will
switch to Visual mode and highlight the text. Now start another gvim, without
a file name argument, so that it displays an empty window. Click the middle
mouse button. The selected text will be inserted.

The "current selection" will only remain valid until some other text is
selected. After doing the paste in the other gvim, now select some characters
in that window. You will notice that the words that were previously selected
in the other gvim window are displayed differently. This means that it no
longer is the current selection.

You don't need to select text with the mouse, using the keyboard commands for
Visual mode works just as well.

THE REAL CLIPBOARD

Now for the other place with which text can be exchanged. We call this the
"real clipboard", to avoid confusion. Often both the "current selection" and
the "real clipboard" are called clipboard, you'll have to get used to that.

To put text on the real clipboard, select a few different words in one of
the gvims you have running. Then use the Edit/Copy menu entry. Now the text
has been copied to the real clipboard. You can't see this, unless you have
some application that shows the clipboard contents (e.g., KDE's Klipper).

Now select the other gvim, position the cursor somewhere and use the
Edit/Paste menu. You will see the text from the real clipboard is inserted.

USING BOTH

This use of both the "current selection" and the "real clipboard" might sound
a bit confusing. But it is very useful. Let's show this with an example.
Use one gvim with a text file and perform these actions:

- Select two words in Visual mode.
- Use the Edit/Copy menu to get these words onto the clipboard.
- Select one other word in Visual mode.
- Use the Edit/Paste menu item. What will happen is that the single selected

word is replaced with the two words from the clipboard.
- Move the mouse pointer somewhere else and click the middle button. You

will see that the word you just overwrote with the clipboard is inserted
here.

If you use the "current selection" and the "real clipboard" with care, you can
do a lot of useful editing with them.

USING THE KEYBOARD

If you don't like using the mouse, you can access the current selection and
the real clipboard with two registers. The "* register is for the current
selection.

To make text become the current selection, use Visual mode. For example,
to select a whole line just press "V".

usr_09.txt — 122

To insert the current selection before the cursor:

"*P

Notice the uppercase "P". The lowercase "p" puts the text after the cursor.

The "+ register is used for the real clipboard. For example, to copy the text
from the cursor position until the end of the line to the clipboard:

"+y$

Remember, "y" is yank, which is Vim's copy command.
To insert the contents of the real clipboard before the cursor:

"+P

It's the same as for the current selection, but uses the plus (+) register
instead of the star (*) register.

==
09.4 Select mode

And now something that is used more often on MS-Windows than on X-Windows.
But both can do it. You already know about Visual mode. Select mode is like
Visual mode, because it is also used to select text. But there is an obvious
difference: When typing text, the selected text is deleted and the typed text
replaces it.

To start working with Select mode, you must first enable it (for MS-Windows
it is probably already enabled, but you can do this anyway):

:set selectmode+=mouse

Now use the mouse to select some text. It is highlighted like in Visual mode.
Now press a letter. The selected text is deleted, and the single letter
replaces it. You are in Insert mode now, thus you can continue typing.

Since typing normal text causes the selected text to be deleted, you can not
use the normal movement commands "hjkl", "w", etc. Instead, use the shifted
function keys. <S-Left> (shifted cursor left key) moves the cursor left. The
selected text is changed like in Visual mode. The other shifted cursor keys
do what you expect. <S-End> and <S-Home> also work.

You can tune the way Select mode works with the 'selectmode' option.

==

Next chapter: usr_10.txt Making big changes

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_09.txt — 123

usr_09.txt — 124

usr_10.txt For Vim version 9.1. Last change: 2019 Nov 22

VIM USER MANUAL - by Bram Moolenaar

Making big changes

In chapter 4 several ways to make small changes were explained. This chapter
goes into making changes that are repeated or can affect a large amount of
text. The Visual mode allows doing various things with blocks of text. Use
an external program to do really complicated things.

10.1 Record and playback commands
10.2 Substitution
10.3 Command ranges
10.4 The global command
10.5 Visual block mode
10.6 Reading and writing part of a file
10.7 Formatting text
10.8 Changing case
10.9 Using an external program

Next chapter: usr_11.txt Recovering from a crash
Previous chapter: usr_09.txt Using the GUI

Table of contents: usr_toc.txt

==
10.1 Record and playback commands

The "." command repeats the preceding change. But what if you want to do
something more complex than a single change? That's where command recording
comes in. There are three steps:

1. The "q{register}" command starts recording keystrokes into the register
named {register}. The register name must be between a and z.

2. Type your commands.
3. To finish recording, press q (without any extra character).

You can now execute the macro by typing the command "@{register}".

Take a look at how to use these commands in practice. You have a list of
filenames that look like this:

stdio.h
fcntl.h
unistd.h
stdlib.h

And what you want is the following:

#include "stdio.h"
#include "fcntl.h"
#include "unistd.h"
#include "stdlib.h"

You start by moving to the first character of the first line. Next you
execute the following commands:

qa Start recording a macro in register a.
^ Move to the beginning of the line.

usr_10.txt — 125

i#include "<Esc> Insert the string #include " at the beginning
of the line.

$ Move to the end of the line.
a"<Esc> Append the character double quotation mark (")

to the end of the line.
j Go to the next line.
q Stop recording the macro.

Now that you have done the work once, you can repeat the change by typing the
command "@a" three times.

The "@a" command can be preceded by a count, which will cause the macro to
be executed that number of times. In this case you would type:

3@a

MOVE AND EXECUTE

You might have the lines you want to change in various places. Just move the
cursor to each location and use the "@a" command. If you have done that once,
you can do it again with "@@". That's a bit easier to type. If you now
execute register b with "@b", the next "@@" will use register b.

If you compare the playback method with using ".", there are several
differences. First of all, "." can only repeat one change. As seen in the
example above, "@a" can do several changes, and move around as well.
Secondly, "." can only remember the last change. Executing a register allows
you to make any changes and then still use "@a" to replay the recorded
commands. Finally, you can use 26 different registers. Thus you can remember
26 different command sequences to execute.

USING REGISTERS

The registers used for recording are the same ones you used for yank and
delete commands. This allows you to mix recording with other commands to
manipulate the registers.

Suppose you have recorded a few commands in register n. When you execute
this with "@n" you notice you did something wrong. You could try recording
again, but perhaps you will make another mistake. Instead, use this trick:

G Go to the end of the file.
o<Esc> Create an empty line.
"np Put the text from the n register. You now see

the commands you typed as text in the file.
{edits} Change the commands that were wrong. This is

just like editing text.
0 Go to the start of the line.
"ny$ Yank the corrected commands into the n

register.
dd Delete the scratch line.

Now you can execute the corrected commands with "@n". (If your recorded
commands include line breaks, adjust the last two items in the example to
include all the lines.)

APPENDING TO A REGISTER

So far we have used a lowercase letter for the register name. To append to a
register, use an uppercase letter.

usr_10.txt — 126

Suppose you have recorded a command to change a word to register c. It
works properly, but you would like to add a search for the next word to
change. This can be done with:

qC/word<Enter>q

You start with "qC", which records to the c register and appends. Thus
writing to an uppercase register name means to append to the register with
the same letter, but lowercase.

This works both with recording and with yank and delete commands. For
example, you want to collect a sequence of lines into the a register. Yank
the first line with:

"aY

Now move to the second line, and type:

"AY

Repeat this command for all lines. The a register now contains all those
lines, in the order you yanked them.

==
10.2 Substitution find-replace

The ":substitute" command enables you to perform string replacements on a
whole range of lines. The general form of this command is as follows:

:[range]substitute/from/to/[flags]

This command changes the "from" string to the "to" string in the lines
specified with [range]. For example, you can change "Professor" to "Teacher"
in all lines with the following command:

:%substitute/Professor/Teacher/

Note:
The ":substitute" command is almost never spelled out completely.
Most of the time, people use the abbreviated version ":s". From here
on the abbreviation will be used.

The "%" before the command specifies the command works on all lines. Without
a range, ":s" only works on the current line. More about ranges in the next
section 10.3 .

By default, the ":substitute" command changes only the first occurrence on
each line. For example, the preceding command changes the line:

Professor Smith criticized Professor Johnson today.

to:

Teacher Smith criticized Professor Johnson today.

To change every occurrence on the line, you need to add the g (global) flag.
The command:

:%s/Professor/Teacher/g

usr_10.txt — 127

results in (starting with the original line):

Teacher Smith criticized Teacher Johnson today.

Other flags include p (print), which causes the ":substitute" command to print
out the last line it changes. The c (confirm) flag tells ":substitute" to ask
you for confirmation before it performs each substitution. Enter the
following:

:%s/Professor/Teacher/c

Vim finds the first occurrence of "Professor" and displays the text it is
about to change. You get the following prompt:

replace with Teacher (y/n/a/q/l/^E/^Y)?

At this point, you must enter one of the following answers:

y Yes; make this change.
n No; skip this match.
a All; make this change and all remaining ones without

further confirmation.
q Quit; don't make any more changes.
l Last; make this change and then quit.
CTRL-E Scroll the text one line up.
CTRL-Y Scroll the text one line down.

The "from" part of the substitute command is actually a pattern. The same
kind as used for the search command. For example, this command only
substitutes "the" when it appears at the start of a line:

:s/^the/these/

If you are substituting with a "from" or "to" part that includes a slash, you
need to put a backslash before it. A simpler way is to use another character
instead of the slash. A plus, for example:

:s+one/two+one or two+

==
10.3 Command ranges

The ":substitute" command, and many other : commands, can be applied to a
selection of lines. This is called a range.

The simple form of a range is {number},{number}. For example:

:1,5s/this/that/g

Executes the substitute command on the lines 1 to 5. Line 5 is included.
The range is always placed before the command.

A single number can be used to address one specific line:

:54s/President/Fool/

Some commands work on the whole file when you do not specify a range. To make
them work on the current line the "." address is used. The ":write" command
works like that. Without a range, it writes the whole file. To make it write
only the current line into a file:

usr_10.txt — 128

:.write otherfile

The first line always has number one. How about the last line? The "$"
character is used for this. For example, to substitute in the lines from the
cursor to the end:

:.,$s/yes/no/

The "%" range that we used before, is actually a short way to say "1,$", from
the first to the last line.

USING A PATTERN IN A RANGE

Suppose you are editing a chapter in a book, and want to replace all
occurrences of "grey" with "gray". But only in this chapter, not in the next
one. You know that only chapter boundaries have the word "Chapter" in the
first column. This command will work then:

:?^Chapter?,/^Chapter/s=grey=gray=g

You can see a search pattern is used twice. The first "?^Chapter?" finds the
line above the current position that matches this pattern. Thus the ?pattern?
range is used to search backwards. Similarly, "/^Chapter/" is used to search
forward for the start of the next chapter.

To avoid confusion with the slashes, the "=" character was used in the
substitute command here. A slash or another character would have worked as
well.

ADD AND SUBTRACT

There is a slight error in the above command: If the title of the next chapter
had included "grey" it would be replaced as well. Maybe that's what you
wanted, but what if you didn't? Then you can specify an offset.

To search for a pattern and then use the line above it:

/Chapter/-1

You can use any number instead of the 1. To address the second line below the
match:

/Chapter/+2

The offsets can also be used with the other items in a range. Look at this
one:

:.+3,$-5

This specifies the range that starts three lines below the cursor and ends
five lines before the last line in the file.

USING MARKS

Instead of figuring out the line numbers of certain positions, remembering them
and typing them in a range, you can use marks.

Place the marks as mentioned in chapter 3. For example, use "mt" to mark
the top of an area and "mb" to mark the bottom. Then you can use this range

usr_10.txt — 129

to specify the lines between the marks (including the lines with the marks):

:'t,'b

VISUAL MODE AND RANGES

You can select text with Visual mode. If you then press ":" to start a colon
command, you will see this:

:'<,'>

Now you can type the command and it will be applied to the range of lines that
was visually selected.

Note:
When using Visual mode to select part of a line, or using CTRL-V to
select a block of text, the colon commands will still apply to whole
lines. This might change in a future version of Vim.

The '< and '> are actually marks, placed at the start and end of the Visual
selection. The marks remain at their position until another Visual selection
is made. Thus you can use the "'<" command to jump to position where the
Visual area started. And you can mix the marks with other items:

:'>,$

This addresses the lines from the end of the Visual area to the end of the
file.

A NUMBER OF LINES

When you know how many lines you want to change, you can type the number and
then ":". For example, when you type "5:", you will get:

:.,.+4

Now you can type the command you want to use. It will use the range "."
(current line) until ".+4" (four lines down). Thus it spans five lines.

==
10.4 The global command

The ":global" command is one of the more powerful features of Vim. It allows
you to find a match for a pattern and execute a command there. The general
form is:

:[range]global/{pattern}/{command}

This is similar to the ":substitute" command. But, instead of replacing the
matched text with other text, the command {command} is executed.

Note:
The command executed for ":global" must be one that starts with a
colon. Normal mode commands can not be used directly. The :normal
command can do this for you.

Suppose you want to change "foobar" to "barfoo", but only in C++ style
comments. These comments start with "//". Use this command:

usr_10.txt — 130

:g+//+s/foobar/barfoo/g

This starts with ":g". That is short for ":global", just like ":s" is short
for ":substitute". Then the pattern, enclosed in plus characters. Since the
pattern we are looking for contains a slash, this uses the plus character to
separate the pattern. Next comes the substitute command that changes "foobar"
into "barfoo".

The default range for the global command is the whole file. Thus no range
was specified in this example. This is different from ":substitute", which
works on one line without a range.

The command isn't perfect, since it also matches lines where "//" appears
halfway through a line, and the substitution will also take place before the
"//".

Just like with ":substitute", any pattern can be used. When you learn more
complicated patterns later, you can use them here.

==
10.5 Visual block mode

With CTRL-V you can start selection of a rectangular area of text. There are
a few commands that do something special with the text block.

There is something special about using the "$" command in Visual block mode.
When the last motion command used was "$", all lines in the Visual selection
will extend until the end of the line, also when the line with the cursor is
shorter. This remains effective until you use a motion command that moves the
cursor horizontally. Thus using "j" keeps it, "h" stops it.

INSERTING TEXT

The command "I{string}<Esc>" inserts the text {string} in each line, just
left of the visual block. You start by pressing CTRL-V to enter visual block
mode. Now you move the cursor to define your block. Next you type I to enter
Insert mode, followed by the text to insert. As you type, the text appears on
the first line only.

After you press <Esc> to end the insert, the text will magically be
inserted in the rest of the lines contained in the visual selection. Example:

include one
include two
include three
include four

Move the cursor to the "o" of "one" and press CTRL-V. Move it down with "3j"
to "four". You now have a block selection that spans four lines. Now type:

Imain.<Esc>

The result:

include main.one
include main.two
include main.three
include main.four

If the block spans short lines that do not extend into the block, the text is
not inserted in that line. For example, make a Visual block selection that

usr_10.txt — 131

includes the word "long" in the first and last line of this text, and thus has
no text selected in the second line:

This is a long line
short
Any other long line

^^^^ selected block

Now use the command "Ivery <Esc>". The result is:

This is a very long line
short
Any other very long line

In the short line no text was inserted.

If the string you insert contains a newline, the "I" acts just like a Normal
insert command and affects only the first line of the block.

The "A" command works the same way, except that it appends after the right
side of the block. And it does insert text in a short line. Thus you can
make a choice whether you do or don't want to append text to a short line.

There is one special case for "A": Select a Visual block and then use "$"
to make the block extend to the end of each line. Using "A" now will append
the text to the end of each line.

Using the same example from above, and then typing "$A XXX<Esc>, you get
this result:

This is a long line XXX
short XXX
Any other long line XXX

This really requires using the "$" command. Vim remembers that it was used.
Making the same selection by moving the cursor to the end of the longest line
with other movement commands will not have the same result.

CHANGING TEXT

The Visual block "c" command deletes the block and then throws you into Insert
mode to enable you to type in a string. The string will be inserted in each
line in the block.

Starting with the same selection of the "long" words as above, then typing
"c_LONG_<Esc>", you get this:

This is a _LONG_ line
short
Any other _LONG_ line

Just like with "I" the short line is not changed. Also, you can't enter a
newline in the new text.

The "C" command deletes text from the left edge of the block to the end of
line. It then puts you in Insert mode so that you can type in a string,
which is added to the end of each line.

Starting with the same text again, and typing "Cnew text<Esc>" you get:

This is a new text
short

usr_10.txt — 132

Any other new text

Notice that, even though only the "long" word was selected, the text after it
is deleted as well. Thus only the location of the left edge of the visual
block really matters.

Again, short lines that do not reach into the block are excluded.

Other commands that change the characters in the block:

~ swap case (a -> A and A -> a)
U make uppercase (a -> A and A -> A)
u make lowercase (a -> a and A -> a)

FILLING WITH A CHARACTER

To fill the whole block with one character, use the "r" command. Again,
starting with the same example text from above, and then typing "rx":

This is a xxxx line
short
Any other xxxx line

Note:
If you want to include characters beyond the end of the line in the
block, check out the 'virtualedit' feature in chapter 25.

SHIFTING

The command ">" shifts the selected text to the right one shift amount,
inserting whitespace. The starting point for this shift is the left edge of
the visual block.

With the same example again, ">" gives this result:

This is a long line
short
Any other long line

The shift amount is specified with the 'shiftwidth' option. To change it to
use 4 spaces:

:set shiftwidth=4

The "<" command removes one shift amount of whitespace at the left
edge of the block. This command is limited by the amount of text that is
there; so if there is less than a shift amount of whitespace available, it
removes what it can.

JOINING LINES

The "J" command joins all selected lines together into one line. Thus it
removes the line breaks. Actually, the line break, leading white space and
trailing white space is replaced by one space. Two spaces are used after a
line ending (that can be changed with the 'joinspaces' option).

Let's use the example that we got so familiar with now. The result of
using the "J" command:

usr_10.txt — 133

This is a long line short Any other long line

The "J" command doesn't require a blockwise selection. It works with "v" and
"V" selection in exactly the same way.

If you don't want the white space to be changed, use the "gJ" command.

==
10.6 Reading and writing part of a file

When you are writing an e-mail message, you may want to include another file.
This can be done with the ":read {filename}" command. The text of the file is
put below the cursor line.

Starting with this text:

Hi John,
Here is the diff that fixes the bug:
Bye, Pierre.

Move the cursor to the second line and type:

:read patch

The file named "patch" will be inserted, with this result:

Hi John,
Here is the diff that fixes the bug:
2c2
< for (i = 0; i <= length; ++i)

> for (i = 0; i < length; ++i)
Bye, Pierre.

The ":read" command accepts a range. The file will be put below the last line
number of this range. Thus ":$r patch" appends the file "patch" at the end of
the file.

What if you want to read the file above the first line? This can be done
with the line number zero. This line doesn't really exist, you will get an
error message when using it with most commands. But this command is allowed:

:0read patch

The file "patch" will be put above the first line of the file.

WRITING A RANGE OF LINES

To write a range of lines to a file, the ":write" command can be used.
Without a range it writes the whole file. With a range only the specified
lines are written:

:.,$write tempo

This writes the lines from the cursor until the end of the file into the file
"tempo". If this file already exists you will get an error message. Vim
protects you from accidentally overwriting an existing file. If you know what
you are doing and want to overwrite the file, append !:

:.,$write! tempo

usr_10.txt — 134

CAREFUL: The ! must follow the ":write" command immediately, without white
space. Otherwise it becomes a filter command, which is explained later in
this chapter.

APPENDING TO A FILE

In the first section of this chapter was explained how to collect a number of
lines into a register. The same can be done to collect lines in a file.
Write the first line with this command:

:.write collection

Now move the cursor to the second line you want to collect, and type this:

:.write >>collection

The ">>" tells Vim the "collection" file is not to be written as a new file,
but the line must be appended at the end. You can repeat this as many times
as you like.

==
10.7 Formatting text

When you are typing plain text, it's nice if the length of each line is
automatically trimmed to fit in the window. To make this happen while
inserting text, set the 'textwidth' option:

:set textwidth=72

You might remember that in the example vimrc file this command was used for
every text file. Thus if you are using that vimrc file, you were already
using it. To check the current value of 'textwidth':

:set textwidth

Now lines will be broken to take only up to 72 characters. But when you
insert text halfway through a line, or when you delete a few words, the lines
will get too long or too short. Vim doesn't automatically reformat the text.

To tell Vim to format the current paragraph:

gqap

This starts with the "gq" command, which is an operator. Following is "ap",
the text object that stands for "a paragraph". A paragraph is separated from
the next paragraph by an empty line.

Note:
A blank line, which contains white space, does NOT separate
paragraphs. This is hard to notice!

Instead of "ap" you could use any motion or text object. If your paragraphs
are properly separated, you can use this command to format the whole file:

gggqG

"gg" takes you to the first line, "gq" is the format operator and "G" the
motion that jumps to the last line.

In case your paragraphs aren't clearly defined, you can format just the lines

usr_10.txt — 135

you manually select. Move the cursor to the first line you want to format.
Start with the command "gqj". This formats the current line and the one below
it. If the first line was short, words from the next line will be appended.
If it was too long, words will be moved to the next line. The cursor moves to
the second line. Now you can use "." to repeat the command. Keep doing this
until you are at the end of the text you want to format.

==
10.8 Changing case

You have text with section headers in lowercase. You want to make the word
"section" all uppercase. Do this with the "gU" operator. Start with the
cursor in the first column:

gUw
section header ----> SECTION header

The "gu" operator does exactly the opposite:

guw
SECTION header ----> section header

You can also use "g~" to swap case. All these are operators, thus they work
with any motion command, with text objects and in Visual mode.

To make an operator work on lines you double it. The delete operator is
"d", thus to delete a line you use "dd". Similarly, "gugu" makes a whole line
lowercase. This can be shortened to "guu". "gUgU" is shortened to "gUU" and
"g~g~" to "g~~". Example:

g~~
Some GIRLS have Fun ----> sOME girls HAVE fUN

==
10.9 Using an external program

Vim has a very powerful set of commands, it can do anything. But there may
still be something that an external command can do better or faster.

The command "!{motion}{program}" takes a block of text and filters it
through an external program. In other words, it runs the system command
represented by {program}, giving it the block of text represented by {motion}
as input. The output of this command then replaces the selected block.

Because this summarizes badly if you are unfamiliar with UNIX filters, take
a look at an example. The sort command sorts a file. If you execute the
following command, the unsorted file input.txt will be sorted and written to
output.txt. (This works on both UNIX and Microsoft Windows.)

sort <input.txt >output.txt

Now do the same thing in Vim. You want to sort lines 1 through 5 of a file.
You start by putting the cursor on line 1. Next you execute the following
command:

!5G

The "!" tells Vim that you are performing a filter operation. The Vim editor
expects a motion command to follow, indicating which part of the file to
filter. The "5G" command tells Vim to go to line 5, so it now knows that it
is to filter lines 1 (the current line) through 5.

In anticipation of the filtering, the cursor drops to the bottom of the
screen and a ! prompt displays. You can now type in the name of the filter

usr_10.txt — 136

program, in this case "sort". Therefore, your full command is as follows:

!5Gsort<Enter>

The result is that the sort program is run on the first 5 lines. The output
of the program replaces these lines.

line 55 line 11
line 33 line 22
line 11 --> line 33
line 22 line 44
line 44 line 55
last line last line

The "!!" command filters the current line through a filter. In Unix the "date"
command prints the current time and date. "!!date<Enter>" replaces the current
line with the output of "date". This is useful to add a timestamp to a file.

WHEN IT DOESN'T WORK

Starting a shell, sending it text and capturing the output requires that Vim
knows how the shell works exactly. When you have problems with filtering,
check the values of these options:

'shell' specifies the program that Vim uses to execute
external programs.

'shellcmdflag' argument to pass a command to the shell
'shellquote' quote to be used around the command
'shellxquote' quote to be used around the command and redirection
'shelltype' kind of shell (only for the Amiga)
'shellslash' use forward slashes in the command (only for

MS-Windows and alikes)
'shellredir' string used to write the command output into a file

On Unix this is hardly ever a problem, because there are two kinds of shells:
"sh" like and "csh" like. Vim checks the 'shell' option and sets related
options automatically, depending on whether it sees "csh" somewhere in
'shell'.

On MS-Windows, however, there are many different shells and you might have
to tune the options to make filtering work. Check the help for the options
for more information.

READING COMMAND OUTPUT

To read the contents of the current directory into the file, use this:

on Unix:
:read !ls

on MS-Windows:
:read !dir

The output of the "ls" or "dir" command is captured and inserted in the text,
below the cursor. This is similar to reading a file, except that the "!" is
used to tell Vim that a command follows.

The command may have arguments. And a range can be used to tell where Vim
should put the lines:

:0read !date -u

usr_10.txt — 137

This inserts the current time and date in UTC format at the top of the file.
(Well, if you have a date command that accepts the "-u" argument.) Note the
difference with using "!!date": that replaced a line, while ":read !date" will
insert a line.

WRITING TEXT TO A COMMAND

The Unix command "wc" counts words. To count the words in the current file:

:write !wc

This is the same write command as before, but instead of a file name the "!"
character is used and the name of an external command. The written text will
be passed to the specified command as its standard input. The output could
look like this:

4 47 249

The "wc" command isn't verbose. This means you have 4 lines, 47 words and 249
characters.

Watch out for this mistake:

:write! wc

This will write the file "wc" in the current directory, with force. White
space is important here!

REDRAWING THE SCREEN

If the external command produced an error message, the display may have been
messed up. Vim is very efficient and only redraws those parts of the screen
that it knows need redrawing. But it can't know about what another program
has written. To tell Vim to redraw the screen:

CTRL-L

==

Next chapter: usr_11.txt Recovering from a crash

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_10.txt — 138

usr_11.txt For Vim version 9.1. Last change: 2020 Oct 25

VIM USER MANUAL - by Bram Moolenaar

Recovering from a crash

Did your computer crash? And you just spent hours editing? Don't panic! Vim
stores enough information to be able to restore most of your work. This
chapter shows you how to get your work back and explains how the swap file is
used.

11.1 Basic recovery
11.2 Where is the swap file?
11.3 Crashed or not?
11.4 Further reading

Next chapter: usr_12.txt Clever tricks
Previous chapter: usr_10.txt Making big changes

Table of contents: usr_toc.txt

==
11.1 Basic recovery

In most cases recovering a file is quite simple, assuming you know which file
you were editing (and the harddisk is still working). Start Vim on the file,
with the "-r" argument added:

vim -r help.txt

Vim will read the swap file (used to store text you were editing) and may read
bits and pieces of the original file. If Vim recovered your changes you will
see these messages (with different file names, of course):

Using swap file ".help.txt.swp"
Original file "~/vim/runtime/doc/help.txt"
Recovery completed. You should check if everything is OK.
(You might want to write out this file under another name
and run diff with the original file to check for changes)
You may want to delete the .swp file now.

To be on the safe side, write this file under another name:

:write help.txt.recovered

Compare the file with the original file to check if you ended up with what you
expected. Vimdiff is very useful for this 08.7 . For example:

:write help.txt.recovered
:edit #
:diffsp help.txt

Watch out for the original file to contain a more recent version (you saved
the file just before the computer crashed). And check that no lines are
missing (something went wrong that Vim could not recover).

If Vim produces warning messages when recovering, read them carefully.
This is rare though.

If the recovery resulted in text that is exactly the same as the file
contents, you will get this message:

usr_11.txt — 139

Using swap file ".help.txt.swp"
Original file "~/vim/runtime/doc/help.txt"
Recovery completed. Buffer contents equals file contents.
You may want to delete the .swp file now.

This usually happens if you already recovered your changes, or you wrote the
file after making changes. It is safe to delete the swap file now.

It is normal that the last few changes can not be recovered. Vim flushes the
changes to disk when you don't type for about four seconds, or after typing
about two hundred characters. This is set with the 'updatetime' and
'updatecount' options. Thus when Vim didn't get a chance to save itself when
the system went down, the changes after the last flush will be lost.

If you were editing without a file name, give an empty string as argument:

vim -r ""

You must be in the right directory, otherwise Vim can't find the swap file.

==
11.2 Where is the swap file?

Vim can store the swap file in several places. Normally it is in the same
directory as the original file. To find it, change to the directory of the
file, and use:

vim -r

Vim will list the swap files that it can find. It will also look in other
directories where the swap file for files in the current directory may be
located. It will not find swap files in any other directories though, it
doesn't search the directory tree.

The output could look like this:

Swap files found:
In current directory:

1. .main.c.swp
owned by: mool dated: Tue May 29 21:00:25 2001

file name: ~mool/vim/vim6/src/main.c
modified: YES

user name: mool host name: masaka.moolenaar.net
process ID: 12525

In directory ~/tmp:
-- none --

In directory /var/tmp:
-- none --

In directory /tmp:
-- none --

If there are several swap files that look like they may be the one you want to
use, a list is given of these swap files and you are requested to enter the
number of the one you want to use. Carefully look at the dates to decide
which one you want to use.

In case you don't know which one to use, just try them one by one and check
the resulting files if they are what you expected.

USING A SPECIFIC SWAP FILE

usr_11.txt — 140

If you know which swap file needs to be used, you can recover by giving the
swap file name. Vim will then find out the name of the original file from
the swap file.

Example:
vim -r .help.txt.swo

This is also handy when the swap file is in another directory than expected.
Vim recognizes files with the pattern *.s[uvw][a-z] as swap files.

If this still does not work, see what file names Vim reports and rename the
files accordingly. Check the 'directory' option to see where Vim may have
put the swap file.

Note:
Vim tries to find the swap file by searching the directories in the
'dir' option, looking for files that match "filename.sw?". If
wildcard expansion doesn't work (e.g., when the 'shell' option is
invalid), Vim does a desperate try to find the file "filename.swp".
If that fails too, you will have to give the name of the swapfile
itself to be able to recover the file.

==
11.3 Crashed or not? ATTENTION E325

Vim tries to protect you from doing stupid things. Suppose you innocently
start editing a file, expecting the contents of the file to show up. Instead,
Vim produces a very long message:

E325: ATTENTION
Found a swap file by the name ".main.c.swp"

owned by: mool dated: Tue May 29 21:09:28 2001
file name: ~mool/vim/vim6/src/main.c
modified: no

user name: mool host name: masaka.moolenaar.net
process ID: 12559 (still running)

While opening file "main.c"
dated: Tue May 29 19:46:12 2001

(1) Another program may be editing the same file.
If this is the case, be careful not to end up with two
different instances of the same file when making changes.
Quit, or continue with caution.

(2) An edit session for this file crashed.
If this is the case, use ":recover" or "vim -r main.c"
to recover the changes (see ":help recovery").
If you did this already, delete the swap file ".main.c.swp"
to avoid this message.

You get this message, because, when starting to edit a file, Vim checks if a
swap file already exists for that file. If there is one, there must be
something wrong. It may be one of these two situations.

1. Another edit session is active on this file. Look in the message for the
line with "process ID". It might look like this:

process ID: 12559 (still running)

usr_11.txt — 141

The text "(still running)" indicates that the process editing this file
runs on the same computer. When working on a non-Unix system you will not
get this extra hint. When editing a file over a network, you may not see
the hint, because the process might be running on another computer. In
those two cases you must find out what the situation is yourself.

If there is another Vim editing the same file, continuing to edit will
result in two versions of the same file. The one that is written last will
overwrite the other one, resulting in loss of changes. You better quit
this Vim.

2. The swap file might be the result from a previous crash of Vim or the
computer. Check the dates mentioned in the message. If the date of the
swap file is newer than the file you were editing, and this line appears:

modified: YES

Then you very likely have a crashed edit session that is worth recovering.
If the date of the file is newer than the date of the swap file, then

either it was changed after the crash (perhaps you recovered it earlier,
but didn't delete the swap file?), or else the file was saved before the
crash but after the last write of the swap file (then you're lucky: you
don't even need that old swap file). Vim will warn you for this with this
extra line:

NEWER than swap file!

NOTE that in the following situation Vim knows the swap file is not useful and
will automatically delete it:
- The file is a valid swap file (Magic number is correct).
- The flag that the file was modified is not set.
- The process is not running.

You can programmatically deal with this situation with the FileChangedShell
autocommand event.

UNREADABLE SWAP FILE

Sometimes the line

[cannot be read]

will appear under the name of the swap file. This can be good or bad,
depending on circumstances.

It is good if a previous editing session crashed without having made any
changes to the file. Then a directory listing of the swap file will show
that it has zero bytes. You may delete it and proceed.

It is slightly bad if you don't have read permission for the swap file. You
may want to view the file read-only, or quit. On multi-user systems, if you
yourself did the last changes under a different login name, a logout
followed by a login under that other name might cure the "read error". Or
else you might want to find out who last edited (or is editing) the file and
have a talk with them.

It is very bad if it means there is a physical read error on the disk
containing the swap file. Fortunately, this almost never happens.
You may want to view the file read-only at first (if you can), to see the

usr_11.txt — 142

extent of the changes that were "forgotten". If you are the one in charge of
that file, be prepared to redo your last changes.

WHAT TO DO? swap-exists-choices

If dialogs are supported you will be asked to select one of six choices:

Swap file ".main.c.swp" already exists!
[O]pen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort, (D)elete it:

O Open the file readonly. Use this when you just want to view the file and
don't need to recover it. You might want to use this when you know someone
else is editing the file, but you just want to look in it and not make
changes.

E Edit the file anyway. Use this with caution! If the file is being edited
in another Vim, you might end up with two versions of the file. Vim will
try to warn you when this happens, but better be safe than sorry.

R Recover the file from the swap file. Use this if you know that the swap
file contains changes that you want to recover.

Q Quit. This avoids starting to edit the file. Use this if there is another
Vim editing the same file.

When you just started Vim, this will exit Vim. When starting Vim with
files in several windows, Vim quits only if there is a swap file for the
first one. When using an edit command, the file will not be loaded and you
are taken back to the previously edited file.

A Abort. Like Quit, but also abort further commands. This is useful when
loading a script that edits several files, such as a session with multiple
windows.

D Delete the swap file. Use this when you are sure you no longer need it.
For example, when it doesn't contain changes, or when the file itself is
newer than the swap file.

On Unix this choice is only offered when the process that created the
swap file does not appear to be running.

If you do not get the dialog (you are running a version of Vim that does not
support it), you will have to do it manually. To recover the file, use this
command:

:recover

Vim cannot always detect that a swap file already exists for a file. This is
the case when the other edit session puts the swap files in another directory
or when the path name for the file is different when editing it on different
machines. Therefore, don't rely on Vim always warning you.

If you really don't want to see this message, you can add the 'A' flag to the
'shortmess' option. But it's very unusual that you need this.

For remarks about encryption and the swap file, see :recover-crypt .
For programmatic access to the swap file, see swapinfo() .

==
11.4 Further reading

usr_11.txt — 143

swap-file An explanation about where the swap file will be created and
what its name is.

:preserve Manually flushing the swap file to disk.
:swapname See the name of the swap file for the current file.

'updatecount' Number of key strokes after which the swap file is flushed to
disk.

'updatetime' Timeout after which the swap file is flushed to disk.
'swapsync' Whether the disk is synced when the swap file is flushed.
'directory' List of directory names where to store the swap file.
'maxmem' Limit for memory usage before writing text to the swap file.
'maxmemtot' Same, but for all files in total.

==

Next chapter: usr_12.txt Clever tricks

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_11.txt — 144

usr_12.txt For Vim version 9.1. Last change: 2022 Nov 19

VIM USER MANUAL - by Bram Moolenaar

Clever tricks

By combining several commands you can make Vim do nearly everything. In this
chapter a number of useful combinations will be presented. This uses the
commands introduced in the previous chapters and a few more.

12.1 Replace a word
12.2 Change "Last, First" to "First Last"
12.3 Sort a list
12.4 Reverse line order
12.5 Count words
12.6 Find a man page
12.7 Trim blanks
12.8 Find where a word is used

Next chapter: usr_20.txt Typing command-line commands quickly
Previous chapter: usr_11.txt Recovering from a crash

Table of contents: usr_toc.txt

==
12.1 Replace a word

The substitute command can be used to replace all occurrences of a word with
another word:

:%s/four/4/g

The "%" range means to replace in all lines. The "g" flag at the end causes
all words in a line to be replaced.

This will not do the right thing if your file also contains "thirtyfour".
It would be replaced with "thirty4". To avoid this, use the "\<" item to
match the start of a word:

:%s/\<four/4/g

Obviously, this still goes wrong on "fourteen". Use "\>" to match the end of
a word:

:%s/\<four\>/4/g

If you are programming, you might want to replace "four" in comments, but not
in the code. Since this is difficult to specify, add the "c" flag to have the
substitute command prompt you for each replacement:

:%s/\<four\>/4/gc

REPLACING IN SEVERAL FILES

Suppose you want to replace a word in more than one file. You could edit each
file and type the command manually. It's a lot faster to use record and
playback.

Let's assume you have a directory with C++ files, all ending in ".cpp".
There is a function called "GetResp" that you want to rename to "GetAnswer".

usr_12.txt — 145

vim *.cpp Start Vim, defining the argument list to
contain all the C++ files. You are now in the
first file.

qq Start recording into the q register
:%s/\<GetResp\>/GetAnswer/g

Do the replacements in the first file.
:wnext Write this file and move to the next one.
q Stop recording.
@q Execute the q register. This will replay the

substitution and ":wnext". You can verify
that this doesn't produce an error message.

999@q Execute the q register on the remaining files.

At the last file you will get an error message, because ":wnext" cannot move
to the next file. This stops the execution, and everything is done.

Note:
When playing back a recorded sequence, an error stops the execution.
Therefore, make sure you don't get an error message when recording.

There is one catch: If one of the .cpp files does not contain the word
"GetResp", you will get an error and replacing will stop. To avoid this, add
the "e" flag to the substitute command:

:%s/\<GetResp\>/GetAnswer/ge

The "e" flag tells ":substitute" that not finding a match is not an error.

==
12.2 Change "Last, First" to "First Last"

You have a list of names in this form:

Doe, John
Smith, Peter

You want to change that to:

John Doe
Peter Smith

This can be done with just one command:

:%s/\([^,]*\), \(.*\)/\2 \1/

Let's break this down in parts. Obviously it starts with a substitute
command. The "%" is the line range, which stands for the whole file. Thus
the substitution is done in every line in the file.

The arguments for the substitute command are "/from/to/". The slashes
separate the "from" pattern and the "to" string. This is what the "from"
pattern contains:

\([^,]*\), \(.*\)

The first part between \(\) matches "Last" \(\)
match anything but a comma [^,]
any number of times *

matches ", " literally ,
The second part between \(\) matches "First" \(\)

any character .

usr_12.txt — 146

any number of times *

In the "to" part we have "\2" and "\1". These are called backreferences.
They refer to the text matched by the "\(\)" parts in the pattern. "\2"
refers to the text matched by the second "\(\)", which is the "First" name.
"\1" refers to the first "\(\)", which is the "Last" name.

You can use up to nine backreferences in the "to" part of a substitute
command. "\0" stands for the whole matched pattern. There are a few more
special items in a substitute command, see sub-replace-special .

==
12.3 Sort a list

In a Makefile you often have a list of files. For example:

OBJS = \
version.o \
pch.o \
getopt.o \
util.o \
getopt1.o \
inp.o \
patch.o \
backup.o

To sort this list, filter the text through the external sort command:

/^OBJS
j
:.,/^$/-1!sort

This goes to the first line, where "OBJS" is the first thing in the line.
Then it goes one line down and filters the lines until the next empty line.
You could also select the lines in Visual mode and then use "!sort". That's
easier to type, but more work when there are many lines.

The result is this:

OBJS = \
backup.o
getopt.o \
getopt1.o \
inp.o \
patch.o \
pch.o \
util.o \
version.o \

Notice that a backslash at the end of each line is used to indicate the line
continues. After sorting, this is wrong! The "backup.o" line that was at
the end didn't have a backslash. Now that it sorts to another place, it
must have a backslash.

The simplest solution is to add the backslash with "A \<Esc>". You can
keep the backslash in the last line, if you make sure an empty line comes
after it. That way you don't have this problem again.

==
12.4 Reverse line order

The :global command can be combined with the :move command to move all the

usr_12.txt — 147

lines before the first line, resulting in a reversed file. The command is:

:global/^/move 0

Abbreviated:

:g/^/m 0

The "^" regular expression matches the beginning of the line (even if the line
is blank). The :move command moves the matching line to after the imaginary
zeroth line, so the current matching line becomes the first line of the file.
As the :global command is not confused by the changing line numbering,
:global proceeds to match all remaining lines of the file and puts each as

the first.

This also works on a range of lines. First move to above the first line and
mark it with "mt". Then move the cursor to the last line in the range and
type:

:'t+1,.g/^/m 't

==
12.5 Count words

Sometimes you have to write a text with a maximum number of words. Vim can
count the words for you.

When the whole file is what you want to count the words in, use this
command:

g CTRL-G

Do not type a space after the g, this is just used here to make the command
easy to read.

The output looks like this:

Col 1 of 0; Line 141 of 157; Word 748 of 774; Byte 4489 of 4976

You can see on which word you are (748), and the total number of words in the
file (774).

When the text is only part of a file, you could move to the start of the text,
type "g CTRL-G", move to the end of the text, type "g CTRL-G" again, and then
use your brain to compute the difference in the word position. That's a good
exercise, but there is an easier way. With Visual mode, select the text you
want to count words in. Then type g CTRL-G. The result:

Selected 5 of 293 Lines; 70 of 1884 Words; 359 of 10928 Bytes

For other ways to count words, lines and other items, see count-items .

==
12.6 Find a man page find-manpage

While editing a shell script or C program, you are using a command or function
that you want to find the man page for (this is on Unix). Let's first use a
simple way: Move the cursor to the word you want to find help on and press

K

Vim will run the external "man" program on the word. If the man page is

usr_12.txt — 148

found, it is displayed. This uses the normal pager to scroll through the text
(mostly the "more" program). When you get to the end pressing <Enter> will
get you back into Vim.

A disadvantage is that you can't see the man page and the text you are working
on at the same time. There is a trick to make the man page appear in a Vim
window. First, load the man filetype plugin:

:runtime! ftplugin/man.vim

Put this command in your vimrc file if you intend to do this often. Now you
can use the ":Man" command to open a window on a man page:

:Man csh

You can scroll around and the text is highlighted. This allows you to find
the help you were looking for. Use CTRL-W w to jump to the window with the
text you were working on.

To find a man page in a specific section, put the section number first.
For example, to look in section 3 for "echo":

:Man 3 echo

To jump to another man page, which is in the text with the typical form
"word(1)", press CTRL-] on it. Further ":Man" commands will use the same
window.

To display a man page for the word under the cursor, use this:

\K

(If you redefined the <Leader>, use it instead of the backslash).
For example, you want to know the return value of "strstr()" while editing
this line:

if (strstr (input, "aap") ==)

Move the cursor to somewhere on "strstr" and type "\K". A window will open
to display the man page for strstr().

==
12.7 Trim blanks

Some people find spaces and tabs at the end of a line useless, wasteful, and
ugly. To remove whitespace at the end of every line, execute the following
command:

:%s/\s\+$//

The line range "%" is used, thus this works on the whole file. The pattern
that the ":substitute" command matches with is "\s\+$". This finds white
space characters (\s), 1 or more of them (\+), before the end-of-line ($).
Later will be explained how you write patterns like this, see usr_27.txt .

The "to" part of the substitute command is empty: "//". Thus it replaces
with nothing, effectively deleting the matched white space.

Another wasteful use of spaces is placing them before a tab. Often these can
be deleted without changing the amount of white space. But not always!
Therefore, you can best do this manually. Use this search command:

usr_12.txt — 149

/

You cannot see it, but there is a space before a tab in this command. Thus
it's "/<Space><Tab>". Now use "x" to delete the space and check that the
amount of white space doesn't change. You might have to insert a tab if it
does change. Type "n" to find the next match. Repeat this until no more
matches can be found.

==
12.8 Find where a word is used

If you are a UNIX user, you can use a combination of Vim and the grep command
to edit all the files that contain a given word. This is extremely useful if
you are working on a program and want to view or edit all the files that
contain a specific variable.

For example, suppose you want to edit all the C program files that contain
the word "frame_counter". To do this you use the command:

vim `grep -l frame_counter *.c`

Let's look at this command in detail. The grep command searches through a set
of files for a given word. Because the -l argument is specified, the command
will only list the files containing the word and not print the matching lines.
The word it is searching for is "frame_counter". Actually, this can be any
regular expression. (Note: What grep uses for regular expressions is not
exactly the same as what Vim uses.)

The entire command is enclosed in backticks (`). This tells the UNIX shell
to run this command and pretend that the results were typed on the command
line. So what happens is that the grep command is run and produces a list of
files, these files are put on the Vim command line. This results in Vim
editing the file list that is the output of grep. You can then use commands
like ":next" and ":first" to browse through the files.

FINDING EACH LINE

The above command only finds the files in which the word is found. You still
have to find the word within the files.

Vim has a built-in command that you can use to search a set of files for a
given string. If you want to find all occurrences of "error_string" in all C
program files, for example, enter the following command:

:grep error_string *.c

This causes Vim to search for the string "error_string" in all the specified
files (*.c). The editor will now open the first file where a match is found
and position the cursor on the first matching line. To go to the next
matching line (no matter in what file it is), use the ":cnext" command. To go
to the previous match, use the ":cprev" command. Use ":clist" to see all the
matches and where they are.

The ":grep" command uses the external commands grep (on Unix) or findstr
(on Windows). You can change this by setting the option 'grepprg'.

==

Next chapter: usr_20.txt Typing command-line commands quickly

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_12.txt — 150

usr_20.txt For Vim version 9.1. Last change: 2021 Nov 18

VIM USER MANUAL - by Bram Moolenaar

Typing command-line commands quickly

Vim has a few generic features that makes it easier to enter commands. Colon
commands can be abbreviated, edited and repeated. Completion is available for
nearly everything.

20.1 Command line editing
20.2 Command line abbreviations
20.3 Command line completion
20.4 Command line history
20.5 Command line window

Next chapter: usr_21.txt Go away and come back
Previous chapter: usr_12.txt Clever tricks

Table of contents: usr_toc.txt

==
20.1 Command line editing

When you use a colon (:) command or search for a string with / or ?, Vim puts
the cursor on the bottom of the screen. There you type the command or search
pattern. This is called the Command line. Also when it's used for entering a
search command.

The most obvious way to edit the command you type is by pressing the <BS> key.
This erases the character before the cursor. To erase another character,
typed earlier, first move the cursor with the cursor keys.

For example, you have typed this:

:s/col/pig/

Before you hit <Enter>, you notice that "col" should be "cow". To correct
this, you type <Left> five times. The cursor is now just after "col". Type
<BS> and "w" to correct:

:s/cow/pig/

Now you can press <Enter> directly. You don't have to move the cursor to the
end of the line before executing the command.

The most often used keys to move around in the command line:

<Left> one character left
<Right> one character right
<S-Left> or <C-Left> one word left
<S-Right> or <C-Right> one word right
CTRL-B or <Home> to begin of command line
CTRL-E or <End> to end of command line

Note:
<S-Left> (cursor left key with Shift key pressed) and <C-Left> (cursor
left key with Control pressed) will not work on all keyboards. Same
for the other Shift and Control combinations.

You can also use the mouse to move the cursor.

usr_20.txt — 151

DELETING

As mentioned, <BS> deletes the character before the cursor. To delete a whole
word use CTRL-W.

/the fine pig

CTRL-W

/the fine

CTRL-U removes all text, thus allows you to start all over again.

OVERSTRIKE

The <Insert> key toggles between inserting characters and replacing the
existing ones. Start with this text:

/the fine pig

Move the cursor to the start of "fine" with <S-Left> twice (or <Left> eight
times, if <S-Left> doesn't work). Now press <Insert> to switch to overstrike
and type "great":

/the greatpig

Oops, we lost the space. Now, don't use <BS>, because it would delete the
"t" (this is different from Replace mode). Instead, press <Insert> to switch
from overstrike to inserting, and type the space:

/the great pig

CANCELLING

You thought of executing a : or / command, but changed your mind. To get rid
of what you already typed, without executing it, press CTRL-C or <Esc>.

Note:
<Esc> is the universal "get out" key. Unfortunately, in the good old
Vi pressing <Esc> in a command line executed the command! Since that
might be considered to be a bug, Vim uses <Esc> to cancel the command.
But with the 'cpoptions' option it can be made Vi compatible. And
when using a mapping (which might be written for Vi) <Esc> also works
Vi compatible. Therefore, using CTRL-C is a method that always works.

If you are at the start of the command line, pressing <BS> will cancel the
command. It's like deleting the ":" or "/" that the line starts with.

==
20.2 Command line abbreviations

Some of the ":" commands are really long. We already mentioned that
":substitute" can be abbreviated to ":s". This is a generic mechanism, all
":" commands can be abbreviated.

How short can a command get? There are 26 letters, and many more commands.

usr_20.txt — 152

For example, ":set" also starts with ":s", but ":s" doesn't start a ":set"
command. Instead ":set" can be abbreviated to ":se".

When the shorter form of a command could be used for two commands, it
stands for only one of them. There is no logic behind which one, you have to
learn them. In the help files the shortest form that works is mentioned. For
example:

:s[ubstitute]

This means that the shortest form of ":substitute" is ":s". The following
characters are optional. Thus ":su" and ":sub" also work.

In the user manual we will either use the full name of command, or a short
version that is still readable. For example, ":function" can be abbreviated
to ":fu". But since most people don't understand what that stands for, we
will use ":fun". (Vim doesn't have a ":funny" command, otherwise ":fun" would
be confusing too.)

It is recommended that in Vim scripts you write the full command name. That
makes it easier to read back when you make later changes. Except for some
often used commands like ":w" (":write") and ":r" (":read").

A particularly confusing one is ":end", which could stand for ":endif",
":endwhile" or ":endfunction". Therefore, always use the full name.

SHORT OPTION NAMES

In the user manual the long version of the option names is used. Many options
also have a short name. Unlike ":" commands, there is only one short name
that works. For example, the short name of 'autoindent' is 'ai'. Thus these
two commands do the same thing:

:set autoindent
:set ai

You can find the full list of long and short names here: option-list .

==
20.3 Command line completion

This is one of those Vim features that, by itself, is a reason to switch from
Vi to Vim. Once you have used this, you can't do without.

Suppose you have a directory that contains these files:

info.txt
intro.txt
bodyofthepaper.txt

To edit the last one, you use the command:

:edit bodyofthepaper.txt

It's easy to type this wrong. A much quicker way is:

:edit b<Tab>

Which will result in the same command. What happened? The <Tab> key does
completion of the word before the cursor. In this case "b". Vim looks in the
directory and finds only one file that starts with a "b". That must be the

usr_20.txt — 153

one you are looking for, thus Vim completes the file name for you.

Now type:

:edit i<Tab>

Vim will beep, and give you:

:edit info.txt

The beep means that Vim has found more than one match. It then uses the first
match it found (alphabetically). If you press <Tab> again, you get:

:edit intro.txt

Thus, if the first <Tab> doesn't give you the file you were looking for, press
it again. If there are more matches, you will see them all, one at a time.

If you press <Tab> on the last matching entry, you will go back to what you
first typed:

:edit i

Then it starts all over again. Thus Vim cycles through the list of matches.
Use CTRL-P to go through the list in the other direction:

<------------------- <Tab> -------------------------+
|

<Tab> --> <Tab> -->
:edit i :edit info.txt :edit intro.txt

<-- CTRL-P <-- CTRL-P
|
+---------------------- CTRL-P ------------------------>

CONTEXT

When you type ":set i" instead of ":edit i" and press <Tab> you get:

:set icon

Hey, why didn't you get ":set info.txt"? That's because Vim has context
sensitive completion. The kind of words Vim will look for depends on the
command before it. Vim knows that you cannot use a file name just after a
":set" command, but you can use an option name.

Again, if you repeat typing the <Tab>, Vim will cycle through all matches.
There are quite a few, it's better to type more characters first:

:set isk<Tab>

Gives:

:set iskeyword

Now type "=" and press <Tab>:

:set iskeyword=@,48-57,_,192-255

What happens here is that Vim inserts the old value of the option. Now you
can edit it.

What is completed with <Tab> is what Vim expects in that place. Just try

usr_20.txt — 154

it out to see how it works. In some situations you will not get what you
want. That's either because Vim doesn't know what you want, or because
completion was not implemented for that situation. In that case you will get
a <Tab> inserted (displayed as ^I).

LIST MATCHES

When there are many matches, you would like to see an overview. Do this by
pressing CTRL-D. For example, pressing CTRL-D after:

:set is

results in:

:set is
incsearch isfname isident iskeyword isprint
:set is

Vim lists the matches and then comes back with the text you typed. You can
now check the list for the item you wanted. If it isn't there, you can use
<BS> to correct the word. If there are many matches, type a few more
characters before pressing <Tab> to complete the rest.

If you have watched carefully, you will have noticed that "incsearch"
doesn't start with "is". In this case "is" stands for the short name of
"incsearch". (Many options have a short and a long name.) Vim is clever
enough to know that you might have wanted to expand the short name of the
option into the long name.

THERE IS MORE

The CTRL-L command completes the word to the longest unambiguous string. If
you type ":edit i" and there are files "info.txt" and "info_backup.txt" you
will get ":edit info".

The 'wildmode' option can be used to change the way completion works.
The 'wildmenu' option can be used to get a menu-like list of matches.
Use the 'suffixes' option to specify files that are less important and appear
at the end of the list of files.
The 'wildignore' option specifies files that are not listed at all.

More about all of this here: cmdline-completion

==
20.4 Command line history

In chapter 3 we briefly mentioned the history. The basics are that you can
use the <Up> key to recall an older command line. <Down> then takes you back
to newer commands.

There are actually five histories. The ones we will mention here are for ":"
commands and for "/" and "?" search commands. The "/" and "?" commands share
the same history, because they are both search commands. The three other
histories are for expressions, debug mode commands and input lines for the
input() function. cmdline-history

Suppose you have done a ":set" command, typed ten more colon commands and then
want to repeat that ":set" command again. You could press ":" and then ten
times <Up>. There is a quicker way:

usr_20.txt — 155

:se<Up>

Vim will now go back to the previous command that started with "se". You have
a good chance that this is the ":set" command you were looking for. At least
you should not have to press <Up> very often (unless ":set" commands is all
you have done).

The <Up> key will use the text typed so far and compare it with the lines in
the history. Only matching lines will be used.

If you do not find the line you were looking for, use <Down> to go back to
what you typed and correct that. Or use CTRL-U to start all over again.

To see all the lines in the history:

:history

That's the history of ":" commands. The search history is displayed with this
command:

:history /

CTRL-P will work like <Up>, except that it doesn't matter what you already
typed. Similarly for CTRL-N and <Down>. CTRL-P stands for previous, CTRL-N
for next.

==
20.5 Command line window

Typing the text in the command line works differently from typing text in
Insert mode. It doesn't allow many commands to change the text. For most
commands that's OK, but sometimes you have to type a complicated command.
That's where the command line window is useful.

Open the command line window with this command:

q:

Vim now opens a (small) window at the bottom. It contains the command line
history, and an empty line at the end:

+-------------------------------------+
|other window |
|~ |
file.txt=============================

|:e c |
|:e config.h.in |
|:set path=.,/usr/include,, |
|:set iskeyword=@,48-57,_,192-255 |
|:set is |
|:q |
|: |
command-line=========================

| |
+-------------------------------------+

You are now in Normal mode. You can use the "hjkl" keys to move around. For
example, move up with "5k" to the ":e config.h.in" line. Type "$h" to go to
the "i" of "in" and type "cwout". Now you have changed the line to:

usr_20.txt — 156

:e config.h.out

Now press <Enter> and this command will be executed. The command line window
will close.

The <Enter> command will execute the line under the cursor. It doesn't
matter whether Vim is in Insert mode or in Normal mode.

Changes in the command line window are lost. They do not result in the
history to be changed. Except that the command you execute will be added to
the end of the history, like with all executed commands.

The command line window is very useful when you want to have overview of the
history, lookup a similar command, change it a bit and execute it. A search
command can be used to find something.

In the previous example the "?config" search command could have been used
to find the previous command that contains "config". It's a bit strange,
because you are using a command line to search in the command line window.
While typing that search command you can't open another command line window,
there can be only one.

==

Next chapter: usr_21.txt Go away and come back

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_20.txt — 157

usr_20.txt — 158

usr_21.txt For Vim version 9.1. Last change: 2019 Apr 25

VIM USER MANUAL - by Bram Moolenaar

Go away and come back

This chapter goes into mixing the use of other programs with Vim. Either by
executing program from inside Vim or by leaving Vim and coming back later.
Furthermore, this is about the ways to remember the state of Vim and restore
it later.

21.1 Suspend and resume
21.2 Executing shell commands
21.3 Remembering information; viminfo
21.4 Sessions
21.5 Views
21.6 Modelines

Next chapter: usr_22.txt Finding the file to edit
Previous chapter: usr_20.txt Typing command-line commands quickly

Table of contents: usr_toc.txt

==
21.1 Suspend and resume

Like most Unix programs Vim can be suspended by pressing CTRL-Z. This stops
Vim and takes you back to the shell it was started in. You can then do any
other commands until you are bored with them. Then bring back Vim with the
"fg" command.

CTRL-Z
{any sequence of shell commands}
fg

You are right back where you left Vim, nothing has changed.
In case pressing CTRL-Z doesn't work, you can also use ":suspend".

Don't forget to bring Vim back to the foreground, you would lose any changes
that you made!

Only Unix has support for this. On other systems Vim will start a shell for
you. This also has the functionality of being able to execute shell commands.
But it's a new shell, not the one that you started Vim from.

When you are running the GUI you can't go back to the shell where Vim was
started. CTRL-Z will minimize the Vim window instead.

==
21.2 Executing shell commands

To execute a single shell command from Vim use ":!{command}". For example, to
see a directory listing:

:!ls
:!dir

The first one is for Unix, the second one for MS-Windows.
Vim will execute the program. When it ends you will get a prompt to hit

<Enter>. This allows you to have a look at the output from the command before
returning to the text you were editing.

The "!" is also used in other places where a program is run. Let's take

usr_21.txt — 159

a look at an overview:

:!{program} execute {program}
:r !{program} execute {program} and read its output
:w !{program} execute {program} and send text to its input
:[range]!{program} filter text through {program}

Notice that the presence of a range before "!{program}" makes a big
difference. Without it executes the program normally, with the range a number
of text lines is filtered through the program.

Executing a whole row of programs this way is possible. But a shell is much
better at it. You can start a new shell this way:

:shell

This is similar to using CTRL-Z to suspend Vim. The difference is that a new
shell is started.

When using the GUI the shell will be using the Vim window for its input and
output. Since Vim is not a terminal emulator, this will not work perfectly.
If you have trouble, try toggling the 'guipty' option. If this still doesn't
work well enough, start a new terminal to run the shell in. For example with:

:!xterm&

==
21.3 Remembering information; viminfo

After editing for a while you will have text in registers, marks in various
files, a command line history filled with carefully crafted commands. When
you exit Vim all of this is lost. But you can get it back!

The viminfo file is designed to store status information:

Command-line and Search pattern history
Text in registers
Marks for various files
The buffer list
Global variables

Each time you exit Vim it will store this information in a file, the viminfo
file. When Vim starts again, the viminfo file is read and the information
restored.

The 'viminfo' option is set by default to restore a limited number of items.
You might want to set it to remember more information. This is done through
the following command:

:set viminfo=string

The string specifies what to save. The syntax of this string is an option
character followed by an argument. The option/argument pairs are separated by
commas.

Take a look at how you can build up your own viminfo string. First, the '
option is used to specify how many files for which you save marks (a-z). Pick
a nice even number for this option (1000, for instance). Your command now
looks like this:

:set viminfo='1000

usr_21.txt — 160

The f option controls whether global marks (A-Z and 0-9) are stored. If this
option is 0, none are stored. If it is 1 or you do not specify an f option,
the marks are stored. You want this feature, so now you have this:

:set viminfo='1000,f1

The < option controls how many lines are saved for each of the registers. By
default, all the lines are saved. If 0, nothing is saved. To avoid adding
thousands of lines to your viminfo file (which might never get used and makes
starting Vim slower) you use a maximum of 500 lines:

:set viminfo='1000,f1,<500

Other options you might want to use:
: number of lines to save from the command line history
@ number of lines to save from the input line history
/ number of lines to save from the search history
r removable media, for which no marks will be stored (can be

used several times)
! global variables that start with an uppercase letter and

don't contain lowercase letters
h disable 'hlsearch' highlighting when starting
% the buffer list (only restored when starting Vim without file

arguments)
c convert the text using 'encoding'
n name used for the viminfo file (must be the last option)

See the 'viminfo' option and viminfo-file for more information.

When you run Vim multiple times, the last one exiting will store its
information. This may cause information that previously exiting Vims stored
to be lost. Each item can be remembered only once.

GETTING BACK TO WHERE YOU STOPPED VIM

You are halfway editing a file and it's time to leave for holidays. You exit
Vim and go enjoy yourselves, forgetting all about your work. After a couple
of weeks you start Vim, and type:

'0

And you are right back where you left Vim. So you can get on with your work.
Vim creates a mark each time you exit Vim. The last one is '0. The

position that '0 pointed to is made '1. And '1 is made to '2, and so forth.
Mark '9 is lost.

The :marks command is useful to find out where '0 to '9 will take you.

GETTING BACK TO SOME FILE

If you want to go back to a file that you edited recently, but not when
exiting Vim, there is a slightly more complicated way. You can see a list of
files by typing the command:

:oldfiles
1: ~/.viminfo
2: ~/text/resume.txt
3: /tmp/draft

usr_21.txt — 161

Now you would like to edit the second file, which is in the list preceded by
"2:". You type:

:e #<2

Instead of ":e" you can use any command that has a file name argument, the
"#<2" item works in the same place as "%" (current file name) and "#"
(alternate file name). So you can also split the window to edit the third
file:

:split #<3

That #<123 thing is a bit complicated when you just want to edit a file.
Fortunately there is a simpler way:

:browse oldfiles
1: ~/.viminfo
2: ~/text/resume.txt
3: /tmp/draft
-- More --

You get the same list of files as with :oldfiles . If you want to edit
"resume.txt" first press "q" to stop the listing. You will get a prompt:

Type number and <Enter> (empty cancels):

Type "2" and press <Enter> to edit the second file.

More info at :oldfiles , v:oldfiles and c_#< .

MOVE INFO FROM ONE VIM TO ANOTHER

You can use the ":wviminfo" and ":rviminfo" commands to save and restore the
information while still running Vim. This is useful for exchanging register
contents between two instances of Vim, for example. In the first Vim do:

:wviminfo! ~/tmp/viminfo

And in the second Vim do:

:rviminfo! ~/tmp/viminfo

Obviously, the "w" stands for "write" and the "r" for "read".
The ! character is used by ":wviminfo" to forcefully overwrite an existing

file. When it is omitted, and the file exists, the information is merged into
the file.

The ! character used for ":rviminfo" means that all the information is
used, this may overwrite existing information. Without the ! only information
that wasn't set is used.

These commands can also be used to store info and use it again later. You
could make a directory full of viminfo files, each containing info for a
different purpose.

==
21.4 Sessions

Suppose you are editing along, and it is the end of the day. You want to quit
work and pick up where you left off the next day. You can do this by saving

usr_21.txt — 162

your editing session and restoring it the next day.
A Vim session contains all the information about what you are editing.

This includes things such as the file list, window layout, global variables,
options and other information. (Exactly what is remembered is controlled by
the 'sessionoptions' option, described below.)

The following command creates a session file:

:mksession vimbook.vim

Later if you want to restore this session, you can use this command:

:source vimbook.vim

If you want to start Vim and restore a specific session, you can use the
following command:

vim -S vimbook.vim

This tells Vim to read a specific file on startup. The 'S' stands for
session (actually, you can source any Vim script with -S, thus it might as
well stand for "source").

The windows that were open are restored, with the same position and size as
before. Mappings and option values are like before.

What exactly is restored depends on the 'sessionoptions' option. The
default value is:
"blank,buffers,curdir,folds,help,options,tabpages,winsize,terminal".

blank keep empty windows
buffers all buffers, not only the ones in a window
curdir the current directory
folds folds, also manually created ones
help the help window
options all options and mappings
tabpages all tab pages
winsize window sizes
terminal include terminal windows

Change this to your liking. To also restore the size of the Vim window, for
example, use:

:set sessionoptions+=resize

SESSION HERE, SESSION THERE

The obvious way to use sessions is when working on different projects.
Suppose you store your session files in the directory "~/.vim". You are
currently working on the "secret" project and have to switch to the "boring"
project:

:wall
:mksession! ~/.vim/secret.vim
:source ~/.vim/boring.vim

This first uses ":wall" to write all modified files. Then the current session
is saved, using ":mksession!". This overwrites the previous session. The
next time you load the secret session you can continue where you were at this
point. And finally you load the new "boring" session.

usr_21.txt — 163

If you open help windows, split and close various windows, and generally mess
up the window layout, you can go back to the last saved session:

:source ~/.vim/boring.vim

Thus you have complete control over whether you want to continue next time
where you are now, by saving the current setup in a session, or keep the
session file as a starting point.

Another way of using sessions is to create a window layout that you like to
use, and save this in a session. Then you can go back to this layout whenever
you want.

For example, this is a nice layout to use:

+--+
| VIM - main help file |
| |
|Move around: Use the cursor keys, or "h|
help.txt================================

explorer	
dir	~
dir	~
file	~
file	~
file	~
file	~
~/========= [No File]===================|

| |
+--+

This has a help window at the top, so that you can read this text. The narrow
vertical window on the left contains a file explorer. This is a Vim plugin
that lists the contents of a directory. You can select files to edit there.
More about this in the next chapter.

Create this from a just started Vim with:

:help
CTRL-W w
:vertical split ~/

You can resize the windows a bit to your liking. Then save the session with:

:mksession ~/.vim/mine.vim

Now you can start Vim with this layout:

vim -S ~/.vim/mine.vim

Hint: To open a file you see listed in the explorer window in the empty
window, move the cursor to the filename and press "O". Double clicking with
the mouse will also do this.

UNIX AND MS-WINDOWS

Some people have to do work on MS-Windows systems one day and on Unix another
day. If you are one of them, consider adding "slash" and "unix" to
'sessionoptions'. The session files will then be written in a format that can
be used on both systems. This is the command to put in your vimrc file:

:set sessionoptions+=unix,slash

usr_21.txt — 164

Vim will use the Unix format then, because the MS-Windows Vim can read and
write Unix files, but Unix Vim can't read MS-Windows format session files.
Similarly, MS-Windows Vim understands file names with / to separate names, but
Unix Vim doesn't understand \.

SESSIONS AND VIMINFO

Sessions store many things, but not the position of marks, contents of
registers and the command line history. You need to use the viminfo feature
for these things.

In most situations you will want to use sessions separately from viminfo.
This can be used to switch to another session, but keep the command line
history. And yank text into registers in one session, and paste it back in
another session.

You might prefer to keep the info with the session. You will have to do
this yourself then. Example:

:mksession! ~/.vim/secret.vim
:wviminfo! ~/.vim/secret.viminfo

And to restore this again:

:source ~/.vim/secret.vim
:rviminfo! ~/.vim/secret.viminfo

==
21.5 Views

A session stores the looks of the whole of Vim. When you want to store the
properties for one window only, use a view.

The use of a view is for when you want to edit a file in a specific way.
For example, you have line numbers enabled with the 'number' option and
defined a few folds. Just like with sessions, you can remember this view on
the file and restore it later. Actually, when you store a session, it stores
the view of each window.

There are two basic ways to use views. The first is to let Vim pick a name
for the view file. You can restore the view when you later edit the same
file. To store the view for the current window:

:mkview

Vim will decide where to store the view. When you later edit the same file
you get the view back with this command:

:loadview

That's easy, isn't it?
Now you want to view the file without the 'number' option on, or with all

folds open, you can set the options to make the window look that way. Then
store this view with:

:mkview 1

Obviously, you can get this back with:

:loadview 1

Now you can switch between the two views on the file by using ":loadview" with

usr_21.txt — 165

and without the "1" argument.
You can store up to ten views for the same file this way, one unnumbered

and nine numbered 1 to 9.

A VIEW WITH A NAME

The second basic way to use views is by storing the view in a file with a name
you choose. This view can be loaded while editing another file. Vim will
then switch to editing the file specified in the view. Thus you can use this
to quickly switch to editing another file, with all its options set as you
saved them.

For example, to save the view of the current file:

:mkview ~/.vim/main.vim

You can restore it with:

:source ~/.vim/main.vim

==
21.6 Modelines

When editing a specific file, you might set options specifically for that
file. Typing these commands each time is boring. Using a session or view for
editing a file doesn't work when sharing the file between several people.

The solution for this situation is adding a modeline to the file. This is
a line of text that tells Vim the values of options, to be used in this file
only.

A typical example is a C program where you make indents by a multiple of 4
spaces. This requires setting the 'shiftwidth' option to 4. This modeline
will do that:

/* vim:set shiftwidth=4: */

Put this line as one of the first or last five lines in the file. When
editing the file, you will notice that 'shiftwidth' will have been set to
four. When editing another file, it's set back to the default value of eight.

For some files the modeline fits well in the header, thus it can be put at
the top of the file. For text files and other files where the modeline gets
in the way of the normal contents, put it at the end of the file.

The 'modelines' option specifies how many lines at the start and end of the
file are inspected for containing a modeline. To inspect ten lines:

:set modelines=10

The 'modeline' option can be used to switch this off. Do this when you are
working as root on Unix or Administrator on MS-Windows, or when you don't
trust the files you are editing:

:set nomodeline

Use this format for the modeline:

any-text vim:set {option}={value} ... : any-text

The "any-text" indicates that you can put any text before and after the part
that Vim will use. This allows making it look like a comment, like what was
done above with /* and */.

usr_21.txt — 166

The " vim:" part is what makes Vim recognize this line. There must be
white space before "vim", or "vim" must be at the start of the line. Thus
using something like "gvim:" will not work.

The part between the colons is a ":set" command. It works the same way as
typing the ":set" command, except that you need to insert a backslash before a
colon (otherwise it would be seen as the end of the modeline).

Another example:

// vim:set textwidth=72 dir=c\:\tmp: use c:\tmp here

There is an extra backslash before the first colon, so that it's included in
the ":set" command. The text after the second colon is ignored, thus a remark
can be placed there.

For more details see modeline .

==

Next chapter: usr_22.txt Finding the file to edit

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_21.txt — 167

usr_21.txt — 168

usr_22.txt For Vim version 9.1. Last change: 2020 Mar 28

VIM USER MANUAL - by Bram Moolenaar

Finding the file to edit

Files can be found everywhere. So how do you find them? Vim offers various
ways to browse the directory tree. There are commands to jump to a file that
is mentioned in another. And Vim remembers which files have been edited
before.

22.1 The file browser
22.2 The current directory
22.3 Finding a file
22.4 The buffer list

Next chapter: usr_23.txt Editing other files
Previous chapter: usr_21.txt Go away and come back

Table of contents: usr_toc.txt

==
22.1 The file browser

Vim has a plugin that makes it possible to edit a directory. Try this:

:edit .

Through the magic of autocommands and Vim scripts, the window will be filled
with the contents of the directory. It looks like this:

" ==
" Netrw Directory Listing (netrw v109)
" Sorted by name
" Sort sequence: [\/]$,\.h$,\.c$,\.cpp$,*,\.info$,\.swp$,\.o$\.obj$,\.bak$
" Quick Help: <F1>:help -:go up dir D:delete R:rename s:sort-by x:exec
" ==
../
./
check/
Makefile
autocmd.txt
change.txt
eval.txt~
filetype.txt~
help.txt.info

You can see these items:

1. The name of the browsing tool and its version number
2. The name of the browsing directory
3. The method of sorting (may be by name, time, or size)
4. How names are to be sorted (directories first, then *.h files,

*.c files, etc)
5. How to get help (use the <F1> key), and an abbreviated listing

of available commands
6. A listing of files, including "../", which allows one to list

the parent directory.

If you have syntax highlighting enabled, the different parts are highlighted

usr_22.txt — 169

so as to make it easier to spot them.

You can use Normal mode Vim commands to move around in the text. For example,
move the cursor atop a file and press <Enter>; you will then be editing that
file. To go back to the browser use ":edit ." again, or use ":Explore".
CTRL-O also works.

Try using <Enter> while the cursor is atop a directory name. The result is
that the file browser moves into that directory and displays the items found
there. Pressing <Enter> on the first directory "../" moves you one level
higher. Pressing "-" does the same thing, without the need to move to the
"../" item first.

You can press <F1> to get help on the things you can do in the netrw file
browser. This is what you get:

9. Directory Browsing netrw-browse netrw-dir netrw-list netrw-help

MAPS netrw-maps
<F1>.............Help.......................................|netrw-help|
<cr>.............Browsing...................................|netrw-cr|
............Deleting Files or Directories..............|netrw-delete|
-................Going Up...................................|netrw--|
a................Hiding Files or Directories................|netrw-a|
mb...............Bookmarking a Directory....................|netrw-mb|
gb...............Changing to a Bookmarked Directory.........|netrw-gb|
cd...............Make Browsing Directory The Current Dir....|netrw-c|
d................Make A New Directory.......................|netrw-d|
D................Deleting Files or Directories..............|netrw-D|
<c-h>............Edit File/Directory Hiding List............|netrw-ctrl-h|
i................Change Listing Style.......................|netrw-i|
<c-l>............Refreshing the Listing.....................|netrw-ctrl-l|
o................Browsing with a Horizontal Split...........|netrw-o|
p................Use Preview Window.........................|netrw-p|
P................Edit in Previous Window....................|netrw-p|
q................Listing Bookmarks and History..............|netrw-qb|
r................Reversing Sorting Order....................|netrw-r|

(etc)

The <F1> key thus brings you to a netrw directory browsing contents help page.
It's a regular help page; use the usual CTRL-] to jump to tagged help items
and CTRL-O to jump back.

To select files for display and editing: (with the cursor is atop a filename)

<enter> Open the file in the current window. netrw-cr
o Horizontally split window and display file netrw-o
v Vertically split window and display file netrw-v
p Use the preview-window netrw-p
P Edit in the previous window netrw-P
t Open file in a new tab netrw-t

The following normal-mode commands may be used to control the browser display:

i Controls listing style (thin, long, wide, and tree).
The long listing includes size and date information.

s Repeatedly pressing s will change the way the files
are sorted; one may sort on name, modification time,
or size.

r Reverse the sorting order.

usr_22.txt — 170

As a sampling of extra normal-mode commands:

cd Change Vim's notion of the current directory to be
the same as the browser directory. (see
g:netrw_keepdir to control this, too)

R Rename the file or directory under the cursor; a
prompt will be issued for the new name.

D Delete the file or directory under the cursor; a
confirmation request will be issued.

mb gb Make bookmark/goto bookmark

One may also use command mode; again, just a sampling:

:Explore [directory] Browse specified/current directory
:NetrwSettings A comprehensive list of your current netrw

settings with help linkage.

The netrw browser is not limited to just your local machine; one may use
urls such as: (that trailing / is important)

:Explore ftp://somehost/path/to/dir/
:e scp://somehost/path/to/dir/

See netrw-browse for more.

==
22.2 The current directory

Just like the shell, Vim has the concept of a current directory. Suppose you
are in your home directory and want to edit several files in a directory
"VeryLongFileName". You could do:

:edit VeryLongFileName/file1.txt
:edit VeryLongFileName/file2.txt
:edit VeryLongFileName/file3.txt

To avoid much of the typing, do this:

:cd VeryLongFileName
:edit file1.txt
:edit file2.txt
:edit file3.txt

The ":cd" command changes the current directory. You can see what the current
directory is with the ":pwd" command:

:pwd
/home/Bram/VeryLongFileName

Vim remembers the last directory that you used. Use "cd -" to go back to it.
Example:

:pwd
/home/Bram/VeryLongFileName
:cd /etc
:pwd
/etc
:cd -

usr_22.txt — 171

ftp://somehost/path/to/dir/

:pwd
/home/Bram/VeryLongFileName
:cd -
:pwd
/etc

WINDOW LOCAL DIRECTORY

When you split a window, both windows use the same current directory. When
you want to edit a number of files somewhere else in the new window, you can
make it use a different directory, without changing the current directory in
the other window. This is called a local directory.

:pwd
/home/Bram/VeryLongFileName
:split
:lcd /etc
:pwd
/etc
CTRL-W w
:pwd
/home/Bram/VeryLongFileName

So long as no `:lcd` command has been used, all windows share the same current
directory. Doing a `:cd` command in one window will also change the current
directory of the other window.

For a window where `:lcd` has been used a different current directory is
remembered. Using `:cd` or `:lcd` in other windows will not change it.

When using a `:cd` command in a window that uses a different current
directory, it will go back to using the shared directory.

TAB LOCAL DIRECTORY

When you open a new tab page, it uses the directory of the window in the
previous tab page from which the new tab page was opened. You can change the
directory of the current tab page using the `:tcd` command. All the windows in
a tab page share this directory except for windows with a window-local
directory. Any new windows opened in this tab page will use this directory as
the current working directory. Using a `:cd` command in a tab page will not
change the working directory of tab pages which have a tab local directory.
When the global working directory is changed using the `:cd` command in a tab
page, it will also change the current tab page working directory.

==
22.3 Finding a file

You are editing a C program that contains this line:

#include "inits.h"

You want to see what is in that "inits.h" file. Move the cursor on the name
of the file and type:

gf

Vim will find the file and edit it.
What if the file is not in the current directory? Vim will use the 'path'

usr_22.txt — 172

option to find the file. This option is a list of directory names where to
look for your file.

Suppose you have your include files located in "c:/prog/include". This
command will add it to the 'path' option:

:set path+=c:/prog/include

This directory is an absolute path. No matter where you are, it will be the
same place. What if you have located files in a subdirectory, below where the
file is? Then you can specify a relative path name. This starts with a dot:

:set path+=./proto

This tells Vim to look in the directory "proto", below the directory where the
file in which you use "gf" is. Thus using "gf" on "inits.h" will make Vim
look for "proto/inits.h", starting in the directory of the file.

Without the "./", thus "proto", Vim would look in the "proto" directory
below the current directory. And the current directory might not be where the
file that you are editing is located.

The 'path' option allows specifying the directories where to search for files
in many more ways. See the help on the 'path' option.

The 'isfname' option is used to decide which characters are included in the
file name, and which ones are not (e.g., the " character in the example
above).

When you know the file name, but it's not to be found in the file, you can
type it:

:find inits.h

Vim will then use the 'path' option to try and locate the file. This is the
same as the ":edit" command, except for the use of 'path'.

To open the found file in a new window use CTRL-W f instead of "gf", or use
":sfind" instead of ":find".

A nice way to directly start Vim to edit a file somewhere in the 'path':

vim "+find stdio.h"

This finds the file "stdio.h" in your value of 'path'. The quotes are
necessary to have one argument -+c .

==
22.4 The buffer list

The Vim editor uses the term buffer to describe a file being edited.
Actually, a buffer is a copy of the file that you edit. When you finish
changing the buffer, you write the contents of the buffer to the file.
Buffers not only contain file contents, but also all the marks, settings, and
other stuff that goes with it.

HIDDEN BUFFERS

Suppose you are editing the file one.txt and need to edit the file two.txt.
You could simply use ":edit two.txt", but since you made changes to one.txt
that won't work. You also don't want to write one.txt yet. Vim has a

usr_22.txt — 173

solution for you:

:hide edit two.txt

The buffer "one.txt" disappears from the screen, but Vim still knows that you
are editing this buffer, so it keeps the modified text. This is called a
hidden buffer: The buffer contains text, but you can't see it.

The argument of ":hide" is another command. ":hide" makes that command
behave as if the 'hidden' option was set. You could also set this option
yourself. The effect is that when any buffer is abandoned, it becomes hidden.

Be careful! When you have hidden buffers with changes, don't exit Vim
without making sure you have saved all the buffers.

INACTIVE BUFFERS

When a buffer has been used once, Vim remembers some information about it.
When it is not displayed in a window and it is not hidden, it is still in the
buffer list. This is called an inactive buffer. Overview:

Active Appears in a window, text loaded.
Hidden Not in a window, text loaded.
Inactive Not in a window, no text loaded.

The inactive buffers are remembered, because Vim keeps information about them,
like marks. And remembering the file name is useful too, so that you can see
which files you have edited. And edit them again.

LISTING BUFFERS

View the buffer list with this command:

:buffers

A command which does the same, is not so obvious to list buffers, but is much
shorter to type:

:ls

The output could look like this:

1 #h "help.txt" line 62
2 %a + "usr_21.txt" line 1
3 "usr_toc.txt" line 1

The first column contains the buffer number. You can use this to edit the
buffer without having to type the name, see below.

After the buffer number come the flags. Then the name of the file
and the line number where the cursor was the last time.

The flags that can appear are these (from left to right):

u Buffer is unlisted unlisted-buffer .
% Current buffer.
Alternate buffer.
a Buffer is loaded and displayed.
h Buffer is loaded but hidden.
= Buffer is read-only.
- Buffer is not modifiable, the 'modifiable' option is off.
+ Buffer has been modified.

usr_22.txt — 174

EDITING A BUFFER

You can edit a buffer by its number. That avoids having to type the file
name:

:buffer 2

But the only way to know the number is by looking in the buffer list. You can
use the name, or part of it, instead:

:buffer help

Vim will find the best match for the name you type. If there is only one
buffer that matches the name, it will be used. In this case "help.txt".

To open a buffer in a new window:

:sbuffer 3

This works with a name as well.

USING THE BUFFER LIST

You can move around in the buffer list with these commands:

:bnext go to next buffer
:bprevious go to previous buffer
:bfirst go to the first buffer
:blast go to the last buffer

To remove a buffer from the list, use this command:

:bdelete 3

Again, this also works with a name.
If you delete a buffer that was active (visible in a window), that window

will be closed. If you delete the current buffer, the current window will be
closed. If it was the last window, Vim will find another buffer to edit. You
can't be editing nothing!

Note:
Even after removing the buffer with ":bdelete" Vim still remembers it.
It's actually made "unlisted", it no longer appears in the list from
":buffers". The ":buffers!" command will list unlisted buffers (yes,
Vim can do the impossible). To really make Vim forget about a buffer,
use ":bwipe". Also see the 'buflisted' option.

==

Next chapter: usr_23.txt Editing other files

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_22.txt — 175

usr_22.txt — 176

usr_23.txt For Vim version 9.1. Last change: 2020 Dec 19

VIM USER MANUAL - by Bram Moolenaar

Editing other files

This chapter is about editing files that are not ordinary files. With Vim you
can edit files that are compressed or encrypted. Some files need to be
accessed over the internet. With some restrictions, binary files can be
edited as well.

23.1 DOS, Mac and Unix files
23.2 Files on the internet
23.3 Encryption
23.4 Binary files
23.5 Compressed files

Next chapter: usr_24.txt Inserting quickly
Previous chapter: usr_22.txt Finding the file to edit

Table of contents: usr_toc.txt

==
23.1 DOS, Mac and Unix files

Back in the early days, the old Teletype machines used two characters to
start a new line. One to move the carriage back to the first position
(carriage return, <CR>), another to move the paper up (line feed, <LF>).

When computers came out, storage was expensive. Some people decided that
they did not need two characters for end-of-line. The UNIX people decided
they could use <New Line> or <NL> only for end-of-line. The Apple people
standardized on <CR>. The Microsoft Windows folks decided to keep the old
<CR><NL> (we use <NL> for line feed in the help text).

This means that if you try to move a file from one system to another, you
have line-break problems. The Vim editor automatically recognizes the
different file formats and handles things properly behind your back.

The option 'fileformats' contains the various formats that will be tried
when a new file is edited. The following command, for example, tells Vim to
try UNIX format first and MS-DOS format second:

:set fileformats=unix,dos

You will notice the format in the message you get when editing a file. You
don't see anything if you edit a native file format. Thus editing a Unix file
on Unix won't result in a remark. But when you edit a dos file, Vim will
notify you of this:

"/tmp/test" [dos] 3L, 71C

For a Mac file you would see "[mac]".
The detected file format is stored in the 'fileformat' option. To see

which format you have, execute the following command:

:set fileformat?

The three names that Vim uses are:

unix <NL>
dos <CR><NL>
mac <CR>

usr_23.txt — 177

USING THE MAC FORMAT

On Unix, <NL> is used to break a line. It's not unusual to have a <CR>
character halfway a line. Incidentally, this happens quite often in Vi (and
Vim) scripts.

On the Macintosh, where <CR> is the line break character, it's possible to
have a <NL> character halfway a line.

The result is that it's not possible to be 100% sure whether a file
containing both <CR> and <NL> characters is a Mac or a Unix file. Therefore,
Vim assumes that on Unix you probably won't edit a Mac file, and doesn't check
for this type of file. To check for this format anyway, add "mac" to
'fileformats':

:set fileformats+=mac

Then Vim will take a guess at the file format. Watch out for situations where
Vim guesses wrong.

OVERRULING THE FORMAT

If you use the good old Vi and try to edit an MS-DOS format file, you will
find that each line ends with a ^M character. (^M is <CR>). The automatic
detection avoids this. Suppose you do want to edit the file that way? Then
you need to overrule the format:

:edit ++ff=unix file.txt

The "++" string is an item that tells Vim that an option name follows, which
overrules the default for this single command. "++ff" is used for
'fileformat'. You could also use "++ff=mac" or "++ff=dos".

This doesn't work for any option, only "++ff" and "++enc" are currently
implemented. The full names "++fileformat" and "++encoding" also work.

CONVERSION

You can use the 'fileformat' option to convert from one file format to
another. Suppose, for example, that you have an MS-DOS file named README.TXT
that you want to convert to UNIX format. Start by editing the MS-DOS format
file:

vim README.TXT

Vim will recognize this as a dos format file. Now change the file format to
UNIX:

:set fileformat=unix
:write

The file is written in Unix format.

==
23.2 Files on the internet

Someone sends you an e-mail message, which refers to a file by its URL. For
example:

You can find the information here:

usr_23.txt — 178

ftp://ftp.vim.org/pub/vim/README

You could start a program to download the file, save it on your local disk and
then start Vim to edit it.

There is a much simpler way. Move the cursor to any character of the URL.
Then use this command:

gf

With a bit of luck, Vim will figure out which program to use for downloading
the file, download it and edit the copy. To open the file in a new window use
CTRL-W f.

If something goes wrong you will get an error message. It's possible that
the URL is wrong, you don't have permission to read it, the network connection
is down, etc. Unfortunately, it's hard to tell the cause of the error. You
might want to try the manual way of downloading the file.

Accessing files over the internet works with the netrw plugin. Currently URLs
with these formats are recognized:

ftp:// uses ftp
rcp:// uses rcp
scp:// uses scp
http:// uses wget (reading only)

Vim doesn't do the communication itself, it relies on the mentioned programs
to be available on your computer. On most Unix systems "ftp" and "rcp" will
be present. "scp" and "wget" might need to be installed.

Vim detects these URLs for each command that starts editing a new file, also
with ":edit" and ":split", for example. Write commands also work, except for
http://.

For more information, also about passwords, see netrw .

==
23.3 Encryption

Some information you prefer to keep to yourself. For example, when writing
a test on a computer that students also use. You don't want clever students
to figure out a way to read the questions before the exam starts. Vim can
encrypt the file for you, which gives you some protection.

To start editing a new file with encryption, use the "-x" argument to start
Vim. Example:

vim -x exam.txt

Vim prompts you for a key used for encrypting and decrypting the file:

Enter encryption key:

Carefully type the secret key now. You cannot see the characters you type,
they will be replaced by stars. To avoid the situation that a typing mistake
will cause trouble, Vim asks you to enter the key again:

Enter same key again:

You can now edit this file normally and put in all your secrets. When you
finish editing the file and tell Vim to exit, the file is encrypted and
written.

usr_23.txt — 179

When you edit the file with Vim, it will ask you to enter the same key
again. You don't need to use the "-x" argument. You can also use the normal
":edit" command. Vim adds a magic string to the file by which it recognizes
that the file was encrypted.

If you try to view this file using another program, all you get is garbage.
Also, if you edit the file with Vim and enter the wrong key, you get garbage.
Vim does not have a mechanism to check if the key is the right one (this makes
it much harder to break the key).

SWITCHING ENCRYPTION ON AND OFF

To disable the encryption of a file, set the 'key' option to an empty string:

:set key=

The next time you write the file this will be done without encryption.
Setting the 'key' option to enable encryption is not a good idea, because

the password appears in the clear. Anyone shoulder-surfing can read your
password.

To avoid this problem, the ":X" command was created. It asks you for an
encryption key, just like the "-x" argument did:

:X
Enter encryption key: ******
Enter same key again: ******

LIMITS ON ENCRYPTION

The encryption algorithm used by Vim is not very strong. It is good enough to
keep out the casual prowler, but not good enough to keep out a cryptology
expert with lots of time on his hands. The text in the swap file and the undo
file is also encrypted. However, this is done block-by-block and may reduce
the time needed to crack a password. You can disable the swap file, but then
a crash will cause you to lose your work, since Vim keeps all the text in
memory only. The undo file can be disabled with the only disadvantage that
you can't undo after unloading the buffer.

To avoid using a swap file, supply the -n argument on the command line.
For example, to edit the encrypted file "file.txt" without a swap file use the
following command:

vim -x -n file.txt

When already editing a file, the swapfile can be disabled with:

:setlocal noswapfile

Since there is no swapfile, recovery will be impossible. Save the file a bit
more often to avoid the risk of losing your changes.

While the file is in memory, it is in plain text. Anyone with privilege can
look in the editor's memory and discover the contents of the file.

If you use a viminfo file, be aware that the contents of text registers are
written out in the clear as well.

If you really want to secure the contents of a file, edit it only on a
portable computer not connected to a network, use good encryption tools, and
keep the computer locked up in a big safe when not in use.

==

usr_23.txt — 180

23.4 Binary files

You can edit binary files with Vim. Vim wasn't really made for this, thus
there are a few restrictions. But you can read a file, change a character and
write it back, with the result that only that one character was changed and
the file is identical otherwise.

To make sure that Vim does not use its clever tricks in the wrong way, add
the "-b" argument when starting Vim:

vim -b datafile

This sets the 'binary' option. The effect of this is that unexpected side
effects are turned off. For example, 'textwidth' is set to zero, to avoid
automatic formatting of lines. And files are always read in Unix file format.

Binary mode can be used to change a message in a program. Be careful not to
insert or delete any characters, it would stop the program from working. Use
"R" to enter replace mode.

Many characters in the file will be unprintable. To see them in Hex format:

:set display=uhex

Otherwise, the "ga" command can be used to see the value of the character
under the cursor. The output, when the cursor is on an <Esc>, looks like
this:

<^[> 27, Hex 1b, Octal 033

There might not be many line breaks in the file. To get some overview switch
the 'wrap' option off:

:set nowrap

BYTE POSITION

To see on which byte you are in the file use this command:

g CTRL-G

The output is verbose:

Col 9-16 of 9-16; Line 277 of 330; Word 1806 of 2058; Byte 10580 of 12206

The last two numbers are the byte position in the file and the total number of
bytes. This takes into account how 'fileformat' changes the number of bytes
that a line break uses.

To move to a specific byte in the file, use the "go" command. For
example, to move to byte 2345:

2345go

USING XXD

A real binary editor shows the text in two ways: as it is and in hex format.
You can do this in Vim by first converting the file with the "xxd" program.
This comes with Vim.

First edit the file in binary mode:

usr_23.txt — 181

vim -b datafile

Now convert the file to a hex dump with xxd:

:%!xxd

The text will look like this:

0000000: 1f8b 0808 39d7 173b 0203 7474 002b 4e499..;..tt.+NI
0000010: 4b2c 8660 eb9c ecac c462 eb94 345e 2e30 K,.`.....b..4^.0
0000020: 373b 2731 0b22 0ca6 c1a2 d669 1035 39d9 7;'1.".....i.59.

You can now view and edit the text as you like. Vim treats the information as
ordinary text. Changing the hex does not cause the printable character to be
changed, or the other way around.

Finally convert it back with:

:%!xxd -r

Only changes in the hex part are used. Changes in the printable text part on
the right are ignored.

See the manual page of xxd for more information.

==
23.5 Compressed files

This is easy: You can edit a compressed file just like any other file. The
"gzip" plugin takes care of decompressing the file when you edit it. And
compressing it again when you write it.

These compression methods are currently supported:

.Z compress

.gz gzip

.bz2 bzip2

Vim uses the mentioned programs to do the actual compression and
decompression. You might need to install the programs first.

==

Next chapter: usr_24.txt Inserting quickly

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_23.txt — 182

usr_24.txt For Vim version 9.1. Last change: 2018 Mar 18

VIM USER MANUAL - by Bram Moolenaar

Inserting quickly

When entering text, Vim offers various ways to reduce the number of keystrokes
and avoid typing mistakes. Use Insert mode completion to repeat previously
typed words. Abbreviate long words to short ones. Type characters that
aren't on your keyboard.

24.1 Making corrections
24.2 Showing matches
24.3 Completion
24.4 Repeating an insert
24.5 Copying from another line
24.6 Inserting a register
24.7 Abbreviations
24.8 Entering special characters
24.9 Digraphs
24.10 Normal mode commands

Next chapter: usr_25.txt Editing formatted text
Previous chapter: usr_23.txt Editing other files

Table of contents: usr_toc.txt

==
24.1 Making corrections

The <BS> key was already mentioned. It deletes the character just before the
cursor. The key does the same for the character under (after) the
cursor.

When you typed a whole word wrong, use CTRL-W:

The horse had fallen to the sky
CTRL-W

The horse had fallen to the

If you really messed up a line and want to start over, use CTRL-U to delete
it. This keeps the text after the cursor and the indent. Only the text from
the first non-blank to the cursor is deleted. With the cursor on the "f" of
"fallen" in the next line pressing CTRL-U does this:

The horse had fallen to the
CTRL-U

fallen to the

When you spot a mistake a few words back, you need to move the cursor there to
correct it. For example, you typed this:

The horse had follen to the ground

You need to change "follen" to "fallen". With the cursor at the end, you
would type this to correct it:

<Esc>4blraA

get out of Insert mode <Esc>
four words back 4b

usr_24.txt — 183

move on top of the "o" l
replace with "a" ra
restart Insert mode A

Another way to do this:

<C-Left><C-Left><C-Left><C-Left><Right>a<End>

four words back <C-Left><C-Left><C-Left><C-Left>
move on top of the "o" <Right>
delete the "o"
insert an "a" a
go to end of the line <End>

This uses special keys to move around, while remaining in Insert mode. This
resembles what you would do in a modeless editor. It's easier to remember,
but takes more time (you have to move your hand from the letters to the cursor
keys, and the <End> key is hard to press without looking at the keyboard).

These special keys are most useful when writing a mapping that doesn't
leave Insert mode. The extra typing doesn't matter then.

An overview of the keys you can use in Insert mode:

<C-Home> to start of the file
<PageUp> a whole screenful up
<Home> to start of line
<S-Left> one word left
<C-Left> one word left
<S-Right> one word right
<C-Right> one word right
<End> to end of the line
<PageDown> a whole screenful down
<C-End> to end of the file

There are a few more, see ins-special-special .

==
24.2 Showing matches

When you type a) it would be nice to see with which (it matches. To make
Vim do that use this command:

:set showmatch

When you now type a text like "(example)", as soon as you type the) Vim will
briefly move the cursor to the matching (, keep it there for half a second,
and move back to where you were typing.

In case there is no matching (, Vim will beep. Then you know that you
might have forgotten the (somewhere, or typed a) too many.

The match will also be shown for [] and {} pairs. You don't have to wait
with typing the next character, as soon as Vim sees it the cursor will move
back and inserting continues as before.

You can change the time Vim waits with the 'matchtime' option. For
example, to make Vim wait one and a half second:

:set matchtime=15

The time is specified in tenths of a second.

==
24.3 Completion

usr_24.txt — 184

Vim can automatically complete words on insertion. You type the first part of
a word, press CTRL-P, and Vim guesses the rest.

Suppose, for example, that you are creating a C program and want to type in
the following:

total = ch_array[0] + ch_array[1] + ch_array[2];

You start by entering the following:

total = ch_array[0] + ch_

At this point, you tell Vim to complete the word using the command CTRL-P.
Vim searches for a word that starts with what's in front of the cursor. In
this case, it is "ch_", which matches with the word ch_array. So typing
CTRL-P gives you the following:

total = ch_array[0] + ch_array

After a little more typing, you get this (ending in a space):

total = ch_array[0] + ch_array[1] +

If you now type CTRL-P Vim will search again for a word that completes the
word before the cursor. Since there is nothing in front of the cursor, it
finds the first word backwards, which is "ch_array". Typing CTRL-P again
gives you the next word that matches, in this case "total". A third CTRL-P
searches further back. If there is nothing else, it causes the editor to run
out of words, so it returns to the original text, which is nothing. A fourth
CTRL-P causes the editor to start over again with "ch_array".

To search forward, use CTRL-N. Since the search wraps around the end of the
file, CTRL-N and CTRL-P will find the same matches, but in a different
sequence. Hint: CTRL-N is Next-match and CTRL-P is Previous-match.

The Vim editor goes through a lot of effort to find words to complete. By
default, it searches the following places:

1. Current file
2. Files in other windows
3. Other loaded files (hidden buffers)
4. Files which are not loaded (inactive buffers)
5. Tag files
6. All files #included by the current file

OPTIONS

You can customize the search order with the 'complete' option.

The 'ignorecase' option is used. When it is set, case differences are ignored
when searching for matches.

A special option for completion is 'infercase'. This is useful to find
matches while ignoring case ('ignorecase' must be set) but still using the
case of the word typed so far. Thus if you type "For" and Vim finds a match
"fortunately", it will result in "Fortunately".

COMPLETING SPECIFIC ITEMS

usr_24.txt — 185

If you know what you are looking for, you can use these commands to complete
with a certain type of item:

CTRL-X CTRL-F file names
CTRL-X CTRL-L whole lines
CTRL-X CTRL-D macro definitions (also in included files)
CTRL-X CTRL-I current and included files
CTRL-X CTRL-K words from a dictionary
CTRL-X CTRL-T words from a thesaurus
CTRL-X CTRL-] tags
CTRL-X CTRL-V Vim command line

After each of them CTRL-N can be used to find the next match, CTRL-P to find
the previous match.

More information for each of these commands here: ins-completion .

COMPLETING FILE NAMES

Let's take CTRL-X CTRL-F as an example. This will find file names. It scans
the current directory for files and displays each one that matches the word in
front of the cursor.

Suppose, for example, that you have the following files in the current
directory:

main.c sub_count.c sub_done.c sub_exit.c

Now enter Insert mode and start typing:

The exit code is in the file sub

At this point, you enter the command CTRL-X CTRL-F. Vim now completes the
current word "sub" by looking at the files in the current directory. The
first match is sub_count.c. This is not the one you want, so you match the
next file by typing CTRL-N. This match is sub_done.c. Typing CTRL-N again
takes you to sub_exit.c. The results:

The exit code is in the file sub_exit.c

If the file name starts with / (Unix) or C:\ (MS-Windows) you can find all
files in the file system. For example, type "/u" and CTRL-X CTRL-F. This
will match "/usr" (this is on Unix):

the file is found in /usr/

If you now press CTRL-N you go back to "/u". Instead, to accept the "/usr/"
and go one directory level deeper, use CTRL-X CTRL-F again:

the file is found in /usr/X11R6/

The results depend on what is found in your file system, of course. The
matches are sorted alphabetically.

COMPLETING IN SOURCE CODE

Source code files are well structured. That makes it possible to do
completion in an intelligent way. In Vim this is called Omni completion. In
some other editors it's called intellisense, but that is a trademark.

usr_24.txt — 186

The key to Omni completion is CTRL-X CTRL-O. Obviously the O stands for Omni
here, so that you can remember it easier. Let's use an example for editing C
source:

{
struct foo *p;
p->

The cursor is after "p->". Now type CTRL-X CTRL-O. Vim will offer you a list
of alternatives, which are the items that "struct foo" contains. That is
quite different from using CTRL-P, which would complete any word, while only
members of "struct foo" are valid here.

For Omni completion to work you may need to do some setup. At least make sure
filetype plugins are enabled. Your vimrc file should contain a line like
this:

filetype plugin on
Or:

filetype plugin indent on

For C code you need to create a tags file and set the 'tags' option. That is
explained ft-c-omni . For other filetypes you may need to do something
similar, look below compl-omni-filetypes . It only works for specific
filetypes. Check the value of the 'omnifunc' option to find out if it would
work.

==
24.4 Repeating an insert

If you press CTRL-A, the editor inserts the text you typed the last time you
were in Insert mode.

Assume, for example, that you have a file that begins with the following:

"file.h"
/* Main program begins */

You edit this file by inserting "#include " at the beginning of the first
line:

#include "file.h"
/* Main program begins */

You go down to the beginning of the next line using the commands "j^". You
now start to insert a new "#include" line. So you type:

i CTRL-A

The result is as follows:

#include "file.h"
#include /* Main program begins */

The "#include " was inserted because CTRL-A inserts the text of the previous
insert. Now you type "main.h"<Enter> to finish the line:

#include "file.h"
#include "main.h"
/* Main program begins */

usr_24.txt — 187

The CTRL-@ command does a CTRL-A and then exits Insert mode. That's a quick
way of doing exactly the same insertion again.

==
24.5 Copying from another line

The CTRL-Y command inserts the character above the cursor. This is useful
when you are duplicating a previous line. For example, you have this line of
C code:

b_array[i]->s_next = a_array[i]->s_next;

Now you need to type the same line, but with "s_prev" instead of "s_next".
Start the new line, and press CTRL-Y 14 times, until you are at the "n" of
"next":

b_array[i]->s_next = a_array[i]->s_next;
b_array[i]->s_

Now you type "prev":

b_array[i]->s_next = a_array[i]->s_next;
b_array[i]->s_prev

Continue pressing CTRL-Y until the following "next":

b_array[i]->s_next = a_array[i]->s_next;
b_array[i]->s_prev = a_array[i]->s_

Now type "prev;" to finish it off.

The CTRL-E command acts like CTRL-Y except it inserts the character below the
cursor.

==
24.6 Inserting a register

The command CTRL-R {register} inserts the contents of the register. This is
useful to avoid having to type a long word. For example, you need to type
this:

r = VeryLongFunction(a) + VeryLongFunction(b) + VeryLongFunction(c)

The function name is defined in a different file. Edit that file and move the
cursor on top of the function name there, and yank it into register v:

"vyiw

"v is the register specification, "yiw" is yank-inner-word. Now edit the file
where the new line is to be inserted, and type the first letters:

r =

Now use CTRL-R v to insert the function name:

r = VeryLongFunction

You continue to type the characters in between the function name, and use
CTRL-R v two times more.

usr_24.txt — 188

You could have done the same with completion. Using a register is useful
when there are many words that start with the same characters.

If the register contains characters such as <BS> or other special characters,
they are interpreted as if they had been typed from the keyboard. If you do
not want this to happen (you really want the <BS> to be inserted in the text),
use the command CTRL-R CTRL-R {register}.

==
24.7 Abbreviations

An abbreviation is a short word that takes the place of a long one. For
example, "ad" stands for "advertisement". Vim enables you to type an
abbreviation and then will automatically expand it for you.

To tell Vim to expand "ad" into "advertisement" every time you insert it,
use the following command:

:iabbrev ad advertisement

Now, when you type "ad", the whole word "advertisement" will be inserted into
the text. This is triggered by typing a character that can't be part of a
word, for example a space:

What Is Entered What You See
I saw the a I saw the a
I saw the ad I saw the ad
I saw the ad<Space> I saw the advertisement<Space>

The expansion doesn't happen when typing just "ad". That allows you to type a
word like "add", which will not get expanded. Only whole words are checked
for abbreviations.

ABBREVIATING SEVERAL WORDS

It is possible to define an abbreviation that results in multiple words. For
example, to define "JB" as "Jack Benny", use the following command:

:iabbrev JB Jack Benny

As a programmer, I use two rather unusual abbreviations:

:iabbrev #b /**
:iabbrev #e <Space>**/

These are used for creating boxed comments. The comment starts with #b, which
draws the top line. I then type the comment text and use #e to draw the
bottom line.

Notice that the #e abbreviation begins with a space. In other words, the
first two characters are space-star. Usually Vim ignores spaces between the
abbreviation and the expansion. To avoid that problem, I spell space as seven
characters: <, S, p, a, c, e, >.

Note:
":iabbrev" is a long word to type. ":iab" works just as well.
That's abbreviating the abbreviate command!

FIXING TYPING MISTAKES

usr_24.txt — 189

It's very common to make the same typing mistake every time. For example,
typing "teh" instead of "the". You can fix this with an abbreviation:

:abbreviate teh the

You can add a whole list of these. Add one each time you discover a common
mistake.

LISTING ABBREVIATIONS

The ":abbreviate" command lists the abbreviations:

:abbreviate
i #e **/
i #b /**
i JB Jack Benny
i ad advertisement
! teh the

The "i" in the first column indicates Insert mode. These abbreviations are
only active in Insert mode. Other possible characters are:

c Command-line mode :cabbrev
! both Insert and Command-line mode :abbreviate

Since abbreviations are not often useful in Command-line mode, you will mostly
use the ":iabbrev" command. That avoids, for example, that "ad" gets expanded
when typing a command like:

:edit ad

DELETING ABBREVIATIONS

To get rid of an abbreviation, use the ":unabbreviate" command. Suppose you
have the following abbreviation:

:abbreviate @f fresh

You can remove it with this command:

:unabbreviate @f

While you type this, you will notice that @f is expanded to "fresh". Don't
worry about this, Vim understands it anyway (except when you have an
abbreviation for "fresh", but that's very unlikely).

To remove all the abbreviations:

:abclear

":unabbreviate" and ":abclear" also come in the variants for Insert mode
(":iunabbreviate and ":iabclear") and Command-line mode (":cunabbreviate" and
":cabclear").

REMAPPING ABBREVIATIONS

There is one thing to watch out for when defining an abbreviation: The
resulting string should not be mapped. For example:

usr_24.txt — 190

:abbreviate @a adder
:imap dd disk-door

When you now type @a, you will get "adisk-doorer". That's not what you want.
To avoid this, use the ":noreabbrev" command. It does the same as
":abbreviate", but avoids that the resulting string is used for mappings:

:noreabbrev @a adder

Fortunately, it's unlikely that the result of an abbreviation is mapped.

==
24.8 Entering special characters

The CTRL-V command is used to insert the next character literally. In other
words, any special meaning the character has, it will be ignored. For
example:

CTRL-V <Esc>

Inserts an escape character. Thus you don't leave Insert mode. (Don't type
the space after CTRL-V, it's only to make this easier to read).

Note:
On MS-Windows CTRL-V is used to paste text. Use CTRL-Q instead of
CTRL-V. On Unix, on the other hand, CTRL-Q does not work on some
terminals, because it has a special meaning.

You can also use the command CTRL-V {digits} to insert a character with the
decimal number {digits}. For example, the character number 127 is the
character (but not necessarily the key!). To insert type:

CTRL-V 127

You can enter characters up to 255 this way. When you type fewer than two
digits, a non-digit will terminate the command. To avoid the need of typing a
non-digit, prepend one or two zeros to make three digits.

All the next commands insert a <Tab> and then a dot:

CTRL-V 9.
CTRL-V 09.
CTRL-V 009.

To enter a character in hexadecimal, use an "x" after the CTRL-V:

CTRL-V x7f

This also goes up to character 255 (CTRL-V xff). You can use "o" to type a
character as an octal number and two more methods allow you to type up to
a 16 bit and a 32 bit number (e.g., for a Unicode character):

CTRL-V o123
CTRL-V u1234
CTRL-V U12345678

==
24.9 Digraphs

Some characters are not on the keyboard. For example, the copyright character

usr_24.txt — 191

(©). To type these characters in Vim, you use digraphs, where two characters
represent one. To enter a ©, for example, you press three keys:

CTRL-K Co

To find out what digraphs are available, use the following command:

:digraphs

Vim will display the digraph table. Here are three lines of it:

AC ~_ 159 NS | 160 !I ¡ 161 Ct ¢ 162 Pd £ 163 Cu ¤ 164 Ye ¥ 165
BB ¦ 166 SE § 167 ': ¨ 168 Co © 169 -a ª 170 << « 171 NO ¬ 172
-- 173 Rg ® 174 'm ¯ 175 DG ° 176 +- ± 177 2S ² 178 3S ³ 179

This shows, for example, that the digraph you get by typing CTRL-K Pd is the
character (£). This is character number 163 (decimal).

Pd is short for Pound. Most digraphs are selected to give you a hint about
the character they will produce. If you look through the list you will
understand the logic.

You can exchange the first and second character, if there is no digraph for
that combination. Thus CTRL-K dP also works. Since there is no digraph for
"dP" Vim will also search for a "Pd" digraph.

Note:
The digraphs depend on the character set that Vim assumes you are
using. Always use ":digraphs" to find out which digraphs are currently
available.

You can define your own digraphs. Example:

:digraph a" ä

This defines that CTRL-K a" inserts an ä character. You can also specify the
character with a decimal number. This defines the same digraph:

:digraph a" 228

More information about digraphs here: digraphs
Another way to insert special characters is with a keymap. More about that

here: 45.5

==
24.10 Normal mode commands

Insert mode offers a limited number of commands. In Normal mode you have many
more. When you want to use one, you usually leave Insert mode with <Esc>,
execute the Normal mode command, and re-enter Insert mode with "i" or "a".

There is a quicker way. With CTRL-O {command} you can execute any Normal
mode command from Insert mode. For example, to delete from the cursor to the
end of the line:

CTRL-O D

You can execute only one Normal mode command this way. But you can specify a
register or a count. A more complicated example:

CTRL-O "g3dw

This deletes up to the third word into register g.

usr_24.txt — 192

==

Next chapter: usr_25.txt Editing formatted text

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_24.txt — 193

usr_24.txt — 194

usr_25.txt For Vim version 9.1. Last change: 2016 Mar 28

VIM USER MANUAL - by Bram Moolenaar

Editing formatted text

Text hardly ever comes in one sentence per line. This chapter is about
breaking sentences to make them fit on a page and other formatting.
Vim also has useful features for editing single-line paragraphs and tables.

25.1 Breaking lines
25.2 Aligning text
25.3 Indents and tabs
25.4 Dealing with long lines
25.5 Editing tables

Next chapter: usr_26.txt Repeating
Previous chapter: usr_24.txt Inserting quickly

Table of contents: usr_toc.txt

==
25.1 Breaking lines

Vim has a number of functions that make dealing with text easier. By default,
the editor does not perform automatic line breaks. In other words, you have
to press <Enter> yourself. This is useful when you are writing programs where
you want to decide where the line ends. It is not so good when you are
creating documentation and want the text to be at most 70 character wide.

If you set the 'textwidth' option, Vim automatically inserts line breaks.
Suppose, for example, that you want a very narrow column of only 30
characters. You need to execute the following command:

:set textwidth=30

Now you start typing (ruler added):

1 2 3
12345678901234567890123456789012345
I taught programming for a whi

If you type "l" next, this makes the line longer than the 30-character limit.
When Vim sees this, it inserts a line break and you get the following:

1 2 3
12345678901234567890123456789012345
I taught programming for a
whil

Continuing on, you can type in the rest of the paragraph:

1 2 3
12345678901234567890123456789012345
I taught programming for a
while. One time, I was stopped
by the Fort Worth police,
because my homework was too
hard. True story.

You do not have to type newlines; Vim puts them in automatically.

usr_25.txt — 195

Note:
The 'wrap' option makes Vim display lines with a line break, but this
doesn't insert a line break in the file.

REFORMATTING

The Vim editor is not a word processor. In a word processor, if you delete
something at the beginning of the paragraph, the line breaks are reworked. In
Vim they are not; so if you delete the word "programming" from the first line,
all you get is a short line:

1 2 3
12345678901234567890123456789012345
I taught for a
while. One time, I was stopped
by the Fort Worth police,
because my homework was too
hard. True story.

This does not look good. To get the paragraph into shape you use the "gq"
operator.

Let's first use this with a Visual selection. Starting from the first
line, type:

v4jgq

"v" to start Visual mode, "4j" to move to the end of the paragraph and then
the "gq" operator. The result is:

1 2 3
12345678901234567890123456789012345
I taught for a while. One
time, I was stopped by the
Fort Worth police, because my
homework was too hard. True
story.

Note: there is a way to do automatic formatting for specific types of text
layouts, see auto-format .

Since "gq" is an operator, you can use one of the three ways to select the
text it works on: With Visual mode, with a movement and with a text object.

The example above could also be done with "gq4j". That's less typing, but
you have to know the line count. A more useful motion command is "}". This
moves to the end of a paragraph. Thus "gq}" formats from the cursor to the
end of the current paragraph.

A very useful text object to use with "gq" is the paragraph. Try this:

gqap

"ap" stands for "a-paragraph". This formats the text of one paragraph
(separated by empty lines). Also the part before the cursor.

If you have your paragraphs separated by empty lines, you can format the
whole file by typing this:

gggqG

"gg" to move to the first line, "gqG" to format until the last line.

usr_25.txt — 196

Warning: If your paragraphs are not properly separated, they will be joined
together. A common mistake is to have a line with a space or tab. That's a
blank line, but not an empty line.

Vim is able to format more than just plain text. See fo-table for how to
change this. See the 'joinspaces' option to change the number of spaces used
after a full stop.

It is possible to use an external program for formatting. This is useful
if your text can't be properly formatted with Vim's builtin command. See the
'formatprg' option.

==
25.2 Aligning text

To center a range of lines, use the following command:

:{range}center [width]

{range} is the usual command-line range. [width] is an optional line width to
use for centering. If [width] is not specified, it defaults to the value of
'textwidth'. (If 'textwidth' is 0, the default is 80.)

For example:

:1,5center 40

results in the following:

I taught for a while. One
time, I was stopped by the

Fort Worth police, because my
homework was too hard. True

story.

RIGHT ALIGNMENT

Similarly, the ":right" command right-justifies the text:

:1,5right 37

gives this result:

I taught for a while. One
time, I was stopped by the

Fort Worth police, because my
homework was too hard. True

story.

LEFT ALIGNMENT

Finally there is this command:

:{range}left [margin]

Unlike ":center" and ":right", however, the argument to ":left" is not the
length of the line. Instead it is the left margin. If it is omitted, the
text will be put against the left side of the screen (using a zero margin
would do the same). If it is 5, the text will be indented 5 spaces. For
example, use these commands:

usr_25.txt — 197

:1left 5
:2,5left

This results in the following:

I taught for a while. One
time, I was stopped by the
Fort Worth police, because my
homework was too hard. True
story.

JUSTIFYING TEXT

Vim has no built-in way of justifying text. However, there is a neat macro
package that does the job. To use this package, execute the following
command:

:packadd justify

Or put this line in your vimrc :

packadd! justify

This Vim script file defines a new visual command "_j". To justify a block of
text, highlight the text in Visual mode and then execute "_j".

Look in the file for more explanations. To go there, do "gf" on this name:
$VIMRUNTIME/pack/dist/opt/justify/plugin/justify.vim.

An alternative is to filter the text through an external program. Example:

:%!fmt

==
25.3 Indents and tabs

Indents can be used to make text stand out from the rest. The example texts
in this manual, for example, are indented by eight spaces or a tab. You would
normally enter this by typing a tab at the start of each line. Take this
text:

the first line
the second line

This is entered by typing a tab, some text, <Enter>, tab and more text.
The 'autoindent' option inserts indents automatically:

:set autoindent

When a new line is started it gets the same indent as the previous line. In
the above example, the tab after the <Enter> is not needed anymore.

INCREASING INDENT

To increase the amount of indent in a line, use the ">" operator. Often this
is used as ">>", which adds indent to the current line.

The amount of indent added is specified with the 'shiftwidth' option. The
default value is 8. To make ">>" insert four spaces worth of indent, for
example, type this:

usr_25.txt — 198

:set shiftwidth=4

When used on the second line of the example text, this is what you get:

the first line
the second line

"4>>" will increase the indent of four lines.

TABSTOP

If you want to make indents a multiple of 4, you set 'shiftwidth' to 4. But
when pressing a <Tab> you still get 8 spaces worth of indent. To change this,
set the 'softtabstop' option:

:set softtabstop=4

This will make the <Tab> key insert 4 spaces worth of indent. If there are
already four spaces, a <Tab> character is used (saving seven characters in the
file). (If you always want spaces and no tab characters, set the 'expandtab'
option.)

Note:
You could set the 'tabstop' option to 4. However, if you edit the
file another time, with 'tabstop' set to the default value of 8, it
will look wrong. In other programs and when printing the indent will
also be wrong. Therefore it is recommended to keep 'tabstop' at eight
all the time. That's the standard value everywhere.

CHANGING TABS

You edit a file which was written with a tabstop of 3. In Vim it looks ugly,
because it uses the normal tabstop value of 8. You can fix this by setting
'tabstop' to 3. But you have to do this every time you edit this file.

Vim can change the use of tabstops in your file. First, set 'tabstop' to
make the indents look good, then use the ":retab" command:

:set tabstop=3
:retab 8

The ":retab" command will change 'tabstop' to 8, while changing the text such
that it looks the same. It changes spans of white space into tabs and spaces
for this. You can now write the file. Next time you edit it the indents will
be right without setting an option.

Warning: When using ":retab" on a program, it may change white space inside
a string constant. Therefore it's a good habit to use "\t" instead of a
real tab.

==
25.4 Dealing with long lines

Sometimes you will be editing a file that is wider than the number of columns
in the window. When that occurs, Vim wraps the lines so that everything fits
on the screen.

If you switch the 'wrap' option off, each line in the file shows up as one
line on the screen. Then the ends of the long lines disappear off the screen
to the right.

When you move the cursor to a character that can't be seen, Vim will scroll

usr_25.txt — 199

the text to show it. This is like moving a viewport over the text in the
horizontal direction.

By default, Vim does not display a horizontal scrollbar in the GUI. If you
want to enable one, use the following command:

:set guioptions+=b

One horizontal scrollbar will appear at the bottom of the Vim window.

If you don't have a scrollbar or don't want to use it, use these commands to
scroll the text. The cursor will stay in the same place, but it's moved back
into the visible text if necessary.

zh scroll right
4zh scroll four characters right
zH scroll half a window width right
ze scroll right to put the cursor at the end
zl scroll left
4zl scroll four characters left
zL scroll half a window width left
zs scroll left to put the cursor at the start

Let's attempt to show this with one line of text. The cursor is on the "w" of
"which". The "current window" above the line indicates the text that is
currently visible. The "window"s below the text indicate the text that is
visible after the command left of it.

|<-- current window -->|
some long text, part of which is visible in the window

ze |<-- window -->|
zH |<-- window -->|
4zh |<-- window -->|
zh |<-- window -->|
zl |<-- window -->|
4zl |<-- window -->|
zL |<-- window -->|
zs |<-- window -->|

MOVING WITH WRAP OFF

When 'wrap' is off and the text has scrolled horizontally, you can use the
following commands to move the cursor to a character you can see. Thus text
left and right of the window is ignored. These never cause the text to
scroll:

g0 to first visible character in this line
g^ to first non-blank visible character in this line
gm to middle of screen line
gM to middle of the text in this line
g$ to last visible character in this line

|<-- window -->|
some long text, part of which is visible in one line

g0 g^ gm gM g$

BREAKING AT WORDS edit-no-break

When preparing text for use by another program, you might have to make

usr_25.txt — 200

paragraphs without a line break. A disadvantage of using 'nowrap' is that you
can't see the whole sentence you are working on. When 'wrap' is on, words are
broken halfway, which makes them hard to read.

A good solution for editing this kind of paragraph is setting the
'linebreak' option. Vim then breaks lines at an appropriate place when
displaying the line. The text in the file remains unchanged.

Without 'linebreak' text might look like this:

+---------------------------------+
|letter generation program for a b|
|ank. They wanted to send out a s|
|pecial, personalized letter to th|
|eir richest 1000 customers. Unfo|
|rtunately for the programmer, he |
+---------------------------------+

After:

:set linebreak

it looks like this:

+---------------------------------+
|letter generation program for a |
|bank. They wanted to send out a |
|special, personalized letter to |
|their richest 1000 customers. |
|Unfortunately for the programmer,|
+---------------------------------+

Related options:
'breakat' specifies the characters where a break can be inserted.
'showbreak' specifies a string to show at the start of broken line.
Set 'textwidth' to zero to avoid a paragraph to be split.

MOVING BY VISIBLE LINES

The "j" and "k" commands move to the next and previous lines. When used on
a long line, this means moving a lot of screen lines at once.

To move only one screen line, use the "gj" and "gk" commands. When a line
doesn't wrap they do the same as "j" and "k". When the line does wrap, they
move to a character displayed one line below or above.

You might like to use these mappings, which bind these movement commands to
the cursor keys:

:map <Up> gk
:map <Down> gj

TURNING A PARAGRAPH INTO ONE LINE edit-paragraph-join

If you want to import text into a program like MS-Word, each paragraph should
be a single line. If your paragraphs are currently separated with empty
lines, this is how you turn each paragraph into a single line:

:g/./,/^$/join

That looks complicated. Let's break it up in pieces:

:g/./ A ":global" command that finds all lines that contain

usr_25.txt — 201

at least one character.
,/^$/ A range, starting from the current line (the non-empty

line) until an empty line.
join The ":join" command joins the range of lines together

into one line.

Starting with this text, containing eight lines broken at column 30:

+----------------------------------+
|A letter generation program |
|for a bank. They wanted to |
|send out a special, |
|personalized letter. |
| |
|To their richest 1000 |
|customers. Unfortunately for |
|the programmer, |
+----------------------------------+

You end up with two lines:

+----------------------------------+
|A letter generation program for a |
|bank. They wanted to send out a s|
|pecial, personalized letter. |
|To their richest 1000 customers. |
|Unfortunately for the programmer, |
+----------------------------------+

Note that this doesn't work when the separating line is blank but not empty;
when it contains spaces and/or tabs. This command does work with blank lines:

:g/\S/,/^\s*$/join

This still requires a blank or empty line at the end of the file for the last
paragraph to be joined.

==
25.5 Editing tables

Suppose you are editing a table with four columns:

nice table test 1 test 2 test 3
input A 0.534
input B 0.913

You need to enter numbers in the third column. You could move to the second
line, use "A", enter a lot of spaces and type the text.

For this kind of editing there is a special option:

set virtualedit=all

Now you can move the cursor to positions where there isn't any text. This is
called "virtual space". Editing a table is a lot easier this way.

Move the cursor by searching for the header of the last column:

/test 3

Now press "j" and you are right where you can enter the value for "input A".
Typing "0.693" results in:

usr_25.txt — 202

nice table test 1 test 2 test 3
input A 0.534 0.693
input B 0.913

Vim has automatically filled the gap in front of the new text for you. Now,
to enter the next field in this column use "Bj". "B" moves back to the start
of a white space separated word. Then "j" moves to the place where the next
field can be entered.

Note:
You can move the cursor anywhere in the display, also beyond the end
of a line. But Vim will not insert spaces there, until you insert a
character in that position.

COPYING A COLUMN

You want to add a column, which should be a copy of the third column and
placed before the "test 1" column. Do this in seven steps:
1. Move the cursor to the left upper corner of this column, e.g., with

"/test 3".
2. Press CTRL-V to start blockwise Visual mode.
3. Move the cursor down two lines with "2j". You are now in "virtual space":

the "input B" line of the "test 3" column.
4. Move the cursor right, to include the whole column in the selection, plus

the space that you want between the columns. "9l" should do it.
5. Yank the selected rectangle with "y".
6. Move the cursor to "test 1", where the new column must be placed.
7. Press "P".

The result should be:

nice table test 3 test 1 test 2 test 3
input A 0.693 0.534 0.693
input B 0.913

Notice that the whole "test 1" column was shifted right, also the line where
the "test 3" column didn't have text.

Go back to non-virtual cursor movements with:

:set virtualedit=

VIRTUAL REPLACE MODE

The disadvantage of using 'virtualedit' is that it "feels" different. You
can't recognize tabs or spaces beyond the end of line when moving the cursor
around. Another method can be used: Virtual Replace mode.

Suppose you have a line in a table that contains both tabs and other
characters. Use "rx" on the first tab:

inp 0.693 0.534 0.693

|
rx |

V

inpx0.693 0.534 0.693

usr_25.txt — 203

The layout is messed up. To avoid that, use the "gr" command:

inp 0.693 0.534 0.693

|
grx |

V

inpx 0.693 0.534 0.693

What happens is that the "gr" command makes sure the new character takes the
right amount of screen space. Extra spaces or tabs are inserted to fill the
gap. Thus what actually happens is that a tab is replaced by "x" and then
blanks added to make the text after it keep its place. In this case a
tab is inserted.

When you need to replace more than one character, you use the "R" command
to go to Replace mode (see 04.9). This messes up the layout and replaces
the wrong characters:

inp 0 0.534 0.693

|
R0.786 |

V

inp 0.78634 0.693

The "gR" command uses Virtual Replace mode. This preserves the layout:

inp 0 0.534 0.693

|
gR0.786 |

V

inp 0.786 0.534 0.693

==

Next chapter: usr_26.txt Repeating

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_25.txt — 204

usr_26.txt For Vim version 9.1. Last change: 2006 Apr 24

VIM USER MANUAL - by Bram Moolenaar

Repeating

An editing task is hardly ever unstructured. A change often needs to be made
several times. In this chapter a number of useful ways to repeat a change
will be explained.

26.1 Repeating with Visual mode
26.2 Add and subtract
26.3 Making a change in many files
26.4 Using Vim from a shell script

Next chapter: usr_27.txt Search commands and patterns
Previous chapter: usr_25.txt Editing formatted text

Table of contents: usr_toc.txt

==
26.1 Repeating with Visual mode

Visual mode is very handy for making a change in any sequence of lines. You
can see the highlighted text, thus you can check if the correct lines are
changed. But making the selection takes some typing. The "gv" command
selects the same area again. This allows you to do another operation on the
same text.

Suppose you have some lines where you want to change "2001" to "2002" and
"2000" to "2001":

The financial results for 2001 are better
than for 2000. The income increased by 50%,
even though 2001 had more rain than 2000.

2000 2001
income 45,403 66,234

First change "2001" to "2002". Select the lines in Visual mode, and use:

:s/2001/2002/g

Now use "gv" to reselect the same text. It doesn't matter where the cursor
is. Then use ":s/2000/2001/g" to make the second change.

Obviously, you can repeat these changes several times.

==
26.2 Add and subtract

When repeating the change of one number into another, you often have a fixed
offset. In the example above, one was added to each year. Instead of typing
a substitute command for each year that appears, the CTRL-A command can be
used.

Using the same text as above, search for a year:

/19[0-9][0-9]\|20[0-9][0-9]

Now press CTRL-A. The year will be increased by one:

The financial results for 2002 are better
than for 2000. The income increased by 50%,

usr_26.txt — 205

even though 2001 had more rain than 2000.
2000 2001

income 45,403 66,234

Use "n" to find the next year, and press "." to repeat the CTRL-A ("." is a
bit quicker to type). Repeat "n" and "." for all years that appear.

Hint: set the 'hlsearch' option to see the matches you are going to change,
then you can look ahead and do it faster.

Adding more than one can be done by prepending the number to CTRL-A. Suppose
you have this list:

1. item four
2. item five
3. item six

Move the cursor to "1." and type:

3 CTRL-A

The "1." will change to "4.". Again, you can use "." to repeat this on the
other numbers.

Another example:

006 foo bar
007 foo bar

Using CTRL-A on these numbers results in:

007 foo bar
010 foo bar

7 plus one is 10? What happened here is that Vim recognized "007" as an octal
number, because there is a leading zero. This notation is often used in C
programs. If you do not want a number with leading zeros to be handled as
octal, use this:

:set nrformats-=octal

The CTRL-X command does subtraction in a similar way.

==
26.3 Making a change in many files

Suppose you have a variable called "x_cnt" and you want to change it to
"x_counter". This variable is used in several of your C files. You need to
change it in all files. This is how you do it.

Put all the relevant files in the argument list:

:args *.c

This finds all C files and edits the first one. Now you can perform a
substitution command on all these files:

:argdo %s/\<x_cnt\>/x_counter/ge | update

The ":argdo" command takes an argument that is another command. That command
will be executed on all files in the argument list.

The "%s" substitute command that follows works on all lines. It finds the

usr_26.txt — 206

word "x_cnt" with "\<x_cnt\>". The "\<" and "\>" are used to match the whole
word only, and not "px_cnt" or "x_cnt2".

The flags for the substitute command include "g" to replace all occurrences
of "x_cnt" in the same line. The "e" flag is used to avoid an error message
when "x_cnt" does not appear in the file. Otherwise ":argdo" would abort on
the first file where "x_cnt" was not found.

The "|" separates two commands. The following "update" command writes the
file only if it was changed. If no "x_cnt" was changed to "x_counter" nothing
happens.

There is also the ":windo" command, which executes its argument in all
windows. And ":bufdo" executes its argument on all buffers. Be careful with
this, because you might have more files in the buffer list than you think.
Check this with the ":buffers" command (or ":ls").

==
26.4 Using Vim from a shell script

Suppose you have a lot of files in which you need to change the string
"-person-" to "Jones" and then print it. How do you do that? One way is to
do a lot of typing. The other is to write a shell script to do the work.

The Vim editor does a superb job as a screen-oriented editor when using
Normal mode commands. For batch processing, however, Normal mode commands do
not result in clear, commented command files; so here you will use Ex mode
instead. This mode gives you a nice command-line interface that makes it easy
to put into a batch file. ("Ex command" is just another name for a
command-line (:) command.)

The Ex mode commands you need are as follows:

%s/-person-/Jones/g
write tempfile
quit

You put these commands in the file "change.vim". Now to run the editor in
batch mode, use this shell script:

for file in *.txt; do
vim -e -s $file < change.vim
lpr -r tempfile

done

The for-done loop is a shell construct to repeat the two lines in between,
while the $file variable is set to a different file name each time.

The second line runs the Vim editor in Ex mode (-e argument) on the file
$file and reads commands from the file "change.vim". The -s argument tells
Vim to operate in silent mode. In other words, do not keep outputting the
:prompt, or any other prompt for that matter.

The "lpr -r tempfile" command prints the resulting "tempfile" and deletes
it (that's what the -r argument does).

READING FROM STDIN

Vim can read text on standard input. Since the normal way is to read commands
there, you must tell Vim to read text instead. This is done by passing the
"-" argument in place of a file. Example:

ls | vim -

This allows you to edit the output of the "ls" command, without first saving

usr_26.txt — 207

the text in a file.
If you use the standard input to read text from, you can use the "-S"

argument to read a script:

producer | vim -S change.vim -

NORMAL MODE SCRIPTS

If you really want to use Normal mode commands in a script, you can use it
like this:

vim -s script file.txt ...

Note:
"-s" has a different meaning when it is used without "-e". Here it
means to source the "script" as Normal mode commands. When used with
"-e" it means to be silent, and doesn't use the next argument as a
file name.

The commands in "script" are executed like you typed them. Don't forget that
a line break is interpreted as pressing <Enter>. In Normal mode that moves
the cursor to the next line.

To create the script you can edit the script file and type the commands.
You need to imagine what the result would be, which can be a bit difficult.
Another way is to record the commands while you perform them manually. This
is how you do that:

vim -w script file.txt ...

All typed keys will be written to "script". If you make a small mistake you
can just continue and remember to edit the script later.

The "-w" argument appends to an existing script. That is good when you
want to record the script bit by bit. If you want to start from scratch and
start all over, use the "-W" argument. It overwrites any existing file.

==

Next chapter: usr_27.txt Search commands and patterns

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_26.txt — 208

usr_27.txt For Vim version 9.1. Last change: 2019 Jul 14

VIM USER MANUAL - by Bram Moolenaar

Search commands and patterns

In chapter 3 a few simple search patterns were mentioned 03.9 . Vim can do
much more complex searches. This chapter explains the most often used ones.
A detailed specification can be found here: pattern

27.1 Ignoring case
27.2 Wrapping around the file end
27.3 Offsets
27.4 Matching multiple times
27.5 Alternatives
27.6 Character ranges
27.7 Character classes
27.8 Matching a line break
27.9 Examples

Next chapter: usr_28.txt Folding
Previous chapter: usr_26.txt Repeating

Table of contents: usr_toc.txt

==
27.1 Ignoring case

By default, Vim's searches are case sensitive. Therefore, "include",
"INCLUDE", and "Include" are three different words and a search will match
only one of them.

Now switch on the 'ignorecase' option:

:set ignorecase

Search for "include" again, and now it will match "Include", "INCLUDE" and
"InClUDe". (Set the 'hlsearch' option to quickly see where a pattern
matches.)

You can switch this off again with:

:set noignorecase

But let's keep it set, and search for "INCLUDE". It will match exactly the
same text as "include" did. Now set the 'smartcase' option:

:set ignorecase smartcase

If you have a pattern with at least one uppercase character, the search
becomes case sensitive. The idea is that you didn't have to type that
uppercase character, so you must have done it because you wanted case to
match. That's smart!

With these two options set you find the following matches:

pattern matches
word word, Word, WORD, WoRd, etc.
Word Word
WORD WORD
WoRd WoRd

usr_27.txt — 209

CASE IN ONE PATTERN

If you want to ignore case for one specific pattern, you can do this by
prepending the "\c" string. Using "\C" will make the pattern to match case.
This overrules the 'ignorecase' and 'smartcase' options, when "\c" or "\C" is
used their value doesn't matter.

pattern matches
\Cword word
\CWord Word
\cword word, Word, WORD, WoRd, etc.
\cWord word, Word, WORD, WoRd, etc.

A big advantage of using "\c" and "\C" is that it sticks with the pattern.
Thus if you repeat a pattern from the search history, the same will happen, no
matter if 'ignorecase' or 'smartcase' was changed.

Note:
The use of "\" items in search patterns depends on the 'magic' option.
In this chapter we will assume 'magic' is on, because that is the
standard and recommended setting. If you would change 'magic', many
search patterns would suddenly become invalid.

Note:
If your search takes much longer than you expected, you can interrupt
it with CTRL-C on Unix and CTRL-Break on MS-Windows.

==
27.2 Wrapping around the file end

By default, a forward search starts searching for the given string at the
current cursor location. It then proceeds to the end of the file. If it has
not found the string by that time, it starts from the beginning and searches
from the start of the file to the cursor location.

Keep in mind that when repeating the "n" command to search for the next
match, you eventually get back to the first match. If you don't notice this
you keep searching forever! To give you a hint, Vim displays this message:

search hit BOTTOM, continuing at TOP

If you use the "?" command, to search in the other direction, you get this
message:

search hit TOP, continuing at BOTTOM

Still, you don't know when you are back at the first match. One way to see
this is by switching on the 'ruler' option:

:set ruler

Vim will display the cursor position in the lower righthand corner of the
window (in the status line if there is one). It looks like this:

101,29 84%

The first number is the line number of the cursor. Remember the line number
where you started, so that you can check if you passed this position again.

NOT WRAPPING

usr_27.txt — 210

To turn off search wrapping, use the following command:

:set nowrapscan

Now when the search hits the end of the file, an error message displays:

E385: search hit BOTTOM without match for: forever

Thus you can find all matches by going to the start of the file with "gg" and
keep searching until you see this message.

If you search in the other direction, using "?", you get:

E384: search hit TOP without match for: forever

==
27.3 Offsets

By default, the search command leaves the cursor positioned on the beginning
of the pattern. You can tell Vim to leave it some other place by specifying
an offset. For the forward search command "/", the offset is specified by
appending a slash (/) and the offset:

/default/2

This command searches for the pattern "default" and then moves to the
beginning of the second line past the pattern. Using this command on the
paragraph above, Vim finds the word "default" in the first line. Then the
cursor is moved two lines down and lands on "an offset".

If the offset is a simple number, the cursor will be placed at the beginning
of the line that many lines from the match. The offset number can be positive
or negative. If it is positive, the cursor moves down that many lines; if
negative, it moves up.

CHARACTER OFFSETS

The "e" offset indicates an offset from the end of the match. It moves the
cursor onto the last character of the match. The command:

/const/e

puts the cursor on the "t" of "const".
From that position, adding a number moves forward that many characters.

This command moves to the character just after the match:

/const/e+1

A positive number moves the cursor to the right, a negative number moves it to
the left. For example:

/const/e-1

moves the cursor to the "s" of "const".

If the offset begins with "b", the cursor moves to the beginning of the
pattern. That's not very useful, since leaving out the "b" does the same
thing. It does get useful when a number is added or subtracted. The cursor
then goes forward or backward that many characters. For example:

usr_27.txt — 211

/const/b+2

Moves the cursor to the beginning of the match and then two characters to the
right. Thus it lands on the "n".

REPEATING

To repeat searching for the previously used search pattern, but with a
different offset, leave out the pattern:

/that
//e

Is equal to:

/that/e

To repeat with the same offset:

/

"n" does the same thing. To repeat while removing a previously used offset:

//

SEARCHING BACKWARDS

The "?" command uses offsets in the same way, but you must use "?" to separate
the offset from the pattern, instead of "/":

?const?e-2

The "b" and "e" keep their meaning, they don't change direction with the use
of "?".

START POSITION

When starting a search, it normally starts at the cursor position. When you
specify a line offset, this can cause trouble. For example:

/const/-2

This finds the next word "const" and then moves two lines up. If you
use "n" to search again, Vim could start at the current position and find the
same "const" match. Then using the offset again, you would be back where you
started. You would be stuck!

It could be worse: Suppose there is another match with "const" in the next
line. Then repeating the forward search would find this match and move two
lines up. Thus you would actually move the cursor back!

When you specify a character offset, Vim will compensate for this. Thus the
search starts a few characters forward or backward, so that the same match
isn't found again.

==
27.4 Matching multiple times

usr_27.txt — 212

The "*" item specifies that the item before it can match any number of times.
Thus:

/a*

matches "a", "aa", "aaa", etc. But also "" (the empty string), because zero
times is included.

The "*" only applies to the item directly before it. Thus "ab*" matches
"a", "ab", "abb", "abbb", etc. To match a whole string multiple times, it
must be grouped into one item. This is done by putting "\(" before it and
"\)" after it. Thus this command:

/\(ab\)*

Matches: "ab", "abab", "ababab", etc. And also "".

To avoid matching the empty string, use "\+". This makes the previous item
match one or more times.

/ab\+

Matches "ab", "abb", "abbb", etc. It does not match "a" when no "b" follows.

To match an optional item, use "\=". Example:

/folders\=

Matches "folder" and "folders".

SPECIFIC COUNTS

To match a specific number of items use the form "\{n,m}". "n" and "m" are
numbers. The item before it will be matched "n" to "m" times inclusive .
Example:

/ab\{3,5}

matches "abbb", "abbbb" and "abbbbb".
When "n" is omitted, it defaults to zero. When "m" is omitted it defaults

to infinity. When ",m" is omitted, it matches exactly "n" times.
Examples:

pattern match count
\{,4} 0, 1, 2, 3 or 4
\{3,} 3, 4, 5, etc.
\{0,1} 0 or 1, same as \=
\{0,} 0 or more, same as *
\{1,} 1 or more, same as \+
\{3} 3

MATCHING AS LITTLE AS POSSIBLE

The items so far match as many characters as they can find. To match as few
as possible, use "\{-n,m}". It works the same as "\{n,m}", except that the
minimal amount possible is used.

For example, use:

usr_27.txt — 213

/ab\{-1,3}

Will match "ab" in "abbb". Actually, it will never match more than one b,
because there is no reason to match more. It requires something else to force
it to match more than the lower limit.

The same rules apply to removing "n" and "m". It's even possible to remove
both of the numbers, resulting in "\{-}". This matches the item before it
zero or more times, as few as possible. The item by itself always matches
zero times. It is useful when combined with something else. Example:

/a.\{-}b

This matches "axb" in "axbxb". If this pattern would be used:

/a.*b

It would try to match as many characters as possible with ".*", thus it
matches "axbxb" as a whole.

==
27.5 Alternatives

The "or" operator in a pattern is "\|". Example:

/foo\|bar

This matches "foo" or "bar". More alternatives can be concatenated:

/one\|two\|three

Matches "one", "two" and "three".
To match multiple times, the whole thing must be placed in "\(" and "\)":

/\(foo\|bar\)\+

This matches "foo", "foobar", "foofoo", "barfoobar", etc.
Another example:

/end\(if\|while\|for\)

This matches "endif", "endwhile" and "endfor".

A related item is "\&". This requires that both alternatives match in the
same place. The resulting match uses the last alternative. Example:

/forever\&...

This matches "for" in "forever". It will not match "fortuin", for example.

==
27.6 Character ranges

To match "a", "b" or "c" you could use "/a\|b\|c". When you want to match all
letters from "a" to "z" this gets very long. There is a shorter method:

/[a-z]

The [] construct matches a single character. Inside you specify which
characters to match. You can include a list of characters, like this:

usr_27.txt — 214

/[0123456789abcdef]

This will match any of the characters included. For consecutive characters
you can specify the range. "0-3" stands for "0123". "w-z" stands for "wxyz".
Thus the same command as above can be shortened to:

/[0-9a-f]

To match the "-" character itself make it the first or last one in the range.
These special characters are accepted to make it easier to use them inside a
[] range (they can actually be used anywhere in the search pattern):

\e <Esc>
\t <Tab>
\r <CR>
\b <BS>

There are a few more special cases for [] ranges, see /[] for the whole
story.

COMPLEMENTED RANGE

To avoid matching a specific character, use "^" at the start of the range.
The [] item then matches everything but the characters included. Example:

/"[^"]*"

" a double quote
[^"] any character that is not a double quote

* as many as possible
" a double quote again

This matches "foo" and "3!x", including the double quotes.

PREDEFINED RANGES

A number of ranges are used very often. Vim provides a shortcut for these.
For example:

/\a

Finds alphabetic characters. This is equal to using "/[a-zA-Z]". Here are a
few more of these:

item matches equivalent
\d digit [0-9]
\D non-digit [^0-9]
\x hex digit [0-9a-fA-F]
\X non-hex digit [^0-9a-fA-F]
\s white space [] (<Tab> and <Space>)
\S non-white characters [^] (not <Tab> and <Space>)
\l lowercase alpha [a-z]
\L non-lowercase alpha [^a-z]
\u uppercase alpha [A-Z]
\U non-uppercase alpha [^A-Z]

Note:
Using these predefined ranges works a lot faster than the character

usr_27.txt — 215

range it stands for.
These items can not be used inside []. Thus "[\d\l]" does NOT work to
match a digit or lowercase alpha. Use "\(\d\|\l\)" instead.

See /\s for the whole list of these ranges.

==
27.7 Character classes

The character range matches a fixed set of characters. A character class is
similar, but with an essential difference: The set of characters can be
redefined without changing the search pattern.

For example, search for this pattern:

/\f\+

The "\f" item stands for file name characters. Thus this matches a sequence
of characters that can be a file name.

Which characters can be part of a file name depends on the system you are
using. On MS-Windows, the backslash is included, on Unix it is not. This is
specified with the 'isfname' option. The default value for Unix is:

:set isfname
isfname=@,48-57,/,.,-,_,+,,,#,$,%,~,=

For other systems the default value is different. Thus you can make a search
pattern with "\f" to match a file name, and it will automatically adjust to
the system you are using it on.

Note:
Actually, Unix allows using just about any character in a file name,
including white space. Including these characters in 'isfname' would
be theoretically correct. But it would make it impossible to find the
end of a file name in text. Thus the default value of 'isfname' is a
compromise.

The character classes are:

item matches option
\i identifier characters 'isident'
\I like \i, excluding digits
\k keyword characters 'iskeyword'
\K like \k, excluding digits
\p printable characters 'isprint'
\P like \p, excluding digits
\f file name characters 'isfname'
\F like \f, excluding digits

==
27.8 Matching a line break

Vim can find a pattern that includes a line break. You need to specify where
the line break happens, because all items mentioned so far don't match a line
break.

To check for a line break in a specific place, use the "\n" item:

/one\ntwo

This will match at a line that ends in "one" and the next line starts with
"two". To match "one two" as well, you need to match a space or a line

usr_27.txt — 216

break. The item to use for it is "_s":

/one_stwo

To allow any amount of white space:

/one_s\+two

This also matches when "one " is at the end of a line and " two" at the
start of the next one.

"\s" matches white space, "_s" matches white space or a line break.
Similarly, "\a" matches an alphabetic character, and "_a" matches an
alphabetic character or a line break. The other character classes and ranges
can be modified in the same way by inserting a "_".

Many other items can be made to match a line break by prepending "_". For
example: "_." matches any character or a line break.

Note:
"_.*" matches everything until the end of the file. Be careful with
this, it can make a search command very slow.

Another example is "_[]", a character range that includes a line break:

/"_[^"]*"

This finds a text in double quotes that may be split up in several lines.

==
27.9 Examples

Here are a few search patterns you might find useful. This shows how the
items mentioned above can be combined.

FINDING A CALIFORNIA LICENSE PLATE

A sample license plate number is "1MGU103". It has one digit, three uppercase
letters and three digits. Directly putting this into a search pattern:

/\d\u\u\u\d\d\d

Another way is to specify that there are three digits and letters with a
count:

/\d\u\{3}\d\{3}

Using [] ranges instead:

/[0-9][A-Z]\{3}[0-9]\{3}

Which one of these you should use? Whichever one you can remember. The
simple way you can remember is much faster than the fancy way that you can't.
If you can remember them all, then avoid the last one, because it's both more
typing and slower to execute.

FINDING AN IDENTIFIER

usr_27.txt — 217

In C programs (and many other computer languages) an identifier starts with a
letter and further consists of letters and digits. Underscores can be used
too. This can be found with:

/\<\h\w*\>

"\<" and "\>" are used to find only whole words. "\h" stands for "[A-Za-z_]"
and "\w" for "[0-9A-Za-z_]".

Note:
"\<" and "\>" depend on the 'iskeyword' option. If it includes "-",
for example, then "ident-" is not matched. In this situation use:

/\w\@<!\h\w*\w\@!

This checks if "\w" does not match before or after the identifier.
See /\@<! and /\@! .

==

Next chapter: usr_28.txt Folding

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_27.txt — 218

usr_28.txt For Vim version 9.1. Last change: 2008 Jun 14

VIM USER MANUAL - by Bram Moolenaar

Folding

Structured text can be separated in sections. And sections in sub-sections.
Folding allows you to display a section as one line, providing an overview.
This chapter explains the different ways this can be done.

28.1 What is folding?
28.2 Manual folding
28.3 Working with folds
28.4 Saving and restoring folds
28.5 Folding by indent
28.6 Folding with markers
28.7 Folding by syntax
28.8 Folding by expression
28.9 Folding unchanged lines
28.10 Which fold method to use?

Next chapter: usr_29.txt Moving through programs
Previous chapter: usr_27.txt Search commands and patterns

Table of contents: usr_toc.txt

==
28.1 What is folding?

Folding is used to show a range of lines in the buffer as a single line on the
screen. Like a piece of paper which is folded to make it shorter:

+------------------------+
| line 1 |
| line 2 |
| line 3 |
|_______________________ |
\ \
________________________\
/ folded lines /

/________________________/
| line 12 |
| line 13 |
| line 14 |
+------------------------+

The text is still in the buffer, unchanged. Only the way lines are displayed
is affected by folding.

The advantage of folding is that you can get a better overview of the
structure of text, by folding lines of a section and replacing it with a line
that indicates that there is a section.

==
28.2 Manual folding

Try it out: Position the cursor in a paragraph and type:

zfap

usr_28.txt — 219

You will see that the paragraph is replaced by a highlighted line. You have
created a fold. zf is an operator and ap a text object selection. You
can use the zf operator with any movement command to create a fold for the
text that it moved over. zf also works in Visual mode.

To view the text again, open the fold by typing:

zo

And you can close the fold again with:

zc

All the folding commands start with "z". With some fantasy, this looks like a
folded piece of paper, seen from the side. The letter after the "z" has a
mnemonic meaning to make it easier to remember the commands:

zf F-old creation
zo O-pen a fold
zc C-lose a fold

Folds can be nested: A region of text that contains folds can be folded
again. For example, you can fold each paragraph in this section, and then
fold all the sections in this chapter. Try it out. You will notice that
opening the fold for the whole chapter will restore the nested folds as they
were, some may be open and some may be closed.

Suppose you have created several folds, and now want to view all the text.
You could go to each fold and type "zo". To do this faster, use this command:

zr

This will R-educe the folding. The opposite is:

zm

This folds M-ore. You can repeat "zr" and "zm" to open and close nested folds
of several levels.

If you have nested several levels deep, you can open all of them with:

zR

This R-educes folds until there are none left. And you can close all folds
with:

zM

This folds M-ore and M-ore.

You can quickly disable the folding with the zn command. Then zN brings
back the folding as it was. zi toggles between the two. This is a useful
way of working:
- create folds to get overview on your file
- move around to where you want to do your work
- do zi to look at the text and edit it
- do zi again to go back to moving around

More about manual folding in the reference manual: fold-manual

usr_28.txt — 220

==
28.3 Working with folds

When some folds are closed, movement commands like "j" and "k" move over a
fold like it was a single, empty line. This allows you to quickly move around
over folded text.

You can yank, delete and put folds as if it was a single line. This is very
useful if you want to reorder functions in a program. First make sure that
each fold contains a whole function (or a bit less) by selecting the right
'foldmethod'. Then delete the function with "dd", move the cursor and put it
with "p". If some lines of the function are above or below the fold, you can
use Visual selection:
- put the cursor on the first line to be moved
- hit "V" to start Visual mode
- put the cursor on the last line to be moved
- hit "d" to delete the selected lines.
- move the cursor to the new position and "p"ut the lines there.

It is sometimes difficult to see or remember where a fold is located, thus
where a zo command would actually work. To see the defined folds:

:set foldcolumn=4

This will show a small column on the left of the window to indicate folds.
A "+" is shown for a closed fold. A "-" is shown at the start of each open
fold and "|" at following lines of the fold.

You can use the mouse to open a fold by clicking on the "+" in the foldcolumn.
Clicking on the "-" or a "|" below it will close an open fold.

To open all folds at the cursor line use zO .
To close all folds at the cursor line use zC .
To delete a fold at the cursor line use zd .
To delete all folds at the cursor line use zD .

When in Insert mode, the fold at the cursor line is never closed. That allows
you to see what you type!

Folds are opened automatically when jumping around or moving the cursor left
or right. For example, the "0" command opens the fold under the cursor
(if 'foldopen' contains "hor", which is the default). The 'foldopen' option
can be changed to open folds for specific commands. If you want the line
under the cursor always to be open, do this:

:set foldopen=all

Warning: You won't be able to move onto a closed fold then. You might want to
use this only temporarily and then set it back to the default:

:set foldopen&

You can make folds close automatically when you move out of it:

:set foldclose=all

This will re-apply 'foldlevel' to all folds that don't contain the cursor.
You have to try it out if you like how this feels. Use zm to fold more and
zr to fold less (reduce folds).

usr_28.txt — 221

The folding is local to the window. This allows you to open two windows on
the same buffer, one with folds and one without folds. Or one with all folds
closed and one with all folds open.

==
28.4 Saving and restoring folds

When you abandon a file (starting to edit another one), the state of the folds
is lost. If you come back to the same file later, all manually opened and
closed folds are back to their default. When folds have been created
manually, all folds are gone! To save the folds use the :mkview command:

:mkview

This will store the settings and other things that influence the view on the
file. You can change what is stored with the 'viewoptions' option.
When you come back to the same file later, you can load the view again:

:loadview

You can store up to ten views on one file. For example, to save the current
setup as the third view and load the second view:

:mkview 3
:loadview 2

Note that when you insert or delete lines the views might become invalid.
Also check out the 'viewdir' option, which specifies where the views are
stored. You might want to delete old views now and then.

==
28.5 Folding by indent

Defining folds with zf is a lot of work. If your text is structured by
giving lower level items a larger indent, you can use the indent folding
method. This will create folds for every sequence of lines with the same
indent. Lines with a larger indent will become nested folds. This works well
with many programming languages.

Try this by setting the 'foldmethod' option:

:set foldmethod=indent

Then you can use the zm and zr commands to fold more and reduce folding.
It's easy to see on this example text:

This line is not indented
This line is indented once

This line is indented twice
This line is indented twice

This line is indented once
This line is not indented

This line is indented once
This line is indented once

Note that the relation between the amount of indent and the fold depth depends
on the 'shiftwidth' option. Each 'shiftwidth' worth of indent adds one to the
depth of the fold. This is called a fold level.

When you use the zr and zm commands you actually increase or decrease the

usr_28.txt — 222

'foldlevel' option. You could also set it directly:

:set foldlevel=3

This means that all folds with three times a 'shiftwidth' indent or more will
be closed. The lower the foldlevel, the more folds will be closed. When
'foldlevel' is zero, all folds are closed. zM does set 'foldlevel' to zero.
The opposite command zR sets 'foldlevel' to the deepest fold level that is
present in the file.

Thus there are two ways to open and close the folds:
(A) By setting the fold level.

This gives a very quick way of "zooming out" to view the structure of the
text, move the cursor, and "zoom in" on the text again.

(B) By using zo and zc commands to open or close specific folds.
This allows opening only those folds that you want to be open, while other
folds remain closed.

This can be combined: You can first close most folds by using zm a few times
and then open a specific fold with zo . Or open all folds with zR and
then close specific folds with zc .

But you cannot manually define folds when 'foldmethod' is "indent", as that
would conflict with the relation between the indent and the fold level.

More about folding by indent in the reference manual: fold-indent

==
28.6 Folding with markers

Markers in the text are used to specify the start and end of a fold region.
This gives precise control over which lines are included in a fold. The
disadvantage is that the text needs to be modified.

Try it:

:set foldmethod=marker

Example text, as it could appear in a C program:

/* foobar () {{{ */
int foobar()
{

/* return a value {{{ */
return 42;
/* }}} */

}
/* }}} */

Notice that the folded line will display the text before the marker. This is
very useful to tell what the fold contains.

It's quite annoying when the markers don't pair up correctly after moving some
lines around. This can be avoided by using numbered markers. Example:

/* global variables {{{1 */
int varA, varB;

/* functions {{{1 */

usr_28.txt — 223

/* funcA() {{{2 */
void funcA() {}

/* funcB() {{{2 */
void funcB() {}
/* }}}1 */

At every numbered marker a fold at the specified level begins. This will make
any fold at a higher level stop here. You can just use numbered start markers
to define all folds. Only when you want to explicitly stop a fold before
another starts you need to add an end marker.

More about folding with markers in the reference manual: fold-marker

==
28.7 Folding by syntax

For each language Vim uses a different syntax file. This defines the colors
for various items in the file. If you are reading this in Vim, in a terminal
that supports colors, the colors you see are made with the "help" syntax file.

In the syntax files it is possible to add syntax items that have the "fold"
argument. These define a fold region. This requires writing a syntax file
and adding these items in it. That's not so easy to do. But once it's done,
all folding happens automatically.

Here we'll assume you are using an existing syntax file. Then there is
nothing more to explain. You can open and close folds as explained above.
The folds will be created and deleted automatically when you edit the file.

More about folding by syntax in the reference manual: fold-syntax

==
28.8 Folding by expression

This is similar to folding by indent, but instead of using the indent of a
line a user function is called to compute the fold level of a line. You can
use this for text where something in the text indicates which lines belong
together. An example is an e-mail message where the quoted text is indicated
by a ">" before the line. To fold these quotes use this:

:set foldmethod=expr
:set foldexpr=strlen(substitute(substitute(getline(v:lnum),'\\s','',\"g\"),'[^>].*','',''))

You can try it out on this text:

> quoted text he wrote
> quoted text he wrote
> > double quoted text I wrote
> > double quoted text I wrote

Explanation for the 'foldexpr' used in the example (inside out):
getline(v:lnum) gets the current line
substitute(...,'\\s','','g') removes all white space from the line
substitute(...,'[^>].*','','') removes everything after leading '>'s
strlen(...) counts the length of the string, which

is the number of '>'s found

Note that a backslash must be inserted before every space, double quote and
backslash for the ":set" command. If this confuses you, do

:set foldexpr

usr_28.txt — 224

to check the actual resulting value. To correct a complicated expression, use
the command-line completion:

:set foldexpr=<Tab>

Where <Tab> is a real Tab. Vim will fill in the previous value, which you can
then edit.

When the expression gets more complicated you should put it in a function and
set 'foldexpr' to call that function.

More about folding by expression in the reference manual: fold-expr

==
28.9 Folding unchanged lines

This is useful when you set the 'diff' option in the same window. The
vimdiff command does this for you. Example:

:setlocal diff foldmethod=diff scrollbind nowrap foldlevel=1

Do this in every window that shows a different version of the same file. You
will clearly see the differences between the files, while the text that didn't
change is folded.

For more details see fold-diff .

==
28.10 Which fold method to use?

All these possibilities make you wonder which method you should choose.
Unfortunately, there is no golden rule. Here are some hints.

If there is a syntax file with folding for the language you are editing, that
is probably the best choice. If there isn't one, you might try to write it.
This requires a good knowledge of search patterns. It's not easy, but when
it's working you will not have to define folds manually.

Typing commands to manually fold regions can be used for unstructured text.
Then use the :mkview command to save and restore your folds.

The marker method requires you to change the file. If you are sharing the
files with other people or you have to meet company standards, you might not
be allowed to add them.

The main advantage of markers is that you can put them exactly where you
want them. That avoids that a few lines are missed when you cut and paste
folds. And you can add a comment about what is contained in the fold.

Folding by indent is something that works in many files, but not always very
well. Use it when you can't use one of the other methods. However, it is
very useful for outlining. Then you specifically use one 'shiftwidth' for
each nesting level.

Folding with expressions can make folds in almost any structured text. It is
quite simple to specify, especially if the start and end of a fold can easily
be recognized.

If you use the "expr" method to define folds, but they are not exactly how
you want them, you could switch to the "manual" method. This will not remove
the defined folds. Then you can delete or add folds manually.

usr_28.txt — 225

==

Next chapter: usr_29.txt Moving through programs

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_28.txt — 226

usr_29.txt For Vim version 9.1. Last change: 2022 Mar 13

VIM USER MANUAL - by Bram Moolenaar

Moving through programs

The creator of Vim is a computer programmer. It's no surprise that Vim
contains many features to aid in writing programs. Jump around to find where
identifiers are defined and used. Preview declarations in a separate window.
There is more in the next chapter.

29.1 Using tags
29.2 The preview window
29.3 Moving through a program
29.4 Finding global identifiers
29.5 Finding local identifiers

Next chapter: usr_30.txt Editing programs
Previous chapter: usr_28.txt Folding

Table of contents: usr_toc.txt

==
29.1 Using tags

What is a tag? It is a location where an identifier is defined. An example
is a function definition in a C or C++ program. A list of tags is kept in a
tags file. This can be used by Vim to directly jump from any place to the
tag, the place where an identifier is defined.

To generate the tags file for all C files in the current directory, use the
following command:

ctags *.c

"ctags" is a separate program. Most Unix systems already have it installed.
If you do not have it yet, you can find Universal/Exuberant ctags at:

http://ctags.io
http://ctags.sf.net

Universal ctags is preferred, Exuberant ctags is no longer being developed.

Now when you are in Vim and you want to go to a function definition, you can
jump to it by using the following command:

:tag startlist

This command will find the function "startlist" even if it is in another file.
The CTRL-] command jumps to the tag of the word that is under the cursor.

This makes it easy to explore a tangle of C code. Suppose, for example, that
you are in the function "write_block". You can see that it calls
"write_line". But what does "write_line" do? By placing the cursor on the
call to "write_line" and pressing CTRL-], you jump to the definition of this
function.

The "write_line" function calls "write_char". You need to figure out what
it does. So you position the cursor over the call to "write_char" and press
CTRL-]. Now you are at the definition of "write_char".

+-------------------------------------+
|void write_block(char **s; int cnt) |
|{ |

usr_29.txt — 227

| int i; |
| for (i = 0; i < cnt; ++i) |
| write_line(s[i]); |
|} | |
+-----------|-------------------------+

|
CTRL-] |

| +----------------------------+
+--> |void write_line(char *s) |

|{ |
| while (*s != 0) |
| write_char(*s++); |
|} | |
+--------|-------------------+

|
CTRL-] |

| +------------------------------------+
+--> |void write_char(char c) |

|{ |
| putchar((int)(unsigned char)c); |
|} |
+------------------------------------+

The ":tags" command shows the list of tags that you traversed through:

:tags
TO tag FROM line in file/text
1 1 write_line 8 write_block.c
2 1 write_char 7 write_line.c

>

Now to go back. The CTRL-T command goes to the preceding tag. In the example
above you get back to the "write_line" function, in the call to "write_char".

This command takes a count argument that indicates how many tags to jump
back. You have gone forward, and now back. Let's go forward again. The
following command goes to the tag on top of the list:

:tag

You can prefix it with a count and jump forward that many tags. For example:
":3tag". CTRL-T also can be preceded with a count.

These commands thus allow you to go down a call tree with CTRL-] and back
up again with CTRL-T. Use ":tags" to find out where you are.

SPLIT WINDOWS

The ":tag" command replaces the file in the current window with the one
containing the new function. But suppose you want to see not only the old
function but also the new one? You can split the window using the ":split"
command followed by the ":tag" command. Vim has a shorthand command that does
both:

:stag tagname

To split the current window and jump to the tag under the cursor use this
command:

CTRL-W]

If a count is specified, the new window will be that many lines high.

usr_29.txt — 228

MORE TAGS FILES

When you have files in many directories, you can create a tags file in each of
them. Vim will then only be able to jump to tags within that directory.

To find more tags files, set the 'tags' option to include all the relevant
tags files. Example:

:set tags=./tags,./../tags,./*/tags

This finds a tags file in the same directory as the current file, one
directory level higher and in all subdirectories.

This is quite a number of tags files, but it may still not be enough. For
example, when editing a file in "~/proj/src", you will not find the tags file
"~/proj/sub/tags". For this situation Vim offers to search a whole directory
tree for tags files. Example:

:set tags=~/proj/**/tags

ONE TAGS FILE

When Vim has to search many places for tags files, you can hear the disk
rattling. It may get a bit slow. In that case it's better to spend this
time while generating one big tags file. You might do this overnight.

This requires the Universal or Exuberant ctags program, mentioned above.
It offers an argument to search a whole directory tree:

cd ~/proj
ctags -R .

The nice thing about this is that Universal/Exuberant ctags recognizes various
file types. Thus this doesn't work just for C and C++ programs, also for
Eiffel and even Vim scripts. See the ctags documentation to tune this.

Now you only need to tell Vim where your big tags file is:

:set tags=~/proj/tags

MULTIPLE MATCHES

When a function is defined multiple times (or a method in several classes),
the ":tag" command will jump to the first one. If there is a match in the
current file, that one is used first.

You can now jump to other matches for the same tag with:

:tnext

Repeat this to find further matches. If there are many, you can select which
one to jump to:

:tselect tagname

Vim will present you with a list of choices:

pri kind tag file
1 F f mch_init os_amiga.c

mch_init()
2 F f mch_init os_mac.c

usr_29.txt — 229

mch_init()
3 F f mch_init os_msdos.c

mch_init(void)
4 F f mch_init os_riscos.c

mch_init()
Enter nr of choice (<CR> to abort):

You can now enter the number (in the first column) of the match that you would
like to jump to. The information in the other columns give you a good idea of
where the match is defined.

To move between the matching tags, these commands can be used:

:tfirst go to first match
:[count]tprevious go to [count] previous match
:[count]tnext go to [count] next match
:tlast go to last match

If [count] is omitted then one is used.

GUESSING TAG NAMES

Command line completion is a good way to avoid typing a long tag name. Just
type the first bit and press <Tab>:

:tag write_<Tab>

You will get the first match. If it's not the one you want, press <Tab> until
you find the right one.

Sometimes you only know part of the name of a function. Or you have many
tags that start with the same string, but end differently. Then you can tell
Vim to use a pattern to find the tag.

Suppose you want to jump to a tag that contains "block". First type
this:

:tag /block

Now use command line completion: press <Tab>. Vim will find all tags that
contain "block" and use the first match.

The "/" before a tag name tells Vim that what follows is not a literal tag
name, but a pattern. You can use all the items for search patterns here. For
example, suppose you want to select a tag that starts with "write_":

:tselect /^write_

The "^" specifies that the tag starts with "write_". Otherwise it would also
be found halfway a tag name. Similarly "$" at the end makes sure the pattern
matches until the end of a tag.

A TAGS BROWSER

Since CTRL-] takes you to the definition of the identifier under the cursor,
you can use a list of identifier names as a table of contents. Here is an
example.

First create a list of identifiers (this requires Universal or Exuberant
ctags):

ctags --c-types=f -f functions *.c

usr_29.txt — 230

Now start Vim without a file, and edit this file in Vim, in a vertically split
window:

vim
:vsplit functions

The window contains a list of all the functions. There is some more stuff,
but you can ignore that. Do ":setlocal ts=99" to clean it up a bit.

In this window, define a mapping:

:nnoremap <buffer> <CR> 0ye<C-W>w:tag <C-R>"<CR>

Move the cursor to the line that contains the function you want to go to.
Now press <Enter>. Vim will go to the other window and jump to the selected
function.

RELATED ITEMS

To make case in tag names be ignored, you can set 'ignorecase' while leaving
'tagcase' as "followic", or set 'tagcase' to "ignore".

The 'tagbsearch' option tells if the tags file is sorted or not. The default
is to assume a sorted tags file, which makes a tags search a lot faster, but
doesn't work if the tags file isn't sorted.

The 'taglength' option can be used to tell Vim the number of significant
characters in a tag.

Cscope is a free program. It does not only find places where an identifier is
declared, but also where it is used. See cscope .

==
29.2 The preview window

When you edit code that contains a function call, you need to use the correct
arguments. To know what values to pass you can look at how the function is
defined. The tags mechanism works very well for this. Preferably the
definition is displayed in another window. For this the preview window can be
used.

To open a preview window to display the function "write_char":

:ptag write_char

Vim will open a window, and jumps to the tag "write_char". Then it takes you
back to the original position. Thus you can continue typing without the need
to use a CTRL-W command.

If the name of a function appears in the text, you can get its definition
in the preview window with:

CTRL-W }

There is a script that automatically displays the text where the word under
the cursor was defined. See CursorHold-example .

To close the preview window use this command:

:pclose

usr_29.txt — 231

To edit a specific file in the preview window, use ":pedit". This can be
useful to edit a header file, for example:

:pedit defs.h

Finally, ":psearch" can be used to find a word in the current file and any
included files and display the match in the preview window. This is
especially useful when using library functions, for which you do not have a
tags file. Example:

:psearch popen

This will show the "stdio.h" file in the preview window, with the function
prototype for popen():

FILE *popen __P((const char *, const char *));

You can specify the height of the preview window, when it is opened, with the
'previewheight' option.

==
29.3 Moving through a program

Since a program is structured, Vim can recognize items in it. Specific
commands can be used to move around.

C programs often contain constructs like this:

#ifdef USE_POPEN
fd = popen("ls", "r")

#else
fd = fopen("tmp", "w")

#endif

But then much longer, and possibly nested. Position the cursor on the
"#ifdef" and press %. Vim will jump to the "#else". Pressing % again takes
you to the "#endif". Another % takes you to the "#ifdef" again.

When the construct is nested, Vim will find the matching items. This is a
good way to check if you didn't forget an "#endif".

When you are somewhere inside a "#if" - "#endif", you can jump to the start
of it with:

[#

If you are not after a "#if" or "#ifdef" Vim will beep. To jump forward to
the next "#else" or "#endif" use:

]#

These two commands skip any "#if" - "#endif" blocks that they encounter.
Example:

#if defined(HAS_INC_H)
a = a + inc();

ifdef USE_THEME
a += 3;

endif
set_width(a);

With the cursor in the last line, "[#" moves to the first line. The "#ifdef"
- "#endif" block in the middle is skipped.

usr_29.txt — 232

MOVING IN CODE BLOCKS

In C code blocks are enclosed in {}. These can get pretty long. To move to
the start of the outer block use the "[[" command. Use "][" to find the end.
This assumes that the "{" and "}" are in the first column.

The "[{" command moves to the start of the current block. It skips over
pairs of {} at the same level. "]}" jumps to the end.

An overview:

function(int a)
+-> {
| if (a)
| +-> {

[[| | for (;;) --+
| | +-> { |
| [{ | | foo(32); | --+
| | [{ | if (bar(a)) --+ |]} |
+-- | +-- break; |]} | |

| } <-+ | |][
+-- foobar(a) | |

} <-+ |
} <-+

When writing C++ or Java, the outer {} block is for the class. The next level
of {} is for a method. When somewhere inside a class use "[m" to find the
previous start of a method. "]m" finds the next start of a method.

Additionally, "[]" moves backward to the end of a function and "]]" moves
forward to the start of the next function. The end of a function is defined
by a "}" in the first column.

int func1(void)
{

return 1;
+----------> }
|

[] | int func2(void)
| +-> {
| [[| if (flag)

start +-- +-- return flag;
|][| return 2;
| +-> }

]] |
| int func3(void)
+----------> {

return 3;
}

Don't forget you can also use "%" to move between matching (), {} and [].
That also works when they are many lines apart.

MOVING IN BRACES

The "[(" and "])" commands work similar to "[{" and "]}", except that they
work on () pairs instead of {} pairs.

[(

usr_29.txt — 233

<--------------------------------
<-------

if (a == b && (c == d || (e > f)) && x > y)
-------------->

-------------------------------->
])

MOVING IN COMMENTS

To move back to the start of a comment use "[/". Move forward to the end of a
comment with "]/". This only works for /* - */ comments.

+-> +-> /*
| [/ | * A comment about --+

[/ | +-- * wonderful life. |]/
| */ <-+
|
+-- foo = bar * 3; --+

|]/
/* a short comment */ <-+

==
29.4 Finding global identifiers

You are editing a C program and wonder if a variable is declared as "int" or
"unsigned". A quick way to find this is with the "[I" command.

Suppose the cursor is on the word "column". Type:

[I

Vim will list the matching lines it can find. Not only in the current file,
but also in all included files (and files included in them, etc.). The result
looks like this:

structs.h
1: 29 unsigned column; /* column number */

The advantage over using tags or the preview window is that included files are
searched. In most cases this results in the right declaration to be found.
Also when the tags file is out of date. Also when you don't have tags for the
included files.

However, a few things must be right for "[I" to do its work. First of all,
the 'include' option must specify how a file is included. The default value
works for C and C++. For other languages you will have to change it.

LOCATING INCLUDED FILES

Vim will find included files in the places specified with the 'path'
option. If a directory is missing, some include files will not be found. You
can discover this with this command:

:checkpath

It will list the include files that could not be found. Also files included
by the files that could be found. An example of the output:

--- Included files not found in path ---
<io.h>
vim.h -->

usr_29.txt — 234

<functions.h>
<clib/exec_protos.h>

The "io.h" file is included by the current file and can't be found. "vim.h"
can be found, thus ":checkpath" goes into this file and checks what it
includes. The "functions.h" and "clib/exec_protos.h" files, included by
"vim.h" are not found.

Note:
Vim is not a compiler. It does not recognize "#ifdef" statements.
This means every "#include" statement is used, also when it comes
after "#if NEVER".

To fix the files that could not be found, add a directory to the 'path'
option. A good place to find out about this is the Makefile. Look out for
lines that contain "-I" items, like "-I/usr/local/X11". To add this directory
use:

:set path+=/usr/local/X11

When there are many subdirectories, you can use the "*" wildcard. Example:

:set path+=/usr/*/include

This would find files in "/usr/local/include" as well as "/usr/X11/include".

When working on a project with a whole nested tree of included files, the "**"
items is useful. This will search down in all subdirectories. Example:

:set path+=/projects/invent/**/include

This will find files in the directories:

/projects/invent/include
/projects/invent/main/include
/projects/invent/main/os/include
etc.

There are even more possibilities. Check out the 'path' option for info.
If you want to see which included files are actually found, use this

command:

:checkpath!

You will get a (very long) list of included files, the files they include, and
so on. To shorten the list a bit, Vim shows "(Already listed)" for files that
were found before and doesn't list the included files in there again.

JUMPING TO A MATCH

"[I" produces a list with only one line of text. When you want to have a
closer look at the first item, you can jump to that line with the command:

[<Tab>

You can also use "[CTRL-I", since CTRL-I is the same as pressing <Tab>.

The list that "[I" produces has a number at the start of each line. When you
want to jump to another item than the first one, type the number first:

usr_29.txt — 235

3[<Tab>

Will jump to the third item in the list. Remember that you can use CTRL-O to
jump back to where you started from.

RELATED COMMANDS

[i only lists the first match
]I only lists items below the cursor
]i only lists the first item below the cursor

FINDING DEFINED IDENTIFIERS

The "[I" command finds any identifier. To find only macros, defined with
"#define" use:

[D

Again, this searches in included files. The 'define' option specifies what a
line looks like that defines the items for "[D". You could change it to make
it work with other languages than C or C++.

The commands related to "[D" are:

[d only lists the first match
]D only lists items below the cursor
]d only lists the first item below the cursor

==
29.5 Finding local identifiers

The "[I" command searches included files. To search in the current file only,
and jump to the first place where the word under the cursor is used:

gD

Hint: Goto Definition. This command is very useful to find a variable or
function that was declared locally ("static", in C terms). Example (cursor on
"counter"):

+-> static int counter = 0;
|
| int get_counter(void)

gD | {
| ++counter;
+-- return counter;

}

To restrict the search even further, and look only in the current function,
use this command:

gd

This will go back to the start of the current function and find the first
occurrence of the word under the cursor. Actually, it searches backwards to
an empty line above a "{" in the first column. From there it searches forward
for the identifier. Example (cursor on "idx"):

usr_29.txt — 236

int find_entry(char *name)
{

+-> int idx;
|

gd | for (idx = 0; idx < table_len; ++idx)
| if (strcmp(table[idx].name, name) == 0)
+-- return idx;

}

==

Next chapter: usr_30.txt Editing programs

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_29.txt — 237

usr_29.txt — 238

usr_30.txt For Vim version 9.1. Last change: 2007 Nov 10

VIM USER MANUAL - by Bram Moolenaar

Editing programs

Vim has various commands that aid in writing computer programs. Compile a
program and directly jump to reported errors. Automatically set the indent
for many languages and format comments.

30.1 Compiling
30.2 Indenting C files
30.3 Automatic indenting
30.4 Other indenting
30.5 Tabs and spaces
30.6 Formatting comments

Next chapter: usr_31.txt Exploiting the GUI
Previous chapter: usr_29.txt Moving through programs

Table of contents: usr_toc.txt

==
30.1 Compiling

Vim has a set of so called "quickfix" commands. They enable you to compile a
program from within Vim and then go through the errors generated and fix them
(hopefully). You can then recompile and fix any new errors that are found
until finally your program compiles without any error.

The following command runs the program "make" (supplying it with any argument
you give) and captures the results:

:make {arguments}

If errors were generated, they are captured and the editor positions you where
the first error occurred.

Take a look at an example ":make" session. (Typical :make sessions generate
far more errors and fewer stupid ones.) After typing ":make" the screen looks
like this:

:!make | &tee /tmp/vim215953.err
gcc -g -Wall -o prog main.c sub.c
main.c: In function 'main':
main.c:6: too many arguments to function 'do_sub'
main.c: At top level:
main.c:10: parse error before '}'
make: *** [prog] Error 1

2 returned
"main.c" 11L, 111C
(3 of 6): too many arguments to function 'do_sub'
Press ENTER or type command to continue

From this you can see that you have errors in the file "main.c". When you
press <Enter>, Vim displays the file "main.c", with the cursor positioned on
line 6, the first line with an error. You did not need to specify the file or
the line number, Vim knew where to go by looking in the error messages.

+---+

usr_30.txt — 239

|int main() |
|{ |
| int i=3; |

cursor -> | do_sub("foo"); |
| ++i; |
| return (0); |
|} |
|} |
| ~ |
|(3 of 12): too many arguments to function 'do_sub' |
+---+

The following command goes to where the next error occurs:

:cnext

Vim jumps to line 10, the last line in the file, where there is an extra '}'.
When there is not enough room, Vim will shorten the error message. To see

the whole message use:

:cc

You can get an overview of all the error messages with the ":clist" command.
The output looks like this:

:clist
3 main.c: 6:too many arguments to function 'do_sub'
5 main.c: 10:parse error before '}'

Only the lines where Vim recognized a file name and line number are listed
here. It assumes those are the interesting lines and the rest is just boring
messages. However, sometimes unrecognized lines do contain something you want
to see. Output from the linker, for example, about an undefined function.
To see all the messages add a "!" to the command:

:clist!
1 gcc -g -Wall -o prog main.c sub.c
2 main.c: In function 'main':
3 main.c:6: too many arguments to function 'do_sub'
4 main.c: At top level:
5 main.c:10: parse error before '}'
6 make: *** [prog] Error 1

Vim will highlight the current error. To go back to the previous error, use:

:cprevious

Other commands to move around in the error list:

:cfirst to first error
:clast to last error
:cc 3 to error nr 3

USING ANOTHER COMPILER

The name of the program to run when the ":make" command is executed is defined
by the 'makeprg' option. Usually this is set to "make", but Visual C++ users
should set this to "nmake" by executing the following command:

usr_30.txt — 240

:set makeprg=nmake

You can also include arguments in this option. Special characters need to
be escaped with a backslash. Example:

:set makeprg=nmake\ -f\ project.mak

You can include special Vim keywords in the command specification. The %
character expands to the name of the current file. So if you execute the
command:

:set makeprg=make\ %:S

When you are editing main.c, then ":make" executes the following command:

make main.c

This is not too useful, so you will refine the command a little and use the :r
(root) modifier:

:set makeprg=make\ %:r:S.o

Now the command executed is as follows:

make main.o

More about these modifiers here: filename-modifiers .

OLD ERROR LISTS

Suppose you ":make" a program. There is a warning message in one file and an
error message in another. You fix the error and use ":make" again to check if
it was really fixed. Now you want to look at the warning message. It doesn't
show up in the last error list, since the file with the warning wasn't
compiled again. You can go back to the previous error list with:

:colder

Then use ":clist" and ":cc {nr}" to jump to the place with the warning.
To go forward to the next error list:

:cnewer

Vim remembers ten error lists.

SWITCHING COMPILERS

You have to tell Vim what format the error messages are that your compiler
produces. This is done with the 'errorformat' option. The syntax of this
option is quite complicated and it can be made to fit almost any compiler.
You can find the explanation here: errorformat .

You might be using various different compilers. Setting the 'makeprg' option,
and especially the 'errorformat' each time is not easy. Vim offers a simple
method for this. For example, to switch to using the Microsoft Visual C++
compiler:

:compiler msvc

usr_30.txt — 241

This will find the Vim script for the "msvc" compiler and set the appropriate
options.

You can write your own compiler files. See write-compiler-plugin .

OUTPUT REDIRECTION

The ":make" command redirects the output of the executed program to an error
file. How this works depends on various things, such as the 'shell'. If your
":make" command doesn't capture the output, check the 'makeef' and
'shellpipe' options. The 'shellquote' and 'shellxquote' options might also
matter.

In case you can't get ":make" to redirect the file for you, an alternative is
to compile the program in another window and redirect the output into a file.
Then have Vim read this file with:

:cfile {filename}

Jumping to errors will work like with the ":make" command.

==
30.2 Indenting C style text

A program is much easier to understand when the lines have been properly
indented. Vim offers various ways to make this less work. For C or C style
programs like Java or C++, set the 'cindent' option. Vim knows a lot about C
programs and will try very hard to automatically set the indent for you. Set
the 'shiftwidth' option to the amount of spaces you want for a deeper level.
Four spaces will work fine. One ":set" command will do it:

:set cindent shiftwidth=4

With this option enabled, when you type something such as "if (x)", the next
line will automatically be indented an additional level.

if (flag)
Automatic indent ---> do_the_work();
Automatic unindent <-- if (other_flag) {
Automatic indent ---> do_file();
keep indent do_some_more();
Automatic unindent <-- }

When you type something in curly braces ({}), the text will be indented at the
start and unindented at the end. The unindenting will happen after typing the
'}', since Vim can't guess what you are going to type.

One side effect of automatic indentation is that it helps you catch errors in
your code early. When you type a } to finish a function, only to find that
the automatic indentation gives it more indent than what you expected, there
is probably a } missing. Use the "%" command to find out which { matches the
} you typed.

A missing) and ; also cause extra indent. Thus if you get more white
space than you would expect, check the preceding lines.

When you have code that is badly formatted, or you inserted and deleted lines,
you need to re-indent the lines. The "=" operator does this. The simplest
form is:

==

usr_30.txt — 242

This indents the current line. Like with all operators, there are three ways
to use it. In Visual mode "=" indents the selected lines. A useful text
object is "a{". This selects the current {} block. Thus, to re-indent the
code block the cursor is in:

=a{

I you have really badly indented code, you can re-indent the whole file with:

gg=G

However, don't do this in files that have been carefully indented manually.
The automatic indenting does a good job, but in some situations you might want
to overrule it.

SETTING INDENT STYLE

Different people have different styles of indentation. By default Vim does a
pretty good job of indenting in a way that 90% of programmers do. There are
different styles, however; so if you want to, you can customize the
indentation style with the 'cinoptions' option.

By default 'cinoptions' is empty and Vim uses the default style. You can
add various items where you want something different. For example, to make
curly braces be placed like this:

if (flag)
{

i = 8;
j = 0;

}

Use this command:

:set cinoptions+={2

There are many of these items. See cinoptions-values .

==
30.3 Automatic indenting

You don't want to switch on the 'cindent' option manually every time you edit
a C file. This is how you make it work automatically:

:filetype indent on

Actually, this does a lot more than switching on 'cindent' for C files. First
of all, it enables detecting the type of a file. That's the same as what is
used for syntax highlighting.

When the filetype is known, Vim will search for an indent file for this
type of file. The Vim distribution includes a number of these for various
programming languages. This indent file will then prepare for automatic
indenting specifically for this file.

If you don't like the automatic indenting, you can switch it off again:

:filetype indent off

If you don't like the indenting for one specific type of file, this is how you

usr_30.txt — 243

avoid it. Create a file with just this one line:

:let b:did_indent = 1

Now you need to write this in a file with a specific name:

{directory}/indent/{filetype}.vim

The {filetype} is the name of the file type, such as "cpp" or "java". You can
see the exact name that Vim detected with this command:

:set filetype

In this file the output is:

filetype=help

Thus you would use "help" for {filetype}.
For the {directory} part you need to use your runtime directory. Look at

the output of this command:

set runtimepath

Now use the first item, the name before the first comma. Thus if the output
looks like this:

runtimepath=~/.vim,/usr/local/share/vim/vim60/runtime,~/.vim/after

You use "~/.vim" for {directory}. Then the resulting file name is:

~/.vim/indent/help.vim

Instead of switching the indenting off, you could write your own indent file.
How to do that is explained here: indent-expression .

==
30.4 Other indenting

The simplest form of automatic indenting is with the 'autoindent' option.
It uses the indent from the previous line. A bit smarter is the 'smartindent'
option. This is useful for languages where no indent file is available.
'smartindent' is not as smart as 'cindent', but smarter than 'autoindent'.

With 'smartindent' set, an extra level of indentation is added for each {
and removed for each }. An extra level of indentation will also be added for
any of the words in the 'cinwords' option. Lines that begin with # are
treated specially: all indentation is removed. This is done so that
preprocessor directives will all start in column 1. The indentation is
restored for the next line.

CORRECTING INDENTS

When you are using 'autoindent' or 'smartindent' to get the indent of the
previous line, there will be many times when you need to add or remove one
'shiftwidth' worth of indent. A quick way to do this is using the CTRL-D and
CTRL-T commands in Insert mode.

For example, you are typing a shell script that is supposed to look like
this:

if test -n a; then

usr_30.txt — 244

echo a
echo "-------"

fi

Start off by setting these options:

:set autoindent shiftwidth=3

You start by typing the first line, <Enter> and the start of the second line:

if test -n a; then
echo

Now you see that you need an extra indent. Type CTRL-T. The result:

if test -n a; then
echo

The CTRL-T command, in Insert mode, adds one 'shiftwidth' to the indent, no
matter where in the line you are.

You continue typing the second line, <Enter> and the third line. This time
the indent is OK. Then <Enter> and the last line. Now you have this:

if test -n a; then
echo a
echo "-------"
fi

To remove the superfluous indent in the last line press CTRL-D. This deletes
one 'shiftwidth' worth of indent, no matter where you are in the line.

When you are in Normal mode, you can use the ">>" and "<<" commands to
shift lines. ">" and "<" are operators, thus you have the usual three ways to
specify the lines you want to indent. A useful combination is:

>i{

This adds one indent to the current block of lines, inside {}. The { and }
lines themselves are left unmodified. ">a{" includes them. In this example
the cursor is on "printf":

original text after ">i{" after ">a{"

if (flag) if (flag) if (flag)
{ { {
printf("yes"); printf("yes"); printf("yes");
flag = 0; flag = 0; flag = 0;
} } }

==
30.5 Tabs and spaces

'tabstop' is set to eight by default. Although you can change it, you quickly
run into trouble later. Other programs won't know what tabstop value you
used. They probably use the default value of eight, and your text suddenly
looks very different. Also, most printers use a fixed tabstop value of eight.
Thus it's best to keep 'tabstop' alone. (If you edit a file which was written
with a different tabstop setting, see 25.3 for how to fix that.)

For indenting lines in a program, using a multiple of eight spaces makes
you quickly run into the right border of the window. Using a single space
doesn't provide enough visual difference. Many people prefer to use four

usr_30.txt — 245

spaces, a good compromise.
Since a <Tab> is eight spaces and you want to use an indent of four spaces,

you can't use a <Tab> character to make your indent. There are two ways to
handle this:

1. Use a mix of <Tab> and space characters. Since a <Tab> takes the place of
eight spaces, you have fewer characters in your file. Inserting a <Tab>
is quicker than eight spaces. Backspacing works faster as well.

2. Use spaces only. This avoids the trouble with programs that use a
different tabstop value.

Fortunately, Vim supports both methods quite well.

SPACES AND TABS

If you are using a combination of tabs and spaces, you just edit normally.
The Vim defaults do a fine job of handling things.

You can make life a little easier by setting the 'softtabstop' option.
This option tells Vim to make the <Tab> key look and feel as if tabs were set
at the value of 'softtabstop', but actually use a combination of tabs and
spaces.

After you execute the following command, every time you press the <Tab> key
the cursor moves to the next 4-column boundary:

:set softtabstop=4

When you start in the first column and press <Tab>, you get 4 spaces inserted
in your text. The second time, Vim takes out the 4 spaces and puts in a <Tab>
(thus taking you to column 8). Thus Vim uses as many <Tab>s as possible, and
then fills up with spaces.

When backspacing it works the other way around. A <BS> will always delete
the amount specified with 'softtabstop'. Then <Tab>s are used as many as
possible and spaces to fill the gap.

The following shows what happens pressing <Tab> a few times, and then using
<BS>. A "." stands for a space and "------->" for a <Tab>.

type result
<Tab>
<Tab><Tab> ------->
<Tab><Tab><Tab> ------->....
<Tab><Tab><Tab><BS> ------->
<Tab><Tab><Tab><BS><BS>

An alternative is to use the 'smarttab' option. When it's set, Vim uses
'shiftwidth' for a <Tab> typed in the indent of a line, and a real <Tab> when
typed after the first non-blank character. However, <BS> doesn't work like
with 'softtabstop'.

JUST SPACES

If you want absolutely no tabs in your file, you can set the 'expandtab'
option:

:set expandtab

When this option is set, the <Tab> key inserts a series of spaces. Thus you
get the same amount of white space as if a <Tab> character was inserted, but

usr_30.txt — 246

there isn't a real <Tab> character in your file.
The backspace key will delete each space by itself. Thus after typing one

<Tab> you have to press the <BS> key up to eight times to undo it. If you are
in the indent, pressing CTRL-D will be a lot quicker.

CHANGING TABS IN SPACES (AND BACK)

Setting 'expandtab' does not affect any existing tabs. In other words, any
tabs in the document remain tabs. If you want to convert tabs to spaces, use
the ":retab" command. Use these commands:

:set expandtab
:%retab

Now Vim will have changed all indents to use spaces instead of tabs. However,
all tabs that come after a non-blank character are kept. If you want these to
be converted as well, add a !:

:%retab!

This is a little bit dangerous, because it can also change tabs inside a
string. To check if these exist, you could use this:

/"[^"\t]*\t[^"]*"

It's recommended not to use hard tabs inside a string. Replace them with
"\t" to avoid trouble.

The other way around works just as well:

:set noexpandtab
:%retab!

==
30.6 Formatting comments

One of the great things about Vim is that it understands comments. You can
ask Vim to format a comment and it will do the right thing.

Suppose, for example, that you have the following comment:

/*
* This is a test
* of the text formatting.
*/

You then ask Vim to format it by positioning the cursor at the start of the
comment and type:

gq]/

"gq" is the operator to format text. "]/" is the motion that takes you to the
end of a comment. The result is:

/*
* This is a test of the text formatting.
*/

Notice that Vim properly handled the beginning of each line.
An alternative is to select the text that is to be formatted in Visual mode

usr_30.txt — 247

and type "gq".

To add a new line to the comment, position the cursor on the middle line and
press "o". The result looks like this:

/*
* This is a test of the text formatting.
*
*/

Vim has automatically inserted a star and a space for you. Now you can type
the comment text. When it gets longer than 'textwidth', Vim will break the
line. Again, the star is inserted automatically:

/*
* This is a test of the text formatting.
* Typing a lot of text here will make Vim
* break
*/

For this to work some flags must be present in 'formatoptions':

r insert the star when typing <Enter> in Insert mode
o insert the star when using "o" or "O" in Normal mode
c break comment text according to 'textwidth'

See fo-table for more flags.

DEFINING A COMMENT

The 'comments' option defines what a comment looks like. Vim distinguishes
between a single-line comment and a comment that has a different start, end
and middle part.

Many single-line comments start with a specific character. In C++ // is
used, in Makefiles #, in Vim scripts ". For example, to make Vim understand
C++ comments:

:set comments=://

The colon separates the flags of an item from the text by which the comment is
recognized. The general form of an item in 'comments' is:

{flags}:{text}

The {flags} part can be empty, as in this case.
Several of these items can be concatenated, separated by commas. This

allows recognizing different types of comments at the same time. For example,
let's edit an e-mail message. When replying, the text that others wrote is
preceded with ">" and "!" characters. This command would work:

:set comments=n:>,n:!

There are two items, one for comments starting with ">" and one for comments
that start with "!". Both use the flag "n". This means that these comments
nest. Thus a line starting with ">" may have another comment after the ">".
This allows formatting a message like this:

> ! Did you see that site?
> ! It looks really great.

usr_30.txt — 248

> I don't like it. The
> colors are terrible.
What is the URL of that
site?

Try setting 'textwidth' to a different value, e.g., 80, and format the text by
Visually selecting it and typing "gq". The result is:

> ! Did you see that site? It looks really great.
> I don't like it. The colors are terrible.
What is the URL of that site?

You will notice that Vim did not move text from one type of comment to
another. The "I" in the second line would have fit at the end of the first
line, but since that line starts with "> !" and the second line with ">", Vim
knows that this is a different kind of comment.

A THREE PART COMMENT

A C comment starts with "/*", has "*" in the middle and "*/" at the end. The
entry in 'comments' for this looks like this:

:set comments=s1:/*,mb:*,ex:*/

The start is defined with "s1:/*". The "s" indicates the start of a
three-piece comment. The colon separates the flags from the text by which the
comment is recognized: "/*". There is one flag: "1". This tells Vim that the
middle part has an offset of one space.

The middle part "mb:*" starts with "m", which indicates it is a middle
part. The "b" flag means that a blank must follow the text. Otherwise Vim
would consider text like "*pointer" also to be the middle of a comment.

The end part "ex:*/" has the "e" for identification. The "x" flag has a
special meaning. It means that after Vim automatically inserted a star,
typing / will remove the extra space.

For more details see format-comments .

==

Next chapter: usr_31.txt Exploiting the GUI

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_30.txt — 249

usr_30.txt — 250

usr_31.txt For Vim version 9.1. Last change: 2020 Jul 28

VIM USER MANUAL - by Bram Moolenaar

Exploiting the GUI

Vim works well in a terminal, but the GUI has a few extra items. A file
browser can be used for commands that use a file. A dialog to make a choice
between alternatives. Use keyboard shortcuts to access menu items quickly.

31.1 The file browser
31.2 Confirmation
31.3 Menu shortcuts
31.4 Vim window position and size
31.5 Various

Next chapter: usr_32.txt The undo tree
Previous chapter: usr_30.txt Editing programs

Table of contents: usr_toc.txt

==
31.1 The file browser

When using the File/Open... menu you get a file browser. This makes it easier
to find the file you want to edit. But what if you want to split a window to
edit another file? There is no menu entry for this. You could first use
Window/Split and then File/Open..., but that's more work.

Since you are typing most commands in Vim, opening the file browser with a
typed command is possible as well. To make the split command use the file
browser, prepend "browse":

:browse split

Select a file and then the ":split" command will be executed with it. If you
cancel the file dialog nothing happens, the window isn't split.

You can also specify a file name argument. This is used to tell the file
browser where to start. Example:

:browse split /etc

The file browser will pop up, starting in the directory "/etc".

The ":browse" command can be prepended to just about any command that opens a
file.

If no directory is specified, Vim will decide where to start the file
browser. By default it uses the same directory as the last time. Thus when
you used ":browse split" and selected a file in "/usr/local/share", the next
time you use a ":browse" it will start in "/usr/local/share" again.

This can be changed with the 'browsedir' option. It can have one of three
values:

last Use the last directory browsed (default)
buffer Use the same directory as the current buffer
current use the current directory

For example, when you are in the directory "/usr", editing the file
"/usr/local/share/readme", then the command:

:set browsedir=buffer

usr_31.txt — 251

:browse edit

Will start the browser in "/usr/local/share". Alternatively:

:set browsedir=current
:browse edit

Will start the browser in "/usr".

Note:
To avoid using the mouse, most file browsers offer using key presses
to navigate. Since this is different for every system, it is not
explained here. Vim uses a standard browser when possible, your
system documentation should contain an explanation on the keyboard
shortcuts somewhere.

When you are not using the GUI version, you could use the file explorer window
to select files like in a file browser. However, this doesn't work for the
":browse" command. See netrw-browse .

==
31.2 Confirmation

Vim protects you from accidentally overwriting a file and other ways to lose
changes. If you do something that might be a bad thing to do, Vim produces an
error message and suggests appending ! if you really want to do it.

To avoid retyping the command with the !, you can make Vim give you a
dialog. You can then press "OK" or "Cancel" to tell Vim what you want.

For example, you are editing a file and made changes to it. You start
editing another file with:

:confirm edit foo.txt

Vim will pop up a dialog that looks something like this:

+-----------------------------------+
| |
| ? Save changes to "bar.txt"? |
| |
| YES NO CANCEL |
+-----------------------------------+

Now make your choice. If you do want to save the changes, select "YES". If
you want to lose the changes for ever: "NO". If you forgot what you were
doing and want to check what really changed use "CANCEL". You will be back in
the same file, with the changes still there.

Just like ":browse", the ":confirm" command can be prepended to most commands
that edit another file. They can also be combined:

:confirm browse edit

This will produce a dialog when the current buffer was changed. Then it will
pop up a file browser to select the file to edit.

Note:
In the dialog you can use the keyboard to select the choice.
Typically the <Tab> key and the cursor keys change the choice.
Pressing <Enter> selects the choice. This depends on the system
though.

usr_31.txt — 252

When you are not using the GUI, the ":confirm" command works as well. Instead
of popping up a dialog, Vim will print the message at the bottom of the Vim
window and ask you to press a key to make a choice.

:confirm edit main.c
Save changes to "Untitled"?
[Y]es, (N)o, (C)ancel:

You can now press the single key for the choice. You don't have to press
<Enter>, unlike other typing on the command line.

==
31.3 Menu shortcuts

The keyboard is used for all Vim commands. The menus provide a simple way to
select commands, without knowing what they are called. But you have to move
your hand from the keyboard and grab the mouse.

Menus can often be selected with keys as well. This depends on your
system, but most often it works this way. Use the <Alt> key in combination
with the underlined letter of a menu. For example, <A-w> (<Alt> and w) pops
up the Window menu.

In the Window menu, the "split" item has the p underlined. To select it,
let go of the <Alt> key and press p.

After the first selection of a menu with the <Alt> key, you can use the cursor
keys to move through the menus. <Right> selects a submenu and <left> closes
it. <Esc> also closes a menu. <Enter> selects a menu item.

There is a conflict between using the <Alt> key to select menu items, and
using <Alt> key combinations for mappings. The 'winaltkeys' option tells Vim
what it should do with the <Alt> key.

The default value "menu" is the smart choice: If the key combination is a
menu shortcut it can't be mapped. All other keys are available for mapping.

The value "no" doesn't use any <Alt> keys for the menus. Thus you must use
the mouse for the menus, and all <Alt> keys can be mapped.

The value "yes" means that Vim will use any <Alt> keys for the menus. Some
<Alt> key combinations may also do other things than selecting a menu.

==
31.4 Vim window position and size

To see the current Vim window position on the screen use:

:winpos

This will only work in the GUI. The output may look like this:

Window position: X 272, Y 103

The position is given in screen pixels. Now you can use the numbers to move
Vim somewhere else. For example, to move it to the left a hundred pixels:

:winpos 172 103

Note:
There may be a small offset between the reported position and where
the window moves. This is because of the border around the window.
This is added by the window manager.

usr_31.txt — 253

You can use this command in your startup script to position the window at a
specific position.

The size of the Vim window is computed in characters. Thus this depends on
the size of the font being used. You can see the current size with this
command:

:set lines columns

To change the size set the 'lines' and/or 'columns' options to a new value:

:set lines=50
:set columns=80

Obtaining the size works in a terminal just like in the GUI. Setting the size
is not possible in most terminals.

You can start the X-Windows version of gvim with an argument to specify the
size and position of the window:

gvim -geometry {width}x{height}+{x-offset}+{y-offset}

{width} and {height} are in characters, {x-offset} and {y-offset} are in
pixels. Example:

gvim -geometry 80x25+100+300

==
31.5 Various

You can use gvim to edit an e-mail message. In your e-mail program you must
select gvim to be the editor for messages. When you try that, you will
see that it doesn't work: The mail program thinks that editing is finished,
while gvim is still running!

What happens is that gvim disconnects from the shell it was started in.
That is fine when you start gvim in a terminal, so that you can do other work
in that terminal. But when you really want to wait for gvim to finish, you
must prevent it from disconnecting. The "-f" argument does this:

gvim -f file.txt

The "-f" stands for foreground. Now Vim will block the shell it was started
in until you finish editing and exit.

DELAYED START OF THE GUI

On Unix it's possible to first start Vim in a terminal. That's useful if you
do various tasks in the same shell. If you are editing a file and decide you
want to use the GUI after all, you can start it with:

:gui

Vim will open the GUI window and no longer use the terminal. You can continue
using the terminal for something else. The "-f" argument is used here to run
the GUI in the foreground. You can also use ":gui -f".

THE GVIM STARTUP FILE

usr_31.txt — 254

When gvim starts, it reads the gvimrc file. That's similar to the vimrc file
used when starting Vim. The gvimrc file can be used for settings and commands
that are only to be used when the GUI is going to be started. For example,
you can set the 'lines' option to set a different window size:

:set lines=55

You don't want to do this in a terminal, since its size is fixed (except for
an xterm that supports resizing).

The gvimrc file is searched for in the same locations as the vimrc file.
Normally its name is "~/.gvimrc" for Unix and "$VIM/_gvimrc" for MS-Windows.
The $MYGVIMRC environment variable is set to it, thus you can use this command
to edit the file, if you have one:

:edit $MYGVIMRC

If for some reason you don't want to use the normal gvimrc file, you can
specify another one with the "-U" argument:

gvim -U thisrc ...

That allows starting gvim for different kinds of editing. You could set
another font size, for example.

To completely skip reading a gvimrc file:

gvim -U NONE ...

==

Next chapter: usr_32.txt The undo tree

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_31.txt — 255

usr_31.txt — 256

usr_32.txt For Vim version 9.1. Last change: 2010 Jul 20

VIM USER MANUAL - by Bram Moolenaar

The undo tree

Vim provides multi-level undo. If you undo a few changes and then make a new
change you create a branch in the undo tree. This text is about moving
through the branches.

32.1 Undo up to a file write
32.2 Numbering changes
32.3 Jumping around the tree
32.4 Time travelling

Next chapter: usr_40.txt Make new commands
Previous chapter: usr_31.txt Exploiting the GUI

Table of contents: usr_toc.txt

==
32.1 Undo up to a file write

Sometimes you make several changes, and then discover you want to go back to
when you have last written the file. You can do that with this command:

:earlier 1f

The "f" stands for "file" here.

You can repeat this command to go further back in the past. Or use a count
different from 1 to go back faster.

If you go back too far, go forward again with:

:later 1f

Note that these commands really work in time sequence. This matters if you
made changes after undoing some changes. It's explained in the next section.

Also note that we are talking about text writes here. For writing the undo
information in a file see undo-persistence .

==
32.2 Numbering changes

In section 02.5 we only discussed one line of undo/redo. But it is also
possible to branch off. This happens when you undo a few changes and then
make a new change. The new changes become a branch in the undo tree.

Let's start with the text "one". The first change to make is to append
" too". And then move to the first 'o' and change it into 'w'. We then have
two changes, numbered 1 and 2, and three states of the text:

one
|

change 1
|

one too
|

usr_32.txt — 257

change 2
|

one two

If we now undo one change, back to "one too", and change "one" to "me" we
create a branch in the undo tree:

one
|

change 1
|

one too
/ \

change 2 change 3
| |

one two me too

You can now use the u command to undo. If you do this twice you get to
"one". Use CTRL-R to redo, and you will go to "one too". One more CTRL-R
takes you to "me too". Thus undo and redo go up and down in the tree, using
the branch that was last used.

What matters here is the order in which the changes are made. Undo and redo
are not considered changes in this context. After each change you have a new
state of the text.

Note that only the changes are numbered, the text shown in the tree above has
no identifier. They are mostly referred to by the number of the change above
it. But sometimes by the number of one of the changes below it, especially
when moving up in the tree, so that you know which change was just undone.

==
32.3 Jumping around the tree

So how do you get to "one two" now? You can use this command:

:undo 2

The text is now "one two", you are below change 2. You can use the :undo
command to jump to below any change in the tree.

Now make another change: change "one" to "not":

one
|

change 1
|

one too
/ \

change 2 change 3
| |

one two me too
|

change 4
|

not two

Now you change your mind and want to go back to "me too". Use the g-
command. This moves back in time. Thus it doesn't walk the tree upwards or
downwards, but goes to the change made before.

usr_32.txt — 258

You can repeat g- and you will see the text change:
me too
one two
one too
one

Use g+ to move forward in time:
one
one too
one two
me too
not two

Using :undo is useful if you know what change you want to jump to. g- and
g+ are useful if you don't know exactly what the change number is.

You can type a count before g- and g+ to repeat them.

==
32.4 Time travelling

When you have been working on text for a while the tree grows to become big.
Then you may want to go to the text of some minutes ago.

To see what branches there are in the undo tree use this command:

:undolist
number changes time

3 2 16 seconds ago
4 3 5 seconds ago

Here you can see the number of the leaves in each branch and when the change
was made. Assuming we are below change 4, at "not two", you can go back ten
seconds with this command:

:earlier 10s

Depending on how much time you took for the changes you end up at a certain
position in the tree. The :earlier command argument can be "m" for minutes,
"h" for hours and "d" for days. To go all the way back use a big number:

:earlier 100d

To travel forward in time again use the :later command:

:later 1m

The arguments are "s", "m" and "h", just like with :earlier .

If you want even more details, or want to manipulate the information, you can
use the undotree() function. To see what it returns:

:echo undotree()

==

Next chapter: usr_40.txt Make new commands

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_32.txt — 259

usr_32.txt — 260

usr_40.txt For Vim version 9.1. Last change: 2022 Jun 23

VIM USER MANUAL - by Bram Moolenaar

Make new commands

Vim is an extensible editor. You can take a sequence of commands you use
often and turn it into a new command. Or redefine an existing command.
Autocommands make it possible to execute commands automatically.

40.1 Key mapping
40.2 Defining command-line commands
40.3 Autocommands

Next chapter: usr_41.txt Write a Vim script
Previous chapter: usr_32.txt The undo tree

Table of contents: usr_toc.txt

==
40.1 Key mapping

A simple mapping was explained in section 05.4 . The principle is that one
sequence of key strokes is translated into another sequence of key strokes.
This is a simple, yet powerful mechanism.

The simplest form is that one key is mapped to a sequence of keys. Since
the function keys, except <F1>, have no predefined meaning in Vim, these are
good choices to map. Example:

:map <F2> GoDate: <Esc>:read !date<CR>kJ

This shows how three modes are used. After going to the last line with "G",
the "o" command opens a new line and starts Insert mode. The text "Date: " is
inserted and <Esc> takes you out of insert mode.

Notice the use of special keys inside <>. This is called angle bracket
notation. You type these as separate characters, not by pressing the key
itself. This makes the mappings better readable and you can copy and paste
the text without problems.

The ":" character takes Vim to the command line. The ":read !date" command
reads the output from the "date" command and appends it below the current
line. The <CR> is required to execute the ":read" command.

At this point of execution the text looks like this:

Date:
Fri Jun 15 12:54:34 CEST 2001

Now "kJ" moves the cursor up and joins the lines together.
To decide which key or keys you use for mapping, see map-which-keys .

MAPPING AND MODES

The ":map" command defines remapping for keys in Normal mode. You can also
define mappings for other modes. For example, ":imap" applies to Insert mode.
You can use it to insert a date below the cursor:

:imap <F2> <CR>Date: <Esc>:read !date<CR>kJ

It looks a lot like the mapping for <F2> in Normal mode, only the start is
different. The <F2> mapping for Normal mode is still there. Thus you can map

usr_40.txt — 261

the same key differently for each mode.
Notice that, although this mapping starts in Insert mode, it ends in Normal

mode. If you want it to continue in Insert mode, append an "a" to the
mapping.

Here is an overview of map commands and in which mode they work:

:map Normal, Visual and Operator-pending
:vmap Visual
:nmap Normal
:omap Operator-pending
:map! Insert and Command-line
:imap Insert
:cmap Command-line

Operator-pending mode is when you typed an operator character, such as "d" or
"y", and you are expected to type the motion command or a text object. Thus
when you type "dw", the "w" is entered in operator-pending mode.

Suppose that you want to define <F7> so that the command d<F7> deletes a C
program block (text enclosed in curly braces, {}). Similarly y<F7> would yank
the program block into the unnamed register. Therefore, what you need to do
is to define <F7> to select the current program block. You can do this with
the following command:

:omap <F7> a{

This causes <F7> to perform a select block "a{" in operator-pending mode, just
like you typed it. This mapping is useful if typing a { on your keyboard is a
bit difficult.

LISTING MAPPINGS

To see the currently defined mappings, use ":map" without arguments. Or one
of the variants that include the mode in which they work. The output could
look like this:

_g :call MyGrep(1)<CR>
v <F2> :s/^/> /<CR>:noh<CR>``
n <F2> :.,$s/^/> /<CR>:noh<CR>``

<xHome> <Home>
<xEnd> <End>

The first column of the list shows in which mode the mapping is effective.
This is "n" for Normal mode, "i" for Insert mode, etc. A blank is used for a
mapping defined with ":map", thus effective in both Normal and Visual mode.

One useful purpose of listing the mapping is to check if special keys in <>
form have been recognized (this only works when color is supported). For
example, when <Esc> is displayed in color, it stands for the escape character.
When it has the same color as the other text, it is five characters.

REMAPPING

The result of a mapping is inspected for other mappings in it. For example,
the mappings for <F2> above could be shortened to:

:map <F2> G<F3>

usr_40.txt — 262

:imap <F2> <Esc><F3>
:map <F3> oDate: <Esc>:read !date<CR>kJ

For Normal mode <F2> is mapped to go to the last line, and then behave like
<F3> was pressed. In Insert mode <F2> stops Insert mode with <Esc> and then
also uses <F3>. Then <F3> is mapped to do the actual work.

Suppose you hardly ever use Ex mode, and want to use the "Q" command to format
text (this was so in old versions of Vim). This mapping will do it:

:map Q gq

But, in rare cases you need to use Ex mode anyway. Let's map "gQ" to Q, so
that you can still go to Ex mode:

:map gQ Q

What happens now is that when you type "gQ" it is mapped to "Q". So far so
good. But then "Q" is mapped to "gq", thus typing "gQ" results in "gq", and
you don't get to Ex mode at all.

To avoid keys to be mapped again, use the ":noremap" command:

:noremap gQ Q

Now Vim knows that the "Q" is not to be inspected for mappings that apply to
it. There is a similar command for every mode:

:noremap Normal, Visual and Operator-pending
:vnoremap Visual
:nnoremap Normal
:onoremap Operator-pending
:noremap! Insert and Command-line
:inoremap Insert
:cnoremap Command-line

RECURSIVE MAPPING

When a mapping triggers itself, it will run forever. This can be used to
repeat an action an unlimited number of times.

For example, you have a list of files that contain a version number in the
first line. You edit these files with "vim *.txt". You are now editing the
first file. Define this mapping:

:map ,, :s/5.1/5.2/<CR>:wnext<CR>,,

Now you type ",,". This triggers the mapping. It replaces "5.1" with "5.2"
in the first line. Then it does a ":wnext" to write the file and edit the
next one. The mapping ends in ",,". This triggers the same mapping again,
thus doing the substitution, etc.

This continues until there is an error. In this case it could be a file
where the substitute command doesn't find a match for "5.1". You can then
make a change to insert "5.1" and continue by typing ",," again. Or the
":wnext" fails, because you are in the last file in the list.

When a mapping runs into an error halfway, the rest of the mapping is
discarded. CTRL-C interrupts the mapping (CTRL-Break on MS-Windows).

DELETE A MAPPING

usr_40.txt — 263

To remove a mapping use the ":unmap" command. Again, the mode the unmapping
applies to depends on the command used:

:unmap Normal, Visual and Operator-pending
:vunmap Visual
:nunmap Normal
:ounmap Operator-pending
:unmap! Insert and Command-line
:iunmap Insert
:cunmap Command-line

There is a trick to define a mapping that works in Normal and Operator-pending
mode, but not in Visual mode. First define it for all three modes, then
delete it for Visual mode:

:map <C-A> /---><CR>
:vunmap <C-A>

Notice that the five characters "<C-A>" stand for the single key CTRL-A.

To remove all mappings use the :mapclear command. You can guess the
variations for different modes by now. Be careful with this command, it can't
be undone.

SPECIAL CHARACTERS

The ":map" command can be followed by another command. A | character
separates the two commands. This also means that a | character can't be used
inside a map command. To include one, use <Bar> (five characters). Example:

:map <F8> :write <Bar> !checkin %:S<CR>

The same problem applies to the ":unmap" command, with the addition that you
have to watch out for trailing white space. These two commands are different:

:unmap a | unmap b
:unmap a| unmap b

The first command tries to unmap "a ", with a trailing space.

When using a space inside a mapping, use <Space> (seven characters):

:map <Space> W

This makes the spacebar move a blank-separated word forward.

It is not possible to put a comment directly after a mapping, because the "
character is considered to be part of the mapping. You can use |", this
starts a new, empty command with a comment. Example:

:map <Space> W| " Use spacebar to move forward a word

MAPPINGS AND ABBREVIATIONS

Abbreviations are a lot like Insert mode mappings. The arguments are handled
in the same way. The main difference is the way they are triggered. An
abbreviation is triggered by typing a non-word character after the word. A
mapping is triggered when typing the last character.

usr_40.txt — 264

Another difference is that the characters you type for an abbreviation are
inserted in the text while you type them. When the abbreviation is triggered
these characters are deleted and replaced by what the abbreviation produces.
When typing the characters for a mapping, nothing is inserted until you type
the last character that triggers it. If the 'showcmd' option is set, the
typed characters are displayed in the last line of the Vim window.

An exception is when a mapping is ambiguous. Suppose you have done two
mappings:

:imap aa foo
:imap aaa bar

Now, when you type "aa", Vim doesn't know if it should apply the first or the
second mapping. It waits for another character to be typed. If it is an "a",
the second mapping is applied and results in "bar". If it is a space, for
example, the first mapping is applied, resulting in "foo", and then the space
is inserted.

ADDITIONALLY...

The <script> keyword can be used to make a mapping local to a script. See
:map-<script> .

The <buffer> keyword can be used to make a mapping local to a specific buffer.
See :map-<buffer>

The <unique> keyword can be used to make defining a new mapping fail when it
already exists. Otherwise a new mapping simply overwrites the old one. See
:map-<unique> .

To make a key do nothing, map it to <Nop> (five characters). This will make
the <F7> key do nothing at all:

:map <F7> <Nop>| map! <F7> <Nop>

There must be no space after <Nop>.

==
40.2 Defining command-line commands

The Vim editor enables you to define your own commands. You execute these
commands just like any other Command-line mode command.

To define a command, use the ":command" command, as follows:

:command DeleteFirst 1delete

Now when you execute the command ":DeleteFirst" Vim executes ":1delete", which
deletes the first line.

Note:
User-defined commands must start with a capital letter. You cannot
use ":X", ":Next" and ":Print". The underscore cannot be used! You
can use digits, but this is discouraged.

To list the user-defined commands, execute the following command:

:command

Just like with the builtin commands, the user defined commands can be

usr_40.txt — 265

abbreviated. You need to type just enough to distinguish the command from
another. Command line completion can be used to get the full name.

NUMBER OF ARGUMENTS

User-defined commands can take a series of arguments. The number of arguments
must be specified by the -nargs option. For instance, the example
:DeleteFirst command takes no arguments, so you could have defined it as
follows:

:command -nargs=0 DeleteFirst 1delete

However, because zero arguments is the default, you do not need to add
"-nargs=0". The other values of -nargs are as follows:

-nargs=0 No arguments
-nargs=1 One argument
-nargs=* Any number of arguments
-nargs=? Zero or one argument
-nargs=+ One or more arguments

USING THE ARGUMENTS

Inside the command definition, the arguments are represented by the
<args> keyword. For example:

:command -nargs=+ Say :echo "<args>"

Now when you type

:Say Hello World

Vim echoes "Hello World". However, if you add a double quote, it won't work.
For example:

:Say he said "hello"

To get special characters turned into a string, properly escaped to use as an
expression, use "<q-args>":

:command -nargs=+ Say :echo <q-args>

Now the above ":Say" command will result in this to be executed:

:echo "he said \"hello\""

The <f-args> keyword contains the same information as the <args> keyword,
except in a format suitable for use as function call arguments. For example:

:command -nargs=* DoIt :call AFunction(<f-args>)
:DoIt a b c

Executes the following command:

:call AFunction("a", "b", "c")

LINE RANGE

usr_40.txt — 266

Some commands take a range as their argument. To tell Vim that you are
defining such a command, you need to specify a -range option. The values for
this option are as follows:

-range Range is allowed; default is the current line.
-range=% Range is allowed; default is the whole file.
-range={count} Range is allowed; the last number in it is used as a

single number whose default is {count}.

When a range is specified, the keywords <line1> and <line2> get the values of
the first and last line in the range. For example, the following command
defines the SaveIt command, which writes out the specified range to the file
"save_file":

:command -range=% SaveIt :<line1>,<line2>write! save_file

OTHER OPTIONS

Some of the other options and keywords are as follows:

-count={number} The command can take a count whose default is
{number}. The resulting count can be used
through the <count> keyword.

-bang You can use a !. If present, using <bang> will
result in a !.

-register You can specify a register. (The default is
the unnamed register.)
The register specification is available as
<reg> (a.k.a. <register>).

-complete={type} Type of command-line completion used. See
:command-completion for the list of possible

values.
-bar The command can be followed by | and another

command, or " and a comment.
-buffer The command is only available for the current

buffer.

Finally, you have the <lt> keyword. It stands for the character <. Use this
to escape the special meaning of the <> items mentioned.

REDEFINING AND DELETING

To redefine the same command use the ! argument:

:command -nargs=+ Say :echo "<args>"
:command! -nargs=+ Say :echo <q-args>

To delete a user command use ":delcommand". It takes a single argument, which
is the name of the command. Example:

:delcommand SaveIt

To delete all the user commands:

:comclear

Careful, this can't be undone!

usr_40.txt — 267

More details about all this in the reference manual: user-commands .

==
40.3 Autocommands

An autocommand is a command that is executed automatically in response to some
event, such as a file being read or written or a buffer change. Through the
use of autocommands you can train Vim to edit compressed files, for example.
That is used in the gzip plugin.

Autocommands are very powerful. Use them with care and they will help you
avoid typing many commands. Use them carelessly and they will cause a lot of
trouble.

Suppose you want to replace a datestamp on the end of a file every time it is
written. First you define a function:

:function DateInsert()
: $delete
: read !date
:endfunction

You want this function to be called each time, just before a buffer is written
to a file. This will make that happen:

:autocmd BufWritePre * call DateInsert()

"BufWritePre" is the event for which this autocommand is triggered: Just
before (pre) writing a buffer to a file. The "*" is a pattern to match with
the file name. In this case it matches all files.

With this command enabled, when you do a ":write", Vim checks for any
matching BufWritePre autocommands and executes them, and then it
performs the ":write".

The general form of the :autocmd command is as follows:

:autocmd [group] {events} {file-pattern} [++nested] {command}

The [group] name is optional. It is used in managing and calling the commands
(more on this later). The {events} parameter is a list of events (comma
separated) that trigger the command.

{file-pattern} is a filename, usually with wildcards. For example, using
"*.txt" makes the autocommand be used for all files whose name end in ".txt".
The optional [++nested] flag allows for nesting of autocommands (see below),
and finally, {command} is the command to be executed.

When adding an autocommand the already existing ones remain. To avoid adding
the autocommand several times you should use this form:

:augroup updateDate
: autocmd!
: autocmd BufWritePre * call DateInsert()
:augroup END

This will delete any previously defined autocommand with `:autocmd!` before
defining the new one. Groups are explained later.

EVENTS

One of the most useful events is BufReadPost. It is triggered after a new

usr_40.txt — 268

file is being edited. It is commonly used to set option values. For example,
you know that "*.gsm" files are GNU assembly language. To get the syntax file
right, define this autocommand:

:autocmd BufReadPost *.gsm set filetype=asm

If Vim is able to detect the type of file, it will set the 'filetype' option
for you. This triggers the Filetype event. Use this to do something when a
certain type of file is edited. For example, to load a list of abbreviations
for text files:

:autocmd Filetype text source ~/.vim/abbrevs.vim

When starting to edit a new file, you could make Vim insert a skeleton:

:autocmd BufNewFile *.[ch] 0read ~/skeletons/skel.c

See autocmd-events for a complete list of events.

PATTERNS

The {file-pattern} argument can actually be a comma-separated list of file
patterns. For example: "*.c,*.h" matches files ending in ".c" and ".h".

The usual file wildcards can be used. Here is a summary of the most often
used ones:

* Match any character any number of times
? Match any character once
[abc] Match the character a, b or c
. Matches a dot
a{b,c} Matches "ab" and "ac"

When the pattern includes a slash (/) Vim will compare directory names.
Without the slash only the last part of a file name is used. For example,
"*.txt" matches "/home/biep/readme.txt". The pattern "/home/biep/*" would
also match it. But "home/foo/*.txt" wouldn't.

When including a slash, Vim matches the pattern against both the full path
of the file ("/home/biep/readme.txt") and the relative path (e.g.,
"biep/readme.txt").

Note:
When working on a system that uses a backslash as file separator, such
as MS-Windows, you still use forward slashes in autocommands. This
makes it easier to write the pattern, since a backslash has a special
meaning. It also makes the autocommands portable.

DELETING

To delete an autocommand, use the same command as what it was defined with,
but leave out the {command} at the end and use a !. Example:

:autocmd! FileWritePre *

This will delete all autocommands for the "FileWritePre" event that use the
"*" pattern.

LISTING

usr_40.txt — 269

To list all the currently defined autocommands, use this:

:autocmd

The list can be very long, especially when filetype detection is used. To
list only part of the commands, specify the group, event and/or pattern. For
example, to list all BufNewFile autocommands:

:autocmd BufNewFile

To list all autocommands for the pattern "*.c":

:autocmd * *.c

Using "*" for the event will list all the events. To list all autocommands
for the cprograms group:

:autocmd cprograms

GROUPS

The {group} item, used when defining an autocommand, groups related autocommands
together. This can be used to delete all the autocommands in a certain group,
for example.

When defining several autocommands for a certain group, use the ":augroup"
command. For example, let's define autocommands for C programs:

:augroup cprograms
: autocmd BufReadPost *.c,*.h :set sw=4 sts=4
: autocmd BufReadPost *.cpp :set sw=3 sts=3
:augroup END

This will do the same as:

:autocmd cprograms BufReadPost *.c,*.h :set sw=4 sts=4
:autocmd cprograms BufReadPost *.cpp :set sw=3 sts=3

To delete all autocommands in the "cprograms" group:

:autocmd! cprograms

NESTING

Generally, commands executed as the result of an autocommand event will not
trigger any new events. If you read a file in response to a FileChangedShell
event, it will not trigger the autocommands that would set the syntax, for
example. To make the events triggered, add the "nested" argument:

:autocmd FileChangedShell * ++nested edit

EXECUTING AUTOCOMMANDS

It is possible to trigger an autocommand by pretending an event has occurred.
This is useful to have one autocommand trigger another one. Example:

:autocmd BufReadPost *.new execute "doautocmd BufReadPost " . expand("<afile>:r")

usr_40.txt — 270

This defines an autocommand that is triggered when a new file has been edited.
The file name must end in ".new". The ":execute" command uses expression
evaluation to form a new command and execute it. When editing the file
"tryout.c.new" the executed command will be:

:doautocmd BufReadPost tryout.c

The expand() function takes the "<afile>" argument, which stands for the file
name the autocommand was executed for, and takes the root of the file name
with ":r".

":doautocmd" executes on the current buffer. The ":doautoall" command works
like "doautocmd" except it executes on all the buffers.

USING NORMAL MODE COMMANDS

The commands executed by an autocommand are Command-line commands. If you
want to use a Normal mode command, the ":normal" command can be used.
Example:

:autocmd BufReadPost *.log normal G

This will make the cursor jump to the last line of *.log files when you start
to edit it.

Using the ":normal" command is a bit tricky. First of all, make sure its
argument is a complete command, including all the arguments. When you use "i"
to go to Insert mode, there must also be a <Esc> to leave Insert mode again.
If you use a "/" to start a search pattern, there must be a <CR> to execute
it.

The ":normal" command uses all the text after it as commands. Thus there
can be no | and another command following. To work around this, put the
":normal" command inside an ":execute" command. This also makes it possible
to pass unprintable characters in a convenient way. Example:

:autocmd BufReadPost *.chg execute "normal ONew entry:\<Esc>" |
\ 1read !date

This also shows the use of a backslash to break a long command into more
lines. This can be used in Vim scripts (not at the command line).

When you want the autocommand do something complicated, which involves jumping
around in the file and then returning to the original position, you may want
to restore the view on the file. See restore-position for an example.

IGNORING EVENTS

At times, you will not want to trigger an autocommand. The 'eventignore'
option contains a list of events that will be totally ignored. For example,
the following causes events for entering and leaving a window to be ignored:

:set eventignore=WinEnter,WinLeave

To ignore all events, use the following command:

:set eventignore=all

To set it back to the normal behavior, make 'eventignore' empty:

usr_40.txt — 271

:set eventignore=

==

Next chapter: usr_41.txt Write a Vim script

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_40.txt — 272

usr_41.txt For Vim version 9.1. Last change: 2024 Feb 25

VIM USER MANUAL - by Bram Moolenaar

Write a Vim script

The Vim script language is used for the startup vimrc file, syntax files, and
many other things. This chapter explains the items that can be used in a Vim
script. There are a lot of them, therefore this is a long chapter.

41.1 Introduction
41.2 Variables
41.3 Expressions
41.4 Conditionals
41.5 Executing an expression
41.6 Using functions
41.7 Defining a function
41.8 Lists and Dictionaries
41.9 White space
41.10 Line continuation
41.11 Comments
41.12 Fileformat

Next chapter: usr_42.txt Add new menus
Previous chapter: usr_40.txt Make new commands

Table of contents: usr_toc.txt

==
41.1 Introduction vim-script-intro script

Your first experience with Vim scripts is the vimrc file. Vim reads it when
it starts up and executes the commands. You can set options to the values you
prefer, define mappings, select plugins and much more. You can use any colon
command in it (commands that start with a ":"; these are sometimes referred to
as Ex commands or command-line commands).

Syntax files are also Vim scripts. As are files that set options for a
specific file type. A complicated macro can be defined by a separate Vim
script file. You can think of other uses yourself.

Vim script comes in two flavors: legacy and Vim9 . Since this help file is
for new users, we'll teach you the newer and more convenient Vim9 syntax.
While legacy script is particularly for Vim, Vim9 script looks more like
other languages, such as JavaScript and TypeScript.

To try out Vim script the best way is to edit a script file and source it.
Basically:

:edit test.vim
[insert the script lines you want]
:w
:source %

Let's start with a simple example:

vim9script
var i = 1
while i < 5

echo "count is" i
i += 1

usr_41.txt — 273

endwhile

The output of the example code is:

count is 1
count is 2
count is 3
count is 4

In the first line the `vim9script` command makes clear this is a new, Vim9
script file. That matters for how the rest of the file is used. It is
recommended to put it in the very first line, before any comments.

vim9-declarations
The `var i = 1` command declares the "i" variable and initializes it. The
generic form is:

var {name} = {expression}

In this case the variable name is "i" and the expression is a simple value,
the number one.

The `while` command starts a loop. The generic form is:

while {condition}
{statements}

endwhile

The statements until the matching `endwhile` are executed for as long as the
condition is true. The condition used here is the expression "i < 5". This
is true when the variable i is smaller than five.

Note:
If you happen to write a while loop that keeps on running, you can
interrupt it by pressing CTRL-C (CTRL-Break on MS-Windows).

The `echo` command prints its arguments. In this case the string "count is"
and the value of the variable i. Since i is one, this will print:

count is 1

Then there is the `i += 1` command. This does the same thing as "i = i + 1",
it adds one to the variable i and assigns the new value to the same variable.

The example was given to explain the commands, but would you really want to
make such a loop, it can be written much more compact:

for i in range(1, 4)
echo $"count is {i}"

endfor

We won't explain how `for`, `range()`and `$"string"` work until later. Follow
the links if you are impatient.

TRYING OUT EXAMPLES

You can easily try out most examples in these help files without saving the
commands to a file. For example, to try out the "for" loop above do this:
1. position the cursor on the "for"
2. start Visual mode with "v"
3. move down to the "endfor"

usr_41.txt — 274

4. press colon, then "so" and Enter

After pressing colon you will see ":'<,'>", which is the range of the Visually
selected text.

For some commands it matters they are executed as in Vim9 script. But typed
commands normally use legacy script syntax, such as the example below that
causes the E1004 error. For that use this fourth step:
4. press colon, then "vim9 so" and Enter

"vim9" is short for `vim9cmd`, which is a command modifier to execute the
following command in Vim9 syntax.

Note that this won't work for examples that require a script context.

FOUR KINDS OF NUMBERS

Numbers can be decimal, hexadecimal, octal and binary.

A hexadecimal number starts with "0x" or "0X". For example "0x1f" is decimal
31 and "0x1234" is decimal 4660.

An octal number starts with "0o", "0O". "0o17" is decimal 15.

A binary number starts with "0b" or "0B". For example "0b101" is decimal 5.

A decimal number is just digits. Careful: In legacy script don't put a zero
before a decimal number, it will be interpreted as an octal number! That's
one reason to use Vim9 script.

The `echo` command evaluates its argument and when it is a number always
prints the decimal form. Example:

echo 0x7f 0o36
127 30

A number is made negative with a minus sign. This also works for hexadecimal,
octal and binary numbers:

echo -0x7f
-127

A minus sign is also used for subtraction. This can sometimes lead to
confusion. If we put a minus sign before both numbers we get an error:

echo -0x7f -0o36
E1004: White space required before and after '-' at "-0o36"

Note: if you are not using a Vim9 script to try out these commands but type
them directly, they will be executed as legacy script. Then the echo command
sees the second minus sign as subtraction. To get the error, prefix the
command with `vim9cmd`:

vim9cmd echo -0x7f -0o36
E1004: White space required before and after '-' at "-0o36"

White space in an expression is often required to make sure it is easy to read
and avoid errors. Such as thinking that the "-0o36" above makes the number
negative, while it is actually seen as a subtraction.

usr_41.txt — 275

To actually have the minus sign be used for negation, you can put the second
expression in parentheses:

echo -0x7f (-0o36)
-127 -30

==
41.2 Variables

A variable name consists of ASCII letters, digits and the underscore. It
cannot start with a digit. Valid variable names are:

counter
_aap3
very_long_variable_name_with_underscores
CamelCaseName
LENGTH

Invalid names are "foo.bar" and "6var".

Some variables are global. To see a list of currently defined global
variables type this command:

:let

You can use global variables everywhere. However, it is too easy to use the
same name in two unrelated scripts. Therefore variables declared in a script
are local to that script. For example, if you have this in "script1.vim":

vim9script
var counter = 5
echo counter
5

And you try to use the variable in "script2.vim":

vim9script
echo counter
E121: Undefined variable: counter

Using a script-local variable means you can be sure that it is only changed in
that script and not elsewhere.

If you do want to share variables between scripts, use the "g:" prefix and
assign the value directly, do not use `var`. And use a specific name to avoid
mistakes. Thus in "script1.vim":

vim9script
g:mash_counter = 5
echo g:mash_counter
5

And then in "script2.vim":

vim9script
echo g:mash_counter
5

Global variables can also be accessed on the command line, E.g. typing this:

usr_41.txt — 276

echo g:mash_counter
That will not work for a script-local variable.

More about script-local variables here: script-variable .

There are more kinds of variables, see internal-variables . The most often
used ones are:

b:name variable local to a buffer
w:name variable local to a window
g:name global variable (also in a function)
v:name variable predefined by Vim

DELETING VARIABLES

Variables take up memory and show up in the output of the `let` command. To
delete a global variable use the `unlet` command. Example:

unlet g:counter

This deletes the global variable "g:counter" to free up the memory it uses.
If you are not sure if the variable exists, and don't want an error message
when it doesn't, append !:

unlet! g:counter

You cannot `unlet` script-local variables in Vim9 script, only in legacy
script.

When a script has been processed to the end, the local variables declared
there will not be deleted. Functions defined in the script can use them.
Example:

vim9script
var counter = 0
def g:GetCount(): number

counter += 1
return counter

enddef

Every time you call the function it will return the next count:
:echo g:GetCount()
1

:echo g:GetCount()
2

If you are worried a script-local variable is consuming too much memory, set
it to an empty or null value after you no longer need it. Example:

var lines = readfile(...)
...
lines = []

Note: below we'll leave out the `vim9script` line from examples, so we can
concentrate on the relevant commands, but you'll still need to put it at the
top of your script file.

STRING VARIABLES AND CONSTANTS

usr_41.txt — 277

So far only numbers were used for the variable value. Strings can be used as
well. Numbers and strings are the basic types of variables that Vim supports.
Example:

var name = "Peter"
echo name
Peter

Every variable has a type. Very often, as in this example, the type is
defined by assigning a value. This is called type inference. If you do not
want to give the variable a value yet, you need to specify the type:

var name: string
var age: number
if male

name = "Peter"
age = 42

else
name = "Elisa"
age = 45

endif

If you make a mistake and try to assign the wrong type of value you'll get an
error:

age = "Peter"
E1012: Type mismatch; expected number but got string

More about types in 41.8 .

To assign a string value to a variable, you can use a string constant. There
are two types of these. First the string in double quotes, as we used
already. If you want to include a double quote inside the string, put a
backslash in front of it:

var name = "he is \"Peter\""
echo name
he is "Peter"

To avoid the need for backslashes, you can use a string in single quotes:

var name = 'he is "Peter"'
echo name
he is "Peter"

Inside a single-quote string all the characters are as they are. Only the
single quote itself is special: you need to use two to get one. A backslash
is taken literally, thus you can't use it to change the meaning of the
character after it:

var name = 'P\e''ter'''
echo name
P\e'ter'

In double-quote strings it is possible to use special characters. Here are a
few useful ones:

\t <Tab>
\n <NL>, line break

usr_41.txt — 278

\r <CR>, <Enter>
\e <Esc>
\b <BS>, backspace
\" "
\\ \, backslash
\<Esc> <Esc>
\<C-W> CTRL-W

The last two are just examples. The "\<name>" form can be used to include
the special key "name".

See expr-quote for the full list of special items in a string.

==
41.3 Expressions

Vim has a fairly standard way to handle expressions. You can read the
definition here: expression-syntax . Here we will show the most common
items.

The numbers, strings and variables mentioned above are expressions by
themselves. Thus everywhere an expression is expected, you can use a number,
string or variable. Other basic items in an expression are:

$NAME environment variable
&name option value
@r register contents

Examples:

echo "The value of 'tabstop' is" &ts
echo "Your home directory is" $HOME
if @a == 'text'

The &name form can also be used to set an option value, do something and
restore the old value. Example:

var save_ic = &ic
set noic
s/The Start/The Beginning/
&ic = save_ic

This makes sure the "The Start" pattern is used with the 'ignorecase' option
off. Still, it keeps the value that the user had set. (Another way to do
this would be to add "\C" to the pattern, see /\C .)

MATHEMATICS

It becomes more interesting if we combine these basic items. Let's start with
mathematics on numbers:

a + b add
a - b subtract
a * b multiply
a / b divide
a % b modulo

The usual precedence is used. Example:

usr_41.txt — 279

echo 10 + 5 * 2
20

Grouping is done with parentheses. No surprises here. Example:

echo (10 + 5) * 2
30

OTHERS

Strings can be concatenated with ".." (see expr6). Example:

echo "Name: " .. name
Name: Peter

When the "echo" command gets multiple arguments, it separates them with a
space. In the example the argument is a single expression, thus no space is
inserted.

If you don't like the concatenation you can use the $"string" form, which
accepts an expression in curly braces:

echo $"Name: {name}"

See interpolated-string for more information.

Borrowed from the C language is the conditional expression:

a ? b : c

If "a" evaluates to true "b" is used, otherwise "c" is used. Example:

var nr = 4
echo nr > 5 ? "nr is big" : "nr is small"
nr is small

The three parts of the constructs are always evaluated first, thus you could
see it works as:

(a) ? (b) : (c)

There is also the falsy operator:
echo name ?? "No name given"

See ?? .

==
41.4 Conditionals

The `if` commands executes the following statements, until the matching
`endif`, only when a condition is met. The generic form is:

if {condition}
{statements}

endif

Only when the expression {condition} evaluates to true or one will the
{statements} be executed. If they are not executed they must still be valid
commands. If they contain garbage, Vim won't be able to find the matching
`endif`.

usr_41.txt — 280

You can also use `else`. The generic form for this is:

if {condition}
{statements}

else
{statements}

endif

The second {statements} block is only executed if the first one isn't.

Finally, there is `elseif`

if {condition}
{statements}

elseif {condition}
{statements}

endif

This works just like using `else` and then `if`, but without the need for an
extra `endif`.

A useful example for your vimrc file is checking the 'term' option and doing
something depending upon its value:

if &term == "xterm"
Do stuff for xterm

elseif &term == "vt100"
Do stuff for a vt100 terminal

else
Do something for other terminals

endif

This uses "#" to start a comment, more about that later.

LOGIC OPERATIONS

We already used some of them in the examples. These are the most often used
ones:

a == b equal to
a != b not equal to
a > b greater than
a >= b greater than or equal to
a < b less than
a <= b less than or equal to

The result is true if the condition is met and false otherwise. An example:

if v:version >= 800
echo "congratulations"

else
echo "you are using an old version, upgrade!"

endif

Here "v:version" is a variable defined by Vim, which has the value of the Vim
version. 800 is for version 8.0, version 8.1 has the value 801. This is
useful to write a script that works with multiple versions of Vim.
See v:version . You can also check for a specific feature with `has()` or a
specific patch, see has-patch .

usr_41.txt — 281

The logic operators work both for numbers and strings. When comparing two
strings, the mathematical difference is used. This compares byte values,
which may not be right for some languages.

If you try to compare a string with a number you will get an error.

For strings there are two more useful items:

str =~ pat matches with
str !~ pat does not match with

The left item "str" is used as a string. The right item "pat" is used as a
pattern, like what's used for searching. Example:

if str =~ " "
echo "str contains a space"

endif
if str !~ '\.$'

echo "str does not end in a full stop"
endif

Notice the use of a single-quote string for the pattern. This is useful,
because patterns tend to contain many backslashes and backslashes need to be
doubled in a double-quote string.

The match is not anchored, if you want to match the whole string start with
"^" and end with "$".

The 'ignorecase' option is not used when comparing strings. When you do want
to ignore case append "?". Thus "==?" compares two strings to be equal while
ignoring case. For the full table see expr-== .

MORE LOOPING

The `while` command was already mentioned. Two more statements can be used in
between the `while` and the `endwhile`:

continue Jump back to the start of the while loop; the
loop continues.

break Jump forward to the `endwhile`; the loop is
discontinued.

Example:

var counter = 1
while counter < 40

if skip_number(counter)
continue

endif
if last_number(counter)

break
endif
sleep 50m
++counter

endwhile

The `sleep` command makes Vim take a nap. The "50m" specifies fifty
milliseconds. Another example is `sleep 4`, which sleeps for four seconds.

usr_41.txt — 282

`continue` and `break` can also be used in between `for` and `endfor`.
Even more looping can be done with the `for` command, see below in 41.8 .

==
41.5 Executing an expression

So far the commands in the script were executed by Vim directly. The
`execute` command allows executing the result of an expression. This is a
very powerful way to build commands and execute them.

An example is to jump to a tag, which is contained in a variable:

execute "tag " .. tag_name

The ".." is used to concatenate the string "tag " with the value of variable
"tag_name". Suppose "tag_name" has the value "get_cmd", then the command that
will be executed is:

tag get_cmd

The `execute` command can only execute Ex commands. The `normal` command
executes Normal mode commands. However, its argument is not an expression but
the literal command characters. Example:

normal gg=G

This jumps to the first line with "gg" and formats all lines with the "="
operator and the "G" movement.

To make `normal` work with an expression, combine `execute` with it.
Example:

execute "normal " .. count .. "j"

This will move the cursor "count" lines down.

Make sure that the argument for `normal` is a complete command. Otherwise
Vim will run into the end of the argument and silently abort the command. For
example, if you start the delete operator, you must give the movement command
also. This works:

normal d$

This does nothing:

normal d

If you start Insert mode and do not end it with Esc, it will end anyway. This
works to insert "new text":

execute "normal inew text"

If you want to do something after inserting text you do need to end Insert
mode:

execute "normal inew text\<Esc>b"

This inserts "new text" and puts the cursor on the first letter of "text".
Notice the use of the special key "\<Esc>". This avoids having to enter a

usr_41.txt — 283

real <Esc> character in your script. That is where `execute` with a
double-quote string comes in handy.

If you don't want to execute a string as a command but evaluate it to get the
result of the expression, you can use the eval() function:

var optname = "path"
var optvalue = eval('&' .. optname)

A "&" character is prepended to "path", thus the argument to eval() is
"&path". The result will then be the value of the 'path' option.

==
41.6 Using functions

Vim defines many functions and provides a large amount of functionality that
way. A few examples will be given in this section. You can find the whole
list below: function-list .

A function is called with the parameters in between parentheses, separated by
commas. Example:

search("Date: ", "W")

This calls the search() function, with arguments "Date: " and "W". The
search() function uses its first argument as a search pattern and the second
one as flags. The "W" flag means the search doesn't wrap around the end of
the file.

Using the `call` command is optional in Vim9 script. It is required in
legacy script and on the command line:

call search("Date: ", "W")

A function can be called in an expression. Example:

var line = getline(".")
var repl = substitute(line, '\a', "*", "g")
setline(".", repl)

The getline() function obtains a line from the current buffer. Its argument
is a specification of the line number. In this case "." is used, which means
the line where the cursor is.

The substitute() function does something similar to the `:substitute` command.
The first argument "line" is the string on which to perform the substitution.
The second argument '\a' is the pattern, the third "*" is the replacement
string. Finally, the last argument "g" is the flags.

The setline() function sets the line, specified by the first argument, to a
new string, the second argument. In this example the line under the cursor is
replaced with the result of the substitute(). Thus the effect of the three
statements is equal to:

:substitute/\a/*/g

Using the functions becomes interesting when you do more work before and
after the substitute() call.

usr_41.txt — 284

FUNCTIONS function-list

There are many functions. We will mention them here, grouped by what they are
used for. You can find an alphabetical list here: builtin-function-list .
Use CTRL-] on the function name to jump to detailed help on it.

String manipulation: string-functions
nr2char() get a character by its number value
list2str() get a character string from a list of numbers
char2nr() get number value of a character
str2list() get list of numbers from a string
str2nr() convert a string to a Number
str2float() convert a string to a Float
printf() format a string according to % items
escape() escape characters in a string with a '\'
shellescape() escape a string for use with a shell command
fnameescape() escape a file name for use with a Vim command
tr() translate characters from one set to another
strtrans() translate a string to make it printable
keytrans() translate internal keycodes to a form that

can be used by :map
tolower() turn a string to lowercase
toupper() turn a string to uppercase
charclass() class of a character
match() position where a pattern matches in a string
matchbufline() all the matches of a pattern in a buffer
matchend() position where a pattern match ends in a string
matchfuzzy() fuzzy matches a string in a list of strings
matchfuzzypos() fuzzy matches a string in a list of strings
matchstr() match of a pattern in a string
matchstrlist() all the matches of a pattern in a List of

strings
matchstrpos() match and positions of a pattern in a string
matchlist() like matchstr() and also return submatches
stridx() first index of a short string in a long string
strridx() last index of a short string in a long string
strlen() length of a string in bytes
strcharlen() length of a string in characters
strchars() number of characters in a string
strutf16len() number of UTF-16 code units in a string
strwidth() size of string when displayed
strdisplaywidth() size of string when displayed, deals with tabs
setcellwidths() set character cell width overrides
getcellwidths() get character cell width overrides
reverse() reverse the order of characters in a string
substitute() substitute a pattern match with a string
submatch() get a specific match in ":s" and substitute()
strpart() get part of a string using byte index
strcharpart() get part of a string using char index
slice() take a slice of a string, using char index in

Vim9 script
strgetchar() get character from a string using char index
expand() expand special keywords
expandcmd() expand a command like done for `:edit`
iconv() convert text from one encoding to another
byteidx() byte index of a character in a string
byteidxcomp() like byteidx() but count composing characters
charidx() character index of a byte in a string
utf16idx() UTF-16 index of a byte in a string
repeat() repeat a string multiple times

usr_41.txt — 285

eval() evaluate a string expression
execute() execute an Ex command and get the output
win_execute() like execute() but in a specified window
trim() trim characters from a string
gettext() lookup message translation

List manipulation: list-functions
get() get an item without error for wrong index
len() number of items in a List
empty() check if List is empty
insert() insert an item somewhere in a List
add() append an item to a List
extend() append a List to a List
extendnew() make a new List and append items
remove() remove one or more items from a List
copy() make a shallow copy of a List
deepcopy() make a full copy of a List
filter() remove selected items from a List
map() change each List item
mapnew() make a new List with changed items
foreach() apply function to List items
reduce() reduce a List to a value
slice() take a slice of a List
sort() sort a List
reverse() reverse the order of items in a List
uniq() remove copies of repeated adjacent items
split() split a String into a List
join() join List items into a String
range() return a List with a sequence of numbers
string() String representation of a List
call() call a function with List as arguments
index() index of a value in a List or Blob
indexof() index in a List or Blob where an expression

evaluates to true
max() maximum value in a List
min() minimum value in a List
count() count number of times a value appears in a List
repeat() repeat a List multiple times
flatten() flatten a List
flattennew() flatten a copy of a List

Dictionary manipulation: dict-functions
get() get an entry without an error for a wrong key
len() number of entries in a Dictionary
has_key() check whether a key appears in a Dictionary
empty() check if Dictionary is empty
remove() remove an entry from a Dictionary
extend() add entries from one Dictionary to another
extendnew() make a new Dictionary and append items
filter() remove selected entries from a Dictionary
map() change each Dictionary entry
mapnew() make a new Dictionary with changed items
foreach() apply function to Dictionary items
keys() get List of Dictionary keys
values() get List of Dictionary values
items() get List of Dictionary key-value pairs
copy() make a shallow copy of a Dictionary
deepcopy() make a full copy of a Dictionary
string() String representation of a Dictionary
max() maximum value in a Dictionary

usr_41.txt — 286

min() minimum value in a Dictionary
count() count number of times a value appears

Floating point computation: float-functions
float2nr() convert Float to Number
abs() absolute value (also works for Number)
round() round off
ceil() round up
floor() round down
trunc() remove value after decimal point
fmod() remainder of division
exp() exponential
log() natural logarithm (logarithm to base e)
log10() logarithm to base 10
pow() value of x to the exponent y
sqrt() square root
sin() sine
cos() cosine
tan() tangent
asin() arc sine
acos() arc cosine
atan() arc tangent
atan2() arc tangent
sinh() hyperbolic sine
cosh() hyperbolic cosine
tanh() hyperbolic tangent
isinf() check for infinity
isnan() check for not a number

Blob manipulation: blob-functions
blob2list() get a list of numbers from a blob
list2blob() get a blob from a list of numbers
reverse() reverse the order of numbers in a blob

Other computation: bitwise-function
and() bitwise AND
invert() bitwise invert
or() bitwise OR
xor() bitwise XOR
sha256() SHA-256 hash
rand() get a pseudo-random number
srand() initialize seed used by rand()

Variables: var-functions
instanceof() check if a variable is an instance of a given

class
type() type of a variable as a number
typename() type of a variable as text
islocked() check if a variable is locked
funcref() get a Funcref for a function reference
function() get a Funcref for a function name
getbufvar() get a variable value from a specific buffer
setbufvar() set a variable in a specific buffer
getwinvar() get a variable from specific window
gettabvar() get a variable from specific tab page
gettabwinvar() get a variable from specific window & tab page
setwinvar() set a variable in a specific window
settabvar() set a variable in a specific tab page
settabwinvar() set a variable in a specific window & tab page
garbagecollect() possibly free memory

usr_41.txt — 287

Cursor and mark position: cursor-functions mark-functions
col() column number of the cursor or a mark
virtcol() screen column of the cursor or a mark
line() line number of the cursor or mark
wincol() window column number of the cursor
winline() window line number of the cursor
cursor() position the cursor at a line/column
screencol() get screen column of the cursor
screenrow() get screen row of the cursor
screenpos() screen row and col of a text character
virtcol2col() byte index of a text character on screen
getcurpos() get position of the cursor
getpos() get position of cursor, mark, etc.
setpos() set position of cursor, mark, etc.
getmarklist() list of global/local marks
byte2line() get line number at a specific byte count
line2byte() byte count at a specific line
diff_filler() get the number of filler lines above a line
screenattr() get attribute at a screen line/row
screenchar() get character code at a screen line/row
screenchars() get character codes at a screen line/row
screenstring() get string of characters at a screen line/row
charcol() character number of the cursor or a mark
getcharpos() get character position of cursor, mark, etc.
setcharpos() set character position of cursor, mark, etc.
getcursorcharpos() get character position of the cursor
setcursorcharpos() set character position of the cursor

Working with text in the current buffer: text-functions
getline() get a line or list of lines from the buffer
getregion() get a region of text from the buffer
setline() replace a line in the buffer
append() append line or list of lines in the buffer
indent() indent of a specific line
cindent() indent according to C indenting
lispindent() indent according to Lisp indenting
nextnonblank() find next non-blank line
prevnonblank() find previous non-blank line
search() find a match for a pattern
searchpos() find a match for a pattern
searchcount() get number of matches before/after the cursor
searchpair() find the other end of a start/skip/end
searchpairpos() find the other end of a start/skip/end
searchdecl() search for the declaration of a name
getcharsearch() return character search information
setcharsearch() set character search information

Working with text in another buffer:
getbufline() get a list of lines from the specified buffer
getbufoneline() get a one line from the specified buffer
setbufline() replace a line in the specified buffer
appendbufline() append a list of lines in the specified buffer
deletebufline() delete lines from a specified buffer

system-functions file-functions
System functions and manipulation of files:

glob() expand wildcards
globpath() expand wildcards in a number of directories
glob2regpat() convert a glob pattern into a search pattern

usr_41.txt — 288

findfile() find a file in a list of directories
finddir() find a directory in a list of directories
resolve() find out where a shortcut points to
fnamemodify() modify a file name
pathshorten() shorten directory names in a path
simplify() simplify a path without changing its meaning
executable() check if an executable program exists
exepath() full path of an executable program
filereadable() check if a file can be read
filewritable() check if a file can be written to
getfperm() get the permissions of a file
setfperm() set the permissions of a file
getftype() get the kind of a file
isabsolutepath() check if a path is absolute
isdirectory() check if a directory exists
getfsize() get the size of a file
getcwd() get the current working directory
haslocaldir() check if current window used :lcd or :tcd
tempname() get the name of a temporary file
mkdir() create a new directory
chdir() change current working directory
delete() delete a file
rename() rename a file
system() get the result of a shell command as a string
systemlist() get the result of a shell command as a list
environ() get all environment variables
getenv() get one environment variable
setenv() set an environment variable
hostname() name of the system
readfile() read a file into a List of lines
readblob() read a file into a Blob
readdir() get a List of file names in a directory
readdirex() get a List of file information in a directory
writefile() write a List of lines or Blob into a file

Date and Time: date-functions time-functions
getftime() get last modification time of a file
localtime() get current time in seconds
strftime() convert time to a string
strptime() convert a date/time string to time
reltime() get the current or elapsed time accurately
reltimestr() convert reltime() result to a string
reltimefloat() convert reltime() result to a Float

Autocmds: autocmd-functions
autocmd_add() add a list of autocmds and groups
autocmd_delete() delete a list of autocmds and groups
autocmd_get() return a list of autocmds

buffer-functions window-functions arg-functions
Buffers, windows and the argument list:

argc() number of entries in the argument list
argidx() current position in the argument list
arglistid() get id of the argument list
argv() get one entry from the argument list
bufadd() add a file to the list of buffers
bufexists() check if a buffer exists
buflisted() check if a buffer exists and is listed
bufload() ensure a buffer is loaded
bufloaded() check if a buffer exists and is loaded

usr_41.txt — 289

bufname() get the name of a specific buffer
bufnr() get the buffer number of a specific buffer
tabpagebuflist() return List of buffers in a tab page
tabpagenr() get the number of a tab page
tabpagewinnr() like winnr() for a specified tab page
winnr() get the window number for the current window
bufwinid() get the window ID of a specific buffer
bufwinnr() get the window number of a specific buffer
winbufnr() get the buffer number of a specific window
listener_add() add a callback to listen to changes
listener_flush() invoke listener callbacks
listener_remove() remove a listener callback
win_findbuf() find windows containing a buffer
win_getid() get window ID of a window
win_gettype() get type of window
win_gotoid() go to window with ID
win_id2tabwin() get tab and window nr from window ID
win_id2win() get window nr from window ID
win_move_separator() move window vertical separator
win_move_statusline() move window status line
win_splitmove() move window to a split of another window
getbufinfo() get a list with buffer information
gettabinfo() get a list with tab page information
getwininfo() get a list with window information
getchangelist() get a list of change list entries
getjumplist() get a list of jump list entries
swapfilelist() list of existing swap files in 'directory'
swapinfo() information about a swap file
swapname() get the swap file path of a buffer

Command line: command-line-functions
getcmdcompltype() get the type of the current command line

completion
getcmdline() get the current command line
getcmdpos() get position of the cursor in the command line
getcmdscreenpos() get screen position of the cursor in the

command line
setcmdline() set the current command line
setcmdpos() set position of the cursor in the command line
getcmdtype() return the current command-line type
getcmdwintype() return the current command-line window type
getcompletion() list of command-line completion matches
fullcommand() get full command name

Quickfix and location lists: quickfix-functions
getqflist() list of quickfix errors
setqflist() modify a quickfix list
getloclist() list of location list items
setloclist() modify a location list

Insert mode completion: completion-functions
complete() set found matches
complete_add() add to found matches
complete_check() check if completion should be aborted
complete_info() get current completion information
pumvisible() check if the popup menu is displayed
pum_getpos() position and size of popup menu if visible

Folding: folding-functions
foldclosed() check for a closed fold at a specific line

usr_41.txt — 290

foldclosedend() like foldclosed() but return the last line
foldlevel() check for the fold level at a specific line
foldtext() generate the line displayed for a closed fold
foldtextresult() get the text displayed for a closed fold

Syntax and highlighting: syntax-functions highlighting-functions
clearmatches() clear all matches defined by matchadd() and

the :match commands
getmatches() get all matches defined by matchadd() and

the :match commands
hlexists() check if a highlight group exists
hlget() get highlight group attributes
hlset() set highlight group attributes
hlID() get ID of a highlight group
synID() get syntax ID at a specific position
synIDattr() get a specific attribute of a syntax ID
synIDtrans() get translated syntax ID
synstack() get list of syntax IDs at a specific position
synconcealed() get info about concealing
diff_hlID() get highlight ID for diff mode at a position
matchadd() define a pattern to highlight (a "match")
matchaddpos() define a list of positions to highlight
matcharg() get info about :match arguments
matchdelete() delete a match defined by matchadd() or a

:match command
setmatches() restore a list of matches saved by

getmatches()

Spelling: spell-functions
spellbadword() locate badly spelled word at or after cursor
spellsuggest() return suggested spelling corrections
soundfold() return the sound-a-like equivalent of a word

History: history-functions
histadd() add an item to a history
histdel() delete an item from a history
histget() get an item from a history
histnr() get highest index of a history list

Interactive: interactive-functions
browse() put up a file requester
browsedir() put up a directory requester
confirm() let the user make a choice
getchar() get a character from the user
getcharstr() get a character from the user as a string
getcharmod() get modifiers for the last typed character
getmousepos() get last known mouse position
getmouseshape() get name of the current mouse shape
echoraw() output characters as-is
feedkeys() put characters in the typeahead queue
input() get a line from the user
inputlist() let the user pick an entry from a list
inputsecret() get a line from the user without showing it
inputdialog() get a line from the user in a dialog
inputsave() save and clear typeahead
inputrestore() restore typeahead

GUI: gui-functions
getfontname() get name of current font being used
getwinpos() position of the Vim window

usr_41.txt — 291

getwinposx() X position of the Vim window
getwinposy() Y position of the Vim window
balloon_show() set the balloon content
balloon_split() split a message for a balloon
balloon_gettext() get the text in the balloon

Vim server: server-functions
serverlist() return the list of server names
remote_startserver() run a server
remote_send() send command characters to a Vim server
remote_expr() evaluate an expression in a Vim server
server2client() send a reply to a client of a Vim server
remote_peek() check if there is a reply from a Vim server
remote_read() read a reply from a Vim server
foreground() move the Vim window to the foreground
remote_foreground() move the Vim server window to the foreground

Window size and position: window-size-functions
winheight() get height of a specific window
winwidth() get width of a specific window
win_screenpos() get screen position of a window
winlayout() get layout of windows in a tab page
winrestcmd() return command to restore window sizes
winsaveview() get view of current window
winrestview() restore saved view of current window

Mappings and Menus: mapping-functions
digraph_get() get digraph
digraph_getlist() get all digraph s
digraph_set() register digraph
digraph_setlist() register multiple digraph s
hasmapto() check if a mapping exists
mapcheck() check if a matching mapping exists
maparg() get rhs of a mapping
maplist() get list of all mappings
mapset() restore a mapping
menu_info() get information about a menu item
wildmenumode() check if the wildmode is active

Testing: test-functions
assert_equal() assert that two expressions values are equal
assert_equalfile() assert that two file contents are equal
assert_notequal() assert that two expressions values are not equal
assert_inrange() assert that an expression is inside a range
assert_match() assert that a pattern matches the value
assert_notmatch() assert that a pattern does not match the value
assert_false() assert that an expression is false
assert_true() assert that an expression is true
assert_exception() assert that a command throws an exception
assert_beeps() assert that a command beeps
assert_nobeep() assert that a command does not cause a beep
assert_fails() assert that a command fails
assert_report() report a test failure
test_alloc_fail() make memory allocation fail
test_autochdir() enable 'autochdir' during startup
test_override() test with Vim internal overrides
test_garbagecollect_now() free memory right now
test_garbagecollect_soon() set a flag to free memory soon
test_getvalue() get value of an internal variable
test_gui_event() generate a GUI event for testing

usr_41.txt — 292

test_ignore_error() ignore a specific error message
test_mswin_event() generate an MS-Windows event
test_null_blob() return a null Blob
test_null_channel() return a null Channel
test_null_dict() return a null Dict
test_null_function() return a null Funcref
test_null_job() return a null Job
test_null_list() return a null List
test_null_partial() return a null Partial function
test_null_string() return a null String
test_settime() set the time Vim uses internally
test_setmouse() set the mouse position
test_feedinput() add key sequence to input buffer
test_option_not_set() reset flag indicating option was set
test_refcount() return an expression's reference count
test_srand_seed() set the seed value for srand()
test_unknown() return a value with unknown type
test_void() return a value with void type

Inter-process communication: channel-functions
ch_canread() check if there is something to read
ch_open() open a channel
ch_close() close a channel
ch_close_in() close the in part of a channel
ch_read() read a message from a channel
ch_readblob() read a Blob from a channel
ch_readraw() read a raw message from a channel
ch_sendexpr() send a JSON message over a channel
ch_sendraw() send a raw message over a channel
ch_evalexpr() evaluate an expression over channel
ch_evalraw() evaluate a raw string over channel
ch_status() get status of a channel
ch_getbufnr() get the buffer number of a channel
ch_getjob() get the job associated with a channel
ch_info() get channel information
ch_log() write a message in the channel log file
ch_logfile() set the channel log file
ch_setoptions() set the options for a channel
json_encode() encode an expression to a JSON string
json_decode() decode a JSON string to Vim types
js_encode() encode an expression to a JSON string
js_decode() decode a JSON string to Vim types
err_teapot() give error 418 or 503

Jobs: job-functions
job_start() start a job
job_stop() stop a job
job_status() get the status of a job
job_getchannel() get the channel used by a job
job_info() get information about a job
job_setoptions() set options for a job

Signs: sign-functions
sign_define() define or update a sign
sign_getdefined() get a list of defined signs
sign_getplaced() get a list of placed signs
sign_jump() jump to a sign
sign_place() place a sign
sign_placelist() place a list of signs
sign_undefine() undefine a sign

usr_41.txt — 293

sign_unplace() unplace a sign
sign_unplacelist() unplace a list of signs

Terminal window: terminal-functions
term_start() open a terminal window and run a job
term_list() get the list of terminal buffers
term_sendkeys() send keystrokes to a terminal
term_wait() wait for screen to be updated
term_getjob() get the job associated with a terminal
term_scrape() get row of a terminal screen
term_getline() get a line of text from a terminal
term_getattr() get the value of attribute {what}
term_getcursor() get the cursor position of a terminal
term_getscrolled() get the scroll count of a terminal
term_getaltscreen() get the alternate screen flag
term_getsize() get the size of a terminal
term_getstatus() get the status of a terminal
term_gettitle() get the title of a terminal
term_gettty() get the tty name of a terminal
term_setansicolors() set 16 ANSI colors, used for GUI
term_getansicolors() get 16 ANSI colors, used for GUI
term_dumpdiff() display difference between two screen dumps
term_dumpload() load a terminal screen dump in a window
term_dumpwrite() dump contents of a terminal screen to a file
term_setkill() set signal to stop job in a terminal
term_setrestore() set command to restore a terminal
term_setsize() set the size of a terminal
term_setapi() set terminal JSON API function name prefix

Popup window: popup-window-functions
popup_create() create popup centered in the screen
popup_atcursor() create popup just above the cursor position,

closes when the cursor moves away
popup_beval() at the position indicated by v:beval_

variables, closes when the mouse moves away
popup_notification() show a notification for three seconds
popup_dialog() create popup centered with padding and border
popup_menu() prompt for selecting an item from a list
popup_hide() hide a popup temporarily
popup_show() show a previously hidden popup
popup_move() change the position and size of a popup
popup_setoptions() override options of a popup
popup_settext() replace the popup buffer contents
popup_close() close one popup
popup_clear() close all popups
popup_filter_menu() select from a list of items
popup_filter_yesno() block until 'y' or 'n' is pressed
popup_getoptions() get current options for a popup
popup_getpos() get actual position and size of a popup
popup_findecho() get window ID for popup used for `:echowindow`
popup_findinfo() get window ID for popup info window
popup_findpreview() get window ID for popup preview window
popup_list() get list of all popup window IDs
popup_locate() get popup window ID from its screen position

Timers: timer-functions
timer_start() create a timer
timer_pause() pause or unpause a timer
timer_stop() stop a timer
timer_stopall() stop all timers

usr_41.txt — 294

timer_info() get information about timers

Tags: tag-functions
taglist() get list of matching tags
tagfiles() get a list of tags files
gettagstack() get the tag stack of a window
settagstack() modify the tag stack of a window

Prompt Buffer: promptbuffer-functions
prompt_getprompt() get the effective prompt text for a buffer
prompt_setcallback() set prompt callback for a buffer
prompt_setinterrupt() set interrupt callback for a buffer
prompt_setprompt() set the prompt text for a buffer

Registers: register-functions
getreg() get contents of a register
getreginfo() get information about a register
getregtype() get type of a register
setreg() set contents and type of a register
reg_executing() return the name of the register being executed
reg_recording() return the name of the register being recorded

Text Properties: text-property-functions
prop_add() attach a property at a position
prop_add_list() attach a property at multiple positions
prop_clear() remove all properties from a line or lines
prop_find() search for a property
prop_list() return a list of all properties in a line
prop_remove() remove a property from a line
prop_type_add() add/define a property type
prop_type_change() change properties of a type
prop_type_delete() remove a text property type
prop_type_get() return the properties of a type
prop_type_list() return a list of all property types

Sound: sound-functions
sound_clear() stop playing all sounds
sound_playevent() play an event's sound
sound_playfile() play a sound file
sound_stop() stop playing a sound

Various: various-functions
mode() get current editing mode
state() get current busy state
visualmode() last visual mode used
exists() check if a variable, function, etc. exists
exists_compiled() like exists() but check at compile time
has() check if a feature is supported in Vim
changenr() return number of most recent change
cscope_connection() check if a cscope connection exists
did_filetype() check if a FileType autocommand was used
diff() diff two Lists of strings
eventhandler() check if invoked by an event handler
getpid() get process ID of Vim
getscriptinfo() get list of sourced vim scripts
getimstatus() check if IME status is active
interrupt() interrupt script execution
windowsversion() get MS-Windows version
terminalprops() properties of the terminal

usr_41.txt — 295

libcall() call a function in an external library
libcallnr() idem, returning a number

undofile() get the name of the undo file
undotree() return the state of the undo tree for a buffer

shiftwidth() effective value of 'shiftwidth'

wordcount() get byte/word/char count of buffer

luaeval() evaluate Lua expression
mzeval() evaluate MzScheme expression
perleval() evaluate Perl expression (+perl)
py3eval() evaluate Python expression (+python3)
pyeval() evaluate Python expression (+python)
pyxeval() evaluate python_x expression
rubyeval() evaluate Ruby expression

debugbreak() interrupt a program being debugged

==
41.7 Defining a function

Vim enables you to define your own functions. The basic function declaration
begins as follows:

def {name}({var1}, {var2}, ...): return-type
{body}

enddef

Note:
Function names must begin with a capital letter.

Let's define a short function to return the smaller of two numbers. It starts
with this line:

def Min(num1: number, num2: number): number

This tells Vim that the function is named "Min", it takes two arguments that
are numbers: "num1" and "num2" and returns a number.

The first thing you need to do is to check to see which number is smaller:

if num1 < num2

Let's assign the variable "smaller" the value of the smallest number:

var smaller: number
if num1 < num2

smaller = num1
else

smaller = num2
endif

The variable "smaller" is a local variable. It is declared to be a number,
that way Vim can warn you for any mistakes. Variables used inside a function
are local unless prefixed by something like "g:", "w:", or "b:".

Note:
To access a global variable from inside a function you must prepend

usr_41.txt — 296

"g:" to it. Thus "g:today" inside a function is used for the global
variable "today", and "today" is another variable, local to the
function or the script.

You now use the `return` statement to return the smallest number to the user.
Finally, you end the function:

return smaller
enddef

The complete function definition is as follows:

def Min(num1: number, num2: number): number
var smaller: number
if num1 < num2

smaller = num1
else

smaller = num2
endif
return smaller

enddef

Obviously this is a verbose example. You can make it shorter by using two
return commands:

def Min(num1: number, num2: number): number
if num1 < num2

return num1
endif
return num2

enddef

And if you remember the conditional expression, you need only one line:

def Min(num1: number, num2: number): number
return num1 < num2 ? num1 : num2

enddef

A user defined function is called in exactly the same way as a built-in
function. Only the name is different. The Min function can be used like
this:

echo Min(5, 8)

Only now will the function be executed and the lines be parsed by Vim.
If there are mistakes, like using an undefined variable or function, you will
now get an error message. When defining the function these errors are not
detected. To get the errors sooner you can tell Vim to compile all the
functions in the script:

defcompile

Compiling functions takes a little time, but does report errors early. You
could use `:defcompile` at the end of your script while working on it, and
comment it out when everything is fine.

For a function that does not return anything simply leave out the return type:

def SayIt(text: string)
echo text

usr_41.txt — 297

enddef

If you want to return any kind of value, you can use the "any" return type:
def GetValue(): any

This disables type checking for the return value, use only when needed.

It is also possible to define a legacy function with `function` and
`endfunction`. These do not have types and are not compiled. Therefore they
execute much slower.

USING A RANGE

A line range can be used with a function call. The function will be called
once for every line in the range, with the cursor in that line. Example:

def Number()
echo "line " .. line(".") .. " contains: " .. getline(".")

enddef

If you call this function with:

:10,15Number()

The function will be called six times, starting on line 10 and ending on line
15.

LISTING FUNCTIONS

The `function` command lists the names and arguments of all user-defined
functions:

:function
def <SNR>86_Show(start: string, ...items: list<string>)
function GetVimIndent()
function SetSyn(name)

The "<SNR>" prefix means that a function is script-local. Vim9 functions
will start with "def" and include argument and return types. Legacy functions
are listed with "function".

To see what a function does, use its name as an argument for `function`:

:function SetSyn
1 if &syntax == ''
2 let &syntax = a:name
3 endif

endfunction

To see the "Show" function you need to include the script prefix, since
multiple "Show" functions can be defined in different scripts. To find
the exact name you can use `function`, but the result may be a very long list.
To only get the functions matching a pattern you can use the `filter` prefix:

:filter Show function
def <SNR>86_Show(start: string, ...items: list<string>)

:function <SNR>86_Show
1 echohl Title

usr_41.txt — 298

2 echo "start is " .. start
etc.

DEBUGGING

The line number is useful for when you get an error message or when debugging.
See debug-scripts about debugging mode.

You can also set the 'verbose' option to 12 or higher to see all function
calls. Set it to 15 or higher to see every executed line.

DELETING A FUNCTION

To delete the SetSyn() function:

:delfunction SetSyn

Deleting only works for global functions and functions in legacy script, not
for functions defined in a Vim9 script.

You get an error when the function doesn't exist or cannot be deleted.

FUNCTION REFERENCES

Sometimes it can be useful to have a variable point to one function or
another. You can do it with a function reference variable. Often shortened
to "funcref". Example:

def Right(): string
return 'Right!'

enddef
def Wrong(): string

return 'Wrong!'
enddef

var Afunc = g:result == 1 ? Right : Wrong
echo Afunc()
Wrong!

This assumes "g:result" is not one. See Funcref for details.

Note that the name of a variable that holds a function reference must start
with a capital. Otherwise it could be confused with the name of a builtin
function.

FURTHER READING

Using a variable number of arguments is introduced in section 50.2 .

More information about defining your own functions here: user-functions .

==
41.8 Lists and Dictionaries

So far we have used the basic types String and Number. Vim also supports two
composite types: List and Dictionary.

usr_41.txt — 299

A List is an ordered sequence of items. The items can be any kind of value,
thus you can make a List of numbers, a List of Lists and even a List of mixed
items. To create a List with three strings:

var alist = ['aap', 'noot', 'mies']

The List items are enclosed in square brackets and separated by commas. To
create an empty List:

var alist = []

You can add items to a List with the add() function:

var alist = []
add(alist, 'foo')
add(alist, 'bar')
echo alist
['foo', 'bar']

List concatenation is done with +:

var alist = ['foo', 'bar']
alist = alist + ['and', 'more']
echo alist
['foo', 'bar', 'and', 'more']

Or, if you want to extend a List with a function, use `extend()`:

var alist = ['one']
extend(alist, ['two', 'three'])
echo alist
['one', 'two', 'three']

Notice that using `add()` will have a different effect than `extend()`:

var alist = ['one']
add(alist, ['two', 'three'])
echo alist
['one', ['two', 'three']]

The second argument of add() is added as an item, now you have a nested list.

FOR LOOP

One of the nice things you can do with a List is iterate over it:

var alist = ['one', 'two', 'three']
for n in alist

echo n
endfor
one
two
three

This will loop over each element in List "alist", assigning each value to
variable "n". The generic form of a for loop is:

for {varname} in {list-expression}

usr_41.txt — 300

{commands}
endfor

To loop a certain number of times you need a List of a specific length. The
range() function creates one for you:

for a in range(3)
echo a

endfor
0
1
2

Notice that the first item of the List that range() produces is zero, thus the
last item is one less than the length of the list. Detail: Internally range()
does not actually create the list, so that a large range used in a for loop
works efficiently. When used elsewhere, the range is turned into an actual
list, which takes more time for a long list.

You can also specify the maximum value, the stride and even go backwards:

for a in range(8, 4, -2)
echo a

endfor
8
6
4

A more useful example, looping over all the lines in the buffer:

for line in getline(1, 50)
if line =~ "Date: "

echo line
endif

endfor

This looks into lines 1 to 50 (inclusive) and echoes any date found in there.

For further reading see Lists .

DICTIONARIES

A Dictionary stores key-value pairs. You can quickly lookup a value if you
know the key. A Dictionary is created with curly braces:

var uk2nl = {one: 'een', two: 'twee', three: 'drie'}

Now you can lookup words by putting the key in square brackets:

echo uk2nl['two']
twee

If the key does not have special characters, you can use the dot notation:

echo uk2nl.two
twee

The generic form for defining a Dictionary is:

usr_41.txt — 301

{<key> : <value>, ...}

An empty Dictionary is one without any keys:

{}

The possibilities with Dictionaries are numerous. There are various functions
for them as well. For example, you can obtain a list of the keys and loop
over them:

for key in keys(uk2nl)
echo key

endfor
three
one
two

You will notice the keys are not ordered. You can sort the list to get a
specific order:

for key in sort(keys(uk2nl))
echo key

endfor
one
three
two

But you can never get back the order in which items are defined. For that you
need to use a List, it stores items in an ordered sequence.

For further reading see Dictionaries .

==
41.9 White space

Blank lines are allowed in a script and ignored.

Leading whitespace characters (blanks and TABs) are ignored, except when using
:let-heredoc without "trim".

Trailing whitespace is often ignored, but not always. One command that
includes it is `map`. You have to watch out for that, it can cause hard to
understand mistakes. A generic solution is to never use trailing white space,
unless you really need it.

To include a whitespace character in the value of an option, it must be
escaped by a "\" (backslash) as in the following example:

:set tags=my\ nice\ file

If it would be written as:

:set tags=my nice file

This will issue an error, because it is interpreted as:

:set tags=my
:set nice
:set file

usr_41.txt — 302

Vim9 script is very picky when it comes to white space. This was done
intentionally to make sure scripts are easy to read and to avoid mistakes.
If you use white space sensibly it will just work. When not you will get an
error message telling you where white space is missing or should be removed.

==
41.10 Line continuation

In legacy Vim script line continuation is done by preceding a continuation
line with a backslash:

let mylist = [
\ 'one',
\ 'two',
\]

This requires the 'cpo' option to exclude the "C" flag. Normally this is done
by putting this at the start of the script:

let s:save_cpo = &cpo
set cpo&vim

And restore the option at the end of the script:
let &cpo = s:save_cpo
unlet s:save_cpo

A few more details can be found here: line-continuation .

In Vim9 script the backslash can still be used, but in most places it is not
needed:

var mylist = [
'one',
'two',
]

Also, the 'cpo' option does not need to be changed. See
vim9-line-continuation for details.

==
41.11 Comments

In Vim9 script the character # starts a comment. That character and
everything after it until the end-of-line is considered a comment and
is ignored, except for commands that don't consider comments, as shown in
examples below. A comment can start on any character position on the line,
but not when it is part of the command, e.g. inside a string.

The character " (the double quote mark) starts a comment in legacy script.
This involves some cleverness to make sure double quoted strings are not
recognized as comments (just one reason to prefer Vim9 script).

There is a little "catch" with comments for some commands. Examples:

abbrev dev development # shorthand
map <F3> o#include # insert include
execute cmd # do it
!ls *.c # list C files

- The abbreviation 'dev' will be expanded to 'development # shorthand'.
- The mapping of <F3> will actually be the whole line after the 'o#'

including the '# insert include'.
- The `execute` command will give an error.

usr_41.txt — 303

- The `!` command will send everything after it to the shell, most likely
causing an error.

There can be no comment after `map`, `abbreviate`, `execute` and `!` commands
(there are a few more commands with this restriction). For the `map`,
`abbreviate` and `execute` commands there is a trick:

abbrev dev development|# shorthand
map <F3> o#include|# insert include
execute '!ls *.c' |# do it

With the '|' character the command is separated from the next one. And that
next command is only a comment. The last command, using `execute` is a
general solution, it works for all commands that do not accept a comment or a
'|' to separate the next command.

Notice that there is no white space before the '|' in the abbreviation and
mapping. For these commands, any character until the end-of-line or '|' is
included. As a consequence of this behavior, you don't always see that
trailing whitespace is included:

map <F4> o#include

Here it is intended, in other cases it might be accidental. To spot these
problems, you can highlight trailing spaces:

match Search /\s\+$/

For Unix there is one special way to comment a line, that allows making a Vim
script executable, and it also works in legacy script:

#!/usr/bin/env vim -S
echo "this is a Vim script"
quit

==
41.12 Fileformat

The end-of-line character depends on the system. For Vim scripts it is
recommended to always use the Unix fileformat. Lines are then separated with
the Newline character. This also works on any other system. That way you can
copy your Vim scripts from MS-Windows to Unix and they still work. See
:source_crnl . To be sure it is set right, do this before writing the file:

:setlocal fileformat=unix

When using "dos" fileformat, lines are separated with CR-NL, two characters.
The CR character causes various problems, better avoid this.

==

Advance information about writing Vim script is in usr_50.txt .

Next chapter: usr_42.txt Add new menus

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_41.txt — 304

usr_42.txt For Vim version 9.1. Last change: 2008 May 05

VIM USER MANUAL - by Bram Moolenaar

Add new menus

By now you know that Vim is very flexible. This includes the menus used in
the GUI. You can define your own menu entries to make certain commands easily
accessible. This is for mouse-happy users only.

42.1 Introduction
42.2 Menu commands
42.3 Various
42.4 Toolbar and popup menus

Next chapter: usr_43.txt Using filetypes
Previous chapter: usr_41.txt Write a Vim script

Table of contents: usr_toc.txt

==
42.1 Introduction

The menus that Vim uses are defined in the file "$VIMRUNTIME/menu.vim". If
you want to write your own menus, you might first want to look through that
file.

To define a menu item, use the ":menu" command. The basic form of this
command is as follows:

:menu {menu-item} {keys}

The {menu-item} describes where on the menu to put the item. A typical
{menu-item} is "File.Save", which represents the item "Save" under the
"File" menu. A dot is used to separate the names. Example:

:menu File.Save :update<CR>

The ":update" command writes the file when it was modified.
You can add another level: "Edit.Settings.Shiftwidth" defines a submenu

"Settings" under the "Edit" menu, with an item "Shiftwidth". You could use
even deeper levels. Don't use this too much, you need to move the mouse quite
a bit to use such an item.

The ":menu" command is very similar to the ":map" command: the left side
specifies how the item is triggered and the right hand side defines the
characters that are executed. {keys} are characters, they are used just like
you would have typed them. Thus in Insert mode, when {keys} is plain text,
that text is inserted.

ACCELERATORS

The ampersand character (&) is used to indicate an accelerator. For instance,
you can use Alt-F to select "File" and S to select "Save". (The 'winaltkeys'
option may disable this though!). Therefore, the {menu-item} looks like
"&File.&Save". The accelerator characters will be underlined in the menu.

You must take care that each key is used only once in each menu. Otherwise
you will not know which of the two will actually be used. Vim doesn't warn
you for this.

usr_42.txt — 305

PRIORITIES

The actual definition of the File.Save menu item is as follows:

:menu 10.340 &File.&Save<Tab>:w :confirm w<CR>

The number 10.340 is called the priority number. It is used by the editor to
decide where it places the menu item. The first number (10) indicates the
position on the menu bar. Lower numbered menus are positioned to the left,
higher numbers to the right.

These are the priorities used for the standard menus:

10 20 40 50 60 70 9999

+--+
| File Edit Tools Syntax Buffers Window Help |
+--+

Notice that the Help menu is given a very high number, to make it appear on
the far right.

The second number (340) determines the location of the item within the
pull-down menu. Lower numbers go on top, higher number on the bottom. These
are the priorities in the File menu:

+-----------------+
10.310 |Open... |
10.320 |Split-Open... |
10.325 |New |
10.330 |Close |
10.335 |---------------- |
10.340 |Save |
10.350 |Save As... |
10.400 |---------------- |
10.410 |Split Diff with |
10.420 |Split Patched By |
10.500 |---------------- |
10.510 |Print |
10.600 |---------------- |
10.610 |Save-Exit |
10.620 |Exit |

+-----------------+

Notice that there is room in between the numbers. This is where you can
insert your own items, if you really want to (it's often better to leave the
standard menus alone and add a new menu for your own items).

When you create a submenu, you can add another ".number" to the priority.
Thus each name in {menu-item} has its priority number.

SPECIAL CHARACTERS

The {menu-item} in this example is "&File.&Save<Tab>:w". This brings up an
important point: {menu-item} must be one word. If you want to put a dot,
space or tabs in the name, you either use the <> notation (<Space> and <Tab>,
for instance) or use the backslash (\) escape.

:menu 10.305 &File.&Do\ It\.\.\. :exit<CR>

In this example, the name of the menu item "Do It..." contains a space and the
command is ":exit<CR>".

usr_42.txt — 306

The <Tab> character in a menu name is used to separate the part that defines
the menu name from the part that gives a hint to the user. The part after the
<Tab> is displayed right aligned in the menu. In the File.Save menu the name
used is "&File.&Save<Tab>:w". Thus the menu name is "File.Save" and the hint
is ":w".

SEPARATORS

The separator lines, used to group related menu items together, can be defined
by using a name that starts and ends in a '-'. For example "-sep-". When
using several separators the names must be different. Otherwise the names
don't matter.

The command from a separator will never be executed, but you have to define
one anyway. A single colon will do. Example:

:amenu 20.510 Edit.-sep3- :

==
42.2 Menu commands

You can define menu items that exist for only certain modes. This works just
like the variations on the ":map" command:

:menu Normal, Visual and Operator-pending mode
:nmenu Normal mode
:vmenu Visual mode
:omenu Operator-pending mode
:menu! Insert and Command-line mode
:imenu Insert mode
:cmenu Command-line mode
:tlmenu Terminal mode
:amenu All modes (except for Terminal mode)

To avoid that the commands of a menu item are being mapped, use the command
":noremenu", ":nnoremenu", ":anoremenu", etc.

USING :AMENU

The ":amenu" command is a bit different. It assumes that the {keys} you
give are to be executed in Normal mode. When Vim is in Visual or Insert mode
when the menu is used, Vim first has to go back to Normal mode. ":amenu"
inserts a CTRL-C or CTRL-O for you. For example, if you use this command:

:amenu 90.100 Mine.Find\ Word *

Then the resulting menu commands will be:

Normal mode: *
Visual mode: CTRL-C *
Operator-pending mode: CTRL-C *
Insert mode: CTRL-O *
Command-line mode: CTRL-C *

When in Command-line mode the CTRL-C will abandon the command typed so far.
In Visual and Operator-pending mode CTRL-C will stop the mode. The CTRL-O in
Insert mode will execute the command and then return to Insert mode.

CTRL-O only works for one command. If you need to use two or more

usr_42.txt — 307

commands, put them in a function and call that function. Example:

:amenu Mine.Next\ File :call <SID>NextFile()<CR>
:function <SID>NextFile()
: next
: 1/^Code
:endfunction

This menu entry goes to the next file in the argument list with ":next". Then
it searches for the line that starts with "Code".

The <SID> before the function name is the script ID. This makes the
function local to the current Vim script file. This avoids problems when a
function with the same name is defined in another script file. See <SID> .

SILENT MENUS

The menu executes the {keys} as if you typed them. For a ":" command this
means you will see the command being echoed on the command line. If it's a
long command, the hit-Enter prompt will appear. That can be very annoying!

To avoid this, make the menu silent. This is done with the <silent>
argument. For example, take the call to NextFile() in the previous example.
When you use this menu, you will see this on the command line:

:call <SNR>34_NextFile()

To avoid this text on the command line, insert "<silent>" as the first
argument:

:amenu <silent> Mine.Next\ File :call <SID>NextFile()<CR>

Don't use "<silent>" too often. It is not needed for short commands. If you
make a menu for someone else, being able to see the executed command will give
him a hint about what he could have typed, instead of using the mouse.

LISTING MENUS

When a menu command is used without a {keys} part, it lists the already
defined menus. You can specify a {menu-item}, or part of it, to list specific
menus. Example:

:amenu

This lists all menus. That's a long list! Better specify the name of a menu
to get a shorter list:

:amenu Edit

This lists only the "Edit" menu items for all modes. To list only one
specific menu item for Insert mode:

:imenu Edit.Undo

Take care that you type exactly the right name. Case matters here. But the
'&' for accelerators can be omitted. The <Tab> and what comes after it can be
left out as well.

DELETING MENUS

usr_42.txt — 308

To delete a menu, the same command is used as for listing, but with "menu"
changed to "unmenu". Thus ":menu" becomes, ":unmenu", ":nmenu" becomes
":nunmenu", etc. To delete the "Tools.Make" item for Insert mode:

:iunmenu Tools.Make

You can delete a whole menu, with all its items, by using the menu name.
Example:

:aunmenu Syntax

This deletes the Syntax menu and all the items in it.

==
42.3 Various

You can change the appearance of the menus with flags in 'guioptions'. In the
default value they are all included, except "M". You can remove a flag with a
command like:

:set guioptions-=m

m When removed the menubar is not displayed.

M When added the default menus are not loaded.

g When removed the inactive menu items are not made grey
but are completely removed. (Does not work on all
systems.)

t When removed the tearoff feature is not enabled.

The dotted line at the top of a menu is not a separator line. When you select
this item, the menu is "teared-off": It is displayed in a separate window.
This is called a tearoff menu. This is useful when you use the same menu
often.

For translating menu items, see :menutrans .

Since the mouse has to be used to select a menu item, it is a good idea to use
the ":browse" command for selecting a file. And ":confirm" to get a dialog
instead of an error message, e.g., when the current buffer contains changes.
These two can be combined:

:amenu File.Open :browse confirm edit<CR>

The ":browse" makes a file browser appear to select the file to edit. The
":confirm" will pop up a dialog when the current buffer has changes. You can
then select to save the changes, throw them away or cancel the command.

For more complicated items, the confirm() and inputdialog() functions can
be used. The default menus contain a few examples.

==
42.4 Toolbar and popup menus

There are two special menus: ToolBar and PopUp. Items that start with these
names do not appear in the normal menu bar.

usr_42.txt — 309

TOOLBAR

The toolbar appears only when the "T" flag is included in the 'guioptions'
option.

The toolbar uses icons rather than text to represent the command. For
example, the {menu-item} named "ToolBar.New" causes the "New" icon to appear
on the toolbar.

The Vim editor has 28 built-in icons. You can find a table here:
builtin-tools . Most of them are used in the default toolbar. You can

redefine what these items do (after the default menus are setup).
You can add another bitmap for a toolbar item. Or define a new toolbar

item with a bitmap. For example, define a new toolbar item with:

:tmenu ToolBar.Compile Compile the current file
:amenu ToolBar.Compile :!cc %:S -o %:r:S<CR>

Now you need to create the icon. For MS-Windows it must be in bitmap format,
with the name "Compile.bmp". For Unix XPM format is used, the file name is
"Compile.xpm". The size must be 18 by 18 pixels. On MS-Windows other sizes
can be used as well, but it will look ugly.

Put the bitmap in the directory "bitmaps" in one of the directories from
'runtimepath'. E.g., for Unix "~/.vim/bitmaps/Compile.xpm".

You can define tooltips for the items in the toolbar. A tooltip is a short
text that explains what a toolbar item will do. For example "Open file". It
appears when the mouse pointer is on the item, without moving for a moment.
This is very useful if the meaning of the picture isn't that obvious.
Example:

:tmenu ToolBar.Make Run make in the current directory

Note:
Pay attention to the case used. "Toolbar" and "toolbar" are different
from "ToolBar"!

To remove a tooltip, use the :tunmenu command.

The 'toolbar' option can be used to display text instead of a bitmap, or both
text and a bitmap. Most people use just the bitmap, since the text takes
quite a bit of space.

POPUP MENU

The popup menu pops up where the mouse pointer is. On MS-Windows you activate
it by clicking the right mouse button. Then you can select an item with the
left mouse button. On Unix the popup menu is used by pressing and holding the
right mouse button.

The popup menu only appears when the 'mousemodel' has been set to "popup"
or "popup_setpos". The difference between the two is that "popup_setpos"
moves the cursor to the mouse pointer position. When clicking inside a
selection, the selection will be used unmodified. When there is a selection
but you click outside of it, the selection is removed.

There is a separate popup menu for each mode. Thus there are never grey
items like in the normal menus.

What is the meaning of life, the universe and everything? 42
Douglas Adams, the only person who knew what this question really was about is
now dead, unfortunately. So now you might wonder what the meaning of death
is...

usr_42.txt — 310

==

Next chapter: usr_43.txt Using filetypes

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_42.txt — 311

usr_42.txt — 312

usr_43.txt For Vim version 9.1. Last change: 2015 Oct 23

VIM USER MANUAL - by Bram Moolenaar

Using filetypes

When you are editing a file of a certain type, for example a C program or a
shell script, you often use the same option settings and mappings. You
quickly get tired of manually setting these each time. This chapter explains
how to do it automatically.

43.1 Plugins for a filetype
43.2 Adding a filetype

Next chapter: usr_44.txt Your own syntax highlighted
Previous chapter: usr_42.txt Add new menus

Table of contents: usr_toc.txt

==
43.1 Plugins for a filetype filetype-plugin

How to start using filetype plugins has already been discussed here:
add-filetype-plugin . But you probably are not satisfied with the default

settings, because they have been kept minimal. Suppose that for C files you
want to set the 'softtabstop' option to 4 and define a mapping to insert a
three-line comment. You do this with only two steps:

your-runtime-dir
1. Create your own runtime directory. On Unix this usually is "~/.vim". In

this directory create the "ftplugin" directory:

mkdir ~/.vim
mkdir ~/.vim/ftplugin

When you are not on Unix, check the value of the 'runtimepath' option to
see where Vim will look for the "ftplugin" directory:

set runtimepath

You would normally use the first directory name (before the first comma).
You might want to prepend a directory name to the 'runtimepath' option in
your vimrc file if you don't like the default value.

2. Create the file "~/.vim/ftplugin/c.vim", with the contents:

setlocal softtabstop=4
noremap <buffer> <LocalLeader>c o/**************<CR><CR>/<Esc>
let b:undo_ftplugin = "setl softtabstop< | unmap <buffer> <LocalLeader>c"

Try editing a C file. You should notice that the 'softtabstop' option is set
to 4. But when you edit another file it's reset to the default zero. That is
because the ":setlocal" command was used. This sets the 'softtabstop' option
only locally to the buffer. As soon as you edit another buffer, it will be
set to the value set for that buffer. For a new buffer it will get the
default value or the value from the last ":set" command.

Likewise, the mapping for "\c" will disappear when editing another buffer.
The ":map <buffer>" command creates a mapping that is local to the current
buffer. This works with any mapping command: ":map!", ":vmap", etc. The

usr_43.txt — 313

<LocalLeader> in the mapping is replaced with the value of the
"maplocalleader" variable.

The line to set b:undo_ftplugin is for when the filetype is set to another
value. In that case you will want to undo your preferences. The
b:undo_ftplugin variable is executed as a command. Watch out for characters
with a special meaning inside a string, such as a backslash.

You can find examples for filetype plugins in this directory:

$VIMRUNTIME/ftplugin/

More details about writing a filetype plugin can be found here:
write-plugin .

==
43.2 Adding a filetype

If you are using a type of file that is not recognized by Vim, this is how to
get it recognized. You need a runtime directory of your own. See
your-runtime-dir above.

Create a file "filetype.vim" which contains an autocommand for your filetype.
(Autocommands were explained in section 40.3 .) Example:

augroup filetypedetect
au BufNewFile,BufRead *.xyz setf xyz
augroup END

This will recognize all files that end in ".xyz" as the "xyz" filetype. The
":augroup" commands put this autocommand in the "filetypedetect" group. This
allows removing all autocommands for filetype detection when doing ":filetype
off". The "setf" command will set the 'filetype' option to its argument,
unless it was set already. This will make sure that 'filetype' isn't set
twice.

You can use many different patterns to match the name of your file. Directory
names can also be included. See autocmd-patterns . For example, the files
under "/usr/share/scripts/" are all "ruby" files, but don't have the expected
file name extension. Adding this to the example above:

augroup filetypedetect
au BufNewFile,BufRead *.xyz setf xyz
au BufNewFile,BufRead /usr/share/scripts/* setf ruby
augroup END

However, if you now edit a file /usr/share/scripts/README.txt, this is not a
ruby file. The danger of a pattern ending in "*" is that it quickly matches
too many files. To avoid trouble with this, put the filetype.vim file in
another directory, one that is at the end of 'runtimepath'. For Unix for
example, you could use "~/.vim/after/filetype.vim".

You now put the detection of text files in ~/.vim/filetype.vim:

augroup filetypedetect
au BufNewFile,BufRead *.txt setf text
augroup END

That file is found in 'runtimepath' first. Then use this in
~/.vim/after/filetype.vim, which is found last:

usr_43.txt — 314

augroup filetypedetect
au BufNewFile,BufRead /usr/share/scripts/* setf ruby
augroup END

What will happen now is that Vim searches for "filetype.vim" files in each
directory in 'runtimepath'. First ~/.vim/filetype.vim is found. The
autocommand to catch *.txt files is defined there. Then Vim finds the
filetype.vim file in $VIMRUNTIME, which is halfway 'runtimepath'. Finally
~/.vim/after/filetype.vim is found and the autocommand for detecting ruby
files in /usr/share/scripts is added.

When you now edit /usr/share/scripts/README.txt, the autocommands are
checked in the order in which they were defined. The *.txt pattern matches,
thus "setf text" is executed to set the filetype to "text". The pattern for
ruby matches too, and the "setf ruby" is executed. But since 'filetype' was
already set to "text", nothing happens here.

When you edit the file /usr/share/scripts/foobar the same autocommands are
checked. Only the one for ruby matches and "setf ruby" sets 'filetype' to
ruby.

RECOGNIZING BY CONTENTS

If your file cannot be recognized by its file name, you might be able to
recognize it by its contents. For example, many script files start with a
line like:

#!/bin/xyz

To recognize this script create a file "scripts.vim" in your runtime directory
(same place where filetype.vim goes). It might look like this:

if did_filetype()
finish

endif
if getline(1) =~ '^#!.*[/\\]xyz\>'

setf xyz
endif

The first check with did_filetype() is to avoid that you will check the
contents of files for which the filetype was already detected by the file
name. That avoids wasting time on checking the file when the "setf" command
won't do anything.

The scripts.vim file is sourced by an autocommand in the default
filetype.vim file. Therefore, the order of checks is:

1. filetype.vim files before $VIMRUNTIME in 'runtimepath'
2. first part of $VIMRUNTIME/filetype.vim
3. all scripts.vim files in 'runtimepath'
4. remainder of $VIMRUNTIME/filetype.vim
5. filetype.vim files after $VIMRUNTIME in 'runtimepath'

If this is not sufficient for you, add an autocommand that matches all files
and sources a script or executes a function to check the contents of the file.

==

Next chapter: usr_44.txt Your own syntax highlighted

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_43.txt — 315

usr_43.txt — 316

usr_44.txt For Vim version 9.1. Last change: 2017 May 06

VIM USER MANUAL - by Bram Moolenaar

Your own syntax highlighted

Vim comes with highlighting for a couple of hundred different file types. If
the file you are editing isn't included, read this chapter to find out how to
get this type of file highlighted. Also see :syn-define in the reference
manual.

44.1 Basic syntax commands
44.2 Keywords
44.3 Matches
44.4 Regions
44.5 Nested items
44.6 Following groups
44.7 Other arguments
44.8 Clusters
44.9 Including another syntax file
44.10 Synchronizing
44.11 Installing a syntax file
44.12 Portable syntax file layout

Next chapter: usr_45.txt Select your language
Previous chapter: usr_43.txt Using filetypes

Table of contents: usr_toc.txt

==
44.1 Basic syntax commands

Using an existing syntax file to start with will save you a lot of time. Try
finding a syntax file in $VIMRUNTIME/syntax for a language that is similar.
These files will also show you the normal layout of a syntax file. To
understand it, you need to read the following.

Let's start with the basic arguments. Before we start defining any new
syntax, we need to clear out any old definitions:

:syntax clear

This isn't required in the final syntax file, but very useful when
experimenting.

There are more simplifications in this chapter. If you are writing a syntax
file to be used by others, read all the way through the end to find out the
details.

LISTING DEFINED ITEMS

To check which syntax items are currently defined, use this command:

:syntax

You can use this to check which items have actually been defined. Quite
useful when you are experimenting with a new syntax file. It also shows the
colors used for each item, which helps to find out what is what.

To list the items in a specific syntax group use:

usr_44.txt — 317

:syntax list {group-name}

This also can be used to list clusters (explained in 44.8). Just include
the @ in the name.

MATCHING CASE

Some languages are not case sensitive, such as Pascal. Others, such as C, are
case sensitive. You need to tell which type you have with the following
commands:

:syntax case match
:syntax case ignore

The "match" argument means that Vim will match the case of syntax elements.
Therefore, "int" differs from "Int" and "INT". If the "ignore" argument is
used, the following are equivalent: "Procedure", "PROCEDURE" and "procedure".

The ":syntax case" commands can appear anywhere in a syntax file and affect
the syntax definitions that follow. In most cases, you have only one ":syntax
case" command in your syntax file; if you work with an unusual language that
contains both case-sensitive and non-case-sensitive elements, however, you can
scatter the ":syntax case" command throughout the file.

==
44.2 Keywords

The most basic syntax elements are keywords. To define a keyword, use the
following form:

:syntax keyword {group} {keyword} ...

The {group} is the name of a syntax group. With the ":highlight" command you
can assign colors to a {group}. The {keyword} argument is an actual keyword.
Here are a few examples:

:syntax keyword xType int long char
:syntax keyword xStatement if then else endif

This example uses the group names "xType" and "xStatement". By convention,
each group name is prefixed by the filetype for the language being defined.
This example defines syntax for the x language (eXample language without an
interesting name). In a syntax file for "csh" scripts the name "cshType"
would be used. Thus the prefix is equal to the value of 'filetype'.

These commands cause the words "int", "long" and "char" to be highlighted
one way and the words "if", "then", "else" and "endif" to be highlighted
another way. Now you need to connect the x group names to standard Vim
names. You do this with the following commands:

:highlight link xType Type
:highlight link xStatement Statement

This tells Vim to highlight "xType" like "Type" and "xStatement" like
"Statement". See group-name for the standard names.

UNUSUAL KEYWORDS

The characters used in a keyword must be in the 'iskeyword' option. If you
use another character, the word will never match. Vim doesn't give a warning

usr_44.txt — 318

message for this.
The x language uses the '-' character in keywords. This is how it's done:

:setlocal iskeyword+=-
:syntax keyword xStatement when-not

The ":setlocal" command is used to change 'iskeyword' only for the current
buffer. Still it does change the behavior of commands like "w" and "*". If
that is not wanted, don't define a keyword but use a match (explained in the
next section).

The x language allows for abbreviations. For example, "next" can be
abbreviated to "n", "ne" or "nex". You can define them by using this command:

:syntax keyword xStatement n[ext]

This doesn't match "nextone", keywords always match whole words only.

==
44.3 Matches

Consider defining something a bit more complex. You want to match ordinary
identifiers. To do this, you define a match syntax item. This one matches
any word consisting of only lowercase letters:

:syntax match xIdentifier /\<\l\+\>/

Note:
Keywords overrule any other syntax item. Thus the keywords "if",
"then", etc., will be keywords, as defined with the ":syntax keyword"
commands above, even though they also match the pattern for
xIdentifier.

The part at the end is a pattern, like it's used for searching. The // is
used to surround the pattern (like how it's done in a ":substitute" command).
You can use any other character, like a plus or a quote.

Now define a match for a comment. In the x language it is anything from # to
the end of a line:

:syntax match xComment /#.*/

Since you can use any search pattern, you can highlight very complex things
with a match item. See pattern for help on search patterns.

==
44.4 Regions

In the example x language, strings are enclosed in double quotation marks (").
To highlight strings you define a region. You need a region start (double
quote) and a region end (double quote). The definition is as follows:

:syntax region xString start=/"/ end=/"/

The "start" and "end" directives define the patterns used to find the start
and end of the region. But what about strings that look like this?

"A string with a double quote (\") in it"

This creates a problem: The double quotation marks in the middle of the string

usr_44.txt — 319

will end the region. You need to tell Vim to skip over any escaped double
quotes in the string. Do this with the skip keyword:

:syntax region xString start=/"/ skip=/\\"/ end=/"/

The double backslash matches a single backslash, since the backslash is a
special character in search patterns.

When to use a region instead of a match? The main difference is that a match
item is a single pattern, which must match as a whole. A region starts as
soon as the "start" pattern matches. Whether the "end" pattern is found or
not doesn't matter. Thus when the item depends on the "end" pattern to match,
you cannot use a region. Otherwise, regions are often simpler to define. And
it is easier to use nested items, as is explained in the next section.

==
44.5 Nested items

Take a look at this comment:

%Get input TODO: Skip white space

You want to highlight TODO in big yellow letters, even though it is in a
comment that is highlighted blue. To let Vim know about this, you define the
following syntax groups:

:syntax keyword xTodo TODO contained
:syntax match xComment /%.*/ contains=xTodo

In the first line, the "contained" argument tells Vim that this keyword can
exist only inside another syntax item. The next line has "contains=xTodo".
This indicates that the xTodo syntax element is inside it. The result is that
the comment line as a whole is matched with "xComment" and made blue. The
word TODO inside it is matched by xTodo and highlighted yellow (highlighting
for xTodo was setup for this).

RECURSIVE NESTING

The x language defines code blocks in curly braces. And a code block may
contain other code blocks. This can be defined this way:

:syntax region xBlock start=/{/ end=/}/ contains=xBlock

Suppose you have this text:

while i < b {
if a {

b = c;
}

}

First a xBlock starts at the { in the first line. In the second line another
{ is found. Since we are inside a xBlock item, and it contains itself, a
nested xBlock item will start here. Thus the "b = c" line is inside the
second level xBlock region. Then a } is found in the next line, which matches
with the end pattern of the region. This ends the nested xBlock. Because the
} is included in the nested region, it is hidden from the first xBlock region.
Then at the last } the first xBlock region ends.

usr_44.txt — 320

KEEPING THE END

Consider the following two syntax items:

:syntax region xComment start=/%/ end=/$/ contained
:syntax region xPreProc start=/#/ end=/$/ contains=xComment

You define a comment as anything from % to the end of the line. A
preprocessor directive is anything from # to the end of the line. Because you
can have a comment on a preprocessor line, the preprocessor definition
includes a "contains=xComment" argument. Now look what happens with this
text:

#define X = Y % Comment text
int foo = 1;

What you see is that the second line is also highlighted as xPreProc. The
preprocessor directive should end at the end of the line. That is why
you have used "end=/$/". So what is going wrong?

The problem is the contained comment. The comment starts with % and ends
at the end of the line. After the comment ends, the preprocessor syntax
continues. This is after the end of the line has been seen, so the next
line is included as well.

To avoid this problem and to avoid a contained syntax item eating a needed
end of line, use the "keepend" argument. This takes care of
the double end-of-line matching:

:syntax region xComment start=/%/ end=/$/ contained
:syntax region xPreProc start=/#/ end=/$/ contains=xComment keepend

CONTAINING MANY ITEMS

You can use the contains argument to specify that everything can be contained.
For example:

:syntax region xList start=/\[/ end=/\]/ contains=ALL

All syntax items will be contained in this one. It also contains itself, but
not at the same position (that would cause an endless loop).

You can specify that some groups are not contained. Thus contain all
groups but the ones that are listed:

:syntax region xList start=/\[/ end=/\]/ contains=ALLBUT,xString

With the "TOP" item you can include all items that don't have a "contained"
argument. "CONTAINED" is used to only include items with a "contained"
argument. See :syn-contains for the details.

==
44.6 Following groups

The x language has statements in this form:

if (condition) then

You want to highlight the three items differently. But "(condition)" and
"then" might also appear in other places, where they get different
highlighting. This is how you can do this:

usr_44.txt — 321

:syntax match xIf /if/ nextgroup=xIfCondition skipwhite
:syntax match xIfCondition /([^)]*)/ contained nextgroup=xThen skipwhite
:syntax match xThen /then/ contained

The "nextgroup" argument specifies which item can come next. This is not
required. If none of the items that are specified are found, nothing happens.
For example, in this text:

if not (condition) then

The "if" is matched by xIf. "not" doesn't match the specified nextgroup
xIfCondition, thus only the "if" is highlighted.

The "skipwhite" argument tells Vim that white space (spaces and tabs) may
appear in between the items. Similar arguments are "skipnl", which allows a
line break in between the items, and "skipempty", which allows empty lines.
Notice that "skipnl" doesn't skip an empty line, something must match after
the line break.

==
44.7 Other arguments

MATCHGROUP

When you define a region, the entire region is highlighted according to the
group name specified. To highlight the text enclosed in parentheses () with
the group xInside, for example, use the following command:

:syntax region xInside start=/(/ end=/)/

Suppose, that you want to highlight the parentheses differently. You can do
this with a lot of convoluted region statements, or you can use the
"matchgroup" argument. This tells Vim to highlight the start and end of a
region with a different highlight group (in this case, the xParen group):

:syntax region xInside matchgroup=xParen start=/(/ end=/)/

The "matchgroup" argument applies to the start or end match that comes after
it. In the previous example both start and end are highlighted with xParen.
To highlight the end with xParenEnd:

:syntax region xInside matchgroup=xParen start=/(/
\ matchgroup=xParenEnd end=/)/

A side effect of using "matchgroup" is that contained items will not match in
the start or end of the region. The example for "transparent" uses this.

TRANSPARENT

In a C language file you would like to highlight the () text after a "while"
differently from the () text after a "for". In both of these there can be
nested () items, which should be highlighted in the same way. You must make
sure the () highlighting stops at the matching). This is one way to do this:

:syntax region cWhile matchgroup=cWhile start=/while\s*(/ end=/)/
\ contains=cCondNest

:syntax region cFor matchgroup=cFor start=/for\s*(/ end=/)/
\ contains=cCondNest

usr_44.txt — 322

:syntax region cCondNest start=/(/ end=/)/ contained transparent

Now you can give cWhile and cFor different highlighting. The cCondNest item
can appear in either of them, but take over the highlighting of the item it is
contained in. The "transparent" argument causes this.

Notice that the "matchgroup" argument has the same group as the item
itself. Why define it then? Well, the side effect of using a matchgroup is
that contained items are not found in the match with the start item then.
This avoids that the cCondNest group matches the (just after the "while" or
"for". If this would happen, it would span the whole text until the matching
) and the region would continue after it. Now cCondNest only matches after
the match with the start pattern, thus after the first (.

OFFSETS

Suppose you want to define a region for the text between (and) after an
"if". But you don't want to include the "if" or the (and). You can do this
by specifying offsets for the patterns. Example:

:syntax region xCond start=/if\s*(/ms=e+1 end=/)/me=s-1

The offset for the start pattern is "ms=e+1". "ms" stands for Match Start.
This defines an offset for the start of the match. Normally the match starts
where the pattern matches. "e+1" means that the match now starts at the end
of the pattern match, and then one character further.

The offset for the end pattern is "me=s-1". "me" stands for Match End.
"s-1" means the start of the pattern match and then one character back. The
result is that in this text:

if (foo == bar)

Only the text "foo == bar" will be highlighted as xCond.

More about offsets here: :syn-pattern-offset .

ONELINE

The "oneline" argument indicates that the region does not cross a line
boundary. For example:

:syntax region xIfThen start=/if/ end=/then/ oneline

This defines a region that starts at "if" and ends at "then". But if there is
no "then" after the "if", the region doesn't match.

Note:
When using "oneline" the region doesn't start if the end pattern
doesn't match in the same line. Without "oneline" Vim does _not_
check if there is a match for the end pattern. The region starts even
when the end pattern doesn't match in the rest of the file.

CONTINUATION LINES AND AVOIDING THEM

Things now become a little more complex. Let's define a preprocessor line.
This starts with a # in the first column and continues until the end of the
line. A line that ends with \ makes the next line a continuation line. The
way you handle this is to allow the syntax item to contain a continuation

usr_44.txt — 323

pattern:

:syntax region xPreProc start=/^#/ end=/$/ contains=xLineContinue
:syntax match xLineContinue "\\$" contained

In this case, although xPreProc normally matches a single line, the group
contained in it (namely xLineContinue) lets it go on for more than one line.
For example, it would match both of these lines:

#define SPAM spam spam spam \
bacon and spam

In this case, this is what you want. If it is not what you want, you can call
for the region to be on a single line by adding "excludenl" to the contained
pattern. For example, you want to highlight "end" in xPreProc, but only at
the end of the line. To avoid making the xPreProc continue on the next line,
like xLineContinue does, use "excludenl" like this:

:syntax region xPreProc start=/^#/ end=/$/
\ contains=xLineContinue,xPreProcEnd

:syntax match xPreProcEnd excludenl /end$/ contained
:syntax match xLineContinue "\\$" contained

"excludenl" must be placed before the pattern. Since "xLineContinue" doesn't
have "excludenl", a match with it will extend xPreProc to the next line as
before.

==
44.8 Clusters

One of the things you will notice as you start to write a syntax file is that
you wind up generating a lot of syntax groups. Vim enables you to define a
collection of syntax groups called a cluster.

Suppose you have a language that contains for loops, if statements, while
loops, and functions. Each of them contains the same syntax elements: numbers
and identifiers. You define them like this:

:syntax match xFor /^for.*/ contains=xNumber,xIdent
:syntax match xIf /^if.*/ contains=xNumber,xIdent
:syntax match xWhile /^while.*/ contains=xNumber,xIdent

You have to repeat the same "contains=" every time. If you want to add
another contained item, you have to add it three times. Syntax clusters
simplify these definitions by enabling you to have one cluster stand for
several syntax groups.

To define a cluster for the two items that the three groups contain, use
the following command:

:syntax cluster xState contains=xNumber,xIdent

Clusters are used inside other syntax items just like any syntax group.
Their names start with @. Thus, you can define the three groups like this:

:syntax match xFor /^for.*/ contains=@xState
:syntax match xIf /^if.*/ contains=@xState
:syntax match xWhile /^while.*/ contains=@xState

You can add new group names to this cluster with the "add" argument:

:syntax cluster xState add=xString

usr_44.txt — 324

You can remove syntax groups from this list as well:

:syntax cluster xState remove=xNumber

==
44.9 Including another syntax file

The C++ language syntax is a superset of the C language. Because you do not
want to write two syntax files, you can have the C++ syntax file read in the
one for C by using the following command:

:runtime! syntax/c.vim

The ":runtime!" command searches 'runtimepath' for all "syntax/c.vim" files.
This makes the C parts of the C++ syntax be defined like for C files. If you
have replaced the c.vim syntax file, or added items with an extra file, these
will be loaded as well.

After loading the C syntax items the specific C++ items can be defined.
For example, add keywords that are not used in C:

:syntax keyword cppStatement new delete this friend using

This works just like in any other syntax file.

Now consider the Perl language. A Perl script consists of two distinct parts:
a documentation section in POD format, and a program written in Perl itself.
The POD section starts with "=head" and ends with "=cut".

You want to define the POD syntax in one file, and use it from the Perl
syntax file. The ":syntax include" command reads in a syntax file and stores
the elements it defined in a syntax cluster. For Perl, the statements are as
follows:

:syntax include @Pod <sfile>:p:h/pod.vim
:syntax region perlPOD start=/^=head/ end=/^=cut/ contains=@Pod

When "=head" is found in a Perl file, the perlPOD region starts. In this
region the @Pod cluster is contained. All the items defined as top-level
items in the pod.vim syntax files will match here. When "=cut" is found, the
region ends and we go back to the items defined in the Perl file.

The ":syntax include" command is clever enough to ignore a ":syntax clear"
command in the included file. And an argument such as "contains=ALL" will
only contain items defined in the included file, not in the file that includes
it.

The "<sfile>:p:h/" part uses the name of the current file (<sfile>),
expands it to a full path (:p) and then takes the head (:h). This results in
the directory name of the file. This causes the pod.vim file in the same
directory to be included.

==
44.10 Synchronizing

Compilers have it easy. They start at the beginning of a file and parse it
straight through. Vim does not have it so easy. It must start in the middle,
where the editing is being done. So how does it tell where it is?

The secret is the ":syntax sync" command. This tells Vim how to figure out
where it is. For example, the following command tells Vim to scan backward
for the beginning or end of a C-style comment and begin syntax coloring from
there:

usr_44.txt — 325

:syntax sync ccomment

You can tune this processing with some arguments. The "minlines" argument
tells Vim the minimum number of lines to look backward, and "maxlines" tells
the editor the maximum number of lines to scan.

For example, the following command tells Vim to look at least 10 lines
before the top of the screen:

:syntax sync ccomment minlines=10 maxlines=500

If it cannot figure out where it is in that space, it starts looking farther
and farther back until it figures out what to do. But it looks no farther
back than 500 lines. (A large "maxlines" slows down processing. A small one
might cause synchronization to fail.)

To make synchronizing go a bit faster, tell Vim which syntax items can be
skipped. Every match and region that only needs to be used when actually
displaying text can be given the "display" argument.

By default, the comment to be found will be colored as part of the Comment
syntax group. If you want to color things another way, you can specify a
different syntax group:

:syntax sync ccomment xAltComment

If your programming language does not have C-style comments in it, you can try
another method of synchronization. The simplest way is to tell Vim to space
back a number of lines and try to figure out things from there. The following
command tells Vim to go back 150 lines and start parsing from there:

:syntax sync minlines=150

A large "minlines" value can make Vim slower, especially when scrolling
backwards in the file.

Finally, you can specify a syntax group to look for by using this command:

:syntax sync match {sync-group-name}
\ grouphere {group-name} {pattern}

This tells Vim that when it sees {pattern} the syntax group named {group-name}
begins just after the pattern given. The {sync-group-name} is used to give a
name to this synchronization specification. For example, the sh scripting
language begins an if statement with "if" and ends it with "fi":

if [--f file.txt] ; then
echo "File exists"

fi

To define a "grouphere" directive for this syntax, you use the following
command:

:syntax sync match shIfSync grouphere shIf "\<if\>"

The "groupthere" argument tells Vim that the pattern ends a group. For
example, the end of the if/fi group is as follows:

:syntax sync match shIfSync groupthere NONE "\<fi\>"

In this example, the NONE tells Vim that you are not in any special syntax
region. In particular, you are not inside an if block.

You also can define matches and regions that are with no "grouphere" or

usr_44.txt — 326

"groupthere" arguments. These groups are for syntax groups skipped during
synchronization. For example, the following skips over anything inside {},
even if it would normally match another synchronization method:

:syntax sync match xSpecial /{.*}/

More about synchronizing in the reference manual: :syn-sync .

==
44.11 Installing a syntax file

When your new syntax file is ready to be used, drop it in a "syntax" directory
in 'runtimepath'. For Unix that would be "~/.vim/syntax".

The name of the syntax file must be equal to the file type, with ".vim"
added. Thus for the x language, the full path of the file would be:

~/.vim/syntax/x.vim

You must also make the file type be recognized. See 43.2 .

If your file works well, you might want to make it available to other Vim
users. First read the next section to make sure your file works well for
others. Then e-mail it to the Vim maintainer: <maintainer@vim.org>. Also
explain how the filetype can be detected. With a bit of luck your file will
be included in the next Vim version!

ADDING TO AN EXISTING SYNTAX FILE

We were assuming you were adding a completely new syntax file. When an existing
syntax file works, but is missing some items, you can add items in a separate
file. That avoids changing the distributed syntax file, which will be lost
when installing a new version of Vim.

Write syntax commands in your file, possibly using group names from the
existing syntax. For example, to add new variable types to the C syntax file:

:syntax keyword cType off_t uint

Write the file with the same name as the original syntax file. In this case
"c.vim". Place it in a directory near the end of 'runtimepath'. This makes
it loaded after the original syntax file. For Unix this would be:

~/.vim/after/syntax/c.vim

==
44.12 Portable syntax file layout

Wouldn't it be nice if all Vim users exchange syntax files? To make this
possible, the syntax file must follow a few guidelines.

Start with a header that explains what the syntax file is for, who maintains
it and when it was last updated. Don't include too much information about
changes history, not many people will read it. Example:

" Vim syntax file
" Language: C
" Maintainer: Bram Moolenaar <Bram@vim.org>
" Last Change: 2001 Jun 18
" Remark: Included by the C++ syntax.

usr_44.txt — 327

Use the same layout as the other syntax files. Using an existing syntax file
as an example will save you a lot of time.

Choose a good, descriptive name for your syntax file. Use lowercase letters
and digits. Don't make it too long, it is used in many places: The name of
the syntax file "name.vim", 'filetype', b:current_syntax and the start of each
syntax group (nameType, nameStatement, nameString, etc).

Start with a check for "b:current_syntax". If it is defined, some other
syntax file, earlier in 'runtimepath' was already loaded:

if exists("b:current_syntax")
finish

endif

Set "b:current_syntax" to the name of the syntax at the end. Don't forget
that included files do this too, you might have to reset "b:current_syntax" if
you include two files.

Do not include anything that is a user preference. Don't set 'tabstop',
'expandtab', etc. These belong in a filetype plugin.

Do not include mappings or abbreviations. Only include setting 'iskeyword' if
it is really necessary for recognizing keywords.

To allow users select their own preferred colors, make a different group name
for every kind of highlighted item. Then link each of them to one of the
standard highlight groups. That will make it work with every color scheme.
If you select specific colors it will look bad with some color schemes. And
don't forget that some people use a different background color, or have only
eight colors available.

For the linking use "hi def link", so that the user can select different
highlighting before your syntax file is loaded. Example:

hi def link nameString String
hi def link nameNumber Number
hi def link nameCommand Statement
... etc ...

Add the "display" argument to items that are not used when syncing, to speed
up scrolling backwards and CTRL-L.

==

Next chapter: usr_45.txt Select your language

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_44.txt — 328

usr_45.txt For Vim version 9.1. Last change: 2022 May 13

VIM USER MANUAL - by Bram Moolenaar

Select your language (locale)

The messages in Vim can be given in several languages. This chapter explains
how to change which one is used. Also, the different ways to work with files
in various languages is explained.

45.1 Language for Messages
45.2 Language for Menus
45.3 Using another encoding
45.4 Editing files with a different encoding
45.5 Entering language text

Next chapter: usr_50.txt Advanced Vim script writing
Previous chapter: usr_44.txt Your own syntax highlighted

Table of contents: usr_toc.txt

==
45.1 Language for Messages

When you start Vim, it checks the environment to find out what language you
are using. Mostly this should work fine, and you get the messages in your
language (if they are available). To see what the current language is, use
this command:

:language

If it replies with "C", this means the default is being used, which is
English.

Note:
Using different languages only works when Vim was compiled to handle
it. To find out if it works, use the ":version" command and check the
output for "+gettext" and "+multi_lang". If they are there, you are
OK. If you see "-gettext" or "-multi_lang" you will have to find
another Vim.

What if you would like your messages in a different language? There are
several ways. Which one you should use depends on the capabilities of your
system.

The first way is to set the environment to the desired language before
starting Vim. Example for Unix:

env LANG=de_DE.ISO_8859-1 vim

This only works if the language is available on your system. The advantage is
that all the GUI messages and things in libraries will use the right language
as well. A disadvantage is that you must do this before starting Vim. If you
want to change language while Vim is running, you can use the second method:

:language fr_FR.ISO_8859-1

This way you can try out several names for your language. You will get an
error message when it's not supported on your system. You don't get an error
when translated messages are not available. Vim will silently fall back to
using English.

usr_45.txt — 329

To find out which languages are supported on your system, find the
directory where they are listed. On my system it is "/usr/share/locale". On
some systems it's in "/usr/lib/locale". The manual page for "setlocale"
should give you a hint where it is found on your system.

Be careful to type the name exactly as it should be. Upper and lowercase
matter, and the '-' and '_' characters are easily confused.

You can also set the language separately for messages, edited text and the
time format. See :language .

DO-IT-YOURSELF MESSAGE TRANSLATION

If translated messages are not available for your language, you could write
them yourself. To do this, get the source code for Vim and the GNU gettext
package. After unpacking the sources, instructions can be found in the
directory src/po/README.txt.

It's not too difficult to do the translation. You don't need to be a
programmer. You must know both English and the language you are translating
to, of course.

When you are satisfied with the translation, consider making it available
to others. Upload it at vim-online (http://vim.sf.net) or e-mail it to
the Vim maintainer <maintainer@vim.org>. Or both.

==
45.2 Language for Menus

The default menus are in English. To be able to use your local language, they
must be translated. Normally this is automatically done for you if the
environment is set for your language, just like with messages. You don't need
to do anything extra for this. But it only works if translations for the
language are available.

Suppose you are in Germany, with the language set to German, but prefer to
use "File" instead of "Datei". You can switch back to using the English menus
this way:

:set langmenu=none

It is also possible to specify a language:

:set langmenu=nl_NL.ISO_8859-1

Like above, differences between "-" and "_" matter. However, upper/lowercase
differences are ignored here.

The 'langmenu' option must be set before the menus are loaded. Once the
menus have been defined changing 'langmenu' has no direct effect. Therefore,
put the command to set 'langmenu' in your vimrc file.

If you really want to switch menu language while running Vim, you can do it
this way:

:source $VIMRUNTIME/delmenu.vim
:set langmenu=de_DE.ISO_8859-1
:source $VIMRUNTIME/menu.vim

There is one drawback: All menus that you defined yourself will be gone. You
will need to redefine them as well.

DO-IT-YOURSELF MENU TRANSLATION

usr_45.txt — 330

To see which menu translations are available, look in this directory:

$VIMRUNTIME/lang

The files are called menu_{language}.vim. If you don't see the language you
want to use, you can do your own translations. The simplest way to do this is
by copying one of the existing language files, and change it.

First find out the name of your language with the ":language" command. Use
this name, but with all letters made lowercase. Then copy the file to your
own runtime directory, as found early in 'runtimepath'. For example, for Unix
you would do:

:!cp $VIMRUNTIME/lang/menu_ko_kr.euckr.vim ~/.vim/lang/menu_nl_be.iso_8859-1.vim

You will find hints for the translation in "$VIMRUNTIME/lang/README.txt".

==
45.3 Using another encoding

Vim guesses that the files you are going to edit are encoded for your
language. For many European languages this is "latin1". Then each byte is
one character. That means there are 256 different characters possible. For
Asian languages this is not sufficient. These mostly use a double-byte
encoding, providing for over ten thousand possible characters. This still
isn't enough when a text is to contain several different languages. This is
where Unicode comes in. It was designed to include all characters used in
commonly used languages. This is the "Super encoding that replaces all
others". But it isn't used that much yet.

Fortunately, Vim supports these three kinds of encodings. And, with some
restrictions, you can use them even when your environment uses another
language than the text.

Nevertheless, when you only edit files that are in the encoding of your
language, the default should work fine and you don't need to do anything. The
following is only relevant when you want to edit different languages.

USING UNICODE IN THE GUI

The nice thing about Unicode is that other encodings can be converted to it
and back without losing information. When you make Vim use Unicode
internally, you will be able to edit files in any encoding.

Unfortunately, the number of systems supporting Unicode is still limited.
Thus it's unlikely that your language uses it. You need to tell Vim you want
to use Unicode, and how to handle interfacing with the rest of the system.

Let's start with the GUI version of Vim, which is able to display Unicode
characters. This should work:

:set encoding=utf-8
:set guifont=-misc-fixed-medium-r-normal--18-120-100-100-c-90-iso10646-1

The 'encoding' option tells Vim the encoding of the characters that you use.
This applies to the text in buffers (files you are editing), registers, Vim
script files, etc. You can regard 'encoding' as the setting for the internals
of Vim.

This example assumes you have this font on your system. The name in the
example is for the X Window System. This font is in a package that is used to
enhance xterm with Unicode support. If you don't have this font, you might
find it here:

http://www.cl.cam.ac.uk/~mgk25/download/ucs-fonts.tar.gz

usr_45.txt — 331

For MS-Windows, some fonts have a limited number of Unicode characters. Try
using the "Courier New" font. You can use the Edit/Select Font... menu to
select and try out the fonts available. Only fixed-width fonts can be used
though. Example:

:set guifont=courier_new:h12

If it doesn't work well, try getting a fontpack. If Microsoft didn't move it,
you can find it here:

http://www.microsoft.com/typography/fonts/default.aspx

Now you have told Vim to use Unicode internally and display text with a
Unicode font. Typed characters still arrive in the encoding of your original
language. This requires converting them to Unicode. Tell Vim the language
from which to convert with the 'termencoding' option. You can do it like
this:

:let &termencoding = &encoding
:set encoding=utf-8

This assigns the old value of 'encoding' to 'termencoding' before setting
'encoding' to utf-8. You will have to try out if this really works for your
setup. It should work especially well when using an input method for an Asian
language, and you want to edit Unicode text.

USING UNICODE IN A UNICODE TERMINAL

There are terminals that support Unicode directly. The standard xterm that
comes with XFree86 is one of them. Let's use that as an example.

First of all, the xterm must have been compiled with Unicode support. See
UTF8-xterm how to check that and how to compile it when needed.
Start the xterm with the "-u8" argument. You might also need so specify a

font. Example:

xterm -u8 -fn -misc-fixed-medium-r-normal--18-120-100-100-c-90-iso10646-1

Now you can run Vim inside this terminal. Set 'encoding' to "utf-8" as
before. That's all.

USING UNICODE IN AN ORDINARY TERMINAL

Suppose you want to work with Unicode files, but don't have a terminal with
Unicode support. You can do this with Vim, although characters that are not
supported by the terminal will not be displayed. The layout of the text
will be preserved.

:let &termencoding = &encoding
:set encoding=utf-8

This is the same as what was used for the GUI. But it works differently: Vim
will convert the displayed text before sending it to the terminal. That
avoids that the display is messed up with strange characters.

For this to work the conversion between 'termencoding' and 'encoding' must
be possible. Vim will convert from latin1 to Unicode, thus that always works.
For other conversions the +iconv feature is required.

Try editing a file with Unicode characters in it. You will notice that Vim

usr_45.txt — 332

will put a question mark (or underscore or some other character) in places
where a character should be that the terminal can't display. Move the cursor
to a question mark and use this command:

ga

Vim will display a line with the code of the character. This gives you a hint
about what character it is. You can look it up in a Unicode table. You could
actually view a file that way, if you have lots of time at hand.

Note:
Since 'encoding' is used for all text inside Vim, changing it makes
all non-ASCII text invalid. You will notice this when using registers
and the 'viminfo' file (e.g., a remembered search pattern). It's
recommended to set 'encoding' in your vimrc file, and leave it alone.

==
45.4 Editing files with a different encoding

Suppose you have setup Vim to use Unicode, and you want to edit a file that is
in 16-bit Unicode. Sounds simple, right? Well, Vim actually uses utf-8
encoding internally, thus the 16-bit encoding must be converted, since there
is a difference between the character set (Unicode) and the encoding (utf-8 or
16-bit).

Vim will try to detect what kind of file you are editing. It uses the
encoding names in the 'fileencodings' option. When using Unicode, the default
value is: "ucs-bom,utf-8,latin1". This means that Vim checks the file to see
if it's one of these encodings:

ucs-bom File must start with a Byte Order Mark (BOM). This
allows detection of 16-bit, 32-bit and utf-8 Unicode
encodings.

utf-8 utf-8 Unicode. This is rejected when a sequence of
bytes is illegal in utf-8.

latin1 The good old 8-bit encoding. Always works.

When you start editing that 16-bit Unicode file, and it has a BOM, Vim will
detect this and convert the file to utf-8 when reading it. The 'fileencoding'
option (without s at the end) is set to the detected value. In this case it
is "utf-16le". That means it's Unicode, 16-bit and little-endian. This
file format is common on MS-Windows (e.g., for registry files).

When writing the file, Vim will compare 'fileencoding' with 'encoding'. If
they are different, the text will be converted.

An empty value for 'fileencoding' means that no conversion is to be done.
Thus the text is assumed to be encoded with 'encoding'.

If the default 'fileencodings' value is not good for you, set it to the
encodings you want Vim to try. Only when a value is found to be invalid will
the next one be used. Putting "latin1" first doesn't work, because it is
never illegal. An example, to fall back to Japanese when the file doesn't
have a BOM and isn't utf-8:

:set fileencodings=ucs-bom,utf-8,sjis

See encoding-values for suggested values. Other values may work as well.
This depends on the conversion available.

FORCING AN ENCODING

usr_45.txt — 333

If the automatic detection doesn't work you must tell Vim what encoding the
file is. Example:

:edit ++enc=koi8-r russian.txt

The "++enc" part specifies the name of the encoding to be used for this file
only. Vim will convert the file from the specified encoding, Russian in this
example, to 'encoding'. 'fileencoding' will also be set to the specified
encoding, so that the reverse conversion can be done when writing the file.

The same argument can be used when writing the file. This way you can
actually use Vim to convert a file. Example:

:write ++enc=utf-8 russian.txt

Note:
Conversion may result in lost characters. Conversion from an encoding
to Unicode and back is mostly free of this problem, unless there are
illegal characters. Conversion from Unicode to other encodings often
loses information when there was more than one language in the file.

==
45.5 Entering language text

Computer keyboards don't have much more than a hundred keys. Some languages
have thousands of characters, Unicode has over hundred thousand. So how do
you type these characters?

First of all, when you don't use too many of the special characters, you
can use digraphs. This was already explained in 24.9 .

When you use a language that uses many more characters than keys on your
keyboard, you will want to use an Input Method (IM). This requires learning
the translation from typed keys to resulting character. When you need an IM
you probably already have one on your system. It should work with Vim like
with other programs. For details see mbyte-XIM for the X Window system and
mbyte-IME for MS-Windows.

KEYMAPS

For some languages the character set is different from latin, but uses a
similar number of characters. It's possible to map keys to characters. Vim
uses keymaps for this.

Suppose you want to type Hebrew. You can load the keymap like this:

:set keymap=hebrew

Vim will try to find a keymap file for you. This depends on the value of
'encoding'. If no matching file was found, you will get an error message.

Now you can type Hebrew in Insert mode. In Normal mode, and when typing a ":"
command, Vim automatically switches to English. You can use this command to
switch between Hebrew and English:

CTRL-^

This only works in Insert mode and Command-line mode. In Normal mode it does
something completely different (jumps to alternate file).

The usage of the keymap is indicated in the mode message, if you have the
'showmode' option set. In the GUI Vim will indicate the usage of keymaps with
a different cursor color.

You can also change the usage of the keymap with the 'iminsert' and

usr_45.txt — 334

'imsearch' options.

To see the list of mappings, use this command:

:lmap

To find out which keymap files are available, in the GUI you can use the
Edit/Keymap menu. Otherwise you can use this command:

:echo globpath(&rtp, "keymap/*.vim")

DO-IT-YOURSELF KEYMAPS

You can create your own keymap file. It's not very difficult. Start with
a keymap file that is similar to the language you want to use. Copy it to the
"keymap" directory in your runtime directory. For example, for Unix, you
would use the directory "~/.vim/keymap".

The name of the keymap file must look like this:

keymap/{name}.vim
or

keymap/{name}_{encoding}.vim

{name} is the name of the keymap. Chose a name that is obvious, but different
from existing keymaps (unless you want to replace an existing keymap file).
{name} cannot contain an underscore. Optionally, add the encoding used after
an underscore. Examples:

keymap/hebrew.vim
keymap/hebrew_utf-8.vim

The contents of the file should be self-explanatory. Look at a few of the
keymaps that are distributed with Vim. For the details, see mbyte-keymap .

LAST RESORT

If all other methods fail, you can enter any character with CTRL-V:

encoding type range
8-bit CTRL-V 123 decimal 0-255
8-bit CTRL-V x a1 hexadecimal 00-ff
16-bit CTRL-V u 013b hexadecimal 0000-ffff
31-bit CTRL-V U 001303a4 hexadecimal 00000000-7fffffff

Don't type the spaces. See i_CTRL-V_digit for the details.

==

Next chapter: usr_50.txt Advanced Vim script writing

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_45.txt — 335

usr_45.txt — 336

usr_50.txt For Vim version 9.1. Last change: 2022 Jun 20

VIM USER MANUAL - by Bram Moolenaar

Advanced Vim script writing

50.1 Exceptions
50.2 Function with variable number of arguments
50.3 Restoring the view

Next chapter: usr_51.txt Create a plugin
Previous chapter: usr_45.txt Select your language (local)

Table of contents: usr_toc.txt

==
50.1 Exceptions

Let's start with an example:

try
read ~/templates/pascal.tmpl

catch /E484:/
echo "Sorry, the Pascal template file cannot be found."

endtry

The `read` command will fail if the file does not exist. Instead of
generating an error message, this code catches the error and gives the user a
message with more information.

For the commands in between `try` and `endtry` errors are turned into
exceptions. An exception is a string. In the case of an error the string
contains the error message. And every error message has a number. In this
case, the error we catch contains "E484:". This number is guaranteed to stay
the same (the text may change, e.g., it may be translated).

Besides being able to give a nice error message, Vim will also continue
executing commands after the `:endtry`. Otherwise, once an uncaught error is
encountered, execution of the script/function/mapping will be aborted.

When the `read` command causes another error, the pattern "E484:" will not
match in it. Thus this exception will not be caught and result in the usual
error message and execution is aborted.

You might be tempted to do this:

try
read ~/templates/pascal.tmpl

catch
echo "Sorry, the Pascal template file cannot be found."

endtry

This means all errors are caught. But then you will not see an error that
would indicate a completely different problem, such as "E21: Cannot make
changes, 'modifiable' is off". Think twice before you catch any error!

Another useful mechanism is the `finally` command:

var tmp = tempname()
try

usr_50.txt — 337

exe ":.,$write " .. tmp
exe "!filter " .. tmp
:.,$delete
exe ":$read " .. tmp

finally
delete(tmp)

endtry

This filters the lines from the cursor until the end of the file through the
"filter" command, which takes a file name argument. No matter if the
filtering works, if something goes wrong in between `try` and `finally` or the
user cancels the filtering by pressing CTRL-C, the `delete(tmp)` call is
always executed. This makes sure you don't leave the temporary file behind.

The `finally` does not catch the exception, the error will still abort
further execution.

More information about exception handling can be found in the reference
manual: exception-handling .

==
50.2 Function with variable number of arguments

Vim enables you to define functions that have a variable number of arguments.
The following command, for instance, defines a function that must have 1
argument (start) and can have up to 20 additional arguments:

def Show(start: string, ...items: list<string>)

The variable "items" will be a list in the function containing the extra
arguments. You can use it like any list, for example:

def Show(start: string, ...items: list<string>)
echohl Title
echo "start is " .. start
echohl None
for index in range(len(items))

echon $" Arg {index} is {items[index]}"
endfor
echo

enddef

You can call it like this:

Show('Title', 'one', 'two', 'three')
start is Title Arg 0 is one Arg 1 is two Arg 2 is three

This uses the `echohl` command to specify the highlighting used for the
following `echo` command. `echohl None` stops it again. The `echon` command
works like `echo`, but doesn't output a line break.

If you call it with one argument the "items" list will be empty.
`range(len(items))` returns a list with the indexes, what `for` loops over,
we'll explain that further down.

==
50.3 Restoring the view

Sometimes you want to jump around, make a change and then go back to the same
position and view. For example to change something in the file header. This

usr_50.txt — 338

can be done with two functions:

var view = winsaveview()
Move around, make changes
winrestview(view)

==

Next chapter: usr_51.txt Create a plugin

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_50.txt — 339

usr_50.txt — 340

usr_51.txt For Vim version 9.1. Last change: 2022 Jun 03

VIM USER MANUAL - by Bram Moolenaar

Write plugins

Plugins can be used to define settings for a specific type of file, syntax
highlighting and many other things. This chapter explains how to write the
most common Vim plugins.

51.1 Writing a generic plugin
51.2 Writing a filetype plugin
51.3 Writing a compiler plugin
51.4 Distributing Vim scripts

Next chapter: usr_52.txt Write large plugins
Previous chapter: usr_50.txt Advanced Vim script writing

Table of contents: usr_toc.txt

==
51.1 Writing a generic plugin write-plugin

You can write a Vim script in such a way that many people can use it. This is
called a plugin. Vim users can drop your script in their plugin directory and
use its features right away add-plugin .

There are actually two types of plugins:

global plugins: For all types of files.
filetype plugins: Only for files of a specific type.

In this section the first type is explained. Most items are also relevant for
writing filetype plugins. The specifics for filetype plugins are in the next
section write-filetype-plugin .

We will use Vim9 syntax here, the recommended way to write new plugins.
Make sure the file starts with the `vim9script` command.

NAME

First of all you must choose a name for your plugin. The features provided
by the plugin should be clear from its name. And it should be unlikely that
someone else writes a plugin with the same name but which does something
different.

A script that corrects typing mistakes could be called "typecorrect.vim". We
will use it here as an example.

For the plugin to work for everybody, it should follow a few guidelines. This
will be explained step-by-step. The complete example plugin is at the end.

BODY

Let's start with the body of the plugin, the lines that do the actual work:

12 iabbrev teh the
13 iabbrev otehr other

usr_51.txt — 341

14 iabbrev wnat want
15 iabbrev synchronisation
16 \ synchronization

The actual list should be much longer, of course.

The line numbers have only been added to explain a few things, don't put them
in your plugin file!

FIRST LINE

1 vim9script noclear

You need to use `vim9script` as the very first command. Best is to put it in
the very first line.

The script we are writing will have a `finish` command to bail out when it is
loaded a second time. To avoid that the items defined in the script are lost
the "noclear" argument is used. More info about this at vim9-reload .

HEADER

You will probably add new corrections to the plugin and soon have several
versions lying around. And when distributing this file, people will want to
know who wrote this wonderful plugin and where they can send remarks.
Therefore, put a header at the top of your plugin:

2 # Vim global plugin for correcting typing mistakes
3 # Last Change: 2021 Dec 30
4 # Maintainer: Bram Moolenaar <Bram@vim.org>

About copyright and licensing: Since plugins are very useful and it's hardly
worth restricting their distribution, please consider making your plugin
either public domain or use the Vim license . A short note about this near
the top of the plugin should be sufficient. Example:

5 # License: This file is placed in the public domain.

NOT LOADING

It is possible that a user doesn't always want to load this plugin. Or the
system administrator has dropped it in the system-wide plugin directory, but a
user has their own plugin they want to use. Then the user must have a chance
to disable loading this specific plugin. These lines will make it possible:

7 if exists("g:loaded_typecorrect")
8 finish
9 endif

10 g:loaded_typecorrect = 1

This also avoids that when the script is loaded twice it would pointlessly
redefine functions and cause trouble for autocommands that are added twice.

The name is recommended to start with "g:loaded_" and then the file name of
the plugin, literally. The "g:" is prepended to make the variable global, so
that other places can check whether its functionality is available. Without
"g:" it would be local to the script.

usr_51.txt — 342

Using `finish` stops Vim from reading the rest of the file, it's much quicker
than using if-endif around the whole file, since Vim would still need to parse
the commands to find the `endif`.

MAPPING

Now let's make the plugin more interesting: We will add a mapping that adds a
correction for the word under the cursor. We could just pick a key sequence
for this mapping, but the user might already use it for something else. To
allow the user to define which keys a mapping in a plugin uses, the <Leader>
item can be used:

20 map <unique> <Leader>a <Plug>TypecorrAdd;

The "<Plug>TypecorrAdd;" thing will do the work, more about that further on.

The user can set the "g:mapleader" variable to the key sequence that they want
plugin mappings to start with. Thus if the user has done:

g:mapleader = "_"

the mapping will define "_a". If the user didn't do this, the default value
will be used, which is a backslash. Then a map for "\a" will be defined.

Note that <unique> is used, this will cause an error message if the mapping
already happened to exist. :map-<unique>

But what if the user wants to define their own key sequence? We can allow
that with this mechanism:

19 if !hasmapto('<Plug>TypecorrAdd;')
20 map <unique> <Leader>a <Plug>TypecorrAdd;
21 endif

This checks if a mapping to "<Plug>TypecorrAdd;" already exists, and only
defines the mapping from "<Leader>a" if it doesn't. The user then has a
chance of putting this in their vimrc file:

map ,c <Plug>TypecorrAdd;

Then the mapped key sequence will be ",c" instead of "_a" or "\a".

PIECES

If a script gets longer, you often want to break up the work in pieces. You
can use functions or mappings for this. But you don't want these functions
and mappings to interfere with the ones from other scripts. For example, you
could define a function Add(), but another script could try to define the same
function. To avoid this, we define the function local to the script.
Fortunately, in Vim9 script this is the default. In a legacy script you
would need to prefix the name with "s:".

We will define a function that adds a new typing correction:

28 def Add(from: string, correct: bool)
29 var to = input($"type the correction for {from}: ")
30 exe $":iabbrev {from} {to}"

usr_51.txt — 343

...
34 enddef

Now we can call the function Add() from within this script. If another
script also defines Add(), it will be local to that script and can only
be called from that script. There can also be a global g:Add() function,
which is again another function.

<SID> can be used with mappings. It generates a script ID, which identifies
the current script. In our typing correction plugin we use it like this:

22 noremap <unique> <script> <Plug>TypecorrAdd; <SID>Add
...
26 noremap <SID>Add :call <SID>Add(expand("<cword>"), true)<CR>

Thus when a user types "\a", this sequence is invoked:

\a -> <Plug>TypecorrAdd; -> <SID>Add -> :call <SID>Add(...)

If another script also maps <SID>Add, it will get another script ID and
thus define another mapping.

Note that instead of Add() we use <SID>Add() here. That is because the
mapping is typed by the user, thus outside of the script context. The <SID>
is translated to the script ID, so that Vim knows in which script to look for
the Add() function.

This is a bit complicated, but it's required for the plugin to work together
with other plugins. The basic rule is that you use <SID>Add() in mappings and
Add() in other places (the script itself, autocommands, user commands).

We can also add a menu entry to do the same as the mapping:

24 noremenu <script> Plugin.Add\ Correction <SID>Add

The "Plugin" menu is recommended for adding menu items for plugins. In this
case only one item is used. When adding more items, creating a submenu is
recommended. For example, "Plugin.CVS" could be used for a plugin that offers
CVS operations "Plugin.CVS.checkin", "Plugin.CVS.checkout", etc.

Note that in line 28 ":noremap" is used to avoid that any other mappings cause
trouble. Someone may have remapped ":call", for example. In line 24 we also
use ":noremap", but we do want "<SID>Add" to be remapped. This is why
"<script>" is used here. This only allows mappings which are local to the
script. :map-<script> The same is done in line 26 for ":noremenu".
:menu-<script>

<SID> AND <Plug> using-<Plug>

Both <SID> and <Plug> are used to avoid that mappings of typed keys interfere
with mappings that are only to be used from other mappings. Note the
difference between using <SID> and <Plug>:

<Plug> is visible outside of the script. It is used for mappings which the
user might want to map a key sequence to. <Plug> is a special code
that a typed key will never produce.
To make it very unlikely that other plugins use the same sequence of
characters, use this structure: <Plug> scriptname mapname
In our example the scriptname is "Typecorr" and the mapname is "Add".

usr_51.txt — 344

We add a semicolon as the terminator. This results in
"<Plug>TypecorrAdd;". Only the first character of scriptname and
mapname is uppercase, so that we can see where mapname starts.

<SID> is the script ID, a unique identifier for a script.
Internally Vim translates <SID> to "<SNR>123_", where "123" can be any
number. Thus a function "<SID>Add()" will have a name "<SNR>11_Add()"
in one script, and "<SNR>22_Add()" in another. You can see this if
you use the ":function" command to get a list of functions. The
translation of <SID> in mappings is exactly the same, that's how you
can call a script-local function from a mapping.

USER COMMAND

Now let's add a user command to add a correction:

36 if !exists(":Correct")
37 command -nargs=1 Correct :call Add(<q-args>, false)
38 endif

The user command is defined only if no command with the same name already
exists. Otherwise we would get an error here. Overriding the existing user
command with ":command!" is not a good idea, this would probably make the user
wonder why the command they defined themselves doesn't work. :command
If it did happen you can find out who to blame with:

verbose command Correct

SCRIPT VARIABLES

When a variable starts with "s:" it is a script variable. It can only be used
inside a script. Outside the script it's not visible. This avoids trouble
with using the same variable name in different scripts. The variables will be
kept as long as Vim is running. And the same variables are used when sourcing
the same script again. s:var

The nice thing about Vim9 script is that variables are local to the script
by default. You can prepend "s:" if you like, but you do not need to. And
functions in the script can also use the script variables without a prefix
(they must be declared before the function for this to work).

Script-local variables can also be used in functions, autocommands and user
commands that are defined in the script. Thus they are the perfect way to
share information between parts of your plugin, without it leaking out. In
our example we can add a few lines to count the number of corrections:

17 var count = 4
...
28 def Add(from: string, correct: bool)
...
32 count += 1
33 echo "you now have " .. count .. " corrections"
34 enddef

"count" is declared and initialized to 4 in the script itself. When later
the Add() function is called, it increments "count". It doesn't matter from
where the function was called, since it has been defined in the script, it
will use the local variables from this script.

usr_51.txt — 345

THE RESULT

Here is the resulting complete example:

1 vim9script noclear
2 # Vim global plugin for correcting typing mistakes
3 # Last Change: 2021 Dec 30
4 # Maintainer: Bram Moolenaar <Bram@vim.org>
5 # License: This file is placed in the public domain.
6
7 if exists("g:loaded_typecorrect")
8 finish
9 endif

10 g:loaded_typecorrect = 1
11
12 iabbrev teh the
13 iabbrev otehr other
14 iabbrev wnat want
15 iabbrev synchronisation
16 \ synchronization
17 var count = 4
18
19 if !hasmapto('<Plug>TypecorrAdd;')
20 map <unique> <Leader>a <Plug>TypecorrAdd;
21 endif
22 noremap <unique> <script> <Plug>TypecorrAdd; <SID>Add
23
24 noremenu <script> Plugin.Add\ Correction <SID>Add
25
26 noremap <SID>Add :call <SID>Add(expand("<cword>"), true)<CR>
27
28 def Add(from: string, correct: bool)
29 var to = input("type the correction for " .. from .. ": ")
30 exe ":iabbrev " .. from .. " " .. to
31 if correct | exe "normal viws\<C-R>\" \b\e" | endif
32 count += 1
33 echo "you now have " .. count .. " corrections"
34 enddef
35
36 if !exists(":Correct")
37 command -nargs=1 Correct call Add(<q-args>, false)
38 endif

Line 31 wasn't explained yet. It applies the new correction to the word under
the cursor. The :normal command is used to use the new abbreviation. Note
that mappings and abbreviations are expanded here, even though the function
was called from a mapping defined with ":noremap".

DOCUMENTATION write-local-help

It's a good idea to also write some documentation for your plugin. Especially
when its behavior can be changed by the user. See add-local-help for how
they are installed.

Here is a simple example for a plugin help file, called "typecorrect.txt":

1 *typecorrect.txt* Plugin for correcting typing mistakes

usr_51.txt — 346

2
3 If you make typing mistakes, this plugin will have them corrected
4 automatically.
5
6 There are currently only a few corrections. Add your own if you like.
7
8 Mappings:
9 <Leader>a or <Plug>TypecorrAdd;

10 Add a correction for the word under the cursor.
11
12 Commands:
13 :Correct {word}
14 Add a correction for {word}.
15
16 *typecorrect-settings*
17 This plugin doesn't have any settings.

The first line is actually the only one for which the format matters. It will
be extracted from the help file to be put in the "LOCAL ADDITIONS:" section of
help.txt local-additions . The first "*" must be in the first column of the
first line. After adding your help file do ":help" and check that the entries
line up nicely.

You can add more tags inside ** in your help file. But be careful not to use
existing help tags. You would probably use the name of your plugin in most of
them, like "typecorrect-settings" in the example.

Using references to other parts of the help in || is recommended. This makes
it easy for the user to find associated help.

SUMMARY plugin-special

Summary of special things to use in a plugin:

var name Variable local to the script.

<SID> Script-ID, used for mappings and functions local to
the script.

hasmapto() Function to test if the user already defined a mapping
for functionality the script offers.

<Leader> Value of "mapleader", which the user defines as the
keys that plugin mappings start with.

map <unique> Give a warning if a mapping already exists.

noremap <script> Use only mappings local to the script, not global
mappings.

exists(":Cmd") Check if a user command already exists.

==
51.2 Writing a filetype plugin write-filetype-plugin ftplugin

A filetype plugin is like a global plugin, except that it sets options and
defines mappings for the current buffer only. See add-filetype-plugin for
how this type of plugin is used.

usr_51.txt — 347

First read the section on global plugins above 51.1 . All that is said there
also applies to filetype plugins. There are a few extras, which are explained
here. The essential thing is that a filetype plugin should only have an
effect on the current buffer.

DISABLING

If you are writing a filetype plugin to be used by many people, they need a
chance to disable loading it. Put this at the top of the plugin:

Only do this when not done yet for this buffer
if exists("b:did_ftplugin")

finish
endif
b:did_ftplugin = 1

This also needs to be used to avoid that the same plugin is executed twice for
the same buffer (happens when using an ":edit" command without arguments).

Now users can disable loading the default plugin completely by making a
filetype plugin with only these lines:

vim9script
b:did_ftplugin = 1

This does require that the filetype plugin directory comes before $VIMRUNTIME
in 'runtimepath'!

If you do want to use the default plugin, but overrule one of the settings,
you can write the different setting in a script:

setlocal textwidth=70

Now write this in the "after" directory, so that it gets sourced after the
distributed "vim.vim" ftplugin after-directory . For Unix this would be
"~/.vim/after/ftplugin/vim.vim". Note that the default plugin will have set
"b:did_ftplugin", it is ignored here.

OPTIONS

To make sure the filetype plugin only affects the current buffer use the

setlocal

command to set options. And only set options which are local to a buffer (see
the help for the option to check that). When using `:setlocal` for global
options or options local to a window, the value will change for many buffers,
and that is not what a filetype plugin should do.

When an option has a value that is a list of flags or items, consider using
"+=" and "-=" to keep the existing value. Be aware that the user may have
changed an option value already. First resetting to the default value and
then changing it is often a good idea. Example:

setlocal formatoptions& formatoptions+=ro

MAPPINGS

usr_51.txt — 348

To make sure mappings will only work in the current buffer use the

map <buffer>

command. This needs to be combined with the two-step mapping explained above.
An example of how to define functionality in a filetype plugin:

if !hasmapto('<Plug>JavaImport;')
map <buffer> <unique> <LocalLeader>i <Plug>JavaImport;

endif
noremap <buffer> <unique> <Plug>JavaImport; oimport ""<Left><Esc>

hasmapto() is used to check if the user has already defined a map to
<Plug>JavaImport;. If not, then the filetype plugin defines the default
mapping. This starts with <LocalLeader> , which allows the user to select
the key(s) they want filetype plugin mappings to start with. The default is a
backslash.
"<unique>" is used to give an error message if the mapping already exists or
overlaps with an existing mapping.
:noremap is used to avoid that any other mappings that the user has defined

interferes. You might want to use ":noremap <script>" to allow remapping
mappings defined in this script that start with <SID>.

The user must have a chance to disable the mappings in a filetype plugin,
without disabling everything. Here is an example of how this is done for a
plugin for the mail filetype:

Add mappings, unless the user didn't want this.
if !exists("g:no_plugin_maps") && !exists("g:no_mail_maps")

Quote text by inserting "> "
if !hasmapto('<Plug>MailQuote;')

vmap <buffer> <LocalLeader>q <Plug>MailQuote;
nmap <buffer> <LocalLeader>q <Plug>MailQuote;

endif
vnoremap <buffer> <Plug>MailQuote; :s/^/> /<CR>
nnoremap <buffer> <Plug>MailQuote; :.,$s/^/> /<CR>

endif

Two global variables are used:
g:no_plugin_maps disables mappings for all filetype plugins
g:no_mail_maps disables mappings for the "mail" filetype

USER COMMANDS

To add a user command for a specific file type, so that it can only be used in
one buffer, use the "-buffer" argument to :command . Example:

command -buffer Make make %:r.s

VARIABLES

A filetype plugin will be sourced for each buffer of the type it's for. Local
script variables will be shared between all invocations. Use local buffer
variables b:var if you want a variable specifically for one buffer.

FUNCTIONS

usr_51.txt — 349

When defining a function, this only needs to be done once. But the filetype
plugin will be sourced every time a file with this filetype will be opened.
This construct makes sure the function is only defined once:

if !exists("*Func")
def Func(arg)

...
enddef

endif

Don't forget to use "noclear" with the `vim9script` command to avoid that the
function is deleted when the script is sourced a second time.

UNDO undo_indent undo_ftplugin

When the user does ":setfiletype xyz" the effect of the previous filetype
should be undone. Set the b:undo_ftplugin variable to the commands that will
undo the settings in your filetype plugin. Example:

b:undo_ftplugin = "setlocal fo< com< tw< commentstring<"
\ .. "| unlet b:match_ignorecase b:match_words b:match_skip"

Using ":setlocal" with "<" after the option name resets the option to its
global value. That is mostly the best way to reset the option value.

For undoing the effect of an indent script, the b:undo_indent variable should
be set accordingly.

Both these variables use legacy script syntax, not Vim9 syntax.

FILE NAME

The filetype must be included in the file name ftplugin-name . Use one of
these three forms:

.../ftplugin/stuff.vim

.../ftplugin/stuff_foo.vim

.../ftplugin/stuff/bar.vim

"stuff" is the filetype, "foo" and "bar" are arbitrary names.

FILETYPE DETECTION plugin-filetype

If your filetype is not already detected by Vim, you should create a filetype
detection snippet in a separate file. It is usually in the form of an
autocommand that sets the filetype when the file name matches a pattern.
Example:

au BufNewFile,BufRead *.foo setlocal filetype=foofoo

Write this single-line file as "ftdetect/foofoo.vim" in the first directory
that appears in 'runtimepath'. For Unix that would be
"~/.vim/ftdetect/foofoo.vim". The convention is to use the name of the
filetype for the script name.

You can make more complicated checks if you like, for example to inspect the

usr_51.txt — 350

contents of the file to recognize the language. Also see new-filetype .

SUMMARY ftplugin-special

Summary of special things to use in a filetype plugin:

<LocalLeader> Value of "maplocalleader", which the user defines as
the keys that filetype plugin mappings start with.

map <buffer> Define a mapping local to the buffer.

noremap <script> Only remap mappings defined in this script that start
with <SID>.

setlocal Set an option for the current buffer only.

command -buffer Define a user command local to the buffer.

exists("*s:Func") Check if a function was already defined.

Also see plugin-special , the special things used for all plugins.

==
51.3 Writing a compiler plugin write-compiler-plugin

A compiler plugin sets options for use with a specific compiler. The user can
load it with the :compiler command. The main use is to set the
'errorformat' and 'makeprg' options.

Easiest is to have a look at examples. This command will edit all the default
compiler plugins:

next $VIMRUNTIME/compiler/*.vim

Type `:next` to go to the next plugin file.

There are two special items about these files. First is a mechanism to allow
a user to overrule or add to the default file. The default files start with:

vim9script
if exists("g:current_compiler")

finish
endif
g:current_compiler = "mine"

When you write a compiler file and put it in your personal runtime directory
(e.g., ~/.vim/compiler for Unix), you set the "current_compiler" variable to
make the default file skip the settings.

:CompilerSet
The second mechanism is to use ":set" for ":compiler!" and ":setlocal" for
":compiler". Vim defines the ":CompilerSet" user command for this. However,
older Vim versions don't, thus your plugin should define it then. This is an
example:

if exists(":CompilerSet") != 2
command -nargs=* CompilerSet setlocal <args>

endif
CompilerSet errorformat& " use the default 'errorformat'
CompilerSet makeprg=nmake

usr_51.txt — 351

When you write a compiler plugin for the Vim distribution or for a system-wide
runtime directory, use the mechanism mentioned above. When
"current_compiler" was already set by a user plugin nothing will be done.

When you write a compiler plugin to overrule settings from a default plugin,
don't check "current_compiler". This plugin is supposed to be loaded
last, thus it should be in a directory at the end of 'runtimepath'. For Unix
that could be ~/.vim/after/compiler.

==
51.4 Distributing Vim scripts distribute-script

Vim users will look for scripts on the Vim website: http://www.vim.org.
If you made something that is useful for others, share it!

Another place is github. But there you need to know where to find it! The
advantage is that most plugin managers fetch plugins from github. You'll have
to use your favorite search engine to find them.

Vim scripts can be used on any system. However, there might not be a tar or
gzip command. If you want to pack files together and/or compress them the
"zip" utility is recommended.

For utmost portability use Vim itself to pack scripts together. This can be
done with the Vimball utility. See vimball .

It's good if you add a line to allow automatic updating. See glvs-plugins .

==

Next chapter: usr_52.txt Write large plugins

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_51.txt — 352

http://www.vim.org

usr_52.txt For Vim version 9.1. Last change: 2022 Jun 04

VIM USER MANUAL - by Bram Moolenaar

Write larger plugins

When plugins do more than simple things, they tend to grow big. This file
explains how to make sure they still load fast and how to split them up in
smaller parts.

52.1 Export and import
52.2 Autoloading
52.3 Autoloading without import/export
52.4 Other mechanisms to use
52.5 Using a Vim9 script from legacy script

Next chapter: usr_90.txt Installing Vim
Previous chapter: usr_51.txt Create a plugin

Table of contents: usr_toc.txt

==
52.1 Export and import

Vim9 script was designed to make it easier to write large Vim scripts. It
looks more like other script languages, especially Typescript. Also,
functions are compiled into instructions that can be executed quickly. This
makes Vim9 script a lot faster, up to a 100 times.

The basic idea is that a script file has items that are private, only used
inside the script file, and items that are exported, which can be used by
scripts that import them. That makes very clear what is defined where.

Let's start with an example, a script that exports one function and has one
private function:

vim9script

export def GetMessage(count: string): string
var nr = str2nr(count)
var result = $'To {nr} we say '
result ..= GetReply(nr)
return result

enddef

def GetReply(nr: number): string
if nr == 42

return 'yes'
elseif nr = 22

return 'maybe'
else

return 'no'
endif

enddef

The `vim9script` command is required, `export` only works in a Vim9 script.

The `export def GetMessage(...` line starts with `export`, meaning that this
function can be called by other scripts. The line `def GetReply(...` does not
start with `export`, this is a script-local function, it can only be used
inside this script file.

usr_52.txt — 353

Now about the script where this is imported. In this example we use this
layout, which works well for a plugin below the "pack" directory:

.../plugin/theplugin.vim

.../lib/getmessage.vim

Assuming the "..." directory has been added to 'runtimepath', Vim will look
for plugins in the "plugin" directory and source "theplugin.vim". Vim does
not recognize the "lib" directory, you can put any scripts there.

The above script that exports GetMessage() goes in lib/getmessage.vim. The
GetMessage() function is used in plugin/theplugin.vim:

vim9script

import "../lib/getmessage.vim"
command -nargs=1 ShowMessage echomsg getmessage.GetMessage(<f-args>)

The `import` command uses a relative path, it starts with "../", which means
to go one directory up. For other kinds of paths see the `:import` command.

How we can try out the command that the plugin provides:
ShowMessage 1
To 1 we say no

ShowMessage 22
To 22 we say maybe

Notice that the function GetMessage() is prefixed with the imported script
name "getmessage". That way, for every imported function used, you know what
script it was imported from. If you import several scripts each of them could
define a GetMessage() function:

vim9script

import "../lib/getmessage.vim"
import "../lib/getother.vim"
command -nargs=1 ShowMessage echomsg getmessage.GetMessage(<f-args>)
command -nargs=1 ShowOther echomsg getother.GetMessage(<f-args>)

If the imported script name is long or you use it in many places, you can
shorten it by adding an "as" argument:

import "../lib/getmessage.vim" as msg
command -nargs=1 ShowMessage echomsg msg.GetMessage(<f-args>)

RELOADING

One thing to keep in mind: the imported "lib/getmessage.vim" script will be
sourced only once. When it is imported a second time sourcing it will be
skipped, since the items in it have already been created. It does not matter
if this import command is in another script, or in the same script that is
sourced again.

This is efficient when using a plugin, but when still developing a plugin it
means that changing "lib/getmessage.vim" after it has been imported will have
no effect. You need to quit Vim and start it again. (Rationale: the items
defined in the script could be used in a compiled function, sourcing the
script again may break those functions).

usr_52.txt — 354

USING GLOBALS

Sometimes you will want to use global variables or functions, so that they can
be used anywhere. A good example is a global variable that passes a
preference to a plugin. To avoid other scripts using the same name, use a
prefix that is very unlikely to be used elsewhere. For example, if you have a
"mytags" plugin, you could use:

g:mytags_location = '$HOME/project'
g:mytags_style = 'fast'

==
52.2 Autoloading

After splitting your large script into pieces, all the lines will still be
loaded and executed the moment the script is used. Every `import` loads the
imported script to find the items defined there. Although that is good for
finding errors early, it also takes time. Which is wasted if the
functionality is not often used.

Instead of having `import` load the script immediately, it can be postponed
until needed. Using the example above, only one change needs to be made in
the plugin/theplugin.vim script:

import autoload "../lib/getmessage.vim"

Nothing in the rest of the script needs to change. However, the types will
not be checked. Not even the existence of the GetMessage() function is
checked until it is used. You will have to decide what is more important for
your script: fast startup or getting errors early. You can also add the
"autoload" argument later, after you have checked everything works.

AUTOLOAD DIRECTORY

Another form is to use autoload with a script name that is not an absolute or
relative path:

import autload "monthlib.vim"

This will search for the script "monthlib.vim" in the autoload directories of
'runtimepath'. With Unix one of the directories often is "~/.vim/autoload".
It will also search under 'packpath', under "start".

The main advantage of this is that this script can be easily shared with other
scripts. You do need to make sure that the script name is unique, since Vim
will search all the "autoload" directories in 'runtimepath', and if you are
using several plugins with a plugin manager, it may add a directory to
'runtimepath', each of which might have an "autoload" directory.

Without autoload:
import "monthlib.vim"

Vim will search for the script "monthlib.vim" in the import directories of
'runtimepath'. Note that in this case adding or removing "autoload" changes
where the script is found. With a relative or absolute path the location does
not change.

==
52.3 Autoloading without import/export

usr_52.txt — 355

write-library-script
A mechanism from before import/export is still useful and some users may find
it a bit simpler. The idea is that you call a function with a special name.
That function is then in an autoload script. We will call that one script a
library script.

The autoload mechanism is based on a function name that has "#" characters:

mylib#myfunction(arg)

Vim will recognize the function name by the embedded "#" character and when
it is not defined yet search for the script "autoload/mylib.vim" in
'runtimepath'. That script must define the "mylib#myfunction()" function.
Obviously the name "mylib" is the part before the "#" and is used as the name
of the script, adding ".vim".

You can put many other functions in the mylib.vim script, you are free to
organize your functions in library scripts. But you must use function names
where the part before the '#' matches the script name. Otherwise Vim would
not know what script to load. This is where it differs from the import/export
mechanism.

If you get really enthusiastic and write lots of library scripts, you may
want to use subdirectories. Example:

netlib#ftp#read('somefile')

Here the script name is taken from the function name up to the last "#". The
"#" in the middle are replaced by a slash, the last one by ".vim". Thus you
get "netlib/ftp.vim". For Unix the library script used for this could be:

~/.vim/autoload/netlib/ftp.vim

Where the function is defined like this:

def netlib#ftp#read(fname: string)
Read the file fname through ftp

enddef

Notice that the name the function is defined with is exactly the same as the
name used for calling the function. And the part before the last '#'
exactly matches the subdirectory and script name.

You can use the same mechanism for variables:

var weekdays = dutch#weekdays

This will load the script "autoload/dutch.vim", which should contain something
like:

var dutch#weekdays = ['zondag', 'maandag', 'dinsdag', 'woensdag',
\ 'donderdag', 'vrijdag', 'zaterdag']

Further reading: autoload .

==
52.4 Other mechanisms to use

Some may find the use of several files a hassle and prefer to keep everything
together in one script. To avoid this resulting in slow startup there is a

usr_52.txt — 356

mechanism that only defines a small part and postpones the rest to when it is
actually used. write-plugin-quickload

The basic idea is that the plugin is loaded twice. The first time user
commands and mappings are defined that offer the functionality. The second
time the functions that implement the functionality are defined.

It may sound surprising that quickload means loading a script twice. What we
mean is that it loads quickly the first time, postponing the bulk of the
script to the second time, which only happens when you actually use it. When
you always use the functionality it actually gets slower!

This uses a FuncUndefined autocommand. This works differently from the
autoload functionality explained above.

The following example shows how it's done:

" Vim global plugin for demonstrating quick loading
" Last Change: 2005 Feb 25
" Maintainer: Bram Moolenaar <Bram@vim.org>
" License: This file is placed in the public domain.

if !exists("s:did_load")
command -nargs=* BNRead call BufNetRead(<f-args>)
map <F19> :call BufNetWrite('something')<CR>

let s:did_load = 1
exe 'au FuncUndefined BufNet* source ' .. expand('<sfile>')
finish

endif

function BufNetRead(...)
echo 'BufNetRead(' .. string(a:000) .. ')'
" read functionality here

endfunction

function BufNetWrite(...)
echo 'BufNetWrite(' .. string(a:000) .. ')'
" write functionality here

endfunction

When the script is first loaded "s:did_load" is not set. The commands between
the "if" and "endif" will be executed. This ends in a :finish command, thus
the rest of the script is not executed.

The second time the script is loaded "s:did_load" exists and the commands
after the "endif" are executed. This defines the (possible long)
BufNetRead() and BufNetWrite() functions.

If you drop this script in your plugin directory Vim will execute it on
startup. This is the sequence of events that happens:

1. The "BNRead" command is defined and the <F19> key is mapped when the script
is sourced at startup. A FuncUndefined autocommand is defined. The
":finish" command causes the script to terminate early.

2. The user types the BNRead command or presses the <F19> key. The
BufNetRead() or BufNetWrite() function will be called.

3. Vim can't find the function and triggers the FuncUndefined autocommand

usr_52.txt — 357

event. Since the pattern "BufNet*" matches the invoked function, the
command "source fname" will be executed. "fname" will be equal to the name
of the script, no matter where it is located, because it comes from
expanding "<sfile>" (see expand()).

4. The script is sourced again, the "s:did_load" variable exists and the
functions are defined.

Notice that the functions that are loaded afterwards match the pattern in the
FuncUndefined autocommand. You must make sure that no other plugin defines

functions that match this pattern.

==
52.5 Using a Vim9 script from legacy script source-vim9-script

In some cases you have a legacy Vim script where you want to use items from a
Vim9 script. For example in your .vimrc you want to initialize a plugin. The
best way to do this is to use `:import`. For example:

import 'myNicePlugin.vim'
call myNicePlugin.NiceInit('today')

This finds the exported function "NiceInit" in the Vim9 script file and makes
it available as script-local item "myNicePlugin.NiceInit". `:import` always
uses the script namespace, even when "s:" is not given. If "myNicePlugin.vim"
was already sourced it is not sourced again.

Besides avoiding putting any items in the global namespace (where name clashes
can cause unexpected errors), this also means the script is sourced only once,
no matter how many times items from it are imported.

In some cases, e.g. for testing, you may just want to source the Vim9 script.
That is OK, but then only global items will be available. The Vim9 script
will have to make sure to use a unique name for these global items. Example:

source ~/.vim/extra/myNicePlugin.vim
call g:NicePluginTest()

==

Next chapter: usr_90.txt Installing Vim

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_52.txt — 358

usr_90.txt For Vim version 9.1. Last change: 2022 May 13

VIM USER MANUAL - by Bram Moolenaar

Installing Vim

install
Before you can use Vim you have to install it. Depending on your system it's
simple or easy. This chapter gives a few hints and also explains how
upgrading to a new version is done.

90.1 Unix
90.2 MS-Windows
90.3 Upgrading
90.4 Common installation issues
90.5 Uninstalling Vim

Previous chapter: usr_52.txt Write plugins using Vim9 script
Table of contents: usr_toc.txt

==
90.1 Unix

First you have to decide if you are going to install Vim system-wide or for a
single user. The installation is almost the same, but the directory where Vim
is installed in differs.

For a system-wide installation the base directory "/usr/local" is often
used. But this may be different for your system. Try finding out where other
packages are installed.

When installing for a single user, you can use your home directory as the
base. The files will be placed in subdirectories like "bin" and "shared/vim".

FROM A PACKAGE

You can get precompiled binaries for many different UNIX systems. There is a
long list with links on this page:

http://www.vim.org/binaries.html

Volunteers maintain the binaries, so they are often out of date. It is a
good idea to compile your own UNIX version from the source. Also, creating
the editor from the source allows you to control which features are compiled.
This does require a compiler though.

If you have a Linux distribution, the "vi" program is probably a minimal
version of Vim. It doesn't do syntax highlighting, for example. Try finding
another Vim package in your distribution, or search on the web site.

FROM SOURCES

To compile and install Vim, you will need the following:

- A C compiler (GCC preferred)
- The GZIP program (you can get it from www.gnu.org)
- The Vim source and runtime archives

To get the Vim archives, look in this file for a mirror near you, this should
provide the fastest download:

usr_90.txt — 359

ftp://ftp.vim.org/pub/vim/MIRRORS

Or use the home site ftp.vim.org, if you think it's fast enough. Go to the
"unix" directory and you'll find a list of files there. The version number is
embedded in the file name. You will want to get the most recent version.

You can get the files for Unix in one big archive that contains everything:

vim-8.2.tar.bz2

You need the bzip2 program to uncompress it.

COMPILING

First create a top directory to work in, for example:

mkdir ~/vim
cd ~/vim

Then unpack the archives there. You can unpack it like this:

tar xf path/vim-8.2.tar.bz2

If your tar command doesn't support bz2 directly:

bzip2 -d -c path/vim-8.2.tar.bz2 | tar xf -

Change "path" to where you have downloaded the file.
If you are satisfied with getting the default features, and your environment
is setup properly, you should be able to compile Vim with just this:

cd vim82/src
make

The make program will run configure and compile everything. Further on we
will explain how to compile with different features.

If there are errors while compiling, carefully look at the error messages.
There should be a hint about what went wrong. Hopefully you will be able to
correct it. You might have to disable some features to make Vim compile.
Look in the Makefile for specific hints for your system.

TESTING

Now you can check if compiling worked OK:

make test

This will run a sequence of test scripts to verify that Vim works as expected.
Vim will be started many times and all kinds of text and messages flash by.
If it is alright you will finally see:

test results:
ALL DONE

If you get "TEST FAILURE" some test failed. If there are one or two messages
about failed tests, Vim might still work, but not perfectly. If you see a lot
of error messages or Vim doesn't finish until the end, there must be something
wrong. Either try to find out yourself, or find someone who can solve it.

usr_90.txt — 360

You could look in the maillist-archive for a solution. If everything else
fails, you could ask in the vim maillist if someone can help you.

INSTALLING
install-home

If you want to install in your home directory, edit the Makefile and search
for a line:

#prefix = $(HOME)

Remove the # at the start of the line.
When installing for the whole system, Vim has most likely already selected

a good installation directory for you. You can also specify one, see below.
You need to become root for the following.

To install Vim do:

make install

That should move all the relevant files to the right place. Now you can try
running vim to verify that it works. Use two simple tests to check if Vim can
find its runtime files:

:help
:syntax enable

If this doesn't work, use this command to check where Vim is looking for the
runtime files:

:echo $VIMRUNTIME

You can also start Vim with the "-V" argument to see what happens during
startup:

vim -V

Don't forget that the user manual assumes you Vim in a certain way. After
installing Vim, follow the instructions at not-compatible to make Vim work
as assumed in this manual.

SELECTING FEATURES

Vim has many ways to select features. One of the simple ways is to edit the
Makefile. There are many directions and examples. Often you can enable or
disable a feature by uncommenting a line.

An alternative is to run "configure" separately. This allows you to
specify configuration options manually. The disadvantage is that you have to
figure out what exactly to type.

Some of the most interesting configure arguments follow. These can also be
enabled from the Makefile.

--prefix={directory} Top directory where to install Vim.

--with-features=tiny Compile with some features disabled.
--with-features=normal Compile with more features enabled.
--with-features=huge Compile with most features enabled.

See +feature-list for which feature
is enabled in which case.

usr_90.txt — 361

--enable-perlinterp Enable the Perl interface. There are
similar arguments for ruby, python and
tcl.

--disable-gui Do not compile the GUI interface.
--without-x Do not compile X-windows features.

When both of these are used, Vim will
not connect to the X server, which
makes startup faster.

To see the whole list use:

./configure --help

You can find a bit of explanation for each feature, and links for more
information here: feature-list .

For the adventurous, edit the file "feature.h". You can also change the
source code yourself!

==
90.2 MS-Windows

There are two ways to install the Vim program for Microsoft Windows. You can
uncompress several archives, or use a self-installing big archive. Most users
with fairly recent computers will prefer the second method. For the first
one, you will need:

- An archive with binaries for Vim.
- The Vim runtime archive.
- A program to unpack the zip files.

To get the Vim archives, look in this file for a mirror near you, this should
provide the fastest download:

ftp://ftp.vim.org/pub/vim/MIRRORS

Or use the home site ftp.vim.org, if you think it's fast enough. Go to the
"pc" directory and you'll find a list of files there. The version number is
embedded in the file name. You will want to get the most recent version.
We will use "82" here, which is version 8.2.

gvim82.exe The self-installing archive.

This is all you need for the second method. Just launch the executable, and
follow the prompts.

For the first method you must choose one of the binary archives. These are
available:

gvim82.zip The normal MS-Windows GUI version.
gvim82ole.zip The MS-Windows GUI version with OLE support.

Uses more memory, supports interfacing with
other OLE applications.

vim82w32.zip 32 bit MS-Windows console version.

You only need one of them. Although you could install both a GUI and a
console version. You always need to get the archive with runtime files.

vim82rt.zip The runtime files.

usr_90.txt — 362

Use your un-zip program to unpack the files. For example, using the "unzip"
program:

cd c:\
unzip path\gvim82.zip
unzip path\vim82rt.zip

This will unpack the files in the directory "c:\vim\vim82". If you already
have a "vim" directory somewhere, you will want to move to the directory just
above it.

Now change to the "vim\vim82" directory and run the install program:

install

Carefully look through the messages and select the options you want to use.
If you finally select "do it" the install program will carry out the actions
you selected.

The install program doesn't move the runtime files. They remain where you
unpacked them.

In case you are not satisfied with the features included in the supplied
binaries, you could try compiling Vim yourself. Get the source archive from
the same location as where the binaries are. You need a compiler for which a
makefile exists. Microsoft Visual C, MinGW and Cygwin compilers can be used.
Check the file src/INSTALLpc.txt for hints.

==
90.3 Upgrading

If you are running one version of Vim and want to install another, here is
what to do.

UNIX

When you type "make install" the runtime files will be copied to a directory
which is specific for this version. Thus they will not overwrite a previous
version. This makes it possible to use two or more versions next to
each other.

The executable "vim" will overwrite an older version. If you don't care
about keeping the old version, running "make install" will work fine. You can
delete the old runtime files manually. Just delete the directory with the
version number in it and all files below it. Example:

rm -rf /usr/local/share/vim/vim74

There are normally no changed files below this directory. If you did change
the "filetype.vim" file, for example, you better merge the changes into the
new version before deleting it.

If you are careful and want to try out the new version for a while before
switching to it, install the new version under another name. You need to
specify a configure argument. For example:

./configure --with-vim-name=vim8

Before running "make install", you could use "make -n install" to check that
no valuable existing files are overwritten.

When you finally decide to switch to the new version, all you need to do is

usr_90.txt — 363

to rename the binary to "vim". For example:

mv /usr/local/bin/vim8 /usr/local/bin/vim

MS-WINDOWS

Upgrading is mostly equal to installing a new version. Just unpack the files
in the same place as the previous version. A new directory will be created,
e.g., "vim82", for the files of the new version. Your runtime files, vimrc
file, viminfo, etc. will be left alone.

If you want to run the new version next to the old one, you will have to do
some handwork. Don't run the install program, it will overwrite a few files
of the old version. Execute the new binaries by specifying the full path.
The program should be able to automatically find the runtime files for the
right version. However, this won't work if you set the $VIMRUNTIME variable
somewhere.

If you are satisfied with the upgrade, you can delete the files of the
previous version. See 90.5 .

==
90.4 Common installation issues

This section describes some of the common problems that occur when installing
Vim and suggests some solutions. It also contains answers to many
installation questions.

Q: I Do Not Have Root Privileges. How Do I Install Vim? (Unix)

Use the following configuration command to install Vim in a directory called
$HOME/vim:

./configure --prefix=$HOME

This gives you a personal copy of Vim. You need to put $HOME/bin in your
path to execute the editor. Also see install-home .

Q: The Colors Are Not Right on My Screen. (Unix)

Check your terminal settings by using the following command in a shell:

echo $TERM

If the terminal type listed is not correct, fix it. For more hints, see
06.2 . Another solution is to always use the GUI version of Vim, called

gvim. This avoids the need for a correct terminal setup.

Q: My Backspace And Delete Keys Don't Work Right

The definition of what key sends what code is very unclear for backspace <BS>
and Delete keys. First of all, check your $TERM setting. If there is
nothing wrong with it, try this:

:set t_kb=^V<BS>
:set t_kD=^V

In the first line you need to press CTRL-V and then hit the backspace key.

usr_90.txt — 364

In the second line you need to press CTRL-V and then hit the Delete key.
You can put these lines in your vimrc file, see 05.1 . A disadvantage is
that it won't work when you use another terminal some day. Look here for
alternate solutions: :fixdel .

Q: I Am Using RedHat Linux. Can I Use the Vim That Comes with the System?

By default RedHat installs a minimal version of Vim. Check your RPM packages
for something named "Vim-enhanced-version.rpm" and install that.

Q: How Do I Turn Syntax Coloring On? How do I make plugins work?

Use the example vimrc script. You can find an explanation on how to use it
here: not-compatible .

See chapter 6 for information about syntax highlighting: usr_06.txt .

Q: What Is a Good vimrc File to Use?

See the www.vim.org Web site for several good examples.

Q: Where Do I Find a Good Vim Plugin?

See the Vim-online site: http://vim.sf.net. Many users have uploaded useful
Vim scripts and plugins there.

Q: Where Do I Find More Tips?

See the Vim-online site: http://vim.sf.net. There is an archive with hints
from Vim users. You might also want to search in the maillist-archive .

==
90.5 Uninstalling Vim

In the unlikely event you want to uninstall Vim completely, this is how you do
it.

UNIX

When you installed Vim as a package, check your package manager to find out
how to remove the package again.

If you installed Vim from sources you can use this command:

make uninstall

However, if you have deleted the original files or you used an archive that
someone supplied, you can't do this. Do delete the files manually, here is an
example for when "/usr/local" was used as the root:

rm -rf /usr/local/share/vim/vim82
rm /usr/local/bin/eview
rm /usr/local/bin/evim
rm /usr/local/bin/ex
rm /usr/local/bin/gview

usr_90.txt — 365

http://vim.sf.net
http://vim.sf.net

rm /usr/local/bin/gvim
rm /usr/local/bin/gvim
rm /usr/local/bin/gvimdiff
rm /usr/local/bin/rgview
rm /usr/local/bin/rgvim
rm /usr/local/bin/rview
rm /usr/local/bin/rvim
rm /usr/local/bin/rvim
rm /usr/local/bin/view
rm /usr/local/bin/vim
rm /usr/local/bin/vimdiff
rm /usr/local/bin/vimtutor
rm /usr/local/bin/xxd
rm /usr/local/man/man1/eview.1
rm /usr/local/man/man1/evim.1
rm /usr/local/man/man1/ex.1
rm /usr/local/man/man1/gview.1
rm /usr/local/man/man1/gvim.1
rm /usr/local/man/man1/gvimdiff.1
rm /usr/local/man/man1/rgview.1
rm /usr/local/man/man1/rgvim.1
rm /usr/local/man/man1/rview.1
rm /usr/local/man/man1/rvim.1
rm /usr/local/man/man1/view.1
rm /usr/local/man/man1/vim.1
rm /usr/local/man/man1/vimdiff.1
rm /usr/local/man/man1/vimtutor.1
rm /usr/local/man/man1/xxd.1

MS-WINDOWS

If you installed Vim with the self-installing archive you can run
the "uninstall-gui" program located in the same directory as the other Vim
programs, e.g. "c:\vim\vim82". You can also launch it from the Start menu if
installed the Vim entries there. This will remove most of the files, menu
entries and desktop shortcuts. Some files may remain however, as they need a
Windows restart before being deleted.

You will be given the option to remove the whole "vim" directory. It
probably contains your vimrc file and other runtime files that you created, so
be careful.

Else, if you installed Vim with the zip archives, the preferred way is to use
the "uninstall" program. You can find it in the same directory as the
"install" program, e.g., "c:\vim\vim82". This should also work from the usual
"install/remove software" page.

However, this only removes the registry entries for Vim. You have to
delete the files yourself. Simply select the directory "vim\vim82" and delete
it recursively. There should be no files there that you changed, but you
might want to check that first.

The "vim" directory probably contains your vimrc file and other runtime
files that you created. You might want to keep that.

==

Table of contents: usr_toc.txt

Copyright: see manual-copyright vim:tw=78:ts=8:noet:ft=help:norl:

usr_90.txt — 366

intro.txt For Vim version 9.1. Last change: 2024 Jan 25

VIM REFERENCE MANUAL by Bram Moolenaar

Introduction to Vim ref reference

1. Introduction intro
2. Vim on the internet internet
3. Credits credits
4. Notation notation
5. Modes, introduction vim-modes-intro
6. Switching from mode to mode mode-switching
7. The window contents window-contents
8. Definitions definitions

==
1. Introduction intro

Vim stands for Vi IMproved. It used to be Vi IMitation, but there are so many
improvements that a name change was appropriate. Vim is a text editor which
includes almost all the commands from the Unix program "Vi" and a lot of new
ones. It is very useful for editing programs and other plain text.

All commands are given with the keyboard. This has the advantage that you
can keep your fingers on the keyboard and your eyes on the screen. For those
who want it, there is mouse support and a GUI version with scrollbars and
menus (see gui.txt).

An overview of this manual can be found in the file "help.txt", help.txt .
It can be accessed from within Vim with the <Help> or <F1> key and with the
:help command (just type ":help", without the bars or quotes).
The 'helpfile' option can be set to the name of the help file, in case it

is not located in the default place. You can jump to subjects like with tags:
Use CTRL-] to jump to a subject under the cursor, use CTRL-T to jump back.

The differences between Vi and Vim are mentioned in vi_diff.txt .

This manual refers to Vim on various machines. There may be small differences
between different computers and terminals. Besides the remarks given in this
document, there is a separate document for each supported system, see
sys-file-list .

pronounce
Vim is pronounced as one word, like Jim, not vi-ai-em. It's written with a
capital, since it's a name, again like Jim. The GUI version of Vim is written
"gVim" (or "GVim" when at the beginning of a sentence).

This manual is a reference for all the Vim commands and options. This is not
an introduction to the use of Vi or Vim, it gets a bit complicated here and
there. For beginners, there is a hands-on tutor . To learn using Vim, read
the user manual usr_toc.txt .

book books
Most books on Vi and Vim contain a section for beginners. Others are spending
more words on specific functionality. You can find an overview of Vim books
here:

http://iccf-holland.org/vim_books.html

==

intro.txt — 367

http://iccf-holland.org/vim_books.html

2. Vim on the internet internet

www WWW faq FAQ distribution download
The Vim pages contain the most recent information about Vim. They also
contain links to the most recent version of Vim. The FAQ is a list of
Frequently Asked Questions. Read this if you have problems.

Vim home page: https://www.vim.org/
Vim FAQ: https://vimhelp.org/vim_faq.txt.html
Downloading: https://www.vim.org/download.php

Asking questions, finding answers: https://vi.stackexchange.com/
"Vi and Vim Stack Exchange is a question and answer site for people using the
vi and Vim families of text editors"

Usenet News group where Vim is discussed: news usenet
comp.editors

This group is also for other editors. If you write about Vim, don't forget to
mention that.
You can access it here:
https://groups.google.com/forum/#!topic/comp.editors

mail-list maillist
There are several mailing lists for Vim:
<vim@vim.org> vim-use vim_use

For discussions about using existing versions of Vim: Useful mappings,
questions, answers, where to get a specific version, etc. There are
quite a few people watching this list and answering questions, also
for beginners. Don't hesitate to ask your question here.

<vim-dev@vim.org> vim-dev vim_dev vimdev
For discussions about changing Vim: New features, porting, patches,
beta-test versions, etc.

<vim-announce@vim.org> vim-announce vim_announce
Announcements about new versions of Vim; also for beta-test versions
and ports to different systems. This is a read-only list.

<vim-mac@vim.org> vim-mac vim_mac
For discussions about using and improving the Macintosh version of
Vim.

<vim-security@googlegroups.com> vim-security
This list is for (privately) discussing security relevant issues of Vim.

See http://www.vim.org/maillist.php for the latest information.

NOTE:
- Anyone can see the archive, e.g. on Google groups. Search this if you have

questions, except for the vim-security list.
- You can only send messages to these lists if you have subscribed!
- The first message is moderated, thus it may take a few hours to show up.
- You need to send the messages from the same location as where you subscribed

from (to avoid spam mail).

subscribe-maillist
If you want to join, send a message to

<vim-subscribe@vim.org>
Make sure that your "From:" address is correct. Then the list server will
give you help on how to subscribe.

maillist-archive

intro.txt — 368

https://www.vim.org/
https://vimhelp.org/vim_faq.txt.html
https://www.vim.org/download.php
https://vi.stackexchange.com/
https://groups.google.com/forum/#!topic/comp.editors
http://www.vim.org/maillist.php

For more information and archives look on the Vim maillist page:
http://www.vim.org/maillist.php

Bug reports: bugs bug-reports bugreport.vim

There are three ways to report bugs:
1. For issues with runtime files, look in the header for an email address or

any other way to report it to the maintainer.
2. Open an issue on GitHub: https://github.com/vim/vim/issues

The text will be forwarded to the vim-dev maillist.
3. Send bug reports to: Vim Developers <vim-dev@vim.org>

This is a maillist, you need to become a member first and many people will
see the message. If you don't want that, e.g. because it is a security
issue, please contact any of the current Vim maintainers
https://github.com/orgs/vim/people (but not Bram or the vim-dev ML).
In the future, a proper process for handling security issues will be setup.

Please be brief; all the time that is spent on answering mail is subtracted
from the time that is spent on improving Vim! Always give a reproducible
example and try to find out which settings or other things trigger the bug.

Preferably start Vim with:
vim --clean -u reproduce.vim

Where reproduce.vim is a script that reproduces the problem. Try different
machines, if relevant (is this an MS-Windows specific bug perhaps?).

Send me patches if you can! If you create a pull request on
https://github.com/vim/vim then the automated checks will run and report any
obvious problems. But you can also send the patch by email (use an attachment
to avoid white space changes).

It will help to include information about the version of Vim you are using and
your setup. You can get the information with this command:

:so $VIMRUNTIME/bugreport.vim
This will create a file "bugreport.txt" in the current directory, with a lot
of information of your environment. Before sending this out, check if it
doesn't contain any confidential information!

If Vim crashes, please try to find out where. You can find help on this here:
debug.txt .

In case of doubt or when you wonder if the problem has already been fixed but
you can't find a fix for it, become a member of the vim-dev maillist and ask
your question there. maillist

year-2000 Y2K
Since Vim internally doesn't use dates for editing, there is no year 2000
problem to worry about. Vim does use the time in the form of seconds since
January 1st 1970. It is used for a time-stamp check of the edited file and
the swap file, which is not critical and should only cause warning messages.

There might be a year 2038 problem, when the seconds don't fit in a 32 bit int
anymore. This depends on the compiler, libraries and operating system.
Specifically, time_t and the ctime() function are used. And the time_t is
stored in four bytes in the swap file. But that's only used for printing a
file date/time for recovery, it will never affect normal editing.

The Vim strftime() function directly uses the strftime() system function.
localtime() uses the time() system function. getftime() uses the time

intro.txt — 369

http://www.vim.org/maillist.php
https://github.com/vim/vim/issues
https://github.com/orgs/vim/people
https://github.com/vim/vim

returned by the stat() system function. If your system libraries are year
2000 compliant, Vim is too.

The user may create scripts for Vim that use external commands. These might
introduce Y2K problems, but those are not really part of Vim itself.

==
3. Credits credits author

Most of Vim was created by Bram Moolenaar <Bram@vim.org> Bram-Moolenaar .

Parts of the documentation come from several Vi manuals, written by:
W.N. Joy
Alan P.W. Hewett
Mark Horton

The Vim editor is based on Stevie and includes (ideas from) other software,
worked on by the people mentioned here. Other people helped by sending me
patches, suggestions and giving feedback about what is good and bad in Vim.

Vim would never have become what it is now, without the help of these people!

Ron Aaron Win32 GUI changes
Mohsin Ahmed encryption
Zoltan Arpadffy work on VMS port
Tony Andrews Stevie
Gert van Antwerpen changes for DJGPP on MS-DOS
Berkeley DB(3) ideas for swap file implementation
Keith Bostic Nvi
Walter Briscoe Makefile updates, various patches
Ralf Brown SPAWNO library for MS-DOS
Robert Colon many useful remarks
Marcin Dalecki GTK+ GUI port, toolbar icons, gettext()
Kayhan Demirel sent me news in Uganda
Chris & John Downey xvi (ideas for multi-windows version)
Henk Elbers first VMS port
Daniel Elstner GTK+ 2 port
Eric Fischer Mac port, 'cindent', and other improvements
Benji Fisher Answering lots of user questions
Bill Foster Athena GUI port (later removed)
Google Let Bram work on Vim one day a week
Loic Grenie xvim (ideas for multi windows version)
Sven Guckes Vim promoter and previous WWW page maintainer

Sven-Guckes
Darren Hiebert Exuberant ctags
Jason Hildebrand GTK+ 2 port
Bruce Hunsaker improvements for VMS port
Andy Kahn Cscope support, GTK+ GUI port
Oezguer Kesim Maintainer of Vim Mailing Lists
Axel Kielhorn work on the Macintosh port
Steve Kirkendall Elvis
Roger Knobbe original port to Windows NT
Sergey Laskavy Vim's help from Moscow
Felix von Leitner Previous maintainer of Vim Mailing Lists
David Leonard Port of Python extensions to Unix
Avner Lottem Edit in right-to-left windows
Flemming Madsen X11 client-server, various features and patches
Tony Mechelynck answers many user questions
Paul Moore Python interface extensions, many patches
Katsuhito Nagano Work on multibyte versions

intro.txt — 370

Sung-Hyun Nam Work on multibyte versions
Vince Negri Win32 GUI and generic console enhancements
Steve Oualline Author of the first Vim book frombook
Dominique Pelle Valgrind reports and many fixes
A.Politz Many bug reports and some fixes
George V. Reilly Win32 port, Win32 GUI start-off
Stephen Riehm bug collector
Stefan Roemer various patches and help to users
Ralf Schandl IBM OS/390 port
Olaf Seibert DICE and BeBox version, regexp improvements
Mortaza Shiran Farsi patches
Peter da Silva termlib
Paul Slootman OS/2 port
Henry Spencer regular expressions
Dany St-Amant Macintosh port
Tim Thompson Stevie
G. R. (Fred) Walter Stevie
Sven Verdoolaege Perl interface
Robert Webb Command-line completion, GUI versions, and

lots of patches
Ingo Wilken Tcl interface
Mike Williams PostScript printing
Juergen Weigert Lattice version, AUX improvements, UNIX and

MS-DOS ports, autoconf
Stefan 'Sec' Zehl Maintainer of vim.org
Yasuhiro Matsumoto many MS-Windows improvements
Ken Takata fixes and features
Kazunobu Kuriyama GTK 3
Christian Brabandt many fixes, features, user support, etc.
Yegappan Lakshmanan many quickfix features

I wish to thank all the people that sent me bug reports and suggestions. The
list is too long to mention them all here. Vim would not be the same without
the ideas from all these people: They keep Vim alive!
love peace friendship gross-national-happiness

In this documentation there are several references to other versions of Vi:
Vi vi

Vi "the original". Without further remarks this is the version
of Vi that appeared in Sun OS 4.x. ":version" returns
"Version 3.7, 6/7/85". Sometimes other versions are referred
to. Only runs under Unix. Source code is now available under a
BSD-style license. More information on Vi can be found through:

http://ex-vi.sourceforge.net/
Posix

Posix From the IEEE standard 1003.2, Part 2: Shell and utilities.
Generally known as "Posix". This is a textual description of
how Vi is supposed to work.
See posix-compliance .

Nvi
Nvi The "New" Vi. The version of Vi that comes with BSD 4.4 and FreeBSD.

Very good compatibility with the original Vi, with a few extensions.
The version used is 1.79. ":version" returns "Version 1.79
(10/23/96)". There has been no release the last few years, although
there is a development version 1.81.
Source code is freely available.

Elvis
Elvis Another Vi clone, made by Steve Kirkendall. Very compact but isn't

as flexible as Vim. Development has stalled, Elvis has left the

intro.txt — 371

http://ex-vi.sourceforge.net/

building! Source code is freely available.
Neovim

Neovim A Vim clone. Forked the Vim source in 2014 and went a different way.
Very much bound to github and has many more dependencies, making
development more complex and limiting portability. Code has been
refactored, resulting in patches not being exchangeable with Vim.
Supports a remote GUI and integration with scripting languages.

==
4. Notation notation

When syntax highlighting is used to read this, text that is not typed
literally is often highlighted with the Special group. These are items in [],
{} and <>, and CTRL-X.

Note that Vim uses all possible characters in commands. Sometimes the [], {}
and <> are part of what you type, the context should make this clear.

[] Characters in square brackets are optional.

count [count]
[count] An optional number that may precede the command to multiply

or iterate the command. If no number is given, a count of one
is used, unless otherwise noted. Note that in this manual the
[count] is not mentioned in the description of the command,
but only in the explanation. This was done to make the
commands easier to look up. If the 'showcmd' option is on,
the (partially) entered count is shown at the bottom of the
window. You can use to erase the last digit (N).

[quotex]
["x] An optional register designation where text can be stored.

See registers . The x is a single character between 'a' and
'z' or 'A' and 'Z' or '"', and in some cases (with the put
command) between '0' and '9', '%', '#', or others. The
uppercase and lowercase letter designate the same register,
but the lowercase letter is used to overwrite the previous
register contents, while the uppercase letter is used to
append to the previous register contents. Without the ""x" or
with """" the stored text is put into the unnamed register.

{}
{} Curly braces denote parts of the command which must appear,

but which can take a number of different values. The
differences between Vim and Vi are also given in curly braces
(this will be clear from the context).

{char1-char2}
{char1-char2} A single character from the range char1 to char2. For

example: {a-z} is a lowercase letter. Multiple ranges may be
concatenated. For example, {a-zA-Z0-9} is any alphanumeric
character.

{motion} movement
{motion} A command that moves the cursor. These are explained in

motion.txt . Examples:
w to start of next word
b to begin of current word
4j four lines down

intro.txt — 372

/The<CR> to next occurrence of "The"
This is used after an operator command to move over the text
that is to be operated upon.
- If the motion includes a count and the operator also has a
count, the two counts are multiplied. For example: "2d3w"
deletes six words.

- The motion can be backwards, e.g. "db" to delete to the
start of the word.

- The motion can also be a mouse click. The mouse is not
supported in every terminal though.

- The ":omap" command can be used to map characters while an
operator is pending.

- Ex commands can be used to move the cursor. This can be
used to call a function that does some complicated motion.
The motion is always characterwise exclusive, no matter
what ":" command is used. This means it's impossible to
include the last character of a line without the line break
(unless 'virtualedit' is set).
If the Ex command changes the text before where the operator
starts or jumps to another buffer the result is
unpredictable. It is possible to change the text further
down. Jumping to another buffer is possible if the current
buffer is not unloaded.

{Visual}
{Visual} A selected text area. It is started with the "v", "V", or

CTRL-V command, then any cursor movement command can be used
to change the end of the selected text.
This is used before an operator command to highlight the
text that is to be operated upon.
See Visual-mode .

<character>
<character> A special character from the table below, optionally with

modifiers, or a single ASCII character with modifiers.

'character'
'c' A single ASCII character.

CTRL-{char}
CTRL-{char} {char} typed as a control character; that is, typing {char}

while holding the CTRL key down. The case of {char} does not
matter; thus CTRL-A and CTRL-a are equivalent. But on some
terminals, using the SHIFT key will produce another code,
don't use it then.

'option'
'option' An option, or parameter, that can be set to a value, is

enclosed in single quotes. See options .

quotecommandquote
"command" A reference to a command that you can type is enclosed in

double quotes.
`command` New style command, this distinguishes it from other quoted

text and strings.

key-notation key-codes keycodes
These names for keys are used in the documentation. They can also be used
with the ":map" command (insert the key name by pressing CTRL-K and then the
key you want the name for).

intro.txt — 373

notation meaning equivalent decimal value(s)

<Nul> zero CTRL-@ 0 (stored as 10) <Nul>
<BS> backspace CTRL-H 8 backspace
<Tab> tab CTRL-I 9 tab Tab

linefeed
<NL> linefeed CTRL-J 10 (used for <Nul>)
<CR> carriage return CTRL-M 13 carriage-return
<Return> same as <CR> <Return>
<Enter> same as <CR> <Enter>
<Esc> escape CTRL-[27 escape <Esc>
<Space> space 32 space
<lt> less-than < 60 *<lt>*
<Bslash> backslash \ 92 backslash <Bslash>
<Bar> vertical bar | 124 <Bar>
 delete 127
<CSI> command sequence intro ALT-Esc 155 <CSI>
<xCSI> CSI when typed in the GUI <xCSI>

<EOL> end-of-line (can be <CR>, <NL> or <CR><NL>,
depends on system and 'fileformat') <EOL>

<Up> cursor-up cursor-up cursor_up
<Down> cursor-down cursor-down cursor_down
<Left> cursor-left cursor-left cursor_left
<Right> cursor-right cursor-right cursor_right
<S-Up> shift-cursor-up
<S-Down> shift-cursor-down
<S-Left> shift-cursor-left
<S-Right> shift-cursor-right
<C-Left> control-cursor-left
<C-Right> control-cursor-right
<F1> - <F12> function keys 1 to 12 function_key function-key
<S-F1> - <S-F12> shift-function keys 1 to 12 <S-F1>
<Help> help key
<Undo> undo key
<Insert> insert key
<Home> home home
<End> end end
<PageUp> page-up page_up page-up
<PageDown> page-down page_down page-down
<kHome> keypad home (upper left) keypad-home
<kEnd> keypad end (lower left) keypad-end
<kPageUp> keypad page-up (upper right) keypad-page-up
<kPageDown> keypad page-down (lower right) keypad-page-down
<kPlus> keypad + keypad-plus
<kMinus> keypad - keypad-minus
<kMultiply> keypad * keypad-multiply
<kDivide> keypad / keypad-divide
<kEnter> keypad Enter keypad-enter
<kPoint> keypad Decimal point keypad-point
<k0> - <k9> keypad 0 to 9 keypad-0 keypad-9
<S-...> shift-key shift <S-
<C-...> control-key control ctrl <C-
<M-...> alt-key or meta-key meta alt <M-
<A-...> same as <M-...> <A-
<D-...> command-key (Mac) / super (GTK) <D-
<t_xx> key with "xx" entry in termcap

intro.txt — 374

Note: The shifted cursor keys, the help key, and the undo key are only
available on a few terminals. On the Amiga, shifted function key 10 produces
a code (CSI) that is also used by key sequences. It will be recognized only
after typing another key.

Note: There are two codes for the delete key. 127 is the decimal ASCII value
for the delete key, which is always recognized. Some delete keys send another
value, in which case this value is obtained from the termcap entry "kD". Both
values have the same effect. Also see :fixdel .

Note: The keypad keys are used in the same way as the corresponding "normal"
keys. For example, <kHome> has the same effect as <Home>. If a keypad key
sends the same raw key code as its non-keypad equivalent, it will be
recognized as the non-keypad code. For example, when <kHome> sends the same
code as <Home>, when pressing <kHome> Vim will think <Home> was pressed.
Mapping <kHome> will not work then.

<>
Examples are often given in the <> notation. Sometimes this is just to make
clear what you need to type, but often it can be typed literally, e.g., with
the ":map" command. The rules are:
1. Any printable characters are typed directly, except backslash and '<'
2. A backslash is represented with "\\", double backslash, or "<Bslash>".
3. A real '<' is represented with "\<" or "<lt>". When there is no

confusion possible, a '<' can be used directly.
4. "<key>" means the special key typed. This is the notation explained in

the table above. A few examples:
<Esc> Escape key
<C-G> CTRL-G
<Up> cursor up key
<C-LeftMouse> Control- left mouse click
<S-F11> Shifted function key 11
<M-a> Meta- a ('a' with bit 8 set)
<M-A> Meta- A ('A' with bit 8 set)
<t_kd> "kd" termcap entry (cursor down key)

Although you can specify <M-{char}> with {char} being a multibyte
character, Vim may not be able to know what byte sequence that is and then
it won't work.

If you want to use the full <> notation in Vim, you have to make sure the '<'
flag is excluded from 'cpoptions' (when 'compatible' is not set, it already is
by default).

:set cpo-=<
The <> notation uses <lt> to escape the special meaning of key names. Using a
backslash also works, but only when 'cpoptions' does not include the 'B' flag.

Examples for mapping CTRL-H to the six characters "<Home>":
:imap <C-H> \<Home>
:imap <C-H> <lt>Home>

The first one only works when the 'B' flag is not in 'cpoptions'. The second
one always works.
To get a literal "<lt>" in a mapping:

:map <C-L> <lt>lt>

For mapping, abbreviation and menu commands you can then copy-paste the
examples and use them directly. Or type them literally, including the '<' and
'>' characters. This does NOT work for other commands, like ":set" and
":autocmd"!

intro.txt — 375

The notation can be used in a double quoted strings, using "\<" at the start,
e.g. "\<C-Space>". This results in a special key code. To convert this back
to readable text use `keytrans()`.

==
5. Modes, introduction vim-modes-intro vim-modes

Vim has seven BASIC modes:

Normal Normal-mode command-mode
Normal mode In Normal mode you can enter all the normal editor

commands. If you start the editor you are in this
mode (unless you have set the 'insertmode' option,
see below). This is also known as command mode.

Visual mode This is like Normal mode, but the movement commands
extend a highlighted area. When a non-movement
command is used, it is executed for the highlighted
area. See Visual-mode .
If the 'showmode' option is on "-- VISUAL --" is shown
at the bottom of the window.

Select mode This looks most like the MS-Windows selection mode.
Typing a printable character deletes the selection
and starts Insert mode. See Select-mode .
If the 'showmode' option is on "-- SELECT --" is shown
at the bottom of the window.

Insert mode In Insert mode the text you type is inserted into the
buffer. See Insert-mode .
If the 'showmode' option is on "-- INSERT --" is shown
at the bottom of the window.

Command-line mode In Command-line mode (also called Cmdline mode) you
Cmdline mode can enter one line of text at the bottom of the

window. This is for the Ex commands, ":", the pattern
search commands, "?" and "/", and the filter command,
"!". Cmdline-mode

Ex mode Like Command-line mode, but after entering a command
you remain in Ex mode. Very limited editing of the
command line. Ex-mode

Terminal-Job mode Interacting with a job in a terminal window. Typed
keys go to the job and the job output is displayed in
the terminal window. See terminal about how to
switch to other modes.

There are seven ADDITIONAL modes. These are variants of the BASIC modes:

Operator-pending Operator-pending-mode
Operator-pending mode This is like Normal mode, but after an operator

command has started, and Vim is waiting for a {motion}
to specify the text that the operator will work on.

Replace mode Replace mode is a special case of Insert mode. You
can do the same things as in Insert mode, but for
each character you enter, one character of the existing
text is deleted. See Replace-mode .
If the 'showmode' option is on "-- REPLACE --" is

intro.txt — 376

shown at the bottom of the window.

Virtual Replace mode Virtual Replace mode is similar to Replace mode, but
instead of file characters you are replacing screen
real estate. See Virtual-Replace-mode .
If the 'showmode' option is on "-- VREPLACE --" is
shown at the bottom of the window.

Insert Normal mode Entered when CTRL-O is typed in Insert mode (see
i_CTRL-O). This is like Normal mode, but after

executing one command Vim returns to Insert mode.
If the 'showmode' option is on "-- (insert) --" is
shown at the bottom of the window.

Terminal-Normal mode Using Normal mode in a terminal window. Making
changes is impossible. Use an insert command, such as
"a" or "i", to return to Terminal-Job mode.

Insert Visual mode Entered when starting a Visual selection from Insert
mode, e.g., by using CTRL-O and then "v", "V" or
CTRL-V. When the Visual selection ends, Vim returns
to Insert mode.
If the 'showmode' option is on "-- (insert) VISUAL --"
is shown at the bottom of the window.

Insert Select mode Entered when starting Select mode from Insert mode.
E.g., by dragging the mouse or <S-Right>.
When the Select mode ends, Vim returns to Insert mode.
If the 'showmode' option is on "-- (insert) SELECT --"
is shown at the bottom of the window.

==
6. Switching from mode to mode mode-switching

If for any reason you do not know which mode you are in, you can always get
back to Normal mode by typing <Esc> twice. This doesn't work for Ex mode
though, use ":visual".
You will know you are back in Normal mode when you see the screen flash or
hear the bell after you type <Esc>. However, when pressing <Esc> after using
CTRL-O in Insert mode you get a beep but you are still in Insert mode, type
<Esc> again.

i_esc
TO mode
Normal Visual Select Insert Replace Cmd-line Ex

FROM mode
Normal v V ^V *4 *1 R gR : / ? ! Q
Visual *2 ^G c C -- : --
Select *5 ^O ^G *6 -- -- --
Insert <Esc> -- -- <Insert> -- --
Replace <Esc> -- -- <Insert> -- --
Command-line *3 -- -- :start -- --
Ex :vi -- -- -- -- --

-- not possible

*1 Go from Normal mode to Insert mode by giving the command "i", "I", "a",
"A", "o", "O", "c", "C", "s" or S".

*2 Go from Visual mode to Normal mode by giving a non-movement command, which
causes the command to be executed, or by hitting <Esc> "v", "V" or "CTRL-V"

intro.txt — 377

(see v_v), which just stops Visual mode without side effects.
*3 Go from Command-line mode to Normal mode by:

- Hitting <CR> or <NL>, which causes the entered command to be executed.
- Deleting the complete line (e.g., with CTRL-U) and giving a final <BS>.
- Hitting CTRL-C or <Esc>, which quits the command-line without executing
the command.

In the last case <Esc> may be the character defined with the 'wildchar'
option, in which case it will start command-line completion. You can
ignore that and type <Esc> again.

*4 Go from Normal to Select mode by:
- use the mouse to select text while 'selectmode' contains "mouse"
- use a non-printable command to move the cursor while keeping the Shift
key pressed, and the 'selectmode' option contains "key"

- use "v", "V" or "CTRL-V" while 'selectmode' contains "cmd"
- use "gh", "gH" or "g CTRL-H" g_CTRL-H

*5 Go from Select mode to Normal mode by using a non-printable command to move
the cursor, without keeping the Shift key pressed.

*6 Go from Select mode to Insert mode by typing a printable character. The
selection is deleted and the character is inserted.

If the 'insertmode' option is on, editing a file will start in Insert mode.

CTRL-_CTRL-N i_CTRL-_CTRL-N c_CTRL-_CTRL-N v_CTRL-_CTRL-N
Additionally the command CTRL-\ CTRL-N or <C-\><C-N> can be used to go to
Normal mode from any other mode. This can be used to make sure Vim is in
Normal mode, without causing a beep like <Esc> would. However, this does not
work in Ex mode. When used after a command that takes an argument, such as
f or m , the timeout set with 'ttimeoutlen' applies.

When focus is in a terminal window, CTRL-\ CTRL-N goes to Normal mode until an
edit command is entered, see t_CTRL-_CTRL-N .

CTRL-_CTRL-G i_CTRL-_CTRL-G c_CTRL-_CTRL-G v_CTRL-_CTRL-G
The command CTRL-\ CTRL-G or <C-\><C-G> can be used to go to Insert mode when
'insertmode' is set. Otherwise it goes to Normal mode. This can be used to
make sure Vim is in the mode indicated by 'insertmode', without knowing in
what mode Vim currently is.

Q mode-Ex Ex-mode Ex EX E501
Q Switch to "Ex" mode. This is a bit like typing ":"

commands one after another, except:
- You don't have to keep pressing ":".
- The screen doesn't get updated after each command.
- There is no normal command-line editing.
- Mappings and abbreviations are not used.
In fact, you are editing the lines with the "standard"
line-input editing commands (or <BS> to erase,
CTRL-U to kill the whole line).
Vim will enter this mode by default if it's invoked as
"ex" on the command-line or the -e command line
argument was used.
Use the ":vi" command :visual to exit "Ex" mode.
Note: In older versions of Vim "Q" formatted text,
that is now done with gq . But if you use the
vimrc_example.vim script or defaults.vim , "Q"

works like "gq". Except for Select mode.

gQ
gQ Switch to "Ex" mode like with "Q", but really behave

like typing ":" commands after another. All command
line editing, completion etc. is available.

intro.txt — 378

Use the `:vi` command (`:visual`) to exit "Ex" mode.

==
7. The window contents window-contents

In Normal mode and Insert/Replace mode the screen window will show the current
contents of the buffer: What You See Is What You Get. There are two
exceptions:
- When the 'cpoptions' option contains '$', and the change is within one line,

the text is not directly deleted, but a '$' is put at the last deleted
character.

- When inserting text in one window, other windows on the same text are not
updated until the insert is finished.

Lines longer than the window width will wrap, unless the 'wrap' option is off
(see below). The 'linebreak' option can be set to wrap at a blank character.

If the window has room after the last line of the buffer, Vim will show '~' in
the first column of the last lines in the window, like this:

+-----------------------+
|some line |
|last line |
|~ |
|~ |
+-----------------------+

Thus the '~' lines indicate that the end of the buffer was reached.

If the last line in a window doesn't fit, Vim will indicate this with a '@' in
the first column of the last lines in the window, like this:

+-----------------------+
|first line |
|second line |
|@ |
|@ |
+-----------------------+

Thus the '@' lines indicate that there is a line that doesn't fit in the
window.

When the "lastline" flag is present in the 'display' option, you will not see
'@' characters at the left side of window. If the last line doesn't fit
completely, only the part that fits is shown, and the last three characters of
the last line are replaced with "@@@", like this:

+-----------------------+
|first line |
|second line |
|a very long line that d|
|oesn't fit in the wi@@@|
+-----------------------+

If there is a single line that is too long to fit in the window, this is a
special situation. Vim will show only part of the line, around where the
cursor is. There are no special characters shown, so that you can edit all
parts of this line.

The '@' occasion in the 'highlight' option can be used to set special

intro.txt — 379

highlighting for the '@' and '~' characters. This makes it possible to
distinguish them from real characters in the buffer.

The 'showbreak' option contains the string to put in front of wrapped lines.

wrap-off
If the 'wrap' option is off, long lines will not wrap. Only the part that
fits on the screen is shown. If the cursor is moved to a part of the line
that is not shown, the screen is scrolled horizontally. The advantage of
this method is that columns are shown as they are and lines that cannot fit
on the screen can be edited. The disadvantage is that you cannot see all the
characters of a line at once. The 'sidescroll' option can be set to the
minimal number of columns to scroll.

All normal ASCII characters are displayed directly on the screen. The <Tab>
is replaced with the number of spaces that it represents. Other non-printing
characters are replaced with "^{char}", where {char} is the non-printing
character with 64 added. Thus character 7 (bell) will be shown as "^G".
Characters between 127 and 160 are replaced with "~{char}", where {char} is
the character with 64 subtracted. These characters occupy more than one
position on the screen. The cursor can only be positioned on the first one.

If you set the 'number' option, all lines will be preceded with their
number. Tip: If you don't like wrapping lines to mix with the line numbers,
set the 'showbreak' option to eight spaces:

":set showbreak=\ \ \ \ \ \ \ \ "

If you set the 'list' option, <Tab> characters will not be shown as several
spaces, but as "^I". A '$' will be placed at the end of the line, so you can
find trailing blanks.

In Command-line mode only the command-line itself is shown correctly. The
display of the buffer contents is updated as soon as you go back to Command
mode.

The last line of the window is used for status and other messages. The
status messages will only be used if an option is on:

status message option default Unix default
current mode 'showmode' on on
command characters 'showcmd' on off
cursor position 'ruler' off off

The current mode is "-- INSERT --" or "-- REPLACE --", see 'showmode' . The
command characters are those that you typed but were not used yet.

If you have a slow terminal you can switch off the status messages to speed
up editing:

:set nosc noru nosm

If there is an error, an error message will be shown for at least one second
(in reverse video).

Some commands show how many lines were affected. Above which threshold this
happens can be controlled with the 'report' option (default 2).

On the Amiga Vim will run in a CLI window. The name Vim and the full name of
the current file name will be shown in the title bar. When the window is
resized, Vim will automatically redraw the window. You may make the window as
small as you like, but if it gets too small not a single line will fit in it.

intro.txt — 380

Make it at least 40 characters wide to be able to read most messages on the
last line.

On most Unix systems, resizing the window is recognized and handled correctly
by Vim.

==
8. Definitions definitions

buffer Contains lines of text, usually read from a file.
screen The whole area that Vim uses to work in. This can be

a terminal emulator window. Also called "the Vim
window".

window A view on a buffer. There can be multiple windows for
one buffer.

A screen contains one or more windows, separated by status lines and with the
command line at the bottom.

+-------------------------------+
screen | window 1 | window 2 |

= status line =	= status line =
window 3	
==== status line ==============	
command line	
+-------------------------------+

The command line is also used for messages. It scrolls up the screen when
there is not enough room in the command line.

A difference is made between four types of lines:

buffer lines The lines in the buffer. This is the same as the
lines as they are read from/written to a file. They
can be thousands of characters long.

logical lines The buffer lines with folding applied. Buffer lines
in a closed fold are changed to a single logical line:
"+-- 99 lines folded". They can be thousands of
characters long.

window lines The lines displayed in a window: A range of logical
lines with wrapping, line breaks, etc. applied. They
can only be as long as the width of the window allows,
longer lines are wrapped or truncated.

screen lines The lines of the screen that Vim uses. Consists of
the window lines of all windows, with status lines
and the command line added. They can only be as long
as the width of the screen allows. When the command
line gets longer it wraps and lines are scrolled to
make room.

buffer lines logical lines window lines screen lines

1. one 1. one 1. +-- folded 1. +-- folded
2. two 2. +-- folded 2. five 2. five
3. three 3. five 3. six 3. six
4. four 4. six 4. seven 4. seven

intro.txt — 381

5. five 5. seven 5. === status line ===
6. six 6. aaa
7. seven 7. bbb

8. ccc ccc c
1. aaa 1. aaa 1. aaa 9. cc
2. bbb 2. bbb 2. bbb 10. ddd
3. ccc ccc ccc 3. ccc ccc ccc 3. ccc ccc c 11. ~
4. ddd 4. ddd 4. cc 12. === status line ===

5. ddd 13. (command line)
6. ~

==

intro.txt — 382

helphelp.txt For Vim version 9.1. Last change: 2022 Jan 08

VIM REFERENCE MANUAL by Bram Moolenaar

Help on help files helphelp

1. Help commands online-help
2. Translated help files help-translated
3. Writing help files help-writing

==
1. Help commands online-help

help <Help> :h :help <F1> i_<F1> i_<Help>
<Help> or
:h[elp] Open a window and display the help file in read-only

mode. If there is a help window open already, use
that one. Otherwise, if the current window uses the
full width of the screen or is at least 80 characters
wide, the help window will appear just above the
current window. Otherwise the new window is put at
the very top.
The 'helplang' option is used to select a language, if
the main help file is available in several languages.

{subject} E149 E661
:h[elp] {subject} Like ":help", additionally jump to the tag {subject}.

For example:
:help options

{subject} can include wildcards such as "*", "?" and
"[a-z]":

:help z? jump to help for any "z" command
:help z. jump to the help for "z."

But when a tag exists it is taken literally:
:help :? jump to help for ":?"

If there is no full match for the pattern, or there
are several matches, the "best" match will be used.
A sophisticated algorithm is used to decide which
match is better than another one. These items are
considered in the computation:
- A match with same case is much better than a match

with different case.
- A match that starts after a non-alphanumeric

character is better than a match in the middle of a
word.

- A match at or near the beginning of the tag is
better than a match further on.

- The more alphanumeric characters match, the better.
- The shorter the length of the match, the better.

The 'helplang' option is used to select a language, if
the {subject} is available in several languages.
To find a tag in a specific language, append "@ab",
where "ab" is the two-letter language code. See
help-translated .

helphelp.txt — 383

Note that the longer the {subject} you give, the less
matches will be found. You can get an idea how this
all works by using commandline completion (type CTRL-D
after ":help subject" c_CTRL-D).
If there are several matches, you can have them listed
by hitting CTRL-D. Example:

:help cont<Ctrl-D>

Instead of typing ":help CTRL-V" to search for help
for CTRL-V you can type:

:help ^V
This also works together with other characters, for
example to find help for CTRL-V in Insert mode:

:help i^V

It is also possible to first do ":help" and then
use ":tag {pattern}" in the help window. The
":tnext" command can then be used to jump to other
matches, "tselect" to list matches and choose one.

:help index
:tselect /.*mode

When there is no argument you will see matches for
"help", to avoid listing all possible matches (that
would be very slow).
The number of matches displayed is limited to 300.

The `:help` command can be followed by '|' and another
command, but you don't need to escape the '|' inside a
help command. So these both work:

:help |
:help k| only

Note that a space before the '|' is seen as part of
the ":help" argument.
You can also use <NL> or <CR> to separate the help
command from a following command. You need to type
CTRL-V first to insert the <NL> or <CR>. Example:

:help so<C-V><CR>only

:h[elp]! [subject] Like ":help", but in non-English help files prefer to
find a tag in a file with the same language as the
current file. See help-translated .

:helpc :helpclose
:helpc[lose] Close one help window, if there is one.

Vim will try to restore the window layout (including
cursor position) to the same layout it was before
opening the help window initially. This might cause
triggering several autocommands.

:helpg :helpgrep
:helpg[rep] {pattern}[@xx]

Search all help text files and make a list of lines
in which {pattern} matches. Jumps to the first match.
The optional [@xx] specifies that only matches in the
"xx" language are to be found.
You can navigate through the matches with the
quickfix commands, e.g., :cnext to jump to the

next one. Or use :cwindow to get the list of
matches in the quickfix window.

helphelp.txt — 384

{pattern} is used as a Vim regexp pattern .
'ignorecase' is not used, add "\c" to ignore case.
Example for case sensitive search:

:helpgrep Uganda
Example for case ignoring search:

:helpgrep uganda\c
Example for searching in French help:

:helpgrep backspace@fr
The pattern does not support line breaks, it must
match within one line. You can use :grep instead,
but then you need to get the list of help files in a
complicated way.
Cannot be followed by another command, everything is
used as part of the pattern. But you can use
:execute when needed.

Compressed help files will not be searched (Fedora
compresses the help files).

:lh :lhelpgrep
:lh[elpgrep] {pattern}[@xx]

Same as ":helpgrep", except the location list is used
instead of the quickfix list. If the help window is
already opened, then the location list for that window
is used. Otherwise, a new help window is opened and
the location list for that window is set. The
location list for the current window is not changed
then.

:exu :exusage
:exu[sage] Show help on Ex commands. Added to simulate the Nvi

command.

:viu :viusage
:viu[sage] Show help on Normal mode commands. Added to simulate

the Nvi command.

When no argument is given to :help the file given with the 'helpfile' option
will be opened. Otherwise the specified tag is searched for in all "doc/tags"
files in the directories specified in the 'runtimepath' option.

If you would like to open the help in the current window, see this tip:
help-curwin .

The initial height of the help window can be set with the 'helpheight' option
(default 20).

help-buffer-options
When the help buffer is created, several local options are set to make sure
the help text is displayed as it was intended:

'iskeyword' nearly all ASCII chars except ' ', '*', '"' and '|'
'foldmethod' "manual"
'tabstop' 8
'arabic' off
'binary' off
'buflisted' off
'cursorbind' off
'diff' off
'foldenable' off
'list' off
'modifiable' off
'number' off

helphelp.txt — 385

'relativenumber' off
'rightleft' off
'scrollbind' off
'spell' off

Jump to specific subjects by using tags. This can be done in two ways:
- Use the "CTRL-]" command while standing on the name of a command or option.

This only works when the tag is a keyword. "<C-Leftmouse>" and
"g<LeftMouse>" work just like "CTRL-]".

- use the ":ta {subject}" command. This also works with non-keyword
characters.

Use CTRL-T or CTRL-O to jump back.
Use ":q" to close the help window.

If there are several matches for an item you are looking for, this is how you
can jump to each one of them:
1. Open a help window
2. Use the ":tag" command with a slash prepended to the tag. E.g.:

:tag /min
3. Use ":tnext" to jump to the next matching tag.

It is possible to add help files for plugins and other items. You don't need
to change the distributed help files for that. See add-local-help .

To write a local help file, see write-local-help .

Note that the title lines from the local help files are automagically added to
the "LOCAL ADDITIONS" section in the "help.txt" help file local-additions .
This is done when viewing the file in Vim, the file itself is not changed. It
is done by going through all help files and obtaining the first line of each
file. The files in $VIMRUNTIME/doc are skipped.

help-xterm-window
If you want to have the help in another xterm window, you could use this
command:

:!xterm -e vim +help &

:helpfind :helpf
:helpf[ind] Like :help , but use a dialog to enter the argument.

Only for backwards compatibility. It now executes the
ToolBar.FindHelp menu entry instead of using a builtin
dialog. {only when compiled with |+GUI_GTK|}

:helpt :helptags
E150 E151 E152 E153 E154 E670

:helpt[ags] [++t] {dir}
Generate the help tags file(s) for directory {dir}.
When {dir} is ALL then all "doc" directories in
'runtimepath' will be used.

All "*.txt" and "*.??x" files in the directory and
sub-directories are scanned for a help tag definition
in between stars. The "*.??x" files are for
translated docs, they generate the "tags-??" file, see
help-translated . The generated tags files are

sorted.
When there are duplicates an error message is given.
An existing tags file is silently overwritten.

helphelp.txt — 386

The optional "++t" argument forces adding the
"help-tags" tag. This is also done when the {dir} is
equal to $VIMRUNTIME/doc.

To rebuild the help tags in the runtime directory
(requires write permission there):

:helptags $VIMRUNTIME/doc

==
2. Translated help files help-translated

It is possible to add translated help files, next to the original English help
files. Vim will search for all help in "doc" directories in 'runtimepath'.
This is only available when compiled with the +multi_lang feature.

At this moment translations are available for:
Chinese - multiple authors
French - translated by David Blanchet
Italian - translated by Antonio Colombo
Japanese - multiple authors
Polish - translated by Mikolaj Machowski
Russian - translated by Vassily Ragosin

See the Vim website to find them: http://www.vim.org/translations.php

A set of translated help files consists of these files:

help.abx
howto.abx
...
tags-ab

"ab" is the two-letter language code. Thus for Italian the names are:

help.itx
howto.itx
...
tags-it

The 'helplang' option can be set to the preferred language(s). The default is
set according to the environment. Vim will first try to find a matching tag
in the preferred language(s). English is used when it cannot be found.

To find a tag in a specific language, append "@ab" to a tag, where "ab" is the
two-letter language code. Example:

:he user-manual@it
:he user-manual@en

The first one finds the Italian user manual, even when 'helplang' is empty.
The second one finds the English user manual, even when 'helplang' is set to
"it".

When using command-line completion for the ":help" command, the "@en"
extension is only shown when a tag exists for multiple languages. When the
tag only exists for English "@en" is omitted. When the first candidate has an
"@ab" extension and it matches the first language in 'helplang' "@ab" is also
omitted.

When using CTRL-] or ":help!" in a non-English help file Vim will try to
find the tag in the same language. If not found then 'helplang' will be used
to select a language.

helphelp.txt — 387

http://www.vim.org/translations.php

Help files must use latin1 or utf-8 encoding. Vim assumes the encoding is
utf-8 when finding non-ASCII characters in the first line. Thus you must
translate the header with "For Vim version".

The same encoding must be used for the help files of one language in one
directory. You can use a different encoding for different languages and use
a different encoding for help files of the same language but in a different
directory.

Hints for translators:
- Do not translate the tags. This makes it possible to use 'helplang' to

specify the preferred language. You may add new tags in your language.
- When you do not translate a part of a file, add tags to the English version,

using the "tag@en" notation.
- Make a package with all the files and the tags file available for download.

Users can drop it in one of the "doc" directories and start use it.
Report this to Bram, so that he can add a link on www.vim.org.

- Use the :helptags command to generate the tags files. It will find all
languages in the specified directory.

==
3. Writing help files help-writing

For ease of use, a Vim help file for a plugin should follow the format of the
standard Vim help files, except for the first line. If you are writing a new
help file it's best to copy one of the existing files and use it as a
template.

The first line in a help file should have the following format:

plugin_name.txt {short description of the plugin}

The first field is a help tag where ":help plugin_name" will jump to. The
remainder of the line, after a Tab, describes the plugin purpose in a short
way. This will show up in the "LOCAL ADDITIONS" section of the main help
file. Check there that it shows up properly: local-additions .

If you want to add a version number or last modification date, put it in the
second line, right aligned.

At the bottom of the help file, place a Vim modeline to set the 'textwidth'
and 'tabstop' options and the 'filetype' to "help". Never set a global option
in such a modeline, that can have undesired consequences.

TAGS

To define a help tag, place the name between asterisks (*tag-name*). The
tag-name should be different from all the Vim help tag names and ideally
should begin with the name of the Vim plugin. The tag name is usually right
aligned on a line.

When referring to an existing help tag and to create a hot-link, place the
name between two bars (|) eg. help-writing .

When referring to a Vim command and to create a hot-link, place the
name between two backticks, eg. inside `:filetype`. You will see this is
highlighted as a command, like a code block (see below).

helphelp.txt — 388

When referring to a Vim option in the help file, place the option name between
two single quotes, eg. 'statusline'

HIGHLIGHTING

To define a column heading, use a tilde character at the end of the line.
This will highlight the column heading in a different color. E.g.

Column heading

To separate sections in a help file, place a series of '=' characters in a
line starting from the first column. The section separator line is highlighted
differently.

To quote a block of ex-commands verbatim, place a greater than (>) character
at the end of the line before the block and a less than (<) character as the
first non-blank on a line following the block. Any line starting in column 1
also implicitly stops the block of ex-commands before it. E.g.

function Example_Func()
echo "Example"

endfunction

The following are highlighted differently in a Vim help file:
- a special key name expressed either in <> notation as in <PageDown>, or

as a Ctrl character as in CTRL-X
- anything between {braces}, e.g. {lhs} and {rhs}

The word "Note", "Notes" and similar automagically receive distinctive
highlighting. So do these:

*Todo something to do
*Error something wrong

You can find the details in $VIMRUNTIME/syntax/help.vim

GENDER NEUTRAL LANGUAGE

gender-neutral inclusion
Vim is for everybody, no matter race, gender or anything. For new or updated
help text, gender neutral language is recommended. Some of the help text is
many years old and there is no need to change it. We do not make any
assumptions about the gender of the user, no matter how the text is phrased.
The goal is that the reader understands how Vim works, the exact wording is
secondary.

Many online technical style guides include sections about gender neutral
language. Here are a few:

https://developers.google.com/style/pronouns
https://techwhirl.com/gender-neutral-technical-writing/
https://www.skillsyouneed.com/write/gender-neutral-language.html
https://ualr.edu/writingcenter/avoid-sexist-language/

Note: gender neutral language does not require using singular "they".

helphelp.txt — 389

helphelp.txt — 390

index.txt For Vim version 9.1. Last change: 2023 Jan 09

VIM REFERENCE MANUAL by Bram Moolenaar

index
This file contains a list of all commands for each mode, with a tag and a
short description. The lists are sorted on ASCII value.

Tip: When looking for certain functionality, use a search command. E.g.,
to look for deleting something, use: "/delete".

1. Insert mode insert-index
2. Normal mode normal-index

2.1. Text objects objects
2.2. Window commands CTRL-W
2.3. Square bracket commands [
2.4. Commands starting with 'g' g
2.5. Commands starting with 'z' z
2.6. Operator-pending mode operator-pending-index

3. Visual mode visual-index
4. Command-line editing ex-edit-index
5. Terminal-Job mode terminal-job-index
6. EX commands ex-cmd-index

For an overview of options see option-list .
For an overview of built-in functions see functions .
For a list of Vim variables see vim-variable .
For a complete listing of all help items see help-tags .

==
1. Insert mode insert-index

tag char action in Insert mode

i_CTRL-@ CTRL-@ insert previously inserted text and stop

insert
i_CTRL-A CTRL-A insert previously inserted text

CTRL-B not used i_CTRL-B-gone
i_CTRL-C CTRL-C quit insert mode, without checking for

abbreviation, unless 'insertmode' set.
i_CTRL-D CTRL-D delete one shiftwidth of indent in the current

line
i_CTRL-E CTRL-E insert the character which is below the cursor

CTRL-F not used (but by default it's in 'cinkeys' to
re-indent the current line)

i_CTRL-G_j CTRL-G CTRL-J line down, to column where inserting started
i_CTRL-G_j CTRL-G j line down, to column where inserting started
i_CTRL-G_j CTRL-G <Down> line down, to column where inserting started
i_CTRL-G_k CTRL-G CTRL-K line up, to column where inserting started
i_CTRL-G_k CTRL-G k line up, to column where inserting started
i_CTRL-G_k CTRL-G <Up> line up, to column where inserting started
i_CTRL-G_u CTRL-G u start new undoable edit
i_CTRL-G_U CTRL-G U don't break undo with next cursor movement
i_<BS> <BS> delete character before the cursor
i_digraph {char1}<BS>{char2}

enter digraph (only when 'digraph' option set)
i_CTRL-H CTRL-H same as <BS>
i_<Tab> <Tab> insert a <Tab> character
i_CTRL-I CTRL-I same as <Tab>

index.txt — 391

i_<NL> <NL> same as <CR>
i_CTRL-J CTRL-J same as <CR>
i_CTRL-K CTRL-K {char1} {char2}

enter digraph
i_CTRL-L CTRL-L when 'insertmode' set: Leave Insert mode
i_<CR> <CR> begin new line
i_CTRL-M CTRL-M same as <CR>
i_CTRL-N CTRL-N find next match for keyword in front of the

cursor
i_CTRL-O CTRL-O execute a single command and return to insert

mode
i_CTRL-P CTRL-P find previous match for keyword in front of

the cursor
i_CTRL-Q CTRL-Q same as CTRL-V, unless used for terminal

control flow
i_CTRL-SHIFT-Q CTRL-SHIFT-Q {char}

like CTRL-Q unless modifyOtherKeys is active
i_CTRL-R CTRL-R {register}

insert the contents of a register
i_CTRL-R_CTRL-R CTRL-R CTRL-R {register}

insert the contents of a register literally
i_CTRL-R_CTRL-O CTRL-R CTRL-O {register}

insert the contents of a register literally
and don't auto-indent

i_CTRL-R_CTRL-P CTRL-R CTRL-P {register}
insert the contents of a register literally
and fix indent.

CTRL-S not used or used for terminal control flow
i_CTRL-T CTRL-T insert one shiftwidth of indent in current

line
i_CTRL-U CTRL-U delete all entered characters in the current

line
i_CTRL-V CTRL-V {char} insert next non-digit literally
i_CTRL-SHIFT-V CTRL-SHIFT-V {char}

like CTRL-V unless modifyOtherKeys is active
i_CTRL-V_digit CTRL-V {number} insert three digit decimal number as a single

byte.
i_CTRL-W CTRL-W delete word before the cursor
i_CTRL-X CTRL-X {mode} enter CTRL-X sub mode, see i_CTRL-X_index
i_CTRL-Y CTRL-Y insert the character which is above the cursor
i_CTRL-Z CTRL-Z when 'insertmode' set: suspend Vim
i_<Esc> <Esc> end insert mode (unless 'insertmode' set)
i_CTRL-[CTRL-[same as <Esc>
i_CTRL-_CTRL-N CTRL-\ CTRL-N go to Normal mode
i_CTRL-_CTRL-G CTRL-\ CTRL-G go to mode specified with 'insertmode'

CTRL-\ a - z reserved for extensions
CTRL-\ others not used

i_CTRL-] CTRL-] trigger abbreviation
i_CTRL-^ CTRL-^ toggle use of :lmap mappings
i_CTRL-_ CTRL-_ When 'allowrevins' set: change language

(Hebrew, Farsi) {only when compiled with
the +rightleft feature}

<Space> to '~' not used, except '0' and '^' followed by
CTRL-D

i_0_CTRL-D 0 CTRL-D delete all indent in the current line
i_^_CTRL-D ^ CTRL-D delete all indent in the current line, restore

it in the next line

index.txt — 392

i_ delete character under the cursor

Meta characters (0x80 to 0xff, 128 to 255)
not used

i_<Left> <Left> cursor one character left
i_<S-Left> <S-Left> cursor one word left
i_<C-Left> <C-Left> cursor one word left
i_<Right> <Right> cursor one character right
i_<S-Right> <S-Right> cursor one word right
i_<C-Right> <C-Right> cursor one word right
i_<Up> <Up> cursor one line up
i_<S-Up> <S-Up> same as <PageUp>
i_<Down> <Down> cursor one line down
i_<S-Down> <S-Down> same as <PageDown>
i_<Home> <Home> cursor to start of line
i_<C-Home> <C-Home> cursor to start of file
i_<End> <End> cursor past end of line
i_<C-End> <C-End> cursor past end of file
i_<PageUp> <PageUp> one screenful backward
i_<PageDown> <PageDown> one screenful forward
i_<F1> <F1> same as <Help>
i_<Help> <Help> stop insert mode and display help window
i_<Insert> <Insert> toggle Insert/Replace mode
i_<LeftMouse> <LeftMouse> cursor at mouse click
i_<ScrollWheelDown> <ScrollWheelDown> move window three lines down
i_<S-ScrollWheelDown> <S-ScrollWheelDown> move window one page down
i_<ScrollWheelUp> <ScrollWheelUp> move window three lines up
i_<S-ScrollWheelUp> <S-ScrollWheelUp> move window one page up
i_<ScrollWheelLeft> <ScrollWheelLeft> move window six columns left
i_<S-ScrollWheelLeft> <S-ScrollWheelLeft> move window one page left
i_<ScrollWheelRight> <ScrollWheelRight> move window six columns right
i_<S-ScrollWheelRight> <S-ScrollWheelRight> move window one page right

commands in CTRL-X submode i_CTRL-X_index

i_CTRL-X_CTRL-D CTRL-X CTRL-D complete defined identifiers
i_CTRL-X_CTRL-E CTRL-X CTRL-E scroll up
i_CTRL-X_CTRL-F CTRL-X CTRL-F complete file names
i_CTRL-X_CTRL-I CTRL-X CTRL-I complete identifiers
i_CTRL-X_CTRL-K CTRL-X CTRL-K complete identifiers from dictionary
i_CTRL-X_CTRL-L CTRL-X CTRL-L complete whole lines
i_CTRL-X_CTRL-N CTRL-X CTRL-N next completion
i_CTRL-X_CTRL-O CTRL-X CTRL-O omni completion
i_CTRL-X_CTRL-P CTRL-X CTRL-P previous completion
i_CTRL-X_CTRL-S CTRL-X CTRL-S spelling suggestions
i_CTRL-X_CTRL-T CTRL-X CTRL-T complete identifiers from thesaurus
i_CTRL-X_CTRL-Y CTRL-X CTRL-Y scroll down
i_CTRL-X_CTRL-U CTRL-X CTRL-U complete with 'completefunc'
i_CTRL-X_CTRL-V CTRL-X CTRL-V complete like in : command line
i_CTRL-X_CTRL-Z CTRL-X CTRL-Z stop completion, keeping the text as-is
i_CTRL-X_CTRL-] CTRL-X CTRL-] complete tags
i_CTRL-X_s CTRL-X s spelling suggestions

commands in completion mode (see popupmenu-keys)

complete_CTRL-E CTRL-E stop completion and go back to original text
complete_CTRL-Y CTRL-Y accept selected match and stop completion

CTRL-L insert one character from the current match
<CR> insert currently selected match

index.txt — 393

<BS> delete one character and redo search
CTRL-H same as <BS>
<Up> select the previous match
<Down> select the next match
<PageUp> select a match several entries back
<PageDown> select a match several entries forward
other stop completion and insert the typed character

==
2. Normal mode normal-index

CHAR any non-blank character
WORD a sequence of non-blank characters
N a number entered before the command
{motion} a cursor movement command
Nmove the text that is moved over with a {motion}
SECTION a section that possibly starts with '}' instead of '{'

note: 1 = cursor movement command; 2 = can be undone/redone

tag char note action in Normal mode
--

CTRL-@ not used
CTRL-A CTRL-A 2 add N to number at/after cursor
CTRL-B CTRL-B 1 scroll N screens Backwards
CTRL-C CTRL-C interrupt current (search) command
CTRL-D CTRL-D scroll Down N lines (default: half a screen)
CTRL-E CTRL-E scroll N lines upwards (N lines Extra)
CTRL-F CTRL-F 1 scroll N screens Forward
CTRL-G CTRL-G display current file name and position
<BS> <BS> 1 same as "h"
CTRL-H CTRL-H 1 same as "h"
<Tab> <Tab> 1 go to N newer entry in jump list
CTRL-I CTRL-I 1 same as <Tab>
<NL> <NL> 1 same as "j"
CTRL-J CTRL-J 1 same as "j"

CTRL-K not used
CTRL-L CTRL-L redraw screen
<CR> <CR> 1 cursor to the first CHAR N lines lower
CTRL-M CTRL-M 1 same as <CR>
CTRL-N CTRL-N 1 same as "j"
CTRL-O CTRL-O 1 go to N older entry in jump list
CTRL-P CTRL-P 1 same as "k"

CTRL-Q not used, or used for terminal control flow
CTRL-R CTRL-R 2 redo changes which were undone with 'u'

CTRL-S not used, or used for terminal control flow
CTRL-T CTRL-T jump to N older Tag in tag list
CTRL-U CTRL-U scroll N lines Upwards (default: half a

screen)
CTRL-V CTRL-V start blockwise Visual mode
CTRL-W CTRL-W {char} window commands, see CTRL-W
CTRL-X CTRL-X 2 subtract N from number at/after cursor
CTRL-Y CTRL-Y scroll N lines downwards
CTRL-Z CTRL-Z suspend program (or start new shell)

CTRL-[<Esc> not used
CTRL-_CTRL-N CTRL-\ CTRL-N go to Normal mode (no-op)
CTRL-_CTRL-G CTRL-\ CTRL-G go to mode specified with 'insertmode'

CTRL-\ a - z reserved for extensions
CTRL-\ others not used

CTRL-] CTRL-] :ta to ident under cursor

index.txt — 394

CTRL-^ CTRL-^ edit Nth alternate file (equivalent to
":e #N")

CTRL-_ not used

<Space> <Space> 1 same as "l"
! !{motion}{filter}

2 filter Nmove text through the {filter}
command

!! !!{filter} 2 filter N lines through the {filter} command
quote "{register} use {register} for next delete, yank or put

({.%#:} only work with put)
1 search backward for the Nth occurrence of

the ident under the cursor
$ $ 1 cursor to the end of Nth next line
% % 1 find the next (curly/square) bracket on

this line and go to its match, or go to
matching comment bracket, or go to matching
preprocessor directive.

N% {count}% 1 go to N percentage in the file
& & 2 repeat last :s
' '{a-zA-Z0-9} 1 cursor to the first CHAR on the line with

mark {a-zA-Z0-9}
'' '' 1 cursor to the first CHAR of the line where

the cursor was before the latest jump.
'('(1 cursor to the first CHAR on the line of the

start of the current sentence
') ') 1 cursor to the first CHAR on the line of the

end of the current sentence
'< '< 1 cursor to the first CHAR of the line where

highlighted area starts/started in the
current buffer.

'> '> 1 cursor to the first CHAR of the line where
highlighted area ends/ended in the current
buffer.

'['[1 cursor to the first CHAR on the line of the
start of last operated text or start of put
text

'] '] 1 cursor to the first CHAR on the line of the
end of last operated text or end of put
text

'{ '{ 1 cursor to the first CHAR on the line of the
start of the current paragraph

'} '} 1 cursor to the first CHAR on the line of the
end of the current paragraph

((1 cursor N sentences backward
)) 1 cursor N sentences forward
star * 1 search forward for the Nth occurrence of

the ident under the cursor
+ + 1 same as <CR>
, , 1 repeat latest f, t, F or T in opposite

direction N times
- - 1 cursor to the first CHAR N lines higher
. . 2 repeat last change with count replaced with

N
/ /{pattern}<CR> 1 search forward for the Nth occurrence of

{pattern}
/<CR> /<CR> 1 search forward for {pattern} of last search
0 0 1 cursor to the first char of the line
count 1 prepend to command to give a count
count 2 "

index.txt — 395

count 3 "
count 4 "
count 5 "
count 6 "
count 7 "
count 8 "
count 9 "
: : 1 start entering an Ex command
N: {count}: start entering an Ex command with range

from current line to N-1 lines down
; ; 1 repeat latest f, t, F or T N times
< <{motion} 2 shift Nmove lines one 'shiftwidth'

leftwards
<< << 2 shift N lines one 'shiftwidth' leftwards
= ={motion} 2 filter Nmove lines through "indent"
== == 2 filter N lines through "indent"
> >{motion} 2 shift Nmove lines one 'shiftwidth'

rightwards
>> >> 2 shift N lines one 'shiftwidth' rightwards
? ?{pattern}<CR> 1 search backward for the Nth previous

occurrence of {pattern}
?<CR> ?<CR> 1 search backward for {pattern} of last search
@ @{a-z} 2 execute the contents of register {a-z}

N times
@: @: repeat the previous ":" command N times
@@ @@ 2 repeat the previous @{a-z} N times
A A 2 append text after the end of the line N times
B B 1 cursor N WORDS backward
C ["x]C 2 change from the cursor position to the end

of the line, and N-1 more lines [into
register x]; synonym for "c$"

D ["x]D 2 delete the characters under the cursor
until the end of the line and N-1 more
lines [into register x]; synonym for "d$"

E E 1 cursor forward to the end of WORD N
F F{char} 1 cursor to the Nth occurrence of {char} to

the left
G G 1 cursor to line N, default last line
H H 1 cursor to line N from top of screen
I I 2 insert text before the first CHAR on the

line N times
J J 2 Join N lines; default is 2
K K lookup Keyword under the cursor with

'keywordprg'
L L 1 cursor to line N from bottom of screen
M M 1 cursor to middle line of screen
N N 1 repeat the latest '/' or '?' N times in

opposite direction
O O 2 begin a new line above the cursor and

insert text, repeat N times
P ["x]P 2 put the text [from register x] before the

cursor N times
Q Q switch to "Ex" mode
R R 2 enter replace mode: overtype existing

characters, repeat the entered text N-1
times

S ["x]S 2 delete N lines [into register x] and start
insert; synonym for "cc".

T T{char} 1 cursor till after Nth occurrence of {char}
to the left

index.txt — 396

U U 2 undo all latest changes on one line
V V start linewise Visual mode
W W 1 cursor N WORDS forward
X ["x]X 2 delete N characters before the cursor [into

register x]
Y ["x]Y yank N lines [into register x]; synonym for

"yy"
ZZ ZZ write if buffer changed and close window
ZQ ZQ close window without writing
[[{char} square bracket command (see [below)

\ not used
]]{char} square bracket command (see] below)
^ ^ 1 cursor to the first CHAR of the line
_ _ 1 cursor to the first CHAR N - 1 lines lower
` `{a-zA-Z0-9} 1 cursor to the mark {a-zA-Z0-9}
`(`(1 cursor to the start of the current sentence
`) `) 1 cursor to the end of the current sentence
`< `< 1 cursor to the start of the highlighted area
`> `> 1 cursor to the end of the highlighted area
`[`[1 cursor to the start of last operated text

or start of putted text
`] `] 1 cursor to the end of last operated text or

end of putted text
`` `` 1 cursor to the position before latest jump
`{ `{ 1 cursor to the start of the current paragraph
`} `} 1 cursor to the end of the current paragraph
a a 2 append text after the cursor N times
b b 1 cursor N words backward
c ["x]c{motion} 2 delete Nmove text [into register x] and

start insert
cc ["x]cc 2 delete N lines [into register x] and start

insert
d ["x]d{motion} 2 delete Nmove text [into register x]
dd ["x]dd 2 delete N lines [into register x]
do do 2 same as ":diffget"
dp dp 2 same as ":diffput"
e e 1 cursor forward to the end of word N
f f{char} 1 cursor to Nth occurrence of {char} to the

right
g g{char} extended commands, see g below
h h 1 cursor N chars to the left
i i 2 insert text before the cursor N times
j j 1 cursor N lines downward
k k 1 cursor N lines upward
l l 1 cursor N chars to the right
m m{A-Za-z} set mark {A-Za-z} at cursor position
n n 1 repeat the latest '/' or '?' N times
o o 2 begin a new line below the cursor and

insert text, repeat N times
p ["x]p 2 put the text [from register x] after the

cursor N times
q q{0-9a-zA-Z"} record typed characters into named register

{0-9a-zA-Z"} (uppercase to append)
q q (while recording) stops recording
q: q: edit : command-line in command-line window
q/ q/ edit / command-line in command-line window
q? q? edit ? command-line in command-line window
r r{char} 2 replace N chars with {char}
s ["x]s 2 (substitute) delete N characters [into

register x] and start insert

index.txt — 397

t t{char} 1 cursor till before Nth occurrence of {char}
to the right

u u 2 undo changes
v v start characterwise Visual mode
w w 1 cursor N words forward
x ["x]x 2 delete N characters under and after the

cursor [into register x]
y ["x]y{motion} yank Nmove text [into register x]
yy ["x]yy yank N lines [into register x]
z z{char} commands starting with 'z', see z below
{ { 1 cursor N paragraphs backward
bar | 1 cursor to column N
} } 1 cursor N paragraphs forward
~ ~ 2 'tildeop' off: switch case of N characters

under cursor and move the cursor N
characters to the right

~ ~{motion} 'tildeop' on: switch case of Nmove text
<C-End> <C-End> 1 same as "G"
<C-Home> <C-Home> 1 same as "gg"
<C-Left> <C-Left> 1 same as "b"
<C-LeftMouse> <C-LeftMouse> ":ta" to the keyword at the mouse click
<C-Right> <C-Right> 1 same as "w"
<C-RightMouse> <C-RightMouse> same as "CTRL-T"
<C-Tab> <C-Tab> same as "g<Tab>"
 ["x] 2 same as "x"
N {count} remove the last digit from {count}
<Down> <Down> 1 same as "j"
<End> <End> 1 same as "$"
<F1> <F1> same as <Help>
<Help> <Help> open a help window
<Home> <Home> 1 same as "0"
<Insert> <Insert> 2 same as "i"
<Left> <Left> 1 same as "h"
<LeftMouse> <LeftMouse> 1 move cursor to the mouse click position
<MiddleMouse> <MiddleMouse> 2 same as "gP" at the mouse click position
<PageDown> <PageDown> same as CTRL-F
<PageUp> <PageUp> same as CTRL-B
<Right> <Right> 1 same as "l"
<RightMouse> <RightMouse> start Visual mode, move cursor to the mouse

click position
<S-Down> <S-Down> 1 same as CTRL-F
<S-Left> <S-Left> 1 same as "b"
<S-LeftMouse> <S-LeftMouse> same as "*" at the mouse click position
<S-Right> <S-Right> 1 same as "w"
<S-RightMouse> <S-RightMouse> same as "#" at the mouse click position
<S-Up> <S-Up> 1 same as CTRL-B
<Undo> <Undo> 2 same as "u"
<Up> <Up> 1 same as "k"
<ScrollWheelDown> <ScrollWheelDown> move window three lines down
<S-ScrollWheelDown> <S-ScrollWheelDown> move window one page down
<ScrollWheelUp> <ScrollWheelUp> move window three lines up
<S-ScrollWheelUp> <S-ScrollWheelUp> move window one page up
<ScrollWheelLeft> <ScrollWheelLeft> move window six columns left
<S-ScrollWheelLeft> <S-ScrollWheelLeft> move window one page left
<ScrollWheelRight> <ScrollWheelRight> move window six columns right
<S-ScrollWheelRight> <S-ScrollWheelRight> move window one page right

==
2.1 Text objects objects

index.txt — 398

These can be used after an operator or in Visual mode to select an object.

tag command action in op-pending and Visual mode
--
v_aquote a" double quoted string
v_a' a' single quoted string
v_a(a(same as ab
v_a) a) same as ab
v_a< a< "a <>" from '<' to the matching '>'
v_a> a> same as a<
v_aB aB "a Block" from "[{" to "]}" (with brackets)
v_aW aW "a WORD" (with white space)
v_a[a["a []" from '[' to the matching ']'
v_a] a] same as a[
v_a` a` string in backticks
v_ab ab "a block" from "[(" to "])" (with braces)
v_ap ap "a paragraph" (with white space)
v_as as "a sentence" (with white space)
v_at at "a tag block" (with white space)
v_aw aw "a word" (with white space)
v_a{ a{ same as aB
v_a} a} same as aB
v_iquote i" double quoted string without the quotes
v_i' i' single quoted string without the quotes
v_i(i(same as ib
v_i) i) same as ib
v_i< i< "inner <>" from '<' to the matching '>'
v_i> i> same as i<
v_iB iB "inner Block" from "[{" and "]}"
v_iW iW "inner WORD"
v_i[i["inner []" from '[' to the matching ']'
v_i] i] same as i[
v_i` i` string in backticks without the backticks
v_ib ib "inner block" from "[(" to "])"
v_ip ip "inner paragraph"
v_is is "inner sentence"
v_it it "inner tag block"
v_iw iw "inner word"
v_i{ i{ same as iB
v_i} i} same as iB

==
2.2 Window commands CTRL-W

tag command action in Normal mode
--
CTRL-W_CTRL-B CTRL-W CTRL-B same as "CTRL-W b"
CTRL-W_CTRL-C CTRL-W CTRL-C same as "CTRL-W c"
CTRL-W_CTRL-D CTRL-W CTRL-D same as "CTRL-W d"
CTRL-W_CTRL-F CTRL-W CTRL-F same as "CTRL-W f"

CTRL-W CTRL-G same as "CTRL-W g .."
CTRL-W_CTRL-H CTRL-W CTRL-H same as "CTRL-W h"
CTRL-W_CTRL-I CTRL-W CTRL-I same as "CTRL-W i"
CTRL-W_CTRL-J CTRL-W CTRL-J same as "CTRL-W j"
CTRL-W_CTRL-K CTRL-W CTRL-K same as "CTRL-W k"
CTRL-W_CTRL-L CTRL-W CTRL-L same as "CTRL-W l"
CTRL-W_CTRL-N CTRL-W CTRL-N same as "CTRL-W n"
CTRL-W_CTRL-O CTRL-W CTRL-O same as "CTRL-W o"
CTRL-W_CTRL-P CTRL-W CTRL-P same as "CTRL-W p"
CTRL-W_CTRL-Q CTRL-W CTRL-Q same as "CTRL-W q"

index.txt — 399

CTRL-W_CTRL-R CTRL-W CTRL-R same as "CTRL-W r"
CTRL-W_CTRL-S CTRL-W CTRL-S same as "CTRL-W s"
CTRL-W_CTRL-T CTRL-W CTRL-T same as "CTRL-W t"
CTRL-W_CTRL-V CTRL-W CTRL-V same as "CTRL-W v"
CTRL-W_CTRL-W CTRL-W CTRL-W same as "CTRL-W w"
CTRL-W_CTRL-X CTRL-W CTRL-X same as "CTRL-W x"
CTRL-W_CTRL-Z CTRL-W CTRL-Z same as "CTRL-W z"
CTRL-W_CTRL-] CTRL-W CTRL-] same as "CTRL-W]"
CTRL-W_CTRL-^ CTRL-W CTRL-^ same as "CTRL-W ^"
CTRL-W_CTRL-_ CTRL-W CTRL-_ same as "CTRL-W _"
CTRL-W_+ CTRL-W + increase current window height N lines
CTRL-W_- CTRL-W - decrease current window height N lines
CTRL-W_: CTRL-W : same as : , edit a command line
CTRL-W_< CTRL-W < decrease current window width N columns
CTRL-W_= CTRL-W = make all windows the same height & width
CTRL-W_> CTRL-W > increase current window width N columns
CTRL-W_H CTRL-W H move current window to the far left
CTRL-W_J CTRL-W J move current window to the very bottom
CTRL-W_K CTRL-W K move current window to the very top
CTRL-W_L CTRL-W L move current window to the far right
CTRL-W_P CTRL-W P go to preview window
CTRL-W_R CTRL-W R rotate windows upwards N times
CTRL-W_S CTRL-W S same as "CTRL-W s"
CTRL-W_T CTRL-W T move current window to a new tab page
CTRL-W_W CTRL-W W go to N previous window (wrap around)
CTRL-W_] CTRL-W] split window and jump to tag under cursor
CTRL-W_^ CTRL-W ^ split current window and edit alternate

file N
CTRL-W__ CTRL-W _ set current window height to N (default:

very high)
CTRL-W_b CTRL-W b go to bottom window
CTRL-W_c CTRL-W c close current window (like :close)
CTRL-W_d CTRL-W d split window and jump to definition under

the cursor
CTRL-W_f CTRL-W f split window and edit file name under the

cursor
CTRL-W_F CTRL-W F split window and edit file name under the

cursor and jump to the line number
following the file name.

CTRL-W_g_CTRL-] CTRL-W g CTRL-] split window and do :tjump to tag under
cursor

CTRL-W_g] CTRL-W g] split window and do :tselect for tag
under cursor

CTRL-W_g} CTRL-W g } do a :ptjump to the tag under the cursor
CTRL-W_gf CTRL-W g f edit file name under the cursor in a new

tab page
CTRL-W_gF CTRL-W g F edit file name under the cursor in a new

tab page and jump to the line number
following the file name.

CTRL-W_gt CTRL-W g t same as `gt`: go to next tab page
CTRL-W_gT CTRL-W g T same as `gT`: go to previous tab page
CTRL-W_g<Tab> CTRL-W g <Tab> same as g<Tab> : go to last accessed tab

page.
CTRL-W_h CTRL-W h go to Nth left window (stop at first window)
CTRL-W_i CTRL-W i split window and jump to declaration of

identifier under the cursor
CTRL-W_j CTRL-W j go N windows down (stop at last window)
CTRL-W_k CTRL-W k go N windows up (stop at first window)
CTRL-W_l CTRL-W l go to Nth right window (stop at last window)
CTRL-W_n CTRL-W n open new window, N lines high

index.txt — 400

CTRL-W_o CTRL-W o close all but current window (like :only)
CTRL-W_p CTRL-W p go to previous (last accessed) window
CTRL-W_q CTRL-W q quit current window (like :quit)
CTRL-W_r CTRL-W r rotate windows downwards N times
CTRL-W_s CTRL-W s split current window in two parts, new

window N lines high
CTRL-W_t CTRL-W t go to top window
CTRL-W_v CTRL-W v split current window vertically, new window

N columns wide
CTRL-W_w CTRL-W w go to N next window (wrap around)
CTRL-W_x CTRL-W x exchange current window with window N

(default: next window)
CTRL-W_z CTRL-W z close preview window
CTRL-W_bar CTRL-W | set window width to N columns
CTRL-W_} CTRL-W } show tag under cursor in preview window
CTRL-W_<Down> CTRL-W <Down> same as "CTRL-W j"
CTRL-W_<Up> CTRL-W <Up> same as "CTRL-W k"
CTRL-W_<Left> CTRL-W <Left> same as "CTRL-W h"
CTRL-W_<Right> CTRL-W <Right> same as "CTRL-W l"

==
2.3 Square bracket commands []

tag char note action in Normal mode
--
[_CTRL-D [CTRL-D jump to first #define found in current and

included files matching the word under the
cursor, start searching at beginning of
current file

[_CTRL-I [CTRL-I jump to first line in current and included
files that contains the word under the
cursor, start searching at beginning of
current file

[# [# 1 cursor to N previous unmatched #if, #else
or #ifdef

[' [' 1 cursor to previous lowercase mark, on first
non-blank

[([(1 cursor N times back to unmatched '('
[star [* 1 same as "[/"
[` [` 1 cursor to previous lowercase mark
[/ [/ 1 cursor to N previous start of a C comment
[D [D list all defines found in current and

included files matching the word under the
cursor, start searching at beginning of
current file

[I [I list all lines found in current and
included files that contain the word under
the cursor, start searching at beginning of
current file

[P [P 2 same as "[p"
[[[[1 cursor N sections backward
[] [] 1 cursor N SECTIONS backward
[c [c 1 cursor N times backwards to start of change
[d [d show first #define found in current and

included files matching the word under the
cursor, start searching at beginning of
current file

[f [f same as "gf"
[i [i show first line found in current and

included files that contains the word under

index.txt — 401

the cursor, start searching at beginning of
current file

[m [m 1 cursor N times back to start of member
function

[p [p 2 like "P", but adjust indent to current line
[s [s 1 move to the previous misspelled word
[z [z 1 move to start of open fold
[{ [{ 1 cursor N times back to unmatched '{'
[<MiddleMouse> [<MiddleMouse> 2 same as "[p"

]_CTRL-D] CTRL-D jump to first #define found in current and
included files matching the word under the
cursor, start searching at cursor position

]_CTRL-I] CTRL-I jump to first line in current and included
files that contains the word under the
cursor, start searching at cursor position

]#]# 1 cursor to N next unmatched #endif or #else
]']' 1 cursor to next lowercase mark, on first

non-blank
])]) 1 cursor N times forward to unmatched ')'
]star]* 1 same as "]/"
]`]` 1 cursor to next lowercase mark
]/]/ 1 cursor to N next end of a C comment
]D]D list all #defines found in current and

included files matching the word under the
cursor, start searching at cursor position

]I]I list all lines found in current and
included files that contain the word under
the cursor, start searching at cursor
position

]P]P 2 same as "[p"
][][1 cursor N SECTIONS forward
]]]] 1 cursor N sections forward
]c]c 1 cursor N times forward to start of change
]d]d show first #define found in current and

included files matching the word under the
cursor, start searching at cursor position

]f]f same as "gf"
]i]i show first line found in current and

included files that contains the word under
the cursor, start searching at cursor
position

]m]m 1 cursor N times forward to end of member
function

]p]p 2 like "p", but adjust indent to current line
]s]s 1 move to next misspelled word
]z]z 1 move to end of open fold
]}]} 1 cursor N times forward to unmatched '}'
]<MiddleMouse>]<MiddleMouse> 2 same as "]p"

==
2.4 Commands starting with 'g' g

tag char note action in Normal mode
--
g_CTRL-A g CTRL-A only when compiled with MEM_PROFILE

defined: dump a memory profile
g_CTRL-G g CTRL-G show information about current cursor

position
g_CTRL-H g CTRL-H start Select block mode

index.txt — 402

g_CTRL-] g CTRL-] :tjump to the tag under the cursor
g# g# 1 like "#", but without using "\<" and "\>"
g$ g$ 1 when 'wrap' off go to rightmost character of

the current line that is on the screen;
when 'wrap' on go to the rightmost character
of the current screen line

g& g& 2 repeat last ":s" on all lines
g' g'{mark} 1 like ' but without changing the jumplist
g` g`{mark} 1 like ` but without changing the jumplist
gstar g* 1 like "*", but without using "\<" and "\>"
g+ g+ go to newer text state N times
g, g, 1 go to N newer position in change list
g- g- go to older text state N times
g0 g0 1 when 'wrap' off go to leftmost character of

the current line that is on the screen;
when 'wrap' on go to the leftmost character
of the current screen line

g8 g8 print hex value of bytes used in UTF-8
character under the cursor

g; g; 1 go to N older position in change list
g< g< display previous command output
g? g? 2 Rot13 encoding operator
g?g? g?? 2 Rot13 encode current line
g?g? g?g? 2 Rot13 encode current line
gD gD 1 go to definition of word under the cursor

in current file
gE gE 1 go backwards to the end of the previous

WORD
gH gH start Select line mode
gI gI 2 like "I", but always start in column 1
gJ gJ 2 join lines without inserting space
gN gN 1,2 find the previous match with the last used

search pattern and Visually select it
gP ["x]gP 2 put the text [from register x] before the

cursor N times, leave the cursor after it
gQ gQ switch to "Ex" mode with Vim editing
gR gR 2 enter Virtual Replace mode
gT gT go to the previous tab page
gU gU{motion} 2 make Nmove text uppercase
gV gV don't reselect the previous Visual area

when executing a mapping or menu in Select
mode

g] g] :tselect on the tag under the cursor
g^ g^ 1 when 'wrap' off go to leftmost non-white

character of the current line that is on
the screen; when 'wrap' on go to the
leftmost non-white character of the current
screen line

g_ g_ 1 cursor to the last CHAR N - 1 lines lower
ga ga print ascii value of character under the

cursor
gd gd 1 go to definition of word under the cursor

in current function
ge ge 1 go backwards to the end of the previous

word
gf gf start editing the file whose name is under

the cursor
gF gF start editing the file whose name is under

the cursor and jump to the line number
following the filename.

index.txt — 403

gg gg 1 cursor to line N, default first line
gh gh start Select mode
gi gi 2 like "i", but first move to the '^ mark
gj gj 1 like "j", but when 'wrap' on go N screen

lines down
gk gk 1 like "k", but when 'wrap' on go N screen

lines up
gm gm 1 go to character at middle of the screenline
gM gM 1 go to character at middle of the text line
gn gn 1,2 find the next match with the last used

search pattern and Visually select it
go go 1 cursor to byte N in the buffer
gp ["x]gp 2 put the text [from register x] after the

cursor N times, leave the cursor after it
gq gq{motion} 2 format Nmove text
gr gr{char} 2 virtual replace N chars with {char}
gs gs go to sleep for N seconds (default 1)
gt gt go to the next tab page
gu gu{motion} 2 make Nmove text lowercase
gv gv reselect the previous Visual area
gw gw{motion} 2 format Nmove text and keep cursor
netrw-gx gx execute application for file name under the

cursor (only with netrw plugin)
g@ g@{motion} call 'operatorfunc'
g~ g~{motion} 2 swap case for Nmove text
g<Down> g<Down> 1 same as "gj"
g<End> g<End> 1 same as "g$"
g<Home> g<Home> 1 same as "g0"
g<LeftMouse> g<LeftMouse> same as <C-LeftMouse>

g<MiddleMouse> same as <C-MiddleMouse>
g<RightMouse> g<RightMouse> same as <C-RightMouse>
g<Tab> g<Tab> go to the last accessed tab page.
g<Up> g<Up> 1 same as "gk"

==
2.5 Commands starting with 'z' z

tag char note action in Normal mode
--
z<CR> z<CR> redraw, cursor line to top of window,

cursor on first non-blank
zN<CR> z{height}<CR> redraw, make window {height} lines high
z+ z+ cursor on line N (default line below

window), otherwise like "z<CR>"
z- z- redraw, cursor line at bottom of window,

cursor on first non-blank
z. z. redraw, cursor line to center of window,

cursor on first non-blank
z= z= give spelling suggestions
zA zA open a closed fold or close an open fold

recursively
zC zC close folds recursively
zD zD delete folds recursively
zE zE eliminate all folds
zF zF create a fold for N lines
zG zG temporarily mark word as correctly spelled
zH zH when 'wrap' off scroll half a screenwidth

to the right
zL zL when 'wrap' off scroll half a screenwidth

to the left

index.txt — 404

zM zM set 'foldlevel' to zero
zN zN set 'foldenable'
zO zO open folds recursively
zR zR set 'foldlevel' to the deepest fold
zW zW temporarily mark word as incorrectly spelled
zX zX re-apply 'foldlevel'
z^ z^ cursor on line N (default line above

window), otherwise like "z-"
za za open a closed fold, close an open fold
zb zb redraw, cursor line at bottom of window
zc zc close a fold
zd zd delete a fold
ze ze when 'wrap' off scroll horizontally to

position the cursor at the end (right side)
of the screen

zf zf{motion} create a fold for Nmove text
zg zg permanently mark word as correctly spelled
zh zh when 'wrap' off scroll screen N characters

to the right
zi zi toggle 'foldenable'
zj zj 1 move to the start of the next fold
zk zk 1 move to the end of the previous fold
zl zl when 'wrap' off scroll screen N characters

to the left
zm zm subtract one from 'foldlevel'
zn zn reset 'foldenable'
zo zo open fold
zp zp paste in block-mode without trailing spaces
zP zP paste in block-mode without trailing spaces
zr zr add one to 'foldlevel'
zs zs when 'wrap' off scroll horizontally to

position the cursor at the start (left
side) of the screen

zt zt redraw, cursor line at top of window
zuw zuw undo zw
zug zug undo zg
zuW zuW undo zW
zuG zuG undo zG
zv zv open enough folds to view the cursor line
zw zw permanently mark word as incorrectly spelled
zx zx re-apply 'foldlevel' and do "zv"
zy zy yank without trailing spaces
zz zz redraw, cursor line at center of window
z<Left> z<Left> same as "zh"
z<Right> z<Right> same as "zl"

==
2.6 Operator-pending mode operator-pending-index

These can be used after an operator, but before a {motion} has been entered.

tag char action in Operator-pending mode

o_v v force operator to work characterwise
o_V V force operator to work linewise
o_CTRL-V CTRL-V force operator to work blockwise

==
3. Visual mode visual-index

index.txt — 405

Most commands in Visual mode are the same as in Normal mode. The ones listed
here are those that are different.

tag command note action in Visual mode
--
v_CTRL-_CTRL-N CTRL-\ CTRL-N stop Visual mode
v_CTRL-_CTRL-G CTRL-\ CTRL-G go to mode specified with 'insertmode'
v_CTRL-A CTRL-A 2 add N to number in highlighted text
v_CTRL-C CTRL-C stop Visual mode
v_CTRL-G CTRL-G toggle between Visual mode and Select mode
v_<BS> <BS> 2 Select mode: delete highlighted area
v_CTRL-H CTRL-H 2 same as <BS>
v_CTRL-O CTRL-O switch from Select to Visual mode for one

command
v_CTRL-V CTRL-V make Visual mode blockwise or stop Visual

mode
v_CTRL-X CTRL-X 2 subtract N from number in highlighted text
v_<Esc> <Esc> stop Visual mode
v_CTRL-] CTRL-] jump to highlighted tag
v_! !{filter} 2 filter the highlighted lines through the

external command {filter}
v_: : start a command-line with the highlighted

lines as a range
v_< < 2 shift the highlighted lines one

'shiftwidth' left
v_= = 2 filter the highlighted lines through the

external program given with the 'equalprg'
option

v_> > 2 shift the highlighted lines one
'shiftwidth' right

v_b_A A 2 block mode: append same text in all lines,
after the highlighted area

v_C C 2 delete the highlighted lines and start
insert

v_D D 2 delete the highlighted lines
v_b_I I 2 block mode: insert same text in all lines,

before the highlighted area
v_J J 2 join the highlighted lines
v_K K run 'keywordprg' on the highlighted area
v_O O move horizontally to other corner of area
v_P P replace highlighted area with register

contents; registers are unchanged
Q does not start Ex mode

v_R R 2 delete the highlighted lines and start
insert

v_S S 2 delete the highlighted lines and start
insert

v_U U 2 make highlighted area uppercase
v_V V make Visual mode linewise or stop Visual

mode
v_X X 2 delete the highlighted lines
v_Y Y yank the highlighted lines
v_aquote a" extend highlighted area with a double

quoted string
v_a' a' extend highlighted area with a single

quoted string
v_a(a(same as ab
v_a) a) same as ab
v_a< a< extend highlighted area with a <> block
v_a> a> same as a<

index.txt — 406

v_aB aB extend highlighted area with a {} block
v_aW aW extend highlighted area with "a WORD"
v_a[a[extend highlighted area with a [] block
v_a] a] same as a[
v_a` a` extend highlighted area with a backtick

quoted string
v_ab ab extend highlighted area with a () block
v_ap ap extend highlighted area with a paragraph
v_as as extend highlighted area with a sentence
v_at at extend highlighted area with a tag block
v_aw aw extend highlighted area with "a word"
v_a{ a{ same as aB
v_a} a} same as aB
v_c c 2 delete highlighted area and start insert
v_d d 2 delete highlighted area
v_g_CTRL-A g CTRL-A 2 add N to number in highlighted text
v_g_CTRL-X g CTRL-X 2 subtract N from number in highlighted text
v_gJ gJ 2 join the highlighted lines without

inserting spaces
v_gq gq 2 format the highlighted lines
v_gv gv exchange current and previous highlighted

area
v_iquote i" extend highlighted area with a double

quoted string (without quotes)
v_i' i' extend highlighted area with a single

quoted string (without quotes)
v_i(i(same as ib
v_i) i) same as ib
v_i< i< extend highlighted area with inner <> block
v_i> i> same as i<
v_iB iB extend highlighted area with inner {} block
v_iW iW extend highlighted area with "inner WORD"
v_i[i[extend highlighted area with inner [] block
v_i] i] same as i[
v_i` i` extend highlighted area with a backtick

quoted string (without the backticks)
v_ib ib extend highlighted area with inner () block
v_ip ip extend highlighted area with inner paragraph
v_is is extend highlighted area with inner sentence
v_it it extend highlighted area with inner tag block
v_iw iw extend highlighted area with "inner word"
v_i{ i{ same as iB
v_i} i} same as iB
v_o o move cursor to other corner of area
v_p p replace highlighted area with register

contents; deleted text in unnamed register
v_r r 2 replace highlighted area with a character
v_s s 2 delete highlighted area and start insert
v_u u 2 make highlighted area lowercase
v_v v make Visual mode characterwise or stop

Visual mode
v_x x 2 delete the highlighted area
v_y y yank the highlighted area
v_~ ~ 2 swap case for the highlighted area

==
4. Command-line editing ex-edit-index

Get to the command-line with the ':', '!', '/' or '?' commands.
Normal characters are inserted at the current cursor position.

index.txt — 407

"Completion" below refers to context-sensitive completion. It will complete
file names, tags, commands etc. as appropriate.

tag command action in Command-line editing mode
--

CTRL-@ not used
c_CTRL-A CTRL-A do completion on the pattern in front of the

cursor and insert all matches
c_CTRL-B CTRL-B cursor to begin of command-line
c_CTRL-C CTRL-C same as <Esc>
c_CTRL-D CTRL-D list completions that match the pattern in

front of the cursor
c_CTRL-E CTRL-E cursor to end of command-line
'cedit' CTRL-F default value for 'cedit': opens the

command-line window; otherwise not used
c_CTRL-G CTRL-G next match when 'incsearch' is active
c_<BS> <BS> delete the character in front of the cursor
c_digraph {char1} <BS> {char2}

enter digraph when 'digraph' is on
c_CTRL-H CTRL-H same as <BS>
c_<Tab> <Tab> if 'wildchar' is <Tab>: Do completion on

the pattern in front of the cursor
c_<S-Tab> <S-Tab> same as CTRL-P
c_wildchar 'wildchar' Do completion on the pattern in front of the

cursor (default: <Tab>)
c_CTRL-I CTRL-I same as <Tab>
c_<NL> <NL> same as <CR>
c_CTRL-J CTRL-J same as <CR>
c_CTRL-K CTRL-K {char1} {char2}

enter digraph
c_CTRL-L CTRL-L do completion on the pattern in front of the

cursor and insert the longest common part
c_<CR> <CR> execute entered command
c_CTRL-M CTRL-M same as <CR>
c_CTRL-N CTRL-N after using 'wildchar' with multiple matches:

go to next match, otherwise: recall older
command-line from history.

CTRL-O not used
c_CTRL-P CTRL-P after using 'wildchar' with multiple matches:

go to previous match, otherwise: recall older
command-line from history.

c_CTRL-Q CTRL-Q same as CTRL-V, unless it's used for terminal
control flow

c_CTRL-R CTRL-R {regname}
insert the contents of a register or object
under the cursor as if typed

c_CTRL-R_CTRL-R CTRL-R CTRL-R {regname}
c_CTRL-R_CTRL-O CTRL-R CTRL-O {regname}

insert the contents of a register or object
under the cursor literally

CTRL-S not used, or used for terminal control flow
c_CTRL-T CTRL-T previous match when 'incsearch' is active
c_CTRL-U CTRL-U remove all characters
c_CTRL-V CTRL-V insert next non-digit literally, insert three

digit decimal number as a single byte.
c_CTRL-W CTRL-W delete the word in front of the cursor

CTRL-X not used (reserved for completion)
CTRL-Y copy (yank) modeless selection
CTRL-Z not used (reserved for suspend)

c_<Esc> <Esc> abandon command-line without executing it

index.txt — 408

c_CTRL-[CTRL-[same as <Esc>
c_CTRL-_CTRL-N CTRL-\ CTRL-N go to Normal mode, abandon command-line
c_CTRL-_CTRL-G CTRL-\ CTRL-G go to mode specified with 'insertmode',

abandon command-line
CTRL-\ a - d reserved for extensions

c_CTRL-_e CTRL-\ e {expr} replace the command line with the result of
{expr}

CTRL-\ f - z reserved for extensions
CTRL-\ others not used

c_CTRL-] CTRL-] trigger abbreviation
c_CTRL-^ CTRL-^ toggle use of :lmap mappings
c_CTRL-_ CTRL-_ when 'allowrevins' set: change language

(Hebrew, Farsi)
c_ delete the character under the cursor

c_<Left> <Left> cursor left
c_<S-Left> <S-Left> cursor one word left
c_<C-Left> <C-Left> cursor one word left
c_<Right> <Right> cursor right
c_<S-Right> <S-Right> cursor one word right
c_<C-Right> <C-Right> cursor one word right
c_<Up> <Up> recall previous command-line from history that

matches pattern in front of the cursor
c_<S-Up> <S-Up> recall previous command-line from history
c_<Down> <Down> recall next command-line from history that

matches pattern in front of the cursor
c_<S-Down> <S-Down> recall next command-line from history
c_<Home> <Home> cursor to start of command-line
c_<End> <End> cursor to end of command-line
c_<PageDown> <PageDown> same as <S-Down>
c_<PageUp> <PageUp> same as <S-Up>
c_<Insert> <Insert> toggle insert/overstrike mode
c_<LeftMouse> <LeftMouse> cursor at mouse click

commands in wildmenu mode (see 'wildmenu')

<Up> move up to parent / select the previous match
<Down> move down to submenu / select the next match
<Left> select the previous match / move up to parent
<Right> select the next match / move down to submenu
<CR> move into submenu when doing menu completion
CTRL-E stop completion and go back to original text
CTRL-Y accept selected match and stop completion
other stop completion and insert the typed character

commands in wildmenu mode with 'wildoptions' set to "pum"

<PageUp> select a match several entries back
<PageDown> select a match several entries forward

==
5. Terminal-Job mode terminal-job-index

Most Normal mode commands except for window commands (CTRL-W) do not work in
a terminal window. Switch to Terminal-Normal mode to use them.
This assumes 'termwinkey' is not set.

tag char action in Terminal-Job mode

t_CTRL-_CTRL-N CTRL-\ CTRL-N switch to Terminal-Normal mode

index.txt — 409

t_CTRL-W_N CTRL-W N switch to Terminal-Normal mode
t_CTRL-W_: CTRL-W : enter an Ex command
t_CTRL-W_. CTRL-W . type CTRL-W in the terminal

CTRL-W CTRL-\ send a CTRL-\ to the job in the terminal
t_CTRL-W_quote CTRL-W " {register}

paste register in the terminal
t_CTRL-W_CTRL-C CTRL-W CTRL-C forcefully ends the job
t_CTRL-W_CTRL-W CTRL-W CTRL-W move focus to the next window
t_CTRL-W_gt CTRL-W gt go to next tabpage, same as `gt`
t_CTRL-W_gT CTRL-W gT go to previous tabpage, same as `gT`

You found it, Arthur! holy-grail :smile

==
6. EX commands ex-cmd-index :index

This is a brief but complete listing of all the ":" commands, without
mentioning any arguments. The optional part of the command name is inside [].
The commands are sorted on the non-optional part of their name.

tag command action
--
: : nothing
:range :{range} go to last line in {range}
:! :! filter lines or execute an external command
:!! :!! repeat last ":!" command
:# :# same as ":number"
:& :& repeat last ":substitute"
:star :* use the last Visual area, like :'<,'>
:< :< shift lines one 'shiftwidth' left
:= := print the last line number
:> :> shift lines one 'shiftwidth' right
:@ :@ execute contents of a register
:@@ :@@ repeat the previous ":@"
:2match :2mat[ch] define a second match to highlight
:3match :3mat[ch] define a third match to highlight
:Next :N[ext] go to previous file in the argument list
:Print :P[rint] print lines
:X :X ask for encryption key
:append :a[ppend] append text
:abbreviate :ab[breviate] enter abbreviation
:abclear :abc[lear] remove all abbreviations
:aboveleft :abo[veleft] make split window appear left or above
:all :al[l] open a window for each file in the argument

list
:amenu :am[enu] enter new menu item for all modes
:anoremenu :an[oremenu] enter a new menu for all modes that will not

be remapped
:args :ar[gs] print the argument list
:argadd :arga[dd] add items to the argument list
:argdedupe :argded[upe] remove duplicates from the argument list
:argdelete :argd[elete] delete items from the argument list
:argedit :arge[dit] add item to the argument list and edit it
:argdo :argdo do a command on all items in the argument list
:argglobal :argg[lobal] define the global argument list
:arglocal :argl[ocal] define a local argument list
:argument :argu[ment] go to specific file in the argument list
:ascii :as[cii] print ascii value of character under the cursor
:autocmd :au[tocmd] enter or show autocommands
:augroup :aug[roup] select the autocommand group to use

index.txt — 410

:aunmenu :aun[menu] remove menu for all modes
:buffer :b[uffer] go to specific buffer in the buffer list
:bNext :bN[ext] go to previous buffer in the buffer list
:ball :ba[ll] open a window for each buffer in the buffer list
:badd :bad[d] add buffer to the buffer list
:balt :balt like ":badd" but also set the alternate file
:bdelete :bd[elete] remove a buffer from the buffer list
:behave :be[have] set mouse and selection behavior
:belowright :bel[owright] make split window appear right or below
:bfirst :bf[irst] go to first buffer in the buffer list
:blast :bl[ast] go to last buffer in the buffer list
:bmodified :bm[odified] go to next buffer in the buffer list that has

been modified
:bnext :bn[ext] go to next buffer in the buffer list
:botright :bo[tright] make split window appear at bottom or far right
:bprevious :bp[revious] go to previous buffer in the buffer list
:brewind :br[ewind] go to first buffer in the buffer list
:break :brea[k] break out of while loop
:breakadd :breaka[dd] add a debugger breakpoint
:breakdel :breakd[el] delete a debugger breakpoint
:breaklist :breakl[ist] list debugger breakpoints
:browse :bro[wse] use file selection dialog
:bufdo :bufdo execute command in each listed buffer
:buffers :buffers list all files in the buffer list
:bunload :bun[load] unload a specific buffer
:bwipeout :bw[ipeout] really delete a buffer
:change :c[hange] replace a line or series of lines
:cNext :cN[ext] go to previous error
:cNfile :cNf[ile] go to last error in previous file
:cabbrev :ca[bbrev] like ":abbreviate" but for Command-line mode
:cabclear :cabc[lear] clear all abbreviations for Command-line mode
:cabove :cabo[ve] go to error above current line
:caddbuffer :cad[dbuffer] add errors from buffer
:caddexpr :cadde[xpr] add errors from expr
:caddfile :caddf[ile] add error message to current quickfix list
:cafter :caf[ter] go to error after current cursor
:call :cal[l] call a function
:catch :cat[ch] part of a :try command
:cbefore :cbef[ore] go to error before current cursor
:cbelow :cbel[ow] go to error below current line
:cbottom :cbo[ttom] scroll to the bottom of the quickfix window
:cbuffer :cb[uffer] parse error messages and jump to first error
:cc :cc go to specific error
:cclose :ccl[ose] close quickfix window
:cd :cd change directory
:cdo :cdo execute command in each valid error list entry
:cfdo :cfd[o] execute command in each file in error list
:center :ce[nter] format lines at the center
:cexpr :cex[pr] read errors from expr and jump to first
:cfile :cf[ile] read file with error messages and jump to first
:cfirst :cfir[st] go to the specified error, default first one
:cgetbuffer :cgetb[uffer] get errors from buffer
:cgetexpr :cgete[xpr] get errors from expr
:cgetfile :cg[etfile] read file with error messages
:changes :changes print the change list
:chdir :chd[ir] change directory
:checkpath :che[ckpath] list included files
:checktime :checkt[ime] check timestamp of loaded buffers
:chistory :chi[story] list the error lists
:class :class start of a class specification

index.txt — 411

:clast :cla[st] go to the specified error, default last one
:clearjumps :cle[arjumps] clear the jump list
:clist :cl[ist] list all errors
:close :clo[se] close current window
:cmap :cm[ap] like ":map" but for Command-line mode
:cmapclear :cmapc[lear] clear all mappings for Command-line mode
:cmenu :cme[nu] add menu for Command-line mode
:cnext :cn[ext] go to next error
:cnewer :cnew[er] go to newer error list
:cnfile :cnf[ile] go to first error in next file
:cnoremap :cno[remap] like ":noremap" but for Command-line mode
:cnoreabbrev :cnorea[bbrev] like ":noreabbrev" but for Command-line mode
:cnoremenu :cnoreme[nu] like ":noremenu" but for Command-line mode
:copy :co[py] copy lines
:colder :col[der] go to older error list
:colorscheme :colo[rscheme] load a specific color scheme
:command :com[mand] create user-defined command
:comclear :comc[lear] clear all user-defined commands
:compiler :comp[iler] do settings for a specific compiler
:continue :con[tinue] go back to :while
:confirm :conf[irm] prompt user when confirmation required
:const :cons[t] create a variable as a constant
:copen :cope[n] open quickfix window
:cprevious :cp[revious] go to previous error
:cpfile :cpf[ile] go to last error in previous file
:cquit :cq[uit] quit Vim with an error code
:crewind :cr[ewind] go to the specified error, default first one
:cscope :cs[cope] execute cscope command
:cstag :cst[ag] use cscope to jump to a tag
:cunmap :cu[nmap] like ":unmap" but for Command-line mode
:cunabbrev :cuna[bbrev] like ":unabbrev" but for Command-line mode
:cunmenu :cunme[nu] remove menu for Command-line mode
:cwindow :cw[indow] open or close quickfix window
:delete :d[elete] delete lines
:debug :deb[ug] run a command in debugging mode
:debuggreedy :debugg[reedy] read debug mode commands from normal input
:def :def define a Vim9 user function
:defcompile :defc[ompile] compile Vim9 user functions in current script
:defer :defer call function when current function is done
:delcommand :delc[ommand] delete user-defined command
:delfunction :delf[unction] delete a user function
:delmarks :delm[arks] delete marks
:diffupdate :dif[fupdate] update 'diff' buffers
:diffget :diffg[et] remove differences in current buffer
:diffoff :diffo[ff] switch off diff mode
:diffpatch :diffp[atch] apply a patch and show differences
:diffput :diffpu[t] remove differences in other buffer
:diffsplit :diffs[plit] show differences with another file
:diffthis :diffthis make current window a diff window
:digraphs :dig[raphs] show or enter digraphs
:display :di[splay] display registers
:disassemble :disa[ssemble] disassemble Vim9 user function
:djump :dj[ump] jump to #define
:dl :dl short for :delete with the 'l' flag
:dlist :dli[st] list #defines
:doautocmd :do[autocmd] apply autocommands to current buffer
:doautoall :doautoa[ll] apply autocommands for all loaded buffers
:dp :d[elete]p short for :delete with the 'p' flag
:drop :dr[op] jump to window editing file or edit file in

current window

index.txt — 412

:dsearch :ds[earch] list one #define
:dsplit :dsp[lit] split window and jump to #define
:edit :e[dit] edit a file
:earlier :ea[rlier] go to older change, undo
:echo :ec[ho] echoes the result of expressions
:echoconsole :echoc[onsole] like :echomsg but write to stdout
:echoerr :echoe[rr] like :echo, show like an error and use history
:echohl :echoh[l] set highlighting for echo commands
:echomsg :echom[sg] same as :echo, put message in history
:echon :echon same as :echo, but without <EOL>
:echowindow :echow[indow] same as :echomsg, but use a popup window
:else :el[se] part of an :if command
:elseif :elsei[f] part of an :if command
:emenu :em[enu] execute a menu by name
:endclass :endclass end of a class specification
:enddef :enddef end of a user function started with :def
:endif :en[dif] end previous :if
:endfor :endfo[r] end previous :for
:endfunction :endf[unction] end of a user function started with :function
:endtry :endt[ry] end previous :try
:endwhile :endw[hile] end previous :while
:enew :ene[w] edit a new, unnamed buffer
:eval :ev[al] evaluate an expression and discard the result
:ex :ex same as ":edit"
:execute :exe[cute] execute result of expressions
:exit :exi[t] same as ":xit"
:export :exp[ort] Vim9: export an item from a script
:exusage :exu[sage] overview of Ex commands
:file :f[ile] show or set the current file name
:files :files list all files in the buffer list
:filetype :filet[ype] switch file type detection on/off
:filter :filt[er] filter output of following command
:find :fin[d] find file in 'path' and edit it
:final :final declare an immutable variable in Vim9
:finally :fina[lly] part of a :try command
:finish :fini[sh] quit sourcing a Vim script
:first :fir[st] go to the first file in the argument list
:fixdel :fix[del] set key code of
:fold :fo[ld] create a fold
:foldclose :foldc[lose] close folds
:folddoopen :foldd[oopen] execute command on lines not in a closed fold
:folddoclosed :folddoc[losed] execute command on lines in a closed fold
:foldopen :foldo[pen] open folds
:for :for for loop
:function :fu[nction] define a user function
:global :g[lobal] execute commands for matching lines
:goto :go[to] go to byte in the buffer
:grep :gr[ep] run 'grepprg' and jump to first match
:grepadd :grepa[dd] like :grep, but append to current list
:gui :gu[i] start the GUI
:gvim :gv[im] start the GUI
:hardcopy :ha[rdcopy] send text to the printer
:help :h[elp] open a help window
:helpclose :helpc[lose] close one help window
:helpfind :helpf[ind] dialog to open a help window
:helpgrep :helpg[rep] like ":grep" but searches help files
:helptags :helpt[ags] generate help tags for a directory
:highlight :hi[ghlight] specify highlighting methods
:hide :hid[e] hide current buffer for a command
:history :his[tory] print a history list

index.txt — 413

:horizontal :hor[izontal] following window command work horizontally
:insert :i[nsert] insert text
:iabbrev :ia[bbrev] like ":abbrev" but for Insert mode
:iabclear :iabc[lear] like ":abclear" but for Insert mode
:if :if execute commands when condition met
:ijump :ij[ump] jump to definition of identifier
:ilist :il[ist] list lines where identifier matches
:imap :im[ap] like ":map" but for Insert mode
:imapclear :imapc[lear] like ":mapclear" but for Insert mode
:imenu :ime[nu] add menu for Insert mode
:import :imp[ort] Vim9: import an item from another script
:inoremap :ino[remap] like ":noremap" but for Insert mode
:inoreabbrev :inorea[bbrev] like ":noreabbrev" but for Insert mode
:inoremenu :inoreme[nu] like ":noremenu" but for Insert mode
:intro :int[ro] print the introductory message
:isearch :is[earch] list one line where identifier matches
:isplit :isp[lit] split window and jump to definition of

identifier
:iunmap :iu[nmap] like ":unmap" but for Insert mode
:iunabbrev :iuna[bbrev] like ":unabbrev" but for Insert mode
:iunmenu :iunme[nu] remove menu for Insert mode
:join :j[oin] join lines
:jumps :ju[mps] print the jump list
:k :k set a mark
:keepalt :keepa[lt] following command keeps the alternate file
:keepmarks :kee[pmarks] following command keeps marks where they are
:keepjumps :keepj[umps] following command keeps jumplist and marks
:keeppatterns :keepp[atterns] following command keeps search pattern history
:lNext :lN[ext] go to previous entry in location list
:lNfile :lNf[ile] go to last entry in previous file
:list :l[ist] print lines
:labove :lab[ove] go to location above current line
:laddexpr :lad[dexpr] add locations from expr
:laddbuffer :laddb[uffer] add locations from buffer
:laddfile :laddf[ile] add locations to current location list
:lafter :laf[ter] go to location after current cursor
:last :la[st] go to the last file in the argument list
:language :lan[guage] set the language (locale)
:later :lat[er] go to newer change, redo
:lbefore :lbef[ore] go to location before current cursor
:lbelow :lbel[ow] go to location below current line
:lbottom :lbo[ttom] scroll to the bottom of the location window
:lbuffer :lb[uffer] parse locations and jump to first location
:lcd :lc[d] change directory locally
:lchdir :lch[dir] change directory locally
:lclose :lcl[ose] close location window
:lcscope :lcs[cope] like ":cscope" but uses location list
:ldo :ld[o] execute command in valid location list entries
:lfdo :lfd[o] execute command in each file in location list
:left :le[ft] left align lines
:leftabove :lefta[bove] make split window appear left or above
:legacy :leg[acy] make following command use legacy script syntax
:let :let assign a value to a variable or option
:lexpr :lex[pr] read locations from expr and jump to first
:lfile :lf[ile] read file with locations and jump to first
:lfirst :lfir[st] go to the specified location, default first one
:lgetbuffer :lgetb[uffer] get locations from buffer
:lgetexpr :lgete[xpr] get locations from expr
:lgetfile :lg[etfile] read file with locations
:lgrep :lgr[ep] run 'grepprg' and jump to first match

index.txt — 414

:lgrepadd :lgrepa[dd] like :grep, but append to current list
:lhelpgrep :lh[elpgrep] like ":helpgrep" but uses location list
:lhistory :lhi[story] list the location lists
:ll :ll go to specific location
:llast :lla[st] go to the specified location, default last one
:llist :lli[st] list all locations
:lmake :lmak[e] execute external command 'makeprg' and parse

error messages
:lmap :lm[ap] like ":map!" but includes Lang-Arg mode
:lmapclear :lmapc[lear] like ":mapclear!" but includes Lang-Arg mode
:lnext :lne[xt] go to next location
:lnewer :lnew[er] go to newer location list
:lnfile :lnf[ile] go to first location in next file
:lnoremap :ln[oremap] like ":noremap!" but includes Lang-Arg mode
:loadkeymap :loadk[eymap] load the following keymaps until EOF
:loadview :lo[adview] load view for current window from a file
:lockmarks :loc[kmarks] following command keeps marks where they are
:lockvar :lockv[ar] lock variables
:lolder :lol[der] go to older location list
:lopen :lope[n] open location window
:lprevious :lp[revious] go to previous location
:lpfile :lpf[ile] go to last location in previous file
:lrewind :lr[ewind] go to the specified location, default first one
:ls :ls list all buffers
:ltag :lt[ag] jump to tag and add matching tags to the

location list
:lunmap :lu[nmap] like ":unmap!" but includes Lang-Arg mode
:lua :lua execute Lua command
:luado :luad[o] execute Lua command for each line
:luafile :luaf[ile] execute Lua script file
:lvimgrep :lv[imgrep] search for pattern in files
:lvimgrepadd :lvimgrepa[dd] like :vimgrep, but append to current list
:lwindow :lw[indow] open or close location window
:move :m[ove] move lines
:mark :ma[rk] set a mark
:make :mak[e] execute external command 'makeprg' and parse

error messages
:map :map show or enter a mapping
:mapclear :mapc[lear] clear all mappings for Normal and Visual mode
:marks :marks list all marks
:match :mat[ch] define a match to highlight
:menu :me[nu] enter a new menu item
:menutranslate :menut[ranslate] add a menu translation item
:messages :mes[sages] view previously displayed messages
:mkexrc :mk[exrc] write current mappings and settings to a file
:mksession :mks[ession] write session info to a file
:mkspell :mksp[ell] produce .spl spell file
:mkvimrc :mkv[imrc] write current mappings and settings to a file
:mkview :mkvie[w] write view of current window to a file
:mode :mod[e] show or change the screen mode
:mzscheme :mz[scheme] execute MzScheme command
:mzfile :mzf[ile] execute MzScheme script file
:nbclose :nbc[lose] close the current Netbeans session
:nbkey :nb[key] pass a key to Netbeans
:nbstart :nbs[art] start a new Netbeans session
:next :n[ext] go to next file in the argument list
:new :new create a new empty window
:nmap :nm[ap] like ":map" but for Normal mode
:nmapclear :nmapc[lear] clear all mappings for Normal mode
:nmenu :nme[nu] add menu for Normal mode

index.txt — 415

:nnoremap :nn[oremap] like ":noremap" but for Normal mode
:nnoremenu :nnoreme[nu] like ":noremenu" but for Normal mode
:noautocmd :noa[utocmd] following commands don't trigger autocommands
:noremap :no[remap] enter a mapping that will not be remapped
:nohlsearch :noh[lsearch] suspend 'hlsearch' highlighting
:noreabbrev :norea[bbrev] enter an abbreviation that will not be

remapped
:noremenu :noreme[nu] enter a menu that will not be remapped
:normal :norm[al] execute Normal mode commands
:noswapfile :nos[wapfile] following commands don't create a swap file
:number :nu[mber] print lines with line number
:nunmap :nun[map] like ":unmap" but for Normal mode
:nunmenu :nunme[nu] remove menu for Normal mode
:oldfiles :ol[dfiles] list files that have marks in the viminfo file
:open :o[pen] start open mode (not implemented)
:omap :om[ap] like ":map" but for Operator-pending mode
:omapclear :omapc[lear] remove all mappings for Operator-pending mode
:omenu :ome[nu] add menu for Operator-pending mode
:only :on[ly] close all windows except the current one
:onoremap :ono[remap] like ":noremap" but for Operator-pending mode
:onoremenu :onoreme[nu] like ":noremenu" but for Operator-pending mode
:options :opt[ions] open the options-window
:ounmap :ou[nmap] like ":unmap" but for Operator-pending mode
:ounmenu :ounme[nu] remove menu for Operator-pending mode
:ownsyntax :ow[nsyntax] set new local syntax highlight for this window
:packadd :pa[ckadd] add a plugin from 'packpath'
:packloadall :packl[oadall] load all packages under 'packpath'
:pclose :pc[lose] close preview window
:pedit :ped[it] edit file in the preview window
:perl :pe[rl] execute Perl command
:print :p[rint] print lines
:profdel :profd[el] stop profiling a function or script
:profile :prof[ile] profiling functions and scripts
:promptfind :pro[mptfind] open GUI dialog for searching
:promptrepl :promptr[epl] open GUI dialog for search/replace
:perldo :perld[o] execute Perl command for each line
:pop :po[p] jump to older entry in tag stack
:popup :popu[p] popup a menu by name
:ppop :pp[op] ":pop" in preview window
:preserve :pre[serve] write all text to swap file
:previous :prev[ious] go to previous file in argument list
:psearch :ps[earch] like ":ijump" but shows match in preview window
:ptag :pt[ag] show tag in preview window
:ptNext :ptN[ext] :tNext in preview window
:ptfirst :ptf[irst] :trewind in preview window
:ptjump :ptj[ump] :tjump and show tag in preview window
:ptlast :ptl[ast] :tlast in preview window
:ptnext :ptn[ext] :tnext in preview window
:ptprevious :ptp[revious] :tprevious in preview window
:ptrewind :ptr[ewind] :trewind in preview window
:ptselect :pts[elect] :tselect and show tag in preview window
:public :public prefix for a class or object member
:put :pu[t] insert contents of register in the text
:pwd :pw[d] print current directory
:py3 :py3 execute Python 3 command
:python3 :python3 same as :py3
:py3do :py3d[o] execute Python 3 command for each line
:py3file :py3f[ile] execute Python 3 script file
:python :py[thon] execute Python command
:pydo :pyd[o] execute Python command for each line

index.txt — 416

:pyfile :pyf[ile] execute Python script file
:pyx :pyx execute python_x command
:pythonx :pythonx same as :pyx
:pyxdo :pyxd[o] execute python_x command for each line
:pyxfile :pyxf[ile] execute python_x script file
:quit :q[uit] quit current window (when one window quit Vim)
:quitall :quita[ll] quit Vim
:qall :qa[ll] quit Vim
:read :r[ead] read file into the text
:recover :rec[over] recover a file from a swap file
:redo :red[o] redo one undone change
:redir :redi[r] redirect messages to a file or register
:redraw :redr[aw] force a redraw of the display
:redrawstatus :redraws[tatus] force a redraw of the status line(s)
:redrawtabline :redrawt[abline] force a redraw of the tabline
:registers :reg[isters] display the contents of registers
:resize :res[ize] change current window height
:retab :ret[ab] change tab size
:return :retu[rn] return from a user function
:rewind :rew[ind] go to the first file in the argument list
:right :ri[ght] right align text
:rightbelow :rightb[elow] make split window appear right or below
:ruby :rub[y] execute Ruby command
:rubydo :rubyd[o] execute Ruby command for each line
:rubyfile :rubyf[ile] execute Ruby script file
:rundo :rund[o] read undo information from a file
:runtime :ru[ntime] source vim scripts in 'runtimepath'
:rviminfo :rv[iminfo] read from viminfo file
:substitute :s[ubstitute] find and replace text
:sNext :sN[ext] split window and go to previous file in

argument list
:sandbox :san[dbox] execute a command in the sandbox
:sargument :sa[rgument] split window and go to specific file in

argument list
:sall :sal[l] open a window for each file in argument list
:saveas :sav[eas] save file under another name.
:sbuffer :sb[uffer] split window and go to specific file in the

buffer list
:sbNext :sbN[ext] split window and go to previous file in the

buffer list
:sball :sba[ll] open a window for each file in the buffer list
:sbfirst :sbf[irst] split window and go to first file in the

buffer list
:sblast :sbl[ast] split window and go to last file in buffer

list
:sbmodified :sbm[odified] split window and go to modified file in the

buffer list
:sbnext :sbn[ext] split window and go to next file in the buffer

list
:sbprevious :sbp[revious] split window and go to previous file in the

buffer list
:sbrewind :sbr[ewind] split window and go to first file in the

buffer list
:scriptnames :scr[iptnames] list names of all sourced Vim scripts
:scriptencoding :scripte[ncoding] encoding used in sourced Vim script
:scriptversion :scriptv[ersion] version of Vim script used
:scscope :scs[cope] split window and execute cscope command
:set :se[t] show or set options
:setfiletype :setf[iletype] set 'filetype', unless it was set already
:setglobal :setg[lobal] show global values of options

index.txt — 417

:setlocal :setl[ocal] show or set options locally
:sfind :sf[ind] split current window and edit file in 'path'
:sfirst :sfir[st] split window and go to first file in the

argument list
:shell :sh[ell] escape to a shell
:simalt :sim[alt] Win32 GUI: simulate Windows ALT key
:sign :sig[n] manipulate signs
:silent :sil[ent] run a command silently
:sleep :sl[eep] do nothing for a few seconds
:sleep! :sl[eep]! do nothing for a few seconds, without the

cursor visible
:slast :sla[st] split window and go to last file in the

argument list
:smagic :sm[agic] :substitute with 'magic'
:smap :smap like ":map" but for Select mode
:smapclear :smapc[lear] remove all mappings for Select mode
:smenu :sme[nu] add menu for Select mode
:smile :smi[le] make the user happy
:snext :sn[ext] split window and go to next file in the

argument list
:snomagic :sno[magic] :substitute with 'nomagic'
:snoremap :snor[emap] like ":noremap" but for Select mode
:snoremenu :snoreme[nu] like ":noremenu" but for Select mode
:sort :sor[t] sort lines
:source :so[urce] read Vim or Ex commands from a file
:spelldump :spelld[ump] split window and fill with all correct words
:spellgood :spe[llgood] add good word for spelling
:spellinfo :spelli[nfo] show info about loaded spell files
:spellrare :spellra[re] add rare word for spelling
:spellrepall :spellr[epall] replace all bad words like last z=
:spellundo :spellu[ndo] remove good or bad word
:spellwrong :spellw[rong] add spelling mistake
:split :sp[lit] split current window
:sprevious :spr[evious] split window and go to previous file in the

argument list
:srewind :sre[wind] split window and go to first file in the

argument list
:stop :st[op] suspend the editor or escape to a shell
:stag :sta[g] split window and jump to a tag
:startinsert :star[tinsert] start Insert mode
:startgreplace :startg[replace] start Virtual Replace mode
:startreplace :startr[eplace] start Replace mode
:static :static prefix for a class member or function
:stopinsert :stopi[nsert] stop Insert mode
:stjump :stj[ump] do ":tjump" and split window
:stselect :sts[elect] do ":tselect" and split window
:sunhide :sun[hide] same as ":unhide"
:sunmap :sunm[ap] like ":unmap" but for Select mode
:sunmenu :sunme[nu] remove menu for Select mode
:suspend :sus[pend] same as ":stop"
:sview :sv[iew] split window and edit file read-only
:swapname :sw[apname] show the name of the current swap file
:syntax :sy[ntax] syntax highlighting
:syntime :synti[me] measure syntax highlighting speed
:syncbind :sync[bind] sync scroll binding
:t :t same as ":copy"
:tNext :tN[ext] jump to previous matching tag
:tabNext :tabN[ext] go to previous tab page
:tabclose :tabc[lose] close current tab page
:tabdo :tabdo execute command in each tab page

index.txt — 418

:tabedit :tabe[dit] edit a file in a new tab page
:tabfind :tabf[ind] find file in 'path', edit it in a new tab page
:tabfirst :tabfir[st] go to first tab page
:tablast :tabl[ast] go to last tab page
:tabmove :tabm[ove] move tab page to other position
:tabnew :tabnew edit a file in a new tab page
:tabnext :tabn[ext] go to next tab page
:tabonly :tabo[nly] close all tab pages except the current one
:tabprevious :tabp[revious] go to previous tab page
:tabrewind :tabr[ewind] go to first tab page
:tabs :tabs list the tab pages and what they contain
:tab :tab create new tab when opening new window
:tag :ta[g] jump to tag
:tags :tags show the contents of the tag stack
:tcd :tc[d] change directory for tab page
:tchdir :tch[dir] change directory for tab page
:tcl :tcl execute Tcl command
:tcldo :tcld[o] execute Tcl command for each line
:tclfile :tclf[ile] execute Tcl script file
:tearoff :te[aroff] tear-off a menu
:terminal :ter[minal] open a terminal window
:tfirst :tf[irst] jump to first matching tag
:throw :th[row] throw an exception
:tjump :tj[ump] like ":tselect", but jump directly when there

is only one match
:tlast :tl[ast] jump to last matching tag
:tlmenu :tlm[enu] add menu for Terminal-Job mode
:tlnoremenu :tln[oremenu] like ":noremenu" but for Terminal-Job mode
:tlunmenu :tlu[nmenu] remove menu for Terminal-Job mode
:tmapclear :tmapc[lear] remove all mappings for Terminal-Job mode
:tmap :tma[p] like ":map" but for Terminal-Job mode
:tmenu :tm[enu] define menu tooltip
:tnext :tn[ext] jump to next matching tag
:tnoremap :tno[remap] like ":noremap" but for Terminal-Job mode
:topleft :to[pleft] make split window appear at top or far left
:tprevious :tp[revious] jump to previous matching tag
:trewind :tr[ewind] jump to first matching tag
:try :try execute commands, abort on error or exception
:tselect :ts[elect] list matching tags and select one
:tunmap :tunma[p] like ":unmap" but for Terminal-Job mode
:tunmenu :tu[nmenu] remove menu tooltip
:undo :u[ndo] undo last change(s)
:undojoin :undoj[oin] join next change with previous undo block
:undolist :undol[ist] list leafs of the undo tree
:unabbreviate :una[bbreviate] remove abbreviation
:unhide :unh[ide] open a window for each loaded file in the

buffer list
:unlet :unl[et] delete variable
:unlockvar :unlo[ckvar] unlock variables
:unmap :unm[ap] remove mapping
:unmenu :unme[nu] remove menu
:unsilent :uns[ilent] run a command not silently
:update :up[date] write buffer if modified
:vglobal :v[global] execute commands for not matching lines
:var :var variable declaration in Vim9
:version :ve[rsion] print version number and other info
:verbose :verb[ose] execute command with 'verbose' set
:vertical :vert[ical] make following command split vertically
:vim9cmd :vim9[cmd] make following command use Vim9 script syntax
:vim9script :vim9s[cript] indicates Vim9 script file

index.txt — 419

:vimgrep :vim[grep] search for pattern in files
:vimgrepadd :vimgrepa[dd] like :vimgrep, but append to current list
:visual :vi[sual] same as ":edit", but turns off "Ex" mode
:viusage :viu[sage] overview of Normal mode commands
:view :vie[w] edit a file read-only
:vmap :vm[ap] like ":map" but for Visual+Select mode
:vmapclear :vmapc[lear] remove all mappings for Visual+Select mode
:vmenu :vme[nu] add menu for Visual+Select mode
:vnew :vne[w] create a new empty window, vertically split
:vnoremap :vn[oremap] like ":noremap" but for Visual+Select mode
:vnoremenu :vnoreme[nu] like ":noremenu" but for Visual+Select mode
:vsplit :vs[plit] split current window vertically
:vunmap :vu[nmap] like ":unmap" but for Visual+Select mode
:vunmenu :vunme[nu] remove menu for Visual+Select mode
:windo :windo execute command in each window
:write :w[rite] write to a file
:wNext :wN[ext] write to a file and go to previous file in

argument list
:wall :wa[ll] write all (changed) buffers
:while :wh[ile] execute loop for as long as condition met
:winsize :wi[nsize] get or set window size (obsolete)
:wincmd :winc[md] execute a Window (CTRL-W) command
:winpos :winp[os] get or set window position
:wnext :wn[ext] write to a file and go to next file in

argument list
:wprevious :wp[revious] write to a file and go to previous file in

argument list
:wq :wq write to a file and quit window or Vim
:wqall :wqa[ll] write all changed buffers and quit Vim
:wundo :wu[ndo] write undo information to a file
:wviminfo :wv[iminfo] write to viminfo file
:xit :x[it] write if buffer changed and close window
:xall :xa[ll] same as ":wqall"
:xmapclear :xmapc[lear] remove all mappings for Visual mode
:xmap :xm[ap] like ":map" but for Visual mode
:xmenu :xme[nu] add menu for Visual mode
:xrestore :xr[estore] restores the X server connection
:xnoremap :xn[oremap] like ":noremap" but for Visual mode
:xnoremenu :xnoreme[nu] like ":noremenu" but for Visual mode
:xunmap :xu[nmap] like ":unmap" but for Visual mode
:xunmenu :xunme[nu] remove menu for Visual mode
:yank :y[ank] yank lines into a register
:z :z print some lines
:~ :~ repeat last ":substitute"

index.txt — 420

howto.txt For Vim version 9.1. Last change: 2006 Apr 02

VIM REFERENCE MANUAL by Bram Moolenaar

How to ... howdoi how-do-i howto how-to

tutor get started
:quit exit? I'm trapped, help me!
initialization initialize Vim
vimrc-intro write a Vim script file (vimrc)
suspend suspend Vim
usr_11.txt recover after a crash
07.4 keep a backup of my file when writing over it

usr_07.txt edit files
23.4 edit binary files
usr_24.txt insert text
deleting delete text
usr_04.txt change text
04.5 copy and move text
usr_25.txt format text
30.6 format comments
30.2 indent C programs
25.3 automatically set indent

usr_26.txt repeat commands
02.5 undo and redo

usr_03.txt move around
word-motions word motions
left-right-motions left-right motions
up-down-motions up-down motions
object-motions text-object motions
various-motions various motions
object-select text-object selection
'whichwrap' move over line breaks
'virtualedit' move to where there is no text
usr_27.txt specify pattern for searches
tags-and-searches do tags and special searches
29.4 search in include'd files used to find

variables, functions, or macros
K look up manual for the keyword under cursor

03.7 scroll
'sidescroll' scroll horizontally/sideways
'scrolloff' set visible context lines

mode-switching change modes
04.4 use Visual mode
'insertmode' start Vim in Insert mode

40.1 map keys
24.7 create abbreviations

ins-expandtab expand a tab to spaces in Insert mode
i_CTRL-R insert contents of a register in Insert mode
24.3 complete words in Insert mode
25.1 break a line before it gets too long

howto.txt — 421

20.1 do command-line editing
20.3 do command-line completion
'cmdheight' increase the height of command-line
10.3 specify command-line ranges
40.3 specify commands to be executed automatically

before/after reading/writing entering/leaving a
buffer/window

'autowrite' write automatically
30.1 speedup edit-compile-edit cycle or compile and fix

errors within Vim

options set options
auto-setting set options automatically
term-dependent-settings set options depending on terminal name
save-settings save settings
:quote comment my .vim files
'helpheight' change the default help height
'highlight' set various highlighting modes
'title' set the window title
'icon' set window icon title
'report' avoid seeing the change messages on every line
'shortmess' avoid hit-enter prompts

mouse-using use mouse with Vim
usr_08.txt manage multiple windows and buffers
gui.txt use the gui

|You can't! (yet)| do dishes using Vim

usr_06.txt switch on syntax highlighting
2html.vim convert a colored file to HTML
less use Vim like less or more with syntax highlighting

howto.txt — 422

tips.txt For Vim version 9.1. Last change: 2023 Aug 10

VIM REFERENCE MANUAL by Bram Moolenaar

Tips and ideas for using Vim tips

These are just a few that we thought would be helpful for many users.
You can find many more tips on the wiki. The URL can be found on
http://www.vim.org

Don't forget to browse the user manual, it also contains lots of useful tips
usr_toc.txt .

Editing C programs C-editing
Finding where identifiers are used ident-search
Switching screens in an xterm xterm-screens
Scrolling in Insert mode scroll-insert
Smooth scrolling scroll-smooth
Correcting common typing mistakes type-mistakes
Counting words, lines, etc. count-items
Restoring the cursor position restore-position
Renaming files rename-files
Change a name in multiple files change-name
Speeding up external commands speed-up
Useful mappings useful-mappings
Compressing the help files gzip-helpfile
Executing shell commands in a window shell-window
Hex editing hex-editing
Using <> notation in autocommands autocmd-<>
Highlighting matching parens match-parens
Opening help in the current window help-curwin

==
Editing C programs C-editing

There are quite a few features in Vim to help you edit C program files. Here
is an overview with tags to jump to:

usr_29.txt Moving through programs chapter in the user manual.
usr_30.txt Editing programs chapter in the user manual.
C-indenting Automatically set the indent of a line while typing

text.
= Re-indent a few lines.
format-comments Format comments.

:checkpath Show all recursively included files.
[i Search for identifier under cursor in current and

included files.
[_CTRL-I Jump to match for "[i"
[I List all lines in current and included files where

identifier under the cursor matches.
[d Search for define under cursor in current and included

files.

CTRL-] Jump to tag under cursor (e.g., definition of a
function).

CTRL-T Jump back to before a CTRL-] command.
:tselect Select one tag out of a list of matching tags.

tips.txt — 423

http://www.vim.org

gd Go to Declaration of local variable under cursor.
gD Go to Declaration of global variable under cursor.

gf Go to file name under the cursor.

% Go to matching (), {}, [], /* */, #if, #else, #endif.
[/ Go to previous start of comment.
]/ Go to next end of comment.
[# Go back to unclosed #if, #ifdef, or #else.
]# Go forward to unclosed #else or #endif.
[(Go back to unclosed '('
]) Go forward to unclosed ')'
[{ Go back to unclosed '{'
]} Go forward to unclosed '}'

v_ab Select "a block" from "[(" to "])", including braces
v_ib Select "inner block" from "[(" to "])"
v_aB Select "a block" from "[{" to "]}", including brackets
v_iB Select "inner block" from "[{" to "]}"

==
Finding where identifiers are used ident-search

You probably already know that tags can be used to jump to the place where a
function or variable is defined. But sometimes you wish you could jump to all
the places where a function or variable is being used. This is possible in
two ways:
1. Using the :grep command. This should work on most Unix systems,

but can be slow (it reads all files) and only searches in one directory.
2. Using ID utils. This is fast and works in multiple directories. It uses a

database to store locations. You will need some additional programs for
this to work. And you need to keep the database up to date.

Using the GNU id-tools:

What you need:
- The GNU id-tools installed (mkid is needed to create ID and lid is needed to

use the macros).
- An identifier database file called "ID" in the current directory. You can

create it with the shell command "mkid file1 file2 ..".

Put this in your .vimrc:
map _u :call ID_search()<Bar>execute "/\\<" .. g:word .. "\\>"<CR>
map _n :n<Bar>execute "/\\<" .. g:word .. "\\>"<CR>

function! ID_search()
let g:word = expand("<cword>")
let x = system("lid --key=none " .. g:word)
let x = substitute(x, "\n", " ", "g")
execute "next " .. x

endfun

To use it, place the cursor on a word, type "_u" and vim will load the file
that contains the word. Search for the next occurrence of the word in the
same file with "n". Go to the next file with "_n".

This has been tested with id-utils-3.2 (which is the name of the id-tools
archive file on your closest gnu-ftp-mirror).

tips.txt — 424

[the idea for this comes from Andreas Kutschera]

==
Switching screens in an xterm xterm-screens xterm-save-screen

(From comp.editors, by Juergen Weigert, in reply to a question)

:> Another question is that after exiting vim, the screen is left as it
:> was, i.e. the contents of the file I was viewing (editing) was left on
:> the screen. The output from my previous like "ls" were lost,
:> ie. no longer in the scrolling buffer. I know that there is a way to
:> restore the screen after exiting vim or other vi like editors,
:> I just don't know how. Helps are appreciated. Thanks.
:
:I imagine someone else can answer this. I assume though that vim and vi do
:the same thing as each other for a given xterm setup.

They not necessarily do the same thing, as this may be a termcap vs.
terminfo problem. You should be aware that there are two databases for
describing attributes of a particular type of terminal: termcap and
terminfo. This can cause differences when the entries differ AND when of
the programs in question one uses terminfo and the other uses termcap
(also see +terminfo).

In your particular problem, you are looking for the control sequences
^[[?47h and ^[[?47l. These switch between xterms alternate and main screen
buffer. As a quick workaround a command sequence like

echo -n "^[[?47h"; vim ... ; echo -n "^[[?47l"
may do what you want. (My notation ^[means the ESC character, further down
you'll see that the databases use \E instead).

On startup, vim echoes the value of the termcap variable ti (terminfo:
smcup) to the terminal. When exiting, it echoes te (terminfo: rmcup). Thus
these two variables are the correct place where the above mentioned control
sequences should go.

Compare your xterm termcap entry (found in /etc/termcap) with your xterm
terminfo entry (retrieved with "infocmp -C xterm"). Both should contain
entries similar to:

:te=\E[2J\E[?47l\E8:ti=\E7\E[?47h:

PS: If you find any difference, someone (your sysadmin?) should better check
the complete termcap and terminfo database for consistency.

NOTE 1: If you recompile Vim with FEAT_XTERM_SAVE defined in feature.h, the
builtin xterm will include the mentioned "te" and "ti" entries.

NOTE 2: If you want to disable the screen switching, and you don't want to
change your termcap, you can add these lines to your .vimrc:

:set t_ti= t_te=

==
Scrolling in Insert mode scroll-insert

If you are in insert mode and you want to see something that is just off the
screen, you can use CTRL-X CTRL-E and CTRL-X CTRL-Y to scroll the screen.

i_CTRL-X_CTRL-E

To make this easier, you could use these mappings:
:inoremap <C-E> <C-X><C-E>

tips.txt — 425

:inoremap <C-Y> <C-X><C-Y>
(Type this literally, make sure the '<' flag is not in 'cpoptions').
You then lose the ability to copy text from the line above/below the cursor
i_CTRL-E .

Also consider setting 'scrolloff' to a larger value, so that you can always see
some context around the cursor. If 'scrolloff' is bigger than half the window
height, the cursor will always be in the middle and the text is scrolled when
the cursor is moved up/down.

==
Smooth scrolling scroll-smooth

If you like the scrolling to go a bit smoother, you can use these mappings:
:map <C-U> <C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y><C-Y>
:map <C-D> <C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E><C-E>

(Type this literally, make sure the '<' flag is not in 'cpoptions').

==
Correcting common typing mistakes type-mistakes

When there are a few words that you keep on typing in the wrong way, make
abbreviations that correct them. For example:

:ab teh the
:ab fro for

==
Counting words, lines, etc. count-items

To count how often any pattern occurs in the current buffer use the substitute
command and add the 'n' flag to avoid the substitution. The reported number
of substitutions is the number of items. Examples:

:%s/./&/gn characters
:%s/\i\+/&/gn words
:%s/^//n lines
:%s/the/&/gn "the" anywhere
:%s/\<the\>/&/gn "the" as a word

You might want to reset 'hlsearch' or do ":nohlsearch".
Add the 'e' flag if you don't want an error when there are no matches.

An alternative is using v_g_CTRL-G in Visual mode.

If you want to find matches in multiple files use :vimgrep .

count-bytes
If you want to count bytes, you can use this:

Visually select the characters (block is also possible)
Use "y" to yank the characters
Use the strlen() function:

:echo strlen(@")
A line break is counted for one byte.

==
Restoring the cursor position restore-position

Sometimes you want to write a mapping that makes a change somewhere in the

tips.txt — 426

file and restores the cursor position, without scrolling the text. For
example, to change the date mark in a file:

:map <F2> msHmtgg/Last [cC]hange:\s*/e+1<CR>"_D"=strftime("%Y %b %d")<CR>p'tzt`s

Breaking up saving the position:
ms store cursor position in the 's' mark
H go to the first line in the window
mt store this position in the 't' mark

Breaking up restoring the position:
't go to the line previously at the top of the window
zt scroll to move this line to the top of the window
`s jump to the original position of the cursor

For something more advanced see winsaveview() and winrestview() .

==
Renaming files rename-files

Say I have a directory with the following files in them (directory picked at
random :-):

buffer.c
charset.c
digraph.c
...

and I want to rename *.c *.bla. I'd do it like this:

$ vim
:r !ls *.c
:%s/\(.*\).c/mv & \1.bla
:w !sh
:q!

==
Change a name in multiple files change-name

Example for using a script file to change a name in several files:

Create a file "subs.vim" containing substitute commands and a :update
command:

:%s/Jones/Smith/g
:%s/Allen/Peter/g
:update

Execute Vim on all files you want to change, and source the script for
each argument:

vim *.let
argdo source subs.vim

See :argdo .

==
Speeding up external commands speed-up

In some situations, execution of an external command can be very slow. This
can also slow down wildcard expansion on Unix. Here are a few suggestions to
increase the speed.

tips.txt — 427

If your .cshrc (or other file, depending on the shell used) is very long, you
should separate it into a section for interactive use and a section for
non-interactive use (often called secondary shells). When you execute a
command from Vim like ":!ls", you do not need the interactive things (for
example, setting the prompt). Put the stuff that is not needed after these
lines:

if ($?prompt == 0) then
exit 0

endif

Another way is to include the "-f" flag in the 'shell' option, e.g.:

:set shell=csh\ -f

(the backslash is needed to include the space in the option).
This will make csh completely skip the use of the .cshrc file. This may cause
some things to stop working though.

==
Useful mappings useful-mappings

Here are a few mappings that some people like to use.

map-backtick
:map ' `

Make the single quote work like a backtick. Puts the cursor on the column of
a mark, instead of going to the first non-blank character in the line.

emacs-keys
For Emacs-style editing on the command-line:

" start of line
:cnoremap <C-A> <Home>
" back one character
:cnoremap <C-B> <Left>
" delete character under cursor
:cnoremap <C-D>
" end of line
:cnoremap <C-E> <End>
" forward one character
:cnoremap <C-F> <Right>
" recall newer command-line
:cnoremap <C-N> <Down>
" recall previous (older) command-line
:cnoremap <C-P> <Up>
" back one word
:cnoremap <Esc><C-B> <S-Left>
" forward one word
:cnoremap <Esc><C-F> <S-Right>

NOTE: This requires that the '<' flag is excluded from 'cpoptions'. <>

format-bullet-list
This mapping will format any bullet list. It requires that there is an empty
line above and below each list entry. The expression commands are used to
be able to give comments to the parts of the mapping.

:let m = ":map _f :set ai<CR>" " need 'autoindent' set
:let m ..= "{O<Esc>" " add empty line above item

tips.txt — 428

:let m ..= "}{)^W" " move to text after bullet
:let m ..= "i <CR> <Esc>" " add space for indent
:let m ..= "gq}" " format text after the bullet
:let m ..= "{dd" " remove the empty line
:let m ..= "5lDJ" " put text after bullet
:execute m |" define the mapping

(<> notation <> . Note that this is all typed literally. ^W is "^" "W", not
CTRL-W. You can copy/paste this into Vim if '<' is not included in
'cpoptions'.)

Note that the last comment starts with |", because the ":execute" command
doesn't accept a comment directly.

You also need to set 'textwidth' to a non-zero value, e.g.,
:set tw=70

A mapping that does about the same, but takes the indent for the list from the
first line (Note: this mapping is a single long line with a lot of spaces):

:map _f :set ai<CR>}{a <Esc>WWmmkD`mi<CR><Esc>kkddpJgq}'mJO<Esc>j

collapse
These two mappings reduce a sequence of empty (;b) or blank (;n) lines into a
single line

:map ;b GoZ<Esc>:g/^$/.,/./-j<CR>Gdd
:map ;n GoZ<Esc>:g/^[<Tab>]*$/.,/[^ <Tab>]/-j<CR>Gdd

==
Compressing the help files gzip-helpfile

For those of you who are really short on disk space, you can compress the help
files and still be able to view them with Vim. This makes accessing the help
files a bit slower and requires the "gzip" program.

(1) Compress all the help files: "gzip doc/*.txt".

(2) Edit "doc/tags" and change the ".txt" to ".txt.gz":
:%s=\(\t.*\.txt\)\t=\1.gz\t=

(3) Add this line to your vimrc:
set helpfile={dirname}/help.txt.gz

Where {dirname} is the directory where the help files are. The gzip plugin
will take care of decompressing the files.
You must make sure that $VIMRUNTIME is set to where the other Vim files are,
when they are not in the same location as the compressed "doc" directory. See
$VIMRUNTIME .

==
Executing shell commands in a window shell-window

See terminal .

Another solution is splitting your terminal screen or display window with the
"splitvt" program. You can probably find it on some ftp server. The person
that knows more about this is Sam Lantinga <slouken@cs.ucdavis.edu>.

Another alternative is the "window" command, found on BSD Unix systems, which
supports multiple overlapped windows. Or the "screen" program, found at
www.uni-erlangen.de, which supports a stack of windows.

tips.txt — 429

==
Hex editing hex-editing using-xxd

See section 23.4 of the user manual.

If one has a particular extension that one uses for binary files (such as exe,
bin, etc), you may find it helpful to automate the process with the following
bit of autocmds for your <.vimrc>. Change that "*.bin" to whatever
comma-separated list of extension(s) you find yourself wanting to edit:

" vim -b : edit binary using xxd-format!
augroup Binary

autocmd!
autocmd BufReadPre *.bin set binary
autocmd BufReadPost *.bin

\ if &binary
\ | execute "silent %!xxd -c 32"
\ | set filetype=xxd
\ | redraw
\ | endif

autocmd BufWritePre *.bin
\ if &binary
\ | let s:view = winsaveview()
\ | execute "silent %!xxd -r -c 32"
\ | endif

autocmd BufWritePost *.bin
\ if &binary
\ | execute "silent %!xxd -c 32"
\ | set nomodified
\ | call winrestview(s:view)
\ | redraw
\ | endif

augroup END

==
Using <> notation in autocommands autocmd-<>

The <> notation is not recognized in the argument of an :autocmd. To avoid
having to use special characters, you could use a self-destroying mapping to
get the <> notation and then call the mapping from the autocmd. Example:

map-self-destroy
" This is for automatically adding the name of the file to the menu list.
" It uses a self-destroying mapping!
" 1. use a line in the buffer to convert the 'dots' in the file name to \.
" 2. store that in register '"'
" 3. add that name to the Buffers menu list
" WARNING: this does have some side effects, like overwriting the
" current register contents and removing any mapping for the "i" command.
"
autocmd BufNewFile,BufReadPre * nmap i :nunmap i<CR>O<C-R>%<Esc>:.g/\./s/\./\\./g<CR>0"9y$u:menu Buffers.<C-R>9 :buffer <C-R>%<C-V><CR><CR>
autocmd BufNewFile,BufReadPre * normal i

Another method, perhaps better, is to use the ":execute" command. In the
string you can use the <> notation by preceding it with a backslash. Don't
forget to double the number of existing backslashes and put a backslash before
'"'.

autocmd BufNewFile,BufReadPre * exe "normal O\<C-R>%\<Esc>:.g/\\./s/\\./\\\\./g\<CR>0\"9y$u:menu Buffers.\<C-R>9 :buffer \<C-R>%\<C-V>\<CR>\<CR>"

tips.txt — 430

For a real buffer menu, user functions should be used (see :function), but
then the <> notation isn't used, which defeats using it as an example here.

==
Highlighting matching parens match-parens

This example shows the use of a few advanced tricks:
- using the CursorMoved autocommand event
- using searchpairpos() to find a matching paren
- using synID() to detect whether the cursor is in a string or comment
- using :match to highlight something
- using a pattern to match a specific position in the file.

This should be put in a Vim script file, since it uses script-local variables.
It skips matches in strings or comments, unless the cursor started in string
or comment. This requires syntax highlighting.

A slightly more advanced version is used in the matchparen plugin.

let s:paren_hl_on = 0
function s:Highlight_Matching_Paren()

if s:paren_hl_on
match none
let s:paren_hl_on = 0

endif

let c_lnum = line('.')
let c_col = col('.')

let c = getline(c_lnum)[c_col - 1]
let plist = split(&matchpairs, ':\|,')
let i = index(plist, c)
if i < 0

return
endif
if i % 2 == 0

let s_flags = 'nW'
let c2 = plist[i + 1]

else
let s_flags = 'nbW'
let c2 = c
let c = plist[i - 1]

endif
if c == '['

let c = '\['
let c2 = '\]'

endif
let s_skip ='synIDattr(synID(line("."), col("."), 0), "name") ' ..

\ '=~? "string\\|comment"'
execute 'if' s_skip '| let s_skip = 0 | endif'

let [m_lnum, m_col] = searchpairpos(c, '', c2, s_flags, s_skip)

if m_lnum > 0 && m_lnum >= line('w0') && m_lnum <= line('w$')
exe 'match Search /\(\%' .. c_lnum .. 'l\%' .. c_col ..

\ 'c\)\|\(\%' .. m_lnum .. 'l\%' .. m_col .. 'c\)/'
let s:paren_hl_on = 1

endif
endfunction

tips.txt — 431

autocmd CursorMoved,CursorMovedI * call s:Highlight_Matching_Paren()
autocmd InsertEnter * match none

==
Opening help in the current window help-curwin

By default, help is displayed in a split window. If you prefer it opens in
the current window, try this custom `:HelpCurwin` command:

command -bar -nargs=? -complete=help HelpCurwin execute s:HelpCurwin(<q-args>)
let s:did_open_help = v:false

function s:HelpCurwin(subject) abort
let mods = 'silent noautocmd keepalt'
if !s:did_open_help

execute mods .. ' help'
execute mods .. ' helpclose'
let s:did_open_help = v:true

endif
if !getcompletion(a:subject, 'help')->empty()

execute mods .. ' edit ' .. &helpfile
set buftype=help

endif
return 'help ' .. a:subject

endfunction

tips.txt — 432

message.txt For Vim version 9.1. Last change: 2024 Mar 13

VIM REFERENCE MANUAL by Bram Moolenaar

This file contains an alphabetical list of messages and error messages that
Vim produces. You can use this if you don't understand what the message
means. It is not complete though.

1. Old messages :messages
2. Error messages error-messages
3. Messages messages

==
1. Old messages :messages :mes message-history

The ":messages" command can be used to view previously given messages. This
is especially useful when messages have been overwritten or truncated. This
depends on the 'shortmess' option.

:mes[sages] Show all messages.

:{count}mes[sages] Show the {count} most recent messages.

:mes[sages] clear Clear all messages.

:{count}mes[sages] clear
Clear messages, keeping only the {count} most
recent ones.

The number of remembered messages is fixed at 200.

g<
The "g<" command can be used to see the last page of previous command output.
This is especially useful if you accidentally typed <Space> at the hit-enter
prompt. You are then back at the hit-enter prompt and can then scroll further
back.
Note: If the output has been stopped with "q" at the more prompt, it will only
be displayed up to this point.
The previous command output is cleared when another command produces output.
The "g<" output is not redirected.

If you are using translated messages, the first printed line tells who
maintains the messages or the translations. You can use this to contact the
maintainer when you spot a mistake.

If you want to find help on a specific (error) message, use the ID at the
start of the message. For example, to get help on the message:

E72: Close error on swap file

or (translated):

E72: Errore durante chiusura swap file

Use:

:help E72

message.txt — 433

If you are lazy, it also works without the shift key:

:help e72

The number in this ID has no meaning.

==
2. Error messages error-messages errors

When an error message is displayed, but it is removed before you could read
it, you can see it again with:

:echo errmsg
Or view a list of recent messages with:

:messages
See `:messages` above.

LIST OF MESSAGES
E222 E228 E232 E292 E293 E298 E304 E316
E317 E318 E320 E322 E323 E341 E356 E438
E439 E440 E473 E570

Add to read buffer
makemap: Illegal mode
Cannot create BalloonEval with both message and callback
block was not locked
Didn't get block nr {N}?
ml_upd_block0(): Didn't get block 0??
pointer block id wrong {N}
Updated too many blocks?
get_varp ERROR
u_undo: line numbers wrong
undo list corrupt
undo line missing
ml_get: cannot find line {N} in buffer {nr} {name}
line number out of range: {N} past the end
line count wrong in block {N}
Internal error: lalloc(0,)
Internal error: {function}
Internal error in regexp
fatal error in cs_manage_matches
Invalid count for del_bytes(): {N}

E340 E685 internal-error
This is an internal error. If you can reproduce it, please send in a bug
report, see bugs .

ATTENTION
Found a swap file by the name ...

See ATTENTION .

E92
Buffer {N} not found

The buffer you requested does not exist. This can also happen when you have
wiped out a buffer which contains a mark or is referenced in another way.
:bwipeout

E95
Buffer with this name already exists

message.txt — 434

You cannot have two buffers with exactly the same name. This includes the
path leading to the file.

E1513
Cannot switch buffer. 'winfixbuf' is enabled

If a window has 'winfixbuf' enabled, you cannot change that window's current
buffer. You need to set 'nowinfixbuf' before continuing. You may use [!] to
force the window to switch buffers, if your command supports it.

E72
Close error on swap file

The swap-file , that is used to keep a copy of the edited text, could not be
closed properly. Mostly harmless.

E169
Command too recursive

This happens when an Ex command executes an Ex command that executes an Ex
command, etc. The limit is 200 or the value of 'maxfuncdepth', whatever is
larger. When it's more there probably is an endless loop. Probably a
:execute or :source command is involved.

E254
Cannot allocate color {name}

The color name {name} is unknown. See gui-colors for a list of colors that
are available on most systems.

E1244
Bad color string: {str}

The provided color did not conform to the pattern #rrggbb

E458
Cannot allocate colormap entry, some colors may be incorrect

This means that there are not enough colors available for Vim. It will still
run, but some of the colors will not appear in the specified color. Try
stopping other applications that use many colors, or start them after starting
gvim.
Browsers are known to consume a lot of colors. You can avoid this with
netscape by telling it to use its own colormap:

netscape -install
Or tell it to limit to a certain number of colors (64 should work well):

netscape -ncols 64
This can also be done with a line in your Xdefaults file:

Netscape*installColormap: Yes
or

Netscape*maxImageColors: 64

E79
Cannot expand wildcards

A filename contains a strange combination of characters, which causes Vim to
attempt expanding wildcards but this fails. This does NOT mean that no
matching file names could be found, but that the pattern was illegal.

message.txt — 435

E459
Cannot go back to previous directory

While expanding a file name, Vim failed to go back to the previously used
directory. All file names being used may be invalid now! You need to have
execute permission on the current directory.

E190 E212
Cannot open "{filename}" for writing
Can't open file for writing

For some reason the file you are writing to cannot be created or overwritten.
The reason could be that you do not have permission to write in the directory
or the file name is not valid.

E166
Can't open linked file for writing

You are trying to write to a file which can't be overwritten, and the file is
a link (either a hard link or a symbolic link). Writing might still be
possible if the directory that contains the link or the file is writable, but
Vim now doesn't know if you want to delete the link and write the file in its
place, or if you want to delete the file itself and write the new file in its
place. If you really want to write the file under this name, you have to
manually delete the link or the file, or change the permissions so that Vim
can overwrite.

E46
Cannot change read-only variable "{name}"

You are trying to assign a value to an argument of a function a:var or a Vim
internal variable v:var which is read-only.

E90
Cannot unload last buffer

Vim always requires one buffer to be loaded, otherwise there would be nothing
to display in the window.

E40
Can't open errorfile <filename>

When using the ":make" or ":grep" commands: The file used to save the error
messages or grep output cannot be opened. This can have several causes:
- 'shellredir' has a wrong value.
- The shell changes directory, causing the error file to be written in another

directory. This could be fixed by changing 'makeef', but then the make
command is still executed in the wrong directory.

- 'makeef' has a wrong value.
- The 'grepprg' or 'makeprg' could not be executed. This cannot always be

detected (especially on MS-Windows). Check your $PATH.

Can't open file C:\TEMP\VIoD243.TMP

On MS-Windows, this message appears when the output of an external command was
to be read, but the command didn't run successfully. This can be caused by
many things. Check the 'shell', 'shellquote', 'shellxquote', 'shellslash' and
related options. It might also be that the external command was not found,
there is no different error message for that.

message.txt — 436

E12
Command not allowed from exrc/vimrc in current dir or tag search

Some commands are not allowed for security reasons. These commands mostly
come from a .exrc or .vimrc file in the current directory, or from a tags
file. Also see 'secure'.

E74
Command too complex

A mapping resulted in a very long command string. Could be caused by a
mapping that indirectly calls itself.

CONVERSION ERROR

When writing a file and the text "CONVERSION ERROR" appears, this means that
some bits were lost when converting text from the internally used UTF-8 to the
format of the file. The file will not be marked unmodified. If you care
about the loss of information, set the 'fileencoding' option to another value
that can handle the characters in the buffer and write again. If you don't
care, you can abandon the buffer or reset the 'modified' option.
If there is a backup file, when 'writebackup' or 'backup' is set, it will not
be deleted, so you can move it back into place if you want to discard the
changes.

E302
Could not rename swap file

When the file name changes, Vim tries to rename the swap-file as well.
This failed and the old swap file is now still used. Mostly harmless.

E43 E44
Damaged match string
Corrupted regexp program

Something inside Vim went wrong and resulted in a corrupted regexp. If you
know how to reproduce this problem, please report it. bugs

E208 E209 E210
Error writing to "{filename}"
Error closing "{filename}"
Error reading "{filename}"

This occurs when Vim is trying to rename a file, but a simple change of file
name doesn't work. Then the file will be copied, but somehow this failed.
The result may be that both the original file and the destination file exist
and the destination file may be incomplete.

Vim: Error reading input, exiting...

This occurs when Vim cannot read typed characters while input is required.
Vim got stuck, the only thing it can do is exit. This can happen when both
stdin and stderr are redirected and executing a script that doesn't exit Vim.

E47
Error while reading errorfile

message.txt — 437

Reading the error file was not possible. This is NOT caused by an error
message that was not recognized.

E80
Error while writing

Writing a file was not completed successfully. The file is probably
incomplete.

E13 E189
File exists (add ! to override)
"{filename}" exists (add ! to override)

You are protected from accidentally overwriting a file. When you want to
write anyway, use the same command, but add a "!" just after the command.
Example:

:w /tmp/test
changes to:

:w! /tmp/test

E768
Swap file exists: {filename} (:silent! overrides)

You are protected from overwriting a file that is being edited by Vim. This
happens when you use ":w! filename" and a swapfile is found.
- If the swapfile was left over from an old crashed edit session you may want

to delete the swapfile. Edit {filename} to find out information about the
swapfile.

- If you want to write anyway prepend ":silent!" to the command. For example:
:silent! w! /tmp/test

The special command is needed, since you already added the ! for overwriting
an existing file.

E139
File is loaded in another buffer

You are trying to write a file under a name which is also used in another
buffer. This would result in two versions of the same file.

E142
File not written: Writing is disabled by 'write' option

The 'write' option is off. This makes all commands that try to write a file
generate this message. This could be caused by a -m commandline argument.
You can switch the 'write' option on with ":set write".

E25
GUI cannot be used: Not enabled at compile time

You are running a version of Vim that doesn't include the GUI code. Therefore
"gvim" and ":gui" don't work.

E49
Invalid scroll size

This is caused by setting an invalid value for the 'scroll', 'scrolljump' or
'scrolloff' options.

E17
"{filename}" is a directory

message.txt — 438

You tried to write a file with the name of a directory. This is not possible.
You probably need to append a file name.

E19
Mark has invalid line number

You are using a mark that has a line number that doesn't exist. This can
happen when you have a mark in another file, and some other program has
deleted lines from it.

E219 E220
Missing {.
Missing }.

Using a {} construct in a file name, but there is a { without a matching } or
the other way around. It should be used like this: {foo,bar}. This matches
"foo" and "bar".

E315
ml_get: invalid lnum: {number}

This is an internal Vim error. Please try to find out how it can be
reproduced, and submit a bug report bugreport.vim .

E173
{number} more files to edit

You are trying to exit, while the last item in the argument list has not been
edited. This protects you from accidentally exiting when you still have more
files to work on. See argument-list . If you do want to exit, just do it
again and it will work.

E23 E194
No alternate file
No alternate file name to substitute for '#'

The alternate file is not defined yet. See alternate-file .

E32
No file name

The current buffer has no name. To write it, use ":w fname". Or give the
buffer a name with ":file fname".

E141
No file name for buffer {number}

One of the buffers that was changed does not have a file name. Therefore it
cannot be written. You need to give the buffer a file name:

:buffer {number}
:file {filename}

E33
No previous substitute regular expression

When using the '~' character in a pattern, it is replaced with the previously
used pattern in a ":substitute" command. This fails when no such command has
been used yet. See /~ . This also happens when using ":s/pat/%/", where the
"%" stands for the previous substitute string.

message.txt — 439

E35
No previous regular expression

When using an empty search pattern, the previous search pattern is used. But
that is not possible if there was no previous search.

E24
No such abbreviation

You have used an ":unabbreviate" command with an argument which is not an
existing abbreviation. All variations of this command give the same message:
":cunabbrev", ":iunabbrev", etc. Check for trailing white space.

/dev/dsp: No such file or directory

Only given for GTK GUI with Gnome support. Gnome tries to use the audio
device and it isn't present. You can ignore this error.

E31
No such mapping

You have used an ":unmap" command with an argument which is not an existing
mapping. All variations of this command give the same message: ":cunmap",
":unmap!", etc. A few hints:
- Check for trailing white space.
- If the mapping is buffer-local you need to use ":unmap <buffer>".

:map-<buffer>

E37 E89
No write since last change (add ! to override)
No write since last change for buffer {N} (add ! to override)

You are trying to abandon a file that has changes. Vim protects you from
losing your work. You can either write the changed file with ":w", or, if you
are sure, abandon it anyway, and lose all the changes. This can be done by
adding a '!' character just after the command you used. Example:

:e other_file
changes to:

:e! other_file

E162
No write since last change for buffer "{name}"

This appears when you try to exit Vim while some buffers are changed. You
will either have to write the changed buffer (with :w), or use a command to
abandon the buffer forcefully, e.g., with ":qa!". Careful, make sure you
don't throw away changes you really want to keep. You might have forgotten
about a buffer, especially when 'hidden' is set.

[No write since last change]

This appears when executing a shell command while at least one buffer was
changed. To avoid the message reset the 'warn' option.

E38
Null argument

message.txt — 440

Something inside Vim went wrong and resulted in a NULL pointer. If you know
how to reproduce this problem, please report it. bugs

E41 E82 E83 E342
Out of memory!
Out of memory! (allocating {number} bytes)
Cannot allocate any buffer, exiting...
Cannot allocate buffer, using other one...

Oh, oh. You must have been doing something complicated, or some other program
is consuming your memory. Be careful! Vim is not completely prepared for an
out-of-memory situation. First make sure that any changes are saved. Then
try to solve the memory shortage. To stay on the safe side, exit Vim and
start again.

If this happens while Vim is still initializing, editing files is very
unlikely to work, therefore Vim will exit with value 123.

Buffers are only partly kept in memory, thus editing a very large file is
unlikely to cause an out-of-memory situation. Undo information is completely
in memory, you can reduce that with these options:
- 'undolevels' Set to a low value, or to -1 to disable undo completely. This

helps for a change that affects all lines.
- 'undoreload' Set to zero to disable.

E339
Pattern too long

This happens on systems with 16 bit ints: The compiled regexp pattern is
longer than about 65000 characters. Try using a shorter pattern.
It also happens when the offset of a rule doesn't fit in the space available.
Try simplifying the pattern.

E45
'readonly' option is set (add ! to override)

You are trying to write a file that was marked as read-only. To write the
file anyway, either reset the 'readonly' option, or add a '!' character just
after the command you used. Example:

:w
changes to:

:w!

E294 E295 E301
Read error in swap file
Seek error in swap file read
Oops, lost the swap file!!!

Vim tried to read text from the swap-file , but something went wrong. The
text in the related buffer may now be corrupted! Check carefully before you
write a buffer. You may want to write it in another file and check for
differences.

E192
Recursive use of :normal too deep

You are using a ":normal" command, whose argument again uses a ":normal"
command in a recursive way. This is restricted to 'maxmapdepth' levels. This
example illustrates how to get this message:

:map gq :normal gq<CR>

message.txt — 441

If you type "gq", it will execute this mapping, which will call "gq" again.

E22
Scripts nested too deep

Scripts can be read with the "-s" command-line argument and with the
`:source!` command. The script can then again read another script. This can
continue for about 14 levels. When more nesting is done, Vim assumes that
there is a recursive loop and stops with this error message.

E319
Sorry, the command is not available in this version

You have used a command that is not present in the version of Vim you are
using. When compiling Vim, many different features can be enabled or
disabled. This depends on how big Vim has chosen to be and the operating
system. See +feature-list for when which feature is available. The
:version command shows which feature Vim was compiled with.

E300
Swap file already exists (symlink attack?)

This message appears when Vim is trying to open a swap file and finds it
already exists or finds a symbolic link in its place. This shouldn't happen,
because Vim already checked that the file doesn't exist. Either someone else
opened the same file at exactly the same moment (very unlikely) or someone is
attempting a symlink attack (could happen when editing a file in /tmp or when
'directory' starts with "/tmp", which is a bad choice).

E432
Tags file not sorted: {file name}

Vim (and Vi) expect tags files to be sorted in ASCII order. Binary searching
can then be used, which is a lot faster than a linear search. If your tags
files are not properly sorted, reset the 'tagbsearch' option.
This message is only given when Vim detects a problem when searching for a
tag. Sometimes this message is not given, even though the tags file is not
properly sorted.

E424
Too many different highlighting attributes in use

Vim can only handle about 223 different kinds of highlighting. If you run
into this limit, you have used too many :highlight commands with different
arguments. A ":highlight link" is not counted.

E77
Too many file names

When expanding file names, more than one match was found. Only one match is
allowed for the command that was used.

E303
Unable to open swap file for "{filename}", recovery impossible

Vim was not able to create a swap file. You can still edit the file, but if
Vim unexpectedly exits the changes will be lost. And Vim may consume a lot of
memory when editing a big file. You may want to change the 'directory' option
to avoid this error. This error is not given when 'directory' is empty. See
swap-file .

message.txt — 442

E140
Use ! to write partial buffer

When using a range to write part of a buffer, it is unusual to overwrite the
original file. It is probably a mistake (e.g., when Visual mode was active
when using ":w"), therefore Vim requires using a ! after the command, e.g.:
":3,10w!".

Warning: Cannot convert string "<Key>Escape,_Key_Cancel" to type
VirtualBinding

Messages like this appear when starting up. This is not a Vim problem, your
X11 configuration is wrong. You can find a hint on how to solve this here:
http://groups.yahoo.com/group/solarisonintel/message/12179.
[this URL is no longer valid]

W10
Warning: Changing a readonly file

The file is read-only and you are making a change to it anyway. You can use
the FileChangedRO autocommand event to avoid this message (the autocommand
must reset the 'readonly' option). See 'modifiable' to completely disallow
making changes to a file.
This message is only given for the first change after 'readonly' has been set.

W13
Warning: File "{filename}" has been created after editing started

You are editing a file in Vim when it didn't exist, but it does exist now.
You will have to decide if you want to keep the version in Vim or the newly
created file. This message is not given when 'buftype' is not empty.

W11
Warning: File "{filename}" has changed since editing started

The file which you have started editing has got another timestamp and the
contents changed (more precisely: When reading the file again with the current
option settings and autocommands you would end up with different text). This
probably means that some other program changed the file. You will have to
find out what happened, and decide which version of the file you want to keep.
Set the 'autoread' option if you want to do this automatically.
This message is not given when 'buftype' is not empty.
Also see the FileChangedShell autocommand.

There is one situation where you get this message even though there is nothing
wrong: If you save a file in Windows on the day the daylight saving time
starts. It can be fixed in one of these ways:
- Add this line in your autoexec.bat:

SET TZ=-1
Adjust the "-1" for your time zone.

- Disable "automatically adjust clock for daylight saving changes".
- Just write the file again the next day. Or set your clock to the next day,

write the file twice and set the clock back.

If you get W11 all the time, you may need to disable "Acronis Active
Protection" or register Vim as a trusted service/application.

W12

message.txt — 443

http://groups.yahoo.com/group/solarisonintel/message/12179

Warning: File "{filename}" has changed and the buffer was changed in Vim as well

Like the above, and the buffer for the file was changed in this Vim as well.
You will have to decide if you want to keep the version in this Vim or the one
on disk. This message is not given when 'buftype' is not empty.

W16
Warning: Mode of file "{filename}" has changed since editing started

When the timestamp for a buffer was changed and the contents are still the
same but the mode (permissions) have changed. This usually occurs when
checking out a file from a version control system, which causes the read-only
bit to be reset. It should be safe to reload the file. Set 'autoread' to
automatically reload the file.

E211
File "{filename}" no longer available

The file which you have started editing has disappeared, or is no longer
accessible. Make sure you write the buffer somewhere to avoid losing
changes. This message is not given when 'buftype' is not empty.

W14
Warning: List of file names overflow

You must be using an awful lot of buffers. It's now possible that two buffers
have the same number, which causes various problems. You might want to exit
Vim and restart it.

E931
Buffer cannot be registered

Out of memory or a duplicate buffer number. May happen after W14. Looking up
a buffer will not always work, better restart Vim.

E296 E297
Seek error in swap file write
Write error in swap file

This mostly happens when the disk is full. Vim could not write text into the
swap-file . It's not directly harmful, but when Vim unexpectedly exits some

text may be lost without recovery being possible. Vim might run out of memory
when this problem persists.

connection-refused
Xlib: connection to "<machine-name:0.0" refused by server

This happens when Vim tries to connect to the X server, but the X server does
not allow a connection. The connection to the X server is needed to be able
to restore the title and for the xterm clipboard support. Unfortunately this
error message cannot be avoided, except by disabling the +xterm_clipboard
and +X11 features.

E10
\\ should be followed by /, ? or &

A command line started with a backslash or the range of a command contained a
backslash in a wrong place. This is often caused by command-line continuation
being disabled. Remove the 'C' flag from the 'cpoptions' option to enable it.
Or use ":set nocp".

message.txt — 444

E471
Argument required

This happens when an Ex command with mandatory argument(s) was executed, but
no argument has been specified.

E474 E475 E983
Invalid argument
Invalid argument: {arg}
Duplicate argument: {arg}

An Ex command or function has been executed, but an invalid argument has been
specified.

E488
Trailing characters
Trailing characters: {text}

An argument has been added to an Ex command that does not permit one.
Or the argument has invalid characters and has not been recognized.

E477 E478
No ! allowed
Don't panic!

You have added a "!" after an Ex command that doesn't permit one.

E481
No range allowed

A range was specified for an Ex command that doesn't permit one. See
cmdline-ranges .

E482 E483
Can't create file {filename}
Can't get temp file name

Vim cannot create a temporary file.

E484 E485
Can't open file {filename}
Can't read file {filename}

Vim cannot read a temporary file. Especially on Windows, this can be caused
by wrong escaping of special characters for cmd.exe; the approach was
changed with patch 7.3.443. Try using shellescape() for all shell arguments
given to system() , or explicitly add escaping with ^. Also see
'shellxquote' and 'shellxescape'.

E464
Ambiguous use of user-defined command

There are two user-defined commands with a common name prefix, and you used
Command-line completion to execute one of them. user-cmd-ambiguous
Example:

:command MyCommand1 echo "one"
:command MyCommand2 echo "two"
:MyCommand

message.txt — 445

E492
Not an editor command

You tried to execute a command that is neither an Ex command nor
a user-defined command.

E943
Command table needs to be updated, run 'make cmdidxs'

This can only happen when changing the source code, when adding a command in
src/ex_cmds.h. The lookup table then needs to be updated, by running:

make cmdidxs

E928 E889
E928: String required
E889: Number required

These happen when a value or expression is used that does not have the
expected type.

==
3. Messages messages

This is an (incomplete) overview of various messages that Vim gives:

hit-enter press-enter hit-return
press-return hit-enter-prompt

Press ENTER or type command to continue

This message is given when there is something on the screen for you to read,
and the screen is about to be redrawn:
- After executing an external command (e.g., ":!ls" and "=").
- Something is displayed on the status line that is longer than the width of

the window, or runs into the 'showcmd' or 'ruler' output.

-> Press <Enter> or <Space> to redraw the screen and continue, without that
key being used otherwise.

-> Press ':' or any other Normal mode command character to start that command.
Note that after an external command some special keys, such as the cursor
keys, may not work normally, because the terminal is still set to a state
for executing the external command.

-> Press 'k', <Up>, 'u', 'b' or 'g' to scroll back in the messages. This
works the same way as at the more-prompt . Only works when 'compatible'
is off and 'more' is on.

-> Pressing 'j', 'f', 'd' or <Down> is ignored when messages scrolled off the
top of the screen, 'compatible' is off and 'more' is on, to avoid that
typing one 'j' or 'f' too many causes the messages to disappear.

-> Press <C-Y> to copy (yank) a modeless selection to the clipboard register.
-> Use a menu. The characters defined for Cmdline-mode are used.
-> When 'mouse' contains the 'r' flag, clicking the left mouse button works

like pressing <Space>. This makes it impossible to select text though.
-> For the GUI clicking the left mouse button in the last line works like

pressing <Space>.

If you accidentally hit <Enter> or <Space> and you want to see the displayed
text then use g< . This only works when 'more' is set.

To reduce the number of hit-enter prompts:
- Set 'cmdheight' to 2 or higher.

message.txt — 446

- Add flags to 'shortmess'.
- Reset 'showcmd' and/or 'ruler'.
- Make sure `:echo` text is shorter than or equal to v:echospace screen

cells.

If your script causes the hit-enter prompt and you don't know why, you may
find the v:scrollstart variable useful.

Also see 'mouse'. The hit-enter message is highlighted with the hl-Question
group.

more-prompt pager
-- More --
-- More -- SPACE/d/j: screen/page/line down, b/u/k: up, q: quit

This message is given when the screen is filled with messages. It is only
given when the 'more' option is on. It is highlighted with the hl-MoreMsg
group.

Type effect
<CR> or <NL> or j or <Down> one more line
d down a page (half a screen)
<Space> or f or <PageDown> down a screen
G down all the way, until the hit-enter

prompt

<BS> or k or <Up> one line back
u up a page (half a screen)
b or <PageUp> back a screen
g back to the start

q, <Esc> or CTRL-C stop the listing
: stop the listing and enter a

command-line
<C-Y> yank (copy) a modeless selection to

the clipboard ("* and "+ registers)
{menu-entry} what the menu is defined to in

Cmdline-mode.
<LeftMouse> next page (*)

Any other key causes the meaning of the keys to be displayed.

(*) Clicking the left mouse button only works:
- For the GUI: in the last line of the screen.
- When 'r' is included in 'mouse' (but then selecting text won't work).

Note: The typed key is directly obtained from the terminal, it is not mapped
and typeahead is ignored.

The g< command can be used to see the last page of previous command output.
This is especially useful if you accidentally typed <Space> at the hit-enter
prompt.

message.txt — 447

message.txt — 448

quotes.txt For Vim version 9.1. Last change: 2018 Mar 29

VIM REFERENCE MANUAL by Bram Moolenaar

quotes
Here are some nice quotes about Vim that I collected from news and mail.

vim (vim) noun - Ebullient vitality and energy. [Latin, accusative of vis,
strength] (Dictionary)

Vim is so much better than vi that a great many of my old vi :map's became
immediately obsolete! (Tony Nugent, Australia)

Coming with a very GUI mindset from Windows, I always thought of people using
Vi as some kind of outer space alien in human clothes. Once I tried I really
got addicted by its power and now I found myself typing Vim keypresses in the
oddest places! That's why I would like to see Vim embedded in every
application which deals with text editing. (José Fonseca)

I was a 12-year emacs user who switched to Vim about a year ago after finally
giving up on the multiple incompatible versions, flaky contributed packages,
disorganized keystrokes, etc. And it was one of the best moves I ever made.
(Joel Burton)

Although all of the programs were used during the preparation of the new and
revised material, most of the editing was done with Vim versions 4.5 and 5.0
under GNU-Linux (Redhat 4.2). (Arnold Robbins, Israel, author of "Learning
the Vi editor")

Out of all the open software i've ever seen and used, and i've seen a lot, Vim
is the best, most useful and highest quality to work with, second only to the
linux kernel itself. (Peter Jay Salzman)

It's well worth noting that the _entirety_ of SourceForge was written using
Vim and its nifty PHP syntax highlighting. I think the entire SF.net tech
staff uses Vim and we're all excited to have you aboard! (Tim Perdue)

Vim is one of a select bunch of tools for which I have no substitute. It is
a brilliant piece of work! (Biju Chacko)

A previous girlfriend of mine switched to emacs. Needless to say, the
relationship went nowhere. (Geoffrey Mann)

I rarely think about Vim, in the same way that I guess a fish rarely thinks
about water. It's the environment in which everything else happens. I'm a
fairly busy system administrator working on a lot of different platforms. Vim
is the only thing that's consistent across all my systems, and it's just about
the only thing that doesn't break from time to time. When a new system comes
in the door without Vim, I install it right away. Great to have a tool that's
the same everywhere, that's completely reliable, so I can ignore it and think
about other things. (Pete Schaeffer)

Having recently succeeded in running Vim via telnet through a Nokia
Communicator, I can now report that it works nicely on a Palm Pilot too.
(Allan Kelly, Scotland)

You've done a tremendous job with 'VIM', Bram! The more I use it, the more

quotes.txt — 449

impressed I get (I am an old 'vi' die hard who once started out with early
versions of 'emacs' in the late 1970's and was relieved by finding 'vi' in the
first UNIX I came across in 1983). In my opinion, it's about time 'VIM'
replace 'emacs' as the standard for top editors. (Bo Thide', Sweden)

I love and use Vim heavily too. (Larry Wall)

Vi is like a Ferrari, if you're a beginner, it handles like a bitch, but once
you get the hang of it, it's small, powerful and FAST! (Unknown)
Vim is like a new model Ferrari, and sounds like one too - "VIIIIIIMMM!"
(Stephen Riehm, Germany)

Schon bei Nutzung eines Bruchteils der Vim-Funktionen wird der Benutzer recht
schnell die Vorzuege dieses Editors kennen- und schaetzenlernen.
Translated: Even when only using a fraction of Vim-functions, the user will
quickly get used to and appreciate the advantages of this editor. (Garry
Glendown, conclusion of an article on Vim in iX magazine 9/1998)

I've recently acquired the O'Reilly book on Vi (it also discusses Vim
in-depth), and I'm amazed at just how powerful this application is. (Jeffrey
Rankin)

This guide was written using the Windows 9.x distribution of gvim, which is
quite possibly the greatest thing to come along since God created the naked
girl. (Michael DiBernardo)

Boy, I thought I knew almost everything about Vim, but every time I browse the
online documentation, I hit upon a minor but cool aspect of a Vim feature that
I didn't know before! I must say the documentation is one the finest I've
ever seen in a product -- even better than most commercial products.
(Gautam Mudunuri)

Vim 4.5 is really a fantastic editor. It has sooooo many features and more
importantly, the defaults are so well thought out that you really don't have
to change anything!! Words cannot express my amazement and gratitude to the
creators of Vim. Keep it up. (Vikas, USA)

I wonder how long it will be before people will refer to other Vi editors as
Vim clones? (Darren Hiebert)

I read about [auto-positioning-in-file-based-on-the-errors-from-make] in one
of those "Perfect Programmer's Editor" threads and was delighted to discover
that Vim already supports it. (Brendan Macmillan, Australia)

I just discovered Vim (5.0) and I'm telling everyone I know about it!
I tell them Vim stands for Vi for the new (M)illenium. Thanks so much!
(Matt F. Valentine)

I think from now on "vi" should be called "Vim Imitation", not the other way
around. (Rungun Ramanathan)

The Law of Vim:
For each member b of the possible behaviour space B of program P, there exists
a finite time t before which at least one user u in the total user space U of
program P will request b becomes a member of the allowed behaviour space B'
(B' <= B).
In other words: Sooner or later everyone wants everything as an option.
(Negri)

Whenever I move to a new computing platform, the first thing I do is to port

quotes.txt — 450

Vim. Lately, I am simply stunned by its ease of compilation using the
configure facility. (A.M. Sabuncu, Turkey)

The options are really excellent and very powerful. (Anish Maharaj)

The Spring user-interface designs are in, and word from the boutiques is that
80x24 text-only mode is back with a *vengeance! Vi editor clone Vim burst onto
March desk-tops with a dazzling show of pastel syntax highlights for its 5.0
look. Strident and customizable, Vim raises eyebrows with its interpretation
of the classic Vi single-key macro collection.
http://www.ntk.net/index.cgi?back=archive98/now0327.txt&line=179#l

I just wanted to take this opportunity to let you know that Vim 5 ROCKS!
Syntax highlighting: how did I survive without it?! Thank you for creating
mankind's best editor! (Mun Johl, USA)

Thanks again for Vim. I use it every day on Linux. (Eric Foster-Johnson,
author of the book "UNIX Programming Tools")

The BEST EDITOR EVER (Stuart Woolford)

I have used most of Vim's fancy features at least once, many frequently, and I
can honestly say that I couldn't live with anything less anymore. My
productivity has easily doubled compared to what it was when I used vi.
(Sitaram Chamarty)

I luv Vim. It is incredible. I'm naming my first-born Vimberly. (Jose
Unpingco, USA)

Hint: "Vim" is "vi improved" - much better! (Sven Guckes, Germany)

I use Vim every day. I spend more time in Vim than in any other program...
It's the best vi clone there is. I think it's great. (Craig Sanders,
Australia)

I strongly advise using Vim--its infinite undo/redo saved me much grief.
(Terry Brown)

Thanks very much for writing what in my opinion is the finest text editor on
the planet. If I were to get another cat, I would name it "Vim".
(Bob Sheehan, USA)

I typed :set all and the screen FILLED up with options. A whole screen of
things to be set and unset. I saw some of my old friends like wrapmargin,
modelines and showmode, but the screen was FILLED with new friends! I love
them all! I love Vim! I'm so happy that I've found this editor! I feel
like how I once felt when I started using vi after a couple of years of using
ed. I never thought I'd forsake my beloved ed, but vi ... oh god, vi was
great. And now, Vim. (Peter Jay Salzman, USA)

I am really happy with such a wonderful software package. Much better than
almost any expensive, off the shelf program. (Jeff Walker)

Whenever I reread the Vim documentation I'm overcome with excitement at the
power of the editor. (William Edward Webber, Australia)

Hurrah for Vim!! It is "at your fingertips" like vi, and has the extensions
that vi sorely needs: highlighting for executing commands on blocks, an easily
navigable and digestible help screen, and more. (Paul Pax)

quotes.txt — 451

http://www.ntk.net/index.cgi?back=archive98/now0327.txt&line=179#l

The reason WHY I don't have this amazingly useful macro anymore, is that I
now use Vim - and this is built in!! (Stephen Riehm, Germany)

I am a user of Vim and I love it. I use it to do all my programming, C,
C++, HTML what ever. (Tim Allwine)

I discovered Vim after years of struggling with the original vi, and I just
can't live without it anymore. (Emmanuel Mogenet, USA)

Emacs has not a bit of chance to survive so long as Vim is around. Besides,
it also has the most detailed software documentation I have ever seen---much
better than most commercial software! (Leiming Qian)

This version of Vim will just blow people apart when they discover just how
fantastic it is! (Tony Nugent, Australia)

I took your advice & finally got Vim & I'm really impressed. Instant convert.
(Patrick Killelea, USA)

Vim is by far my favorite piece of shareware and I have been particularly
pleased with version 3.0. This is really a solid piece of work. (Robert
Colon, USA)

Vim is a joy to use, it is so well thought and practical that I wonder why
anybody would use visual development tools. Vim is powerful and elegant, it
looks deceptively simple but is almost as complex as a 747 (especially when I
look at my growing .vimrc), keep up that wonderful job, Vim is a centerpiece
of the free software world. (Louis-David Mitterand, USA)

I cannot believe how great it is to use Vim. I think the guys at work are
getting tired of hearing me bragging about it. Others eyes are lighting up.
(Rick Croote)

Emacs takes way too much time to start up and run, it is too big and bulky for
effective use and the interface is more confusing than it is of any help. Vim
however is short, it is fast, it is powerful, it has a good interface and it
is all purpose. (Paal Ditlefsen Ekran)

From the first time I got Vim3.0, I was very enthusiastic. It has almost no
problems. The swapfile handling and the backup possibilities are robust, also
the protection against editing one file twice. It is very compatible to the
real VI (and that is a MUST, because my brain is trained over years in using
it). (Gert van Antwerpen, Holland)

Visual mode in Vim is a very powerful thing! (Tony Nugent, Australia)

I have to say that Vim is =THE= single greatest piece of source code to ever
come across the net (Jim Battle, USA).

In fact, if you do want to get a new vi I'd suggest Vim-3.0. This is, by
far, the best version of vi I've ever seen (Albert W. Schueller).

I should mention that Vim is a very good editor and can compete with anything
(Ilya Beloozerov).

To tell the truth sometimes I used elvis, vile, xvi, calvin, etc. And this is
the reason that I can state that Vim is the best! (Ferenc Deak, Hungary)

Vim is by far the best editor that I have used in a long time, and I have
looked at just about every thing that is available for every platform that I

quotes.txt — 452

use. Vim is the best on all of them. (Guy L. Oliver)

Vim is the greatest editor since the stone chisel. (Jose Unpingco, USA)

I would like to say that with Vim I am finally making the 'emacs to vi'
transition - as an Editor it is so much better in many ways: keyboard layout,
memory usage, text alteration to name 3. (Mark Adam)

In fact, now if I want to know what a particular setting does in vi, I fire up
Vim and check out its help! (Nikhil Patel, USA)

As a vi user, Vim has made working with text a far more pleasant task than
before I encountered this program. (Steinar Knutsen, Norway)

I use Vim since version 3.0. Since that time, it is the ONLY editor I use,
with Solaris, Linux and OS/2 Warp. I suggest all my friends to use Vim, they
try, and they continue using it. Vim is really the best software I have ever
downloaded from the Internet, and the best editor I know of. (Marco
Eccettuato, Italy)

In summary:
__ ___ _ _ _ ___ _____
\ \ / (_)_ __ ___ (_)___ | | | |/ _ _ _|
\ \ / /| | '_ ` _ \ | / __| | |_| | | | || |
\ V / | | | | | | | | __ \ | _ | |_| || |
/ ||_| |_| |_| |_|___/ |_| |_|___/ |_|

____ _____ _ _ _____ _____ _ _
/ ___|_ _| | | | ___| ___| | |
___ \ | | | | | | |_ | |_ | | |
___) || | | |_| | _| | _| |_|_|

|____/ |_| ___/|_| |_| (_|_) (Tony Nugent, Australia)

quotes.txt — 453

quotes.txt — 454

todo.txt For Vim version 9.1. Last change: 2024 Mar 03

VIM REFERENCE MANUAL by Bram Moolenaar

TODO list for Vim todo

This is a veeeery long list of known bugs, current work and desired
improvements. To make it a little bit accessible, the older items are grouped
by subject. In the first column of the line a classification is used to be
able to look for "the next thing to do":

Priority classification:
9 next point release
8 next release
7 as soon as possible
6 soon
5 should be included
4 nice to have
3 consider including
2 maybe not
1 probably not
- unclassified

votes-for-changes
See develop.txt for development plans. You can vote for which items should
be worked on, but only if you sponsor Vim development. See sponsor .

Issues can also be entered online: https://github.com/vim/vim/issues
Only use this for bug reports, not for questions! Those belong on the
maillist. Updates will be forwarded to the vim_dev maillist. Issues
entered there will not be repeated below, unless there is extra information.

The #1234 numbers refer to an issue or pull request on github. To see it in a
browser use: https://github.com/vim/vim/issues/1234
(replace 1234 with the issue/pull number)

known-bugs
-------------------- Known bugs and current work -----------------------

FILETYPE_FILE is defined to the same value in multiple places.
Only use the one in feature.h. Others too.

Mapping with modifier is not recognized after a partial mapping. Probably
because the typeahead was simplified when looking for a matching mapping.
Need to somehow undo the simplification. #12002

Windows scroll when using the autocmd window. #12085
in restore_snapshot_rec() restore more values from the snapshot, instead of
calling frame_new_height() and frame_new_width(), especially w_topline and
w_skipcol.

Check places that source "path/*.vim" to not match other extensions, e.g.
.vim9, on MS-Windows (short file name match, gets expanded to long file name).
E.g. for startup files, plugins, packs, etc.

When a help item can't be found, then open 'helpfile'. Search for the tag in
that file and gtive E149 only when not found. Helps for a tiny Vim installed
without all the help files.

todo.txt — 455

https://github.com/vim/vim/issues
https://github.com/vim/vim/issues/1234

SpellCap highlight not updated - PR #12428

Virtual text problems:
- If 'list' is on, 'below' virtual text which includes 1 or 2 characters are

gone (Issue #12028)
- Virtual text aligned "above": Wrong indentation when using tabs (Issue

#12232)
- Virtual text to the right of the line that isn't visible doesn't cause the

'extends' character to show in 'list' mode. #12478
- Virtual text to the right of the line that fits exactly on screen causes

that line and all lines below it not to be displayed (Issue #12213)
- Window screen gets wrong when a virtual text is placed on 'above' or

'below' on an empty line (Issue #11959)
- truncated Virtual text below an empty line causes display error #12493

When 'virtualedit' is "all" and 'cursorcolumn' is set, the wrong column may be
highlighted. (van-de-bugger, 2018 Jan 23, #2576)

Improve profiling by caching matching functions: PR #12192

With 'smoothscroll' set and "lastline" in 'display', moving the cursor to a
wrapping line that makes the display scroll up may scroll much more than
needed, thus jump-scrolling. (part of issue 12411)

Add filecopy() ? #12346

Implement foreach() PR #12166

Errors when running tests with valgrind:
- test_codestyle.vim: e.g.:

command line..script /home/mool/vim/vim90/src/testdir/runtest.vim[569]..function RunTheTest[52]..Test_test_files line 6: keycode_check.vim: space before tab: Expected 0 but got 7
command line..script /home/mool/vim/vim90/src/testdir/runtest.vim[569]..function RunTheTest[52]..Test_test_files line 10: setup.vim: trailing white space: Expected 0 but got 23

- test_gui.vim:
Found errors in Test_gui_mouse_event():

When every block in if/elseif ends in "throw" or "return" code following after
"endif" should give an "unreachable code" error.

Upcoming larger works:
- Make spell checking work with recent .dic/.aff files, e.g. French. #4916

Make Vim understand the format somehow? Search for "spell" below.
Make sure suggestions are speedy, also with composed words (German).

- Make syntax highlighting faster and better.
Add a generic mechanism to test a syntax plugin: An input file for the
filetype and a screendump of expected result. With a way to specify the
setup (global variables) and another dump file from that.
Discuss alternatives for using other grammars (treesitter, TextMate).
- Possibly conversion to Vim syntax rules.
- Other mechanism than group and cluster to nest syntax items, to be used
for grammars.

- Possibly keeping the parsed syntax tree and incremental updates.
- tree-sitter doesn't handle incorrect syntax (while typing) properly.
- NeoVim uses treesitter, what can we learn from that?
- Vscode is asked to switch to treesitter:

https://github.com/microsoft/vscode/issues/50140
- Vscode uses TextMate. #9087 - Other people don't like it.

https://github.com/icedman/vim-textmate
- sublime grammar? Hugo mentions it's a moving target #9087
- Make clear how it relates to LSP.
- example plugin: https://github.com/uga-rosa/dps-vsctm.vim

todo.txt — 456

https://github.com/microsoft/vscode/issues/50140
https://github.com/icedman/vim-textmate
https://github.com/uga-rosa/dps-vsctm.vim

Further Vim9 improvements:
- Classes and Interfaces. See vim9-classes

- Cannot use class type of itself in the method (Issue #12369)
- Getting member of variable with "any" type should be handled at runtime.
Remove temporary solution from #12096 / patch 9.0.1375.

- "obj.Method()" does not always work in a compiled function, assumes "obj"
is a dictionary. #12196 Issue #12024 might be the same problem.
Issue #11822: any.Func() can be a dict or an object call, need to handle
this at runtime. Also see #12198 for an example.
Possibly issue #11981 can be fixed at the same time (has two examples).

- Forward declaration of a class? E.g. for Clone() function.
Email lifepillar 2023 Mar 26

- When "Meta" is a class, is "const MetaAlias = Meta" allowed? It should
either work or given an error. Possibly give an error now and implement it
later (using a typedef). #12006

- how about lock/unlock?
- For chaining, allow using the class name as type for function return
value.

- Implement "specifies" interface
- Implement generics
- Add "assignable" (class or child)?
- More efficient way for interface member index than iterating over list?
- a variant of type() that returns a different type for each class?

list<number> and list<string> should also differ.
- implement :enum
- Promise class, could be used to wait on a popup close callback?
- class local to a function
- Use Vim9 for more runtime files.
- Inline call to map() and filter(), better type checking.
- When evaluating constants for script variables, some functions could work:

has(featureName), len(someString)
- Implement as part of an expression: ++expr, --expr, expr++, expr--.
- The use of the literal value "null" and the type specific "null_xxx"

values is confusing (#13458, #11770).

Information missing in terminfo:
- Codes used for focus gained and lost termcodes are hard-coded in

set_termname(), not named.
- t_fe enable focus-event tracking
- t_fd disable focus-event tracking
- Accept "hyper" and "meta" modifiers (16 and 32) from Kitty like Meta?

8 is actually "super".
- t_RV request terminal version string; xterm: "\033[>c"

change in terminfo for "RV" uses the wrong escape sequence 7 - 14 Jan only
- Codes for <PasteStart> t_PS and <PasteEnd> t_PE; with bracketed paste:

t_BE and t_BD.
Modifiers for various keys
- flag to indicate "xterm compatible modifiers" ?
Underline and similar:
- t_AU - Set underline color: like "AF" and "AB" entries.
- t_Ce undercurl and underline end
- t_Cs undercurl (curly underline) mode
- t_Us double underline mode
- t_ds dotted underline mode
- t_Ds dashed underline mode
- t_Te strikethrough end
- t_Ts strikethrough mode
Cursor codes: termcap-cursor-shape

todo.txt — 457

- t_RC request terminal cursor blinking
- t_RS request terminal cursor style
- t_VS cursor normally visible (no blink)
- t_SI start insert mode (bar cursor shape)
- t_SR start replace mode (underline cursor shape)
- t_EI end insert or replace mode (block cursor shape)
- t_SC set cursor color start
- t_EC set cursor color end
- t_SH set cursor shape
State requests:
- t_RF request terminal foreground color
- t_RB request terminal background color
Less important (not needed for regular editing):
- t_IS set icon text start
- t_IE set icon text end
- t_ST save window title to stack
- t_RT restore window title from stack
- t_Si save icon text to stack
- t_Ri restore icon text from stack
- t_WP set window position (Y, X) in pixels
- t_GP get window position (Y, X) in pixels
- t_WS set window size (height, width in cells)
Vim internal, but there should be a terminfo entry for these:
- t_8f set foreground color (R, G, B) in printf() format
- t_8b set background color (R, G, B) in printf() format
- t_8u set underline color (R, G, B) in printf() format
Probably Vim internal, not in terminfo:
- t_TE end of "raw" mode
- t_TI put terminal into "raw" mode
- t_RK request terminal keyboard protocol state; sent after t_TI
Already working, not properly documented:
- t_u7 request cursor position

Popup windows:
- Add a function to redraw a specific popup window. Esp. to be used when

editing the command line, when screen updating doesn't happen. (Shougo)
#10210 Example that shows the need on the issue.
Probably need to update all popup windows (they may overlap)
If the display is scrolled need to redraw everything later.

- Add a flag to make a popup window focusable?
CTRL-W P cycle over any preview window or focusable popup, end up back in

current window.
? - switch between current window and all popup windows
Esc in popup window goes back to previous current window

- Add a termcap entry for changing the cursor when it goes under the popup and
back. like t_SI and t_EI (t_SU and t_EU, where "U" means under?)

- With terminal in popup, allow for popup_hide() to temporarily hide it.?
- Make it possible to scroll horizontally when 'wrap' is off. Does this

require an ascii scrollbar, like with the vertical one?
- Fire some autocommand event after a new popup window was created and

positioned? PopupNew? Could be used to set some options or move it out of
the way. (#5737)
However, it may also cause trouble, changing the popup of another plugin.

- Width is not computed correctly when minwidth and maxwidth are &columns
and padding and a scrollbar are used. (#6676)

- Should popup_getoptions() also return the mask? #7774
- Add a way to use popup_menu() synchronously: instead of invoking the

callback, return the choice. (Ben Jackson, #6534)
- When using a popup for the info of a completion menu, and there is not

enough space, let the popup overlap with the menu. (#4544)

todo.txt — 458

- Implement flip option.
- Make redrawing more efficient and avoid flicker:

- put popup menu also in popup_mask?
- Match does not have right BG color if line length equals popup width.

(#5658)
- Figure out the size and position better if wrapping inserts indent

'incsearch' with :s:
- :s/foo using CTRL-G moves to another line, should not happen, or use the

correct line (it uses the last but one line) (Lifepillar, Aug 18, #3345)
- Also support range: :/foo/,/bar/delete
- Also support for user command, e.g. Cfilter
- :%s/foo should take the first match below the cursor line, unless there

isn't one?
Then :%s?foo should take the first match above the cursor line.

Prompt buffer:
- Add a command line history, using up/down keys. issue #5010
- delay next prompt until plugin gives OK?
- add prompt_addtext({buf}, {expr}) none add text to a prompt buffer

Terminal debugger:
- Add a mechanism for configuration. Instead of several global variables use

a dictionary. Use callbacks for some things, e.g. opening a debug window in
a certain position.

- Make prompt-buffer variant work better.
- Add option to not open the program window. It's not used when attaching to

an already running program. (M. Kelly)
- Use the optional token on requests, match the result with it. #10300
- When only gdb window exists, on "quit" edit another buffer.
- Termdebug does not work when Vim was built with mzscheme: gdb hangs just

after "run". Everything else works, including communication channel. Not
initializing mzscheme avoid the problem, thus it's not some #ifdef.

- Add support for lldb? issue #3565
- Could we do something similar for debugging Vim scripts? At least see the

script while stepping through it. Simple version would use an extra window.
More complete solution would actually run Vim in a Terminal and control it
with another Vim instance.

Terminal emulator window:
- Can escape a terminal popup with win_gotoid(), should be an error
- No support for underline color, t_8u.
- When in terminal-Normal mode when the job finishes, the cursor jumps to the

end but the window is not updated. This only happens when typing "a".
:term bash -c "for V in {0..5}; do echo $V; sleep 1; done"

- GUI: cursor color is not updated when going to Terminal-Job mode. #12328
- GUI: cursor color is not updated when switching between tabs with a key.

#12329
- GUI: cursor color is not updated when switching between tabs with a mouse

click. #12330
- When started with ":terminal ++close" and the shell exits but there is a

background process, the window remains open, because the channel still
exists (and output still shows). Perhaps close the window when an explicit
++close was used? (#5931)

- Using "CTRL-W :confirm quite" and selecting "yes" should work like ":quit!".
(Harm te Hennepe, #6129)

- When the job in the terminal doesn't use mouse events, let the scroll wheel
scroll the scrollback, like a terminal does at the shell prompt. #2490
A bit like using CTRL-W N first.
Jump back like with "a" when any key is typed.

todo.txt — 459

And use modeless selection. #2962
- Use CTRL-W CTRL-K to enter a digraph? #5371
- When Vim runs in the terminal and changes the title, the statusline needs to

be redrawn.
- GUI: When using ":set go+=!" a system() call causes the hit-enter prompt.

(#3327)
- Allow for specifying the directory, with ++cwd={dir}.
- When pasting should call vterm_keyboard_start_paste(), e.g. when using

K_MIDDLEMOUSE, calling insert_reg().
- Users expect parsing the :term argument like a shell does, also support

single quotes. E.g. with: :term grep 'alice says "hello"' (#1999)
- Win32: Redirecting input does not work, half of Test_terminal_redir_file()

is disabled.
- Win32: Redirecting output works but includes escape sequences.
- Win32: Make terminal used for :!cmd in the GUI work better. Allow for

redirection.
- When the job only outputs lines, we could handle resizing the terminal

better: store lines separated by line breaks, instead of screen lines,
then when the window is resized redraw those lines.

- Redrawing is slow with Motif. (Ramel Eshed)
- For the GUI fill termios with default values, perhaps like pangoterm:

http://bazaar.launchpad.net/~leonerd/pangoterm/trunk/view/head:/main.c#L134
- When 'encoding' is not utf-8, or the job is using another encoding, setup

conversions.

Patch adds showcmd() function #11708

Cursor is after the end of the line: #12137.

Crash when a variable is removed while listing variables (Issue #11435)

Autoconf: must use autoconf 2.69, later version generates lots of warnings
- try using autoconf 2.71 and fix all "obsolete" warnings #11322

Problem with Visual highlight when 'linebreak' and 'showbreak' are set.
#11272

'cindent': compound literal indented wrong. Check for " = " before "{"?
#12491

GUI Scroll test fails on FreeBSD when using Motif. See FIXME in
Test_scrollbars in src/test_gui.vim

Selected index returned by complete_info() does not match the index in the
list of items. #12230

Support dark mode for MS-Windows: #12282

Remote command escapes single quote with backslash, should be doubling the
single quote in vim_strsave_escaped_ext() #12202.

PR to add custom and customlist completion types. #12228

Can deref_func_name() and deref_function_name() be merged?

Using :global with a pattern containing \zs doesn't use the line where \zs
matches but the start of the pattern. #3695 If there is a useful application
for this, it can be made to work by changing the call to ml_setmarked():

ml_setmarked(lnum + regmatch.startpos[0].lnum);

todo.txt — 460

http://bazaar.launchpad.net/~leonerd/pangoterm/trunk/view/head:/main.c#L134

After patch 8.2.4915 w_botline is computed much more often. Can this be
reduced?

When 'delcombine' is set a put after "x" includes the base character and all
combining characters. (Ron Aaron, 2023 Apr 10)

Add BufDeletePost. #11041

Add winid arg to col() and charcol() #11466 (request #11461)

'switchbuf' set to "newtab" does not work for ":cfirst" when in the quickfix
window. #12436

When :argument has a non-number argument, use it like :buffer to find the
argument by name. #12272

Fold unexpectedly closed when inserting fold marker with CTRL-V (Issue #12320)

Can we make 'noendofline' and 'endoffile' visible? Should show by default,
since it's an unusual situation.
- Show 'noendofline' when it would be used for writing ('fileformat' "dos")

with an upside down exclamation mark? NonText highlighting.
- Show 'endoffile' when it would be used for writing ('fileformat' "dos") with

"CTRL-Z", NonText highlighting.
- Add 'fillchars' items to change this, default behavior like:

noeol:¡
eof:CTRL-Z

Test property disappears when using CR twice in a row. OK when some text was
entered. (#11151)

Add 'keywordprg' to various ftplugin files:
https://github.com/vim/vim/pull/5566

PR #11579 to add visualtext(), return Visually selected text.

PR #12032: Support Python 3 stable ABI.

PR #11860: Add more info to 'colorcolumn': display a character and highlight
for each separate entry. Disadvantage: option value gets very complicated
with multiple entries, e.g. every 8 columns.

Stray characters in the shell #11719, caused by requesting a response for:
- XT key sequences
- Whether modifyOtherKeys is active
- Whether kitty keyboard protocol is active
Can we not request XT key sequences, or reduce them drastically?

Issue #10512: Dynamic loading broken with Perl 5.36
Damien has a patch (2022 Dec 4)

Request #11965: Allow several "%=" items in 'statusline', makes it possible
to have text in the center.

Add some kind of ":whathappend" command and functions to make visible what the
last few typed keys and executed commands are. To be used when the user
wonders what went wrong. Could also be used for statistics #12046.
- typed keys - Normal mode command - like what is recorded in a register and

displayed by 'showcmd'.
- register used - #12063

todo.txt — 461

https://github.com/vim/vim/pull/5566

- executed command lines
- with more verbosity: what scripts/functions/autocommands were executed

NFA regexp does not handle composing characters well: #10286
[ɔ̃] matches both ɔ and ɔ̃
\(ɔ\|ɔ̃\) matches ɔ and not ɔ̃

Is there a way to make 'autowriteall' make a clean exit when the xterm is
closed? (Dennis Nazic says files are preserved, okt 28). Perhaps handle TERM
like HUP?

Better terminal emulator support:
> Somehow request the terminfo entry from the terminal itself. The $TERM
value then is only relevant for whether this feature is supported or not.
Replaces the xterm mechanism to request each entry separately. #6609
Multiplexers (screen, tmux) can request it to the underlying terminal, and
pass it on with modifications.
How to get all the text quickly (also over ssh)? Can we use a side channel?

> When xterm supports sending an Escape sequence for the Esc key, should
have a way to request this state. That could be an XTGETTCAP entry, e.g.
"k!". Add "esc_sends_sequence" flag.
If we know this state, then do not pretend going out of Insert mode in
vgetorpeek(), where kitty_protocol_state is checked.

> If a response ends up in a shell command, one way to avoid this is by
sending t_RV last and delay starting a shell command until the response
has been seen.

> Can we use the req_more_codes_from_term() mechanism with more terminals?
Should we repeat it after executing a shell command?
Can also add this to the 'keyprotocol' option: "mok2+tcap"

> In the table of terminal names pointing to the list of termcap entries,
add an optional additional one. So that "xterm-kitty" can first load
"xterm" and then add "kitty" entries.

Using "A" and "o" in manually created fold (in empty buffer) does not behave
consistently (James McCoy, #10698)

In a timer callback, when using ":echo" and then input() the message is
overwritten. Could use ":echowin" and call redraw_cmd() in get_user_input().
#11299

Syntax include problem: #11277. Related to Patch 8.2.2761

To avoid flicker: add an option that when a screen clear is requested, instead
of clearing it draws everything and uses "clear to end of line" for every line.
Resetting 't_ut' already causes this?

Instead of prefixing "INTERNAL" to internal messages, add a message in iemsg()
and siemsg() and translate it. Messages only given to them don't need
translation.

When scheme can't be found by configure there is no clear "not found" message:
configure:5769: checking MzScheme install prefix
configure:5781: result:

Can "CSI nr X" be used instead of outputting spaces? Is it faster? #8002

Typed keys invisible after calling interrupt() from a timer. #10631

With a window height of 6 and 'scrolloff' set to 3, using "j" does not scroll
evenly. (#10545) Need to handle this in scroll_cursor_bot().

todo.txt — 462

Idea: when typing ":e /some/dir/" and "dir" does not exist, highlight in red.

":set shellpipe&" and ":set shellredir&" should use the logic from
initialization to figure out the default value from 'shell'. Add a test for
this.

Add a diff() function to use the built-in diff support in a script.
#12321 Is the returned value in the right form now?

Support translations for plugins: #11637 PR: #12447
- Need a tool like xgettext for Vim script, generates a .pot file.

Need the equivalent of _() and N_(), perhaps TR() and TRN().
- Instructions for how to create .po files and translate.
- Script or Makefile to generate .mo files.
- Instructions and perhaps a script to install the .mo files in the right

place.
- Add variant of gettext() that takes a package name.

With concealed text mouse click doesn't put the cursor in the right position.
(Herb Sitz) Fix by Christian Brabandt, 2011 Jun 16. Doesn't work properly,
need to make the change in where RET_WIN_BUF_CHARTABSIZE() is called.
IDEA: when drawing the text, store the text byte index in ScreenLinesIdx[].
When converting screen column to text position use this.
The line number can be obtained from win->w_lines[].

Version of getchar() that does not move the cursor - #10603 Use a separate
argument for the new flag.

test_arglist func Test_all_not_allowed_from_cmdwin() hangs on MS-Windows.

Can we add highlighting to ":echowindow"?

Information for a specific terminal (e.g. gnome, tmux, konsole, alacritty) is
spread out. Make a section with copy/paste examples of script and pointers to
more information.

Problem that a previous silent ":throw" causes a following try/catch not to
work. (ZyX, 2013 Sep 28) With examples: (Malcolm Rowe, 2015 Dec 24)
Also see #8487 for an example.

Request to use "." for the cursor column in search pattern \%<.c and \%<.v.
(#8179)

":filter set termcap" only filters terminal codes, not keys. (#9297)

Add an option to restrict 'incsearch' to not scroll the view. (Tavis Ormandy)

Remove SPACE_IN_FILENAME ? It is only used for completion.

When 'term' starts with "foot" then default t_TI and t_TE to the values used
for the builtin xterm termcap.

Adding "10" to 'spellsuggest' causes spell suggestions to become very slow.
(#4087) Did patch 8.2.2379 help?
Also, z= in German on a long word can take a very long time, but CTRL-C to
interrupt does not work. Where to add ui_breakcheck()?
New English spell files also have very slow suggestions.

When 'spelloptions' is "camel" then zG doesn't work on some words.

todo.txt — 463

(Gary Johnson, 17 Oct 2022)

SpellCap doesn't show below a closed fold. #12420

'cdpath' problems:
- Adding "~" to 'cdpath' doesn't work for completion? (Davido, 2013 Aug 19)
- Problem with 'cdpath' on MS-Windows when a directory is equal to $HOME.

(2006 Jul 26, Gary Johnson)
- Completion of ":cd" doesn't use 'cdpath'. #374.

Make "g>" and "g<" in Visual mode move the text right or left.
Also for a block selection. #8558

When using dictionary insert completion with 'ignorecase', the leading capital
in a word should be preserved.

Add optional argument to virtcol() that specifies "start", "cursor" or "end"
to tell which value from getvvcol() should be used. (#7964)
Value returned by virtcol() changes depending on how lines wrap. This is
inconsistent with the documentation.

When 'wildignore' has an entry ending in "/*" this means nothing matching the
path before it will be added. When encountering a directory check this and if
there is a match do not scan the directory (possibly speeds up :find a lot).
#12482

globpath() does not use 'wildignorecase' at all? (related to #8350)

mksession uses :buffer instead of :edit in one place but not another. #10629

Add 'termguiattr' option, use "gui=" attributes in the terminal? Would work
with 'termguicolors'. #1740

Patch for blockwise paste reporting changes: #6660. Asked for a PR.

Missing filetype test for bashrc, PKGBUILD, etc.

Add an option to not fetch terminal codes in xterm, to avoid flicker when t_Co
changes.

Add ??= operator, "a ??= b" works like "a = a ?? b". #10343

When ":redir" is used while already active, the previous one is ended. But
when redirecting to a local variable (function or script) storing the value
won't work. At least give an error. Is there a way to make it work?
#10616

Completion for ":runtime" should show valid values, not what's in the current
directory. (#11447)

Add a "description" property to mappings. #12205

Add an option to start_timer() to return from the input loop with K_IGNORE.
This is useful e.g. when a popup was created that disables mappings, we need
to return from vgetc() to make this happen. #7011

Expanding <mods> should put the tab number from cmdmod.tab before "tab".
Any way to convert "$" back by using a special value? (#6901)

Can we detect true color support? https://gist.github.com/XVilka/8346728

todo.txt — 464

https://gist.github.com/XVilka/8346728

Try setting a color then request the current color, like using t_u7.

Add a v:register_used variable, which has the name of the register used for
the last command, e.g. put. #12003

Make the jumplist behave like a tag stack. (#7738) Should there be a more
time bound navigation, like with undo?

For testing, make a copy of ml_line_ptr instead of pointing it into the data
block, so that valgrind can do out of bounds check. Set ML_LINE_DIRTY flag or
add ML_LINE_ALLOCED.

Changing a capturing group to non-capturing changes the result: #7607
:echo matchstr('aaa bbb', '\(.\{-1,}\>\)\|.*')
aaa
:echo matchstr('aaa bbb', '\%(.\{-1,}\>\)\|.*')
aaa bbb

Should also work without any group:
:echo matchstr('aaa bbb', '.\{-1,}\>\|.*')
aaa bbb (should be aaa)

Should add a match/str/list/pos method that also returns the test and position
of submatches. #8355

Check out PR #543 (Roland Puntaier).
Patch for multibyte characters in langmap and applying a mapping on them.
(Christian Brabandt, 2015 Jun 12, update July 25)
Is this the right solution? Need to cleanup langmap behavior:
- in vgetorpeek() apply langmap to the typeahead buffer and put the result in

a copy-buffer, only when langmap is appropriate for the current mode. Then
check for mapping and let gotchars() work on the copy-buffer.

- Remove LANGMAP_ADJUST() in other parts of the code. Make sure the mode is
covered by the above change.

So that replaying the register doesn't use keymap/langmap and still does the
same thing.
Also see #737: langmap not applied to replaying recording.
Perhaps also related: #5147

Matchparen doesn't remove highlight after undo. (#7054)
Is OK when syntax HL is active.

Currently Del can be used to delete the last character of a typed count.
Can it also be used to delete an incomplete Normal mode command? (#7096)
After an operator: should work. After "a" or "i" for text objects: should
work.

Using "au!" after "filetype on" is a bit slow. Can the matching of
autocommands be made faster? (#7056)

Using a search pattern containing "\%V" and 'hlsearch' set keeps old matches
when the Visual area changes. #11694. Do a redraw when starting a Visual
selection?

Append in Visual block mode inserts the wrong character.
Test_visual_block_mode() already has the proper check, which is commented out.
(#8288)

Add the <=> (spaceship) operator and "cond ?< expr ?= expr ?> expr"
replace this:

let left = GetLeftFunc()

todo.txt — 465

let right = GetRightFunc()
let res = left < right ? lower : left == right ? equal : upper

by:
let res = GetLeftFunc() <=> GetRightFunc() ?< lower ?= equal ?> upper

Patch to make :q work with local arglist. (Christian Brabandt, #6286)

Why does Test_invalid_sid() not work in the GUI?

":pedit" ignores the local working directory when 'pvp' is set (#7267)

Lua: updating wrong buffer when using newly created, unloaded buffer.
(#6539)

File marks merging has duplicates since 7.4.1925. (Ingo Karkat, #5733)

A syntax plugin cannot use autocommands, it could be sourced from setting
'syntax' in a modeline. Add a function that indicates whether "secure"
and/or "sandbox" are set.

Problem with auto-formatting - inserting space and putting cursor before added
character. (#6154)
Auto-formatting comments joins a following non-comment line when the comment
ends in a space. (Adam Levy, 18 Oct 2022)

When 'lazyredraw' is set sometimes the title is not updated.
(Jason Franklin, 2020 Feb 3) Looks like a race condition.

With bash ":make" does not set v:shell_error. Possible solution: set
'shellpipe' to "2>&1| tee %s; exit ${PIPESTATUS[0]}" #5994

Using mode() when "/pat" is used in Visual mode returns "v" instead of "c",
which is not useful. Return "c/v" instead. And "c/o" when using "d/pat".
#6127

Add a cterm attribute for "dimmed" or "faint" text. (#8269)

When 'fileignorecase' is set ":e testfile.c" works to edit TestFile.c, but
":find testfile.c" does not ignore case.
Might be related to #6088.

Error for reverse range when using :vimgrep in file "[id-01] file.txt".
(#6919)

When changing the crypt key the buffer should be considered modified.
Like when changing 'fileformat'. Save the old key in save_file_ff().
(Ninu-Ciprian Marginean)

Strange sequence of BufWipeout and BufNew events while doing omni-complete.
(Paul Jolly, #5656)
Get BufDelete without preceding BufNew. (Paul Jolly, #5694)

Later more requests for what to track.
Should we add new events that don't allow any buffer manipulation?
Really only for dealing with appearing and disappearing buffers, load and
unload.

BufWinenter event not fired when saving unnamed buffer. (Paul Jolly, #5655)
Another spurious BufDelete. (Dani Dickstein, #5701)

Wrong error when using local arglist. (Harm te Hennepe, #6133)

Test loose_clipboard() by selecting text before suspending.

todo.txt — 466

:unmap <c-n> gives error but does remove the mapping. (Antony Scriven, 2019
Dec 19)

Patch to add an option to enable/disable VTP. (Nobuhiro Takasaki, #5344)
Should have three values: empty, "off", "on". Name it 'winterm'?

Patch to fix session file when using multiple tab pages. (Jason Franklin, 2019
May 20)
Also put :argadd commands at the start for all buffers, so that their order
remains equal? Then %argdel to clean it up. Do try this with 'hidden' set.
Also #5326: netrw buffers are not restored.

When 'backupdir' has a path ending in double slash (meaning: use full path of
the file) combined with 'patchmode' the file name is wrong. (#5791)

Completion mixes results from the current buffer with tags and other files.
Happens when typing CTRL-N while still searching for results. E.g., type "b_"
in terminal.c and then CTRL-N twice.
Should do current file first and not split it up when more results are found.
(Also #1890)

Help for ":argadd fname" says that if "fname" is already in the argument list
that entry is used. But instead it's always added. (#6210)
Add flag AL_FIND_ADD, if there is one argument find it in the list.

Statusline highlighting error, off by one. (#5599)

":find" with 'path' set to "data*" does not find files, while completion does
find them. (Max Kukartsev, #6218)

Enable 'termbidi' if $VTE_VERSION >= 5703 ?

Python 3.8 doesn't work. (Antonios Hadjigeorgalis, #5509)

"--cleanFOO" does not result in an error. (#5537)

Output from assert_equalfile() doesn't give a hint about what's different.
Assuming the files are text, print the line with the difference.

Result of synID() sometimes wrong in help files. (#5252)

When a help file is opened that doesn't have "ft=help" in the modeline then
the FileType is first set to "text" before it is set to "help". (#8099)

Problem showing a line if the number column width changes when using "o".
(Mateusz Morusiewicz, #4245)

When using :packadd for a replacement language plugin, it is loaded after the
default one. #4698

When using :packadd files under "later" are not used, which is inconsistent
with packages under "start". (xtal8, #1994)

Patch to add new motion](and]{. (Yasuhiro Matsumoto, #5320)
Better: use the "z" prefix. or]t) and [t(.

Visual highlight not removed when 'display' is "lastline" and line doesn't
fit. (Kevin Lawler, #4457)

todo.txt — 467

Current position in the changelist should be local to the buffer. (#2173)

Does not build with MinGW out of the box:
- _stat64 is not defined, need to use "struct stat" in vim.h
- WINVER conflict, should use 0x0600 by default?
- INT_MAX not defined: need to include <limits.h> in vim.h

Display messed up with matchparen, wrapping and scrolling. (#5638)
Screen update bug related to matchparen. (Chris Heath, 2017 Mar 4, #1532)

When getting a focus event halfway a mapping this aborts the mapping. E.g.
when "qq" is mapped and after the first "q" the mouse is moved outside of the
gvim window (with focus follows mouse), then the K_FOCUSLOST key is put in the
input buffer. (#5302)

Check_external_diff() is used too often. (Daniel Hahler, #4800)

Win32: after "[I" showing matches, scroll wheel messes up screen. (Tsakiridis,
2007 Feb 18)
Patch by Alex Dobrynin, 2007 Jun 3. Also fixes other scroll wheel problems.

Add a WindowScrolled event. Trigger around the same time as CursorMoved.
Can be used to update highlighting. #3127 #5181

Incorrect formatting with autoindent. (Sebastian Gniazdowski, #4909)

Patch to add the :bvimgrep command. (Christian Brabandt, 2014 Nov 12)
Updated 2016 Jun 10, #858 Update 2017 Mar 28: use <buffer>.
Better use ":bufgrep" ?

Improve fallback for menu translations, to avoid having to create lots of
files that source the actual file. E.g. menu_da_de -> menu_da
Include part of #3242?

Patch for different behavior of text objects with quotes: #11976
Is this actually better?

Patch to have text objects defined by arbitrary single characters. (Daniel
Thau, 2013 Nov 20, 2014 Jan 29, 2014 Jan 31)
Added tests (James McCoy, 2016 Aug 3, #958). Still needs more work.

Would be nice to set tab-local values for 'diffexpr' and 'diffopt'. Use
t:diffexpr_option t:diffopt_option? (#4782)
Also make 'scrollopt' tab-local, remove "hor" only for the current tab page.

Internal diff doesn't handle binary file like external diff does. (Mike
Williams, 2018 Oct 30)

'[mark in wrong column after put. (#4776)

Problem with :tlmenu: Detach item added with all modes? Issue #3563.

Add an argument to expandcmd() to expand like ":next" does.

When both "a" and "l" is in 'formatoptions' then auto-formatting also happens
in a long line. #5189

The quoting of the [command] argument of :terminal is not clearly documented.
Give a few examples. (#4288)

todo.txt — 468

Opening a file with --remote-tab-silent that matches 'wildignore' does not
work, results in "E479: No match". (#4610)

7 Add an option to add one pixel column to the character width? Lucida
Console italic is wider than the normal font ("d" overlaps with next char).
Opposite of 'linespace': 'columnspace'.

Patch for this (Tristan Konolige, #1011, only added the option, no implem.)

Bug: script written with "-W scriptout" contains Key codes, while the script
read with "-s scriptin" expects escape codes. Probably "scriptout" needs to
be adjusted. (Daniel Steinberg, 2019 Feb 24, #4041)

Window size changes after closing a tab. (#4741)

Problem with colors in terminal window. (Jason Franklin, 2019 May 12)

Color schemes:
NOTE: modernizing the default colorschemes _AND_ introducing new ones is now
a project in its own right: https://github.com/vim/colorschemes. Feel free to
reach out if you want to lend a hand.
- Lifepillar: Updated/cleaned up color schemes:

https://github.com/lifepillar/vim8-colorschemes.
- Include a few color schemes, based on popularity:

- http://www.vim.org/scripts/script_search_results.php?keywords=&script_type=color+scheme&order_by=rating&direction=descending&search=search
http://vimawesome.com/?q=tag:color-scheme
- Use names that indicate their appearance (Christian Brabandt, 2017 Aug 3)

- monokai - Xia Crusoe (2017 Aug 4)
- seoul256 - Christian Brabandt (2017 Aug 3)
- gruvbox - Christian Brabandt (2017 Aug 3) (simplified version from

Lifepillar, 2018 Jan 22, #2573)
- janah - Marco Hinz (2017 Aug 4)
- apprentice - Romain Lafourcade (2017 Aug 6) remarks about help file #1964

- Suggested by Hiroki Kokubun:
- [Iceberg](https://github.com/cocopon/iceberg.vim) (my one)
- [hybrid](https://github.com/w0ng/vim-hybrid)

- Include solarized color scheme?, it does not support termguicolors.
- Sanitized version of pablo (Lifepillar, 2017 Nov 21)

Bug: "vipgw" does not put cursor back where it belongs. (Jason Franklin, 2019
Mar 5)

Some composing characters actually add a cell width to the character they are
on top off, making the whole thing two characters wide. (#4526)

Should we include some part of pull request #4505, not increment changedtick
in some cases? E.g. for ":write" when the changed flag was already off, the
buffer didn't change at all.

When using a timer callback vgetc_busy is reset, allowing for using input().
But in a channel callback this does not happen. We need to do something
similar to check_due_timer(). Also see #3809.

C syntax: {} inside () causes following {} to be highlighted as error.
(Michalis Giannakidis, 2006 Jun 1)

Check: __attribute__((format(printf, on semsg() and siemsg(). Where was this
added?

Add test for urxvt mouse codes. Also test that mouse coordinates can be
negative. (see #4326)

todo.txt — 469

https://github.com/vim/colorschemes
https://github.com/lifepillar/vim8-colorschemes
http://www.vim.org/scripts/script_search_results.php?keywords=&script_type=color+scheme&order_by=rating&direction=descending&search=search
http://vimawesome.com/?q=tag:color-scheme
https://github.com/cocopon/iceberg.vim
https://github.com/w0ng/vim-hybrid

'cmdheight' has a tab-local value, but it cannot be obtained with
`:echo gettabwinvar(2, 1, '&cmdheight')` returns the value for the _current_
tab page. (Ingo Karkat, #4324)
:call settabwinvar(1, 1, '&cmdheight', 2) also doesn't work well.

When opening a file, allow for specifying the initial column position:
vim +12:5 file.txt line 12 column 5
:edit +12:5 file.txt

Should probably use the column as the character index.

This modeline throws unexpected errors: (#4165)
vim: syn=nosyntax

Make balloon_show() work outside of 'balloonexpr'? Users expect it to work:
#2948. (related to #1512?)
Also see #2352, want better control over balloon, perhaps set the position.
Should also be possible to add highlighting, like in the status line?
balloonexpr() on MS-Windows GUI doesn't handle accented chars? (nivaemail,
2018 Sep 14)

More warnings from static analysis:
https://lgtm.com/projects/g/vim/vim/alerts/?mode=list

Not existing directory in CDPATH leads to two shell calls. (#4525)

Use dict_iterate_start() / dict_iterate_next() instead of relying on the
internals of the dict structure.

nvo-mode mapping works on Windows, not on Linux. (#3678)

Redo only remembers the last change. Could use "{count}g." to redo an older
change. How does the user know which change? At least have a way to list
them: ":repeats". Add to history, like search history and command line history.

When 'confirm' is set a "silent q" doesn't show the prompt. It should in this
case. (Nate Peterson, 2019 Jan 31, #3892)
For "silent! q" it should not prompt and just fail.

Add <aevent>, which expands to the currently triggered autocommand event name.
(Daniel Hahler, #4232) Or add it to v:event (easier to use but slightly more
expensive).

Some xterm responses are not properly handled: (Markus Gömmel, 2019 Apr 1)
DCS 0 $ r Pt ST should be ignored.
DCS 0 + r/Pt/ ST already ignored?

Using CTRL-L to add a character to the search string that contains \v,
punctuation is repeated. (Smylers, 2018 Nov 17, #3621)

Using single wide base character with double wide composing character gives
drawing errors. Fill up the base character? (Dominique, #4328)

When 'sidescrolloff' is set, using "zl" to go to the end of the line, suddenly
scrolls back. Should allow for this scrolling, like 'scrolloff' does when
using CTRL-E. (Yee Cheng Chin, #3721)

When splitting a window with few text lines, the relative cursor position is
kept, which means part of the text isn't displayed. Better show all the text
when possible. (Dylan Lloyd, #3973)

todo.txt — 470

https://lgtm.com/projects/g/vim/vim/alerts/?mode=list

Make ":interactive !cmd" stop termcap mode, also when used in an autocommand.
(#3692)

Add something like 'fillchars' local to window, but allow for specifying a
highlight name. Esp. for the statusline.
And "extends" and "precedes" are also useful without 'list' set. Also in
'fillchars' or another option?

Sourceforge Vim pages still have content, make them empty, keep redirect.
Check for PHP errors. (Wayne Davison, 2018 Oct 26)

Problem with Visual yank when 'linebreak' and 'showbreak' are set.
Patch with tests, but it's not clear how it is supposed to work. (tommm, 2018
Nov 17) Asked about this, Dec 22. Christian will have a look.

Update for xim-input-style help (Tony Mechelynck, 2019 Jan 10).
Feedback from someone who uses this?

Only output t_Cs when t_Ce is also set. do not use Cs and Ce termcap entries. (Daniel Hahler, 2018 Sep 25)
Add t_cS and t_cR for cursor color select and reset. Use Cs and Cr terminfo
values.

Further xdiff changes:
- More options, e.g. different kind of whitespace diff.
- when editing text, update the surrounding diff blocks.
- omit diff.exe from distribution
- Can we make this show differences within a line?
- add option to use external diff above a certain size.

Difference between two regexp engines: #3373

When the last line wraps, selecting with the mouse below that line only
includes the first screen line. (2018 Aug 23, #3368)

Refactored HTML indent file. (Michael Lee, #1821)
Asked to write a test.

Merge checking for 'cursorline' and 'concealcursor', see neovim #9492.

Add a windowID argument to placing a sign, so that it only shows up in one
window for the buffer.

Compiler warning (geeknik, 2017 Oct 26):
- undefined left shift in eval_string(), before hex2nr() (#2250)

Use unsigned for "nr".

Add Native language protocol server (LSP) support. (Yegappan Lakshmanan, 2018
Oct 28)

Patch to be able to use hex numbers with :digraph. (Lcd, 2015 Sep 6)
Update Sep 7. Update by Christian Brabandt, 2015 Sep 8, 2016 Feb 1.
Patch to be able to disable default digraphs (incomplete) (Eric Pruitt, 2018
Nov 22).

Patch to list user digraphs. (Christian Brabandt, 2012 Apr 14)

Setting 'columns' in a BufEnter autocommand causes a second tab width to
behave strangely, as if there is a gap and a vertical window separator.
(Michael Soyka, 2018 Sep 23, #3477)

todo.txt — 471

Add an option similar to 'lazyredraw' to skip redrawing while executing a
script or function.

Using a menu item while the "more" prompt is displayed doesn't work well.
E.g. after using help->version. Have a key that ends the "more" prompt and
does nothing otherwise?

MS-Windows: write may fail if another program is reading the file.
If 'readonly' is not set but the file appears to be readonly later, try again
(wait a little while).
CreateFile() returns ERROR_SHARING_VIOLATION (Linwei, 2018 May 5)

Using --remote to open a file in which a # appears does not work on
MS-Windows. Perhaps in \# the \ is seen as a path separator. (Axel Bender,
2017 Feb 9) Can we expand wildcards first and send the path literally to the
receiving Vim? Or make an exception for #, it's not useful remotely.

Column number is wrong when using 'linebreak' and 'wrap'. (Keith Smiley, 2018
Jan 15, #2555)

Add Makefiles to the runtime/spell directory tree, since nobody uses Aap.
Will have to explain the manual steps (downloading the .aff and .dic files,
applying the diff, etc.

User dictionary ~/.vim/spell/lang.utf-8.add not used for spell checking until a
word is re-added to it. (Matej Cepl, 2018 Feb 6)

Fold at end of the buffer behaves inconsistently. (James McCoy, 2017 Oct 9)

Implement option_save() and option_restore():
option_restore({list}) option_restore()

Restore options previously saved by option_save().
When buffer-local options have been saved, this function must
be called when the same buffer is the current buffer.
When window-local options have been saved, this function must
be called when the same window is the current window.
When in the wrong buffer and/or window an error is given and
the local options won't be restored.

option_save({list}) option_save()
Saves the options named in {list}. The returned value can be
passed to option_restore(). Example:

let s:saved_options = option_save([
\ 'ignorecase',
\ 'iskeyword',
\])

au <buffer> BufLeave *
\ call option_restore(s:saved_options)

The advantage over using `:let` is that global and local
values are handled and the script ID is restored, so that
`:verbose set` will show where the option was originally set,
not where it was restored.

Alternatively: save and restore ALL options. Implementation needs to use
copy-on-write. Return an ID from option_save(), when
option_restore(ID) is called give an error if another option_save()
was called in the meantime, they must be balanced.

"gvim --remote" from a directory with non-word characters changes the current
directory (Paulo Marcel Coelho Arabic, 2017 Oct 30, #2266)

todo.txt — 472

Also see #1689.

No profile information for function that executes ":quit". (Daniel Hahler,
2017 Dec 26, #2501)

A function on a dictionary is not profiled. (ZyX, 2010 Dec 25)

Add script number to profile? (#3330 breaks tests).

A function defined locally and lambda's are not easily recognized.
Mention where they were defined somewhere.

ml_get errors with buggy script. (Dominique, 2017 Apr 30)

Error in emsg with buggy script. (Dominique, 2017 Apr 30)

Join truncates xml comment. (Dmitrii Tcyganok, 2017 Dec 24, #2494)
Requires 'formatoptions' to include "j". (Gary Johnson, 2017 Dec 24)

Patch to support hunspell. (Matej Cepl, Jan 2018, #2500) Based on older patch
in #846)
Doesn't work on Windows yet. Not ready to included, hard coded paths.

When a timer is running and typing CTRL-R on the command line, it is not
redrawn properly. (xtal8, 2017 Oct 23, #2241)

In an optional package the "after" directory is not scanned?
(Renato Fabbri, 2018 Feb 22)

Patch for Neovim concerning restoring when closing help window. (glacambre
neovim #7431)

Patch for improving detecting Ruby on Mac in configure. (Ilya Mikhaltsou, 2017
Nov 21)

When t_Co is changed from termresponse, the OptionSet autocommand event isn't
triggered. Use the code from the end of set_num_option() in
set_color_count().

When using command line window, CmdlineLeave is triggered without
CmdlineEnter. (xtal8, 2017 Oct 30, #2263)
Add some way to get the nested state. Although CmdwinEnter is obviously
always nested.

matchit hasn't been maintained for a long time. #955.

Problem with 'delcombine'. (agguser, 2017 Nov 10, #2313)

'delcombine' does not work for the command line. (Tony Mechelynck, 2009 Jul
20)

MS-Windows: buffer completion doesn't work when using backslash (or slash)
for a path separator. (xtal8, #2201)

Would be nice for Insert mode completion to highlight the text that was added
(and may change when picking another completion).

Test more runtime files.

Window not closed when deleting buffer. (Harm te Hennepe, 2017 Aug 27, #2029)

todo.txt — 473

Add options_default() / options_restore() to set several options to Vim
defaults for a plugin. Comments from Zyx, 2017 May 10.
Perhaps use a vimcontext / endvimcontext command block.

After using :noautocmd CursorMoved may still trigger. (Andy Stewart, 2017 Sep
13, #2084). Set old position after the command.

When bracketed paste is used, pasting at the ":append" prompt does not get the
line breaks. (Ken Takata, 2017 Aug 22)

Cannot copy modeless selection when cursor is inside it. (lkintact, #2300)

Test_writefile_fails_conversion failure on Solaris because if different iconv
behavior. Skip when "uname" returns "SunOS"? (Pavel Heimlich, #1872)

'tagrelative' is broken in specific situation. (xaizek, 2017 Oct 19, #2221)

The ++ options for the :edit command are also useful on the Vim command line.

Overlong utf-8 sequence is displayed wrong. (Harm te Hennepe, 2017 Sep 14,
#2089) Patch with possible solution by Björn Linse.

X11: Putting more than about 262040 characters of text on the clipboard and
pasting it in another Vim doesn't work. (Dominique Pelle, 2008 Aug 21-23)
clip_x11_request_selection_cb() is called with zero value and length.
Also: Get an error message from free() in the process that owns the selection.
Seems to happen when the selection is requested the second time, but before
clip_x11_convert_selection_cb() is invoked, thus in X library code.
Kazunobu Kuriyama is working on a proper fix. (2017 Jul 25)

Problem with three-piece comment. (Michael Lee, 2017 May 11, #1696)

Creating a partial with an autoload function is confused about the "self"
attribute of the function. For an unknown function assume "self" and make
that optional? (Bjorn Linse, 2017 Aug 5)

Cindent: returning a structure has more indent for the second item.
(Sam Pagenkopf, 2017 Sep 14, #2090)

Patch from Christian Brabandt to preserve upper case marks when wiping out a
buffer. (2013 Dec 9)
Also fixes #2166?

Profile of a dict function is lost when the dict is deleted. Would it be
possible to collect this? (Daniel Hahler, #2350)

When checking if a bufref is valid, also check the buffer number, to catch the
case of :bwipe followed by :new.

Patch to skip writing a temp file for diffing if the buffer is equal to the
existing file. (Akria Sheng, 2017 Jul 22)
Could also skip writing lines that are the same.

MS-Windows: Opening same file in a second gvim hangs. (Sven Bruggemann, 2017
Jul 4)

Setting 'clipboard' to "unnamed" makes a global command very slow (Daniel
Drucker, 2017 May 8).
This was supposed to be fixed, did it break again somehow?

todo.txt — 474

Christian cannot reproduce it.

Using composing char in mapping does not work properly. maparg() shows the
wrong thing. (Nikolai Pavlov, 2017 Jul 8, #1827)
Or is this not an actual problem?

Better TeX indent file. (Christian Brabandt, 2017 May 3)

Use gvimext.dll from the nightly build? (Issue #249)

'synmaxcol' works with bytes instead of screen cells. (Llandon, 2017 May 31,
#1736)

Problem with using :cd when remotely editing a file. (Gerd Wachsmuth, 2017 May
8, #1690)

Memory leak in test97? The string is actually freed. Weird.

assert_fails() can only check for the first error. Make it possible to have
it catch multiple errors and check all of them.

Add a toolbar in the terminal. Can be global, above all windows, or specific
for one window.

Make maparg() also return the raw rhs, so that it doesn't depend on 'cpo'.
(Brett Stahlman, 2017 May 23)
Even better: add a way to disable a mapping temporarily and re-enable it
later. This is for a sub-mode that is active for a short while (one buffer).
Still need maplist() to find the mappings. What can we use to identify a
mapping? Something unique would be better than the LHS.
Perhaps simpler: actually delete the mappings. Use maplist() to list matching
mappings (with a lhs prefix, like maparg()), mapdelete() to delete,
maprestore() to restore (using the output of maplist()).

Add an argument to :mkvimrc (or add another command) to skip mappings from
plugins (source is a Vim script). No need to put these in a .vimrc, they will
be defined when the plugin is loaded.

Use tb_set(winid, [{'text': 'stop', 'cb': callback, 'hi': 'Green'}])
tb_highlight(winid, 'ToolBar')
tb_get(winid)

json_encode(): should convert to utf-8. (Nikolai Pavlov, 2016 Jan 23)
What if there is an invalid character?

Json string with trailing \u should be an error. (Lcd)

import can't be used in define option when include matches too.
(Romain Lafourcade, 2017 Jun 18, #1519)

Wrong diff highlighting with three files. (2016 Oct 20, #1186)
Also get E749 on exit.
Another example in #1309

Suggestion to improve pt-br spell checking. (Marcelo D Montu, 2016 Dec 15,
#1330)

Error in test_startup_utf8 on Solaris. (Danek Duvall, 2016 Aug 17)

Rule to use "^" for statusline does not work if a space is defined with

todo.txt — 475

highlighting for both stl and stlnc. Patch by Ken Hamada (itchyny, 2016 Dec 11)

Using CTRL-G_U in InsertCharPre causes trouble for redo. (Israel Chauca
Fuentes, 2017 Feb 12, #1470)

Add a "keytrans()" function, which turns the internal byte representation of a
key into a form that can be used for :map. E.g.

let xx = "\<C-Home>"
echo keytrans(xx)
<C-Home>

Check for errors E704 and E705 only does VAR_FUNC, should also do VAR_PARTIAL.
(Nikolai Pavlov, 2017 Mar 13, #1557)
Make a function to check for function-like type?

Implement named arguments for functions with optional arguments:
func Foo(start, count = 1, all = 1)
call Foo(12, all = 0)

Add a command to take a range of lines, filter them and put the output
somewhere else. :{range}copy {dest} !cmd

The TermResponse event is not triggered when a plugin has set 'eventignore' to
"all". Netrw does this. (Gary Johnson, 2017 Jan 24)
Postpone the event until 'eventignore' is reset.

Expanding /**/ is slow. Idea by Luc Hermitte, 2017 Apr 14.

Once .exe with updated installer is available: Add remark to download page
about /S and /D options (Ken Takata, 2016 Apr 13)
Or point to nightly builds: https://github.com/vim/vim-win32-installer/releases

":sbr" docs state it respects 'switchbuf', but "vsplit" does not cause a
vertical split. (Haldean Brown, 2017 Mar 1)

Use ADDR_OTHER instead of ADDR_LINES for many more commands.
E.g. all the location list commands use a count.
Add tests for using number larger than number of lines in buffer.

Might be useful to have isreadonly(), like we have islocked().
Avoids exceptions, e.g. when using the b: namespace as a dict.

Patch to make v:shell_error writable. (Christian Brabandt, 2016 Sep 27)
Useful to restore it. Is there another solution?

Patch for wrong cursor position on wrapped line, involving breakindent.
(Ozaki Kiichi, 2016 Nov 25)

Patch for 'cursorlinenr' option. (Ozaki Kiichi, 2016 Nov 30)

Window resizing with 'winfixheight': With a vertical split the height changes
anyway. (Tommy allen, 2017 Feb 21, #1502)

Invalid behavior with NULL list. (Nikolai Pavlov, #768)
E.g. deepcopy(test_null_list())

Patch to make it possible to extend a list with itself.
(Nikolai Pavlov, 2016 Sep 23)

Patch to add Zstandard compressed file support. (Nick Terrell, 2016 Oct 24)

todo.txt — 476

https://github.com/vim/vim-win32-installer/releases

On Windows buffer completion sees backslash as escape char instead of path
separator. (Toffanim, 2016 Nov 24, #1274)

Should :vmap in matchit.vim be :xmap? (Tony Mechelynck)

Problem with whitespace in errorformat. (Gerd Wachsmuth, 2016 May 15, #807)

Support sort(l, 'F'), convert strings to float. (#7857)

sort() is not stable when using numeric/float sort (Nikolay Pavlov, 2016 Sep
4#1038)

sort() does not use 'smartcase' for the skip pattern, even though 'ignorecase'
is used. (Filipe Brandenburger, #7322)

+channel:
- Add a in_cb, invoked when the write buffer has become empty. (Matteo Landi)
- Add ch_readlines(): for a channel in NL mode, reads as many lines as are

available. Should be more efficient than looping over ch_read() with
ch_status() to check for more.

- If buffer contents is changed in a callback, set w_redr_status so that it
gets redrawn in redraw_after_callback(). #6120

- Add a separate timeout for opening a socket. Currently it's fixed at 50
msec, which is too small for a remote connection. (tverniquet, #2130)

- Writing raw mode to a buffer should still handle NL characters as line
breaks. (Dmitry Zotikov, 2017 Aug 16)

- When out_cb executes :sleep, the close_cb may be invoked. (Daniel Hahler,
2016 Dec 11, #1320)

- Implement job-term ?
- Calling a function when receiving a "call" on a channel, using feedkeys()

does not work. It does work from a timer. (Qiming Zhao, #3852)
- Channel test fails with Motif. Sometimes kills the X11 server.
- When a message in the queue but there is no callback, drop it after a while?

Add timestamp to queued messages and callbacks with ID, remove after a
minute. Option to set the droptime.

- Add an option to drop text of very long lines? Default to 1 Mbyte.
- Add remark about undo sync, is there a way to force it?
- When starting a job, have an option to open the server socket, so we know

the port, and pass it to the command with --socket-fd {nr}. (Olaf Dabrunz,
Feb 9) How to do this on MS-Windows?

- For connection to server, a "keep open" flag would be useful. Retry
connecting in the main loop with zero timeout.

- job_start(): run job in a newly opened terminal (not a terminal window).
With xterm could use -S{pty}.
Although user could use "xterm -e 'cmd arg'".

Regexp problems:
- NFA engine can be slow for some patterns. Dominique found out that most

time is spent in addstate_here() copying the threads. Instead of copying,
let each thread point to the next one (by offset, the list is reallocated).
(Dominique Pelle, 2019 Feb 18)

- Old engine: using 'incsearch' /\Zabc does not highlight the "c" if it has a
composing character. New engine is OK. (Tony Mechelynck, 2019 May 5)

- When search pattern has the base character both with and without combining
character, search fails. E.g. "����" in "������������". (agguser, #2312)

- [:space:] only matches ASCII spaces. Add [:white:] for all space-like
characters, esp. including 0xa0. Use character class zero.

- Since 7.4.704 the old regex engine fails to match [[:print:]] in 0xf6.
(Manuel Ortega, 2016 Apr 24)

todo.txt — 477

Test fails on Mac. Avoid using isalpha(), isalnum(), etc? Depends on
LC_CTYPE

- The old engine does not find a match for "/\%#=1\(\)\{80}", the new engine
matches everywhere.

- Using win_linetabsize() can still be slow. Cache the result, store col and
vcol. Reset them when moving to another line.

- Very slow with a long line and Ruby highlighting. (John Whitley, 2014 Dec 4)
- Bug with pattern: '\vblock (\d+)\.\n.*\d+%(\1)@<!\.$'

(Lech Lorens, 2014 Feb 3)
- Issue 164: freeze on regexp search.
- Ignorecase not handled properly for multibyte characters. (Axel Bender,

2013 Dec 11)
- Using \@> and \?. (Brett Stahlman, 2013 Dec 21) Remark from Marcin

Szamotulski; Remark from Brett 2014 Jan 6 and 7.
- NFA regexp doesn't handle \%<v correctly. (Ingo Karkat, 2014 May 12)
- Does not work with NFA regexp engine:

\%u, \%x, \%o, \%d followed by a composing character
- Search for \%d0\+ may fail with E363. (Christian Brabandt, 2016 Oct 4)
- \%'[does not work. '%'] does work. (Masaaki Nakamura, 2016 Apr 4)
- Bug relating to back references. (Ingo Karkat, 2014 Jul 24)
- New RE does not give an error for empty group: "\(\)\{2}" (Dominique Pelle,

2015 Feb 7)
- Using back reference before the capturing group sometimes works with the old

engine, can we do this with the new engine? E.g. with
"/\%(<\1>\)\@<=.*\%(<\/\(\w\+\)>\)\@=" matching text inside HTML tags.
This problem is probably the same: "\%(^\1.*$\n\)\@<=\(\d\+\).*$".
(guotuofeng, 2015 Jun 22)

- Strange matching with "\(Hello\n\)\@<=A". (Anas Syed, 2015 Feb 12)
- Problem with \v(A)@<=b+\1c. (Issue 334)
- Diff highlighting can be very slow. (Issue 309)
- Using %> for a virtual column has a check based on 'tabsize'. Better would

be to cache the result of win_linetabsize(col), storing both col and vcol,
and use them to decide whether win_linetabsize() needs to be called. Reset
col and vcol when moving to another line.

- this doesn't work: "syntax match ErrorMsg /.\%9l\%>20c\&\%<28c/". Leaving
out the \& works. Seems any column check after \& fails.

- Difference between two engines: ".*\zs\/\@>\/" on text "///"
(Chris Paul, 2016 Nov 13) New engine not greedy enough?
Another one: echom matchstr(" sdfsfsf\n sfdsdfsdf",'[^\n]*')
(2017 May 15, #1252)

Idea from Sven: record sequence of keys. Useful to show others what they are
doing (look over the shoulder), and also to see what happened.
Probably list of keystrokes, with some annotations for mode changes.
Could store in logfile to be able to analyse it with an external command.
E.g. to see when's the last time a plugin command was used.

cmap using execute() has side effects. (Killthemule, 2016 Aug 17, #983)

:map X may print invalid data. (Nikolay Pavlov, 2017 Jul 3, #1816)

Patch to order results from taglist(). (Duncan McDougall, 2016 Oct 25)

ml_get errors when reloading file. (Chris Desjardins, 2016 Apr 19)
Also with latest version.

Completion for input() does not expand environment variables. (chdiza, 2016
Jul 25, #948)

Patch to add 'systemencoding', convert between 'encoding' and this for file

todo.txt — 478

names, shell commands and the like. (Kikuchan, 2010 Oct 14)
Assume the system converts between the actual encoding of the filesystem to
the system encoding (usually utf-8).

MS-Windows: use WS_HIDE instead of SW_SHOWMINNOACTIVE in os_win32.c?
Otherwise task flickers in taskbar.

Second problem in #966: ins_compl_add_tv() uses get_dict_string() multiple
times, overwrites the one buffer. (Nikolay Pavlov, 2016 Aug 5)

Patch to improve map documentation. Issue #799.

We can use '. to go to the last change in the current buffer, but how about
the last change in any buffer? Can we use ', (, is next to .)?

Ramel Eshed: system() is much slower than job_start(), why? (Aug 26)

When generating the Unicode tables with runtime/tools/unicode.vim the
emoji_width table has only one entry.

It's possible to add ",," to 'wildignore', an empty entry. Causes problems.
Reject the value? #710.

When doing "vi buf.md" a BufNew autocommand for *.md is not triggered.
Because of using the initial buffer? (Dun Peal, 2016 May 12)

Neovim patch for utfc_ptr2char_len() https://github.com/neovim/neovim/pull/4574
No test, needs some work to include.

Patch to improve indenting for C++ constructor with initializer list.
(Hirohito Higashi, 2016 Mar 31)

Zero-out crypt key information when no longer in use. (Ben Fritz, 2017 May 15)

Add stronger encryption. Could use libsodium (NaCl).
https://github.com/jedisct1/libsodium/
Possibly include the needed code so that it can be built everywhere.

Add a way to restart a timer. It's similar to timer_stop() and timer_start(),
but the reference remains valid.

Need to try out instructions in INSTALLpc.txt about how to install all
interfaces and how to build Vim with them.
Appveyor build with self-installing executable, includes getting most
interfaces: https://github.com/k-takata/vim/tree/chrisbra-appveyor-build
result: https://ci.appveyor.com/project/k-takata/vim/history

Problem using ":try" inside ":execute". (ZyX, 2013 Sep 15)

Patch to make tests pass with EBCDIC. (Owen Leibman, 2016 Apr 10)

Add ":read :command", to insert the output of an Ex command?
Can already do it with ":$put =execute('command')".

exists(":tearoff") does not tell you if the command is implemented. (Tony
Mechelynck) Perhaps use exists("::tearoff") to check?

Use vim.vim syntax highlighting for help file examples, but without ":" in
'iskeyword' for syntax.

todo.txt — 479

https://github.com/neovim/neovim/pull/4574
https://github.com/jedisct1/libsodium/
https://github.com/k-takata/vim/tree/chrisbra-appveyor-build
https://ci.appveyor.com/project/k-takata/vim/history

Installation of .desktop files does not work everywhere.
It's now fixed, but the target directory probably isn't right.
Add configure check?
Should use /usr/local/share/applications or /usr/share/applications.
Or use $XDG_DATA_DIRS.
Also need to run update-desktop-database (Kuriyama Kazunobu, 2015 Nov 4)

Test object i{ and it do not behave the same. #1379
Do not include the linebreak at the start?

Feature request: add the "al" text object, to manipulate a screen line.
Especially useful when using 'linebreak'

Patch to avoid redrawing tabline when the popup menu is visible.
(Christian Brabandt, 2016 Jan 28)

When the CursorMovedI event triggers, and CTRL-X was typed, a script cannot
restore the mode properly. (Andrew Stewart, 2016 Apr 20)
Do not trigger the event?

Patch to make the behavior of "w" more straightforward, but not Vi compatible.
With a 'cpo' flag. (Christian Brabandt, 2016 Feb 8)

Patch to add optionproperties(). (Anton Lindqvist, 2016 Mar 27, update Apr 13)

Patch to add TagNotFound autocommand. (Anton Lindqvist, 2016 Feb 3)

Patch to add Error autocommand. (Anton Lindqvist, 2016 Feb 17)
Only remembers one error.

GVim: when both Tab and CTRL-I are mapped, use CTRL-I not for Tab.

Unexpected delay when using CTRL-O u. It's not timeoutlen.
(Gary Johnson, 2015 Aug 28)

Instead of separately uploading patches to the ftp site, we can get them from
github with a URL like this:

https://github.com/vim/vim/compare/v7.4.920%5E...v7.4.920.diff
Diff for version.c contains more context, can't skip a patch.

Python: ":py raw_input('prompt')" doesn't work. (Manu Hack)

Comparing nested structures with "==" uses a different comparator than when
comparing individual items.

Using uninitialized memory. (Dominique Pelle, 2015 Nov 4)

MS-Windows: When editing a file with a leading space, writing it uses the
wrong name. (Aram, 2014 Nov 7) Vim 7.4.

Can't recognize the $ProgramFiles(x86) environment variable. Recognize it
specifically? First try with the parens, then without.

Patch to add :mapgroup, put mappings in a group like augroup.
(Yasuhiro Matsumoto, 2016 Feb 19)

Can we cache the syntax attributes, so that updates for 'relativenumber' and
'cursorline'/'cursorcolumn' are a lot faster? Thus store the attributes
before combining them.

todo.txt — 480

https://github.com/vim/vim/compare/v7.4.920%5E...v7.4.920.diff

C highlighting: modern C allows: /* comment */ #ifdef
and also line continuation after #include.
I can't recommend it though.

Build with Python on Mac does not always use the right library.
(Kazunobu Kuriyama, 2015 Mar 28)

To support Thai (and other languages) word boundaries, include the ICU
library: http://userguide.icu-project.org/boundaryanalysis

Patch to use two highlight groups for relative numbers. (Shaun Brady, 2016 Jan
30)

MS-Windows: Crash opening very long file name starting with "\\".
(Christian Brock, 2012 Jun 29)

The OptionSet autocommand event is not always triggered. (Rick Howe, 2015 Sep
24): :diffthis, :diffoff.

":set all&" still does not handle all side effects. Centralize handling side
effects for when set by the user, on init and when reset to default.

":tag" does not jump to the right entry of a :tselect. (James Speros, 2015 Oct
9)

The argument for "-S" is not taken literally, the ":so" command expands
wildcards. Add a ":nowild" command modifier? (ZyX, 2015 March 4)

Proposal to make options.txt easier to read. (Arnaud Decara, 2015 Aug 5)
Update Aug 14.

When using --remote-tab on MS-Windows 'encoding' hasn't been initialized yet,
the file name ends up encoded wrong. (Raul Coronado, 2015 Dec 21)

Example in editing.txt uses $HOME with the expectation that it ends in a
slash. For me it does, but perhaps not for everybody. Add a function that
inserts a slash when needed? pathconcat(dir, path) (Thilo Six, 2015 Aug 12)

ml_updatechunk() is slow when retrying for another encoding. (John Little,
2014 Sep 11)

Patch to fix checking global option value when not using it.
(Arnaud Decara, 2015 Jul 23)

When 'showbreak' is set repeating a Visual operation counts the size of the
'showbreak' text as part of the operation. (Axel Bender, 2015 Jul 20)

Patch to add grepfile(). (Scott Prager, 2015 May 26)
Work in progress.

Would be useful to have a treemap() or deepmap() function. Like map() but
when an item is a list or dict would recurse into it.

Patch for global-local options consistency. (Arnaud Decara, 2015 Jul 22)
Is this right?

Patch to make getregtype() return the right size for non-linux systems.
(Yasuhiro Matsumoto, 2014 Jul 8)
Breaks test_eval. Inefficient, can we only compute y_width when needed?

todo.txt — 481

http://userguide.icu-project.org/boundaryanalysis

Patch to use different terminal mode settings for system(). (Hayaki Saito)
Does this work for everybody?

Patch for man.vim. (SungHyun Nam, 2015 May 20)
Doesn't work completely (Dominique Orban)

Patch to add a "literal" argument to bufnr(). (Olaf Dabrunz, 2015 Aug 4)

Extended file attributes lost on write (backupcopy=no). Issue 306.
Would require reading attributes from the original file with listxattr() and
getxattr() and adding them to the new file.

Patch to add :lockjumps. (Carlo Baldassi, 2015 May 25)
OK to not block marks?

Patch on Issue 72: 'autochdir' causes problems for :vimgrep.

When two SIGWINCH arrive very quickly, the second one may be lost.
(Josh Triplett, 2015 Sep 17)

Make comments in the test Makefile silent. (Kartik Agaram, 2014 Sep 24)

Result of systemlist() does not show whether text ended in line break.
(Bjorn Linse, 2014 Nov 27)

When in 'comments' "n:x" follows after three-part comment directly it repeats
any one-character from the previous line. (Kartik Agaram, 2014 Sep 19)

Patch: Let rare word highlighting overrule good word highlighting.
(Jakson A. Aquino, 2010 Jul 30, again 2011 Jul 2)

Patch to add digits argument to round(). (Yasuhiro Matsumoto, 2015 Apr 26)

Can assign to s:type when a function s:type has been defined.
Also the other way around: define a function while a variable with that name
was already defined.
(Yasuhiro Matsumoto, 2014 Nov 3)

Patch for ordered dict. (Ozaki Kiichi, 2015 May 7)

Patch for building a 32bit Vim with 64bit MingW compiler.
(Michael Soyka, 2014 Oct 15)

Patch: On MS-Windows shellescape() may have to triple double quotes.
(Ingo Karkat, 2015 Jan 16)

Patch for glob(), adding slash to normal files. (Ingo Karkat, 2014 Dec 22)

When entering and leaving the preview window autocommands are triggered, but
these may not work well. Perhaps set a flag to indicate that the preview
window is involved? (John Otter, 2015 Oct 27)

Using "." to repeat an Ex command puts that command in history. Probably
should not happen. If the command is the result of a mapping it's not put in
history either. (Jacob Niehus, 2014 Nov 2)
Patch from Jacob, Nov 2.

"hi link" does not respect groups with GUI settings only. (Mark Lodato, 2014
Jun 8)

todo.txt — 482

Bug: Autocompleting ":tag/pat" replaces "/pat" with a match but does not
insert a space. (Micha Mos, 2014 Nov 7)

No error for missing endwhile. (ZyX, 2014 Mar 20)

Patch to make extend() fail early when it might fail at some point.
(Olaf Dabrunz, 2015 May 2) Makes extend() slower, do we still want it?
Perhaps only the checks that can be done without looping over the dict or
arguments.

Problem with transparent and matchgroup. Issue #475

Idea: For a window in the middle (has window above and below it), use
right-mouse-drag on the status line to move a window up/down without changing
its height? It's like dragging the status bar above it at the same time.

Patch to add a :domodeline command. (Christian Brabandt, 2014 Oct 21)

This does not give an error: (Andre Sihera, 2014 Mar 21)
vim -u NONE 1 2 3 -c 'bufdo if 1 | echo 1'

This neither: (ZyX)
vim -u NONE 1 2 3 -c 'bufdo while 1 | echo 1'

'viewdir' default on MS-Windows is not a good choice, it's a system directory.
Change 'viewdir' to "$HOME/vimfiles/view" and use 'viewdiralt' to also read
from?

Include a plugin manager with Vim? vim-plug seems to be the best currently:
https://github.com/junegunn/vim-plug.
Also Vundle: https://github.com/gmarik/vundle
Or minpac: https://github.com/k-takata/minpac, since it leverages the builtin
package feature.
Long message about this from ZyX, 2014 Mar 23. And following replies.
Also see http://vim-wiki.mawercer.de/wiki/topic/vim%20plugin%20managment.html
User view:
- Support multiple sources, basically any http:// URL. Or a central place that

will work for everybody (github? redirects from vim.org?).
Be able to look into the files before deciding to install.

- Be able to try out a plugin and remove it again with (almost) no traces.
- Each plugin needs a "manifest" file that has the version, dependencies

(including Vim version and features), conflicts, list of files, etc.
Updater uses that to decide what/how to update.
Dependencies can use a URL for specific versions, or short name for scripts
on vim.org.

- Once a plugin is installed it remembers where it came from, updater checks
there. Can manually update when really needed.

- Must be possible to install for one user. Also system wide?
- Can edit plugin config with Vim. Can temporarily disable a plugin.
- Run the update manually, find latest version and install.
- Be able to download without special tools, must work for 95% of users.
Implementation:
- Avoid the 'runtimepath' getting long. Need some other way to keep each

plugin separate.
- When installing or updating, first figure out what needs to be done. This

may involve recursively fetching manifest files for dependencies. Then show
the user what's going to change and ask for OK.

- Scripts on Vim.org must be able to consist of several files. Is zip format
sufficient? Upload the manifest? Or refer to a site that has the manifest?

- Best is to fetch individual files or use a Vimball. Reduces dependency on
tools that might be missing and allows inspection of the files before

todo.txt — 483

https://github.com/junegunn/vim-plug
https://github.com/gmarik/vundle
https://github.com/k-takata/minpac
http://vim-wiki.mawercer.de/wiki/topic/vim%20plugin%20managment.html

installing.
Out of scope:
- Overview of plugins, ratings, comments, etc. That's another world.
- Development work on plugins (although diff with distributed version would be

useful).

When typing the first character of a command, e.g. "f", then using a menu, the
menu item doesn't work. Clear typeahead when using a menu?

Editing an ascii file as ucs-2 or ucs-4 causes display errors.
(ZyX, 2014 Mar 30)

":Next 1 some-arg" does not complain about trailing argument. Also for
various other commands. (ZyX, 2014 Mar 30)

Patch to skip sort if no line matches the expression.
(Christian Brabandt, 2014 Jun 25)

VMS: Select() doesn't work properly, typing ESC may hang Vim. Use sys$qiow
instead. (Samuel Ferencik, 2013 Sep 28)

Patch for XDG base directory support. (Jean François Bignolles, 2014 Mar 4)
Remark on the docs. Should not be a compile time feature. But then what?
Also see #2034.

Patch to define macros for hardcoded values. (Elias Diem, 2013 Dec 14)

Updated spec ftplugin. (Matěj Cepl, 2013 Oct 16)

Patch to handle integer overflow. (Aaron Burrow, 2013 Dec 12)

7 Windows XP: When using "ClearType" for text smoothing, a column of yellow
pixels remains when typing spaces in front of a "D" ('guifont' set to
"lucida_console:h8").

Patch by Thomas Tuegel, also for GTK, 2013 Nov 24

:help gives example for z?, but it does not work. m? and t? do work.

Discussion about canonicalization of Hebrew. (Ron Aaron, 2011 April 10)

Checking runtime scripts: Thilo Six, 2012 Jun 6.

When evaluating expression in backticks, autoload doesn't work.
(Andy Wokula, 2013 Dec 14)

Using <nr>ifoobar<esc> can slow down Vim. Patch by Christian Brabandt, 2013
Dec 13. Only helps a bit, 10000ii<Esc> is still too slow.

Javascript file where indent gets stuck on: GalaxyMaster, 2012 May 3.

The BufUnload event is triggered when re-using the empty buffer.
(Pokey Rule, 2013 Jul 22)
Patch by Marcin Szamotulski, 2013 Jul 22.

Patch to allow more types in remote_expr(). (Lech Lorens, 2014 Jan 5)
Doesn't work for string in list. Other way to pass all types of variables
reliably?

Patch to add {lhs} to :mapclear: clear all maps starting with {lhs}.
(Christian Brabandt, 2013 Dec 9)

todo.txt — 484

Exception caused by argument of return is not caught by try/catch.
(David Barnett, 2013 Nov 19)
Bug in try/catch: return with invalid compare throws error that isn't caught.
(ZyX, 2011 Jan 26)
try/catch not working for argument of return. (Matt Wozniski, 2008 Sep 15)
try/catch not working when inside a for loop. (ZyX, 2011 Jan 25)

Patch to fix that 'cedit' is recognized after :normal. (Christian Brabandt,
2013 Mar 19, later message)

Patch to view coverage of the tests. (Nazri Ramliy, 2013 Feb 15)

Patch to add "Q" and "A" responses to interactive :substitute. They are
carried over when using :global. (Christian Brabandt, 2013 Jun 19)

Bug with 'cursorline' in diff mode. Line being scrolled into view gets
highlighted as the cursor line. (Alessandro Ivaldi, 2013 Jun 4)

Two highlighting bugs. (ZyX, 2013 Aug 18)

Patch to support 'u' in interactive substitute. (Christian Brabandt, 2012 Sep
28) With tests: Oct 9.

Dialog is too big on Linux too. (David Fishburn, 2013 Sep 2)

- Add regex for 'paragraphs' and 'sections': 'parare' and 'sectre'. Combine
the two into a regex for searching. (Ned Konz)

Patch by Christian Brabandt, 2013 Apr 20, unfinished.

Bug: findfile("any", "file:///tmp;") does not work.

Patch to add getsid(). (Tyru, 2011 Oct 2) Do we want this? Update Oct 4.
Or use expand('<sid>')?

Patch to make confirm() display colors. (Christian Brabandt, 2012 Nov 9)

Problem with refresh:always in completion. (Tyler Wade, 2013 Mar 17)

b:undo_ftplugin cannot call a script-local function. (Boris Danilov, 2013 Jan
7)

Win32: The Python interface only works with one version of Python, selected at
compile time. Can this be made to work with version 2.1 and 2.2 dynamically?

Python: Be able to define a Python function that can be called directly from
Vim script. Requires converting the arguments and return value, like with
vim.bindeval().

Patch for :tabcloseleft, after closing a tab go to left tab. (William Bowers,
2012 Aug 4)

Patch to improve equivalence classes in regexp patterns.
(Christian Brabandt, 2013 Jan 16, update Jan 17)

Patch with suggestions for starting.txt. (Tony Mechelynck, 2012 Oct 24)
But use Gnome instead of GTK?

Should be possible to enable/disable matchparen per window or buffer.
Add a check for b:no_match_paren in Highlight_matching_Pair() (Marcin

todo.txt — 485

Szamotulski, 2012 Nov 8)

'iminsert' global value set when using ":setlocal iminsert"? (Wu, 2012 Jun 23)

Patch to append regexp to tag commands to make it possible to select one out
of many matches. (Cody Cutler, 2013 Mar 28)

The input map for CTRL-O in mswin.vim causes problems after CTRL-X CTRL-O.
Suggestion for another map. (Philip Mat, 2012 Jun 18)
But use "gi" instead of "a". Or use CTRL-\ CTRL-O.

When there are no command line arguments ":next" and ":argu" give E163, which
is confusing. Should say "the argument list is empty".

URXVT:
- will get stuck if byte sequence does not contain the expected semicolon.
- Use urxvt mouse support also in xterm. Explanations:

http://www.midnight-commander.org/ticket/2662

Patch to add tests for if_xcmdsrv.c., Jul 8, need some more work. (Brian Burns)
New tests Jul 13. Update Jul 17. Discussion Jul 18.

Patch for input method status. (Hirohito Higashi, 2012 Apr 18)

Update Vim app icon (for Gnome). (Jakub Steiner, 2013 Dec 6)

Patch to use .png icons for the toolbar on MS-Windows. (Martin Gieseking, 2013
Apr 18)

Patch for has('unnamedplus') docs. (Tony Mechelynck, 2011 Sep 27)
And one for gui_x11.txt.

":cd" doesn't work when current directory path contains "**".
finddir() has the same problem. (Yukihiro Nakadaira, 2012 Jan 10)
Requires a rewrite of the file_file_in_path code.

Should use has("browsefilter") in ftplugins. Requires patch 7.3.593.

Update for vim2html.pl. (Tyru, 2013 Feb 22)

Patch to sort functions starting with '<' after others. Omit dict functions,
they can't be called. (Yasuhiro Matsumoto, 2011 Oct 11)

Patch to pass list to or(), and() and xor(). (Yasuhiro Matsumoto, 2012 Feb 8)

Patch to improve "it" and "at" text object matching. (Christian Brabandt, 2011
Nov 20)

Patch to improve GUI find/replace dialog. (Christian Brabandt, 2012 May 26)
Update Jun 2.

`] moves to character after insert, instead of the last inserted character.
(Yukihiro Nakadaira, 2011 Dec 9)

Plugin for Modeleasy. (Massimiliano Tripoli, 2011 Nov 29)

BufWinLeave triggers too late when quitting last window in a tab page. (Lech
Lorens, 2012 Feb 21)

Patch for 'transparency' option. (Sergiu Dotenco, 2011 Sep 17)

todo.txt — 486

http://www.midnight-commander.org/ticket/2662

Only for MS-Windows. No documentation. Do we want this?

Patch to support cursor shape in Cygwin console. (Ben bgold, 2011 Dec 27)

On MS-Windows a temp dir with a & init causes system() to fail. (Ben Fritz,
2012 Jun 19)

'cursorline' is displayed too short when there are concealed characters and
'list' is set. (Dennis Preiser)
Patch 7.3.116 was the wrong solution.
Christian Brabandt has another incomplete patch. (2011 Jul 13)

Win32: Patch to use task dialogs when available. (Sergiu Dotenco, 2011 Sep 17)
New feature, requires testing. Made some remarks.

Win32: Patch for alpha-blended icons and toolbar height. (Sergiu Dotenco, 2011
Sep 17) Asked for feedback from others.

Win32: Cannot cd into a directory that starts with a space. (Andy Wokula, 2012
Jan 19)

Need to escape $HOME on Windows for fnameescape()? (ZyX, 2011 Jul 21,
discussion 2013 Jul 4) Can't simply use a backslash, \$HOME has a different
meaning already. Would be possible to use $$HOME where $HOME is to be used.

"2" in 'formatoptions' not working in comments. (Christian Corneliussen, 2011
Oct 26)

Bug in repeating Visual "u". (Lawrence Kesteloot, 2010 Dec 20)

Windows keys not set properly on Windows 7? (cncyber, 2010 Aug 26)

When using a Vim server, a # in the path causes an error message.
(Jeff Lanzarotta, 2011 Feb 17)

When there is a ">" in a line that "gq" wraps to the start of the next line,
then the following line will pick it up as a leader. Should get the leader
from the first line, not a wrapped line. (Matt Ackeret, 2012 Feb 27)

Using ":break" or something else that stops executing commands inside a
":finally" does not rethrow a previously uncaught exception. (ZyX, 2010 Oct
15)

Vim using lots of memory when joining lines. (John Little, 2010 Dec 3)

BT regexp engine: After trying a \@> match and failing, submatches are not
cleared. See test64.

On 64 bit MS-Windows "long" is only 32 bits, but we sometimes need to store a
64 bits value. Change all number options to use nropt_T and define it to the
right type.

string() can't parse back "inf" and "nan". Fix documentation or fix code?
(ZyX, 2010 Aug 23)

When doing "redir => s:foo" in a script and then "redir END" somewhere else
(e.g. in a function) it can't find s:foo.
When a script contains "redir => s:foo" but doesn't end redirection, a
following "redir" command gives an error for not being able to access s:foo.
(ZyX, 2011 Mar 27)

todo.txt — 487

When setqflist() uses a filename that triggers a BufReadCmd autocommand Vim
doesn't jump to the correct line with :cfirst. (ZyX, 2011 Sep 18)

Behavior of i" and a" text objects isn't logical. (Ben Fritz, 2013 Nov 19)

When setting a local option value from the global value, add a script ID that
indicates this, so that ":verbose set" can give a hint. Check with options in
the help file.

After patch 7.3.097 still get E15. (Yukihiro Nakadaira, 2011 Jan 18)
Also for another example (ZyX, 2011 Jan 24)

"0g@$" puts '] on last byte of multibyte. (ZyX, 2011 Jan 22)

Patch for :tabrecently. (Hirokazu Yoshida, 2012 Jan 30)

Problem with "syn sync grouphere". (Gustavo Niemeyer, 2011 Jan 27)

Loading autoload script even when usage is inside "if 0". (Christian Brabandt,
2010 Dec 18)

With a filler line in diff mode, it isn't displayed in the column with line
number, but it is in the sign column. Doesn't look right. (ZyX 2011 Jun 5)
Patch by Christian Brabandt, 2011 Jun 5. Introduces new problems.

Add jump() function. (Marcin Szamotulski, 2013 Aug 29)
Is this needed? CTRL-O and CTRL-I do the same, just more difficult to use.

8 Add a command to jump to the next character highlighted with "Error".
Patch by Christian Brabandt, uses]e [e]t and [t. 2011 Aug 9.

Add event for when the text scrolls. A bit like CursorMoved. Also a similar
one for insert mode. Use the event in matchparen to update the highlight if
the match scrolls into view.

7 Use "++--", "+++--" for different levels instead of "+---" "+----".
Patch by Christian Brabandt, 2011 Jul 27.
Update by Ben Fritz, with fix for TOhtml. (2011 Jul 30)

9 Add %F to 'errorformat': file name without spaces. Useful on Unix to
avoid matching something up to a time 11:22:33.

Patch by Christian Brabandt, 2011 Jul 27.

Patch to add up to 99 match groups. (Christian Brabandt, 2010 Dec 22)
Also add named groups: \%{name}(re) and \%{name}g

In the sandbox it's not allowed to do many things, but it's possible to change
or set variables. Add a way to prevent variables from being changed in the
sandbox? E.g.: ":protect g:restore_settings".

Win32: tear-off menu does not work when menu language is German. (Markus
Bossler, 2011 Mar 2) Fixed by 7.3.095?

Wish for NetBeans commands:
- make it possible to have 'defineAnnoType' also handle terminal colors.

7.3.014 changed how backslash at end of line works, but still get a NUL when
there is one backslash. (Ray Frush, 2010 Nov 18) What does the original ex
do?

todo.txt — 488

New esperanto spell file can't be processed. (Dominique Pelle, 2011 Jan 30)
- move compflags to separate growarray?
- instead of a regexp use a hashtable. Expand '?', '*', '+'. What would be

the maximum repeat for * and +?

"L'Italie" noted as a spell error at start of the sentence. (Dominique Pelle,
2011 Feb 27)

Editing a file with a ^M with 'ff' set to "mac", opening a help file, then the
^M is displayed as ^J sometimes. Getting 'ff' value from wrong window/buffer?

When Vim is put in the background (SIGTSTP) and then gets a SIGHUP it doesn't
exit. It exists as soon as back in the foreground. (Stephen Liang, 2011 Jan
9) Caused by vim_handle_signal(SIGNAL_BLOCK); in ui.c.

g` not working correctly when using :edit. It works OK when editing a file on
the command line. (Ingo Karkat, 2011 Jan 25)

Since patch 7.2.46 Yankring plugin has become very slow, eventually make Vim
crash? (Raiwil, 2010 Nov 17)

Regexp engine performance:
- Profiling:

./vim -u NONE -s ~/vim/test/ruby.vim

./vim -u NONE -s ~/vim/test/loop.vim

./vim -u NONE -s ~/vim/test/alsa.vim

./vim -s ~/vim/test/todo.vim

./vim -s ~/vim/test/xml.vim
Dominique Pelle: xmlSyncDT is particularly slow (Jun 7)

- More test files from the src/pkg/regexp/testdata directory in the Go repo.
- Performance tests:

- Using asciidoc syntax. (Marek Schimara, 2013 Jun 6)
- ~/vim/text/FeiqCfg.xml (file from Netjune)
- ~/vim/text/edl.svg (also XML)
- glts has five tests. (May 25)
- ~/vim/test/slowsearch
- ~/vim/test/rgb.vim
- search for a.*e*exn in the vim executable. Go to last line to use

'hlsearch'.
- Slow combination of folding and PHP syntax highlighting. Script to
reproduce it. Caused by "syntax sync fromstart" in combination with patch
7.2.274. (Christian Brabandt, 2010 May 27) Generally, folding with
'foldmethod' set to "syntax" is slow. Do profiling to find out why.

Problem producing tags file when hebrew.frx is present. It has a BOM.
Results in E670. (Tony Mechelynck, 2010 May 2)

'beval' option should be global-local.

Ruby: ":ruby print $buffer.number" returns zero.

setpos() does not restore cursor position after :normal. (Tyru, 2010 Aug 11)

With "tw=55 fo+=a" typing space before) doesn't work well. (Scott Mcdermott,
2010 Oct 24)

Messages in message.txt are highlighted as examples.

When using cp850 the NBSP (0xff) is not drawn correctly. (Brett Stahlman, 2010

todo.txt — 489

Oct 22) 'isprint' is set to "@,161-255".

":echo "\x85" =~# '[\u0085]'" returns 1 instead of 0. (ZyX, 2010 Oct 3)

'cindent' not correct when 'list' is set. (Zdravi Korusef, 2010 Apr 15)

C-indenting: A matching { in a comment is ignored, but intermediate { are not
checked to be in a comment. Implement FM_SKIPCOMM flag of findmatchlimit().
Issue 46.

Using CompilerSet doesn't record where an option was set from. E.g., in the
gcc compiler plugin. (Gary Johnson, 2010 Dec 13)

":helpgrep" does not put the cursor in the correct column when preceded by
accented character. (Tony Mechelynck, 2010 Apr 15)

Don't call check_restricted() for histadd(), setbufvar(), settabvar(),
setwinvar().

Patch for gVimExt to show an icon. (Dominik Riebeling, 2010 Nov 7)

When 'lines' is 25 and 'scrolloff' is 12, "j" scrolls zero or two lines
instead of one. (Constantin Pan, 2010 Sep 10)

Gui menu edit/paste in block mode insert only inserts in one line (Bjorn
Winckler, 2011 May 11)
Requires a map mode for Insert mode started from blockwise Visual mode.

Problem with cursor in the wrong column. (SungHyun Nam, 2010 Mar 11)
Additional info by Dominique Pelle. (also on 2010 Apr 10)

CreateFile and CreateFileW are used without sharing, filewritable() fails when
the file was already open (e.g. script is being sourced). Add FILE_SHARE_READ|
FILE_SHARE_WRITE in mch_access()? (Philippe Vaucher, 2010 Nov 2)

Is ~/bin (literally) in $PATH supposed to work? (Paul, 2010 March 29)
Looks like only bash can do it. (Yakov Lerner)

Cscope "cs add" stopped working somewhat before 7.2.438. (Gary Johnson, 2010
Jun 29) Caused by 7.2.433?

Jumplist doesn't work properly in Insert mode? (Jean Johner, 2010 Mar 20)

Problem with transparent cmdline. Also: Terminal title is wrong with
non-ASCII character. (Lily White, 2010 Mar 7)

iconv() doesn't fail on an illegal character, as documented. (Yongwei Wu, 2009
Nov 15, example Nov 26) Add argument to specify whether iconv() should fail
or replace with a character and continue?

Add local time at start of --startuptime output.
Requires configure check for localtime().
Use format year-month-day hr:min:sec.

Patch to make ":hi link" also take arguments. (Nate Soares, 2012 Dec 4)

Shell not recognized properly if it ends in "csh -f". (James Vega, 2009 Nov 3)
Find tail? Might have a / in argument. Find space? Might have space in
path.

todo.txt — 490

Test 51 fails when language set to German. (Marco, 2011 Jan 9)
Dominique can't reproduce it.

'ambiwidth' should be global-local.

":function f(x) keepjumps" creates a function where every command is executed
like it has ":keepjumps" before it.

Coverity: Check if there are new reported defects:
https://scan.coverity.com/projects/241

Problem with editing file in binary mode. (Ingo Krabbe, 2009 Oct 8)

Display error when 'tabline' that includes a file name with double-width
characters. (2010 Aug 14, bootleq)

Problem with stop directory in findfile(). (Adam Simpkins, 2009 Aug 26)

Using ']' as the end of a range in a pattern requires double escaping:
/[@-\\]] (Andy Wokula, 2011 Jun 28)

For running gvim on a USB stick: avoid the OLE registration. Use a command
line argument -noregister.

When using an expression in 'statusline' leading white space sometimes goes
missing (but not always). (ZyX, 2010 Nov 1)

When a mapping exists both for insert mode and lang-insert mode, the last one
doesn't work. (Tyru, 2010 May 6) Or is this intended?

Still a problem with ":make" in the wrong directory. Caused by ":bufdo".
(Ajit Thakkar, 2009 Jul 1) More information Jul 9, Jul 15.
Caused by "doautoall syntaxset BufEnter *" in syntax/nosyntax.vim ?
There also is a BufLeave/BufEnter aucmd to save/restore view.
Does the patch to save/restore globaldir work?

":bufdo normal gg" while 'hidden' is set leaves buffers without syntax
highlighting. Don't disable Syntax autocommands then? Or add a flag/modifier
to avoid changing 'eventignore'?

Patch for displaying 0x200c and 0x200d. (Ali Gholami Rudi, 2009 May 6)
Probably needs a bit of work.

List of encoding aliases. (Takao Fujiwara, 2009 Jul 18)
Are they all OK? Update Jul 22.

Win32: Improved Makefile for MSVC. (Leonardo Valeri Manera, 2010 Aug 18)

Win32: Expanding 'path' runs into a maximum size limit. (bgold12, 2009 Nov 15)

Win32: Patch for using .png files for icons. (Charles Peacech, 2012 Feb 5)

Putting a Visual block while 'visualedit' is "all" does not leave the cursor
on the first character. (John Beckett, 2010 Aug 7)

Setting 'tags' to "tagsdir/*" does not find "tagsdir/tags". (Steven K. Wong,
2009 Jul 18)

Patch to add "focusonly" to 'scrollopt', so that scrollbind also applies in
window that doesn't have focus. (Jonathon Mah, 2009 Jan 12)

todo.txt — 491

https://scan.coverity.com/projects/241

Needs more work.

Problem with <script> mappings (Andy Wokula, 2009 Mar 8)

When starting Vim with "gvim -f -u non_existent_file > foo.txt" there are a
few control characters in the output. (Dale Wiles, 2009 May 28)

'cmdwinheight' is only used in last window when 'winheight' is a large value.
(Tony Mechelynck, 2009 Apr 15)

Status line containing winnr() isn't updated when splitting the window (Clark
J. Wang, 2009 Mar 31)

When $VIMRUNTIME is set in .vimrc, need to reload lang files. Already done
for GTK, how about others? (Ron Aaron, 2010 Apr 10)

":tab split fname" doesn't set the alternate file in the original window,
because win_valid() always returns FALSE. Below win_new_tabpage() in
ex_docmd.c.

Space before comma in function definition not allowed: "function x(a , b)"
Give a more appropriate error message. Add a remark to the docs.

string_convert() should be able to convert between utf-8 and utf-16le. Used
for GTK clipboard. Avoid requirement for iconv.

Now that colnr_T is int instead of unsigned, more type casts can be removed.

Don't load macmap.vim on startup, turn it into a plugin. (Ron Aaron,
2009 Apr 7) Reminder Apr 14.

Add "no_hlsearch" to winsaveview().

Bug: When reloading a buffer changed outside of Vim, BufRead autocommands
are applied to the wrong buffer/window. (Ben Fritz, 2009 Apr 2, May 11)
Ignore window options when not in the right window?
Perhaps we need to use a hidden window for applying autocommands to a buffer
that doesn't have a window.

When using "ab foo bar" and mapping <Tab> to <Esc>, pressing <Tab> after foo
doesn't trigger the abbreviation like <Esc> would. (Ramana Kumar, 2009 Sep 6)

getbufvar() to get a window-local option value for a buffer that's not
displayed in a window should return the value that's stored for that buffer.

":he ctrl_u" can be auto-corrected to ":he ctrl-u".

Diff mode out of sync. (Gary Johnson, 2010 Aug 4)

Win32: completion of file name ":e c:\!test" results in ":e c:\\!test", which
does not work. (Nieko Maatjes, 2009 Jan 8, Ingo Karkat, 2009 Jan 22)

Using ~ works OK on 'a' with composing char, but not on 0x0418 with composing
char 0x0301. (Tony Mechelynck, 2009 Mar 4)

This does not work yet: "a\(%C\)" (get composing characters into a submatch).

Inconsistent: starting with $LANG set to es_ES.utf-8 gives Spanish
messages, even though locale is not supported. But ":lang messages
es_ES.utf-8" gives an error and doesn't switch messages. (Dominique Pelle,

todo.txt — 492

2009 Jan 26)

When $HOME contains special characters, such as a comma, escape them when used
in an option. (Michael Hordijk, 2009 May 5)
Turn "esc" argument of expand_env_esc() into string of chars to be escaped.

Should make 'ignorecase' global-local, so that it makes sense setting it from
a modeline.

Add cscope target to Makefile. (Tony Mechelynck, 2009 Jun 18, replies by
Sergey Khorev)

Completion for ":buf" doesn't work properly on Win32 when 'shellslash' is off.
(Henrik Ohman, 2009, Jan 29)

shellescape() depends on 'shellslash' for quoting. That doesn't work when
'shellslash' is set but using cmd.exe. (Ben Fritz)
Use a different option or let it depend on whether 'shell' looks like a
unix-like shell?

Bug: in Ex mode (after "Q") backslash before line break, when yanked into a
register and executed, results in <Nul>: instead of line break.
(Konrad Schwarz, 2010 Apr 16)

Have a look at patch for utf-8 line breaking. (Yongwei Wu, 2008 Mar 1, Mar 23)
Now at: http://vimgadgets.sourceforge.net/liblinebreak/

Greek sigma character should be lower cased depending on the context. Can we
make this work? (Dominique Pelle, 2009 Sep 24)

When changing 'encoding' convert all the swap file names, so that we can
still delete them. Also convert all buffer file names?

"gqip" in Insert mode has an off-by-one error, causing it to reflow text.
(Raul Coronado, 2009 Nov 2)

MS-Windows: editing the first, empty buffer, 'ffs' set to "unix,dos", ":enew"
doesn't set 'ff' to "unix". (Ben Fritz, 2008 Dec 5) Reusing the old buffer
probably causes this.

'scrollbind' is not respected when deleting lines or undo. (Milan Vancura,
2009 Jan 16)

Having "Syntax" in 'eventignore' for :bufdo may cause problems, e.g. for
":bufdo e" when buffers are open in windows. ex_listdo(eap) could set the
option only for when jumping to another buffer, not when the command argument
is executed.

":pedit %" with a BufReadPre autocommand causes the cursor to move to the
first line. (Ingo Karkat, 2008 Jul 1) Ian Kelling is working on this.
Similar problem with ":e". (Marc Montu, 2014 Apr 22)

Cursor line moves in other window when using CTRL-W J that doesn't change
anything. (Dasn, 2009 Apr 7)

On Unix "glob('does not exist~')" returns the string. Without the "~" it
doesn't. (John Little, 2008 Nov 9)
Shell expansion returns unexpanded string?
Don't use shell when "~" is not at the start?

todo.txt — 493

http://vimgadgets.sourceforge.net/liblinebreak/

When using ":e ++enc=foo file" and the file is already loaded with
'fileencoding' set to "bar", then do_ecmd() uses that buffer, even though the
fileencoding differs. Reload the buffer in this situation? Need to check for
the buffer to be unmodified.
Unfinished patch by Ian Kelling, 2008 Jul 11. Followup Jul 14, need to have
another look at it.

c.vim: XXX in a comment is colored yellow, but not when it's after "#if 0".
(Ilya Dogolazky, 2009 Aug 7)

You can type ":w ++bad=x fname", but the ++bad argument is ignored. Give an
error message? Or is this easy to implement? (Nathan Stratton Treadway, 2008
Aug 20) This is in ucs2bytes(), search for 0xBF. Using the ++bad argument is
at the other match for 0xBF.

When adding "-complete=file" to a user command this also changes how the
argument is processed for <f-args>. (Ivan Tishchenko, 2008 Aug 19)

Win32: associating a type with Vim doesn't take care of space after a
backslash? (Robert Vibrant, 2008 Jun 5)

When 'rightleft' is set, cursorcolumn isn't highlighted after the end of a
line. It's also wrong in folds. (Dominique Pelle, 2010 Aug 21)

":help s/~" jumps to *s/\~*, while ":help s/\~" doesn't find anything. (Tim
Chase) Fix by Ian Kelling, 2008 Jul 14.

When mapping : to ; and ; to :, @; doesn't work like @: and @: doesn't work
either. Matt Wozniski: nv_at() calls do_execreg() which uses
put_in_typebuf(). Char mapped twice?

Despite adding save_subexpr() this still doesn't work properly:
Regexp: matchlist('12a4aaa', '^\(.\{-}\)\(\%5c\@<=a\+\)\(.\+\)\?')
Returns ['12a4', 'aaa', '4aaa'], should be ['12a4', 'aaa', '']
Backreference not cleared when retrying after \@<= fails?
(Brett Stahlman, 2008 March 8)

Problem with remote_send(). (Charles Campbell, 2008 Aug 12)

ftplugin for help file should set 'isk' to help file value.

Win32: remote editing fails when the current directory name contains "[".
(Ivan Tishchenko, Liu Yubao) Suggested patch by Chris Lubinski: Avoid
escaping characters where the backslash is not removed later. Asked Chris for
an alternate solution, also for src/ex_getln.c.
This also fails when the file or directory name contains "%". (Thoml, 2008
July 7)
Using --remote-silent while the current directory has a # in the name does not
work, the # needs to be escaped. (Tramblay Bruno, 2012 Sep 15)

When using remote-silent the -R flag is not passed on. (Axel Bender, 2012 May
31)

Win32: A --remote command that has a directory name starting with a (doesn't
work, the backslash is removed, assuming that it escapes the (. (Valery
Kondakoff, 2009 May 13)

Win32: Using "gvim --remote-tab-silent elŝuti.txt" doesn't work, the
multibyte character isn't passed and edits elsuti.txt.
(Raúl Núñez de Arenas Coronado, 2015 Dec 18)

todo.txt — 494

Problem with CTRL-F. (Charles Campbell, 2008 March 21)
Only happens with "gvim -geometry "160x26+4+27" -u NONE -U NONE prop.c".
'lines' is 54. (2008 March 27)

Problem with pointer wrapping around in getvcol(). (Wolfgang Kroworsch, 2008
Oct 19) Check for "col" being "MAXCOL" separately?

Unexpectedly inserting a double quote. (Anton Woellert, 2008 Mar 23)
Works OK when 'cmdheight' is 2.

8 Use a mechanism similar to omni completion to figure out the kind of tab
for CTRL-] and jump to the appropriate matching tag (if there are
several).

The utf class table is missing some entries:
0x2212, minus sign
0x2217, star
0x2500, bar
0x26ab, circle

Visual line mode doesn't highlight properly when 'showbreak' is used and the
line doesn't fit. (Dasn, 2008 May 1)

GUI: In Normal mode can't yank the modeless selection. Make "gy" do this?
Works like CTRL-Y in Command line mode.

C't: On utf-8 system, editing file with umlaut through Gnome results in URL
with %nn%nn, which is taken as two characters instead of one.
Try to reproduce at work.

Patch for default choice in file changed dialog. (Bjorn Winckler, 2008 Oct 19)
Is there a way to list all the files first?

Fail to edit file after failed register access. Error flag remains set?
(Lech Lorens, 2010 Aug 30)

Problem with 'ts' set to 9 and 'showbreak' to ">>>". (Matthew Winn, 2007 Oct
1)

":tab help" always opens a new tab, while ":help" re-uses an existing window.
Would be more consistent when an existing tab is re-used. (Tony Mechelynck)

Using Aap to build Vim: add remarks about how to set personal preferences.
Example on http://www.calmar.ws/tmp/aap.html

When 'diffopt' has "context:0" a single deleted line causes two folds to merge
and mess up syncing. (Austin Jennings, 2008 Jan 31)

Gnome improvements: Edward Catmur, 2007 Jan 7
Also use Save/Discard for other GUIs

New PHP syntax file, use it? (Peter Hodge)

":echoe" in catch block stops processing, while this doesn't happen outside of
a catch block. (ZyX, 2011 Jun 2)

Test 54 uses shell commands, that doesn't work on non-Unix systems. Use some
other way to test buffer-local autocommands.

todo.txt — 495

http://www.calmar.ws/tmp/aap.html

The documentation mentions the priority for ":2match" and ":3match", but it
appears the last one wins. (John Beckett, 2008 Jul 22) Caused by adding
matchadd()? Suggested patch by John, 2008 Jul 24.

When 'encoding' is utf-8 the command line is redrawn as a whole on every
character typed. (Tyler Spivey, 2008 Sep 3) Only redraw cmdline for
'arabicshape' when there is a character on the command line for which
(ARABIC_CHAR(u8c)) is TRUE.

Cheng Fang made javacomplete. (2007 Aug 11)
Asked about latest version: 0.77.1 is on www.vim.org.

More AmigaOS4 patches. (Peter Bengtsson, Nov 9)

Amiga patches with vbcc. (Adrien Destugues, 2010 Aug 30)
http://pulkomandy.ath.cx/drop/vim73_vbcc_amiga.diff

Problem with compound words? (Bert, 2008 May 6)
No warning for when flags are defined after they are used in an affix.

Screen redrawing when continuously updating the buffer and resizing the
terminal. (Yakov Lerner, 2006 Sept 7)

Add option settings to help ftplugin. (David Eggum, 2006 Dec 18)

Autoconf problem: when checking for iconv library we may add -L/usr/local/lib,
but when compiling further tests -liconv is added without the -L argument,
that may fail (e.g., sizeof(int)). (Blaine, 2007 Aug 21)

Problem with ".add" files when using two languages and restarting Vim. (Raul
Coronado, 2008 Oct 30)

Popup menu redraw: Instead of first redrawing the text and then drawing the
popup menu over it, first draw the new popup menu, remember its position and
size and then redraw the text, skipping the characters under the popup menu.
This should avoid flicker. Other solution by A.Politz, 2007 Aug 22.

When the file name has parenthesis, e.g., "foo (bar).txt", ":!ls '%'" has the
parenthesis escaped but not the space. That's inconsistent. Either escape
neither or both. No escaping might be best, because it doesn't depend on
particularities of the shell. (Zvi Har'El, 2007 Nov 10) (Teemu Likonen, 2008
Jun 3)
However, for backwards compatibility escaping might be necessary. Check if
the user put quotes around the expanded item?

A throw in a function causes missing an endif below the call. (Spiros
Bousbouras, 2011 May 16)

Error E324 can be given when a cron script has wiped out our temp directory.
Give a clear error message about this (and tell them not to wipe out /tmp).

Color for cUserLabel should differ from case label, so that a mistake in a
switch list is noticed:

switch (i)
{
case 1:
foobar:
}

Look at http://www.gtk-server.org/ . It has a Vim script implementation.

todo.txt — 496

http://pulkomandy.ath.cx/drop/vim73_vbcc_amiga.diff
http://www.gtk-server.org/

Netbeans problem. Use "nc -l 127.0.0.1 55555" for the server, then run gvim
with "gvim -nb:localhost:55555:foo". From nc do: '1:editFile!0 "foo"'. Then
go to Insert mode and add a few lines. Then backspacing every other time
moves the cursor instead of deleting. (Chris Kaiser, 2007 Sep 25)

Windows installer could add a "open in new tab of existing Vim" menu entry.
GvimExt: patch to add "Edit with single Vim &tabbed" menu entry.
Just have two choices, always using one Vim and selecting between using an
argument list or opening each file in a separate tab.
(Erik Falor, 2008 May 21, 2008 Jun 26)

Windows installer: licence text should not use indent, causes bad word wrap.
(Benjamin Fritz, 2010 Aug 16)

Changes for Win32 makefile. (Mike Williams, 2007 Jan 22, Alexei Alexandrov,
2007 Feb 8)

Win32: Can't complete shell command names. Why is setting xp_context in
set_one_cmd_context() inside #ifndef BACKSLASH_IN_FILENAME?

Win32: Patch for cscope external command. (Mike Williams, 2007 Aug 7)

Win32: XPM support only works with path without spaces. Patch by Mathias
Michaelis, 2006 Jun 9. Another patch for more path names, 2006 May 31.
New version: http://members.tcnet.ch/michaelis/vim/patches.zip (also for other
patches by Mathias, see mail Feb 22)

Win32: compiling with normal features and OLE fails. Patch by Mathias
Michaelis, 2006 Jun 4.

Win32: using CTRL-S in Insert mode doesn't remove the "+" from the tab pages
label. (Tsakiridis, 2007 Feb 18) Patch from Ian Kelling, 2008 Aug 6.

Win32: using "gvim --remote-tab-silent fname" sometimes gives an empty screen
with the more prompt. Caused by setting the guitablabel? (Thomas Michael
Engelke, 2007 Dec 20 - 2008 Jan 17)

Win32: patch for fullscreen mode. (Liushaolin, 2008 April 17)

Win32: When 'shell' is bash shellescape() doesn't always do the right thing.
Depends on 'shellslash', 'shellquote' and 'shellxquote', but shellescape()
only takes 'shellslash' into account.

Menu item that does "xxd -r" doesn't work when 'fileencoding' is utf-16.
Check for this and use iconv? (Edward L. Fox, 2007 Sep 12)
Does the conversion in the other direction work when 'fileencodings' is set
properly?

Cursor displayed in the wrong position when using 'numberwidth'. (James Vega,
2007 Jun 21)

When $VAR contains a backslash expand('$VAR') removes it. (Teemu Likonen, 2008
Jun 18)

C++ indenting wrong with "=". (James Kanze, 2007 Jan 26)

":lockvar" should use copyID to avoid endless loop.

When using --remote-silent and the file name matches 'wildignore' get an E479

todo.txt — 497

http://members.tcnet.ch/michaelis/vim/patches.zip

error. without --remote-silent it works fine. (Ben Fritz, 2008 Jun 20)

GVim: dialog for closing Vim should check if Vim is busy writing a file. Then
use a different dialog: "busy saving, really quit? yes / no".

Check other interfaces for changing curbuf in a wrong way. Patch like for
if_ruby.c.

":helpgrep" should use the directory from 'helpfile'.

The need_fileinfo flag is messy. Instead make the message right away and put
it in keep_msg?

Editing a file remotely that matches 'wildignore' results in a "no match"
error. Should only happen when there are wildcards, not when giving the file
name literally, and esp. if there is only one name.

Test 61 fails sometimes. This is a timing problem: "sleep 2" sometimes takes
longer than 2 seconds.

Using ":au CursorMoved * cmd" invokes mch_FullName(), which can be slow.
Can this be avoided? (Thomas Waba, 2008 Aug 24)
Also for ":w" without a file name.
The buffer has the full path in ffname, should pass this to the autocommand.

"vim -C" often has 'nocompatible', because it's set in some startup script.
Set 'compatible' after startup is done? Patch by James Vega, 2008 Feb 7.

VMS: while editing a file found in complex, Vim will save file into the first
directory of the path and not to the original location of the file.
(Zoltan Arpadffy)

VMS: VFC files are in some cases truncated during reading (Zoltan Arpadffy)

input() completion should not insert a backslash to escape a space in a file
name?

Ruby completion is insecure. Can this be fixed?

When 'backupskip' is set from $TEMP special characters need to be escaped.
(patch by Grembowietz, 2007 Feb 26, not quite right)
Another problem is that file_pat_to_reg_pat() doesn't recognize "\\", so "\\("
will be seen as a path separator plus "\(".

gvim d:\path\path\(FILE).xml should not remove the \ before the (.
This also fails with --remote.

When doing ":quit" the Netbeans "killed" event isn't sent. (Xavier de Gaye,
2008 Nov 10) call netbeans_file_closed() at the end of buf_freeall(), or in
all places where buf_freeall() is called?

aucmd_prepbuf() should also use a window in another tab page.

When unloading a buffer in a BufHidden autocommand the hidden flag is reset?
(Bob Hiestand, 2008 Aug 26, Aug 27)

Substituting an area with a line break with almost the same area does change
the Visual area. Can this be fixed? (James Vega, 2006 Sept 15)

GUI: When combining fg en bg make sure they are not equal.

todo.txt — 498

Use different pt_br dictionary for spell checking. (Jackson A. Aquino, 2006
Jun 5)

Use different romanian dictionary for spell checking. (Andrei Popescu, Nov
2008) Use http://downloads.sourceforge.net/rospell/ro_RO.3.2.zip
Or the hunspell-ro.3.2.tar.gz file, it also has a iso-8859-2 list.

In a C file with spell checking, in "% integer" "nteger" is seen as an error,
but "]s" doesn't find it. "nteger" by itself is found. (Ralf Wildenhues, 2008
Jul 22)

There should be something about spell checking in the user manual.

Add an option to specify the character to use when a double-width character is
moved to the next line. Default '>', set to a space to blank it out. Check
that char is single width when it's set (compare with 'listchars').

The generated vim.bat can avoid the loop for NT. (Carl Zmola, 2006 Sep 3)

When showing a diff between a non-existent file and an existing one, with the
cursor in the empty buffer, the other buffer only shows the last line. Change
the "insert" into a change from one line to many? (Yakov Lerner, 2008 May 27)

These two abbreviations don't give the same result:
let asdfasdf = "xyz\<Left>"
cabbr XXX <C-R>=asdfasdf<CR>
cabbr YYY xyz<Left>

Michael Dietrich: maximized gvim sometimes displays output of external command
partly. (2006 Dec 7)

In FileChangedShell command it's no longer allowed to switch to another
buffer. But the changed buffer may differ from the current buffer, how to
reload it then?

For Aap: include a config.arg.example file with hints how to use config.arg.

Default for 'background' is wrong when using xterm with 256 colors.
Table with estimates from Matteo Cavalleri, 2014 Jan 10.

Setting 'background' resets the Normal background color:
highlight Normal ctermbg=DarkGray
set background=dark

This is undesired, 'background' is supposed to tell Vim what the background
color is, not reset it.

Completion menu: For a wrapping line, completing a long file name, only the
start of the path is shown in the menu. Should move the menu to the right to
show more text of the completions. Shorten the items that don't fit in the
middle?

Accessing file#var in a function should not need the g: prepended.

When exiting detects a modified buffer, instead of opening the buffer in the
current tab, use an existing tab, if possible. Like finding a window where
the buffer is displayed. (Antonios Tsakiridis)

When ":cn" moves to an error in the same line the message isn't shortened.
Only skip shortening for ":cc"?

todo.txt — 499

http://downloads.sourceforge.net/rospell/ro_RO.3.2.zip

Problem with ":call" and dictionary function. Hari Krishna Dara, Charles
Campbell 2006 Jul 06.

A custom completion function in a ":command" cannot be a Funcref. (Andy
Wokula, 2007 Aug 25)

Problem with using :redir in user command completion function? (Hari Krishna
Dara, 2006 June 21)

Another resizing problem when setting 'columns' and 'lines' to a very large
number. (Tony Mechelynck, 2007 Feb 6)

After starting Vim, using '0 to jump somewhere in a file, ":sp" doesn't center
the cursor line. It works OK after some other commands.

Win32: Is it possible to have both postscript and Win32 printing?

Using UTF-8 character with ":command" does not work properly. (Matt Wozniski,
2008 Sep 29)

In the Netbeans interface add a "vimeval" function, so that the other side can
check the result of has("patch13").

Cursor line at bottom of window instead of halfway after saving view and
restoring. Only with 'nowrap'. (Robert Webb, 2008 Aug 25)

Netrw has trouble executing autocommands only for a directory. Add <isdir>
and <notisdir> to autocommand patterns? Also <isfile>?

Add command modifier that skips wildcard expansion, so that you don't need to
put backslashes before special chars, only for white space.

In mswin.vim: Instead of mapping <C-V> for Insert mode in a complicated way,
can it be done like ":imap <C-V> <MiddleMouse>" without negative side effects?

When right after "vim file", "M" then CTRL-W v the windows are scrolled
differently and unexpectedly. Caused by patch 7.2.398?

The magic clipboard format "VimClipboard2" appears in several places. Should
be only one.

Win32, NTFS: When editing a specific infostream directly and 'backupcopy' is
"auto" should detect this situation and work like 'backupcopy' is "yes". File
name is something like "c:\path\foo.txt:bar", includes a colon. (Alex
Jakushev, 2008 Feb 1)

Small problem displaying diff filler line when opening windows with a script.
(David Luyer, 2007 Mar 1 ~/Mail/oldmail/mool/in.15872)

Is it allowed that 'backupext' is empty? Problems when backup is in same dir
as original file? If it's OK don't compare with 'patchmode'. (Thierry Closen)

Patch for adding ":lscscope". (Navdeep Parhar, 2007 Apr 26; update 2008 Apr
23)

":mkview" isn't called with the right buffer argument. Happens when using
tabs and the autocommand "autocmd BufWinLeave * mkview". (James Vega, 2007
Jun 18)

todo.txt — 500

When completing from another file that uses a different encoding completion
text has the wrong encoding. E.g., when 'encoding' is utf-8 and file is
latin1. Example from Gombault Damien, 2007 Mar 24.

In gvim the backspace key produces a backspace character, but on Linux the
VERASE key is Delete. Set VERASE to Backspace? (patch by Stephane Chazelas,
2007 Oct 16)

TermResponse autocommand isn't always triggered when using vimdiff. (Aron
Griffis, 2007 Sep 19)

Create a gvimtutor.1 file and change Makefiles to install it.

When 'encoding' is utf-8 typing text at the end of the line causes previously
typed characters to be redrawn. Caused by patch 7.1.329. (Tyler Spivey, 2008
Sep 3, 11)

":vimgrep" does not recognize a recursive symlink. Is it possible to detect
this, at least for Unix (using device/inode)?

When switching between windows the cursor is often put in the middle.
Remember the relative position and restore that, just like lnum and col are
restored. (Luc St-Louis)

Add an option for a minimal text length before inserting a line break for
'textwidth'. Avoids very short lines when a very long word follows.
(Kartik Agaram)

Better plugin support (not plugin manager, see elsewhere for that):
- Avoid use of feedkeys, add eval functions where needed:

- manipulating the Visual selection?
- Add createmark(): add a mark like mM, but return a unique ID. Need some way

to clean them up again... Use a name + the script ID.
Add createmark(, 'c') to track inserts/deletes before the column.

- Plugins need to make a lot of effort, lots of mappings, to know what
happened before pressing the key that triggers a plugin action. How about
keeping the last N pressed keys, so that they do not need to be mapped?

- equivalent of netbeans_beval_cb(). With an autocommand?
- Add something to enable debugging when a remote message is received.

More patches:
- Another patch for Javascript indenting. (Hari Kumar, 2010 Jul 11)

Needs a few tests.
- Add 'cscopeignorecase' option. (Liang Wenzhi, 2006 Sept 3)
- Extra argument to strtrans() to translate special keys to their name (Eric

Arnold, 2006 May 22)
- Mac: indicate whether a buffer was modified. (Nicolas Weber, 2006 Jun 30)
- Allow negative 'nrwidth' for left aligning. (Nathan Laredo, 2006 Aug 16)
- ml_append_string(): efficiently append to an existing line. (Brad

Beveridge, 2006 Aug 26) Use in some situations, e.g., when pasting a
character at a time?

- recognize hex numbers better. (Mark Manning, 2006 Sep 13)
- Add <AbbrExpand> key, to expand an abbreviation in a mapping. (Kana

Natsuno, 2008 Jul 17)
- Add 'wspara' option, also accept blank lines like empty lines for "{" and

"}". (Mark Lundquist, 2008 Jul 18)
- Patch to add CTRL-T to delete part of a path on cmdline. (Adek, 2008 Jul

21)

todo.txt — 501

- Instead of creating a copy of the tutor in all the shell scripts, do it in
vimtutor.vim. (Jan Minar, 2008 Jul 20)

- When fsync() fails there is no hint about what went wrong. Patch by Ben
Schmidt, 2008 Jul 22.

- testdir/Make_dos_sh.mak for running tests with MingW. (Bill McCarthy, 2008
Sep 13)

- Replace ccomplete.vim by cppcomplete.vim from www.vim.org? script 1520 by
Vissale Neang. (Martin Stubenschrott) Asked Vissale to make the scripts
more friendly for the Vim distribution.
New version received 2008 Jan 6.
No maintenance in two years...

- Patch to open dropped files in new tabs. (Michael Trim, 2010 Aug 3)

Awaiting updated patches:
9 Mac unicode patch (Da Woon Jung, Eckehard Berns):

8 Add patch from Muraoka Taro (Mar 16) to support input method on Mac?
New patch 2004 Jun 16

- selecting proportional font breaks display
- UTF-8 text causes display problems. Font replacement causes this.
- Command-key mappings do not work. (Alan Schmitt)
- With 'nopaste' pasting is wrong, with 'paste' Command-V doesn't work.

(Alan Schmitt)
- remove 'macatsui' option when this has been fixed.
- when 'macatsui' is off should we always convert to "macroman" and ignore

'termencoding'?
9 HTML indenting can be slow. Caused by using searchpair(). Can search()

be used instead? A.Politz is looking into a solution.
8 Win32: Add minidump generation. (George Reilly, 2006 Apr 24)
7 Completion of network shares, patch by Yasuhiro Matsumoto.

Update 2004 Sep 6.
How does this work? Missing comments.

8 Add a few more command names to the menus. Patch from Jiri Brezina
(28 feb 2002). Will mess the translations...

7 ATTENTION dialog choices are more logical when "Delete it" appears
before "Quit". Patch by Robert Webb, 2004 May 3.

- Include flipcase patch: ~/vim/patches/wall.flipcase2 ? Make it work
for multibyte characters.

- Win32: add options to print dialog. Patch from Vipin Aravind.
- Patch to add highlighting for whitespace. (Tom Schumm, 2003 Jul 5)

use the patch that keeps using HLF_8 if HLF_WS has not
been given values.
Add section in help files for these highlight groups?

7 Add "DefaultFG" and "DefaultBG" for the colors of the menu. (Marcin
Dalecki has a patch for Motif and Carbon)

- Add possibility to highlight specific columns (for Fortran). Or put a
line in between columns (e.g., for 'textwidth').
Patch to add 'hlcolumn' from Vit Stradal, 2004 May 20.
confirm() add "flags" argument, with 'v' for vertical

layout and 'c' for console dialog. (Haegg)
Flemming Madsen has a patch for the 'c' flag
(2003 May 13)

raisewin() raise gvim window (see HierAssist patch for
Tcl implementation ~/vim/HierAssist/)

taglist() add argument to specify maximum number of matches.
useful for interactive things or completion.

col('^') column of first non-white character.
Can use "len(substitute(getline('.'), '\S.*', '', ''))
+ 1", but that's ugly.

7 Add patch from Benoit Cerrina to integrate Vim and Perl functions
better. Now also works for Ruby (2001 Nov 10)

todo.txt — 502

7 When 'rightleft' is set, the search pattern should be displayed right
to left as well? See patch of Dec 26. (Nadim Shaikli)

8 Option to lock all used memory so that it doesn't get swapped to disk
(unencrypted). Patch by Jason Holt, 2003 May 23. Uses mlock.

7 Add ! register, for shell commands. (patch from Grenie)
8 In the gzip plugin, also recognize *.gz.orig, *.gz.bak, etc. Like it's

done for filetype detection. Patch from Walter Briscoe, 2003 Jul 1.
7 Add a "-@ filelist" argument: read file names from a file. (David

Kotchan has a patch for it)
7 Add ":justify" command. Patch from Vit Stradal 2002 Nov 25.
- findmatch() should be adjusted for Lisp. See remark at

get_lisp_indent(). Esp. \(and \) should be skipped. (Dorai Sitaram,
incomplete patch Mar 18)

- For GUI Find/Replace dialog support using a regexp. Patch for Motif
and GTK by degreneir (nov 10 and nov 18).

- Patch for "paranoid mode" by Kevin Collins, March 7. Needs much more work.
- Patch for redo register. (Ben Schmidt, 2007 Oct 19)

Await response to question to make the register writable.

Better 'rightleft' or BIDI support:
- Minimal Vi with bidi support: https://github.com/aligrudi/neatvi

By Ali Gholami Rudi, also worked on arabic.c

Spell checking:
- List of common misspellings in English:

https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
German:
https://de.wikipedia.org/wiki/Wikipedia:Liste_von_Tippfehlern/F%C3%BCr_Maschinen
There are other languages.

- [s does not find missing capital at start of the line. #10838
Probably because the dot at the end of the previous line isn't seen.

- When 'cursorline' is set and the first word should have SpellCap
highlighting, redrawing the line removes it when moving the cursor away
from the line. (#7085) Would need to inspect the end of the previous line
and update "capcol_lnum" and "cap_col".

- Mixup of highlighting when there is a match and SpellBad. (ZyX, 2015 Jan 1)
- Spell files use a latin single quote. Unicode also has another single

quote: 0x2019. (Ron Aaron, 2014 Apr 4)
New OpenOffice spell files support this with ICONV. But they are not
compatible with Vim spell files. The old files can no longer be
downloaded.

- Add a feature to only consider two spaces after a dot to start a new
sentence. Don't give the capitalization error when there is one space.

- Add a way to specify punctuation characters. Add the superscript numbers
by default: 0x2070, 0xb9, 0xb2, 0xb3, 0x2074 - 0x2079.

- In popup menu: If the only problem is the case of the first character,
don't offer "ignore" and "add to word list".

- Spell menu: When using the Popup menu to select a replacement word,
":spellrepeat" doesn't work. SpellReplace() uses setline(). Can it use
"z=" somehow? Or use a new function.

Quickfix/Location List:
- Window size is wrong when using quickfix window. (Lifepillar, 2018 Aug 24,

#2999)
- When using CTRL-W CR in the quickfix window, the jumplist in the opened

window is cleared, to avoid going back to the list of errors buffer (would
have two windows with it). Can we just remove the jump list entries for

todo.txt — 503

https://github.com/aligrudi/neatvi
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
https://de.wikipedia.org/wiki/Wikipedia:Liste_von_Tippfehlern/F%C3%BCr_Maschinen

the quickfix buffer?
- When an item in the quickfix list has a file name that does not exist,

behave like the item was not a match for :cnext.
- When adding an item to a new quickfix list make ":cnext" jump to that

item. Make a difference being at the first item and not having used
:cnext at all. (Afanasiy Fet, 2017 Jan 3)

- When opening quickfix window, disable spell checking?
- Patch for supporting count before CR in quickfix window. (AOYAMA Shotaro,

2007 Jan 1)
- Patch from Herculano de Lima Einloft Neto for better formatting of the

quickfix window (2004 dec 2)
- Amiga: When using quickfix with the Manx compiler we only get the first 25

errors. How do we get the rest?
8 The quickfix file is read without conversion, thus in 'encoding'. Add an

option to specify the encoding of the errorfile and convert it. Also for
":grep" and ":helpgrep".
More generic solution: support a filter (e.g., by calling a function).

7 Add a command that goes back to the position from before jumping to the
first quickfix location.

Vi incompatibility:
- Try new POSIX tests, made after my comments. (Geoff Clare, 2005 April 7)

Version 1.5 is in ~/src/posix/1.5. (Lynne Canal)
8 With undo/redo only marks in the changed lines should be changed. Other

marks should be kept. Vi keeps each mark at the same text, even when it
is deleted or restored. (Webb)
Also: A mark is lost after: make change, undo, redo and undo.
Example: "{d''" then "u" then "d''": deletes an extra line, because the ''
position is one line down. (Veselinovic)

8 When stdin is not a tty, and Vim reads commands from it, an error should
make Vim exit.

7 Unix Vim (not gvim): Typing CTRL-C in Ex mode should finish the line
(currently you can continue typing, but it's truncated later anyway).
Requires a way to make CTRL-C interrupt select() when in cooked input.

8 When loading a file in the .exrc, Vi loads the argument anyway. Vim skips
loading the argument if there is a file already. When no file argument
given, Vi starts with an empty buffer, Vim keeps the loaded file. (Bearded)

6 In Insert mode, when using <BS> or , don't wipe out the text, but
only move back the cursor. Behaves like '$' in 'cpoptions'. Use a flag
in 'cpoptions' to switch this on/off.

8 When editing a file which is a symbolic link, and then opening another
symbolic link on the same file, Vim uses the name of the first one.
Adjust the file name in the buffer to the last one used? Use several file
names in one buffer???
Also: When first editing file "test", which is symlink to "test2", and
then editing "test2", you end up editing buffer "test" again. It's not
logical that the name that was first used sticks with the buffer.

7 The ":undo" command works differently in Ex mode. Edit a file, make some
changes, "Q", "undo" and _all_ changes are undone, like the ":visual"
command was one command.
On the other hand, an ":undo" command in an Ex script only undoes the last
change (e.g., use two :append commands, then :undo).

7 The ":map" command output overwrites the command. Perhaps it should keep
the ":map" when it's used without arguments?

7 CTRL-L is not the end of a section? It is for Posix! Make it an option.
7 Add a way to send an email for a crashed edit session. Create a file when

making changes (containing name of the swap file), delete it when writing
the file. Supply a program that can check for crashed sessions (either
all, for a system startup, or for one user, for in a .login file).

7 Vi doesn't do autoindenting when input is not from a tty (in Ex mode).

todo.txt — 504

7 "z3<CR>" should still use the whole window, but only redisplay 3 lines.
7 ":tag xx" should move the cursor to the first non-blank. Or should it go

to the match with the tag? Option?
7 Implement 'autoprint'/'ap' option.
7 Add flag in 'cpoptions' that makes <BS> after a count work like

(Sayre).
7 Add flag in 'cpoptions' that makes operator (yank, filter) not move the

cursor, at least when cancelled. (default Vi compatible).
7 This Vi-trick doesn't work: "Q" to go to Ex mode, then "g/pattern/visual".

In Vi you can edit in visual mode, and when doing "Q" you jump to the next
match. Nvi can do it too.

7 Support '\' for line continuation in Ex mode for these commands: (Luebking)
g/./a\ g/pattern1/ s/pattern2/rep1\\
line 1\ line 2\\
line 2\ line 3\\
. line4/

6 ":e /tmp/$tty" doesn't work. ":e $uid" does. Is $tty not set because of
the way the shell is started?

6 Vi compatibility (optional): make "ia<CR><ESC>10." do the same strange
thing. (only repeat insert for the first line).

GTK+ GUI:
9 Crash with X command server over ssh. (Ciaran McCreesh, 2006 Feb 6)
8 GTK 2: Combining UTF-8 characters not displayed properly in menus (Mikolaj

Machowski) They are displayed as separate characters. Problem in
creating a label?

8 GTK 2: Combining UTF-8 characters are sometimes not drawn properly.
Depends on the font size, "monospace 13" has the problem. Vim seems to do
everything right, must be a GTK bug. Is there a way to work around it?

9 Can't paste a Visual selection from GTK-gvim to vim in xterm or Motif gvim
when it is longer than 4000 characters. Works OK from gvim to gvim and
vim to vim. Pasting through xterm (using the shift key) also works.
It starts working after GTK gvim loses the selection and gains it again.

- Gnome2: When moving the toolbar out of the dock, so that it becomes
floating, it can no longer be moved. Therefore making it float has been
blocked for now.

- Mapping with partial match not executed properly in GTK. (Ingo Karkat,
#7082)

- Add more testing of the GTK GUI.
- gtk_test_widget_click() can be used to simulate a click in a widget.

- Tests failing for "make testgui" with GTK:
- Test_setbufvar_options()
- Test_exit_callback_interval()

- When adding a timer from 'balloonexpr' it won't fire, because
g_main_context_iteration() doesn't return. Need to trigger an event when
the timer expires.

- problem with 'L' in 'guioptions' changing the window width. (Aaron
Cornelius, 2012 Feb 6)

- Patch to invert characters differently in GTK. (Yukihiro Nakadaira, 2013
May 5)

- drawing a double-width combining character over single-width characters
doesn't look right. (Dominique Pelle, 2010 Aug 8)

- tear-off menu does not work. (Kurt Sonnenmoser, 2010 Oct 25)
- Patch for GTK buttons X1Mouse and X2Mouse. (Christian J. Robinson, 2010

Aug 9)
- When setting 'columns' in a startup script and doing ":vertical diffsplit"

the window isn't redrawn properly, see two vertical bars.
- when the Tab pages bar appears or disappears while the window is maximized

the window is no longer maximized. Patch that has some idea but doesn't

todo.txt — 505

work from Geoffrey Antos, 2008 May 5. Also: the window may no longer fit
on the screen, thus the command line is not visible.

- Patch to support horizontal scroll wheel in GTK. Untested. (Bjorn
Winckler, 2010 Jun 30)

Win32 GUI known bugs:
- Win32: tearoff menu window should have a scrollbar when it's taller than

the screen.
8 The -P argument doesn't work very well with many MDI applications.

The last argument of CreateWindowEx() should be used, see MSDN docs.
Tutorial: http://win32assembly.online.fr/tut32.html

6 Win32 GUI: With "-u NONE -U NONE" and doing "CTRL-W v" "CTRL-W o", the ":"
of ":only" is highlighted like the cursor. (Lipelis)

8 When 'encoding' is "utf-8", should use 'guifont' for both normal and wide
characters to make Asian languages work. Win32 fonts contain both
type of characters.

7 When font smoothing is enabled, redrawing can become very slow. The reason
appears to be drawing with a transparent background. Would it be possible
to use an opaque background in most places?

7 The cursor color indicating IME mode doesn't work properly. (Shizhu Pan,
2004 May 9)

8 Win32: When clicking on the gvim title bar, which gives it focus, produces
a file-changed dialog, after clicking on a button in that dialog the gvim
window follows the mouse. The button-up event is lost. Only with
MS-Windows 98?
Try this: ":set sw ts", get enter-prompt, then change the file in a
console, go back to Vim and click "reload" in the dialog for the changed
file: Window moves with the cursor!
Put focus event in input buffer and let generic Vim code handle it?

8 When Vim is minimized and when maximizing it a file-changed dialog pops
up, Vim isn't maximized. It should be done before the dialog, so that it
appears in the right position. (Webb)

9 When selecting at the more-prompt or hit-enter-prompt, the right mouse
button doesn't give popup menu.
At the hit-enter prompt CTRL-Y doesn't work to copy the modeless
selection.
On the command line, don't get a popup menu for the right mouse button.
Let the middle button paste selected text (not the clipboard but the
non-Visual selection)? Otherwise CTRL-Y has to be used to copy the text.

8 When 'grepprg' doesn't execute, the error only flashes by, the
user can hardly see what is wrong. (Moore)
Could use vimrun with an "-nowait" argument to only wait when an error
occurs, but "command.com" doesn't return an error code.

8 When the 'shell' cannot be executed, should give an appropriate error msg.
Esp. for a filter command, currently it only complains the file could not
be read.

7 At the hit-enter prompt scrolling now no longer works. Need to use the
keyboard to get around this. Pretend <CR> was hit when the user tries to
scroll?

7 Scrollbar width doesn't change when selecting other windows appearance.
Also background color of Toolbar and rectangle below vert. scrollbar.

6 Drawing text transparently doesn't seem to work (when drawing part cursor).
8 CTRL key doesn't always work in combination with ALT key. It does work

for function keys, not for alphabetic characters. Perhaps this is because
CTRL-ALT is used by Windows as AltGr?

8 CTRL-- doesn't work for AZERTY, because it's CTRL-[for QWERTY. How do we
know which keyboard is being used?

7 When scrolling, and a background color is dithered, the dither pattern
doesn't always join correctly between the scrolled area and the new drawn

todo.txt — 506

http://win32assembly.online.fr/tut32.html

area (Koloseike).
8 When gui_init_font() is called with "*", p_guifont is freed while it might

still be used somewhere. This is too tricky, do the font selection first,
then set the new font by name (requires putting all logfont parameters in
the font name).

- When running a fast timer, the cursor no longer blinks. Was reported:
cursor blinks in terminal on widows with a timer. (xtal8, #2142)

- Last message from startup doesn't show up when there is an echoerr
command. (Cyril Slobin, 2009 Mar 13)

Motif:
6 New Motif toolbar button from Marcin Dalecki:

- When the mouse pointer is over an Agide button the red becomes black.
Something with the way colors are specified in the .xpm file.

- The pixmap is two pixels smaller than it should be. The gap is filled
with grey instead of the current toolbar background color.

9 Can configure be changed to disable netbeans if the Xpm library is
required and it's missing?

8 When using the resource "Vim*borderwidth 2" the widgets are positioned
wrong.

9 XIM is disabled by default for SGI/IRIX. Fix XIM so that 'imdisable' can
be off by default.

9 XIM doesn't work properly for Motif. (Yasuhiro Matsumoto) For now,
keep XIM active at all times when the input method has the preediting
flag.

8 X11: A menu that contains an umlaut is truncated at that character.
Happens when the locale is "C", which uses ASCII instead of IS0-8859-1.
Is there a way to use latin1 by default? Gnome_init() seems to do this.

8 Perhaps use fontsets for everything?
6 When starting in English and switching the language to Japanese, setting

the locale with ":lang", 'guifontset' and "hi menu font=", deleting all
menus and setting them again, the menus don't use the new font. Most of
the tooltips work though...

7 Motif: when using a file selection dialog, the specified file name is not
always used (when specifying a filter or another directory).

8 When 'encoding' is different from the current locale (e.g., utf-8) the
menu strings don't work. Requires conversion from 'encoding' to the
current locale. Workaround: set 'langmenu'.

Motif GUI:
- gui_mch_browsedir() is missing, browsedir() doesn't work nicely.
7 Use XmStringCreateLocalized() instead of XmStringCreateSimple()?

David Harrison says it's OK (it exists in Motif 1.2).
8 Lesstif: When deleting a menu that's torn off, the torn off menu becomes

very small instead of disappearing. When closing it, Vim crashes.
(Phillipps)

GUI:
9 On Solaris, creating the popup menu causes the right mouse button no

longer to work for extending the selection. (Halevy)
9 When running an external program, it can't always be killed with CTRL-C.

e.g., on Solaris 5.5, when using "K" (Keech). Other 'guipty' problems on
Solaris 2.6. (Marley)

9 On Solaris: Using a "-geometry" argument, bigger than the window where Vim
is started from, causes empty lines below the cmdline. (raf)

8 When setting 'langmenu', it should be effective immediately. Store both
the English and the translated text in the menu structure. Re-generate

todo.txt — 507

the translation when 'langmenu' has changed.
8 Basic flaw in the GUI code: NextScreen is updated before calling

gui_write(), but the GUI code relies on NextScreen to represent the state
of where it is processing the output.
Need better separation of Vim core and GUI code.

8 When fontset support is enabled, setting 'guifont' to a single font
doesn't work.

8 Menu priority for sub-menus for: Amiga.
8 When translating menus ignore the part after the Tab, the shortcut. So

that the same menu item with a different shortcut (e.g., for the Mac) are
still translated.

8 Add menu separators for Amiga.
8 Add way to specify the file filter for the browse dialog. At least for

browse().
8 Add dialog for search/replace to other GUIs? Tk has something for this,

use that code? Or use console dialog.
8 When selecting a font with the font dialog and the font is invalid, the

error message disappears too quick.
7 More features in the find/replace dialog:

- regexp on/off
- search in selection/buffer/all buffers/directory

when all buffers/directory is used:
- filter for file name
when directory is used:
- subdirectory on/off
- top directory browser

8 gui_check_colors() is not called at the right moment. Do it much later,
to avoid problems.

8 gui_update_cursor() is called for a cursor shape change, even when there
are mappings to be processed. Only do something when going to wait for
input. Or maybe every 100 ms?

8 X11: When the window size is reduced to fit on screen, there are blank
lines below the text and bottom scrollbar. "gvim -geometry 80x78+0+0".
When the "+0+0" is omitted it works.

8 When starting an external command, and 'guipty' set, BS and DEL are mixed
up. Set erase character somehow?

8 The compose key doesn't work properly (Cepas). Both for Win32 and X11.
7 The cursor in an inactive window should be hollow. Currently it's not

visible.
7 GUI on Solaris 2.5.1, using /usr/dt/..: When gvim starts, cursor is

hollow, after window lowered/raised it's OK. (Godfrey)
7 When starting GUI with ":gui", and window is made smaller because it

doesn't fit on the screen, there is an extra redraw.
8 When setting font with .Xdefaults, there is an extra empty line at the

bottom, which disappears when using ":set guifont=<Tab>". (Chadzelek)
8 When font shape changes, but not the size, doing ":set font=" does not

redraw the screen with the new font. Also for Win32.
When the size changes, on Solaris 2.5 there isn't a redraw for the
remaining part of the window (Phillipps).

- Flashes really badly in certain cases when running remotely from a Sun.
4 Re-write the code so that the highlighting isn't changed multiple times

when doing a ":hi clear". The color changes happen three or more times
currently. This is very obvious on a 66Mhz 486.

Win32 console:
8 Should $USERPROFILE be preferred above $HOMEDRIVE/$HOMEPATH? No, but it's

a good fallback, thus use:
$HOME
$HOMEDRIVE$HOMEPATH

todo.txt — 508

SHGetSpecialFolderPath(NULL, lpzsPath, CSIDL_APPDATA, FALSE);
$USERPROFILE
SHGetSpecialFolderPath(NULL, lpzsPath, CSIDL_COMMON_APPDATA, FALSE);
$ALLUSERSPROFILE
$SYSTEMDRIVE\
C:\

8 Win32 console: <M-Up> and <M-Down> don't work. (Geddes) We don't have
special keys for these. Should use modifier + key.

8 Win32 console: caps-lock makes non-alpha keys work like with shift.
Should work like in the GUI version.

8 Environment variables in DOS are not case sensitive. Make a define for
STRCMP_ENV(), and use it when comparing environment var names.

8 Setting 'shellslash' has no immediate effect. Change all file names when
it is set/reset? Or only use it when actually executing a shell command?

8 When editing a file on a Samba server, case might matter. ":e file"
followed by ":e FILE" will edit "file" again, even though "FILE" might be
another one. Set last used name in buflist_new()? Fix do_ecmd(), etc.

8 When a buffer is editing a file like "ftp://mach/file", which is not going
to be used like a normal file name, don't change the slashes to
backslashes. (Ronald Hoellwarth)

Win32 console:
9 When editing a file by its short file name, it should be expanded into its

long file name, to avoid problems like these: (Mccollister)
1) Create a file called ".bashrc" using some other editor.
2) Drag that file onto a shortcut or the actual executable.
3) Note that the file name is something like BASHRC~1
4) Go to File->Save As menu item and type ".bashrc" as the file name.
5) Press "Yes" to indicate that I want to overwrite the file.
6) Note that the message "File exists (add ! to override)" is displayed

and the file is not saved.
Use FindFirstFile() to expand a file name and directory in the path to its
long name.

8 Also implement 'conskey' option for the Win32 console version? Look at
how Xvi does console I/O under Windows NT.

7 Re-install the use of $TERM and support the use of different terminals,
besides the console.

8 Use of <altgr> modifier doesn't work? 5.3 was OK. (Garcia-Suarez/Guckes)
9 Mapping <C-S-Tab> doesn't work correctly. How to see the difference with

<C-S-i>?
9 tmpnam() uses file in root of file system: "\asdf". That doesn't work on

a Netware network drive. Use same function as for Win32 GUI?
8 In os_win32.h, HAVE_STRICMP and HAVE_STRNICMP are defined only if __GNUC__

is not defined. Shouldn't that be the other way around?

Amiga:
8 In mch_inchar() should use convert_input_safe() to handle incomplete byte

sequences.
9 In mch_expandpath() a "*" is to be expanded, but "*" isn't. Remove

backslashes in result.
8 Executing a shell, only one option for 'shell' is separated. Should do

all options, using white space separation.

Macintosh:
- GUI: gui_mch_browsedir() is missing.
7 Loading the Perl library only works on OS/X 10.2 or 10.3, never on both.

Load the Perl library dynamically see Python sources file dynload_mac

todo.txt — 509

ftp://mach/file

(Jack)
dynamic linking: http://developer.apple.com/technotes/tn2002/tn2064.html

8 inputdialog() doesn't resize when giving more text lines. (David Fishburn,
2006 Sept 28)

8 Define vim_mkdir() for Macintosh.
8 Define mch_writable() for Macintosh.
9 When DiskLock is running, using a swap file causes a crash. Appears to be

a problem with writing a file that starts with a dot. (Giacalone)
9 In mac_expandpath() check that handling of backslashes is done properly.
- Build problem with small features on Mac OS X 10.6. (Rainer, 2011 Jan 24)
- Version of netbeans.c for use with MacVim. (Kazuki Sakamoto, 2010 Nov 18)
- Mac with X11: clipboard doesn't work properly. (Raf, 2010 Aug 16)
- Move Carbon todo items to os_mac.txt. Note that this version is frozen,

try the Cocoa version.
- After a ":vsplit" the left scrollbar doesn't appear until 'columns' is

changed or the window is resized.
- Patch for configure: remove arch from ruby link args. (Knezevic, 2008 Mar

5) Alternative: Kazuki Sakamoto, Mar 7.
- trouble compiling with Motif, requires --disable-darwin. (Raf, 2008 Aug 1)

Reply by Ben Schmidt.
- Using gvim: netrw window disappears. (Nick Lo, 2006 Jun 21)

"Small" problems:
- When using e_secure in do_one_cmd() mention the command being executed,

otherwise it's not clear where it comes from.
9 For Turkish vim_tolower() and vim_toupper() also need to use utf_

functions for characters below 0x80. (Sertacyildiz)
9 When the last edited file is a help file, using '0 in a new Vim doesn't

edit the file as a help file. 'filetype' is OK, but 'iskeyword' isn't,
file isn't readonly, etc.

8 When an ":edit" is inside a try command and the ATTENTION prompt is used,
the :catch commands are always executed, also when the file is edited
normally. Should reset did_emsg and undo side effects. Also make sure
the ATTENTION message shows up. Servatius Brandt works on this.

7 Vimtutor leaves escape sequence in terminal. This is the xterm response to
requesting the version number. (Yasuhiro Matsumoto)

8 When redirecting and using ":silent" the current column for displaying and
redirection can be different. Use a separate variable to hold the column
for redirection.

7 The messages for "vim --help" and "vim --version" don't use
'termencoding'.

- Could the hit-enter prompt be avoided when a message only overlaps the
'showcmd' area? Clear that area when the next cmd is typed.

8 When 'scrollbind' is set, a window won't scroll horizontally if the cursor
line is too short. Add a word in 'scrollopt' to allow moving the cursor
to longer line that is visible. A similar thing is done for the GUI when
using the horizontal scrollbar.

8 When giving a ":bwipeout" command a file-changed dialog may popup for this
buffer, which is pointless. (Mike Williams)

8 On MS-Windows ":make" doesn't show output while it is working. Use the
tee.exe from http://unxutils.sourceforge.net/ ? About 16 Kbyte in the
UnxUtils.zip archive.
Is it better than what we have in src/tee?

8 When doing Insert mode completion a mapping cannot recursively call
edit(), because the completion information is global. Put everything in
an allocated structure?

7 mb_off2cells() doesn't work correctly on the tail byte of a double-byte
character. (Yasuhiro Matsumoto) It should return 1 when used on a tail
byte, like for utf-8. Store second byte of double-byte in ScreenLines2[]

todo.txt — 510

http://developer.apple.com/technotes/tn2002/tn2064.html
http://unxutils.sourceforge.net/

(like for DBCS_JPNU) and put a zero in the second byte (like for UTF-8).
7 Inside a function with "perl <<EOF" a line with "$i++" is recognized as an

":insert" command, causing the following "endfunction" not to be found.
Add skipping this perl construction inside function definitions.

7 When 'ttimeoutlen' is 10 and 'timeoutlen' is 1000, there is a keycode
"<Esc>a" and a mapping <Esc>x", when typing "<Esc>a" with half a second
delay should not be interpreted as a keycode. (Hans Ginzel)

7 ":botright 1 new" twice causes all window heights to be changed. Make the
bottom window only bigger as much as needed.

7 The Cygwin and MingW makefiles define "PC", but it's not used anywhere.
Remove? (Dan Sharp)

9 User commands use the context of the script they were defined in. This
causes a "s:var" argument to unexpectedly use a variable in the defining
script, not the calling script. Add an argument to ":command":
"-keepcontext". Do replace <SID>, so that a function in the defining
script can be called.

8 The Japanese message translations for MS-Windows are called ja.sjis.po,
but they use encoding cp932. Rename the file and check that it still
works.

8 A very long message in confirm() can't be quit. Make this possible with
CTRL-C.

8 "gf" always excludes trailing punctuation characters. file_name_in_line()
is currently fixed to use ".,:;!". Add an option to make this
configurable?

8 'hkmap' should probably be global-local.
8 Using ":s" in a function changes the previous replacement string. Save

"old_sub" in save_search_patterns()?
8 Should allow multibyte characters for the delimiter: ":s+a+b+" where "+"

is a multibyte character.
8 When appending to a file and 'patchmode' isn't empty, a backup file is

always written, even when the original file already exists.
9 When getting focus while writing a large file, could warn for this file

being changed outside of Vim. Avoid checking this while the file is being
written.

7 The message in bt_dontwrite_msg() could be clearer.
8 The script ID that is stored with an option and displayed with ":verbose

set" isn't reset when the option is set internally. For example when
'foldlevel' is set from 'foldlevelstart'.

8 Also store the line number with the script ID and use it for ":verbose",
so that "set nocompatible" is found when it changes other option values.
When an option is set indirectly mention the command? E.g. when
":diffsplit" sets 'foldmethod'.

8 In the fileformat dialog, "Cancel" isn't translated. Add a global
variable for this. (Eduardo Fernandez)

9 When editing a file with 'readonly' set, there is no check for an existing
swap file. Then using ":write" (without making any changes) doesn't give
a warning either. Should check for an existing swap file without creating
one. Unfinished patch by Ian Kelling, 2008 July 14.

7 When 'showbreak' is set, the amount of space a Tab occupies changes.
Should work like 'showbreak' is inserted without changing the Tabs.

7 When 'mousefocus' is set and switching to another window with a typed
command, the mouse pointer may be moved to a part of the window that's
covered by another window and we lose focus. Only move in the y
direction, not horizontally?

8 ":hardcopy":
- Using the cterm_color[] table is wrong when t_colors is > 16.
- Need to handle unprintable characters.
- Win32: On a B&W printer syntax highlighting isn't visible. Perform

dithering to make grey text?
- Add a flag in 'printoptions' to add an empty page to make the total

todo.txt — 511

number even. "addempty"? (Mike Williams)
- Respect 'linebreak'. Perhaps also 'showbreak'?
- Should interpret CTRL-L as a page break.
- Grey line numbers are not always readable. Add field in 'printoptions'.

Default to black when no syntax highlighting.
- Be able to print a window in diff mode.
- Be able to specify a colorscheme to use for printing. And a separate

one for B&W printing (if that can be detected).
8 When 'virtualedit' is "block,insert" and encoding is "utf-8", selecting a

block of one double-wide character, then "d" deletes only half of it.
8 When 'virtualedit' is set, should "I" in blockwise visual mode also insert

in lines that don't extend into the block?
8 With 'virtualedit' set, in Insert mode just after the end of line, CTRL-O

yh does not yank the last character of the line. (Pavel Papushev)
Doing "hl" first appears to make it work.

8 With 'virtualedit' set it's possible to move into the blank area from
'linebreak'.

8 With 'virtualedit' set and 'selection' "exclusive", a Visual selection
that ends in or after a tab, "d" doesn't delete (part of) the tab.
(Helmut Stiegler)

9 When jumping to a tag, the search pattern is put in the history. When
'magic' is on, the pattern may not work. Translate the pattern depending
on p_magic when putting it in the history? Alternative: Store value of
'magic' in history. (Margo)

9 optwin.vim: Restoring a mapping for <Space> or <CR> is not correct for
":noremap". Add "mapcmd({string}, {mode})? Use code from ":mkexrc".

9 term_console is used before it is set (msdos, Amiga).
9 Get out-of-memory for ":g/^/,$s//@/" on 1000 lines, this is not handled

correctly. Get many error messages while redrawing the screen, which
cause another redraw, etc.

8 [<C-I> doesn't work when '*' is in 'iskeyword'. find_pattern_in_path()
must escape special characters in the pattern.

8 Vim can overwrite a read-only file with ":w!". ":w" can't overwrite an
existing file, "w!" can, but perhaps not a read-only file? Then use
":w!!" for that.
Or ask for permission to overwrite it (if file can be made writable) and
restore file to readonly afterwards.
Overwriting a file for which a swap file exists is similar issue.

7 When compiled with "xterm_clipboard", startup can be slower and might get
error message for invalid $DISPLAY. Try connecting to the X server in the
background (forked), so that Vim starts up quicker? Connect as soon as
the clipboard is to be used (Visual select mode starts, paste from
clipboard)

7 X11: Some people prefer to use CLIPBOARD instead of PRIMARY for the normal
selection. Add an "xclipboard" argument to the 'clipboard' option? (Mark
Waggoner)

6 When the xterm reports the number of colors, a redraw occurs. This is
annoying on a slow connection. Wait for the xterm to report the number of
colors before drawing the screen. With a timeout.

8 When the builtin xterm termcap contains codes that are not wanted, need a
way to avoid using the builtin termcap.

8 Xterm sends ^[[H for <Home> and ^[[F for <End> in some mode. Also
recognize these keys? Mostly useful for xterm simulators, like gnometerm.
See http://dickey.his.com/xterm/xterm.faq.html#xterm_pc_style.

8 '[and '] should be set to start/end of line when using a linewise operator
(e.g., ":w").

8 CTRL-A can't handle big "long" numbers, they become negative. Check for
"-" character, if not present, use unsigned long.

8 Add suspending with CTRL-Z at the "more" prompt, and when executing a long
script in do_cmdline().

todo.txt — 512

http://dickey.his.com/xterm/xterm.faq.html#xterm_pc_style

8 When using 'hidden', many swap files will be open. When Vim runs into the
maximum number of open files, error messages will appear. Detect that
this problem is present, and close any hidden files that don't have
changes.

8 Core dump within signal function: gdb doesn't show stack backtrace! Option
to skip catch_signals()?

9 Repeating a "cw" with "." doesn't work if the text was pasted from the
clipboard. (Thomas Jones) It's because the menu/toolbar item exits Insert
mode and uses "gP". How to fix this without breaking inserting a block of
text?

8 In Replace mode pasting from the clipboard (using menu or toolbar) inserts
all the text. Add ":rmenu"?

8 Pasting with the mouse in Replace mode inserts the text, instead of
overwriting, when it is more than one line. Same for using <C-R>.

9 CTRL-E and CTRL-Y don't work in small window when 'so' is 4 and lines are
wrapping (Acevedo/in.226). E.g., when using CTRL-E, window height 7,
window might actually scroll down when last line of buffer is displayed.
--> Remember if the previous command was "cursor follows screen" or
"screen follow cursor" and use this in cursupdate().

7 tilde_replace() can only handle "~/", should also do "~user/".
Get the list of home directories (from /etc/passwd? Use getpwent()) and
use some clever algorithm to match a path with that. Find common strings
in the list?

8 When dragging status line with mouse, sometimes a jump when first clicking
on the status line (caused by 'winheight'). Select window on button up,
instead of on button down.

8 Dragging the status line doesn't scroll but redraw.
8 When performing incremental search, should abort searching as soon as a

character is typed.
8 How to set VIMRC_FILE to \"something\" for configure? Why does this not

work: CFLAGS='-DVIMRC_FILE=\"/mydir/myfile\"' ./configure
8 The temporary file is sometimes not writable. Check for this, and use an

alternate name when it isn't. Or add the 'temptemplate' option: template
for the temp file name ":set temptemplate=/usr/tmp/?????.tmp".
Also: Win32 version uses Windows temp directory, which might not work for
cygwin bash.

7 Get error "*, \+ or \(operand could be empty" for pattern "\(.\)\1\{3}".
Remember flags for backreferences.

7 When switching to Daylight Saving Time, Vim complains that a file has been
changed since last read. Can we use a function that uses GMT?

7 When completing an environment variable after a '$', check for file names
that contain a '$' after all have been found.

8 When "cm" termcap entry is missing, starting gvim shouldn't complain about
it. (Lohner) Try out with "vt100" entry, cm replaced with cX.

7 When an include file starts with "../", the check for already visiting
this file doesn't work. Need to simplify the file name.

7 The names and comments for the arguments of do_browse() are confusing.
"dflt" isn't the default file name when "initdir" is not NULL and
"initdir" is the default path to be used.

7 When 'scrolloff' is exactly half the window height, "j" causes a scroll of
two lines at a time. "k" doesn't do this. (Cory T. Echols)

I can't reproduce these (if you can, let me know how!):
9 NT 4.0 on NTFS file system: Editing ".bashrc" (drag and drop), file

disappears. Editing ".xyz" is OK. Also, drag&drop only works for three
files. (McCollister)

Problems that will (probably) not be solved:

todo.txt — 513

- GTK: when using the popup menu with spelling suggestions and releasing the
right mouse button before the menu appears selecting an item with the
right mouse button has no effect. GTK does not produce an event for this.

- GTK 2: Cannot use the file selector. When using it many things become
slow. This is caused by some code in GTK that writes
~/.recently-used.xbel every time an event is handled. It assumes the main
loop is never quit, which is a wrong assumption. Also, it overwrites the
file with different file permissions, which is a privacy issue. This
needs to be fixed in GTK. A solution in Vim would be really complicated.
(2008 Jul 31) This appears to be fixed in Vim 7.3.

- xterm title: The following scenario may occur (esp. when running the Vim
test script): Vim 1 sets the title to "file1", then restores the title to
"xterm" with an ESC sequence when exiting. Vim 2 obtains the old title
with an X library call, this may result in "file1", because the window
manager hasn't processed the "xterm" title yet. Can apparently only be
worked around with a delay.

- In a terminal with 'mouse' set such that the mouse is active when entering
a command line, after executing a shell command that scrolls up the
display and then pressing ":": Selecting text with the mouse works like
the display wasn't scrolled. Vim doesn't know how much the external
command scrolled up the display. Use Shift to select text.

- X windows: When $DISPLAY points to a X server where there is no access
permission, trying to connect to the X server causes an error message.
XtOpenDisplay() prints this directly, there is no way to avoid it.

- X windows: Setting 'guifontset' to an illegal value sometimes crashes Vim.
This is caused by a fault in a X library function, can't be solved in Vim.

- Win32 tcl: has("tcl") hangs when the tcl84.dll is from cygwin.
- Motif: When adding a menu item "Find this &Symbol", the "s" in "this" will

be underlined, instead of in "Symbol". Motif doesn't let us specify which
character gets the highlighting.

- Moving the cursor removes color in color-xterm. This is a color-xterm
problem! color-xterm ver. 6.1 beta 3 and later work properly.

- In zsh, "gvim&" changes the terminal settings. This is a zsh problem.
(Jennings)

- Problem with HPterm under X: old contents of window is lost (Cosentino).
- Amiga: The ":cq" command does not always abort the Manx compiler. Why?
- Linux: A file with protection r--rw-rw- is seen readonly for others. The

access() function in GNU libc is probably wrong.
- When doing a CTRL-Z and typing a command for the shell, while Vim is busy

(e.g. writing a file), the command for the shell is sometimes eaten by Vim,
because the terminal mode is changed from RAW to CBREAK.

- An old version of GNU tgoto can't handle the terminfo code for "AF". The
"%p1" is interpreted as "%p" and "1", causing color not to be working.
Fix: Change the "%p1" in the "AF" and "AB" terminfo entries to "%p".
(Benzinger).

- When running an external command from the GUI, typeahead is going to that
program, not to Vim. It looks like the shell eats the characters, Vim
can't get back what the external command didn't use.

- Win32 GUI: Error code from external command not returned in shell_error.
It appears that cmd.exe and command.com don't return an error code.

- Win32 GUI: The Toolbar is a bit too high when the flat style is being
used. We don't have control over the height of the Toolbar.

- Win32: All files created on the day of switching from winter to summer
time cause "changed since editing started" messages. It goes away when
the file is written again the next day, or the timezone is adjusted.
DJGPP version is OK. (Zaimi) Looks like a problem with the Win32 library.
Rebooting doesn't help. Time stamps look OK in directory. (Penn)
Is this on FAT (stores wall clock time) or NTFS (stores UTS)?

- Win32, MS-Windows XP: $HOME uses the wrong drive when the user profiles
are not on the boot disk. This is caused by a wrong value of $HOMEDRIVE.

todo.txt — 514

This is a bug in XP, see MSKB article 818134.
- Win32, MS-Windows: expanding plugin/**/*.vim also picks up

dir/ctags.vim,v. This is because the short file name is something like
"ctags~1.vim" and that matches the pattern.

- SunOS 5.5.1 with Motif: The file open dialog does not have a horizontal
scroll bar for the "files" selection. This is a problem in the Motif
libraries, get a patch from Sun.

- Solaris 2.6 with GTK and Perl: gvim crashes when started. Problem with X
input method called from GDK code. Without Perl it doesn't crash.

- VMS: Vimdiff doesn't work with the VMS diff, because the output looks
different. This makes test 47 fail. Install a Unix-compatible diff.

- GTK with Gnome: Produces an error message when starting up:
Gdk-WARNING **: locale not supported by C library

This is caused by the gnome library gnome_init() setting $LC_CTYPE to
"en_US". Not all systems support this locale name, thus causing the
error. Hopefully a newer version of GTK/Gnome fixes this problem.

- GTK 2: With this mapping the hit-enter prompt is _sometimes_ below the
screen, at other times there is a grey area below the command line:

:nmap <F11> :if &guioptions=~'m' \| set guioptions-=m \| else \| set guioptions+=m \| endif<cr>
- GTK: When pasting a selection from Vim to xclipboard gvim crashes with a

ABRT signal. Probably an error in the file gdkselection.c, the assert
always fails when XmbTextListToTextProperty() fails. (Tom Allard)

- GTK 2: gives an assertion error for every non-builtin icon in the toolbar.
This is a GTK 2.4.x bug, fixed in GTK 2.4.2. (Thomas de Grenier de Latour)

- When using an xterm that supports the termresponse feature, and the 't_Co'
termcap option was wrong when Vim started, it will be corrected when the
termresponse is received. Since the number of colors changes, the
highlighting needs to be initialized again. This may cause colors defined
in the vimrc file to be lost.

- On Windows NT 4.0 the number of files passed to Vim with drag&drop and
"Edit with Vim" is limited. The maximum command line length is 255 chars.

--------------------- extensions and improvements ----------------------
extensions-improvements

Most interesting new features to be added when all bugs have been fixed:
- Using ":exe edit fname" has escaping problems. Use ":edit ++(fname)".

Thus use "++=" to give arguments as expressions, comma-separated as if
calling a function.
With options: ":edit ++(['!', '++enc=abc'], ['+/pat'], fname)".
Alternative: Make a function for Ex commands: cmd_edit().

- Add COLUMN NUMBERS to ":" commands ":line1,line2[col1,col2]cmd". Block
can be selected with CTRL-V. Allow '$' (end of line) for col2.
(issue #3292)

- ECLIPSE plugin. Problem is: the interface is very complicated. Need to
implement part in Java and then connect to Vim. Some hints from Alexandru
Roman, 2004 Dec 15. Should then also work with Oracle Jdeveloper, see JSR
198 standard http://www.jcp.org/en/jsr/detail?id=198.
Eclim does it: http://eclim.sourceforge.net/ (Eric Van Dewoestine)
Plugin that uses a terminal emulator: http://vimplugin.sf.net
And another one: http://www.satokar.com/viplugin/index.php

- STICKY CURSOR: Add a way of scrolling that leaves the cursor where it is.
Especially when using the scrollbar. Typing a cursor-movement command
scrolls back to where the cursor is.

- Scroll commands by screen line. g CTRL-E and g CTRL-Y ? Requires the
first line to be able to start halfway.

8 Add a command to jump to a certain kind of tag. Allow the user to specify
values for the optional fields. E.g., ":tag size type=m".
Also allow specifying the file and command, so that the result of
taglist() can be used.

todo.txt — 515

http://www.jcp.org/en/jsr/detail?id=198
http://eclim.sourceforge.net/
http://vimplugin.sf.net
http://www.satokar.com/viplugin/index.php

- X11: Make it possible to run Vim inside a window of another program.
This can be done with XReparentWindow(). But how exactly?

Documentation:
8 List of Vim runtime directories. dotvim.txt from Charles Campbell, 2007

Feb 20.
8 The GUI help should explain the Find and Find/Replace dialogs. Add a link

to it from ":promptrepl" and ":promptfind".
8 List of options should mention whether environment variables are expanded

or not.
8 Extend usr_27.txt a bit. (Adam Seyfarth)
9 Make the Reference Manual more precise. For each command mention:

- change to cursor position and curswant
- if it can be undone (u/CTRL-R) and redone (.)
- how it works for folded lines
- how it works with multibyte characters

8 Spread the windows commands over the other files. For example, ":stag"
should be with ":tag". Cross-link with tags to avoid too much double
text.

8 Add tags for all features, e.g. "gui_running".
7 MS-Windows: When a wrong command is typed with an ALT key, give a hint to

look at the help for 'winaltkeys'.
7 Add a help.vim plugin that maps <Tab> to jump to the next tag in || and

<C-Tab> (and <S-Tab>) to the previous tag.
Patch by Balazs Kezes, 2007 Dec 30. Remark from A. Politz.

- Check text editor compendium for vi and Vim remarks.

Help:
- First try using the ":help" argument literally, before using it as a

pattern. And then match it as part of a tag.
- When a help item has multiple matches make it possible to use ":tn" to go

to the other matches.
- Support a way to view (and edit) .info files.
- Implement a "sticky" help window, some help text lines that are always

displayed in a window with fixed height. (Guckes) Use "~/.vimhelp" file,
user can edit it to insert favorite commands, new account can contain a
default contents.

- Make 'winminheight' a local option, so that the user can set a minimal
height for the help window (and other windows).

- ":help :s^I" should expand to ":help :substitute".
- Make the help key (<F1>) context sensitive?
- Learn mode: show short help while typing commands.

User Friendlier:
8 Windows install with install.exe: Use .exe instead of .bat files for

links, so that command line arguments are passed on unmodified? (Walter
Briscoe)

8 Windows install: Be able to associate Vim with a selection of file types?
8 Windows uninstall: Have uninstal.c delete the vimfiles directories that

dosinst.c creates. List the contents of the directory (recursively) if
the user asks for it. Requires an implementation of "rm -rf".

8 Remember the name of the vimrc file that was used (~/.vimrc, $VIM/_vimrc,
$HOME/_vimrc, etc.) and add "edit vimrc" to the File menu.

- Add a way to save local settings and mappings into a new plugin file.
":mkplugin <file>"?

- Add mappings local to a window: ":map <window> ..." #9339
9 Add buffer-local menu. Should offer a choice between removing the menu or

todo.txt — 516

disabling it. Be careful that tear-offs don't disappear (keep one empty
item?).
Alternative: use BufEnter and BufLeave autocommands.

8 make a vimtutor script for Amiga and other systems.
7 When Vim detects a file is being edited elsewhere and it's a gvim session

of the same user it should offer a "Raise" button, so that the other gvim
window can be displayed. (Eduard)

8 Support saving and restoring session for X windows? It should work to do
":mksession" and use "-S fname" for the restart command. The
gui_x11_wm_protocol_handler() already takes care of the rest.
global_event_filter() for GTK.

Tab pages:
9 GUI implementation for the tab pages line for other systems.
7 GUI: Control over the appearance of the text in the labels (bold, color,

font, etc.)
8 Make GUI menu in tab pages line configurable. Like the popup menu.
8 balloons for the tab page labels that are shortened to show the full path.
7 :tabdup duplicate the tab with all its windows.
7 Option to put tab line at the left or right? Need an option to specify

its width. It's like a separate window with ":tabs" output.
8 Add local options for each tab page? E.g., 'diffopt' could differ between

tab pages.
7 Add local highlighting for each tab page?

Spell checking:
- Support more regions? Caolan McNamara argues it's needed for es_XX.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=219777
- Unicode defines another quote character: 0x2019. Use it as an equivalent

of a single quote, thus use it as a word character like a quote and match
with words, replacing the curly quote with a single quote.

- Could filter é things for HTML before doing spell checking.
Similarly for TeX.

- The Hungarian spell file uses four extra characters in the FOL/UPP/LOW
items than other spell files with the ISO-8859-2 encoding, that causes
problem when changing 'spelllang'. There is no obvious way to fix this.

- Considering Hunspell 1.1.4:
What does MAXNGRAMSUGS do?
Is COMPLEXPREFIXES necessary when we have flags for affixes?

- There is no Finnish spell checking file. For openoffice Voikko is now
used, which is based on Malaga: http://home.arcor.de/bjoern-beutel/malaga/
(Teemu Likonen)

8 ":mkspell" still takes much too long in Hungarian dictionary from
hunspell. Only solution appears to be to postpone secondary suffixes.

8 Handle postponed prefix with COMPOUNDPERMITFLAG or COMPOUNDFORBIDFLAG.
WFP_COMPPERMIT and WFP_COMPFORBID

8 implement use of <compoptions> in .spl file:
implement CHECKCOMPOUNDREP: when a compound word seems to be OK apply REP
items and check if the result is a valid word.
implement CHECKCOMPOUNDDUP
implement CHECKCOMPOUNDTRIPLE
Add CHECKCOMPOUNDCASE: when compounding make leading capital lower case.
How is it supposed to work?

- Add a command the repeats]s and z=, showing the misspelled word in its
context. Thus to spell-check a whole file.

- suggestion for "KG" to "kg" when it's keepcase.
- For flags on affixes: Use a "AFFCOMPSET" flag; means the compound flags of

the word are not used.

todo.txt — 517

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=219777
http://home.arcor.de/bjoern-beutel/malaga/

- Support breakpoint character ? 0xb7 and ignore it? Makes it possible to
use same wordlist for hyphenation.

- Compound word is accepted if nr of words is <= COMPOUNDWORDMAX OR nr of
syllables <= COMPOUNDSYLMAX. Specify using AND in the affix file?

- NEEDCOMPOUND also used for affix? Or is this called ONLYINCOMPOUND now?
Or is ONLYINCOMPOUND only for inside a compound, not at start or end?

- Do we need a flag for the rule that when compounding is done the following
word doesn't have a capital after a word character, even for Onecap words?

- New hunspell home page: http://hunspell.sourceforge.net/
- Version 1.1.0 is out now, look into that.
- Lots of code depends on LANG, that isn't right. Enable each mechanism

in the affix file separately.
- Example with compounding dash is bad, gets in the way of setting

COMPOUNDMIN and COMPOUNDWORDMAX to a reasonable value.
- PSEUDOROOT == NEEDAFFIX
- COMPOUNDROOT -> COMPOUNDED? For a word that already is a compound word

Or use COMPOUNDED2, COMPOUNDED3, etc.
- CIRCUMFIX: when a word uses a prefix marked with the CIRCUMFIX flag, then

the word must also have a suffix marked with the CIRCUMFIX flag. It's a
bit primitive, since only one flag is used, which doesn't allow matching
specific prefixes with suffixes.
Alternative:

PSFX {flag} {pchop} {padd} {pcond} {schop} {sadd}[/flags] {scond}
We might not need this at all, you can use the NEEDAFFIX flag and the
affix which is required.

- When a suffix has more than one syllable, it may count as a word for
COMPOUNDWORDMAX.

- Add flags to count extra syllables in a word. SYLLABLEADD1 SYLLABLEADD2,
etc.? Or make it possible to specify the syllable count of a word
directly, e.g., after another slash: /abc/3

- MORPHO item in affix file: ignore TAB and morphological field after
word/flags and affix.

- Implement multiple flags for compound words and CMP item?
Await comments from other spell checking authors.

- Also see tklspell: http://tkltrans.sourceforge.net/
8 Charles Campbell asks for method to add "contained" groups to existing

syntax items (to add @Spell).
Add ":syntax contains {pattern} add=@Spell" command? A bit like ":syn
cluster" but change the contains list directly for matching syntax items.

- References: MySpell library (in OpenOffice.org).
http://spellchecker.mozdev.org/source.html
http://whiteboard.openoffice.org/source/browse/whiteboard/lingucomponent/source/spellcheck/myspell/

author: Kevin Hendricks <kevin.hendricks@sympatico.ca>
8 It is currently not possible to mark "can not" as rare, because "can" and

"not" are good words. Find a way to let "rare" overrule "good"?
8 Make "en-rare" spell file? Ask Charles Campbell.
8 The English dictionaries for different regions are not consistent in their

use of words with a dash.
7 Insert mode completion mechanism that uses the spell word lists.
8 Add hl groups to 'spelllang'?

:set spelllang=en_us,en-rare/SpellRare,en-math/SpellMath
More complicated: Regions with different languages? E.g., comments
in English, strings in German (po file).

Diff mode:
9 When making small changes, e.g. deleting a character, update the diff.

Possibly without running diff.
8 Also show difference with the file when editing started? Should show what

can be undone. (Tom Popovich)

todo.txt — 518

http://hunspell.sourceforge.net/
http://tkltrans.sourceforge.net/
http://spellchecker.mozdev.org/source.html
http://whiteboard.openoffice.org/source/browse/whiteboard/lingucomponent/source/spellcheck/myspell/

Folding:
(commands still available: zI zJ zK zp zP zq zQ zV zy zY;
secondary: zB zS zT zZ, z=)

- Patch to make closed folds line up. (Charles Campbell, 2014 Sep 12)
Remark from Roland Eggner: does it cause crashes? (2014 Dec 12)
Updated patch by Roland Eggner, Dec 16
Updated patch from Charles, 2016 Jul 2

- Patch to make fold updates much faster. (Christian Brabandt, 2012 Dec)
- Patch to have the fold and sign column and at the last line of the buffer.

(Marco Hinz, 2014 Sep 25)
Alternate suggestion: let all columns continue, also the number column.

- Patch to add FoldedLineNr highlighting: different highlighting for the
line number of a closed fold. (eXerigumo Clanjor, 2013 Jul 15)

- Patch to use 'foldnestmax' also for "marker" foldmethod. (Arnaud Lacombe,
2011 Jan 7)

- 'foldcolumn' in modeline applied to wrong window when using a session.
(Teemu Likonen, March 19)

- With foldmethod=syntax and nofoldenable comment highlighting isn't
removed. (Marcin Szewczyk, 2017 Apr 26)

- The ":move" command does not honor closed folds. (Ryan Lue, #2351)
- When completion inserts the first match, it may trigger the line to be

folded. Disable updating folds while completion is active? (Peter Odding,
2010 Jun 9)

- When 'foldmethod' is "indent", adding an empty line below a fold and then
indented text, creates a new fold instead of joining it with the previous
one. (Evan Laforge, 2009 Oct 17)

- Add ":nofold". Range will apply without expanding to closed fold.
8 Vertical folds: looks like vertically split windows, but the cursor moves

through the vertical separator, separator moves when scrolling.
8 Add "z/" and "z?" for searching in not folded text only. Or use a regexp

item, so that it can be used in any pattern.
8 When a closed fold is displayed open because of 'foldminlines', the

behavior of commands is still like the fold is closed. How to make the
user aware of this?

8 Add an option 'foldskip' with values like 'foldopen' that specifies which
commands skip over a closed fold.

8 "H" and "L" count buffer lines instead of window lines. (Servatius Brandt)
8 Add a way to add fold-plugins. Johannes Zellner has one for VB.
7 When using manual folding, the undo command should also restore folds.
- Allow completely hiding a closed fold. E.g., by setting 'foldtext' to an

empty string. Require showing a character in 'foldcolumn' to avoid the
missing line goes unnoticed.
How to implement this?

- When pressing the down arrow of a scrollbar, a closed fold doesn't scroll
until after a long time. How to make scrolling with closed folds
smoother?

- When creating a session, also store folds for buffers in the buffer list,
using the wininfo in wi_folds.

- When currently editing the first file in the argument list the session
file can contain:

args version.c main.c
edit version.c

Can editing version.c twice be avoided?
- 'foldmethod' "textobject": fold on sections and paragraph text objects.
- "zuf": undo change in manual fold. "zUf" redo change in manual fold. How

to implement this?
- "zJ" command: add the line or fold below the fold in the fold under the

cursor.
- 'foldmethod' "syntax": "fold=3" argument: set fold level for a region or

todo.txt — 519

match.
- Apply a new foldlevel to a range of lines. (Steve Litt)

Multi-byte characters:
- When editing a file with both utf-8 and latin1 text Vim always falls back

to latin1. Add a command to convert the latin1 characters to utf-8?
:unmix utf-8,latin1 filename

Would only work when 'encoding' is utf-8.
9 When the tail byte of a double-byte character is illegal (e.g., a CR), the

display is messed up (Yasuhiro Matsumoto). Should check for illegal
double-byte characters and display them differently (display each single
byte).

9 'fenc' in modeline problem: add option to reload the file when 'fenc' is
set to a different value in a modeline? Option can be default on. Could
it be done with an autocommand?

8 Add an item in 'fileencodings' to check the first lines of a file for
the encoding. See Python PEP: http://www.python.org/peps/pep-0263.html.
To avoid getting a wrong encoding only accept something Emacs-like:
"-*- coding: enc-na_me.foo -*-" and "-*- coding= enc-na_me.foo -*-"
Match with "-*-\s*coding[:=]\s*\([::word::-_.]\+\)\s*-*-" and use first
item.

8 Add an item in 'fileencodings' to check the first line of an XML file for
the encoding. <?xml version="1.0" encoding="UTF-8"?> Or "charset=UTF-8"?
For HTML look for "charset=utf-8".

8 When a file was converted from 'fileencoding' to 'encoding', a tag search
should also do this on the search pattern. (Andrzej M. Ostruszka)

8 When filtering changes the encoding 'fileencoding' may not work. E.g.,
when using xxd and 'fileencoding' is "utf-16". Add an option to set a
different fileencoding for filter output?

7 When converting a file fails, mention which byte could not be converted,
so that the user can fix the problem.

8 Add configure option to be able to disable using the iconv library. (Udo
Schweigert)

9 'aleph' should be set to 1488 for Unicode. (Zvi Har'El)
8 Should add test for using various commands with multibyte characters.
8 'infercase' doesn't work with multibyte characters.
8 toupper() function doesn't handle byte count changes.
7 Searching and composing characters:

When searching, should order of composing characters be ignored?
Add a special item to match with a composing character, so that composing
characters can be manipulated.

8 Should implement 'delcombine' for command line editing.
8 Detect overlong UTF-8 sequences and handle them like illegal bytes.
8 ":s/x/\u\1/" doesn't work, making uppercase isn't done for multibyte

characters.
8 UTF-8: "r" in Visual mode doesn't take composing characters.
8 UTF-8: When there is a precomposed character in the font, use it instead

of a character and a composing character. See xterm for an example.
7 When a character can't be displayed, display its digraph instead.

'display' option to specify this.
7 Use ideas for nl_langinfo() from Markus Kuhn in enc_default():

(www.cl.cam.ac.uk/~mgk25/ucs/langinfo.c)
- GTK and Win32: Allow selecting fonts for 'guifontset' with the

fontselector somehow.
- GTK and Win32: make it possible to set the font for the menu to make it

possible to have 'encoding' different from the current locale.
- dbcs_class() only works for Japanese and Korean. Implement this for

other encodings. The "euc-jp" and "euc-kr" choices might be wrong.
- Find some way to automatically select the right GUI font or fontset,

depending on the default value of 'encoding'.

todo.txt — 520

http://www.python.org/peps/pep-0263.html

Irrelevant in the GTK+ 2 GUI so long as UTF-8 is used.
For Windows, the charset_pairs[] table could be used. But how do we know
if a font exists?

- Do keyboard conversion from 'termencoding' to 'encoding' with
convert_input() for Mac GUI.

- Add mnemonics from RFC1345 longer than two characters.
Support CTRL-K _{mnemonic}_

- Make 'breakat' accept multibyte characters. Problem: can't use a lookup
table anymore (breakat_flags[]).
Simplistic solution: when 'formatoptions' contains "m" also break a line
at a multibyte character >= 0x100.
Making breakat support multibyte characters (Yasuhiro Matsumoto, #6598)
Scroll doesn't work correctly, why?

- Add the possibility to enter mappings which are used whenever normal text
could be entered. E.g., for "f" command. But not in Normal mode. Sort
of opposite of 'langmap'. Use ":amap" command?

- When breaking a line, take properties of multibyte characters into
account. The "linebreak" program from Bruno Haible can do it:
ftp://ftp.ilog.fr/pub/Users/haible/gnu/linebreak-0.1.tar.gz
But it's very complicated...

- Problem with 'langmap' being used on the rhs of a mapping. (Nikolai
Weibull, 2008 May 14).
Possibly related problem: Alexey Muranov, 2015 Apr 2

Printing:
7 Implement "undercurl" for printing.
- Add "page width" to wrap long lines.
- Win32: use a font dialog for setting 'printfont'. Can reuse the code for

the 'guifont' dialog, put the common code in a separate function.
- Add the file timestamp to the page header (with an option). (George

Reilly)
- Win32: when 'printfont' is empty use 'guifont'.
- Unix: Use some dialog box to do the obvious settings (paper size, printer

name, portrait/landscape, etc).
- PostScript: Only works for text that can be converted to an 8-bit

character set. How to support Unicode fully?
- Allow specifying the paper size, instead of using a standard size. Same

units as for the margins.
- Support right-to-left text?
8 Make the foreground color darkening function preserve the hue of the

color.

Syntax highlighting:
8 Make ":syn off" use 'runtimepath' instead of $VIMRUNTIME. (Gary Johnson)

Should do the same for ":syn on" and ":syn manual".
8 Support "containedin" argument for ":syn include", so that the defined

cluster can be added to existing syntax items.
8 C syntax: Don't highlight {} as errors inside () when used like this:

"({ something })", often used in GCC code.
7 Add a "startgroup" to a region. Used like "nextgroup" inside the region,

preferred item at the start of the region. (Charles Campbell)
8 When editing a new file without a name and giving it a name (by writing

it) and 'filetype' is not set, detect the filetype. Avoid doing it for
":wq file".

7 For "nextgroup" we have skipwhite, skipnl and skipempty. It would be
really nice to be able to skip with a pattern. Or skip with a syntax
group. (Nikolai Weibull, 2007 Feb 27)

8 Make conversion to HTML faster (Write it in C or pre-compile the script).

todo.txt — 521

ftp://ftp.ilog.fr/pub/Users/haible/gnu/linebreak-0.1.tar.gz

9 There is still a redraw bug somewhere. Probably because a cached state is
used in a wrong way. I can't reproduce it...

7 Be able to change only the background highlighting. Useful for Diff* and
Search highlighting.

7 When 'number' is set highlight the number of the current line.
Must be enabled with an option, because it slows down display updating.

8 Allow the user to add items to the Syntax menu sorted, without having to
change this for each release.

8 Add a "matchcontains" for regions: items contained in the start or end
pattern, but not in the body.

8 Add a "keepend-contained" argument: Don't change the end of an item this
one is contained in. Like "keepend" but specified on the contained item,
instead of the containing item.

8 cpp.vim: In C++ it's allowed to use {} inside ().
8 Some syntax files set 'iskeyword', they should use "syn iskeyword".

Also need a separate 'iskeyword' for the command line, e.g., in a help
window ":e /asdf/asdf/" CTRL-W works different.

8 Add specific syntax item to match with parens/braces that don't have a
"%" match. :syntax nomatch cMatchError (,{,[,),},] [contained]

8 Highlight the text between two matching parens (e.g., with a grey
background) when on one of the parens or in between them.
Option for the matchparen plugin?

8 When using a cterm, and no ctermfg or ctermbg are defined, use start/stop
sequences. Add remark in docs that :if 'term' == "term-name" should be
used.

8 Add @spell cluster to String and Comment groups for many languages. Will
allow spell checking. (Fleiner)

8 When listing syntax items, try to sort the keywords alphabetically. And
re-insert the [] if possible.

8 Make it possible to use color of text for Visual highlight group (like for
the Cursor).

8 It would be useful to make the highlight group name an expression. Then
when there is a match, the expression would be evaluated to find out what
highlight group to use. Could be used to check if the shell used in a
password file appears in /etc/shells. (Nikolai Weibull)

syn match =s:checkShell(v:match) contained 'pattern'
8 Make it possible to only highlight a sub-expression of a match. Like

using "\1" in a ":s" command.
8 Support for deleting syntax items:

:syn keyword cTodo remove this
:syn match cTodo remove "pattern"
:syn region cString remove start="this" end="that"

8 Add possibility to sync on something else, when the syncing in one way
doesn't find match. For HTML: When no {script} is found, try looking for
a '<'. (Fleiner)

7 Replace the synchronizing method with a state machine specification?
Should be able to start at any line in the file, search forwards or
backwards, and use the result of matching a pattern.

7 Use parsing like awk, so that e.g., a (without a matching) can be
detected.

8 Make it possible to use "inverted" highlighting, invert the original
character. For Visual mode. (xterm-selection already does this).

8 Highlight non-printable characters with "SpecialChar", linked to
"Special". Display them with the digraph characters, if possible.

8 Highlight the clipboard-selection with a highlight group.
8 Be able to reset highlighting to its original (default) values.
7 Be able to write current highlighting to a file as commands, similar to

":mkvimrc".
8 Improve c.vim:

- Add check for unterminated strings, with a variable to switch it on:

todo.txt — 522

"c_strict_ansi".
- Detect unbalanced "#endif". Requires looking back a long way...

8 Add an option to restrict the updating of syntax highlighting to the
current line while in Insert mode.

8 When guessing value of 'background', the syntax file has already been
loaded (from the .gvimrc). After changing 'background', load it again?

8 Add ":syn resync" command, to re-parse the whole file until the current
display position.

8 Should support "me" offset for a region start pattern. To be used to
allow searching for the end pattern inside the match of the end pattern.
Example: syn region pikeXX start="([^{]" end=")" should work on "()".

8 When using a regexp for "contains=", should delay matching with it until
redrawing happens. Set a flag when a group is added, check this flag when
highlighting starts.

7 It's possible for an item to be transparent, so that the colors of an item
lower on the stack is used. Also do this with highlighting, so that the
user can set transparent highlighting? E.g. a number in a C comment would
get the color of a comment, a number in an assignment Normal. (Nikolai
Weibull)

7 Add "semitrans": Add highlighting. E.g., make the text bold, but keep the
colors. And add colors, so that Green+Red becomes Yellow.
E.g. for this html:

 bold text <I> italic+bold text italic text </I>
7 CTRL-] checks the highlight group for finding out what the tag is.
7 Add an explanation how a list of words can be used to highlight misspelled

words.
7 Should find a better way to parse the :syntax and :highlight commands.

Use tables or lists that can be shared by parsing for execution and
completion?

8 Add ColorSchemePost autocommand event, so that scripts can set up their
highlighting. (Salman Halim)

7 Add a few sets of colors (e.g. Borland Turbo C one). With a menu to
select one of the sets.

8 Add offsets to sub-matches: "\(a*\) *"he=e1-1
'e' is end of match 'e1' is end of sub-match 1, 's2' is start of submatch
2, etc.

8 In Insert mode, when there are typeahead characters, postpone the
highlighting (for "." command).

8 Syncing on comments isn't 100% correct when / / lines mix with / * and * /.
For example: What about a line that starts with / / and contains * /?

8 Ignore / * and * / inside strings, when syncing.
7 Build a few more syntax files from the file "/usr/share/misc/vgrindefs":

ISP, LDL, Icon, ratfor. And check "nedit/source/highlight.c".
6 Add possibility to have background color continue until the right edge of

the window. Useful for comment blocks and function headings. (Rogall)
- Make it possible to add "contains" items for all items in a group. Useful

when extending an already existing syntax file.
- Add line-continuation pattern for non-syncing items too?
- Add possibility to highlight the whole line, including the right margin

(for comment blocks).
- Add 'hlmatch' option: List of flags:

'c': highlight match for character under the cursor.
'b': highlight the previous (, and its match.
'a': highlight all text from the previous (until its match.

Also for {}, <>, etc.?
'e': highlight all braces without a match (slow?)
OR: add an argument "cursor" to the syntax command, which means that the
region/match/keyword is only highlighted when the cursor is on it.
(Campbell)
Or do it like Elvis: define text objects and how to highlight them around

todo.txt — 523

the cursor. (Iain Truskett)
7 Make it possible to use all words in the tags files as Keyword.

Can also be done with a script (but it's slow).
7 Make it possible to call a ":" command when a match is found. Should

allow for adding keywords from the text (e.g. variables that are set).
And allows for sections with different highlighting.

7 Add highlight group for commandline: "Commandline". Make sure it
highlights the command line while typing a command, and any output from
messages. And external commands?

8 Make a version that works like less, but with highlighting: read stdin for
text, exit at end of file, don't allow editing, etc. moreim? lessim?

7 SpecialKey highlighting overrules syntax highlighting. Can't give an
unprintable char another color. Would be useful for ^M at end of line.

- Syntax highlight for a region does not work with a "nextgroup" if the
start match is empty. #8449

- The :syntax cchar value can only be a single character. It would be
useful to support combining characters. (Charles Campbell) Also #4687

- Syntax highlighting slow (hangs) in SASS file. (Niek Bosch, 2013 Aug 21)
- Several syntax file match "^\s*" which may get underlined if that's in the

highlight group. Add a "\zs" after it?
- patch to add "combine" flag to syntax commands. (so8res, 2012 Dec 6)

Patch to add "combine" to :syntax, combines highlight attributes. (Nate
Soares, 2012 Dec 3)

- Syntax update problem in one buffer opened in two windows, bottom window
is not correctly updated. (Paul Harris, 2012 Feb 27)

- Syntax region with 'concealends' and a 'cchar' value, 'conceallevel' set
to 2, only one of the two ends gets the cchar displayed. (Brett Stahlman,
2010 Aug 21, Ben Fritz, 2010 Sep 14)

- Using "syn sync breaklines=2" works for when text is changed, but not when
scrolling or redrawing. Should start search for syntax patterns above the
first drawn line. (#8103)

- Syntax priority problem. (Charles Campbell, 2011 Sep 15)
- Syntax highlighting wrong for transparent region. (Doug Kearns, 2007 Feb

26)
- Bug in using a transparent syntax region. (Hanlen in vim-dev maillist,

2007 Jul 31)
- Syntax HL error caused by "containedin". (Peter Hodge, 2006 Oct 6)
- Open two windows on the same C code, delete a ")" in one window, resulting

in highlighted "{" in that window, not in the other.
- When using "nextgroup" and the group has an empty match, there is no

search at that position for another match. (Lukas Mai, 2008 April 11)

Vim script language:
8 Make the filename and line number available to script functions, so that

they can give useful debugging info. The whole call stack would be ideal.
At least use this for error messages.

7 Execute a function with standard option values. No need to save and
restore option values. Especially useful for new options. Problem: how
to avoid a performance penalty (esp. for string options)?

- range for ":exec", pass it on to the executed command. (Webb)
7 ":include" command: just like ":source" but doesn't start a new scriptID?

Will be tricky for the list of script names.
8 Have a look at VSEL. Would it be useful to include? (Bigham)
8 Have a prefix for a function to make it unique. When using packages it

can be the plugin name.
Perhaps also have a way to remove everything that the package added?
including autocommands.

7 Pre-parse or compile Vim scripts into a bytecode, like :def functions.
Possibilities:

todo.txt — 524

1. Put the bytecode with the original script, with an ":if
has('bytecode-1234')" around it, so that it's only used with a Vim that
supports the version. Update the code with a command, can be used in
an autocommand.

2. Use a ".vic" file (like Python use .pyc). Create it when writing a
.vim file. Problem: distribution, non-writable directory, etc.

3. Use a cache directory for each user. Disadvantage: cache lookup may
cost more time than bytecode wins.

7 Add argument to winwidth() to subtract the space taken by 'foldcolumn',
signs and/or 'number'.

6 Add ++ and -- operators? They only work on variables (lvals), how to
implement this?

8 Add functions:
has(":command") Check if ":command" works. compare function

with "ex_ni". E.g. for ":simalt".
escape() Add argument to specify what to escape with.
modestack() Instead of just the current mode return the

stack of Insert / CTRL-O / :normal things.
realname() Get user name (first, last, full)

user_fullname() patch by Nikolai Weibull, Nov
3 2002
Only add this when also implemented for
non-Unix systems, otherwise a shell cmd could
be used.
get_user_name() gets login name.

menuprop({name}, {idx}, {what})
Get menu property of menu {name} item {idx}.
menuprop("", 1, "name") returns "File".
menuprop("File", 1, "n") returns "nmenu
File.Open..." argument.
Patch by Ilya Sher, 2004 Apr 22
Return a list of menus and/or a dictionary
with properties instead.

mapname({idx}, mode) return the name of the idx'th mapping.
Patch by Ilya Sher, 2004 Mar 4.
Return a list instead.

char2hex() convert char string to hex string.
crypt() encrypt string
decrypt() decrypt string
base64enc() base 64 encoding
base64dec() base 64 decoding
attributes() return file protection flags "drwxrwxrwx"
filecopy(from, to) Copy a file
shorten(fname) shorten a file name, like home_replace()
perl(cmd) call Perl and return string
inputrl() like input() but right-to-left
typed() return the characters typed and consumed (to

find out what happened)
virtualmode() add argument to obtain whether "$" was used in

Visual block mode.
getacp() Win32: get codepage (Glenn Maynard)
libcall() Allow more than one argument.
libcallext() Like libcall(), but using a callback function

to allow the library to execute a command or
evaluate an expression.

7 Make bufname("'0") return the buffer name from mark '0. How to get the
column and line number? col("'0") currently returns zero.

8 argc() returns 0 when using "vim -t tag". How to detect that no file was
specified in any way? To be able to jump to the last edited file.

8 Pass the command line arguments to Vim scripts in some way. As v:args

todo.txt — 525

List? Or extra parameter to argv()?
8 Add command arguments with three dashes, passed on to Vim scripts.
6 User functions: Functions local to buffer "b:func()"?
8 For Strings add ":let var[{expr}] = {expr}". When past the end of "var"

just ignore.
8 The "= register should be writable, if followed by the name of a variable,

option or environment variable.
8 ":let &option" should list the value of the option.
8 ":let Func().foo = value" should work, also when "foo" doesn't exist.

Also: ":let Func()[foo] = value" should work. Same for a List.
7 Add synIDlist(), making the whole list of syntax items on the syntax stack

available as a List.
8 Add autocommand-event for when a variable is changed:

:au VarChanged {varname} {commands}
8 Add "has("gui_capable")", to check if the GUI can be started.
8 Add possibility to use variables like registers: characterwise (default),

linewise (when ending in '\n'), blockwise (when ending in '\001'). reg0,
rega, reg%, etc. Add functions linewise({expr}), blockwise({expr}) and
charwise({expr}).

7 Make it possible to do any command on a string variable (make a buffer
with one line, containing the string). Maybe add an (invisible) scratch
buffer for this?

result = scratch(string, command)
result = apply(string, command)
result = execute(string, command)

"command" would use <> notation.
Does scratch buffer have a number? Or re-use same number?

7 Add function to generate unique number (date in milliseconds).

Robustness:
6 Add file locking. Lock a file when starting to edit it with flock() or

fcntl(). This patch has advisory file locking while reading/writing
the file for Vim 5.4: ~/vim/patches/kahn_file_locking .
The patch is incomplete (needs support for more systems, autoconf).
Andy doesn't have time to work on it.
Disadvantage: Need to find ways to gracefully handle failure to obtain a
lock. When to release a lock: When buffer is unloaded?

Performance:
7 For string variables up to 3 bytes don't allocate memory, use v_list

itself as a character array. Use VAR_SSTRING (short string).
7 Add 'lazysize' option: Above this size Vim doesn't load everything before

starting to edit a file. Things like 'fileencodings' only work up to this
size, modelines only work at the top. Useful for large log files where
you only want to look at the first few pages. Use zero to disable it.

8 move_lines() copies every line into allocated memory, making reloading a
buffer a lot slower than re-editing the file. Can the memline be locked
so that we don't need to make a copy? Or avoid invoking ml_updatechunk(),
that is taking a lot of time. (Ralf Wildenhues, 2008 Jul 7)
With a patch, but does it work?

8 Turn b_syn_ic and b_syn_containedin into b_syn_flags.
9 Loading menu.vim still takes quite a bit of time. How to make it faster?
8 in_id_list() takes much time for syntax highlighting. Cache the result?
7 setpcmark() shifts the jumplist, this takes quite a bit of time when

jumping around. Instead use an index for the start?
8 When displaying a space with only foreground highlighting, it's the same

as a space without attributes. Avoid displaying spaces for the "~" lines
when starting up in a color terminal.

todo.txt — 526

8 Avoid alloc() for scratch buffer use, esp. in syntax.c. It's very slow on
Win16.

8 Profiling shows that in_id_list() is used very often for C code. Can this
function be improved?

8 For an existing file, the page size of the swap file is always the
default, instead of using the block size of the device, because the swap
file is created only after setting the block size in mf_open(). How can
this be improved?

8 Set default for 'ttyscroll' to half a screen height? Should speed up
MS-DOS version. (Negri)

7 C syntax highlighting gets a lot slower after ":set foldmethod=syntax".
(Charles Campbell) Inserting a "{" is very slow. (dman)

7 HTML syntax highlighting is slow for long lines. Try displaying
http://www.theregister.co.uk/content/4/22908.html. (Andre Pang)

7 Check how performance of loading the wordlist can be improved (adding a
lot of abbreviations).

7 Compile Ex commands to byte codes. Store byte codes in a vim script file
at the end, after "compiled:. Make it look like a single comment line
for old Vim versions. Insert first line "Vim script compiled <timestamp>.
Only used compiled code when timestamp matches the file stat.
Add command to compile a vim script and add it to the file in-place.
Split Ex command executing into a parsing and executing phase.
Use compiled code for functions, while loops, etc.

8 When defining autocommands (e.g., from $VIMRUNTIME/filetype.vim), need to
compare each pattern with all existing patterns. Use a hash code to avoid
using strcmp() too often?

7 Include turbo_loader patches, speeding up reading a file?
Speed up reading a file by reading it into a fixed-size buffer, creating
the list of indexes in another buffer, and then copying the result into a
memfile block with two copies. Then read the next block into another
fixed-size buffer, create the second list of indexes and copy text from
the two blocks to the memfile block.

7 do_cmdline(): Avoid that the command line is copied to allocated memory
and freed again later all the time. For while loops, and for when called
with an argument that can be messed with.
Generic solution: Make a struct that contains a pointer and a flag that
indicates if the pointer should be freed when replaced.

7 Check that the file size is not more than "sizeof(long)".
- Further improve finding mappings in maphash[] in vgetorpeek()
8 Syntax highlighting is slow when deleting lines. Try in

$VIMRUNTIME/filetype.vim.
- "out of memory" after deleting (1,$d) and changing (:%s/^/> /) a lot of

lines (27000) a few times. Memory fragmentation?
- Have a look at how pdksh does memory allocation (alloc.c). (Dalecki)
- Do profiling on:

- :g/pat/normal cmd
- deleting 10Mbyte worth of lines (netscape binary)
- "[i" and "[d" (Yegappan Lakshmanan)
- ":g/^/m0" on a 450Kbyte file. And the "u".
- highlighting "~/vim/test/longline.tex", "~/vim/test/scwoop.tcl" and

"~/vim/test/lockup.pl".
- loading a syntax file to highlight all words not from a dictionary.
- editing a Vim script with syntax highlighting on (loading vim.vim).

7 Screen updating can be further improved by only redrawing lines that were
changed (and lines after them, when syntax highlighting was used, and it
changed).
- On each change, remember start and end of the change.
- When inserting/deleting lines, remember begin, end, and line count.

- Use macros/duarte/capicua for profiling. Nvi 1.71 is the fastest!
- When using a file with one long line (1Mbyte), then do "$hhhh", is still

todo.txt — 527

http://www.theregister.co.uk/content/4/22908.html

very slow. Avoid calling getvcol() for each "h"?
- Executing a register, e.g. "10000@@" is slow, because ins_typebuf has to

move the previous commands forward each time. Pass count from
normal_cmd() down to do_execreg().

- Avoid calls to plines() for cursor line, use w_cline_height.
- After ":set nowrap" remove superfluous redraw with wrong hor. offset if

cursor is right of the screen.
8 Make CTRL-C on Unix generate a signal, avoid using select() to check for a

CTRL-C (it's slow).

Code size:
8 GUI: When NO_CONSOLE is defined, more code can be excluded.
- Put getline() and cookie in a struct, so only one argument has to be

passed to do_cmdline() and other functions.
8 Make a GUI-only version for Unix?
8 In buf_write _() isn't needed when setting errmsg, do it once when using

it.
7 When compiling with a GUI-only version, the code for cterm colors can be

left out.
8 When compiled with a GUI-only version, the termcap entries for terminals

can be removed.
8 Can the check for libelf in configure.ac be removed?

Messages:
8 When using ":q" in a changed file, the error says to "add !". Add the

command so that beginners understand it: "use :q!".
8 For 'verbose' level 12 prints commands from source'ed files. How to skip

lines that aren't executed? Perhaps move the echoing to do_cmdline()?
8 Use 'report' for ":bdel"? (Krishna) To avoid these messages when using a

script.
- Delete message after new command has been entered and have waited for key.

Perhaps after ten seconds?
- Make message history available in "msg" variables: msg1, msg2, .. msg9.
9 Check handling of overwriting of messages and delays:

Very wrong: errors while redrawing cause endless loop.
When switching to another file and screen scrolls because of the long
message and return must be typed, don't scroll the screen back before
redrawing.

8 When address range is wrong you only get "Invalid range". Be a bit more
specific: Negative, beyond last line, reverse range? Include the text.

8 Make it possible to ignore errors for a moment ('errorignore'?). Another
option to switch off giving error messages ('errorquiet'?). Also an option
not to give any messages ('quiet')? Or ":quiet on", ":quiet off".
Careful: For a severe error (out of memory), and when the user starts
typing, error messages must be switched back on.
Also a flag to ignore error messages for shell commands (for mappings).

- Option to set time for emsg() sleep. Interrupt sleep when key is typed?
Sleep before second message?

8 In Ex silent mode or when reading commands from a file, what exactly is
not printed and what is? Check ":print", ":set all", ":args", ":vers",
etc. At least there should be no prompt. (Smulders) And don't clear the
screen when reading commands from stdin. (Kendall)
--> Make a difference between informative messages, prompts, etc. and

error messages, printing text, etc.
8 Window should be redrawn when resizing at the hit-enter prompt.

Also at the ":tselect" prompt. Find a generic solution for redrawing when
a prompt is present (with a callback function?).

todo.txt — 528

Screen updating:
- screen_line():

- insert/delete character stuff.
- improve delete rest of line (spaces at end of line).

- When moving or resizing window, try to avoid a complete redraw (esp. when
dragging the status line with the mouse).

- When 'lazyredraw' set, don't echo :ex commands? Need a flag to redraw when
waiting for a character.

8 Add a ":refresh [winnr]" command, to force updating a window. Useful from
an event handler where ":normal" can't be used. Also useful when
'lazyredraw' is set in a mapping.

Scrolling:
8 Add "zy" command: scroll horizontally to put the cursor in the middle.
6 Add option to set the overlap for CTRL-F and CTRL-B. (Garhi)
- extend 'scrollbind' option: 'scrollopt' words "search", "relative", etc..

Also 'e'xecute some commands (search, vertical movements) in all bound
windows.

7 Add 'scrollbind' feature to make the offset of one window with the next
one equal to the window height. When editing one file in both windows it
looks like each window displays a page of the buffer.

- Allow scrolling by dragging with the mouse (grab a character and move it
up/down). Like the "hand" in Acrobat reader. Use Alt-LeftMouse for this?
(Goldfarb)

- Add command to execute some commands (search, vertical movements) in all
bound windows.

- Add 'search' option to 'scrollopt' to allow 'scrollbind' windows to
be bound by regexp searches

- Add "z>" and "z<": scroll sideways one screenful. (Campbell)
- Add option to set the number of lines when not to scroll, instead of the

fixed number used now (for terminals that scroll slow with a large number
of lines but not with a single line).

Autoconf:
8 Should use acconfig.h to define prototypes that are used by autoheader.
8 Some compilers don't give an error for "-OPT:Olimit" but a warning. (Webb)

Add a check for the warning, so that "Olimit" can be added automatically?
- Autoconf: Use @datadir@ for the system independent files. Make sure the

system dependent and system independent files are separated. (Leitner).
- Add autoconf check for waitpid()/wait4().
- Remove fcntl() from autoconf, all systems have it?
- Set default for 'dictionary', add search for dictionary to autoconf.

Perl interface:
8 Rename typemap file to something else?
7 Make buffers accessed as Perl arrays. (Clark)
7 Make it possible to compile with non-ANSI C?
6 Tcl/Tk has the "load" command: load a shared library (.so or .dll).

Shared libraries:
8 libcall() can keep the library around instead of always calling dlclose().

(Jason Felice, 2018 Mar 20)
6 Add support for loading shared libraries, and calling functions in it.

:libload internal-name libname
:libunload internal-name
:liblist

todo.txt — 529

:libcall internal-name function(arg1, arg2, ...)
:libcall function(arg1, arg2, ...)

libcall() can have only one integer or String argument at the moment.
6 Have a look on how Perl handles loading dynamic libraries.

Tags:
9 With ":set tags=./tags,../tags" and a tag appears in both tags files it is

added twice. Requires figuring out the actual file name for each found
match. Remove tag_fname from the match and combine it with the fname in
the match (without expanding or other things that take time). When
'tagrelative' is off tag_fname isn't needed at all.

8 For 'tags' wildcard in the file name is not supported, only in the path.
This is due to it using file-searching . Suboptimal solution would be to
make the filename or the whole option use wildcards globing, better
would be to merge the 2 kinds of globing. originally (Erik Falor, 2008
April 18), updated (Ian Kelling, 2008 July 4)

7 Can CTRL-] (jump to tag) include a following "." and "->" to restrict the
number of possible matches? Check tags file for an item that has members.
(Flemming Madsen)

8 Scope arguments for ":tag", e.g.: ":tag class:cPage open", like Elvis.
8 When output of ":tselect" is long, getting the more-prompt, should be able

to type the tag number directly.
7 Add the possibility to use the "-t {tag}" argument multiple times. Open a

window for each tag.
7 Make output of ":tselect" a bit nicer. Use highlighting?
7 Highlight the "tag 1 of >2" message. New highlight group, or same as "hit

bottom" search message.
7 When using ":tag" at the top of the tag stack, should add another entry,

so CTRL-T can bring you back to where you are now AND to where you were
before the previous ":tag" command. (Webb)

- When doing "[^I" or "[^D" add position to tag stack.
- Add command to put current position to tag stack: ":tpush".
- Add functions to save and restore the tag stack? Or a command to switch

to another tag stack? So that you can do something else and come back to
what you were working on.

7 When using CTRL-] on someClass::someMethod, separate class from method and
use ":ta class:someClass someMethod".
Include C++ tags changes (Bertin). Change "class::func" tag into "func"
with "class=class"? Docs in oldmail/bertin/in.xxx.

7 Add ":tagargs", to set values for fields:
:tagargs class:someclass file:version.c
:tagargs clear

These are then the default values (changes the order of priority in tag
matching).

7 Support for "gtags" and "global"? With ":rtag" command?
There is an example for how to do this in Nvi.
Or do it like Elvis: 'tagprg' and 'tagprgonce' options. (Yamaguchi)
The Elvis method is far more flexible, do it that way.

7 Support "col:99" extra field, to position the cursor in that column. With
a flag in 'cpoptions' to switch it off again.

7 Better support for jumping to where a function or variable is used. Use
the id-utils, with a connection to "gid" (Emacs can do it too). Add
":idselect", which uses an "ID" database (made by "mkid") like "tselect".

Win32 GUI:
8 Make debug mode work while starting up (vim -D). Open console window for

the message and input?
8 When using "Edit with Vim" for one file it changes directory, when several

todo.txt — 530

files are selected and using "Edit with single Vim" the directory isn't
changed. At least change directory when the path is the same for all
files. Perhaps just use the path of the first file or use the longest
common part of the path.

8 Add font argument to set the lfCharSet. (Bobcik)
8 Somehow automatically detect the system language and set $LANG, so that

gettext and menus work.
8 Could keep console open to run multiple commands, to avoid the need to hit

return in every console.
Also: Look at how Emacs does run external commands:

http://www.cs.washington.edu/homes/voelker/ntemacs.html.
8 Need a separate PopUp menu for modeless selection. Need two new commands:

Copy selection to clipboard, Paste selection (as typed text).
8 Support copy/paste for other file formats. At least HTML, perhaps RTF.

Add "copy special" and "paste special" commands?
7 Use different default colors, to match the current Windows color scheme.

Sys_WindowText, Sys_Window, etc. (Lionel Schaffhauser)
7 Use <C-Tab> to cycle through open windows (e.g., the find dialog).
7 <Esc> should close a dialog.
7 Keep the console for external commands open. Don't wait for a key to be

hit. Re-open it when the user has closed it anyway. Or use a prepended
command: ":nowait {cmd}", or ":quiet", which executes {cmd} without any
prompts.

7 Should be able to set an option so that when you double click a file that
is associated with Vim, you can either get a new instance of Vim, or have
the file added into an already running Vim.

7 The "-P" argument only works for the current codepage. Use wide
functions to find the window title.

GUI:
7 Implement ":popup" for other systems than Windows.
8 Implement ":tearoff" for other systems than Win32 GUI.
6 Implement ":untearoff": hide a torn-off menu.
8 When using the scrollbar to scroll, don't move the cursor position. When

moving the cursor: scroll to the cursor position.
9 Make <S-Insert> paste from the clipboard by default. (Kunze)
7 Menu local to a buffer, like mappings. Or local to a filetype?
8 In Buffers menu, add a choice whether selecting a buffer opens it in the

current window, splits the window or uses ":hide".
8 Dragging the mouse pointer outside of a Vim Window should make the text

scroll. Return a value from gui_send_mouse_event() to the machine
specific code to indicate the time in which the event should be repeated.

8 Make it possible to ignore a mouse click when it's used to give Vim (gvim)
window focus. Also when a mouse click is used to bring a window to front.

8 Make the split into system independent code and system specific code more
explicit. There are too many #ifdefs in gui.c.
If possible, separate the Vim code completely from the GUI code, to allow
running them in separate processes.

7 X11: Support cursorColor resource and "-cr" argument.
8 X11 (and others): CTRL-; is not different from ';'. Set the modifier mask

to include CTRL for keys where CTRL produces the same ASCII code.
7 Add some code to handle proportional fonts on more systems? Need to draw

each character separately (like xterm). Also for when a double-width font
is not exactly double-width. (Maeda)

8 Should take font from xterm where gvim was started (if no other default).
8 Selecting font names in X11 is difficult, make a script or something to

select one.
8 Visual highlighting should keep the same font (bold, italic, etc.).
8 Add flag to 'guioptions' to not put anything in the clipboard at all?

todo.txt — 531

http://www.cs.washington.edu/homes/voelker/ntemacs.html

8 Should support a way to use keys that we don't recognize yet. Add a
command that adds entries to special_keys somehow. How do we make this
portable (X11, Win32, ..)?

7 Add a flag to 'guioptions' that tells not to remove inactive menu items.
For systems where greying-out or removing menu items is very slow. The
menu items would remain visibly normally, but not do anything.

7 Add ":minimize" and ":maximize", which iconize the window and back.
Useful when using gvim to run a script (e.g. 2html.vim).

7 X11: Is it possible to free allocated colors, so that other programs can
use them again? Otherwise, allow disabling allocating the default colors.
Or allocate an own colormap (check UAE). With an option to use it. For
the commandline, "-install" is mostly used for X11 programs.

7 Should support multi-column menus.
- Should add option for where to put the "Help" menu: like Motif at the far

right, or with the other menus (but still at the right).
- Add menu item to "Keep Insert mode".
8 ":mkgvimrc" command, that includes menus.
6 Big change: Move GUI to separate program "vimgui", to make startup of vim a

lot faster, but still be able to do "vim -g" or ":gui".
7 More explicit mouse button binding instead of 'mousemodel'?
7 Add option to set the position of the window on the screen. 'windowpos',

which has a value of "123,456": <x>,<y>.
Or add a command, like ":winsize"?

7 Add toolbar for more GUIs.
8 Make it possible to use "amenu icon=BuiltIn##", so that the toolbar item

name can be chosen free.
7 Make it possible to put the toolbar on top, left, right and/or bottom of

the window? Allows for softkey-like use.
6 Separate the part of Vim that does the editing from the part that runs the

GUI. Communicate through a pseudo-tty. Vim starts up, creates a
pty that is connected to the terminal. When the GUI starts, the pty is
reconnected to the GUI process. When the GUI stops, it is connected to
the terminal again. Also use the pty for external processes, it looks
like a vt100 terminal to them. Vim uses extra commands to communicate GUI
things.

7 Motif: For a confirm() dialog <Enter> should be ignored when no default
button selected, <Esc> should close the dialog.

7 When using a pseudo-tty Vim should behave like some terminal (vt52 looks
simple enough). Terminal codes to/from shell should be translated.

- Would it be useful to be able to quit the GUI and go back to the terminal
where it was started from?

7 Support "-visual <type>" command line argument.

Autocommands:
9 When triggering WinNew provide the window ID somehow. #10633
9 Rework the code from FEAT_OSFILETYPE for autocmd-osfiletypes to use

'filetype'. Only for when the current buffer is known.
- Put autocommand event names in a hashtable for faster lookup?
8 When the SwapExists event is triggered, provide information about the

swap file, e.g., whether the process is running, file was modified, etc.
Must be possible to check the situation that it's probably OK to delete
the swap file. (Marc Merlin)

8 When all the patterns for an event are "*" there is no need to expand
buffer names to a full path. This can be slow for NFS.

7 For autocommand events that trigger multiple times per buffer (e.g.,
CursorHold), go through the list once and cache the result for a specific
buffer. Invalidate the cache when adding/deleting autocommands or
changing the buffer name.

7 Add TagJump event: do something after jumping to a tag.

todo.txt — 532

8 Add "TagJumpFile" autocommand: When jumping to another file for a tag.
Can be used to open "main.c.gz" when "main.c" isn't found.

8 Use another option than 'updatetime' for the CursorHold event. The two
things are unrelated for the user (but the implementation is more
difficult).

7 Add autocommand event for when a buffer cannot be abandoned. So that the
user can define the action taking (autowrite, dialog, fail) based on the
kind of file. (Yakov Lerner) Or is BufLeave sufficient?

8 Autocommand for when modified files have been found, when getting input
focus again (e.g., FileChangedFocus).
Check when: getting focus, jumping to another buffer, ...

8 Autocommands should not change registers. And marks? And the jumplist?
And anything else? Add a command to save and restore these things.

8 Add autocommands, user functions and user commands to ":mkvimrc".
6 Add KeymapChanged event, so that the effects of a different keymap can be

handled (e.g., other font) (Ron Aaron)
7 When trying to open a directory, trigger an OpenDirectory event.
7 Add file type in front of file pattern: <d> for directory, <l> for link,

<x> for executable, etc. With commas to separate alternatives. The
autocommand is only executed when both the file type AND the file pattern
match. (Leonard)

5 Add option that specifies extensions which are to be discarded from the
file name. E.g. 'ausuffix', with ".gz,.orig". Such that file.c.gz will
trigger the "*.c" autocommands. (Belabas)

7 Add something to break the autocommands for the current event, and for
what follows. Useful for a "BufWritePre" that wants to avoid writing the
file.

8 When editing "tt.gz", which is in DOS format, 'fileformat' stays at
"unix", thus writing the file changes it. Somehow detect that the read
command used dos fileformat. Same for 'fileencoding'.

- Add events to autocommands:
Error - When an error happens
VimLeaveCheck - Before Vim decides to exit, so that it can be cancelled

when exiting isn't a good idea.
CursorHoldC - CursorHold while command-line editing
WinMoved - when windows have been moved around, e.g, ":wincmd J"
SearchPost - After doing a search command (e.g. to do "M")
ShutDown - when the system is about to shut down
InsertCharPost - user typed a character in Insert mode, after inserting

the char.
BufModified - When a buffer becomes modified, or unmodified (for

putting a [+] in the window title or checking out the
file from CVS).

BufFirstChange - When making a change, when 'modified' is set. Can be
used to do a :preserve for remote files.

BufChange - after a change was made. Set some variables to indicate
the position and number of inserted/deleted lines, so
that marks can be updated. HierAssist has patch to add
BufChangePre, BufChangePost and RevertBuf. (Shah)

ViewChanged - triggered when the text scrolls and when the window size
changes.

QuickfixList - when any entry in the current list changes or another
list is selected

QuickfixPosition - when selecting another entry in the current quickfix
list

- Write the file now and then ('autosave'):
'autosave' 'as' 'noautosave' 'noas'

'autosave' 'as' number (default 0)
Automatically write the current buffer to file N seconds after the

todo.txt — 533

last change has been made and when 'modified' is still set.
Default: 0 = do not autosave the buffer.

Alternative: have 'autosave' use 'updatetime' and 'updatecount' but make
them save the file itself besides the swapfile.

- Buffer autocommands are a bit inconsistent. Add a separate set of
autocommands for the buffer lifecycle:

BufIsCreated (after buffer ID exists)
BufIsLoaded (after buffer ID has content)
BufIsUnloaded (after buffer ID no longer has)
BufIsWiped (after buffer ID was wiped)
BufIsRenamed (after buffer ID gets another name)

The buffer list and windows are locked, no changes possible

Omni completion:
- Add a flag to 'complete' to be able to do omni completion with CTRL-N (and

mix it with other kinds of completion).
- Ideas from the Vim 7 BOF at SANE:

- For interpreted languages, use the interpreter to obtain information.
Should work for Java (Eclipse does this), Python, Tcl, etc.
Richard Emberson mentioned working on an interface to Java.

- Check Readline for its completion interface.
- Ideas from others:

http://www.wholetomato.com/
http://www.vim.org/scripts/script.php?script_id=747

http://sourceforge.net/projects/insenvim
or http://insenvim.sourceforge.net

Java, XML, HTML, C++, JSP, SQL, C#
MS-Windows only, lots of dependencies (e.g. Perl, Internet

explorer), uses .dll shared libraries.
For C++ uses $INCLUDE environment var.
Uses Perl for C++.
Uses ctags to find the info:

ctags -f $allTagsFile --fields=+aiKmnsSz --language-force=C++ --C++-kinds=+cefgmnpsut-dlux -u $files
www.vim.org script 1213 (Java Development Environment) (Fuchuan Wang)
IComplete: http://www.vim.org/scripts/script.php?script_id=1265

and http://stud4.tuwien.ac.at/~e0125672/icomplete/
http://cedet.sourceforge.net/intellisense.shtml (for Emacs)
Ivan Villanueva has something for Java.
Emacs: http://www.xref-tech.com/xrefactory/more_c_completion.html
Completion in .NET framework SharpDevelop: http://www.icsharpcode.net

- Pre-expand abbreviations, show which abbrevs would match?

Insert mode completion/expansion:
- Is it possible to keep the complete menu open when calling complete()?

(Prabir Shrestha, 2017 May 19, #1713)
- When 'completeopt' has "noselect" does not insert a newline.

(Lifepillar, 2017 Apr 23, #1653)
- Can 'completeopt' be made buffer-local? (#5487)
- When complete() first argument is before where insert started and

'backspace' is Vi compatible, the completion fails.
(Hirohito Higashi, 2015 Feb 19)

- The CompleteDone autocommand needs some info passed to it:
- The word that was selected (empty if abandoned complete)
- Type of completion: tag, omnifunc, user func.

- When a:base in 'completefunc' starts with a number it's passed as a
number, not a string. (Sean Ma) Need to add flag to call_func_retlist()
to force a string value.

- When editing the text and pressing CTRL-N again goes back to originally

todo.txt — 534

http://www.wholetomato.com/
http://www.vim.org/scripts/script.php?script_id=747
http://sourceforge.net/projects/insenvim
http://insenvim.sourceforge.net
http://www.vim.org/scripts/script.php?script_id=1265
http://stud4.tuwien.ac.at/~e0125672/icomplete/
http://cedet.sourceforge.net/intellisense.shtml
http://www.xref-tech.com/xrefactory/more_c_completion.html
http://www.icsharpcode.net

completed text, edited text is gone. (Peng Yu, 2008 Jul 24)
Suggestion by Ben Schmidt, 2008 Aug 6.

- GUI implementation of the popup menu.
7 When searching in other files the name flash by, too fast to read. Only

display a name every second or so, like with ":vimgrep".
7 When expanding file names with an environment variable, add the match with

the unexpanded var. So $HOME/tm expands to "/home/guy/tmp" and
"$HOME/tmp"

8 When there is no word before the cursor but something like "sys." complete
with "sys.". Works well for C and similar languages.

9 ^X^L completion doesn't repeat correctly. It uses the first match with
the last added line, instead of continuing where the last match ended.
(Webb)

8 Add option to set different behavior for Insert mode completion:
- ignore/match case
- different characters than 'iskeyword'

8 Add option 'isexpand', containing characters when doing expansion (so that
"." and "\" can be included, without changing 'iskeyword'). (Goldfarb)
Also: 'istagword': characters used for CTRL-].
When 'isexpand' or 'istagword' are empty, use 'iskeyword'.
Alternative: Use a pattern so that start and end of a keyword can be
defined, only allow dash in the middle, etc.

8 Add a command to undo the completion, go back to the original text.
7 Completion of an abbreviation: Can leave letters out, like what Instant

text does: www.textware.com
8 Use the class information in the tags file to do context-sensitive

completion. After "foo." complete all member functions/variables of
"foo". Need to search backwards for the class definition of foo.
Should work for C++ and Java.
Even more context would be nice: "import java.^N" -> "io", "lang", etc.

7 When expanding $HOME/dir with ^X^F keep the $HOME (with an option?).
7 Add CTRL-X command in Insert mode like CTRL-X CTRL-N, that completes WORDS

instead of words.
8 Add CTRL-X CTRL-R: complete words from register contents.
8 Add completion of previously inserted texts (like what CTRL-A does).

Requires remembering a number of insertions.
8 Add 'f' flag to 'complete': Expand file names.

Also apply 'complete' to whole line completion.
- Add a flag to 'complete' to only scan local header files, not system

header files. (Andri Moell)
- Make it possible to search include files in several places. Use the

'path' option? Can this be done with the dictionary completion (use
wildcards in the file name)?

- Make CTRL-X CTRL-K do a binary search in the dictionary (if it's sorted).
- Speed up CTRL-X CTRL-K dictionary searching (don't use a regexp?).
- Set a mark at the position where the match was found (file mark, could

be in another file).
- Add CTRL-A command in CTRL-X mode: show all matches.
- Make CTRL-X CTRL-L use the 'complete' option?
- Add command in CTRL-X mode to add following words to the completed string

(e.g. to complete "Pointer->element" with CTRL-X CTRL-P CTRL-W CTRL-W)
- CTRL-X CTRL-F: Use 'path' to find completions.
- CTRL-X CTRL-F: Option to use forward slashes on MS-Windows?
- CTRL-X CTRL-F: Don't replace "$VIM" with the actual value. (Kelly)
- Allow listing all matches in some way (and picking one from the list).

Command line editing:
7 Add commands (keys) to delete from the cursor to the end of the command

line.

todo.txt — 535

8 Custom completion of user commands can't use the standard completion
functions. Add a hook to invoke a user function that returns the type of
completion to be done: "file", "tag", "custom", etc.

- Add flags to 'whichwrap' for command line editing (cursor right at end of
lines wraps to start of line).

- Make editing the command line work like Insert mode in a single-line view
on a buffer that contains the command line history. But this has many
disadvantages, only implement it when these can be solved. Elvis has run
into these, see remarks from Steve (~/Mail/oldmail/kirkendall/in.00012).
- Going back in history and editing a line there would change the history.

Would still need to keep a copy of the history elsewhere. Like the
cmdwin does now already.

- Use CTRL-O to execute one Normal mode command. How to switch to normal
mode for more commands? <Esc> should cancel the command line. CTRL-T?

- To allow "/" and "= need to recursively call getcmdline(), overwrite the
cmdline. But then we are editing a command-line again. How to avoid
that the user gets confused by the stack of command lines?

- Use edit() for normal cmdline editing? Would have to integrate
getcmdline() into edit(). Need to solve conflicts between Insert mode
and Command-line mode commands. Make it work like Korn shell and tcsh.
Problems:
- Insert: completion with 'wildchar'
- Insert: use cmdline abbreviations
- Insert: CTRL-D deletes indent instead of listing matches
- Normal: no CTRL-W commands
- Normal: no ":" commands?
- Normal: allow Visual mode only within one line.

- where to show insert/normal mode message? Change highlighting of
character in first column?

- Implementation ideas:
- Set "curwin" and "curbuf" to the command line window and buffer.
- curwin->w_topline is always equal to curwin->w_cursor.lnum.
- never set 'number', no folding, etc. No status line.
- sync undo after entering a command line?
- use NV_NOCL flag for commands that are not allowed in Command-line
Mode.

Command line completion:
- Feature request: Complete members of a dictionary.

(Luc Hermitte, 2017 Jan 4, #1350)
- Completion of ":e" is ":earlier", should be ":edit". Complete to the

matching command instead of doing this alphabetically. (Mikel Jorgensen)
8 Change expand_interactively into a flag that is passed as an argument.
8 With command line completion after '%' and '#', expand current/alternate

file name, so it can be edited. Also with modifiers, such as "%:h".
8 When completing command names, either sort them on the long name, or list

them with the optional part inside [].
8 Add an option to ignore case when doing interactive completion. So that

":e file<Tab>" also lists "Filelist" (sorted after matching case matches).
7 Completion of ":map x ": fill in the current mapping, so that it can be

edited. (Sven Guckes)
- For 'wildmenu': Simplify "../bar" when possible.
- When using <Up> in wildmenu mode for a submenu, should go back to the

current menu, not the first one. E.g., ":emenu File.Save<Up>".
8 When using backtick expansion, the external command may write a greeting

message. Add an option or commands to remove lines that match a regexp?
7 When listing matches of files, display the common path separately from the

file names, if this makes the listing shorter. (Webb)
- Add command line completion for ":ilist" and friends, show matching

todo.txt — 536

identifiers (Webb).
8 Add command line completion for "old value" of a command. ":args <key>"

would result in the current list of arguments, which you can then edit.
7 Add command line completion with CTRL-X, just like Insert mode completion.

Useful for ":s/word/xx/".
- Add command to go back to the text as it was before completion started.

Also to be used for <Up> in the command line.
- Add 'wildlongest' option: Key to use to find longest common match for

command line completion (default CTRL-L), like 'wildchar'. (Cregut)
Also: when there are several matches, show them line a CTRL-D.

- With 'wildmode' set to "longest:full,full" and pressing Tab once the first
entry in wildmenu is highlighted, that shouldn't happen. (Yuki Watanabe,
2011 Feb 12)

- After using <Tab> for command line completion after ":ta blah" and getting
E33 (no tags file), further editing the command to e.g., ":echo 'blah'",
the command is not executed. Fix by Ian Kelling?

- Command line completion: Scanning for tags doesn't check for typed key now
and then? Hangs for about 5 seconds. Appears to be caused by finding
include files with "foo/**" in 'path'. (Kalisiak, 2006 July 15)
Additional info: When using the wildcards ** globing, vim hangs
indefinitely on lots of directories. The file-searching globing, like in
":set path=/**" does not hang as often as with globing with wildcards ,
like in ":1find /**/file". This is for files that unix "find" can find
very quickly. Merging the 2 kinds of globing might make this an easier
fix. (Ian Kelling, 2008 July 4)

- Command line completion when 'cmdheight' is maximum and 'wildmenu' is set,
only one buffer line displayed, causes display errors.

- Completing with 'wildmenu' and using <Up> and <Down> to move through
directory tree stops unexpectedly when using ":cd " and entering a
directory that doesn't contain other directories.

8 Command line completion: buffers "foo.txt" and "../b/foo.txt", completing
":buf foo<Tab>" doesn't find the second one. (George V. Reilly)

8 Add more command line completion for :syntax.
8 Add more command line completion for :highlight.
- Wildmenu not deleted: "gvim -u NONE", ":set nocp wildmenu cmdheight=3

laststatus=2", CTRL-D CTRL-H CTRL-H CTRL-H. (A.Politz, 2008 April 1) Works
OK with Vim in an xterm.

- If the variable "g:x#y#z" exists completion after ":echo g:x#" doesn't
work.

Command line history:
- Add "KeyWasTyped" flag: It's reset before each command and set when a

character from the keyboard is consumed. Value is used to decide to put a
command line in history or not. Put line in history if it didn't
completely result from one mapping.

- When using ":browse", also put the resulting edit command in the history,
so that it can be repeated. (Demirel)

Insert mode:
9 When 'autoindent' is set, hitting <CR> twice, while there is text after

the cursor, doesn't delete the autoindent in the resulting blank line.
(Rich Wales) This is Vi compatible, but it looks like a bug.

8 When using CTRL-O in Insert mode, then executing an insert command
"a" or "i", should we return to Insert mode after <Esc>? (Eggink)
Perhaps it can be allowed a single time, to be able to do
"<C-O>10axyz<Esc>". Nesting this further is confusing.
":map <F2> 5aabc<Esc>" works only once from Insert mode.

8 When using CTRL-G CTRL-O do like CTRL-\ CTRL-O, but when returning with

todo.txt — 537

the cursor in the same position and the text didn't change continue the
same change, so that "." repeats the whole insert.

7 Use CTRL-G <count> to repeat what follows. Useful for inserting a
character multiple times or repeating CTRL-Y.

- Make 'revins' work in Replace mode.
7 Use 'matchpairs' for 'showmatch': When inserting a character check if it

appears in the rhs of 'matchpairs'.
- In Insert mode (and command line editing?): Allow undo of the last typed

character. This is useful for CTRL-U, CTRL-W, delete and backspace, and
also for characters that wrap to the next line.
Also: be able to undo CTRL-R (insert register).
Possibly use 'backspace'="whole" for a mode where at least a <CR> that
inserts autoindent is undone by a single <BS>.

- Use CTRL-G in Insert mode for an extra range of commands, like "g" in
Normal mode.

- Make 'paste' work without resetting other options, but override their
value. Avoids problems when changing files and modelines or autocommands
are used.

- When typing CTRL-V and a digit higher than 2, only expect two digits.
- Insert binary numbers with CTRL-V b.
- Make it possible to undo <BS>, <C-W> and <C-U>. Bash uses CTRL-Y.

'cindent', 'smartindent':
9 Wrapping a variable initialization should have extra indent:

char * veryLongName =
"very long string"

Also check if "cino=+10" is used correctly.
8 Lisp indenting: "\\" confuses the indenter. (Dorai Sitaram, 2006 May 17)
8 Why are continuation lines outside of a {} block not indented? E.g.:

long_type foo =
value;

8 Java: Inside an anonymous class, after an "else" or "try" the indent is
too small. (Vincent Bergbauer)
Problem of using {} inside (), 'cindent' doesn't work then.

8 In C++ it's possible to have {} inside (): (Kirshna)
func(

new String[] {
"asdf",
"asdf"

}
);

8 In C++ a function isn't recognized inside a namespace:
(Chow Loong Jin)

namespace {
int

func(int arg) {
}

}
6 Add 'cino' flag for this function argument layout: (Spencer Collyer)

func(arg1
, arg2
, arg3
);

7 Add separate "(0" option into inside/outside a function (Zellner):
func(

int x) // indent like "(4"
{

if (a
&& b) // indent like "(0"

todo.txt — 538

9 Using "{" in a comment: (Helmut Stiegler)
if (a)
{

if (b)
{

// {
}
} <-- this is indented incorrect

Problem is that find_start_brace() checks for the matching brace to be in
a comment, but not braces in between. Requires adding a comment check to
findmatchlimit().

- Make smartindenting configurable. Add 'sioptions', e.g. '#' setting the
indent to 0 should be switched on/off.

7 Support ANSI style function header, with each argument on its own line.
- "[p" and "]p" should use 'cindent' code if it's on (only for the first

line).
- Add option to 'cindent' to set indent for comments outside of {}?
- Make a command to line up a comment after a code line with a previous

comment after a code line. Can 'cindent' do this automatically?
- When 'cindent'ing a '}', showmatch is done before fixing the indent. It

looks better when the indent is fixed before the showmatch. (Webb)
- Add option to make indenting work in comments too (for commented-out

code), unless the line starts with "*".
- Don't use 'cindent' when doing formatting with "gq"?
- When formatting a comment after some text, insert the '*' for the new line

(indent is correct if 'cindent' is set, but '*' doesn't get inserted).
8 When 'comments' has both "s1:/*,mb:*,ex:*/" and "s1:(*,mb:*,ex:*)", the

'x' flag always uses the first match. Need to continue looking for more
matches of "*" and remember all characters that could end the comment.

- For smartindent: When typing 'else' line it up with matching 'if'.
- 'smartindent': allow patterns in 'cinwords', for e.g. TeX files, where

lines start with "\item".
- Support this style of comments (with an option): (Brown)

/* here is a comment that
is just autoindented, and
nothing else */

- Add words to 'cinwords' to reduce the indent, e.g., "end" or "fi".
7 Use Tabs for the indent of starting lines, pad with spaces for

continuation lines. Allows changing 'tabstop' without messing up the
indents.
Patch by Lech Lorens, 2010 Mar. Update by James McCoy, 2014 Mar 15.

Java:
8 Can have {} constructs inside parens. Include changes from Steve

Odendahl?
8 Recognize "import java.util.Vector" and use $CLASSPATH to find files for

"[i" commands and friends.
- For files found with 'include': handle "*" in included name, for Java.

(Jason)
- How to make a "package java.util" cause all classes in the package to be

searched? Also for "import java.util.*". (Mark Brophy)

'comments':
8 When formatting C comments that are after code, the "*" isn't repeated

like it's done when there is no code. And there is no automatic wrapping.
Recognize comments that come after code. Should insert the comment leader
when it's "#" or "//".
Other way around: when a C command starts with "* 4" the "*" is repeated

todo.txt — 539

while it should not. Use syntax HL comment recognition?
7 When using "comments=fg:--", Vim inserts three spaces for a new line.

When hitting a TAB, these spaces could be removed.
7 The 'n'esting flag doesn't do the indenting of the last (rightmost) item.
6 Make strings in 'comments' option a RE, to be able to match more

complicated things. (Phillipps) Use a special flag to indicate that a
regexp is used.

8 Make the 'comments' option with "/* * */" lines only repeat the "*" line
when there is a "/*" before it? Or include this in 'cindent'?

Virtual edit:
8 Make the horizontal scrollbar work to move the text further left.
7 Allow specifying it separately for Tabs and beyond end-of-line?

Text objects:
8 Add text object for fold, so that it can be yanked when it's open.
8 Add test script for text object commands "aw", "iW", etc.
8 Add text object for part of a CamelHumpedWord and under_scored_word.

(Scott Graham) "ac" and "au"?
8 Add a text object for any kind of quoting, also with multibyte

characters. Option to specify what quotes are recognized (default: all)
use "aq" and "iq". Use 'quotepairs' to define pairs of quotes, like
'matchpairs'?

8 Add text object for any kind of parens, also multibyte ones.
8 Add a way to make an ":omap" for a user-defined text object. Requires

changing the starting position in oap->start.
8 Add "gp" and "gP" commands: insert text and make sure there is a single

space before it, unless at the start of the line, and after it, unless at
the end of the line or before a ".".

7 Add objects with backwards extension? Use "I" and "A". Thus "2dAs"
deletes the current and previous sentence. (Jens Paulus)

7 Add "g{" and "g}" to move to the first/last character of a paragraph
(instead of the line just before/after a paragraph as with "{" and "}").

6 Ignore comment leaders for objects. Make "das" work in reply-email.
5 Make it possible to use syntax group matches as a text object. For

example, define a "ccItem" group, then do "da<ccItem>" to delete one.
Or, maybe just define "dai", delete-an-item, to delete the syntax item the
cursor is on.

Select mode:
8 In blockwise mode, typed characters are inserted in front of the block,

backspace deletes a column before the block. (Steve Hall)
7 Alt-leftmouse starts block mode selection in MS Word.

See http://vim.wikia.com/wiki/Use_Alt-Mouse_to_select_blockwise.
7 Add Cmdline-select mode. Like Select mode, but used on the command line.

- Change gui_send_mouse_event() to pass on mouse events when 'mouse'
contains 'C' or 'A'.

- Catch mouse events in ex_getln.c. Also shift-cursor, etc., like in
normal_cmd().

- remember start and end of selection in cmdline_info.
- Typing text replaces the selection.

Visual mode:
8 Support using "." in Visual mode. Use the operator applied to the Visual

selection, if possible.
- When dragging the Visual selection with the mouse and 'scrolloff' is zero,

todo.txt — 540

http://vim.wikia.com/wiki/Use_Alt-Mouse_to_select_blockwise

behave like 'scrolloff' is one, so that the text scrolls when the pointer
is in the top line.

- Displaying size of Visual area: use 24-33 column display.
When selecting multiple lines, up to about a screenful, also count the
characters.

8 When using "I" or "A" in Visual block mode, short lines do not get the new
text. Make it possible to add the text to short lines too, with padding
where needed.

7 With a Visual block selected, "2x" deletes a block of double the width,
"3y" yanks a block of triple width, etc.

7 When selecting linewise, using "itext" should insert "text" at the start
of each selected line.

8 What is "R" supposed to do in Visual mode?
8 Make Visual mode local to the buffer. Allow changing to another buffer.

When starting a new Visual selection, remove the Visual selection in any
other buffer. (Ron Aaron)

8 Support dragging the Visual area to drop it somewhere else. (Ron Aaron,
Ben Godfrey)

7 Support dragging the Visual area to drop it in another program, and
receive dropped text from another program. (Ben Godfrey)

7 With blockwise Visual mode and "c", "C", "I", "A", etc., allow the use of
a <CR>. The entered lines are repeated over the Visual area.

7 Filtering a block should only apply to the block, not to the whole lines.
When the number of lines is increased, add lines. When decreased, pad with
spaces or delete? Use ":`<,`>" on the command line.

8 After filtering the Visual area, make "gv" select the filtered text?
Currently "gv" only selects a single line, not useful.

7 Don't move the cursor when scrolling? Needed when the selection should
stay the same. Scroll to the cursor at any movement command. With an
option!

7 In Visual block mode, need to be able to define a corner on a position
that doesn't have text? Also: when using the mouse, be able to select
part of a TAB. Even more: Add a mode where the cursor can be on a screen
position where there is no text. When typing, add spaces to fill the gap.
Other solution: Always use curswant, so that you can move the cursor to
the right column, and then use up/down movements to select the line,
without changing the column.

6 ":left" and ":right" should work in Visual block mode.
7 CTRL-I and CTRL-O should work in Visual mode, but only jump to marks in the

current buffer.
6 In non-Block mode, "I" should insert the same text in front of each line,

before the first non-blank, "gI" in column 1.
6 In non-Block mode, "A" should append the same text after each line.
6 When in blockwise visual selection (CTRL-V), allow cursor to be placed

right of the line. Could also allow cursor to be placed anywhere on a TAB
or other special character.

6 Add commands to move selected text, without deselecting.

More advanced repeating commands:
- Add "." command for visual mode: redo last visual command (e.g. ":fmt").
- Add command to repeat last movement. Including count.
- Add "." command after operator: repeat last command of same operator. E.g.

"c." will repeat last change, also when "x" used since then (Webb).
"y." will repeat last yank.
"c2." will repeat the last but one change?
Also: keep history of Normal mode commands, add command to list the history
and/or pick an older command.

- History stack for . command? Use "g." command.

todo.txt — 541

Mappings and Abbreviations:
8 When "0" is mapped (it is a movement command) this mapping should not be

used after typing another number, e.g. "20l". (Charles Campbell)
Is this possible without disabling the mapping of the following command?

8 Should mapping <C-A> and <C-S-A> both work?
7 ":abbr b byte", append "b " to an existing word still expands to "byte".

This is Vi compatible, but can we avoid it anyway?
8 To make a mapping work with a prepended "x to select a register, store the

last _typed_ register name and access it with "&.
8 Add ":amap", like ":amenu".
7 Add a mapping that works always, for remapping the keyboard.
8 Add ":cab!", abbreviations that only apply to Command-line mode and not to

entering search strings.
8 Add a flag to ":abbrev" to eat the character that triggers the

abbreviation. Thus "abb ab xxx" and typing "ab<Space>" inserts "xxx" and
not the <Space>.

8 Give a warning when using CTRL-C in the lhs of a mapping. It will never
(?) work.

7 Add <0x8f> (hex), <0o33> (octal) and <123> (decimal) to <> notation?
7 When someone tries to unmap with a trailing space, and it fails, try

unmapping without the trailing space. Helps for ":unmap xx | unmap yy".
6 Context-sensitive abbreviations: Specify syntax group(s) in which the

abbreviations are to be used.
- Add mappings that take arguments. Could work like the ":s" command. For

example, for a mouse escape sequence:
:mapexp <Esc>{\([0-9]*\),\([0-9]*\); H\1j\2l

- Add optional <Number> argument for mappings:
:map <Number>q ^W^W<Number>G
:map <Number>q<Number>t ^W^W<Number1-1>G<Number2>l
:map q<Char> :s/<Char>/\u\0/g
Or implicit:
:map q <Register>d<Number>$

- Add command to repeat a whole mapping ("." only repeats the last change in
a mapping). Also: Repeat a whole insert command, including any mappings
that it included. Sort-of automatic recording?

- Include an option (or flag to 'cpoptions') that makes errors in mappings
not flush the rest of the mapping (like nvi does).

- Use context sensitiveness of completion to switch abbreviations and
mappings off for :unab and :unmap.

6 When using mappings in Insert mode, insert characters for incomplete
mappings first, then remove them again when a mapping matches. Avoids
that characters that are the start of some mapping are not shown until you
hit another character.

- Add mappings for replace mode: ":rmap". How do we then enter mappings for
non-replace Insert mode?

- Add separate mappings for Visual-character/block/line mode?
- Add 'mapstop' command, to stop recursive mappings.
- List mappings that have a raw escape sequence both with the name of the key

for that escape sequence (if there is one) and the sequence itself.
- List mappings: Once with special keys listed as <>, once with meta chars as

<M-a>, once with the byte values (octal?). Sort of "spell mapping" command?
- When entering mappings: Add the possibility to enter meta keys like they

are displayed, within <>: <M-a>, <~@> or <|a>.
- Allow multiple arguments to :unmap.
- Command to show keys that are not used and available for mapping

":freekeys".
- Allow any character except white space in abbreviations lhs (Riehm).

todo.txt — 542

Incsearch:
- Wrong scrolling when using incsearch. Patch by Christian Brabandt, 2014

Dec 4. Is this a good solution?
- Temporarily open folds to show where the search ends up. Restore the

folds when going to another line.
Patch to open folds for 'incsearch'. (Christian Brabandt, 2015 Jan 6)

- Bug with 'incsearch' going to wrong line. (Wolfram Kresse, 2009 Aug 17)
Only with "vim -u NONE".

- When no match is found and the user types more, the screen is redrawn
anyway. Could skip that. Esp. if the line wraps and the text is scrolled
up every time.

- When incsearch used and hitting return, no need to search again in many
cases, saves a lot of time in big files. (Slootman wants to work on this?)
When not using special characters, can continue search from the last match
(or not at all, when there was no match). See oldmail/webb/in.872.

9 incsearch is incorrect for "/that/<Return>/this/;//" (last search pattern
isn't updated).

Searching:
9 Should have an option for :vimgrep to find lines without a match.
8 Add "g/" and "gb" to search for a pattern in the Visually selected text?

"g?" is already used for rot13.
The vis.vim script has a ":S" command that does something like this.
Can use "g/" in Normal mode, uses the '< to '> area.
Use "&/" for searching the text in the Visual area?

9 Add "v" offset: "/pat/v": search for pattern and start Visual mode on the
matching text.

8 Add a modifier to interpret a space like "_s\+" to make it much easier to
search for a phrase.

8 Add a mechanism for recursiveness: "\@(([^()]*\@g[^()]*)\)". \@g stands
for "go recursive here" and \@(\) marks the recursive part.
Perl does it this way:

$paren = qr/ \(([^()] | (??{ $paren }))* \) /x;
Here $paren is evaluated when it's encountered. This is like a regexp
inside a regexp. In the above terms it would be:

\@((\([^()]\|\@g\)*)\)
8 Show the progress every second. Could use the code that checks for CTRL-C

to find out how much time has passed. Or use SIGALRM. Where to show the
number?

7 Support for approximate-regexps to find similar words (agrep
http://www.tgries.de/agrep/ tre: http://laurikari.net/tre/index.html).

8 Add an item for a big character range, so that one can search for a
chinese character: \z[234-1234] or \z[XX-YY] or \z[0x23-0x234].

7 Add an item stack to allow matching (). One side is "push X on
the stack if previous atom matched". Other side is "match with top of
stack, pop it when it matches". Use "\@pX" and "\@m"?

Example: \((\@p).\{-}\@m\)*
7 Add a flag to "/pat/" to discard an error. Useful to continue a mapping

when a search fails. Could be "/pat/E" (e is already used for end offset).
7 Add pattern item to use properties of Unicode characters. In Perl it's

"\p{L}" for a letter. See Regular Expression Pocket Reference.
8 Would it be possible to allow ":23,45/pat/flags" to search for "pat" in

lines 23 to 45? Or does this conflict with Ex range syntax?
8 Allow identical pairs in 'matchpairs'. Restrict the search to the current

line.
7 Allow longer pairs in 'matchpairs'. Use matchit.vim as an

example.
8 Make it possible to define the character that "%" checks for in

#if/#endif. For nmake it's !if/!endif.

todo.txt — 543

http://www.tgries.de/agrep/
http://laurikari.net/tre/index.html

- For "%" command: set hierarchy for which things include other things that
should be ignored (like "*/" or "#endif" inside /* */).
Also: use "%" to jump from start to end of syntax region and back.
Alternative: use matchit.vim

8 A pattern like "\([^a]\+\)\+" takes an awful long time. Recognize that
the recursive "\+" is meaningless and optimize for it.
This one is also very slow on "/* some comment */": "^\/*\(.*[^/]\)*$".

7 Recognize "[a-z]", "[0-9]", etc. and replace them with the faster "\l" and
"\d".

7 Add a way to specify characters in <C-M> or <Key> form. Could be
\%<C-M>.

8 Add an argument after ":s/pat/str/" for a range of matches. For example,
":s/pat/str/#3-4" to replace only the third and fourth "pat" in a line.

8 When 'iskeyword' is changed the matches from 'hlsearch' may change. (Benji
Fisher) redraw if some options are set while 'hlsearch' is set?

8 Add an option not to use 'hlsearch' highlighting for ":s" and ":g"
commands. (Kahn) It would work like ":noh" is used after that command.
Also: An extra flag to do this once, and a flag to keep the existing
search pattern.

- Make 'hlsearch' a local/global option, so that it can be disabled in some
of the windows.

- Add \%h{group-name}; to search for a specific highlight group.
Add \%s{syntax-group}; to search for a specific syntax group.

- Support Perl regexp. Use PCRE (Perl Compatible RE) package. (Shade)
Or translate the pattern to a Vim one.
Don't switch on with an option for typed commands/mappings/functions, it's
too confusing. Use "\@@" in the pattern, to avoid incompatibilities.

8 Add a way to access the last substitute text, what is used for ":s//~/".
Can't use the ~ register, it's already used for drag & drop.

- Remember flags for backreferenced items, so that "*" can be used after it.
Check with "\(\S\)\1\{3}". (Hemmerling)

8 Flags that apply to the whole pattern.
This works for all places where a regexp is used.
Add "\q" to not store this pattern as the last search pattern?

- Add flags to search command (also for ":s"?):
i ignore case
I use case
p use Perl regexp syntax (or POSIX?)
v use Vi regexp syntax
f forget pattern, don't keep it for "n" command
F remember pattern, keep it for "n" command
Perl uses these too:
e evaluate the right side as an expression (Perl only)
m multiple line expression (we don't need it)
o compile only once (Perl only)
s single line expression (we don't need it)
x extended regexp (we don't need it)
When used after ":g" command, backslash needed to avoid confusion with the
following command.
Add 'searchflags' for default flags (replaces 'gdefault').

- Add command to display the last used substitute pattern and last used
pattern. (Margo) Maybe make it accessible through a register (like "/
for search string)?

7 Use T-search algorithm, to speed up searching for strings without special
characters. See C't article, August 1997.

- Add 'fuzzycase' option, so that case doesn't matter, and '-' and '_' are
equivalent (for Unix filenames).

- Add 'v' flag to search command: enter Visual mode, with the matching text
as Visual area. (variation on idea from Bertin)

- Searching: "/this//that/" should find "that" after "this".

todo.txt — 544

- Add global search commands: Instead of wrapping at the end of the buffer,
they continue in another buffer. Use flag after search pattern:
a for the next file in the argument list
f for file in the buffer list
w for file edited in a window.
e.g. "/pat/f". Then "n" and "N" work through files too. "f" flag also for
":s/pat/foo/f"??? Then when 'autowrite' and 'hidden' are both not set, ask
before saving files: "Save modified buffer "/path/file"? (Yes/Hide/No
Save-all/hide-All/Quit) ".

- ":s/pat/foo/3": find 3rd match of "pat", like sed. (Thomas Koehler)
7 When searching with 'n' give message when getting back where the search

first started. Remember start of search in '/ mark.
7 Add option that scrolls screen to put cursor in middle of screen after

search always/when off-screen/never. And after a ":tag" command. Maybe
specify how many lines below the screen causes a redraw with the cursor in
the middle (default would be half a screen, zero means always).

6 Support multiple search buffers, so macros can be made without side
effects.

7 From xvim: Allow a newline in search patterns (also for :s, can delete
newline). Add BOW, EOW, NEWL, NLORANY, NLBUTANY, magic 'n' and 'r', etc.
[not in xvim:] Add option to switch on matches crossing ONE line boundary.

7 Add ":iselect", a combination of ":ilist" and ":tselect". (Aaron) (Zellner)
Also ":dselect".

- Searching for \%'> does not find anything when using line Visual
selection. Probably because it's using MAXCOL. #8238

- Regexp to search for duplicate lines does not work correctly:
/\(^.*\n\)\1 (Chris Morgan, #6239)

- Problem with upwards search on Windows (works OK on Linux). (Brett
Stahlman, 2014 Jun 8)

- Searching mixed with Visual mode doesn't redraw properly. (James Vega,
2010 Nov 22)

- Searching for composing char works, but not when inside []. (ZyX, Benjamin
R. Haskell, 2010 Aug 24)

- When 'smartcase' is set and using CTRL-L to add to the search pattern it
may result in no matches. Convert chars to lower case? (Erik Wognsen,
2009 Apr 16)

Undo:
9 ":gundo" command: global undo. Undoes changes spread over multiple files

in the order they were made. Also ":gredo". Both with a count. Useful
when tests fail after making changes and you forgot in which files.

9 After undo/redo, in the message show whether the buffer is modified or
not.

8 Search for pattern in undo tree, showing when it happened and the text
state, so that you can jump to it.

8 Undo tree: visually show the tree somehow (Damian Conway)
Show only the leaves, indicating how many changed from the branch and the
timestamp?
Put branch with most recent change on the left, older changes get more
indent?

- Make it possible to undo all the commands from a mapping, including a
trailing unfinished command, e.g. for ":map K iX^[r".

- When accidentally hitting "R" instead of Ctrl-R, further Ctrl-R is not
possible, even when typing <Esc> immediately. (Grahn) Also for "i", "a",
etc. Postpone saving for undo until something is really inserted?

8 When Inserting a lot of text, it can only be undone as a whole. Make undo
sync points at every line or word. Could recognize the start of a new
word (white space and then non-white space) and backspacing.
Can already use CTRL-G u, but that requires remapping a lot of things.

todo.txt — 545

8 Make undo more memory-efficient: Compare text before and after change,
only remember the lines that really changed.

7 Add undo for a range of lines. Can change these back to a previous
version without changing the rest of the file. Stop doing this when a
change includes only some of these lines and changes the line count. Need
to store these undo actions as a separate change that can be undone.

- For u_save() include the column number. This can be used to set '[and '].
And in the future the undo can be made more efficient (Webb).

- In out-of-memory situations: Free allocated space in undo, and reduce the
number of undo levels (with confirmation).

- Instead of [+], give the number of changes since the last write: [+123].
When undoing to before the last write, change this to a negative number:
[-99].

- With undo with simple line delete/insert: optimize screen updating.
- When executing macro's: Save each line for undo only once.
- When doing a global substitute, causing almost all lines to be changed,

undo info becomes very big. Put undo info in swap file??
- MS-Windows: when writing undo file the infostreams are copied in

mch_copy_file_attribute(), that seems unnecessary. (#7925) Add a flag to
only copy attributes?

- undo result wrong: Masato Nishihata, #4798
- After recovering from a swap file the undofile should not be used, it

causes corruption. (#6631)
- When the computer crashes while writing the undofile, the contents may be

lost. Write to a temp file, fsync and rename. (#8879)
- Undo puts cursor in wrong line after "cG<Esc>" undo.
- Undo history wrong when ":next file" re-uses a buffer. (#5426) ex_next()

should pass flag to do_argfile(), then to do_ecmd(). Is there a test for
this?

- Undo problem: "g-" doesn't go back, gets stuck. (Björn Linse, 2016 Jul 18)
- Undo message is not always properly displayed. Patch by Ken Takata, 2013

oct 3. Doesn't work properly according to Yukihiro Nakadaira.
Also see #1635.

- When using ":diffput" through a mapping, undo in the target buffer isn't
synced. (Ryan Carney, 2016 Sep 14)

- The undo file name can get too long. (Issue #346)
For the path use a hash instead of dir%dir%dir%name hash%name.
Check both for some time for backwards compatibility.
Alternatively: create the directory structure under 'undodir'.

- Patch to add ":undorecover", get as much text out of the undo file as
possible. (Christian Brabandt, 2014 Mar 12, update Aug 22)

- Patch to support :undo absolute jump to file save number. (Christian
Brabandt, 2010 Nov 5)

- There should be a way after an abbreviation has expanded to go back to
what was typed. CTRL-G h ? Would also undo last word or line break
inserted perhaps. And undo CTRL-W. CTRL-G l would redo.

- When using 'cryptmethod' xchaha20 the undo file is not encrypted.
Need to handle extra bytes.

Buffer list:
7 Command to execute a command in another buffer: ":inbuf {bufname} {cmd}".

Also for other windows: ":inwin {winnr} {cmd}". How to make sure that
this works properly for all commands, and still be able to return to the
current buffer/window? E.g.: ":inbuf xxx only".

8 Add File.{recent-files} menu entries: Recently edited files.
Ron Aaron has a plugin for this: mru.vim.

8 Unix: Check all uses of fnamecmp() and fnamencmp() if they should check
inode too.

7 Add another number for a buffer, which is visible for the user. When

todo.txt — 546

creating a new buffer, use the lowest number not in use (or the highest
number in use plus one?).

7 Offer some buffer selection from the command line? Like using ":ls" and
asking for a buffer number. (Zachmann)

- When starting to edit a file that is already in the buffer list, use the
file name argument for the new short file name. (Webb)

- Add an option to make ":bnext" and ":bprev" wrap around the end of the
buffer list. Also for ":next" and ":prev"?

7 Add argument to ":ls" which is a pattern for buffers to list.
E.g. ":ls *.c". (Thompson)

7 Add expansion of buffer names, so that "*.c" is expanded to all buffer
names. Needed for ":bdel *.c", ":bunload *.c", etc.

8 Support for <afile> where a buffer name is expected.
7 Add an option to mostly use slashes in file names. Separately for

internal use and for when executing an external program?
8 Some file systems are case-sensitive, some are not. Besides

'wildignorecase' there might be more parts inside
CASE_INSENSITIVE_FILENAME that are useful on Unix.

- When using ":bwipe!" also get rid of references to be buffer, e.g. in the
jumplist and alternate file.

- ":bnext" in a help buffer is supposed to go to the next help buffer, but
it goes to any buffer, and then :bnext skips help buffers, since they are
unlisted. (#4478)

- :buffer completion does not escape "+" properly and results in a regexp
error. (#5467)

- Problem with two buffers with the same name a/b, if it didn't exist before
and is created outside of Vim. (dskloetg, 2018 Jul 16, #3219)

- Add an option with file patterns, to be used when unloading a buffer: If
there is a match, remove entries for the buffer from marks, jumplist, etc.
To be used for git temp files.

Swap (.swp) files:
8 If writing to the swap file fails, should try to open one in another

directory from 'dir'. Useful in case the file system is full and when
there are short file name problems.

8 Also use the code to try using a short file name for the backup and swap
file for the Win32 and Dos 32 bit versions.

8 When a file is edited by root, add $LOGNAME to know who did su.
8 When the edited file is a symlink, try to put the swap file in the same

dir as the actual file. Adjust FullName(). Avoids editing the same file
twice (e.g. when using quickfix). Also try to make the name of the backup
file the same as the actual file?
Use the code for resolve()?

7 When using 64 bit inode numbers, also store the top 32 bits. Add another
field for this, using part of bo_fname[], to keep it compatible.

7 When editing a file on removable media, should put swap file somewhere
else. Use something like 'r' flag in 'viminfo'. 'diravoid'?
Also: Be able to specify minimum disk space, skip directory when not
enough room.

7 Add a configure check for which directory should be used: /tmp, /var/tmp
or /var/preserve.

- Add an option to create a swap file only when making the first change to
the buffer. (Liang) Or only when the buffer is not read-only.

- Add option to set "umask" for backup files and swap files (Antwerpen).
'backupumask' and 'swapumask'? Or 'umaskbackup' and 'umaskswap'?

- When editing a readonly file, don't use a swap file but read parts from the
original file. Also do this when the file is huge (>'maxmem'). We do
need to load the file once to count the number of lines? Perhaps keep a
cached list of which line is where.

todo.txt — 547

- When editing a file with ":edit" the output of :swapname is relative,
while editing it with "vim file" it is absolute. (#355) Which one should
it be?

- When recovering a file, put the swap file name in b:recovered_swapfile.
Then a command can delete it.

- In the ATTENTION message about an existing swap file, mention the name of
the process that is running. It might actually be some other program,
e.g. after a reboot.

- When running Vim in silent ex mode, an existing swapfile causes Vim to
wait for a user action without a prompt. (Maarten Billemont, 2012 Feb 3)
Do give the prompt? Quit with an error?

- After doing "su" $HOME can be the old user's home, thus ~root/file is not
correct. Don't use it in the swap file.

- In the swapfile dialog, add a H(elp) option that gives more info about
what each choice does. Similar to ":help swap-exists-choices"

Viminfo:
7 Can probably remove the code that checks for a writable viminfo file,

because we now do the chown() for root, and others can't overwrite someone
else's viminfo file.

8 When there is no .viminfo file and someone does "su", runs Vim, a
root-owned .viminfo file is created. Is there a good way to avoid this?
Perhaps check the owner of the directory. Only when root?

8 Add argument to keep the list of buffers when Vim is started with a file
name. (Schild)

8 Keep the last used directory of the file browser (File/Open menu).
8 Remember the last used register for "@@".
8 Remember the redo buffer, so that "." works after restarting.
8 Remember a list of last accessed files. To be used in the

"File.Open Recent" menu. Default is to remember 10 files or so.
Also remember which files have been read and written. How to display
this?

7 Also store the ". register (last inserted text).
7 Make it possible to store buffer names in viminfo file relative to some

directory, to make them portable over a network. (Aaron)
6 Store a snapshot of the currently opened windows. So that when quitting

Vim, and then starting again (without a file name argument), you see the
same files in the windows. Use ":mksession" code?

- Make marks present in .viminfo usable as file marks: Display a list of
"last visited files" and select one to jump to.

- Add the debug command line history to viminfo.
- Using "wviminfo /tmp/viminfo" does not store file marks that Vim knows

about, it only works when merging with an existing file. (Shougo, 2017
Jun 19, #1781)

- Writing nested List and Dict in viminfo gives error message and can't be
read back. (Yukihiro Nakadaira, 2010 Nov 13)

- When a register contains illegal bytes, writing viminfo in utf-8 and
reading it back doesn't result in utf-8. (Devin Bayer)

8 With 'viminfo' set such that the ".viminfo" file is written on a FAT
filesystem, an illegal file name may be created: ".vim".

8 For each buffer that is opened, the viminfo file is opened and read to
check for file marks. This can be slow.

8 When write_viminfo() is used while there are many orphaned viminfo
tempfiles writing the viminfo file fails. Give a clear error message so
that the user knows the files have to be deleted.

Modelines:
8 Before trying to execute a modeline, check that it looks like one (valid

todo.txt — 548

option names). If it's very wrong, silently ignore it.
Ignore a line that starts with "Subject: ".

- Add an option to whitelist options that are allowed in a modeline. This
would allow careful users to use modelines, e.g., only allowing
'shiftwidth'.

- Add an option to let modelines only set local options, not global ones
such as 'encoding'.

- When an option value is coming from a modeline, do not carry it over to
another edited file? Would need to remember the value from before the
modeline setting.

- Allow setting a variable from a modeline? Only allow using fixed strings,
no function calls, to avoid a security problem.

- Allow ":doauto BufRead x.cpp" in modelines, to execute autocommands for
.cpp files.

- Support the "abbreviate" command in modelines (Kearns). Careful for
characters after <Esc>, that is a security leak.

- Add an option setting to ask the user if the modelines are to be executed
or not. Same for .exrc in local dir.

Sessions:
- Session file contains absolute paths when "curdir" is removed form

'sessionoptions', making it impossible to have a session with a relative
path. (#4450)

- Session file only contains local option values for buffers that are in a
window, not other buffers. (#7532)

- Script generated by :mksession does not work well if there are windows
with modified buffers:

change "silent only" into "silent only!"
change "edit fname" of first buffer to "hide edit fname"
skip "badd fname" if "fname" is already in the buffer list
remove remark about unloading buffers from documentation

- When session file has name in argument list but the buffer was deleted,
the buffer is not deleted when using the session file. (#1393) Should add
the buffer in hidden state.

- When a session file is created and there are "nofile" buffers, these are
not filled. Need to trigger BufReadCmd autocommands. Also handle
deleting the initial empty buffer better. (ZyX, 2015 March 8)

- Setting the spell file in a session only reads the local additions, not
the normal spell file. (Enno Nagel, 2014 Mar 29)

- Directory wrong in session file, caused by ":lcd" in BufEnter autocommand.
(Felix Kater, 2009 Mar 3)

- Something wrong with session that has "cd" commands and "badd", in such a
way that Vim doesn't find the edited file in the buffer list, causing the
ATTENTION message? (Tony Mechelynck, 2008 Dec 1) Also: swap files are in
~/tmp/ One has relative file name ".mozilla/...".

- Session file creation: 'autochdir' causes trouble. Keep it off until
after loading all files.

- Session file generates error upon loading, cause by --remote-silent-tab.
(7tommm (ytommm) 2010 Nov 24)

8 DOS/Windows: ":mksession" generates a "cd" command where "aa\#bb" means
directory "#bb" in "aa", but it's used as "aa#bb". (Ronald Hoellwarth)

7 When there is a "help.txt" window in a session file, restoring that
session will not get the "LOCAL ADDITIONS" back.

8 With ":mksession" always store the 'sessionoptions' option, even when
"options" isn't in it. (St-Amant)

8 When using ":mksession", also store a command to reset all options to
their default value, before setting the options that are not at their
default value.

7 With ":mksession" also store the tag stack and jump history. (Michal

todo.txt — 549

Malecki)

Options:
7 ":with option=value | command": temporarily set an option value and

restore it after the command has executed.
8 Make "old" number options that really give a number of effects into string

options that are a comma-separated list. The old number values should
also be supported.

8 Add commands to save and restore an option, which also preserves the flag
that marks if the option was set. Useful to keep the effect of setting
'compatible' after ":syntax on" has been used.

7 There is 'titleold', why is there no 'iconold'? (Chazelas)

External commands:
8 When filtering text, redirect stderr so that it can't mess up the screen

and Vim doesn't need to redraw it. Also for ":r !cmd".
4 Set separate shell for ":sh", piping "range!filter", reading text "r !ls"

and writing text "w !wc". (Deutsche) Allow arguments for fast start (e.g.
-f).

4 Allow direct execution, without using a shell.
4 Run an external command in the background. But how about I/O in the GUI?

Careful: don't turn Vim into a shell!
4 Add feature to disable using a shell or external commands.

Multiple Windows:
7 "vim -oO file ..." use both horizontal and vertical splits.
8 Add CTRL-W T: go to the top window in the column of the current window.

And CTRL-W B: go to bottom window.
7 Use CTRL-W <Tab>, like alt-tab, to switch between buffers. Repeat <Tab>

to select another buffer (only loaded ones?), <BS> to go back, <Enter> to
select buffer, <Esc> to go back to original buffer.

7 Make it possible to edit a new buffer in the preview window. A script can
then fill it with something. ":popen"?

7 Add a 'tool' window: behaves like a preview window but there can be
several. Don't count it in only_one_window(). (Alexei Alexandrov)

6 Add an option to resize the shell when splitting and/or closing a window.
":vsp" would make the shell wider by as many columns as needed for the new
window. Specify a maximum size (or use the screen size). ":close" would
shrink the shell by as many columns as come available. (Demirel)

7 When starting Vim several times, instantiate a Vim server, that allows
communication between the different Vims. Feels like one Vim running with
multiple top-level windows. Esp. useful when Vim is started from an IDE
too. Requires some form of inter process communication.

- Support a connection to an external viewer. Could call the viewer
automatically after some seconds of non-activity, or with a command.
Allow some way of reporting scrolling and cursor positioning in the viewer
to Vim, so that the link between the viewed and edited text can be made.

Marks:
8 Add ten marks for last changed files: ':0, ':1, etc. One mark per file.
8 When cursor is first moved because of scrolling, set a mark at this

position. (Rimon Barr) Use '-.
8 Add a command to jump to a mark and make the motion inclusive. g'm and g`m?
8 The '" mark is set to the first line, even when doing ":next" a few times.

Only set the '" mark when the cursor was really moved in a file.
8 Make `` and '', which would position the new cursor position in the middle

todo.txt — 550

of the window, restore the old topline (or relative position) from when
the mark was set.

7 Make a list of file marks in a separate window. For listing all buffers,
matching tags, errors, etc. Normal commands to move around. Add commands
to jump to the mark (in current window or new window). Start it with
":browse marks"?

6 Add a menu that lists the Marks like ":marks". (Amerige)
7 For ":jumps", ":tags" and ":marks", for not loaded buffers, remember the

text at the mark. Highlight the column with the mark.
7 Highlight each mark in some way (With "Mark" highlight group).

Or display marks in a separate column, like 'number' does.
7 Use d"m to delete rectangular area from cursor to mark m (like Vile's \m

command).
7 Try to keep marks in the same position when:

- replacing with a line break, like in ":s/pat/^M/", move marks after the
line break column to the next line. (Acevedo)

- inserting/deleting characters in a line.
5 Include marks for start/end of the current word and section. Useful in

mappings.
6 Add "unnamed mark" feature: Like marks for the ":g" command, but place and

unplace them with commands before doing something with the lines.
Highlight the marked lines somehow.

Digraphs:
7 Make "ga" show the keymap for a character, if it exists.

Also show the code of the character after conversion to 'fileencoding'.
- Use digraph table to tell Vim about the collating sequence of special

characters?
8 Add command to remove one or more (all) digraphs. (Brown)
7 Support different sets of digraphs (depending on the character set?). At

least Latin1/Unicode, Latin-2, MS-DOS (esp. for Win32).

Writing files:
- In vim_rename(), should lock "from" file when deleting "to" file for

systems other than Amiga. Avoids problems with unexpected longname to
shortname conversion.

8 write mch_isdevice() for Amiga, Mac, VMS, etc.
8 When appending to a file, Vim should also make a backup and a 'patchmode'

file.
8 'backupskip' doesn't write a backup file at all, a bit dangerous for some

applications. Add 'backupelsewhere' to write a backup file in another
directory? Or add a flag to 'backupdir'?

6 Add an option to write a new, numbered, backup file each time. Like
'patchmode', e.g., 'backupmode'.

6 Make it possible to write 'patchmode' files to a different directory.
E.g., ":set patchmode=~/backups/*.orig". (Thomas)

6 Add an option to prepend something to the backup file name. E.g., "#".
Or maybe allow a function to modify the backup file name?

8 Only make a backup when overwriting a file for the first time. Avoids
losing the original when writing twice. (Slootman)

7 On non-Unix machines, also overwrite the original file in some situations
(file system full, it's a link on an NFS partition).

7 When editing a file, check that it has been changed outside of Vim more
often, not only when writing over it. E.g., at the time the swap file is
flushed. Or every ten seconds or so (use the time of day, check it before
waiting for a character to be typed).

8 When a file was changed since editing started, show this in the status
line of the window, like "[time]".

todo.txt — 551

Make it easier to reload all outdated files that don't have changes.
Automatic and/or with a command.

Substitute:
8 Substitute with hex/unicode number "\%xff" and "\%uabcd". Just like

"\%uabcd" in search pattern.
8 Make it easier to replace in all files in the argument list. E.g.:

":argsub/oldword/newword/". Works like ":argdo %s/oldword/newword/g|w".
- :s///p prints the line after a substitution.
- With :s///c replace \&, ~, etc. when showing the replacement pattern.
8 With :s///c allow scrolling horizontally when 'nowrap' is effective.

Also allow a count before the scrolling keys.
- Add number option to ":s//2": replace second occurrence of string? Or:

:s///N substitutes N times.
- Add answers to ":substitute" with 'c' flag, used in a ":global", e.g.:

":g/pat1/s/pat2/pat3/cg": 'A' do all remaining replacements, 'Q' don't do
any replacements, 'u' undo last substitution.

7 Substitute in a block of text. Use {line}.{column} notation in an Ex
range, e.g.: ":1.3,$.5s" means to substitute from line 1 column 3 to the
last line column 5.

5 Add commands to bookmark lines, display bookmarks, remove bookmarks,
operate on lines with bookmarks, etc. Like ":global" but with the
possibility to keep the bookmarks and use them with several commands.
(Stanislav Sitar)

Mouse support:
8 Add 'o' flag to 'mouse'?
7 Be able to set a 'mouseshape' for the popup menu.
8 Add 'mouse' flag, which sets a behavior like Visual mode, but automatic

yanking at the button-up event. Or like Select mode, but typing gets you
out of Select mode, instead of replacing the text. (Bhaskar)

- Implement mouse support for the Amiga console.
- Using right mouse button to extend a blockwise selection should attach to

the nearest corner of the rectangle (four possible corners).
- Precede mouse click by a number to simulate double clicks?!?
- When mouse click after 'r' command, get character that was pointed to.

Argument list:
6 Add command to put all filenames from the tag files in the argument list.

When given an argument, only use the files where that argument matches
(like `grep -l ident`) and jump to the first match.

6 Add command to form an args list from all the buffers?

Registers:
8 Don't display empty registers with ":display". (Etienne)
8 Add put command that overwrites existing text. Should also work for

blocks. Useful to move text around in a table. Works like using "R ^R r"
for every line.

- When appending to a register, also report the total resulting number of
lines. Or just say "99 more lines yanked", add the "more".

- When inserting a register in Insert mode with CTRL-R, don't insert comment
leader when line wraps?

- The ":@r" commands should take a range and execute the register for each
line in the range.

- Add "P" command to insert contents of unnamed register, move selected text
to position of previous deleted (to swap foo and bar in " + foo")

todo.txt — 552

8 Should be able to yank and delete into the "/ register.
How to take care of the flags (offset, magic)?

- In Select mode the deleted text always goes into the unnamed register.
Use CTRL-R to specify the register to use. (#9531)

- When "+ register is set then "" points to it. If another Vim grabs the "+
register, then "" doesn't contain anything. Make it still follow "+.
(#6435)

- Pasting a register in Visual mode cannot be repeated. (Mahmoud Al-Qudsi,
2018 Apr 26, #2849)

- Patch to add option that tells whether small deletes go into the numbered
registers. (Aryeh Leib Taurog, 2013 Nov 18)

- With "unamedplus" in 'clipboard' pasting in Visual mode causes error for
empty register. (Michael Seiwald, 2011 Jun 28) I can't reproduce it.

- Consider making YankRing or something else that keeps a list of yanked
text part of standard Vim. The "1 to "9 registers are not sufficient.

6 When yanking into the unnamed registers several times, somehow make the
previous contents also available (like it's done for deleting). What
register names to use? g"1, g"2, etc.?
Also do this for the small delete register "-.

Debug mode:
8 Add breakpoints for setting an option
8 Add breakpoints for assigning to a variable.
7 Store the history from debug mode in viminfo.
7 Make the debug mode history available with histget() et al.
- In debug mode, using CTRL-R = to evaluate a function causes stepping

through the function. (Hari Krishna Dara, 2006 Jun 28)

Various improvements:
7 Add plugins for formatting? Should be able to make a choice depending on

the language of a file (English/Korean/Japanese/etc.).
Setting the 'langformat' option to "chinese" would load the
"format/chinese.vim" plugin.
The plugin would set 'formatexpr' and define the function being called.
Edward L. Fox explains how it should be done for most Asian languages.
(2005 Nov 24)
Alternative: patch for utf-8 line breaking. (Yongwei Wu, 2008 Feb 23)

7 [t to move to previous xml/html tag (like "vatov"),]t to move to next
("vatv").

7 [< to move to previous xml/html tag, e.g., previous .]< to move to
next ,]< to next , [< to previous .

8 Add ":rename" command: rename the file of the current buffer and rename
the buffer. Buffer may be modified.

7 Instead of filtering errors with a shell script it should be possible to
do this with Vim script. A function that filters the raw text that comes
from the 'makeprg'?

7 Allow a window not to have a statusline. Makes it possible to use a
window as a buffer-tab selection.

8 Allow non-active windows to have a different statusline. (Yakov Lerner)
7 Add an invisible buffer which can be edited. For use in scripts that want

to manipulate text without changing the window layout.
8 Add a command to revert to the saved version of file; undo or redo until

all changes are gone.
6 "vim -q -" should read the list of errors from stdin. (Gautam Mudunuri)
8 Add "--remote-fail": When contacting the server fails, exit Vim.

Add "--remote-self": When contacting the server fails, do it in this Vim.
Overrules the default of "--remote-send" to fail and "--remote" to do it
in this Vim.

todo.txt — 553

8 When Vim was started without a server, make it possible to start one, as
if the "--servername" argument was given. ":startserver <name>"?

8 No address range can be used before the command modifiers. This makes
them difficult to use in a menu for Visual mode. Accept the range and
have it apply to the following command.

8 Add the possibility to set 'fileformats' to force a format and strip other
CR characters. For example, for "dos" files remove CR characters at the
end of the line, so that a file with mixed line endings is cleaned up.
To just not display the CR characters: Add a flag to 'display'?

7 Some compilers give error messages in which the file name does not have a
path. Be able to specify that 'path' is used for these files.

7 Xterm sends <Esc>O3F for <M-End>. Similarly for other <M-Home>, <M-Left>,
etc. Combinations of Alt, Ctrl and Shift are also possible. Recognize
these to avoid inserting the raw byte sequence, handle like the key
without modifier (unless mapped).

6 Add "gG": like what "gj" is to "j": go to the N'th window line.
8 Add command like ":normal" that accepts <Key> notation like ":map".
9 Support ACLs on more systems.
7 Add ModeMsgVisual, ModeMsgInsert, etc. so that each mode message can be

highlighted differently.
7 Add a message area for the user. Set some option to reserve space (above

the command line?). Use an ":echouser" command to display the message
(truncated to fit in the space).

7 Add %s to 'keywordprg': replace with word under the cursor. (Zellner)
8 Support printing on Unix. Can use "lpansi.c" as an example. (Bookout)
8 Add put command that replaces the text under it. Esp. for blockwise

Visual mode.
7 Enhance termresponse stuff: Add t_CV(?): pattern of term response, use

regexp: "\e\[[>?][0-9;]*c", but only check just after sending t_RV.
7 Add "g|" command: move to N'th column from the left margin (after wrapping

and applying 'leftcol'). Works as "|" like what "g0" is to "0".
7 Support setting 'equalprg' to a user function name.
7 Highlight the characters after the end-of-line differently.
7 When 'whichwrap' contains "l", "$dl" should join lines?
8 Add an argument to configure to use $CFLAGS and not modify it? (Mooney)
8 Enabling features is a mix of configure arguments and defines in

feature.h. How to make this consistent? Feature.h is required for
non-unix systems. Perhaps let configure define CONF_XXX, and use #ifdef
CONF_XXX in feature.h? Then what should min-features and max-features do?

8 Add "g^E" and "g^Y", to scroll a screen-full line up and down.
8 Add ":confirm" handling in open_exfile(), for when file already exists.
8 When quitting with changed files, make the dialog list the changed file

and allow "write all", "discard all", "write some". The last one would
then ask "write" or "discard" for each changed file. Patch in HierAssist
does something like this. (Shah)

7 Use growarray for replace stack.
7 Have a look at viH (Hellenic or Greek version of Vim). But a solution

outside of Vim might be satisfactory (Haritsis).
3 Make "2d%" work like "d%d%" instead of "d2%"?
7 "g CTRL-O" jumps back to last used buffer. Skip CTRL-O jumps in the same

buffer. Make jumplist remember the last ten accessed buffers?
7 Make it possible to set the size of the jumplist (also to a smaller number

than the default). (Nikolai Weibull)
- Add code to disable the CAPS key when going from Insert to Normal mode.
- Set date/protection/etc. of the patchfile the same as the original file.
- Use growarray for termcodes[] in term.c
- Add <window-99>, like <cword> but use filename of 99'th window.
7 Add a way to change an operator to always work characterwise-inclusive

(like "v" makes the operator characterwise-exclusive). "x" could be used.
- Make a set of operations on list of names: expand wildcards, replace home

todo.txt — 554

dir, append a string, delete a string, etc.
- Remove using mktemp() and use tmpname() only? Ctags does this.
- When replacing environment variables, and there is one that is not set,

turn it into an empty string? Only when expanding options? (Hiebert)
- Option to set command to be executed instead of producing a beep (e.g. to

call "play newbeep.au").
- Add option to show the current function name in the status line. More or

less what you find with "[[k", like how 'cindent' recognizes a function.
(Bhatt).

- "[r" and "]r": like "p" and "P", but replace instead of insert (esp. for
blockwise registers).

- Add 'timecheck' option, on by default. Makes it possible to switch off the
timestamp warning and question. (Dodt).

- Add an option to set the time after which Vim should check the timestamps
of the files. Only check when an event occurs (e.g., character typed,
mouse moved). Useful for non-GUI versions where keyboard focus isn't
noticeable.

- Make 'smartcase' work even though 'ic' isn't set (Webb).
7 When formatting text, allow to break the line at a number of characters.

Use an option for this: 'breakchars'? Useful for formatting Fortran code.
- Add flag to 'formatoptions' to be able to format book-style paragraphs

(first line of paragraph has larger indent, no empty lines between
paragraphs). Complements the '2' flag. Use '>' flag when larger indent
starts a new paragraph, use '<' flag when smaller indent starts a new
paragraph. Both start a new paragraph on any indent change.

8 The 'a' flag in 'formatoptions' is too dangerous. In some way only do
auto-formatting in specific regions, e.g. defined by syntax highlighting.

8 Allow using a trailing space to signal a paragraph that continues on the
next line (MIME text/plain; format=flowed, RFC 2646). Can be used for
continuous formatting. Could use 'autoformat' option, which specifies a
regexp which triggers auto-formatting (for one line).
":set autoformat=\\s$".

- Be able to redefine where a sentence stops. Use a regexp pattern?
- Support multibyte characters for sentences. Example from Ben Peterson.
7 Add command "g)" to go to the end of a sentence, "g(" to go back to the

end of a sentence. (Servatius Brandt)
- Be able to redefine where a paragraph starts. For "[[" where the '{' is

not in column 1.
6 Add ":cdprev": go back to the previous directory. Need to remember a

stack of previous directories. We also need ":cdnext".
7 Should ":cd" for MS-DOS go to $HOME, when it's defined?
- Make "gq<CR>" work on the last line in the file. Maybe for every operator?
- Add more redirecting of Ex commands:

:redir #> bufname
:redir #>> bufname (append)

- Give error message when starting :redir: twice or using END when no
redirection was active.

- Setting of options, specifically for a buffer or window, with
":set window.option" or ":set buffer.option=val". Or use ":buffer.set".
Also: "buffer.map <F1> quit".

6 Would it be possible to change the color of the cursor in the Win32
console? (Klaus Hast)

- Add :delcr command:
:delcr

:[range]delcr[!] Check [range] lines (default: whole buffer) for lines
ending in <CR>. If all lines end in <CR>, or [!] is
used, remove the <CR> at the end of lines in [range].
A CTRL-Z at the end of the file is removed. If
[range] is omitted, or it is the whole file, and all
lines end in <CR> 'textmode' is set.

todo.txt — 555

- Should integrate addstar() and file_pat_to_reg_pat().
- When working over a serial line with 7 bit characters, remove meta

characters from 'isprint'.
- Use fchdir() in init_homedir(), like in FullName().
- In win_update(), when the GUI is active, always use the scrolling area.

Avoid that the last status line is deleted and needs to be redrawn.
- That "cTx" fails when the cursor is just after 'x' is Vi compatible, but

may not be what you expect. Add a flag in 'cpoptions' for this? More
general: Add an option to allow "c" to work with a null motion.

- Give better error messages by using errno (strerror()).
- Give "Usage:" error message when command used with wrong arguments (like

Nvi).
- Make 'restorescreen' option also work for xterm (and others), replaces the

SAVE_XTERM_SCREEN define.
7 Support for ":winpos" In xterm: report the current window position.
- Give warning message when using ":set t_xx=asdf" for a termcap code that

Vim doesn't know about. Add flag in 'shortmess'?
6 Add ":che <file>", list all the include paths which lead to this file.
- For a commandline that has several commands (:s, :d, etc.) summarize the

changes all together instead of for each command (e.g. for the rot13
macro).

- Add command like "[I" that also shows the tree of included files.
- ":set sm^L" results in ":set s", because short names of options are also

expanded. Is there a better way to do this?
- Add ":@!" command, to ":@" like what ":source!" is to ":source".
8 Add ":@:!": repeat last command with forceit set.
- Add 't_normal': Used whenever t_me, t_se, t_ue or t_Zr is empty.
- ":cab map test ^V| je", ":cunab map" doesn't work. This is vi compatible!
- CTRL-W CTRL-E and CTRL-W CTRL-Y should move the current window up or down

if it is not the first or last window.
- Include-file-search commands should look in the loaded buffer of a file (if

there is one) instead of the file itself.
7 Change 'nrformats' to include the leader for each format. Example:

nrformats=hex:$,binary:b,octal:0
Add setting of 'nrformats' to syntax files.

- 'path' can become very long, don't use NameBuff for expansion.
- When unhiding a hidden buffer, put the same line at top of the window as

the one before hiding it. Or: keep the same relative cursor position (so
many percent down the windows).

- Make it possible for the 'showbreak' to be displayed at the end of the
line. Use a comma to separate the part at the end and the start of the
line? #754 Highlight the linebreak characters, add flag in 'highlight'.
Make 'showbreak' local to a window.

- Some string options should be expanded if they have wildcards, e.g.
'dictionary' when it is "*.h".

- Use a specific type for number and boolean options, making it possible to
change it for specific machines (e.g. when a long is 64 bit).

- Add option for <Insert> in replace mode going to normal mode. (Nugent)
- Add a next/previous possibility to "[^I" and friends.
- Add possibility to change the HOME directory. Use the directory from the

passwd file? (Antwerpen)
8 Add commands to push and pop all or individual options. ":setpush tw",

":setpop tw", ":setpush all". Maybe pushing/popping all options is
sufficient. ":setflush" resets the option stack?
How to handle an aborted mapping? Remember position in tag stack when
mapping starts, restore it when an error aborts the mapping?

- Change ":fixdel" into option 'fixdel', t_del will be adjusted each time
t_bs is set? (Webb)

- "gc": goto character, move absolute character positions forward, also
counting newlines. "gC" goes backwards (Weigert).

todo.txt — 556

- When doing CTRL-^, redraw buffer with the same topline. (Demirel) Store
cursor row and window height to redraw cursor at same percentage of window
(Webb).

- Besides remembering the last used line number of a file, also remember the
column. Use it with CTRL-^ et. al.

- Check for non-digits when setting a number option (careful when entering
hex codes like 0xff).

- Add option to make "." redo the "@r" command, instead of the last command
executed by it. Also to make "." redo the whole mapping. Basically: redo
the last TYPED command.

- Support URL links for ^X^F in Insert mode, like for "gf".
- Support %name% expansion for "gf" on Windows.
- Make "gf" work on "file://c:/path/name". "file:/c:/" and "file:///c:/"

should also work?
- Add 'urlpath', used like 'path' for when "gf" used on a URL?
8 When using "gf" on an absolute file name, while editing a remote file

(starts with scp:// or http://) should prepend the method and machine
name.

- When finding a URL or file name, and it doesn't exist, try removing a
trailing '.'.

- Add ":path" command modifier. Should work for every command that takes a
file name argument, to search for the file name in 'path'. Use
find_file_in_path().

- Highlight control characters on the screen: Shows the difference between
CTRL-X and "^" followed by "X" (Colon).

- Integrate parsing of cmdline command and parsing for expansion.
- Create a program that can translate a .swp file from any machine into a

form usable by Vim on the current machine.
- Add ":noro" command: Reset 'ro' flag for all buffers, except ones that have

a readonly file. ":noro!" will reset all 'ro' flags.
- Add a variant of CTRL-V that stops interpretation of more than one

character. For entering mappings on the command line where a key contains
several special characters, e.g. a trailing newline.

- Make '2' option in 'formatoptions' also work inside comments.
- Add 's' flag to 'formatoptions': Do not break when inside a string. (Dodt)
- When window size changed (with the mouse) and made too small, set it back

to the minimal size.
- Add "]>" and "[<", shift comment at end of line (command; /* comment */).
- Should not call cursorcmd() for each vgetc() in getcmdline().
- ":split file1 file2" adds two more windows (Webb).
- Don't give message "Incomplete last line" when editing binary file.
- Add ":a", ":i" for preloading of named buffers.
- When entering text, keep other windows on same buffer updated (when a line

entered)?
- Check out how screen does output optimizing. Apparently this is possible

as an output filter.
- In dosub() regexec is called twice for the same line. Try to avoid this.
- Window updating from memline.c: insert/delete/replace line.
- Optimize ml_append() for speed, esp. for reading a file.
- V..c should keep indent when 'ai' is set, just like [count]cc.
- Updatescript() can be done faster with a string instead of a char.
- Screen updating is inefficient with CTRL-F and CTRL-B when there are long

lines.
- Uppercase characters in Ex commands can be made lowercase?
8 Add option to show characters in text not as "|A" but as decimal ("^129"),

hex ("\x81") or octal ("\201") or meta (M-x). Nvi has the 'octal' option
to switch from hex to octal. Vile can show unprintable characters in hex
or in octal.

7 Tighter integration with xxd to edit binary files. Make it more
easy/obvious to use. Command line argument?

todo.txt — 557

- How does vi detect whether a filter has messed up the screen? Check source.
After ":w !command" a wait_return?

- Improve screen updating code for doput() (use s_ins()).
- With 'p' command on last line: scroll screen up (also for terminals without

insert line command).
- Use insert/delete char when terminal supports it.
- Optimize screen redraw for slow terminals.
- Optimize "dw" for long row of spaces (say, 30000).
- Add "-d null" for editing from a script file without displaying.
- In Insert mode: Remember the characters that were removed with backspace

and re-insert them one at a time with <key1>, all together with <key2>.
- Amiga: Add possibility to set a keymap. The code in amiga.c does not work

yet.
- Implement 'redraw' option.
- Add special code to 'sections' option to define something else but '{' or

'}' as the start of a section (e.g. one shiftwidth to the right).
7 Allow using Vim in a pipe: "ls | vim -u xxx.vim - | yyy". Only needs

implementing ":w" to stdout in the buffer that was read from stdin.
Perhaps writing to stdout will work, since stderr is used for the terminal
I/O.

8 Allow opening an unnamed buffer with ":e !cmd" and ":sp !cmd". Vile can
do it.

- Add commands like]] and [[that do not include the line jumped to.
- When :unab without matching "from" part and several matching "to" parts,

delete the entry that was used last, instead of the first in the list.
- Add text justification option.
- Set boolean options on/off with ":set paste=off", ":set paste=on".
- After "inv"ing an option show the value: ":set invpaste" gives "paste is

off".
- Check handling of CTRL-V and '\' for ":" commands that do not have TRLBAR.
- When a file cannot be opened but does exist, give error message.
- Amiga: When 'r' protection bit is not set, file can still be opened but

gives read errors. Check protection before opening.
- When writing check for file exists but no permission, "Permission denied".
- If file does not exist, check if directory exists.
- Settings edit mode: make file with ":set opt=xx", edit it, parse it as ex

commands.
- ":set -w all": list one option per line.
- Amiga: test for 'w' flag when reading a file.
- :table command (Webb)
- Add new operator: clear, make area white (replace with spaces): "g ".
- Add command to ":read" a file at a certain column (blockwise read?).
- Add sort of replace mode where case is taken from the old text (Goldfarb).
- Allow multiple arguments for ":read", read all the files.
- Support for tabs in specific columns: ":set tabcol=8,20,34,56" (Demirel).
- Add 'searchdir' option: Directories to search for file name being edited

(Demirel).
- Modifier for the put command: Change to linewise, charwise, blockwise, etc.
- Add commands for saving and restoring options ":set save" "set restore",

for use in macro's and the like.
- Keep output from listings in a window, so you can have a look at it while

working in another window. Put cmdline in a separate window?
- Add possibility to put output of Ex commands in a buffer or file, e.g. for

":set all". ":r :set all"?
- When the 'equalalways' option is set, creating a new window should not

result in windows to become bigger. Deleting a window should not result in
a window to become smaller (Webb).

- When resizing the whole Vim window, the windows inside should be resized
proportionally (Webb).

- Include options directly in option table, no indirect pointers. Use

todo.txt — 558

mkopttab to make option table?
- When doing ":w dir", where "dir" is a directory name, write the current

file into that directory, with the current file name (without the path)?
- Support for 'dictionary's that are sorted, makes access a lot faster

(Haritsis).
- Add "^Vrx" on the command line, replace with contents of register x. Used

instead of CTRL-R to make repeating possible. (Marinichev)
- Add "^Vb" on the command line, replace with word before or under the

cursor?
- Support mapping for replace mode and "r" command (Vi doesn't do this)?
8 Sorting of filenames for completion is wrong on systems that ignore

case of filenames. Add 'ignorefncase' option. When set, case in
filenames is ignored for sorting them. Patch by Mike Williams:
~/vim/patches/ignorefncase. Also change what matches? Or use another
option name.

8 Should be able to compile Vim in another directory, with $(srcdir) set to
where the sources are. Add $(srcdir) in the Makefile in a lot of places.
(Netherton)

6 Make it configurable when "J" inserts a space or not. Should not add a
space after "(", for example.

5 When inserting spaces after the end-of-line for 'virtualedit', use tabs
when the user wants this (e.g., add a "tab" field to 'virtualedit').
(Servatius Brandt)

From Elvis:
- Use "instman.sh" to install manpages?
- Add ":alias" command.
- Search patterns:

\@ match word under cursor.
but do:

\@w match the word under the cursor?
\@W match the WORD under the cursor?

8 ":window" command:
:win + next window (up)
:win ++ idem, wrapping
:win - previous window (down)
:win -- idem, wrapping
:win nr to window number "nr"
:win name to window editing buffer "name"

7 ":cc" compiles a single file (default: current one). 'ccprg' option is
program to use with ":cc". Use ":compile" instead of ":cc"?

From xvi:
- CTRL-_ : swap 8th bit of character.
- Add egrep-like regex type, like xvi (Ned Konz) or Perl (Emmanuel Mogenet)

From vile:
- When horizontal scrolling, use '>' for lines continuing right of a window.
- Support putting .swp files in /tmp: Command in rc.local to move .swp files

from /tmp to some directory before deleting files.

Far future and "big" extensions:
- Instead of using a Makefile and autoconf, use a simple shell script to

find the C compiler and do everything with C code. Translate something
like an Aap recipe and configure.ac to C. Avoids depending on Python,
thus will work everywhere. With batch file to find the C compiler it

todo.txt — 559

would also work on MS-Windows.
- Make it easy to setup Vim for groups of users: novice vi users, novice

Vim users, C programmers, xterm users, GUI users,...
- Change layout of blocks in swap file: Text at the start, with '\n' in

between lines (just load the file without changes, except for Mac).
Indexes for lines are from the end of the block backwards. It's the
current layout mirrored.

- Make it possible to edit a register, in a window, like a buffer.
- Add stuff to syntax highlighting to change the text (upper-case keywords,

set indent, define other highlighting, etc.).
- Mode to keep C-code formatted all the time (sort of on-line indent).
- Several top-level windows in one Vim session. Be able to use a different

font in each top-level window.
- Allow editing above start and below end of buffer (flag in 'virtualedit').
- Smart cut/paste: recognize words and adjust spaces before/after them.
- Add open mode, use it when terminal has no cursor positioning.
- Special "drawing mode": a line is drawn where the cursor is moved to.

Backspace deletes along the line (from jvim).
- Support for underlining (underscore-BS-char), bold (char-BS-char) and other

standout modes switched on/off with , 'overstrike' option (Reiter).
- Add vertical mode (Paul Jury, Demirel): "5vdw" deletes a word in five

lines, "3vitextESC" will insert "text" in three lines, etc..
4 Recognize l, #, p as 'flags' to EX commands:

:g/RE/#l shall print lines with line numbers and in list format.
:g/RE/dp shall print lines that are deleted.
POSIX: Commands where flags shall apply to all lines written: list,
number, open, print, substitute, visual, &, z. For other commands, flags
shall apply to the current line after the command completes. Examples:
:7,10j #l Join the lines 7-10 and print the result in list

- Allow two or more users to edit the same file at the same time. Changes
are reflected in each Vim immediately. Could work with local files but
also over the internet. See http://www.codingmonkeys.de/subethaedit/.

vim:tw=78:sw=4:sts=4:ts=8:noet:ft=help:norl:

todo.txt — 560

http://www.codingmonkeys.de/subethaedit/

develop.txt For Vim version 9.1. Last change: 2022 Sep 20

VIM REFERENCE MANUAL by Bram Moolenaar

Development of Vim. development

This text is important for those who want to be involved in further developing
Vim.

1. Design goals design-goals
2. Coding style coding-style
3. Design decisions design-decisions
4. Assumptions design-assumptions

See the file README.txt in the "src" directory for an overview of the source
code.

Vim is open source software. Everybody is encouraged to contribute to help
improving Vim. For sending patches a unified diff "diff -u" is preferred.
You can create a pull request on github, but it's not required.
Also see http://vim.wikia.com/wiki/How_to_make_and_submit_a_patch.

==
1. Design goals design-goals

Most important things come first (roughly).

Note that quite a few items are contradicting. This is intentional. A
balance must be found between them.

VIM IS... VI COMPATIBLE design-compatible

First of all, it should be possible to use Vim as a drop-in replacement for
Vi. When the user wants to, Vim can be used in compatible mode and hardly
any differences with the original Vi will be noticed.

Exceptions:
- We don't reproduce obvious Vi bugs in Vim.
- There are different versions of Vi. I am using Version 3.7 (6/7/85) as a

reference. But support for other versions is also included when possible.
The Vi part of POSIX is not considered a definitive source.

- Vim adds new commands, you cannot rely on some command to fail because it
didn't exist in Vi.

- Vim will have a lot of features that Vi doesn't have. Going back from Vim
to Vi will be a problem, this cannot be avoided.

- Some things are hardly ever used (open mode, sending an e-mail when
crashing, etc.). Those will only be included when someone has a good reason
why it should be included and it's not too much work.

- For some items it is debatable whether Vi compatibility should be
maintained. There will be an option flag for these.

VIM IS... IMPROVED design-improved

The IMproved bits of Vim should make it a better Vi, without becoming a
completely different editor. Extensions are done with a "Vi spirit".
- Use the keyboard as much as feasible. The mouse requires a third hand,

develop.txt — 561

http://vim.wikia.com/wiki/How_to_make_and_submit_a_patch

which we don't have. Many terminals don't have a mouse.
- When the mouse is used anyway, avoid the need to switch back to the

keyboard. Avoid mixing mouse and keyboard handling.
- Add commands and options in a consistent way. Otherwise people will have a

hard time finding and remembering them. Keep in mind that more commands and
options will be added later.

- A feature that people do not know about is a useless feature. Don't add
obscure features, or at least add hints in documentation that they exist.

- Minimize using CTRL and other modifiers, they are more difficult to type.
- There are many first-time and inexperienced Vim users. Make it easy for

them to start using Vim and learn more over time.
- There is no limit to the features that can be added. Selecting new features

is one based on (1) what users ask for, (2) how much effort it takes to
implement and (3) someone actually implementing it.

VIM IS... MULTI PLATFORM design-multi-platform

Vim tries to help as many users on as many platforms as possible.
- Support many kinds of terminals. The minimal demands are cursor positioning

and clear-screen. Commands should only use key strokes that most keyboards
have. Support all the keys on the keyboard for mapping.

- Support many platforms. A condition is that there is someone willing to do
Vim development on that platform, and it doesn't mean messing up the code.

- Support many compilers and libraries. Not everybody is able or allowed to
install another compiler or GUI library.

- People switch from one platform to another, and from GUI to terminal
version. Features should be present in all versions, or at least in as many
as possible with a reasonable effort. Try to avoid that users must switch
between platforms to accomplish their work efficiently.

- That a feature is not possible on some platforms, or only possible on one
platform, does not mean it cannot be implemented. [This intentionally
contradicts the previous item, these two must be balanced.]

VIM IS... WELL DOCUMENTED design-documented

- A feature that isn't documented is a useless feature. A patch for a new
feature must include the documentation.

- Documentation should be comprehensive and understandable. Using examples is
recommended.

- Don't make the text unnecessarily long. Less documentation means that an
item is easier to find.

VIM IS... HIGH SPEED AND SMALL IN SIZE design-speed-size

Using Vim must not be a big attack on system resources. Keep it small and
fast.
- Computers are becoming faster and bigger each year. Vim can grow too, but

no faster than computers are growing. Keep Vim usable on older systems.
- Many users start Vim from a shell very often. Startup time must be short.
- Commands must work efficiently. The time they consume must be as small as

possible. Useful commands may take longer.
- Don't forget that some people use Vim over a slow connection. Minimize the

communication overhead.
- Items that add considerably to the size and are not used by many people

should be a feature that can be disabled.
- Vim is a component among other components. Don't turn it into a massive

application, but have it work well together with other programs.

develop.txt — 562

VIM IS... MAINTAINABLE design-maintain

- The source code should not become a mess. It should be reliable code.
- Use the same layout in all files to make it easy to read coding-style .
- Use comments in a useful way! Quoting the function name and argument names

is NOT useful. Do explain what they are for.
- Porting to another platform should be made easy, without having to change

too much platform-independent code.
- Use the object-oriented spirit: Put data and code together. Minimize the

knowledge spread to other parts of the code.

VIM IS... FLEXIBLE design-flexible

Vim should make it easy for users to work in their preferred styles rather
than coercing its users into particular patterns of work. This can be for
items with a large impact (e.g., the 'compatible' option) or for details. The
defaults are carefully chosen such that most users will enjoy using Vim as it
is. Commands and options can be used to adjust Vim to the desire of the user
and its environment.

VIM IS... NOT design-not

- Vim is not a shell or an Operating System. It does provide a terminal
window, in which you can run a shell or debugger. E.g. to be able to do
this over an ssh connection. But if you don't need a text editor with that
it is out of scope (use something like screen or tmux instead).
A satirical way to say this: "Unlike Emacs, Vim does not attempt to include
everything but the kitchen sink, but some people say that you can clean one
with it. ;-)"
To use Vim with gdb see terminal-debugger . Other (older) tools can be
found at http://www.agide.org and http://clewn.sf.net.

- Vim is not a fancy GUI editor that tries to look nice at the cost of
being less consistent over all platforms. But functional GUI features are
welcomed.

==
2. Coding style coding-style

These are the rules to use when making changes to the Vim source code. Please
stick to these rules, to keep the sources readable and maintainable.

This list is not complete. Look in the source code for more examples.

MAKING CHANGES style-changes

The basic steps to make changes to the code:
1. Get the code from github. That makes it easier to keep your changed

version in sync with the main code base (it may be a while before your
changes will be included). You do need to spend some time learning git,
it's not the most user friendly tool.

2. Adjust the documentation. Doing this first gives you an impression of how
your changes affect the user.

3. Make the source code changes.
4. Check ../doc/todo.txt if the change affects any listed item.
5. Make a patch with "git diff". You can also create a pull request on

develop.txt — 563

http://www.agide.org
http://clewn.sf.net

github, but it's the diff that matters.
6. Make a note about what changed, preferably mentioning the problem and the

solution. Send an email to the vim-dev maillist with an explanation and
include the diff. Or create a pull request on github.

C COMPILER style-compiler ANSI-C C89 C99

The minimal C compiler version supported is C89, also known as ANSI C.
Later standards, such as C99, are not widely supported, or at least not 100%
supported. Therefore we use only some of the C99 features and explicitly
disallow some (this will gradually be adjusted over time).

Please don't make changes everywhere to use the C99 features, it causes merge
problems for existing patches. Only use them for new and changed code.

Comments

Traditionally Vim uses /* comments */. We intend to keep it that way
for file and function headers and larger blocks of code, E.g.:

/*
* The "foo" argument does something useful.
* Return OK or FAIL.
*/

For new code or lines of code that change, it is preferred to use // comments.
Especially when it comes after code:

int some_var; // single line comment useful here

Enums

The last item in an enum may have a trailing comma. C89 didn't allow this.

Types

"long long" is allowed and can be expected to be 64 bits. Use %lld in printf
formats. Also "long long unsigned" with %llu.

Declarations

Now that the minimal supported compiler is MSVC 2015 declarations do not need
to be at the start of a block. However, it is often a good idea to do this
anyway.

Declaration of the for loop variable inside the loop is recommended:
for (int i = 0; i < len; ++i)

Since this is clearly an advantage we'll use this more often.

Not to be used

These C99 features are not to be used, because not enough compilers support
them:
- Variable length arrays (even in C11 this is an optional feature).
- _Bool and _Complex types.
- "inline" (it's hardly ever needed, let the optimizer do its work)
- flexible array members: Not supported by HP-UX C compiler (John Marriott)

USE OF COMMON FUNCTIONS style-functions

develop.txt — 564

Some functions that are common to use, have a special Vim version. Always
consider using the Vim version, because they were introduced with a reason.

NORMAL NAME VIM NAME DIFFERENCE OF VIM VERSION
free() vim_free() Checks for freeing NULL
malloc() alloc() Checks for out of memory situation
malloc() lalloc() Like alloc(), but has long argument
strcpy() STRCPY() Includes cast to (char *), for char_u * args
strchr() vim_strchr() Accepts special characters
strrchr() vim_strrchr() Accepts special characters
isspace() vim_isspace() Can handle characters > 128
iswhite() vim_iswhite() Only TRUE for tab and space
memcpy() mch_memmove() Handles overlapped copies
bcopy() mch_memmove() Handles overlapped copies
memset() vim_memset() Uniform for all systems

NAMES style-names

Function names can not be more than 31 characters long (because of VMS).

Don't use "delete" or "this" as a variable name, C++ doesn't like it.

Because of the requirement that Vim runs on as many systems as possible, we
need to avoid using names that are already defined by the system. This is a
list of names that are known to cause trouble. The name is given as a regexp
pattern.

is.*() POSIX, ctype.h
to.*() POSIX, ctype.h

d_.* POSIX, dirent.h
l_.* POSIX, fcntl.h
gr_.* POSIX, grp.h
pw_.* POSIX, pwd.h
sa_.* POSIX, signal.h
mem.* POSIX, string.h
str.* POSIX, string.h
wcs.* POSIX, string.h
st_.* POSIX, stat.h
tms_.* POSIX, times.h
tm_.* POSIX, time.h
c_.* POSIX, termios.h
MAX.* POSIX, limits.h
__.* POSIX, system
_[A-Z].* POSIX, system
E[A-Z0-9]* POSIX, errno.h

.*_t POSIX, for typedefs. Use .*_T instead.

wait don't use as argument to a function, conflicts with types.h
index shadows global declaration
time shadows global declaration
new C++ reserved keyword

clear Mac curses.h
echo Mac curses.h
instr Mac curses.h
meta Mac curses.h
newwin Mac curses.h

develop.txt — 565

nl Mac curses.h
overwrite Mac curses.h
refresh Mac curses.h
scroll Mac curses.h
typeahead Mac curses.h

basename() GNU string function
dirname() GNU string function
get_env_value() Linux system function

VARIOUS style-various

Typedef'ed names should end in "_T":
typedef int some_T;

Define'ed names should be uppercase:
#define SOME_THING

Features always start with "FEAT_":
#define FEAT_FOO

Don't use '\"', some compilers can't handle it. '"' works fine.

Don't use:
#if HAVE_SOME

Some compilers can't handle that and complain that "HAVE_SOME" is not defined.
Use

#ifdef HAVE_SOME
or

#if defined(HAVE_SOME)

STYLE style-examples

General rule: One statement per line.

Wrong: if (cond) a = 1;

OK: if (cond)
a = 1;

Wrong: while (cond);

OK: while (cond)
;

Wrong: do a = 1; while (cond);

OK: do
a = 1;

while (cond);

Wrong: if (cond) {
cmd;
cmd;

} else {
cmd;
cmd;

}

OK: if (cond)

develop.txt — 566

{
cmd;
cmd;

}
else
{

cmd;
cmd;

}

When a block has one line the braces can be left out. When an if/else has
braces on one block, it usually looks better when the other block also has
braces:
OK: if (cond)

cmd;
else

cmd;

OK: if (cond)
{

cmd;
}
else
{

cmd;
cmd;

}

Use ANSI (new style) function declarations with the return type on a separate
indented line.

Wrong: int function_name(int arg1, int arg2)

OK: /*
* Explanation of what this function is used for.
*
* Return value explanation.
*/

int
function_name(

int arg1, // short comment about arg1
int arg2) // short comment about arg2

{
int local; // comment about local

local = arg1 * arg2;

SPACES AND PUNCTUATION style-spaces

No space between a function name and the bracket:

Wrong: func (arg);
OK: func(arg);

Do use a space after if, while, switch, etc.

Wrong: if(arg) for(;;)
OK: if (arg) for (;;)

develop.txt — 567

Use a space after a comma and semicolon:

Wrong: func(arg1,arg2); for (i = 0;i < 2;++i)
OK: func(arg1, arg2); for (i = 0; i < 2; ++i)

Use a space before and after '=', '+', '/', etc.

Wrong: var=a*5;
OK: var = a * 5;

In general: Use empty lines to group lines of code together. Put a comment
just above the group of lines. This makes it easier to quickly see what is
being done.

OK: /* Prepare for building the table. */
get_first_item();
table_idx = 0;

/* Build the table */
while (has_item())

table[table_idx++] = next_item();

/* Finish up. */
cleanup_items();
generate_hash(table);

==
3. Design decisions design-decisions

Folding

Several forms of folding should be possible for the same buffer. For example,
have one window that shows the text with function bodies folded, another
window that shows a function body.

Folding is a way to display the text. It should not change the text itself.
Therefore the folding has been implemented as a filter between the text stored
in a buffer (buffer lines) and the text displayed in a window (logical lines).

Naming the window

The word "window" is commonly used for several things: A window on the screen,
the xterm window, a window inside Vim to view a buffer.
To avoid confusion, other items that are sometimes called window have been
given another name. Here is an overview of the related items:

screen The whole display. For the GUI it's something like 1024x768
pixels. The Vim shell can use the whole screen or part of it.

shell The Vim application. This can cover the whole screen (e.g.,
when running in a console) or part of it (xterm or GUI).

window View on a buffer. There can be several windows in Vim,
together with the command line, menubar, toolbar, etc. they
fit in the shell.

Spell checking develop-spell

When spell checking was going to be added to Vim a survey was done over the

develop.txt — 568

available spell checking libraries and programs. Unfortunately, the result
was that none of them provided sufficient capabilities to be used as the spell
checking engine in Vim, for various reasons:

- Missing support for multibyte encodings. At least UTF-8 must be supported,
so that more than one language can be used in the same file.
Doing on-the-fly conversion is not always possible (would require iconv
support).

- For the programs and libraries: Using them as-is would require installing
them separately from Vim. That's mostly not impossible, but a drawback.

- Performance: A few tests showed that it's possible to check spelling on the
fly (while redrawing), just like syntax highlighting. But the mechanisms
used by other code are much slower. Myspell uses a hashtable, for example.
The affix compression that most spell checkers use makes it slower too.

- For using an external program like aspell a communication mechanism would
have to be setup. That's complicated to do in a portable way (Unix-only
would be relatively simple, but that's not good enough). And performance
will become a problem (lots of process switching involved).

- Missing support for words with non-word characters, such as "Etten-Leur" and
"et al.", would require marking the pieces of them OK, lowering the
reliability.

- Missing support for regions or dialects. Makes it difficult to accept
all English words and highlight non-Canadian words differently.

- Missing support for rare words. Many words are correct but hardly ever used
and could be a misspelled often-used word.

- For making suggestions the speed is less important and requiring to install
another program or library would be acceptable. But the word lists probably
differ, the suggestions may be wrong words.

Spelling suggestions develop-spell-suggestions

For making suggestions there are two basic mechanisms:
1. Try changing the bad word a little bit and check for a match with a good

word. Or go through the list of good words, change them a little bit and
check for a match with the bad word. The changes are deleting a character,
inserting a character, swapping two characters, etc.

2. Perform soundfolding on both the bad word and the good words and then find
matches, possibly with a few changes like with the first mechanism.

The first is good for finding typing mistakes. After experimenting with
hashtables and looking at solutions from other spell checkers the conclusion
was that a trie (a kind of tree structure) is ideal for this. Both for
reducing memory use and being able to try sensible changes. For example, when
inserting a character only characters that lead to good words need to be
tried. Other mechanisms (with hashtables) need to try all possible letters at
every position in the word. Also, a hashtable has the requirement that word
boundaries are identified separately, while a trie does not require this.
That makes the mechanism a lot simpler.

Soundfolding is useful when someone knows how the words sounds but doesn't
know how it is spelled. For example, the word "dictionary" might be written
as "daktonerie". The number of changes that the first method would need to
try is very big, it's hard to find the good word that way. After soundfolding
the words become "tktnr" and "tkxnry", these differ by only two letters.

To find words by their soundfolded equivalent (soundalike word) we need a list
of all soundfolded words. A few experiments have been done to find out what
the best method is. Alternatives:
1. Do the sound folding on the fly when looking for suggestions. This means

develop.txt — 569

walking through the trie of good words, soundfolding each word and
checking how different it is from the bad word. This is very efficient for
memory use, but takes a long time. On a fast PC it takes a couple of
seconds for English, which can be acceptable for interactive use. But for
some languages it takes more than ten seconds (e.g., German, Catalan),
which is unacceptably slow. For batch processing (automatic corrections)
it's too slow for all languages.

2. Use a trie for the soundfolded words, so that searching can be done just
like how it works without soundfolding. This requires remembering a list
of good words for each soundfolded word. This makes finding matches very
fast but requires quite a lot of memory, in the order of 1 to 10 Mbyte.
For some languages more than the original word list.

3. Like the second alternative, but reduce the amount of memory by using affix
compression and store only the soundfolded basic word. This is what Aspell
does. Disadvantage is that affixes need to be stripped from the bad word
before soundfolding it, which means that mistakes at the start and/or end
of the word will cause the mechanism to fail. Also, this becomes slow when
the bad word is quite different from the good word.

The choice made is to use the second mechanism and use a separate file. This
way a user with sufficient memory can get very good suggestions while a user
who is short of memory or just wants the spell checking and no suggestions
doesn't use so much memory.

Word frequency

For sorting suggestions it helps to know which words are common. In theory we
could store a word frequency with the word in the dictionary. However, this
requires storing a count per word. That degrades word tree compression a lot.
And maintaining the word frequency for all languages will be a heavy task.
Also, it would be nice to prefer words that are already in the text. This way
the words that appear in the specific text are preferred for suggestions.

What has been implemented is to count words that have been seen during
displaying. A hashtable is used to quickly find the word count. The count is
initialized from words listed in COMMON items in the affix file, so that it
also works when starting a new file.

This isn't ideal, because the longer Vim is running the higher the counts
become. But in practice it is a noticeable improvement over not using the word
count.

==
4. Assumptions design-assumptions

Size of variables:
char 8 bit signed
char_u 8 bit unsigned
int 32 or 64 bit signed (16 might be possible with limited features)
unsigned 32 or 64 bit unsigned (16 as with ints)
long 32 or 64 bit signed, can hold a pointer

Note that some compilers cannot handle long lines or strings. The C89
standard specifies a limit of 509 characters.

develop.txt — 570

debug.txt For Vim version 9.1. Last change: 2019 May 07

VIM REFERENCE MANUAL by Bram Moolenaar

Debugging Vim debug-vim

This is for debugging Vim itself, when it doesn't work properly.
For debugging Vim scripts, functions, etc. see debug-scripts

1. Location of a crash, using gcc and gdb debug-gcc
2. Locating memory leaks debug-leaks
3. Windows Bug Reporting debug-win32

==

1. Location of a crash, using gcc and gdb debug-gcc gdb

When Vim crashes in one of the test files, and you are using gcc for
compilation, here is what you can do to find out exactly where Vim crashes.
This also applies when using the MingW tools.

1. Compile Vim with the "-g" option (there is a line in the src/Makefile for
this, which you can uncomment). Also make sure "strip" is disabled (do not
install it, or use the line "STRIP = /bin/true").

2. Execute these commands (replace "11" with the test that fails):
cd testdir
gdb ../vim
run -u unix.vim -U NONE -s dotest.in test11.in

3. Check where Vim crashes, gdb should give a message for this.

4. Get a stack trace from gdb with this command:
where

You can check out different places in the stack trace with:
frame 3

Replace "3" with one of the numbers in the stack trace.

==

2. Locating memory leaks debug-leaks valgrind

If you suspect Vim is leaking memory and you are using Linux, the valgrind
tool is very useful to pinpoint memory leaks.

First of all, build Vim with EXITFREE defined. Search for this in MAKEFILE
and uncomment the line.

Use this command to start Vim:

valgrind --log-file=valgrind.log --leak-check=full ./vim

Note: Vim will run much slower. If your .vimrc is big or you have several
plugins you need to be patient for startup, or run with the "--clean"
argument.

There are often a few leaks from libraries, such as getpwuid() and
XtVaAppCreateShell(). Those are unavoidable. The number of bytes should be

debug.txt — 571

very small a Kbyte or less.

==

3. Windows Bug Reporting debug-win32

If the Windows version of Vim crashes in a reproducible manner, you can take
some steps to provide a useful bug report.

3.1 GENERIC

You must obtain the debugger symbols (PDB) file for your executable: gvim.pdb
for gvim.exe, or vim.pdb for vim.exe. The PDB should be available from the
same place that you obtained the executable. Be sure to use the PDB that
matches the EXE (same date).

If you built the executable yourself with the Microsoft Visual C++ compiler,
then the PDB was built with the EXE.

If you have Visual Studio, use that instead of the VC Toolkit and WinDbg.

For other compilers, you should always use the corresponding debugger: gdb
(see above debug-gcc) for the Cygwin and MinGW compilers.

debug-vs2005
3.2 Debugging Vim crashes with Visual Studio 2005/Visual C++ 2005 Express

First launch vim.exe or gvim.exe and then launch Visual Studio. (If you don't
have Visual Studio, follow the instructions at get-ms-debuggers to obtain a
free copy of Visual C++ 2005 Express Edition.)

On the Tools menu, click Attach to Process. Choose the Vim process.

In Vim, reproduce the crash. A dialog will appear in Visual Studio, telling
you about the unhandled exception in the Vim process. Click Break to break
into the process.

Visual Studio will pop up another dialog, telling you that no symbols are
loaded and that the source code cannot be displayed. Click OK.

Several windows will open. Right-click in the Call Stack window. Choose Load
Symbols. The Find Symbols dialog will open, looking for (g)vim.pdb. Navigate
to the directory where you have the PDB file and click Open.

At this point, you should have a full call stack with vim function names and
line numbers. Double-click one of the lines and the Find Source dialog will
appear. Navigate to the directory where the Vim source is (if you have it.)

If you don't know how to debug this any further, follow the instructions
at ":help bug-reports". Paste the call stack into the bug report.

If you have a non-free version of Visual Studio, you can save a minidump via
the Debug menu and send it with the bug report. A minidump is a small file
(<100KB), which contains information about the state of your process.
Visual C++ 2005 Express Edition cannot save minidumps and it cannot be
installed as a just-in-time debugger. Use WinDbg, debug-windbg , if you
need to save minidumps or you want a just-in-time (postmortem) debugger.

debug.txt — 572

debug-windbg
3.3 Debugging Vim crashes with WinDbg

See get-ms-debuggers to obtain a copy of WinDbg.

As with the Visual Studio IDE, you can attach WinDbg to a running Vim process.
You can also have your system automatically invoke WinDbg as a postmortem
debugger. To set WinDbg as your postmortem debugger, run "windbg -I".

To attach WinDbg to a running Vim process, launch WinDbg. On the File menu,
choose Attach to a Process. Select the Vim process and click OK.

At this point, choose Symbol File Path on the File menu, and add the folder
containing your Vim PDB to the sympath. If you have Vim source available,
use Source File Path on the File menu. You can now open source files in WinDbg
and set breakpoints, if you like. Reproduce your crash. WinDbg should open the
source file at the point of the crash. Using the View menu, you can examine
the call stack, local variables, watch windows, and so on.

If WinDbg is your postmortem debugger, you do not need to attach WinDbg to
your Vim process. Simply reproduce the crash and WinDbg will launch
automatically. As above, set the Symbol File Path and the Source File Path.

To save a minidump, type the following at the WinDbg command line:
.dump vim.dmp

debug-minidump
3.4 Opening a Minidump

If you have a minidump file, you can open it in Visual Studio or in WinDbg.

In Visual Studio 2005: on the File menu, choose Open, then Project/Solution.
Navigate to the .dmp file and open it. Now press F5 to invoke the debugger.
Follow the instructions in debug-vs2005 to set the Symbol File Path.

In WinDbg: choose Open Crash Dump on the File menu. Follow the instructions in
debug-windbg to set the Symbol File Path.

get-ms-debuggers
3.5 Obtaining Microsoft Debugging Tools

The Debugging Tools for Windows (including WinDbg) can be downloaded from
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

This includes the WinDbg debugger.

Visual C++ 2005 Express Edition can be downloaded for free from:
http://msdn.microsoft.com/vstudio/express/visualC/default.aspx

===

debug.txt — 573

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://msdn.microsoft.com/vstudio/express/visualC/default.aspx

debug.txt — 574

uganda.txt For Vim version 9.1. Last change: 2022 Mar 02

VIM REFERENCE MANUAL by Bram Moolenaar

uganda Uganda copying copyright license
SUMMARY

iccf ICCF
Vim is Charityware. You can use and copy it as much as you like, but you are
encouraged to make a donation for needy children in Uganda. Please see kcc
below or visit the ICCF web site, available at these URLs:

https://iccf-holland.org/
https://www.vim.org/iccf/
https://www.iccf.nl/

You can also sponsor the development of Vim. Vim sponsors can vote for
features. See sponsor . The money goes to Uganda anyway.

The Open Publication License applies to the Vim documentation, see
manual-copyright .

=== begin of license ===

VIM LICENSE

I) There are no restrictions on distributing unmodified copies of Vim except
that they must include this license text. You can also distribute
unmodified parts of Vim, likewise unrestricted except that they must
include this license text. You are also allowed to include executables
that you made from the unmodified Vim sources, plus your own usage
examples and Vim scripts.

II) It is allowed to distribute a modified (or extended) version of Vim,
including executables and/or source code, when the following four
conditions are met:
1) This license text must be included unmodified.
2) The modified Vim must be distributed in one of the following five ways:

a) If you make changes to Vim yourself, you must clearly describe in
the distribution how to contact you. When the maintainer asks you
(in any way) for a copy of the modified Vim you distributed, you
must make your changes, including source code, available to the
maintainer without fee. The maintainer reserves the right to
include your changes in the official version of Vim. What the
maintainer will do with your changes and under what license they
will be distributed is negotiable. If there has been no negotiation
then this license, or a later version, also applies to your changes.
The current maintainers are listed here: https://github.com/orgs/vim/people.
If this changes it will be announced in appropriate places (most likely
vim.sf.net, www.vim.org and/or comp.editors). When it is completely
impossible to contact the maintainer, the obligation to send him
your changes ceases. Once the maintainer has confirmed that he has
received your changes they will not have to be sent again.

b) If you have received a modified Vim that was distributed as
mentioned under a) you are allowed to further distribute it
unmodified, as mentioned at I). If you make additional changes the
text under a) applies to those changes.

c) Provide all the changes, including source code, with every copy of
the modified Vim you distribute. This may be done in the form of a

uganda.txt — 575

https://iccf-holland.org/
https://www.vim.org/iccf/
https://www.iccf.nl/
https://github.com/orgs/vim/people

context diff. You can choose what license to use for new code you
add. The changes and their license must not restrict others from
making their own changes to the official version of Vim.

d) When you have a modified Vim which includes changes as mentioned
under c), you can distribute it without the source code for the
changes if the following three conditions are met:
- The license that applies to the changes permits you to distribute

the changes to the Vim maintainer without fee or restriction, and
permits the Vim maintainer to include the changes in the official
version of Vim without fee or restriction.

- You keep the changes for at least three years after last
distributing the corresponding modified Vim. When the maintainer
or someone who you distributed the modified Vim to asks you (in
any way) for the changes within this period, you must make them
available to him.

- You clearly describe in the distribution how to contact you. This
contact information must remain valid for at least three years
after last distributing the corresponding modified Vim, or as long
as possible.

e) When the GNU General Public License (GPL) applies to the changes,
you can distribute the modified Vim under the GNU GPL version 2 or
any later version.

3) A message must be added, at least in the output of the ":version"
command and in the intro screen, such that the user of the modified Vim
is able to see that it was modified. When distributing as mentioned
under 2)e) adding the message is only required for as far as this does
not conflict with the license used for the changes.

4) The contact information as required under 2)a) and 2)d) must not be
removed or changed, except that the person himself can make
corrections.

III) If you distribute a modified version of Vim, you are encouraged to use
the Vim license for your changes and make them available to the
maintainer, including the source code. The preferred way to do this is
by e-mail or by uploading the files to a server and e-mailing the URL.
If the number of changes is small (e.g., a modified Makefile) e-mailing a
context diff will do. The e-mail address to be used is
<maintainer@vim.org>

IV) It is not allowed to remove this license from the distribution of the Vim
sources, parts of it or from a modified version. You may use this
license for previous Vim releases instead of the license that they came
with, at your option.

=== end of license ===

Note:

- If you are happy with Vim, please express that by reading the rest of this
file and consider helping needy children in Uganda.

- If you want to support further Vim development consider becoming a
sponsor . The money goes to Uganda anyway.

- According to Richard Stallman the Vim license is GNU GPL compatible.
A few minor changes have been made since he checked it, but that should not
make a difference.

- If you link Vim with a library that goes under the GNU GPL, this limits
further distribution to the GNU GPL. Also when you didn't actually change

uganda.txt — 576

anything in Vim.

- Once a change is included that goes under the GNU GPL, this forces all
further changes to also be made under the GNU GPL or a compatible license.

- If you distribute a modified version of Vim, you can include your name and
contact information with the "--with-modified-by" configure argument or the
MODIFIED_BY define.

==
Kibaale Children's Centre kcc Kibaale charity

Kibaale Children's Centre (KCC) is located in Kibaale, a small town in the
south of Uganda, near Tanzania, in East Africa. The area is known as Rakai
District. The population is mostly farmers. Although people are poor, there
usually is enough food. But this district is suffering from AIDS more than
any other part of the world. Some say that it started there. Estimations are
that in the past 10 to 30% of the Ugandans are infected with HIV. Because
parents die, there are many orphans. In this district about 60,000 children
have lost one or both parents, out of a population of 350,000. Although AIDS
is now mostly under control, the problems are still continuing.

The children need a lot of help. The KCC is working hard to provide the needy
with food, medical care and education. Food and medical care to keep them
healthy now, and education so that they can take care of themselves in the
future. KCC works on a Christian base, but help is given to children of any
religion.

The key to solving the problems in this area is education. This has been
neglected in the past years with president Idi Amin and the following civil
wars. Now that the government is stable again, the children and parents have
to learn how to take care of themselves and how to avoid infections. There is
also help for people who are ill and hungry, but the primary goal is to
prevent people from getting ill and to teach them how to grow healthy food.

Most of the orphans are living in an extended family. An uncle or older
sister is taking care of them. Because these families are big and the income
(if any) is low, a child is lucky if it gets healthy food. Clothes, medical
care and schooling is beyond its reach. To help these needy children, a
sponsorship program was put into place. A child can be financially adopted.
For a few dollars a month KCC sees to it that the child gets indispensable
items, is healthy, goes to school and KCC takes care of anything else that
needs to be done for the child and the family that supports it.

Besides helping the child directly, the environment where the child grows up
needs to be improved. KCC helps schools to improve their teaching methods.
There is a demonstration school at the centre and teacher trainings are given.
Health workers are being trained, hygiene education is carried out and
households are stimulated to build a proper latrine. I helped setting up a
production site for cement slabs. These are used to build a good latrine.
They are sold below cost price.

There is a clinic at the project, which provides children and their family
medical help. Since 2020 a maternity ward was added and 24/7 service is
available. When needed, transport to a hospital is offered. Immunization
programs are carried out and help is provided when an epidemic is breaking out
(measles and cholera have been a problem).

donate
Summer 1994 to summer 1995 I spent a whole year at the centre, working as a
volunteer. I have helped to expand the centre and worked in the area of water

uganda.txt — 577

and sanitation. I learned that the help that the KCC provides really helps.
When I came back to Holland, I wanted to continue supporting KCC. To do this
I'm raising funds and organizing the sponsorship program. Please consider one
of these possibilities:

1. Sponsor a child in primary school: 17 euro a month (or more).
2. Sponsor a child in secondary school: 25 euro a month (or more).
3. Sponsor the clinic: Any amount a month or quarter
4. A one-time donation

Compared with other organizations that do child sponsorship the amounts are
very low. This is because the money goes directly to the centre. Less than
5% is used for administration. This is possible because this is a small
organization that works with volunteers. If you would like to sponsor a
child, you should have the intention to do this for at least one year.

How do you know that the money will be spent right? First of all you have my
personal guarantee as the author of Vim. I trust the people that are working
at the centre, I know them personally. Furthermore, the centre has been
co-sponsored and inspected by World Vision, Save the Children Fund and is now
under the supervision of Pacific Academy Outreach Society. The centre is
visited about once a year to check the progress (at our own cost). I have
visited the centre myself many times, starting in 1993. The visit reports are
on the ICCF web site.

If you have any further questions, send me e-mail: <Bram@vim.org>.

The address of the centre is:
Kibaale Children's Centre
p.o. box 1658
Masaka, Uganda, East Africa

Sending money: iccf-donations

Check the ICCF web site for the latest information! See iccf for the URL.

USA: The methods mentioned below can be used.
If you must send a check send it to our Canadian partner:
https://www.kuwasha.net/

Canada: Contact Kuwasha in Surrey, Canada. They take care of the
Canadian sponsors for the children in Kibaale. Kuwasha
forwards 100% of the money to the project in Uganda. You can
send them a one time donation directly.
Please send me a note so that I know what has been donated
because of Vim. Look on their site for information about
sponsorship: https://www.kuwasha.net/
If you make a donation to Kuwasha you will receive a tax
receipt which can be submitted with your tax return.

Holland: Transfer to the account of "Stichting ICCF Holland" in
Amersfoort. This will allow for tax deduction if you live in
Holland. ING bank, IBAN: NL95 INGB 0004 5487 74

Germany: It is possible to make donations that allow for a tax return.
Check the ICCF web site for the latest information:

https://iccf-holland.org/germany.html

Europe: Use a bank transfer if possible. See "Others" below for the

uganda.txt — 578

https://www.kuwasha.net/
https://www.kuwasha.net/
https://iccf-holland.org/germany.html

swift code and IBAN number.
Any other method should work. Ask for information about
sponsorship.

Credit Card: You can use PayPal to send money with a Credit card. This is
the most widely used Internet based payment system. It's
really simple to use. Use this link to find more info:

https://www.paypal.com/en_US/mrb/pal=XAC62PML3GF8Q
The e-mail address for sending the money to is:

Bram@iccf-holland.org

Others: Transfer to this account if possible:
ING bank: IBAN: NL95 INGB 0004 5487 74

Swift code: INGBNL2A
under the name "stichting ICCF Holland", Amersfoort

Checks are not accepted.

uganda.txt — 579

https://www.paypal.com/en_US/mrb/pal=XAC62PML3GF8Q

uganda.txt — 580

starting.txt For Vim version 9.1. Last change: 2023 Oct 20

VIM REFERENCE MANUAL by Bram Moolenaar

Starting Vim starting

1. Vim arguments vim-arguments
2. Vim on the Amiga starting-amiga
3. Running eVim evim-keys
4. Initialization initialization
5. $VIM and $VIMRUNTIME $VIM
6. Suspending suspend
7. Exiting exiting
8. Saving settings save-settings
9. Views and Sessions views-sessions
10. The viminfo file viminfo-file

==
1. Vim arguments vim-arguments

Most often, Vim is started to edit a single file with the command

vim filename -vim

More generally, Vim is started with:

vim [option | filename] ..

Option arguments and file name arguments can be mixed, and any number of them
can be given. However, watch out for options that take an argument.

For compatibility with various Vi versions, see cmdline-arguments .

Exactly one out of the following five items may be used to choose how to
start editing:

-file ---
filename One or more file names. The first one will be the current

file and read into the buffer. The cursor will be positioned
on the first line of the buffer.
To avoid a file name starting with a '-' being interpreted as
an option, precede the arglist with "--", e.g.:

vim -- -filename
All arguments after the "--" will be interpreted as file names,
no other options or "+command" argument can follow.
For behavior of quotes on MS-Windows, see win32-quotes .

--
- This argument can mean two things, depending on whether Ex

mode is to be used.

Starting in Normal mode:
vim -
ex -v -

Start editing a new buffer, which is filled with text
that is read from stdin. The commands that would normally be
read from stdin will now be read from stderr. Example:

find . -name "*.c" -print | vim -

starting.txt — 581

The buffer will be marked as modified, so that you are
reminded to save the text when trying to exit. If you don't
like that, put this these lines in your vimrc:

" Don't set 'modified' when reading from stdin
au StdinReadPost * set nomodified

Starting in Ex mode:
ex -
vim -e -
exim -
vim -E

Start editing in silent mode. See -s-ex .

-t -tag
-t {tag} A tag. "tag" is looked up in the tags file, the associated

file becomes the current file, and the associated command is
executed. Mostly this is used for C programs, in which case
"tag" often is a function name. The effect is that the file
containing that function becomes the current file and the
cursor is positioned on the start of the function (see
tags).

-q -qf
-q [errorfile] QuickFix mode. The file with the name [errorfile] is read

and the first error is displayed. See quickfix .
If [errorfile] is not given, the 'errorfile' option is used
for the file name. See 'errorfile' for the default value.

(nothing) Without one of the four items above, Vim will start editing a
new buffer. It's empty and doesn't have a file name.

The startup mode can be changed by using another name instead of "vim", which
is equal to giving options:
ex vim -e Start in Ex mode (see Ex-mode). ex
exim vim -E Start in improved Ex mode (see Ex-mode). exim

(normally not installed)
view vim -R Start in read-only mode (see -R). view
gvim vim -g Start the GUI (see gui). gvim
gex vim -eg Start the GUI in Ex mode. gex
gview vim -Rg Start the GUI in read-only mode. gview
rvim vim -Z Like "vim", but in restricted mode (see -Z) rvim
rview vim -RZ Like "view", but in restricted mode. rview
rgvim vim -gZ Like "gvim", but in restricted mode. rgvim
rgview vim -RgZ Like "gview", but in restricted mode. rgview
evim vim -y Easy Vim: set 'insertmode' (see -y) evim
eview vim -yR Like "evim" in read-only mode eview
vimdiff vim -d Start in diff mode diff-mode
gvimdiff vim -gd Start in diff mode diff-mode

Additional characters may follow, they are ignored. For example, you can have
"gvim-8" to start the GUI. You must have an executable by that name then, of
course.

On Unix, you would normally have one executable called Vim, and links from the
different startup-names to that executable. If your system does not support
links and you do not want to have several copies of the executable, you could
use an alias instead. For example:

alias view vim -R

starting.txt — 582

alias gvim vim -g

startup-options
The option arguments may be given in any order. Single-letter options can be
combined after one dash. There can be no option arguments after the "--"
argument.

On VMS all option arguments are assumed to be lowercase, unless preceded with
a slash. Thus "-R" means recovery and "-/R" readonly.

--help -h --help -?
-?
-h Give usage (help) message and exit.

See info-message about capturing the text.

--version
--version Print version information and exit. Same output as for

:version command.
See info-message about capturing the text.

--noplugin
--noplugin Skip loading plugins. Resets the 'loadplugins' option.

Note that the -u argument may also disable loading plugins:
argument load: vimrc files plugins defaults.vim
(nothing) yes yes yes
-u NONE no no no
-u DEFAULTS no no yes
-u NORC no yes no
--noplugin yes no yes

--startuptime {fname} --startuptime
During startup write timing messages to the file {fname}.
This can be used to find out where time is spent while loading
your .vimrc, plugins and opening the first file.
When {fname} already exists new messages are appended.
{only available when compiled with the +startuptime
feature}

--literal
--literal Take file names literally, don't expand wildcards. Not needed

for Unix, because Vim always takes file names literally (the
shell expands wildcards).
Applies to all the names, also the ones that come before this
argument.

-+
+[num] The cursor will be positioned on line "num" for the first

file being edited. If "num" is missing, the cursor will be
positioned on the last line.

-+/
+/{pat} The cursor will be positioned on the first line containing

"pat" in the first file being edited (see pattern for the
available search patterns). The search starts at the cursor
position, which can be the first line or the cursor position
last used from viminfo . To force a search from the first
line use "+1 +/pat".

+{command} -+c -c

starting.txt — 583

-c {command} {command} will be executed after the first file has been
read (and after autocommands and modelines for that file have
been processed). "command" is interpreted as an Ex command.
If the "command" contains spaces, it must be enclosed in
double quotes (this depends on the shell that is used).
Example:

vim "+set si" main.c
vim "+find stdio.h"
vim -c "set ff=dos" -c wq mine.mak

Note: You can use up to 10 "+" or "-c" arguments in a Vim
command. They are executed in the order given. A "-S"
argument counts as a "-c" argument as well.

--cmd {command} --cmd
{command} will be executed before processing any vimrc file.
Otherwise it acts like -c {command}. You can use up to 10 of
these commands, independently from "-c" commands.

-S
-S {file} The {file} will be sourced after the first file has been read.

This is an easy way to do the equivalent of:
-c "source {file}"

It can be mixed with "-c" arguments and repeated like "-c".
The limit of 10 "-c" arguments applies here as well.
{file} cannot start with a "-".

Do not use this for running a script to do some work and exit
Vim, you won't see error messages. Use -u instead.

-S Works like "-S Session.vim". Only when used as the last
argument or when another "-" option follows.

-r
-r Recovery mode. Without a file name argument, a list of

existing swap files is given. With a file name, a swap file
is read to recover a crashed editing session. See
crash-recovery .

-L
-L Same as -r.

-R
-R Readonly mode. The 'readonly' option will be set for all the

files being edited. You can still edit the buffer, but will
be prevented from accidentally overwriting a file. If you
forgot that you are in View mode and did make some changes,
you can overwrite a file by adding an exclamation mark to
the Ex command, as in ":w!". The 'readonly' option can be
reset with ":set noro" (see the options chapter, options).
Subsequent edits will not be done in readonly mode. Calling
the executable "view" has the same effect as the -R argument.
The 'updatecount' option will be set to 10000, meaning that
the swap file will not be updated automatically very often.
See -M for disallowing modifications.

-m
-m Modifications not allowed to be written. The 'write' option

will be reset, so that writing files is disabled. However,
the 'write' option can be set to enable writing again.

starting.txt — 584

-M
-M Modifications not allowed. The 'modifiable' option will be

reset, so that changes are not allowed. The 'write' option
will be reset, so that writing files is disabled. However,
the 'modifiable' and 'write' options can be set to enable
changes and writing.

-Z restricted-mode E145 E981
-Z Restricted mode. All commands that make use of an external

shell are disabled. This includes suspending with CTRL-Z,
":sh", filtering, the system() function, backtick expansion
and libcall().
Also disallowed are delete() , rename() , mkdir() ,
job_start() , setenv() etc.
Interfaces, such as Python, Ruby and Lua, are also disabled,
since they could be used to execute shell commands. Perl uses
the Safe module.
For Unix restricted mode is used when the last part of $SHELL
is "nologin" or "false".
Note that the user may still find a loophole to execute a
shell command, it has only been made difficult.

-g
-g Start Vim in GUI mode. See gui . For the opposite see -v .

-v
-v Start Ex in Vi mode. Only makes a difference when the

executable is called "ex" or "gvim". For gvim the GUI is not
started if possible.

-e
-e Start Vim in Ex mode, see Ex-mode . Only makes a difference

when the executable is not called "ex".

-E
-E Start Vim in improved Ex mode gQ . Only makes a difference

when the executable is not called "exim".

-s-ex
-s Silent or batch mode. Only when Vim was started as "ex" or

when preceded with the "-e" argument. Otherwise see -s ,
which does take an argument while this use of "-s" doesn't.
To be used when Vim is used to execute Ex commands from a file
instead of a terminal. Switches off most prompts and
informative messages. Also warnings and error messages.
The output of these commands is displayed (to stdout):

:print
:list
:number
:set to display option values.

When 'verbose' is non-zero messages are printed (for
debugging, to stderr).
'term' and $TERM are not used.
If Vim appears to be stuck try typing "qa!<Enter>". You don't
get a prompt thus you can't see Vim is waiting for you to type
something.
Initializations are skipped (except the ones given with the
"-u" argument).
Example:

starting.txt — 585

vim -e -s < thefilter thefile
For the opposite, to see errors from the script, execute the
file with the -u flag:

vim -u thefilter thefile

-b
-b Binary mode. File I/O will only recognize <NL> to separate

lines. The 'expandtab' option will be reset. The 'textwidth'
option is set to 0. 'modeline' is reset. The 'binary' option
is set. This is done after reading the vimrc/exrc files but
before reading any file in the arglist. See also
edit-binary .

-l
-l Lisp mode. Sets the 'lisp' and 'showmatch' options on.

-A
-A Arabic mode. Sets the 'arabic' option on. {only when

compiled with the +arabic features (which include
+rightleft), otherwise Vim gives an error message
and exits}

-F
-F This was used for Farsi mode, which has been removed.

See farsi.txt .

-H
-H Hebrew mode. Sets the 'hkmap' and 'rightleft' options on.

{only when compiled with the +rightleft feature, otherwise
Vim gives an error message and exits}

-V verbose
-V[N] Verbose. Sets the 'verbose' option to [N] (default: 10).

Messages will be given for each file that is ":source"d and
for reading or writing a viminfo file. Can be used to find
out what is happening upon startup and exit.
Example:

vim -V8 foobar

-V[N]{filename}
Like -V and set 'verbosefile' to {filename}. The result is
that messages are not displayed but written to the file
{filename}. {filename} must not start with a digit.
Example:

vim -V20vimlog foobar

--log {filename} --log
Start logging and write entries to {filename}.
This works like calling `ch_logfile({filename}, 'ao')` very
early during startup.
{only available with the |+eval| and |+channel| feature}

-D
-D Debugging. Go to debugging mode when executing the first

command from a script. debug-mode
{not available when compiled without the |+eval| feature}

-C
-C Compatible mode. Sets the 'compatible' option. You can use

this to get 'compatible', even though a .vimrc file exists.

starting.txt — 586

Keep in mind that the command ":set nocompatible" in some
plugin or startup script overrules this, so you may end up
with 'nocompatible' anyway. To find out, use:

:verbose set compatible?
Several plugins won't work with 'compatible' set. You may
want to set it after startup this way:

vim "+set cp" filename
Also see compatible-default .

-N
-N Not compatible mode. Resets the 'compatible' option. You can

use this to get 'nocompatible', when there is no .vimrc file
or when using "-u NONE".
Also see compatible-default .

-y easy
-y Easy mode. Implied for evim and eview . Starts with

'insertmode' set and behaves like a click-and-type editor.
This sources the script $VIMRUNTIME/evim.vim. Mappings are
set up to work like most click-and-type editors, see
evim-keys . The GUI is started when available.

-n
-n No swap file will be used. Recovery after a crash will be

impossible. Handy if you want to view or edit a file on a
very slow medium (e.g., a floppy).
Can also be done with ":set updatecount=0". You can switch it
on again by setting the 'updatecount' option to some value,
e.g., ":set uc=100".
NOTE: Don't combine -n with -b, making -nb, because that has a
different meaning: -nb .
'updatecount' is set to 0 AFTER executing commands from a
vimrc file, but before the GUI initializations. Thus it
overrides a setting for 'updatecount' in a vimrc file, but not
in a gvimrc file. See startup .
When you want to reduce accesses to the disk (e.g., for a
laptop), don't use "-n", but set 'updatetime' and
'updatecount' to very big numbers, and type ":preserve" when
you want to save your work. This way you keep the possibility
for crash recovery.

-o
-o[N] Open N windows, split horizontally. If [N] is not given,

one window is opened for every file given as argument. If
there is not enough room, only the first few files get a
window. If there are more windows than arguments, the last
few windows will be editing an empty file.

-O
-O[N] Open N windows, split vertically. Otherwise it's like -o.

If both the -o and the -O option are given, the last one on
the command line determines how the windows will be split.

-p
-p[N] Open N tab pages. If [N] is not given, one tab page is opened

for every file given as argument. The maximum is set with
'tabpagemax' pages (default 10). If there are more tab pages
than arguments, the last few tab pages will be editing an
empty file. Also see tabpage .

starting.txt — 587

-T
-T {terminal} Set the terminal type to "terminal". This influences the

codes that Vim will send to your terminal. This is normally
not needed, because Vim will be able to find out what type
of terminal you are using. (See terminal-info .)

--not-a-term
--not-a-term Tells Vim that the user knows that the input and/or output is

not connected to a terminal. This will avoid the warning and
the two second delay that would happen.
Also avoids the "Reading from stdin..." message.
Also avoids the "N files to edit" message.

--gui-dialog-file {name} --gui-dialog-file
When using the GUI, instead of showing a dialog, write the
title and message of the dialog to file {name}. The file is
created or appended to. Only useful for testing, to avoid
that the test gets stuck on a dialog that can't be seen.
Without the GUI the argument is ignored.

--ttyfail
--ttyfail When the stdin or stdout is not a terminal (tty) then exit

right away.

-d
-d Start in diff mode, like vimdiff .

{not available when compiled without the |+diff| feature}

-d {device} Only on the Amiga and when not compiled with the +diff
feature. Works like "-dev".

-dev
-dev {device} Only on the Amiga: The {device} is opened to be used for

editing.
Normally you would use this to set the window position and
size: "-d con:x/y/width/height", e.g.,
"-d con:30/10/600/150". But you can also use it to start
editing on another device, e.g., AUX:.

-f
-f GUI: Do not disconnect from the program that started Vim.

'f' stands for "foreground". If omitted, the GUI forks a new
process and exits the current one. "-f" should be used when
gvim is started by a program that will wait for the edit
session to finish (e.g., mail or readnews). If you want gvim
never to fork, include 'f' in 'guioptions' in your gvimrc .
Careful: You can use "-gf" to start the GUI in the foreground,
but "-fg" is used to specify the foreground color. gui-fork

Amiga: Do not restart Vim to open a new window. This
option should be used when Vim is started by a program that
will wait for the edit session to finish (e.g., mail or
readnews). See amiga-window .

MS-Windows: This option is not supported. However, when
running Vim with an installed vim.bat or gvim.bat file it
works.

--nofork
--nofork GUI: Do not fork. Same as -f .

-u E282

starting.txt — 588

-u {vimrc} The file {vimrc} is read for initializations. Most other
initializations are skipped; see initialization .

This can be used to start Vim in a special mode, with special
mappings and settings. A shell alias can be used to make
this easy to use. For example:

alias vimc vim -u ~/.c_vimrc !*
Also consider using autocommands; see autocommand .

When {vimrc} is equal to "NONE" (all uppercase), all
initializations from files and environment variables are
skipped, including reading the gvimrc file when the GUI
starts. Loading plugins is also skipped.

When {vimrc} is equal to "NORC" (all uppercase), this has the
same effect as "NONE", but loading plugins is not skipped.

When {vimrc} is equal to "DEFAULTS" (all uppercase), this has
the same effect as "NONE", but the defaults.vim script is
loaded, which will also set 'nocompatible'. Also see
--clean .

Using the "-u" argument with another argument than DEFAULTS
has the side effect that the 'compatible' option will be on by
default. This can have unexpected effects. See
'compatible' .

-U E230
-U {gvimrc} The file {gvimrc} is read for initializations when the GUI

starts. Other GUI initializations are skipped. When {gvimrc}
is equal to "NONE", no file is read for GUI initializations at
all. gui-init
Exception: Reading the system-wide menu file is always done.

-i
-i {viminfo} The file "viminfo" is used instead of the default viminfo

file. If the name "NONE" is used (all uppercase), no viminfo
file is read or written, even if 'viminfo' is set or when
":rv" or ":wv" are used. See also viminfo-file .

--clean
--clean Similar to "-u DEFAULTS -U NONE -i NONE":

- initializations from files and environment variables is
skipped

- 'runtimepath' and 'packpath' are set to exclude home
directory entries (does not happen with -u DEFAULTS).

- the defaults.vim script is loaded, which implies
'nocompatible': use Vim defaults

- no gvimrc script is loaded
- no viminfo file is read or written
Note that a following "-u" argument overrules the effect of
"-u DEFAULTS".

-x
-x Use encryption to read/write files. Will prompt for a key,

which is then stored in the 'key' option. All writes will
then use this key to encrypt the text. The '-x' argument is
not needed when reading a file, because there is a check if
the file that is being read has been encrypted, and Vim asks
for a key automatically. encryption

starting.txt — 589

-X
-X Do not try connecting to the X server to get the current

window title and copy/paste using the X clipboard. This
avoids a long startup time when running Vim in a terminal
emulator and the connection to the X server is slow.
See --startuptime to find out if affects you.
Only makes a difference on Unix or VMS, when compiled with the
+X11 feature. Otherwise it's ignored.
To disable the connection only for specific terminals, see the
'clipboard' option.
When the X11 Session Management Protocol (XSMP) handler has
been built in, the -X option also disables that connection as
it, too, may have undesirable delays.
When the connection is desired later anyway (e.g., for
client-server messages), call the serverlist() function.
This does not enable the XSMP handler though.

-s
-s {scriptin} The script file "scriptin" is read. The characters in the

file are interpreted as if you had typed them. The same can
be done with the command ":source! {scriptin}". If the end
of the file is reached before the editor exits, further
characters are read from the keyboard. Only works when not
started in Ex mode, see -s-ex . See also complex-repeat .

-w_nr
-w {number}
-w{number} Set the 'window' option to {number}.

-w
-w {scriptout} All the characters that you type are recorded in the file

"scriptout", until you exit Vim. This is useful if you want
to create a script file to be used with "vim -s" or
":source!". When the "scriptout" file already exists, new
characters are appended. See also complex-repeat .
{scriptout} cannot start with a digit.
If you want to record what is typed in a human readable for
you can use ch_logfile() , It adds "raw key input" lines.
Also see --log .

-W
-W {scriptout} Like -w, but do not append, overwrite an existing file.

--remote [+{cmd}] {file} ...
Open the {file} in another Vim that functions as a server.
Any non-file arguments must come before this.
See --remote .

--remote-silent [+{cmd}] {file} ...
Like --remote, but don't complain if there is no server.
See --remote-silent .

--remote-wait [+{cmd}] {file} ...
Like --remote, but wait for the server to finish editing the
file(s).
See --remote-wait .

--remote-wait-silent [+{cmd}] {file} ...
Like --remote-wait, but don't complain if there is no server.

starting.txt — 590

See --remote-wait-silent .

--servername {name}
Specify the name of the Vim server to send to or to become.
See --servername .

--remote-send {keys}
Send {keys} to a Vim server and exit.
See --remote-send .

--remote-expr {expr}
Evaluate {expr} in another Vim that functions as a server.
The result is printed on stdout.
See --remote-expr .

--serverlist Output a list of Vim server names and exit. See
--serverlist .

--socketid {id} --socketid
GTK+ GUI Vim only. Make gvim try to use GtkPlug mechanism, so
that it runs inside another window. See gui-gtk-socketid
for details.

--windowid {id} --windowid
Win32 GUI Vim only. Make gvim try to use the window {id} as a
parent, so that it runs inside that window. See
gui-w32-windowid for details.

--echo-wid --echo-wid
GTK+ GUI Vim only. Make gvim echo the Window ID on stdout,
which can be used to run gvim in a kpart widget. The format
of the output is:

WID: 12345\n

--role {role} --role
GTK+ 2 GUI only. Set the role of the main window to {role}.
The window role can be used by a window manager to uniquely
identify a window, in order to restore window placement and
such. The --role argument is passed automatically when
restoring the session on login. See gui-gnome-session

-P {parent-title} -P MDI E671 E672
Win32 only: Specify the title of the parent application. When
possible, Vim will run in an MDI window inside the
application.
{parent-title} must appear in the window title of the parent
application. Make sure that it is specific enough.
Note that the implementation is still primitive. It won't
work with all applications and the menu doesn't work.

-nb -nb
-nb={fname}
-nb:{hostname}:{addr}:{password}

Attempt connecting to Netbeans and become an editor server for
it. The second form specifies a file to read connection info
from. The third form specifies the hostname, address and
password for connecting to Netbeans. netbeans-run
{only available when compiled with the +netbeans_intg
feature; if not then -nb will make Vim exit}

starting.txt — 591

If the executable is called "view", Vim will start in Readonly mode. This is
useful if you can make a hard or symbolic link from "view" to "vim".
Starting in Readonly mode can also be done with "vim -R".

If the executable is called "ex", Vim will start in "Ex" mode. This means it
will accept only ":" commands. But when the "-v" argument is given, Vim will
start in Normal mode anyway.

Additional arguments are available on unix like systems when compiled with
X11 GUI support. See gui-resources .

==
2. Vim on the Amiga starting-amiga

Starting Vim from the Workbench workbench

Vim can be started from the Workbench by clicking on its icon twice. It will
then start with an empty buffer.

Vim can be started to edit one or more files by using a "Project" icon. The
"Default Tool" of the icon must be the full pathname of the Vim executable.
The name of the ".info" file must be the same as the name of the text file.
By clicking on this icon twice, Vim will be started with the file name as
current file name, which will be read into the buffer (if it exists). You can
edit multiple files by pressing the shift key while clicking on icons, and
clicking twice on the last one. The "Default Tool" for all these icons must
be the same.

It is not possible to give arguments to Vim, other than file names, from the
workbench.

Vim window amiga-window

Vim will run in the CLI window where it was started. If Vim was started with
the "run" or "runback" command, or if Vim was started from the workbench, it
will open a window of its own.

Technical detail:
To open the new window a little trick is used. As soon as Vim
recognizes that it does not run in a normal CLI window, it will
create a script file in "t:". This script file contains the same
command as the one Vim was started with, and an "endcli" command.
This script file is then executed with a "newcli" command (the "c:run"
and "c:newcli" commands are required for this to work). The script
file will hang around until reboot, or until you delete it. This
method is required to get the ":sh" and ":!" commands to work
correctly. But when Vim was started with the -f option (foreground
mode), this method is not used. The reason for this is that
when a program starts Vim with the -f option it will wait for Vim to
exit. With the script trick, the calling program does not know when
Vim exits. The -f option can be used when Vim is started by a mail
program which also waits for the edit session to finish. As a
consequence, the ":sh" and ":!" commands are not available when the
-f option is used.

Vim will automatically recognize the window size and react to window
resizing. Under Amiga DOS 1.3, it is advised to use the fastfonts program,
"FF", to speed up display redrawing.

starting.txt — 592

==
3. Running eVim evim-keys

EVim runs Vim as click-and-type editor. This is very unlike the original Vi
idea. But it helps for people that don't use Vim often enough to learn the
commands. Hopefully they will find out that learning to use Normal mode
commands will make their editing much more effective.

In Evim these options are changed from their default value:

:set nocompatible Use Vim improvements
:set insertmode Remain in Insert mode most of the time
:set hidden Keep invisible buffers loaded
:set backup Keep backup files (not for VMS)
:set backspace=2 Backspace over everything
:set autoindent auto-indent new lines
:set history=50 keep 50 lines of Ex commands
:set ruler show the cursor position
:set incsearch show matches halfway typing a pattern
:set mouse=a use the mouse in all modes
:set hlsearch highlight all matches for a search pattern
:set whichwrap+=<,>,[,] <Left> and <Right> wrap around line breaks
:set guioptions-=a non-Unix only: don't do auto-select

Key mappings:
<CTRL-Q> quit, using `:confirm` prompt if there are changes
<Down> moves by screen lines rather than file lines
<Up> idem
Q does "gq", formatting, instead of Ex mode
<BS> in Visual mode: deletes the selection
CTRL-X in Visual mode: Cut to clipboard
<S-Del> idem
CTRL-C in Visual mode: Copy to clipboard
<C-Insert> idem
CTRL-V Pastes from the clipboard (in any mode)
<S-Insert> idem
CTRL-Z undo
CTRL-Y redo
<M-Space> system menu
CTRL-A select all
<C-Tab> next window, CTRL-W w
<C-F4> close window, CTRL-W c

Additionally:
- ":behave mswin" is used :behave
- syntax highlighting is enabled
- filetype detection is enabled, filetype plugins and indenting is enabled
- in a text file 'textwidth' is set to 78

One hint: If you want to go to Normal mode to be able to type a sequence of
commands, use CTRL-L. i_CTRL-L

There is no way to stop "easy mode", you need to exit Vim.

==
4. Initialization initialization startup

This section is about the non-GUI version of Vim. See gui-fork for
additional initialization when starting the GUI.

starting.txt — 593

At startup, Vim checks environment variables and files and sets values
accordingly. Vim proceeds in this order:

1. Set the 'shell' and 'term' option SHELL COMSPEC TERM
The environment variable SHELL, if it exists, is used to set the
'shell' option. On Win32, the COMSPEC variable is used
if SHELL is not set.
The environment variable TERM, if it exists, is used to set the 'term'
option. However, 'term' will change later when starting the GUI (step
8 below).

2. Process the arguments
The options and file names from the command that start Vim are
inspected.
The -V argument can be used to display or log what happens next,
useful for debugging the initializations.
The --cmd arguments are executed.
Buffers are created for all files (but not loaded yet).

3. Execute Ex commands, from environment variables and/or files
An environment variable is read as one Ex command line, where multiple
commands must be separated with '|' or "<NL>".

vimrc exrc
A file that contains initialization commands is called a "vimrc" file.
Each line in a vimrc file is executed as an Ex command line. It is
sometimes also referred to as "exrc" file. They are the same type of
file, but "exrc" is what Vi always used, "vimrc" is a Vim specific
name. Also see vimrc-intro .

Places for your personal initializations:
Unix $HOME/.vimrc or $HOME/.vim/vimrc
MS-Windows $HOME/_vimrc, $HOME/vimfiles/vimrc

or $VIM/_vimrc
Amiga s:.vimrc, home:.vimrc, home:vimfiles:vimrc

or $VIM/.vimrc
Haiku $HOME/config/settings/vim/vimrc

The files are searched in the order specified above and only the first
one that is found is read.

RECOMMENDATION: Put all your Vim configuration stuff in the
$HOME/.vim/ directory ($HOME/vimfiles/ for MS-Windows). That makes it
easy to copy it to another system.

If Vim was started with "-u filename", the file "filename" is used.
All following initializations until 4. are skipped. $MYVIMRC is not
set.
"vim -u NORC" can be used to skip these initializations without
reading a file. "vim -u NONE" also skips loading plugins. -u

If Vim was started in Ex mode with the "-s" argument, all following
initializations until 4. are skipped. Only the "-u" option is
interpreted.

evim.vim
a. If vim was started as evim or eview or with the -y argument, the

script $VIMRUNTIME/evim.vim will be loaded.
system-vimrc

b. For Unix, MS-Windows, VMS, Macintosh and Amiga the system vimrc file
is read for initializations. The path of this file is shown with the

starting.txt — 594

":version" command. Mostly it's "$VIM/vimrc". Note that this file is
ALWAYS read in 'compatible' mode, since the automatic resetting of
'compatible' is only done later. Add a ":set nocp" command if you
like. For the Macintosh the $VIMRUNTIME/macmap.vim is read.

VIMINIT .vimrc _vimrc EXINIT .exrc _exrc $MYVIMRC
c. Five places are searched for initializations. The first that exists

is used, the others are ignored. The $MYVIMRC environment variable is
set to the file that was first found, unless $MYVIMRC was already set
and when using VIMINIT.
I The environment variable VIMINIT (see also compatible-default) (*)

The value of $VIMINIT is used as an Ex command line.
II The user vimrc file(s):

"$HOME/.vimrc" (for Unix) (*)
"$HOME/.vim/vimrc" (for Unix) (*)
"s:.vimrc" (for Amiga) (*)
"home:.vimrc" (for Amiga) (*)
"home:vimfiles:vimrc" (for Amiga) (*)
"$VIM/.vimrc" (for Amiga) (*)
"$HOME/_vimrc" (for Win32) (*)
"$HOME/vimfiles/vimrc" (for Win32) (*)
"$VIM/_vimrc" (for Win32) (*)
"$HOME/config/settings/vim/vimrc" (for Haiku) (*)

Note: For Unix and Amiga, when ".vimrc" does not exist,
"_vimrc" is also tried, in case an MS-DOS compatible file
system is used. For MS-Windows ".vimrc" is checked after
"_vimrc", in case long file names are used.
Note: For Win32, "$HOME" is checked first. If no "_vimrc" or
".vimrc" is found there, "$VIM" is tried. See $VIM for when
$VIM is not set.

III The environment variable EXINIT.
The value of $EXINIT is used as an Ex command line.

IV The user exrc file(s). Same as for the user vimrc file, but with
"vimrc" replaced by "exrc". But only one of ".exrc" and "_exrc" is
used, depending on the system. And without the (*)!

V The default vimrc file, $VIMRUNTIME/defaults.vim. This sets up
options values and has "syntax on" and "filetype on" commands,
which is what most new users will want. See defaults.vim .

d. If the 'exrc' option is on (which is NOT the default), the current
directory is searched for three files. The first that exists is used,
the others are ignored.
- The file ".vimrc" (for Unix, Amiga) (*)

"_vimrc" (for Win32) (*)
- The file "_vimrc" (for Unix, Amiga) (*)

".vimrc" (for Win32) (*)
- The file ".exrc" (for Unix, Amiga)

"_exrc" (for Win32)

(*) Using this file or environment variable will cause 'compatible' to be
off by default. See compatible-default .

Note: When using the mzscheme interface, it is initialized after loading
the vimrc file. Changing 'mzschemedll' later has no effect.

4. Load the plugin scripts. load-plugins
This does the same as the command:

:runtime! plugin/**/*.vim
The result is that all directories in the 'runtimepath' option will be

starting.txt — 595

searched for the "plugin" sub-directory and all files ending in ".vim"
will be sourced (in alphabetical order per directory), also in
subdirectories.
However, directories in 'runtimepath' ending in "after" are skipped
here and only loaded after packages, see below.
Loading plugins won't be done when:
- The 'loadplugins' option was reset in a vimrc file.
- The --noplugin command line argument is used.
- The --clean command line argument is used.
- The "-u NONE" command line argument is used -u .
- When Vim was compiled without the +eval feature.
Note that using "-c 'set noloadplugins'" doesn't work, because the
commands from the command line have not been executed yet. You can
use "--cmd 'set noloadplugins'" or "--cmd 'set loadplugins'" --cmd .

Packages are loaded. These are plugins, as above, but found in the
"start" directory of each entry in 'packpath'. Every plugin directory
found is added in 'runtimepath' and then the plugins are sourced. See
packages .

The plugins scripts are loaded, as above, but now only the directories
ending in "after" are used. Note that 'runtimepath' will have changed
if packages have been found, but that should not add a directory
ending in "after".

5. Set 'shellpipe' and 'shellredir'
The 'shellpipe' and 'shellredir' options are set according to the
value of the 'shell' option, unless they have been set before.
This means that Vim will figure out the values of 'shellpipe' and
'shellredir' for you, unless you have set them yourself.

6. Set 'updatecount' to zero, if "-n" command argument used

7. Set binary options
If the "-b" flag was given to Vim, the options for binary editing will
be set now. See -b .

8. Perform GUI initializations
Only when starting "gvim", the GUI initializations will be done. See
gui-init .

9. Read the viminfo file
If the 'viminfo' option is not empty, the viminfo file is read. See
viminfo-file .

10. Read the quickfix file
If the "-q" flag was given to Vim, the quickfix file is read. If this
fails, Vim exits.

11. Open all windows
When the -o flag was given, windows will be opened (but not
displayed yet).
When the -p flag was given, tab pages will be created (but not
displayed yet).
When switching screens, it happens now. Redrawing starts.
If the "-q" flag was given to Vim, the first error is jumped to.
Buffers for all windows will be loaded, without triggering BufAdd
autocommands.

12. Execute startup commands

starting.txt — 596

If a "-t" flag was given to Vim, the tag is jumped to.
The commands given with the -c and +cmd arguments are executed.
If the 'insertmode' option is set, Insert mode is entered.
The starting flag is reset, has("vim_starting") will now return zero.
The v:vim_did_enter variable is set to 1.
The VimEnter autocommands are executed.

The $MYVIMRC or $MYGVIMRC file will be set to the first found vimrc and/or
gvimrc file.

Some hints on using initializations

Standard setup:
Create a vimrc file to set the default settings and mappings for all your edit
sessions. Put it in a place so that it will be found by 3b:

~/.vimrc (Unix)
s:.vimrc (Amiga)
$VIM_vimrc (Win32)
~/config/settings/vim/vimrc (Haiku)

Note that creating a vimrc file will cause the 'compatible' option to be off
by default. See compatible-default .

Local setup:
Put all commands that you need for editing a specific directory only into a
vimrc file and place it in that directory under the name ".vimrc" ("_vimrc"
for Win32). NOTE: To make Vim look for these special files you have to turn
on the option 'exrc'. See trojan-horse too.

System setup:
This only applies if you are managing a Unix system with several users and
want to set the defaults for all users. Create a vimrc file with commands
for default settings and mappings and put it in the place that is given with
the ":version" command.

Saving the current state of Vim to a file

Whenever you have changed values of options or when you have created a
mapping, then you may want to save them in a vimrc file for later use. See
save-settings about saving the current state of settings to a file.

Avoiding setup problems for Vi users

Vi uses the variable EXINIT and the file "~/.exrc". So if you do not want to
interfere with Vi, then use the variable VIMINIT and the file "vimrc" instead.

Amiga environment variables

On the Amiga, two types of environment variables exist. The ones set with the
DOS 1.3 (or later) setenv command are recognized. See the AmigaDos 1.3
manual. The environment variables set with the old Manx Set command (before
version 5.0) are not recognized.

MS-Windows line separators

starting.txt — 597

On MS-Windows, Vim assumes that all the vimrc files have <CR><NL> pairs as
line separators. This will give problems if you have a file with only <NL>s
and have a line like ":map xx yy^M". The trailing ^M will be ignored.

Vi compatible default value
compatible-default

When Vim starts, the 'compatible' option is on. This will be used when Vim
starts its initializations. But as soon as:
- a user vimrc file is found, or
- a vimrc file in the current directory is found, or
- the "VIMINIT" environment variable is set, or
- the "-N" command line argument is given, or
- the "--clean" command line argument is given, or
- the defaults.vim script is loaded, or
- a gvimrc file was found,
then the option will be set to 'nocompatible'.

Note that this does NOT happen when a system-wide vimrc file was found.

This has the side effect of setting or resetting other options (see
'compatible'). But only the options that have not been set or reset will be
changed. This has the same effect like the value of 'compatible' had this
value when starting Vim.

'compatible' is NOT reset, and defaults.vim is not loaded:
- when Vim was started with the -u command line argument, especially with

"-u NONE", or
- when started with the -C command line argument, or
- when the name of the executable ends in "ex". (This has been done to make

Vim behave like "ex", when it is started as "ex")

But there is a side effect of setting or resetting 'compatible' at the moment
a .vimrc file is found: Mappings are interpreted the moment they are
encountered. This makes a difference when using things like "<CR>". If the
mappings depend on a certain value of 'compatible', set or reset it before
giving the mapping.

Defaults without a .vimrc file
defaults.vim E1187

If Vim is started normally and no user vimrc file is found, the
$VIMRUNTIME/defaults.vim script is loaded. This will set 'compatible' off,
switch on syntax highlighting and a few more things. See the script for
details. NOTE: this is done since Vim 8.0, not in Vim 7.4. (it was added in
patch 7.4.2111 to be exact).

This should work well for new Vim users. If you create your own .vimrc, it is
recommended to add these lines somewhere near the top:

unlet! skip_defaults_vim
source $VIMRUNTIME/defaults.vim

Then Vim works like before you had a .vimrc. Copying $VIMRUNTIME/vimrc_example
is way to do this. Alternatively, you can copy defaults.vim to your .vimrc
and modify it (but then you won't get updates when it changes).

If you don't like some of the defaults, you can still source defaults.vim and
revert individual settings. See the defaults.vim file for hints on how to
revert each item.

skip_defaults_vim
If you use a system-wide vimrc and don't want defaults.vim to change settings,

starting.txt — 598

set the "skip_defaults_vim" variable. If this was set and you want to load
defaults.vim from your .vimrc, first unlet skip_defaults_vim, as in the
example above.

Avoiding trojan horses
trojan-horse

While reading the "vimrc" or the "exrc" file in the current directory, some
commands can be disabled for security reasons by setting the 'secure' option.
This is always done when executing the command from a tags file. Otherwise it
would be possible that you accidentally use a vimrc or tags file that somebody
else created and contains nasty commands. The disabled commands are the ones
that start a shell, the ones that write to a file, and ":autocmd". The ":map"
commands are echoed, so you can see which keys are being mapped.

If you want Vim to execute all commands in a local vimrc file, you
can reset the 'secure' option in the EXINIT or VIMINIT environment variable or
in the global "exrc" or "vimrc" file. This is not possible in "vimrc" or
"exrc" in the current directory, for obvious reasons.

On Unix systems, this only happens if you are not the owner of the
vimrc file. Warning: If you unpack an archive that contains a vimrc or exrc
file, it will be owned by you. You won't have the security protection. Check
the vimrc file before you start Vim in that directory, or reset the 'exrc'
option. Some Unix systems allow a user to do "chown" on a file. This makes
it possible for another user to create a nasty vimrc and make you the owner.
Be careful!

When using tag search commands, executing the search command (the last
part of the line in the tags file) is always done in secure mode. This works
just like executing a command from a vimrc/exrc in the current directory.

If Vim startup is slow
slow-start

If Vim takes a long time to start up, use the --startuptime argument to find
out what happens. There are a few common causes:
- If the Unix version was compiled with the GUI and/or X11 (check the output

of ":version" for "+GUI" and "+X11"), it may need to load shared libraries
and connect to the X11 server. Try compiling a version with GUI and X11
disabled. This also should make the executable smaller.
Use the -X command line argument to avoid connecting to the X server when
running in a terminal.

- If you have "viminfo" enabled, the loading of the viminfo file may take a
while. You can find out if this is the problem by disabling viminfo for a
moment (use the Vim argument "-i NONE", -i). Try reducing the number of
lines stored in a register with ":set viminfo='20,<50,s10". viminfo-file .

Intro message
:intro

When Vim starts without a file name, an introductory message is displayed (for
those who don't know what Vim is). It is removed as soon as the display is
redrawn in any way. To see the message again, use the ":intro" command (if
there is not enough room, you will see only part of it).

To avoid the intro message on startup, add the 'I' flag to 'shortmess'.

info-message
The --help and --version arguments cause Vim to print a message and then
exit. Normally the message is sent to stdout, thus can be redirected to a
file with:

vim --help >file

starting.txt — 599

From inside Vim:

:read !vim --help

When using gvim, it detects that it might have been started from the desktop,
without a terminal to show messages on. This is detected when both stdout and
stderr are not a tty. This breaks the ":read" command, as used in the example
above. To make it work again, set 'shellredir' to ">" instead of the default
">&":

:set shellredir=>
:read !gvim --help

This still won't work for systems where gvim does not use stdout at all
though.

==
5. $VIM and $VIMRUNTIME

$VIM
The environment variable "$VIM" is used to locate various user files for Vim,
such as the user startup script ".vimrc". This depends on the system, see
startup .

To avoid the need for every user to set the $VIM environment variable, Vim
will try to get the value for $VIM in this order:
1. The value defined by the $VIM environment variable. You can use this to

make Vim look in a specific directory for its support files. Example:
setenv VIM /home/paul/vim

2. The path from 'helpfile' is used, unless it contains some environment
variable too (the default is "$VIMRUNTIME/doc/help.txt": chicken-egg
problem). The file name ("help.txt" or any other) is removed. Then
trailing directory names are removed, in this order: "doc", "runtime" and
"vim{version}" (e.g., "vim82").

3. For Win32 Vim tries to use the directory name of the executable. If it
ends in "/src", this is removed. This is useful if you unpacked the .zip
file in some directory, and adjusted the search path to find the vim
executable. Trailing directory names are removed, in this order: "runtime"
and "vim{version}" (e.g., "vim82").

4. For Unix the compile-time defined installation directory is used (see the
output of ":version").

Once Vim has done this once, it will set the $VIM environment variable. To
change it later, use a ":let" command like this:

:let $VIM = "/home/paul/vim/"

$VIMRUNTIME
The environment variable "$VIMRUNTIME" is used to locate various support
files, such as the on-line documentation and files used for syntax
highlighting. For example, the main help file is normally
"$VIMRUNTIME/doc/help.txt".
You don't normally set $VIMRUNTIME yourself, but let Vim figure it out. This
is the order used to find the value of $VIMRUNTIME:
1. If the environment variable $VIMRUNTIME is set, it is used. You can use

this when the runtime files are in an unusual location.
2. If "$VIM/vim{version}" exists, it is used. {version} is the version

number of Vim, without any '-' or '.'. For example: "$VIM/vim82". This is
the normal value for $VIMRUNTIME.

3. If "$VIM/runtime" exists, it is used.
4. The value of $VIM is used. This is for backwards compatibility with older

starting.txt — 600

versions.
5. When the 'helpfile' option is set and doesn't contain a '$', its value is

used, with "doc/help.txt" removed from the end.

For Unix, when there is a compiled-in default for $VIMRUNTIME (check the
output of ":version"), steps 2, 3 and 4 are skipped, and the compiled-in
default is used after step 5. This means that the compiled-in default
overrules the value of $VIM. This is useful if $VIM is "/etc" and the runtime
files are in "/usr/share/vim/vim82".

Once Vim has done this once, it will set the $VIMRUNTIME environment variable.
To change it later, use a ":let" command like this:

:let $VIMRUNTIME = "/home/piet/vim/vim82"

In case you need the value of $VIMRUNTIME in a shell (e.g., for a script that
greps in the help files) you might be able to use this:

VIMRUNTIME=`vim -e -T dumb --cmd 'exe "set t_cm=\<C-M>"|echo $VIMRUNTIME|quit' | tr -d '\015' `

Don't set $VIMRUNTIME to an empty value, some things may stop working.

==
6. Suspending suspend

iconize iconise CTRL-Z v_CTRL-Z
CTRL-Z Suspend Vim, like ":stop".

Works in Normal and in Visual mode. In Insert and
Command-line mode, the CTRL-Z is inserted as a normal
character. In Visual mode Vim goes back to Normal
mode.
Note: if CTRL-Z undoes a change see mswin.vim .

:sus[pend][!] or :sus :suspend :st :stop
:st[op][!] Suspend Vim.

If the '!' is not given and 'autowrite' is set, every
buffer with changes and a file name is written out.
If the '!' is given or 'autowrite' is not set, changed
buffers are not written, don't forget to bring Vim
back to the foreground later!

In the GUI, suspending is implemented as iconising gvim. In MS-Windows, gvim
is minimized.

On many Unix systems, it is possible to suspend Vim with CTRL-Z. This is only
possible in Normal and Visual mode (see next chapter, vim-modes). Vim will
continue if you make it the foreground job again. On other systems, CTRL-Z
will start a new shell. This is the same as the ":sh" command. Vim will
continue if you exit from the shell.

In X-windows the selection is disowned when Vim suspends. this means you
can't paste it in another application (since Vim is going to sleep an attempt
to get the selection would make the program hang).

==
7. Exiting exiting

There are several ways to exit Vim:
- Close the last window with `:quit`. Only when there are no changes.
- Close the last window with `:quit!`. Also when there are changes.

starting.txt — 601

- Close all windows with `:qall`. Only when there are no changes.
- Close all windows with `:qall!`. Also when there are changes.
- Use `:cquit`. Also when there are changes.

When using `:cquit` or when there was an error message Vim exits with exit
code 1. Errors can be avoided by using `:silent!` or with `:catch`.

==
8. Saving settings save-settings

Mostly you will edit your vimrc files manually. This gives you the greatest
flexibility. There are a few commands to generate a vimrc file automatically.
You can use these files as they are, or copy/paste lines to include in another
vimrc file.

:mk :mkexrc
:mk[exrc] [file] Write current key mappings and changed options to

[file] (default ".exrc" in the current directory),
unless it already exists.

:mk[exrc]! [file] Always write current key mappings and changed
options to [file] (default ".exrc" in the current
directory).

:mkv :mkvi :mkvimrc
:mkv[imrc][!] [file] Like ":mkexrc", but the default is ".vimrc" in the

current directory. The ":version" command is also
written to the file.

These commands will write ":map" and ":set" commands to a file, in such a way
that when these commands are executed, the current key mappings and options
will be set to the same values. The options 'columns', 'endofline',
'fileformat', 'key', 'lines', 'modified', 'scroll', 'term', 'textmode',
'ttyfast' and 'ttymouse' are not included, because these are terminal or file
dependent. Note that the options 'binary', 'paste' and 'readonly' are
included, this might not always be what you want.

When special keys are used in mappings, The 'cpoptions' option will be
temporarily set to its Vim default, to avoid the mappings to be
misinterpreted. This makes the file incompatible with Vi, but makes sure it
can be used with different terminals.

Only global mappings are stored, not mappings local to a buffer.

A common method is to use a default ".vimrc" file, make some modifications
with ":map" and ":set" commands and write the modified file. First read the
default ".vimrc" in with a command like ":source ~piet/.vimrc.Cprogs", change
the settings and then save them in the current directory with ":mkvimrc!". If
you want to make this file your default .vimrc, move it to your home directory
(on Unix), s: (Amiga) or $VIM directory (MS-Windows). You could also use
autocommands autocommand and/or modelines modeline .

vimrc-option-example
If you only want to add a single option setting to your vimrc, you can use
these steps:
1. Edit your vimrc file with Vim.
2. Play with the option until it's right. E.g., try out different values for

'guifont'.
3. Append a line to set the value of the option, using the expression register

'=' to enter the value. E.g., for the 'guifont' option:

starting.txt — 602

o:set guifont=<C-R>=&guifont<CR><Esc>
[<C-R> is a CTRL-R, <CR> is a return, <Esc> is the escape key]
You need to escape special characters, esp. spaces.

Note that when you create a .vimrc file, this can influence the 'compatible'
option, which has several side effects. See 'compatible' .
":mkvimrc", ":mkexrc" and ":mksession" write the command to set or reset the
'compatible' option to the output file first, because of these side effects.

==
9. Views and Sessions views-sessions

This is introduced in sections 21.4 and 21.5 of the user manual.

View view-file
A View is a collection of settings that apply to one window. You can save a
View and when you restore it later, the text is displayed in the same way.
The options and mappings in this window will also be restored, so that you can
continue editing like when the View was saved.

Session session-file
A Session keeps the Views for all windows, plus the global settings. You can
save a Session and when you restore it later the window layout looks the same.
You can use a Session to quickly switch between different projects,
automatically loading the files you were last working on in that project.

Views and Sessions are a nice addition to viminfo-files, which are used to
remember information for all Views and Sessions together viminfo-file .

You can quickly start editing with a previously saved View or Session with the
-S argument:

vim -S Session.vim

All this is {not available when compiled without the |+mksession| feature}.

:mks :mksession
:mks[ession][!] [file] Write a Vim script that restores the current editing

session.
When [!] is included an existing file is overwritten.
When [file] is omitted "Session.vim" is used.

The output of ":mksession" is like ":mkvimrc", but additional commands are
added to the file. Which ones depends on the 'sessionoptions' option. The
resulting file, when executed with a ":source" command:
1. Restores global mappings and options, if 'sessionoptions' contains

"options". Script-local mappings will not be written.
2. Restores global variables that start with an uppercase letter and contain

at least one lowercase letter, if 'sessionoptions' contains "globals".
3. Closes all windows in the current tab page, except the current one; closes

all tab pages except the current one (this results in currently loaded
buffers to be unloaded, some may become hidden if 'hidden' is set or
otherwise specified); wipes out the current buffer, if it is empty
and unnamed.

4. Restores the current directory if 'sessionoptions' contains "curdir", or
sets the current directory to where the Session file is if 'sessionoptions'
contains "sesdir".

5. Restores GUI Vim window position, if 'sessionoptions' contains "winpos".
6. Restores screen size, if 'sessionoptions' contains "resize".
7. Reloads the buffer list, with the last cursor positions. If

'sessionoptions' contains "buffers" then all buffers are restored,

starting.txt — 603

including hidden and unloaded buffers. Otherwise only buffers in windows
are restored.

8. Restores all windows with the same layout. If 'sessionoptions' contains
"help", help windows are restored. If 'sessionoptions' contains "blank",
windows editing a buffer without a name will be restored.
If 'sessionoptions' contains "winsize" and no (help/blank) windows were
left out, the window sizes are restored (relative to the screen size).
Otherwise, the windows are just given sensible sizes.

9. Restores the Views for all the windows, as with :mkview . But
'sessionoptions' is used instead of 'viewoptions'.

10. If a file exists with the same name as the Session file, but ending in
"x.vim" (for eXtra), executes that as well. You can use *x.vim files to
specify additional settings and actions associated with a given Session,
such as creating menu items in the GUI version.

After restoring the Session, the full filename of your current Session is
available in the internal variable "v:this_session" this_session-variable .
An example mapping:

:nmap <F2> :wa<Bar>exe "mksession! " .. v:this_session<CR>:so ~/sessions/
This saves the current Session, and starts off the command to load another.

A session includes all tab pages, unless "tabpages" was removed from
'sessionoptions'. tab-page

The SessionLoadPost autocmd event is triggered after a session file is
loaded/sourced.

SessionLoad-variable
While the session file is loading the SessionLoad global variable is set to 1.
Plugins can use this to postpone some work until the SessionLoadPost event is
triggered.

:mkvie :mkview
:mkvie[w][!] [file] Write a Vim script that restores the contents of the

current window.
When [!] is included an existing file is overwritten.
When [file] is omitted or is a number from 1 to 9, a
name is generated and 'viewdir' prepended. When the
last path part of 'viewdir' does not exist, this
directory is created. E.g., when 'viewdir' is
"$VIM/vimfiles/view" then "view" is created in
"$VIM/vimfiles".
An existing file is always overwritten then. Use
:loadview to load this view again.

When [file] is the name of a file ('viewdir' is not
used), a command to edit the file is added to the
generated file.

The output of ":mkview" contains these items:
1. The argument list used in the window. When the global argument list is

used it is reset to the global list.
The index in the argument list is also restored.

2. The file being edited in the window. If there is no file, the window is
made empty.

3. Restore mappings, abbreviations and options local to the window if
'viewoptions' contains "options" or "localoptions". For the options it
restores only values that are local to the current buffer and values local
to the window.
When storing the view as part of a session and "options" is in
'sessionoptions', global values for local options will be stored too.

4. Restore folds when using manual folding and 'viewoptions' contains

starting.txt — 604

"folds". Restore manually opened and closed folds.
5. The scroll position and the cursor position in the file. Doesn't work very

well when there are closed folds.
6. The local current directory, if it is different from the global current

directory and 'viewoptions' contains "curdir".

Note that Views and Sessions are not perfect:
- They don't restore everything. For example, defined functions, autocommands

and ":syntax on" are not included. Things like register contents and
command line history are in viminfo, not in Sessions or Views.

- Global option values are only set when they differ from the default value.
When the current value is not the default value, loading a Session will not
set it back to the default value. Local options will be set back to the
default value though.

- Existing mappings will be overwritten without warning. An existing mapping
may cause an error for ambiguity.

- When storing manual folds and when storing manually opened/closed folds,
changes in the file between saving and loading the view will mess it up.

- The Vim script is not very efficient. But still faster than typing the
commands yourself!

:lo :loadview
:lo[adview] [nr] Load the view for the current file. When [nr] is

omitted, the view stored with ":mkview" is loaded.
When [nr] is specified, the view stored with ":mkview
[nr]" is loaded.

The combination of ":mkview" and ":loadview" can be used to store up to ten
different views of a file. These are remembered in the directory specified
with the 'viewdir' option. The views are stored using the file name. If a
file is renamed or accessed through a (symbolic) link the view will not be
found.

You might want to clean up your 'viewdir' directory now and then.

To automatically save and restore views for *.c files:
au BufWinLeave *.c mkview
au BufWinEnter *.c silent loadview

==
10. The viminfo file viminfo viminfo-file E136

E575 E576 E577
If you exit Vim and later start it again, you would normally lose a lot of
information. The viminfo file can be used to remember that information, which
enables you to continue where you left off.

This is introduced in section 21.3 of the user manual.

The viminfo file is used to store:
- The command line history.
- The search string history.
- The input-line history.
- Contents of non-empty registers.
- Marks for several files.
- File marks, pointing to locations in files.
- Last search/substitute pattern (for 'n' and '&').
- The buffer list.
- Global variables.

The viminfo file is not supported when the +viminfo feature has been

starting.txt — 605

disabled at compile time.

You could also use a Session file. The difference is that the viminfo file
does not depend on what you are working on. There normally is only one
viminfo file. Session files are used to save the state of a specific editing
Session. You could have several Session files, one for each project you are
working on. Viminfo and Session files together can be used to effectively
enter Vim and directly start working in your desired setup. session-file

viminfo-read
When Vim is started and the 'viminfo' option is non-empty, the contents of
the viminfo file are read and the info can be used in the appropriate places.
The v:oldfiles variable is filled. The marks are not read in at startup
(but file marks are). See initialization for how to set the 'viminfo'
option upon startup.

viminfo-write
When Vim exits and 'viminfo' is non-empty, the info is stored in the viminfo
file (it's actually merged with the existing one, if one exists). The
'viminfo' option is a string containing information about what info should be
stored, and contains limits on how much should be stored (see 'viminfo').

Merging happens in two ways. Most items that have been changed or set in the
current Vim session are stored, and what was not changed is filled from what
is currently in the viminfo file. For example:
- Vim session A reads the viminfo, which contains variable START.
- Vim session B does the same
- Vim session A sets the variables AAA and BOTH and exits
- Vim session B sets the variables BBB and BOTH and exits
Now the viminfo will have:

START - it was in the viminfo and wasn't changed in session A or B
AAA - value from session A, session B kept it
BBB - value from session B
BOTH - value from session B, value from session A is lost

viminfo-timestamp
For some items a timestamp is used to keep the last changed version. Here it
doesn't matter in which sequence Vim sessions exit, the newest item(s) are
always kept. This is used for:
- The command line history.
- The search string history.
- The input-line history.
- Contents of non-empty registers.
- The jump list
- File marks
The timestamp feature was added before Vim 8.0. Older versions of Vim,
starting with 7.4.1131, will keep the items with timestamp, but not use them.
Thus when using both an older and a newer version of Vim the most recent data
will be kept.

Notes for Unix:
- The file protection for the viminfo file will be set to prevent other users

from being able to read it, because it may contain any text or commands that
you have worked with.

- If you want to share the viminfo file with other users (e.g. when you "su"
to another user), you can make the file writable for the group or everybody.
Vim will preserve this when replacing the viminfo file. Be careful, don't
allow just anybody to read and write your viminfo file!

- Vim will not overwrite a viminfo file that is not writable by the current
"real" user. This helps for when you did "su" to become root, but your

starting.txt — 606

$HOME is still set to a normal user's home directory. Otherwise Vim would
create a viminfo file owned by root that nobody else can read.

- The viminfo file cannot be a symbolic link. This is to avoid security
issues.

Marks are stored for each file separately. When a file is read and 'viminfo'
is non-empty, the marks for that file are read from the viminfo file. NOTE:
The marks are only written when exiting Vim, which is fine because marks are
remembered for all the files you have opened in the current editing session,
unless ":bdel" is used. If you want to save the marks for a file that you are
about to abandon with ":bdel", use ":wv". The '[' and ']' marks are not
stored, but the '"' mark is. The '"' mark is very useful for jumping to the
cursor position when the file was last exited. No marks are saved for files
that start with any string given with the "r" flag in 'viminfo'. This can be
used to avoid saving marks for files on removable media (for MS-Windows you
would use "ra:,rb:", for Amiga "rdf0:,rdf1:,rdf2:").
The v:oldfiles variable is filled with the file names that the viminfo file
has marks for.

viminfo-file-marks
Uppercase marks ('A to 'Z) are stored when writing the viminfo file. The
numbered marks ('0 to '9) are a bit special. When the viminfo file is written
(when exiting or with the ":wviminfo" command), '0 is set to the current cursor
position and file. The old '0 is moved to '1, '1 to '2, etc. This
resembles what happens with the "1 to "9 delete registers. If the current
cursor position is already present in '0 to '9, it is moved to '0, to avoid
having the same position twice. The result is that with "'0", you can jump
back to the file and line where you exited Vim. To do that right away, try
using this command:

vim -c "normal '0"

In a csh compatible shell you could make an alias for it:

alias lvim vim -c '"'normal "'"0'"'

For a bash-like shell:

alias lvim='vim -c "normal '\''0"'

Use the "r" flag in 'viminfo' to specify for which files no marks should be
remembered.

VIMINFO FILE NAME viminfo-file-name

- The default name of the viminfo file is "$HOME/.viminfo" for Unix,
"s:.viminfo" for Amiga, "$HOME_viminfo" for Win32. For Win32, when $HOME
is not set, "$VIM_viminfo" is used. When $VIM is also not set,
"c:_viminfo" is used.

- The 'n' flag in the 'viminfo' option can be used to specify another viminfo
file name 'viminfo' .

- The "-i" Vim argument can be used to set another file name, -i . When the
file name given is "NONE" (all uppercase), no viminfo file is ever read or
written. Also not for the commands below!

- The 'viminfofile' option can be used like the "-i" argument. In fact, the
value from the "-i" argument is stored in the 'viminfofile' option.

- For the commands below, another file name can be given, overriding the
default and the name given with 'viminfo' or "-i" (unless it's NONE).

starting.txt — 607

CHARACTER ENCODING viminfo-encoding

The text in the viminfo file is encoded as specified with the 'encoding'
option. Normally you will always work with the same 'encoding' value, and
this works just fine. However, if you read the viminfo file with another
value for 'encoding' than what it was written with, some of the text
(non-ASCII characters) may be invalid. If this is unacceptable, add the 'c'
flag to the 'viminfo' option:

:set viminfo+=c
Vim will then attempt to convert the text in the viminfo file from the
'encoding' value it was written with to the current 'encoding' value. This
requires Vim to be compiled with the +iconv feature. Filenames are not
converted.

MANUALLY READING AND WRITING viminfo-read-write

Two commands can be used to read and write the viminfo file manually. This
can be used to exchange registers between two running Vim programs: First
type ":wv" in one and then ":rv" in the other. Note that if the register
already contained something, then ":rv!" would be required. Also note
however that this means everything will be overwritten with information from
the first Vim, including the command line history, etc.

The viminfo file itself can be edited by hand too, although we suggest you
start with an existing one to get the format right. It is reasonably
self-explanatory once you're in there. This can be useful in order to
create a second file, say "~/.my_viminfo" which could contain certain
settings that you always want when you first start Vim. For example, you
can preload registers with particular data, or put certain commands in the
command line history. A line in your .vimrc file like

:rviminfo! ~/.my_viminfo
can be used to load this information. You could even have different viminfos
for different types of files (e.g., C code) and load them based on the file
name, using the ":autocmd" command (see :autocmd).

viminfo-errors
When Vim detects an error while reading a viminfo file, it will not overwrite
that file. If there are more than 10 errors, Vim stops reading the viminfo
file. This was done to avoid accidentally destroying a file when the file
name of the viminfo file is wrong. This could happen when accidentally typing
"vim -i file" when you wanted "vim -R file" (yes, somebody accidentally did
that!). If you want to overwrite a viminfo file with an error in it, you will
either have to fix the error, or delete the file (while Vim is running, so
most of the information will be restored).

:rv :rviminfo E195
:rv[iminfo][!] [file] Read from viminfo file [file] (default: see

viminfo-file-name above).
If [!] is given, then any information that is
already set (registers, marks, v:oldfiles , etc.)
will be overwritten

:wv :wviminfo E137 E138 E574 E886 E929
:wv[iminfo][!] [file] Write to viminfo file [file] (default: see

viminfo-file-name above).
This command has no effect when 'viminfofile' has been
set to "NONE".
The information in the file is first read in to make

starting.txt — 608

a merge between old and new info. When [!] is used,
the old information is not read first, only the
internal info is written. If 'viminfo' is empty, marks
for up to 100 files will be written.
When you get error "E929: Too many viminfo temp files"
check that no old temp files were left behind (e.g.
~/.viminf*) and that you can write in the directory of
the .viminfo file.

:ol :oldfiles
:ol[dfiles] List the files that have marks stored in the viminfo

file. This list is read on startup and only changes
afterwards with `:rviminfo!`. Also see v:oldfiles .
The number can be used with c_#< .
The output can be filtered with :filter , e.g.:

filter /\.vim/ oldfiles
The filtering happens on the file name.
{only when compiled with the |+eval| feature}

:bro[wse] ol[dfiles][!]
List file names as with :oldfiles , and then prompt
for a number. When the number is valid that file from
the list is edited.
If you get the press-enter prompt you can press "q"
and still get the prompt to enter a file number.
Use ! to abandon a modified buffer. abandon
{not when compiled with tiny features}

starting.txt — 609

starting.txt — 610

editing.txt For Vim version 9.1. Last change: 2024 Jan 14

VIM REFERENCE MANUAL by Bram Moolenaar

Editing files edit-files

1. Introduction edit-intro
2. Editing a file edit-a-file
3. The argument list argument-list
4. Writing writing
5. Writing and quitting write-quit
6. Dialogs edit-dialogs
7. The current directory current-directory
8. Editing binary files edit-binary
9. Encryption encryption
10. Timestamps timestamps
11. File Searching file-searching

==
1. Introduction edit-intro

Editing a file with Vim means:

1. reading the file into a buffer
2. changing the buffer with editor commands
3. writing the buffer into a file

current-file
As long as you don't write the buffer, the original file remains unchanged.
If you start editing a file (read a file into the buffer), the file name is
remembered as the "current file name". This is also known as the name of the
current buffer. It can be used with "%" on the command line :_% .

alternate-file
If there already was a current file name, then that one becomes the alternate
file name. It can be used with "#" on the command line :_# and you can use
the CTRL-^ command to toggle between the current and the alternate file.
However, the alternate file name is not changed when :keepalt is used.
An alternate file name is remembered for each window.

:keepalt :keepa
:keepalt {cmd} Execute {cmd} while keeping the current alternate file

name. Note that commands invoked indirectly (e.g.,
with a function) may still set the alternate file
name.

All file names are remembered in the buffer list. When you enter a file name,
for editing (e.g., with ":e filename") or writing (e.g., with ":w filename"),
the file name is added to the list. You can use the buffer list to remember
which files you edited and to quickly switch from one file to another (e.g.,
to copy text) with the CTRL-^ command. First type the number of the file
and then hit CTRL-^.

CTRL-G or CTRL-G :f :fi :file
:f[ile] Prints the current file name (as typed, unless ":cd"

was used), the cursor position (unless the 'ruler'
option is set), and the file status (readonly,

editing.txt — 611

modified, read errors, new file). See the 'shortmess'
option about how to make this message shorter.

:f[ile]! like :file , but don't truncate the name even when
'shortmess' indicates this.

{count}CTRL-G Like CTRL-G, but prints the current file name with
full path. If the count is higher than 1 the current
buffer number is also given.

g_CTRL-G word-count byte-count
g CTRL-G Prints the current position of the cursor in five

ways: Column, Line, Word, Character and Byte. If the
number of Characters and Bytes is the same then the
Character position is omitted.

If there are characters in the line that take more
than one position on the screen (<Tab> or special
character), or characters using more than one byte per
column (characters above 0x7F when 'encoding' is
utf-8), both the byte column and the screen column are
shown, separated by a dash.

Also see the 'ruler' option and the wordcount()
function.

v_g_CTRL-G
{Visual}g CTRL-G Similar to "g CTRL-G", but Word, Character, Line, and

Byte counts for the visually selected region are
displayed.
In Blockwise mode, Column count is also shown. (For
{Visual} see Visual-mode .)

:file_f
:f[ile][!] {name} Sets the current file name to {name}. The optional !

avoids truncating the message, as with :file .
If the buffer did have a name, that name becomes the
alternate-file name. An unlisted buffer is created

to hold the old name.
:0file

:0f[ile][!] Remove the name of the current buffer. The optional !
avoids truncating the message, as with :file .

:buffers
:files
:ls List all the currently known file names. See

windows.txt :files :buffers :ls .

Vim will remember the full path name of a file name that you enter. In most
cases when the file name is displayed only the name you typed is shown, but
the full path name is being used if you used the ":cd" command :cd .

home-replace
If the environment variable $HOME is set, and the file name starts with that
string, it is often displayed with HOME replaced with "~". This was done to
keep file names short. When reading or writing files the full name is still
used, the "~" is only used when displaying file names. When replacing the
file name would result in just "~", "~/" is used instead (to avoid confusion
between options set to $HOME with 'backupext' set to "~").

editing.txt — 612

When writing the buffer, the default is to use the current file name. Thus
when you give the "ZZ" or ":wq" command, the original file will be
overwritten. If you do not want this, the buffer can be written into another
file by giving a file name argument to the ":write" command. For example:

vim testfile
[change the buffer with editor commands]
:w newfile
:q

This will create a file "newfile", that is a modified copy of "testfile".
The file "testfile" will remain unchanged. Anyway, if the 'backup' option is
set, Vim renames or copies the original file before it will be overwritten.
You can use this file if you discover that you need the original file. See
also the 'patchmode' option. The name of the backup file is normally the same
as the original file with 'backupext' appended. The default "~" is a bit
strange to avoid accidentally overwriting existing files. If you prefer ".bak"
change the 'backupext' option. Extra dots are replaced with '_' on MS-Windows
machines, when Vim has detected that an MS-DOS-like filesystem is being used
(e.g., messydos or crossdos) or when the 'shortname' option is on. The
backup file can be placed in another directory by setting 'backupdir'.

auto-shortname
Technical: On the Amiga you can use 30 characters for a file name. But on an

MS-DOS-compatible filesystem only 8 plus 3 characters are
available. Vim tries to detect the type of filesystem when it is
creating the .swp file. If an MS-DOS-like filesystem is suspected,
a flag is set that has the same effect as setting the 'shortname'
option. This flag will be reset as soon as you start editing a
new file. The flag will be used when making the file name for the
".swp" and ".~" files for the current file. But when you are
editing a file in a normal filesystem and write to an MS-DOS-like
filesystem the flag will not have been set. In that case the
creation of the ".~" file may fail and you will get an error
message. Use the 'shortname' option in this case.

When you started editing without giving a file name, "No File" is displayed in
messages. If the ":write" command is used with a file name argument, the file
name for the current file is set to that file name. This only happens when
the 'F' flag is included in 'cpoptions' (by default it is included) cpo-F .
This is useful when entering text in an empty buffer and then writing it to a
file. If 'cpoptions' contains the 'f' flag (by default it is NOT included)
cpo-f the file name is set for the ":read file" command. This is useful

when starting Vim without an argument and then doing ":read file" to start
editing a file.
When the file name was set and 'filetype' is empty the filetype detection
autocommands will be triggered.

not-edited
Because the file name was set without really starting to edit that file, you
are protected from overwriting that file. This is done by setting the
"notedited" flag. You can see if this flag is set with the CTRL-G or ":file"
command. It will include "[Not edited]" when the "notedited" flag is set.
When writing the buffer to the current file name (with ":w!"), the "notedited"
flag is reset.

abandon
Vim remembers whether you have changed the buffer. You are protected from
losing the changes you made. If you try to quit without writing, or want to
start editing another file, Vim will refuse this. In order to overrule this
protection, add a '!' to the command. The changes will then be lost. For

editing.txt — 613

example: ":q" will not work if the buffer was changed, but ":q!" will. To see
whether the buffer was changed use the "CTRL-G" command. The message includes
the string "[Modified]" if the buffer has been changed, or "+" if the 'm' flag
is in 'shortmess'.

If you want to automatically save the changes without asking, switch on the
'autowriteall' option. 'autowrite' is the associated Vi-compatible option
that does not work for all commands.

If you want to keep the changed buffer without saving it, switch on the
'hidden' option. See hidden-buffer . Some commands work like this even when
'hidden' is not set, check the help for the command.

==
2. Editing a file edit-a-file

:e :edit reload
:e[dit] [++opt] [+cmd] Edit the current file. This is useful to re-edit the

current file, when it has been changed outside of Vim.
This fails when changes have been made to the current
buffer and 'autowriteall' isn't set or the file can't
be written.
Also see ++opt and +cmd .

:edit! discard
:e[dit]! [++opt] [+cmd]

Edit the current file always. Discard any changes to
the current buffer. This is useful if you want to
start all over again.
Also see ++opt and +cmd .

:edit_f
:e[dit] [++opt] [+cmd] {file}

Edit {file}.
This fails when changes have been made to the current
buffer, unless 'hidden' is set or 'autowriteall' is
set and the file can be written.
Also see ++opt and +cmd .

:edit!_f
:e[dit]! [++opt] [+cmd] {file}

Edit {file} always. Discard any changes to the
current buffer.
Also see ++opt and +cmd .

:edit_# :e#
:e[dit] [++opt] [+cmd] #[count]

Edit the [count]th buffer (as shown by :files).
This command does the same as [count] CTRL-^. But ":e
#" doesn't work if the alternate buffer doesn't have a
file name, while CTRL-^ still works then.
Also see ++opt and +cmd .

:ene :enew
:ene[w] Edit a new, unnamed buffer. This fails when changes

have been made to the current buffer, unless 'hidden'
is set or 'autowriteall' is set and the file can be
written.
If 'fileformats' is not empty, the first format given
will be used for the new buffer. If 'fileformats' is
empty, the 'fileformat' of the current buffer is used.

editing.txt — 614

:ene! :enew!
:ene[w]! Edit a new, unnamed buffer. Discard any changes to

the current buffer.
Set 'fileformat' like :enew .

:fin :find
:fin[d][!] [++opt] [+cmd] {file}

Find {file} in 'path' and then :edit it.

:{count}fin[d][!] [++opt] [+cmd] {file}
Just like ":find", but use the {count} match in
'path'. Thus ":2find file" will find the second
"file" found in 'path'. When there are fewer matches
for the file in 'path' than asked for, you get an
error message.

:ex
:ex [++opt] [+cmd] [file]

Same as :edit .

:vi :visual
:vi[sual][!] [++opt] [+cmd] [file]

When used in Ex mode: Leave Ex-mode , go back to
Normal mode. Otherwise same as :edit .

:vie :view
:vie[w][!] [++opt] [+cmd] file

When used in Ex mode: Leave Ex-mode , go back to
Normal mode. Otherwise same as :edit , but set
'readonly' option for this buffer.

CTRL-^ CTRL-6
CTRL-^ Edit the alternate file. Mostly the alternate file is

the previously edited file. This is a quick way to
toggle between two files. It is equivalent to ":e #",
except that it also works when there is no file name.

If the 'autowrite' or 'autowriteall' option is on and
the buffer was changed, write it.
Mostly the ^ character is positioned on the 6 key,
pressing CTRL and 6 then gets you what we call CTRL-^.
But on some non-US keyboards CTRL-^ is produced in
another way.

{count}CTRL-^ Edit [count]th file in the buffer list (equivalent to
":e #[count]"). This is a quick way to switch between
files.
See CTRL-^ above for further details.

[count]]f]f [f
[count][f Same as "gf". Deprecated.

gf E446 E447
[count]gf Edit the file whose name is under or after the cursor.

Mnemonic: "goto file".
Uses the 'isfname' option to find out which characters
are supposed to be in a file name. Trailing
punctuation characters ".,:;!" are ignored. Escaped
spaces "\ " are reduced to a single space.

editing.txt — 615

Uses the 'path' option as a list of directory names to
look for the file. See the 'path' option for details
about relative directories and wildcards.
Uses the 'suffixesadd' option to check for file names
with a suffix added.
If the file can't be found, 'includeexpr' is used to
modify the name and another attempt is done.
If a [count] is given, the count'th file that is found
in the 'path' is edited.
This command fails if Vim refuses to abandon the
current file.
If you want to edit the file in a new window use
CTRL-W_CTRL-F .

If you do want to edit a new file, use:
:e <cfile>

To make gf always work like that:
:map gf :e <cfile><CR>

If the name is a hypertext link, that looks like
"type://machine/path", you need the netrw plugin.
For Unix the '~' character is expanded, like in
"~user/file". Environment variables are expanded too
expand-env .

v_gf
{Visual}[count]gf Same as "gf", but the highlighted text is used as the

name of the file to edit. 'isfname' is ignored.
Leading blanks are skipped, otherwise all blanks and
special characters are included in the file name.
(For {Visual} see Visual-mode .)

gF
[count]gF Same as "gf", except if a number follows the file

name, then the cursor is positioned on that line in
the file.
The file name and the number must be separated by a
non-filename (see 'isfname') and non-numeric
character. " line " is also recognized, like it is
used in the output of `:verbose command UserCmd`
White space between the filename, the separator and
the number are ignored.
Examples:

eval.c:10
eval.c @ 20
eval.c (30)
eval.c 40

v_gF
{Visual}[count]gF Same as "v_gf".

These commands are used to start editing a single file. This means that the
file is read into the buffer and the current file name is set. The file that
is opened depends on the current directory, see :cd .

See read-messages for an explanation of the message that is given after the
file has been read.

You can use the ":e!" command if you messed up the buffer and want to start
all over again. The ":e" command is only useful if you have changed the
current file name.

editing.txt — 616

:filename {file}
Besides the things mentioned here, more special items for where a filename is
expected are mentioned at cmdline-special .

Note for systems other than Unix: When using a command that accepts a single
file name (like ":edit file") spaces in the file name are allowed, but
trailing spaces are ignored. This is useful on systems that regularly embed
spaces in file names (like MS-Windows and the Amiga). Example: The command
":e Long File Name " will edit the file "Long File Name". When using a
command that accepts more than one file name (like ":next file1 file2")
embedded spaces must be escaped with a backslash.

wildcard wildcards
Wildcards in {file} are expanded, but as with file completion, 'wildignore'
and 'suffixes' apply. Which wildcards are supported depends on the system.
These are the common ones:

? matches one character
* matches anything, including nothing
** matches anything, including nothing, recurses into directories
[abc] match 'a', 'b' or 'c'

To avoid the special meaning of the wildcards prepend a backslash. However,
on MS-Windows the backslash is a path separator and "path\[abc]" is still seen
as a wildcard when "[" is in the 'isfname' option. A simple way to avoid this
is to use "path\[[]abc]", this matches the file "path\[abc]".

starstar-wildcard
Expanding "**" is possible on Unix, Win32, macOS and a few other systems (but
it may depend on your 'shell' setting on Unix and macOS. It's known to work
correctly for zsh; for bash this requires at least bash version >= 4.X).
This allows searching a directory tree. This goes up to 100 directories deep.
Note there are some commands where this works slightly differently, see
file-searching .

Example:
:n **/*.txt

Finds files:
aaa.txt
subdir/bbb.txt
a/b/c/d/ccc.txt

When non-wildcard characters are used right before or after "**" these are
only matched in the top directory. They are not used for directories further
down in the tree. For example:

:n /usr/inc**/types.h
Finds files:

/usr/include/types.h
/usr/include/sys/types.h
/usr/inc/old/types.h

Note that the path with "/sys" is included because it does not need to match
"/inc". Thus it's like matching "/usr/inc*/*/*...", not
"/usr/inc*/inc*/inc*".

backtick-expansion `-expansion
On Unix and a few other systems you can also use backticks for the file name
argument, for example:

:next `find . -name ver*.c -print`
:view `ls -t *.patch \| head -n1`

Vim will run the command in backticks using the 'shell' and use the standard
output as argument for the given Vim command (error messages from the shell
command will be discarded).
To see what shell command Vim is running, set the 'verbose' option to 4. When

editing.txt — 617

the shell command returns a non-zero exit code, an error message will be
displayed and the Vim command will be aborted. To avoid this make the shell
always return zero like so:

:next `find . -name ver*.c -print \|\| true`

The backslashes before the star are required to prevent the shell from
expanding "ver*.c" prior to execution of the find program. The backslash
before the shell pipe symbol "|" prevents Vim from parsing it as command
termination.
This also works for most other systems, with the restriction that the
backticks must be around the whole item. It is not possible to have text
directly before the first or just after the last backtick.

`= E1083
You can have the backticks expanded as a Vim expression, instead of as an
external command, by putting an equal sign right after the first backtick,
e.g.:

:e `=tempname()`
The expression can contain just about anything, thus this can also be used to
avoid the special meaning of '"', '|', '%' and '#'. However, 'wildignore'
does apply like to other wildcards.

Environment variables in the expression are expanded when evaluating the
expression, thus this works:

:e `=$HOME .. '/.vimrc'`
This uses $HOME inside a string and it will be used literally, most likely not
what you intended:

:e `='$HOME' .. '/.vimrc'`

If the expression returns a string then names are to be separated with line
breaks. When the result is a List then each item is used as a name. Line
breaks also separate names.
Note that such expressions are only supported in places where a filename is
expected as an argument to an Ex-command.

++opt [++opt]
The [++opt] argument can be used to force the value of 'fileformat',
'fileencoding' or 'binary' to a value for one command, and to specify the
behavior for bad characters. The form is:

++{optname}
Or:

++{optname}={value}

Where {optname} is one of: ++ff ++enc ++bin ++nobin ++edit
ff or fileformat overrides 'fileformat'
enc or encoding overrides 'fileencoding'
bin or binary sets 'binary'
nobin or nobinary resets 'binary'
bad specifies behavior for bad characters
edit for :read only: keep option values as if editing

a file

{value} cannot contain white space. It can be any valid value for these
options. Examples:

:e ++ff=unix
This edits the same file again with 'fileformat' set to "unix".

:w ++enc=latin1 newfile
This writes the current buffer to "newfile" in latin1 format.

editing.txt — 618

The message given when writing a file will show "[converted]" when
'fileencoding' or the value specified with ++enc differs from 'encoding'.

There may be several ++opt arguments, separated by white space. They must all
appear before any +cmd argument.

++bad
The argument of "++bad=" specifies what happens with characters that can't be
converted and illegal bytes. It can be one of three things:

++bad=X A single-byte character that replaces each bad character.
++bad=keep Keep bad characters without conversion. Note that this may

result in illegal bytes in your text!
++bad=drop Remove the bad characters.

The default is like "++bad=?": Replace each bad character with a question
mark. In some places an inverted question mark is used (0xBF).

Note that not all commands use the ++bad argument, even though they do not
give an error when you add it. E.g. :write .

Note that when reading, the 'fileformat' and 'fileencoding' options will be
set to the used format. When writing this doesn't happen, thus a next write
will use the old value of the option. Same for the 'binary' option.

+cmd [+cmd]
The [+cmd] argument can be used to position the cursor in the newly opened
file, or execute any other command:

+ Start at the last line.
+{num} Start at line {num}.
+/{pat} Start at first line containing {pat}.
+{command} Execute {command} after opening the new file.

{command} is any Ex command.
To include a white space in the {pat} or {command}, precede it with a
backslash. Double the number of backslashes.

:edit +/The\ book file
:edit +/dir\ dirname\\ file
:edit +set\ dir=c:\\\\temp file

Note that in the last example the number of backslashes is halved twice: Once
for the "+cmd" argument and once for the ":set" command.

file-formats
The 'fileformat' option sets the <EOL> style for a file:
'fileformat' characters name

"dos" <CR><NL> or <NL> DOS format DOS-format
"unix" <NL> Unix format Unix-format
"mac" <CR> Mac format Mac-format

Previously 'textmode' was used. It is obsolete now.

When reading a file, the mentioned characters are interpreted as the <EOL>.
In DOS format (default for Win32), <CR><NL> and <NL> are both interpreted as
the <EOL>. Note that when writing the file in DOS format, <CR> characters
will be added for each single <NL>. Also see file-read .

When writing a file, the mentioned characters are used for <EOL>. For DOS
format <CR><NL> is used. Also see DOS-format-write .

You can read a file in DOS format and write it in Unix format. This will
replace all <CR><NL> pairs by <NL> (assuming 'fileformats' includes "dos"):

:e file

editing.txt — 619

:set fileformat=unix
:w

If you read a file in Unix format and write with DOS format, all <NL>
characters will be replaced with <CR><NL> (assuming 'fileformats' includes
"unix"):

:e file
:set fileformat=dos
:w

If you start editing a new file and the 'fileformats' option is not empty
(which is the default), Vim will try to detect whether the lines in the file
are separated by the specified formats. When set to "unix,dos", Vim will
check for lines with a single <NL> (as used on Unix and Amiga) or by a <CR>
<NL> pair (MS-Windows). Only when ALL lines end in <CR><NL>, 'fileformat' is
set to "dos", otherwise it is set to "unix". When 'fileformats' includes
"mac", and no <NL> characters are found in the file, 'fileformat' is set to
"mac".

If the 'fileformat' option is set to "dos" on non-MS-Windows systems the
message "[dos format]" is shown to remind you that something unusual is
happening. On MS-Windows systems you get the message "[unix format]" if
'fileformat' is set to "unix". On all systems but the Macintosh you get the
message "[mac format]" if 'fileformat' is set to "mac".

If the 'fileformats' option is empty and DOS format is used, but while reading
a file some lines did not end in <CR><NL>, "[CR missing]" will be included in
the file message.
If the 'fileformats' option is empty and Mac format is used, but while reading
a file a <NL> was found, "[NL missing]" will be included in the file message.

If the new file does not exist, the 'fileformat' of the current buffer is used
when 'fileformats' is empty. Otherwise the first format from 'fileformats' is
used for the new file.

Before editing binary, executable or Vim script files you should set the
'binary' option. A simple way to do this is by starting Vim with the "-b"
option. This will avoid the use of 'fileformat'. Without this you risk that
single <NL> characters are unexpectedly replaced with <CR><NL>.

You can encrypt files that are written by setting the 'key' option. This
provides some security against others reading your files. encryption

END OF LINE AND END OF FILE eol-and-eof

Vim has several options to control the file format:
'fileformat' the <EOL> style: Unix, DOS, Mac
'endofline' whether the last line ends with a <EOL>
'endoffile' whether the file ends with a CTRL-Z
'fixendofline' whether to fix eol and eof

The first three values are normally detected automatically when reading the
file and are used when writing the text to a file. While editing the buffer
it looks like every line has a line ending and the CTRL-Z isn't there (an
exception is when 'binary' is set, it works differently then).

The 'fixendofline' option can be used to choose what to write. You can also
change the option values to write the file differently than how it was read.

Here are some examples how to use them.

editing.txt — 620

If you want files in Unix format (every line NL terminated):
setl ff=unix fixeol

You should probably do this on any Unix-like system. Also modern MS-Windows
systems tend to work well with this. It is recommended to always use this
format for Vim scripts.

If you want to use an old MS-DOS file in a modern environment, fixing line
endings and dropping CTRL-Z, but keeping the <CR><NL> style <EOL>:

setl ff=dos fixeol
This is useful for many MS-Windows programs, they regularly expect the
<CR><NL> line endings.

If you want to drop the final <EOL> and add a final CTRL-Z (e.g. for an old
system like CP/M):

setl ff=dos nofixeol noeol eof

If you want to preserve the fileformat exactly as-is, including any final
<EOL> and final CTRL-Z:

setl nofixeol

==
3. The argument list argument-list arglist

If you give more than one file name when starting Vim, this list is remembered
as the argument list. You can jump to each file in this list.

Do not confuse this with the buffer list, which you can see with the
:buffers command. The argument list was already present in Vi, the buffer

list is new in Vim. Every file name in the argument list will also be present
in the buffer list (unless it was deleted with :bdel or :bwipe). But it's
common that names in the buffer list are not in the argument list.

This subject is introduced in section 07.2 of the user manual.

There is one global argument list, which is used for all windows by default.
It is possible to create a new argument list local to a window, see
:arglocal .

You can use the argument list with the following commands, and with the
expression functions argc() and argv() . These all work on the argument
list of the current window.

:ar :arg :args
:ar[gs] Print the argument list, with the current file in

square brackets.

:ar[gs] [++opt] [+cmd] {arglist} :args_f
Define {arglist} as the new argument list and edit
the first one. This fails when changes have been made
and Vim does not want to abandon the current buffer.
Also see ++opt and +cmd .

:ar[gs]! [++opt] [+cmd] {arglist} :args_f!
Define {arglist} as the new argument list and edit
the first one. Discard any changes to the current
buffer.
Also see ++opt and +cmd .

:[count]arge[dit][!] [++opt] [+cmd] {name} .. :arge :argedit
Add {name}s to the argument list and edit it.

editing.txt — 621

When {name} already exists in the argument list, this
entry is edited.
This is like using :argadd and then :edit .
Spaces in filenames have to be escaped with "\".
[count] is used like with :argadd .
If the current file cannot be abandon ed {name}s will
still be added to the argument list, but won't be
edited. No check for duplicates is done.
Also see ++opt and +cmd .

:[count]arga[dd] {name} .. :arga :argadd E479
:[count]arga[dd] E1156

Add the {name}s to the argument list. When {name} is
omitted add the current buffer name to the argument
list.
If [count] is omitted, the {name}s are added just
after the current entry in the argument list.
Otherwise they are added after the [count]'th file.
If the argument list is "a b c", and "b" is the
current argument, then these commands result in:

command new argument list
:argadd x a b x c
:0argadd x x a b c
:1argadd x a x b c
:$argadd x a b c x

And after the last one:
:+2argadd y a b c x y

There is no check for duplicates, it is possible to
add a file to the argument list twice. You can use
:argdedupe to fix it afterwards:

:argadd *.txt | argdedupe
The currently edited file is not changed.
Note: you can also use this method:

:args ## x
This will add the "x" item and sort the new list.

:argded[upe] :argded :argdedupe
Remove duplicate filenames from the argument list.
If your current file is a duplicate, your current file
will change to the original file index.

:argd[elete] {pattern} .. :argd :argdelete E480 E610
Delete files from the argument list that match the
{pattern}s. {pattern} is used like a file pattern,
see file-pattern . "%" can be used to delete the
current entry.
This command keeps the currently edited file, also
when it's deleted from the argument list.
Example:

:argdel *.obj

:[range]argd[elete] Delete the [range] files from the argument list.
Example:

:10,$argdel
Deletes arguments 10 and further, keeping 1-9.

:$argd
Deletes just the last one.

:argd
:.argd

Deletes the current argument.

editing.txt — 622

:%argd
Removes all the files from the arglist.
When the last number in the range is too high, up to
the last argument is deleted.

:argu :argument
:[count]argu[ment] [count] [++opt] [+cmd]

Edit file [count] in the argument list. When [count]
is omitted the current entry is used. This fails
when changes have been made and Vim does not want to
abandon the current buffer.

Also see ++opt and +cmd .

:[count]argu[ment]! [count] [++opt] [+cmd]
Edit file [count] in the argument list, discard any
changes to the current buffer. When [count] is
omitted the current entry is used.
Also see ++opt and +cmd .

:[count]n[ext] [++opt] [+cmd] :n :ne :next E165 E163
Edit [count] next file. This fails when changes have
been made and Vim does not want to abandon the
current buffer. Also see ++opt and +cmd .

:[count]n[ext]! [++opt] [+cmd]
Edit [count] next file, discard any changes to the
buffer. Also see ++opt and +cmd .

:n[ext] [++opt] [+cmd] {arglist} :next_f
Same as :args_f .

:n[ext]! [++opt] [+cmd] {arglist}
Same as :args_f! .

:[count]N[ext] [count] [++opt] [+cmd] :Next :N E164
Edit [count] previous file in argument list. This
fails when changes have been made and Vim does not
want to abandon the current buffer.
Also see ++opt and +cmd .

:[count]N[ext]! [count] [++opt] [+cmd]
Edit [count] previous file in argument list. Discard
any changes to the buffer. Also see ++opt and
+cmd .

:[count]prev[ious] [count] [++opt] [+cmd] :prev :previous
Same as :Next. Also see ++opt and +cmd .

:rew :rewind
:rew[ind] [++opt] [+cmd]

Start editing the first file in the argument list.
This fails when changes have been made and Vim does
not want to abandon the current buffer.
Also see ++opt and +cmd .

:rew[ind]! [++opt] [+cmd]
Start editing the first file in the argument list.
Discard any changes to the buffer. Also see ++opt
and +cmd .

editing.txt — 623

:fir :first
:fir[st][!] [++opt] [+cmd]

Other name for ":rewind".

:la :last
:la[st] [++opt] [+cmd]

Start editing the last file in the argument list.
This fails when changes have been made and Vim does
not want to abandon the current buffer.
Also see ++opt and +cmd .

:la[st]! [++opt] [+cmd]
Start editing the last file in the argument list.
Discard any changes to the buffer. Also see ++opt
and +cmd .

:wn :wnext
:[count]wn[ext] [++opt]

Write current file and start editing the [count]
next file. Also see ++opt and +cmd .

:[count]wn[ext] [++opt] {file}
Write current file to {file} and start editing the
[count] next file, unless {file} already exists and
the 'writeany' option is off. Also see ++opt and
+cmd .

:[count]wn[ext]! [++opt] {file}
Write current file to {file} and start editing the
[count] next file. Also see ++opt and +cmd .

:[count]wN[ext][!] [++opt] [file] :wN :wNext
:[count]wp[revious][!] [++opt] [file] :wp :wprevious

Same as :wnext, but go to previous file instead of
next.

The [count] in the commands above defaults to one. For some commands it is
possible to use two counts. The last one (rightmost one) is used.

If no [+cmd] argument is present, the cursor is positioned at the last known
cursor position for the file. If 'startofline' is set, the cursor will be
positioned at the first non-blank in the line, otherwise the last know column
is used. If there is no last known cursor position the cursor will be in the
first line (the last line in Ex mode).

{arglist}
The wildcards in the argument list are expanded and the file names are sorted.
Thus you can use the command "vim *.c" to edit all the C files. From within
Vim the command ":n *.c" does the same.

White space is used to separate file names. Put a backslash before a space or
tab to include it in a file name. E.g., to edit the single file "foo bar":

:next foo\ bar

On Unix and a few other systems you can also use backticks, for example:
:next `find . -name *.c -print`

The backslashes before the star are required to prevent "*.c" to be expanded
by the shell before executing the find program.

arglist-position

editing.txt — 624

When there is an argument list you can see which file you are editing in the
title of the window (if there is one and 'title' is on) and with the file
message you get with the "CTRL-G" command. You will see something like

(file 4 of 11)
If 'shortmess' contains 'f' it will be

(4 of 11)
If you are not really editing the file at the current position in the argument
list it will be

(file (4) of 11)
This means that you are position 4 in the argument list, but not editing the
fourth file in the argument list. This happens when you do ":e file".

LOCAL ARGUMENT LIST

:arglocal
:argl[ocal] Make a local copy of the global argument list.

Doesn't start editing another file.

:argl[ocal][!] [++opt] [+cmd] {arglist}
Define a new argument list, which is local to the
current window. Works like :args_f otherwise.

:argglobal
:argg[lobal] Use the global argument list for the current window.

Doesn't start editing another file.

:argg[lobal][!] [++opt] [+cmd] {arglist}
Use the global argument list for the current window.
Define a new global argument list like :args_f .
All windows using the global argument list will see
this new list.

There can be several argument lists. They can be shared between windows.
When they are shared, changing the argument list in one window will also
change it in the other window.

When a window is split the new window inherits the argument list from the
current window. The two windows then share this list, until one of them uses
:arglocal or :argglobal to use another argument list.

USING THE ARGUMENT LIST

:argdo
:[range]argdo[!] {cmd} Execute {cmd} for each file in the argument list or

if [range] is specified only for arguments in that
range. It works like doing this:

:rewind
:{cmd}
:next
:{cmd}
etc.

When the current file can't be abandon ed and the [!]
is not present, the command fails.
When an error is detected on one file, further files
in the argument list will not be visited.
The last file in the argument list (or where an error
occurred) becomes the current file.
{cmd} can contain '|' to concatenate several commands.

editing.txt — 625

{cmd} must not change the argument list.
Note: While this command is executing, the Syntax
autocommand event is disabled by adding it to
'eventignore'. This considerably speeds up editing
each file.
Also see :windo , :tabdo , :bufdo , :cdo , :ldo ,
:cfdo and :lfdo

Example:
:args *.c
:argdo set ff=unix | update

This sets the 'fileformat' option to "unix" and writes the file if it is now
changed. This is done for all *.c files.

Example:
:args *.[ch]
:argdo %s/\<my_foo\>/My_Foo/ge | update

This changes the word "my_foo" to "My_Foo" in all *.c and *.h files. The "e"
flag is used for the ":substitute" command to avoid an error for files where
"my_foo" isn't used. ":update" writes the file only if changes were made.

==
4. Writing writing save-file

Note: When the 'write' option is off, you are not able to write any file.

:w :write
E502 E503 E504 E505
E512 E514 E667 E949

:w[rite] [++opt] Write the whole buffer to the current file. This is
the normal way to save changes to a file. It fails
when the 'readonly' option is set or when there is
another reason why the file can't be written.
For ++opt see ++opt , but only ++bin, ++nobin, ++ff
and ++enc are effective.

:w[rite]! [++opt] Like ":write", but forcefully write when 'readonly' is
set or there is another reason why writing was
refused.
Note: This may change the permission and ownership of
the file and break (symbolic) links. Add the 'W' flag
to 'cpoptions' to avoid this.

:[range]w[rite][!] [++opt]
Write the specified lines to the current file. This
is unusual, because the file will not contain all
lines in the buffer.

:w_f :write_f
:[range]w[rite] [++opt] {file}

Write the specified lines to {file}, unless it
already exists and the 'writeany' option is off.

:w!
:[range]w[rite]! [++opt] {file}

Write the specified lines to {file}. Overwrite an
existing file.

:w_a :write_a E494
:[range]w[rite][!] [++opt] >>

editing.txt — 626

Append the specified lines to the current file.

:[range]w[rite][!] [++opt] >> {file}
Append the specified lines to {file}. '!' forces the
write even if file does not exist.

:w_c :write_c
:[range]w[rite] [++opt] !{cmd}

Execute {cmd} with [range] lines as standard input
(note the space in front of the '!'). {cmd} is
executed like with ":!{cmd}", any '!' is replaced with
the previous command :! .

The default [range] for the ":w" command is the whole buffer (1,$). If you
write the whole buffer, it is no longer considered changed. When you
write it to a different file with ":w somefile" it depends on the "+" flag in
'cpoptions'. When included, the write command will reset the 'modified' flag,
even though the buffer itself may still be different from its file.

If a file name is given with ":w" it becomes the alternate file. This can be
used, for example, when the write fails and you want to try again later with
":w #". This can be switched off by removing the 'A' flag from the
'cpoptions' option.

Note that the 'fsync' option matters here. If it's set it may make writes
slower (but safer).

:sav :saveas
:sav[eas][!] [++opt] {file}

Save the current buffer under the name {file} and set
the filename of the current buffer to {file}. The
previous name is used for the alternate file name.
The [!] is needed to overwrite an existing file.
When 'filetype' is empty filetype detection is done
with the new name, before the file is written.
When the write was successful 'readonly' is reset.

:up :update
:[range]up[date][!] [++opt] [>>] [file]

Like ":write", but only write when the buffer has been
modified.

WRITING WITH MULTIPLE BUFFERS buffer-write

:wa :wall
:wa[ll] Write all changed buffers. Buffers without a file

name cause an error message. Buffers which are
readonly are not written.

:wa[ll]! Write all changed buffers, even the ones that are
readonly. Buffers without a file name are not
written and cause an error message.

Vim will warn you if you try to overwrite a file that has been changed
elsewhere. See timestamp .

backup E207 E506 E507 E508 E509 E510
If you write to an existing file (but do not append) while the 'backup',

editing.txt — 627

'writebackup' or 'patchmode' option is on, a backup of the original file is
made. The file is either copied or renamed (see 'backupcopy'). After the
file has been successfully written and when the 'writebackup' option is on and
the 'backup' option is off, the backup file is deleted. When the 'patchmode'
option is on the backup file may be renamed.

backup-table
'backup' 'writebackup' action

off off no backup made
off on backup current file, deleted afterwards (default)
on off delete old backup, backup current file
on on delete old backup, backup current file

When the 'backupskip' pattern matches with the name of the file which is
written, no backup file is made. The values of 'backup' and 'writebackup' are
ignored then.

When the 'backup' option is on, an old backup file (with the same name as the
new backup file) will be deleted. If 'backup' is not set, but 'writebackup'
is set, an existing backup file will not be deleted. The backup file that is
made while the file is being written will have a different name.

On some filesystems it's possible that in a crash you lose both the backup and
the newly written file (it might be there but contain bogus data). In that
case try recovery, because the swap file is synced to disk and might still be
there. :recover

The directories given with the 'backupdir' option are used to put the backup
file in. (default: same directory as the written file).

Whether the backup is a new file, which is a copy of the original file, or the
original file renamed depends on the 'backupcopy' option. See there for an
explanation of when the copy is made and when the file is renamed.

If the creation of a backup file fails, the write is not done. If you want
to write anyway add a '!' to the command.

write-permissions
When writing a new file the permissions are read-write. For unix the mask is
0o666 with additionally umask applied. When writing a file that was read Vim
will preserve the permissions, but clear the s-bit.

write-readonly
When the 'cpoptions' option contains 'W', Vim will refuse to overwrite a
readonly file. When 'W' is not present, ":w!" will overwrite a readonly file,
if the system allows it (the directory must be writable).

write-fail
If the writing of the new file fails, you have to be careful not to lose
your changes AND the original file. If there is no backup file and writing
the new file failed, you have already lost the original file! DON'T EXIT VIM
UNTIL YOU WRITE OUT THE FILE! If a backup was made, it is put back in place
of the original file (if possible). If you exit Vim, and lose the changes
you made, the original file will mostly still be there. If putting back the
original file fails, there will be an error message telling you that you
lost the original file.

DOS-format-write
If the 'fileformat' is "dos", <CR><NL> is used for <EOL>. This is default
for Win32. On other systems the message "[dos format]" is shown to remind you

editing.txt — 628

that an unusual <EOL> was used.
Unix-format-write

If the 'fileformat' is "unix", <NL> is used for <EOL>. On Win32 the message
"[unix format]" is shown.

Mac-format-write
If the 'fileformat' is "mac", <CR> is used for <EOL>. On non-Mac systems the
message "[mac format]" is shown.

See also file-formats and the 'fileformat' and 'fileformats' options.

ACL
ACL stands for Access Control List. It is an advanced way to control access
rights for a file. It is used on new MS-Windows and Unix systems, but only
when the filesystem supports it.

Vim attempts to preserve the ACL info when writing a file. The backup file
will get the ACL info of the original file.

The ACL info is also used to check if a file is read-only (when opening the
file).

xattr E1506 E1508 E1509
xattr stands for Extended Attributes. It is an advanced way to save metadata
alongside the file in the filesystem. It depends on the actual filesystem
being used and Vim supports it only on a Linux system.

Vim attempts to preserve the extended attribute info when writing a file.
The backup file will get the extended attribute of the original file.

read-only-share
When MS-Windows shares a drive on the network it can be marked as read-only.
This means that even if the file read-only attribute is absent, and the ACL
settings on NT network shared drives allow writing to the file, you can still
not write to the file. Vim on Win32 platforms will detect read-only network
drives and will mark the file as read-only. You will not be able to override
it with :write .

write-device
When the file name is actually a device name, Vim will not make a backup (that
would be impossible). You need to use "!", since the device already exists.
Example for Unix:

:w! /dev/lpt0
and for MS-Windows:

:w! lpt0
For Unix a device is detected when the name doesn't refer to a normal file or
a directory. A fifo or named pipe also looks like a device to Vim.
For MS-Windows the device is detected by its name:

AUX
CON
CLOCK$
NUL
PRN
COMn n=1,2,3... etc
LPTn n=1,2,3... etc

The names can be in upper- or lowercase.

==
5. Writing and quitting write-quit

:q :quit
:q[uit] Quit the current window. Quit Vim if this is the last

edit-window . This fails when changes have been made
and Vim refuses to abandon the current buffer, and

editing.txt — 629

when the last file in the argument list has not been
edited.
If there are other tab pages and quitting the last
window in the current tab page the current tab page is
closed tab-page .
Triggers the QuitPre autocommand event.
See CTRL-W_q for quitting another window.

:conf[irm] q[uit] Quit, but give prompt when changes have been made, or
the last file in the argument list has not been
edited. See :confirm and 'confirm'.

:q[uit]! Quit without writing, also when the current buffer has
changes. The buffer is unloaded, also when it has
'hidden' set.
If this is the last window and there is a modified
hidden buffer, the current buffer is abandoned and the
first changed hidden buffer becomes the current
buffer.
Use ":qall!" to exit always.

:cq[uit] Quit always, without writing, and return an error
code. See :cq . Used for Manx's QuickFix mode (see
quickfix).

:wq
:wq [++opt] Write the current file and close the window. If this

was the last edit-window Vim quits.
Writing fails when the file is read-only or the buffer
does not have a name. Quitting fails when the last
file in the argument list has not been edited.

:wq! [++opt] Write the current file and close the window. If this
was the last edit-window Vim quits. Writing fails
when the current buffer does not have a name.

:wq [++opt] {file} Write to {file} and close the window. If this was the
last edit-window Vim quits. Quitting fails when the
last file in the argument list has not been edited.

:wq! [++opt] {file} Write to {file} and close the current window. Quit
Vim if this was the last edit-window .

:[range]wq[!] [++opt] [file]
Same as above, but only write the lines in [range].

:x :xit
:[range]x[it][!] [++opt] [file]

Like ":wq", but write only when changes have been
made.
When 'hidden' is set and there are more windows, the
current buffer becomes hidden, after writing the file.
This command is not supported in Vim9 script,
because it is too easily confused with a variable
name.

:exi :exit
:[range]exi[t][!] [++opt] [file]

Same as :xit.

editing.txt — 630

ZZ
ZZ Write current file, if modified, and close the current

window (same as ":x").
If there are several windows for the current file,
only the current window is closed.

ZQ
ZQ Quit without checking for changes (same as ":q!").

MULTIPLE WINDOWS AND BUFFERS window-exit

:qa :qall
:qa[ll] Exit Vim, unless there are some buffers which have been

changed. (Use ":bmod" to go to the next modified buffer).
When 'autowriteall' is set all changed buffers will be
written, like :wqall .

:conf[irm] qa[ll]
Exit Vim. Bring up a prompt when some buffers have been
changed. See :confirm .

:qa[ll]! Exit Vim. Any changes to buffers are lost.
Also see :cquit , it does the same but exits with a non-zero
value.

:quita :quitall
:quita[ll][!] Same as ":qall".

:wqa[ll] [++opt] :wqa :wqall :xa :xall
:xa[ll] Write all changed buffers and exit Vim. If there are buffers

without a file name, which are readonly or which cannot be
written for another reason, Vim will not quit.

:conf[irm] wqa[ll] [++opt]
:conf[irm] xa[ll]

Write all changed buffers and exit Vim. Bring up a prompt
when some buffers are readonly or cannot be written for
another reason. See :confirm .

:wqa[ll]! [++opt]
:xa[ll]! Write all changed buffers, even the ones that are readonly,

and exit Vim. If there are buffers without a file name or
which cannot be written for another reason, or there is a
terminal with a running job, Vim will not quit.

==
6. Dialogs edit-dialogs

:confirm :conf
:conf[irm] {command} Execute {command}, and use a dialog when an

operation has to be confirmed. Can be used on the
:q , :qa and :w commands (the latter to override

a read-only setting), and any other command that can
fail in such a way, such as :only , :buffer ,
:bdelete , etc.

Examples:
:confirm w foo

Will ask for confirmation when "foo" already exists.

editing.txt — 631

:confirm q
Will ask for confirmation when there are changes.

:confirm qa
If any modified, unsaved buffers exist, you will be prompted to save
or abandon each one. There are also choices to "save all" or "abandon
all".

If you want to always use ":confirm", set the 'confirm' option.

:browse :bro E338
:bro[wse] {command} Open a file selection dialog for an argument to

{command}. At present this works for :e , :w ,
:wall , :wq , :wqall , :x , :xall , :exit ,
:view , :sview , :r , :saveas , :sp , :mkexrc ,
:mkvimrc , :mksession , :mkview , :split ,
:vsplit , :tabe , :tabnew , :cfile , :cgetfile ,
:caddfile , :lfile , :lgetfile , :laddfile ,
:diffsplit , :diffpatch , :open , :pedit ,
:redir , :source , :update , :visual , :vsplit ,

and :qall if 'confirm' is set.
{only in Win32, Motif, GTK and Mac GUI, in
console `browse edit` works if the FileExplorer
autocommand group exists}
When ":browse" is not possible you get an error
message. If the +browse feature is missing or the
{command} doesn't support browsing, the {command} is
executed without a dialog.
":browse set" works like :options .
See also :oldfiles for ":browse oldfiles".

The syntax is best shown via some examples:
:browse e $vim/foo

Open the browser in the $vim/foo directory, and edit the
file chosen.

:browse e
Open the browser in the directory specified with 'browsedir',
and edit the file chosen.

:browse w
Open the browser in the directory of the current buffer,
with the current buffer filename as default, and save the
buffer under the filename chosen.

:browse w C:/bar
Open the browser in the C:/bar directory, with the current
buffer filename as default, and save the buffer under the
filename chosen.

Also see the 'browsedir' option.
For versions of Vim where browsing is not supported, the command is executed
unmodified.

browsefilter
For MS-Windows and GTK, you can modify the filters that are used in the browse
dialog. By setting the g:browsefilter or b:browsefilter variables, you can
change the filters globally or locally to the buffer. The variable is set to
a string in the format "{filter label}\t{pattern};{pattern}\n" where {filter
label} is the text that appears in the "Files of Type" comboBox, and {pattern}
is the pattern which filters the filenames. Several patterns can be given,
separated by ';'.

For Motif the same format is used, but only the very first pattern is actually
used (Motif only offers one pattern, but you can edit it).

editing.txt — 632

For example, to have only Vim files in the dialog, you could use the following
command:

let g:browsefilter = "Vim Scripts\t*.vim\nVim Startup Files\t*vimrc\n"

You can override the filter setting on a per-buffer basis by setting the
b:browsefilter variable. You would most likely set b:browsefilter in a
filetype plugin, so that the browse dialog would contain entries related to
the type of file you are currently editing. Disadvantage: This makes it
difficult to start editing a file of a different type. To overcome this, you
may want to add "All Files (*.*)\t*\n" as the final filter on Windows or "All
Files (*)\t*\n" on other platforms, so that the user can still access any
desired file.

To avoid setting browsefilter when Vim does not actually support it, you can
use has("browsefilter"):

if has("browsefilter")
let g:browsefilter = "whatever"

endif

==
7. The current directory current-directory

You can use the :cd , :tcd and :lcd commands to change to another
directory, so you will not have to type that directory name in front of the
file names. It also makes a difference for executing external commands, e.g.
":!ls".

Changing directory fails when the current buffer is modified, the '.' flag is
present in 'cpoptions' and "!" is not used in the command.

:cd E747 E472
:cd[!] On non-Unix systems when 'cdhome' is off: Print the

current directory name.
Otherwise: Change the current directory to the home
directory. Clear any window-local directory.
Use :pwd to print the current directory on all
systems.

:cd[!] {path} Change the current directory to {path}.
If {path} is relative, it is searched for in the
directories listed in 'cdpath' .
Clear any window-local directory.
Does not change the meaning of an already opened file,
because its full path name is remembered. Files from
the arglist may change though!
On MS-Windows this also changes the active drive.
To change to the directory of the current file:

:cd %:h

:cd- E186
:cd[!] - Change to the previous current directory (before the

previous ":cd {path}" command).

:chd :chdir
:chd[ir][!] [path] Same as :cd .

:tc :tcd

editing.txt — 633

:tc[d][!] {path} Like :cd , but only set the directory for the current
tab. The current window will also use this directory.
The current directory is not changed for windows in
other tabs and for windows in the current tab that
have their own window-local directory.

:tcd-
:tc[d][!] - Change to the previous current directory, before the

last ":tcd {path}" command.

:tch :tchdir
:tch[dir][!] Same as :tcd .

:lc :lcd
:lc[d][!] {path} Like :cd , but only set the current directory when

the cursor is in the current window. The current
directory for other windows is not changed, switching
to another window will stop using {path}.

:lcd-
:lcd[!] - Change to the previous current directory, before the

last ":lcd {path}" command.

:lch :lchdir
:lch[dir][!] Same as :lcd .

:pw :pwd E187
:pw[d] Print the current directory name.

Also see getcwd() .
:pwd-verbose

When 'verbose' is non-zero, :pwd will also display
what scope the current directory was set. Example:

" Set by :cd
:verbose pwd
[global] /path/to/current

" Set by :lcd
:verbose pwd
[window] /path/to/current

" Set by :tcd
:verbose pwd
[tabpage] /path/to/current

So long as no :lcd or :tcd command has been used, all windows share the
same current directory. Using a command to jump to another window doesn't
change anything for the current directory.

When a :lcd command has been used for a window, the specified directory
becomes the current directory for that window. Windows where the :lcd
command has not been used stick to the global or tab-local current directory.
When jumping to another window the current directory is changed to the last
specified local current directory. If none was specified, the global or
tab-local current directory is used. When creating a new window it inherits
the local directory of the current window.

When a :tcd command has been used for a tab page, the specified directory
becomes the current directory for the current tab page and the current window.
The current directory of other tab pages is not affected. When jumping to

editing.txt — 634

another tab page, the current directory is changed to the last specified local
directory for that tab page. If the current tab has no local current directory
the global current directory is used.

When a :cd command is used, the current window and tab page will lose the
local current directory and will use the global current directory from now on.

After using :cd the full path name will be used for reading and writing
files. On some networked file systems this may cause problems. The result of
using the full path name is that the file names currently in use will remain
referring to the same file. Example: If you have a file a:test and a
directory a:vim the commands ":e test" ":cd vim" ":w" will overwrite the file
a:test and not write a:vim/test. But if you do ":w test" the file a:vim/test
will be written, because you gave a new file name and did not refer to a
filename before the ":cd".

==
8. Editing binary files edit-binary

Although Vim was made to edit text files, it is possible to edit binary
files. The -b Vim argument (b for binary) makes Vim do file I/O in binary
mode, and sets some options for editing binary files ('binary' on, 'textwidth'
to 0, 'modeline' off, 'expandtab' off). Setting the 'binary' option has the
same effect. Don't forget to do this before reading the file.

There are a few things to remember when editing binary files:
- When editing executable files the number of bytes must not change.

Use only the "R" or "r" command to change text. Do not delete characters
with "x" or by backspacing.

- Set the 'textwidth' option to 0. Otherwise lines will unexpectedly be
split in two.

- When there are not many <EOL>s, the lines will become very long. If you
want to edit a line that does not fit on the screen reset the 'wrap' option.
Horizontal scrolling is used then. If a line becomes too long (more than
about 32767 bytes on the Amiga, much more on 32-bit and 64-bit systems, see
limits) you cannot edit that line. The line will be split when reading
the file. It is also possible that you get an "out of memory" error when
reading the file.

- Make sure the 'binary' option is set BEFORE loading the
file. Otherwise both <CR><NL> and <NL> are considered to end a line
and when the file is written the <NL> will be replaced with <CR><NL>.

- <Nul> characters are shown on the screen as ^@. You can enter them with
"CTRL-V CTRL-@" or "CTRL-V 000"

- To insert a <NL> character in the file split a line. When writing the
buffer to a file a <NL> will be written for the <EOL>.

- Vim normally appends an <EOL> at the end of the file if there is none.
Setting the 'binary' option prevents this. If you want to add the final
<EOL>, set the 'endofline' option. You can also read the value of this
option to see if there was an <EOL> for the last line (you cannot see this
in the text).

==
9. Encryption encryption

Vim is able to write files encrypted, and read them back. The encrypted text
cannot be read without the right key.
{only available when compiled with the |+cryptv| feature} E833

The text in the swap file and the undo file is also encrypted. E843
However, this is done block-by-block and may reduce the time needed to crack a

editing.txt — 635

password. You can disable the swap file, but then a crash will cause you to
lose your work. The undo file can be disabled without too much disadvantage.

:set noundofile
:noswapfile edit secrets

Note: The text in memory is not encrypted. A system administrator may be able
to see your text while you are editing it. When filtering text with
":!filter" or using ":w !command" the text is also not encrypted, this may
reveal it to others. The 'viminfo' file is not encrypted.

You could do this to edit very secret text:
:set noundofile viminfo=
:noswapfile edit secrets.txt

Keep in mind that without a swap file you risk losing your work in the event
of a crash or a power failure.

WARNING: If you make a typo when entering the key and then write the file and
exit, the text will be lost!

The normal way to work with encryption, is to use the ":X" command, which will
ask you to enter a key. A following write command will use that key to
encrypt the file. If you later edit the same file, Vim will ask you to enter
a key. If you type the same key as that was used for writing, the text will
be readable again. If you use a wrong key, it will be a mess.

:X
:X Prompt for an encryption key. The typing is done without showing the

actual text, so that someone looking at the display won't see it.
The typed key is stored in the 'key' option, which is used to encrypt
the file when it is written.
The file will remain unchanged until you write it. Note that commands
such as `:xit` and `ZZ` will NOT write the file unless there are other
changes.
See also -x .

The value of the 'key' options is used when text is written. When the option
is not empty, the written file will be encrypted, using the value as the
encryption key. A magic number is prepended, so that Vim can recognize that
the file is encrypted.

To disable the encryption, reset the 'key' option to an empty value:
:set key=

You can use the 'cryptmethod' option to select the type of encryption, use one
of these:

:setlocal cm=zip " weak method, backwards compatible
:setlocal cm=blowfish " method with flaws, do not use
:setlocal cm=blowfish2 " medium strong method
:setlocal cm=xchacha20v2 " medium strong method using libsodium

Do this before writing the file. When reading an encrypted file it will be
set automatically to the method used when that file was written. You can
change 'cryptmethod' before writing that file to change the method.

To set the default method, used for new files, use this in your vimrc
file:

set cm=blowfish2
Using "blowfish2" is highly recommended. Only use another method if you
must use an older Vim version that does not support it.

editing.txt — 636

The message given for reading and writing a file will show "[crypted]" when
using zip, "[blowfish]" when using blowfish, etc.

When writing an undo file, the same key and method will be used for the text
in the undo file. persistent-undo .

To test for blowfish support you can use these conditions:
has('crypt-blowfish')
has('crypt-blowfish2')

This works since Vim 7.4.1099 while blowfish support was added earlier.
Thus the condition failing doesn't mean blowfish is not supported. You can
test for blowfish with:

v:version >= 703
And for blowfish2 with:

v:version > 704 || (v:version == 704 && has('patch401'))
If you are sure Vim includes patch 7.4.237 a simpler check is:

has('patch-7.4.401')

E817 E818 E819 E820
When encryption does not work properly, you would be able to write your text
to a file and never be able to read it back. Therefore a test is performed to
check if the encryption works as expected. If you get one of these errors
don't write the file encrypted! You need to rebuild the Vim binary to fix
this.

E831 This is an internal error, "cannot happen". If you can reproduce it,
please report to the developers.

When reading a file that has been encrypted and the 'key' option is not empty,
it will be used for decryption. If the value is empty, you will be prompted
to enter the key. If you don't enter a key, or you enter the wrong key, the
file is edited without being decrypted. There is no warning about using the
wrong key (this makes brute force methods to find the key more difficult).

If want to start reading a file that uses a different key, set the 'key'
option to an empty string, so that Vim will prompt for a new one. Don't use
the ":set" command to enter the value, other people can read the command over
your shoulder.

Since the value of the 'key' option is supposed to be a secret, its value can
never be viewed. You should not set this option in a vimrc file.

An encrypted file can be recognized by the "file" command, if you add these
lines to "/etc/magic", "/usr/share/misc/magic" or wherever your system has the
"magic" file:

0 string VimCrypt~ Vim encrypted file
>9 string 01 - "zip" cryptmethod
>9 string 02 - "blowfish" cryptmethod
>9 string 03 - "blowfish2" cryptmethod

Notes:
- Encryption is not possible when doing conversion with 'charconvert'.
- Text you copy or delete goes to the numbered registers. The registers can

be saved in the .viminfo file, where they could be read. Change your
'viminfo' option to be safe.

- Someone can type commands in Vim when you walk away for a moment, he should
not be able to get the key.

- If you make a typing mistake when entering the key, you might not be able to
get your text back!

- If you type the key with a ":set key=value" command, it can be kept in the

editing.txt — 637

history, showing the 'key' value in a viminfo file.
- There is never 100% safety. The encryption in Vim has not been tested for

robustness.
- The algorithm used for 'cryptmethod' "zip" is breakable. A 4 character key

in about one hour, a 6 character key in one day (on a Pentium 133 PC). This
requires that you know some text that must appear in the file. An expert
can break it for any key. When the text has been decrypted, this also means
that the key can be revealed, and other files encrypted with the same key
can be decrypted.

- Pkzip uses the same encryption as 'cryptmethod' "zip", and US Govt has no
objection to its export. Pkzip's public file APPNOTE.TXT describes this
algorithm in detail.

- The implementation of 'cryptmethod' "blowfish" has a flaw. It is possible
to crack the first 64 bytes of a file and in some circumstances more of the
file. Use of it is not recommended, but it's still the strongest method
supported by Vim 7.3 and 7.4. The "zip" method is even weaker.

- Vim originates from the Netherlands. That is where the sources come from.
Thus the encryption code is not exported from the USA.

==
10. Timestamps timestamp timestamps

Vim remembers the modification timestamp, mode and size of a file when you
begin editing it. This is used to avoid that you have two different versions
of the same file (without you knowing this).

After a shell command is run (:!cmd suspend :read! K) timestamps,
file modes and file sizes are compared for all buffers in a window. Vim will
run any associated FileChangedShell autocommands or display a warning for
any files that have changed. In the GUI this happens when Vim regains input
focus.

E321 E462
If you want to automatically reload a file when it has been changed outside of
Vim, set the 'autoread' option. This doesn't work at the moment you write the
file though, only when the file wasn't changed inside of Vim.

ignore-timestamp
If you do not want to be asked or automatically reload the file, you can use
this:

set buftype=nofile

Or, when starting gvim from a shell:
gvim file.log -c "set buftype=nofile"

Note that if a FileChangedShell autocommand is defined you will not get a
warning message or prompt. The autocommand is expected to handle this.

There is no warning for a directory (e.g., with netrw-browse). But you do
get warned if you started editing a new file and it was created as a directory
later.

When Vim notices the timestamp of a file has changed, and the file is being
edited in a buffer but has not changed, Vim checks if the contents of the file
is equal. This is done by reading the file again (into a hidden buffer, which
is immediately deleted again) and comparing the text. If the text is equal,
you will get no warning.

If you don't get warned often enough you can use the following command.

:checkt :checktime

editing.txt — 638

:checkt[ime] Check if any buffers were changed outside of Vim.
This checks and warns you if you would end up with two
versions of a file.
If this is called from an autocommand, a ":global"
command or is not typed the actual check is postponed
until a moment the side effects (reloading the file)
would be harmless.
Each loaded buffer is checked for its associated file
being changed. If the file was changed Vim will take
action. If there are no changes in the buffer and
'autoread' is set, the buffer is reloaded. Otherwise,
you are offered the choice of reloading the file. If
the file was deleted you get an error message.
If the file previously didn't exist you get a warning
if it exists now.
Once a file has been checked the timestamp is reset,
you will not be warned again.
Syntax highlighting, marks, diff status,
'fileencoding', 'fileformat' and 'binary' options
are not changed. See v:fcs_choice to reload these
too (for example, if a code formatting tools has
changed the file).

:[N]checkt[ime] {filename}
:[N]checkt[ime] [N]

Check the timestamp of a specific buffer. The buffer
may be specified by name, number or with a pattern.

E813 E814
Vim will reload the buffer if you chose to. If a window is visible that
contains this buffer, the reloading will happen in the context of this window.
Otherwise a special window is used, so that most autocommands will work. You
can't close this window. A few other restrictions apply. Best is to make
sure nothing happens outside of the current buffer. E.g., setting
window-local options may end up in the wrong window. Splitting the window,
doing something there and closing it should be OK (if there are no side
effects from other autocommands). Closing unrelated windows and buffers will
get you into trouble.

Before writing a file the timestamp is checked. If it has changed, Vim will
ask if you really want to overwrite the file:

WARNING: The file has been changed since reading it!!!
Do you really want to write to it (y/n)?

If you hit 'y' Vim will continue writing the file. If you hit 'n' the write is
aborted. If you used ":wq" or "ZZ" Vim will not exit, you will get another
chance to write the file.

The message would normally mean that somebody has written to the file after
the edit session started. This could be another person, in which case you
probably want to check if your changes to the file and the changes from the
other person should be merged. Write the file under another name and check for
differences (the "diff" program can be used for this).

It is also possible that you modified the file yourself, from another edit
session or with another command (e.g., a filter command). Then you will know
which version of the file you want to keep.

editing.txt — 639

The accuracy of the time check depends on the filesystem. On Unix it is
usually sub-second. With old file systems and on MS-Windows it is normally one
second. Use `has('nanotime')` to check if sub-second time stamp checks are
available.

There is one situation where you get the message while there is nothing wrong:
On a Win32 system on the day daylight saving time starts. There is something
in the Win32 libraries that confuses Vim about the hour time difference. The
problem goes away the next day.

==
11. File Searching file-searching

The file searching is currently used for the 'path', 'cdpath' and 'tags'
options, for finddir() and findfile() . Other commands use wildcards
which is slightly different.

There are three different types of searching:

1) Downward search: starstar
Downward search uses the wildcards '*', '**' and possibly others
supported by your operating system. '*' and '**' are handled inside Vim,
so they work on all operating systems. Note that "**" only acts as a
special wildcard when it is at the start of a name.

The usage of '*' is quite simple: It matches 0 or more characters. In a
search pattern this would be ".*". Note that the "." is not used for file
searching.

'**' is more sophisticated:
- It ONLY matches directories.
- It matches up to 30 directories deep by default, so you can use it to

search an entire directory tree
- The maximum number of levels matched can be given by appending a number
to '**'.
Thus '/usr/**2' can match:

/usr
/usr/include
/usr/include/sys
/usr/include/g++
/usr/lib
/usr/lib/X11
....

It does NOT match '/usr/include/g++/std' as this would be three
levels.
The allowed number range is 0 ('**0' is removed) to 100
If the given number is smaller than 0 it defaults to 30, if it's
bigger than 100 then 100 is used. The system also has a limit on the
path length, usually 256 or 1024 bytes.

- '**' can only be at the end of the path or be followed by a path
separator or by a number and a path separator.

You can combine '*' and '**' in any order:
/usr/**/sys/*
/usr/*tory/sys/**
/usr/**2/sys/*

2) Upward search:
Here you can give a directory and then search the directory tree upward for
a file. You could give stop-directories to limit the upward search. The

editing.txt — 640

stop-directories are appended to the path (for the 'path' option) or to
the filename (for the 'tags' option) with a ';'. If you want several
stop-directories separate them with ';'. If you want no stop-directory
("search upward till the root directory) just use ';'.

/usr/include/sys;/usr
will search in:

/usr/include/sys
/usr/include
/usr

If you use a relative path the upward search is started in Vim's current
directory or in the directory of the current file (if the relative path
starts with './' and 'd' is not included in 'cpoptions').

If Vim's current path is /u/user_x/work/release and you do
:set path=include;/u/user_x

and then search for a file with gf the file is searched in:
/u/user_x/work/release/include
/u/user_x/work/include
/u/user_x/include

Note: If your 'path' setting includes a non-existing directory, Vim will
skip the non-existing directory, and also does not search in the parent of
the non-existing directory if upwards searching is used.

3) Combined up/downward search:
If Vim's current path is /u/user_x/work/release and you do

set path=**;/u/user_x
and then search for a file with gf the file is searched in:

/u/user_x/work/release/**
/u/user_x/work/**
/u/user_x/**

BE CAREFUL! This might consume a lot of time, as the search of
'/u/user_x/**' includes '/u/user_x/work/**' and
'/u/user_x/work/release/**'. So '/u/user_x/work/release/**' is searched
three times and '/u/user_x/work/**' is searched twice.

In the above example you might want to set path to:
:set path=**,/u/user_x/**

This searches:
/u/user_x/work/release/**
/u/user_x/**

This searches the same directories, but in a different order.

Note that completion for ":find", ":sfind", and ":tabfind" commands do not
currently work with 'path' items that contain a URL or use the double star
with depth limiter (/usr/**2) or upward search (;) notations.

editing.txt — 641

editing.txt — 642

motion.txt For Vim version 9.1. Last change: 2023 Dec 27

VIM REFERENCE MANUAL by Bram Moolenaar

Cursor motions cursor-motions navigation

These commands move the cursor position. If the new position is off of the
screen, the screen is scrolled to show the cursor (see also 'scrolljump' and
'scrolloff' options).

1. Motions and operators operator
2. Left-right motions left-right-motions
3. Up-down motions up-down-motions
4. Word motions word-motions
5. Text object motions object-motions
6. Text object selection object-select
7. Marks mark-motions
8. Jumps jump-motions
9. Various motions various-motions

General remarks:

If you want to know where you are in the file use the "CTRL-G" command
CTRL-G or the "g CTRL-G" command g_CTRL-G . If you set the 'ruler' option,

the cursor position is continuously shown in the status line (which slows down
Vim a little).

Experienced users prefer the hjkl keys because they are always right under
their fingers. Beginners often prefer the arrow keys, because they do not
know what the hjkl keys do. The mnemonic value of hjkl is clear from looking
at the keyboard. Think of j as an arrow pointing downwards.

The 'virtualedit' option can be set to make it possible to move the cursor to
positions where there is no character or within a multi-column character (like
a tab).

==
1. Motions and operators operator

The motion commands can be used after an operator command, to have the command
operate on the text that was moved over. That is the text between the cursor
position before and after the motion. Operators are generally used to delete
or change text. The following operators are available:

c c change
d d delete
y y yank into register (does not change the text)
~ ~ swap case (only if 'tildeop' is set)
g~ g~ swap case
gu gu make lowercase
gU gU make uppercase
! ! filter through an external program
= = filter through 'equalprg' or C-indenting if empty
gq gq text formatting
gw gw text formatting with no cursor movement
g? g? ROT13 encoding
> > shift right
< < shift left

motion.txt — 643

zf zf define a fold
g@ g@ call function set with the 'operatorfunc' option

motion-count-multiplied
If the motion includes a count and the operator also had a count before it,
the two counts are multiplied. For example: "2d3w" deletes six words.

operator-doubled
When doubling the operator it operates on a line. When using a count, before
or after the first character, that many lines are operated upon. Thus `3dd`
deletes three lines. A count before and after the first character is
multiplied, thus `2y3y` yanks six lines.

After applying the operator the cursor is mostly left at the start of the text
that was operated upon. For example, "yfe" doesn't move the cursor, but "yFe"
moves the cursor leftwards to the "e" where the yank started.

linewise characterwise
The operator either affects whole lines, or the characters between the start
and end position. Generally, motions that move between lines affect lines
(are linewise), and motions that move within a line affect characters (are
characterwise). However, there are some exceptions.

exclusive inclusive
A character motion is either inclusive or exclusive. When inclusive, the
start and end position of the motion are included in the operation. When
exclusive, the last character towards the end of the buffer is not included.
Linewise motions always include the start and end position.

Which motions are linewise, inclusive or exclusive is mentioned with the
command. There are however, two general exceptions:
1. If the motion is exclusive and the end of the motion is in column 1, the

end of the motion is moved to the end of the previous line and the motion
becomes inclusive. Example: "}" moves to the first line after a paragraph,
but "d}" will not include that line.

exclusive-linewise
2. If the motion is exclusive, the end of the motion is in column 1 and the

start of the motion was at or before the first non-blank in the line, the
motion becomes linewise. Example: If a paragraph begins with some blanks
and you do "d}" while standing on the first non-blank, all the lines of
the paragraph are deleted, including the blanks. If you do a put now, the
deleted lines will be inserted below the cursor position.

Note that when the operator is pending (the operator command is typed, but the
motion isn't yet), a special set of mappings can be used. See :omap .

Instead of first giving the operator and then a motion you can use Visual
mode: mark the start of the text with "v", move the cursor to the end of the
text that is to be affected and then hit the operator. The text between the
start and the cursor position is highlighted, so you can see what text will
be operated upon. This allows much more freedom, but requires more key
strokes and has limited redo functionality. See the chapter on Visual mode
Visual-mode .

You can use a ":" command for a motion. For example "d:call FindEnd()".
But this can't be repeated with "." if the command is more than one line.
This can be repeated:

d:call search("f")<CR>
This cannot be repeated:

d:if 1<CR>
call search("f")<CR>

endif<CR>

motion.txt — 644

Note that when using ":" any motion becomes characterwise exclusive.

forced-motion
FORCING A MOTION TO BE LINEWISE, CHARACTERWISE OR BLOCKWISE

When a motion is not of the type you would like to use, you can force another
type by using "v", "V" or CTRL-V just after the operator.
Example:

dj
deletes two lines

dvj
deletes from the cursor position until the character below the cursor

d<C-V>j
deletes the character under the cursor and the character below the cursor.

Be careful with forcing a linewise movement to be used characterwise or
blockwise, the column may not always be defined.

o_v
v When used after an operator, before the motion command: Force

the operator to work characterwise, also when the motion is
linewise. If the motion was linewise, it will become
exclusive .
If the motion already was characterwise, toggle
inclusive/exclusive. This can be used to make an exclusive
motion inclusive and an inclusive motion exclusive.

o_V
V When used after an operator, before the motion command: Force

the operator to work linewise, also when the motion is
characterwise.

o_CTRL-V
CTRL-V When used after an operator, before the motion command: Force

the operator to work blockwise. This works like Visual block
mode selection, with the corners defined by the cursor
position before and after the motion.

==
2. Left-right motions left-right-motions

These commands move the cursor to the specified column in the current line.
They stop at the first column and at the end of the line, except "$", which
may move to one of the next lines. See 'whichwrap' option to make some of the
commands move across line boundaries.

h or h
<Left> or <Left>
CTRL-H or CTRL-H <BS>
<BS> [count] characters to the left. exclusive motion.

Note: If you prefer <BS> to delete a character, use
the mapping:

:map CTRL-V<BS> X
(to enter "CTRL-V<BS>" type the CTRL-V key, followed
by the <BS> key)
See :fixdel if the <BS> key does not do what you
want.

l or l
<Right> or <Right> <Space>

motion.txt — 645

<Space> [count] characters to the right. exclusive motion.
See the 'whichwrap' option for adjusting the behavior
at end of line

0
0 To the first character of the line. exclusive

motion.

<Home> <kHome>
<Home> To the first character of the line. exclusive

motion. When moving up or down next, stay in same
TEXT column (if possible). Most other commands stay
in the same SCREEN column. <Home> works like "1|",
which differs from "0" when the line starts with a
<Tab>.

^
^ To the first non-blank character of the line.

exclusive motion. Any count is ignored.

$ <End> <kEnd>
$ or <End> To the end of the line. When a count is given also go

[count - 1] lines downward, or as far is possible.
inclusive motion. If a count of 2 or larger is

given and the cursor is on the last line, that is an
error and the cursor doesn't move.
In Visual mode the cursor goes to just after the last
character in the line.
When 'virtualedit' is active, "$" may move the cursor
back from past the end of the line to the last
character in the line.

g_
g_ To the last non-blank character of the line and

[count - 1] lines downward inclusive .

g0 g<Home>
g0 or g<Home> When lines wrap ('wrap' on): To the first character of

the screen line. exclusive motion. Differs from
"0" when a line is wider than the screen.
When lines don't wrap ('wrap' off): To the leftmost
character of the current line that is on the screen.
Differs from "0" when the first character of the line
is not on the screen.

g^
g^ When lines wrap ('wrap' on): To the first non-blank

character of the screen line. exclusive motion.
Differs from "^" when a line is wider than the screen.
When lines don't wrap ('wrap' off): To the leftmost
non-blank character of the current line that is on the
screen. Differs from "^" when the first non-blank
character of the line is not on the screen.

gm
gm Like "g0", but half a screenwidth to the right (or as

much as possible).

gM
gM Like "g0", but to halfway the text of the line.

motion.txt — 646

With a count: to this percentage of text in the line.
Thus "10gM" is near the start of the text and "90gM"
is near the end of the text.

g$
g$ When lines wrap ('wrap' on): To the last character of

the screen line and [count - 1] screen lines downward
inclusive . Differs from "$" when a line is wider

than the screen.
When lines don't wrap ('wrap' off): To the rightmost
character of the current line that is visible on the
screen. Differs from "$" when the last character of
the line is not on the screen or when a count is used.
Additionally, vertical movements keep the column,
instead of going to the end of the line.
When 'virtualedit' is enabled moves to the end of the
screen line.

g<End> g<kEnd>
g<End> Like g$ but to the last non-blank character

instead of the last character.

bar
| To screen column [count] in the current line.

exclusive motion. Ceci n'est pas une pipe.

f
f{char} To [count]'th occurrence of {char} to the right. The

cursor is placed on {char} inclusive .
{char} can be entered as a digraph digraph-arg .
When 'encoding' is set to Unicode, composing
characters may be used, see utf-8-char-arg .
:lmap mappings apply to {char}. The CTRL-^ command

in Insert mode can be used to switch this on/off
i_CTRL-^ .

F
F{char} To the [count]'th occurrence of {char} to the left.

The cursor is placed on {char} exclusive .
{char} can be entered like with the f command.

t
t{char} Till before [count]'th occurrence of {char} to the

right. The cursor is placed on the character left of
{char} inclusive .
{char} can be entered like with the f command.

T
T{char} Till after [count]'th occurrence of {char} to the

left. The cursor is placed on the character right of
{char} exclusive .
{char} can be entered like with the f command.

;
; Repeat latest f, t, F or T [count] times. See cpo-;

,
, Repeat latest f, t, F or T in opposite direction

[count] times. See also cpo-;

motion.txt — 647

==
3. Up-down motions up-down-motions

k or k
<Up> or <Up> CTRL-P
CTRL-P [count] lines upward linewise .

j or j
<Down> or <Down>
CTRL-J or CTRL-J
<NL> or <NL> CTRL-N
CTRL-N [count] lines downward linewise .

gk or gk g<Up>
g<Up> [count] display lines upward. exclusive motion.

Differs from 'k' when lines wrap, and when used with
an operator, because it's not linewise.

gj or gj g<Down>
g<Down> [count] display lines downward. exclusive motion.

Differs from 'j' when lines wrap, and when used with
an operator, because it's not linewise.

-
- <minus> [count] lines upward, on the first non-blank

character linewise .

+ or +
CTRL-M or CTRL-M <CR>
<CR> [count] lines downward, on the first non-blank

character linewise .

_
_ <underscore> [count] - 1 lines downward, on the first non-blank

character linewise .

G
G Goto line [count], default last line, on the first

non-blank character linewise . If 'startofline' not
set, keep the same column.
G is one of the jump-motions .

<C-End>
<C-End> Goto line [count], default last line, on the last

character inclusive .

<C-Home> or gg <C-Home>
gg Goto line [count], default first line, on the first

non-blank character linewise . If 'startofline' not
set, keep the same column.

:[range]
:[range] Set the cursor on the last line number in [range].

[range] can also be just one line number, e.g., ":1"
or ":'m".
In contrast with G this command does not modify the
jumplist .

N%
{count}% Go to {count} percentage in the file, on the first

non-blank in the line linewise . To compute the new

motion.txt — 648

line number this formula is used:
({count} * number-of-lines + 99) / 100

See also 'startofline' option.

:[range]go[to] [count] :go :goto go
[count]go Go to [count] byte in the buffer. Default [count] is

one, start of the file. When giving [range], the
last number in it used as the byte count. End-of-line
characters are counted depending on the current
'fileformat' setting.
Also see the line2byte() function, and the 'o'
option in 'statusline'.
{not available when compiled without the
+byte_offset feature}

These commands move to the specified line. They stop when reaching the first
or the last line. The first two commands put the cursor in the same column
(if possible) as it was after the last command that changed the column,
except after the "$" command, then the cursor will be put on the last
character of the line.

If "k", "-" or CTRL-P is used with a [count] and there are less than [count]
lines above the cursor and the 'cpo' option includes the "-" flag it is an
error. cpo-- .

==
4. Word motions word-motions

<S-Right> or <S-Right> w
w [count] words forward. exclusive motion.

<C-Right> or <C-Right> W
W [count] WORDS forward. exclusive motion.

If <C-Right> does not work, check out
arrow_modifiers .

e
e Forward to the end of word [count] inclusive .

Does not stop in an empty line.

E
E Forward to the end of WORD [count] inclusive .

Does not stop in an empty line.

<S-Left> or <S-Left> b
b [count] words backward. exclusive motion.

<C-Left> or <C-Left> B
B [count] WORDS backward. exclusive motion.

If <C-Left> does not work, check out
arrow_modifiers .

ge
ge Backward to the end of word [count] inclusive .

gE
gE Backward to the end of WORD [count] inclusive .

These commands move over words or WORDS.
word

motion.txt — 649

A word consists of a sequence of letters, digits and underscores, or a
sequence of other non-blank characters, separated with white space (spaces,
tabs, <EOL>). This can be changed with the 'iskeyword' option. An empty line
is also considered to be a word.

WORD
A WORD consists of a sequence of non-blank characters, separated with white
space. An empty line is also considered to be a WORD.

A sequence of folded lines is counted for one word of a single character.
"w" and "W", "e" and "E" move to the start/end of the first word or WORD after
a range of folded lines. "b" and "B" move to the start of the first word or
WORD before the fold.

Special case: "cw" and "cW" are treated like "ce" and "cE" if the cursor is
on a non-blank. This is because "cw" is interpreted as change-word, and a
word does not include the following white space.

Another special case: When using the "w" motion in combination with an
operator and the last word moved over is at the end of a line, the end of
that word becomes the end of the operated text, not the first word in the
next line.

The original Vi implementation of "e" is buggy. For example, the "e" command
will stop on the first character of a line if the previous line was empty.
But when you use "2e" this does not happen. In Vim "ee" and "2e" are the
same, which is more logical. However, this causes a small incompatibility
between Vi and Vim.

==
5. Text object motions object-motions

(
([count] sentence s backward. exclusive motion.

)
) [count] sentence s forward. exclusive motion.

{
{ [count] paragraph s backward. exclusive motion.

}
} [count] paragraph s forward. exclusive motion.

]]
]] [count] section s forward or to the next '{' in the

first column. When used after an operator, then also
stops below a '}' in the first column. exclusive
Note that exclusive-linewise often applies.

][
][[count] section s forward or to the next '}' in the

first column. exclusive
Note that exclusive-linewise often applies.

[[
[[[count] section s backward or to the previous '{' in

the first column. exclusive
Note that exclusive-linewise often applies.

[]

motion.txt — 650

[] [count] section s backward or to the previous '}' in
the first column. exclusive
Note that exclusive-linewise often applies.

These commands move over three kinds of text objects.

sentence
A sentence is defined as ending at a '.', '!' or '?' followed by either the
end of a line, or by a space or tab. Any number of closing ')', ']', '"'
and ''' characters may appear after the '.', '!' or '?' before the spaces,
tabs or end of line. A paragraph and section boundary is also a sentence
boundary.
If the 'J' flag is present in 'cpoptions', at least two spaces have to
follow the punctuation mark; <Tab>s are not recognized as white space.
The definition of a sentence cannot be changed.

paragraph
A paragraph begins after each empty line, and also at each of a set of
paragraph macros, specified by the pairs of characters in the 'paragraphs'
option. The default is "IPLPPPQPP TPHPLIPpLpItpplpipbp", which corresponds to
the macros ".IP", ".LP", etc. (These are nroff macros, so the dot must be in
the first column). A section boundary is also a paragraph boundary.
Note that a blank line (only containing white space) is NOT a paragraph
boundary.
Also note that this does not include a '{' or '}' in the first column. When
the '{' flag is in 'cpoptions' then '{' in the first column is used as a
paragraph boundary posix .

section
A section begins after a form-feed (<C-L>) in the first column and at each of
a set of section macros, specified by the pairs of characters in the
'sections' option. The default is "SHNHH HUnhsh", which defines a section to
start at the nroff macros ".SH", ".NH", ".H", ".HU", ".nh" and ".sh".

The "]]" and "[[" commands stop at the '{' in the first column. This is
useful to find the start of a function in a C program. To search for a '}' in
the first column, the end of a C function, use "][" (forward) or "[]"
(backward). Note that the first character of the command determines the
search direction.

If your '{' or '}' are not in the first column, and you would like to use "[["
and "]]" anyway, try these mappings:

:map [[?{<CR>w99[{
:map][/}<CR>b99]}
:map]] j0[[%/{<CR>
:map [] k$][%?}<CR>

[type these literally, see <>]

==
6. Text object selection object-select text-objects

v_a v_i

This is a series of commands that can only be used while in Visual mode or
after an operator. The commands that start with "a" select "a"n object
including white space, the commands starting with "i" select an "inner" object
without white space, or just the white space. Thus the "inner" commands
always select less text than the "a" commands.

Also see `gn` and `gN`, operating on the last search pattern.

motion.txt — 651

v_aw aw
aw "a word", select [count] words (see word).

Leading or trailing white space is included, but not
counted.
When used in Visual linewise mode "aw" switches to
Visual characterwise mode.

v_iw iw
iw "inner word", select [count] words (see word).

White space between words is counted too.
When used in Visual linewise mode "iw" switches to
Visual characterwise mode.

v_aW aW
aW "a WORD", select [count] WORDs (see WORD).

Leading or trailing white space is included, but not
counted.
When used in Visual linewise mode "aW" switches to
Visual characterwise mode.

v_iW iW
iW "inner WORD", select [count] WORDs (see WORD).

White space between words is counted too.
When used in Visual linewise mode "iW" switches to
Visual characterwise mode.

v_as as
as "a sentence", select [count] sentences (see

sentence).
When used in Visual mode it is made characterwise.

v_is is
is "inner sentence", select [count] sentences (see

sentence).
When used in Visual mode it is made characterwise.

v_ap ap
ap "a paragraph", select [count] paragraphs (see

paragraph).
Exception: a blank line (only containing white space)
is also a paragraph boundary.
When used in Visual mode it is made linewise.

v_ip ip
ip "inner paragraph", select [count] paragraphs (see

paragraph).
Exception: a blank line (only containing white space)
is also a paragraph boundary.
When used in Visual mode it is made linewise.

a] v_a] v_a[a] a[
a["a [] block", select [count] '[' ']' blocks. This

goes backwards to the [count] unclosed '[', and finds
the matching ']'. The enclosed text is selected,
including the '[' and ']'. The cpo-M option flag
is used to handle escaped brackets.
When used in Visual mode it is made characterwise.

i] v_i] v_i[i] i[
i["inner [] block", select [count] '[' ']' blocks. This

motion.txt — 652

goes backwards to the [count] unclosed '[', and finds
the matching ']'. The enclosed text is selected,
excluding the '[' and ']'. It's an error to select an
empty inner block like "[]". The cpo-M option flag
is used to handle escaped brackets.
When used in Visual mode it is made characterwise.

a) v_a) a) a(
a(vab v_ab v_a(ab
ab "a block", select [count] blocks, from "[count] [(" to

the matching ')', including the '(' and ')' (see
[(). Does not include white space outside of the

parenthesis. The cpo-M option flag is used to
handle escaped parenthesis.
When used in Visual mode it is made characterwise.

i) v_i) i) i(
i(vib v_ib v_i(ib
ib "inner block", select [count] blocks, from "[count] [("

to the matching ')', excluding the '(' and ')' (see
[(). If the cursor is not inside a () block, then

find the next "(". It's an error to select an empty
inner block like "()". The cpo-M option flag
is used to handle escaped parenthesis.
When used in Visual mode it is made characterwise.

a> v_a> v_a< a> a<
a< "a <> block", select [count] <> blocks, from the

[count]'th unmatched '<' backwards to the matching
'>', including the '<' and '>'. The cpo-M option flag
is used to handle escaped '<' and '>'.
When used in Visual mode it is made characterwise.

i> v_i> v_i< i> i<
i< "inner <> block", select [count] <> blocks, from

the [count]'th unmatched '<' backwards to the matching
'>', excluding the '<' and '>'. It's an error to
select an empty inner block like "<>". The cpo-M
option flag is used to handle escaped '<' and '>'.
When used in Visual mode it is made characterwise.

v_at at
at "a tag block", select [count] tag blocks, from the

[count]'th unmatched "<aaa>" backwards to the matching
"</aaa>", including the "<aaa>" and "</aaa>".
See tag-blocks about the details.
When used in Visual mode it is made characterwise.
Only available when compiled with the +eval feature.

v_it it
it "inner tag block", select [count] tag blocks, from the

[count]'th unmatched "<aaa>" backwards to the matching
"</aaa>", excluding the "<aaa>" and "</aaa>".
See tag-blocks about the details.
When used in Visual mode it is made characterwise.

a} v_a} a} a{
a{ v_aB v_a{ aB
aB "a Block", select [count] Blocks, from "[count] [{" to

the matching '}', including the '{' and '}' (see

motion.txt — 653

[{). The cpo-M option flag is used to handle
escaped braces.
When used in Visual mode it is made characterwise.

i} v_i} i} i{
i{ v_iB v_i{ iB
iB "inner Block", select [count] Blocks, from "[count] [{"

to the matching '}', excluding the '{' and '}' (see
[{). It's an error to select an empty inner block

like "{}". The cpo-M option flag is used to handle
escaped braces.
When used in Visual mode it is made characterwise.

a" v_aquote aquote
a' v_a' a'
a` v_a` a`

"a quoted string". Selects the text from the previous
quote until the next quote. The 'quoteescape' option
is used to skip escaped quotes.
Only works within one line.
When the cursor starts on a quote, Vim will figure out
which quote pairs form a string by searching from the
start of the line.
Any trailing white space is included, unless there is
none, then leading white space is included.
When used in Visual mode it is made characterwise.
Repeating this object in Visual mode another string is
included. A count is currently not used.

i" v_iquote iquote
i' v_i' i'
i` v_i` i`

Like a", a' and a`, but exclude the quotes and
repeating won't extend the Visual selection.
Special case: With a count of 2 the quotes are
included, but no extra white space as with a"/a'/a`.

o_object-select
When used after an operator:
For non-block objects:

For the "a" commands: The operator applies to the object and the white
space after the object. If there is no white space after the object
or when the cursor was in the white space before the object, the white
space before the object is included.
For the "inner" commands: If the cursor was on the object, the
operator applies to the object. If the cursor was on white space, the
operator applies to the white space.

For a block object:
The operator applies to the block where the cursor is in, or the block
on which the cursor is on one of the braces. For the "inner" commands
the surrounding braces are excluded. For the "a" commands, the braces
are included.

v_object-select
When used in Visual mode:
When start and end of the Visual area are the same (just after typing "v"):

One object is selected, the same as for using an operator.
When start and end of the Visual area are not the same:

For non-block objects the area is extended by one object or the white
space up to the next object, or both for the "a" objects. The

motion.txt — 654

direction in which this happens depends on which side of the Visual
area the cursor is. For the block objects the block is extended one
level outwards.

For illustration, here is a list of delete commands, grouped from small to big
objects. Note that for a single character and a whole line the existing vi
movement commands are used.

"dl" delete character (alias: "x") dl
"diw" delete inner word diw
"daw" delete a word daw
"diW" delete inner WORD (see WORD) diW
"daW" delete a WORD (see WORD) daW
"dgn" delete the next search pattern match dgn
"dd" delete one line dd
"dis" delete inner sentence dis
"das" delete a sentence das
"dib" delete inner '(' ')' block dib
"dab" delete a '(' ')' block dab
"dip" delete inner paragraph dip
"dap" delete a paragraph dap
"diB" delete inner '{' '}' block diB
"daB" delete a '{' '}' block daB

Note the difference between using a movement command and an object. The
movement command operates from here (cursor position) to where the movement
takes us. When using an object the whole object is operated upon, no matter
where on the object the cursor is. For example, compare "dw" and "daw": "dw"
deletes from the cursor position to the start of the next word, "daw" deletes
the word under the cursor and the space after or before it.

Tag blocks tag-blocks

For the "it" and "at" text objects an attempt is done to select blocks between
matching tags for HTML and XML. But since these are not completely compatible
there are a few restrictions.

The normal method is to select a <tag> until the matching </tag>. For "at"
the tags are included, for "it" they are excluded. But when "it" is repeated
the tags will be included (otherwise nothing would change). Also, "it" used
on a tag block with no contents will select the leading tag.

"<aaa/>" items are skipped. Case is ignored, also for XML where case does
matter.

In HTML it is possible to have a tag like
 or <meta ...> without a
matching end tag. These are ignored.

The text objects are tolerant about mistakes. Stray end tags are ignored.

==
7. Marks mark-motions E20 E78

Jumping to a mark can be done in two ways:
1. With ` (backtick): The cursor is positioned at the specified location

and the motion is exclusive .
2. With ' (single quote): The cursor is positioned on the first non-blank

character in the line of the specified location and
the motion is linewise.

motion.txt — 655

m mark Mark
m{a-zA-Z} Set mark {a-zA-Z} at cursor position (does not move

the cursor, this is not a motion command).

m' m`
m' or m` Set the previous context mark. This can be jumped to

with the "''" or "``" command (does not move the
cursor, this is not a motion command).

m[m]
m[or m] Set the '[or '] mark. Useful when an operator is

to be simulated by multiple commands. (does not move
the cursor, this is not a motion command).

m< m>
m< or m> Set the '< or '> mark. Useful to change what the

`gv` command selects. (does not move the cursor, this
is not a motion command).
Note that the Visual mode cannot be set, only the
start and end position.

:ma :mark E191
:[range]ma[rk] {a-zA-Z'}

Set mark {a-zA-Z'} at last line number in [range],
column 0. Default is cursor line.

:k
:[range]k{a-zA-Z'} Same as :mark, but the space before the mark name can

be omitted.
This command is not supported in Vim9 script,
because it is too easily confused with a variable
name.

' 'a ` `a
'{a-z} `{a-z} Jump to the mark {a-z} in the current buffer.

'A '0 `A `0
'{A-Z0-9} `{A-Z0-9} To the mark {A-Z0-9} in the file where it was set (not

a motion command when in another file).

g' g'a g` g`a
g'{mark} g`{mark}

Jump to the {mark}, but don't change the jumplist when
jumping within the current buffer. Example:

g`"
jumps to the last known position in a file. See
$VIMRUNTIME/vimrc_example.vim.
Also see :keepjumps .

:marks
:marks List all the current marks (not a motion command).

The '(, ') , '{ and '} marks are not listed.
The first column has number zero.

E283
:marks {arg} List the marks that are mentioned in {arg} (not a

motion command). For example:
:marks aB

to list marks 'a' and 'B'.

motion.txt — 656

:delm :delmarks
:delm[arks] {marks} Delete the specified marks. Marks that can be deleted

include A-Z and 0-9. You cannot delete the ' mark.
They can be specified by giving the list of mark
names, or with a range, separated with a dash. Spaces
are ignored. Examples:

:delmarks a deletes mark a
:delmarks a b 1 deletes marks a, b and 1
:delmarks Aa deletes marks A and a
:delmarks p-z deletes marks in the range p to z
:delmarks ^.[] deletes marks ^ . []
:delmarks \" deletes mark "

:delm[arks]! Delete all marks for the current buffer, but not marks
A-Z or 0-9.

A mark is not visible in any way. It is just a position in the file that is
remembered. Do not confuse marks with named registers, they are totally
unrelated.

'a - 'z lowercase marks, valid within one file
'A - 'Z uppercase marks, also called file marks, valid between files
'0 - '9 numbered marks, set from .viminfo file

Lowercase marks 'a to 'z are remembered as long as the file remains in the
buffer list. If you remove the file from the buffer list, all its marks are
lost. If you delete a line that contains a mark, that mark is erased.

Lowercase marks can be used in combination with operators. For example: "d't"
deletes the lines from the cursor position to mark 't'. Hint: Use mark 't' for
Top, 'b' for Bottom, etc.. Lowercase marks are restored when using undo and
redo.

Uppercase marks 'A to 'Z include the file name. You can use them to jump from
file to file. You can only use an uppercase mark with an operator if the mark
is in the current file. The line number of the mark remains correct, even if
you insert/delete lines or edit another file for a moment. When the 'viminfo'
option is not empty, uppercase marks are kept in the .viminfo file. See
viminfo-file-marks .

Numbered marks '0 to '9 are quite different. They can not be set directly.
They are only present when using a viminfo file viminfo-file . Basically '0
is the location of the cursor when you last exited Vim, '1 the last but one
time, etc. Use the "r" flag in 'viminfo' to specify files for which no
Numbered mark should be stored. See viminfo-file-marks .

'[`[
'[`[To the first character of the previously changed

or yanked text.

'] `]
'] `] To the last character of the previously changed or

yanked text.

After executing an operator the Cursor is put at the beginning of the text
that was operated upon. After a put command ("p" or "P") the cursor is
sometimes placed at the first inserted line and sometimes on the last inserted
character. The four commands above put the cursor at either end. Example:
After yanking 10 lines you want to go to the last one of them: "10Y']". After

motion.txt — 657

inserting several lines with the "p" command you want to jump to the lowest
inserted line: "p']". This also works for text that has been inserted.

Note: After deleting text, the start and end positions are the same, except
when using blockwise Visual mode. These commands do not work when no change
was made yet in the current file.

'< `<
'< `< To the first line or character of the last selected

Visual area in the current buffer. For block mode it
may also be the last character in the first line (to
be able to define the block).

'> `>
'> `> To the last line or character of the last selected

Visual area in the current buffer. For block mode it
may also be the first character of the last line (to
be able to define the block). Note that 'selection'
applies, the position may be just after the Visual
area.

'' ``
'' `` To the position before the latest jump, or where the

last "m'" or "m`" command was given. Not set when the
:keepjumps command modifier was used.

Also see restore-position .

'quote `quote
'" `" To the cursor position when last exiting the current

buffer. Defaults to the first character of the first
line. See last-position-jump for how to use this
for each opened file.
Only one position is remembered per buffer, not one
for each window. As long as the buffer is visible in
a window the position won't be changed.

'^ `^
'^ `^ To the position where the cursor was the last time

when Insert mode was stopped. This is used by the
gi command. Not set when the :keepjumps command

modifier was used.

'. `.
'. `. To the position where the last change was made. The

position is at or near where the change started.
Sometimes a command is executed as several changes,
then the position can be near the end of what the
command changed. For example when inserting a word,
the position will be on the last character.
To jump to older changes use g; .

'(`(
'(`(To the start of the current sentence, like the (

command.

') `)
') `) To the end of the current sentence, like the)

command.

'{ `{

motion.txt — 658

'{ `{ To the start of the current paragraph, like the {
command.

'} `}
'} `} To the end of the current paragraph, like the }

command.

These commands are not marks themselves, but jump to a mark:

]'
]' [count] times to next line with a lowercase mark below

the cursor, on the first non-blank character in the
line.

]`
]` [count] times to lowercase mark after the cursor.

['
[' [count] times to previous line with a lowercase mark

before the cursor, on the first non-blank character in
the line.

[`
[` [count] times to lowercase mark before the cursor.

:loc[kmarks] {command} :loc :lock :lockmarks
Execute {command} without adjusting marks. This is
useful when changing text in a way that the line count
will be the same when the change has completed.
WARNING: When the line count does change, marks below
the change will keep their line number, thus move to
another text line.
These items will not be adjusted for deleted/inserted
lines:
- lower case letter marks 'a - 'z
- upper case letter marks 'A - 'Z
- numbered marks '0 - '9
- last insert position '^
- last change position '.
- last affected text area '[and ']
- the Visual area '< and '>
- line numbers in placed signs
- line numbers in quickfix positions
- positions in the jumplist
- positions in the tagstack
These items will still be adjusted:
- previous context mark ''
- the cursor position
- the view of a window on a buffer
- folds
- diffs

:kee[pmarks] {command} :kee :keep :keepmarks
Currently only has effect for the filter command
:range! :

- When the number of lines after filtering is equal to
or larger than before, all marks are kept at the
same line number.

- When the number of lines decreases, the marks in the

motion.txt — 659

lines that disappeared are deleted.
In any case the marks below the filtered text have
their line numbers adjusted, thus stick to the text,
as usual.
When the 'R' flag is missing from 'cpoptions' this has
the same effect as using ":keepmarks".

:keepj :keepjumps
:keepj[umps] {command}

Moving around in {command} does not change the '' ,
'. and '^ marks, the jumplist or the
changelist .

Useful when making a change or inserting text
automatically and the user doesn't want to go to this
position. E.g., when updating a "Last change"
timestamp in the first line:

:let lnum = line(".")
:keepjumps normal gg
:call SetLastChange()
:keepjumps exe "normal " .. lnum .. "G"

Note that ":keepjumps" must be used for every command.
When invoking a function the commands in that function
can still change the jumplist. Also, for
":keepjumps exe 'command '" the "command" won't keep
jumps. Instead use: ":exe 'keepjumps command'"

==
8. Jumps jump-motions

A "jump" is a command that normally moves the cursor several lines away. If
you make the cursor "jump" the position of the cursor before the jump is
remembered. You can return to that position with the "''" and "``" commands,
unless the line containing that position was changed or deleted. The
following commands are "jump" commands: "'", "`", "G", "/", "?", "n", "N",
"%", "(", ")", "[[", "]]", "{", "}", ":s", ":tag", "L", "M", "H" and the
commands that start editing a new file.

CTRL-O
CTRL-O Go to [count] Older cursor position in jump list

(not a motion command).

<Tab> or CTRL-I <Tab>
CTRL-I Go to [count] newer cursor position in jump list

(not a motion command).

NOTE: In the GUI and in a terminal supporting
modifyOtherKeys , CTRL-I can be mapped separately

from <Tab>, on the condition that CTRL-I is
mapped before <Tab>, otherwise the mapping applies to
both.

:ju :jumps
:ju[mps] Print the jump list (not a motion command).

:cle :clearjumps
:cle[arjumps] Clear the jump list of the current window.

jumplist

motion.txt — 660

Jumps are remembered in a jump list. With the CTRL-O and CTRL-I command you
can go to cursor positions before older jumps, and back again. Thus you can
move up and down the list. There is a separate jump list for each window.
The maximum number of entries is fixed at 100.

For example, after three jump commands you have this jump list:

jump line col file/text
3 1 0 some text
2 70 0 another line
1 1154 23 end.

>

The "file/text" column shows the file name, or the text at the jump if it is
in the current file (an indent is removed and a long line is truncated to fit
in the window).

The marker ">" indicates the current position in the jumplist. It may not be
shown when filtering the :jumps command using :filter

You are currently in line 1167. If you then use the CTRL-O command, the
cursor is put in line 1154. This results in:

jump line col file/text
2 1 0 some text
1 70 0 another line

> 0 1154 23 end.
1 1167 0 foo bar

The pointer will be set at the last used jump position. The next CTRL-O
command will use the entry above it, the next CTRL-I command will use the
entry below it. If the pointer is below the last entry, this indicates that
you did not use a CTRL-I or CTRL-O before. In this case the CTRL-O command
will cause the cursor position to be added to the jump list, so you can get
back to the position before the CTRL-O. In this case this is line 1167.

With more CTRL-O commands you will go to lines 70 and 1. If you use CTRL-I
you can go back to 1154 and 1167 again. Note that the number in the "jump"
column indicates the count for the CTRL-O or CTRL-I command that takes you to
this position.

If you use a jump command, the current line number is inserted at the end of
the jump list. If the same line was already in the jump list, it is removed.
The result is that when repeating CTRL-O you will get back to old positions
only once.

When the :keepjumps command modifier is used, jumps are not stored in the
jumplist. Jumps are also not stored in other cases, e.g., in a :global
command. You can explicitly add a jump by setting the ' mark with "m'". Note
that calling setpos() does not do this.

After the CTRL-O command that got you into line 1154 you could give another
jump command (e.g., "G"). The jump list would then become:

jump line col file/text
4 1 0 some text
3 70 0 another line
2 1167 0 foo bar
1 1154 23 end.

>

motion.txt — 661

The line numbers will be adjusted for deleted and inserted lines. This fails
if you stop editing a file without writing, like with ":n!".

When you split a window, the jumplist will be copied to the new window.

If you have included the ' item in the 'viminfo' option the jumplist will be
stored in the viminfo file and restored when starting Vim.

jumplist-stack
When 'jumpoptions' option includes "stack", the jumplist behaves like the tag
stack. When jumping to a new location from the middle of the jumplist, the
locations after the current position will be discarded. With this option set
you can move through a tree of jump locations. When going back up a branch and
then down another branch, CTRL-O still takes you further up the tree.

Given a jumplist like the following in which CTRL-O has been used to move back
three times to location X:

jump line col file/text
2 1260 8 mark.c <-- location X-2
1 685 0 eval.c <-- location X-1

> 0 462 36 eval.c <-- location X
1 479 39 eval.c
2 213 2 mark.c
3 181 0 mark.c

jumping to (new) location Y results in the locations after the current
locations being removed:

jump line col file/text
3 1260 8 mark.c <-- location X-2
2 685 0 eval.c <-- location X-1
1 462 36 eval.c <-- location X

>

Then, when yet another location Z is jumped to, the new location Y appears
directly after location X in the jumplist and location X remains in the same
position relative to the locations (X-1, X-2, etc., ...) that had been before
it prior to the original jump from X to Y:

jump line col file/text
4 1260 8 mark.c <-- location X-2
3 685 0 eval.c <-- location X-1
2 462 36 eval.c <-- location X
1 100 0 buffer.c <-- location Y

>

CHANGE LIST JUMPS changelist change-list-jumps E664

When making a change the cursor position is remembered. One position is
remembered for every change that can be undone, unless it is close to a
previous change. Two commands can be used to jump to positions of changes,
also those that have been undone:

g; E662
g; Go to [count] older position in change list.

If [count] is larger than the number of older change
positions go to the oldest change.
If there is no older change an error message is given.

motion.txt — 662

(not a motion command)

g, E663
g, Go to [count] newer position in change list.

Just like g; but in the opposite direction.
(not a motion command)

When using a count you jump as far back or forward as possible. Thus you can
use "999g;" to go to the first change for which the position is still
remembered. The number of entries in the change list is fixed and is the same
as for the jumplist .

When two undo-able changes are in the same line and at a column position less
than 'textwidth' apart only the last one is remembered. This avoids that a
sequence of small changes in a line, for example "xxxxx", adds many positions
to the change list. When 'textwidth' is zero 'wrapmargin' is used. When that
also isn't set a fixed number of 79 is used. Detail: For the computations
bytes are used, not characters, to avoid a speed penalty (this only matters
for multibyte encodings).

Note that when text has been inserted or deleted the cursor position might be
a bit different from the position of the change. Especially when lines have
been deleted.

When the `:keepjumps` command modifier is used the position of a change is not
remembered.

:changes
:changes Print the change list. A ">" character indicates the

current position. Just after a change it is below the
newest entry, indicating that `g;` takes you to the
newest entry position. The first column indicates the
count needed to take you to this position. Example:

change line col text
3 9 8 bla bla bla
2 11 57 foo is a bar
1 14 54 the latest changed line

>

The `3g;` command takes you to line 9. Then the
output of `:changes` is:

change line col text
> 0 9 8 bla bla bla

1 11 57 foo is a bar
2 14 54 the latest changed line

Now you can use "g," to go to line 11 and "2g," to go
to line 14.

==
9. Various motions various-motions

%
% Find the next item in this line after or under the

cursor and jump to its match. inclusive motion.
Items can be:
([{}]) parenthesis or (curly/square) brackets

(this can be changed with the

motion.txt — 663

'matchpairs' option)
/* */ start or end of C-style comment
#if, #ifdef, #else, #elif, #endif

C preprocessor conditionals (when the
cursor is on the # or no ([{
is following)

For other items the matchit plugin can be used, see
matchit-install . This plugin also helps to skip

matches in comments.

When 'cpoptions' contains "M" cpo-M backslashes
before parens and braces are ignored. Without "M" the
number of backslashes matters: an even number doesn't
match with an odd number. Thus in "(\))" and "\((
\)" the first and last parenthesis match.

When the '%' character is not present in 'cpoptions'
cpo-% , parens and braces inside double quotes are

ignored, unless the number of parens/braces in a line
is uneven and this line and the previous one does not
end in a backslash. '(', '{', '[', ']', '}' and ')'
are also ignored (parens and braces inside single
quotes). Note that this works fine for C, but not for
Perl, where single quotes are used for strings.

Nothing special is done for matches in comments. You
can either use the matchit plugin matchit-install or
put quotes around matches.

No count is allowed, {count}% jumps to a line {count}
percentage down the file N% . Using '%' on
#if/#else/#endif makes the movement linewise.

[(
[(Go to [count] previous unmatched '('.

exclusive motion.
[{

[{ Go to [count] previous unmatched '{'.
exclusive motion.

])
]) Go to [count] next unmatched ')'.

exclusive motion.
]}

]} Go to [count] next unmatched '}'.
exclusive motion.

The above four commands can be used to go to the start or end of the current
code block. It is like doing "%" on the '(', ')', '{' or '}' at the other
end of the code block, but you can do this from anywhere in the code block.
Very useful for C programs. Example: When standing on "case x:", "[{" will
bring you back to the switch statement.

]m
]m Go to [count] next start of a method (for Java or

similar structured language). When not before the
start of a method, jump to the start or end of the
class. exclusive motion.

]M
]M Go to [count] next end of a method (for Java or

similar structured language). When not before the end

motion.txt — 664

of a method, jump to the start or end of the class.
exclusive motion.

[m
[m Go to [count] previous start of a method (for Java or

similar structured language). When not after the
start of a method, jump to the start or end of the
class. When no '{' is found before the cursor this is
an error. exclusive motion.

[M
[M Go to [count] previous end of a method (for Java or

similar structured language). When not after the
end of a method, jump to the start or end of the
class. When no '}' is found before the cursor this is
an error. exclusive motion.

The above four commands assume that the file contains a class with methods.
The class definition is surrounded in '{' and '}'. Each method in the class
is also surrounded with '{' and '}'. This applies to the Java language. The
file looks like this:

// comment
class foo {

int method_one() {
body_one();

}
int method_two() {

body_two();
}

}

[To try this out copy the text and put it in a new buffer, the help text above
confuses the jump commands]

Starting with the cursor on "body_two()", using "[m" will jump to the '{' at
the start of "method_two()" (obviously this is much more useful when the
method is long!). Using "2[m" will jump to the start of "method_one()".
Using "3[m" will jump to the start of the class.

[#
[# Go to [count] previous unmatched "#if" or "#else".

exclusive motion.

]#
]# Go to [count] next unmatched "#else" or "#endif".

exclusive motion.

These two commands work in C programs that contain #if/#else/#endif
constructs. It brings you to the start or end of the #if/#else/#endif where
the current line is included. You can then use "%" to go to the matching line.

[star [/
[* or [/ Go to [count] previous start of a C comment "/*".

exclusive motion.

]star]/
]* or]/ Go to [count] next end of a C comment "*/".

exclusive motion.

H

motion.txt — 665

H To line [count] from top (Home) of window (default:
first line on the window) on the first non-blank
character linewise . See also 'startofline' option.
Cursor is adjusted for 'scrolloff' option, unless an
operator is pending, in which case the text may
scroll. E.g. "yH" yanks from the first visible line
until the cursor line (inclusive).

M
M To Middle line of window, on the first non-blank

character linewise . See also 'startofline' option.

L
L To line [count] from bottom of window (default: Last

line on the window) on the first non-blank character
linewise . See also 'startofline' option.

Cursor is adjusted for 'scrolloff' option, unless an
operator is pending, in which case the text may
scroll. E.g. "yL" yanks from the cursor to the last
visible line.

<LeftMouse> Moves to the position on the screen where the mouse
click is exclusive . See also <LeftMouse> . If the
position is in a status line, that window is made the
active window and the cursor is not moved.

motion.txt — 666

scroll.txt For Vim version 9.1. Last change: 2022 Oct 17

VIM REFERENCE MANUAL by Bram Moolenaar

Scrolling scrolling

These commands move the contents of the window. If the cursor position is
moved off of the window, the cursor is moved onto the window (with
'scrolloff' screen lines around it). A page is the number of lines in the
window minus two. The mnemonics for these commands may be a bit confusing.
Remember that the commands refer to moving the window (the part of the buffer
that you see) upwards or downwards in the buffer. When the window moves
upwards in the buffer, the text in the window moves downwards on your screen.

See section 03.7 of the user manual for an introduction.

1. Scrolling downwards scroll-down
2. Scrolling upwards scroll-up
3. Scrolling relative to cursor scroll-cursor
4. Scrolling horizontally scroll-horizontal
5. Scrolling synchronously scroll-binding
6. Scrolling with a mouse wheel scroll-mouse-wheel

==
1. Scrolling downwards scroll-down

The following commands move the edit window (the part of the buffer that you
see) downwards (this means that more lines downwards in the text buffer can be
seen):

CTRL-E
CTRL-E Scroll window [count] lines downwards in the buffer.

The text moves upwards on the screen.
Mnemonic: Extra lines.

CTRL-D
CTRL-D Scroll window Downwards in the buffer. The number of

lines comes from the 'scroll' option (default: half a
screen). If [count] given, first set 'scroll' option
to [count]. The cursor is moved the same number of
lines down in the file (if possible; when lines wrap
and when hitting the end of the file there may be a
difference). When the cursor is on the last line of
the buffer nothing happens and a beep is produced.
See also 'startofline' option.

<S-Down> or <S-Down> <kPageDown>
<PageDown> or <PageDown> CTRL-F
CTRL-F Scroll window [count] pages Forwards (downwards) in

the buffer. See also 'startofline' option.
When there is only one window the 'window' option
might be used.

z+
z+ Without [count]: Redraw with the line just below the

window at the top of the window. Put the cursor in
that line, at the first non-blank in the line.
With [count]: just like "z<CR>".

scroll.txt — 667

==
2. Scrolling upwards scroll-up

The following commands move the edit window (the part of the buffer that you
see) upwards (this means that more lines upwards in the text buffer can be
seen):

CTRL-Y
CTRL-Y Scroll window [count] lines upwards in the buffer.

The text moves downwards on the screen.
Note: When using the MS-Windows key bindings CTRL-Y is
remapped to redo.

CTRL-U
CTRL-U Scroll window Upwards in the buffer. The number of

lines comes from the 'scroll' option (default: half a
screen). If [count] given, first set the 'scroll'
option to [count]. The cursor is moved the same
number of lines up in the file (if possible; when
lines wrap and when hitting the end of the file there
may be a difference). When the cursor is on the first
line of the buffer nothing happens and a beep is
produced. See also 'startofline' option.

<S-Up> or <S-Up> <kPageUp>
<PageUp> or <PageUp> CTRL-B
CTRL-B Scroll window [count] pages Backwards (upwards) in the

buffer. See also 'startofline' option.
When there is only one window the 'window' option
might be used.

z^
z^ Without [count]: Redraw with the line just above the

window at the bottom of the window. Put the cursor in
that line, at the first non-blank in the line.
With [count]: First scroll the text to put the [count]
line at the bottom of the window, then redraw with the
line which is now at the top of the window at the
bottom of the window. Put the cursor in that line, at
the first non-blank in the line.

==
3. Scrolling relative to cursor scroll-cursor

The following commands reposition the edit window (the part of the buffer that
you see) while keeping the cursor on the same line. Note that the 'scrolloff'
option may cause context lines to show above and below the cursor.

z<CR>
z<CR> Redraw, line [count] at top of window (default

cursor line). Put cursor at first non-blank in the
line.

zt
zt Like "z<CR>", but leave the cursor in the same

column.

zN<CR>
z{height}<CR> Redraw, make window {height} lines tall. This is

scroll.txt — 668

useful to make the number of lines small when screen
updating is very slow. Cannot make the height more
than the physical screen height.

z.
z. Redraw, line [count] at center of window (default

cursor line). Put cursor at first non-blank in the
line.

zz
zz Like "z.", but leave the cursor in the same column.

Careful: If caps-lock is on, this command becomes
"ZZ": write buffer and exit!

z-
z- Redraw, line [count] at bottom of window (default

cursor line). Put cursor at first non-blank in the
line.

zb
zb Like "z-", but leave the cursor in the same column.

==
4. Scrolling horizontally scroll-horizontal

For the following four commands the cursor follows the screen. If the
character that the cursor is on is moved off the screen, the cursor is moved
to the closest character that is on the screen. The value of 'sidescroll' is
not used.

z<Right> or zl z<Right>
zl Move the view on the text [count] characters to the

right, thus scroll the text [count] characters to the
left. This only works when 'wrap' is off.

z<Left> or zh z<Left>
zh Move the view on the text [count] characters to the

left, thus scroll the text [count] characters to the
right. This only works when 'wrap' is off.

zL
zL Move the view on the text half a screenwidth to the

right, thus scroll the text half a screenwidth to the
left. This only works when 'wrap' is off.

zH
zH Move the view on the text half a screenwidth to the

left, thus scroll the text half a screenwidth to the
right. This only works when 'wrap' is off.

For the following two commands the cursor is not moved in the text, only the
text scrolls on the screen.

zs
zs Scroll the text horizontally to position the cursor

at the start (left side) of the screen. This only
works when 'wrap' is off.

ze
ze Scroll the text horizontally to position the cursor

scroll.txt — 669

at the end (right side) of the screen. This only
works when 'wrap' is off.

==
5. Scrolling synchronously scroll-binding

Occasionally, it is desirable to bind two or more windows together such that
when one window is scrolled, the other windows are also scrolled. In Vim,
windows can be given this behavior by setting the (window-specific)
'scrollbind' option. When a window that has 'scrollbind' set is scrolled, all
other 'scrollbind' windows are scrolled the same amount, if possible. The
behavior of 'scrollbind' can be modified by the 'scrollopt' option.

When using the scrollbars or the mouse wheel, the binding only happens when
scrolling the window with focus (where the cursor is). You can use this to
avoid scroll-binding for a moment without resetting options.

When a window also has the 'diff' option set, the scroll-binding uses the
differences between the two buffers to synchronize the position precisely.
Otherwise the following method is used.

scrollbind-relative
Each 'scrollbind' window keeps track of its "relative offset", which can be
thought of as the difference between the current window's vertical scroll
position and the other window's vertical scroll position. When one of the
'scrollbind' windows is asked to vertically scroll past the beginning or end
limit of its text, the window no longer scrolls, but remembers how far past
the limit it wishes to be. The window keeps this information so that it can
maintain the same relative offset, regardless of its being asked to scroll
past its buffer's limits.

However, if a 'scrollbind' window that has a relative offset that is past its
buffer's limits is given the cursor focus, the other 'scrollbind' windows must
jump to a location where the current window's relative offset is valid. This
behavior can be changed by clearing the "jump" flag from the 'scrollopt'
option.

syncbind :syncbind :sync
:syncbind Force all 'scrollbind' windows to have the same

relative offset. I.e., when any of the 'scrollbind'
windows is scrolled to the top of its buffer, all of
the 'scrollbind' windows will also be at the top of
their buffers.

scrollbind-quickadj
The 'scrollbind' flag is meaningful when using keyboard commands to vertically
scroll a window, and is also meaningful when using the vertical scrollbar or
the mouse wheel in the window which has the cursor focus. However, when using
the vertical scrollbar or the mouse wheel in a window which doesn't have the
cursor focus, 'scrollbind' is ignored.
This allows quick adjustment of the relative offset of 'scrollbind' windows.

==
6. Scrolling with a mouse wheel scroll-mouse-wheel

When your mouse has a scroll wheel, it should work with Vim in the GUI. How
it works depends on your system. It might also work in an xterm
xterm-mouse-wheel . By default only vertical scroll wheels are supported,

but some GUIs also support horizontal scroll wheels.

scroll.txt — 670

On MS-Windows, if the scroll action causes input focus -problems, see
intellimouse-wheel-problems .

For Win32 and the X11 GUIs (Motif and GTK) scrolling the wheel generates key
presses <ScrollWheelUp>, <ScrollWheelDown>, <ScrollWheelLeft> and
<ScrollWheelRight>. For example, if you push the scroll wheel upwards a
<ScrollWheelUp> key press is generated causing the window to scroll upwards
(while the text is actually moving downwards). The default action for these
keys are:

<ScrollWheelUp> scroll N lines up <ScrollWheelUp>
<S-ScrollWheelUp> scroll one page up <S-ScrollWheelUp>
<C-ScrollWheelUp> scroll one page up <C-ScrollWheelUp>
<ScrollWheelDown> scroll N lines down <ScrollWheelDown>
<S-ScrollWheelDown> scroll one page down <S-ScrollWheelDown>
<C-ScrollWheelDown> scroll one page down <C-ScrollWheelDown>
<ScrollWheelLeft> scroll N columns left <ScrollWheelLeft>
<S-ScrollWheelLeft> scroll one page left <S-ScrollWheelLeft>
<C-ScrollWheelLeft> scroll one page left <C-ScrollWheelLeft>
<ScrollWheelRight> scroll N columns right <ScrollWheelRight>
<S-ScrollWheelRight> scroll one page right <S-ScrollWheelRight>
<C-ScrollWheelRight> scroll one page right <C-ScrollWheelRight>

This should work in all modes, except when editing the command line.

The value of N depends on the system. By default Vim scrolls three lines when
moving vertically, and six columns when moving horizontally. On MS-Windows
the amount of lines and columns for each scroll action is taken from the
system-wide settings.

Note that horizontal scrolling only works if 'nowrap' is set. Also, unless
the "h" flag in 'guioptions' is set, the cursor moves to the longest visible
line if the cursor line is about to be scrolled off the screen (similarly to
how the horizontal scrollbar works).

You can modify the default behavior by mapping the keys. For example, to make
the scroll wheel move one line or half a page in Normal mode:

:map <ScrollWheelUp> <C-Y>
:map <S-ScrollWheelUp> <C-U>
:map <ScrollWheelDown> <C-E>
:map <S-ScrollWheelDown> <C-D>

You can also use Alt and Ctrl modifiers.

This only works when Vim gets the scroll wheel events, of course. You can
check if this works with the "xev" program.

mouse-scrolling-off
If you do not want the mouse to cause scrolling (e.g. because resting your
palm on the touchpad causes scroll events), you can disable that with:

:map <ScrollWheelDown> <Nop>
:map! <ScrollWheelDown> <Nop>
:map <ScrollWheelUp> <Nop>
:map! <ScrollWheelUp> <Nop>
:map <ScrollWheelLeft> <Nop>
:map! <ScrollWheelLeft> <Nop>
:map <ScrollWheelRight> <Nop>
:map! <ScrollWheelRight> <Nop>

When using XFree86, the /etc/XF86Config file should have the correct entry for
your mouse. For FreeBSD, this entry works for a Logitech scrollmouse:

Protocol "MouseMan"
Device "/dev/psm0"
ZAxisMapping 4 5

scroll.txt — 671

See the XFree86 documentation for information.

<MouseDown> <MouseUp>
The keys <MouseDown> and <MouseUp> have been deprecated. Use <ScrollWheelUp>
instead of <MouseDown> and use <ScrollWheelDown> instead of <MouseUp>.

xterm-mouse-wheel
To use the mouse wheel in a new xterm you only have to make the scroll wheel
work in your Xserver, as mentioned above.

To use the mouse wheel in an older xterm you must do this:
1. Make it work in your Xserver, as mentioned above.
2. Add translations for the xterm, so that the xterm will pass a scroll event

to Vim as an escape sequence.
3. Add mappings in Vim, to interpret the escape sequences as <ScrollWheelDown>

or <ScrollWheelUp> keys.

You can do the translations by adding this to your ~.Xdefaults file (or other
file where your X resources are kept):

XTerm*VT100.Translations: #override \n\
s<Btn4Down>: string("0x9b") string("[64~") \n\
s<Btn5Down>: string("0x9b") string("[65~") \n\
<Btn4Down>: string("0x9b") string("[62~") \n\
<Btn5Down>: string("0x9b") string("[63~") \n\
<Btn4Up>: \n\
<Btn5Up>:

Add these mappings to your vimrc file:
:map <M-Esc>[62~ <ScrollWheelUp>
:map! <M-Esc>[62~ <ScrollWheelUp>
:map <M-Esc>[63~ <ScrollWheelDown>
:map! <M-Esc>[63~ <ScrollWheelDown>
:map <M-Esc>[64~ <S-ScrollWheelUp>
:map! <M-Esc>[64~ <S-ScrollWheelUp>
:map <M-Esc>[65~ <S-ScrollWheelDown>
:map! <M-Esc>[65~ <S-ScrollWheelDown>

scroll.txt — 672

insert.txt For Vim version 9.1. Last change: 2024 Jan 04

VIM REFERENCE MANUAL by Bram Moolenaar

Insert Insert-mode
Inserting and replacing text mode-ins-repl

Most of this file is about Insert and Replace mode. At the end are a few
commands for inserting text in other ways.

An overview of the most often used commands can be found in chapter 24 of the
user manual usr_24.txt .

1. Special keys ins-special-keys
2. Special special keys ins-special-special
3. 'textwidth' and 'wrapmargin' options ins-textwidth
4. 'expandtab', 'smarttab' and 'softtabstop' options ins-expandtab
5. Replace mode Replace-mode
6. Virtual Replace mode Virtual-Replace-mode
7. Insert mode completion ins-completion
8. Insert mode commands inserting
9. Ex insert commands inserting-ex
10. Inserting a file inserting-file

Also see 'virtualedit', for moving the cursor to positions where there is no
character. Useful for editing a table.

==
1. Special keys ins-special-keys

In Insert and Replace mode, the following characters have a special meaning;
other characters are inserted directly. To insert one of these special
characters into the buffer, precede it with CTRL-V. To insert a <Nul>
character use "CTRL-V CTRL-@" or "CTRL-V 000". On some systems, you have to
use "CTRL-V 003" to insert a CTRL-C. Note: When CTRL-V is mapped you can
often use CTRL-Q instead i_CTRL-Q .

If you are working in a special language mode when inserting text, see the
'langmap' option, 'langmap' , on how to avoid switching this mode on and off
all the time.

If you have 'insertmode' set, <Esc> and a few other keys get another meaning.
See 'insertmode' .

char action

i_CTRL-[i_<Esc>
<Esc> or CTRL-[End insert or Replace mode, go back to Normal mode. Finish

abbreviation.
Note: If your <Esc> key is hard to hit on your keyboard, train
yourself to use CTRL-[.
If Esc doesn't work and you are using a Mac, try CTRL-Esc.
Or disable Listening under Accessibility preferences.

i_CTRL-C
CTRL-C Quit insert mode, go back to Normal mode. Do not check for

abbreviations. Does not trigger the InsertLeave autocommand
event.

insert.txt — 673

i_CTRL-@
CTRL-@ Insert previously inserted text and stop insert.

i_CTRL-A
CTRL-A Insert previously inserted text.

i_CTRL-H i_<BS> i_BS
<BS> or CTRL-H Delete the character before the cursor (see i_backspacing

about joining lines).
See :fixdel if your <BS> key does not do what you want.

i_ i_DEL
 Delete the character under the cursor. If the cursor is at

the end of the line, and the 'backspace' option includes
"eol", delete the <EOL>; the next line is appended after the
current one.
See :fixdel if your key does not do what you want.

i_CTRL-W
CTRL-W Delete the word before the cursor (see i_backspacing about

joining lines). See the section "word motions",
word-motions , for the definition of a word.

i_CTRL-U
CTRL-U Delete all entered characters before the cursor in the current

line. If there are no newly entered characters and
'backspace' is not empty, delete all characters before the
cursor in the current line.
If C-indenting is enabled the indent will be adjusted if the
line becomes blank.
See i_backspacing about joining lines.

i_CTRL-I i_<Tab> i_Tab
<Tab> or CTRL-I Insert a tab. If the 'expandtab' option is on, the

equivalent number of spaces is inserted (use CTRL-V <Tab> to
avoid the expansion; use CTRL-Q <Tab> if CTRL-V is mapped
i_CTRL-Q). See also the 'smarttab' option and
ins-expandtab .

i_CTRL-J i_<NL>
<NL> or CTRL-J Begin new line.

i_CTRL-M i_<CR>
<CR> or CTRL-M Begin new line.

i_CTRL-K
CTRL-K {char1} [char2]

Enter digraph (see digraphs). When {char1} is a special
key, the code for that key is inserted in <> form. For
example, the string "<S-Space>" can be entered by typing
<C-K><S-Space> (two keys). Neither char is considered for
mapping.

CTRL-N Find next keyword (see i_CTRL-N).
CTRL-P Find previous keyword (see i_CTRL-P).

CTRL-R {register} i_CTRL-R
Insert the contents of a register. Between typing CTRL-R and
the second character, '"' will be displayed to indicate that
you are expected to enter the name of a register.
The text is inserted as if you typed it, but mappings and
abbreviations are not used. If you have options like
'textwidth', 'formatoptions', or 'autoindent' set, this will
influence what will be inserted. This is different from what
happens with the "p" command and pasting with the mouse.
Special registers:

insert.txt — 674

'"' the unnamed register, containing the text of
the last delete or yank

'%' the current file name
'#' the alternate file name
'*' the clipboard contents (X11: primary selection)
'+' the clipboard contents
'/' the last search pattern
':' the last command-line
'.' the last inserted text

i_CTRL-R_-
'-' the last small (less than a line) delete

register. This is repeatable using . since
it remembers the register to put instead of
the literal text to insert.

i_CTRL-R_=
'=' the expression register: you are prompted to

enter an expression (see expression)
Note that 0x80 (128 decimal) is used for
special keys. E.g., you can use this to move
the cursor up:

CTRL-R ="\<Up>"
Use CTRL-R CTRL-R to insert text literally.
When the result is a List the items are used
as lines. They can have line breaks inside
too.
When the result is a Float it's automatically
converted to a String.
When append() or setline() is invoked the undo
sequence will be broken.

See registers about registers.

CTRL-R CTRL-R {register} i_CTRL-R_CTRL-R
Insert the contents of a register. Works like using a single
CTRL-R, but the text is inserted literally, not as if typed.
This differs when the register contains characters like <BS>.
Example, where register a contains "ab^Hc":

CTRL-R a results in "ac".
CTRL-R CTRL-R a results in "ab^Hc".

Options 'textwidth', 'formatoptions', etc. still apply. If
you also want to avoid these, use CTRL-R CTRL-O, see below.
The '.' register (last inserted text) is still inserted as
typed.
After this command, the '.' register contains the text from
the register as if it was inserted by typing it.

CTRL-R CTRL-O {register} i_CTRL-R_CTRL-O
Insert the contents of a register literally and don't
auto-indent. Does the same as pasting with the mouse
<MiddleMouse> . When the register is linewise this will
insert the text above the current line, like with `P`.
The '.' register (last inserted text) is still inserted as
typed.
After this command, the '.' register contains the command
typed and not the text. I.e., the literals "^R^O" and not the
text from the register.
Does not replace characters in Replace-mode !

CTRL-R CTRL-P {register} i_CTRL-R_CTRL-P
Insert the contents of a register literally and fix the
indent, like [<MiddleMouse> .

insert.txt — 675

The '.' register (last inserted text) is still inserted as
typed.
After this command, the '.' register contains the command
typed and not the text. I.e., the literals "^R^P" and not the
text from the register.
Does not replace characters in Replace-mode !

i_CTRL-T
CTRL-T Insert one shiftwidth of indent at the start of the current

line. The indent is always rounded to a 'shiftwidth' (this is
vi compatible).

i_CTRL-D
CTRL-D Delete one shiftwidth of indent at the start of the current

line. The indent is always rounded to a 'shiftwidth' (this is
vi compatible).

i_0_CTRL-D
0 CTRL-D Delete all indent in the current line.

i_^_CTRL-D
^ CTRL-D Delete all indent in the current line. The indent is

restored in the next line. This is useful when inserting a
label.

i_CTRL-V
CTRL-V Insert next non-digit literally. For special keys, the

terminal code is inserted. It's also possible to enter the
decimal, octal or hexadecimal value of a character
i_CTRL-V_digit .
The characters typed right after CTRL-V are not considered for
mapping.
Note: When CTRL-V is mapped (e.g., to paste text) you can
often use CTRL-Q instead i_CTRL-Q .
When modifyOtherKeys is enabled then special Escape sequence
is converted back to what it was without modifyOtherKeys ,
unless the Shift key is also pressed.

i_CTRL-Q
CTRL-Q Same as CTRL-V.

Note: Some terminal connections may eat CTRL-Q, it doesn't
work then. It does work in the GUI.

CTRL-SHIFT-V i_CTRL-SHIFT-V i_CTRL-SHIFT-Q
CTRL-SHIFT-Q Works just like CTRL-V, unless modifyOtherKeys is active,

then it inserts the Escape sequence for a key with modifiers.

CTRL-X Enter CTRL-X mode. This is a sub-mode where commands can
be given to complete words or scroll the window. See
i_CTRL-X and ins-completion .

i_CTRL-E
CTRL-E Insert the character which is below the cursor.

i_CTRL-Y
CTRL-Y Insert the character which is above the cursor.

Note that for CTRL-E and CTRL-Y 'textwidth' is not used, to be
able to copy characters from a long line.

i_CTRL-_
CTRL-_ Switch between languages, as follows:

- When in a rightleft window, revins and nohkmap are toggled,
since English will likely be inserted in this case.

insert.txt — 676

- When in a norightleft window, revins and hkmap are toggled,
since Hebrew will likely be inserted in this case.

CTRL-_ moves the cursor to the end of the typed text.

This command is only available when the 'allowrevins' option
is set.
Please refer to rileft.txt for more information about
right-to-left mode.
Only if compiled with the +rightleft feature.

i_CTRL-^
CTRL-^ Toggle the use of typing language characters.

When language :lmap mappings are defined:
- If 'iminsert' is 1 (langmap mappings used) it becomes 0 (no
langmap mappings used).

- If 'iminsert' has another value it becomes 1, thus langmap
mappings are enabled.

When no language mappings are defined:
- If 'iminsert' is 2 (Input Method used) it becomes 0 (no
Input Method used).

- If 'iminsert' has another value it becomes 2, thus the Input
Method is enabled.

When set to 1, the value of the "b:keymap_name" variable, the
'keymap' option or "<lang>" appears in the status line.
The language mappings are normally used to type characters
that are different from what the keyboard produces. The
'keymap' option can be used to install a whole number of them.

i_CTRL-]
CTRL-] Trigger abbreviation, without inserting a character.

i_<Insert>
<Insert> Toggle between Insert and Replace mode.

i_backspacing
The effect of the <BS>, CTRL-W, and CTRL-U depend on the 'backspace' option
(unless 'revins' is set). This is a comma-separated list of items:

item action
indent allow backspacing over autoindent
eol allow backspacing over end-of-line (join lines)
start allow backspacing over the start position of insert; CTRL-W and

CTRL-U stop once at the start position

When 'backspace' is empty, Vi compatible backspacing is used. You cannot
backspace over autoindent, before column 1 or before where insert started.

For backwards compatibility the values "0", "1", "2" and "3" are also allowed,
see 'backspace' .

If the 'backspace' option does contain "eol" and the cursor is in column 1
when one of the three keys is used, the current line is joined with the
previous line. This effectively deletes the <EOL> in front of the cursor.

i_CTRL-V_digit
With CTRL-V the decimal, octal or hexadecimal value of a character can be
entered directly. This way you can enter any character, except a line break
(<NL>, value 10). There are five ways to enter the character value:

insert.txt — 677

first char mode max nr of chars max value
(none) decimal 3 255
o or O octal 3 377 (255)
x or X hexadecimal 2 ff (255)
u hexadecimal 4 ffff (65535)
U hexadecimal 8 7fffffff (2147483647)

Normally you would type the maximum number of characters. Thus to enter a
space (value 32) you would type <C-V>032. You can omit the leading zero, in
which case the character typed after the number must be a non-digit. This
happens for the other modes as well: As soon as you type a character that is
invalid for the mode, the value before it will be used and the "invalid"
character is dealt with in the normal way.

If you enter a value of 10, it will end up in the file as a 0. The 10 is a
<NL>, which is used internally to represent the <Nul> character. When writing
the buffer to a file, the <NL> character is translated into <Nul>. The <NL>
character is written at the end of each line. Thus if you want to insert a
<NL> character in a file you will have to make a line break.
Also see 'fileformat'.

i_CTRL-X insert_expand
CTRL-X enters a sub-mode where several commands can be used. Most of these
commands do keyword completion; see ins-completion .

Two commands can be used to scroll the window up or down, without exiting
insert mode:

i_CTRL-X_CTRL-E
CTRL-X CTRL-E scroll window one line up.

When doing completion look here: complete_CTRL-E

i_CTRL-X_CTRL-Y
CTRL-X CTRL-Y scroll window one line down.

When doing completion look here: complete_CTRL-Y

After CTRL-X is pressed, each CTRL-E (CTRL-Y) scrolls the window up (down) by
one line unless that would cause the cursor to move from its current position
in the file. As soon as another key is pressed, CTRL-X mode is exited and
that key is interpreted as in Insert mode.

==
2. Special special keys ins-special-special

The following keys are special. They stop the current insert, do something,
and then restart insertion. This means you can do something without getting
out of Insert mode. This is very handy if you prefer to use the Insert mode
all the time, just like editors that don't have a separate Normal mode. You
may also want to set the 'backspace' option to "indent,eol,start" and set the
'insertmode' option. You can use CTRL-O if you want to map a function key to
a command.

The changes (inserted or deleted characters) before and after these keys can
be undone separately. Only the last change can be redone and always behaves
like an "i" command.

char action

insert.txt — 678

<Up> cursor one line up i_<Up>
<Down> cursor one line down i_<Down>
CTRL-G <Up> cursor one line up, insert start column i_CTRL-G_<Up>
CTRL-G k cursor one line up, insert start column i_CTRL-G_k
CTRL-G CTRL-K cursor one line up, insert start column i_CTRL-G_CTRL-K
CTRL-G <Down> cursor one line down, insert start column i_CTRL-G_<Down>
CTRL-G j cursor one line down, insert start column i_CTRL-G_j
CTRL-G CTRL-J cursor one line down, insert start column i_CTRL-G_CTRL-J
<Left> cursor one character left i_<Left>
<Right> cursor one character right i_<Right>
<S-Left> cursor one word back (like "b" command) i_<S-Left>
<C-Left> cursor one word back (like "b" command) i_<C-Left>
<S-Right> cursor one word forward (like "w" command) i_<S-Right>
<C-Right> cursor one word forward (like "w" command) i_<C-Right>
<Home> cursor to first char in the line i_<Home>
<End> cursor to after last char in the line i_<End>
<C-Home> cursor to first char in the file i_<C-Home>
<C-End> cursor to after last char in the file i_<C-End>
<LeftMouse> cursor to position of mouse click i_<LeftMouse>
<S-Up> move window one page up i_<S-Up>
<PageUp> move window one page up i_<PageUp>
<S-Down> move window one page down i_<S-Down>
<PageDown> move window one page down i_<PageDown>
<ScrollWheelDown> move window three lines down i_<ScrollWheelDown>
<S-ScrollWheelDown> move window one page down i_<S-ScrollWheelDown>
<ScrollWheelUp> move window three lines up i_<ScrollWheelUp>
<S-ScrollWheelUp> move window one page up i_<S-ScrollWheelUp>
<ScrollWheelLeft> move window six columns left i_<ScrollWheelLeft>
<S-ScrollWheelLeft> move window one page left i_<S-ScrollWheelLeft>
<ScrollWheelRight> move window six columns right i_<ScrollWheelRight>
<S-ScrollWheelRight> move window one page right i_<S-ScrollWheelRight>
CTRL-O execute one command, return to Insert mode i_CTRL-O
CTRL-\ CTRL-O like CTRL-O but don't move the cursor i_CTRL-_CTRL-O
CTRL-L when 'insertmode' is set: go to Normal mode i_CTRL-L
CTRL-G u close undo sequence, start new change i_CTRL-G_u
CTRL-G U don't start a new undo block with the next i_CTRL-G_U

left/right cursor movement, if the cursor
stays within the same line

Note: If the cursor keys take you out of Insert mode, check the 'noesckeys'
option.

The CTRL-O command sometimes has a side effect: If the cursor was beyond the
end of the line, it will be put on the last character in the line. In
mappings it's often better to use <Esc> (first put an "x" in the text, <Esc>
will then always put the cursor on it). Or use CTRL-\ CTRL-O, but then
beware of the cursor possibly being beyond the end of the line. Note that the
command following CTRL-\ CTRL-O can still move the cursor, it is not restored
to its original position.

The CTRL-O command takes you to Normal mode. If you then use a command enter
Insert mode again it normally doesn't nest. Thus when typing "a<C-O>a" and
then <Esc> takes you back to Normal mode, you do not need to type <Esc> twice.
An exception is when not typing the command, e.g. when executing a mapping or
sourcing a script. This makes mappings work that briefly switch to Insert
mode.

The shifted cursor keys are not available on all terminals.

insert.txt — 679

Another side effect is that a count specified before the "i" or "a" command is
ignored. That is because repeating the effect of the command after CTRL-O is
too complicated.

An example for using CTRL-G u:

:inoremap <C-H> <C-G>u<C-H>

This redefines the backspace key to start a new undo sequence. You can now
undo the effect of the backspace key, without changing what you typed before
that, with CTRL-O u. Another example:

:inoremap <CR> <C-]><C-G>u<CR>

This starts a new undo block at each line break. It also expands
abbreviations before this.

An example for using CTRL-G U:

inoremap <Left> <C-G>U<Left>
inoremap <Right> <C-G>U<Right>
inoremap <expr> <Home> col('.') == match(getline('.'), '\S') + 1 ?
\ repeat('<C-G>U<Left>', col('.') - 1) :
\ (col('.') < match(getline('.'), '\S') ?
\ repeat('<C-G>U<Right>', match(getline('.'), '\S') + 0) :
\ repeat('<C-G>U<Left>', col('.') - 1 - match(getline('.'), '\S')))

inoremap <expr> <End> repeat('<C-G>U<Right>', col('$') - col('.'))
inoremap (()<C-G>U<Left>

This makes it possible to use the cursor keys in Insert mode, without starting
a new undo block and therefore using . (redo) will work as expected. Also
entering a text like (with the "(" mapping from above):

Lorem ipsum (dolor

will be repeatable by using . to the expected

Lorem ipsum (dolor)

Using CTRL-O splits undo: the text typed before and after it is undone
separately. If you want to avoid this (e.g., in a mapping) you might be able
to use CTRL-R = i_CTRL-R . E.g., to call a function:

:imap <F2> <C-R>=MyFunc()<CR>

When the 'whichwrap' option is set appropriately, the <Left> and <Right>
keys on the first/last character in the line make the cursor wrap to the
previous/next line.

The CTRL-G j and CTRL-G k commands can be used to insert text in front of a
column. Example:

int i;
int j;

Position the cursor on the first "int", type "istatic <C-G>j ". The
result is:

static int i;
int j;

When inserting the same text in front of the column in every line, use the
Visual blockwise command "I" v_b_I .

==

insert.txt — 680

3. 'textwidth' and 'wrapmargin' options ins-textwidth

The 'textwidth' option can be used to automatically break a line before it
gets too long. Set the 'textwidth' option to the desired maximum line
length. If you then type more characters (not spaces or tabs), the
last word will be put on a new line (unless it is the only word on the
line). If you set 'textwidth' to 0, this feature is disabled.

The 'wrapmargin' option does almost the same. The difference is that
'textwidth' has a fixed width while 'wrapmargin' depends on the width of the
screen. When using 'wrapmargin' this is equal to using 'textwidth' with a
value equal to (columns - 'wrapmargin'), where columns is the width of the
screen.

When 'textwidth' and 'wrapmargin' are both set, 'textwidth' is used.

If you don't really want to break the line, but view the line wrapped at a
convenient place, see the 'linebreak' option.

The line is only broken automatically when using Insert mode, or when
appending to a line. When in replace mode and the line length is not
changed, the line will not be broken.

Long lines are broken if you enter a non-white character after the margin.
The situations where a line will be broken can be restricted by adding
characters to the 'formatoptions' option:
"l" Only break a line if it was not longer than 'textwidth' when the insert

started.
"v" Only break at a white character that has been entered during the

current insert command. This is mostly Vi-compatible.
"lv" Only break if the line was not longer than 'textwidth' when the insert

started and only at a white character that has been entered during the
current insert command. Only differs from "l" when entering non-white
characters while crossing the 'textwidth' boundary.

Normally an internal function will be used to decide where to break the line.
If you want to do it in a different way set the 'formatexpr' option to an
expression that will take care of the line break.

If you want to format a block of text, you can use the "gq" operator. Type
"gq" and a movement command to move the cursor to the end of the block. In
many cases, the command "gq}" will do what you want (format until the end of
paragraph). Alternatively, you can use "gqap", which will format the whole
paragraph, no matter where the cursor currently is. Or you can use Visual
mode: hit "v", move to the end of the block, and type "gq". See also gq .

==
4. 'expandtab', 'smarttab' and 'softtabstop' options ins-expandtab

If the 'expandtab' option is on, spaces will be used to fill the amount of
whitespace of the tab. If you want to enter a real <Tab>, type CTRL-V first
(use CTRL-Q when CTRL-V is mapped i_CTRL-Q).
The 'expandtab' option is off by default. Note that in Replace mode, a single
character is replaced with several spaces. The result of this is that the
number of characters in the line increases. Backspacing will delete one
space at a time. The original character will be put back for only one space
that you backspace over (the last one).

ins-smarttab
When the 'smarttab' option is on, a <Tab> inserts 'shiftwidth' positions at

insert.txt — 681

the beginning of a line and 'tabstop' positions in other places. This means
that often spaces instead of a <Tab> character are inserted. When 'smarttab'
is off, a <Tab> always inserts 'tabstop' positions, and 'shiftwidth' is only
used for ">>" and the like.

ins-softtabstop
When the 'softtabstop' option is non-zero, a <Tab> inserts 'softtabstop'
positions, and a <BS> used to delete white space, will delete 'softtabstop'
positions. This feels like 'tabstop' was set to 'softtabstop', but a real
<Tab> character still takes 'tabstop' positions, so your file will still look
correct when used by other applications.

If 'softtabstop' is non-zero, a <BS> will try to delete as much white space to
move to the previous 'softtabstop' position, except when the previously
inserted character is a space, then it will only delete the character before
the cursor. Otherwise you cannot always delete a single character before the
cursor. You will have to delete 'softtabstop' characters first, and then type
extra spaces to get where you want to be.

==
5. Replace mode Replace Replace-mode mode-replace

Enter Replace mode with the "R" command in normal mode.

In Replace mode, one character in the line is deleted for every character you
type. If there is no character to delete (at the end of the line), the
typed character is appended (as in Insert mode). Thus the number of
characters in a line stays the same until you get to the end of the line.
If a <NL> is typed, a line break is inserted and no character is deleted.

Be careful with <Tab> characters. If you type a normal printing character in
its place, the number of characters is still the same, but the number of
columns will become smaller.

If you delete characters in Replace mode (with <BS>, CTRL-W, or CTRL-U), what
happens is that you delete the changes. The characters that were replaced
are restored. If you had typed past the existing text, the characters you
added are deleted. This is effectively a character-at-a-time undo.

If the 'expandtab' option is on, a <Tab> will replace one character with
several spaces. The result of this is that the number of characters in the
line increases. Backspacing will delete one space at a time. The original
character will be put back for only one space that you backspace over (the
last one).

==
6. Virtual Replace mode vreplace-mode Virtual-Replace-mode

Enter Virtual Replace mode with the "gR" command in normal mode.
{not available when compiled without the |+vreplace| feature}

Virtual Replace mode is similar to Replace mode, but instead of replacing
actual characters in the file, you are replacing screen real estate, so that
characters further on in the file never appear to move.

So if you type a <Tab> it may replace several normal characters, and if you
type a letter on top of a <Tab> it may not replace anything at all, since the
<Tab> will still line up to the same place as before.

Typing a <NL> still doesn't cause characters later in the file to appear to

insert.txt — 682

move. The rest of the current line will be replaced by the <NL> (that is,
they are deleted), and replacing continues on the next line. A new line is
NOT inserted unless you go past the end of the file.

Interesting effects are seen when using CTRL-T and CTRL-D. The characters
before the cursor are shifted sideways as normal, but characters later in the
line still remain still. CTRL-T will hide some of the old line under the
shifted characters, but CTRL-D will reveal them again.

As with Replace mode, using <BS> etc will bring back the characters that were
replaced. This still works in conjunction with 'smartindent', CTRL-T and
CTRL-D, 'expandtab', 'smarttab', 'softtabstop', etc.

In 'list' mode, Virtual Replace mode acts as if it was not in 'list' mode,
unless "L" is in 'cpoptions'.

Note that the only situations for which characters beyond the cursor should
appear to move are in List mode 'list' , and occasionally when 'wrap' is set
(and the line changes length to become shorter or wider than the width of the
screen). In other cases spaces may be inserted to avoid following characters
to move.

This mode is very useful for editing <Tab> separated columns in tables, for
entering new data while keeping all the columns aligned.

==
7. Insert mode completion ins-completion

In Insert and Replace mode, there are several commands to complete part of a
keyword or line that has been typed. This is useful if you are using
complicated keywords (e.g., function names with capitals and underscores).

Completion can be done for:

1. Whole lines i_CTRL-X_CTRL-L
2. keywords in the current file i_CTRL-X_CTRL-N
3. keywords in 'dictionary' i_CTRL-X_CTRL-K
4. keywords in 'thesaurus', thesaurus-style i_CTRL-X_CTRL-T
5. keywords in the current and included files i_CTRL-X_CTRL-I
6. tags i_CTRL-X_CTRL-]
7. file names i_CTRL-X_CTRL-F
8. definitions or macros i_CTRL-X_CTRL-D
9. Vim command-line i_CTRL-X_CTRL-V
10. User defined completion i_CTRL-X_CTRL-U
11. omni completion i_CTRL-X_CTRL-O
12. Spelling suggestions i_CTRL-X_s
13. keywords in 'complete' i_CTRL-N i_CTRL-P

Additionally, i_CTRL-X_CTRL-Z stops completion without changing the text.

All these, except CTRL-N and CTRL-P, are done in CTRL-X mode. This is a
sub-mode of Insert and Replace modes. You enter CTRL-X mode by typing CTRL-X
and one of the CTRL-X commands. You exit CTRL-X mode by typing a key that is
not a valid CTRL-X mode command. Valid keys are the CTRL-X command itself,
CTRL-N (next), and CTRL-P (previous).

To get the current completion information, complete_info() can be used.
Also see the 'infercase' option if you want to adjust the case of the match.

complete_CTRL-E

insert.txt — 683

When completion is active you can use CTRL-E to stop it and go back to the
originally typed text. The CTRL-E will not be inserted.

complete_CTRL-Y
When the popup menu is displayed you can use CTRL-Y to stop completion and
accept the currently selected entry. The CTRL-Y is not inserted. Typing a
space, Enter, or some other unprintable character will leave completion mode
and insert that typed character.

When the popup menu is displayed there are a few more special keys, see
popupmenu-keys .

Note: The keys that are valid in CTRL-X mode are not mapped. This allows for
`:map <C-F> <C-X><C-F>` to work (assuming "<" is not in 'cpo'). The key that
ends CTRL-X mode (any key that is not a valid CTRL-X mode command) is mapped.
Also, when doing completion with 'complete' mappings apply as usual.

E565
Note: While completion is active Insert mode can't be used recursively and
buffer text cannot be changed. Mappings that somehow invoke ":normal i.."
will generate an E565 error.

The following mappings are suggested to make typing the completion commands
a bit easier (although they will hide other commands; this requires "<" is not
in 'cpo'):

:inoremap <C-]> <C-X><C-]>
:inoremap <C-F> <C-X><C-F>
:inoremap <C-D> <C-X><C-D>
:inoremap <C-L> <C-X><C-L>

As a special case, typing CTRL-R to perform register insertion (see
i_CTRL-R) will not exit CTRL-X mode. This is primarily to allow the use of

the '=' register to call some function to determine the next operation. If
the contents of the register (or result of the '=' register evaluation) are
not valid CTRL-X mode keys, then CTRL-X mode will be exited as if those keys
had been typed.

For example, the following will map <Tab> to either actually insert a <Tab> if
the current line is currently only whitespace, or start/continue a CTRL-N
completion operation:

function! CleverTab()
if strpart(getline('.'), 0, col('.')-1) =~ '^\s*$'

return "\<Tab>"
else

return "\<C-N>"
endif

endfunction
inoremap <Tab> <C-R>=CleverTab()<CR>

Completing whole lines compl-whole-line

i_CTRL-X_CTRL-L
CTRL-X CTRL-L Search backwards for a line that starts with the

same characters as those in the current line before
the cursor. Indent is ignored. The matching line is
inserted in front of the cursor.
The 'complete' option is used to decide which buffers

insert.txt — 684

are searched for a match. Both loaded and unloaded
buffers are used.

CTRL-L or
CTRL-P Search backwards for next matching line. This line

replaces the previous matching line.

CTRL-N Search forward for next matching line. This line
replaces the previous matching line.

CTRL-X CTRL-L After expanding a line you can additionally get the
line next to it by typing CTRL-X CTRL-L again, unless
a double CTRL-X is used. Only works for loaded
buffers.

Completing keywords in current file compl-current

i_CTRL-X_CTRL-P
i_CTRL-X_CTRL-N

CTRL-X CTRL-N Search forwards for words that start with the keyword
in front of the cursor. The found keyword is inserted
in front of the cursor.

CTRL-X CTRL-P Search backwards for words that start with the keyword
in front of the cursor. The found keyword is inserted
in front of the cursor.

CTRL-N Search forward for next matching keyword. This
keyword replaces the previous matching keyword.

CTRL-P Search backwards for next matching keyword. This
keyword replaces the previous matching keyword.

CTRL-X CTRL-N or
CTRL-X CTRL-P Further use of CTRL-X CTRL-N or CTRL-X CTRL-P will

copy the words following the previous expansion in
other contexts unless a double CTRL-X is used.

If there is a keyword in front of the cursor (a name made out of alphabetic
characters and characters in 'iskeyword'), it is used as the search pattern,
with "\<" prepended (meaning: start of a word). Otherwise "\<\k\k" is used
as search pattern (start of any keyword of at least two characters).

In Replace mode, the number of characters that are replaced depends on the
length of the matched string. This works like typing the characters of the
matched string in Replace mode.

If there is not a valid keyword character before the cursor, any keyword of
at least two characters is matched.

e.g., to get:
printf("(%g, %g, %g)", vector[0], vector[1], vector[2]);

just type:
printf("(%g, %g, %g)", vector[0], ^P[1], ^P[2]);

The search wraps around the end of the file, the value of 'wrapscan' is not
used here.

Multiple repeats of the same completion are skipped; thus a different match
will be inserted at each CTRL-N and CTRL-P (unless there is only one
matching keyword).

insert.txt — 685

Single character matches are never included, as they usually just get in
the way of what you were really after.

e.g., to get:
printf("name = %s\n", name);

just type:
printf("name = %s\n", n^P);

or even:
printf("name = %s\n", ^P);

The 'n' in '\n' is skipped.

After expanding a word, you can use CTRL-X CTRL-P or CTRL-X CTRL-N to get the
word following the expansion in other contexts. These sequences search for
the text just expanded and further expand by getting an extra word. This is
useful if you need to repeat a sequence of complicated words. Although CTRL-P
and CTRL-N look just for strings of at least two characters, CTRL-X CTRL-P and
CTRL-X CTRL-N can be used to expand words of just one character.

e.g., to get:
México

you can type:
M^N^P^X^P^X^P

CTRL-N starts the expansion and then CTRL-P takes back the single character
"M", the next two CTRL-X CTRL-P's get the words "é" and ";xico".

If the previous expansion was split, because it got longer than 'textwidth',
then just the text in the current line will be used.

If the match found is at the end of a line, then the first word in the next
line will be inserted and the message "Word from other line" displayed, if
this word is accepted the next CTRL-X CTRL-P or CTRL-X CTRL-N will search
for those lines starting with this word.

Completing keywords in 'dictionary' compl-dictionary

i_CTRL-X_CTRL-K
CTRL-X CTRL-K Search the files given with the 'dictionary' option

for words that start with the keyword in front of the
cursor. This is like CTRL-N, but only the dictionary
files are searched, not the current file. The found
keyword is inserted in front of the cursor. This
could potentially be pretty slow, since all matches
are found before the first match is used. By default,
the 'dictionary' option is empty.
For suggestions where to find a list of words, see the
'dictionary' option.
'ignorecase', 'smartcase' and 'infercase' apply.

CTRL-K or
CTRL-N Search forward for next matching keyword. This

keyword replaces the previous matching keyword.

CTRL-P Search backwards for next matching keyword. This
keyword replaces the previous matching keyword.

Completing words in 'thesaurus' compl-thesaurus

i_CTRL-X_CTRL-T
CTRL-X CTRL-T Works as CTRL-X CTRL-K, but in a special way. It uses

the 'thesaurus' option instead of 'dictionary'. If a

insert.txt — 686

match is found in the thesaurus file, all the
remaining words on the same line are included as
matches, even though they don't complete the word.
Thus a word can be completely replaced.

CTRL-T or
CTRL-N Search forward for next matching keyword. This

keyword replaces the previous matching keyword.

CTRL-P Search backwards for next matching keyword. This
keyword replaces the previous matching keyword.

In the file used by the 'thesaurus' option each line in the file should
contain words with similar meaning, separated by non-keyword characters (white
space is preferred). Maximum line length is 510 bytes.

For an example, imagine the 'thesaurus' file has a line like this:
angry furious mad enraged

Placing the cursor after the letters "ang" and typing CTRL-X CTRL-T would
complete the word "angry"; subsequent presses would change the word to
"furious", "mad" etc.

Other uses include translation between two languages, or grouping API
functions by keyword.

An English word list was added to this github issue:
https://github.com/vim/vim/issues/629#issuecomment-443293282
Unpack thesaurus_pkg.zip, put the thesaurus.txt file somewhere, e.g.
~/.vim/thesaurus/english.txt, and the 'thesaurus' option to this file name.

Completing keywords with 'thesaurusfunc' compl-thesaurusfunc

If the 'thesaurusfunc' option is set, then the user specified function is
invoked to get the list of completion matches and the 'thesaurus' option is
not used. See complete-functions for an explanation of how the function is
invoked and what it should return.

Here is an example that uses the "aiksaurus" command (provided by Magnus
Groß):

func Thesaur(findstart, base)
if a:findstart
return searchpos('\<', 'bnW', line('.'))[1] - 1

endif
let res = []
let h = ''
for l in systemlist('aiksaurus ' .. shellescape(a:base))
if l[:3] == '=== '

let h = '(' .. substitute(l[4:], ' =*$', ')', '')
elseif l ==# 'Alphabetically similar known words are: '

let h = "\U0001f52e"
elseif l[0] =~ '\a' || (h ==# "\U0001f52e" && l[0] ==# "\t")

call extend(res, map(split(substitute(l, '^\t', '', ''), ', '), {_, val -> {'word': val, 'menu': h}}))
endif

endfor
return res

endfunc

if exists('+thesaurusfunc')

insert.txt — 687

https://github.com/vim/vim/issues/629#issuecomment-443293282

set thesaurusfunc=Thesaur
endif

Completing keywords in the current and included files compl-keyword

The 'include' option is used to specify a line that contains an include file
name. The 'path' option is used to search for include files.

i_CTRL-X_CTRL-I
CTRL-X CTRL-I Search for the first keyword in the current and

included files that starts with the same characters
as those before the cursor. The matched keyword is
inserted in front of the cursor.

CTRL-N Search forwards for next matching keyword. This
keyword replaces the previous matching keyword.
Note: CTRL-I is the same as <Tab>, which is likely to
be typed after a successful completion, therefore
CTRL-I is not used for searching for the next match.

CTRL-P Search backward for previous matching keyword. This
keyword replaces the previous matching keyword.

CTRL-X CTRL-I Further use of CTRL-X CTRL-I will copy the words
following the previous expansion in other contexts
unless a double CTRL-X is used.

Completing tags compl-tag
i_CTRL-X_CTRL-]

CTRL-X CTRL-] Search for the first tag that starts with the same
characters as before the cursor. The matching tag is
inserted in front of the cursor. Alphabetic
characters and characters in 'iskeyword' are used
to decide which characters are included in the tag
name (same as for a keyword). See also CTRL-] .
The 'showfulltag' option can be used to add context
from around the tag definition.

CTRL-] or
CTRL-N Search forwards for next matching tag. This tag

replaces the previous matching tag.

CTRL-P Search backward for previous matching tag. This tag
replaces the previous matching tag.

Completing file names compl-filename
i_CTRL-X_CTRL-F

CTRL-X CTRL-F Search for the first file name that starts with the
same characters as before the cursor. The matching
file name is inserted in front of the cursor.
Alphabetic characters and characters in 'isfname'
are used to decide which characters are included in
the file name. Note: the 'path' option is not used
here (yet).

CTRL-F or
CTRL-N Search forwards for next matching file name. This

file name replaces the previous matching file name.

CTRL-P Search backward for previous matching file name.

insert.txt — 688

This file name replaces the previous matching file
name.

Completing definitions or macros compl-define

The 'define' option is used to specify a line that contains a definition.
The 'include' option is used to specify a line that contains an include file
name. The 'path' option is used to search for include files.

i_CTRL-X_CTRL-D
CTRL-X CTRL-D Search in the current and included files for the

first definition (or macro) name that starts with
the same characters as before the cursor. The found
definition name is inserted in front of the cursor.

CTRL-D or
CTRL-N Search forwards for next matching macro name. This

macro name replaces the previous matching macro
name.

CTRL-P Search backward for previous matching macro name.
This macro name replaces the previous matching macro
name.

CTRL-X CTRL-D Further use of CTRL-X CTRL-D will copy the words
following the previous expansion in other contexts
unless a double CTRL-X is used.

Completing Vim commands compl-vim

Completion is context-sensitive. It works like on the Command-line. It
completes an Ex command as well as its arguments. This is useful when writing
a Vim script.

i_CTRL-X_CTRL-V
CTRL-X CTRL-V Guess what kind of item is in front of the cursor and

find the first match for it.
Note: When CTRL-V is mapped you can often use CTRL-Q
instead of i_CTRL-Q .

CTRL-V or
CTRL-N Search forwards for next match. This match replaces

the previous one.

CTRL-P Search backwards for previous match. This match
replaces the previous one.

CTRL-X CTRL-V Further use of CTRL-X CTRL-V will do the same as
CTRL-V. This allows mapping a key to do Vim command
completion, for example:

:imap <Tab> <C-X><C-V>

User defined completion compl-function

Completion is done by a function that can be defined by the user with the
'completefunc' option. See below for how the function is called and an
example complete-functions .

i_CTRL-X_CTRL-U
CTRL-X CTRL-U Guess what kind of item is in front of the cursor and

insert.txt — 689

find the first match for it.
CTRL-U or
CTRL-N Use the next match. This match replaces the previous

one.

CTRL-P Use the previous match. This match replaces the
previous one.

Omni completion compl-omni

Completion is done by a function that can be defined by the user with the
'omnifunc' option. This is to be used for filetype-specific completion.

See below for how the function is called and an example complete-functions .
For remarks about specific filetypes see compl-omni-filetypes .
More completion scripts will appear, check www.vim.org. Currently there is a
first version for C++.

i_CTRL-X_CTRL-O
CTRL-X CTRL-O Guess what kind of item is in front of the cursor and

find the first match for it.
CTRL-O or
CTRL-N Use the next match. This match replaces the previous

one.

CTRL-P Use the previous match. This match replaces the
previous one.

Spelling suggestions compl-spelling

A word before or at the cursor is located and correctly spelled words are
suggested to replace it. If there is a badly spelled word in the line, before
or under the cursor, the cursor is moved to after it. Otherwise the word just
before the cursor is used for suggestions, even though it isn't badly spelled.

NOTE: CTRL-S suspends display in many Unix terminals. Use 's' instead. Type
CTRL-Q to resume displaying.

i_CTRL-X_CTRL-S i_CTRL-X_s
CTRL-X CTRL-S or
CTRL-X s Locate the word in front of the cursor and find the

first spell suggestion for it.
CTRL-S or
CTRL-N Use the next suggestion. This replaces the previous

one. Note that you can't use 's' here.

CTRL-P Use the previous suggestion. This replaces the
previous one.

Completing keywords from different sources compl-generic

i_CTRL-N
CTRL-N Find next match for words that start with the

keyword in front of the cursor, looking in places
specified with the 'complete' option. The found
keyword is inserted in front of the cursor.

insert.txt — 690

i_CTRL-P
CTRL-P Find previous match for words that start with the

keyword in front of the cursor, looking in places
specified with the 'complete' option. The found
keyword is inserted in front of the cursor.

CTRL-N Search forward for next matching keyword. This
keyword replaces the previous matching keyword.

CTRL-P Search backwards for next matching keyword. This
keyword replaces the previous matching keyword.

CTRL-X CTRL-N or
CTRL-X CTRL-P Further use of CTRL-X CTRL-N or CTRL-X CTRL-P will

copy the words following the previous expansion in
other contexts unless a double CTRL-X is used.

Stop completion compl-stop

i_CTRL-X_CTRL-Z
CTRL-X CTRL-Z Stop completion without changing the text.

FUNCTIONS FOR FINDING COMPLETIONS complete-functions

This applies to 'completefunc', 'thesaurusfunc' and 'omnifunc'.

The function is called in two different ways:
- First the function is called to find the start of the text to be completed.
- Later the function is called to actually find the matches.

On the first invocation the arguments are:
a:findstart 1
a:base empty

The function must return the column where the completion starts. It must be a
number between zero and the cursor column "col('.')". This involves looking
at the characters just before the cursor and including those characters that
could be part of the completed item. The text between this column and the
cursor column will be replaced with the matches. If the returned value is
larger than the cursor column, the cursor column is used.

Negative return values:
-2 To cancel silently and stay in completion mode.
-3 To cancel silently and leave completion mode.
Another negative value: completion starts at the cursor column

On the second invocation the arguments are:
a:findstart 0
a:base the text with which matches should match; the text that was

located in the first call (can be empty)

The function must return a List with the matching words. These matches
usually include the "a:base" text. When there are no matches return an empty
List. Note that the cursor may have moved since the first invocation, the
text may have been changed.

In order to return more information than the matching words, return a Dict
that contains the List. The Dict can have these items:

insert.txt — 691

words The List of matching words (mandatory).
refresh A string to control re-invocation of the function

(optional).
The only value currently recognized is "always", the
effect is that the function is called whenever the
leading text is changed.

If you want to suppress the warning message for an empty result, return
v:none . This is useful to implement asynchronous completion with
complete() .

Other items are ignored.

For acting upon end of completion, see the CompleteDonePre and
CompleteDone autocommand event.

For example, the function can contain this:
let matches = ... list of words ...
return {'words': matches, 'refresh': 'always'}

complete-items
Each list item can either be a string or a Dictionary. When it is a string it
is used as the completion. When it is a Dictionary it can contain these
items:

word the text that will be inserted, mandatory
abbr abbreviation of "word"; when not empty it is used in

the menu instead of "word"
menu extra text for the popup menu, displayed after "word"

or "abbr"
info more information about the item, can be displayed in a

preview or popup window
kind single letter indicating the type of completion
icase when non-zero case is to be ignored when comparing

items to be equal; when omitted zero is used, thus
items that only differ in case are added

equal when non-zero, always treat this item to be equal when
comparing. Which means, "equal=1" disables filtering
of this item.

dup when non-zero this match will be added even when an
item with the same word is already present.

empty when non-zero this match will be added even when it is
an empty string

user_data custom data which is associated with the item and
available in v:completed_item ; it can be any type;
defaults to an empty string

All of these except "icase", "equal", "dup" and "empty" must be a string. If
an item does not meet these requirements then an error message is given and
further items in the list are not used. You can mix string and Dictionary
items in the returned list.

The "menu" item is used in the popup menu and may be truncated, thus it should
be relatively short. The "info" item can be longer, it will be displayed in
the preview window when "preview" appears in 'completeopt' or in a popup
window when "popup" appears in 'completeopt'. In the preview window the
"info" item will also remain displayed after the popup menu has been removed.
This is useful for function arguments. Use a single space for "info" to
remove existing text in the preview window. The size of the preview window is
three lines, but 'previewheight' is used when it has a value of 1 or 2.

insert.txt — 692

complete-popup
When "popup" is in 'completeopt' a popup window is used to display the "info".
Then the 'completepopup' option specifies the properties of the popup. This
is used when the info popup is created. The option is a comma-separated list
of values:

height maximum height of the popup
width maximum width of the popup
highlight highlight group of the popup (default is PmenuSel)
align "item" (default) or "menu"
border "on" (default) or "off"

Example:
:set completepopup=height:10,width:60,highlight:InfoPopup

When the "align" value is "item" then the popup is positioned close to the
selected item. Changing the selection will also move the popup. When "align"
is "menu" then the popup is aligned with the top of the menu if the menu is
below the text, and the bottom of the menu otherwise.

After the info popup is created it can be found with popup_findinfo() and
properties can be changed with popup_setoptions() .

complete-popuphidden
If the information for the popup is obtained asynchronously, use "popuphidden"
in 'completeopt'. The info popup will then be initially hidden and
popup_show() must be called once it has been filled with the info. This can

be done with a CompleteChanged autocommand, something like this:
set completeopt+=popuphidden
au CompleteChanged * call UpdateCompleteInfo()
func UpdateCompleteInfo()

" Cancel any pending info fetch
let item = v:event.completed_item
" Start fetching info for the item then call ShowCompleteInfo(info)

endfunc
func ShowCompleteInfo(info)

let id = popup_findinfo()
if id

call popup_settext(id, 'async info: ' .. a:info)
call popup_show(id)

endif
endfunc

complete-item-kind
The "kind" item uses a single letter to indicate the kind of completion. This
may be used to show the completion differently (different color or icon).
Currently these types can be used:

v variable
f function or method
m member of a struct or class
t typedef
d #define or macro

When searching for matches takes some time call complete_add() to add each
match to the total list. These matches should then not appear in the returned
list! Call complete_check() now and then to allow the user to press a key
while still searching for matches. Stop searching when it returns non-zero.

E840
The function is allowed to move the cursor, it is restored afterwards.
The function is not allowed to move to another window or delete text.

insert.txt — 693

An example that completes the names of the months:
fun! CompleteMonths(findstart, base)

if a:findstart
" locate the start of the word
let line = getline('.')
let start = col('.') - 1
while start > 0 && line[start - 1] =~ '\a'

let start -= 1
endwhile
return start

else
" find months matching with "a:base"
let res = []
for m in split("Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec")

if m =~ '^' .. a:base
call add(res, m)

endif
endfor
return res

endif
endfun
set completefunc=CompleteMonths

The same, but now pretending searching for matches is slow:
fun! CompleteMonths(findstart, base)

if a:findstart
" locate the start of the word
let line = getline('.')
let start = col('.') - 1
while start > 0 && line[start - 1] =~ '\a'

let start -= 1
endwhile
return start

else
" find months matching with "a:base"
for m in split("Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec")

if m =~ '^' .. a:base
call complete_add(m)

endif
sleep 300m " simulate searching for next match
if complete_check()

break
endif

endfor
return []

endif
endfun
set completefunc=CompleteMonths

INSERT COMPLETION POPUP MENU ins-completion-menu
popupmenu-completion

Vim can display the matches in a simplistic popup menu.

The menu is used when:
- The 'completeopt' option contains "menu" or "menuone".
- The terminal supports at least 8 colors.
- There are at least two matches. One if "menuone" is used.

The 'pumheight' option can be used to set a maximum height. The default is to

insert.txt — 694

use all space available.
The 'pumwidth' option can be used to set a minimum width. The default is 15
characters.

There are three states:
1. A complete match has been inserted, e.g., after using CTRL-N or CTRL-P.
2. A cursor key has been used to select another match. The match was not

inserted then, only the entry in the popup menu is highlighted.
3. Only part of a match has been inserted and characters were typed or the

backspace key was used. The list of matches was then adjusted for what is
in front of the cursor.

You normally start in the first state, with the first match being inserted.
When "longest" is in 'completeopt' and there is more than one match you start
in the third state.

If you select another match, e.g., with CTRL-N or CTRL-P, you go to the first
state. This doesn't change the list of matches.

When you are back at the original text then you are in the third state. To
get there right away you can use a mapping that uses CTRL-P right after
starting the completion:

:imap <F7> <C-N><C-P>

popupmenu-keys
In the first state these keys have a special meaning:
<BS> and CTRL-H Delete one character, find the matches for the word before

the cursor. This reduces the list of matches, often to one
entry, and switches to the second state.

Any non-special character:
Stop completion without changing the match and insert the
typed character.

In the second and third state these keys have a special meaning:
<BS> and CTRL-H Delete one character, find the matches for the shorter word

before the cursor. This may find more matches.
CTRL-L Add one character from the current match, may reduce the

number of matches.
any printable, non-white character:

Add this character and reduce the number of matches.

In all three states these can be used:
CTRL-Y Yes: Accept the currently selected match and stop completion.
CTRL-E End completion, go back to what was there before selecting a

match (what was typed or longest common string).
<PageUp> Select a match several entries back, but don't insert it.
<PageDown> Select a match several entries further, but don't insert it.
<Up> Select the previous match, as if CTRL-P was used, but don't

insert it.
<Down> Select the next match, as if CTRL-N was used, but don't

insert it.
<Space> or <Tab> Stop completion without changing the match and insert the

typed character.

The behavior of the <Enter> key depends on the state you are in:
first state: Use the text as it is and insert a line break.
second state: Insert the currently selected match.
third state: Use the text as it is and insert a line break.

In other words: If you used the cursor keys to select another entry in the

insert.txt — 695

list of matches then the <Enter> key inserts that match. If you typed
something else then <Enter> inserts a line break.

The colors of the menu can be changed with these highlight groups:
Pmenu normal item hl-Pmenu
PmenuSel selected item hl-PmenuSel
PmenuSbar scrollbar hl-PmenuSbar
PmenuThumb thumb of the scrollbar hl-PmenuThumb

There are no special mappings for when the popup menu is visible. However,
you can use an Insert mode mapping that checks the pumvisible() function to
do something different. Example:

:inoremap <Down> <C-R>=pumvisible() ? "\<lt>C-N>" : "\<lt>Down>"<CR>

You can use of <expr> in mapping to have the popup menu used when typing a
character and some condition is met. For example, for typing a dot:

inoremap <expr> . MayComplete()
func MayComplete()

if (can complete)
return ".\<C-X>\<C-O>"

endif
return '.'

endfunc

See :map-<expr> for more info.

FILETYPE-SPECIFIC REMARKS FOR OMNI COMPLETION compl-omni-filetypes

The file used for {filetype} should be autoload/{filetype}complete.vim
in 'runtimepath'. Thus for "java" it is autoload/javacomplete.vim.

C ft-c-omni

Completion of C code requires a tags file. You should use Universal/
Exuberant ctags, because it adds extra information that is needed for
completion. You can find it here:

Universal Ctags: https://ctags.io
Exuberant Ctags: http://ctags.sourceforge.net

Universal Ctags is preferred, Exuberant Ctags is no longer being developed.

For Exuberant ctags, version 5.6 or later is recommended. For version 5.5.4
you should add a patch that adds the "typename:" field:

ftp://ftp.vim.org/pub/vim/unstable/patches/ctags-5.5.4.patch
A compiled .exe for MS-Windows can be found at:

http://ctags.sourceforge.net/
https://github.com/universal-ctags/ctags-win32

If you want to complete system functions you can do something like this. Use
ctags to generate a tags file for all the system header files:

% ctags -R -f ~/.vim/systags /usr/include /usr/local/include
In your vimrc file add this tags file to the 'tags' option:

set tags+=~/.vim/systags

When using CTRL-X CTRL-O after a name without any "." or "->" it is completed
from the tags file directly. This works for any identifier, also function
names. If you want to complete a local variable name, which does not appear

insert.txt — 696

https://ctags.io
http://ctags.sourceforge.net
ftp://ftp.vim.org/pub/vim/unstable/patches/ctags-5.5.4.patch
http://ctags.sourceforge.net/
https://github.com/universal-ctags/ctags-win32

in the tags file, use CTRL-P instead.

When using CTRL-X CTRL-O after something that has "." or "->" Vim will attempt
to recognize the type of the variable and figure out what members it has.
This means only members valid for the variable will be listed.

When a member name already was complete, CTRL-X CTRL-O will add a "." or
"->" for composite types.

Vim doesn't include a C compiler, only the most obviously formatted
declarations are recognized. Preprocessor stuff may cause confusion.
When the same structure name appears in multiple places all possible members
are included.

CSS ft-css-omni

Complete properties and their appropriate values according to CSS 2.1
specification.

HTML ft-html-omni
XHTML ft-xhtml-omni

CTRL-X CTRL-O provides completion of various elements of (X)HTML files. It is
designed to support writing of XHTML 1.0 Strict files but will also work for
other versions of HTML. Features:

- after "<" complete tag name depending on context (no div suggestion inside
of an a tag); '/>' indicates empty tags

- inside of tag complete proper attributes (no width attribute for an a tag);
show also type of attribute; '*' indicates required attributes

- when attribute has limited number of possible values help to complete them
- complete names of entities
- complete values of "class" and "id" attributes with data obtained from

<style> tag and included CSS files
- when completing value of "style" attribute or working inside of "style" tag

switch to ft-css-omni completion
- when completing values of events attributes or working inside of "script"

tag switch to ft-javascript-omni completion
- when used after "</" CTRL-X CTRL-O will close the last opened tag

Note: When used first time completion menu will be shown with little delay
- this is time needed for loading of data file.
Note: Completion may fail in badly formatted documents. In such case try to
run :make command to detect formatting problems.

HTML flavor html-flavor

The default HTML completion depends on the filetype. For HTML files it is
HTML 4.01 Transitional ('filetype' is "html"), for XHTML it is XHTML 1.0
Strict ('filetype' is "xhtml").

When doing completion outside of any other tag you will have possibility to
choose DOCTYPE and the appropriate data file will be loaded and used for all
next completions.

More about format of data file in xml-omni-datafile . Some of the data files
may be found on the Vim website (www).

insert.txt — 697

Note that b:html_omni_flavor may point to a file with any XML data. This
makes possible to mix PHP (ft-php-omni) completion with any XML dialect
(assuming you have data file for it). Without setting that variable XHTML 1.0
Strict will be used.

JAVASCRIPT ft-javascript-omni

Completion of most elements of JavaScript language and DOM elements.

Complete:

- variables
- function name; show function arguments
- function arguments
- properties of variables trying to detect type of variable
- complete DOM objects and properties depending on context
- keywords of language

Completion works in separate JavaScript files (&ft==javascript), inside of
<script> tag of (X)HTML and in values of event attributes (including scanning
of external files).

DOM compatibility

At the moment (beginning of 2006) there are two main browsers - MS Internet
Explorer and Mozilla Firefox. These two applications are covering over 90% of
market. Theoretically standards are created by W3C organisation
(http://www.w3c.org) but they are not always followed/implemented.

IE FF W3C Omni completion
+/- +/- + +
+ + - +
+ - - -
- + - -

Regardless from state of implementation in browsers but if element is defined
in standards, completion plugin will place element in suggestion list. When
both major engines implemented element, even if this is not in standards it
will be suggested. All other elements are not placed in suggestion list.

PHP ft-php-omni

Completion of PHP code requires a tags file for completion of data from
external files and for class aware completion. You should use Universal/
Exuberant ctags version 5.5.4 or newer. You can find it here:

Universal Ctags: https://ctags.io
Exuberant Ctags: http://ctags.sourceforge.net

Script completes:

- after $ variables name
- if variable was declared as object add "->", if tags file is available show

name of class
- after "->" complete only function and variable names specific for given
class. To find class location and contents tags file is required. Because
PHP isn't strongly typed language user can use @var tag to declare class:

insert.txt — 698

https://ctags.io
http://ctags.sourceforge.net

/* @var $myVar myClass */
$myVar->

Still, to find myClass contents tags file is required.

- function names with additional info:
- in case of built-in functions list of possible arguments and after | type

data returned by function
- in case of user function arguments and name of file where function was

defined (if it is not current file)

- constants names
- class names after "new" declaration

Note: when doing completion first time Vim will load all necessary data into
memory. It may take several seconds. After next use of completion delay
should not be noticeable.

Script detects if cursor is inside <?php ?> tags. If it is outside it will
automatically switch to HTML/CSS/JavaScript completion. Note: contrary to
original HTML files completion of tags (and only tags) isn't context aware.

RUBY ft-ruby-omni

Completion of Ruby code requires that vim be built with +ruby .

Ruby completion will parse your buffer on demand in order to provide a list of
completions. These completions will be drawn from modules loaded by 'require'
and modules defined in the current buffer.

The completions provided by CTRL-X CTRL-O are sensitive to the context:

CONTEXT COMPLETIONS PROVIDED

1. Not inside a class definition Classes, constants and globals

2. Inside a class definition Methods or constants defined in the class

3. After '.', '::' or ':' Methods applicable to the object being
dereferenced

4. After ':' or ':foo' Symbol name (beginning with 'foo')

Notes:
- Vim will load/evaluate code in order to provide completions. This may

cause some code execution, which may be a concern. This is no longer
enabled by default, to enable this feature add

let g:rubycomplete_buffer_loading = 1
- In context 1 above, Vim can parse the entire buffer to add a list of

classes to the completion results. This feature is turned off by default,
to enable it add

let g:rubycomplete_classes_in_global = 1
to your vimrc

- In context 2 above, anonymous classes are not supported.
- In context 3 above, Vim will attempt to determine the methods supported by

the object.
- Vim can detect and load the Rails environment for files within a rails

insert.txt — 699

project. The feature is disabled by default, to enable it add
let g:rubycomplete_rails = 1

to your vimrc

SYNTAX ft-syntax-omni

Vim has the ability to color syntax highlight nearly 500 languages. Part of
this highlighting includes knowing what keywords are part of a language. Many
filetypes already have custom completion scripts written for them, the
syntaxcomplete plugin provides basic completion for all other filetypes. It
does this by populating the omni completion list with the text Vim already
knows how to color highlight. It can be used for any filetype and provides a
minimal language-sensitive completion.

To enable syntax code completion you can run:
setlocal omnifunc=syntaxcomplete#Complete

You can automate this by placing the following in your .vimrc (after any
":filetype" command):

if has("autocmd") && exists("+omnifunc")
autocmd Filetype *

\ if &omnifunc == "" |
\ setlocal omnifunc=syntaxcomplete#Complete |
\ endif

endif

The above will set completion to this script only if a specific plugin does
not already exist for that filetype.

Each filetype can have a wide range of syntax items. The plugin allows you to
customize which syntax groups to include or exclude from the list. Let's have
a look at the PHP filetype to see how this works.

If you edit a file called, index.php, run the following command:
syntax list

The first thing you will notice is that there are many different syntax groups.
The PHP language can include elements from different languages like HTML,
JavaScript and many more. The syntax plugin will only include syntax groups
that begin with the filetype, "php", in this case. For example these syntax
groups are included by default with the PHP: phpEnvVar, phpIntVar,
phpFunctions.

If you wish non-filetype syntax items to also be included, you can use a
regular expression syntax (added in version 13.0 of
autoload/syntaxcomplete.vim) to add items. Looking at the output from
":syntax list" while editing a PHP file I can see some of these entries:

htmlArg,htmlTag,htmlTagName,javaScriptStatement,javaScriptGlobalObjects

To pick up any JavaScript and HTML keyword syntax groups while editing a PHP
file, you can use 3 different regexs, one for each language. Or you can
simply restrict the include groups to a particular value, without using
a regex string:

let g:omni_syntax_group_include_php = 'php\w\+,javaScript\w\+,html\w\+'
let g:omni_syntax_group_include_php = 'phpFunctions,phpMethods'

The basic form of this variable is:
let g:omni_syntax_group_include_{filetype} = 'regex,comma,separated'

insert.txt — 700

The PHP language has an enormous number of items which it knows how to syntax
highlight. These items will be available within the omni completion list.

Some people may find this list unwieldy or are only interested in certain
items. There are two ways to prune this list (if necessary). If you find
certain syntax groups you do not wish displayed you can use two different
methods to identify these groups. The first specifically lists the syntax
groups by name. The second uses a regular expression to identify both
syntax groups. Simply add one the following to your vimrc:

let g:omni_syntax_group_exclude_php = 'phpCoreConstant,phpConstant'
let g:omni_syntax_group_exclude_php = 'php\w*Constant'

Add as many syntax groups to this list by comma separating them. The basic
form of this variable is:

let g:omni_syntax_group_exclude_{filetype} = 'regex,comma,separated'

You can create as many of these variables as you need, varying only the
filetype at the end of the variable name.

The plugin uses the isKeyword option to determine where word boundaries are
for the syntax items. For example, in the Scheme language completion should
include the "-", call-with-output-file. Depending on your filetype, this may
not provide the words you are expecting. Setting the
g:omni_syntax_use_iskeyword option to 0 will force the syntax plugin to break
on word characters. This can be controlled adding the following to your
vimrc:

let g:omni_syntax_use_iskeyword = 0

For plugin developers, the plugin exposes a public function OmniSyntaxList.
This function can be used to request a List of syntax items. When editing a
SQL file (:e syntax.sql) you can use the ":syntax list" command to see the
various groups and syntax items. For example:

syntax list

Yields data similar to this:
sqlOperator xxx some prior all like and any escape exists in is not

or intersect minus between distinct
links to Operator

sqlType xxx varbit varchar nvarchar bigint int uniqueidentifier
date money long tinyint unsigned xml text smalldate
double datetime nchar smallint numeric time bit char
varbinary binary smallmoney
image float integer timestamp real decimal

There are two syntax groups listed here: sqlOperator and sqlType. To retrieve
a List of syntax items you can call OmniSyntaxList a number of different
ways. To retrieve all syntax items regardless of syntax group:

echo OmniSyntaxList([])

To retrieve only the syntax items for the sqlOperator syntax group:
echo OmniSyntaxList(['sqlOperator'])

To retrieve all syntax items for both the sqlOperator and sqlType groups:
echo OmniSyntaxList(['sqlOperator', 'sqlType'])

A regular expression can also be used:
echo OmniSyntaxList(['sql\w\+'])

From within a plugin, you would typically assign the output to a List:
let myKeywords = []

insert.txt — 701

let myKeywords = OmniSyntaxList(['sqlKeyword'])

SQL ft-sql-omni

Completion for the SQL language includes statements, functions, keywords.
It will also dynamically complete tables, procedures, views and column lists
with data pulled directly from within a database. For detailed instructions
and a tutorial see omni-sql-completion .

The SQL completion plugin can be used in conjunction with other completion
plugins. For example, the PHP filetype has its own completion plugin.
Since PHP is often used to generate dynamic website by accessing a database,
the SQL completion plugin can also be enabled. This allows you to complete
PHP code and SQL code at the same time.

XML ft-xml-omni

Vim 7 provides a mechanism for context aware completion of XML files. It
depends on a special xml-omni-datafile and two commands: :XMLns and
:XMLent . Features are:

- after "<" complete the tag name, depending on context
- inside of a tag complete proper attributes
- when an attribute has a limited number of possible values help to complete

them
- complete names of entities (defined in xml-omni-datafile and in the

current file with "<!ENTITY" declarations)
- when used after "</" CTRL-X CTRL-O will close the last opened tag

Format of XML data file xml-omni-datafile

XML data files are stored in the "autoload/xml" directory in 'runtimepath'.
Vim distribution provides examples of data files in the
"$VIMRUNTIME/autoload/xml" directory. They have a meaningful name which will
be used in commands. It should be a unique name which will not create
conflicts. For example, the name xhtml10s.vim means it is the data file for
XHTML 1.0 Strict.

Each file contains a variable with a name like g:xmldata_xhtml10s . It is
a compound from two parts:

1. "g:xmldata_" general prefix, constant for all data files
2. "xhtml10s" the name of the file and the name of the described XML

dialect; it will be used as an argument for the :XMLns
command

Part two must be exactly the same as name of file.

The variable is a Dictionary . Keys are tag names and each value is a two
element List . The first element of the List is also a List with the names
of possible children. The second element is a Dictionary with the names of
attributes as keys and the possible values of attributes as values. Example:

let g:xmldata_crippled = {
\ "vimxmlentities": ["amp", "lt", "gt", "apos", "quot"],
\ 'vimxmlroot': ['tag1'],
\ 'tag1':
\ [['childoftag1a', 'childoftag1b'], {'attroftag1a': [],

insert.txt — 702

\ 'attroftag1b': ['valueofattr1', 'valueofattr2']}],
\ 'childoftag1a':
\ [[], {'attrofchild': ['attrofchild']}],
\ 'childoftag1b':
\ [['childoftag1a'], {'attrofchild': []}],
\ "vimxmltaginfo": {
\ 'tag1': ['Menu info', 'Long information visible in preview window']},
\ 'vimxmlattrinfo': {
\ 'attrofchild': ['Menu info', 'Long information visible in preview window']}}

This example would be put in the "autoload/xml/crippled.vim" file and could
help to write this file:

<tag1 attroftag1b="valueofattr1">
<childoftag1a attrofchild>

& <
</childoftag1a>
<childoftag1b attrofchild="5">

<childoftag1a>
> ' "

</childoftag1a>
</childoftag1b>

</tag1>

In the example four special elements are visible:

1. "vimxmlentities" - a special key with List containing entities of this XML
dialect.

2. If the list containing possible values of attributes has one element and
this element is equal to the name of the attribute this attribute will be
treated as boolean and inserted as 'attrname' and not as 'attrname="'

3. "vimxmltaginfo" - a special key with a Dictionary containing tag
names as keys and two element List as values, for additional menu info and
the long description.

4. "vimxmlattrinfo" - special key with Dictionary containing attribute names
as keys and two element List as values, for additional menu info and long
description.

Note: Tag names in the data file MUST not contain a namespace description.
Check xsl.vim for an example.
Note: All data and functions are publicly available as global
variables/functions and can be used for personal editing functions.

DTD -> Vim dtd2vim

On www is the script dtd2vim which parses DTD and creates an XML data file
for Vim XML omni completion.

dtd2vim: http://www.vim.org/scripts/script.php?script_id=1462

Check the beginning of that file for usage details.
The script requires perl and:

perlSGML: http://savannah.nongnu.org/projects/perlsgml

Commands

:XMLns {name} [{namespace}] :XMLns

insert.txt — 703

http://www.vim.org/scripts/script.php?script_id=1462
http://savannah.nongnu.org/projects/perlsgml

Vim has to know which data file should be used and with which namespace. For
loading of the data file and connecting data with the proper namespace use
:XMLns command. The first (obligatory) argument is the name of the data

(xhtml10s, xsl). The second argument is the code of namespace (h, xsl). When
used without a second argument the dialect will be used as default - without
namespace declaration. For example to use XML completion in .xsl files:

:XMLns xhtml10s
:XMLns xsl xsl

:XMLent {name} :XMLent

By default entities will be completed from the data file of the default
namespace. The XMLent command should be used in case when there is no default
namespace:

:XMLent xhtml10s

Usage

While used in this situation (after declarations from previous part, | is
cursor position):

<|

Will complete to an appropriate XHTML tag, and in this situation:

<xsl:|

Will complete to an appropriate XSL tag.

The script xmlcomplete.vim, provided through the autoload mechanism,
has the xmlcomplete#GetLastOpenTag() function which can be used in XML files
to get the name of the last open tag (b:unaryTagsStack has to be defined):

:echo xmlcomplete#GetLastOpenTag("b:unaryTagsStack")

==
8. Insert mode commands inserting

The following commands can be used to insert new text into the buffer. They
can all be undone and repeated with the "." command.

a
a Append text after the cursor [count] times. If the

cursor is in the first column of an empty line Insert
starts there. But not when 'virtualedit' is set!

A
A Append text at the end of the line [count] times.

For using "A" in Visual block mode see v_b_A .

<insert> or i insert <Insert>
i Insert text before the cursor [count] times.

When using CTRL-O in Insert mode i_CTRL-O the count

insert.txt — 704

is not supported.

I
I Insert text before the first non-blank in the line

[count] times.
When the 'H' flag is present in 'cpoptions' and the
line only contains blanks, insert start just before
the last blank.
For using "I" in Visual block mode see v_b_I .

gI
gI Insert text in column 1 [count] times.

gi
gi Insert text in the same position as where Insert mode

was stopped last time in the current buffer.
This uses the '^ mark. It's different from "`^i"
when the mark is past the end of the line.
The position is corrected for inserted/deleted lines,
but NOT for inserted/deleted characters.
When the :keepjumps command modifier is used the '^
mark won't be changed.

o
o Begin a new line below the cursor and insert text,

repeat [count] times.
When the '#' flag is in 'cpoptions' the count is
ignored.

O
O Begin a new line above the cursor and insert text,

repeat [count] times.
When the '#' flag is in 'cpoptions' the count is
ignored.

These commands are used to start inserting text. You can end insert mode with
<Esc>. See mode-ins-repl for the other special characters in Insert mode.
The effect of [count] takes place after Insert mode is exited.

When 'autoindent' is on, the indent for a new line is obtained from the
previous line. When 'smartindent' or 'cindent' is on, the indent for a line
is automatically adjusted for C programs.

'formatoptions' can be set to copy the comment leader when opening a new
line.

'textwidth' can be set to the maximum width for a line. When a line becomes
too long when appending characters a line break is automatically inserted.

==
9. Ex insert commands inserting-ex

:a :append
:{range}a[ppend][!] Insert several lines of text below the specified

line. If the {range} is missing, the text will be
inserted after the current line.
Adding [!] toggles 'autoindent' for the time this
command is executed.
This command is not supported in Vim9 script,

insert.txt — 705

because it is too easily confused with a variable
name.

:i :in :insert
:{range}i[nsert][!] Insert several lines of text above the specified

line. If the {range} is missing, the text will be
inserted before the current line.
Adding [!] toggles 'autoindent' for the time this
command is executed.
This command is not supported in Vim9 script,
because it is too easily confused with a variable
name.

These two commands will keep on asking for lines, until you type a line
containing only a ".". Watch out for lines starting with a backslash, see
line-continuation .

When in Ex mode (see -e) a backslash at the end of the line can be used to
insert a NUL character. To be able to have a line ending in a backslash use
two backslashes. This means that the number of backslashes is halved, but
only at the end of the line.

NOTE: These commands cannot be used with :global or :vglobal .
":append" and ":insert" don't work properly in between ":if" and
":endif", ":for" and ":endfor", ":while" and ":endwhile".

:start :startinsert
:star[tinsert][!] Start Insert mode just after executing this command.

Works like typing "i" in Normal mode. When the ! is
included it works like "A", append to the line.
Otherwise insertion starts at the cursor position.
Note that when using this command in a function or
script, the insertion only starts after the function
or script is finished.
This command does not work from :normal .

:stopi :stopinsert
:stopi[nsert] Stop Insert mode as soon as possible. Works like

typing <Esc> in Insert mode.
Can be used in an autocommand, example:

:au BufEnter scratch stopinsert

replacing-ex :startreplace
:startr[eplace][!] Start Replace mode just after executing this command.

Works just like typing "R" in Normal mode. When the
! is included it acts just like "$R" had been typed
(ie. begin replace mode at the end-of-line). Other-
wise replacement begins at the cursor position.
Note that when using this command in a function or
script that the replacement will only start after
the function or script is finished.

:startgreplace
:startg[replace][!] Just like :startreplace , but use Virtual Replace

mode, like with gR .

==
10. Inserting a file inserting-file

:r :re :read

insert.txt — 706

:r[ead] [++opt] [name]
Insert the file [name] (default: current file) below
the cursor.
See ++opt for the possible values of [++opt].

:{range}r[ead] [++opt] [name]
Insert the file [name] (default: current file) below
the specified line.
See ++opt for the possible values of [++opt].

:r! :read!
:[range]r[ead] [++opt] !{cmd}

Execute {cmd} and insert its standard output below
the cursor or the specified line. A temporary file is
used to store the output of the command which is then
read into the buffer. 'shellredir' is used to save
the output of the command, which can be set to include
stderr or not. {cmd} is executed like with ":!{cmd}",
any '!' is replaced with the previous command :! .
See ++opt for the possible values of [++opt].

These commands insert the contents of a file, or the output of a command,
into the buffer. They can be undone. They cannot be repeated with the "."
command. They work on a line basis, insertion starts below the line in which
the cursor is, or below the specified line. To insert text above the first
line use the command ":0r {name}".

After the ":read" command, the cursor is left on the first non-blank in the
first new line. Unless in Ex mode, then the cursor is left on the last new
line (sorry, this is Vi compatible).

If a file name is given with ":r", it becomes the alternate file. This can be
used, for example, when you want to edit that file instead: ":e! #". This can
be switched off by removing the 'a' flag from the 'cpoptions' option.

Of the [++opt] arguments one is specifically for ":read", the ++edit argument.
This is useful when the ":read" command is actually used to read a file into
the buffer as if editing that file. Use this command in an empty buffer:

:read ++edit filename
The effect is that the 'fileformat', 'fileencoding', 'bomb', etc. options are
set to what has been detected for "filename". Note that a single empty line
remains, you may want to delete it.

file-read
The 'fileformat' option sets the <EOL> style for a file:
'fileformat' characters name

"dos" <CR><NL> or <NL> DOS format
"unix" <NL> Unix format
"mac" <CR> Mac format

Previously 'textmode' was used. It is obsolete now.

If 'fileformat' is "dos", a <CR> in front of an <NL> is ignored and a CTRL-Z
at the end of the file is ignored.

If 'fileformat' is "mac", a <NL> in the file is internally represented by a
<CR>. This is to avoid confusion with a <NL> which is used to represent a
<NUL>. See CR-used-for-NL .

If the 'fileformats' option is not empty Vim tries to recognize the type of
<EOL> (see file-formats). However, the 'fileformat' option will not be

insert.txt — 707

changed, the detected format is only used while reading the file.
A similar thing happens with 'fileencodings'.

On non-Win32 systems the message "[dos format]" is shown if a file is read in
DOS format, to remind you that something unusual is done.
On Macintosh and Win32 the message "[unix format]" is shown if a file is read
in Unix format.
On non-Macintosh systems, the message "[mac format]" is shown if a file is
read in Mac format.

An example on how to use ":r !":
:r !uuencode binfile binfile

This command reads "binfile", uuencodes it and reads it into the current
buffer. Useful when you are editing e-mail and want to include a binary
file.

read-messages
When reading a file Vim will display a message with information about the read
file. In the table is an explanation for some of the items. The others are
self explanatory. Using the long or the short version depends on the
'shortmess' option.

long short meaning
[readonly] {RO} the file is write protected
[fifo/socket] using a stream
[fifo] using a fifo stream
[socket] using a socket stream
[CR missing] reading with "dos" 'fileformat' and a

NL without a preceding CR was found.
[NL found] reading with "mac" 'fileformat' and a

NL was found (could be "unix" format)
[long lines split] at least one line was split in two
[NOT converted] conversion from 'fileencoding' to

'encoding' was desired but not
possible

[converted] conversion from 'fileencoding' to
'encoding' done

[crypted] file was decrypted
[READ ERRORS] not all of the file could be read

insert.txt — 708

change.txt For Vim version 9.1. Last change: 2023 Dec 19

VIM REFERENCE MANUAL by Bram Moolenaar

This file describes commands that delete or change text. In this context,
changing text means deleting the text and replacing it with other text using
one command. You can undo all of these commands. You can repeat the non-Ex
commands with the "." command.

1. Deleting text deleting
2. Delete and insert delete-insert
3. Simple changes simple-change changing
4. Complex changes complex-change

4.1 Filter commands filter
4.2 Substitute :substitute
4.3 Search and replace search-replace
4.4 Changing tabs change-tabs

5. Copying and moving text copy-move
6. Formatting text formatting
7. Sorting text sorting

For inserting text see insert.txt .

==
1. Deleting text deleting E470

["x] or x dl
["x]x Delete [count] characters under and after the cursor

[into register x] (not linewise). Does the same as
"dl".
The key does not take a [count]. Instead, it
deletes the last character of the count.
See :fixdel if the key does not do what you
want. See 'whichwrap' for deleting a line break
(join lines).

X dh
["x]X Delete [count] characters before the cursor [into

register x] (not linewise). Does the same as "dh".
Also see 'whichwrap' .

d
["x]d{motion} Delete text that {motion} moves over [into register

x]. See below for exceptions.

dd
["x]dd Delete [count] lines [into register x] linewise .

D
["x]D Delete the characters under the cursor until the end

of the line and [count]-1 more lines [into register
x]; synonym for "d$".
(not linewise)
When the '#' flag is in 'cpoptions' the count is
ignored.

{Visual}["x]x or v_x v_d v_
{Visual}["x]d or

change.txt — 709

{Visual}["x] Delete the highlighted text [into register x] (for
{Visual} see Visual-mode).

{Visual}["x]CTRL-H or v_CTRL-H v_<BS>
{Visual}["x]<BS> When in Select mode: Delete the highlighted text [into

register x].

{Visual}["x]X or v_X v_D v_b_D
{Visual}["x]D Delete the highlighted lines [into register x] (for

{Visual} see Visual-mode). In Visual block mode,
"D" deletes the highlighted text plus all text until
the end of the line.

:d :de :del :delete :dl :dp
:[range]d[elete] [x] Delete [range] lines (default: current line) [into

register x].
Note these weird abbreviations:

:dl delete and list
:dell idem
:delel idem
:deletl idem
:deletel idem
:dp delete and print
:dep idem
:delp idem
:delep idem
:deletp idem
:deletep idem

:[range]d[elete] [x] {count}
Delete {count} lines, starting with [range]
(default: current line cmdline-ranges) [into
register x].

These commands delete text. You can repeat them with the `.` command
(except `:d`) and undo them. Use Visual mode to delete blocks of text. See
registers for an explanation of registers.

An exception for the d{motion} command: If the motion is not linewise, the
start and end of the motion are not in the same line, and there are only
blanks before the start and there are no non-blanks after the end of the
motion, the delete becomes linewise. This means that the delete also removes
the line of blanks that you might expect to remain. Use the o_v operator to
force the motion to be characterwise.

Trying to delete an empty region of text (e.g., "d0" in the first column)
is an error when 'cpoptions' includes the 'E' flag.

J
J Join [count] lines, with a minimum of two lines.

Remove the indent and insert up to two spaces (see
below). Fails when on the last line of the buffer.
If [count] is too big it is reduced to the number of
lines available.

v_J
{Visual}J Join the highlighted lines, with a minimum of two

lines. Remove the indent and insert up to two spaces
(see below).

change.txt — 710

gJ
gJ Join [count] lines, with a minimum of two lines.

Don't insert or remove any spaces.

v_gJ
{Visual}gJ Join the highlighted lines, with a minimum of two

lines. Don't insert or remove any spaces.

:j :join
:[range]j[oin][!] [flags]

Join [range] lines. Same as "J", except with [!]
the join does not insert or delete any spaces.
If a [range] has equal start and end values, this
command does nothing. The default behavior is to
join the current line with the line below it.
See ex-flags for [flags].

:[range]j[oin][!] {count} [flags]
Join {count} lines, starting with [range] (default:
current line cmdline-ranges). Same as "J", except
with [!] the join does not insert or delete any
spaces.
See ex-flags for [flags].

These commands delete the <EOL> between lines. This has the effect of joining
multiple lines into one line. You can repeat these commands (except `:j`) and
undo them.

These commands, except "gJ", insert one space in place of the <EOL> unless
there is trailing white space or the next line starts with a ')'. These
commands, except "gJ", delete any leading white space on the next line. If
the 'joinspaces' option is on, these commands insert two spaces after a '.',
'!' or '?' (but if 'cpoptions' includes the 'j' flag, they insert two spaces
only after a '.').
The 'B' and 'M' flags in 'formatoptions' change the behavior for inserting
spaces before and after a multibyte character fo-table .

The '[mark is set at the end of the first line that was joined, '] at the end
of the resulting line.

==
2. Delete and insert delete-insert replacing

R
R Enter Replace mode: Each character you type replaces

an existing character, starting with the character
under the cursor. Repeat the entered text [count]-1
times. See Replace-mode for more details.

gR
gR Enter Virtual Replace mode: Each character you type

replaces existing characters in screen space. So a
<Tab> may replace several characters at once.
Repeat the entered text [count]-1 times. See
Virtual-Replace-mode for more details.

c
["x]c{motion} Delete {motion} text [into register x] and start

insert. When 'cpoptions' includes the 'E' flag and

change.txt — 711

there is no text to delete (e.g., with "cTx" when the
cursor is just after an 'x'), an error occurs and
insert mode does not start (this is Vi compatible).
When 'cpoptions' does not include the 'E' flag, the
"c" command always starts insert mode, even if there
is no text to delete.

cc
["x]cc Delete [count] lines [into register x] and start

insert linewise . If 'autoindent' is on, preserve
the indent of the first line.

C
["x]C Delete from the cursor position to the end of the

line and [count]-1 more lines [into register x], and
start insert. Synonym for c$ (not linewise).

s
["x]s Delete [count] characters [into register x] and start

insert (s stands for Substitute). Synonym for "cl"
(not linewise).

S
["x]S Delete [count] lines [into register x] and start

insert. Synonym for "cc" linewise .

{Visual}["x]c or v_c v_s
{Visual}["x]s Delete the highlighted text [into register x] and

start insert (for {Visual} see Visual-mode).

v_r
{Visual}r{char} Replace all selected characters by {char}.

CTRL-C will be inserted literally.

v_C
{Visual}["x]C Delete the highlighted lines [into register x] and

start insert. In Visual block mode it works
differently v_b_C .

v_S
{Visual}["x]S Delete the highlighted lines [into register x] and

start insert (for {Visual} see Visual-mode).
v_R

{Visual}["x]R Currently just like {Visual}["x]S. In a next version
it might work differently.

Notes:
- You can end Insert and Replace mode with <Esc>.
- See the section "Insert and Replace mode" mode-ins-repl for the other

special characters in these modes.
- The effect of [count] takes place after Vim exits Insert or Replace mode.
- When the 'cpoptions' option contains '$' and the change is within one line,

Vim continues to show the text to be deleted and puts a '$' at the last
deleted character.

See registers for an explanation of registers.

Replace mode is just like Insert mode, except that every character you enter
deletes one character. If you reach the end of a line, Vim appends any
further characters (just like Insert mode). In Replace mode, the backspace
key restores the original text (if there was any). (See section "Insert and

change.txt — 712

Replace mode" mode-ins-repl).

cw cW
Special case: When the cursor is in a word, "cw" and "cW" do not include the
white space after a word, they only change up to the end of the word. This is
because Vim interprets "cw" as change-word, and a word does not include the
following white space.
{Vi: "cw" when on a blank followed by other blanks changes only the first
blank; this is probably a bug, because "dw" deletes all the blanks; use the
'w' flag in 'cpoptions' to make it work like Vi anyway}

If you prefer "cw" to include the space after a word, use this mapping:
:map cw dwi

Or use "caw" (see aw).

:c :ch :change
:{range}c[hange][!] Replace lines of text with some different text.

Type a line containing only "." to stop replacing.
Without {range}, this command changes only the current
line.
Adding [!] toggles 'autoindent' for the time this
command is executed.
This command is not supported in Vim9 script,
because it is too easily confused with a variable
name.

==
3. Simple changes simple-change

r
r{char} Replace the character under the cursor with {char}.

If {char} is a <CR> or <NL>, a line break replaces the
character. To replace with a real <CR>, use CTRL-V
<CR>. CTRL-V <NL> replaces with a <Nul>.

If {char} is CTRL-E or CTRL-Y the character from the
line below or above is used, just like with i_CTRL-E
and i_CTRL-Y . This also works with a count, thus
`10r<C-E>` copies 10 characters from the line below.

If you give a [count], Vim replaces [count] characters
with [count] {char}s. When {char} is a <CR> or <NL>,
however, Vim inserts only one <CR>: "5r<CR>" replaces
five characters with a single line break.
When {char} is a <CR> or <NL>, Vim performs
autoindenting. This works just like deleting the
characters that are replaced and then doing
"i<CR><Esc>".
{char} can be entered as a digraph digraph-arg .
:lmap mappings apply to {char}. The CTRL-^ command

in Insert mode can be used to switch this on/off
i_CTRL-^ . See utf-8-char-arg about using

composing characters when 'encoding' is Unicode.

gr
gr{char} Replace the virtual characters under the cursor with

{char}. This replaces in screen space, not file
space. See gR and Virtual-Replace-mode for more
details. As with r a count may be given.
{char} can be entered like with r , but characters

change.txt — 713

that have a special meaning in Insert mode, such as
most CTRL-keys, cannot be used.

digraph-arg
The argument for Normal mode commands like r and t is a single character.
When 'cpo' doesn't contain the 'D' flag, this character can also be entered
like digraphs . First type CTRL-K and then the two digraph characters.
{not available when compiled without the |+digraphs| feature}

case
The following commands change the case of letters. The currently active
locale is used. See :language . The LC_CTYPE value matters here.

~
~ 'notildeop' option: Switch case of the character

under the cursor and move the cursor to the right.
If a [count] is given, do that many characters.

~{motion} 'tildeop' option: switch case of {motion} text.

g~
g~{motion} Switch case of {motion} text.

g~g~ g~g~ g~~
g~~ Switch case of current line.

v_~
{Visual}~ Switch case of highlighted text (for {Visual} see

Visual-mode).

v_U
{Visual}U Make highlighted text uppercase (for {Visual} see

Visual-mode).

gU uppercase
gU{motion} Make {motion} text uppercase.

Example:
:map! <C-F> <Esc>gUiw`]a

This works in Insert mode: press CTRL-F to make the
word before the cursor uppercase. Handy to type
words in lowercase and then make them uppercase.

gUgU gUgU gUU
gUU Make current line uppercase.

v_u
{Visual}u Make highlighted text lowercase (for {Visual} see

Visual-mode).

gu lowercase
gu{motion} Make {motion} text lowercase.

gugu gugu guu
guu Make current line lowercase.

g? rot13
g?{motion} Rot13 encode {motion} text.

v_g?

change.txt — 714

{Visual}g? Rot13 encode the highlighted text (for {Visual} see
Visual-mode).

g?g? g?g? g??
g?? Rot13 encode current line.

To turn one line into title caps, make every first letter of a word
uppercase:

:s/\v<(.)(\w*)/\u\1\L\2/g

Adding and subtracting
CTRL-A

CTRL-A Add [count] to the number or alphabetic character at
or after the cursor.

v_CTRL-A
{Visual}CTRL-A Add [count] to the number or alphabetic character in

the highlighted text.

v_g_CTRL-A
{Visual}g CTRL-A Add [count] to the number or alphabetic character in

the highlighted text. If several lines are
highlighted, each one will be incremented by an
additional [count] (so effectively creating a
[count] incrementing sequence).
For Example, if you have this list of numbers:

1.
1.
1.
1.

Move to the second "1." and Visually select three
lines, pressing g CTRL-A results in:

1.
2.
3.
4.

CTRL-X
CTRL-X Subtract [count] from the number or alphabetic

character at or after the cursor.

v_CTRL-X
{Visual}CTRL-X Subtract [count] from the number or alphabetic

character in the highlighted text.

On MS-Windows, this is mapped to cut Visual text
dos-standard-mappings . If you want to disable the

mapping, use this:
silent! vunmap <C-X>

v_g_CTRL-X
{Visual}g CTRL-X Subtract [count] from the number or alphabetic

character in the highlighted text. If several lines
are highlighted, each value will be decremented by an
additional [count] (so effectively creating a [count]
decrementing sequence).

The CTRL-A and CTRL-X commands can work for:
- signed and unsigned decimal numbers

change.txt — 715

- unsigned binary, octal and hexadecimal numbers
- alphabetic characters

This depends on the 'nrformats' option:
- When 'nrformats' includes "bin", Vim assumes numbers starting with '0b' or

'0B' are binary.
- When 'nrformats' includes "octal", Vim considers numbers starting with a '0'

to be octal, unless the number includes a '8' or '9'. Other numbers are
decimal and may have a preceding minus sign.
If the cursor is on a number, the commands apply to that number; otherwise
Vim uses the number to the right of the cursor.

- When 'nrformats' includes "hex", Vim assumes numbers starting with '0x' or
'0X' are hexadecimal. The case of the rightmost letter in the number
determines the case of the resulting hexadecimal number. If there is no
letter in the current number, Vim uses the previously detected case.

- When 'nrformats' includes "alpha", Vim will change the alphabetic character
under or after the cursor. This is useful to make lists with an alphabetic
index.

For decimals a leading negative sign is considered for incrementing/
decrementing, for binary, octal and hex values, it won't be considered. To
ignore the sign Visually select the number before using CTRL-A or CTRL-X.

For numbers with leading zeros (including all octal and hexadecimal numbers),
Vim preserves the number of characters in the number when possible. CTRL-A on
"0077" results in "0100", CTRL-X on "0x100" results in "0x0ff".
There is one exception: When a number that starts with a zero is found not to
be octal (it contains a '8' or '9'), but 'nrformats' does include "octal",
leading zeros are removed to avoid that the result may be recognized as an
octal number.

Note that when 'nrformats' includes "octal", decimal numbers with leading
zeros cause mistakes, because they can be confused with octal numbers.

Note similarly, when 'nrformats' includes both "bin" and "hex", binary numbers
with a leading '0x' or '0X' can be interpreted as hexadecimal rather than
binary since '0b' are valid hexadecimal digits. CTRL-A on "0x0b11" results in
"0x0b12", not "0x0b100".
When 'nrformats' includes "bin" and doesn't include "hex", CTRL-A on "0b11" in
"0x0b11" results in "0x0b100".

When the number under the cursor is too big to fit into 32 or 64 bit
(depending on how Vim was build), it will be rounded off to the nearest number
that can be represented, and the addition/subtraction is skipped. E.g. with
64 bit support using CTRL-X on 18446744073709551616 results in
18446744073709551615. Same for larger numbers, such as 18446744073709551618.

The CTRL-A command is very useful in a macro. Example: Use the following
steps to make a numbered list.

1. Create the first list entry, make sure it starts with a number.
2. qa - start recording into register 'a'
3. Y - yank the entry
4. p - put a copy of the entry below the first one
5. CTRL-A - increment the number
6. q - stop recording
7. <count>@a - repeat the yank, put and increment <count> times

SHIFTING LINES LEFT OR RIGHT shift-left-right

change.txt — 716

<
<{motion} Shift {motion} lines one 'shiftwidth' leftwards.

If the 'vartabstop' feature is enabled, and the
'shiftwidth' option is set to zero, the amount of
indent is calculated at the first non-blank character
in the line.

<<
<< Shift [count] lines one 'shiftwidth' leftwards.

v_<
{Visual}[count]< Shift the highlighted lines [count] 'shiftwidth'

leftwards (for {Visual} see Visual-mode).

>
>{motion} Shift {motion} lines one 'shiftwidth' rightwards.

If the 'vartabstop' feature is enabled, and the
'shiftwidth' option is set to zero, the amount of
indent is calculated at the first non-blank character
in the line.

>>
>> Shift [count] lines one 'shiftwidth' rightwards.

v_>
{Visual}[count]> Shift the highlighted lines [count] 'shiftwidth'

rightwards (for {Visual} see Visual-mode).

:<
:[range]< Shift [range] lines one 'shiftwidth' left. Repeat '<'

for shifting multiple 'shiftwidth's.

:[range]< {count} Shift {count} lines one 'shiftwidth' left, starting
with [range] (default current line cmdline-ranges).
Repeat '<' for shifting multiple 'shiftwidth's.

:[range]le[ft] [indent] left align lines in [range]. Sets the indent in the
lines to [indent] (default 0).

:>
:[range]> [flags] Shift [range] lines one 'shiftwidth' right.

Repeat '>' for shifting multiple 'shiftwidth's.
See ex-flags for [flags].

:[range]> {count} [flags]
Shift {count} lines one 'shiftwidth' right, starting
with [range] (default current line cmdline-ranges).
Repeat '>' for shifting multiple 'shiftwidth's.
See ex-flags for [flags].

The ">" and "<" commands are handy for changing the indentation within
programs. Use the 'shiftwidth' option to set the size of the white space
which these commands insert or delete. Normally the 'shiftwidth' option is 8,
but you can set it to, say, 3 to make smaller indents. The shift leftwards
stops when there is no indent. The shift right does not affect empty lines.

If the 'shiftround' option is on, the indent is rounded to a multiple of
'shiftwidth'.

change.txt — 717

If the 'smartindent' option is on, or 'cindent' is on and 'cinkeys' contains
'#' with a zero value, shift right does not affect lines starting with '#'
(these are supposed to be C preprocessor lines that must stay in column 1).
This can be changed with the 'cino' option, see cino-# .

When the 'expandtab' option is off (this is the default) Vim uses <Tab>s as
much as possible to make the indent. You can use ">><<" to replace an indent
made out of spaces with the same indent made out of <Tab>s (and a few spaces
if necessary). If the 'expandtab' option is on, Vim uses only spaces. Then
you can use ">><<" to replace <Tab>s in the indent by spaces (or use
`:retab!`).

To move a line several 'shiftwidth's, use Visual mode or the `:` commands.
For example:

Vjj4> move three lines 4 indents to the right
:<<< move current line 3 indents to the left
:>> 5 move 5 lines 2 indents to the right
:5>> move line 5 2 indents to the right

==
4. Complex changes complex-change

4.1 Filter commands filter

A filter is a program that accepts text at standard input, changes it in some
way, and sends it to standard output. You can use the commands below to send
some text through a filter, so that it is replaced by the filter output.
Examples of filters are "sort", which sorts lines alphabetically, and
"indent", which formats C program files (you need a version of indent that
works like a filter; not all versions do). The 'shell' option specifies the
shell Vim uses to execute the filter command (See also the 'shelltype'
option). You can repeat filter commands with ".". Vim does not recognize a
comment (starting with '"') after the `:!` command.

!
!{motion}{filter} Filter {motion} text lines through the external

program {filter}.

!!
!!{filter} Filter [count] lines through the external program

{filter}.

v_!
{Visual}!{filter} Filter the highlighted lines through the external

program {filter} (for {Visual} see Visual-mode).

:{range}![!]{filter} [!][arg] :range!
Filter {range} lines through the external program
{filter}. Vim replaces the optional bangs with the
latest given command and appends the optional [arg].
Vim saves the output of the filter command in a
temporary file and then reads the file into the buffer
tempfile . Vim uses the 'shellredir' option to

redirect the filter output to the temporary file.
However, if the 'shelltemp' option is off then pipes
are used when possible (on Unix).
When the 'R' flag is included in 'cpoptions' marks in
the filtered lines are deleted, unless the
:keepmarks command is used. Example:

:keepmarks '<,'>!sort

change.txt — 718

When the number of lines after filtering is less than
before, marks in the missing lines are deleted anyway.

=
={motion} Filter {motion} lines through the external program

given with the 'equalprg' option. When the 'equalprg'
option is empty (this is the default), use the
internal formatting function C-indenting and
'lisp' . But when 'indentexpr' is not empty, it will

be used instead indent-expression . When Vim was
compiled without internal formatting then the "indent"
program is used as a last resort.

==
== Filter [count] lines like with ={motion}.

v_=
{Visual}= Filter the highlighted lines like with ={motion}.

tempfile setuid
Vim uses temporary files for filtering, generating diffs and also for
tempname(). For Unix, the file will be in a private directory (only
accessible by the current user) to avoid security problems (e.g., a symlink
attack or other people reading your file). When Vim exits the directory and
all files in it are deleted. When Vim has the setuid bit set this may cause
problems, the temp file is owned by the setuid user but the filter command
probably runs as the original user.
Directory for temporary files is created in the first of these directories
that works:

Unix: $TMPDIR, /tmp, current-dir, $HOME.
Windows: $TMP, $TEMP, c:\TMP, c:\TEMP

For MS-Windows the GetTempFileName() system function is used.
For other systems the tmpnam() library function is used.

4.2 Substitute :substitute
:s :su

:[range]s[ubstitute]/{pattern}/{string}/[flags] [count]
For each line in [range] replace a match of {pattern}
with {string}.
For the {pattern} see pattern .
{string} can be a literal string, or something
special; see sub-replace-special .
When [range] and [count] are omitted, replace in the
current line only. When [count] is given, replace in
[count] lines, starting with the last line in [range].
When [range] is omitted start in the current line.

E939 E1510
[count] must be a positive number (max 2147483647)
Also see cmdline-ranges .

See :s_flags for [flags].
The delimiter doesn't need to be /, see
pattern-delimiter .

:[range]s[ubstitute] [flags] [count]
:[range]&[&][flags] [count] :&

Repeat last :substitute with same search pattern and

change.txt — 719

substitute string, but without the same flags. You
may add [flags], see :s_flags .
Note that after `:substitute` the '&' flag can't be
used, it's recognized as a pattern separator.
The space between `:substitute` and the 'c', 'g',
'i', 'I' and 'r' flags isn't required, but in scripts
it's a good idea to keep it to avoid confusion.
Also see the two and three letter commands to repeat
:substitute below :substitute-repeat .

:[range]~[&][flags] [count] :~
Repeat last substitute with same substitute string
but with last used search pattern. This is like
`:&r`. See :s_flags for [flags].

&
& Synonym for `:s` (repeat last substitute). Note

that the flags are not remembered, thus it might
actually work differently. You can use `:&&` to keep
the flags.

g&
g& Synonym for `:%s//~/&` (repeat last substitute with

last search pattern on all lines with the same flags).
For example, when you first do a substitution with
`:s/pattern/repl/flags` and then `/search` for
something else, `g&` will do `:%s/search/repl/flags`.
Mnemonic: global substitute.

:snomagic :sno
:[range]sno[magic] ... Same as `:substitute`, but always use 'nomagic'.

:smagic :sm
:[range]sm[agic] ... Same as `:substitute`, but always use 'magic'.

:s_flags
The flags that you can use for the substitute commands:

:&&
[&] Must be the first one: Keep the flags from the previous substitute

command. Examples:
:&&
:s/this/that/&

Note that `:s` and `:&` don't keep the flags.

[c] Confirm each substitution. Vim highlights the matching string (with
hl-IncSearch). You can type: :s_c

'y' to substitute this match
'l' to substitute this match and then quit ("last")
'n' to skip this match
<Esc> to quit substituting
'a' to substitute this and all remaining matches
'q' to quit substituting
CTRL-E to scroll the screen up
CTRL-Y to scroll the screen down

If the 'edcompatible' option is on, Vim remembers the [c] flag and
toggles it each time you use it, but resets it when you give a new
search pattern.

:s_e

change.txt — 720

[e] When the search pattern fails, do not issue an error message and, in
particular, continue in maps as if no error occurred. This is most
useful to prevent the "No match" error from breaking a mapping. Vim
does not suppress the following error messages, however:

Regular expressions can't be delimited by letters
\ should be followed by /, ? or &
No previous substitute regular expression
Trailing characters
Interrupted

:s_g
[g] Replace all occurrences in the line. Without this argument,

replacement occurs only for the first occurrence in each line. If
the 'edcompatible' option is on, Vim remembers this flag and toggles
it each time you use it, but resets it when you give a new search
pattern. If the 'gdefault' option is on, this flag is on by default
and the [g] argument switches it off.

:s_i
[i] Ignore case for the pattern. The 'ignorecase' and 'smartcase' options

are not used.

:s_I
[I] Don't ignore case for the pattern. The 'ignorecase' and 'smartcase'

options are not used.

:s_n
[n] Report the number of matches, do not actually substitute. The [c]

flag is ignored. The matches are reported as if 'report' is zero.
Useful to count-items .
If \= sub-replace-expression is used, the expression will be
evaluated in the sandbox at every match.

[p] Print the line containing the last substitute. :s_p

[#] Like [p] and prepend the line number. :s_#

[l] Like [p] but print the text like :list . :s_l

:s_r
[r] Only useful in combination with `:&` or `:s` without arguments. `:&r`

works the same way as `:~`: When the search pattern is empty, use the
previously used search pattern instead of the search pattern from the
last substitute or `:global`. If the last command that did a search
was a substitute or `:global`, there is no effect. If the last
command was a search command such as "/", use the pattern from that
command.
For `:s` with an argument this already happens:

:s/blue/red/
/green
:s//red/ or :~ or :&r

The last commands will replace "green" with "red".
:s/blue/red/
/green
:&

The last command will replace "blue" with "red".

Note that there is no flag to change the "magicness" of the pattern. A
different command is used instead, or you can use /\v and friends. The
reason is that the flags can only be found by skipping the pattern, and in

change.txt — 721

order to skip the pattern the "magicness" must be known. Catch 22!

If the {pattern} for the substitute command is empty, the command uses the
pattern from the last substitute or `:global` command. If there is none, but
there is a previous search pattern, that one is used. With the [r] flag, the
command uses the pattern from the last substitute, `:global`, or search
command.

If the {string} is omitted the substitute is done as if it's empty. Thus the
matched pattern is deleted. The separator after {pattern} can also be left
out then. Example:

:%s/TESTING
This deletes "TESTING" from all lines, but only one per line.

E1270
For compatibility with Vi these two exceptions are allowed in legacy script:
"\/{string}/" and "\?{string}?" do the same as "//{string}/r".
"\&{string}&" does the same as "//{string}/".

pattern-delimiter E146 E1241 E1242
Instead of the '/' which surrounds the pattern and replacement string, you can
use another single-byte character. This is useful if you want to include a
'/' in the search pattern or replacement string. Example:

:s+/+//+

You can use most characters, but not an alphanumeric character, '\', '"' or
'|'. In Vim9 script you should not use '#' because it may be recognized as
the start of a comment.

For the definition of a pattern, see pattern . In Visual block mode, use
/\%V in the pattern to have the substitute work in the block only.

Otherwise it works on whole lines anyway.

sub-replace-special :s\=
When the {string} starts with "\=" it is evaluated as an expression, see
sub-replace-expression . You can use that for complex replacement or special

characters.

The substitution is limited in recursion to 4 levels. E1290

Otherwise these characters in {string} have a special meaning:
:s%

When {string} is equal to "%" and '/' is included with the 'cpoptions' option,
then the {string} of the previous substitute command is used, see cpo-/

magic nomagic action
& \& replaced with the whole matched pattern s/\&

\& & replaced with &
\0 replaced with the whole matched pattern \0 s/\0
\1 replaced with the matched pattern in the first

pair of () s/\1
\2 replaced with the matched pattern in the second

pair of () s/\2
.. .. s/\3
\9 replaced with the matched pattern in the ninth

pair of () s/\9
~ \~ replaced with the {string} of the previous

substitute s~
\~ ~ replaced with ~ s/\~

\u next character made uppercase s/\u
\U following characters made uppercase, until \E s/\U
\l next character made lowercase s/\l

change.txt — 722

\L following characters made lowercase, until \E s/\L
\e end of \u, \U, \l and \L (NOTE: not <Esc>!) s/\e
\E end of \u, \U, \l and \L s/\E
<CR> split line in two at this point

(Type the <CR> as CTRL-V <Enter>) s<CR>
\r idem s/\r
\<CR> insert a carriage-return (CTRL-M)

(Type the <CR> as CTRL-V <Enter>) s/\<CR>
\n insert a <NL> (<NUL> in the file)

(does NOT break the line) s/\n
\b insert a <BS> s/\b
\t insert a <Tab> s/\t
\\ insert a single backslash s/\\
\x where x is any character not mentioned above:

Reserved for future expansion

The special meaning is also used inside the third argument {sub} of
the substitute() function with the following exceptions:

- A % inserts a percent literally without regard to 'cpoptions'.
- magic is always set without regard to 'magic'.
- A ~ inserts a tilde literally.
- <CR> and \r inserts a carriage-return (CTRL-M).
- \<CR> does not have a special meaning. It's just one of \x.

Examples:
:s/a\|b/xxx\0xxx/g modifies "a b" to "xxxaxxx xxxbxxx"
:s/\([abc]\)\([efg]\)/\2\1/g modifies "af fa bg" to "fa fa gb"
:s/abcde/abc^Mde/ modifies "abcde" to "abc", "de" (two lines)
:s/$/\^M/ modifies "abcde" to "abcde^M"
:s/\w\+/\u\0/g modifies "bla bla" to "Bla Bla"
:s/\w\+/\L\u\0/g modifies "BLA bla" to "Bla Bla"

Note: "\L\u" can be used to capitalize the first letter of a word. This is
not compatible with Vi and older versions of Vim, where the "\u" would cancel
out the "\L". Same for "\U\l".

Note: In previous versions CTRL-V was handled in a special way. Since this is
not Vi compatible, this was removed. Use a backslash instead.

command text result
:s/aa/a^Ma/ aa a<line-break>a
:s/aa/a\^Ma/ aa a^Ma
:s/aa/a\\^Ma/ aa a\<line-break>a

(you need to type CTRL-V <CR> to get a ^M here)

The numbering of "\1", "\2" etc. is done based on which "\(" comes first in
the pattern (going left to right). When a parentheses group matches several
times, the last one will be used for "\1", "\2", etc. Example:

:s/\(\(a[a-d] \)*\)/\2/ modifies "aa ab x" to "ab x"
The "\2" is for "\(a[a-d] \)". At first it matches "aa ", secondly "ab ".

When using parentheses in combination with '|', like in \([ab]\)\|\([cd]\),
either the first or second pattern in parentheses did not match, so either
\1 or \2 is empty. Example:

:s/\([ab]\)\|\([cd]\)/\1x/g modifies "a b c d" to "ax bx x x"

:sc :sce :scg :sci :scI :scl :scp :sg :sgc
:sge :sgi :sgI :sgl :sgn :sgp :sgr :sI :si

change.txt — 723

:sic :sIc :sie :sIe :sIg :sIl :sin :sIn :sIp
:sip :sIr :sir :sr :src :srg :sri :srI :srl
:srn :srp :substitute-repeat

2-letter and 3-letter :substitute commands

These commands repeat the previous `:substitute` command with the given flags.
The first letter is always "s", followed by one or two of the possible flag
characters. For example `:sce` works like `:s///ce`. The table lists the
possible combinations, not all flags are possible, because the command is
short for another command.

List of :substitute commands
| c e g i I n p l r
| c :sc :sce :scg :sci :scI :scn :scp :scl
| e
| g :sgc :sge :sg :sgi :sgI :sgn :sgp :sgl :sgr
| i :sic :sie :si :siI :sin :sip :sir
| I :sIc :sIe :sIg :sIi :sI :sIn :sIp :sIl :sIr
| n
| p
| l
| r :src :srg :sri :srI :srn :srp :srl :sr

Exceptions:
:scr is `:scriptnames`
:se is `:set`
:sig is `:sign`
:sil is `:silent`
:sn is `:snext`
:sp is `:split`
:sl is `:sleep`
:sre is `:srewind`

Substitute with an expression sub-replace-expression
sub-replace-\= s/\=

When the substitute string starts with "\=" the remainder is interpreted as an
expression.

The special meaning for characters as mentioned at sub-replace-special does
not apply except for "<CR>". A <NL> character is used as a line break, you
can get one with a double-quote string: "\n". Prepend a backslash to get a
real <NL> character (which will be a NUL in the file).

The "\=" notation can also be used inside the third argument {sub} of
substitute() function. In this case, the special meaning for characters as

mentioned at sub-replace-special does not apply at all. Especially, <CR> and
<NL> are interpreted not as a line break but as a carriage-return and a
new-line respectively.

When the result is a List then the items are joined with separating line
breaks. Thus each item becomes a line, except that they can contain line
breaks themselves.

The submatch() function can be used to obtain matched text. The whole
matched text can be accessed with "submatch(0)". The text matched with the
first pair of () with "submatch(1)". Likewise for further sub-matches in ().

Be careful: The separation character must not appear in the expression!
Consider using a character like "@" or ":". There is no problem if the result

change.txt — 724

of the expression contains the separation character.

Examples:
:s@\n@\="\r" .. expand("$HOME") .. "\r"@

This replaces an end-of-line with a new line containing the value of $HOME.

s/E/\="\<Char-0x20ac>"/g
This replaces each 'E' character with a euro sign. Read more in <Char-> .

4.3 Search and replace search-replace

:pro :promptfind
:promptf[ind] [string]

Put up a Search dialog. When [string] is given, it is
used as the initial search string.
{only for Win32, Motif and GTK GUI}

:promptr :promptrepl
:promptr[epl] [string]

Put up a Search/Replace dialog. When [string] is
given, it is used as the initial search string.
{only for Win32, Motif and GTK GUI}

4.4 Changing tabs change-tabs
:ret :retab :retab!

:[range]ret[ab][!] [new_tabstop]
Replace all sequences of white-space containing a
<Tab> with new strings of white-space using the new
tabstop value given. If you do not specify a new
tabstop size or it is zero, Vim uses the current value
of 'tabstop'.
The current value of 'tabstop' is always used to
compute the width of existing tabs.
With !, Vim also replaces strings of only normal
spaces with tabs where appropriate.
With 'expandtab' on, Vim replaces all tabs with the
appropriate number of spaces.
This command sets 'tabstop' to the new value given,
and if performed on the whole file, which is default,
should not make any visible change.
Careful: This command modifies any <Tab> characters
inside of strings in a C program. Use "\t" to avoid
this (that's a good habit anyway).
`:retab!` may also change a sequence of spaces by
<Tab> characters, which can mess up a printf().
If the +vartabs feature is enabled then a list of
tab widths separated by commas may be used in place of
a single tabstop. Each value in the list represents
the width of one tabstop, except the final value which
applies to all following tabstops.

retab-example
Example for using autocommands and ":retab" to edit a file which is stored
with tabstops at 8 but edited with tabstops set at 4. Warning: white space
inside of strings can change! Also see 'softtabstop' option.

:auto BufReadPost *.xx retab! 4
:auto BufWritePre *.xx retab! 8

change.txt — 725

:auto BufWritePost *.xx retab! 4
:auto BufNewFile *.xx set ts=4

==
5. Copying and moving text copy-move

quote
"{register} Use {register} for next delete, yank or put. Use

an uppercase character to append with delete and yank.
Registers ".", "%", "#" and ":" only work with put.

:reg :registers
:reg[isters] Display the type and contents of all numbered and

named registers. If a register is written to for
:redir it will not be listed.

Type can be one of:
"c" for characterwise text
"l" for linewise text
"b" for blockwise-visual text

:reg[isters] {arg} Display the contents of the numbered and named
registers that are mentioned in {arg}. For example:

:reg 1a
to display registers '1' and 'a'. Spaces are allowed
in {arg}.

:di :dis :display
:di[splay] [arg] Same as :registers.

y yank
["x]y{motion} Yank {motion} text [into register x]. When no

characters are to be yanked (e.g., "y0" in column 1),
this is an error when 'cpoptions' includes the 'E'
flag.

yy
["x]yy Yank [count] lines [into register x] linewise .

Y
["x]Y yank [count] lines [into register x] (synonym for

yy, linewise). If you like "Y" to work from the
cursor to the end of line (which is more logical,
but not Vi-compatible) use ":map Y y$".

zy
["x]zy{motion} Yank {motion} text [into register x]. Only differs

from `y` when selecting a block of text, see v_zy .

v_y
{Visual}["x]y Yank the highlighted text [into register x] (for

{Visual} see Visual-mode).

v_Y
{Visual}["x]Y Yank the highlighted lines [into register x] (for

{Visual} see Visual-mode).

v_zy
{Visual}["x]zy Yank the highlighted text [into register x]. Trailing

whitespace at the end of each line of a selected block

change.txt — 726

won't be yanked. Especially useful in combination
with `zp`. (for {Visual} see Visual-mode)

:y :yank E850
:[range]y[ank] [x] Yank [range] lines [into register x]. Yanking to the

"* or "+ registers is possible only when the
+clipboard feature is included.

:[range]y[ank] [x] {count}
Yank {count} lines, starting with last line number
in [range] (default: current line cmdline-ranges),
[into register x].

p put E353 E1240
["x]p Put the text [from register x] after the cursor

[count] times.

P
["x]P Put the text [from register x] before the cursor

[count] times.

<MiddleMouse>
["x]<MiddleMouse> Put the text from a register before the cursor [count]

times. Uses the "* register, unless another is
specified.
Leaves the cursor at the end of the new text.
Using the mouse only works when 'mouse' contains 'n'
or 'a'.
If you have a scrollwheel and often accidentally paste
text, you can use these mappings to disable the
pasting with the middle mouse button:

:map <MiddleMouse> <Nop>
:imap <MiddleMouse> <Nop>

You might want to disable the multi-click versions
too, see double-click .

gp
["x]gp Just like "p", but leave the cursor just after the new

text.

gP
["x]gP Just like "P", but leave the cursor just after the new

text.

:pu :put
:[line]pu[t] [x] Put the text [from register x] after [line] (default

current line). This always works linewise , thus
this command can be used to put a yanked block as new
lines.
If no register is specified, it depends on the 'cb'
option: If 'cb' contains "unnamedplus", paste from the
+ register quoteplus . Otherwise, if 'cb' contains
"unnamed", paste from the * register quotestar .
Otherwise, paste from the unnamed register
quote_quote .

The register can also be '=' followed by an optional
expression. The expression continues until the end of
the command. You need to escape the '|' and '"'
characters to prevent them from terminating the
command. Example:

change.txt — 727

:put ='path' .. \",/test\"
If there is no expression after '=', Vim uses the
previous expression. You can see it with ":dis =".

:[line]pu[t]! [x] Put the text [from register x] before [line] (default
current line).

["x]]p or]p]<MiddleMouse>
["x]]<MiddleMouse> Like "p", but adjust the indent to the current line.

Using the mouse only works when 'mouse' contains 'n'
or 'a'.

["x][P or [P
["x]]P or]P
["x][p or [p [<MiddleMouse>
["x][<MiddleMouse> Like "P", but adjust the indent to the current line.

Using the mouse only works when 'mouse' contains 'n'
or 'a'.

["x]zp or zp zP
["x]zP Like "p" and "P", except without adding trailing spaces

when pasting a block. Thus the inserted text will not
always be a rectangle. Especially useful in
combination with v_zy .

You can use these commands to copy text from one place to another. Do this
by first getting the text into a register with a yank, delete or change
command, then inserting the register contents with a put command. You can
also use these commands to move text from one file to another, because Vim
preserves all registers when changing buffers (the CTRL-^ command is a quick
way to toggle between two files).

linewise-register characterwise-register
You can repeat the put commands with "." (except for :put) and undo them. If
the command that was used to get the text into the register was linewise ,
Vim inserts the text below ("p") or above ("P") the line where the cursor is.
Otherwise Vim inserts the text after ("p") or before ("P") the cursor. With
the ":put" command, Vim always inserts the text in the next line. You can
exchange two characters with the command sequence "xp". You can exchange two
lines with the command sequence "ddp". You can exchange two words with the
command sequence "deep" (start with the cursor in the blank space before the
first word). You can use the "']" or "`]" command after the put command to
move the cursor to the end of the inserted text, or use "'[" or "`[" to move
the cursor to the start.

put-Visual-mode v_p v_P
When using a put command like p or P in Visual mode, Vim will try to
replace the selected text with the contents of the register. Whether this
works well depends on the type of selection and the type of the text in the
register. With blockwise selection it also depends on the size of the block
and whether the corners are on an existing character. (Implementation detail:
it actually works by first putting the register after the selection and then
deleting the selection.)
With p the previously selected text is put in the unnamed register (and
possibly the selection and/or clipboard). This is useful if you want to put
that text somewhere else. But you cannot repeat the same change.
With P the unnamed register is not changed (and neither the selection or
clipboard), you can repeat the same change. But the deleted text cannot be
used. If you do need it you can use p with another register. E.g., yank
the text to copy, Visually select the text to replace and use "0p . You can

change.txt — 728

repeat this as many times as you like, and the unnamed register will be
changed each time.

blockwise-put
When a register contains text from one line (characterwise), using a
blockwise Visual selection, putting that register will paste that text
repeatedly in each of the selected lines, thus replacing the blockwise
selected region by multiple copies of the register text. For example:

- yank the word "TEXT" into a register with `yw`
- select a visual block, marked with "v" in this text:

aaavvaaa
bbbvvbbb
cccvvccc

- press `p`, results in:
aaaTEXTaaa
bbbTEXTbbb
cccTEXTccc

blockwise-register
If you use a blockwise Visual mode command to get the text into the register,
the block of text will be inserted before ("P") or after ("p") the cursor
column in the current and next lines. Vim makes the whole block of text start
in the same column. Thus the inserted text looks the same as when it was
yanked or deleted. Vim may replace some <Tab> characters with spaces to make
this happen. However, if the width of the block is not a multiple of a <Tab>
width and the text after the inserted block contains <Tab>s, that text may be
misaligned.

Use zP|/|zp to paste a blockwise yanked register without appending trailing
spaces.

Note that after a characterwise yank command, Vim leaves the cursor on the
first yanked character that is closest to the start of the buffer. This means
that "yl" doesn't move the cursor, but "yh" moves the cursor one character
left.
Rationale: In Vi the "y" command followed by a backwards motion would

sometimes not move the cursor to the first yanked character,
because redisplaying was skipped. In Vim it always moves to
the first character, as specified by Posix.

With a linewise yank command the cursor is put in the first line, but the
column is unmodified, thus it may not be on the first yanked character.

There are ten types of registers: registers {register} E354
1. The unnamed register ""
2. 10 numbered registers "0 to "9
3. The small delete register "-
4. 26 named registers "a to "z or "A to "Z
5. Three read-only registers ":, "., "%
6. Alternate buffer register "#
7. The expression register "=
8. The selection and drop registers "*, "+ and "~
9. The black hole register "_
10. Last search pattern register "/

1. Unnamed register "" quote_quote quotequote
Vim fills this register with text deleted with the "d", "c", "s", "x" commands
or copied with the yank "y" command, regardless of whether or not a specific
register was used (e.g. "xdd). This is like the unnamed register is pointing
to the last used register. Thus when appending using an uppercase register
name, the unnamed register contains the same text as the named register.
An exception is the '_' register: "_dd does not store the deleted text in any

change.txt — 729

register.
Vim uses the contents of the unnamed register for any put command (p or P)
which does not specify a register. Additionally you can access it with the
name '"'. This means you have to type two double quotes. Writing to the ""
register writes to register "0.
{Vi: register contents are lost when changing files, no '"'}

2. Numbered registers "0 to "9 quote_number quote0 quote1
quote2 quote3 quote4 quote9

Vim fills these registers with text from yank and delete commands.
Numbered register 0 contains the text from the most recent yank command,

unless the command specified another register with ["x].
Numbered register 1 contains the text deleted by the most recent delete or

change command, unless the command specified another register or the text is
less than one line (the small delete register is used then). An exception is
made for the delete operator with these movement commands: % , (,) , ` ,
/ , ? , n , N , { and } . Register "1 is always used then (this is Vi

compatible). The "- register is used as well if the delete is within a line.
Note that these characters may be mapped. E.g. % is mapped by the matchit
plugin.

With each successive deletion or change, Vim shifts the previous contents
of register 1 into register 2, 2 into 3, and so forth, losing the previous
contents of register 9.
{Vi: numbered register contents are lost when changing files; register 0 does
not exist}

3. Small delete register "- quote_- quote-
This register contains text from commands that delete less than one line,
except when the command specifies a register with ["x].

4. Named registers "a to "z or "A to "Z quote_alpha quotea
Vim fills these registers only when you say so. Specify them as lowercase
letters to replace their previous contents or as uppercase letters to append
to their previous contents. When the '>' flag is present in 'cpoptions' then
a line break is inserted before the appended text.

5. Read-only registers ":, ". and "%
These are '%', ':' and '.'. You can use them only with the "p", "P",
and ":put" commands and with CTRL-R.

quote_. quote. E29
". Contains the last inserted text (the same as what is inserted

with the insert mode commands CTRL-A and CTRL-@). Note: this
doesn't work with CTRL-R on the command-line. It works a bit
differently, like inserting the text instead of putting it
('textwidth' and other options affect what is inserted).

quote_% quote%
"% Contains the name of the current file.

quote_: quote: E30
": Contains the most recent executed command-line. Example: Use

"@:" to repeat the previous command-line command.
The command-line is only stored in this register when at least
one character of it was typed. Thus it remains unchanged if
the command was completely from a mapping.
{not available when compiled without the +cmdline_hist
feature}

quote_# quote#
6. Alternate file register "#
Contains the name of the alternate file for the current window. It will
change how the CTRL-^ command works.
This register is writable, mainly to allow for restoring it after a plugin has

change.txt — 730

changed it. It accepts buffer number:
let altbuf = bufnr(@#)
...
let @# = altbuf

It will give error E86 if you pass buffer number and this buffer does not
exist.
It can also accept a match with an existing buffer name:

let @# = 'buffer_name'
Error E93 if there is more than one buffer matching the given name or E94
if none of buffers matches the given name.

7. Expression register "= quote_= quote= @=
This is not really a register that stores text, but is a way to use an
expression in commands which use a register. The expression register is
read-write.

When typing the '=' after " or CTRL-R the cursor moves to the command-line,
where you can enter any expression (see expression). All normal
command-line editing commands are available, including a special history for
expressions. When you end the command-line by typing <CR>, Vim computes the
result of the expression. If you end it with <Esc>, Vim abandons the
expression. If you do not enter an expression, Vim uses the previous
expression (like with the "/" command).

The expression must evaluate to a String. A Number is always automatically
converted to a String. For the "p" and ":put" command, if the result is a
Float it's converted into a String. If the result is a List each element is
turned into a String and used as a line. A Dictionary or FuncRef results in
an error message (use string() to convert).

If the "= register is used for the "p" command, the String is split up at <NL>
characters. If the String ends in a <NL>, it is regarded as a linewise
register.

8. Selection and drop registers "*, "+ and "~
Use these registers for storing and retrieving the selected text for the GUI.
See quotestar and quoteplus . When the clipboard is not available or not
working, the unnamed register is used instead. For Unix systems the clipboard
is only available when the +xterm_clipboard feature is present.

Note that there is only a distinction between "* and "+ for X11 systems. For
an explanation of the difference, see x11-selection . Under MS-Windows, use
of "* and "+ is actually synonymous and refers to the gui-clipboard .

quote_~ quote~ <Drop>
The read-only "~ register stores the dropped text from the last drag'n'drop
operation. When something has been dropped onto Vim, the "~ register is
filled in and the <Drop> pseudo key is sent for notification. You can remap
this key if you want; the default action (for all modes) is to insert the
contents of the "~ register at the cursor position.
{only available when compiled with the +dnd feature, currently only with the
GTK GUI}

Note: The "~ register is only used when dropping plain text onto Vim.
Drag'n'drop of URI lists is handled internally.

9. Black hole register "_ quote_
When writing to this register, nothing happens. This can be used to delete
text without affecting the normal registers. When reading from this register,
nothing is returned.

change.txt — 731

10. Last search pattern register "/ quote_/ quote/
Contains the most recent search-pattern. This is used for "n" and 'hlsearch'.
It is writable with `:let`, you can change it to have 'hlsearch' highlight
other matches without actually searching. You can't yank or delete into this
register. The search direction is available in v:searchforward .
Note that the value is restored when returning from a function
function-search-undo .

@/
You can write to a register with a `:let` command :let-@ . Example:

:let @/ = "the"

If you use a put command without specifying a register, Vim uses the register
that was last filled (this is also the contents of the unnamed register). If
you are confused, use the `:dis` command to find out what Vim will put (this
command displays all named and numbered registers; the unnamed register is
labelled '"').

The next three commands always work on whole lines.

:[range]co[py] {address} :co :copy
Copy the lines given by [range] to below the line
given by {address}.

:t
:t Synonym for copy.

This command is not supported in Vim9 script,
because it is too easily confused with a variable
name.

:[range]m[ove] {address} :m :mo :move E134
Move the lines given by [range] to below the line
given by {address}.

==
6. Formatting text formatting

:[range]ce[nter] [width] :ce :center
Center lines in [range] between [width] columns
(default 'textwidth' or 80 when 'textwidth' is 0).

:[range]ri[ght] [width] :ri :right
Right-align lines in [range] at [width] columns
(default 'textwidth' or 80 when 'textwidth' is 0).

:le :left
:[range]le[ft] [indent]

Left-align lines in [range]. Sets the indent in the
lines to [indent] (default 0).

gq
gq{motion} Format the lines that {motion} moves over.

Formatting is done with one of three methods:
1. If 'formatexpr' is not empty the expression is

evaluated. This can differ for each buffer.
2. If 'formatprg' is not empty an external program

is used.
3. Otherwise formatting is done internally.

change.txt — 732

In the third case the 'textwidth' option controls the
length of each formatted line (see below).
If the 'textwidth' option is 0, the formatted line
length is the screen width (with a maximum width of
79).
The 'formatoptions' option controls the type of
formatting fo-table .
The cursor is left on the first non-blank of the last
formatted line.
NOTE: The "Q" command formerly performed this
function. If you still want to use "Q" for
formatting, use this mapping:

:nnoremap Q gq

gqgq gqgq gqq
gqq Format the current line. With a count format that

many lines.

v_gq
{Visual}gq Format the highlighted text. (for {Visual} see

Visual-mode).

gw
gw{motion} Format the lines that {motion} moves over. Similar to

gq but puts the cursor back at the same position in
the text. However, 'formatprg' and 'formatexpr' are
not used.

gwgw gwgw gww
gww Format the current line as with "gw".

v_gw
{Visual}gw Format the highlighted text as with "gw". (for

{Visual} see Visual-mode).

Example: To format the current paragraph use: gqap
gqap

The "gq" command leaves the cursor in the line where the motion command takes
the cursor. This allows you to repeat formatting repeated with ".". This
works well with "gqj" (format current and next line) and "gq}" (format until
end of paragraph). Note: When 'formatprg' is set, "gq" leaves the cursor on
the first formatted line (as with using a filter command).

If you want to format the current paragraph and continue where you were, use:
gwap

If you always want to keep paragraphs formatted you may want to add the 'a'
flag to 'formatoptions'. See auto-format .

If the 'autoindent' option is on, Vim uses the indent of the first line for
the following lines.

Formatting does not change empty lines (but it does change lines with only
white space!).

The 'joinspaces' option is used when lines are joined together.

You can set the 'formatexpr' option to an expression or the 'formatprg' option
to the name of an external program for Vim to use for text formatting. The
'textwidth' and other options have no effect on formatting by an external

change.txt — 733

program.

format-formatexpr
The 'formatexpr' option can be set to a Vim script function that performs
reformatting of the buffer. This should usually happen in an ftplugin ,
since formatting is highly dependent on the type of file. It makes
sense to use an autoload script, so the corresponding script is only loaded
when actually needed and the script should be called <filetype>format.vim.

For example, the XML filetype plugin distributed with Vim in the $VIMRUNTIME
directory, sets the 'formatexpr' option to:

setlocal formatexpr=xmlformat#Format()

That means, you will find the corresponding script, defining the
xmlformat#Format() function, in the directory:
`$VIMRUNTIME/autoload/xmlformat.vim`

Here is an example script that removes trailing whitespace from the selected
text. Put it in your autoload directory, e.g. ~/.vim/autoload/format.vim:

func! format#Format()
" only reformat on explicit gq command
if mode() != 'n'

" fall back to Vim's internal reformatting
return 1

endif
let lines = getline(v:lnum, v:lnum + v:count - 1)
call map(lines, {key, val -> substitute(val, '\s\+$', '', 'g')})
call setline('.', lines)

" do not run internal formatter!
return 0

endfunc

You can then enable the formatting by executing:
setlocal formatexpr=format#Format()

Note: this function explicitly returns non-zero when called from insert mode
(which basically means, text is inserted beyond the 'textwidth' limit). This
causes Vim to fall back to reformat the text by using the internal formatter.

However, if the gq command is used to reformat the text, the function
will receive the selected lines, trim trailing whitespace from those lines and
put them back in place. If you are going to split single lines into multiple
lines, be careful not to overwrite anything.

If you want to allow reformatting of text from insert or replace mode, one has
to be very careful, because the function might be called recursively. For
debugging it helps to set the 'debug' option.

right-justify
There is no command in Vim to right justify text. You can do it with
an external command, like "par" (e.g.: "!}par" to format until the end of the
paragraph) or set 'formatprg' to "par".

format-comments
An overview of comment formatting is in section 30.6 of the user manual.

Vim can automatically insert and format comments in a special way. Vim

change.txt — 734

recognizes a comment by a specific string at the start of the line (ignoring
white space). Three types of comments can be used:

- A comment string that repeats at the start of each line. An example is the
type of comment used in shell scripts, starting with "#".

- A comment string that occurs only in the first line, not in the following
lines. An example is this list with dashes.

- Three-piece comments that have a start string, an end string, and optional
lines in between. The strings for the start, middle and end are different.
An example is the C style comment:

/*
* this is a C comment
*/

The 'comments' option is a comma-separated list of parts. Each part defines a
type of comment string. A part consists of:

{flags}:{string}

{string} is the literal text that must appear.

{flags}:
n Nested comment. Nesting with mixed parts is allowed. If 'comments'

is "n:),n:>" a line starting with ">) >" is a comment.

b Blank (<Space>, <Tab> or <EOL>) required after {string}.

f Only the first line has the comment string. Do not repeat comment on
the next line, but preserve indentation (e.g., a bullet-list).

s Start of three-piece comment

m Middle of a three-piece comment

e End of a three-piece comment

l Left align. Used together with 's' or 'e', the leftmost character of
start or end will line up with the leftmost character from the middle.
This is the default and can be omitted. See below for more details.

r Right align. Same as above but rightmost instead of leftmost. See
below for more details.

O Don't consider this comment for the "O" command.

x Allows three-piece comments to be ended by just typing the last
character of the end-comment string as the first action on a new
line when the middle-comment string has been inserted automatically.
See below for more details.

{digits}
When together with 's' or 'e': add {digit} amount of offset to an
automatically inserted middle or end comment leader. The offset begins
from a left alignment. See below for more details.

-{digits}
Like {digits} but reduce the indent. This only works when there is
some indent for the start or end part that can be removed.

When a string has none of the 'f', 's', 'm' or 'e' flags, Vim assumes the
comment string repeats at the start of each line. The flags field may be

change.txt — 735

empty.

Any blank space in the text before and after the {string} is part of the
{string}, so do not include leading or trailing blanks unless the blanks are a
required part of the comment string.

When one comment leader is part of another, specify the part after the whole.
For example, to include both "-" and "->", use

:set comments=f:->,f:-

A three-piece comment must always be given as start,middle,end, with no other
parts in between. An example of a three-piece comment is

sr:/*,mb:*,ex:*/
for C-comments. To avoid recognizing "*ptr" as a comment, the middle string
includes the 'b' flag. For three-piece comments, Vim checks the text after
the start and middle strings for the end string. If Vim finds the end string,
the comment does not continue on the next line. Three-piece comments must
have a middle string because otherwise Vim can't recognize the middle lines.

Notice the use of the "x" flag in the above three-piece comment definition.
When you hit Return in a C-comment, Vim will insert the middle comment leader
for the new line: " * ". To close this comment you just have to type "/"
before typing anything else on the new line. This will replace the
middle-comment leader with the end-comment leader and apply any specified
alignment, leaving just " */". There is no need to hit Backspace first.

When there is a match with a middle part, but there also is a matching end
part which is longer, the end part is used. This makes a C style comment work
without requiring the middle part to end with a space.

Here is an example of alignment flags at work to make a comment stand out
(kind of looks like a 1 too). Consider comment string:

:set comments=sr:/***,m:**,ex-2:******/

/***
**<--right aligned from "r" flag
**

offset 2 spaces for the "-2" flag--->**
******/

In this case, the first comment was typed, then return was pressed 4 times,
then "/" was pressed to end the comment.

Here are some finer points of three part comments. There are three times when
alignment and offset flags are taken into consideration: opening a new line
after a start-comment, opening a new line before an end-comment, and
automatically ending a three-piece comment. The end alignment flag has a
backwards perspective; the result is that the same alignment flag used with
"s" and "e" will result in the same indent for the starting and ending pieces.
Only one alignment per comment part is meant to be used, but an offset number
will override the "r" and "l" flag.

Enabling 'cindent' will override the alignment flags in many cases.
Reindenting using a different method like gq or = will not consult
alignment flags either. The same behaviour can be defined in those other
formatting options. One consideration is that 'cindent' has additional options
for context based indenting of comments but cannot replicate many three piece
indent alignments. However, 'indentexpr' has the ability to work better with
three piece comments.

Other examples:

change.txt — 736

"b:*" Includes lines starting with "*", but not if the "*" is
followed by a non-blank. This avoids a pointer dereference
like "*str" to be recognized as a comment.

"n:>" Includes a line starting with ">", ">>", ">>>", etc.
"fb:-" Format a list that starts with "- ".

By default, "b:#" is included. This means that a line that starts with
"#include" is not recognized as a comment line. But a line that starts with
"# define" is recognized. This is a compromise.

fo-table
You can use the 'formatoptions' option to influence how Vim formats text.
'formatoptions' is a string that can contain any of the letters below. The
default setting is "tcq". You can separate the option letters with commas for
readability.

letter meaning when present in 'formatoptions'
fo-t

t Auto-wrap text using 'textwidth'
fo-c

c Auto-wrap comments using 'textwidth', inserting the current comment
leader automatically.

fo-r
r Automatically insert the current comment leader after hitting

<Enter> in Insert mode.
fo-o

o Automatically insert the current comment leader after hitting 'o' or
'O' in Normal mode. In case comment is unwanted in a specific place
use CTRL-U to quickly delete it. i_CTRL-U

fo-/
/ When 'o' is included: do not insert the comment leader for a //

comment after a statement, only when // is at the start of the line.
fo-q

q Allow formatting of comments with "gq".
Note that formatting will not change blank lines or lines containing
only the comment leader. A new paragraph starts after such a line,
or when the comment leader changes.

fo-w
w Trailing white space indicates a paragraph continues in the next line.

A line that ends in a non-white character ends a paragraph.
fo-a

a Automatic formatting of paragraphs. Every time text is inserted or
deleted the paragraph will be reformatted. See auto-format .
When the 'c' flag is present this only happens for recognized
comments.

fo-n
n When formatting text, recognize numbered lists. This actually uses

the 'formatlistpat' option, thus any kind of list can be used. The
indent of the text after the number is used for the next line. The
default is to find a number, optionally followed by '.', ':', ')',
']' or '}'. Note that 'autoindent' must be set too. Doesn't work
well together with "2".
Example:

1. the first item
wraps

2. the second item
fo-2

2 When formatting text, use the indent of the second line of a paragraph
for the rest of the paragraph, instead of the indent of the first
line. This supports paragraphs in which the first line has a

change.txt — 737

different indent than the rest. Note that 'autoindent' must be set
too. Example:

first line of a paragraph
second line of the same paragraph
third line.

This also works inside comments, ignoring the comment leader.
fo-v

v Vi-compatible auto-wrapping in insert mode: Only break a line at a
blank that you have entered during the current insert command. (Note:
this is not 100% Vi compatible. Vi has some "unexpected features" or
bugs in this area. It uses the screen column instead of the line
column.)

fo-b
b Like 'v', but only auto-wrap if you enter a blank at or before

the wrap margin. If the line was longer than 'textwidth' when you
started the insert, or you do not enter a blank in the insert before
reaching 'textwidth', Vim does not perform auto-wrapping.

fo-l
l Long lines are not broken in insert mode: When a line was longer than

'textwidth' when the insert command started, Vim does not
automatically format it.

fo-m
m Also break at a multibyte character above 255. This is useful for

Asian text where every character is a word on its own.
fo-M

M When joining lines, don't insert a space before or after a multibyte
character. Overrules the 'B' flag.

fo-B
B When joining lines, don't insert a space between two multibyte

characters. Overruled by the 'M' flag.
fo-1

1 Don't break a line after a one-letter word. It's broken before it
instead (if possible).

fo-]
] Respect 'textwidth' rigorously. With this flag set, no line can be

longer than 'textwidth', unless line-break-prohibition rules make this
impossible. Mainly for CJK scripts and works only if 'encoding' is
"utf-8".

fo-j
j Where it makes sense, remove a comment leader when joining lines. For

example, joining:
int i; // the index

// in the list
Becomes:

int i; // the index in the list
fo-p

p Don't break lines at single spaces that follow periods. This is
intended to complement 'joinspaces' and cpo-J , for prose with
sentences separated by two spaces. For example, with 'textwidth' set
to 28:

Surely you're joking, Mr. Feynman!
Becomes:

Surely you're joking,
Mr. Feynman!

Instead of:
Surely you're joking, Mr.
Feynman!

With 't' and 'c' you can specify when Vim performs auto-wrapping:

change.txt — 738

value action
"" no automatic formatting (you can use "gq" for manual formatting)
"t" automatic formatting of text, but not comments
"c" automatic formatting for comments, but not text (good for C code)
"tc" automatic formatting for text and comments

Note that when 'textwidth' is 0, Vim does no automatic formatting anyway (but
does insert comment leaders according to the 'comments' option). An exception
is when the 'a' flag is present. auto-format

Note that when 'paste' is on, Vim does no formatting at all.

Note that 'textwidth' can be non-zero even if Vim never performs auto-wrapping;
'textwidth' is still useful for formatting with "gq".

If the 'comments' option includes "/*", "*" and/or "*/", then Vim has some
built in stuff to treat these types of comments a bit more cleverly.
Opening a new line before or after "/*" or "*/" (with 'r' or 'o' present in
'formatoptions') gives the correct start of the line automatically. The same
happens with formatting and auto-wrapping. Opening a line after a line
starting with "/*" or "*" and containing "*/", will cause no comment leader to
be inserted, and the indent of the new line is taken from the line containing
the start of the comment.
E.g.:

/*
* Your typical comment.
*/
The indent on this line is the same as the start of the above
comment.

All of this should be really cool, especially in conjunction with the new
:autocmd command to prepare different settings for different types of file.

Some examples:
for C code (only format comments):

:set fo=croq
for Mail/news (format all, don't start comment with "o" command):

:set fo=tcrq

Automatic formatting auto-format autoformat

When the 'a' flag is present in 'formatoptions' text is formatted
automatically when inserting text or deleting text. This works nicely for
editing text paragraphs. A few hints on how to use this:

- You need to properly define paragraphs. The simplest is paragraphs that are
separated by a blank line. When there is no separating blank line, consider
using the 'w' flag and adding a space at the end of each line in the
paragraphs except the last one.

- You can set the 'formatoptions' based on the type of file filetype or
specifically for one file with a modeline .

- Set 'formatoptions' to "aw2tq" to make text with indents like this:

bla bla foobar bla
bla foobar bla foobar bla

bla bla foobar bla
bla foobar bla bla foobar

change.txt — 739

- Add the 'c' flag to only auto-format comments. Useful in source code.

- Set 'textwidth' to the desired width. If it is zero then 79 is used, or the
width of the screen if this is smaller.

And a few warnings:

- When part of the text is not properly separated in paragraphs, making
changes in this text will cause it to be formatted anyway. Consider doing

:set fo-=a

- When using the 'w' flag (trailing space means paragraph continues) and
deleting the last line of a paragraph with dd , the paragraph will be
joined with the next one.

- Changed text is saved for undo. Formatting is also a change. Thus each
format action saves text for undo. This may consume quite a lot of memory.

- Formatting a long paragraph and/or with complicated indenting may be slow.

==
7. Sorting text sorting

Vim has a sorting function and a sorting command. The sorting function can be
found here: sort() , uniq() .

:sor :sort
:[range]sor[t][!] [b][f][i][l][n][o][r][u][x] [/{pattern}/]

Sort lines in [range]. When no range is given all
lines are sorted.

With [!] the order is reversed.

With [i] case is ignored.

With [l] sort uses the current collation locale.
Implementation details: strcoll() is used to compare
strings. See :language to check or set the collation
locale. Example:

:language collate en_US.UTF-8
:%sort l

v:collate can also used to check the current locale.
Sorting using the locale typically ignores case.
This does not work properly on Mac.

Options [n][f][x][o][b] are mutually exclusive.

With [n] sorting is done on the first decimal number
in the line (after or inside a {pattern} match).
One leading '-' is included in the number.

With [f] sorting is done on the Float in the line.
The value of Float is determined similar to passing
the text (after or inside a {pattern} match) to
str2float() function. This option is available only
if Vim was compiled with Floating point support.

With [x] sorting is done on the first hexadecimal

change.txt — 740

number in the line (after or inside a {pattern}
match). A leading "0x" or "0X" is ignored.
One leading '-' is included in the number.

With [o] sorting is done on the first octal number in
the line (after or inside a {pattern} match).

With [b] sorting is done on the first binary number in
the line (after or inside a {pattern} match).

With [u] (u stands for unique) only keep the first of
a sequence of identical lines (ignoring case when [i]
is used). Without this flag, a sequence of identical
lines will be kept in their original order.
Note that leading and trailing white space may cause
lines to be different.

When /{pattern}/ is specified and there is no [r] flag
the text matched with {pattern} is skipped, so that
you sort on what comes after the match.
'ignorecase' applies to the pattern, but 'smartcase'
is not used.
Instead of the slash any non-letter can be used.
For example, to sort on the second comma-separated
field:

:sort /[^,]*,/
To sort on the text at virtual column 10 (thus
ignoring the difference between tabs and spaces):

:sort /.*\%10v/
To sort on the first number in the line, no matter
what is in front of it:

:sort /.\{-}\ze\d/
(Explanation: ".\{-}" matches any text, "\ze" sets the
end of the match and \d matches a digit.)
With [r] sorting is done on the matching {pattern}
instead of skipping past it as described above.
For example, to sort on only the first three letters
of each line:

:sort /\a\a\a/ r

If a {pattern} is used, any lines which don't have a
match for {pattern} are kept in their current order,
but separate from the lines which do match {pattern}.
If you sorted in reverse, they will be in reverse
order after the sorted lines, otherwise they will be
in their original order, right before the sorted
lines.

If {pattern} is empty (e.g. // is specified), the
last search pattern is used. This allows trying out
a pattern first.

Note that using `:sort` with `:global` doesn't sort the matching lines, it's
quite useless.

`:sort` does not use the current locale unless the l flag is used.
Vim does do a "stable" sort.

The sorting can be interrupted, but if you interrupt it too late in the
process you may end up with duplicated lines. This also depends on the system

change.txt — 741

library function used.

change.txt — 742

undo.txt For Vim version 9.1. Last change: 2022 Jun 02

VIM REFERENCE MANUAL by Bram Moolenaar

Undo and redo undo-redo

The basics are explained in section 02.5 of the user manual.

1. Undo and redo commands undo-commands
2. Two ways of undo undo-two-ways
3. Undo blocks undo-blocks
4. Undo branches undo-branches
5. Undo persistence undo-persistence
6. Remarks about undo undo-remarks

==
1. Undo and redo commands undo-commands

<Undo> or undo <Undo> u
u Undo [count] changes.

:u :un :undo
:u[ndo] Undo one change.

E830
:u[ndo] {N} Jump to after change number {N}. See undo-branches

for the meaning of {N}.

CTRL-R
CTRL-R Redo [count] changes which were undone.

:red :redo redo
:red[o] Redo one change which was undone.

U
U Undo all latest changes on one line, the line where

the latest change was made. U itself also counts as
a change, and thus U undoes a previous U .

The last changes are remembered. You can use the undo and redo commands above
to revert the text to how it was before each change. You can also apply the
changes again, getting back the text before the undo.

The "U" command is treated by undo/redo just like any other command. Thus a
"u" command undoes a "U" command and a 'CTRL-R' command redoes it again. When
mixing "U", "u" and 'CTRL-R' you will notice that the "U" command will
restore the situation of a line to before the previous "U" command. This may
be confusing. Try it out to get used to it.
The "U" command will always mark the buffer as changed. When "U" changes the
buffer back to how it was without changes, it is still considered changed.
Use "u" to undo changes until the buffer becomes unchanged.

==
2. Two ways of undo undo-two-ways

How undo and redo commands work depends on the 'u' flag in 'cpoptions'.
There is the Vim way ('u' excluded) and the Vi-compatible way ('u' included).
In the Vim way, "uu" undoes two changes. In the Vi-compatible way, "uu" does
nothing (undoes an undo).

undo.txt — 743

'u' excluded, the Vim way:
You can go back in time with the undo command. You can then go forward again
with the redo command. If you make a new change after the undo command,
the redo will not be possible anymore.

'u' included, the Vi-compatible way:
The undo command undoes the previous change, and also the previous undo
command. The redo command repeats the previous undo command. It does NOT
repeat a change command, use "." for that.

Examples Vim way Vi-compatible way
"uu" two times undo no-op
"u CTRL-R" no-op two times undo

Rationale: Nvi uses the "." command instead of CTRL-R. Unfortunately, this
is not Vi compatible. For example "dwdwu." in Vi deletes two
words, in Nvi it does nothing.

==
3. Undo blocks undo-blocks

One undo command normally undoes a typed command, no matter how many changes
that command makes. This sequence of undo-able changes forms an undo block.
Thus if the typed key(s) call a function, all the commands in the function are
undone together.

If you want to write a function or script that doesn't create a new undoable
change but joins in with the previous change use this command:

:undoj :undojoin E790
:undoj[oin] Join further changes with the previous undo block.

Warning: Use with care, it may prevent the user from
properly undoing changes. Don't use this after undo
or redo.

This is most useful when you need to prompt the user halfway through a change.
For example in a function that calls getchar() . Do make sure that there was
a related change before this that you must join with.

This doesn't work by itself, because the next key press will start a new
change again. But you can do something like this:

:undojoin | delete

After this a "u" command will undo the delete command and the previous
change.

undo-break undo-close-block
To do the opposite, use a new undo block for the next change, in Insert mode
use CTRL-G u. This is useful if you want an insert command to be undoable in
parts. E.g., for each sentence. i_CTRL-G_u

Setting the value of 'undolevels' also closes the undo block. Even when the
new value is equal to the old value. Use `g:undolevels` to explicitly read
and write only the global value of 'undolevels'. In Vim9 script:

&g:undolevels = &g:undolevels
In legacy script:

let &g:undolevels = &g:undolevels

Note that the similar-looking assignment `let &undolevels=&undolevels` does not

undo.txt — 744

preserve the global option value of 'undolevels' in the event that the local
option has been set to a different value. For example:

" Start with different global and local values for 'undolevels'.
let &g:undolevels = 1000
let &l:undolevels = 2000
" This assignment changes the global option to 2000:
let &undolevels = &undolevels

==
4. Undo branches undo-branches undo-tree

Above we only discussed one line of undo/redo. But it is also possible to
branch off. This happens when you undo a few changes and then make a new
change. The undone changes become a branch. You can go to that branch with
the following commands.

This is explained in the user manual: usr_32.txt .

:undol :undolist
:undol[ist] List the leafs in the tree of changes. Example:

number changes when saved
88 88 2010/01/04 14:25:53

108 107 08/07 12:47:51
136 46 13:33:01 7
166 164 3 seconds ago

The "number" column is the change number. This number
continuously increases and can be used to identify a
specific undo-able change, see :undo .
The "changes" column is the number of changes to this
leaf from the root of the tree.
The "when" column is the date and time when this
change was made. The four possible formats are:

N seconds ago
HH:MM:SS hour, minute, seconds
MM/DD HH:MM:SS idem, with month and day
YYYY/MM/DD HH:MM:SS idem, with year

The "saved" column specifies, if this change was
written to disk and which file write it was. This can
be used with the :later and :earlier commands.
For more details use the undotree() function.

g-
g- Go to older text state. With a count repeat that many

times.
:ea :earlier

:earlier {count} Go to older text state {count} times.
:earlier {N}s Go to older text state about {N} seconds before.
:earlier {N}m Go to older text state about {N} minutes before.
:earlier {N}h Go to older text state about {N} hours before.
:earlier {N}d Go to older text state about {N} days before.

:earlier {N}f Go to older text state {N} file writes before.
When changes were made since the last write
":earlier 1f" will revert the text to the state when
it was written. Otherwise it will go to the write
before that.
When at the state of the first file write, or when
the file was not written, ":earlier 1f" will go to
before the first change.

undo.txt — 745

g+
g+ Go to newer text state. With a count repeat that many

times.
:lat :later

:later {count} Go to newer text state {count} times.
:later {N}s Go to newer text state about {N} seconds later.
:later {N}m Go to newer text state about {N} minutes later.
:later {N}h Go to newer text state about {N} hours later.
:later {N}d Go to newer text state about {N} days later.

:later {N}f Go to newer text state {N} file writes later.
When at the state of the last file write, ":later 1f"
will go to the newest text state.

Note that text states will become unreachable when undo information is cleared
for 'undolevels'.

Don't be surprised when moving through time shows multiple changes to take
place at a time. This happens when moving through the undo tree and then
making a new change.

EXAMPLE

Start with this text:
one two three

Delete the first word by pressing "x" three times:
ne two three
e two three
two three

Now undo that by pressing "u" three times:
e two three
ne two three
one two three

Delete the second word by pressing "x" three times:
one wo three
one o three
one three

Now undo that by using "g-" three times:
one o three
one wo three
two three

You are now back in the first undo branch, after deleting "one". Repeating
"g-" will now bring you back to the original text:

e two three
ne two three
one two three

Jump to the last change with ":later 1h":
one three

And back to the start again with ":earlier 1h":
one two three

undo.txt — 746

Note that using "u" and CTRL-R will not get you to all possible text states
while repeating "g-" and "g+" does.

==
5. Undo persistence undo-persistence persistent-undo

When unloading a buffer Vim normally destroys the tree of undos created for
that buffer. By setting the 'undofile' option, Vim will automatically save
your undo history when you write a file and restore undo history when you edit
the file again.

The 'undofile' option is checked after writing a file, before the BufWritePost
autocommands. If you want to control what files to write undo information
for, you can use a BufWritePre autocommand:

au BufWritePre /tmp/* setlocal noundofile

Vim saves undo trees in a separate undo file, one for each edited file, using
a simple scheme that maps filesystem paths directly to undo files. Vim will
detect if an undo file is no longer synchronized with the file it was written
for (with a hash of the file contents) and ignore it when the file was changed
after the undo file was written, to prevent corruption. An undo file is also
ignored if its owner differs from the owner of the edited file, except when
the owner of the undo file is the current user. Set 'verbose' to get a
message about that when opening a file.

Undo files are normally saved in the same directory as the file. This can be
changed with the 'undodir' option.

When the file is encrypted, the text in the undo file is also encrypted. The
same key and method is used. encryption

Note that text properties are not stored in the undo file. You can restore
text properties so long as a buffer is loaded, but you cannot restore them
from an undo file. Rationale: It would require the associated text property
types to be defined in exactly the same was as before, which cannot be
guaranteed.

You can also save and restore undo histories by using ":wundo" and ":rundo"
respectively:

:wundo :rundo
:wundo[!] {file}

Write undo history to {file}.
When {file} exists and it does not look like an undo file
(the magic number at the start of the file is wrong), then
this fails, unless the ! was added.
If it exists and does look like an undo file it is
overwritten. If there is no undo-history, nothing will be
written.
Implementation detail: Overwriting happens by first deleting
the existing file and then creating a new file with the same
name. So it is not possible to overwrite an existing undofile
in a write-protected directory.

:rundo {file} Read undo history from {file}.

You can use these in autocommands to explicitly specify the name of the
history file. E.g.:

au BufReadPost * call ReadUndo()

undo.txt — 747

au BufWritePost * call WriteUndo()
func ReadUndo()

if filereadable(expand('%:h') .. '/UNDO/' .. expand('%:t'))
rundo %:h/UNDO/%:t

endif
endfunc
func WriteUndo()

let dirname = expand('%:h') .. '/UNDO'
if !isdirectory(dirname)

call mkdir(dirname)
endif
wundo %:h/UNDO/%:t

endfunc

You should keep 'undofile' off, otherwise you end up with two undo files for
every write.

You can use the undofile() function to find out the file name that Vim would
use.

Note that while reading/writing files and 'undofile' is set most errors will
be silent, unless 'verbose' is set. With :wundo and :rundo you will get more
error messages, e.g., when the file cannot be read or written.

NOTE: undo files are never deleted by Vim. You need to delete them yourself.

Reading an existing undo file may fail for several reasons:
E822 It cannot be opened, because the file permissions don't allow it.
E823 The magic number at the start of the file doesn't match. This usually

means it is not an undo file.
E824 The version number of the undo file indicates that it's written by a

newer version of Vim. You need that newer version to open it. Don't
write the buffer if you want to keep the undo info in the file.

"File contents changed, cannot use undo info"
The file text differs from when the undo file was written. This means
the undo file cannot be used, it would corrupt the text. This also
happens when 'encoding' differs from when the undo file was written.

E825 The undo file does not contain valid contents and cannot be used.
E826 The undo file is encrypted but decryption failed.
E827 The undo file is encrypted but this version of Vim does not support

encryption. Open the file with another Vim.
E832 The undo file is encrypted but 'key' is not set, the text file is not

encrypted. This would happen if the text file was written by Vim
encrypted at first, and later overwritten by not encrypted text.
You probably want to delete this undo file.

"Not reading undo file, owner differs"
The undo file is owned by someone else than the owner of the text
file. For safety the undo file is not used.

Writing an undo file may fail for these reasons:
E828 The file to be written cannot be created. Perhaps you do not have

write permissions in the directory.
"Cannot write undo file in any directory in 'undodir'"

None of the directories in 'undodir' can be used.
"Will not overwrite with undo file, cannot read"

A file exists with the name of the undo file to be written, but it
cannot be read. You may want to delete this file or rename it.

"Will not overwrite, this is not an undo file"
A file exists with the name of the undo file to be written, but it
does not start with the right magic number. You may want to delete

undo.txt — 748

this file or rename it.
"Skipping undo file write, nothing to undo"

There is no undo information to be written, nothing has been changed
or 'undolevels' is negative.

E829 An error occurred while writing the undo file. You may want to try
again.

==
6. Remarks about undo undo-remarks

The number of changes that are remembered is set with the 'undolevels' option.
If it is zero, the Vi-compatible way is always used. If it is negative no
undo is possible. Use this if you are running out of memory.

clear-undo
When you set 'undolevels' to -1 the undo information is not immediately
cleared, this happens at the next change. To force clearing the undo
information you can use these commands:

:let old_undolevels = &l:undolevels
:setlocal undolevels=-1
:exe "normal a \<BS>\<Esc>"
:let &l:undolevels = old_undolevels
:unlet old_undolevels

Note use of `&l:undolevels` to explicitly read the local value of 'undolevels'
and the use of `:setlocal` to change only the local option (which takes
precedence over the corresponding global option value). Saving the option value
via the use of `&undolevels` is unpredictable; it reads either the local value
(if one has been set) or the global value (otherwise). Also, if a local value
has been set, changing the option via `:set undolevels` will change both the
global and local values, requiring extra work to save and restore both values.

Marks for the buffer ('a to 'z) are also saved and restored, together with the
text.

When all changes have been undone, the buffer is not considered to be changed.
It is then possible to exit Vim with ":q" instead of ":q!". Note
that this is relative to the last write of the file. Typing "u" after ":w"
actually changes the buffer, compared to what was written, so the buffer is
considered changed then.

When manual folding is being used, the folds are not saved and restored.
Only changes completely within a fold will keep the fold as it was, because
the first and last line of the fold don't change.

The numbered registers can also be used for undoing deletes. Each time you
delete text, it is put into register "1. The contents of register "1 are
shifted to "2, etc. The contents of register "9 are lost. You can now get
back the most recent deleted text with the put command: '"1P'. (also, if the
deleted text was the result of the last delete or copy operation, 'P' or 'p'
also works as this puts the contents of the unnamed register). You can get
back the text of three deletes ago with '"3P'.

redo-register
If you want to get back more than one part of deleted text, you can use a
special feature of the repeat command ".". It will increase the number of the
register used. So if you first do '"1P', the following "." will result in a
'"2P'. Repeating this will result in all numbered registers being inserted.

Example: If you deleted text with 'dd....' it can be restored with

undo.txt — 749

'"1P....'.

If you don't know in which register the deleted text is, you can use the
:display command. An alternative is to try the first register with '"1P', and
if it is not what you want do 'u.'. This will remove the contents of the
first put, and repeat the put command for the second register. Repeat the
'u.' until you got what you want.

undo.txt — 750

repeat.txt For Vim version 9.1. Last change: 2023 May 26

VIM REFERENCE MANUAL by Bram Moolenaar

Repeating commands, Vim scripts and debugging repeating

Chapter 26 of the user manual introduces repeating usr_26.txt .

1. Single repeats single-repeat
2. Multiple repeats multi-repeat
3. Complex repeats complex-repeat
4. Using Vim scripts using-scripts
5. Using Vim packages packages
6. Creating Vim packages package-create
7. Debugging scripts debug-scripts
8. Profiling profiling

==
1. Single repeats single-repeat

.
. Repeat last change, with count replaced with [count].

Also repeat a yank command, when the 'y' flag is
included in 'cpoptions'. Does not repeat a
command-line command.

Simple changes can be repeated with the "." command. Without a count, the
count of the last change is used. If you enter a count, it will replace the
last one. v:count and v:count1 will be set.

If the last change included a specification of a numbered register, the
register number will be incremented. See redo-register for an example how
to use this.

Note that when repeating a command that used a Visual selection, the same SIZE
of area is used, see visual-repeat .

@:
@: Repeat last command-line [count] times.

{not available when compiled without the
+cmdline_hist feature}

==
2. Multiple repeats multi-repeat

:g :global E148
:[range]g[lobal]/{pattern}/[cmd]

Execute the Ex command [cmd] (default ":p") on the
lines within [range] where {pattern} matches.

:[range]g[lobal]!/{pattern}/[cmd]
Execute the Ex command [cmd] (default ":p") on the
lines within [range] where {pattern} does NOT match.

:v :vglobal
:[range]v[global]/{pattern}/[cmd]

Same as :g!.

repeat.txt — 751

Example:
:g/^Obsolete/d _

Using the underscore after `:d` avoids clobbering registers or the clipboard.
This also makes it faster.

Instead of the '/' which surrounds the {pattern}, you can use any other
single byte character, but not an alphabetic character, '\', '"', '|' or '!'.
This is useful if you want to include a '/' in the search pattern or
replacement string.

For the definition of a pattern, see pattern .

NOTE [cmd] may contain a range; see collapse and edit-paragraph-join for
examples.

The global commands work by first scanning through the [range] lines and
marking each line where a match occurs (for a multi-line pattern, only the
start of the match matters).
In a second scan the [cmd] is executed for each marked line, as if the cursor
was in that line. For ":v" and ":g!" the command is executed for each not
marked line. If a line is deleted its mark disappears.
The default for [range] is the whole buffer (1,$). Use "CTRL-C" to interrupt
the command. If an error message is given for a line, the command for that
line is aborted and the global command continues with the next marked or
unmarked line.

E147
When the command is used recursively, it only works on one line. Giving a
range is then not allowed. This is useful to find all lines that match a
pattern and do not match another pattern:

:g/found/v/notfound/{cmd}
This first finds all lines containing "found", but only executes {cmd} when
there is no match for "notfound".

Any Ex command can be used, see ex-cmd-index . To execute a Normal mode
command, you can use the `:normal` command:

:g/pat/normal {commands}
Make sure that {commands} ends with a whole command, otherwise Vim will wait
for you to type the rest of the command for each match. The screen will not
have been updated, so you don't know what you are doing. See :normal .

The undo/redo command will undo/redo the whole global command at once.
The previous context mark will only be set once (with "''" you go back to
where the cursor was before the global command).

The global command sets both the last used search pattern and the last used
substitute pattern (this is vi compatible). This makes it easy to globally
replace a string:

:g/pat/s//PAT/g
This replaces all occurrences of "pat" with "PAT". The same can be done with:

:%s/pat/PAT/g
Which is two characters shorter!

When using "global" in Ex mode, a special case is using ":visual" as a
command. This will move to a matching line, go to Normal mode to let you
execute commands there until you use Q to return to Ex mode. This will be
repeated for each matching line. While doing this you cannot use ":global".
To abort this type CTRL-C twice.

==

repeat.txt — 752

3. Complex repeats complex-repeat

q recording
q{0-9a-zA-Z"} Record typed characters into register {0-9a-zA-Z"}

(uppercase to append). The 'q' command is disabled
while executing a register, and it doesn't work inside
a mapping and :normal .

Note: If the register being used for recording is also
used for y and p the result is most likely not
what is expected, because the put will paste the
recorded macro and the yank will overwrite the
recorded macro.

Note: The recording happens while you type, replaying
the register happens as if the keys come from a
mapping. This matters, for example, for undo, which
only syncs when commands were typed.

q Stops recording. (Implementation note: The 'q' that
stops recording is not stored in the register, unless
it was the result of a mapping)

@
@{0-9a-z".=*+} Execute the contents of register {0-9a-z".=*+} [count]

times. Note that register '%' (name of the current
file) and '#' (name of the alternate file) cannot be
used.
The register is executed like a mapping, that means
that the difference between 'wildchar' and 'wildcharm'
applies, and undo might not be synced in the same way.
For "@=" you are prompted to enter an expression. The
result of the expression is then executed.
See also @: .

@@ E748
@@ Repeat the previous @{0-9a-z":*} [count] times.

:@
:[addr]@{0-9a-z".=*+} Execute the contents of register {0-9a-z".=*+} as an Ex

command. First set cursor at line [addr] (default is
current line). When the last line in the register does
not have a <CR> it will be added automatically when
the 'e' flag is present in 'cpoptions'.
For ":@=" the last used expression is used. The
result of evaluating the expression is executed as an
Ex command.
Mappings are not recognized in these commands.
When the line-continuation character (\) is present
at the beginning of a line in a linewise register,
then it is combined with the previous line. This is
useful for yanking and executing parts of a Vim
script.
Future: Will execute the register for each line in the
address range.

:[addr]*{0-9a-z".=+} :star-compatible
When '*' is present in 'cpoptions' cpo-star , use
":*" in the same way as ":@". This is NOT the default
when 'nocompatible' is used. When the '*' flag is not

repeat.txt — 753

present in 'cpoptions', ":*" is an alias for ":'<,'>",
select the Visual area :star .

:@:
:[addr]@: Repeat last command-line. First set cursor at line

[addr] (default is current line).

:[addr]@ :@@
:[addr]@@ Repeat the previous :@{register}. First set cursor at

line [addr] (default is current line).

==
4. Using Vim scripts using-scripts

For writing a Vim script, see chapter 41 of the user manual usr_41.txt .

:so :source load-vim-script
:so[urce] {file} Read Ex commands from {file}. These are commands that

start with a ":".
Triggers the SourcePre autocommand.

:source-range
:[range]so[urce] [++clear]

Read Ex commands from the [range] of lines in the
current buffer. When [range] is omitted read all
lines.

When sourcing commands from the current buffer, the
same script-ID <SID> is used even if the buffer is
sourced multiple times. If a buffer is sourced more
than once, then the functions in the buffer are
defined again.

To source a range of lines that doesn't start with the
:vim9script command in Vim9 script context, the
:vim9cmd modifier can be used. If you use a Visual

selection and type ":", the range in the form "'<,'>"
can come before it:

:'<,'>vim9cmd source
Otherwise the range goes after the modifier and must
have a colon prefixed, like all Vim9 ranges:

:vim9cmd :5,9source

When a range of lines in a buffer is sourced in the
Vim9 script context, the previously defined
script-local variables and functions are not cleared.
This works like the range started with the
":vim9script noclear" command. The "++clear" argument
can be used to clear the script-local variables and
functions before sourcing the script. This works like
the range started with the `:vim9script` command
without the "noclear" argument. See vim9-reload for
more information.
Examples:

:4,5source
:10,18source ++clear

:source!
:so[urce]! {file} Read Vim commands from {file}. These are commands

that are executed from Normal mode, like you type
them.

repeat.txt — 754

When used after :global , :argdo , :windo ,
:bufdo , in a loop or when another command follows

the display won't be updated while executing the
commands.
Cannot be used in the sandbox .

:ru :runtime
:ru[ntime][!] [where] {file} ..

Read Ex commands from {file} in each directory given
by 'runtimepath' and/or 'packpath'. There is no error
for non-existing files.

Example:
:runtime syntax/c.vim

There can be multiple {file} arguments, separated by
spaces. Each {file} is searched for in the first
directory from 'runtimepath', then in the second
directory, etc. Use a backslash to include a space
inside {file} (although it's better not to use spaces
in file names, it causes trouble).

When [!] is included, all found files are sourced.
When it is not included only the first found file is
sourced.

When [where] is omitted only 'runtimepath' is used.
Other values:

START search under "start" in 'packpath'
OPT search under "opt" in 'packpath'
PACK search under "start" and "opt" in

'packpath'
ALL first use 'runtimepath', then search

under "start" and "opt" in 'packpath'

When {file} contains wildcards it is expanded to all
matching files. Example:

:runtime! plugin/**/*.vim
This is what Vim uses to load the plugin files when
starting up. This similar command:

:runtime plugin/**/*.vim
would source the first file only.

When 'verbose' is one or higher, there is a message
when no file could be found.
When 'verbose' is two or higher, there is a message
about each searched file.

:pa :packadd E919
:pa[ckadd][!] {name} Search for an optional plugin directory in 'packpath'

and source any plugin files found. The directory must
match:

pack/*/opt/{name}
The directory is added to 'runtimepath' if it wasn't
there yet.
If the directory pack/*/opt/{name}/after exists it is
added at the end of 'runtimepath'.

If loading packages from "pack/*/start" was skipped,
then this directory is searched first:

repeat.txt — 755

pack/*/start/{name}

Note that {name} is the directory name, not the name
of the .vim file. All the files matching the pattern

pack/*/opt/{name}/plugin/**/*.vim
will be sourced. This allows for using subdirectories
below "plugin", just like with plugins in
'runtimepath'.

If the filetype detection was not enabled yet (this
is usually done with a `syntax enable` or `filetype on`
command in your .vimrc file), this will also look
for "{name}/ftdetect/*.vim" files.

When the optional ! is added no plugin files or
ftdetect scripts are loaded, only the matching
directories are added to 'runtimepath'. This is
useful in your .vimrc. The plugins will then be
loaded during initialization, see load-plugins (note
that the loading order will be reversed, because each
directory is inserted before others).
Note that for ftdetect scripts to be loaded
you will need to write `filetype plugin indent on`
AFTER all `packadd!` commands.

Also see pack-add .
{only available when compiled with |+eval|}

:packl :packloadall
:packl[oadall][!] Load all packages in the "start" directory under each

entry in 'packpath'.

First all the directories found are added to
'runtimepath', then the plugins found in the
directories are sourced. This allows for a plugin to
depend on something of another plugin, e.g. an
"autoload" directory. See packload-two-steps for
how this can be useful.

This is normally done automatically during startup,
after loading your .vimrc file. With this command it
can be done earlier.

Packages will be loaded only once. Using
`:packloadall` a second time will have no effect.
When the optional ! is added this command will load
packages even when done before.

Note that when using `:packloadall` in the vimrc
file, the 'runtimepath' option is updated, and later
all plugins in 'runtimepath' will be loaded, which
means they are loaded again. Plugins are expected to
handle that.

An error only causes sourcing the script where it
happens to be aborted, further plugins will be loaded.
See packages .
{only available when compiled with |+eval|}

:scripte[ncoding] [encoding] :scripte :scriptencoding E167

repeat.txt — 756

Specify the character encoding used in the script.
The following lines will be converted from [encoding]
to the value of the 'encoding' option, if they are
different. Examples:

scriptencoding iso-8859-5
scriptencoding cp932

When [encoding] is empty, no conversion is done. This
can be used to restrict conversion to a sequence of
lines:

scriptencoding euc-jp
... lines to be converted ...
scriptencoding
... not converted ...

When conversion isn't supported by the system, there
is no error message and no conversion is done. When a
line can't be converted there is no error and the
original line is kept.

Don't use "ucs-2" or "ucs-4", scripts cannot be in
these encodings (they would contain NUL bytes).
When a sourced script starts with a BOM (Byte Order
Mark) in utf-8 format Vim will recognize it, no need
to use ":scriptencoding utf-8" then.

If you set the 'encoding' option in your .vimrc ,
`:scriptencoding` must be placed after that. E.g.:

set encoding=utf-8
scriptencoding utf-8

:scriptv[ersion] {version} :scriptv :scriptversion
E999 E984 E1040

Specify the version of Vim for the lines that follow
in the same file. Only applies at the toplevel of
sourced scripts, not inside functions.

If {version} is higher than what the current Vim
version supports E999 will be given. You either need
to rewrite the script to make it work with an older
Vim version, or update Vim to a newer version. See
vimscript-version for what changed between versions.

:vim9s[cript] [noclear] :vim9s :vim9script
Marks a script file as containing Vim9-script
commands. Also see vim9-namespace . E1038
Must be the first command in the file. E1039
For [noclear] see vim9-reload .
Without the +eval feature this changes the syntax
for some commands.
See :vim9cmd for executing one command with Vim9
syntax and semantics.

:scr :scriptnames
:scr[iptnames] List all sourced script names, in the order they were

first encountered. The number is used for the script
ID <SID> .
For a script that was used with `import autoload` but
was not actually sourced yet an "A" is shown after the

repeat.txt — 757

script ID.
For a script that was referred to by one name but
after resolving symbolic links got sourced with
another name the other script is after "->". E.g.
"20->22" means script 20 was sourced as script 22.
Also see `getscriptinfo()`.
{not available when compiled without the +eval
feature}

:scr[iptnames][!] {scriptId} :script
Edit script {scriptId}. Although ":scriptnames name"
works, using ":script name" is recommended.
When the current buffer can't be abandon ed and the !
is not present, the command fails.

:fini :finish E168
:fini[sh] Stop sourcing a script. Can only be used in a Vim

script file. This is a quick way to skip the rest of
the file. If it is used after a :try but before the
matching :finally (if present), the commands
following the ":finally" up to the matching :endtry
are executed first. This process applies to all
nested ":try"s in the script. The outermost ":endtry"
then stops sourcing the script.

All commands and command sequences can be repeated by putting them in a named
register and then executing it. There are two ways to get the commands in the
register:
- Use the record command "q". You type the commands once, and while they are

being executed they are stored in a register. Easy, because you can see
what you are doing. If you make a mistake, "p"ut the register into the
file, edit the command sequence, and then delete it into the register
again. You can continue recording by appending to the register (use an
uppercase letter).

- Delete or yank the command sequence into the register.

Often used command sequences can be put under a function key with the ':map'
command.

An alternative is to put the commands in a file, and execute them with the
':source!' command. Useful for long command sequences. Can be combined with
the ':map' command to put complicated commands under a function key.

The ':source' command reads Ex commands from a file or a buffer line by line.
You will have to type any needed keyboard input. The ':source!' command reads
from a script file character by character, interpreting each character as if
you typed it.

Example: When you give the ":!ls" command you get the hit-enter prompt. If
you ':source' a file with the line "!ls" in it, you will have to type the
<Enter> yourself. But if you ':source!' a file with the line ":!ls" in it,
the next characters from that file are read until a <CR> is found. You will
not have to type <CR> yourself, unless ":!ls" was the last line in the file.

It is possible to put ':source[!]' commands in the script file, so you can
make a top-down hierarchy of script files. The ':source' command can be
nested as deep as the number of files that can be opened at one time (about
15). The ':source!' command can be nested up to 15 levels deep.

You can use the "<sfile>" string (literally, this is not a special key) inside

repeat.txt — 758

of the sourced file, in places where a file name is expected. It will be
replaced by the file name of the sourced file. For example, if you have a
"other.vimrc" file in the same directory as your ".vimrc" file, you can source
it from your ".vimrc" file with this command:

:source <sfile>:h/other.vimrc

In script files terminal-dependent key codes are represented by
terminal-independent two character codes. This means that they can be used
in the same way on different kinds of terminals. The first character of a
key code is 0x80 or 128, shown on the screen as "~@". The second one can be
found in the list key-notation . Any of these codes can also be entered
with CTRL-V followed by the three digit decimal code. This does NOT work for
the <t_xx> termcap codes, these can only be used in mappings.

:source_crnl W15
Win32: Files that are read with ":source" normally have <CR><NL> <EOL>s.
These always work. If you are using a file with <NL> <EOL>s (for example, a
file made on Unix), this will be recognized if 'fileformats' is not empty and
the first line does not end in a <CR>. This fails if the first line has
something like ":map <F1> :help^M", where "^M" is a <CR>. If the first line
ends in a <CR>, but following ones don't, you will get an error message,
because the <CR> from the first lines will be lost.

Mac Classic: Files that are read with ":source" normally have <CR> <EOL>s.
These always work. If you are using a file with <NL> <EOL>s (for example, a
file made on Unix), this will be recognized if 'fileformats' is not empty and
the first line does not end in a <CR>. Be careful not to use a file with <NL>
linebreaks which has a <CR> in first line.

On other systems, Vim expects ":source"ed files to end in a <NL>. These
always work. If you are using a file with <CR><NL> <EOL>s (for example, a
file made on MS-Windows), all lines will have a trailing <CR>. This may cause
problems for some commands (e.g., mappings). There is no automatic <EOL>
detection, because it's common to start with a line that defines a mapping
that ends in a <CR>, which will confuse the automaton.

line-continuation
Long lines in a ":source"d Ex command script file can be split by inserting
a line continuation symbol "\" (backslash) at the start of the next line.
There can be white space before the backslash, which is ignored.

Example: the lines
:set comments=sr:/*,mb:*,el:*/,

\://,
\b:#,
\:%,
\n:>,
\fb:-

are interpreted as if they were given in one line:
:set comments=sr:/*,mb:*,el:*/,://,b:#,:%,n:>,fb:-

All leading whitespace characters in the line before a backslash are ignored.
Note however that trailing whitespace in the line before it cannot be
inserted freely; it depends on the position where a command is split up
whether additional whitespace is allowed or not.

When a space is required it's best to put it right after the backslash. A
space at the end of a line is hard to see and may be accidentally deleted.

:syn match Comment
\ "very long regexp"

repeat.txt — 759

\ keepend

In Vim9 script the backslash can often be omitted, but not always.
See vim9-line-continuation .

There is a problem with the ":append" and ":insert" commands:
:1append
\asdf
.

The backslash is seen as a line-continuation symbol, thus this results in the
command:

:1appendasdf
.

To avoid this, add the 'C' flag to the 'cpoptions' option:
:set cpo+=C
:1append
\asdf
.
:set cpo-=C

Note that when the commands are inside a function, you need to add the 'C'
flag when defining the function, it is not relevant when executing it.

:set cpo+=C
:function Foo()
:1append
\asdf
.
:endfunction
:set cpo-=C

line-continuation-comment
To add a comment in between the lines start with '"\ '. Notice the space
after the backslash. Example:

let array = [
"\ first entry comment
\ 'first',
"\ second entry comment
\ 'second',
\]

Rationale:
Most programs work with a trailing backslash to indicate line
continuation. Using this in Vim would cause incompatibility with Vi.
For example for this Vi mapping:

:map xx asdf\
Therefore the unusual leading backslash is used.

Starting a comment in a continuation line results in all following
continuation lines to be part of the comment. Since it was like this
for a long time, when making it possible to add a comment halfway a
sequence of continuation lines, it was not possible to use \", since
that was a valid continuation line. Using '"\ ' comes closest, even
though it may look a bit weird. Requiring the space after the
backslash is to make it very unlikely this is a normal comment line.

==
5. Using Vim packages packages

A Vim package is a directory that contains one or more plugins. The
advantages over normal plugins:

repeat.txt — 760

- A package can be downloaded as an archive and unpacked in its own directory.
Thus the files are not mixed with files of other plugins. That makes it
easy to update and remove.

- A package can be a git, mercurial, etc. repository. That makes it really
easy to update.

- A package can contain multiple plugins that depend on each other.
- A package can contain plugins that are automatically loaded on startup and

ones that are only loaded when needed with `:packadd`.

Using a package and loading automatically

Let's assume your Vim files are in the "~/.vim" directory and you want to add a
package from a zip archive "/tmp/foopack.zip":

% mkdir -p ~/.vim/pack/foo
% cd ~/.vim/pack/foo
% unzip /tmp/foopack.zip

The directory name "foo" is arbitrary, you can pick anything you like.

You would now have these files under ~/.vim:
pack/foo/README.txt
pack/foo/start/foobar/plugin/foo.vim
pack/foo/start/foobar/syntax/some.vim
pack/foo/opt/foodebug/plugin/debugger.vim

When Vim starts up, after processing your .vimrc, it scans all directories in
'packpath' for plugins under the "pack/*/start" directory. First all those
directories are added to 'runtimepath'. Then all the plugins are loaded.
See packload-two-steps for how these two steps can be useful.

To allow for calling into package functionality while parsing your .vimrc,
:colorscheme and autoload will both automatically search under 'packpath'

as well in addition to 'runtimepath'. See the documentation for each for
details.

In the example Vim will find "pack/foo/start/foobar/plugin/foo.vim" and adds
"~/.vim/pack/foo/start/foobar" to 'runtimepath'.

If the "foobar" plugin kicks in and sets the 'filetype' to "some", Vim will
find the syntax/some.vim file, because its directory is in 'runtimepath'.

Vim will also load ftdetect files, if there are any.

Note that the files under "pack/foo/opt" are not loaded automatically, only the
ones under "pack/foo/start". See pack-add below for how the "opt" directory
is used.

Loading packages automatically will not happen if loading plugins is disabled,
see load-plugins .

To load packages earlier, so that 'runtimepath' gets updated:
:packloadall

This also works when loading plugins is disabled. The automatic loading will
only happen once.

If the package has an "after" directory, that directory is added to the end of
'runtimepath', so that anything there will be loaded later.

repeat.txt — 761

Using a single plugin and loading it automatically

If you don't have a package but a single plugin, you need to create the extra
directory level:

% mkdir -p ~/.vim/pack/foo/start/foobar
% cd ~/.vim/pack/foo/start/foobar
% unzip /tmp/someplugin.zip

You would now have these files:
pack/foo/start/foobar/plugin/foo.vim
pack/foo/start/foobar/syntax/some.vim

From here it works like above.

Optional plugins
pack-add

To load an optional plugin from a pack use the `:packadd` command:
:packadd foodebug

This searches for "pack/*/opt/foodebug" in 'packpath' and will find
~/.vim/pack/foo/opt/foodebug/plugin/debugger.vim and source it.

This could be done if some conditions are met. For example, depending on
whether Vim supports a feature or a dependency is missing.

You can also load an optional plugin at startup, by putting this command in
your .vimrc :

:packadd! foodebug
The extra "!" is so that the plugin isn't loaded if Vim was started with
--noplugin .

It is perfectly normal for a package to only have files in the "opt"
directory. You then need to load each plugin when you want to use it.

Where to put what

Since color schemes, loaded with `:colorscheme`, are found below
"pack/*/start" and "pack/*/opt", you could put them anywhere. We recommend
you put them below "pack/*/opt", for example
".vim/pack/mycolors/opt/dark/colors/very_dark.vim".

Filetype plugins should go under "pack/*/start", so that they are always
found. Unless you have more than one plugin for a file type and want to
select which one to load with `:packadd`. E.g. depending on the compiler
version:

if foo_compiler_version > 34
packadd foo_new

else
packadd foo_old

endif

The "after" directory is most likely not useful in a package. It's not
disallowed though.

==
6. Creating Vim packages package-create

This assumes you write one or more plugins that you distribute as a package.

repeat.txt — 762

If you have two unrelated plugins you would use two packages, so that Vim
users can choose what they include or not. Or you can decide to use one
package with optional plugins, and tell the user to add the preferred ones with
`:packadd`.

Decide how you want to distribute the package. You can create an archive or
you could use a repository. An archive can be used by more users, but is a
bit harder to update to a new version. A repository can usually be kept
up-to-date easily, but it requires a program like "git" to be available.
You can do both, github can automatically create an archive for a release.

Your directory layout would be like this:
start/foobar/plugin/foo.vim " always loaded, defines commands
start/foobar/plugin/bar.vim " always loaded, defines commands
start/foobar/autoload/foo.vim " loaded when foo command used
start/foobar/doc/foo.txt " help for foo.vim
start/foobar/doc/tags " help tags
opt/fooextra/plugin/extra.vim " optional plugin, defines commands
opt/fooextra/autoload/extra.vim " loaded when extra command used
opt/fooextra/doc/extra.txt " help for extra.vim
opt/fooextra/doc/tags " help tags

This allows for the user to do:
mkdir ~/.vim/pack
cd ~/.vim/pack
git clone https://github.com/you/foobar.git myfoobar

Here "myfoobar" is a name that the user can choose, the only condition is that
it differs from other packages.

In your documentation you explain what the plugins do, and tell the user how
to load the optional plugin:

:packadd! fooextra

You could add this packadd command in one of your plugins, to be executed when
the optional plugin is needed.

Run the `:helptags` command to generate the doc/tags file. Including this
generated file in the package means that the user can drop the package in the
pack directory and the help command works right away. Don't forget to re-run
the command after changing the plugin help:

:helptags path/start/foobar/doc
:helptags path/opt/fooextra/doc

Dependencies between plugins
packload-two-steps

Suppose you have two plugins that depend on the same functionality. You can
put the common functionality in an autoload directory, so that it will be
found automatically. Your package would have these files:

pack/foo/start/one/plugin/one.vim
call foolib#getit()

pack/foo/start/two/plugin/two.vim
call foolib#getit()

pack/foo/start/lib/autoload/foolib.vim
func foolib#getit()

This works, because loading packages will first add all found directories to
'runtimepath' before sourcing the plugins.

repeat.txt — 763

==
7. Debugging scripts debug-scripts

Besides the obvious messages that you can add to your scripts to find out what
they are doing, Vim offers a debug mode. This allows you to step through a
sourced file or user function and set breakpoints.

NOTE: The debugging mode is far from perfect. Debugging will have side
effects on how Vim works. You cannot use it to debug everything. For
example, the display is messed up by the debugging messages.

An alternative to debug mode is setting the 'verbose' option. With a bigger
number it will give more verbose messages about what Vim is doing.

STARTING DEBUG MODE debug-mode

To enter debugging mode use one of these methods:
1. Start Vim with the -D argument:

vim -D file.txt
Debugging will start as soon as the first vimrc file is sourced. This is
useful to find out what is happening when Vim is starting up. A side
effect is that Vim will switch the terminal mode before initialisations
have finished, with unpredictable results.
For a GUI-only version (Windows, Macintosh) the debugging will start as
soon as the GUI window has been opened. To make this happen early, add a
":gui" command in the vimrc file.

:debug
2. Run a command with ":debug" prepended. Debugging will only be done while

this command executes. Useful for debugging a specific script or user
function. And for scripts and functions used by autocommands. Example:

:debug edit test.txt.gz

3. Set a breakpoint in a sourced file or user function. You could do this in
the command line:

vim -c "breakadd file */explorer.vim" .
This will run Vim and stop in the first line of the "explorer.vim" script.
Breakpoints can also be set while in debugging mode.

In debugging mode every executed command is displayed before it is executed.
Comment lines, empty lines and lines that are not executed are skipped. When
a line contains two commands, separated by "|", each command will be displayed
separately.

DEBUG MODE

Once in debugging mode, the usual Ex commands can be used. For example, to
inspect the value of a variable:

echo idx
When inside a user function, this will print the value of the local variable
"idx". Prepend "g:" to get the value of a global variable:

echo g:idx
All commands are executed in the context of the current function or script.
You can also set options, for example setting or resetting 'verbose' will show
what happens, but you might want to set it just before executing the lines you
are interested in:

:set verbose=20

repeat.txt — 764

Commands that require updating the screen should be avoided, because their
effect won't be noticed until after leaving debug mode. For example:

:help
won't be very helpful.

There is a separate command-line history for debug mode.

NOTE: In Vim9 script, if a command is written at the script level and
continues on the next line, not using the old way with a backslash for line
continuation, only the first line is printed before the debugging prompt.

The line number for a function line is relative to the start of the function.
If you have trouble figuring out where you are, edit the file that defines
the function in another Vim, search for the start of the function and do
"99j". Replace "99" with the line number.

Additionally, these commands can be used:
>cont

cont Continue execution until the next breakpoint is hit.
>quit

quit Abort execution. This is like using CTRL-C, some
things might still be executed, doesn't abort
everything. Still stops at the next breakpoint.

>next
next Execute the command and come back to debug mode when

it's finished. This steps over user function calls
and sourced files.

>step
step Execute the command and come back to debug mode for

the next command. This steps into called user
functions and sourced files.

>interrupt
interrupt This is like using CTRL-C, but unlike ">quit" comes

back to debug mode for the next command that is
executed. Useful for testing :finally and :catch
on interrupt exceptions.

>finish
finish Finish the current script or user function and come

back to debug mode for the command after the one that
sourced or called it.

>bt
>backtrace
>where

backtrace Show the call stacktrace for current debugging session.
bt
where

>frame
frame N Goes to N backtrace level. + and - signs make movement

relative. E.g., ":frame +3" goes three frames up.
>up

up Goes one level up from call stacktrace.
>down

down Goes one level down from call stacktrace.

About the additional commands in debug mode:
- There is no command-line completion for them, you get the completion for the

normal Ex commands only.
- You can shorten them, up to a single character, unless more than one command

starts with the same letter. "f" stands for "finish", use "fr" for "frame".
- Hitting <CR> will repeat the previous one. When doing another command, this

repeat.txt — 765

is reset (because it's not clear what you want to repeat).
- When you want to use the Ex command with the same name, prepend a colon:

":cont", ":next", ":finish" (or shorter).
vim9-debug

When debugging a compiled :def function, "step" will stop before every
executed line, not every single instruction. Thus it works mostly like a not
compiled function. Access to local variables is limited you can use:

echo varname
But not much else.
When executing a command that is not a specific bytecode instruction but
executed like a normal Ex command, "step" will stop once in the compiled
context, where local variables can be inspected, and once just before
executing the command.

In a :def function variables that haven't been declared yet cannot be
inspected. Variables that have been declared can be inspected, also when the
block they were declared in has finished. In commands this would not be
possible, thus is slightly misleading (but can be useful).

The backtrace shows the hierarchy of function calls, e.g.:
>bt

3 function One[3]
2 Two[3]

->1 Three[3]
0 Four

line 1: let four = 4

The "->" points to the current frame. Use "up", "down" and "frame N" to
select another frame.

In the current frame you can evaluate the local function variables. There is
no way to see the command at the current line yet.

DEFINING BREAKPOINTS
:breaka :breakadd

:breaka[dd] func [lnum] {name}
Set a breakpoint in a function. Example:

:breakadd func Explore
Doesn't check for a valid function name, thus the breakpoint
can be set before the function is defined.

:breaka[dd] file [lnum] {name}
Set a breakpoint in a sourced file. Example:

:breakadd file 43 .vimrc

:breaka[dd] here
Set a breakpoint in the current line of the current file.
Like doing:

:breakadd file <cursor-line> <current-file>
Note that this only works for commands that are executed when
sourcing the file, not for a function defined in that file.

:breaka[dd] expr {expression}
Sets a breakpoint, that will break whenever the {expression}
evaluates to a different value. Example:

:breakadd expr g:lnum
Will break, whenever the global variable lnum changes.

Errors in evaluation are suppressed, you can use the name of a

repeat.txt — 766

variable that does not exist yet. This also means you will
not notice anything if the expression has a mistake.

Note if you watch a script-variable this will break
when switching scripts, since the script variable is only
valid in the script where it has been defined and if that
script is called from several other scripts, this will stop
whenever that particular variable will become visible or
inaccessible again.

The [lnum] is the line number of the breakpoint. Vim will stop at or after
this line. When omitted line 1 is used.

:debug-name
{name} is a pattern that is matched with the file or function name. The
pattern is like what is used for autocommands. There must be a full match (as
if the pattern starts with "^" and ends in "$"). A "*" matches any sequence
of characters. 'ignorecase' is not used, but "\c" can be used in the pattern
to ignore case /\c . Don't include the () for the function name!

The match for sourced scripts is done against the full file name. If no path
is specified the current directory is used. Examples:

breakadd file explorer.vim
matches "explorer.vim" in the current directory.

breakadd file *explorer.vim
matches ".../plugin/explorer.vim", ".../plugin/iexplorer.vim", etc.

breakadd file */explorer.vim
matches ".../plugin/explorer.vim" and "explorer.vim" in any other directory.

The match for functions is done against the name as it's shown in the output
of ":function". However, for local functions the script-specific prefix such
as "<SNR>99_" is ignored to make it easier to match script-local functions
without knowing the ID of the script.

Note that functions are first loaded and later executed. When they are loaded
the "file" breakpoints are checked, when they are executed the "func"
breakpoints.

DELETING BREAKPOINTS
:breakd :breakdel E161

:breakd[el] {nr}
Delete breakpoint {nr}. Use :breaklist to see the number of
each breakpoint.

:breakd[el] *
Delete all breakpoints.

:breakd[el] func [lnum] {name}
Delete a breakpoint in a function.

:breakd[el] file [lnum] {name}
Delete a breakpoint in a sourced file.

:breakd[el] here
Delete a breakpoint at the current line of the current file.

When [lnum] is omitted, the first breakpoint in the function or file is
deleted.
The {name} must be exactly the same as what was typed for the ":breakadd"

repeat.txt — 767

command. "explorer", "*explorer.vim" and "*explorer*" are different.

LISTING BREAKPOINTS
:breakl :breaklist

:breakl[ist]
List all breakpoints.

OBSCURE

:debugg :debuggreedy
:debugg[reedy]

Read debug mode commands from the normal input stream, instead
of getting them directly from the user. Only useful for test
scripts. Example:

echo 'q^Mq' | vim -e -s -c debuggreedy -c 'breakadd file script.vim' -S script.vim

:0debugg[reedy]
Undo ":debuggreedy": get debug mode commands directly from the
user, don't use typeahead for debug commands.

==
8. Profiling profile profiling

Profiling means that Vim measures the time that is spent on executing
functions and/or scripts. The +profile feature is required for this.
It is included when Vim was compiled with "huge" features.

You can also use the reltime() function to measure time. This only requires
the +reltime feature, which is present in more builds.

For profiling syntax highlighting see :syntime .

For example, to profile the one_script.vim script file:
:profile start /tmp/one_script_profile
:profile file one_script.vim
:source one_script.vim
:exit

:prof[ile] start {fname} :prof :profile E750
Start profiling, write the output in {fname} upon exit or when
a `:profile stop` or `:profile dump` command is invoked.
"~/" and environment variables in {fname} will be expanded.
If {fname} already exists it will be silently overwritten.
The variable v:profiling is set to one.

:prof[ile] stop
Write the collected profiling information to the logfile and
stop profiling. You can use the `:profile start` command to
clear the profiling statistics and start profiling again.

:prof[ile] pause
Don't profile until the following `:profile continue`. Can be
used when doing something that should not be counted (e.g., an
external command). Does not nest.

:prof[ile] continue
Continue profiling after `:profile pause`.

repeat.txt — 768

:prof[ile] func {pattern}
Profile function that matches the pattern {pattern}.
See :debug-name for how {pattern} is used.

:prof[ile][!] file {pattern}
Profile script file that matches the pattern {pattern}.
See :debug-name for how {pattern} is used.
This only profiles the script itself, not the functions
defined in it.
When the [!] is added then all functions defined in the script
will also be profiled.
Note that profiling only starts when the script is loaded
after this command. A :profile command in the script itself
won't work.

:prof[ile] dump
Write the current state of profiling to the logfile
immediately. After running this command, Vim continues to
collect the profiling statistics.

:profd[el] ... :profd :profdel
Stop profiling for the arguments specified. See :breakdel
for the arguments. Examples:

profdel func MyFunc
profdel file MyScript.vim
profdel here

You must always start with a ":profile start fname" command. The resulting
file is written when Vim exits. For example, to profile one specific
function:

profile start /tmp/vimprofile
profile func MyFunc

Here is an example of the output, with line
numbers prepended for the explanation:

1 FUNCTION Test2()
2 Called 1 time
3 Total time: 0.155251
4 Self time: 0.002006
5
6 count total (s) self (s)
7 9 0.000096 for i in range(8)
8 8 0.153655 0.000410 call Test3()
9 8 0.000070 endfor

10 " Ask a question
11 1 0.001341 echo input("give me an answer: ")

The header (lines 1-4) gives the time for the whole function. The "Total"
time is the time passed while the function was executing. The "Self" time is
the "Total" time reduced by time spent in:
- other user defined functions
- sourced scripts
- executed autocommands
- external (shell) commands

Lines 7-11 show the time spent in each executed line. Lines that are not
executed do not count. Thus a comment line is never counted.

repeat.txt — 769

The Count column shows how many times a line was executed. Note that the
"for" command in line 7 is executed one more time as the following lines.
That is because the line is also executed to detect the end of the loop.

The time Vim spends waiting for user input isn't counted at all. Thus how
long you take to respond to the input() prompt is irrelevant.

Profiling should give a good indication of where time is spent, but keep in
mind there are various things that may clobber the results:

- The accuracy of the time measured depends on the gettimeofday(), or
clock_gettime() if available, system function. The accuracy ranges from
1/100 second to nanoseconds. With clock_gettime() the times are displayed in
nanoseconds, otherwise microseconds. You can use `has("prof_nsec")`.

- Real elapsed time is measured, if other processes are busy they may cause
delays at unpredictable moments. You may want to run the profiling several
times and use the lowest results.

- If you have several commands in one line you only get one time. Split the
line to see the time for the individual commands.

- The time of the lines added up is mostly less than the time of the whole
function. There is some overhead in between.

- Functions that are deleted before Vim exits will not produce profiling
information. You can check the v:profiling variable if needed:

:if !v:profiling
: delfunc MyFunc
:endif

- Profiling may give weird results on multi-processor systems, when sleep
mode kicks in or the processor frequency is reduced to save power.

- The "self" time is wrong when a function is used recursively.

repeat.txt — 770

visual.txt For Vim version 9.1. Last change: 2023 Sep 19

VIM REFERENCE MANUAL by Bram Moolenaar

Visual mode Visual Visual-mode visual-mode

Visual mode is a flexible and easy way to select a piece of text for an
operator. It is the only way to select a block of text.

This is introduced in section 04.4 of the user manual.

1. Using Visual mode visual-use
2. Starting and stopping Visual mode visual-start
3. Changing the Visual area visual-change
4. Operating on the Visual area visual-operators
5. Blockwise operators blockwise-operators
6. Repeating visual-repeat
7. Examples visual-examples
8. Select mode Select-mode

{Since Vim 7.4.200 the |+visual| feature is always included}

==
1. Using Visual mode visual-use

Using Visual mode consists of three parts:
1. Mark the start of the text with "v", "V" or CTRL-V.

The character under the cursor will be used as the start.
2. Move to the end of the text.

The text from the start of the Visual mode up to and including the
character under the cursor is highlighted.

3. Type an operator command.
The highlighted characters will be operated upon.

The 'highlight' option can be used to set the display mode to use for
highlighting in Visual mode.
The 'virtualedit' option can be used to allow positioning the cursor to
positions where there is no actual character.

The highlighted text normally includes the character under the cursor.
However, when the 'selection' option is set to "exclusive" and the cursor is
after the Visual area, the character under the cursor is not included.

With "v" the text before the start position and after the end position will
not be highlighted. However, all uppercase and non-alpha operators, except
"~" and "U", will work on whole lines anyway. See the list of operators
below.

visual-block
With CTRL-V (blockwise Visual mode) the highlighted text will be a rectangle
between start position and the cursor. However, some operators work on whole
lines anyway (see the list below). The change and substitute operators will
delete the highlighted text and then start insertion at the top left
position.

==
2. Starting and stopping Visual mode visual-start

visual.txt — 771

v characterwise-visual
[count]v Start Visual mode per character.

With [count] select the same number of characters or
lines as used for the last Visual operation, but at
the current cursor position, multiplied by [count].
When the previous Visual operation was on a block both
the width and height of the block are multiplied by
[count].
When there was no previous Visual operation [count]
characters are selected. This is like moving the
cursor right N * [count] characters. One less when
'selection' is not "exclusive".

V linewise-visual
[count]V Start Visual mode linewise.

With [count] select the same number of lines as used
for the last Visual operation, but at the current
cursor position, multiplied by [count]. When there
was no previous Visual operation [count] lines are
selected.

CTRL-V blockwise-visual
[count]CTRL-V Start Visual mode blockwise. Note: Under Windows

CTRL-V could be mapped to paste text, it doesn't work
to start Visual mode then, see CTRL-V-alternative .
[count] is used as with `v` above.

If you use <Esc>, click the left mouse button or use any command that
does a jump to another buffer while in Visual mode, the highlighting stops
and no text is affected. Also when you hit "v" in characterwise Visual mode,
"CTRL-V" in blockwise Visual mode or "V" in linewise Visual mode. If you hit
CTRL-Z the highlighting stops and the editor is suspended or a new shell is
started CTRL-Z .

new mode after typing: v_v v_CTRL-V v_V
old mode "v" "CTRL-V" "V"

Normal Visual blockwise Visual linewise Visual
Visual Normal blockwise Visual linewise Visual
blockwise Visual Visual Normal linewise Visual
linewise Visual Visual blockwise Visual Normal

gv v_gv reselect-Visual
gv Start Visual mode with the same area as the previous

area and the same mode.
In Visual mode the current and the previous Visual
area are exchanged.
After using "p" or "P" in Visual mode the text that
was put will be selected.

gn v_gn
gn Search forward for the last used search pattern, like

with `n`, and start Visual mode to select the match.
If the cursor is on the match, visually selects it.
If an operator is pending, operates on the match.
E.g., "dgn" deletes the text of the next match.
If Visual mode is active, extends the selection
until the end of the next match.
'wrapscan' applies.
Note: Unlike `n` the search direction does not depend

visual.txt — 772

on the previous search command.

gN v_gN
gN Like gn but searches backward, like with `N`.

<LeftMouse>
<LeftMouse> Set the current cursor position. If Visual mode is

active it is stopped. Only when 'mouse' option
contains 'n' or 'a'. If the position is within 'so'
lines from the last line on the screen the text is
scrolled up. If the position is within 'so' lines from
the first line on the screen the text is scrolled
down.

<RightMouse>
<RightMouse> Start Visual mode if it is not active. The text from

the cursor position to the position of the click is
highlighted. If Visual mode was already active move
the start or end of the highlighted text, whichever
is closest, to the position of the click. Only when
'mouse' option contains 'n' or 'a'.

Note: when 'mousemodel' is set to "popup",
<S-LeftMouse> has to be used instead of <RightMouse>.

<LeftRelease>
<LeftRelease> This works like a <LeftMouse>, if it is not at

the same position as <LeftMouse>. In an older version
of xterm you won't see the selected area until the
button is released, unless there is access to the
display where the xterm is running (via the DISPLAY
environment variable or the -display argument). Only
when 'mouse' option contains 'n' or 'a'.

<LeftMouseNM> Internal mouse code, used for clicking on the status
<LeftReleaseNM> line to focus a window. NM stands for non-mappable.

You cannot use these, but they might show up in some
places.

If Visual mode is not active and the "v", "V" or CTRL-V is preceded with a
count, the size of the previously highlighted area is used for a start. You
can then move the end of the highlighted area and give an operator. The type
of the old area is used (character, line or blockwise).
- Linewise Visual mode: The number of lines is multiplied with the count.
- Blockwise Visual mode: The number of lines and columns is multiplied with

the count.
- Normal Visual mode within one line: The number of characters is multiplied

with the count.
- Normal Visual mode with several lines: The number of lines is multiplied

with the count, in the last line the same number of characters is used as
in the last line in the previously highlighted area.

The start of the text is the Cursor position. If the "$" command was used as
one of the last commands to extend the highlighted text, the area will be
extended to the rightmost column of the longest line.

If you want to highlight exactly the same area as the last time, you can use
"gv" gv v_gv .

v_<Esc>
<Esc> In Visual mode: Stop Visual mode.

visual.txt — 773

v_CTRL-C
CTRL-C In Visual mode: Stop Visual mode. When insert mode is

pending (the mode message shows
"-- (insert) VISUAL --"), it is also stopped.
On MS-Windows, you may need to press CTRL-Break
dos-CTRL-Break .

==
3. Changing the Visual area visual-change

v_o
o Go to Other end of highlighted text: The current

cursor position becomes the start of the highlighted
text and the cursor is moved to the other end of the
highlighted text. The highlighted area remains the
same.

v_O
O Go to Other end of highlighted text. This is like

"o", but in Visual block mode the cursor moves to the
other corner in the same line. When the corner is at
a character that occupies more than one position on
the screen (e.g., a <Tab>), the highlighted text may
change.

v_$
When the "$" command is used with blockwise Visual mode, the right end of the
highlighted text will be determined by the longest highlighted line. This
stops when a motion command is used that does not move straight up or down.

For moving the end of the block many commands can be used, but you cannot
use Ex commands, commands that make changes or abandon the file. Commands
(starting with) ".", "&", CTRL-^, "Z", CTRL-], CTRL-T, CTRL-R, CTRL-I
and CTRL-O cause a beep and Visual mode continues.

When switching to another window on the same buffer, the cursor position in
that window is adjusted, so that the same Visual area is still selected. This
is especially useful to view the start of the Visual area in one window, and
the end in another. You can then use <RightMouse> (or <S-LeftMouse> when
'mousemodel' is "popup") to drag either end of the Visual area.

==
4. Operating on the Visual area visual-operators

The operators that can be used are:
~ switch case v_~
d delete v_d
c change (4) v_c
y yank v_y
> shift right (4) v_>
< shift left (4) v_<
! filter through external command (1) v_!
= filter through 'equalprg' option command (1) v_=
gq format lines to 'textwidth' length (1) v_gq

The objects that can be used are:
aw a word (with white space) v_aw
iw inner word v_iw
aW a WORD (with white space) v_aW

visual.txt — 774

iW inner WORD v_iW
as a sentence (with white space) v_as
is inner sentence v_is
ap a paragraph (with white space) v_ap
ip inner paragraph v_ip
ab a () block (with parentheses) v_ab
ib inner () block v_ib
aB a {} block (with braces) v_aB
iB inner {} block v_iB
at a <tag> </tag> block (with tags) v_at
it inner <tag> </tag> block v_it
a< a <> block (with <>) v_a<
i< inner <> block v_i<
a[a [] block (with []) v_a[
i[inner [] block v_i[
a" a double quoted string (with quotes) v_aquote
i" inner double quoted string v_iquote
a' a single quoted string (with quotes) v_a'
i' inner simple quoted string v_i'
a` a string in backticks (with backticks) v_a`
i` inner string in backticks v_i`

Additionally the following commands can be used:
: start Ex command for highlighted lines (1) v_:
r change (4) v_r
s change v_s
C change (2)(4) v_C
S change (2) v_S
R change (2) v_R
x delete v_x
D delete (3) v_D
X delete (2) v_X
Y yank (2) v_Y
p put v_p
P put without overwriting registers v_P
J join (1) v_J
U make uppercase v_U
u make lowercase v_u
^] find tag v_CTRL-]
I block insert v_b_I
A block append v_b_A

(1): Always whole lines, see :visual_example .
(2): Whole lines when not using CTRL-V.
(3): Whole lines when not using CTRL-V, delete until the end of the line when

using CTRL-V.
(4): When using CTRL-V operates on the block only.

Note that the ":vmap" command can be used to specifically map keys in Visual
mode. For example, if you would like the "/" command not to extend the Visual
area, but instead take the highlighted text and search for that:

:vmap / y/<C-R>"<CR>
(In the <> notation <> , when typing it you should type it literally; you
need to remove the 'B' and '<' flags from 'cpoptions'.)

If you want to give a register name using the """ command, do this just before
typing the operator character: "v{move-around}"xd".

If you want to give a count to the command, do this just before typing the
operator character: "v{move-around}3>" (move lines 3 indents to the right).

visual.txt — 775

{move-around}
The {move-around} is any sequence of movement commands. Note the difference
with {motion}, which is only ONE movement command.

Another way to operate on the Visual area is using the /\%V item in a
pattern. For example, to replace all '(' in the Visual area with '#':

:'<,'>s/\%V(/#/g

Note that the "'<,'>" will appear automatically when you press ":" in Visual
mode.

==
5. Blockwise operators blockwise-operators

Reminder: Use 'virtualedit' to be able to select blocks that start or end
after the end of a line or halfway a tab.

Visual-block Insert v_b_I
With a blockwise selection, I{string}<ESC> will insert {string} at the start
of block on every line of the block, provided that the line extends into the
block. Thus lines that are short will remain unmodified. TABs are split to
retain visual columns. Works only for adding text to a line, not for
deletions. See v_b_I_example .

Visual-block Append v_b_A
With a blockwise selection, A{string}<ESC> will append {string} to the end of
block on every line of the block. There is some differing behavior where the
block RHS is not straight, due to different line lengths:

1. Block was created with <C-v>$
In this case the string is appended to the end of each line.

2. Block was created with <C-v>{move-around}
In this case the string is appended to the end of the block on each line,
and whitespace is inserted to pad to the end-of-block column.

See v_b_A_example .
Note: "I" and "A" behave differently for lines that don't extend into the
selected block. This was done intentionally, so that you can do it the way
you want.
Works only for adding text to a line, not for deletions.

Visual-block change v_b_c
All selected text in the block will be replaced by the same text string. When
using "c" the selected text is deleted and Insert mode started. You can then
enter text (without a line break). When you hit <Esc>, the same string is
inserted in all previously selected lines.

Visual-block Change v_b_C
Like using "c", but the selection is extended until the end of the line for
all lines.

v_b_<
Visual-block Shift v_b_>
The block is shifted by 'shiftwidth'. The RHS of the block is irrelevant. The
LHS of the block determines the point from which to apply a right shift, and
padding includes TABs optimally according to 'ts' and 'et'. The LHS of the
block determines the point up to which to shift left.
See v_b_>_example .
See v_b_<_example .

visual.txt — 776

Visual-block Replace v_b_r
Every screen char in the highlighted region is replaced with the same char, ie
TABs are split and the virtual whitespace is replaced, maintaining screen
layout.
See v_b_r_example .

==
6. Repeating visual-repeat

When repeating a Visual mode operator, the operator will be applied to the
same amount of text as the last time:
- Linewise Visual mode: The same number of lines.
- Blockwise Visual mode: The same number of lines and columns.
- Normal Visual mode within one line: The same number of characters.
- Normal Visual mode with several lines: The same number of lines, in the

last line the same number of characters as in the last line the last time.
The start of the text is the Cursor position. If the "$" command was used as
one of the last commands to extend the highlighted text, the repeating will
be applied up to the rightmost column of the longest line. Any count passed
to the `.` command is not used.

==
7. Examples visual-examples

:visual_example
Currently the ":" command works on whole lines only. When you select part of
a line, doing something like ":!date" will replace the whole line. If you
want only part of the line to be replaced you will have to make a mapping for
it. In a future release ":" may work on partial lines.

Here is an example, to replace the selected text with the output of "date":
:vmap _a <Esc>`>a<CR><Esc>`<i<CR><Esc>!!date<CR>kJJ

(In the <> notation <> , when typing it you should type it literally; you
need to remove the 'B' and '<' flags from 'cpoptions')

What this does is:
<Esc> stop Visual mode
`> go to the end of the Visual area
a<CR><Esc> break the line after the Visual area
`< jump to the start of the Visual area
i<CR><Esc> break the line before the Visual area
!!date<CR> filter the Visual text through date
kJJ Join the lines back together

visual-search
Here is an idea for a mapping that makes it possible to do a search for the
selected text:

:vmap X y/<C-R>"<CR>

(In the <> notation <> , when typing it you should type it literally; you
need to remove the 'B' and '<' flags from 'cpoptions')

Note that special characters (like '.' and '*') will cause problems.

Visual-block Examples blockwise-examples
With the following text, I will indicate the commands to produce the block and

visual.txt — 777

the results below. In all cases, the cursor begins on the 'a' in the first
line of the test text.
The following modeline settings are assumed ":ts=8:sw=4:".

It will be helpful to
:set hls
/<TAB>
where <TAB> is a real TAB. This helps visualise the operations.

The test text is:

abcdefghijklmnopqrstuvwxyz
abc defghijklmnopqrstuvwxyz
abcdef ghi jklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz

1. fo<C-v>3jISTRING<ESC> v_b_I_example

abcdefghijklmnSTRINGopqrstuvwxyz
abc STRING defghijklmnopqrstuvwxyz
abcdef ghi STRING jklmnopqrstuvwxyz
abcdefghijklmnSTRINGopqrstuvwxyz

2. fo<C-v>3j$ASTRING<ESC> v_b_A_example

abcdefghijklmnopqrstuvwxyzSTRING
abc defghijklmnopqrstuvwxyzSTRING
abcdef ghi jklmnopqrstuvwxyzSTRING
abcdefghijklmnopqrstuvwxyzSTRING

3. fo<C-v>3j3l<.. v_b_<_example

abcdefghijklmnopqrstuvwxyz
abc defghijklmnopqrstuvwxyz
abcdef ghi jklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz

4. fo<C-v>3j>.. v_b_>_example

abcdefghijklmn opqrstuvwxyz
abc defghijklmnopqrstuvwxyz
abcdef ghi jklmnopqrstuvwxyz
abcdefghijklmn opqrstuvwxyz

5. fo<C-v>5l3jrX v_b_r_example

abcdefghijklmnXXXXXXuvwxyz
abc XXXXXXhijklmnopqrstuvwxyz
abcdef ghi XXXXXX jklmnopqrstuvwxyz
abcdefghijklmnXXXXXXuvwxyz

==
8. Select mode Select Select-mode

Select mode looks like Visual mode, but the commands accepted are quite
different. This resembles the selection mode in Microsoft Windows.
When the 'showmode' option is set, "-- SELECT --" is shown in the last line.

Entering Select mode:
- Using the mouse to select an area, and 'selectmode' contains "mouse".

visual.txt — 778

'mouse' must also contain a flag for the current mode.
- Using a non-printable movement command, with the Shift key pressed, and

'selectmode' contains "key". For example: <S-Left> and <S-End>. 'keymodel'
must also contain "startsel".

- Using "v", "V" or CTRL-V command, and 'selectmode' contains "cmd".
- Using "gh", "gH" or "g_CTRL-H" command in Normal mode.
- From Visual mode, press CTRL-G. v_CTRL-G

Commands in Select mode:
- Printable characters, <NL> and <CR> cause the selection to be deleted, and

Vim enters Insert mode. The typed character is inserted.
- Non-printable movement commands, with the Shift key pressed, extend the

selection. 'keymodel' must include "startsel".
- Non-printable movement commands, with the Shift key NOT pressed, stop Select

mode. 'keymodel' must include "stopsel".
- ESC stops Select mode.
- CTRL-O switches to Visual mode for the duration of one command. v_CTRL-O
- CTRL-G switches to Visual mode.
- CTRL-R {register} selects the register to be used for the text that is

deleted when typing text. v_CTRL-R
Unless you specify the "_" (black hole) register, the unnamed register is
also overwritten.

Otherwise, typed characters are handled as in Visual mode.

When using an operator in Select mode, and the selection is linewise, the
selected lines are operated upon, but like in characterwise selection. For
example, when a whole line is deleted, it can later be pasted halfway a line.

Mappings and menus in Select mode. Select-mode-mapping

When mappings and menus are defined with the :vmap or :vmenu command they
work both in Visual mode and in Select mode. When these are used in Select
mode Vim automatically switches to Visual mode, so that the same behavior as
in Visual mode is effective. If you don't want this use :xmap or :smap .

One particular edge case:
:vnoremap <C-K> <Esc>

This ends Visual mode when in Visual mode, but in Select mode it does not
work, because Select mode is restored after executing the mapped keys. You
need to use:

:snoremap <C-K> <Esc>

Users will expect printable characters to replace the selected area.
Therefore avoid mapping printable characters in Select mode. Or use
:sunmap after :map and :vmap to remove it for Select mode.

After the mapping or menu finishes, the selection is enabled again and Select
mode entered, unless the selected area was deleted, another buffer became
the current one or the window layout was changed.

When a character was typed that causes the selection to be deleted and Insert
mode started, Insert mode mappings are applied to this character. This may
cause some confusion, because it means Insert mode mappings apply to a
character typed in Select mode. Language mappings apply as well.

gV v_gV
gV Avoid the automatic reselection of the Visual area

visual.txt — 779

after a Select mode mapping or menu has finished.
Put this just before the end of the mapping or menu.
At least it should be after any operations on the
selection.

gh
gh Start Select mode, characterwise. This is like "v",

but starts Select mode instead of Visual mode.
Mnemonic: "get highlighted".

gH
gH Start Select mode, linewise. This is like "V",

but starts Select mode instead of Visual mode.
Mnemonic: "get Highlighted".

g_CTRL-H
g CTRL-H Start Select mode, blockwise. This is like CTRL-V,

but starts Select mode instead of Visual mode.
Mnemonic: "get Highlighted".

visual.txt — 780

various.txt For Vim version 9.1. Last change: 2023 Sep 27

VIM REFERENCE MANUAL by Bram Moolenaar

Various commands various

1. Various commands various-cmds
2. Using Vim like less or more less

==
1. Various commands various-cmds

CTRL-L
CTRL-L Clear and redraw the screen. The redraw may happen

later, after processing typeahead.

:redr :redraw
:redr[aw][!] Redraw the screen right now. When ! is included it is

cleared first.
Useful to update the screen halfway executing a script
or function. Also when halfway a mapping and
'lazyredraw' is set.

:redraws :redrawstatus
:redraws[tatus][!] Redraw the status line of the current window. When !

is included all status lines are redrawn.
Useful to update the status line(s) when 'statusline'
includes an item that doesn't cause automatic
updating.
If the command line is being edited the redraw is
postponed until later.

:redrawt :redrawtabline
:redrawt[abline] Redraw the tabline. Useful to update the tabline when

'tabline' includes an item that doesn't trigger
automatic updating.

N
 When entering a number: Remove the last digit.

Note: if you like to use <BS> for this, add this
mapping to your .vimrc:

:map CTRL-V <BS> CTRL-V
See :fixdel if your key does not do what you
want.

:as[cii] or ga :as :ascii
ga Print the ascii value of the character under the

cursor in decimal, hexadecimal and octal.
Mnemonic: Get Ascii value.

For example, when the cursor is on a 'R':
<R> 82, Hex 52, Octal 122

When the character is a non-standard ASCII character,
but printable according to the 'isprint' option, the
non-printable version is also given.

When the character is larger than 127, the <M-x> form
is also printed. For example:

various.txt — 781

<~A> <M-^A> 129, Hex 81, Octal 201
<p> <|~> <M-~> 254, Hex fe, Octal 376

(where <p> is a special character)

The <Nul> character in a file is stored internally as
<NL>, but it will be shown as:

<^@> 0, Hex 00, Octal 000

If the character has composing characters these are
also shown. The value of 'maxcombine' doesn't matter.

If the character can be inserted as a digraph, also
output the two characters that can be used to create
the character:

<ö> 246, Hex 00f6, Oct 366, Digr o:
This shows you can type CTRL-K o : to insert ö.

g8
g8 Print the hex values of the bytes used in the

character under the cursor, assuming it is in UTF-8
encoding. This also shows composing characters. The
value of 'maxcombine' doesn't matter.
Example of a character with two composing characters:

e0 b8 81 + e0 b8 b9 + e0 b9 89

8g8
8g8 Find an illegal UTF-8 byte sequence at or after the

cursor. This works in two situations:
1. when 'encoding' is any 8-bit encoding
2. when 'encoding' is "utf-8" and 'fileencoding' is

any 8-bit encoding
Thus it can be used when editing a file that was
supposed to be UTF-8 but was read as if it is an 8-bit
encoding because it contains illegal bytes.
Does not wrap around the end of the file.
Note that when the cursor is on an illegal byte or the
cursor is halfway a multibyte character the command
won't move the cursor.

:p :pr :print E749
:[range]p[rint] [flags]

Print [range] lines (default current line).
Note: If you are looking for a way to print your text
on paper see :hardcopy . In the GUI you can use the
File.Print menu entry.
See ex-flags for [flags].
The :filter command can be used to only show lines
matching a pattern.

:[range]p[rint] {count} [flags]
Print {count} lines, starting with [range] (default
current line cmdline-ranges).
See ex-flags for [flags].

:P :Print
:[range]P[rint] [count] [flags]

Just as ":print". Was apparently added to Vi for
people that keep the shift key pressed too long...
This command is not supported in Vim9 script.
Note: A user command can overrule this command.

various.txt — 782

See ex-flags for [flags].

:l :list
:[range]l[ist] [count] [flags]

Same as :print, but display unprintable characters
with '^' and put $ after the line. This can be
further changed with the 'listchars' option.
See ex-flags for [flags].

:nu :number
:[range]nu[mber] [count] [flags]

Same as :print, but precede each line with its line
number. (See also 'highlight' and 'numberwidth'
option).
See ex-flags for [flags].

:#
:[range]# [count] [flags]

synonym for :number.

:#!
:#!{anything} Ignored, so that you can start a Vim script with:

#!vim -S
echo "this is a Vim script"
quit

:z E144
:[range]z[+-^.=][count] Display several lines of text surrounding the line

specified with [range], or around the current line
if there is no [range].

If there is a [count], that's how many lines you'll
see; if there is no [count] and only one window then
twice the value of the 'scroll' option is used,
otherwise the current window height minus 3 is used.
This is the value of "scr" in the table below.

If there is a [count] the 'window' option is set to
its value.

:z can be used either alone or followed by any of
several marks. These have the following effect:

mark first line last line new cursor line
---- ---------- --------- ------------
+ current line 1 scr forward 1 scr forward
- 1 scr back current line current line
^ 2 scr back 1 scr back 1 scr back
. 1/2 scr back 1/2 scr fwd 1/2 scr fwd
= 1/2 scr back 1/2 scr fwd current line

Specifying no mark at all is the same as "+".
If the mark is "=", a line of dashes is printed
around the current line.

:z!
:[range]z![+-^.=][count]

Like ":z", but when [count] is not specified, it
defaults to the Vim window height minus one.

various.txt — 783

:[range]z[!]#[+-^.=][count] :z#
Like ":z" or ":z!", but number the lines.

:=
:= [flags] Print the last line number.

See ex-flags for [flags].

:{range}= [flags] Prints the last line number in {range}. For example,
this prints the current line number:

:.=
See ex-flags for [flags].

:norm[al][!] {commands} :norm :normal
Execute Normal mode commands {commands}. This makes
it possible to execute Normal mode commands typed on
the command-line. {commands} are executed like they
are typed. For undo all commands are undone together.
Execution stops when an error is encountered.

If the [!] is given, mappings will not be used.
Without it, when this command is called from a
non-remappable mapping (:noremap), the argument can
be mapped anyway.

{commands} should be a complete command. If
{commands} does not finish a command, the last one
will be aborted as if <Esc> or <C-C> was typed.
This implies that an insert command must be completed
(to start Insert mode, see :startinsert). A ":"
command must be completed as well. And you can't use
"Q" or "gQ" to start Ex mode.

The display is not updated while ":normal" is busy.

{commands} cannot start with a space. Put a count of
1 (one) before it, "1 " is one space.

The 'insertmode' option is ignored for {commands}.

This command cannot be followed by another command,
since any '|' is considered part of the command.

This command can be used recursively, but the depth is
limited by 'maxmapdepth'.

An alternative is to use :execute , which uses an
expression as argument. This allows the use of
printable characters to represent special characters.

Example:
:exe "normal \<c-w>\<c-w>"

:{range}norm[al][!] {commands} :normal-range
Execute Normal mode commands {commands} for each line
in the {range}. Before executing the {commands}, the
cursor is positioned in the first column of the range,
for each line. Otherwise it's the same as the
":normal" command without a range.

:sh :shell E371

various.txt — 784

:sh[ell] This command starts a shell. When the shell exits
(after the "exit" command) you return to Vim. The
name for the shell command comes from 'shell' option.

E360
Note: This doesn't work when Vim on the Amiga was
started in QuickFix mode from a compiler, because the
compiler will have set stdin to a non-interactive
mode.

:!cmd :!
:!{cmd} Execute {cmd} with the shell. See also the 'shell'

and 'shelltype' option.
E34

Any '!' in {cmd} is replaced with the previous
external command (see also 'cpoptions'). But not when
there is a backslash before the '!', then that
backslash is removed. Example: ":!ls" followed by
":!echo ! \! \\!" executes "echo ls ! \!".

A '|' in {cmd} is passed to the shell, you cannot use
it to append a Vim command. See :bar .

If {cmd} contains "%" it is expanded to the current
file name, "#" is expanded to the alternate file name.
Special characters in the file name are not escaped,
use quotes to avoid their special meaning:

:!ls "%"
If the file name contains a "$" then single quotes
might work better, but this only works if the file
name does not contain a single quote:

:!ls '%'
This should always work, but it's more typing:

:exe "!ls " .. shellescape(expand("%"))
To get a literal "%" or "#" prepend it with a
backslash. For example, to list all files starting
with "%":

:!ls \%*

A newline character ends {cmd}, what follows is
interpreted as a following ":" command. However, if
there is a backslash before the newline it is removed
and {cmd} continues. It doesn't matter how many
backslashes are before the newline, only one is
removed.

On Unix the command normally runs in a non-interactive
shell. If you want an interactive shell to be used
(to use aliases) set 'shellcmdflag' to "-ic".
For Win32 also see :!start .

After the command has been executed, the timestamp and
size of the current file is checked timestamp .

Vim redraws the screen after the command is finished,
because it may have printed any text. This requires a
hit-enter prompt, so that you can read any messages.
To avoid this use:

:silent !{cmd}
The screen is not redrawn then, thus you have to use
CTRL-L or ":redraw!" if the command did display

various.txt — 785

something. However, this depends on what the t_ti
and t_te termcap entries are set to.
Also see shell-window .

:!!
:!! Repeat last ":!{cmd}".

:ve :ver :version
:ve[rsion] Print the version number of the editor. If the

compiler used understands "__DATE__" the compilation
date is mentioned. Otherwise a fixed release-date is
shown.
The following lines contain information about which
features were enabled when Vim was compiled. When
there is a preceding '+', the feature is included,
when there is a '-' it is excluded. To change this,
you have to edit feature.h and recompile Vim.
To check for this in an expression, see has() .
Here is an overview of the features.
The first column shows the smallest version in which
they are included:

T tiny (always)
N normal
H huge
m manually enabled or depends on other features
- never, feature was removed

(none) system dependent
Thus if a feature is marked with "N", it is included
in the normal and huge versions of Vim.

+feature-list
+acl ACL support included
+ARP Amiga only: ARP support included

H +arabic Arabic language support
N +autochdir support 'autochdir' option
T +autocmd :autocmd , automatic commands. Always enabled since

8.0.1564
H +autoservername Automatically enable clientserver
m +balloon_eval balloon-eval support in the GUI. Included when

compiling with supported GUI (Motif, GTK, GUI) and
either Netbeans/Sun Workshop integration or +eval
feature.

H +balloon_eval_term balloon-eval support in the terminal,
'balloonevalterm'

N +browse :browse command
T ++builtin_terms maximal terminals builtin builtin-terms Always

enabled since 9.0.0280
N +byte_offset support for 'o' flag in 'statusline' option, "go"

and ":goto" commands.
m +channel inter process communication channel
T +cindent 'cindent' , C indenting; Always enabled
N +clientserver Unix and Win32: Remote invocation clientserver

+clipboard clipboard support compiled-in
+clipboard_working clipboard support compiled-in and working

T +cmdline_compl command line completion cmdline-completion
T +cmdline_hist command line history cmdline-history
T +cmdline_info 'showcmd' and 'ruler' ; Always enabled since

9.0.0747
T +cmdwin cmdline-window support; Always enabled since 9.0.0657
T +comments 'comments' support

various.txt — 786

N +conceal "conceal" support, see conceal :syn-conceal etc.
N +cryptv encryption support encryption
H +cscope cscope support
T +cursorbind 'cursorbind' support
m +cursorshape termcap-cursor-shape support
m +debug Compiled for debugging.
N +dialog_gui Support for :confirm with GUI dialog.
N +dialog_con Support for :confirm with console dialog.
N +dialog_con_gui Support for :confirm with GUI and console dialog.
N +diff vimdiff and 'diff'
N +digraphs digraphs E196

+directx Win32 GUI only: DirectX and 'renderoptions'
+dnd Support for DnD into the "~ register quote_~ .

H +emacs_tags emacs-tags files
N +eval expression evaluation eval.txt
T +ex_extra always on now, used to be for Vim's extra Ex commands
N +extra_search 'hlsearch' and 'incsearch' options.
- +farsi Removed: farsi language
T +file_in_path gf , CTRL-W_f and <cfile> Always enabled since

9.0.265
N +find_in_path include file searches: [I , :isearch ,

CTRL-W_CTRL-I , :checkpath , etc.
N +folding folding

+footer gui-footer
+fork Unix only: fork shell commands

T +float Floating point support Always enabled since 9.0.0491
N +gettext message translations multi-lang
- +GUI_Athena Unix only: Athena GUI

+GUI_neXtaw Unix only: neXtaw GUI
+GUI_GTK Unix only: GTK+ GUI
+GUI_Motif Unix only: Motif GUI
+GUI_Photon QNX only: Photon GUI

m +hangul_input Hangul input support hangul
+iconv Compiled with the iconv() function
+iconv/dyn Likewise iconv-dynamic /dyn

T +insert_expand insert_expand Insert mode completion
m +ipv6 Support for IPv6 networking channel
m +job starting and stopping jobs job
T +jumplist jumplist ; Always enabled since 8.2.3795
H +keymap 'keymap'
N +lambda lambda and closure
H +langmap 'langmap'
N +libcall libcall()
N +linebreak 'linebreak' , 'breakat' and 'showbreak'
T +lispindent 'lisp'
T +listcmds Vim commands for the list of buffers buffer-hidden

and argument list :argdelete
T +localmap Support for mappings local to a buffer :map-local
m +lua Lua interface
m +lua/dyn Lua interface /dyn
N +menu :menu
N +mksession :mksession
T +modify_fname filename-modifiers
T +mouse Mouse handling mouse-using
N +mouseshape 'mouseshape'
N +mouse_dec Unix only: Dec terminal mouse handling dec-mouse
N +mouse_gpm Unix only: Linux console mouse handling gpm-mouse
m +mouse_gpm/dyn Same as +mouse_gpm with optional library dependency

/dyn
N +mouse_jsbterm JSB mouse handling jsbterm-mouse

various.txt — 787

N +mouse_netterm Unix only: netterm mouse handling netterm-mouse
N +mouse_pterm QNX only: pterm mouse handling qnx-terminal
N +mouse_sysmouse Unix only: *BSD console mouse handling sysmouse
N +mouse_sgr Unix only: sgr mouse handling sgr-mouse
N +mouse_urxvt Unix only: urxvt mouse handling urxvt-mouse
N +mouse_xterm Unix only: xterm mouse handling xterm-mouse
T +multi_byte Unicode support, 16 and 32 bit characters multibyte

+multi_byte_ime Win32 input method for multibyte chars multibyte-ime
N +multi_lang non-English language support multi-lang
m +mzscheme Mzscheme interface mzscheme
m +mzscheme/dyn Mzscheme interface mzscheme-dynamic /dyn
m +netbeans_intg netbeans
T +num64 64-bit Number support Number

Always enabled since 8.2.0271, use v:numbersize to
check the actual size of a Number.

m +ole Win32 GUI only: ole-interface
N +packages Loading packages
T +path_extra Up/downwards search in 'path' and 'tags' Always

enabled since 9.0.0270
m +perl Perl interface perl
m +perl/dyn Perl interface perl-dynamic /dyn
N +persistent_undo Persistent undo undo-persistence
N +popupwin Popup windows popup-window

+postscript :hardcopy writes a PostScript file
N +printer :hardcopy command
H +profile :profile command
m +python Python 2 interface python
m +python/dyn Python 2 interface python-dynamic /dyn
m +python3 Python 3 interface python
m +python3/dyn Python 3 interface python-dynamic /dyn
m +python3/dyn-stable

Python 3 interface python-dynamic python-stable
/dyn

N +quickfix :make and quickfix commands
N +reltime reltime() function, 'hlsearch'/'incsearch' timeout,

'redrawtime' option
H +rightleft Right to left typing 'rightleft'
m +ruby Ruby interface ruby
m +ruby/dyn Ruby interface ruby-dynamic /dyn
T +scrollbind 'scrollbind'
N +signs :sign
T +smartindent 'smartindent'
H +sodium compiled with libsodium for better encryption support
H +sound sound_playevent() , sound_playfile() functions, etc.
N +spell spell checking support, see spell
N +startuptime --startuptime argument
N +statusline Options 'statusline', 'rulerformat' and special

formats of 'titlestring' and 'iconstring'
- +sun_workshop Removed: workshop
N +syntax Syntax highlighting syntax

+system() Unix only: opposite of +fork
T +tag_binary binary searching in tags file tag-binary-search
- +tag_old_static Removed; method for static tags tag-old-static
- +tag_any_white Removed; was to allow any white space in tags files
m +tcl Tcl interface tcl
m +tcl/dyn Tcl interface tcl-dynamic /dyn
m +terminal Support for terminal window terminal

+terminfo uses terminfo instead of termcap
N +termresponse support for t_RV and v:termresponse
N +termguicolors 24-bit color in xterm-compatible terminals support

various.txt — 788

T +textobjects text-objects selection. Always enabled since 9.0.0222.
N +textprop text-properties

+tgetent non-Unix only: able to use external termcap
N +timers the timer_start() function
T +title Setting the window 'title' and 'icon'; Always enabled
N +toolbar gui-toolbar
T +user_commands User-defined commands. user-commands

Always enabled since 8.1.1210.
H +vartabs Variable-width tabstops. 'vartabstop'
T +vertsplit Vertically split windows :vsplit ; Always enabled

since 8.0.1118.
T +vim9script Vim9 script
N +viminfo 'viminfo'
T +virtualedit 'virtualedit' Always enabled since 8.1.826.
T +visual Visual mode Visual-mode Always enabled since 7.4.200.
T +visualextra extra Visual mode commands blockwise-operators
T +vreplace gR and gr

+vtp on MS-Windows console: support for 'termguicolors'
T +wildignore 'wildignore' Always enabled since 9.0.0278
T +wildmenu 'wildmenu' Always enabled since 9.0.0279
T +windows more than one window; Always enabled since 8.0.1118.
m +writebackup 'writebackup' is default on
m +xim X input method xim

+xfontset X fontset support xfontset
N +xattr compiled with extended attribute support (Linux only)

+xpm pixmap support
m +xpm_w32 Win32 GUI only: pixmap support w32-xpm-support

+xsmp XSMP (X session management) support
+xsmp_interact interactive XSMP (X session management) support

N +xterm_clipboard Unix only: xterm clipboard handling
m +xterm_save save and restore xterm screen xterm-screens
N +X11 Unix only: can restore window title X11

/dyn E370 E448
To some of the features "/dyn" is added when the
feature is only available when the related library can
be dynamically loaded.

:ve[rsion] {nr} Is now ignored. This was previously used to check the
version number of a .vimrc file. It was removed,
because you can now use the ":if" command for
version-dependent behavior.

:redi :redir
:redi[r][!] > {file} Redirect messages to file {file}. The messages which

are the output of commands are written to that file,
until redirection ends. The messages are also still
shown on the screen. When [!] is included, an
existing file is overwritten. When [!] is omitted,
and {file} exists, this command fails.

Only one ":redir" can be active at a time. Calls to
":redir" will close any active redirection before
starting redirection to the new target. For recursive
use check out execute() .

To stop the messages and commands from being echoed to
the screen, put the commands in a function and call it
with ":silent call Function()".
An alternative is to use the 'verbosefile' option,

various.txt — 789

this can be used in combination with ":redir".

:redi[r] >> {file} Redirect messages to file {file}. Append if {file}
already exists.

:redi[r] @{a-zA-Z}
:redi[r] @{a-zA-Z}> Redirect messages to register {a-z}. Append to the

contents of the register if its name is given
uppercase {A-Z}. The ">" after the register name is
optional.

:redi[r] @{a-z}>> Append messages to register {a-z}.

:redi[r] @*>
:redi[r] @+> Redirect messages to the selection or clipboard. For

backward compatibility, the ">" after the register
name can be omitted. See quotestar and quoteplus .

:redi[r] @*>>
:redi[r] @+>> Append messages to the selection or clipboard.

:redi[r] @"> Redirect messages to the unnamed register. For
backward compatibility, the ">" after the register
name can be omitted.

:redi[r] @">> Append messages to the unnamed register.
E1092

:redi[r] => {var} Redirect messages to a variable.
In legacy script: If the variable doesn't exist, then
it is created. If the variable exists, then it is
initialized to an empty string. After the redirection
starts, if the variable is removed or locked or the
variable type is changed, then further command output
messages will cause errors. When using a local
variable (l:var in a function or s:var in a script)
and another `:redir` causes the current one to end,
the scope might be different and the assignment fails.
In Vim9 script: the variable must have been declared
as a string.
The variable will remain empty until redirection ends.
Only string variables can be used.
To get the output of one command the execute()
function can be used instead of redirection.

:redi[r] =>> {var} Append messages to an existing variable. Only string
variables can be used.

E1185
:redi[r] END End redirecting messages.

:filt :filter
:filt[er][!] {pattern} {command}
:filt[er][!] /{pattern}/ {command}

Restrict the output of {command} to lines matching
with {pattern}. For example, to list only xml files:

:filter /\.xml$/ oldfiles
If the [!] is given, restrict the output of {command}
to lines that do NOT match {pattern}.

{pattern} is a Vim search pattern. Instead of enclosing
it in / any non-ID character (see 'isident') can be
used, so long as it does not appear in {pattern}.
Without the enclosing character the pattern cannot
include the bar character. 'ignorecase' is not used.

various.txt — 790

The pattern is matched against the relevant part of
the output, not necessarily the whole line. Only some
commands support filtering, try it out to check if it
works. Some of the commands that support filtering:

:# - filter whole line
:clist - filter by file name or module name
:command - filter by command name
:files - filter by file name
:highlight - filter by highlight group
:jumps - filter by file name
:let - filter by variable name
:list - filter whole line
:llist - filter by file name or module name
:marks - filter by text in the current file,

or file name for other files
:oldfiles - filter by file name
:registers - filter by register contents

(does not work multi-line)
:set - filter by option name

Only normal messages are filtered, error messages are
not.

:sil :silent :silent!
:sil[ent][!] {command} Execute {command} silently. Normal messages will not

be given or added to the message history.
When [!] is added, error messages will also be
skipped, and commands and mappings will not be aborted
when an error is detected. v:errmsg is still set.
When [!] is not used, an error message will cause
further messages to be displayed normally.
Redirection, started with :redir , will continue as
usual, although there might be small differences.
This will allow redirecting the output of a command
without seeing it on the screen. Example:

:redir >/tmp/foobar
:silent g/Aap/p
:redir END

To execute a Normal mode command silently, use the
:normal command. For example, to search for a

string without messages:
:silent exe "normal /path\<CR>"

":silent!" is useful to execute a command that may
fail, but the failure is to be ignored. Example:

:let v:errmsg = ""
:silent! /^begin
:if v:errmsg != ""
: ... pattern was not found

":silent" will also avoid the hit-enter prompt. When
using this for an external command, this may cause the
screen to be messed up. Use CTRL-L to clean it up
then.
":silent menu ..." defines a menu that will not echo a
Command-line command. The command will still produce
messages though. Use ":silent" in the command itself
to avoid that: ":silent menu :silent command".

:uns :unsilent
:uns[ilent] {command} Execute {command} not silently. Only makes a

various.txt — 791

difference when :silent was used to get to this
command.
Use this for giving a message even when :silent was
used. In this example :silent is used to avoid the
message about reading the file and :unsilent to be
able to list the first line of each file.

:silent argdo unsilent echo expand('%') .. ": " .. getline(1)

:verb :verbose
:[count]verb[ose] {command}

Execute {command} with 'verbose' set to [count]. If
[count] is omitted one is used. ":0verbose" can be
used to set 'verbose' to zero.
The additional use of ":silent" makes messages
generated but not displayed.
The combination of ":silent" and ":verbose" can be
used to generate messages and check them with
v:statusmsg and friends. For example:

:let v:statusmsg = ""
:silent verbose runtime foobar.vim
:if v:statusmsg != ""
: " foobar.vim could not be found
:endif

When concatenating another command, the ":verbose"
only applies to the first one:

:4verbose set verbose | set verbose
verbose=4
verbose=0

For logging verbose messages in a file use the
'verbosefile' option.

:verbose-cmd
When 'verbose' is non-zero, listing the value of a Vim option or a key map or
an abbreviation or a user-defined function or a command or a highlight group
or an autocommand will also display where it was last defined. If it was
defined manually then there will be no "Last set" message. When it was
defined while executing a function, user command or autocommand, the script in
which it was defined is reported.
{not available when compiled without the |+eval| feature}

K
K Run a program to lookup the keyword under the

cursor. The name of the program is given with the
'keywordprg' (kp) option (default is "man"). The
keyword is formed of letters, numbers and the
characters in 'iskeyword'. The keyword under or
right of the cursor is used. The same can be done
with the command

:!{program} {keyword}
There is an example of a program to use in the tools
directory of Vim. It is called "ref" and does a
simple spelling check.
Special cases:
- If 'keywordprg' begins with ":" it is invoked as

a Vim Ex command with [count].
- If 'keywordprg' is empty, the ":help" command is

used. It's a good idea to include more characters
in 'iskeyword' then, to be able to find more help.

- When 'keywordprg' is equal to "man" or starts with

various.txt — 792

":", a [count] before "K" is inserted after
keywordprg and before the keyword. For example,
using "2K" while the cursor is on "mkdir", results
in:

!man 2 mkdir
- When 'keywordprg' is equal to "man -s", a count

before "K" is inserted after the "-s". If there is
no count, the "-s" is removed.

v_K
{Visual}K Like "K", but use the visually highlighted text for

the keyword. Only works when the highlighted text is
not more than one line.

[N]gs gs :sl :sleep
:[N]sl[eep] [N][m] Do nothing for [N] seconds. When [m] is included,

sleep for [N] milliseconds. The count for "gs" always
uses seconds. The default is one second.

:sleep "sleep for one second
:5sleep "sleep for five seconds
:sleep 100m "sleep for 100 milliseconds
10gs "sleep for ten seconds

Can be interrupted with CTRL-C (CTRL-Break on
MS-Windows). "gs" stands for "goto sleep".
While sleeping the cursor is positioned in the text,
if at a visible position.
Also process the received netbeans messages. {only
available when compiled with the +netbeans_intg
feature}

:sl! :sleep!
:[N]sl[eep]! [N][m] Same as above, but hide the cursor.

:xrestore :xr
:xr[estore] [display] Reinitializes the connection to the X11 server. Useful

after the X server restarts, e.g. when running Vim for
long time inside screen/tmux and connecting from
different machines.
[display] should be in the format of the $DISPLAY
environment variable (e.g. "localhost:10.0")
If [display] is omitted, then it reinitializes the
connection to the X11 server using the same value as
was used for the previous execution of this command.
If the value was never specified, then it uses the
value of $DISPLAY environment variable as it was when
Vim was started.
{only available when compiled with the +clipboard
feature}

g_CTRL-A
g CTRL-A Only when Vim was compiled with MEM_PROFILING defined

(which is very rare): print memory usage statistics.
Only useful for debugging Vim.
For incrementing in Visual mode see v_g_CTRL-A .

==
2. Using Vim like less or more less

If you use the less or more program to view a file, you don't get syntax
highlighting. Thus you would like to use Vim instead. You can do this by

various.txt — 793

using the shell script "$VIMRUNTIME/macros/less.sh".

This shell script uses the Vim script "$VIMRUNTIME/macros/less.vim". It sets
up mappings to simulate the commands that less supports. Otherwise, you can
still use the Vim commands.

This isn't perfect. For example, when viewing a short file Vim will still use
the whole screen. But it works well enough for most uses, and you get syntax
highlighting.

The "h" key will give you a short overview of the available commands.

If you want to set options differently when using less, define the
LessInitFunc in your vimrc, for example:

func LessInitFunc()
set nocursorcolumn nocursorline

endfunc

various.txt — 794

recover.txt For Vim version 9.1. Last change: 2023 Apr 22

VIM REFERENCE MANUAL by Bram Moolenaar

Recovery after a crash crash-recovery

You have spent several hours typing in that text that has to be finished
next morning, and then disaster strikes: Your computer crashes.

DON'T PANIC!

You can recover most of your changes from the files that Vim uses to store
the contents of the file. Mostly you can recover your work with one command:

vim -r filename

1. The swap file swap-file
2. Recovery recovery

==
1. The swap file swap-file

Vim stores the things you changed in a swap file. Using the original file
you started from plus the swap file you can mostly recover your work.

You can see the name of the current swap file being used with the command:

:sw[apname] :sw :swapname

Or you can use the swapname() function, which also allows for seeing the
swap file name of other buffers.

The name of the swap file is normally the same as the file you are editing,
with the extension ".swp".
- On Unix, a '.' is prepended to swap file names in the same directory as the

edited file. This avoids that the swap file shows up in a directory
listing.

- On MS-Windows machines and when the 'shortname' option is on, any '.' in the
original file name is replaced with '_'.

- If this file already exists (e.g., when you are recovering from a crash) a
warning is given and another extension is used, ".swo", ".swn", etc.

- An existing file will never be overwritten.
- The swap file is deleted as soon as Vim stops editing the file.

Technical: The replacement of '.' with '_' is done to avoid problems with
MS-DOS compatible filesystems (e.g., crossdos, multidos). If Vim
is able to detect that the file is on an MS-DOS-like filesystem, a
flag is set that has the same effect as the 'shortname' option.
This flag is reset when you start editing another file.

E326
If the ".swp" file name already exists, the last character is
decremented until there is no file with that name or ".saa" is
reached. In the last case, no swap file is created.

By setting the 'directory' option you can place the swap file in another place
than where the edited file is.
Advantages:
- You will not pollute the directories with ".swp" files.
- When the 'directory' is on another partition, reduce the risk of damaging

recover.txt — 795

the file system where the file is (in a crash).
Disadvantages:
- You can get name collisions from files with the same name but in different

directories (although Vim tries to avoid that by comparing the path name).
This will result in bogus ATTENTION warning messages.

- When you use your home directory, and somebody else tries to edit the same
file, that user will not see your swap file and will not get the ATTENTION
warning message.

On the Amiga you can also use a recoverable ram disk, but there is no 100%
guarantee that this works. Putting swap files in a normal ram disk (like RAM:
on the Amiga) or in a place that is cleared when rebooting (like /tmp on Unix)
makes no sense, you will lose the swap file in a crash.

If you want to put swap files in a fixed place, put a command resembling the
following ones in your .vimrc:

:set dir=dh2:tmp (for Amiga)
:set dir=~/tmp (for Unix)
:set dir=c:\\tmp (for Win32)

This is also very handy when editing files on floppy. Of course you will have
to create that "tmp" directory for this to work!

For read-only files, a swap file is not used. Unless the file is big, causing
the amount of memory used to be higher than given with 'maxmem' or
'maxmemtot'. And when making a change to a read-only file, the swap file is
created anyway.

The 'swapfile' option can be reset to avoid creating a swapfile. And the
:noswapfile modifier can be used to not create a swapfile for a new buffer.

:nos[wapfile] {command} :nos :noswapfile
Execute {command}. If it contains a command that loads a new
buffer, it will be loaded without creating a swapfile and the
'swapfile' option will be reset. If a buffer already had a
swapfile it is not removed and 'swapfile' is not reset.

Detecting an existing swap file

You can find this in the user manual, section 11.3 .

Updating the swapfile

The swap file is updated after typing 200 characters or when you have not
typed anything for four seconds. This only happens if the buffer was
changed, not when you only moved around. The reason why it is not kept up to
date all the time is that this would slow down normal work too much. You can
change the 200 character count with the 'updatecount' option. You can set
the time with the 'updatetime' option. The time is given in milliseconds.
After writing to the swap file Vim syncs the file to disk. This takes some
time, especially on busy Unix systems. If you don't want this you can set the
'swapsync' option to an empty string. The risk of losing work becomes bigger
though. On some non-Unix systems (MS-Windows, Amiga) the swap file won't be
written at all.

If the writing to the swap file is not wanted, it can be switched off by
setting the 'updatecount' option to 0. The same is done when starting Vim
with the "-n" option. Writing can be switched back on by setting the
'updatecount' option to non-zero. Swap files will be created for all buffers
when doing this. But when setting 'updatecount' to zero, the existing swap

recover.txt — 796

files will not be removed, it will only affect files that will be opened
after this.

If you want to make sure that your changes are in the swap file use this
command:

:pre :preserve E313 E314
:pre[serve] Write all text for the current buffer into its swap

file. The original file is no longer needed for
recovery. This sets a flag in the current buffer.
When the '&' flag is present in 'cpoptions' the swap
file will not be deleted for this buffer when Vim
exits and the buffer is still loaded cpo-& .

A Vim swap file can be recognized by the first six characters: "b0VIM ".
After that comes the version number, e.g., "3.0".

Links and symbolic links

On Unix it is possible to have two names for the same file. This can be done
with hard links and with symbolic links (symlinks).

For hard links Vim does not know the other name of the file. Therefore, the
name of the swapfile will be based on the name you used to edit the file.
There is no check for editing the same file by the other name too, because Vim
cannot find the other swapfile (except for searching all of your harddisk,
which would be very slow).

For symbolic links Vim resolves the links to find the name of the actual file.
The swap file name is based on that name. Thus it doesn't matter by what name
you edit the file, the swap file name will normally be the same. However,
there are exceptions:
- When the directory of the actual file is not writable the swapfile is put

elsewhere.
- When the symbolic links somehow create a loop you get an E773 error

message and the unmodified file name will be used. You won't be able to
save your file normally.

==
2. Recovery recovery E308 E311

Basic file recovery is explained in the user manual: usr_11.txt .

Another way to do recovery is to start Vim and use the ":recover" command.
This is easy when you start Vim to edit a file and you get the "ATTENTION:
Found a swap file ..." message. In this case the single command ":recover"
will do the work. You can also give the name of the file or the swap file to
the recover command:

:rec :recover E305 E306 E307
:rec[over] [file] Try to recover [file] from the swap file. If [file]

is not given use the file name for the current
buffer. The current contents of the buffer are lost.
This command fails if the buffer was modified.

:rec[over]! [file] Like ":recover", but any changes in the current
buffer are lost.

E312 E309 E310 E1364
Vim has some intelligence about what to do if the swap file is corrupt in

recover.txt — 797

some way. If Vim has doubt about what it found, it will give an error
message and insert lines with "???" in the text. If you see an error message
while recovering, search in the file for "???" to see what is wrong. You may
want to cut and paste to get the text you need.

The most common remark is "???LINES MISSING". This means that Vim cannot read
the text from the original file. This can happen if the system crashed and
parts of the original file were not written to disk.

Be sure that the recovery was successful before overwriting the original
file or deleting the swap file. It is good practice to write the recovered
file elsewhere and run 'diff' to find out if the changes you want are in the
recovered file. Or use :DiffOrig .

Once you are sure the recovery is ok delete the swap file. Otherwise, you
will continue to get warning messages that the ".swp" file already exists.

ENCRYPTION AND THE SWAP FILE :recover-crypt

When the text file is encrypted the swap file is encrypted as well. This
makes recovery a bit more complicated. When recovering from a swap file and
encryption has been used, you will be asked to enter one or two crypt keys.

If the text file does not exist you will only be asked to enter the crypt key
for the swap file.

If the text file does exist, it may be encrypted in a different way than the
swap file. You will be asked for the crypt key twice:

Need encryption key for "/tmp/tt"
Enter encryption key: ******
"/tmp/tt" [crypted] 23200L, 522129C
Using swap file "/tmp/.tt.swp"
Original file "/tmp/tt"
Swap file is encrypted: "/tmp/.tt.swp"
If you entered a new crypt key but did not write the text file,
enter the new crypt key.
If you wrote the text file after changing the crypt key press enter
to use the same key for text file and swap file
Enter encryption key:

You can be in one of these two situations:

1. The encryption key was not changed, or after changing the key the text file
was written. You will be prompted for the crypt key twice. The second
time you can simply press Enter. That means the same key is used for the
text file and the swap file.

2. You entered a new encryption key, but did not save the text file. Vim will
then use the new key for the swap file, and the text file will still be
encrypted with the old key. At the second prompt enter the new key.

Note that after recovery the key of the swap file will be used for the text
file. Thus if you write the text file, you need to use that new key.

recover.txt — 798

cmdline.txt For Vim version 9.1. Last change: 2023 Dec 09

VIM REFERENCE MANUAL by Bram Moolenaar

Cmdline-mode Command-line-mode
Command-line mode Cmdline Command-line mode-cmdline :

Command-line mode is used to enter Ex commands (":"), search patterns
("/" and "?"), and filter commands ("!").

Basic command line editing is explained in chapter 20 of the user manual
usr_20.txt .

1. Command-line editing cmdline-editing
2. Command-line completion cmdline-completion
3. Ex command-lines cmdline-lines
4. Ex command-line ranges cmdline-ranges
5. Ex command-line flags ex-flags
6. Ex special characters cmdline-special
7. Command-line window cmdline-window

==
1. Command-line editing cmdline-editing

Normally characters are inserted in front of the cursor position. You can
move around in the command-line with the left and right cursor keys. With the
<Insert> key, you can toggle between inserting and overstriking characters.

Note that if your keyboard does not have working cursor keys or any of the
other special keys, you can use ":cnoremap" to define another key for them.
For example, to define tcsh style editing keys: tcsh-style

:cnoremap <C-A> <Home>
:cnoremap <C-F> <Right>
:cnoremap <C-B> <Left>
:cnoremap <Esc>b <S-Left>
:cnoremap <Esc>f <S-Right>

(<> notation <> ; type all this literally)

cmdline-too-long
When the command line is getting longer than what fits on the screen, only the
part that fits will be shown. The cursor can only move in this visible part,
thus you cannot edit beyond that.

cmdline-history history
The command-lines that you enter are remembered in a history table. You can
recall them with the up and down cursor keys. There are actually five
history tables:
- one for ':' commands
- one for search strings
- one for expressions
- one for input lines, typed for the input() function.
- one for debug mode commands
These are completely separate. Each history can only be accessed when
entering the same type of line.
Use the 'history' option to set the number of lines that are remembered
(default: 50).
Notes:
- When you enter a command-line that is exactly the same as an older one, the

cmdline.txt — 799

old one is removed (to avoid repeated commands moving older commands out of
the history).

- Only commands that are typed are remembered. Ones that completely come from
mappings are not put in the history.

- All searches are put in the search history, including the ones that come
from commands like "*" and "#". But for a mapping, only the last search is
remembered (to avoid that long mappings trash the history).

{not available when compiled without the |+cmdline_hist| feature}

There is an automatic completion of names on the command-line; see
cmdline-completion .

c_CTRL-V
CTRL-V Insert next non-digit literally. Up to three digits form the

decimal value of a single byte. The non-digit and the three
digits are not considered for mapping. This works the same
way as in Insert mode (see above, i_CTRL-V).
Note: Under MS-Windows CTRL-V is often mapped to paste text.
Use CTRL-Q instead then.
When modifyOtherKeys is enabled then special Escape sequence
is converted back to what it was without modifyOtherKeys ,
unless the Shift key is also pressed.

c_CTRL-Q
CTRL-Q Same as CTRL-V. But with some terminals it is used for

control flow, it doesn't work then.

CTRL-SHIFT-V c_CTRL-SHIFT-V c_CTRL-SHIFT-Q
CTRL-SHIFT-Q Works just like CTRL-V, unless modifyOtherKeys is active,

then it inserts the Escape sequence for a key with modifiers.
In the GUI the key-notation is inserted without simplifying.

c_<Left> c_Left
<Left> cursor left. See 'wildmenu' for behavior during wildmenu

completion mode.
c_<Right> c_Right

<Right> cursor right. See 'wildmenu' for behavior during wildmenu
completion mode.

c_<S-Left>
<S-Left> or <C-Left> c_<C-Left>

cursor one WORD left
c_<S-Right>

<S-Right> or <C-Right> c_<C-Right>
cursor one WORD right

CTRL-B or <Home> c_CTRL-B c_<Home> c_Home
cursor to beginning of command-line

CTRL-E or <End> c_CTRL-E c_<End> c_End
cursor to end of command-line. See 'wildmenu' for behavior
during wildmenu completion mode.

c_<LeftMouse>
<LeftMouse> Move the cursor to the position of the mouse click.

c_<MiddleMouse>
<MiddleMouse> Paste the contents of the clipboard (for X11 the primary

selection). This is similar to using CTRL-R *, but no CR
characters are inserted between lines.

CTRL-H c_<BS> c_CTRL-H c_BS
<BS> Delete the character in front of the cursor (see :fixdel if

your <BS> key does not do what you want).

cmdline.txt — 800

c_ c_Del
 Delete the character under the cursor (at end of line:

character before the cursor) (see :fixdel if your
key does not do what you want).

c_CTRL-W
CTRL-W Delete the word before the cursor. This depends on the

'iskeyword' option.
c_CTRL-U

CTRL-U Remove all characters between the cursor position and
the beginning of the line. Previous versions of vim
deleted all characters on the line. If that is the
preferred behavior, add the following to your .vimrc:

:cnoremap <C-U> <C-E><C-U>

c_<Insert> c_Insert
<Insert> Toggle between insert and overstrike.

{char1} <BS> {char2} or c_digraph
CTRL-K {char1} {char2} c_CTRL-K

enter digraph (see digraphs). When {char1} is a special
key, the code for that key is inserted in <> form.

CTRL-R {register} c_CTRL-R c_<C-R>
Insert the contents of a numbered or named register. Between
typing CTRL-R and the second character '"' will be displayed
to indicate that you are expected to enter the name of a
register.
The text is inserted as if you typed it, but mappings and
abbreviations are not used. Command-line completion through
'wildchar' is not triggered though. And characters that end
the command line are inserted literally (<Esc>, <CR>, <NL>,
<C-C>). A <BS> or CTRL-W could still end the command line
though, and remaining characters will then be interpreted in
another mode, which might not be what you intended.
Special registers:

'"' the unnamed register, containing the text of
the last delete or yank

'%' the current file name
'#' the alternate file name
'*' the clipboard contents (X11: primary selection)
'+' the clipboard contents
'/' the last search pattern
':' the last command-line
'-' the last small (less than a line) delete
'.' the last inserted text

c_CTRL-R_=
'=' the expression register: you are prompted to

enter an expression (see expression)
(doesn't work at the expression prompt; some
things such as changing the buffer or current
window are not allowed to avoid side effects)
When the result is a List the items are used
as lines. They can have line breaks inside
too.
When the result is a Float it's automatically
converted to a String.
Note that when you only want to move the
cursor and not insert anything, you must make
sure the expression evaluates to an empty
string. E.g.:

cmdline.txt — 801

<C-R><C-R>=setcmdpos(2)[-1]<CR>
See registers about registers.
Implementation detail: When using the expression register
and invoking setcmdpos(), this sets the position before
inserting the resulting string. Use CTRL-R CTRL-R to set the
position afterwards.

CTRL-R CTRL-F c_CTRL-R_CTRL-F c_<C-R>_<C-F>
CTRL-R CTRL-P c_CTRL-R_CTRL-P c_<C-R>_<C-P>
CTRL-R CTRL-W c_CTRL-R_CTRL-W c_<C-R>_<C-W>
CTRL-R CTRL-A c_CTRL-R_CTRL-A c_<C-R>_<C-A>
CTRL-R CTRL-L c_CTRL-R_CTRL-L c_<C-R>_<C-L>

Insert the object under the cursor:
CTRL-F the Filename under the cursor
CTRL-P the Filename under the cursor, expanded with

'path' as in gf
CTRL-W the Word under the cursor
CTRL-A the WORD under the cursor; see WORD
CTRL-L the line under the cursor

When 'incsearch' is set the cursor position at the end of the
currently displayed match is used. With CTRL-W the part of
the word that was already typed is not inserted again.

c_CTRL-R_CTRL-R c_<C-R>_<C-R>
c_CTRL-R_CTRL-O c_<C-R>_<C-O>

CTRL-R CTRL-R {register CTRL-F CTRL-P CTRL-W CTRL-A CTRL-L}
CTRL-R CTRL-O {register CTRL-F CTRL-P CTRL-W CTRL-A CTRL-L}

Insert register or object under the cursor. Works like
c_CTRL-R but inserts the text literally. For example, if
register a contains "xy^Hz" (where ^H is a backspace),
"CTRL-R a" will insert "xz" while "CTRL-R CTRL-R a" will
insert "xy^Hz".

CTRL-\ e {expr} c_CTRL-_e
Evaluate {expr} and replace the whole command line with the
result. You will be prompted for the expression, type <Enter>
to finish it. It's most useful in mappings though. See
expression .
See c_CTRL-R_= for inserting the result of an expression.
Useful functions are getcmdtype() , getcmdline() and
getcmdpos() .
The cursor position is unchanged, except when the cursor was
at the end of the line, then it stays at the end.
setcmdpos() can be used to set the cursor position.
The sandbox is used for evaluating the expression to avoid
nasty side effects.
Example:

:cmap <F7> <C-\>eAppendSome()<CR>
:func AppendSome()

:let cmd = getcmdline() .. " Some()"
:" place the cursor on the)
:call setcmdpos(strlen(cmd))
:return cmd

:endfunc
This doesn't work recursively, thus not when already editing
an expression. But it is possible to use in a mapping.

c_CTRL-Y
CTRL-Y When there is a modeless selection, copy the selection into

cmdline.txt — 802

the clipboard. modeless-selection
If there is no selection CTRL-Y is inserted as a character.
See 'wildmenu' for behavior during wildmenu completion mode.

CTRL-M or CTRL-J c_CTRL-M c_CTRL-J c_<NL> c_<CR> c_CR
<CR> or <NL> start entered command

CTRL-[c_CTRL-[c_<Esc> c_Esc
<Esc> When typed and 'x' not present in 'cpoptions', quit

Command-line mode without executing. In macros or when 'x'
present in 'cpoptions', start entered command.
Note: If your <Esc> key is hard to hit on your keyboard, train
yourself to use CTRL-[.

c_CTRL-C
CTRL-C quit command-line without executing

c_<Up> c_Up
<Up> recall older command-line from history, whose beginning

matches the current command-line (see below). See 'wildmenu'
for behavior during wildmenu completion mode.
{not available when compiled without the +cmdline_hist
feature}

c_<Down> c_Down
<Down> recall more recent command-line from history, whose beginning

matches the current command-line (see below). See 'wildmenu'
for behavior during wildmenu completion mode.
{not available when compiled without the +cmdline_hist
feature}

c_<S-Up> c_<PageUp>
<S-Up> or <PageUp>

recall older command-line from history
{not available when compiled without the +cmdline_hist
feature}

c_<S-Down> c_<PageDown>
<S-Down> or <PageDown>

recall more recent command-line from history
{not available when compiled without the +cmdline_hist
feature}

CTRL-D command-line completion (see cmdline-completion)
'wildchar' option

command-line completion (see cmdline-completion)
CTRL-N command-line completion (see cmdline-completion)
CTRL-P command-line completion (see cmdline-completion)
CTRL-A command-line completion (see cmdline-completion)
CTRL-L command-line completion (see cmdline-completion)

c_CTRL-_
CTRL-_ a - switch between Hebrew and English keyboard mode, which is

private to the command-line and not related to hkmap.
This is useful when Hebrew text entry is required in the
command-line, searches, abbreviations, etc. Applies only if
Vim is compiled with the +rightleft feature and the
'allowrevins' option is set.
See rileft.txt .

b - switch between Farsi and English keyboard mode, which is
private to the command-line and not related to fkmap. In
Farsi keyboard mode the characters are inserted in reverse

cmdline.txt — 803

insert manner. This is useful when Farsi text entry is
required in the command-line, searches, abbreviations, etc.
Applies only if Vim is compiled with the +farsi feature.
See farsi.txt .

c_CTRL-^
CTRL-^ Toggle the use of language :lmap mappings and/or Input

Method.
When typing a pattern for a search command and 'imsearch' is
not -1, VAL is the value of 'imsearch', otherwise VAL is the
value of 'iminsert'.
When language mappings are defined:
- If VAL is 1 (langmap mappings used) it becomes 0 (no langmap
mappings used).

- If VAL was not 1 it becomes 1, thus langmap mappings are
enabled.

When no language mappings are defined:
- If VAL is 2 (Input Method is used) it becomes 0 (no input
method used)

- If VAL has another value it becomes 2, thus the Input Method
is enabled.

These language mappings are normally used to type characters
that are different from what the keyboard produces. The
'keymap' option can be used to install a whole number of them.
When entering a command line, langmap mappings are switched
off, since you are expected to type a command. After
switching it on with CTRL-^, the new state is not used again
for the next command or Search pattern.

c_CTRL-]
CTRL-] Trigger abbreviation, without inserting a character.

For Emacs-style editing on the command-line see emacs-keys .

The <Up> and <Down> keys take the current command-line as a search string.
The beginning of the next/previous command-lines are compared with this
string. The first line that matches is the new command-line. When typing
these two keys repeatedly, the same string is used again. For example, this
can be used to find the previous substitute command: Type ":s" and then <Up>.
The same could be done by typing <S-Up> a number of times until the desired
command-line is shown. (Note: the shifted arrow keys do not work on all
terminals)

:his :history
:his[tory] Print the history of last entered commands.

{not available when compiled without the +cmdline_hist
feature}

:his[tory] [{name}] [{first}][, [{last}]]
List the contents of history {name} which can be:
c[md] or : command-line history
s[earch] or / or ? search string history
e[xpr] or = expression register history
i[nput] or @ input line history
d[ebug] or > debug command history
a[ll] all of the above

If the numbers {first} and/or {last} are given, the respective
range of entries from a history is listed. These numbers can
be specified in the following form:

cmdline.txt — 804

:history-indexing
A positive number represents the absolute index of an entry
as it is given in the first column of a :history listing.
This number remains fixed even if other entries are deleted.
(see E1510)

A negative number means the relative position of an entry,
counted from the newest entry (which has index -1) backwards.

Examples:
List entries 6 to 12 from the search history:

:history / 6,12

List the penultimate entry from all histories:
:history all -2

List the most recent two entries from all histories:
:history all -2,

:keepp[atterns] {command} :keepp :keeppatterns
Execute {command}, without adding anything to the search
history

==
2. Command-line completion cmdline-completion

When editing the command-line, a few commands can be used to complete the
word before the cursor. This is available for:

- Command names: At the start of the command-line.
- ++opt values.
- Tags: Only after the ":tag" command.
- File names: Only after a command that accepts a file name or a setting for

an option that can be set to a file name. This is called file name
completion.

- Shell command names: After ":!cmd", ":r !cmd" and ":w !cmd". $PATH is used.
- Options: Only after the ":set" command.
- Mappings: Only after a ":map" or similar command.
- Variable and function names: Only after a ":if", ":call" or similar command.

The number of help item matches is limited (currently to 300) to avoid a long
delay when there are very many matches.

These are the commands that can be used:

c_CTRL-D
CTRL-D List names that match the pattern in front of the cursor.

When showing file names, directories are highlighted (see
'highlight' option). Names where 'suffixes' matches are moved
to the end.
The 'wildoptions' option can be set to "tagfile" to list the
file of matching tags.

c_CTRL-I c_wildchar c_<Tab>
'wildchar' option

A match is done on the pattern in front of the cursor. The
match (if there are several, the first match) is inserted
in place of the pattern. (Note: does not work inside a
macro, because <Tab> or <Esc> are mostly used as 'wildchar',
and these have a special meaning in some macros.) When typed
again and there were multiple matches, the next

cmdline.txt — 805

match is inserted. After the last match, the first is used
again (wrap around).
The behavior can be changed with the 'wildmode' option.

c_<S-Tab>
<S-Tab> Like 'wildchar' or <Tab>, but begin with the last match and

then go to the previous match.
<S-Tab> does not work everywhere.

c_CTRL-N
CTRL-N After using 'wildchar' which got multiple matches, go to next

match. Otherwise recall more recent command-line from history.
c_CTRL-P

CTRL-P After using 'wildchar' which got multiple matches, go to
previous match. Otherwise recall older command-line from
history.

c_CTRL-A
CTRL-A All names that match the pattern in front of the cursor are

inserted.
c_CTRL-L

CTRL-L A match is done on the pattern in front of the cursor. If
there is one match, it is inserted in place of the pattern.
If there are multiple matches the longest common part is
inserted in place of the pattern. If the result is shorter
than the pattern, no completion is done.

/_CTRL-L
When 'incsearch' is set, entering a search pattern for "/" or
"?" and the current match is displayed then CTRL-L will add
one character from the end of the current match. If
'ignorecase' and 'smartcase' are set and the command line has
no uppercase characters, the added character is converted to
lowercase.

c_CTRL-G /_CTRL-G
CTRL-G When 'incsearch' is set, entering a search pattern for "/" or

"?" and the current match is displayed then CTRL-G will move
to the next match (does not take search-offset into account)
Use CTRL-T to move to the previous match. Hint: on a regular
keyboard T is above G.

c_CTRL-T /_CTRL-T
CTRL-T When 'incsearch' is set, entering a search pattern for "/" or

"?" and the current match is displayed then CTRL-T will move
to the previous match (does not take search-offset into
account).
Use CTRL-G to move to the next match. Hint: on a regular
keyboard T is above G.

The 'wildchar' option defaults to <Tab> (CTRL-E when in Vi compatible mode; in
a previous version <Esc> was used). In the pattern standard wildcards are
accepted when matching file names.

When repeating 'wildchar' or CTRL-N you cycle through the matches, eventually
ending up back to what was typed. If the first match is not what you wanted,
you can use <S-Tab> or CTRL-P to go straight back to what you typed.

The 'wildmenu' option can be set to show the matches just above the command
line.

The 'wildoptions' option provides additional configuration to use a popup menu
for 'wildmenu', and to use fuzzy matching.

The 'wildignorecase' option can be set to ignore case in filenames. For
completing other texts (e.g. command names), the 'ignorecase' option is used

cmdline.txt — 806

instead (fuzzy matching always ignores case, however).

If you like tcsh's autolist completion, you can use this mapping:
:cnoremap X <C-L><C-D>

(Where X is the command key to use, <C-L> is CTRL-L and <C-D> is CTRL-D)
This will find the longest match and then list all matching files.

If you like tcsh's autolist completion, you can use the 'wildmode' option to
emulate it. For example, this mimics autolist=ambiguous:

:set wildmode=longest,list
This will find the longest match with the first 'wildchar', then list all
matching files with the next.

complete-script-local-functions
When completing user function names, prepend "s:" to find script-local
functions.

suffixes
For file name completion you can use the 'suffixes' option to set a priority
between files with almost the same name. If there are multiple matches,
those files with an extension that is in the 'suffixes' option are ignored.
The default is ".bak,~,.o,.h,.info,.swp,.obj", which means that files ending
in ".bak", "~", ".o", ".h", ".info", ".swp" and ".obj" are sometimes ignored.

An empty entry, two consecutive commas, match a file name that does not
contain a ".", thus has no suffix. This is useful to ignore "prog" and prefer
"prog.c".

Examples:

pattern: files: match:
test* test.c test.h test.o test.c
test* test.h test.o test.h and test.o
test* test.i test.h test.c test.i and test.c

It is impossible to ignore suffixes with two dots.

If there is more than one matching file (after ignoring the ones matching
the 'suffixes' option) the first file name is inserted. You can see that
there is only one match when you type 'wildchar' twice and the completed
match stays the same. You can get to the other matches by entering
'wildchar', CTRL-N or CTRL-P. All files are included, also the ones with
extensions matching the 'suffixes' option.

To completely ignore files with some extension use 'wildignore'.

To match only files that end at the end of the typed text append a "$". For
example, to match only files that end in ".c":

:e *.c$
This will not match a file ending in ".cpp". Without the "$" it does match.

If you would like using <S-Tab> for CTRL-P in an xterm, put this command in
your .cshrc:

xmodmap -e "keysym Tab = Tab Find"
And this in your .vimrc:

:cmap <Esc>[1~ <C-P>
complete-set-option

When setting an option using :set= , the old value of an option can be
obtained by hitting 'wildchar' just after the '='. For example, typing
'wildchar' after ":set dir=" will insert the current value of 'dir'. This

cmdline.txt — 807

overrules file name completion for the options that take a file name.

When using :set= , :set+= , or :set^= , string options that have
pre-defined names or syntax (e.g. 'diffopt', 'listchars') or are a list of
single-character flags (e.g. 'shortmess') will also present a list of possible
values for completion when using 'wildchar'.

When using :set-= , comma-separated options like 'diffopt' or 'backupdir'
will show each item separately. Flag list options like 'shortmess' will show
both the entire old value and the individual flags. Otherwise completion will
just fill in with the entire old value.

==
3. Ex command-lines cmdline-lines

The Ex commands have a few specialties:

:quote :comment
'"' at the start of a line causes the whole line to be ignored. '"'
after a command causes the rest of the line to be ignored. This can be used
to add comments. Example:

:set ai "set 'autoindent' option
It is not possible to add a comment to a shell command ":!cmd" or to the
":map" command and a few others (mainly commands that expect expressions)
that see the '"' as part of their argument:

:argdo
:autocmd
:bufdo
:cexpr (and the like)
:cdo (and the like)
:command
:cscope (and the like)
:debug
:display
:echo (and the like)
:elseif
:execute
:folddoopen
:folddoclosed
:for
:grep (and the like)
:help (and the like)
:if
:let
:make
:map (and the like including :abbrev commands)
:menu (and the like)
:mkspell
:normal
:ownsyntax
:popup
:promptfind (and the like)
:registers
:return
:sort
:syntax
:tabdo
:tearoff
:vimgrep (and the like)

cmdline.txt — 808

:while
:windo

:bar :\bar
'|' can be used to separate commands, so you can give multiple commands in one
line. If you want to use '|' in an argument, precede it with '\'.

These commands see the '|' as their argument, and can therefore not be
followed by another Vim command:

:argdo
:autocmd
:bufdo
:cdo
:cfdo
:command
:cscope
:debug
:eval
:folddoopen
:folddoclosed
:function
:global
:help
:helpfind
:helpgrep
:lcscope
:ldo
:lfdo
:lhelpgrep
:make
:normal
:perl
:perldo
:promptfind
:promptrepl
:pyfile
:python
:registers
:read !
:scscope
:sign
:tabdo
:tcl
:tcldo
:tclfile
:terminal
:vglobal
:windo
:write !
:[range]!
a user defined command without the "-bar" argument :command

Note that this is confusing (inherited from Vi): With ":g" the '|' is included
in the command, with ":s" it is not.

To be able to use another command anyway, use the ":execute" command.
Example (append the output of "ls" and jump to the first line):

:execute 'r !ls' | '[

There is one exception: When the 'b' flag is present in 'cpoptions', with the

cmdline.txt — 809

":map" and ":abbr" commands and friends CTRL-V needs to be used instead of
'\'. You can also use "<Bar>" instead. See also map_bar .

Examples:
:!ls | wc view the output of two commands
:r !ls | wc insert the same output in the text
:%g/foo/p|> moves all matching lines one shiftwidth
:%s/foo/bar/|> moves one line one shiftwidth
:map q 10^V| map "q" to "10|"
:map q 10\| map \ l map "q" to "10\" and map "\" to "l"

(when 'b' is present in 'cpoptions')

You can also use <NL> to separate commands in the same way as with '|'. To
insert a <NL> use CTRL-V CTRL-J. "^@" will be shown. Using '|' is the
preferred method. But for external commands a <NL> must be used, because a
'|' is included in the external command. To avoid the special meaning of <NL>
it must be preceded with a backslash. Example:

:r !date<NL>-join
This reads the current date into the file and joins it with the previous line.

Note that when the command before the '|' generates an error, the following
commands will not be executed.

Because of Vi compatibility the following strange commands are supported:
:| print current line (like ":p")
:3| print line 3 (like ":3p")
:3 goto line 3

A colon is allowed between the range and the command name. It is ignored
(this is Vi compatible). For example:

:1,$:s/pat/string

When the character '%' or '#' is used where a file name is expected, they are
expanded to the current and alternate file name (see the chapter "editing
files" :_% :_#).

Embedded spaces in file names are allowed on the Amiga if one file name is
expected as argument. Trailing spaces will be ignored, unless escaped with a
backslash or CTRL-V. Note that the ":next" command uses spaces to separate
file names. Escape the spaces to include them in a file name. Example:

:next foo\ bar goes\ to school\
starts editing the three files "foo bar", "goes to" and "school ".

When you want to use the special characters '"' or '|' in a command, or want
to use '%' or '#' in a file name, precede them with a backslash. The
backslash is not required in a range and in the ":substitute" command.
See also `= .

:_!
The '!' (bang) character after an Ex command makes the command behave in a
different way. The '!' should be placed immediately after the command, without
any blanks in between. If you insert blanks the '!' will be seen as an
argument for the command, which has a different meaning. For example:

:w! name write the current buffer to file "name", overwriting
any existing file

:w !name send the current buffer as standard input to command
"name"

==

cmdline.txt — 810

4. Ex command-line ranges cmdline-ranges [range] E16

Some Ex commands accept a line range in front of them. This is noted as
[range]. It consists of one or more line specifiers, separated with ',' or
';'.

The basics are explained in section 10.3 of the user manual.

In Vim9 script a range needs to be prefixed with a colon to avoid ambiguity
with continuation lines. For example, "+" can be used for a range but is also
a continuation of an expression:

var result = start
+ print

If the "+" is a range then it must be prefixed with a colon:
var result = start
:+ print

:, :;
When separated with ';' the cursor position will be set to that line
before interpreting the next line specifier. This doesn't happen for ','.
Examples:

4,/this line/
from line 4 till match with "this line" after the cursor line.

5;/that line/
from line 5 till match with "that line" after line 5.

The default line specifier for most commands is the cursor position, but the
commands ":write" and ":global" have the whole file (1,$) as default.

If more line specifiers are given than required for the command, the first
one(s) will be ignored.

Line numbers may be specified with: :range {address}
{number} an absolute line number E1247
. the current line :.
$ the last line in the file :$
% equal to 1,$ (the entire file) :%
't position of mark t (lowercase) :'
'T position of mark T (uppercase); when the mark is in

another file it cannot be used in a range
/{pattern}[/] the next line where {pattern} matches :/

also see :range-pattern below
?{pattern}[?] the previous line where {pattern} matches :?

also see :range-pattern below
\/ the next line where the previously used search

pattern matches
\? the previous line where the previously used search

pattern matches
\& the next line where the previously used substitute

pattern matches

:range-offset
Each may be followed (several times) by '+' or '-' and an optional number.
This number is added or subtracted from the preceding line number. If the
number is omitted, 1 is used. If there is nothing before the '+' or '-' then
the current line is used.

:range-closed-fold
When a line number after the comma is in a closed fold it is adjusted to the
last line of the fold, thus the whole fold is included.

cmdline.txt — 811

When a number is added this is done after the adjustment to the last line of
the fold. This means these lines are additionally included in the range. For
example:

:3,4+2print
On this text:

1 one
2 two
3 three
4 four FOLDED
5 five FOLDED
6 six
7 seven
8 eight

Where lines four and five are a closed fold, ends up printing lines 3 to 7.
The 7 comes from the "4" in the range, which is adjusted to the end of the
closed fold, which is 5, and then the offset 2 is added.

An example for subtracting (which isn't very useful):
:2,4-1print

On this text:
1 one
2 two
3 three FOLDED
4 four FOLDED
5 five FOLDED
6 six FOLDED
7 seven
8 eight

Where lines three to six are a closed fold, ends up printing lines 2 to 6.
The 6 comes from the "4" in the range, which is adjusted to the end of the
closed fold, which is 6, and then 1 is subtracted, then this is still in the
closed fold and the last line of that fold is used, which is 6.

:range-pattern
The "/" and "?" after {pattern} are required to separate the pattern from
anything that follows.

The "/" and "?" may be preceded with another address. The search starts from
there. The difference from using ';' is that the cursor isn't moved.
Examples:

/pat1//pat2/ Find line containing "pat2" after line containing
"pat1", without moving the cursor.

7;/pat2/ Find line containing "pat2", after line 7, leaving
the cursor in line 7.

The {number} must be between 0 and the number of lines in the file. When
using a 0 (zero) this is interpreted as a 1 by most commands. Commands that
use it as a count do use it as a zero (:tag , :pop , etc). Some commands
interpret the zero as "before the first line" (:read , search pattern, etc).

Examples:
.+3 three lines below the cursor
/that/+1 the line below the next line containing "that"
.,$ from current line until end of file
0;/that the first line containing "that", also matches in the

first line.
1;/that the first line after line 1 containing "that"

Some commands allow for a count after the command. This count is used as the
number of lines to be used, starting with the line given in the last line

cmdline.txt — 812

specifier (the default is the cursor line). The commands that accept a count
are the ones that use a range but do not have a file name argument (because
a file name can also be a number). The count cannot be negative.

Examples:
:s/x/X/g 5 substitute 'x' by 'X' in the current line and four

following lines
:23d 4 delete lines 23, 24, 25 and 26

Folds and Range

When folds are active the line numbers are rounded off to include the whole
closed fold. See fold-behavior .

Reverse Range E493

A range should have the lower line number first. If this is not the case, Vim
will ask you if it should swap the line numbers.

Backwards range given, OK to swap
This is not done within the global command ":g".

You can use ":silent" before a command to avoid the question, the range will
always be swapped then.

Count and Range N:

When giving a count before entering ":", this is translated into:
:.,.+(count - 1)

In words: The "count" lines at and after the cursor. Example: To delete
three lines:

3:d<CR> is translated into: .,.+2d<CR>

Visual Mode and Range
v_:

{Visual}: Starts a command-line with the Visual selected lines as a
range. The code `:'<,'>` is used for this range, which makes
it possible to select a similar line from the command-line
history for repeating a command on different Visually selected
lines.

:* :star :star-visual-range
When Visual mode was already ended, a short way to use the
Visual area for a range is `:*`. This requires that "*" does
not appear in 'cpo', see cpo-star . Otherwise you will have
to type `:'<,'>`
For when "*" is in 'cpo' see :star-compatible .

==
5. Ex command-line flags ex-flags

These flags are supported by a selection of Ex commands. They print the line
that the cursor ends up after executing the command:

l output like for :list
add line number
p output like for :print

cmdline.txt — 813

The flags can be combined, thus "l#" uses both a line number and :list style
output.

==
6. Ex special characters cmdline-special

Note: These are special characters in the executed command line. If you want
to insert special things while typing you can use the CTRL-R command. For
example, "%" stands for the current file name, while CTRL-R % inserts the
current file name right away. See c_CTRL-R .

Note: If you want to avoid the effects of special characters in a Vim script
you may want to use fnameescape() . Also see `= .

In Ex commands, at places where a file name can be used, the following
characters have a special meaning. These can also be used in the expression
function expand() .

% Is replaced with the current file name. :_% c_%
Is replaced with the alternate file name. :_# c_#

This is remembered for every window.
#n (where n is a number) is replaced with :_#0 :_#n

the file name of buffer n. "#0" is the same as "#". c_#n
Is replaced with all names in the argument list :_## c_##

concatenated, separated by spaces. Each space in a name
is preceded with a backslash.

#<n (where n is a number > 0) is replaced with old :_#< c_#<
file name n. See :oldfiles or v:oldfiles to get the
number. E809
{only when compiled with the |+eval| and |+viminfo| features}

In Vim9-script # is used to start a comment, use %% for the alternate file
name:

% Is replaced with the current file name.
%% Is replaced with the alternate file name. :_%% c_%%
%%n (where n is a number) is replaced with :_%%0 :_%%n

the file name of buffer n. "%%0" is the same as "%%". c_%%n
%%% Is replaced with all names in the argument :_%%% c_%%%#

list concatenated, separated by spaces.
%%<n (where n is a number > 0) is replaced with old :_%%< c_%%<

file name n.

Note that these, except "#<n", give the file name as it was typed. If an
absolute path is needed (when using the file name from a different directory),
you need to add ":p". See filename-modifiers .

The "#<n" item returns an absolute path, but it will start with "~/" for files
below your home directory.

Note that backslashes are inserted before spaces, so that the command will
correctly interpret the file name. But this doesn't happen for shell
commands. For those you probably have to use quotes (this fails for files
that contain a quote and wildcards):

:!ls "%"
:r !spell "%"

To avoid the special meaning of '%' and '#' insert a backslash before it.
Detail: The special meaning is always escaped when there is a backslash before
it, no matter how many backslashes.

you type: result

cmdline.txt — 814

alternate.file
\# #
\\# \#

Also see `= .

E499 E500
Note: these are typed literally, they are not special keys!

:<cword> <cword>
<cword> is replaced with the word under the cursor (like star)

:<cWORD> <cWORD>
<cWORD> is replaced with the WORD under the cursor (see WORD)

:<cexpr> <cexpr>
<cexpr> is replaced with the word under the cursor, including more

to form a C expression. E.g., when the cursor is on "arg"
of "ptr->arg" then the result is "ptr->arg"; when the
cursor is on "]" of "list[idx]" then the result is
"list[idx]". This is used for v:beval_text .

:<cfile> <cfile>
<cfile> is replaced with the path name under the cursor (like what

gf uses)
:<afile> <afile>

<afile> When executing autocommands, is replaced with the file name
of the buffer being manipulated, or the file for a read or
write. E495

:<abuf> <abuf>
<abuf> When executing autocommands, is replaced with the currently

effective buffer number. It is not set for all events,
also see bufnr() . For ":r file" and ":so file" it is the
current buffer, the file being read/sourced is not in a
buffer. E496

:<amatch> <amatch>
<amatch> When executing autocommands, is replaced with the match for

which this autocommand was executed. E497
It differs from <afile> when the file name isn't used to
match with (for FileType, Syntax and SpellFileMissing
events).
When the match is with a file name, it is expanded to the
full path.

:<sfile> <sfile>
<sfile> When executing a `:source` command, is replaced with the

file name of the sourced file. E498
When executing a legacy function, is replaced with the call
stack, as with <stack> (this is for backwards
compatibility, using <stack> or <script> is preferred).
In Vim9 script using <sfile> in a function gives error
E1245 .
Note that filename-modifiers are useless when <sfile> is
not used inside a script.

:<stack> <stack>
<stack> is replaced with the call stack, using

"function {function-name}[{lnum}]" for a function line
and "script {file-name}[{lnum}]" for a script line, and
".." in between items. E.g.:
"function {function-name1}[{lnum}]..{function-name2}[{lnum}]"
If there is no call stack you get error E489 .

:<script> <script>
<script> When executing a `:source` command, is replaced with the file

name of the sourced file. When executing a function, is
replaced with the file name of the script where it is
defined.

cmdline.txt — 815

If the file name cannot be determined you get error E1274 .
:<slnum> <slnum>

<slnum> When executing a `:source` command, is replaced with the
line number. E842
When executing a function it's the line number relative to
the start of the function.

:<sflnum> <sflnum>
<sflnum> When executing a script, is replaced with the line number.

It differs from <slnum> in that <sflnum> is replaced with
the script line number in any situation. E961

:<client> <client>
<client> is replaced with the {clinetid} of the last received

message in server2client()

filename-modifiers
:_%: ::8 ::p ::. ::~ ::h ::t ::r ::e ::s ::gs ::S

%:8 %:p %:. %:~ %:h %:t %:r %:e %:s %:gs %:S
The file name modifiers can be used after "%", "#", "#n", "<cfile>", "<sfile>",
"<afile>" or "<abuf>". They are also used with the fnamemodify() function.

These modifiers can be given, in this order:
:p Make file name a full path. Must be the first modifier. Also

changes "~/" (and "~user/" for Unix and VMS) to the path for
the home directory. If the name is a directory a path
separator is added at the end. For a file name that does not
exist and does not have an absolute path the result is
unpredictable. On MS-Windows an 8.3 filename is expanded to
the long name.

:8 Converts the path to 8.3 short format (currently only on
MS-Windows). Will act on as much of a path that is an
existing path.

:~ Reduce file name to be relative to the home directory, if
possible. File name is unmodified if it is not below the home
directory.

:. Reduce file name to be relative to current directory, if
possible. File name is unmodified if it is not below the
current directory.
For maximum shortness, use ":~:.".

:h Head of the file name (the last component and any separators
removed). Cannot be used with :e, :r or :t.
Can be repeated to remove several components at the end.
When the file name ends in a path separator, only the path
separator is removed. Thus ":p:h" on a directory name results
on the directory name itself (without trailing slash).
When the file name is an absolute path (starts with "/" for
Unix; "x:\" for Win32; "drive:" for Amiga), that part is not
removed. When there is no head (path is relative to current
directory) the result is empty.

:t Tail of the file name (last component of the name). Must
precede any :r or :e.

:r Root of the file name (the last extension removed). When
there is only an extension (file name that starts with '.',
e.g., ".vimrc"), it is not removed. Can be repeated to remove
several extensions (last one first).

:e Extension of the file name. Only makes sense when used alone.
When there is no extension the result is empty.
When there is only an extension (file name that starts with
'.'), the result is empty. Can be repeated to include more
extensions. If there are not enough extensions (but at least
one) as much as possible are included.

cmdline.txt — 816

:s?pat?sub?
Substitute the first occurrence of "pat" with "sub". This
works like the :s command. "pat" is a regular expression.
Any character can be used for '?', but it must not occur in
"pat" or "sub".
After this, the previous modifiers can be used again. For
example ":p", to make a full path after the substitution.

:gs?pat?sub?
Substitute all occurrences of "pat" with "sub". Otherwise
this works like ":s".

:S Escape special characters for use with a shell command (see
shellescape()). Must be the last one. Examples:

:!dir <cfile>:S
:call system('chmod +w -- ' . expand('%:S'))

Examples, when the file name is "src/version.c", current dir
"/home/mool/vim":

:p /home/mool/vim/src/version.c
:p:. src/version.c
:p:~ ~/vim/src/version.c
:h src
:p:h /home/mool/vim/src
:p:h:h /home/mool/vim
:t version.c
:p:t version.c
:r src/version
:p:r /home/mool/vim/src/version
:t:r version
:e c
:s?version?main? src/main.c
:s?version?main?:p /home/mool/vim/src/main.c
:p:gs?/?\\? \home\mool\vim\src\version.c

Examples, when the file name is "src/version.c.gz":
:p /home/mool/vim/src/version.c.gz
:e gz
:e:e c.gz
:e:e:e c.gz
:e:e:r c
:r src/version.c
:r:e c
:r:r src/version
:r:r:r src/version

extension-removal :_%<
If a "<" is appended to "%", "#", "#n" or "CTRL-V p" the extension of the file
name is removed (everything after and including the last '.' in the file
name). This is included for backwards compatibility with version 3.0, the
":r" form is preferred. Examples:

% current file name
%< current file name without extension
alternate file name for current window
#< idem, without extension
#31 alternate file number 31
#31< idem, without extension
<cword> word under the cursor
<cWORD> WORD under the cursor (see |WORD|)
<cfile> path name under the cursor
<cfile>< idem, without extension

cmdline.txt — 817

Note: Where a file name is expected wildcards expansion is done. On Unix the
shell is used for this, unless it can be done internally (for speed).
Unless in restricted-mode , backticks work also, like in

:n `echo *.c`
But expansion is only done if there are any wildcards before expanding the
'%', '#', etc.. This avoids expanding wildcards inside a file name. If you
want to expand the result of <cfile>, add a wildcard character to it.
Examples: (alternate file name is "?readme?")

command expands to
:e # :e ?readme?
:e `ls #` :e {files matching "?readme?"}
:e #.* :e {files matching "?readme?.*"}
:cd <cfile> :cd {file name under cursor}
:cd <cfile>* :cd {file name under cursor plus "*" and then expanded}

Also see `= .

When the expanded argument contains a "!" and it is used for a shell command
(":!cmd", ":r !cmd" or ":w !cmd"), the "!" is escaped with a backslash to
avoid it being expanded into a previously used command. When the 'shell'
option contains "sh", this is done twice, to avoid the shell trying to expand
the "!".

filename-backslash
For filesystems that use a backslash as directory separator (MS-Windows), it's
a bit difficult to recognize a backslash that is used to escape the special
meaning of the next character. The general rule is: If the backslash is
followed by a normal file name character, it does not have a special meaning.
Therefore "\file\foo" is a valid file name, you don't have to type the
backslash twice.

An exception is the '$' sign. It is a valid character in a file name. But
to avoid a file name like "$home" to be interpreted as an environment variable,
it needs to be preceded by a backslash. Therefore you need to use "/\$home"
for the file "$home" in the root directory. A few examples:

FILE NAME INTERPRETED AS
$home expanded to value of environment var $home
\$home file "$home" in current directory
/\$home file "$home" in root directory
\\$home file "\\", followed by expanded $home

Also see `= .

==
7. Command-line window cmdline-window cmdwin

command-line-window
In the command-line window the command line can be edited just like editing
text in any window. It is a special kind of window, because you cannot leave
it in a normal way.

OPEN c_CTRL-F q: q/ q?

There are two ways to open the command-line window:
1. From Command-line mode, use the key specified with the 'cedit' option.

The default is CTRL-F when 'compatible' is not set.
2. From Normal mode, use the "q:", "q/" or "q?" command.

This starts editing an Ex command-line ("q:") or search string ("q/" or
"q?"). Note that this is not possible while recording is in progress (the

cmdline.txt — 818

"q" stops recording then).

When the window opens it is filled with the command-line history. The last
line contains the command as typed so far. The left column will show a
character that indicates the type of command-line being edited, see
cmdwin-char .

Vim will be in Normal mode when the editor is opened, except when 'insertmode'
is set.

E1292
Once a command-line window is open it is not possible to open another one.

The height of the window is specified with 'cmdwinheight' (or smaller if there
is no room). The window is always full width and is positioned just above the
command-line.

EDIT

You can now use commands to move around and edit the text in the window. Both
in Normal mode and Insert mode.

It is possible to use ":", "/" and other commands that use the command-line,
but it's not possible to open another command-line window then. There is no
nesting.

E11 E1188
The command-line window is not a normal window. It is not possible to move to
another window or edit another buffer. All commands that would do this are
disabled in the command-line window. Of course it _is_ possible to execute
any command that you entered in the command-line window. Other text edits are
discarded when closing the window.

CLOSE E199

There are several ways to leave the command-line window:

<CR> Execute the command-line under the cursor. Works both in
Insert and in Normal mode.

CTRL-C Continue in Command-line mode. The command-line under the
cursor is used as the command-line. Works both in Insert and
in Normal mode. There is no redraw, thus the window will
remain visible.

:quit Discard the command line and go back to Normal mode.
":close", CTRL-W c, ":exit", ":xit" and CTRL-\ CTRL-N also
work.

:qall Quit Vim, unless there are changes in some buffer.
:qall! Quit Vim, discarding changes to any buffer.

Once the command-line window is closed the old window sizes are restored. The
executed command applies to the window and buffer where the command-line was
started from. This works as if the command-line window was not there, except
that there will be an extra screen redraw.
The buffer used for the command-line window is deleted. Any changes to lines
other than the one that is executed with <CR> are lost.

If you would like to execute the command under the cursor and then have the
command-line window open again, you may find this mapping useful:

:autocmd CmdwinEnter * map <buffer> <F5> <CR>q:

cmdline.txt — 819

VARIOUS

The command-line window cannot be used:
- when there already is a command-line window (no nesting)
- for entering an encryption key or when using inputsecret()

Some options are set when the command-line window is opened:
'filetype' "vim", when editing an Ex command-line; this starts Vim syntax

highlighting if it was enabled
'rightleft' off
'modifiable' on
'buftype' "nofile"
'swapfile' off

It is allowed to write the buffer contents to a file. This is an easy way to
save the command-line history and read it back later.

If the 'wildchar' option is set to <Tab>, and the command-line window is used
for an Ex command, then two mappings will be added to use <Tab> for completion
in the command-line window, like this:

:inoremap <buffer> <Tab> <C-X><C-V>
:nnoremap <buffer> <Tab> a<C-X><C-V>

Note that hitting <Tab> in Normal mode will do completion on the next
character. That way it works at the end of the line.
If you don't want these mappings, disable them with:

au CmdwinEnter [:>] iunmap <Tab>
au CmdwinEnter [:>] nunmap <Tab>

You could put these lines in your vimrc file.

While in the command-line window you cannot use the mouse to put the cursor in
another window, or drag statuslines of other windows. You can drag the
statusline of the command-line window itself and the statusline above it.
Thus you can resize the command-line window, but not others.

The getcmdwintype() function returns the type of the command-line being
edited as described in cmdwin-char .

AUTOCOMMANDS

Two autocommand events are used: CmdwinEnter and CmdwinLeave . You can use
the Cmdwin events to do settings specifically for the command-line window.
Be careful not to cause side effects!
Example:

:au CmdwinEnter : let b:cpt_save = &cpt | set cpt=.
:au CmdwinLeave : let &cpt = b:cpt_save

This sets 'complete' to use completion in the current window for i_CTRL-N .
Another example:

:au CmdwinEnter [/?] startinsert
This will make Vim start in Insert mode in the command-line window.

cmdwin-char
The character used for the pattern indicates the type of command-line:

: normal Ex command
> debug mode command debug-mode
/ forward search string
? backward search string
= expression for "= expr-register

cmdline.txt — 820

@ string for input()
- text for :insert or :append

cmdline.txt — 821

cmdline.txt — 822

options.txt For Vim version 9.1. Last change: 2024 Mar 11

VIM REFERENCE MANUAL by Bram Moolenaar

Options options

1. Setting options set-option
2. Automatically setting options auto-setting
3. Options summary option-summary

For an overview of options see quickref.txt option-list .

Vim has a number of internal variables and switches which can be set to
achieve special effects. These options come in three forms:

boolean can only be on or off boolean toggle
number has a numeric value
string has a string value

==
1. Setting options set-option E764

:se :set
:se[t][!] Show all options that differ from their default value.

When [!] is present every option is on a separate
line.

:se[t][!] all Show all but terminal options.
When [!] is present every option is on a separate
line.

:se[t] termcap Show all terminal options. Note that in the GUI the
key codes are not shown, because they are generated
internally and can't be changed. Changing the terminal
codes in the GUI is not useful either...
The options have the form t_AB, see
terminal-options .

:se[t]! termcap Idem, but don't use multiple columns.

E518 E519
:se[t] {option}? Show value of {option}.

:se[t] {option} Toggle option: set, switch it on.
Number option: show value.
String option: show value.

:se[t] no{option} Toggle option: Reset, switch it off.

:set-! :set-inv
:se[t] {option}! or
:se[t] inv{option} Toggle option: Invert value.

:set-default :set-& :set-&vi :set-&vim
:se[t] {option}& Reset option to its default value. May depend on the

current value of 'compatible'.
:se[t] {option}&vi Reset option to its Vi default value.
:se[t] {option}&vim Reset option to its Vim default value.

options.txt — 823

:se[t] all& Set all options to their default value. The values of
these options are not changed:

all terminal options, starting with t_
'columns'
'cryptmethod'
'encoding'
'key'
'lines'
'term'
'ttymouse'
'ttytype'

Warning: This may have a lot of side effects.

:set-args :set= E487 E521
:se[t] {option}={value} or
:se[t] {option}:{value}

Set string or number option to {value}.
For numeric options the value can be given in decimal,
hex (preceded with 0x) or octal (preceded with '0').
The old value can be inserted by typing 'wildchar' (by
default this is a <Tab> or CTRL-E if 'compatible' is
set). Many string options with fixed syntax and names
also support completing known values. See
cmdline-completion and complete-set-option .

White space between {option} and '=' is allowed and
will be ignored. White space between '=' and {value}
is not allowed.
See option-backslash for using white space and
backslashes in {value}.

:se[t] {option}+={value} :set+=
Add the {value} to a number option, or append the
{value} to a string option. When the option is a
comma-separated list, a comma is added, unless the
value was empty.
If the option is a list of flags, superfluous flags
are removed. When adding a flag that was already
present the option value doesn't change.
Also see :set-args above.

:se[t] {option}^={value} :set^=
Multiply the {value} to a number option, or prepend
the {value} to a string option. When the option is a
comma-separated list, a comma is added, unless the
value was empty.
Also see :set-args above.

:se[t] {option}-={value} :set-=
Subtract the {value} from a number option, or remove
the {value} from a string option, if it is there.
If the {value} is not found in a string option, there
is no error or warning. When the option is a comma
separated list, a comma is deleted, unless the option
becomes empty.
When the option is a list of flags, {value} must be
exactly as they appear in the option. Remove flags
one by one to avoid problems.
The individual values from a comma separated list or
list of flags can be inserted by typing 'wildchar'.
See complete-set-option .

options.txt — 824

Also see :set-args above.

The {option} arguments to ":set" may be repeated. For example:
:set ai nosi sw=3 ts=3

If you make an error in one of the arguments, an error message will be given
and the following arguments will be ignored.

:set-verbose
When 'verbose' is non-zero, displaying an option value will also tell where it
was last set. Example:

:verbose set shiftwidth cindent?
shiftwidth=4

Last set from modeline line 1
cindent

Last set from /usr/local/share/vim/vim60/ftplugin/c.vim line 30
This is only done when specific option values are requested, not for ":verbose
set all" or ":verbose set" without an argument.
When the option was set by hand there is no "Last set" message.
When the option was set while executing a function, user command or
autocommand, the script in which it was defined is reported.
Note that an option may also have been set as a side effect of setting
'compatible'.
A few special texts:

Last set from modeline line 1
Option was set in a modeline .

Last set from --cmd argument
Option was set with command line argument --cmd or +.

Last set from -c argument
Option was set with command line argument -c , +, -S or
-q .

Last set from environment variable
Option was set from an environment variable, $VIMINIT,
$GVIMINIT or $EXINIT.

Last set from error handler
Option was cleared when evaluating it resulted in an error.

{not available when compiled without the |+eval| feature}

:set-termcap E522
For {option} the form "t_xx" may be used to set a terminal option. This will
override the value from the termcap. You can then use it in a mapping. If
the "xx" part contains special characters, use the <t_xx> form:

:set <t_#4>=^[Ot
This can also be used to translate a special code for a normal key. For
example, if Alt-b produces <Esc>b, use this:

:set <M-b>=^[b
(the ^[is a real <Esc> here, use CTRL-V <Esc> to enter it)
The advantage over a mapping is that it works in all situations.

You can define any key codes, e.g.:
:set t_xy=^[foo;

There is no warning for using a name that isn't recognized. You can map these
codes as you like:

:map <t_xy> something
E846

When a key code is not set, it's like it does not exist. Trying to get its
value will result in an error:

:set t_kb=
:set t_kb
E846: Key code not set: t_kb

options.txt — 825

The t_xx options cannot be set from a modeline or in the sandbox , for
security reasons.

The listing from ":set" looks different from Vi. Long string options are put
at the end of the list. The number of options is quite large. The output of
"set all" probably does not fit on the screen, causing Vim to give the
more-prompt .

option-backslash
To include white space in a string option value it has to be preceded with a
backslash. To include a backslash you have to use two. Effectively this
means that the number of backslashes in an option value is halved (rounded
down).
In options 'path', 'cdpath', and 'tags', spaces have to be preceded with three
backslashes instead for compatibility with version 3.0 where the options can
be separated by either commas or spaces.
Comma-separated options like 'backupdir' and 'tags' will also require commas
to be escaped with two backslashes, whereas this is not needed for
non-comma-separated ones like 'makeprg'.
When setting options using :let and literal-string , you need to use one
fewer layer of backslash.
A few examples:

:set makeprg=make\ file results in "make file"
:let &makeprg='make file' (same as above)
:set makeprg=make\\\ file results in "make\ file"
:set tags=tags\ /usr/tags results in "tags" and "/usr/tags"
:set tags=tags\\\ file results in "tags file"
:let &tags='tags\ file' (same as above)

:set makeprg=make,file results in "make,file"
:set makeprg=make\\,file results in "make\,file"
:set tags=tags,file results in "tags" and "file"
:set tags=tags\\,file results in "tags,file"
:let &tags='tags\,file' (same as above)

The "|" character separates a ":set" command from a following command. To
include the "|" in the option value, use "\|" instead. This example sets the
'titlestring' option to "hi|there":

:set titlestring=hi\|there
This sets the 'titlestring' option to "hi" and 'iconstring' to "there":

:set titlestring=hi|set iconstring=there

Similarly, in legacy script the double quote character starts a comment. To
include the '"' in the option value, use '\"' instead. This example sets the
'titlestring' option to 'hi "there"':

:set titlestring=hi\ \"there\"

In Vim9 script it's simpler, comments start with a '#' character, and only
when preceded by white space. A backslash is needed less often:

vim9script
set titlestring=hi\ "there"
set titlestring=hi#there#
set titlestring=hi\ \#there#

For Win32 backslashes in file names are mostly not removed. More precise: For
options that expect a file name (those where environment variables are
expanded) a backslash before a normal file name character is not removed. But
a backslash before a special character (space, backslash, comma, etc.) is used
like explained above.

options.txt — 826

There is one special situation, when the value starts with "\\":
:set dir=\\machine\path results in "\\machine\path"
:set dir=\\\\machine\\path results in "\\machine\path"
:set dir=\\path\\file results in "\\path\file" (wrong!)

For the first one the start is kept, but for the second one the backslashes
are halved. This makes sure it works both when you expect backslashes to be
halved and when you expect the backslashes to be kept. The third gives a
result which is probably not what you want. Avoid it.

add-option-flags remove-option-flags
E539 E550 E551 E552

Some options are a list of flags. When you want to add a flag to such an
option, without changing the existing ones, you can do it like this:

:set guioptions+=a
Remove a flag from an option like this:

:set guioptions-=a
This removes the 'a' flag from 'guioptions'.
Note that you should add or remove one flag at a time. If 'guioptions' has
the value "ab", using "set guioptions-=ba" won't work, because the string "ba"
doesn't appear.

:set_env expand-env expand-environment-var
Environment variables in specific string options will be expanded. If the
environment variable exists the '$' and the following environment variable
name is replaced with its value. If it does not exist the '$' and the name
are not modified. Any non-id character (not a letter, digit or '_') may
follow the environment variable name. That character and what follows is
appended to the value of the environment variable. Examples:

:set term=$TERM.new
:set path=/usr/$INCLUDE,$HOME/include,.

When adding or removing a string from an option with ":set opt-=val" or ":set
opt+=val" the expansion is done before the adding or removing.

Handling of local options local-options

Note: The following also applies to global-local options.

Some of the options only apply to a window or buffer. Each window or buffer
has its own copy of this option, thus each can have its own value. This
allows you to set 'list' in one window but not in another. And set
'shiftwidth' to 3 in one buffer and 4 in another.

The following explains what happens to these local options in specific
situations. You don't really need to know all of this, since Vim mostly uses
the option values you would expect. Unfortunately, doing what the user
expects is a bit complicated...

When splitting a window, the local options are copied to the new window. Thus
right after the split the contents of the two windows look the same.

When editing a new buffer, its local option values must be initialized. Since
the local options of the current buffer might be specifically for that buffer,
these are not used. Instead, for each buffer-local option there also is a
global value, which is used for new buffers. With ":set" both the local and
global value is changed. With "setlocal" only the local value is changed,
thus this value is not used when editing a new buffer.

When editing a buffer that has been edited before, the options from the window
that was last closed are used again. If this buffer has been edited in this

options.txt — 827

window, the values from back then are used. Otherwise the values from the
last closed window where the buffer was edited last are used.

It's possible to set a local window option specifically for a type of buffer.
When you edit another buffer in the same window, you don't want to keep
using these local window options. Therefore Vim keeps a global value of the
local window options, which is used when editing another buffer. Each window
has its own copy of these values. Thus these are local to the window, but
global to all buffers in the window. With this you can do:

:e one
:set list
:e two

Now the 'list' option will also be set in "two", since with the ":set list"
command you have also set the global value.

:set nolist
:e one
:setlocal list
:e two

Now the 'list' option is not set, because ":set nolist" resets the global
value, ":setlocal list" only changes the local value and ":e two" gets the
global value. Note that if you do this next:

:e one
You will get back the 'list' value as it was the last time you edited "one".
The options local to a window are remembered for each buffer. This also
happens when the buffer is not loaded, but they are lost when the buffer is
wiped out :bwipe .

Special local window options local-noglobal

The following local window options won't be copied over when new windows are
created, thus they behave slightly differently:

Option Reason
'previewwindow' there can only be a single one
'scroll' specific to existing window
'winfixbuf' specific to existing window
'winfixheight' specific to existing window
'winfixwidth' specific to existing window

Special local buffer options

The following local buffer options won't be copied over when new buffers are
created, thus they behave slightly differently:

Option Reason
'filetype' explicitly set by autocommands
'syntax' explicitly set by autocommands
'bufhidden' denote special-buffers
'buftype' denote special-buffers
'readonly' will be detected automatically
'modified' will be detected automatically

:setl :setlocal
:setl[ocal][!] ... Like ":set" but set only the value local to the

current buffer or window. Not all options have a
local value. If the option does not have a local
value the global value is set.
With the "all" argument: display local values for all
local options.
Without argument: Display local values for all local

options.txt — 828

options which are different from the default.
When displaying a specific local option, show the
local value. For a global/local boolean option, when
the global value is being used, "--" is displayed
before the option name.
For a global option the global value is
shown (but that might change in the future).

:se[t] {option}< Set the effective value of {option} to its global
value.
For string global-local options, the local value is
removed, so that the global value will be used.
For all other options, the global value is copied to
the local value.

:setl[ocal] {option}< Set the effective value of {option} to its global
value.
For number and boolean global-local options, the
local value is removed, so that the global value will
be used.
For all other options, including string global-local
options, the global value is copied to the local
value.

Note that the behaviour for global-local options is slightly different
between string and number-based options.

:setg :setglobal
:setg[lobal][!] ... Like ":set" but set only the global value for a local

option without changing the local value.
When displaying an option, the global value is shown.
With the "all" argument: display global values for all
local options.
Without argument: display global values for all local
options which are different from the default.

For buffer-local and window-local options:
Command global value local value

:set option=value set set
:setlocal option=value - set

:setglobal option=value set -
:set option? - display

:setlocal option? - display
:setglobal option? display -

Global options with a local value global-local

Options are global when you mostly use one value for all buffers and windows.
For some global options it's useful to sometimes have a different local value.
You can set the local value with ":setlocal". That buffer or window will then
use the local value, while other buffers and windows continue using the global
value.

For example, you have two windows, both on C source code. They use the global
'makeprg' option. If you do this in one of the two windows:

:set makeprg=gmake
then the other window will switch to the same value. There is no need to set
the 'makeprg' option in the other C source window too.
However, if you start editing a Perl file in a new window, you want to use

options.txt — 829

another 'makeprg' for it, without changing the value used for the C source
files. You use this command:

:setlocal makeprg=perlmake
You can switch back to using the global value by making the local value empty:

:setlocal makeprg=
This only works for a string option. For a number or boolean option you need
to use the "<" flag, like this:

:setlocal autoread<
Note that for non-boolean and non-number options using "<" copies the global
value to the local value, it doesn't switch back to using the global value
(that matters when the global value changes later). You can also use:

:set path<
This will make the local value of 'path' empty, so that the global value is
used. Thus it does the same as:

:setlocal path=
Note: In the future more global options can be made global-local . Using
":setlocal" on a global option might work differently then.

option-value-function
Some options ('completefunc', 'imactivatefunc', 'imstatusfunc', 'omnifunc',
'operatorfunc', 'quickfixtextfunc', 'tagfunc' and 'thesaurusfunc') are set to
a function name or a function reference or a lambda function. When using a
lambda it will be converted to the name, e.g. "<lambda>123". Examples:

set opfunc=MyOpFunc
set opfunc=function('MyOpFunc')
set opfunc=funcref('MyOpFunc')
set opfunc={a\ ->\ MyOpFunc(a)}

Set to a script-local function:
set opfunc=s:MyLocalFunc
set opfunc=<SID>MyLocalFunc

In Vim9 script the "s:" and "<SID>" can be omitted if the function exists in
the script:

set opfunc=MyLocalFunc

Set using a funcref variable:
let Fn = function('MyTagFunc')
let &tagfunc = Fn

Set using a lambda expression:
let &tagfunc = {t -> MyTagFunc(t)}

Set using a variable with lambda expression:
let L = {a, b, c -> MyTagFunc(a, b , c)}
let &tagfunc = L

In Vim9 script, in a compiled function, you can use a lambda, but a
closure does not work, because the function will be called without the
context of where it was defined.

Setting the filetype

:setf[iletype] [FALLBACK] {filetype} :setf :setfiletype
Set the 'filetype' option to {filetype}, but only if
not done yet in a sequence of (nested) autocommands.
This is short for:

:if !did_filetype()
: setlocal filetype={filetype}

options.txt — 830

:endif
This command is used in a filetype.vim file to avoid
setting the 'filetype' option twice, causing different
settings and syntax files to be loaded.

When the optional FALLBACK argument is present, a
later :setfiletype command will override the
'filetype'. This is to be used for filetype
detections that are just a guess. did_filetype()
will return false after this command.

option-window optwin
:bro[wse] se[t] :set-browse :browse-set :opt :options
:opt[ions] Open a window for viewing and setting all options.

Options are grouped by function.
Offers short help for each option. Hit <CR> on the
short help to open a help window with more help for
the option.
Modify the value of the option and hit <CR> on the
"set" line to set the new value. For window and
buffer specific options, the last accessed window is
used to set the option value in, unless this is a help
window, in which case the window below help window is
used (skipping the option-window).
{not available when compiled without the +eval
feature}

$HOME
Using "~" is like using "$HOME", but it is only recognized at the start of an
option and after a space or comma.

On Unix systems "~user" can be used too. It is replaced by the home directory
of user "user". Example:

:set path=~mool/include,/usr/include,.

On Unix systems the form "${HOME}" can be used too. The name between {} can
contain non-id characters then. Note that if you want to use this for the
"gf" command, you need to add the '{' and '}' characters to 'isfname'.

NOTE: expanding environment variables and "~/" is only done with the ":set"
command, not when assigning a value to an option with ":let".

$HOME-windows
On MS-Windows, if $HOME is not defined as an environment variable, then
at runtime Vim will set it to the expansion of $HOMEDRIVE$HOMEPATH.
If $HOMEDRIVE is not set then $USERPROFILE is used.

This expanded value is not exported to the environment, this matters when
running an external command:

:echo system('set | findstr ^HOME=')
and

:echo luaeval('os.getenv("HOME")')
should echo nothing (an empty string) despite exists('$HOME') being true.
When setting $HOME to a non-empty string it will be exported to the
subprocesses.

Note the maximum length of an expanded option is limited. How much depends on
the system, mostly it is something like 256 or 1024 characters.

options.txt — 831

:fix :fixdel
:fix[del] Set the value of 't_kD':

't_kb' is 't_kD' becomes
CTRL-? CTRL-H

not CTRL-? CTRL-?

(CTRL-? is 0o177 octal, 0x7f hex)

If your delete key terminal code is wrong, but the
code for backspace is alright, you can put this in
your .vimrc:

:fixdel
This works no matter what the actual code for
backspace is.

If the backspace key terminal code is wrong you can
use this:

:if &term == "termname"
: set t_kb=^V<BS>
: fixdel
:endif

Where "^V" is CTRL-V and "<BS>" is the backspace key
(don't type four characters!). Replace "termname"
with your terminal name.

If your <Delete> key sends a strange key sequence (not
CTRL-? or CTRL-H) you cannot use ":fixdel". Then use:

:if &term == "termname"
: set t_kD=^V<Delete>
:endif

Where "^V" is CTRL-V and "<Delete>" is the delete key
(don't type eight characters!). Replace "termname"
with your terminal name.

Linux-backspace
Note about Linux: By default the backspace key
produces CTRL-?, which is wrong. You can fix it by
putting this line in your rc.local:

echo "keycode 14 = BackSpace" | loadkeys

NetBSD-backspace
Note about NetBSD: If your backspace doesn't produce
the right code, try this:

xmodmap -e "keycode 22 = BackSpace"
If this works, add this in your .Xmodmap file:

keysym 22 = BackSpace
You need to restart for this to take effect.

==
2. Automatically setting options auto-setting

Besides changing options with the ":set" command, there are three alternatives
to set options automatically for one or more files:

1. When starting Vim initializations are read from various places. See
initialization . Most of them are performed for all editing sessions,

and some of them depend on the directory where Vim is started.
You can create an initialization file with :mkvimrc , :mkview and
:mksession .

2. If you start editing a new file, the automatic commands are executed.

options.txt — 832

This can be used to set options for files matching a particular pattern and
many other things. See autocommand .

3. If you start editing a new file, and the 'modeline' option is on, a
number of lines at the beginning and end of the file are checked for
modelines. This is explained here.

modeline vim: vi: ex: E520
There are two forms of modelines. The first form:

[text{white}]{vi: vim: ex:}[white]{options}

[text{white}] empty or any text followed by at least one blank
character (<Space> or <Tab>); "ex:" always requires at
least one blank character

{vi:|vim:|ex:} the string "vi:", "vim:" or "ex:"
[white] optional white space
{options} a list of option settings, separated with white space

or ':', where each part between ':' is the argument
for a ":set" command (can be empty)

Examples:
vi:noai:sw=3 ts=6
vim: tw=77

The second form (this is compatible with some versions of Vi):

[text{white}]{vi: vim:|Vim: ex:}[white]se[t] {options}:[text]

[text{white}] empty or any text followed by at least one blank
character (<Space> or <Tab>); "ex:" always requires at
least one blank character

{vi:|vim:|Vim:|ex:} the string "vi:", "vim:", "Vim:" or "ex:"
[white] optional white space
se[t] the string "set " or "se " (note the space); When

"Vim" is used it must be "set".
{options} a list of options, separated with white space, which

is the argument for a ":set" command
: a colon
[text] any text or empty

Examples:
/* vim: set ai tw=75: */
/* Vim: set ai tw=75: */

The white space before {vi:|vim:|Vim:|ex:} is required. This minimizes the
chance that a normal word like "lex:" is caught. There is one exception:
"vi:" and "vim:" can also be at the start of the line (for compatibility with
version 3.0). Using "ex:" at the start of the line will be ignored (this
could be short for "example:").

If the modeline is disabled within a modeline, subsequent modelines will be
ignored. This is to allow turning off modeline on a per-file basis. This is
useful when a line looks like a modeline but isn't. For example, it would be
good to start a YAML file containing strings like "vim:" with

vim: nomodeline
so as to avoid modeline misdetection. Following options on the same line
after modeline deactivation, if any, are still evaluated (but you would
normally not have any).

modeline-local
The options are set like with ":setlocal": The new value only applies to the

options.txt — 833

buffer and window that contain the file. Although it's possible to set global
options from a modeline, this is unusual. If you have two windows open and
the files in it set the same global option to a different value, the result
depends on which one was opened last.

When editing a file that was already loaded, only the window-local options
from the modeline are used. Thus if you manually changed a buffer-local
option after opening the file, it won't be changed if you edit the same buffer
in another window. But window-local options will be set.

modeline-version
If the modeline is only to be used for some versions of Vim, the version
number can be specified where "vim:" or "Vim:" is used:

vim{vers}: version {vers} or later
vim<{vers}: version before {vers}
vim={vers}: version {vers}
vim>{vers}: version after {vers}

{vers} is 700 for Vim 7.0 (hundred times the major version plus minor).
For example, to use a modeline only for Vim 7.0:

/* vim700: set foldmethod=marker */
To use a modeline for Vim after version 7.2:

/* vim>702: set cole=2: */
There can be no blanks between "vim" and the ":".

The number of lines that are checked can be set with the 'modelines' option.
If 'modeline' is off or 'modelines' is 0 no lines are checked.

Note that for the first form all of the rest of the line is used, thus a line
like:

/* vi:ts=4: */
will give an error message for the trailing "*/". This line is OK:

/* vi:set ts=4: */

If an error is detected the rest of the line is skipped.

If you want to include a ':' in a set command precede it with a '\'. The
backslash in front of the ':' will be removed. Example:

/* vi:set fillchars=stl\:^,vert\:\|: */
This sets the 'fillchars' option to "stl:^,vert:\|". Only a single backslash
before the ':' is removed. Thus to include "\:" you have to specify "\\:".

E992
No other commands than "set" are supported, for security reasons (somebody
might create a Trojan horse text file with modelines). And not all options
can be set. For some options a flag is set, so that when the value is used
the sandbox is effective. Some options can only be set from the modeline
when 'modelineexpr' is set (the default is off).

Still, there is always a small risk that a modeline causes trouble. E.g.,
when some joker sets 'textwidth' to 5 all your lines are wrapped unexpectedly.
So disable modelines before editing untrusted text. The mail ftplugin does
this, for example.

Hint: If you would like to do something else than setting an option, you could
define an autocommand that checks the file for a specific string. For
example:

au BufReadPost * if getline(1) =~ "VAR" | call SetVar() | endif
And define a function SetVar() that does something with the line containing
"VAR".

options.txt — 834

==
3. Options summary option-summary

In the list below all the options are mentioned with their full name and with
an abbreviation if there is one. Both forms may be used.

In this document when a boolean option is "set" that means that ":set option"
is entered. When an option is "reset", ":set nooption" is used.

For some options there are two default values: The "Vim default", which is
used when 'compatible' is not set, and the "Vi default", which is used when
'compatible' is set.

Most options are the same in all windows and buffers. There are a few that
are specific to how the text is presented in a window. These can be set to a
different value in each window. For example the 'list' option can be set in
one window and reset in another for the same text, giving both types of view
at the same time. There are a few options that are specific to a certain
file. These can have a different value for each file or buffer. For example
the 'textwidth' option can be 78 for a normal text file and 0 for a C
program.

global one option for all buffers and windows
local to window each window has its own copy of this option
local to buffer each buffer has its own copy of this option

When creating a new window the option values from the currently active window
are used as a default value for the window-specific options. For the
buffer-specific options this depends on the 's' and 'S' flags in the
'cpoptions' option. If 's' is included (which is the default) the values for
buffer options are copied from the currently active buffer when a buffer is
first entered. If 'S' is present the options are copied each time the buffer
is entered, this is almost like having global options. If 's' and 'S' are not
present, the options are copied from the currently active buffer when the
buffer is created.

Hidden options hidden-options

Not all options are supported in all versions. This depends on the supported
features and sometimes on the system. A remark about this is in curly braces
below. When an option is not supported it may still be set without getting an
error, this is called a hidden option. You can't get the value of a hidden
option though, it is not stored.

To test if option "foo" can be used with ":set" use something like this:
if exists('&foo')

This also returns true for a hidden option. To test if option "foo" is really
supported use something like this:

if exists('+foo')

E355
A jump table for the options with a short description can be found at Q_op .

'aleph' 'al' aleph Aleph
'aleph' 'al' number (default 128 for MS-Windows, 224 otherwise)

global
{only available when compiled with the +rightleft
feature}

The ASCII code for the first letter of the Hebrew alphabet. The
routine that maps the keyboard in Hebrew mode, both in Insert mode

options.txt — 835

(when hkmap is set) and on the command-line (when hitting CTRL-_)
outputs the Hebrew characters in the range [aleph..aleph+26].
aleph=128 applies to PC code, and aleph=224 applies to ISO 8859-8.
See rileft.txt .

'allowrevins' 'ari' 'noallowrevins' 'noari'
'allowrevins' 'ari' boolean (default off)

global
{only available when compiled with the +rightleft
feature}

Allow CTRL-_ in Insert and Command-line mode. This is default off, to
avoid that users that accidentally type CTRL-_ instead of SHIFT-_ get
into reverse Insert mode, and don't know how to get out. See
'revins'.
NOTE: This option is reset when 'compatible' is set.

'altkeymap' 'akm' 'noaltkeymap' 'noakm'
'altkeymap' 'akm' boolean (default off)

global
{only available when compiled with the +farsi
feature}

This option was for using Farsi, which has been removed. See
farsi.txt .

'ambiwidth' 'ambw'
'ambiwidth' 'ambw' string (default: "single")

global
Only effective when 'encoding' is "utf-8" or another Unicode encoding.
Tells Vim what to do with characters with East Asian Width Class
Ambiguous (such as Euro, Registered Sign, Copyright Sign, Greek
letters, Cyrillic letters).

There are currently two possible values:
"single": Use the same width as characters in US-ASCII. This is

expected by most users.
"double": Use twice the width of ASCII characters.

E834 E835
The value "double" cannot be used if 'listchars' or 'fillchars'
contains a character that would be double width. These errors may
also be given when calling setcellwidths().

The values are overruled for characters specified with
setcellwidths() .

There are a number of CJK fonts for which the width of glyphs for
those characters are solely based on how many octets they take in
legacy/traditional CJK encodings. In those encodings, Euro,
Registered sign, Greek/Cyrillic letters are represented by two octets,
therefore those fonts have "wide" glyphs for them. This is also
true of some line drawing characters used to make tables in text
file. Therefore, when a CJK font is used for GUI Vim or
Vim is running inside a terminal (emulators) that uses a CJK font
(or Vim is run inside an xterm invoked with "-cjkwidth" option.),
this option should be set to "double" to match the width perceived
by Vim with the width of glyphs in the font. Perhaps it also has
to be set to "double" under CJK MS-Windows when the system locale is
set to one of CJK locales. See Unicode Standard Annex #11
(http://www.unicode.org/reports/tr11).

Vim may set this option automatically at startup time when Vim is

options.txt — 836

compiled with the +termresponse feature and if t_u7 is set to the
escape sequence to request cursor position report. The response can
be found in v:termu7resp .

'antialias' 'anti' 'noantialias' 'noanti'
'antialias' 'anti' boolean (default: off)

global
{only available when compiled with GUI enabled
on macOS}

This option only has an effect in the GUI version of Vim on macOS
v10.2 or later. When on, Vim will use smooth ("antialiased") fonts,
which can be easier to read at certain sizes on certain displays.
Setting this option can sometimes cause problems if 'guifont' is set
to its default (empty string).
NOTE: This option is reset when 'compatible' is set.

'arabic' 'arab' 'noarabic' 'noarab'
'arabic' 'arab' boolean (default off)

local to window
{only available when compiled with the +arabic
feature}

This option can be set to start editing Arabic text.
Setting this option will:
- Set the 'rightleft' option, unless 'termbidi' is set.
- Set the 'arabicshape' option, unless 'termbidi' is set.
- Set the 'keymap' option to "arabic"; in Insert mode CTRL-^ toggles
between typing English and Arabic key mapping.

- Set the 'delcombine' option
Note that 'encoding' must be "utf-8" for working with Arabic text.

Resetting this option will:
- Reset the 'rightleft' option.
- Disable the use of 'keymap' (without changing its value).
Note that 'arabicshape' and 'delcombine' are not reset (it is a global
option).
NOTE: This option is reset when 'compatible' is set.
Also see arabic.txt .

'arabicshape' 'arshape'
'noarabicshape' 'noarshape'

'arabicshape' 'arshape' boolean (default on)
global
{only available when compiled with the +arabic
feature}

When on and 'termbidi' is off, the required visual character
corrections that need to take place for displaying the Arabic language
take effect. Shaping, in essence, gets enabled; the term is a broad
one which encompasses:

a) the changing/morphing of characters based on their location
within a word (initial, medial, final and stand-alone).

b) the enabling of the ability to compose characters
c) the enabling of the required combining of some characters

When disabled the display shows each character's true stand-alone
form.
Arabic is a complex language which requires other settings, for
further details see arabic.txt .
NOTE: This option is set when 'compatible' is set.

'autochdir' 'acd' 'noautochdir' 'noacd'
'autochdir' 'acd' boolean (default off)

options.txt — 837

global
{only available when compiled with it, use
exists("+autochdir") to check}

When on, Vim will change the current working directory whenever you
open a file, switch buffers, delete a buffer or open/close a window.
It will change to the directory containing the file which was opened
or selected. When a buffer has no name it also has no directory, thus
the current directory won't change when navigating to it.
Note: When this option is on some plugins may not work.

'autoindent' 'ai' 'noautoindent' 'noai'
'autoindent' 'ai' boolean (default off)

local to buffer
Copy indent from current line when starting a new line (typing <CR>
in Insert mode or when using the "o" or "O" command). If you do not
type anything on the new line except <BS> or CTRL-D and then type
<Esc>, CTRL-O or <CR>, the indent is deleted again. Moving the cursor
to another line has the same effect, unless the 'I' flag is included
in 'cpoptions'.
When autoindent is on, formatting (with the "gq" command or when you
reach 'textwidth' in Insert mode) uses the indentation of the first
line.
When 'smartindent' or 'cindent' is on the indent is changed in
a different way.
The 'autoindent' option is reset when the 'paste' option is set and
restored when 'paste' is reset.

'autoread' 'ar' 'noautoread' 'noar'
'autoread' 'ar' boolean (default off)

global or local to buffer global-local
When a file has been detected to have been changed outside of Vim and
it has not been changed inside of Vim, automatically read it again.
When the file has been deleted this is not done, so you have the text
from before it was deleted. When it appears again then it is read.
timestamp

If this option has a local value, use this command to switch back to
using the global value:

:set autoread<

'autoshelldir' 'asd' 'noautoshelldir' 'noasd'
'autoshelldir' 'asd' boolean (default off)

global
When on, Vim will change the current working directory whenever you
change the directory of the shell running in a terminal window. You
need proper setting-up, so whenever the shell's pwd changes an OSC 7
escape sequence will be emitted. For example, on Linux, you can
source /etc/profile.d/vte.sh in your shell profile if you use bash or
zsh. For bash this should work (put it in a bash init file):

if [[-n "$VIM_TERMINAL"]]; then
PROMPT_COMMAND='_vim_sync_PWD'
function _vim_sync_PWD() {

printf '\033]7;file://%s\033\\' "$PWD"
}

fi

Or, in a zsh init file:
if [[-n "$VIM_TERMINAL"]]; then

autoload -Uz add-zsh-hook
add-zsh-hook -Uz chpwd _vim_sync_PWD

options.txt — 838

function _vim_sync_PWD() {
printf '\033]7;file://%s\033\\' "$PWD"

}
fi

In a fish init file:
if test -n "$VIM_TERMINAL"

function _vim_sync_PWD --on-variable=PWD
printf '\033]7;file://%s\033\\' "$PWD"

end
end

You can find an alternative method at terminal-autoshelldir .
When the parsing of the OSC sequence fails you get E1179 .

'autowrite' 'aw' 'noautowrite' 'noaw'
'autowrite' 'aw' boolean (default off)

global
Write the contents of the file, if it has been modified, on each
`:next`, `:rewind`, `:last`, `:first`, `:previous`, `:stop`,
`:suspend`, `:tag`, `:!`, `:make`, CTRL-] and CTRL-^ command; and when
a `:buffer`, CTRL-O, CTRL-I, '{A-Z0-9}, or `{A-Z0-9} command takes one
to another file.
A buffer is not written if it becomes hidden, e.g. when 'bufhidden' is
set to "hide" and `:next` is used.
Note that for some commands the 'autowrite' option is not used, see
'autowriteall' for that.
Some buffers will not be written, specifically when 'buftype' is
"nowrite", "nofile", "terminal" or "prompt".
USE WITH CARE: If you make temporary changes to a buffer that you
don't want to be saved this option may cause it to be saved anyway.
Renaming the buffer with ":file {name}" may help avoid this.

'autowriteall' 'awa' 'noautowriteall' 'noawa'
'autowriteall' 'awa' boolean (default off)

global
Like 'autowrite', but also used for commands ":edit", ":enew", ":quit",
":qall", ":exit", ":xit", ":recover" and closing the Vim window.
Setting this option also implies that Vim behaves like 'autowrite' has
been set.

'background' 'bg'
'background' 'bg' string (default "dark" or "light", see below)

global
When set to "dark", Vim will try to use colors that look good on a
dark background. When set to "light", Vim will try to use colors that
look good on a light background. Any other value is illegal.
Vim tries to set the default value according to the terminal used.
This will not always be correct.
Setting this option does not change the background color, it tells Vim
what the background color looks like. For changing the background
color, see :hi-normal .

When 'background' is changed Vim will adjust the default color groups
for the new value. But the colors used for syntax highlighting will
not change. g:colors_name
When a color scheme is loaded (the "g:colors_name" variable is set)
changing 'background' will cause the color scheme to be reloaded. If
the color scheme adjusts to the value of 'background' this will work.
However, if the color scheme sets 'background' itself the effect may

options.txt — 839

be undone. First delete the "g:colors_name" variable when needed.

When setting 'background' to the default value with:
:set background&

Vim will guess the value. In the GUI this should work correctly,
in other cases Vim might not be able to guess the right value.
If the GUI supports a dark theme, you can use the "d" flag in
'guioptions', see 'go-d'.

When the t_RB option is set, Vim will use it to request the background
color from the terminal. If the returned RGB value is dark/light and
'background' is not dark/light, 'background' will be set and the
screen is redrawn. This may have side effects, make t_BG empty in
your .vimrc if you suspect this problem. The response to t_RB can
be found in v:termrbgresp .

When starting the GUI, the default value for 'background' will be
"light". When the value is not set in the .gvimrc, and Vim detects
that the background is actually quite dark, 'background' is set to
"dark". But this happens only AFTER the .gvimrc file has been read
(because the window needs to be opened to find the actual background
color). To get around this, force the GUI window to be opened by
putting a ":gui" command in the .gvimrc file, before where the value
of 'background' is used (e.g., before ":syntax on").

For MS-Windows the default is "dark".
For other systems "dark" is used when 'term' is "linux",
"screen.linux", "cygwin" or "putty", or $COLORFGBG suggests a dark
background. Otherwise the default is "light".

The :terminal command and the term_start() function use the
'background' value to decide whether the terminal window will start
with a white or black background.

Normally this option would be set in the .vimrc file. Possibly
depending on the terminal name. Example:

:if &term == "pcterm"
: set background=dark
:endif

When this option is set, the default settings for the highlight groups
will change. To use other settings, place ":highlight" commands AFTER
the setting of the 'background' option.
This option is also used in the "$VIMRUNTIME/syntax/syntax.vim" file
to select the colors for syntax highlighting. After changing this
option, you must load syntax.vim again to see the result. This can be
done with ":syntax on".

'backspace' 'bs'
'backspace' 'bs' string (default "", set to "indent,eol,start"

in defaults.vim)
global

Influences the working of <BS>, , CTRL-W and CTRL-U in Insert
mode. This is a list of items, separated by commas. Each item allows
a way to backspace over something:
value effect
indent allow backspacing over autoindent
eol allow backspacing over line breaks (join lines)
start allow backspacing over the start of insert; CTRL-W and CTRL-U

stop once at the start of insert.
nostop like start, except CTRL-W and CTRL-U do not stop at the start of

options.txt — 840

insert.

When the value is empty, Vi compatible backspacing is used, none of
the ways mentioned for the items above are possible.

For backwards compatibility with version 5.4 and earlier:
value effect

0 same as ":set backspace=" (Vi compatible)
1 same as ":set backspace=indent,eol"
2 same as ":set backspace=indent,eol,start"
3 same as ":set backspace=indent,eol,nostop"

See :fixdel if your <BS> or key does not do what you want.
NOTE: This option is set to "" when 'compatible' is set.

'backup' 'bk' 'nobackup' 'nobk'
'backup' 'bk' boolean (default off)

global
Make a backup before overwriting a file. Leave it around after the
file has been successfully written. If you do not want to keep the
backup file, but you do want a backup while the file is being
written, reset this option and set the 'writebackup' option (this is
the default). If you do not want a backup file at all reset both
options (use this if your file system is almost full). See the
backup-table for more explanations.

When the 'backupskip' pattern matches, a backup is not made anyway.
When 'patchmode' is set, the backup may be renamed to become the
oldest version of a file.
NOTE: This option is reset when 'compatible' is set.

'backupcopy' 'bkc'
'backupcopy' 'bkc' string (Vi default for Unix: "yes", otherwise: "auto")

global or local to buffer global-local
When writing a file and a backup is made, this option tells how it's
done. This is a comma-separated list of words.

The main values are:
"yes" make a copy of the file and overwrite the original one
"no" rename the file and write a new one
"auto" one of the previous, what works best

Extra values that can be combined with the ones above are:
"breaksymlink" always break symlinks when writing
"breakhardlink" always break hardlinks when writing

Making a copy and overwriting the original file:
- Takes extra time to copy the file.
+ When the file has special attributes, is a (hard/symbolic) link or
has a resource fork, all this is preserved.

- When the file is a link the backup will have the name of the link,
not of the real file.

Renaming the file and writing a new one:
+ It's fast.
- Sometimes not all attributes of the file can be copied to the new

file.
- When the file is a link the new file will not be a link.

The "auto" value is the middle way: When Vim sees that renaming the
file is possible without side effects (the attributes can be passed on

options.txt — 841

and the file is not a link) that is used. When problems are expected,
a copy will be made.

The "breaksymlink" and "breakhardlink" values can be used in
combination with any of "yes", "no" and "auto". When included, they
force Vim to always break either symbolic or hard links by doing
exactly what the "no" option does, renaming the original file to
become the backup and writing a new file in its place. This can be
useful for example in source trees where all the files are symbolic or
hard links and any changes should stay in the local source tree, not
be propagated back to the original source.

crontab
One situation where "no" and "auto" will cause problems: A program
that opens a file, invokes Vim to edit that file, and then tests if
the open file was changed (through the file descriptor) will check the
backup file instead of the newly created file. "crontab -e" is an
example.

When a copy is made, the original file is truncated and then filled
with the new text. This means that protection bits, owner and
symbolic links of the original file are unmodified. The backup file,
however, is a new file, owned by the user who edited the file. The
group of the backup is set to the group of the original file. If this
fails, the protection bits for the group are made the same as for
others.

When the file is renamed, this is the other way around: The backup has
the same attributes of the original file, and the newly written file
is owned by the current user. When the file was a (hard/symbolic)
link, the new file will not! That's why the "auto" value doesn't
rename when the file is a link. The owner and group of the newly
written file will be set to the same ones as the original file, but
the system may refuse to do this. In that case the "auto" value will
again not rename the file.

NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'backupdir' 'bdir'
'backupdir' 'bdir' string (default for Amiga: ".,t:",

for Win32: ".,$TEMP,c:/tmp,c:/temp"
for Unix: ".,~/tmp,~/")

global
List of directories for the backup file, separated with commas.
- The backup file will be created in the first directory in the list

where this is possible. The directory must exist, Vim will not
create it for you.

- Empty means that no backup file will be created ('patchmode' is
impossible!). Writing may fail because of this.

- A directory "." means to put the backup file in the same directory
as the edited file.

- A directory starting with "./" (or ".\" for MS-Windows) means to put
the backup file relative to where the edited file is. The leading
"." is replaced with the path name of the edited file.
("." inside a directory name has no special meaning).

- Spaces after the comma are ignored, other spaces are considered part
of the directory name. To have a space at the start of a directory
name, precede it with a backslash.

- To include a comma in a directory name precede it with a backslash.
- A directory name may end in an '/'.

options.txt — 842

- For Unix and Win32, if a directory ends in two path separators "//",
the backup file name will be built from the complete path to the
file with all path separators changed to percent '%' signs. This
will ensure file name uniqueness in the backup directory.
On Win32, it is also possible to end with "\\". However, When a
separating comma is following, you must use "//", since "\\" will
include the comma in the file name. Therefore it is recommended to
use '//', instead of '\\'.

- Environment variables are expanded :set_env .
- Careful with '\' characters, type one before a space, type two to

get one in the option (see option-backslash), for example:
:set bdir=c:\\tmp,\ dir\\,with\\,commas,\\\ dir\ with\ spaces

- For backwards compatibility with Vim version 3.0 a '>' at the start
of the option is removed.

See also 'backup' and 'writebackup' options.
If you want to hide your backup files on Unix, consider this value:

:set backupdir=./.backup,~/.backup,.,/tmp
You must create a ".backup" directory in each directory and in your
home directory for this to work properly.
The use of :set+= and :set-= is preferred when adding or removing
directories from the list. This avoids problems when a future version
uses another default.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'backupext' 'bex' E589
'backupext' 'bex' string (default "~", for VMS: "_")

global
String which is appended to a file name to make the name of the
backup file. The default is quite unusual, because this avoids
accidentally overwriting existing files with a backup file. You might
prefer using ".bak", but make sure that you don't have files with
".bak" that you want to keep.
Only normal file name characters can be used; "/*?[|<>" are illegal.

If you like to keep a lot of backups, you could use a BufWritePre
autocommand to change 'backupext' just before writing the file to
include a timestamp.

:au BufWritePre * let &bex = '-' .. strftime("%Y%b%d%X") .. '~'
Use 'backupdir' to put the backup in a different directory.

'backupskip' 'bsk'
'backupskip' 'bsk' string (default: "$TMPDIR/*,$TMP/*,$TEMP/*"

Unix: "/tmp/*,$TMPDIR/*,$TMP/*,$TEMP/*"
Mac: "/private/tmp/*,$TMPDIR/*,$TMP/*,$TEMP/*")

global
A list of file patterns. When one of the patterns matches with the
name of the file which is written, no backup file is created. Both
the specified file name and the full path name of the file are used.
The pattern is used like with :autocmd , see autocmd-patterns .
Watch out for special characters, see option-backslash .
When $TMPDIR, $TMP or $TEMP is not defined, it is not used for the
default value. "/tmp/*" is only used for Unix.

WARNING: Not having a backup file means that when Vim fails to write
your buffer correctly and then, for whatever reason, Vim exits, you
lose both the original file and what you were writing. Only disable
backups if you don't care about losing the file.

Note that environment variables are not expanded. If you want to use

options.txt — 843

$HOME you must expand it explicitly, e.g.:
:let &backupskip = escape(expand('$HOME'), '\') .. '/tmp/*'

Note that the default also makes sure that "crontab -e" works (when a
backup would be made by renaming the original file crontab won't see
the newly created file). Also see 'backupcopy' and crontab .

'balloondelay' 'bdlay'
'balloondelay' 'bdlay' number (default: 600)

global
{only available when compiled with the +balloon_eval
feature}

Delay in milliseconds before a balloon may pop up. See balloon-eval .

'ballooneval' 'beval' 'noballooneval' 'nobeval'
'ballooneval' 'beval' boolean (default off)

global
{only available when compiled with the +balloon_eval
feature}

Switch on the balloon-eval functionality for the GUI.

'balloonevalterm' 'bevalterm' 'noballoonevalterm'
'nobevalterm'

'balloonevalterm' 'bevalterm' boolean (default off)
global
{only available when compiled with the
+balloon_eval_term feature}

Switch on the balloon-eval functionality for the terminal.

'balloonexpr' 'bexpr'
'balloonexpr' 'bexpr' string (default "")

global or local to buffer global-local
{only available when compiled with the +balloon_eval
feature}

Expression for text to show in evaluation balloon. It is only used
when 'ballooneval' or 'balloonevalterm' is on. These variables can be
used:

v:beval_bufnr number of the buffer in which balloon is going to show
v:beval_winnr number of the window
v:beval_winid ID of the window
v:beval_lnum line number
v:beval_col column number (byte index)
v:beval_text word under or after the mouse pointer

Instead of showing a balloon, which is limited to plain text, consider
using a popup window, see popup_beval_example . A popup window can
use highlighting and show a border.

The evaluation of the expression must not have side effects!
Example:

function MyBalloonExpr()
return 'Cursor is at line ' .. v:beval_lnum ..

\ ', column ' .. v:beval_col ..
\ ' of file ' .. bufname(v:beval_bufnr) ..
\ ' on word "' .. v:beval_text .. '"'

endfunction
set bexpr=MyBalloonExpr()
set ballooneval balloonevalterm

options.txt — 844

Also see balloon_show() , it can be used if the content of the balloon
is to be fetched asynchronously. In that case evaluating
'balloonexpr' should result in an empty string. If you get a balloon
with only "0" you probably didn't return anything from your function.

NOTE: The balloon is displayed only if the cursor is on a text
character. If the result of evaluating 'balloonexpr' is not empty,
Vim does not try to send a message to an external debugger (Netbeans
or Sun Workshop).

If the expression starts with s: or <SID> , then it is replaced with
the script ID (local-function). Example:

set bexpr=s:MyBalloonExpr()
set bexpr=<SID>SomeBalloonExpr()

Otherwise, the expression is evaluated in the context of the script
where the option was set, thus script-local items are available.

The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .
This option cannot be set in a modeline when 'modelineexpr' is off.

It is not allowed to change text or jump to another window while
evaluating 'balloonexpr', see textlock .

To check whether line breaks in the balloon text work use this check:
if has("balloon_multiline")

When they are supported "\n" characters will start a new line. If the
expression evaluates to a List this is equal to using each List item
as a string and putting "\n" in between them.
NOTE: This option is set to "" when 'compatible' is set.

'belloff' 'bo'
'belloff' 'bo' string (default "")

global
Specifies for which events the bell will not be rung. It is a comma
separated list of items. For each item that is present, the bell
will be silenced. This is most useful to specify specific events in
insert mode to be silenced.
You can also make it flash by using 'visualbell'.

item meaning when present
all All events.
backspace When hitting <BS> or and deleting results in an

error.
cursor Fail to move around using the cursor keys or

<PageUp>/<PageDown> in Insert-mode .
complete Error occurred when using i_CTRL-X_CTRL-K or

i_CTRL-X_CTRL-T .
copy Cannot copy char from insert mode using i_CTRL-Y or

i_CTRL-E .
ctrlg Unknown Char after <C-G> in Insert mode.
error Other Error occurred (e.g. try to join last line)

(mostly used in Normal-mode or Cmdline-mode).
esc hitting <Esc> in Normal-mode .
ex In Visual-mode , hitting Q results in an error.
hangul Ignored.
insertmode Pressing <Esc> in 'insertmode'.
lang Calling the beep module for Lua/Mzscheme/TCL.
mess No output available for g< .
showmatch Error occurred for 'showmatch' function.

options.txt — 845

operator Empty region error cpo-E .
register Unknown register after <C-R> in Insert-mode .
shell Bell from shell output :! .
spell Error happened on spell suggest.
term Bell from :terminal output.
wildmode More matches in cmdline-completion available

(depends on the 'wildmode' setting).

This is most useful to fine tune when in Insert mode the bell should
be rung. For Normal mode and Ex commands, the bell is often rung to
indicate that an error occurred. It can be silenced by adding the
"error" keyword.

'binary' 'bin' 'nobinary' 'nobin'
'binary' 'bin' boolean (default off)

local to buffer
This option should be set before editing a binary file. You can also
use the -b Vim argument. When this option is switched on a few
options will be changed (also when it already was on):

'textwidth' will be set to 0
'wrapmargin' will be set to 0
'modeline' will be off
'expandtab' will be off

Also, 'fileformat' and 'fileformats' options will not be used, the
file is read and written like 'fileformat' was "unix" (a single <NL>
separates lines).
The 'fileencoding' and 'fileencodings' options will not be used, the
file is read without conversion.
NOTE: When you start editing a(nother) file while the 'bin' option is
on, settings from autocommands may change the settings again (e.g.,
'textwidth'), causing trouble when editing. You might want to set
'bin' again when the file has been loaded.
The previous values of these options are remembered and restored when
'bin' is switched from on to off. Each buffer has its own set of
saved option values.
To edit a file with 'binary' set you can use the ++bin argument.
This avoids you have to do ":set bin", which would have effect for all
files you edit.
When writing a file the <EOL> for the last line is only written if
there was one in the original file (normally Vim appends an <EOL> to
the last line if there is none; this would make the file longer). See
the 'endofline' option.

'bioskey' 'biosk' 'nobioskey' 'nobiosk'
'bioskey' 'biosk' boolean (default on)

global
{only for MS-DOS}

This was for MS-DOS and is no longer supported.

'bomb' 'nobomb'
'bomb' boolean (default off)

local to buffer
When writing a file and the following conditions are met, a BOM (Byte
Order Mark) is prepended to the file:
- this option is on
- the 'binary' option is off
- 'fileencoding' is "utf-8", "ucs-2", "ucs-4" or one of the little/big

endian variants.
Some applications use the BOM to recognize the encoding of the file.
Often used for UCS-2 files on MS-Windows. For other applications it

options.txt — 846

causes trouble, for example: "cat file1 file2" makes the BOM of file2
appear halfway through the resulting file. Gcc doesn't accept a BOM.
When Vim reads a file and 'fileencodings' starts with "ucs-bom", a
check for the presence of the BOM is done and 'bomb' set accordingly.
Unless 'binary' is set, it is removed from the first line, so that you
don't see it when editing. When you don't change the options, the BOM
will be restored when writing the file.

'breakat' 'brk'
'breakat' 'brk' string (default " ^I!@*-+;:,./?")

global
{not available when compiled without the +linebreak
feature}

This option lets you choose which characters might cause a line
break if 'linebreak' is on. Only works for ASCII and also for 8-bit
characters when 'encoding' is an 8-bit encoding.

'breakindent' 'bri' 'nobreakindent' 'nobri'
'breakindent' 'bri' boolean (default off)

local to window
{not available when compiled without the +linebreak
feature}

Every wrapped line will continue visually indented (same amount of
space as the beginning of that line), thus preserving horizontal blocks
of text.
NOTE: This option is reset when 'compatible' is set.

'breakindentopt' 'briopt'
'breakindentopt' 'briopt' string (default empty)

local to window
{not available when compiled without the +linebreak
feature}

Settings for 'breakindent'. It can consist of the following optional
items and must be separated by a comma:

min:{n} Minimum text width that will be kept after
applying 'breakindent', even if the resulting
text should normally be narrower. This prevents
text indented almost to the right window border
occupying lot of vertical space when broken.
(default: 20)

shift:{n} After applying 'breakindent', the wrapped line's
beginning will be shifted by the given number of
characters. It permits dynamic French paragraph
indentation (negative) or emphasizing the line
continuation (positive).
(default: 0)

sbr Display the 'showbreak' value before applying the
additional indent.
(default: off)

list:{n} Adds an additional indent for lines that match a
numbered or bulleted list (using the
'formatlistpat' setting).

list:-1 Uses the length of a match with 'formatlistpat'
for indentation.
(default: 0)

column:{n} Indent at column {n}. Will overrule the other
sub-options. Note: an additional indent may be
added for the 'showbreak' setting.
(default: off)

options.txt — 847

'browsedir' 'bsdir'
'browsedir' 'bsdir' string (default: "last")

global
{only for Motif, GTK, Mac and Win32 GUI}

Which directory to use for the file browser:
last Use same directory as with last file browser, where a

file was opened or saved.
buffer Use the directory of the related buffer.
current Use the current directory.
{path} Use the specified directory

'bufhidden' 'bh'
'bufhidden' 'bh' string (default: "")

local to buffer local-noglobal
This option specifies what happens when a buffer is no longer
displayed in a window:

<empty> follow the global 'hidden' option
hide hide the buffer (don't unload it), even if 'hidden' is

not set
unload unload the buffer, even if 'hidden' is set; the

:hide command will also unload the buffer
delete delete the buffer from the buffer list, even if

'hidden' is set; the :hide command will also delete
the buffer, making it behave like :bdelete

wipe wipe the buffer from the buffer list, even if
'hidden' is set; the :hide command will also wipe
out the buffer, making it behave like :bwipeout

CAREFUL: when "unload", "delete" or "wipe" is used changes in a buffer
are lost without a warning. Also, these values may break autocommands
that switch between buffers temporarily.
This option is used together with 'buftype' and 'swapfile' to specify
special kinds of buffers. See special-buffers .

'buflisted' 'bl' 'nobuflisted' 'nobl' E85
'buflisted' 'bl' boolean (default: on)

local to buffer
When this option is set, the buffer shows up in the buffer list. If
it is reset it is not used for ":bnext", "ls", the Buffers menu, etc.
This option is reset by Vim for buffers that are only used to remember
a file name or marks. Vim sets it when starting to edit a buffer.
But not when moving to a buffer with ":buffer".

'buftype' 'bt' E382
'buftype' 'bt' string (default: "")

local to buffer local-noglobal
The value of this option specifies the type of a buffer:

<empty> normal buffer
nofile buffer which is not related to a file and will not be

written
nowrite buffer which will not be written
acwrite buffer which will always be written with BufWriteCmd

autocommands.
quickfix quickfix buffer, contains list of errors :cwindow

or list of locations :lwindow
help help buffer (you are not supposed to set this

manually)
terminal buffer for a terminal (you are not supposed to set

this manually)
prompt buffer where only the last line can be edited, meant

options.txt — 848

to be used by a plugin, see prompt-buffer
{only when compiled with the |+channel| feature}

popup buffer used in a popup window, see popup .
{only when compiled with the |+textprop| feature}

This option is used together with 'bufhidden' and 'swapfile' to
specify special kinds of buffers. See special-buffers .
Also see win_gettype() , which returns the type of the window.

Be careful with changing this option, it can have many side effects!
One such effect is that Vim will not check the timestamp of the file,
if the file is changed by another program this will not be noticed.

A "quickfix" buffer is only used for the error list and the location
list. This value is set by the :cwindow and :lwindow commands and
you are not supposed to change it.

"nofile" and "nowrite" buffers are similar:
both: The buffer is not to be written to disk, ":w" doesn't

work (":w filename" does work though).
both: The buffer is never considered to be 'modified' .

There is no warning when the changes will be lost, for
example when you quit Vim.

both: A swap file is only created when using too much memory
(when 'swapfile' has been reset there is never a swap
file).

nofile only: The buffer name is fixed, it is not handled like a
file name. It is not modified in response to a :cd
command.

both: When using ":e bufname" and already editing "bufname"
the buffer is made empty and autocommands are
triggered as usual for :edit .

E676
"acwrite" implies that the buffer name is not related to a file, like
"nofile", but it will be written. Thus, in contrast to "nofile" and
"nowrite", ":w" does work and a modified buffer can't be abandoned
without saving. For writing there must be matching BufWriteCmd ,
FileWriteCmd or FileAppendCmd autocommands.

'casemap' 'cmp'
'casemap' 'cmp' string (default: "internal,keepascii")

global
Specifies details about changing the case of letters. It may contain
these words, separated by a comma:
internal Use internal case mapping functions, the current

locale does not change the case mapping. This only
matters when 'encoding' is a Unicode encoding,
"latin1" or "iso-8859-15". When "internal" is
omitted, the towupper() and towlower() system library
functions are used when available.

keepascii For the ASCII characters (0x00 to 0x7f) use the US
case mapping, the current locale is not effective.
This probably only matters for Turkish.

'cdhome' 'cdh' 'nocdhome' 'nocdh'
'cdhome' 'cdh' boolean (default: off)

global
When on, :cd , :tcd and :lcd without an argument changes the
current working directory to the $HOME directory like in Unix.
When off, those commands just print the current directory name.

options.txt — 849

On Unix this option has no effect.
This option cannot be set from a modeline or in the sandbox , for
security reasons.
NOTE: This option is reset when 'compatible' is set.

'cdpath' 'cd' E344 E346
'cdpath' 'cd' string (default: equivalent to $CDPATH or ",,")

global
This is a list of directories which will be searched when using the
:cd , :tcd and :lcd commands, provided that the directory being

searched for has a relative path, not an absolute part starting with
"/", "./" or "../", the 'cdpath' option is not used then.
The 'cdpath' option's value has the same form and semantics as
'path' . Also see file-searching .

The default value is taken from $CDPATH, with a "," prepended to look
in the current directory first.
If the default value taken from $CDPATH is not what you want, include
a modified version of the following command in your vimrc file to
override it:

:let &cdpath = ',' .. substitute(substitute($CDPATH, '[,]', '\\\0', 'g'), ':', ',', 'g')
This option cannot be set from a modeline or in the sandbox , for
security reasons.
(parts of 'cdpath' can be passed to the shell to expand file names).

'cedit'
'cedit' string (Vi default: "", Vim default: CTRL-F)

global
The key used in Command-line Mode to open the command-line window.
The default is CTRL-F when 'compatible' is off.
Only non-printable keys are allowed.
The key can be specified as a single character, but it is difficult to
type. The preferred way is to use the <> notation. Examples:

:exe "set cedit=\<C-Y>"
:exe "set cedit=\<Esc>"

Nvi also has this option, but it only uses the first character.
See cmdwin .
NOTE: This option is set to the Vim default value when 'compatible'
is reset.

'charconvert' 'ccv' E202 E214 E513
'charconvert' 'ccv' string (default "")

global
{only available when compiled with the |+eval| feature}

An expression that is used for character encoding conversion. It is
evaluated when a file that is to be read or has been written has a
different encoding from what is desired.
'charconvert' is not used when the internal iconv() function is
supported and is able to do the conversion. Using iconv() is
preferred, because it is much faster.
'charconvert' is not used when reading stdin -- , because there is no
file to convert from. You will have to save the text in a file first.
The expression must return zero, false or an empty string for success,
non-zero or true for failure.
The possible encoding names encountered are in 'encoding'.
Additionally, names given in 'fileencodings' and 'fileencoding' are
used.
Conversion between "latin1", "unicode", "ucs-2", "ucs-4" and "utf-8"
is done internally by Vim, 'charconvert' is not used for this.
'charconvert' is also used to convert the viminfo file, if the 'c'
flag is present in 'viminfo'. Also used for Unicode conversion.

options.txt — 850

Example:
set charconvert=CharConvert()
fun CharConvert()
system("recode "

\ .. v:charconvert_from .. ".." .. v:charconvert_to
\ .. " <" .. v:fname_in .. " >" .. v:fname_out)

return v:shell_error
endfun

The related Vim variables are:
v:charconvert_from name of the current encoding
v:charconvert_to name of the desired encoding
v:fname_in name of the input file
v:fname_out name of the output file

Note that v:fname_in and v:fname_out will never be the same.
Note that v:charconvert_from and v:charconvert_to may be different
from 'encoding'. Vim internally uses UTF-8 instead of UCS-2 or UCS-4.

The advantage of using a function call without arguments is that it is
faster, see expr-option-function .

Encryption is not done by Vim when using 'charconvert'. If you want
to encrypt the file after conversion, 'charconvert' should take care
of this.

If the 'charconvert' expression starts with s: or <SID> , then it is
replaced with the script ID (local-function). Example:

set charconvert=s:MyConvert()
set charconvert=<SID>SomeConvert()

Otherwise the expression is evaluated in the context of the script
where the option was set, thus script-local items are available.

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'cindent' 'cin' 'nocindent' 'nocin'
'cindent' 'cin' boolean (default off)

local to buffer
Enables automatic C program indenting. See 'cinkeys' to set the keys
that trigger reindenting in insert mode and 'cinoptions' to set your
preferred indent style.
If 'indentexpr' is not empty, it overrules 'cindent'.
If 'lisp' is not on and both 'indentexpr' and 'equalprg' are empty,
the "=" operator indents using this algorithm rather than calling an
external program.
See C-indenting .
When you don't like the way 'cindent' works, try the 'smartindent'
option or 'indentexpr'.
This option is not used when 'paste' is set.
NOTE: This option is reset when 'compatible' is set.

'cinkeys' 'cink'
'cinkeys' 'cink' string (default "0{,0},0),0],:,0#,!^F,o,O,e")

local to buffer
A list of keys that, when typed in Insert mode, cause reindenting of
the current line. Only used if 'cindent' is on and 'indentexpr' is
empty.
For the format of this option see cinkeys-format .
See C-indenting .

'cinoptions' 'cino'

options.txt — 851

'cinoptions' 'cino' string (default "")
local to buffer

The 'cinoptions' affect the way 'cindent' reindents lines in a C
program. See cinoptions-values for the values of this option, and
C-indenting for info on C indenting in general.

'cinscopedecls' 'cinsd'
'cinscopedecls' 'cinsd' string (default "public,protected,private")

local to buffer
Keywords that are interpreted as a C++ scope declaration by cino-g .
Useful e.g. for working with the Qt framework that defines additional
scope declarations "signals", "public slots" and "private slots":

set cinscopedecls+=signals,public\ slots,private\ slots

'cinwords' 'cinw'
'cinwords' 'cinw' string (default "if,else,while,do,for,switch")

local to buffer
These keywords start an extra indent in the next line when
'smartindent' or 'cindent' is set. For 'cindent' this is only done at
an appropriate place (inside {}).
Note that 'ignorecase' isn't used for 'cinwords'. If case doesn't
matter, include the keyword both the uppercase and lowercase:
"if,If,IF".

'clipboard' 'cb'
'clipboard' 'cb' string (default "autoselect,exclude:cons\|linux"

for X-windows, "" otherwise)
global
{only in GUI versions or when the +xterm_clipboard
feature is included}

This option is a list of comma-separated names.
Note: if one of the items is "exclude:", then you can't add an item
after that. Therefore do not append an item with += but use ^= to
prepend, e.g.:

set clipboard^=unnamed
When using the GUI see 'go-A' .
These names are recognized:

clipboard-unnamed
unnamed When included, Vim will use the clipboard register '*'

for all yank, delete, change and put operations which
would normally go to the unnamed register. When a
register is explicitly specified, it will always be
used regardless of whether "unnamed" is in 'clipboard'
or not. The clipboard register can always be
explicitly accessed using the "* notation. Also see
gui-clipboard .

clipboard-unnamedplus
unnamedplus A variant of the "unnamed" flag which uses the

clipboard register '+' (quoteplus) instead of
register '*' for all yank, delete, change and put
operations which would normally go to the unnamed
register. When "unnamed" is also included to the
option, yank operations (but not delete, change or
put) will additionally copy the text into register
'*'.
Only available with the +X11 feature.
Availability can be checked with:

if has('unnamedplus')

options.txt — 852

clipboard-autoselect
autoselect Works like the 'a' flag in 'guioptions': If present,

then whenever Visual mode is started, or the Visual
area extended, Vim tries to become the owner of the
windowing system's global selection or put the
selected text on the clipboard used by the selection
register "*. See 'go-a' and quotestar for details.
When the GUI is active, the 'a' flag in 'guioptions'
is used, when the GUI is not active, this "autoselect"
flag is used.
Also applies to the modeless selection.

clipboard-autoselectplus
autoselectplus Like "autoselect" but using the + register instead of

the * register. Compare to the 'P' flag in
'guioptions'.

clipboard-autoselectml
autoselectml Like "autoselect", but for the modeless selection

only. Compare to the 'A' flag in 'guioptions'.

clipboard-html
html When the clipboard contains HTML, use this when

pasting. When putting text on the clipboard, mark it
as HTML. This works to copy rendered HTML from
Firefox, paste it as raw HTML in Vim, select the HTML
in Vim and paste it in a rich edit box in Firefox.
You probably want to add this only temporarily,
possibly use BufEnter autocommands.
Only supported for GTK version 2 and later.

clipboard-exclude
exclude:{pattern}

Defines a pattern that is matched against the name of
the terminal 'term'. If there is a match, no
connection will be made to the X server. This is
useful in this situation:
- Running Vim in a console.
- $DISPLAY is set to start applications on another

display.
- You do not want to connect to the X server in the

console, but do want this in a terminal emulator.
To never connect to the X server use:

exclude:.*
This has the same effect as using the -X argument.
Note that when there is no connection to the X server
the window title won't be restored and the clipboard
cannot be accessed.
The value of 'magic' is ignored, {pattern} is
interpreted as if 'magic' was on.
The rest of the option value will be used for
{pattern}, this must be the last entry.

'cmdheight' 'ch'
'cmdheight' 'ch' number (default 1)

global or local to tab page
Number of screen lines to use for the command-line. A larger value
helps avoiding hit-enter prompts.
The value of this option is stored with the tab page, so that each tab

options.txt — 853

page can have a different value.

'cmdwinheight' 'cwh'
'cmdwinheight' 'cwh' number (default 7)

global
Number of screen lines to use for the command-line window. cmdwin

'colorcolumn' 'cc'
'colorcolumn' 'cc' string (default "")

local to window
{not available when compiled without the +syntax
feature}

'colorcolumn' is a comma-separated list of screen columns that are
highlighted with ColorColumn hl-ColorColumn . Useful to align
text. Will make screen redrawing slower.
The screen column can be an absolute number, or a number preceded with
'+' or '-', which is added to or subtracted from 'textwidth'.

:set cc=+1 " highlight column after 'textwidth'
:set cc=+1,+2,+3 " highlight three columns after 'textwidth'
:hi ColorColumn ctermbg=lightgrey guibg=lightgrey

When 'textwidth' is zero then the items with '-' and '+' are not used.
A maximum of 256 columns are highlighted.

'columns' 'co' E594
'columns' 'co' number (default 80 or terminal width)

global
Number of columns of the screen. Normally this is set by the terminal
initialization and does not have to be set by hand. Also see
posix-screen-size .

When Vim is running in the GUI or in a resizable window, setting this
option will cause the window size to be changed. When you only want
to use the size for the GUI, put the command in your gvimrc file.
When you set this option and Vim is unable to change the physical
number of columns of the display, the display may be messed up. For
the GUI it is always possible and Vim limits the number of columns to
what fits on the screen. You can use this command to get the widest
window possible:

:set columns=9999
Minimum value is 12, maximum value is 10000.

'comments' 'com' E524 E525
'comments' 'com' string (default

"s1:/*,mb:*,ex:*/,://,b:#,:%,:XCOMM,n:>,fb:-")
local to buffer

A comma-separated list of strings that can start a comment line. See
format-comments . See option-backslash about using backslashes to

insert a space.

'commentstring' 'cms' E537
'commentstring' 'cms' string (default "/*%s*/")

local to buffer
{not available when compiled without the +folding
feature}

A template for a comment. The "%s" in the value is replaced with the
comment text. Currently only used to add markers for folding, see
fold-marker .

'compatible' 'cp' 'nocompatible' 'nocp'

options.txt — 854

'compatible' 'cp' boolean (default on, off when a vimrc or gvimrc
file is found, reset in defaults.vim)

global
This option has the effect of making Vim either more Vi-compatible, or
make Vim behave in a more useful way.

This is a special kind of option, because when it's set or reset,
other options are also changed as a side effect.
NOTE: Setting or resetting this option can have a lot of unexpected
effects: Mappings are interpreted in another way, undo behaves
differently, etc. If you set this option in your vimrc file, you
should probably put it at the very start.

By default this option is on and the Vi defaults are used for the
options. This default was chosen for those people who want to use Vim
just like Vi, and don't even (want to) know about the 'compatible'
option.
When a vimrc or gvimrc file is found while Vim is starting up,
this option is switched off, and all options that have not been
modified will be set to the Vim defaults. Effectively, this means
that when a vimrc or gvimrc file exists, Vim will use the Vim
defaults, otherwise it will use the Vi defaults. (Note: This doesn't
happen for the system-wide vimrc or gvimrc file, nor for a file given
with the -u argument). Also see compatible-default and
posix-compliance .

You can also set this option with the "-C" argument, and reset it with
"-N". See -C and -N .
See 'cpoptions' for more fine tuning of Vi compatibility.

When this option is set, numerous other options are set to make Vim as
Vi-compatible as possible. When this option is unset, various options
are set to make Vim more useful. The table below lists all the
options affected.
The {?} column indicates when the options are affected:
+ Means that the option is set to the value given in {set value} when

'compatible' is set.
& Means that the option is set to the value given in {set value} when

'compatible' is set AND is set to its Vim default value when
'compatible' is unset.

- Means the option is NOT changed when setting 'compatible' but IS
set to its Vim default when 'compatible' is unset.

The {effect} column summarises the change when 'compatible' is set.

option ? set value effect

'allowrevins' + off no CTRL-_ command
'antialias' + off don't use antialiased fonts
'arabic' + off reset arabic-related options
'arabicshape' + on correct character shapes
'backspace' + "" normal backspace
'backup' + off no backup file
'backupcopy' & Unix: "yes" backup file is a copy

else: "auto" copy or rename backup file
'balloonexpr' + "" text to show in evaluation balloon
'breakindent' + off don't indent when wrapping lines
'cedit' - {unchanged} {set vim default only on resetting 'cp'}
'cdhome' + off ":cd" don't chdir to home on non-Unix
'cindent' + off no C code indentation
'compatible' - {unchanged} {set vim default only on resetting 'cp'}
'copyindent' + off don't copy indent structure

options.txt — 855

'cpoptions' & (all flags) Vi-compatible flags
'cscopepathcomp'+ 0 don't show directories in tags list
'cscoperelative'+ off don't use basename of path as prefix
'cscopetag' + off don't use cscope for ":tag"
'cscopetagorder'+ 0 see cscopetagorder
'cscopeverbose' + off see cscopeverbose
'delcombine' + off unicode: delete whole char combination
'digraph' + off no digraphs
'esckeys' & off no <Esc>-keys in Insert mode

this also disables modifyOtherKeys
and xterm-bracketed-paste

'expandtab' + off tabs not expanded to spaces
'fileformats' & "" no automatic file format detection,

"dos,unix" except for MS-Windows
'formatexpr' + "" use 'formatprg' for auto-formatting
'formatoptions' & "vt" Vi compatible formatting
'gdefault' + off no default 'g' flag for ":s"
'history' & 0 no commandline history
'hkmap' + off no Hebrew keyboard mapping
'hkmapp' + off no phonetic Hebrew keyboard mapping
'hlsearch' + off no highlighting of search matches
'incsearch' + off no incremental searching
'indentexpr' + "" no indenting by expression
'insertmode' + off do not start in Insert mode
'iskeyword' & "@,48-57,_" keywords contain alphanumeric

characters and '_'
'joinspaces' + on insert 2 spaces after period
'modeline' & off no modelines
'more' & off no pauses in listings
'mzquantum' - {unchanged} {set vim default only on resetting 'cp'}
'numberwidth' & 8 min number of columns for line number
'preserveindent'+ off don't preserve current indent structure

when changing it
'revins' + off no reverse insert
'ruler' + off no ruler
'scrolljump' + 1 no jump scroll
'scrolloff' + 0 no scroll offset
'shelltemp' - {unchanged} {set vim default only on resetting 'cp'}
'shiftround' + off indent not rounded to shiftwidth
'shortmess' & "S" no shortening of messages
'showcmd' & off command characters not shown
'showmode' & off current mode not shown
'sidescrolloff' + 0 cursor moves to edge of screen in scroll
'smartcase' + off no automatic ignore case switch
'smartindent' + off no smart indentation
'smarttab' + off no smart tab size
'softtabstop' + 0 tabs are always 'tabstop' positions
'startofline' + on goto startofline with some commands
'tagcase' & "followic" 'ignorecase' when searching tags file
'tagrelative' & off tag file names are not relative
'termguicolors' + off don't use highlight-(guifg|guibg)
'textauto' & off no automatic textmode detection
'textwidth' + 0 no automatic line wrap
'tildeop' + off tilde is not an operator
'ttimeout' + off no terminal timeout
'undofile' + off don't use an undo file
'viminfo' - {unchanged} {set Vim default only on resetting 'cp'}
'virtualedit' + "" cursor can only be placed on characters
'whichwrap' & "" left-right movements don't wrap
'wildchar' & CTRL-E only when the current value is <Tab>

options.txt — 856

use CTRL-E for cmdline completion
'writebackup' + on or off depends on the +writebackup feature

'complete' 'cpt' E535
'complete' 'cpt' string (default: ".,w,b,u,t,i")

local to buffer
This option specifies how keyword completion ins-completion works
when CTRL-P or CTRL-N are used. It is also used for whole-line
completion i_CTRL-X_CTRL-L . It indicates the type of completion
and the places to scan. It is a comma-separated list of flags:
. scan the current buffer ('wrapscan' is ignored)
w scan buffers from other windows
b scan other loaded buffers that are in the buffer list
u scan the unloaded buffers that are in the buffer list
U scan the buffers that are not in the buffer list
k scan the files given with the 'dictionary' option
kspell use the currently active spell checking spell
k{dict} scan the file {dict}. Several "k" flags can be given,

patterns are valid too. For example:
:set cpt=k/usr/dict/*,k~/spanish

s scan the files given with the 'thesaurus' option
s{tsr} scan the file {tsr}. Several "s" flags can be given, patterns

are valid too.
i scan current and included files
d scan current and included files for defined name or macro

i_CTRL-X_CTRL-D
] tag completion
t same as "]"

Unloaded buffers are not loaded, thus their autocmds :autocmd are
not executed, this may lead to unexpected completions from some files
(gzipped files for example). Unloaded buffers are not scanned for
whole-line completion.

The default is ".,w,b,u,t,i", which means to scan:
1. the current buffer
2. buffers in other windows
3. other loaded buffers
4. unloaded buffers
5. tags
6. included files

As you can see, CTRL-N and CTRL-P can be used to do any 'iskeyword'-
based expansion (e.g., dictionary i_CTRL-X_CTRL-K , included patterns
i_CTRL-X_CTRL-I , tags i_CTRL-X_CTRL-] and normal expansions).

'completefunc' 'cfu'
'completefunc' 'cfu' string (default: empty)

local to buffer
{not available when compiled without the +eval
feature}

This option specifies a function to be used for Insert mode completion
with CTRL-X CTRL-U. i_CTRL-X_CTRL-U
See complete-functions for an explanation of how the function is
invoked and what it should return. The value can be the name of a
function, a lambda or a Funcref . See option-value-function for
more information.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

options.txt — 857

'completeopt' 'cot'
'completeopt' 'cot' string (default: "menu,preview")

global
A comma-separated list of options for Insert mode completion
ins-completion . The supported values are:

menu Use a popup menu to show the possible completions. The
menu is only shown when there is more than one match and
sufficient colors are available. ins-completion-menu

menuone Use the popup menu also when there is only one match.
Useful when there is additional information about the
match, e.g., what file it comes from.

longest Only insert the longest common text of the matches. If
the menu is displayed you can use CTRL-L to add more
characters. Whether case is ignored depends on the kind
of completion. For buffer text the 'ignorecase' option is
used.

preview Show extra information about the currently selected
completion in the preview window. Only works in
combination with "menu" or "menuone".

popup Show extra information about the currently selected
completion in a popup window. Only works in combination
with "menu" or "menuone". Overrides "preview".
See 'completepopup' for specifying properties.
{only works when compiled with the |+textprop| feature}

popuphidden
Just like "popup" but initially hide the popup. Use a
CompleteChanged autocommand to fetch the info and call
popup_show() once the popup has been filled.

See the example at complete-popuphidden .
{only works when compiled with the |+textprop| feature}

noinsert Do not insert any text for a match until the user selects
a match from the menu. Only works in combination with
"menu" or "menuone". No effect if "longest" is present.

noselect Do not select a match in the menu, force the user to
select one from the menu. Only works in combination with
"menu" or "menuone".

'completepopup' 'cpp'
'completepopup' 'cpp' string (default empty)

global
{not available when compiled without the +textprop
or +quickfix feature}

When 'completeopt' contains "popup" then this option is used for the
properties of the info popup when it is created. If an info popup
window already exists it is closed, so that the option value is
applied when it is created again.
You can also use popup_findinfo() and then set properties for an
existing info popup with popup_setoptions() . See complete-popup .

'completeslash' 'csl'
'completeslash' 'csl' string (default: "")

local to buffer

options.txt — 858

{only for MS-Windows}
When this option is set it overrules 'shellslash' for completion:
- When this option is set to "slash", a forward slash is used for path

completion in insert mode. This is useful when editing HTML tag, or
Makefile with 'noshellslash' on MS-Windows.

- When this option is set to "backslash", backslash is used. This is
useful when editing a batch file with 'shellslash' set on MS-Windows.

- When this option is empty, same character is used as for
'shellslash'.

For Insert mode completion the buffer-local value is used. For
command line completion the global value is used.

'concealcursor' 'cocu'
'concealcursor' 'cocu' string (default: "")

local to window
{not available when compiled without the +conceal
feature}

Sets the modes in which text in the cursor line can also be concealed.
When the current mode is listed then concealing happens just like in
other lines.

n Normal mode
v Visual mode
i Insert mode
c Command line editing, for 'incsearch'

'v' applies to all lines in the Visual area, not only the cursor.
A useful value is "nc". This is used in help files. So long as you
are moving around text is concealed, but when starting to insert text
or selecting a Visual area the concealed text is displayed, so that
you can see what you are doing.
Keep in mind that the cursor position is not always where it's
displayed. E.g., when moving vertically it may change column.

'conceallevel' 'cole'
'conceallevel' 'cole' number (default 0)

local to window
{not available when compiled without the +conceal
feature}

Determine how text with the "conceal" syntax attribute :syn-conceal
is shown:

Value Effect
0 Text is shown normally
1 Each block of concealed text is replaced with one

character. If the syntax item does not have a custom
replacement character defined (see :syn-cchar) the
character defined in 'listchars' is used (default is a
space).
It is highlighted with the "Conceal" highlight group.

2 Concealed text is completely hidden unless it has a
custom replacement character defined (see
:syn-cchar).

3 Concealed text is completely hidden.

Note: in the cursor line concealed text is not hidden, so that you can
edit and copy the text. This can be changed with the 'concealcursor'
option.

'confirm' 'cf' 'noconfirm' 'nocf'
'confirm' 'cf' boolean (default off)

options.txt — 859

global
When 'confirm' is on, certain operations that would normally
fail because of unsaved changes to a buffer, e.g. ":q" and ":e",
instead raise a dialog asking if you wish to save the current
file(s). You can still use a ! to unconditionally abandon a buffer.
If 'confirm' is off you can still activate confirmation for one
command only (this is most useful in mappings) with the :confirm
command.
Also see the confirm() function and the 'v' flag in 'guioptions'.

'conskey' 'consk' 'noconskey' 'noconsk'
'conskey' 'consk' boolean (default off)

global
This was for MS-DOS and is no longer supported.

'copyindent' 'ci' 'nocopyindent' 'noci'
'copyindent' 'ci' boolean (default off)

local to buffer
Copy the structure of the existing lines indent when autoindenting a
new line. Normally the new indent is reconstructed by a series of
tabs followed by spaces as required (unless 'expandtab' is enabled,
in which case only spaces are used). Enabling this option makes the
new line copy whatever characters were used for indenting on the
existing line. 'expandtab' has no effect on these characters, a Tab
remains a Tab. If the new indent is greater than on the existing
line, the remaining space is filled in the normal manner.
NOTE: This option is reset when 'compatible' is set.
Also see 'preserveindent'.

'cpoptions' 'cpo' cpo
'cpoptions' 'cpo' string (Vim default: "aABceFs",

Vi default: all flags)
global

A sequence of single character flags. When a character is present
this indicates Vi-compatible behavior. This is used for things where
not being Vi-compatible is mostly or sometimes preferred.
'cpoptions' stands for "compatible-options".
Commas can be added for readability.
To avoid problems with flags that are added in the future, use the
"+=" and "-=" feature of ":set" add-option-flags .

NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

NOTE: In a Vim9 script, when `vim9script` is encountered, the value
is saved, 'cpoptions' is set to the Vim default, and the saved value
is restored at the end of the script. Changes to the value of
'cpoptions' will be applied to the saved value, but keep in mind that
removing a flag that is not present when 'cpoptions' is changed has no
effect. In the .vimrc file the value is not restored, thus using
`vim9script` in the .vimrc file results in using the Vim default.

NOTE: This option is set to the POSIX default value at startup when
the Vi default value would be used and the $VIM_POSIX environment
variable exists posix . This means Vim tries to behave like the
POSIX specification.

contains behavior
cpo-a

a When included, a ":read" command with a file name

options.txt — 860

argument will set the alternate file name for the
current window.

cpo-A
A When included, a ":write" command with a file name

argument will set the alternate file name for the
current window.

cpo-b
b "\|" in a ":map" command is recognized as the end of

the map command. The '\' is included in the mapping,
the text after the '|' is interpreted as the next
command. Use a CTRL-V instead of a backslash to
include the '|' in the mapping. Applies to all
mapping, abbreviation, menu and autocmd commands.
See also map_bar .

cpo-B
B A backslash has no special meaning in mappings,

abbreviations, user commands and the "to" part of the
menu commands. Remove this flag to be able to use a
backslash like a CTRL-V. For example, the command
":map X \<Esc>" results in X being mapped to:

'B' included: "\^[" (^[is a real <Esc>)
'B' excluded: "<Esc>" (5 characters)
('<' excluded in both cases)

cpo-c
c Searching continues at the end of any match at the

cursor position, but not further than the start of the
next line. When not present searching continues
one character from the cursor position. With 'c'
"abababababab" only gets three matches when repeating
"/abab", without 'c' there are five matches.

cpo-C
C Do not concatenate sourced lines that start with a

backslash. See line-continuation .
cpo-d

d Using "./" in the 'tags' option doesn't mean to use
the tags file relative to the current file, but the
tags file in the current directory.

cpo-D
D Can't use CTRL-K to enter a digraph after Normal mode

commands with a character argument, like r , f and
t .

cpo-e
e When executing a register with ":@r", always add a

<CR> to the last line, also when the register is not
linewise. If this flag is not present, the register
is not linewise and the last line does not end in a
<CR>, then the last line is put on the command-line
and can be edited before hitting <CR>.

cpo-E
E It is an error when using "y", "d", "c", "g~", "gu" or

"gU" on an Empty region. The operators only work when
at least one character is to be operated on. Example:
This makes "y0" fail in the first column.

cpo-f
f When included, a ":read" command with a file name

argument will set the file name for the current buffer,
if the current buffer doesn't have a file name yet.

cpo-F
F When included, a ":write" command with a file name

argument will set the file name for the current

options.txt — 861

buffer, if the current buffer doesn't have a file name
yet. Also see cpo-P .

cpo-g
g Goto line 1 when using ":edit" without argument.

cpo-H
H When using "I" on a line with only blanks, insert

before the last blank. Without this flag insert after
the last blank.

cpo-i
i When included, interrupting the reading of a file will

leave it modified.
cpo-I

I When moving the cursor up or down just after inserting
indent for 'autoindent', do not delete the indent.

cpo-j
j When joining lines, only add two spaces after a '.',

not after '!' or '?'. Also see 'joinspaces'.
cpo-J

J A sentence has to be followed by two spaces after
the '.', '!' or '?'. A <Tab> is not recognized as
white space.

cpo-k
k Disable the recognition of raw key codes in

mappings, abbreviations, and the "to" part of menu
commands. For example, if <Key> sends ^[OA (where ^[
is <Esc>), the command ":map X ^[OA" results in X
being mapped to:

'k' included: "^[OA" (3 characters)
'k' excluded: "<Key>" (one key code)

Also see the '<' flag below.
cpo-K

K Don't wait for a key code to complete when it is
halfway a mapping. This breaks mapping <F1><F1> when
only part of the second <F1> has been read. It
enables cancelling the mapping by typing <F1><Esc>.

cpo-l
l Backslash in a [] range in a search pattern is taken

literally, only "\]", "\^", "\-" and "\\" are special.
See /[]

'l' included: "/[\t]" finds <Space>, '\' and 't'
'l' excluded: "/[\t]" finds <Space> and <Tab>

Also see cpo-\ .
cpo-L

L When the 'list' option is set, 'wrapmargin',
'textwidth', 'softtabstop' and Virtual Replace mode
(see gR) count a <Tab> as two characters, instead of
the normal behavior of a <Tab>.

cpo-m
m When included, a showmatch will always wait half a

second. When not included, a showmatch will wait half
a second or until a character is typed. 'showmatch'

cpo-M
M When excluded, "%" matching will take backslashes into

account. Thus in "(\()" and "\((\)" the outer
parenthesis match. When included "%" ignores
backslashes, which is Vi compatible.

cpo-n
n When included, the column used for 'number' and

'relativenumber' will also be used for text of wrapped
lines.

options.txt — 862

cpo-o
o Line offset to search command is not remembered for

next search.
cpo-O

O Don't complain if a file is being overwritten, even
when it didn't exist when editing it. This is a
protection against a file unexpectedly created by
someone else. Vi didn't complain about this.

cpo-p
p Vi compatible Lisp indenting. When not present, a

slightly better algorithm is used.
cpo-P

P When included, a ":write" command that appends to a
file will set the file name for the current buffer, if
the current buffer doesn't have a file name yet and
the 'F' flag is also included cpo-F .

cpo-q
q When joining multiple lines leave the cursor at the

position where it would be when joining two lines.
cpo-r

r Redo ("." command) uses "/" to repeat a search
command, instead of the actually used search string.

cpo-R
R Remove marks from filtered lines. Without this flag

marks are kept like :keepmarks was used.
cpo-s

s Set buffer options when entering the buffer for the
first time. This is like it is in Vim version 3.0.
And it is the default. If not present the options are
set when the buffer is created.

cpo-S
S Set buffer options always when entering a buffer

(except 'readonly', 'fileformat', 'filetype' and
'syntax'). This is the (most) Vi compatible setting.
The options are set to the values in the current
buffer. When you change an option and go to another
buffer, the value is copied. Effectively makes the
buffer options global to all buffers.

's' 'S' copy buffer options
no no when buffer created
yes no when buffer first entered (default)
X yes each time when buffer entered (vi comp.)

cpo-t
t Search pattern for the tag command is remembered for

"n" command. Otherwise Vim only puts the pattern in
the history for search pattern, but doesn't change the
last used search pattern.

cpo-u
u Undo is Vi compatible. See undo-two-ways .

cpo-v
v Backspaced characters remain visible on the screen in

Insert mode. Without this flag the characters are
erased from the screen right away. With this flag the
screen newly typed text overwrites backspaced
characters.

cpo-w
w When using "cw" on a blank character, only change one

character and not all blanks until the start of the
next word.

options.txt — 863

cpo-W
W Don't overwrite a readonly file. When omitted, ":w!"

overwrites a readonly file, if possible.
cpo-x

x <Esc> on the command-line executes the command-line.
The default in Vim is to abandon the command-line,
because <Esc> normally aborts a command. c_<Esc>

cpo-X
X When using a count with "R" the replaced text is

deleted only once. Also when repeating "R" with "."
and a count.

cpo-y
y A yank command can be redone with ".". Think twice if

you really want to use this, it may break some
plugins, since most people expect "." to only repeat a
change.

cpo-Z
Z When using "w!" while the 'readonly' option is set,

don't reset 'readonly'.
cpo-!

! When redoing a filter command, use the last used
external command, whatever it was. Otherwise the last
used -filter- command is used.

cpo-$
$ When making a change to one line, don't redisplay the

line, but put a '$' at the end of the changed text.
The changed text will be overwritten when you type the
new text. The line is redisplayed if you type any
command that moves the cursor from the insertion
point.

cpo-%
% Vi-compatible matching is done for the "%" command.

Does not recognize "#if", "#endif", etc.
Does not recognize "/*" and "*/".
Parens inside single and double quotes are also
counted, causing a string that contains a paren to
disturb the matching. For example, in a line like
"if (strcmp("foo(", s))" the first paren does not
match the last one. When this flag is not included,
parens inside single and double quotes are treated
specially. When matching a paren outside of quotes,
everything inside quotes is ignored. When matching a
paren inside quotes, it will find the matching one (if
there is one). This works very well for C programs.
This flag is also used for other features, such as
C-indenting.

cpo--
- When included, a vertical movement command fails when

it would go above the first line or below the last
line. Without it the cursor moves to the first or
last line, unless it already was in that line.
Applies to the commands "-", "k", CTRL-P, "+", "j",
CTRL-N, CTRL-J and ":1234".

cpo-+
+ When included, a ":write file" command will reset the

'modified' flag of the buffer, even though the buffer
itself may still be different from its file.

cpo-star
* Use ":*" in the same way as ":@". When not included,

":*" is an alias for ":'<,'>", select the Visual area.

options.txt — 864

cpo-<
< Disable the recognition of special key codes in |<>|

form in mappings, abbreviations, and the "to" part of
menu commands. For example, the command
":map X <Tab>" results in X being mapped to:

'<' included: "<Tab>" (5 characters)
'<' excluded: "^I" (^I is a real <Tab>)

Also see the 'k' flag above.
cpo->

> When appending to a register, put a line break before
the appended text.

cpo-;
; When using , or ; to repeat the last t search

and the cursor is right in front of the searched
character, the cursor won't move. When not included,
the cursor would skip over it and jump to the
following occurrence.

POSIX flags. These are not included in the Vi default value, except
when $VIM_POSIX was set on startup. posix

contains behavior
cpo-#

A count before "D", "o" and "O" has no effect.
cpo-&

& When ":preserve" was used keep the swap file when
exiting normally while this buffer is still loaded.
This flag is tested when exiting.

cpo-\
\ Backslash in a [] range in a search pattern is taken

literally, only "\]" is special See /[]
'\' included: "/[\-]" finds <Space>, '\' and '-'
'\' excluded: "/[\-]" finds <Space> and '-'

Also see cpo-l .
cpo-/

/ When "%" is used as the replacement string in a :s
command, use the previous replacement string. :s%

cpo-{
{ The |{| and |}| commands also stop at a "{" character

at the start of a line.
cpo-.

. The ":chdir" and ":cd" commands fail if the current
buffer is modified, unless ! is used. Vim doesn't
need this, since it remembers the full path of an
opened file.

cpo-bar
| The value of the $LINES and $COLUMNS environment

variables overrule the terminal size values obtained
with system specific functions.

'cryptmethod' 'cm'
'cryptmethod' 'cm' string (default "blowfish2")

global or local to buffer global-local
Method used for encryption when the buffer is written to a file:

pkzip
zip PkZip compatible method. A weak kind of encryption.

Backwards compatible with Vim 7.2 and older.
Only use if you need to be backwards compatible.

blowfish
blowfish Blowfish method. Medium strong encryption but it has

options.txt — 865

an implementation flaw. Requires Vim 7.3 or later,
files can NOT be read by Vim 7.2 and older. This adds
a "seed" to the file, every time you write the file
the encrypted bytes will be different.
Obsolete, please do no longer use.

blowfish2
blowfish2 Blowfish method. Medium strong encryption. Requires

Vim 7.4.401 or later, files can NOT be read by Vim 7.3
and older. This adds a "seed" to the file, every time
you write the file the encrypted bytes will be
different. The whole undo file is encrypted, not just
the pieces of text.

E1193 E1194 E1195 E1196 E1230
E1197 E1198 E1199 E1200 E1201

xchacha20 XChaCha20 Cipher with Poly1305 Message Authentication
Code. Medium strong till strong encryption.
Encryption is provided by the libsodium library, it
requires Vim to be built with +sodium .
It adds a seed and a message authentication code (MAC)
to the file. This needs at least a Vim 8.2.3022 to
read the encrypted file.
Encryption of swap files is not supported, therefore
no swap file will be used when xchacha20 encryption is
enabled.
Encryption of undo files is not yet supported,
therefore no undo file will currently be written.
CAREFUL: Files written with this method might have to
be read back with the same version of Vim if the
binary format changes later.
Obsolete, please do no longer use.

xchacha20v2 Same algorithm as with "xchacha20" that correctly
stores the key derivation parameters together with the
encrypted file. Should work better in case the
parameters in the libsodium library ever change.
STILL EXPERIMENTAL: Files written with this method
might have to be read back with the same version of
Vim if the binary format changes later.

You should use "blowfish2", also to re-encrypt older files. The
"xchacha20" method provides better encryption, but it does not work
with all versions of Vim.

When reading an encrypted file 'cryptmethod' will be set automatically
to the detected method of the file being read. Thus if you write it
without changing 'cryptmethod' the same method will be used.
Changing 'cryptmethod' does not mark the file as modified, you have to
explicitly write it, you don't get a warning unless there are other
modifications. Also see :X .

When setting the global value to an empty string, it will end up with
the value "blowfish2". When setting the local value to an empty
string the buffer will use the global value.

When a new encryption method is added in a later version of Vim, and
the current version does not recognize it, you will get E821 .
You need to edit this file with the later version of Vim.

'cscopepathcomp' 'cspc'
'cscopepathcomp' 'cspc' number (default 0)

global

options.txt — 866

{not available when compiled without the +cscope
feature}

Determines how many components of the path to show in a list of tags.
See cscopepathcomp .
NOTE: This option is set to 0 when 'compatible' is set.

'cscopeprg' 'csprg'
'cscopeprg' 'csprg' string (default "cscope")

global
{not available when compiled without the +cscope
feature}

Specifies the command to execute cscope. See cscopeprg .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'cscopequickfix' 'csqf'
'cscopequickfix' 'csqf' string (default "")

global
{not available when compiled without the +cscope
or +quickfix features}

Specifies whether to use quickfix window to show cscope results.
See cscopequickfix .

'cscoperelative' 'csre' 'nocscoperelative' 'nocsre'
'cscoperelative' 'csre' boolean (default off)

global
{not available when compiled without the +cscope
feature}

In the absence of a prefix (-P) for cscope. setting this option enables
to use the basename of cscope.out path as the prefix.
See cscoperelative .
NOTE: This option is reset when 'compatible' is set.

'cscopetag' 'cst' 'nocscopetag' 'nocst'
'cscopetag' 'cst' boolean (default off)

global
{not available when compiled without the +cscope
feature}

Use cscope for tag commands. See cscope-options .
NOTE: This option is reset when 'compatible' is set.

'cscopetagorder' 'csto'
'cscopetagorder' 'csto' number (default 0)

global
{not available when compiled without the +cscope
feature}

Determines the order in which ":cstag" performs a search. See
cscopetagorder .

NOTE: This option is set to 0 when 'compatible' is set.

'cscopeverbose' 'csverb'
'nocscopeverbose' 'nocsverb'

'cscopeverbose' 'csverb' boolean (default off)
global
{not available when compiled without the +cscope
feature}

Give messages when adding a cscope database. See cscopeverbose .
NOTE: This option is reset when 'compatible' is set.

'cursorbind' 'crb' 'nocursorbind' 'nocrb'

options.txt — 867

'cursorbind' 'crb' boolean (default off)
local to window

When this option is set, as the cursor in the current
window moves other cursorbound windows (windows that also have
this option set) move their cursors to the corresponding line and
column. This option is useful for viewing the
differences between two versions of a file (see 'diff'); in diff mode,
inserted and deleted lines (though not characters within a line) are
taken into account.

'cursorcolumn' 'cuc' 'nocursorcolumn' 'nocuc'
'cursorcolumn' 'cuc' boolean (default off)

local to window
{not available when compiled without the +syntax
feature}

Highlight the screen column of the cursor with CursorColumn
hl-CursorColumn . Useful to align text. Will make screen redrawing

slower.
If you only want the highlighting in the current window you can use
these autocommands:

au WinLeave * set nocursorline nocursorcolumn
au WinEnter * set cursorline cursorcolumn

'cursorline' 'cul' 'nocursorline' 'nocul'
'cursorline' 'cul' boolean (default off)

local to window
{not available when compiled without the +syntax
feature}

Highlight the text line of the cursor with CursorLine hl-CursorLine .
Useful to easily spot the cursor. Will make screen redrawing slower.
When Visual mode is active the highlighting isn't used to make it
easier to see the selected text.

'cursorlineopt' 'culopt'
'cursorlineopt' 'culopt' string (default: "number,line")

local to window
{not available when compiled without the +syntax
feature}

Comma-separated list of settings for how 'cursorline' is displayed.
Valid values:
"line" Highlight the text line of the cursor with

CursorLine hl-CursorLine .
"screenline" Highlight only the screen line of the cursor with

CursorLine hl-CursorLine .
"number" Highlight the line number of the cursor with

CursorLineNr hl-CursorLineNr .

Special value:
"both" Alias for the values "line,number".

"line" and "screenline" cannot be used together.

'debug'
'debug' string (default "")

global
These values can be used:
msg Error messages that would otherwise be omitted will be given

anyway.
throw Error messages that would otherwise be omitted will be given

options.txt — 868

anyway and also throw an exception and set v:errmsg .
beep A message will be given when otherwise only a beep would be

produced.
The values can be combined, separated by a comma.
"msg" and "throw" are useful for debugging 'foldexpr', 'formatexpr' or
'indentexpr'.

'define' 'def'
'define' 'def' string (default "^\s*#\s*define")

global or local to buffer global-local
Pattern to be used to find a macro definition. It is a search
pattern, just like for the "/" command. This option is used for the
commands like "[i" and "[d" include-search . The 'isident' option is
used to recognize the defined name after the match:

{match with 'define'}{non-ID chars}{defined name}{non-ID char}
See option-backslash about inserting backslashes to include a space
or backslash.
The default value is for C programs. For C++ this value would be
useful, to include const type declarations:

^\(#\s*define\|[a-z]*\s*const\s*[a-z]*\)
You can also use "\ze" just before the name and continue the pattern
to check what is following. E.g. for Javascript, if a function is
defined with "func_name = function(args)":

^\s*\ze\i\+\s*=\s*function(
If the function is defined with "func_name : function() {...":

^\s*\ze\i\+\s*[:]\s*(*function\s*(
When using the ":set" command, you need to double the backslashes!
To avoid that use `:let` with a single quote string:

let &l:define = '^\s*\ze\k\+\s*=\s*function('

'delcombine' 'deco' 'nodelcombine' 'nodeco'
'delcombine' 'deco' boolean (default off)

global
If editing Unicode and this option is set, backspace and Normal mode
"x" delete each combining character on its own. When it is off (the
default) the character along with its combining characters are
deleted.
Note: When 'delcombine' is set "xx" may work differently from "2x"!

This is useful for Arabic, Hebrew and many other languages where one
may have combining characters overtop of base characters, and want
to remove only the combining ones.
NOTE: This option is reset when 'compatible' is set.

'dictionary' 'dict'
'dictionary' 'dict' string (default "")

global or local to buffer global-local
List of file names, separated by commas, that are used to lookup words
for keyword completion commands i_CTRL-X_CTRL-K . Each file should
contain a list of words. This can be one word per line, or several
words per line, separated by non-keyword characters (white space is
preferred). Maximum line length is 510 bytes.

When this option is empty or an entry "spell" is present, and spell
checking is enabled, words in the word lists for the currently active
'spelllang' are used. See spell .

To include a comma in a file name precede it with a backslash. Spaces
after a comma are ignored, otherwise spaces are included in the file

options.txt — 869

name. See option-backslash about using backslashes.
This has nothing to do with the Dictionary variable type.
Where to find a list of words?
- On FreeBSD, there is the file "/usr/share/dict/words".
- In the Simtel archive, look in the "msdos/linguist" directory.
- In "miscfiles" of the GNU collection.
The use of :set+= and :set-= is preferred when adding or removing
directories from the list. This avoids problems when a future version
uses another default.
Backticks cannot be used in this option for security reasons.

'diff' 'nodiff'
'diff' boolean (default off)

local to window
{not available when compiled without the +diff
feature}

Join the current window in the group of windows that shows differences
between files. See vimdiff .

'dex' 'diffexpr'
'diffexpr' 'dex' string (default "")

global
{not available when compiled without the +diff
feature}

Expression which is evaluated to obtain a diff file (either ed-style
or unified-style) from two versions of a file. See diff-diffexpr .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'dip' 'diffopt'
'diffopt' 'dip' string (default "internal,filler,closeoff")

global
{not available when compiled without the +diff
feature}

Option settings for diff mode. It can consist of the following items.
All are optional. Items must be separated by a comma.

filler Show filler lines, to keep the text
synchronized with a window that has inserted
lines at the same position. Mostly useful
when windows are side-by-side and 'scrollbind'
is set.

context:{n} Use a context of {n} lines between a change
and a fold that contains unchanged lines.
When omitted a context of six lines is used.
When using zero the context is actually one,
since folds require a line in between, also
for a deleted line. Set it to a very large
value (999999) to disable folding completely.
See fold-diff .

iblank Ignore changes where lines are all blank. Adds
the "-B" flag to the "diff" command if
'diffexpr' is empty. Check the documentation
of the "diff" command for what this does
exactly.
NOTE: the diff windows will get out of sync,
because no differences between blank lines are
taken into account.

options.txt — 870

icase Ignore changes in case of text. "a" and "A"
are considered the same. Adds the "-i" flag
to the "diff" command if 'diffexpr' is empty.

iwhite Ignore changes in amount of white space. Adds
the "-b" flag to the "diff" command if
'diffexpr' is empty. Check the documentation
of the "diff" command for what this does
exactly. It should ignore adding trailing
white space, but not leading white space.

iwhiteall Ignore all white space changes. Adds
the "-w" flag to the "diff" command if
'diffexpr' is empty. Check the documentation
of the "diff" command for what this does
exactly.

iwhiteeol Ignore white space changes at end of line.
Adds the "-Z" flag to the "diff" command if
'diffexpr' is empty. Check the documentation
of the "diff" command for what this does
exactly.

horizontal Start diff mode with horizontal splits (unless
explicitly specified otherwise).

vertical Start diff mode with vertical splits (unless
explicitly specified otherwise).

closeoff When a window is closed where 'diff' is set
and there is only one window remaining in the
same tab page with 'diff' set, execute
`:diffoff` in that window. This undoes a
`:diffsplit` command.

hiddenoff Do not use diff mode for a buffer when it
becomes hidden.

foldcolumn:{n} Set the 'foldcolumn' option to {n} when
starting diff mode. Without this 2 is used.

followwrap Follow the 'wrap' option and leave as it is.

internal Use the internal diff library. This is
ignored when 'diffexpr' is set. E960
When running out of memory when writing a
buffer this item will be ignored for diffs
involving that buffer. Set the 'verbose'
option to see when this happens.

indent-heuristic
Use the indent heuristic for the internal
diff library.

algorithm:{text} Use the specified diff algorithm with the
internal diff engine. Currently supported
algorithms are:
myers the default algorithm
minimal spend extra time to generate the

options.txt — 871

smallest possible diff
patience patience diff algorithm
histogram histogram diff algorithm

Examples:
:set diffopt=internal,filler,context:4
:set diffopt=
:set diffopt=internal,filler,foldcolumn:3
:set diffopt-=internal " do NOT use the internal diff parser

'digraph' 'dg' 'nodigraph' 'nodg'
'digraph' 'dg' boolean (default off)

global
{not available when compiled without the +digraphs
feature}

Enable the entering of digraphs in Insert mode with {char1} <BS>
{char2}. See digraphs .
NOTE: This option is reset when 'compatible' is set.

'directory' 'dir'
'directory' 'dir' string (default for Amiga: ".,t:",

for Win32: ".,$TEMP,c:\tmp,c:\temp"
for Unix: ".,~/tmp,/var/tmp,/tmp")

global
List of directory names for the swap file, separated with commas.
Recommended value: ".,~/vimswap//" - this will put the swap file next
to the edited file if possible, and in your personal swap directory
otherwise. Make sure "~/vimswap//" is only readable for you.

Possible items:
- The swap file will be created in the first directory where this is

possible.
- Empty means that no swap file will be used (recovery is

impossible!) and no E303 error will be given.
- A directory "." means to put the swap file in the same directory as

the edited file. On Unix, a dot is prepended to the file name, so
it doesn't show in a directory listing. On MS-Windows the "hidden"
attribute is set and a dot prepended if possible.

- A directory starting with "./" (or ".\" for MS-Windows) means to put
the swap file relative to where the edited file is. The leading "."
is replaced with the path name of the edited file.

- For Unix and Win32, if a directory ends in two path separators "//",
the swap file name will be built from the complete path to the file
with all path separators replaced by percent '%' signs (including
the colon following the drive letter on Win32). This will ensure
file name uniqueness in the preserve directory.
On Win32, it is also possible to end with "\\". However, When a
separating comma is following, you must use "//", since "\\" will
include the comma in the file name. Therefore it is recommended to
use '//', instead of '\\'.

- Spaces after the comma are ignored, other spaces are considered part
of the directory name. To have a space at the start of a directory
name, precede it with a backslash.

- To include a comma in a directory name precede it with a backslash.
- A directory name may end in an ':' or '/'.
- Environment variables are expanded :set_env .
- Careful with '\' characters, type one before a space, type two to

get one in the option (see option-backslash), for example:
:set dir=c:\\tmp,\ dir\\,with\\,commas,\\\ dir\ with\ spaces

- For backwards compatibility with Vim version 3.0 a '>' at the start

options.txt — 872

of the option is removed.
Using "." first in the list is recommended. This means that editing
the same file twice will result in a warning. Using "/tmp" on Unix is
discouraged: When the system crashes you lose the swap file.
"/var/tmp" is often not cleared when rebooting, thus is a better
choice than "/tmp". But others on the computer may be able to see the
files, and it can contain a lot of files, your swap files get lost in
the crowd. That is why a "tmp" directory in your home directory is
tried first.
The use of :set+= and :set-= is preferred when adding or removing
directories from the list. This avoids problems when a future version
uses another default.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'display' 'dy'
'display' 'dy' string (default "", set to "truncate" in

defaults.vim)
global

Change the way text is displayed. This is a comma-separated list of
flags:
lastline When included, as much as possible of the last line

in a window will be displayed. "@@@" is put in the
last columns of the last screen line to indicate the
rest of the line is not displayed.

truncate Like "lastline", but "@@@" is displayed in the first
column of the last screen line. Overrules "lastline".

uhex Show unprintable characters hexadecimal as <xx>
instead of using ^C and ~C.

When neither "lastline" nor "truncate" is included, a last line that
doesn't fit is replaced with "@" lines.

The "@" character can be changed by setting the "lastline" item in
'fillchars'. The character is highlighted with hl-NonText .

'eadirection' 'ead'
'eadirection' 'ead' string (default "both")

global
Tells when the 'equalalways' option applies:

ver vertically, width of windows is not affected
hor horizontally, height of windows is not affected
both width and height of windows is affected

'ed' 'edcompatible' 'noed' 'noedcompatible'
'edcompatible' 'ed' boolean (default off)

global
Makes the 'g' and 'c' flags of the ":substitute" command to be
toggled each time the flag is given. See complex-change . See
also 'gdefault' option.
Switching this option on may break plugins!
This option is not used in Vim9 script.

'emoji' 'emo' 'noemoji' 'noemo'
'emoji' 'emo' boolean (default: on)

global
When on all Unicode emoji characters are considered to be full width.
This excludes "text emoji" characters, which are normally displayed as
single width. Unfortunately there is no good specification for this
and it has been determined on trial-and-error basis. Use the

options.txt — 873

setcellwidths() function to change the behavior.

'encoding' 'enc' E543
'encoding' 'enc' string (default for MS-Windows: "utf-8",

otherwise: value from $LANG or "latin1")
global

Sets the character encoding used inside Vim. It applies to text in
the buffers, registers, Strings in expressions, text stored in the
viminfo file, etc. It sets the kind of characters which Vim can work
with. See encoding-names for the possible values.

NOTE: Changing this option will not change the encoding of the
existing text in Vim. It may cause non-ASCII text to become invalid.
It should normally be kept at its default value, or set when Vim
starts up. See multibyte . To reload the menus see :menutrans .

This option cannot be set from a modeline . It would most likely
corrupt the text.

NOTE: For GTK+ 2 or later, it is highly recommended to set 'encoding'
to "utf-8". Although care has been taken to allow different values of
'encoding', "utf-8" is the natural choice for the environment and
avoids unnecessary conversion overhead. "utf-8" has not been made
the default to prevent different behavior of the GUI and terminal
versions, and to avoid changing the encoding of newly created files
without your knowledge (in case 'fileencodings' is empty).

The character encoding of files can be different from 'encoding'.
This is specified with 'fileencoding'. The conversion is done with
iconv() or as specified with 'charconvert'.

If you need to know whether 'encoding' is a multibyte encoding, you
can use:

if has("multi_byte_encoding")

Normally 'encoding' will be equal to your current locale. This will
be the default if Vim recognizes your environment settings. If
'encoding' is not set to the current locale, 'termencoding' must be
set to convert typed and displayed text. See encoding-table .

When you set this option, it fires the EncodingChanged autocommand
event so that you can set up fonts if necessary.

When the option is set, the value is converted to lowercase. Thus
you can set it with uppercase values too. Underscores are translated
to '-' signs.
When the encoding is recognized, it is changed to the standard name.
For example "Latin-1" becomes "latin1", "ISO_88592" becomes
"iso-8859-2" and "utf8" becomes "utf-8".

Note: "latin1" is also used when the encoding could not be detected.
This only works when editing files in the same encoding! When the
actual character set is not latin1, make sure 'fileencoding' and
'fileencodings' are empty. When conversion is needed, switch to using
utf-8.

When "unicode", "ucs-2" or "ucs-4" is used, Vim internally uses utf-8.
You don't notice this while editing, but it does matter for the
viminfo-file . And Vim expects the terminal to use utf-8 too. Thus

setting 'encoding' to one of these values instead of utf-8 only has

options.txt — 874

effect for encoding used for files when 'fileencoding' is empty.

When 'encoding' is set to a Unicode encoding, and 'fileencodings' was
not set yet, the default for 'fileencodings' is changed.

'endoffile' 'eof' 'noendoffile' 'noeof'
'endoffile' 'eof' boolean (default off)

local to buffer
Indicates that a CTRL-Z character was found at the end of the file
when reading it. Normally only happens when 'fileformat' is "dos".
When writing a file and this option is off and the 'binary' option
is on, or 'fixeol' option is off, no CTRL-Z will be written at the
end of the file.
See eol-and-eof for example settings.

'endofline' 'eol' 'noendofline' 'noeol'
'endofline' 'eol' boolean (default on)

local to buffer
When writing a file and this option is off and the 'binary' option
is on, or 'fixeol' option is off, no <EOL> will be written for the
last line in the file. This option is automatically set or reset when
starting to edit a new file, depending on whether file has an <EOL>
for the last line in the file. Normally you don't have to set or
reset this option.
When 'binary' is off and 'fixeol' is on the value is not used when
writing the file. When 'binary' is on or 'fixeol' is off it is used
to remember the presence of a <EOL> for the last line in the file, so
that when you write the file the situation from the original file can
be kept. But you can change it if you want to.
See eol-and-eof for example settings.

'equalalways' 'ea' 'noequalalways' 'noea'
'equalalways' 'ea' boolean (default on)

global
When on, all the windows are automatically made the same size after
splitting or closing a window. This also happens the moment the
option is switched on. When off, splitting a window will reduce the
size of the current window and leave the other windows the same. When
closing a window the extra lines are given to the window next to it
(depending on 'splitbelow' and 'splitright').
When mixing vertically and horizontally split windows, a minimal size
is computed and some windows may be larger if there is room. The
'eadirection' option tells in which direction the size is affected.
Changing the height and width of a window can be avoided by setting
'winfixheight' and 'winfixwidth', respectively.
If a window size is specified when creating a new window sizes are
currently not equalized (it's complicated, but may be implemented in
the future).

'equalprg' 'ep'
'equalprg' 'ep' string (default "")

global or local to buffer global-local
External program to use for "=" command. When this option is empty
the internal formatting functions are used; either 'lisp', 'cindent'
or 'indentexpr'. When Vim was compiled without internal formatting,
the "indent" program is used.
Environment variables are expanded :set_env . See option-backslash
about including spaces and backslashes.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

options.txt — 875

'errorbells' 'eb' 'noerrorbells' 'noeb'
'errorbells' 'eb' boolean (default off)

global
Ring the bell (beep or screen flash) for error messages. This only
makes a difference for error messages, the bell will be used always
for a lot of errors without a message (e.g., hitting <Esc> in Normal
mode). See 'visualbell' on how to make the bell behave like a beep,
screen flash or do nothing. See 'belloff' to finetune when to ring the
bell.

'errorfile' 'ef'
'errorfile' 'ef' string (Amiga default: "AztecC.Err",

others: "errors.err")
global
{not available when compiled without the +quickfix
feature}

Name of the errorfile for the QuickFix mode (see :cf).
When the "-q" command-line argument is used, 'errorfile' is set to the
following argument. See -q .
NOT used for the ":make" command. See 'makeef' for that.
Environment variables are expanded :set_env .
See option-backslash about including spaces and backslashes.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'errorformat' 'efm'
'errorformat' 'efm' string (default is very long)

global or local to buffer global-local
{not available when compiled without the +quickfix
feature}

Scanf-like description of the format for the lines in the error file
(see errorformat).

'esckeys' 'ek' 'noesckeys' 'noek'
'esckeys' 'ek' boolean (Vim default: on, Vi default: off)

global
Function keys that start with an <Esc> are recognized in Insert
mode. When this option is off, the cursor and function keys cannot be
used in Insert mode if they start with an <Esc>. The advantage of
this is that the single <Esc> is recognized immediately, instead of
after one second. Instead of resetting this option, you might want to
try changing the values for 'timeoutlen' and 'ttimeoutlen'. Note that
when 'esckeys' is off, you can still map anything, but the cursor keys
won't work by default.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.
NOTE: when this option is off then the modifyOtherKeys and
xterm-bracketed-paste functionality is disabled while in Insert mode

to avoid ending Insert mode with any key that has a modifier.

'eventignore' 'ei'
'eventignore' 'ei' string (default "")

global
A list of autocommand event names, which are to be ignored.
When set to "all" or when "all" is one of the items, all autocommand
events are ignored, autocommands will not be executed.
Otherwise this is a comma-separated list of event names. Example:

:set ei=WinEnter,WinLeave

options.txt — 876

'expandtab' 'et' 'noexpandtab' 'noet'
'expandtab' 'et' boolean (default off)

local to buffer
In Insert mode: Use the appropriate number of spaces to insert a
<Tab>. Spaces are used in indents with the '>' and '<' commands and
when 'autoindent' is on. To insert a real tab when 'expandtab' is
on, use CTRL-V<Tab>. See also :retab and ins-expandtab .
This option is reset when the 'paste' option is set and restored when
the 'paste' option is reset.
NOTE: This option is reset when 'compatible' is set.

'exrc' 'ex' 'noexrc' 'noex'
'exrc' 'ex' boolean (default off)

global
Enables the reading of .vimrc, .exrc and .gvimrc in the current
directory.

Setting this option is a potential security leak. E.g., consider
unpacking a package or fetching files from github, a .vimrc in there
might be a trojan horse. BETTER NOT SET THIS OPTION!
Instead, define an autocommand in your .vimrc to set options for a
matching directory.

If you do switch this option on you should also consider setting the
'secure' option (see initialization).
Also see .vimrc and gui-init .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'fileencoding' 'fenc' E213
'fileencoding' 'fenc' string (default: "")

local to buffer
Sets the character encoding for the file of this buffer.

When 'fileencoding' is different from 'encoding', conversion will be
done when writing the file. For reading see below.
When 'fileencoding' is empty, the same value as 'encoding' will be
used (no conversion when reading or writing a file).
No error will be given when the value is set, only when it is used,
only when writing a file.
Conversion will also be done when 'encoding' and 'fileencoding' are
both a Unicode encoding and 'fileencoding' is not utf-8. That's
because internally Unicode is always stored as utf-8.

WARNING: Conversion can cause loss of information! When
'encoding' is "utf-8" or another Unicode encoding, conversion
is most likely done in a way that the reverse conversion
results in the same text. When 'encoding' is not "utf-8" some
characters may be lost!

See 'encoding' for the possible values. Additionally, values may be
specified that can be handled by the converter, see
mbyte-conversion .

When reading a file 'fileencoding' will be set from 'fileencodings'.
To read a file in a certain encoding it won't work by setting
'fileencoding', use the ++enc argument. One exception: when
'fileencodings' is empty the value of 'fileencoding' is used.
For a new file the global value of 'fileencoding' is used.

Prepending "8bit-" and "2byte-" has no meaning here, they are ignored.

options.txt — 877

When the option is set, the value is converted to lowercase. Thus
you can set it with uppercase values too. '_' characters are
replaced with '-'. If a name is recognized from the list for
'encoding', it is replaced by the standard name. For example
"ISO8859-2" becomes "iso-8859-2".

When this option is set, after starting to edit a file, the 'modified'
option is set, because the file would be different when written.

Keep in mind that changing 'fenc' from a modeline happens
AFTER the text has been read, thus it applies to when the file will be
written. If you do set 'fenc' in a modeline, you might want to set
'nomodified' to avoid not being able to ":q".

This option can not be changed when 'modifiable' is off.

'fe'
NOTE: Before version 6.0 this option specified the encoding for the
whole of Vim, this was a mistake. Now use 'encoding' instead. The
old short name was 'fe', which is no longer used.

'fileencodings' 'fencs'
'fileencodings' 'fencs' string (default: "ucs-bom",

"ucs-bom,utf-8,default,latin1" when
'encoding' is set to a Unicode value)

global
This is a list of character encodings considered when starting to edit
an existing file. When a file is read, Vim tries to use the first
mentioned character encoding. If an error is detected, the next one
in the list is tried. When an encoding is found that works,
'fileencoding' is set to it. If all fail, 'fileencoding' is set to
an empty string, which means the value of 'encoding' is used.

WARNING: Conversion can cause loss of information! When
'encoding' is "utf-8" (or one of the other Unicode variants)
conversion is most likely done in a way that the reverse
conversion results in the same text. When 'encoding' is not
"utf-8" some non-ASCII characters may be lost! You can use
the ++bad argument to specify what is done with characters
that can't be converted.

For an empty file or a file with only ASCII characters most encodings
will work and the first entry of 'fileencodings' will be used (except
"ucs-bom", which requires the BOM to be present). If you prefer
another encoding use an BufReadPost autocommand event to test if your
preferred encoding is to be used. Example:

au BufReadPost * if search('\S', 'w') == 0 |
\ set fenc=iso-2022-jp | endif

This sets 'fileencoding' to "iso-2022-jp" if the file does not contain
non-blank characters.
When the ++enc argument is used then the value of 'fileencodings' is
not used.
Note that 'fileencodings' is not used for a new file, the global value
of 'fileencoding' is used instead. You can set it with:

:setglobal fenc=iso-8859-2
This means that a non-existing file may get a different encoding than
an empty file.
The special value "ucs-bom" can be used to check for a Unicode BOM
(Byte Order Mark) at the start of the file. It must not be preceded
by "utf-8" or another Unicode encoding for this to work properly.
An entry for an 8-bit encoding (e.g., "latin1") should be the last,
because Vim cannot detect an error, thus the encoding is always

options.txt — 878

accepted.
The special value "default" can be used for the encoding from the
environment. On MS-Windows this is the system encoding. Otherwise
this is the default value for 'encoding'. It is useful when
'encoding' is set to "utf-8" and your environment uses a non-latin1
encoding, such as Russian.
When 'encoding' is "utf-8" and a file contains an illegal byte
sequence it won't be recognized as UTF-8. You can use the 8g8
command to find the illegal byte sequence.
WRONG VALUES: WHAT'S WRONG:

latin1,utf-8 "latin1" will always be used
utf-8,ucs-bom,latin1 BOM won't be recognized in an utf-8

file
cp1250,latin1 "cp1250" will always be used

If 'fileencodings' is empty, 'fileencoding' is not modified.
See 'fileencoding' for the possible values.
Setting this option does not have an effect until the next time a file
is read.

'fileformat' 'ff'
'fileformat' 'ff' string (MS-Windows default: "dos",

Unix, macOS default: "unix")
local to buffer

This gives the <EOL> of the current buffer, which is used for
reading/writing the buffer from/to a file:

dos <CR><NL>
unix <NL>
mac <CR>

When "dos" is used, CTRL-Z at the end of a file is ignored.
See file-formats and file-read .
For the character encoding of the file see 'fileencoding'.
When 'binary' is set, the value of 'fileformat' is ignored, file I/O
works like it was set to "unix".
This option is set automatically when starting to edit a file and
'fileformats' is not empty and 'binary' is off.
When this option is set, after starting to edit a file, the 'modified'
option is set, because the file would be different when written.
This option can not be changed when 'modifiable' is off.
For backwards compatibility: When this option is set to "dos",
'textmode' is set, otherwise 'textmode' is reset.

'fileformats' 'ffs'
'fileformats' 'ffs' string (default:

Vim+Vi MS-Windows: "dos,unix",
Vim Unix, macOS: "unix,dos",
Vi Cygwin: "unix,dos",
Vi others: "")

global
This gives the end-of-line (<EOL>) formats that will be tried when
starting to edit a new buffer and when reading a file into an existing
buffer:
- When empty, the format defined with 'fileformat' will be used
always. It is not set automatically.

- When set to one name, that format will be used whenever a new buffer
is opened. 'fileformat' is set accordingly for that buffer. The
'fileformats' name will be used when a file is read into an existing
buffer, no matter what 'fileformat' for that buffer is set to.

- When more than one name is present, separated by commas, automatic
<EOL> detection will be done when reading a file. When starting to
edit a file, a check is done for the <EOL>:

options.txt — 879

1. If all lines end in <CR><NL>, and 'fileformats' includes "dos",
'fileformat' is set to "dos".

2. If a <NL> is found and 'fileformats' includes "unix", 'fileformat'
is set to "unix". Note that when a <NL> is found without a
preceding <CR>, "unix" is preferred over "dos".

3. If 'fileformat' has not yet been set, and if a <CR> is found, and
if 'fileformats' includes "mac", 'fileformat' is set to "mac".
This means that "mac" is only chosen when:
"unix" is not present or no <NL> is found in the file, and
"dos" is not present or no <CR><NL> is found in the file.

Except: if "unix" was chosen, but there is a <CR> before
the first <NL>, and there appear to be more <CR>s than <NL>s in
the first few lines, "mac" is used.

4. If 'fileformat' is still not set, the first name from
'fileformats' is used.

When reading a file into an existing buffer, the same is done, but
this happens like 'fileformat' has been set appropriately for that
file only, the option is not changed.

When 'binary' is set, the value of 'fileformats' is not used.

When Vim starts up with an empty buffer the first item is used. You
can overrule this by setting 'fileformat' in your .vimrc.

For systems with a Dos-like <EOL> (<CR><NL>), when reading files that
are ":source"ed and for vimrc files, automatic <EOL> detection may be
done:
- When 'fileformats' is empty, there is no automatic detection. Dos

format will be used.
- When 'fileformats' is set to one or more names, automatic detection

is done. This is based on the first <NL> in the file: If there is a
<CR> in front of it, Dos format is used, otherwise Unix format is
used.

Also see file-formats .
For backwards compatibility: When this option is set to an empty
string or one format (no comma is included), 'textauto' is reset,
otherwise 'textauto' is set.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'fileignorecase' 'fic' 'nofileignorecase' 'nofic'
'fileignorecase' 'fic' boolean (default on for systems where case in file

names is normally ignored)
global

When set case is ignored when using file names and directories.
See 'wildignorecase' for only ignoring case when doing completion.

'filetype' 'ft'
'filetype' 'ft' string (default: "")

local to buffer local-noglobal
When this option is set, the FileType autocommand event is triggered.
All autocommands that match with the value of this option will be
executed. Thus the value of 'filetype' is used in place of the file
name.
Otherwise this option does not always reflect the current file type.
This option is normally set when the file type is detected. To enable
this use the ":filetype on" command. :filetype
Setting this option to a different value is most useful in a modeline,
for a file for which the file type is not automatically recognized.
Example, for in an IDL file:

/* vim: set filetype=idl : */

options.txt — 880

FileType filetypes
When a dot appears in the value then this separates two filetype
names. Example:

/* vim: set filetype=c.doxygen : */
This will use the "c" filetype first, then the "doxygen" filetype.
This works both for filetype plugins and for syntax files. More than
one dot may appear.
This option is not copied to another buffer, independent of the 's' or
'S' flag in 'cpoptions'.
Only normal file name characters can be used, "/*?[|<>" are illegal.

'fillchars' 'fcs'
'fillchars' 'fcs' string (default "vert:|,fold:-,eob:~")

global or local to window global-local
Characters to fill the statuslines, vertical separators and special
lines in the window.
It is a comma-separated list of items. Each item has a name, a colon
and the value of that item: E1511

item name default Used for
stl ' ' statusline of the current window
stlnc ' ' statusline of the non-current windows
vert '|' vertical separators :vsplit
fold '-' filling 'foldtext'
foldopen '-' mark the beginning of a fold
foldclose '+' show a closed fold
foldsep '|' open fold middle character
diff '-' deleted lines of the 'diff' option
eob '~' empty lines below the end of a buffer
lastline '@' 'display' contains lastline/truncate

Any one that is omitted will fall back to the default.

Example:
:set fillchars=stl:\ ,stlnc:\ ,vert:\|,fold:-,diff:-

For the "stl", "stlnc", "foldopen", "foldclose" and "foldsep" items
single-byte and multibyte characters are supported. But double-width
characters are not supported. E1512

The highlighting used for these items:
item name highlight group
stl StatusLine hl-StatusLine
stlnc StatusLineNC hl-StatusLineNC
vert VertSplit hl-VertSplit
fold Folded hl-Folded
diff DiffDelete hl-DiffDelete
eob EndOfBuffer hl-EndOfBuffer
lastline NonText hl-NonText

'fixendofline' 'fixeol' 'nofixendofline' 'nofixeol'
'fixendofline' 'fixeol' boolean (default on)

local to buffer
When writing a file and this option is on, <EOL> at the end of file
will be restored if missing. Turn this option off if you want to
preserve the situation from the original file.
When the 'binary' option is set the value of this option doesn't
matter.
See the 'endofline' option.
See eol-and-eof for example settings.

options.txt — 881

'fkmap' 'fk' 'nofkmap' 'nofk'
'fkmap' 'fk' boolean (default off)

global
{only available when compiled with the +rightleft
feature}

This option was for using Farsi, which has been removed. See
farsi.txt .

'foldclose' 'fcl'
'foldclose' 'fcl' string (default "")

global
{not available when compiled without the +folding
feature}

When set to "all", a fold is closed when the cursor isn't in it and
its level is higher than 'foldlevel'. Useful if you want folds to
automatically close when moving out of them.

'foldcolumn' 'fdc'
'foldcolumn' 'fdc' number (default 0)

local to window
{not available when compiled without the +folding
feature}

When non-zero, a column with the specified width is shown at the side
of the window which indicates open and closed folds. The maximum
value is 12.
See folding .

'foldenable' 'fen' 'nofoldenable' 'nofen'
'foldenable' 'fen' boolean (default on)

local to window
{not available when compiled without the +folding
feature}

When off, all folds are open. This option can be used to quickly
switch between showing all text unfolded and viewing the text with
folds (including manually opened or closed folds). It can be toggled
with the zi command. The 'foldcolumn' will remain blank when
'foldenable' is off.
This option is set by commands that create a new fold or close a fold.
See folding .

'foldexpr' 'fde'
'foldexpr' 'fde' string (default: "0")

local to window
{not available when compiled without the +folding
or +eval features}

The expression used for when 'foldmethod' is "expr". It is evaluated
for each line to obtain its fold level. The context is set to the
script where 'foldexpr' was set, script-local items can be accessed.
See fold-expr for the usage.

The expression will be evaluated in the sandbox if set from a
modeline, see sandbox-option .
This option can't be set from a modeline when the 'diff' option is
on or the 'modelineexpr' option is off.

It is not allowed to change text or jump to another window while
evaluating 'foldexpr' textlock .

'foldignore' 'fdi'

options.txt — 882

'foldignore' 'fdi' string (default: "#")
local to window
{not available when compiled without the +folding
feature}

Used only when 'foldmethod' is "indent". Lines starting with
characters in 'foldignore' will get their fold level from surrounding
lines. White space is skipped before checking for this character.
The default "#" works well for C programs. See fold-indent .

'foldlevel' 'fdl'
'foldlevel' 'fdl' number (default: 0)

local to window
{not available when compiled without the +folding
feature}

Sets the fold level: Folds with a higher level will be closed.
Setting this option to zero will close all folds. Higher numbers will
close fewer folds.
This option is set by commands like zm , zM and zR .
See fold-foldlevel .

'foldlevelstart' 'fdls'
'foldlevelstart' 'fdls' number (default: -1)

global
{not available when compiled without the +folding
feature}

Sets 'foldlevel' when starting to edit another buffer in a window.
Useful to always start editing with all folds closed (value zero),
some folds closed (one) or no folds closed (99).
This is done before reading any modeline, thus a setting in a modeline
overrules this option. Starting to edit a file for diff-mode also
ignores this option and closes all folds.
It is also done before BufReadPre autocommands, to allow an autocmd to
overrule the 'foldlevel' value for specific files.
When the value is negative, it is not used.

'foldmarker' 'fmr' E536
'foldmarker' 'fmr' string (default: "{{{,}}}")

local to window
{not available when compiled without the +folding
feature}

The start and end marker used when 'foldmethod' is "marker". There
must be one comma, which separates the start and end marker. The
marker is a literal string (a regular expression would be too slow).
See fold-marker .

'foldmethod' 'fdm'
'foldmethod' 'fdm' string (default: "manual")

local to window
{not available when compiled without the +folding
feature}

The kind of folding used for the current window. Possible values:
fold-manual manual Folds are created manually.
fold-indent indent Lines with equal indent form a fold.
fold-expr expr 'foldexpr' gives the fold level of a line.
fold-marker marker Markers are used to specify folds.
fold-syntax syntax Syntax highlighting items specify folds.
fold-diff diff Fold text that is not changed.

'foldminlines' 'fml'
'foldminlines' 'fml' number (default: 1)

options.txt — 883

local to window
{not available when compiled without the +folding
feature}

Sets the number of screen lines above which a fold can be displayed
closed. Also for manually closed folds. With the default value of
one a fold can only be closed if it takes up two or more screen lines.
Set to zero to be able to close folds of just one screen line.
Note that this only has an effect on what is displayed. After using
"zc" to close a fold, which is displayed open because it's smaller
than 'foldminlines', a following "zc" may close a containing fold.

'foldnestmax' 'fdn'
'foldnestmax' 'fdn' number (default: 20)

local to window
{not available when compiled without the +folding
feature}

Sets the maximum nesting of folds for the "indent" and "syntax"
methods. This avoids that too many folds will be created. Using more
than 20 doesn't work, because the internal limit is 20.

'foldopen' 'fdo'
'foldopen' 'fdo' string (default: "block,hor,mark,percent,quickfix,

search,tag,undo")
global
{not available when compiled without the +folding
feature}

Specifies for which type of commands folds will be opened, if the
command moves the cursor into a closed fold. It is a comma-separated
list of items.
NOTE: When the command is part of a mapping this option is not used.
Add the zv command to the mapping to get the same effect.
(rationale: the mapping may want to control opening folds itself)

item commands
all any
block "(", "{", "[[", "[{", etc.
hor horizontal movements: "l", "w", "fx", etc.
insert any command in Insert mode
jump far jumps: "G", "gg", etc.
mark jumping to a mark: "'m", CTRL-O, etc.
percent "%"
quickfix ":cn", ":crew", ":make", etc.
search search for a pattern: "/", "n", "*", "gd", etc.

(not for a search pattern in a ":" command)
Also for [s and]s .

tag jumping to a tag: ":ta", CTRL-T, etc.
undo undo or redo: "u" and CTRL-R

When a movement command is used for an operator (e.g., "dl" or "y%")
this option is not used. This means the operator will include the
whole closed fold.
Note that vertical movements are not here, because it would make it
very difficult to move onto a closed fold.
In insert mode the folds containing the cursor will always be open
when text is inserted.
To close folds you can re-apply 'foldlevel' with the zx command or
set the 'foldclose' option to "all".

'foldtext' 'fdt'
'foldtext' 'fdt' string (default: "foldtext()")

local to window

options.txt — 884

{not available when compiled without the +folding
feature}

An expression which is used to specify the text displayed for a closed
fold. The context is set to the script where 'foldexpr' was set,
script-local items can be accessed. See fold-foldtext for the
usage.

The expression will be evaluated in the sandbox if set from a
modeline, see sandbox-option .
This option cannot be set in a modeline when 'modelineexpr' is off.

It is not allowed to change text or jump to another window while
evaluating 'foldtext' textlock .

'formatexpr' 'fex'
'formatexpr' 'fex' string (default "")

local to buffer
{not available when compiled without the +eval
feature}

Expression which is evaluated to format a range of lines for the gq
operator or automatic formatting (see 'formatoptions'). When this
option is empty 'formatprg' is used.

The v:lnum variable holds the first line to be formatted.
The v:count variable holds the number of lines to be formatted.
The v:char variable holds the character that is going to be

inserted if the expression is being evaluated due to
automatic formatting. This can be empty. Don't insert
it yet!

Example:
:set formatexpr=mylang#Format()

This will invoke the mylang#Format() function in the
autoload/mylang.vim file in 'runtimepath'. autoload

The advantage of using a function call without arguments is that it is
faster, see expr-option-function .

The expression is also evaluated when 'textwidth' is set and adding
text beyond that limit. This happens under the same conditions as
when internal formatting is used. Make sure the cursor is kept in the
same spot relative to the text then! The mode() function will
return "i" or "R" in this situation.

When the expression evaluates to non-zero Vim will fall back to using
the internal format mechanism.

If the expression starts with s: or <SID> , then it is replaced with
the script ID (local-function). Example:

set formatexpr=s:MyFormatExpr()
set formatexpr=<SID>SomeFormatExpr()

Otherwise, the expression is evaluated in the context of the script
where the option was set, thus script-local items are available.

The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option . That stops the option from working,
since changing the buffer text is not allowed.
This option cannot be set in a modeline when 'modelineexpr' is off.
NOTE: This option is set to "" when 'compatible' is set.

options.txt — 885

'formatlistpat' 'flp'
'formatlistpat' 'flp' string (default: "^\s*\d\+[\]:.)}\t]\s*")

local to buffer
A pattern that is used to recognize a list header. This is used for
the "n" flag in 'formatoptions'.
The pattern must match exactly the text that will be the indent for
the line below it. You can use /\ze to mark the end of the match
while still checking more characters. There must be a character
following the pattern, when it matches the whole line it is handled
like there is no match.
The default recognizes a number, followed by an optional punctuation
character and white space.

'formatoptions' 'fo'
'formatoptions' 'fo' string (Vim default: "tcq", Vi default: "vt")

local to buffer
This is a sequence of letters which describes how automatic
formatting is to be done.
See fo-table for possible values and gq for how to format text.
When the 'paste' option is on, no formatting is done (like
'formatoptions' is empty). Commas can be inserted for readability.
To avoid problems with flags that are added in the future, use the
"+=" and "-=" feature of ":set" add-option-flags .
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'formatprg' 'fp'
'formatprg' 'fp' string (default "")

global or local to buffer global-local
The name of an external program that will be used to format the lines
selected with the gq operator. The program must take the input on
stdin and produce the output on stdout. The Unix program "fmt" is
such a program.
If the 'formatexpr' option is not empty it will be used instead.
Otherwise, if 'formatprg' option is an empty string, the internal
format function will be used C-indenting .
Environment variables are expanded :set_env . See option-backslash
about including spaces and backslashes.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'fsync' 'fs' 'nofsync' 'nofs'
'fsync' 'fs' boolean (default on)

global
When on, the library function fsync() will be called after writing a
file. This will flush a file to disk, ensuring that it is safely
written even on filesystems which do metadata-only journaling. This
will force the harddrive to spin up on Linux systems running in laptop
mode, so it may be undesirable in some situations. Be warned that
turning this off increases the chances of data loss after a crash. On
systems without an fsync() implementation, this variable is always
off.
Also see 'swapsync' for controlling fsync() on swap files.
'fsync' also applies to writefile() (unless a flag is used to
overrule it) and when writing undo files (see undo-persistence).
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'gdefault' 'gd' 'nogdefault' 'nogd'
'gdefault' 'gd' boolean (default off)

options.txt — 886

global
When on, the ":substitute" flag 'g' is default on. This means that
all matches in a line are substituted instead of one. When a 'g' flag
is given to a ":substitute" command, this will toggle the substitution
of all or one match. See complex-change .

command 'gdefault' on 'gdefault' off
:s/// subst. all subst. one
:s///g subst. one subst. all
:s///gg subst. all subst. one

NOTE: This option is reset when 'compatible' is set.
Setting this option may break plugins that rely on the default
behavior of the 'g' flag. This will also make the 'g' flag have the
opposite effect of that documented in :s_g .
This option is not used in Vim9 script.

'grepformat' 'gfm'
'grepformat' 'gfm' string (default "%f:%l:%m,%f:%l%m,%f %l%m")

global
Format to recognize for the ":grep" command output.
This is a scanf-like string that uses the same format as the
'errorformat' option: see errorformat .

'grepprg' 'gp'
'grepprg' 'gp' string (default "grep -n ",

Unix: "grep -n $* /dev/null",
Win32: "findstr /n" or "grep -n",

VMS: "SEARCH/NUMBERS ")
global or local to buffer global-local

Program to use for the :grep command. This option may contain '%'
and '#' characters, which are expanded like when used in a command-
line. The placeholder "$*" is allowed to specify where the arguments
will be included. Environment variables are expanded :set_env . See
option-backslash about including spaces and backslashes.

When your "grep" accepts the "-H" argument, use this to make ":grep"
also work well with a single file:

:set grepprg=grep\ -nH
Special value: When 'grepprg' is set to "internal" the :grep command
works like :vimgrep , :lgrep like :lvimgrep , :grepadd like
:vimgrepadd and :lgrepadd like :lvimgrepadd .

See also the section :make_makeprg , since most of the comments there
apply equally to 'grepprg'.
For Win32, the default is "findstr /n" if "findstr.exe" can be found,
otherwise it's "grep -n".
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'guicursor' 'gcr' E545 E546 E548 E549
'guicursor' 'gcr' string (default "n-v-c:block-Cursor/lCursor,

ve:ver35-Cursor,
o:hor50-Cursor,
i-ci:ver25-Cursor/lCursor,
r-cr:hor20-Cursor/lCursor,
sm:block-Cursor
-blinkwait175-blinkoff150-blinkon175",

for Win32 console:
"n-v-c:block,o:hor50,i-ci:hor15,
r-cr:hor30,sm:block")

global

options.txt — 887

{only available when compiled with GUI enabled, and
for Win32 console}

This option tells Vim what the cursor should look like in different
modes. It fully works in the GUI. In a Win32 console, only the
height of the cursor can be changed. This can be done by specifying a
block cursor, or a percentage for a vertical or horizontal cursor.
For a console the 't_SI', 't_SR', and 't_EI' escape sequences are
used.

The option is a comma-separated list of parts. Each part consist of a
mode-list and an argument-list:

mode-list:argument-list,mode-list:argument-list,..
The mode-list is a dash separated list of these modes:

n Normal mode
v Visual mode
ve Visual mode with 'selection' "exclusive" (same as 'v',

if not specified)
o Operator-pending mode
i Insert mode
r Replace mode
c Command-line Normal (append) mode
ci Command-line Insert mode
cr Command-line Replace mode
sm showmatch in Insert mode
a all modes

The argument-list is a dash separated list of these arguments:
hor{N} horizontal bar, {N} percent of the character height
ver{N} vertical bar, {N} percent of the character width
block block cursor, fills the whole character

[only one of the above three should be present]
blinkwait{N} cursor-blinking
blinkon{N}
blinkoff{N}

blink times for cursor: blinkwait is the delay before
the cursor starts blinking, blinkon is the time that
the cursor is shown and blinkoff is the time that the
cursor is not shown. The times are in msec. When one
of the numbers is zero, there is no blinking. The
default is: "blinkwait700-blinkon400-blinkoff250".
These numbers are used for a missing entry. This
means that blinking is enabled by default. To switch
blinking off you can use "blinkon0". The cursor only
blinks when Vim is waiting for input, not while
executing a command.
To make the cursor blink in an xterm, see
xterm-blink .

{group-name}
a highlight group name, that sets the color and font
for the cursor

{group-name}/{group-name}
Two highlight group names, the first is used when
no language mappings are used, the other when they
are. language-mapping

Examples of parts:
n-c-v:block-nCursor in Normal, Command-line and Visual mode, use a

block cursor with colors from the "nCursor"
highlight group

i-ci:ver30-iCursor-blinkwait300-blinkon200-blinkoff150
In Insert and Command-line Insert mode, use a

options.txt — 888

30% vertical bar cursor with colors from the
"iCursor" highlight group. Blink a bit
faster.

The 'a' mode is different. It will set the given argument-list for
all modes. It does not reset anything to defaults. This can be used
to do a common setting for all modes. For example, to switch off
blinking: "a:blinkon0"

Examples of cursor highlighting:
:highlight Cursor gui=reverse guifg=NONE guibg=NONE
:highlight Cursor gui=NONE guifg=bg guibg=fg

'guifont' 'gfn'
E235 E596

'guifont' 'gfn' string (default "")
global
{only available when compiled with GUI enabled}

This is a list of fonts which will be used for the GUI version of Vim.
In its simplest form the value is just one font name.
See gui-font for the details.

'guifontset' 'gfs'
E250 E252 E234 E597 E598

'guifontset' 'gfs' string (default "")
global
{only available when compiled with GUI enabled and
with the +xfontset feature}
{not available in the GTK+ GUI}

When not empty, specifies two (or more) fonts to be used. The first
one for normal English, the second one for your special language. See
xfontset .

'guifontwide' 'gfw' E231 E533 E534
'guifontwide' 'gfw' string (default "")

global
{only available when compiled with GUI enabled}

When not empty, specifies a comma-separated list of fonts to be used
for double-width characters. The first font that can be loaded is
used. See gui-fontwide .

'guiheadroom' 'ghr'
'guiheadroom' 'ghr' number (default 50)

global
{only for GTK and X11 GUI}

The number of pixels subtracted from the screen height when fitting
the GUI window on the screen. Set this before the GUI is started,
e.g., in your gvimrc file. When zero, the whole screen height will
be used by the window. When positive, the specified number of pixel
lines will be left for window decorations and other items on the
screen. Set it to a negative value to allow windows taller than the
screen.

'guiligatures' 'gli' E1243
'guiligatures' 'gli' string (default "")

global
{only for GTK and Win32 GUI}

List of ASCII characters that, when combined together, can create more
complex shapes. Each character must be a printable ASCII character
with a value in the 32-127 range.

options.txt — 889

Example:
:set guiligatures=!\"#$%&()*+-./:<=>?@[]^_{\|~

Changing this option updates screen output immediately. Set it to an
empty string to disable ligatures.

'guioptions' 'go'
'guioptions' 'go' string (default "egmrLtT" (MS-Windows,

"t" is removed in defaults.vim),
"aegimrLtT" (GTK and Motif),
)

global
{only available when compiled with GUI enabled}

This option only has an effect in the GUI version of Vim. It is a
sequence of letters which describes what components and options of the
GUI should be used.
To avoid problems with flags that are added in the future, use the
"+=" and "-=" feature of ":set" add-option-flags .

Valid characters are as follows:
'go-!'

'!' External commands are executed in a terminal window. Without
this flag the MS-Windows GUI will open a console window to
execute the command. The Unix GUI will simulate a dumb
terminal to list the command output.
The terminal window will be positioned at the bottom, and grow
upwards as needed.

'go-a'
'a' Autoselect: If present, then whenever VISUAL mode is started,

or the Visual area extended, Vim tries to become the owner of
the windowing system's global selection. This means that the
Visually highlighted text is available for pasting into other
applications as well as into Vim itself. When the Visual mode
ends, possibly due to an operation on the text, or when an
application wants to paste the selection, the highlighted text
is automatically yanked into the "* selection register.
Thus the selection is still available for pasting into other
applications after the VISUAL mode has ended.

If not present, then Vim won't become the owner of the
windowing system's global selection unless explicitly told to
by a yank or delete operation for the "* register.
The same applies to the modeless selection.

'go-P'
'P' Like autoselect but using the "+ register instead of the "*

register.
'go-A'

'A' Autoselect for the modeless selection. Like 'a', but only
applies to the modeless selection.

'guioptions' autoselect Visual autoselect modeless
"" - -
"a" yes yes
"A" - yes
"aA" yes yes

When using a terminal see the 'clipboard' option.

'go-c'
'c' Use console dialogs instead of popup dialogs for simple

choices.
'go-d'

options.txt — 890

'd' Use dark theme variant if available. Currently only works for
GTK+ GUI.

'go-e'
'e' Add tab pages when indicated with 'showtabline'.

'guitablabel' can be used to change the text in the labels.
When 'e' is missing a non-GUI tab pages line may be used.
The GUI tabs are only supported on some systems, currently
GTK, Motif, Mac OS/X, Haiku, and MS-Windows.

'go-f'
'f' Foreground: Don't use fork() to detach the GUI from the shell

where it was started. Use this for programs that wait for the
editor to finish (e.g., an e-mail program). Alternatively you
can use "gvim -f" or ":gui -f" to start the GUI in the
foreground. gui-fork
Note: Set this option in the vimrc file. The forking may have
happened already when the gvimrc file is read.

'go-i'
'i' Use a Vim icon. For GTK with KDE it is used in the left-upper

corner of the window. It's black&white on non-GTK, because of
limitations of X11. For a color icon, see X11-icon .

'go-m'
'm' Menu bar is present.

'go-M'
'M' The system menu "$VIMRUNTIME/menu.vim" is not sourced. Note

that this flag must be added in the .vimrc file, before
switching on syntax or filetype recognition (when the gvimrc
file is sourced the system menu has already been loaded; the
`:syntax on` and `:filetype on` commands load the menu too).

'go-g'
'g' Grey menu items: Make menu items that are not active grey. If

'g' is not included inactive menu items are not shown at all.
'go-t'

't' Include tearoff menu items. Currently only works for Win32,
GTK+, and Motif 1.2 GUI.

'go-T'
'T' Include Toolbar. Currently only in Win32, GTK+, Motif and

Photon GUIs.
'go-r'

'r' Right-hand scrollbar is always present.
'go-R'

'R' Right-hand scrollbar is present when there is a vertically
split window.

'go-l'
'l' Left-hand scrollbar is always present.

'go-L'
'L' Left-hand scrollbar is present when there is a vertically

split window.
'go-b'

'b' Bottom (horizontal) scrollbar is present. Its size depends on
the longest visible line, or on the cursor line if the 'h'
flag is included. gui-horiz-scroll

'go-h'
'h' Limit horizontal scrollbar size to the length of the cursor

line. Reduces computations. gui-horiz-scroll

And yes, you may even have scrollbars on the left AND the right if
you really want to :-). See gui-scrollbars for more information.

'go-v'
'v' Use a vertical button layout for dialogs. When not included,

options.txt — 891

a horizontal layout is preferred, but when it doesn't fit a
vertical layout is used anyway. Not supported in GTK 3.

'go-p'
'p' Use Pointer callbacks for X11 GUI. This is required for some

window managers. If the cursor is not blinking or hollow at
the right moment, try adding this flag. This must be done
before starting the GUI. Set it in your gvimrc . Adding or
removing it after the GUI has started has no effect.

'go-F'
'F' Add a footer. Only for Motif. See gui-footer .

'go-k'
'k' Keep the GUI window size when adding/removing a scrollbar, or

toolbar, tabline, etc. Instead, the behavior is similar to
when the window is maximized and will adjust 'lines' and
'columns' to fit to the window. Without the 'k' flag Vim will
try to keep 'lines' and 'columns' the same when adding and
removing GUI components.

'guipty' 'noguipty'
'guipty' boolean (default on)

global
{only available when compiled with GUI enabled}

Only in the GUI: If on, an attempt is made to open a pseudo-tty for
I/O to/from shell commands. See gui-pty .

'guitablabel' 'gtl'
'guitablabel' 'gtl' string (default empty)

global
{only available when compiled with GUI enabled}

When non-empty describes the text to use in a label of the GUI tab
pages line. When empty and when the result is empty Vim will use a
default label. See setting-guitablabel for more info.

The format of this option is like that of 'statusline'.
'guitabtooltip' is used for the tooltip, see below.
The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .
This option cannot be set in a modeline when 'modelineexpr' is off.

Only used when the GUI tab pages line is displayed. 'e' must be
present in 'guioptions'. For the non-GUI tab pages line 'tabline' is
used.

'guitabtooltip' 'gtt'
'guitabtooltip' 'gtt' string (default empty)

global
{only available when compiled with GUI enabled}

When non-empty describes the text to use in a tooltip for the GUI tab
pages line. When empty Vim will use a default tooltip.
This option is otherwise just like 'guitablabel' above.
You can include a line break. Simplest method is to use :let :

:let &guitabtooltip = "line one\nline two"

'helpfile' 'hf'
'helpfile' 'hf' string (default (MS-Windows) "$VIMRUNTIME\doc\help.txt"

(others) "$VIMRUNTIME/doc/help.txt")
global

Name of the main help file. All distributed help files should be
placed together in one directory. Additionally, all "doc" directories

options.txt — 892

in 'runtimepath' will be used.
Environment variables are expanded :set_env . For example:
"$VIMRUNTIME/doc/help.txt". If $VIMRUNTIME is not set, $VIM is also
tried. Also see $VIMRUNTIME and option-backslash about including
spaces and backslashes.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'helpheight' 'hh'
'helpheight' 'hh' number (default 20)

global
Minimal initial height of the help window when it is opened with the
":help" command. The initial height of the help window is half of the
current window, or (when the 'ea' option is on) the same as other
windows. When the height is less than 'helpheight', the height is
set to 'helpheight'. Set to zero to disable.

'helplang' 'hlg'
'helplang' 'hlg' string (default: messages language or empty)

global
{only available when compiled with the +multi_lang
feature}

Comma-separated list of languages. Vim will use the first language
for which the desired help can be found. The English help will always
be used as a last resort. You can add "en" to prefer English over
another language, but that will only find tags that exist in that
language and not in the English help.
Example:

:set helplang=de,it
This will first search German, then Italian and finally English help
files.
When using CTRL-] and ":help!" in a non-English help file Vim will
try to find the tag in the current language before using this option.
See help-translated .

'hidden' 'hid' 'nohidden' 'nohid'
'hidden' 'hid' boolean (default off)

global
When off a buffer is unloaded when it is abandon ed. When on a
buffer becomes hidden when it is abandon ed. If the buffer is still
displayed in another window, it does not become hidden, of course.

The commands that move through the buffer list sometimes make a buffer
hidden even if the 'hidden' option is off when these three are true:
- the buffer is modified
- 'autowrite' is off or writing is not possible
- the '!' flag was used
Also see windows.txt .

To only make one buffer hidden use the 'bufhidden' option.
This option is set for one command with ":hide {command}" :hide .
WARNING: It's easy to forget that you have changes in hidden buffers.
Think twice when using ":q!" or ":qa!".

'highlight' 'hl'
'highlight' 'hl' string (default (as a single string):

"8:SpecialKey,~:EndOfBuffer,@:NonText,
d:Directory,e:ErrorMsg,i:IncSearch,
l:Search,m:MoreMsg,M:ModeMsg,n:LineNr,
a:LineNrAbove,b:LineNrBelow,

options.txt — 893

N:CursorLineNr,r:Question,s:StatusLine,
S:StatusLineNC,c:VertSplit,t:Title,
v:Visual,V:VisualNOS,w:WarningMsg,
W:WildMenu,f:Folded,F:FoldColumn,
A:DiffAdd,C:DiffChange,D:DiffDelete,
T:DiffText,>:SignColumn,-:Conceal,
B:SpellBad,P:SpellCap,R:SpellRare,
L:SpellLocal,+:Pmenu,=:PmenuSel,
[:PmenuKind,]:PmenuKindSel,
{:PmenuExtra,}:PmenuExtraSel,
x:PmenuSbar,X:PmenuThumb,*:TabLine,
#:TabLineSel,_:TabLineFill,!:CursorColumn,
.:CursorLine,o:ColorColumn,q:QuickFixLine,
z:StatusLineTerm,Z:StatusLineTermNC")

global
This option can be used to set highlighting mode for various
occasions. It is a comma-separated list of character pairs. The
first character in a pair gives the occasion, the second the mode to
use for that occasion. The occasions are:
hl-SpecialKey 8 Meta and special keys listed with ":map"
hl-EndOfBuffer ~ lines after the last line in the buffer
hl-NonText @ '@' at the end of the window and

characters from 'showbreak'
hl-Directory d directories in CTRL-D listing and other special

things in listings
hl-ErrorMsg e error messages

h (obsolete, ignored)
hl-IncSearch i 'incsearch' highlighting
hl-CurSearch y current instance of last search pattern
hl-Search l last search pattern highlighting (see 'hlsearch')
hl-MoreMsg m more-prompt
hl-ModeMsg M Mode (e.g., "-- INSERT --")
hl-LineNr n line number for ":number" and ":#" commands, and

when 'number' or 'relativenumber' option is set.
hl-LineNrAbove a line number above the cursor for when the

'relativenumber' option is set.
hl-LineNrBelow b line number below the cursor for when the

'relativenumber' option is set.
hl-CursorLineNr N like n for when 'cursorline' or 'relativenumber' is

set.
hl-Question r hit-enter prompt and yes/no questions
hl-StatusLine s status line of current window status-line
hl-StatusLineNC S status lines of not-current windows
hl-Title t Titles for output from ":set all", ":autocmd" etc.
hl-VertSplit c column used to separate vertically split windows
hl-Visual v Visual mode
hl-VisualNOS V Visual mode when Vim does is "Not Owning the

Selection" Only X11 Gui's gui-x11 and
xterm-clipboard .

hl-WarningMsg w warning messages
hl-WildMenu W wildcard matches displayed for 'wildmenu'
hl-Folded f line used for closed folds
hl-FoldColumn F 'foldcolumn'
hl-DiffAdd A added line in diff mode
hl-DiffChange C changed line in diff mode
hl-DiffDelete D deleted line in diff mode
hl-DiffText T inserted text in diff mode
hl-SignColumn > column used for signs
hl-Conceal - the placeholders used for concealed characters

(see 'conceallevel')

options.txt — 894

hl-SpellBad B misspelled word spell
hl-SpellCap P word that should start with capital spell
hl-SpellRare R rare word spell
hl-SpellLocal L word from other region spell
hl-Pmenu + popup menu normal line
hl-PmenuSel = popup menu selected line
hl-PmenuKind [popup menu "kind" normal line
hl-PmenuKindSel] popup menu "kind" selected line
hl-PmenuExtra { popup menu "extra" normal line
hl-PmenuExtraSel } popup menu "extra" selected line
hl-PmenuSbar x popup menu scrollbar
hl-PmenuThumb X popup menu scrollbar thumb

The display modes are:
r reverse (termcap entry "mr" and "me")
i italic (termcap entry "ZH" and "ZR")
b bold (termcap entry "md" and "me")
s standout (termcap entry "so" and "se")
u underline (termcap entry "us" and "ue")
c undercurl (termcap entry "Us" and "Ce")
2 double underline (termcap entry "Ds" and "Ce")
d dotted underline (termcap entry "ds" and "Ce")
= dashed underline (termcap entry "Ds" and "Ce")
t strikethrough (termcap entry "Ts" and "Te")
n no highlighting
- no highlighting
: use a highlight group

The default is used for occasions that are not included.
If you want to change what the display modes do, see dos-colors
for an example.
When using the ':' display mode, this must be followed by the name of
a highlight group. A highlight group can be used to define any type
of highlighting, including using color. See :highlight on how to
define one. The default uses a different group for each occasion.
See highlight-default for the default highlight groups.

'history' 'hi'
'history' 'hi' number (Vim default: 50, Vi default: 0,

set to 200 in defaults.vim)
global

A history of ":" commands, and a history of previous search patterns
is remembered. This option decides how many entries may be stored in
each of these histories (see cmdline-editing).
The maximum value is 10000.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'hkmap' 'hk' 'nohkmap' 'nohk'
'hkmap' 'hk' boolean (default off)

global
{only available when compiled with the +rightleft
feature}

When on, the keyboard is mapped for the Hebrew character set.
Normally you would set 'allowrevins' and use CTRL-_ in insert mode to
toggle this option. See rileft.txt .
NOTE: This option is reset when 'compatible' is set.

'hkmapp' 'hkp' 'nohkmapp' 'nohkp'
'hkmapp' 'hkp' boolean (default off)

global

options.txt — 895

{only available when compiled with the +rightleft
feature}

When on, phonetic keyboard mapping is used. 'hkmap' must also be on.
This is useful if you have a non-Hebrew keyboard.
See rileft.txt .
NOTE: This option is reset when 'compatible' is set.

'hlsearch' 'hls' 'nohlsearch' 'nohls'
'hlsearch' 'hls' boolean (default off)

global
{not available when compiled without the
+extra_search feature}

When there is a previous search pattern, highlight all its matches.
The type of highlighting used can be set with the 'l' occasion in the
'highlight' option. This uses the "Search" highlight group by
default. Note that only the matching text is highlighted, any offsets
are not applied. If the "CurSearch" highlight group is set then the
current match is highlighted with that.
See also: 'incsearch' and :match .
When you get bored looking at the highlighted matches, you can turn it
off with :nohlsearch . This does not change the option value, as
soon as you use a search command, the highlighting comes back.
'redrawtime' specifies the maximum time spent on finding matches.
When the search pattern can match an end-of-line, Vim will try to
highlight all of the matched text. However, this depends on where the
search starts. This will be the first line in the window or the first
line below a closed fold. A match in a previous line which is not
drawn may not continue in a newly drawn line.
You can specify whether the highlight status is restored on startup
with the 'h' flag in 'viminfo' viminfo-h .
NOTE: This option is reset when 'compatible' is set.

'icon' 'noicon'
'icon' boolean (default off, on when title can be restored)

global
When on, the icon text of the window will be set to the value of
'iconstring' (if it is not empty), or to the name of the file
currently being edited. Only the last part of the name is used.
Overridden by the 'iconstring' option.
Only works if the terminal supports setting window icons (currently
only X11 GUI and terminals with a non-empty 't_IS' option - these are
Unix xterm and iris-ansi by default, where 't_IS' is taken from the
builtin termcap).
When Vim was compiled with HAVE_X11 defined, the original icon will be
restored if possible X11 . See X11-icon for changing the icon on
X11.
For MS-Windows the icon can be changed, see windows-icon .

'iconstring'
'iconstring' string (default "")

global
When this option is not empty, it will be used for the icon text of
the window. This happens only when the 'icon' option is on.
Only works if the terminal supports setting window icon text
(currently only X11 GUI and terminals with a non-empty 't_IS' option).
Does not work for MS-Windows.
When Vim was compiled with HAVE_X11 defined, the original icon will be
restored if possible X11 .
When this option contains printf-style '%' items, they will be
expanded according to the rules used for 'statusline'. See

options.txt — 896

'titlestring' for example settings.
This option cannot be set in a modeline when 'modelineexpr' is off.
{not available when compiled without the |+statusline| feature}

'ignorecase' 'ic' 'noignorecase' 'noic'
'ignorecase' 'ic' boolean (default off)

global
Ignore case in search patterns, cmdline-completion , when
searching in the tags file, and non- Vim9 expr-== .
Also see 'smartcase' and 'tagcase'.
Can be overruled by using "\c" or "\C" in the pattern, see
/ignorecase .

'imactivatefunc' 'imaf'
'imactivatefunc' 'imaf' string (default "")

global
This option specifies a function that will be called to
activate or deactivate the Input Method. The value can be the name of
a function, a lambda or a Funcref . See option-value-function for
more information.
It is not used in the MS-Windows GUI version.
The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .

Example:
function ImActivateFunc(active)
if a:active

... do something
else

... do something
endif
" return value is not used

endfunction
set imactivatefunc=ImActivateFunc

'imactivatekey' 'imak'
'imactivatekey' 'imak' string (default "")

global
{only available when compiled with +xim and
+GUI_GTK } E599

Specifies the key that your Input Method in X-Windows uses for
activation. When this is specified correctly, vim can fully control
IM with 'imcmdline', 'iminsert' and 'imsearch'.
You can't use this option to change the activation key, the option
tells Vim what the key is.
Format:

[MODIFIER_FLAG-]KEY_STRING

These characters can be used for MODIFIER_FLAG (case is ignored):
S Shift key
L Lock key
C Control key
1 Mod1 key
2 Mod2 key
3 Mod3 key
4 Mod4 key
5 Mod5 key

Combinations are allowed, for example "S-C-space" or "SC-space" are
both shift+ctrl+space.
See <X11/keysymdef.h> and XStringToKeysym for KEY_STRING.

options.txt — 897

Example:
:set imactivatekey=S-space

"S-space" means shift+space. This is the activation key for kinput2 +
canna (Japanese), and ami (Korean).

'imcmdline' 'imc' 'noimcmdline' 'noimc'
'imcmdline' 'imc' boolean (default off)

global
When set the Input Method is always on when starting to edit a command
line, unless entering a search pattern (see 'imsearch' for that).
Setting this option is useful when your input method allows entering
English characters directly, e.g., when it's used to type accented
characters with dead keys.

'imdisable' 'imd' 'noimdisable' 'noimd'
'imdisable' 'imd' boolean (default off, on for some systems (SGI))

global
When set the Input Method is never used. This is useful to disable
the IM when it doesn't work properly.
Currently this option is on by default for SGI/IRIX machines. This
may change in later releases.

'iminsert' 'imi'
'iminsert' 'imi' number (default 0)

local to buffer
Specifies whether :lmap or an Input Method (IM) is to be used in
Insert mode. Valid values:

0 :lmap is off and IM is off
1 :lmap is ON and IM is off
2 :lmap is off and IM is ON

To always reset the option to zero when leaving Insert mode with <Esc>
this can be used:

:inoremap <ESC> <ESC>:set iminsert=0<CR>
This makes :lmap and IM turn off automatically when leaving Insert
mode.
Note that this option changes when using CTRL-^ in Insert mode
i_CTRL-^ .

The value is set to 1 when setting 'keymap' to a valid keymap name.
It is also used for the argument of commands like "r" and "f".
The value 0 may not work correctly with Motif with some XIM
methods. Use 'imdisable' to disable XIM then.

You can set 'imactivatefunc' and 'imstatusfunc' to handle IME/XIM
via external command if Vim is not compiled with the +xim ,
+multi_byte_ime or global-ime .

'imsearch' 'ims'
'imsearch' 'ims' number (default -1)

local to buffer
Specifies whether :lmap or an Input Method (IM) is to be used when
entering a search pattern. Valid values:

-1 the value of 'iminsert' is used, makes it look like
'iminsert' is also used when typing a search pattern

0 :lmap is off and IM is off
1 :lmap is ON and IM is off
2 :lmap is off and IM is ON

Note that this option changes when using CTRL-^ in Command-line mode
c_CTRL-^ .

The value is set to 1 when it is not -1 and setting the 'keymap'

options.txt — 898

option to a valid keymap name.
The value 0 may not work correctly with Motif with some XIM
methods. Use 'imdisable' to disable XIM then.

'imstatusfunc' 'imsf'
'imstatusfunc' 'imsf' string (default "")

global
This option specifies a function that is called to obtain the status
of Input Method. It must return a positive number when IME is active.
The value can be the name of a function, a lambda or a Funcref .
See option-value-function for more information.
It is not used in the MS-Windows GUI version.

Example:
function ImStatusFunc()
let is_active = ...do something
return is_active ? 1 : 0

endfunction
set imstatusfunc=ImStatusFunc

NOTE: This function is invoked very often. Keep it fast.
The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .

'imstyle' 'imst'
'imstyle' 'imst' number (default 1)

global
{only available when compiled with +xim and
+GUI_GTK }

This option specifies the input style of Input Method:
0 use on-the-spot style
1 over-the-spot style
See: xim-input-style

For a long time on-the-spot style had been used in the GTK version of
vim, however, it is known that it causes troubles when using mappings,
single-repeat , etc. Therefore over-the-spot style becomes the

default now. This should work fine for most people, however if you
have any problem with it, try using on-the-spot style.
The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .

'include' 'inc'
'include' 'inc' string (default "^\s*#\s*include")

global or local to buffer global-local
{not available when compiled without the
+find_in_path feature}

Pattern to be used to find an include command. It is a search
pattern, just like for the "/" command (See pattern). The default
value is for C programs. This option is used for the commands "[i",
"]I", "[d", etc.
Normally the 'isfname' option is used to recognize the file name that
comes after the matched pattern. But if "\zs" appears in the pattern
then the text matched from "\zs" to the end, or until "\ze" if it
appears, is used as the file name. Use this to include characters
that are not in 'isfname', such as a space. You can then use
'includeexpr' to process the matched text.
See option-backslash about including spaces and backslashes.

'includeexpr' 'inex'

options.txt — 899

'includeexpr' 'inex' string (default "")
local to buffer
{not available when compiled without the
+find_in_path or +eval features}

Expression to be used to transform the string found with the 'include'
option to a file name. Mostly useful to change "." to "/" for Java:

:setlocal includeexpr=substitute(v:fname,'\\.','/','g')
The "v:fname" variable will be set to the file name that was detected.
Note the double backslash: the `:set` command first halves them, then
one remains it the value, where "\." matches a dot literally. For
simple character replacements `tr()` avoids the need for escaping:

:setlocal includeexpr=tr(v:fname,'.','/')

Also used for the gf command if an unmodified file name can't be
found. Allows doing "gf" on the name after an 'include' statement.
Also used for <cfile> .

If the expression starts with s: or <SID> , then it is replaced with
the script ID (local-function). Example:

setlocal includeexpr=s:MyIncludeExpr()
setlocal includeexpr=<SID>SomeIncludeExpr()

Otherwise, the expression is evaluated in the context of the script
where the option was set, thus script-local items are available.

It is more efficient if the value is just a function call without
arguments, see expr-option-function .

The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .
This option cannot be set in a modeline when 'modelineexpr' is off.

It is not allowed to change text or jump to another window while
evaluating 'includeexpr' textlock .

'incsearch' 'is' 'noincsearch' 'nois'
'incsearch' 'is' boolean (default off, set in defaults.vim if the

+reltime feature is supported)
global
{not available when compiled without the
+extra_search features}

While typing a search command, show where the pattern, as it was typed
so far, matches. The matched string is highlighted. If the pattern
is invalid or not found, nothing is shown. The screen will be updated
often, this is only useful on fast terminals.
Also applies to the pattern in commands:

:global
:lvimgrep
:lvimgrepadd
:smagic
:snomagic
:sort
:substitute
:vglobal
:vimgrep
:vimgrepadd

Note that the match will be shown, but the cursor will return to its
original position when no match is found and when pressing <Esc>. You
still need to finish the search command with <Enter> to move the
cursor to the match.
You can use the CTRL-G and CTRL-T keys to move to the next and

options.txt — 900

previous match. c_CTRL-G c_CTRL-T
When compiled with the +reltime feature Vim only searches for about
half a second. With a complicated pattern and/or a lot of text the
match may not be found. This is to avoid that Vim hangs while you
are typing the pattern.
The highlighting can be set with the 'i' flag in 'highlight'.
When 'hlsearch' is on, all matched strings are highlighted too while
typing a search command. See also: 'hlsearch'.
If you don't want to turn 'hlsearch' on, but want to highlight all
matches while searching, you can turn on and off 'hlsearch' with
autocmd. Example:

augroup vimrc-incsearch-highlight
autocmd!
autocmd CmdlineEnter /,\? :set hlsearch
autocmd CmdlineLeave /,\? :set nohlsearch

augroup END

CTRL-L can be used to add one character from after the current match
to the command line. If 'ignorecase' and 'smartcase' are set and the
command line has no uppercase characters, the added character is
converted to lowercase.
CTRL-R CTRL-W can be used to add the word at the end of the current
match, excluding the characters that were already typed.
NOTE: This option is reset when 'compatible' is set.

'indentexpr' 'inde'
'indentexpr' 'inde' string (default "")

local to buffer
{not available when compiled without the +eval
feature}

Expression which is evaluated to obtain the proper indent for a line.
It is used when a new line is created, for the = operator and
in Insert mode as specified with the 'indentkeys' option.
When this option is not empty, it overrules the 'cindent' and
'smartindent' indenting. When 'lisp' is set, this option is
is only used when 'lispoptions' contains "expr:1".
When 'paste' is set this option is not used for indenting.
The expression is evaluated with v:lnum set to the line number for
which the indent is to be computed. The cursor is also in this line
when the expression is evaluated (but it may be moved around).

If the expression starts with s: or <SID> , then it is replaced with
the script ID (local-function). Example:

set indentexpr=s:MyIndentExpr()
set indentexpr=<SID>SomeIndentExpr()

Otherwise, the expression is evaluated in the context of the script
where the option was set, thus script-local items are available.

The advantage of using a function call without arguments is that it is
faster, see expr-option-function .

The expression must return the number of spaces worth of indent. It
can return "-1" to keep the current indent (this means 'autoindent' is
used for the indent).
Functions useful for computing the indent are indent() , cindent()
and lispindent() .
The evaluation of the expression must not have side effects! It must
not change the text, jump to another window, etc. Afterwards the
cursor position is always restored, thus the cursor may be moved.
Normally this option would be set to call a function:

options.txt — 901

:set indentexpr=GetMyIndent()
Error messages will be suppressed, unless the 'debug' option contains
"msg".
See indent-expression .
NOTE: This option is set to "" when 'compatible' is set.

The expression will be evaluated in the sandbox when set from a
modeline, see sandbox-option .
This option cannot be set in a modeline when 'modelineexpr' is off.

It is not allowed to change text or jump to another window while
evaluating 'indentexpr' textlock .

'indentkeys' 'indk'
'indentkeys' 'indk' string (default "0{,0},0),0],:,0#,!^F,o,O,e")

local to buffer
A list of keys that, when typed in Insert mode, cause reindenting of
the current line. Only happens if 'indentexpr' isn't empty.
The format is identical to 'cinkeys', see indentkeys-format .
See C-indenting and indent-expression .

'infercase' 'inf' 'noinfercase' 'noinf'
'infercase' 'inf' boolean (default off)

local to buffer
When doing keyword completion in insert mode ins-completion , and
'ignorecase' is also on, the case of the match is adjusted depending
on the typed text. If the typed text contains a lowercase letter
where the match has an upper case letter, the completed part is made
lowercase. If the typed text has no lowercase letters and the match
has a lowercase letter where the typed text has an uppercase letter,
and there is a letter before it, the completed part is made uppercase.
With 'noinfercase' the match is used as-is.

'insertmode' 'im' 'noinsertmode' 'noim'
'insertmode' 'im' boolean (default off)

global
Makes Vim work in a way that Insert mode is the default mode. Useful
if you want to use Vim as a modeless editor. Used for evim .
These Insert mode commands will be useful:
- Use the cursor keys to move around.
- Use CTRL-O to execute one Normal mode command i_CTRL-O . When
this is a mapping, it is executed as if 'insertmode' was off.
Normal mode remains active until the mapping is finished.

- Use CTRL-L to execute a number of Normal mode commands, then use
<Esc> to get back to Insert mode. Note that CTRL-L moves the cursor
left, like <Esc> does when 'insertmode' isn't set. i_CTRL-L

These items change when 'insertmode' is set:
- when starting to edit of a file, Vim goes to Insert mode.
- <Esc> in Insert mode is a no-op and beeps.
- <Esc> in Normal mode makes Vim go to Insert mode.
- CTRL-L in Insert mode is a command, it is not inserted.
- CTRL-Z in Insert mode suspends Vim, see CTRL-Z . i_CTRL-Z
However, when <Esc> is used inside a mapping, it behaves like
'insertmode' was not set. This was done to be able to use the same
mappings with 'insertmode' set or not set.
When executing commands with :normal 'insertmode' is not used.

NOTE: This option is reset when 'compatible' is set.

options.txt — 902

'isfname' 'isf'
'isfname' 'isf' string (default for Win32:

"@,48-57,/,\,.,-,_,+,,,#,$,%,{,},[,],:,@-@,!,~,="
for AMIGA: "@,48-57,/,.,-,_,+,,,$,:"
for VMS: "@,48-57,/,.,-,_,+,,,#,$,%,<,>,[,],:,;,~"
for OS/390: "@,240-249,/,.,-,_,+,,,#,$,%,~,="
otherwise: "@,48-57,/,.,-,_,+,,,#,$,%,~,=")

global
The characters specified by this option are included in file names and
path names. Filenames are used for commands like "gf", "[i" and in
the tags file. It is also used for "\f" in a pattern .
Multi-byte characters 256 and above are always included, only the
characters up to 255 are specified with this option.
For UTF-8 the characters 0xa0 to 0xff are included as well.
Think twice before adding white space to this option. Although a
space may appear inside a file name, the effect will be that Vim
doesn't know where a file name starts or ends when doing completion.
It most likely works better without a space in 'isfname'.

Note that on systems using a backslash as path separator, Vim tries to
do its best to make it work as you would expect. That is a bit
tricky, since Vi originally used the backslash to escape special
characters. Vim will not remove a backslash in front of a normal file
name character on these systems, but it will on Unix and alikes. The
'&' and '^' are not included by default, because these are special for
cmd.exe.

The format of this option is a list of parts, separated with commas.
Each part can be a single character number or a range. A range is two
character numbers with '-' in between. A character number can be a
decimal number between 0 and 255 or the ASCII character itself (does
not work for digits). Example:

"_,-,128-140,#-43" (include '_' and '-' and the range
128 to 140 and '#' to 43)

If a part starts with '^', the following character number or range
will be excluded from the option. The option is interpreted from left
to right. Put the excluded character after the range where it is
included. To include '^' itself use it as the last character of the
option or the end of a range. Example:

"^a-z,#,^" (exclude 'a' to 'z', include '#' and '^')
If the character is '@', all characters where isalpha() returns TRUE
are included. Normally these are the characters a to z and A to Z,
plus accented characters. To include '@' itself use "@-@". Examples:

"@,^a-z" All alphabetic characters, excluding lower
case ASCII letters.

"a-z,A-Z,@-@" All letters plus the '@' character.
A comma can be included by using it where a character number is
expected. Example:

"48-57,,,_" Digits, comma and underscore.
A comma can be excluded by prepending a '^'. Example:

" -~,^,,9" All characters from space to '~', excluding
comma, plus <Tab>.

See option-backslash about including spaces and backslashes.

'isident' 'isi'
'isident' 'isi' string (default for Win32:

"@,48-57,_,128-167,224-235"
otherwise: "@,48-57,_,192-255")

global
The characters given by this option are included in identifiers.

options.txt — 903

Identifiers are used in recognizing environment variables and after a
match of the 'define' option. It is also used for "\i" in a
pattern . See 'isfname' for a description of the format of this

option. For '@' only characters up to 255 are used.
Careful: If you change this option, it might break expanding
environment variables. E.g., when '/' is included and Vim tries to
expand "$HOME/.viminfo". Maybe you should change 'iskeyword' instead.

'iskeyword' 'isk'
'iskeyword' 'isk' string (Vim default for Win32:

"@,48-57,_,128-167,224-235"
otherwise: "@,48-57,_,192-255"

Vi default: "@,48-57,_")
local to buffer

Keywords are used in searching and recognizing with many commands:
"w", "*", "[i", etc. It is also used for "\k" in a pattern . See
'isfname' for a description of the format of this option. For '@'
characters above 255 check the "word" character class (any character
that is not white space or punctuation).
For C programs you could use "a-z,A-Z,48-57,_,.,-,>".
For a help file it is set to all non-blank printable characters except
'*', '"' and '|' (so that CTRL-] on a command finds the help for that
command).
When the 'lisp' option is on the '-' character is always included.
This option also influences syntax highlighting, unless the syntax
uses :syn-iskeyword .
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'isprint' 'isp'
'isprint' 'isp' string (default for Win32 and macOS:

"@,~-255"; otherwise: "@,161-255")
global

The characters given by this option are displayed directly on the
screen. It is also used for "\p" in a pattern . The characters from
space (ASCII 32) to '~' (ASCII 126) are always displayed directly,
even when they are not included in 'isprint' or excluded. See
'isfname' for a description of the format of this option.

Non-printable characters are displayed with two characters:
0 - 31 "^@" - "^_"

32 - 126 always single characters
127 "^?"

128 - 159 "~@" - "~_"
160 - 254 "| " - "|~"

255 "~?"
When 'encoding' is a Unicode one, illegal bytes from 128 to 255 are
displayed as <xx>, with the hexadecimal value of the byte.
When 'display' contains "uhex" all unprintable characters are
displayed as <xx>.
The SpecialKey highlighting will be used for unprintable characters.
hl-SpecialKey

Multi-byte characters 256 and above are always included, only the
characters up to 255 are specified with this option. When a character
is printable but it is not available in the current font, a
replacement character will be shown.
Unprintable and zero-width Unicode characters are displayed as <xxxx>.
There is no option to specify these characters.

options.txt — 904

'joinspaces' 'js' 'nojoinspaces' 'nojs'
'joinspaces' 'js' boolean (default on)

global
Insert two spaces after a '.', '?' and '!' with a join command.
When 'cpoptions' includes the 'j' flag, only do this after a '.'.
Otherwise only one space is inserted.
NOTE: This option is set when 'compatible' is set.

'jumpoptions' 'jop'
'jumpoptions' 'jop' string (default "")

global
List of words that change the behavior of the jumplist .

stack Make the jumplist behave like the tagstack.
Relative location of entries in the jumplist is
preserved at the cost of discarding subsequent entries
when navigating backwards in the jumplist and then
jumping to a location. jumplist-stack

'key'
'key' string (default "")

local to buffer
{only available when compiled with the +cryptv
feature}

The key that is used for encrypting and decrypting the current buffer.
See encryption and 'cryptmethod'.
Careful: Do not set the key value by hand, someone might see the typed
key. Use the :X command. But you can make 'key' empty:

:set key=
It is not possible to get the value of this option with ":set key" or
"echo &key". This is to avoid showing it to someone who shouldn't
know. It also means you cannot see it yourself once you have set it,
be careful not to make a typing error!
You also cannot use :set-= , :set+= , :set^= on this option to
prevent an attacker from guessing substrings in your key.
You can use "&key" in an expression to detect whether encryption is
enabled. When 'key' is set it returns "*****" (five stars).

'keymap' 'kmp' E544
'keymap' 'kmp' string (default "")

local to buffer
{only available when compiled with the +keymap
feature}

Name of a keyboard mapping. See mbyte-keymap .
Setting this option to a valid keymap name has the side effect of
setting 'iminsert' to one, so that the keymap becomes effective.
'imsearch' is also set to one, unless it was -1
Only normal file name characters can be used, "/*?[|<>" are illegal.

'keymodel' 'km'
'keymodel' 'km' string (default "")

global
List of comma-separated words, which enable special things that keys
can do. These values can be used:

startsel Using a shifted special key starts selection (either
Select mode or Visual mode, depending on "key" being
present in 'selectmode').

stopsel Using a not-shifted special key stops selection.
Special keys in this context are the cursor keys, <End>, <Home>,
<PageUp> and <PageDown>.
The 'keymodel' option is set by the :behave command.

options.txt — 905

'keyprotocol' 'kpc'
'keyprotocol' 'kpc' string (default: see below)

global
Specifies what keyboard protocol to use depending on the value of
'term'. The supported keyboard protocols names are:

none whatever the terminal uses
mok2 modifyOtherKeys level 2, as supported by xterm
kitty Kitty keyboard protocol, as supported by Kitty

The option value is a list of comma separated items. Each item has
a pattern that is matched against the 'term' option, a colon and the
protocol name to be used. To illustrate this, the default value would
be set with:

set keyprotocol=kitty:kitty,foot:kitty,wezterm:kitty,xterm:mok2

This means that when 'term' contains "kitty, "foot" or "wezterm"
somewhere then the "kitty" protocol is used. When 'term' contains
"xterm" somewhere, then the "mok2" protocol is used.

The first match is used, thus if you want to have "kitty" use the
kitty protocol, but "badkitty" not, then you should match "badkitty"
first and use the "none" value:

set keyprotocol=badkitty:none,kitty:kitty

The option is used after 'term' has been changed. First the termcap
entries are set, possibly using the builtin list, see builtin-terms .
Then this option is inspected and if there is a match and a protocol
is specified the following happens:

none Nothing, the regular t_TE and t_TI values remain

mok2 The t_TE value is changed to:
CSI >4;m disables modifyOtherKeys

The t_TI value is changed to:
CSI >4;2m enables modifyOtherKeys
CSI ?4m request the modifyOtherKeys state

kitty The t_TE value is changed to:
CSI >4;m disables modifyOtherKeys
CSI =0;1u disables the kitty keyboard protocol

The t_TI value is changed to:
CSI =1;1u enables the kitty keyboard protocol
CSI ?u request kitty keyboard protocol state
CSI >c request the termresponse

If you notice problems, such as characters being displayed that
disappear after `CTRL-L`, you might want to try making this option
empty. Then set the 'term' option to have it take effect:

set keyprotocol=
let &term = &term

'keywordprg' 'kp'
'keywordprg' 'kp' string (default "man" or "man -s", DOS: ":help",

VMS: "help")
global or local to buffer global-local

Program to use for the K command. Environment variables are
expanded :set_env . ":help" may be used to access the Vim internal
help. (Note that previously setting the global option to the empty
value did this, which is now deprecated.)

options.txt — 906

When the first character is ":", the command is invoked as a Vim
Ex command with [count] added as an argument if it is not zero.
When "man", "man -s" or an Ex command is used, Vim will automatically
translate a count for the "K" command and pass it as the first
argument. For "man -s" the "-s" is removed when there is no count.
See option-backslash about including spaces and backslashes.
Example:

:set keywordprg=man\ -s
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'langmap' 'lmap' E357 E358
'langmap' 'lmap' string (default "")

global
{only available when compiled with the +langmap
feature}

This option allows switching your keyboard into a special language
mode. When you are typing text in Insert mode the characters are
inserted directly. When in Normal mode the 'langmap' option takes
care of translating these special characters to the original meaning
of the key. This means you don't have to change the keyboard mode to
be able to execute Normal mode commands.
This is the opposite of the 'keymap' option, where characters are
mapped in Insert mode.
Also consider setting 'langremap' to off, to prevent 'langmap' from
applying to characters resulting from a mapping.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

Example (for Greek, in UTF-8): greek
:set langmap=�A,�B,�C,�D,�E,�F,�G,�H,�I,�J,�K,�L,�M,�N,�O,�P,QQ,�R,�S,�T,�U,�V,WW,�X,�Y,�Z,�a,�b,�c,�d,�e,�f,�g,�h,�i,�j,�k,�l,�m,�n,�o,πp,qq,�r,�s,�t,�u,�v,�w,�x,�y,�z

Example (exchanges meaning of z and y for commands):
:set langmap=zy,yz,ZY,YZ

The 'langmap' option is a list of parts, separated with commas. Each
part can be in one of two forms:
1. A list of pairs. Each pair is a "from" character immediately

followed by the "to" character. Examples: "aA", "aAbBcC".
2. A list of "from" characters, a semi-colon and a list of "to"

characters. Example: "abc;ABC"
Example: "aA,fgh;FGH,cCdDeE"
Special characters need to be preceded with a backslash. These are
";", ',', '"', '|' and backslash itself.

This will allow you to activate vim actions without having to switch
back and forth between the languages. Your language characters will
be understood as normal vim English characters (according to the
langmap mappings) in the following cases:
o Normal/Visual mode (commands, buffer/register names, user mappings)
o Insert/Replace Mode: Register names after CTRL-R
o Insert/Replace Mode: Mappings

Characters entered in Command-line mode will NOT be affected by
this option. Note that this option can be changed at any time
allowing to switch between mappings for different languages/encodings.
Use a mapping to avoid having to type it each time!

'langmenu' 'lm'
'langmenu' 'lm' string (default "")

global
{only available when compiled with the +menu and

options.txt — 907

+multi_lang features}
Language to use for menu translation. Tells which file is loaded
from the "lang" directory in 'runtimepath':

"lang/menu_" .. &langmenu .. ".vim"
(without the spaces). For example, to always use the Dutch menus, no
matter what $LANG is set to:

:set langmenu=nl_NL.ISO_8859-1
When 'langmenu' is empty, v:lang is used.
Only normal file name characters can be used, "/*?[|<>" are illegal.
If your $LANG is set to a non-English language but you do want to use
the English menus:

:set langmenu=none
This option must be set before loading menus, switching on filetype
detection or syntax highlighting. Once the menus are defined setting
this option has no effect. But you could do this:

:source $VIMRUNTIME/delmenu.vim
:set langmenu=de_DE.ISO_8859-1
:source $VIMRUNTIME/menu.vim

Warning: This deletes all menus that you defined yourself!

'langnoremap' 'lnr' 'nolangnoremap' 'nolnr'
'langnoremap' 'lnr' boolean (default off, set in defaults.vim)

global
{only available when compiled with the +langmap
feature}

This is just like 'langremap' but with the value inverted. It only
exists for backwards compatibility. When setting 'langremap' then
'langnoremap' is set to the inverted value, and the other way around.

'langremap' 'lrm' 'nolangremap' 'nolrm'
'langremap' 'lrm' boolean (default on, set to off in defaults.vim)

global
{only available when compiled with the +langmap
feature}

When off, setting 'langmap' does not apply to characters resulting from
a mapping. This basically means, if you noticed that setting
'langmap' disables some of your mappings, try resetting this option.
This option defaults to on for backwards compatibility. Set it off if
that works for you to avoid mappings to break.

'laststatus' 'ls'
'laststatus' 'ls' number (default 1)

global
The value of this option influences when the last window will have a
status line:

0: never
1: only if there are at least two windows
2: always

The screen looks nicer with a status line if you have several
windows, but it takes another screen line. status-line

'lazyredraw' 'lz' 'nolazyredraw' 'nolz'
'lazyredraw' 'lz' boolean (default off)

global
When this option is set, the screen will not be redrawn while
executing macros, registers and other commands that have not been
typed. Also, updating the window title is postponed. To force an
update use :redraw .
This may occasionally cause display errors. It is only meant to be set
temporarily when performing an operation where redrawing may cause

options.txt — 908

flickering or cause a slow down.

'linebreak' 'lbr' 'nolinebreak' 'nolbr'
'linebreak' 'lbr' boolean (default off)

local to window
{not available when compiled without the +linebreak
feature}

If on, Vim will wrap long lines at a character in 'breakat' rather
than at the last character that fits on the screen. Unlike
'wrapmargin' and 'textwidth', this does not insert <EOL>s in the file,
it only affects the way the file is displayed, not its contents.
If 'breakindent' is set, line is visually indented. Then, the value
of 'showbreak' is used to put in front of wrapped lines. This option
is not used when the 'wrap' option is off.
Note that <Tab> characters after an <EOL> are mostly not displayed
with the right amount of white space.

'lines' E593
'lines' number (default 24 or terminal height)

global
Number of lines of the Vim window.
Normally you don't need to set this. It is done automatically by the
terminal initialization code. Also see posix-screen-size .
When Vim is running in the GUI or in a resizable window, setting this
option will cause the window size to be changed. When you only want
to use the size for the GUI, put the command in your gvimrc file.
Vim limits the number of lines to what fits on the screen. You can
use this command to get the tallest window possible:

:set lines=999
Minimum value is 2, maximum value is 1000.
If you get fewer lines than expected, check the 'guiheadroom' option.
When you set this option and Vim is unable to change the physical
number of lines of the display, the display may be messed up.

'linespace' 'lsp'
'linespace' 'lsp' number (default 0, 1 for Win32 GUI)

global
{only in the GUI}

Number of pixel lines inserted between characters. Useful if the font
uses the full character cell height, making lines touch each other.
When non-zero there is room for underlining.
With some fonts there can be too much room between lines (to have
space for ascents and descents). Then it makes sense to set
'linespace' to a negative value. This may cause display problems
though!

'lisp' 'nolisp'
'lisp' boolean (default off)

local to buffer
Lisp mode: When <Enter> is typed in insert mode set the indent for
the next line to Lisp standards (well, sort of). Also happens with
"cc" or "S". 'autoindent' must also be on for this to work. The 'p'
flag in 'cpoptions' changes the method of indenting: Vi compatible or
better. Also see 'lispwords'.
The '-' character is included in keyword characters. Redefines the
"=" operator to use this same indentation algorithm rather than
calling an external program if 'equalprg' is empty.
This option is not used when 'paste' is set.

'lispoptions' 'lop'

options.txt — 909

'lispoptions' 'lop' string (default "")
local to buffer

Comma-separated list of items that influence the Lisp indenting when
enabled with the 'lisp' option. Currently only one item is
supported:

expr:1 use 'indentexpr' for Lisp indenting when it is set
expr:0 do not use 'indentexpr' for Lisp indenting (default)

Note that when using 'indentexpr' the `=` operator indents all the
lines, otherwise the first line is not indented (Vi-compatible).

'lispwords' 'lw'
'lispwords' 'lw' string (default is very long)

global or local to buffer global-local
Comma-separated list of words that influence the Lisp indenting when
enabled with the 'lisp' option.

'list' 'nolist'
'list' boolean (default off)

local to window
List mode: By default show tabs as CTRL-I is displayed, display $
after end of line. Useful to see the difference between tabs and
spaces and for trailing blanks. Further changed by the 'listchars'
option.

The cursor is displayed at the start of the space a Tab character
occupies, not at the end as usual in Normal mode. To get this cursor
position while displaying Tabs with spaces, use:

:set list lcs=tab:\ \

Note that list mode will also affect formatting (set with 'textwidth'
or 'wrapmargin') when 'cpoptions' includes 'L'. See 'listchars' for
changing the way tabs are displayed.

'listchars' 'lcs'
'listchars' 'lcs' string (default "eol:$")

global or local to window global-local
Strings to use in 'list' mode and for the :list command. It is a
comma-separated list of string settings. E1511

lcs-eol
eol:c Character to show at the end of each line. When

omitted, there is no extra character at the end of the
line.

lcs-tab
tab:xy[z] Two or three characters to be used to show a tab.

The third character is optional.

tab:xy The 'x' is always used, then 'y' as many times as will
fit. Thus "tab:>-" displays:

>
>-
>--
etc.

tab:xyz The 'z' is always used, then 'x' is prepended, and
then 'y' is used as many times as will fit. Thus
"tab:<->" displays:

>
<>
<->
<-->

options.txt — 910

etc.

When "tab:" is omitted, a tab is shown as ^I.
lcs-space

space:c Character to show for a space. When omitted, spaces
are left blank.

lcs-multispace
multispace:c...

One or more characters to use cyclically to show for
multiple consecutive spaces. Overrides the "space"
setting, except for single spaces. When omitted, the
"space" setting is used. For example,
`:set listchars=multispace:---+` shows ten consecutive
spaces as:

---+---+--
lcs-lead

lead:c Character to show for leading spaces. When omitted,
leading spaces are blank. Overrides the "space" and
"multispace" settings for leading spaces. You can
combine it with "tab:", for example:

:set listchars+=tab:>-,lead:.
lcs-leadmultispace

leadmultispace:c...
Like the lcs-multispace value, but for leading
spaces only. Also overrides lcs-lead for leading
multiple spaces.
`:set listchars=leadmultispace:---+` shows ten
consecutive leading spaces as:

---+---+--XXX
Where "XXX" denotes the first non-blank characters in
the line.

lcs-trail
trail:c Character to show for trailing spaces. When omitted,

trailing spaces are blank. Overrides the "space" and
"multispace" settings for trailing spaces.

lcs-extends
extends:c Character to show in the last column, when 'wrap' is

off and the line continues beyond the right of the
screen.

lcs-precedes
precedes:c Character to show in the first visible column of the

physical line, when there is text preceding the
character visible in the first column.

lcs-conceal
conceal:c Character to show in place of concealed text, when

'conceallevel' is set to 1.
lcs-nbsp

nbsp:c Character to show for a non-breakable space character
(0xA0 (160 decimal) and U+202F). Left blank when
omitted.

The characters ':' and ',' should not be used. UTF-8 characters can
be used when 'encoding' is "utf-8", otherwise only printable
characters are allowed. All characters must be single width. E1512

Each character can be specified as hex:
set listchars=eol:\\x24
set listchars=eol:\\u21b5
set listchars=eol:\\U000021b5

Note that a double backslash is used. The number of hex characters

options.txt — 911

must be exactly 2 for \\x, 4 for \\u and 8 for \\U.

Examples:
:set lcs=tab:>-,trail:-
:set lcs=tab:>-,eol:<,nbsp:%
:set lcs=extends:>,precedes:<

The "NonText" highlighting will be used for "eol", "extends" and
"precedes". "SpecialKey" will be used for "tab", "nbsp", "space",
"multispace", "lead" and "trail".
hl-NonText hl-SpecialKey

'lpl' 'nolpl' 'loadplugins' 'noloadplugins'
'loadplugins' 'lpl' boolean (default on)

global
When on the plugin scripts are loaded when starting up load-plugins .
This option can be reset in your vimrc file to disable the loading
of plugins.
Note that using the "-u NONE", "-u DEFAULTS" and "--noplugin" command
line arguments reset this option. See -u and --noplugin .

'luadll'
'luadll' string (default depends on the build)

global
{only available when compiled with the +lua/dyn
feature}

Specifies the name of the Lua shared library. The default is
DYNAMIC_LUA_DLL, which was specified at compile time.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'macatsui' 'nomacatsui'
'macatsui' boolean (default on)

global
{not supported}

No longer supported, as the Mac OS X GUI code was removed.

'magic' 'nomagic'
'magic' boolean (default on)

global
Changes the special characters that can be used in search patterns.
See pattern .
WARNING: Switching this option off most likely breaks plugins! That
is because many patterns assume it's on and will fail when it's off.
Only switch it off when working with old Vi scripts. In any other
situation write patterns that work when 'magic' is on. Include "\M"
when you want to /\M .
In Vim9 script the value of 'magic' is ignored, patterns behave like
it is always set.

'makeef' 'mef'
'makeef' 'mef' string (default: "")

global
{not available when compiled without the +quickfix
feature}

Name of the errorfile for the :make command (see :make_makeprg)
and the :grep command.
When it is empty, an internally generated temp file will be used.
When "##" is included, it is replaced by a number to make the name
unique. This makes sure that the ":make" command doesn't overwrite an

options.txt — 912

existing file.
NOT used for the ":cf" command. See 'errorfile' for that.
Environment variables are expanded :set_env .
See option-backslash about including spaces and backslashes.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'makeencoding' 'menc'
'makeencoding' 'menc' string (default "")

global or local to buffer global-local
Encoding used for reading the output of external commands. When empty,
encoding is not converted.
This is used for `:make`, `:lmake`, `:grep`, `:lgrep`, `:grepadd`,
`:lgrepadd`, `:cfile`, `:cgetfile`, `:caddfile`, `:lfile`, `:lgetfile`,
and `:laddfile`.

This would be mostly useful when you use MS-Windows and set 'encoding'
to "utf-8". If +iconv is enabled and GNU libiconv is used, setting
'makeencoding' to "char" has the same effect as setting to the system
locale encoding. Example:

:set encoding=utf-8
:set makeencoding=char " system locale is used

'makeprg' 'mp'
'makeprg' 'mp' string (default "make", VMS: "MMS")

global or local to buffer global-local
Program to use for the ":make" command. See :make_makeprg .
This option may contain '%' and '#' characters (see :_% and :_#),
which are expanded to the current and alternate file name. Use ::S
to escape file names in case they contain special characters.
Environment variables are expanded :set_env . See option-backslash
about including spaces and backslashes.
Note that a '|' must be escaped twice: once for ":set" and once for
the interpretation of a command. When you use a filter called
"myfilter" do it like this:

:set makeprg=gmake\ \\\|\ myfilter
The placeholder "$*" can be given (even multiple times) to specify
where the arguments will be included, for example:

:set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'matchpairs' 'mps'
'matchpairs' 'mps' string (default "(:),{:},[:]")

local to buffer
Characters that form pairs. The % command jumps from one to the
other.
Only character pairs are allowed that are different, thus you cannot
jump between two double quotes.
The characters must be separated by a colon.
The pairs must be separated by a comma. Example for including '<' and
'>' (for HTML):

:set mps+=<:>

A more exotic example, to jump between the '=' and ';' in an
assignment, useful for languages like C and Java:

:au FileType c,cpp,java set mps+==:;

For a more advanced way of using "%", see the matchit.vim plugin in
the $VIMRUNTIME/pack/dist/opt/matchit directory. add-local-help

options.txt — 913

'matchtime' 'mat'
'matchtime' 'mat' number (default 5)

global
Tenths of a second to show the matching paren, when 'showmatch' is
set. Note that this is not in milliseconds, like other options that
set a time. This is to be compatible with Nvi.

'maxcombine' 'mco'
'maxcombine' 'mco' number (default 2)

global
The maximum number of combining characters supported for displaying.
Only used when 'encoding' is "utf-8".
The default is OK for most languages. Hebrew may require 4.
Maximum value is 6.
Even when this option is set to 2 you can still edit text with more
combining characters, you just can't see them. Use g8 or ga .
See mbyte-combining .

'maxfuncdepth' 'mfd'
'maxfuncdepth' 'mfd' number (default 100)

global
{not available when compiled without the +eval
feature}

Maximum depth of function calls for user functions. This normally
catches endless recursion. When using a recursive function with
more depth, set 'maxfuncdepth' to a bigger number. But this will use
more memory, there is the danger of failing when memory is exhausted.
Increasing this limit above 200 also changes the maximum for Ex
command recursion, see E169 .
See also :function .
Also used for maximum depth of callback functions.

'maxmapdepth' 'mmd' E223
'maxmapdepth' 'mmd' number (default 1000)

global
Maximum number of times a mapping is done without resulting in a
character to be used. This normally catches endless mappings, like
":map x y" with ":map y x". It still does not catch ":map g wg",
because the 'w' is used before the next mapping is done. See also
key-mapping .

'maxmem' 'mm'
'maxmem' 'mm' number (default between 256 to 5120 (system

dependent) or half the amount of memory
available)

global
Maximum amount of memory (in Kbyte) to use for one buffer. When this
limit is reached allocating extra memory for a buffer will cause
other memory to be freed.
The maximum usable value is about 2000000. Use this to work without a
limit.
The value is ignored when 'swapfile' is off.
Also see 'maxmemtot'.

'maxmempattern' 'mmp'
'maxmempattern' 'mmp' number (default 1000)

global
Maximum amount of memory (in Kbyte) to use for pattern matching.
The maximum value is about 2000000. Use this to work without a limit.

options.txt — 914

E363
When Vim runs into the limit it gives an error message and mostly
behaves like CTRL-C was typed.
Running into the limit often means that the pattern is very
inefficient or too complex. This may already happen with the pattern
"\(.\)*" on a very long line. ".*" works much better.
Might also happen on redraw, when syntax rules try to match a complex
text structure.
Vim may run out of memory before hitting the 'maxmempattern' limit, in
which case you get an "Out of memory" error instead.

'maxmemtot' 'mmt'
'maxmemtot' 'mmt' number (default between 2048 and 10240 (system

dependent) or half the amount of memory
available)

global
Maximum amount of memory in Kbyte to use for all buffers together.
The maximum usable value is about 2000000 (2 Gbyte). Use this to work
without a limit.
On 64 bit machines higher values might work. But hey, do you really
need more than 2 Gbyte for text editing? Keep in mind that text is
stored in the swap file, one can edit files > 2 Gbyte anyway. We do
need the memory to store undo info.
Buffers with 'swapfile' off still count to the total amount of memory
used.
Also see 'maxmem'.

'menuitems' 'mis'
'menuitems' 'mis' number (default 25)

global
{not available when compiled without the +menu
feature}

Maximum number of items to use in a menu. Used for menus that are
generated from a list of items, e.g., the Buffers menu. Changing this
option has no direct effect, the menu must be refreshed first.

'mkspellmem' 'msm'
'mkspellmem' 'msm' string (default "460000,2000,500")

global
{not available when compiled without the +syntax
feature}

Parameters for :mkspell . This tunes when to start compressing the
word tree. Compression can be slow when there are many words, but
it's needed to avoid running out of memory. The amount of memory used
per word depends very much on how similar the words are, that's why
this tuning is complicated.

There are three numbers, separated by commas:
{start},{inc},{added}

For most languages the uncompressed word tree fits in memory. {start}
gives the amount of memory in Kbyte that can be used before any
compression is done. It should be a bit smaller than the amount of
memory that is available to Vim.

When going over the {start} limit the {inc} number specifies the
amount of memory in Kbyte that can be allocated before another
compression is done. A low number means compression is done after
less words are added, which is slow. A high number means more memory
will be allocated.

options.txt — 915

After doing compression, {added} times 1024 words can be added before
the {inc} limit is ignored and compression is done when any extra
amount of memory is needed. A low number means there is a smaller
chance of hitting the {inc} limit, less memory is used but it's
slower.

The languages for which these numbers are important are Italian and
Hungarian. The default works for when you have about 512 Mbyte. If
you have 1 Gbyte you could use:

:set mkspellmem=900000,3000,800
If you have less than 512 Mbyte :mkspell may fail for some
languages, no matter what you set 'mkspellmem' to.

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'modeline' 'ml' 'nomodeline' 'noml'
'modeline' 'ml' boolean (Vim default: on (off for root),

Vi default: off)
local to buffer

If 'modeline' is on 'modelines' gives the number of lines that is
checked for set commands. If 'modeline' is off or 'modelines' is zero
no lines are checked. See modeline .

'modelineexpr' 'mle' 'nomodelineexpr' 'nomle'
'modelineexpr' 'mle' boolean (default: off)

global
When on allow some options that are an expression to be set in the
modeline. Check the option for whether it is affected by
'modelineexpr'. Also see modeline .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'modelines' 'mls'
'modelines' 'mls' number (default 5)

global
If 'modeline' is on 'modelines' gives the number of lines that is
checked for set commands. If 'modeline' is off or 'modelines' is zero
no lines are checked. See modeline .
NOTE: 'modeline' is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'modifiable' 'ma' 'nomodifiable' 'noma'
E21

'modifiable' 'ma' boolean (default on)
local to buffer

When off the buffer contents cannot be changed. The 'fileformat' and
'fileencoding' options also can't be changed.
Can be reset on startup with the -M command line argument.

'modified' 'mod' 'nomodified' 'nomod'
'modified' 'mod' boolean (default off)

local to buffer local-noglobal
When on, the buffer is considered to be modified. This option is set
when:
1. A change was made to the text since it was last written. Using the

undo command to go back to the original text will reset the
option. But undoing changes that were made before writing the
buffer will set the option again, since the text is different from

options.txt — 916

when it was written.
2. 'fileformat' or 'fileencoding' is different from its original

value. The original value is set when the buffer is read or
written. A ":set nomodified" command also resets the original
values to the current values and the 'modified' option will be
reset.
Similarly for 'eol' and 'bomb'.

This option is not set when a change is made to the buffer as the
result of a BufNewFile, BufRead/BufReadPost, BufWritePost,
FileAppendPost or VimLeave autocommand event. See gzip-example for
an explanation.
When 'buftype' is "nowrite" or "nofile" this option may be set, but
will be ignored.
Note that the text may actually be the same, e.g. 'modified' is set
when using "rA" on an "A".

'more' 'nomore'
'more' boolean (Vim default: on, Vi default: off)

global
When on, listings pause when the whole screen is filled. You will get
the more-prompt . When this option is off there are no pauses, the
listing continues until finished.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'mouse'
'mouse' string (default "", "a" for GUI and Win32,

set to "a" or "nvi" in defaults.vim)
global

Enable the use of the mouse. Works for most terminals (xterm, Win32
win32-mouse , QNX pterm, *BSD console with sysmouse and Linux console

with gpm). For using the mouse in the GUI, see gui-mouse . The
mouse can be enabled for different modes:

n Normal mode and Terminal modes
v Visual mode
i Insert mode
c Command-line mode
h all previous modes when editing a help file
a all previous modes
r for hit-enter and more-prompt prompt

Normally you would enable the mouse in all five modes with:
:set mouse=a

If your terminal can't overrule the mouse events going to the
application, use:

:set mouse=nvi
Then you can press ":", select text for the system, and press Esc to go
back to Vim using the mouse events.
In defaults.vim "nvi" is used if the 'term' option is not matching
"xterm".

When the mouse is not enabled, the GUI will still use the mouse for
modeless selection. This doesn't move the text cursor.

See mouse-using . Also see 'clipboard' .

Note: When enabling the mouse in a terminal, copy/paste will use the
"* register if there is access to an X-server. The xterm handling of
the mouse buttons can still be used by keeping the shift key pressed.
Also see the 'clipboard' option.

options.txt — 917

'mousefocus' 'mousef' 'nomousefocus' 'nomousef'
'mousefocus' 'mousef' boolean (default off)

global
{only works in the GUI}

The window that the mouse pointer is on is automatically activated.
When changing the window layout or window focus in another way, the
mouse pointer is moved to the window with keyboard focus. Off is the
default because it makes using the pull down menus a little goofy, as
a pointer transit may activate a window unintentionally.
MS-Windows: Also see 'scrollfocus' for what window is scrolled when
using the mouse scroll wheel.

'mousehide' 'mh' 'nomousehide' 'nomh'
'mousehide' 'mh' boolean (default on)

global
{only works in the GUI}

When on, the mouse pointer is hidden when characters are typed.
The mouse pointer is restored when the mouse is moved.

'mousemodel' 'mousem'
'mousemodel' 'mousem' string (default "extend", "popup" for Win32)

global
Sets the model to use for the mouse. The name mostly specifies what
the right mouse button is used for:

extend Right mouse button extends a selection. This works
like in an xterm.

popup Right mouse button pops up a menu. The shifted left
mouse button extends a selection. This works like
with Microsoft Windows.

popup_setpos Like "popup", but the cursor will be moved to the
position where the mouse was clicked, and thus the
selected operation will act upon the clicked object.
If clicking inside a selection, that selection will
be acted upon, i.e. no cursor move. This implies of
course, that right clicking outside a selection will
end Visual mode.

Overview of what button does what for each model:
mouse extend popup(_setpos)
left click place cursor place cursor
left drag start selection start selection
shift-left search word extend selection
right click extend selection popup menu (place cursor)
right drag extend selection -
middle click paste paste

In the "popup" model the right mouse button produces a pop-up menu.
You need to define this first, see popup-menu .

Note that you can further refine the meaning of buttons with mappings.
See gui-mouse-mapping . But mappings are NOT used for modeless
selection (because that's handled in the GUI code directly).

The 'mousemodel' option is set by the :behave command.

'mousemoveevent' 'mousemev' 'nomousemoveevent' 'nomousemev'
'mousemoveevent' 'mousemev' boolean (default off)

global
{only works in the GUI}

When on, mouse move events are delivered to the input queue and are
available for mapping. The default, off, avoids the mouse movement

options.txt — 918

overhead except when needed. See gui-mouse-mapping .
Warning: Setting this option can make pending mappings to be aborted
when the mouse is moved.
Currently only works in the GUI, may be made to work in a terminal
later.

'mouseshape' 'mouses' E547
'mouseshape' 'mouses' string (default "i-r:beam,s:updown,sd:udsizing,

vs:leftright,vd:lrsizing,m:no,
ml:up-arrow,v:rightup-arrow")

global
{only available when compiled with the +mouseshape
feature}

This option tells Vim what the mouse pointer should look like in
different modes. The option is a comma-separated list of parts, much
like used for 'guicursor'. Each part consist of a mode/location-list
and an argument-list:

mode-list:shape,mode-list:shape,..
The mode-list is a dash separated list of these modes/locations:

In a normal window:
n Normal mode
v Visual mode
ve Visual mode with 'selection' "exclusive" (same as 'v',

if not specified)
o Operator-pending mode
i Insert mode
r Replace mode

Others:
c appending to the command-line
ci inserting in the command-line
cr replacing in the command-line
m at the 'Hit ENTER' or 'More' prompts
ml idem, but cursor in the last line
e any mode, pointer below last window
s any mode, pointer on a status line
sd any mode, while dragging a status line
vs any mode, pointer on a vertical separator line
vd any mode, while dragging a vertical separator line
a everywhere

The shape is one of the following:
avail name looks like
w x arrow Normal mouse pointer
w x blank no pointer at all (use with care!)
w x beam I-beam
w x updown up-down sizing arrows
w x leftright left-right sizing arrows
w x busy The system's usual busy pointer
w x no The system's usual 'no input' pointer

x udsizing indicates up-down resizing
x lrsizing indicates left-right resizing
x crosshair like a big thin +
x hand1 black hand
x hand2 white hand
x pencil what you write with
x question big ?
x rightup-arrow arrow pointing right-up

w x up-arrow arrow pointing up
x <number> any X11 pointer number (see X11/cursorfont.h)

options.txt — 919

The "avail" column contains a 'w' if the shape is available for Win32,
x for X11.
Any modes not specified or shapes not available use the normal mouse
pointer.

Example:
:set mouseshape=s:udsizing,m:no

will make the mouse turn to a sizing arrow over the status lines and
indicate no input when the hit-enter prompt is displayed (since
clicking the mouse has no effect in this state.)

'mousetime' 'mouset'
'mousetime' 'mouset' number (default 500)

global
Only for GUI, Win32 and Unix with xterm. Defines the maximum
time in msec between two mouse clicks for the second click to be
recognized as a multi click.

'mzquantum' 'mzq'
'mzquantum' 'mzq' number (default 100)

global
{not available when compiled without the +mzscheme
feature}

The number of milliseconds between polls for MzScheme threads.
Negative or zero value means no thread scheduling.
NOTE: This option is set to the Vim default value when 'compatible'
is reset.

'mzschemedll'
'mzschemedll' string (default depends on the build)

global
{only available when compiled with the +mzscheme/dyn
feature}

Specifies the name of the MzScheme shared library. The default is
DYNAMIC_MZSCH_DLL which was specified at compile time.
Environment variables are expanded :set_env .
The value must be set in the vimrc script or earlier. In the
startup, before the load-plugins step.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'mzschemegcdll'
'mzschemegcdll' string (default depends on the build)

global
{only available when compiled with the +mzscheme/dyn
feature}

Specifies the name of the MzScheme GC shared library. The default is
DYNAMIC_MZGC_DLL which was specified at compile time.
The value can be equal to 'mzschemedll' if it includes the GC code.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'nrformats' 'nf'
'nrformats' 'nf' string (default "bin,octal,hex",

set to "bin,hex" in defaults.vim)
local to buffer

This defines what bases Vim will consider for numbers when using the
CTRL-A and CTRL-X commands for adding to and subtracting from a number

options.txt — 920

respectively; see CTRL-A for more info on these commands.
alpha If included, single alphabetical characters will be

incremented or decremented. This is useful for a list with a
letter index a), b), etc. octal-nrformats

octal If included, numbers that start with a zero will be considered
to be octal. Example: Using CTRL-A on "007" results in "010".

hex If included, numbers starting with "0x" or "0X" will be
considered to be hexadecimal. Example: Using CTRL-X on
"0x100" results in "0x0ff".

bin If included, numbers starting with "0b" or "0B" will be
considered to be binary. Example: Using CTRL-X on
"0b1000" subtracts one, resulting in "0b0111".

unsigned If included, numbers are recognized as unsigned. Thus a
leading dash or negative sign won't be considered as part of
the number. Examples:

Using CTRL-X on "2020" in "9-2020" results in "9-2019"
(without "unsigned" it would become "9-2021").
Using CTRL-A on "2020" in "9-2020" results in "9-2021"
(without "unsigned" it would become "9-2019").
Using CTRL-X on "0" or CTRL-A on "18446744073709551615"
(2^64 - 1) has no effect, overflow is prevented.

Numbers which simply begin with a digit in the range 1-9 are always
considered decimal. This also happens for numbers that are not
recognized as octal or hex.

'number' 'nu' 'nonumber' 'nonu'
'number' 'nu' boolean (default off)

local to window
Print the line number in front of each line. When the 'n' option is
excluded from 'cpoptions' a wrapped line will not use the column of
line numbers (this is the default when 'compatible' isn't set).
The 'numberwidth' option can be used to set the room used for the line
number.
When a long, wrapped line doesn't start with the first character, '-'
characters are put before the number.
For highlighting see hl-LineNr , and hl-CursorLineNr , and the
:sign-define "numhl" argument.

number_relativenumber
The 'relativenumber' option changes the displayed number to be
relative to the cursor. Together with 'number' there are these
four combinations (cursor in line 3):

'nonu' 'nu' 'nonu' 'nu'
'nornu' 'nornu' 'rnu' 'rnu'

|apple | 1 apple | 2 apple | 2 apple
|pear | 2 pear | 1 pear | 1 pear
|nobody | 3 nobody | 0 nobody |3 nobody
|there | 4 there | 1 there | 1 there

'numberwidth' 'nuw'
'numberwidth' 'nuw' number (Vim default: 4 Vi default: 8)

local to window
{only available when compiled with the +linebreak
feature}

Minimal number of columns to use for the line number. Only relevant
when the 'number' or 'relativenumber' option is set or printing lines
with a line number. Since one space is always between the number and
the text, there is one less character for the number itself.
The value is the minimum width. A bigger width is used when needed to

options.txt — 921

fit the highest line number in the buffer respectively the number of
rows in the window, depending on whether 'number' or 'relativenumber'
is set. Thus with the Vim default of 4 there is room for a line number
up to 999. When the buffer has 1000 lines five columns will be used.
The minimum value is 1, the maximum value is 20.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'omnifunc' 'ofu'
'omnifunc' 'ofu' string (default: empty)

local to buffer
{not available when compiled without the +eval
feature}

This option specifies a function to be used for Insert mode omni
completion with CTRL-X CTRL-O. i_CTRL-X_CTRL-O
See complete-functions for an explanation of how the function is
invoked and what it should return. The value can be the name of a
function, a lambda or a Funcref . See option-value-function for
more information.
This option is usually set by a filetype plugin:
:filetype-plugin-on

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'opendevice' 'odev' 'noopendevice' 'noodev'
'opendevice' 'odev' boolean (default off)

global
{only for MS-Windows} E796

Enable reading and writing from devices. This may get Vim stuck on a
device that can be opened but doesn't actually do the I/O. Therefore
it is off by default.
Note that on MS-Windows editing "aux.h", "lpt1.txt" and the like also
result in editing a device.

'operatorfunc' 'opfunc'
'operatorfunc' 'opfunc' string (default: empty)

global
This option specifies a function to be called by the g@ operator.
See :map-operator for more info and an example. The value can be
the name of a function, a lambda or a Funcref . See
option-value-function for more information.

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'osfiletype' 'oft'
'osfiletype' 'oft' string (default: "")

local to buffer
This option was supported on RISC OS, which has been removed.

'packpath' 'pp'
'packpath' 'pp' string (default: see 'runtimepath')

Directories used to find packages. See packages .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'paragraphs' 'para'
'paragraphs' 'para' string (default "IPLPPPQPP TPHPLIPpLpItpplpipbp")

global
Specifies the nroff macros that separate paragraphs. These are pairs

options.txt — 922

of two letters (see object-motions).

'paste' 'nopaste'
'paste' boolean (default off)

global
Put Vim in Paste mode. This is useful if you want to cut or copy
some text from one window and paste it in Vim. This will avoid
unexpected effects.
Setting this option is useful when using Vim in a terminal, where Vim
cannot distinguish between typed text and pasted text. In the GUI, Vim
knows about pasting and will mostly do the right thing without 'paste'
being set. The same is true for a terminal where Vim handles the
mouse clicks itself.
This option is reset when starting the GUI. Thus if you set it in
your .vimrc it will work in a terminal, but not in the GUI. Setting
'paste' in the GUI has side effects: e.g., the Paste toolbar button
will no longer work in Insert mode, because it uses a mapping.
When the 'paste' option is switched on (also when it was already on):

- mapping in Insert mode and Command-line mode is disabled
- abbreviations are disabled
- 'autoindent' is reset
- 'expandtab' is reset
- 'hkmap' is reset
- 'revins' is reset
- 'ruler' is reset
- 'showmatch' is reset
- 'smarttab' is reset
- 'softtabstop' is set to 0
- 'textwidth' is set to 0
- 'wrapmargin' is set to 0
- 'varsofttabstop' is made empty

These options keep their value, but their effect is disabled:
- 'cindent'
- 'formatoptions' is used like it is empty
- 'indentexpr'
- 'lisp'
- 'smartindent'

NOTE: When you start editing another file while the 'paste' option is
on, settings from the modelines or autocommands may change the
settings again, causing trouble when pasting text. You might want to
set the 'paste' option again.
When the 'paste' option is reset the mentioned options are restored to
the value before the moment 'paste' was switched from off to on.
Resetting 'paste' before ever setting it does not have any effect.
Since mapping doesn't work while 'paste' is active, you need to use
the 'pastetoggle' option to toggle the 'paste' option with some key.

'pastetoggle' 'pt'
'pastetoggle' 'pt' string (default "")

global
When non-empty, specifies the key sequence that toggles the 'paste'
option. This is like specifying a mapping:

:map {keys} :set invpaste<CR>
Where {keys} is the value of 'pastetoggle'.
The difference is that it will work even when 'paste' is set.
'pastetoggle' works in Insert mode and Normal mode, but not in
Command-line mode.
Mappings are checked first, thus overrule 'pastetoggle'. However,
when 'paste' is on mappings are ignored in Insert mode, thus you can do
this:

options.txt — 923

:map <F10> :set paste<CR>
:map <F11> :set nopaste<CR>
:imap <F10> <C-O>:set paste<CR>
:imap <F11> <nop>
:set pastetoggle=<F11>

This will make <F10> start paste mode and <F11> stop paste mode.
Note that typing <F10> in paste mode inserts "<F10>", since in paste
mode everything is inserted literally, except the 'pastetoggle' key
sequence.
When the value has several bytes 'ttimeoutlen' applies.

'pex' 'patchexpr'
'patchexpr' 'pex' string (default "")

global
{not available when compiled without the +diff
feature}

Expression which is evaluated to apply a patch to a file and generate
the resulting new version of the file. See diff-patchexpr .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'patchmode' 'pm' E205 E206
'patchmode' 'pm' string (default "")

global
When non-empty the oldest version of a file is kept. This can be used
to keep the original version of a file if you are changing files in a
source distribution. Only the first time that a file is written a
copy of the original file will be kept. The name of the copy is the
name of the original file with the string in the 'patchmode' option
appended. This option should start with a dot. Use a string like
".orig" or ".org". 'backupdir' must not be empty for this to work
(Detail: The backup file is renamed to the patchmode file after the
new file has been successfully written, that's why it must be possible
to write a backup file). If there was no file to be backed up, an
empty file is created.
When the 'backupskip' pattern matches, a patchmode file is not made.
Using 'patchmode' for compressed files appends the extension at the
end (e.g., "file.gz.orig"), thus the resulting name isn't always
recognized as a compressed file.
Only normal file name characters can be used, "/*?[|<>" are illegal.

'path' 'pa' E343 E345 E347 E854
'path' 'pa' string (default on Unix: ".,/usr/include,,"

other systems: ".,,")
global or local to buffer global-local

This is a list of directories which will be searched when using the
gf , [f,]f, ^Wf, :find , :sfind , :tabfind and other commands,

provided that the file being searched for has a relative path (not
starting with "/", "./" or "../"). The directories in the 'path'
option may be relative or absolute.
- Use commas to separate directory names:

:set path=.,/usr/local/include,/usr/include
- Spaces can also be used to separate directory names (for backwards

compatibility with version 3.0). To have a space in a directory
name, precede it with an extra backslash, and escape the space:

:set path=.,/dir/with\\\ space
- To include a comma in a directory name precede it with an extra

backslash:
:set path=.,/dir/with\\,comma

- To search relative to the directory of the current file, use:

options.txt — 924

:set path=.
- To search in the current directory use an empty string between two

commas:
:set path=,,

- A directory name may end in a ':' or '/'.
- Environment variables are expanded :set_env .
- When using netrw.vim URLs can be used. For example, adding

"http://www.vim.org" will make ":find index.html" work.
- Search upwards and downwards in a directory tree using "*", "**" and

";". See file-searching for info and syntax.
- Careful with '\' characters, type two to get one in the option:

:set path=.,c:\\include
Or just use '/' instead:

:set path=.,c:/include
Don't forget "." or files won't even be found in the same directory as
the file!
The maximum length is limited. How much depends on the system, mostly
it is something like 256 or 1024 characters.
You can check if all the include files are found, using the value of
'path', see :checkpath .
The use of :set+= and :set-= is preferred when adding or removing
directories from the list. This avoids problems when a future version
uses another default. To remove the current directory use:

:set path-=
To add the current directory use:

:set path+=
To use an environment variable, you probably need to replace the
separator. Here is an example to append $INCL, in which directory
names are separated with a semi-colon:

:let &path = &path .. "," .. substitute($INCL, ';', ',', 'g')
Replace the ';' with a ':' or whatever separator is used. Note that
this doesn't work when $INCL contains a comma or white space.

'perldll'
'perldll' string (default depends on the build)

global
{only available when compiled with the +perl/dyn
feature}

Specifies the name of the Perl shared library. The default is
DYNAMIC_PERL_DLL, which was specified at compile time.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'preserveindent' 'pi' 'nopreserveindent' 'nopi'
'preserveindent' 'pi' boolean (default off)

local to buffer
When changing the indent of the current line, preserve as much of the
indent structure as possible. Normally the indent is replaced by a
series of tabs followed by spaces as required (unless 'expandtab' is
enabled, in which case only spaces are used). Enabling this option
means the indent will preserve as many existing characters as possible
for indenting, and only add additional tabs or spaces as required.
'expandtab' does not apply to the preserved white space, a Tab remains
a Tab.
NOTE: When using ">>" multiple times the resulting indent is a mix of
tabs and spaces. You might not like this.
NOTE: This option is reset when 'compatible' is set.
Also see 'copyindent'.
Use :retab to clean up white space.

options.txt — 925

http://www.vim.org

'previewheight' 'pvh'
'previewheight' 'pvh' number (default 12)

global
{not available when compiled without the +quickfix
feature}

Default height for a preview window. Used for :ptag and associated
commands. Used for CTRL-W_} when no count is given. Not used when
'previewpopup' is set.

'previewpopup' 'pvp'
'previewpopup' 'pvp' string (default empty)

global
{not available when compiled without the +textprop
or +quickfix feature}

When not empty a popup window is used for commands that would open a
preview window. See preview-popup .
Not used for the insert completion info, add "popup" to
'completeopt' for that.

'previewwindow' 'nopreviewwindow'
'pvw' 'nopvw' E590

'previewwindow' 'pvw' boolean (default off)
local to window local-noglobal
{not available when compiled without the +quickfix
feature}

Identifies the preview window. Only one window can have this option
set. It's normally not set directly, but by using one of the commands
:ptag , :pedit , etc.

'printdevice' 'pdev'
'printdevice' 'pdev' string (default empty)

global
{only available when compiled with the +printer
feature}

The name of the printer to be used for :hardcopy .
See pdev-option .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'printencoding' 'penc'
'printencoding' 'penc' string (default empty, except for some systems)

global
{only available when compiled with the +printer
and +postscript features}

Sets the character encoding used when printing.
See penc-option .

'printexpr' 'pexpr'
'printexpr' 'pexpr' string (default: see below)

global
{only available when compiled with the +printer
and +postscript features}

Expression used to print the PostScript produced with :hardcopy .
See pexpr-option .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'printfont' 'pfn'
'printfont' 'pfn' string (default "courier")

options.txt — 926

global
{only available when compiled with the +printer
feature}

The name of the font that will be used for :hardcopy .
See pfn-option .

'printheader' 'pheader'
'printheader' 'pheader' string (default "%<%f%h%m%=Page %N")

global
{only available when compiled with the +printer
feature}

The format of the header produced in :hardcopy output.
See pheader-option .

'printmbcharset' 'pmbcs'
'printmbcharset' 'pmbcs' string (default "")

global
{only available when compiled with the +printer
and +postscript features}

The CJK character set to be used for CJK output from :hardcopy .
See pmbcs-option .

'printmbfont' 'pmbfn'
'printmbfont' 'pmbfn' string (default "")

global
{only available when compiled with the +printer
and +postscript features}

List of font names to be used for CJK output from :hardcopy .
See pmbfn-option .

'printoptions' 'popt'
'printoptions' 'popt' string (default "")

global
{only available when compiled with |+printer| feature}

List of items that control the format of the output of :hardcopy .
See popt-option .

'prompt' 'noprompt'
'prompt' boolean (default on)

global
When on a ":" prompt is used in Ex mode.

'pumheight' 'ph'
'pumheight' 'ph' number (default 0)

global
Determines the maximum number of items to show in the popup menu for
Insert mode completion. When zero as much space as available is used.
ins-completion-menu .

'pumwidth' 'pw'
'pumwidth' 'pw' number (default 15)

global
Determines the minimum width to use for the popup menu for Insert mode
completion. ins-completion-menu .

'pythondll'
'pythondll' string (default depends on the build)

global
{only available when compiled with the +python/dyn
feature}

options.txt — 927

Specifies the name of the Python 2.x shared library. The default is
DYNAMIC_PYTHON_DLL, which was specified at compile time.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'pythonhome'
'pythonhome' string (default "")

global
{only available when compiled with the +python/dyn
feature}

Specifies the name of the Python 2.x home directory. When 'pythonhome'
and the PYTHONHOME environment variable are not set, PYTHON_HOME,
which was specified at compile time, will be used for the Python 2.x
home directory.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'pythonthreedll'
'pythonthreedll' string (default depends on the build)

global
{only available when compiled with the +python3/dyn
feature}

Specifies the name of the Python 3 shared library. The default is
DYNAMIC_PYTHON3_DLL, which was specified at compile time.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'pythonthreehome'
'pythonthreehome' string (default "")

global
{only available when compiled with the +python3/dyn
feature}

Specifies the name of the Python 3 home directory. When
'pythonthreehome' and the PYTHONHOME environment variable are not set,
PYTHON3_HOME, which was specified at compile time, will be used for
the Python 3 home directory.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'pyxversion' 'pyx'
'pyxversion' 'pyx' number (default depends on the build)

global
{only available when compiled with the +python or
the +python3 feature}

Specifies the python version used for pyx* functions and commands
python_x . The default value is as follows:

Compiled with Default
+python and +python3 0
only +python 2
only +python3 3

Available values are 0, 2 and 3.
If 'pyxversion' is 0, it is set to 2 or 3 after the first execution of
any python2/3 commands or functions. E.g. `:py` sets to 2, and `:py3`
sets to 3. `:pyx` sets it to 3 if Python 3 is available, otherwise sets

options.txt — 928

to 2 if Python 2 is available.
See also: has-pythonx

If Vim is compiled with only +python or +python3 setting
'pyxversion' has no effect. The pyx* functions and commands are
always the same as the compiled version.

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'quickfixtextfunc' 'qftf'
'quickfixtextfunc' 'qftf' string (default "")

global
{only available when compiled with the +quickfix
feature}

This option specifies a function to be used to get the text to display
in the quickfix and location list windows. This can be used to
customize the information displayed in the quickfix or location window
for each entry in the corresponding quickfix or location list. See
quickfix-window-function for an explanation of how to write the

function and an example. The value can be the name of a function, a
lambda or a Funcref . See option-value-function for more

information.

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'quoteescape' 'qe'
'quoteescape' 'qe' string (default "\")

local to buffer
The characters that are used to escape quotes in a string. Used for
objects like a', a" and a` a' .
When one of the characters in this option is found inside a string,
the following character will be skipped. The default value makes the
text "foo\"bar\\" considered to be one string.

'readonly' 'ro' 'noreadonly' 'noro'
'readonly' 'ro' boolean (default off)

local to buffer local-noglobal
If on, writes fail unless you use a '!'. Protects you from
accidentally overwriting a file. Default on when Vim is started
in read-only mode ("vim -R") or when the executable is called "view".
When using ":w!" the 'readonly' option is reset for the current
buffer, unless the 'Z' flag is in 'cpoptions'.
When using the ":view" command the 'readonly' option is set for the
newly edited buffer.
See 'modifiable' for disallowing changes to the buffer.

'redrawtime' 'rdt'
'redrawtime' 'rdt' number (default 2000)

global
{only available when compiled with the +reltime
feature}

The time in milliseconds for redrawing the display. This applies to
searching for patterns for 'hlsearch', :match highlighting and syntax
highlighting.
When redrawing takes more than this many milliseconds no further
matches will be highlighted.
For syntax highlighting the time applies per window. When over the
limit syntax highlighting is disabled until CTRL-L is used.

options.txt — 929

This is used to avoid that Vim hangs when using a very complicated
pattern.

'regexpengine' 're'
'regexpengine' 're' number (default 0)

global
This selects the default regexp engine. two-engines
The possible values are:

0 automatic selection
1 old engine
2 NFA engine

Note that when using the NFA engine and the pattern contains something
that is not supported the pattern will not match. This is only useful
for debugging the regexp engine.
Using automatic selection enables Vim to switch the engine, if the
default engine becomes too costly. E.g., when the NFA engine uses too
many states. This should prevent Vim from hanging on a combination of
a complex pattern with long text.

'relativenumber' 'rnu' 'norelativenumber' 'nornu'
'relativenumber' 'rnu' boolean (default off)

local to window
Show the line number relative to the line with the cursor in front of
each line. Relative line numbers help you use the count you can
precede some vertical motion commands (e.g. j k + -) with, without
having to calculate it yourself. Especially useful in combination with
other commands (e.g. y d c < > gq gw =).
When the 'n' option is excluded from 'cpoptions' a wrapped
line will not use the column of line numbers (this is the default when
'compatible' isn't set).
The 'numberwidth' option can be used to set the room used for the line
number.
When a long, wrapped line doesn't start with the first character, '-'
characters are put before the number.
See hl-LineNr and hl-CursorLineNr for the highlighting used for
the number.

The number in front of the cursor line also depends on the value of
'number', see number_relativenumber for all combinations of the two
options.

'remap' 'noremap'
'remap' boolean (default on)

global
Allows for mappings to work recursively. If you do not want this for
a single entry, use the :noremap[!] command.
NOTE: To avoid portability problems with Vim scripts, always keep
this option at the default "on". Only switch it off when working with
old Vi scripts.

'renderoptions' 'rop'
'renderoptions' 'rop' string (default: empty)

global
{only available when compiled with GUI and DIRECTX on
MS-Windows}

Select a text renderer and set its options. The options depend on the
renderer.

Syntax:
set rop=type:{renderer}(,{name}:{value})*

options.txt — 930

Currently, only one optional renderer is available.

render behavior
directx Vim will draw text using DirectX (DirectWrite). It makes

drawn glyphs more beautiful than default GDI.
It requires 'encoding' is "utf-8", and only works on
MS-Windows Vista or newer version.

Options:
name meaning type value
gamma gamma float 1.0 - 2.2 (maybe)
contrast enhancedContrast float (unknown)
level clearTypeLevel float (unknown)
geom pixelGeometry int 0 - 2 (see below)
renmode renderingMode int 0 - 6 (see below)
taamode textAntialiasMode int 0 - 3 (see below)
scrlines Scroll Lines int (deprecated)

See this URL for detail (except for scrlines):
https://msdn.microsoft.com/en-us/library/dd368190.aspx

For geom: structure of a device pixel.
0 - DWRITE_PIXEL_GEOMETRY_FLAT
1 - DWRITE_PIXEL_GEOMETRY_RGB
2 - DWRITE_PIXEL_GEOMETRY_BGR

See this URL for detail:
https://msdn.microsoft.com/en-us/library/dd368114.aspx

For renmode: method of rendering glyphs.
0 - DWRITE_RENDERING_MODE_DEFAULT
1 - DWRITE_RENDERING_MODE_ALIASED
2 - DWRITE_RENDERING_MODE_GDI_CLASSIC
3 - DWRITE_RENDERING_MODE_GDI_NATURAL
4 - DWRITE_RENDERING_MODE_NATURAL
5 - DWRITE_RENDERING_MODE_NATURAL_SYMMETRIC
6 - DWRITE_RENDERING_MODE_OUTLINE

See this URL for detail:
https://msdn.microsoft.com/en-us/library/dd368118.aspx

For taamode: antialiasing mode used for drawing text.
0 - D2D1_TEXT_ANTIALIAS_MODE_DEFAULT
1 - D2D1_TEXT_ANTIALIAS_MODE_CLEARTYPE
2 - D2D1_TEXT_ANTIALIAS_MODE_GRAYSCALE
3 - D2D1_TEXT_ANTIALIAS_MODE_ALIASED

See this URL for detail:
https://msdn.microsoft.com/en-us/library/dd368170.aspx

For scrlines:
This was used for optimizing scrolling behavior, however this
is now deprecated. If specified, it is simply ignored.

Example:
set encoding=utf-8
set gfn=Ricty_Diminished:h12
set rop=type:directx

options.txt — 931

https://msdn.microsoft.com/en-us/library/dd368190.aspx
https://msdn.microsoft.com/en-us/library/dd368114.aspx
https://msdn.microsoft.com/en-us/library/dd368118.aspx
https://msdn.microsoft.com/en-us/library/dd368170.aspx

If select a raster font (Courier, Terminal or FixedSys which
have ".fon" extension in file name) to 'guifont', it will be
drawn by GDI as a fallback.

NOTE: It is known that some fonts and options combination
causes trouble on drawing glyphs.

- 'renmode:5' and 'renmode:6' will not work with some
special made fonts (True-Type fonts which includes only
bitmap glyphs).

- 'taamode:3' will not work with some vector fonts.

NOTE: With this option, you can display colored emoji
(emoticon) in Windows 8.1 or later. To display colored emoji,
there are some conditions which you should notice.

- If your font includes non-colored emoji already, it will
be used.

- If your font doesn't have emoji, the system chooses an
alternative symbol font. On Windows 10, "Segoe UI Emoji"
will be used.

- When this alternative font didn't have fixed width glyph,
emoji might be rendered beyond the bounding box of drawing
cell.

Other render types are currently not supported.

'report'
'report' number (default 2)

global
Threshold for reporting number of lines changed. When the number of
changed lines is more than 'report' a message will be given for most
":" commands. If you want it always, set 'report' to 0.
For the ":substitute" command the number of substitutions is used
instead of the number of lines.

'restorescreen' 'rs' 'norestorescreen' 'nors'
'restorescreen' 'rs' boolean (default on)

global
{only in MS-Windows console version}

When set, the screen contents is restored when exiting Vim. This also
happens when executing external commands.

For non-Windows Vim: You can set or reset the 't_ti' and 't_te'
options in your .vimrc. To disable restoring:

set t_ti= t_te=
To enable restoring (for an xterm):

set t_ti=^[7^[[r^[[?47h t_te=^[[?47l^[8
(Where ^[is an <Esc>, type CTRL-V <Esc> to insert it)

'revins' 'ri' 'norevins' 'nori'
'revins' 'ri' boolean (default off)

global
{only available when compiled with the +rightleft
feature}

Inserting characters in Insert mode will work backwards. See "typing
backwards" ins-reverse . This option can be toggled with the CTRL-_
command in Insert mode, when 'allowrevins' is set.
NOTE: This option is reset when 'compatible' is set.
This option is reset when 'paste' is set and restored when 'paste' is

options.txt — 932

reset.

'rightleft' 'rl' 'norightleft' 'norl'
'rightleft' 'rl' boolean (default off)

local to window
{only available when compiled with the +rightleft
feature}

When on, display orientation becomes right-to-left, i.e., characters
that are stored in the file appear from the right to the left.
Using this option, it is possible to edit files for languages that
are written from the right to the left such as Hebrew and Arabic.
This option is per window, so it is possible to edit mixed files
simultaneously, or to view the same file in both ways (this is
useful whenever you have a mixed text file with both right-to-left
and left-to-right strings so that both sets are displayed properly
in different windows). Also see rileft.txt .

'rightleftcmd' 'rlc'
'rightleftcmd' 'rlc' string (default "search")

local to window
{only available when compiled with the +rightleft
feature}

Each word in this option enables the command line editing to work in
right-to-left mode for a group of commands:

search "/" and "?" commands

This is useful for languages such as Hebrew, Arabic and Farsi.
The 'rightleft' option must be set for 'rightleftcmd' to take effect.

'rubydll'
'rubydll' string (default: depends on the build)

global
{only available when compiled with the +ruby/dyn
feature}

Specifies the name of the Ruby shared library. The default is
DYNAMIC_RUBY_DLL, which was specified at compile time.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'ruler' 'ru' 'noruler' 'noru'
'ruler' 'ru' boolean (default off, set in defaults.vim)

global
Show the line and column number of the cursor position, separated by a
comma. When there is room, the relative position of the displayed
text in the file is shown on the far right:

Top first line is visible
Bot last line is visible
All first and last line are visible
45% relative position in the file

If 'rulerformat' is set, it will determine the contents of the ruler.
Each window has its own ruler. If a window has a status line, the
ruler is shown there. Otherwise it is shown in the last line of the
screen. If the statusline is given by 'statusline' (i.e. not empty),
this option takes precedence over 'ruler' and 'rulerformat'.
If the number of characters displayed is different from the number of
bytes in the text (e.g., for a TAB or a multibyte character), both
the text column (byte number) and the screen column are shown,
separated with a dash.

options.txt — 933

For an empty line "0-1" is shown.
For an empty buffer the line number will also be zero: "0,0-1".
This option is reset when 'paste' is set and restored when 'paste' is
reset.
If you don't want to see the ruler all the time but want to know where
you are, use "g CTRL-G" g_CTRL-G .
NOTE: This option is reset when 'compatible' is set.

'rulerformat' 'ruf'
'rulerformat' 'ruf' string (default empty)

global
{not available when compiled without the +statusline
feature}

When this option is not empty, it determines the content of the ruler
string, as displayed for the 'ruler' option.
The format of this option is like that of 'statusline'.
This option cannot be set in a modeline when 'modelineexpr' is off.

The default ruler width is 17 characters. To make the ruler 15
characters wide, put "%15(" at the start and "%)" at the end.
Example:

:set rulerformat=%15(%c%V\ %p%%%)

'runtimepath' 'rtp' vimfiles
'runtimepath' 'rtp' string (default:

Unix: "$HOME/.vim,
$VIM/vimfiles,
$VIMRUNTIME,
$VIM/vimfiles/after,
$HOME/.vim/after"

Amiga: "home:vimfiles,
$VIM/vimfiles,
$VIMRUNTIME,
$VIM/vimfiles/after,
home:vimfiles/after"

MS-Windows: "$HOME/vimfiles,
$VIM/vimfiles,
$VIMRUNTIME,
$VIM/vimfiles/after,
$HOME/vimfiles/after"

macOS: "$VIM:vimfiles,
$VIMRUNTIME,
$VIM:vimfiles:after"

Haiku: "$BE_USER_SETTINGS/vim,
$VIM/vimfiles,
$VIMRUNTIME,
$VIM/vimfiles/after,
$BE_USER_SETTINGS/vim/after"

VMS: "sys$login:vimfiles,
$VIM/vimfiles,
$VIMRUNTIME,
$VIM/vimfiles/after,
sys$login:vimfiles/after")

global
This is a list of directories which will be searched for runtime
files:

filetype.vim filetypes by file name new-filetype
scripts.vim filetypes by file contents new-filetype-scripts
autoload/ automatically loaded scripts autoload-functions
colors/ color scheme files :colorscheme

options.txt — 934

compiler/ compiler files :compiler
doc/ documentation write-local-help
ftplugin/ filetype plugins write-filetype-plugin
import/ files that are found by `:import`
indent/ indent scripts indent-expression
keymap/ key mapping files mbyte-keymap
lang/ menu translations :menutrans
menu.vim GUI menus menu.vim
pack/ packages :packadd
plugin/ plugin scripts write-plugin
print/ files for printing postscript-print-encoding
spell/ spell checking files spell
syntax/ syntax files mysyntaxfile
tutor/ files for vimtutor tutor

And any other file searched for with the :runtime command.

The defaults for most systems are setup to search five locations:
1. In your home directory, for your personal preferences.
2. In a system-wide Vim directory, for preferences from the system

administrator.
3. In $VIMRUNTIME, for files distributed with Vim.

after-directory
4. In the "after" directory in the system-wide Vim directory. This is

for the system administrator to overrule or add to the distributed
defaults (rarely needed)

5. In the "after" directory in your home directory. This is for
personal preferences to overrule or add to the distributed defaults
or system-wide settings (rarely needed).

More entries are added when using packages . If it gets very long
then `:set rtp` will be truncated, use `:echo &rtp` to see the full
string.

Note that, unlike 'path', no wildcards like "**" are allowed. Normal
wildcards are allowed, but can significantly slow down searching for
runtime files. For speed, use as few items as possible and avoid
wildcards.
See :runtime .
Example:

:set runtimepath=~/vimruntime,/mygroup/vim,$VIMRUNTIME
This will use the directory "~/vimruntime" first (containing your
personal Vim runtime files), then "/mygroup/vim" (shared between a
group of people) and finally "$VIMRUNTIME" (the distributed runtime
files).
You probably should always include $VIMRUNTIME somewhere, to use the
distributed runtime files. You can put a directory before $VIMRUNTIME
to find files which replace a distributed runtime files. You can put
a directory after $VIMRUNTIME to find files which add to distributed
runtime files.
When Vim is started with --clean the home directory entries are not
included.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'scroll' 'scr'
'scroll' 'scr' number (default: half the window height)

local to window local-noglobal
Number of lines to scroll with CTRL-U and CTRL-D commands. Will be
set to half the number of lines in the window when the window size

options.txt — 935

changes. This may happen when enabling the status-line or
'tabline' option after setting the 'scroll' option.
If you give a count to the CTRL-U or CTRL-D command it will
be used as the new value for 'scroll'. Reset to half the window
height with ":set scroll=0".

'scrollbind' 'scb' 'noscrollbind' 'noscb'
'scrollbind' 'scb' boolean (default off)

local to window
See also scroll-binding . When this option is set, scrolling the
current window also scrolls other scrollbind windows (windows that
also have this option set). This option is useful for viewing the
differences between two versions of a file, see 'diff'.
See 'scrollopt' for options that determine how this option should be
interpreted.
This option is mostly reset when splitting a window to edit another
file. This means that ":split | edit file" results in two windows
with scroll-binding, but ":split file" does not.

'scrollfocus' 'scf' 'noscrollfocus' 'noscf'
'scrollfocus' 'scf' boolean (default off)

global
{only for MS-Windows GUI}

When using the scroll wheel and this option is set, the window under
the mouse pointer is scrolled. With this option off the current
window is scrolled.
Systems other than MS-Windows always behave like this option is on.

'scrolljump' 'sj'
'scrolljump' 'sj' number (default 1)

global
Minimal number of lines to scroll when the cursor gets off the
screen (e.g., with "j"). Not used for scroll commands (e.g., CTRL-E,
CTRL-D). Useful if your terminal scrolls very slowly.
When set to a negative number from -1 to -100 this is used as the
percentage of the window height. Thus -50 scrolls half the window
height.
NOTE: This option is set to 1 when 'compatible' is set.

'scrolloff' 'so'
'scrolloff' 'so' number (default 0, set to 5 in defaults.vim)

global or local to window global-local
Minimal number of screen lines to keep above and below the cursor.
This will make some context visible around where you are working. If
you set it to a very large value (999) the cursor line will always be
in the middle of the window (except at the start or end of the file or
when long lines wrap).
After using the local value, go back the global value with one of
these two:

setlocal scrolloff<
setlocal scrolloff=-1

For scrolling horizontally see 'sidescrolloff'.
NOTE: This option is set to 0 when 'compatible' is set.

'scrollopt' 'sbo'
'scrollopt' 'sbo' string (default "ver,jump")

global
This is a comma-separated list of words that specifies how
'scrollbind' windows should behave. 'sbo' stands for ScrollBind
Options.

options.txt — 936

The following words are available:
ver Bind vertical scrolling for 'scrollbind' windows
hor Bind horizontal scrolling for 'scrollbind' windows
jump Applies to the offset between two windows for vertical

scrolling. This offset is the difference in the first
displayed line of the bound windows. When moving
around in a window, another 'scrollbind' window may
reach a position before the start or after the end of
the buffer. The offset is not changed though, when
moving back the 'scrollbind' window will try to scroll
to the desired position when possible.
When now making that window the current one, two
things can be done with the relative offset:
1. When "jump" is not included, the relative offset is

adjusted for the scroll position in the new current
window. When going back to the other window, the
new relative offset will be used.

2. When "jump" is included, the other windows are
scrolled to keep the same relative offset. When
going back to the other window, it still uses the
same relative offset.

Also see scroll-binding .
When 'diff' mode is active there always is vertical scroll binding,
even when "ver" isn't there.

'sections' 'sect'
'sections' 'sect' string (default "SHNHH HUnhsh")

global
Specifies the nroff macros that separate sections. These are pairs of
two letters (See object-motions). The default makes a section start
at the nroff macros ".SH", ".NH", ".H", ".HU", ".nh" and ".sh".

'secure' 'nosecure' E523
'secure' boolean (default off)

global
When on, ":autocmd", shell and write commands are not allowed in
".vimrc" and ".exrc" in the current directory and map commands are
displayed. Switch it off only if you know that you will not run into
problems, or when the 'exrc' option is off. On Unix this option is
only used if the ".vimrc" or ".exrc" is not owned by you. This can be
dangerous if the systems allows users to do a "chown". You better set
'secure' at the end of your ~/.vimrc then.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'selection' 'sel'
'selection' 'sel' string (default "inclusive")

global
This option defines the behavior of the selection. It is only used
in Visual and Select mode.
Possible values:

value past line inclusive
old no yes
inclusive yes yes
exclusive yes no

"past line" means that the cursor is allowed to be positioned one
character past the line.
"inclusive" means that the last character of the selection is included
in an operation. For example, when "x" is used to delete the
selection.

options.txt — 937

When "old" is used and 'virtualedit' allows the cursor to move past
the end of line the line break still isn't included.
Note that when "exclusive" is used and selecting from the end
backwards, you cannot include the last character of a line, when
starting in Normal mode and 'virtualedit' empty.

The 'selection' option is set by the :behave command.

'selectmode' 'slm'
'selectmode' 'slm' string (default "")

global
This is a comma-separated list of words, which specifies when to start
Select mode instead of Visual mode, when a selection is started.
Possible values:

mouse when using the mouse
key when using shifted special keys
cmd when using "v", "V" or CTRL-V

See Select-mode .
The 'selectmode' option is set by the :behave command.

'sessionoptions' 'ssop'
'sessionoptions' 'ssop' string (default: "blank,buffers,curdir,folds,

help,options,tabpages,winsize,terminal")
global
{not available when compiled without the +mksession
feature}

Changes the effect of the :mksession command. It is a comma
separated list of words. Each word enables saving and restoring
something:

word save and restore
blank empty windows
buffers hidden and unloaded buffers, not just those in windows
curdir the current directory
folds manually created folds, opened/closed folds and local

fold options
globals global variables that start with an uppercase letter

and contain at least one lowercase letter. Only
String and Number types are stored.

help the help window
localoptions options and mappings local to a window or buffer (not

global values for local options)
options all options and mappings (also global values for local

options)
skiprtp exclude 'runtimepath' and 'packpath' from the options
resize size of the Vim window: 'lines' and 'columns'
sesdir the directory in which the session file is located

will become the current directory (useful with
projects accessed over a network from different
systems)

slash backslashes in file names replaced with forward
slashes

tabpages all tab pages; without this only the current tab page
is restored, so that you can make a session for each
tab page separately

terminal include terminal windows where the command can be
restored

unix with Unix end-of-line format (single <NL>), even when
on Windows or DOS

winpos position of the whole Vim window
winsize window sizes

options.txt — 938

Don't include both "curdir" and "sesdir".
When neither "curdir" nor "sesdir" is included, file names are stored
with absolute paths.
If you leave out "options" many things won't work well after restoring
the session.
"slash" and "unix" are useful on Windows when sharing session files
with Unix. The Unix version of Vim cannot source dos format scripts,
but the Windows version of Vim can source unix format scripts.

'shell' 'sh' E91
'shell' 'sh' string (default $SHELL or "sh", Win32: "cmd.exe")

global
Name of the shell to use for ! and :! commands. When changing the
value also check these options: 'shelltype', 'shellpipe', 'shellslash'
'shellredir', 'shellquote', 'shellxquote' and 'shellcmdflag'.
It is allowed to give an argument to the command, e.g. "csh -f".
See option-backslash about including spaces and backslashes.
Environment variables are expanded :set_env .

In restricted-mode shell commands will not be possible. This mode
is used if the value of $SHELL ends in "false" or "nologin".

If the name of the shell contains a space, you need to enclose it in
quotes and escape the space. Example with quotes:

:set shell=\"c:\program\ files\unix\sh.exe\"\ -f
Note the backslash before each quote (to avoid starting a comment) and
each space (to avoid ending the option value). Also note that the
"-f" is not inside the quotes, because it is not part of the command
name. Vim automagically recognizes the backslashes that are path
separators.
Example with escaped space (Vim will do this when initializing the
option from $SHELL):

:set shell=/bin/with\\\ space/sh
The resulting value of 'shell' is "/bin/with\ space/sh", two
backslashes are consumed by `:set`.

Under MS-Windows, when the executable ends in ".com" it must be
included. Thus setting the shell to "command.com" or "4dos.com"
works, but "command" and "4dos" do not work for all commands (e.g.,
filtering).
For unknown reasons, when using "4dos.com" the current directory is
changed to "C:\". To avoid this set 'shell' like this:

:set shell=command.com\ /c\ 4dos
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shellcmdflag' 'shcf'
'shellcmdflag' 'shcf' string (default: "-c";

Win32, when 'shell' contains "powershell":
"-Command", or when it does not contain "sh"
somewhere: "/c")

global
Flag passed to the shell to execute "!" and ":!" commands; e.g.,
"bash.exe -c ls", "powershell.exe -Command dir", or "cmd.exe /c dir".
For MS-Windows, the default is set according to the value of 'shell',
to reduce the need to set this option by the user.
On Unix it can have more than one flag. Each white space separated
part is passed as an argument to the shell command.
See option-backslash about including spaces and backslashes.

options.txt — 939

Also see dos-shell and dos-powershell for MS-Windows.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shellpipe' 'sp'
'shellpipe' 'sp' string (default ">", ">%s 2>&1", "| tee", "|& tee"

"2>&1| tee", or
"2>&1 | Out-File -Encoding default")

global
{not available when compiled without the +quickfix
feature}

String to be used to put the output of the ":make" command in the
error file. See also :make_makeprg . See option-backslash about
including spaces and backslashes.
The name of the temporary file can be represented by "%s" if necessary
(the file name is appended automatically if no %s appears in the value
of this option).
For the Amiga the default is ">". For MS-Windows using powershell the
default is "2>&1 | Out-File -Encoding default", otherwise the default
is ">%s 2>&1". The output is directly saved in a file and not echoed
to the screen.
For Unix the default is "| tee". The stdout of the compiler is saved
in a file and echoed to the screen. If the 'shell' option is "csh" or
"tcsh" after initializations, the default becomes "|& tee". If the
'shell' option is "sh", "ksh", "mksh", "pdksh", "zsh", "zsh-beta",
"bash", "fish", "ash" or "dash" the default becomes "2>&1| tee". This
means that stderr is also included. Before using the 'shell' option a
path is removed, thus "/bin/sh" uses "sh".
For Unix and MS-Windows, when the 'shell' option is "pwsh" the default
becomes ">%s 2>&1" and the output is not echoed to the screen.
The initialization of this option is done after reading the ".vimrc"
and the other initializations, so that when the 'shell' option is set
there, the 'shellpipe' option changes automatically, unless it was
explicitly set before.
When 'shellpipe' is set to an empty string, no redirection of the
":make" output will be done. This is useful if you use a 'makeprg'
that writes to 'makeef' by itself. If you want no piping, but do
want to include the 'makeef', set 'shellpipe' to a single space.
Don't forget to precede the space with a backslash: ":set sp=\ ".
In the future pipes may be used for filtering and this option will
become obsolete (at least for Unix).
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shellquote' 'shq'
'shellquote' 'shq' string (default: "")

global
Quoting character(s), put around the command passed to the shell, for
the "!" and ":!" commands. The redirection is kept outside of the
quoting. See 'shellxquote' to include the redirection. It's
probably not useful to set both options.
This is an empty string by default. Only known to be useful for
third-party shells on MS-Windows-like systems, such as the MKS Korn
Shell or bash, where it should be "\"". See dos-shell .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shellredir' 'srr'
'shellredir' 'srr' string (default ">", ">&", ">%s 2>&1", or

"2>&1 | Out-File -Encoding default")

options.txt — 940

global
String to be used to put the output of a filter command in a temporary
file. See also :! . See option-backslash about including spaces
and backslashes.
The name of the temporary file can be represented by "%s" if necessary
(the file name is appended automatically if no %s appears in the value
of this option).
The default is ">". For Unix, if the 'shell' option is "csh" or
"tcsh" during initializations, the default becomes ">&". If the
'shell' option is "sh", "ksh", "mksh", "pdksh", "zsh", "zsh-beta",
"bash", "fish", or "pwsh", the default becomes ">%s 2>&1". This means
that stderr is also included. For Win32, the Unix checks are done and
additionally "cmd" is checked for, which makes the default ">%s 2>&1",
and "powershell" is checked for which makes the default
"2>&1 | Out-File -Encoding default" (see dos-powershell). Also, the
same names with ".exe" appended are checked for.
The initialization of this option is done after reading the ".vimrc"
and the other initializations, so that when the 'shell' option is set
there, the 'shellredir' option changes automatically unless it was
explicitly set before.
In the future pipes may be used for filtering and this option will
become obsolete (at least for Unix).
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shellslash' 'ssl' 'noshellslash' 'nossl'
'shellslash' 'ssl' boolean (default off)

global
{only for MS-Windows}

When set, a forward slash is used when expanding file names. This is
useful when a Unix-like shell is used instead of cmd.exe, pwsh.exe, or
powershell.exe. Backward slashes can still be typed, but they are
changed to forward slashes by Vim.
Note that setting or resetting this option has no effect for some
existing file names, thus this option needs to be set before opening
any file for best results. This might change in the future.
'shellslash' only works when a backslash can be used as a path
separator. To test if this is so use:

if exists('+shellslash')
Also see 'completeslash'.

'shelltemp' 'stmp' 'noshelltemp' 'nostmp'
'shelltemp' 'stmp' boolean (Vi default off, Vim default on)

global
When on, use temp files for shell commands. When off use a pipe.
When using a pipe is not possible temp files are used anyway.
Currently a pipe is only supported on Unix and MS-Windows 2K and
later. You can check it with:

:if has("filterpipe")
The advantage of using a pipe is that nobody can read the temp file
and the 'shell' command does not need to support redirection.
The advantage of using a temp file is that the file type and encoding
can be detected.
The FilterReadPre , FilterReadPost and FilterWritePre ,
FilterWritePost autocommands event are not triggered when

'shelltemp' is off.
The `system()` function does not respect this option and always uses
temp files.
NOTE: This option is set to the Vim default value when 'compatible'
is reset.

options.txt — 941

'shelltype' 'st'
'shelltype' 'st' number (default 0)

global
{only for the Amiga}

On the Amiga this option influences the way how the commands work
which use a shell.
0 and 1: always use the shell
2 and 3: use the shell only to filter lines
4 and 5: use shell only for ':sh' command
When not using the shell, the command is executed directly.

0 and 2: use "shell 'shellcmdflag' cmd" to start external commands
1 and 3: use "shell cmd" to start external commands

'shellxescape' 'sxe'
'shellxescape' 'sxe' string (default: "";

for MS-Windows: "\"&|<>()@^")
global

When 'shellxquote' is set to "(" then the characters listed in this
option will be escaped with a '^' character. This makes it possible
to execute most external commands with cmd.exe.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shellxquote' 'sxq'
'shellxquote' 'sxq' string (default: "";

for Win32, when 'shell' is cmd.exe: "("
for Win32, when 'shell' is
powershell.exe: "\""
for Win32, when 'shell' contains "sh"
somewhere: "\""
for Unix, when using system(): "\"")

global
Quoting character(s), put around the command passed to the shell, for
the "!" and ":!" commands. Includes the redirection. See
'shellquote' to exclude the redirection. It's probably not useful
to set both options.
When the value is '(' then ')' is appended. When the value is '"('
then ')"' is appended.
When the value is '(' then also see 'shellxescape'.
This is an empty string by default on most systems, but is known to be
useful for on Win32 version, either for cmd.exe, powershell.exe, or
pwsh.exe which automatically strips off the first and last quote on a
command, or 3rd-party shells such as the MKS Korn Shell or bash, where
it should be "\"". The default is adjusted according the value of
'shell', to reduce the need to set this option by the user. See
dos-shell .

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'shiftround' 'sr' 'noshiftround' 'nosr'
'shiftround' 'sr' boolean (default off)

global
Round indent to multiple of 'shiftwidth'. Applies to > and <
commands. CTRL-T and CTRL-D in Insert mode always round the indent to
a multiple of 'shiftwidth' (this is Vi compatible).
NOTE: This option is reset when 'compatible' is set.

'shiftwidth' 'sw'

options.txt — 942

'shiftwidth' 'sw' number (default 8)
local to buffer

Number of spaces to use for each step of (auto)indent. Used for
'cindent' , >> , << , etc.

When zero the 'tabstop' value will be used. Use the shiftwidth()
function to get the effective shiftwidth value.

'shortmess' 'shm'
'shortmess' 'shm' string (Vim default "filnxtToOS", Vi default: "S",

POSIX default: "AS")
global E1336

This option helps to avoid all the hit-enter prompts caused by file
messages, for example with CTRL-G, and to avoid some other messages.
It is a list of flags:
flag meaning when present
f use "(3 of 5)" instead of "(file 3 of 5)" shm-f
i use "[noeol]" instead of "[Incomplete last line]" shm-i
l use "999L, 888B" instead of "999 lines, 888 bytes" shm-l
m use "[+]" instead of "[Modified]" shm-m
n use "[New]" instead of "[New File]" shm-n
r use "[RO]" instead of "[readonly]" shm-r
w use "[w]" instead of "written" for file write message shm-w

and "[a]" instead of "appended" for ':w >> file' command
x use "[dos]" instead of "[dos format]", "[unix]" shm-x

instead of "[unix format]" and "[mac]" instead of "[mac
format]"

a all of the above abbreviations shm-a

o overwrite message for writing a file with subsequent shm-o
message for reading a file (useful for ":wn" or when
'autowrite' on)

O message for reading a file overwrites any previous shm-O
message; also for quickfix message (e.g., ":cn")

s don't give "search hit BOTTOM, continuing at TOP" or shm-s
"search hit TOP, continuing at BOTTOM" messages; when using
the search count do not show "W" after the count message (see
S below)

t truncate file message at the start if it is too long shm-t
to fit on the command-line, "<" will appear in the left most
column; ignored in Ex mode

T truncate other messages in the middle if they are too shm-T
long to fit on the command line; "..." will appear in the
middle; ignored in Ex mode

W don't give "written" or "[w]" when writing a file shm-W
A don't give the "ATTENTION" message when an existing shm-A

swap file is found
I don't give the intro message when starting Vim, shm-I

see :intro
c don't give ins-completion-menu messages; for shm-c

example, "-- XXX completion (YYY)", "match 1 of 2", "The only
match", "Pattern not found", "Back at original", etc.

C don't give messages while scanning for ins-completion shm-C
items, for instance "scanning tags"

q use "recording" instead of "recording @a" shm-q
F don't give the file info when editing a file, like shm-F

`:silent` was used for the command; note that this also
affects messages from autocommands and 'autoread' reloading

S do not show search count message when searching, e.g. shm-S
"[1/5]"

options.txt — 943

This gives you the opportunity to avoid that a change between buffers
requires you to hit <Enter>, but still gives as useful a message as
possible for the space available. To get the whole message that you
would have got with 'shm' empty, use ":file!"
Useful values:

shm= No abbreviation of message.
shm=a Abbreviation, but no loss of information.
shm=at Abbreviation, and truncate message when necessary.

NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'shortname' 'sn' 'noshortname' 'nosn'
'shortname' 'sn' boolean (default off)

local to buffer
Filenames are assumed to be 8 characters plus one extension of 3
characters. Multiple dots in file names are not allowed. When this
option is on, dots in file names are replaced with underscores when
adding an extension (".~" or ".swp"). This option is useful
when editing files on an MS-DOS compatible filesystem, e.g., messydos
or crossdos.

'showbreak' 'sbr' E595
'showbreak' 'sbr' string (default "")

global or local to window global-local
{not available when compiled without the +linebreak
feature}

String to put at the start of lines that have been wrapped. Useful
values are "> " or "+++ ":

:set showbreak=>\
Note the backslash to escape the trailing space. It's easier like
this:

:let &showbreak = '+++ '
Only printable single-cell characters are allowed, excluding <Tab> and
comma (in a future version the comma might be used to separate the
part that is shown at the end and at the start of a line).
The characters are highlighted according to the '@' flag in
'highlight'.
Note that tabs after the showbreak will be displayed differently.
If you want the 'showbreak' to appear in between line numbers, add the
"n" flag to 'cpoptions'.
A window-local value overrules a global value. If the global value is
set and you want no value in the current window use NONE:

:setlocal showbreak=NONE

'showcmd' 'sc' 'noshowcmd' 'nosc'
'showcmd' 'sc' boolean (Vim default: on, off for Unix,

Vi default: off, set in defaults.vim)
global

Show (partial) command in the last line of the screen. Set this
option off if your terminal is slow.
In Visual mode the size of the selected area is shown:
- When selecting characters within a line, the number of characters.
If the number of bytes is different it is also displayed: "2-6"
means two characters and six bytes.

- When selecting more than one line, the number of lines.
- When selecting a block, the size in screen characters:

{lines}x{columns}.
This information can be displayed in an alternative location using the
'showcmdloc' option.

options.txt — 944

NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'showcmdloc' 'sloc'
'showcmdloc' 'sloc' string (default "last")

global
This option can be used to display the (partially) entered command in
another location. Possible values are:

last Last line of the screen (default).
statusline Status line of the current window.
tabline First line of the screen if 'showtabline' is enabled.

Setting this option to "statusline" or "tabline" means that these will
be redrawn whenever the command changes, which can be on every key
pressed.
The %S 'statusline' item can be used in 'statusline' or 'tabline' to
place the text. Without a custom 'statusline' or 'tabline' it will be
displayed in a convenient location.

'showfulltag' 'sft' 'noshowfulltag' 'nosft'
'showfulltag' 'sft' boolean (default off)

global
When completing a word in insert mode (see ins-completion) from the
tags file, show both the tag name and a tidied-up form of the search
pattern (if there is one) as possible matches. Thus, if you have
matched a C function, you can see a template for what arguments are
required (coding style permitting).
Note that this doesn't work well together with having "longest" in
'completeopt', because the completion from the search pattern may not
match the typed text.

'showmatch' 'sm' 'noshowmatch' 'nosm'
'showmatch' 'sm' boolean (default off)

global
When a bracket is inserted, briefly jump to the matching one. The
jump is only done if the match can be seen on the screen. The time to
show the match can be set with 'matchtime'.
A Beep is given if there is no match (no matter if the match can be
seen or not).
This option is reset when 'paste' is set and restored when 'paste' is
reset.
When the 'm' flag is not included in 'cpoptions', typing a character
will immediately move the cursor back to where it belongs.
See the "sm" field in 'guicursor' for setting the cursor shape and
blinking when showing the match.
The 'matchpairs' option can be used to specify the characters to show
matches for. 'rightleft' and 'revins' are used to look for opposite
matches.
Also see the matchparen plugin for highlighting the match when moving
around pi_paren.txt .
Note: Use of the short form is rated PG.

'showmode' 'smd' 'noshowmode' 'nosmd'
'showmode' 'smd' boolean (Vim default: on, Vi default: off)

global
If in Insert, Replace or Visual mode put a message on the last line.
Use the 'M' flag in 'highlight' to set the type of highlighting for
this message.
When XIM may be used the message will include "XIM". But this
doesn't mean XIM is really active, especially when 'imactivatekey' is
not set.

options.txt — 945

NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'showtabline' 'stal'
'showtabline' 'stal' number (default 1)

global
The value of this option specifies when the line with tab page labels
will be displayed:

0: never
1: only if there are at least two tab pages
2: always

This is both for the GUI and non-GUI implementation of the tab pages
line.
See tab-page for more information about tab pages.

'sidescroll' 'ss'
'sidescroll' 'ss' number (default 0)

global
The minimal number of columns to scroll horizontally. Used only when
the 'wrap' option is off and the cursor is moved off of the screen.
When it is zero the cursor will be put in the middle of the screen.
When using a slow terminal set it to a large number or 0. When using
a fast terminal use a small number or 1. Not used for "zh" and "zl"
commands.

'sidescrolloff' 'siso'
'sidescrolloff' 'siso' number (default 0)

global or local to window global-local
The minimal number of screen columns to keep to the left and to the
right of the cursor if 'nowrap' is set. Setting this option to a
value greater than 0 while having 'sidescroll' also at a non-zero
value makes some context visible in the line you are scrolling in
horizontally (except at beginning of the line). Setting this option
to a large value (like 999) has the effect of keeping the cursor
horizontally centered in the window, as long as one does not come too
close to the beginning of the line.
After using the local value, go back the global value with one of
these two:

setlocal sidescrolloff<
setlocal sidescrolloff=-1

NOTE: This option is set to 0 when 'compatible' is set.

Example: Try this together with 'sidescroll' and 'listchars' as
in the following example to never allow the cursor to move
onto the "extends" character:

:set nowrap sidescroll=1 listchars=extends:>,precedes:<
:set sidescrolloff=1

'signcolumn' 'scl'
'signcolumn' 'scl' string (default "auto")

local to window
{not available when compiled without the +signs
feature}

Whether or not to draw the signcolumn. Valid values are:
"auto" only when there is a sign to display
"no" never
"yes" always
"number" display signs in the 'number' column. If the number

column is not present, then behaves like "auto".

options.txt — 946

'smartcase' 'scs' 'nosmartcase' 'noscs'
'smartcase' 'scs' boolean (default off)

global
Override the 'ignorecase' option if the search pattern contains upper
case characters. Only used when the search pattern is typed and
'ignorecase' option is on. Used for the commands "/", "?", "n", "N",
":g" and ":s". Not used for "*", "#", "gd", tag search, etc. After
"*" and "#" you can make 'smartcase' used by doing a "/" command,
recalling the search pattern from history and hitting <Enter>.
NOTE: This option is reset when 'compatible' is set.

'smartindent' 'si' 'nosmartindent' 'nosi'
'smartindent' 'si' boolean (default off)

local to buffer
Do smart autoindenting when starting a new line. Works for C-like
programs, but can also be used for other languages. 'cindent' does
something like this, works better in most cases, but is more strict,
see C-indenting . When 'cindent' is on or 'indentexpr' is set,
setting 'si' has no effect. 'indentexpr' is a more advanced
alternative.
Normally 'autoindent' should also be on when using 'smartindent'.
An indent is automatically inserted:
- After a line ending in '{'.
- After a line starting with a keyword from 'cinwords'.
- Before a line starting with '}' (only with the "O" command).
When typing '}' as the first character in a new line, that line is
given the same indent as the matching '{'.
When typing '#' as the first character in a new line, the indent for
that line is removed, the '#' is put in the first column. The indent
is restored for the next line. If you don't want this, use this
mapping: ":inoremap # X^H#", where ^H is entered with CTRL-V CTRL-H.
When using the ">>" command, lines starting with '#' are not shifted
right.
NOTE: This option is reset when 'compatible' is set.
This option is reset when 'paste' is set and restored when 'paste' is
reset.

'smarttab' 'sta' 'nosmarttab' 'nosta'
'smarttab' 'sta' boolean (default off)

global
When on, a <Tab> in front of a line inserts blanks according to
'shiftwidth'. 'tabstop' or 'softtabstop' is used in other places. A
<BS> will delete a 'shiftwidth' worth of space at the start of the
line.
When off, a <Tab> always inserts blanks according to 'tabstop' or
'softtabstop'. 'shiftwidth' is only used for shifting text left or
right shift-left-right .
What gets inserted (a <Tab> or spaces) depends on the 'expandtab'
option. Also see ins-expandtab . When 'expandtab' is not set, the
number of spaces is minimized by using <Tab>s.
This option is reset when 'paste' is set and restored when 'paste' is
reset.
NOTE: This option is reset when 'compatible' is set.

'smoothscroll' 'sms' 'nosmoothscroll' 'nosms'
'smoothscroll' 'sms' boolean (default off)

local to window
Scrolling works with screen lines. When 'wrap' is set and the first
line in the window wraps part of it may not be visible, as if it is

options.txt — 947

above the window. "<<<" is displayed at the start of the first line,
highlighted with hl-NonText .
You may also want to add "lastline" to the 'display' option to show as
much of the last line as possible.
NOTE: only partly implemented, currently works with CTRL-E, CTRL-Y
and scrolling with the mouse.

'softtabstop' 'sts'
'softtabstop' 'sts' number (default 0)

local to buffer
Number of spaces that a <Tab> counts for while performing editing
operations, like inserting a <Tab> or using <BS>. It "feels" like
<Tab>s are being inserted, while in fact a mix of spaces and <Tab>s is
used. This is useful to keep the 'ts' setting at its standard value
of 8, while being able to edit like it is set to 'sts'. However,
commands like "x" still work on the actual characters.
When 'sts' is zero, this feature is off.
When 'sts' is negative, the value of 'shiftwidth' is used.
'softtabstop' is set to 0 when the 'paste' option is set and restored
when 'paste' is reset.
See also ins-expandtab . When 'expandtab' is not set, the number of
spaces is minimized by using <Tab>s.
The 'L' flag in 'cpoptions' changes how tabs are used when 'list' is
set.
NOTE: This option is set to 0 when 'compatible' is set.

If Vim is compiled with the +vartabs feature then the value of
'softtabstop' will be ignored if 'varsofttabstop' is set to
anything other than an empty string.

'spell' 'nospell'
'spell' boolean (default off)

local to window
{not available when compiled without the +syntax
feature}

When on spell checking will be done. See spell .
The languages are specified with 'spelllang'.

'spellcapcheck' 'spc'
'spellcapcheck' 'spc' string (default "[.?!]_[\])'" \t]\+")

local to buffer
{not available when compiled without the +syntax
feature}

Pattern to locate the end of a sentence. The following word will be
checked to start with a capital letter. If not then it is highlighted
with SpellCap hl-SpellCap (unless the word is also badly spelled).
When this check is not wanted make this option empty.
Only used when 'spell' is set.
Be careful with special characters, see option-backslash about
including spaces and backslashes.
To set this option automatically depending on the language, see
set-spc-auto .

'spellfile' 'spf'
'spellfile' 'spf' string (default empty)

local to buffer
{not available when compiled without the +syntax
feature}

Name of the word list file where words are added for the zg and zw
commands. It must end in ".{encoding}.add". You need to include the

options.txt — 948

path, otherwise the file is placed in the current directory.
The path may include characters from 'isfname', space, comma and '@'.

E765
It may also be a comma-separated list of names. A count before the
zg and zw commands can be used to access each. This allows using

a personal word list file and a project word list file.
When a word is added while this option is empty Vim will set it for
you: Using the first directory in 'runtimepath' that is writable. If
there is no "spell" directory yet it will be created. For the file
name the first language name that appears in 'spelllang' is used,
ignoring the region.
The resulting ".spl" file will be used for spell checking, it does not
have to appear in 'spelllang'.
Normally one file is used for all regions, but you can add the region
name if you want to. However, it will then only be used when
'spellfile' is set to it, for entries in 'spelllang' only files
without region name will be found.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'spelllang' 'spl'
'spelllang' 'spl' string (default "en")

local to buffer
{not available when compiled without the +syntax
feature}

A comma-separated list of word list names. When the 'spell' option is
on spellchecking will be done for these languages. Example:

set spelllang=en_us,nl,medical
This means US English, Dutch and medical words are recognized. Words
that are not recognized will be highlighted.
The word list name must consist of alphanumeric characters, a dash or
an underscore. It should not include a comma or dot. Using a dash is
recommended to separate the two letter language name from a
specification. Thus "en-rare" is used for rare English words.
A region name must come last and have the form "_xx", where "xx" is
the two-letter, lower case region name. You can use more than one
region by listing them: "en_us,en_ca" supports both US and Canadian
English, but not words specific for Australia, New Zealand or Great
Britain. (Note: currently en_au and en_nz dictionaries are older than
en_ca, en_gb and en_us).
If the name "cjk" is included East Asian characters are excluded from
spell checking. This is useful when editing text that also has Asian
words.
Note that the "medical" dictionary does not exist, it is just an
example of a longer name.

E757
As a special case the name of a .spl file can be given as-is. The
first "_xx" in the name is removed and used as the region name
(_xx is an underscore, two letters and followed by a non-letter).
This is mainly for testing purposes. You must make sure the correct
encoding is used, Vim doesn't check it.
When 'encoding' is set the word lists are reloaded. Thus it's a good
idea to set 'spelllang' after setting 'encoding' to avoid loading the
files twice.
How the related spell files are found is explained here: spell-load .

If the spellfile.vim plugin is active and you use a language name
for which Vim cannot find the .spl file in 'runtimepath' the plugin
will ask you if you want to download the file.

options.txt — 949

After this option has been set successfully, Vim will source the files
"spell/LANG.vim" in 'runtimepath'. "LANG" is the value of 'spelllang'
up to the first character that is not an ASCII letter or number and
not a dash. Also see set-spc-auto .

'spelloptions' 'spo'
'spelloptions' 'spo' string (default "")

local to buffer
{not available when compiled without the +syntax
feature}

A comma-separated list of options for spell checking:
camel When a word is CamelCased, assume "Cased" is a

separate word: every upper-case character in a word
that comes after a lower case character indicates the
start of a new word.

'spellsuggest' 'sps'
'spellsuggest' 'sps' string (default "best")

global
{not available when compiled without the +syntax
feature}

Methods used for spelling suggestions. Both for the z= command and
the spellsuggest() function. This is a comma-separated list of
items:

best Internal method that works best for English. Finds
changes like "fast" and uses a bit of sound-a-like
scoring to improve the ordering.

double Internal method that uses two methods and mixes the
results. The first method is "fast", the other method
computes how much the suggestion sounds like the bad
word. That only works when the language specifies
sound folding. Can be slow and doesn't always give
better results.

fast Internal method that only checks for simple changes:
character inserts/deletes/swaps. Works well for
simple typing mistakes.

{number} The maximum number of suggestions listed for z= .
Not used for spellsuggest() . The number of
suggestions is never more than the value of 'lines'
minus two.

timeout:{millisec} Limit the time searching for suggestions to
{millisec} milli seconds. Applies to the following
methods. When omitted the limit is 5000. When
negative there is no limit. {only works when built
with the +reltime feature}

file:{filename} Read file {filename}, which must have two columns,
separated by a slash. The first column contains the
bad word, the second column the suggested good word.
Example:

theribal/terrible
Use this for common mistakes that do not appear at the
top of the suggestion list with the internal methods.
Lines without a slash are ignored, use this for
comments.

options.txt — 950

The word in the second column must be correct,
otherwise it will not be used. Add the word to an
".add" file if it is currently flagged as a spelling
mistake.
The file is used for all languages.

expr:{expr} Evaluate expression {expr}. Use a function to avoid
trouble with spaces. Best is to call a function
without arguments, see expr-option-function .
v:val holds the badly spelled word. The expression

must evaluate to a List of Lists, each with a
suggestion and a score.
Example:

[['the', 33], ['that', 44]]
Set 'verbose' and use z= to see the scores that the
internal methods use. A lower score is better.
This may invoke spellsuggest() if you temporarily
set 'spellsuggest' to exclude the "expr:" part.
Errors are silently ignored, unless you set the
'verbose' option to a non-zero value.

Only one of "best", "double" or "fast" may be used. The others may
appear several times in any order. Example:

:set sps=file:~/.vim/sugg,best,expr:MySuggest()

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'splitbelow' 'sb' 'nosplitbelow' 'nosb'
'splitbelow' 'sb' boolean (default off)

global
When on, splitting a window will put the new window below the current
one. :split

'splitkeep' 'spk'
'splitkeep' 'spk' string (default "cursor")

global
The value of this option determines the scroll behavior when opening,
closing or resizing horizontal splits.

Possible values are:
cursor Keep the same relative cursor position.
screen Keep the text on the same screen line.
topline Keep the topline the same.

For the "screen" and "topline" values, the cursor position will be
changed when necessary. In this case, the jumplist will be populated
with the previous cursor position. For "screen", the text cannot always
be kept on the same screen line when 'wrap' is enabled.

'splitright' 'spr' 'nosplitright' 'nospr'
'splitright' 'spr' boolean (default off)

global
When on, splitting a window will put the new window right of the
current one. :vsplit

'startofline' 'sol' 'nostartofline' 'nosol'
'startofline' 'sol' boolean (default on)

global
When "on" the commands listed below move the cursor to the first

options.txt — 951

non-blank of the line. When off the cursor is kept in the same column
(if possible). This applies to the commands:
- CTRL-D, CTRL-U, CTRL-B, CTRL-F, "G", "H", "M", "L", "gg"
- "d", "<<" and ">>" with a linewise operator
- "%" with a count
- buffer changing commands (CTRL-^, :bnext, :bNext, etc.)
- Ex commands that only has a line number, e.g., ":25" or ":+".
In case of buffer changing commands the cursor is placed at the column
where it was the last time the buffer was edited.
NOTE: This option is set when 'compatible' is set.

'statusline' 'stl' E540 E542
'statusline' 'stl' string (default empty)

global or local to window global-local
{not available when compiled without the +statusline
feature}

When non-empty, this option determines the content of the status line.
Also see status-line .

The option consists of printf style '%' items interspersed with
normal text. Each status line item is of the form:

%-0{minwid}.{maxwid}{item}
All fields except the {item} are optional. A single percent sign can
be given as "%%".

When the option starts with "%!" then it is used as an expression,
evaluated and the result is used as the option value. Example:

:set statusline=%!MyStatusLine()
The g:statusline_winid variable will be set to the window-ID of the
window that the status line belongs to.
The result can contain %{} items that will be evaluated too.
Note that the "%!" expression is evaluated in the context of the
current window and buffer, while %{} items are evaluated in the
context of the window that the statusline belongs to.

When there is error while evaluating the option then it will be made
empty to avoid further errors. Otherwise screen updating would loop.
When the result contains unprintable characters the result is
unpredictable.

Note that the only effect of 'ruler' when this option is set (and
'laststatus' is 2) is controlling the output of CTRL-G .

field meaning
- Left justify the item. The default is right justified

when minwid is larger than the length of the item.
0 Leading zeroes in numeric items. Overridden by '-'.
minwid Minimum width of the item, padding as set by '-' & '0'.

Value must be 50 or less.
maxwid Maximum width of the item. Truncation occurs with a '<'

on the left for text items. Numeric items will be
shifted down to maxwid-2 digits followed by '>'number
where number is the amount of missing digits, much like
an exponential notation.

item A one letter code as described below.

Following is a description of the possible statusline items. The
second character in "item" is the type:

N for number
S for string

options.txt — 952

F for flags as described below
- not applicable

item meaning
f S Path to the file in the buffer, as typed or relative to current

directory.
F S Full path to the file in the buffer.
t S File name (tail) of file in the buffer.
m F Modified flag, text is "[+]"; "[-]" if 'modifiable' is off.
M F Modified flag, text is ",+" or ",-".
r F Readonly flag, text is "[RO]".
R F Readonly flag, text is ",RO".
h F Help buffer flag, text is "[help]".
H F Help buffer flag, text is ",HLP".
w F Preview window flag, text is "[Preview]".
W F Preview window flag, text is ",PRV".
y F Type of file in the buffer, e.g., "[vim]". See 'filetype'.
Y F Type of file in the buffer, e.g., ",VIM". See 'filetype'.
q S "[Quickfix List]", "[Location List]" or empty.
k S Value of "b:keymap_name" or 'keymap' when :lmap mappings are

being used: "<keymap>"
n N Buffer number.
b N Value of character under cursor.
B N As above, in hexadecimal.
o N Byte number in file of byte under cursor, first byte is 1.

Mnemonic: Offset from start of file (with one added)
{not available when compiled without |+byte_offset| feature}

O N As above, in hexadecimal.
N N Printer page number. (Only works in the 'printheader' option.)
l N Line number.
L N Number of lines in buffer.
c N Column number (byte index).
v N Virtual column number (screen column).
V N Virtual column number as -{num}. Not displayed if equal to 'c'.
p N Percentage through file in lines as in CTRL-G .
P S Percentage through file of displayed window. This is like the

percentage described for 'ruler'. Always 3 in length, unless
translated.

S S 'showcmd' content, see 'showcmdloc'.
a S Argument list status as in default title. ({current} of {max})

Empty if the argument file count is zero or one.
{ NF Evaluate expression between '%{' and '}' and substitute result.

Note that there is no '%' before the closing '}'. The
expression cannot contain a '}' character, call a function to
work around that. See stl-%{ below.

{% - This is almost same as { except the result of the expression is
re-evaluated as a statusline format string. Thus if the
return value of expr contains % items they will get expanded.
The expression can contain the } character, the end of
expression is denoted by %}.
For example:

func! Stl_filename() abort
return "%t"

endfunc
`stl=%{Stl_filename()}` results in `"%t"`
`stl=%{%Stl_filename()%}` results in `"Name of current file"`

%} - End of `{%` expression
(- Start of item group. Can be used for setting the width and

alignment of a section. Must be followed by %) somewhere.
) - End of item group. No width fields allowed.

options.txt — 953

T N For 'tabline': start of tab page N label. Use %T after the last
label. This information is used for mouse clicks.

X N For 'tabline': start of close tab N label. Use %X after the
label, e.g.: %3Xclose%X. Use %999X for a "close current tab"
mark. This information is used for mouse clicks.

< - Where to truncate line if too long. Default is at the start.
No width fields allowed.

= - Separation point between alignment sections. Each section will
be separated by an equal number of spaces. With one %= what
comes after it will be right-aligned. With two %= there is a
middle part, with white space left and right of it.
No width fields allowed.

- Set highlight group. The name must follow and then a # again.
Thus use %#HLname# for highlight group HLname. The same
highlighting is used, also for the statusline of non-current
windows.

* - Set highlight group to User{N}, where {N} is taken from the
minwid field, e.g. %1*. Restore normal highlight with %* or %0*.
The difference between User{N} and StatusLine will be applied to
StatusLineNC for the statusline of non-current windows.
The number N must be between 1 and 9. See hl-User1..9

When displaying a flag, Vim removes the leading comma, if any, when
that flag comes right after plaintext. This will make a nice display
when flags are used like in the examples below.

When all items in a group becomes an empty string (i.e. flags that are
not set) and a minwid is not set for the group, the whole group will
become empty. This will make a group like the following disappear
completely from the statusline when none of the flags are set.

:set statusline=...%(\ [%M%R%H]%)...
Beware that an expression is evaluated each and every time the status
line is displayed.

stl-%{ g:actual_curbuf g:actual_curwin
While evaluating %{} the current buffer and current window will be set
temporarily to that of the window (and buffer) whose statusline is
currently being drawn. The expression will evaluate in this context.
The variable "g:actual_curbuf" is set to the `bufnr()` number of the
real current buffer and "g:actual_curwin" to the window-ID of the
real current window. These values are strings.

The 'statusline' option will be evaluated in the sandbox if set from
a modeline, see sandbox-option .
This option cannot be set in a modeline when 'modelineexpr' is off.

It is not allowed to change text or jump to another window while
evaluating 'statusline' textlock .

If the statusline is not updated when you want it (e.g., after setting
a variable that's used in an expression), you can force an update by
using `:redrawstatus`.

A result of all digits is regarded a number for display purposes.
Otherwise the result is taken as flag text and applied to the rules
described above.

Watch out for errors in expressions. They may render Vim unusable!
If you are stuck, hold down ':' or 'Q' to get a prompt, then quit and
edit your .vimrc or whatever with "vim --clean" to get it right.

options.txt — 954

Examples:
Emulate standard status line with 'ruler' set

:set statusline=%<%f\ %h%m%r%=%-14.(%l,%c%V%)\ %P
Similar, but add ASCII value of char under the cursor (like "ga")

:set statusline=%<%f%h%m%r%=%b\ 0x%B\ \ %l,%c%V\ %P
Display byte count and byte value, modified flag in red.

:set statusline=%<%f%=\ [%1*%M%*%n%R%H]\ %-19(%3l,%02c%03V%)%O'%02b'
:hi User1 term=inverse,bold cterm=inverse,bold ctermfg=red

Display a ,GZ flag if a compressed file is loaded
:set statusline=...%r%{VarExists('b:gzflag','\ [GZ]')}%h...

In the :autocmd 's:
:let b:gzflag = 1

And:
:unlet b:gzflag

And define this function:
:function VarExists(var, val)
: if exists(a:var) | return a:val | else | return '' | endif
:endfunction

'suffixes' 'su'
'suffixes' 'su' string (default ".bak,~,.o,.h,.info,.swp,.obj")

global
Files with these suffixes get a lower priority when multiple files
match a wildcard. See suffixes . Commas can be used to separate the
suffixes. Spaces after the comma are ignored. A dot is also seen as
the start of a suffix. To avoid a dot or comma being recognized as a
separator, precede it with a backslash (see option-backslash about
including spaces and backslashes).
See 'wildignore' for completely ignoring files.
The use of :set+= and :set-= is preferred when adding or removing
suffixes from the list. This avoids problems when a future version
uses another default.

'suffixesadd' 'sua'
'suffixesadd' 'sua' string (default "")

local to buffer
Comma-separated list of suffixes, which are used when searching for a
file for the "gf", "[I", etc. commands. Example:

:set suffixesadd=.java

'swapfile' 'swf' 'noswapfile' 'noswf'
'swapfile' 'swf' boolean (default on)

local to buffer
Use a swapfile for the buffer. This option can be reset when a
swapfile is not wanted for a specific buffer. For example, with
confidential information that even root must not be able to access.
Careful: All text will be in memory:

- Don't use this for big files.
- Recovery will be impossible!

A swapfile will only be present when 'updatecount' is non-zero and
'swapfile' is set.
When 'swapfile' is reset, the swap file for the current buffer is
immediately deleted. When 'swapfile' is set, and 'updatecount' is
non-zero, a swap file is immediately created.
Also see swap-file and 'swapsync' .
If you want to open a new buffer without creating a swap file for it,
use the :noswapfile modifier.
See 'directory' for where the swap file is created.

This option is used together with 'bufhidden' and 'buftype' to

options.txt — 955

specify special kinds of buffers. See special-buffers .

'swapsync' 'sws'
'swapsync' 'sws' string (default "fsync")

global
When this option is not empty a swap file is synced to disk after
writing to it. This takes some time, especially on busy unix systems.
When this option is empty parts of the swap file may be in memory and
not written to disk. When the system crashes you may lose more work.
On Unix the system does a sync now and then without Vim asking for it,
so the disadvantage of setting this option off is small. On some
systems the swap file will not be written at all. For a unix system
setting it to "sync" will use the sync() call instead of the default
fsync(), which may work better on some systems.
The 'fsync' option is used for the actual file.

'switchbuf' 'swb'
'switchbuf' 'swb' string (default "")

global
This option controls the behavior when switching between buffers.
This option is checked, when
- jumping to errors with the quickfix commands (:cc , :cn , :cp ,

etc.).
- jumping to a tag using the :stag command.
- opening a file using the CTRL-W_f or CTRL-W_F command.
- jumping to a buffer using a buffer split command (e.g. :sbuffer ,

:sbnext , or :sbrewind).
Possible values (comma-separated list):

useopen If included, jump to the first open window in the
current tab page that contains the specified buffer
(if there is one). Otherwise: Do not examine other
windows.

usetab Like "useopen", but also consider windows in other tab
pages.

split If included, split the current window before loading
a buffer for a quickfix command that display errors.
Otherwise: do not split, use current window (when used
in the quickfix window: the previously used window or
split if there is no other window).

vsplit Just like "split" but split vertically.
newtab Like "split", but open a new tab page. Overrules

"split" when both are present.
uselast If included, jump to the previously used window when

jumping to errors with quickfix commands.
If a window has 'winfixbuf' enabled, 'switchbuf' is currently not
applied to the split window.

'synmaxcol' 'smc'
'synmaxcol' 'smc' number (default 3000)

local to buffer
{not available when compiled without the +syntax
feature}

Maximum column in which to search for syntax items. In long lines the
text after this column is not highlighted and following lines may not
be highlighted correctly, because the syntax state is cleared.
This helps to avoid very slow redrawing for an XML file that is one
long line.
Set to zero to remove the limit.

'syntax' 'syn'

options.txt — 956

'syntax' 'syn' string (default empty)
local to buffer local-noglobal
{not available when compiled without the +syntax
feature}

When this option is set, the syntax with this name is loaded, unless
syntax highlighting has been switched off with ":syntax off".
Otherwise this option does not always reflect the current syntax (the
b:current_syntax variable does).
This option is most useful in a modeline, for a file which syntax is
not automatically recognized. Example, in an IDL file:

/* vim: set syntax=idl : */
When a dot appears in the value then this separates two filetype
names. Example:

/* vim: set syntax=c.doxygen : */
This will use the "c" syntax first, then the "doxygen" syntax.
Note that the second one must be prepared to be loaded as an addition,
otherwise it will be skipped. More than one dot may appear.
To switch off syntax highlighting for the current file, use:

:set syntax=OFF
To switch syntax highlighting on according to the current value of the
'filetype' option:

:set syntax=ON
What actually happens when setting the 'syntax' option is that the
Syntax autocommand event is triggered with the value as argument.
This option is not copied to another buffer, independent of the 's' or
'S' flag in 'cpoptions'.
Only normal file name characters can be used, "/*?[|<>" are illegal.

'tabline' 'tal'
'tabline' 'tal' string (default empty)

global
When non-empty, this option determines the content of the tab pages
line at the top of the Vim window. When empty Vim will use a default
tab pages line. See setting-tabline for more info.

The tab pages line only appears as specified with the 'showtabline'
option and only when there is no GUI tab line. When 'e' is in
'guioptions' and the GUI supports a tab line 'guitablabel' is used
instead. Note that the two tab pages lines are very different.

The value is evaluated like with 'statusline'. You can use
tabpagenr() , tabpagewinnr() and tabpagebuflist() to figure out

the text to be displayed. Use "%1T" for the first label, "%2T" for
the second one, etc. Use "%X" items for closing labels.

When changing something that is used in 'tabline' that does not
trigger it to be updated, use :redrawtabline .
This option cannot be set in a modeline when 'modelineexpr' is off.

Keep in mind that only one of the tab pages is the current one, others
are invisible and you can't jump to their windows.

'tabpagemax' 'tpm'
'tabpagemax' 'tpm' number (default 10)

global
Maximum number of tab pages to be opened by the -p command line
argument or the ":tab all" command. tabpage

'tabstop' 'ts'
'tabstop' 'ts' number (default 8)

options.txt — 957

local to buffer
Number of spaces that a <Tab> in the file counts for. Also see
the :retab command, and the 'softtabstop' option.

Note: Setting 'tabstop' to any other value than 8 can make your file
appear wrong in many places, e.g., when printing it.
The value must be more than 0 and less than 10000.

There are four main ways to use tabs in Vim:
1. Always keep 'tabstop' at 8, set 'softtabstop' and 'shiftwidth' to 4

(or 3 or whatever you prefer) and use 'noexpandtab'. Then Vim
will use a mix of tabs and spaces, but typing <Tab> and <BS> will
behave like a tab appears every 4 (or 3) characters.
This is the recommended way, the file will look the same with other
tools and when listing it in a terminal.

2. Set 'softtabstop' and 'shiftwidth' to whatever you prefer and use
'expandtab'. This way you will always insert spaces. The
formatting will never be messed up when 'tabstop' is changed (leave
it at 8 just in case). The file will be a bit larger.
You do need to check if no Tabs exist in the file. You can get rid
of them by first setting 'expandtab' and using `%retab!`, making
sure the value of 'tabstop' is set correctly.

3. Set 'tabstop' and 'shiftwidth' to whatever you prefer and use
'expandtab'. This way you will always insert spaces. The
formatting will never be messed up when 'tabstop' is changed.
You do need to check if no Tabs exist in the file, just like in the
item just above.

4. Set 'tabstop' and 'shiftwidth' to whatever you prefer and use a
modeline to set these values when editing the file again. Only
works when using Vim to edit the file, other tools assume a tabstop
is worth 8 spaces.

5. Always set 'tabstop' and 'shiftwidth' to the same value, and
'noexpandtab'. This should then work (for initial indents only)
for any tabstop setting that people use. It might be nice to have
tabs after the first non-blank inserted as spaces if you do this
though. Otherwise aligned comments will be wrong when 'tabstop' is
changed.

If Vim is compiled with the +vartabs feature then the value of
'tabstop' will be ignored if 'vartabstop' is set to anything other
than an empty string.

'tagbsearch' 'tbs' 'notagbsearch' 'notbs'
'tagbsearch' 'tbs' boolean (default on)

global
When searching for a tag (e.g., for the :ta command), Vim can either
use a binary search or a linear search in a tags file. Binary
searching makes searching for a tag a LOT faster, but a linear search
will find more tags if the tags file wasn't properly sorted.
Vim normally assumes that your tags files are sorted, or indicate that
they are not sorted. Only when this is not the case does the
'tagbsearch' option need to be switched off.

When 'tagbsearch' is on, binary searching is first used in the tags
files. In certain situations, Vim will do a linear search instead for
certain files, or retry all files with a linear search. When
'tagbsearch' is off, only a linear search is done.

Linear searching is done anyway, for one file, when Vim finds a line
at the start of the file indicating that it's not sorted:

options.txt — 958

!_TAG_FILE_SORTED 0 /some comment/
[The whitespace before and after the '0' must be a single <Tab>]

When a binary search was done and no match was found in any of the
files listed in 'tags', and case is ignored or a pattern is used
instead of a normal tag name, a retry is done with a linear search.
Tags in unsorted tags files, and matches with different case will only
be found in the retry.

If a tag file indicates that it is case-fold sorted, the second,
linear search can be avoided when case is ignored. Use a value of '2'
in the "!_TAG_FILE_SORTED" line for this. A tag file can be case-fold
sorted with the -f switch to "sort" in most unices, as in the command:
"sort -f -o tags tags". For Universal ctags and Exuberant ctags
version 5.x or higher (at least 5.5) the --sort=foldcase switch can be
used for this as well. Note that case must be folded to uppercase for
this to work.

By default, tag searches are case-sensitive. Case is ignored when
'ignorecase' is set and 'tagcase' is "followic", or when 'tagcase' is
"ignore".
Also when 'tagcase' is "followscs" and 'smartcase' is set, or
'tagcase' is "smart", and the pattern contains only lowercase
characters.

When 'tagbsearch' is off, tags searching is slower when a full match
exists, but faster when no full match exists. Tags in unsorted tags
files may only be found with 'tagbsearch' off.
When the tags file is not sorted, or sorted in a wrong way (not on
ASCII byte value), 'tagbsearch' should be off, or the line given above
must be included in the tags file.
This option doesn't affect commands that find all matching tags (e.g.,
command-line completion and ":help").

'tagcase' 'tc'
'tagcase' 'tc' string (default "followic")

global or local to buffer global-local
This option specifies how case is handled when searching the tags
file:

followic Follow the 'ignorecase' option
followscs Follow the 'smartcase' and 'ignorecase' options
ignore Ignore case
match Match case
smart Ignore case unless an upper case letter is used

NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'tagfunc' 'tfu'
'tagfunc' 'tfu' string (default: empty)

local to buffer
{not available when compiled without the +eval
feature}

This option specifies a function to be used to perform tag searches.
The function gets the tag pattern and should return a List of matching
tags. See tag-function for an explanation of how to write the
function and an example. The value can be the name of a function, a
lambda or a Funcref . See option-value-function for more

information.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

options.txt — 959

'taglength' 'tl'
'taglength' 'tl' number (default 0)

global
If non-zero, tags are significant up to this number of characters.

'tagrelative' 'tr' 'notagrelative' 'notr'
'tagrelative' 'tr' boolean (Vim default: on, Vi default: off)

global
If on and using a tags file in another directory, file names in that
tags file are relative to the directory where the tags file is.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'tags' 'tag' E433
'tags' 'tag' string (default "./tags,tags", when compiled with

+emacs_tags : "./tags,./TAGS,tags,TAGS")
global or local to buffer global-local

Filenames for the tag command, separated by spaces or commas. To
include a space or comma in a file name, precede it with backslashes
(see option-backslash about including spaces/commas and backslashes).
When a file name starts with "./", the '.' is replaced with the path
of the current file. But only when the 'd' flag is not included in
'cpoptions'. Environment variables are expanded :set_env . Also see
tags-option .

"*", "**" and other wildcards can be used to search for tags files in
a directory tree. See file-searching . E.g., "/lib/**/tags" will
find all files named "tags" below "/lib". The filename itself cannot
contain wildcards, it is used as-is. E.g., "/lib/**/tags?" will find
files called "tags?".
The tagfiles() function can be used to get a list of the file names
actually used.
If Vim was compiled with the +emacs_tags feature, Emacs-style tag
files are also supported. They are automatically recognized. The
default value becomes "./tags,./TAGS,tags,TAGS", unless case
differences are ignored (MS-Windows). emacs-tags
The use of :set+= and :set-= is preferred when adding or removing
file names from the list. This avoids problems when a future version
uses another default.

'tagstack' 'tgst' 'notagstack' 'notgst'
'tagstack' 'tgst' boolean (default on)

global
When on, the tagstack is used normally. When off, a ":tag" or
":tselect" command with an argument will not push the tag onto the
tagstack. A following ":tag" without an argument, a ":pop" command or
any other command that uses the tagstack will use the unmodified
tagstack, but does change the pointer to the active entry.
Resetting this option is useful when using a ":tag" command in a
mapping which should not change the tagstack.

'tcldll'
'tcldll' string (default depends on the build)

global
{only available when compiled with the +tcl/dyn
feature}

Specifies the name of the Tcl shared library. The default is
DYNAMIC_TCL_DLL, which was specified at compile time.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for

options.txt — 960

security reasons.

'term' E529 E530 E531
'term' string (default is $TERM, if that fails:

in the GUI: "builtin_gui"
on Amiga: "amiga"
on Haiku: "xterm"
on Mac: "mac-ansi"

on Unix: "ansi"
on VMS: "ansi"

on Win 32: "win32")
global

Name of the terminal. Used for choosing the terminal control
characters. Environment variables are expanded :set_env .
For example:

:set term=$TERM
See termcap .

'termbidi' 'tbidi'
'notermbidi' 'notbidi'

'termbidi' 'tbidi' boolean (default off, on for "mlterm")
global
{only available when compiled with the +arabic
feature}

The terminal is in charge of Bi-directionality of text (as specified
by Unicode). The terminal is also expected to do the required shaping
that some languages (such as Arabic) require.
Setting this option implies that 'rightleft' will not be set when
'arabic' is set and the value of 'arabicshape' will be ignored.
Note that setting 'termbidi' has the immediate effect that
'arabicshape' is ignored, but 'rightleft' isn't changed automatically.
This option is reset when the GUI is started.
For further details see arabic.txt .

'termencoding' 'tenc'
'termencoding' 'tenc' string (default ""; with GTK+ GUI: "utf-8")

global
Encoding used for the terminal. This specifies what character
encoding the keyboard produces and the display will understand. For
the GUI it only applies to the keyboard ('encoding' is used for the
display).

E617 E950
Note: This does not apply to the GTK+ GUI. After the GUI has been
successfully initialized, 'termencoding' is forcibly set to "utf-8".
Any attempts to set a different value will be rejected, and an error
message is shown.
For the Win32 GUI and console versions 'termencoding' is not used,
because the Win32 system always passes Unicode characters.
When empty, the same encoding is used as for the 'encoding' option.
This is the normal value.
Not all combinations for 'termencoding' and 'encoding' are valid. See
encoding-table .

The value for this option must be supported by internal conversions or
iconv(). When this is not possible no conversion will be done and you
will probably experience problems with non-ASCII characters.
Example: You are working with the locale set to euc-jp (Japanese) and
want to edit a UTF-8 file:

:let &termencoding = &encoding
:set encoding=utf-8

You need to do this when your system has no locale support for UTF-8.

options.txt — 961

'termguicolors' 'tgc' 'notermguicolors' 'notgc' E954
'termguicolors' 'tgc' boolean (default off)

global
{not available when compiled without the
+termguicolors feature}

When on, uses highlight-guifg and highlight-guibg attributes in
the terminal (thus using 24-bit color).

Requires a ISO-8613-3 compatible terminal. If setting this option
does not work (produces a colorless UI) reading xterm-true-color
might help.

For Win32 console, Windows 10 version 1703 (Creators Update) or later
is required. Use this check to find out:

if has('vcon')
This requires Vim to be built with the +vtp feature.

Note that the "cterm" attributes are still used, not the "gui" ones.

When using Vim with Windows Terminal, the background of Windows
Terminal is normally filled with the Vim background color. Setting
'termguicolors' and the guibg of the Normal highlight group to NONE
will make the background transparent:

:hi Normal guibg=NONE

NOTE: This option is reset when 'compatible' is set.

'termwinkey' 'twk'
'termwinkey' 'twk' string (default "")

local to window
The key that starts a CTRL-W command in a terminal window. Other keys
are sent to the job running in the window.
The <> notation can be used, e.g.:

:set termwinkey=<C-L>
The string must be one key stroke but can be multiple bytes.
When not set CTRL-W is used, so that CTRL-W : gets you to the command
line. If 'termwinkey' is set to CTRL-L then CTRL-L : gets you to the
command line.

'termwinscroll' 'twsl'
'termwinscroll' 'twsl' number (default 10000)

local to buffer
{not available when compiled without the
+terminal feature}

Number of scrollback lines to keep. When going over this limit the
first 10% of the scrollback lines are deleted. This is just to reduce
the memory usage. See Terminal-Normal .
Also used as a limit for text sent to the terminal in one write,
multiplied by the number of columns times 3 (average number of bytes
per cell).

'termwinsize' 'tws'
'termwinsize' 'tws' string (default "")

local to window
Size used when opening the terminal window. Format:

{rows}x{columns} or {rows}*{columns}.
- When empty the terminal gets the size from the window.
- When set with a "x" (e.g., "24x80") the terminal size is not

adjusted to the window size. If the window is smaller only the

options.txt — 962

top-left part is displayed.
- When set with a "*" (e.g., "10*50") the terminal size follows the

window size, but will not be smaller than the specified rows and/or
columns.

- When rows is zero then use the height of the window.
- When columns is zero then use the width of the window.
- Using "0x0" or "0*0" is the same as empty.
- Can be overruled in the term_start() options with "term_rows" and

"term_cols".

Examples:
"30x0" uses 30 rows and the current window width.
"20*0" uses at least 20 rows and the current window width.
"0*40" uses the current window height and at least 40 columns.

Note that the command running in the terminal window may still change
the size of the terminal. In that case the Vim window will be
adjusted to that size, if possible.

'termwintype' 'twt'
'termwintype' 'twt' string (default "")

global
{only available when compiled with the terminal
feature on MS-Windows}

Specify the virtual console (pty) used when opening the terminal
window.

Possible values are:
"" use ConPTY if it is stable, winpty otherwise
"winpty" use winpty, fail if not supported
"conpty" use ConPTY , fail if not supported

ConPTY support depends on the platform. Windows 10 October 2018
Update is the first version that supports ConPTY, however it is still
considered unstable. ConPTY might become stable in the next release
of Windows 10. winpty support needs to be installed. If neither is
supported then you cannot open a terminal window.

'terse' 'noterse'
'terse' boolean (default off)

global
When set: Add 's' flag to 'shortmess' option (this makes the message
for a search that hits the start or end of the file not being
displayed). When reset: Remove 's' flag from 'shortmess' option. {Vi
shortens a lot of messages}

'textauto' 'ta' 'notextauto' 'nota'
'textauto' 'ta' boolean (Vim default: on, Vi default: off)

global
This option is obsolete. Use 'fileformats'.
For backwards compatibility, when 'textauto' is set, 'fileformats' is
set to the default value for the current system. When 'textauto' is
reset, 'fileformats' is made empty.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'textmode' 'tx' 'notextmode' 'notx'
'textmode' 'tx' boolean (Win32: default on,

others: default off)
local to buffer

This option is obsolete. Use 'fileformat'.

options.txt — 963

For backwards compatibility, when 'textmode' is set, 'fileformat' is
set to "dos". When 'textmode' is reset, 'fileformat' is set to
"unix".

'textwidth' 'tw'
'textwidth' 'tw' number (default 0)

local to buffer
Maximum width of text that is being inserted. A longer line will be
broken after white space to get this width. A zero value disables
this.
'textwidth' is set to 0 when the 'paste' option is set and restored
when 'paste' is reset.
When 'textwidth' is zero, 'wrapmargin' may be used. See also
'formatoptions' and ins-textwidth .
When 'formatexpr' is set it will be used to break the line.
NOTE: This option is set to 0 when 'compatible' is set.

'thesaurus' 'tsr'
'thesaurus' 'tsr' string (default "")

global or local to buffer global-local
List of file names, separated by commas, that are used to lookup words
for thesaurus completion commands i_CTRL-X_CTRL-T . See
compl-thesaurus .

This option is not used if 'thesaurusfunc' is set, either for the
buffer or globally.

To include a comma in a file name precede it with a backslash. Spaces
after a comma are ignored, otherwise spaces are included in the file
name. See option-backslash about using backslashes. The use of
:set+= and :set-= is preferred when adding or removing directories

from the list. This avoids problems when a future version uses
another default. Backticks cannot be used in this option for security
reasons.

'thesaurusfunc' 'tsrfu'
'thesaurusfunc' 'tsrfu' string (default: empty)

global or local to buffer global-local
{not available when compiled without the +eval
feature}

This option specifies a function to be used for thesaurus completion
with CTRL-X CTRL-T. i_CTRL-X_CTRL-T See compl-thesaurusfunc .
The value can be the name of a function, a lambda or a Funcref .
See option-value-function for more information.

This option cannot be set from a modeline or in the sandbox , for
security reasons.

'tildeop' 'top' 'notildeop' 'notop'
'tildeop' 'top' boolean (default off)

global
When on: The tilde command "~" behaves like an operator.
NOTE: This option is reset when 'compatible' is set.

'timeout' 'to' 'notimeout' 'noto'
'timeout' 'to' boolean (default on)

global

'ttimeout' 'nottimeout'
'ttimeout' boolean (default off, set in defaults.vim)

options.txt — 964

global
These two options together determine the behavior when part of a
mapped key sequence or keyboard code has been received:

'timeout' 'ttimeout' action
off off do not time out
on on or off time out on :mappings and key codes
off on time out on key codes

If both options are off, Vim will wait until either the complete
mapping or key sequence has been received, or it is clear that there
is no mapping or key sequence for the received characters. For
example: if you have mapped "vl" and Vim has received 'v', the next
character is needed to see if the 'v' is followed by an 'l'.
When one of the options is on, Vim will wait for about 1 second for
the next character to arrive. After that the already received
characters are interpreted as single characters. The waiting time can
be changed with the 'timeoutlen' option.
On slow terminals or very busy systems timing out may cause
malfunctioning cursor keys. If both options are off, Vim waits
forever after an entered <Esc> if there are key codes that start
with <Esc>. You will have to type <Esc> twice. If you do not have
problems with key codes, but would like to have :mapped key
sequences not timing out in 1 second, set the 'ttimeout' option and
reset the 'timeout' option.

NOTE: 'ttimeout' is reset when 'compatible' is set.

'timeoutlen' 'tm'
'timeoutlen' 'tm' number (default 1000)

global

'ttimeoutlen' 'ttm'
'ttimeoutlen' 'ttm' number (default -1, set to 100 in defaults.vim)

global
The time in milliseconds that is waited for a key code or mapped key
sequence to complete. Also used for CTRL-\ CTRL-N and CTRL-\ CTRL-G
when part of a command has been typed.
Normally only 'timeoutlen' is used and 'ttimeoutlen' is -1. When a
different timeout value for key codes is desired set 'ttimeoutlen' to
a non-negative number.

ttimeoutlen mapping delay key code delay
< 0 'timeoutlen' 'timeoutlen'

>= 0 'timeoutlen' 'ttimeoutlen'

The timeout only happens when the 'timeout' and 'ttimeout' options
tell so. A useful setting would be

:set timeout timeoutlen=3000 ttimeoutlen=100
(time out on mapping after three seconds, time out on key codes after
a tenth of a second).

'title' 'notitle'
'title' boolean (default off, on when title can be restored)

global
When on, the title of the window will be set to the value of
'titlestring' (if it is not empty), or to:

filename [+=-] (path) - VIM
Where:

filename the name of the file being edited

options.txt — 965

- indicates the file cannot be modified, 'ma' off
+ indicates the file was modified
= indicates the file is read-only
=+ indicates the file is read-only and modified
(path) is the path of the file being edited
- VIM the server name v:servername or "VIM"

Only works if the terminal supports setting window titles
(currently Amiga console, Win32 console, all GUI versions and
terminals with a non-empty 't_ts' option - these are Unix xterm and
iris-ansi by default, where 't_ts' is taken from the builtin termcap).

X11
When Vim was compiled with HAVE_X11 defined, the original title will
be restored if possible. The output of ":version" will include "+X11"
when HAVE_X11 was defined, otherwise it will be "-X11". This also
works for the icon name 'icon' .
But: When Vim was started with the -X argument, restoring the title
will not work (except in the GUI).
If the title cannot be restored, it is set to the value of 'titleold'.
You might want to restore the title outside of Vim then.
When using an xterm from a remote machine you can use this command:

rsh machine_name xterm -display $DISPLAY &
ssh -X machine_name xterm &

then the WINDOWID environment variable should be inherited and the
title of the window should change back to what it should be after
exiting Vim.

'titlelen'
'titlelen' number (default 85)

global
Gives the percentage of 'columns' to use for the length of the window
title. When the title is longer, only the end of the path name is
shown. A '<' character before the path name is used to indicate this.
Using a percentage makes this adapt to the width of the window. But
it won't work perfectly, because the actual number of characters
available also depends on the font used and other things in the title
bar. When 'titlelen' is zero the full path is used. Otherwise,
values from 1 to 30000 percent can be used.
'titlelen' is also used for the 'titlestring' option.

'titleold'
'titleold' string (default "Thanks for flying Vim")

global
This option will be used for the window title when exiting Vim if the
original title cannot be restored. Only happens if 'title' is on or
'titlestring' is not empty.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'titlestring'
'titlestring' string (default "")

global
When this option is not empty, it will be used for the title of the
window. This happens only when the 'title' option is on.
Only works if the terminal supports setting window titles (currently
Amiga console, Win32 console, all GUI versions and terminals with a
non-empty 't_ts' option).
When Vim was compiled with HAVE_X11 defined, the original title will
be restored if possible, see X11 .

options.txt — 966

When this option contains printf-style '%' items, they will be
expanded according to the rules used for 'statusline'.
This option cannot be set in a modeline when 'modelineexpr' is off.

Example:
:auto BufEnter * let &titlestring = hostname() .. "/" .. expand("%:p")
:set title titlestring=%<%F%=%l/%L-%P titlelen=70

The value of 'titlelen' is used to align items in the middle or right
of the available space.
Some people prefer to have the file name first:

:set titlestring=%t%(\ %M%)%(\ (%{expand(\"%:~:.:h\")})%)%(\ %a%)
Note the use of "%{ }" and an expression to get the path of the file,
without the file name. The "%(%)" constructs are used to add a
separating space only when needed.
NOTE: Use of special characters in 'titlestring' may cause the display
to be garbled (e.g., when it contains a CR or NL character).
{not available when compiled without the |+statusline| feature}

'toolbar' 'tb'
'toolbar' 'tb' string (default "icons,tooltips")

global
{only for |+GUI_GTK|, |+GUI_Motif| and |+GUI_Photon|}

The contents of this option controls various toolbar settings. The
possible values are:

icons Toolbar buttons are shown with icons.
text Toolbar buttons shown with text.
horiz Icon and text of a toolbar button are

horizontally arranged. {only in GTK+ 2 GUI}
tooltips Tooltips are active for toolbar buttons.

Tooltips refer to the popup help text which appears after the mouse
cursor is placed over a toolbar button for a brief moment.

If you want the toolbar to be shown with icons as well as text, do the
following:

:set tb=icons,text
Motif cannot display icons and text at the same time. They
will show icons if both are requested.

If none of the strings specified in 'toolbar' are valid or if
'toolbar' is empty, this option is ignored. If you want to disable
the toolbar, you need to set the 'guioptions' option. For example:

:set guioptions-=T
Also see gui-toolbar .

'toolbariconsize' 'tbis'
'toolbariconsize' 'tbis' string (default "small")

global
{only in the GTK+ GUI}

Controls the size of toolbar icons. The possible values are:
tiny Use tiny icons.
small Use small icons (default).
medium Use medium-sized icons.
large Use large icons.
huge Use even larger icons.
giant Use very big icons.

The exact dimensions in pixels of the various icon sizes depend on
the current theme. Common dimensions are giant=48x48, huge=32x32,
large=24x24, medium=24x24, small=20x20 and tiny=16x16.

If 'toolbariconsize' is empty, the global default size as determined

options.txt — 967

by user preferences or the current theme is used.

'ttybuiltin' 'tbi' 'nottybuiltin' 'notbi'
'ttybuiltin' 'tbi' boolean (default on)

global
When on, the builtin termcaps are searched before the external ones.
When off the builtin termcaps are searched after the external ones.
When this option is changed, you should set the 'term' option next for
the change to take effect, for example:

:set notbi term=$TERM
See also termcap .
Rationale: The default for this option is "on", because the builtin
termcap entries are generally better (many systems contain faulty
xterm entries...).

'ttyfast' 'tf' 'nottyfast' 'notf'
'ttyfast' 'tf' boolean (default on)

global
Indicates a fast terminal connection. More characters will be sent to
the screen for redrawing, instead of using insert/delete line
commands. Improves smoothness of redrawing when there are multiple
windows and the terminal does not support a scrolling region.
Also enables the extra writing of characters at the end of each screen
line for lines that wrap. This helps when using copy/paste with the
mouse in an xterm and other terminals.

The default used to be set only for some terminal names, but these
days nearly all terminals are fast, therefore the default is now "on".
If you have a slow connection you may want to set this option off,
e.g. depending on the host name:

if hostname() =~ 'faraway'
set nottyfast

endif

'ttymouse' 'ttym'
'ttymouse' 'ttym' string (default depends on 'term')

global
{only in Unix and VMS, doesn't work in the GUI; not
available when compiled without +mouse }

Name of the terminal type for which mouse codes are to be recognized.
Currently these strings are valid:

xterm-mouse
xterm xterm-like mouse handling. The mouse generates

"<Esc>[Mscr", where "scr" is three bytes:
"s" = button state
"c" = column plus 33
"r" = row plus 33

This only works up to 223 columns! See "dec",
"urxvt", and "sgr" for solutions.

xterm2 Works like "xterm", but with the xterm reporting the
mouse position while the mouse is dragged. This works
much faster and more precise. Your xterm must at
least at patchlevel 88 / XFree 3.3.3 for this to
work. See below for how Vim detects this
automatically.

netterm-mouse
netterm NetTerm mouse handling. A left mouse click generates

"<Esc>}r,c<CR>", where "r,c" are two decimal numbers
for the row and column. No other mouse events are
supported.

options.txt — 968

dec-mouse
dec DEC terminal mouse handling. The mouse generates a

rather complex sequence, starting with "<Esc>[".
This is also available for an Xterm, if it was
configured with "--enable-dec-locator".

jsbterm-mouse
jsbterm JSB term mouse handling.

pterm-mouse
pterm QNX pterm mouse handling.

urxvt-mouse
urxvt Mouse handling for the urxvt (rxvt-unicode) terminal.

The mouse works only if the terminal supports this
encoding style, but it does not have 223 columns limit
unlike "xterm" or "xterm2".

sgr-mouse
sgr Mouse handling for the terminal that emits SGR-styled

mouse reporting. The mouse works even in columns
beyond 223. This option is backward compatible with
"xterm2" because it can also decode "xterm2" style
mouse codes.

The mouse handling must be enabled at compile time +mouse_xterm
+mouse_dec +mouse_netterm +mouse_jsbterm +mouse_urxvt
+mouse_sgr .

Only "xterm"(2) is really recognized. NetTerm mouse codes are always
recognized, if enabled at compile time. DEC terminal mouse codes
are recognized if enabled at compile time, and 'ttymouse' is not
"xterm", "xterm2", "urxvt" or "sgr" (because dec mouse codes conflict
with them).
This option is automatically set to "xterm", when the 'term' option is
set to a name that starts with "xterm", "mlterm", "screen", "tmux",
"st" (full match only), "st-" or "stterm", and 'ttymouse' is not set
already.
If the terminfo/termcap entry "XM" exists and the first number is
"1006" then 'ttymouse' will be set to "sgr". This works for many
modern terminals.
Additionally, if vim is compiled with the +termresponse feature and
t_RV is set to the escape sequence to request the xterm version

number, more intelligent detection is done.
The "xterm2" value will be set if the xterm version is reported to be
from 95 to 276. The "sgr" value will be set if Vim detects Mac
Terminal.app, iTerm2 or mintty, and when the xterm version is 277 or
higher.
If you do not want 'ttymouse' to be set to "xterm2" or "sgr"
automatically, set t_RV to an empty string:

:set t_RV=

'ttyscroll' 'tsl'
'ttyscroll' 'tsl' number (default 999)

global
Maximum number of lines to scroll the screen. If there are more lines
to scroll the window is redrawn. For terminals where scrolling is
very slow and redrawing is not slow this can be set to a small number,
e.g., 3, to speed up displaying.

'ttytype' 'tty'
'ttytype' 'tty' string (default from $TERM)

global
Alias for 'term', see above.

options.txt — 969

'undodir' 'udir'
'undodir' 'udir' string (default ".")

global
{only when compiled with the |+persistent_undo| feature}

List of directory names for undo files, separated with commas.
See 'backupdir' for details of the format.
"." means using the directory of the file. The undo file name for
"file.txt" is ".file.txt.un~".
For other directories the file name is the full path of the edited
file, with path separators replaced with "%".
When writing: The first directory that exists is used. "." always
works, no directories after "." will be used for writing.
When reading all entries are tried to find an undo file. The first
undo file that exists is used. When it cannot be read an error is
given, no further entry is used.
See undo-persistence .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'undofile' 'noundofile' 'udf' 'noudf'
'undofile' 'udf' boolean (default off)

local to buffer
{only when compiled with the |+persistent_undo| feature}

When on, Vim automatically saves undo history to an undo file when
writing a buffer to a file, and restores undo history from the same
file on buffer read.
The directory where the undo file is stored is specified by 'undodir'.
For more information about this feature see undo-persistence .
The undo file is not read when 'undoreload' causes the buffer from
before a reload to be saved for undo.
When 'undofile' is turned off the undo file is NOT deleted.
NOTE: This option is reset when 'compatible' is set.

'undolevels' 'ul'
'undolevels' 'ul' number (default 100, 1000 for Unix, VMS and Win32)

global or local to buffer global-local
Maximum number of changes that can be undone. Since undo information
is kept in memory, higher numbers will cause more memory to be used.
Nevertheless, a single change can already use a large amount of memory.
Set to 0 for Vi compatibility: One level of undo and "u" undoes
itself:

set ul=0
But you can also get Vi compatibility by including the 'u' flag in
'cpoptions', and still be able to use CTRL-R to repeat undo.
Also see undo-two-ways .
Set to -1 for no undo at all. You might want to do this only for the
current buffer:

setlocal ul=-1
This helps when you run out of memory for a single change.

The local value is set to -123456 when the global value is to be used.

Also see clear-undo .

'undoreload' 'ur'
'undoreload' 'ur' number (default 10000)

global
Save the whole buffer for undo when reloading it. This applies to the
":e!" command and reloading for when the buffer changed outside of
Vim. FileChangedShell

options.txt — 970

The save only happens when this option is negative or when the number
of lines is smaller than the value of this option.
Set this option to zero to disable undo for a reload.

When saving undo for a reload, any undo file is not read.

Note that this causes the whole buffer to be stored in memory. Set
this option to a lower value if you run out of memory.

'updatecount' 'uc'
'updatecount' 'uc' number (default: 200)

global
After typing this many characters the swap file will be written to
disk. When zero, no swap file will be created at all (see chapter on
recovery crash-recovery). 'updatecount' is set to zero by starting
Vim with the "-n" option, see startup . When editing in readonly
mode this option will be initialized to 10000.
The swapfile can be disabled per buffer with 'swapfile' .
When 'updatecount' is set from zero to non-zero, swap files are
created for all buffers that have 'swapfile' set. When 'updatecount'
is set to zero, existing swap files are not deleted.
Also see 'swapsync' .
This option has no meaning in buffers where 'buftype' is "nofile"
or "nowrite".

'updatetime' 'ut'
'updatetime' 'ut' number (default 4000)

global
If this many milliseconds nothing is typed the swap file will be
written to disk (see crash-recovery). Also used for the
CursorHold autocommand event.

'varsofttabstop' 'vsts'
'varsofttabstop' 'vsts' string (default "")

local to buffer
{only available when compiled with the +vartabs
feature}

A list of the number of spaces that a <Tab> counts for while editing,
such as inserting a <Tab> or using <BS>. It "feels" like variable-
width <Tab>s are being inserted, while in fact a mixture of spaces
and <Tab>s is used. Tab widths are separated with commas, with the
final value applying to all subsequent tabs.

For example, when editing assembly language files where statements
start in the 9th column and comments in the 41st, it may be useful
to use the following:

:set varsofttabstop=8,32,8
This will set soft tabstops with 8 and 8 + 32 spaces, and 8 more
for every column thereafter.

Note that the value of 'softtabstop' will be ignored while
'varsofttabstop' is set.

'vartabstop' 'vts'
'vartabstop' 'vts' string (default "")

local to buffer
{only available when compiled with the +vartabs
feature}

A list of the number of spaces that a <Tab> in the file counts for,
separated by commas. Each value corresponds to one tab, with the

options.txt — 971

final value applying to all subsequent tabs. For example:
:set vartabstop=4,20,10,8

This will make the first tab 4 spaces wide, the second 20 spaces,
the third 10 spaces, and all following tabs 8 spaces.

Note that the value of 'tabstop' will be ignored while 'vartabstop'
is set.

'verbose' 'vbs'
'verbose' 'vbs' number (default 0)

global
When bigger than zero, Vim will give messages about what it is doing.
Currently, these messages are given:
>= 1 When the viminfo file is read or written.
>= 2 When a file is ":source"'ed.
>= 4 Shell commands.
>= 5 Every searched tags file and include file.
>= 8 Files for which a group of autocommands is executed.
>= 9 Every executed autocommand.
>= 11 Finding items in a path
>= 12 Every executed function.
>= 13 When an exception is thrown, caught, finished, or discarded.
>= 14 Anything pending in a ":finally" clause.
>= 15 Every executed Ex command from a script (truncated at 200

characters).
>= 16 Every executed Ex command.

This option can also be set with the "-V" argument. See -V .
This option is also set by the :verbose command.

When the 'verbosefile' option is set then the verbose messages are not
displayed.

'verbosefile' 'vfile'
'verbosefile' 'vfile' string (default empty)

global
When not empty all messages are written in a file with this name.
When the file exists messages are appended.
Writing to the file ends when Vim exits or when 'verbosefile' is made
empty. Writes are buffered, thus may not show up for some time.
Setting 'verbosefile' to a new value is like making it empty first.
The difference with :redir is that verbose messages are not
displayed when 'verbosefile' is set.
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'viewdir' 'vdir'
'viewdir' 'vdir' string (default for Amiga: "home:vimfiles/view",

for Win32: "$HOME/vimfiles/view",
for Unix: "$HOME/.vim/view",
for macOS: "$VIM/vimfiles/view",
for VMS: "sys$login:vimfiles/view")

global
{not available when compiled without the +mksession
feature}

Name of the directory where to store files for :mkview .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'viewoptions' 'vop'

options.txt — 972

'viewoptions' 'vop' string (default: "folds,options,cursor,curdir")
global
{not available when compiled without the +mksession
feature}

Changes the effect of the :mkview command. It is a comma-separated
list of words. Each word enables saving and restoring something:

word save and restore
cursor cursor position in file and in window
folds manually created folds, opened/closed folds and local

fold options
options options and mappings local to a window or buffer (not

global values for local options)
localoptions same as "options"
slash backslashes in file names replaced with forward

slashes
unix with Unix end-of-line format (single <NL>), even when

on MS-Windows
curdir the window-local directory, if set with `:lcd`

"slash" and "unix" are useful on MS-Windows when sharing view files
with Unix. The Unix version of Vim cannot source dos format scripts,
but the MS-Windows version of Vim can source unix format scripts.

'viminfo' 'vi' E526 E527 E528
'viminfo' 'vi' string (Vi default: "", Vim default for

MS-Windows: '100,<50,s10,h,rA:,rB:,
for Amiga: '100,<50,s10,h,rdf0:,rdf1:,rdf2:
for others: '100,<50,s10,h)

global
{not available when compiled without the +viminfo
feature}

When non-empty, the viminfo file is read upon startup and written
when exiting Vim (see viminfo-file). Except when 'viminfofile' is
"NONE".
The string should be a comma-separated list of parameters, each
consisting of a single character identifying the particular parameter,
followed by a number or string which specifies the value of that
parameter. If a particular character is left out, then the default
value is used for that parameter. The following is a list of the
identifying characters and the effect of their value.
CHAR VALUE

viminfo-!
! When included, save and restore global variables that start

with an uppercase letter, and don't contain a lowercase
letter. Thus "KEEPTHIS and "K_L_M" are stored, but "KeepThis"
and "_K_L_M" are not. Nested List and Dict items may not be
read back correctly, you end up with an empty item.

viminfo-quote
" Maximum number of lines saved for each register. Old name of

the '<' item, with the disadvantage that you need to put a
backslash before the ", otherwise it will be recognized as the
start of a comment!

viminfo-%
% When included, save and restore the buffer list. If Vim is

started with a file name argument, the buffer list is not
restored. If Vim is started without a file name argument, the
buffer list is restored from the viminfo file. Quickfix
('buftype'), unlisted ('buflisted'), unnamed and buffers on
removable media (viminfo-r) are not saved.
When followed by a number, the number specifies the maximum

options.txt — 973

number of buffers that are stored. Without a number all
buffers are stored.

viminfo-'
' Maximum number of previously edited files for which the marks

are remembered. This parameter must always be included when
'viminfo' is non-empty.
Including this item also means that the jumplist and the
changelist are stored in the viminfo file.

viminfo-/
/ Maximum number of items in the search pattern history to be

saved. If non-zero, then the previous search and substitute
patterns are also saved. When not included, the value of
'history' is used.

viminfo-:
: Maximum number of items in the command-line history to be

saved. When not included, the value of 'history' is used.
viminfo-<

< Maximum number of lines saved for each register. If zero then
registers are not saved. When not included, all lines are
saved. '"' is the old name for this item.
Also see the 's' item below: limit specified in Kbyte.

viminfo-@
@ Maximum number of items in the input-line history to be

saved. When not included, the value of 'history' is used.
viminfo-c

c When included, convert the text in the viminfo file from the
'encoding' used when writing the file to the current
'encoding'. See viminfo-encoding .

viminfo-f
f Whether file marks need to be stored. If zero, file marks ('0

to '9, 'A to 'Z) are not stored. When not present or when
non-zero, they are all stored. '0 is used for the current
cursor position (when exiting or when doing ":wviminfo").

viminfo-h
h Disable the effect of 'hlsearch' when loading the viminfo

file. When not included, it depends on whether ":nohlsearch"
has been used since the last search command.

viminfo-n
n Name of the viminfo file. The name must immediately follow

the 'n'. Must be at the end of the option! If the
'viminfofile' option is set, that file name overrides the one
given here with 'viminfo'. Environment variables are
expanded when opening the file, not when setting the option.

viminfo-r
r Removable media. The argument is a string (up to the next

','). This parameter can be given several times. Each
specifies the start of a path for which no marks will be
stored. This is to avoid removable media. For MS-Windows you
could use "ra:,rb:", for Amiga "rdf0:,rdf1:,rdf2:". You can
also use it for temp files, e.g., for Unix: "r/tmp". Case is
ignored. Maximum length of each 'r' argument is 50
characters.

viminfo-s
s Maximum size of an item in Kbyte. If zero then registers are

not saved. Currently only applies to registers. The default
"s10" will exclude registers with more than 10 Kbyte of text.
Also see the '<' item above: line count limit.

Example:
:set viminfo='50,<1000,s100,:0,n~/vim/viminfo

options.txt — 974

'50 Marks will be remembered for the last 50 files you
edited.

<1000 Contents of registers (up to 1000 lines each) will be
remembered.

s100 Registers with more than 100 Kbyte text are skipped.
:0 Command-line history will not be saved.
n~/vim/viminfo The name of the file to use is "~/vim/viminfo".
no / Since '/' is not specified, the default will be used,

that is, save all of the search history, and also the
previous search and substitute patterns.

no % The buffer list will not be saved nor read back.
no h 'hlsearch' highlighting will be restored.

When setting 'viminfo' from an empty value you can use :rviminfo to
load the contents of the file, this is not done automatically.

This option cannot be set from a modeline or in the sandbox , for
security reasons.
NOTE: This option is set to the Vim default value when 'compatible'
is reset.

'viminfofile' 'vif'
'viminfofile' 'vif' string (default: "")

global
{not available when compiled without the +viminfo
feature}

When non-empty, overrides the file name used for viminfo.
When equal to "NONE" no viminfo file will be read or written.
This option can be set with the -i command line flag. The --clean
command line flag sets it to "NONE".
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'virtualedit' 've'
'virtualedit' 've' string (default "")

global or local to window global-local
A comma-separated list of these words:

block Allow virtual editing in Visual block mode.
insert Allow virtual editing in Insert mode.
all Allow virtual editing in all modes.
onemore Allow the cursor to move just past the end of the line
none When used as the local value, do not allow virtual

editing even when the global value is set. When used
as the global value, "none" is the same as "".

NONE Alternative spelling of "none".

Virtual editing means that the cursor can be positioned where there is
no actual character. This can be halfway into a tab or beyond the end
of the line. Useful for selecting a rectangle in Visual mode and
editing a table.
"onemore" is not the same, it will only allow moving the cursor just
after the last character of the line. This makes some commands more
consistent. Previously the cursor was always past the end of the line
if the line was empty. But it is far from Vi compatible. It may also
break some plugins or Vim scripts. For example because l can move
the cursor after the last character. Use with care!
Using the `$` command will move to the last character in the line, not
past it. This may actually move the cursor to the left!
The `g$` command will move to the end of the screen line.

options.txt — 975

It doesn't make sense to combine "all" with "onemore", but you will
not get a warning for it.
When combined with other words, "none" is ignored.
NOTE: This option is set to "" when 'compatible' is set.

'visualbell' 'vb' 'novisualbell' 'novb' beep
'visualbell' 'vb' boolean (default off)

global
Use a visual bell instead of beeping. The terminal code to display the
visual bell is given with 't_vb'. When no beep or flash is wanted,
use:

:set vb t_vb=
If you want a short flash, you can use this on many terminals:

:set vb t_vb=?[?5h$<100>?[?5l
Here $<100> specifies the time, you can use a smaller or bigger value
to get a shorter or longer flash.

Note: Vim will limit the bell to once per half a second. This avoids
having to wait for the flashing to finish when there are lots of
bells, e.g. on key repeat. This also happens without 'visualbell'
set.

In the GUI, 't_vb' defaults to "<Esc>|f", which inverts the display
for 20 msec. If you want to use a different time, use "<Esc>|40f",
where 40 is the time in msec.

Note: When the GUI starts, 't_vb' is reset to its default value. You
might want to set it again in your gvimrc .

Does not work on the Amiga, you always get a screen flash.
Also see 'errorbells'.

'warn' 'nowarn'
'warn' boolean (default on)

global
Give a warning message when a shell command is used while the buffer
has been changed.

'weirdinvert' 'wiv' 'noweirdinvert' 'nowiv'
'weirdinvert' 'wiv' boolean (default off)

global
This option has the same effect as the 't_xs' terminal option.
It is provided for backwards compatibility with version 4.x.
Setting 'weirdinvert' has the effect of making 't_xs' non-empty, and
vice versa. Has no effect when the GUI is running.

'whichwrap' 'ww'
'whichwrap' 'ww' string (Vim default: "b,s", Vi default: "")

global
Allow specified keys that move the cursor left/right to move to the
previous/next line when the cursor is on the first/last character in
the line. Concatenate characters to allow this for these keys:

char key mode
b <BS> Normal and Visual
s <Space> Normal and Visual
h "h" Normal and Visual (not recommended)
l "l" Normal and Visual (not recommended)
< <Left> Normal and Visual
> <Right> Normal and Visual
~ "~" Normal

options.txt — 976

[<Left> Insert and Replace
] <Right> Insert and Replace

For example:
:set ww=<,>,[,]

allows wrap only when cursor keys are used.
When the movement keys are used in combination with a delete or change
operator, the <EOL> also counts for a character. This makes "3h"
different from "3dh" when the cursor crosses the end of a line. This
is also true for "x" and "X", because they do the same as "dl" and
"dh". If you use this, you may also want to use the mapping
":map <BS> X" to make backspace delete the character in front of the
cursor.
When 'l' is included and it is used after an operator at the end of a
line (not an empty line) then it will not move to the next line. This
makes "dl", "cl", "yl" etc. work normally.
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'wildchar' 'wc'
'wildchar' 'wc' number (Vim default: <Tab>, Vi default: CTRL-E)

global
Character you have to type to start wildcard expansion in the
command-line, as specified with 'wildmode'.
More info here: cmdline-completion .
The character is not recognized when used inside a macro. See
'wildcharm' for that.
Some keys will not work, such as CTRL-C, <CR> and Enter.
<Esc> can be used, but hitting it twice in a row will still exit
command-line as a failsafe measure.
Although 'wc' is a number option, you can set it to a special key:

:set wc=<Tab>
NOTE: This option is set to the Vi default value when 'compatible' is
set and to the Vim default value when 'compatible' is reset.

'wildcharm' 'wcm'
'wildcharm' 'wcm' number (default: none (0))

global
'wildcharm' works exactly like 'wildchar', except that it is
recognized when used inside a macro. You can find "spare" command-line
keys suitable for this option by looking at ex-edit-index . Normally
you'll never actually type 'wildcharm', just use it in mappings that
automatically invoke completion mode, e.g.:

:set wcm=<C-Z>
:cnoremap ss so $vim/sessions/*.vim<C-Z>

Then after typing :ss you can use CTRL-P & CTRL-N.

'wildignore' 'wig'
'wildignore' 'wig' string (default "")

global
A list of file patterns. A file that matches with one of these
patterns is ignored when expanding wildcards , completing file or
directory names, and influences the result of expand() , glob() and
globpath() unless a flag is passed to disable this.

The pattern is used like with :autocmd , see autocmd-patterns .
Also see 'suffixes'.
Example:

:set wildignore=*.o,*.obj
The use of :set+= and :set-= is preferred when adding or removing
a pattern from the list. This avoids problems when a future version
uses another default.

options.txt — 977

'wildignorecase' 'wic' 'nowildignorecase' 'nowic'
'wildignorecase' 'wic' boolean (default off)

global
When set case is ignored when completing file names and directories.
Has no effect when 'fileignorecase' is set.
Does not apply when the shell is used to expand wildcards, which
happens when there are special characters.

'wildmenu' 'wmnu' 'nowildmenu' 'nowmnu'
'wildmenu' 'wmnu' boolean (default off, set in defaults.vim)

global
When 'wildmenu' is on, command-line completion operates in an enhanced
mode. On pressing 'wildchar' (usually <Tab>) to invoke completion,
the possible matches are shown.
When 'wildoptions' contains "pum", then the completion matches are
shown in a popup menu. Otherwise they are displayed just above the
command line, with the first match highlighted (overwriting the status
line, if there is one).
Keys that show the previous/next match, such as <Tab> or
CTRL-P/CTRL-N, cause the highlight to move to the appropriate match.
When 'wildmode' is used, "wildmenu" mode is used where "full" is
specified. "longest" and "list" do not start "wildmenu" mode.
You can check the current mode with wildmenumode() .
If there are more matches than can fit in the line, a ">" is shown on
the right and/or a "<" is shown on the left. The status line scrolls
as needed.
The "wildmenu" mode is abandoned when a key is hit that is not used
for selecting a completion.
While the "wildmenu" is active, the following keys have special
meanings:
CTRL-P - go to the previous entry
CTRL-N - go to the next entry
<CR> - in menu completion, when the cursor is just after a

dot: move into a submenu.
CTRL-E - end completion, go back to what was there before

selecting a match.
CTRL-Y - accept the currently selected match and stop

completion.

When not using the popup menu for command line completion, the
following keys have special meanings:
<Left> <Right> - select previous/next match (like CTRL-P/CTRL-N)
<Up> - in filename/menu name completion: move up into

parent directory or parent menu.
<Down> - in filename/menu name completion: move into a

subdirectory or submenu.

When using the popup menu for command line completion, the following
keys have special meanings:
<Up> <Down> - select previous/next match (like CTRL-P/CTRL-N)
<PageUp> - select a match several entries back
<PageDown> - select a match several entries further
<Left> - in filename/menu name completion: move up into

parent directory or parent menu.
<Right> - in filename/menu name completion: move into a

subdirectory or submenu.

This makes the menus accessible from the console console-menus .

options.txt — 978

If you prefer the <Left> and <Right> keys to move the cursor instead
of selecting a different match, use this:

:cnoremap <Left> <Space><BS><Left>
:cnoremap <Right> <Space><BS><Right>

The "WildMenu" highlighting is used for displaying the current match
hl-WildMenu .

'wildmode' 'wim'
'wildmode' 'wim' string (Vim default: "full")

global
Completion mode that is used for the character specified with
'wildchar'. It is a comma-separated list of up to four parts. Each
part specifies what to do for each consecutive use of 'wildchar'. The
first part specifies the behavior for the first use of 'wildchar',
The second part for the second use, etc.

Each part consists of a colon separated list consisting of the
following possible values:
"" Complete only the first match.
"full" Complete the next full match. After the last match,

the original string is used and then the first match
again. Will also start 'wildmenu' if it is enabled.

"longest" Complete till longest common string. If this doesn't
result in a longer string, use the next part.

"list" When more than one match, list all matches.
"lastused" When completing buffer names and more than one buffer

matches, sort buffers by time last used (other than
the current buffer).

When there is only a single match, it is fully completed in all cases.

Examples of useful colon-separated values:
"longest:full" Like "longest", but also start 'wildmenu' if it is

enabled. Will not complete to the next full match.
"list:full" When more than one match, list all matches and

complete first match.
"list:longest" When more than one match, list all matches and

complete till longest common string.
"list:lastused" When more than one buffer matches, list all matches

and sort buffers by time last used (other than the
current buffer).

Examples:
:set wildmode=full

Complete first full match, next match, etc. (the default)
:set wildmode=longest,full

Complete longest common string, then each full match
:set wildmode=list:full

List all matches and complete each full match
:set wildmode=list,full

List all matches without completing, then each full match
:set wildmode=longest,list

Complete longest common string, then list alternatives.
More info here: cmdline-completion .

'wildoptions' 'wop'
'wildoptions' 'wop' string (default "")

global
A list of words that change how cmdline-completion is done.
The following values are supported:

options.txt — 979

fuzzy Use fuzzy-matching to find completion matches. When
this value is specified, wildcard expansion will not
be used for completion. The matches will be sorted by
the "best match" rather than alphabetically sorted.
This will find more matches than the wildcard
expansion. Currently fuzzy matching based completion
is not supported for file and directory names and
instead wildcard expansion is used.

pum Display the completion matches using the popup menu
in the same style as the ins-completion-menu .

tagfile When using CTRL-D to list matching tags, the kind of
tag and the file of the tag is listed. Only one match
is displayed per line. Often used tag kinds are:

d #define
f function

'winaltkeys' 'wak'
'winaltkeys' 'wak' string (default "menu")

global
{only used in Win32, Motif, GTK and Photon GUI}

Some GUI versions allow the access to menu entries by using the ALT
key in combination with a character that appears underlined in the
menu. This conflicts with the use of the ALT key for mappings and
entering special characters. This option tells what to do:

no Don't use ALT keys for menus. ALT key combinations can be
mapped, but there is no automatic handling. This can then be
done with the :simalt command.

yes ALT key handling is done by the windowing system. ALT key
combinations cannot be mapped.

menu Using ALT in combination with a character that is a menu
shortcut key, will be handled by the windowing system. Other
keys can be mapped.

If the menu is disabled by excluding 'm' from 'guioptions', the ALT
key is never used for the menu.
This option is not used for <F10>; on Win32 and with GTK <F10> will
select the menu, unless it has been mapped.

'wincolor' 'wcr'
'wincolor' 'wcr' string (default empty)

local to window
Highlight group name to use for this window instead of the Normal
color hl-Normal .

'window' 'wi'
'window' 'wi' number (default screen height - 1)

global
Window height used for CTRL-F and CTRL-B when there is only one
window and the value is smaller than 'lines' minus one. The screen
will scroll 'window' minus two lines, with a minimum of one.
When 'window' is equal to 'lines' minus one CTRL-F and CTRL-B scroll
in a much smarter way, taking care of wrapping lines.
When resizing the Vim window, the value is smaller than 1 or more than
or equal to 'lines' it will be set to 'lines' minus 1.
Note: Do not confuse this with the height of the Vim window, use
'lines' for that.

'winfixbuf'
'winfixbuf' 'wfb' boolean (default off)

local to window
If enabled, the window and the buffer it is displaying are paired.

options.txt — 980

For example, attempting to change the buffer with :edit will fail.
Other commands which change a window's buffer such as :cnext will
also skip any window with 'winfixbuf' enabled. However if an Ex
command has a "!" modifier, it can force switching buffers.

'winfixheight' 'wfh' 'nowinfixheight' 'nowfh'
'winfixheight' 'wfh' boolean (default off)

local to window local-noglobal
Keep the window height when windows are opened or closed and
'equalalways' is set. Also for CTRL-W_= . Set by default for the
preview-window and quickfix-window .

The height may be changed anyway when running out of room.

'winfixwidth' 'wfw' 'nowinfixwidth' 'nowfw'
'winfixwidth' 'wfw' boolean (default off)

local to window local-noglobal
Keep the window width when windows are opened or closed and
'equalalways' is set. Also for CTRL-W_= .
The width may be changed anyway when running out of room.

'winheight' 'wh' E591
'winheight' 'wh' number (default 1)

global
Minimal number of lines for the current window. This is not a hard
minimum, Vim will use fewer lines if there is not enough room. If the
focus goes to a window that is smaller, its size is increased, at the
cost of the height of other windows.
Set 'winheight' to a small number for normal editing.
Set it to 999 to make the current window fill most of the screen.
Other windows will be only 'winminheight' high. This has the drawback
that ":all" will create only two windows. To avoid "vim -o 1 2 3 4"
to create only two windows, set the option after startup is done,
using the VimEnter event:

au VimEnter * set winheight=999
Minimum value is 1.
The height is not adjusted after one of the commands that change the
height of the current window.
'winheight' applies to the current window. Use 'winminheight' to set
the minimal height for other windows.

'winminheight' 'wmh'
'winminheight' 'wmh' number (default 1)

global
The minimal height of a window, when it's not the current window.
This is a hard minimum, windows will never become smaller.
When set to zero, windows may be "squashed" to zero lines (i.e. just a
status bar) if necessary. They will return to at least one line when
they become active (since the cursor has to have somewhere to go.)
Use 'winheight' to set the minimal height of the current window.
This option is only checked when making a window smaller. Don't use a
large number, it will cause errors when opening more than a few
windows. A value of 0 to 3 is reasonable.

'winminwidth' 'wmw'
'winminwidth' 'wmw' number (default 1)

global
The minimal width of a window, when it's not the current window.
This is a hard minimum, windows will never become smaller.
When set to zero, windows may be "squashed" to zero columns (i.e. just
a vertical separator) if necessary. They will return to at least one

options.txt — 981

line when they become active (since the cursor has to have somewhere
to go.)
Use 'winwidth' to set the minimal width of the current window.
This option is only checked when making a window smaller. Don't use a
large number, it will cause errors when opening more than a few
windows. A value of 0 to 12 is reasonable.

'winptydll'
'winptydll' string (default "winpty32.dll" or "winpty64.dll")

global
{only available when compiled with the terminal
feature on MS-Windows}

Specifies the name of the winpty shared library, used for the
:terminal command. The default depends on whether Vim was built as a

32-bit or 64-bit executable. If not found, "winpty.dll" is tried as
a fallback.
Environment variables are expanded :set_env .
This option cannot be set from a modeline or in the sandbox , for
security reasons.

'winwidth' 'wiw' E592
'winwidth' 'wiw' number (default 20)

global
Minimal number of columns for the current window. This is not a hard
minimum, Vim will use fewer columns if there is not enough room. If
the current window is smaller, its size is increased, at the cost of
the width of other windows. Set it to 999 to make the current window
always fill the screen. Set it to a small number for normal editing.
The width is not adjusted after one of the commands to change the
width of the current window.
'winwidth' applies to the current window. Use 'winminwidth' to set
the minimal width for other windows.

'wrap' 'nowrap'
'wrap' boolean (default on)

local to window
This option changes how text is displayed. It doesn't change the text
in the buffer, see 'textwidth' for that.
When on, lines longer than the width of the window will wrap and
displaying continues on the next line. When off lines will not wrap
and only part of long lines will be displayed. When the cursor is
moved to a part that is not shown, the screen will scroll
horizontally.
The line will be broken in the middle of a word if necessary. See
'linebreak' to get the break at a word boundary.
To make scrolling horizontally a bit more useful, try this:

:set sidescroll=5
:set listchars+=precedes:<,extends:>

See 'sidescroll', 'listchars' and wrap-off .
This option can't be set from a modeline when the 'diff' option is
on.

'wrapmargin' 'wm'
'wrapmargin' 'wm' number (default 0)

local to buffer
Number of characters from the right window border where wrapping
starts. When typing text beyond this limit, an <EOL> will be inserted
and inserting continues on the next line.
Options that add a margin, such as 'number' and 'foldcolumn', cause
the text width to be further reduced. This is Vi compatible.

options.txt — 982

When 'textwidth' is non-zero, this option is not used.
This option is set to 0 when 'paste' is set and restored when 'paste'
is reset.
See also 'formatoptions' and ins-textwidth .

'wrapscan' 'ws' 'nowrapscan' 'nows'
'wrapscan' 'ws' boolean (default on) E384 E385

global
Searches wrap around the end of the file. Also applies to]s and
[s , searching for spelling mistakes.

'write' 'nowrite'
'write' boolean (default on)

global
Allows writing files. When not set, writing a file is not allowed.
Can be used for a view-only mode, where modifications to the text are
still allowed. Can be reset with the -m or -M command line
argument. Filtering text is still possible, even though this requires
writing a temporary file.

'writeany' 'wa' 'nowriteany' 'nowa'
'writeany' 'wa' boolean (default off)

global
Allows writing to any file with no need for "!" override.

'writebackup' 'wb' 'nowritebackup' 'nowb'
'writebackup' 'wb' boolean (default on with +writebackup feature, off

otherwise)
global

Make a backup before overwriting a file. The backup is removed after
the file was successfully written, unless the 'backup' option is
also on.
WARNING: Switching this option off means that when Vim fails to write
your buffer correctly and then, for whatever reason, Vim exits, you
lose both the original file and what you were writing. Only reset
this option if your file system is almost full and it makes the write
fail (and make sure not to exit Vim until the write was successful).
See backup-table for another explanation.
When the 'backupskip' pattern matches, a backup is not made anyway.
Depending on 'backupcopy' the backup is a new file or the original
file renamed (and a new file is written).
NOTE: This option is set to the default value when 'compatible' is
set.

'writedelay' 'wd'
'writedelay' 'wd' number (default 0)

global
The number of milliseconds to wait for each character sent to the
screen. When non-zero, characters are sent to the terminal one by
one. For debugging purposes.

'xtermcodes' 'noxtermcodes'
'xtermcodes' boolean (default on)

global
When detecting xterm patchlevel 141 or higher with the termresponse
mechanism and this option is set, Vim will request the actual terminal
key codes and number of colors from the terminal. This takes care of
various configuration options of the terminal that cannot be obtained
from the termlib/terminfo entry, see xterm-codes .
A side effect may be that t_Co changes and Vim will redraw the

options.txt — 983

display.

options.txt — 984

pattern.txt For Vim version 9.1. Last change: 2023 Oct 23

VIM REFERENCE MANUAL by Bram Moolenaar

Patterns and search commands pattern-searches

The very basics can be found in section 03.9 of the user manual. A few more
explanations are in chapter 27 usr_27.txt .

1. Search commands search-commands
2. The definition of a pattern search-pattern
3. Magic /magic
4. Overview of pattern items pattern-overview
5. Multi items pattern-multi-items
6. Ordinary atoms pattern-atoms
7. Ignoring case in a pattern /ignorecase
8. Composing characters patterns-composing
9. Compare with Perl patterns perl-patterns
10. Highlighting matches match-highlight
11. Fuzzy matching fuzzy-matching

==
1. Search commands search-commands

/
/{pattern}[/]<CR> Search forward for the [count]'th occurrence of

{pattern} exclusive .

/{pattern}/{offset}<CR> Search forward for the [count]'th occurrence of
{pattern} and go {offset} lines up or down.
linewise .

/<CR>
/<CR> Search forward for the [count]'th occurrence of the

latest used pattern last-pattern with latest used
{offset} .

//{offset}<CR> Search forward for the [count]'th occurrence of the
latest used pattern last-pattern with new
{offset} . If {offset} is empty no offset is used.

?
?{pattern}[?]<CR> Search backward for the [count]'th previous

occurrence of {pattern} exclusive .

?{pattern}?{offset}<CR> Search backward for the [count]'th previous
occurrence of {pattern} and go {offset} lines up or
down linewise .

?<CR>
?<CR> Search backward for the [count]'th occurrence of the

latest used pattern last-pattern with latest used
{offset} .

??{offset}<CR> Search backward for the [count]'th occurrence of the
latest used pattern last-pattern with new
{offset} . If {offset} is empty no offset is used.

pattern.txt — 985

n
n Repeat the latest "/" or "?" [count] times.

If the cursor doesn't move the search is repeated with
count + 1.
last-pattern

N
N Repeat the latest "/" or "?" [count] times in

opposite direction. last-pattern

star E348 E349
* Search forward for the [count]'th occurrence of the

word nearest to the cursor. The word used for the
search is the first of:

1. the keyword under the cursor 'iskeyword'
2. the first keyword after the cursor, in the

current line
3. the non-blank word under the cursor
4. the first non-blank word after the cursor,

in the current line
Only whole keywords are searched for, like with the
command "/\<keyword\>". exclusive
'ignorecase' is used, 'smartcase' is not.

#
Same as "*", but search backward. The pound sign

(character 163) also works. If the "#" key works as
backspace, try using "stty erase <BS>" before starting
Vim (<BS> is CTRL-H or a real backspace).

gstar
g* Like "*", but don't put "\<" and "\>" around the word.

This makes the search also find matches that are not a
whole word.

g#
g# Like "#", but don't put "\<" and "\>" around the word.

This makes the search also find matches that are not a
whole word.

gd
gd Goto local Declaration. When the cursor is on a local

variable, this command will jump to its declaration.
This was made to work for C code, in other languages
it may not work well.
First Vim searches for the start of the current
function, just like "[[". If it is not found the
search stops in line 1. If it is found, Vim goes back
until a blank line is found. From this position Vim
searches for the keyword under the cursor, like with
"*", but lines that look like a comment are ignored
(see 'comments' option).
Note that this is not guaranteed to work, Vim does not
really check the syntax, it only searches for a match
with the keyword. If included files also need to be
searched use the commands listed in include-search .
After this command n searches forward for the next
match (not backward).

gD

pattern.txt — 986

gD Goto global Declaration. When the cursor is on a
global variable that is defined in the file, this
command will jump to its declaration. This works just
like "gd", except that the search for the keyword
always starts in line 1.

1gd
1gd Like "gd", but ignore matches inside a {} block that

ends before the cursor position.

1gD
1gD Like "gD", but ignore matches inside a {} block that

ends before the cursor position.

CTRL-C
CTRL-C Interrupt current (search) command. Use CTRL-Break on

MS-Windows dos-CTRL-Break .
In Normal mode, any pending command is aborted.
When Vim was started with output redirected and there
are no changed buffers CTRL-C exits Vim. That is to
help users who use "vim file | grep word" and don't
know how to get out (blindly typing :qa<CR> would
work).

:noh :nohlsearch
:noh[lsearch] Stop the highlighting for the 'hlsearch' option. It

is automatically turned back on when using a search
command, or setting the 'hlsearch' option.
This command doesn't work in an autocommand, because
the highlighting state is saved and restored when
executing autocommands autocmd-searchpat .
Same thing for when invoking a user function.

While typing the search pattern the current match will be shown if the
'incsearch' option is on. Remember that you still have to finish the search
command with <CR> to actually position the cursor at the displayed match. Or
use <Esc> to abandon the search.

All matches for the last used search pattern will be highlighted if you set
the 'hlsearch' option. This can be suspended with the :nohlsearch command.

When 'shortmess' does not include the "S" flag, Vim will automatically show an
index, on which the cursor is. This can look like this:

[1/5] Cursor is on first of 5 matches.
[1/>99] Cursor is on first of more than 99 matches.
[>99/>99] Cursor is after 99 match of more than 99 matches.
[?/??] Unknown how many matches exists, generating the

statistics was aborted because of search timeout.

Note: the count does not take offset into account.

When no match is found you get the error: E486 Pattern not found
Note that for the `:global` command, when used in legacy script, you get a
normal message "Pattern not found", for Vi compatibility.
In Vim9 script you get E486 for "pattern not found" or E538 when the pattern
matches in every line with `:vglobal`.
For the :s command the "e" flag can be used to avoid the error message
:s_flags .

pattern.txt — 987

search-offset {offset}
These commands search for the specified pattern. With "/" and "?" an
additional offset may be given. There are two types of offsets: line offsets
and character offsets.

The offset gives the cursor position relative to the found match:
[num] [num] lines downwards, in column 1
+[num] [num] lines downwards, in column 1
-[num] [num] lines upwards, in column 1
e[+num] [num] characters to the right of the end of the match
e[-num] [num] characters to the left of the end of the match
s[+num] [num] characters to the right of the start of the match
s[-num] [num] characters to the left of the start of the match
b[+num] [num] identical to s[+num] above (mnemonic: begin)
b[-num] [num] identical to s[-num] above (mnemonic: begin)
;{pattern} perform another search, see //;

If a '-' or '+' is given but [num] is omitted, a count of one will be used.
When including an offset with 'e', the search becomes inclusive (the
character the cursor lands on is included in operations).

Examples:

pattern cursor position
/test/+1 one line below "test", in column 1
/test/e on the last t of "test"
/test/s+2 on the 's' of "test"
/test/b-3 three characters before "test"

If one of these commands is used after an operator, the characters between
the cursor position before and after the search is affected. However, if a
line offset is given, the whole lines between the two cursor positions are
affected.

An example of how to search for matches with a pattern and change the match
with another word:

/foo<CR> find "foo"
c//e<CR> change until end of match
bar<Esc> type replacement
//<CR> go to start of next match
c//e<CR> change until end of match
beep<Esc> type another replacement

etc.

//; E386
A very special offset is ';' followed by another search command. For example:

/test 1/;/test
/test.*/+1;?ing?

The first one first finds the next occurrence of "test 1", and then the first
occurrence of "test" after that.

This is like executing two search commands after each other, except that:
- It can be used as a single motion command after an operator.
- The direction for a following "n" or "N" command comes from the first

search command.
- When an error occurs the cursor is not moved at all.

last-pattern

pattern.txt — 988

The last used pattern and offset are remembered. They can be used to repeat
the search, possibly in another direction or with another count. Note that
two patterns are remembered: One for "normal" search commands and one for the
substitute command ":s". Each time an empty pattern is given, the previously
used pattern is used. However, if there is no previous search command, a
previous substitute pattern is used, if possible.

The 'magic' option sticks with the last used pattern. If you change 'magic',
this will not change how the last used pattern will be interpreted.
The 'ignorecase' option does not do this. When 'ignorecase' is changed, it
will result in the pattern to match other text.

All matches for the last used search pattern will be highlighted if you set
the 'hlsearch' option.

To clear the last used search pattern:
:let @/ = ""

This will not set the pattern to an empty string, because that would match
everywhere. The pattern is really cleared, like when starting Vim.

The search usually skips matches that don't move the cursor. Whether the next
match is found at the next character or after the skipped match depends on the
'c' flag in 'cpoptions'. See cpo-c .

with 'c' flag: "/..." advances 1 to 3 characters
without 'c' flag: "/..." advances 1 character

The unpredictability with the 'c' flag is caused by starting the search in the
first column, skipping matches until one is found past the cursor position.

When searching backwards, searching starts at the start of the line, using the
'c' flag in 'cpoptions' as described above. Then the last match before the
cursor position is used.

In Vi the ":tag" command sets the last search pattern when the tag is searched
for. In Vim this is not done, the previous search pattern is still remembered,
unless the 't' flag is present in 'cpoptions'. The search pattern is always
put in the search history.

If the 'wrapscan' option is on (which is the default), searches wrap around
the end of the buffer. If 'wrapscan' is not set, the backward search stops
at the beginning and the forward search stops at the end of the buffer. If
'wrapscan' is set and the pattern was not found the error message "pattern
not found" is given, and the cursor will not be moved. If 'wrapscan' is not
set the message becomes "search hit BOTTOM without match" when searching
forward, or "search hit TOP without match" when searching backward. If
wrapscan is set and the search wraps around the end of the file the message
"search hit TOP, continuing at BOTTOM" or "search hit BOTTOM, continuing at
TOP" is given when searching backwards or forwards respectively. This can be
switched off by setting the 's' flag in the 'shortmess' option. The highlight
method 'w' is used for this message (default: standout).

search-range
You can limit the search command "/" to a certain range of lines by including
\%>l items. For example, to match the word "limit" below line 199 and above
line 300:

/\%>199l\%<300llimit
Also see /\%>l .

Another way is to use the ":substitute" command with the 'c' flag. Example:
:.,300s/Pattern//gc

This command will search from the cursor position until line 300 for

pattern.txt — 989

"Pattern". At the match, you will be asked to type a character. Type 'q' to
stop at this match, type 'n' to find the next match.

The "*", "#", "g*" and "g#" commands look for a word near the cursor in this
order, the first one that is found is used:
- The keyword currently under the cursor.
- The first keyword to the right of the cursor, in the same line.
- The WORD currently under the cursor.
- The first WORD to the right of the cursor, in the same line.
The keyword may only contain letters and characters in 'iskeyword'.
The WORD may contain any non-blanks (<Tab>s and/or <Space>s).
Note that if you type with ten fingers, the characters are easy to remember:
the "#" is under your left hand middle finger (search to the left and up) and
the "*" is under your right hand middle finger (search to the right and down).
(this depends on your keyboard layout though).

E956
In very rare cases a regular expression is used recursively. This can happen
when executing a pattern takes a long time and when checking for messages on
channels a callback is invoked that also uses a pattern or an autocommand is
triggered. In most cases this should be fine, but if a pattern is in use when
it's used again it fails. Usually this means there is something wrong with
the pattern.

==
2. The definition of a pattern search-pattern pattern [pattern]

regular-expression regexp Pattern
E383 E476

For starters, read chapter 27 of the user manual usr_27.txt .

/bar /\bar /pattern
1. A pattern is one or more branches, separated by "\|". It matches anything

that matches one of the branches. Example: "foo\|beep" matches "foo" and
matches "beep". If more than one branch matches, the first one is used.

pattern ::= branch
or branch \| branch
or branch \| branch \| branch
etc.

/branch /\&
2. A branch is one or more concats, separated by "\&". It matches the last

concat, but only if all the preceding concats also match at the same
position. Examples:

"foobeep\&..." matches "foo" in "foobeep".
".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"

branch ::= concat
or concat \& concat
or concat \& concat \& concat
etc.

/concat
3. A concat is one or more pieces, concatenated. It matches a match for the

first piece, followed by a match for the second piece, etc. Example:
"f[0-9]b", first matches "f", then a digit and then "b".

concat ::= piece
or piece piece

pattern.txt — 990

or piece piece piece
etc.

/piece
4. A piece is an atom, possibly followed by a multi, an indication of how many

times the atom can be matched. Example: "a*" matches any sequence of "a"
characters: "", "a", "aa", etc. See /multi .

piece ::= atom
or atom multi

/atom
5. An atom can be one of a long list of items. Many atoms match one character

in the text. It is often an ordinary character or a character class.
Parentheses can be used to make a pattern into an atom. The "\z(\)"
construct is only for syntax highlighting.

atom ::= ordinary-atom /ordinary-atom
or \(pattern \) /\(
or \%(pattern \) /\%(
or \z(pattern \) /\z(

/\%#= two-engines NFA
Vim includes two regexp engines:
1. An old, backtracking engine that supports everything.
2. A new, NFA engine that works much faster on some patterns, possibly slower

on some patterns.
E1281

Vim will automatically select the right engine for you. However, if you run
into a problem or want to specifically select one engine or the other, you can
prepend one of the following to the pattern:

\%#=0 Force automatic selection. Only has an effect when
'regexpengine' has been set to a non-zero value.

\%#=1 Force using the old engine.
\%#=2 Force using the NFA engine.

You can also use the 'regexpengine' option to change the default.

E864 E868 E874 E875 E876 E877 E878
If selecting the NFA engine and it runs into something that is not implemented
the pattern will not match. This is only useful when debugging Vim.

==
3. Magic /magic

Some characters in the pattern, such as letters, are taken literally. They
match exactly the same character in the text. When preceded with a backslash
however, these characters may get a special meaning. For example, "a" matches
the letter "a", while "\a" matches any alphabetic character.

Other characters have a special meaning without a backslash. They need to be
preceded with a backslash to match literally. For example "." matches any
character while "\." matches a dot.

If a character is taken literally or not depends on the 'magic' option and the
items in the pattern mentioned next. The 'magic' option should always be set,
but it can be switched off for Vi compatibility. We mention the effect of
'nomagic' here for completeness, but we recommend against using that.

pattern.txt — 991

/\m /\M
Use of "\m" makes the pattern after it be interpreted as if 'magic' is set,
ignoring the actual value of the 'magic' option.
Use of "\M" makes the pattern after it be interpreted as if 'nomagic' is used.

/\v /\V
Use of "\v" means that after it, all ASCII characters except '0'-'9', 'a'-'z',
'A'-'Z' and '_' have special meaning: "very magic"

Use of "\V" means that after it, only a backslash and the terminating
character (usually / or ?) have special meaning: "very nomagic"

Examples:
after: \v \m \M \V matches

'magic' 'nomagic'
a a a a literal 'a'
\a \a \a \a any alphabetic character
. . \. \. any character
\. \. . . literal dot
$ $ $ \$ end-of-line
* * * * any number of the previous atom
~ ~ \~ \~ latest substitute string
() \(\) \(\) \(\) group as an atom
| \| \| \| nothing: separates alternatives
\\ \\ \\ \\ literal backslash
\{ { { { literal curly brace

{only Vim supports \m, \M, \v and \V}

If you want to you can make a pattern immune to the 'magic' option being set
or not by putting "\m" or "\M" at the start of the pattern.

==
4. Overview of pattern items pattern-overview

E865 E866 E867 E869

Overview of multi items. /multi E61 E62
More explanation and examples below, follow the links. E64 E871

multi
'magic' 'nomagic' matches of the preceding atom

/star * * 0 or more as many as possible
/\+ \+ \+ 1 or more as many as possible
/\= \= \= 0 or 1 as many as possible
/\? \? \? 0 or 1 as many as possible

/\{ \{n,m} \{n,m} n to m as many as possible
\{n} \{n} n exactly
\{n,} \{n,} at least n as many as possible
\{,m} \{,m} 0 to m as many as possible
\{} \{} 0 or more as many as possible (same as *)

/\{- \{-n,m} \{-n,m} n to m as few as possible
\{-n} \{-n} n exactly
\{-n,} \{-n,} at least n as few as possible
\{-,m} \{-,m} 0 to m as few as possible
\{-} \{-} 0 or more as few as possible

E59
/\@> \@> \@> 1, like matching a whole pattern
/\@= \@= \@= nothing, requires a match /zero-width

pattern.txt — 992

/\@! \@! \@! nothing, requires NO match /zero-width
/\@<= \@<= \@<= nothing, requires a match behind /zero-width
/\@<! \@<! \@<! nothing, requires NO match behind /zero-width

Overview of ordinary atoms. /ordinary-atom
More explanation and examples below, follow the links.

ordinary atom
magic nomagic matches

/^ ^ ^ start-of-line (at start of pattern) /zero-width
/\^ \^ \^ literal '^'
/_^ _^ _^ start-of-line (used anywhere) /zero-width
/$ $ $ end-of-line (at end of pattern) /zero-width
/\$ \$ \$ literal '$'
/_$ _$ _$ end-of-line (used anywhere) /zero-width
/. . \. any single character (not an end-of-line)
/_. _. _. any single character or end-of-line
/\< \< \< beginning of a word /zero-width
/\> \> \> end of a word /zero-width
/\zs \zs \zs anything, sets start of match
/\ze \ze \ze anything, sets end of match
/\%^ \%^ \%^ beginning of file /zero-width E71
/\%$ \%$ \%$ end of file /zero-width
/\%V \%V \%V inside Visual area /zero-width
/\%# \%# \%# cursor position /zero-width
/\%'m \%'m \%'m mark m position /zero-width
/\%l \%23l \%23l in line 23 /zero-width
/\%c \%23c \%23c in column 23 /zero-width
/\%v \%23v \%23v in virtual column 23 /zero-width

Character classes: /character-classes
magic nomagic matches

/\i \i \i identifier character (see 'isident' option)
/\I \I \I like "\i", but excluding digits
/\k \k \k keyword character (see 'iskeyword' option)
/\K \K \K like "\k", but excluding digits
/\f \f \f file name character (see 'isfname' option)
/\F \F \F like "\f", but excluding digits
/\p \p \p printable character (see 'isprint' option)
/\P \P \P like "\p", but excluding digits
/\s \s \s whitespace character: <Space> and <Tab>
/\S \S \S non-whitespace character; opposite of \s
/\d \d \d digit: [0-9]
/\D \D \D non-digit: [^0-9]
/\x \x \x hex digit: [0-9A-Fa-f]
/\X \X \X non-hex digit: [^0-9A-Fa-f]
/\o \o \o octal digit: [0-7]
/\O \O \O non-octal digit: [^0-7]
/\w \w \w word character: [0-9A-Za-z_]
/\W \W \W non-word character: [^0-9A-Za-z_]
/\h \h \h head of word character: [A-Za-z_]
/\H \H \H non-head of word character: [^A-Za-z_]
/\a \a \a alphabetic character: [A-Za-z]
/\A \A \A non-alphabetic character: [^A-Za-z]
/\l \l \l lowercase character: [a-z]
/\L \L \L non-lowercase character: [^a-z]
/\u \u \u uppercase character: [A-Z]
/\U \U \U non-uppercase character [^A-Z]
/_ _x _x where x is any of the characters above: character

pattern.txt — 993

class with end-of-line included
(end of character classes)

magic nomagic matches
/\e \e \e <Esc>
/\t \t \t <Tab>
/\r \r \r <CR>
/\b \b \b <BS>
/\n \n \n end-of-line
/~ ~ \~ last given substitute string
/\1 \1 \1 same string as matched by first \(\)
/\2 \2 \2 Like "\1", but uses second \(\)

...
/\9 \9 \9 Like "\1", but uses ninth \(\)

E68
/\z1 \z1 \z1 only for syntax highlighting, see :syn-ext-match

...
/\z1 \z9 \z9 only for syntax highlighting, see :syn-ext-match

x x a character with no special meaning matches itself

/[] [] \[] any character specified inside the []
/\%[] \%[] \%[] a sequence of optionally matched atoms

/\c \c \c ignore case, do not use the 'ignorecase' option
/\C \C \C match case, do not use the 'ignorecase' option
/\Z \Z \Z ignore differences in Unicode "combining characters".

Useful when searching voweled Hebrew or Arabic text.

magic nomagic matches
/\m \m \m 'magic' on for the following chars in the pattern
/\M \M \M 'magic' off for the following chars in the pattern
/\v \v \v the following chars in the pattern are "very magic"
/\V \V \V the following chars in the pattern are "very nomagic"
/\%#= \%#=1 \%#=1 select regexp engine /zero-width

/\%d \%d \%d match specified decimal character (eg \%d123)
/\%x \%x \%x match specified hex character (eg \%x2a)
/\%o \%o \%o match specified octal character (eg \%o040)
/\%u \%u \%u match specified multibyte character (eg \%u20ac)
/\%U \%U \%U match specified large multibyte character (eg

\%U12345678)
/\%C \%C \%C match any composing characters

Example matches
\<\I\i* or
\<\h\w*
\<[a-zA-Z_][a-zA-Z0-9_]*

An identifier (e.g., in a C program).

\(\.$\|\. \) A period followed by <EOL> or a space.

[.!?][])"']*\($\|[]\) A search pattern that finds the end of a sentence,
with almost the same definition as the ")" command.

cat\Z Both "cat" and "càt" ("a" followed by 0x0300)
Does not match "càt" (character 0x00e0), even
though it may look the same.

pattern.txt — 994

==
5. Multi items pattern-multi-items

An atom can be followed by an indication of how many times the atom can be
matched and in what way. This is called a multi. See /multi for an
overview.

/star /\star
* (use * when 'magic' is not set)

Matches 0 or more of the preceding atom, as many as possible.
Example 'nomagic' matches
a* a* "", "a", "aa", "aaa", etc.
.* \.* anything, also an empty string, no end-of-line
_.* _.* everything up to the end of the buffer
_.*END _.*END everything up to and including the last "END"

in the buffer

Exception: When "*" is used at the start of the pattern or just after
"^" it matches the star character.

Be aware that repeating "_." can match a lot of text and take a long
time. For example, "_.*END" matches all text from the current
position to the last occurrence of "END" in the file. Since the "*"
will match as many as possible, this first skips over all lines until
the end of the file and then tries matching "END", backing up one
character at a time.

/\+
\+ Matches 1 or more of the preceding atom, as many as possible.

Example matches
^.\+$ any non-empty line
\s\+ white space of at least one character

/\=
\= Matches 0 or 1 of the preceding atom, as many as possible.

Example matches
foo\= "fo" and "foo"

/\?
\? Just like \=. Cannot be used when searching backwards with the "?"

command.

/\{ E60 E554 E870
\{n,m} Matches n to m of the preceding atom, as many as possible
\{n} Matches n of the preceding atom
\{n,} Matches at least n of the preceding atom, as many as possible
\{,m} Matches 0 to m of the preceding atom, as many as possible
\{} Matches 0 or more of the preceding atom, as many as possible (like *)

/\{-
\{-n,m} matches n to m of the preceding atom, as few as possible
\{-n} matches n of the preceding atom
\{-n,} matches at least n of the preceding atom, as few as possible
\{-,m} matches 0 to m of the preceding atom, as few as possible
\{-} matches 0 or more of the preceding atom, as few as possible

n and m are positive decimal numbers or zero
non-greedy

If a "-" appears immediately after the "{", then a shortest match
first algorithm is used (see example below). In particular, "\{-}" is
the same as "*" but uses the shortest match first algorithm. BUT: A

pattern.txt — 995

match that starts earlier is preferred over a shorter match: "a\{-}b"
matches "aaab" in "xaaab".

Example matches
ab\{2,3}c "abbc" or "abbbc"
a\{5} "aaaaa"
ab\{2,}c "abbc", "abbbc", "abbbbc", etc.
ab\{,3}c "ac", "abc", "abbc" or "abbbc"
a[bc]\{3}d "abbbd", "abbcd", "acbcd", "acccd", etc.
a\(bc\)\{1,2}d "abcd" or "abcbcd"
a[bc]\{-}[cd] "abc" in "abcd"
a[bc]*[cd] "abcd" in "abcd"

The } may optionally be preceded with a backslash: \{n,m\}.

/\@=
\@= Matches the preceding atom with zero width.

Like "(?=pattern)" in Perl.
Example matches
foo\(bar\)\@= "foo" in "foobar"
foo\(bar\)\@=foo nothing

/zero-width
When using "\@=" (or "^", "$", "\<", "\>") no characters are included
in the match. These items are only used to check if a match can be
made. This can be tricky, because a match with following items will
be done in the same position. The last example above will not match
"foobarfoo", because it tries match "foo" in the same position where
"bar" matched.

Note that using "\&" works the same as using "\@=": "foo\&.." is the
same as "\(foo\)\@=..". But using "\&" is easier, you don't need the
parentheses.

/\@!
\@! Matches with zero width if the preceding atom does NOT match at the

current position. /zero-width
Like "(?!pattern)" in Perl.
Example matches
foo\(bar\)\@! any "foo" not followed by "bar"
a.\{-}p\@! "a", "ap", "app", "appp", etc. not immediately

followed by a "p"
if \(\(then\)\@!.\)*$ "if " not followed by "then"

Using "\@!" is tricky, because there are many places where a pattern
does not match. "a.*p\@!" will match from an "a" to the end of the
line, because ".*" can match all characters in the line and the "p"
doesn't match at the end of the line. "a.\{-}p\@!" will match any
"a", "ap", "app", etc. that isn't followed by a "p", because the "."
can match a "p" and "p\@!" doesn't match after that.

You can't use "\@!" to look for a non-match before the matching
position: "\(foo\)\@!bar" will match "bar" in "foobar", because at the
position where "bar" matches, "foo" does not match. To avoid matching
"foobar" you could use "\(foo\)\@!...bar", but that doesn't match a
bar at the start of a line. Use "\(foo\)\@<!bar".

Useful example: to find "foo" in a line that does not contain "bar":
/^\%(.*bar\)\@!.*\zsfoo

This pattern first checks that there is not a single position in the

pattern.txt — 996

line where "bar" matches. If ".*bar" matches somewhere the \@! will
reject the pattern. When there is no match any "foo" will be found.
The "\zs" is to have the match start just before "foo".

/\@<=
\@<= Matches with zero width if the preceding atom matches just before what

follows. /zero-width
Like "(?<=pattern)" in Perl, but Vim allows non-fixed-width patterns.
Example matches
\(an_s\+\)\@<=file "file" after "an" and white space or an

end-of-line
For speed it's often much better to avoid this multi. Try using "\zs"
instead /\zs . To match the same as the above example:

an_s\+\zsfile
At least set a limit for the look-behind, see below.

"\@<=" and "\@<!" check for matches just before what follows.
Theoretically these matches could start anywhere before this position.
But to limit the time needed, only the line where what follows matches
is searched, and one line before that (if there is one). This should
be sufficient to match most things and not be too slow.

In the old regexp engine the part of the pattern after "\@<=" and
"\@<!" are checked for a match first, thus things like "\1" don't work
to reference \(\) inside the preceding atom. It does work the other
way around:
Bad example matches
\%#=1\1\@<=,\([a-z]\+\) ",abc" in "abc,abc"

However, the new regexp engine works differently, it is better to not
rely on this behavior, do not use \@<= if it can be avoided:
Example matches
\([a-z]\+\)\zs,\1 ",abc" in "abc,abc"

\@123<=
Like "\@<=" but only look back 123 bytes. This avoids trying lots
of matches that are known to fail and make executing the pattern very
slow. Example, check if there is a "<" just before "span":

/<\@1<=span
This will try matching "<" only one byte before "span", which is the
only place that works anyway.
After crossing a line boundary, the limit is relative to the end of
the line. Thus the characters at the start of the line with the match
are not counted (this is just to keep it simple).
The number zero is the same as no limit.

/\@<!
\@<! Matches with zero width if the preceding atom does NOT match just

before what follows. Thus this matches if there is no position in the
current or previous line where the atom matches such that it ends just
before what follows. /zero-width
Like "(?<!pattern)" in Perl, but Vim allows non-fixed-width patterns.
The match with the preceding atom is made to end just before the match
with what follows, thus an atom that ends in ".*" will work.
Warning: This can be slow (because many positions need to be checked
for a match). Use a limit if you can, see below.
Example matches
\(foo\)\@<!bar any "bar" that's not in "foobar"
\(\/\/.*\)\@<!in "in" which is not after "//"

pattern.txt — 997

\@123<!
Like "\@<!" but only look back 123 bytes. This avoids trying lots of
matches that are known to fail and make executing the pattern very
slow.

/\@>
\@> Matches the preceding atom like matching a whole pattern.

Like "(?>pattern)" in Perl.
Example matches
\(a*\)\@>a nothing (the "a*" takes all the "a"'s, there can't be

another one following)

This matches the preceding atom as if it was a pattern by itself. If
it doesn't match, there is no retry with shorter sub-matches or
anything. Observe this difference: "a*b" and "a*ab" both match
"aaab", but in the second case the "a*" matches only the first two
"a"s. "\(a*\)\@>ab" will not match "aaab", because the "a*" matches
the "aaa" (as many "a"s as possible), thus the "ab" can't match.

==
6. Ordinary atoms pattern-atoms

An ordinary atom can be:

/^
^ At beginning of pattern or after "\|", "\(", "\%(" or "\n": matches

start-of-line; at other positions, matches literal '^'. /zero-width
Example matches
^beep(the start of the C function "beep" (probably).

/\^
\^ Matches literal '^'. Can be used at any position in the pattern, but

not inside [].

/_^
_^ Matches start-of-line. /zero-width Can be used at any position in

the pattern, but not inside [].
Example matches
s*^foo white space and blank lines and then "foo" at

start-of-line

/$
$ At end of pattern or in front of "\|", "\)" or "\n" ('magic' on):

matches end-of-line <EOL>; at other positions, matches literal '$'.
/zero-width

/\$
\$ Matches literal '$'. Can be used at any position in the pattern, but

not inside [].

/_$
_$ Matches end-of-line. /zero-width Can be used at any position in the

pattern, but not inside []. Note that "a_$b" never matches, since
"b" cannot match an end-of-line. Use "a\nb" instead /\n .
Example matches
foo_$_s* "foo" at end-of-line and following white space and

blank lines

. (with 'nomagic': \.) /. /\.

pattern.txt — 998

Matches any single character, but not an end-of-line.

/_.
_. Matches any single character or end-of-line.

Careful: "_.*" matches all text to the end of the buffer!

/\<
\< Matches the beginning of a word: The next char is the first char of a

word. The 'iskeyword' option specifies what is a word character.
/zero-width

/\>
\> Matches the end of a word: The previous char is the last char of a

word. The 'iskeyword' option specifies what is a word character.
/zero-width

/\zs
\zs Matches at any position, but not inside [], and sets the start of the

match there: The next char is the first char of the whole match.
/zero-width

Example:
/^\s*\zsif

matches an "if" at the start of a line, ignoring white space.
Can be used multiple times, the last one encountered in a matching
branch is used. Example:

/\(.\{-}\zsFab\)\{3}
Finds the third occurrence of "Fab".
This cannot be followed by a multi. E888
{not available when compiled without the |+syntax| feature}

/\ze
\ze Matches at any position, but not inside [], and sets the end of the

match there: The previous char is the last char of the whole match.
/zero-width

Can be used multiple times, the last one encountered in a matching
branch is used.
Example: "end\ze\(if\|for\)" matches the "end" in "endif" and
"endfor".
This cannot be followed by a multi. E888
{not available when compiled without the |+syntax| feature}

/\%^ start-of-file
\%^ Matches start of the file. When matching with a string, matches the

start of the string.
For example, to find the first "VIM" in a file:

/\%^_.\{-}\zsVIM

/\%$ end-of-file
\%$ Matches end of the file. When matching with a string, matches the

end of the string.
Note that this does NOT find the last "VIM" in a file:

/VIM_.\{-}\%$
It will find the next VIM, because the part after it will always
match. This one will find the last "VIM" in the file:

/VIM\ze\(\(VIM\)\@!_.\)*\%$
This uses /\@! to ascertain that "VIM" does NOT match in any
position after the first "VIM".
Searching from the end of the file backwards is easier!

/\%V
\%V Match inside the Visual area. When Visual mode has already been

pattern.txt — 999

stopped match in the area that gv would reselect.
This is a /zero-width match. To make sure the whole pattern is
inside the Visual area put it at the start and just before the end of
the pattern, e.g.:

/\%Vfoo.*ba\%Vr
This also works if only "foo bar" was Visually selected. This:

/\%Vfoo.*bar\%V
would match "foo bar" if the Visual selection continues after the "r".
Only works for the current buffer.

/\%# cursor-position
\%# Matches with the cursor position. Only works when matching in a

buffer displayed in a window.
WARNING: When the cursor is moved after the pattern was used, the
result becomes invalid. Vim doesn't automatically update the matches.
This is especially relevant for syntax highlighting and 'hlsearch'.
In other words: When the cursor moves the display isn't updated for
this change. An update is done for lines which are changed (the whole
line is updated) or when using the CTRL-L command (the whole screen
is updated). Example, to highlight the word under the cursor:

/\k*\%#\k*
When 'hlsearch' is set and you move the cursor around and make changes
this will clearly show when the match is updated or not.

/\%'m /\%<'m /\%>'m
\%'m Matches with the position of mark m.
\%<'m Matches before the position of mark m.
\%>'m Matches after the position of mark m.

Example, to highlight the text from mark 's to 'e:
/.\%>'s.*\%<'e..

Note that two dots are required to include mark 'e in the match. That
is because "\%<'e" matches at the character before the 'e mark, and
since it's a /zero-width match it doesn't include that character.
WARNING: When the mark is moved after the pattern was used, the result
becomes invalid. Vim doesn't automatically update the matches.
Similar to moving the cursor for "\%#" /\%# .

/\%l /\%>l /\%<l E951 E1204 E1273
\%23l Matches in a specific line.
\%<23l Matches above a specific line (lower line number).
\%>23l Matches below a specific line (higher line number).
\%.l Matches at the cursor line.
\%<.l Matches above the cursor line.
\%>.l Matches below the cursor line.

These six can be used to match specific lines in a buffer. The "23"
can be any line number. The first line is 1.
WARNING: When inserting or deleting lines Vim does not automatically
update the matches. This means Syntax highlighting quickly becomes
wrong. Also when referring to the cursor position (".") and
the cursor moves the display isn't updated for this change. An update
is done when using the CTRL-L command (the whole screen is updated).
Example, to highlight the line where the cursor currently is:

:exe '/\%' . line(".") . 'l'
Alternatively use:

/\%.l
When 'hlsearch' is set and you move the cursor around and make changes
this will clearly show when the match is updated or not.

/\%c /\%>c /\%<c
\%23c Matches in a specific column.

pattern.txt — 1000

\%<23c Matches before a specific column.
\%>23c Matches after a specific column.
\%.c Matches at the cursor column.
\%<.c Matches before the cursor column.
\%>.c Matches after the cursor column.

These six can be used to match specific columns in a buffer or string.
The "23" can be any column number. The first column is 1. Actually,
the column is the byte number (thus it's not exactly right for
multibyte characters).
WARNING: When inserting or deleting text Vim does not automatically
update the matches. This means Syntax highlighting quickly becomes
wrong. Also when referring to the cursor position (".") and
the cursor moves the display isn't updated for this change. An update
is done when using the CTRL-L command (the whole screen is updated).
Example, to highlight the column where the cursor currently is:

:exe '/\%' .. col(".") .. 'c'
Alternatively use:

/\%.c
When 'hlsearch' is set and you move the cursor around and make changes
this will clearly show when the match is updated or not.
Example for matching a single byte in column 44:

/\%>43c.\%<46c
Note that "\%<46c" matches in column 45 when the "." matches a byte in
column 44.

/\%v /\%>v /\%<v
\%23v Matches in a specific virtual column.
\%<23v Matches before a specific virtual column.
\%>23v Matches after a specific virtual column.
\%.v Matches at the current virtual column.
\%<.v Matches before the current virtual column.
\%>.v Matches after the current virtual column.

These six can be used to match specific virtual columns in a buffer or
string. When not matching with a buffer in a window, the option
values of the current window are used (e.g., 'tabstop').
The "23" can be any column number. The first column is 1.
Note that some virtual column positions will never match, because they
are halfway through a tab or other character that occupies more than
one screen character.
WARNING: When inserting or deleting text Vim does not automatically
update highlighted matches. This means Syntax highlighting quickly
becomes wrong. Also when referring to the cursor position (".") and
the cursor moves the display isn't updated for this change. An update
is done when using the CTRL-L command (the whole screen is updated).
Example, to highlight all the characters after virtual column 72:

/\%>72v.*
When 'hlsearch' is set and you move the cursor around and make changes
this will clearly show when the match is updated or not.
To match the text up to column 17:

/^.*\%17v
To match all characters after the current virtual column (where the
cursor is):

/\%>.v.*
Column 17 is not included, because this is a /zero-width match. To
include the column use:

/^.*\%17v.
This command does the same thing, but also matches when there is no
character in column 17:

/^.*\%<18v.
Note that without the "^" to anchor the match in the first column,
this will also highlight column 17:

pattern.txt — 1001

/.*\%17v
Column 17 is highlighted by 'hlsearch' because there is another match
where ".*" matches zero characters.

Character classes:
\i identifier character (see 'isident' option) /\i
\I like "\i", but excluding digits /\I
\k keyword character (see 'iskeyword' option) /\k
\K like "\k", but excluding digits /\K
\f file name character (see 'isfname' option) /\f
\F like "\f", but excluding digits /\F
\p printable character (see 'isprint' option) /\p
\P like "\p", but excluding digits /\P

NOTE: the above also work for multibyte characters. The ones below only
match ASCII characters, as indicated by the range.

whitespace white-space
\s whitespace character: <Space> and <Tab> /\s
\S non-whitespace character; opposite of \s /\S
\d digit: [0-9] /\d
\D non-digit: [^0-9] /\D
\x hex digit: [0-9A-Fa-f] /\x
\X non-hex digit: [^0-9A-Fa-f] /\X
\o octal digit: [0-7] /\o
\O non-octal digit: [^0-7] /\O
\w word character: [0-9A-Za-z_] /\w
\W non-word character: [^0-9A-Za-z_] /\W
\h head of word character: [A-Za-z_] /\h
\H non-head of word character: [^A-Za-z_] /\H
\a alphabetic character: [A-Za-z] /\a
\A non-alphabetic character: [^A-Za-z] /\A
\l lowercase character: [a-z] /\l
\L non-lowercase character: [^a-z] /\L
\u uppercase character: [A-Z] /\u
\U non-uppercase character: [^A-Z] /\U

NOTE: Using the atom is faster than the [] form.

NOTE: 'ignorecase', "\c" and "\C" are not used by character classes.

/_ E63 /_i /_I /_k /_K /_f /_F
/_p /_P /_s /_S /_d /_D /_x /_X
/_o /_O /_w /_W /_h /_H /_a /_A
/_l /_L /_u /_U

_x Where "x" is any of the characters above: The character class with
end-of-line added

(end of character classes)

\e matches <Esc> /\e
\t matches <Tab> /\t
\r matches <CR> /\r
\b matches <BS> /\b
\n matches an end-of-line /\n

When matching in a string instead of buffer text a literal newline
character is matched.

~ matches the last given substitute string /~ /\~

pattern.txt — 1002

\(\) A pattern enclosed by escaped parentheses. /\(/\(\) /\)
E.g., "\(^a\)" matches 'a' at the start of a line.
There can only be nine of these. You can use "\%(" to add more, but
not counting it as a sub-expression.
E51 E54 E55 E872 E873

\1 Matches the same string that was matched by /\1 E65
the first sub-expression in \(and \).
Example: "\([a-z]\).\1" matches "ata", "ehe", "tot", etc.

\2 Like "\1", but uses second sub-expression, /\2
... /\3

\9 Like "\1", but uses ninth sub-expression. /\9
Note: The numbering of groups is done based on which "\(" comes first
in the pattern (going left to right), NOT based on what is matched
first.

\%(\) A pattern enclosed by escaped parentheses. /\%(\) /\%(E53
Just like \(\), but without counting it as a sub-expression. This
allows using more groups and it's a little bit faster.

x A single character, with no special meaning, matches itself

/\ /\\
\x A backslash followed by a single character, with no special meaning,

is reserved for future expansions

[] (with 'nomagic': \[]) /[] /\[] /_[] /collection E76
_[]

A collection. This is a sequence of characters enclosed in square
brackets. It matches any single character in the collection.
Example matches
[xyz] any 'x', 'y' or 'z'
[a-zA-Z]$ any alphabetic character at the end of a line
\c[a-z]$ same
[�-���] Russian alphabet (with utf-8 and cp1251)

/[\n]
With "_" prepended the collection also includes the end-of-line.
The same can be done by including "\n" in the collection. The
end-of-line is also matched when the collection starts with "^"! Thus
"_[^ab]" matches the end-of-line and any character but "a" and "b".
This makes it Vi compatible: Without the "_" or "\n" the collection
does not match an end-of-line.

E769
When the ']' is not there Vim will not give an error message but
assume no collection is used. Useful to search for '['. However, you
do get E769 for internal searching. And be aware that in a
`:substitute` command the whole command becomes the pattern. E.g.
":s/[/x/" searches for "[/x" and replaces it with nothing. It does
not search for "[" and replaces it with "x"!

E944 E945
If the sequence begins with "^", it matches any single character NOT
in the collection: "[^xyz]" matches anything but 'x', 'y' and 'z'.
- If two characters in the sequence are separated by '-', this is

shorthand for the full list of ASCII characters between them. E.g.,
"[0-9]" matches any decimal digit. If the starting character exceeds
the ending character, e.g. [c-a], E944 occurs. Non-ASCII characters
can be used, but the character values must not be more than 256 apart
in the old regexp engine. For example, searching by [\u3000-\u4000]

pattern.txt — 1003

after setting re=1 emits a E945 error. Prepending \%#=2 will fix it.
- A character class expression is evaluated to the set of characters

belonging to that character class. The following character classes
are supported:

Name Func Contents
[:alnum:] [:alnum:] isalnum ASCII letters and digits
[:alpha:] [:alpha:] isalpha ASCII letters
[:blank:] [:blank:] space and tab
[:cntrl:] [:cntrl:] iscntrl ASCII control characters
[:digit:] [:digit:] decimal digits '0' to '9'
[:graph:] [:graph:] isgraph ASCII printable characters excluding

space
[:lower:] [:lower:] (1) lowercase letters (all letters when

'ignorecase' is used)
[:print:] [:print:] (2) printable characters including space
[:punct:] [:punct:] ispunct ASCII punctuation characters
[:space:] [:space:] whitespace characters: space, tab, CR,

NL, vertical tab, form feed
[:upper:] [:upper:] (3) uppercase letters (all letters when

'ignorecase' is used)
[:xdigit:] [:xdigit:] hexadecimal digits: 0-9, a-f, A-F
[:return:] [:return:] the <CR> character
[:tab:] [:tab:] the <Tab> character
[:escape:] [:escape:] the <Esc> character
[:backspace:] [:backspace:] the <BS> character
[:ident:] [:ident:] identifier character (same as "\i")
[:keyword:] [:keyword:] keyword character (same as "\k")
[:fname:] [:fname:] file name character (same as "\f")

The square brackets in character class expressions are additional to
the square brackets delimiting a collection. For example, the
following is a plausible pattern for a UNIX filename:
"[-./[:alnum:]_~]\+". That is, a list of at least one character,
each of which is either '-', '.', '/', alphabetic, numeric, '_' or
'~'.
These items only work for 8-bit characters, except [:lower:] and
[:upper:] also work for multibyte characters when using the new
regexp engine. See two-engines . In the future these items may
work for multibyte characters. For now, to get all "alpha"
characters you can use: [[:lower:][:upper:]].

The "Func" column shows what library function is used. The
implementation depends on the system. Otherwise:
(1) Uses islower() for ASCII and Vim builtin rules for other
characters.
(2) Uses Vim builtin rules
(3) As with (1) but using isupper()

/[[= [==]
- An equivalence class. This means that characters are matched that

have almost the same meaning, e.g., when ignoring accents. This
only works for Unicode, latin1 and latin9. The form is:

[=a=]
/[[. [..]

- A collation element. This currently simply accepts a single
character in the form:

[.a.]
/\]

- To include a literal ']', '^', '-' or '\' in the collection, put a
backslash before it: "[xyz\]]", "[\^xyz]", "[xy\-z]" and "[xyz\\]".
(Note: POSIX does not support the use of a backslash this way). For
']' you can also make it the first character (following a possible

pattern.txt — 1004

"^"): "[]xyz]" or "[^]xyz]".
For '-' you can also make it the first or last character: "[-xyz]",
"[^-xyz]" or "[xyz-]". For '\' you can also let it be followed by
any character that's not in "^]-\bdertnoUux". "[\xyz]" matches '\',
'x', 'y' and 'z'. It's better to use "\\" though, future expansions
may use other characters after '\'.

- Omitting the trailing] is not considered an error. "[]" works like
"[]]", it matches the ']' character.

- The following translations are accepted when the 'l' flag is not
included in 'cpoptions':

\e <Esc>
\t <Tab>
\r <CR> (NOT end-of-line!)
\b <BS>
\n line break, see above /[\n]
\d123 decimal number of character
\o40 octal number of character up to 0o377
\x20 hexadecimal number of character up to 0xff
\u20AC hex. number of multibyte character up to 0xffff
\U1234 hex. number of multibyte character up to 0xffffffff

NOTE: The other backslash codes mentioned above do not work inside
[]!

- Matching with a collection can be slow, because each character in
the text has to be compared with each character in the collection.
Use one of the other atoms above when possible. Example: "\d" is
much faster than "[0-9]" and matches the same characters. However,
the new NFA regexp engine deals with this better than the old one.

/\%[] E69 E70 E369
\%[] A sequence of optionally matched atoms. This always matches.

It matches as much of the list of atoms it contains as possible. Thus
it stops at the first atom that doesn't match. For example:

/r\%[ead]
matches "r", "re", "rea" or "read". The longest that matches is used.
To match the Ex command "function", where "fu" is required and
"nction" is optional, this would work:

/\<fu\%[nction]\>
The end-of-word atom "\>" is used to avoid matching "fu" in "full".
It gets more complicated when the atoms are not ordinary characters.
You don't often have to use it, but it is possible. Example:

/\<r\%[[eo]ad]\>
Matches the words "r", "re", "ro", "rea", "roa", "read" and "road".
There can be no \(\), \%(\) or \z(\) items inside the [] and \%[] does
not nest.
To include a "[" use "[[]" and for "]" use []]", e.g.,:

/index\%[[[]0[]]]
matches "index" "index[", "index[0" and "index[0]".
{not available when compiled without the |+syntax| feature}

/\%d /\%x /\%o /\%u /\%U E678

\%d123 Matches the character specified with a decimal number. Must be
followed by a non-digit.

\%o40 Matches the character specified with an octal number up to 0o377.
Numbers below 0o40 must be followed by a non-octal digit or a
non-digit.

\%x2a Matches the character specified with up to two hexadecimal characters.
\%u20AC Matches the character specified with up to four hexadecimal

characters.
\%U1234abcd Matches the character specified with up to eight hexadecimal

pattern.txt — 1005

characters, up to 0x7fffffff

==
7. Ignoring case in a pattern /ignorecase

If the 'ignorecase' option is on, the case of normal letters is ignored.
'smartcase' can be set to ignore case when the pattern contains lowercase
letters only.

/\c /\C
When "\c" appears anywhere in the pattern, the whole pattern is handled like
'ignorecase' is on. The actual value of 'ignorecase' and 'smartcase' is
ignored. "\C" does the opposite: Force matching case for the whole pattern.
{only Vim supports \c and \C}
Note that 'ignorecase', "\c" and "\C" are not used for the character classes.

Examples:
pattern 'ignorecase' 'smartcase' matches
foo off - foo
foo on - foo Foo FOO
Foo on off foo Foo FOO
Foo on on Foo
\cfoo - - foo Foo FOO
foo\C - - foo

Technical detail: NL-used-for-Nul
<Nul> characters in the file are stored as <NL> in memory. In the display
they are shown as "^@". The translation is done when reading and writing
files. To match a <Nul> with a search pattern you can just enter CTRL-@ or
"CTRL-V 000". This is probably just what you expect. Internally the
character is replaced with a <NL> in the search pattern. What is unusual is
that typing CTRL-V CTRL-J also inserts a <NL>, thus also searches for a <Nul>
in the file.

CR-used-for-NL
When 'fileformat' is "mac", <NL> characters in the file are stored as <CR>
characters internally. In the text they are shown as "^J". Otherwise this
works similar to the usage of <NL> for a <Nul>.

When working with expression evaluation, a <NL> character in the pattern
matches a <NL> in the string. The use of "\n" (backslash n) to match a <NL>
doesn't work there, it only works to match text in the buffer.

pattern-multi-byte pattern-multibyte
Patterns will also work with multibyte characters, mostly as you would
expect. But invalid bytes may cause trouble, a pattern with an invalid byte
will probably never match.

==
8. Composing characters patterns-composing

/\Z
When "\Z" appears anywhere in the pattern, all composing characters are
ignored. Thus only the base characters need to match, the composing
characters may be different and the number of composing characters may differ.
Only relevant when 'encoding' is "utf-8".
Exception: If the pattern starts with one or more composing characters, these
must match.

/\%C
Use "\%C" to skip any composing characters. For example, the pattern "a" does
not match in "càt" (where the a has the composing character 0x0300), but

pattern.txt — 1006

"a\%C" does. Note that this does not match "cát" (where the á is character
0xe1, it does not have a compositing character). It does match "cat" (where
the a is just an a).

When a composing character appears at the start of the pattern or after an
item that doesn't include the composing character, a match is found at any
character that includes this composing character.

When using a dot and a composing character, this works the same as the
composing character by itself, except that it doesn't matter what comes before
this.

The order of composing characters does not matter. Also, the text may have
more composing characters than the pattern, it still matches. But all
composing characters in the pattern must be found in the text.

Suppose B is a base character and x and y are composing characters:
pattern text match
Bxy Bxy yes (perfect match)
Bxy Byx yes (order ignored)
Bxy By no (x missing)
Bxy Bx no (y missing)
Bx Bx yes (perfect match)
Bx By no (x missing)
Bx Bxy yes (extra y ignored)
Bx Byx yes (extra y ignored)

==
9. Compare with Perl patterns perl-patterns

Vim's regexes are most similar to Perl's, in terms of what you can do. The
difference between them is mostly just notation; here's a summary of where
they differ:

Capability in Vimspeak in Perlspeak
--
force case insensitivity \c (?i)
force case sensitivity \C (?-i)
backref-less grouping \%(atom\) (?:atom)
conservative quantifiers \{-n,m} *?, +?, ??, {}?
0-width match atom\@= (?=atom)
0-width non-match atom\@! (?!atom)
0-width preceding match atom\@<= (?<=atom)
0-width preceding non-match atom\@<! (?<!atom)
match without retry atom\@> (?>atom)

Vim and Perl handle newline characters inside a string a bit differently:

In Perl, ^ and $ only match at the very beginning and end of the text,
by default, but you can set the 'm' flag, which lets them match at
embedded newlines as well. You can also set the 's' flag, which causes
a . to match newlines as well. (Both these flags can be changed inside
a pattern using the same syntax used for the i flag above, BTW.)

On the other hand, Vim's ^ and $ always match at embedded newlines, and
you get two separate atoms, \%^ and \%$, which only match at the very
start and end of the text, respectively. Vim solves the second problem
by giving you the _ "modifier": put it in front of a . or a character
class, and they will match newlines as well.

pattern.txt — 1007

Finally, these constructs are unique to Perl:
- execution of arbitrary code in the regex: (?{perl code})
- conditional expressions: (?(condition)true-expr|false-expr)

...and these are unique to Vim:
- changing the magic-ness of a pattern: \v \V \m \M

(very useful for avoiding backslashitis)
- sequence of optionally matching atoms: \%[atoms]
- \& (which is to \| what "and" is to "or"; it forces several branches

to match at one spot)
- matching lines/columns by number: \%5l \%5c \%5v
- setting the start and end of the match: \zs \ze

==
10. Highlighting matches match-highlight

:mat :match
:mat[ch] {group} /{pattern}/

Define a pattern to highlight in the current window. It will
be highlighted with {group}. Example:

:highlight MyGroup ctermbg=green guibg=green
:match MyGroup /TODO/

Instead of // any character can be used to mark the start and
end of the {pattern}. Watch out for using special characters,
such as '"' and '|'.

{group} must exist at the moment this command is executed.

The {group} highlighting still applies when a character is
to be highlighted for 'hlsearch', as the highlighting for
matches is given higher priority than that of 'hlsearch'.
Syntax highlighting (see 'syntax') is also overruled by
matches.

Note that highlighting the last used search pattern with
'hlsearch' is used in all windows, while the pattern defined
with ":match" only exists in the current window. It is kept
when switching to another buffer.

'ignorecase' does not apply, use /\c in the pattern to
ignore case. Otherwise case is not ignored.

'redrawtime' defines the maximum time searched for pattern
matches.

When matching end-of-line and Vim redraws only part of the
display you may get unexpected results. That is because Vim
looks for a match in the line where redrawing starts.

Also see matcharg() and getmatches() . The former returns
the highlight group and pattern of a previous :match
command. The latter returns a list with highlight groups and
patterns defined by both matchadd() and :match .

Highlighting matches using :match are limited to three
matches (aside from :match , :2match and :3match are
available). matchadd() does not have this limitation and in
addition makes it possible to prioritize matches.

Another example, which highlights all characters in virtual

pattern.txt — 1008

column 72 and more:
:highlight rightMargin term=bold ctermfg=blue guifg=blue
:match rightMargin /.\%>72v/

To highlight all character that are in virtual column 7:
:highlight col8 ctermbg=grey guibg=grey
:match col8 /\%<8v.\%>7v/

Note the use of two items to also match a character that
occupies more than one virtual column, such as a TAB.

:mat[ch]
:mat[ch] none

Clear a previously defined match pattern.

:2mat[ch] {group} /{pattern}/ :2match
:2mat[ch]
:2mat[ch] none
:3mat[ch] {group} /{pattern}/ :3match
:3mat[ch]
:3mat[ch] none

Just like :match above, but set a separate match. Thus
there can be three matches active at the same time. The match
with the lowest number has priority if several match at the
same position. It uses the match id 3.
The ":3match" command is used by (Vim < 9.0.2054) matchparen
plugin. You are suggested to use ":match" for manual matching
and ":2match" for another plugin or even better make use of
the more flexible matchadd() (and similar) functions instead.

==
11. Fuzzy matching fuzzy-matching

Fuzzy matching refers to matching strings using a non-exact search string.
Fuzzy matching will match a string, if all the characters in the search string
are present anywhere in the string in the same order. Case is ignored. In a
matched string, other characters can be present between two consecutive
characters in the search string. If the search string has multiple words, then
each word is matched separately. So the words in the search string can be
present in any order in a string.

Fuzzy matching assigns a score for each matched string based on the following
criteria:

- The number of sequentially matching characters.
- The number of characters (distance) between two consecutive matching

characters.
- Matches at the beginning of a word
- Matches at a camel case character (e.g. Case in CamelCase)
- Matches after a path separator or a hyphen.
- The number of unmatched characters in a string.

The matching string with the highest score is returned first.

For example, when you search for the "get pat" string using fuzzy matching, it
will match the strings "GetPattern", "PatternGet", "getPattern", "patGetter",
"getSomePattern", "MatchpatternGet" etc.

The functions matchfuzzy() and matchfuzzypos() can be used to fuzzy search
a string in a List of strings. The matchfuzzy() function returns a List of
matching strings. The matchfuzzypos() functions returns the List of matches,
the matching positions and the fuzzy match scores.

pattern.txt — 1009

The "f" flag of `:vimgrep` enables fuzzy matching.

pattern.txt — 1010

map.txt For Vim version 9.1. Last change: 2024 Jan 25

VIM REFERENCE MANUAL by Bram Moolenaar

Key mapping, abbreviations and user-defined commands.

This subject is introduced in sections 05.4 , 24.7 and 40.1 of the user
manual.

1. Key mapping key-mapping
1.1 MAP COMMANDS :map-commands
1.2 Special arguments :map-arguments
1.3 Mapping and modes :map-modes
1.4 Listing mappings map-listing
1.5 Mapping special keys :map-special-keys
1.6 Special characters :map-special-chars
1.7 What keys to map map-which-keys
1.8 Examples map-examples
1.9 Using mappings map-typing
1.10 Mapping alt-keys :map-alt-keys
1.11 Mapping meta-keys :map-meta-keys
1.12 Mapping super-keys or command keys :map-super-keys
1.13 Mapping in modifyOtherKeys mode modifyOtherKeys
1.14 Mapping with Kitty keyboard protocol kitty-keyboard-protocol
1.15 Mapping an operator :map-operator

2. Abbreviations abbreviations
3. Local mappings and functions script-local
4. User-defined commands user-commands

==
1. Key mapping key-mapping mapping macro

Key mapping is used to change the meaning of typed keys. The most common use
is to define a sequence of commands for a function key. Example:

:map <F2> a<C-R>=strftime("%c")<CR><Esc>

This appends the current date and time after the cursor (in <> notation <>).

1.1 MAP COMMANDS :map-commands

There are commands to enter new mappings, remove mappings and list mappings.
See map-overview for the various forms of "map" and their relationships with
modes.

{lhs} means left-hand-side {lhs}
{rhs} means right-hand-side {rhs}

:map {lhs} {rhs} mapmode-nvo :map
:nm[ap] {lhs} {rhs} mapmode-n :nm :nmap
:vm[ap] {lhs} {rhs} mapmode-v :vm :vmap
:xm[ap] {lhs} {rhs} mapmode-x :xm :xmap
:smap {lhs} {rhs} mapmode-s :smap
:om[ap] {lhs} {rhs} mapmode-o :om :omap
:map! {lhs} {rhs} mapmode-ic :map!
:im[ap] {lhs} {rhs} mapmode-i :im :imap
:lm[ap] {lhs} {rhs} mapmode-l :lm :lma :lmap

map.txt — 1011

:cm[ap] {lhs} {rhs} mapmode-c :cm :cmap
:tma[p] {lhs} {rhs} mapmode-t :tma :tmap

Map the key sequence {lhs} to {rhs} for the modes
where the map command applies. The result, including
{rhs}, is then further scanned for mappings. This
allows for nested and recursive use of mappings.
Note: Trailing spaces are included in the {rhs},
because space is a valid Normal mode command.
See map-trailing-white .

:nore :norem
:no[remap] {lhs} {rhs} mapmode-nvo :no :noremap :nor
:nn[oremap] {lhs} {rhs} mapmode-n :nn :nnoremap
:vn[oremap] {lhs} {rhs} mapmode-v :vn :vnoremap
:xn[oremap] {lhs} {rhs} mapmode-x :xn :xnoremap
:snor[emap] {lhs} {rhs} mapmode-s :snor :snore :snoremap
:ono[remap] {lhs} {rhs} mapmode-o :ono :onoremap
:no[remap]! {lhs} {rhs} mapmode-ic :no! :noremap!
:ino[remap] {lhs} {rhs} mapmode-i :ino :inor :inoremap
:ln[oremap] {lhs} {rhs} mapmode-l :ln :lnoremap
:cno[remap] {lhs} {rhs} mapmode-c :cno :cnor :cnoremap
:tno[remap] {lhs} {rhs} mapmode-t :tno :tnoremap

Map the key sequence {lhs} to {rhs} for the modes
where the map command applies. Disallow mapping of
{rhs}, to avoid nested and recursive mappings. Often
used to redefine a command.
Note: When <Plug> appears in the {rhs} this part is
always applied even if remapping is disallowed.

:unm[ap] {lhs} mapmode-nvo :unm :unmap
:nun[map] {lhs} mapmode-n :nun :nunmap
:vu[nmap] {lhs} mapmode-v :vu :vunmap
:xu[nmap] {lhs} mapmode-x :xu :xunmap
:sunm[ap] {lhs} mapmode-s :sunm :sunmap
:ou[nmap] {lhs} mapmode-o :ou :ounmap
:unm[ap]! {lhs} mapmode-ic :unm! :unmap!
:iu[nmap] {lhs} mapmode-i :iu :iunmap
:lu[nmap] {lhs} mapmode-l :lu :lunmap
:cu[nmap] {lhs} mapmode-c :cu :cun :cunmap
:tunma[p] {lhs} mapmode-t :tunma :tunmap

Remove the mapping of {lhs} for the modes where the
map command applies. The mapping may remain defined
for other modes where it applies.
It also works when {lhs} matches the {rhs} of a
mapping. This is for when an abbreviation applied.
Note: Trailing spaces are included in the {lhs}.
See map-trailing-white .

:mapc[lear] mapmode-nvo :mapc :mapclear
:nmapc[lear] mapmode-n :nmapc :nmapclear
:vmapc[lear] mapmode-v :vmapc :vmapclear
:xmapc[lear] mapmode-x :xmapc :xmapclear
:smapc[lear] mapmode-s :smapc :smapclear
:omapc[lear] mapmode-o :omapc :omapclear
:mapc[lear]! mapmode-ic :mapc! :mapclear!
:imapc[lear] mapmode-i :imapc :imapclear
:lmapc[lear] mapmode-l :lmapc :lmapclear
:cmapc[lear] mapmode-c :cmapc :cmapclear
:tmapc[lear] mapmode-t :tmapc :tmapclear

map.txt — 1012

Remove ALL mappings for the modes where the map
command applies.
Use the <buffer> argument to remove buffer-local
mappings :map-<buffer>
Warning: This also removes the mac-standard-mappings
and the dos-standard-mappings .

:map mapmode-nvo
:nm[ap] mapmode-n
:vm[ap] mapmode-v
:xm[ap] mapmode-x
:sm[ap] mapmode-s
:om[ap] mapmode-o
:map! mapmode-ic
:im[ap] mapmode-i
:lm[ap] mapmode-l
:cm[ap] mapmode-c
:tma[p] mapmode-t

List all key mappings for the modes where the map
command applies. Note that ":map" and ":map!" are
used most often, because they include the other modes.

:map {lhs} mapmode-nvo :map_l
:nm[ap] {lhs} mapmode-n :nmap_l
:vm[ap] {lhs} mapmode-v :vmap_l
:xm[ap] {lhs} mapmode-x :xmap_l
:sm[ap] {lhs} mapmode-s :smap_l
:om[ap] {lhs} mapmode-o :omap_l
:map! {lhs} mapmode-ic :map_l!
:im[ap] {lhs} mapmode-i :imap_l
:lm[ap] {lhs} mapmode-l :lmap_l
:cm[ap] {lhs} mapmode-c :cmap_l
:tma[p] {lhs} mapmode-t :tmap_l

List the key mappings for the key sequences starting
with {lhs} in the modes where the map command applies.

These commands are used to map a key or key sequence to a string of
characters. You can use this to put command sequences under function keys,
translate one key into another, etc. See :mkexrc for how to save and
restore the current mappings.

map-ambiguous
When two mappings start with the same sequence of characters, they are
ambiguous. Example:

:imap aa foo
:imap aaa bar

When Vim has read "aa", it will need to get another character to be able to
decide if "aa" or "aaa" should be mapped. This means that after typing "aa"
that mapping won't get expanded yet, Vim is waiting for another character.
If you type a space, then "foo" will get inserted, plus the space. If you
type "a", then "bar" will get inserted.

Trailing white space
map-trailing-white

This unmap command does NOT work:
:map @@ foo
:unmap @@ | print

Because it tries to unmap "@@ ", including the white space before the command
separator "|". Other examples with trailing white space:

map.txt — 1013

unmap @@
unmap @@ # Vim9 script comment
unmap @@ " legacy script comment

An error will be issued, which is very hard to identify, because the ending
whitespace character in `unmap @@ ` is not visible.

A generic solution is to put the command separator "|" right after the mapped
keys. After that white space and a comment may follow:

unmap @@| # Vim9 script comment
unmap @@| " legacy script comment

1.2 SPECIAL ARGUMENTS :map-arguments

"<buffer>", "<nowait>", "<silent>", "<special>", "<script>", "<expr>" and
"<unique>" can be used in any order. They must appear right after the
command, before any other arguments.

:map-local :map-<buffer> :map-buffer
E224 E225

If the first argument to one of these commands is "<buffer>" the mapping will
be effective in the current buffer only. Example:

:map <buffer> ,w /[.,;]<CR>
Then you can map ",w" to something else in another buffer:

:map <buffer> ,w /[#&!]<CR>
The local buffer mappings are used before the global ones. See <nowait> below
to make a short local mapping not taking effect when a longer global one
exists.
The "<buffer>" argument can also be used to clear mappings:

:unmap <buffer> ,w
:mapclear <buffer>

Local mappings are also cleared when a buffer is deleted, but not when it is
unloaded. Just like local option values.
Also see map-precedence .

:map-<nowait> :map-nowait
When defining a buffer-local mapping for "," there may be a global mapping
that starts with ",". Then you need to type another character for Vim to know
whether to use the "," mapping or the longer one. To avoid this add the
<nowait> argument. Then the mapping will be used when it matches, Vim does
not wait for more characters to be typed. However, if the characters were
already typed they are used.
Note that this works when the <nowait> mapping fully matches and is found
before any partial matches. This works when:
- There is only one matching buffer-local mapping, since these are always

found before global mappings.
- There is another buffer-local mapping that partly matches, but it is

defined earlier (last defined mapping is found first).

:map-<silent> :map-silent
To define a mapping which will not be echoed on the command line, add
"<silent>" as the first argument. Example:

:map <silent> ,h /Header<CR>
The search string will not be echoed when using this mapping. Messages from
the executed command are still given though. To shut them up too, add a
":silent" in the executed command:

:map <silent> ,h :exe ":silent normal /Header\r"<CR>
Note that the effect of a command might also be silenced, e.g., when the

map.txt — 1014

mapping selects another entry for command line completion it won't be
displayed.
Prompts will still be given, e.g., for inputdialog().
Using "<silent>" for an abbreviation is possible, but will cause redrawing of
the command line to fail.

:map-<special> :map-special
Define a mapping with <> notation for special keys, even though the "<" flag
may appear in 'cpoptions'. This is useful if the side effect of setting
'cpoptions' is not desired. Example:

:map <special> <F12> /Header<CR>

:map-<script> :map-script
If the first argument to one of these commands is "<script>" and it is used to
define a new mapping or abbreviation, the mapping will only remap characters
in the {rhs} using mappings that were defined local to a script, starting with
"<SID>". This can be used to avoid that mappings from outside a script
interfere (e.g., when CTRL-V is remapped in mswin.vim), but do use other
mappings defined in the script.
Note: ":map <script>" and ":noremap <script>" do the same thing. The
"<script>" overrules the command name. Using ":noremap <script>" is
preferred, because it's clearer that remapping is (mostly) disabled.

:map-<unique> :map-unique E226 E227
If the first argument to one of these commands is "<unique>" and it is used to
define a new mapping or abbreviation, the command will fail if the mapping or
abbreviation already exists. Example:

:map <unique> ,w /[#&!]<CR>
When defining a local mapping, there will also be a check if a global map
already exists which is equal.
Example of what will fail:

:map ,w /[#&!]<CR>
:map <buffer> <unique> ,w /[.,;]<CR>

If you want to map a key and then have it do what it was originally mapped to,
have a look at maparg() .

:map-<expr> :map-expression
If the first argument to one of these commands is "<expr>" and it is used to
define a new mapping or abbreviation, the argument is an expression. The
expression is evaluated to obtain the {rhs} that is used. Example:

:inoremap <expr> . <SID>InsertDot()
The result of the s:InsertDot() function will be inserted. It could check the
text before the cursor and start omni completion when some condition is met.
Using a script-local function is preferred, to avoid polluting the global
namespace. Use <SID> in the RHS so that the script that the mapping was
defined in can be found.

For abbreviations v:char is set to the character that was typed to trigger
the abbreviation. You can use this to decide how to expand the {lhs}. You
should not either insert or change the v:char.

In case you want the mapping to not do anything, you can have the expression
evaluate to an empty string. If something changed that requires Vim to
go through the main loop (e.g. to update the display), return "\<Ignore>".
This is similar to "nothing" but makes Vim return from the loop that waits for
input. Example:

func s:OpenPopup()
call popup_create(... arguments ...)
return "\<Ignore>"

endfunc

map.txt — 1015

nnoremap <expr> <F3> <SID>OpenPopup()

Keep in mind that the expression may be evaluated when looking for
typeahead, before the previous command has been executed. For example:

func StoreColumn()
let g:column = col('.')
return 'x'

endfunc
nnoremap <expr> x StoreColumn()
nmap ! f!x

You will notice that g:column has the value from before executing "f!",
because "x" is evaluated before "f!" is executed.
This can be solved by inserting <Ignore> before the character that is
expression-mapped:

nmap ! f!<Ignore>x

When defining a mapping in a Vim9 script, the expression will be evaluated
in the context of that script. This means that script-local items can be
accessed in the expression.

Be very careful about side effects! The expression is evaluated while
obtaining characters, you may very well make the command dysfunctional.
For this reason the following is blocked:
- Changing the buffer text textlock .
- Editing another buffer.
- The :normal command.
- Moving the cursor is allowed, but it is restored afterwards.
If you want the mapping to do any of these let the returned characters do
that, or use a <Cmd> mapping instead.

You can use getchar(), it consumes typeahead if there is any. E.g., if you
have these mappings:

inoremap <expr> <C-L> nr2char(getchar())
inoremap <expr> <C-L>x "foo"

If you now type CTRL-L nothing happens yet, Vim needs the next character to
decide what mapping to use. If you type 'x' the second mapping is used and
"foo" is inserted. If you type any other key the first mapping is used,
getchar() gets the typed key and returns it.

Here is an example that inserts a list number that increases:
let counter = 0
inoremap <expr> <C-L> ListItem()
inoremap <expr> <C-R> ListReset()

func ListItem()
let g:counter += 1
return g:counter .. '. '

endfunc

func ListReset()
let g:counter = 0
return ''

endfunc

CTRL-L inserts the next number, CTRL-R resets the count. CTRL-R returns an
empty string, so that nothing is inserted.

Note that using 0x80 as a single byte before other text does not work, it will
be seen as a special key.

map.txt — 1016

<Cmd> :map-cmd
The special text <Cmd> begins a "command mapping", it executes the command
directly without changing modes. Where you might use ":...<CR>" in the
{rhs} of a mapping, you can instead use "<Cmd>...<CR>".
Example:

noremap x <Cmd>echo mode(1)<CR>

This is more flexible than `:<C-U>` in Visual and Operator-pending mode, or
`<C-O>:` in Insert mode, because the commands are executed directly in the
current mode, instead of always going to Normal mode. Visual mode is
preserved, so tricks with gv are not needed. Commands can be invoked
directly in Command-line mode (which would otherwise require timer hacks).
Example of using <Cmd> halfway Insert mode:

nnoremap <F3> aText <Cmd>echo mode(1)<CR> Added<Esc>

Unlike <expr> mappings, there are no special restrictions on the <Cmd>
command: it is executed as if an (unrestricted) autocommand was invoked.

<ScriptCmd>
<ScriptCmd> is like <Cmd> but sets the context to the script the mapping was
defined in, for the duration of the command execution. This is especially
useful for Vim9 script. It also works to access an import, which is useful
in a plugin using a, possibly autoloaded, script:

vim9script
import autoload 'implementation.vim' as impl
nnoremap <F4> <ScriptCmd>impl.DoTheWork()<CR>

No matter where <F4> is typed, the "impl" import will be found in the script
context of where the mapping was defined. When it's an autoload import, as in
the example, the "implementation.vim" script will only be loaded once <F4> is
typed, not when the mapping is defined.

Without <ScriptCmd> using "s:impl" would result in "E121: Undefined variable".

Note:
- Because <Cmd> and <ScriptCmd> avoid mode-changes it does not trigger

CmdlineEnter and CmdlineLeave events, because no user interaction is
expected.

- For the same reason, keycodes like <C-R><C-W> are interpreted as plain,
unmapped keys.

- The command is not echo'ed, no need for <silent>.
- The {rhs} is not subject to abbreviations nor to other mappings, even if the

mapping is recursive.
- In Visual mode you can use `line('v')` and `col('v')` to get one end of the

Visual area, the cursor is at the other end.

E1255 E1136
<Cmd> and <ScriptCmd> commands must terminate, that is, they must be followed
by <CR> in the {rhs} of the mapping definition. Command-line mode is never
entered. To use a literal <CR> in the {rhs}, use <lt> .

1.3 MAPPING AND MODES :map-modes
mapmode-nvo mapmode-n mapmode-v mapmode-o

There are seven sets of mappings
- For Normal mode: When typing commands.
- For Visual mode: When typing commands while the Visual area is highlighted.
- For Select mode: like Visual mode but typing text replaces the selection.
- For Operator-pending mode: When an operator is pending (after "d", "y", "c",

map.txt — 1017

etc.). See below: omap-info .
- For Insert mode. These are also used in Replace mode.
- For Command-line mode: When entering a ":" or "/" command.
- For Terminal mode: When typing in a :terminal buffer.

Special case: While typing a count for a command in Normal mode, mapping zero
is disabled. This makes it possible to map zero without making it impossible
to type a count with a zero.

map-overview map-modes
Overview of which map command works in which mode. More details below.

COMMANDS MODES
:map :noremap :unmap Normal, Visual, Select, Operator-pending
:nmap :nnoremap :nunmap Normal
:vmap :vnoremap :vunmap Visual and Select
:smap :snoremap :sunmap Select
:xmap :xnoremap :xunmap Visual
:omap :onoremap :ounmap Operator-pending
:map! :noremap! :unmap! Insert and Command-line
:imap :inoremap :iunmap Insert
:lmap :lnoremap :lunmap Insert, Command-line, Lang-Arg
:cmap :cnoremap :cunmap Command-line
:tmap :tnoremap :tunmap Terminal-Job

Same information in a table:
map-table

Mode | Norm | Ins | Cmd | Vis | Sel | Opr | Term | Lang |
Command +------+-----+-----+-----+-----+-----+------+------+
[nore]map | yes | - | - | yes | yes | yes | - | - |
n[nore]map | yes | - | - | - | - | - | - | - |
[nore]map! | - | yes | yes | - | - | - | - | - |
i[nore]map | - | yes | - | - | - | - | - | - |
c[nore]map | - | - | yes | - | - | - | - | - |
v[nore]map | - | - | - | yes | yes | - | - | - |
x[nore]map | - | - | - | yes | - | - | - | - |
s[nore]map | - | - | - | - | yes | - | - | - |
o[nore]map | - | - | - | - | - | yes | - | - |
t[nore]map | - | - | - | - | - | - | yes | - |
l[nore]map | - | yes | yes | - | - | - | - | yes |

COMMANDS MODES
Normal Visual+Select Operator-pending

:map :noremap :unmap :mapclear yes yes yes
:nmap :nnoremap :nunmap :nmapclear yes - -
:vmap :vnoremap :vunmap :vmapclear - yes -
:omap :onoremap :ounmap :omapclear - - yes

:nunmap can also be used outside of a monastery.
mapmode-x mapmode-s

Some commands work both in Visual and Select mode, some in only one. Note
that quite often "Visual" is mentioned where both Visual and Select mode
apply. Select-mode-mapping
NOTE: Mapping a printable character in Select mode may confuse the user. It's
better to explicitly use :xmap and :smap for printable characters. Or use
:sunmap after defining the mapping.

COMMANDS MODES
Visual Select

:vmap :vnoremap :vunmap :vmapclear yes yes

map.txt — 1018

:xmap :xnoremap :xunmap :xmapclear yes -
:smap :snoremap :sunmap :smapclear - yes

mapmode-ic mapmode-i mapmode-c mapmode-l
Some commands work both in Insert mode and Command-line mode, some not:

COMMANDS MODES
Insert Command-line Lang-Arg

:map! :noremap! :unmap! :mapclear! yes yes -
:imap :inoremap :iunmap :imapclear yes - -
:cmap :cnoremap :cunmap :cmapclear - yes -
:lmap :lnoremap :lunmap :lmapclear yes* yes* yes*

* If 'iminsert' is 1, see language-mapping below.

The original Vi did not have separate mappings for
Normal/Visual/Operator-pending mode and for Insert/Command-line mode.
Therefore the ":map" and ":map!" commands enter and display mappings for
several modes. In Vim you can use the ":nmap", ":vmap", ":omap", ":cmap" and
":imap" commands to enter mappings for each mode separately.

mapmode-t
The terminal mappings are used in a terminal window, when typing keys for the
job running in the terminal. See terminal-typing .

omap-info
Operator-pending mappings can be used to define a movement command that can be
used with any operator. Simple example:

:omap { w
makes "y{" work like "yw" and "d{" like "dw".

To ignore the starting cursor position and select different text, you can have
the omap start Visual mode to select the text to be operated upon. Example
that operates on a function name in the current line:

onoremap <silent> F :<C-U>normal! 0f(hviw<CR>
The CTRL-U (<C-U>) is used to remove the range that Vim may insert. The
Normal mode commands find the first '(' character and select the first word
before it. That usually is the function name.

To enter a mapping for Normal and Visual mode, but not Operator-pending mode,
first define it for all three modes, then unmap it for
Operator-pending mode:

:map xx something-difficult
:ounmap xx

Likewise for a mapping for Visual and Operator-pending mode or Normal and
Operator-pending mode.

language-mapping
":lmap" defines a mapping that applies to:
- Insert mode
- Command-line mode
- when entering a search pattern
- the argument of the commands that accept a text character, such as "r" and

"f"
- for the input() line
Generally: Whenever a character is to be typed that is part of the text in the
buffer, not a Vim command character. "Lang-Arg" isn't really another mode,
it's just used here for this situation.

The simplest way to load a set of related language mappings is by using the

map.txt — 1019

'keymap' option. See 45.5 .
In Insert mode and in Command-line mode the mappings can be disabled with

the CTRL-^ command i_CTRL-^ c_CTRL-^ . These commands change the value of
the 'iminsert' option. When starting to enter a normal command line (not a
search pattern) the mappings are disabled until a CTRL-^ is typed. The state
last used is remembered for Insert mode and Search patterns separately. The
state for Insert mode is also used when typing a character as an argument to
command like "f" or "t".

Language mappings will never be applied to already mapped characters. They
are only used for typed characters. This assumes that the language mapping
was already done when typing the mapping.

1.4 LISTING MAPPINGS map-listing

When listing mappings the characters in the first two columns are:

CHAR MODE
<Space> Normal, Visual, Select and Operator-pending

n Normal
v Visual and Select
s Select
x Visual
o Operator-pending
! Insert and Command-line
i Insert
l ":lmap" mappings for Insert, Command-line and Lang-Arg
c Command-line
t Terminal-Job

Just before the {rhs} a special character can appear:
* indicates that it is not remappable
& indicates that only script-local mappings are remappable
@ indicates a buffer-local mapping

Everything from the first non-blank after {lhs} up to the end of the line
(or '|') is considered to be part of {rhs}. This allows the {rhs} to end
with a space.

Note: When using mappings for Visual mode, you can use the "'<" mark, which
is the start of the last selected Visual area in the current buffer '< .

The :filter command can be used to select what mappings to list. The
pattern is matched against the {lhs} and {rhs} in the raw form.

While mappings are being listed, it is not possible to add or clear mappings,
e.g. from a timer callback. E1309

:map-verbose
When 'verbose' is non-zero, the detected and used 'keyprotocol' value will be
displayed in the first line. Also a key map will also display where it was
last defined. Example:

:verbose map <C-W>*
Kitty keyboard protocol: Cleared
n <C-W>* * <C-W><C-S>*

Last set from /home/abcd/.vimrc

See :verbose-cmd for more information.

map.txt — 1020

1.5 MAPPING SPECIAL KEYS :map-special-keys

There are three ways to map a special key:
1. The Vi-compatible method: Map the key code. Often this is a sequence that

starts with <Esc>. To enter a mapping like this you type ":map " and then
you have to type CTRL-V before hitting the function key. Note that when
the key code for the key is in the termcap (the t_ options), it will
automatically be translated into the internal code and become the second
way of mapping (unless the 'k' flag is included in 'cpoptions').

2. The second method is to use the internal code for the function key. To
enter such a mapping type CTRL-K and then hit the function key, or use
the form "#1", "#2", .. "#9", "#0", "<Up>", "<S-Down>", "<S-F7>", etc.
(see table of keys key-notation , all keys from <Up> can be used). The
first ten function keys can be defined in two ways: Just the number, like
"#2", and with "<F>", like "<F2>". Both stand for function key 2. "#0"
refers to function key 10, defined with option 't_f10', which may be
function key zero on some keyboards. The <> form cannot be used when
'cpoptions' includes the '<' flag.

3. Use the termcap entry, with the form <t_xx>, where "xx" is the name of the
termcap entry. Any string entry can be used. For example:
:map <t_F3> G

Maps function key 13 to "G". This does not work if 'cpoptions' includes
the '<' flag.

The advantage of the second and third method is that the mapping will work on
different terminals without modification (the function key will be
translated into the same internal code or the actual key code, no matter what
terminal you are using. The termcap must be correct for this to work, and you
must use the same mappings).

DETAIL: Vim first checks if a sequence from the keyboard is mapped. If it
isn't the terminal key codes are tried (see terminal-options). If a
terminal code is found it is replaced with the internal code. Then the check
for a mapping is done again (so you can map an internal code to something
else). What is written into the script file depends on what is recognized.
If the terminal key code was recognized as a mapping the key code itself is
written to the script file. If it was recognized as a terminal code the
internal code is written to the script file.

1.6 SPECIAL CHARACTERS :map-special-chars
map_backslash map-backslash

Note that only CTRL-V is mentioned here as a special character for mappings
and abbreviations. When 'cpoptions' does not contain 'B', a backslash can
also be used like CTRL-V. The <> notation can be fully used then <> . But
you cannot use "<C-V>" like CTRL-V to escape the special meaning of what
follows.

To map a backslash, or use a backslash literally in the {rhs}, the special
sequence "<Bslash>" can be used. This avoids the need to double backslashes
when using nested mappings.

map_CTRL-C map-CTRL-C
Using CTRL-C in the {lhs} is possible, but it will only work when Vim is
waiting for a key, not when Vim is busy with something. When Vim is busy
CTRL-C interrupts/breaks the command.
When using the GUI version on MS-Windows CTRL-C can be mapped to allow a Copy
command to the clipboard. Use CTRL-Break to interrupt Vim.

map.txt — 1021

map_space_in_lhs map-space_in_lhs
To include a space in {lhs} precede it with a CTRL-V (type two CTRL-Vs for
each space).

map_space_in_rhs map-space_in_rhs
If you want a {rhs} that starts with a space, use "<Space>". To be fully Vi
compatible (but unreadable) don't use the <> notation, precede {rhs} with a
single CTRL-V (you have to type CTRL-V two times).

map_empty_rhs map-empty-rhs
You can create an empty {rhs} by typing nothing after a single CTRL-V (you
have to type CTRL-V two times). Unfortunately, you cannot do this in a vimrc
file.

<Nop>
An easier way to get a mapping that doesn't produce anything, is to use
"<Nop>" for the {rhs}. This only works when the <> notation is enabled.
For example, to make sure that function key 8 does nothing at all:

:map <F8> <Nop>
:map! <F8> <Nop>

map-multibyte
It is possible to map multibyte characters, but only the whole character. You
cannot map the first byte only. This was done to prevent problems in this
scenario:

:set encoding=latin1
:imap <M-C> foo
:set encoding=utf-8

The mapping for <M-C> is defined with the latin1 encoding, resulting in a 0xc3
byte. If you type the character á (0xe1 <M-a>) in UTF-8 encoding this is the
two bytes 0xc3 0xa1. You don't want the 0xc3 byte to be mapped then or
otherwise it would be impossible to type the á character.

<Leader> mapleader
To define a mapping which uses the "g:mapleader" variable, the special string
"<Leader>" can be used. It is replaced with the string value of
"g:mapleader". If "g:mapleader" is not set or empty, a backslash is used
instead. Example:

map <Leader>A oanother line<Esc>
Works like:

map \A oanother line<Esc>
But after (legacy script):

let mapleader = ","
Or (Vim9 script):

g:mapleader = ","
It works like:

map ,A oanother line<Esc>

Note that the value of "g:mapleader" is used at the moment the mapping is
defined. Changing "g:mapleader" after that has no effect for already defined
mappings.

<LocalLeader> maplocalleader
<LocalLeader> is just like <Leader>, except that it uses "maplocalleader"
instead of "mapleader". <LocalLeader> is to be used for mappings which are
local to a buffer. Example:

:map <buffer> <LocalLeader>A oanother line<Esc>

In a global plugin <Leader> should be used and in a filetype plugin
<LocalLeader>. "mapleader" and "maplocalleader" can be equal. Although, if
you make them different, there is a smaller chance of mappings from global
plugins to clash with mappings for filetype plugins. For example, you could
keep "mapleader" at the default backslash, and set "maplocalleader" to an

map.txt — 1022

underscore.

map-<SID>
In a script the special key name "<SID>" can be used to define a mapping
that's local to the script. See <SID> for details.

<Plug>
The special key name "<Plug>" can be used for an internal mapping, which is
not to be matched with any key sequence. This is useful in plugins
using-<Plug> .

<MouseMove>
The special key name "<MouseMove>" can be used to handle mouse movement. It
needs to be enabled with 'mousemoveevent'. Currently only works in the GUI.
The getmousepos() function can be used to obtain the mouse position.

<Char> <Char->
To map a character by its decimal, octal or hexadecimal number the <Char>
construct can be used:

<Char-123> character 123
<Char-033> character 27
<Char-0x7f> character 127
<S-Char-114> character 114 ('r') shifted ('R')

This is useful to specify a (multibyte) character in a 'keymap' file.
Upper and lowercase differences are ignored.

map-comments
It is not possible to put a comment after these commands, because the '"'
character is considered to be part of the {lhs} or {rhs}. However, one can
use |", since this starts a new, empty command with a comment.

map_bar map-bar
Since the '|' character is used to separate a map command from the next
command, you will have to do something special to include a '|' in {rhs}.
There are three methods:

use works when example
<Bar> '<' is not in 'cpoptions' :map _l :!ls <Bar> more^M
\| 'b' is not in 'cpoptions' :map _l :!ls \| more^M
^V| always, in Vim and Vi :map _l :!ls ^V| more^M

(here ^V stands for CTRL-V; to get one CTRL-V you have to type it twice; you
cannot use the <> notation "<C-V>" here).

All three work when you use the default setting for 'cpoptions'.

When 'b' is present in 'cpoptions', "\|" will be recognized as a mapping
ending in a '\' and then another command. This is Vi compatible, but
illogical when compared to other commands.

map_return map-return
When you have a mapping that contains an Ex command, you need to put a line
terminator after it to have it executed. The use of <CR> is recommended for
this (see <>). Example:

:map _ls :!ls -l %:S<CR>:echo "the end"<CR>

To avoid mapping of the characters you type in insert or Command-line mode,
type a CTRL-V first. The mapping in Insert mode is disabled if the 'paste'
option is on.

map-error
Note that when an error is encountered (that causes an error message or might

map.txt — 1023

cause a beep) the rest of the mapping is not executed. This is Vi-compatible.

Note that the second character (argument) of the commands @zZtTfF[]rm'`"v
and CTRL-X is not mapped. This was done to be able to use all the named
registers and marks, even when the command with the same name has been
mapped.

1.7 WHAT KEYS TO MAP map-which-keys

If you are going to map something, you will need to choose which key(s) to use
for the {lhs}. You will have to avoid keys that are used for Vim commands,
otherwise you would not be able to use those commands anymore. Here are a few
suggestions:
- Function keys <F2>, <F3>, etc.. Also the shifted function keys <S-F1>,

<S-F2>, etc. Note that <F1> is already used for the help command.
- Any key with the Alt or Meta key pressed. Depending on your keyboard

accented characters may be used as well. :map-alt-keys
- Use the '_' or ',' character and then any other character. The "_" and ","

commands do exist in Vim (see _ and ,), but you probably never use them.
- Use a key that is a synonym for another command. For example: CTRL-P and

CTRL-N. Use an extra character to allow more mappings.
- The key defined by <Leader> and one or more other keys. This is especially

useful in scripts. mapleader

See the file "index" for keys that are not used and thus can be mapped without
losing any builtin function. You can also use ":help {key}^D" to find out if
a key is used for some command. ({key} is the specific key you want to find
out about, ^D is CTRL-D).

1.8 EXAMPLES map-examples

A few examples (given as you type them, for "<CR>" you type four characters;
the '<' flag must not be present in 'cpoptions' for this to work).

:map <F3> o#include
:map <M-g> /foo<CR>cwbar<Esc>
:map _x d/END/e<CR>
:map! qq quadrillion questions

Multiplying a count

When you type a count before triggering a mapping, it's like the count was
typed before the {lhs}. For example, with this mapping:

:map <F4> 3w
Typing 2<F4> will result in "23w". Thus not moving 2 * 3 words but 23 words.
If you want to multiply counts use the expression register:

:map <F4> @='3w'<CR>
The part between quotes is the expression being executed. @=

1.9 USING MAPPINGS map-typing

Vim will compare what you type with the start of a mapped sequence. If there
is an incomplete match, it will get more characters until there either is a
complete match or until there is no match at all. Example: If you map! "qq",
the first 'q' will not appear on the screen until you type another
character. This is because Vim cannot know if the next character will be a

map.txt — 1024

'q' or not. If the 'timeout' option is on (which is the default) Vim will
only wait for one second (or as long as specified with the 'timeoutlen'
option). After that it assumes that the 'q' is to be interpreted as such. If
you type slowly, or your system is slow, reset the 'timeout' option. Then you
might want to set the 'ttimeout' option.

map-precedence
Buffer-local mappings (defined using :map-<buffer>) take precedence over
global mappings. When a buffer-local mapping is the same as a global mapping,
Vim will use the buffer-local mapping. In addition, Vim will use a complete
mapping immediately if it was defined with <nowait>, even if a longer mapping
has the same prefix. For example, given the following two mappings:

:map <buffer> <nowait> \a :echo "Local \a"<CR>
:map \abc :echo "Global \abc"<CR>

When typing \a the buffer-local mapping will be used immediately. Vim will
not wait for more characters to see if the user might be typing \abc.

map-keys-fails
There are situations where key codes might not be recognized:
- Vim can only read part of the key code. Mostly this is only the first

character. This happens on some Unix versions in an xterm.
- The key code is after character(s) that are mapped. E.g., "<F1><F1>" or

"g<F1>".

The result is that the key code is not recognized in this situation, and the
mapping fails. There are two actions needed to avoid this problem:

- Remove the 'K' flag from 'cpoptions'. This will make Vim wait for the rest
of the characters of the function key.

- When using <F1> to <F4> the actual key code generated may correspond to
<xF1> to <xF4>. There are mappings from <xF1> to <F1>, <xF2> to <F2>, etc.,
but these are not recognized after another half a mapping. Make sure the
key codes for <F1> to <F4> are correct:

:set <F1>=<type CTRL-V><type F1>
Type the <F1> as four characters. The part after the "=" must be done with
the actual keys, not the literal text.

Another solution is to use the actual key code in the mapping for the second
special key:

:map <F1><Esc>OP :echo "yes"<CR>
Don't type a real <Esc>, Vim will recognize the key code and replace it with
<F1> anyway.

Another problem may be that when keeping ALT or Meta pressed the terminal
prepends ESC instead of setting the 8th bit. See :map-alt-keys .

recursive_mapping
If you include the {lhs} in the {rhs} you have a recursive mapping. When
{lhs} is typed, it will be replaced with {rhs}. When the {lhs} which is
included in {rhs} is encountered it will be replaced with {rhs}, and so on.
This makes it possible to repeat a command an infinite number of times. The
only problem is that the only way to stop this is by causing an error. The
macros to solve a maze uses this, look there for an example. There is one
exception: If the {rhs} starts with {lhs}, the first character is not mapped
again (this is Vi compatible).
For example:

:map ab abcd
will execute the "a" command and insert "bcd" in the text. The "ab" in the
{rhs} will not be mapped again.

If you want to exchange the meaning of two keys you should use the :noremap

map.txt — 1025

command. For example:
:noremap k j
:noremap j k

This will exchange the cursor up and down commands.

With the normal :map command, when the 'remap' option is on, mapping takes
place until the text is found not to be a part of a {lhs}. For example, if
you use:

:map x y
:map y x

Vim will replace x with y, and then y with x, etc. When this has happened
'maxmapdepth' times (default 1000), Vim will give the error message
"recursive mapping".

:map-undo
If you include an undo command inside a mapped sequence, this will bring the
text back in the state before executing the macro. This is compatible with
the original Vi, as long as there is only one undo command in the mapped
sequence (having two undo commands in a mapped sequence did not make sense
in the original Vi, you would get back the text before the first undo).

1.10 MAPPING ALT-KEYS :map-alt-keys

For a readable mapping command the <A-k> form can be used. Note that <A-k>
and <A-K> are different, the latter will use an upper case letter. Actually,
<A-K> and <A-S-K> are the same. Instead of "A" you can use "M". If you have
an actual Meta modifier key, please see :map-meta-keys .

In the GUI Vim handles the Alt key itself, thus mapping keys with ALT should
always work. But in a terminal Vim gets a sequence of bytes and has to figure
out whether ALT was pressed or not.

If the terminal supports the modifyOtherKeys mode and it has been enabled,
then Vim can recognize more key combinations, see modifyOtherKeys below.
The Kitty keyboard protocol works in a similar way, see
kitty-keyboard-protocol .

By default Vim assumes that pressing the ALT key sets the 8th bit of a typed
character. Most decent terminals can work that way, such as xterm, aterm and
rxvt. If your <A-k> mappings don't work it might be that the terminal is
prefixing the character with an ESC character. But you can just as well type
ESC before a character, thus Vim doesn't know what happened (except for
checking the delay between characters, which is not reliable).

As of this writing, some mainstream terminals like gnome-terminal and konsole
use the ESC prefix. There doesn't appear a way to have them use the 8th bit
instead. Xterm should work well by default. Aterm and rxvt should work well
when started with the "--meta8" argument. You can also tweak resources like
"metaSendsEscape", "eightBitInput" and "eightBitOutput".

On the Linux console, this behavior can be toggled with the "setmetamode"
command. Bear in mind that not using an ESC prefix could get you in trouble
with other programs. You should make sure that bash has the "convert-meta"
option set to "on" in order for your Meta keybindings to still work on it
(it's the default readline behavior, unless changed by specific system
configuration). For that, you can add the line:

set convert-meta on

map.txt — 1026

to your ~/.inputrc file. If you're creating the file, you might want to use:

$include /etc/inputrc

as the first line, if that file exists on your system, to keep global options.
This may cause a problem for entering special characters, such as the umlaut.
Then you should use CTRL-V before that character.

Bear in mind that convert-meta has been reported to have troubles when used in
UTF-8 locales. On terminals like xterm, the "metaSendsEscape" resource can be
toggled on the fly through the "Main Options" menu, by pressing Ctrl-LeftClick
on the terminal; that's a good last resource in case you want to send ESC when
using other applications but not when inside Vim.

1.11 MAPPING META-KEYS :map-meta-keys

Mapping keys with the Meta modifier works very similar to using the Alt key.
What key on your keyboard produces the Meta modifier depends on your keyboard
and configuration.

Note that mapping <M-a> actually is for using the Alt key. That can be
confusing! It cannot be changed, it would not be backwards compatible.

For the Meta modifier the "T" character is used. For example, to map Meta-b
in Insert mode:

:imap <T-b> terrible

1.12 MAPPING SUPER-KEYS or COMMAND-KEYS :map-super-keys :map-cmd-key

The Super modifier is available in GUI mode (when gui_running is 1) for
GVim on Linux and MacVim on Mac OS. If you're on a Mac, this represents the
Command key, on Linux with the GTK GUI it represents the Super key.
The character "D" is used for the Super / Command modifier.

For example, to map Command-b in Insert mode:
:imap <D-b> barritone

1.13 MAPPING IN modifyOtherKeys mode modifyOtherKeys

Xterm and a few other terminals can be put in a mode where keys with modifiers
are sent with a special escape code. Vim recognizes these codes and can then
make a difference between CTRL-H and Backspace, even when Backspace sends the
character 8. And many more special keys, such as Tab and CTRL-I, which cannot
be mapped separately otherwise.

For xterm modifyOtherKeys is enabled in the builtin termcap entry. If this is
not used you can enable modifyOtherKeys with these lines in your vimrc:

let &t_TI = "\<Esc>[>4;2m"
let &t_TE = "\<Esc>[>4;m"

This sets modifyOtherKeys to level 2. Note that modifyOtherKeys level 1 does
not work. Some terminals do not support level 2 and then send key codes that
Vim will not be able to correctly recognize.

In case the modifyOtherKeys mode causes problems you can disable it:
let &t_TI = ""
let &t_TE = ""

It does not take effect immediately. To have this work without restarting Vim
execute a shell command, e.g.: `!ls` Or put the lines in your vimrc .

map.txt — 1027

When modifyOtherKeys is enabled you can map <C-[> and <C-S-{>:
imap <C-[> [[[
imap <C-{> {{{

Without modifyOtherKeys <C-[> and <C-{> are indistinguishable from Esc.
Note that <C-{> is used and not <C-S-[> or <C-S-{>. This works on most
keyboards. Similarly, <C-}> is used instead of <C-S-]> or <C-S-}> and
<C-|> instead of <C-S-\> or <C-S-|>. Note that '|' has a special meaning in a
mapping, see map-bar .

WARNING: if you map <C-[> you may very well break any key codes that start
with Esc. Make sure it comes AFTER other mappings.

Starting with xterm version 377 Vim can detect the modifyOtherKeys state by
requesting it. For this the 't_RK' termcap entry is used. When the response
is found then Vim will know whether modifyOtherKeys level 2 is enabled, and
handle mappings accordingly.

Before version 377 Vim automatically detects if the modifyOtherKeys mode was
enabled when it spots an escape sequence that must have been created by it.
To see if Vim detected such an escape sequence use `:verbose map`, the first
line will then show "Seen modifyOtherKeys: true" (possibly translated).

This automatic detection depends on receiving an escape code starting with
"<1b>[27;". This is the normal way xterm sends these key codes. However, if
the formatOtherKeys resource is set another form is used that is not
recognized, therefore you must not set formatOtherKeys.

A known side effect is that in Insert mode the raw escape sequence is inserted
after the CTRL-V key. This can be used to check whether modifyOtherKeys is
enabled: In Insert mode type CTRL-SHIFT-V CTRL-V, if you get one byte then
modifyOtherKeys is off, if you get <1b>[27;5;118~ then it is on.

Note that xterm up to version 376 has a bug that makes Shift-Esc send a
regular Esc code, the Shift modifier is dropped.

When the 'esckeys' option is off, then modifyOtherKeys will be disabled in
Insert mode to avoid every key with a modifier causing Insert mode to end.

1.14 MAPPING WITH KITTY KEYBOARD PROTOCOL kitty-keyboard-protocol

If the value of 'term' contains "kitty" then Vim will send out an escape
sequence to enable the Kitty keyboard protocol. This can be changed with the
'keyprotocol' option.

Like modifyOtherKeys, this will make it possible to distinguish between more
keys with modifiers. Also, this protocol sends an escape sequence for the Esc
key, so that Vim does not need to use a timeout to know whether receiving an
Esc character means the Esc key was pressed or it's the start of an escape
sequence.

Vim automatically detects if the Kitty keyboard protocol was enabled when it
spots the response to the status request (this should be part of the t_TI
termcap entry). To see if Vim detected such an escape sequence use:

:verbose map
The first line will then show "Kitty keyboard protocol: {value}" (possibly
translated). The meaning of {value}:

Unknown no status received yet
Off protocol is not used

map.txt — 1028

On protocol is used
Disabled protocol was used but expected to have been disabled

by 't_TE'
Cleared protocol expected to have been disabled by 't_TE',

previous state is unknown

1.15 MAPPING AN OPERATOR :map-operator

An operator is used before a {motion} command. To define your own operator
you must create a mapping that first sets the 'operatorfunc' option and then
invoke the g@ operator. After the user types the {motion} command the
specified function will be called.

g@ E774 E775
g@{motion} Call the function set by the 'operatorfunc' option.

The '[mark is positioned at the start of the text
moved over by {motion}, the '] mark on the last
character of the text.
The function is called with one String argument:

"line" {motion} was linewise
"char" {motion} was characterwise
"block" {motion} was blockwise-visual

The type can be forced, see forced-motion .
{not available when compiled without the +eval
feature}

Here is an example that counts the number of spaces with <F4>:

nnoremap <expr> <F4> CountSpaces()
xnoremap <expr> <F4> CountSpaces()
" doubling <F4> works on a line
nnoremap <expr> <F4><F4> CountSpaces() .. '_'

function CountSpaces(context = {}, type = '') abort
if a:type == ''

let context = #{
\ dot_command: v:false,
\ extend_block: '',
\ virtualedit: [&l:virtualedit, &g:virtualedit],
\ }

let &operatorfunc = function('CountSpaces', [context])
set virtualedit=block
return 'g@'

endif

let save = #{
\ clipboard: &clipboard,
\ selection: &selection,
\ virtualedit: [&l:virtualedit, &g:virtualedit],
\ register: getreginfo('"'),
\ visual_marks: [getpos("'<"), getpos("'>")],
\ }

try
set clipboard= selection=inclusive virtualedit=
let commands = #{

\ line: "'[V']",
\ char: "`[v`]",
\ block: "`[\<C-V>`]",

map.txt — 1029

\ }[a:type]
let [_, _, col, off] = getpos("']")
if off != 0

let vcol = getline("'[")->strpart(0, col + off)->strdisplaywidth()
if vcol >= [line("'["), '$']->virtcol() - 1

let a:context.extend_block = '$'
else

let a:context.extend_block = vcol .. '|'
endif

endif
if a:context.extend_block != ''

let commands ..= 'oO' .. a:context.extend_block
endif
let commands ..= 'y'
execute 'silent noautocmd keepjumps normal! ' .. commands
echomsg getreg('"')->count(' ')

finally
call setreg('"', save.register)
call setpos("'<", save.visual_marks[0])
call setpos("'>", save.visual_marks[1])
let &clipboard = save.clipboard
let &selection = save.selection
let [&l:virtualedit, &g:virtualedit] = get(a:context.dot_command ? save : a:context, 'virtualedit')
let a:context.dot_command = v:true

endtry
endfunction

An <expr> mapping is used to be able to fetch any prefixed count and register.
This also avoids using a command line, which would trigger CmdlineEnter and
CmdlineLeave autocommands.

Note that the 'selection' option is temporarily set to "inclusive" to be able
to yank exactly the right text by using Visual mode from the '[to the ']
mark.

Also note that the 'clipboard' option is temporarily emptied to avoid
clobbering the `"*` or `"+` registers, if its value contains the item `unnamed`
or `unnamedplus`.

The `mode()` function will return the state as it will be after applying the
operator.

Here is an example for using a lambda function to create a normal-mode
operator to add quotes around text in the current line:

nnoremap <F4> <Cmd>let &opfunc='{t ->
\ getline(".")
\ ->split("\\zs")
\ ->insert("\"", col("'']"))
\ ->insert("\"", col("''[") - 1)
\ ->join("")
\ ->setline(".")}'<CR>g@

==
2. Abbreviations abbreviations Abbreviations

Abbreviations are used in Insert mode, Replace mode and Command-line mode.
If you enter a word that is an abbreviation, it is replaced with the word it
stands for. This can be used to save typing for often used long words. And
you can use it to automatically correct obvious spelling errors.

map.txt — 1030

Examples:

:iab ms Microsoft
:iab tihs this

There are three types of abbreviations:

full-id The "full-id" type consists entirely of keyword characters (letters
and characters from 'iskeyword' option). This is the most common
abbreviation.

Examples: "foo", "g3", "-1"

end-id The "end-id" type ends in a keyword character, but all the other
characters are not keyword characters.

Examples: "#i", "..f", "$/7"

non-id The "non-id" type ends in a non-keyword character, the other
characters may be of any type, excluding space and tab. {this type
is not supported by Vi}

Examples: "def#", "4/7$"

Examples of strings that cannot be abbreviations: "a.b", "#def", "a b", "_$r"

An abbreviation is only recognized when you type a non-keyword character.
This can also be the <Esc> that ends Insert mode or the <CR> that ends a
command. The non-keyword character which ends the abbreviation is inserted
after the expanded abbreviation. An exception to this is the character <C-]>,
which is used to expand an abbreviation without inserting any extra
characters.

Example:
:ab hh hello

"hh<Space>" is expanded to "hello<Space>"
"hh<C-]>" is expanded to "hello"

The characters before the cursor must match the abbreviation. Each type has
an additional rule:

full-id In front of the match is a non-keyword character, or this is where
the line or insertion starts. Exception: When the abbreviation is
only one character, it is not recognized if there is a non-keyword
character in front of it, other than a space or a tab. However, for
the command line "'<,'>" (or any other marks) is ignored, as if the
command line starts after it.

end-id In front of the match is a keyword character, or a space or a tab,
or this is where the line or insertion starts.

non-id In front of the match is a space, tab or the start of the line or
the insertion.

Examples: ({CURSOR} is where you type a non-keyword character)
:ab foo four old otters

" foo{CURSOR}" is expanded to " four old otters"
" foobar{CURSOR}" is not expanded
"barfoo{CURSOR}" is not expanded

map.txt — 1031

:ab #i #include
"#i{CURSOR}" is expanded to "#include"
">#i{CURSOR}" is not expanded

:ab ;; <endofline>
"test;;" is not expanded
"test ;;" is expanded to "test <endofline>"

To avoid the abbreviation in Insert mode: Type CTRL-V before the character
that would trigger the abbreviation. E.g. CTRL-V <Space>. Or type part of
the abbreviation, exit insert mode with <Esc>, re-enter insert mode with "a"
and type the rest.

To avoid the abbreviation in Command-line mode: Type CTRL-V twice somewhere in
the abbreviation to avoid it to be replaced. A CTRL-V in front of a normal
character is mostly ignored otherwise.

It is possible to move the cursor after an abbreviation:
:iab if if ()<Left>

This does not work if 'cpoptions' includes the '<' flag. <>

You can even do more complicated things. For example, to consume the space
typed after an abbreviation:

func Eatchar(pat)
let c = nr2char(getchar(0))
return (c =~ a:pat) ? '' : c

endfunc
iabbr <silent> if if ()<Left><C-R>=Eatchar('\s')<CR>

There are no default abbreviations.

Abbreviations are never recursive. You can use ":ab f f-o-o" without any
problem. But abbreviations can be mapped. {some versions of Vi support
recursive abbreviations, for no apparent reason}

Abbreviations are disabled if the 'paste' option is on.

:abbreviate-local :abbreviate-<buffer>
Just like mappings, abbreviations can be local to a buffer. This is mostly
used in a filetype-plugin file. Example for a C plugin file:

:abb <buffer> FF for (i = 0; i < ; ++i)

:ab :abbreviate
:ab[breviate] list all abbreviations. The character in the first

column indicates the mode where the abbreviation is
used: 'i' for insert mode, 'c' for Command-line
mode, '!' for both. These are the same as for
mappings, see map-listing .

:abbreviate-verbose
When 'verbose' is non-zero, listing an abbreviation will also display where it
was last defined. Example:

:verbose abbreviate
! teh the

Last set from /home/abcd/vim/abbr.vim

See :verbose-cmd for more information.

:ab[breviate] {lhs} list the abbreviations that start with {lhs}

map.txt — 1032

You may need to insert a CTRL-V (type it twice) to
avoid that a typed {lhs} is expanded, since
command-line abbreviations apply here.

:ab[breviate] [<expr>] [<buffer>] {lhs} {rhs}
add abbreviation for {lhs} to {rhs}. If {lhs} already
existed it is replaced with the new {rhs}. {rhs} may
contain spaces.
See :map-<expr> for the optional <expr> argument.
See :map-<buffer> for the optional <buffer> argument.

:una :unabbreviate
:una[bbreviate] [<buffer>] {lhs}

Remove abbreviation for {lhs} from the list. If none
is found, remove abbreviations in which {lhs} matches
with the {rhs}. This is done so that you can even
remove abbreviations after expansion. To avoid
expansion insert a CTRL-V (type it twice).

:norea :noreabbrev
:norea[bbrev] [<expr>] [<buffer>] [lhs] [rhs]

Same as ":ab", but no remapping for this {rhs}.

:ca :cab :cabbrev
:ca[bbrev] [<expr>] [<buffer>] [lhs] [rhs]

Same as ":ab", but for Command-line mode only.

:cuna :cunabbrev
:cuna[bbrev] [<buffer>] {lhs}

Same as ":una", but for Command-line mode only.

:cnorea :cnoreabbrev
:cnorea[bbrev] [<expr>] [<buffer>] [lhs] [rhs]

same as ":ab", but for Command-line mode only and no
remapping for this {rhs}

:ia :iabbrev
:ia[bbrev] [<expr>] [<buffer>] [lhs] [rhs]

Same as ":ab", but for Insert mode only.

:iuna :iunabbrev
:iuna[bbrev] [<buffer>] {lhs}

Same as ":una", but for insert mode only.

:inorea :inoreabbrev
:inorea[bbrev] [<expr>] [<buffer>] [lhs] [rhs]

Same as ":ab", but for Insert mode only and no
remapping for this {rhs}.

:abc :abclear
:abc[lear] [<buffer>] Remove all abbreviations.

:iabc :iabclear
:iabc[lear] [<buffer>] Remove all abbreviations for Insert mode.

:cabc :cabclear
:cabc[lear] [<buffer>] Remove all abbreviations for Command-line mode.

using_CTRL-V
It is possible to use special characters in the rhs of an abbreviation.

map.txt — 1033

CTRL-V has to be used to avoid the special meaning of most non printable
characters. How many CTRL-Vs need to be typed depends on how you enter the
abbreviation. This also applies to mappings. Let's use an example here.

Suppose you want to abbreviate "esc" to enter an <Esc> character. When you
type the ":ab" command in Vim, you have to enter this: (here ^V is a CTRL-V
and ^[is <Esc>)

You type: ab esc ^V^V^V^V^V^[

All keyboard input is subjected to ^V quote interpretation, so
the first, third, and fifth ^V characters simply allow the second,
and fourth ^Vs, and the ^[, to be entered into the command-line.

You see: ab esc ^V^V^[

The command-line contains two actual ^Vs before the ^[. This is
how it should appear in your .exrc file, if you choose to go that
route. The first ^V is there to quote the second ^V; the :ab
command uses ^V as its own quote character, so you can include quoted
whitespace or the | character in the abbreviation. The :ab command
doesn't do anything special with the ^[character, so it doesn't need
to be quoted. (Although quoting isn't harmful; that's why typing 7
[but not 8!] ^Vs works.)

Stored as: esc ^V^[

After parsing, the abbreviation's short form ("esc") and long form
(the two characters "^V^[") are stored in the abbreviation table.
If you give the :ab command with no arguments, this is how the
abbreviation will be displayed.

Later, when the abbreviation is expanded because the user typed in
the word "esc", the long form is subjected to the same type of
^V interpretation as keyboard input. So the ^V protects the ^[
character from being interpreted as the "exit Insert mode" character.
Instead, the ^[is inserted into the text.

Expands to: ^[

[example given by Steve Kirkendall]

==
3. Local mappings and functions script-local

When using several Vim script files, there is the danger that mappings and
functions used in one script use the same name as in other scripts. To avoid
this, they can be made local to the script.

<SID> <SNR> E81
The string "<SID>" can be used in a mapping or menu. This requires that the
'<' flag is not present in 'cpoptions'. This is useful if you have a
script-local function that you want to call from a mapping in the same script.

When executing the map command, Vim will replace "<SID>" with the special
key code <SNR>, followed by a number that's unique for the script, and an
underscore. Example:

:map <SID>Add
would define a mapping "<SNR>23_Add".

When defining a function in a script, "s:" can be prepended to the name to

map.txt — 1034

make it local to the script (in Vim9 script functions without a prefix are
local to the script). But when a mapping is executed from outside of
the script, it doesn't know in which script the function was defined. To
avoid this problem, use "<SID>" instead of "s:". The same translation is done
as for mappings. This makes it possible to define a call to the function in
a mapping.

When a local function is executed, it runs in the context of the script it was
defined in. This means that new functions and mappings it defines can also
use "s:" or "<SID>" and it will use the same unique number as when the
function itself was defined. Also, the "s:var" local script variables can be
used.

When executing an autocommand or a user command, it will run in the context of
the script it was defined in. This makes it possible that the command calls a
local function or uses a local mapping.

In case the value is used in a context where <SID> cannot be correctly
expanded, use the expand() function:

let &includexpr = expand('<SID>') .. 'My_includeexpr()'

Otherwise, using "<SID>" outside of a script context is an error.

If you need to get the script number to use in a complicated script, you can
use this function:

func s:ScriptNumber()
return matchstr(expand('<SID>'), '<SNR>\zs\d\+\ze_')

endfunc

The "<SNR>" will be shown when listing functions and mappings. This is useful
to find out what they are defined to.

The :scriptnames command can be used to see which scripts have been sourced
and what their <SNR> number is.

This is all {not available when compiled without the |+eval| feature}.

==
4. User-defined commands user-commands

It is possible to define your own Ex commands. A user-defined command can act
just like a built-in command (it can have a range or arguments, arguments can
be completed as filenames or buffer names, etc), except that when the command
is executed, it is transformed into a normal Ex command and then executed.

For starters: See section 40.2 in the user manual.

E183 E841 user-cmd-ambiguous
All user defined commands must start with an uppercase letter, to avoid
confusion with builtin commands. Exceptions are these builtin commands:

:Next
:X

They cannot be used for a user defined command. ":Print" is also an existing
command, but it is deprecated and can be overruled.

The other characters of the user command can be uppercase letters, lowercase
letters or digits. When using digits, note that other commands that take a
numeric argument may become ambiguous. For example, the command ":Cc2" could
be the user command ":Cc2" without an argument, or the command ":Cc" with
argument "2". It is advised to put a space between the command name and the

map.txt — 1035

argument to avoid these problems.

When using a user-defined command, the command can be abbreviated. However, if
an abbreviation is not unique, an error will be issued. Furthermore, a
built-in command will always take precedence.

Example:
:command Rename ...
:command Renumber ...
:Rena " Means "Rename"
:Renu " Means "Renumber"
:Ren " Error - ambiguous
:command Paste ...
:P " The built-in :Print

It is recommended that full names for user-defined commands are used in
scripts.

:com[mand] :com :command
List all user-defined commands. When listing commands,
the characters in the first columns are:

! Command has the -bang attribute
" Command has the -register attribute
| Command has the -bar attribute
b Command is local to current buffer

(see below for details on attributes)
The list can be filtered on command name with
:filter , e.g., to list all commands with "Pyth" in

the name:
filter Pyth command

:com[mand] {cmd} List the user-defined commands that start with {cmd}

:command-verbose
When 'verbose' is non-zero, listing a command will also display where it was
last defined and any completion argument. Example:

:verbose command TOhtml
Name Args Range Complete Definition
TOhtml 0 % :call Convert2HTML(<line1>, <line2>)

Last set from /usr/share/vim/vim-7.0/plugin/tohtml.vim

See :verbose-cmd for more information.

E174 E182
:com[mand][!] [{attr}...] {cmd} {repl}

Define a user command. The name of the command is
{cmd} and its replacement text is {repl}. The
command's attributes (see below) are {attr}. If the
command already exists, an error is reported, unless a
! is specified, in which case the command is
redefined. There is one exception: When sourcing a
script again, a command that was previously defined in
that script will be silently replaced.

:delc[ommand] {cmd} :delc :delcommand E184
Delete the user-defined command {cmd}.
This is not allowed while listing commands, e.g. from
a timer. E1311

map.txt — 1036

:delc[ommand] -buffer {cmd} E1237
Delete the user-defined command {cmd} that was defined
for the current buffer.

:comc[lear] :comc :comclear
Delete all user-defined commands.

Command attributes
command-attributes

User-defined commands are treated by Vim just like any other Ex commands. They
can have arguments, or have a range specified. Arguments are subject to
completion as filenames, buffers, etc. Exactly how this works depends upon the
command's attributes, which are specified when the command is defined.

When defining a user command in a script, it will be able to call functions
local to the script and use mappings local to the script. When the user
invokes the user command, it will run in the context of the script it was
defined in. This matters if <SID> is used in a command.

There are a number of attributes, split into four categories: argument
handling, completion behavior, range handling, and special cases. The
attributes are described below, by category.

Argument handling
E175 E176 :command-nargs

By default, a user defined command will take no arguments (and an error is
reported if any are supplied). However, it is possible to specify that the
command can take arguments, using the -nargs attribute. Valid cases are:

-nargs=0 No arguments are allowed (the default)
-nargs=1 Exactly one argument is required, it includes spaces
-nargs=* Any number of arguments are allowed (0, 1, or many),

separated by white space
-nargs=? 0 or 1 arguments are allowed
-nargs=+ Arguments must be supplied, but any number are allowed

Arguments are considered to be separated by (unescaped) spaces or tabs in this
context, except when there is one argument, then the white space is part of
the argument.

Note that arguments are used as text, not as expressions. Specifically,
"s:var" will use the script-local variable in the script where the command was
defined, not where it is invoked! Example:

script1.vim:
:let s:error = "None"
:command -nargs=1 Error echoerr <args>

script2.vim:
:source script1.vim
:let s:error = "Wrong!"
:Error s:error

Executing script2.vim will result in "None" being echoed. Not what you
intended! Calling a function may be an alternative.

Completion behavior
:command-completion E179 E180 E181
:command-complete

map.txt — 1037

By default, the arguments of user defined commands do not undergo completion.
However, by specifying one or the other of the following attributes, argument
completion can be enabled:

-complete=arglist file names in argument list
-complete=augroup autocmd groups
-complete=buffer buffer names
-complete=behave :behave suboptions
-complete=color color schemes
-complete=command Ex command (and arguments)
-complete=compiler compilers
-complete=cscope :cscope suboptions
-complete=dir directory names
-complete=environment environment variable names
-complete=event autocommand events
-complete=expression Vim expression
-complete=file file and directory names
-complete=file_in_path file and directory names in 'path'
-complete=filetype filetype names 'filetype'
-complete=function function name
-complete=help help subjects
-complete=highlight highlight groups
-complete=history :history suboptions
-complete=keymap keyboard mappings
-complete=locale locale names (as output of locale -a)
-complete=mapclear buffer argument
-complete=mapping mapping name
-complete=menu menus
-complete=messages :messages suboptions
-complete=option options
-complete=packadd optional package pack-add names
-complete=shellcmd Shell command
-complete=sign :sign suboptions
-complete=syntax syntax file names 'syntax'
-complete=syntime :syntime suboptions
-complete=tag tags
-complete=tag_listfiles tags, file names are shown when CTRL-D is hit
-complete=user user names
-complete=var user variables
-complete=custom,{func} custom completion, defined via {func}
-complete=customlist,{func} custom completion, defined via {func}

If you specify completion while there is nothing to complete (-nargs=0, the
default) then you get error E1208 .
Note: That some completion methods might expand environment variables.

Custom completion
:command-completion-custom
:command-completion-customlist E467 E468

It is possible to define customized completion schemes via the "custom,{func}"
or the "customlist,{func}" completion argument. The {func} part should be a
function with the following signature:

:function {func}(ArgLead, CmdLine, CursorPos)

The function need not use all these arguments. The function should provide the
completion candidates as the return value.

For the "custom" argument, the function should return the completion

map.txt — 1038

candidates one per line in a newline separated string.
E1303

For the "customlist" argument, the function should return the completion
candidates as a Vim List. Non-string items in the list are ignored.

The function arguments are:
ArgLead the leading portion of the argument currently being

completed on
CmdLine the entire command line
CursorPos the cursor position in it (byte index)

The function may use these for determining context. For the "custom"
argument, it is not necessary to filter candidates against the (implicit
pattern in) ArgLead. Vim will filter the candidates with its regexp engine
after function return, and this is probably more efficient in most cases. If
'wildoptions' contains "fuzzy", then the candidates will be filtered using
fuzzy-matching . For the "customlist" argument, Vim will not

filter the returned completion candidates and the user supplied function
should filter the candidates.

The following example lists user names to a Finger command
:com -complete=custom,ListUsers -nargs=1 Finger !finger <args>
:fun ListUsers(A,L,P)
: return system("cut -d: -f1 /etc/passwd")
:endfun

The following example completes filenames from the directories specified in
the 'path' option:

:com -nargs=1 -bang -complete=customlist,EditFileComplete
\ EditFile edit<bang> <args>

:fun EditFileComplete(A,L,P)
: return split(globpath(&path, a:A), "\n")
:endfun

This example does not work for file names with spaces!

Range handling
E177 E178 :command-range :command-count

By default, user-defined commands do not accept a line number range. However,
it is possible to specify that the command does take a range (the -range
attribute), or that it takes an arbitrary count value, either in the line
number position (-range=N, like the :split command) or as a "count"
argument (-count=N, like the :Next command). The count will then be
available in the argument with <count> .

Possible attributes are:

-range Range allowed, default is current line
-range=% Range allowed, default is whole file (1,$)
-range=N A count (default N) which is specified in the line

number position (like :split); allows for zero line
number.

-count=N A count (default N) which is specified either in the line
number position, or as an initial argument (like :Next).

-count Acts like -count=0

Note that -range=N and -count=N are mutually exclusive - only one should be
specified.

:command-addr

map.txt — 1039

It is possible that the special characters in the range like ., $ or % which
by default correspond to the current line, last line and the whole buffer,
relate to arguments, (loaded) buffers, windows or tab pages.

Possible values are (second column is the short name used in listing):
-addr=lines Range of lines (this is the default for -range)
-addr=arguments arg Range for arguments
-addr=buffers buf Range for buffers (also not loaded buffers)
-addr=loaded_buffers load Range for loaded buffers
-addr=windows win Range for windows
-addr=tabs tab Range for tab pages
-addr=quickfix qf Range for quickfix entries
-addr=other ? Other kind of range; can use ".", "$" and "%"

as with "lines" (this is the default for
-count)

Special cases
:command-bang :command-bar
:command-register :command-buffer
:command-keepscript

There are some special cases as well:

-bang The command can take a ! modifier (like :q or :w)
-bar The command can be followed by a "|" and another command.

A "|" inside the command argument is not allowed then.
Also checks for a " to start a comment.

-register The first argument to the command can be an optional
register name (like :del, :put, :yank).

-buffer The command will only be available in the current buffer.
-keepscript Do not use the location of where the user command was

defined for verbose messages, use the location of where
the user command was invoked.

In the cases of the -count and -register attributes, if the optional argument
is supplied, it is removed from the argument list and is available to the
replacement text separately.
Note that these arguments can be abbreviated, but that is a deprecated
feature. Use the full name for new scripts.

Replacement text
:command-repl

The {repl} argument is normally one long string, possibly with "|" separated
commands. A special case is when the argument is "{", then the following
lines, up to a line starting with "}" are used and Vim9 syntax applies.
Example:

:command MyCommand {
echo 'hello'
g:calledMyCommand = true

}
E1231

There must be white space before the "{". No nesting is supported, inline
functions cannot be used. Commands where a "|" may appear in the argument,
such as commands with an expression argument, cannot be followed by a "|" and
another command.

If the command is defined in Vim9 script (a script that starts with
`:vim9script` and in a `:def` function) then {repl} will be executed as in Vim9
script. Thus this depends on where the command is defined, not where it is

map.txt — 1040

used.

The replacement text {repl} for a user defined command is scanned for special
escape sequences, using <...> notation. Escape sequences are replaced with
values from the entered command line, and all other text is copied unchanged.
The resulting string is executed as an Ex command. To avoid the replacement
use <lt> in place of the initial <. Thus to include "<bang>" literally use
"<lt>bang>".

The valid escape sequences are

<line1>
<line1> The starting line of the command range.

<line2>
<line2> The final line of the command range.

<range>
<range> The number of items in the command range: 0, 1 or 2

<count>
<count> Any count supplied (as described for the '-range'

and '-count' attributes).
<bang>

<bang> (See the '-bang' attribute) Expands to a ! if the
command was executed with a ! modifier, otherwise
expands to nothing.

<mods> <q-mods> :command-modifiers
<mods> The command modifiers, if specified. Otherwise, expands to

nothing. Supported modifiers are :aboveleft , :belowright ,
:botright , :browse , :confirm , :hide , :horizontal ,
:keepalt , :keepjumps , :keepmarks , :keeppatterns ,
:leftabove , :lockmarks , :noautocmd , :noswapfile
:rightbelow , :sandbox , :silent , :tab , :topleft ,
:unsilent , :verbose , and :vertical .
Note that :filter is not supported.
Examples:

command! -nargs=+ -complete=file MyEdit
\ for f in expand(<q-args>, 0, 1) |
\ exe '<mods> split ' .. f |
\ endfor

function! SpecialEdit(files, mods)
for f in expand(a:files, 0, 1)

exe a:mods .. ' split ' .. f
endfor

endfunction
command! -nargs=+ -complete=file Sedit

\ call SpecialEdit(<q-args>, <q-mods>)

<reg> <register>
<reg> (See the '-register' attribute) The optional register,

if specified. Otherwise, expands to nothing. <register>
is a synonym for this.

<args>
<args> The command arguments, exactly as supplied (but as

noted above, any count or register can consume some
of the arguments, which are then not part of <args>).

<lt> A single '<' (Less-Than) character. This is needed if you
want to get a literal copy of one of these escape sequences
into the expansion - for example, to get <bang>, use
<lt>bang>.

map.txt — 1041

<q-args>
If the first two characters of an escape sequence are "q-" (for example,
<q-args>) then the value is quoted in such a way as to make it a valid value
for use in an expression. This uses the argument as one single value.
When there is no argument <q-args> is an empty string. See the
q-args-example below.

<f-args>
To allow commands to pass their arguments on to a user-defined function, there
is a special form <f-args> ("function args"). This splits the command
arguments at spaces and tabs, quotes each argument individually, and the
<f-args> sequence is replaced by the comma-separated list of quoted arguments.
See the Mycmd example below. If no arguments are given <f-args> is removed.

To embed whitespace into an argument of <f-args>, prepend a backslash.
<f-args> replaces every pair of backslashes (\\) with one backslash. A
backslash followed by a character other than white space or a backslash
remains unmodified. Also see f-args-example below. Overview:

command <f-args>
XX ab 'ab'
XX a\b 'a\b'
XX a\ b 'a b'
XX a\ b 'a ', 'b'
XX a\\b 'a\b'
XX a\\ b 'a\', 'b'
XX a\\\b 'a\\b'
XX a\\\ b 'a\ b'
XX a\\\\b 'a\\b'
XX a\\\\ b 'a\\', 'b'
XX [nothing]

Note that if the "no arguments" situation is to be handled, you have to make
sure that the function can be called without arguments. For a compiled
function you might want to use variable arguments, see
vim9-variable-arguments .

Examples for user commands:

" Delete everything after here to the end
:com Ddel +,$d

" Rename the current buffer
:com -nargs=1 -bang -complete=file Ren f <args>|w<bang>

" Replace a range with the contents of a file
" (Enter this all as one line)
:com -range -nargs=1 -complete=file

Replace <line1>-pu_|<line1>,<line2>d|r <args>|<line1>d

" Count the number of lines in the range
:com! -range -nargs=0 Lines echo <line2> - <line1> + 1 "lines"

f-args-example
Call a user function (example of <f-args>)

:com -nargs=* Mycmd call Myfunc(<f-args>)

When executed as:
:Mycmd arg1 arg2

This will invoke:
:call Myfunc("arg1","arg2")

map.txt — 1042

q-args-example
A more substantial example:

:function Allargs(command)
: let i = 0
: while i < argc()
: if filereadable(argv(i))
: execute "e " .. argv(i)
: execute a:command
: endif
: let i = i + 1
: endwhile
:endfunction
:command -nargs=+ -complete=command Allargs call Allargs(<q-args>)

The command Allargs takes any Vim command(s) as argument and executes it on all
files in the argument list. Usage example (note use of the "e" flag to ignore
errors and the "update" command to write modified buffers):

:Allargs %s/foo/bar/ge|update
This will invoke:

:call Allargs("%s/foo/bar/ge|update")

map.txt — 1043

map.txt — 1044

tagsrch.txt For Vim version 9.1. Last change: 2024 Mar 03

VIM REFERENCE MANUAL by Bram Moolenaar

Tags and special searches tags-and-searches

See section 29.1 of the user manual for an introduction.

1. Jump to a tag tag-commands
2. Tag stack tag-stack
3. Tag match list tag-matchlist
4. Tags details tag-details
5. Tags file format tags-file-format
6. Include file searches include-search
7. Using 'tagfunc' tag-function

==
1. Jump to a tag tag-commands

tag tags
A tag is an identifier that appears in a "tags" file. It is a sort of label
that can be jumped to. For example: In C programs each function name can be
used as a tag. The "tags" file has to be generated by a program like ctags,
before the tag commands can be used.

With the ":tag" command the cursor will be positioned on the tag. With the
CTRL-] command, the keyword on which the cursor is standing is used as the
tag. If the cursor is not on a keyword, the first keyword to the right of the
cursor is used.

The ":tag" command works very well for C programs. If you see a call to a
function and wonder what that function does, position the cursor inside of the
function name and hit CTRL-]. This will bring you to the function definition.
An easy way back is with the CTRL-T command. Also read about the tag stack
below.

:ta :tag E426 E429
:[count]ta[g][!] {name}

Jump to the definition of {name}, using the
information in the tags file(s). Put {name} in the
tag stack. See tag-! for [!].
{name} can be a regexp pattern, see tag-regexp .
When there are several matching tags for {name}, jump
to the [count] one. When [count] is omitted the
first one is jumped to. See tag-matchlist for
jumping to other matching tags.

g<LeftMouse> g<LeftMouse>
<C-LeftMouse> <C-LeftMouse> CTRL-]
CTRL-] Jump to the definition of the keyword under the

cursor. Same as ":tag {name}", where {name} is the
keyword under or after cursor.
When there are several matching tags for {name}, jump
to the [count] one. When no [count] is given the
first one is jumped to. See tag-matchlist for
jumping to other matching tags.

v_CTRL-]

tagsrch.txt — 1045

{Visual}CTRL-] Same as ":tag {name}", where {name} is the text that
is highlighted.

telnet-CTRL-]
CTRL-] is the default telnet escape key. When you type CTRL-] to jump to a
tag, you will get the telnet prompt instead. Most versions of telnet allow
changing or disabling the default escape key. See the telnet man page. You
can 'telnet -E {Hostname}' to disable the escape character, or 'telnet -e
{EscapeCharacter} {Hostname}' to specify another escape character. If
possible, try to use "ssh" instead of "telnet" to avoid this problem.

tag-priority
When there are multiple matches for a tag, this priority is used:
1. "FSC" A full matching static tag for the current file.
2. "F C" A full matching global tag for the current file.
3. "F " A full matching global tag for another file.
4. "FS " A full matching static tag for another file.
5. " SC" An ignore-case matching static tag for the current file.
6. " C" An ignore-case matching global tag for the current file.
7. " " An ignore-case matching global tag for another file.
8. " S " An ignore-case matching static tag for another file.

Note that when the current file changes, the priority list is mostly not
changed, to avoid confusion when using ":tnext". It is changed when using
":tag {name}".

The ignore-case matches are not found for a ":tag" command when:
- 'tagcase' is "followic" and the 'ignorecase' option is off
- 'tagcase' is "followscs" and the 'ignorecase' option is off and the

'smartcase' option is off or the pattern contains an upper case character.
- 'tagcase' is "match"
- 'tagcase' is "smart" and the pattern contains an upper case character.

The ignore-case matches are found when:
- a pattern is used (starting with a "/")
- for ":tselect"
- when 'tagcase' is "followic" and 'ignorecase' is on
- when 'tagcase' is "followscs" and 'ignorecase' is on or the 'smartcase'

option is on and the pattern does not contain an upper case character
- when 'tagcase' is "ignore"
- when 'tagcase' is "smart" and the pattern does not contain an upper case

character

Note that using ignore-case tag searching disables binary searching in the
tags file, which causes a slowdown. This can be avoided by fold-case sorting
the tag file. See the 'tagbsearch' option for an explanation.

==
2. Tag stack tag-stack tagstack E425

On the tag stack is remembered which tags you jumped to, and from where.
Tags are only pushed onto the stack when the 'tagstack' option is set.

g<RightMouse> g<RightMouse>
<C-RightMouse> <C-RightMouse> CTRL-T
CTRL-T Jump to [count] older entry in the tag stack

(default 1).

:po :pop E555 E556
:[count]po[p][!] Jump to [count] older entry in tag stack (default 1).

tagsrch.txt — 1046

See tag-! for [!].

:[count]ta[g][!] Jump to [count] newer entry in tag stack (default 1).
See tag-! for [!].

:tags
:tags Show the contents of the tag stack. The active

entry is marked with a '>'.

The output of ":tags" looks like this:

TO tag FROM line in file/text
1 1 main 1 harddisk2:text/vim/test

> 2 2 FuncA 58 i = FuncA(10);
3 1 FuncC 357 harddisk2:text/vim/src/amiga.c

This list shows the tags that you jumped to and the cursor position before
that jump. The older tags are at the top, the newer at the bottom.

The '>' points to the active entry. This is the tag that will be used by the
next ":tag" command. The CTRL-T and ":pop" command will use the position
above the active entry.

Below the "TO" is the number of the current match in the match list. Note
that this doesn't change when using ":pop" or ":tag".

The line number and file name are remembered to be able to get back to where
you were before the tag command. The line number will be correct, also when
deleting/inserting lines, unless this was done by another program (e.g.
another instance of Vim).

For the current file, the "file/text" column shows the text at the position.
An indent is removed and a long line is truncated to fit in the window.

You can jump to previously used tags with several commands. Some examples:

":pop" or CTRL-T to position before previous tag
{count}CTRL-T to position before {count} older tag
":tag" to newer tag
":0tag" to last used tag

The most obvious way to use this is while browsing through the call graph of
a program. Consider the following call graph:

main ---> FuncA ---> FuncC
---> FuncB

(Explanation: main calls FuncA and FuncB; FuncA calls FuncC).
You can get from main to FuncA by using CTRL-] on the call to FuncA. Then
you can CTRL-] to get to FuncC. If you now want to go back to main you can
use CTRL-T twice. Then you can CTRL-] to FuncB.

If you issue a ":ta {name}" or CTRL-] command, this tag is inserted at the
current position in the stack. If the stack was full (it can hold up to 20
entries), the oldest entry is deleted and the older entries shift one
position up (their index number is decremented by one). If the last used
entry was not at the bottom, the entries below the last used one are
deleted. This means that an old branch in the call graph is lost. After the
commands explained above the tag stack will look like this:

tagsrch.txt — 1047

TO tag FROM line in file/text
1 1 main 1 harddisk2:text/vim/test
2 1 FuncB 59 harddisk2:text/vim/src/main.c

The gettagstack() function returns the tag stack of a specified window. The
settagstack() function modifies the tag stack of a window.

tagstack-examples
Write to the tag stack just like `:tag` but with a user-defined
jumper#jump_to_tag function:

" Store where we're jumping from before we jump.
let tag = expand('<cword>')
let pos = [bufnr()] + getcurpos()[1:]
let item = {'bufnr': pos[0], 'from': pos, 'tagname': tag}
if jumper#jump_to_tag(tag)

" Jump was successful, write previous location to tag stack.
let winid = win_getid()
let stack = gettagstack(winid)
let stack['items'] = [item]
call settagstack(winid, stack, 't')

endif

Set current index of the tag stack to 4:
call settagstack(1005, {'curidx' : 4})

Push a new item onto the tag stack:
let pos = [bufnr('myfile.txt'), 10, 1, 0]
let newtag = [{'tagname' : 'mytag', 'from' : pos}]
call settagstack(2, {'items' : newtag}, 'a')

E73
When you try to use the tag stack while it doesn't contain anything you will
get an error message.

==
3. Tag match list tag-matchlist E427 E428

When there are several matching tags, these commands can be used to jump
between them. Note that these commands don't change the tag stack, they keep
the same entry.

:ts :tselect
:ts[elect][!] [name] List the tags that match [name], using the

information in the tags file(s).
When [name] is not given, the last tag name from the
tag stack is used.
See tag-! for [!].
With a '>' in the first column is indicated which is
the current position in the list (if there is one).
[name] can be a regexp pattern, see tag-regexp .
See tag-priority for the priorities used in the
listing.
Example output:

pri kind tag file
1 F f mch_delay os_amiga.c

mch_delay(msec, ignoreinput)
> 2 F f mch_delay os_msdos.c

mch_delay(msec, ignoreinput)

tagsrch.txt — 1048

3 F f mch_delay os_unix.c
mch_delay(msec, ignoreinput)

Type number and <Enter> (empty cancels):

See tag-priority for the "pri" column. Note that
this depends on the current file, thus using
":tselect xxx" can produce different results.
The "kind" column gives the kind of tag, if this was
included in the tags file.
The "info" column shows information that could be
found in the tags file. It depends on the program
that produced the tags file.
When the list is long, you may get the more-prompt .
If you already see the tag you want to use, you can
type 'q' and enter the number.

:sts :stselect
:sts[elect][!] [name] Does ":tselect[!] [name]" and splits the window for

the selected tag.

g]
g] Like CTRL-], but use ":tselect" instead of ":tag".

v_g]
{Visual}g] Same as "g]", but use the highlighted text as the

identifier.

:tj :tjump
:tj[ump][!] [name] Like ":tselect", but jump to the tag directly when

there is only one match.

:stj :stjump
:stj[ump][!] [name] Does ":tjump[!] [name]" and splits the window for the

selected tag.

g_CTRL-]
g CTRL-] Like CTRL-], but use ":tjump" instead of ":tag".

v_g_CTRL-]
{Visual}g CTRL-] Same as "g CTRL-]", but use the highlighted text as

the identifier.

:tn :tnext
:[count]tn[ext][!] Jump to [count] next matching tag (default 1). See

tag-! for [!].

:tp :tprevious
:[count]tp[revious][!] Jump to [count] previous matching tag (default 1).

See tag-! for [!].

:tN :tNext
:[count]tN[ext][!] Same as ":tprevious".

:tr :trewind
:[count]tr[ewind][!] Jump to first matching tag. If [count] is given, jump

to [count]th matching tag. See tag-! for [!].

:tf :tfirst
:[count]tf[irst][!] Same as ":trewind".

tagsrch.txt — 1049

:tl :tlast
:tl[ast][!] Jump to last matching tag. See tag-! for [!].

:lt :ltag
:lt[ag][!] [name] Jump to tag [name] and add the matching tags to a new

location list for the current window. [name] can be
a regexp pattern, see tag-regexp . When [name] is
not given, the last tag name from the tag stack is
used. The search pattern to locate the tag line is
prefixed with "\V" to escape all the special
characters (very nomagic). The location list showing
the matching tags is independent of the tag stack.
See tag-! for [!].

When there is no other message, Vim shows which matching tag has been jumped
to, and the number of matching tags:

tag 1 of 3 or more
The " or more" is used to indicate that Vim didn't try all the tags files yet.
When using ":tnext" a few times, or with ":tlast", more matches may be found.

When you didn't see this message because of some other message, or you just
want to know where you are, this command will show it again (and jump to the
same tag as last time):

:0tn

tag-skip-file
When a matching tag is found for which the file doesn't exist, this match is
skipped and the next matching tag is used. Vim reports this, to notify you of
missing files. When the end of the list of matches has been reached, an error
message is given.

tag-preview
The tag match list can also be used in the preview window. The commands are
the same as above, with a "p" prepended.
{not available when compiled without the |+quickfix| feature}

:pts :ptselect
:pts[elect][!] [name] Does ":tselect[!] [name]" and shows the new tag in a

"Preview" window. See :ptag for more info.

:ptj :ptjump
:ptj[ump][!] [name] Does ":tjump[!] [name]" and shows the new tag in a

"Preview" window. See :ptag for more info.

:ptn :ptnext
:[count]ptn[ext][!] ":tnext" in the preview window. See :ptag .

:ptp :ptprevious
:[count]ptp[revious][!] ":tprevious" in the preview window. See :ptag .

:ptN :ptNext
:[count]ptN[ext][!] Same as ":ptprevious".

:ptr :ptrewind
:[count]ptr[ewind][!] ":trewind" in the preview window. See :ptag .

:ptf :ptfirst
:[count]ptf[irst][!] Same as ":ptrewind".

:ptl :ptlast

tagsrch.txt — 1050

:ptl[ast][!] ":tlast" in the preview window. See :ptag .

==
4. Tags details tag-details

static-tag
A static tag is a tag that is defined for a specific file. In a C program
this could be a static function.

In Vi jumping to a tag sets the current search pattern. This means that the
"n" command after jumping to a tag does not search for the same pattern that
it did before jumping to the tag. Vim does not do this as we consider it to
be a bug. If you really want the old Vi behavior, set the 't' flag in
'cpoptions'.

tag-binary-search
Vim uses binary searching in the tags file to find the desired tag quickly
(when enabled at compile time +tag_binary). But this only works if the
tags file was sorted on ASCII byte value. Therefore, if no match was found,
another try is done with a linear search. If you only want the linear search,
reset the 'tagbsearch' option. Or better: Sort the tags file!

Note that the binary searching is disabled when not looking for a tag with a
specific name. This happens when ignoring case and when a regular expression
is used that doesn't start with a fixed string. Tag searching can be a lot
slower then. The former can be avoided by case-fold sorting the tags file.
See 'tagbsearch' for details.

tag-regexp
The ":tag" and ":tselect" commands accept a regular expression argument. See
pattern for the special characters that can be used.

When the argument starts with '/', it is used as a pattern. If the argument
does not start with '/', it is taken literally, as a full tag name.
Examples:

:tag main
jumps to the tag "main" that has the highest priority.

:tag /^get
jumps to the tag that starts with "get" and has the highest priority.

:tag /norm
lists all the tags that contain "norm", including "id_norm".

When the argument both exists literally, and match when used as a regexp, a
literal match has a higher priority. For example, ":tag /open" matches "open"
before "open_file" and "file_open".
When using a pattern case is ignored. If you want to match case use "\C" in
the pattern.

tag-!
If the tag is in the current file this will always work. Otherwise the
performed actions depend on whether the current file was changed, whether a !
is added to the command and on the 'autowrite' option:

tag in file autowrite
current file changed ! winfixbuf option action

yes x x no x goto tag
no no x no x read other file, goto tag
no yes yes no x abandon current file,

read other file, goto tag
no yes no no on write current file,

read other file, goto tag

tagsrch.txt — 1051

no yes no no off fail
yes x yes x x goto tag
no no no yes x fail
no yes no yes x fail
no yes no yes on fail
no yes no yes off fail

- If the tag is in the current file, the command will always work.
- If the tag is in another file and the current file was not changed, the

other file will be made the current file and read into the buffer.
- If the tag is in another file, the current file was changed and a ! is

added to the command, the changes to the current file are lost, the other
file will be made the current file and read into the buffer.

- If the tag is in another file, the current file was changed and the
'autowrite' option is on, the current file will be written, the other
file will be made the current file and read into the buffer.

- If the tag is in another file, the current file was changed and the
'autowrite' option is off, the command will fail. If you want to save
the changes, use the ":w" command and then use ":tag" without an argument.
This works because the tag is put on the stack anyway. If you want to lose
the changes you can use the ":tag!" command.

- If the tag is in another file and the window includes 'winfixbuf', the
command will fail. If the tag is in the same file then it may succeed.

tag-security
Note that Vim forbids some commands, for security reasons. This works like
using the 'secure' option for exrc/vimrc files in the current directory. See
trojan-horse and sandbox .

When the {tagaddress} changes a buffer, you will get a warning message:
"WARNING: tag command changed a buffer!!!"

In a future version changing the buffer will be impossible. All this for
security reasons: Somebody might hide a nasty command in the tags file, which
would otherwise go unnoticed. Example:

:$d|/tag-function-name/

In Vi the ":tag" command sets the last search pattern when the tag is searched
for. In Vim this is not done, the previous search pattern is still remembered,
unless the 't' flag is present in 'cpoptions'.

emacs-tags emacs_tags E430
Emacs style tag files are only supported if Vim was compiled with the
+emacs_tags feature enabled. Sorry, there is no explanation about Emacs tag

files here, it is only supported for backwards compatibility :-).

Lines in Emacs tags files can be very long. Vim only deals with lines of up
to about 510 bytes. To see whether lines are ignored set 'verbose' to 5 or
higher. Non-Emacs tags file lines can be any length.

tags-option
The 'tags' option is a list of file names. Each of these files is searched
for the tag. This can be used to use a different tags file than the default
file "tags". It can also be used to access a common tags file.

The next file in the list is not used when:
- A matching static tag for the current buffer has been found.
- A matching global tag has been found.
This also depends on whether case is ignored. Case is ignored when:
- 'tagcase' is "followic" and 'ignorecase' is set
- 'tagcase' is "ignore"

tagsrch.txt — 1052

- 'tagcase' is "smart" and the pattern only contains lower case
characters.

- 'tagcase' is "followscs" and 'smartcase' is set and the pattern only
contains lower case characters.

If case is not ignored, and the tags file only has a match without matching
case, the next tags file is searched for a match with matching case. If no
tag with matching case is found, the first match without matching case is
used. If case is ignored, and a matching global tag with or without matching
case is found, this one is used, no further tags files are searched.

When a tag file name starts with "./", the '.' is replaced with the path of
the current file. This makes it possible to use a tags file in the directory
where the current file is (no matter what the current directory is). The idea
of using "./" is that you can define which tag file is searched first: In the
current directory ("tags,./tags") or in the directory of the current file
("./tags,tags").

For example:
:set tags=./tags,tags,/home/user/commontags

In this example the tag will first be searched for in the file "tags" in the
directory where the current file is. Next the "tags" file in the current
directory. If it is not found there, then the file "/home/user/commontags"
will be searched for the tag.

This can be switched off by including the 'd' flag in 'cpoptions', to make
it Vi compatible. "./tags" will then be the tags file in the current
directory, instead of the tags file in the directory where the current file
is.

Instead of the comma a space may be used. Then a backslash is required for
the space to be included in the string option:

:set tags=tags\ /home/user/commontags

To include a space in a file name use three backslashes. To include a comma
in a file name use two backslashes. For example, use:

:set tags=tag\\\ file,/home/user/common\\,tags

for the files "tag file" and "/home/user/common,tags". The 'tags' option will
have the value "tag\ file,/home/user/common\,tags".

If the 'tagrelative' option is on (which is the default) and using a tag file
in another directory, file names in that tag file are relative to the
directory where the tag file is.

==
5. Tags file format tags-file-format E431

ctags jtags
A tags file can be created with an external command, for example "ctags". It
will contain a tag for each function. Some versions of "ctags" will also make
a tag for each "#defined" macro, typedefs, enums, etc.

Some programs that generate tags files:
ctags As found on most Unix systems. Only supports C. Only

does the basic work.
universal ctags A maintained version of ctags based on exuberant

ctags. See https://ctags.io.
Exuberant_ctags

exuberant ctags This is a very good one. It works for C, C++, Java,

tagsrch.txt — 1053

https://ctags.io

Fortran, Eiffel and others. It can generate tags for
many items. See http://ctags.sourceforge.net.
No new version since 2009.

etags Connected to Emacs. Supports many languages.
JTags For Java, in Java. It can be found at

http://www.fleiner.com/jtags/.
ptags.py For Python, in Python. Found in your Python source

directory at Tools/scripts/ptags.py.
ptags For Perl, in Perl. It can be found at

http://www.eleves.ens.fr:8080/home/nthiery/Tags/.
gnatxref For Ada. See http://www.gnuada.org/. gnatxref is

part of the gnat package.

The lines in the tags file must have one of these two formats:

1. {tagname} {TAB} {tagfile} {TAB} {tagaddress}
2. {tagname} {TAB} {tagfile} {TAB} {tagaddress} {term} {field} ..

Previously an old format was supported, see tag-old-static .

The first format is a normal tag, which is completely compatible with Vi. It
is the only format produced by traditional ctags implementations. This is
often used for functions that are global, also referenced in other files.

The lines in the tags file can end in <NL> or <CR><NL>. On the Macintosh <CR>
also works. The <CR> and <NL> characters can never appear inside a line.

The second format is new. It includes additional information in optional
fields at the end of each line. It is backwards compatible with Vi. It is
only supported by new versions of ctags (such as Universal ctags or Exuberant
ctags).

{tagname} The identifier. Normally the name of a function, but it can
be any identifier. It cannot contain a <Tab>.

{TAB} One <Tab> character. Note: previous versions allowed any
white space here. This has been abandoned to allow spaces in
{tagfile}.

{tagfile} The file that contains the definition of {tagname}. It can
have an absolute or relative path. It may contain environment
variables and wildcards (although the use of wildcards is
doubtful). It cannot contain a <Tab>.

{tagaddress} The Ex command that positions the cursor on the tag. It can
be any Ex command, although restrictions apply (see
tag-security). Posix only allows line numbers and search
commands, which are mostly used.

{term} ;" The two characters semicolon and double quote. This is
interpreted by Vi as the start of a comment, which makes the
following be ignored. This is for backwards compatibility
with Vi, it ignores the following fields. Example:

APP file /^static int APP;$/;" v
When {tagaddress} is not a line number or search pattern, then
{term} must be |;". Here the bar ends the command (excluding
the bar) and ;" is used to have Vi ignore the rest of the
line. Example:

APP file.c call cursor(3, 4)|;" v

{field} .. A list of optional fields. Each field has the form:

<Tab>{fieldname}:{value}

tagsrch.txt — 1054

http://ctags.sourceforge.net
http://www.fleiner.com/jtags/
http://www.eleves.ens.fr:8080/home/nthiery/Tags/
http://www.gnuada.org/

The {fieldname} identifies the field, and can only contain
alphabetical characters [a-zA-Z].
The {value} is any string, but cannot contain a <Tab>.
These characters are special:

"\t" stands for a <Tab>
"\r" stands for a <CR>
"\n" stands for a <NL>
"\\" stands for a single '\' character

There is one field that doesn't have a ':'. This is the kind
of the tag. It is handled like it was preceded with "kind:".
See the documentation of ctags for the kinds it produces.

The only other field currently recognized by Vim is "file:"
(with an empty value). It is used for a static tag.

The first lines in the tags file can contain lines that start with
!_TAG_

These are sorted to the first lines, only rare tags that start with "!" can
sort to before them. Vim recognizes two items. The first one is the line
that indicates if the file was sorted. When this line is found, Vim uses
binary searching for the tags file:

!_TAG_FILE_SORTED<Tab>1<Tab>{anything}

A tag file may be case-fold sorted to avoid a linear search when case is
ignored. (Case is ignored when 'ignorecase' is set and 'tagcase' is
"followic", or when 'tagcase' is "ignore".) See 'tagbsearch' for details.
The value '2' should be used then:

!_TAG_FILE_SORTED<Tab>2<Tab>{anything}

The other tag that Vim recognizes is the encoding of the tags file:
!_TAG_FILE_ENCODING<Tab>utf-8<Tab>{anything}

Here "utf-8" is the encoding used for the tags. Vim will then convert the tag
being searched for from 'encoding' to the encoding of the tags file. And when
listing tags the reverse happens. When the conversion fails the unconverted
tag is used.

tag-search
The command can be any Ex command, but often it is a search command.
Examples:

tag1 file1 /^main(argc, argv)/
tag2 file2 108

The command is always executed with 'magic' not set. The only special
characters in a search pattern are "^" (begin-of-line) and "$" (<EOL>).
See pattern . Note that you must put a backslash before each backslash in
the search text. This is for backwards compatibility with Vi.

E434 E435
If the command is a normal search command (it starts and ends with "/" or
"?"), some special handling is done:
- Searching starts on line 1 of the file.

The direction of the search is forward for "/", backward for "?".
Note that 'wrapscan' does not matter, the whole file is always searched.

- If the search fails, another try is done ignoring case. If that fails too,
a search is done for:

"^tagname[\t]*("
(the tag with '^' prepended and "[\t]*(" appended). When using function

tagsrch.txt — 1055

names, this will find the function name when it is in column 0. This will
help when the arguments to the function have changed since the tags file was
made. If this search also fails another search is done with:

"^[#a-zA-Z_].*\<tagname[\t]*("
This means: A line starting with '#' or an identifier and containing the tag
followed by white space and a '('. This will find macro names and function
names with a type prepended.

tag-old-static
Until March 2019 (patch 8.1.1092) an outdated format was supported:

{tagfile}:{tagname} {TAB} {tagfile} {TAB} {tagaddress}

This format is for a static tag only. It is obsolete now, replaced by
the second format. It is only supported by Elvis 1.x, older Vim versions and
a few versions of ctags. A static tag is often used for functions that are
local, only referenced in the file {tagfile}. Note that for the static tag,
the two occurrences of {tagfile} must be exactly the same. Also see
tags-option below, for how static tags are used.

The support was removed, since when you can update to the new Vim version you
should also be able to update ctags to one that supports the second format.

==
6. Include file searches include-search definition-search

E387 E388 E389

These commands look for a string in the current file and in all encountered
included files (recursively). This can be used to find the definition of a
variable, function or macro. If you only want to search in the current
buffer, use the commands listed at pattern-searches .

These commands are not available when the +find_in_path feature was disabled
at compile time.

When a line is encountered that includes another file, that file is searched
before continuing in the current buffer. Files included by included files are
also searched. When an include file could not be found it is silently
ignored. Use the :checkpath command to discover which files could not be
found, possibly your 'path' option is not set up correctly. Note: the
included file is searched, not a buffer that may be editing that file. Only
for the current file the lines in the buffer are used.

The string can be any keyword or a defined macro. For the keyword any match
will be found. For defined macros only lines that match with the 'define'
option will be found. The default is "^#\s*define", which is for C programs.
For other languages you probably want to change this. See 'define' for an
example for C++. The string cannot contain an end-of-line, only matches
within a line are found.

When a match is found for a defined macro, the displaying of lines continues
with the next line when a line ends in a backslash.

The commands that start with "[" start searching from the start of the current
file. The commands that start with "]" start at the current cursor position.

The 'include' option is used to define a line that includes another file. The
default is "\^#\s*include", which is for C programs. Note: Vim does not
recognize C syntax, if the 'include' option matches a line inside
"#ifdef/#endif" or inside a comment, it is searched anyway. The 'isfname'

tagsrch.txt — 1056

option is used to recognize the file name that comes after the matched
pattern.

The 'path' option is used to find the directory for the include files that
do not have an absolute path.

The 'comments' option is used for the commands that display a single line or
jump to a line. It defines patterns that may start a comment. Those lines
are ignored for the search, unless [!] is used. One exception: When the line
matches the pattern "^# *define" it is not considered to be a comment.

If you want to list matches, and then select one to jump to, you could use a
mapping to do that for you. Here is an example:

:map <F4> [I:let nr = input("Which one: ")<Bar>exe "normal " .. nr .. "[\t"<CR>

[i
[i Display the first line that contains the keyword

under the cursor. The search starts at the beginning
of the file. Lines that look like a comment are
ignored (see 'comments' option). If a count is given,
the count'th matching line is displayed, and comment
lines are not ignored.

]i
]i like "[i", but start at the current cursor position.

:is :isearch
:[range]is[earch][!] [count] [/]pattern[/]

Like "[i" and "]i", but search in [range] lines
(default: whole file).
See :search-args for [/] and [!].

[I
[I Display all lines that contain the keyword under the

cursor. Filenames and line numbers are displayed
for the found lines. The search starts at the
beginning of the file.

]I
]I like "[I", but start at the current cursor position.

:il :ilist
:[range]il[ist][!] [/]pattern[/]

Like "[I" and "]I", but search in [range] lines
(default: whole file).
See :search-args for [/] and [!].

[_CTRL-I
[CTRL-I Jump to the first line that contains the keyword

under the cursor. The search starts at the beginning
of the file. Lines that look like a comment are
ignored (see 'comments' option). If a count is given,
the count'th matching line is jumped to, and comment
lines are not ignored.

]_CTRL-I
] CTRL-I like "[CTRL-I", but start at the current cursor

position.

tagsrch.txt — 1057

:ij :ijump
:[range]ij[ump][!] [count] [/]pattern[/]

Like "[CTRL-I" and "] CTRL-I", but search in
[range] lines (default: whole file).
See :search-args for [/] and [!].

CTRL-W CTRL-I CTRL-W_CTRL-I CTRL-W_i
CTRL-W i Open a new window, with the cursor on the first line

that contains the keyword under the cursor. The
search starts at the beginning of the file. Lines
that look like a comment line are ignored (see
'comments' option). If a count is given, the count'th
matching line is jumped to, and comment lines are not
ignored.

:isp :isplit
:[range]isp[lit][!] [count] [/]pattern[/]

Like "CTRL-W i" and "CTRL-W i", but search in
[range] lines (default: whole file).
See :search-args for [/] and [!].

[d
[d Display the first macro definition that contains the

macro under the cursor. The search starts from the
beginning of the file. If a count is given, the
count'th matching line is displayed.

]d
]d like "[d", but start at the current cursor position.

:ds :dsearch
:[range]ds[earch][!] [count] [/]string[/]

Like "[d" and "]d", but search in [range] lines
(default: whole file).
See :search-args for [/] and [!].

[D
[D Display all macro definitions that contain the macro

under the cursor. Filenames and line numbers are
displayed for the found lines. The search starts
from the beginning of the file.

]D
]D like "[D", but start at the current cursor position.

:dli :dlist
:[range]dli[st][!] [/]string[/]

Like `[D` and `]D`, but search in [range] lines
(default: whole file).
See :search-args for [/] and [!].
Note that `:dl` works like `:delete` with the "l"
flag, not `:dlist`.

[_CTRL-D
[CTRL-D Jump to the first macro definition that contains the

keyword under the cursor. The search starts from
the beginning of the file. If a count is given, the
count'th matching line is jumped to.

]_CTRL-D

tagsrch.txt — 1058

] CTRL-D like "[CTRL-D", but start at the current cursor
position.

:dj :djump
:[range]dj[ump][!] [count] [/]string[/]

Like "[CTRL-D" and "] CTRL-D", but search in
[range] lines (default: whole file).
See :search-args for [/] and [!].

CTRL-W CTRL-D CTRL-W_CTRL-D CTRL-W_d
CTRL-W d Open a new window, with the cursor on the first

macro definition line that contains the keyword
under the cursor. The search starts from the
beginning of the file. If a count is given, the
count'th matching line is jumped to.

:dsp :dsplit
:[range]dsp[lit][!] [count] [/]string[/]

Like "CTRL-W d", but search in [range] lines
(default: whole file).
See :search-args for [/] and [!].

:che :chec :check :checkpath
:che[ckpath] List all the included files that could not be found.

:che[ckpath]! List all the included files.

:search-args
Common arguments for the commands above:
[!] When included, find matches in lines that are recognized as comments.

When excluded, a match is ignored when the line is recognized as a
comment (according to 'comments'), or the match is in a C comment
(after "//" or inside /* */). Note that a match may be missed if a
line is recognized as a comment, but the comment ends halfway the line.
And if the line is a comment, but it is not recognized (according to
'comments') a match may be found in it anyway. Example:

/* comment
foobar */

A match for "foobar" is found, because this line is not recognized as
a comment (even though syntax highlighting does recognize it).
Note: Since a macro definition mostly doesn't look like a comment, the
[!] makes no difference for ":dlist", ":dsearch" and ":djump".

[/] A pattern can be surrounded by '/'. Without '/' only whole words are
matched, using the pattern "\<pattern\>". Only after the second '/' a
next command can be appended with '|'. Example:
:isearch /string/ | echo "the last one"
For a ":djump", ":dsplit", ":dlist" and ":dsearch" command the pattern
is used as a literal string, not as a search pattern.

==
7. Using 'tagfunc' tag-function

It is possible to provide Vim with a function which will generate a list of
tags used for commands like :tag , :tselect and Normal mode tag commands
like CTRL-] .

The function used for generating the taglist is specified by setting the
'tagfunc' option. The function will be called with three arguments:

pattern The tag identifier or pattern used during the tag search.
flags String containing flags to control the function behavior.

tagsrch.txt — 1059

info Dict containing the following entries:
buf_ffname Full filename which can be used for priority.
user_data Custom data String, if stored in the tag

stack previously by tagfunc.

Note that in a legacy function "a:" needs to be prepended to the argument name
when using it.

Currently up to three flags may be passed to the tag function:
'c' The function was invoked by a normal command being processed

(mnemonic: the tag function may use the context around the
cursor to perform a better job of generating the tag list.)

'i' In Insert mode, the user was completing a tag (with
i_CTRL-X_CTRL-] or 'completeopt' contains `t`).

'r' The first argument to tagfunc should be interpreted as a
pattern (see tag-regexp), such as when using:
:tag /pat

It is also given when completing in insert mode.
If this flag is not present, the argument is usually taken
literally as the full tag name.

Note that when 'tagfunc' is set, the priority of the tags described in
tag-priority does not apply. Instead, the priority is exactly as the

ordering of the elements in the list returned by the function.
E987

The function should return a List of Dict entries. Each Dict must at least
include the following entries and each value must be a string:

name Name of the tag.
filename Name of the file where the tag is defined. It is

either relative to the current directory or a full path.
cmd Ex command used to locate the tag in the file. This

can be either an Ex search pattern or a line number.
Note that the format is similar to that of taglist() , which makes it possible
to use its output to generate the result.
The following fields are optional:

kind Type of the tag.
user_data String of custom data stored in the tag stack which

can be used to disambiguate tags between operations.

If the function returns v:null instead of a List, a standard tag lookup will
be performed instead.

It is not allowed to change the tagstack from inside 'tagfunc'. E986
It is not allowed to close a window or change window from inside 'tagfunc'.
E1299

The following is a hypothetical example of a function used for 'tagfunc'. It
uses the output of taglist() to generate the result: a list of tags in the
inverse order of file names.

function TagFunc(pattern, flags, info)
function CompareFilenames(item1, item2)

let f1 = a:item1['filename']
let f2 = a:item2['filename']
return f1 >=# f2 ?

\ -1 : f1 <=# f2 ? 1 : 0
endfunction

let result = taglist(a:pattern)
call sort(result, "CompareFilenames")

tagsrch.txt — 1060

return result
endfunc
set tagfunc=TagFunc

tagsrch.txt — 1061

tagsrch.txt — 1062

windows.txt For Vim version 9.1. Last change: 2024 Feb 20

VIM REFERENCE MANUAL by Bram Moolenaar

Editing with multiple windows and buffers. windows buffers

The commands which have been added to use multiple windows and buffers are
explained here. Additionally, there are explanations for commands that work
differently when used in combination with more than one window.

The basics are explained in chapter 7 and 8 of the user manual usr_07.txt
usr_08.txt .

1. Introduction windows-intro
2. Starting Vim windows-starting
3. Opening and closing a window opening-window
4. Moving cursor to other windows window-move-cursor
5. Moving windows around window-moving
6. Window resizing window-resize
7. Argument and buffer list commands buffer-list
8. Do a command in all buffers or windows list-repeat
9. Tag or file name under the cursor window-tag
10. The preview window preview-window
11. Using hidden buffers buffer-hidden
12. Special kinds of buffers special-buffers

{not able to use multiple windows when the +windows feature was disabled at
compile time}

==
1. Introduction windows-intro window

Summary:
A buffer is the in-memory text of a file.
A window is a viewport on a buffer.
A tab page is a collection of windows.

A window is a viewport onto a buffer. You can use multiple windows on one
buffer, or several windows on different buffers.

A buffer is a file loaded into memory for editing. The original file remains
unchanged until you write the buffer to the file.

A buffer can be in one of three states:

active-buffer
active: The buffer is displayed in a window. If there is a file for this

buffer, it has been read into the buffer. The buffer may have been
modified since then and thus be different from the file.

hidden-buffer
hidden: The buffer is not displayed. If there is a file for this buffer, it

has been read into the buffer. Otherwise it's the same as an active
buffer, you just can't see it.

inactive-buffer
inactive: The buffer is not displayed and does not contain anything. Options

for the buffer are remembered if the file was once loaded. It can
contain marks from the viminfo file. But the buffer doesn't
contain text.

windows.txt — 1063

In a table:

state displayed loaded ":buffers"
in window shows

active yes yes 'a'
hidden no yes 'h'
inactive no no ' '

Note: All CTRL-W commands can also be executed with :wincmd , for those
places where a Normal mode command can't be used or is inconvenient.

The main Vim window can hold several split windows. There are also tab pages
tab-page , each of which can hold multiple windows.

window-ID winid windowid
Each window has a unique identifier called the window ID. This identifier
will not change within a Vim session. The win_getid() and win_id2tabwin()
functions can be used to convert between the window/tab number and the
identifier. There is also the window number, which may change whenever
windows are opened or closed, see winnr() .
The window number is only valid in one specific tab. The window ID is valid
across tabs. For most functions that take a window ID or a window number, the
window number only applies to the current tab, while the window ID can refer
to a window in any tab.

Each buffer has a unique number and the number will not change within a Vim
session. The bufnr() and bufname() functions can be used to convert
between a buffer name and the buffer number.

==
2. Starting Vim windows-starting

By default, Vim starts with one window, just like Vi.

The "-o" and "-O" arguments to Vim can be used to open a window for each file
in the argument list. The "-o" argument will split the windows horizontally;
the "-O" argument will split the windows vertically. If both "-o" and "-O"
are given, the last one encountered will be used to determine the split
orientation. For example, this will open three windows, split horizontally:

vim -o file1 file2 file3

"-oN", where N is a decimal number, opens N windows split horizontally. If
there are more file names than windows, only N windows are opened and some
files do not get a window. If there are more windows than file names, the
last few windows will be editing empty buffers. Similarly, "-ON" opens N
windows split vertically, with the same restrictions.

If there are many file names, the windows will become very small. You might
want to set the 'winheight' and/or 'winwidth' options to create a workable
situation.

Buf/Win Enter/Leave autocommand s are not executed when opening the new
windows and reading the files, that's only done when they are really entered.

status-line
A status line will be used to separate windows. The 'laststatus' option tells
when the last window also has a status line:

'laststatus' = 0 never a status line
'laststatus' = 1 status line if there is more than one window
'laststatus' = 2 always a status line

windows.txt — 1064

You can change the contents of the status line with the 'statusline' option.
This option can be local to the window, so that you can have a different
status line in each window.

Normally, inversion is used to display the status line. This can be changed
with the 's' character in the 'highlight' option. For example, "sb" sets it to
bold characters. If no highlighting is used for the status line ("sn"), the
'^' character is used for the current window, and '=' for other windows. If
the mouse is supported and enabled with the 'mouse' option, a status line can
be dragged to resize windows.

Note: If you expect your status line to be in reverse video and it isn't,
check if the 'highlight' option contains "si". In version 3.0, this meant to
invert the status line. Now it should be "sr", reverse the status line, as
"si" now stands for italic! If italic is not available on your terminal, the
status line is inverted anyway; you will only see this problem on terminals
that have termcap codes for italics.

filler-lines
The lines after the last buffer line in a window are called filler lines. By
default, these lines start with a tilde (~) character. The 'eob' item in the
'fillchars' option can be used to change this character. By default, these
characters are highlighted as NonText (hl-NonText). The EndOfBuffer
highlight group (hl-EndOfBuffer) can be used to change the highlighting of
the filler characters.

==
3. Opening and closing a window opening-window

CTRL-W s CTRL-W_s
CTRL-W S CTRL-W_S
CTRL-W CTRL-S CTRL-W_CTRL-S
:[N]sp[lit] [++opt] [+cmd] [file] :sp :split

Split current window in two. The result is two viewports on
the same file.

Make the new window N high (default is to use half the height
of the current window). Reduces the current window height to
create room (and others, if the 'equalalways' option is set,
'eadirection' isn't "hor", and one of them is higher than the
current or the new window).

If [file] is given it will be edited in the new window. If it
is not loaded in any buffer, it will be read. Else the new
window will use the already loaded buffer.

Note: CTRL-S does not work on all terminals and might block
further input, use CTRL-Q to get going again.
Also see ++opt and +cmd .

E242 E1159
Be careful when splitting a window in an autocommand, it may
mess up the window layout if this happens while making other
window layout changes.

CTRL-W CTRL-V CTRL-W_CTRL-V
CTRL-W v CTRL-W_v
:[N]vs[plit] [++opt] [+cmd] [file] :vs :vsplit

Like :split , but split vertically. The windows will be
spread out horizontally if

windows.txt — 1065

1. a width was not specified,
2. 'equalalways' is set,
3. 'eadirection' isn't "ver", and
4. one of the other windows is wider than the current or new

window.
If N was given make the new window N columns wide, if
possible.
Note: In other places CTRL-Q does the same as CTRL-V, but here
it doesn't!

CTRL-W n CTRL-W_n
CTRL-W CTRL-N CTRL-W_CTRL-N
:[N]new [++opt] [+cmd] :new

Create a new window and start editing an empty file in it.
Make new window N high (default is to use half the existing
height). Reduces the current window height to create room (and
others, if the 'equalalways' option is set and 'eadirection'
isn't "hor").
Also see ++opt and +cmd .
If 'fileformats' is not empty, the first format given will be
used for the new buffer. If 'fileformats' is empty, the
'fileformat' of the current buffer is used. This can be
overridden with the ++opt argument.
Autocommands are executed in this order:
1. WinLeave for the current window
2. WinEnter for the new window
3. BufLeave for the current buffer
4. BufEnter for the new buffer
This behaves like a ":split" first, and then an ":enew"
command.

:[N]new [++opt] [+cmd] {file}
:[N]sp[lit] [++opt] [+cmd] {file} :split_f

Create a new window and start editing file {file} in it. This
behaves almost like a ":split" first, and then an ":edit"
command, but the alternate file name in the original window is
set to {file}.
If [+cmd] is given, execute the command when the file has been
loaded +cmd .
Also see ++opt .
Make new window N high (default is to use half the existing
height). Reduces the current window height to create room
(and others, if the 'equalalways' option is set).

:[N]vne[w] [++opt] [+cmd] [file] :vne :vnew
Like :new , but split vertically. If 'equalalways' is set
and 'eadirection' isn't "ver" the windows will be spread out
horizontally, unless a width was specified.

:[N]sv[iew] [++opt] [+cmd] [file] :sv :sview splitview
Same as ":split", but set 'readonly' option for this buffer.

:[N]sf[ind] [++opt] [+cmd] {file} :sf :sfi :sfind splitfind
Same as ":split", but search for {file} in 'path' like in
:find . Doesn't split if {file} is not found.

CTRL-W CTRL-^ CTRL-W_CTRL-^ CTRL-W_^
CTRL-W ^ Split the current window in two and edit the alternate file.

When a count N is given, split the current window and edit
buffer N. Similar to ":sp #" and ":sp #N", but it allows the

windows.txt — 1066

other buffer to be unnamed. This command matches the behavior
of CTRL-^ , except that it splits a window first.

CTRL-W_:
CTRL-W : Does the same as typing : - enter a command line. Useful in a

terminal window, where all Vim commands must be preceded with
CTRL-W or 'termwinkey'.

Note that the 'splitbelow' and 'splitright' options influence where a new
window will appear.

E36
Creating a window will fail if there is not enough room. Every window needs
at least one screen line and column, sometimes more. Options 'winminheight'
and 'winminwidth' are relevant.

:vert :vertical
:vert[ical] {cmd}

Execute {cmd}. If it contains a command that splits a window,
it will be split vertically. For `vertical wincmd =` windows
will be equalized only vertically.
Doesn't work for :execute and :normal .

:hor :horizontal
:hor[izontal] {cmd}

Execute {cmd}. Currently only makes a difference for
`horizontal wincmd =`, which will equalize windows only
horizontally.

:lefta[bove] {cmd} :lefta :leftabove
:abo[veleft] {cmd} :abo :aboveleft

Execute {cmd}. If it contains a command that splits a window,
it will be opened left (vertical split) or above (horizontal
split) the current window. Overrules 'splitbelow' and
'splitright'.
Doesn't work for :execute and :normal .

:rightb[elow] {cmd} :rightb :rightbelow
:bel[owright] {cmd} :bel :belowright

Execute {cmd}. If it contains a command that splits a window,
it will be opened right (vertical split) or below (horizontal
split) the current window. Overrules 'splitbelow' and
'splitright'.
Doesn't work for :execute and :normal .

:topleft E442
:to[pleft] {cmd}

Execute {cmd}. If it contains a command that splits a window,
it will appear at the top and occupy the full width of the Vim
window. When the split is vertical the window appears at the
far left and occupies the full height of the Vim window.
Doesn't work for :execute and :normal .

:bo :botright
:bo[tright] {cmd}

Execute {cmd}. If it contains a command that splits a window,
it will appear at the bottom and occupy the full width of the
Vim window. When the split is vertical the window appears at
the far right and occupies the full height of the Vim window.
Doesn't work for :execute and :normal .

windows.txt — 1067

These command modifiers can be combined to make a vertically split window
occupy the full height. Example:

:vertical topleft split tags
Opens a vertically split, full-height window on the "tags" file at the far
left of the Vim window.

Closing a window

:q[uit]
:{count}q[uit] :count_quit
CTRL-W q CTRL-W_q
CTRL-W CTRL-Q CTRL-W_CTRL-Q

Without {count}: Quit the current window. If {count} is
given quit the {count} window.

edit-window
When quitting the last edit window (not counting help or
preview windows), exit Vim.

When 'hidden' is set, and there is only one window for the
current buffer, it becomes hidden. When 'hidden' is not set,
and there is only one window for the current buffer, and the
buffer was changed, the command fails.

(Note: CTRL-Q does not work on all terminals).

If [count] is greater than the last window number the last
window will be closed:

:1quit " quit the first window
:$quit " quit the last window
:9quit " quit the last window

" if there are fewer than 9 windows opened
:-quit " quit the previous window
:+quit " quit the next window
:+2quit " quit the second next window

When closing a help window, and this is not the only window,
Vim will try to restore the previous window layout, see
:helpclose .

:q[uit]!
:{count}q[uit]!

Without {count}: Quit the current window. If {count} is
given quit the {count} window.

If this was the last window for a buffer, any changes to that
buffer are lost. When quitting the last window (not counting
help windows), exit Vim. The contents of the buffer are lost,
even when 'hidden' is set.

:clo[se][!]
:{count}clo[se][!]
CTRL-W c CTRL-W_c :clo :close

Without {count}: Close the current window. If {count} is
given close the {count} window.

When the 'hidden' option is set, or when the buffer was
changed and the [!] is used, the buffer becomes hidden (unless
there is another window editing it).

windows.txt — 1068

When there is only one edit-window in the current tab page
and there is another tab page, this closes the current tab
page. tab-page .

This command fails when: E444
- There is only one window on the screen.
- When 'hidden' is not set, [!] is not used, the buffer has

changes, and there is no other window on this buffer.
Changes to the buffer are not written and won't get lost, so
this is a "safe" command.

CTRL-W CTRL-C CTRL-W_CTRL-C
You might have expected that CTRL-W CTRL-C closes the current
window, but that does not work, because the CTRL-C cancels the
command.

:hide
:hid[e]
:{count}hid[e]

Without {count}: Quit the current window, unless it is the
last window on the screen.
If {count} is given quit the {count} window.

The buffer becomes hidden (unless there is another window
editing it or 'bufhidden' is "unload", "delete" or "wipe").
If the window is the last one in the current tab page the tab
page is closed. tab-page

The value of 'hidden' is irrelevant for this command. Changes
to the buffer are not written and won't get lost, so this is a
"safe" command.

:hid[e] {cmd} Execute {cmd} with 'hidden' is set. The previous value of
'hidden' is restored after {cmd} has been executed.
Example:

:hide edit Makefile
This will edit "Makefile", and hide the current buffer if it
has any changes.

:on[ly][!]
:{count}on[ly][!]
CTRL-W o CTRL-W_o E445
CTRL-W CTRL-O CTRL-W_CTRL-O :on :only

Make the current window the only one on the screen. All other
windows are closed. For {count} see the `:quit` command
above :count_quit .

When the 'hidden' option is set, all buffers in closed windows
become hidden.

When 'hidden' is not set, and the 'autowrite' option is set,
modified buffers are written. Otherwise, windows that have
buffers that are modified are not removed, unless the [!] is
given, then they become hidden. But modified buffers are
never abandoned, so changes cannot get lost.

==
4. Moving cursor to other windows window-move-cursor

windows.txt — 1069

CTRL-W <Down> CTRL-W_<Down>
CTRL-W CTRL-J CTRL-W_CTRL-J CTRL-W_j
CTRL-W j Move cursor to Nth window below current one. Uses the cursor

position to select between alternatives.

CTRL-W <Up> CTRL-W_<Up>
CTRL-W CTRL-K CTRL-W_CTRL-K CTRL-W_k
CTRL-W k Move cursor to Nth window above current one. Uses the cursor

position to select between alternatives.

CTRL-W <Left> CTRL-W_<Left>
CTRL-W CTRL-H CTRL-W_CTRL-H
CTRL-W <BS> CTRL-W_<BS> CTRL-W_h
CTRL-W h Move cursor to Nth window left of current one. Uses the

cursor position to select between alternatives.

CTRL-W <Right> CTRL-W_<Right>
CTRL-W CTRL-L CTRL-W_CTRL-L CTRL-W_l
CTRL-W l Move cursor to Nth window right of current one. Uses the

cursor position to select between alternatives.

CTRL-W w CTRL-W_w CTRL-W_CTRL-W
CTRL-W CTRL-W Without count: move cursor to window below/right of the

current one. If there is no window below or right, go to
top-left window.
With count: go to Nth window (windows are numbered from
top-left to bottom-right). To obtain the window number see
bufwinnr() and winnr() . When N is larger than the number
of windows go to the last window.

CTRL-W_W
CTRL-W W Without count: move cursor to window above/left of current

one. If there is no window above or left, go to bottom-right
window. With count: go to Nth window, like with CTRL-W w.

CTRL-W t CTRL-W_t CTRL-W_CTRL-T
CTRL-W CTRL-T Move cursor to top-left window.

CTRL-W b CTRL-W_b CTRL-W_CTRL-B
CTRL-W CTRL-B Move cursor to bottom-right window.

CTRL-W p CTRL-W_p CTRL-W_CTRL-P
CTRL-W CTRL-P Go to previous (last accessed) window.

CTRL-W_P E441
CTRL-W P Go to preview window. When there is no preview window this is

an error.
{not available when compiled without the |+quickfix| feature}

If Visual mode is active and the new window is not for the same buffer, the
Visual mode is ended. If the window is on the same buffer, the cursor
position is set to keep the same Visual area selected.

:winc :wincmd
These commands can also be executed with ":wincmd":

:[count]winc[md] {arg}
Like executing CTRL-W [count] {arg}. Example:

:wincmd j
Moves to the window below the current one.

windows.txt — 1070

This command is useful when a Normal mode cannot be used (for
the CursorHold autocommand event). Or when a Normal mode
command is inconvenient.
The count can also be a window number. Example:

:exe nr .. "wincmd w"
This goes to window "nr".

==
5. Moving windows around window-moving

CTRL-W r CTRL-W_r CTRL-W_CTRL-R E443
CTRL-W CTRL-R Rotate windows downwards/rightwards. The first window becomes

the second one, the second one becomes the third one, etc.
The last window becomes the first window. The cursor remains
in the same window.
This only works within the row or column of windows that the
current window is in.

CTRL-W_R
CTRL-W R Rotate windows upwards/leftwards. The second window becomes

the first one, the third one becomes the second one, etc. The
first window becomes the last window. The cursor remains in
the same window.
This only works within the row or column of windows that the
current window is in.

CTRL-W x CTRL-W_x CTRL-W_CTRL-X
CTRL-W CTRL-X Without count: Exchange current window with next one. If there

is no next window, exchange with previous window.
With count: Exchange current window with Nth window (first
window is 1). The cursor is put in the other window.
When vertical and horizontal window splits are mixed, the
exchange is only done in the row or column of windows that the
current window is in.

The following commands can be used to change the window layout. For example,
when there are two vertically split windows, CTRL-W K will change that in
horizontally split windows. CTRL-W H does it the other way around.

CTRL-W_K
CTRL-W K Move the current window to be at the very top, using the full

width of the screen. This works like `:topleft split`, except
it is applied to the current window and no new window is
created.

CTRL-W_J
CTRL-W J Move the current window to be at the very bottom, using the

full width of the screen. This works like `:botright split`,
except it is applied to the current window and no new window
is created.

CTRL-W_H
CTRL-W H Move the current window to be at the far left, using the

full height of the screen. This works like
`:vert topleft split`, except it is applied to the current
window and no new window is created.

CTRL-W_L
CTRL-W L Move the current window to be at the far right, using the full

height of the screen. This works like `:vert botright split`,

windows.txt — 1071

except it is applied to the current window and no new window
is created.

CTRL-W_T
CTRL-W T Move the current window to a new tab page. This fails if

there is only one window in the current tab page.
This works like `:tab split`, except the previous window is
closed.
When a count is specified the new tab page will be opened
before the tab page with this index. Otherwise it comes after
the current tab page.

==
6. Window resizing window-resize

CTRL-W_=
CTRL-W = Make all windows (almost) equally high and wide, but use

'winheight' and 'winwidth' for the current window.
Windows with 'winfixheight' set keep their height and windows
with 'winfixwidth' set keep their width.
To equalize only vertically (make window equally high) use
`vertical wincmd =`.
To equalize only horizontally (make window equally wide) use
`horizontal wincmd =`.

:res[ize] -N :res :resize CTRL-W_-
CTRL-W - Decrease current window height by N (default 1).

If used after :vertical : decrease width by N.

:res[ize] +N CTRL-W_+
CTRL-W + Increase current window height by N (default 1).

If used after :vertical : increase width by N.

:res[ize] [N]
CTRL-W CTRL-_ CTRL-W_CTRL-_ CTRL-W__
CTRL-W _ Set current window height to N (default: highest possible).

:{winnr}res[ize] [+-]N
Like `:resize` above, but apply the size to window {winnr}
instead of the current window.

z{nr}<CR> Set current window height to {nr}.

CTRL-W_<
CTRL-W < Decrease current window width by N (default 1).

CTRL-W_>
CTRL-W > Increase current window width by N (default 1).

:vert[ical] res[ize] [N] :vertical-resize CTRL-W_bar
CTRL-W | Set current window width to N (default: widest possible).

You can also resize a window by dragging a status line up or down with the
mouse. Or by dragging a vertical separator line left or right. This only
works if the version of Vim that is being used supports the mouse and the
'mouse' option has been set to enable it.

The option 'winheight' ('wh') is used to set the minimal window height of the
current window. This option is used each time another window becomes the
current window. If the option is '0', it is disabled. Set 'winheight' to a

windows.txt — 1072

very large value, e.g., '9999', to make the current window always fill all
available space. Set it to a reasonable value, e.g., '10', to make editing in
the current window comfortable.

The equivalent 'winwidth' ('wiw') option is used to set the minimal width of
the current window.

When the option 'equalalways' ('ea') is set, all the windows are automatically
made the same size after splitting or closing a window. If you don't set this
option, splitting a window will reduce the size of the current window and
leave the other windows the same. When closing a window, the extra lines are
given to the window above it.

The 'eadirection' option limits the direction in which the 'equalalways'
option is applied. The default "both" resizes in both directions. When the
value is "ver" only the heights of windows are equalized. Use this when you
have manually resized a vertically split window and want to keep this width.
Likewise, "hor" causes only the widths of windows to be equalized.

The option 'cmdheight' ('ch') is used to set the height of the command-line.
If you are annoyed by the hit-enter prompt for long messages, set this
option to 2 or 3.

If there is only one window, resizing that window will also change the command
line height. If there are several windows, resizing the current window will
also change the height of the window below it (and sometimes the window above
it).

The minimal height and width of a window is set with 'winminheight' and
'winminwidth'. These are hard values, a window will never become smaller.

WinScrolled and WinResized autocommands
win-scrolled-resized

If you want to get notified of changes in window sizes, the WinResized
autocommand event can be used.
If you want to get notified of text in windows scrolling vertically or
horizontally, the WinScrolled autocommand event can be used. This will also
trigger in window size changes.
Exception: the events will not be triggered when the text scrolls for
'incsearch'.

WinResized-event
The WinResized event is triggered after updating the display, several
windows may have changed size then. A list of the IDs of windows that changed
since last time is provided in the v:event.windows variable, for example:

[1003, 1006]
WinScrolled-event

The WinScrolled event is triggered after WinResized , and also if a window
was scrolled. That can be vertically (the text at the top of the window
changed) or horizontally (when 'wrap' is off or when the first displayed part
of the first line changes). Note that WinScrolled will trigger many more
times than WinResized , it may slow down editing a bit.

The information provided by WinScrolled is a dictionary for each window that
has changes, using the window ID as the key, and a total count of the changes
with the key "all". Example value for v:event (Vim9 syntax):

{
all: {width: 0, height: 2, leftcol: 0, skipcol: 0, topline: 1, topfill: 0},
1003: {width: 0, height: -1, leftcol: 0, skipcol: 0, topline: 0, topfill: 0},
1006: {width: 0, height: 1, leftcol: 0, skipcol: 0, topline: 1, topfill: 0},

windows.txt — 1073

}

Note that the "all" entry has the absolute values of the individual windows
accumulated.

If you need more information about what changed, or you want to "debounce" the
events (not handle every event to avoid doing too much work), you may want to
use the `winlayout()` and `getwininfo()` functions.

WinScrolled and WinResized do not trigger when the first autocommand is
added, only after the first scroll or resize. They may trigger when switching
to another tab page.

The commands executed are expected to not cause window size or scroll changes.
If this happens anyway, the event will trigger again very soon. In other
words: Just before triggering the event, the current sizes and scroll
positions are stored and used to decide whether there was a change.

E1312
It is not allowed to change the window layout here (split, close or move
windows).

==
7. Argument and buffer list commands buffer-list

args list buffer list meaning
1. :[N]argument [N] 11. :[N]buffer [N] to arg/buf N
2. :[N]next [file ..] 12. :[N]bnext [N] to Nth next arg/buf
3. :[N]Next [N] 13. :[N]bNext [N] to Nth previous arg/buf
4. :[N]previous [N] 14. :[N]bprevious [N] to Nth previous arg/buf
5. :rewind / :first 15. :brewind / :bfirst to first arg/buf
6. :last 16. :blast to last arg/buf
7. :all 17. :ball edit all args/buffers

18. :unhide edit all loaded buffers
19. :[N]bmod [N] to Nth modified buf

split & args list split & buffer list meaning
21. :[N]sargument [N] 31. :[N]sbuffer [N] split + to arg/buf N
22. :[N]snext [file ..] 32. :[N]sbnext [N] split + to Nth next arg/buf
23. :[N]sNext [N] 33. :[N]sbNext [N] split + to Nth previous arg/buf
24. :[N]sprevious [N] 34. :[N]sbprevious [N] split + to Nth previous arg/buf
25. :srewind / :sfirst 35. :sbrewind / :sbfirst split + to first arg/buf
26. :slast 36. :sblast split + to last arg/buf
27. :sall 37. :sball edit all args/buffers

38. :sunhide edit all loaded buffers
39. :[N]sbmod [N] split + to Nth modified buf

40. :args list of arguments
41. :buffers list of buffers

The meaning of [N] depends on the command:
[N] is the number of buffers to go forward/backward on 2/12/22/32,

3/13/23/33, and 4/14/24/34
[N] is an argument number, defaulting to current argument, for 1 and 21
[N] is a buffer number, defaulting to current buffer, for 11 and 31
[N] is a count for 19 and 39

Note: ":next" is an exception, because it must accept a list of file names
for compatibility with Vi.

windows.txt — 1074

The argument list and multiple windows

The current position in the argument list can be different for each window.
Remember that when doing ":e file", the position in the argument list stays
the same, but you are not editing the file at that position. To indicate
this, the file message (and the title, if you have one) shows
"(file (N) of M)", where "(N)" is the current position in the file list, and
"M" the number of files in the file list.

All the entries in the argument list are added to the buffer list. Thus, you
can also get to them with the buffer list commands, like ":bnext".

:[N]al[l][!] [N] :al :all :sal :sall
:[N]sal[l][!] [N]

Rearrange the screen to open one window for each argument.
All other windows are closed. When a count is given, this is
the maximum number of windows to open.
With the :tab modifier open a tab page for each argument.
When there are more arguments than 'tabpagemax' further ones
become split windows in the last tab page.
When the 'hidden' option is set, all buffers in closed windows
become hidden.
When 'hidden' is not set, and the 'autowrite' option is set,
modified buffers are written. Otherwise, windows that have
buffers that are modified are not removed, unless the [!] is
given, then they become hidden. But modified buffers are
never abandoned, so changes cannot get lost.
[N] is the maximum number of windows to open. 'winheight'
also limits the number of windows opened ('winwidth' if
:vertical was prepended).
Buf/Win Enter/Leave autocommands are not executed for the new
windows here, that's only done when they are really entered.
If autocommands change the window layout while this command is
busy an error will be given. E249

:[N]sa[rgument][!] [++opt] [+cmd] [N] :sa :sargument
Short for ":split | argument [N]": split window and go to Nth
argument. But when there is no such argument, the window is
not split. Also see ++opt and +cmd .

:[N]sn[ext][!] [++opt] [+cmd] [file ..] :sn :snext
Short for ":split | [N]next": split window and go to Nth next
argument. But when there is no next file, the window is not
split. Also see ++opt and +cmd .

:[N]spr[evious][!] [++opt] [+cmd] [N] :spr :sprevious
:[N]sN[ext][!] [++opt] [+cmd] [N] :sN :sNext

Short for ":split | [N]Next": split window and go to Nth
previous argument. But when there is no previous file, the
window is not split. Also see ++opt and +cmd .

:sre :srewind
:sre[wind][!] [++opt] [+cmd]

Short for ":split | rewind": split window and go to first
argument. But when there is no argument list, the window is
not split. Also see ++opt and +cmd .

:sfir :sfirst
:sfir[st] [++opt] [+cmd]

windows.txt — 1075

Same as ":srewind".

:sla :slast
:sla[st][!] [++opt] [+cmd]

Short for ":split | last": split window and go to last
argument. But when there is no argument list, the window is
not split. Also see ++opt and +cmd .

:dr :drop
:dr[op] [++opt] [+cmd] {file} ..

Edit the first {file} in a window.
- If the file is already open in a window change to that
window.

- If the file is not open in a window edit the file in the
current window. If the current buffer can't be abandon ed,
the window is split first.

- Windows that are not in the argument list or are not full
width will be closed if possible.

The argument-list is set, like with the :next command.
The purpose of this command is that it can be used from a
program that wants Vim to edit another file, e.g., a debugger.
When using the :tab modifier each argument is opened in a
tab page. The last window is used if it's empty.
Also see ++opt and +cmd .

==
8. Do a command in all buffers or windows list-repeat

:windo
:[range]windo {cmd} Execute {cmd} in each window or if [range] is given

only in windows for which the window number lies in
the [range]. It works like doing this:

CTRL-W t
:{cmd}
CTRL-W w
:{cmd}
etc.

This only operates in the current tab page.
When an error is detected on one window, further
windows will not be visited.
The last window (or where an error occurred) becomes
the current window.
{cmd} can contain '|' to concatenate several commands.
{cmd} must not open or close windows or reorder them.

Also see :tabdo , :argdo , :bufdo , :cdo , :ldo ,
:cfdo and :lfdo

:bufdo
:[range]bufdo[!] {cmd} Execute {cmd} in each buffer in the buffer list or if

[range] is given only for buffers for which their
buffer number is in the [range]. It works like doing
this:

:bfirst
:{cmd}
:bnext
:{cmd}
etc.

When the current file can't be abandon ed and the [!]
is not present, the command fails.

windows.txt — 1076

When an error is detected on one buffer, further
buffers will not be visited.
Unlisted buffers are skipped.
The last buffer (or where an error occurred) becomes
the current buffer.
{cmd} can contain '|' to concatenate several commands.
{cmd} must not delete buffers or add buffers to the
buffer list.
Note: While this command is executing, the Syntax
autocommand event is disabled by adding it to
'eventignore'. This considerably speeds up editing
each buffer.

Also see :tabdo , :argdo , :windo , :cdo , :ldo ,
:cfdo and :lfdo

Examples:

:windo set nolist foldcolumn=0 | normal! zn

This resets the 'list' option and disables folding in all windows.

:bufdo set fileencoding= | update

This resets the 'fileencoding' in each buffer and writes it if this changed
the buffer. The result is that all buffers will use the 'encoding' encoding
(if conversion succeeds).

==
9. Tag or file name under the cursor window-tag

:sta :stag
:sta[g][!] [tagname]

Does ":tag[!] [tagname]" and splits the window for the found
tag. See also :tag .

CTRL-W] CTRL-W_] CTRL-W_CTRL-]
CTRL-W CTRL-] Split current window in two. Use identifier under cursor as a

tag and jump to it in the new upper window.
In Visual mode uses the Visually selected text as a tag.
Make new window N high.

CTRL-W_g]
CTRL-W g] Split current window in two. Use identifier under cursor as a

tag and perform ":tselect" on it in the new upper window.
In Visual mode uses the Visually selected text as a tag.
Make new window N high.

CTRL-W_g_CTRL-]
CTRL-W g CTRL-] Split current window in two. Use identifier under cursor as a

tag and perform ":tjump" on it in the new upper window.
In Visual mode uses the Visually selected text as a tag.
Make new window N high.

CTRL-W f CTRL-W_f CTRL-W_CTRL-F
CTRL-W CTRL-F Split current window in two. Edit file name under cursor.

Like ":split gf", but window isn't split if the file does not
exist.
Uses the 'path' variable as a list of directory names where to
look for the file. Also the path for current file is

windows.txt — 1077

used to search for the file name.
If the name is a hypertext link that looks like
"type://machine/path", only "/path" is used.
If a count is given, the count'th matching file is edited.

CTRL-W F CTRL-W_F
Split current window in two. Edit file name under cursor and
jump to the line number following the file name. See gF for
details on how the line number is obtained.

CTRL-W gf CTRL-W_gf
Open a new tab page and edit the file name under the cursor.
Like "tab split" and "gf", but the new tab page isn't created
if the file does not exist.

CTRL-W gF CTRL-W_gF
Open a new tab page and edit the file name under the cursor
and jump to the line number following the file name. Like
"tab split" and "gF", but the new tab page isn't created if
the file does not exist.

CTRL-W gt CTRL-W_gt
Go to next tab page, same as `gt`.

CTRL-W gT CTRL-W_gT
Go to previous tab page, same as `gT`.

Also see CTRL-W_CTRL-I : open window for an included file that includes
the keyword under the cursor.

==
10. The preview window preview-window

The preview window is a special window to show (preview) another file. It is
normally a small window used to show an include file or definition of a
function.
{not available when compiled without the |+quickfix| feature}

There can be only one preview window (per tab page). It is created with one
of the commands below. The 'previewheight' option can be set to specify the
height of the preview window when it's opened. The 'previewwindow' option is
set in the preview window to be able to recognize it. The 'winfixheight'
option is set to have it keep the same height when opening/closing other
windows.

preview-popup
Alternatively, a popup window can be used by setting the 'previewpopup'
option. When set, it overrules the 'previewwindow' and 'previewheight'
settings. The option is a comma-separated list of values:

height maximum height of the popup
width maximum width of the popup
highlight highlight group of the popup (default is Pmenu)

Example:
:set previewpopup=height:10,width:60

A few peculiarities:
- If the file is in a buffer already, it will be re-used. This will allow for

editing the file while it's visible in the popup window.
- No ATTENTION dialog will be used, since you can't edit the file in the popup

window. However, if you later open the same buffer in a normal window, you
may not notice it's edited elsewhere. And when then using ":edit" to

windows.txt — 1078

trigger the ATTENTION and responding "A" for Abort, the preview window will
become empty.

:pta :ptag
:pta[g][!] [tagname]

Does ":tag[!] [tagname]" and shows the found tag in a
"Preview" window without changing the current buffer or cursor
position. If a "Preview" window already exists, it is re-used
(like a help window is). If a new one is opened,
'previewheight' is used for the height of the window. See
also :tag .
See below for an example. CursorHold-example
Small difference from :tag : When [tagname] is equal to the
already displayed tag, the position in the matching tag list
is not reset. This makes the CursorHold example work after a
:ptnext .

CTRL-W z CTRL-W_z
CTRL-W CTRL-Z CTRL-W_CTRL-Z :pc :pclose
:pc[lose][!] Close any "Preview" window currently open. When the 'hidden'

option is set, or when the buffer was changed and the [!] is
used, the buffer becomes hidden (unless there is another
window editing it). The command fails if any "Preview" buffer
cannot be closed. See also :close .

:pp :ppop
:[count]pp[op][!]

Does ":[count]pop[!]" in the preview window. See :pop and
:ptag .

CTRL-W } CTRL-W_}
Use identifier under cursor as a tag and perform a :ptag on
it. Make the new Preview window (if required) N high. If N is
not given, 'previewheight' is used.

CTRL-W g } CTRL-W_g}
Use identifier under cursor as a tag and perform a :ptjump on
it. Make the new Preview window (if required) N high. If N is
not given, 'previewheight' is used.

:ped :pedit
:ped[it][!] [++opt] [+cmd] {file}

Edit {file} in the preview window. The preview window is
opened like with :ptag . The current window and cursor
position isn't changed. Useful example:

:pedit +/fputc /usr/include/stdio.h

:ps :psearch
:[range]ps[earch][!] [count] [/]pattern[/]

Works like :ijump but shows the found match in the preview
window. The preview window is opened like with :ptag . The
current window and cursor position isn't changed. Useful
example:

:psearch popen
Like with the :ptag command, you can use this to
automatically show information about the word under the
cursor. This is less clever than using :ptag , but you don't
need a tags file and it will also find matches in system
include files. Example:

:au! CursorHold *.[ch] ++nested exe "silent! psearch " .. expand("<cword>")

windows.txt — 1079

Warning: This can be slow.

Example CursorHold-example

:au! CursorHold *.[ch] ++nested exe "silent! ptag " .. expand("<cword>")

This will cause a ":ptag" to be executed for the keyword under the cursor,
when the cursor hasn't moved for the time set with 'updatetime'. The "nested"
makes other autocommands be executed, so that syntax highlighting works in the
preview window. The "silent!" avoids an error message when the tag could not
be found. Also see CursorHold . To disable this again:

:au! CursorHold

A nice addition is to highlight the found tag, avoid the ":ptag" when there
is no word under the cursor, and a few other things:

:au! CursorHold *.[ch] ++nested call PreviewWord()
:func PreviewWord()
: if &previewwindow " don't do this in the preview window
: return
: endif
: let w = expand("<cword>") " get the word under cursor
: if w =~ '\a' " if the word contains a letter
:
: " Delete any existing highlight before showing another tag
: silent! wincmd P " jump to preview window
: if &previewwindow " if we really get there...
: match none " delete existing highlight
: wincmd p " back to old window
: endif
:
: " Try displaying a matching tag for the word under the cursor
: try
: exe "ptag " .. w
: catch
: return
: endtry
:
: silent! wincmd P " jump to preview window
: if &previewwindow " if we really get there...
: if has("folding")
: silent! .foldopen " don't want a closed fold
: endif
: call search("$", "b") " to end of previous line
: let w = substitute(w, '\\', '\\\\', "")
: call search('\<\V' .. w .. '\>') " position cursor on match
: " Add a match highlight to the word at this position
: hi previewWord term=bold ctermbg=green guibg=green
: exe 'match previewWord "\%' .. line(".") .. 'l\%' .. col(".") .. 'c\k*"'
: wincmd p " back to old window
: endif
: endif
:endfun

==
11. Using hidden buffers buffer-hidden

A hidden buffer is not displayed in a window, but is still loaded into memory.
This makes it possible to jump from file to file, without the need to read or

windows.txt — 1080

write the file every time you get another buffer in a window.

:buffer-!
If the option 'hidden' ('hid') is set, abandoned buffers are kept for all
commands that start editing another file: ":edit", ":next", ":tag", etc. The
commands that move through the buffer list sometimes make the current buffer
hidden although the 'hidden' option is not set. This happens when a buffer is
modified, but is forced (with '!') to be removed from a window, and
'autowrite' is off or the buffer can't be written.

You can make a hidden buffer not hidden by starting to edit it with any
command, or by deleting it with the ":bdelete" command.

The 'hidden' is global, it is used for all buffers. The 'bufhidden' option
can be used to make an exception for a specific buffer. It can take these
values:

<empty> Use the value of 'hidden'.
hide Hide this buffer, also when 'hidden' is not set.
unload Don't hide but unload this buffer, also when 'hidden'

is set.
delete Delete the buffer.

hidden-quit
When you try to quit Vim while there is a hidden, modified buffer, you will
get an error message and Vim will make that buffer the current buffer. You
can then decide to write this buffer (":wq") or quit without writing (":q!").
Be careful: there may be more hidden, modified buffers!

A buffer can also be unlisted. This means it exists, but it is not in the
list of buffers. unlisted-buffer

:files[!] [flags] :files
:buffers[!] [flags] :buffers :ls
:ls[!] [flags]

Show all buffers. Example:

1 #h "/test/text" line 1
2u "asdf" line 0
3 %a + "version.c" line 1

When the [!] is included the list will show unlisted buffers
(the term "unlisted" is a bit confusing then...).

Each buffer has a unique number. That number will not change,
thus you can always go to a specific buffer with ":buffer N"
or "N CTRL-^", where N is the buffer number.

For the file name these special values are used:
[Prompt] prompt-buffer
[Popup] buffer of a popup-window
[Scratch] 'buftype' is "nofile"
[No Name] no file name specified

For a terminal-window buffer the status is used.

Indicators (chars in the same column are mutually exclusive):
u an unlisted buffer (only displayed when [!] is used)

unlisted-buffer
% the buffer in the current window
the alternate buffer for ":e #" and CTRL-^

windows.txt — 1081

a an active buffer: it is loaded and visible
h a hidden buffer: It is loaded, but currently not

displayed in a window hidden-buffer
- a buffer with 'modifiable' off
= a readonly buffer
R a terminal buffer with a running job
F a terminal buffer with a finished job
? a terminal buffer without a job: `:terminal NONE`
+ a modified buffer
x a buffer with read errors

[flags] can be a combination of the following characters,
which restrict the buffers to be listed:

+ modified buffers
- buffers with 'modifiable' off
= readonly buffers
a active buffers
u unlisted buffers (overrides the "!")
h hidden buffers
x buffers with a read error
% current buffer
alternate buffer
R terminal buffers with a running job
F terminal buffers with a finished job
? terminal buffers without a job: `:terminal NONE`
t show time last used and sort buffers

Combining flags means they are "and"ed together, e.g.:
h+ hidden buffers which are modified
a+ active buffers which are modified

When using :filter the pattern is matched against the
displayed buffer name, e.g.:

filter /\.vim/ ls

:bad :badd
:bad[d] [+lnum] {fname}

Add file name {fname} to the buffer list, without loading it,
if it wasn't listed yet. If the buffer was previously
deleted, not wiped, it will be made listed again.
If "lnum" is specified, the cursor will be positioned at that
line when the buffer is first entered. Note that other
commands after the + will be ignored.

:balt
:balt [+lnum] {fname}

Like `:badd` and also set the alternate file for the current
window to {fname}.

:[N]bd[elete][!] :bd :bdel :bdelete E516
:bd[elete][!] [N]

Unload buffer [N] (default: current buffer) and delete it from
the buffer list. If the buffer was changed, this fails,
unless when [!] is specified, in which case changes are lost.
The file remains unaffected. Any windows for this buffer are
closed. If buffer [N] is the current buffer, another buffer
will be displayed instead. This is the most recent entry in
the jump list that points into a loaded buffer.
Actually, the buffer isn't completely deleted, it is removed
from the buffer list unlisted-buffer and option values,
variables and mappings/abbreviations for the buffer are

windows.txt — 1082

cleared. Examples:
:.,$-bdelete " delete buffers from the current one to

" last but one
:%bdelete " delete all buffers

:bdelete[!] {bufname} E93 E94
Like ":bdelete[!] [N]", but buffer given by name, see
{bufname} .

:bdelete[!] N1 N2 ...
Do ":bdelete[!]" for buffer N1, N2, etc. The arguments can be
buffer numbers or buffer names (but not buffer names that are
a number). Insert a backslash before a space in a buffer
name.

:N,Mbdelete[!] Do ":bdelete[!]" for all buffers in the range N to M
inclusive .

:[N]bw[ipeout][!] :bw :bwipe :bwipeout E517
:bw[ipeout][!] {bufname}
:N,Mbw[ipeout][!]
:bw[ipeout][!] N1 N2 ...

Like :bdelete , but really delete the buffer. Everything
related to the buffer is lost. All marks in this buffer
become invalid, option settings are lost, etc. Don't use this
unless you know what you are doing. Examples:

:.+,$bwipeout " wipe out all buffers after the current
" one

:%bwipeout " wipe out all buffers

:[N]bun[load][!] :bun :bunload E515
:bun[load][!] [N]

Unload buffer [N] (default: current buffer). The memory
allocated for this buffer will be freed. The buffer remains
in the buffer list.
If the buffer was changed, this fails, unless when [!] is
specified, in which case the changes are lost.
Any windows for this buffer are closed. If buffer [N] is the
current buffer, another buffer will be displayed instead.
This is the most recent entry in the jump list that points
into a loaded buffer.

:bunload[!] {bufname}
Like ":bunload[!] [N]", but buffer given by name.
Also see {bufname} .

:N,Mbunload[!] Do ":bunload[!]" for all buffers in the range N to M
inclusive .

:bunload[!] N1 N2 ...
Do ":bunload[!]" for buffer N1, N2, etc. The arguments can be
buffer numbers or buffer names (but not buffer names that are
a number). Insert a backslash before a space in a buffer
name.

:[N]b[uffer][!] [+cmd] [N] :b :bu :buf :buffer E86
Edit buffer [N] from the buffer list. If [N] is not given,
the current buffer remains being edited. See :buffer-! for

windows.txt — 1083

[!]. This will also edit a buffer that is not in the buffer
list, without setting the 'buflisted' flag.
The notation with single quotes does not work here,
`:buf 12'345'` uses 12'345 as a buffer name.
Also see +cmd .

:[N]b[uffer][!] [+cmd] {bufname} {bufname}
Edit buffer for {bufname} from the buffer list. A partial
name also works, so long as it is unique in the list of
buffers.
Note that a buffer whose name is a number cannot be referenced
by that name; use the buffer number instead.
Insert a backslash before a space in a buffer name.
See :buffer-! for [!].
This will also edit a buffer that is not in the buffer list,
without setting the 'buflisted' flag.
Also see +cmd .

:[N]sb[uffer] [+cmd] [N] :sb :sbuffer
Split window and edit buffer [N] from the buffer list. If [N]
is not given, the current buffer is edited. Respects the
"useopen" setting of 'switchbuf' when splitting. This will
also edit a buffer that is not in the buffer list, without
setting the 'buflisted' flag.
Also see +cmd .

:[N]sb[uffer] [+cmd] {bufname}
Split window and edit buffer for {bufname} from the buffer
list. This will also edit a buffer that is not in the buffer
list, without setting the 'buflisted' flag.
Note: If what you want to do is split the buffer, make a copy
under another name, you can do it this way:

:w foobar | sp #
Also see +cmd .

:[N]bn[ext][!] [+cmd] [N] :bn :bnext E87
Go to [N]th next buffer in buffer list. [N] defaults to one.
Wraps around the end of the buffer list.
See :buffer-! for [!].
Also see +cmd .
If you are in a help buffer, this takes you to the next help
buffer (if there is one). Similarly, if you are in a normal
(non-help) buffer, this takes you to the next normal buffer.
This is so that if you have invoked help, it doesn't get in
the way when you're browsing code/text buffers. The next three
commands also work like this.

:sbn :sbnext
:[N]sbn[ext] [+cmd] [N]

Split window and go to [N]th next buffer in buffer list.
Wraps around the end of the buffer list. Uses 'switchbuf'
Also see +cmd .

:[N]bN[ext][!] [+cmd] [N] :bN :bNext :bp :bprevious E88
:[N]bp[revious][!] [+cmd] [N]

Go to [N]th previous buffer in buffer list. [N] defaults to
one. Wraps around the start of the buffer list.
See :buffer-! for [!] and 'switchbuf'.
Also see +cmd .

windows.txt — 1084

:[N]sbN[ext] [+cmd] [N] :sbN :sbNext :sbp :sbprevious
:[N]sbp[revious] [+cmd] [N]

Split window and go to [N]th previous buffer in buffer list.
Wraps around the start of the buffer list.
Uses 'switchbuf'.
Also see +cmd .

:br[ewind][!] [+cmd] :br :bre :brewind
Go to first buffer in buffer list. If the buffer list is
empty, go to the first unlisted buffer.
See :buffer-! for [!].

:bf[irst] [+cmd] :bf :bfirst
Same as :brewind .
Also see +cmd .

:sbr[ewind] [+cmd] :sbr :sbrewind
Split window and go to first buffer in buffer list. If the
buffer list is empty, go to the first unlisted buffer.
Respects the 'switchbuf' option.
Also see +cmd .

:sbf[irst] [+cmd] :sbf :sbfirst
Same as ":sbrewind".

:bl[ast][!] [+cmd] :bl :blast
Go to last buffer in buffer list. If the buffer list is
empty, go to the last unlisted buffer.
See :buffer-! for [!].

:sbl[ast] [+cmd] :sbl :sblast
Split window and go to last buffer in buffer list. If the
buffer list is empty, go to the last unlisted buffer.
Respects 'switchbuf' option.

:[N]bm[odified][!] [+cmd] [N] :bm :bmodified E84
Go to [N]th next modified buffer. Note: this command also
finds unlisted buffers. If there is no modified buffer the
command fails.

:[N]sbm[odified] [+cmd] [N] :sbm :sbmodified
Split window and go to [N]th next modified buffer.
Respects 'switchbuf' option.
Note: this command also finds buffers not in the buffer list.

:[N]unh[ide] [N] :unh :unhide :sun :sunhide
:[N]sun[hide] [N]

Rearrange the screen to open one window for each loaded buffer
in the buffer list. When a count is given, this is the
maximum number of windows to open.

:[N]ba[ll] [N] :ba :ball :sba :sball
:[N]sba[ll] [N] Rearrange the screen to open one window for each buffer in

the buffer list. When a count is given, this is the maximum
number of windows to open. 'winheight' also limits the number
of windows opened ('winwidth' if :vertical was prepended).
Buf/Win Enter/Leave autocommands are not executed for the new
windows here, that's only done when they are really entered.
When the :tab modifier is used new windows are opened in a
new tab, up to 'tabpagemax'.

windows.txt — 1085

Note: All the commands above that start editing another buffer, keep the
'readonly' flag as it was. This differs from the ":edit" command, which sets
the 'readonly' flag each time the file is read.

==
12. Special kinds of buffers special-buffers

Instead of containing the text of a file, buffers can also be used for other
purposes. A few options can be set to change the behavior of a buffer:

'bufhidden' what happens when the buffer is no longer displayed
in a window.

'buftype' what kind of a buffer this is
'swapfile' whether the buffer will have a swap file
'buflisted' buffer shows up in the buffer list

A few useful kinds of a buffer:

quickfix Used to contain the error list or the location list. See
:cwindow and :lwindow . This command sets the 'buftype'
option to "quickfix". You are not supposed to change this!
'swapfile' is off.

help Contains a help file. Will only be created with the :help
command. The flag that indicates a help buffer is internal
and can't be changed. The 'buflisted' option will be reset
for a help buffer.

terminal A terminal window buffer, see terminal . The contents cannot
be read or changed until the job ends.

directory Displays directory contents. Can be used by a file explorer
plugin. The buffer is created with these settings:

:setlocal buftype=nowrite
:setlocal bufhidden=delete
:setlocal noswapfile

The buffer name is the name of the directory and is adjusted
when using the :cd command.

scratch-buffer
scratch Contains text that can be discarded at any time. It is kept

when closing the window, it must be deleted explicitly.
Settings:

:setlocal buftype=nofile
:setlocal bufhidden=hide
:setlocal noswapfile

The buffer name can be used to identify the buffer, if you
give it a meaningful name.

unlisted-buffer
unlisted The buffer is not in the buffer list. It is not used for

normal editing, but to show a help file, remember a file name
or marks. The ":bdelete" command will also set this option,
thus it doesn't completely delete the buffer. Settings:

:setlocal nobuflisted

windows.txt — 1086

tabpage.txt For Vim version 9.1. Last change: 2022 Feb 02

VIM REFERENCE MANUAL by Bram Moolenaar

Editing with windows in multiple tab pages. tab-page tabpage

The commands which have been added to use multiple tab pages are explained
here. Additionally, there are explanations for commands that work differently
when used in combination with more than one tab page.

1. Introduction tab-page-intro
2. Commands tab-page-commands
3. Other items tab-page-other
4. Setting 'tabline' setting-tabline
5. Setting 'guitablabel' setting-guitablabel

{not able to use multiple tab pages when the +windows feature was disabled
at compile time}

==
1. Introduction tab-page-intro

A tab page holds one or more windows. You can easily switch between tab
pages, so that you have several collections of windows to work on different
things.

Usually you will see a list of labels at the top of the Vim window, one for
each tab page. With the mouse you can click on the label to jump to that tab
page. There are other ways to move between tab pages, see below.

Most commands work only in the current tab page. That includes the CTRL-W
commands, :windo , :all and :ball (when not using the :tab modifier).
The commands that are aware of other tab pages than the current one are
mentioned below.

Tabs are also a nice way to edit a buffer temporarily without changing the
current window layout. Open a new tab page, do whatever you want to do and
close the tab page.

==
2. Commands tab-page-commands

OPENING A NEW TAB PAGE:

When starting Vim "vim -p filename ..." opens each file argument in a separate
tab page (up to 'tabpagemax'). See -p

A double click with the mouse in the non-GUI tab pages line opens a new, empty
tab page. It is placed left of the position of the click. The first click
may select another tab page first, causing an extra screen update.

This also works in a few GUI versions, esp. Win32 and Motif. But only when
clicking right of the labels.

In the GUI tab pages line you can use the right mouse button to open menu.
tabline-menu .

For the related autocommands see tabnew-autocmd .

tabpage.txt — 1087

:[count]tabe[dit] :tabe :tabedit :tabnew
:[count]tabnew

Open a new tab page with an empty window, after the current
tab page. If [count] is given the new tab page appears after
the tab page [count] otherwise the new tab page will appear
after the current one.

:tabnew " opens tabpage after the current one
:.tabnew " as above
:+tabnew " opens tabpage after the next tab page

" note: it is one further than :tabnew
:-tabnew " opens tabpage before the current one
:0tabnew " opens tabpage before the first one
:$tabnew " opens tabpage after the last one

:[count]tabe[dit] [++opt] [+cmd] {file}
:[count]tabnew [++opt] [+cmd] {file}

Open a new tab page and edit {file}, like with :edit .
For [count] see :tabnew above.

:[count]tabf[ind] [++opt] [+cmd] {file} :tabf :tabfind
Open a new tab page and edit {file} in 'path', like with
:find . For [count] see :tabnew above.

:[count]tab {cmd} :tab
Execute {cmd} and when it opens a new window open a new tab
page instead. Doesn't work for :diffsplit , :diffpatch ,
:execute and :normal .
If [count] is given the new tab page appears after the tab
page [count] otherwise the new tab page will appear after the
current one.
Examples:

:tab split " opens current buffer in new tab page
:tab help gt " opens tab page with help for "gt"
:.tab help gt " as above
:+tab help " opens tab page with help after the next

" tab page
:-tab help " opens tab page with help before the

" current one
:0tab help " opens tab page with help before the

" first one
:$tab help " opens tab page with help after the last

" one

CTRL-W gf Open a new tab page and edit the file name under the cursor.
See CTRL-W_gf .

CTRL-W gF Open a new tab page and edit the file name under the cursor
and jump to the line number following the file name.
See CTRL-W_gF .

CLOSING A TAB PAGE:

Closing the last window of a tab page closes the tab page too, unless there is
only one tab page.

Using the mouse: If the tab page line is displayed you can click in the "X" at
the top right to close the current tab page. A custom 'tabline' may show
something else.

tabpage.txt — 1088

:tabc :tabclose
:tabc[lose][!] Close current tab page.

This command fails when:
- There is only one tab page on the screen. E784
- When 'hidden' is not set, [!] is not used, a buffer has
changes, and there is no other window on this buffer.

Changes to the buffer are not written and won't get lost, so
this is a "safe" command.

:tabclose " close the current tab page

:{count}tabc[lose][!]
:tabc[lose][!] {count}

Close tab page {count}. Fails in the same way as `:tabclose`
above.

:-tabclose " close the previous tab page
:+tabclose " close the next tab page
:1tabclose " close the first tab page
:$tabclose " close the last tab page
:tabclose -2 " close the 2nd previous tab page
:tabclose + " close the next tab page
:tabclose 3 " close the third tab page
:tabclose $ " close the last tab page
:tabclose # " close the last accessed tab page

When a tab is closed the next tab page will become the current one.

:tabo :tabonly
:tabo[nly][!] Close all other tab pages.

When the 'hidden' option is set, all buffers in closed windows
become hidden.
When 'hidden' is not set, and the 'autowrite' option is set,
modified buffers are written. Otherwise, windows that have
buffers that are modified are not removed, unless the [!] is
given, then they become hidden. But modified buffers are
never abandoned, so changes cannot get lost.

:tabonly " close all tab pages except the current
" one

:{count}tabo[nly][!]
:tabo[nly][!] {count}

Close all tab pages except {count} one.
:.tabonly " as above
:-tabonly " close all tab pages except the previous

" one
:+tabonly " close all tab pages except the next one
:1tabonly " close all tab pages except the first one
:$tabonly " close all tab pages except the last one
:tabonly - " close all tab pages except the previous

" one
:tabonly +2 " close all tab pages except the two next

" one
:tabonly 1 " close all tab pages except the first one
:tabonly $ " close all tab pages except the last one
:tabonly # " close all tab pages except the last

" accessed one

SWITCHING TO ANOTHER TAB PAGE:

Using the mouse: If the tab page line is displayed you can click in a tab page

tabpage.txt — 1089

label to switch to that tab page. Click where there is no label to go to the
next tab page. 'tabline'

:tabn[ext] :tabn :tabnext gt
<C-PageDown> CTRL-<PageDown> <C-PageDown>
gt i_CTRL-<PageDown> i_<C-PageDown>

Go to the next tab page. Wraps around from the last to the
first one.

:{count}tabn[ext]
:tabn[ext] {count}

Go to tab page {count}. The first tab page has number one.
:-tabnext " go to the previous tab page
:+tabnext " go to the next tab page
:+2tabnext " go to the two next tab page
:1tabnext " go to the first tab page
:$tabnext " go to the last tab page
:tabnext $ " as above
:tabnext # " go to the last accessed tab page
:tabnext - " go to the previous tab page
:tabnext -1 " as above
:tabnext + " go to the next tab page
:tabnext +1 " as above

{count}<C-PageDown>
{count}gt Go to tab page {count}. The first tab page has number one.

:tabp[revious] :tabp :tabprevious gT :tabN
:tabN[ext] :tabNext CTRL-<PageUp>
<C-PageUp> <C-PageUp> i_CTRL-<PageUp> i_<C-PageUp>
gT Go to the previous tab page. Wraps around from the first one

to the last one.

:tabp[revious] {count}
:tabN[ext] {count}
{count}<C-PageUp>
{count}gT Go {count} tab pages back. Wraps around from the first one

to the last one. Note that the use of {count} is different
from :tabnext , where it is used as the tab page number.

:tabr[ewind] :tabfir :tabfirst :tabr :tabrewind
:tabfir[st] Go to the first tab page.

:tabl :tablast
:tabl[ast] Go to the last tab page.

g<Tab> CTRL-W_g<Tab> <C-Tab>
g<Tab> Go to the last accessed tab page.

Other commands:
:tabs

:tabs List the tab pages and the windows they contain.
Shows a ">" for the current window.
Shows a "+" for modified buffers.
For example:

Tab page 1
+ tabpage.txt

ex_docmd.c
Tab page 2

tabpage.txt — 1090

> main.c

REORDERING TAB PAGES:

:tabm[ove] [N] :tabm :tabmove
:[N]tabm[ove]

Move the current tab page to after tab page N. Use zero to
make the current tab page the first one. N is counted before
the move, thus if the second tab is the current one,
`:tabmove 1` and `:tabmove 2` have no effect.
Without N the tab page is made the last one.

:.tabmove " do nothing
:-tabmove " move the tab page to the left
:+tabmove " move the tab page to the right
:0tabmove " move the tab page to the beginning of the tab

" list
:tabmove 0 " as above
:tabmove " move the tab page to the last
:$tabmove " as above
:tabmove $ " as above
:tabmove # " move the tab page after the last accessed

" tab page

:tabm[ove] +[N]
:tabm[ove] -[N]

Move the current tab page N places to the right (with +) or to
the left (with -).

:tabmove - " move the tab page to the left
:tabmove -1 " as above
:tabmove + " move the tab page to the right
:tabmove +1 " as above

Note that although it is possible to move a tab behind the N-th one by using
:Ntabmove. And move it by N places by using :+Ntabmove. For clarification what
+N means in this context see [range] .

LOOPING OVER TAB PAGES:

:tabd :tabdo
:[range]tabd[o] {cmd}

Execute {cmd} in each tab page or if [range] is given only in
tab pages which tab page number is in the [range]. It works
like doing this:

:tabfirst
:{cmd}
:tabnext
:{cmd}
etc.

This only operates in the current window of each tab page.
When an error is detected on one tab page, further tab pages
will not be visited.
The last tab page (or where an error occurred) becomes the
current tab page.
{cmd} can contain '|' to concatenate several commands.
{cmd} must not open or close tab pages or reorder them.
Also see :windo , :argdo , :bufdo , :cdo , :ldo , :cfdo
and :lfdo

tabpage.txt — 1091

==
3. Other items tab-page-other

tabline-menu
The GUI tab pages line has a popup menu. It is accessed with a right click.
The entries are:

Close Close the tab page under the mouse pointer. The
current one if there is no label under the mouse
pointer.

New Tab Open a tab page, editing an empty buffer. It appears
to the left of the mouse pointer.

Open Tab... Like "New Tab" and additionally use a file selector to
select a file to edit.

Diff mode works per tab page. You can see the diffs between several files
within one tab page. Other tab pages can show differences between other
files.

Variables local to a tab page start with "t:". tabpage-variable

Currently there is only one option local to a tab page: 'cmdheight'.

tabnew-autocmd
The TabLeave and TabEnter autocommand events can be used to do something when
switching from one tab page to another. The exact order depends on what you
are doing. When creating a new tab page this works as if you create a new
window on the same buffer and then edit another buffer. Thus ":tabnew"
triggers:

WinLeave leave current window
TabLeave leave current tab page
WinEnter enter window in new tab page
TabEnter enter new tab page
BufLeave leave current buffer
BufEnter enter new empty buffer

When switching to another tab page the order is:
BufLeave
WinLeave
TabLeave
TabEnter
WinEnter
BufEnter

==
4. Setting 'tabline' setting-tabline

The 'tabline' option specifies what the line with tab pages labels looks like.
It is only used when there is no GUI tab line.

You can use the 'showtabline' option to specify when you want the line with
tab page labels to appear: never, when there is more than one tab page or
always.

The highlighting of the tab pages line is set with the groups TabLine
TabLineSel and TabLineFill. hl-TabLine hl-TabLineSel hl-TabLineFill

A "+" will be shown for a tab page that has a modified window. The number of
windows in a tabpage is also shown. Thus "3+" means three windows and one of
them has a modified buffer.

tabpage.txt — 1092

The 'tabline' option allows you to define your preferred way to tab pages
labels. This isn't easy, thus an example will be given here.

For basics see the 'statusline' option. The same items can be used in the
'tabline' option. Additionally, the tabpagebuflist() , tabpagenr() and
tabpagewinnr() functions are useful.

Since the number of tab labels will vary, you need to use an expression for
the whole option. Something like:

:set tabline=%!MyTabLine()

Then define the MyTabLine() function to list all the tab pages labels. A
convenient method is to split it in two parts: First go over all the tab
pages and define labels for them. Then get the label for each tab page.

function MyTabLine()
let s = ''
for i in range(tabpagenr('$'))

" select the highlighting
if i + 1 == tabpagenr()

let s ..= '%#TabLineSel#'
else

let s ..= '%#TabLine#'
endif

" set the tab page number (for mouse clicks)
let s ..= '%' .. (i + 1) .. 'T'

" the label is made by MyTabLabel()
let s ..= ' %{MyTabLabel(' .. (i + 1) .. ')} '

endfor

" after the last tab fill with TabLineFill and reset tab page nr
let s ..= '%#TabLineFill#%T'

" right-align the label to close the current tab page
if tabpagenr('$') > 1

let s ..= '%=%#TabLine#%999Xclose'
endif

return s
endfunction

Now the MyTabLabel() function is called for each tab page to get its label.

function MyTabLabel(n)
let buflist = tabpagebuflist(a:n)
let winnr = tabpagewinnr(a:n)
return bufname(buflist[winnr - 1])

endfunction

This is just a simplistic example that results in a tab pages line that
resembles the default, but without adding a + for a modified buffer or
truncating the names. You will want to reduce the width of labels in a
clever way when there is not enough room. Check the 'columns' option for the
space available.

==
5. Setting 'guitablabel' setting-guitablabel

tabpage.txt — 1093

When the GUI tab pages line is displayed, 'guitablabel' can be used to
specify the label to display for each tab page. Unlike 'tabline', which
specifies the whole tab pages line at once, 'guitablabel' is used for each
label separately.

'guitabtooltip' is very similar and is used for the tooltip of the same label.
This only appears when the mouse pointer hovers over the label, thus it
usually is longer. Only supported on some systems though.

See the 'statusline' option for the format of the value.

The "%N" item can be used for the current tab page number. The v:lnum
variable is also set to this number when the option is evaluated.
The items that use a file name refer to the current window of the tab page.

Note that syntax highlighting is not used for the option. The %T and %X
items are also ignored.

A simple example that puts the tab page number and the buffer name in the
label:

:set guitablabel=%N\ %f

An example that resembles the default 'guitablabel': Show the number of
windows in the tab page and a '+' if there is a modified buffer:

function GuiTabLabel()
let label = ''
let bufnrlist = tabpagebuflist(v:lnum)

" Add '+' if one of the buffers in the tab page is modified
for bufnr in bufnrlist

if getbufvar(bufnr, "&modified")
let label = '+'
break

endif
endfor

" Append the number of windows in the tab page if more than one
let wincount = tabpagewinnr(v:lnum, '$')
if wincount > 1

let label ..= wincount
endif
if label != ''

let label ..= ' '
endif

" Append the buffer name
return label .. bufname(bufnrlist[tabpagewinnr(v:lnum) - 1])

endfunction

set guitablabel=%{GuiTabLabel()}

Note that the function must be defined before setting the option, otherwise
you get an error message for the function not being known.

If you want to fall back to the default label, return an empty string.

If you want to show something specific for a tab page, you might want to use a
tab page local variable. t:var

tabpage.txt — 1094

tabpage.txt — 1095

tabpage.txt — 1096

spell.txt For Vim version 9.1. Last change: 2023 May 25

VIM REFERENCE MANUAL by Bram Moolenaar

Spell checking spell

1. Quick start spell-quickstart
2. Remarks on spell checking spell-remarks
3. Generating a spell file spell-mkspell
4. Spell file format spell-file-format

{not available when the |+syntax| feature has been disabled at compile time}

Note: There also is a vimspell plugin. If you have it you can do ":help
vimspell" to find about it. But you will probably want to get rid of the
plugin and use the 'spell' option instead, it works better.

==
1. Quick start spell-quickstart E756

This command switches on spell checking:

:setlocal spell spelllang=en_us

This switches on the 'spell' option and specifies to check for US English.

The words that are not recognized are highlighted with one of these:
SpellBad word not recognized hl-SpellBad
SpellCap word not capitalised hl-SpellCap
SpellRare rare word hl-SpellRare
SpellLocal wrong spelling for selected region hl-SpellLocal

Vim only checks words for spelling, there is no grammar check.

If the 'mousemodel' option is set to "popup" and the cursor is on a badly
spelled word or it is "popup_setpos" and the mouse pointer is on a badly
spelled word, then the popup menu will contain a submenu to replace the bad
word. Note: this slows down the appearance of the popup menu. Note for GTK:
don't release the right mouse button until the menu appears, otherwise it
won't work.

To search for the next misspelled word:

]s
]s Move to next misspelled word after the cursor.

A count before the command can be used to repeat.
'wrapscan' applies.

[s
[s Like "]s" but search backwards, find the misspelled

word before the cursor. Doesn't recognize words
split over two lines, thus may stop at words that are
not highlighted as bad. Does not stop at word with
missing capital at the start of a line.

]S
]S Like "]s" but only stop at bad words, not at rare

words or words for another region.

spell.txt — 1097

[S
[S Like "]S" but search backwards.

To add words to your own word list:

zg
zg Add word under the cursor as a good word to the first

name in 'spellfile'. A count may precede the command
to indicate the entry in 'spellfile' to be used. A
count of two uses the second entry.

In Visual mode the selected characters are added as a
word (including white space!).
When the cursor is on text that is marked as badly
spelled then the marked text is used.
Otherwise the word under the cursor, separated by
non-word characters, is used.

If the word is explicitly marked as bad word in
another spell file the result is unpredictable.

zG
zG Like "zg" but add the word to the internal word list

internal-wordlist .

zw
zw Like "zg" but mark the word as a wrong (bad) word.

If the word already appears in 'spellfile' it is
turned into a comment line. See spellfile-cleanup
for getting rid of those.

zW
zW Like "zw" but add the word to the internal word list

internal-wordlist .

zuw zug zuw
zug Undo zw and zg , remove the word from the entry in

'spellfile'. Count used as with zg .

zuW zuG zuW
zuG Undo zW and zG , remove the word from the internal

word list. Count used as with zg .

:spe :spellgood E1280
:[count]spe[llgood] {word}

Add {word} as a good word to 'spellfile', like with
zg . Without count the first name is used, with a

count of two the second entry, etc.

:spe[llgood]! {word} Add {word} as a good word to the internal word list,
like with zG .

:spellw :spellwrong
:[count]spellw[rong] {word}

Add {word} as a wrong (bad) word to 'spellfile', as
with zw . Without count the first name is used, with
a count of two the second entry, etc.

spell.txt — 1098

:spellw[rong]! {word} Add {word} as a wrong (bad) word to the internal word
list, like with zW .

:spellra :spellrare
:[count]spellra[re] {word}

Add {word} as a rare word to 'spellfile', similar to
zw . Without count the first name is used, with

a count of two the second entry, etc.

There are no normal mode commands to mark words as
rare as this is a fairly uncommon command and all
intuitive commands for this are already taken. If you
want you can add mappings with e.g.:

nnoremap z? :exe ':spellrare ' .. expand('<cWORD>')<CR>
nnoremap z/ :exe ':spellrare! ' .. expand('<cWORD>')<CR>

:spellundo , zuw , or zuW can be used to undo this.

:spellra[re]! {word} Add {word} as a rare word to the internal word
list, similar to zW .

:[count]spellu[ndo] {word} :spellu :spellundo
Like zuw . [count] used as with :spellgood .

:spellu[ndo]! {word} Like zuW . [count] used as with :spellgood .

After adding a word to 'spellfile' with the above commands its associated
".spl" file will automatically be updated and reloaded. If you change
'spellfile' manually you need to use the :mkspell command. This sequence of
commands mostly works well:

:edit <file in 'spellfile'>
(make changes to the spell file)
:mkspell! %

More details about the 'spellfile' format below spell-wordlist-format .

internal-wordlist
The internal word list is used for all buffers where 'spell' is set. It is
not stored, it is lost when you exit Vim. It is also cleared when 'encoding'
is set.

Finding suggestions for bad words:
z=

z= For the word under/after the cursor suggest correctly
spelled words. This also works to find alternatives
for a word that is not highlighted as a bad word,
e.g., when the word after it is bad.
In Visual mode the highlighted text is taken as the
word to be replaced.
The results are sorted on similarity to the word being
replaced.
This may take a long time. Hit CTRL-C when you get
bored.

If the command is used without a count the
alternatives are listed and you can enter the number
of your choice or press <Enter> if you don't want to
replace. You can also use the mouse to click on your
choice (only works if the mouse can be used in Normal

spell.txt — 1099

mode and when there are no line wraps). Click on the
first line (the header) to cancel.

The suggestions listed normally replace a highlighted
bad word. Sometimes they include other text, in that
case the replaced text is also listed after a "<".

If a count is used that suggestion is used, without
prompting. For example, "1z=" always takes the first
suggestion.

If 'verbose' is non-zero a score will be displayed
with the suggestions to indicate the likeliness to the
badly spelled word (the higher the score the more
different).
When a word was replaced the redo command "." will
repeat the word replacement. This works like "ciw",
the good word and <Esc>. This does NOT work for Thai
and other languages without spaces between words.

:spellr :spellrepall E752 E753
:spellr[epall] Repeat the replacement done by z= for all matches

with the replaced word in the current window.

In Insert mode, when the cursor is after a badly spelled word, you can use
CTRL-X s to find suggestions. This works like Insert mode completion. Use
CTRL-N to use the next suggestion, CTRL-P to go back. i_CTRL-X_s

The 'spellsuggest' option influences how the list of suggestions is generated
and sorted. See 'spellsuggest' .

The 'spellcapcheck' option is used to check the first word of a sentence
starts with a capital. This doesn't work for the first word in the file.
When there is a line break right after a sentence the highlighting of the next
line may be postponed. Use CTRL-L when needed. Also see set-spc-auto for
how it can be set automatically when 'spelllang' is set.

The 'spelloptions' option has a few more flags that influence the way spell
checking works. For example, "camel" splits CamelCased words so that each
part of the word is spell-checked separately.

Vim counts the number of times a good word is encountered. This is used to
sort the suggestions: words that have been seen before get a small bonus,
words that have been seen often get a bigger bonus. The COMMON item in the
affix file can be used to define common words, so that this mechanism also
works in a new or short file spell-COMMON .

==
2. Remarks on spell checking spell-remarks

PERFORMANCE

Vim does on-the-fly spell checking. To make this work fast the word list is
loaded in memory. Thus this uses a lot of memory (1 Mbyte or more). There
might also be a noticeable delay when the word list is loaded, which happens
when 'spell' is set and when 'spelllang' is set while 'spell' was already set.
To minimize the delay each word list is only loaded once, it is not deleted
when 'spelllang' is made empty or 'spell' is reset. When 'encoding' is set
all the word lists are reloaded, thus you may notice a delay then too.

spell.txt — 1100

REGIONS

A word may be spelled differently in various regions. For example, English
comes in (at least) these variants:

en all regions
en_au Australia
en_ca Canada
en_gb Great Britain
en_nz New Zealand
en_us USA

Words that are not used in one region but are used in another region are
highlighted with SpellLocal hl-SpellLocal .

Always use lowercase letters for the language and region names.

When adding a word with zg or another command it's always added for all
regions. You can change that by manually editing the 'spellfile'. See
spell-wordlist-format . Note that the regions as specified in the files in

'spellfile' are only used when all entries in 'spelllang' specify the same
region (not counting files specified by their .spl name).

spell-german
Specific exception: For German these special regions are used:

de all German words accepted
de_de old and new spelling
de_19 old spelling
de_20 new spelling
de_at Austria
de_ch Switzerland

spell-russian
Specific exception: For Russian these special regions are used:

ru all Russian words accepted
ru_ru "IE" letter spelling
ru_yo "YO" letter spelling

spell-yiddish
Yiddish requires using "utf-8" encoding, because of the special characters
used. If you are using latin1 Vim will use transliterated (romanized) Yiddish
instead. If you want to use transliterated Yiddish with utf-8 use "yi-tr".
In a table:

'encoding' 'spelllang'
utf-8 yi Yiddish
latin1 yi transliterated Yiddish
utf-8 yi-tr transliterated Yiddish

spell-cjk
Chinese, Japanese and other East Asian characters are normally marked as
errors, because spell checking of these characters is not supported. If
'spelllang' includes "cjk", these characters are not marked as errors. This
is useful when editing text with spell checking while some Asian words are
present.

SPELL FILES spell-load

Vim searches for spell files in the "spell" subdirectory of the directories in

spell.txt — 1101

'runtimepath'. The name is: LL.EEE.spl, where:
LL the language name
EEE the value of 'encoding'

The value for "LL" comes from 'spelllang', but excludes the region name.
Examples:

'spelllang' LL
en_us en
en-rare en-rare
medical_ca medical

Only the first file is loaded, the one that is first in 'runtimepath'. If
this succeeds then additionally files with the name LL.EEE.add.spl are loaded.
All the ones that are found are used.

If no spell file is found the SpellFileMissing autocommand event is
triggered. This may trigger the spellfile.vim plugin to offer you
downloading the spell file.

Additionally, the files related to the names in 'spellfile' are loaded. These
are the files that zg and zw add good and wrong words to.

Exceptions:
- Vim uses "latin1" when 'encoding' is "iso-8859-15". The euro sign doesn't

matter for spelling.
- When no spell file for 'encoding' is found "ascii" is tried. This only

works for languages where nearly all words are ASCII, such as English. It
helps when 'encoding' is not "latin1", such as iso-8859-2, and English text
is being edited. For the ".add" files the same name as the found main
spell file is used.

For example, with these values:
'runtimepath' is "~/.vim,/usr/share/vim82,~/.vim/after"
'encoding' is "iso-8859-2"
'spelllang' is "pl"

Vim will look for:
1. ~/.vim/spell/pl.iso-8859-2.spl
2. /usr/share/vim82/spell/pl.iso-8859-2.spl
3. ~/.vim/spell/pl.iso-8859-2.add.spl
4. /usr/share/vim82/spell/pl.iso-8859-2.add.spl
5. ~/.vim/after/spell/pl.iso-8859-2.add.spl

This assumes 1. is not found and 2. is found.

If 'encoding' is "latin1" Vim will look for:
1. ~/.vim/spell/pl.latin1.spl
2. /usr/share/vim82/spell/pl.latin1.spl
3. ~/.vim/after/spell/pl.latin1.spl
4. ~/.vim/spell/pl.ascii.spl
5. /usr/share/vim82/spell/pl.ascii.spl
6. ~/.vim/after/spell/pl.ascii.spl

This assumes none of them are found (Polish doesn't make sense when leaving
out the non-ASCII characters).

Spelling for EBCDIC is currently not supported.

A spell file might not be available in the current 'encoding'. See
spell-mkspell about how to create a spell file. Converting a spell file

spell.txt — 1102

with "iconv" will NOT work!

Note: on VMS ".{enc}.spl" is changed to "_{enc}.spl" to avoid trouble with
filenames.

spell-sug-file E781
If there is a file with exactly the same name as the ".spl" file but ending in
".sug", that file will be used for giving better suggestions. It isn't loaded
before suggestions are made to reduce memory use.

E758 E759 E778 E779 E780 E782
When loading a spell file Vim checks that it is properly formatted. If you
get an error the file may be truncated, modified or intended for another Vim
version.

SPELLFILE CLEANUP spellfile-cleanup

The zw command turns existing entries in 'spellfile' into comment lines.
This avoids having to write a new file every time, but results in the file
only getting longer, never shorter. To clean up the comment lines in all
".add" spell files do this:

:runtime spell/cleanadd.vim

This deletes all comment lines, except the ones that start with "##". Use
"##" lines to add comments that you want to keep.

You can invoke this script as often as you like. A variable is provided to
skip updating files that have been changed recently. Set it to the number of
seconds that has passed since a file was changed before it will be cleaned.
For example, to clean only files that were not changed in the last hour:

let g:spell_clean_limit = 60 * 60
The default is one second.

WORDS

Vim uses a fixed method to recognize a word. This is independent of
'iskeyword', so that it also works in help files and for languages that
include characters like '-' in 'iskeyword'. The word characters do depend on
'encoding'.

The table with word characters is stored in the main .spl file. Therefore it
matters what the current locale is when generating it! A .add.spl file does
not contain a word table though.

For a word that starts with a digit the digit is ignored, unless the word as a
whole is recognized. Thus if "3D" is a word and "D" is not then "3D" is
recognized as a word, but if "3D" is not a word then only the "D" is marked as
bad. Hex numbers in the form 0x12ab and 0X12AB are recognized.

WORD COMBINATIONS

It is possible to spell-check words that include a space. This is used to
recognize words that are invalid when used by themselves, e.g. for "et al.".
It can also be used to recognize "the the" and highlight it.

The number of spaces is irrelevant. In most cases a line break may also
appear. However, this makes it difficult to find out where to start checking

spell.txt — 1103

for spelling mistakes. When you make a change to one line and only that line
is redrawn Vim won't look in the previous line, thus when "et" is at the end
of the previous line "al." will be flagged as an error. And when you type
"the<CR>the" the highlighting doesn't appear until the first line is redrawn.
Use CTRL-L to redraw right away. "[s" will also stop at a word combination
with a line break.

When encountering a line break Vim skips characters such as '*', '>' and '"',
so that comments in C, shell and Vim code can be spell checked.

SYNTAX HIGHLIGHTING spell-syntax

Files that use syntax highlighting can specify where spell checking should be
done:

1. everywhere default
2. in specific items use "contains=@Spell"
3. everywhere but specific items use "contains=@NoSpell"

For the second method adding the @NoSpell cluster will disable spell checking
again. This can be used, for example, to add @Spell to the comments of a
program, and add @NoSpell for items that shouldn't be checked.
Also see :syn-spell for text that is not in a syntax item.

VIM SCRIPTS

If you want to write a Vim script that does something with spelling, you may
find these functions useful:

spellbadword() find badly spelled word at the cursor
spellsuggest() get list of spelling suggestions
soundfold() get the sound-a-like version of a word

SETTING 'spellcapcheck' AUTOMATICALLY set-spc-auto

After the 'spelllang' option has been set successfully, Vim will source the
files "spell/LANG.vim" in 'runtimepath'. "LANG" is the value of 'spelllang'
up to the first comma, dot or underscore. This can be used to set options
specifically for the language, especially 'spellcapcheck'.

The distribution includes a few of these files. Use this command to see what
they do:

:next $VIMRUNTIME/spell/*.vim

Note that the default scripts don't set 'spellcapcheck' if it was changed from
the default value. This assumes the user prefers another value then.

DOUBLE SCORING spell-double-scoring

The 'spellsuggest' option can be used to select "double" scoring. This
mechanism is based on the principle that there are two kinds of spelling
mistakes:

1. You know how to spell the word, but mistype something. This results in a
small editing distance (character swapped/omitted/inserted) and possibly a
word that sounds completely different.

spell.txt — 1104

2. You don't know how to spell the word and type something that sounds right.
The edit distance can be big but the word is similar after sound-folding.

Since scores for these two mistakes will be very different we use a list
for each and mix them.

The sound-folding is slow and people that know the language won't make the
second kind of mistakes. Therefore 'spellsuggest' can be set to select the
preferred method for scoring the suggestions.

==
3. Generating a spell file spell-mkspell

Vim uses a binary file format for spelling. This greatly speeds up loading
the word list and keeps it small.

.aff .dic Myspell
You can create a Vim spell file from the .aff and .dic files that Myspell
uses. Myspell is used by OpenOffice.org and Mozilla. The OpenOffice .oxt
files are zip files which contain the .aff and .dic files. You should be able
to find them here:

http://extensions.services.openoffice.org/dictionary
The older, OpenOffice 2 files may be used if this doesn't work:

http://wiki.services.openoffice.org/wiki/Dictionaries
You can also use a plain word list. The results are the same, the choice
depends on what word lists you can find.

If you install Aap (from www.a-a-p.org) you can use the recipes in the
runtime/spell/??/ directories. Aap will take care of downloading the files,
apply patches needed for Vim and build the .spl file.

Make sure your current locale is set properly, otherwise Vim doesn't know what
characters are upper/lower case letters. If the locale isn't available (e.g.,
when using an MS-Windows codepage on Unix) add tables to the .aff file
spell-affix-chars . If the .aff file doesn't define a table then the word

table of the currently active spelling is used. If spelling is not active
then Vim will try to guess.

:mksp :mkspell
:mksp[ell][!] [-ascii] {outname} {inname} ...

Generate a Vim spell file from word lists. Example:
:mkspell /tmp/nl nl_NL.words

E751
When {outname} ends in ".spl" it is used as the output
file name. Otherwise it should be a language name,
such as "en", without the region name. The file
written will be "{outname}.{encoding}.spl", where
{encoding} is the value of the 'encoding' option.

When the output file already exists [!] must be used
to overwrite it.

When the [-ascii] argument is present, words with
non-ascii characters are skipped. The resulting file
ends in "ascii.spl".

The input can be the Myspell format files {inname}.aff
and {inname}.dic. If {inname}.aff does not exist then
{inname} is used as the file name of a plain word
list.

spell.txt — 1105

http://extensions.services.openoffice.org/dictionary
http://wiki.services.openoffice.org/wiki/Dictionaries

Multiple {inname} arguments can be given to combine
regions into one Vim spell file. Example:

:mkspell ~/.vim/spell/en /tmp/en_US /tmp/en_CA /tmp/en_AU
This combines the English word lists for US, CA and AU
into one en.spl file.
Up to eight regions can be combined. E754 E755
The REP and SAL items of the first .aff file where
they appear are used. spell-REP spell-SAL

E845
This command uses a lot of memory, required to find
the optimal word tree (Polish, Italian and Hungarian
require several hundred Mbyte). The final result will
be much smaller, because compression is used. To
avoid running out of memory compression will be done
now and then. This can be tuned with the 'mkspellmem'
option.

After the spell file was written and it was being used
in a buffer it will be reloaded automatically.

:mksp[ell] [-ascii] {name}.{enc}.add
Like ":mkspell" above, using {name}.{enc}.add as the
input file and producing an output file in the same
directory that has ".spl" appended.

:mksp[ell] [-ascii] {name}
Like ":mkspell" above, using {name} as the input file
and producing an output file in the same directory
that has ".{enc}.spl" appended.

Vim will report the number of duplicate words. This might be a mistake in the
list of words. But sometimes it is used to have different prefixes and
suffixes for the same basic word to avoid them combining (e.g. Czech uses
this). If you want Vim to report all duplicate words set the 'verbose'
option.

Since you might want to change a Myspell word list for use with Vim the
following procedure is recommended:

1. Obtain the xx_YY.aff and xx_YY.dic files from Myspell.
2. Make a copy of these files to xx_YY.orig.aff and xx_YY.orig.dic.
3. Change the xx_YY.aff and xx_YY.dic files to remove bad words, add missing

words, define word characters with FOL/LOW/UPP, etc. The distributed
"*.diff" files can be used.

4. Start Vim with the right locale and use :mkspell to generate the Vim
spell file.

5. Try out the spell file with ":set spell spelllang=xx" if you wrote it in
a spell directory in 'runtimepath', or ":set spelllang=xx.enc.spl" if you
wrote it somewhere else.

When the Myspell files are updated you can merge the differences:
1. Obtain the new Myspell files as xx_YY.new.aff and xx_UU.new.dic.
2. Use Vimdiff to see what changed:

vimdiff xx_YY.orig.dic xx_YY.new.dic
3. Take over the changes you like in xx_YY.dic.

You may also need to change xx_YY.aff.
4. Rename xx_YY.new.dic to xx_YY.orig.dic and xx_YY.new.aff to xx_YY.orig.aff.

spell.txt — 1106

SPELL FILE VERSIONS E770 E771 E772

Spell checking is a relatively new feature in Vim, thus it's possible that the
.spl file format will be changed to support more languages. Vim will check
the validity of the spell file and report anything wrong.

E771: Old spell file, needs to be updated
This spell file is older than your Vim. You need to update the .spl file.

E772: Spell file is for newer version of Vim
This means the spell file was made for a later version of Vim. You need to
update Vim.

E770: Unsupported section in spell file
This means the spell file was made for a later version of Vim and contains a
section that is required for the spell file to work. In this case it's
probably a good idea to upgrade your Vim.

SPELL FILE DUMP

If for some reason you want to check what words are supported by the currently
used spelling files, use this command:

:spelldump :spelld
:spelld[ump] Open a new window and fill it with all currently valid

words. Compound words are not included.
Note: For some languages the result may be enormous,
causing Vim to run out of memory.

:spelld[ump]! Like ":spelldump" and include the word count. This is
the number of times the word was found while
updating the screen. Words that are in COMMON items
get a starting count of 10.

The format of the word list is used spell-wordlist-format . You should be
able to read it with ":mkspell" to generate one .spl file that includes all
the words.

When all entries to 'spelllang' use the same regions or no regions at all then
the region information is included in the dumped words. Otherwise only words
for the current region are included and no "/regions" line is generated.

Comment lines with the name of the .spl file are used as a header above the
words that were generated from that .spl file.

SPELL FILE MISSING spell-SpellFileMissing spellfile.vim

If the spell file for the language you are using is not available, you will
get an error message. But if the "spellfile.vim" plugin is active it will
offer you to download the spell file. Just follow the instructions, it will
ask you where to write the file (there must be a writable directory in
'runtimepath' for this).

The plugin has a default place where to look for spell files, on the Vim ftp
server. The protocol used is SSL (https://) for security. If you want to use
another location or another protocol, set the g:spellfile_URL variable to the
directory that holds the spell files. You can use http:// or ftp://, but you
are taking a security risk then. The netrw plugin is used for getting the

spell.txt — 1107

file, look there for the specific syntax of the URL. Example:
let g:spellfile_URL = 'https://ftp.nluug.nl/vim/runtime/spell'

You may need to escape special characters.

The plugin will only ask about downloading a language once. If you want to
try again anyway restart Vim, or set g:spellfile_URL to another value (e.g.,
prepend a space).

To avoid using the "spellfile.vim" plugin do this in your vimrc file:

let loaded_spellfile_plugin = 1

Instead of using the plugin you can define a SpellFileMissing autocommand to
handle the missing file yourself. You can use it like this:

:au SpellFileMissing * call Download_spell_file(expand('<amatch>'))

Thus the <amatch> item contains the name of the language. Another important
value is 'encoding', since every encoding has its own spell file. With two
exceptions:
- For ISO-8859-15 (latin9) the name "latin1" is used (the encodings only

differ in characters not used in dictionary words).
- The name "ascii" may also be used for some languages where the words use

only ASCII letters for most of the words.

The default "spellfile.vim" plugin uses this autocommand, if you define your
autocommand afterwards you may want to use ":au! SpellFileMissing" to overrule
it. If you define your autocommand before the plugin is loaded it will notice
this and not do anything.

E797
Note that the SpellFileMissing autocommand must not change or destroy the
buffer the user was editing.

==
4. Spell file format spell-file-format

This is the format of the files that are used by the person who creates and
maintains a word list.

Note that we avoid the word "dictionary" here. That is because the goal of
spell checking differs from writing a dictionary (as in the book). For
spelling we need a list of words that are OK, thus should not be highlighted.
Person and company names will not appear in a dictionary, but do appear in a
word list. And some old words are rarely used while they are common
misspellings. These do appear in a dictionary but not in a word list.

There are two formats: A straight list of words and a list using affix
compression. The files with affix compression are used by Myspell (Mozilla
and OpenOffice.org). This requires two files, one with .aff and one with .dic
extension.

FORMAT OF STRAIGHT WORD LIST spell-wordlist-format

The words must appear one per line. That is all that is required.

Additionally the following items are recognized:

- Empty and blank lines are ignored.

spell.txt — 1108

comment
- Lines starting with a # are ignored (comment lines).

/encoding=utf-8
- A line starting with "/encoding=", before any word, specifies the encoding

of the file. After the second '=' comes an encoding name. This tells Vim
to setup conversion from the specified encoding to 'encoding'. Thus you can
use one word list for several target encodings.

/regions=usca
- A line starting with "/regions=" specifies the region names that are

supported. Each region name must be two ASCII letters. The first one is
region 1. Thus "/regions=usca" has region 1 "us" and region 2 "ca".
In an addition word list the region names should be equal to the main word
list!

- Other lines starting with '/' are reserved for future use. The ones that
are not recognized are ignored. You do get a warning message, so that you
know something won't work.

- A "/" may follow the word with the following items:
= Case must match exactly.
? Rare word.
! Bad (wrong) word.
1 to 9 A region in which the word is valid. If no regions are

specified the word is valid in all regions.

Example:

This is an example word list comment
/encoding=latin1 encoding of the file
/regions=uscagb regions "us", "ca" and "gb"
example word for all regions
blah/12 word for regions "us" and "ca"
vim/! bad word
Campbell/?3 rare word in region 3 "gb"
's mornings/= keep-case word

Note that when "/=" is used the same word with all upper-case letters is not
accepted. This is different from a word with mixed case that is automatically
marked as keep-case, those words may appear in all upper-case letters.

FORMAT WITH .AFF AND .DIC FILES aff-dic-format

There are two files: the basic word list and an affix file. The affix file
specifies settings for the language and can contain affixes. The affixes are
used to modify the basic words to get the full word list. This significantly
reduces the number of words, especially for a language like Polish. This is
called affix compression.

The basic word list and the affix file are combined with the ":mkspell"
command and results in a binary spell file. All the preprocessing has been
done, thus this file loads fast. The binary spell file format is described in
the source code (src/spell.c). But only developers need to know about it.

The preprocessing also allows us to take the Myspell language files and modify
them before the Vim word list is made. The tools for this can be found in the
"src/spell" directory.

spell.txt — 1109

The format for the affix and word list files is based on what Myspell uses
(the spell checker of Mozilla and OpenOffice.org). A description can be found
here:

http://lingucomponent.openoffice.org/affix.readme
Note that affixes are case sensitive, this isn't obvious from the description.

Vim supports quite a few extras. They are described below spell-affix-vim .
Attempts have been made to keep this compatible with other spell checkers, so
that the same files can often be used. One other project that offers more
than Myspell is Hunspell (http://hunspell.sf.net).

WORD LIST FORMAT spell-dic-format

A short example, with line numbers:

1 1234
2 aan
3 Als
4 Etten-Leur
5 et al.
6 's-Gravenhage
7 's-Gravenhaags
8 # word that differs between regions
9 kado/1
10 cadeau/2
11 TCP,IP
12 /the S affix may add a 's'
13 bedel/S

The first line contains the number of words. Vim ignores it, but you do get
an error message if it's not there. E760

What follows is one word per line. White space at the end of the line is
ignored, all other white space matters. The encoding is specified in the
affix file spell-SET .

Comment lines start with '#' or '/'. See the example lines 8 and 12. Note
that putting a comment after a word is NOT allowed:

someword # comment that causes an error!

After the word there is an optional slash and flags. Most of these flags are
letters that indicate the affixes that can be used with this word. These are
specified with SFX and PFX lines in the .aff file, see spell-SFX and
spell-PFX . Vim allows using other flag types with the FLAG item in the

affix file spell-FLAG .

When the word only has lower-case letters it will also match with the word
starting with an upper-case letter.

When the word includes an upper-case letter, this means the upper-case letter
is required at this position. The same word with a lower-case letter at this
position will not match. When some of the other letters are upper-case it will
not match either.

The word with all upper-case characters will always be OK,

word list matches does not match
als als Als ALS ALs AlS aLs aLS

spell.txt — 1110

http://hunspell.sf.net

Als Als ALS als ALs AlS aLs aLS
ALS ALS als Als ALs AlS aLs aLS
AlS AlS ALS als Als ALs aLs aLS

The KEEPCASE affix ID can be used to specifically match a word with identical
case only, see below spell-KEEPCASE .

Note: in line 5 to 7 non-word characters are used. You can include any
character in a word. When checking the text a word still only matches when it
appears with a non-word character before and after it. For Myspell a word
starting with a non-word character probably won't work.

In line 12 the word "TCP/IP" is defined. Since the slash has a special
meaning the comma is used instead. This is defined with the SLASH item in the
affix file, see spell-SLASH . Note that without this SLASH item the word
will be "TCP,IP".

AFFIX FILE FORMAT spell-aff-format spell-affix-vim

spell-affix-comment
Comment lines in the .aff file start with a '#':

comment line

Items with a fixed number of arguments can be followed by a comment. But only
if none of the arguments can contain white space. The comment must start with
a "#" character. Example:

KEEPCASE = # fix case for words with this flag

ENCODING spell-SET

The affix file can be in any encoding that is supported by "iconv". However,
in some cases the current locale should also be set properly at the time
:mkspell is invoked. Adding FOL/LOW/UPP lines removes this requirement
spell-FOL .

The encoding should be specified before anything where the encoding matters.
The encoding applies both to the affix file and the dictionary file. It is
done with a SET line:

SET utf-8

The encoding can be different from the value of the 'encoding' option at the
time ":mkspell" is used. Vim will then convert everything to 'encoding' and
generate a spell file for 'encoding'. If some of the used characters to not
fit in 'encoding' you will get an error message.

spell-affix-mbyte
When using a multibyte encoding it's possible to use more different affix
flags. But Myspell doesn't support that, thus you may not want to use it
anyway. For compatibility use an 8-bit encoding.

INFORMATION

These entries in the affix file can be used to add information to the spell
file. There are no restrictions on the format, but they should be in the
right encoding.

spell.txt — 1111

spell-NAME spell-VERSION spell-HOME
spell-AUTHOR spell-EMAIL spell-COPYRIGHT

NAME Name of the language
VERSION 1.0.1 with fixes
HOME http://www.myhome.eu
AUTHOR John Doe
EMAIL john AT Doe DOT net
COPYRIGHT LGPL

These fields are put in the .spl file as-is. The :spellinfo command can be
used to view the info.

:spellinfo :spelli
:spelli[nfo] Display the information for the spell file(s) used for

the current buffer.

CHARACTER TABLES
spell-affix-chars

When using an 8-bit encoding the affix file should define what characters are
word characters. This is because the system where ":mkspell" is used may not
support a locale with this encoding and isalpha() won't work. For example
when using "cp1250" on Unix.

E761 E762 spell-FOL
spell-LOW spell-UPP

Three lines in the affix file are needed. Simplistic example:

FOL áëñ
LOW áëñ
UPP ÁËÑ

All three lines must have exactly the same number of characters.

The "FOL" line specifies the case-folded characters. These are used to
compare words while ignoring case. For most encodings this is identical to
the lower case line.

The "LOW" line specifies the characters in lower-case. Mostly it's equal to
the "FOL" line.

The "UPP" line specifies the characters with upper-case. That is, a character
is upper-case where it's different from the character at the same position in
"FOL".

An exception is made for the German sharp s ß. The upper-case version is
"SS". In the FOL/LOW/UPP lines it should be included, so that it's recognized
as a word character, but use the ß character in all three.

ASCII characters should be omitted, Vim always handles these in the same way.
When the encoding is UTF-8 no word characters need to be specified.

E763
Vim allows you to use spell checking for several languages in the same file.
You can list them in the 'spelllang' option. As a consequence all spell files
for the same encoding must use the same word characters, otherwise they can't
be combined without errors.

If you get an E763 warning that the word tables differ you need to update your
".spl" spell files. If you downloaded the files, get the latest version of

spell.txt — 1112

http://www.myhome.eu

all spell files you use. If you are only using one, e.g., German, then also
download the recent English spell files. Otherwise generate the .spl file
again with :mkspell . If you still get errors check the FOL, LOW and UPP
lines in the used .aff files.

The XX.ascii.spl spell file generated with the "-ascii" argument will not
contain the table with characters, so that it can be combine with spell files
for any encoding. The .add.spl files also do not contain the table.

MID-WORD CHARACTERS
spell-midword

Some characters are only to be considered word characters if they are used in
between two ordinary word characters. An example is the single quote: It is
often used to put text in quotes, thus it can't be recognized as a word
character, but when it appears in between word characters it must be part of
the word. This is needed to detect a spelling error such as they'are. That
should be they're, but since "they" and "are" are words themselves that would
go unnoticed.

These characters are defined with MIDWORD in the .aff file. Example:

MIDWORD '-

FLAG TYPES spell-FLAG

Flags are used to specify the affixes that can be used with a word and for
other properties of the word. Normally single-character flags are used. This
limits the number of possible flags, especially for 8-bit encodings. The FLAG
item can be used if more affixes are to be used. Possible values:

FLAG long use two-character flags
FLAG num use numbers, from 1 up to 65000
FLAG caplong use one-character flags without A-Z and two-character

flags that start with A-Z

With "FLAG num" the numbers in a list of affixes need to be separated with a
comma: "234,2143,1435". This method is inefficient, but useful if the file is
generated with a program.

When using "caplong" the two-character flags all start with a capital: "Aa",
"B1", "BB", etc. This is useful to use one-character flags for the most
common items and two-character flags for uncommon items.

Note: When using utf-8 only characters up to 65000 may be used for flags.

Note: even when using "num" or "long" the number of flags available to
compounding and prefixes is limited to about 250.

AFFIXES spell-PFX spell-SFX

The usual PFX (prefix) and SFX (suffix) lines are supported (see the Myspell
documentation or the Aspell manual:
http://aspell.net/man-html/Affix-Compression.html).

Summary:
SFX L Y 2
SFX L 0 re [^x]

spell.txt — 1113

http://aspell.net/man-html/Affix-Compression.html

SFX L 0 ro x

The first line is a header and has four fields:
SFX {flag} {combine} {count}

{flag} The name used for the suffix. Mostly it's a single letter,
but other characters can be used, see spell-FLAG .

{combine} Can be 'Y' or 'N'. When 'Y' then the word plus suffix can
also have a prefix. When 'N' then a prefix is not allowed.

{count} The number of lines following. If this is wrong you will get
an error message.

For PFX the fields are exactly the same.

The basic format for the following lines is:
SFX {flag} {strip} {add} {condition} {extra}

{flag} Must be the same as the {flag} used in the first line.

{strip} Characters removed from the basic word. There is no check if
the characters are actually there, only the length is used (in
bytes). This better match the {condition}, otherwise strange
things may happen. If the {strip} length is equal to or
longer than the basic word the suffix won't be used.
When {strip} is 0 (zero) then nothing is stripped.

{add} Characters added to the basic word, after removing {strip}.
Optionally there is a '/' followed by flags. The flags apply
to the word plus affix. See spell-affix-flags

{condition} A simplistic pattern. Only when this matches with a basic
word will the suffix be used for that word. This is normally
for using one suffix letter with different {add} and {strip}
fields for words with different endings.
When {condition} is a . (dot) there is no condition.
The pattern may contain:
- Literal characters.
- A set of characters in []. [abc] matches a, b and c.
A dash is allowed for a range [a-c], but this is
Vim-specific.

- A set of characters that starts with a ^, meaning the
complement of the specified characters. [^abc] matches any
character but a, b and c.

{extra} Optional extra text:
comment Comment is ignored
- Hunspell uses this, ignored

For PFX the fields are the same, but the {strip}, {add} and {condition} apply
to the start of the word.

Note: Myspell ignores any extra text after the relevant info. Vim requires
this text to start with a "#" so that mistakes don't go unnoticed. Example:

SFX F 0 in [^i]n # Spion > Spionin
SFX F 0 nen in # Bauerin > Bauerinnen

However, to avoid lots of errors in affix files written for Myspell, you can

spell.txt — 1114

add the IGNOREEXTRA flag.

Apparently Myspell allows an affix name to appear more than once. Since this
might also be a mistake, Vim checks for an extra "S". The affix files for
Myspell that use this feature apparently have this flag. Example:

SFX a Y 1 S
SFX a 0 an .

SFX a Y 2 S
SFX a 0 en .
SFX a 0 on .

AFFIX FLAGS spell-affix-flags

This is a feature that comes from Hunspell: The affix may specify flags. This
works similar to flags specified on a basic word. The flags apply to the
basic word plus the affix (but there are restrictions). Example:

SFX S Y 1
SFX S 0 s .

SFX A Y 1
SFX A 0 able/S .

When the dictionary file contains "drink/AS" then these words are possible:

drink
drinks uses S suffix
drinkable uses A suffix
drinkables uses A suffix and then S suffix

Generally the flags of the suffix are added to the flags of the basic word,
both are used for the word plus suffix. But the flags of the basic word are
only used once for affixes, except that both one prefix and one suffix can be
used when both support combining.

Specifically, the affix flags can be used for:
- Suffixes on suffixes, as in the example above. This works once, thus you

can have two suffixes on a word (plus one prefix).
- Making the word with the affix rare, by using the spell-RARE flag.
- Exclude the word with the affix from compounding, by using the

spell-COMPOUNDFORBIDFLAG flag.
- Allow the word with the affix to be part of a compound word on the side of

the affix with the spell-COMPOUNDPERMITFLAG .
- Use the NEEDCOMPOUND flag: word plus affix can only be used as part of a

compound word. spell-NEEDCOMPOUND
- Compound flags: word plus affix can be part of a compound word at the end,

middle, start, etc. The flags are combined with the flags of the basic
word. spell-compound

- NEEDAFFIX: another affix is needed to make a valid word.
- CIRCUMFIX, as explained just below.

IGNOREEXTRA spell-IGNOREEXTRA

Normally Vim gives an error for an extra field that does not start with '#'.
This avoids errors going unnoticed. However, some files created for Myspell
or Hunspell may contain many entries with an extra field. Use the IGNOREEXTRA

spell.txt — 1115

flag to avoid lots of errors.

CIRCUMFIX spell-CIRCUMFIX

The CIRCUMFIX flag means a prefix and suffix must be added at the same time.
If a prefix has the CIRCUMFIX flag then only suffixes with the CIRCUMFIX flag
can be added, and the other way around.
An alternative is to only specify the suffix, and give that suffix two flags:
the required prefix and the NEEDAFFIX flag. spell-NEEDAFFIX

PFXPOSTPONE spell-PFXPOSTPONE

When an affix file has very many prefixes that apply to many words it's not
possible to build the whole word list in memory. This applies to Hebrew (a
list with all words is over a Gbyte). In that case applying prefixes must be
postponed. This makes spell checking slower. It is indicated by this keyword
in the .aff file:

PFXPOSTPONE

Only prefixes without a chop string and without flags can be postponed.
Prefixes with a chop string or with flags will still be included in the word
list. An exception if the chop string is one character and equal to the last
character of the added string, but in lower case. Thus when the chop string
is used to allow the following word to start with an upper case letter.

WORDS WITH A SLASH spell-SLASH

The slash is used in the .dic file to separate the basic word from the affix
letters and other flags. Unfortunately, this means you cannot use a slash in
a word. Thus "TCP/IP" is not a word but "TCP" with the flags "IP". To include
a slash in the word put a backslash before it: "TCP\/IP". In the rare case
you want to use a backslash inside a word you need to use two backslashes.
Any other use of the backslash is reserved for future expansion.

KEEP-CASE WORDS spell-KEEPCASE

In the affix file a KEEPCASE line can be used to define the affix name used
for keep-case words. Example:

KEEPCASE =

This flag is not supported by Myspell. It has the meaning that case matters.
This can be used if the word does not have the first letter in upper case at
the start of a sentence. Example:

word list matches does not match
's morgens/= 's morgens 'S morgens 's Morgens 'S MORGENS
's Morgens 's Morgens 'S MORGENS 'S morgens 's morgens

The flag can also be used to avoid that the word matches when it is in all
upper-case letters.

RARE WORDS spell-RARE

spell.txt — 1116

In the affix file a RARE line can be used to define the affix name used for
rare words. Example:

RARE ?

Rare words are highlighted differently from bad words. This is to be used for
words that are correct for the language, but are hardly ever used and could be
a typing mistake anyway. When the same word is found as good it won't be
highlighted as rare.

This flag can also be used on an affix, so that a basic word is not rare but
the basic word plus affix is rare spell-affix-flags . However, if the word
also appears as a good word in another way (e.g., in another region) it won't
be marked as rare.

BAD WORDS spell-BAD

In the affix file a BAD line can be used to define the affix name used for
bad words. Example:

BAD !

This can be used to exclude words that would otherwise be good. For example
"the the" in the .dic file:

the the/!

Once a word has been marked as bad it won't be undone by encountering the same
word as good.

The flag also applies to the word with affixes, thus this can be used to mark
a whole bunch of related words as bad.

spell-FORBIDDENWORD
FORBIDDENWORD can be used just like BAD. For compatibility with Hunspell.

spell-NEEDAFFIX
The NEEDAFFIX flag is used to require that a word is used with an affix. The
word itself is not a good word (unless there is an empty affix). Example:

NEEDAFFIX +

COMPOUND WORDS spell-compound

A compound word is a longer word made by concatenating words that appear in
the .dic file. To specify which words may be concatenated a character is
used. This character is put in the list of affixes after the word. We will
call this character a flag here. Obviously these flags must be different from
any affix IDs used.

spell-COMPOUNDFLAG
The Myspell compatible method uses one flag, specified with COMPOUNDFLAG. All
words with this flag combine in any order. This means there is no control
over which word comes first. Example:

COMPOUNDFLAG c

spell-COMPOUNDRULE
A more advanced method to specify how compound words can be formed uses

spell.txt — 1117

multiple items with multiple flags. This is not compatible with Myspell 3.0.
Let's start with an example:

COMPOUNDRULE c+
COMPOUNDRULE se

The first line defines that words with the "c" flag can be concatenated in any
order. The second line defines compound words that are made of one word with
the "s" flag and one word with the "e" flag. With this dictionary:

bork/c
onion/s
soup/e

You can make these words:
bork
borkbork
borkborkbork
(etc.)
onion
soup
onionsoup

The COMPOUNDRULE item may appear multiple times. The argument is made out of
one or more groups, where each group can be:

one flag e.g., c
alternate flags inside [] e.g., [abc]

Optionally this may be followed by:
* the group appears zero or more times, e.g., sm*e
+ the group appears one or more times, e.g., c+
? the group appears zero times or once, e.g., x?

This is similar to the regexp pattern syntax (but not the same!). A few
examples with the sequence of word flags they require:

COMPOUNDRULE x+ x xx xxx etc.
COMPOUNDRULE yz yz
COMPOUNDRULE x+z xz xxz xxxz etc.
COMPOUNDRULE yx+ yx yxx yxxx etc.
COMPOUNDRULE xy?z xz xyz

COMPOUNDRULE [abc]z az bz cz
COMPOUNDRULE [abc]+z az aaz abaz bz baz bcbz cz caz cbaz etc.
COMPOUNDRULE a[xyz]+ ax axx axyz ay ayx ayzz az azy azxy etc.
COMPOUNDRULE sm*e se sme smme smmme etc.
COMPOUNDRULE s[xyz]*e se sxe sxye sxyxe sye syze sze szye szyxe etc.

A specific example: Allow a compound to be made of two words and a dash:
In the .aff file:

COMPOUNDRULE sde
NEEDAFFIX x
COMPOUNDWORDMAX 3
COMPOUNDMIN 1

In the .dic file:
start/s
end/e
-/xd

This allows for the word "start-end", but not "startend".

An additional implied rule is that, without further flags, a word with a
prefix cannot be compounded after another word, and a word with a suffix
cannot be compounded with a following word. Thus the affix cannot appear

spell.txt — 1118

on the inside of a compound word. This can be changed with the
spell-COMPOUNDPERMITFLAG .

spell-NEEDCOMPOUND
The NEEDCOMPOUND flag is used to require that a word is used as part of a
compound word. The word itself is not a good word. Example:

NEEDCOMPOUND &

spell-ONLYINCOMPOUND
The ONLYINCOMPOUND does exactly the same as NEEDCOMPOUND. Supported for
compatibility with Hunspell.

spell-COMPOUNDMIN
The minimal character length of a word used for compounding is specified with
COMPOUNDMIN. Example:

COMPOUNDMIN 5

When omitted there is no minimal length. Obviously you could just leave out
the compound flag from short words instead, this feature is present for
compatibility with Myspell.

spell-COMPOUNDWORDMAX
The maximum number of words that can be concatenated into a compound word is
specified with COMPOUNDWORDMAX. Example:

COMPOUNDWORDMAX 3

When omitted there is no maximum. It applies to all compound words.

To set a limit for words with specific flags make sure the items in
COMPOUNDRULE where they appear don't allow too many words.

spell-COMPOUNDSYLMAX
The maximum number of syllables that a compound word may contain is specified
with COMPOUNDSYLMAX. Example:

COMPOUNDSYLMAX 6

This has no effect if there is no SYLLABLE item. Without COMPOUNDSYLMAX there
is no limit on the number of syllables.

If both COMPOUNDWORDMAX and COMPOUNDSYLMAX are defined, a compound word is
accepted if it fits one of the criteria, thus is either made from up to
COMPOUNDWORDMAX words or contains up to COMPOUNDSYLMAX syllables.

spell-COMPOUNDFORBIDFLAG
The COMPOUNDFORBIDFLAG specifies a flag that can be used on an affix. It
means that the word plus affix cannot be used in a compound word. Example:

affix file:
COMPOUNDFLAG c
COMPOUNDFORBIDFLAG x
SFX a Y 2
SFX a 0 s .
SFX a 0 ize/x .

dictionary:
word/c
util/ac

This allows for "wordutil" and "wordutils" but not "wordutilize".
Note: this doesn't work for postponed prefixes yet.

spell.txt — 1119

spell-COMPOUNDPERMITFLAG
The COMPOUNDPERMITFLAG specifies a flag that can be used on an affix. It
means that the word plus affix can also be used in a compound word in a way
where the affix ends up halfway the word. Without this flag that is not
allowed.
Note: this doesn't work for postponed prefixes yet.

spell-COMPOUNDROOT
The COMPOUNDROOT flag is used for words in the dictionary that are already a
compound. This means it counts for two words when checking the compounding
rules. Can also be used for an affix to count the affix as a compounding
word.

spell-CHECKCOMPOUNDPATTERN
CHECKCOMPOUNDPATTERN is used to define patterns that, when matching at the
position where two words are compounded together forbids the compound.
For example:

CHECKCOMPOUNDPATTERN o e

This forbids compounding if the first word ends in "o" and the second word
starts with "e".

The arguments must be plain text, no patterns are actually supported, despite
the item name. Case is always ignored.

The Hunspell feature to use three arguments and flags is not supported.

spell-NOCOMPOUNDSUGS
This item indicates that using compounding to make suggestions is not a good
idea. Use this when compounding is used with very short or one-character
words. E.g. to make numbers out of digits. Without this flag creating
suggestions would spend most time trying all kind of weird compound words.

NOCOMPOUNDSUGS

spell-SYLLABLE
The SYLLABLE item defines characters or character sequences that are used to
count the number of syllables in a word. Example:

SYLLABLE aáeéiíoóöõuúüûy/aa/au/ea/ee/ei/ie/oa/oe/oo/ou/uu/ui

Before the first slash is the set of characters that are counted for one
syllable, also when repeated and mixed, until the next character that is not
in this set. After the slash come sequences of characters that are counted
for one syllable. These are preferred over using characters from the set.
With the example "ideeen" has three syllables, counted by "i", "ee" and "e".

Only case-folded letters need to be included.

Another way to restrict compounding was mentioned above: Adding the
spell-COMPOUNDFORBIDFLAG flag to an affix causes all words that are made

with that affix to not be used for compounding.

UNLIMITED COMPOUNDING spell-NOBREAK

For some languages, such as Thai, there is no space in between words. This
looks like all words are compounded. To specify this use the NOBREAK item in
the affix file, without arguments:

NOBREAK

spell.txt — 1120

Vim will try to figure out where one word ends and a next starts. When there
are spelling mistakes this may not be quite right.

spell-COMMON
Common words can be specified with the COMMON item. This will give better
suggestions when editing a short file. Example:

COMMON the of to and a in is it you that he she was for on are

The words must be separated by white space, up to 25 per line.
When multiple regions are specified in a ":mkspell" command the common words
for all regions are combined and used for all regions.

spell-NOSPLITSUGS
This item indicates that splitting a word to make suggestions is not a good
idea. Split-word suggestions will appear only when there are few similar
words.

NOSPLITSUGS

spell-NOSUGGEST
The flag specified with NOSUGGEST can be used for words that will not be
suggested. Can be used for obscene words.

NOSUGGEST %

REPLACEMENTS spell-REP

In the affix file REP items can be used to define common mistakes. This is
used to make spelling suggestions. The items define the "from" text and the
"to" replacement. Example:

REP 4
REP f ph
REP ph f
REP k ch
REP ch k

The first line specifies the number of REP lines following. Vim ignores the
number, but it must be there (for compatibility with Myspell).

Don't include simple one-character replacements or swaps. Vim will try these
anyway. You can include whole words if you want to, but you might want to use
the "file:" item in 'spellsuggest' instead.

You can include a space by using an underscore:

REP the_the the

SIMILAR CHARACTERS spell-MAP E783

In the affix file MAP items can be used to define letters that are very much
alike. This is mostly used for a letter with different accents. This is used
to prefer suggestions with these letters substituted. Example:

MAP 2
MAP eéëêè

spell.txt — 1121

MAP uüùúû

The first line specifies the number of MAP lines following. Vim ignores the
number, but the line must be there.

Each letter must appear in only one of the MAP items. It's a bit more
efficient if the first letter is ASCII or at least one without accents.

.SUG FILE spell-NOSUGFILE

When soundfolding is specified in the affix file then ":mkspell" will normally
produce a .sug file next to the .spl file. This file is used to find
suggestions by their sound-a-like form quickly. At the cost of a lot of
memory (the amount depends on the number of words, :mkspell will display an
estimate when it's done).

To avoid producing a .sug file use this item in the affix file:

NOSUGFILE

Users can simply omit the .sug file if they don't want to use it.

SOUND-A-LIKE spell-SAL

In the affix file SAL items can be used to define the sounds-a-like mechanism
to be used. The main items define the "from" text and the "to" replacement.
Simplistic example:

SAL CIA X
SAL CH X
SAL C K
SAL K K

There are a few rules and this can become quite complicated. An explanation
how it works can be found in the Aspell manual:
http://aspell.net/man-html/Phonetic-Code.html.

There are a few special items:

SAL followup true
SAL collapse_result true
SAL remove_accents true

"1" has the same meaning as "true". Any other value means "false".

SIMPLE SOUNDFOLDING spell-SOFOFROM spell-SOFOTO

The SAL mechanism is complex and slow. A simpler mechanism is mapping all
characters to another character, mapping similar sounding characters to the
same character. At the same time this does case folding. You can not have
both SAL items and simple soundfolding.

There are two items required: one to specify the characters that are mapped
and one that specifies the characters they are mapped to. They must have
exactly the same number of characters. Example:

SOFOFROM abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

spell.txt — 1122

http://aspell.net/man-html/Phonetic-Code.html

SOFOTO ebctefghejklnnepkrstevvkesebctefghejklnnepkrstevvkes

In the example all vowels are mapped to the same character 'e'. Another
method would be to leave out all vowels. Some characters that sound nearly
the same and are often mixed up, such as 'm' and 'n', are mapped to the same
character. Don't do this too much, all words will start looking alike.

Characters that do not appear in SOFOFROM will be left out, except that all
white space is replaced by one space. Sequences of the same character in
SOFOFROM are replaced by one.

You can use the soundfold() function to try out the results. Or set the
'verbose' option to see the score in the output of the z= command.

UNSUPPORTED ITEMS spell-affix-not-supported

These items appear in the affix file of other spell checkers. In Vim they are
ignored, not supported or defined in another way.

ACCENT (Hunspell) spell-ACCENT
Use MAP instead. spell-MAP

BREAK (Hunspell) spell-BREAK
Define break points. Unclear how it works exactly.
Not supported.

CHECKCOMPOUNDCASE (Hunspell) spell-CHECKCOMPOUNDCASE
Disallow uppercase letters at compound word boundaries.
Not supported.

CHECKCOMPOUNDDUP (Hunspell) spell-CHECKCOMPOUNDDUP
Disallow using the same word twice in a compound. Not
supported.

CHECKCOMPOUNDREP (Hunspell) spell-CHECKCOMPOUNDREP
Something about using REP items and compound words. Not
supported.

CHECKCOMPOUNDTRIPLE (Hunspell) spell-CHECKCOMPOUNDTRIPLE
Forbid three identical characters when compounding. Not
supported.

CHECKSHARPS (Hunspell) spell-CHECKSHARPS
SS letter pair in uppercased (German) words may be upper case
sharp s (ß). Not supported.

COMPLEXPREFIXES (Hunspell) spell-COMPLEXPREFIXES
Enables using two prefixes. Not supported.

COMPOUND (Hunspell) spell-COMPOUND
This is one line with the count of COMPOUND items, followed by
that many COMPOUND lines with a pattern.
Remove the first line with the count and rename the other
items to COMPOUNDRULE spell-COMPOUNDRULE

COMPOUNDFIRST (Hunspell) spell-COMPOUNDFIRST
Use COMPOUNDRULE instead. spell-COMPOUNDRULE

COMPOUNDBEGIN (Hunspell) spell-COMPOUNDBEGIN

spell.txt — 1123

Words signed with COMPOUNDBEGIN may be first elements in
compound words.
Use COMPOUNDRULE instead. spell-COMPOUNDRULE

COMPOUNDLAST (Hunspell) spell-COMPOUNDLAST
Words signed with COMPOUNDLAST may be last elements in
compound words.
Use COMPOUNDRULE instead. spell-COMPOUNDRULE

COMPOUNDEND (Hunspell) spell-COMPOUNDEND
Probably the same as COMPOUNDLAST

COMPOUNDMIDDLE (Hunspell) spell-COMPOUNDMIDDLE
Words signed with COMPOUNDMIDDLE may be middle elements in
compound words.
Use COMPOUNDRULE instead. spell-COMPOUNDRULE

COMPOUNDRULES (Hunspell) spell-COMPOUNDRULES
Number of COMPOUNDRULE lines following. Ignored, but the
argument must be a number.

COMPOUNDSYLLABLE (Hunspell) spell-COMPOUNDSYLLABLE
Use SYLLABLE and COMPOUNDSYLMAX instead. spell-SYLLABLE
spell-COMPOUNDSYLMAX

KEY (Hunspell) spell-KEY
Define characters that are close together on the keyboard.
Used to give better suggestions. Not supported.

LANG (Hunspell) spell-LANG
This specifies language-specific behavior. This actually
moves part of the language knowledge into the program,
therefore Vim does not support it. Each language property
must be specified separately.

LEMMA_PRESENT (Hunspell) spell-LEMMA_PRESENT
Only needed for morphological analysis.

MAXNGRAMSUGS (Hunspell) spell-MAXNGRAMSUGS
Set number of n-gram suggestions. Not supported.

PSEUDOROOT (Hunspell) spell-PSEUDOROOT
Use NEEDAFFIX instead. spell-NEEDAFFIX

SUGSWITHDOTS (Hunspell) spell-SUGSWITHDOTS
Adds dots to suggestions. Vim doesn't need this.

SYLLABLENUM (Hunspell) spell-SYLLABLENUM
Not supported.

TRY (Myspell, Hunspell, others) spell-TRY
Vim does not use the TRY item, it is ignored. For making
suggestions the actual characters in the words are used, that
is much more efficient.

WORDCHARS (Hunspell) spell-WORDCHARS
Used to recognize words. Vim doesn't need it, because there
is no need to separate words before checking them (using a
trie instead of a hashtable).

spell.txt — 1124

spell.txt — 1125

spell.txt — 1126

diff.txt For Vim version 9.1. Last change: 2024 Feb 01

VIM REFERENCE MANUAL by Bram Moolenaar

diff vimdiff gvimdiff diff-mode
This file describes the +diff feature: Showing differences between two to
eight versions of the same file.

The basics are explained in section 08.7 of the user manual.

1. Starting diff mode start-vimdiff
2. Viewing diffs view-diffs
3. Jumping to diffs jumpto-diffs
4. Copying diffs copy-diffs
5. Diff options diff-options

==
1. Starting diff mode start-vimdiff

The easiest way to start editing in diff mode is with the "vimdiff" command.
This starts Vim as usual, and additionally sets up for viewing the differences
between the arguments.

vimdiff file1 file2 [file3 [file4]]

This is equivalent to:

vim -d file1 file2 [file3 [file4]]

You may also use "gvimdiff" or "vim -d -g". The GUI is started then.
You may also use "viewdiff" or "gviewdiff". Vim starts in readonly mode then.
"r" may be prepended for restricted mode (see -Z).

The second and following arguments may also be a directory name. Vim will
then append the file name of the first argument to the directory name to find
the file.

By default an internal diff library will be used. When 'diffopt' or
'diffexpr' has been set an external "diff" command will be used. This only
works when such a diff program is available.

Diffs are local to the current tab page tab-page . You can't see diffs with
a window in another tab page. This does make it possible to have several
diffs at the same time, each in their own tab page.

What happens is that Vim opens a window for each of the files. This is like
using the -O argument. This uses vertical splits. If you prefer horizontal
splits add the -o argument:

vimdiff -o file1 file2 [file3 [file4]]

If you always prefer horizontal splits include "horizontal" in 'diffopt'.

In each of the edited files these options are set:

'diff' on
'scrollbind' on
'cursorbind' on

diff.txt — 1127

'scrollopt' includes "hor"
'wrap' off, or leave as-is if 'diffopt' includes "followwrap"
'foldmethod' "diff"
'foldcolumn' value from 'diffopt', default is 2

These options are set local to the window. When editing another file they are
reset to the global value.
The options can still be overruled from a modeline when re-editing the file.
However, 'foldmethod' and 'wrap' won't be set from a modeline when 'diff' is
set.
See `:diffoff` for an easy way to revert the options.

The differences shown are actually the differences in the buffer. Thus if you
make changes after loading a file, these will be included in the displayed
diffs. You might have to do ":diffupdate" now and then, not all changes are
immediately taken into account, especially when using an external diff command.

In your .vimrc file you could do something special when Vim was started in
diff mode. You could use a construct like this:

if &diff
setup for diff mode

else
setup for non-diff mode

endif

While already in Vim you can start diff mode in three ways.

E98
:diffs[plit] {filename} :diffs :diffsplit

Open a new window on the file {filename}. The options are set
as for "vimdiff" for the current and the newly opened window.
Also see 'diffexpr'.

:difft :diffthis
:difft[his] Make the current window part of the diff windows. This sets

the options like for "vimdiff".

:diffp[atch] {patchfile} E816 :diffp :diffpatch
Use the current buffer, patch it with the diff found in
{patchfile} and open a buffer on the result. The options are
set as for "vimdiff".
{patchfile} can be in any format that the "patch" program
understands or 'patchexpr' can handle.
Note that {patchfile} should only contain a diff for one file,
the current file. If {patchfile} contains diffs for other
files as well, the results are unpredictable. Vim changes
directory to /tmp to avoid files in the current directory
accidentally being patched. But it may still result in
various ".rej" files to be created. And when absolute path
names are present these files may get patched anyway.
Using the "patch" command is not allowed in restricted-mode .

To make these commands use a vertical split, prepend :vertical . Examples:

:vert diffsplit main.c~
:vert diffpatch /tmp/diff

If you always prefer a vertical split include "vertical" in 'diffopt'.

diff.txt — 1128

E96
There can be up to eight buffers with 'diff' set.

Since the option values are remembered with the buffer, you can edit another
file for a moment and come back to the same file and be in diff mode again.

:diffo :diffoff
:diffo[ff] Switch off diff mode for the current window. Resets related

options also when 'diff' was not set.

:diffo[ff]! Switch off diff mode for the current window and in all windows
in the current tab page where 'diff' is set. Resetting
related options only happens in a window that has 'diff' set,
if the current window does not have 'diff' set then no options
in it are changed.
Hidden buffers are also removed from the list of diff'ed
buffers.

The `:diffoff` command resets the relevant options to the values they had when
using `:diffsplit`, `:diffpatch`, `:diffthis`. or starting Vim in diff mode.
When using `:diffoff` twice the last saved values are restored.
Otherwise they are set to their default value:

'diff' off
'scrollbind' off
'cursorbind' off
'scrollopt' without "hor"
'wrap' on, or leave as-is if 'diffopt' includes "followwrap"
'foldmethod' "manual"
'foldcolumn' 0

'foldenable' will most-likely be reset to off. That is when 'foldmethod' is
is restored to "manual". The folds themselves are not cleared but they should
not show up, resetting 'foldenable' is the best way to do that.

==
2. Viewing diffs view-diffs

The effect is that the diff windows show the same text, with the differences
highlighted. When scrolling the text, the 'scrollbind' option will make the
text in other windows to be scrolled as well. With vertical splits the text
should be aligned properly.

The alignment of text will go wrong when:
- 'wrap' is on, some lines will be wrapped and occupy two or more screen

lines
- folds are open in one window but not another
- 'scrollbind' is off
- changes have been made to the text
- "filler" is not present in 'diffopt', deleted/inserted lines makes the

alignment go wrong

All the buffers edited in a window where the 'diff' option is set will join in
the diff. This is also possible for hidden buffers. They must have been
edited in a window first for this to be possible. To get rid of the hidden
buffers use `:diffoff!`.

:DiffOrig diff-original-file
Since 'diff' is a window-local option, it's possible to view the same buffer
in diff mode in one window and "normal" in another window. It is also

diff.txt — 1129

possible to view the changes you have made to a buffer since the file was
loaded. Since Vim doesn't allow having two buffers for the same file, you
need another buffer. This command is useful:

command DiffOrig vert new | set bt=nofile | r ++edit # | 0d_
\ | diffthis | wincmd p | diffthis

(this is in defaults.vim). Use ":DiffOrig" to see the differences between
the current buffer and the file it was loaded from.

A buffer that is unloaded cannot be used for the diff. But it does work for
hidden buffers. You can use ":hide" to close a window without unloading the
buffer. If you don't want a buffer to remain used for the diff do ":set
nodiff" before hiding it.

:dif :diff :diffupdate
:dif[fupdate][!] Update the diff highlighting and folds.

Vim attempts to keep the differences updated when you make changes to the
text. This mostly takes care of inserted and deleted lines. Changes within a
line and more complicated changes do not cause the differences to be updated.
To force the differences to be updated use:

:diffupdate

If the ! is included Vim will check if the file was changed externally and
needs to be reloaded. It will prompt for each changed file, like `:checktime`
was used.

Vim will show filler lines for lines that are missing in one window but are
present in another. These lines were inserted in another file or deleted in
this file. Removing "filler" from the 'diffopt' option will make Vim not
display these filler lines.

Folds are used to hide the text that wasn't changed. See folding for all
the commands that can be used with folds.

The context of lines above a difference that are not included in the fold can
be set with the 'diffopt' option. For example, to set the context to three
lines:

:set diffopt=filler,context:3

The diffs are highlighted with these groups:

hl-DiffAdd DiffAdd Added (inserted) lines. These lines exist in
this buffer but not in another.

hl-DiffChange DiffChange Changed lines.
hl-DiffText DiffText Changed text inside a Changed line. Vim

finds the first character that is different,
and the last character that is different
(searching from the end of the line). The
text in between is highlighted. This means
that parts in the middle that are still the
same are highlighted anyway. The 'diffopt'
flags "iwhite" and "icase" are used here.

hl-DiffDelete DiffDelete Deleted lines. Also called filler lines,
because they don't really exist in this
buffer.

diff.txt — 1130

==
3. Jumping to diffs jumpto-diffs

Two commands can be used to jump to diffs:
[c

[c Jump backwards to the previous start of a change.
When a count is used, do it that many times.

]c
]c Jump forwards to the next start of a change.

When a count is used, do it that many times.

It is an error if there is no change for the cursor to move to.

==
4. Diff copying copy-diffs E99 E100 E101 E102 E103

merge
There are two commands to copy text from one buffer to another. The result is
that the buffers will be equal within the specified range.

:diffg :diffget
:[range]diffg[et] [bufspec]

Modify the current buffer to undo difference with another
buffer. If [bufspec] is given, that buffer is used. If
[bufspec] refers to the current buffer then nothing happens.
Otherwise this only works if there is one other buffer in diff
mode.
See below for [range].

:diffpu :diffput E793
:[range]diffpu[t] [bufspec]

Modify another buffer to undo difference with the current
buffer. Just like ":diffget" but the other buffer is modified
instead of the current one.
When [bufspec] is omitted and there is more than one other
buffer in diff mode where 'modifiable' is set this fails.
See below for [range].

do
[count]do Same as ":diffget" without range. The "o" stands for "obtain"

("dg" can't be used, it could be the start of "dgg"!). Note:
this doesn't work in Visual mode.
If you give a [count], it is used as the [bufspec] argument
for ":diffget".

dp
[count]dp Same as ":diffput" without range. Note: this doesn't work in

Visual mode.
If you give a [count], it is used as the [bufspec] argument
for ":diffput".

When no [range] is given, the diff at the cursor position or just above it is
affected. When [range] is used, Vim tries to only put or get the specified
lines. When there are deleted lines, this may not always be possible.

There can be deleted lines below the last line of the buffer. When the cursor
is on the last line in the buffer and there is no diff above this line, the
":diffget" and "do" commands will obtain lines from the other buffer.

To be able to get those lines from another buffer in a [range] it's allowed to

diff.txt — 1131

use the last line number plus one. This command gets all diffs from the other
buffer:

:1,$+1diffget

Note that deleted lines are displayed, but not counted as text lines. You
can't move the cursor into them. To fill the deleted lines with the lines
from another buffer use ":diffget" on the line below them.

E787
When the buffer that is about to be modified is read-only and the autocommand
that is triggered by FileChangedRO changes buffers the command will fail.
The autocommand must not change buffers.

The [bufspec] argument above can be a buffer number, a pattern for a buffer
name or a part of a buffer name. Examples:

:diffget Use the other buffer which is in diff mode
:diffget 3 Use buffer 3
:diffget v2 Use the buffer which matches "v2" and is in

diff mode (e.g., "file.c.v2")

==
5. Diff options diff-options

Also see 'diffopt' and the "diff" item of 'fillchars' .

diff-slow diff_translations
For very long lines, the diff syntax highlighting might be slow, especially
since it tries to match all different kind of localisations. To disable
localisations and speed up the syntax highlighting, set the global variable
g:diff_translations to zero:

let g:diff_translations = 0

After setting this variable, reload the syntax script:

set syntax=diff

FINDING THE DIFFERENCES diff-diffexpr

The 'diffexpr' option can be set to use something else than the internal diff
support or the standard "diff" program to compare two files and find the
differences. E959

When 'diffexpr' is empty, Vim uses this command to find the differences
between file1 and file2:

diff file1 file2 > outfile

The ">" is replaced with the value of 'shellredir'.

The output of "diff" must be a normal "ed" style diff or a unified diff. A
context diff will NOT work. For a unified diff no context lines can be used.
Using "diff -u" will NOT work, use "diff -U0".

This example explains the format that Vim expects for the "ed" style diff:

1a2

diff.txt — 1132

> bbb
4d4
< 111
7c7
< GGG

> ggg

The "1a2" item appends the line "bbb".
The "4d4" item deletes the line "111".
The "7c7" item replaces the line "GGG" with "ggg".

When 'diffexpr' is not empty, Vim evaluates it to obtain a diff file in the
format mentioned. These variables are set to the file names used:

v:fname_in original file
v:fname_new new version of the same file
v:fname_out where to write the resulting diff file

Additionally, 'diffexpr' should take care of "icase" and "iwhite" in the
'diffopt' option. 'diffexpr' cannot change the value of 'lines' and
'columns'.

The advantage of using a function call without arguments is that it is faster,
see expr-option-function .

Example (this does almost the same as 'diffexpr' being empty):

set diffexpr=MyDiff()
function MyDiff()

let opt = ""
if &diffopt =~ "icase"

let opt = opt .. "-i "
endif
if &diffopt =~ "iwhite"

let opt = opt .. "-b "
endif
silent execute "!diff -a --binary " .. opt .. v:fname_in .. " " .. v:fname_new ..

\ " > " .. v:fname_out
redraw!

endfunction

The "-a" argument is used to force comparing the files as text, comparing as
binaries isn't useful. The "--binary" argument makes the files read in binary
mode, so that a CTRL-Z doesn't end the text on DOS.

The `redraw!` command may not be needed, depending on whether executing a
shell command shows something on the display or not.

If the 'diffexpr' expression starts with s: or <SID> , then it is replaced
with the script ID (local-function). Example:

set diffexpr=s:MyDiffExpr()
set diffexpr=<SID>SomeDiffExpr()

Otherwise, the expression is evaluated in the context of the script where the
option was set, thus script-local items are available.

E810 E97
Vim will do a test if the diff output looks alright. If it doesn't, you will
get an error message. Possible causes:
- The "diff" program cannot be executed.

diff.txt — 1133

- The "diff" program doesn't produce normal "ed" style diffs (see above).
- The 'shell' and associated options are not set correctly. Try if filtering

works with a command like ":!sort".
- You are using 'diffexpr' and it doesn't work.
If it's not clear what the problem is set the 'verbose' option to one or more
to see more messages.

The self-installing Vim for MS-Windows includes a diff program. If you don't
have it you might want to download a diff.exe. For example from
http://gnuwin32.sourceforge.net/packages/diffutils.htm.

USING PATCHES diff-patchexpr

The 'patchexpr' option can be set to use something else than the standard
"patch" program.

When 'patchexpr' is empty, Vim will call the "patch" program like this:

patch -o outfile origfile < patchfile

This should work fine with most versions of the "patch" program. Note that a
CR in the middle of a line may cause problems, it is seen as a line break.

If the default doesn't work for you, set the 'patchexpr' to an expression that
will have the same effect. These variables are set to the file names used:

v:fname_in original file
v:fname_diff patch file
v:fname_out resulting patched file

The advantage of using a function call without arguments is that it is faster,
see expr-option-function .

Example (this does the same as 'patchexpr' being empty):

set patchexpr=MyPatch()
function MyPatch()

:call system("patch -o " .. v:fname_out .. " " .. v:fname_in ..
\ " < " .. v:fname_diff)

endfunction

Make sure that using the "patch" program doesn't have unwanted side effects.
For example, watch out for additionally generated files, which should be
deleted. It should just patch the file and nothing else.

Vim will change directory to "/tmp" or another temp directory before
evaluating 'patchexpr'. This hopefully avoids that files in the current
directory are accidentally patched. Vim will also delete files starting with
v:fname_in and ending in ".rej" and ".orig".

If the 'patchexpr' expression starts with s: or <SID> , then it is replaced
with the script ID (local-function). Example:

set patchexpr=s:MyPatchExpr()
set patchexpr=<SID>SomePatchExpr()

Otherwise, the expression is evaluated in the context of the script where the
option was set, thus script-local items are available.

DIFF FUNCTION EXAMPLES diff-func-examples

diff.txt — 1134

http://gnuwin32.sourceforge.net/packages/diffutils.htm

Some examples for using the diff() function to compute the diff indices
between two Lists of strings are below.

" some lines are changed
:echo diff(['abc', 'def', 'ghi'], ['abx', 'rrr', 'xhi'], {'output': 'indices'})
[{'from_idx': 0, 'from_count': 3, 'to_idx': 0, 'to_count': 3}]

" few lines added at the beginning
:echo diff(['ghi'], ['abc', 'def', 'ghi'], {'output': 'indices'})
[{'from_idx': 0, 'from_count': 0, 'to_idx': 0, 'to_count': 2}]

" few lines removed from the beginning
:echo diff(['abc', 'def', 'ghi'], ['ghi'], {'output': 'indices'})
[{'from_idx': 0, 'from_count': 2, 'to_idx': 0, 'to_count': 0}]

" few lines added in the middle
:echo diff(['abc', 'jkl'], ['abc', 'def', 'ghi', 'jkl'], {'output': 'indices'})
[{'from_idx': 1, 'from_count': 0, 'to_idx': 1, 'to_count': 2}]

" few lines removed in the middle
:echo diff(['abc', 'def', 'ghi', 'jkl'], ['abc', 'jkl'], {'output': 'indices'})
[{'from_idx': 1, 'from_count': 2, 'to_idx': 1, 'to_count': 0}]

" few lines added at the end
:echo diff(['abc'], ['abc', 'def', 'ghi'], {'output': 'indices'})
[{'from_idx': 1, 'from_count': 0, 'to_idx': 1, 'to_count': 2}]

" few lines removed from the end
:echo diff(['abc', 'def', 'ghi'], ['abc'], {'output': 'indices'})
[{'from_idx': 1, 'from_count': 2, 'to_idx': 1, 'to_count': 0}]

" disjointed changes
:echo diff(['ab', 'def', 'ghi', 'jkl'], ['abc', 'def', 'ghi', 'jk'], {'output': 'indices', 'context': 0})
[{'from_idx': 0, 'from_count': 1, 'to_idx': 0, 'to_count': 1},
{'from_idx': 3, 'from_count': 1, 'to_idx': 3, 'to_count': 1}]

" disjointed changes with context length 1
:echo diff(['ab', 'def', 'ghi', 'jkl'], ['abc', 'def', 'ghi', 'jk'], {'output': 'indices', 'context': 1})
[{'from_idx': 0, 'from_count': 4, 'to_idx': 0, 'to_count': 4}]

diff.txt — 1135

diff.txt — 1136

autocmd.txt For Vim version 9.1. Last change: 2024 Jan 25

VIM REFERENCE MANUAL by Bram Moolenaar

Automatic commands autocommand autocommands

For a basic explanation, see section 40.3 in the user manual.

1. Introduction autocmd-intro
2. Defining autocommands autocmd-define
3. Removing autocommands autocmd-remove
4. Listing autocommands autocmd-list
5. Events autocmd-events
6. Patterns autocmd-patterns
7. Buffer-local autocommands autocmd-buflocal
8. Groups autocmd-groups
9. Executing autocommands autocmd-execute
10. Using autocommands autocmd-use
11. Disabling autocommands autocmd-disable

==
1. Introduction autocmd-intro

You can specify commands to be executed automatically when reading or writing
a file, when entering or leaving a buffer or window, and when exiting Vim.
For example, you can create an autocommand to set the 'cindent' option for
files matching *.c. You can also use autocommands to implement advanced
features, such as editing compressed files (see gzip-example). The usual
place to put autocommands is in your .vimrc or .exrc file.

E203 E204 E143 E855 E937 E952
WARNING: Using autocommands is very powerful, and may lead to unexpected side
effects. Be careful not to destroy your text.
- It's a good idea to do some testing on an expendable copy of a file first.

For example: If you use autocommands to decompress a file when starting to
edit it, make sure that the autocommands for compressing when writing work
correctly.

- Be prepared for an error halfway through (e.g., disk full). Vim will mostly
be able to undo the changes to the buffer, but you may have to clean up the
changes to other files by hand (e.g., compress a file that has been
decompressed).

- If the BufRead* events allow you to edit a compressed file, the FileRead*
events should do the same (this makes recovery possible in some rare cases).
It's a good idea to use the same autocommands for the File* and Buf* events
when possible.

Recommended use:
- Always use a group, so that it's easy to delete the autocommand.
- Keep the command itself short, call a function to do more work.
- Make it so that the script it is defined in can be sourced several times

without the autocommand being repeated.

Example in Vim9 script:
autocmd_add({replace: true,

group: 'DemoGroup',
event: 'BufEnter',
pattern: '*.txt',

autocmd.txt — 1137

cmd: 'call DemoBufEnter()'
})

In legacy script:
call autocmd_add(#{replace: v:true,

\ group: 'DemoGroup',
\ event: 'BufEnter',
\ pattern: '*.txt',
\ cmd: 'call DemoBufEnter()'
\ })

==
2. Defining autocommands autocmd-define

:au :autocmd
:au[tocmd] [group] {event} {aupat} [++once] [++nested] {cmd}

Add {cmd} to the list of commands that Vim will
execute automatically on {event} for a file matching
{aupat} autocmd-patterns .
Here {event} cannot be "*". E1155
Note: A quote character is seen as argument to the
:autocmd and won't start a comment.
Vim always adds the {cmd} after existing autocommands,
so that the autocommands execute in the order in which
they were given.
See autocmd-nested for [++nested]. "nested"
(without the ++) can also be used, for backwards
compatibility, but not in Vim9 script. E1078

autocmd-once
If [++once] is supplied the command is executed once,
then removed ("one shot").

The special pattern <buffer> or <buffer=N> defines a buffer-local autocommand.
See autocmd-buflocal .

If the `:autocmd` is in Vim9 script (a script that starts with `:vim9script`
and in a `:def` function) then {cmd} will be executed as in Vim9
script. Thus this depends on where the autocmd is defined, not where it is
triggered.

:autocmd-block
{cmd} can be a block, like with `:command`, see :command-repl . Example:

au BufReadPost *.xml {
setlocal matchpairs+=<:>
/<start

}

The autocmd_add() function can be used to add a list of autocmds and autocmd
groups from a Vim script. It is preferred if you have anything that would
require using `:execute` with `:autocmd`.

Note: The ":autocmd" command can only be followed by another command when the
'|' appears where the pattern is expected. This works:

:augroup mine | au! BufRead | augroup END
But this sees "augroup" as part of the defined command:

:augroup mine | au! BufRead * | augroup END
:augroup mine | au BufRead * set tw=70 | augroup END

Instead you can put the group name into the command:
:au! mine BufRead *
:au mine BufRead * set tw=70

Or use `:execute`:

autocmd.txt — 1138

:augroup mine | exe "au! BufRead *" | augroup END
:augroup mine | exe "au BufRead * set tw=70" | augroup END

autocmd-expand
Note that special characters (e.g., "%", "<cword>") in the ":autocmd"
arguments are not expanded when the autocommand is defined. These will be
expanded when the Event is recognized, and the {cmd} is executed. The only
exception is that "<sfile>" is expanded when the autocmd is defined. Example:

:au BufNewFile,BufRead *.html so <sfile>:h/html.vim

Here Vim expands <sfile> to the name of the file containing this line.

`:autocmd` adds to the list of autocommands regardless of whether they are
already present. When your .vimrc file is sourced twice, the autocommands
will appear twice. To avoid this, define your autocommands in a group, so
that you can easily clear them:

augroup vimrc
" Remove all vimrc autocommands
autocmd!
au BufNewFile,BufRead *.html so <sfile>:h/html.vim

augroup END

If you don't want to remove all autocommands, you can instead use a variable
to ensure that Vim includes the autocommands only once:

:if !exists("autocommands_loaded")
: let autocommands_loaded = 1
: au ...
:endif

When the [group] argument is not given, Vim uses the current group (as defined
with ":augroup"); otherwise, Vim uses the group defined with [group]. Note
that [group] must have been defined before. You cannot define a new group
with ":au group ..."; use ":augroup" for that.

While testing autocommands, you might find the 'verbose' option to be useful:
:set verbose=9

This setting makes Vim echo the autocommands as it executes them.

When defining an autocommand in a script, it will be able to call functions
local to the script and use mappings local to the script. When the event is
triggered and the command executed, it will run in the context of the script
it was defined in. This matters if <SID> is used in a command.

When executing the commands, the message from one command overwrites a
previous message. This is different from when executing the commands
manually. Mostly the screen will not scroll up, thus there is no hit-enter
prompt. When one command outputs two messages this can happen anyway.

==
3. Removing autocommands autocmd-remove

In addition to the below described commands, the autocmd_delete() function can
be used to remove a list of autocmds and autocmd groups from a Vim script.

:au[tocmd]! [group] {event} {aupat} [++once] [++nested] {cmd}
Remove all autocommands associated with {event} and
{aupat}, and add the command {cmd}.

autocmd.txt — 1139

See autocmd-once for [++once].
See autocmd-nested for [++nested].

:au[tocmd]! [group] {event} {aupat}
Remove all autocommands associated with {event} and
{aupat}.

:au[tocmd]! [group] * {aupat}
Remove all autocommands associated with {aupat} for
all events.

:au[tocmd]! [group] {event}
Remove ALL autocommands for {event}.
Warning: You should not do this without a group for
BufRead and other common events, it can break

plugins, syntax highlighting, etc.

:au[tocmd]! [group] Remove ALL autocommands.
Note: a quote will be seen as argument to the :autocmd
and won't start a comment.
Warning: You should normally not do this without a
group, it breaks plugins, syntax highlighting, etc.

When the [group] argument is not given, Vim uses the current group (as defined
with ":augroup"); otherwise, Vim uses the group defined with [group].

==
4. Listing autocommands autocmd-list

:au[tocmd] [group] {event} {aupat}
Show the autocommands associated with {event} and
{aupat}.

:au[tocmd] [group] * {aupat}
Show the autocommands associated with {aupat} for all
events.

:au[tocmd] [group] {event}
Show all autocommands for {event}.

:au[tocmd] [group] Show all autocommands.

If you provide the [group] argument, Vim lists only the autocommands for
[group]; otherwise, Vim lists the autocommands for ALL groups. Note that this
argument behavior differs from that for defining and removing autocommands.

In order to list buffer-local autocommands, use a pattern in the form <buffer>
or <buffer=N>. See autocmd-buflocal .

The autocmd_get() function can be used from a Vim script to get a list of
autocmds.

:autocmd-verbose
When 'verbose' is non-zero, listing an autocommand will also display where it
was last defined. Example:

:verbose autocmd BufEnter
FileExplorer BufEnter

* call s:LocalBrowse(expand("<amatch>"))
Last set from /usr/share/vim/vim-7.0/plugin/NetrwPlugin.vim

autocmd.txt — 1140

See :verbose-cmd for more information.

==
5. Events autocmd-events E215 E216

You can specify a comma-separated list of event names. No white space can be
used in this list. The command applies to all the events in the list.

For READING FILES there are four kinds of events possible:
BufNewFile starting to edit a non-existent file
BufReadPre BufReadPost starting to edit an existing file
FilterReadPre FilterReadPost read the temp file with filter output
FileReadPre FileReadPost any other file read

Vim uses only one of these four kinds when reading a file. The "Pre" and
"Post" events are both triggered, before and after reading the file.

Note that the autocommands for the *ReadPre events and all the Filter events
are not allowed to change the current buffer (you will get an error message if
this happens). This is to prevent the file to be read into the wrong buffer.

Note that the 'modified' flag is reset AFTER executing the BufReadPost
and BufNewFile autocommands. But when the 'modified' option was set by the
autocommands, this doesn't happen.

You can use the 'eventignore' option to ignore a number of events or all
events.

autocommand-events {event}
Vim recognizes the following events. Vim ignores the case of event names
(e.g., you can use "BUFread" or "bufread" instead of "BufRead").

First an overview by function with a short explanation. Then the list
alphabetically with full explanations autocmd-events-abc .

Name triggered by

Reading
BufNewFile starting to edit a file that doesn't exist
BufReadPre starting to edit a new buffer, before reading the file
BufRead starting to edit a new buffer, after reading the file
BufReadPost starting to edit a new buffer, after reading the file
BufReadCmd before starting to edit a new buffer Cmd-event

FileReadPre before reading a file with a ":read" command
FileReadPost after reading a file with a ":read" command
FileReadCmd before reading a file with a ":read" command Cmd-event

FilterReadPre before reading a file from a filter command
FilterReadPost after reading a file from a filter command

StdinReadPre before reading from stdin into the buffer
StdinReadPost After reading from the stdin into the buffer

Writing
BufWrite starting to write the whole buffer to a file
BufWritePre starting to write the whole buffer to a file
BufWritePost after writing the whole buffer to a file
BufWriteCmd before writing the whole buffer to a file Cmd-event

FileWritePre starting to write part of a buffer to a file

autocmd.txt — 1141

FileWritePost after writing part of a buffer to a file
FileWriteCmd before writing part of a buffer to a file Cmd-event

FileAppendPre starting to append to a file
FileAppendPost after appending to a file
FileAppendCmd before appending to a file Cmd-event

FilterWritePre starting to write a file for a filter command or diff
FilterWritePost after writing a file for a filter command or diff

Buffers
BufAdd just after adding a buffer to the buffer list
BufCreate just after adding a buffer to the buffer list
BufDelete before deleting a buffer from the buffer list
BufWipeout before completely deleting a buffer

BufFilePre before changing the name of the current buffer
BufFilePost after changing the name of the current buffer

BufEnter after entering a buffer
BufLeave before leaving to another buffer
BufWinEnter after a buffer is displayed in a window
BufWinLeave before a buffer is removed from a window

BufUnload before unloading a buffer
BufHidden just before a buffer becomes hidden
BufNew just after creating a new buffer

SwapExists detected an existing swap file

Options
FileType when the 'filetype' option has been set
Syntax when the 'syntax' option has been set
EncodingChanged after the 'encoding' option has been changed
TermChanged after the value of 'term' has changed
OptionSet after setting any option

Startup and exit
VimEnter after doing all the startup stuff
GUIEnter after starting the GUI successfully
GUIFailed after starting the GUI failed
TermResponse after the terminal response to t_RV is received
TermResponseAll after the terminal response to t_RV and others is received

QuitPre when using `:quit`, before deciding whether to exit
ExitPre when using a command that may make Vim exit
VimLeavePre before exiting Vim, before writing the viminfo file
VimLeave before exiting Vim, after writing the viminfo file

VimSuspend when suspending Vim
VimResume when Vim is resumed after being suspended

Terminal
TerminalOpen after a terminal buffer was created
TerminalWinOpen after a terminal buffer was created in a new window

Various
FileChangedShell Vim notices that a file changed since editing started
FileChangedShellPost After handling a file changed since editing started
FileChangedRO before making the first change to a read-only file

autocmd.txt — 1142

DiffUpdated after diffs have been updated
DirChangedPre before the working directory will change
DirChanged after the working directory has changed

ShellCmdPost after executing a shell command
ShellFilterPost after filtering with a shell command

CmdUndefined a user command is used but it isn't defined
FuncUndefined a user function is used but it isn't defined
SpellFileMissing a spell file is used but it can't be found
SourcePre before sourcing a Vim script
SourcePost after sourcing a Vim script
SourceCmd before sourcing a Vim script Cmd-event

VimResized after the Vim window size changed
FocusGained Vim got input focus
FocusLost Vim lost input focus
CursorHold the user doesn't press a key for a while
CursorHoldI the user doesn't press a key for a while in Insert mode
CursorMoved the cursor was moved in Normal mode
CursorMovedI the cursor was moved in Insert mode

WinNewPre before creating a new window
WinNew after creating a new window
TabNew after creating a new tab page
WinClosed after closing a window
TabClosed after closing a tab page
WinEnter after entering another window
WinLeave before leaving a window
TabEnter after entering another tab page
TabLeave before leaving a tab page
CmdwinEnter after entering the command-line window
CmdwinLeave before leaving the command-line window

CmdlineChanged after a change was made to the command-line text
CmdlineEnter after the cursor moves to the command line
CmdlineLeave before the cursor leaves the command line

InsertEnter starting Insert mode
InsertChange when typing <Insert> while in Insert or Replace mode
InsertLeave when leaving Insert mode
InsertLeavePre just before leaving Insert mode
InsertCharPre when a character was typed in Insert mode, before

inserting it

ModeChanged after changing the mode

TextChanged after a change was made to the text in Normal mode
TextChangedI after a change was made to the text in Insert mode

when popup menu is not visible
TextChangedP after a change was made to the text in Insert mode

when popup menu visible
TextChangedT after a change was made to the text in Terminal mode
TextYankPost after text has been yanked or deleted

SafeState nothing pending, going to wait for the user to type a
character

SafeStateAgain repeated SafeState

autocmd.txt — 1143

ColorSchemePre before loading a color scheme
ColorScheme after loading a color scheme

RemoteReply a reply from a server Vim was received

QuickFixCmdPre before a quickfix command is run
QuickFixCmdPost after a quickfix command is run

SessionLoadPost after loading a session file

MenuPopup just before showing the popup menu
CompleteChanged after Insert mode completion menu changed
CompleteDonePre after Insert mode completion is done, before clearing

info
CompleteDone after Insert mode completion is done, after clearing

info

User to be used in combination with ":doautocmd"
SigUSR1 after the SIGUSR1 signal has been detected

WinScrolled after scrolling or resizing a window

The alphabetical list of autocommand events: autocmd-events-abc

BufCreate BufAdd
BufAdd or BufCreate Just after creating a new buffer which is

added to the buffer list, or adding a buffer
to the buffer list.
Also used just after a buffer in the buffer
list has been renamed.
Not triggered for the initial buffers created
during startup.
The BufCreate event is for historic reasons.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being created "<afile>".

BufDelete
BufDelete Before deleting a buffer from the buffer list.

The BufUnload may be called first (if the
buffer was loaded).
Also used just before a buffer in the buffer
list is renamed.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being deleted "<afile>" and "<abuf>".
Don't change to another buffer, it will cause
problems.

BufEnter
BufEnter After entering a buffer. Useful for setting

options for a file type. Also executed when
starting to edit a buffer, after the
BufReadPost autocommands.

BufFilePost
BufFilePost After changing the name of the current buffer

with the ":file" or ":saveas" command.
BufFilePre

BufFilePre Before changing the name of the current buffer
with the ":file" or ":saveas" command.

BufHidden

autocmd.txt — 1144

BufHidden Just before a buffer becomes hidden. That is,
when there are no longer windows that show
the buffer, but the buffer is not unloaded or
deleted. Not used for ":qa" or ":q" when
exiting Vim.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being unloaded "<afile>".

BufLeave
BufLeave Before leaving to another buffer. Also when

leaving or closing the current window and the
new current window is not for the same buffer.
Not used for ":qa" or ":q" when exiting Vim.

BufNew
BufNew Just after creating a new buffer. Also used

just after a buffer has been renamed. When
the buffer is added to the buffer list BufAdd
will be triggered too.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being created "<afile>".

BufNewFile
BufNewFile When starting to edit a file that doesn't

exist. Can be used to read in a skeleton
file.

BufRead BufReadPost
BufRead or BufReadPost When starting to edit a new buffer, after

reading the file into the buffer, before
executing the modelines. See BufWinEnter
for when you need to do something after
processing the modelines.
Also triggered:
- when writing an unnamed buffer in a way that

the buffer gets a name
- after successfully recovering a file
- for the filetypedetect group when executing
":filetype detect"

Not triggered:
- for the `:read file` command
- when the file doesn't exist

BufReadCmd
BufReadCmd Before starting to edit a new buffer. Should

read the file into the buffer. Cmd-event
BufReadPre E200 E201

BufReadPre When starting to edit a new buffer, before
reading the file into the buffer. Not used
if the file doesn't exist.

BufUnload
BufUnload Before unloading a buffer. This is when the

text in the buffer is going to be freed. This
may be after a BufWritePost and before a
BufDelete. Also used for all buffers that are
loaded when Vim is going to exit.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being unloaded "<afile>".
Don't change to another buffer or window, it
will cause problems!
When exiting and v:dying is 2 or more this
event is not triggered.

autocmd.txt — 1145

BufWinEnter
BufWinEnter After a buffer is displayed in a window. This

can be when the buffer is loaded (after
processing the modelines) or when a hidden
buffer is displayed in a window (and is no
longer hidden).
Does not happen for :split without
arguments, since you keep editing the same
buffer, or ":split" with a file that's already
open in a window, because it re-uses an
existing buffer. But it does happen for a
":split" with the name of the current buffer,
since it reloads that buffer.
Does not happen for a terminal window, because
it starts in Terminal-Job mode and Normal mode
commands won't work. Use TerminalOpen instead.

BufWinLeave
BufWinLeave Before a buffer is removed from a window.

Not when it's still visible in another window.
Also triggered when exiting. It's triggered
before BufUnload or BufHidden.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being unloaded "<afile>".
When exiting and v:dying is 2 or more this
event is not triggered.

BufWipeout
BufWipeout Before completely deleting a buffer. The

BufUnload and BufDelete events may be called
first (if the buffer was loaded and was in the
buffer list). Also used just before a buffer
is renamed (also when it's not in the buffer
list).
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer being deleted "<afile>".
Don't change to another buffer, it will cause
problems.

BufWrite BufWritePre
BufWrite or BufWritePre Before writing the whole buffer to a file.

BufWriteCmd
BufWriteCmd Before writing the whole buffer to a file.

Should do the writing of the file and reset
'modified' if successful, unless '+' is in
'cpo' and writing to another file cpo-+ .
The buffer contents should not be changed.
When the command resets 'modified' the undo
information is adjusted to mark older undo
states as 'modified', like :write does.
Cmd-event

BufWritePost
BufWritePost After writing the whole buffer to a file

(should undo the commands for BufWritePre).
CmdUndefined

CmdUndefined When a user command is used but it isn't
defined. Useful for defining a command only
when it's used. The pattern is matched
against the command name. Both <amatch> and
<afile> are set to the name of the command.
NOTE: Autocompletion won't work until the

autocmd.txt — 1146

command is defined. An alternative is to
always define the user command and have it
invoke an autoloaded function. See autoload .

CmdlineChanged
CmdlineChanged After a change was made to the text in the

command line. Be careful not to mess up
the command line, it may cause Vim to lock up.
<afile> is set to a single character,
indicating the type of command-line.
cmdwin-char

CmdlineEnter
CmdlineEnter After moving the cursor to the command line,

where the user can type a command or search
string; including non-interactive use of ":"
in a mapping, but not when using <Cmd> .
The pattern is matched against the character
representing the type of command-line.
cmdwin-char

<afile> is set to a single character,
indicating the type of command-line.

CmdlineLeave
CmdlineLeave Before leaving the command line; including

non-interactive use of ":" in a mapping, but
not when using <Cmd> .
Also when abandoning the command line, after
typing CTRL-C or <Esc>.
When the commands result in an error the
command line is still executed.
<afile> is set to a single character,
indicating the type of command-line.
cmdwin-char

CmdwinEnter
CmdwinEnter After entering the command-line window.

Useful for setting options specifically for
this special type of window.
<afile> is set to a single character,
indicating the type of command-line.
cmdwin-char

CmdwinLeave
CmdwinLeave Before leaving the command-line window.

Useful to clean up any global setting done
with CmdwinEnter.
<afile> is set to a single character,
indicating the type of command-line.
cmdwin-char

ColorScheme
ColorScheme After loading a color scheme. :colorscheme

Not triggered if the color scheme is not
found.
The pattern is matched against the
colorscheme name. <afile> can be used for the
name of the actual file where this option was
set, and <amatch> for the new colorscheme
name.

ColorSchemePre
ColorSchemePre Before loading a color scheme. :colorscheme

Useful to setup removing things added by a
color scheme, before another one is loaded.

CompleteChanged CompleteChanged

autocmd.txt — 1147

After each time the Insert mode completion
menu changed. Not fired on popup menu hide,
use CompleteDonePre or CompleteDone for
that. Never triggered recursively.

Sets these v:event keys:
completed_item See complete-items .
height nr of items visible
width screen cells
row top screen row
col leftmost screen column
size total nr of items
scrollbar TRUE if visible

It is not allowed to change the text textlock .

The size and position of the popup are also
available by calling pum_getpos() .

CompleteDonePre
CompleteDonePre After Insert mode completion is done. Either

when something was completed or abandoning
completion. ins-completion
complete_info() can be used, the info is

cleared after triggering CompleteDonePre.
The v:completed_item variable contains
information about the completed item.

CompleteDone
CompleteDone After Insert mode completion is done. Either

when something was completed or abandoning
completion. ins-completion
complete_info() cannot be used, the info is

cleared before triggering CompleteDone. Use
CompleteDonePre if you need it.
The v:completed_item variable contains
information about the completed item.

CursorHold
CursorHold When the user doesn't press a key for the time

specified with 'updatetime'. Not triggered
until the user has pressed a key (i.e. doesn't
fire every 'updatetime' ms if you leave Vim to
make some coffee. :) See CursorHold-example
for previewing tags.
This event is only triggered in Normal mode.
It is not triggered when waiting for a command
argument to be typed, or a movement after an
operator.
While recording the CursorHold event is not
triggered. q

<CursorHold>
Internally the autocommand is triggered by the
<CursorHold> key. In an expression mapping
getchar() may see this character.

Note: Interactive commands cannot be used for
this event. There is no hit-enter prompt,
the screen is updated directly (when needed).
Note: In the future there will probably be

autocmd.txt — 1148

another option to set the time.
Hint: to force an update of the status lines
use:

:let &ro = &ro
{only on Amiga, Unix, Win32 and all GUI
versions}

CursorHoldI
CursorHoldI Just like CursorHold, but in Insert mode.

Not triggered when waiting for another key,
e.g. after CTRL-V, and not when in CTRL-X mode
insert_expand .

CursorMoved
CursorMoved After the cursor was moved in Normal or Visual

mode. Also when the text of the cursor line
has been changed, e.g., with "x", "rx" or "p".
Not always triggered when there is typeahead,
while executing commands in a script file,
when an operator is pending or when moving to
another window while remaining at the same
cursor position.
For an example see match-parens .
Note: This can not be skipped with
`:noautocmd`.
Careful: This is triggered very often, don't
do anything that the user does not expect or
that is slow.

CursorMovedI
CursorMovedI After the cursor was moved in Insert mode.

Not triggered when the popup menu is visible.
Otherwise the same as CursorMoved.

DiffUpdated
DiffUpdated After diffs have been updated. Depending on

what kind of diff is being used (internal or
external) this can be triggered on every
change or when doing :diffupdate .

DirChangedPre
DirChangedPre The working directory is going to be changed,

as with DirChanged . The pattern is like
with DirChanged . The new directory can be
found in v:event.directory.

DirChanged
DirChanged The working directory has changed in response

to the :cd or :tcd or :lcd commands, or
as a result of the 'autochdir' option.
The pattern can be:

"window" to trigger on `:lcd`
"tabpage" to trigger on `:tcd`
"global" to trigger on `:cd`
"auto" to trigger on 'autochdir'.
"drop" to trigger on editing a file

<afile> is set to the new directory name.
EncodingChanged

EncodingChanged Fires off after the 'encoding' option has been
changed. Useful to set up fonts, for example.

ExitPre
ExitPre When using `:quit`, `:wq` in a way it makes

Vim exit, or using `:qall`, just after
QuitPre . Can be used to close any

non-essential window. Exiting may still be

autocmd.txt — 1149

cancelled if there is a modified buffer that
isn't automatically saved, use VimLeavePre
for really exiting.

FileAppendCmd
FileAppendCmd Before appending to a file. Should do the

appending to the file. Use the '[and ']
marks for the range of lines. Cmd-event

FileAppendPost
FileAppendPost After appending to a file.

FileAppendPre
FileAppendPre Before appending to a file. Use the '[and ']

marks for the range of lines.
FileChangedRO

FileChangedRO Before making the first change to a read-only
file. Can be used to check-out the file from
a source control system. Not triggered when
the change was caused by an autocommand.
This event is triggered when making the first
change in a buffer or the first change after
'readonly' was set, just before the change is
applied to the text.
WARNING: If the autocommand moves the cursor
the effect of the change is undefined.

E788
It is not allowed to change to another buffer
here. You can reload the buffer but not edit
another one.

E881
If the number of lines changes saving for undo
may fail and the change will be aborted.

FileChangedShell
FileChangedShell When Vim notices that the modification time of

a file has changed since editing started.
Also when the file attributes of the file
change or when the size of the file changes.
timestamp

Mostly triggered after executing a shell
command, but also with a :checktime command
or when gvim regains input focus.
This autocommand is triggered for each changed
file. It is not used when 'autoread' is set
and the buffer was not changed. If a
FileChangedShell autocommand is present the
warning message and prompt is not given.
The v:fcs_reason variable is set to indicate
what happened and v:fcs_choice can be used
to tell Vim what to do next.
NOTE: When this autocommand is executed, the
current buffer "%" may be different from the
buffer that was changed, which is in "<afile>".
NOTE: The commands must not change the current
buffer, jump to another buffer or delete a
buffer. E246 E811
NOTE: This event never nests, to avoid an
endless loop. This means that while executing
commands for the FileChangedShell event no
other FileChangedShell event will be
triggered.

FileChangedShellPost
FileChangedShellPost After handling a file that was changed outside

autocmd.txt — 1150

of Vim. Can be used to update the statusline.
FileEncoding

FileEncoding Obsolete. It still works and is equivalent
to EncodingChanged .

FileReadCmd
FileReadCmd Before reading a file with a ":read" command.

Should do the reading of the file. Cmd-event
FileReadPost

FileReadPost After reading a file with a ":read" command.
Note that Vim sets the '[and '] marks to the
first and last line of the read. This can be
used to operate on the lines just read.

FileReadPre
FileReadPre Before reading a file with a ":read" command.

FileType
FileType When the 'filetype' option has been set. The

pattern is matched against the filetype.
<afile> can be used for the name of the file
where this option was set, and <amatch> for
the new value of 'filetype'. Navigating to
another window or buffer is not allowed.
See filetypes .

FileWriteCmd
FileWriteCmd Before writing to a file, when not writing the

whole buffer. Should do the writing to the
file. Should not change the buffer. Use the
'[and '] marks for the range of lines.
Cmd-event

FileWritePost
FileWritePost After writing to a file, when not writing the

whole buffer.
FileWritePre

FileWritePre Before writing to a file, when not writing the
whole buffer. Use the '[and '] marks for the
range of lines.

FilterReadPost
FilterReadPost After reading a file from a filter command.

Vim checks the pattern against the name of
the current buffer as with FilterReadPre.
Not triggered when 'shelltemp' is off.

FilterReadPre E135
FilterReadPre Before reading a file from a filter command.

Vim checks the pattern against the name of
the current buffer, not the name of the
temporary file that is the output of the
filter command.
Not triggered when 'shelltemp' is off.

FilterWritePost
FilterWritePost After writing a file for a filter command or

making a diff with an external diff (see
DiffUpdated for internal diff).

Vim checks the pattern against the name of
the current buffer as with FilterWritePre.
Not triggered when 'shelltemp' is off.

FilterWritePre
FilterWritePre Before writing a file for a filter command or

making a diff with an external diff.
Vim checks the pattern against the name of
the current buffer, not the name of the
temporary file that is the output of the

autocmd.txt — 1151

filter command.
Not triggered when 'shelltemp' is off.

FocusGained
FocusGained When Vim got input focus. Only for the GUI

version and a few console versions where this
can be detected.

FocusLost
FocusLost When Vim lost input focus. Only for the GUI

version and a few console versions where this
can be detected. May also happen when a
dialog pops up.

FuncUndefined
FuncUndefined When a user function is used but it isn't

defined. Useful for defining a function only
when it's used. The pattern is matched
against the function name. Both <amatch> and
<afile> are set to the name of the function.
Not triggered when compiling a Vim9
function.
NOTE: When writing Vim scripts a better
alternative is to use an autoloaded function.
See autoload-functions .

GUIEnter
GUIEnter After starting the GUI successfully, and after

opening the window. It is triggered before
VimEnter when using gvim. Can be used to
position the window from a .gvimrc file:

:autocmd GUIEnter * winpos 100 50
GUIFailed

GUIFailed After starting the GUI failed. Vim may
continue to run in the terminal, if possible
(only on Unix and alikes, when connecting the
X server fails). You may want to quit Vim:

:autocmd GUIFailed * qall
InsertChange

InsertChange When typing <Insert> while in Insert or
Replace mode. The v:insertmode variable
indicates the new mode.
Be careful not to move the cursor or do
anything else that the user does not expect.

InsertCharPre
InsertCharPre When a character is typed in Insert mode,

before inserting the char.
The v:char variable indicates the char typed
and can be changed during the event to insert
a different character. When v:char is set
to more than one character this text is
inserted literally.
It is not allowed to change the text textlock .
The event is not triggered when 'paste' is
set. {only with the +eval feature}

InsertEnter
InsertEnter Just before starting Insert mode. Also for

Replace mode and Virtual Replace mode. The
v:insertmode variable indicates the mode.

Be careful not to do anything else that the
user does not expect.
The cursor is restored afterwards. If you do
not want that set v:char to a non-empty
string.

autocmd.txt — 1152

InsertLeavePre
InsertLeavePre Just before leaving Insert mode. Also when

using CTRL-O i_CTRL-O . Be careful not to
change mode or use `:normal`, it will likely
cause trouble.

InsertLeave
InsertLeave Just after leaving Insert mode. Also when

using CTRL-O i_CTRL-O . But not for i_CTRL-C .
MenuPopup

MenuPopup Just before showing the popup menu (under the
right mouse button). Useful for adjusting the
menu for what is under the cursor or mouse
pointer.
The pattern is matched against one or two
characters representing the mode:

n Normal
v Visual
o Operator-pending
i Insert
c Command line
tl Terminal

ModeChanged
ModeChanged After changing the mode. The pattern is

matched against `'old_mode:new_mode'`, for
example match against `*:c*` to simulate
CmdlineEnter .

The following values of v:event are set:
old_mode The mode before it changed.
new_mode The new mode as also returned

by mode() called with a
non-zero argument.

When ModeChanged is triggered, old_mode will
have the value of new_mode when the event was
last triggered.
This will be triggered on every minor mode
change.
Usage example to use relative line numbers
when entering Visual mode:

:au ModeChanged [vV\x16]*:* let &l:rnu = mode() =~# '^[vV\x16]'
:au ModeChanged *:[vV\x16]* let &l:rnu = mode() =~# '^[vV\x16]'
:au WinEnter,WinLeave * let &l:rnu = mode() =~# '^[vV\x16]'

OptionSet
OptionSet After setting an option. The pattern is

matched against the long option name.
<amatch> indicates what option has been set.

v:option_type indicates whether it's global
or local scoped.
v:option_command indicates what type of

set/let command was used (follow the tag to
see the table).
v:option_new indicates the newly set value.
v:option_oldlocal has the old local value.
v:option_oldglobal has the old global value.
v:option_old indicates the old option value.

v:option_oldlocal is only set when :set
or :setlocal or a modeline was used to set
the option. Similarly v:option_oldglobal is
only set when :set or :setglobal was used.

autocmd.txt — 1153

This does not set <abuf> , you could use
bufnr() .

Note that when setting a global-local string
option with :set , then v:option_old is the
old global value. However, for all other kinds
of options (local string options, global-local
number options, ...) it is the old local
value.

OptionSet is not triggered on startup and for
the 'key' option for obvious reasons.

Usage example: Check for the existence of the
directory in the 'backupdir' and 'undodir'
options, create the directory if it doesn't
exist yet.

Note: It's a bad idea to reset an option
during this autocommand, this may break a
plugin. You can always use `:noa` to prevent
triggering this autocommand.

When using :set in the autocommand the event
is not triggered again.

QuickFixCmdPre
QuickFixCmdPre Before a quickfix command is run (:make ,

:lmake , :grep , :lgrep , :grepadd ,
:lgrepadd , :vimgrep , :lvimgrep ,
:vimgrepadd , :lvimgrepadd , :cscope ,
:cfile , :cgetfile , :caddfile , :lfile ,
:lgetfile , :laddfile , :helpgrep ,
:lhelpgrep , :cexpr , :cgetexpr ,
:caddexpr , :cbuffer , :cgetbuffer ,
:caddbuffer).

The pattern is matched against the command
being run. When :grep is used but 'grepprg'
is set to "internal" it still matches "grep".
This command cannot be used to set the
'makeprg' and 'grepprg' variables.
If this command causes an error, the quickfix
command is not executed.

QuickFixCmdPost
QuickFixCmdPost Like QuickFixCmdPre, but after a quickfix

command is run, before jumping to the first
location. For :cfile and :lfile commands
it is run after the error file is read and
before moving to the first error.
See QuickFixCmdPost-example .

QuitPre
QuitPre When using `:quit`, `:wq` or `:qall`, before

deciding whether it closes the current window
or quits Vim. For `:wq` the buffer is written
before QuitPre is triggered. Can be used to
close any non-essential window if the current
window is the last ordinary window.
Also see ExitPre .

RemoteReply
RemoteReply When a reply from a Vim that functions as

autocmd.txt — 1154

server was received server2client() . The
pattern is matched against the {serverid}.
<amatch> is equal to the {serverid} from which
the reply was sent, and <afile> is the actual
reply string.
Note that even if an autocommand is defined,
the reply should be read with remote_read()
to consume it.

SafeState
SafeState When nothing is pending, going to wait for the

user to type a character.
This will not be triggered when:
- an operator is pending
- a register was entered with "r
- halfway executing a command
- executing a mapping
- there is typeahead
- Insert mode completion is active
- Command line completion is active
You can use `mode()` to find out what state
Vim is in. That may be:
- Visual mode
- Normal mode
- Insert mode
- Command-line mode
Depending on what you want to do, you may also
check more with `state()`, e.g. whether the
screen was scrolled for messages.

SafeStateAgain
SafeStateAgain Like SafeState but after processing any

messages and invoking callbacks. This may be
triggered often, don't do something that takes
time.

SessionLoadPost
SessionLoadPost After loading the session file created using

the :mksession command.
ShellCmdPost

ShellCmdPost After executing a shell command with :!cmd ,
:shell , :make and :grep . Can be used to

check for any changed files.
ShellFilterPost

ShellFilterPost After executing a shell command with
":{range}!cmd", ":w !cmd" or ":r !cmd".
Can be used to check for any changed files.

SourcePre
SourcePre Before sourcing a Vim script. :source

<afile> is the name of the file being sourced.
SourcePost

SourcePost After sourcing a Vim script. :source
<afile> is the name of the file being sourced.
Not triggered when sourcing was interrupted.
Also triggered after a SourceCmd autocommand
was triggered.

SourceCmd
SourceCmd When sourcing a Vim script. :source

<afile> is the name of the file being sourced.
The autocommand must source this file.
Cmd-event

SpellFileMissing

autocmd.txt — 1155

SpellFileMissing When trying to load a spell checking file and
it can't be found. The pattern is matched
against the language. <amatch> is the
language, 'encoding' also matters. See
spell-SpellFileMissing .

StdinReadPost
StdinReadPost After reading from the stdin into the buffer,

before executing the modelines. Only used
when the "-" argument was used when Vim was
started -- .

StdinReadPre
StdinReadPre Before reading from stdin into the buffer.

Only used when the "-" argument was used when
Vim was started -- .

SwapExists
SwapExists Detected an existing swap file when starting

to edit a file. Only when it is possible to
select a way to handle the situation, when Vim
would ask the user what to do.
The v:swapname variable holds the name of
the swap file found, <afile> the file being
edited. v:swapcommand may contain a command
to be executed in the opened file.
The commands should set the v:swapchoice
variable to a string with one character to
tell Vim what should be done next:

'o' open read-only
'e' edit the file anyway
'r' recover
'd' delete the swap file
'q' quit, don't edit the file
'a' abort, like hitting CTRL-C

When set to an empty string the user will be
asked, as if there was no SwapExists autocmd.

E812
It is not allowed to change to another buffer,
change a buffer name or change directory
here.
{only available with the +eval feature}

Syntax
Syntax When the 'syntax' option has been set. The

pattern is matched against the syntax name.
<afile> can be used for the name of the file
where this option was set, and <amatch> for
the new value of 'syntax'.
See :syn-on .

TabClosed
TabClosed After closing a tab page.

TabEnter
TabEnter Just after entering a tab page. tab-page

After triggering the WinEnter and before
triggering the BufEnter event.

TabLeave
TabLeave Just before leaving a tab page. tab-page

A WinLeave event will have been triggered
first.

TabNew
TabNew When a tab page was created. tab-page

A WinEnter event will have been triggered
first, TabEnter follows.

autocmd.txt — 1156

TermChanged
TermChanged After the value of 'term' has changed. Useful

for re-loading the syntax file to update the
colors, fonts and other terminal-dependent
settings. Executed for all loaded buffers.

TerminalOpen
TerminalOpen Just after a terminal buffer was created, with

`:terminal` or term_start() . This event is
triggered even if the buffer is created
without a window, with the ++hidden option.

TerminalWinOpen
TerminalWinOpen Just after a terminal buffer was created, with

`:terminal` or term_start() . This event is
triggered only if the buffer is created
with a window. Can be used to set window
local options for the terminal window.

TermResponse
TermResponse After the response to t_RV is received from

the terminal. The value of v:termresponse
can be used to do things depending on the
terminal version. Note that this event may be
triggered halfway executing another event,
especially if file I/O, a shell command or
anything else that takes time is involved.

TermResponseAll
TermResponseAll After the response to t_RV , t_RC , t_RS ,

t_RB , t_RF , or t_u7 are received from
the terminal. The value of v:termresponse ,
v:termblinkresp , v:termstyleresp ,
v:termrbgresp , v:termrfgresp , and
v:termu7resp , correspondingly, can be used.

<amatch> will be set to any of:
"version",
"cursorblink",
"cursorshape",
"background",
"foreground",
"ambiguouswidth"

Note that this event may be triggered halfway
executing another event, especially if file I/O,
a shell command or anything else that takes time
is involved.

TextChanged
TextChanged After a change was made to the text in the

current buffer in Normal mode. That is after
b:changedtick has changed (also when that

happened before the TextChanged autocommand
was defined).
Not triggered when there is typeahead or when
an operator is pending.
Note: This can not be skipped with
`:noautocmd`.
Careful: This is triggered very often, don't
do anything that the user does not expect or
that is slow.

TextChangedI
TextChangedI After a change was made to the text in the

current buffer in Insert mode.
Not triggered when the popup menu is visible.
Otherwise the same as TextChanged.

autocmd.txt — 1157

TextChangedP
TextChangedP After a change was made to the text in the

current buffer in Insert mode, only when the
popup menu is visible. Otherwise the same as
TextChanged.

TextChangedT
TextChangedT After a change was made to the text in the

current buffer in Terminal mode.
Otherwise the same as TextChanged.

TextYankPost
TextYankPost After text has been yanked or deleted in the

current buffer. The following values of
v:event can be used to determine the operation

that triggered this autocmd:
inclusive TRUE if the motion is

inclusive else the motion is
exclusive .

operator The operation performed.
regcontents Text that was stored in the

register, as a list of lines,
like with:
getreg(r, 1, 1)

regname Name of the register or empty
string for the unnamed
register, see registers .

regtype Type of the register, see
getregtype() .

visual True if the operation is
performed on a Visual area.

Not triggered when quote_ is used nor when
called recursively.
It is not allowed to change the buffer text,
see textlock . E1064
{only when compiled with the +eval feature}

User
User Never executed automatically. To be used for

autocommands that are only executed with
":doautocmd".
Note that when `:doautocmd User MyEvent` is
used while there are no matching autocommands,
you will get an error. If you don't want
that, either check whether an autocommand is
defined using `exists('#User#MyEvent')` or
define a dummy autocommand yourself.
Example:

if exists('#User#MyEvent')
doautocmd User MyEvent

endif

SigUSR1
SigUSR1 After the SIGUSR1 signal has been detected.

Could be used if other ways of notifying Vim
are not feasible. E.g. to check for the
result of a build that takes a long time, or
when a motion sensor is triggered.
{only on Unix}

UserGettingBored
UserGettingBored When the user presses the same key 42 times.

autocmd.txt — 1158

Just kidding! :-)
VimEnter

VimEnter After doing all the startup stuff, including
loading .vimrc files, executing the "-c cmd"
arguments, creating all windows and loading
the buffers in them.
Just before this event is triggered the
v:vim_did_enter variable is set, so that you

can do:
if v:vim_did_enter
call s:init()

else
au VimEnter * call s:init()

endif
VimLeave

VimLeave Before exiting Vim, just after writing the
.viminfo file. Executed only once, like
VimLeavePre.
To detect an abnormal exit use v:dying .
When v:dying is 2 or more this event is not
triggered.
To get the exit code use v:exiting .

VimLeavePre
VimLeavePre Before exiting Vim, just before writing the

.viminfo file. This is executed only once,
if there is a match with the name of what
happens to be the current buffer when exiting.
Mostly useful with a "*" pattern.

:autocmd VimLeavePre * call CleanupStuff()
To detect an abnormal exit use v:dying .
When v:dying is 2 or more this event is not
triggered.
To get the exit code use v:exiting .

VimResized
VimResized After the Vim window was resized, thus 'lines'

and/or 'columns' changed. Not when starting
up though.

VimResume
VimResume When the Vim instance is resumed after being

suspended and VimSuspend was triggered.
Useful for triggering :checktime and ensure
the buffers content did not change while Vim
was suspended:

:autocmd VimResume * checktime
VimSuspend

VimSuspend When the Vim instance is suspended. Only when
CTRL-Z was typed inside Vim, or when the SIGTSTP
signal was sent to Vim, but not for SIGSTOP.

WinClosed
WinClosed When closing a window, just before it is

removed from the window layout. The pattern
is matched against the window-ID . Both
<amatch> and <afile> are set to the
window-ID . Non-recursive (event cannot

trigger itself).
WinEnter

WinEnter After entering another window. Not done for
the first window, when Vim has just started.
Useful for setting the window height.
If the window is for another buffer, Vim

autocmd.txt — 1159

executes the BufEnter autocommands after the
WinEnter autocommands.
Note: For split and tabpage commands the
WinEnter event is triggered after the split
or tab command but before the file is loaded.

WinLeave
WinLeave Before leaving a window. If the window to be

entered next is for a different buffer, Vim
executes the BufLeave autocommands before the
WinLeave autocommands (but not for ":new").
Not used for ":qa" or ":q" when exiting Vim.

WinNewPre
WinNewPre Before creating a new window. Triggered

before commands that modify window layout by
creating a split or new tab page. Not done for
the first window, when Vim has just started.
It is not allowed to modify window layout
while executing commands for the WinNewPre
event.
Most useful to store current window layout
and compare it with the new layout after the
Window has been created.

WinNew
WinNew When a new window was created. Not done for

the first window, when Vim has just started.
Before a WinEnter event.

WinScrolled
WinScrolled After any window in the current tab page

scrolled the text (horizontally or vertically)
or changed width or height. See
win-scrolled-resized .

The pattern is matched against the window-ID
of the first window that scrolled or resized.
Both <amatch> and <afile> are set to the
window-ID .

v:event is set with information about size
and scroll changes. WinScrolled-event

Only starts triggering after startup finished
and the first screen redraw was done.
Does not trigger when defining the first
WinScrolled or WinResized event, but may
trigger when adding more.

Non-recursive: the event will not trigger
while executing commands for the WinScrolled
event. However, if the command causes a
window to scroll or change size, then another
WinScrolled event will be triggered later.

WinResized
WinResized After a window in the current tab page changed

width or height.

autocmd.txt — 1160

See win-scrolled-resized .

v:event is set with information about size
changes. WinResized-event

Same behavior as WinScrolled for the
pattern, triggering and recursiveness.

==
6. Patterns autocmd-patterns {aupat}

The {aupat} argument of `:autocmd` can be a comma-separated list. This works as
if the command was given with each pattern separately. Thus this command:

:autocmd BufRead *.txt,*.info set et
Is equivalent to:

:autocmd BufRead *.txt set et
:autocmd BufRead *.info set et

The file pattern {aupat} is tested for a match against the file name in one of
two ways:
1. When there is no '/' in the pattern, Vim checks for a match against only

the tail part of the file name (without its leading directory path).
2. When there is a '/' in the pattern, Vim checks for a match against both the

short file name (as you typed it) and the full file name (after expanding
it to a full path and resolving symbolic links).

The special pattern <buffer> or <buffer=N> is used for buffer-local
autocommands autocmd-buflocal . This pattern is not matched against the name
of a buffer.

Examples:
:autocmd BufRead *.txt set et

Set the 'et' option for all text files.

:autocmd BufRead /vim/src/*.c set cindent
Set the 'cindent' option for C files in the /vim/src directory.

:autocmd BufRead /tmp/*.c set ts=5
If you have a link from "/tmp/test.c" to "/home/nobody/vim/src/test.c", and
you start editing "/tmp/test.c", this autocommand will match.

Note: To match part of a path, but not from the root directory, use a '*' as
the first character. Example:

:autocmd BufRead */doc/*.txt set tw=78
This autocommand will for example be executed for "/tmp/doc/xx.txt" and
"/usr/home/piet/doc/yy.txt". The number of directories does not matter here.

The file name that the pattern is matched against is after expanding
wildcards. Thus if you issue this command:

:e $ROOTDIR/main.$EXT
The argument is first expanded to:

/usr/root/main.py
Before it's matched with the pattern of the autocommand. Careful with this
when using events like FileReadCmd, the value of <amatch> may not be what you
expect.

Environment variables can be used in a pattern:
:autocmd BufRead $VIMRUNTIME/doc/*.txt set expandtab

autocmd.txt — 1161

And ~ can be used for the home directory (if $HOME is defined):
:autocmd BufWritePost ~/.vimrc so ~/.vimrc
:autocmd BufRead ~archive/* set readonly

The environment variable is expanded when the autocommand is defined, not when
the autocommand is executed. This is different from the command!

file-pattern
The pattern is interpreted like mostly used in file names:

* matches any sequence of characters; Unusual: includes path
separators

? matches any single character
\? matches a '?'
. matches a '.'
~ matches a '~'
, separates patterns
\, matches a ','
{ } like \(\) in a pattern
, inside { }: like \| in a pattern
\} literal }
\{ literal {
\\\{n,m\} like \{n,m} in a pattern
\ special meaning like in a pattern
[ch] matches 'c' or 'h'
[^ch] match any character but 'c' and 'h'

Note that for all systems the '/' character is used for path separator (even
for MS-Windows). This was done because the backslash is difficult to use in a
pattern and to make the autocommands portable across different systems.

It is possible to use pattern items, but they may not work as expected,
because of the translation done for the above.

autocmd-changes
Matching with the pattern is done when an event is triggered. Changing the
buffer name in one of the autocommands, or even deleting the buffer, does not
change which autocommands will be executed. Example:

au BufEnter *.foo bdel
au BufEnter *.foo set modified

This will delete the current buffer and then set 'modified' in what has become
the current buffer instead. Vim doesn't take into account that "*.foo"
doesn't match with that buffer name. It matches "*.foo" with the name of the
buffer at the moment the event was triggered.

However, buffer-local autocommands will not be executed for a buffer that has
been wiped out with :bwipe . After deleting the buffer with :bdel the
buffer actually still exists (it becomes unlisted), thus the autocommands are
still executed.

==
7. Buffer-local autocommands autocmd-buflocal autocmd-buffer-local

<buffer=N> <buffer=abuf> E680

Buffer-local autocommands are attached to a specific buffer. They are useful
if the buffer does not have a name and when the name does not match a specific
pattern. But it also means they must be explicitly added to each buffer.

Instead of a pattern buffer-local autocommands use one of these forms:
<buffer> current buffer

autocmd.txt — 1162

<buffer=99> buffer number 99
<buffer=abuf> using <abuf> (only when executing autocommands)

<abuf>

Examples:
:au CursorHold <buffer> echo 'hold'
:au CursorHold <buffer=33> echo 'hold'
:au BufNewFile * au CursorHold <buffer=abuf> echo 'hold'

All the commands for autocommands also work with buffer-local autocommands,
simply use the special string instead of the pattern. Examples:

:au! * <buffer> " remove buffer-local autocommands for
" current buffer

:au! * <buffer=33> " remove buffer-local autocommands for
" buffer #33

:bufdo :au! CursorHold <buffer> " remove autocmd for given event for all
" buffers

:au * <buffer> " list buffer-local autocommands for
" current buffer

Note that when an autocommand is defined for the current buffer, it is stored
with the buffer number. Thus it uses the form "<buffer=12>", where 12 is the
number of the current buffer. You will see this when listing autocommands,
for example.

To test for presence of buffer-local autocommands use the exists() function
as follows:

:if exists("#CursorHold#<buffer=12>") | ... | endif
:if exists("#CursorHold#<buffer>") | ... | endif " for current buffer

When a buffer is wiped out its buffer-local autocommands are also gone, of
course. Note that when deleting a buffer, e.g., with ":bdel", it is only
unlisted, the autocommands are still present. In order to see the removal of
buffer-local autocommands:

:set verbose=6

It is not possible to define buffer-local autocommands for a non-existent
buffer.

==
8. Groups autocmd-groups

Autocommands can be put together in a group. This is useful for removing or
executing a group of autocommands. For example, all the autocommands for
syntax highlighting are put in the "highlight" group, to be able to execute
":doautoall highlight BufRead" when the GUI starts.

When no specific group is selected, Vim uses the default group. The default
group does not have a name. You cannot execute the autocommands from the
default group separately; you can execute them only by executing autocommands
for all groups.

Normally, when executing autocommands automatically, Vim uses the autocommands
for all groups. The group only matters when executing autocommands with
":doautocmd" or ":doautoall", or when defining or deleting autocommands.

The group name can contain any characters except white space. The group name
"end" is reserved (also in uppercase).

The group name is case sensitive. Note that this is different from the event

autocmd.txt — 1163

name!

:aug :augroup
:aug[roup] {name} Define the autocmd group name for the

following ":autocmd" commands. The name "end"
or "END" selects the default group.
To avoid confusion, the name should be
different from existing {event} names, as this
most likely will not do what you intended.

:augroup-delete E367 W19 E936
:aug[roup]! {name} Delete the autocmd group {name}. Don't use

this if there is still an autocommand using
this group! You will get a warning if doing
it anyway. When the group is the current
group you will get error E936.

To enter autocommands for a specific group, use this method:
1. Select the group with ":augroup {name}".
2. Delete any old autocommands with ":au!".
3. Define the autocommands.
4. Go back to the default group with "augroup END".

Example:
:augroup uncompress
: au!
: au BufEnter *.gz %!gunzip
:augroup END

This prevents having the autocommands defined twice (e.g., after sourcing the
.vimrc file again).

FileExplorer
There is one group that is recognized by Vim: FileExplorer. If this group
exists Vim assumes that editing a directory is possible and will trigger a
plugin that lists the files in that directory. This is used by the netrw
plugin. This allows you to do:

browse edit

==
9. Executing autocommands autocmd-execute

Vim can also execute Autocommands non-automatically. This is useful if you
have changed autocommands, or when Vim has executed the wrong autocommands
(e.g., the file pattern match was wrong).

Note that the 'eventignore' option applies here too. Events listed in this
option will not cause any commands to be executed.

:do :doau :doaut :doautocmd E217
:do[autocmd] [<nomodeline>] [group] {event} [fname]

Apply the autocommands matching [fname] (default:
current file name) for {event} to the current buffer.
You can use this when the current file name does not
match the right pattern, after changing settings, or
to execute autocommands for a certain event.
It's possible to use this inside an autocommand too,
so you can base the autocommands for one extension on
another extension. Example:

:au BufEnter *.cpp so ~/.vimrc_cpp

autocmd.txt — 1164

:au BufEnter *.cpp doau BufEnter x.c
Be careful to avoid endless loops. See

autocmd-nested .

When the [group] argument is not given, Vim executes
the autocommands for all groups. When the [group]
argument is included, Vim executes only the matching
autocommands for that group. Note: if you use an
undefined group name, Vim gives you an error message.

<nomodeline>
After applying the autocommands the modelines are
processed, so that their settings overrule the
settings from autocommands, like what happens when
editing a file. This is skipped when the <nomodeline>
argument is present. You probably want to use
<nomodeline> for events that are not used when loading
a buffer, such as User .
Processing modelines is also skipped when no
matching autocommands were executed.

:doautoa :doautoall
:doautoa[ll] [<nomodeline>] [group] {event} [fname]

Like ":doautocmd", but apply the autocommands to each
loaded buffer. The current buffer is done last.

Note that [fname] is used to select the autocommands,
not the buffers to which they are applied. Example:

augroup mine
autocmd!
autocmd FileType * echo expand('<amatch>')

augroup END
doautoall mine FileType Loaded-Buffer

Sourcing this script, you'll see as many
"Loaded-Buffer" echoed as there are loaded buffers.

Careful: Don't use this for autocommands that delete a
buffer, change to another buffer or change the
contents of a buffer; the result is unpredictable.
This command is intended for autocommands that set
options, change highlighting, and things like that.

==
10. Using autocommands autocmd-use

For WRITING FILES there are four possible sets of events. Vim uses only one
of these sets for a write command:

BufWriteCmd BufWritePre BufWritePost writing the whole buffer
FilterWritePre FilterWritePost writing to filter temp file

FileAppendCmd FileAppendPre FileAppendPost appending to a file
FileWriteCmd FileWritePre FileWritePost any other file write

When there is a matching "*Cmd" autocommand, it is assumed it will do the
writing. No further writing is done and the other events are not triggered.
Cmd-event

Note that the *WritePost commands should undo any changes to the buffer that
were caused by the *WritePre commands; otherwise, writing the file will have
the side effect of changing the buffer.

autocmd.txt — 1165

Before executing the autocommands, the buffer from which the lines are to be
written temporarily becomes the current buffer. Unless the autocommands
change the current buffer or delete the previously current buffer, the
previously current buffer is made the current buffer again.

The *WritePre and *AppendPre autocommands must not delete the buffer from
which the lines are to be written.

The '[and '] marks have a special position:
- Before the *ReadPre event the '[mark is set to the line just above where

the new lines will be inserted.
- Before the *ReadPost event the '[mark is set to the first line that was

just read, the '] mark to the last line.
- Before executing the *WriteCmd, *WritePre and *AppendPre autocommands the '[

mark is set to the first line that will be written, the '] mark to the last
line.

Careful: '[and '] change when using commands that change the buffer.

In commands which expect a file name, you can use "<afile>" for the file name
that is being read :<afile> (you can also use "%" for the current file
name). "<abuf>" can be used for the buffer number of the currently effective
buffer. This also works for buffers that don't have a name. But it doesn't
work for files without a buffer (e.g., with ":r file").

gzip-example
Examples for reading and writing compressed files:

:augroup gzip
: autocmd!
: autocmd BufReadPre,FileReadPre *.gz set bin
: autocmd BufReadPost,FileReadPost *.gz '[,']!gunzip
: autocmd BufReadPost,FileReadPost *.gz set nobin
: autocmd BufReadPost,FileReadPost *.gz execute ":doautocmd BufReadPost " .. expand("%:r")
: autocmd BufWritePost,FileWritePost *.gz !mv <afile> <afile>:r
: autocmd BufWritePost,FileWritePost *.gz !gzip <afile>:r

: autocmd FileAppendPre *.gz !gunzip <afile>
: autocmd FileAppendPre *.gz !mv <afile>:r <afile>
: autocmd FileAppendPost *.gz !mv <afile> <afile>:r
: autocmd FileAppendPost *.gz !gzip <afile>:r
:augroup END

The "gzip" group is used to be able to delete any existing autocommands with
":autocmd!", for when the file is sourced twice.

("<afile>:r" is the file name without the extension, see :_%:)

The commands executed for the BufNewFile, BufRead/BufReadPost, BufWritePost,
FileAppendPost and VimLeave events do not set or reset the changed flag of the
buffer. When you decompress the buffer with the BufReadPost autocommands, you
can still exit with ":q". When you use ":undo" in BufWritePost to undo the
changes made by BufWritePre commands, you can still do ":q" (this also makes
"ZZ" work). If you do want the buffer to be marked as modified, set the
'modified' option.

To execute Normal mode commands from an autocommand, use the ":normal"
command. Use with care! If the Normal mode command is not finished, the user
needs to type characters (e.g., after ":normal m" you need to type a mark
name).

If you want the buffer to be unmodified after changing it, reset the

autocmd.txt — 1166

'modified' option. This makes it possible to exit the buffer with ":q"
instead of ":q!".

autocmd-nested E218
By default, autocommands do not nest. For example, if you use ":e" or ":w" in
an autocommand, Vim does not execute the BufRead and BufWrite autocommands for
those commands. If you do want this, use the "nested" flag for those commands
in which you want nesting. For example:

:autocmd FileChangedShell *.c ++nested e!
The nesting is limited to 10 levels to get out of recursive loops.

It's possible to use the ":au" command in an autocommand. This can be a
self-modifying command! This can be useful for an autocommand that should
execute only once.

If you want to skip autocommands for one command, use the :noautocmd command
modifier or the 'eventignore' option.

Note: When reading a file (with ":read file" or with a filter command) and the
last line in the file does not have an <EOL>, Vim remembers this. At the next
write (with ":write file" or with a filter command), if the same line is
written again as the last line in a file AND 'binary' is set, Vim does not
supply an <EOL>. This makes a filter command on the just read lines write the
same file as was read, and makes a write command on just filtered lines write
the same file as was read from the filter. For example, another way to write
a compressed file:

:autocmd FileWritePre *.gz set bin|'[,']!gzip
:autocmd FileWritePost *.gz undo|set nobin

autocommand-pattern
You can specify multiple patterns, separated by commas. Here are some
examples:

:autocmd BufRead * set tw=79 nocin ic infercase fo=2croq
:autocmd BufRead .letter set tw=72 fo=2tcrq
:autocmd BufEnter .letter set dict=/usr/lib/dict/words
:autocmd BufLeave .letter set dict=
:autocmd BufRead,BufNewFile *.c,*.h set tw=0 cin noic
:autocmd BufEnter *.c,*.h abbr FOR for (i = 0; i < 3; ++i)<CR>{<CR>}<Esc>O
:autocmd BufLeave *.c,*.h unabbr FOR

For makefiles (makefile, Makefile, imakefile, makefile.unix, etc.):

:autocmd BufEnter ?akefile* set include=^s\=include
:autocmd BufLeave ?akefile* set include&

To always start editing C files at the first function:

:autocmd BufRead *.c,*.h 1;/^{

Without the "1;" above, the search would start from wherever the file was
entered, rather than from the start of the file.

skeleton template
To read a skeleton (template) file when opening a new file:

:autocmd BufNewFile *.c 0r ~/vim/skeleton.c
:autocmd BufNewFile *.h 0r ~/vim/skeleton.h
:autocmd BufNewFile *.java 0r ~/vim/skeleton.java

autocmd.txt — 1167

To insert the current date and time in a *.html file when writing it:

:autocmd BufWritePre,FileWritePre *.html ks|call LastMod()|'s
:fun LastMod()
: if line("$") > 20
: let l = 20
: else
: let l = line("$")
: endif
: exe "1," .. l .. "g/Last modified: /s/Last modified: .*/Last modified: " ..
: \ strftime("%Y %b %d")
:endfun

You need to have a line "Last modified: <date time>" in the first 20 lines
of the file for this to work. Vim replaces <date time> (and anything in the
same line after it) with the current date and time. Explanation:

ks mark current position with mark 's'
call LastMod() call the LastMod() function to do the work
's return the cursor to the old position

The LastMod() function checks if the file is shorter than 20 lines, and then
uses the ":g" command to find lines that contain "Last modified: ". For those
lines the ":s" command is executed to replace the existing date with the
current one. The ":execute" command is used to be able to use an expression
for the ":g" and ":s" commands. The date is obtained with the strftime()
function. You can change its argument to get another date string.

When entering :autocmd on the command-line, completion of events and command
names may be done (with <Tab>, CTRL-D, etc.) where appropriate.

Vim executes all matching autocommands in the order that you specify them.
It is recommended that your first autocommand be used for all files by using
"*" as the file pattern. This means that you can define defaults you like
here for any settings, and if there is another matching autocommand it will
override these. But if there is no other matching autocommand, then at least
your default settings are recovered (if entering this file from another for
which autocommands did match). Note that "*" will also match files starting
with ".", unlike Unix shells.

autocmd-searchpat
Autocommands do not change the current search patterns. Vim saves the current
search patterns before executing autocommands then restores them after the
autocommands finish. This means that autocommands do not affect the strings
highlighted with the 'hlsearch' option. Within autocommands, you can still
use search patterns normally, e.g., with the "n" command.
If you want an autocommand to set the search pattern, such that it is used
after the autocommand finishes, use the ":let @/ =" command.
The search-highlighting cannot be switched off with ":nohlsearch" in an
autocommand. Use the 'h' flag in the 'viminfo' option to disable search-
highlighting when starting Vim.

Cmd-event
When using one of the "*Cmd" events, the matching autocommands are expected to
do the file reading, writing or sourcing. This can be used when working with
a special kind of file, for example on a remote system.
CAREFUL: If you use these events in a wrong way, it may have the effect of
making it impossible to read or write the matching files! Make sure you test
your autocommands properly. Best is to use a pattern that will never match a
normal file name, for example "ftp://*".

autocmd.txt — 1168

When defining a BufReadCmd it will be difficult for Vim to recover a crashed
editing session. When recovering from the original file, Vim reads only those
parts of a file that are not found in the swap file. Since that is not
possible with a BufReadCmd, use the :preserve command to make sure the
original file isn't needed for recovery. You might want to do this only when
you expect the file to be modified.

For file read and write commands the v:cmdarg variable holds the "++enc="
and "++ff=" argument that are effective. These should be used for the command
that reads/writes the file. The v:cmdbang variable is one when "!" was
used, zero otherwise.

See the $VIMRUNTIME/plugin/netrwPlugin.vim for examples.

==
11. Disabling autocommands autocmd-disable

To disable autocommands for some time use the 'eventignore' option. Note that
this may cause unexpected behavior, make sure you restore 'eventignore'
afterwards, using a :try block with :finally .

:noautocmd :noa
To disable autocommands for just one command use the ":noautocmd" command
modifier. This will set 'eventignore' to "all" for the duration of the
following command. Example:

:noautocmd w fname.gz

This will write the file without triggering the autocommands defined by the
gzip plugin.

Note that some autocommands are not triggered right away, but only later.
This specifically applies to CursorMoved and TextChanged .

autocmd.txt — 1169

autocmd.txt — 1170

eval.txt For Vim version 9.1. Last change: 2024 Feb 08

VIM REFERENCE MANUAL by Bram Moolenaar

Expression evaluation expression expr E15 eval
E1002

Using expressions is introduced in chapter 41 of the user manual usr_41.txt .

Note: Expression evaluation can be disabled at compile time. If this has been
done, the features in this document are not available. See +eval and
no-eval-feature .

This file is mainly about the backwards compatible (legacy) Vim script. For
specifics of Vim9 script, which can execute much faster, supports type
checking and much more, see vim9.txt . Where the syntax or semantics differ
a remark is given.

1. Variables variables
1.1 Variable types
1.2 Function references Funcref
1.3 Lists Lists
1.4 Dictionaries Dictionaries
1.5 Blobs Blobs
1.6 More about variables more-variables

2. Expression syntax expression-syntax
3. Internal variable internal-variables
4. Builtin Functions functions
5. Defining functions user-functions
6. Curly braces names curly-braces-names
7. Commands expression-commands
8. Exception handling exception-handling
9. Examples eval-examples
10. Vim script version vimscript-version
11. No +eval feature no-eval-feature
12. The sandbox eval-sandbox
13. Textlock textlock
14. Vim script library vim-script-library

Testing support is documented in testing.txt .
Profiling is documented at profiling .

==
1. Variables variables

1.1 Variable types
E712 E896 E897 E899 E1098
E1107 E1135 E1138

There are ten types of variables:

Number Integer
Number A 32 or 64 bit signed number. expr-number

The number of bits is available in v:numbersize .
Examples: -123 0x10 0177 0o177 0b1011

Float A floating point number. floating-point-format Float
Examples: 123.456 1.15e-6 -1.1e3

String A NUL terminated string of 8-bit unsigned characters (bytes).

eval.txt — 1171

expr-string Examples: "ab\txx\"--" 'x-z''a,c'

List An ordered sequence of items, see List for details.
Example: [1, 2, ['a', 'b']]

Dictionary An associative, unordered array: Each entry has a key and a
value. Dictionary
Examples:

{'blue': "#0000ff", 'red': "#ff0000"}
#{blue: "#0000ff", red: "#ff0000"}

Funcref A reference to a function Funcref .
Example: function("strlen")
It can be bound to a dictionary and arguments, it then works
like a Partial.
Example: function("Callback", [arg], myDict)

Special v:false , v:true , v:none and v:null . Special

Job Used for a job, see job_start() . Job Jobs

Channel Used for a channel, see ch_open() . Channel Channels

Blob Binary Large Object. Stores any sequence of bytes. See Blob
for details
Example: 0zFF00ED015DAF
0z is an empty Blob.

The Number and String types are converted automatically, depending on how they
are used.

Conversion from a Number to a String is by making the ASCII representation of
the Number. Examples:

Number 123 --> String "123"
Number 0 --> String "0"
Number -1 --> String "-1"

octal
Conversion from a String to a Number only happens in legacy Vim script, not in
Vim9 script. It is done by converting the first digits to a number.
Hexadecimal "0xf9", Octal "017" or "0o17", and Binary "0b10"
numbers are recognized
NOTE: when using Vim9 script or scriptversion-4 octal with a leading "0"
is not recognized. The 0o notation requires patch 8.2.0886.
If the String doesn't start with digits, the result is zero.
Examples:

String "456" --> Number 456
String "6bar" --> Number 6
String "foo" --> Number 0
String "0xf1" --> Number 241
String "0100" --> Number 64
String "0o100" --> Number 64
String "0b101" --> Number 5
String "-8" --> Number -8
String "+8" --> Number 0

To force conversion from String to Number, add zero to it:
:echo "0100" + 0
64

To avoid a leading zero to cause octal conversion, or for using a different

eval.txt — 1172

base, use str2nr() .

TRUE FALSE Boolean
For boolean operators Numbers are used. Zero is FALSE, non-zero is TRUE.
You can also use v:false and v:true , in Vim9 script false and true .
When TRUE is returned from a function it is the Number one, FALSE is the
number zero.

Note that in the command:
:if "foo"
:" NOT executed

"foo" is converted to 0, which means FALSE. If the string starts with a
non-zero number it means TRUE:

:if "8foo"
:" executed

To test for a non-empty string, use empty():
:if !empty("foo")

falsy truthy
An expression can be used as a condition, ignoring the type and only using
whether the value is "sort of true" or "sort of false". Falsy is:

the number zero
empty string, blob, list or dictionary

Other values are truthy. Examples:
0 falsy
1 truthy
-1 truthy
0.0 falsy
0.1 truthy
'' falsy
'x' truthy
[] falsy
[0] truthy
{} falsy
#{x: 1} truthy
0z falsy
0z00 truthy

non-zero-arg
Function arguments often behave slightly different from TRUE : If the
argument is present and it evaluates to a non-zero Number, v:true or a
non-empty String, then the value is considered to be TRUE.
Note that " " and "0" are also non-empty strings, thus considered to be TRUE.
A List, Dictionary or Float is not a Number or String, thus evaluate to FALSE.

E611 E745 E728 E703 E729 E730 E731 E908 E910
E913 E974 E975 E976 E1319 E1320 E1321 E1322
E1323 E1324

List , Dictionary , Funcref , Job , Channel , Blob , Class and
object types are not automatically converted.

E805 E806 E808
When mixing Number and Float the Number is converted to Float. Otherwise
there is no automatic conversion of Float. You can use str2float() for String
to Float, printf() for Float to String and float2nr() for Float to Number.

E362 E891 E892 E893 E894 E907 E911 E914
When expecting a Float a Number can also be used, but nothing else.

no-type-checking

eval.txt — 1173

You will not get an error if you try to change the type of a variable.

1.2 Function references
Funcref E695 E718 E1192

A Funcref variable is obtained with the function() function, the funcref()
function, (in Vim9 script) the name of a function, or created with the
lambda expression expr-lambda . It can be used in an expression in the place
of a function name, before the parenthesis around the arguments, to invoke the
function it refers to. Example in Vim9 script:

:var Fn = MyFunc
:echo Fn()

Legacy script:
:let Fn = function("MyFunc")
:echo Fn()

E704 E705 E707
A Funcref variable must start with a capital, "s:", "w:", "t:" or "b:". You
can use "g:" but the following name must still start with a capital. You
cannot have both a Funcref variable and a function with the same name.

A special case is defining a function and directly assigning its Funcref to a
Dictionary entry. Example:

:function dict.init() dict
: let self.val = 0
:endfunction

The key of the Dictionary can start with a lower case letter. The actual
function name is not used here. Also see numbered-function .

A Funcref can also be used with the :call command:
:call Fn()
:call dict.init()

The name of the referenced function can be obtained with string() .
:let func = string(Fn)

You can use call() to invoke a Funcref and use a list variable for the
arguments:

:let r = call(Fn, mylist)

Partial
A Funcref optionally binds a Dictionary and/or arguments. This is also called
a Partial. This is created by passing the Dictionary and/or arguments to
function() or funcref(). When calling the function the Dictionary and/or
arguments will be passed to the function. Example:

let Cb = function('Callback', ['foo'], myDict)
call Cb('bar')

This will invoke the function as if using:
call myDict.Callback('foo', 'bar')

This is very useful when passing a function around, e.g. in the arguments of
ch_open() .

Note that binding a function to a Dictionary also happens when the function is
a member of the Dictionary:

eval.txt — 1174

let myDict.myFunction = MyFunction
call myDict.myFunction()

Here MyFunction() will get myDict passed as "self". This happens when the
"myFunction" member is accessed. When making assigning "myFunction" to
otherDict and calling it, it will be bound to otherDict:

let otherDict.myFunction = myDict.myFunction
call otherDict.myFunction()

Now "self" will be "otherDict". But when the dictionary was bound explicitly
this won't happen:

let myDict.myFunction = function(MyFunction, myDict)
let otherDict.myFunction = myDict.myFunction
call otherDict.myFunction()

Here "self" will be "myDict", because it was bound explicitly.

1.3 Lists
list List Lists E686

A List is an ordered sequence of items. An item can be of any type. Items
can be accessed by their index number. Items can be added and removed at any
position in the sequence.

List creation
E696 E697

A List is created with a comma-separated list of items in square brackets.
Examples:

:let mylist = [1, two, 3, "four"]
:let emptylist = []

An item can be any expression. Using a List for an item creates a
List of Lists:

:let nestlist = [[11, 12], [21, 22], [31, 32]]

An extra comma after the last item is ignored.

List index
list-index E684

An item in the List can be accessed by putting the index in square brackets
after the List. Indexes are zero-based, thus the first item has index zero.

:let item = mylist[0] " get the first item: 1
:let item = mylist[2] " get the third item: 3

When the resulting item is a list this can be repeated:
:let item = nestlist[0][1] " get the first list, second item: 12

A negative index is counted from the end. Index -1 refers to the last item in
the List, -2 to the last but one item, etc.

:let last = mylist[-1] " get the last item: "four"

To avoid an error for an invalid index use the get() function. When an item
is not available it returns zero or the default value you specify:

:echo get(mylist, idx)
:echo get(mylist, idx, "NONE")

eval.txt — 1175

List concatenation
list-concatenation

Two lists can be concatenated with the "+" operator:
:let longlist = mylist + [5, 6]
:let longlist = [5, 6] + mylist

To prepend or append an item, turn it into a list by putting [] around it.

A list can be concatenated with another one in-place using :let+= or
extend() :

:let mylist += [7, 8]
:call extend(mylist, [7, 8])

See list-modification below for more about changing a list in-place.

Sublist
sublist

A part of the List can be obtained by specifying the first and last index,
separated by a colon in square brackets:

:let shortlist = mylist[2:-1] " get List [3, "four"]

Omitting the first index is similar to zero. Omitting the last index is
similar to -1.

:let endlist = mylist[2:] " from item 2 to the end: [3, "four"]
:let shortlist = mylist[2:2] " List with one item: [3]
:let otherlist = mylist[:] " make a copy of the List

Notice that the last index is inclusive. If you prefer using an exclusive
index use the slice() method.

If the first index is beyond the last item of the List or the second item is
before the first item, the result is an empty list. There is no error
message.

If the second index is equal to or greater than the length of the list the
length minus one is used:

:let mylist = [0, 1, 2, 3]
:echo mylist[2:8] " result: [2, 3]

NOTE: mylist[s:e] means using the variable "s:e" as index. Watch out for
using a single letter variable before the ":". Insert a space when needed:
mylist[s : e].

List identity
list-identity

When variable "aa" is a list and you assign it to another variable "bb", both
variables refer to the same list. Thus changing the list "aa" will also
change "bb":

:let aa = [1, 2, 3]
:let bb = aa
:call add(aa, 4)
:echo bb
[1, 2, 3, 4]

Making a copy of a list is done with the copy() function. Using [:] also
works, as explained above. This creates a shallow copy of the list: Changing
a list item in the list will also change the item in the copied list:

:let aa = [[1, 'a'], 2, 3]

eval.txt — 1176

:let bb = copy(aa)
:call add(aa, 4)
:let aa[0][1] = 'aaa'
:echo aa
[[1, aaa], 2, 3, 4]
:echo bb
[[1, aaa], 2, 3]

To make a completely independent list use deepcopy() . This also makes a
copy of the values in the list, recursively. Up to a hundred levels deep.

The operator "is" can be used to check if two variables refer to the same
List. "isnot" does the opposite. In contrast "==" compares if two lists have
the same value.

:let alist = [1, 2, 3]
:let blist = [1, 2, 3]
:echo alist is blist
0
:echo alist == blist
1

Note about comparing lists: Two lists are considered equal if they have the
same length and all items compare equal, as with using "==". There is one
exception: When comparing a number with a string they are considered
different. There is no automatic type conversion, as with using "==" on
variables. Example:

echo 4 == "4"
1
echo [4] == ["4"]
0

Thus comparing Lists is more strict than comparing numbers and strings. You
can compare simple values this way too by putting them in a list:

:let a = 5
:let b = "5"
:echo a == b
1
:echo [a] == [b]
0

List unpack

To unpack the items in a list to individual variables, put the variables in
square brackets, like list items:

:let [var1, var2] = mylist

When the number of variables does not match the number of items in the list
this produces an error. To handle any extra items from the list append ";"
and a variable name:

:let [var1, var2; rest] = mylist

This works like:
:let var1 = mylist[0]
:let var2 = mylist[1]
:let rest = mylist[2:]

Except that there is no error if there are only two items. "rest" will be an
empty list then.

eval.txt — 1177

List modification
list-modification

To change a specific item of a list use :let this way:
:let list[4] = "four"
:let listlist[0][3] = item

To change part of a list you can specify the first and last item to be
modified. The value must at least have the number of items in the range:

:let list[3:5] = [3, 4, 5]

To add items to a List in-place, you can use :let+= (list-concatenation):
:let listA = [1, 2]
:let listA += [3, 4]

When two variables refer to the same List, changing one List in-place will
cause the referenced List to be changed in-place:

:let listA = [1, 2]
:let listB = listA
:let listB += [3, 4]
:echo listA
[1, 2, 3, 4]

Adding and removing items from a list is done with functions. Here are a few
examples:

:call insert(list, 'a') " prepend item 'a'
:call insert(list, 'a', 3) " insert item 'a' before list[3]
:call add(list, "new") " append String item
:call add(list, [1, 2]) " append a List as one new item
:call extend(list, [1, 2]) " extend the list with two more items
:let i = remove(list, 3) " remove item 3
:unlet list[3] " idem
:let l = remove(list, 3, -1) " remove items 3 to last item
:unlet list[3 :] " idem
:call filter(list, 'v:val !~ "x"') " remove items with an 'x'

Changing the order of items in a list:
:call sort(list) " sort a list alphabetically
:call reverse(list) " reverse the order of items
:call uniq(sort(list)) " sort and remove duplicates

For loop

The :for loop executes commands for each item in a List, String or Blob.
A variable is set to each item in sequence. Example with a List:

:for item in mylist
: call Doit(item)
:endfor

This works like:
:let index = 0
:while index < len(mylist)
: let item = mylist[index]
: :call Doit(item)
: let index = index + 1
:endwhile

If all you want to do is modify each item in the list then the map()

eval.txt — 1178

function will be a simpler method than a for loop.

Just like the :let command, :for also accepts a list of variables. This
requires the argument to be a List of Lists.

:for [lnum, col] in [[1, 3], [2, 8], [3, 0]]
: call Doit(lnum, col)
:endfor

This works like a :let command is done for each list item. Again, the types
must remain the same to avoid an error.

It is also possible to put remaining items in a List variable:
:for [i, j; rest] in listlist
: call Doit(i, j)
: if !empty(rest)
: echo "remainder: " .. string(rest)
: endif
:endfor

For a Blob one byte at a time is used.

For a String one character, including any composing characters, is used as a
String. Example:

for c in text
echo 'This character is ' .. c

endfor

List functions
E714

Functions that are useful with a List:
:let r = call(funcname, list) " call a function with an argument list
:if empty(list) " check if list is empty
:let l = len(list) " number of items in list
:let big = max(list) " maximum value in list
:let small = min(list) " minimum value in list
:let xs = count(list, 'x') " count nr of times 'x' appears in list
:let i = index(list, 'x') " index of first 'x' in list
:let lines = getline(1, 10) " get ten text lines from buffer
:call append('$', lines) " append text lines in buffer
:let list = split("a b c") " create list from items in a string
:let string = join(list, ', ') " create string from list items
:let s = string(list) " String representation of list
:call map(list, '">> " .. v:val') " prepend ">> " to each item

Don't forget that a combination of features can make things simple. For
example, to add up all the numbers in a list:

:exe 'let sum = ' .. join(nrlist, '+')

1.4 Dictionaries
dict Dict Dictionaries Dictionary

A Dictionary is an associative array: Each entry has a key and a value. The
entry can be located with the key. The entries are stored without a specific
ordering.

Dictionary creation
E720 E721 E722 E723

A Dictionary is created with a comma-separated list of entries in curly

eval.txt — 1179

braces. Each entry has a key and a value, separated by a colon. Each key can
only appear once. Examples:

:let mydict = {1: 'one', 2: 'two', 3: 'three'}
:let emptydict = {}

E713 E716 E717
A key is always a String. You can use a Number, it will be converted to a
String automatically. Thus the String '4' and the number 4 will find the same
entry. Note that the String '04' and the Number 04 are different, since the
Number will be converted to the String '4', leading zeros are dropped. The
empty string can also be used as a key.

In Vim9 script a literal key can be used if it consists only of alphanumeric
characters, underscore and dash, see vim9-literal-dict .

literal-Dict #{}
To avoid having to put quotes around every key the #{} form can be used in
legacy script. This does require the key to consist only of ASCII letters,
digits, '-' and '_'. Example:

:let mydict = #{zero: 0, one_key: 1, two-key: 2, 333: 3}
Note that 333 here is the string "333". Empty keys are not possible with #{}.
In Vim9 script the #{} form cannot be used because it can be confused with
the start of a comment.

A value can be any expression. Using a Dictionary for a value creates a
nested Dictionary:

:let nestdict = {1: {11: 'a', 12: 'b'}, 2: {21: 'c'}}

An extra comma after the last entry is ignored.

Accessing entries

The normal way to access an entry is by putting the key in square brackets:
:let val = mydict["one"]
:let mydict["four"] = 4

You can add new entries to an existing Dictionary this way, unlike Lists.

For keys that consist entirely of letters, digits and underscore the following
form can be used expr-entry :

:let val = mydict.one
:let mydict.four = 4

Since an entry can be any type, also a List and a Dictionary, the indexing and
key lookup can be repeated:

:echo dict.key[idx].key

Dictionary to List conversion

You may want to loop over the entries in a dictionary. For this you need to
turn the Dictionary into a List and pass it to :for .

Most often you want to loop over the keys, using the keys() function:
:for key in keys(mydict)
: echo key .. ': ' .. mydict[key]
:endfor

The List of keys is unsorted. You may want to sort them first:
:for key in sort(keys(mydict))

eval.txt — 1180

To loop over the values use the values() function:
:for v in values(mydict)
: echo "value: " .. v
:endfor

If you want both the key and the value use the items() function. It returns
a List in which each item is a List with two items, the key and the value:

:for [key, value] in items(mydict)
: echo key .. ': ' .. value
:endfor

Dictionary identity
dict-identity

Just like Lists you need to use copy() and deepcopy() to make a copy of a
Dictionary. Otherwise, assignment results in referring to the same
Dictionary:

:let onedict = {'a': 1, 'b': 2}
:let adict = onedict
:let adict['a'] = 11
:echo onedict['a']
11

Two Dictionaries compare equal if all the key-value pairs compare equal. For
more info see list-identity .

Dictionary modification
dict-modification

To change an already existing entry of a Dictionary, or to add a new entry,
use :let this way:

:let dict[4] = "four"
:let dict['one'] = item

Removing an entry from a Dictionary is done with remove() or :unlet .
Three ways to remove the entry with key "aaa" from dict:

:let i = remove(dict, 'aaa')
:unlet dict.aaa
:unlet dict['aaa']

Merging a Dictionary with another is done with extend() :
:call extend(adict, bdict)

This extends adict with all entries from bdict. Duplicate keys cause entries
in adict to be overwritten. An optional third argument can change this.
Note that the order of entries in a Dictionary is irrelevant, thus don't
expect ":echo adict" to show the items from bdict after the older entries in
adict.

Weeding out entries from a Dictionary can be done with filter() :
:call filter(dict, 'v:val =~ "x"')

This removes all entries from "dict" with a value not matching 'x'.
This can also be used to remove all entries:

call filter(dict, 0)

In some situations it is not allowed to remove or add entries to a Dictionary.
Especially when iterating over all the entries. You will get E1313 or
another error in that case.

Dictionary function

eval.txt — 1181

Dictionary-function self E725 E862
When a function is defined with the "dict" attribute it can be used in a
special way with a dictionary. Example:

:function Mylen() dict
: return len(self.data)
:endfunction
:let mydict = {'data': [0, 1, 2, 3], 'len': function("Mylen")}
:echo mydict.len()

This is like a method in object oriented programming. The entry in the
Dictionary is a Funcref . The local variable "self" refers to the dictionary
the function was invoked from. When using Vim9 script you can use classes
and objects, see `:class`.

It is also possible to add a function without the "dict" attribute as a
Funcref to a Dictionary, but the "self" variable is not available then.

numbered-function anonymous-function
To avoid the extra name for the function it can be defined and directly
assigned to a Dictionary in this way:

:let mydict = {'data': [0, 1, 2, 3]}
:function mydict.len()
: return len(self.data)
:endfunction
:echo mydict.len()

The function will then get a number and the value of dict.len is a Funcref
that references this function. The function can only be used through a
Funcref . It will automatically be deleted when there is no Funcref

remaining that refers to it.

It is not necessary to use the "dict" attribute for a numbered function.

If you get an error for a numbered function, you can find out what it is with
a trick. Assuming the function is 42, the command is:

:function g:42

Functions for Dictionaries
E715

Functions that can be used with a Dictionary:
:if has_key(dict, 'foo') " TRUE if dict has entry with key "foo"
:if empty(dict) " TRUE if dict is empty
:let l = len(dict) " number of items in dict
:let big = max(dict) " maximum value in dict
:let small = min(dict) " minimum value in dict
:let xs = count(dict, 'x') " count nr of times 'x' appears in dict
:let s = string(dict) " String representation of dict
:call map(dict, '">> " .. v:val') " prepend ">> " to each item

1.5 Blobs
blob Blob Blobs E978

A Blob is a binary object. It can be used to read an image from a file and
send it over a channel, for example.

A Blob mostly behaves like a List of numbers, where each number has the
value of an 8-bit byte, from 0 to 255.

eval.txt — 1182

Blob creation

A Blob can be created with a blob-literal :
:let b = 0zFF00ED015DAF

Dots can be inserted between bytes (pair of hex characters) for readability,
they don't change the value:

:let b = 0zFF00.ED01.5DAF

A blob can be read from a file with readfile() passing the {type} argument
set to "B", for example:

:let b = readfile('image.png', 'B')

A blob can be read from a channel with the ch_readblob() function.

Blob index
blob-index E979

A byte in the Blob can be accessed by putting the index in square brackets
after the Blob. Indexes are zero-based, thus the first byte has index zero.

:let myblob = 0z00112233
:let byte = myblob[0] " get the first byte: 0x00
:let byte = myblob[2] " get the third byte: 0x22

A negative index is counted from the end. Index -1 refers to the last byte in
the Blob, -2 to the last but one byte, etc.

:let last = myblob[-1] " get the last byte: 0x33

To avoid an error for an invalid index use the get() function. When an item
is not available it returns -1 or the default value you specify:

:echo get(myblob, idx)
:echo get(myblob, idx, 999)

Blob iteration

The :for loop executes commands for each byte of a Blob. The loop variable is
set to each byte in the Blob. Example:

:for byte in 0z112233
: call Doit(byte)
:endfor

This calls Doit() with 0x11, 0x22 and 0x33.

Blob concatenation
blob-concatenation

Two blobs can be concatenated with the "+" operator:
:let longblob = myblob + 0z4455
:let longblob = 0z4455 + myblob

A blob can be concatenated with another one in-place using :let+= :
:let myblob += 0z6677

See blob-modification below for more about changing a blob in-place.

Part of a blob

A part of the Blob can be obtained by specifying the first and last index,
separated by a colon in square brackets:

:let myblob = 0z00112233

eval.txt — 1183

:let shortblob = myblob[1:2] " get 0z1122
:let shortblob = myblob[2:-1] " get 0z2233

Omitting the first index is similar to zero. Omitting the last index is
similar to -1.

:let endblob = myblob[2:] " from item 2 to the end: 0z2233
:let shortblob = myblob[2:2] " Blob with one byte: 0z22
:let otherblob = myblob[:] " make a copy of the Blob

If the first index is beyond the last byte of the Blob or the second index is
before the first index, the result is an empty Blob. There is no error
message.

If the second index is equal to or greater than the length of the list the
length minus one is used:

:echo myblob[2:8] " result: 0z2233

Blob modification
blob-modification E1182 E1184

To change a specific byte of a blob use :let this way:
:let blob[4] = 0x44

When the index is just one beyond the end of the Blob, it is appended. Any
higher index is an error.

To change a sequence of bytes the [:] notation can be used:
let blob[1:3] = 0z445566

The length of the replaced bytes must be exactly the same as the value
provided. E972

To change part of a blob you can specify the first and last byte to be
modified. The value must have the same number of bytes in the range:

:let blob[3:5] = 0z334455

To add items to a Blob in-place, you can use :let+= (blob-concatenation):
:let blobA = 0z1122
:let blobA += 0z3344

When two variables refer to the same Blob, changing one Blob in-place will
cause the referenced Blob to be changed in-place:

:let blobA = 0z1122
:let blobB = blobA
:let blobB += 0z3344
:echo blobA
0z11223344

You can also use the functions add() , remove() and insert() .

Blob identity

Blobs can be compared for equality:
if blob == 0z001122

And for equal identity:
if blob is otherblob

blob-identity E977
When variable "aa" is a Blob and you assign it to another variable "bb", both
variables refer to the same Blob. Then the "is" operator returns true.

eval.txt — 1184

When making a copy using [:] or copy() the values are the same, but the
identity is different:

:let blob = 0z112233
:let blob2 = blob
:echo blob == blob2
1
:echo blob is blob2
1
:let blob3 = blob[:]
:echo blob == blob3
1
:echo blob is blob3
0

Making a copy of a Blob is done with the copy() function. Using [:] also
works, as explained above.

1.6 More about variables
more-variables

If you need to know the type of a variable or expression, use the type()
function.

When the '!' flag is included in the 'viminfo' option, global variables that
start with an uppercase letter, and don't contain a lowercase letter, are
stored in the viminfo file viminfo-file .

When the 'sessionoptions' option contains "global", global variables that
start with an uppercase letter and contain at least one lowercase letter are
stored in the session file session-file .

variable name can be stored where
my_var_6 not
My_Var_6 session file
MY_VAR_6 viminfo file

In legacy script it is possible to form a variable name with curly braces, see
curly-braces-names .

==
2. Expression syntax expression-syntax

E1143
Expression syntax summary, from least to most significant:

expr1 expr2
expr2 ? expr1 : expr1 if-then-else

expr2 expr3
expr3 || expr3 ... logical OR

expr3 expr4
expr4 && expr4 ... logical AND

expr4 expr5
expr5 == expr5 equal
expr5 != expr5 not equal
expr5 > expr5 greater than
expr5 >= expr5 greater than or equal
expr5 < expr5 smaller than

eval.txt — 1185

expr5 <= expr5 smaller than or equal
expr5 =~ expr5 regexp matches
expr5 !~ expr5 regexp doesn't match

expr5 ==? expr5 equal, ignoring case
expr5 ==# expr5 equal, match case
etc. As above, append ? for ignoring case, # for

matching case

expr5 is expr5 same List , Dictionary or Blob instance
expr5 isnot expr5 different List , Dictionary or Blob

instance

expr5 expr6
expr6 << expr6 bitwise left shift
expr6 >> expr6 bitwise right shift

expr6 expr7
expr7 + expr7 ... number addition, list or blob concatenation
expr7 - expr7 ... number subtraction
expr7 . expr7 ... string concatenation
expr7 .. expr7 ... string concatenation

expr7 expr8
expr8 * expr8 ... number multiplication
expr8 / expr8 ... number division
expr8 % expr8 ... number modulo

expr8 expr9
<type>expr9 type check and conversion (Vim9 only)

expr9 expr10
! expr9 logical NOT
- expr9 unary minus
+ expr9 unary plus

expr10 expr11
expr10[expr1] byte of a String or item of a List
expr10[expr1 : expr1] substring of a String or sublist of a List
expr10.name entry in a Dictionary
expr10(expr1, ...) function call with Funcref variable
expr10->name(expr1, ...) method call

expr11 number number constant
"string" string constant, backslash is special
'string' string constant, ' is doubled
[expr1, ...] List
{expr1: expr1, ...} Dictionary
#{key: expr1, ...} legacy Dictionary
&option option value
(expr1) nested expression
variable internal variable
va{ria}ble internal variable with curly braces
$VAR environment variable
@r contents of register 'r'
function(expr1, ...) function call
func{ti}on(expr1, ...) function call with curly braces
{args -> expr1} legacy lambda expression
(args) => expr1 Vim9 lambda expression

eval.txt — 1186

"..." indicates that the operations in this level can be concatenated.
Example:

&nu || &list && &shell == "csh"

All expressions within one level are parsed from left to right.

Expression nesting is limited to 1000 levels deep (300 when build with MSVC)
to avoid running out of stack and crashing. E1169

expr1 expr1 ternary falsy-operator ?? E109

The ternary operator: expr2 ? expr1 : expr1
The falsy operator: expr2 ?? expr1

Ternary operator

In legacy script the expression before the '?' is evaluated to a number. If
it evaluates to TRUE , the result is the value of the expression between the
'?' and ':', otherwise the result is the value of the expression after the
':'.

In Vim9 script the first expression must evaluate to a boolean, see
vim9-boolean .

Example:
:echo lnum == 1 ? "top" : lnum

Since the first expression is an "expr2", it cannot contain another ?:. The
other two expressions can, thus allow for recursive use of ?:.
Example:

:echo lnum == 1 ? "top" : lnum == 1000 ? "last" : lnum

To keep this readable, using line-continuation is suggested:
:echo lnum == 1
:\ ? "top"
:\ : lnum == 1000
:\ ? "last"
:\ : lnum

You should always put a space before the ':', otherwise it can be mistaken for
use in a variable such as "a:1".

Falsy operator

This is also known as the "null coalescing operator", but that's too
complicated, thus we just call it the falsy operator.

The expression before the '??' is evaluated. If it evaluates to
truthy , this is used as the result. Otherwise the expression after the '??'

is evaluated and used as the result. This is most useful to have a default
value for an expression that may result in zero or empty:

echo theList ?? 'list is empty'
echo GetName() ?? 'unknown'

These are similar, but not equal:
expr2 ?? expr1
expr2 ? expr2 : expr1

eval.txt — 1187

In the second line "expr2" is evaluated twice. And in Vim9 script the type
of expr2 before "?" must be a boolean.

expr2 and expr3 expr2 expr3

expr3 || expr3 .. logical OR expr-barbar
expr4 && expr4 .. logical AND expr-&&

The "||" and "&&" operators take one argument on each side.

In legacy script the arguments are (converted to) Numbers.

In Vim9 script the values must be boolean, see vim9-boolean . Use "!!" to
convert any type to a boolean.

The result is:
input output

n1 n2 n1 || n2 n1 && n2
FALSE FALSE FALSE FALSE
FALSE TRUE TRUE FALSE
TRUE FALSE TRUE FALSE
TRUE TRUE TRUE TRUE

The operators can be concatenated, for example:

&nu || &list && &shell == "csh"

Note that "&&" takes precedence over "||", so this has the meaning of:

&nu || (&list && &shell == "csh")

Once the result is known, the expression "short-circuits", that is, further
arguments are not evaluated. This is like what happens in C. For example:

let a = 1
echo a || b

This is valid even if there is no variable called "b" because "a" is TRUE ,
so the result must be TRUE . Similarly below:

echo exists("b") && b == "yes"

This is valid whether "b" has been defined or not. The second clause will
only be evaluated if "b" has been defined.

expr4 expr4 E1153

expr5 {cmp} expr5

Compare two expr5 expressions. In legacy script the result is a 0 if it
evaluates to false, or 1 if it evaluates to true. In Vim9 script the result
is true or false .

expr-== expr-!= expr-> expr->=
expr-< expr-<= expr-=~ expr-!~
expr-==# expr-!=# expr-># expr->=#

eval.txt — 1188

expr-<# expr-<=# expr-=~# expr-!~#
expr-==? expr-!=? expr->? expr->=?
expr-<? expr-<=? expr-=~? expr-!~?
expr-is expr-isnot expr-is# expr-isnot#
expr-is? expr-isnot? E1072

use 'ignorecase' match case ignore case
equal == ==# ==?
not equal != !=# !=?
greater than > ># >?
greater than or equal >= >=# >=?
smaller than < <# <?
smaller than or equal <= <=# <=?
regexp matches =~ =~# =~?
regexp doesn't match !~ !~# !~?
same instance is is# is?
different instance isnot isnot# isnot?

Examples:
"abc" ==# "Abc" evaluates to 0
"abc" ==? "Abc" evaluates to 1
"abc" == "Abc" evaluates to 1 if 'ignorecase' is set, 0 otherwise
NOTE: In Vim9 script 'ignorecase' is not used.

E691 E692
A List can only be compared with a List and only "equal", "not equal",
"is" and "isnot" can be used. This compares the values of the list,
recursively. Ignoring case means case is ignored when comparing item values.

E735 E736
A Dictionary can only be compared with a Dictionary and only "equal", "not
equal", "is" and "isnot" can be used. This compares the key/values of the
Dictionary recursively. Ignoring case means case is ignored when comparing

item values.

E694
A Funcref can only be compared with a Funcref and only "equal", "not
equal", "is" and "isnot" can be used. Case is never ignored. Whether
arguments or a Dictionary are bound (with a partial) matters. The
Dictionaries must also be equal (or the same, in case of "is") and the
arguments must be equal (or the same).

To compare Funcrefs to see if they refer to the same function, ignoring bound
Dictionary and arguments, use get() to get the function name:

if get(Part1, 'name') == get(Part2, 'name')
" Part1 and Part2 refer to the same function

E1037
Using "is" or "isnot" with a List , Dictionary or Blob checks whether
the expressions are referring to the same List , Dictionary or Blob
instance. A copy of a List is different from the original List . When
using "is" without a List , Dictionary or Blob , it is equivalent to
using "equal", using "isnot" equivalent to using "not equal". Except that
a different type means the values are different:

echo 4 == '4'
1
echo 4 is '4'
0
echo 0 is []
0

"is#"/"isnot#" and "is?"/"isnot?" can be used to match and ignore case.
In Vim9 script this doesn't work, two strings are never identical.

eval.txt — 1189

In legacy script, when comparing a String with a Number, the String is
converted to a Number, and the comparison is done on Numbers. This means
that:

echo 0 == 'x'
1

because 'x' converted to a Number is zero. However:
echo [0] == ['x']
0

Inside a List or Dictionary this conversion is not used.

In Vim9 script the types must match.

When comparing two Strings, this is done with strcmp() or stricmp(). This
results in the mathematical difference (comparing byte values), not
necessarily the alphabetical difference in the local language.

When using the operators with a trailing '#', or the short version and
'ignorecase' is off, the comparing is done with strcmp(): case matters.

When using the operators with a trailing '?', or the short version and
'ignorecase' is set, the comparing is done with stricmp(): case is ignored.

'smartcase' is not used.

The "=~" and "!~" operators match the lefthand argument with the righthand
argument, which is used as a pattern. See pattern for what a pattern is.
This matching is always done like 'magic' was set and 'cpoptions' is empty, no
matter what the actual value of 'magic' or 'cpoptions' is. This makes scripts
portable. To avoid backslashes in the regexp pattern to be doubled, use a
single-quote string, see literal-string .
Since a string is considered to be a single line, a multi-line pattern
(containing \n, backslash-n) will not match. However, a literal NL character
can be matched like an ordinary character. Examples:

"foo\nbar" =~ "\n" evaluates to 1
"foo\nbar" =~ "\\n" evaluates to 0

expr5 expr5 bitwise-shift

expr6 << expr6 bitwise left shift expr-<<
expr6 >> expr6 bitwise right shift expr->>

E1282 E1283
The "<<" and ">>" operators can be used to perform bitwise left or right shift
of the left operand by the number of bits specified by the right operand. The
operands are used as positive numbers. When shifting right with ">>" the
topmost bit (sometimes called the sign bit) is cleared. If the right operand
(shift amount) is more than the maximum number of bits in a number
(v:numbersize) the result is zero.

expr6 and expr7 expr6 expr7 E1036 E1051

expr7 + expr7 Number addition, List or Blob concatenation expr-+
expr7 - expr7 Number subtraction expr--
expr7 . expr7 String concatenation expr-.
expr7 .. expr7 String concatenation expr-..

For Lists only "+" is possible and then both expr7 must be a list. The
result is a new list with the two lists Concatenated.

eval.txt — 1190

For String concatenation ".." is preferred, since "." is ambiguous, it is also
used for Dict member access and floating point numbers.
In Vim9 script and when vimscript-version is 2 or higher, using "." is not
allowed.

In Vim9 script the arguments of ".." are converted to String for simple
types: Number, Float, Special and Bool. For other types string() should be
used.

expr8 * expr8 Number multiplication expr-star
expr8 / expr8 Number division expr-/
expr8 % expr8 Number modulo expr-%

In legacy script, for all operators except "." and "..", Strings are converted
to Numbers.

For bitwise operators see and() , or() and xor() .

Note the difference between "+" and ".." in legacy script:
"123" + "456" = 579
"123" .. "456" = "123456"

Since '..' has the same precedence as '+' and '-', you need to read:
1 .. 90 + 90.0

As:
(1 .. 90) + 90.0

That works in legacy script, since the String "190" is automatically converted
to the Number 190, which can be added to the Float 90.0. However:

1 .. 90 * 90.0
Should be read as:

1 .. (90 * 90.0)
Since '..' has lower precedence than '*'. This does NOT work, since this
attempts to concatenate a Float and a String.

When dividing a Number by zero the result depends on the value:
0 / 0 = -0x80000000 (like NaN for Float)
>0 / 0 = 0x7fffffff (like positive infinity)
<0 / 0 = -0x7fffffff (like negative infinity)

(before Vim 7.2 it was always 0x7fffffff)
In Vim9 script dividing a number by zero is an error. E1154

When 64-bit Number support is enabled:
0 / 0 = -0x8000000000000000 (like NaN for Float)
>0 / 0 = 0x7fffffffffffffff (like positive infinity)
<0 / 0 = -0x7fffffffffffffff (like negative infinity)

When the righthand side of '%' is zero, the result is 0.

None of these work for Funcref s.

".", ".." and "%" do not work for Float. E804 E1035

expr8 expr8

<type>expr9

This is only available in Vim9 script, see type-casting .

eval.txt — 1191

expr9 expr9

! expr9 logical NOT expr-!
- expr9 unary minus expr-unary--
+ expr9 unary plus expr-unary-+

For '!' TRUE becomes FALSE , FALSE becomes TRUE (one).
For '-' the sign of the number is changed.
For '+' the number is unchanged. Note: "++" has no effect.

In legacy script a String will be converted to a Number first. Note that if
the string does not start with a digit you likely don't get what you expect.

In Vim9 script an error is given when "-" or "+" is used and the type is not
a number.

In Vim9 script "!" can be used for any type and the result is always a
boolean. Use "!!" to convert any type to a boolean, according to whether the
value is falsy .

These three can be repeated and mixed. Examples:
!-1 == 0
!!8 == 1
--9 == 9

expr10 expr10

This expression is either expr11 or a sequence of the alternatives below,
in any order. E.g., these are all possible:

expr10[expr1].name
expr10.name[expr1]
expr10(expr1, ...)[expr1].name
expr10->(expr1, ...)[expr1]

Evaluation is always from left to right.

expr10[expr1] item of String or List expr-[] E111
E909 subscript E1062

In legacy Vim script:
If expr10 is a Number or String this results in a String that contains the
expr1'th single byte from expr10. expr10 is used as a String (a number is
automatically converted to a String), expr1 as a Number. This doesn't
recognize multibyte encodings, see `byteidx()` for an alternative, or use
`split()` to turn the string into a list of characters. Example, to get the
byte under the cursor:

:let c = getline(".")[col(".") - 1]

In Vim9 script: E1147 E1148
If expr10 is a String this results in a String that contains the expr1'th
single character (including any composing characters) from expr10. To use byte
indexes use strpart() .

Index zero gives the first byte or character. Careful: text column numbers
start with one!

If the length of the String is less than the index, the result is an empty
String. A negative index always results in an empty string (reason: backward
compatibility). Use [-1:] to get the last byte or character.
In Vim9 script a negative index is used like with a list: count from the end.

eval.txt — 1192

If expr10 is a List then it results the item at index expr1. See list-index
for possible index values. If the index is out of range this results in an
error. Example:

:let item = mylist[-1] " get last item

Generally, if a List index is equal to or higher than the length of the
List , or more negative than the length of the List , this results in an

error.

expr10[expr1a : expr1b] substring or sublist expr-[:] substring

If expr10 is a String this results in the substring with the bytes or
characters from expr1a to and including expr1b. expr10 is used as a String,
expr1a and expr1b are used as a Number.

In legacy Vim script the indexes are byte indexes. This doesn't recognize
multibyte encodings, see byteidx() for computing the indexes. If expr10 is
a Number it is first converted to a String.

In Vim9 script the indexes are character indexes and include composing
characters. To use byte indexes use strpart() . To use character indexes
without including composing characters use strcharpart() .

The item at index expr1b is included, it is inclusive. For an exclusive index
use the slice() function.

If expr1a is omitted zero is used. If expr1b is omitted the length of the
string minus one is used.

A negative number can be used to measure from the end of the string. -1 is
the last character, -2 the last but one, etc.

If an index goes out of range for the string characters are omitted. If
expr1b is smaller than expr1a the result is an empty string.

Examples:
:let c = name[-1:] " last byte of a string
:let c = name[0:-1] " the whole string
:let c = name[-2:-2] " last but one byte of a string
:let s = line(".")[4:] " from the fifth byte to the end
:let s = s[:-3] " remove last two bytes

slice
If expr10 is a List this results in a new List with the items indicated by
the indexes expr1a and expr1b. This works like with a String, as explained
just above. Also see sublist below. Examples:

:let l = mylist[:3] " first four items
:let l = mylist[4:4] " List with one item
:let l = mylist[:] " shallow copy of a List

If expr10 is a Blob this results in a new Blob with the bytes in the
indexes expr1a and expr1b, inclusive. Examples:

:let b = 0zDEADBEEF
:let bs = b[1:2] " 0zADBE
:let bs = b[:] " copy of 0zDEADBEEF

Using expr10[expr1] or expr10[expr1a : expr1b] on a Funcref results in an
error.

eval.txt — 1193

Watch out for confusion between a namespace and a variable followed by a colon
for a sublist:

mylist[n:] " uses variable n
mylist[s:] " uses namespace s:, error!

expr10.name entry in a Dictionary expr-entry
E1203 E1229

If expr10 is a Dictionary and it is followed by a dot, then the following
name will be used as a key in the Dictionary . This is just like:
expr10[name].

The name must consist of alphanumeric characters, just like a variable name,
but it may start with a number. Curly braces cannot be used.

There must not be white space before or after the dot.

Examples:
:let dict = {"one": 1, 2: "two"}
:echo dict.one " shows "1"
:echo dict.2 " shows "two"
:echo dict .2 " error because of space before the dot

Note that the dot is also used for String concatenation. To avoid confusion
always put spaces around the dot for String concatenation.

expr10(expr1, ...) Funcref function call E1085

When expr10 is a Funcref type variable, invoke the function it refers to.

expr10->name([args]) method call method ->
expr10->{lambda}([args])

E260 E276 E1265
For methods that are also available as global functions this is the same as:

name(expr10 [, args])
There can also be methods specifically for the type of "expr10".

This allows for chaining, passing the value that one method returns to the
next method:

mylist->filter(filterexpr)->map(mapexpr)->sort()->join()

Example of using a lambda:
GetPercentage()->{x -> x * 100}()->printf('%d%%')

When using -> the expr9 operators will be applied first, thus:
-1.234->string()

Is equivalent to:
(-1.234)->string()

And NOT:
-(1.234->string())

What comes after "->" can be a name, a simple expression (not containing any
parenthesis), or any expression in parentheses:

base->name(args)
base->some.name(args)
base->alist[idx](args)
base->(getFuncRef())(args)

eval.txt — 1194

Note that in the last call the base is passed to the function resulting from
"(getFuncRef())", inserted before "args". E1275

E274
"->name(" must not contain white space. There can be white space before the
"->" and after the "(", thus you can split the lines like this:

mylist
\ ->filter(filterexpr)
\ ->map(mapexpr)
\ ->sort()
\ ->join()

When using the lambda form there must be no white space between the } and the
(.

expr11
number

number number constant expr-number

0x hex-number 0o octal-number binary-number
Decimal, Hexadecimal (starting with 0x or 0X), Binary (starting with 0b or 0B)
and Octal (starting with 0, 0o or 0O).

Assuming 64 bit numbers are used (see v:numbersize) an unsigned number is
truncated to 0x7fffffffffffffff or 9223372036854775807. You can use -1 to get
0xffffffffffffffff.

floating-point-format
Floating point numbers can be written in two forms:

[-+]{N}.{M}
[-+]{N}.{M}[eE][-+]{exp}

{N} and {M} are numbers. Both {N} and {M} must be present and can only
contain digits, except that in Vim9 script in {N} single quotes between
digits are ignored.
[-+] means there is an optional plus or minus sign.
{exp} is the exponent, power of 10.
Only a decimal point is accepted, not a comma. No matter what the current
locale is.

Examples:
123.456
+0.0001
55.0
-0.123
1.234e03
1.0E-6
-3.1416e+88

These are INVALID:
3. empty {M}
1e40 missing .{M}

Rationale:
Before floating point was introduced, the text "123.456" was interpreted as
the two numbers "123" and "456", both converted to a string and concatenated,
resulting in the string "123456". Since this was considered pointless, and we

eval.txt — 1195

could not find it intentionally being used in Vim scripts, this backwards
incompatibility was accepted in favor of being able to use the normal notation
for floating point numbers.

float-pi float-e
A few useful values to copy&paste:

:let pi = 3.14159265359
:let e = 2.71828182846

Or, if you don't want to write them in as floating-point literals, you can
also use functions, like the following:

:let pi = acos(-1.0)
:let e = exp(1.0)

floating-point-precision
The precision and range of floating points numbers depends on what "double"
means in the library Vim was compiled with. There is no way to change this at
runtime.

The default for displaying a Float is to use 6 decimal places, like using
printf("%g", f). You can select something else when using the printf()
function. Example:

:echo printf('%.15e', atan(1))
7.853981633974483e-01

string string String expr-string E114

"string" string constant expr-quote

Note that double quotes are used.

A string constant accepts these special characters:
\... three-digit octal number (e.g., "\316")
\.. two-digit octal number (must be followed by non-digit)
\. one-digit octal number (must be followed by non-digit)
\x.. byte specified with two hex numbers (e.g., "\x1f")
\x. byte specified with one hex number (must be followed by non-hex char)
\X.. same as \x..
\X. same as \x.
\u.... character specified with up to 4 hex numbers, stored according to the

current value of 'encoding' (e.g., "\u02a4")
\U.... same as \u but allows up to 8 hex numbers.
\b backspace <BS>
\e escape <Esc>
\f formfeed 0x0C
\n newline <NL>
\r return <CR>
\t tab <Tab>
\\ backslash
\" double quote
\<xxx> Special key named "xxx". e.g. "\<C-W>" for CTRL-W. This is for use

in mappings, the 0x80 byte is escaped.
To use the double quote character it must be escaped: "<M-\">".
Don't use <Char-xxxx> to get a UTF-8 character, use \uxxxx as
mentioned above.

\<*xxx> Like \<xxx> but prepends a modifier instead of including it in the
character. E.g. "\<C-w>" is one character 0x17 while "\<*C-w>" is four
bytes: 3 for the CTRL modifier and then character "W".

eval.txt — 1196

Note that "\xff" is stored as the byte 255, which may be invalid in some
encodings. Use "\u00ff" to store character 255 according to the current value
of 'encoding'.

Note that "\000" and "\x00" force the end of the string.

blob-literal blob-literal E973

Hexadecimal starting with 0z or 0Z, with an arbitrary number of bytes.
The sequence must be an even number of hex characters. Example:

:let b = 0zFF00ED015DAF

literal-string literal-string E115

'string' string constant expr-'

Note that single quotes are used.

This string is taken as it is. No backslashes are removed or have a special
meaning. The only exception is that two quotes stand for one quote.

Single quoted strings are useful for patterns, so that backslashes do not need
to be doubled. These two commands are equivalent:

if a =~ "\\s*"
if a =~ '\s*'

interpolated-string $quote interpolated-string

$"string" interpolated string constant expr-$quote
$'string' interpolated literal string constant expr-$'

Interpolated strings are an extension of the string and literal-string ,
allowing the inclusion of Vim script expressions (see expr1). Any
expression returning a value can be enclosed between curly braces. The value
is converted to a string. All the text and results of the expressions
are concatenated to make a new string.

E1278 E1279
To include an opening brace '{' or closing brace '}' in the string content
double it. For double quoted strings using a backslash also works. A single
closing brace '}' will result in an error.

Examples:
let your_name = input("What's your name? ")
What's your name? Peter

echo
echo $"Hello, {your_name}!"
Hello, Peter!

echo $"The square root of {{9}} is {sqrt(9)}"
The square root of {9} is 3.0

string-offset-encoding
A string consists of multiple characters. How the characters are stored
depends on 'encoding'. Most common is UTF-8, which uses one byte for ASCII
characters, two bytes for other latin characters and more bytes for other

eval.txt — 1197

characters.

A string offset can count characters or bytes. Other programs may use
UTF-16 encoding (16-bit words) and an offset of UTF-16 words. Some functions
use byte offsets, usually for UTF-8 encoding. Other functions use character
offsets, in which case the encoding doesn't matter.

The different offsets for the string "a©�" are below:

UTF-8 offsets:
[0]: 61, [1]: C2, [2]: A9, [3]: F0, [4]: 9F, [5]: 98, [6]: 8A

UTF-16 offsets:
[0]: 0061, [1]: 00A9, [2]: D83D, [3]: DE0A

UTF-32 (character) offsets:
[0]: 00000061, [1]: 000000A9, [2]: 0001F60A

You can use the "g8" and "ga" commands on a character to see the
decimal/hex/octal values.

The functions byteidx() , utf16idx() and charidx() can be used to convert
between these indices. The functions strlen() , strutf16len() and
strcharlen() return the number of bytes, UTF-16 code units and characters in

a string respectively.

option expr-option E112 E113

&option option value, local value if possible
&g:option global option value
&l:option local option value

Examples:
echo "tabstop is " .. &tabstop
if &insertmode

Any option name can be used here. See options . When using the local value
and there is no buffer-local or window-local value, the global value is used
anyway.

register expr-register @r

@r contents of register 'r'

The result is the contents of the named register, as a single string.
Newlines are inserted where required. To get the contents of the unnamed
register use @" or @@. See registers for an explanation of the available
registers.

When using the '=' register you get the expression itself, not what it
evaluates to. Use eval() to evaluate it.

nesting expr-nesting E110

(expr1) nested expression

environment variable expr-env

$VAR environment variable

eval.txt — 1198

The String value of any environment variable. When it is not defined, the
result is an empty string.

The functions `getenv()` and `setenv()` can also be used and work for
environment variables with non-alphanumeric names.
The function `environ()` can be used to get a Dict with all environment
variables.

expr-env-expand
Note that there is a difference between using $VAR directly and using
expand("$VAR"). Using it directly will only expand environment variables that
are known inside the current Vim session. Using expand() will first try using
the environment variables known inside the current Vim session. If that
fails, a shell will be used to expand the variable. This can be slow, but it
does expand all variables that the shell knows about. Example:

:echo $shell
:echo expand("$shell")

The first one probably doesn't echo anything, the second echoes the $shell
variable (if your shell supports it).

internal variable expr-variable E1015 E1089

variable internal variable
See below internal-variables .

function call expr-function E116 E118 E119 E120

function(expr1, ...) function call
See below functions .

lambda expression expr-lambda lambda

{args -> expr1} legacy lambda expression E451
(args) => expr1 Vim9 lambda expression

A lambda expression creates a new unnamed function which returns the result of
evaluating expr1 . Lambda expressions differ from user-functions in
the following ways:

1. The body of the lambda expression is an expr1 and not a sequence of Ex
commands.

2. The prefix "a:" should not be used for arguments. E.g.:
:let F = {arg1, arg2 -> arg1 - arg2}
:echo F(5, 2)
3

The arguments are optional. Example:
:let F = {-> 'error function'}
:echo F('ignored')
error function

The Vim9 lambda does not only use a different syntax, it also adds type
checking and can be split over multiple lines, see vim9-lambda .

closure

eval.txt — 1199

Lambda expressions can access outer scope variables and arguments. This is
often called a closure. Example where "i" and "a:arg" are used in a lambda
while they already exist in the function scope. They remain valid even after
the function returns:

:function Foo(arg)
: let i = 3
: return {x -> x + i - a:arg}
:endfunction
:let Bar = Foo(4)
:echo Bar(6)
5

Note that the variables must exist in the outer scope before the lambda is
defined for this to work. See also :func-closure .

Lambda and closure support can be checked with:
if has('lambda')

Examples for using a lambda expression with sort() , map() and filter() :
:echo map([1, 2, 3], {idx, val -> val + 1})
[2, 3, 4]
:echo sort([3,7,2,1,4], {a, b -> a - b})
[1, 2, 3, 4, 7]

The lambda expression is also useful for Channel, Job and timer:
:let timer = timer_start(500,

\ {-> execute("echo 'Handler called'", "")},
\ {'repeat': 3})

Handler called
Handler called
Handler called

Note that it is possible to cause memory to be used and not freed if the
closure is referenced by the context it depends on:

function Function()
let x = 0
let F = {-> x}

endfunction
The closure uses "x" from the function scope, and "F" in that same scope
refers to the closure. This cycle results in the memory not being freed.
Recommendation: don't do this.

Notice how execute() is used to execute an Ex command. That's ugly though.
In Vim9 script you can use a command block, see inline-function .

Although you can use the loop variable of a `for` command, it must still exist
when the closure is called, otherwise you get an error. E1302

Lambda expressions have internal names like '<lambda>42'. If you get an error
for a lambda expression, you can find what it is with the following command:

:function <lambda>42
See also: numbered-function

==
3. Internal variable internal-variables E461 E1001

An internal variable name can be made up of letters, digits and '_'. But it
cannot start with a digit. In legacy script it is also possible to use curly
braces, see curly-braces-names .

eval.txt — 1200

In legacy script an internal variable is created with the ":let" command
:let . An internal variable is explicitly destroyed with the ":unlet"

command :unlet .
Using a name that is not an internal variable or refers to a variable that has
been destroyed results in an error.

In Vim9 script `:let` is not used and variables work differently, see :var .

variable-scope
There are several name spaces for variables. Which one is to be used is
specified by what is prepended:

(nothing) In a function: local to the function;
in a legacy script: global;
in a Vim9 script: local to the script

buffer-variable b: Local to the current buffer.
window-variable w: Local to the current window.
tabpage-variable t: Local to the current tab page.
global-variable g: Global.
local-variable l: Local to a function (only in a legacy function)
script-variable s: Local to a :source 'ed Vim script.
function-argument a: Function argument (only in a legacy function).
vim-variable v: Global, predefined by Vim.

The scope name by itself can be used as a Dictionary . For example, to
delete all script-local variables:

:for k in keys(s:)
: unlet s:[k]
:endfor

Note: in Vim9 script variables can also be local to a block of commands, see
vim9-scopes .

buffer-variable b:var b:
A variable name that is preceded with "b:" is local to the current buffer.
Thus you can have several "b:foo" variables, one for each buffer.
This kind of variable is deleted when the buffer is wiped out or deleted with
:bdelete .

One local buffer variable is predefined:
b:changedtick changetick

b:changedtick The total number of changes to the current buffer. It is
incremented for each change. An undo command is also a change
in this case. Resetting 'modified' when writing the buffer is
also counted.
This can be used to perform an action only when the buffer has
changed. Example:

:if my_changedtick != b:changedtick
: let my_changedtick = b:changedtick
: call My_Update()
:endif

You cannot change or delete the b:changedtick variable.
If you need more information about the change see
listener_add() .

window-variable w:var w:
A variable name that is preceded with "w:" is local to the current window. It
is deleted when the window is closed.

tabpage-variable t:var t:
A variable name that is preceded with "t:" is local to the current tab page,

eval.txt — 1201

It is deleted when the tab page is closed. {not available when compiled
without the +windows feature}

global-variable g:var g:
Inside functions and in Vim9 script global variables are accessed with "g:".
Omitting this will access a variable local to a function or script. "g:"
can also be used in any other place if you like.

local-variable l:var l:
Inside functions local variables are accessed without prepending anything.
But you can also prepend "l:" if you like. However, without prepending "l:"
you may run into reserved variable names. For example "count". By itself it
refers to "v:count". Using "l:count" you can have a local variable with the
same name.

script-variable s:var
In a legacy Vim script variables starting with "s:" can be used. They cannot
be accessed from outside of the scripts, thus are local to the script.
In Vim9 script the "s:" prefix can be omitted, variables are script-local by
default.

They can be used in:
- commands executed while the script is sourced
- functions defined in the script
- autocommands defined in the script
- functions and autocommands defined in functions and autocommands which were

defined in the script (recursively)
- user defined commands defined in the script
Thus not in:
- other scripts sourced from this one
- mappings
- menus
- etc.

Script variables can be used to avoid conflicts with global variable names.
Take this example:

let s:counter = 0
function MyCounter()

let s:counter = s:counter + 1
echo s:counter

endfunction
command Tick call MyCounter()

You can now invoke "Tick" from any script, and the "s:counter" variable in
that script will not be changed, only the "s:counter" in the script where
"Tick" was defined is used.

Another example that does the same:

let s:counter = 0
command Tick let s:counter = s:counter + 1 | echo s:counter

When calling a function and invoking a user-defined command, the context for
script variables is set to the script where the function or command was
defined.

The script variables are also available when a function is defined inside a
function that is defined in a script. Example:

eval.txt — 1202

let s:counter = 0
function StartCounting(incr)

if a:incr
function MyCounter()

let s:counter = s:counter + 1
endfunction

else
function MyCounter()

let s:counter = s:counter - 1
endfunction

endif
endfunction

This defines the MyCounter() function either for counting up or counting down
when calling StartCounting(). It doesn't matter from where StartCounting() is
called, the s:counter variable will be accessible in MyCounter().

When the same script is sourced again it will use the same script variables.
They will remain valid as long as Vim is running. This can be used to
maintain a counter:

if !exists("s:counter")
let s:counter = 1
echo "script executed for the first time"

else
let s:counter = s:counter + 1
echo "script executed " .. s:counter .. " times now"

endif

Note that this means that filetype plugins don't get a different set of script
variables for each buffer. Use local buffer variables instead b:var .

PREDEFINED VIM VARIABLES vim-variable v:var v:
E963 E1063

Some variables can be set by the user, but the type cannot be changed.

v:argv argv-variable
v:argv The command line arguments Vim was invoked with. This is a

list of strings. The first item is the Vim command.
See v:progpath for the command with full path.

v:beval_col beval_col-variable
v:beval_col The number of the column, over which the mouse pointer is.

This is the byte index in the v:beval_lnum line.
Only valid while evaluating the 'balloonexpr' option.

v:beval_bufnr beval_bufnr-variable
v:beval_bufnr The number of the buffer, over which the mouse pointer is. Only

valid while evaluating the 'balloonexpr' option.

v:beval_lnum beval_lnum-variable
v:beval_lnum The number of the line, over which the mouse pointer is. Only

valid while evaluating the 'balloonexpr' option.

v:beval_text beval_text-variable
v:beval_text The text under or after the mouse pointer. Usually a word as

it is useful for debugging a C program. 'iskeyword' applies,
but a dot and "->" before the position is included. When on a
']' the text before it is used, including the matching '[' and

eval.txt — 1203

word before it. When on a Visual area within one line the
highlighted text is used. Also see <cexpr> .
Only valid while evaluating the 'balloonexpr' option.

v:beval_winnr beval_winnr-variable
v:beval_winnr The number of the window, over which the mouse pointer is. Only

valid while evaluating the 'balloonexpr' option. The first
window has number zero (unlike most other places where a
window gets a number).

v:beval_winid beval_winid-variable
v:beval_winid The window-ID of the window, over which the mouse pointer

is. Otherwise like v:beval_winnr.

v:char char-variable
v:char Argument for evaluating 'formatexpr' and used for the typed

character when using <expr> in an abbreviation :map-<expr> .
It is also used by the InsertCharPre and InsertEnter events.

v:charconvert_from charconvert_from-variable
v:charconvert_from

The name of the character encoding of a file to be converted.
Only valid while evaluating the 'charconvert' option.

v:charconvert_to charconvert_to-variable
v:charconvert_to

The name of the character encoding of a file after conversion.
Only valid while evaluating the 'charconvert' option.

v:cmdarg cmdarg-variable
v:cmdarg This variable is used for two purposes:

1. The extra arguments given to a file read/write command.
Currently these are "++enc=" and "++ff=". This variable is
set before an autocommand event for a file read/write
command is triggered. There is a leading space to make it
possible to append this variable directly after the
read/write command. Note: The "+cmd" argument isn't
included here, because it will be executed anyway.

2. When printing a PostScript file with ":hardcopy" this is
the argument for the ":hardcopy" command. This can be used
in 'printexpr'.

v:cmdbang cmdbang-variable
v:cmdbang Set like v:cmdarg for a file read/write command. When a "!"

was used the value is 1, otherwise it is 0. Note that this
can only be used in autocommands. For user commands <bang>
can be used.

v:collate collate-variable
v:collate The current locale setting for collation order of the runtime

environment. This allows Vim scripts to be aware of the
current locale encoding. Technical: it's the value of
LC_COLLATE. When not using a locale the value is "C".
This variable can not be set directly, use the :language
command.
See multi-lang .

v:colornames
v:colornames A dictionary that maps color names to hex color strings. These

color names can be used with the highlight-guifg ,
highlight-guibg , and highlight-guisp parameters.

eval.txt — 1204

The key values in the dictionary (the color names) should be
lower cased, because Vim looks up a color by its lower case
name.

Updating an entry in v:colornames has no immediate effect on
the syntax highlighting. The highlight commands (probably in a
colorscheme script) need to be re-evaluated in order to use
the updated color values. For example:

:let v:colornames['fuscia'] = '#cf3ab4'
:let v:colornames['mauve'] = '#915f6d'
:highlight Normal guifg=fuscia guibg=mauve

This cannot be used to override the cterm-colors but it can
be used to override other colors. For example, the X11 colors
defined in the `colors/lists/default.vim` (previously defined
in rgb.txt). When defining new color names in a plugin, the
recommended practice is to set a color entry only when it does
not already exist. For example:

:call extend(v:colornames, {
\ 'fuscia': '#cf3ab4',
\ 'mauve': '#915f6d,
\ }, 'keep')

Using extend() with the 'keep' option updates each color only
if it did not exist in v:colornames . Doing so allows the
user to choose the precise color value for a common name
by setting it in their .vimrc .

It is possible to remove entries from this dictionary but
doing so is NOT recommended, because it is disruptive to
other scripts. It is also unlikely to achieve the desired
result because the :colorscheme and :highlight commands will
both automatically load all `colors/lists/default.vim` color
scripts.

v:completed_item completed_item-variable
v:completed_item

Dictionary containing the complete-items for the most
recently completed word after CompleteDone . The
Dictionary is empty if the completion failed.
Note: Plugins can modify the value to emulate the builtin
CompleteDone event behavior.

v:count count-variable
v:count The count given for the last Normal mode command. Can be used

to get the count before a mapping. Read-only. Example:
:map _x :<C-U>echo "the count is " .. v:count<CR>

Note: The <C-U> is required to remove the line range that you
get when typing ':' after a count.
When there are two counts, as in "3d2w", they are multiplied,
just like what happens in the command, "d6w" for the example.
Also used for evaluating the 'formatexpr' option.
"count" also works, for backwards compatibility, unless
scriptversion is 3 or higher.

v:count1 count1-variable
v:count1 Just like "v:count", but defaults to one when no count is

eval.txt — 1205

used.

v:ctype ctype-variable
v:ctype The current locale setting for characters of the runtime

environment. This allows Vim scripts to be aware of the
current locale encoding. Technical: it's the value of
LC_CTYPE. When not using a locale the value is "C".
This variable can not be set directly, use the :language
command.
See multi-lang .

v:dying dying-variable
v:dying Normally zero. When a deadly signal is caught it's set to

one. When multiple signals are caught the number increases.
Can be used in an autocommand to check if Vim didn't
terminate normally. {only works on Unix}
Example:

:au VimLeave * if v:dying | echo "\nAAAAaaaarrrggghhhh!!!\n" | endif
Note: if another deadly signal is caught when v:dying is one,
VimLeave autocommands will not be executed.

v:exiting exiting-variable
v:exiting Vim exit code. Normally zero, non-zero when something went

wrong. The value is v:null before invoking the VimLeavePre
and VimLeave autocmds. See :q , :x and :cquit .
Example:

:au VimLeave * echo "Exit value is " .. v:exiting

v:echospace echospace-variable
v:echospace Number of screen cells that can be used for an `:echo` message

in the last screen line before causing the hit-enter-prompt .
Depends on 'showcmd', 'ruler' and 'columns'. You need to
check 'cmdheight' for whether there are full-width lines
available above the last line.

v:errmsg errmsg-variable
v:errmsg Last given error message. It's allowed to set this variable.

Example:
:let v:errmsg = ""
:silent! next
:if v:errmsg != ""
: ... handle error

"errmsg" also works, for backwards compatibility, unless
scriptversion is 3 or higher.

v:errors errors-variable assert-return
v:errors Errors found by assert functions, such as assert_true() .

This is a list of strings.
The assert functions append an item when an assert fails.
The return value indicates this: a one is returned if an item
was added to v:errors, otherwise zero is returned.
To remove old results make it empty:

:let v:errors = []
If v:errors is set to anything but a list it is made an empty
list by the assert function.

v:event event-variable
v:event Dictionary containing information about the current

autocommand . See the specific event for what it puts in
this dictionary.

eval.txt — 1206

The dictionary is emptied when the autocommand finishes,
please refer to dict-identity for how to get an independent
copy of it. Use deepcopy() if you want to keep the
information after the event triggers. Example:

au TextYankPost * let g:foo = deepcopy(v:event)

v:exception exception-variable
v:exception The value of the exception most recently caught and not

finished. See also v:throwpoint and throw-variables .
Example:

:try
: throw "oops"
:catch /.*/
: echo "caught " .. v:exception
:endtry

Output: "caught oops".

v:false false-variable
v:false A Number with value zero. Used to put "false" in JSON. See

json_encode() .
When used as a string this evaluates to "v:false".

echo v:false
v:false

That is so that eval() can parse the string back to the same
value. Read-only.
In Vim9 script "false" can be used which has a boolean type.

v:fcs_reason fcs_reason-variable
v:fcs_reason The reason why the FileChangedShell event was triggered.

Can be used in an autocommand to decide what to do and/or what
to set v:fcs_choice to. Possible values:

deleted file no longer exists
conflict file contents, mode or timestamp was

changed and buffer is modified
changed file contents has changed
mode mode of file changed
time only file timestamp changed

v:fcs_choice fcs_choice-variable
v:fcs_choice What should happen after a FileChangedShell event was

triggered. Can be used in an autocommand to tell Vim what to
do with the affected buffer:

reload Reload the buffer (does not work if
the file was deleted).

edit Reload the buffer and detect the
values for options such as
'fileformat', 'fileencoding', 'binary'
(does not work if the file was
deleted).

ask Ask the user what to do, as if there
was no autocommand. Except that when
only the timestamp changed nothing
will happen.

<empty> Nothing, the autocommand should do
everything that needs to be done.

The default is empty. If another (invalid) value is used then
Vim behaves like it is empty, there is no warning message.

v:fname fname-variable
v:fname When evaluating 'includeexpr': the file name that was

eval.txt — 1207

detected. Empty otherwise.

v:fname_in fname_in-variable
v:fname_in The name of the input file. Valid while evaluating:

option used for
'charconvert' file to be converted
'diffexpr' original file
'patchexpr' original file
'printexpr' file to be printed

And set to the swap file name for SwapExists .

v:fname_out fname_out-variable
v:fname_out The name of the output file. Only valid while

evaluating:
option used for
'charconvert' resulting converted file (*)
'diffexpr' output of diff
'patchexpr' resulting patched file

(*) When doing conversion for a write command (e.g., ":w
file") it will be equal to v:fname_in. When doing conversion
for a read command (e.g., ":e file") it will be a temporary
file and different from v:fname_in.

v:fname_new fname_new-variable
v:fname_new The name of the new version of the file. Only valid while

evaluating 'diffexpr'.

v:fname_diff fname_diff-variable
v:fname_diff The name of the diff (patch) file. Only valid while

evaluating 'patchexpr'.

v:folddashes folddashes-variable
v:folddashes Used for 'foldtext': dashes representing foldlevel of a closed

fold.
Read-only in the sandbox . fold-foldtext

v:foldlevel foldlevel-variable
v:foldlevel Used for 'foldtext': foldlevel of closed fold.

Read-only in the sandbox . fold-foldtext

v:foldend foldend-variable
v:foldend Used for 'foldtext': last line of closed fold.

Read-only in the sandbox . fold-foldtext

v:foldstart foldstart-variable
v:foldstart Used for 'foldtext': first line of closed fold.

Read-only in the sandbox . fold-foldtext

v:hlsearch hlsearch-variable
v:hlsearch Variable that indicates whether search highlighting is on.

Setting it makes sense only if 'hlsearch' is enabled which
requires +extra_search . Setting this variable to zero acts
like the :nohlsearch command, setting it to one acts like

let &hlsearch = &hlsearch
Note that the value is restored when returning from a
function. function-search-undo .

v:insertmode insertmode-variable
v:insertmode Used for the InsertEnter and InsertChange autocommand

events. Values:

eval.txt — 1208

i Insert mode
r Replace mode
v Virtual Replace mode

v:key key-variable
v:key Key of the current item of a Dictionary . Only valid while

evaluating the expression used with map() and filter() .
Read-only.

v:lang lang-variable
v:lang The current locale setting for messages of the runtime

environment. This allows Vim scripts to be aware of the
current language. Technical: it's the value of LC_MESSAGES.
The value is system dependent.
This variable can not be set directly, use the :language
command.
It can be different from v:ctype when messages are desired
in a different language than what is used for character
encoding. See multi-lang .

v:lc_time lc_time-variable
v:lc_time The current locale setting for time messages of the runtime

environment. This allows Vim scripts to be aware of the
current language. Technical: it's the value of LC_TIME.
This variable can not be set directly, use the :language
command. See multi-lang .

v:lnum lnum-variable
v:lnum Line number for the 'foldexpr' fold-expr , 'formatexpr' and

'indentexpr' expressions, tab page number for 'guitablabel'
and 'guitabtooltip'. Only valid while one of these
expressions is being evaluated. Read-only when in the
sandbox .

v:maxcol maxcol-variable
v:maxcol Maximum line length. Depending on where it is used it can be

screen columns, characters or bytes. The value currently is
2147483647 on all systems.

v:mouse_win mouse_win-variable
v:mouse_win Window number for a mouse click obtained with getchar() .

First window has number 1, like with winnr() . The value is
zero when there was no mouse button click.

v:mouse_winid mouse_winid-variable
v:mouse_winid Window ID for a mouse click obtained with getchar() .

The value is zero when there was no mouse button click.

v:mouse_lnum mouse_lnum-variable
v:mouse_lnum Line number for a mouse click obtained with getchar() .

This is the text line number, not the screen line number. The
value is zero when there was no mouse button click.

v:mouse_col mouse_col-variable
v:mouse_col Column number for a mouse click obtained with getchar() .

This is the screen column number, like with virtcol() . The
value is zero when there was no mouse button click.

v:none none-variable None
v:none An empty String. Used to put an empty item in JSON. See

eval.txt — 1209

json_encode() .
This can also be used as a function argument to use the
default value, see none-function_argument .
When used as a number this evaluates to zero.
When used as a string this evaluates to "v:none".

echo v:none
v:none

That is so that eval() can parse the string back to the same
value. Read-only.
Note that using `== v:none` and `!= v:none` will often give
an error. Instead, use `is v:none` and `isnot v:none` .

v:null null-variable
v:null An empty String. Used to put "null" in JSON. See

json_encode() .
When used as a number this evaluates to zero.
When used as a string this evaluates to "v:null".

echo v:null
v:null

That is so that eval() can parse the string back to the same
value. Read-only.
In Vim9 script `null` can be used without "v:".
In some places `v:null` and `null` can be used for a List,
Dict, Job, etc. that is not set. That is slightly different
than an empty List, Dict, etc.

v:numbermax numbermax-variable
v:numbermax Maximum value of a number.

v:numbermin numbermin-variable
v:numbermin Minimum value of a number (negative).

v:numbersize numbersize-variable
v:numbersize Number of bits in a Number. This is normally 64, but on some

systems it may be 32.

v:oldfiles oldfiles-variable
v:oldfiles List of file names that is loaded from the viminfo file on

startup. These are the files that Vim remembers marks for.
The length of the List is limited by the ' argument of the
'viminfo' option (default is 100).
When the viminfo file is not used the List is empty.
Also see :oldfiles and c_#< .
The List can be modified, but this has no effect on what is
stored in the viminfo file later. If you use values other
than String this will cause trouble.
{only when compiled with the |+viminfo| feature}

v:option_new
v:option_new New value of the option. Valid while executing an OptionSet

autocommand.
v:option_old

v:option_old Old value of the option. Valid while executing an OptionSet
autocommand. Depending on the command used for setting and the
kind of option this is either the local old value or the
global old value.

v:option_oldlocal
v:option_oldlocal

Old local value of the option. Valid while executing an
OptionSet autocommand.

eval.txt — 1210

v:option_oldglobal
v:option_oldglobal

Old global value of the option. Valid while executing an
OptionSet autocommand.

v:option_type
v:option_type Scope of the set command. Valid while executing an

OptionSet autocommand. Can be either "global" or "local"
v:option_command

v:option_command
Command used to set the option. Valid while executing an
OptionSet autocommand.

value option was set via
"setlocal" :setlocal or ":let l:xxx"
"setglobal" :setglobal or ":let g:xxx"
"set" :set or :let
"modeline" modeline

v:operator operator-variable
v:operator The last operator given in Normal mode. This is a single

character except for commands starting with <g> or <z>,
in which case it is two characters. Best used alongside
v:prevcount and v:register . Useful if you want to cancel
Operator-pending mode and then use the operator, e.g.:

:omap O <Esc>:call MyMotion(v:operator)<CR>
The value remains set until another operator is entered, thus
don't expect it to be empty.
v:operator is not set for :delete , :yank or other Ex
commands.
Read-only.

v:prevcount prevcount-variable
v:prevcount The count given for the last but one Normal mode command.

This is the v:count value of the previous command. Useful if
you want to cancel Visual or Operator-pending mode and then
use the count, e.g.:

:vmap % <Esc>:call MyFilter(v:prevcount)<CR>
Read-only.

v:profiling profiling-variable
v:profiling Normally zero. Set to one after using ":profile start".

See profiling .

v:progname progname-variable
v:progname Contains the name (with path removed) with which Vim was

invoked. Allows you to do special initialisations for view ,
evim etc., or any other name you might symlink to Vim.
Read-only.

v:progpath progpath-variable
v:progpath Contains the command with which Vim was invoked, in a form

that when passed to the shell will run the same Vim executable
as the current one (if $PATH remains unchanged).
Useful if you want to message a Vim server using a
--remote-expr .
To get the full path use:

echo exepath(v:progpath)
If the command has a relative path it will be expanded to the
full path, so that it still works after `:cd`. Thus starting
"./vim" results in "/home/user/path/to/vim/src/vim".
On Linux and other systems it will always be the full path.
On Mac it may just be "vim" and using exepath() as mentioned

eval.txt — 1211

above should be used to get the full path.
On MS-Windows the executable may be called "vim.exe", but the
".exe" is not added to v:progpath.
Read-only.

v:python3_version python3-version-variable
v:python3_version

Version of Python 3 that Vim was built against. When
Python is loaded dynamically (python-dynamic), this version
should exactly match the Python library up to the minor
version (e.g. 3.10.2 and 3.10.3 are compatible as the minor
version is "10", whereas 3.9.4 and 3.10.3 are not compatible).
When python-stable-abi is used, this will be the minimum Python
version that you can use instead. (e.g. if v:python3_version
indicates 3.9, you can use 3.9, 3.10, or anything above).

This number is encoded as a hex number following Python ABI
versioning conventions. Do the following to have a
human-readable full version in hex:

echo printf("%08X", v:python3_version)
You can obtain only the minor version by doing:

echo and(v:python3_version>>16,0xff)
Read-only.

v:register register-variable
v:register The name of the register in effect for the current normal mode

command (regardless of whether that command actually used a
register). Or for the currently executing normal mode mapping
(use this in custom commands that take a register).
If none is supplied it is the default register '"', unless
'clipboard' contains "unnamed" or "unnamedplus", then it is
'*' or '+'.
Also see getreg() and setreg()

v:scrollstart scrollstart-variable
v:scrollstart String describing the script or function that caused the

screen to scroll up. It's only set when it is empty, thus the
first reason is remembered. It is set to "Unknown" for a
typed command.
This can be used to find out why your script causes the
hit-enter prompt.

v:servername servername-variable
v:servername The resulting registered client-server-name if any.

Read-only.

v:searchforward v:searchforward searchforward-variable
Search direction: 1 after a forward search, 0 after a
backward search. It is reset to forward when directly setting
the last search pattern, see quote/ .
Note that the value is restored when returning from a
function. function-search-undo .
Read-write.

v:shell_error shell_error-variable
v:shell_error Result of the last shell command. When non-zero, the last

shell command had an error. When zero, there was no problem.
This only works when the shell returns the error code to Vim.
The value -1 is often used when the command could not be

eval.txt — 1212

executed. Read-only.
Example:

:!mv foo bar
:if v:shell_error
: echo 'could not rename "foo" to "bar"!'
:endif

"shell_error" also works, for backwards compatibility, unless
scriptversion is 3 or higher.

v:sizeofint sizeofint-variable
v:sizeofint Number of bytes in an int. Depends on how Vim was compiled.

This is only useful for deciding whether a test will give the
expected result.

v:sizeoflong sizeoflong-variable
v:sizeoflong Number of bytes in a long. Depends on how Vim was compiled.

This is only useful for deciding whether a test will give the
expected result.

v:sizeofpointer sizeofpointer-variable
v:sizeofpointer Number of bytes in a pointer. Depends on how Vim was compiled.

This is only useful for deciding whether a test will give the
expected result.

v:statusmsg statusmsg-variable
v:statusmsg Last given status message. It's allowed to set this variable.

v:swapname swapname-variable
v:swapname Only valid when executing SwapExists autocommands: Name of

the swap file found. Read-only.

v:swapchoice swapchoice-variable
v:swapchoice SwapExists autocommands can set this to the selected choice

for handling an existing swap file:
'o' Open read-only
'e' Edit anyway
'r' Recover
'd' Delete swapfile
'q' Quit
'a' Abort

The value should be a single-character string. An empty value
results in the user being asked, as would happen when there is
no SwapExists autocommand. The default is empty.

v:swapcommand swapcommand-variable
v:swapcommand Normal mode command to be executed after a file has been

opened. Can be used for a SwapExists autocommand to have
another Vim open the file and jump to the right place. For
example, when jumping to a tag the value is ":tag tagname\r".
For ":edit +cmd file" the value is ":cmd\r".

v:t_TYPE v:t_bool t_bool-variable
v:t_bool Value of Boolean type. Read-only. See: type()

v:t_channel t_channel-variable
v:t_channel Value of Channel type. Read-only. See: type()

v:t_dict t_dict-variable
v:t_dict Value of Dictionary type. Read-only. See: type()

v:t_float t_float-variable
v:t_float Value of Float type. Read-only. See: type()

v:t_func t_func-variable

eval.txt — 1213

v:t_func Value of Funcref type. Read-only. See: type()
v:t_job t_job-variable

v:t_job Value of Job type. Read-only. See: type()
v:t_list t_list-variable

v:t_list Value of List type. Read-only. See: type()
v:t_none t_none-variable

v:t_none Value of None type. Read-only. See: type()
v:t_number t_number-variable

v:t_number Value of Number type. Read-only. See: type()
v:t_string t_string-variable

v:t_string Value of String type. Read-only. See: type()
v:t_blob t_blob-variable

v:t_blob Value of Blob type. Read-only. See: type()
v:t_class t_class-variable

v:t_class Value of class type. Read-only. See: type()
v:t_object t_object-variable

v:t_object Value of object type. Read-only. See: type()
v:t_typealias t_typealias-variable

v:t_typealias Value of typealias type. Read-only. See: type()

v:termresponse termresponse-variable
v:termresponse The escape sequence returned by the terminal for the t_RV

termcap entry. It is set when Vim receives an escape sequence
that starts with ESC [or CSI, then '>' or '?' and ends in a
'c', with only digits and ';' in between.
When this option is set, the TermResponse autocommand event is
fired, so that you can react to the response from the
terminal. The TermResponseAll event is also fired, with
<amatch> set to "version". You can use terminalprops() to see
what Vim figured out about the terminal.
The response from a new xterm is: "<Esc>[> Pp ; Pv ; Pc c". Pp
is the terminal type: 0 for vt100 and 1 for vt220. Pv is the
patch level (since this was introduced in patch 95, it's
always 95 or higher). Pc is always zero.
If Pv is 141 or higher then Vim will try to request terminal
codes. This only works with xterm xterm-codes .
{only when compiled with |+termresponse| feature}

v:termblinkresp
v:termblinkresp The escape sequence returned by the terminal for the t_RC

termcap entry. This is used to find out whether the terminal
cursor is blinking. This is used by term_getcursor() . When
this option is set, the TermResponseAll autocommand event is
fired, with <amatch> set to "cursorblink".

v:termstyleresp
v:termstyleresp The escape sequence returned by the terminal for the t_RS

termcap entry. This is used to find out what the shape of the
cursor is. This is used by term_getcursor() . When this
option is set, the TermResponseAll autocommand event is fired,
with <amatch> set to "cursorshape".

v:termrbgresp
v:termrbgresp The escape sequence returned by the terminal for the t_RB

termcap entry. This is used to find out what the terminal
background color is; see 'background'. When this option is
set, the TermResponseAll autocommand event is fired, with
<amatch> set to "background".

v:termrfgresp

eval.txt — 1214

v:termrfgresp The escape sequence returned by the terminal for the t_RF
termcap entry. This is used to find out what the terminal
foreground color is. When this option is set, the
TermResponseAll autocommand event is fired, with <amatch> set
to "foreground".

v:termu7resp
v:termu7resp The escape sequence returned by the terminal for the t_u7

termcap entry. This is used to find out what the terminal
does with ambiguous width characters, see 'ambiwidth'. When
this option is set, the TermResponseAll autocommand event is
fired, with <amatch> set to "ambiguouswidth".

v:testing testing-variable
v:testing Must be set before using `test_garbagecollect_now()`.

Also, when set certain error messages won't be shown for 2
seconds. (e.g. "'dictionary' option is empty")

v:this_session this_session-variable
v:this_session Full filename of the last loaded or saved session file. See

:mksession . It is allowed to set this variable. When no
session file has been saved, this variable is empty.
"this_session" also works, for backwards compatibility, unless
scriptversion is 3 or higher

v:throwpoint throwpoint-variable
v:throwpoint The point where the exception most recently caught and not

finished was thrown. Not set when commands are typed. See
also v:exception and throw-variables .
Example:

:try
: throw "oops"
:catch /.*/
: echo "Exception from" v:throwpoint
:endtry

Output: "Exception from test.vim, line 2"

v:true true-variable
v:true A Number with value one. Used to put "true" in JSON. See

json_encode() .
When used as a string this evaluates to "v:true".

echo v:true
v:true

That is so that eval() can parse the string back to the same
value. Read-only.
In Vim9 script "true" can be used which has a boolean type.

v:val val-variable
v:val Value of the current item of a List or Dictionary . Only

valid while evaluating the expression used with map() and
filter() . Read-only.

v:version version-variable
v:version Version number of Vim: Major version number times 100 plus

minor version number. Version 5.0 is 500. Version 5.1
is 501. Read-only. "version" also works, for backwards
compatibility, unless scriptversion is 3 or higher.
Use has() to check if a certain patch was included, e.g.:

if has("patch-7.4.123")
Note that patch numbers are specific to the version, thus both
version 5.0 and 5.1 may have a patch 123, but these are

eval.txt — 1215

completely different.

v:versionlong versionlong-variable
v:versionlong Like v:version, but also including the patchlevel in the last

four digits. Version 8.1 with patch 123 has value 8010123.
This can be used like this:

if v:versionlong >= 8010123
However, if there are gaps in the list of patches included
this will not work well. This can happen if a recent patch
was included into an older version, e.g. for a security fix.
Use the has() function to make sure the patch is actually
included.

v:vim_did_enter vim_did_enter-variable
v:vim_did_enter Zero until most of startup is done. It is set to one just

before VimEnter autocommands are triggered.

v:warningmsg warningmsg-variable
v:warningmsg Last given warning message. It's allowed to set this variable.

v:windowid windowid-variable
v:windowid When any X11 based GUI is running or when running in a

terminal and Vim connects to the X server (-X) this will be
set to the window ID.
When an MS-Windows GUI is running this will be set to the
window handle.
Otherwise the value is zero.
Note: for windows inside Vim use winnr() or win_getid() ,
see window-ID .

==
4. Builtin Functions functions

See function-list for a list grouped by what the function is used for.

The alphabetic list of all builtin functions and details are in a separate
help file: builtin-functions .

==
5. Defining functions user-functions

New functions can be defined. These can be called just like builtin
functions. The function takes arguments, executes a sequence of Ex commands
and can return a value.

You can find most information about defining functions in userfunc.txt .
For Vim9 functions, which execute much faster, support type checking and more,
see vim9.txt .

==
6. Curly braces names curly-braces-names

In most places where you can use a variable, you can use a "curly braces name"
variable. This is a regular variable name with one or more expressions
wrapped in braces {} like this:

my_{adjective}_variable

This only works in legacy Vim script, not in Vim9 script.

When Vim encounters this, it evaluates the expression inside the braces, puts

eval.txt — 1216

that in place of the expression, and re-interprets the whole as a variable
name. So in the above example, if the variable "adjective" was set to
"noisy", then the reference would be to "my_noisy_variable", whereas if
"adjective" was set to "quiet", then it would be to "my_quiet_variable".

One application for this is to create a set of variables governed by an option
value. For example, the statement

echo my_{&background}_message

would output the contents of "my_dark_message" or "my_light_message" depending
on the current value of 'background'.

You can use multiple brace pairs:
echo my_{adverb}_{adjective}_message

..or even nest them:
echo my_{ad{end_of_word}}_message

where "end_of_word" is either "verb" or "jective".

However, the expression inside the braces must evaluate to a valid single
variable name, e.g. this is invalid:

:let foo='a + b'
:echo c{foo}d

.. since the result of expansion is "ca + bd", which is not a variable name.

curly-braces-function-names
You can call and define functions by an evaluated name in a similar way.
Example:

:let func_end='whizz'
:call my_func_{func_end}(parameter)

This would call the function "my_func_whizz(parameter)".

This does NOT work:
:let i = 3
:let @{i} = '' " error
:echo @{i} " error

==
7. Commands expression-commands

Note: in Vim9 script `:let` is not used. `:var` is used for variable
declarations and assignments do not use a command. vim9-declaration

:let {var-name} = {expr1} :let E18
Set internal variable {var-name} to the result of the
expression {expr1}. The variable will get the type
from the {expr}. If {var-name} didn't exist yet, it
is created.

:let {var-name}[{idx}] = {expr1} E689 E1141
Set a list item to the result of the expression
{expr1}. {var-name} must refer to a list and {idx}
must be a valid index in that list. For nested list
the index can be repeated.
This cannot be used to add an item to a List .
This cannot be used to set a byte in a String. You
can do that like this:

:let var = var[0:2] .. 'X' .. var[4:]
When {var-name} is a Blob then {idx} can be the
length of the blob, in which case one byte is

eval.txt — 1217

appended.

E711 E719 E1165 E1166 E1183
:let {var-name}[{idx1}:{idx2}] = {expr1} E708 E709 E710

Set a sequence of items in a List to the result of
the expression {expr1}, which must be a list with the
correct number of items.
{idx1} can be omitted, zero is used instead.
{idx2} can be omitted, meaning the end of the list.
When the selected range of items is partly past the
end of the list, items will be added.

:let+= :let-= :letstar= :let/= :let%=
:let.= :let..= E734 E985 E1019

:let {var} += {expr1} Like ":let {var} = {var} + {expr1}".
:let {var} -= {expr1} Like ":let {var} = {var} - {expr1}".
:let {var} *= {expr1} Like ":let {var} = {var} * {expr1}".
:let {var} /= {expr1} Like ":let {var} = {var} / {expr1}".
:let {var} %= {expr1} Like ":let {var} = {var} % {expr1}".
:let {var} .= {expr1} Like ":let {var} = {var} . {expr1}".
:let {var} ..= {expr1} Like ":let {var} = {var} .. {expr1}".

These fail if {var} was not set yet and when the type
of {var} and {expr1} don't fit the operator.
`+=` modifies a List or a Blob in-place instead of
creating a new one.
`.=` is not supported with Vim script version 2 and
later, see vimscript-version .

:let ${env-name} = {expr1} :let-environment :let-$
Set environment variable {env-name} to the result of
the expression {expr1}. The type is always String.

On some systems making an environment variable empty
causes it to be deleted. Many systems do not make a
difference between an environment variable that is not
set and an environment variable that is empty.

:let ${env-name} .= {expr1}
Append {expr1} to the environment variable {env-name}.
If the environment variable didn't exist yet this
works like "=".

:let @{reg-name} = {expr1} :let-register :let-@
Write the result of the expression {expr1} in register
{reg-name}. {reg-name} must be a single letter, and
must be the name of a writable register (see
registers). "@@" can be used for the unnamed

register, "@/" for the search pattern.
If the result of {expr1} ends in a <CR> or <NL>, the
register will be linewise, otherwise it will be set to
characterwise.
This can be used to clear the last search pattern:

:let @/ = ""
This is different from searching for an empty string,
that would match everywhere.

:let @{reg-name} .= {expr1}
Append {expr1} to register {reg-name}. If the
register was empty it's like setting it to {expr1}.

eval.txt — 1218

:let &{option-name} = {expr1} :let-option :let-&
Set option {option-name} to the result of the
expression {expr1}. A String or Number value is
always converted to the type of the option.
For an option local to a window or buffer the effect
is just like using the :set command: both the local
value and the global value are changed.
Example:

:let &path = &path .. ',/usr/local/include'
This also works for terminal codes in the form t_xx.
But only for alphanumerical names. Example:

:let &t_k1 = "\<Esc>[234;"
When the code does not exist yet it will be created as
a terminal key code, there is no error.

:let &{option-name} .= {expr1}
For a string option: Append {expr1} to the value.
Does not insert a comma like :set+= .

:let &{option-name} += {expr1}
:let &{option-name} -= {expr1}

For a number or boolean option: Add or subtract
{expr1}.

:let &l:{option-name} = {expr1}
:let &l:{option-name} .= {expr1}
:let &l:{option-name} += {expr1}
:let &l:{option-name} -= {expr1}

Like above, but only set the local value of an option
(if there is one). Works like :setlocal .

:let &g:{option-name} = {expr1}
:let &g:{option-name} .= {expr1}
:let &g:{option-name} += {expr1}
:let &g:{option-name} -= {expr1}

Like above, but only set the global value of an option
(if there is one). Works like :setglobal .

E1093
:let [{name1}, {name2}, ...] = {expr1} :let-unpack E687 E688

{expr1} must evaluate to a List . The first item in
the list is assigned to {name1}, the second item to
{name2}, etc.
The number of names must match the number of items in
the List .
Each name can be one of the items of the ":let"
command as mentioned above.
Example:

:let [s, item] = GetItem(s)
Detail: {expr1} is evaluated first, then the
assignments are done in sequence. This matters if
{name2} depends on {name1}. Example:

:let x = [0, 1]
:let i = 0
:let [i, x[i]] = [1, 2]
:echo x

The result is [0, 2].

:let [{name1}, {name2}, ...] .= {expr1}
:let [{name1}, {name2}, ...] += {expr1}

eval.txt — 1219

:let [{name1}, {name2}, ...] -= {expr1}
Like above, but append/add/subtract the value for each
List item.

:let [{name}, ..., ; {lastname}] = {expr1} E452
Like :let-unpack above, but the List may have more
items than there are names. A list of the remaining
items is assigned to {lastname}. If there are no
remaining items {lastname} is set to an empty list.
Example:

:let [a, b; rest] = ["aval", "bval", 3, 4]

:let [{name}, ..., ; {lastname}] .= {expr1}
:let [{name}, ..., ; {lastname}] += {expr1}
:let [{name}, ..., ; {lastname}] -= {expr1}

Like above, but append/add/subtract the value for each
List item.

:let=<< :let-heredoc
E990 E991 E172 E221 E1145

:let {var-name} =<< [trim] [eval] {endmarker}
text...
text...
{endmarker}

Set internal variable {var-name} to a List
containing the lines of text bounded by the string
{endmarker}.

If "eval" is not specified, then each line of text is
used as a literal-string , except that single quotes
does not need to be doubled.
If "eval" is specified, then any Vim expression in the
form {expr} is evaluated and the result replaces the
expression, like with interpolated-string .
Example where $HOME is expanded:

let lines =<< trim eval END
some text
See the file {$HOME}/.vimrc
more text

END
There can be multiple Vim expressions in a single line
but an expression cannot span multiple lines. If any
expression evaluation fails, then the assignment fails.

{endmarker} must not contain white space.
{endmarker} cannot start with a lower case character.
The last line should end only with the {endmarker}
string without any other character. Watch out for
white space after {endmarker}!

Without "trim" any white space characters in the lines
of text are preserved. If "trim" is specified before
{endmarker}, then indentation is stripped so you can
do:

let text =<< trim END
if ok
echo 'done'

endif
END

Results in: ["if ok", " echo 'done'", "endif"]

eval.txt — 1220

The marker must line up with "let" and the indentation
of the first line is removed from all the text lines.
Specifically: all the leading indentation exactly
matching the leading indentation of the first
non-empty text line is stripped from the input lines.
All leading indentation exactly matching the leading
indentation before `let` is stripped from the line
containing {endmarker}. Note that the difference
between space and tab matters here.

If {var-name} didn't exist yet, it is created.
Cannot be followed by another command, but can be
followed by a comment.

To avoid line continuation to be applied, consider
adding 'C' to 'cpoptions':

set cpo+=C
let var =<< END

\ leading backslash
END
set cpo-=C

Examples:
let var1 =<< END
Sample text 1

Sample text 2
Sample text 3
END

let data =<< trim DATA
1 2 3 4
5 6 7 8

DATA

let code =<< trim eval CODE
let v = {10 + 20}
let h = "{$HOME}"
let s = "{Str1()} abc {Str2()}"
let n = {MyFunc(3, 4)}

CODE

E121
:let {var-name} .. List the value of variable {var-name}. Multiple

variable names may be given. Special names recognized
here: E738

g: global variables
b: local buffer variables
w: local window variables
t: local tab page variables
s: script-local variables
l: local function variables
v: Vim variables.

This does not work in Vim9 script. vim9-declaration

:let List the values of all variables. The type of the
variable is indicated before the value:

<nothing> String
Number
* Funcref

This does not work in Vim9 script. vim9-declaration

eval.txt — 1221

:unl[et][!] {name} ... :unlet :unl E108 E795 E1081
Remove the internal variable {name}. Several variable
names can be given, they are all removed. The name
may also be a List or Dictionary item.
With [!] no error message is given for non-existing
variables.
One or more items from a List can be removed:

:unlet list[3] " remove fourth item
:unlet list[3:] " remove fourth item to last

One item from a Dictionary can be removed at a time:
:unlet dict['two']
:unlet dict.two

This is especially useful to clean up used global
variables and script-local variables (these are not
deleted when the script ends). Function-local
variables are automatically deleted when the function
ends.
In Vim9 script variables declared in a function or
script cannot be removed.

:unl[et] ${env-name} ... :unlet-environment :unlet-$
Remove environment variable {env-name}.
Can mix {name} and ${env-name} in one :unlet command.
No error message is given for a non-existing
variable, also without !.
If the system does not support deleting an environment
variable, it is made empty.

:cons :const E1018
:cons[t] {var-name} = {expr1}
:cons[t] [{name1}, {name2}, ...] = {expr1}
:cons[t] [{name}, ..., ; {lastname}] = {expr1}
:cons[t] {var-name} =<< [trim] {marker}
text...
text...
{marker}

Similar to :let , but additionally lock the variable
after setting the value. This is the same as locking
the variable with :lockvar just after :let , thus:

:const x = 1
is equivalent to:

:let x = 1
:lockvar! x

NOTE: in Vim9 script `:const` works differently, see
vim9-const

This is useful if you want to make sure the variable
is not modified. If the value is a List or Dictionary
literal then the items also cannot be changed:

const ll = [1, 2, 3]
let ll[1] = 5 " Error!

Nested references are not locked:
let lvar = ['a']
const lconst = [0, lvar]
let lconst[0] = 2 " Error!
let lconst[1][0] = 'b' " OK

E995
:const does not allow to for changing a variable:

:let x = 1
:const x = 2 " Error!

eval.txt — 1222

E996
Note that environment variables, option values and
register values cannot be used here, since they cannot
be locked.

:cons[t]
:cons[t] {var-name}

If no argument is given or only {var-name} is given,
the behavior is the same as :let .

:lockv[ar][!] [depth] {name} ... :lockvar :lockv
Lock the internal variable {name}. Locking means that
it can no longer be changed (until it is unlocked).
A locked variable can be deleted:

:lockvar v
:let v = 'asdf' " fails!
:unlet v " works

E741 E940 E1118 E1119 E1120 E1121 E1122
If you try to change a locked variable you get an
error message: "E741: Value is locked: {name}".
If you try to lock or unlock a built-in variable you
get an error message: "E940: Cannot lock or unlock
variable {name}".

[depth] is relevant when locking a List or
Dictionary . It specifies how deep the locking goes:

0 Lock the variable {name} but not its
value.

1 Lock the List or Dictionary itself,
cannot add or remove items, but can
still change their values.

2 Also lock the values, cannot change
the items. If an item is a List or
Dictionary , cannot add or remove
items, but can still change the
values.

3 Like 2 but for the List /
Dictionary in the List /
Dictionary , one level deeper.

The default [depth] is 2, thus when {name} is a List
or Dictionary the values cannot be changed.

Example with [depth] 0:
let mylist = [1, 2, 3]
lockvar 0 mylist
let mylist[0] = 77 " OK
call add(mylist, 4) " OK
let mylist = [7, 8, 9] " Error!

E743
For unlimited depth use [!] and omit [depth].
However, there is a maximum depth of 100 to catch
loops.

Note that when two variables refer to the same List
and you lock one of them, the List will also be
locked when used through the other variable.
Example:

:let l = [0, 1, 2, 3]
:let cl = l
:lockvar l

eval.txt — 1223

:let cl[1] = 99 " won't work!
You may want to make a copy of a list to avoid this.
See deepcopy() .

E1391 E1392
Locking and unlocking object and class variables is
currently NOT supported.

:unlo[ckvar][!] [depth] {name} ... :unlockvar :unlo E1246
Unlock the internal variable {name}. Does the
opposite of :lockvar .

If {name} does not exist:
- In Vim9 script an error is given.
- In legacy script this is silently ignored.

:if {expr1} :if :end :endif :en E171 E579 E580
:en[dif] Execute the commands until the next matching `:else`

or `:endif` if {expr1} evaluates to non-zero.
Although the short forms work, it is recommended to
always use `:endif` to avoid confusion and to make
auto-indenting work properly.

From Vim version 4.5 until 5.0, every Ex command in
between the `:if` and `:endif` is ignored. These two
commands were just to allow for future expansions in a
backward compatible way. Nesting was allowed. Note
that any `:else` or `:elseif` was ignored, the `else`
part was not executed either.

You can use this to remain compatible with older
versions:

:if version >= 500
: version-5-specific-commands
:endif

The commands still need to be parsed to find the
`endif`. Sometimes an older Vim has a problem with a
new command. For example, `:silent` is recognized as
a `:substitute` command. In that case `:execute` can
avoid problems:

:if version >= 600
: execute "silent 1,$delete"
:endif

In Vim9 script `:endif` cannot be shortened, to
improve script readability.
NOTE: The `:append` and `:insert` commands don't work
properly in between `:if` and `:endif`.

:else :el E581 E583
:el[se] Execute the commands until the next matching `:else`

or `:endif` if they previously were not being
executed.
In Vim9 script `:else` cannot be shortened, to
improve script readability.

:elseif :elsei E582 E584
:elsei[f] {expr1} Short for `:else` `:if`, with the addition that there

is no extra `:endif`.

eval.txt — 1224

In Vim9 script `:elseif` cannot be shortened, to
improve script readability.

:wh[ile] {expr1} :while :endwhile :wh :endw
E170 E585 E588 E733

:endw[hile] Repeat the commands between `:while` and `:endwhile`,
as long as {expr1} evaluates to non-zero.
When an error is detected from a command inside the
loop, execution continues after the `endwhile`.
Example:

:let lnum = 1
:while lnum <= line("$")

:call FixLine(lnum)
:let lnum = lnum + 1

:endwhile

In Vim9 script `:while` and `:endwhile` cannot be
shortened, to improve script readability.
NOTE: The `:append` and `:insert` commands don't work
properly inside a `:while` and `:for` loop.

:for {var} in {object} :for E690 E732
:endfo[r] :endfo :endfor

Repeat the commands between `:for` and `:endfor` for
each item in {object}. {object} can be a List ,
a Blob or a String . E1177

Variable {var} is set to the value of each item.
In Vim9 script the loop variable must not have been
declared yet, unless when it is a
global/window/tab/buffer variable.

When an error is detected for a command inside the
loop, execution continues after the `endfor`.
Changing {object} inside the loop affects what items
are used. Make a copy if this is unwanted:

:for item in copy(mylist)

When {object} is a List and not making a copy, in
legacy script Vim stores a reference to the next item
in the List before executing the commands with the
current item. Thus the current item can be removed
without effect. Removing any later item means it will
not be found. Thus the following example works (an
inefficient way to make a List empty):

for item in mylist
call remove(mylist, 0)

endfor
Note that reordering the List (e.g., with sort() or
reverse()) may have unexpected effects.
In Vim9 script the index is used. If an item before
the current one is deleted the next item will be
skipped.

When {object} is a Blob , Vim always makes a copy to
iterate over. Unlike with List , modifying the
Blob does not affect the iteration.

When {object} is a String each item is a string with
one character, plus any combining characters.

eval.txt — 1225

In Vim9 script `:endfor` cannot be shortened, to
improve script readability.

:for [{var1}, {var2}, ...] in {listlist}
:endfo[r] E1140

Like `:for` above, but each item in {listlist} must be
a list, of which each item is assigned to {var1},
{var2}, etc. Example:

:for [lnum, col] in [[1, 3], [2, 5], [3, 8]]
:echo getline(lnum)[col]

:endfor

:continue :con E586
:con[tinue] When used inside a `:while` or `:for` loop, jumps back

to the start of the loop.
If it is used after a `:try` inside the loop but
before the matching `:finally` (if present), the
commands following the `:finally` up to the matching
`:endtry` are executed first. This process applies to
all nested `:try`s inside the loop. The outermost
`:endtry` then jumps back to the start of the loop.

In Vim9 script `:cont` is the shortest form, to
improve script readability.

:break :brea E587
:brea[k] When used inside a `:while` or `:for` loop, skips to

the command after the matching `:endwhile` or
`:endfor`.
If it is used after a `:try` inside the loop but
before the matching `:finally` (if present), the
commands following the `:finally` up to the matching
`:endtry` are executed first. This process applies to
all nested `:try`s inside the loop. The outermost
`:endtry` then jumps to the command after the loop.

In Vim9 script `:break` cannot be shortened, to
improve script readability.

:try :try :endt :endtry
E600 E601 E602 E1032

:endt[ry] Change the error handling for the commands between
`:try` and `:endtry` including everything being
executed across `:source` commands, function calls,
or autocommand invocations.

When an error or interrupt is detected and there is
a `:finally` command following, execution continues
after the `:finally`. Otherwise, or when the
`:endtry` is reached thereafter, the next
(dynamically) surrounding `:try` is checked for
a corresponding `:finally` etc. Then the script
processing is terminated. Whether a function
definition has an "abort" argument does not matter.
Example:

try | call Unknown() | finally | echomsg "cleanup" | endtry
echomsg "not reached"

Moreover, an error or interrupt (dynamically) inside
`:try` and `:endtry` is converted to an exception. It

eval.txt — 1226

can be caught as if it were thrown by a `:throw`
command (see `:catch`). In this case, the script
processing is not terminated.

The value "Vim:Interrupt" is used for an interrupt
exception. An error in a Vim command is converted
to a value of the form "Vim({command}):{errmsg}",
other errors are converted to a value of the form
"Vim:{errmsg}". {command} is the full command name,
and {errmsg} is the message that is displayed if the
error exception is not caught, always beginning with
the error number.
Examples:

try | sleep 100 | catch /^Vim:Interrupt$/ | endtry
try | edit | catch /^Vim(edit):E\d\+/ | echo "error" | endtry

In Vim9 script `:endtry` cannot be shortened, to
improve script readability.

:cat :catch
E603 E604 E605 E654 E1033

:cat[ch] /{pattern}/ The following commands until the next `:catch`,
`:finally`, or `:endtry` that belongs to the same
`:try` as the `:catch` are executed when an exception
matching {pattern} is being thrown and has not yet
been caught by a previous `:catch`. Otherwise, these
commands are skipped.
When {pattern} is omitted all errors are caught.
Examples:

:catch /^Vim:Interrupt$/ " catch interrupts (CTRL-C)
:catch /^Vim\%((\a\+)\)\=:E/ " catch all Vim errors
:catch /^Vim\%((\a\+)\)\=:/ " catch errors and interrupts
:catch /^Vim(write):/ " catch all errors in :write
:catch /^Vim\%((\a\+)\)\=:E123:/ " catch error E123
:catch /my-exception/ " catch user exception
:catch /.*/ " catch everything
:catch " same as /.*/

Another character can be used instead of / around the
{pattern}, so long as it does not have a special
meaning (e.g., '|' or '"') and doesn't occur inside
{pattern}. E1067
Information about the exception is available in
v:exception . Also see throw-variables .

NOTE: It is not reliable to ":catch" the TEXT of
an error message because it may vary in different
locales.
In Vim9 script `:catch` cannot be shortened, to
improve script readability.

:fina :finally E606 E607
:fina[lly] The following commands until the matching `:endtry`

are executed whenever the part between the matching
`:try` and the `:finally` is left: either by falling
through to the `:finally` or by a `:continue`,
`:break`, `:finish`, or `:return`, or by an error or
interrupt or exception (see `:throw`).

In Vim9 script `:finally` cannot be shortened, to
improve script readability and avoid confusion with

eval.txt — 1227

`:final`.

:th :throw E608 E1129
:th[row] {expr1} The {expr1} is evaluated and thrown as an exception.

If the ":throw" is used after a `:try` but before the
first corresponding `:catch`, commands are skipped
until the first `:catch` matching {expr1} is reached.
If there is no such `:catch` or if the ":throw" is
used after a `:catch` but before the `:finally`, the
commands following the `:finally` (if present) up to
the matching `:endtry` are executed. If the `:throw`
is after the `:finally`, commands up to the `:endtry`
are skipped. At the ":endtry", this process applies
again for the next dynamically surrounding `:try`
(which may be found in a calling function or sourcing
script), until a matching `:catch` has been found.
If the exception is not caught, the command processing
is terminated.
Example:

:try | throw "oops" | catch /^oo/ | echo "caught" | endtry
Note that "catch" may need to be on a separate line
for when an error causes the parsing to skip the whole
line and not see the "|" that separates the commands.

In Vim9 script `:throw` cannot be shortened, to
improve script readability.

:ec :echo
:ec[ho] {expr1} .. Echoes each {expr1}, with a space in between. The

first {expr1} starts on a new line.
Also see :comment .
Use "\n" to start a new line. Use "\r" to move the
cursor to the first column.
Uses the highlighting set by the `:echohl` command.
Cannot be followed by a comment.
Example:

:echo "the value of 'shell' is" &shell
:echo-redraw

A later redraw may make the message disappear again.
And since Vim mostly postpones redrawing until it's
finished with a sequence of commands this happens
quite often. To avoid that a command from before the
`:echo` causes a redraw afterwards (redraws are often
postponed until you type something), force a redraw
with the `:redraw` command. Example:

:new | redraw | echo "there is a new window"

:echon
:echon {expr1} .. Echoes each {expr1}, without anything added. Also see

:comment .
Uses the highlighting set by the `:echohl` command.
Cannot be followed by a comment.
Example:

:echon "the value of 'shell' is " &shell

Note the difference between using `:echo`, which is a
Vim command, and `:!echo`, which is an external shell
command:

:!echo % --> filename
The arguments of ":!" are expanded, see :_% .

eval.txt — 1228

:!echo "%" --> filename or "filename"
Like the previous example. Whether you see the double
quotes or not depends on your 'shell'.

:echo % --> nothing
The '%' is an illegal character in an expression.

:echo "%" --> %
This just echoes the '%' character.

:echo expand("%") --> filename
This calls the expand() function to expand the '%'.

:echoh :echohl
:echoh[l] {name} Use the highlight group {name} for the following

`:echo`, `:echon` and `:echomsg` commands. Also used
for the `input()` prompt. Example:

:echohl WarningMsg | echo "Don't panic!" | echohl None
Don't forget to set the group back to "None",
otherwise all following echo's will be highlighted.

:echom :echomsg
:echom[sg] {expr1} .. Echo the expression(s) as a true message, saving the

message in the message-history .
Spaces are placed between the arguments as with the
`:echo` command. But unprintable characters are
displayed, not interpreted.
The parsing works slightly different from `:echo`,
more like `:execute`. All the expressions are first
evaluated and concatenated before echoing anything.
If expressions does not evaluate to a Number or
String, string() is used to turn it into a string.
Uses the highlighting set by the `:echohl` command.
Example:

:echomsg "It's a Zizzer Zazzer Zuzz, as you can plainly see."
See :echo-redraw to avoid the message disappearing
when the screen is redrawn.

:echow :echowin :echowindow
:[N]echow[indow] {expr1} ..

Like :echomsg but when the messages popup window is
available the message is displayed there. This means
it will show for three seconds and avoid a
hit-enter prompt. If you want to hide it before

that, press Esc in Normal mode (when it would
otherwise beep). If it disappears too soon you can
use `:messages` to see the text.
When [N] is given then the window will show up for
this number of seconds. The last `:echowindow` with a
count matters, it is used once only.
The message window is available when Vim was compiled
with the +timer and the +popupwin features.

:echoe :echoerr
:echoe[rr] {expr1} .. Echo the expression(s) as an error message, saving the

message in the message-history . When used in a
script or function the line number will be added.
Spaces are placed between the arguments as with the
`:echomsg` command. When used inside a try conditional,
the message is raised as an error exception instead
(see try-echoerr).
Example:

:echoerr "This script just failed!"

eval.txt — 1229

If you just want a highlighted message use `:echohl`.
And to get a beep:

:exe "normal \<Esc>"

:echoc[onsole] {expr1} .. :echoc :echoconsole
Intended for testing: works like `:echomsg` but when
running in the GUI and started from a terminal write
the text to stdout.

:eval
:eval {expr} Evaluate {expr} and discard the result. Example:

:eval Getlist()->Filter()->append('$')

The expression is supposed to have a side effect,
since the resulting value is not used. In the example
the `append()` call appends the List with text to the
buffer. This is similar to `:call` but works with any
expression.
In Vim9 script an expression without an effect will
result in error E1207 . This should help noticing
mistakes.

The command can be shortened to `:ev` or `:eva`, but
these are hard to recognize and therefore not to be
used.

The command cannot be followed by "|" and another
command, since "|" is seen as part of the expression.

:exe :execute
:exe[cute] {expr1} .. Executes the string that results from the evaluation

of {expr1} as an Ex command.
Multiple arguments are concatenated, with a space in
between. To avoid the extra space use the ".."
operator to concatenate strings into one argument.
{expr1} is used as the processed command, command line
editing keys are not recognized.
Cannot be followed by a comment.
Examples:

:execute "buffer" nextbuf
:execute "normal" count .. "w"

":execute" can be used to append a command to commands
that don't accept a '|'. Example:

:execute '!ls' | echo "theend"

":execute" is also a nice way to avoid having to type
control characters in a Vim script for a ":normal"
command:

:execute "normal ixxx\<Esc>"
This has an <Esc> character, see expr-string .

Be careful to correctly escape special characters in
file names. The fnameescape() function can be used
for Vim commands, shellescape() for :! commands.
Examples:

:execute "e " .. fnameescape(filename)
:execute "!ls " .. shellescape(filename, 1)

eval.txt — 1230

Note: The executed string may be any command-line, but
starting or ending "if", "while" and "for" does not
always work, because when commands are skipped the
":execute" is not evaluated and Vim loses track of
where blocks start and end. Also "break" and
"continue" should not be inside ":execute".
This example does not work, because the ":execute" is
not evaluated and Vim does not see the "while", and
gives an error for finding an ":endwhile":

:if 0
: execute 'while i > 5'
: echo "test"
: endwhile
:endif

It is allowed to have a "while" or "if" command
completely in the executed string:

:execute 'while i < 5 | echo i | let i = i + 1 | endwhile'

:exe-comment
":execute", ":echo" and ":echon" cannot be followed by
a comment directly, because they see the '"' as the
start of a string. But, you can use '|' followed by a
comment. Example:

:echo "foo" | "this is a comment

==
8. Exception handling exception-handling

The Vim script language comprises an exception handling feature. This section
explains how it can be used in a Vim script.

Exceptions may be raised by Vim on an error or on interrupt, see
catch-errors and catch-interrupt . You can also explicitly throw an

exception by using the ":throw" command, see throw-catch .

TRY CONDITIONALS try-conditionals

Exceptions can be caught or can cause cleanup code to be executed. You can
use a try conditional to specify catch clauses (that catch exceptions) and/or
a finally clause (to be executed for cleanup).

A try conditional begins with a :try command and ends at the matching
:endtry command. In between, you can use a :catch command to start

a catch clause, or a :finally command to start a finally clause. There may
be none or multiple catch clauses, but there is at most one finally clause,
which must not be followed by any catch clauses. The lines before the catch
clauses and the finally clause is called a try block.

:try
: ...
: ... TRY BLOCK
: ...
:catch /{pattern}/
: ...
: ... CATCH CLAUSE
: ...
:catch /{pattern}/
: ...

eval.txt — 1231

: ... CATCH CLAUSE
: ...
:finally
: ...
: ... FINALLY CLAUSE
: ...
:endtry

The try conditional allows to watch code for exceptions and to take the
appropriate actions. Exceptions from the try block may be caught. Exceptions
from the try block and also the catch clauses may cause cleanup actions.

When no exception is thrown during execution of the try block, the control
is transferred to the finally clause, if present. After its execution, the
script continues with the line following the ":endtry".

When an exception occurs during execution of the try block, the remaining
lines in the try block are skipped. The exception is matched against the
patterns specified as arguments to the ":catch" commands. The catch clause
after the first matching ":catch" is taken, other catch clauses are not
executed. The catch clause ends when the next ":catch", ":finally", or
":endtry" command is reached - whatever is first. Then, the finally clause
(if present) is executed. When the ":endtry" is reached, the script execution
continues in the following line as usual.

When an exception that does not match any of the patterns specified by the
":catch" commands is thrown in the try block, the exception is not caught by
that try conditional and none of the catch clauses is executed. Only the
finally clause, if present, is taken. The exception pends during execution of
the finally clause. It is resumed at the ":endtry", so that commands after
the ":endtry" are not executed and the exception might be caught elsewhere,
see try-nesting .

When during execution of a catch clause another exception is thrown, the
remaining lines in that catch clause are not executed. The new exception is
not matched against the patterns in any of the ":catch" commands of the same
try conditional and none of its catch clauses is taken. If there is, however,
a finally clause, it is executed, and the exception pends during its
execution. The commands following the ":endtry" are not executed. The new
exception might, however, be caught elsewhere, see try-nesting .

When during execution of the finally clause (if present) an exception is
thrown, the remaining lines in the finally clause are skipped. If the finally
clause has been taken because of an exception from the try block or one of the
catch clauses, the original (pending) exception is discarded. The commands
following the ":endtry" are not executed, and the exception from the finally
clause is propagated and can be caught elsewhere, see try-nesting .

The finally clause is also executed, when a ":break" or ":continue" for
a ":while" loop enclosing the complete try conditional is executed from the
try block or a catch clause. Or when a ":return" or ":finish" is executed
from the try block or a catch clause of a try conditional in a function or
sourced script, respectively. The ":break", ":continue", ":return", or
":finish" pends during execution of the finally clause and is resumed when the
":endtry" is reached. It is, however, discarded when an exception is thrown
from the finally clause.

When a ":break" or ":continue" for a ":while" loop enclosing the complete
try conditional or when a ":return" or ":finish" is encountered in the finally
clause, the rest of the finally clause is skipped, and the ":break",
":continue", ":return" or ":finish" is executed as usual. If the finally
clause has been taken because of an exception or an earlier ":break",
":continue", ":return", or ":finish" from the try block or a catch clause,
this pending exception or command is discarded.

For examples see throw-catch and try-finally .

eval.txt — 1232

NESTING OF TRY CONDITIONALS try-nesting

Try conditionals can be nested arbitrarily. That is, a complete try
conditional can be put into the try block, a catch clause, or the finally
clause of another try conditional. If the inner try conditional does not
catch an exception thrown in its try block or throws a new exception from one
of its catch clauses or its finally clause, the outer try conditional is
checked according to the rules above. If the inner try conditional is in the
try block of the outer try conditional, its catch clauses are checked, but
otherwise only the finally clause is executed. It does not matter for
nesting, whether the inner try conditional is directly contained in the outer
one, or whether the outer one sources a script or calls a function containing
the inner try conditional.

When none of the active try conditionals catches an exception, just their
finally clauses are executed. Thereafter, the script processing terminates.
An error message is displayed in case of an uncaught exception explicitly
thrown by a ":throw" command. For uncaught error and interrupt exceptions
implicitly raised by Vim, the error message(s) or interrupt message are shown
as usual.

For examples see throw-catch .

EXAMINING EXCEPTION HANDLING CODE except-examine

Exception handling code can get tricky. If you are in doubt what happens, set
'verbose' to 13 or use the ":13verbose" command modifier when sourcing your
script file. Then you see when an exception is thrown, discarded, caught, or
finished. When using a verbosity level of at least 14, things pending in
a finally clause are also shown. This information is also given in debug mode
(see debug-scripts).

THROWING AND CATCHING EXCEPTIONS throw-catch

You can throw any number or string as an exception. Use the :throw command
and pass the value to be thrown as argument:

:throw 4711
:throw "string"

throw-expression
You can also specify an expression argument. The expression is then evaluated
first, and the result is thrown:

:throw 4705 + strlen("string")
:throw strpart("strings", 0, 6)

An exception might be thrown during evaluation of the argument of the ":throw"
command. Unless it is caught there, the expression evaluation is abandoned.
The ":throw" command then does not throw a new exception.

Example:

:function! Foo(arg)
: try
: throw a:arg
: catch /foo/
: endtry
: return 1
:endfunction

eval.txt — 1233

:
:function! Bar()
: echo "in Bar"
: return 4710
:endfunction
:
:throw Foo("arrgh") + Bar()

This throws "arrgh", and "in Bar" is not displayed since Bar() is not
executed.

:throw Foo("foo") + Bar()
however displays "in Bar" and throws 4711.

Any other command that takes an expression as argument might also be
abandoned by an (uncaught) exception during the expression evaluation. The
exception is then propagated to the caller of the command.

Example:

:if Foo("arrgh")
: echo "then"
:else
: echo "else"
:endif

Here neither of "then" or "else" is displayed.

catch-order
Exceptions can be caught by a try conditional with one or more :catch
commands, see try-conditionals . The values to be caught by each ":catch"
command can be specified as a pattern argument. The subsequent catch clause
gets executed when a matching exception is caught.

Example:

:function! Foo(value)
: try
: throw a:value
: catch /^\d\+$/
: echo "Number thrown"
: catch /.*/
: echo "String thrown"
: endtry
:endfunction
:
:call Foo(0x1267)
:call Foo('string')

The first call to Foo() displays "Number thrown", the second "String thrown".
An exception is matched against the ":catch" commands in the order they are
specified. Only the first match counts. So you should place the more
specific ":catch" first. The following order does not make sense:

: catch /.*/
: echo "String thrown"
: catch /^\d\+$/
: echo "Number thrown"

The first ":catch" here matches always, so that the second catch clause is
never taken.

throw-variables

eval.txt — 1234

If you catch an exception by a general pattern, you may access the exact value
in the variable v:exception :

: catch /^\d\+$/
: echo "Number thrown. Value is" v:exception

You may also be interested where an exception was thrown. This is stored in
v:throwpoint . Note that "v:exception" and "v:throwpoint" are valid for the

exception most recently caught as long it is not finished.
Example:

:function! Caught()
: if v:exception != ""
: echo 'Caught "' . v:exception .. '" in ' .. v:throwpoint
: else
: echo 'Nothing caught'
: endif
:endfunction
:
:function! Foo()
: try
: try
: try
: throw 4711
: finally
: call Caught()
: endtry
: catch /.*/
: call Caught()
: throw "oops"
: endtry
: catch /.*/
: call Caught()
: finally
: call Caught()
: endtry
:endfunction
:
:call Foo()

This displays

Nothing caught
Caught "4711" in function Foo, line 4
Caught "oops" in function Foo, line 10
Nothing caught

A practical example: The following command ":LineNumber" displays the line
number in the script or function where it has been used:

:function! LineNumber()
: return substitute(v:throwpoint, '.*\D\(\d\+\).*', '\1', "")
:endfunction
:command! LineNumber try | throw "" | catch | echo LineNumber() | endtry

try-nested
An exception that is not caught by a try conditional can be caught by
a surrounding try conditional:

:try

eval.txt — 1235

: try
: throw "foo"
: catch /foobar/
: echo "foobar"
: finally
: echo "inner finally"
: endtry
:catch /foo/
: echo "foo"
:endtry

The inner try conditional does not catch the exception, just its finally
clause is executed. The exception is then caught by the outer try
conditional. The example displays "inner finally" and then "foo".

throw-from-catch
You can catch an exception and throw a new one to be caught elsewhere from the
catch clause:

:function! Foo()
: throw "foo"
:endfunction
:
:function! Bar()
: try
: call Foo()
: catch /foo/
: echo "Caught foo, throw bar"
: throw "bar"
: endtry
:endfunction
:
:try
: call Bar()
:catch /.*/
: echo "Caught" v:exception
:endtry

This displays "Caught foo, throw bar" and then "Caught bar".

rethrow
There is no real rethrow in the Vim script language, but you may throw
"v:exception" instead:

:function! Bar()
: try
: call Foo()
: catch /.*/
: echo "Rethrow" v:exception
: throw v:exception
: endtry
:endfunction

try-echoerr
Note that this method cannot be used to "rethrow" Vim error or interrupt
exceptions, because it is not possible to fake Vim internal exceptions.
Trying so causes an error exception. You should throw your own exception
denoting the situation. If you want to cause a Vim error exception containing
the original error exception value, you can use the :echoerr command:

:try

eval.txt — 1236

: try
: asdf
: catch /.*/
: echoerr v:exception
: endtry
:catch /.*/
: echo v:exception
:endtry

This code displays

Vim(echoerr):Vim:E492: Not an editor command: asdf

CLEANUP CODE try-finally

Scripts often change global settings and restore them at their end. If the
user however interrupts the script by pressing CTRL-C, the settings remain in
an inconsistent state. The same may happen to you in the development phase of
a script when an error occurs or you explicitly throw an exception without
catching it. You can solve these problems by using a try conditional with
a finally clause for restoring the settings. Its execution is guaranteed on
normal control flow, on error, on an explicit ":throw", and on interrupt.
(Note that errors and interrupts from inside the try conditional are converted
to exceptions. When not caught, they terminate the script after the finally
clause has been executed.)
Example:

:try
: let s:saved_ts = &ts
: set ts=17
:
: " Do the hard work here.
:
:finally
: let &ts = s:saved_ts
: unlet s:saved_ts
:endtry

This method should be used locally whenever a function or part of a script
changes global settings which need to be restored on failure or normal exit of
that function or script part.

break-finally
Cleanup code works also when the try block or a catch clause is left by
a ":continue", ":break", ":return", or ":finish".

Example:

:let first = 1
:while 1
: try
: if first
: echo "first"
: let first = 0
: continue
: else
: throw "second"
: endif
: catch /.*/
: echo v:exception

eval.txt — 1237

: break
: finally
: echo "cleanup"
: endtry
: echo "still in while"
:endwhile
:echo "end"

This displays "first", "cleanup", "second", "cleanup", and "end".

:function! Foo()
: try
: return 4711
: finally
: echo "cleanup\n"
: endtry
: echo "Foo still active"
:endfunction
:
:echo Foo() "returned by Foo"

This displays "cleanup" and "4711 returned by Foo". You don't need to add an
extra ":return" in the finally clause. (Above all, this would override the
return value.)

except-from-finally
Using either of ":continue", ":break", ":return", ":finish", or ":throw" in
a finally clause is possible, but not recommended since it abandons the
cleanup actions for the try conditional. But, of course, interrupt and error
exceptions might get raised from a finally clause.

Example where an error in the finally clause stops an interrupt from
working correctly:

:try
: try
: echo "Press CTRL-C for interrupt"
: while 1
: endwhile
: finally
: unlet novar
: endtry
:catch /novar/
:endtry
:echo "Script still running"
:sleep 1

If you need to put commands that could fail into a finally clause, you should
think about catching or ignoring the errors in these commands, see
catch-errors and ignore-errors .

CATCHING ERRORS catch-errors

If you want to catch specific errors, you just have to put the code to be
watched in a try block and add a catch clause for the error message. The
presence of the try conditional causes all errors to be converted to an
exception. No message is displayed and v:errmsg is not set then. To find
the right pattern for the ":catch" command, you have to know how the format of
the error exception is.

Error exceptions have the following format:

eval.txt — 1238

Vim({cmdname}):{errmsg}
or

Vim:{errmsg}

{cmdname} is the name of the command that failed; the second form is used when
the command name is not known. {errmsg} is the error message usually produced
when the error occurs outside try conditionals. It always begins with
a capital "E", followed by a two or three-digit error number, a colon, and
a space.

Examples:

The command
:unlet novar

normally produces the error message
E108: No such variable: "novar"

which is converted inside try conditionals to an exception
Vim(unlet):E108: No such variable: "novar"

The command
:dwim

normally produces the error message
E492: Not an editor command: dwim

which is converted inside try conditionals to an exception
Vim:E492: Not an editor command: dwim

You can catch all ":unlet" errors by a
:catch /^Vim(unlet):/

or all errors for misspelled command names by a
:catch /^Vim:E492:/

Some error messages may be produced by different commands:
:function nofunc

and
:delfunction nofunc

both produce the error message
E128: Function name must start with a capital: nofunc

which is converted inside try conditionals to an exception
Vim(function):E128: Function name must start with a capital: nofunc

or
Vim(delfunction):E128: Function name must start with a capital: nofunc

respectively. You can catch the error by its number independently on the
command that caused it if you use the following pattern:

:catch /^Vim(\a\+):E128:/

Some commands like
:let x = novar

produce multiple error messages, here:
E121: Undefined variable: novar
E15: Invalid expression: novar

Only the first is used for the exception value, since it is the most specific
one (see except-several-errors). So you can catch it by

:catch /^Vim(\a\+):E121:/

You can catch all errors related to the name "nofunc" by
:catch /\<nofunc\>/

You can catch all Vim errors in the ":write" and ":read" commands by
:catch /^Vim(\(write\|read\)):E\d\+:/

eval.txt — 1239

You can catch all Vim errors by the pattern
:catch /^Vim\((\a\+)\)\=:E\d\+:/

catch-text
NOTE: You should never catch the error message text itself:

:catch /No such variable/
only works in the English locale, but not when the user has selected
a different language by the :language command. It is however helpful to
cite the message text in a comment:

:catch /^Vim(\a\+):E108:/ " No such variable

IGNORING ERRORS ignore-errors

You can ignore errors in a specific Vim command by catching them locally:

:try
: write
:catch
:endtry

But you are strongly recommended NOT to use this simple form, since it could
catch more than you want. With the ":write" command, some autocommands could
be executed and cause errors not related to writing, for instance:

:au BufWritePre * unlet novar

There could even be such errors you are not responsible for as a script
writer: a user of your script might have defined such autocommands. You would
then hide the error from the user.

It is much better to use

:try
: write
:catch /^Vim(write):/
:endtry

which only catches real write errors. So catch only what you'd like to ignore
intentionally.

For a single command that does not cause execution of autocommands, you could
even suppress the conversion of errors to exceptions by the ":silent!"
command:

:silent! nunmap k
This works also when a try conditional is active.

CATCHING INTERRUPTS catch-interrupt

When there are active try conditionals, an interrupt (CTRL-C) is converted to
the exception "Vim:Interrupt". You can catch it like every exception. The
script is not terminated, then.

Example:

:function! TASK1()
: sleep 10
:endfunction

:function! TASK2()

eval.txt — 1240

: sleep 20
:endfunction

:while 1
: let command = input("Type a command: ")
: try
: if command == ""
: continue
: elseif command == "END"
: break
: elseif command == "TASK1"
: call TASK1()
: elseif command == "TASK2"
: call TASK2()
: else
: echo "\nIllegal command:" command
: continue
: endif
: catch /^Vim:Interrupt$/
: echo "\nCommand interrupted"
: " Caught the interrupt. Continue with next prompt.
: endtry
:endwhile

You can interrupt a task here by pressing CTRL-C; the script then asks for
a new command. If you press CTRL-C at the prompt, the script is terminated.

For testing what happens when CTRL-C would be pressed on a specific line in
your script, use the debug mode and execute the >quit or >interrupt
command on that line. See debug-scripts .

CATCHING ALL catch-all

The commands

:catch /.*/
:catch //
:catch

catch everything, error exceptions, interrupt exceptions and exceptions
explicitly thrown by the :throw command. This is useful at the top level of
a script in order to catch unexpected things.

Example:

:try
:
: " do the hard work here
:
:catch /MyException/
:
: " handle known problem
:
:catch /^Vim:Interrupt$/
: echo "Script interrupted"
:catch /.*/
: echo "Internal error (" .. v:exception .. ")"
: echo " - occurred at " .. v:throwpoint
:endtry
:" end of script

eval.txt — 1241

Note: Catching all might catch more things than you want. Thus, you are
strongly encouraged to catch only for problems that you can really handle by
specifying a pattern argument to the ":catch".

Example: Catching all could make it nearly impossible to interrupt a script
by pressing CTRL-C:

:while 1
: try
: sleep 1
: catch
: endtry
:endwhile

EXCEPTIONS AND AUTOCOMMANDS except-autocmd

Exceptions may be used during execution of autocommands. Example:

:autocmd User x try
:autocmd User x throw "Oops!"
:autocmd User x catch
:autocmd User x echo v:exception
:autocmd User x endtry
:autocmd User x throw "Arrgh!"
:autocmd User x echo "Should not be displayed"
:
:try
: doautocmd User x
:catch
: echo v:exception
:endtry

This displays "Oops!" and "Arrgh!".

except-autocmd-Pre
For some commands, autocommands get executed before the main action of the
command takes place. If an exception is thrown and not caught in the sequence
of autocommands, the sequence and the command that caused its execution are
abandoned and the exception is propagated to the caller of the command.

Example:

:autocmd BufWritePre * throw "FAIL"
:autocmd BufWritePre * echo "Should not be displayed"
:
:try
: write
:catch
: echo "Caught:" v:exception "from" v:throwpoint
:endtry

Here, the ":write" command does not write the file currently being edited (as
you can see by checking 'modified'), since the exception from the BufWritePre
autocommand abandons the ":write". The exception is then caught and the
script displays:

Caught: FAIL from BufWrite Auto commands for "*"

except-autocmd-Post
For some commands, autocommands get executed after the main action of the

eval.txt — 1242

command has taken place. If this main action fails and the command is inside
an active try conditional, the autocommands are skipped and an error exception
is thrown that can be caught by the caller of the command.

Example:

:autocmd BufWritePost * echo "File successfully written!"
:
:try
: write /i/m/p/o/s/s/i/b/l/e
:catch
: echo v:exception
:endtry

This just displays:

Vim(write):E212: Can't open file for writing (/i/m/p/o/s/s/i/b/l/e)

If you really need to execute the autocommands even when the main action
fails, trigger the event from the catch clause.

Example:

:autocmd BufWritePre * set noreadonly
:autocmd BufWritePost * set readonly
:
:try
: write /i/m/p/o/s/s/i/b/l/e
:catch
: doautocmd BufWritePost /i/m/p/o/s/s/i/b/l/e
:endtry

You can also use ":silent!":

:let x = "ok"
:let v:errmsg = ""
:autocmd BufWritePost * if v:errmsg != ""
:autocmd BufWritePost * let x = "after fail"
:autocmd BufWritePost * endif
:try
: silent! write /i/m/p/o/s/s/i/b/l/e
:catch
:endtry
:echo x

This displays "after fail".

If the main action of the command does not fail, exceptions from the
autocommands will be catchable by the caller of the command:

:autocmd BufWritePost * throw ":-("
:autocmd BufWritePost * echo "Should not be displayed"
:
:try
: write
:catch
: echo v:exception
:endtry

except-autocmd-Cmd
For some commands, the normal action can be replaced by a sequence of
autocommands. Exceptions from that sequence will be catchable by the caller

eval.txt — 1243

of the command.
Example: For the ":write" command, the caller cannot know whether the file

had actually been written when the exception occurred. You need to tell it in
some way.

:if !exists("cnt")
: let cnt = 0
:
: autocmd BufWriteCmd * if &modified
: autocmd BufWriteCmd * let cnt = cnt + 1
: autocmd BufWriteCmd * if cnt % 3 == 2
: autocmd BufWriteCmd * throw "BufWriteCmdError"
: autocmd BufWriteCmd * endif
: autocmd BufWriteCmd * write | set nomodified
: autocmd BufWriteCmd * if cnt % 3 == 0
: autocmd BufWriteCmd * throw "BufWriteCmdError"
: autocmd BufWriteCmd * endif
: autocmd BufWriteCmd * echo "File successfully written!"
: autocmd BufWriteCmd * endif
:endif
:
:try
: write
:catch /^BufWriteCmdError$/
: if &modified
: echo "Error on writing (file contents not changed)"
: else
: echo "Error after writing"
: endif
:catch /^Vim(write):/
: echo "Error on writing"
:endtry

When this script is sourced several times after making changes, it displays
first

File successfully written!
then

Error on writing (file contents not changed)
then

Error after writing
etc.

except-autocmd-ill
You cannot spread a try conditional over autocommands for different events.
The following code is ill-formed:

:autocmd BufWritePre * try
:
:autocmd BufWritePost * catch
:autocmd BufWritePost * echo v:exception
:autocmd BufWritePost * endtry
:
:write

EXCEPTION HIERARCHIES AND PARAMETERIZED EXCEPTIONS except-hier-param

Some programming languages allow to use hierarchies of exception classes or to
pass additional information with the object of an exception class. You can do
similar things in Vim.

eval.txt — 1244

In order to throw an exception from a hierarchy, just throw the complete
class name with the components separated by a colon, for instance throw the
string "EXCEPT:MATHERR:OVERFLOW" for an overflow in a mathematical library.

When you want to pass additional information with your exception class, add
it in parentheses, for instance throw the string "EXCEPT:IO:WRITEERR(myfile)"
for an error when writing "myfile".

With the appropriate patterns in the ":catch" command, you can catch for
base classes or derived classes of your hierarchy. Additional information in
parentheses can be cut out from v:exception with the ":substitute" command.

Example:

:function! CheckRange(a, func)
: if a:a < 0
: throw "EXCEPT:MATHERR:RANGE(" .. a:func .. ")"
: endif
:endfunction
:
:function! Add(a, b)
: call CheckRange(a:a, "Add")
: call CheckRange(a:b, "Add")
: let c = a:a + a:b
: if c < 0
: throw "EXCEPT:MATHERR:OVERFLOW"
: endif
: return c
:endfunction
:
:function! Div(a, b)
: call CheckRange(a:a, "Div")
: call CheckRange(a:b, "Div")
: if (a:b == 0)
: throw "EXCEPT:MATHERR:ZERODIV"
: endif
: return a:a / a:b
:endfunction
:
:function! Write(file)
: try
: execute "write" fnameescape(a:file)
: catch /^Vim(write):/
: throw "EXCEPT:IO(" .. getcwd() .. ", " .. a:file .. "):WRITEERR"
: endtry
:endfunction
:
:try
:
: " something with arithmetic and I/O
:
:catch /^EXCEPT:MATHERR:RANGE/
: let function = substitute(v:exception, '.*(\(\a\+\)).*', '\1', "")
: echo "Range error in" function
:
:catch /^EXCEPT:MATHERR/ " catches OVERFLOW and ZERODIV
: echo "Math error"
:
:catch /^EXCEPT:IO/
: let dir = substitute(v:exception, '.*(\(.\+\),\s*.\+).*', '\1', "")
: let file = substitute(v:exception, '.*(.\+,\s*\(.\+\)).*', '\1', "")
: if file !~ '^/'
: let file = dir .. "/" .. file

eval.txt — 1245

: endif
: echo 'I/O error for "' .. file .. '"'
:
:catch /^EXCEPT/
: echo "Unspecified error"
:
:endtry

The exceptions raised by Vim itself (on error or when pressing CTRL-C) use
a flat hierarchy: they are all in the "Vim" class. You cannot throw yourself
exceptions with the "Vim" prefix; they are reserved for Vim.

Vim error exceptions are parameterized with the name of the command that
failed, if known. See catch-errors .

PECULIARITIES
except-compat

The exception handling concept requires that the command sequence causing the
exception is aborted immediately and control is transferred to finally clauses
and/or a catch clause.

In the Vim script language there are cases where scripts and functions
continue after an error: in functions without the "abort" flag or in a command
after ":silent!", control flow goes to the following line, and outside
functions, control flow goes to the line following the outermost ":endwhile"
or ":endif". On the other hand, errors should be catchable as exceptions
(thus, requiring the immediate abortion).

This problem has been solved by converting errors to exceptions and using
immediate abortion (if not suppressed by ":silent!") only when a try
conditional is active. This is no restriction since an (error) exception can
be caught only from an active try conditional. If you want an immediate
termination without catching the error, just use a try conditional without
catch clause. (You can cause cleanup code being executed before termination
by specifying a finally clause.)

When no try conditional is active, the usual abortion and continuation
behavior is used instead of immediate abortion. This ensures compatibility of
scripts written for Vim 6.1 and earlier.

However, when sourcing an existing script that does not use exception handling
commands (or when calling one of its functions) from inside an active try
conditional of a new script, you might change the control flow of the existing
script on error. You get the immediate abortion on error and can catch the
error in the new script. If however the sourced script suppresses error
messages by using the ":silent!" command (checking for errors by testing
v:errmsg if appropriate), its execution path is not changed. The error is

not converted to an exception. (See :silent .) So the only remaining cause
where this happens is for scripts that don't care about errors and produce
error messages. You probably won't want to use such code from your new
scripts.

except-syntax-err
Syntax errors in the exception handling commands are never caught by any of
the ":catch" commands of the try conditional they belong to. Its finally
clauses, however, is executed.

Example:

:try
: try

eval.txt — 1246

: throw 4711
: catch /\(/
: echo "in catch with syntax error"
: catch
: echo "inner catch-all"
: finally
: echo "inner finally"
: endtry
:catch
: echo 'outer catch-all caught "' .. v:exception .. '"'
: finally
: echo "outer finally"
:endtry

This displays:
inner finally
outer catch-all caught "Vim(catch):E54: Unmatched \("
outer finally

The original exception is discarded and an error exception is raised, instead.

except-single-line
The ":try", ":catch", ":finally", and ":endtry" commands can be put on
a single line, but then syntax errors may make it difficult to recognize the
"catch" line, thus you better avoid this.

Example:
:try | unlet! foo # | catch | endtry

raises an error exception for the trailing characters after the ":unlet!"
argument, but does not see the ":catch" and ":endtry" commands, so that the
error exception is discarded and the "E488: Trailing characters" message gets
displayed.

except-several-errors
When several errors appear in a single command, the first error message is
usually the most specific one and therefore converted to the error exception.

Example:
echo novar

causes
E121: Undefined variable: novar
E15: Invalid expression: novar

The value of the error exception inside try conditionals is:
Vim(echo):E121: Undefined variable: novar

except-syntax-error
But when a syntax error is detected after a normal error in the same command,
the syntax error is used for the exception being thrown.

Example:
unlet novar #

causes
E108: No such variable: "novar"
E488: Trailing characters

The value of the error exception inside try conditionals is:
Vim(unlet):E488: Trailing characters

This is done because the syntax error might change the execution path in a way
not intended by the user. Example:

try
try | unlet novar # | catch | echo v:exception | endtry

catch /.*/
echo "outer catch:" v:exception

endtry
This displays "outer catch: Vim(unlet):E488: Trailing characters", and then
a "E600: Missing :endtry" error message is given, see except-single-line .

eval.txt — 1247

==
9. Examples eval-examples

Printing in Binary

:" The function Nr2Bin() returns the binary string representation of a number.
:func Nr2Bin(nr)
: let n = a:nr
: let r = ""
: while n
: let r = '01'[n % 2] .. r
: let n = n / 2
: endwhile
: return r
:endfunc

:" The function String2Bin() converts each character in a string to a
:" binary string, separated with dashes.
:func String2Bin(str)
: let out = ''
: for ix in range(strlen(a:str))
: let out = out .. '-' .. Nr2Bin(char2nr(a:str[ix]))
: endfor
: return out[1:]
:endfunc

Example of its use:
:echo Nr2Bin(32)

result: "100000"
:echo String2Bin("32")

result: "110011-110010"

Sorting lines

This example sorts lines with a specific compare function.

:func SortBuffer()
: let lines = getline(1, '$')
: call sort(lines, function("Strcmp"))
: call setline(1, lines)
:endfunction

As a one-liner:
:call setline(1, sort(getline(1, '$'), function("Strcmp")))

scanf() replacement
sscanf

There is no sscanf() function in Vim. If you need to extract parts from a
line, you can use matchstr() and substitute() to do it. This example shows
how to get the file name, line number and column number out of a line like
"foobar.txt, 123, 45".

:" Set up the match bit
:let mx='\(\f\+\),\s*\(\d\+\),\s*\(\d\+\)'
:"get the part matching the whole expression
:let l = matchstr(line, mx)
:"get each item out of the match
:let file = substitute(l, mx, '\1', '')

eval.txt — 1248

:let lnum = substitute(l, mx, '\2', '')
:let col = substitute(l, mx, '\3', '')

The input is in the variable "line", the results in the variables "file",
"lnum" and "col". (idea from Michael Geddes)

getting the scriptnames in a Dictionary
scriptnames-dictionary

The `:scriptnames` command can be used to get a list of all script files that
have been sourced. There is also the `getscriptinfo()` function, but the
information returned is not exactly the same. In case you need to manipulate
the list, this code can be used as a base:

Create or update scripts dictionary, indexed by SNR, and return it.
def Scripts(scripts: dict<string> = {}): dict<string>

for info in getscriptinfo()
if scripts->has_key(info.sid)

continue
endif
scripts[info.sid] = info.name

endfor
return scripts

enddef

==
10. Vim script versions vimscript-version vimscript-versions

scriptversion
Over time many features have been added to Vim script. This includes Ex
commands, functions, variable types, etc. Each individual feature can be
checked with the has() and exists() functions.

Sometimes old syntax of functionality gets in the way of making Vim better.
When support is taken away this will break older Vim scripts. To make this
explicit the :scriptversion command can be used. When a Vim script is not
compatible with older versions of Vim this will give an explicit error,
instead of failing in mysterious ways.

When using a legacy function, defined with `:function`, in Vim9 script then
scriptversion 4 is used.

scriptversion-1
:scriptversion 1

This is the original Vim script, same as not using a :scriptversion
command. Can be used to go back to old syntax for a range of lines.
Test for support with:

has('vimscript-1')

scriptversion-2
:scriptversion 2

String concatenation with "." is not supported, use ".." instead.
This avoids the ambiguity using "." for Dict member access and
floating point numbers. Now ".5" means the number 0.5.

scriptversion-3
:scriptversion 3

All vim-variable s must be prefixed by "v:". E.g. "version" doesn't
work as v:version anymore, it can be used as a normal variable.
Same for some obvious names as "count" and others.

eval.txt — 1249

Test for support with:
has('vimscript-3')

scriptversion-4
:scriptversion 4

Numbers with a leading zero are not recognized as octal. "0o" or "0O"
is still recognized as octal. With the
previous version you get:

echo 017 " displays 15 (octal)
echo 0o17 " displays 15 (octal)
echo 018 " displays 18 (decimal)

with script version 4:
echo 017 " displays 17 (decimal)
echo 0o17 " displays 15 (octal)
echo 018 " displays 18 (decimal)

Also, it is possible to use single quotes inside numbers to make them
easier to read:

echo 1'000'000
The quotes must be surrounded by digits.

Test for support with:
has('vimscript-4')

==
11. No +eval feature no-eval-feature

When the +eval feature was disabled at compile time, none of the expression
evaluation commands are available. To prevent this from causing Vim scripts
to generate all kinds of errors, the ":if" and ":endif" commands are still
recognized, though the argument of the ":if" and everything between the ":if"
and the matching ":endif" is ignored. Nesting of ":if" blocks is allowed, but
only if the commands are at the start of the line. The ":else" command is not
recognized.

Example of how to avoid executing commands when the +eval feature is
missing:

:if 1
: echo "Expression evaluation is compiled in"
:else
: echo "You will _never_ see this message"
:endif

To execute a command only when the +eval feature is disabled can be done in
two ways. The simplest is to exit the script (or Vim) prematurely:

if 1
echo "commands executed with +eval"
finish

endif
args " command executed without +eval

If you do not want to abort loading the script you can use a trick, as this
example shows:

silent! while 0
set history=111

silent! endwhile

When the +eval feature is available the command is skipped because of the
"while 0". Without the +eval feature the "while 0" is an error, which is

eval.txt — 1250

silently ignored, and the command is executed.

==
12. The sandbox eval-sandbox sandbox

The 'foldexpr', 'formatexpr', 'includeexpr', 'indentexpr', 'statusline' and
'foldtext' options may be evaluated in a sandbox. This means that you are
protected from these expressions having nasty side effects. This gives some
safety for when these options are set from a modeline. It is also used when
the command from a tags file is executed and for CTRL-R = in the command line.
The sandbox is also used for the :sandbox command.

E48
These items are not allowed in the sandbox:

- changing the buffer text
- defining or changing mapping, autocommands, user commands
- setting certain options (see option-summary)
- setting certain v: variables (see v:var) E794
- executing a shell command
- reading or writing a file
- jumping to another buffer or editing a file
- executing Python, Perl, etc. commands

This is not guaranteed 100% secure, but it should block most attacks.

:san :sandbox
:san[dbox] {cmd} Execute {cmd} in the sandbox. Useful to evaluate an

option that may have been set from a modeline, e.g.
'foldexpr'.

sandbox-option
A few options contain an expression. When this expression is evaluated it may
have to be done in the sandbox to avoid a security risk. But the sandbox is
restrictive, thus this only happens when the option was set from an insecure
location. Insecure in this context are:
- sourcing a .vimrc or .exrc in the current directory
- while executing in the sandbox
- value coming from a modeline
- executing a function that was defined in the sandbox

Note that when in the sandbox and saving an option value and restoring it, the
option will still be marked as it was set in the sandbox.

==
13. Textlock textlock

In a few situations it is not allowed to change the text in the buffer, jump
to another window and some other things that might confuse or break what Vim
is currently doing. This mostly applies to things that happen when Vim is
actually doing something else. For example, evaluating the 'balloonexpr' may
happen any moment the mouse cursor is resting at some position.

This is not allowed when the textlock is active:
- changing the buffer text
- jumping to another buffer or window
- editing another file
- closing a window or quitting Vim
- etc.

==
14. Vim script library vim-script-library

eval.txt — 1251

Vim comes bundled with a Vim script library, that can be used by runtime,
script authors. Currently, it only includes very few functions, but it may
grow over time.

The functions are available as Vim9-script as well as using legacy Vim
script (to be used for non Vim 9.0 versions and Neovim).

dist#vim dist#vim9
The functions make use of the autoloaded prefix "dist#vim" (for legacy Vim
script and Neovim) and "dist#vim9" for Vim9 script.

The following functions are available:

dist#vim#IsSafeExecutable(filetype, executable)
dist#vim9#IsSafeExecutable(filetype:string, executable:string): bool

This function takes a filetype and an executable and checks whether it is safe
to execute the given executable. For security reasons users may not want to
have Vim execute random executables or may have forbidden to do so for
specific filetypes by setting the "<filetype>_exec" variable (plugin_exec).

It returns true or false to indicate whether the plugin should run the given
executable. It takes the following arguments:

argument type

filetype string
executable string

eval.txt — 1252

builtin.txt For Vim version 9.1. Last change: 2024 Mar 13

VIM REFERENCE MANUAL by Bram Moolenaar

Builtin functions builtin-functions

Note: Expression evaluation can be disabled at compile time, the builtin
functions are not available then. See +eval and no-eval-feature .

For functions grouped by what they are used for see function-list .

1. Overview builtin-function-list
2. Details builtin-function-details
3. Feature list feature-list
4. Matching a pattern in a String string-match

==
1. Overview builtin-function-list

Use CTRL-] on the function name to jump to the full explanation.

USAGE RESULT DESCRIPTION

abs({expr}) Float or Number absolute value of {expr}
acos({expr}) Float arc cosine of {expr}
add({object}, {item}) List/Blob append {item} to {object}
and({expr}, {expr}) Number bitwise AND
append({lnum}, {text}) Number append {text} below line {lnum}
appendbufline({expr}, {lnum}, {text})

Number append {text} below line {lnum}
in buffer {expr}

argc([{winid}]) Number number of files in the argument list
argidx() Number current index in the argument list
arglistid([{winnr} [, {tabnr}]]) Number argument list id
argv({nr} [, {winid}]) String {nr} entry of the argument list
argv([-1, {winid}]) List the argument list
asin({expr}) Float arc sine of {expr}
assert_beeps({cmd}) Number assert {cmd} causes a beep
assert_equal({exp}, {act} [, {msg}])

Number assert {exp} is equal to {act}
assert_equalfile({fname-one}, {fname-two} [, {msg}])

Number assert file contents are equal
assert_exception({error} [, {msg}])

Number assert {error} is in v:exception
assert_fails({cmd} [, {error} [, {msg} [, {lnum} [, {context}]]]])

Number assert {cmd} fails
assert_false({actual} [, {msg}])

Number assert {actual} is false
assert_inrange({lower}, {upper}, {actual} [, {msg}])

Number assert {actual} is inside the range
assert_match({pat}, {text} [, {msg}])

Number assert {pat} matches {text}
assert_nobeep({cmd}) Number assert {cmd} does not cause a beep
assert_notequal({exp}, {act} [, {msg}])

Number assert {exp} is not equal {act}
assert_notmatch({pat}, {text} [, {msg}])

Number assert {pat} not matches {text}
assert_report({msg}) Number report a test failure

builtin.txt — 1253

assert_true({actual} [, {msg}]) Number assert {actual} is true
atan({expr}) Float arc tangent of {expr}
atan2({expr1}, {expr2}) Float arc tangent of {expr1} / {expr2}
autocmd_add({acmds}) Bool add a list of autocmds and groups
autocmd_delete({acmds}) Bool delete a list of autocmds and groups
autocmd_get([{opts}]) List return a list of autocmds
balloon_gettext() String current text in the balloon
balloon_show({expr}) none show {expr} inside the balloon
balloon_split({msg}) List split {msg} as used for a balloon
blob2list({blob}) List convert {blob} into a list of numbers
browse({save}, {title}, {initdir}, {default})

String put up a file requester
browsedir({title}, {initdir}) String put up a directory requester
bufadd({name}) Number add a buffer to the buffer list
bufexists({buf}) Number TRUE if buffer {buf} exists
buflisted({buf}) Number TRUE if buffer {buf} is listed
bufload({buf}) Number load buffer {buf} if not loaded yet
bufloaded({buf}) Number TRUE if buffer {buf} is loaded
bufname([{buf}]) String Name of the buffer {buf}
bufnr([{buf} [, {create}]]) Number Number of the buffer {buf}
bufwinid({buf}) Number window ID of buffer {buf}
bufwinnr({buf}) Number window number of buffer {buf}
byte2line({byte}) Number line number at byte count {byte}
byteidx({expr}, {nr} [, {utf16}])

Number byte index of {nr}'th char in {expr}
byteidxcomp({expr}, {nr} [, {utf16}])

Number byte index of {nr}'th char in {expr}
call({func}, {arglist} [, {dict}])

any call {func} with arguments {arglist}
ceil({expr}) Float round {expr} up
ch_canread({handle}) Number check if there is something to read
ch_close({handle}) none close {handle}
ch_close_in({handle}) none close in part of {handle}
ch_evalexpr({handle}, {expr} [, {options}])

any evaluate {expr} on JSON {handle}
ch_evalraw({handle}, {string} [, {options}])

any evaluate {string} on raw {handle}
ch_getbufnr({handle}, {what}) Number get buffer number for {handle}/{what}
ch_getjob({channel}) Job get the Job of {channel}
ch_info({handle}) String info about channel {handle}
ch_log({msg} [, {handle}]) none write {msg} in the channel log file
ch_logfile({fname} [, {mode}]) none start logging channel activity
ch_open({address} [, {options}])

Channel open a channel to {address}
ch_read({handle} [, {options}]) String read from {handle}
ch_readblob({handle} [, {options}])

Blob read Blob from {handle}
ch_readraw({handle} [, {options}])

String read raw from {handle}
ch_sendexpr({handle}, {expr} [, {options}])

any send {expr} over JSON {handle}
ch_sendraw({handle}, {expr} [, {options}])

any send {expr} over raw {handle}
ch_setoptions({handle}, {options})

none set options for {handle}
ch_status({handle} [, {options}])

String status of channel {handle}
changenr() Number current change number
char2nr({expr} [, {utf8}]) Number ASCII/UTF-8 value of first char in {expr}
charclass({string}) Number character class of {string}

builtin.txt — 1254

charcol({expr} [, {winid}]) Number column number of cursor or mark
charidx({string}, {idx} [, {countcc} [, {utf16}]])

Number char index of byte {idx} in {string}
chdir({dir}) String change current working directory
cindent({lnum}) Number C indent for line {lnum}
clearmatches([{win}]) none clear all matches
col({expr} [, {winid}]) Number column byte index of cursor or mark
complete({startcol}, {matches}) none set Insert mode completion
complete_add({expr}) Number add completion match
complete_check() Number check for key typed during completion
complete_info([{what}]) Dict get current completion information
confirm({msg} [, {choices} [, {default} [, {type}]]])

Number number of choice picked by user
copy({expr}) any make a shallow copy of {expr}
cos({expr}) Float cosine of {expr}
cosh({expr}) Float hyperbolic cosine of {expr}
count({comp}, {expr} [, {ic} [, {start}]])

Number count how many {expr} are in {comp}
cscope_connection([{num}, {dbpath} [, {prepend}]])

Number checks existence of cscope connection
cursor({lnum}, {col} [, {off}])

Number move cursor to {lnum}, {col}, {off}
cursor({list}) Number move cursor to position in {list}
debugbreak({pid}) Number interrupt process being debugged
deepcopy({expr} [, {noref}]) any make a full copy of {expr}
delete({fname} [, {flags}]) Number delete the file or directory {fname}
deletebufline({buf}, {first} [, {last}])

Number delete lines from buffer {buf}
did_filetype() Number TRUE if FileType autocmd event used
diff({fromlist}, {tolist} [, {options}])

List diff two Lists of strings
diff_filler({lnum}) Number diff filler lines about {lnum}
diff_hlID({lnum}, {col}) Number diff highlighting at {lnum}/{col}
digraph_get({chars}) String get the digraph of {chars}
digraph_getlist([{listall}]) List get all digraph s
digraph_set({chars}, {digraph}) Boolean register digraph
digraph_setlist({digraphlist}) Boolean register multiple digraph s
echoraw({expr}) none output {expr} as-is
empty({expr}) Number TRUE if {expr} is empty
environ() Dict return environment variables
err_teapot([{expr}]) none give E418, or E503 if {expr} is TRUE
escape({string}, {chars}) String escape {chars} in {string} with '\'
eval({string}) any evaluate {string} into its value
eventhandler() Number TRUE if inside an event handler
executable({expr}) Number 1 if executable {expr} exists
execute({command}) String execute {command} and get the output
exepath({expr}) String full path of the command {expr}
exists({expr}) Number TRUE if {expr} exists
exists_compiled({expr}) Number TRUE if {expr} exists at compile time
exp({expr}) Float exponential of {expr}
expand({expr} [, {nosuf} [, {list}]])

any expand special keywords in {expr}
expandcmd({string} [, {options}])

String expand {string} like with `:edit`
extend({expr1}, {expr2} [, {expr3}])

List/Dict insert items of {expr2} into {expr1}
extendnew({expr1}, {expr2} [, {expr3}])

List/Dict like extend() but creates a new
List or Dictionary

feedkeys({string} [, {mode}]) Number add key sequence to typeahead buffer

builtin.txt — 1255

filereadable({file}) Number TRUE if {file} is a readable file
filewritable({file}) Number TRUE if {file} is a writable file
filter({expr1}, {expr2}) List/Dict/Blob/String

remove items from {expr1} where
{expr2} is 0

finddir({name} [, {path} [, {count}]])
String find directory {name} in {path}

findfile({name} [, {path} [, {count}]])
String find file {name} in {path}

flatten({list} [, {maxdepth}]) List flatten {list} up to {maxdepth} levels
flattennew({list} [, {maxdepth}])

List flatten a copy of {list}
float2nr({expr}) Number convert Float {expr} to a Number
floor({expr}) Float round {expr} down
fmod({expr1}, {expr2}) Float remainder of {expr1} / {expr2}
fnameescape({fname}) String escape special characters in {fname}
fnamemodify({fname}, {mods}) String modify file name
foldclosed({lnum}) Number first line of fold at {lnum} if closed
foldclosedend({lnum}) Number last line of fold at {lnum} if closed
foldlevel({lnum}) Number fold level at {lnum}
foldtext() String line displayed for closed fold
foldtextresult({lnum}) String text for closed fold at {lnum}
foreach({expr1}, {expr2}) List/Dict/Blob/String

for each item in {expr1} call {expr2}
foreground() Number bring the Vim window to the foreground
fullcommand({name} [, {vim9}]) String get full command from {name}
funcref({name} [, {arglist}] [, {dict}])

Funcref reference to function {name}
function({name} [, {arglist}] [, {dict}])

Funcref named reference to function {name}
garbagecollect([{atexit}]) none free memory, breaking cyclic references
get({list}, {idx} [, {def}]) any get item {idx} from {list} or {def}
get({dict}, {key} [, {def}]) any get item {key} from {dict} or {def}
get({func}, {what}) any get property of funcref/partial {func}
getbufinfo([{buf}]) List information about buffers
getbufline({buf}, {lnum} [, {end}])

List lines {lnum} to {end} of buffer {buf}
getbufoneline({buf}, {lnum}) String line {lnum} of buffer {buf}
getbufvar({buf}, {varname} [, {def}])

any variable {varname} in buffer {buf}
getcellwidths() List get character cell width overrides
getchangelist([{buf}]) List list of change list items
getchar([expr]) Number or String

get one character from the user
getcharmod() Number modifiers for the last typed character
getcharpos({expr}) List position of cursor, mark, etc.
getcharsearch() Dict last character search
getcharstr([expr]) String get one character from the user
getcmdcompltype() String return the type of the current

command-line completion
getcmdline() String return the current command-line
getcmdpos() Number return cursor position in command-line
getcmdscreenpos() Number return cursor screen position in

command-line
getcmdtype() String return current command-line type
getcmdwintype() String return current command-line window type
getcompletion({pat}, {type} [, {filtered}])

List list of cmdline completion matches
getcurpos([{winnr}]) List position of the cursor
getcursorcharpos([{winnr}]) List character position of the cursor

builtin.txt — 1256

getcwd([{winnr} [, {tabnr}]]) String get the current working directory
getenv({name}) String return environment variable
getfontname([{name}]) String name of font being used
getfperm({fname}) String file permissions of file {fname}
getfsize({fname}) Number size in bytes of file {fname}
getftime({fname}) Number last modification time of file
getftype({fname}) String description of type of file {fname}
getimstatus() Number TRUE if the IME status is active
getjumplist([{winnr} [, {tabnr}]])

List list of jump list items
getline({lnum}) String line {lnum} of current buffer
getline({lnum}, {end}) List lines {lnum} to {end} of current buffer
getloclist({nr}) List list of location list items
getloclist({nr}, {what}) Dict get specific location list properties
getmarklist([{buf}]) List list of global/local marks
getmatches([{win}]) List list of current matches
getmousepos() Dict last known mouse position
getmouseshape() String current mouse shape name
getpid() Number process ID of Vim
getpos({expr}) List position of cursor, mark, etc.
getqflist() List list of quickfix items
getqflist({what}) Dict get specific quickfix list properties
getreg([{regname} [, 1 [, {list}]]])

String or List contents of a register
getreginfo([{regname}]) Dict information about a register
getregion({pos1}, {pos2} [, {opts}])

List get the text from {pos1} to {pos2}
getregtype([{regname}]) String type of a register
getscriptinfo([{opts}]) List list of sourced scripts
gettabinfo([{expr}]) List list of tab pages
gettabvar({nr}, {varname} [, {def}])

any variable {varname} in tab {nr} or {def}
gettabwinvar({tabnr}, {winnr}, {name} [, {def}])

any {name} in {winnr} in tab page {tabnr}
gettagstack([{nr}]) Dict get the tag stack of window {nr}
gettext({text}) String lookup translation of {text}
getwininfo([{winid}]) List list of info about each window
getwinpos([{timeout}]) List X and Y coord in pixels of Vim window
getwinposx() Number X coord in pixels of the Vim window
getwinposy() Number Y coord in pixels of the Vim window
getwinvar({nr}, {varname} [, {def}])

any variable {varname} in window {nr}
glob({expr} [, {nosuf} [, {list} [, {alllinks}]]])

any expand file wildcards in {expr}
glob2regpat({expr}) String convert a glob pat into a search pat
globpath({path}, {expr} [, {nosuf} [, {list} [, {alllinks}]]])

String do glob({expr}) for all dirs in {path}
has({feature} [, {check}]) Number TRUE if feature {feature} supported
has_key({dict}, {key}) Number TRUE if {dict} has entry {key}
haslocaldir([{winnr} [, {tabnr}]])

Number TRUE if the window executed :lcd
or :tcd

hasmapto({what} [, {mode} [, {abbr}]])
Number TRUE if mapping to {what} exists

histadd({history}, {item}) Number add an item to a history
histdel({history} [, {item}]) Number remove an item from a history
histget({history} [, {index}]) String get the item {index} from a history
histnr({history}) Number highest index of a history
hlID({name}) Number syntax ID of highlight group {name}
hlexists({name}) Number TRUE if highlight group {name} exists

builtin.txt — 1257

hlget([{name} [, {resolve}]]) List get highlight group attributes
hlset({list}) Number set highlight group attributes
hostname() String name of the machine Vim is running on
iconv({expr}, {from}, {to}) String convert encoding of {expr}
indent({lnum}) Number indent of line {lnum}
index({object}, {expr} [, {start} [, {ic}]])

Number index in {object} where {expr} appears
indexof({object}, {expr} [, {opts}]])

Number index in {object} where {expr} is true
input({prompt} [, {text} [, {completion}]])

String get input from the user
inputdialog({prompt} [, {text} [, {cancelreturn}]])

String like input() but in a GUI dialog
inputlist({textlist}) Number let the user pick from a choice list
inputrestore() Number restore typeahead
inputsave() Number save and clear typeahead
inputsecret({prompt} [, {text}]) String like input() but hiding the text
insert({object}, {item} [, {idx}]) List insert {item} in {object} [before {idx}]
instanceof({object}, {class}) Number TRUE if {object} is an instance of {class}
interrupt() none interrupt script execution
invert({expr}) Number bitwise invert
isabsolutepath({path}) Number TRUE if {path} is an absolute path
isdirectory({directory}) Number TRUE if {directory} is a directory
isinf({expr}) Number determine if {expr} is infinity value

(positive or negative)
islocked({expr}) Number TRUE if {expr} is locked
isnan({expr}) Number TRUE if {expr} is NaN
items({dict}) List key-value pairs in {dict}
job_getchannel({job}) Channel get the channel handle for {job}
job_info([{job}]) Dict get information about {job}
job_setoptions({job}, {options}) none set options for {job}
job_start({command} [, {options}])

Job start a job
job_status({job}) String get the status of {job}
job_stop({job} [, {how}]) Number stop {job}
join({list} [, {sep}]) String join {list} items into one String
js_decode({string}) any decode JS style JSON
js_encode({expr}) String encode JS style JSON
json_decode({string}) any decode JSON
json_encode({expr}) String encode JSON
keys({dict}) List keys in {dict}
keytrans({string}) String translate internal keycodes to a form

that can be used by :map
len({expr}) Number the length of {expr}
libcall({lib}, {func}, {arg}) String call {func} in library {lib} with {arg}
libcallnr({lib}, {func}, {arg}) Number idem, but return a Number
line({expr} [, {winid}]) Number line nr of cursor, last line or mark
line2byte({lnum}) Number byte count of line {lnum}
lispindent({lnum}) Number Lisp indent for line {lnum}
list2blob({list}) Blob turn {list} of numbers into a Blob
list2str({list} [, {utf8}]) String turn {list} of numbers into a String
listener_add({callback} [, {buf}])

Number add a callback to listen to changes
listener_flush([{buf}]) none invoke listener callbacks
listener_remove({id}) none remove a listener callback
localtime() Number current time
log({expr}) Float natural logarithm (base e) of {expr}
log10({expr}) Float logarithm of Float {expr} to base 10
luaeval({expr} [, {expr}]) any evaluate Lua expression
map({expr1}, {expr2}) List/Dict/Blob/String

builtin.txt — 1258

change each item in {expr1} to {expr2}
maparg({name} [, {mode} [, {abbr} [, {dict}]]])

String or Dict
rhs of mapping {name} in mode {mode}

mapcheck({name} [, {mode} [, {abbr}]])
String check for mappings matching {name}

maplist([{abbr}]) List list of all mappings, a dict for each
mapnew({expr1}, {expr2}) List/Dict/Blob/String

like map() but creates a new List or
Dictionary

mapset({mode}, {abbr}, {dict}) none restore mapping from maparg() result
match({expr}, {pat} [, {start} [, {count}]])

Number position where {pat} matches in {expr}
matchadd({group}, {pattern} [, {priority} [, {id} [, {dict}]]])

Number highlight {pattern} with {group}
matchaddpos({group}, {pos} [, {priority} [, {id} [, {dict}]]])

Number highlight positions with {group}
matcharg({nr}) List arguments of :match
matchbufline({buf}, {pat}, {lnum}, {end}, [, {dict})

List all the {pat} matches in buffer {buf}
matchdelete({id} [, {win}]) Number delete match identified by {id}
matchend({expr}, {pat} [, {start} [, {count}]])

Number position where {pat} ends in {expr}
matchfuzzy({list}, {str} [, {dict}])

List fuzzy match {str} in {list}
matchfuzzypos({list}, {str} [, {dict}])

List fuzzy match {str} in {list}
matchlist({expr}, {pat} [, {start} [, {count}]])

List match and submatches of {pat} in {expr}
matchstr({expr}, {pat} [, {start} [, {count}]])

String {count}'th match of {pat} in {expr}
matchstrlist({list}, {pat} [, {dict})

List all the {pat} matches in {list}
matchstrpos({expr}, {pat} [, {start} [, {count}]])

List {count}'th match of {pat} in {expr}
max({expr}) Number maximum value of items in {expr}
menu_info({name} [, {mode}]) Dict get menu item information
min({expr}) Number minimum value of items in {expr}
mkdir({name} [, {flags} [, {prot}]])

Number create directory {name}
mode([expr]) String current editing mode
mzeval({expr}) any evaluate MzScheme expression
nextnonblank({lnum}) Number line nr of non-blank line >= {lnum}
nr2char({expr} [, {utf8}]) String single char with ASCII/UTF-8 value {expr}
or({expr}, {expr}) Number bitwise OR
pathshorten({expr} [, {len}]) String shorten directory names in a path
perleval({expr}) any evaluate Perl expression
popup_atcursor({what}, {options}) Number create popup window near the cursor
popup_beval({what}, {options}) Number create popup window for 'ballooneval'
popup_clear() none close all popup windows
popup_close({id} [, {result}]) none close popup window {id}
popup_create({what}, {options}) Number create a popup window
popup_dialog({what}, {options}) Number create a popup window used as a dialog
popup_filter_menu({id}, {key}) Number filter for a menu popup window
popup_filter_yesno({id}, {key}) Number filter for a dialog popup window
popup_findecho() Number get window ID of popup for `:echowin`
popup_findinfo() Number get window ID of info popup window
popup_findpreview() Number get window ID of preview popup window
popup_getoptions({id}) Dict get options of popup window {id}
popup_getpos({id}) Dict get position of popup window {id}

builtin.txt — 1259

popup_hide({id}) none hide popup menu {id}
popup_list() List get a list of window IDs of all popups
popup_locate({row}, {col}) Number get window ID of popup at position
popup_menu({what}, {options}) Number create a popup window used as a menu
popup_move({id}, {options}) none set position of popup window {id}
popup_notification({what}, {options})

Number create a notification popup window
popup_setoptions({id}, {options})

none set options for popup window {id}
popup_settext({id}, {text}) none set the text of popup window {id}
popup_show({id}) none unhide popup window {id}
pow({x}, {y}) Float {x} to the power of {y}
prevnonblank({lnum}) Number line nr of non-blank line <= {lnum}
printf({fmt}, {expr1}...) String format text
prompt_getprompt({buf}) String get prompt text
prompt_setcallback({buf}, {expr}) none set prompt callback function
prompt_setinterrupt({buf}, {text}) none set prompt interrupt function
prompt_setprompt({buf}, {text}) none set prompt text
prop_add({lnum}, {col}, {props}) none add one text property
prop_add_list({props}, [[{lnum}, {col}, {end-lnum}, {end-col}], ...])

none add multiple text properties
prop_clear({lnum} [, {lnum-end} [, {props}]])

none remove all text properties
prop_find({props} [, {direction}])

Dict search for a text property
prop_list({lnum} [, {props}]) List text properties in {lnum}
prop_remove({props} [, {lnum} [, {lnum-end}]])

Number remove a text property
prop_type_add({name}, {props}) none define a new property type
prop_type_change({name}, {props})

none change an existing property type
prop_type_delete({name} [, {props}])

none delete a property type
prop_type_get({name} [, {props}])

Dict get property type values
prop_type_list([{props}]) List get list of property types
pum_getpos() Dict position and size of pum if visible
pumvisible() Number whether popup menu is visible
py3eval({expr}) any evaluate python3 expression
pyeval({expr}) any evaluate Python expression
pyxeval({expr}) any evaluate python_x expression
rand([{expr}]) Number get pseudo-random number
range({expr} [, {max} [, {stride}]])

List items from {expr} to {max}
readblob({fname} [, {offset} [, {size}]])

Blob read a Blob from {fname}
readdir({dir} [, {expr} [, {dict}]])

List file names in {dir} selected by {expr}
readdirex({dir} [, {expr} [, {dict}]])

List file info in {dir} selected by {expr}
readfile({fname} [, {type} [, {max}]])

List get list of lines from file {fname}
reduce({object}, {func} [, {initial}])

any reduce {object} using {func}
reg_executing() String get the executing register name
reg_recording() String get the recording register name
reltime([{start} [, {end}]]) List get time value
reltimefloat({time}) Float turn the time value into a Float
reltimestr({time}) String turn time value into a String
remote_expr({server}, {string} [, {idvar} [, {timeout}]])

builtin.txt — 1260

String send expression
remote_foreground({server}) Number bring Vim server to the foreground
remote_peek({serverid} [, {retvar}])

Number check for reply string
remote_read({serverid} [, {timeout}])

String read reply string
remote_send({server}, {string} [, {idvar}])

String send key sequence
remote_startserver({name}) none become server {name}
remove({list}, {idx} [, {end}]) any/List

remove items {idx}-{end} from {list}
remove({blob}, {idx} [, {end}]) Number/Blob

remove bytes {idx}-{end} from {blob}
remove({dict}, {key}) any remove entry {key} from {dict}
rename({from}, {to}) Number rename (move) file from {from} to {to}
repeat({expr}, {count}) List/Blob/String

repeat {expr} {count} times
resolve({filename}) String get filename a shortcut points to
reverse({obj}) List/Blob/String

reverse {obj}
round({expr}) Float round off {expr}
rubyeval({expr}) any evaluate Ruby expression
screenattr({row}, {col}) Number attribute at screen position
screenchar({row}, {col}) Number character at screen position
screenchars({row}, {col}) List List of characters at screen position
screencol() Number current cursor column
screenpos({winid}, {lnum}, {col}) Dict screen row and col of a text character
screenrow() Number current cursor row
screenstring({row}, {col}) String characters at screen position
search({pattern} [, {flags} [, {stopline} [, {timeout} [, {skip}]]]])

Number search for {pattern}
searchcount([{options}]) Dict get or update search stats
searchdecl({name} [, {global} [, {thisblock}]])

Number search for variable declaration
searchpair({start}, {middle}, {end} [, {flags} [, {skip} [...]]])

Number search for other end of start/end pair
searchpairpos({start}, {middle}, {end} [, {flags} [, {skip} [...]]])

List search for other end of start/end pair
searchpos({pattern} [, {flags} [, {stopline} [, {timeout} [, {skip}]]]])

List search for {pattern}
server2client({clientid}, {string})

Number send reply string
serverlist() String get a list of available servers
setbufline({expr}, {lnum}, {text})

Number set line {lnum} to {text} in buffer
{expr}

setbufvar({buf}, {varname}, {val})
none set {varname} in buffer {buf} to {val}

setcellwidths({list}) none set character cell width overrides
setcharpos({expr}, {list}) Number set the {expr} position to {list}
setcharsearch({dict}) Dict set character search from {dict}
setcmdline({str} [, {pos}]) Number set command-line
setcmdpos({pos}) Number set cursor position in command-line
setcursorcharpos({list}) Number move cursor to position in {list}
setenv({name}, {val}) none set environment variable
setfperm({fname}, {mode}) Number set {fname} file permissions to {mode}
setline({lnum}, {line}) Number set line {lnum} to {line}
setloclist({nr}, {list} [, {action}])

Number modify location list using {list}
setloclist({nr}, {list}, {action}, {what})

builtin.txt — 1261

Number modify specific location list props
setmatches({list} [, {win}]) Number restore a list of matches
setpos({expr}, {list}) Number set the {expr} position to {list}
setqflist({list} [, {action}]) Number modify quickfix list using {list}
setqflist({list}, {action}, {what})

Number modify specific quickfix list props
setreg({n}, {v} [, {opt}]) Number set register to value and type
settabvar({nr}, {varname}, {val}) none set {varname} in tab page {nr} to {val}
settabwinvar({tabnr}, {winnr}, {varname}, {val})

none set {varname} in window {winnr} in tab
page {tabnr} to {val}

settagstack({nr}, {dict} [, {action}])
Number modify tag stack using {dict}

setwinvar({nr}, {varname}, {val}) none set {varname} in window {nr} to {val}
sha256({string}) String SHA256 checksum of {string}
shellescape({string} [, {special}])

String escape {string} for use as shell
command argument

shiftwidth([{col}]) Number effective value of 'shiftwidth'
sign_define({name} [, {dict}]) Number define or update a sign
sign_define({list}) List define or update a list of signs
sign_getdefined([{name}]) List get a list of defined signs
sign_getplaced([{buf} [, {dict}]])

List get a list of placed signs
sign_jump({id}, {group}, {buf})

Number jump to a sign
sign_place({id}, {group}, {name}, {buf} [, {dict}])

Number place a sign
sign_placelist({list}) List place a list of signs
sign_undefine([{name}]) Number undefine a sign
sign_undefine({list}) List undefine a list of signs
sign_unplace({group} [, {dict}])

Number unplace a sign
sign_unplacelist({list}) List unplace a list of signs
simplify({filename}) String simplify filename as much as possible
sin({expr}) Float sine of {expr}
sinh({expr}) Float hyperbolic sine of {expr}
slice({expr}, {start} [, {end}]) String, List or Blob

slice of a String, List or Blob
sort({list} [, {how} [, {dict}]])

List sort {list}, compare with {how}
sound_clear() none stop playing all sounds
sound_playevent({name} [, {callback}])

Number play an event sound
sound_playfile({path} [, {callback}])

Number play sound file {path}
sound_stop({id}) none stop playing sound {id}
soundfold({word}) String sound-fold {word}
spellbadword() String badly spelled word at cursor
spellsuggest({word} [, {max} [, {capital}]])

List spelling suggestions
split({expr} [, {pat} [, {keepempty}]])

List make List from {pat} separated {expr}
sqrt({expr}) Float square root of {expr}
srand([{expr}]) List get seed for rand()
state([{what}]) String current state of Vim
str2float({expr} [, {quoted}]) Float convert String to Float
str2list({expr} [, {utf8}]) List convert each character of {expr} to

ASCII/UTF-8 value
str2nr({expr} [, {base} [, {quoted}]])

builtin.txt — 1262

Number convert String to Number
strcharlen({expr}) Number character length of the String {expr}
strcharpart({str}, {start} [, {len} [, {skipcc}]])

String {len} characters of {str} at
character {start}

strchars({expr} [, {skipcc}]) Number character count of the String {expr}
strdisplaywidth({expr} [, {col}]) Number display length of the String {expr}
strftime({format} [, {time}]) String format time with a specified format
strgetchar({str}, {index}) Number get char {index} from {str}
stridx({haystack}, {needle} [, {start}])

Number index of {needle} in {haystack}
string({expr}) String String representation of {expr} value
strlen({expr}) Number length of the String {expr}
strpart({str}, {start} [, {len} [, {chars}]])

String {len} bytes/chars of {str} at
byte {start}

strptime({format}, {timestring})
Number Convert {timestring} to unix timestamp

strridx({haystack}, {needle} [, {start}])
Number last index of {needle} in {haystack}

strtrans({expr}) String translate string to make it printable
strutf16len({string} [, {countcc}])

Number number of UTF-16 code units in {string}
strwidth({expr}) Number display cell length of the String {expr}
submatch({nr} [, {list}]) String or List

specific match in ":s" or substitute()
substitute({expr}, {pat}, {sub}, {flags})

String all {pat} in {expr} replaced with {sub}
swapfilelist() List swap files found in 'directory'
swapinfo({fname}) Dict information about swap file {fname}
swapname({buf}) String swap file of buffer {buf}
synID({lnum}, {col}, {trans}) Number syntax ID at {lnum} and {col}
synIDattr({synID}, {what} [, {mode}])

String attribute {what} of syntax ID {synID}
synIDtrans({synID}) Number translated syntax ID of {synID}
synconcealed({lnum}, {col}) List info about concealing
synstack({lnum}, {col}) List stack of syntax IDs at {lnum} and {col}
system({expr} [, {input}]) String output of shell command/filter {expr}
systemlist({expr} [, {input}]) List output of shell command/filter {expr}
tabpagebuflist([{arg}]) List list of buffer numbers in tab page
tabpagenr([{arg}]) Number number of current or last tab page
tabpagewinnr({tabarg} [, {arg}]) Number number of current window in tab page
tagfiles() List tags files used
taglist({expr} [, {filename}]) List list of tags matching {expr}
tan({expr}) Float tangent of {expr}
tanh({expr}) Float hyperbolic tangent of {expr}
tempname() String name for a temporary file
term_dumpdiff({filename}, {filename} [, {options}])

Number display difference between two dumps
term_dumpload({filename} [, {options}])

Number displaying a screen dump
term_dumpwrite({buf}, {filename} [, {options}])

none dump terminal window contents
term_getaltscreen({buf}) Number get the alternate screen flag
term_getansicolors({buf}) List get ANSI palette in GUI color mode
term_getattr({attr}, {what}) Number get the value of attribute {what}
term_getcursor({buf}) List get the cursor position of a terminal
term_getjob({buf}) Job get the job associated with a terminal
term_getline({buf}, {row}) String get a line of text from a terminal
term_getscrolled({buf}) Number get the scroll count of a terminal

builtin.txt — 1263

term_getsize({buf}) List get the size of a terminal
term_getstatus({buf}) String get the status of a terminal
term_gettitle({buf}) String get the title of a terminal
term_gettty({buf}, [{input}]) String get the tty name of a terminal
term_list() List get the list of terminal buffers
term_scrape({buf}, {row}) List get row of a terminal screen
term_sendkeys({buf}, {keys}) none send keystrokes to a terminal
term_setansicolors({buf}, {colors})

none set ANSI palette in GUI color mode
term_setapi({buf}, {expr}) none set terminal-api function name prefix
term_setkill({buf}, {how}) none set signal to stop job in terminal
term_setrestore({buf}, {command}) none set command to restore terminal
term_setsize({buf}, {rows}, {cols})

none set the size of a terminal
term_start({cmd} [, {options}]) Number open a terminal window and run a job
term_wait({buf} [, {time}]) Number wait for screen to be updated
terminalprops() Dict properties of the terminal
test_alloc_fail({id}, {countdown}, {repeat})

none make memory allocation fail
test_autochdir() none enable 'autochdir' during startup
test_feedinput({string}) none add key sequence to input buffer
test_garbagecollect_now() none free memory right now for testing
test_garbagecollect_soon() none free memory soon for testing
test_getvalue({string}) any get value of an internal variable
test_gui_event({event}, {args}) bool generate a GUI event for testing
test_ignore_error({expr}) none ignore a specific error
test_mswin_event({event}, {args})

bool generate MS-Windows event for testing
test_null_blob() Blob null value for testing
test_null_channel() Channel null value for testing
test_null_dict() Dict null value for testing
test_null_function() Funcref null value for testing
test_null_job() Job null value for testing
test_null_list() List null value for testing
test_null_partial() Funcref null value for testing
test_null_string() String null value for testing
test_option_not_set({name}) none reset flag indicating option was set
test_override({expr}, {val}) none test with Vim internal overrides
test_refcount({expr}) Number get the reference count of {expr}
test_setmouse({row}, {col}) none set the mouse position for testing
test_settime({expr}) none set current time for testing
test_srand_seed([seed]) none set seed for testing srand()
test_unknown() any unknown value for testing
test_void() any void value for testing
timer_info([{id}]) List information about timers
timer_pause({id}, {pause}) none pause or unpause a timer
timer_start({time}, {callback} [, {options}])

Number create a timer
timer_stop({timer}) none stop a timer
timer_stopall() none stop all timers
tolower({expr}) String the String {expr} switched to lowercase
toupper({expr}) String the String {expr} switched to uppercase
tr({src}, {fromstr}, {tostr}) String translate chars of {src} in {fromstr}

to chars in {tostr}
trim({text} [, {mask} [, {dir}]])

String trim characters in {mask} from {text}
trunc({expr}) Float truncate Float {expr}
type({expr}) Number type of value {expr}
typename({expr}) String representation of the type of {expr}
undofile({name}) String undo file name for {name}

builtin.txt — 1264

undotree([{buf}]) List undo file tree for buffer {buf}
uniq({list} [, {func} [, {dict}]])

List remove adjacent duplicates from a list
utf16idx({string}, {idx} [, {countcc} [, {charidx}]])

Number UTF-16 index of byte {idx} in {string}
values({dict}) List values in {dict}
virtcol({expr} [, {list} [, {winid}])

Number or List
screen column of cursor or mark

virtcol2col({winid}, {lnum}, {col})
Number byte index of a character on screen

visualmode([expr]) String last visual mode used
wildmenumode() Number whether 'wildmenu' mode is active
win_execute({id}, {command} [, {silent}])

String execute {command} in window {id}
win_findbuf({bufnr}) List find windows containing {bufnr}
win_getid([{win} [, {tab}]]) Number get window ID for {win} in {tab}
win_gettype([{nr}]) String type of window {nr}
win_gotoid({expr}) Number go to window with ID {expr}
win_id2tabwin({expr}) List get tab and window nr from window ID
win_id2win({expr}) Number get window nr from window ID
win_move_separator({nr}) Number move window vertical separator
win_move_statusline({nr}) Number move window status line
win_screenpos({nr}) List get screen position of window {nr}
win_splitmove({nr}, {target} [, {options}])

Number move window {nr} to split of {target}
winbufnr({nr}) Number buffer number of window {nr}
wincol() Number window column of the cursor
windowsversion() String MS-Windows OS version
winheight({nr}) Number height of window {nr}
winlayout([{tabnr}]) List layout of windows in tab {tabnr}
winline() Number window line of the cursor
winnr([{expr}]) Number number of current window
winrestcmd() String returns command to restore window sizes
winrestview({dict}) none restore view of current window
winsaveview() Dict save view of current window
winwidth({nr}) Number width of window {nr}
wordcount() Dict get byte/char/word statistics
writefile({object}, {fname} [, {flags}])

Number write Blob or List of lines to file
xor({expr}, {expr}) Number bitwise XOR

==
2. Details builtin-function-details

Not all functions are here, some have been moved to a help file covering the
specific functionality.

abs({expr}) abs()
Return the absolute value of {expr}. When {expr} evaluates to
a Float abs() returns a Float . When {expr} can be
converted to a Number abs() returns a Number . Otherwise
abs() gives an error message and returns -1.
Examples:

echo abs(1.456)
1.456
echo abs(-5.456)
5.456
echo abs(-4)
4

builtin.txt — 1265

Can also be used as a method :
Compute()->abs()

acos({expr}) acos()
Return the arc cosine of {expr} measured in radians, as a
Float in the range of [0, pi].
{expr} must evaluate to a Float or a Number in the range
[-1, 1]. Otherwise acos() returns "nan".
Examples:

:echo acos(0)
1.570796
:echo acos(-0.5)
2.094395

Can also be used as a method :
Compute()->acos()

add({object}, {expr}) add()
Append the item {expr} to List or Blob {object}. Returns
the resulting List or Blob . Examples:

:let alist = add([1, 2, 3], item)
:call add(mylist, "woodstock")

Note that when {expr} is a List it is appended as a single
item. Use extend() to concatenate Lists .
When {object} is a Blob then {expr} must be a number.
Use insert() to add an item at another position.
Returns 1 if {object} is not a List or a Blob .

Can also be used as a method :
mylist->add(val1)->add(val2)

and({expr}, {expr}) and()
Bitwise AND on the two arguments. The arguments are converted
to a number. A List, Dict or Float argument causes an error.
Also see `or()` and `xor()`.
Example:

:let flag = and(bits, 0x80)
Can also be used as a method :

:let flag = bits->and(0x80)

append({lnum}, {text}) append()
When {text} is a List : Append each item of the List as a
text line below line {lnum} in the current buffer.
Otherwise append {text} as one text line below line {lnum} in
the current buffer.
Any type of item is accepted and converted to a String.
{lnum} can be zero to insert a line before the first one.
{lnum} is used like with getline() .
Returns 1 for failure ({lnum} out of range or out of memory),
0 for success. When {text} is an empty list zero is returned,
no matter the value of {lnum}.
In Vim9 script an invalid argument or negative number
results in an error. Example:

:let failed = append(line('$'), "# THE END")
:let failed = append(0, ["Chapter 1", "the beginning"])

builtin.txt — 1266

Can also be used as a method after a List, the base is
passed as the second argument:

mylist->append(lnum)

appendbufline({buf}, {lnum}, {text}) appendbufline()
Like append() but append the text in buffer {buf}.

This function works only for loaded buffers. First call
bufload() if needed.

For the use of {buf}, see bufname() .

{lnum} is the line number to append below. Note that using
line() would use the current buffer, not the one appending
to. Use "$" to append at the end of the buffer. Other string
values are not supported.

On success 0 is returned, on failure 1 is returned.
In Vim9 script an error is given for an invalid {lnum}.

If {buf} is not a valid buffer or {lnum} is not valid, an
error message is given. Example:

:let failed = appendbufline(13, 0, "# THE START")
However, when {text} is an empty list then no error is given
for an invalid {lnum}, since {lnum} isn't actually used.

Can also be used as a method after a List, the base is
passed as the second argument:

mylist->appendbufline(buf, lnum)

argc([{winid}]) argc()
The result is the number of files in the argument list. See
arglist .
If {winid} is not supplied, the argument list of the current
window is used.
If {winid} is -1, the global argument list is used.
Otherwise {winid} specifies the window of which the argument
list is used: either the window number or the window ID.
Returns -1 if the {winid} argument is invalid.

argidx()
argidx() The result is the current index in the argument list. 0 is

the first file. argc() - 1 is the last one. See arglist .

arglistid()
arglistid([{winnr} [, {tabnr}]])

Return the argument list ID. This is a number which
identifies the argument list being used. Zero is used for the
global argument list. See arglist .
Returns -1 if the arguments are invalid.

Without arguments use the current window.
With {winnr} only use this window in the current tab page.
With {winnr} and {tabnr} use the window in the specified tab
page.
{winnr} can be the window number or the window-ID .

builtin.txt — 1267

argv()
argv([{nr} [, {winid}]])

The result is the {nr}th file in the argument list. See
arglist . "argv(0)" is the first one. Example:

:let i = 0
:while i < argc()
: let f = escape(fnameescape(argv(i)), '.')
: exe 'amenu Arg.' .. f .. ' :e ' .. f .. '<CR>'
: let i = i + 1
:endwhile

Without the {nr} argument, or when {nr} is -1, a List with
the whole arglist is returned.

The {winid} argument specifies the window ID, see argc() .
For the Vim command line arguments see v:argv .

Returns an empty string if {nr}th argument is not present in
the argument list. Returns an empty List if the {winid}
argument is invalid.

asin({expr}) asin()
Return the arc sine of {expr} measured in radians, as a Float
in the range of [-pi/2, pi/2].
{expr} must evaluate to a Float or a Number in the range
[-1, 1].
Returns "nan" if {expr} is outside the range [-1, 1]. Returns
0.0 if {expr} is not a Float or a Number .
Examples:

:echo asin(0.8)
0.927295
:echo asin(-0.5)
-0.523599

Can also be used as a method :
Compute()->asin()

assert_ functions are documented here: assert-functions-details

atan({expr}) atan()
Return the principal value of the arc tangent of {expr}, in
the range [-pi/2, +pi/2] radians, as a Float .
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo atan(100)
1.560797
:echo atan(-4.01)
-1.326405

Can also be used as a method :
Compute()->atan()

atan2({expr1}, {expr2}) atan2()
Return the arc tangent of {expr1} / {expr2}, measured in
radians, as a Float in the range [-pi, pi].
{expr1} and {expr2} must evaluate to a Float or a Number .

builtin.txt — 1268

Returns 0.0 if {expr1} or {expr2} is not a Float or a
Number .
Examples:

:echo atan2(-1, 1)
-0.785398
:echo atan2(1, -1)
2.356194

Can also be used as a method :
Compute()->atan2(1)

autocmd_add({acmds}) autocmd_add()
Adds a List of autocmds and autocmd groups.

The {acmds} argument is a List where each item is a Dict with
the following optional items:

bufnr buffer number to add a buffer-local autocmd.
If this item is specified, then the "pattern"
item is ignored.

cmd Ex command to execute for this autocmd event
event autocmd event name. Refer to autocmd-events .

This can be either a String with a single
event name or a List of event names.

group autocmd group name. Refer to autocmd-groups .
If this group doesn't exist then it is
created. If not specified or empty, then the
default group is used.

nested boolean flag, set to v:true to add a nested
autocmd. Refer to autocmd-nested .

once boolean flag, set to v:true to add an autocmd
which executes only once. Refer to
autocmd-once .

pattern autocmd pattern string. Refer to
autocmd-patterns . If "bufnr" item is

present, then this item is ignored. This can
be a String with a single pattern or a List of
patterns.

replace boolean flag, set to v:true to remove all the
commands associated with the specified autocmd
event and group and add the {cmd}. This is
useful to avoid adding the same command
multiple times for an autocmd event in a group.

Returns v:true on success and v:false on failure.
Examples:

" Create a buffer-local autocmd for buffer 5
let acmd = {}
let acmd.group = 'MyGroup'
let acmd.event = 'BufEnter'
let acmd.bufnr = 5
let acmd.cmd = 'call BufEnterFunc()'
call autocmd_add([acmd])

Can also be used as a method :
GetAutocmdList()->autocmd_add()

autocmd_delete({acmds}) autocmd_delete()
Deletes a List of autocmds and autocmd groups.

builtin.txt — 1269

The {acmds} argument is a List where each item is a Dict with
the following optional items:

bufnr buffer number to delete a buffer-local autocmd.
If this item is specified, then the "pattern"
item is ignored.

cmd Ex command for this autocmd event
event autocmd event name. Refer to autocmd-events .

If '*' then all the autocmd events in this
group are deleted.

group autocmd group name. Refer to autocmd-groups .
If not specified or empty, then the default
group is used.

nested set to v:true for a nested autocmd.
Refer to autocmd-nested .

once set to v:true for an autocmd which executes
only once. Refer to autocmd-once .

pattern autocmd pattern string. Refer to
autocmd-patterns . If "bufnr" item is

present, then this item is ignored.

If only {group} is specified in a {acmds} entry and {event},
{pattern} and {cmd} are not specified, then that autocmd group
is deleted.

Returns v:true on success and v:false on failure.
Examples:

" :autocmd! BufLeave *.vim
let acmd = #{event: 'BufLeave', pattern: '*.vim'}
call autocmd_delete([acmd]})
" :autocmd! MyGroup1 BufLeave
let acmd = #{group: 'MyGroup1', event: 'BufLeave'}
call autocmd_delete([acmd])
" :autocmd! MyGroup2 BufEnter *.c
let acmd = #{group: 'MyGroup2', event: 'BufEnter',

\ pattern: '*.c'}
" :autocmd! MyGroup2 * *.c
let acmd = #{group: 'MyGroup2', event: '*',

\ pattern: '*.c'}
call autocmd_delete([acmd])
" :autocmd! MyGroup3
let acmd = #{group: 'MyGroup3'}
call autocmd_delete([acmd])

Can also be used as a method :
GetAutocmdList()->autocmd_delete()

autocmd_get([{opts}]) autocmd_get()
Returns a List of autocmds. If {opts} is not supplied, then
returns the autocmds for all the events in all the groups.

The optional {opts} Dict argument supports the following
items:

group Autocmd group name. If specified, returns only
the autocmds defined in this group. If the
specified group doesn't exist, results in an
error message. If set to an empty string,
then the default autocmd group is used.

event Autocmd event name. If specified, returns only
the autocmds defined for this event. If set
to "*", then returns autocmds for all the

builtin.txt — 1270

events. If the specified event doesn't exist,
results in an error message.

pattern Autocmd pattern. If specified, returns only
the autocmds defined for this pattern.

A combination of the above three times can be supplied in
{opts}.

Each Dict in the returned List contains the following items:
bufnr For buffer-local autocmds, buffer number where

the autocmd is defined.
cmd Command executed for this autocmd.
event Autocmd event name.
group Autocmd group name.
nested Boolean flag, set to v:true for a nested

autocmd. See autocmd-nested .
once Boolean flag, set to v:true, if the autocmd

will be executed only once. See autocmd-once .
pattern Autocmd pattern. For a buffer-local

autocmd, this will be of the form "<buffer=n>".
If there are multiple commands for an autocmd event in a
group, then separate items are returned for each command.

Returns an empty List if an autocmd with the specified group
or event or pattern is not found.

Examples:
" :autocmd MyGroup
echo autocmd_get(#{group: 'Mygroup'})
" :autocmd G BufUnload
echo autocmd_get(#{group: 'G', event: 'BufUnload'})
" :autocmd G * *.ts
let acmd = #{group: 'G', event: '*', pattern: '*.ts'}
echo autocmd_get(acmd)
" :autocmd Syntax
echo autocmd_get(#{event: 'Syntax'})
" :autocmd G BufEnter *.ts
let acmd = #{group: 'G', event: 'BufEnter',

\ pattern: '*.ts'}
echo autocmd_get(acmd)

Can also be used as a method :
Getopts()->autocmd_get()

balloon_gettext() balloon_gettext()
Return the current text in the balloon. Only for the string,
not used for the List. Returns an empty string if balloon
is not present.

balloon_show({expr}) balloon_show()
Show {expr} inside the balloon. For the GUI {expr} is used as
a string. For a terminal {expr} can be a list, which contains
the lines of the balloon. If {expr} is not a list it will be
split with balloon_split() .
If {expr} is an empty string any existing balloon is removed.

Example:
func GetBalloonContent()

" ... initiate getting the content
return ''

endfunc

builtin.txt — 1271

set balloonexpr=GetBalloonContent()

func BalloonCallback(result)
call balloon_show(a:result)

endfunc
Can also be used as a method :

GetText()->balloon_show()

The intended use is that fetching the content of the balloon
is initiated from 'balloonexpr'. It will invoke an
asynchronous method, in which a callback invokes
balloon_show(). The 'balloonexpr' itself can return an
empty string or a placeholder, e.g. "loading...".

When showing a balloon is not possible then nothing happens,
no error message is given.
{only available when compiled with the +balloon_eval or
+balloon_eval_term feature}

balloon_split({msg}) balloon_split()
Split String {msg} into lines to be displayed in a balloon.
The splits are made for the current window size and optimize
to show debugger output.
Returns a List with the split lines. Returns an empty List
on error.
Can also be used as a method :

GetText()->balloon_split()->balloon_show()

{only available when compiled with the +balloon_eval_term
feature}

blob2list({blob}) blob2list()
Return a List containing the number value of each byte in Blob
{blob}. Examples:

blob2list(0z0102.0304) returns [1, 2, 3, 4]
blob2list(0z) returns []

Returns an empty List on error. list2blob() does the
opposite.

Can also be used as a method :
GetBlob()->blob2list()

browse()
browse({save}, {title}, {initdir}, {default})

Put up a file requester. This only works when "has("browse")"
returns TRUE (only in some GUI versions).
The input fields are:

{save} when TRUE , select file to write
{title} title for the requester
{initdir} directory to start browsing in
{default} default file name

An empty string is returned when the "Cancel" button is hit,
something went wrong, or browsing is not possible.

browsedir()
browsedir({title}, {initdir})

Put up a directory requester. This only works when
"has("browse")" returns TRUE (only in some GUI versions).
On systems where a directory browser is not supported a file
browser is used. In that case: select a file in the directory

builtin.txt — 1272

to be used.
The input fields are:

{title} title for the requester
{initdir} directory to start browsing in

When the "Cancel" button is hit, something went wrong, or
browsing is not possible, an empty string is returned.

bufadd({name}) bufadd()
Add a buffer to the buffer list with name {name} (must be a
String).
If a buffer for file {name} already exists, return that buffer
number. Otherwise return the buffer number of the newly
created buffer. When {name} is an empty string then a new
buffer is always created.
The buffer will not have 'buflisted' set and not be loaded
yet. To add some text to the buffer use this:

let bufnr = bufadd('someName')
call bufload(bufnr)
call setbufline(bufnr, 1, ['some', 'text'])

Returns 0 on error.
Can also be used as a method :

let bufnr = 'somename'->bufadd()

bufexists({buf}) bufexists()
The result is a Number, which is TRUE if a buffer called
{buf} exists.
If the {buf} argument is a number, buffer numbers are used.
Number zero is the alternate buffer for the current window.

If the {buf} argument is a string it must match a buffer name
exactly. The name can be:
- Relative to the current directory.
- A full path.
- The name of a buffer with 'buftype' set to "nofile".
- A URL name.
Unlisted buffers will be found.
Note that help files are listed by their short name in the
output of :buffers , but bufexists() requires using their
long name to be able to find them.
bufexists() may report a buffer exists, but to use the name
with a :buffer command you may need to use expand() . Esp
for MS-Windows 8.3 names in the form "c:\DOCUME~1"
Use "bufexists(0)" to test for the existence of an alternate
file name.

Can also be used as a method :
let exists = 'somename'->bufexists()

Obsolete name: buffer_exists(). buffer_exists()

buflisted({buf}) buflisted()
The result is a Number, which is TRUE if a buffer called
{buf} exists and is listed (has the 'buflisted' option set).
The {buf} argument is used like with bufexists() .

Can also be used as a method :
let listed = 'somename'->buflisted()

bufload({buf}) bufload()
Ensure the buffer {buf} is loaded. When the buffer name

builtin.txt — 1273

refers to an existing file then the file is read. Otherwise
the buffer will be empty. If the buffer was already loaded
then there is no change. If the buffer is not related to a
file then no file is read (e.g., when 'buftype' is "nofile").
If there is an existing swap file for the file of the buffer,
there will be no dialog, the buffer will be loaded anyway.
The {buf} argument is used like with bufexists() .

Can also be used as a method :
eval 'somename'->bufload()

bufloaded({buf}) bufloaded()
The result is a Number, which is TRUE if a buffer called
{buf} exists and is loaded (shown in a window or hidden).
The {buf} argument is used like with bufexists() .

Can also be used as a method :
let loaded = 'somename'->bufloaded()

bufname([{buf}]) bufname()
The result is the name of a buffer. Mostly as it is displayed
by the `:ls` command, but not using special names such as
"[No Name]".
If {buf} is omitted the current buffer is used.
If {buf} is a Number, that buffer number's name is given.
Number zero is the alternate buffer for the current window.
If {buf} is a String, it is used as a file-pattern to match
with the buffer names. This is always done like 'magic' is
set and 'cpoptions' is empty. When there is more than one
match an empty string is returned.
"" or "%" can be used for the current buffer, "#" for the
alternate buffer.
A full match is preferred, otherwise a match at the start, end
or middle of the buffer name is accepted. If you only want a
full match then put "^" at the start and "$" at the end of the
pattern.
Listed buffers are found first. If there is a single match
with a listed buffer, that one is returned. Next unlisted
buffers are searched for.
If the {buf} is a String, but you want to use it as a buffer
number, force it to be a Number by adding zero to it:

:echo bufname("3" + 0)
Can also be used as a method :

echo bufnr->bufname()

If the buffer doesn't exist, or doesn't have a name, an empty
string is returned.

bufname("#") alternate buffer name
bufname(3) name of buffer 3
bufname("%") name of current buffer
bufname("file2") name of buffer where "file2" matches.

buffer_name()
Obsolete name: buffer_name().

bufnr()
bufnr([{buf} [, {create}]])

The result is the number of a buffer, as it is displayed by
the `:ls` command. For the use of {buf}, see bufname()
above.

builtin.txt — 1274

If the buffer doesn't exist, -1 is returned. Or, if the
{create} argument is present and TRUE, a new, unlisted,
buffer is created and its number is returned. Example:

let newbuf = bufnr('Scratch001', 1)
Using an empty name uses the current buffer. To create a new
buffer with an empty name use bufadd() .

bufnr("$") is the last buffer:
:let last_buffer = bufnr("$")

The result is a Number, which is the highest buffer number
of existing buffers. Note that not all buffers with a smaller
number necessarily exist, because ":bwipeout" may have removed
them. Use bufexists() to test for the existence of a buffer.

Can also be used as a method :
echo bufref->bufnr()

Obsolete name: buffer_number(). buffer_number()
last_buffer_nr()

Obsolete name for bufnr("$"): last_buffer_nr().

bufwinid({buf}) bufwinid()
The result is a Number, which is the window-ID of the first
window associated with buffer {buf}. For the use of {buf},
see bufname() above. If buffer {buf} doesn't exist or
there is no such window, -1 is returned. Example:

echo "A window containing buffer 1 is " .. (bufwinid(1))

Only deals with the current tab page. See win_findbuf() for
finding more.

Can also be used as a method :
FindBuffer()->bufwinid()

bufwinnr({buf}) bufwinnr()
Like bufwinid() but return the window number instead of the
window-ID .
If buffer {buf} doesn't exist or there is no such window, -1
is returned. Example:

echo "A window containing buffer 1 is " .. (bufwinnr(1))

The number can be used with CTRL-W_w and ":wincmd w"
:wincmd .

Can also be used as a method :
FindBuffer()->bufwinnr()

byte2line({byte}) byte2line()
Return the line number that contains the character at byte
count {byte} in the current buffer. This includes the
end-of-line character, depending on the 'fileformat' option
for the current buffer. The first character has byte count
one.
Also see line2byte() , go and :goto .

Returns -1 if the {byte} value is invalid.

Can also be used as a method :

builtin.txt — 1275

GetOffset()->byte2line()

{not available when compiled without the +byte_offset
feature}

byteidx({expr}, {nr} [, {utf16}]) byteidx()
Return byte index of the {nr}'th character in the String
{expr}. Use zero for the first character, it then returns
zero.
If there are no multibyte characters the returned value is
equal to {nr}.
Composing characters are not counted separately, their byte
length is added to the preceding base character. See
byteidxcomp() below for counting composing characters
separately.
When {utf16} is present and TRUE, {nr} is used as the UTF-16
index in the String {expr} instead of as the character index.
The UTF-16 index is the index in the string when it is encoded
with 16-bit words. If the specified UTF-16 index is in the
middle of a character (e.g. in a 4-byte character), then the
byte index of the first byte in the character is returned.
Refer to string-offset-encoding for more information.
Example :

echo matchstr(str, ".", byteidx(str, 3))
will display the fourth character. Another way to do the
same:

let s = strpart(str, byteidx(str, 3))
echo strpart(s, 0, byteidx(s, 1))

Also see strgetchar() and strcharpart() .

If there are less than {nr} characters -1 is returned.
If there are exactly {nr} characters the length of the string
in bytes is returned.
See charidx() and utf16idx() for getting the character and
UTF-16 index respectively from the byte index.
Examples:

echo byteidx('a��', 2) returns 5
echo byteidx('a��', 2, 1) returns 1
echo byteidx('a��', 3, 1) returns 5

Can also be used as a method :
GetName()->byteidx(idx)

byteidxcomp({expr}, {nr} [, {utf16}]) byteidxcomp()
Like byteidx(), except that a composing character is counted
as a separate character. Example:

let s = 'e' .. nr2char(0x301)
echo byteidx(s, 1)
echo byteidxcomp(s, 1)
echo byteidxcomp(s, 2)

The first and third echo result in 3 ('e' plus composing
character is 3 bytes), the second echo results in 1 ('e' is
one byte).
Only works differently from byteidx() when 'encoding' is set
to a Unicode encoding.

Can also be used as a method :
GetName()->byteidxcomp(idx)

call({func}, {arglist} [, {dict}]) call() E699

builtin.txt — 1276

Call function {func} with the items in List {arglist} as
arguments.
{func} can either be a Funcref or the name of a function.
a:firstline and a:lastline are set to the cursor line.
Returns the return value of the called function.
{dict} is for functions with the "dict" attribute. It will be
used to set the local variable "self". Dictionary-function

Can also be used as a method :
GetFunc()->call([arg, arg], dict)

ceil({expr}) ceil()
Return the smallest integral value greater than or equal to
{expr} as a Float (round up).
{expr} must evaluate to a Float or a Number .
Examples:

echo ceil(1.456)
2.0
echo ceil(-5.456)
-5.0
echo ceil(4.0)
4.0

Returns 0.0 if {expr} is not a Float or a Number .

Can also be used as a method :
Compute()->ceil()

ch_ functions are documented here: channel-functions-details

changenr() changenr()
Return the number of the most recent change. This is the same
number as what is displayed with :undolist and can be used
with the :undo command.
When a change was made it is the number of that change. After
redo it is the number of the redone change. After undo it is
one less than the number of the undone change.
Returns 0 if the undo list is empty.

char2nr({string} [, {utf8}]) char2nr()
Return Number value of the first char in {string}.
Examples:

char2nr(" ") returns 32
char2nr("ABC") returns 65

When {utf8} is omitted or zero, the current 'encoding' is used.
Example for "utf-8":

char2nr("á") returns 225
char2nr("á"[0]) returns 195

When {utf8} is TRUE, always treat as UTF-8 characters.
A combining character is a separate character.
nr2char() does the opposite.
To turn a string into a list of character numbers:

let str = "ABC"
let list = map(split(str, '\zs'), {_, val -> char2nr(val)})

Result: [65, 66, 67]

Returns 0 if {string} is not a String .

builtin.txt — 1277

Can also be used as a method :
GetChar()->char2nr()

charclass({string}) charclass()
Return the character class of the first character in {string}.
The character class is one of:

0 blank
1 punctuation
2 word character
3 emoji
other specific Unicode class

The class is used in patterns and word motions.
Returns 0 if {string} is not a String .

charcol({expr} [, {winid}]) charcol()
Same as col() but returns the character index of the column
position given with {expr} instead of the byte position.

Example:
With the cursor on '�' in line 5 with text "����":

charcol('.') returns 3
col('.') returns 7

Can also be used as a method :
GetPos()->col()

charidx()
charidx({string}, {idx} [, {countcc} [, {utf16}]])

Return the character index of the byte at {idx} in {string}.
The index of the first character is zero.
If there are no multibyte characters the returned value is
equal to {idx}.

When {countcc} is omitted or FALSE , then composing characters
are not counted separately, their byte length is added to the
preceding base character.
When {countcc} is TRUE , then composing characters are
counted as separate characters.

When {utf16} is present and TRUE, {idx} is used as the UTF-16
index in the String {expr} instead of as the byte index.

Returns -1 if the arguments are invalid or if there are less
than {idx} bytes. If there are exactly {idx} bytes the length
of the string in characters is returned.

An error is given and -1 is returned if the first argument is
not a string, the second argument is not a number or when the
third argument is present and is not zero or one.

See byteidx() and byteidxcomp() for getting the byte index
from the character index and utf16idx() for getting the
UTF-16 index from the character index.
Refer to string-offset-encoding for more information.
Examples:

echo charidx('áb́ć', 3) returns 1
echo charidx('áb́ć', 6, 1) returns 4
echo charidx('áb́ć', 16) returns -1
echo charidx('a��', 4, 0, 1) returns 2

builtin.txt — 1278

Can also be used as a method :
GetName()->charidx(idx)

chdir({dir}) chdir()
Change the current working directory to {dir}. The scope of
the directory change depends on the directory of the current
window:

- If the current window has a window-local directory
(:lcd), then changes the window local directory.

- Otherwise, if the current tabpage has a local
directory (:tcd) then changes the tabpage local
directory.

- Otherwise, changes the global directory.
{dir} must be a String.
If successful, returns the previous working directory. Pass
this to another chdir() to restore the directory.
On failure, returns an empty string.

Example:
let save_dir = chdir(newdir)
if save_dir != ""

" ... do some work
call chdir(save_dir)

endif

Can also be used as a method :
GetDir()->chdir()

cindent({lnum}) cindent()
Get the amount of indent for line {lnum} according the C
indenting rules, as with 'cindent'.
The indent is counted in spaces, the value of 'tabstop' is
relevant. {lnum} is used just like in getline() .
When {lnum} is invalid -1 is returned.
See C-indenting .

Can also be used as a method :
GetLnum()->cindent()

clearmatches([{win}]) clearmatches()
Clears all matches previously defined for the current window
by matchadd() and the :match commands.
If {win} is specified, use the window with this number or
window ID instead of the current window.

Can also be used as a method :
GetWin()->clearmatches()

col({expr} [, {winid}]) col()
The result is a Number, which is the byte index of the column
position given with {expr}. The accepted positions are:

. the cursor position
$ the end of the cursor line (the result is the

number of bytes in the cursor line plus one)
'x position of mark x (if the mark is not set, 0 is

returned)
v In Visual mode: the start of the Visual area (the

cursor is the end). When not in Visual mode
returns the cursor position. Differs from '< in

builtin.txt — 1279

that it's updated right away.
Additionally {expr} can be [lnum, col]: a List with the line
and column number. Most useful when the column is "$", to get
the last column of a specific line. When "lnum" or "col" is
out of range then col() returns zero.
With the optional {winid} argument the values are obtained for
that window instead of the current window.
To get the line number use line() . To get both use
getpos() .
For the screen column position use virtcol() . For the
character position use charcol() .
Note that only marks in the current file can be used.
Examples:

col(".") column of cursor
col("$") length of cursor line plus one
col("'t") column of mark t
col("'" .. markname) column of mark markname

The first column is 1. Returns 0 if {expr} is invalid or when
the window with ID {winid} is not found.
For an uppercase mark the column may actually be in another
buffer.
For the cursor position, when 'virtualedit' is active, the
column is one higher if the cursor is after the end of the
line. Also, when using a <Cmd> mapping the cursor isn't
moved, this can be used to obtain the column in Insert mode:

:imap <F2> <Cmd>echowin col(".")<CR>

Can also be used as a method :
GetPos()->col()

complete({startcol}, {matches}) complete() E785
Set the matches for Insert mode completion.
Can only be used in Insert mode. You need to use a mapping
with CTRL-R = (see i_CTRL-R). It does not work after CTRL-O
or with an expression mapping.
{startcol} is the byte offset in the line where the completed
text start. The text up to the cursor is the original text
that will be replaced by the matches. Use col('.') for an
empty string. "col('.') - 1" will replace one character by a
match.
{matches} must be a List . Each List item is one match.
See complete-items for the kind of items that are possible.
"longest" in 'completeopt' is ignored.
Note that the after calling this function you need to avoid
inserting anything that would cause completion to stop.
The match can be selected with CTRL-N and CTRL-P as usual with
Insert mode completion. The popup menu will appear if
specified, see ins-completion-menu .
Example:

inoremap <F5> <C-R>=ListMonths()<CR>

func ListMonths()
call complete(col('.'), ['January', 'February', 'March',

\ 'April', 'May', 'June', 'July', 'August', 'September',
\ 'October', 'November', 'December'])

return ''
endfunc

This isn't very useful, but it shows how it works. Note that
an empty string is returned to avoid a zero being inserted.

builtin.txt — 1280

Can also be used as a method , the base is passed as the
second argument:

GetMatches()->complete(col('.'))

complete_add({expr}) complete_add()
Add {expr} to the list of matches. Only to be used by the
function specified with the 'completefunc' option.
Returns 0 for failure (empty string or out of memory),
1 when the match was added, 2 when the match was already in
the list.
See complete-functions for an explanation of {expr}. It is
the same as one item in the list that 'omnifunc' would return.

Can also be used as a method :
GetMoreMatches()->complete_add()

complete_check() complete_check()
Check for a key typed while looking for completion matches.
This is to be used when looking for matches takes some time.
Returns TRUE when searching for matches is to be aborted,
zero otherwise.
Only to be used by the function specified with the
'completefunc' option.

complete_info([{what}]) complete_info()
Returns a Dictionary with information about Insert mode
completion. See ins-completion .
The items are:

mode Current completion mode name string.
See complete_info_mode for the values.

pum_visible TRUE if popup menu is visible.
See pumvisible() .

items List of completion matches. Each item is a
dictionary containing the entries "word",
"abbr", "menu", "kind", "info" and "user_data".
See complete-items .

selected Selected item index. First index is zero.
Index is -1 if no item is selected (showing
typed text only, or the last completion after
no item is selected when using the <Up> or
<Down> keys)

inserted Inserted string. [NOT IMPLEMENTED YET]

complete_info_mode
mode values are:

"" Not in completion mode
"keyword" Keyword completion i_CTRL-X_CTRL-N
"ctrl_x" Just pressed CTRL-X i_CTRL-X
"scroll" Scrolling with i_CTRL-X_CTRL-E or

i_CTRL-X_CTRL-Y
"whole_line" Whole lines i_CTRL-X_CTRL-L
"files" File names i_CTRL-X_CTRL-F
"tags" Tags i_CTRL-X_CTRL-]
"path_defines" Definition completion i_CTRL-X_CTRL-D
"path_patterns" Include completion i_CTRL-X_CTRL-I
"dictionary" Dictionary i_CTRL-X_CTRL-K
"thesaurus" Thesaurus i_CTRL-X_CTRL-T
"cmdline" Vim Command line i_CTRL-X_CTRL-V

builtin.txt — 1281

"function" User defined completion i_CTRL-X_CTRL-U
"omni" Omni completion i_CTRL-X_CTRL-O
"spell" Spelling suggestions i_CTRL-X_s
"eval" complete() completion
"unknown" Other internal modes

If the optional {what} list argument is supplied, then only
the items listed in {what} are returned. Unsupported items in
{what} are silently ignored.

To get the position and size of the popup menu, see
pum_getpos() . It's also available in v:event during the
CompleteChanged event.

Returns an empty Dictionary on error.

Examples:
" Get all items
call complete_info()
" Get only 'mode'
call complete_info(['mode'])
" Get only 'mode' and 'pum_visible'
call complete_info(['mode', 'pum_visible'])

Can also be used as a method :
GetItems()->complete_info()

confirm()
confirm({msg} [, {choices} [, {default} [, {type}]]])

confirm() offers the user a dialog, from which a choice can be
made. It returns the number of the choice. For the first
choice this is 1.
Note: confirm() is only supported when compiled with dialog
support, see +dialog_con and +dialog_gui .

{msg} is displayed in a dialog with {choices} as the
alternatives. When {choices} is missing or empty, "&OK" is
used (and translated).
{msg} is a String, use '\n' to include a newline. Only on
some systems the string is wrapped when it doesn't fit.

{choices} is a String, with the individual choices separated
by '\n', e.g.

confirm("Save changes?", "&Yes\n&No\n&Cancel")
The letter after the '&' is the shortcut key for that choice.
Thus you can type 'c' to select "Cancel". The shortcut does
not need to be the first letter:

confirm("file has been modified", "&Save\nSave &All")
For the console, the first letter of each choice is used as
the default shortcut key. Case is ignored.

The optional {default} argument is the number of the choice
that is made if the user hits <CR>. Use 1 to make the first
choice the default one. Use 0 to not set a default. If
{default} is omitted, 1 is used.

The optional {type} String argument gives the type of dialog.
This is only used for the icon of the GTK, Mac, Motif and
Win32 GUI. It can be one of these values: "Error",
"Question", "Info", "Warning" or "Generic". Only the first

builtin.txt — 1282

character is relevant. When {type} is omitted, "Generic" is
used.

If the user aborts the dialog by pressing <Esc>, CTRL-C,
or another valid interrupt key, confirm() returns 0.

An example:
let choice = confirm("What do you want?",

\ "&Apples\n&Oranges\n&Bananas", 2)
if choice == 0

echo "make up your mind!"
elseif choice == 3

echo "tasteful"
else

echo "I prefer bananas myself."
endif

In a GUI dialog, buttons are used. The layout of the buttons
depends on the 'v' flag in 'guioptions'. If it is included,
the buttons are always put vertically. Otherwise, confirm()
tries to put the buttons in one horizontal line. If they
don't fit, a vertical layout is used anyway. For some systems
the horizontal layout is always used.

Can also be used as a method in:
BuildMessage()->confirm("&Yes\n&No")

copy()
copy({expr}) Make a copy of {expr}. For Numbers and Strings this isn't

different from using {expr} directly.
When {expr} is a List a shallow copy is created. This means
that the original List can be changed without changing the
copy, and vice versa. But the items are identical, thus
changing an item changes the contents of both Lists .
A Dictionary is copied in a similar way as a List .
Also see deepcopy() .
Can also be used as a method :

mylist->copy()

cos({expr}) cos()
Return the cosine of {expr}, measured in radians, as a Float .
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo cos(100)
0.862319
:echo cos(-4.01)
-0.646043

Can also be used as a method :
Compute()->cos()

cosh({expr}) cosh()
Return the hyperbolic cosine of {expr} as a Float in the range
[1, inf].
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo cosh(0.5)
1.127626

builtin.txt — 1283

:echo cosh(-0.5)
-1.127626

Can also be used as a method :
Compute()->cosh()

count({comp}, {expr} [, {ic} [, {start}]]) count() E706
Return the number of times an item with value {expr} appears
in String , List or Dictionary {comp}.

If {start} is given then start with the item with this index.
{start} can only be used with a List .

When {ic} is given and it's TRUE then case is ignored.

When {comp} is a string then the number of not overlapping
occurrences of {expr} is returned. Zero is returned when
{expr} is an empty string.

Can also be used as a method :
mylist->count(val)

cscope_connection()
cscope_connection([{num} , {dbpath} [, {prepend}]])

Checks for the existence of a cscope connection. If no
parameters are specified, then the function returns:

0, if cscope was not available (not compiled in), or
if there are no cscope connections;

1, if there is at least one cscope connection.

If parameters are specified, then the value of {num}
determines how existence of a cscope connection is checked:

{num} Description of existence check
----- ------------------------------
0 Same as no parameters (e.g., "cscope_connection()").
1 Ignore {prepend}, and use partial string matches for

{dbpath}.
2 Ignore {prepend}, and use exact string matches for

{dbpath}.
3 Use {prepend}, use partial string matches for both

{dbpath} and {prepend}.
4 Use {prepend}, use exact string matches for both

{dbpath} and {prepend}.

Note: All string comparisons are case sensitive!

Examples. Suppose we had the following (from ":cs show"):

pid database name prepend path
0 27664 cscope.out /usr/local

Invocation Return Val
---------- ----------
cscope_connection() 1
cscope_connection(1, "out") 1
cscope_connection(2, "out") 0
cscope_connection(3, "out") 0
cscope_connection(3, "out", "local") 1

builtin.txt — 1284

cscope_connection(4, "out") 0
cscope_connection(4, "out", "local") 0
cscope_connection(4, "cscope.out", "/usr/local") 1

cursor({lnum}, {col} [, {off}]) cursor()
cursor({list})

Positions the cursor at the column (byte count) {col} in the
line {lnum}. The first column is one.

When there is one argument {list} this is used as a List
with two, three or four item:

[{lnum}, {col}]
[{lnum}, {col}, {off}]
[{lnum}, {col}, {off}, {curswant}]

This is like the return value of getpos() or getcurpos() ,
but without the first item.

To position the cursor using {col} as the character count, use
setcursorcharpos() .

Does not change the jumplist.
{lnum} is used like with getline() , except that if {lnum} is
zero, the cursor will stay in the current line.
If {lnum} is greater than the number of lines in the buffer,
the cursor will be positioned at the last line in the buffer.
If {col} is greater than the number of bytes in the line,
the cursor will be positioned at the last character in the
line.
If {col} is zero, the cursor will stay in the current column.
If {curswant} is given it is used to set the preferred column
for vertical movement. Otherwise {col} is used.

When 'virtualedit' is used {off} specifies the offset in
screen columns from the start of the character. E.g., a
position within a <Tab> or after the last character.
Returns 0 when the position could be set, -1 otherwise.

Can also be used as a method :
GetCursorPos()->cursor()

debugbreak({pid}) debugbreak()
Specifically used to interrupt a program being debugged. It
will cause process {pid} to get a SIGTRAP. Behavior for other
processes is undefined. See terminal-debugger .
{only available on MS-Windows}

Returns TRUE if successfully interrupted the program.
Otherwise returns FALSE .

Can also be used as a method :
GetPid()->debugbreak()

deepcopy({expr} [, {noref}]) deepcopy() E698
Make a copy of {expr}. For Numbers and Strings this isn't
different from using {expr} directly.
When {expr} is a List a full copy is created. This means
that the original List can be changed without changing the
copy, and vice versa. When an item is a List or
Dictionary , a copy for it is made, recursively. Thus
changing an item in the copy does not change the contents of

builtin.txt — 1285

the original List .
A Dictionary is copied in a similar way as a List .

When {noref} is omitted or zero a contained List or
Dictionary is only copied once. All references point to
this single copy. With {noref} set to 1 every occurrence of a
List or Dictionary results in a new copy. This also means
that a cyclic reference causes deepcopy() to fail.

E724
Nesting is possible up to 100 levels. When there is an item
that refers back to a higher level making a deep copy with
{noref} set to 1 will fail.
Also see copy() .

Can also be used as a method :
GetObject()->deepcopy()

delete({fname} [, {flags}]) delete()
Without {flags} or with {flags} empty: Deletes the file by the
name {fname}.

This also works when {fname} is a symbolic link. The symbolic
link itself is deleted, not what it points to.

When {flags} is "d": Deletes the directory by the name
{fname}. This fails when directory {fname} is not empty.

When {flags} is "rf": Deletes the directory by the name
{fname} and everything in it, recursively. BE CAREFUL!
Note: on MS-Windows it is not possible to delete a directory
that is being used.

The result is a Number, which is 0/false if the delete
operation was successful and -1/true when the deletion failed
or partly failed.

Use remove() to delete an item from a List .
To delete a line from the buffer use :delete or
deletebufline() .

Can also be used as a method :
GetName()->delete()

deletebufline({buf}, {first} [, {last}]) deletebufline()
Delete lines {first} to {last} (inclusive) from buffer {buf}.
If {last} is omitted then delete line {first} only.
On success 0 is returned, on failure 1 is returned.

This function works only for loaded buffers. First call
bufload() if needed.

For the use of {buf}, see bufname() above.

{first} and {last} are used like with getline() . Note that
when using line() this refers to the current buffer. Use "$"
to refer to the last line in buffer {buf}.

Can also be used as a method :
GetBuffer()->deletebufline(1)

builtin.txt — 1286

did_filetype()
did_filetype() Returns TRUE when autocommands are being executed and the

FileType event has been triggered at least once. Can be used
to avoid triggering the FileType event again in the scripts
that detect the file type. FileType
Returns FALSE when `:setf FALLBACK` was used.
When editing another file, the counter is reset, thus this
really checks if the FileType event has been triggered for the
current buffer. This allows an autocommand that starts
editing another buffer to set 'filetype' and load a syntax
file.

diff({fromlist}, {tolist} [, {options}]) diff()
Returns a String or a List containing the diff between the
strings in {fromlist} and {tolist}. Uses the Vim internal
diff library to compute the diff.

E106
The optional "output" item in {options} specifies the returned
diff format. The following values are supported:

indices Return a List of the starting and ending
indices and a count of the strings in each
diff hunk.

unified Return the unified diff output as a String.
This is the default.

If the "output" item in {options} is "indices", then a List is
returned. Each List item contains a Dict with the following
items for each diff hunk:

from_idx start index in {fromlist} for this diff hunk.
from_count number of strings in {fromlist} that are

added/removed/modified in this diff hunk.
to_idx start index in {tolist} for this diff hunk.
to_count number of strings in {tolist} that are

added/removed/modified in this diff hunk.

The {options} Dict argument also specifies diff options
(similar to 'diffopt') and supports the following items:

algorithm Dict specifying the diff algorithm to
use. Supported boolean items are
"myers", "minimal", "patience" and
"histogram".

context diff context length. Default is 0.
iblank ignore changes where lines are all

blank.
icase ignore changes in case of text.
indent-heuristic use the indent heuristic for the

internal diff library.
iwhite ignore changes in amount of white

space.
iwhiteall ignore all white space changes.
iwhiteeol ignore white space changes at end of

line.
For more information about these options, refer to 'diffopt'.

To compute the unified diff, all the items in {fromlist} are
concatenated into a string using a newline separator and the
same for {tolist}. The unified diff output uses line numbers.

Returns an empty List or String if {fromlist} and {tolist} are

builtin.txt — 1287

identical.

Examples:
:echo diff(['abc'], ['xxx'])
@@ -1 +1 @@
-abc
+xxx

:echo diff(['abc'], ['xxx'], {'output': 'indices'})
[{'from_idx': 0, 'from_count': 1, 'to_idx': 0, 'to_count': 1}]

:echo diff(readfile('oldfile'), readfile('newfile'))
:echo diff(getbufline(5, 1, '$'), getbufline(6, 1, '$'))

For more examples, refer to diff-func-examples

Can also be used as a method :
GetFromList->diff(to_list)

diff_filler({lnum}) diff_filler()
Returns the number of filler lines above line {lnum}.
These are the lines that were inserted at this point in
another diff'ed window. These filler lines are shown in the
display but don't exist in the buffer.
{lnum} is used like with getline() . Thus "." is the current
line, "'m" mark m, etc.
Returns 0 if the current window is not in diff mode.

Can also be used as a method :
GetLnum()->diff_filler()

diff_hlID({lnum}, {col}) diff_hlID()
Returns the highlight ID for diff mode at line {lnum} column
{col} (byte index). When the current line does not have a
diff change zero is returned.
{lnum} is used like with getline() . Thus "." is the current
line, "'m" mark m, etc.
{col} is 1 for the leftmost column, {lnum} is 1 for the first
line.
The highlight ID can be used with synIDattr() to obtain
syntax information about the highlighting.

Can also be used as a method :
GetLnum()->diff_hlID(col)

digraph_get({chars}) digraph_get() E1214
Return the digraph of {chars}. This should be a string with
exactly two characters. If {chars} are not just two
characters, or the digraph of {chars} does not exist, an error
is given and an empty string is returned.

The character will be converted from Unicode to 'encoding'
when needed. This does require the conversion to be
available, it might fail.

Also see digraph_getlist() .

Examples:
" Get a built-in digraph
:echo digraph_get('00') " Returns '∞'

builtin.txt — 1288

" Get a user-defined digraph
:call digraph_set('aa', '�')
:echo digraph_get('aa') " Returns '�'

Can also be used as a method :
GetChars()->digraph_get()

This function works only when compiled with the +digraphs
feature. If this feature is disabled, this function will
display an error message.

digraph_getlist([{listall}]) digraph_getlist()
Return a list of digraphs. If the {listall} argument is given
and it is TRUE, return all digraphs, including the default
digraphs. Otherwise, return only user-defined digraphs.

The characters will be converted from Unicode to 'encoding'
when needed. This does require the conservation to be
available, it might fail.

Also see digraph_get() .

Examples:
" Get user-defined digraphs
:echo digraph_getlist()

" Get all the digraphs, including default digraphs
:echo digraph_getlist(1)

Can also be used as a method :
GetNumber()->digraph_getlist()

This function works only when compiled with the +digraphs
feature. If this feature is disabled, this function will
display an error message.

digraph_set({chars}, {digraph}) digraph_set()
Add digraph {chars} to the list. {chars} must be a string
with two characters. {digraph} is a string with one UTF-8
encoded character. E1215
Be careful, composing characters are NOT ignored. This
function is similar to :digraphs command, but useful to add
digraphs start with a white space.

The function result is v:true if digraph is registered. If
this fails an error message is given and v:false is returned.

If you want to define multiple digraphs at once, you can use
digraph_setlist() .

Example:
call digraph_set(' ', '�')

Can be used as a method :
GetString()->digraph_set('�')

This function works only when compiled with the +digraphs

builtin.txt — 1289

feature. If this feature is disabled, this function will
display an error message.

digraph_setlist({digraphlist}) digraph_setlist()
Similar to digraph_set() but this function can add multiple
digraphs at once. {digraphlist} is a list composed of lists,
where each list contains two strings with {chars} and
{digraph} as in digraph_set() . E1216
Example:

call digraph_setlist([['aa', '�'], ['ii', '�']])

It is similar to the following:
for [chars, digraph] in [['aa', '�'], ['ii', '�']]

call digraph_set(chars, digraph)
endfor

Except that the function returns after the first error,
following digraphs will not be added.

Can be used as a method :
GetList()->digraph_setlist()

This function works only when compiled with the +digraphs
feature. If this feature is disabled, this function will
display an error message.

echoraw({string}) echoraw()
Output {string} as-is, including unprintable characters.
This can be used to output a terminal code. For example, to
disable modifyOtherKeys:

call echoraw(&t_TE)
and to enable it again:

call echoraw(&t_TI)
Use with care, you can mess up the terminal this way.

empty({expr}) empty()
Return the Number 1 if {expr} is empty, zero otherwise.
- A List or Dictionary is empty when it does not have any

items.
- A String is empty when its length is zero.
- A Number and Float are empty when their value is zero.
- v:false , v:none and v:null are empty, v:true is not.
- A Job is empty when it failed to start.
- A Channel is empty when it is closed.
- A Blob is empty when its length is zero.
- An Object is empty, when the empty() builtin method in
the object (if present) returns true.

For a long List this is much faster than comparing the
length with zero.

Can also be used as a method :
mylist->empty()

environ() environ()
Return all of environment variables as dictionary. You can
check if an environment variable exists like this:

:echo has_key(environ(), 'HOME')

builtin.txt — 1290

Note that the variable name may be CamelCase; to ignore case
use this:

:echo index(keys(environ()), 'HOME', 0, 1) != -1

err_teapot([{expr}]) err_teapot()
Produce an error with number 418, needed for implementation of
RFC 2324.
If {expr} is present and it is TRUE error 503 is given,
indicating that coffee is temporarily not available.
If {expr} is present it must be a String.

escape({string}, {chars}) escape()
Escape the characters in {chars} that occur in {string} with a
backslash. Example:

:echo escape('c:\program files\vim', ' \')
results in:

c:\\program\ files\\vim
Also see shellescape() and fnameescape() .

Can also be used as a method :
GetText()->escape(' \')

eval()
eval({string}) Evaluate {string} and return the result. Especially useful to

turn the result of string() back into the original value.
This works for Numbers, Floats, Strings, Blobs and composites
of them. Also works for Funcref s that refer to existing
functions.

Can also be used as a method :
argv->join()->eval()

eventhandler() eventhandler()
Returns 1 when inside an event handler. That is that Vim got
interrupted while waiting for the user to type a character,
e.g., when dropping a file on Vim. This means interactive
commands cannot be used. Otherwise zero is returned.

executable({expr}) executable()
This function checks if an executable with the name {expr}
exists. {expr} must be the name of the program without any
arguments.
executable() uses the value of $PATH and/or the normal
searchpath for programs. PATHEXT
On MS-Windows the ".exe", ".bat", etc. can optionally be
included. Then the extensions in $PATHEXT are tried. Thus if
"foo.exe" does not exist, "foo.exe.bat" can be found. If
$PATHEXT is not set then ".com;.exe;.bat;.cmd" is used. A dot
by itself can be used in $PATHEXT to try using the name
without an extension. When 'shell' looks like a Unix shell,
then the name is also tried without adding an extension.
On MS-Windows it only checks if the file exists and is not a
directory, not if it's really executable.
On MS-Windows an executable in the same directory as Vim is
normally found. Since this directory is added to $PATH it
should also work to execute it win32-PATH . This can be
disabled by setting the $NoDefaultCurrentDirectoryInExePath
environment variable. NoDefaultCurrentDirectoryInExePath

builtin.txt — 1291

The result is a Number:
1 exists
0 does not exist
-1 not implemented on this system

exepath() can be used to get the full path of an executable.

Can also be used as a method :
GetCommand()->executable()

execute({command} [, {silent}]) execute()
Execute an Ex command or commands and return the output as a
string.
{command} can be a string or a List. In case of a List the
lines are executed one by one.
This is more or less equivalent to:

redir => var
{command}
redir END

Except that line continuation in {command} is not recognized.

The optional {silent} argument can have these values:
"" no `:silent` used
"silent" `:silent` used
"silent!" `:silent!` used

The default is "silent". Note that with "silent!", unlike
`:redir`, error messages are dropped. When using an external
command the screen may be messed up, use `system()` instead.

E930
It is not possible to use `:redir` anywhere in {command}.

To get a list of lines use `split()` on the result:
execute('args')->split("\n")

To execute a command in another window than the current one
use `win_execute()`.

When used recursively the output of the recursive call is not
included in the output of the higher level call.

Can also be used as a method :
GetCommand()->execute()

exepath({expr}) exepath()
If {expr} is an executable and is either an absolute path, a
relative path or found in $PATH, return the full path.
Note that the current directory is used when {expr} starts
with "./", which may be a problem for Vim:

echo exepath(v:progpath)
If {expr} cannot be found in $PATH or is not executable then
an empty string is returned.

Can also be used as a method :
GetCommand()->exepath()

exists()
exists({expr}) The result is a Number, which is TRUE if {expr} is defined,

zero otherwise.

Note: In a compiled :def function the evaluation is done at
runtime. Use `exists_compiled()` to evaluate the expression

builtin.txt — 1292

at compile time.

For checking for a supported feature use has() .
For checking if a file exists use filereadable() .

The {expr} argument is a string, which contains one of these:
varname internal variable (see
dict.key internal-variables). Also works
list[i] for curly-braces-names , Dictionary
import.Func entries, List items, class and
class.Func object methods, imported items, etc.
object.Func Does not work for local variables in a
class.varname compiled `:def` function.
object.varname Also works for a function in Vim9

script, since it can be used as a
function reference.
Beware that evaluating an index may
cause an error message for an invalid
expression. E.g.:

:let l = [1, 2, 3]
:echo exists("l[5]")

0
:echo exists("l[xx]")

E121: Undefined variable: xx
0

&option-name Vim option (only checks if it exists,
not if it really works)

+option-name Vim option that works.
$ENVNAME environment variable (could also be

done by comparing with an empty
string)

*funcname built-in function (see functions)
or user defined function (see
user-functions) that is implemented.
Also works for a variable that is a
Funcref.

?funcname built-in function that could be
implemented; to be used to check if
"funcname" is valid

:cmdname Ex command: built-in command, user
command or command modifier :command .
Returns:
1 for match with start of a command
2 full match with a command
3 matches several user commands
To check for a supported command
always check the return value to be 2.

:2match The :2match command.
:3match The :3match command (but you

probably should not use it, it is
reserved for internal usage)

#event autocommand defined for this event
#event#pattern autocommand defined for this event and

pattern (the pattern is taken
literally and compared to the
autocommand patterns character by
character)

#group autocommand group exists
#group#event autocommand defined for this group and

event.

builtin.txt — 1293

#group#event#pattern
autocommand defined for this group,
event and pattern.

##event autocommand for this event is
supported.

Examples:
exists("&shortname")
exists("$HOSTNAME")
exists("*strftime")
exists("*s:MyFunc") " only for legacy script
exists("*MyFunc")
exists("bufcount")
exists(":Make")
exists("#CursorHold")
exists("#BufReadPre#*.gz")
exists("#filetypeindent")
exists("#filetypeindent#FileType")
exists("#filetypeindent#FileType#*")
exists("##ColorScheme")

There must be no space between the symbol (&/$/*/#) and the
name.
There must be no extra characters after the name, although in
a few cases this is ignored. That may become stricter in the
future, thus don't count on it!
Working example:

exists(":make")
NOT working example:

exists(":make install")

Note that the argument must be a string, not the name of the
variable itself. For example:

exists(bufcount)
This doesn't check for existence of the "bufcount" variable,
but gets the value of "bufcount", and checks if that exists.

Can also be used as a method :
Varname()->exists()

exists_compiled({expr}) exists_compiled()
Like `exists()` but evaluated at compile time. This is useful
to skip a block where a function is used that would otherwise
give an error:

if exists_compiled('*ThatFunction')
ThatFunction('works')

endif
If `exists()` were used then a compilation error would be
given if ThatFunction() is not defined.

{expr} must be a literal string. E1232
Can only be used in a :def function. E1233
This does not work to check for arguments or local variables.

exp({expr}) exp()
Return the exponential of {expr} as a Float in the range
[0, inf].
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .

builtin.txt — 1294

Examples:
:echo exp(2)
7.389056
:echo exp(-1)
0.367879

Can also be used as a method :
Compute()->exp()

expand({string} [, {nosuf} [, {list}]]) expand()
Expand wildcards and the following special keywords in
{string}. 'wildignorecase' applies.

If {list} is given and it is TRUE , a List will be returned.
Otherwise the result is a String and when there are several
matches, they are separated by <NL> characters. [Note: in
version 5.0 a space was used, which caused problems when a
file name contains a space]

If the expansion fails, the result is an empty string. A name
for a non-existing file is not included, unless {string} does
not start with '%', '#' or '<', see below.

For a :terminal window '%' expands to a '!' followed by
the command or shell that is run terminal-bufname

When {string} starts with '%', '#' or '<', the expansion is
done like for the cmdline-special variables with their
associated modifiers. Here is a short overview:

% current file name
alternate file name
#n alternate file name n
<cfile> file name under the cursor
<afile> autocmd file name
<abuf> autocmd buffer number (as a String!)
<amatch> autocmd matched name
<cexpr> C expression under the cursor
<sfile> sourced script file or function name
<slnum> sourced script line number or function

line number
<sflnum> script file line number, also when in

a function
<SID> "<SNR>123_" where "123" is the

current script ID <SID>
<script> sourced script file, or script file

where the current function was defined
<stack> call stack
<cword> word under the cursor
<cWORD> WORD under the cursor
<client> the {clientid} of the last received

message server2client()
Modifiers:

:p expand to full path
:h head (last path component removed)
:t tail (last path component only)
:r root (one extension removed)
:e extension only

builtin.txt — 1295

Example:
:let &tags = expand("%:p:h") .. "/tags"

Note that when expanding a string that starts with '%', '#' or
'<', any following text is ignored. This does NOT work:

:let doesntwork = expand("%:h.bak")
Use this:

:let doeswork = expand("%:h") .. ".bak"
Also note that expanding "<cfile>" and others only returns the
referenced file name without further expansion. If "<cfile>"
is "~/.cshrc", you need to do another expand() to have the
"~/" expanded into the path of the home directory:

:echo expand(expand("<cfile>"))

There cannot be white space between the variables and the
following modifier. The fnamemodify() function can be used
to modify normal file names.

When using '%' or '#', and the current or alternate file name
is not defined, an empty string is used. Using "%:p" in a
buffer with no name, results in the current directory, with a
'/' added.
When 'verbose' is set then expanding '%', '#' and <> items
will result in an error message if the argument cannot be
expanded.

When {string} does not start with '%', '#' or '<', it is
expanded like a file name is expanded on the command line.
'suffixes' and 'wildignore' are used, unless the optional
{nosuf} argument is given and it is TRUE .
Names for non-existing files are included. The "**" item can
be used to search in a directory tree. For example, to find
all "README" files in the current directory and below:

:echo expand("**/README")

expand() can also be used to expand variables and environment
variables that are only known in a shell. But this can be
slow, because a shell may be used to do the expansion. See
expr-env-expand .
The expanded variable is still handled like a list of file
names. When an environment variable cannot be expanded, it is
left unchanged. Thus ":echo expand('$FOOBAR')" results in
"$FOOBAR".

See glob() for finding existing files. See system() for
getting the raw output of an external command.

Can also be used as a method :
Getpattern()->expand()

expandcmd({string} [, {options}]) expandcmd()
Expand special items in String {string} like what is done for
an Ex command such as `:edit`. This expands special keywords,
like with expand() , and environment variables, anywhere in
{string}. "~user" and "~/path" are only expanded at the
start.

The following items are supported in the {options} Dict
argument:

errmsg If set to TRUE, error messages are displayed
if an error is encountered during expansion.

builtin.txt — 1296

By default, error messages are not displayed.

Returns the expanded string. If an error is encountered
during expansion, the unmodified {string} is returned.

Example:
:echo expandcmd('make %<.o')
make /path/runtime/doc/builtin.o
:echo expandcmd('make %<.o', {'errmsg': v:true})

Can also be used as a method :
GetCommand()->expandcmd()

extend({expr1}, {expr2} [, {expr3}]) extend()
{expr1} and {expr2} must be both Lists or both
Dictionaries .

If they are Lists : Append {expr2} to {expr1}.
If {expr3} is given insert the items of {expr2} before the
item with index {expr3} in {expr1}. When {expr3} is zero
insert before the first item. When {expr3} is equal to
len({expr1}) then {expr2} is appended.
Examples:

:echo sort(extend(mylist, [7, 5]))
:call extend(mylist, [2, 3], 1)

When {expr1} is the same List as {expr2} then the number of
items copied is equal to the original length of the List.
E.g., when {expr3} is 1 you get N new copies of the first item
(where N is the original length of the List).
Use add() to concatenate one item to a list. To concatenate
two lists into a new list use the + operator:

:let newlist = [1, 2, 3] + [4, 5]

If they are Dictionaries :
Add all entries from {expr2} to {expr1}.
If a key exists in both {expr1} and {expr2} then {expr3} is
used to decide what to do:
{expr3} = "keep": keep the value of {expr1}
{expr3} = "force": use the value of {expr2}
{expr3} = "error": give an error message E737
When {expr3} is omitted then "force" is assumed.

{expr1} is changed when {expr2} is not empty. If necessary
make a copy of {expr1} first.
{expr2} remains unchanged.
When {expr1} is locked and {expr2} is not empty the operation
fails.
Returns {expr1}. Returns 0 on error.

Can also be used as a method :
mylist->extend(otherlist)

extendnew({expr1}, {expr2} [, {expr3}]) extendnew()
Like extend() but instead of adding items to {expr1} a new
List or Dictionary is created and returned. {expr1} remains
unchanged.

feedkeys({string} [, {mode}]) feedkeys()

builtin.txt — 1297

Characters in {string} are queued for processing as if they
come from a mapping or were typed by the user.

By default the string is added to the end of the typeahead
buffer, thus if a mapping is still being executed the
characters come after them. Use the 'i' flag to insert before
other characters, they will be executed next, before any
characters from a mapping.

The function does not wait for processing of keys contained in
{string}.

To include special keys into {string}, use double-quotes
and "\..." notation expr-quote . For example,
feedkeys("\<CR>") simulates pressing of the <Enter> key. But
feedkeys('\<CR>') pushes 5 characters.
A special code that might be useful is <Ignore>, it exits the
wait for a character without doing anything. <Ignore>

{mode} is a String, which can contain these character flags:
'm' Remap keys. This is default. If {mode} is absent,

keys are remapped.
'n' Do not remap keys.
't' Handle keys as if typed; otherwise they are handled as

if coming from a mapping. This matters for undo,
opening folds, etc.

'L' Lowlevel input. Only works for Unix or when using the
GUI. Keys are used as if they were coming from the
terminal. Other flags are not used. E980
When a CTRL-C interrupts and 't' is included it sets
the internal "got_int" flag.

'i' Insert the string instead of appending (see above).
'x' Execute commands until typeahead is empty. This is

similar to using ":normal!". You can call feedkeys()
several times without 'x' and then one time with 'x'
(possibly with an empty {string}) to execute all the
typeahead. Note that when Vim ends in Insert mode it
will behave as if <Esc> is typed, to avoid getting
stuck, waiting for a character to be typed before the
script continues.
Note that if you manage to call feedkeys() while
executing commands, thus calling it recursively, then
all typeahead will be consumed by the last call.

'c' Remove any script context when executing, so that
legacy script syntax applies, "s:var" does not work,
etc. Note that if the string being fed sets a script
context this still applies.

'!' When used with 'x' will not end Insert mode. Can be
used in a test when a timer is set to exit Insert mode
a little later. Useful for testing CursorHoldI.

Return value is always 0.

Can also be used as a method :
GetInput()->feedkeys()

filereadable({file}) filereadable()
The result is a Number, which is TRUE when a file with the
name {file} exists, and can be read. If {file} doesn't exist,
or is a directory, the result is FALSE . {file} is any

builtin.txt — 1298

expression, which is used as a String.
If you don't care about the file being readable you can use
glob() .
{file} is used as-is, you may want to expand wildcards first:

echo filereadable('~/.vimrc')
0
echo filereadable(expand('~/.vimrc'))
1

Can also be used as a method :
GetName()->filereadable()

file_readable()
Obsolete name: file_readable().

filewritable({file}) filewritable()
The result is a Number, which is 1 when a file with the
name {file} exists, and can be written. If {file} doesn't
exist, or is not writable, the result is 0. If {file} is a
directory, and we can write to it, the result is 2.

Can also be used as a method :
GetName()->filewritable()

filter({expr1}, {expr2}) filter()
{expr1} must be a List , String , Blob or Dictionary .
For each item in {expr1} evaluate {expr2} and when the result
is zero or false remove the item from the List or
Dictionary . Similarly for each byte in a Blob and each
character in a String .

{expr2} must be a string or Funcref .

If {expr2} is a string , inside {expr2} v:val has the value
of the current item. For a Dictionary v:key has the key
of the current item and for a List v:key has the index of
the current item. For a Blob v:key has the index of the
current byte. For a String v:key has the index of the
current character.
Examples:

call filter(mylist, 'v:val !~ "OLD"')
Removes the items where "OLD" appears.

call filter(mydict, 'v:key >= 8')
Removes the items with a key below 8.

call filter(var, 0)
Removes all the items, thus clears the List or Dictionary .

Note that {expr2} is the result of expression and is then
used as an expression again. Often it is good to use a
literal-string to avoid having to double backslashes.

If {expr2} is a Funcref it must take two arguments:
1. the key or the index of the current item.
2. the value of the current item.

The function must return TRUE if the item should be kept.
Example that keeps the odd items of a list:

func Odd(idx, val)
return a:idx % 2 == 1

endfunc

builtin.txt — 1299

call filter(mylist, function('Odd'))
It is shorter when using a lambda . In Vim9 syntax:

call filter(myList, (idx, val) => idx * val <= 42)
In legacy script syntax:

call filter(myList, {idx, val -> idx * val <= 42})
If you do not use "val" you can leave it out:

call filter(myList, {idx -> idx % 2 == 1})

In Vim9 script the result must be true, false, zero or one.
Other values will result in a type error.

For a List and a Dictionary the operation is done
in-place. If you want it to remain unmodified make a copy
first:

:let l = filter(copy(mylist), 'v:val =~ "KEEP"')

Returns {expr1}, the List or Dictionary that was filtered,
or a new Blob or String .
When an error is encountered while evaluating {expr2} no
further items in {expr1} are processed.
When {expr2} is a Funcref errors inside a function are ignored,
unless it was defined with the "abort" flag.

Can also be used as a method :
mylist->filter(expr2)

finddir({name} [, {path} [, {count}]]) finddir()
Find directory {name} in {path}. Supports both downwards and
upwards recursive directory searches. See file-searching
for the syntax of {path}.

Returns the path of the first found match. When the found
directory is below the current directory a relative path is
returned. Otherwise a full path is returned.
If {path} is omitted or empty then 'path' is used.

If the optional {count} is given, find {count}'s occurrence of
{name} in {path} instead of the first one.
When {count} is negative return all the matches in a List .

Returns an empty string if the directory is not found.

This is quite similar to the ex-command `:find`.

Can also be used as a method :
GetName()->finddir()

findfile({name} [, {path} [, {count}]]) findfile()
Just like finddir() , but find a file instead of a directory.
Uses 'suffixesadd'.
Example:

:echo findfile("tags.vim", ".;")
Searches from the directory of the current file upwards until
it finds the file "tags.vim".

Can also be used as a method :
GetName()->findfile()

flatten({list} [, {maxdepth}]) flatten()
Flatten {list} up to {maxdepth} levels. Without {maxdepth}

builtin.txt — 1300

the result is a List without nesting, as if {maxdepth} is
a very large number.
The {list} is changed in place, use flattennew() if you do
not want that.
In Vim9 script flatten() cannot be used, you must always use
flattennew() .

E900
{maxdepth} means how deep in nested lists changes are made.
{list} is not modified when {maxdepth} is 0.
{maxdepth} must be positive number.

If there is an error the number zero is returned.

Example:
:echo flatten([1, [2, [3, 4]], 5])
[1, 2, 3, 4, 5]
:echo flatten([1, [2, [3, 4]], 5], 1)
[1, 2, [3, 4], 5]

Can also be used as a method :
mylist->flatten()

flattennew({list} [, {maxdepth}]) flattennew()
Like flatten() but first make a copy of {list}.

float2nr({expr}) float2nr()
Convert {expr} to a Number by omitting the part after the
decimal point.
{expr} must evaluate to a Float or a Number .
Returns 0 if {expr} is not a Float or a Number .
When the value of {expr} is out of range for a Number the
result is truncated to 0x7fffffff or -0x7fffffff (or when
64-bit Number support is enabled, 0x7fffffffffffffff or
-0x7fffffffffffffff). NaN results in -0x80000000 (or when
64-bit Number support is enabled, -0x8000000000000000).
Examples:

echo float2nr(3.95)
3
echo float2nr(-23.45)
-23
echo float2nr(1.0e100)
2147483647 (or 9223372036854775807)
echo float2nr(-1.0e150)
-2147483647 (or -9223372036854775807)
echo float2nr(1.0e-100)
0

Can also be used as a method :
Compute()->float2nr()

floor({expr}) floor()
Return the largest integral value less than or equal to
{expr} as a Float (round down).
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

echo floor(1.856)
1.0

builtin.txt — 1301

echo floor(-5.456)
-6.0
echo floor(4.0)
4.0

Can also be used as a method :
Compute()->floor()

fmod({expr1}, {expr2}) fmod()
Return the remainder of {expr1} / {expr2}, even if the
division is not representable. Returns {expr1} - i * {expr2}
for some integer i such that if {expr2} is non-zero, the
result has the same sign as {expr1} and magnitude less than
the magnitude of {expr2}. If {expr2} is zero, the value
returned is zero. The value returned is a Float .
{expr1} and {expr2} must evaluate to a Float or a Number .
Returns 0.0 if {expr1} or {expr2} is not a Float or a
Number .
Examples:

:echo fmod(12.33, 1.22)
0.13
:echo fmod(-12.33, 1.22)
-0.13

Can also be used as a method :
Compute()->fmod(1.22)

fnameescape({string}) fnameescape()
Escape {string} for use as file name command argument. All
characters that have a special meaning, such as '%' and '|'
are escaped with a backslash.
For most systems the characters escaped are
" \t\n*?[{`$\\%#'\"|!<". For systems where a backslash
appears in a filename, it depends on the value of 'isfname'.
A leading '+' and '>' is also escaped (special after :edit
and :write). And a "-" by itself (special after :cd).
Returns an empty string on error.
Example:

:let fname = '+some str%nge|name'
:exe "edit " .. fnameescape(fname)

results in executing:
edit \+some\ str\%nge\|name

Can also be used as a method :
GetName()->fnameescape()

fnamemodify({fname}, {mods}) fnamemodify()
Modify file name {fname} according to {mods}. {mods} is a
string of characters like it is used for file names on the
command line. See filename-modifiers .
Example:

:echo fnamemodify("main.c", ":p:h")
results in:

/home/user/vim/vim/src
If {mods} is empty or an unsupported modifier is used then
{fname} is returned.
When {fname} is empty then with {mods} ":h" returns ".", so
that `:cd` can be used with it. This is different from

builtin.txt — 1302

expand('%:h') without a buffer name, which returns an empty
string.
Note: Environment variables don't work in {fname}, use
expand() first then.

Can also be used as a method :
GetName()->fnamemodify(':p:h')

foldclosed({lnum}) foldclosed()
The result is a Number. If the line {lnum} is in a closed
fold, the result is the number of the first line in that fold.
If the line {lnum} is not in a closed fold, -1 is returned.
{lnum} is used like with getline() . Thus "." is the current
line, "'m" mark m, etc.

Can also be used as a method :
GetLnum()->foldclosed()

foldclosedend({lnum}) foldclosedend()
The result is a Number. If the line {lnum} is in a closed
fold, the result is the number of the last line in that fold.
If the line {lnum} is not in a closed fold, -1 is returned.
{lnum} is used like with getline() . Thus "." is the current
line, "'m" mark m, etc.

Can also be used as a method :
GetLnum()->foldclosedend()

foldlevel({lnum}) foldlevel()
The result is a Number, which is the foldlevel of line {lnum}
in the current buffer. For nested folds the deepest level is
returned. If there is no fold at line {lnum}, zero is
returned. It doesn't matter if the folds are open or closed.
When used while updating folds (from 'foldexpr') -1 is
returned for lines where folds are still to be updated and the
foldlevel is unknown. As a special case the level of the
previous line is usually available.
{lnum} is used like with getline() . Thus "." is the current
line, "'m" mark m, etc.

Can also be used as a method :
GetLnum()->foldlevel()

foldtext()
foldtext() Returns a String, to be displayed for a closed fold. This is

the default function used for the 'foldtext' option and should
only be called from evaluating 'foldtext'. It uses the
v:foldstart , v:foldend and v:folddashes variables.
The returned string looks like this:

+-- 45 lines: abcdef
The number of leading dashes depends on the foldlevel. The
"45" is the number of lines in the fold. "abcdef" is the text
in the first non-blank line of the fold. Leading white space,
"//" or "/*" and the text from the 'foldmarker' and
'commentstring' options is removed.
When used to draw the actual foldtext, the rest of the line
will be filled with the fold char from the 'fillchars'
setting.
Returns an empty string when there is no fold.
{not available when compiled without the |+folding| feature}

builtin.txt — 1303

foldtextresult({lnum}) foldtextresult()
Returns the text that is displayed for the closed fold at line
{lnum}. Evaluates 'foldtext' in the appropriate context.
When there is no closed fold at {lnum} an empty string is
returned.
{lnum} is used like with getline() . Thus "." is the current
line, "'m" mark m, etc.
Useful when exporting folded text, e.g., to HTML.
{not available when compiled without the |+folding| feature}

Can also be used as a method :
GetLnum()->foldtextresult()

foreach({expr1}, {expr2}) foreach()
{expr1} must be a List , String , Blob or Dictionary .
For each item in {expr1} execute {expr2}. {expr1} is not
modified; its values may be, as with :lockvar 1. E741
See map() and filter() to modify {expr1}.

{expr2} must be a string or Funcref .

If {expr2} is a string , inside {expr2} v:val has the value
of the current item. For a Dictionary v:key has the key
of the current item and for a List v:key has the index of
the current item. For a Blob v:key has the index of the
current byte. For a String v:key has the index of the
current character.
Examples:

call foreach(mylist, 'used[v:val] = true')
This records the items that are in the {expr1} list.

Note that {expr2} is the result of expression and is then used
as a command. Often it is good to use a literal-string to
avoid having to double backslashes.

If {expr2} is a Funcref it must take two arguments:
1. the key or the index of the current item.
2. the value of the current item.

With a legacy script lambda you don't get an error if it only
accepts one argument, but with a Vim9 lambda you get "E1106:
One argument too many", the number of arguments must match.
If the function returns a value, it is ignored.

Returns {expr1} in all cases.
When an error is encountered while executing {expr2} no
further items in {expr1} are processed.
When {expr2} is a Funcref errors inside a function are ignored,
unless it was defined with the "abort" flag.

Can also be used as a method :
mylist->foreach(expr2)

foreground()
foreground() Move the Vim window to the foreground. Useful when sent from

a client to a Vim server. remote_send()
On Win32 systems this might not work, the OS does not always
allow a window to bring itself to the foreground. Use
remote_foreground() instead.

builtin.txt — 1304

{only in the Win32, Motif and GTK GUI versions and the
Win32 console version}

fullcommand({name} [, {vim9}]) fullcommand()
Get the full command name from a short abbreviated command
name; see 20.2 for details on command abbreviations.

The string argument {name} may start with a `:` and can
include a [range], these are skipped and not returned.
Returns an empty string if a command doesn't exist, if it's
ambiguous (for user-defined commands) or cannot be shortened
this way. vim9-no-shorten

Without the {vim9} argument uses the current script version.
If {vim9} is present and FALSE then legacy script rules are
used. When {vim9} is present and TRUE then Vim9 rules are
used, e.g. "en" is not a short form of "endif".

For example `fullcommand('s')`, `fullcommand('sub')`,
`fullcommand(':%substitute')` all return "substitute".

Can also be used as a method :
GetName()->fullcommand()

funcref()
funcref({name} [, {arglist}] [, {dict}])

Just like function() , but the returned Funcref will lookup
the function by reference, not by name. This matters when the
function {name} is redefined later.

Unlike function() , {name} must be an existing user function.
It only works for an autoloaded function if it has already
been loaded (to avoid mistakenly loading the autoload script
when only intending to use the function name, use function()
instead). {name} cannot be a builtin function.
Returns 0 on error.

Can also be used as a method :
GetFuncname()->funcref([arg])

function() partial E700 E923
function({name} [, {arglist}] [, {dict}])

Return a Funcref variable that refers to function {name}.
{name} can be the name of a user defined function or an
internal function.

{name} can also be a Funcref or a partial. When it is a
partial the dict stored in it will be used and the {dict}
argument is not allowed. E.g.:

let FuncWithArg = function(dict.Func, [arg])
let Broken = function(dict.Func, [arg], dict)

When using the Funcref the function will be found by {name},
also when it was redefined later. Use funcref() to keep the
same function.

When {arglist} or {dict} is present this creates a partial.
That means the argument list and/or the dictionary is stored in
the Funcref and will be used when the Funcref is called.

builtin.txt — 1305

The arguments are passed to the function in front of other
arguments, but after any argument from method . Example:

func Callback(arg1, arg2, name)
...
let Partial = function('Callback', ['one', 'two'])
...
call Partial('name')

Invokes the function as with:
call Callback('one', 'two', 'name')

With a method :
func Callback(one, two, three)
...
let Partial = function('Callback', ['two'])
...
eval 'one'->Partial('three')

Invokes the function as with:
call Callback('one', 'two', 'three')

The function() call can be nested to add more arguments to the
Funcref. The extra arguments are appended to the list of
arguments. Example:

func Callback(arg1, arg2, name)
"...
let Func = function('Callback', ['one'])
let Func2 = function(Func, ['two'])
"...
call Func2('name')

Invokes the function as with:
call Callback('one', 'two', 'name')

The Dictionary is only useful when calling a "dict" function.
In that case the {dict} is passed in as "self". Example:

function Callback() dict
echo "called for " .. self.name

endfunction
"...
let context = {"name": "example"}
let Func = function('Callback', context)
"...
call Func() " will echo: called for example

The use of function() is not needed when there are no extra
arguments, these two are equivalent, if Callback() is defined
as context.Callback():

let Func = function('Callback', context)
let Func = context.Callback

The argument list and the Dictionary can be combined:
function Callback(arg1, count) dict
"...
let context = {"name": "example"}
let Func = function('Callback', ['one'], context)
"...
call Func(500)

Invokes the function as with:
call context.Callback('one', 500)

Returns 0 on error.

Can also be used as a method :

builtin.txt — 1306

GetFuncname()->function([arg])

garbagecollect([{atexit}]) garbagecollect()
Cleanup unused Lists , Dictionaries , Channels and Jobs
that have circular references.

There is hardly ever a need to invoke this function, as it is
automatically done when Vim runs out of memory or is waiting
for the user to press a key after 'updatetime'. Items without
circular references are always freed when they become unused.
This is useful if you have deleted a very big List and/or
Dictionary with circular references in a script that runs
for a long time.

When the optional {atexit} argument is one, garbage
collection will also be done when exiting Vim, if it wasn't
done before. This is useful when checking for memory leaks.

The garbage collection is not done immediately but only when
it's safe to perform. This is when waiting for the user to
type a character. To force garbage collection immediately use
test_garbagecollect_now() .

get({list}, {idx} [, {default}]) get()
Get item {idx} from List {list}. When this item is not
available return {default}. Return zero when {default} is
omitted.
Preferably used as a method :

mylist->get(idx)
get({blob}, {idx} [, {default}])

Get byte {idx} from Blob {blob}. When this byte is not
available return {default}. Return -1 when {default} is
omitted.
Preferably used as a method :

myblob->get(idx)
get({dict}, {key} [, {default}])

Get item with key {key} from Dictionary {dict}. When this
item is not available return {default}. Return zero when
{default} is omitted. Useful example:

let val = get(g:, 'var_name', 'default')
This gets the value of g:var_name if it exists, and uses
'default' when it does not exist.
Preferably used as a method :

mydict->get(key)
get({func}, {what})

Get item {what} from Funcref {func}. Possible values for
{what} are:

"name" The function name
"func" The function
"dict" The dictionary
"args" The list with arguments

Returns zero on error.
Preferably used as a method :

myfunc->get(what)

getbufinfo()
getbufinfo([{buf}])
getbufinfo([{dict}])

Get information about buffers as a List of Dictionaries.

builtin.txt — 1307

Without an argument information about all the buffers is
returned.

When the argument is a Dictionary only the buffers matching
the specified criteria are returned. The following keys can
be specified in {dict}:

buflisted include only listed buffers.
bufloaded include only loaded buffers.
bufmodified include only modified buffers.

Otherwise, {buf} specifies a particular buffer to return
information for. For the use of {buf}, see bufname()
above. If the buffer is found the returned List has one item.
Otherwise the result is an empty list.

Each returned List item is a dictionary with the following
entries:

bufnr Buffer number.
changed TRUE if the buffer is modified.
changedtick Number of changes made to the buffer.
command TRUE if the buffer belongs to the

command-line window cmdwin .
hidden TRUE if the buffer is hidden.
lastused Timestamp in seconds, like

localtime() , when the buffer was
last used.
{only with the |+viminfo| feature}

listed TRUE if the buffer is listed.
lnum Line number used for the buffer when

opened in the current window.
Only valid if the buffer has been
displayed in the window in the past.
If you want the line number of the
last known cursor position in a given
window, use line() :

:echo line('.', {winid})

linecount Number of lines in the buffer (only
valid when loaded)

loaded TRUE if the buffer is loaded.
name Full path to the file in the buffer.
signs List of signs placed in the buffer.

Each list item is a dictionary with
the following fields:

id sign identifier
lnum line number
name sign name

variables A reference to the dictionary with
buffer-local variables.

windows List of window-ID s that display this
buffer

popups List of popup window-ID s that
display this buffer

Examples:
for buf in getbufinfo()

echo buf.name
endfor
for buf in getbufinfo({'buflisted':1})

builtin.txt — 1308

if buf.changed
....

endif
endfor

To get buffer-local options use:
getbufvar({bufnr}, '&option_name')

Can also be used as a method :
GetBufnr()->getbufinfo()

getbufline()
getbufline({buf}, {lnum} [, {end}])

Return a List with the lines starting from {lnum} to {end}
(inclusive) in the buffer {buf}. If {end} is omitted, a
List with only the line {lnum} is returned. See
`getbufoneline()` for only getting the line.

For the use of {buf}, see bufname() above.

For {lnum} and {end} "$" can be used for the last line of the
buffer. Otherwise a number must be used.

When {lnum} is smaller than 1 or bigger than the number of
lines in the buffer, an empty List is returned.

When {end} is greater than the number of lines in the buffer,
it is treated as {end} is set to the number of lines in the
buffer. When {end} is before {lnum} an empty List is
returned.

This function works only for loaded buffers. For unloaded and
non-existing buffers, an empty List is returned.

Example:
:let lines = getbufline(bufnr("myfile"), 1, "$")

Can also be used as a method :
GetBufnr()->getbufline(lnum)

getbufoneline()
getbufoneline({buf}, {lnum})

Just like `getbufline()` but only get one line and return it
as a string.

getbufvar({buf}, {varname} [, {def}]) getbufvar()
The result is the value of option or local buffer variable
{varname} in buffer {buf}. Note that the name without "b:"
must be used.
The {varname} argument is a string.
When {varname} is empty returns a Dictionary with all the
buffer-local variables.
When {varname} is equal to "&" returns a Dictionary with all
the buffer-local options.
Otherwise, when {varname} starts with "&" returns the value of
a buffer-local option.
This also works for a global or buffer-local option, but it
doesn't work for a global variable, window-local variable or
window-local option.

builtin.txt — 1309

For the use of {buf}, see bufname() above.
When the buffer or variable doesn't exist {def} or an empty
string is returned, there is no error message.
Examples:

:let bufmodified = getbufvar(1, "&mod")
:echo "todo myvar = " .. getbufvar("todo", "myvar")

Can also be used as a method :
GetBufnr()->getbufvar(varname)

getcellwidths() getcellwidths()
Returns a List of cell widths of character ranges overridden
by setcellwidths() . The format is equal to the argument of
setcellwidths() . If no character ranges have their cell
widths overridden, an empty List is returned.

getchangelist([{buf}]) getchangelist()
Returns the changelist for the buffer {buf}. For the use
of {buf}, see bufname() above. If buffer {buf} doesn't
exist, an empty list is returned.

The returned list contains two entries: a list with the change
locations and the current position in the list. Each
entry in the change list is a dictionary with the following
entries:

col column number
coladd column offset for 'virtualedit'
lnum line number

If buffer {buf} is the current buffer, then the current
position refers to the position in the list. For other
buffers, it is set to the length of the list.

Can also be used as a method :
GetBufnr()->getchangelist()

getchar([expr]) getchar()
Get a single character from the user or input stream.
If [expr] is omitted, wait until a character is available.
If [expr] is 0, only get a character when one is available.

Return zero otherwise.
If [expr] is 1, only check if a character is available, it is

not consumed. Return zero if no character available.
If you prefer always getting a string use getcharstr() .

Without [expr] and when [expr] is 0 a whole character or
special key is returned. If it is a single character, the
result is a Number. Use nr2char() to convert it to a String.
Otherwise a String is returned with the encoded character.
For a special key it's a String with a sequence of bytes
starting with 0x80 (decimal: 128). This is the same value as
the String "\<Key>", e.g., "\<Left>". The returned value is
also a String when a modifier (shift, control, alt) was used
that is not included in the character.

When [expr] is 0 and Esc is typed, there will be a short delay
while Vim waits to see if this is the start of an escape
sequence.

When [expr] is 1 only the first byte is returned. For a

builtin.txt — 1310

one-byte character it is the character itself as a number.
Use nr2char() to convert it to a String.

Use getcharmod() to obtain any additional modifiers.

When the user clicks a mouse button, the mouse event will be
returned. The position can then be found in v:mouse_col ,
v:mouse_lnum , v:mouse_winid and v:mouse_win .
getmousepos() can also be used. Mouse move events will be
ignored.
This example positions the mouse as it would normally happen:

let c = getchar()
if c == "\<LeftMouse>" && v:mouse_win > 0

exe v:mouse_win .. "wincmd w"
exe v:mouse_lnum
exe "normal " .. v:mouse_col .. "|"

endif

When using bracketed paste only the first character is
returned, the rest of the pasted text is dropped.
xterm-bracketed-paste .

There is no prompt, you will somehow have to make clear to the
user that a character has to be typed. The screen is not
redrawn, e.g. when resizing the window. When using a popup
window it should work better with a popup-filter .

There is no mapping for the character.
Key codes are replaced, thus when the user presses the
key you get the code for the key, not the raw character
sequence. Examples:

getchar() == "\"
getchar() == "\<S-Left>"

This example redefines "f" to ignore case:
:nmap f :call FindChar()<CR>
:function FindChar()
: let c = nr2char(getchar())
: while col('.') < col('$') - 1
: normal l
: if getline('.')[col('.') - 1] ==? c
: break
: endif
: endwhile
:endfunction

You may also receive synthetic characters, such as
<CursorHold> . Often you will want to ignore this and get
another character:

:function GetKey()
: let c = getchar()
: while c == "\<CursorHold>"
: let c = getchar()
: endwhile
: return c
:endfunction

getcharmod() getcharmod()
The result is a Number which is the state of the modifiers for
the last obtained character with getchar() or in another way.
These values are added together:

builtin.txt — 1311

2 shift
4 control
8 alt (meta)
16 meta (when it's different from ALT)
32 mouse double click
64 mouse triple click
96 mouse quadruple click (== 32 + 64)
128 command (Mac) or super (GTK)

Only the modifiers that have not been included in the
character itself are obtained. Thus Shift-a results in "A"
without a modifier. Returns 0 if no modifiers are used.

getcharpos()
getcharpos({expr})

Get the position for String {expr}. Same as getpos() but the
column number in the returned List is a character index
instead of a byte index.
If getpos() returns a very large column number, equal to
v:maxcol , then getcharpos() will return the character index
of the last character.

Example:
With the cursor on '�' in line 5 with text "����":

getcharpos('.') returns [0, 5, 3, 0]
getpos('.') returns [0, 5, 7, 0]

Can also be used as a method :
GetMark()->getcharpos()

getcharsearch() getcharsearch()
Return the current character search information as a {dict}
with the following entries:

char character previously used for a character
search (t , f , T , or F); empty string
if no character search has been performed

forward direction of character search; 1 for forward,
0 for backward

until type of character search; 1 for a t or T
character search, 0 for an f or F
character search

This can be useful to always have ; and , search
forward/backward regardless of the direction of the previous
character search:

:nnoremap <expr> ; getcharsearch().forward ? ';' : ','
:nnoremap <expr> , getcharsearch().forward ? ',' : ';'

Also see setcharsearch() .

getcharstr([expr]) getcharstr()
Get a single character from the user or input stream as a
string.
If [expr] is omitted, wait until a character is available.
If [expr] is 0 or false, only get a character when one is

available. Return an empty string otherwise.
If [expr] is 1 or true, only check if a character is

available, it is not consumed. Return an empty string
if no character is available.

Otherwise this works like getchar() , except that a number

builtin.txt — 1312

result is converted to a string.

getcmdcompltype() getcmdcompltype()
Return the type of the current command-line completion.
Only works when the command line is being edited, thus
requires use of c_CTRL-_e or c_CTRL-R_= .
See :command-completion for the return string.
Also see getcmdtype() , setcmdpos() , getcmdline() and
setcmdline() .
Returns an empty string when completion is not defined.

getcmdline() getcmdline()
Return the current command-line. Only works when the command
line is being edited, thus requires use of c_CTRL-_e or
c_CTRL-R_= .
Example:

:cmap <F7> <C-\>eescape(getcmdline(), ' \')<CR>
Also see getcmdtype() , getcmdpos() , setcmdpos() and

setcmdline() .
Returns an empty string when entering a password or using
inputsecret() .

getcmdpos() getcmdpos()
Return the position of the cursor in the command line as a
byte count. The first column is 1.
Only works when editing the command line, thus requires use of
c_CTRL-_e or c_CTRL-R_= or an expression mapping.
Returns 0 otherwise.
Also see getcmdtype() , setcmdpos() , getcmdline() and
setcmdline() .

getcmdscreenpos() getcmdscreenpos()
Return the screen position of the cursor in the command line
as a byte count. The first column is 1.
Instead of getcmdpos() , it adds the prompt position.
Only works when editing the command line, thus requires use of
c_CTRL-_e or c_CTRL-R_= or an expression mapping.
Returns 0 otherwise.
Also see getcmdpos() , setcmdpos() , getcmdline() and
setcmdline() .

getcmdtype() getcmdtype()
Return the current command-line type. Possible return values
are:

: normal Ex command
> debug mode command debug-mode
/ forward search command
? backward search command
@ input() command
- :insert or :append command
= i_CTRL-R_=

Only works when editing the command line, thus requires use of
c_CTRL-_e or c_CTRL-R_= or an expression mapping.
Returns an empty string otherwise.
Also see getcmdpos() , setcmdpos() and getcmdline() .

getcmdwintype() getcmdwintype()
Return the current command-line-window type. Possible return
values are the same as getcmdtype() . Returns an empty string
when not in the command-line window.

builtin.txt — 1313

getcompletion({pat}, {type} [, {filtered}]) getcompletion()
Return a list of command-line completion matches. The String
{type} argument specifies what for. The following completion
types are supported:

arglist file names in argument list
augroup autocmd groups
buffer buffer names
behave :behave suboptions
breakpoint :breakadd and :breakdel suboptions
color color schemes
command Ex command
cmdline cmdline-completion result
compiler compilers
cscope :cscope suboptions
custom,{func} custom completion, defined via {func}
customlist,{func} custom completion, defined via {func}
diff_buffer :diffget and :diffput completion
dir directory names
environment environment variable names
event autocommand events
expression Vim expression
file file and directory names
file_in_path file and directory names in 'path'
filetype filetype names 'filetype'
function function name
help help subjects
highlight highlight groups
history :history suboptions
keymap keyboard mappings
locale locale names (as output of locale -a)
mapclear buffer argument
mapping mapping name
menu menus
messages :messages suboptions
option options
packadd optional package pack-add names
runtime :runtime completion
scriptnames sourced script names :scriptnames
shellcmd Shell command
sign :sign suboptions
syntax syntax file names 'syntax'
syntime :syntime suboptions
tag tags
tag_listfiles tags, file names
user user names
var user variables

If {pat} is an empty string, then all the matches are
returned. Otherwise only items matching {pat} are returned.
See wildcards for the use of special characters in {pat}.

If the optional {filtered} flag is set to 1, then 'wildignore'
is applied to filter the results. Otherwise all the matches
are returned. The 'wildignorecase' option always applies.

If the 'wildoptions' option contains 'fuzzy', then fuzzy
matching is used to get the completion matches. Otherwise
regular expression matching is used. Thus this function

builtin.txt — 1314

follows the user preference, what happens on the command line.
If you do not want this you can make 'wildoptions' empty
before calling getcompletion() and restore it afterwards.

If {type} is "cmdline", then the cmdline-completion result is
returned. For example, to complete the possible values after
a ":call" command:

echo getcompletion('call ', 'cmdline')

If there are no matches, an empty list is returned. An
invalid value for {type} produces an error.

Can also be used as a method :
GetPattern()->getcompletion('color')

getcurpos()
getcurpos([{winid}])

Get the position of the cursor. This is like getpos('.'), but
includes an extra "curswant" item in the list:

[0, lnum, col, off, curswant]
The "curswant" number is the preferred column when moving the
cursor vertically. After $ command it will be a very large
number equal to v:maxcol . Also see getcursorcharpos() and
getpos() .
The first "bufnum" item is always zero. The byte position of
the cursor is returned in 'col'. To get the character
position, use getcursorcharpos() .

The optional {winid} argument can specify the window. It can
be the window number or the window-ID . The last known
cursor position is returned, this may be invalid for the
current value of the buffer if it is not the current window.
If {winid} is invalid a list with zeroes is returned.

This can be used to save and restore the cursor position:
let save_cursor = getcurpos()
MoveTheCursorAround
call setpos('.', save_cursor)

Note that this only works within the window. See
winrestview() for restoring more state.

Can also be used as a method :
GetWinid()->getcurpos()

getcursorcharpos()
getcursorcharpos([{winid}])

Same as getcurpos() but the column number in the returned
List is a character index instead of a byte index.

Example:
With the cursor on '�' in line 3 with text "����":

getcursorcharpos() returns [0, 3, 2, 0, 3]
getcurpos() returns [0, 3, 4, 0, 3]

Can also be used as a method :
GetWinid()->getcursorcharpos()

getcwd()
getcwd([{winnr} [, {tabnr}]])

The result is a String, which is the name of the current

builtin.txt — 1315

working directory. 'autochdir' is ignored.

With {winnr} return the local current directory of this window
in the current tab page. {winnr} can be the window number or
the window-ID .
If {winnr} is -1 return the name of the global working
directory. See also haslocaldir() .

With {winnr} and {tabnr} return the local current directory of
the window in the specified tab page. If {winnr} is -1 return
the working directory of the tabpage.
If {winnr} is zero use the current window, if {tabnr} is zero
use the current tabpage.
Without any arguments, return the actual working directory of
the current window.
Return an empty string if the arguments are invalid.

Examples:
" Get the working directory of the current window
:echo getcwd()
:echo getcwd(0)
:echo getcwd(0, 0)
" Get the working directory of window 3 in tabpage 2
:echo getcwd(3, 2)
" Get the global working directory
:echo getcwd(-1)
" Get the working directory of tabpage 3
:echo getcwd(-1, 3)
" Get the working directory of current tabpage
:echo getcwd(-1, 0)

Can also be used as a method :
GetWinnr()->getcwd()

getenv({name}) getenv()
Return the value of environment variable {name}. The {name}
argument is a string, without a leading '$'. Example:

myHome = getenv('HOME')

When the variable does not exist v:null is returned. That
is different from a variable set to an empty string, although
some systems interpret the empty value as the variable being
deleted. See also expr-env .

Can also be used as a method :
GetVarname()->getenv()

getfontname([{name}]) getfontname()
Without an argument returns the name of the normal font being
used. Like what is used for the Normal highlight group
hl-Normal .
With an argument a check is done whether String {name} is a
valid font name. If not then an empty string is returned.
Otherwise the actual font name is returned, or {name} if the
GUI does not support obtaining the real name.
Only works when the GUI is running, thus not in your vimrc or
gvimrc file. Use the GUIEnter autocommand to use this
function just after the GUI has started.
Note that the GTK GUI accepts any font name, thus checking for
a valid name does not work.

builtin.txt — 1316

getfperm({fname}) getfperm()
The result is a String, which is the read, write, and execute
permissions of the given file {fname}.
If {fname} does not exist or its directory cannot be read, an
empty string is returned.
The result is of the form "rwxrwxrwx", where each group of
"rwx" flags represent, in turn, the permissions of the owner
of the file, the group the file belongs to, and other users.
If a user does not have a given permission the flag for this
is replaced with the string "-". Examples:

:echo getfperm("/etc/passwd")
:echo getfperm(expand("~/.vimrc"))

This will hopefully (from a security point of view) display
the string "rw-r--r--" or even "rw-------".

Can also be used as a method :
GetFilename()->getfperm()

For setting permissions use setfperm() .

getfsize({fname}) getfsize()
The result is a Number, which is the size in bytes of the
given file {fname}.
If {fname} is a directory, 0 is returned.
If the file {fname} can't be found, -1 is returned.
If the size of {fname} is too big to fit in a Number then -2
is returned.

Can also be used as a method :
GetFilename()->getfsize()

getftime({fname}) getftime()
The result is a Number, which is the last modification time of
the given file {fname}. The value is measured as seconds
since 1st Jan 1970, and may be passed to strftime(). See also
localtime() and strftime() .
If the file {fname} can't be found -1 is returned.

Can also be used as a method :
GetFilename()->getftime()

getftype({fname}) getftype()
The result is a String, which is a description of the kind of
file of the given file {fname}.
If {fname} does not exist an empty string is returned.
Here is a table over different kinds of files and their
results:

Normal file "file"
Directory "dir"
Symbolic link "link"
Block device "bdev"
Character device "cdev"
Socket "socket"
FIFO "fifo"
All other "other"

Example:
getftype("/home")

Note that a type such as "link" will only be returned on
systems that support it. On some systems only "dir" and

builtin.txt — 1317

"file" are returned. On MS-Windows a symbolic link to a
directory returns "dir" instead of "link".

Can also be used as a method :
GetFilename()->getftype()

getimstatus() getimstatus()
The result is a Number, which is TRUE when the IME status is
active and FALSE otherwise.
See 'imstatusfunc'.

getjumplist([{winnr} [, {tabnr}]]) getjumplist()
Returns the jumplist for the specified window.

Without arguments use the current window.
With {winnr} only use this window in the current tab page.
{winnr} can also be a window-ID .
With {winnr} and {tabnr} use the window in the specified tab
page. If {winnr} or {tabnr} is invalid, an empty list is
returned.

The returned list contains two entries: a list with the jump
locations and the last used jump position number in the list.
Each entry in the jump location list is a dictionary with
the following entries:

bufnr buffer number
col column number
coladd column offset for 'virtualedit'
filename filename if available
lnum line number

Can also be used as a method :
GetWinnr()->getjumplist()

getline()
getline({lnum} [, {end}])

Without {end} the result is a String, which is line {lnum}
from the current buffer. Example:

getline(1)
When {lnum} is a String that doesn't start with a
digit, line() is called to translate the String into a Number.
To get the line under the cursor:

getline(".")
When {lnum} is a number smaller than 1 or bigger than the
number of lines in the buffer, an empty string is returned.

When {end} is given the result is a List where each item is
a line from the current buffer in the range {lnum} to {end},
including line {end}.
{end} is used in the same way as {lnum}.
Non-existing lines are silently omitted.
When {end} is before {lnum} an empty List is returned.
Example:

:let start = line('.')
:let end = search("^$") - 1
:let lines = getline(start, end)

Can also be used as a method :
ComputeLnum()->getline()

builtin.txt — 1318

To get lines from another buffer see getbufline() and
getbufoneline()

getloclist({nr} [, {what}]) getloclist()
Returns a List with all the entries in the location list for
window {nr}. {nr} can be the window number or the window-ID .
When {nr} is zero the current window is used.

For a location list window, the displayed location list is
returned. For an invalid window number {nr}, an empty list is
returned. Otherwise, same as getqflist() .

If the optional {what} dictionary argument is supplied, then
returns the items listed in {what} as a dictionary. Refer to
getqflist() for the supported items in {what}.

In addition to the items supported by getqflist() in {what},
the following item is supported by getloclist() :

filewinid id of the window used to display files
from the location list. This field is
applicable only when called from a
location list window. See
location-list-file-window for more
details.

Returns a Dictionary with default values if there is no
location list for the window {nr}.
Returns an empty Dictionary if window {nr} does not exist.

Examples (See also getqflist-examples):
:echo getloclist(3, {'all': 0})
:echo getloclist(5, {'filewinid': 0})

getmarklist([{buf}]) getmarklist()
Without the {buf} argument returns a List with information
about all the global marks. mark

If the optional {buf} argument is specified, returns the
local marks defined in buffer {buf}. For the use of {buf},
see bufname() . If {buf} is invalid, an empty list is
returned.

Each item in the returned List is a Dict with the following:
mark name of the mark prefixed by "'"
pos a List with the position of the mark:

[bufnum, lnum, col, off]
Refer to getpos() for more information.

file file name

Refer to getpos() for getting information about a specific
mark.

Can also be used as a method :
GetBufnr()->getmarklist()

getmatches([{win}]) getmatches()
Returns a List with all matches previously defined for the
current window by matchadd() and the :match commands.

builtin.txt — 1319

getmatches() is useful in combination with setmatches() ,
as setmatches() can restore a list of matches saved by
getmatches() .
If {win} is specified, use the window with this number or
window ID instead of the current window. If {win} is invalid,
an empty list is returned.
Example:

:echo getmatches()
[{'group': 'MyGroup1', 'pattern': 'TODO',
'priority': 10, 'id': 1}, {'group': 'MyGroup2',
'pattern': 'FIXME', 'priority': 10, 'id': 2}]
:let m = getmatches()
:call clearmatches()
:echo getmatches()
[]
:call setmatches(m)
:echo getmatches()
[{'group': 'MyGroup1', 'pattern': 'TODO',
'priority': 10, 'id': 1}, {'group': 'MyGroup2',
'pattern': 'FIXME', 'priority': 10, 'id': 2}]
:unlet m

getmousepos() getmousepos()
Returns a Dictionary with the last known position of the
mouse. This can be used in a mapping for a mouse click or in
a filter of a popup window. The items are:

screenrow screen row
screencol screen column
winid Window ID of the click
winrow row inside "winid"
wincol column inside "winid"
line text line inside "winid"
column text column inside "winid"
coladd offset (in screen columns) from the

start of the clicked char
All numbers are 1-based.

If not over a window, e.g. when in the command line, then only
"screenrow" and "screencol" are valid, the others are zero.

When on the status line below a window or the vertical
separator right of a window, the "line" and "column" values
are zero.

When the position is after the text then "column" is the
length of the text in bytes plus one.

If the mouse is over a popup window then that window is used.

When using getchar() the Vim variables v:mouse_lnum ,
v:mouse_col and v:mouse_winid also provide these values.

getmouseshape() getmouseshape()
Returns the name of the currently showing mouse pointer.
When the +mouseshape feature is not supported or the shape
is unknown an empty string is returned.
This function is mainly intended for testing.

getpid()
getpid() Return a Number which is the process ID of the Vim process.

builtin.txt — 1320

On Unix and MS-Windows this is a unique number, until Vim
exits.

getpos()
getpos({expr}) Get the position for String {expr}. For possible values of

{expr} see line() . For getting the cursor position see
getcurpos() .
The result is a List with four numbers:

[bufnum, lnum, col, off]
"bufnum" is zero, unless a mark like '0 or 'A is used, then it
is the buffer number of the mark.
"lnum" and "col" are the position in the buffer. The first
column is 1.
The "off" number is zero, unless 'virtualedit' is used. Then
it is the offset in screen columns from the start of the
character. E.g., a position within a <Tab> or after the last
character.
Note that for '< and '> Visual mode matters: when it is "V"
(visual line mode) the column of '< is zero and the column of
'> is a large number equal to v:maxcol .
The column number in the returned List is the byte position
within the line. To get the character position in the line,
use getcharpos() .
A very large column number equal to v:maxcol can be returned,
in which case it means "after the end of the line".
If {expr} is invalid, returns a list with all zeros.
This can be used to save and restore the position of a mark:

let save_a_mark = getpos("'a")
...
call setpos("'a", save_a_mark)

Also see getcharpos() , getcurpos() and setpos() .

Can also be used as a method :
GetMark()->getpos()

getqflist([{what}]) getqflist()
Returns a List with all the current quickfix errors. Each
list item is a dictionary with these entries:

bufnr number of buffer that has the file name, use
bufname() to get the name

module module name
lnum line number in the buffer (first line is 1)
end_lnum

end of line number if the item is multiline
col column number (first column is 1)
end_col end of column number if the item has range
vcol TRUE : "col" is visual column

FALSE : "col" is byte index
nr error number
pattern search pattern used to locate the error
text description of the error
type type of the error, 'E', '1', etc.
valid TRUE : recognized error message
user_data

custom data associated with the item, can be
any type.

When there is no error list or it's empty, an empty list is
returned. Quickfix list entries with a non-existing buffer
number are returned with "bufnr" set to zero (Note: some

builtin.txt — 1321

functions accept buffer number zero for the alternate buffer,
you may need to explicitly check for zero).

Useful application: Find pattern matches in multiple files and
do something with them:

:vimgrep /theword/jg *.c
:for d in getqflist()
: echo bufname(d.bufnr) ':' d.lnum '=' d.text
:endfor

If the optional {what} dictionary argument is supplied, then
returns only the items listed in {what} as a dictionary. The
following string items are supported in {what}:

changedtick get the total number of changes made
to the list quickfix-changedtick

context get the quickfix-context
efm errorformat to use when parsing "lines". If

not present, then the 'errorformat' option
value is used.

id get information for the quickfix list with
quickfix-ID ; zero means the id for the

current list or the list specified by "nr"
idx get information for the quickfix entry at this

index in the list specified by 'id' or 'nr'.
If set to zero, then uses the current entry.
See quickfix-index

items quickfix list entries
lines parse a list of lines using 'efm' and return

the resulting entries. Only a List type is
accepted. The current quickfix list is not
modified. See quickfix-parse .

nr get information for this quickfix list; zero
means the current quickfix list and "$" means
the last quickfix list

qfbufnr number of the buffer displayed in the quickfix
window. Returns 0 if the quickfix buffer is
not present. See quickfix-buffer .

size number of entries in the quickfix list
title get the list title quickfix-title
winid get the quickfix window-ID
all all of the above quickfix properties

Non-string items in {what} are ignored. To get the value of a
particular item, set it to zero.
If "nr" is not present then the current quickfix list is used.
If both "nr" and a non-zero "id" are specified, then the list
specified by "id" is used.
To get the number of lists in the quickfix stack, set "nr" to
"$" in {what}. The "nr" value in the returned dictionary
contains the quickfix stack size.
When "lines" is specified, all the other items except "efm"
are ignored. The returned dictionary contains the entry
"items" with the list of entries.

The returned dictionary contains the following entries:
changedtick total number of changes made to the

list quickfix-changedtick
context quickfix list context. See quickfix-context

If not present, set to "".
id quickfix list ID quickfix-ID . If not

present, set to 0.

builtin.txt — 1322

idx index of the quickfix entry in the list. If not
present, set to 0.

items quickfix list entries. If not present, set to
an empty list.

nr quickfix list number. If not present, set to 0
qfbufnr number of the buffer displayed in the quickfix

window. If not present, set to 0.
size number of entries in the quickfix list. If not

present, set to 0.
title quickfix list title text. If not present, set

to "".
winid quickfix window-ID . If not present, set to 0

Examples (See also getqflist-examples):
:echo getqflist({'all': 1})
:echo getqflist({'nr': 2, 'title': 1})
:echo getqflist({'lines' : ["F1:10:L10"]})

getreg([{regname} [, 1 [, {list}]]]) getreg()
The result is a String, which is the contents of register
{regname}. Example:

:let cliptext = getreg('*')
When register {regname} was not set the result is an empty
string.
The {regname} argument must be a string. E1162

getreg('=') returns the last evaluated value of the expression
register. (For use in maps.)
getreg('=', 1) returns the expression itself, so that it can
be restored with setreg() . For other registers the extra
argument is ignored, thus you can always give it.

If {list} is present and TRUE , the result type is changed
to List . Each list item is one text line. Use it if you care
about zero bytes possibly present inside register: without
third argument both NLs and zero bytes are represented as NLs
(see NL-used-for-Nul).
When the register was not set an empty list is returned.

If {regname} is "", the unnamed register '"' is used.
If {regname} is not specified, v:register is used.
In Vim9-script {regname} must be one character.

Can also be used as a method :
GetRegname()->getreg()

getreginfo([{regname}]) getreginfo()
Returns detailed information about register {regname} as a
Dictionary with the following entries:

regcontents List of lines contained in register
{regname}, like
getreg ({regname}, 1, 1).

regtype the type of register {regname}, as in
getregtype() .

isunnamed Boolean flag, v:true if this register
is currently pointed to by the unnamed
register.

points_to for the unnamed register, gives the
single letter name of the register
currently pointed to (see quotequote).

builtin.txt — 1323

For example, after deleting a line
with `dd`, this field will be "1",
which is the register that got the
deleted text.

The {regname} argument is a string. If {regname} is invalid
or not set, an empty Dictionary will be returned.
If {regname} is "" or "@", the unnamed register '"' is used.
If {regname} is not specified, v:register is used.
The returned Dictionary can be passed to setreg() .
In Vim9-script {regname} must be one character.

Can also be used as a method :
GetRegname()->getreginfo()

getregion({pos1}, {pos2} [, {opts}]) getregion()
Returns the list of strings from {pos1} to {pos2} from a
buffer.

{pos1} and {pos2} must both be List s with four numbers.
See getpos() for the format of the list. It's possible
to specify positions from a different buffer, but please
note the limitations at getregion-notes .

The optional argument {opts} is a Dict and supports the
following items:

type Specify the region's selection type
(default: "v"):

"v" for characterwise mode
"V" for linewise mode
"<CTRL-V>" for blockwise-visual mode

exclusive If TRUE , use exclusive selection
for the end position
(default: follow 'selection')

You can get the last selection type by visualmode() .
If Visual mode is active, use mode() to get the Visual mode
(e.g., in a :vmap).
This function is useful to get text starting and ending in
different columns, such as a characterwise-visual selection.

getregion-notes
Note that:
- Order of {pos1} and {pos2} doesn't matter, it will always
return content from the upper left position to the lower
right position.

- If 'virtualedit' is enabled and the region is past the end
of the lines, resulting lines are padded with spaces.

- If the region is blockwise and it starts or ends in the
middle of a multi-cell character, it is not included but
its selected part is substituted with spaces.

- If {pos1} and {pos2} are not in the same buffer, an empty
list is returned.

- {pos1} and {pos2} must belong to a bufloaded() buffer.
- It is evaluated in current window context, which makes a
difference if the buffer is displayed in a window with
different 'virtualedit' or 'list' values.

builtin.txt — 1324

Examples:
:xnoremap <CR>
\ <Cmd>echow getregion(
\ getpos('v'), getpos('.'), #{ type: mode() })<CR>

Can also be used as a method :
getpos('.')->getregion(getpos("'a"))

getregtype([{regname}]) getregtype()
The result is a String, which is type of register {regname}.
The value will be one of:

"v" for characterwise text
"V" for linewise text
"<CTRL-V>{width}" for blockwise-visual text
"" for an empty or unknown register

<CTRL-V> is one character with value 0x16.
The {regname} argument is a string. If {regname} is "", the
unnamed register '"' is used. If {regname} is not specified,
v:register is used.
In Vim9-script {regname} must be one character.

Can also be used as a method :
GetRegname()->getregtype()

getscriptinfo([{opts}]) getscriptinfo()
Returns a List with information about all the sourced Vim
scripts in the order they were sourced, like what
`:scriptnames` shows.

The optional Dict argument {opts} supports the following
optional items:

name Script name match pattern. If specified,
and "sid" is not specified, information about
scripts with a name that match the pattern
"name" are returned.

sid Script ID <SID> . If specified, only
information about the script with ID "sid" is
returned and "name" is ignored.

Each item in the returned List is a Dict with the following
items:

autoload Set to TRUE for a script that was used with
`import autoload` but was not actually sourced
yet (see import-autoload).

functions List of script-local function names defined in
the script. Present only when a particular
script is specified using the "sid" item in
{opts}.

name Vim script file name.
sid Script ID <SID> .
sourced Script ID of the actually sourced script that

this script name links to, if any, otherwise
zero

variables A dictionary with the script-local variables.
Present only when a particular script is
specified using the "sid" item in {opts}.
Note that this is a copy, the value of
script-local variables cannot be changed using
this dictionary.

version Vim script version (scriptversion)

builtin.txt — 1325

Examples:
:echo getscriptinfo({'name': 'myscript'})
:echo getscriptinfo({'sid': 15}).variables

gettabinfo([{tabnr}]) gettabinfo()
If {tabnr} is not specified, then information about all the
tab pages is returned as a List . Each List item is a
Dictionary . Otherwise, {tabnr} specifies the tab page
number and information about that one is returned. If the tab
page does not exist an empty List is returned.

Each List item is a Dictionary with the following entries:
tabnr tab page number.
variables a reference to the dictionary with

tabpage-local variables
windows List of window-ID s in the tab page.

Can also be used as a method :
GetTabnr()->gettabinfo()

gettabvar({tabnr}, {varname} [, {def}]) gettabvar()
Get the value of a tab-local variable {varname} in tab page
{tabnr}. t:var
Tabs are numbered starting with one.
The {varname} argument is a string. When {varname} is empty a
dictionary with all tab-local variables is returned.
Note that the name without "t:" must be used.
When the tab or variable doesn't exist {def} or an empty
string is returned, there is no error message.

Can also be used as a method :
GetTabnr()->gettabvar(varname)

gettabwinvar({tabnr}, {winnr}, {varname} [, {def}]) gettabwinvar()
Get the value of window-local variable {varname} in window
{winnr} in tab page {tabnr}.
The {varname} argument is a string. When {varname} is empty a
dictionary with all window-local variables is returned.
When {varname} is equal to "&" get the values of all
window-local options in a Dictionary .
Otherwise, when {varname} starts with "&" get the value of a
window-local option.
Note that {varname} must be the name without "w:".
Tabs are numbered starting with one. For the current tabpage
use getwinvar() .
{winnr} can be the window number or the window-ID .
When {winnr} is zero the current window is used.
This also works for a global option, buffer-local option and
window-local option, but it doesn't work for a global variable
or buffer-local variable.
When the tab, window or variable doesn't exist {def} or an
empty string is returned, there is no error message.
Examples:

:let list_is_on = gettabwinvar(1, 2, '&list')
:echo "myvar = " .. gettabwinvar(3, 1, 'myvar')

To obtain all window-local variables use:
gettabwinvar({tabnr}, {winnr}, '&')

builtin.txt — 1326

Can also be used as a method :
GetTabnr()->gettabwinvar(winnr, varname)

gettagstack([{winnr}]) gettagstack()
The result is a Dict, which is the tag stack of window {winnr}.
{winnr} can be the window number or the window-ID .
When {winnr} is not specified, the current window is used.
When window {winnr} doesn't exist, an empty Dict is returned.

The returned dictionary contains the following entries:
curidx Current index in the stack. When at

top of the stack, set to (length + 1).
Index of bottom of the stack is 1.

items List of items in the stack. Each item
is a dictionary containing the
entries described below.

length Number of entries in the stack.

Each item in the stack is a dictionary with the following
entries:

bufnr buffer number of the current jump
from cursor position before the tag jump.

See getpos() for the format of the
returned list.

matchnr current matching tag number. Used when
multiple matching tags are found for a
name.

tagname name of the tag

See tagstack for more information about the tag stack.

Can also be used as a method :
GetWinnr()->gettagstack()

gettext({text}) gettext()
Translate String {text} if possible.
This is mainly for use in the distributed Vim scripts. When
generating message translations the {text} is extracted by
xgettext, the translator can add the translated message in the
.po file and Vim will lookup the translation when gettext() is
called.
For {text} double quoted strings are preferred, because
xgettext does not understand escaping in single quoted
strings.

getwininfo([{winid}]) getwininfo()
Returns information about windows as a List with Dictionaries.

If {winid} is given Information about the window with that ID
is returned, as a List with one item. If the window does not
exist the result is an empty list.

Without {winid} information about all the windows in all the
tab pages is returned.

Each List item is a Dictionary with the following entries:
botline last complete displayed buffer line
bufnr number of buffer in the window

builtin.txt — 1327

height window height (excluding winbar)
loclist 1 if showing a location list

{only with the +quickfix feature}
quickfix 1 if quickfix or location list window

{only with the +quickfix feature}
terminal 1 if a terminal window

{only with the +terminal feature}
tabnr tab page number
topline first displayed buffer line
variables a reference to the dictionary with

window-local variables
width window width
winbar 1 if the window has a toolbar, 0

otherwise
wincol leftmost screen column of the window;

"col" from win_screenpos()
textoff number of columns occupied by any

'foldcolumn', 'signcolumn' and line
number in front of the text

winid window-ID
winnr window number
winrow topmost screen line of the window;

"row" from win_screenpos()

Can also be used as a method :
GetWinnr()->getwininfo()

getwinpos([{timeout}]) getwinpos()
The result is a List with two numbers, the result of
getwinposx() and getwinposy() combined:

[x-pos, y-pos]
{timeout} can be used to specify how long to wait in msec for
a response from the terminal. When omitted 100 msec is used.
Use a longer time for a remote terminal.
When using a value less than 10 and no response is received
within that time, a previously reported position is returned,
if available. This can be used to poll for the position and
do some work in the meantime:

while 1
let res = getwinpos(1)
if res[0] >= 0

break
endif
" Do some work here

endwhile

Can also be used as a method :
GetTimeout()->getwinpos()

getwinposx()
getwinposx() The result is a Number, which is the X coordinate in pixels of

the left hand side of the GUI Vim window. Also works for an
xterm (uses a timeout of 100 msec).
The result will be -1 if the information is not available
(e.g. on the Wayland backend).
The value can be used with `:winpos`.

getwinposy()
getwinposy() The result is a Number, which is the Y coordinate in pixels of

builtin.txt — 1328

the top of the GUI Vim window. Also works for an xterm (uses
a timeout of 100 msec).
The result will be -1 if the information is not available
(e.g. on the Wayland backend).
The value can be used with `:winpos`.

getwinvar({winnr}, {varname} [, {def}]) getwinvar()
Like gettabwinvar() for the current tabpage.
Examples:

:let list_is_on = getwinvar(2, '&list')
:echo "myvar = " .. getwinvar(1, 'myvar')

Can also be used as a method :
GetWinnr()->getwinvar(varname)

glob({expr} [, {nosuf} [, {list} [, {alllinks}]]]) glob()
Expand the file wildcards in {expr}. See wildcards for the
use of special characters.

Unless the optional {nosuf} argument is given and is TRUE ,
the 'suffixes' and 'wildignore' options apply: Names matching
one of the patterns in 'wildignore' will be skipped and
'suffixes' affect the ordering of matches.
'wildignorecase' always applies.

When {list} is present and it is TRUE the result is a List
with all matching files. The advantage of using a List is,
you also get filenames containing newlines correctly.
Otherwise the result is a String and when there are several
matches, they are separated by <NL> characters.

If the expansion fails, the result is an empty String or List.

You can also use readdir() if you need to do complicated
things, such as limiting the number of matches.

A name for a non-existing file is not included. A symbolic
link is only included if it points to an existing file.
However, when the {alllinks} argument is present and it is
TRUE then all symbolic links are included.

For most systems backticks can be used to get files names from
any external command. Example:

:let tagfiles = glob("`find . -name tags -print`")
:let &tags = substitute(tagfiles, "\n", ",", "g")

The result of the program inside the backticks should be one
item per line. Spaces inside an item are allowed.

See expand() for expanding special Vim variables. See
system() for getting the raw output of an external command.

Can also be used as a method :
GetExpr()->glob()

glob2regpat({string}) glob2regpat()
Convert a file pattern, as used by glob(), into a search
pattern. The result can be used to match with a string that
is a file name. E.g.

if filename =~ glob2regpat('Make*.mak')
This is equivalent to:

builtin.txt — 1329

if filename =~ '^Make.*\.mak$'
When {string} is an empty string the result is "^$", match an
empty string.
Note that the result depends on the system. On MS-Windows
a backslash usually means a path separator.

Can also be used as a method :
GetExpr()->glob2regpat()

globpath()
globpath({path}, {expr} [, {nosuf} [, {list} [, {alllinks}]]])

Perform glob() for String {expr} on all directories in {path}
and concatenate the results. Example:

:echo globpath(&rtp, "syntax/c.vim")

{path} is a comma-separated list of directory names. Each
directory name is prepended to {expr} and expanded like with
glob() . A path separator is inserted when needed.
To add a comma inside a directory name escape it with a
backslash. Note that on MS-Windows a directory may have a
trailing backslash, remove it if you put a comma after it.
If the expansion fails for one of the directories, there is no
error message.

Unless the optional {nosuf} argument is given and is TRUE ,
the 'suffixes' and 'wildignore' options apply: Names matching
one of the patterns in 'wildignore' will be skipped and
'suffixes' affect the ordering of matches.

When {list} is present and it is TRUE the result is a List
with all matching files. The advantage of using a List is, you
also get filenames containing newlines correctly. Otherwise
the result is a String and when there are several matches,
they are separated by <NL> characters. Example:

:echo globpath(&rtp, "syntax/c.vim", 0, 1)

{alllinks} is used as with glob() .

The "**" item can be used to search in a directory tree.
For example, to find all "README.txt" files in the directories
in 'runtimepath' and below:

:echo globpath(&rtp, "**/README.txt")
Upwards search and limiting the depth of "**" is not
supported, thus using 'path' will not always work properly.

Can also be used as a method , the base is passed as the
second argument:

GetExpr()->globpath(&rtp)

has()
has({feature} [, {check}])

When {check} is omitted or is zero: The result is a Number,
which is 1 if the feature {feature} is supported, zero
otherwise. The {feature} argument is a string, case is
ignored. See feature-list below.

When {check} is present and not zero: The result is a Number,
which is 1 if the feature {feature} could ever be supported,
zero otherwise. This is useful to check for a typo in
{feature} and to detect dead code. Keep in mind that an older
Vim version will not know about a feature added later and

builtin.txt — 1330

features that have been abandoned will not be known by the
current Vim version.

Also see exists() and exists_compiled() .

Note that to skip code that has a syntax error when the
feature is not available, Vim may skip the rest of the line
and miss a following `endif`. Therefore put the `endif` on a
separate line:

if has('feature')
let x = this->breaks->without->the->feature

endif
If the `endif` would be moved to the second line as "| endif" it
would not be found.

has_key({dict}, {key}) has_key()
The result is a Number, which is TRUE if Dictionary {dict}
has an entry with key {key}. FALSE otherwise.
The {key} argument is a string. In Vim9 script a number is
also accepted (and converted to a string) but no other types.
In legacy script the usual automatic conversion to string is
done.

Can also be used as a method :
mydict->has_key(key)

haslocaldir([{winnr} [, {tabnr}]]) haslocaldir()
The result is a Number:

1 when the window has set a local directory via :lcd
2 when the tab-page has set a local directory via :tcd
0 otherwise.

Without arguments use the current window.
With {winnr} use this window in the current tab page.
With {winnr} and {tabnr} use the window in the specified tab
page.
{winnr} can be the window number or the window-ID .
If {winnr} is -1 it is ignored and only the tabpage is used.
Return 0 if the arguments are invalid.
Examples:

if haslocaldir() == 1
" window local directory case

elseif haslocaldir() == 2
" tab-local directory case

else
" global directory case

endif

" current window
:echo haslocaldir()
:echo haslocaldir(0)
:echo haslocaldir(0, 0)
" window n in current tab page
:echo haslocaldir(n)
:echo haslocaldir(n, 0)
" window n in tab page m
:echo haslocaldir(n, m)
" tab page m
:echo haslocaldir(-1, m)

builtin.txt — 1331

Can also be used as a method :
GetWinnr()->haslocaldir()

hasmapto({what} [, {mode} [, {abbr}]]) hasmapto()
The result is a Number, which is TRUE if there is a mapping
that contains {what} in somewhere in the rhs (what it is
mapped to) and this mapping exists in one of the modes
indicated by {mode}.
The arguments {what} and {mode} are strings.
When {abbr} is there and it is TRUE use abbreviations
instead of mappings. Don't forget to specify Insert and/or
Command-line mode.
Both the global mappings and the mappings local to the current
buffer are checked for a match.
If no matching mapping is found FALSE is returned.
The following characters are recognized in {mode}:

n Normal mode
v Visual and Select mode
x Visual mode
s Select mode
o Operator-pending mode
i Insert mode
l Language-Argument ("r", "f", "t", etc.)
c Command-line mode

When {mode} is omitted, "nvo" is used.

This function is useful to check if a mapping already exists
to a function in a Vim script. Example:

:if !hasmapto('\ABCdoit')
: map <Leader>d \ABCdoit
:endif

This installs the mapping to "\ABCdoit" only if there isn't
already a mapping to "\ABCdoit".

Can also be used as a method :
GetRHS()->hasmapto()

histadd({history}, {item}) histadd()
Add the String {item} to the history {history} which can be
one of: hist-names

"cmd" or ":" command line history
"search" or "/" search pattern history
"expr" or "=" typed expression history
"input" or "@" input line history
"debug" or ">" debug command history
empty the current or last used history

The {history} string does not need to be the whole name, one
character is sufficient.
If {item} does already exist in the history, it will be
shifted to become the newest entry.
The result is a Number: TRUE if the operation was successful,
otherwise FALSE is returned.

Example:
:call histadd("input", strftime("%Y %b %d"))
:let date=input("Enter date: ")

This function is not available in the sandbox .

Can also be used as a method , the base is passed as the

builtin.txt — 1332

second argument:
GetHistory()->histadd('search')

histdel({history} [, {item}]) histdel()
Clear {history}, i.e. delete all its entries. See hist-names
for the possible values of {history}.

If the parameter {item} evaluates to a String, it is used as a
regular expression. All entries matching that expression will
be removed from the history (if there are any).
Upper/lowercase must match, unless "\c" is used /\c .
If {item} evaluates to a Number, it will be interpreted as
an index, see :history-indexing . The respective entry will
be removed if it exists.

The result is TRUE for a successful operation, otherwise FALSE
is returned.

Examples:
Clear expression register history:

:call histdel("expr")

Remove all entries starting with "*" from the search history:
:call histdel("/", '^*')

The following three are equivalent:
:call histdel("search", histnr("search"))
:call histdel("search", -1)
:call histdel("search", '^' .. histget("search", -1) .. '$')

To delete the last search pattern and use the last-but-one for
the "n" command and 'hlsearch':

:call histdel("search", -1)
:let @/ = histget("search", -1)

Can also be used as a method :
GetHistory()->histdel()

histget({history} [, {index}]) histget()
The result is a String, the entry with Number {index} from
{history}. See hist-names for the possible values of
{history}, and :history-indexing for {index}. If there is
no such entry, an empty String is returned. When {index} is
omitted, the most recent item from the history is used.

Examples:
Redo the second last search from history.

:execute '/' .. histget("search", -2)

Define an Ex command ":H {num}" that supports re-execution of
the {num}th entry from the output of :history .

:command -nargs=1 H execute histget("cmd", 0+<args>)

Can also be used as a method :
GetHistory()->histget()

histnr({history}) histnr()
The result is the Number of the current entry in {history}.
See hist-names for the possible values of {history}.
If an error occurred, -1 is returned.

builtin.txt — 1333

Example:
:let inp_index = histnr("expr")

Can also be used as a method :
GetHistory()->histnr()

hlexists({name}) hlexists()
The result is a Number, which is TRUE if a highlight group
called {name} exists. This is when the group has been
defined in some way. Not necessarily when highlighting has
been defined for it, it may also have been used for a syntax
item.

highlight_exists()
Obsolete name: highlight_exists().

Can also be used as a method :
GetName()->hlexists()

hlget([{name} [, {resolve}]]) hlget()
Returns a List of all the highlight group attributes. If the
optional {name} is specified, then returns a List with only
the attributes of the specified highlight group. Returns an
empty List if the highlight group {name} is not present.

If the optional {resolve} argument is set to v:true and the
highlight group {name} is linked to another group, then the
link is resolved recursively and the attributes of the
resolved highlight group are returned.

Each entry in the returned List is a Dictionary with the
following items:

cleared boolean flag, set to v:true if the highlight
group attributes are cleared or not yet
specified. See highlight-clear .

cterm cterm attributes. See highlight-cterm .
ctermbg cterm background color.

See highlight-ctermbg .
ctermfg cterm foreground color.

See highlight-ctermfg .
ctermul cterm underline color. See highlight-ctermul .
default boolean flag, set to v:true if the highlight

group link is a default link. See
highlight-default .

font highlight group font. See highlight-font .
gui gui attributes. See highlight-gui .
guibg gui background color. See highlight-guibg .
guifg gui foreground color. See highlight-guifg .
guisp gui special color. See highlight-guisp .
id highlight group ID.
linksto linked highlight group name.

See :highlight-link .
name highlight group name. See group-name .
start start terminal keycode. See highlight-start .
stop stop terminal keycode. See highlight-stop .
term term attributes. See highlight-term .

The 'term', 'cterm' and 'gui' items in the above Dictionary
have a dictionary value with the following optional boolean
items: 'bold', 'standout', 'underline', 'undercurl', 'italic',

builtin.txt — 1334

'reverse', 'inverse' and 'strikethrough'.

Example(s):
:echo hlget()
:echo hlget('ModeMsg')
:echo hlget('Number', v:true)

Can also be used as a method :
GetName()->hlget()

hlset({list}) hlset()
Creates or modifies the attributes of a List of highlight
groups. Each item in {list} is a dictionary containing the
attributes of a highlight group. See hlget() for the list of
supported items in this dictionary.

In addition to the items described in hlget() , the following
additional items are supported in the dictionary:

force boolean flag to force the creation of
a link for an existing highlight group
with attributes.

The highlight group is identified using the 'name' item and
the 'id' item (if supplied) is ignored. If a highlight group
with a specified name doesn't exist, then it is created.
Otherwise the attributes of an existing highlight group are
modified.

If an empty dictionary value is used for the 'term' or 'cterm'
or 'gui' entries, then the corresponding attributes are
cleared. If the 'cleared' item is set to v:true, then all the
attributes of the highlight group are cleared.

The 'linksto' item can be used to link a highlight group to
another highlight group. See :highlight-link .

Returns zero for success, -1 for failure.

Example(s):
" add bold attribute to the Visual highlight group
:call hlset([#{name: 'Visual',

\ term: #{reverse: 1 , bold: 1}}])
:call hlset([#{name: 'Type', guifg: 'DarkGreen'}])
:let l = hlget()
:call hlset(l)
" clear the Search highlight group
:call hlset([#{name: 'Search', cleared: v:true}])
" clear the 'term' attributes for a highlight group
:call hlset([#{name: 'Title', term: {}}])
" create the MyHlg group linking it to DiffAdd
:call hlset([#{name: 'MyHlg', linksto: 'DiffAdd'}])
" remove the MyHlg group link
:call hlset([#{name: 'MyHlg', linksto: 'NONE'}])
" clear the attributes and a link
:call hlset([#{name: 'MyHlg', cleared: v:true,

\ linksto: 'NONE'}])

Can also be used as a method :
GetAttrList()->hlset()

builtin.txt — 1335

hlID()
hlID({name}) The result is a Number, which is the ID of the highlight group

with name {name}. When the highlight group doesn't exist,
zero is returned.
This can be used to retrieve information about the highlight
group. For example, to get the background color of the
"Comment" group:

:echo synIDattr(synIDtrans(hlID("Comment")), "bg")
highlightID()

Obsolete name: highlightID().

Can also be used as a method :
GetName()->hlID()

hostname() hostname()
The result is a String, which is the name of the machine on
which Vim is currently running. Machine names greater than
256 characters long are truncated.

iconv({string}, {from}, {to}) iconv()
The result is a String, which is the text {string} converted
from encoding {from} to encoding {to}.
When the conversion completely fails an empty string is
returned. When some characters could not be converted they
are replaced with "?".
The encoding names are whatever the iconv() library function
can accept, see ":!man 3 iconv".
Most conversions require Vim to be compiled with the +iconv
feature. Otherwise only UTF-8 to latin1 conversion and back
can be done.
This can be used to display messages with special characters,
no matter what 'encoding' is set to. Write the message in
UTF-8 and use:

echo iconv(utf8_str, "utf-8", &enc)
Note that Vim uses UTF-8 for all Unicode encodings, conversion
from/to UCS-2 is automatically changed to use UTF-8. You
cannot use UCS-2 in a string anyway, because of the NUL bytes.

Can also be used as a method :
GetText()->iconv('latin1', 'utf-8')

indent()
indent({lnum}) The result is a Number, which is indent of line {lnum} in the

current buffer. The indent is counted in spaces, the value
of 'tabstop' is relevant. {lnum} is used just like in
getline() .
When {lnum} is invalid -1 is returned. In Vim9 script an
error is given.

Can also be used as a method :
GetLnum()->indent()

index({object}, {expr} [, {start} [, {ic}]]) index()
Find {expr} in {object} and return its index. See
indexof() for using a lambda to select the item.

If {object} is a List return the lowest index where the item
has a value equal to {expr}. There is no automatic
conversion, so the String "4" is different from the Number 4.

builtin.txt — 1336

And the number 4 is different from the Float 4.0. The value
of 'ignorecase' is not used here, case matters as indicated by
the {ic} argument.

If {object} is Blob return the lowest index where the byte
value is equal to {expr}.

If {start} is given then start looking at the item with index
{start} (may be negative for an item relative to the end).

When {ic} is given and it is TRUE , ignore case. Otherwise
case must match.

-1 is returned when {expr} is not found in {object}.
Example:

:let idx = index(words, "the")
:if index(numbers, 123) >= 0

Can also be used as a method :
GetObject()->index(what)

indexof({object}, {expr} [, {opts}]) indexof()
Returns the index of an item in {object} where {expr} is
v:true. {object} must be a List or a Blob .

If {object} is a List , evaluate {expr} for each item in the
List until the expression is v:true and return the index of
this item.

If {object} is a Blob evaluate {expr} for each byte in the
Blob until the expression is v:true and return the index of
this byte.

{expr} must be a string or Funcref .

If {expr} is a string : If {object} is a List , inside
{expr} v:key has the index of the current List item and
v:val has the value of the item. If {object} is a Blob ,
inside {expr} v:key has the index of the current byte and
v:val has the byte value.

If {expr} is a Funcref it must take two arguments:
1. the key or the index of the current item.
2. the value of the current item.

The function must return TRUE if the item is found and the
search should stop.

The optional argument {opts} is a Dict and supports the
following items:

startidx start evaluating {expr} at the item with this
index; may be negative for an item relative to
the end

Returns -1 when {expr} evaluates to v:false for all the items.
Example:

:let l = [#{n: 10}, #{n: 20}, #{n: 30}]
:echo indexof(l, "v:val.n == 20")
:echo indexof(l, {i, v -> v.n == 30})
:echo indexof(l, "v:val.n == 20", #{startidx: 1})

Can also be used as a method :

builtin.txt — 1337

mylist->indexof(expr)

input({prompt} [, {text} [, {completion}]]) input()
The result is a String, which is whatever the user typed on
the command-line. The {prompt} argument is either a prompt
string, or a blank string (for no prompt). A '\n' can be used
in the prompt to start a new line.
The highlighting set with :echohl is used for the prompt.
The input is entered just like a command-line, with the same
editing commands and mappings. There is a separate history
for lines typed for input().
Example:

:if input("Coffee or beer? ") == "beer"
: echo "Cheers!"
:endif

If the optional {text} argument is present and not empty, this
is used for the default reply, as if the user typed this.
Example:

:let color = input("Color? ", "white")

The optional {completion} argument specifies the type of
completion supported for the input. Without it completion is
not performed. The supported completion types are the same as
that can be supplied to a user-defined command using the
"-complete=" argument. Refer to :command-completion for
more information. Example:

let fname = input("File: ", "", "file")

NOTE: This function must not be used in a startup file, for
the versions that only run in GUI mode (e.g., the Win32 GUI).
Note: When input() is called from within a mapping it will
consume remaining characters from that mapping, because a
mapping is handled like the characters were typed.
Use inputsave() before input() and inputrestore()
after input() to avoid that. Another solution is to avoid
that further characters follow in the mapping, e.g., by using
:execute or :normal .

Example with a mapping:
:nmap \x :call GetFoo()<CR>:exe "/" .. Foo<CR>
:function GetFoo()
: call inputsave()
: let g:Foo = input("enter search pattern: ")
: call inputrestore()
:endfunction

Can also be used as a method :
GetPrompt()->input()

inputdialog({prompt} [, {text} [, {cancelreturn}]]) inputdialog()
Like input() , but when the GUI is running and text dialogs
are supported, a dialog window pops up to input the text.
Example:

:let n = inputdialog("value for shiftwidth", shiftwidth())
:if n != ""
: let &sw = n
:endif

When the dialog is cancelled {cancelreturn} is returned. When
omitted an empty string is returned.

builtin.txt — 1338

Hitting <Enter> works like pressing the OK button. Hitting
<Esc> works like pressing the Cancel button.
NOTE: Command-line completion is not supported.

Can also be used as a method :
GetPrompt()->inputdialog()

inputlist({textlist}) inputlist()
{textlist} must be a List of strings. This List is
displayed, one string per line. The user will be prompted to
enter a number, which is returned.
The user can also select an item by clicking on it with the
mouse, if the mouse is enabled in the command line ('mouse' is
"a" or includes "c"). For the first string 0 is returned.
When clicking above the first item a negative number is
returned. When clicking on the prompt one more than the
length of {textlist} is returned.
Make sure {textlist} has less than 'lines' entries, otherwise
it won't work. It's a good idea to put the entry number at
the start of the string. And put a prompt in the first item.
Example:

let color = inputlist(['Select color:', '1. red',
\ '2. green', '3. blue'])

Can also be used as a method :
GetChoices()->inputlist()

inputrestore() inputrestore()
Restore typeahead that was saved with a previous inputsave() .
Should be called the same number of times inputsave() is
called. Calling it more often is harmless though.
Returns TRUE when there is nothing to restore, FALSE otherwise.

inputsave() inputsave()
Preserve typeahead (also from mappings) and clear it, so that
a following prompt gets input from the user. Should be
followed by a matching inputrestore() after the prompt. Can
be used several times, in which case there must be just as
many inputrestore() calls.
Returns TRUE when out of memory, FALSE otherwise.

inputsecret({prompt} [, {text}]) inputsecret()
This function acts much like the input() function with but
two exceptions:
a) the user's response will be displayed as a sequence of
asterisks ("*") thereby keeping the entry secret, and
b) the user's response will not be recorded on the input
history stack.
The result is a String, which is whatever the user actually
typed on the command-line in response to the issued prompt.
NOTE: Command-line completion is not supported.

Can also be used as a method :
GetPrompt()->inputsecret()

insert({object}, {item} [, {idx}]) insert()
When {object} is a List or a Blob insert {item} at the start
of it.

If {idx} is specified insert {item} before the item with index

builtin.txt — 1339

{idx}. If {idx} is zero it goes before the first item, just
like omitting {idx}. A negative {idx} is also possible, see
list-index . -1 inserts just before the last item.

Returns the resulting List or Blob . Examples:
:let mylist = insert([2, 3, 5], 1)
:call insert(mylist, 4, -1)
:call insert(mylist, 6, len(mylist))

The last example can be done simpler with add() .
Note that when {item} is a List it is inserted as a single
item. Use extend() to concatenate Lists .

Can also be used as a method :
mylist->insert(item)

instanceof() E614 E616 E693
instanceof({object}, {class})

The result is a Number, which is TRUE when the {object}
argument is a direct or indirect instance of a Class ,
Interface , or class :type alias specified by {class}.
If {class} is varargs, the function returns TRUE when
{object} is an instance of any of the specified classes.
Example:

instanceof(animal, Dog, Cat)

Can also be used as a method :
myobj->instanceof(mytype)

interrupt() interrupt()
Interrupt script execution. It works more or less like the
user typing CTRL-C, most commands won't execute and control
returns to the user. This is useful to abort execution
from lower down, e.g. in an autocommand. Example:
:function s:check_typoname(file)
: if fnamemodify(a:file, ':t') == '['
: echomsg 'Maybe typo'
: call interrupt()
: endif
:endfunction
:au BufWritePre * call s:check_typoname(expand('<amatch>'))

invert({expr}) invert()
Bitwise invert. The argument is converted to a number. A
List, Dict or Float argument causes an error. Example:

:let bits = invert(bits)
Can also be used as a method :

:let bits = bits->invert()

isabsolutepath({path}) isabsolutepath()
The result is a Number, which is TRUE when {path} is an
absolute path.
On Unix, a path is considered absolute when it starts with '/'.
On MS-Windows, it is considered absolute when it starts with an
optional drive prefix and is followed by a '\' or '/'. UNC paths
are always absolute.
Example:

echo isabsolutepath('/usr/share/') " 1
echo isabsolutepath('./foobar') " 0
echo isabsolutepath('C:\Windows') " 1
echo isabsolutepath('foobar') " 0

builtin.txt — 1340

echo isabsolutepath('\\remote\file') " 1

Can also be used as a method :
GetName()->isabsolutepath()

isdirectory({directory}) isdirectory()
The result is a Number, which is TRUE when a directory
with the name {directory} exists. If {directory} doesn't
exist, or isn't a directory, the result is FALSE . {directory}
is any expression, which is used as a String.

Can also be used as a method :
GetName()->isdirectory()

isinf({expr}) isinf()
Return 1 if {expr} is a positive infinity, or -1 a negative
infinity, otherwise 0.

:echo isinf(1.0 / 0.0)
1
:echo isinf(-1.0 / 0.0)
-1

Can also be used as a method :
Compute()->isinf()

islocked({expr}) islocked() E786
The result is a Number, which is TRUE when {expr} is the
name of a locked variable.
The string argument {expr} must be the name of a variable,
List item or Dictionary entry, not the variable itself!
Example:

:let alist = [0, ['a', 'b'], 2, 3]
:lockvar 1 alist
:echo islocked('alist') " 1
:echo islocked('alist[1]') " 0

When {expr} is a variable that does not exist -1 is returned.
If {expr} uses a range, list or dict index that is out of
range or does not exist you get an error message. Use
exists() to check for existence.
In Vim9 script it does not work for local function variables.

Can also be used as a method :
GetName()->islocked()

isnan({expr}) isnan()
Return TRUE if {expr} is a float with value NaN.

echo isnan(0.0 / 0.0)
1

Can also be used as a method :
Compute()->isnan()

items({dict}) items()
Return a List with all the key-value pairs of {dict}. Each
List item is a list with two items: the key of a {dict}
entry and the value of this entry. The List is in arbitrary
order. Also see keys() and values() .
Example:

builtin.txt — 1341

for [key, value] in items(mydict)
echo key .. ': ' .. value

endfor

A List or a String argument is also supported. In these
cases, items() returns a List with the index and the value at
the index.

Can also be used as a method :
mydict->items()

job_ functions are documented here: job-functions-details

join({list} [, {sep}]) join()
Join the items in {list} together into one String.
When {sep} is specified it is put in between the items. If
{sep} is omitted a single space is used.
Note that {sep} is not added at the end. You might want to
add it there too:

let lines = join(mylist, "\n") .. "\n"
String items are used as-is. Lists and Dictionaries are
converted into a string like with string() .
The opposite function is split() .

Can also be used as a method :
mylist->join()

js_decode({string}) js_decode()
This is similar to json_decode() with these differences:
- Object key names do not have to be in quotes.
- Strings can be in single quotes.
- Empty items in an array (between two commas) are allowed and
result in v:none items.

Can also be used as a method :
ReadObject()->js_decode()

js_encode({expr}) js_encode()
This is similar to json_encode() with these differences:
- Object key names are not in quotes.
- v:none items in an array result in an empty item between
commas.

For example, the Vim object:
[1,v:none,{"one":1},v:none]

Will be encoded as:
[1,,{one:1},,]

While json_encode() would produce:
[1,null,{"one":1},null]

This encoding is valid for JavaScript. It is more efficient
than JSON, especially when using an array with optional items.

Can also be used as a method :
GetObject()->js_encode()

json_decode({string}) json_decode() E491
This parses a JSON formatted string and returns the equivalent
in Vim values. See json_encode() for the relation between
JSON and Vim values.
The decoding is permissive:

builtin.txt — 1342

- A trailing comma in an array and object is ignored, e.g.
"[1, 2,]" is the same as "[1, 2]".

- Integer keys are accepted in objects, e.g. {1:2} is the
same as {"1":2}.

- More floating point numbers are recognized, e.g. "1." for
"1.0", or "001.2" for "1.2". Special floating point values
"Infinity", "-Infinity" and "NaN" (capitalization ignored)
are accepted.

- Leading zeroes in integer numbers are ignored, e.g. "012"
for "12" or "-012" for "-12".

- Capitalization is ignored in literal names null, true or
false, e.g. "NULL" for "null", "True" for "true".

- Control characters U+0000 through U+001F which are not
escaped in strings are accepted, e.g. " " (tab
character in string) for "\t".

- An empty JSON expression or made of only spaces is accepted
and results in v:none.

- Backslash in an invalid 2-character sequence escape is
ignored, e.g. "\a" is decoded as "a".

- A correct surrogate pair in JSON strings should normally be
a 12 character sequence such as "\uD834\uDD1E", but
json_decode() silently accepts truncated surrogate pairs
such as "\uD834" or "\uD834\u"

E938
A duplicate key in an object, valid in rfc7159, is not
accepted by json_decode() as the result must be a valid Vim
type, e.g. this fails: {"a":"b", "a":"c"}

Can also be used as a method :
ReadObject()->json_decode()

json_encode({expr}) json_encode()
Encode {expr} as JSON and return this as a string.
The encoding is specified in:
https://tools.ietf.org/html/rfc7159.html
Vim values are converted as follows: E1161

Number decimal number
Float floating point number
Float nan "NaN"
Float inf "Infinity"
Float -inf "-Infinity"
String in double quotes (possibly null)
Funcref not possible, error
List as an array (possibly null); when

used recursively: []
Dict as an object (possibly null); when

used recursively: {}
Blob as an array of the individual bytes
v:false "false"
v:true "true"
v:none "null"
v:null "null"

Note that NaN and Infinity are passed on as values. This is
missing in the JSON standard, but several implementations do
allow it. If not then you will get an error.
If a string contains an illegal character then the replacement
character 0xfffd is used.

Can also be used as a method :
GetObject()->json_encode()

builtin.txt — 1343

https://tools.ietf.org/html/rfc7159.html

keys({dict}) keys()
Return a List with all the keys of {dict}. The List is in
arbitrary order. Also see items() and values() .

Can also be used as a method :
mydict->keys()

keytrans({string}) keytrans()
Turn the internal byte representation of keys into a form that
can be used for :map . E.g.

:let xx = "\<C-Home>"
:echo keytrans(xx)
<C-Home>

Can also be used as a method :
"\<C-Home>"->keytrans()

len() E701
len({expr}) The result is a Number, which is the length of the argument.

When {expr} is a String or a Number the length in bytes is
used, as with strlen() .
When {expr} is a List the number of items in the List is
returned.
When {expr} is a Blob the number of bytes is returned.
When {expr} is a Dictionary the number of entries in the
Dictionary is returned.
When {expr} is an Object , invokes the len() method in the
object (if present) to get the length. Otherwise returns
zero.

Can also be used as a method :
mylist->len()

libcall() E364 E368
libcall({libname}, {funcname}, {argument})

Call function {funcname} in the run-time library {libname}
with single argument {argument}.
This is useful to call functions in a library that you
especially made to be used with Vim. Since only one argument
is possible, calling standard library functions is rather
limited.
The result is the String returned by the function. If the
function returns NULL, this will appear as an empty string ""
to Vim.
If the function returns a number, use libcallnr()!
If {argument} is a number, it is passed to the function as an
int; if {argument} is a string, it is passed as a
null-terminated string.
This function will fail in restricted-mode .

libcall() allows you to write your own 'plug-in' extensions to
Vim without having to recompile the program. It is NOT a
means to call system functions! If you try to do so Vim will
very probably crash.

For Win32, the functions you write must be placed in a DLL
and use the normal C calling convention (NOT Pascal which is
used in Windows System DLLs). The function must take exactly
one parameter, either a character pointer or a long integer,

builtin.txt — 1344

and must return a character pointer or NULL. The character
pointer returned must point to memory that will remain valid
after the function has returned (e.g. in static data in the
DLL). If it points to allocated memory, that memory will
leak away. Using a static buffer in the function should work,
it's then freed when the DLL is unloaded.

WARNING: If the function returns a non-valid pointer, Vim may
crash! This also happens if the function returns a number,
because Vim thinks it's a pointer.
For Win32 systems, {libname} should be the filename of the DLL
without the ".DLL" suffix. A full path is only required if
the DLL is not in the usual places.
For Unix: When compiling your own plugins, remember that the
object code must be compiled as position-independent ('PIC').
{only in Win32 and some Unix versions, when the +libcall
feature is present}
Examples:

:echo libcall("libc.so", "getenv", "HOME")

Can also be used as a method , the base is passed as the
third argument:

GetValue()->libcall("libc.so", "getenv")

libcallnr()
libcallnr({libname}, {funcname}, {argument})

Just like libcall() , but used for a function that returns an
int instead of a string.
{only in Win32 on some Unix versions, when the +libcall
feature is present}
Examples:

:echo libcallnr("/usr/lib/libc.so", "getpid", "")
:call libcallnr("libc.so", "printf", "Hello World!\n")
:call libcallnr("libc.so", "sleep", 10)

Can also be used as a method , the base is passed as the
third argument:

GetValue()->libcallnr("libc.so", "printf")

line({expr} [, {winid}]) line()
The result is a Number, which is the line number of the file
position given with {expr}. The {expr} argument is a string.
The accepted positions are: E1209

. the cursor position
$ the last line in the current buffer
'x position of mark x (if the mark is not set, 0 is

returned)
w0 first line visible in current window (one if the

display isn't updated, e.g. in silent Ex mode)
w$ last line visible in current window (this is one

less than "w0" if no lines are visible)
v In Visual mode: the start of the Visual area (the

cursor is the end). When not in Visual mode
returns the cursor position. Differs from '< in
that it's updated right away.

Note that a mark in another file can be used. The line number
then applies to another buffer.
To get the column number use col() . To get both use
getpos() .

builtin.txt — 1345

With the optional {winid} argument the values are obtained for
that window instead of the current window.
Returns 0 for invalid values of {expr} and {winid}.
Examples:

line(".") line number of the cursor
line(".", winid) idem, in window "winid"
line("'t") line number of mark t
line("'" .. marker) line number of mark marker

To jump to the last known position when opening a file see
last-position-jump .

Can also be used as a method :
GetValue()->line()

line2byte({lnum}) line2byte()
Return the byte count from the start of the buffer for line
{lnum}. This includes the end-of-line character, depending on
the 'fileformat' option for the current buffer. The first
line returns 1. 'encoding' matters, 'fileencoding' is ignored.
This can also be used to get the byte count for the line just
below the last line:

line2byte(line("$") + 1)
This is the buffer size plus one. If 'fileencoding' is empty
it is the file size plus one. {lnum} is used like with
getline() . When {lnum} is invalid, or the +byte_offset
feature has been disabled at compile time, -1 is returned.
Also see byte2line() , go and :goto .

Can also be used as a method :
GetLnum()->line2byte()

lispindent({lnum}) lispindent()
Get the amount of indent for line {lnum} according the lisp
indenting rules, as with 'lisp'.
The indent is counted in spaces, the value of 'tabstop' is
relevant. {lnum} is used just like in getline() .
When {lnum} is invalid -1 is returned. In Vim9 script an
error is given.

Can also be used as a method :
GetLnum()->lispindent()

list2blob({list}) list2blob()
Return a Blob concatenating all the number values in {list}.
Examples:

list2blob([1, 2, 3, 4]) returns 0z01020304
list2blob([]) returns 0z

Returns an empty Blob on error. If one of the numbers is
negative or more than 255 error E1239 is given.

blob2list() does the opposite.

Can also be used as a method :
GetList()->list2blob()

list2str({list} [, {utf8}]) list2str()
Convert each number in {list} to a character string can
concatenate them all. Examples:

list2str([32]) returns " "

builtin.txt — 1346

list2str([65, 66, 67]) returns "ABC"
The same can be done (slowly) with:

join(map(list, {nr, val -> nr2char(val)}), '')
str2list() does the opposite.

When {utf8} is omitted or zero, the current 'encoding' is used.
When {utf8} is TRUE, always return UTF-8 characters.
With UTF-8 composing characters work as expected:

list2str([97, 769]) returns "á"

Returns an empty string on error.

Can also be used as a method :
GetList()->list2str()

listener_add({callback} [, {buf}]) listener_add()
Add a callback function that will be invoked when changes have
been made to buffer {buf}.
{buf} refers to a buffer name or number. For the accepted
values, see bufname() . When {buf} is omitted the current
buffer is used.
Returns a unique ID that can be passed to listener_remove() .

The {callback} is invoked with five arguments:
bufnr the buffer that was changed
start first changed line number
end first line number below the change
added number of lines added, negative if lines were

deleted
changes a List of items with details about the changes

Example:
func Listener(bufnr, start, end, added, changes)

echo 'lines ' .. a:start .. ' until ' .. a:end .. ' changed'
endfunc
call listener_add('Listener', bufnr)

The List cannot be changed. Each item in "changes" is a
dictionary with these entries:

lnum the first line number of the change
end the first line below the change
added number of lines added; negative if lines were

deleted
col first column in "lnum" that was affected by

the change; one if unknown or the whole line
was affected; this is a byte index, first
character has a value of one.

When lines are inserted (not when a line is split, e.g. by
typing CR in Insert mode) the values are:

lnum line above which the new line is added
end equal to "lnum"
added number of lines inserted
col 1

When lines are deleted the values are:
lnum the first deleted line
end the line below the first deleted line, before

the deletion was done
added negative, number of lines deleted
col 1

When lines are changed:

builtin.txt — 1347

lnum the first changed line
end the line below the last changed line
added 0
col first column with a change or 1

The entries are in the order the changes were made, thus the
most recent change is at the end. The line numbers are valid
when the callback is invoked, but later changes may make them
invalid, thus keeping a copy for later might not work.

The {callback} is invoked just before the screen is updated,
when listener_flush() is called or when a change is being
made that changes the line count in a way it causes a line
number in the list of changes to become invalid.

The {callback} is invoked with the text locked, see
textlock . If you do need to make changes to the buffer, use
a timer to do this later timer_start() .

The {callback} is not invoked when the buffer is first loaded.
Use the BufReadPost autocmd event to handle the initial text
of a buffer.
The {callback} is also not invoked when the buffer is
unloaded, use the BufUnload autocmd event for that.

Returns zero if {callback} or {buf} is invalid.

Can also be used as a method , the base is passed as the
second argument:

GetBuffer()->listener_add(callback)

listener_flush([{buf}]) listener_flush()
Invoke listener callbacks for buffer {buf}. If there are no
pending changes then no callbacks are invoked.

{buf} refers to a buffer name or number. For the accepted
values, see bufname() . When {buf} is omitted the current
buffer is used.

Can also be used as a method :
GetBuffer()->listener_flush()

listener_remove({id}) listener_remove()
Remove a listener previously added with listener_add().
Returns FALSE when {id} could not be found, TRUE when {id} was
removed.

Can also be used as a method :
GetListenerId()->listener_remove()

localtime() localtime()
Return the current time, measured as seconds since 1st Jan
1970. See also strftime() , strptime() and getftime() .

log({expr}) log()
Return the natural logarithm (base e) of {expr} as a Float .
{expr} must evaluate to a Float or a Number in the range
(0, inf].
Returns 0.0 if {expr} is not a Float or a Number .

builtin.txt — 1348

Examples:
:echo log(10)
2.302585
:echo log(exp(5))
5.0

Can also be used as a method :
Compute()->log()

log10({expr}) log10()
Return the logarithm of Float {expr} to base 10 as a Float .
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo log10(1000)
3.0
:echo log10(0.01)
-2.0

Can also be used as a method :
Compute()->log10()

luaeval({expr} [, {expr}]) luaeval()
Evaluate Lua expression {expr} and return its result converted
to Vim data structures. Second {expr} may hold additional
argument accessible as _A inside first {expr}.
Strings are returned as they are.
Boolean objects are converted to numbers.
Numbers are converted to Float values.
Dictionaries and lists obtained by vim.eval() are returned
as-is.
Other objects are returned as zero without any errors.
See lua-luaeval for more details.
Note that in a `:def` function local variables are not visible
to {expr}.

Can also be used as a method :
GetExpr()->luaeval()

{only available when compiled with the |+lua| feature}

map({expr1}, {expr2}) map()
{expr1} must be a List , String , Blob or Dictionary .
When {expr1} is a List or Dictionary , replace each
item in {expr1} with the result of evaluating {expr2}.
For a Blob each byte is replaced.
For a String , each character, including composing
characters, is replaced.
If the item type changes you may want to use mapnew() to
create a new List or Dictionary. This is required when using
Vim9 script.

{expr2} must be a String or Funcref .

If {expr2} is a String , inside {expr2} v:val has the value
of the current item. For a Dictionary v:key has the key
of the current item and for a List v:key has the index of
the current item. For a Blob v:key has the index of the
current byte. For a String v:key has the index of the

builtin.txt — 1349

current character.
Example:

:call map(mylist, '"> " .. v:val .. " <"')
This puts "> " before and " <" after each item in "mylist".

Note that {expr2} is the result of an expression and is then
used as an expression again. Often it is good to use a
literal-string to avoid having to double backslashes. You
still have to double ' quotes

If {expr2} is a Funcref it is called with two arguments:
1. The key or the index of the current item.
2. the value of the current item.

With a legacy script lambda you don't get an error if it only
accepts one argument, but with a Vim9 lambda you get "E1106:
One argument too many", the number of arguments must match.

The function must return the new value of the item. Example
that changes each value by "key-value":

func KeyValue(key, val)
return a:key .. '-' .. a:val

endfunc
call map(myDict, function('KeyValue'))

It is shorter when using a lambda :
call map(myDict, {key, val -> key .. '-' .. val})

If you do not use "val" you can leave it out:
call map(myDict, {key -> 'item: ' .. key})

If you do not use "key" you can use a short name:
call map(myDict, {_, val -> 'item: ' .. val})

The operation is done in-place for a List and Dictionary .
If you want it to remain unmodified make a copy first:

:let tlist = map(copy(mylist), ' v:val .. "\t"')

Returns {expr1}, the List or Dictionary that was filtered,
or a new Blob or String .
When an error is encountered while evaluating {expr2} no
further items in {expr1} are processed.
When {expr2} is a Funcref errors inside a function are ignored,
unless it was defined with the "abort" flag.

Can also be used as a method :
mylist->map(expr2)

maparg({name} [, {mode} [, {abbr} [, {dict}]]]) maparg()
When {dict} is omitted or zero: Return the rhs of mapping
{name} in mode {mode}. The returned String has special
characters translated like in the output of the ":map" command
listing. When {dict} is TRUE a dictionary is returned, see
below. To get a list of all mappings see maplist() .

When there is no mapping for {name}, an empty String is
returned if {dict} is FALSE, otherwise returns an empty Dict.
When the mapping for {name} is empty, then "<Nop>" is
returned.

The {name} can have special key names, like in the ":map"
command.

builtin.txt — 1350

{mode} can be one of these strings:
"n" Normal
"v" Visual (including Select)
"o" Operator-pending
"i" Insert
"c" Cmd-line
"s" Select
"x" Visual
"l" langmap language-mapping
"t" Terminal-Job
"" Normal, Visual and Operator-pending

When {mode} is omitted, the modes for "" are used.

When {abbr} is there and it is TRUE use abbreviations
instead of mappings.

When {dict} is there and it is TRUE return a dictionary
containing all the information of the mapping with the
following items: mapping-dict
"lhs" The {lhs} of the mapping as it would be typed
"lhsraw" The {lhs} of the mapping as raw bytes
"lhsrawalt" The {lhs} of the mapping as raw bytes, alternate

form, only present when it differs from "lhsraw"
"rhs" The {rhs} of the mapping as typed.
"silent" 1 for a :map-silent mapping, else 0.
"noremap" 1 if the {rhs} of the mapping is not remappable.
"script" 1 if mapping was defined with <script>.
"expr" 1 for an expression mapping (:map-<expr>).
"buffer" 1 for a buffer local mapping (:map-local).
"mode" Modes for which the mapping is defined. In

addition to the modes mentioned above, these
characters will be used:
" " Normal, Visual and Operator-pending
"!" Insert and Commandline mode

(mapmode-ic)
"sid" The script local ID, used for <sid> mappings

(<SID>). Negative for special contexts.
"scriptversion" The version of the script. 999999 for

Vim9 script.
"lnum" The line number in "sid", zero if unknown.
"nowait" Do not wait for other, longer mappings.

(:map-<nowait>).
"abbr" True if this is an abbreviation abbreviations .
"mode_bits" Vim's internal binary representation of "mode".

mapset() ignores this; only "mode" is used.
See maplist() for usage examples. The values
are from src/vim.h and may change in the future.

The dictionary can be used to restore a mapping with
mapset() .

The mappings local to the current buffer are checked first,
then the global mappings.
This function can be used to map a key even when it's already
mapped, and have it do the original mapping too. Sketch:

exe 'nnoremap <Tab> ==' .. maparg('<Tab>', 'n')

Can also be used as a method :
GetKey()->maparg('n')

builtin.txt — 1351

mapcheck({name} [, {mode} [, {abbr}]]) mapcheck()
Check if there is a mapping that matches with {name} in mode
{mode}. See maparg() for {mode} and special names in
{name}.
When {abbr} is there and it is TRUE use abbreviations
instead of mappings.
A match happens with a mapping that starts with {name} and
with a mapping which is equal to the start of {name}.

matches mapping "a" "ab" "abc"
mapcheck("a") yes yes yes
mapcheck("abc") yes yes yes
mapcheck("ax") yes no no
mapcheck("b") no no no

The difference with maparg() is that mapcheck() finds a
mapping that matches with {name}, while maparg() only finds a
mapping for {name} exactly.
When there is no mapping that starts with {name}, an empty
String is returned. If there is one, the RHS of that mapping
is returned. If there are several mappings that start with
{name}, the RHS of one of them is returned. This will be
"<Nop>" if the RHS is empty.
The mappings local to the current buffer are checked first,
then the global mappings.
This function can be used to check if a mapping can be added
without being ambiguous. Example:

:if mapcheck("_vv") == ""
: map _vv :set guifont=7x13<CR>
:endif

This avoids adding the "_vv" mapping when there already is a
mapping for "_v" or for "_vvv".

Can also be used as a method :
GetKey()->mapcheck('n')

maplist([{abbr}]) maplist()
Returns a List of all mappings. Each List item is a Dict ,
the same as what is returned by maparg() , see
mapping-dict . When {abbr} is there and it is TRUE use
abbreviations instead of mappings.

Example to show all mappings with 'MultiMatch' in rhs:
vim9script
echo maplist()->filter(

(_, m) => match(m.rhs, 'MultiMatch') >= 0)
It can be tricky to find mappings for particular :map-modes .

mapping-dict 's "mode_bits" can simplify this. For example,
the mode_bits for Normal, Insert or Command-line modes are
0x19. To find all the mappings available in those modes you
can do:

vim9script
var saved_maps = []
for m in maplist()

if and(m.mode_bits, 0x19) != 0
saved_maps->add(m)

endif
endfor
echo saved_maps->mapnew((_, m) => m.lhs)

builtin.txt — 1352

The values of the mode_bits are defined in Vim's src/vim.h
file and they can be discovered at runtime using
:map-commands and "maplist()". Example:

vim9script
omap xyzzy <Nop>
var op_bit = maplist()->filter(

(_, m) => m.lhs == 'xyzzy')[0].mode_bits
ounmap xyzzy
echo printf("Operator-pending mode bit: 0x%x", op_bit)

mapnew({expr1}, {expr2}) mapnew()
Like map() but instead of replacing items in {expr1} a new
List or Dictionary is created and returned. {expr1} remains
unchanged. Items can still be changed by {expr2}, if you
don't want that use deepcopy() first.

mapset({mode}, {abbr}, {dict}) mapset()
mapset({dict})

Restore a mapping from a dictionary, possibly returned by
maparg() or maplist() . A buffer mapping, when dict.buffer
is true, is set on the current buffer; it is up to the caller
to ensure that the intended buffer is the current buffer. This
feature allows copying mappings from one buffer to another.
The dict.mode value may restore a single mapping that covers
more than one mode, like with mode values of '!', ' ', 'nox',
or 'v'. E1276

In the first form, {mode} and {abbr} should be the same as
for the call to maparg() . E460
{mode} is used to define the mode in which the mapping is set,
not the "mode" entry in {dict}.
Example for saving and restoring a mapping:

let save_map = maparg('K', 'n', 0, 1)
nnoremap K somethingelse
...
call mapset('n', 0, save_map)

Note that if you are going to replace a map in several modes,
e.g. with `:map!`, you need to save/restore the mapping for
all of them, when they might differ.

In the second form, with {dict} as the only argument, mode
and abbr are taken from the dict.
Example:

vim9script
var save_maps = maplist()->filter(

(_, m) => m.lhs == 'K')
nnoremap K somethingelse
cnoremap K somethingelse2
...
unmap K
for d in save_maps

mapset(d)
endfor

match({expr}, {pat} [, {start} [, {count}]]) match()
When {expr} is a List then this returns the index of the
first item where {pat} matches. Each item is used as a

builtin.txt — 1353

String, Lists and Dictionaries are used as echoed.

Otherwise, {expr} is used as a String. The result is a
Number, which gives the index (byte offset) in {expr} where
{pat} matches.

A match at the first character or List item returns zero.
If there is no match -1 is returned.

For getting submatches see matchlist() .
Example:

:echo match("testing", "ing") " results in 4
:echo match([1, 'x'], '\a') " results in 1

See string-match for how {pat} is used.
strpbrk()

Vim doesn't have a strpbrk() function. But you can do:
:let sepidx = match(line, '[.,;: \t]')

strcasestr()
Vim doesn't have a strcasestr() function. But you can add
"\c" to the pattern to ignore case:

:let idx = match(haystack, '\cneedle')

If {start} is given, the search starts from byte index
{start} in a String or item {start} in a List .
The result, however, is still the index counted from the
first character/item. Example:

:echo match("testing", "ing", 2)
result is again "4".

:echo match("testing", "ing", 4)
result is again "4".

:echo match("testing", "t", 2)
result is "3".
For a String, if {start} > 0 then it is like the string starts
{start} bytes later, thus "^" will match at {start}. Except
when {count} is given, then it's like matches before the
{start} byte are ignored (this is a bit complicated to keep it
backwards compatible).
For a String, if {start} < 0, it will be set to 0. For a list
the index is counted from the end.
If {start} is out of range ({start} > strlen({expr}) for a
String or {start} > len({expr}) for a List) -1 is returned.

When {count} is given use the {count}'th match. When a match
is found in a String the search for the next one starts one
character further. Thus this example results in 1:

echo match("testing", "..", 0, 2)
In a List the search continues in the next item.
Note that when {count} is added the way {start} works changes,
see above.

match-pattern
See pattern for the patterns that are accepted.
The 'ignorecase' option is used to set the ignore-caseness of
the pattern. 'smartcase' is NOT used. The matching is always
done like 'magic' is set and 'cpoptions' is empty.
Note that a match at the start is preferred, thus when the
pattern is using "*" (any number of matches) it tends to find
zero matches at the start instead of a number of matches
further down in the text.

builtin.txt — 1354

Can also be used as a method :
GetText()->match('word')
GetList()->match('word')

matchadd() E290 E798 E799 E801 E957
matchadd({group}, {pattern} [, {priority} [, {id} [, {dict}]]])

Defines a pattern to be highlighted in the current window (a
"match"). It will be highlighted with {group}. Returns an
identification number (ID), which can be used to delete the
match using matchdelete() . The ID is bound to the window.
Matching is case sensitive and magic, unless case sensitivity
or magicness are explicitly overridden in {pattern}. The
'magic', 'smartcase' and 'ignorecase' options are not used.
The "Conceal" value is special, it causes the match to be
concealed.

The optional {priority} argument assigns a priority to the
match. A match with a high priority will have its
highlighting overrule that of a match with a lower priority.
A priority is specified as an integer (negative numbers are no
exception). If the {priority} argument is not specified, the
default priority is 10. The priority of 'hlsearch' is zero,
hence all matches with a priority greater than zero will
overrule it. Syntax highlighting (see 'syntax') is a separate
mechanism, and regardless of the chosen priority a match will
always overrule syntax highlighting.

The optional {id} argument allows the request for a specific
match ID. If a specified ID is already taken, an error
message will appear and the match will not be added. An ID
is specified as a positive integer (zero excluded). IDs 1, 2
and 3 are reserved for :match , :2match and :3match ,
respectively. 3 is reserved for use by the matchparen
plugin.
If the {id} argument is not specified or -1, matchadd()
automatically chooses a free ID, which is at least 1000.

The optional {dict} argument allows for further custom
values. Currently this is used to specify a match specific
conceal character that will be shown for hl-Conceal
highlighted matches. The dict can have the following members:

conceal Special character to show instead of the
match (only for hl-Conceal highlighted
matches, see :syn-cchar)

window Instead of the current window use the
window with this number or window ID.

The number of matches is not limited, as it is the case with
the :match commands.

Returns -1 on error.

Example:
:highlight MyGroup ctermbg=green guibg=green
:let m = matchadd("MyGroup", "TODO")

Deletion of the pattern:
:call matchdelete(m)

A list of matches defined by matchadd() and :match are

builtin.txt — 1355

available from getmatches() . All matches can be deleted in
one operation by clearmatches() .

Can also be used as a method :
GetGroup()->matchadd('TODO')

matchaddpos()
matchaddpos({group}, {pos} [, {priority} [, {id} [, {dict}]]])

Same as matchadd() , but requires a list of positions {pos}
instead of a pattern. This command is faster than matchadd()
because it does not require to handle regular expressions and
sets buffer line boundaries to redraw screen. It is supposed
to be used when fast match additions and deletions are
required, for example to highlight matching parentheses.

{pos} is a list of positions. Each position can be one of
these:
- A number. This whole line will be highlighted. The first
line has number 1.

- A list with one number, e.g., [23]. The whole line with this
number will be highlighted.

- A list with two numbers, e.g., [23, 11]. The first number is
the line number, the second one is the column number (first
column is 1, the value must correspond to the byte index as
col() would return). The character at this position will

be highlighted.
- A list with three numbers, e.g., [23, 11, 3]. As above, but
the third number gives the length of the highlight in bytes.

Returns -1 on error.

Example:
:highlight MyGroup ctermbg=green guibg=green
:let m = matchaddpos("MyGroup", [[23, 24], 34])

Deletion of the pattern:
:call matchdelete(m)

Matches added by matchaddpos() are returned by
getmatches() .

Can also be used as a method :
GetGroup()->matchaddpos([23, 11])

matcharg({nr}) matcharg()
Selects the {nr} match item, as set with a :match ,
:2match or :3match command.
Return a List with two elements:

The name of the highlight group used
The pattern used.

When {nr} is not 1, 2 or 3 returns an empty List .
When there is no match item set returns ['', ''].
This is useful to save and restore a :match .
Highlighting matches using the :match commands are limited
to three matches. matchadd() does not have this limitation.

Can also be used as a method :
GetMatch()->matcharg()

matchbufline()
matchbufline({buf}, {pat}, {lnum}, {end}, [, {dict}])

builtin.txt — 1356

Returns the List of matches in lines from {lnum} to {end} in
buffer {buf} where {pat} matches.

{lnum} and {end} can either be a line number or the string "$"
to refer to the last line in {buf}.

The {dict} argument supports following items:
submatches include submatch information (/\()

For each match, a Dict with the following items is returned:
byteidx starting byte index of the match
lnum line number where there is a match
text matched string

Note that there can be multiple matches in a single line.

This function works only for loaded buffers. First call
bufload() if needed.

See match-pattern for information about the effect of some
option settings on the pattern.

When {buf} is not a valid buffer, the buffer is not loaded or
{lnum} or {end} is not valid then an error is given and an
empty List is returned.

Examples:
" Assuming line 3 in buffer 5 contains "a"
:echo matchbufline(5, '\<\k\+\>', 3, 3)
[{'lnum': 3, 'byteidx': 0, 'text': 'a'}]
" Assuming line 4 in buffer 10 contains "tik tok"
:echo matchbufline(10, '\<\k\+\>', 1, 4)
[{'lnum': 4, 'byteidx': 0, 'text': 'tik'}, {'lnum': 4, 'byteidx': 4, 'text': 'tok'}]

If {submatch} is present and is v:true, then submatches like
"\1", "\2", etc. are also returned. Example:

" Assuming line 2 in buffer 2 contains "acd"
:echo matchbufline(2, '\(a\)\?\(b\)\?\(c\)\?\(.*\)', 2, 2

\ {'submatches': v:true})
[{'lnum': 2, 'byteidx': 0, 'text': 'acd', 'submatches': ['a', '', 'c', 'd', '', '', '', '', '']}]

The "submatches" List always contains 9 items. If a submatch
is not found, then an empty string is returned for that
submatch.

Can also be used as a method :
GetBuffer()->matchbufline('mypat', 1, '$')

matchdelete({id} [, {win}) matchdelete() E802 E803
Deletes a match with ID {id} previously defined by matchadd()
or one of the :match commands. Returns 0 if successful,
otherwise -1. See example for matchadd() . All matches can
be deleted in one operation by clearmatches() .
If {win} is specified, use the window with this number or
window ID instead of the current window.

Can also be used as a method :
GetMatch()->matchdelete()

matchend({expr}, {pat} [, {start} [, {count}]]) matchend()
Same as match() , but return the index of first character
after the match. Example:

builtin.txt — 1357

:echo matchend("testing", "ing")
results in "7".

strspn() strcspn()
Vim doesn't have a strspn() or strcspn() function, but you can
do it with matchend():

:let span = matchend(line, '[a-zA-Z]')
:let span = matchend(line, '[^a-zA-Z]')

Except that -1 is returned when there are no matches.

The {start}, if given, has the same meaning as for match() .
:echo matchend("testing", "ing", 2)

results in "7".
:echo matchend("testing", "ing", 5)

result is "-1".
When {expr} is a List the result is equal to match() .

Can also be used as a method :
GetText()->matchend('word')

matchfuzzy({list}, {str} [, {dict}]) matchfuzzy()
If {list} is a list of strings, then returns a List with all
the strings in {list} that fuzzy match {str}. The strings in
the returned list are sorted based on the matching score.

The optional {dict} argument always supports the following
items:

matchseq When this item is present return only matches
that contain the characters in {str} in the
given sequence.

limit Maximum number of matches in {list} to be
returned. Zero means no limit.

If {list} is a list of dictionaries, then the optional {dict}
argument supports the following additional items:

key Key of the item which is fuzzy matched against
{str}. The value of this item should be a
string.

text_cb Funcref that will be called for every item
in {list} to get the text for fuzzy matching.
This should accept a dictionary item as the
argument and return the text for that item to
use for fuzzy matching.

{str} is treated as a literal string and regular expression
matching is NOT supported. The maximum supported {str} length
is 256.

When {str} has multiple words each separated by white space,
then the list of strings that have all the words is returned.

If there are no matching strings or there is an error, then an
empty list is returned. If length of {str} is greater than
256, then returns an empty list.

When {limit} is given, matchfuzzy() will find up to this
number of matches in {list} and return them in sorted order.

Refer to fuzzy-matching for more information about fuzzy
matching strings.

builtin.txt — 1358

Example:
:echo matchfuzzy(["clay", "crow"], "cay")

results in ["clay"].
:echo getbufinfo()->map({_, v -> v.name})->matchfuzzy("ndl")

results in a list of buffer names fuzzy matching "ndl".
:echo getbufinfo()->matchfuzzy("ndl", {'key' : 'name'})

results in a list of buffer information dicts with buffer
names fuzzy matching "ndl".

:echo getbufinfo()->matchfuzzy("spl",
\ {'text_cb' : {v -> v.name}})

results in a list of buffer information dicts with buffer
names fuzzy matching "spl".

:echo v:oldfiles->matchfuzzy("test")
results in a list of file names fuzzy matching "test".

:let l = readfile("buffer.c")->matchfuzzy("str")
results in a list of lines in "buffer.c" fuzzy matching "str".

:echo ['one two', 'two one']->matchfuzzy('two one')
results in ['two one', 'one two'].

:echo ['one two', 'two one']->matchfuzzy('two one',
\ {'matchseq': 1})

results in ['two one'].

matchfuzzypos({list}, {str} [, {dict}]) matchfuzzypos()
Same as matchfuzzy() , but returns the list of matched
strings, the list of character positions where characters
in {str} matches and a list of matching scores. You can
use byteidx() to convert a character position to a byte
position.

If {str} matches multiple times in a string, then only the
positions for the best match is returned.

If there are no matching strings or there is an error, then a
list with three empty list items is returned.

Example:
:echo matchfuzzypos(['testing'], 'tsg')

results in [['testing'], [[0, 2, 6]], [99]]
:echo matchfuzzypos(['clay', 'lacy'], 'la')

results in [['lacy', 'clay'], [[0, 1], [1, 2]], [153, 133]]
:echo [{'text': 'hello', 'id' : 10}]->matchfuzzypos('ll', {'key' : 'text'})

results in [[{'id': 10, 'text': 'hello'}], [[2, 3]], [127]]

matchlist({expr}, {pat} [, {start} [, {count}]]) matchlist()
Same as match() , but return a List . The first item in the
list is the matched string, same as what matchstr() would
return. Following items are submatches, like "\1", "\2", etc.
in :substitute . When an optional submatch didn't match an
empty string is used. Example:

echo matchlist('acd', '\(a\)\?\(b\)\?\(c\)\?\(.*\)')
Results in: ['acd', 'a', '', 'c', 'd', '', '', '', '', '']
When there is no match an empty list is returned.

You can pass in a List, but that is not very useful.

Can also be used as a method :
GetText()->matchlist('word')

matchstrlist()

builtin.txt — 1359

matchstrlist({list}, {pat} [, {dict}])
Returns the List of matches in {list} where {pat} matches.
{list} is a List of strings. {pat} is matched against each
string in {list}.

The {dict} argument supports following items:
submatches include submatch information (/\()

For each match, a Dict with the following items is returned:
byteidx starting byte index of the match.
idx index in {list} of the match.
text matched string
submatches a List of submatches. Present only if

"submatches" is set to v:true in {dict}.

See match-pattern for information about the effect of some
option settings on the pattern.

Example:
:echo matchstrlist(['tik tok'], '\<\k\+\>')
[{'idx': 0, 'byteidx': 0, 'text': 'tik'}, {'idx': 0, 'byteidx': 4, 'text': 'tok'}]
:echo matchstrlist(['a', 'b'], '\<\k\+\>')
[{'idx': 0, 'byteidx': 0, 'text': 'a'}, {'idx': 1, 'byteidx': 0, 'text': 'b'}]

If "submatches" is present and is v:true, then submatches like
"\1", "\2", etc. are also returned. Example:

:echo matchstrlist(['acd'], '\(a\)\?\(b\)\?\(c\)\?\(.*\)',
\ #{submatches: v:true})

[{'idx': 0, 'byteidx': 0, 'text': 'acd', 'submatches': ['a', '', 'c', 'd', '', '', '', '', '']}]
The "submatches" List always contains 9 items. If a submatch
is not found, then an empty string is returned for that
submatch.

Can also be used as a method :
GetListOfStrings()->matchstrlist('mypat')

matchstr({expr}, {pat} [, {start} [, {count}]]) matchstr()
Same as match() , but return the matched string. Example:

:echo matchstr("testing", "ing")
results in "ing".
When there is no match "" is returned.
The {start}, if given, has the same meaning as for match() .

:echo matchstr("testing", "ing", 2)
results in "ing".

:echo matchstr("testing", "ing", 5)
result is "".
When {expr} is a List then the matching item is returned.
The type isn't changed, it's not necessarily a String.

Can also be used as a method :
GetText()->matchstr('word')

matchstrpos({expr}, {pat} [, {start} [, {count}]]) matchstrpos()
Same as matchstr() , but return the matched string, the start
position and the end position of the match. Example:

:echo matchstrpos("testing", "ing")
results in ["ing", 4, 7].
When there is no match ["", -1, -1] is returned.
The {start}, if given, has the same meaning as for match() .

:echo matchstrpos("testing", "ing", 2)

builtin.txt — 1360

results in ["ing", 4, 7].
:echo matchstrpos("testing", "ing", 5)

result is ["", -1, -1].
When {expr} is a List then the matching item, the index
of first item where {pat} matches, the start position and the
end position of the match are returned.

:echo matchstrpos([1, '__x'], '\a')
result is ["x", 1, 2, 3].
The type isn't changed, it's not necessarily a String.

Can also be used as a method :
GetText()->matchstrpos('word')

max()
max({expr}) Return the maximum value of all items in {expr}. Example:

echo max([apples, pears, oranges])

{expr} can be a List or a Dictionary . For a Dictionary,
it returns the maximum of all values in the Dictionary.
If {expr} is neither a List nor a Dictionary, or one of the
items in {expr} cannot be used as a Number this results in
an error. An empty List or Dictionary results in zero.

Can also be used as a method :
mylist->max()

menu_info({name} [, {mode}]) menu_info()
Return information about the specified menu {name} in
mode {mode}. The menu name should be specified without the
shortcut character ('&'). If {name} is "", then the top-level
menu names are returned.

{mode} can be one of these strings:
"n" Normal
"v" Visual (including Select)
"o" Operator-pending
"i" Insert
"c" Cmd-line
"s" Select
"x" Visual
"t" Terminal-Job
"" Normal, Visual and Operator-pending
"!" Insert and Cmd-line

When {mode} is omitted, the modes for "" are used.

Returns a Dictionary containing the following items:
accel menu item accelerator text menu-text
display display name (name without '&')
enabled v:true if this menu item is enabled

Refer to :menu-enable
icon name of the icon file (for toolbar)

toolbar-icon
iconidx index of a built-in icon
modes modes for which the menu is defined. In

addition to the modes mentioned above, these
characters will be used:
" " Normal, Visual and Operator-pending

name menu item name.

builtin.txt — 1361

noremenu v:true if the {rhs} of the menu item is not
remappable else v:false.

priority menu order priority menu-priority
rhs right-hand-side of the menu item. The returned

string has special characters translated like
in the output of the ":menu" command listing.
When the {rhs} of a menu item is empty, then
"<Nop>" is returned.

script v:true if script-local remapping of {rhs} is
allowed else v:false. See :menu-script .

shortcut shortcut key (character after '&' in
the menu name) menu-shortcut

silent v:true if the menu item is created
with <silent> argument :menu-silent

submenus List containing the names of
all the submenus. Present only if the menu
item has submenus.

Returns an empty dictionary if the menu item is not found.

Examples:
:echo menu_info('Edit.Cut')
:echo menu_info('File.Save', 'n')

" Display the entire menu hierarchy in a buffer
func ShowMenu(name, pfx)

let m = menu_info(a:name)
call append(line('$'), a:pfx .. m.display)
for child in m->get('submenus', [])

call ShowMenu(a:name .. '.' .. escape(child, '.'),
\ a:pfx .. ' ')

endfor
endfunc
new
for topmenu in menu_info('').submenus

call ShowMenu(topmenu, '')
endfor

Can also be used as a method :
GetMenuName()->menu_info('v')

min()
min({expr}) Return the minimum value of all items in {expr}. Example:

echo min([apples, pears, oranges])

{expr} can be a List or a Dictionary . For a Dictionary,
it returns the minimum of all values in the Dictionary.
If {expr} is neither a List nor a Dictionary, or one of the
items in {expr} cannot be used as a Number this results in
an error. An empty List or Dictionary results in zero.

Can also be used as a method :
mylist->min()

mkdir() E739
mkdir({name} [, {flags} [, {prot}]])

Create directory {name}.

When {flags} is present it must be a string. An empty string

builtin.txt — 1362

has no effect.

If {flags} contains "p" then intermediate directories are
created as necessary.

If {flags} contains "D" then {name} is deleted at the end of
the current function, as with:

defer delete({name}, 'd')

If {flags} contains "R" then {name} is deleted recursively at
the end of the current function, as with:

defer delete({name}, 'rf')
Note that when {name} has more than one part and "p" is used
some directories may already exist. Only the first one that
is created and what it contains is scheduled to be deleted.
E.g. when using:

call mkdir('subdir/tmp/autoload', 'pR')
and "subdir" already exists then "subdir/tmp" will be
scheduled for deletion, like with:

defer delete('subdir/tmp', 'rf')
Note that if scheduling the defer fails the directory is not
deleted. This should only happen when out of memory.

If {prot} is given it is used to set the protection bits of
the new directory. The default is 0o755 (rwxr-xr-x: r/w for
the user, readable for others). Use 0o700 to make it
unreadable for others. This is only used for the last part of
{name}. Thus if you create /tmp/foo/bar then /tmp/foo will be
created with 0o755.
Example:

:call mkdir($HOME .. "/tmp/foo/bar", "p", 0o700)

This function is not available in the sandbox .

There is no error if the directory already exists and the "p"
flag is passed (since patch 8.0.1708). However, without the
"p" option the call will fail.

The function result is a Number, which is TRUE if the call was
successful or FALSE if the directory creation failed or partly
failed.

Not available on all systems. To check use:
:if exists("*mkdir")

Can also be used as a method :
GetName()->mkdir()

mode()
mode([expr]) Return a string that indicates the current mode.

If [expr] is supplied and it evaluates to a non-zero Number or
a non-empty String (non-zero-arg), then the full mode is
returned, otherwise only the first letter is returned.
Also see state() .

n Normal
no Operator-pending
nov Operator-pending (forced characterwise o_v)
noV Operator-pending (forced linewise o_V)
noCTRL-V Operator-pending (forced blockwise o_CTRL-V);

builtin.txt — 1363

CTRL-V is one character
niI Normal using i_CTRL-O in Insert-mode
niR Normal using i_CTRL-O in Replace-mode
niV Normal using i_CTRL-O in Virtual-Replace-mode
nt Terminal-Normal (insert goes to Terminal-Job mode)
v Visual by character
vs Visual by character using v_CTRL-O in Select mode
V Visual by line
Vs Visual by line using v_CTRL-O in Select mode
CTRL-V Visual blockwise
CTRL-Vs Visual blockwise using v_CTRL-O in Select mode
s Select by character
S Select by line
CTRL-S Select blockwise
i Insert
ic Insert mode completion compl-generic
ix Insert mode i_CTRL-X completion
R Replace R
Rc Replace mode completion compl-generic
Rx Replace mode i_CTRL-X completion
Rv Virtual Replace gR
Rvc Virtual Replace mode completion compl-generic
Rvx Virtual Replace mode i_CTRL-X completion
c Command-line editing
ct Command-line editing via Terminal-Job mode
cr Command-line editing overstrike mode c_<Insert>
cv Vim Ex mode gQ
cvr Vim Ex mode while in overstrike mode c_<Insert>
ce Normal Ex mode Q
r Hit-enter prompt
rm The -- more -- prompt
r? A :confirm query of some sort
! Shell or external command is executing
t Terminal-Job mode: keys go to the job

This is useful in the 'statusline' option or when used
with remote_expr() In most other places it always returns
"c" or "n".
Note that in the future more modes and more specific modes may
be added. It's better not to compare the whole string but only
the leading character(s).
Also see visualmode() .

Can also be used as a method :
DoFull()->mode()

mzeval({expr}) mzeval()
Evaluate MzScheme expression {expr} and return its result
converted to Vim data structures.
Numbers and strings are returned as they are.
Pairs (including lists and improper lists) and vectors are
returned as Vim Lists .
Hash tables are represented as Vim Dictionary type with keys
converted to strings.
All other types are converted to string with display function.
Examples:

:mz (define l (list 1 2 3))
:mz (define h (make-hash)) (hash-set! h "list" l)
:echo mzeval("l")
:echo mzeval("h")

builtin.txt — 1364

Note that in a `:def` function local variables are not visible
to {expr}.

Can also be used as a method :
GetExpr()->mzeval()

{only available when compiled with the |+mzscheme| feature}

nextnonblank({lnum}) nextnonblank()
Return the line number of the first line at or below {lnum}
that is not blank. Example:

if getline(nextnonblank(1)) =~ "Java"
When {lnum} is invalid or there is no non-blank line at or
below it, zero is returned.
{lnum} is used like with getline() .
See also prevnonblank() .

Can also be used as a method :
GetLnum()->nextnonblank()

nr2char({expr} [, {utf8}]) nr2char()
Return a string with a single character, which has the number
value {expr}. Examples:

nr2char(64) returns "@"
nr2char(32) returns " "

When {utf8} is omitted or zero, the current 'encoding' is used.
Example for "utf-8":

nr2char(300) returns I with bow character
When {utf8} is TRUE, always return UTF-8 characters.
Note that a NUL character in the file is specified with
nr2char(10), because NULs are represented with newline
characters. nr2char(0) is a real NUL and terminates the
string, thus results in an empty string.
To turn a list of character numbers into a string:

let list = [65, 66, 67]
let str = join(map(list, {_, val -> nr2char(val)}), '')

Result: "ABC"

Can also be used as a method :
GetNumber()->nr2char()

or({expr}, {expr}) or()
Bitwise OR on the two arguments. The arguments are converted
to a number. A List, Dict or Float argument causes an error.
Also see `and()` and `xor()`.
Example:

:let bits = or(bits, 0x80)
Can also be used as a method :

:let bits = bits->or(0x80)

Rationale: The reason this is a function and not using the "|"
character like many languages, is that Vi has always used "|"
to separate commands. In many places it would not be clear if
"|" is an operator or a command separator.

pathshorten({path} [, {len}]) pathshorten()
Shorten directory names in the path {path} and return the
result. The tail, the file name, is kept as-is. The other

builtin.txt — 1365

components in the path are reduced to {len} letters in length.
If {len} is omitted or smaller than 1 then 1 is used (single
letters). Leading '~' and '.' characters are kept. Examples:

:echo pathshorten('~/.vim/autoload/myfile.vim')
~/.v/a/myfile.vim

:echo pathshorten('~/.vim/autoload/myfile.vim', 2)
~/.vi/au/myfile.vim

It doesn't matter if the path exists or not.
Returns an empty string on error.

Can also be used as a method :
GetDirectories()->pathshorten()

perleval({expr}) perleval()
Evaluate Perl expression {expr} in scalar context and return
its result converted to Vim data structures. If value can't be
converted, it is returned as a string Perl representation.
Note: If you want an array or hash, {expr} must return a
reference to it.
Example:

:echo perleval('[1 .. 4]')
[1, 2, 3, 4]

Note that in a `:def` function local variables are not visible
to {expr}.

Can also be used as a method :
GetExpr()->perleval()

{only available when compiled with the |+perl| feature}

popup_ functions are documented here: popup-functions

pow({x}, {y}) pow()
Return the power of {x} to the exponent {y} as a Float .
{x} and {y} must evaluate to a Float or a Number .
Returns 0.0 if {x} or {y} is not a Float or a Number .
Examples:

:echo pow(3, 3)
27.0
:echo pow(2, 16)
65536.0
:echo pow(32, 0.20)
2.0

Can also be used as a method :
Compute()->pow(3)

prevnonblank({lnum}) prevnonblank()
Return the line number of the first line at or above {lnum}
that is not blank. Example:

let ind = indent(prevnonblank(v:lnum - 1))
When {lnum} is invalid or there is no non-blank line at or
above it, zero is returned.
{lnum} is used like with getline() .
Also see nextnonblank() .

builtin.txt — 1366

Can also be used as a method :
GetLnum()->prevnonblank()

printf({fmt}, {expr1} ...) printf()
Return a String with {fmt}, where "%" items are replaced by
the formatted form of their respective arguments. Example:

printf("%4d: E%d %.30s", lnum, errno, msg)
May result in:

" 99: E42 asdfasdfasdfasdfasdfasdfasdfas"

When used as a method the base is passed as the second
argument:

Compute()->printf("result: %d")

You can use `call()` to pass the items as a list.

Often used items are:
%s string
%6S string right-aligned in 6 display cells
%6s string right-aligned in 6 bytes
%.9s string truncated to 9 bytes
%c single byte
%d decimal number
%5d decimal number padded with spaces to 5 characters
%x hex number
%04x hex number padded with zeros to at least 4 characters
%X hex number using upper case letters
%o octal number
%08b binary number padded with zeros to at least 8 chars
%f floating point number as 12.23, inf, -inf or nan
%F floating point number as 12.23, INF, -INF or NAN
%e floating point number as 1.23e3, inf, -inf or nan
%E floating point number as 1.23E3, INF, -INF or NAN
%g floating point number, as %f or %e depending on value
%G floating point number, as %F or %E depending on value
%% the % character itself

Conversion specifications start with '%' and end with the
conversion type. All other characters are copied unchanged to
the result.

The "%" starts a conversion specification. The following
arguments appear in sequence:

% [pos-argument] [flags] [field-width] [.precision] type

pos-argument
At most one positional argument specifier. These
take the form {n$}, where n is >= 1.

flags
Zero or more of the following flags:

The value should be converted to an "alternate
form". For c, d, and s conversions, this option
has no effect. For o conversions, the precision
of the number is increased to force the first
character of the output string to a zero (except
if a zero value is printed with an explicit
precision of zero).

builtin.txt — 1367

For b and B conversions, a non-zero result has
the string "0b" (or "0B" for B conversions)
prepended to it.
For x and X conversions, a non-zero result has
the string "0x" (or "0X" for X conversions)
prepended to it.

0 (zero) Zero padding. For all conversions the converted
value is padded on the left with zeros rather
than blanks. If a precision is given with a
numeric conversion (d, b, B, o, x, and X), the 0
flag is ignored.

- A negative field width flag; the converted value
is to be left adjusted on the field boundary.
The converted value is padded on the right with
blanks, rather than on the left with blanks or
zeros. A - overrides a 0 if both are given.

' ' (space) A blank should be left before a positive
number produced by a signed conversion (d).

+ A sign must always be placed before a number
produced by a signed conversion. A + overrides
a space if both are used.

field-width
An optional decimal digit string specifying a minimum
field width. If the converted value has fewer bytes
than the field width, it will be padded with spaces on
the left (or right, if the left-adjustment flag has
been given) to fill out the field width. For the S
conversion the count is in cells.

.precision
An optional precision, in the form of a period '.'
followed by an optional digit string. If the digit
string is omitted, the precision is taken as zero.
This gives the minimum number of digits to appear for
d, o, x, and X conversions, the maximum number of
bytes to be printed from a string for s conversions,
or the maximum number of cells to be printed from a
string for S conversions.
For floating point it is the number of digits after
the decimal point.

type
A character that specifies the type of conversion to
be applied, see below.

A field width or precision, or both, may be indicated by an
asterisk '*' instead of a digit string. In this case, a
Number argument supplies the field width or precision. A
negative field width is treated as a left adjustment flag
followed by a positive field width; a negative precision is
treated as though it were missing. Example:

:echo printf("%d: %.*s", nr, width, line)
This limits the length of the text used from "line" to
"width" bytes.

builtin.txt — 1368

If the argument to be formatted is specified using a
positional argument specifier, and a '*' is used to indicate
that a number argument is to be used to specify the width or
precision, the argument(s) to be used must also be specified
using a {n$} positional argument specifier. See printf-$.

The conversion specifiers and their meanings are:

printf-d printf-b printf-B printf-o
printf-x printf-X

dbBoxX The Number argument is converted to signed decimal
(d), unsigned binary (b and B), unsigned octal (o), or
unsigned hexadecimal (x and X) notation. The letters
"abcdef" are used for x conversions; the letters
"ABCDEF" are used for X conversions.
The precision, if any, gives the minimum number of
digits that must appear; if the converted value
requires fewer digits, it is padded on the left with
zeros.
In no case does a non-existent or small field width
cause truncation of a numeric field; if the result of
a conversion is wider than the field width, the field
is expanded to contain the conversion result.
The 'h' modifier indicates the argument is 16 bits.
The 'l' modifier indicates the argument is a long
integer. The size will be 32 bits or 64 bits
depending on your platform.
The "ll" modifier indicates the argument is 64 bits.
The b and B conversion specifiers never take a width
modifier and always assume their argument is a 64 bit
integer.
Generally, these modifiers are not useful. They are
ignored when type is known from the argument.

i alias for d
D alias for ld
U alias for lu
O alias for lo

printf-c
c The Number argument is converted to a byte, and the

resulting character is written.

printf-s
s The text of the String argument is used. If a

precision is specified, no more bytes than the number
specified are used.
If the argument is not a String type, it is
automatically converted to text with the same format
as ":echo".

printf-S
S The text of the String argument is used. If a

precision is specified, no more display cells than the
number specified are used.

printf-f E807
f F The Float argument is converted into a string of the

form 123.456. The precision specifies the number of
digits after the decimal point. When the precision is
zero the decimal point is omitted. When the precision

builtin.txt — 1369

is not specified 6 is used. A really big number
(out of range or dividing by zero) results in "inf"
or "-inf" with %f (INF or -INF with %F).
"0.0 / 0.0" results in "nan" with %f (NAN with %F).
Example:

echo printf("%.2f", 12.115)
12.12

Note that roundoff depends on the system libraries.
Use round() when in doubt.

printf-e printf-E
e E The Float argument is converted into a string of the

form 1.234e+03 or 1.234E+03 when using 'E'. The
precision specifies the number of digits after the
decimal point, like with 'f'.

printf-g printf-G
g G The Float argument is converted like with 'f' if the

value is between 0.001 (inclusive) and 10000000.0
(exclusive). Otherwise 'e' is used for 'g' and 'E'
for 'G'. When no precision is specified superfluous
zeroes and '+' signs are removed, except for the zero
immediately after the decimal point. Thus 10000000.0
results in 1.0e7.

printf-%
% A '%' is written. No argument is converted. The

complete conversion specification is "%%".

When a Number argument is expected a String argument is also
accepted and automatically converted.
When a Float or String argument is expected a Number argument
is also accepted and automatically converted.
Any other argument type results in an error message.

E766 E767
The number of {exprN} arguments must exactly match the number
of "%" items. If there are not sufficient or too many
arguments an error is given. Up to 18 arguments can be used.

printf-$
In certain languages, error and informative messages are
more readable when the order of words is different from the
corresponding message in English. To accommodate translations
having a different word order, positional arguments may be
used to indicate this. For instance:

#, c-format
msgid "%s returning %s"
msgstr "waarde %2$s komt terug van %1$s"

In this example, the sentence has its 2 string arguments
reversed in the output.

echo printf(
"In The Netherlands, vim's creator's name is: %1$s %2$s",
"Bram", "Moolenaar")

In The Netherlands, vim's creator's name is: Bram Moolenaar

echo printf(

builtin.txt — 1370

"In Belgium, vim's creator's name is: %2$s %1$s",
"Bram", "Moolenaar")

In Belgium, vim's creator's name is: Moolenaar Bram

Width (and precision) can be specified using the '*' specifier.
In this case, you must specify the field width position in the
argument list.

echo printf("%1$*2$.*3$d", 1, 2, 3)
001
echo printf("%2$*3$.*1$d", 1, 2, 3)
2

echo printf("%3$*1$.*2$d", 1, 2, 3)
03
echo printf("%1$*2$.*3$g", 1.4142, 2, 3)
1.414

You can mix specifying the width and/or precision directly
and via positional arguments:

echo printf("%1$4.*2$f", 1.4142135, 6)
1.414214
echo printf("%1$*2$.4f", 1.4142135, 6)
1.4142
echo printf("%1$*2$.*3$f", 1.4142135, 6, 2)
1.41

E1500
You cannot mix positional and non-positional arguments:

echo printf("%s%1$s", "One", "Two")
E1500: Cannot mix positional and non-positional arguments:
%s%1$s

E1501
You cannot skip a positional argument in a format string:

echo printf("%3$s%1$s", "One", "Two", "Three")
E1501: format argument 2 unused in $-style format:
%3$s%1$s

E1502
You can re-use a [field-width] (or [precision]) argument:

echo printf("%1$d at width %2$d is: %01$*2$d", 1, 2)
1 at width 2 is: 01

However, you can't use it as a different type:
echo printf("%1$d at width %2$ld is: %01$*2$d", 1, 2)
E1502: Positional argument 2 used as field width reused as
different type: long int/int

E1503
When a positional argument is used, but not the correct number
or arguments is given, an error is raised:

echo printf("%1$d at width %2$d is: %01$*2$.*3$d", 1, 2)
E1503: Positional argument 3 out of bounds: %1$d at width
%2$d is: %01$*2$.*3$d

Only the first error is reported:
echo printf("%01$*2$.*3$d %4$d", 1, 2)
E1503: Positional argument 3 out of bounds: %01$*2$.*3$d
%4$d

builtin.txt — 1371

E1504
A positional argument can be used more than once:

echo printf("%1$s %2$s %1$s", "One", "Two")
One Two One

However, you can't use a different type the second time:
echo printf("%1$s %2$s %1$d", "One", "Two")
E1504: Positional argument 1 type used inconsistently:
int/string

E1505
Various other errors that lead to a format string being
wrongly formatted lead to:

echo printf("%1$d at width %2$d is: %01$*2$.3$d", 1, 2)
E1505: Invalid format specifier: %1$d at width %2$d is:
%01$*2$.3$d

E1507
This internal error indicates that the logic to parse a
positional format argument ran into a problem that couldn't be
otherwise reported. Please file a bug against Vim if you run
into this, copying the exact format string and parameters that
were used.

prompt_getprompt({buf}) prompt_getprompt()
Returns the effective prompt text for buffer {buf}. {buf} can
be a buffer name or number. See prompt-buffer .

If the buffer doesn't exist or isn't a prompt buffer, an empty
string is returned.

Can also be used as a method :
GetBuffer()->prompt_getprompt()

{only available when compiled with the |+channel| feature}

prompt_setcallback({buf}, {expr}) prompt_setcallback()
Set prompt callback for buffer {buf} to {expr}. When {expr}
is an empty string the callback is removed. This has only
effect if {buf} has 'buftype' set to "prompt".

The callback is invoked when pressing Enter. The current
buffer will always be the prompt buffer. A new line for a
prompt is added before invoking the callback, thus the prompt
for which the callback was invoked will be in the last but one
line.
If the callback wants to add text to the buffer, it must
insert it above the last line, since that is where the current
prompt is. This can also be done asynchronously.
The callback is invoked with one argument, which is the text
that was entered at the prompt. This can be an empty string
if the user only typed Enter.
Example:

func s:TextEntered(text)
if a:text == 'exit' || a:text == 'quit'
stopinsert
" Reset 'modified' to allow the buffer to be closed.

builtin.txt — 1372

" We assume there is nothing useful to be saved.
set nomodified
close

else
" Do something useful with "a:text". In this example
" we just repeat it.
call append(line('$') - 1, 'Entered: "' .. a:text .. '"')

endif
endfunc
call prompt_setcallback(bufnr(), function('s:TextEntered'))

Can also be used as a method :
GetBuffer()->prompt_setcallback(callback)

{only available when compiled with the |+channel| feature}

prompt_setinterrupt({buf}, {expr}) prompt_setinterrupt()
Set a callback for buffer {buf} to {expr}. When {expr} is an
empty string the callback is removed. This has only effect if
{buf} has 'buftype' set to "prompt".

This callback will be invoked when pressing CTRL-C in Insert
mode. Without setting a callback Vim will exit Insert mode,
as in any buffer.

Can also be used as a method :
GetBuffer()->prompt_setinterrupt(callback)

{only available when compiled with the |+channel| feature}

prompt_setprompt({buf}, {text}) prompt_setprompt()
Set prompt for buffer {buf} to {text}. You most likely want
{text} to end in a space.
The result is only visible if {buf} has 'buftype' set to
"prompt". Example:

call prompt_setprompt(bufnr(), 'command: ')

Can also be used as a method :
GetBuffer()->prompt_setprompt('command: ')

{only available when compiled with the |+channel| feature}

prop_ functions are documented here: text-prop-functions

pum_getpos() pum_getpos()
If the popup menu (see ins-completion-menu) is not visible,
returns an empty Dictionary , otherwise, returns a
Dictionary with the following keys:

height nr of items visible
width screen cells
row top screen row (0 first row)
col leftmost screen column (0 first col)
size total nr of items
scrollbar TRUE if scrollbar is visible

The values are the same as in v:event during
CompleteChanged .

pumvisible() pumvisible()
Returns non-zero when the popup menu is visible, zero

builtin.txt — 1373

otherwise. See ins-completion-menu .
This can be used to avoid some things that would remove the
popup menu.

py3eval({expr}) py3eval()
Evaluate Python expression {expr} and return its result
converted to Vim data structures.
Numbers and strings are returned as they are (strings are
copied though, Unicode strings are additionally converted to
'encoding').
Lists are represented as Vim List type.
Dictionaries are represented as Vim Dictionary type with
keys converted to strings.
Note that in a `:def` function local variables are not visible
to {expr}.

Can also be used as a method :
GetExpr()->py3eval()

{only available when compiled with the |+python3| feature}

E858 E859
pyeval({expr}) pyeval()

Evaluate Python expression {expr} and return its result
converted to Vim data structures.
Numbers and strings are returned as they are (strings are
copied though).
Lists are represented as Vim List type.
Dictionaries are represented as Vim Dictionary type,
non-string keys result in error.
Note that in a `:def` function local variables are not visible
to {expr}.

Can also be used as a method :
GetExpr()->pyeval()

{only available when compiled with the |+python| feature}

pyxeval({expr}) pyxeval()
Evaluate Python expression {expr} and return its result
converted to Vim data structures.
Uses Python 2 or 3, see python_x and 'pyxversion'.
See also: pyeval() , py3eval()

Can also be used as a method :
GetExpr()->pyxeval()

{only available when compiled with the +python or the
+python3 feature}

rand([{expr}]) rand() random
Return a pseudo-random Number generated with an xoshiro128**
algorithm using seed {expr}. The returned number is 32 bits,
also on 64 bits systems, for consistency.
{expr} can be initialized by srand() and will be updated by
rand(). If {expr} is omitted, an internal seed value is used
and updated.
Returns -1 if {expr} is invalid.

Examples:

builtin.txt — 1374

:echo rand()
:let seed = srand()
:echo rand(seed)
:echo rand(seed) % 16 " random number 0 - 15

E726 E727
range({expr} [, {max} [, {stride}]]) range()

Returns a List with Numbers:
- If only {expr} is specified: [0, 1, ..., {expr} - 1]
- If {max} is specified: [{expr}, {expr} + 1, ..., {max}]
- If {stride} is specified: [{expr}, {expr} + {stride}, ...,
{max}] (increasing {expr} with {stride} each time, not
producing a value past {max}).

When the maximum is one before the start the result is an
empty list. When the maximum is more than one before the
start this is an error.
Examples:

range(4) " [0, 1, 2, 3]
range(2, 4) " [2, 3, 4]
range(2, 9, 3) " [2, 5, 8]
range(2, -2, -1) " [2, 1, 0, -1, -2]
range(0) " []
range(2, 0) " error!

Can also be used as a method :
GetExpr()->range()

readblob({fname} [, {offset} [, {size}]]) readblob()
Read file {fname} in binary mode and return a Blob .
If {offset} is specified, read the file from the specified
offset. If it is a negative value, it is used as an offset
from the end of the file. E.g., to read the last 12 bytes:

readblob('file.bin', -12)
If {size} is specified, only the specified size will be read.
E.g. to read the first 100 bytes of a file:

readblob('file.bin', 0, 100)
If {size} is -1 or omitted, the whole data starting from
{offset} will be read.
This can be also used to read the data from a character device
on Unix when {size} is explicitly set. Only if the device
supports seeking {offset} can be used. Otherwise it should be
zero. E.g. to read 10 bytes from a serial console:

readblob('/dev/ttyS0', 0, 10)
When the file can't be opened an error message is given and
the result is an empty Blob .
When the offset is beyond the end of the file the result is an
empty blob.
When trying to read more bytes than are available the result
is truncated.
Also see readfile() and writefile() .

readdir({directory} [, {expr} [, {dict}]]) readdir()
Return a list with file and directory names in {directory}.
You can also use glob() if you don't need to do complicated
things, such as limiting the number of matches.
The list will be sorted (case sensitive), see the {dict}
argument below for changing the sort order.

builtin.txt — 1375

When {expr} is omitted all entries are included.
When {expr} is given, it is evaluated to check what to do:

If {expr} results in -1 then no further entries will
be handled.
If {expr} results in 0 then this entry will not be
added to the list.
If {expr} results in 1 then this entry will be added
to the list.

The entries "." and ".." are always excluded.
Each time {expr} is evaluated v:val is set to the entry name.
When {expr} is a function the name is passed as the argument.
For example, to get a list of files ending in ".txt":

readdir(dirname, {n -> n =~ '.txt$'})
To skip hidden and backup files:

readdir(dirname, {n -> n !~ '^\.\|\~$'})
E857

The optional {dict} argument allows for further custom
values. Currently this is used to specify if and how sorting
should be performed. The dict can have the following members:

sort How to sort the result returned from the system.
Valid values are:

"none" do not sort (fastest method)
"case" sort case sensitive (byte value of

each character, technically, using
strcmp()) (default)

"icase" sort case insensitive (technically
using strcasecmp())

"collate" sort using the collation order
of the "POSIX" or "C" locale
(technically using strcoll())

Other values are silently ignored.

For example, to get a list of all files in the current
directory without sorting the individual entries:

readdir('.', '1', #{sort: 'none'})
If you want to get a directory tree:

function! s:tree(dir)
return {a:dir : map(readdir(a:dir),
\ {_, x -> isdirectory(x) ?
\ {x : s:tree(a:dir .. '/' .. x)} : x})}

endfunction
echo s:tree(".")

Returns an empty List on error.

Can also be used as a method :
GetDirName()->readdir()

readdirex({directory} [, {expr} [, {dict}]]) readdirex()
Extended version of readdir() .
Return a list of Dictionaries with file and directory
information in {directory}.
This is useful if you want to get the attributes of file and
directory at the same time as getting a list of a directory.
This is much faster than calling readdir() then calling
getfperm() , getfsize() , getftime() and getftype() for
each file and directory especially on MS-Windows.
The list will by default be sorted by name (case sensitive),

builtin.txt — 1376

the sorting can be changed by using the optional {dict}
argument, see readdir() .

The Dictionary for file and directory information has the
following items:

group Group name of the entry. (Only on Unix)
name Name of the entry.
perm Permissions of the entry. See getfperm() .
size Size of the entry. See getfsize() .
time Timestamp of the entry. See getftime() .
type Type of the entry.

On Unix, almost same as getftype() except:
Symlink to a dir "linkd"
Other symlink "link"

On MS-Windows:
Normal file "file"
Directory "dir"
Junction "junction"
Symlink to a dir "linkd"
Other symlink "link"
Other reparse point "reparse"

user User name of the entry's owner. (Only on Unix)
On Unix, if the entry is a symlink, the Dictionary includes
the information of the target (except the "type" item).
On MS-Windows, it includes the information of the symlink
itself because of performance reasons.

When {expr} is omitted all entries are included.
When {expr} is given, it is evaluated to check what to do:

If {expr} results in -1 then no further entries will
be handled.
If {expr} results in 0 then this entry will not be
added to the list.
If {expr} results in 1 then this entry will be added
to the list.

The entries "." and ".." are always excluded.
Each time {expr} is evaluated v:val is set to a Dictionary
of the entry.
When {expr} is a function the entry is passed as the argument.
For example, to get a list of files ending in ".txt":
readdirex(dirname, {e -> e.name =~ '.txt$'})

For example, to get a list of all files in the current
directory without sorting the individual entries:

readdirex(dirname, '1', #{sort: 'none'})

Can also be used as a method :
GetDirName()->readdirex()

readfile()
readfile({fname} [, {type} [, {max}]])

Read file {fname} and return a List , each line of the file
as an item. Lines are broken at NL characters. Macintosh
files separated with CR will result in a single long line
(unless a NL appears somewhere).
All NUL characters are replaced with a NL character.
When {type} contains "b" binary mode is used:
- When the last line ends in a NL an extra empty list item is
added.

builtin.txt — 1377

- No CR characters are removed.
Otherwise:
- CR characters that appear before a NL are removed.
- Whether the last line ends in a NL or not does not matter.
- When 'encoding' is Unicode any UTF-8 byte order mark is
removed from the text.

When {max} is given this specifies the maximum number of lines
to be read. Useful if you only want to check the first ten
lines of a file:

:for line in readfile(fname, '', 10)
: if line =~ 'Date' | echo line | endif
:endfor

When {max} is negative -{max} lines from the end of the file
are returned, or as many as there are.
When {max} is zero the result is an empty list.
Note that without {max} the whole file is read into memory.
Also note that there is no recognition of encoding. Read a
file into a buffer if you need to.
Deprecated (use readblob() instead): When {type} contains
"B" a Blob is returned with the binary data of the file
unmodified.
When the file can't be opened an error message is given and
the result is an empty list.
Also see writefile() .

Can also be used as a method :
GetFileName()->readfile()

reduce({object}, {func} [, {initial}]) reduce() E998
{func} is called for every item in {object}, which can be a
String , List or a Blob . {func} is called with two
arguments: the result so far and current item. After
processing all items the result is returned. E1132

{initial} is the initial result. When omitted, the first item
in {object} is used and {func} is first called for the second
item. If {initial} is not given and {object} is empty no
result can be computed, an E998 error is given.

Examples:
echo reduce([1, 3, 5], { acc, val -> acc + val })
echo reduce(['x', 'y'], { acc, val -> acc .. val }, 'a')
echo reduce(0z1122, { acc, val -> 2 * acc + val })
echo reduce('xyz', { acc, val -> acc .. ',' .. val })

Can also be used as a method :
echo mylist->reduce({ acc, val -> acc + val }, 0)

reg_executing() reg_executing()
Returns the single letter name of the register being executed.
Returns an empty string when no register is being executed.
See @ .

reg_recording() reg_recording()
Returns the single letter name of the register being recorded.
Returns an empty string when not recording. See q .

reltime()
reltime({start})

builtin.txt — 1378

reltime({start}, {end}) reltime()
Return an item that represents a time value. The item is a
list with items that depend on the system. In Vim 9 script
the type list<any> can be used.
The item can be passed to reltimestr() to convert it to a
string or reltimefloat() to convert to a Float. For
example, to see the time spent in function Work():

var startTime = reltime()
Work()
echo startTime->reltime()->reltimestr()

Without an argument reltime() returns the current time (the
representation is system-dependent, it cannot be used as the
wall-clock time, see localtime() for that).
With one argument it returns the time passed since the time
specified in the argument.
With two arguments it returns the time passed between {start}
and {end}.

The {start} and {end} arguments must be values returned by
reltime(). If there is an error an empty List is returned in
legacy script, in Vim9 script an error is given.

Can also be used as a method :
GetStart()->reltime()

{only available when compiled with the |+reltime| feature}

reltimefloat({time}) reltimefloat()
Return a Float that represents the time value of {time}.
Example:

let start = reltime()
call MyFunction()
let seconds = reltimefloat(reltime(start))

See the note of reltimestr() about overhead.
Also see profiling .
If there is an error 0.0 is returned in legacy script, in Vim9
script an error is given.

Can also be used as a method :
reltime(start)->reltimefloat()

{only available when compiled with the |+reltime| feature}

reltimestr({time}) reltimestr()
Return a String that represents the time value of {time}.
This is the number of seconds, a dot and the number of
microseconds. Example:

let start = reltime()
call MyFunction()
echo reltimestr(reltime(start))

Note that overhead for the commands will be added to the time.
The accuracy depends on the system. Use reltimefloat() for the
greatest accuracy which is nanoseconds on some systems.
Leading spaces are used to make the string align nicely. You
can use split() to remove it.

echo split(reltimestr(reltime(start)))[0]
Also see profiling .
If there is an error an empty string is returned in legacy
script, in Vim9 script an error is given.

builtin.txt — 1379

Can also be used as a method :
reltime(start)->reltimestr()

{only available when compiled with the |+reltime| feature}

remote_expr() E449
remote_expr({server}, {string} [, {idvar} [, {timeout}]])

Send the {string} to {server}. The {server} argument is a
string, also see {server} .

The string is sent as an expression and the result is returned
after evaluation. The result must be a String or a List . A
List is turned into a String by joining the items with a
line break in between (not at the end), like with join(expr,
"\n").

If {idvar} is present and not empty, it is taken as the name
of a variable and a {serverid} for later use with
remote_read() is stored there.

If {timeout} is given the read times out after this many
seconds. Otherwise a timeout of 600 seconds is used.

See also clientserver RemoteReply .
This function is not available in the sandbox .
{only available when compiled with the |+clientserver| feature}
Note: Any errors will cause a local error message to be issued
and the result will be the empty string.

Variables will be evaluated in the global namespace,
independent of a function currently being active. Except
when in debug mode, then local function variables and
arguments can be evaluated.

Examples:
:echo remote_expr("gvim", "2+2")
:echo remote_expr("gvim1", "b:current_syntax")

Can also be used as a method :
ServerName()->remote_expr(expr)

remote_foreground({server}) remote_foreground()
Move the Vim server with the name {server} to the foreground.
The {server} argument is a string, also see {server} .
This works like:

remote_expr({server}, "foreground()")
Except that on Win32 systems the client does the work, to work
around the problem that the OS doesn't always allow the server
to bring itself to the foreground.
Note: This does not restore the window if it was minimized,
like foreground() does.
This function is not available in the sandbox .

Can also be used as a method :
ServerName()->remote_foreground()

{only in the Win32, Motif and GTK GUI versions and the
Win32 console version}

builtin.txt — 1380

remote_peek({serverid} [, {retvar}]) remote_peek()
Returns a positive number if there are available strings
from {serverid}. Copies any reply string into the variable
{retvar} if specified. {retvar} must be a string with the
name of a variable.
Returns zero if none are available.
Returns -1 if something is wrong.
See also clientserver .
This function is not available in the sandbox .
{only available when compiled with the |+clientserver| feature}
Examples:

:let repl = ""
:echo "PEEK: " .. remote_peek(id, "repl") .. ": " .. repl

Can also be used as a method :
ServerId()->remote_peek()

remote_read({serverid}, [{timeout}]) remote_read()
Return the oldest available reply from {serverid} and consume
it. Unless a {timeout} in seconds is given, it blocks until a
reply is available. Returns an empty string, if a reply is
not available or on error.
See also clientserver .
This function is not available in the sandbox .
{only available when compiled with the |+clientserver| feature}
Example:

:echo remote_read(id)

Can also be used as a method :
ServerId()->remote_read()

remote_send() E241
remote_send({server}, {string} [, {idvar}])

Send the {string} to {server}. The {server} argument is a
string, also see {server} .

The string is sent as input keys and the function returns
immediately. At the Vim server the keys are not mapped
:map .

If {idvar} is present, it is taken as the name of a variable
and a {serverid} for later use with remote_read() is stored
there.

See also clientserver RemoteReply .
This function is not available in the sandbox .
{only available when compiled with the |+clientserver| feature}

Note: Any errors will be reported in the server and may mess
up the display.
Examples:
:echo remote_send("gvim", ":DropAndReply " .. file, "serverid") ..
\ remote_read(serverid)

:autocmd NONE RemoteReply *
\ echo remote_read(expand("<amatch>"))
:echo remote_send("gvim", ":sleep 10 | echo " ..
\ 'server2client(expand("<client>"), "HELLO")<CR>')

builtin.txt — 1381

Can also be used as a method :
ServerName()->remote_send(keys)

remote_startserver() E941 E942
remote_startserver({name})

Become the server {name}. {name} must be a non-empty string.
This fails if already running as a server, when v:servername
is not empty.

Can also be used as a method :
ServerName()->remote_startserver()

{only available when compiled with the |+clientserver| feature}

remove({list}, {idx})
remove({list}, {idx}, {end}) remove()

Without {end}: Remove the item at {idx} from List {list} and
return the item.
With {end}: Remove items from {idx} to {end} (inclusive) and
return a List with these items. When {idx} points to the same
item as {end} a list with one item is returned. When {end}
points to an item before {idx} this is an error.
See list-index for possible values of {idx} and {end}.
Returns zero on error.
Example:

:echo "last item: " .. remove(mylist, -1)
:call remove(mylist, 0, 9)

Use delete() to remove a file.

Can also be used as a method :
mylist->remove(idx)

remove({blob}, {idx})
remove({blob}, {idx}, {end})

Without {end}: Remove the byte at {idx} from Blob {blob} and
return the byte.
With {end}: Remove bytes from {idx} to {end} (inclusive) and
return a Blob with these bytes. When {idx} points to the same
byte as {end} a Blob with one byte is returned. When {end}
points to a byte before {idx} this is an error.
Returns zero on error.
Example:

:echo "last byte: " .. remove(myblob, -1)
:call remove(mylist, 0, 9)

remove({dict}, {key})
Remove the entry from {dict} with key {key} and return it.
Example:

:echo "removed " .. remove(dict, "one")
If there is no {key} in {dict} this is an error.
Returns zero on error.

rename({from}, {to}) rename()
Rename the file by the name {from} to the name {to}. This
should also work to move files across file systems. The
result is a Number, which is 0 if the file was renamed
successfully, and non-zero when the renaming failed.
NOTE: If {to} exists it is overwritten without warning.
This function is not available in the sandbox .

builtin.txt — 1382

Can also be used as a method :
GetOldName()->rename(newname)

repeat({expr}, {count}) repeat()
Repeat {expr} {count} times and return the concatenated
result. Example:

:let separator = repeat('-', 80)
When {count} is zero or negative the result is empty.
When {expr} is a List or a Blob the result is {expr}
concatenated {count} times. Example:

:let longlist = repeat(['a', 'b'], 3)
Results in ['a', 'b', 'a', 'b', 'a', 'b'].

Can also be used as a method :
mylist->repeat(count)

resolve({filename}) resolve() E655
On MS-Windows, when {filename} is a shortcut (a .lnk file),
returns the path the shortcut points to in a simplified form.
When {filename} is a symbolic link or junction point, return
the full path to the target. If the target of junction is
removed, return {filename}.
On Unix, repeat resolving symbolic links in all path
components of {filename} and return the simplified result.
To cope with link cycles, resolving of symbolic links is
stopped after 100 iterations.
On other systems, return the simplified {filename}.
The simplification step is done as by simplify() .
resolve() keeps a leading path component specifying the
current directory (provided the result is still a relative
path name) and also keeps a trailing path separator.

Can also be used as a method :
GetName()->resolve()

reverse({object}) reverse()
Reverse the order of items in {object}. {object} can be a
List , a Blob or a String . For a List and a Blob the
items are reversed in-place and {object} is returned.
For a String a new String is returned.
Returns zero if {object} is not a List, Blob or a String.
If you want a List or Blob to remain unmodified make a copy
first:

:let revlist = reverse(copy(mylist))
Can also be used as a method :

mylist->reverse()

round({expr}) round()
Round off {expr} to the nearest integral value and return it
as a Float . If {expr} lies halfway between two integral
values, then use the larger one (away from zero).
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

echo round(0.456)
0.0
echo round(4.5)
5.0
echo round(-4.5)

builtin.txt — 1383

-5.0

Can also be used as a method :
Compute()->round()

rubyeval({expr}) rubyeval()
Evaluate Ruby expression {expr} and return its result
converted to Vim data structures.
Numbers, floats and strings are returned as they are (strings
are copied though).
Arrays are represented as Vim List type.
Hashes are represented as Vim Dictionary type.
Other objects are represented as strings resulted from their
"Object#to_s" method.
Note that in a `:def` function local variables are not visible
to {expr}.

Can also be used as a method :
GetRubyExpr()->rubyeval()

{only available when compiled with the |+ruby| feature}

screenattr({row}, {col}) screenattr()
Like screenchar() , but return the attribute. This is a rather
arbitrary number that can only be used to compare to the
attribute at other positions.
Returns -1 when row or col is out of range.

Can also be used as a method :
GetRow()->screenattr(col)

screenchar({row}, {col}) screenchar()
The result is a Number, which is the character at position
[row, col] on the screen. This works for every possible
screen position, also status lines, window separators and the
command line. The top left position is row one, column one
The character excludes composing characters. For double-byte
encodings it may only be the first byte.
This is mainly to be used for testing.
Returns -1 when row or col is out of range.

Can also be used as a method :
GetRow()->screenchar(col)

screenchars({row}, {col}) screenchars()
The result is a List of Numbers. The first number is the same
as what screenchar() returns. Further numbers are
composing characters on top of the base character.
This is mainly to be used for testing.
Returns an empty List when row or col is out of range.

Can also be used as a method :
GetRow()->screenchars(col)

screencol() screencol()
The result is a Number, which is the current screen column of
the cursor. The leftmost column has number 1.
This function is mainly used for testing.

Note: Always returns the current screen column, thus if used

builtin.txt — 1384

in a command (e.g. ":echo screencol()") it will return the
column inside the command line, which is 1 when the command is
executed. To get the cursor position in the file use one of
the following mappings:

nnoremap <expr> GG ":echom " .. screencol() .. "\n"
nnoremap <silent> GG :echom screencol()<CR>
nnoremap GG <Cmd>echom screencol()<CR>

screenpos({winid}, {lnum}, {col}) screenpos()
The result is a Dict with the screen position of the text
character in window {winid} at buffer line {lnum} and column
{col}. {col} is a one-based byte index.
The Dict has these members:

row screen row
col first screen column
endcol last screen column
curscol cursor screen column

If the specified position is not visible, all values are zero.
The "endcol" value differs from "col" when the character
occupies more than one screen cell. E.g. for a Tab "col" can
be 1 and "endcol" can be 8.
The "curscol" value is where the cursor would be placed. For
a Tab it would be the same as "endcol", while for a double
width character it would be the same as "col".
The conceal feature is ignored here, the column numbers are
as if 'conceallevel' is zero. You can set the cursor to the
right position and use screencol() to get the value with
conceal taken into account.
If the position is in a closed fold the screen position of the
first character is returned, {col} is not used.
Returns an empty Dict if {winid} is invalid.

Can also be used as a method :
GetWinid()->screenpos(lnum, col)

screenrow() screenrow()
The result is a Number, which is the current screen row of the
cursor. The top line has number one.
This function is mainly used for testing.
Alternatively you can use winline() .

Note: Same restrictions as with screencol() .

screenstring({row}, {col}) screenstring()
The result is a String that contains the base character and
any composing characters at position [row, col] on the screen.
This is like screenchars() but returning a String with the
characters.
This is mainly to be used for testing.
Returns an empty String when row or col is out of range.

Can also be used as a method :
GetRow()->screenstring(col)

search()
search({pattern} [, {flags} [, {stopline} [, {timeout} [, {skip}]]]])

Search for regexp pattern {pattern}. The search starts at the
cursor position (you can use cursor() to set it).

When a match has been found its line number is returned.

builtin.txt — 1385

If there is no match a 0 is returned and the cursor doesn't
move. No error message is given.
To get the matched string, use matchbufline() .

{flags} is a String, which can contain these character flags:
'b' search Backward instead of forward
'c' accept a match at the Cursor position
'e' move to the End of the match
'n' do Not move the cursor
'p' return number of matching sub-Pattern (see below)
's' Set the ' mark at the previous location of the cursor
'w' Wrap around the end of the file
'W' don't Wrap around the end of the file
'z' start searching at the cursor column instead of zero
If neither 'w' or 'W' is given, the 'wrapscan' option applies.

If the 's' flag is supplied, the ' mark is set, only if the
cursor is moved. The 's' flag cannot be combined with the 'n'
flag.

'ignorecase', 'smartcase' and 'magic' are used.

When the 'z' flag is not given, forward searching always
starts in column zero and then matches before the cursor are
skipped. When the 'c' flag is present in 'cpo' the next
search starts after the match. Without the 'c' flag the next
search starts one column after the start of the match. This
matters for overlapping matches. See cpo-c . You can also
insert "\ze" to change where the match ends, see /\ze .

When searching backwards and the 'z' flag is given then the
search starts in column zero, thus no match in the current
line will be found (unless wrapping around the end of the
file).

When the {stopline} argument is given then the search stops
after searching this line. This is useful to restrict the
search to a range of lines. Examples:

let match = search('(', 'b', line("w0"))
let end = search('END', '', line("w$"))

When {stopline} is used and it is not zero this also implies
that the search does not wrap around the end of the file.
A zero value is equal to not giving the argument.

E1285 E1286 E1287 E1288 E1289
When the {timeout} argument is given the search stops when
more than this many milliseconds have passed. Thus when
{timeout} is 500 the search stops after half a second.
The value must not be negative. A zero value is like not
giving the argument.
{only available when compiled with the |+reltime| feature}

If the {skip} expression is given it is evaluated with the
cursor positioned on the start of a match. If it evaluates to
non-zero this match is skipped. This can be used, for
example, to skip a match in a comment or a string.
{skip} can be a string, which is evaluated as an expression, a
function reference or a lambda.
When {skip} is omitted or empty, every match is accepted.
When evaluating {skip} causes an error the search is aborted
and -1 returned.

builtin.txt — 1386

search()-sub-match
With the 'p' flag the returned value is one more than the
first sub-match in \(\). One if none of them matched but the
whole pattern did match.
To get the column number too use searchpos() .

The cursor will be positioned at the match, unless the 'n'
flag is used.

Example (goes over all files in the argument list):
:let n = 1
:while n <= argc() " loop over all files in arglist
: exe "argument " .. n
: " start at the last char in the file and wrap for the
: " first search to find match at start of file
: normal G$
: let flags = "w"
: while search("foo", flags) > 0
: s/foo/bar/g
: let flags = "W"
: endwhile
: update " write the file if modified
: let n = n + 1
:endwhile

Example for using some flags:
:echo search('\<if\|\(else\)\|\(endif\)', 'ncpe')

This will search for the keywords "if", "else", and "endif"
under or after the cursor. Because of the 'p' flag, it
returns 1, 2, or 3 depending on which keyword is found, or 0
if the search fails. With the cursor on the first word of the
line:

if (foo == 0) | let foo = foo + 1 | endif
the function returns 1. Without the 'c' flag, the function
finds the "endif" and returns 3. The same thing happens
without the 'e' flag if the cursor is on the "f" of "if".
The 'n' flag tells the function not to move the cursor.

Can also be used as a method :
GetPattern()->search()

searchcount([{options}]) searchcount()
Get or update the last search count, like what is displayed
without the "S" flag in 'shortmess'. This works even if
'shortmess' does contain the "S" flag.

This returns a Dictionary . The dictionary is empty if the
previous pattern was not set and "pattern" was not specified.

key type meaning
current Number current position of match;

0 if the cursor position is
before the first match

exact_match Boolean 1 if "current" is matched on
"pos", otherwise 0

total Number total count of matches found
incomplete Number 0: search was fully completed

1: recomputing was timed out
2: max count exceeded

builtin.txt — 1387

For {options} see further down.

To get the last search count when n or N was pressed, call
this function with `recompute: 0` . This sometimes returns
wrong information because n and N 's maximum count is 99.
If it exceeded 99 the result must be max count + 1 (100). If
you want to get correct information, specify `recompute: 1`:

" result == maxcount + 1 (100) when many matches
let result = searchcount(#{recompute: 0})

" Below returns correct result (recompute defaults
" to 1)
let result = searchcount()

The function is useful to add the count to 'statusline':
function! LastSearchCount() abort

let result = searchcount(#{recompute: 0})
if empty(result)

return ''
endif
if result.incomplete ==# 1 " timed out

return printf(' /%s [?/??]', @/)
elseif result.incomplete ==# 2 " max count exceeded

if result.total > result.maxcount &&
\ result.current > result.maxcount

return printf(' /%s [>%d/>%d]', @/,
\ result.current, result.total)

elseif result.total > result.maxcount
return printf(' /%s [%d/>%d]', @/,
\ result.current, result.total)

endif
endif
return printf(' /%s [%d/%d]', @/,
\ result.current, result.total)

endfunction
let &statusline ..= '%{LastSearchCount()}'

" Or if you want to show the count only when
" 'hlsearch' was on
" let &statusline ..=
" \ '%{v:hlsearch ? LastSearchCount() : ""}'

You can also update the search count, which can be useful in a
CursorMoved or CursorMovedI autocommand:

autocmd CursorMoved,CursorMovedI *
\ let s:searchcount_timer = timer_start(
\ 200, function('s:update_searchcount'))

function! s:update_searchcount(timer) abort
if a:timer ==# s:searchcount_timer

call searchcount(#{
\ recompute: 1, maxcount: 0, timeout: 100})
redrawstatus

endif
endfunction

This can also be used to count matched texts with specified
pattern in the current buffer using "pattern":

builtin.txt — 1388

" Count '\<foo\>' in this buffer
" (Note that it also updates search count)
let result = searchcount(#{pattern: '\<foo\>'})

" To restore old search count by old pattern,
" search again
call searchcount()

{options} must be a Dictionary . It can contain:
key type meaning
recompute Boolean if TRUE , recompute the count

like n or N was executed.
otherwise returns the last
computed result (when n or
N was used when "S" is not

in 'shortmess', or this
function was called).
(default: TRUE)

pattern String recompute if this was given
and different with @/ .
this works as same as the
below command is executed
before calling this function

let @/ = pattern
(default: @/)

timeout Number 0 or negative number is no
timeout. timeout milliseconds
for recomputing the result
(default: 0)

maxcount Number 0 or negative number is no
limit. max count of matched
text while recomputing the
result. if search exceeded
total count, "total" value
becomes `maxcount + 1`
(default: 99)

pos List `[lnum, col, off]` value
when recomputing the result.
this changes "current" result
value. see cursor() ,
getpos()

(default: cursor's position)

Can also be used as a method :
GetSearchOpts()->searchcount()

searchdecl({name} [, {global} [, {thisblock}]]) searchdecl()
Search for the declaration of {name}.

With a non-zero {global} argument it works like gD , find
first match in the file. Otherwise it works like gd , find
first match in the function.

With a non-zero {thisblock} argument matches in a {} block
that ends before the cursor position are ignored. Avoids
finding variable declarations only valid in another scope.

Moves the cursor to the found match.
Returns zero for success, non-zero for failure.
Example:

builtin.txt — 1389

if searchdecl('myvar') == 0
echo getline('.')

endif

Can also be used as a method :
GetName()->searchdecl()

searchpair()
searchpair({start}, {middle}, {end} [, {flags} [, {skip}

[, {stopline} [, {timeout}]]]])
Search for the match of a nested start-end pair. This can be
used to find the "endif" that matches an "if", while other
if/endif pairs in between are ignored.
The search starts at the cursor. The default is to search
forward, include 'b' in {flags} to search backward.
If a match is found, the cursor is positioned at it and the
line number is returned. If no match is found 0 or -1 is
returned and the cursor doesn't move. No error message is
given.

{start}, {middle} and {end} are patterns, see pattern . They
must not contain \(\) pairs. Use of \%(\) is allowed. When
{middle} is not empty, it is found when searching from either
direction, but only when not in a nested start-end pair. A
typical use is:

searchpair('\<if\>', '\<else\>', '\<endif\>')
By leaving {middle} empty the "else" is skipped.

{flags} 'b', 'c', 'n', 's', 'w' and 'W' are used like with
search() . Additionally:
'r' Repeat until no more matches found; will find the

outer pair. Implies the 'W' flag.
'm' Return number of matches instead of line number with

the match; will be > 1 when 'r' is used.
Note: it's nearly always a good idea to use the 'W' flag, to
avoid wrapping around the end of the file.

When a match for {start}, {middle} or {end} is found, the
{skip} expression is evaluated with the cursor positioned on
the start of the match. It should return non-zero if this
match is to be skipped. E.g., because it is inside a comment
or a string.
When {skip} is omitted or empty, every match is accepted.
When evaluating {skip} causes an error the search is aborted
and -1 returned.
{skip} can be a string, a lambda, a funcref or a partial.
Anything else makes the function fail.
In a `:def` function when the {skip} argument is a string
constant it is compiled into instructions.

For {stopline} and {timeout} see search() .

The value of 'ignorecase' is used. 'magic' is ignored, the
patterns are used like it's on.

The search starts exactly at the cursor. A match with
{start}, {middle} or {end} at the next character, in the
direction of searching, is the first one found. Example:

if 1
if 2

builtin.txt — 1390

endif 2
endif 1

When starting at the "if 2", with the cursor on the "i", and
searching forwards, the "endif 2" is found. When starting on
the character just before the "if 2", the "endif 1" will be
found. That's because the "if 2" will be found first, and
then this is considered to be a nested if/endif from "if 2" to
"endif 2".
When searching backwards and {end} is more than one character,
it may be useful to put "\zs" at the end of the pattern, so
that when the cursor is inside a match with the end it finds
the matching start.

Example, to find the "endif" command in a Vim script:

:echo searchpair('\<if\>', '\<el\%[seif]\>', '\<en\%[dif]\>', 'W',
\ 'getline(".") =~ "^\\s*\""')

The cursor must be at or after the "if" for which a match is
to be found. Note that single-quote strings are used to avoid
having to double the backslashes. The skip expression only
catches comments at the start of a line, not after a command.
Also, a word "en" or "if" halfway a line is considered a
match.
Another example, to search for the matching "{" of a "}":

:echo searchpair('{', '', '}', 'bW')

This works when the cursor is at or before the "}" for which a
match is to be found. To reject matches that syntax
highlighting recognized as strings:

:echo searchpair('{', '', '}', 'bW',
\ 'synIDattr(synID(line("."), col("."), 0), "name") =~? "string"')

searchpairpos()
searchpairpos({start}, {middle}, {end} [, {flags} [, {skip}

[, {stopline} [, {timeout}]]]])
Same as searchpair() , but returns a List with the line and
column position of the match. The first element of the List
is the line number and the second element is the byte index of
the column position of the match. If no match is found,
returns [0, 0].

:let [lnum,col] = searchpairpos('{', '', '}', 'n')

See match-parens for a bigger and more useful example.

searchpos()
searchpos({pattern} [, {flags} [, {stopline} [, {timeout} [, {skip}]]]])

Same as search() , but returns a List with the line and
column position of the match. The first element of the List
is the line number and the second element is the byte index of
the column position of the match. If no match is found,
returns [0, 0].
Example:

:let [lnum, col] = searchpos('mypattern', 'n')

When the 'p' flag is given then there is an extra item with
the sub-pattern match number search()-sub-match . Example:

builtin.txt — 1391

:let [lnum, col, submatch] = searchpos('\(\l\)\|\(\u\)', 'np')
In this example "submatch" is 2 when a lowercase letter is
found /\l , 3 when an uppercase letter is found /\u .

Can also be used as a method :
GetPattern()->searchpos()

server2client({clientid}, {string}) server2client()
Send a reply string to {clientid}. The most recent {clientid}
that sent a string can be retrieved with expand("<client>").
{only available when compiled with the |+clientserver| feature}
Returns zero for success, -1 for failure.
Note:
This id has to be stored before the next command can be
received. I.e. before returning from the received command and
before calling any commands that waits for input.
See also clientserver .
Example:

:echo server2client(expand("<client>"), "HELLO")

Can also be used as a method :
GetClientId()->server2client(string)

serverlist() serverlist()
Return a list of available server names, one per line.
When there are no servers or the information is not available
an empty string is returned. See also clientserver .
{only available when compiled with the |+clientserver| feature}
Example:

:echo serverlist()

setbufline({buf}, {lnum}, {text}) setbufline()
Set line {lnum} to {text} in buffer {buf}. This works like
setline() for the specified buffer.

This function works only for loaded buffers. First call
bufload() if needed.

To insert lines use appendbufline() .
Any text properties in {lnum} are cleared.

{text} can be a string to set one line, or a List of strings
to set multiple lines. If the List extends below the last
line then those lines are added. If the List is empty then
nothing is changed and zero is returned.

For the use of {buf}, see bufname() above.

{lnum} is used like with setline() .
Use "$" to refer to the last line in buffer {buf}.
When {lnum} is just below the last line the {text} will be
added below the last line.

When {buf} is not a valid buffer, the buffer is not loaded or
{lnum} is not valid then 1 is returned. In Vim9 script an
error is given.
On success 0 is returned.

Can also be used as a method , the base is passed as the
third argument:

builtin.txt — 1392

GetText()->setbufline(buf, lnum)

setbufvar({buf}, {varname}, {val}) setbufvar()
Set option or local variable {varname} in buffer {buf} to
{val}.
This also works for a global or local window option, but it
doesn't work for a global or local window variable.
For a local window option the global value is unchanged.
For the use of {buf}, see bufname() above.
The {varname} argument is a string.
Note that the variable name without "b:" must be used.
Examples:

:call setbufvar(1, "&mod", 1)
:call setbufvar("todo", "myvar", "foobar")

This function is not available in the sandbox .

Can also be used as a method , the base is passed as the
third argument:

GetValue()->setbufvar(buf, varname)

setcellwidths({list}) setcellwidths()
Specify overrides for cell widths of character ranges. This
tells Vim how wide characters are when displayed in the
terminal, counted in screen cells. The values override
'ambiwidth'. Example:

call setcellwidths([
\ [0x111, 0x111, 1],
\ [0x2194, 0x2199, 2],
\])

The {list} argument is a List of Lists with each three
numbers: [{low}, {high}, {width}]. E1109 E1110
{low} and {high} can be the same, in which case this refers to
one character. Otherwise it is the range of characters from
{low} to {high} (inclusive). E1111 E1114
Only characters with value 0x80 and higher can be used.

{width} must be either 1 or 2, indicating the character width
in screen cells. E1112
An error is given if the argument is invalid, also when a
range overlaps with another. E1113

If the new value causes 'fillchars' or 'listchars' to become
invalid it is rejected and an error is given.

To clear the overrides pass an empty {list}:
setcellwidths([]);

You can use the script $VIMRUNTIME/tools/emoji_list.vim to see
the effect for known emoji characters. Move the cursor
through the text to check if the cell widths of your terminal
match with what Vim knows about each emoji. If it doesn't
look right you need to adjust the {list} argument.

setcharpos({expr}, {list}) setcharpos()
Same as setpos() but uses the specified column number as the
character index instead of the byte index in the line.

builtin.txt — 1393

Example:
With the text "����" in line 8:

call setcharpos('.', [0, 8, 4, 0])
positions the cursor on the fourth character '�'.

call setpos('.', [0, 8, 4, 0])
positions the cursor on the second character '�'.

Can also be used as a method :
GetPosition()->setcharpos('.')

setcharsearch({dict}) setcharsearch()
Set the current character search information to {dict},
which contains one or more of the following entries:

char character which will be used for a subsequent
, or ; command; an empty string clears the

character search
forward direction of character search; 1 for forward,

0 for backward
until type of character search; 1 for a t or T

character search, 0 for an f or F
character search

This can be useful to save/restore a user's character search
from a script:

:let prevsearch = getcharsearch()
:" Perform a command which clobbers user's search
:call setcharsearch(prevsearch)

Also see getcharsearch() .

Can also be used as a method :
SavedSearch()->setcharsearch()

setcmdline({str} [, {pos}]) setcmdline()
Set the command line to {str} and set the cursor position to
{pos}.
If {pos} is omitted, the cursor is positioned after the text.
Returns 0 when successful, 1 when not editing the command
line.

Can also be used as a method :
GetText()->setcmdline()

setcmdpos({pos}) setcmdpos()
Set the cursor position in the command line to byte position
{pos}. The first position is 1.
Use getcmdpos() to obtain the current position.
Only works while editing the command line, thus you must use
c_CTRL-_e , c_CTRL-R_= or c_CTRL-R_CTRL-R with '='. For
c_CTRL-_e and c_CTRL-R_CTRL-R with '=' the position is
set after the command line is set to the expression. For
c_CTRL-R_= it is set after evaluating the expression but
before inserting the resulting text.
When the number is too big the cursor is put at the end of the
line. A number smaller than one has undefined results.
Returns 0 when successful, 1 when not editing the command
line.

Can also be used as a method :
GetPos()->setcmdpos()

builtin.txt — 1394

setcursorcharpos({lnum}, {col} [, {off}]) setcursorcharpos()
setcursorcharpos({list})

Same as cursor() but uses the specified column number as the
character index instead of the byte index in the line.

Example:
With the text "����" in line 4:

call setcursorcharpos(4, 3)
positions the cursor on the third character '�'.

call cursor(4, 3)
positions the cursor on the first character '�'.

Can also be used as a method :
GetCursorPos()->setcursorcharpos()

setenv({name}, {val}) setenv()
Set environment variable {name} to {val}. Example:

call setenv('HOME', '/home/myhome')

When {val} is v:null the environment variable is deleted.
See also expr-env .

Can also be used as a method , the base is passed as the
second argument:

GetPath()->setenv('PATH')

setfperm({fname}, {mode}) setfperm() chmod
Set the file permissions for {fname} to {mode}.
{mode} must be a string with 9 characters. It is of the form
"rwxrwxrwx", where each group of "rwx" flags represent, in
turn, the permissions of the owner of the file, the group the
file belongs to, and other users. A '-' character means the
permission is off, any other character means on. Multi-byte
characters are not supported.

For example "rw-r-----" means read-write for the user,
readable by the group, not accessible by others. "xx-x-----"
would do the same thing.

Returns non-zero for success, zero for failure.

Can also be used as a method :
GetFilename()->setfperm(mode)

To read permissions see getfperm() .

setline({lnum}, {text}) setline()
Set line {lnum} of the current buffer to {text}. To insert
lines use append() . To set lines in another buffer use
setbufline() . Any text properties in {lnum} are cleared.

{lnum} is used like with getline() .
When {lnum} is just below the last line the {text} will be
added below the last line.
{text} can be any type or a List of any type, each item is
converted to a String. When {text} is an empty List then
nothing is changed and FALSE is returned.

builtin.txt — 1395

If this succeeds, FALSE is returned. If this fails (most likely
because {lnum} is invalid) TRUE is returned.
In Vim9 script an error is given if {lnum} is invalid.

Example:
:call setline(5, strftime("%c"))

When {text} is a List then line {lnum} and following lines
will be set to the items in the list. Example:

:call setline(5, ['aaa', 'bbb', 'ccc'])
This is equivalent to:

:for [n, l] in [[5, 'aaa'], [6, 'bbb'], [7, 'ccc']]
: call setline(n, l)
:endfor

Note: The '[and '] marks are not set.

Can also be used as a method , the base is passed as the
second argument:

GetText()->setline(lnum)

setloclist({nr}, {list} [, {action} [, {what}]]) setloclist()
Create or replace or add to the location list for window {nr}.
{nr} can be the window number or the window-ID .
When {nr} is zero the current window is used.

For a location list window, the displayed location list is
modified. For an invalid window number {nr}, -1 is returned.
Otherwise, same as setqflist() .
Also see location-list .

For {action} see setqflist-action .

If the optional {what} dictionary argument is supplied, then
only the items listed in {what} are set. Refer to setqflist()
for the list of supported keys in {what}.

Can also be used as a method , the base is passed as the
second argument:

GetLoclist()->setloclist(winnr)

setmatches({list} [, {win}]) setmatches()
Restores a list of matches saved by getmatches() for the
current window. Returns 0 if successful, otherwise -1. All
current matches are cleared before the list is restored. See
example for getmatches() .
If {win} is specified, use the window with this number or
window ID instead of the current window.

Can also be used as a method :
GetMatches()->setmatches()

setpos()
setpos({expr}, {list})

Set the position for String {expr}. Possible values:
. the cursor
'x mark x

{list} must be a List with four or five numbers:

builtin.txt — 1396

[bufnum, lnum, col, off]
[bufnum, lnum, col, off, curswant]

"bufnum" is the buffer number. Zero can be used for the
current buffer. When setting an uppercase mark "bufnum" is
used for the mark position. For other marks it specifies the
buffer to set the mark in. You can use the bufnr() function
to turn a file name into a buffer number.
For setting the cursor and the ' mark "bufnum" is ignored,
since these are associated with a window, not a buffer.
Does not change the jumplist.

"lnum" and "col" are the position in the buffer. The first
column is 1. Use a zero "lnum" to delete a mark. If "col" is
smaller than 1 then 1 is used. To use the character count
instead of the byte count, use setcharpos() .

The "off" number is only used when 'virtualedit' is set. Then
it is the offset in screen columns from the start of the
character. E.g., a position within a <Tab> or after the last
character.

The "curswant" number is only used when setting the cursor
position. It sets the preferred column for when moving the
cursor vertically. When the "curswant" number is missing the
preferred column is not set. When it is present and setting a
mark position it is not used.

Note that for '< and '> changing the line number may result in
the marks to be effectively be swapped, so that '< is always
before '>.

Returns 0 when the position could be set, -1 otherwise.
An error message is given if {expr} is invalid.

Also see setcharpos() , getpos() and getcurpos() .

This does not restore the preferred column for moving
vertically; if you set the cursor position with this, j and
k motions will jump to previous columns! Use cursor() to
also set the preferred column. Also see the "curswant" key in
winrestview() .

Can also be used as a method :
GetPosition()->setpos('.')

setqflist({list} [, {action} [, {what}]]) setqflist()
Create or replace or add to the quickfix list.

If the optional {what} dictionary argument is supplied, then
only the items listed in {what} are set. The first {list}
argument is ignored. See below for the supported items in
{what}.

setqflist-what
When {what} is not present, the items in {list} are used. Each
item must be a dictionary. Non-dictionary items in {list} are
ignored. Each dictionary item can contain the following
entries:

bufnr buffer number; must be the number of a valid

builtin.txt — 1397

buffer
filename name of a file; only used when "bufnr" is not

present or it is invalid.
module name of a module; if given it will be used in

quickfix error window instead of the filename.
lnum line number in the file
end_lnum end of lines, if the item spans multiple lines
pattern search pattern used to locate the error
col column number
vcol when non-zero: "col" is visual column

when zero: "col" is byte index
end_col end column, if the item spans multiple columns
nr error number
text description of the error
type single-character error type, 'E', 'W', etc.
valid recognized error message
user_data custom data associated with the item, can be

any type.

The "col", "vcol", "nr", "type" and "text" entries are
optional. Either "lnum" or "pattern" entry can be used to
locate a matching error line.
If the "filename" and "bufnr" entries are not present or
neither the "lnum" or "pattern" entries are present, then the
item will not be handled as an error line.
If both "pattern" and "lnum" are present then "pattern" will
be used.
If the "valid" entry is not supplied, then the valid flag is
set when "bufnr" is a valid buffer or "filename" exists.
If you supply an empty {list}, the quickfix list will be
cleared.
Note that the list is not exactly the same as what
getqflist() returns.

{action} values: setqflist-action E927
'a' The items from {list} are added to the existing

quickfix list. If there is no existing list, then a
new list is created.

'r' The items from the current quickfix list are replaced
with the items from {list}. This can also be used to
clear the list:

:call setqflist([], 'r')

'f' All the quickfix lists in the quickfix stack are
freed.

If {action} is not present or is set to ' ', then a new list
is created. The new quickfix list is added after the current
quickfix list in the stack and all the following lists are
freed. To add a new quickfix list at the end of the stack,
set "nr" in {what} to "$".

The following items can be specified in dictionary {what}:
context quickfix list context. See quickfix-context
efm errorformat to use when parsing text from

"lines". If this is not present, then the
'errorformat' option value is used.
See quickfix-parse

id quickfix list identifier quickfix-ID

builtin.txt — 1398

idx index of the current entry in the quickfix
list specified by 'id' or 'nr'. If set to '$',
then the last entry in the list is set as the
current entry. See quickfix-index

items list of quickfix entries. Same as the {list}
argument.

lines use 'errorformat' to parse a list of lines and
add the resulting entries to the quickfix list
{nr} or {id}. Only a List value is supported.
See quickfix-parse

nr list number in the quickfix stack; zero
means the current quickfix list and "$" means
the last quickfix list.

quickfixtextfunc
function to get the text to display in the
quickfix window. The value can be the name of
a function or a funcref or a lambda. Refer to
quickfix-window-function for an explanation

of how to write the function and an example.
title quickfix list title text. See quickfix-title

Unsupported keys in {what} are ignored.
If the "nr" item is not present, then the current quickfix list
is modified. When creating a new quickfix list, "nr" can be
set to a value one greater than the quickfix stack size.
When modifying a quickfix list, to guarantee that the correct
list is modified, "id" should be used instead of "nr" to
specify the list.

Examples (See also setqflist-examples):
:call setqflist([], 'r', {'title': 'My search'})
:call setqflist([], 'r', {'nr': 2, 'title': 'Errors'})
:call setqflist([], 'a', {'id':qfid, 'lines':["F1:10:L10"]})

Returns zero for success, -1 for failure.

This function can be used to create a quickfix list
independent of the 'errorformat' setting. Use a command like
`:cc 1` to jump to the first position.

Can also be used as a method , the base is passed as the
second argument:

GetErrorlist()->setqflist()

setreg()
setreg({regname}, {value} [, {options}])

Set the register {regname} to {value}.
If {regname} is "" or "@", the unnamed register '"' is used.
The {regname} argument is a string. In Vim9-script
{regname} must be one character.

{value} may be any value returned by getreg() or
getreginfo() , including a List or Dict .
If {options} contains "a" or {regname} is upper case,
then the value is appended.

{options} can also contain a register type specification:
"c" or "v" characterwise mode
"l" or "V" linewise mode
"b" or "<CTRL-V>" blockwise-visual mode

If a number immediately follows "b" or "<CTRL-V>" then this is

builtin.txt — 1399

used as the width of the selection - if it is not specified
then the width of the block is set to the number of characters
in the longest line (counting a <Tab> as 1 character).

If {options} contains no register settings, then the default
is to use character mode unless {value} ends in a <NL> for
string {value} and linewise mode for list {value}. Blockwise
mode is never selected automatically.
Returns zero for success, non-zero for failure.

E883
Note: you may not use List containing more than one item to

set search and expression registers. Lists containing no
items act like empty strings.

Examples:
:call setreg(v:register, @*)
:call setreg('*', @%, 'ac')
:call setreg('a', "1\n2\n3", 'b5')
:call setreg('"', { 'points_to': 'a'})

This example shows using the functions to save and restore a
register:

:let var_a = getreginfo()
:call setreg('a', var_a)

or:
:let var_a = getreg('a', 1, 1)
:let var_amode = getregtype('a')

....
:call setreg('a', var_a, var_amode)

Note: you may not reliably restore register value
without using the third argument to getreg() as without it
newlines are represented as newlines AND Nul bytes are
represented as newlines as well, see NL-used-for-Nul .

You can also change the type of a register by appending
nothing:

:call setreg('a', '', 'al')

Can also be used as a method , the base is passed as the
second argument:

GetText()->setreg('a')

settabvar({tabnr}, {varname}, {val}) settabvar()
Set tab-local variable {varname} to {val} in tab page {tabnr}.
t:var
The {varname} argument is a string.
Note that autocommands are blocked, side effects may not be
triggered, e.g. when setting 'filetype'.
Note that the variable name without "t:" must be used.
Tabs are numbered starting with one.
This function is not available in the sandbox .

Can also be used as a method , the base is passed as the
third argument:

GetValue()->settabvar(tab, name)

settabwinvar({tabnr}, {winnr}, {varname}, {val}) settabwinvar()
Set option or local variable {varname} in window {winnr} to
{val}.

builtin.txt — 1400

Tabs are numbered starting with one. For the current tabpage
use setwinvar() .
{winnr} can be the window number or the window-ID .
When {winnr} is zero the current window is used.
Note that autocommands are blocked, side effects may not be
triggered, e.g. when setting 'filetype' or 'syntax'.
This also works for a global or local buffer option, but it
doesn't work for a global or local buffer variable.
For a local buffer option the global value is unchanged.
Note that the variable name without "w:" must be used.
Examples:

:call settabwinvar(1, 1, "&list", 0)
:call settabwinvar(3, 2, "myvar", "foobar")

This function is not available in the sandbox .

Can also be used as a method , the base is passed as the
fourth argument:

GetValue()->settabwinvar(tab, winnr, name)

settagstack({nr}, {dict} [, {action}]) settagstack()
Modify the tag stack of the window {nr} using {dict}.
{nr} can be the window number or the window-ID .

For a list of supported items in {dict}, refer to
gettagstack() . "curidx" takes effect before changing the tag
stack.

E962
How the tag stack is modified depends on the {action}
argument:
- If {action} is not present or is set to 'r', then the tag
stack is replaced.

- If {action} is set to 'a', then new entries from {dict} are
pushed (added) onto the tag stack.

- If {action} is set to 't', then all the entries from the
current entry in the tag stack or "curidx" in {dict} are
removed and then new entries are pushed to the stack.

The current index is set to one after the length of the tag
stack after the modification.

Returns zero for success, -1 for failure.

Examples (for more examples see tagstack-examples):
Empty the tag stack of window 3:

call settagstack(3, {'items' : []})

Save and restore the tag stack:
let stack = gettagstack(1003)
" do something else
call settagstack(1003, stack)
unlet stack

Can also be used as a method , the base is passed as the
second argument:

GetStack()->settagstack(winnr)

setwinvar({winnr}, {varname}, {val}) setwinvar()
Like settabwinvar() for the current tab page.
Examples:

:call setwinvar(1, "&list", 0)

builtin.txt — 1401

:call setwinvar(2, "myvar", "foobar")

Can also be used as a method , the base is passed as the
third argument:

GetValue()->setwinvar(winnr, name)

sha256({string}) sha256()
Returns a String with 64 hex characters, which is the SHA256
checksum of {string}.

Can also be used as a method :
GetText()->sha256()

{only available when compiled with the |+cryptv| feature}

shellescape({string} [, {special}]) shellescape()
Escape {string} for use as a shell command argument.
When the 'shell' contains powershell (MS-Windows) or pwsh
(MS-Windows, Linux, and macOS) then it will enclose {string}
in single quotes and will double up all internal single
quotes.
On MS-Windows, when 'shellslash' is not set, it will enclose
{string} in double quotes and double all double quotes within
{string}.
Otherwise it will enclose {string} in single quotes and
replace all "'" with "'\''".

When the {special} argument is present and it's a non-zero
Number or a non-empty String (non-zero-arg), then special
items such as "!", "%", "#" and "<cword>" will be preceded by
a backslash. This backslash will be removed again by the :!
command.

The "!" character will be escaped (again with a non-zero-arg
{special}) when 'shell' contains "csh" in the tail. That is
because for csh and tcsh "!" is used for history replacement
even when inside single quotes.

With a non-zero-arg {special} the <NL> character is also
escaped. When 'shell' containing "csh" in the tail it's
escaped a second time.

The "\" character will be escaped when 'shell' contains "fish"
in the tail. That is because for fish "\" is used as an escape
character inside single quotes.

Example of use with a :! command:
:exe '!dir ' .. shellescape(expand('<cfile>'), 1)

This results in a directory listing for the file under the
cursor. Example of use with system() :

:call system("chmod +w -- " .. shellescape(expand("%")))
See also ::S .

Can also be used as a method :
GetCommand()->shellescape()

shiftwidth([{col}]) shiftwidth()
Returns the effective value of 'shiftwidth'. This is the
'shiftwidth' value unless it is zero, in which case it is the
'tabstop' value. This function was introduced with patch

builtin.txt — 1402

7.3.694 in 2012, everybody should have it by now (however it
did not allow for the optional {col} argument until 8.1.542).

When there is one argument {col} this is used as column number
for which to return the 'shiftwidth' value. This matters for the
'vartabstop' feature. If the 'vartabstop' setting is enabled and
no {col} argument is given, column 1 will be assumed.

Can also be used as a method :
GetColumn()->shiftwidth()

sign_ functions are documented here: sign-functions-details

simplify({filename}) simplify()
Simplify the file name as much as possible without changing
the meaning. Shortcuts (on MS-Windows) or symbolic links (on
Unix) are not resolved. If the first path component in
{filename} designates the current directory, this will be
valid for the result as well. A trailing path separator is
not removed either. On Unix "//path" is unchanged, but
"///path" is simplified to "/path" (this follows the Posix
standard).
Example:

simplify("./dir/.././/file/") == "./file/"
Note: The combination "dir/.." is only removed if "dir" is
a searchable directory or does not exist. On Unix, it is also
removed when "dir" is a symbolic link within the same
directory. In order to resolve all the involved symbolic
links before simplifying the path name, use resolve() .

Can also be used as a method :
GetName()->simplify()

sin({expr}) sin()
Return the sine of {expr}, measured in radians, as a Float .
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo sin(100)
-0.506366
:echo sin(-4.01)
0.763301

Can also be used as a method :
Compute()->sin()

sinh({expr}) sinh()
Return the hyperbolic sine of {expr} as a Float in the range
[-inf, inf].
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo sinh(0.5)
0.521095
:echo sinh(-0.9)
-1.026517

Can also be used as a method :

builtin.txt — 1403

Compute()->sinh()

slice({expr}, {start} [, {end}]) slice()
Similar to using a slice "expr[start : end]", but "end" is
used exclusive. And for a string the indexes are used as
character indexes instead of byte indexes, like in
vim9script . Also, composing characters are not counted.
When {end} is omitted the slice continues to the last item.
When {end} is -1 the last item is omitted.
Returns an empty value if {start} or {end} are invalid.

Can also be used as a method :
GetList()->slice(offset)

sort({list} [, {how} [, {dict}]]) sort() E702
Sort the items in {list} in-place. Returns {list}.

If you want a list to remain unmodified make a copy first:
:let sortedlist = sort(copy(mylist))

When {how} is omitted or is a string, then sort() uses the
string representation of each item to sort on. Numbers sort
after Strings, Lists after Numbers. For sorting text in the
current buffer use :sort .

When {how} is given and it is 'i' then case is ignored.
In legacy script, for backwards compatibility, the value one
can be used to ignore case. Zero means to not ignore case.

When {how} is given and it is 'l' then the current collation
locale is used for ordering. Implementation details: strcoll()
is used to compare strings. See :language check or set the
collation locale. v:collate can also be used to check the
current locale. Sorting using the locale typically ignores
case. Example:

" ö is sorted similarly to o with English locale.
:language collate en_US.UTF8
:echo sort(['n', 'o', 'O', 'ö', 'p', 'z'], 'l')
['n', 'o', 'O', 'ö', 'p', 'z']

" ö is sorted after z with Swedish locale.
:language collate sv_SE.UTF8
:echo sort(['n', 'o', 'O', 'ö', 'p', 'z'], 'l')
['n', 'o', 'O', 'p', 'z', 'ö']

This does not work properly on Mac.

When {how} is given and it is 'n' then all items will be
sorted numerical (Implementation detail: this uses the
strtod() function to parse numbers. Strings, Lists, Dicts and
Funcrefs will be considered as being 0). Note that this won't
sort a list of strings with numbers!

When {how} is given and it is 'N' then all items will be
sorted numerical. This is like 'n' but a string containing
digits will be used as the number they represent.

When {how} is given and it is 'f' then all items will be
sorted numerical. All values must be a Number or a Float.

builtin.txt — 1404

When {how} is a Funcref or a function name, this function
is called to compare items. The function is invoked with two
items as argument and must return zero if they are equal, 1 or
bigger if the first one sorts after the second one, -1 or
smaller if the first one sorts before the second one.

{dict} is for functions with the "dict" attribute. It will be
used to set the local variable "self". Dictionary-function

The sort is stable, items which compare equal (as number or as
string) will keep their relative position. E.g., when sorting
on numbers, text strings will sort next to each other, in the
same order as they were originally.

Can also be used as a method :
mylist->sort()

Also see uniq() .

Example:
func MyCompare(i1, i2)

return a:i1 == a:i2 ? 0 : a:i1 > a:i2 ? 1 : -1
endfunc
eval mylist->sort("MyCompare")

A shorter compare version for this specific simple case, which
ignores overflow:

func MyCompare(i1, i2)
return a:i1 - a:i2

endfunc
For a simple expression you can use a lambda:

eval mylist->sort({i1, i2 -> i1 - i2})

sound_clear() sound_clear()
Stop playing all sounds.

On some Linux systems you may need the libcanberra-pulse
package, otherwise sound may not stop.

{only available when compiled with the |+sound| feature}

sound_playevent()
sound_playevent({name} [, {callback}])

Play a sound identified by {name}. Which event names are
supported depends on the system. Often the XDG sound names
are used. On Ubuntu they may be found in
/usr/share/sounds/freedesktop/stereo. Example:

call sound_playevent('bell')
On MS-Windows, {name} can be SystemAsterisk, SystemDefault,
SystemExclamation, SystemExit, SystemHand, SystemQuestion,
SystemStart, SystemWelcome, etc.
On macOS, {name} refers to files located in
/System/Library/Sounds (e.g. "Tink"). It will also work for
custom installed sounds in folders like ~/Library/Sounds.

When {callback} is specified it is invoked when the sound is
finished. The first argument is the sound ID, the second
argument is the status:

0 sound was played to the end
1 sound was interrupted

builtin.txt — 1405

2 error occurred after sound started
Example:

func Callback(id, status)
echomsg "sound " .. a:id .. " finished with " .. a:status

endfunc
call sound_playevent('bell', 'Callback')

MS-Windows: {callback} doesn't work for this function.

Returns the sound ID, which can be passed to `sound_stop()`.
Returns zero if the sound could not be played.

Can also be used as a method :
GetSoundName()->sound_playevent()

{only available when compiled with the |+sound| feature}

sound_playfile()
sound_playfile({path} [, {callback}])

Like `sound_playevent()` but play sound file {path}. {path}
must be a full path. On Ubuntu you may find files to play
with this command:

:!find /usr/share/sounds -type f | grep -v index.theme

Can also be used as a method :
GetSoundPath()->sound_playfile()

{only available when compiled with the |+sound| feature}

sound_stop({id}) sound_stop()
Stop playing sound {id}. {id} must be previously returned by
`sound_playevent()` or `sound_playfile()`.

On some Linux systems you may need the libcanberra-pulse
package, otherwise sound may not stop.

On MS-Windows, this does not work for event sound started by
`sound_playevent()`. To stop event sounds, use `sound_clear()`.

Can also be used as a method :
soundid->sound_stop()

{only available when compiled with the |+sound| feature}

soundfold()
soundfold({word})

Return the sound-folded equivalent of {word}. Uses the first
language in 'spelllang' for the current window that supports
soundfolding. 'spell' must be set. When no sound folding is
possible the {word} is returned unmodified.
This can be used for making spelling suggestions. Note that
the method can be quite slow.

Can also be used as a method :
GetWord()->soundfold()

spellbadword()
spellbadword([{sentence}])

Without argument: The result is the badly spelled word under

builtin.txt — 1406

or after the cursor. The cursor is moved to the start of the
bad word. When no bad word is found in the cursor line the
result is an empty string and the cursor doesn't move.

With argument: The result is the first word in {sentence} that
is badly spelled. If there are no spelling mistakes the
result is an empty string.

The return value is a list with two items:
- The badly spelled word or an empty string.
- The type of the spelling error:

"bad" spelling mistake
"rare" rare word
"local" word only valid in another region
"caps" word should start with Capital

Example:
echo spellbadword("the quik brown fox")
['quik', 'bad']

The spelling information for the current window and the value
of 'spelllang' are used.

Can also be used as a method :
GetText()->spellbadword()

spellsuggest()
spellsuggest({word} [, {max} [, {capital}]])

Return a List with spelling suggestions to replace {word}.
When {max} is given up to this number of suggestions are
returned. Otherwise up to 25 suggestions are returned.

When the {capital} argument is given and it's non-zero only
suggestions with a leading capital will be given. Use this
after a match with 'spellcapcheck'.

{word} can be a badly spelled word followed by other text.
This allows for joining two words that were split. The
suggestions also include the following text, thus you can
replace a line.

{word} may also be a good word. Similar words will then be
returned. {word} itself is not included in the suggestions,
although it may appear capitalized.

The spelling information for the current window is used. The
values of 'spelllang' and 'spellsuggest' are used.

Can also be used as a method :
GetWord()->spellsuggest()

split({string} [, {pattern} [, {keepempty}]]) split()
Make a List out of {string}. When {pattern} is omitted or
empty each white-separated sequence of characters becomes an
item.
Otherwise the string is split where {pattern} matches,
removing the matched characters. 'ignorecase' is not used
here, add \c to ignore case. /\c
When the first or last item is empty it is omitted, unless the
{keepempty} argument is given and it's non-zero.
Other empty items are kept when {pattern} matches at least one

builtin.txt — 1407

character or when {keepempty} is non-zero.
Example:

:let words = split(getline('.'), '\W\+')
To split a string in individual characters:

:for c in split(mystring, '\zs')
If you want to keep the separator you can also use '\zs' at
the end of the pattern:

:echo split('abc:def:ghi', ':\zs')
['abc:', 'def:', 'ghi']

Splitting a table where the first element can be empty:
:let items = split(line, ':', 1)

The opposite function is join() .

Can also be used as a method :
GetString()->split()

sqrt({expr}) sqrt()
Return the non-negative square root of Float {expr} as a
Float .
{expr} must evaluate to a Float or a Number . When {expr}
is negative the result is NaN (Not a Number). Returns 0.0 if
{expr} is not a Float or a Number .
Examples:

:echo sqrt(100)
10.0
:echo sqrt(-4.01)
nan

"nan" may be different, it depends on system libraries.

Can also be used as a method :
Compute()->sqrt()

srand([{expr}]) srand()
Initialize seed used by rand() :
- If {expr} is not given, seed values are initialized by
reading from /dev/urandom, if possible, or using time(NULL)
a.k.a. epoch time otherwise; this only has second accuracy.

- If {expr} is given it must be a Number. It is used to
initialize the seed values. This is useful for testing or
when a predictable sequence is intended.

Examples:
:let seed = srand()
:let seed = srand(userinput)
:echo rand(seed)

state([{what}]) state()
Return a string which contains characters indicating the
current state. Mostly useful in callbacks that want to do
work that may not always be safe. Roughly this works like:
- callback uses state() to check if work is safe to do.

Yes: then do it right away.
No: add to work queue and add a SafeState and/or

SafeStateAgain autocommand (SafeState triggers at
toplevel, SafeStateAgain triggers after handling
messages and callbacks).

- When SafeState or SafeStateAgain is triggered and executes
your autocommand, check with `state()` if the work can be
done now, and if yes remove it from the queue and execute.

builtin.txt — 1408

Remove the autocommand if the queue is now empty.
Also see mode() .

When {what} is given only characters in this string will be
added. E.g, this checks if the screen has scrolled:

if state('s') == ''
" screen has not scrolled

These characters indicate the state, generally indicating that
something is busy:

m halfway a mapping, :normal command, feedkeys() or
stuffed command

o operator pending, e.g. after d
a Insert mode autocomplete active
x executing an autocommand
w blocked on waiting, e.g. ch_evalexpr(), ch_read() and

ch_readraw() when reading json
S not triggering SafeState or SafeStateAgain, e.g. after

f or a count
c callback invoked, including timer (repeats for

recursiveness up to "ccc")
s screen has scrolled for messages

str2float({string} [, {quoted}]) str2float()
Convert String {string} to a Float. This mostly works the
same as when using a floating point number in an expression,
see floating-point-format . But it's a bit more permissive.
E.g., "1e40" is accepted, while in an expression you need to
write "1.0e40". The hexadecimal form "0x123" is also
accepted, but not others, like binary or octal.
When {quoted} is present and non-zero then embedded single
quotes before the dot are ignored, thus "1'000.0" is a
thousand.
Text after the number is silently ignored.
The decimal point is always '.', no matter what the locale is
set to. A comma ends the number: "12,345.67" is converted to
12.0. You can strip out thousands separators with
substitute() :

let f = str2float(substitute(text, ',', '', 'g'))

Returns 0.0 if the conversion fails.

Can also be used as a method :
let f = text->substitute(',', '', 'g')->str2float()

str2list({string} [, {utf8}]) str2list()
Return a list containing the number values which represent
each character in String {string}. Examples:

str2list(" ") returns [32]
str2list("ABC") returns [65, 66, 67]

list2str() does the opposite.

When {utf8} is omitted or zero, the current 'encoding' is used.
When {utf8} is TRUE, always treat the String as UTF-8
characters. With UTF-8 composing characters are handled
properly:

str2list("á") returns [97, 769]

Can also be used as a method :
GetString()->str2list()

builtin.txt — 1409

str2nr({string} [, {base} [, {quoted}]]) str2nr()
Convert string {string} to a number.
{base} is the conversion base, it can be 2, 8, 10 or 16.
When {quoted} is present and non-zero then embedded single
quotes are ignored, thus "1'000'000" is a million.

When {base} is omitted base 10 is used. This also means that
a leading zero doesn't cause octal conversion to be used, as
with the default String to Number conversion. Example:

let nr = str2nr('0123')

When {base} is 16 a leading "0x" or "0X" is ignored. With a
different base the result will be zero. Similarly, when
{base} is 8 a leading "0", "0o" or "0O" is ignored, and when
{base} is 2 a leading "0b" or "0B" is ignored.
Text after the number is silently ignored.

Returns 0 if {string} is empty or on error.

Can also be used as a method :
GetText()->str2nr()

strcharlen({string}) strcharlen()
The result is a Number, which is the number of characters
in String {string}. Composing characters are ignored.
strchars() can count the number of characters, counting
composing characters separately.

Returns 0 if {string} is empty or on error.

Also see strlen() , strdisplaywidth() and strwidth() .

Can also be used as a method :
GetText()->strcharlen()

strcharpart({src}, {start} [, {len} [, {skipcc}]]) strcharpart()
Like strpart() but using character index and length instead
of byte index and length.
When {skipcc} is omitted or zero, composing characters are
counted separately.
When {skipcc} set to 1, Composing characters are ignored,
similar to slice() .
When a character index is used where a character does not
exist it is omitted and counted as one character. For
example:

strcharpart('abc', -1, 2)
results in 'a'.

Returns an empty string on error.

Can also be used as a method :
GetText()->strcharpart(5)

strchars({string} [, {skipcc}]) strchars()
The result is a Number, which is the number of characters

builtin.txt — 1410

in String {string}.
When {skipcc} is omitted or zero, composing characters are
counted separately.
When {skipcc} set to 1, Composing characters are ignored.
strcharlen() always does this.

Returns zero on error.

Also see strlen() , strdisplaywidth() and strwidth() .

{skipcc} is only available after 7.4.755. For backward
compatibility, you can define a wrapper function:

if has("patch-7.4.755")
function s:strchars(str, skipcc)

return strchars(a:str, a:skipcc)
endfunction

else
function s:strchars(str, skipcc)

if a:skipcc
return strlen(substitute(a:str, ".", "x", "g"))

else
return strchars(a:str)

endif
endfunction

endif

Can also be used as a method :
GetText()->strchars()

strdisplaywidth({string} [, {col}]) strdisplaywidth()
The result is a Number, which is the number of display cells
String {string} occupies on the screen when it starts at {col}
(first column is zero). When {col} is omitted zero is used.
Otherwise it is the screen column where to start. This
matters for Tab characters.
The option settings of the current window are used. This
matters for anything that's displayed differently, such as
'tabstop' and 'display'.
When {string} contains characters with East Asian Width Class
Ambiguous, this function's return value depends on 'ambiwidth'.
Returns zero on error.
Also see strlen() , strwidth() and strchars() .

Can also be used as a method :
GetText()->strdisplaywidth()

strftime({format} [, {time}]) strftime()
The result is a String, which is a formatted date and time, as
specified by the {format} string. The given {time} is used,
or the current time if no time is given. The accepted
{format} depends on your system, thus this is not portable!
See the manual page of the C function strftime() for the
format. The maximum length of the result is 80 characters.
See also localtime() , getftime() and strptime() .
The language can be changed with the :language command.
Examples:
:echo strftime("%c") Sun Apr 27 11:49:23 1997
:echo strftime("%Y %b %d %X") 1997 Apr 27 11:53:25
:echo strftime("%y%m%d %T") 970427 11:53:55
:echo strftime("%H:%M") 11:55

builtin.txt — 1411

:echo strftime("%c", getftime("file.c"))
Show mod time of file.c.

Not available on all systems. To check use:
:if exists("*strftime")

Can also be used as a method :
GetFormat()->strftime()

strgetchar({str}, {index}) strgetchar()
Get a Number corresponding to the character at {index} in
{str}. This uses a zero-based character index, not a byte
index. Composing characters are considered separate
characters here. Use nr2char() to convert the Number to a
String.
Returns -1 if {index} is invalid.
Also see strcharpart() and strchars() .

Can also be used as a method :
GetText()->strgetchar(5)

stridx({haystack}, {needle} [, {start}]) stridx()
The result is a Number, which gives the byte index in
{haystack} of the first occurrence of the String {needle}.
If {start} is specified, the search starts at index {start}.
This can be used to find a second match:

:let colon1 = stridx(line, ":")
:let colon2 = stridx(line, ":", colon1 + 1)

The search is done case-sensitive.
For pattern searches use match() .
-1 is returned if the {needle} does not occur in {haystack}.
See also strridx() .
Examples:
:echo stridx("An Example", "Example") 3
:echo stridx("Starting point", "Start") 0
:echo stridx("Starting point", "start") -1

strstr() strchr()
stridx() works similar to the C function strstr(). When used
with a single character it works similar to strchr().

Can also be used as a method :
GetHaystack()->stridx(needle)

string()
string({expr}) Return {expr} converted to a String. If {expr} is a Number,

Float, String, Blob or a composition of them, then the result
can be parsed back with eval() .

{expr} type result
String 'string' (single quotes are doubled)
Number 123
Float 123.123456 or 1.123456e8
Funcref function('name')
Blob 0z00112233.44556677.8899
List [item, item]
Dictionary {key: value, key: value}
Class class SomeName
Object object of SomeName {lnum: 1, col: 3}

When a List or Dictionary has a recursive reference it is
replaced by "[...]" or "{...}". Using eval() on the result
will then fail.

builtin.txt — 1412

For an object, invokes the string() method to get a textual
representation of the object. If the method is not present,
then the default representation is used.

Can also be used as a method :
mylist->string()

Also see strtrans() .

strlen({string}) strlen()
The result is a Number, which is the length of the String
{string} in bytes.
If the argument is a Number it is first converted to a String.
For other types an error is given and zero is returned.
If you want to count the number of multibyte characters use
strchars() .
Also see len() , strdisplaywidth() and strwidth() .

Can also be used as a method :
GetString()->strlen()

strpart({src}, {start} [, {len} [, {chars}]]) strpart()
The result is a String, which is part of {src}, starting from
byte {start}, with the byte length {len}.
When {chars} is present and TRUE then {len} is the number of
characters positions (composing characters are not counted
separately, thus "1" means one base character and any
following composing characters).
To count {start} as characters instead of bytes use
strcharpart() .

When bytes are selected which do not exist, this doesn't
result in an error, the bytes are simply omitted.
If {len} is missing, the copy continues from {start} till the
end of the {src}.

strpart("abcdefg", 3, 2) == "de"
strpart("abcdefg", -2, 4) == "ab"
strpart("abcdefg", 5, 4) == "fg"
strpart("abcdefg", 3) == "defg"

Note: To get the first character, {start} must be 0. For
example, to get the character under the cursor:

strpart(getline("."), col(".") - 1, 1, v:true)

Returns an empty string on error.

Can also be used as a method :
GetText()->strpart(5)

strptime({format}, {timestring}) strptime()
The result is a Number, which is a unix timestamp representing
the date and time in {timestring}, which is expected to match
the format specified in {format}.

The accepted {format} depends on your system, thus this is not
portable! See the manual page of the C function strptime()
for the format. Especially avoid "%c". The value of $TZ also
matters.

builtin.txt — 1413

If the {timestring} cannot be parsed with {format} zero is
returned. If you do not know the format of {timestring} you
can try different {format} values until you get a non-zero
result.

See also strftime() .
Examples:
:echo strptime("%Y %b %d %X", "1997 Apr 27 11:49:23")

862156163
:echo strftime("%c", strptime("%y%m%d %T", "970427 11:53:55"))

Sun Apr 27 11:53:55 1997
:echo strftime("%c", strptime("%Y%m%d%H%M%S", "19970427115355") + 3600)

Sun Apr 27 12:53:55 1997

Can also be used as a method :
GetFormat()->strptime(timestring)

Not available on all systems. To check use:
:if exists("*strptime")

strridx({haystack}, {needle} [, {start}]) strridx()
The result is a Number, which gives the byte index in
{haystack} of the last occurrence of the String {needle}.
When {start} is specified, matches beyond this index are
ignored. This can be used to find a match before a previous
match:

:let lastcomma = strridx(line, ",")
:let comma2 = strridx(line, ",", lastcomma - 1)

The search is done case-sensitive.
For pattern searches use match() .
-1 is returned if the {needle} does not occur in {haystack}.
If the {needle} is empty the length of {haystack} is returned.
See also stridx() . Examples:

:echo strridx("an angry armadillo", "an") 3
strrchr()

When used with a single character it works similar to the C
function strrchr().

Can also be used as a method :
GetHaystack()->strridx(needle)

strtrans({string}) strtrans()
The result is a String, which is {string} with all unprintable
characters translated into printable characters 'isprint' .
Like they are shown in a window. Example:

echo strtrans(@a)
This displays a newline in register a as "^@" instead of
starting a new line.

Returns an empty string on error.

Can also be used as a method :
GetString()->strtrans()

strutf16len({string} [, {countcc}]) strutf16len()
The result is a Number, which is the number of UTF-16 code
units in String {string} (after converting it to UTF-16).

When {countcc} is TRUE, composing characters are counted

builtin.txt — 1414

separately.
When {countcc} is omitted or FALSE, composing characters are
ignored.

Returns zero on error.

Also see strlen() and strcharlen() .
Examples:

echo strutf16len('a') returns 1
echo strutf16len('©') returns 1
echo strutf16len('�') returns 2
echo strutf16len('ą́') returns 1
echo strutf16len('ą́', v:true) returns 3

Can also be used as a method :
GetText()->strutf16len()

strwidth({string}) strwidth()
The result is a Number, which is the number of display cells
String {string} occupies. A Tab character is counted as one
cell, alternatively use strdisplaywidth() .
When {string} contains characters with East Asian Width Class
Ambiguous, this function's return value depends on 'ambiwidth'.
Returns zero on error.
Also see strlen() , strdisplaywidth() and strchars() .

Can also be used as a method :
GetString()->strwidth()

submatch({nr} [, {list}]) submatch() E935
Only for an expression in a :substitute command or
substitute() function.
Returns the {nr}'th submatch of the matched text. When {nr}
is 0 the whole matched text is returned.
Note that a NL in the string can stand for a line break of a
multi-line match or a NUL character in the text.
Also see sub-replace-expression .

If {list} is present and non-zero then submatch() returns
a list of strings, similar to getline() with two arguments.
NL characters in the text represent NUL characters in the
text.
Only returns more than one item for :substitute , inside
substitute() this list will always contain one or zero
items, since there are no real line breaks.

When substitute() is used recursively only the submatches in
the current (deepest) call can be obtained.

Returns an empty string or list on error.

Examples:
:s/\d\+/\=submatch(0) + 1/
:echo substitute(text, '\d\+', '\=submatch(0) + 1', '')

This finds the first number in the line and adds one to it.
A line break is included as a newline character.

Can also be used as a method :
GetNr()->submatch()

builtin.txt — 1415

substitute({string}, {pat}, {sub}, {flags}) substitute()
The result is a String, which is a copy of {string}, in which
the first match of {pat} is replaced with {sub}.
When {flags} is "g", all matches of {pat} in {string} are
replaced. Otherwise {flags} should be "".

This works like the ":substitute" command (without any flags).
But the matching with {pat} is always done like the 'magic'
option is set and 'cpoptions' is empty (to make scripts
portable). 'ignorecase' is still relevant, use /\c or /\C
if you want to ignore or match case and ignore 'ignorecase'.
'smartcase' is not used. See string-match for how {pat} is
used.

A "~" in {sub} is not replaced with the previous {sub}.
Note that some codes in {sub} have a special meaning
sub-replace-special . For example, to replace something with
"\n" (two characters), use "\\\\n" or '\\n'.

When {pat} does not match in {string}, {string} is returned
unmodified.

Example:
:let &path = substitute(&path, ",\\=[^,]*$", "", "")

This removes the last component of the 'path' option.
:echo substitute("testing", ".*", "\\U\\0", "")

results in "TESTING".

When {sub} starts with "\=", the remainder is interpreted as
an expression. See sub-replace-expression . Example:

:echo substitute(s, '%\(\x\x\)',
\ '\=nr2char("0x" .. submatch(1))', 'g')

When {sub} is a Funcref that function is called, with one
optional argument. Example:

:echo substitute(s, '%\(\x\x\)', SubNr, 'g')
The optional argument is a list which contains the whole
matched string and up to nine submatches, like what
submatch() returns. Example:

:echo substitute(s, '%\(\x\x\)', {m -> '0x' .. m[1]}, 'g')

Returns an empty string on error.

Can also be used as a method :
GetString()->substitute(pat, sub, flags)

swapfilelist() swapfilelist()
Returns a list of swap file names, like what "vim -r" shows.
See the -r command argument. The 'directory' option is used
for the directories to inspect. If you only want to get a
list of swap files in the current directory then temporarily
set 'directory' to a dot:

let save_dir = &directory
let &directory = '.'
let swapfiles = swapfilelist()
let &directory = save_dir

swapinfo({fname}) swapinfo()
The result is a dictionary, which holds information about the
swapfile {fname}. The available fields are:

builtin.txt — 1416

version Vim version
user user name
host host name
fname original file name
pid PID of the Vim process that created the swap

file
mtime last modification time in seconds
inode Optional: INODE number of the file
dirty 1 if file was modified, 0 if not

Note that "user" and "host" are truncated to at most 39 bytes.
In case of failure an "error" item is added with the reason:

Cannot open file: file not found or in accessible
Cannot read file: cannot read first block
Not a swap file: does not contain correct block ID
Magic number mismatch: Info in first block is invalid

Can also be used as a method :
GetFilename()->swapinfo()

swapname({buf}) swapname()
The result is the swap file path of the buffer {expr}.
For the use of {buf}, see bufname() above.
If buffer {buf} is the current buffer, the result is equal to
:swapname (unless there is no swap file).
If buffer {buf} has no swap file, returns an empty string.

Can also be used as a method :
GetBufname()->swapname()

synID({lnum}, {col}, {trans}) synID()
The result is a Number, which is the syntax ID at the position
{lnum} and {col} in the current window.
The syntax ID can be used with synIDattr() and
synIDtrans() to obtain syntax information about text.

{col} is 1 for the leftmost column, {lnum} is 1 for the first
line. 'synmaxcol' applies, in a longer line zero is returned.
Note that when the position is after the last character,
that's where the cursor can be in Insert mode, synID() returns
zero. {lnum} is used like with getline() .

When {trans} is TRUE , transparent items are reduced to the
item that they reveal. This is useful when wanting to know
the effective color. When {trans} is FALSE , the transparent
item is returned. This is useful when wanting to know which
syntax item is effective (e.g. inside parens).
Warning: This function can be very slow. Best speed is
obtained by going through the file in forward direction.

Returns zero on error.

Example (echoes the name of the syntax item under the cursor):
:echo synIDattr(synID(line("."), col("."), 1), "name")

synIDattr({synID}, {what} [, {mode}]) synIDattr()
The result is a String, which is the {what} attribute of
syntax ID {synID}. This can be used to obtain information
about a syntax item.
{mode} can be "gui", "cterm" or "term", to get the attributes

builtin.txt — 1417

for that mode. When {mode} is omitted, or an invalid value is
used, the attributes for the currently active highlighting are
used (GUI, cterm or term).
Use synIDtrans() to follow linked highlight groups.
{what} result
"name" the name of the syntax item
"fg" foreground color (GUI: color name used to set

the color, cterm: color number as a string,
term: empty string)

"bg" background color (as with "fg")
"font" font name (only available in the GUI)

highlight-font
"sp" special color for the GUI (as with "fg")

highlight-guisp
"ul" underline color for cterm: number as a string
"fg#" like "fg", but for the GUI and the GUI is

running the name in "#RRGGBB" form
"bg#" like "fg#" for "bg"
"sp#" like "fg#" for "sp"
"bold" "1" if bold
"italic" "1" if italic
"reverse" "1" if reverse
"inverse" "1" if inverse (= reverse)
"standout" "1" if standout
"underline" "1" if underlined
"undercurl" "1" if undercurled
"strike" "1" if strikethrough
"nocombine" "1" if nocombine

Returns an empty string on error.

Example (echoes the color of the syntax item under the
cursor):

:echo synIDattr(synIDtrans(synID(line("."), col("."), 1)), "fg")

Can also be used as a method :
:echo synID(line("."), col("."), 1)->synIDtrans()->synIDattr("fg")

synIDtrans({synID}) synIDtrans()
The result is a Number, which is the translated syntax ID of
{synID}. This is the syntax group ID of what is being used to
highlight the character. Highlight links given with
":highlight link" are followed.

Returns zero on error.

Can also be used as a method :
:echo synID(line("."), col("."), 1)->synIDtrans()->synIDattr("fg")

synconcealed({lnum}, {col}) synconcealed()
The result is a List with currently three items:
1. The first item in the list is 0 if the character at the

position {lnum} and {col} is not part of a concealable
region, 1 if it is. {lnum} is used like with getline() .

2. The second item in the list is a string. If the first item
is 1, the second item contains the text which will be
displayed in place of the concealed text, depending on the
current setting of 'conceallevel' and 'listchars'.

3. The third and final item in the list is a number

builtin.txt — 1418

representing the specific syntax region matched in the
line. When the character is not concealed the value is
zero. This allows detection of the beginning of a new
concealable region if there are two consecutive regions
with the same replacement character. For an example, if
the text is "123456" and both "23" and "45" are concealed
and replaced by the character "X", then:

call returns
synconcealed(lnum, 1) [0, '', 0]
synconcealed(lnum, 2) [1, 'X', 1]
synconcealed(lnum, 3) [1, 'X', 1]
synconcealed(lnum, 4) [1, 'X', 2]
synconcealed(lnum, 5) [1, 'X', 2]
synconcealed(lnum, 6) [0, '', 0]

synstack({lnum}, {col}) synstack()
Return a List , which is the stack of syntax items at the
position {lnum} and {col} in the current window. {lnum} is
used like with getline() . Each item in the List is an ID
like what synID() returns.
The first item in the List is the outer region, following are
items contained in that one. The last one is what synID()
returns, unless not the whole item is highlighted or it is a
transparent item.
This function is useful for debugging a syntax file.
Example that shows the syntax stack under the cursor:

for id in synstack(line("."), col("."))
echo synIDattr(id, "name")

endfor
When the position specified with {lnum} and {col} is invalid
an empty List is returned. The position just after the last
character in a line and the first column in an empty line are
valid positions.

system({expr} [, {input}]) system() E677
Get the output of the shell command {expr} as a String . See
systemlist() to get the output as a List .

When {input} is given and is a String this string is written
to a file and passed as stdin to the command. The string is
written as-is, you need to take care of using the correct line
separators yourself.
If {input} is given and is a List it is written to the file
in a way writefile() does with {binary} set to "b" (i.e.
with a newline between each list item with newlines inside
list items converted to NULs).
When {input} is given and is a number that is a valid id for
an existing buffer then the content of the buffer is written
to the file line by line, each line terminated by a NL and
NULs characters where the text has a NL.

Pipes are not used, the 'shelltemp' option is not used.

When prepended by :silent the terminal will not be set to
cooked mode. This is meant to be used for commands that do
not need the user to type. It avoids stray characters showing
up on the screen which require CTRL-L to remove.

:silent let f = system('ls *.vim')

builtin.txt — 1419

Note: Use shellescape() or ::S with expand() or
fnamemodify() to escape special characters in a command
argument. Newlines in {expr} may cause the command to fail.
The characters in 'shellquote' and 'shellxquote' may also
cause trouble.
This is not to be used for interactive commands.

The result is a String. Example:
:let files = system('ls ' .. shellescape(expand('%:h')))
:let files = system('ls ' .. expand('%:h:S'))

To make the result more system-independent, the shell output
is filtered to replace <CR> with <NL> for Macintosh, and
<CR><NL> with <NL> for DOS-like systems.
To avoid the string being truncated at a NUL, all NUL
characters are replaced with SOH (0x01).

The command executed is constructed using several options:
'shell' 'shellcmdflag' 'shellxquote' {expr} 'shellredir' {tmp} 'shellxquote'

({tmp} is an automatically generated file name).
For Unix, braces are put around {expr} to allow for
concatenated commands.

The command will be executed in "cooked" mode, so that a
CTRL-C will interrupt the command (on Unix at least).

The resulting error code can be found in v:shell_error .
This function will fail in restricted-mode .

Note that any wrong value in the options mentioned above may
make the function fail. It has also been reported to fail
when using a security agent application.
Unlike ":!cmd" there is no automatic check for changed files.
Use :checktime to force a check.

Can also be used as a method :
:echo GetCmd()->system()

systemlist({expr} [, {input}]) systemlist()
Same as system() , but returns a List with lines (parts of
output separated by NL) with NULs transformed into NLs. Output
is the same as readfile() will output with {binary} argument
set to "b", except that there is no extra empty item when the
result ends in a NL.
Note that on MS-Windows you may get trailing CR characters.

To see the difference between "echo hello" and "echo -n hello"
use system() and split() :

echo system('echo hello')->split('\n', 1)

Returns an empty string on error.

Can also be used as a method :
:echo GetCmd()->systemlist()

tabpagebuflist([{arg}]) tabpagebuflist()
The result is a List , where each item is the number of the
buffer associated with each window in the current tab page.

builtin.txt — 1420

{arg} specifies the number of the tab page to be used. When
omitted the current tab page is used.
When {arg} is invalid the number zero is returned.
To get a list of all buffers in all tabs use this:

let buflist = []
for i in range(tabpagenr('$'))

call extend(buflist, tabpagebuflist(i + 1))
endfor

Note that a buffer may appear in more than one window.

Can also be used as a method :
GetTabpage()->tabpagebuflist()

tabpagenr([{arg}]) tabpagenr()
The result is a Number, which is the number of the current
tab page. The first tab page has number 1.

The optional argument {arg} supports the following values:
$ the number of the last tab page (the tab page

count).
the number of the last accessed tab page

(where g<Tab> goes to). if there is no
previous tab page 0 is returned.

The number can be used with the :tab command.

Returns zero on error.

tabpagewinnr({tabarg} [, {arg}]) tabpagewinnr()
Like winnr() but for tab page {tabarg}.
{tabarg} specifies the number of tab page to be used.
{arg} is used like with winnr() :
- When omitted the current window number is returned. This is
the window which will be used when going to this tab page.

- When "$" the number of windows is returned.
- When "#" the previous window nr is returned.
Useful examples:

tabpagewinnr(1) " current window of tab page 1
tabpagewinnr(4, '$') " number of windows in tab page 4

When {tabarg} is invalid zero is returned.

Can also be used as a method :
GetTabpage()->tabpagewinnr()

tagfiles()
tagfiles() Returns a List with the file names used to search for tags

for the current buffer. This is the 'tags' option expanded.

taglist({expr} [, {filename}]) taglist()
Returns a List of tags matching the regular expression {expr}.

If {filename} is passed it is used to prioritize the results
in the same way that :tselect does. See tag-priority .
{filename} should be the full path of the file.

Each list item is a dictionary with at least the following
entries:

name Name of the tag.
filename Name of the file where the tag is

builtin.txt — 1421

defined. It is either relative to the
current directory or a full path.

cmd Ex command used to locate the tag in
the file.

kind Type of the tag. The value for this
entry depends on the language specific
kind values. Only available when
using a tags file generated by
Universal/Exuberant ctags or hdrtag.

static A file specific tag. Refer to
static-tag for more information.

More entries may be present, depending on the content of the
tags file: access, implementation, inherits and signature.
Refer to the ctags documentation for information about these
fields. For C code the fields "struct", "class" and "enum"
may appear, they give the name of the entity the tag is
contained in.

The ex-command "cmd" can be either an ex search pattern, a
line number or a line number followed by a byte number.

If there are no matching tags, then an empty list is returned.

To get an exact tag match, the anchors '^' and '$' should be
used in {expr}. This also make the function work faster.
Refer to tag-regexp for more information about the tag
search regular expression pattern.

Refer to 'tags' for information about how the tags file is
located by Vim. Refer to tags-file-format for the format of
the tags file generated by the different ctags tools.

Can also be used as a method :
GetTagpattern()->taglist()

tan({expr}) tan()
Return the tangent of {expr}, measured in radians, as a Float
in the range [-inf, inf].
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo tan(10)
0.648361
:echo tan(-4.01)
-1.181502

Can also be used as a method :
Compute()->tan()

tanh({expr}) tanh()
Return the hyperbolic tangent of {expr} as a Float in the
range [-1, 1].
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

:echo tanh(0.5)
0.462117
:echo tanh(-1)
-0.761594

builtin.txt — 1422

Can also be used as a method :
Compute()->tanh()

tempname() tempname() temp-file-name
The result is a String, which is the name of a file that
doesn't exist. It can be used for a temporary file. The name
is different for at least 26 consecutive calls. Example:

:let tmpfile = tempname()
:exe "redir > " .. tmpfile

For Unix, the file will be in a private directory tempfile .
For MS-Windows forward slashes are used when the 'shellslash'
option is set, or when 'shellcmdflag' starts with '-' and
'shell' does not contain powershell or pwsh.

term_ functions are documented here: terminal-function-details

terminalprops() terminalprops()
Returns a Dictionary with properties of the terminal that Vim
detected from the response to t_RV request. See
v:termresponse for the response itself. If v:termresponse
is empty most values here will be 'u' for unknown.

cursor_style whether sending t_RS works **
cursor_blink_mode whether sending t_RC works **
underline_rgb whether t_8u works **
mouse mouse type supported
kitty whether Kitty terminal was detected

** value 'u' for unknown, 'y' for yes, 'n' for no

If the +termresponse feature is missing then the result is
an empty dictionary.

If "cursor_style" is 'y' then t_RS will be sent to request the
current cursor style.
If "cursor_blink_mode" is 'y' then t_RC will be sent to
request the cursor blink status.
"cursor_style" and "cursor_blink_mode" are also set if t_u7
is not empty, Vim will detect the working of sending t_RS
and t_RC on startup.

When "underline_rgb" is not 'y', then t_8u will be made empty.
This avoids sending it to xterm, which would clear the colors.

For "mouse" the value 'u' is unknown

Also see:
- 'ambiwidth' - detected by using t_u7 .
- v:termstyleresp and v:termblinkresp for the response to

t_RS and t_RC .

test_ functions are documented here: test-functions-details

timer_info()
timer_info([{id}])

builtin.txt — 1423

Return a list with information about timers.
When {id} is given only information about this timer is
returned. When timer {id} does not exist an empty list is
returned.
When {id} is omitted information about all timers is returned.

For each timer the information is stored in a Dictionary with
these items:

"id" the timer ID
"time" time the timer was started with
"remaining" time until the timer fires
"repeat" number of times the timer will still fire;

-1 means forever
"callback" the callback
"paused" 1 if the timer is paused, 0 otherwise

Can also be used as a method :
GetTimer()->timer_info()

{only available when compiled with the |+timers| feature}

timer_pause({timer}, {paused}) timer_pause()
Pause or unpause a timer. A paused timer does not invoke its
callback when its time expires. Unpausing a timer may cause
the callback to be invoked almost immediately if enough time
has passed.

Pausing a timer is useful to avoid the callback to be called
for a short time.

If {paused} evaluates to a non-zero Number or a non-empty
String, then the timer is paused, otherwise it is unpaused.
See non-zero-arg .

Can also be used as a method :
GetTimer()->timer_pause(1)

{only available when compiled with the |+timers| feature}

timer_start() timer timers
timer_start({time}, {callback} [, {options}])

Create a timer and return the timer ID.

{time} is the waiting time in milliseconds. This is the
minimum time before invoking the callback. When the system is
busy or Vim is not waiting for input the time will be longer.
Zero can be used to execute the callback when Vim is back in
the main loop.

{callback} is the function to call. It can be the name of a
function or a Funcref . It is called with one argument, which
is the timer ID. The callback is only invoked when Vim is
waiting for input.
If you want to show a message look at popup_notification()
to avoid interfering with what the user is doing.

{options} is a dictionary. Supported entries:
"repeat" Number of times to repeat calling the

callback. -1 means forever. When not present
the callback will be called once.

builtin.txt — 1424

If the timer causes an error three times in a
row the repeat is cancelled. This avoids that
Vim becomes unusable because of all the error
messages.

Returns -1 on error.

Example:
func MyHandler(timer)

echo 'Handler called'
endfunc
let timer = timer_start(500, 'MyHandler',

\ {'repeat': 3})
This will invoke MyHandler() three times at 500 msec
intervals.

Can also be used as a method :
GetMsec()->timer_start(callback)

Not available in the sandbox .
{only available when compiled with the |+timers| feature}

timer_stop({timer}) timer_stop()
Stop a timer. The timer callback will no longer be invoked.
{timer} is an ID returned by timer_start(), thus it must be a
Number. If {timer} does not exist there is no error.

Can also be used as a method :
GetTimer()->timer_stop()

{only available when compiled with the |+timers| feature}

timer_stopall() timer_stopall()
Stop all timers. The timer callbacks will no longer be
invoked. Useful if a timer is misbehaving. If there are no
timers there is no error.

{only available when compiled with the |+timers| feature}

tolower({expr}) tolower()
The result is a copy of the String given, with all uppercase
characters turned into lowercase (just like applying gu to
the string). Returns an empty string on error.

Can also be used as a method :
GetText()->tolower()

toupper({expr}) toupper()
The result is a copy of the String given, with all lowercase
characters turned into uppercase (just like applying gU to
the string). Returns an empty string on error.

Can also be used as a method :
GetText()->toupper()

tr({src}, {fromstr}, {tostr}) tr()
The result is a copy of the {src} string with all characters
which appear in {fromstr} replaced by the character in that
position in the {tostr} string. Thus the first character in
{fromstr} is translated into the first character in {tostr}

builtin.txt — 1425

and so on. Exactly like the unix "tr" command.
This code also deals with multibyte characters properly.

Returns an empty string on error.

Examples:
echo tr("hello there", "ht", "HT")

returns "Hello THere"
echo tr("<blob>", "<>", "{}")

returns "{blob}"

Can also be used as a method :
GetText()->tr(from, to)

trim({text} [, {mask} [, {dir}]]) trim()
Return {text} as a String where any character in {mask} is
removed from the beginning and/or end of {text}.

If {mask} is not given, or is an empty string, {mask} is all
characters up to 0x20, which includes Tab, space, NL and CR,
plus the non-breaking space character 0xa0.

The optional {dir} argument specifies where to remove the
characters:

0 remove from the beginning and end of {text}
1 remove only at the beginning of {text}
2 remove only at the end of {text}

When omitted both ends are trimmed.

This function deals with multibyte characters properly.
Returns an empty string on error.

Examples:
echo trim(" some text ")

returns "some text"
echo trim(" \r\t\t\r RESERVE \t\n\x0B\xA0") .. "_TAIL"

returns "RESERVE_TAIL"
echo trim("rm<Xrm<>X>rrm", "rm<>")

returns "Xrm<>X" (characters in the middle are not removed)
echo trim(" vim ", " ", 2)

returns " vim"

Can also be used as a method :
GetText()->trim()

trunc({expr}) trunc()
Return the largest integral value with magnitude less than or
equal to {expr} as a Float (truncate towards zero).
{expr} must evaluate to a Float or a Number .
Returns 0.0 if {expr} is not a Float or a Number .
Examples:

echo trunc(1.456)
1.0
echo trunc(-5.456)
-5.0
echo trunc(4.0)
4.0

Can also be used as a method :
Compute()->trunc()

builtin.txt — 1426

type()
type({expr}) The result is a Number representing the type of {expr}.

Instead of using the number directly, it is better to use the
v:t_ variable that has the value:

Number: 0 v:t_number
String: 1 v:t_string
Funcref: 2 v:t_func
List: 3 v:t_list
Dictionary: 4 v:t_dict
Float: 5 v:t_float
Boolean: 6 v:t_bool (v:false and v:true)
None: 7 v:t_none (v:null and v:none)
Job: 8 v:t_job
Channel: 9 v:t_channel
Blob: 10 v:t_blob
Class: 12 v:t_class
Object: 13 v:t_object
Typealias: 14 v:t_typealias

For backward compatibility, this method can be used:
:if type(myvar) == type(0)
:if type(myvar) == type("")
:if type(myvar) == type(function("tr"))
:if type(myvar) == type([])
:if type(myvar) == type({})
:if type(myvar) == type(0.0)
:if type(myvar) == type(v:false)
:if type(myvar) == type(v:none)

To check if the v:t_ variables exist use this:
:if exists('v:t_number')

Can also be used as a method :
mylist->type()

typename({expr}) typename()
Return a string representation of the type of {expr}.
Example:

echo typename([1, 2, 3])
list<number>

undofile({name}) undofile()
Return the name of the undo file that would be used for a file
with name {name} when writing. This uses the 'undodir'
option, finding directories that exist. It does not check if
the undo file exists.
{name} is always expanded to the full path, since that is what
is used internally.
If {name} is empty undofile() returns an empty string, since a
buffer without a file name will not write an undo file.
Useful in combination with :wundo and :rundo .
When compiled without the +persistent_undo option this always
returns an empty string.

Can also be used as a method :
GetFilename()->undofile()

undotree([{buf}]) undotree()
Return the current state of the undo tree for the current

builtin.txt — 1427

buffer, or for a specific buffer if {buf} is given. The
result is a dictionary with the following items:
"seq_last" The highest undo sequence number used.
"seq_cur" The sequence number of the current position in

the undo tree. This differs from "seq_last"
when some changes were undone.

"time_cur" Time last used for :earlier and related
commands. Use strftime() to convert to
something readable.

"save_last" Number of the last file write. Zero when no
write yet.

"save_cur" Number of the current position in the undo
tree.

"synced" Non-zero when the last undo block was synced.
This happens when waiting from input from the
user. See undo-blocks .

"entries" A list of dictionaries with information about
undo blocks.

The first item in the "entries" list is the oldest undo item.
Each List item is a Dictionary with these items:
"seq" Undo sequence number. Same as what appears in

:undolist .
"time" Timestamp when the change happened. Use

strftime() to convert to something readable.
"newhead" Only appears in the item that is the last one

that was added. This marks the last change
and where further changes will be added.

"curhead" Only appears in the item that is the last one
that was undone. This marks the current
position in the undo tree, the block that will
be used by a redo command. When nothing was
undone after the last change this item will
not appear anywhere.

"save" Only appears on the last block before a file
write. The number is the write count. The
first write has number 1, the last one the
"save_last" mentioned above.

"alt" Alternate entry. This is again a List of undo
blocks. Each item may again have an "alt"
item.

uniq({list} [, {func} [, {dict}]]) uniq() E882
Remove second and succeeding copies of repeated adjacent
{list} items in-place. Returns {list}. If you want a list
to remain unmodified make a copy first:

:let newlist = uniq(copy(mylist))
The default compare function uses the string representation of
each item. For the use of {func} and {dict} see sort() .

Returns zero if {list} is not a List .

Can also be used as a method :
mylist->uniq()

utf16idx()
utf16idx({string}, {idx} [, {countcc} [, {charidx}]])

Same as charidx() but returns the UTF-16 code unit index of
the byte at {idx} in {string} (after converting it to UTF-16).

builtin.txt — 1428

When {charidx} is present and TRUE, {idx} is used as the
character index in the String {string} instead of as the byte
index.
An {idx} in the middle of a UTF-8 sequence is rounded
downwards to the beginning of that sequence.

Returns -1 if the arguments are invalid or if there are less
than {idx} bytes in {string}. If there are exactly {idx} bytes
the length of the string in UTF-16 code units is returned.

See byteidx() and byteidxcomp() for getting the byte index
from the UTF-16 index and charidx() for getting the
character index from the UTF-16 index.
Refer to string-offset-encoding for more information.
Examples:

echo utf16idx('a��', 3) returns 2
echo utf16idx('a��', 7) returns 4
echo utf16idx('a��', 1, 0, 1) returns 2
echo utf16idx('a��', 2, 0, 1) returns 4
echo utf16idx('aą́c', 6) returns 2
echo utf16idx('aą́c', 6, 1) returns 4
echo utf16idx('a��', 9) returns -1

Can also be used as a method :
GetName()->utf16idx(idx)

values({dict}) values()
Return a List with all the values of {dict}. The List is
in arbitrary order. Also see items() and keys() .
Returns zero if {dict} is not a Dict .

Can also be used as a method :
mydict->values()

virtcol({expr} [, {list} [, {winid}]]) virtcol()
The result is a Number, which is the screen column of the file
position given with {expr}. That is, the last screen position
occupied by the character at that position, when the screen
would be of unlimited width. When there is a <Tab> at the
position, the returned Number will be the column at the end of
the <Tab>. For example, for a <Tab> in column 1, with 'ts'
set to 8, it returns 8. conceal is ignored.
For the byte position use col() .

For the use of {expr} see col() .

When 'virtualedit' is used {expr} can be [lnum, col, off],
where "off" is the offset in screen columns from the start of
the character. E.g., a position within a <Tab> or after the
last character. When "off" is omitted zero is used. When
Virtual editing is active in the current mode, a position
beyond the end of the line can be returned. Also see
'virtualedit'

The accepted positions are:
. the cursor position
$ the end of the cursor line (the result is the

number of displayed characters in the cursor line
plus one)

builtin.txt — 1429

'x position of mark x (if the mark is not set, 0 is
returned)

v In Visual mode: the start of the Visual area (the
cursor is the end). When not in Visual mode
returns the cursor position. Differs from '< in
that it's updated right away.

If {list} is present and non-zero then virtcol() returns a
List with the first and last screen position occupied by the
character.

With the optional {winid} argument the values are obtained for
that window instead of the current window.

Note that only marks in the current file can be used.
Examples:

" With text "foo^Lbar" and cursor on the "^L":

virtcol(".") " returns 5
virtcol(".", 1) " returns [4, 5]
virtcol("$") " returns 9

" With text " there", with 't at 'h':

virtcol("'t") " returns 6
The first column is 1. 0 or [0, 0] is returned for an error.
A more advanced example that echoes the maximum length of
all lines:

echo max(map(range(1, line('$')), "virtcol([v:val, '$'])"))

Can also be used as a method :
GetPos()->virtcol()

virtcol2col({winid}, {lnum}, {col}) virtcol2col()
The result is a Number, which is the byte index of the
character in window {winid} at buffer line {lnum} and virtual
column {col}.

If buffer line {lnum} is an empty line, 0 is returned.

If {col} is greater than the last virtual column in line
{lnum}, then the byte index of the character at the last
virtual column is returned.

For a multi-byte character, the column number of the first
byte in the character is returned.

The {winid} argument can be the window number or the
window-ID . If this is zero, then the current window is used.

Returns -1 if the window {winid} doesn't exist or the buffer
line {lnum} or virtual column {col} is invalid.

See also screenpos() , virtcol() and col() .

Can also be used as a method :
GetWinid()->virtcol2col(lnum, col)

visualmode([{expr}]) visualmode()
The result is a String, which describes the last Visual mode

builtin.txt — 1430

used in the current buffer. Initially it returns an empty
string, but once Visual mode has been used, it returns "v",
"V", or "<CTRL-V>" (a single CTRL-V character) for
character-wise, line-wise, or block-wise Visual mode
respectively.
Example:

:exe "normal " .. visualmode()
This enters the same Visual mode as before. It is also useful
in scripts if you wish to act differently depending on the
Visual mode that was used.
If Visual mode is active, use mode() to get the Visual mode
(e.g., in a :vmap).
If {expr} is supplied and it evaluates to a non-zero Number or
a non-empty String, then the Visual mode will be cleared and
the old value is returned. See non-zero-arg .

wildmenumode() wildmenumode()
Returns TRUE when the wildmenu is active and FALSE
otherwise. See 'wildmenu' and 'wildmode'.
This can be used in mappings to handle the 'wildcharm' option
gracefully. (Makes only sense with mapmode-c mappings).

For example to make <c-j> work like <down> in wildmode, use:
:cnoremap <expr> <C-j> wildmenumode() ? "\<Down>\<Tab>" : "\<c-j>"

(Note, this needs the 'wildcharm' option set appropriately).

win_execute({id}, {command} [, {silent}]) win_execute()
Like `execute()` but in the context of window {id}.
The window will temporarily be made the current window,
without triggering autocommands or changing directory. When
executing {command} autocommands will be triggered, this may
have unexpected side effects. Use `:noautocmd` if needed.
Example:

call win_execute(winid, 'set syntax=python')
Doing the same with `setwinvar()` would not trigger
autocommands and not actually show syntax highlighting.

E994
Not all commands are allowed in popup windows.
When window {id} does not exist then no error is given and
an empty string is returned.

Can also be used as a method , the base is passed as the
second argument:

GetCommand()->win_execute(winid)

win_findbuf({bufnr}) win_findbuf()
Returns a List with window-ID s for windows that contain
buffer {bufnr}. When there is none the list is empty.

Can also be used as a method :
GetBufnr()->win_findbuf()

win_getid([{win} [, {tab}]]) win_getid()
Get the window-ID for the specified window.
When {win} is missing use the current window.
With {win} this is the window number. The top window has
number 1.
Without {tab} use the current tab, otherwise the tab with
number {tab}. The first tab has number one.

builtin.txt — 1431

Return zero if the window cannot be found.

Can also be used as a method :
GetWinnr()->win_getid()

win_gettype([{nr}]) win_gettype()
Return the type of the window:

"autocmd" autocommand window. Temporary window
used to execute autocommands.

"command" command-line window cmdwin
(empty) normal window
"loclist" location-list-window
"popup" popup window popup
"preview" preview window preview-window
"quickfix" quickfix-window
"unknown" window {nr} not found

When {nr} is omitted return the type of the current window.
When {nr} is given return the type of this window by number or
window-ID .

Also see the 'buftype' option. When running a terminal in a
popup window then 'buftype' is "terminal" and win_gettype()
returns "popup".

Can also be used as a method :
GetWinid()->win_gettype()

win_gotoid({expr}) win_gotoid()
Go to window with ID {expr}. This may also change the current
tabpage.
Return TRUE if successful, FALSE if the window cannot be found.

Can also be used as a method :
GetWinid()->win_gotoid()

win_id2tabwin({expr}) win_id2tabwin()
Return a list with the tab number and window number of window
with ID {expr}: [tabnr, winnr].
Return [0, 0] if the window cannot be found.

Can also be used as a method :
GetWinid()->win_id2tabwin()

win_id2win({expr}) win_id2win()
Return the window number of window with ID {expr}.
Return 0 if the window cannot be found in the current tabpage.

Can also be used as a method :
GetWinid()->win_id2win()

win_move_separator({nr}, {offset}) win_move_separator()
Move window {nr}'s vertical separator (i.e., the right border)
by {offset} columns, as if being dragged by the mouse. {nr}
can be a window number or window-ID . A positive {offset}
moves right and a negative {offset} moves left. Moving a
window's vertical separator will change the width of the
window and the width of other windows adjacent to the vertical
separator. The magnitude of movement may be smaller than

builtin.txt — 1432

specified (e.g., as a consequence of maintaining
'winminwidth'). Returns TRUE if the window can be found and
FALSE otherwise.
This will fail for the rightmost window and a full-width
window, since it has no separator on the right.
Only works for the current tab page. E1308

Can also be used as a method :
GetWinnr()->win_move_separator(offset)

win_move_statusline({nr}, {offset}) win_move_statusline()
Move window {nr}'s status line (i.e., the bottom border) by
{offset} rows, as if being dragged by the mouse. {nr} can be a
window number or window-ID . A positive {offset} moves down
and a negative {offset} moves up. Moving a window's status
line will change the height of the window and the height of
other windows adjacent to the status line. The magnitude of
movement may be smaller than specified (e.g., as a consequence
of maintaining 'winminheight'). Returns TRUE if the window can
be found and FALSE otherwise.
Only works for the current tab page.

Can also be used as a method :
GetWinnr()->win_move_statusline(offset)

win_screenpos({nr}) win_screenpos()
Return the screen position of window {nr} as a list with two
numbers: [row, col]. The first window always has position
[1, 1], unless there is a tabline, then it is [2, 1].
{nr} can be the window number or the window-ID . Use zero
for the current window.
Returns [0, 0] if the window cannot be found.

Can also be used as a method :
GetWinid()->win_screenpos()

win_splitmove({nr}, {target} [, {options}]) win_splitmove()
Temporarily switch to window {target}, then move window {nr}
to a new split adjacent to {target}.
Unlike commands such as :split , no new windows are created
(the window-ID of window {nr} is unchanged after the move).

Both {nr} and {target} can be window numbers or window-ID s.
Both must be in the current tab page.

Returns zero for success, non-zero for failure.

{options} is a Dictionary with the following optional entries:
"vertical" When TRUE, the split is created vertically,

like with :vsplit .
"rightbelow" When TRUE, the split is made below or to the

right (if vertical). When FALSE, it is done
above or to the left (if vertical). When not
present, the values of 'splitbelow' and
'splitright' are used.

Can also be used as a method :
GetWinid()->win_splitmove(target)

builtin.txt — 1433

winbufnr()
winbufnr({nr}) The result is a Number, which is the number of the buffer

associated with window {nr}. {nr} can be the window number or
the window-ID .
When {nr} is zero, the number of the buffer in the current
window is returned.
When window {nr} doesn't exist, -1 is returned.
Example:

:echo "The file in the current window is " . bufname(winbufnr(0))

Can also be used as a method :
FindWindow()->winbufnr()->bufname()

wincol()
wincol() The result is a Number, which is the virtual column of the

cursor in the window. This is counting screen cells from the
left side of the window. The leftmost column is one.

windowsversion()
windowsversion()

The result is a String. For MS-Windows it indicates the OS
version. E.g, Windows 10 is "10.0", Windows 8 is "6.2",
Windows XP is "5.1". For non-MS-Windows systems the result is
an empty string.

winheight({nr}) winheight()
The result is a Number, which is the height of window {nr}.
{nr} can be the window number or the window-ID .
When {nr} is zero, the height of the current window is
returned. When window {nr} doesn't exist, -1 is returned.
An existing window always has a height of zero or more.
This excludes any window toolbar line.
Examples:

:echo "The current window has " .. winheight(0) .. " lines."

Can also be used as a method :
GetWinid()->winheight()

winlayout([{tabnr}]) winlayout()
The result is a nested List containing the layout of windows
in a tabpage.

Without {tabnr} use the current tabpage, otherwise the tabpage
with number {tabnr}. If the tabpage {tabnr} is not found,
returns an empty list.

For a leaf window, it returns:
['leaf', {winid}]

For horizontally split windows, which form a column, it
returns:

['col', [{nested list of windows}]]
For vertically split windows, which form a row, it returns:

['row', [{nested list of windows}]]

Example:
" Only one window in the tab page
:echo winlayout()
['leaf', 1000]
" Two horizontally split windows
:echo winlayout()

builtin.txt — 1434

['col', [['leaf', 1000], ['leaf', 1001]]]
" The second tab page, with three horizontally split
" windows, with two vertically split windows in the
" middle window
:echo winlayout(2)
['col', [['leaf', 1002], ['row', [['leaf', 1003],

['leaf', 1001]]], ['leaf', 1000]]]

Can also be used as a method :
GetTabnr()->winlayout()

winline()
winline() The result is a Number, which is the screen line of the cursor

in the window. This is counting screen lines from the top of
the window. The first line is one.
If the cursor was moved the view on the file will be updated
first, this may cause a scroll.

winnr()
winnr([{arg}]) The result is a Number, which is the number of the current

window. The top window has number 1.
Returns zero for a popup window.

The optional argument {arg} supports the following values:
$ the number of the last window (the window

count).
the number of the last accessed window (where

CTRL-W_p goes to). If there is no previous
window or it is in another tab page 0 is
returned. May refer to the current window in
some cases (e.g. when evaluating 'statusline'
expressions).

{N}j the number of the Nth window below the
current window (where CTRL-W_j goes to).

{N}k the number of the Nth window above the current
window (where CTRL-W_k goes to).

{N}h the number of the Nth window left of the
current window (where CTRL-W_h goes to).

{N}l the number of the Nth window right of the
current window (where CTRL-W_l goes to).

The number can be used with CTRL-W_w and ":wincmd w"
:wincmd .
When {arg} is invalid an error is given and zero is returned.
Also see tabpagewinnr() and win_getid() .
Examples:

let window_count = winnr('$')
let prev_window = winnr('#')
let wnum = winnr('3k')

Can also be used as a method :
GetWinval()->winnr()

winrestcmd()
winrestcmd() Returns a sequence of :resize commands that should restore

the current window sizes. Only works properly when no windows
are opened or closed and the current window and tab page is
unchanged.
Example:

:let cmd = winrestcmd()
:call MessWithWindowSizes()

builtin.txt — 1435

:exe cmd

winrestview()
winrestview({dict})

Uses the Dictionary returned by winsaveview() to restore
the view of the current window.
Note: The {dict} does not have to contain all values, that are
returned by winsaveview() . If values are missing, those
settings won't be restored. So you can use:

:call winrestview({'curswant': 4})

This will only set the curswant value (the column the cursor
wants to move on vertical movements) of the cursor to column 5
(yes, that is 5), while all other settings will remain the
same. This is useful, if you set the cursor position manually.

If you have changed the values the result is unpredictable.
If the window size changed the result won't be the same.

Can also be used as a method :
GetView()->winrestview()

winsaveview()
winsaveview() Returns a Dictionary that contains information to restore

the view of the current window. Use winrestview() to
restore the view.
This is useful if you have a mapping that jumps around in the
buffer and you want to go back to the original view.
This does not save fold information. Use the 'foldenable'
option to temporarily switch off folding, so that folds are
not opened when moving around. This may have side effects.
The return value includes:

lnum cursor line number
col cursor column (Note: the first column

zero, as opposed to what getcurpos()
returns)

coladd cursor column offset for 'virtualedit'
curswant column for vertical movement (Note:

the first column is zero, as opposed
to what getcurpos() returns). After
$ command it will be a very large
number equal to v:maxcol .

topline first line in the window
topfill filler lines, only in diff mode
leftcol first column displayed; only used when

'wrap' is off
skipcol columns skipped

Note that no option values are saved.

winwidth({nr}) winwidth()
The result is a Number, which is the width of window {nr}.
{nr} can be the window number or the window-ID .
When {nr} is zero, the width of the current window is
returned. When window {nr} doesn't exist, -1 is returned.
An existing window always has a width of zero or more.
Examples:

:echo "The current window has " .. winwidth(0) .. " columns."
:if winwidth(0) <= 50
: 50 wincmd |

builtin.txt — 1436

:endif
For getting the terminal or screen size, see the 'columns'
option.

Can also be used as a method :
GetWinid()->winwidth()

wordcount() wordcount()
The result is a dictionary of byte/chars/word statistics for
the current buffer. This is the same info as provided by
g_CTRL-G
The return value includes:

bytes Number of bytes in the buffer
chars Number of chars in the buffer
words Number of words in the buffer
cursor_bytes Number of bytes before cursor position

(not in Visual mode)
cursor_chars Number of chars before cursor position

(not in Visual mode)
cursor_words Number of words before cursor position

(not in Visual mode)
visual_bytes Number of bytes visually selected

(only in Visual mode)
visual_chars Number of chars visually selected

(only in Visual mode)
visual_words Number of words visually selected

(only in Visual mode)

writefile()
writefile({object}, {fname} [, {flags}])

When {object} is a List write it to file {fname}. Each list
item is separated with a NL. Each list item must be a String
or Number.
All NL characters are replaced with a NUL character.
Inserting CR characters needs to be done before passing {list}
to writefile().

When {object} is a Blob write the bytes to file {fname}
unmodified, also when binary mode is not specified.

{flags} must be a String. These characters are recognized:

'b' Binary mode is used: There will not be a NL after the
last list item. An empty item at the end does cause the
last line in the file to end in a NL.

'a' Append mode is used, lines are appended to the file:
:call writefile(["foo"], "event.log", "a")
:call writefile(["bar"], "event.log", "a")

'D' Delete the file when the current function ends. This
works like:

:defer delete({fname})
Fails when not in a function. Also see :defer .

's' fsync() is called after writing the file. This flushes
the file to disk, if possible. This takes more time but
avoids losing the file if the system crashes.

builtin.txt — 1437

'S' fsync() is not called, even when 'fsync' is set.

When {flags} does not contain "S" or "s" then fsync() is
called if the 'fsync' option is set.

An existing file is overwritten, if possible.

When the write fails -1 is returned, otherwise 0. There is an
error message if the file can't be created or when writing
fails.

Also see readfile() .
To copy a file byte for byte:

:let fl = readfile("foo", "b")
:call writefile(fl, "foocopy", "b")

Can also be used as a method :
GetText()->writefile("thefile")

xor({expr}, {expr}) xor()
Bitwise XOR on the two arguments. The arguments are converted
to a number. A List, Dict or Float argument causes an error.
Also see `and()` and `or()`.
Example:

:let bits = xor(bits, 0x80)

Can also be used as a method :
:let bits = bits->xor(0x80)

==
3. Feature list feature-list

There are three types of features:
1. Features that are only supported when they have been enabled when Vim

was compiled +feature-list . Example:
:if has("cindent")

gui_running
2. Features that are only supported when certain conditions have been met.

Example:
:if has("gui_running")

has-patch
3. Beyond a certain version or at a certain version and including a specific

patch. The "patch-7.4.248" feature means that the Vim version is 7.5 or
later, or it is version 7.4 and patch 248 was included. Example:

:if has("patch-7.4.248")
Note that it's possible for patch 248 to be omitted even though 249 is
included. Only happens when cherry-picking patches.
Note that this form only works for patch 7.4.237 and later, before that
you need to check for the patch and the v:version. Example (checking
version 6.2.148 or later):

:if v:version > 602 || (v:version == 602 && has("patch148"))

Hint: To find out if Vim supports backslashes in a file name (MS-Windows),
use: `if exists('+shellslash')`

acl Compiled with ACL support.

builtin.txt — 1438

all_builtin_terms Compiled with all builtin terminals enabled. (always
true)

amiga Amiga version of Vim.
arabic Compiled with Arabic support Arabic .
arp Compiled with ARP support (Amiga).
autocmd Compiled with autocommand support. (always true)
autochdir Compiled with support for 'autochdir'
autoservername Automatically enable clientserver
balloon_eval Compiled with balloon-eval support.
balloon_multiline GUI supports multiline balloons.
beos BeOS version of Vim.
browse Compiled with :browse support, and browse() will

work.
browsefilter Compiled with support for browsefilter .
bsd Compiled on an OS in the BSD family (excluding macOS).
builtin_terms Compiled with some builtin terminals. (always true)
byte_offset Compiled with support for 'o' in 'statusline'
channel Compiled with support for channel and job
cindent Compiled with 'cindent' support. (always true)
clientserver Compiled with remote invocation support clientserver .
clipboard Compiled with 'clipboard' support.
clipboard_working Compiled with 'clipboard' support and it can be used.
cmdline_compl Compiled with cmdline-completion support.
cmdline_hist Compiled with cmdline-history support.
cmdline_info Compiled with 'showcmd' and 'ruler' support.
comments Compiled with 'comments' support.
compatible Compiled to be very Vi compatible.
conpty Platform where ConPTY can be used.
cryptv Compiled with encryption support encryption .
cscope Compiled with cscope support.
cursorbind Compiled with 'cursorbind' (always true)
debug Compiled with "DEBUG" defined.
dialog_con Compiled with console dialog support.
dialog_gui Compiled with GUI dialog support.
diff Compiled with vimdiff and 'diff' support.
digraphs Compiled with support for digraphs.
directx Compiled with support for DirectX and 'renderoptions'.
dnd Compiled with support for the "~ register quote_~ .
drop_file Compiled with drop_file support.
ebcdic Compiled on a machine with ebcdic character set.
emacs_tags Compiled with support for Emacs tags.
eval Compiled with expression evaluation support. Always

true, of course!
ex_extra +ex_extra (always true)
extra_search Compiled with support for 'incsearch' and

'hlsearch'
farsi Support for Farsi was removed farsi .
file_in_path Compiled with support for gf and <cfile> (always

true)
filterpipe When 'shelltemp' is off pipes are used for shell

read/write/filter commands
find_in_path Compiled with support for include file searches

+find_in_path .
float Compiled with support for Float .
fname_case Case in file names matters (for Amiga and MS-Windows

this is not present).
folding Compiled with folding support.
footer Compiled with GUI footer support. gui-footer
fork Compiled to use fork()/exec() instead of system().
gettext Compiled with message translation multi-lang

builtin.txt — 1439

gui Compiled with GUI enabled.
gui_athena Compiled with Athena GUI (always false).
gui_gnome Compiled with Gnome support (gui_gtk is also defined).
gui_gtk Compiled with GTK+ GUI (any version).
gui_gtk2 Compiled with GTK+ 2 GUI (gui_gtk is also defined).
gui_gtk3 Compiled with GTK+ 3 GUI (gui_gtk is also defined).
gui_haiku Compiled with Haiku GUI.
gui_mac Compiled with Macintosh GUI.
gui_motif Compiled with Motif GUI.
gui_photon Compiled with Photon GUI.
gui_running Vim is running in the GUI, or it will start soon.
gui_win32 Compiled with MS-Windows Win32 GUI.
gui_win32s idem, and Win32s system being used (Windows 3.1)
haiku Haiku version of Vim.
hangul_input Compiled with Hangul input support. hangul
hpux HP-UX version of Vim.
iconv Can use iconv() for conversion.
insert_expand Compiled with support for CTRL-X expansion commands in

Insert mode. (always true)
job Compiled with support for channel and job
ipv6 Compiled with support for IPv6 networking in channel .
jumplist Compiled with jumplist support. (always true)
keymap Compiled with 'keymap' support.
lambda Compiled with lambda support.
langmap Compiled with 'langmap' support.
libcall Compiled with libcall() support.
linebreak Compiled with 'linebreak', 'breakat', 'showbreak' and

'breakindent' support.
linux Linux version of Vim.
lispindent Compiled with support for lisp indenting.

(always true)
listcmds Compiled with commands for the buffer list :files

and the argument list arglist .
localmap Compiled with local mappings and abbr. :map-local
lua Compiled with Lua interface Lua .
mac Any Macintosh version of Vim cf. osx
macunix Synonym for osxdarwin
menu Compiled with support for :menu .
mksession Compiled with support for :mksession .
modify_fname Compiled with file name modifiers. filename-modifiers

(always true)
mouse Compiled with support for mouse.
mouse_dec Compiled with support for Dec terminal mouse.
mouse_gpm Compiled with support for gpm (Linux console mouse)
mouse_gpm_enabled GPM mouse is working
mouse_netterm Compiled with support for netterm mouse.
mouse_pterm Compiled with support for qnx pterm mouse.
mouse_sysmouse Compiled with support for sysmouse (*BSD console mouse)
mouse_sgr Compiled with support for sgr mouse.
mouse_urxvt Compiled with support for urxvt mouse.
mouse_xterm Compiled with support for xterm mouse.
mouseshape Compiled with support for 'mouseshape'.
multi_byte Compiled with support for 'encoding' (always true)
multi_byte_encoding 'encoding' is set to a multibyte encoding.
multi_byte_ime Compiled with support for IME input method.
multi_lang Compiled with support for multiple languages.
mzscheme Compiled with MzScheme interface mzscheme .
nanotime Compiled with sub-second time stamp checks.
netbeans_enabled Compiled with support for netbeans and connected.
netbeans_intg Compiled with support for netbeans .

builtin.txt — 1440

num64 Compiled with 64-bit Number support. (always true)
ole Compiled with OLE automation support for Win32.
osx Compiled for macOS cf. mac
osxdarwin Compiled for macOS, with mac-darwin-feature
packages Compiled with packages support.
path_extra Compiled with up/downwards search in 'path' and 'tags'
perl Compiled with Perl interface.
persistent_undo Compiled with support for persistent undo history.
postscript Compiled with PostScript file printing.
printer Compiled with :hardcopy support.
profile Compiled with :profile support.
prof_nsec Profile results are in nanoseconds.
python Python 2.x interface available. has-python
python_compiled Compiled with Python 2.x interface. has-python
python_dynamic Python 2.x interface is dynamically loaded. has-python
python3 Python 3.x interface available. has-python
python3_compiled Compiled with Python 3.x interface. has-python
python3_dynamic Python 3.x interface is dynamically loaded. has-python
python3_stable Python 3.x interface is using Python Stable ABI. has-python
pythonx Python 2.x and/or 3.x interface available. python_x
qnx QNX version of Vim.
quickfix Compiled with quickfix support.
reltime Compiled with reltime() support.
rightleft Compiled with 'rightleft' support.
ruby Compiled with Ruby interface ruby .
scrollbind Compiled with 'scrollbind' support. (always true)
showcmd Compiled with 'showcmd' support.
signs Compiled with :sign support.
smartindent Compiled with 'smartindent' support. (always true)
sodium Compiled with libsodium for better crypt support
sound Compiled with sound support, e.g. `sound_playevent()`
spell Compiled with spell checking support spell .
startuptime Compiled with --startuptime support.
statusline Compiled with support for 'statusline', 'rulerformat'

and special formats of 'titlestring' and 'iconstring'.
sun SunOS version of Vim.
sun_workshop Support for Sun workshop has been removed.
syntax Compiled with syntax highlighting support syntax .
syntax_items There are active syntax highlighting items for the

current buffer.
system Compiled to use system() instead of fork()/exec().
tag_binary Compiled with binary searching in tags files

tag-binary-search . (always true)
tag_old_static Support for old static tags was removed, see

tag-old-static .
tcl Compiled with Tcl interface.
termguicolors Compiled with true color in terminal support.
terminal Compiled with terminal support.
terminfo Compiled with terminfo instead of termcap.
termresponse Compiled with support for t_RV and v:termresponse .
textobjects Compiled with support for text-objects .
textprop Compiled with support for text-properties .
tgetent Compiled with tgetent support, able to use a termcap

or terminfo file.
timers Compiled with timer_start() support.
title Compiled with window title support 'title' .

(always true)
toolbar Compiled with support for gui-toolbar .
ttyin input is a terminal (tty)
ttyout output is a terminal (tty)

builtin.txt — 1441

unix Unix version of Vim. +unix
unnamedplus Compiled with support for "unnamedplus" in 'clipboard'
user_commands User-defined commands. (always true)
vartabs Compiled with variable tabstop support 'vartabstop' .
vcon Win32: Virtual console support is working, can use

'termguicolors'. Also see +vtp .
vertsplit Compiled with vertically split windows :vsplit .

(always true)
vim_starting True while initial source'ing takes place. startup

vim_starting
vim9script Compiled with Vim9 script support
viminfo Compiled with viminfo support.
vimscript-1 Compiled Vim script version 1 support
vimscript-2 Compiled Vim script version 2 support
vimscript-3 Compiled Vim script version 3 support
vimscript-4 Compiled Vim script version 4 support
virtualedit Compiled with 'virtualedit' option. (always true)
visual Compiled with Visual mode. (always true)
visualextra Compiled with extra Visual mode commands. (always

true) blockwise-operators .
vms VMS version of Vim.
vreplace Compiled with gR and gr commands. (always true)
vtp Compiled for vcon support +vtp (check vcon to find

out if it works in the current console).
wildignore Compiled with 'wildignore' option.
wildmenu Compiled with 'wildmenu' option.
win16 old version for MS-Windows 3.1 (always false)
win32 Win32 version of Vim (MS-Windows 95 and later, 32 or

64 bits)
win32unix Win32 version of Vim, using Unix files (Cygwin)
win64 Win64 version of Vim (MS-Windows 64 bit).
win95 Win32 version for MS-Windows 95/98/ME (always false)
winaltkeys Compiled with 'winaltkeys' option.
windows Compiled with support for more than one window.

(always true)
writebackup Compiled with 'writebackup' default on.
xattr Compiled with extended attributes support xattr

(currently only supported on Linux).
xfontset Compiled with X fontset support xfontset .
xim Compiled with X input method support xim .
xpm Compiled with pixmap support.
xpm_w32 Compiled with pixmap support for Win32. (Only for

backward compatibility. Use "xpm" instead.)
xsmp Compiled with X session management support.
xsmp_interact Compiled with interactive X session management support.
xterm_clipboard Compiled with support for xterm clipboard.
xterm_save Compiled with support for saving and restoring the

xterm screen.
x11 Compiled with X11 support.

==
4. Matching a pattern in a String string-match

This is common between several functions. A regexp pattern as explained at
pattern is normally used to find a match in the buffer lines. When a

pattern is used to find a match in a String, almost everything works in the
same way. The difference is that a String is handled like it is one line.
When it contains a "\n" character, this is not seen as a line break for the
pattern. It can be matched with a "\n" in the pattern, or with ".". Example:

builtin.txt — 1442

:let a = "aaaa\nxxxx"
:echo matchstr(a, "..\n..")
aa
xx
:echo matchstr(a, "a.x")
a
x

Don't forget that "^" will only match at the first character of the String and
"$" at the last character of the string. They don't match after or before a
"\n".

builtin.txt — 1443

builtin.txt — 1444

channel.txt For Vim version 9.1. Last change: 2023 Aug 15

VIM REFERENCE MANUAL by Bram Moolenaar

Inter-process communication channel

Vim uses channels to communicate with other processes.
A channel uses a socket or pipes. socket-interface
Jobs can be used to start processes and communicate with them.
The Netbeans interface also uses a channel. netbeans

1. Overview job-channel-overview
2. Channel demo channel-demo
3. Opening a channel channel-open
4. Using a JSON or JS channel channel-use
5. Channel commands channel-commands
6. Using a RAW or NL channel channel-raw
7. More channel functions channel-more
8. Channel functions details channel-functions-details
9. Starting a job with a channel job-start
10. Starting a job without a channel job-start-nochannel
11. Job functions job-functions-details
12. Job options job-options
13. Controlling a job job-control
14. Using a prompt buffer prompt-buffer
15. Language Server Protocol language-server-protocol

E1277
{only when compiled with the |+channel| feature for channel stuff}

You can check this with: `has('channel')`
{only when compiled with the |+job| feature for job stuff}

You can check this with: `has('job')`

==
1. Overview job-channel-overview

There are four main types of jobs:
1. A daemon, serving several Vim instances.

Vim connects to it with a socket.
2. One job working with one Vim instance, asynchronously.

Uses a socket or pipes.
3. A job performing some work for a short time, asynchronously.

Uses a socket or pipes.
4. Running a filter, synchronously.

Uses pipes.

For when using sockets See job-start , job-start-nochannel and
channel-open . For 2 and 3, one or more jobs using pipes, see job-start .

For 4 use the ":{range}!cmd" command, see filter .

Over the socket and pipes these protocols are available:
RAW nothing known, Vim cannot tell where a message ends
NL every message ends in a NL (newline) character
JSON JSON encoding json_encode()
JS JavaScript style JSON-like encoding js_encode()
LSP Language Server Protocol encoding language-server-protocol

Common combination are:

channel.txt — 1445

- Using a job connected through pipes in NL mode. E.g., to run a style
checker and receive errors and warnings.

- Using a daemon, connecting over a socket in JSON mode. E.g. to lookup
cross-references in a database.

==
2. Channel demo channel-demo demoserver.py

This requires Python. The demo program can be found in
$VIMRUNTIME/tools/demoserver.py
Run it in one terminal. We will call this T1.

Run Vim in another terminal. Connect to the demo server with:
let channel = ch_open('localhost:8765')

In T1 you should see:
=== socket opened ===

You can now send a message to the server:
echo ch_evalexpr(channel, 'hello!')

The message is received in T1 and a response is sent back to Vim.
You can see the raw messages in T1. What Vim sends is:

[1,"hello!"]
And the response is:

[1,"got it"]
The number will increase every time you send a message.

The server can send a command to Vim. Type this on T1 (literally, including
the quotes):

["ex","echo 'hi there'"]
And you should see the message in Vim. You can move the cursor a word forward:

["normal","w"]

To handle asynchronous communication a callback needs to be used:
func MyHandler(channel, msg)

echo "from the handler: " .. a:msg
endfunc
call ch_sendexpr(channel, 'hello!', {'callback': "MyHandler"})

Vim will not wait for a response. Now the server can send the response later
and MyHandler will be invoked.

Instead of giving a callback with every send call, it can also be specified
when opening the channel:

call ch_close(channel)
let channel = ch_open('localhost:8765', {'callback': "MyHandler"})
call ch_sendexpr(channel, 'hello channel!')

When trying out channels it's useful to see what is going on. You can tell
Vim to write lines in log file:

call ch_logfile('channellog', 'w')
See ch_logfile() .

==
3. Opening a channel channel-open

To open a channel:
let channel = ch_open({address} [, {options}])
if ch_status(channel) == "open"

" use the channel

channel.txt — 1446

Use ch_status() to see if the channel could be opened.

channel-address
{address} can be a domain name or an IP address, followed by a port number, or
a Unix-domain socket path prefixed by "unix:". E.g.

www.example.com:80 " domain + port
127.0.0.1:1234 " IPv4 + port
[2001:db8::1]:8765 " IPv6 + port
unix:/tmp/my-socket " Unix-domain socket path

{options} is a dictionary with optional entries: channel-open-options

"mode" can be: channel-mode
"json" - Use JSON, see below; most convenient way. Default.
"js" - Use JS (JavaScript) encoding, more efficient than JSON.
"nl" - Use messages that end in a NL character
"raw" - Use raw messages
"lsp" - Use language server protocol encoding

channel-callback E921
"callback" A function that is called when a message is received that is

not handled otherwise (e.g. a JSON message with ID zero). It
gets two arguments: the channel and the received message.
Example:

func Handle(channel, msg)
echo 'Received: ' .. a:msg

endfunc
let channel = ch_open("localhost:8765", {"callback": "Handle"})

When "mode" is "json" or "js" or "lsp" the "msg" argument is
the body of the received message, converted to Vim types.
When "mode" is "nl" the "msg" argument is one message,
excluding the NL.
When "mode" is "raw" the "msg" argument is the whole message
as a string.

For all callbacks: Use function() to bind it to arguments
and/or a Dictionary. Or use the form "dict.function" to bind
the Dictionary.

Callbacks are only called at a "safe" moment, usually when Vim
is waiting for the user to type a character. Vim does not use
multi-threading.

close_cb
"close_cb" A function that is called when the channel gets closed, other

than by calling ch_close(). It should be defined like this:
func MyCloseHandler(channel)

Vim will invoke callbacks that handle data before invoking
close_cb, thus when this function is called no more data will
be passed to the callbacks. However, if a callback causes Vim
to check for messages, the close_cb may be invoked while still
in the callback. The plugin must handle this somehow, it can
be useful to know that no more data is coming.
If it is not known if there is a message to be read, use a
try/catch block:

try
let msg = ch_readraw(a:channel)

catch
let msg = 'no message'

channel.txt — 1447

endtry
try

let err = ch_readraw(a:channel, #{part: 'err'})
catch

let err = 'no error'
endtry

channel-drop
"drop" Specifies when to drop messages:

"auto" When there is no callback to handle a message.
The "close_cb" is also considered for this.

"never" All messages will be kept.

channel-noblock
"noblock" Same effect as job-noblock . Only matters for writing.

waittime
"waittime" The time to wait for the connection to be made in

milliseconds. A negative number waits forever.

The default is zero, don't wait, which is useful if a local
server is supposed to be running already. On Unix Vim
actually uses a 1 msec timeout, that is required on many
systems. Use a larger value for a remote server, e.g. 10
msec at least.

channel-timeout
"timeout" The time to wait for a request when blocking, E.g. when using

ch_evalexpr(). In milliseconds. The default is 2000 (2
seconds).

When "mode" is "json" or "js" the "callback" is optional. When omitted it is
only possible to receive a message after sending one.

To change the channel options after opening it use ch_setoptions() . The
arguments are similar to what is passed to ch_open() , but "waittime" cannot
be given, since that only applies to opening the channel.

For example, the handler can be added or changed:
call ch_setoptions(channel, {'callback': callback})

When "callback" is empty (zero or an empty string) the handler is removed.

After a callback has been invoked Vim will update the screen and put the
cursor back where it belongs. Thus the callback should not need to do
`:redraw`.

The timeout can be changed:
call ch_setoptions(channel, {'timeout': msec})

channel-close E906
Once done with the channel, disconnect it like this:

call ch_close(channel)
When a socket is used this will close the socket for both directions. When
pipes are used (stdin/stdout/stderr) they are all closed. This might not be
what you want! Stopping the job with job_stop() might be better.
All readahead is discarded, callbacks will no longer be invoked.

Note that a channel is closed in three stages:
- The I/O ends, log message: "Closing channel". There can still be queued

messages to read or callbacks to invoke.
- The readahead is cleared, log message: "Clearing channel". Some variables

may still reference the channel.

channel.txt — 1448

- The channel is freed, log message: "Freeing channel".

When the channel can't be opened you will get an error message. There is a
difference between MS-Windows and Unix: On Unix when the port doesn't exist
ch_open() fails quickly. On MS-Windows "waittime" applies.
E898 E901 E902

If there is an error reading or writing a channel it will be closed.
E630 E631

==
4. Using a JSON or JS channel channel-use

If mode is JSON then a message can be sent synchronously like this:
let response = ch_evalexpr(channel, {expr})

This awaits a response from the other side.

When mode is JS this works the same, except that the messages use
JavaScript encoding. See js_encode() for the difference.

To send a message, without handling a response or letting the channel callback
handle the response:

call ch_sendexpr(channel, {expr})

To send a message and letting the response handled by a specific function,
asynchronously:

call ch_sendexpr(channel, {expr}, {'callback': Handler})

Vim will match the response with the request using the message ID. Once the
response is received the callback will be invoked. Further responses with the
same ID will be ignored. If your server sends back multiple responses you
need to send them with ID zero, they will be passed to the channel callback.

The {expr} is converted to JSON and wrapped in an array. An example of the
message that the receiver will get when {expr} is the string "hello":

[12,"hello"]

The format of the JSON sent is:
[{number},{expr}]

In which {number} is different every time. It must be used in the response
(if any):

[{number},{response}]

This way Vim knows which sent message matches with which received message and
can call the right handler. Also when the messages arrive out of order.

A newline character is terminating the JSON text. This can be used to
separate the read text. For example, in Python:

splitidx = read_text.find('\n')
message = read_text[:splitidx]
rest = read_text[splitidx + 1:]

The sender must always send valid JSON to Vim. Vim can check for the end of
the message by parsing the JSON. It will only accept the message if the end
was received. A newline after the message is optional.

When the process wants to send a message to Vim without first receiving a
message, it must use the number zero:

channel.txt — 1449

[0,{response}]

Then channel handler will then get {response} converted to Vim types. If the
channel does not have a handler the message is dropped.

It is also possible to use ch_sendraw() and ch_evalraw() on a JSON or JS
channel. The caller is then completely responsible for correct encoding and
decoding.

==
5. Channel commands channel-commands

With a JSON channel the process can send commands to Vim that will be
handled by Vim internally, it does not require a handler for the channel.

Possible commands are: E903 E904 E905
["redraw", {forced}]
["ex", {Ex command}]
["normal", {Normal mode command}]
["expr", {expression}, {number}]
["expr", {expression}]
["call", {func name}, {argument list}, {number}]
["call", {func name}, {argument list}]

With all of these: Be careful what these commands do! You can easily
interfere with what the user is doing. To avoid trouble use mode() to check
that the editor is in the expected state. E.g., to send keys that must be
inserted as text, not executed as a command:

["ex","if mode() == 'i' | call feedkeys('ClassName') | endif"]

Errors in these commands are normally not reported to avoid them messing up
the display. If you do want to see them, set the 'verbose' option to 3 or
higher.

Command "redraw"

The other commands do not explicitly update the screen, so that you can send a
sequence of commands without the cursor moving around. A redraw can happen as
a side effect of some commands. You must end with the "redraw" command to
show any changed text and show the cursor where it belongs.

The argument is normally an empty string:
["redraw", ""]

To first clear the screen pass "force":
["redraw", "force"]

Command "ex"

The "ex" command is executed as any Ex command. There is no response for
completion or error. You could use functions in an autoload script:

["ex","call myscript#MyFunc(arg)"]

You can also use "call feedkeys() " to insert any key sequence.

When there is an error a message is written to the channel log, if it exists,
and v:errmsg is set to the error.

channel.txt — 1450

Command "normal"

The "normal" command is executed like with ":normal!", commands are not
mapped. Example to open the folds under the cursor:

["normal" "zO"]

Command "expr" with response

The "expr" command can be used to get the result of an expression. For
example, to get the number of lines in the current buffer:

["expr","line('$')", -2]

It will send back the result of the expression:
[-2, "last line"]

The format is:
[{number}, {result}]

Here {number} is the same as what was in the request. Use a negative number
to avoid confusion with message that Vim sends. Use a different number on
every request to be able to match the request with the response.

{result} is the result of the evaluation and is JSON encoded. If the
evaluation fails or the result can't be encoded in JSON it is the string
"ERROR".

Command "expr" without a response

This command is similar to "expr" above, but does not send back any response.
Example:

["expr","setline('$', ['one', 'two', 'three'])"]
There is no third argument in the request.

Command "call"

This is similar to "expr", but instead of passing the whole expression as a
string this passes the name of a function and a list of arguments. This
avoids the conversion of the arguments to a string and escaping and
concatenating them. Example:

["call", "line", ["$"], -2]

Leave out the fourth argument if no response is to be sent:
["call", "setline", ["$", ["one", "two", "three"]]]

==
6. Using a RAW or NL channel channel-raw

If mode is RAW or NL then a message can be sent like this:
let response = ch_evalraw(channel, {string})

The {string} is sent as-is. The response will be what can be read from the
channel right away. Since Vim doesn't know how to recognize the end of the
message you need to take care of it yourself. The timeout applies for reading
the first byte, after that it will not wait for anything more.

If mode is "nl" you can send a message in a similar way. You are expected
to put in the NL after each message. Thus you can also send several messages
ending in a NL at once. The response will be the text up to and including the

channel.txt — 1451

first NL. This can also be just the NL for an empty response.
If no NL was read before the channel timeout an empty string is returned.

To send a message, without expecting a response:
call ch_sendraw(channel, {string})

The process can send back a response, the channel handler will be called with
it.

channel-onetime-callback
To send a message and letting the response handled by a specific function,
asynchronously:

call ch_sendraw(channel, {string}, {'callback': 'MyHandler'})

This {string} can also be JSON, use json_encode() to create it and
json_decode() to handle a received JSON message.

It is not possible to use ch_evalexpr() or ch_sendexpr() on a raw channel.

A String in Vim cannot contain NUL bytes. To send or receive NUL bytes read
or write from a buffer. See in_io-buffer and out_io-buffer .

==
7. More channel functions channel-more

To obtain the status of a channel: ch_status(channel). The possible results
are:

"fail" Failed to open the channel.
"open" The channel can be used.
"buffered" The channel was closed but there is data to read.
"closed" The channel was closed.

To obtain the job associated with a channel: ch_getjob(channel)

To read one message from a channel:
let output = ch_read(channel)

This uses the channel timeout. To read without a timeout, just get any
message that is available:

let output = ch_read(channel, {'timeout': 0})
When no message was available then the result is v:none for a JSON or JS mode
channels, an empty string for a RAW or NL channel. You can use ch_canread()
to check if there is something to read.

Note that when there is no callback, messages are dropped. To avoid that add
a close callback to the channel.

To read all normal output from a RAW channel that is available:
let output = ch_readraw(channel)

To read all error output from a RAW channel that is available:
let output = ch_readraw(channel, {"part": "err"})

Note that if the channel is in NL mode, ch_readraw() will only return one line
for each call.

ch_read() and ch_readraw() use the channel timeout. When there is nothing to
read within that time an empty string is returned. To specify a different
timeout in msec use the "timeout" option:

{"timeout": 123}
To read from the error output use the "part" option:

{"part": "err"}
To read a message with a specific ID, on a JS or JSON channel:

{"id": 99}

channel.txt — 1452

When no ID is specified or the ID is -1, the first message is returned. This
overrules any callback waiting for this message.

For a RAW channel this returns whatever is available, since Vim does not know
where a message ends.
For a NL channel this returns one message.
For a JS or JSON channel this returns one decoded message.
This includes any sequence number.

==
8. Channel functions details channel-functions-details

ch_canread({handle}) ch_canread()
Return non-zero when there is something to read from {handle}.
{handle} can be a Channel or a Job that has a Channel.

This is useful to read from a channel at a convenient time,
e.g. from a timer.

Note that messages are dropped when the channel does not have
a callback. Add a close callback to avoid that.

Can also be used as a method :
GetChannel()->ch_canread()

ch_close({handle}) ch_close()
Close {handle}. See channel-close .
{handle} can be a Channel or a Job that has a Channel.
A close callback is not invoked.

Can also be used as a method :
GetChannel()->ch_close()

ch_close_in({handle}) ch_close_in()
Close the "in" part of {handle}. See channel-close-in .
{handle} can be a Channel or a Job that has a Channel.
A close callback is not invoked.

Can also be used as a method :
GetChannel()->ch_close_in()

ch_evalexpr({handle}, {expr} [, {options}]) ch_evalexpr()
Send {expr} over {handle}. The {expr} is encoded
according to the type of channel. The function cannot be used
with a raw channel. See channel-use .
{handle} can be a Channel or a Job that has a Channel.
When using the "lsp" channel mode, {expr} must be a Dict .

E917
{options} must be a Dictionary. It must not have a "callback"
entry. It can have a "timeout" entry to specify the timeout
for this specific request.

ch_evalexpr() waits for a response and returns the decoded
expression. When there is an error or timeout it returns an
empty String or, when using the "lsp" channel mode, returns an
empty Dict .

Note that while waiting for the response, Vim handles other
messages. You need to make sure this doesn't cause trouble.

channel.txt — 1453

Can also be used as a method :
GetChannel()->ch_evalexpr(expr)

ch_evalraw({handle}, {string} [, {options}]) ch_evalraw()
Send {string} over {handle}.
{handle} can be a Channel or a Job that has a Channel.

Works like ch_evalexpr() , but does not encode the request or
decode the response. The caller is responsible for the
correct contents. Also does not add a newline for a channel
in NL mode, the caller must do that. The NL in the response
is removed.
Note that Vim does not know when the text received on a raw
channel is complete, it may only return the first part and you
need to use ch_readraw() to fetch the rest.
See channel-use .

Can also be used as a method :
GetChannel()->ch_evalraw(rawstring)

ch_getbufnr({handle}, {what}) ch_getbufnr()
Get the buffer number that {handle} is using for String {what}.
{handle} can be a Channel or a Job that has a Channel.
{what} can be "err" for stderr, "out" for stdout or empty for
socket output.
Returns -1 when there is no buffer.

Can also be used as a method :
GetChannel()->ch_getbufnr(what)

ch_getjob({channel}) ch_getjob()
Get the Job associated with {channel}.
If there is no job calling job_status() on the returned Job
will result in "fail".

Can also be used as a method :
GetChannel()->ch_getjob()

ch_info({handle}) ch_info()
Returns a Dictionary with information about {handle}. The
items are:

"id" number of the channel
"status" "open", "buffered" or "closed", like

ch_status()
When opened with ch_open():

"hostname" the hostname of the address
"port" the port of the address
"path" the path of the Unix-domain socket
"sock_status" "open" or "closed"
"sock_mode" "NL", "RAW", "JSON" or "JS"
"sock_io" "socket"
"sock_timeout" timeout in msec

Note that "path" is only present for Unix-domain sockets, for
regular ones "hostname" and "port" are present instead.

When opened with job_start():

channel.txt — 1454

"out_status" "open", "buffered" or "closed"
"out_mode" "NL", "RAW", "JSON" or "JS"
"out_io" "null", "pipe", "file" or "buffer"
"out_timeout" timeout in msec
"err_status" "open", "buffered" or "closed"
"err_mode" "NL", "RAW", "JSON" or "JS"
"err_io" "out", "null", "pipe", "file" or "buffer"
"err_timeout" timeout in msec
"in_status" "open" or "closed"
"in_mode" "NL", "RAW", "JSON", "JS" or "LSP"
"in_io" "null", "pipe", "file" or "buffer"
"in_timeout" timeout in msec

Can also be used as a method :
GetChannel()->ch_info()

ch_log({msg} [, {handle}]) ch_log()
Write String {msg} in the channel log file, if it was opened
with ch_logfile() .
The text "ch_log():" is prepended to the message to make clear
it came from this function call and make it easier to find in
the log file.
When {handle} is passed the channel number is used for the
message.
{handle} can be a Channel or a Job that has a Channel. The
Channel must be open for the channel number to be used.

Can also be used as a method :
'did something'->ch_log()

ch_logfile({fname} [, {mode}]) ch_logfile()
Start logging channel activity to {fname}.
When {fname} is an empty string: stop logging.

When {mode} is omitted or contains "a" or is "o" then append
to the file.
When {mode} contains "w" and not "a" start with an empty file.
When {mode} contains "o" then log all terminal output.
Otherwise only some interesting terminal output is logged.

Use ch_log() to write log messages. The file is flushed
after every message, on Unix you can use "tail -f" to see what
is going on in real time.

To enable the log very early, to see what is received from a
terminal during startup, use --log (this uses mode "ao"):

vim --log logfile

This function is not available in the sandbox .
NOTE: the channel communication is stored in the file, be
aware that this may contain confidential and privacy sensitive
information, e.g. a password you type in a terminal window.

Can also be used as a method :
'logfile'->ch_logfile('w')

ch_open({address} [, {options}]) ch_open()

channel.txt — 1455

Open a channel to {address}. See channel .
Returns a Channel. Use ch_status() to check for failure.

{address} is a String, see channel-address for the possible
accepted forms.

If {options} is given it must be a Dictionary .
See channel-open-options .

Can also be used as a method :
GetAddress()->ch_open()

ch_read({handle} [, {options}]) ch_read()
Read from {handle} and return the received message.
{handle} can be a Channel or a Job that has a Channel.
For a NL channel this waits for a NL to arrive, except when
there is nothing more to read (channel was closed).
See channel-more .

Can also be used as a method :
GetChannel()->ch_read()

ch_readblob({handle} [, {options}]) ch_readblob()
Like ch_read() but reads binary data and returns a Blob .
See channel-more .

Can also be used as a method :
GetChannel()->ch_readblob()

ch_readraw({handle} [, {options}]) ch_readraw()
Like ch_read() but for a JS and JSON channel does not decode
the message. For a NL channel it does not block waiting for
the NL to arrive, but otherwise works like ch_read().
See channel-more .

Can also be used as a method :
GetChannel()->ch_readraw()

ch_sendexpr({handle}, {expr} [, {options}]) ch_sendexpr()
Send {expr} over {handle}. The {expr} is encoded
according to the type of channel. The function cannot be used
with a raw channel.
See channel-use . E912
{handle} can be a Channel or a Job that has a Channel.
When using the "lsp" channel mode, {expr} must be a Dict .

If the channel mode is "lsp", then returns a Dict. Otherwise
returns an empty String. If the "callback" item is present in
{options}, then the returned Dict contains the ID of the
request message. The ID can be used to send a cancellation
request to the LSP server (if needed). Returns an empty Dict
on error.

If a response message is not expected for {expr}, then don't
specify the "callback" item in {options}.

channel.txt — 1456

Can also be used as a method :
GetChannel()->ch_sendexpr(expr)

ch_sendraw({handle}, {expr} [, {options}]) ch_sendraw()
Send String or Blob {expr} over {handle}.
Works like ch_sendexpr() , but does not encode the request or
decode the response. The caller is responsible for the
correct contents. Also does not add a newline for a channel
in NL mode, the caller must do that. The NL in the response
is removed.
See channel-use .

Can also be used as a method :
GetChannel()->ch_sendraw(rawexpr)

ch_setoptions({handle}, {options}) ch_setoptions()
Set options on {handle}:

"callback" the channel callback
"timeout" default read timeout in msec
"mode" mode for the whole channel

See ch_open() for more explanation.
{handle} can be a Channel or a Job that has a Channel.

Note that changing the mode may cause queued messages to be
lost.

These options cannot be changed:
"waittime" only applies to ch_open()

Can also be used as a method :
GetChannel()->ch_setoptions(options)

ch_status({handle} [, {options}]) ch_status()
Return the status of {handle}:

"fail" failed to open the channel
"open" channel can be used
"buffered" channel can be read, not written to
"closed" channel can not be used

{handle} can be a Channel or a Job that has a Channel.
"buffered" is used when the channel was closed but there is
still data that can be obtained with ch_read() .

If {options} is given it can contain a "part" entry to specify
the part of the channel to return the status for: "out" or
"err". For example, to get the error status:

ch_status(job, {"part": "err"})

Can also be used as a method :
GetChannel()->ch_status()

==
9. Starting a job with a channel job-start job

To start a job and open a channel for stdin/stdout/stderr:
let job = job_start(command, {options})

You can get the channel with:

channel.txt — 1457

let channel = job_getchannel(job)

The channel will use NL mode. If you want another mode it's best to specify
this in {options}. When changing the mode later some text may have already
been received and not parsed correctly.

If the command produces a line of output that you want to deal with, specify
a handler for stdout:

let job = job_start(command, {"out_cb": "MyHandler"})
The function will be called with the channel and a message. You would define
it like this:

func MyHandler(channel, msg)

Without the handler you need to read the output with ch_read() or
ch_readraw() . You can do this in the close callback, see read-in-close-cb .

Note that if the job exits before you read the output, the output may be lost.
This depends on the system (on Unix this happens because closing the write end
of a pipe causes the read end to get EOF). To avoid this make the job sleep
for a short while before it exits.

The handler defined for "out_cb" will not receive stderr. If you want to
handle that separately, add an "err_cb" handler:

let job = job_start(command, {"out_cb": "MyHandler",
\ "err_cb": "ErrHandler"})

If you want to handle both stderr and stdout with one handler use the
"callback" option:

let job = job_start(command, {"callback": "MyHandler"})

Depending on the system, starting a job can put Vim in the background, the
started job gets the focus. To avoid that, use the `foreground()` function.
This might not always work when called early, put in the callback handler or
use a timer to call it after the job has started.

You can send a message to the command with ch_evalraw(). If the channel is in
JSON or JS mode you can use ch_evalexpr().

There are several options you can use, see job-options .
For example, to start a job and write its output in buffer "dummy":

let logjob = job_start("tail -f /tmp/log",
\ {'out_io': 'buffer', 'out_name': 'dummy'})

sbuf dummy

Job input from a buffer
in_io-buffer

To run a job that reads from a buffer:
let job = job_start({command},

\ {'in_io': 'buffer', 'in_name': 'mybuffer'})

E915 E918
The buffer is found by name, similar to bufnr() . The buffer must exist and
be loaded when job_start() is called.

By default this reads the whole buffer. This can be changed with the "in_top"
and "in_bot" options.

A special mode is when "in_top" is set to zero and "in_bot" is not set: Every
time a line is added to the buffer, the last-but-one line will be sent to the

channel.txt — 1458

job stdin. This allows for editing the last line and sending it when pressing
Enter.

channel-close-in
When not using the special mode the pipe or socket will be closed after the
last line has been written. This signals the reading end that the input
finished. You can also use ch_close_in() to close it sooner.

NUL bytes in the text will be passed to the job (internally Vim stores these
as NL bytes).

Reading job output in the close callback
read-in-close-cb

If the job can take some time and you don't need intermediate results, you can
add a close callback and read the output there:

func! CloseHandler(channel)
while ch_status(a:channel, {'part': 'out'}) == 'buffered'

echomsg ch_read(a:channel)
endwhile

endfunc
let job = job_start(command, {'close_cb': 'CloseHandler'})

You will want to do something more useful than "echomsg".

==
10. Starting a job without a channel job-start-nochannel

To start another process without creating a channel:
let job = job_start(command,

\ {"in_io": "null", "out_io": "null", "err_io": "null"})

This starts {command} in the background, Vim does not wait for it to finish.

When Vim sees that neither stdin, stdout or stderr are connected, no channel
will be created. Often you will want to include redirection in the command to
avoid it getting stuck.

There are several options you can use, see job-options .

job-start-if-needed
To start a job only when connecting to an address does not work, do something
like this:

let channel = ch_open(address, {"waittime": 0})
if ch_status(channel) == "fail"

let job = job_start(command)
let channel = ch_open(address, {"waittime": 1000})

endif

Note that the waittime for ch_open() gives the job one second to make the port
available.

==
11. Job functions job-functions-details

job_getchannel({job}) job_getchannel()
Get the channel handle that {job} is using.
To check if the job has no channel:

if string(job_getchannel(job)) == 'channel fail'

channel.txt — 1459

Can also be used as a method :
GetJob()->job_getchannel()

job_info([{job}]) job_info()
Returns a Dictionary with information about {job}:

"status" what job_status() returns
"channel" what job_getchannel() returns
"cmd" List of command arguments used to start the job
"process" process ID
"tty_in" terminal input name, empty when none
"tty_out" terminal output name, empty when none
"exitval" only valid when "status" is "dead"
"exit_cb" function to be called on exit
"stoponexit" job-stoponexit

Only in Unix:
"termsig" the signal which terminated the process

(See job_stop() for the values)
only valid when "status" is "dead"

Only in MS-Windows:
"tty_type" Type of virtual console in use.

Values are "winpty" or "conpty".
See 'termwintype'.

Without any arguments, returns a List with all Job objects.

Can also be used as a method :
GetJob()->job_info()

job_setoptions({job}, {options}) job_setoptions()
Change options for {job}. Supported are:

"stoponexit" job-stoponexit
"exit_cb" job-exit_cb

Can also be used as a method :
GetJob()->job_setoptions(options)

job_start({command} [, {options}]) job_start()
Start a job and return a Job object. Unlike system() and
:!cmd this does not wait for the job to finish.
To start a job in a terminal window see term_start() .

If the job fails to start then job_status() on the returned
Job object results in "fail" and none of the callbacks will be
invoked.

{command} can be a String. This works best on MS-Windows. On
Unix it is split up in white-separated parts to be passed to
execvp(). Arguments in double quotes can contain white space.

{command} can be a List, where the first item is the executable
and further items are the arguments. All items are converted
to String. This works best on Unix.

On MS-Windows, job_start() makes a GUI application hidden. If
you want to show it, use :!start instead.

channel.txt — 1460

The command is executed directly, not through a shell, the
'shell' option is not used. To use the shell:

let job = job_start(["/bin/sh", "-c", "echo hello"])
Or:

let job = job_start('/bin/sh -c "echo hello"')
Note that this will start two processes, the shell and the
command it executes. If you don't want this use the "exec"
shell command.

On Unix $PATH is used to search for the executable only when
the command does not contain a slash.

The job will use the same terminal as Vim. If it reads from
stdin the job and Vim will be fighting over input, that
doesn't work. Redirect stdin and stdout to avoid problems:

let job = job_start(['sh', '-c', "myserver </dev/null >/dev/null"])

The returned Job object can be used to get the status with
job_status() and stop the job with job_stop() .

Note that the job object will be deleted if there are no
references to it. This closes the stdin and stderr, which may
cause the job to fail with an error. To avoid this keep a
reference to the job. Thus instead of:

call job_start('my-command')
use:

let myjob = job_start('my-command')
and unlet "myjob" once the job is not needed or is past the
point where it would fail (e.g. when it prints a message on
startup). Keep in mind that variables local to a function
will cease to exist if the function returns. Use a
script-local variable if needed:

let s:myjob = job_start('my-command')

{options} must be a Dictionary. It can contain many optional
items, see job-options .

Can also be used as a method :
BuildCommand()->job_start()

job_status({job}) job_status() E916
Returns a String with the status of {job}:

"run" job is running
"fail" job failed to start
"dead" job died or was stopped after running

On Unix a non-existing command results in "dead" instead of
"fail", because a fork happens before the failure can be
detected.

If in Vim9 script a variable is declared with type "job" but
never assigned to, passing that variable to job_status()
returns "fail".

If an exit callback was set with the "exit_cb" option and the
job is now detected to be "dead" the callback will be invoked.

For more information see job_info() .

channel.txt — 1461

Can also be used as a method :
GetJob()->job_status()

job_stop({job} [, {how}]) job_stop()
Stop the {job}. This can also be used to signal the job.

When {how} is omitted or is "term" the job will be terminated.
For Unix SIGTERM is sent. On MS-Windows the job will be
terminated forcedly (there is no "gentle" way).
This goes to the process group, thus children may also be
affected.

Effect for Unix:
"term" SIGTERM (default)
"hup" SIGHUP
"quit" SIGQUIT
"int" SIGINT
"kill" SIGKILL (strongest way to stop)
number signal with that number

Effect for MS-Windows:
"term" terminate process forcedly (default)
"hup" CTRL_BREAK
"quit" CTRL_BREAK
"int" CTRL_C
"kill" terminate process forcedly
Others CTRL_BREAK

On Unix the signal is sent to the process group. This means
that when the job is "sh -c command" it affects both the shell
and the command.

The result is a Number: 1 if the operation could be executed,
0 if "how" is not supported on the system.
Note that even when the operation was executed, whether the
job was actually stopped needs to be checked with
job_status() .

If the status of the job is "dead", the signal will not be
sent. This is to avoid to stop the wrong job (esp. on Unix,
where process numbers are recycled).

When using "kill" Vim will assume the job will die and close
the channel.

Can also be used as a method :
GetJob()->job_stop()

==
12. Job options job-options

The {options} argument in job_start() is a dictionary. All entries are
optional. Some options can be used after the job has started, using
job_setoptions(job, {options}). Many options can be used with the channel
related to the job, using ch_setoptions(channel, {options}).
See job_setoptions() and ch_setoptions() .

in_mode out_mode err_mode

channel.txt — 1462

"in_mode" mode specifically for stdin, only when using pipes
"out_mode" mode specifically for stdout, only when using pipes
"err_mode" mode specifically for stderr, only when using pipes

See channel-mode for the values.

Note: when setting "mode" the part specific mode is
overwritten. Therefore set "mode" first and the part
specific mode later.

Note: when writing to a file or buffer and when
reading from a buffer NL mode is used by default.

job-noblock
"noblock": 1 When writing use a non-blocking write call. This

avoids getting stuck if Vim should handle other
messages in between, e.g. when a job sends back data
to Vim. It implies that when `ch_sendraw()` returns
not all data may have been written yet.
This option was added in patch 8.1.0350, test with:

if has("patch-8.1.350")
let options['noblock'] = 1

endif

job-callback
"callback": handler Callback for something to read on any part of the

channel.
job-out_cb out_cb

"out_cb": handler Callback for when there is something to read on
stdout. Only for when the channel uses pipes. When
"out_cb" wasn't set the channel callback is used.
The two arguments are the channel and the message.

job-err_cb err_cb
"err_cb": handler Callback for when there is something to read on

stderr. Only for when the channel uses pipes. When
"err_cb" wasn't set the channel callback is used.
The two arguments are the channel and the message.

job-close_cb
"close_cb": handler Callback for when the channel is closed. Same as

"close_cb" on ch_open() , see close_cb .
job-drop

"drop": when Specifies when to drop messages. Same as "drop" on
ch_open() , see channel-drop . For "auto" the

exit_cb is not considered.
job-exit_cb

"exit_cb": handler Callback for when the job ends. The arguments are the
job and the exit status.
Vim checks up to 10 times per second for jobs that
ended. The check can also be triggered by calling
job_status() , which may then invoke the exit_cb

handler.
Note that data can be buffered, callbacks may still be
called after the process ends.

job-timeout
"timeout": time The time to wait for a request when blocking, E.g.

when using ch_evalexpr(). In milliseconds. The
default is 2000 (2 seconds).

out_timeout err_timeout
"out_timeout": time Timeout for stdout. Only when using pipes.
"err_timeout": time Timeout for stderr. Only when using pipes.

channel.txt — 1463

Note: when setting "timeout" the part specific mode is
overwritten. Therefore set "timeout" first and the
part specific mode later.

job-stoponexit
"stoponexit": {signal} Send {signal} to the job when Vim exits. See

job_stop() for possible values.
"stoponexit": "" Do not stop the job when Vim exits.

The default is "term".

job-term
"term": "open" Start a terminal in a new window and connect the job

stdin/stdout/stderr to it. Similar to using
`:terminal`.
NOTE: Not implemented yet!

"channel": {channel} Use an existing channel instead of creating a new one.
The parts of the channel that get used for the new job
will be disconnected from what they were used before.
If the channel was still used by another job this may
cause I/O errors.
Existing callbacks and other settings remain.

"pty": 1 Use a pty (pseudo-tty) instead of a pipe when
possible. This is most useful in combination with a
terminal window, see terminal .
{only on Unix and Unix-like systems}

job-in_io in_top in_bot in_name in_buf
"in_io": "null" disconnect stdin (read from /dev/null)
"in_io": "pipe" stdin is connected to the channel (default)
"in_io": "file" stdin reads from a file
"in_io": "buffer" stdin reads from a buffer
"in_top": number when using "buffer": first line to send (default: 1)
"in_bot": number when using "buffer": last line to send (default: last)
"in_name": "/path/file" the name of the file or buffer to read from
"in_buf": number the number of the buffer to read from

job-out_io out_name out_buf
"out_io": "null" disconnect stdout (goes to /dev/null)
"out_io": "pipe" stdout is connected to the channel (default)
"out_io": "file" stdout writes to a file
"out_io": "buffer" stdout appends to a buffer (see below)
"out_name": "/path/file" the name of the file or buffer to write to
"out_buf": number the number of the buffer to write to
"out_modifiable": 0 when writing to a buffer, 'modifiable' will be off

(see below)
"out_msg": 0 when writing to a new buffer, the first line will be

set to "Reading from channel output..."

job-err_io err_name err_buf
"err_io": "out" stderr messages to go to stdout
"err_io": "null" disconnect stderr (goes to /dev/null)
"err_io": "pipe" stderr is connected to the channel (default)
"err_io": "file" stderr writes to a file
"err_io": "buffer" stderr appends to a buffer (see below)
"err_name": "/path/file" the name of the file or buffer to write to
"err_buf": number the number of the buffer to write to
"err_modifiable": 0 when writing to a buffer, 'modifiable' will be off

(see below)

channel.txt — 1464

"err_msg": 0 when writing to a new buffer, the first line will be
set to "Reading from channel error..."

"block_write": number only for testing: pretend every other write to stdin
will block

"env": dict environment variables for the new process
"cwd": "/path/to/dir" current working directory for the new process;

if the directory does not exist an error is given

Writing to a buffer
out_io-buffer

When the out_io or err_io mode is "buffer" and there is a callback, the text
is appended to the buffer before invoking the callback.

When a buffer is used both for input and output, the output lines are put
above the last line, since the last line is what is written to the channel
input. Otherwise lines are appended below the last line.

When using JS or JSON mode with "buffer", only messages with zero or negative
ID will be added to the buffer, after decoding + encoding. Messages with a
positive number will be handled by a callback, commands are handled as usual.

The name of the buffer from "out_name" or "err_name" is compared the full name
of existing buffers, also after expanding the name for the current directory.
E.g., when a buffer was created with ":edit somename" and the buffer name is
"somename" it will use that buffer.

If there is no matching buffer a new buffer is created. Use an empty name to
always create a new buffer. ch_getbufnr() can then be used to get the
buffer number.

For a new buffer 'buftype' is set to "nofile" and 'bufhidden' to "hide". If
you prefer other settings, create the buffer first and pass the buffer number.

out_modifiable err_modifiable
The "out_modifiable" and "err_modifiable" options can be used to set the
'modifiable' option off, or write to a buffer that has 'modifiable' off. That
means that lines will be appended to the buffer, but the user can't easily
change the buffer.

out_msg err_msg
The "out_msg" option can be used to specify whether a new buffer will have the
first line set to "Reading from channel output...". The default is to add the
message. "err_msg" does the same for channel error.

When an existing buffer is to be written where 'modifiable' is off and the
"out_modifiable" or "err_modifiable" options is not zero, an error is given
and the buffer will not be written to.

When the buffer written to is displayed in a window and the cursor is in the
first column of the last line, the cursor will be moved to the newly added
line and the window is scrolled up to show the cursor if needed.

Undo is synced for every added line. NUL bytes are accepted (internally Vim
stores these as NL bytes).

Writing to a file
E920

The file is created with permissions 600 (read-write for the user, not

channel.txt — 1465

accessible for others). Use setfperm() to change this.

If the file already exists it is truncated.

==
13. Controlling a job job-control

To get the status of a job:
echo job_status(job)

To make a job stop running:
job_stop(job)

This is the normal way to end a job. On Unix it sends a SIGTERM to the job.
It is possible to use other ways to stop the job, or even send arbitrary
signals. E.g. to force a job to stop, "kill it":

job_stop(job, "kill")

For more options see job_stop() .

==
14. Using a prompt buffer prompt-buffer

If you want to type input for the job in a Vim window you have a few options:
- Use a normal buffer and handle all possible commands yourself.

This will be complicated, since there are so many possible commands.
- Use a terminal window. This works well if what you type goes directly to

the job and the job output is directly displayed in the window.
See terminal-window .

- Use a window with a prompt buffer. This works well when entering a line for
the job in Vim while displaying (possibly filtered) output from the job.

A prompt buffer is created by setting 'buftype' to "prompt". You would
normally only do that in a newly created buffer.

The user can edit and enter one line of text at the very last line of the
buffer. When pressing Enter in the prompt line the callback set with
prompt_setcallback() is invoked. It would normally send the line to a job.

Another callback would receive the output from the job and display it in the
buffer, below the prompt (and above the next prompt).

Only the text in the last line, after the prompt, is editable. The rest of the
buffer is not modifiable with Normal mode commands. It can be modified by
calling functions, such as append() . Using other commands may mess up the
buffer.

After setting 'buftype' to "prompt" Vim does not automatically start Insert
mode, use `:startinsert` if you want to enter Insert mode, so that the user
can start typing a line.

The text of the prompt can be set with the prompt_setprompt() function. If
no prompt is set with prompt_setprompt() , "% " is used. You can get the
effective prompt text for a buffer, with prompt_getprompt() .

The user can go to Normal mode and navigate through the buffer. This can be
useful to see older output or copy text.

The CTRL-W key can be used to start a window command, such as CTRL-W w to
switch to the next window. This also works in Insert mode (use Shift-CTRL-W
to delete a word). When leaving the window Insert mode will be stopped. When

channel.txt — 1466

coming back to the prompt window Insert mode will be restored.

Any command that starts Insert mode, such as "a", "i", "A" and "I", will move
the cursor to the last line. "A" will move to the end of the line, "I" to the
start of the line.

Here is an example for Unix. It starts a shell in the background and prompts
for the next shell command. Output from the shell is displayed above the
prompt.

" Create a channel log so we can see what happens.
call ch_logfile('logfile', 'w')

" Function handling a line of text that has been typed.
func TextEntered(text)

" Send the text to a shell with Enter appended.
call ch_sendraw(g:shell_job, a:text .. "\n")

endfunc

" Function handling output from the shell: Add it above the prompt.
func GotOutput(channel, msg)

call append(line("$") - 1, "- " .. a:msg)
endfunc

" Function handling the shell exits: close the window.
func JobExit(job, status)

quit!
endfunc

" Start a shell in the background.
let shell_job = job_start(["/bin/sh"], #{

\ out_cb: function('GotOutput'),
\ err_cb: function('GotOutput'),
\ exit_cb: function('JobExit'),
\ })

new
set buftype=prompt
let buf = bufnr('')
call prompt_setcallback(buf, function("TextEntered"))
eval prompt_setprompt(buf, "shell command: ")

" start accepting shell commands
startinsert

The same in Vim9 script:

vim9script

Create a channel log so we can see what happens.
ch_logfile('logfile', 'w')

var shell_job: job

Function handling a line of text that has been typed.
def TextEntered(text: string)

Send the text to a shell with Enter appended.
ch_sendraw(shell_job, text .. "\n")

enddef

channel.txt — 1467

Function handling output from the shell: Add it above the prompt.
def GotOutput(channel: channel, msg: string)

append(line("$") - 1, "- " .. msg)
enddef

Function handling the shell exits: close the window.
def JobExit(job: job, status: number)

quit!
enddef

Start a shell in the background.
shell_job = job_start(["/bin/sh"], {

out_cb: GotOutput,
err_cb: GotOutput,
exit_cb: JobExit,
})

new
set buftype=prompt
var buf = bufnr('')
prompt_setcallback(buf, TextEntered)
prompt_setprompt(buf, "shell command: ")

start accepting shell commands
startinsert

==
15. Language Server Protocol language-server-protocol

The language server protocol specification is available at:

https://microsoft.github.io/language-server-protocol/specification

Each LSP protocol message starts with a simple HTTP header followed by the
payload encoded in JSON-RPC format. This is described in:

https://www.jsonrpc.org/specification

To encode and send a LSP request/notification message in a Vim Dict into a
LSP JSON-RPC message and to receive and decode a LSP JSON-RPC
response/notification message into a Vim Dict , connect to the LSP server
with the channel-mode set to "lsp".

For messages received on a channel with channel-mode set to "lsp", Vim will
process the HTTP header and decode the JSON-RPC payload into a Vim Dict type
and call the channel-callback function or the specified
channel-onetime-callback function. When sending messages on a channel using

the ch_evalexpr() or ch_sendexpr() functions, Vim will add the HTTP header
and encode the Vim expression into JSON. Refer to json_encode() and
json_decode() for more information about how Vim encodes and decodes the

builtin types into JSON.

To open a channel using the 'lsp' mode, set the 'mode' item in the ch_open()
{options} argument to 'lsp'. Example:

let ch = ch_open(..., #{mode: 'lsp'})

To open a channel using the 'lsp' mode with a job, set the 'in_mode' and
'out_mode' items in the job_start() {options} argument to 'lsp'. Example:

channel.txt — 1468

https://microsoft.github.io/language-server-protocol/specification
https://www.jsonrpc.org/specification

let cmd = ['clangd', '--background-index', '--clang-tidy']
let opts = {}
let opts.in_mode = 'lsp'
let opts.out_mode = 'lsp'
let opts.err_mode = 'nl'
let opts.out_cb = function('LspOutCallback')
let opts.err_cb = function('LspErrCallback')
let opts.exit_cb = function('LspExitCallback')
let job = job_start(cmd, opts)

Note that if a job outputs LSP messages on stdout and non-LSP messages on
stderr, then the channel-callback function should handle both the message
formats appropriately or you should use a separate callback function for
"out_cb" and "err_cb" to handle them as shown above.

To synchronously send a JSON-RPC request to the server, use the
ch_evalexpr() function. This function will wait and return the decoded

response message from the server. You can use either the channel-timeout or
the 'timeout' field in the {options} argument to control the response wait
time. If the request times out, then an empty Dict is returned. Example:

let req = {}
let req.method = 'textDocument/definition'
let req.params = {}
let req.params.textDocument = #{uri: 'a.c'}
let req.params.position = #{line: 10, character: 3}
let defs = ch_evalexpr(ch, req, #{timeout: 100})
if defs->empty()

... <handle failure>
endif

Note that in the request message the 'id' field should not be specified. If it
is specified, then Vim will overwrite the value with an internally generated
identifier. Vim currently supports only a number type for the 'id' field.
The callback function will be invoked for both a successful and a failed RPC
request.

To send a JSON-RPC request to the server and asynchronously process the
response, use the ch_sendexpr() function and supply a callback function. If
the "id" field is present in the request message, then Vim will overwrite it
with an internally generated number. This function returns a Dict with the
identifier used for the message. This can be used to send cancellation
request to the LSP server (if needed). Example:

let req = {}
let req.method = 'textDocument/hover'
let req.id = 200
let req.params = {}
let req.params.textDocument = #{uri: 'a.c'}
let req.params.position = #{line: 10, character: 3}
let resp = ch_sendexpr(ch, req, #{callback: 'HoverFunc'})

To cancel an outstanding asynchronous LSP request sent to the server using the
ch_sendexpr() function, send a cancellation message to the server using the
ch_sendexpr() function with the ID returned by the ch_sendexpr() function

for the request. Example:

" send a completion request
let req = {}
let req.method = 'textDocument/completion'

channel.txt — 1469

let req.params = {}
let req.params.textDocument = #{uri: 'a.c'}
let req.params.position = #{line: 10, character: 3}
let reqstatus = ch_sendexpr(ch, req, #{callback: 'LspComplete'})
" send a cancellation notification
let notif = {}
let notif.method = '$/cancelRequest'
let notif.id = reqstatus.id
call ch_sendexpr(ch, notif)

To send a JSON-RPC notification message to the server, use the ch_sendexpr()
function. As the server will not send a response message to the notification,
don't specify the "callback" item. Example:

call ch_sendexpr(ch, #{method: 'initialized'})

To respond to a JSON-RPC request message from the server, use the
ch_sendexpr() function. In the response message, copy the 'id' field value

from the server request message. Example:

let resp = {}
let resp.id = req.id
let resp.result = 1
call ch_sendexpr(ch, resp)

The JSON-RPC notification messages from the server are delivered through the
channel-callback function.

Depending on the use case, you can use the ch_evalexpr(), ch_sendexpr() and
ch_sendraw() functions on the same channel.

A LSP request message has the following format (expressed as a Vim Dict). The
"params" field is optional:

{
"jsonrpc": "2.0",
"id": <number>,
"method": <string>,
"params": <list|dict>

}

A LSP response message has the following format (expressed as a Vim Dict). The
"result" and "error" fields are optional:

{
"jsonrpc": "2.0",
"id": <number>,
"result": <vim type>
"error": <dict>

}

A LSP notification message has the following format (expressed as a Vim Dict).
The "params" field is optional:

{
"jsonrpc": "2.0",
"method": <string>,
"params": <list|dict>

}

channel.txt — 1470

channel.txt — 1471

channel.txt — 1472

fold.txt For Vim version 9.1. Last change: 2023 Mar 24

VIM REFERENCE MANUAL by Bram Moolenaar

Folding Folding folding folds

You can find an introduction on folding in chapter 28 of the user manual.
usr_28.txt

1. Fold methods fold-methods
2. Fold commands fold-commands
3. Fold options fold-options
4. Behavior of folds fold-behavior

{not available when compiled without the |+folding| feature}

==
1. Fold methods fold-methods

The folding method can be set with the 'foldmethod' option.

When setting 'foldmethod' to a value other than "manual", all folds are
deleted and new ones created. Switching to the "manual" method doesn't remove
the existing folds. This can be used to first define the folds automatically
and then change them manually.

There are six methods to select folds:
manual manually define folds
indent more indent means a higher fold level
expr specify an expression to define folds
syntax folds defined by syntax highlighting
diff folds for unchanged text
marker folds defined by markers in the text

MANUAL fold-manual

Use commands to manually define the fold regions. This can also be used by a
script that parses text to find folds.

The level of a fold is only defined by its nesting. To increase the fold
level of a fold for a range of lines, define a fold inside it that has the
same lines.

The manual folds are lost when you abandon the file. To save the folds use
the :mkview command. The view can be restored later with :loadview .

INDENT fold-indent

The folds are automatically defined by the indent of the lines.

The foldlevel is computed from the indent of the line, divided by the
'shiftwidth' (rounded down). A sequence of lines with the same or higher fold
level form a fold, with the lines with a higher level forming a nested fold.

The nesting of folds is limited with 'foldnestmax'.

fold.txt — 1473

Some lines are ignored and get the fold level of the line above or below it,
whichever is lower. These are empty or white lines and lines starting
with a character in 'foldignore'. White space is skipped before checking for
characters in 'foldignore'. For C use "#" to ignore preprocessor lines.

When you want to ignore lines in another way, use the "expr" method. The
indent() function can be used in 'foldexpr' to get the indent of a line.

EXPR fold-expr

The folds are automatically defined by their foldlevel, like with the "indent"
method. The value of the 'foldexpr' option is evaluated to get the foldlevel
of a line. Examples:
This will create a fold for all consecutive lines that start with a tab:

:set foldexpr=getline(v:lnum)[0]==\"\\t\"
This will make a fold out of paragraphs separated by blank lines:

:set foldexpr=getline(v:lnum)=~'^\\s*$'&&getline(v:lnum+1)=~'\\S'?'<1':1
This does the same:

:set foldexpr=getline(v:lnum-1)=~'^\\s*$'&&getline(v:lnum)=~'\\S'?'>1':1

Note that backslashes must be used to escape characters that ":set" handles
differently (space, backslash, double quote, etc., see option-backslash).

The most efficient is to call a compiled function without arguments:
:set foldexpr=MyFoldLevel()

The function must use v:lnum. See expr-option-function .

These are the conditions with which the expression is evaluated:
- The current buffer and window are set for the line.
- The variable "v:lnum" is set to the line number.
- The result is used for the fold level in this way:

value meaning
0 the line is not in a fold
1, 2, .. the line is in a fold with this level
-1 the fold level is undefined, use the fold level of a

line before or after this line, whichever is the
lowest.

"=" use fold level from the previous line
"a1", "a2", .. add one, two, .. to the fold level of the previous

line, use the result for the current line
"s1", "s2", .. subtract one, two, .. from the fold level of the

previous line, use the result for the next line
"<1", "<2", .. a fold with this level ends at this line
">1", ">2", .. a fold with this level starts at this line

It is not required to mark the start (end) of a fold with ">1" ("<1"), a fold
will also start (end) when the fold level is higher (lower) than the fold
level of the previous line.

There must be no side effects from the expression. The text in the buffer,
cursor position, the search patterns, options etc. must not be changed.
You can change and restore them if you are careful.

If there is some error in the expression, or the resulting value isn't
recognized, there is no error message and the fold level will be zero.
For debugging the 'debug' option can be set to "msg", the error messages will
be visible then.

Note: Since the expression has to be evaluated for every line, this fold

fold.txt — 1474

method can be very slow!

Try to avoid the "=", "a" and "s" return values, since Vim often has to search
backwards for a line for which the fold level is defined. This can be slow.

If the 'foldexpr' expression starts with s: or <SID> , then it is replaced
with the script ID (local-function). Examples:

set foldexpr=s:MyFoldExpr()
set foldexpr=<SID>SomeFoldExpr()

An example of using "a1" and "s1": For a multi-line C comment, a line
containing "/*" would return "a1" to start a fold, and a line containing "*/"
would return "s1" to end the fold after that line:

if match(thisline, '/*') >= 0
return 'a1'

elseif match(thisline, '*/') >= 0
return 's1'

else
return '='

endif
However, this won't work for single line comments, strings, etc.

foldlevel() can be useful to compute a fold level relative to a previous
fold level. But note that foldlevel() may return -1 if the level is not known
yet. And it returns the level at the start of the line, while a fold might
end in that line.

It may happen that folds are not updated properly. You can use zx or zX
to force updating folds.

SYNTAX fold-syntax

A fold is defined by syntax items that have the "fold" argument. :syn-fold

The fold level is defined by nesting folds. The nesting of folds is limited
with 'foldnestmax'.

Be careful to specify proper syntax syncing. If this is not done right, folds
may differ from the displayed highlighting. This is especially relevant when
using patterns that match more than one line. In case of doubt, try using
brute-force syncing:

:syn sync fromstart

DIFF fold-diff

The folds are automatically defined for text that is not part of a change or
close to a change.

This method only works properly when the 'diff' option is set for the current
window and changes are being displayed. Otherwise the whole buffer will be
one big fold.

The 'diffopt' option can be used to specify the context. That is, the number
of lines between the fold and a change that are not included in the fold. For
example, to use a context of 8 lines:

:set diffopt=filler,context:8
The default context is six lines.

fold.txt — 1475

When 'scrollbind' is also set, Vim will attempt to keep the same folds open in
other diff windows, so that the same text is visible.

MARKER fold-marker

Markers in the text tell where folds start and end. This allows you to
precisely specify the folds. This will allow deleting and putting a fold,
without the risk of including the wrong lines. The 'foldtext' option is
normally set such that the text before the marker shows up in the folded line.
This makes it possible to give a name to the fold.

Markers can have a level included, or can use matching pairs. Including a
level is easier, you don't have to add end markers and avoid problems with
non-matching marker pairs. Example:

/* global variables {{{1 */
int varA, varB;

/* functions {{{1 */
/* funcA() {{{2 */
void funcA() {}

/* funcB() {{{2 */
void funcB() {}

{{{ }}}
A fold starts at a "{{{" marker. The following number specifies the fold
level. What happens depends on the difference between the current fold level
and the level given by the marker:
1. If a marker with the same fold level is encountered, the previous fold

ends and another fold with the same level starts.
2. If a marker with a higher fold level is found, a nested fold is started.
3. If a marker with a lower fold level is found, all folds up to and including

this level end and a fold with the specified level starts.

The number indicates the fold level. A zero cannot be used (a marker with
level zero is ignored). You can use "}}}" with a digit to indicate the level
of the fold that ends. The fold level of the following line will be one less
than the indicated level. Note that Vim doesn't look back to the level of the
matching marker (that would take too much time). Example:

{{{1
fold level here is 1
{{{3
fold level here is 3
}}}3
fold level here is 2

You can also use matching pairs of "{{{" and "}}}" markers to define folds.
Each "{{{" increases the fold level by one, each "}}}" decreases the fold
level by one. Be careful to keep the markers matching! Example:

{{{
fold level here is 1
{{{
fold level here is 2
}}}
fold level here is 1

You can mix using markers with a number and without a number. A useful way of
doing this is to use numbered markers for large folds, and unnumbered markers

fold.txt — 1476

locally in a function. For example use level one folds for the sections of
your file like "structure definitions", "local variables" and "functions".
Use level 2 markers for each definition and function, Use unnumbered markers
inside functions. When you make changes in a function to split up folds, you
don't have to renumber the markers.

The markers can be set with the 'foldmarker' option. It is recommended to
keep this at the default value of "{{{,}}}", so that files can be exchanged
between Vim users. Only change it when it is required for the file (e.g., it
contains markers from another folding editor, or the default markers cause
trouble for the language of the file).

fold-create-marker
"zf" can be used to create a fold defined by markers. Vim will insert the
markers for you. Vim will append the start and end marker, as specified with
'foldmarker'. The markers are appended to the end of the line.
'commentstring' is used if it isn't empty.
This does not work properly when:
- The line already contains a marker with a level number. Vim then doesn't

know what to do.
- Folds nearby use a level number in their marker which gets in the way.
- The line is inside a comment, 'commentstring' isn't empty and nested

comments don't work. For example with C: adding /* {{{ */ inside a comment
will truncate the existing comment. Either put the marker before or after
the comment, or add the marker manually.

Generally it's not a good idea to let Vim create markers when you already have
markers with a level number.

fold-delete-marker
"zd" can be used to delete a fold defined by markers. Vim will delete the
markers for you. Vim will search for the start and end markers, as specified
with 'foldmarker', at the start and end of the fold. When the text around the
marker matches with 'commentstring', that text is deleted as well.
This does not work properly when:
- A line contains more than one marker and one of them specifies a level.

Only the first one is removed, without checking if this will have the
desired effect of deleting the fold.

- The marker contains a level number and is used to start or end several folds
at the same time.

==
2. Fold commands fold-commands E490

All folding commands start with "z". Hint: the "z" looks like a folded piece
of paper, if you look at it from the side.

CREATING AND DELETING FOLDS
zf E350

zf{motion} or
{Visual}zf Operator to create a fold.

This only works when 'foldmethod' is "manual" or "marker".
The new fold will be closed for the "manual" method.
'foldenable' will be set.
Also see fold-create-marker .

zF
zF Create a fold for [count] lines. Works like "zf".

:{range}fo[ld] :fold :fo

fold.txt — 1477

Create a fold for the lines in {range}. Works like "zf".

zd E351
zd Delete one fold at the cursor. When the cursor is on a folded

line, that fold is deleted. Nested folds are moved one level
up. In Visual mode one level of all folds (partially) in the
selected area are deleted.
Careful: This easily deletes more folds than you expect and
there is no undo for manual folding.
This only works when 'foldmethod' is "manual" or "marker".
Also see fold-delete-marker .

zD
zD Delete folds recursively at the cursor. In Visual mode all

folds (partially) in the selected area and all nested folds in
them are deleted.
This only works when 'foldmethod' is "manual" or "marker".
Also see fold-delete-marker .

zE E352
zE Eliminate all folds in the window.

This only works when 'foldmethod' is "manual" or "marker".
Also see fold-delete-marker .

OPENING AND CLOSING FOLDS

A fold smaller than 'foldminlines' will always be displayed like it was open.
Therefore the commands below may work differently on small folds.

zo
zo Open one fold under the cursor. When a count is given, that

many folds deep will be opened. In Visual mode one level of
folds is opened for all lines in the selected area.

zO
zO Open all folds under the cursor recursively. Folds that don't

contain the cursor line are unchanged.
In Visual mode it opens all folds that are in the selected
area, also those that are only partly selected.

zc
zc Close one fold under the cursor. When a count is given, that

many folds deep are closed. In Visual mode one level of folds
is closed for all lines in the selected area.
'foldenable' will be set.

zC
zC Close all folds under the cursor recursively. Folds that

don't contain the cursor line are unchanged.
In Visual mode it closes all folds that are in the selected
area, also those that are only partly selected.
'foldenable' will be set.

za
za Summary: Toggle the fold under the cursor.

When on a closed fold: open it. When folds are nested, you
may have to use "za" several times. When a count is given,
that many closed folds are opened.
When on an open fold: close it and set 'foldenable'. This

fold.txt — 1478

will only close one level, since using "za" again will open
the fold. When a count is given that many folds will be
closed (that's not the same as repeating "za" that many
times).

zA
zA When on a closed fold: open it recursively.

When on an open fold: close it recursively and set
'foldenable'.

zv
zv View cursor line: Open just enough folds to make the line in

which the cursor is located not folded.

zx
zx Update folds: Undo manually opened and closed folds: re-apply

'foldlevel', then do "zv": View cursor line.
Also forces recomputing folds. This is useful when using
'foldexpr' and the buffer is changed in a way that results in
folds not to be updated properly.

zX
zX Undo manually opened and closed folds: re-apply 'foldlevel'.

Also forces recomputing folds, like zx .

zm
zm Fold more: Subtract v:count1 from 'foldlevel'. If 'foldlevel' was

already zero nothing happens.
'foldenable' will be set.

zM
zM Close all folds: set 'foldlevel' to 0.

'foldenable' will be set.

zr
zr Reduce folding: Add v:count1 to 'foldlevel'.

zR
zR Open all folds. This sets 'foldlevel' to highest fold level.

:foldo :foldopen
:{range}foldo[pen][!]

Open folds in {range}. When [!] is added all folds are
opened. Useful to see all the text in {range}. Without [!]
one level of folds is opened.

:foldc :foldclose
:{range}foldc[lose][!]

Close folds in {range}. When [!] is added all folds are
closed. Useful to hide all the text in {range}. Without [!]
one level of folds is closed.

zn
zn Fold none: reset 'foldenable'. All folds will be open.

zN
zN Fold normal: set 'foldenable'. All folds will be as they

were before.

zi

fold.txt — 1479

zi Invert 'foldenable'.

MOVING OVER FOLDS
[z

[z Move to the start of the current open fold. If already at the
start, move to the start of the fold that contains it. If
there is no containing fold, the command fails.
When a count is used, repeats the command [count] times.

]z
]z Move to the end of the current open fold. If already at the

end, move to the end of the fold that contains it. If there
is no containing fold, the command fails.
When a count is used, repeats the command [count] times.

zj
zj Move downwards to the start of the next fold. A closed fold

is counted as one fold.
When a count is used, repeats the command [count] times.
This command can be used after an operator .

zk
zk Move upwards to the end of the previous fold. A closed fold

is counted as one fold.
When a count is used, repeats the command [count] times.
This command can be used after an operator .

EXECUTING COMMANDS ON FOLDS

:[range]foldd[oopen] {cmd} :foldd :folddo :folddoopen
Execute {cmd} on all lines that are not in a closed fold.
When [range] is given, only these lines are used.
Each time {cmd} is executed the cursor is positioned on the
line it is executed for.
This works like the ":global" command: First all lines that
are not in a closed fold are marked. Then the {cmd} is
executed for all marked lines. Thus when {cmd} changes the
folds, this has no influence on where it is executed (except
when lines are deleted, of course).
Example:

:folddoopen s/end/loop_end/ge
Note the use of the "e" flag to avoid getting an error message
where "end" doesn't match.

:[range]folddoc[losed] {cmd} :folddoc :folddoclosed
Execute {cmd} on all lines that are in a closed fold.
Otherwise like ":folddoopen".

==
3. Fold options fold-options

COLORS fold-colors

The colors of a closed fold are set with the Folded group hl-Folded . The
colors of the fold column are set with the FoldColumn group hl-FoldColumn .
Example to set the colors:

:highlight Folded guibg=grey guifg=blue

fold.txt — 1480

:highlight FoldColumn guibg=darkgrey guifg=white

FOLDLEVEL fold-foldlevel

'foldlevel' is a number option: The higher the more folded regions are open.
When 'foldlevel' is 0, all folds are closed.
When 'foldlevel' is positive, some folds are closed.
When 'foldlevel' is very high, all folds are open.
'foldlevel' is applied when it is changed. After that manually folds can be
opened and closed.
When increased, folds above the new level are opened. No manually opened
folds will be closed.
When decreased, folds above the new level are closed. No manually closed
folds will be opened.

FOLDTEXT fold-foldtext

'foldtext' is a string option that specifies an expression. This expression
is evaluated to obtain the text displayed for a closed fold. Example:

:set foldtext=v:folddashes.substitute(getline(v:foldstart),'/*\\\|*/\\\|{{{\\d\\=','','g')

This shows the first line of the fold, with "/*", "*/" and "{{{" removed.
Note the use of backslashes to avoid some characters to be interpreted by the
":set" command. It is much simpler to define a function and call it:

:set foldtext=MyFoldText()
:function MyFoldText()
: let line = getline(v:foldstart)
: let sub = substitute(line, '/*\|*/\|{{{\d\=', '', 'g')
: return v:folddashes .. sub
:endfunction

The advantage of using a function call without arguments is that it is faster,
see expr-option-function .

Evaluating 'foldtext' is done in the sandbox . The current window is set to
the window that displays the line. The context is set to the script where the
option was last set.

Errors are ignored. For debugging set the 'debug' option to "throw".

The default value is foldtext() . This returns a reasonable text for most
types of folding. If you don't like it, you can specify your own 'foldtext'
expression. It can use these special Vim variables:

v:foldstart line number of first line in the fold
v:foldend line number of last line in the fold
v:folddashes a string that contains dashes to represent the

foldlevel.
v:foldlevel the foldlevel of the fold

In the result a TAB is replaced with a space and unprintable characters are
made into printable characters.

The resulting line is truncated to fit in the window, it never wraps.
When there is room after the text, it is filled with the character specified
by 'fillchars'.

fold.txt — 1481

If the 'foldtext' expression starts with s: or <SID> , then it is replaced
with the script ID (local-function). Examples:

set foldtext=s:MyFoldText()
set foldtext=<SID>SomeFoldText()

Note that backslashes need to be used for characters that the ":set" command
handles differently: Space, backslash and double-quote. option-backslash

FOLDCOLUMN fold-foldcolumn

'foldcolumn' is a number, which sets the width for a column on the side of the
window to indicate folds. When it is zero, there is no foldcolumn. A normal
value is 4 or 5. The minimal useful value is 2, although 1 still provides
some information. The maximum is 12.

An open fold is indicated with a column that has a '-' at the top and '|'
characters below it. This column stops where the open fold stops. When folds
nest, the nested fold is one character right of the fold it's contained in.

A closed fold is indicated with a '+'.

These characters can be changed with the 'fillchars' option.

Where the fold column is too narrow to display all nested folds, digits are
shown to indicate the nesting level.

The mouse can also be used to open and close folds by clicking in the
fold column:
- Click on a '+' to open the closed fold at this row.
- Click on any other non-blank character to close the open fold at this row.

OTHER OPTIONS

'foldenable' 'fen': Open all folds while not set.
'foldexpr' 'fde': Expression used for "expr" folding.
'foldignore' 'fdi': Characters used for "indent" folding.
'foldmarker' 'fmr': Defined markers used for "marker" folding.
'foldmethod' 'fdm': Name of the current folding method.
'foldminlines' 'fml': Minimum number of screen lines for a fold to be

displayed closed.
'foldnestmax' 'fdn': Maximum nesting for "indent" and "syntax" folding.
'foldopen' 'fdo': Which kinds of commands open closed folds.
'foldclose' 'fcl': When the folds not under the cursor are closed.

==
4. Behavior of folds fold-behavior

When moving the cursor upwards or downwards and when scrolling, the cursor
will move to the first line of a sequence of folded lines. When the cursor is
already on a folded line, it moves to the next unfolded line or the next
closed fold.

While the cursor is on folded lines, the cursor is always displayed in the
first column. The ruler does show the actual cursor position, but since the
line is folded, it cannot be displayed there.

Many movement commands handle a sequence of folded lines like an empty line.
For example, the "w" command stops once in the first column.

fold.txt — 1482

When starting a search in a closed fold it will not find a match in the
current fold. It's like a forward search always starts from the end of the
closed fold, while a backwards search starts from the start of the closed
fold.

When in Insert mode, the cursor line is never folded. That allows you to see
what you type!

When using an operator, a closed fold is included as a whole. Thus "dl"
deletes the whole closed fold under the cursor.

For Ex commands that work on buffer lines the range is adjusted to always
start at the first line of a closed fold and end at the last line of a closed
fold. Thus this command:

:s/foo/bar/g
when used with the cursor on a closed fold, will replace "foo" with "bar" in
all lines of the fold.
This does not happen for :folddoopen and :folddoclosed .

When editing a buffer that has been edited before, the last used folding
settings are used again. For manual folding the defined folds are restored.
For all folding methods the manually opened and closed folds are restored.
If this buffer has been edited in this window, the values from back then are
used. Otherwise the values from the window where the buffer was edited last
are used.

==

fold.txt — 1483

fold.txt — 1484

testing.txt For Vim version 9.1. Last change: 2024 Feb 18

VIM REFERENCE MANUAL by Bram Moolenaar

Testing Vim and Vim script testing-support

Expression evaluation is explained in eval.txt . This file goes into details
about writing tests in Vim script. This can be used for testing Vim itself
and for testing plugins.

1. Testing Vim testing
2. Test functions test-functions-details
3. Assert functions assert-functions-details

==
1. Testing Vim testing

Vim can be tested after building it, usually with "make test".
The tests are located in the directory "src/testdir".

There are two types of tests added over time:
test20.in oldest, only for tiny builds
test_something.vim new style tests

new-style-testing
New tests should be added as new style tests. The test scripts are named
test_<feature>.vim (replace <feature> with the feature under test). These use
functions such as assert_equal() to keep the test commands and the expected
result in one place.

old-style-testing
These tests are used only for testing Vim without the +eval feature.

Find more information in the file src/testdir/README.txt.

==
2. Test functions test-functions-details

test_alloc_fail({id}, {countdown}, {repeat}) test_alloc_fail()
This is for testing: If the memory allocation with {id} is
called, then decrement {countdown}, and when it reaches zero
let memory allocation fail {repeat} times. When {repeat} is
smaller than one it fails one time.

Can also be used as a method :
GetAllocId()->test_alloc_fail()

test_autochdir() test_autochdir()
Set a flag to enable the effect of 'autochdir' before Vim
startup has finished.

test_feedinput({string}) test_feedinput()
Characters in {string} are queued for processing as if they
were typed by the user. This uses a low level input buffer.
This function works only when with +unix or GUI is running.

Can also be used as a method :

testing.txt — 1485

GetText()->test_feedinput()

test_garbagecollect_now() test_garbagecollect_now()
Like garbagecollect(), but executed right away. This must
only be called directly to avoid any structure to exist
internally, and v:testing must have been set before calling
any function. E1142
This will not work when called from a :def function, because
variables on the stack will be freed.

test_garbagecollect_soon() test_garbagecollect_soon()
Set the flag to call the garbagecollector as if in the main
loop. Only to be used in tests.

test_getvalue({name}) test_getvalue()
Get the value of an internal variable. These values for
{name} are supported:

need_fileinfo

Can also be used as a method :
GetName()->test_getvalue()

test_gui_event()
test_gui_event({event}, {args})

Generate a GUI {event} with arguments {args} for testing Vim
functionality. This function works only when the GUI is
running.

{event} is a String and the supported values are:
"dropfiles" drop one or more files in a window.
"findrepl" search and replace text.
"mouse" mouse button click event.
"scrollbar" move or drag the scrollbar.
"key" send a low-level keyboard event.
"tabline" select a tab page by mouse click.
"tabmenu" select a tabline menu entry.

{args} is a Dict and contains the arguments for the event.

"dropfiles":
Drop one or more files in a specified window. The supported
items in {args} are:

files: List of file names
row: window row number
col: window column number
modifiers: key modifiers. The supported values are:

0x4 Shift
0x8 Alt
0x10 Ctrl

The files are added to the argument-list and the first
file in {files} is edited in the window. See drag-n-drop
for more information. This event works only when the
drop_file feature is present.

"findrepl":
{only available when the GUI has a find/replace dialog}
Perform a search and replace of text. The supported items

testing.txt — 1486

in {args} are:
find_text: string to find.
repl_text: replacement string.
flags: flags controlling the find/replace. Supported

values are:
1 search next string (find dialog)
2 search next string (replace dialog)
3 replace string once
4 replace all matches
8 match whole words only
16 match case

forward: set to 1 for forward search.

"mouse":
Inject either a mouse button click, or a mouse move, event.
The supported items in {args} are:

button: mouse button. The supported values are:
0 left mouse button
1 middle mouse button
2 right mouse button
3 mouse button release
4 scroll wheel down
5 scroll wheel up
6 scroll wheel left
7 scroll wheel right

row: mouse click row number. The first row of the
Vim window is 1 and the last row is 'lines'.

col: mouse click column number. The maximum value
of {col} is 'columns'.

multiclick: set to 1 to inject a multiclick mouse event.
modifiers: key modifiers. The supported values are:

4 shift is pressed
8 alt is pressed
16 ctrl is pressed

move: Optional; if used and TRUE then a mouse move
event can be generated.
Only {args} row: and col: are used and
required; they are interpreted as pixels or
screen cells, depending on "cell".
Only results in an event when 'mousemoveevent'
is set or a popup uses mouse move events.

cell: Optional: when present and TRUE then "move"
uses screen cells instead of pixel positions

"scrollbar":
Set or drag the left, right or horizontal scrollbar. Only
works when the scrollbar actually exists. The supported
items in {args} are:

which: Selects the scrollbar. The supported values
are:

left Left scrollbar of the current window
right Right scrollbar of the current window
hor Horizontal scrollbar

value: Amount to scroll. For the vertical scrollbars
the value can be between 0 to the line-count
of the buffer minus one. For the horizontal
scrollbar the value can be between 1 and the
maximum line length, assuming 'wrap' is not
set.

dragging: 1 to drag the scrollbar and 0 to click in the

testing.txt — 1487

scrollbar.

"key":
Send a low-level keyboard event (e.g. key-up or down).
Currently only supported on MS-Windows.
The supported items in {args} are:

event: The supported string values are:
keyup generate a keyup event
keydown generate a keydown event

keycode: Keycode to use for a keyup or a keydown event.
E1291

"tabline":
Inject a mouse click event on the tabline to select a
tabpage. The supported items in {args} are:

tabnr: tab page number

"tabmenu":
Inject an event to select a tabline menu entry. The
supported items in {args} are:
tabnr: tab page number
item: tab page menu item number. 1 for the first

menu item, 2 for the second item and so on.

After injecting the GUI events you probably should call
feedkeys() to have them processed, e.g.:

call feedkeys("y", 'Lx!')

Returns TRUE if the event is successfully added, FALSE if
there is a failure.

Can also be used as a method :
GetEvent()->test_gui_event({args})

test_ignore_error({expr}) test_ignore_error()
Ignore any error containing {expr}. A normal message is given
instead.
This is only meant to be used in tests, where catching the
error with try/catch cannot be used (because it skips over
following code).
{expr} is used literally, not as a pattern.
When the {expr} is the string "RESET" then the list of ignored
errors is made empty.

Can also be used as a method :
GetErrorText()->test_ignore_error()

test_mswin_event({event}, {args}) test_mswin_event()
Generate a low-level MS-Windows {event} with arguments {args}
for testing Vim functionality. It works for MS-Windows GUI
and for the console.

{event} is a String and the supported values are:
"mouse" mouse event.
"key" keyboard event.
"set_keycode_trans_strategy"

Change the key translation method.

"mouse":

testing.txt — 1488

Inject either a mouse button click, or a mouse move, event.
The supported items in {args} are:

button: mouse button. The supported values are:
0 right mouse button
1 middle mouse button
2 left mouse button
3 mouse button release
4 scroll wheel down
5 scroll wheel up
6 scroll wheel left
7 scroll wheel right

row: mouse click row number. The first row of the
Vim window is 1 and the last row is 'lines'.

col: mouse click column number. The maximum value
of {col} is 'columns'.
Note: row and col are always interpreted as
screen cells for the console application.
But, they may be interpreted as pixels
for the GUI, depending on "cell".

multiclick: set to 1 to inject a double-click mouse event.
modifiers: key modifiers. The supported values are:

4 shift is pressed
8 alt is pressed
16 ctrl is pressed

move: Optional; if used and TRUE then a mouse move
event can be generated.
Only {args} row: and col: are used and
required.
Only results in an event when 'mousemoveevent'
is set or a popup uses mouse move events.

cell: Optional for the GUI: when present and TRUE
then "move" uses screen cells instead of pixel
positions. Not used by the console.

"key":
Send a low-level keyboard event (e.g. keyup or keydown).
The supported items in {args} are:

event: The supported string values are:
keyup generate a keyup event
keydown generate a keydown event

keycode: Keycode to use for a keyup or a keydown event.
modifiers: Optional; key modifiers.

The supported values are:
2 shift is pressed
4 ctrl is pressed
8 alt is pressed

Note: These values are different from the
mouse modifiers.

execute: Optional. Similar to feedkeys() mode x.
When this is included and set to true
(non-zero) then Vim will process any buffered
unprocessed key events. All other {args}
items are optional when this is set and true.

"set_keycode_trans_strategy":
w32-experimental-keycode-trans-strategy

Switch the keycode translation method. The supported methods
are:

experimental: The method used after Patch v8.2.4807
using ToUnicode() Win API call.

testing.txt — 1489

classic: The method used pre Patch v8.2.4807
using the TranslateMessage() Win API call.

Returns TRUE if the event is successfully added or executed,
FALSE if there is a failure.

Can also be used as a method :
GetEvent()->test_mswin_event({args})

test_null_blob() test_null_blob()
Return a Blob that is null. Only useful for testing.

test_null_channel() test_null_channel()
Return a Channel that is null. Only useful for testing.
{only available when compiled with the +channel feature}

test_null_dict() test_null_dict()
Return a Dict that is null. Only useful for testing.

test_null_function() test_null_function()
Return a Funcref that is null. Only useful for testing.

test_null_job() test_null_job()
Return a Job that is null. Only useful for testing.
{only available when compiled with the +job feature}

test_null_list() test_null_list()
Return a List that is null. Only useful for testing.

test_null_partial() test_null_partial()
Return a Partial that is null. Only useful for testing.

test_null_string() test_null_string()
Return a String that is null. Only useful for testing.

test_option_not_set({name}) test_option_not_set()
Reset the flag that indicates option {name} was set. Thus it
looks like it still has the default value. Use like this:

set ambiwidth=double
call test_option_not_set('ambiwidth')

Now the 'ambiwidth' option behaves like it was never changed,
even though the value is "double".
Only to be used for testing!

Can also be used as a method :
GetOptionName()->test_option_not_set()

test_override({name}, {val}) test_override()
Overrides certain parts of Vim's internal processing to be able
to run tests. Only to be used for testing Vim!

testing.txt — 1490

The override is enabled when {val} is non-zero and removed
when {val} is zero.
Current supported values for {name} are:

{name} effect when {val} is non-zero
alloc_lines make a copy of every buffer line into allocated

memory, so that memory access errors can be found
by valgrind

autoload `import autoload` will load the script right
away, not postponed until an item is used

char_avail disable the char_avail() function
nfa_fail makes the NFA regexp engine fail to force a

fallback to the old engine
no_query_mouse do not query the mouse position for "dec"

terminals
no_wait_return set the "no_wait_return" flag. Not restored

with "ALL".
redraw disable the redrawing() function
redraw_flag ignore the RedrawingDisabled flag
starting reset the "starting" variable, see below
term_props reset all terminal properties when the version

string is detected
ui_delay time in msec to use in ui_delay(); overrules a

wait time of up to 3 seconds for messages
unreachable no error for code after `:throw` and `:return`
uptime overrules sysinfo.uptime
vterm_title setting the window title by a job running in a

terminal window
ALL clear all overrides, except alloc_lines ({val} is

not used)

"starting" is to be used when a test should behave like
startup was done. Since the tests are run by sourcing a
script the "starting" variable is non-zero. This is usually a
good thing (tests run faster), but sometimes this changes
behavior in a way that the test doesn't work properly.
When using:

call test_override('starting', 1)
The value of "starting" is saved. It is restored by:

call test_override('starting', 0)

To make sure the flag is reset later using `:defer` can be
useful:

call test_override('unreachable', 1)
defer call test_override('unreachable', 0)

Can also be used as a method :
GetOverrideVal()-> test_override('starting')

test_refcount({expr}) test_refcount()
Return the reference count of {expr}. When {expr} is of a
type that does not have a reference count, returns -1. Only
to be used for testing.

Can also be used as a method :
GetVarname()->test_refcount()

test_setmouse({row}, {col}) test_setmouse()

testing.txt — 1491

Set the mouse position to be used for the next mouse action.
{row} and {col} are one based.
For example:

call test_setmouse(4, 20)
call feedkeys("\<LeftMouse>", "xt")

test_settime({expr}) test_settime()
Set the time Vim uses internally. Currently only used for
timestamps in the history, as they are used in viminfo, and
for undo.
Using a value of 1 makes Vim not sleep after a warning or
error message.
{expr} must evaluate to a number. When the value is zero the
normal behavior is restored.

Can also be used as a method :
GetTime()->test_settime()

test_srand_seed([seed]) test_srand_seed()
When [seed] is given this sets the seed value used by
`srand()`. When omitted the test seed is removed.

test_unknown() test_unknown()
Return a value with unknown type. Only useful for testing.

test_void() test_void()
Return a value with void type. Only useful for testing.

==
3. Assert functions assert-functions-details

assert_beeps({cmd}) assert_beeps()
Run {cmd} and add an error message to v:errors if it does
NOT produce a beep or visual bell.
Also see assert_fails() , assert_nobeep() and
assert-return .

Can also be used as a method :
GetCmd()->assert_beeps()

assert_equal()
assert_equal({expected}, {actual} [, {msg}])

When {expected} and {actual} are not equal an error message is
added to v:errors and 1 is returned. Otherwise zero is
returned. assert-return
The error is in the form "Expected {expected} but got
{actual}". When {msg} is present it is prefixed to that.

There is no automatic conversion, the String "4" is different
from the Number 4. And the number 4 is different from the
Float 4.0. The value of 'ignorecase' is not used here, case
always matters.
Example:

assert_equal('foo', 'bar')
Will result in a string to be added to v:errors :

testing.txt — 1492

test.vim line 12: Expected 'foo' but got 'bar'

Can also be used as a method , the base is passed as the
second argument:

mylist->assert_equal([1, 2, 3])

assert_equalfile()
assert_equalfile({fname-one}, {fname-two} [, {msg}])

When the files {fname-one} and {fname-two} do not contain
exactly the same text an error message is added to v:errors .
Also see assert-return .
When {fname-one} or {fname-two} does not exist the error will
mention that.
Mainly useful with terminal-diff .

Can also be used as a method :
GetLog()->assert_equalfile('expected.log')

assert_exception({error} [, {msg}]) assert_exception()
When v:exception does not contain the string {error} an error
message is added to v:errors . Also see assert-return .
This can be used to assert that a command throws an exception.
Using the error number, followed by a colon, avoids problems
with translations:

try
commandthatfails
call assert_false(1, 'command should have failed')

catch
call assert_exception('E492:')

endtry

assert_fails()
assert_fails({cmd} [, {error} [, {msg} [, {lnum} [, {context}]]]])

Run {cmd} and add an error message to v:errors if it does
NOT produce an error or when {error} is not found in the
error message. Also see assert-return .

E856
When {error} is a string it must be found literally in the
first reported error. Most often this will be the error code,
including the colon, e.g. "E123:".

assert_fails('bad cmd', 'E987:')

When {error} is a List with one or two strings, these are
used as patterns. The first pattern is matched against the
first reported error:

assert_fails('cmd', ['E987:.*expected bool'])
The second pattern, if present, is matched against the last
reported error.
If there is only one error then both patterns must match. This
can be used to check that there is only one error.
To only match the last error use an empty string for the first
error:

assert_fails('cmd', ['', 'E987:'])

If {msg} is empty then it is not used. Do this to get the
default message when passing the {lnum} argument.

E1115
When {lnum} is present and not negative, and the {error}
argument is present and matches, then this is compared with
the line number at which the error was reported. That can be

testing.txt — 1493

the line number in a function or in a script.
E1116

When {context} is present it is used as a pattern and matched
against the context (script name or function name) where
{lnum} is located in.

Note that beeping is not considered an error, and some failing
commands only beep. Use assert_beeps() for those.

Can also be used as a method :
GetCmd()->assert_fails('E99:')

assert_false({actual} [, {msg}]) assert_false()
When {actual} is not false an error message is added to
v:errors , like with assert_equal() .
The error is in the form "Expected False but got {actual}".
When {msg} is present it is prepended to that.
Also see assert-return .

A value is false when it is zero. When {actual} is not a
number the assert fails.

Can also be used as a method :
GetResult()->assert_false()

assert_inrange({lower}, {upper}, {actual} [, {msg}]) assert_inrange()
This asserts number and Float values. When {actual} is lower
than {lower} or higher than {upper} an error message is added
to v:errors . Also see assert-return .
The error is in the form "Expected range {lower} - {upper},
but got {actual}". When {msg} is present it is prefixed to
that.

assert_match()
assert_match({pattern}, {actual} [, {msg}])

When {pattern} does not match {actual} an error message is
added to v:errors . Also see assert-return .
The error is in the form "Pattern {pattern} does not match
{actual}". When {msg} is present it is prefixed to that.

{pattern} is used as with =~ : The matching is always done
like 'magic' was set and 'cpoptions' is empty, no matter what
the actual value of 'magic' or 'cpoptions' is.

{actual} is used as a string, automatic conversion applies.
Use "^" and "$" to match with the start and end of the text.
Use both to match the whole text.

Example:
assert_match('^f.*o$', 'foobar')

Will result in a string to be added to v:errors :
test.vim line 12: Pattern '^f.*o$' does not match 'foobar'

Can also be used as a method :
getFile()->assert_match('foo.*')

assert_nobeep({cmd}) assert_nobeep()
Run {cmd} and add an error message to v:errors if it
produces a beep or visual bell.
Also see assert_beeps() .

testing.txt — 1494

Can also be used as a method :
GetCmd()->assert_nobeep()

assert_notequal()
assert_notequal({expected}, {actual} [, {msg}])

The opposite of `assert_equal()`: add an error message to
v:errors when {expected} and {actual} are equal.
Also see assert-return .

Can also be used as a method :
mylist->assert_notequal([1, 2, 3])

assert_notmatch()
assert_notmatch({pattern}, {actual} [, {msg}])

The opposite of `assert_match()`: add an error message to
v:errors when {pattern} matches {actual}.
Also see assert-return .

Can also be used as a method :
getFile()->assert_notmatch('bar.*')

assert_report({msg}) assert_report()
Report a test failure directly, using String {msg}.
Always returns one.

Can also be used as a method :
GetMessage()->assert_report()

assert_true({actual} [, {msg}]) assert_true()
When {actual} is not true an error message is added to
v:errors , like with assert_equal() .
Also see assert-return .
A value is TRUE when it is a non-zero number. When {actual}
is not a number the assert fails.
When {msg} is given it precedes the default message.

Can also be used as a method :
GetResult()->assert_true()

testing.txt — 1495

testing.txt — 1496

print.txt For Vim version 9.1. Last change: 2022 Oct 01

VIM REFERENCE MANUAL by Bram Moolenaar

Printing printing

1. Introduction print-intro
2. Print options print-options
3. PostScript Printing postscript-printing
4. PostScript Printing Encoding postscript-print-encoding
5. PostScript CJK Printing postscript-cjk-printing
6. PostScript Printing Troubleshooting postscript-print-trouble
7. PostScript Utilities postscript-print-util
8. Formfeed Characters printing-formfeed

{only available when compiled with the |+printer| feature}

==
1. Introduction print-intro

On MS-Windows Vim can print your text on any installed printer. On other
systems a PostScript file is produced. This can be directly sent to a
PostScript printer. For other printers a program like ghostscript needs to be
used.

Note: If you have problems printing with :hardcopy , an alternative is to use
:TOhtml and print the resulting html file from a browser.

:ha :hardcopy E237 E238 E324
:[range]ha[rdcopy][!] [arguments]

Send [range] lines (default whole file) to the
printer.

On MS-Windows a dialog is displayed to allow selection
of printer, paper size etc. To skip the dialog, use
the [!]. In this case the printer defined by
'printdevice' is used, or, if 'printdevice' is empty,
the system default printer.

For systems other than MS-Windows, PostScript is
written in a temp file and 'printexpr' is used to
actually print it. Then [arguments] can be used by
'printexpr' through v:cmdarg . Otherwise [arguments]
is ignored. 'printoptions' can be used to specify
paper size, duplex, etc.
Note: If you want PDF, there are tools such as
"ps2pdf" that can convert the PostScript to PDF.

:[range]ha[rdcopy][!] >{filename}
As above, but write the resulting PostScript in file
{filename}.
Things like "%" are expanded cmdline-special
Careful: An existing file is silently overwritten.
{only available when compiled with the +postscript
feature}
On MS-Windows use the "print to file" feature of the
printer driver.

print.txt — 1497

Progress is displayed during printing as a page number and a percentage. To
abort printing use the interrupt key (CTRL-C or, on MS-systems, CTRL-Break).

Printer output is controlled by the 'printfont' and 'printoptions' options.
'printheader' specifies the format of a page header.

The printed file is always limited to the selected margins, irrespective of
the current window's 'wrap' or 'linebreak' settings. The "wrap" item in
'printoptions' can be used to switch wrapping off.
The current highlighting colors are used in the printout, with the following
considerations:
1) The normal background is always rendered as white (i.e. blank paper).
2) White text or the default foreground is rendered as black, so that it shows

up!
3) If 'background' is "dark", then the colours are darkened to compensate for

the fact that otherwise they would be too bright to show up clearly on
white paper.

==
2. Print options print-options

Here are the details for the options that change the way printing is done.
For generic info about setting options see options.txt .

pdev-option
'printdevice' 'pdev' string (default empty)

global
This defines the name of the printer to be used when the :hardcopy command
is issued with a bang (!) to skip the printer selection dialog. On Win32, it
should be the printer name exactly as it appears in the standard printer
dialog.
If the option is empty, then vim will use the system default printer for
":hardcopy!"

penc-option E620
'printencoding' 'penc' String (default empty, except for:

MS-Windows: cp1252,
Macintosh: mac-roman,
VMS: dec-mcs,
HPUX: hp-roman8,
EBCDIC: ebcdic-uk)

global
Sets the character encoding used when printing. This option tells Vim which
print character encoding file from the "print" directory in 'runtimepath' to
use.

This option will accept any value from encoding-names . Any recognized names
are converted to Vim standard names - see 'encoding' for more details. Names
not recognized by Vim will just be converted to lower case and underscores
replaced with '-' signs.

If 'printencoding' is empty or Vim cannot find the file then it will use
'encoding' (if it is set an 8-bit encoding) to find the print character
encoding file. If Vim is unable to find a character encoding file then it
will use the "latin1" print character encoding file.

When 'encoding' is set to a multibyte encoding, Vim will try to convert
characters to the printing encoding for printing (if 'printencoding' is empty
then the conversion will be to latin1). Conversion to a printing encoding
other than latin1 will require Vim to be compiled with the +iconv feature.

print.txt — 1498

If no conversion is possible then printing will fail. Any characters that
cannot be converted will be replaced with upside down question marks.

Four print character encoding files are provided to support default Mac, VMS,
HPUX, and EBCDIC character encodings and are used by default on these
platforms. Code page 1252 print character encoding is used by default on
MS-Windows platform.

pexpr-option
'printexpr' 'pexpr' String (default: see below)

global
Expression that is evaluated to print the PostScript produced with
:hardcopy .

The file name to be printed is in v:fname_in .
The arguments to the ":hardcopy" command are in v:cmdarg .
The expression must take care of deleting the file after printing it.
When there is an error, the expression must return a non-zero number.
If there is no error, return zero or an empty string.
The default for non MS-Windows or VMS systems is to simply use "lpr" to print
the file:

system('lpr' .. (&printdevice == '' ? '' : ' -P' .. &printdevice)
.. ' ' .. v:fname_in) .. delete(v:fname_in) + v:shell_error

On MS-Windows machines the default is to copy the file to the currently
specified printdevice:

system('copy' .. ' ' .. v:fname_in .. (&printdevice == ''
? ' LPT1:' : (' \"' .. &printdevice .. '\"')))
.. delete(v:fname_in)

On VMS machines the default is to send the file to either the default or
currently specified printdevice:

system('print' .. (&printdevice == '' ? '' : ' /queue=' ..
&printdevice) .. ' ' .. v:fname_in) .. delete(v:fname_in)

If you change this option, using a function is an easy way to avoid having to
escape all the spaces. Example:

:set printexpr=PrintFile()
:function PrintFile()
: call system("ghostview " .. v:fname_in)
: call delete(v:fname_in)
: return v:shell_error
:endfunc

It is more efficient if the option is set to just a function call,
see expr-option-function .

Be aware that some print programs return control before they have read the
file. If you delete the file too soon it will not be printed. These programs
usually offer an option to have them remove the file when printing is done.

E365
If evaluating the expression fails or it results in a non-zero number, you get
an error message. In that case Vim will delete the file. In the default
value for non-MS-Windows a trick is used: Adding "v:shell_error" will result
in a non-zero number when the system() call fails.

If the expression starts with s: or <SID> , then it is replaced with the

print.txt — 1499

script ID (local-function). Example:
set printexpr=s:MyPrintFile()
set printexpr=<SID>SomePrintFile()

Otherwise, the expression is evaluated in the context of the script where the
option was set, thus script-local items are available.

This option cannot be set from a modeline or in the sandbox , for security
reasons.

pfn-option E613
'printfont' 'pfn' string (default "courier")

global
This is the name of the font that will be used for the :hardcopy command's
output. It has the same format as the 'guifont' option, except that only one
font may be named, and the special "guifont=*" syntax is not available.

In the Win32 GUI version this specifies a font name with its extra attributes,
as with the 'guifont' option.

For other systems, only ":h11" is recognized, where "11" is the point size of
the font. When omitted, the point size is 10.

pheader-option
'printheader' 'pheader' string (default "%<%f%h%m%=Page %N")

global
This defines the format of the header produced in :hardcopy output. The
option is defined in the same way as the 'statusline' option. If Vim has not
been compiled with the +statusline feature, this option has no effect and a
simple default header is used, which shows the page number. The same simple
header is used when this option is empty.

pmbcs-option
'printmbcharset' 'pmbcs' string (default "")

global
Sets the CJK character set to be used when generating CJK output from
:hardcopy . The following predefined values are currently recognised by Vim:

Value Description
Chinese GB_2312-80
(Simplified) GBT_12345-90

MAC Apple Mac Simplified Chinese
GBT-90_MAC GB/T 12345-90 Apple Mac Simplified

Chinese
GBK GBK (GB 13000.1-93)
ISO10646 ISO 10646-1:1993

Chinese CNS_1993 CNS 11643-1993, Planes 1 & 2
(Traditional) BIG5

ETEN Big5 with ETen extensions
ISO10646 ISO 10646-1:1993

Japanese JIS_C_1978
JIS_X_1983
JIS_X_1990
MSWINDOWS Win3.1/95J (JIS X 1997 + NEC +

IBM extensions)
KANJITALK6 Apple Mac KanjiTalk V6.x
KANJITALK7 Apple Mac KanjiTalk V7.x

Korean KS_X_1992

print.txt — 1500

MAC Apple Macintosh Korean
MSWINDOWS KS X 1992 with MS extensions
ISO10646 ISO 10646-1:1993

Only certain combinations of the above values and 'printencoding' are
possible. The following tables show the valid combinations:

euc-cn gbk ucs-2 utf-8
Chinese GB_2312-80 x
(Simplified) GBT_12345-90 x

MAC x
GBT-90_MAC x
GBK x
ISO10646 x x

euc-tw big5 ucs-2 utf-8
Chinese CNS_1993 x
(Traditional) BIG5 x

ETEN x
ISO10646 x x

euc-jp sjis ucs-2 utf-8
Japanese JIS_C_1978 x x

JIS_X_1983 x x
JIS_X_1990 x x x
MSWINDOWS x
KANJITALK6 x
KANJITALK7 x

euc-kr cp949 ucs-2 utf-8
Korean KS_X_1992 x

MAC x
MSWINDOWS x
ISO10646 x x

To set up the correct encoding and character set for printing some
Japanese text you would do the following;

:set printencoding=euc-jp
:set printmbcharset=JIS_X_1983

If 'printmbcharset' is not one of the above values then it is assumed to
specify a custom multibyte character set and no check will be made that it is
compatible with the value for 'printencoding'. Vim will look for a file
defining the character set in the "print" directory in 'runtimepath'.

pmbfn-option
'printmbfont' 'pmbfn' string (default "")

global
This is a comma-separated list of fields for font names to be used when
generating CJK output from :hardcopy . Each font name has to be preceded
with a letter indicating the style the font is to be used for as follows:

r:{font-name} font to use for normal characters
b:{font-name} font to use for bold characters
i:{font-name} font to use for italic characters
o:{font-name} font to use for bold-italic characters

A field with the r: prefix must be specified when doing CJK printing. The
other fontname specifiers are optional. If a specifier is missing then
another font will be used as follows:

print.txt — 1501

if b: is missing, then use r:
if i: is missing, then use r:
if o: is missing, then use b:

Some CJK fonts do not contain characters for codes in the ASCII code range.
Also, some characters in the CJK ASCII code ranges differ in a few code points
from traditional ASCII characters. There are two additional fields to control
printing of characters in the ASCII code range.

c:yes Use Courier font for characters in the ASCII
c:no (default) code range.

a:yes Use ASCII character set for codes in the ASCII
a:no (default) code range.

The following is an example of specifying two multibyte fonts, one for normal
and italic printing and one for bold and bold-italic printing, and using
Courier to print codes in the ASCII code range but using the national
character set:

:set printmbfont=r:WadaMin-Regular,b:WadaMin-Bold,c:yes

popt-option
'printoptions' 'popt' string (default "")

global
This is a comma-separated list of items that control the format of the output
of :hardcopy :

left:{spec} left margin (default: 10pc)
right:{spec} right margin (default: 5pc)
top:{spec} top margin (default: 5pc)
bottom:{spec} bottom margin (default: 5pc)

{spec} is a number followed by "in" for inches, "pt"
for points (1 point is 1/72 of an inch), "mm" for
millimeters or "pc" for a percentage of the media
size.
Weird example:

left:2in,top:30pt,right:16mm,bottom:3pc
If the unit is not recognized there is no error and
the default value is used.

header:{nr} Number of lines to reserve for the header.
Only the first line is actually filled, thus when {nr}
is 2 there is one empty line. The header is formatted
according to 'printheader'.

header:0 Do not print a header.
header:2 (default) Use two lines for the header

syntax:n Do not use syntax highlighting. This is faster and
thus useful when printing large files.

syntax:y Do syntax highlighting.
syntax:a (default) Use syntax highlighting if the printer appears to be

able to print color or grey.

number:y Include line numbers in the printed output.
number:n (default) No line numbers.

wrap:y (default) Wrap long lines.
wrap:n Truncate long lines.

print.txt — 1502

duplex:off Print on one side.
duplex:long (default) Print on both sides (when possible), bind on long

side.
duplex:short Print on both sides (when possible), bind on short

side.

collate:y (default) Collating: 1 2 3, 1 2 3, 1 2 3
collate:n No collating: 1 1 1, 2 2 2, 3 3 3

jobsplit:n (default) Do all copies in one print job
jobsplit:y Do each copy as a separate print job. Useful when

doing N-up postprocessing.

portrait:y (default) Orientation is portrait.
portrait:n Orientation is landscape.

a4 letter
paper:A4 (default) Paper size: A4
paper:{name} Paper size from this table:

{name} size in cm size in inch
10x14 25.4 x 35.57 10 x 14
A3 29.7 x 42 11.69 x 16.54
A4 21 x 29.7 8.27 x 11.69
A5 14.8 x 21 5.83 x 8.27
B4 25 x 35.3 10.12 x 14.33
B5 17.6 x 25 7.17 x 10.12
executive 18.42 x 26.67 7.25 x 10.5
folio 21 x 33 8.27 x 13
ledger 43.13 x 27.96 17 x 11
legal 21.59 x 35.57 8.5 x 14
letter 21.59 x 27.96 8.5 x 11
quarto 21.59 x 27.5 8.5 x 10.83
statement 13.97 x 21.59 5.5 x 8.5
tabloid 27.96 x 43.13 11 x 17

formfeed:n (default) Treat form feed characters (0x0c) as a normal print
character.

formfeed:y When a form feed character is encountered, continue
printing of the current line at the beginning of the
first line on a new page.

The item indicated with (default) is used when the item is not present. The
values are not always used, especially when using a dialog to select the
printer and options.
Example:

:set printoptions=paper:letter,duplex:off

==
3. PostScript Printing postscript-printing

E455 E456 E457 E624
Provided you have enough disk space there should be no problems generating a
PostScript file. You need to have the runtime files correctly installed (if
you can find the help files, they probably are).

There are currently a number of limitations with PostScript printing:

- 'printfont' - The font name is ignored (the Courier family is always used -
it should be available on all PostScript printers) but the font size is
used.

- 'printoptions' - The duplex setting is used when generating PostScript

print.txt — 1503

output, but it is up to the printer to take notice of the setting. If the
printer does not support duplex printing then it should be silently ignored.
Some printers, however, don't print at all.

- 8-bit support - While a number of 8-bit print character encodings are
supported it is possible that some characters will not print. Whether a
character will print depends on the font in the printer knowing the
character. Missing characters will be replaced with an upside down question
mark, or a space if that character is also not known by the font. It may be
possible to get all the characters in an encoding to print by installing a
new version of the Courier font family.

- Multi-byte support - Currently Vim will try to convert multibyte characters
to the 8-bit encoding specified by 'printencoding' (or latin1 if it is
empty). Any characters that are not successfully converted are shown as
unknown characters. Printing will fail if Vim cannot convert the multibyte
to the 8-bit encoding.

==
4. Custom 8-bit Print Character Encodings postscript-print-encoding

E618 E619
To use your own print character encoding when printing 8-bit character data
you need to define your own PostScript font encoding vector. Details on how
to define a font encoding vector is beyond the scope of this help file, but
you can find details in the PostScript Language Reference Manual, 3rd Edition,
published by Addison-Wesley and available in PDF form at
http://www.adobe.com/. The following describes what you need to do for Vim to
locate and use your print character encoding.

i. Decide on a unique name for your encoding vector, one that does not clash
with any of the recognized or standard encoding names that Vim uses (see
encoding-names for a list), and that no one else is likely to use.

ii. Copy $VIMRUNTIME/print/latin1.ps to the print subdirectory in your
'runtimepath' and rename it with your unique name.

iii. Edit your renamed copy of latin1.ps, replacing all occurrences of latin1
with your unique name (don't forget the line starting %%Title:), and
modify the array of glyph names to define your new encoding vector. The
array must have exactly 256 entries or you will not be able to print!

iv. Within Vim, set 'printencoding' to your unique encoding name and then
print your file. Vim will now use your custom print character encoding.

Vim will report an error with the resource file if you change the order or
content of the first 3 lines, other than the name of the encoding on the line
starting %%Title: or the version number on the line starting %%Version:.

[Technical explanation for those that know PostScript - Vim looks for a file
with the same name as the encoding it will use when printing. The file
defines a new PostScript Encoding resource called /VIM-name, where name is the
print character encoding Vim will use.]

==
5. PostScript CJK Printing postscript-cjk-printing

E673 E674 E675

Vim supports printing of Chinese, Japanese, and Korean files. Setting up Vim
to correctly print CJK files requires setting up a few more options.

Each of these countries has many standard character sets and encodings which
require that both be specified when printing. In addition, CJK fonts normally
do not have the concept of italic glyphs and use different weight or stroke

print.txt — 1504

http://www.adobe.com/

style to achieve emphasis when printing. This in turn requires a different
approach to specifying fonts to use when printing.

The encoding and character set are specified with the 'printencoding' and
'printmbcharset' options. If 'printencoding' is not specified then 'encoding'
is used as normal. If 'printencoding' is specified then characters will be
translated to this encoding for printing. You should ensure that the encoding
is compatible with the character set needed for the file contents or some
characters may not appear when printed.

The fonts to use for CJK printing are specified with 'printmbfont'. This
option allows you to specify different fonts to use when printing characters
which are syntax highlighted with the font styles normal, italic, bold and
bold-italic.

No CJK fonts are supplied with Vim. There are some free Korean, Japanese, and
Traditional Chinese fonts available at:

http://examples.oreilly.com/cjkvinfo/adobe/samples/

You can find descriptions of the various fonts in the read me file at

http://examples.oreilly.de/english_examples/cjkvinfo/adobe/00README

Please read your printer documentation on how to install new fonts.

CJK fonts can be large containing several thousand glyphs, and it is not
uncommon to find that they only contain a subset of a national standard. It
is not unusual to find the fonts to not include characters for codes in the
ASCII code range. If you find half-width Roman characters are not appearing
in your printout then you should configure Vim to use the Courier font the
half-width ASCII characters with 'printmbfont'. If your font does not include
other characters then you will need to find another font that does.

Another issue with ASCII characters, is that the various national character
sets specify a couple of different glyphs in the ASCII code range. If you
print ASCII text using the national character set you may see some unexpected
characters. If you want true ASCII code printing then you need to configure
Vim to output ASCII characters for the ASCII code range with 'printmbfont'.

It is possible to define your own multibyte character set although this
should not be attempted lightly. A discussion on the process if beyond the
scope of these help files. You can find details on CMap (character map) files
in the document 'Adobe CMap and CIDFont Files Specification, Version 1.0',
available from http://www.adobe.com as a PDF file.

==
6. PostScript Printing Troubleshooting postscript-print-trouble

E621
Usually the only sign of a problem when printing with PostScript is that your
printout does not appear. If you are lucky you may get a printed page that
tells you the PostScript operator that generated the error that prevented the
print job completing.

There are a number of possible causes as to why the printing may have failed:

- Wrong version of the prolog resource file. The prolog resource file
contains some PostScript that Vim needs to be able to print. Each version
of Vim needs one particular version. Make sure you have correctly installed
the runtime files, and don't have any old versions of a file called prolog

print.txt — 1505

http://examples.oreilly.com/cjkvinfo/adobe/samples/
http://examples.oreilly.de/english_examples/cjkvinfo/adobe/00README
http://www.adobe.com

in the print directory in your 'runtimepath' directory.

- Paper size. Some PostScript printers will abort printing a file if they do
not support the requested paper size. By default Vim uses A4 paper. Find
out what size paper your printer normally uses and set the appropriate paper
size with 'printoptions'. If you cannot find the name of the paper used,
measure a sheet and compare it with the table of supported paper sizes listed
for 'printoptions', using the paper that is closest in both width AND height.
Note: The dimensions of actual paper may vary slightly from the ones listed.
If there is no paper listed close enough, then you may want to try psresize
from PSUtils, discussed below.

- Two-sided printing (duplex). Normally a PostScript printer that does not
support two-sided printing will ignore any request to do it. However, some
printers may abort the job altogether. Try printing with duplex turned off.
Note: Duplex prints can be achieved manually using PS utils - see below.

- Collated printing. As with Duplex printing, most PostScript printers that
do not support collating printouts will ignore a request to do so. Some may
not. Try printing with collation turned off.

- Syntax highlighting. Some print management code may prevent the generated
PostScript file from being printed on a black and white printer when syntax
highlighting is turned on, even if solid black is the only color used. Try
printing with syntax highlighting turned off.

A safe printoptions setting to try is:

:set printoptions=paper:A4,duplex:off,collate:n,syntax:n

Replace "A4" with the paper size that best matches your printer paper.

==
7. PostScript Utilities postscript-print-util

7.1 Ghostscript

Ghostscript is a PostScript and PDF interpreter that can be used to display
and print on non-PostScript printers PostScript and PDF files. It can also
generate PDF files from PostScript.

Ghostscript will run on a wide variety of platforms.

There are three available versions:

- AFPL Ghostscript (formerly Aladdin Ghostscript) which is free for
non-commercial use. It can be obtained from:

http://www.cs.wisc.edu/~ghost/

- GNU Ghostscript which is available under the GNU General Public License. It
can be obtained from:

ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/gnu/

- A commercial version for inclusion in commercial products.

Additional information on Ghostscript can also be found at:

http://www.ghostscript.com/

print.txt — 1506

http://www.cs.wisc.edu/~ghost/
ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/gnu/
http://www.ghostscript.com/

Support for a number of non PostScript printers is provided in the
distribution as standard, but if you cannot find support for your printer
check the Ghostscript site for other printers not included by default.

7.2 Ghostscript Previewers.

The interface to Ghostscript is very primitive so a number of graphical front
ends have been created. These allow easier PostScript file selection,
previewing at different zoom levels, and printing. Check supplied
documentation for full details.

X11

- Ghostview. Obtainable from:

http://www.cs.wisc.edu/~ghost/gv/

- gv. Derived from Ghostview. Obtainable from:

http://wwwthep.physik.uni-mainz.de/~plass/gv/

Copies (possibly not the most recent) can be found at:

http://www.cs.wisc.edu/~ghost/gv/

OpenVMS

- Is apparently supported in the main code now (untested). See:

http://wwwthep.physik.uni-mainz.de/~plass/gv/

MS-Windows

- GSview. Obtainable from:

http://www.cs.wisc.edu/~ghost/gsview/

Linux

- GSview. Linux version of the popular MS-Windows previewer.
Obtainable from:

http://www.cs.wisc.edu/~ghost/gsview/

- BMV. Different from Ghostview and gv in that it doesn't use X but svgalib.
Obtainable from:

ftp://sunsite.unc.edu/pub/Linux/apps/graphics/viewers/svga/bmv-1.2.tgz

7.3 PSUtils

PSUtils is a collection of utility programs for manipulating PostScript
documents. Binary distributions are available for many platforms, as well as
the full source. PSUtils can be found at:

http://knackered.org/angus/psutils

print.txt — 1507

http://www.cs.wisc.edu/~ghost/gv/
http://wwwthep.physik.uni-mainz.de/~plass/gv/
http://www.cs.wisc.edu/~ghost/gv/
http://wwwthep.physik.uni-mainz.de/~plass/gv/
http://www.cs.wisc.edu/~ghost/gsview/
http://www.cs.wisc.edu/~ghost/gsview/
ftp://sunsite.unc.edu/pub/Linux/apps/graphics/viewers/svga/bmv-1.2.tgz
http://knackered.org/angus/psutils

The utilities of interest include:

- psnup. Convert PS files for N-up printing.
- psselect. Select page range and order of printing.
- psresize. Change the page size.
- psbook. Reorder and lay out pages ready for making a book.

The output of one program can be used as the input to the next, allowing for
complex print document creation.

N-UP PRINTING

The psnup utility takes an existing PostScript file generated from Vim and
convert it to an n-up version. The simplest way to create a 2-up printout is
to first create a PostScript file with:

:hardcopy > test.ps

Then on your command line execute:

psnup -n 2 test.ps final.ps

Note: You may get warnings from some Ghostscript previewers for files produced
by psnup - these may safely be ignored.

Finally print the file final.ps to your PostScript printer with your
platform's print command. (You will need to delete the two PostScript files
afterwards yourself.) 'printexpr' could be modified to perform this extra
step before printing.

ALTERNATE DUPLEX PRINTING

It is possible to achieve a poor man's version of duplex printing using the PS
utility psselect. This utility has options -e and -o for printing just the
even or odd pages of a PS file respectively.

First generate a PS file with the 'hardcopy' command, then generate new
files with all the odd and even numbered pages with:

psselect -o test.ps odd.ps
psselect -e test.ps even.ps

Next print odd.ps with your platform's normal print command. Then take the
print output, turn it over and place it back in the paper feeder. Now print
even.ps with your platform's print command. All the even pages should now
appear on the back of the odd pages.

There are a couple of points to bear in mind:

1. Position of the first page. If the first page is on top of the printout
when printing the odd pages then you need to reverse the order that the odd
pages are printed. This can be done with the -r option to psselect. This
will ensure page 2 is printed on the back of page 1.
Note: it is better to reverse the odd numbered pages rather than the even
numbered in case there are an odd number of pages in the original PS file.

2. Paper flipping. When turning over the paper with the odd pages printed on
them you may have to either flip them horizontally (along the long edge) or

print.txt — 1508

vertically (along the short edge), as well as possibly rotating them 180
degrees. All this depends on the printer - it will be more obvious for
desktop ink jets than for small office laser printers where the paper path
is hidden from view.

==
8. Formfeed Characters printing-formfeed

By default Vim does not do any special processing of formfeed control
characters. Setting the 'printoptions' formfeed item will make Vim recognize
formfeed characters and continue printing the current line at the beginning
of the first line on a new page. The use of formfeed characters provides
rudimentary print control but there are certain things to be aware of.

Vim will always start printing a line (including a line number if enabled)
containing a formfeed character, even if it is the first character on the
line. This means if a line starting with a formfeed character is the first
line of a page then Vim will print a blank page.

Since the line number is printed at the start of printing the line containing
the formfeed character, the remainder of the line printed on the new page
will not have a line number printed for it (in the same way as the wrapped
lines of a long line when wrap in 'printoptions' is enabled).

If the formfeed character is the last character on a line, then printing will
continue on the second line of the new page, not the first. This is due to
Vim processing the end of the line after the formfeed character and moving
down a line to continue printing.

Due to the points made above it is recommended that when formfeed character
processing is enabled, printing of line numbers is disabled, and that form
feed characters are not the last character on a line. Even then you may need
to adjust the number of lines before a formfeed character to prevent
accidental blank pages.

==

print.txt — 1509

print.txt — 1510

remote.txt For Vim version 9.1. Last change: 2022 Feb 17

VIM REFERENCE MANUAL by Bram Moolenaar

Vim client-server communication client-server

1. Common functionality clientserver
2. X11 specific items x11-clientserver
3. MS-Windows specific items w32-clientserver

==
1. Common functionality clientserver

When compiled with the +clientserver option, Vim can act as a command
server. It accepts messages from a client and executes them. At the same
time, Vim can function as a client and send commands to a Vim server.

The following command line arguments are available:

argument meaning

--remote [+{cmd}] {file} ... --remote
Open the file list in a remote Vim. When
there is no Vim server, execute locally.
There is one optional init command: +{cmd}.
This must be an Ex command that can be
followed by "|".
The rest of the command line is taken as the
file list. Thus any non-file arguments must
come before this.
You cannot edit stdin this way -- .
The remote Vim is raised. If you don't want
this use
vim --remote-send "<C-\><C-N>:n filename<CR>"

--remote-silent [+{cmd}] {file} ... --remote-silent
As above, but don't complain if there is no
server and the file is edited locally.

--remote-wait [+{cmd}] {file} ... --remote-wait
As --remote, but wait for files to complete
(unload) in remote Vim.

--remote-wait-silent [+{cmd}] {file} ... --remote-wait-silent
As --remote-wait, but don't complain if there
is no server.

--remote-tab
--remote-tab Like --remote but open each file in a new

tabpage.
--remote-tab-silent

--remote-tab-silent Like --remote-silent but open each file in a
new tabpage.

--remote-tab-wait
--remote-tab-wait Like --remote-wait but open each file in a new

tabpage.

--remote-tab-wait-silent
--remote-tab-wait-silent Like --remote-wait-silent but open each file

in a new tabpage.
--servername

remote.txt — 1511

--servername {name} Become the server {name}. When used together
with one of the --remote commands: connect to
server {name} instead of the default (see
below). The name used will be uppercase.

--remote-send
--remote-send {keys} Send {keys} to server and exit. The {keys}

are not mapped. Special key names are
recognized, e.g., "<CR>" results in a CR
character.

--remote-expr
--remote-expr {expr} Evaluate {expr} in server and print the result

on stdout.
--serverlist

--serverlist Output a list of server names.

Examples

Edit "file.txt" in an already running GVIM server:
gvim --remote file.txt

Edit "file.txt" in an already running server called FOOBAR:
gvim --servername FOOBAR --remote file.txt

Edit "file.txt" in server "FILES" if it exists, become server "FILES"
otherwise:

gvim --servername FILES --remote-silent file.txt

This doesn't work, all arguments after --remote will be used as file names:
gvim --remote --servername FOOBAR file.txt

Edit file "+foo" in a remote server (note the use of "./" to avoid the special
meaning of the leading plus):

vim --remote ./+foo

Tell the remote server "BLA" to write all files and exit:
vim --servername BLA --remote-send '<C-\><C-N>:wqa<CR>'

SERVER NAME client-server-name

By default Vim will try to register the name under which it was invoked (gvim,
egvim ...). This can be overridden with the --servername argument. If the
specified name is not available, a postfix is applied until a free name is
encountered, i.e. "gvim1" for the second invocation of gvim on a particular
X-server. The resulting name is available in the servername builtin variable
v:servername . The case of the server name is ignored, thus "gvim" and

"GVIM" are considered equal.

When Vim is invoked with --remote, --remote-wait or --remote-send it will try
to locate the server name determined by the invocation name and --servername
argument as described above. If an exact match is not available, the first
server with the number postfix will be used. If a name with the number
postfix is specified with the --servername argument, it must match exactly.

If no server can be located and --remote or --remote-wait was used, Vim will
start up according to the rest of the command line and do the editing by
itself. This way it is not necessary to know whether gvim is already started
when sending command to it.

remote.txt — 1512

The --serverlist argument will cause Vim to print a list of registered command
servers on the standard output (stdout) and exit.

{server}
The {server} argument is used by several functions. When this is an empty
string then on Unix the default server name is used, which is "GVIM". On
MS-Windows an empty string does not work.

Win32 Note: Making the Vim server go to the foreground doesn't always work,
because MS-Windows doesn't allow it. The client will move the server to the
foreground when using the --remote or --remote-wait argument and the server
name starts with "g".

REMOTE EDITING

The --remote argument will cause a :drop command to be constructed from the
rest of the command line and sent as described above.
The --remote-wait argument does the same thing and additionally sets up to
wait for each of the files to have been edited. This uses the BufUnload
event, thus as soon as a file has been unloaded, Vim assumes you are done
editing it.
Note that the --remote and --remote-wait arguments will consume the rest of
the command line. I.e. all remaining arguments will be regarded as filenames.
You can not put options there!

FUNCTIONS
E240 E573

There are a number of Vim functions for scripting the command server. See
the description in builtin.txt or use CTRL-] on the function name to jump to
the full explanation.

synopsis explanation
remote_startserver(name) run a server
remote_expr(server, string, idvar) send expression
remote_send(server, string, idvar) send key sequence
serverlist() get a list of available servers
remote_peek(serverid, retvar) check for reply string
remote_read(serverid) read reply string
server2client(serverid, string) send reply string
remote_foreground(server) bring server to the front

See also the explanation of CTRL-_CTRL-N . Very useful as a leading key
sequence.
The {serverid} for server2client() can be obtained with expand("<client>")

==
2. X11 specific items x11-clientserver

E247 E248 E251 E258 E277

The communication between client and server goes through the X server. The
display of the Vim server must be specified. The usual protection of the X
server is used, you must be able to open a window on the X server for the
communication to work. It is possible to communicate between different
systems.

By default, a GUI Vim will register a name on the X-server by which it can be
addressed for subsequent execution of injected strings. Vim can also act as
a client and send strings to other instances of Vim on the same X11 display.

remote.txt — 1513

When an X11 GUI Vim (gvim) is started, it will try to register a send-server
name on the 'VimRegistry' property on the root window.

A non GUI Vim with access to the X11 display (xterm-clipboard enabled), can
also act as a command server if a server name is explicitly given with the
--servername argument, or when Vim was built with the +autoservername
feature.

An empty --servername argument will cause the command server to be disabled.

To send commands to a Vim server from another application, read the source
file src/if_xcmdsrv.c, it contains some hints about the protocol used.

==
3. Win32 specific items w32-clientserver

Every Win32 Vim can work as a server, also in the console. You do not need a
version compiled with OLE. Windows messages are used, this works on any
version of MS-Windows. But only communication within one system is possible.

Since MS-Windows messages are used, any other application should be able to
communicate with a Vim server. An alternative is using the OLE functionality
ole-interface .

When using gvim, the --remote-wait only works properly this way:

start /w gvim --remote-wait file.txt

remote.txt — 1514

term.txt For Vim version 9.1. Last change: 2024 Feb 28

VIM REFERENCE MANUAL by Bram Moolenaar

Terminal information terminal-info

Vim uses information about the terminal you are using to fill the screen and
recognize what keys you hit. If this information is not correct, the screen
may be messed up or keys may not be recognized. The actions which have to be
performed on the screen are accomplished by outputting a string of
characters. Special keys produce a string of characters. These strings are
stored in the terminal options, see terminal-options .

NOTE: Most of this is not used when running the GUI .

1. Startup startup-terminal
2. Terminal options terminal-options
3. Window size window-size
4. Slow and fast terminals slow-fast-terminal
5. Using the mouse mouse-using

==
1. Startup startup-terminal

When Vim is started a default terminal type is assumed. For the Amiga this is
a standard CLI window, for MS-Windows the pc terminal, for Unix an ansi
terminal. A few other terminal types are always available, see below
builtin-terms .

You can give the terminal name with the '-T' Vim argument. If it is not given
Vim will try to get the name from the TERM environment variable.

termcap terminfo E557 E558 E559
On Unix the terminfo database or termcap file is used. This is referred to as
"termcap" in all the documentation. At compile time, when running configure,
the choice whether to use terminfo or termcap is done automatically. When
running Vim the output of ":version" will show +terminfo if terminfo is
used. Also see xterm-screens .

On non-Unix systems a termcap is only available if Vim was compiled with
TERMCAP defined.

builtin-terms builtin_terms
A number of builtin terminals are available. Since patch 9.0.0280 there is no
difference between Vim versions. You can see a list of available builtin
terminals in the error message you get for `:set term=xxx` (when not running
the GUI). Also see ++builtin_terms .

If the termcap code is included Vim will try to get the strings for the
terminal you are using from the termcap file and the builtin termcaps. Both
are always used, if an entry for the terminal you are using is present. Which
one is used first depends on the 'ttybuiltin' option:

'ttybuiltin' on 1: builtin termcap 2: external termcap
'ttybuiltin' off 1: external termcap 2: builtin termcap

If an option is missing in one of them, it will be obtained from the other
one. If an option is present in both, the one first encountered is used.

term.txt — 1515

Which external termcap file is used varies from system to system and may
depend on the environment variables "TERMCAP" and "TERMPATH". See "man
tgetent".

Settings depending on terminal term-dependent-settings

If you want to set options or mappings, depending on the terminal name, you
can do this best in your .vimrc. Example:

if &term == "xterm"
... xterm maps and settings ...

elseif &term =~ "vt10."
... vt100, vt102 maps and settings ...

endif

raw-terminal-mode
For normal editing the terminal will be put into "raw" mode. The strings
defined with 't_ti', 't_TI' and 't_ks' will be sent to the terminal. Normally
this puts the terminal in a state where the termcap codes are valid and
activates the cursor and function keys.
When Vim exits the terminal will be put back into the mode it was before Vim
started. The strings defined with 't_te', 't_TE' and 't_ke' will be sent to
the terminal. On the Amiga, with commands that execute an external command
(e.g., "!!"), the terminal will be put into Normal mode for a moment. This
means that you can stop the output to the screen by hitting a printing key.
Output resumes when you hit <BS>.

Note: When 't_ti' is not empty, Vim assumes that it causes switching to the
alternate screen. This may slightly change what happens when executing a
shell command or exiting Vim. To avoid this use 't_TI' and 't_TE' (but make
sure to add to them, not overwrite).

Vim will try to detect what keyboard protocol the terminal is using with the
't_RK' termcap entry. This is sent after 't_TI', but only when there is no
work to do (no typeahead and no pending commands). That is to avoid the
response to end up in a shell command or arrive after Vim exits.

xterm-bracketed-paste
When the 't_BE' option is set then 't_BE' will be sent to the
terminal when entering "raw" mode and 't_BD' when leaving "raw" mode. The
terminal is then expected to put 't_PS' before pasted text and 't_PE' after
pasted text. This way Vim can separate text that is pasted from characters
that are typed. The pasted text is handled like when the middle mouse button
is used, it is inserted literally and not interpreted as commands.

Please note: while bracketed paste is trying to prevent nasty side-effects
from pasting (like the CTRL-C or <ESC> key), it's not a guaranteed security
measure because different terminals may implement this mode slightly
differently. You should still be careful with what you paste into Vim.

When the cursor is in the first column, the pasted text will be inserted
before it. Otherwise the pasted text is appended after the cursor position.
This means one cannot paste after the first column. Unfortunately Vim does
not have a way to tell where the mouse pointer was.

Note that in some situations Vim will not recognize the bracketed paste and
you will get the raw text. In other situations Vim will only get the first
pasted character and drop the rest, e.g. when using the "r" command. If you
have a problem with this, disable bracketed paste by putting this in your

term.txt — 1516

.vimrc:
set t_BE=

If this is done while Vim is running the 't_BD' will be sent to the terminal
to disable bracketed paste.

If t_PS or t_PE is not set, then t_BE will not be used. This is to make
sure that bracketed paste is not enabled when the escape codes surrounding
pasted text cannot be recognized.

Note: bracketed paste mode will be disabled, when the 'esckeys' option is not
set (also when the 'compatible' option is set).

If your terminal supports bracketed paste, but the options are not set
automatically, you can try using something like this:

if &term =~ "screen"
let &t_BE = "\e[?2004h"
let &t_BD = "\e[?2004l"
exec "set t_PS=\e[200~"
exec "set t_PE=\e[201~"

endif

The terminfo entries "BE", "BD", "PS" and "PE" were added in ncurses version
6.4, early 2023, for some terminals. If you have this version then you may
not have to manually configure your terminal.

tmux-integration
If you experience issues when running Vim inside tmux, here are a few hints.
You can comment-out parts if something doesn't work (it may depend on the
terminal that tmux is running in):

if !has('gui_running') && &term =~ '^\%(screen\|tmux\)'
" Better mouse support, see :help 'ttymouse'
set ttymouse=sgr

" Enable true colors, see :help xterm-true-color
let &termguicolors = v:true
let &t_8f = "\<Esc>[38;2;%lu;%lu;%lum"
let &t_8b = "\<Esc>[48;2;%lu;%lu;%lum"

" Enable bracketed paste mode, see :help xterm-bracketed-paste
let &t_BE = "\<Esc>[?2004h"
let &t_BD = "\<Esc>[?2004l"
let &t_PS = "\<Esc>[200~"
let &t_PE = "\<Esc>[201~"

" Enable focus event tracking, see :help xterm-focus-event
let &t_fe = "\<Esc>[?1004h"
let &t_fd = "\<Esc>[?1004l"
execute "set <FocusGained>=\<Esc>[I"
execute "set <FocusLost>=\<Esc>[O"

" Enable modified arrow keys, see :help arrow_modifiers
execute "silent! set <xUp>=\<Esc>[@;*A"
execute "silent! set <xDown>=\<Esc>[@;*B"
execute "silent! set <xRight>=\<Esc>[@;*C"
execute "silent! set <xLeft>=\<Esc>[@;*D"

endif

cs7-problem

term.txt — 1517

Note: If the terminal settings are changed after running Vim, you might have
an illegal combination of settings. This has been reported on Solaris 2.5
with "stty cs8 parenb", which is restored as "stty cs7 parenb". Use
"stty cs8 -parenb -istrip" instead, this is restored correctly.

Some termcap entries are wrong in the sense that after sending 't_ks' the
cursor keys send codes different from the codes defined in the termcap. To
avoid this you can set 't_ks' (and 't_ke') to empty strings. This must be
done during initialization (see initialization), otherwise it's too late.

Some termcap entries assume that the highest bit is always reset. For
example: The cursor-up entry for the Amiga could be ":ku=\E[A:". But the
Amiga really sends "\233A". This works fine if the highest bit is reset,
e.g., when using an Amiga over a serial line. If the cursor keys don't work,
try the entry ":ku=\233A:".

Some termcap entries have the entry ":ku=\E[A:". But the Amiga really sends
"\233A". On output "\E[" and "\233" are often equivalent, on input they
aren't. You will have to change the termcap entry, or change the key code with
the :set command to fix this.

Many cursor key codes start with an <Esc>. Vim must find out if this is a
single hit of the <Esc> key or the start of a cursor key sequence. It waits
for a next character to arrive. If it does not arrive within one second a
single <Esc> is assumed. On very slow systems this may fail, causing cursor
keys not to work sometimes. If you discover this problem reset the 'timeout'
option. Vim will wait for the next character to arrive after an <Esc>. If
you want to enter a single <Esc> you must type it twice. Resetting the
'esckeys' option avoids this problem in Insert mode, but you lose the
possibility to use cursor and function keys in Insert mode.

On the Amiga the recognition of window resizing is activated only when the
terminal name is "amiga" or "builtin_amiga".

Some terminals have confusing codes for the cursor keys. The televideo 925 is
such a terminal. It sends a CTRL-H for cursor-left. This would make it
impossible to distinguish a backspace and cursor-left. To avoid this problem
CTRL-H is never recognized as cursor-left.

vt100-cursor-keys xterm-cursor-keys
Other terminals (e.g., vt100 and xterm) have cursor keys that send <Esc>OA,
<Esc>OB, etc. Unfortunately these are valid commands in insert mode: Stop
insert, Open a new line above the new one, start inserting 'A', 'B', etc.
Instead of performing these commands Vim will erroneously recognize this typed
key sequence as a cursor key movement. To avoid this and make Vim do what you
want in either case you could use these settings:

:set notimeout " don't timeout on mappings
:set ttimeout " do timeout on terminal key codes
:set timeoutlen=100 " timeout after 100 msec

This requires the key-codes to be sent within 100 msec in order to recognize
them as a cursor key. When you type you normally are not that fast, so they
are recognized as individual typed commands, even though Vim receives the same
sequence of bytes.

vt100-function-keys xterm-function-keys
An xterm can send function keys F1 to F4 in two modes: vt100 compatible or
not. Because Vim may not know what the xterm is sending, both types of keys
are recognized. The same happens for the <Home> and <End> keys.

normal vt100
<F1> t_k1 <Esc>[11~ <xF1> <Esc>OP <xF1>-xterm

term.txt — 1518

<F2> t_k2 <Esc>[12~ <xF2> <Esc>OQ <xF2>-xterm
<F3> t_k3 <Esc>[13~ <xF3> <Esc>OR <xF3>-xterm
<F4> t_k4 <Esc>[14~ <xF4> <Esc>OS <xF4>-xterm
<Home> t_kh <Esc>[7~ <xHome> <Esc>OH <xHome>-xterm
<End> t_@7 <Esc>[4~ <xEnd> <Esc>OF <xEnd>-xterm

When Vim starts, <xF1> is mapped to <F1>, <xF2> to <F2> etc. This means that
by default both codes do the same thing. If you make a mapping for <xF2>,
because your terminal does have two keys, the default mapping is overwritten,
thus you can use the <F2> and <xF2> keys for something different.

xterm-shifted-keys
Newer versions of xterm support shifted function keys and special keys. Vim
recognizes most of them. Use ":set termcap" to check which are supported and
what the codes are. Mostly these are not in a termcap, they are only
supported by the builtin_xterm termcap.

xterm-modifier-keys
Newer versions of xterm support Alt and Ctrl for most function keys. To avoid
having to add all combinations of Alt, Ctrl and Shift for every key a special
sequence is recognized at the end of a termcap entry: ";*X". The "X" can be
any character, often '~' is used. The ";*" stands for an optional modifier
argument. ";2" is Shift, ";3" is Alt, ";5" is Ctrl and ";9" is Meta (when
it's different from Alt). They can be combined. Examples:

:set <F8>=^[[19;*~
:set <Home>=^[[1;*H

Another speciality about these codes is that they are not overwritten by
another code. That is to avoid that the codes obtained from xterm directly
t_RV overwrite them.

Another special value is a termcap entry ending in "@;*X". This is for cursor
keys, which either use "CSI X" or "CSI 1 ; modifier X". Thus the "@"
stands for either "1" if a modifier follows, or nothing.

arrow_modifiers
Several terminal emulators (alacritty, gnome, konsole, etc.) send special
codes for keys with modifiers, but these do not have an entry in the
termcap/terminfo database. You can make them work by adding a few lines in
your vimrc. For example, to make the Control modifier work with arrow keys
for the gnome terminal:

if &term =~ 'gnome'
execute "set <xUp>=\<Esc>[@;*A"
execute "set <xDown>=\<Esc>[@;*B"
execute "set <xRight>=\<Esc>[@;*C"
execute "set <xLeft>=\<Esc>[@;*D"

endif
xterm-scroll-region

The default termcap entry for xterm on Sun and other platforms does not
contain the entry for scroll regions. Add ":cs=\E[%i%d;%dr:" to the xterm
entry in /etc/termcap and everything should work.

xterm-end-home-keys
On some systems (at least on FreeBSD with XFree86 3.1.2) the codes that the
<End> and <Home> keys send contain a <Nul> character. To make these keys send
the proper key code, add these lines to your ~/.Xdefaults file:

*VT100.Translations: #override \n\
<Key>Home: string("0x1b") string("[7~") \n\
<Key>End: string("0x1b") string("[8~")

xterm-8bit xterm-8-bit

term.txt — 1519

Xterm can be run in a mode where it uses 8-bit escape sequences. The CSI code
is used instead of <Esc>[. The advantage is that an <Esc> can quickly be
recognized in Insert mode, because it can't be confused with the start of a
special key.
For the builtin termcap entries, Vim checks if the 'term' option contains
"8bit" anywhere. It then uses 8-bit characters for the termcap entries, the
mouse and a few other things. You would normally set $TERM in your shell to
"xterm-8bit" and Vim picks this up and adjusts to the 8-bit setting
automatically.
When Vim receives a response to the t_RV (request version) sequence and it
starts with CSI, it assumes that the terminal is in 8-bit mode and will
convert all key sequences to their 8-bit variants.

xterm-terminfo-entries
For some time the terminfo entries were insufficient to describe all the
features that Vim can use. The builtin xterm termcap entries did have these,
with the result that several terminals that were similar enough to xterm took
advantage of these by prefixing "xterm-" to the terminal name in $TERM.

This leads to problems, because quite often these terminals are not 100%
compatible with xterm. At the start of 2023 several entries have been added
to the terminfo database to make it possible to use these features without
using the "xterm" workaround. These are the relevant entries (so far):

name xterm value description
RV "\033[>c" Request version t_RV

BE "\033[?2004h" enable bracketed paste mode t_BE
BD "\033[?2004l" disable bracketed paste mode t_BD
PS "\033[200~" pasted text start t_PS
PE "\033[201~" pasted text end t_PE

XM "\033[?1006;1004;1000%?%p1%{1}%=%th%el%;"
mouse enable / disable t_XM

FE "\033[?1004h" enable focus event tracking t_fe
FD "\033[?1004l" disable focus event tracking t_fd

The "XM" entry includes "1006" to enable SGR style mouse reporting. This
supports columns above 223. It also includes "1004" which enables focus
reporting.
Note: As of 2023, the "1004" is currently not used by Vim itself, instead
it is recommended to set focus reporting independently of mouse tracking by
the t_fe and t_fd entries, as ncurses also starts to use with the latest
versions (and will then also end up in terminfo/termcap).

xterm-kitty kitty-terminal
The Kitty terminal is a special case. Mainly because it works differently
from most other terminals, but also because, instead of trying to fit in and
make it behave like other terminals by default, it dictates how applications
need to work when using Kitty. This makes it very difficult for Vim to work
in a Kitty terminal. Some exceptions have been hard coded, but it is not at
all nice to have to make exceptions for one specific terminal.

One of the problems is that the value for $TERM is set to "xterm-kitty". For
Vim this is an indication that the terminal is xterm-compatible and the
builtin xterm termcap entries should be used. Many other terminals depend on
this. However, Kitty is not fully xterm compatible. The author suggested to
ignore the "xterm-" prefix and use the terminfo entry anyway, so that is what
happens now, the builtin xterm termcap entries are not used. However, the
t_RV is set, otherwise other things would not work, such as automatically

term.txt — 1520

setting 'ttymouse' to "sgr" (at least until t_XM is being used for this).

It is not clear why kitty sets $TERM to "xterm-kitty", the terminal isn't
really xterm compatible. "kitty" would be more appropriate, but a terminfo
entry with that name is not widespread.

Note that using the kitty keyboard protocol is a separate feature, see
kitty-keyboard-protocol .

==
2. Terminal options terminal-options termcap-options E436

The terminal options can be set just like normal options. But they are not
shown with the ":set all" command. Instead use ":set termcap".

It is always possible to change individual strings by setting the
appropriate option. For example:

:set t_ce=^V^[[K (CTRL-V, <Esc>, [, K)

The options are listed below. The associated termcap code is always equal to
the last two characters of the option name. Only one termcap code is
required: Cursor motion, 't_cm'.

The options 't_da', 't_db', 't_ms', 't_xs', 't_xn' represent flags in the
termcap. When the termcap flag is present, the option will be set to "y".
But any non-empty string means that the flag is set. An empty string means
that the flag is not set. 't_CS' works like this too, but it isn't a termcap
flag.

OUTPUT CODES terminal-output-codes
option meaning

t_AB set background color (ANSI) t_AB 't_AB'
t_AF set foreground color (ANSI) t_AF 't_AF'
t_AL add number of blank lines t_AL 't_AL'
t_al add new blank line t_al 't_al'
t_bc backspace character t_bc 't_bc'
t_cd clear to end of screen t_cd 't_cd'
t_ce clear to end of line t_ce 't_ce'
t_cl clear screen t_cl 't_cl'
t_cm cursor motion (required!) E437 t_cm 't_cm'
t_Co number of colors t_Co 't_Co'
t_CS if non-empty, cursor relative to scroll region t_CS 't_CS'
t_cs define scrolling region t_cs 't_cs'
t_CV define vertical scrolling region t_CV 't_CV'
t_da if non-empty, lines from above scroll down t_da 't_da'
t_db if non-empty, lines from below scroll up t_db 't_db'
t_DL delete number of lines t_DL 't_DL'
t_dl delete line t_dl 't_dl'
t_fs set window title end (from status line) t_fs 't_fs'
t_ke exit "keypad transmit" mode t_ke 't_ke'
t_ks start "keypad transmit" mode t_ks 't_ks'
t_le move cursor one char left t_le 't_le'
t_mb blinking mode t_mb 't_mb'
t_md bold mode t_md 't_md'
t_me Normal mode (undoes t_mr, t_mb, t_md and color) t_me 't_me'
t_mr reverse (invert) mode t_mr 't_mr'

t_ms 't_ms'
t_ms if non-empty, cursor can be moved in standout/inverse mode

term.txt — 1521

t_nd non destructive space character t_nd 't_nd'
t_op reset to original color pair t_op 't_op'
t_RI cursor number of chars right t_RI 't_RI'
t_Sb set background color t_Sb 't_Sb'
t_Sf set foreground color t_Sf 't_Sf'
t_se standout end t_se 't_se'
t_so standout mode t_so 't_so'
t_sr scroll reverse (backward) t_sr 't_sr'
t_te end of "termcap" mode t_te 't_te'
t_ti put terminal into "termcap" mode t_ti 't_ti'
t_ts set window title start (to status line) t_ts 't_ts'
t_ue underline end t_ue 't_ue'
t_us underline mode t_us 't_us'
t_ut clearing uses the current background color t_ut 't_ut'
t_vb visual bell t_vb 't_vb'
t_ve cursor visible t_ve 't_ve'
t_vi cursor invisible t_vi 't_vi'
t_vs cursor very visible (blink) t_vs 't_vs'

t_xs 't_xs'
t_xs if non-empty, standout not erased by overwriting (hpterm)

t_xn 't_xn'
t_xn if non-empty, writing a character at the last screen cell

does not cause scrolling
t_ZH italics mode t_ZH 't_ZH'
t_ZR italics end t_ZR 't_ZR'

Added by Vim (there are no standard codes for these):
t_AU set underline color (ANSI) t_AU 't_AU'
t_Ce undercurl and underline end t_Ce 't_Ce'
t_Cs undercurl (curly underline) mode t_Cs 't_Cs'
t_CF set alternate font (using index 0 - 10) t_CF 't_CF'
t_Us double underline mode t_Us 't_Us'
t_ds dotted underline mode t_ds 't_ds'
t_Ds dashed underline mode t_Ds 't_Ds'
t_Te strikethrough end t_Te 't_Te'
t_Ts strikethrough mode t_Ts 't_Ts'
t_IS set icon text start t_IS 't_IS'
t_IE set icon text end t_IE 't_IE'
t_WP set window position (Y, X) in pixels t_WP 't_WP'
t_GP get window position (Y, X) in pixels t_GP 't_GP'
t_WS set window size (height, width in cells) t_WS 't_WS'
t_VS cursor normally visible (no blink) t_VS 't_VS'
t_SI start insert mode (bar cursor shape) t_SI 't_SI'
t_SR start replace mode (underline cursor shape) t_SR 't_SR'
t_EI end insert or replace mode (block cursor shape) t_EI 't_EI'

termcap-cursor-shape
t_RV request terminal version string (works for t_RV 't_RV'

xterm and other terminal emulators) The
response is stored in v:termresponse xterm-8bit
'ttymouse' xterm-codes

t_XM enable/disable mouse reporting, t_XM 't_XM'
see mouse-reporting below

t_RK request terminal keyboard protocol state; t_RK 't_RK'
sent after t_TI

t_u7 request cursor position (for xterm) t_u7 't_u7'
see 'ambiwidth'
The response is stored in v:termu7resp

t_RF request terminal foreground color t_RF 't_RF'
The response is stored in v:termrfgresp

t_RB request terminal background color t_RB 't_RB'

term.txt — 1522

The response is stored in v:termrbgresp
t_8f set foreground color (R, G, B) t_8f 't_8f'

xterm-true-color
t_8b set background color (R, G, B) t_8b 't_8b'

xterm-true-color
t_8u set underline color (R, G, B) t_8u 't_8u'
t_BE enable bracketed paste mode t_BE 't_BE'

xterm-bracketed-paste
t_BD disable bracketed paste mode t_BD 't_BD'

xterm-bracketed-paste
t_SC set cursor color start t_SC 't_SC'
t_EC set cursor color end t_EC 't_EC'
t_SH set cursor shape t_SH 't_SH'
t_RC request terminal cursor blinking t_RC 't_RC'

The response is stored in v:termblinkresp
t_RS request terminal cursor style t_RS 't_RS'

The response is stored in v:termstyleresp
t_ST save window title to stack t_ST 't_ST'
t_RT restore window title from stack t_RT 't_RT'
t_Si save icon text to stack t_Si 't_Si'
t_Ri restore icon text from stack t_Ri 't_Ri'
t_TE end of "raw" mode t_TE 't_TE'
t_TI put terminal into "raw" mode t_TI 't_TI'
t_fe enable focus-event tracking t_fe 't_fe'

xterm-focus-event
t_fd disable focus-event tracking t_fd 't_fd'

xterm-focus-event

Some codes have a start, middle and end part. The start and end are defined
by the termcap option, the middle part is text.

set title text: t_ts {title text} t_fs
set icon text: t_IS {icon text} t_IE
set cursor color: t_SC {color name} t_EC

t_SH must take one argument:
0, 1 or none blinking block cursor
2 block cursor
3 blinking underline cursor
4 underline cursor
5 blinking vertical bar cursor
6 vertical bar cursor

t_RS is sent only if the response to t_RV has been received. It is not used
on Mac OS when Terminal.app could be recognized from the termresponse.

mouse-reporting
Many terminals can report mouse clicks and some can report mouse movement and
dragging. Vim needs to know what codes are being used for this.

The "XM" terminfo/termcap entry is used for this. Vim also has the 'ttymouse'
option to specify the mouse protocol being used. See the option for the
possible values.

If Vim can read the "XM" terminfo/termcap entry then it will be used for
enabling and disabling the mouse reporting. If it is missing, then the value
from 'ttymouse' is used to decide how to do this.

If the "XM" entry exists and the first number is "1006" then 'ttymouse' will
be set to "sgr", unless it was already set earlier.

term.txt — 1523

KEY CODES terminal-key-codes
Note: Use the <> form if possible

option name meaning

t_ku <Up> arrow up t_ku 't_ku'
t_kd <Down> arrow down t_kd 't_kd'
t_kr <Right> arrow right t_kr 't_kr'
t_kl <Left> arrow left t_kl 't_kl'

<xUp> alternate arrow up <xUp>
<xDown> alternate arrow down <xDown>
<xRight> alternate arrow right <xRight>
<xLeft> alternate arrow left <xLeft>
<S-Up> shift arrow up
<S-Down> shift arrow down

t_%i <S-Right> shift arrow right t_%i 't_%i'
t_#4 <S-Left> shift arrow left t_#4 't_#4'
t_k1 <F1> function key 1 t_k1 't_k1'

<xF1> alternate F1 <xF1>
t_k2 <F2> function key 2 <F2> t_k2 't_k2'

<xF2> alternate F2 <xF2>
t_k3 <F3> function key 3 <F3> t_k3 't_k3'

<xF3> alternate F3 <xF3>
t_k4 <F4> function key 4 <F4> t_k4 't_k4'

<xF4> alternate F4 <xF4>
t_k5 <F5> function key 5 <F5> t_k5 't_k5'
t_k6 <F6> function key 6 <F6> t_k6 't_k6'
t_k7 <F7> function key 7 <F7> t_k7 't_k7'
t_k8 <F8> function key 8 <F8> t_k8 't_k8'
t_k9 <F9> function key 9 <F9> t_k9 't_k9'
t_k; <F10> function key 10 <F10> t_k; 't_k;'
t_F1 <F11> function key 11 <F11> t_F1 't_F1'
t_F2 <F12> function key 12 <F12> t_F2 't_F2'
t_F3 <F13> function key 13 <F13> t_F3 't_F3'
t_F4 <F14> function key 14 <F14> t_F4 't_F4'
t_F5 <F15> function key 15 <F15> t_F5 't_F5'
t_F6 <F16> function key 16 <F16> t_F6 't_F6'
t_F7 <F17> function key 17 <F17> t_F7 't_F7'
t_F8 <F18> function key 18 <F18> t_F8 't_F8'
t_F9 <F19> function key 19 <F19> t_F9 't_F9'

<S-F1> shifted function key 1
<S-xF1> alternate <S-F1> <S-xF1>
<S-F2> shifted function key 2 <S-F2>
<S-xF2> alternate <S-F2> <S-xF2>
<S-F3> shifted function key 3 <S-F3>
<S-xF3> alternate <S-F3> <S-xF3>
<S-F4> shifted function key 4 <S-F4>
<S-xF4> alternate <S-F4> <S-xF4>
<S-F5> shifted function key 5 <S-F5>
<S-F6> shifted function key 6 <S-F6>
<S-F7> shifted function key 7 <S-F7>
<S-F8> shifted function key 8 <S-F8>
<S-F9> shifted function key 9 <S-F9>
<S-F10> shifted function key 10 <S-F10>
<S-F11> shifted function key 11 <S-F11>
<S-F12> shifted function key 12 <S-F12>

t_%1 <Help> help key t_%1 't_%1'
t_&8 <Undo> undo key t_&8 't_&8'
t_kI <Insert> insert key t_kI 't_kI'

term.txt — 1524

<kInsert> keypad insert key
t_kD delete key t_kD 't_kD'
t_kb <BS> backspace key t_kb 't_kb'
t_kB <S-Tab> back-tab (shift-tab) <S-Tab> t_kB 't_kB'
t_kh <Home> home key t_kh 't_kh'
t_#2 <S-Home> shifted home key <S-Home> t_#2 't_#2'

<xHome> alternate home key <xHome>
t_@7 <End> end key t_@7 't_@7'
t_*7 <S-End> shifted end key <S-End> t_star7 't_star7'

<xEnd> alternate end key <xEnd>
t_kP <PageUp> page-up key t_kP 't_kP'
t_kN <PageDown> page-down key t_kN 't_kN'
t_K1 <kHome> keypad home key t_K1 't_K1'
t_K4 <kEnd> keypad end key t_K4 't_K4'
t_K3 <kPageUp> keypad page-up key t_K3 't_K3'
t_K5 <kPageDown> keypad page-down key t_K5 't_K5'
t_K6 <kPlus> keypad plus key <kPlus> t_K6 't_K6'
t_K7 <kMinus> keypad minus key <kMinus> t_K7 't_K7'
t_K8 <kDivide> keypad divide <kDivide> t_K8 't_K8'
t_K9 <kMultiply> keypad multiply <kMultiply> t_K9 't_K9'
t_KA <kEnter> keypad enter key <kEnter> t_KA 't_KA'
t_KB <kPoint> keypad decimal point <kPoint> t_KB 't_KB'
t_KC <k0> keypad 0 <k0> t_KC 't_KC'
t_KD <k1> keypad 1 <k1> t_KD 't_KD'
t_KE <k2> keypad 2 <k2> t_KE 't_KE'
t_KF <k3> keypad 3 <k3> t_KF 't_KF'
t_KG <k4> keypad 4 <k4> t_KG 't_KG'
t_KH <k5> keypad 5 <k5> t_KH 't_KH'
t_KI <k6> keypad 6 <k6> t_KI 't_KI'
t_KJ <k7> keypad 7 <k7> t_KJ 't_KJ'
t_KK <k8> keypad 8 <k8> t_KK 't_KK'
t_KL <k9> keypad 9 <k9> t_KL 't_KL'

<Mouse> leader of mouse code <Mouse>

t_PS <PasteStart> start of bracketed paste t_PS 't_PS'
xterm-bracketed-paste

t_PE <PasteEnd> end of bracketed paste t_PE 't_PE'
xterm-bracketed-paste

<FocusGained> Vim window got focus (internal only)
<FocusLost> Vim window lost focus (internal only)

Note about t_so and t_mr: When the termcap entry "so" is not present the
entry for "mr" is used. And vice versa. The same is done for "se" and "me".
If your terminal supports both inversion and standout mode, you can see two
different modes. If your terminal supports only one of the modes, both will
look the same.

keypad-comma
The keypad keys, when they are not mapped, behave like the equivalent normal
key. There is one exception: if you have a comma on the keypad instead of a
decimal point, Vim will use a dot anyway. Use these mappings to fix that:

:noremap <kPoint> ,
:noremap! <kPoint> ,

xterm-codes
There is a special trick to obtain the key codes which currently only works
for xterm. When t_RV is defined and a response is received which indicates
an xterm with patchlevel 141 or higher, Vim uses special escape sequences to
request the key codes directly from the xterm. The responses are used to
adjust the various t_ codes. This avoids the problem that the xterm can
produce different codes, depending on the mode it is in (8-bit, VT102,

term.txt — 1525

VT220, etc.). The result is that codes like <xF1> are no longer needed.

One of the codes that can change is 't_Co', the number of colors. This will
trigger a redraw. If this is a problem, reset the 'xtermcodes' option as
early as possible:

set noxtermcodes

Note: Requesting the key codes is only done on startup. If the xterm options
are changed after Vim has started, the escape sequences may not be recognized
anymore.

xterm-true-color
Vim supports using true colors in the terminal (taken from highlight-guifg
and highlight-guibg), given that the terminal supports this. To make this
work the 'termguicolors' option needs to be set.
See https://github.com/termstandard/colors for a list of terminals that
support true colors.

For telling the terminal what RGB color to use the t_8f and t_8b termcap
entries are used. These are set by default to values that work for most
terminals. If that does not work for your terminal you can set them manually.
The default values are set like this:

let &t_8f = "\<Esc>[38;2;%lu;%lu;%lum"
let &t_8b = "\<Esc>[48;2;%lu;%lu;%lum"

Some terminals accept the same sequences, but with all semicolons replaced by
colons (this is actually more compatible, but less widely supported):

let &t_8f = "\<Esc>[38:2:%lu:%lu:%lum"
let &t_8b = "\<Esc>[48:2:%lu:%lu:%lum"

These options contain printf strings, with printf() (actually, its C
equivalent hence `l` modifier) invoked with the t_ option value and three
unsigned long integers that may have any value between 0 and 255 (inclusive)
representing red, green and blue colors respectively.

xterm-resize
Window resizing with xterm only works if the allowWindowOps resource is
enabled. On some systems and versions of xterm it's disabled by default
because someone thought it would be a security issue. It's not clear if this
is actually the case.

To overrule the default, put this line in your ~/.Xdefaults or
~/.Xresources:

XTerm*allowWindowOps: true

And run "xrdb -merge .Xresources" to make it effective. You can check the
value with the context menu (right mouse button while CTRL key is pressed),
there should be a tick at allow-window-ops.

xterm-focus-event
Some terminals including xterm support the focus event tracking feature.
If this feature is enabled by the 't_fe' sequence, special key sequences are
sent from the terminal to Vim every time the terminal gains or loses focus.
Vim fires focus events (FocusGained|/|FocusLost) by handling them accordingly.
Focus event tracking is disabled by a 't_fd' sequence when exiting "raw" mode.
If you would like to disable this feature, add the following to your .vimrc:

`set t_fd=`
`set t_fe=`

If your terminal does support this but Vim does not recognize the terminal,

term.txt — 1526

https://github.com/termstandard/colors

you may have to set the options yourself:
let &t_fe = "\<Esc>[?1004h"
let &t_fd = "\<Esc>[?1004l"
execute "set <FocusGained>=\<Esc>[I"
execute "set <FocusLost>=\<Esc>[O"

If this causes garbage to show when Vim starts up then it doesn't work.

termcap-colors
Note about colors: The 't_Co' option tells Vim the number of colors available.
When it is non-zero, the 't_AB' and 't_AF' options are used to set the color.
If one of these is not available, 't_Sb' and 't_Sf' are used. 't_me' is used
to reset to the default colors. Also see 'termguicolors'.
When the GUI is running 't_Co' is set to 16777216.

termcap-cursor-shape termcap-cursor-color
When Vim enters Insert mode the 't_SI' escape sequence is sent. When Vim
enters Replace mode the 't_SR' escape sequence is sent if it is set, otherwise
't_SI' is sent. When leaving Insert mode or Replace mode 't_EI' is used.
Note: When 't_EI' is not set then 't_SI' and 't_SR' will not be sent. And
when 't_SI' or 't_SR' is not set then 't_EI' is sent only once.

This can be used to change the shape or color of the cursor in Insert or
Replace mode. These are not standard termcap/terminfo entries, you need to set
them yourself.
Example for an xterm, this changes the color of the cursor:

if &term =~ "xterm"
let &t_SI = "\<Esc>]12;purple\x7"
let &t_SR = "\<Esc>]12;red\x7"
let &t_EI = "\<Esc>]12;blue\x7"

endif
NOTE: When Vim exits the shape for Normal mode will remain. The shape from
before Vim started will not be restored.

For Windows Terminal you can use something like this:
" Note: This should be set after `set termguicolors` or `set t_Co=256`.
if &term =~ 'xterm' || &term == 'win32'

" Use DECSCUSR escape sequences
let &t_SI = "\e[5 q" " blink bar
let &t_SR = "\e[3 q" " blink underline
let &t_EI = "\e[1 q" " blink block
let &t_ti ..= "\e[1 q" " blink block
let &t_te ..= "\e[0 q" " default (depends on terminal, normally blink

" block)
endif

{not available when compiled without the |+cursorshape| feature}

termcap-title
The 't_ts' and 't_fs' options are used to set the window title if the terminal
allows title setting via sending strings. They are sent before and after the
title string, respectively. Similar 't_IS' and 't_IE' are used to set the
icon text. These are Vim-internal extensions of the Unix termcap, so they
cannot be obtained from an external termcap. However, the builtin termcap
contains suitable entries for xterm and iris-ansi, so you don't need to set
them here.

hpterm
If inversion or other highlighting does not work correctly, try setting the
't_xs' option to a non-empty string. This makes the 't_ce' code be used to
remove highlighting from a line. This is required for "hpterm". Setting the
'weirdinvert' option has the same effect as making 't_xs' non-empty, and vice

term.txt — 1527

versa.

scroll-region
Some termcaps do not include an entry for "cs" (scroll region), although the
terminal does support it. For example: xterm on a Sun. You can use the
builtin_xterm or define t_cs yourself. For example:

:set t_cs=^V^[[%i%d;%dr
Where ^V is CTRL-V and ^[is <Esc>.

The vertical scroll region t_CV is not a standard termcap code. Vim uses it
internally in the GUI. But it can also be defined for a terminal, if you can
find one that supports it. The two arguments are the left and right column of
the region which to restrict the scrolling to. Just like t_cs defines the top
and bottom lines. Defining t_CV will make scrolling in vertically split
windows a lot faster. Don't set t_CV when t_da or t_db is set (text isn't
cleared when scrolling).

Unfortunately it is not possible to deduce from the termcap how cursor
positioning should be done when using a scrolling region: Relative to the
beginning of the screen or relative to the beginning of the scrolling region.
Most terminals use the first method. The 't_CS' option should be set to any
string when cursor positioning is relative to the start of the scrolling
region. It should be set to an empty string otherwise.

Note for xterm users: The shifted cursor keys normally don't work. You can
make them work with the xmodmap command and some mappings in Vim.

Give these commands in the xterm:
xmodmap -e "keysym Up = Up F13"
xmodmap -e "keysym Down = Down F16"
xmodmap -e "keysym Left = Left F18"
xmodmap -e "keysym Right = Right F19"

And use these mappings in Vim:
:map <t_F3> <S-Up>
:map! <t_F3> <S-Up>
:map <t_F6> <S-Down>
:map! <t_F6> <S-Down>
:map <t_F8> <S-Left>
:map! <t_F8> <S-Left>
:map <t_F9> <S-Right>
:map! <t_F9> <S-Right>

Instead of, say, <S-Up> you can use any other command that you want to use the
shift-cursor-up key for. (Note: To help people that have a Sun keyboard with
left side keys F14 is not used because it is confused with the undo key; F15
is not used, because it does a window-to-front; F17 is not used, because it
closes the window. On other systems you can probably use them.)

==
3. Window size window-size

[This is about the size of the whole window Vim is using, not a window that is
created with the ":split" command.]

If you are running Vim on an Amiga and the terminal name is "amiga" or
"builtin_amiga", the amiga-specific window resizing will be enabled. On Unix
systems three methods are tried to get the window size:

- an ioctl call (TIOCGSIZE or TIOCGWINSZ, depends on your system)

term.txt — 1528

- the environment variables "LINES" and "COLUMNS"
- from the termcap entries "li" and "co"

If everything fails a default size of 24 lines and 80 columns is assumed. If
a window-resize signal is received the size will be set again. If the window
size is wrong you can use the 'lines' and 'columns' options to set the
correct values.

One command can be used to set the screen size:
:mod :mode E359

:mod[e] [mode]

Without argument this only detects the screen size and redraws the screen.
[mode] was used on MS-DOS, but it doesn't work anymore. In Vim9 this
command is not supported.

==
4. Slow and fast terminals slow-fast-terminal

slow-terminal

If you have a fast terminal you may like to set the 'ruler' option. The
cursor position is shown in the status line. If you are using horizontal
scrolling ('wrap' option off) consider setting 'sidescroll' to a small
number.

If you have a slow terminal you may want to reset the 'showcmd' option.
The command characters will not be shown in the status line. If the terminal
scrolls very slowly, set the 'scrolljump' to 5 or so. If the cursor is moved
off the screen (e.g., with "j") Vim will scroll 5 lines at a time. Another
possibility is to reduce the number of lines that Vim uses with the command
"z{height}<CR>".

If the characters from the terminal are arriving with more than 1 second
between them you might want to set the 'timeout' and/or 'ttimeout' option.
See the "Options" chapter options .

If your terminal does not support a scrolling region, but it does support
insert/delete line commands, scrolling with multiple windows may make the
lines jump up and down. This would happen if the 'ttyfast' option has been
reset. Check that with:

verbose set ttyfast?

If your terminal scrolls very slowly, but redrawing is not slow, set the
'ttyscroll' option to a small number, e.g., 3. This will make Vim redraw the
screen instead of scrolling, when there are more than 3 lines to be scrolled.

If you are using a color terminal that is slow, use this command:
hi NonText cterm=NONE ctermfg=NONE

This avoids that spaces are sent when they have different attributes. On most
terminals you can't see this anyway.

If you are using Vim over a slow serial line, you might want to try running
Vim inside the "screen" program. Screen will optimize the terminal I/O quite
a bit.

If you are testing termcap options, but you cannot see what is happening, you
might want to set the 'writedelay' option. When non-zero, one character is
sent to the terminal at a time. This makes the screen updating a lot slower,
making it possible to see what is happening.

term.txt — 1529

==
5. Using the mouse mouse-using

This section is about using the mouse on a terminal or a terminal window. How
to use the mouse in a GUI window is explained in gui-mouse . For scrolling
with a mouse wheel see scroll-mouse-wheel .

Don't forget to enable the mouse with this command:
:set mouse=a

Otherwise Vim won't recognize the mouse in all modes (See 'mouse').

Currently the mouse is supported for Unix in an xterm window, in a *BSD
console with sysmouse , in a Linux console (with GPM gpm-mouse), and
in a Windows console.
Mouse clicks can be used to position the cursor, select an area and paste.

These characters in the 'mouse' option tell in which situations the mouse will
be used by Vim:

n Normal mode
v Visual mode
i Insert mode
c Command-line mode
h all previous modes when in a help file
a all previous modes
r for hit-enter prompt

The default for 'mouse' is empty, the mouse is not used. Normally you would
do:

:set mouse=a
to start using the mouse (this is equivalent to setting 'mouse' to "nvich").
If you only want to use the mouse in a few modes or also want to use it for
the two questions you will have to concatenate the letters for those modes.
For example:

:set mouse=nv
Will make the mouse work in Normal mode and Visual mode.

:set mouse=h
Will make the mouse work in help files only (so you can use "g<LeftMouse>" to
jump to tags).

Whether the selection that is started with the mouse is in Visual mode or
Select mode depends on whether "mouse" is included in the 'selectmode'
option.

terminal-mouse
In an xterm, with the currently active mode included in the 'mouse' option,
normal mouse clicks are used by Vim, mouse clicks with the shift or ctrl key
pressed go to the xterm. With the currently active mode not included in
'mouse' all mouse clicks go to the xterm.

For terminals where it is not possible to have the mouse events be used by the
terminal itself by using a modifier, a workaround is to not use mouse events
for Vim in command-line mode:

:set mouse=nvi
Then to select text with the terminal, use ":" to go to command-line mode,
select and copy the text to the system, then press Esc.

Another way is to temporarily use ":sh" to run a shell, copy the text, then
exit the shell. 'mouse' can remain set to "a" then.

xterm-clipboard
In the Motif GUI version, when running in a terminal and there is
access to the X-server (DISPLAY is set), the copy and paste will behave like

term.txt — 1530

in the GUI. If not, the middle mouse button will insert the unnamed register.
In that case, here is how you copy and paste a piece of text:

Copy/paste with the mouse and Visual mode ('mouse' option must be set, see
above):
1. Press left mouse button on first letter of text, move mouse pointer to last

letter of the text and release the button. This will start Visual mode and
highlight the selected area.

2. Press "y" to yank the Visual text in the unnamed register.
3. Click the left mouse button at the insert position.
4. Click the middle mouse button.

Shortcut: If the insert position is on the screen at the same time as the
Visual text, you can do 2, 3 and 4 all in one: Click the middle mouse button
at the insert position.

Note: When the -X command line argument is used, Vim will not connect to the
X server and copy/paste to the X clipboard (selection) will not work. Use the
shift key with the mouse buttons to let the xterm do the selection.

xterm-command-server
When the X-server clipboard is available, the command server described in
x11-clientserver can be enabled with the --servername command line argument.

xterm-copy-paste
NOTE: In some (older) xterms, it's not possible to move the cursor past column
95 or 223. This is an xterm problem, not Vim's. Get a newer xterm
color-xterm . Also see 'ttymouse' .

Copy/paste in xterm with (current mode NOT included in 'mouse'):
1. Press left mouse button on first letter of text, move mouse pointer to last

letter of the text and release the button.
2. Use normal Vim commands to put the cursor at the insert position.
3. Press "a" to start Insert mode.
4. Click the middle mouse button.
5. Press ESC to end Insert mode.
(The same can be done with anything in 'mouse' if you keep the shift key
pressed while using the mouse.)

Note: if you lose the 8th bit when pasting (special characters are translated
into other characters), you may have to do "stty cs8 -istrip -parenb" in your
shell before starting Vim.

Thus in an xterm the shift and ctrl keys cannot be used with the mouse. Mouse
commands requiring the CTRL modifier can be simulated by typing the "g" key
before using the mouse:

"g<LeftMouse>" is "<C-LeftMouse> (jump to tag under mouse click)
"g<RightMouse>" is "<C-RightMouse> ("CTRL-T")

mouse-mode-table mouse-overview
A short overview of what the mouse buttons do, when 'mousemodel' is "extend":

Normal Mode:
event position selection change action

cursor window
<LeftMouse> yes end yes
<C-LeftMouse> yes end yes "CTRL-]" (2)
<S-LeftMouse> yes no change yes "*" (2) <S-LeftMouse>
<LeftDrag> yes start or extend (1) no <LeftDrag>
<LeftRelease> yes start or extend (1) no

term.txt — 1531

<MiddleMouse> yes if not active no put
<MiddleMouse> yes if active no yank and put
<RightMouse> yes start or extend yes
<A-RightMouse> yes start or extend blockw. yes <A-RightMouse>
<S-RightMouse> yes no change yes "#" (2) <S-RightMouse>
<C-RightMouse> no no change no "CTRL-T"
<RightDrag> yes extend no <RightDrag>
<RightRelease> yes extend no <RightRelease>

Insert or Replace Mode:
event position selection change action

cursor window
<LeftMouse> yes (cannot be active) yes
<C-LeftMouse> yes (cannot be active) yes "CTRL-O^]" (2)
<S-LeftMouse> yes (cannot be active) yes "CTRL-O*" (2)
<LeftDrag> yes start or extend (1) no like CTRL-O (1)
<LeftRelease> yes start or extend (1) no like CTRL-O (1)
<MiddleMouse> no (cannot be active) no put register
<RightMouse> yes start or extend yes like CTRL-O
<A-RightMouse> yes start or extend blockw. yes
<S-RightMouse> yes (cannot be active) yes "CTRL-O#" (2)
<C-RightMouse> no (cannot be active) no "CTRL-O CTRL-T"

In a help window:
event position selection change action

cursor window
<2-LeftMouse> yes (cannot be active) no "^]" (jump to help tag)

When 'mousemodel' is "popup", these are different:

Normal Mode:
event position selection change action

cursor window
<S-LeftMouse> yes start or extend (1) no
<A-LeftMouse> yes start or extend blockw. no <A-LeftMouse>
<RightMouse> no popup menu no

Insert or Replace Mode:
event position selection change action

cursor window
<S-LeftMouse> yes start or extend (1) no like CTRL-O (1)
<A-LeftMouse> yes start or extend blockw. no
<RightMouse> no popup menu no

(1) only if mouse pointer moved since press
(2) only if click is in same buffer

Clicking the left mouse button causes the cursor to be positioned. If the
click is in another window that window is made the active window. When
editing the command-line the cursor can only be positioned on the
command-line. When in Insert mode Vim remains in Insert mode. If 'scrolloff'
is set, and the cursor is positioned within 'scrolloff' lines from the window
border, the text is scrolled.

A selection can be started by pressing the left mouse button on the first
character, moving the mouse to the last character, then releasing the mouse
button. You will not always see the selection until you release the button,
only in some versions (GUI, Win32) will the dragging be shown immediately.
Note that you can make the text scroll by moving the mouse at least one
character in the first/last line in the window when 'scrolloff' is non-zero.

term.txt — 1532

In Normal, Visual and Select mode clicking the right mouse button causes the
Visual area to be extended. When 'mousemodel' is "popup", the left button has
to be used while keeping the shift key pressed. When clicking in a window
which is editing another buffer, the Visual or Select mode is stopped.

In Normal, Visual and Select mode clicking the right mouse button with the alt
key pressed causes the Visual area to become blockwise. When 'mousemodel' is
"popup" the left button has to be used with the alt key. Note that this won't
work on systems where the window manager consumes the mouse events when the
alt key is pressed (it may move the window).

double-click
Double, triple and quadruple clicks are supported when the GUI is active, for
Win32, and for an xterm (if the gettimeofday() function is available). For
selecting text, extra clicks extend the selection:

click select
double word or % match <2-LeftMouse>
triple line <3-LeftMouse>
quadruple rectangular block <4-LeftMouse>

Exception: In a Help window a double click jumps to help for the word that is
clicked on.
A double click on a word selects that word. 'iskeyword' is used to specify
which characters are included in a word. A double click on a character
that has a match selects until that match (like using "v%"). If the match is
an #if/#else/#endif block, the selection becomes linewise.
For MS-Windows and xterm the time for double clicking can be set with the
'mousetime' option. For the other systems this time is defined outside of Vim.
An example, for using a double click to jump to the tag under the cursor:

:map <2-LeftMouse> :exe "tag " .. expand("<cword>")<CR>

Dragging the mouse with a double click (button-down, button-up, button-down
and then drag) will result in whole words to be selected. This continues
until the button is released, at which point the selection is per character
again.

For scrolling with the mouse see scroll-mouse-wheel .

gpm-mouse
The GPM mouse is only supported when the +mouse_gpm feature was enabled at
compile time. The GPM mouse driver (Linux console) does not support quadruple
clicks.

In Insert mode, when a selection is started, Vim goes into Normal mode
temporarily. When Visual or Select mode ends, it returns to Insert mode.
This is like using CTRL-O in Insert mode. Select mode is used when the
'selectmode' option contains "mouse".

sysmouse
The sysmouse is only supported when the +mouse_sysmouse feature was enabled
at compile time. The sysmouse driver (*BSD console) does not support keyboard
modifiers.

drag-status-line
When working with several windows, the size of the windows can be changed by
dragging the status line with the mouse. Point the mouse at a status line,
press the left button, move the mouse to the new position of the status line,
release the button. Just clicking the mouse in a status line makes that window
the current window, without moving the cursor. If by selecting a window it
will change position or size, the dragging of the status line will look
confusing, but it will work (just try it).

term.txt — 1533

<MiddleRelease> <MiddleDrag>
Mouse clicks can be mapped. The codes for mouse clicks are:

code mouse button normal action
<LeftMouse> left pressed set cursor position
<LeftDrag> left moved while pressed extend selection
<LeftRelease> left released set selection end
<MiddleMouse> middle pressed paste text at cursor position
<MiddleDrag> middle moved while pressed -
<MiddleRelease> middle released -
<RightMouse> right pressed extend selection
<RightDrag> right moved while pressed extend selection
<RightRelease> right released set selection end
<X1Mouse> X1 button pressed - X1Mouse
<X1Drag> X1 moved while pressed - X1Drag
<X1Release> X1 button release - X1Release
<X2Mouse> X2 button pressed - X2Mouse
<X2Drag> X2 moved while pressed - X2Drag
<X2Release> X2 button release - X2Release

The X1 and X2 buttons refer to the extra buttons found on some mice. The
'Microsoft Explorer' mouse has these buttons available to the right thumb.
Currently X1 and X2 only work on Win32 and X11 environments.

Examples:
:noremap <MiddleMouse> <LeftMouse><MiddleMouse>

Paste at the position of the middle mouse button click (otherwise the paste
would be done at the cursor position).

:noremap <LeftRelease> <LeftRelease>y
Immediately yank the selection, when using Visual mode.

Note the use of ":noremap" instead of "map" to avoid a recursive mapping.

:map <X1Mouse> <C-O>
:map <X2Mouse> <C-I>

Map the X1 and X2 buttons to go forwards and backwards in the jump list, see
CTRL-O and CTRL-I .

mouse-swap-buttons
To swap the meaning of the left and right mouse buttons:

:noremap <LeftMouse> <RightMouse>
:noremap <LeftDrag> <RightDrag>
:noremap <LeftRelease> <RightRelease>
:noremap <RightMouse> <LeftMouse>
:noremap <RightDrag> <LeftDrag>
:noremap <RightRelease> <LeftRelease>
:noremap g<LeftMouse> <C-RightMouse>
:noremap g<RightMouse> <C-LeftMouse>
:noremap! <LeftMouse> <RightMouse>
:noremap! <LeftDrag> <RightDrag>
:noremap! <LeftRelease> <RightRelease>
:noremap! <RightMouse> <LeftMouse>
:noremap! <RightDrag> <LeftDrag>
:noremap! <RightRelease> <LeftRelease>

term.txt — 1534

terminal.txt For Vim version 9.1. Last change: 2024 Feb 21

VIM REFERENCE MANUAL by Bram Moolenaar

Terminal window support terminal terminal-window

The terminal feature is optional, use this to check if your Vim has it:
echo has('terminal')

If the result is "1" you have it.

1. Basic use terminal-use
Typing terminal-typing
Size and color terminal-size-color
Command syntax :terminal
Resizing terminal-resizing
Terminal Modes Terminal-mode
Cursor style terminal-cursor-style
Session terminal-session
Special keys terminal-special-keys
Unix terminal-unix
MS-Windows terminal-ms-windows

2. Terminal functions terminal-function-details
3. Terminal communication terminal-communication

Vim to job: term_sendkeys() terminal-to-job
Job to Vim: JSON API terminal-api
Using the client-server feature terminal-client-server

4. Remote testing terminal-testing
5. Diffing screen dumps terminal-diff

Writing a screen dump test for Vim terminal-dumptest
Creating a screen dump terminal-screendump
Comparing screen dumps terminal-diffscreendump

6. Debugging terminal-debug
Starting termdebug-starting
Example session termdebug-example
Stepping through code termdebug-stepping
Inspecting variables termdebug-variables
Navigating stack frames termdebug-frames
Other commands termdebug-commands
Events termdebug-events
Prompt mode termdebug-prompt
Mappings termdebug-mappings
Communication termdebug-communication
Customizing termdebug-customizing

{only available when compiled with the |+terminal| feature}
The terminal feature requires the +job and +channel features.

==
1. Basic use terminal-use

This feature is for running a terminal emulator in a Vim window. A job can be
started connected to the terminal emulator. For example, to run a shell:

:term bash

Or to run build command:
:term make myprogram

terminal.txt — 1535

The job runs asynchronously from Vim, the window will be updated to show
output from the job, also while editing in another window.

Typing
terminal-typing

When the keyboard focus is in the terminal window, typed keys will be sent to
the job. This uses a pty when possible. You can click outside of the
terminal window to move keyboard focus elsewhere.

t_CTRL-W_CTRL-W t_CTRL-W_:
CTRL-W can be used to navigate between windows and other CTRL-W commands, e.g.:

CTRL-W CTRL-W move focus to the next window
CTRL-W : enter an Ex command

See CTRL-W for more commands.

Special in the terminal window: t_CTRL-W_. t_CTRL-W_N
CTRL-W . send a CTRL-W to the job in the terminal
CTRL-W CTRL-\ send a CTRL-\ to the job in the terminal
CTRL-W N go to Terminal-Normal mode, see Terminal-mode
CTRL-\ CTRL-N go to Terminal-Normal mode, see Terminal-mode
CTRL-W " {reg} paste register {reg} t_CTRL-W_quote

Also works with the = register to insert the result of
evaluating an expression.

CTRL-W CTRL-C ends the job, see below t_CTRL-W_CTRL-C
CTRL-W gt go to next tabpage, same as `gt` t_CTRL-W_gt
CTRL-W gT go to previous tabpage, same as `gT` t_CTRL-W_gT

See option 'termwinkey' for specifying another key instead of CTRL-W that
will work like CTRL-W. However, typing 'termwinkey' twice sends 'termwinkey'
to the job. For example:

'termwinkey' CTRL-W move focus to the next window
'termwinkey' : enter an Ex command
'termwinkey' 'termwinkey' send 'termwinkey' to the job in the terminal
'termwinkey' . send 'termwinkey' to the job in the terminal
'termwinkey' CTRL-\ send a CTRL-\ to the job in the terminal
'termwinkey' N go to terminal Normal mode, see below
'termwinkey' CTRL-N same as CTRL-W N t_CTRL-W_N
'termwinkey' CTRL-C same as CTRL-W CTRL-C t_CTRL-W_CTRL-C

t_CTRL-_CTRL-N
The special key combination CTRL-\ CTRL-N can be used to switch to Normal
mode, just like this works in any other mode.

t_CTRL-W_CTRL-C
CTRL-W CTRL-C can be typed to forcefully end the job. On MS-Windows a
CTRL-Break will also kill the job.

If you type CTRL-C the effect depends on what the pty has been configured to
do. For simple commands this causes a SIGINT to be sent to the job, which
would end it. Other commands may ignore the SIGINT or handle the CTRL-C
themselves (like Vim does).

To change the keys you type use terminal mode mappings, see :tmap .
These are defined like any mapping, but apply only when typing keys that are
sent to the job running in the terminal. For example, to make F1 switch
to Terminal-Normal mode:

tnoremap <F1> <C-W>N
You can use Esc, but you need to make sure it won't cause other keys to
break (cursor keys start with an Esc, so they may break), this probably only
works in the GUI:

terminal.txt — 1536

tnoremap <Esc> <C-W>N
set notimeout ttimeout timeoutlen=100

You can also create menus similar to terminal mode mappings, but you have to
use :tlmenu instead of :tmenu .

options-in-terminal
After opening the terminal window and setting 'buftype' to "terminal" the
TerminalWinOpen autocommand event is triggered. This makes it possible to set

options specifically for the terminal window and buffer. Example:
au TerminalWinOpen * setlocal bufhidden=hide

This only works properly if the terminal is not hidden.

For both hidden and non-hidden terminals this works, both for buffer-local and
window-local options:

au TerminalWinOpen,BufWinEnter * if &buftype == 'terminal'
\ | setlocal bufhidden=hide colorcolumn=123
\ | endif

Note that for a hidden terminal the options are not set until the terminal is
no longer hidden.

There is also the TerminalOpen event. Keep in mind this may be triggered
for a hidden terminal, then the current window and buffer are not that of the
new terminal.
You need to use <abuf>, which is set to the terminal buffer. Example:

au TerminalOpen * call setbufvar(expand('<abuf>')->str2nr(),
\ '&termwinscroll', 1000)

For a window-local option, you need to delay setting the option until the
terminal window has been created (this only works for a hidden terminal):

au TerminalOpen * exe printf(
\ 'au BufWinEnter <buffer=%d> ++once setlocal colorcolumn=%d',
\ expand('<abuf>')->str2nr(), 123)

For a non-hidden terminal use TerminalWinOpen .

Mouse events (click and drag) are passed to the terminal. Mouse move events
are only passed when Vim itself is receiving them. For a terminal that is
when 'balloonevalterm' is enabled.

Size and color
terminal-size-color

See option 'termwinsize' for controlling the size of the terminal window.
(TODO: scrolling when the terminal is larger than the window)

The job running in the terminal can change the colors. The default foreground
and background colors are taken from Vim, the Normal highlight group.

For a color terminal the 'background' option is used to decide whether the
terminal window will start with a white or black background.

To use a different color the Terminal highlight group can be used, for
example:

hi Terminal ctermbg=lightgrey ctermfg=blue guibg=lightgrey guifg=blue
Instead of Terminal another group can be specified with the "term_highlight"
option for `term_start()`.

g:terminal_ansi_colors
In GUI mode or with 'termguicolors', the 16 ANSI colors used by default in new
terminal windows may be configured using the variable
`g:terminal_ansi_colors`, which should be a list of 16 color names or

terminal.txt — 1537

hexadecimal color codes, similar to those accepted by highlight-guifg . When
not using GUI colors, the terminal window always uses the 16 ANSI colors of
the underlying terminal.
When using `term_start()` the colors can be set with the "ansi_colors" option.
The term_setansicolors() function can be used to change the colors, and
term_getansicolors() to get the currently used colors.

Command syntax

:[range]ter[minal] [options] [command] :ter :terminal
Open a new terminal window.

If [command] is provided run it as a job and connect
the input and output to the terminal.
If [command] is not given the 'shell' option is used.
if [command] is NONE no job is started, the pty of the
terminal can be used by a command like gdb.

If [command] is missing the default behavior is to
close the terminal when the shell exits. This can be
changed with the ++noclose argument.
If [command] is present the default behavior is to
keep the terminal open in Terminal-Normal mode. This
can be changed with the ++close argument.

No Vim command can follow, any | is included in
[command]. Use `:execute` if you must have a Vim
command following in the same line.

terminal-bufname
A new buffer will be created, using [command] or
'shell' as the name, prefixed with a "!". If a buffer
by this name already exists a number is added in
parentheses. E.g. if "gdb" exists the second terminal
buffer will use "!gdb (1)".

If [range] is given the specified lines are used as
input for the job. It will not be possible to type
keys in the terminal window. For MS-Windows see the
++eof argument below.

term++close term++open
Supported [options] are:
++close The terminal window will close

automatically when the job terminates.
terminal-close

++noclose The terminal window will NOT close
automatically when the job terminates.

++open When the job terminates and no window
shows it, a window will be opened.
Note that this can be interruptive.

The last of ++close, ++noclose and ++open
matters and rules out earlier arguments.

++curwin Open the terminal in the current
window, do not split the current
window. Fails if the current buffer
cannot be abandon ed.

++hidden Open the terminal in a hidden buffer,

terminal.txt — 1538

no window will be used.
++norestore Do not include this terminal window

in a session file.
++shell Instead of executing {command}

directly, use a shell, like with
`:!command` E279
{only works on Unix and MS-Windows}

++kill={how} When trying to close the terminal
window kill the job with {how}. See
term_setkill() for the values.

++rows={height} Use {height} for the terminal window
height. If the terminal uses the full
Vim height (no window above or below
the terminal window) the command line
height will be reduced as needed.

++cols={width} Use {width} for the terminal window
width. If the terminal uses the full
Vim width (no window left or right of
the terminal window) this value is
ignored.

++eof={text} When using [range]: text to send after
the last line was written. Cannot
contain white space. A CR is
appended. For MS-Windows the default
is to send CTRL-D.
E.g. for a shell use "++eof=exit" and
for Python "++eof=exit()". Special
codes can be used like with `:map`,
e.g. "<C-Z>" for CTRL-Z.

++type={pty} (MS-Windows only): Use {pty} as the
virtual console. See 'termwintype'
for the values.

++api={expr} Permit the function name starting with
{expr} to be called as terminal-api
function. If {expr} is empty then no
function can be called.

If you want to use more options use the term_start()
function.
If you want to split the window vertically, use:

:vertical terminal
Or short:

:vert ter

When the buffer associated with the terminal is forcibly unloaded or wiped out
the job is killed, similar to calling `job_stop(job, "kill")` .
Closing the window normally results in E947 . When a kill method was set
with "++kill={how}" or term_setkill() then closing the window will use that
way to kill or interrupt the job. For example:

:term ++kill=term tail -f /tmp/log

So long as the job is running the window behaves like it contains a modified
buffer. Trying to close the window with `CTRL-W :quit` fails. When using
`CTRL-W :quit!` the job is ended. The text in the window is lost, the buffer
is deleted. With `CTRL-W :bunload!` the buffer remains but will be empty.

Trying to close the window with `CTRL-W :close` also fails. Using
`CTRL-W :close!` will close the window and make the buffer hidden.

You can use `CTRL-W :hide` to close the terminal window and make the buffer

terminal.txt — 1539

hidden, the job keeps running. The `:buffer` command can be used to turn the
current window into a terminal window. If there are unsaved changes this
fails, use ! to force, as usual.

terminal-close
When the terminal window is closed, e.g. when the shell exits and "++close"
argument was used, and this is the last normal Vim window, then Vim will exit.
This is like using :quit in a normal window. Help and preview windows are
not counted.

To have a background job run without a window, and open the window when it's
done, use options like this:

:term ++hidden ++open make
Note that the window will open at an unexpected moment, this will interrupt
what you are doing.

E947 E948
So long as the job is running, the buffer is considered modified and Vim
cannot be quit easily, see abandon .

When the job has finished and no changes were made to the buffer: closing the
window will wipe out the buffer.

Before changes can be made to a terminal buffer, the 'modifiable' option must
be set. This is only possible when the job has finished. At the first change
the buffer will become a normal buffer and the highlighting is removed.
You may want to change the buffer name with :file to be able to write, since
the buffer name will still be set to the command.

Resizing
terminal-resizing

The size of the terminal can be in one of three modes:

1. The 'termwinsize' option is empty: The terminal size follows the window
size. The minimal size is 2 screen lines with 10 cells.

2. The 'termwinsize' option is "rows*cols", where "rows" is the minimal number
of screen rows and "cols" is the minimal number of cells.

3. The 'termwinsize' option is "rowsXcols" (where the x is upper or lower
case). The terminal size is fixed to the specified number of screen lines
and cells. If the window is bigger there will be unused empty space.

If the window is smaller than the terminal size, only part of the terminal can
be seen (the lower-left part).

The term_getsize() function can be used to get the current size of the
terminal. term_setsize() can be used only when in the first or second mode,
not when 'termwinsize' is "rowsXcols".

Terminal-Job and Terminal-Normal mode
Terminal-mode Terminal-Job

When the job is running the contents of the terminal is under control of the
job. That includes the cursor position. Typed keys are sent to the job.
The terminal contents can change at any time. This is called Terminal-Job
mode.

Use CTRL-W N (or 'termwinkey' N) to switch to Terminal-Normal mode. Now the

terminal.txt — 1540

contents of the terminal window is under control of Vim, the job output is
suspended. CTRL-\ CTRL-N does the same.

Terminal-Job mode is where :tmap mappings are applied. Keys sent by
term_sendkeys() are not subject to tmap, but keys from feedkeys() are.

It is not possible to enter Insert mode from Terminal-Job mode.

Terminal-Normal E946
In Terminal-Normal mode you can move the cursor around with the usual Vim
commands, Visually mark text, yank text, etc. But you cannot change the
contents of the buffer. The commands that would start insert mode, such as
'i' and 'a', return to Terminal-Job mode. The window will be updated to show
the contents of the terminal. :startinsert is ineffective.

In Terminal-Normal mode the statusline and window title show "(Terminal)". If
the job ends while in Terminal-Normal mode this changes to
"(Terminal-finished)".

When the job outputs lines in the terminal, such that the contents scrolls off
the top, those lines are remembered and can be seen in Terminal-Normal mode.
The number of lines is limited by the 'termwinscroll' option. When going over
this limit, the first 10% of the scrolled lines are deleted and are lost.

Cursor style
terminal-cursor-style

By default the cursor in the terminal window uses a not blinking block. The
normal xterm escape sequences can be used to change the blinking state and the
shape. Once focus leaves the terminal window Vim will restore the original
cursor.

An exception is when xterm is started with the "-bc" argument, or another way
that causes the cursor to blink. This actually means that the blinking flag
is inverted. Since Vim cannot detect this, the terminal window cursor
blinking will also be inverted.

Session
terminal-session

A terminal window will be restored when using a session file, if possible and
wanted.

If "terminal" was removed from 'sessionoptions' then no terminal windows will
be restored.

If the job in the terminal was finished the window will not be restored.

If the terminal can be restored, the command that was used to open it will be
used again. To change this use the term_setrestore() function. This can
also be used to not restore a specific terminal by setting the command to
"NONE".

Special keys
terminal-special-keys

Since the terminal emulator simulates an xterm, only escape sequences that
both Vim and xterm recognize will be available in the terminal window. If you
want to pass on other escape sequences to the job running in the terminal you
need to set up forwarding. Example:

terminal.txt — 1541

tmap <expr> <Esc>]b SendToTerm("\<Esc>]b")
func SendToTerm(what)

call term_sendkeys('', a:what)
return ''

endfunc

Unix
terminal-unix

On Unix a pty is used to make it possible to run all kinds of commands. You
can even run Vim in the terminal! That's used for debugging, see below.

Environment variables are used to pass information to the running job:
TERM the name of the terminal, from the 'term' option or

$TERM in the GUI; falls back to "xterm" if it does not
start with "xterm"

ROWS number of rows in the terminal initially
LINES same as ROWS
COLUMNS number of columns in the terminal initially
COLORS number of colors, 't_Co' (256*256*256 in the GUI)
VIM_SERVERNAME v:servername
VIM_TERMINAL v:version

MS-Windows
terminal-ms-windows

On MS-Windows winpty is used to make it possible to run all kind of commands.
Obviously, they must be commands that run in a terminal, not open their own
window.

You need the following two files from winpty:

winpty.dll
winpty-agent.exe

You can download them from the following page:

https://github.com/rprichard/winpty

Just put the files somewhere in your PATH. You can set the 'winptydll' option
to point to the right file, if needed. If you have both the 32-bit and 64-bit
version, rename to winpty32.dll and winpty64.dll to match the way Vim was
build.

ConPTY E982
On more recent versions of MS-Windows 10 (beginning with the "October 2018
Update"), winpty is no longer required. On those versions, :terminal will use
Windows' built-in support for hosting terminal applications, "ConPTY". When
ConPTY is in use, there may be rendering artifacts regarding ambiguous-width
characters. If you encounter any such issues, install "winpty". Until the
ConPTY problems have been fixed "winpty" will be preferred.

Environment variables are used to pass information to the running job:
VIM_SERVERNAME v:servername

==
2. Terminal functions terminal-function-details

term_dumpdiff()
term_dumpdiff({filename}, {filename} [, {options}])

Open a new window displaying the difference between the two

terminal.txt — 1542

https://github.com/rprichard/winpty

files. The files must have been created with
term_dumpwrite() .
Returns the buffer number or zero when the diff fails.
Also see terminal-diff .
NOTE: this does not work with double-width characters yet.

The top part of the buffer contains the contents of the first
file, the bottom part of the buffer contains the contents of
the second file. The middle part shows the differences.
The parts are separated by a line of equals.

If the {options} argument is present, it must be a Dict with
these possible members:

"term_name" name to use for the buffer name, instead
of the first file name.

"term_rows" vertical size to use for the terminal,
instead of using 'termwinsize', but
respecting the minimal size

"term_cols" horizontal size to use for the terminal,
instead of using 'termwinsize', but
respecting the minimal size

"vertical" split the window vertically
"curwin" use the current window, do not split the

window; fails if the current buffer
cannot be abandon ed

"bufnr" do not create a new buffer, use the
existing buffer "bufnr". This buffer
must have been previously created with
term_dumpdiff() or term_dumpload() and
visible in a window.

"norestore" do not add the terminal window to a
session file

Each character in the middle part indicates a difference. If
there are multiple differences only the first in this list is
used:

X different character
w different width
f different foreground color
b different background color
a different attribute
+ missing position in first file
- missing position in second file
> cursor position in first file, not in second
< cursor position in second file, not in first

Using the "s" key the top and bottom parts are swapped. This
makes it easy to spot a difference.

Can also be used as a method :
GetFilename()->term_dumpdiff(otherfile)

term_dumpload()
term_dumpload({filename} [, {options}])

Open a new window displaying the contents of {filename}
The file must have been created with term_dumpwrite() .
Returns the buffer number or zero when it fails.
Also see terminal-diff .

For {options} see term_dumpdiff() .

terminal.txt — 1543

Can also be used as a method :
GetFilename()->term_dumpload()

term_dumpwrite()
term_dumpwrite({buf}, {filename} [, {options}])

Dump the contents of the terminal screen of {buf} in the file
{filename}. This uses a format that can be used with
term_dumpload() and term_dumpdiff() .
If the job in the terminal already finished an error is given:
E958
If {filename} already exists an error is given: E953
Also see terminal-diff .

{options} is a dictionary with these optional entries:
"rows" maximum number of rows to dump
"columns" maximum number of columns to dump

Can also be used as a method , the base is used for the file
name:

GetFilename()->term_dumpwrite(bufnr)

term_getaltscreen({buf}) term_getaltscreen()
Returns 1 if the terminal of {buf} is using the alternate
screen.
{buf} is used as with term_getsize() .

Can also be used as a method :
GetBufnr()->term_getaltscreen()

term_getansicolors({buf}) term_getansicolors()
Get the ANSI color palette in use by terminal {buf}.
Returns a List of length 16 where each element is a String
representing a color in hexadecimal "#rrggbb" format.
Also see term_setansicolors() and g:terminal_ansi_colors .
If neither was used returns the default colors.

{buf} is used as with term_getsize() . If the buffer does not
exist or is not a terminal window, an empty list is returned.

Can also be used as a method :
GetBufnr()->term_getansicolors()

{only available when compiled with GUI enabled and/or the
+termguicolors feature}

term_getattr({attr}, {what}) term_getattr()
Given {attr}, a value returned by term_scrape() in the "attr"
item, return whether {what} is on. {what} can be one of:

bold
italic
underline
strike
reverse

Can also be used as a method :
GetAttr()->term_getattr()

terminal.txt — 1544

term_getcursor({buf}) term_getcursor()
Get the cursor position of terminal {buf}. Returns a list with
two numbers and a dictionary: [row, col, dict].

"row" and "col" are one based, the first screen cell is row
1, column 1. This is the cursor position of the terminal
itself, not of the Vim window.

"dict" can have these members:
"visible" one when the cursor is visible, zero when it

is hidden.
"blink" one when the cursor is blinking, zero when it

is not blinking.
"shape" 1 for a block cursor, 2 for underline and 3

for a vertical bar.
"color" color of the cursor, e.g. "green"

{buf} must be the buffer number of a terminal window. If the
buffer does not exist or is not a terminal window, an empty
list is returned.

Can also be used as a method :
GetBufnr()->term_getcursor()

term_getjob({buf}) term_getjob()
Get the Job associated with terminal window {buf}.
{buf} is used as with term_getsize() .
Returns v:null when there is no job.

Can also be used as a method :
GetBufnr()->term_getjob()

term_getline({buf}, {row}) term_getline()
Get a line of text from the terminal window of {buf}.
{buf} is used as with term_getsize() .

The first line has {row} one. When {row} is "." the cursor
line is used. When {row} is invalid an empty string is
returned.

To get attributes of each character use term_scrape() .

Can also be used as a method :
GetBufnr()->term_getline(row)

term_getscrolled({buf}) term_getscrolled()
Return the number of lines that scrolled to above the top of
terminal {buf}. This is the offset between the row number
used for term_getline() and getline() , so that:

term_getline(buf, N)
is equal to:

getline(N + term_getscrolled(buf))
(if that line exists).

{buf} is used as with term_getsize() .

Can also be used as a method :
GetBufnr()->term_getscrolled()

terminal.txt — 1545

term_getsize({buf}) term_getsize()
Get the size of terminal {buf}. Returns a list with two
numbers: [rows, cols]. This is the size of the terminal, not
the window containing the terminal.

{buf} must be the buffer number of a terminal window. Use an
empty string for the current buffer. If the buffer does not
exist or is not a terminal window, an empty list is returned.

Can also be used as a method :
GetBufnr()->term_getsize()

term_getstatus({buf}) term_getstatus()
Get the status of terminal {buf}. This returns a String with
a comma-separated list of these items:

running job is running
finished job has finished
normal in Terminal-Normal mode

One of "running" or "finished" is always present.

{buf} must be the buffer number of a terminal window. If the
buffer does not exist or is not a terminal window, an empty
string is returned.

Can also be used as a method :
GetBufnr()->term_getstatus()

term_gettitle({buf}) term_gettitle()
Get the title of terminal {buf}. This is the title that the
job in the terminal has set.

{buf} must be the buffer number of a terminal window. If the
buffer does not exist or is not a terminal window, an empty
string is returned.

Can also be used as a method :
GetBufnr()->term_gettitle()

term_gettty({buf} [, {input}]) term_gettty()
Get the name of the controlling terminal associated with
terminal window {buf}. {buf} is used as with term_getsize() .

When {input} is omitted or 0, return the name for writing
(stdout). When {input} is 1 return the name for reading
(stdin). On UNIX, both return same name.

Can also be used as a method :
GetBufnr()->term_gettty()

term_list() term_list()
Return a list with the buffer numbers of all buffers for
terminal windows.

terminal.txt — 1546

term_scrape({buf}, {row}) term_scrape()
Get the contents of {row} of terminal screen of {buf}.
For {buf} see term_getsize() .

The first line has {row} one. When {row} is "." the cursor
line is used. When {row} is invalid an empty string is
returned.

Return a List containing a Dict for each screen cell:
"chars" character(s) at the cell
"fg" foreground color as #rrggbb
"bg" background color as #rrggbb
"attr" attributes of the cell, use term_getattr()

to get the individual flags
"width" cell width: 1 or 2

For a double-width cell there is one item, thus the list can
be shorter than the width of the terminal.

Can also be used as a method :
GetBufnr()->term_scrape(row)

term_sendkeys({buf}, {keys}) term_sendkeys()
Send keystrokes {keys} to terminal {buf}.
{buf} is used as with term_getsize() .

{keys} are translated as key sequences. For example, "\<c-x>"
means the character CTRL-X.

Can also be used as a method :
GetBufnr()->term_sendkeys(keys)

term_setansicolors({buf}, {colors}) term_setansicolors()
Set the ANSI color palette used by terminal {buf}.
{colors} must be a List of 16 valid color names or hexadecimal
color codes, like those accepted by highlight-guifg .
Also see term_getansicolors() and g:terminal_ansi_colors .

The colors normally are:
0 black
1 dark red
2 dark green
3 brown
4 dark blue
5 dark magenta
6 dark cyan
7 light grey
8 dark grey
9 red
10 green
11 yellow
12 blue
13 magenta
14 cyan
15 white

These colors are used in the GUI and in the terminal when
'termguicolors' is set. When not using GUI colors (GUI mode
or 'termguicolors'), the terminal window always uses the 16

terminal.txt — 1547

ANSI colors of the underlying terminal.

Can also be used as a method :
GetBufnr()->term_setansicolors(colors)

{only available with GUI enabled and/or the +termguicolors
feature}

term_setapi({buf}, {expr}) term_setapi()
Set the function name prefix to be used for the terminal-api
function in terminal {buf}. For example:

:call term_setapi(buf, "Myapi_")
:call term_setapi(buf, "")

The default is "Tapi_". When {expr} is an empty string then
no terminal-api function can be used for {buf}.

When used as a method the base is used for {buf}:
GetBufnr()->term_setapi({expr})

term_setkill({buf}, {how}) term_setkill()
When exiting Vim or trying to close the terminal window in
another way, {how} defines whether the job in the terminal can
be stopped.
When {how} is empty (the default), the job will not be
stopped, trying to exit will result in E947 .
Otherwise, {how} specifies what signal to send to the job.
See job_stop() for the values.

After sending the signal Vim will wait for up to a second to
check that the job actually stopped.

Can also be used as a method :
GetBufnr()->term_setkill(how)

term_setrestore({buf}, {command}) term_setrestore()
Set the command to write in a session file to restore the job
in this terminal. The line written in the session file is:

terminal ++curwin ++cols=%d ++rows=%d {command}
Make sure to escape the command properly.

Use an empty {command} to run 'shell'.
Use "NONE" to not restore this window.

Can also be used as a method :
GetBufnr()->term_setrestore(command)

term_setsize({buf}, {rows}, {cols}) term_setsize() E955
Set the size of terminal {buf}. The size of the window
containing the terminal will also be adjusted, if possible.
If {rows} or {cols} is zero or negative, that dimension is not
changed.

{buf} must be the buffer number of a terminal window. Use an
empty string for the current buffer. If the buffer does not
exist or is not a terminal window, an error is given.

terminal.txt — 1548

Can also be used as a method :
GetBufnr()->term_setsize(rows, cols)

term_start({cmd} [, {options}]) term_start()
Open a terminal window and run {cmd} in it.

{cmd} can be a string or a List, like with job_start() . The
string "NONE" can be used to open a terminal window without
starting a job, the pty of the terminal can be used by a
command like gdb.

Returns the buffer number of the terminal window. If {cmd}
cannot be executed the window does open and shows an error
message.
If opening the window fails zero is returned.

{options} are similar to what is used for job_start() , see
job-options . However, not all options can be used. These
are supported:

all timeout options
"stoponexit", "cwd", "env"
"callback", "out_cb", "err_cb", "exit_cb", "close_cb"
"in_io", "in_top", "in_bot", "in_name", "in_buf"
"out_io", "out_name", "out_buf", "out_modifiable", "out_msg"
"err_io", "err_name", "err_buf", "err_modifiable", "err_msg"

However, at least one of stdin, stdout or stderr must be
connected to the terminal. When I/O is connected to the
terminal then the callback function for that part is not used.

There are extra options:
"term_name" name to use for the buffer name, instead

of the command name.
"term_rows" vertical size to use for the terminal,

instead of using 'termwinsize'; valid
range is from zero to 1000

"term_cols" horizontal size to use for the terminal,
instead of using 'termwinsize'

"vertical" split the window vertically; note that
other window position can be defined with
command modifiers, such as :belowright .

"curwin" use the current window, do not split the
window; fails if the current buffer
cannot be abandon ed

"hidden" do not open a window
"norestore" do not add the terminal window to a

session file
"term_kill" what to do when trying to close the

terminal window, see term_setkill()
"term_finish" What to do when the job is finished:

"close": close any windows
"open": open window if needed

Note that "open" can be interruptive.
See term++close and term++open .

"term_opencmd" command to use for opening the window when
"open" is used for "term_finish"; must
have "%d" where the buffer number goes,
e.g. "10split|buffer %d"; when not
specified "botright sbuf %d" is used

terminal.txt — 1549

"term_highlight" highlight group to use instead of
"Terminal"

"eof_chars" Text to send after all buffer lines were
written to the terminal. When not set
CTRL-D is used on MS-Windows. For Python
use CTRL-Z or "exit()". For a shell use
"exit". A CR is always added.

"ansi_colors" A list of 16 color names or hex codes
defining the ANSI palette used in GUI
color modes. See g:terminal_ansi_colors .

"tty_type" (MS-Windows only): Specify which pty to
use. See 'termwintype' for the values.

"term_api" function name prefix for the
terminal-api function. See
term_setapi() .

Can also be used as a method :
GetCommand()->term_start()

term_wait({buf} [, {time}]) term_wait()
Wait for pending updates of {buf} to be handled.
{buf} is used as with term_getsize() .
{time} is how long to wait for updates to arrive in msec. If
not set then 10 msec will be used.

Can also be used as a method :
GetBufnr()->term_wait()

==
3. Terminal communication terminal-communication

There are several ways to communicate with the job running in a terminal:
- Use term_sendkeys() to send text and escape sequences from Vim to the job.
- Use the JSON API to send encoded commands from the job to Vim.
- Use the client-server mechanism. This works on machines with an X server

and on MS-Windows.

Vim to job: term_sendkeys()
terminal-to-job

This allows for remote controlling the job running in the terminal. It is a
one-way mechanism. The job can update the display to signal back to Vim.
For example, if a shell is running in a terminal, you can do:

call term_sendkeys(buf, "ls *.java\<CR>")

This requires for the job to be in the right state where it will do the right
thing when receiving the keys. For the above example, the shell must be
waiting for a command to be typed.

For a job that was written for the purpose, you can use the JSON API escape
sequence in the other direction. E.g.:

call term_sendkeys(buf, "\<Esc>]51;["response"]\x07")

Job to Vim: JSON API
terminal-api

The job can send JSON to Vim, using a special escape sequence. The JSON
encodes a command that Vim understands. Example of such a message:

<Esc>]51;["drop", "README.md"]<07>

terminal.txt — 1550

The body is always a list, making it easy to find the end:]<07>.
The <Esc>]51;msg<07> sequence is reserved by xterm for "Emacs shell", which is
similar to what we are doing here.

Currently supported commands:

call {funcname} {argument}

Call a user defined function with {argument}.
The function is called with two arguments: the buffer number
of the terminal and {argument}, the decoded JSON argument.
By default, the function name must start with "Tapi_" to avoid
accidentally calling a function not meant to be used for the
terminal API. This can be changed with term_setapi() .
The user function should sanity check the argument.
The function can use term_sendkeys() to send back a reply.
Example in JSON:

["call", "Tapi_Impression", ["play", 14]]
Calls a function defined like this:

function Tapi_Impression(bufnum, arglist)
if len(a:arglist) == 2

echomsg "impression " .. a:arglist[0]
echomsg "count " .. a:arglist[1]

endif
endfunc

Output from `:echo` may be erased by a redraw, use `:echomsg`
to be able to see it with `:messages`.

drop {filename} [options]

Let Vim open a file, like the `:drop` command. If {filename}
is already open in a window, switch to that window. Otherwise
open a new window to edit {filename}.
Note that both the job and Vim may change the current
directory, thus it's best to use the full path.

[options] is only used when opening a new window. If present,
it must be a Dict. Similarly to ++opt , these entries are
recognized:

"ff" file format: "dos", "mac" or "unix"
"fileformat" idem
"enc" overrides 'fileencoding'
"encoding" idem
"bin" sets 'binary'
"binary" idem
"nobin" resets 'binary'
"nobinary" idem
"bad" specifies behavior for bad characters, see

++bad

Example in JSON:
["drop", "path/file.txt", {"ff": "dos"}]

A trick to have Vim send this escape sequence:
exe "set t_ts=\<Esc>]51; t_fs=\x07"
let &titlestring = '["call","Tapi_TryThis",["hello",123]]'
redraw
set t_ts& t_fs&

terminal.txt — 1551

Rationale: Why not allow for any command or expression? Because that might
create a security problem.

terminal-autoshelldir
This can be used to pass the current directory from a shell to Vim.
Put this in your .vimrc:

def g:Tapi_lcd(_, path: string)
if isdirectory(path)

execute 'silent lcd ' .. fnameescape(path)
endif

enddef

And, in a bash init file:
if [[-n "$VIM_TERMINAL"]]; then

PROMPT_COMMAND='_vim_sync_PWD'
function _vim_sync_PWD() {

printf '\033]51;["call", "Tapi_lcd", "%q"]\007' "$PWD"
}

fi

Or, for zsh:
if [[-n "$VIM_TERMINAL"]]; then

autoload -Uz add-zsh-hook
add-zsh-hook -Uz chpwd _vim_sync_PWD
function _vim_sync_PWD() {

printf '\033]51;["call", "Tapi_lcd", "%q"]\007' "$PWD"
}

fi

Or, for fish:
if test -n "$VIM_TERMINAL"

function _vim_sync_PWD --on-variable=PWD
printf '\033]51;["call", "Tapi_lcd", "%s"]\007' "$PWD"

end
end

Using the client-server feature
terminal-client-server

This only works when v:servername is not empty. If needed you can set it,
before opening the terminal, with:

call remote_startserver('vim-server')

$VIM_SERVERNAME is set in the terminal to pass on the server name.

In the job you can then do something like:
vim --servername $VIM_SERVERNAME --remote +123 some_file.c

This will open the file "some_file.c" and put the cursor on line 123.

==
4. Remote testing terminal-testing

Most Vim tests execute a script inside Vim. For some tests this does not
work, running the test interferes with the code being tested. To avoid this
Vim is executed in a terminal window. The test sends keystrokes to it and
inspects the resulting screen state.

Functions

term_sendkeys() send keystrokes to a terminal (not subject to tmap)
term_wait() wait for screen to be updated

terminal.txt — 1552

term_scrape() inspect terminal screen

==
5. Diffing screen dumps terminal-diff

In some cases it can be bothersome to test that Vim displays the right
characters on the screen. E.g. with syntax highlighting. To make this
simpler it is possible to take a screen dump of a terminal and compare it to
an expected screen dump.

Vim uses the window size, text, color and other attributes as displayed. The
Vim screen size, font and other properties do not matter. Therefore this
mechanism is portable across systems. A conventional screenshot would reflect
all differences, including font size and family.

Writing a screen dump test for Vim
terminal-dumptest

For an example see the Test_syntax_c() function in
src/testdir/test_syntax.vim. The main parts are:
- Write a file you want to test with. This is useful for testing syntax

highlighting. You can also start Vim with an empty buffer.
- Run Vim in a terminal with a specific size. The default is 20 lines of 75

characters. This makes sure the dump is always this size. The function
RunVimInTerminal() takes care of this. Pass it the arguments for the Vim
command.

- Send any commands to Vim using term_sendkeys() . For example:
call term_sendkeys(buf, ":echo &lines &columns\<CR>")

- Check that the screen is now in the expected state, using
VerifyScreenDump(). This expects the reference screen dump to be in the
src/testdir/dumps/ directory. Pass the name without ".dump". It is
recommended to use the name of the test function and a sequence number, so
that we know what test is using the file.

- Repeat sending commands and checking the state.
- Finally stop Vim by calling StopVimInTerminal().

The first time you do this you won't have a screen dump yet. Create an empty
file for now, e.g.:

touch src/testdir/dumps/Test_function_name_01.dump

The test will then fail, giving you the command to compare the reference dump
and the failed dump, e.g.:

call term_dumpdiff("failed/Test_func.dump", "dumps/Test_func.dump")

Use this command in Vim, with the current directory set to src/testdir.
Once you are satisfied with the test, move the failed dump in place of the
reference:

:!mv failed/Test_func.dump dumps/Test_func.dump

Creating a screen dump
terminal-screendump

To create the screen dump, run Vim (or any other program) in a terminal and
make it show the desired state. Then use the term_dumpwrite() function to
create a screen dump file. For example:

:call term_dumpwrite(77, "mysyntax.dump")

Here "77" is the buffer number of the terminal. Use `:ls!` to see it.

terminal.txt — 1553

You can view the screen dump with term_dumpload() :
:call term_dumpload("mysyntax.dump")

To verify that Vim still shows exactly the same screen, run Vim again with
exactly the same way to show the desired state. Then create a screen dump
again, using a different file name:

:call term_dumpwrite(88, "test.dump")

To assert that the files are exactly the same use assert_equalfile() :
call assert_equalfile("mysyntax.dump", "test.dump")

If there are differences then v:errors will contain the error message.

Comparing screen dumps
terminal-diffscreendump

assert_equalfile() does not make it easy to see what is different.
To spot the problem use term_dumpdiff() :

call term_dumpdiff("mysyntax.dump", "test.dump")

This will open a window consisting of three parts:
1. The contents of the first dump
2. The difference between the first and second dump
3. The contents of the second dump

You can usually see what differs in the second part. Use the 'ruler' to
relate it to the position in the first or second dump. Letters indicate the
kind of difference:

X different character
> cursor in first but not in second
< cursor in second but not in first
w character width differs (single vs double width)
f foreground color differs
b background color differs
a attribute differs (bold, underline, reverse, etc.)
? character missing in both
+ character missing in first
- character missing in second

Alternatively, press "s" to swap the first and second dump. Do this several
times so that you can spot the difference in the context of the text.

==
6. Debugging terminal-debug terminal-debugger

The Terminal debugging plugin can be used to debug a program with gdb and view
the source code in a Vim window. Since this is completely contained inside
Vim this also works remotely over an ssh connection.

When the +terminal feature is missing, the plugin will use the "prompt"
buffer type, if possible. The running program will then use a newly opened
terminal window. See termdebug-prompt below for details.

Starting
termdebug-starting

Load the plugin with this command:
packadd termdebug

:Termdebug
To start debugging use `:Termdebug` or `:TermdebugCommand` followed by the

terminal.txt — 1554

command name, for example:
:Termdebug vim

This opens two windows:

gdb window A terminal window in which "gdb vim" is executed. Here you
can directly interact with gdb. The buffer name is "!gdb".

program window A terminal window for the executed program. When "run" is
used in gdb the program I/O will happen in this window, so
that it does not interfere with controlling gdb. The buffer
name is "debugged program".

The current window is used to show the source code. When gdb pauses the
source file location will be displayed, if possible. A sign is used to
highlight the current position, using highlight group debugPC.

If the buffer in the current window is modified, another window will be opened
to display the current gdb position. You can use `:Winbar` to add a window
toolbar there.

Focus the terminal of the executed program to interact with it. This works
the same as any command running in a terminal window.

When the debugger ends, typically by typing "quit" in the gdb window, the two
opened windows are closed.

Only one debugger can be active at a time.
:TermdebugCommand

If you want to give specific commands to the command being debugged, you can
use the `:TermdebugCommand` command followed by the command name and
additional parameters.

:TermdebugCommand vim --clean -c ':set nu'

Both the `:Termdebug` and `:TermdebugCommand` support an optional "!" bang
argument to start the command right away, without pausing at the gdb window
(and cursor will be in the debugged window). For example:

:TermdebugCommand! vim --clean

To attach gdb to an already running executable or use a core file, pass extra
arguments. E.g.:

:Termdebug vim core
:Termdebug vim 98343

If no argument is given, you'll end up in a gdb window, in which you need to
specify which command to run using e.g. the gdb `file` command.

Example session
termdebug-example

Start in the Vim "src" directory and build Vim:
% make

Make sure that debug symbols are present, usually that means that $CFLAGS
includes "-g".

Start Vim:
% ./vim

Load the termdebug plugin and start debugging Vim:
:packadd termdebug

terminal.txt — 1555

:Termdebug vim
You should now have three windows:

source - where you started, has a window toolbar with buttons
gdb - you can type gdb commands here
program - the executed program will use this window

You can use CTRL-W CTRL-W or the mouse to move focus between windows.
Put focus on the gdb window and type:

break ex_help
run

Vim will start running in the program window. Put focus there and type:
:help gui

Gdb will run into the ex_help breakpoint. The source window now shows the
ex_cmds.c file. A red "1 " marker will appear in the signcolumn where the
breakpoint was set. The line where the debugger stopped is highlighted. You
can now step through the program. Let's use the mouse: click on the "Next"
button in the window toolbar. You will see the highlighting move as the
debugger executes a line of source code.

Click "Next" a few times until the for loop is highlighted. Put the cursor on
the end of "eap->arg", then click "Eval" in the toolbar. You will see this
displayed:

"eap->arg": 0x555555e68855 "gui"
This way you can inspect the value of local variables. You can also focus the
gdb window and use a "print" command, e.g.:

print *eap
If mouse pointer movements are working, Vim will also show a balloon when the
mouse rests on text that can be evaluated by gdb.

Now go back to the source window and put the cursor on the first line after
the for loop, then type:

:Break
You will see a ">>" marker appear, this indicates the new breakpoint. Now
click "Cont" in the toolbar and the code until the breakpoint will be
executed.

You can type more advanced commands in the gdb window. For example, type:
watch curbuf

Now click "Cont" in the toolbar (or type "cont" in the gdb window). Execution
will now continue until the value of "curbuf" changes, which is in do_ecmd().
To remove this watchpoint again type in the gdb window:

delete 3

You can see the stack by typing in the gdb window:
where

Move through the stack frames, e.g. with:
frame 3

The source window will show the code, at the point where the call was made to
a deeper level.

Stepping through code
termdebug-stepping

Put focus on the gdb window to type commands there. Some common ones are:
- CTRL-C interrupt the program
- next execute the current line and stop at the next line
- step execute the current line and stop at the next statement,

entering functions
- until execute until past the current cursor line or past a specified

position or the current stack frame returns

terminal.txt — 1556

- finish execute until leaving the current function
- where show the stack
- frame N go to the Nth stack frame
- continue continue execution

:Run :Arguments
In the window showing the source code these commands can be used to control
gdb:
`:Run` [args] run the program with [args] or the previous arguments
`:Arguments` {args} set arguments for the next `:Run`

:Break set a breakpoint at the cursor position
:Break {position}

set a breakpoint at the specified position
:Tbreak set a temporary breakpoint at the cursor position

:Tbreak {position}
set a temporary breakpoint at the specified position

:Clear delete the breakpoint at the cursor position

:Step execute the gdb "step" command
:Over execute the gdb "next" command (`:Next` is a Vim command)
:Until execute the gdb "until" command
:Finish execute the gdb "finish" command
:Continue execute the gdb "continue" command
:Stop interrupt the program

If 'mouse' is set the plugin adds a window toolbar with these entries:
Step `:Step`
Next `:Over`
Finish `:Finish`
Cont `:Continue`
Stop `:Stop`
Eval `:Evaluate`

This way you can use the mouse to perform the most common commands. You need
to have the 'mouse' option set to enable mouse clicks.
See termdebug_winbar for configuring this toolbar.

:Winbar
You can add the window toolbar in other windows you open with:

:Winbar

If gdb stops at a source line and there is no window currently showing the
source code, a new window will be created for the source code. This also
happens if the buffer in the source code window has been modified and can't be
abandoned.

Gdb gives each breakpoint a number. In Vim the number shows up in the sign
column, with a red background. You can use these gdb commands:
- info break list breakpoints
- delete N delete breakpoint N
You can also use the `:Clear` command if the cursor is in the line with the
breakpoint, or use the "Clear breakpoint" right-click menu entry.

Inspecting variables
termdebug-variables :Evaluate

`:Evaluate` evaluate the expression under the cursor
`K` same (see termdebug_map_K to disable)
`:Evaluate` {expr} evaluate {expr}
`:'<,'>Evaluate` evaluate the Visually selected text

terminal.txt — 1557

This is similar to using "print" in the gdb window.
You can usually shorten `:Evaluate` to `:Ev`.

Navigating stack frames
termdebug-frames :Frame :Up :Down

`:Frame` [frame] select frame [frame], which is a frame number,
address, or function name (default: current frame)

`:Up` [count] go up [count] frames (default: 1; the frame that
called the current)

`+` same (see termdebug_map_plus to disable)
`:Down` [count] go down [count] frames (default: 1; the frame called

by the current)
`-` same (see termdebug_map_minus to disable)

Other commands
termdebug-commands

:Gdb jump to the gdb window
:Program jump to the window with the running program
:Source jump to the window with the source code, create it if there

isn't one
:Asm jump to the window with the disassembly, create it if there

isn't one
:Var jump to the window with the local and argument variables,

create it if there isn't one. This window updates whenever the
program is stopped

Events
termdebug-events

Four autocommands can be used:
au User TermdebugStartPre echomsg 'debugging starting'
au User TermdebugStartPost echomsg 'debugging started'
au User TermdebugStopPre echomsg 'debugging stopping'
au User TermdebugStopPost echomsg 'debugging stopped'

TermdebugStartPre
TermdebugStartPre Before starting debugging.

Not triggered if the debugger is already
running or the debugger command cannot be
executed.

TermdebugStartPost
TermdebugStartPost After debugging has initialized.

If a "!" bang is passed to `:Termdebug` or
`:TermdebugCommand` the event is triggered
before running the provided command in gdb.

TermdebugStopPre
TermdebugStopPre Before debugging ends, when gdb is terminated,

most likely after issuing a "quit" command in
the gdb window.

TermdebugStopPost
TermdebugStopPost After debugging has ended, gdb-related windows

are closed, debug buffers wiped out and
the state before the debugging was restored.

Customizing
termdebug-customizing g:termdebug_config

In the past several global variables were used for configuration. These are
deprecated and using the g:termdebug_config dictionary is preferred. When

terminal.txt — 1558

g:termdebug_config exists the other global variables will NOT be used.
The recommended way is to start with an empty dictionary:

let g:termdebug_config = {}

Then you can add entries to the dictionary as mentioned below. The
deprecated global variable names are mentioned for completeness. If you are
switching over to using g:termdebug_config you can find the old variable name
and take over the value, then delete the deprecated variable.

Prompt mode
termdebug-prompt

When the +terminal feature is not supported and on MS-Windows, gdb will run
in a buffer with 'buftype' set to "prompt". This works slightly differently:
- The gdb window will be in Insert mode while typing commands. Go to Normal

mode with <Esc>, then you can move around in the buffer, copy/paste, etc.
Go back to editing the gdb command with any command that starts Insert mode,
such as `a` or `i`.

- The program being debugged will run in a separate window. On MS-Windows
this is a new console window. On Unix, if the +terminal feature is
available a Terminal window will be opened to run the debugged program in.

termdebug_use_prompt
Prompt mode can be used even when the +terminal feature is present with:

let g:termdebug_config['use_prompt'] = 1
If there is no g:termdebug_config you can use:

let g:termdebug_use_prompt = 1

Mappings
termdebug_map_K termdebug-mappings

The K key is normally mapped to :Evaluate unless a buffer local (:map-local)
mapping to K already exists. If you do not want this use:

let g:termdebug_config['map_K'] = 0
If there is no g:termdebug_config you can use:

let g:termdebug_map_K = 0

termdebug_map_minus
The - key is normally mapped to :Down unless a buffer local mapping to the -
key already exists. If you do not want this use:

let g:termdebug_config['map_minus'] = 0

termdebug_map_plus
The + key is normally mapped to :Up unless a buffer local mapping to the +
key already exists. If you do not want this use:

let g:termdebug_config['map_plus'] = 0

termdebug_disasm_window
If you want the Asm window shown by default, set the "disasm_window" flag to
1. The "disasm_window_height" entry can be used to set the window height:

let g:termdebug_config['disasm_window'] = 1
let g:termdebug_config['disasm_window_height'] = 15

If there is no g:termdebug_config you can use:
let g:termdebug_disasm_window = 15

Any value greater than 1 will set the Asm window height to that value.
If the current window has enough horizontal space, it will be vertically split
and the Asm window will be shown side by side with the source code window (and
the height option won't be used).

termdebug_variables_window
If you want the Var window shown by default, set the "variables_window" flag

terminal.txt — 1559

to 1. The "variables_window_height" entry can be used to set the window
height:

let g:termdebug_config['variables_window'] = 1
let g:termdebug_config['variables_window_height'] = 15

If there is no g:termdebug_config you can use:
let g:termdebug_variables_window = 15

Any value greater than 1 will set the Var window height to that value.
If the current window has enough horizontal space, it will be vertically split
and the Var window will be shown side by side with the source code window (and
the height options won't be used).

Communication
termdebug-communication

There is another, hidden, buffer, which is used for Vim to communicate with
gdb. The buffer name is "gdb communication". Do not delete this buffer, it
will break the debugger.

Gdb has some weird behavior, the plugin does its best to work around that.
For example, after typing "continue" in the gdb window a CTRL-C can be used to
interrupt the running program. But after using the MI command
"-exec-continue" pressing CTRL-C does not interrupt. Therefore you will see
"continue" being used for the `:Continue` command, instead of using the
communication channel.

GDB command
g:termdebugger

To change the name of the gdb command, set "debugger" entry in
g:termdebug_config or the "g:termdebugger" variable before invoking
`:Termdebug`:

let g:termdebug_config['command'] = "mygdb"
If there is no g:termdebug_config you can use:

let g:termdebugger = "mygdb"

If the command needs an argument use a List:
let g:termdebug_config['command'] = ['rr', 'replay', '--']

If there is no g:termdebug_config you can use:
let g:termdebugger = ['rr', 'replay', '--']

Several arguments will be added to make gdb work well for the debugger.
If you want to modify them, add a function to filter the argument list:

let g:termdebug_config['command_filter'] = MyDebugFilter

If you do not want the arguments to be added, but you do need to set the
"pty", use a function to add the necessary arguments:

let g:termdebug_config['command_add_args'] = MyAddArguments
The function will be called with the list of arguments so far, and a second
argument that is the name of the pty.

gdb-version
Only debuggers fully compatible with gdb will work. Vim uses the GDB/MI
interface. The "new-ui" command requires gdb version 7.12 or later. If you
get this error:

Undefined command: "new-ui". Try "help".
Then your gdb is too old.

Colors
hl-debugPC hl-debugBreakpoint

The color of the signs can be adjusted with these highlight groups:
- debugPC the current position

terminal.txt — 1560

- debugBreakpoint a breakpoint

The defaults are, when 'background' is "light":
hi debugPC term=reverse ctermbg=lightblue guibg=lightblue
hi debugBreakpoint term=reverse ctermbg=red guibg=red

When 'background' is "dark":
hi debugPC term=reverse ctermbg=darkblue guibg=darkblue
hi debugBreakpoint term=reverse ctermbg=red guibg=red

Shortcuts
termdebug_shortcuts

You can define your own shortcuts (mappings) to control gdb, that can work in
any window, using the TermDebugSendCommand() function. Example:

map ,w :call TermDebugSendCommand('where')<CR>
The argument is the gdb command.

Popup menu
termdebug_popup

By default the Termdebug plugin sets 'mousemodel' to "popup_setpos" and adds
these entries to the popup menu:

Set breakpoint `:Break`
Clear breakpoint `:Clear`
Evaluate `:Evaluate`

If you don't want this then disable it with:
let g:termdebug_config['popup'] = 0

If there is no g:termdebug_config you can use:
let g:termdebug_popup = 0

Change default signs
termdebug_signs

Termdebug uses the hex number of the breakpoint ID in the signcolumn to
represent breakpoints. if it is greater than "0xFF", then it will be displayed
as "F+", due to we really only have two screen cells for the sign.

If you want to customize the breakpoint signs:
let g:termdebug_config['sign'] = '>>'

If there is no g:terminal_config yet you can use:
let g:termdebug_config = {'sign': '>>'}

After this, breakpoints will be displayed as `>>` in the signcolumn.

Window toolbar
termdebug_winbar

By default the Termdebug plugin creates a window toolbar if the mouse is
enabled (see :Winbar). If you don't want this then disable it with:

let g:termdebug_config['winbar'] = 0

Vim window width
termdebug_wide

To change the width of the Vim window when debugging starts and use a vertical
split:

let g:termdebug_config['wide'] = 163
If there is no g:termdebug_config you can use:

let g:termdebug_wide = 163

terminal.txt — 1561

This will set 'columns' to 163 when `:Termdebug` is used. The value is
restored when quitting the debugger.

If the wide value is set and 'columns' is already a greater value, then a
vertical split will be used without modifying 'columns'.

Set the wide value to 1 to use a vertical split without ever changing
'columns'. This is useful when the terminal can't be resized by Vim.

terminal.txt — 1562

popup.txt For Vim version 9.1. Last change: 2022 Oct 07

VIM REFERENCE MANUAL by Bram Moolenaar

Displaying text in a floating window. popup popup-window popupwin

1. Introduction popup-intro
Window position and size popup-position
Closing the popup window popup-close
Popup buffer and window popup-buffer
Terminal in popup window popup-terminal

2. Functions popup-functions
Details popup-function-details

3. Usage popup-usage
popup_create() arguments popup_create-arguments
Popup text properties popup-props
Position popup with textprop popup-textprop-pos
Popup filter popup-filter
Popup callback popup-callback
Popup scrollbar popup-scrollbar
Popup mask popup-mask

4. Examples popup-examples

{not available if the |+popupwin| feature was disabled at compile time}

==
1. Introduction popup-intro

We are talking about popup windows here, text that goes on top of the regular
windows and is under control of a plugin. You cannot edit the text in the
popup window like with regular windows.

A popup window can be used for such things as:
- briefly show a message without overwriting the command line
- prompt the user with a dialog
- display contextual information while typing
- give extra information for auto-completion

The text in the popup window can be colored with text-properties . It is
also possible to use syntax highlighting.

The default color used is "Pmenu". If you prefer something else use the
"highlight" argument or the 'wincolor' option, e.g.:

hi MyPopupColor ctermbg=lightblue guibg=lightblue
call setwinvar(winid, '&wincolor', 'MyPopupColor')

'hlsearch' highlighting is not displayed in a popup window.

A popup window has a window-ID like other windows, but behaves differently.
The size can be up to the whole Vim window and it overlaps other windows.
Popup windows can also overlap each other. The "zindex" property specifies
what goes on top of what.

E366
The popup window contains a buffer, and that buffer is always associated with
the popup window. The window cannot be in Normal, Visual or Insert mode, it
does not get keyboard focus. You can use functions like `setbufline()` to

popup.txt — 1563

change the text in the buffer. There are more differences from how this
window and buffer behave compared to regular windows and buffers, see
popup-buffer .

If this is not what you are looking for, check out other popup functionality:
- popup menu, see popup-menu
- balloon, see balloon-eval

WINDOW POSITION AND SIZE popup-position

The height of the window is normally equal to the number of, possibly
wrapping, lines in the buffer. It can be limited with the "maxheight"
property. You can use empty lines to increase the height or the "minheight"
property.

The width of the window is normally equal to the longest visible line in the
buffer. It can be limited with the "maxwidth" property. You can use spaces
to increase the width or use the "minwidth" property.

By default the 'wrap' option is set, so that no text disappears. Otherwise,
if there is not enough space then the window is shifted left in order to
display more text. When right-aligned the window is shifted right to display
more text. The shifting can be disabled with the "fixed" property.

Vim tries to show the popup in the location you specify. In some cases, e.g.
when the popup would go outside of the Vim window, it will show it somewhere
nearby. E.g. if you use `popup_atcursor()` the popup normally shows just above
the current cursor position, but if the cursor is close to the top of the Vim
window it will be placed below the cursor position.

When the screen scrolls up for output of an Ex command, popups move too, so
that they will not cover the output.

The current cursor position is displayed even when it is under a popup window.
That way you can still see where it is, even though you cannot see the text
that it is in.

CLOSING THE POPUP WINDOW popup-close

Normally the plugin that created the popup window is also in charge of closing
it. If somehow a popup hangs around, you can close all of them with:

call popup_clear(1)
Some popups, such as notifications, close after a specified time. This can be
set with the "time" property on `popup_create()`.
Otherwise, a popup can be closed by clicking on the X in the top-right corner
or by clicking anywhere inside the popup. This must be enabled with the
"close" property. It is set by default for notifications.

POPUP BUFFER AND WINDOW popup-buffer

If a popup function is called to create a popup from text, a new buffer is
created to hold the text and text properties of the popup window. The buffer
is always associated with the popup window and manipulation is restricted:
- the buffer has no name
- 'buftype' is "popup"
- 'swapfile' is off
- 'bufhidden' is "hide"

popup.txt — 1564

- 'buflisted' is off
- 'undolevels' is -1: no undo at all
- all other buffer-local and window-local options are set to their Vim default

value.

It is possible to change the specifically mentioned options, but anything
might break then, so better leave them alone.

The window does have a cursor position, but the cursor is not displayed. In
fact, the cursor in the underlying window is displayed, as if it peeks through
the popup, so you can see where it is.

To execute a command in the context of the popup window and buffer use
`win_execute()`. Example:

call win_execute(winid, 'syntax enable')

Options can be set on the window with `setwinvar()`, e.g.:
call setwinvar(winid, '&wrap', 0)

And options can be set on the buffer with `setbufvar()`, e.g.:
call setbufvar(winbufnr(winid), '&filetype', 'java')

You can also use `win_execute()` with a ":setlocal" command.

TERMINAL IN POPUP WINDOW popup-terminal

A special case is running a terminal in a popup window. Many rules are then
different: E863
- The popup window always has focus, it is not possible to switch to another

window.
- When the job ends, the popup window shows the buffer in Terminal-Normal

mode. Use `:q` to close it or use "term_finish" value "close".
- The popup window can be closed with `popup_close()`, the terminal buffer

then becomes hidden.
- It is not possible to open a second popup window with a terminal. E861
- The default Pmenu color is only used for the border and padding. To change

the color of the terminal itself set the Terminal highlight group before
creating the terminal. Setting 'wincolor' later can work but requires the
program in the terminal to redraw everything.

- The default minimal size is 5 lines of 20 characters; Use the "minwidth" and
"minheight" parameters to set a different value.

- The terminal size will grow if the program running in the terminal writes
text. Set "maxheight" and "maxwidth" to restrict the size.

To run a terminal in a popup window, first create the terminal hidden. Then
pass the buffer number to popup_create(). Example:

hi link Terminal Search
let buf = term_start(['picker', 'Something'], #{hidden: 1, term_finish: 'close'})
let winid = popup_create(buf, #{minwidth: 50, minheight: 20})

==
2. Functions popup-functions

Creating a popup window:
popup_create() centered in the screen
popup_atcursor() just above the cursor position, closes when

the cursor moves away
popup_beval() at the position indicated by v:beval_

variables, closes when the mouse moves away
popup_notification() show a notification for three seconds
popup_dialog() centered with padding and border

popup.txt — 1565

popup_menu() prompt for selecting an item from a list

Manipulating a popup window:
popup_hide() hide a popup temporarily
popup_show() show a previously hidden popup
popup_move() change the position and size of a popup
popup_setoptions() override options of a popup
popup_settext() replace the popup buffer contents

Closing popup windows:
popup_close() close one popup
popup_clear() close all popups

Filter functions:
popup_filter_menu() select from a list of items
popup_filter_yesno() blocks until 'y' or 'n' is pressed

Other:
popup_getoptions() get current options for a popup
popup_getpos() get actual position and size of a popup
popup_locate() find popup window at a screen position
popup_list() get list of all popups

DETAILS popup-function-details

popup_atcursor({what}, {options}) popup_atcursor()
Show the {what} above the cursor, and close it when the cursor
moves. This works like:

call popup_create({what}, #{
\ pos: 'botleft',
\ line: 'cursor-1',
\ col: 'cursor',
\ moved: 'WORD',
\ })

Use {options} to change the properties.
If "pos" is passed as "topleft" then the default for "line"
becomes "cursor+1".

Can also be used as a method :
GetText()->popup_atcursor({})

popup_beval({what}, {options}) popup_beval()
Show the {what} above the position from 'ballooneval' and
close it when the mouse moves. This works like:
let pos = screenpos(v:beval_winnr, v:beval_lnum, v:beval_col)
call popup_create({what}, #{

\ pos: 'botleft',
\ line: pos.row - 1,
\ col: pos.col,
\ mousemoved: 'WORD',
\ })

Use {options} to change the properties.
See popup_beval_example for an example.

Can also be used as a method :
GetText()->popup_beval({})

popup_clear()

popup.txt — 1566

popup_clear([{force}])
Emergency solution to a misbehaving plugin: close all popup
windows for the current tab and global popups.
Close callbacks are not invoked.
When {force} is not present this will fail if the current
window is a popup.
When {force} is present and TRUE the popup is also closed
when it is the current window. If a terminal is running in a
popup it is killed.

popup_close({id} [, {result}]) popup_close()
Close popup {id}. The window and the associated buffer will
be deleted.

If the popup has a callback it will be called just before the
popup window is deleted. If the optional {result} is present
it will be passed as the second argument of the callback.
Otherwise zero is passed to the callback.

Can also be used as a method :
GetPopup()->popup_close()

popup_create({what}, {options}) popup_create()
Open a popup window showing {what}, which is either: E450
- a buffer number
- a string
- a list of strings
- a list of text lines with text properties
When {what} is not a buffer number, a buffer is created with
'buftype' set to "popup". That buffer will be wiped out once
the popup closes.

if {what} is a buffer number and loading the buffer runs into
an existing swap file, it is silently opened read-only, as if
a SwapExists autocommand had set v:swapchoice to 'o'.
This is because we assume the buffer is only used for viewing.

{options} is a dictionary with many possible entries.
See popup_create-arguments for details.

Returns a window-ID, which can be used with other popup
functions. Use `winbufnr()` to get the number of the buffer
in the window:

let winid = popup_create('hello', {})
let bufnr = winbufnr(winid)
call setbufline(bufnr, 2, 'second line')

In case of failure zero is returned.

Can also be used as a method :
GetText()->popup_create({})

popup_dialog({what}, {options}) popup_dialog()
Just like popup_create() but with these default options:

call popup_create({what}, #{
\ pos: 'center',
\ zindex: 200,
\ drag: 1,

popup.txt — 1567

\ border: [],
\ padding: [],
\ mapping: 0,
\})

Use {options} to change the properties. E.g. add a 'filter'
option with value 'popup_filter_yesno'. Example:

call popup_create('do you want to quit (Yes/no)?', #{
\ filter: 'popup_filter_yesno',
\ callback: 'QuitCallback',
\ })

By default the dialog can be dragged, so that text below it
can be read if needed.

Can also be used as a method :
GetText()->popup_dialog({})

popup_filter_menu({id}, {key}) popup_filter_menu()
Filter that can be used for a popup. These keys can be used:

j <Down> <C-N> select item below
k <Up> <C-P> select item above
<Space> <Enter> accept current selection
x Esc CTRL-C cancel the menu

Other keys are ignored.
Always returns v:true .

A match is set on that line to highlight it, see
popup_menu() .

When the current selection is accepted the "callback" of the
popup menu is invoked with the index of the selected line as
the second argument. The first entry has index one.
Cancelling the menu invokes the callback with -1.

To add shortcut keys, see the example here:
popup_menu-shortcut-example

popup_filter_yesno({id}, {key}) popup_filter_yesno()
Filter that can be used for a popup. It handles only the keys
'y', 'Y' and 'n' or 'N'. Invokes the "callback" of the
popup menu with the 1 for 'y' or 'Y' and zero for 'n' or 'N'
as the second argument. Pressing Esc and 'x' works like
pressing 'n'. CTRL-C invokes the callback with -1. Other
keys are ignored.
See the example here: popup_dialog-example

popup_findecho() popup_findecho()
Get the window-ID for the popup that shows messages for the
`:echowindow` command. Return zero if there is none.
Mainly useful to hide the popup.

popup_findinfo() popup_findinfo()
Get the window-ID for the popup info window, as it used by
the popup menu. See complete-popup . The info popup is
hidden when not used, it can be deleted with popup_clear()
and popup_close() . Use popup_show() to reposition it to

popup.txt — 1568

the item in the popup menu.
Returns zero if there is none.

popup_findpreview() popup_findpreview()
Get the window-ID for the popup preview window.
Return zero if there is none.

popup_getoptions({id}) popup_getoptions()
Return the {options} for popup {id} in a Dict.
A zero value means the option was not set. For "zindex" the
default value is returned, not zero.

The "moved" entry is a list with line number, minimum and
maximum column, [0, 0, 0] when not set.

The "mousemoved" entry is a list with screen row, minimum and
maximum screen column, [0, 0, 0] when not set.

"firstline" is the property set on the popup, unlike the
"firstline" obtained with popup_getpos() which is the actual
buffer line at the top of the popup window.

"border" and "padding" are not included when all values are
zero. When all values are one then an empty list is included.

"borderhighlight" is not included when all values are empty.
"scrollbarhighlight" and "thumbhighlight" are only included
when set.

"tabpage" will be -1 for a global popup, zero for a popup on
the current tabpage and a positive number for a popup on
another tabpage.

"textprop", "textpropid" and "textpropwin" are only present
when "textprop" was set.

If popup window {id} is not found an empty Dict is returned.

Can also be used as a method :
GetPopup()->popup_getoptions()

popup_getpos({id}) popup_getpos()
Return the position and size of popup {id}. Returns a Dict
with these entries:

col screen column of the popup, one-based
line screen line of the popup, one-based
width width of the whole popup in screen cells
height height of the whole popup in screen cells
core_col screen column of the text box
core_line screen line of the text box
core_width width of the text box in screen cells
core_height height of the text box in screen cells
firstline line of the buffer at top (1 unless scrolled)

(not the value of the "firstline" property)
lastline line of the buffer at the bottom (updated when

the popup is redrawn)
scrollbar non-zero if a scrollbar is displayed
visible one if the popup is displayed, zero if hidden

popup.txt — 1569

Note that these are the actual screen positions. They differ
from the values in `popup_getoptions()` for the sizing and
positioning mechanism applied.

The "core_" values exclude the padding and border.

If popup window {id} is not found an empty Dict is returned.

Can also be used as a method :
GetPopup()->popup_getpos()

popup_hide({id}) popup_hide()
If {id} is a displayed popup, hide it now. If the popup has a
filter it will not be invoked for so long as the popup is
hidden.
If window {id} does not exist nothing happens. If window {id}
exists but is not a popup window an error is given. E993
If popup window {id} contains a terminal an error is given.

Can also be used as a method :
GetPopup()->popup_hide()

popup_list() popup_list()
Return a List with the window-ID of all existing popups.

popup_locate({row}, {col}) popup_locate()
Return the window-ID of the popup at screen position {row}
and {col}. If there are multiple popups the one with the
highest zindex is returned. If there are no popups at this
position then zero is returned.

popup_menu({what}, {options}) popup_menu()
Show the {what} near the cursor, handle selecting one of the
items with cursorkeys, and close it an item is selected with
Space or Enter. {what} should have multiple lines to make this
useful. This works like:

call popup_create({what}, #{
\ pos: 'center',
\ zindex: 200,
\ drag: 1,
\ wrap: 0,
\ border: [],
\ cursorline: 1,
\ padding: [0,1,0,1],
\ filter: 'popup_filter_menu',
\ mapping: 0,
\ })

The current line is highlighted with a match using
"PopupSelected", or "PmenuSel" if that is not defined.

Use {options} to change the properties. Should at least set
"callback" to a function that handles the selected item.
Example:

func ColorSelected(id, result)
" use a:result

endfunc

popup.txt — 1570

call popup_menu(['red', 'green', 'blue'], #{
\ callback: 'ColorSelected',
\ })

Can also be used as a method :
GetChoices()->popup_menu({})

popup_move({id}, {options}) popup_move()
Move popup {id} to the position specified with {options}.
{options} may contain the items from popup_create() that
specify the popup position:

line
col
pos
maxheight
minheight
maxwidth
minwidth
fixed

For {id} see `popup_hide()`.
For other options see popup_setoptions() .

Can also be used as a method :
GetPopup()->popup_move(options)

popup_notification({what}, {options}) popup_notification()
Show the {what} for 3 seconds at the top of the Vim window.
This works like:

call popup_create({what}, #{
\ line: 1,
\ col: 10,
\ minwidth: 20,
\ time: 3000,
\ tabpage: -1,
\ zindex: 300,
\ drag: 1,
\ highlight: 'WarningMsg',
\ border: [],
\ close: 'click',
\ padding: [0,1,0,1],
\ })

The PopupNotification highlight group is used instead of
WarningMsg if it is defined.

Without the +timers feature the popup will not disappear
automatically, the user has to click in it.

The position will be adjusted to avoid overlap with other
notifications.
Use {options} to change the properties.

Can also be used as a method :
GetText()->popup_notification({})

popup_setoptions({id}, {options}) popup_setoptions()
Override options in popup {id} with entries in {options}.
These options can be set:

popup.txt — 1571

border
borderchars
borderhighlight
callback
close
cursorline
drag
filter
firstline
flip
highlight
mapping
mask
moved
padding
resize
scrollbar
scrollbarhighlight
thumbhighlight
time
title
wrap
zindex

The options from popup_move() can also be used.
Generally, setting an option to zero or an empty string resets
it to the default value, but there are exceptions.
For "hidden" use popup_hide() and popup_show() .
"tabpage" cannot be changed.

Can also be used as a method :
GetPopup()->popup_setoptions(options)

popup_settext({id}, {text}) popup_settext()
Set the text of the buffer in popup win {id}. {text} is the
same as supplied to popup_create() , except that a buffer
number is not allowed.
Does not change the window size or position, other than caused
by the different text.

Can also be used as a method :
GetPopup()->popup_settext('hello')

popup_show({id}) popup_show()
If {id} is a hidden popup, show it now.
For {id} see `popup_hide()`.
If {id} is the info popup it will be positioned next to the
current popup menu item.

==
3. Usage popup-usage

POPUP_CREATE() ARGUMENTS popup_create-arguments

The first argument of popup_create() (and the second argument to
popup_settext()) specifies the text to be displayed, and optionally text

properties. It is in one of four forms: E1284
- a buffer number

popup.txt — 1572

- a string
- a list of strings
- a list of dictionaries, where each dictionary has these entries:

text String with the text to display.
props A list of text properties. Optional.

Each entry is a dictionary, like the third argument of
prop_add() , but specifying the column in the

dictionary with a "col" entry, see below:
popup-props .

If you want to create a new buffer yourself use bufadd() and pass the buffer
number to popup_create().

The second argument of popup_create() is a dictionary with options:
line Screen line where to position the popup. Can use a

number or "cursor", "cursor+1" or "cursor-1" to use
the line of the cursor and add or subtract a number of
lines. If omitted or zero the popup is vertically
centered. The first line is 1.
When using "textprop" the number is relative to the
text property and can be negative.

col Screen column where to position the popup. Can use a
number or "cursor" to use the column of the cursor,
"cursor+9" or "cursor-9" to add or subtract a number
of columns. If omitted or zero the popup is
horizontally centered. The first column is 1.
When using "textprop" the number is relative to the
text property and can be negative.

pos "topleft", "topright", "botleft" or "botright":
defines what corner of the popup "line" and "col" are
used for. When not set "topleft" is used.
Alternatively "center" can be used to position the
popup in the center of the Vim window, in which case
"line" and "col" are ignored.

posinvert When FALSE the value of "pos" is always used. When
TRUE (the default) and the popup does not fit
vertically and there is more space on the other side
then the popup is placed on the other side of the
position indicated by "line".

textprop When present the popup is positioned next to a text
property with this name and will move when the text
property moves. Use an empty string to remove. See
popup-textprop-pos .

textpropwin What window to search for the text property. When
omitted or invalid the current window is used. Used
when "textprop" is present.

textpropid Used to identify the text property when "textprop" is
present. Use zero to reset.

fixed When FALSE (the default), and:
- "pos" is "botleft" or "topleft", and
- "wrap" is off, and
- the popup would be truncated at the right edge of
the screen, then

the popup is moved to the left so as to fit the
contents on the screen. Set to TRUE to disable this.

flip When TRUE (the default) and the position is relative
to the cursor, flip to below or above the cursor to
avoid overlap with the popupmenu-completion or
another popup with a higher "zindex". When there is
no space above/below the cursor then show the popup to

popup.txt — 1573

the side of the popup or popup menu.
{not implemented yet}

maxheight Maximum height of the contents, excluding border and
padding.

minheight Minimum height of the contents, excluding border and
padding.

maxwidth Maximum width of the contents, excluding border,
padding and scrollbar.

minwidth Minimum width of the contents, excluding border,
padding and scrollbar.

firstline First buffer line to display. When larger than one it
looks like the text scrolled up. When out of range
the last buffer line will at the top of the window.
Set to zero to leave the position as set by commands.
Also see "scrollbar".

hidden When TRUE the popup exists but is not displayed; use
`popup_show()` to unhide it.

tabpage When -1: display the popup on all tab pages.
When 0 (the default): display the popup on the current
tab page.
Otherwise the number of the tab page the popup is
displayed on; when invalid the popup is not created
and an error is given. E997

title Text to be displayed above the first item in the
popup, on top of any border. If there is no top
border one line of padding is added to put the title
on. You might want to add one or more spaces at the
start and end as padding.

wrap TRUE to make the lines wrap (default TRUE).
drag TRUE to allow the popup to be dragged with the mouse

by grabbing at the border. Has no effect if the
popup does not have a border. As soon as dragging
starts and "pos" is "center" it is changed to
"topleft".

dragall TRUE to allow the popup to be dragged from every
position. Makes it very difficult to select text in
the popup.

resize TRUE to allow the popup to be resized with the mouse
by grabbing at the bottom right corner. Has no effect
if the popup does not have a border.

close When "button" an X is displayed in the top-right, on
top of any border, padding or text. When clicked on
the X the popup will close. Any callback is invoked
with the value -2.
When "click" any mouse click in the popup will close
it.
When "none" (the default) mouse clicks do not close
the popup window.

highlight Highlight group name to use for the text, stored in
the 'wincolor' option.

padding List with numbers, defining the padding
above/right/below/left of the popup (similar to CSS).
An empty list uses a padding of 1 all around. The
padding goes around the text, inside any border.
Padding uses the 'wincolor' highlight.
Example: [1, 2, 1, 3] has 1 line of padding above, 2
columns on the right, 1 line below and 3 columns on
the left.

border List with numbers, defining the border thickness
above/right/below/left of the popup (similar to CSS).

popup.txt — 1574

Only values of zero and non-zero are currently
recognized. An empty list uses a border all around.

borderhighlight List of highlight group names to use for the border.
When one entry it is used for all borders, otherwise
the highlight for the top/right/bottom/left border.
Example: ['TopColor', 'RightColor', 'BottomColor,
'LeftColor']

borderchars List with characters, defining the character to use
for the top/right/bottom/left border. Optionally
followed by the character to use for the
topleft/topright/botright/botleft corner.
Example: ['-', '|', '-', '|', '┌', '┐', '┘', '└']
When the list has one character it is used for all.
When the list has two characters the first is used for
the border lines, the second for the corners.
By default a double line is used all around when
'encoding' is "utf-8" and 'ambiwidth' is "single",
otherwise ASCII characters are used.

scrollbar 1 or true: show a scrollbar when the text doesn't fit.
zero: do not show a scrollbar. Default is non-zero.
Also see popup-scrollbar .

scrollbarhighlight Highlight group name for the scrollbar. The
background color is what matters. When not given then
PmenuSbar is used.

thumbhighlight Highlight group name for the scrollbar thumb. The
background color is what matters. When not given then
PmenuThumb is used.

zindex Priority for the popup, default 50. Minimum value is
1, maximum value is 32000.

mask A list of lists with coordinates, defining parts of
the popup that are transparent. See popup-mask .

time Time in milliseconds after which the popup will close.
When omitted popup_close() must be used.

moved Specifies to close the popup if the cursor moved:
- "any": if the cursor moved at all
- "word": if the cursor moved outside <cword>
- "WORD": if the cursor moved outside <cWORD>
- "expr": if the cursor moved outside <cexpr>
- [{start}, {end}]: if the cursor moved before column

{start} or after {end}
- [{lnum}, {start}, {end}]: if the cursor moved away

from line {lnum}, before column {start} or after
{end}

- [0, 0, 0] do not close the popup when the cursor
moves

The popup also closes if the cursor moves to another
line or to another window.

mousemoved Like "moved" but referring to the mouse pointer
position

cursorline TRUE: Highlight the cursor line. Also scrolls the
text to show this line (only works properly
when 'wrap' is off).

zero: Do not highlight the cursor line.
Default is zero, except for popup_menu() .

filter A callback that can filter typed characters, see
popup-filter .

mapping Allow for key mapping. When FALSE and the popup is
visible and has a filter callback key mapping is
disabled. Default value is TRUE.

filtermode In which modes the filter is used (same flags as with

popup.txt — 1575

hasmapto() plus "a"):
n Normal mode
v Visual and Select mode
x Visual mode
s Select mode
o Operator-pending mode
i Insert mode
l Language-Argument ("r", "f", "t", etc.)
c Command-line mode
a all modes

The default value is "a".
callback A callback that is called when the popup closes, e.g.

when using popup_filter_menu() , see popup-callback .

Depending on the "zindex" the popup goes under or above other popups. The
completion menu (popup-menu) has zindex 100. For messages that occur for a
short time the suggestion is to use zindex 1000.

By default text wraps, which causes a line in {lines} to occupy more than one
screen line. When "wrap" is FALSE then the text outside of the popup or
outside of the Vim window will not be displayed, thus truncated.

POPUP TEXT PROPERTIES popup-props

These are similar to the third argument of prop_add() except:
- "lnum" is always the current line in the list
- "bufnr" is always the buffer of the popup
- "col" is in the Dict instead of a separate argument
So we get:

col starting column, counted in bytes, use one for the
first column.

length length of text in bytes; can be zero
end_lnum line number for the end of the text
end_col column just after the text; not used when "length" is

present; when {col} and "end_col" are equal, this is a
zero-width text property

id user defined ID for the property; when omitted zero is
used

type name of the text property type, as added with
prop_type_add()

POSITION POPUP WITH TEXTPROP popup-textprop-pos

Positioning a popup next to a text property causes the popup to move when text
is inserted or deleted. The popup functions like a tooltip.

These steps are needed to make this work:

- Define a text property type, it defines the name.
call prop_type_add('popupMarker', {})

- Place a text property at the desired text:
let lnum = {line of the text}
let col = {start column of the text}
let len = {length of the text}
let propId = {arbitrary but unique number}
call prop_add(lnum, col, #{

\ length: len,

popup.txt — 1576

\ type: 'popupMarker',
\ id: propId,
\ })

- Create a popup:
let winid = popup_create('the text', #{

\ pos: 'botleft',
\ textprop: 'popupMarker',
\ textpropid: propId,
\ border: [],
\ padding: [0,1,0,1],
\ close: 'click',
\ })

By default the popup is positioned at the corner of the text, opposite of the
"pos" specified for the popup. Thus when the popup uses "botleft", the
bottom-left corner of the popup is positioned next to the top-right corner of
the text property:

+----------+
| the text |
+----------+

just some PROPERTY as an example

Here the text property is on "PROPERTY". Move the popup to the left by
passing a negative "col" value to popup_create(). With "col: -5" you get:

+----------+
| the text |
+----------+

just some PROPERTY as an example

If the text property moves out of view then the popup will be hidden.
If the window for which the popup was defined is closed, the popup is closed.

If the popup cannot fit in the desired position, it may show at a nearby
position.

Some hints:
- To avoid collision with other plugins the text property type name has to be

unique. You can also use the "bufnr" item to make it local to a buffer.
- You can leave out the text property ID if there is only ever one text

property visible.
- The popup may be in the way of what the user is doing, making it close with

a click, as in the example above, helps for that.
- If the text property is removed the popup is closed. Use something like

this:
call prop_remove(#{type: 'popupMarker', id: propId})

POPUP FILTER popup-filter

A callback that gets any typed keys while a popup is displayed. The filter is
not invoked when the popup is hidden.

The filter can return TRUE to indicate the key has been handled and is to be
discarded, or FALSE to let Vim handle the key as usual in the current state.
In case it returns FALSE and there is another popup window visible, that
filter is also called. The filter of the popup window with the highest zindex
is called first.

popup.txt — 1577

The filter function is called with two arguments: the ID of the popup and the
key as a string, e.g.:

func MyFilter(winid, key)
if a:key == "\<F2>"

" do something
return 1

endif
if a:key == 'x'

call popup_close(a:winid)
return 1

endif
return 0

endfunc
popup-filter-mode

The "filtermode" property can be used to specify in what mode the filter is
invoked. The default is "a": all modes. When using "nvi" Command-line mode
is not included, so that any command typed on the command line is not
filtered. However, to get to Command-line mode the filter must not consume
":". Just like it must not consume "v" to allow for entering Visual mode.

popup-mapping
Normally the key is what results after any mapping, since the keys pass on as
normal input if the filter does not use it. If the filter consumes all the
keys, set the "mapping" property to zero so that mappings do not get in the
way. This is default for popup_menu() and popup_dialog() .

Some recommended key actions:
x close the popup (see note below)
cursor keys select another entry
Tab accept current suggestion

When CTRL-C is pressed the popup is closed, the filter will not be invoked.

A mouse click arrives as <LeftMouse>. The coordinates can be obtained with
getmousepos() .

Vim provides standard filters popup_filter_menu() and
popup_filter_yesno() .

Keys coming from a `:normal` command do not pass through the filter. This can
be used to move the cursor in a popup where the "cursorline" option is set:

call win_execute(winid, 'normal! 10Gzz')
Keys coming from `feedkeys()` are passed through the filter.

Note that "x" is the normal way to close a popup. You may want to use Esc,
but since many keys start with an Esc character, there may be a delay before
Vim recognizes the Esc key. If you do use Esc, it is recommended to set the
'ttimeoutlen' option to 100 and set 'timeout' and/or 'ttimeout'.

popup-filter-errors
If the filter function can't be called, e.g. because the name is wrong, then
the popup is closed. If the filter causes an error then it is assumed to
return zero. If this happens three times in a row the popup is closed. If
the popup gives errors fewer than 10% of the calls then it won't be closed.

POPUP CALLBACK popup-callback

A callback that is invoked when the popup closes.

popup.txt — 1578

The callback is invoked with two arguments: the ID of the popup window and the
result, which could be an index in the popup lines, or whatever was passed as
the second argument of `popup_close()`.

If the popup is force-closed, e.g. because the cursor moved or CTRL-C was
pressed, the number -1 is passed to the callback.

Example:
func SelectedColor(id, result)

echo 'choice made: ' .. a:result
endfunc

POPUP SCROLLBAR popup-scrollbar

If the text does not fit in the popup a scrollbar is displayed on the right of
the window. This can be disabled by setting the "scrollbar" option to zero.
When the scrollbar is displayed mouse scroll events, while the mouse pointer
is on the popup, will cause the text to scroll up or down as you would expect.
A click in the upper half of the scrollbar will scroll the text down one line.
A click in the lower half will scroll the text up one line. However, this is
limited so that the popup does not get smaller.

POPUP MASK popup-mask

To minimize the text that the popup covers, parts of it can be made
transparent. This is defined by a "mask" which is a list of lists, where each
list has four numbers:

col start column, positive for counting from the left, 1 for
leftmost, negative for counting from the right, -1 for
rightmost

endcol last column, like "col"
line start line, positive for counting from the top, 1 for top,

negative for counting from the bottom, -1 for bottom
endline end line, like "line"

For example, to make the last 10 columns of the last line transparent:
[[-10, -1, -1, -1]]

To make the four corners transparent:
[[1, 1, 1, 1], [-1, -1, 1, 1], [1, 1, -1, -1], [-1, -1, -1, -1]]

==
4. Examples popup-examples

These examples use Vim9 script.

popup_dialog-example
Prompt the user to press y/Y or n/N:

popup_dialog('Continue? y/n', {
filter: 'popup_filter_yesno',
callback: (id, result) => {

if result == 1
echomsg "'y' or 'Y' was pressed"

else
echomsg "'y' or 'Y' was NOT pressed"

endif
},

popup.txt — 1579

padding: [2, 4, 2, 4],
})

popup_menu-shortcut-example
Extend popup_filter_menu() with shortcut keys:

popup_menu(['Save', 'Cancel', 'Discard'], {
callback: (_, result) => {

echo 'dialog result is' result
},
filter: (id, key) => {

Handle shortcuts
if key == 'S' || key == 's'

popup_close(id, 1)
elseif key == 'C' || key == 'c'

popup_close(id, 2)
elseif key == 'D' || key == 'd'

popup_close(id, 3)
else

No shortcut, pass to generic filter
return popup_filter_menu(id, key)

endif
return true

},
})

popup_beval_example
Example for using a popup window for 'ballooneval':

set ballooneval balloonevalterm
set balloonexpr=BalloonExpr()
var winid: number
var last_text: string

def BalloonExpr(): string
here you would use "v:beval_text" to lookup something interesting
var text = v:beval_text
if winid > 0 && popup_getpos(winid) != null_dict

previous popup window still shows
if text == last_text

still the same text, keep the existing popup
return null_string

endif
popup_close(winid)

endif

winid = popup_beval(text, {})
last_text = text
return null_string

enddef

If the text has to be obtained asynchronously return an empty string from the
expression function and call popup_beval() once the text is available. In
this example simulated with a timer callback:

set ballooneval balloonevalterm
set balloonexpr=BalloonExpr()
var winid: number
var last_text: string

popup.txt — 1580

def BalloonExpr(): string
var text = v:beval_text
if winid > 0 && popup_getpos(winid) != null_dict

previous popup window still shows
if text == last_text

still the same text, keep the existing popup
return null_string

endif
popup_close(winid)

endif

Simulate an asynchronous lookup that takes half a second for the
text to display.
last_text = text
timer_start(500, 'ShowPopup')
return null_string

enddef

def ShowPopup(timerid: number)
winid = popup_beval('Result: ' .. last_text, {})

enddef

popup.txt — 1581

popup.txt — 1582

vim9.txt For Vim version 9.1. Last change: 2024 Jan 12

VIM REFERENCE MANUAL by Bram Moolenaar

Vim9 script commands and expressions. Vim9 vim9

Most expression help is in eval.txt . This file is about the new syntax and
features in Vim9 script.

1. What is Vim9 script? Vim9-script
2. Differences vim9-differences
3. New style functions fast-functions
4. Types vim9-types
5. Namespace, Import and Export vim9script
6. Classes and interfaces vim9-classes

9. Rationale vim9-rationale

==

1. What is Vim9 script? Vim9-script

Vim script has been growing over time, while preserving backwards
compatibility. That means bad choices from the past often can't be changed
and compatibility with Vi restricts possible solutions. Execution is quite
slow, each line is parsed every time it is executed.

The main goal of Vim9 script is to drastically improve performance. This is
accomplished by compiling commands into instructions that can be efficiently
executed. An increase in execution speed of 10 to 100 times can be expected.

A secondary goal is to avoid Vim-specific constructs and get closer to
commonly used programming languages, such as JavaScript, TypeScript and Java.

The performance improvements can only be achieved by not being 100% backwards
compatible. For example, making function arguments available in the "a:"
dictionary adds quite a lot of overhead. In a Vim9 function this dictionary
is not available. Other differences are more subtle, such as how errors are
handled.

The Vim9 script syntax and semantics are used in:
- a function defined with the `:def` command
- a script file where the first command is `vim9script`
- an autocommand defined in the context of the above
- a command prefixed with the `vim9cmd` command modifier

When using `:function` in a Vim9 script file the legacy syntax is used, with
the highest scriptversion . However, this can be confusing and is therefore
discouraged.

Vim9 script and legacy Vim script can be mixed. There is no requirement to
rewrite old scripts, they keep working as before. You may want to use a few
`:def` functions for code that needs to be fast.

:vim9[cmd] {cmd} :vim9 :vim9cmd E1164
Evaluate and execute {cmd} using Vim9 script syntax and

vim9.txt — 1583

semantics. Useful when typing a command and in a legacy
script or function.

:leg[acy] {cmd} :leg :legacy E1189 E1234
Evaluate and execute {cmd} using legacy script syntax and
semantics. Only useful in a Vim9 script or a :def function.
Note that {cmd} cannot use local variables, since it is parsed
with legacy expression syntax.

==

2. Differences from legacy Vim script vim9-differences

Overview
E1146

Brief summary of the differences you will most often encounter when using Vim9
script and `:def` functions; details are below:
- Comments start with #, not ":

echo "hello" # comment
- Using a backslash for line continuation is hardly ever needed:

echo "hello "
.. yourName
.. ", how are you?"

- White space is required in many places to improve readability.
- Assign values without `:let` E1126 , declare variables with `:var`:

var count = 0
count += 3

- Constants can be declared with `:final` and `:const`:
final matches = [] # add to the list later
const names = ['Betty', 'Peter'] # cannot be changed

- `:final` cannot be used as an abbreviation of `:finally`.
- Variables and functions are script-local by default.
- Functions are declared with argument types and return type:

def CallMe(count: number, message: string): bool
- Call functions without `:call`:

writefile(['done'], 'file.txt')
- You cannot use old Ex commands:

`:Print`
`:append`
`:change`
`:d` directly followed by 'd' or 'p'.
`:insert`
`:k`
`:mode`
`:open`
`:s` with only flags
`:t`
`:xit`

- Some commands, especially those used for flow control, cannot be shortened.
E.g., `:throw` cannot be written as `:th`. vim9-no-shorten

- You cannot use curly-braces names.
- A range before a command must be prefixed with a colon:

:%s/this/that
- Executing a register with "@r" does not work, you can prepend a colon or use

`:exe`:
:exe @a

- Unless mentioned specifically, the highest scriptversion is used.
- When defining an expression mapping, the expression will be evaluated in the

context of the script where it was defined.
- When indexing a string the index is counted in characters, not bytes:

vim9.txt — 1584

vim9-string-index
- Some possibly unexpected differences: vim9-gotchas .

Comments starting with #

In legacy Vim script comments start with double quote. In Vim9 script
comments start with #.

declarations
var count = 0 # number of occurrences

The reason is that a double quote can also be the start of a string. In many
places, especially halfway through an expression with a line break, it's hard
to tell what the meaning is, since both a string and a comment can be followed
by arbitrary text. To avoid confusion only # comments are recognized. This
is the same as in shell scripts and Python programs.

In Vi # is a command to list text with numbers. In Vim9 script you can use
`:number` for that.

:101 number

To improve readability there must be a space between a command and the #
that starts a comment:

var name = value # comment
var name = value# error!

E1170
Do not start a comment with #{, it looks like the legacy dictionary literal
and produces an error where this might be confusing. #{{ or #{{{ are OK,
these can be used to start a fold.

When starting to read a script file Vim doesn't know it is Vim9 script until
the `vim9script` command is found. Until that point you would need to use
legacy comments:

" legacy comment
vim9script
Vim9 comment

That looks ugly, better put `vim9script` in the very first line:
vim9script
Vim9 comment

In legacy Vim script # is also used for the alternate file name. In Vim9
script you need to use %% instead. Instead of ## use %%% (stands for all
arguments).

Vim9 functions
E1099

A function defined with `:def` is compiled. Execution is many times faster,
often 10 to 100 times.

Many errors are already found when compiling, before the function is executed.
The syntax is strict, to enforce code that is easy to read and understand.

Compilation is done when any of these is encountered:
- the first time the function is called
- when the `:defcompile` command is encountered in the script after the

function was defined
- `:disassemble` is used for the function.
- a function that is compiled calls the function or uses it as a function

vim9.txt — 1585

reference (so that the argument and return types can be checked)
E1091 E1191

If compilation fails it is not tried again on the next call, instead this
error is given: "E1091: Function is not compiled: {name}".
Compilation will fail when encountering a user command that has not been
created yet. In this case you can call `execute()` to invoke it at runtime.

def MyFunc()
execute('DefinedLater')

enddef

`:def` has no options like `:function` does: "range", "abort", "dict" or
"closure". A `:def` function always aborts on an error (unless `:silent!` was
used for the command or the error was caught a `:try` block), does not get a
range passed, cannot be a "dict" function, and can always be a closure.

vim9-no-dict-function
You can use a Vim9 Class (Vim9-class) instead of a "dict function".
You can also pass the dictionary explicitly:

def DictFunc(self: dict<any>, arg: string)
echo self[arg]

enddef
var ad = {item: 'value', func: DictFunc}
ad.func(ad, 'item')

You can call a legacy dict function though:
func Legacy() dict

echo self.value
endfunc
def CallLegacy()

var d = {func: Legacy, value: 'text'}
d.func()

enddef
E1096 E1174 E1175

The argument types and return type need to be specified. The "any" type can
be used, type checking will then be done at runtime, like with legacy
functions.

E1106
Arguments are accessed by name, without "a:", just like any other language.
There is no "a:" dictionary or "a:000" list.

vim9-variable-arguments E1055 E1160 E1180
Variable arguments are defined as the last argument, with a name and have a
list type, similar to TypeScript. For example, a list of numbers:

def MyFunc(...itemlist: list<number>)
for item in itemlist

...

When a function argument is optional (it has a default value) passing `v:none`
as the argument results in using the default value. This is useful when you
want to specify a value for an argument that comes after an argument that
should use its default value. Example:

def MyFunc(one = 'one', last = 'last')
...

enddef
MyFunc(v:none, 'LAST') # first argument uses default value 'one'

vim9-ignored-argument E1181
The argument "_" (an underscore) can be used to ignore the argument. This is
most useful in callbacks where you don't need it, but do need to give an
argument to match the call. E.g. when using map() two arguments are passed,
the key and the value, to ignore the key:

map(numberList, (_, v) => v * 2)

vim9.txt — 1586

There is no error for using the "_" argument multiple times. No type needs to
be given.

Functions and variables are script-local by default
vim9-scopes

When using `:function` or `:def` to specify a new function at the script level
in a Vim9 script, the function is local to the script. Like prefixing "s:" in
legacy script. To define a global function or variable the "g:" prefix must
be used. For functions in a script that is to be imported and in an autoload
script "export" needs to be used for those to be used elsewhere.

def ThisFunction() # script-local
def g:ThatFunction() # global
export def Function() # for import and import autoload

E1058 E1075
When using `:function` or `:def` to specify a nested function inside a `:def`
function and no namespace was given, this nested function is local to the code
block it is defined in. It cannot be used in `function()` with a string
argument, pass the function reference itself:

def Outer()
def Inner()

echo 'inner'
enddef
var Fok = function(Inner) # OK
var Fbad = function('Inner') # does not work

Detail: this is because "Inner" will actually become a function reference to a
function with a generated name.

It is not possible to define a script-local function in a function. You can
define a local function and assign it to a script-local Funcref (it must have
been declared at the script level). It is possible to define a global
function by using the "g:" prefix.

When referring to a function and no "s:" or "g:" prefix is used, Vim will
search for the function:
- in the function scope, in block scopes
- in the script scope

Imported functions are found with the prefix from the `:import` command.

Since a script-local function reference can be used without "s:" the name must
start with an upper case letter even when using the "s:" prefix. In legacy
script "s:funcref" could be used, because it could not be referred to with
"funcref". In Vim9 script it can, therefore "s:Funcref" must be used to avoid
that the name interferes with builtin functions.

vim9-s-namespace E1268
The use of the "s:" prefix is not supported at the Vim9 script level. All
functions and variables without a prefix are script-local.

In :def functions the use of "s:" depends on the script: Script-local
variables and functions in a legacy script do use "s:", while in a Vim9 script
they do not use "s:". This matches what you see in the rest of the file.

In legacy functions the use of "s:" for script items is required, as before.
No matter if the script is Vim9 or legacy.

In all cases the function must be defined before used. That is when it is
called, when `:defcompile` causes it to be compiled, or when code that calls
it is being compiled (to figure out the return type).

vim9.txt — 1587

The result is that functions and variables without a namespace can usually be
found in the script, either defined there or imported. Global functions and
variables could be defined anywhere (good luck finding out where! You can
often see where it was last set using :verbose).

E1102
Global functions can still be defined and deleted at nearly any time. In
Vim9 script script-local functions are defined once when the script is sourced
and cannot be deleted or replaced by itself (it can be by reloading the
script).

When compiling a function and a function call is encountered for a function
that is not (yet) defined, the FuncUndefined autocommand is not triggered.
You can use an autoload function if needed, or call a legacy function and have
FuncUndefined triggered there.

Reloading a Vim9 script clears functions and variables by default
vim9-reload E1149 E1150

When loading a legacy Vim script a second time nothing is removed, the
commands will replace existing variables and functions, create new ones, and
leave removed things hanging around.

When loading a Vim9 script a second time all existing script-local functions
and variables are deleted, thus you start with a clean slate. This is useful
if you are developing a plugin and want to try a new version. If you renamed
something you don't have to worry about the old name still hanging around.

If you do want to keep items, use:
vim9script noclear

You want to use this in scripts that use a `finish` command to bail out at
some point when loaded again. E.g. when a buffer local option is set to a
function, the function does not need to be defined more than once:

vim9script noclear
setlocal completefunc=SomeFunc
if exists('*SomeFunc')

finish
endif
def SomeFunc()
....

Variable declarations with :var, :final and :const
vim9-declaration :var E1079
E1017 E1020 E1054 E1087 E1124

Local variables need to be declared with `:var`. Local constants need to be
declared with `:final` or `:const`. We refer to both as "variables" in this
section.

Variables can be local to a script, function or code block:
vim9script
var script_var = 123
def SomeFunc()

var func_var = script_var
if cond

var block_var = func_var
...

The variables are only visible in the block where they are defined and nested

vim9.txt — 1588

blocks. Once the block ends the variable is no longer accessible:
if cond

var inner = 5
else

var inner = 0
endif
echo inner # Error!

The declaration must be done earlier:
var inner: number
if cond

inner = 5
else

inner = 0
endif
echo inner

Although this is shorter and faster for simple values:
var inner = 0
if cond

inner = 5
endif
echo inner

E1025 E1128
To intentionally hide a variable from code that follows, a block can be
used:

{
var temp = 'temp'
...

}
echo temp # Error!

This is especially useful in a user command:
command -range Rename {

var save = @a
@a = 'some expression'
echo 'do something with ' .. @a
@a = save

}

And with autocommands:
au BufWritePre *.go {

var save = winsaveview()
silent! exe ':%! some formatting command'
winrestview(save)

}

Although using a :def function probably works better.

E1022 E1103 E1130 E1131 E1133
E1134

Declaring a variable with a type but without an initializer will initialize to
false (for bool), empty (for string, list, dict, etc.) or zero (for number,
any, etc.). This matters especially when using the "any" type, the value will
default to the number zero. For example, when declaring a list, items can be
added:

var myList: list<number>
myList->add(7)

Initializing a variable to a null value, e.g. `null_list`, differs from not

vim9.txt — 1589

initializing the variable. This throws an error:
var myList = null_list
myList->add(7) # E1130: Cannot add to null list

E1016 E1052 E1066
In Vim9 script `:let` cannot be used. An existing variable is assigned to
without any command. The same for global, window, tab, buffer and Vim
variables, because they are not really declared. Those can also be deleted
with `:unlet`.

E1065
You cannot use `:va` to declare a variable, it must be written with the full
name `:var`. Just to make sure it is easy to read.

E1178
`:lockvar` does not work on local variables. Use `:const` and `:final`
instead.

The `exists()` and `exists_compiled()` functions do not work on local variables
or arguments.

E1006 E1041 E1167 E1168 E1213
Variables, functions and function arguments cannot shadow previously defined
or imported variables and functions in the same script file.
Variables may shadow Ex commands, rename the variable if needed.

Global variables must be prefixed with "g:", also at the script level.
vim9script
var script_local = 'text'
g:global = 'value'
var Funcref = g:ThatFunction

Global functions must be prefixed with "g:":
vim9script
def g:GlobalFunc(): string

return 'text'
enddef
echo g:GlobalFunc()

The "g:" prefix is not needed for auto-load functions.

vim9-function-defined-later
Although global functions can be called without the "g:" prefix, they must
exist when compiled. By adding the "g:" prefix the function can be defined
later. Example:

def CallPluginFunc()
if exists('g:loaded_plugin')

g:PluginFunc()
endif

enddef

If you do it like this, you get an error at compile time that "PluginFunc"
does not exist, even when "g:loaded_plugin" does not exist:

def CallPluginFunc()
if exists('g:loaded_plugin')

PluginFunc() # Error - function not found
endif

enddef

You can use exists_compiled() to avoid the error, but then the function would
not be called, even when "g:loaded_plugin" is defined later:

def CallPluginFunc()
if exists_compiled('g:loaded_plugin')

PluginFunc() # Function may never be called

vim9.txt — 1590

endif
enddef

Since `&opt = value` is now assigning a value to option "opt", ":&" cannot be
used to repeat a `:substitute` command.

vim9-unpack-ignore
For an unpack assignment the underscore can be used to ignore a list item,
similar to how a function argument can be ignored:

[a, _, c] = theList
To ignore any remaining items:

[a, b; _] = longList
E1163 E1080

Declaring more than one variable at a time, using the unpack notation, is
possible. Each variable can have a type or infer it from the value:

var [v1: number, v2] = GetValues()
Use this only when there is a list with values, declaring one variable per
line is much easier to read and change later.

Constants
vim9-const vim9-final

How constants work varies between languages. Some consider a variable that
can't be assigned another value a constant. JavaScript is an example. Others
also make the value immutable, thus when a constant uses a list, the list
cannot be changed. In Vim9 we can use both.

E1021 E1307
`:const` is used for making both the variable and the value a constant. Use
this for composite structures that you want to make sure will not be modified.
Example:

const myList = [1, 2]
myList = [3, 4] # Error!
myList[0] = 9 # Error!
myList->add(3) # Error!

:final E1125
`:final` is used for making only the variable a constant, the value can be
changed. This is well known from Java. Example:

final myList = [1, 2]
myList = [3, 4] # Error!
myList[0] = 9 # OK
myList->add(3) # OK

It is common to write constants as ALL_CAPS, but you don't have to.

The constant only applies to the value itself, not what it refers to.
final females = ["Mary"]
const NAMES = [["John", "Peter"], females]
NAMES[0] = ["Jack"] # Error!
NAMES[0][0] = "Jack" # Error!
NAMES[1] = ["Emma"] # Error!
NAMES[1][0] = "Emma" # OK, now females[0] == "Emma"

Omitting :call and :eval
E1190

Functions can be called without `:call`:
writefile(lines, 'file')

Using `:call` is still possible, but this is discouraged.

A method call without `eval` is possible, so long as the start is an
identifier or can't be an Ex command. For a function either "(" or "->" must

vim9.txt — 1591

be following, without a line break. Examples:
myList->add(123)
g:myList->add(123)
[1, 2, 3]->Process()
{a: 1, b: 2}->Process()
"foobar"->Process()
("foobar")->Process()
'foobar'->Process()
('foobar')->Process()

In the rare case there is ambiguity between a function name and an Ex command,
prepend ":" to make clear you want to use the Ex command. For example, there
is both the `:substitute` command and the `substitute()` function. When the
line starts with `substitute(` this will use the function. Prepend a colon to
use the command instead:

:substitute(pattern (replacement (

If the expression starts with "!" this is interpreted as a shell command, not
negation of a condition. Thus this is a shell command:

!shellCommand->something
Put the expression in parentheses to use the "!" for negation:

(!expression)->Method()

Note that while variables need to be defined before they can be used,
functions can be called before being defined. This is required to allow
for cyclic dependencies between functions. It is slightly less efficient,
since the function has to be looked up by name. And a typo in the function
name will only be found when the function is called.

Omitting function()

A user defined function can be used as a function reference in an expression
without `function()`. The argument types and return type will then be checked.
The function must already have been defined.

var Funcref = MyFunction

When using `function()` the resulting type is "func", a function with any
number of arguments and any return type (including void). The function can be
defined later if the argument is in quotes.

Lambda using => instead of ->
vim9-lambda

In legacy script there can be confusion between using "->" for a method call
and for a lambda. Also, when a "{" is found the parser needs to figure out if
it is the start of a lambda or a dictionary, which is now more complicated
because of the use of argument types.

To avoid these problems Vim9 script uses a different syntax for a lambda,
which is similar to JavaScript:

var Lambda = (arg) => expression
var Lambda = (arg): type => expression

E1157
No line break is allowed in the arguments of a lambda up to and including the
"=>" (so that Vim can tell the difference between an expression in parentheses
and lambda arguments). This is OK:

filter(list, (k, v) =>
v > 0)

vim9.txt — 1592

This does not work:
filter(list, (k, v)

=> v > 0)
This also does not work:

filter(list, (k,
v) => v > 0)

But you can use a backslash to concatenate the lines before parsing:
filter(list, (k,

\ v)
\ => v > 0)

vim9-lambda-arguments E1172
In legacy script a lambda could be called with any number of extra arguments,
there was no way to warn for not using them. In Vim9 script the number of
arguments must match. If you do want to accept any arguments, or any further
arguments, use "..._", which makes the function accept
vim9-variable-arguments . Example:

var Callback = (..._) => 'anything'
echo Callback(1, 2, 3) # displays "anything"

inline-function E1171
Additionally, a lambda can contain statements in {}:

var Lambda = (arg) => {
g:was_called = 'yes'
return expression

}
This can be useful for a timer, for example:

var count = 0
var timer = timer_start(500, (_) => {

count += 1
echom 'Handler called ' .. count

}, {repeat: 3})

The ending "}" must be at the start of a line. It can be followed by other
characters, e.g.:

var d = mapnew(dict, (k, v): string => {
return 'value'

})
No command can follow the "{", only a comment can be used there.

command-block E1026
The block can also be used for defining a user command. Inside the block Vim9
syntax will be used.

If the statements include a dictionary, its closing bracket must not be
written at the start of a line. Otherwise, it would be parsed as the end of
the block. This does not work:

command NewCommand {
g:mydict = {

'key': 'value',
} # ERROR: will be recognized as the end of the block

}
Put the '}' after the last item to avoid this:

command NewCommand {
g:mydict = {

'key': 'value' }
}

Rationale: The "}" cannot be after a command because it would require parsing
the commands to find it. For consistency with that no command can follow the
"{". Unfortunately this means using "() => { command }" does not work, line

vim9.txt — 1593

breaks are always required.

vim9-curly
To avoid the "{" of a dictionary literal to be recognized as a statement block
wrap it in parentheses:

var Lambda = (arg) => ({key: 42})

Also when confused with the start of a command block:
({

key: value
})->method()

Automatic line continuation
vim9-line-continuation E1097

In many cases it is obvious that an expression continues on the next line. In
those cases there is no need to prefix the line with a backslash (see
line-continuation). For example, when a list spans multiple lines:

var mylist = [
'one',
'two',
]

And when a dict spans multiple lines:
var mydict = {

one: 1,
two: 2,
}

With a function call:
var result = Func(

arg1,
arg2
)

For binary operators in expressions not in [], {} or () a line break is
possible just before or after the operator. For example:

var text = lead
.. middle
.. end

var total = start +
end -
correction

var result = positive
? PosFunc(arg)
: NegFunc(arg)

For a method call using "->" and a member using a dot, a line break is allowed
before it:

var result = GetBuilder()
->BuilderSetWidth(333)
->BuilderSetHeight(777)
->BuilderBuild()

var result = MyDict
.member

For commands that have an argument that is a list of commands, the | character
at the start of the line indicates line continuation:

autocmd BufNewFile *.match if condition
| echo 'match'
| endif

vim9.txt — 1594

Note that this means that in heredoc the first line cannot start with a bar:
var lines =<< trim END

| this doesn't work
END

Either use an empty line at the start or do not use heredoc. Or temporarily
add the "C" flag to 'cpoptions':

set cpo+=C
var lines =<< trim END

| this works
END
set cpo-=C

If the heredoc is inside a function 'cpoptions' must be set before :def and
restored after the :enddef.

In places where line continuation with a backslash is still needed, such as
splitting up a long Ex command, comments can start with '#\ ':

syn region Text
\ start='foo'
#\ comment
\ end='bar'

Like with legacy script '"\ ' is used. This is also needed when line
continuation is used without a backslash and a line starts with a bar:

au CursorHold * echom 'BEFORE bar'
#\ some comment
| echom 'AFTER bar'

E1050
To make it possible for the operator at the start of the line to be
recognized, it is required to put a colon before a range. This example will
add "start" and "print":

var result = start
+ print

Like this:
var result = start + print

This will assign "start" and print a line:
var result = start
:+ print

After the range an Ex command must follow. Without the colon you can call a
function without `:call`, but after a range you do need it:

MyFunc()
:% call MyFunc()

Note that the colon is not required for the +cmd argument:
edit +6 fname

It is also possible to split a function header over multiple lines, in between
arguments:

def MyFunc(
text: string,
separator = '-'
): string

Since a continuation line cannot be easily recognized the parsing of commands
has been made stricter. E.g., because of the error in the first line, the
second line is seen as a separate command:

popup_create(some invalid expression, {
exit_cb: Func})

Now "exit_cb: Func})" is actually a valid command: save any changes to the

vim9.txt — 1595

file "_cb: Func})" and exit. To avoid this kind of mistake in Vim9 script
there must be white space between most command names and the argument.
E1144

However, the argument of a command that is a command won't be recognized. For
example, after "windo echo expr" a line break inside "expr" will not be seen.

Notes:
- "enddef" cannot be used at the start of a continuation line, it ends the

current function.
- No line break is allowed in the LHS of an assignment. Specifically when

unpacking a list :let-unpack . This is OK:
[var1, var2] =

Func()
This does not work:

[var1,
var2] =

Func()
- No line break is allowed in between arguments of an `:echo`, `:execute` and

similar commands. This is OK:
echo [1,

2] [3,
4]

This does not work:
echo [1, 2]

[3, 4]
- In some cases it is difficult for Vim to parse a command, especially when

commands are used as an argument to another command, such as `:windo`. In
those cases the line continuation with a backslash has to be used.

White space
E1004 E1068 E1069 E1074 E1127 E1202

Vim9 script enforces proper use of white space. This is no longer allowed:
var name=234 # Error!
var name= 234 # Error!
var name =234 # Error!

There must be white space before and after the "=":
var name = 234 # OK

White space must also be put before the # that starts a comment after a
command:

var name = 234# Error!
var name = 234 # OK

White space is required around most operators.

White space is required in a sublist (list slice) around the ":", except at
the start and end:

otherlist = mylist[v : count] # v:count has a different meaning
otherlist = mylist[:] # make a copy of the List
otherlist = mylist[v :]
otherlist = mylist[: v]

White space is not allowed:
- Between a function name and the "(":

Func (arg) # Error!
Func

\ (arg) # Error!
Func

vim9.txt — 1596

(arg) # Error!
Func(arg) # OK
Func(

arg) # OK
Func(

arg # OK
)

E1205
White space is not allowed in a `:set` command between the option name and a
following "&", "!", "<", "=", "+=", "-=" or "^=".

No curly braces expansion

curly-braces-names cannot be used.

Command modifiers are not ignored
E1176

Using a command modifier for a command that does not use it gives an error.
E1082

Also, using a command modifier without a following command is now an error.

Dictionary literals
vim9-literal-dict E1014

Traditionally Vim has supported dictionary literals with a {} syntax:
let dict = {'key': value}

Later it became clear that using a simple text key is very common, thus
literal dictionaries were introduced in a backwards compatible way:

let dict = #{key: value}

However, this #{} syntax is unlike any existing language. As it turns out
that using a literal key is much more common than using an expression, and
considering that JavaScript uses this syntax, using the {} form for dictionary
literals is considered a much more useful syntax. In Vim9 script the {} form
uses literal keys:

var dict = {key: value}

This works for alphanumeric characters, underscore and dash. If you want to
use another character, use a single or double quoted string:

var dict = {'key with space': value}
var dict = {"key\twith\ttabs": value}
var dict = {'': value} # empty key

E1139
In case the key needs to be an expression, square brackets can be used, just
like in JavaScript:

var dict = {["key" .. nr]: value}

The key type can be string, number, bool or float. Other types result in an
error. Without using [] the value is used as a string, keeping leading zeros.
An expression given with [] is evaluated and then converted to a string.
Leading zeros will then be dropped:

var dict = {000123: 'without', [000456]: 'with'}
echo dict
{'456': 'with', '000123': 'without'}

A float only works inside [] because the dot is not accepted otherwise:
var dict = {[00.013]: 'float'}
echo dict

vim9.txt — 1597

{'0.013': 'float'}

No :xit, :t, :k, :append, :change or :insert
E1100

These commands are too easily confused with local variable names.
Instead of `:x` or `:xit` you can use `:exit`.
Instead of `:t` you can use `:copy`.
Instead of `:k` you can use `:mark`.

Comparators

The 'ignorecase' option is not used for comparators that use strings.
Thus "=~" works like "=~#".

"is" and "isnot" (expr-is and expr-isnot) when used on strings now return
false. In legacy script they just compare the strings, in Vim9 script they
check identity, and strings are copied when used, thus two strings are never
the same (this might change someday if strings are not copied but reference
counted).

Abort after error

In legacy script, when an error is encountered, Vim continues to execute
following lines. This can lead to a long sequence of errors and need to type
CTRL-C to stop it. In Vim9 script execution of commands stops at the first
error. Example:

vim9script
var x = does-not-exist
echo 'not executed'

For loop
E1254

The loop variable must not be declared yet:
var i = 1
for i in [1, 2, 3] # Error!

It is possible to use a global variable though:
g:i = 1
for g:i in [1, 2, 3]

echo g:i
endfor

Legacy Vim script has some tricks to make a for loop over a list handle
deleting items at the current or previous item. In Vim9 script it just uses
the index, if items are deleted then items in the list will be skipped.
Example legacy script:

let l = [1, 2, 3, 4]
for i in l

echo i
call remove(l, index(l, i))

endfor
Would echo:

1
2
3
4

vim9.txt — 1598

In compiled Vim9 script you get:
1
3

Generally, you should not change the list that is iterated over. Make a copy
first if needed.
When looping over a list of lists, the nested lists can be changed. The loop
variable is "final", it cannot be changed but what its value can be changed.

E1306
The depth of loops, :for and :while loops added together, cannot exceed 10.

Conditions and expressions
vim9-boolean

Conditions and expressions are mostly working like they do in other languages.
Some values are different from legacy Vim script:

value legacy Vim script Vim9 script
0 falsy falsy
1 truthy truthy
99 truthy Error!
"0" falsy Error!
"99" truthy Error!
"text" falsy Error!

For the "??" operator and when using "!" then there is no error, every value
is either falsy or truthy. This is mostly like JavaScript, except that an
empty list and dict is falsy:

type truthy when
bool true, v:true or 1
number non-zero
float non-zero
string non-empty
blob non-empty
list non-empty (different from JavaScript)
dictionary non-empty (different from JavaScript)
func when there is a function name
special true or v:true
job when not NULL
channel when not NULL
class when not NULL
object when not NULL (TODO: when isTrue() returns true)

The boolean operators "||" and "&&" expect the values to be boolean, zero or
one:

1 || false == true
0 || 1 == true
0 || false == false
1 && true == true
0 && 1 == false
8 || 0 Error!
'yes' && 0 Error!
[] || 99 Error!

When using "!" for inverting, there is no error for using any type and the
result is a boolean. "!!" can be used to turn any value into boolean:

!'yes' == false
!![] == false
!![1, 2, 3] == true

When using "`.."` for string concatenation arguments of simple types are

vim9.txt — 1599

always converted to string:
'hello ' .. 123 == 'hello 123'
'hello ' .. v:true == 'hello true'

Simple types are Number, Float, Special and Bool. For other types string()
should be used.

false true null null_blob null_channel
null_class null_dict null_function null_job
null_list null_object null_partial null_string
E1034

In Vim9 script one can use the following predefined values:
true
false
null
null_blob
null_channel
null_class
null_dict
null_function
null_job
null_list
null_object
null_partial
null_string

`true` is the same as `v:true`, `false` the same as `v:false`, `null` the same
as `v:null`.

While `null` has the type "special", the other "null_" values have the type
indicated by their name. Quite often a null value is handled the same as an
empty value, but not always. The values can be useful to clear a script-local
variable, since they cannot be deleted with `:unlet`. E.g.:

var theJob = job_start(...)
let the job do its work
theJob = null_job

The values can also be useful as the default value for an argument:
def MyFunc(b: blob = null_blob)

Note: compare against null, not null_blob,
to distinguish the default value from an empty blob.
if b == null

b argument was not given
See null-compare for more information about testing against null.

It is possible to compare `null` with any value, this will not give a type
error. However, comparing `null` with a number, float or bool will always
result in `false`. This is different from legacy script, where comparing
`null` with zero or `false` would return `true`.

vim9-false-true
When converting a boolean to a string `false` and `true` are used, not
`v:false` and `v:true` like in legacy script. `v:none` has no `none`
replacement, it has no equivalent in other languages.

vim9-string-index
Indexing a string with [idx] or taking a slice with [idx : idx] uses character
indexes instead of byte indexes. Composing characters are included.
Example:

echo 'bár'[1]
In legacy script this results in the character 0xc3 (an illegal byte), in Vim9
script this results in the string 'á'.
A negative index is counting from the end, "[-1]" is the last character.
To exclude the last character use slice() .

vim9.txt — 1600

To count composing characters separately use strcharpart() .
If the index is out of range then an empty string results.

In legacy script "++var" and "--var" would be silently accepted and have no
effect. This is an error in Vim9 script.

Numbers starting with zero are not considered to be octal, only numbers
starting with "0o" are octal: "0o744". scriptversion-4

What to watch out for
vim9-gotchas

Vim9 was designed to be closer to often used programming languages, but at the
same time tries to support the legacy Vim commands. Some compromises had to
be made. Here is a summary of what might be unexpected.

Ex command ranges need to be prefixed with a colon.
-> legacy Vim: shifts the previous line to the right
->func() Vim9: method call in a continuation line
:-> Vim9: shifts the previous line to the right

%s/a/b legacy Vim: substitute on all lines
x = alongname

% another Vim9: modulo operator in a continuation line
:%s/a/b Vim9: substitute on all lines
't legacy Vim: jump to mark t
'text'->func() Vim9: method call
:'t Vim9: jump to mark t

Some Ex commands can be confused with assignments in Vim9 script:
g:name = value # assignment
:g:pattern:cmd # :global command

To avoid confusion between a `:global` or `:substitute` command and an
expression or assignment, a few separators cannot be used when these commands
are abbreviated to a single character: ':', '-' and '.'.

g:pattern:cmd # invalid command - ERROR
s:pattern:repl # invalid command - ERROR
g-pattern-cmd # invalid command - ERROR
s-pattern-repl # invalid command - ERROR
g.pattern.cmd # invalid command - ERROR
s.pattern.repl # invalid command - ERROR

Also, there cannot be a space between the command and the separator:
g /pattern/cmd # invalid command - ERROR
s /pattern/repl # invalid command - ERROR

Functions defined with `:def` compile the whole function. Legacy functions
can bail out, and the following lines are not parsed:

func Maybe()
if !has('feature')

return
endif
use-feature

endfunc
Vim9 functions are compiled as a whole:

def Maybe()
if !has('feature')

return
endif

vim9.txt — 1601

use-feature # May give a compilation error
enddef

For a workaround, split it in two functions:
func Maybe()

if has('feature')
call MaybeInner()

endif
endfunc
if has('feature')

def MaybeInner()
use-feature

enddef
endif

Or put the unsupported code inside an `if` with a constant expression that
evaluates to false:

def Maybe()
if has('feature')

use-feature
endif

enddef
The `exists_compiled()` function can also be used for this.

vim9-user-command
Another side effect of compiling a function is that the presence of a user
command is checked at compile time. If the user command is defined later an
error will result. This works:

command -nargs=1 MyCommand echom <q-args>
def Works()

MyCommand 123
enddef

This will give an error for "MyCommand" not being defined:
def Works()

command -nargs=1 MyCommand echom <q-args>
MyCommand 123

enddef
A workaround is to invoke the command indirectly with `:execute`:

def Works()
command -nargs=1 MyCommand echom <q-args>
execute 'MyCommand 123'

enddef

Note that for unrecognized commands there is no check for "|" and a following
command. This will give an error for missing `endif`:

def Maybe()
if has('feature') | use-feature | endif

enddef

Other differences

Patterns are used like 'magic' is set, unless explicitly overruled.
The 'edcompatible' option value is not used.
The 'gdefault' option value is not used.

You may also find this wiki useful. It was written by an early adopter of
Vim9 script: https://github.com/lacygoill/wiki/blob/master/vim/vim9.md

:++ :--
The ++ and -- commands have been added. They are very similar to adding or
subtracting one:

++var
var += 1

vim9.txt — 1602

https://github.com/lacygoill/wiki/blob/master/vim/vim9.md

--var
var -= 1

Using ++var or --var in an expression is not supported yet.

==

3. New style functions fast-functions

:def E1028
:def[!] {name}([arguments])[: {return-type}]

Define a new function by the name {name}. The body of
the function follows in the next lines, until the
matching `:enddef`. E1073

E1011
The {name} must be less than 100 bytes long.

E1003 E1027 E1056 E1059
The type of value used with `:return` must match
{return-type}. When {return-type} is omitted or is
"void" the function is not expected to return
anything.

E1077 E1123
{arguments} is a sequence of zero or more argument
declarations. There are three forms:

{name}: {type}
{name} = {value}
{name}: {type} = {value}

The first form is a mandatory argument, the caller
must always provide them.
The second and third form are optional arguments.
When the caller omits an argument the {value} is used.

The function will be compiled into instructions when
called, or when `:disassemble` or `:defcompile` is
used. Syntax and type errors will be produced at that
time.

It is possible to nest `:def` inside another `:def` or
`:function` up to about 50 levels deep.

E1117
[!] is used as with `:function`. Note that
script-local functions cannot be deleted or redefined
later in Vim9 script. They can only be removed by
reloading the same script.

:enddef E1057 E1152 E1173
:enddef End of a function defined with `:def`. It should be on

a line by its own.

You may also find this wiki useful. It was written by an early adopter of
Vim9 script: https://github.com/lacygoill/wiki/blob/master/vim/vim9.md

If the script the function is defined in is Vim9 script, then script-local
variables can be accessed without the "s:" prefix. They must be defined
before the function is compiled. If the script the function is defined in is
legacy script, then script-local variables must be accessed with the "s:"
prefix if they do not exist at the time of compiling.

E1269
Script-local variables in a Vim9 script must be declared at the script
level. They cannot be created in a function, also not in a legacy function.

vim9.txt — 1603

https://github.com/lacygoill/wiki/blob/master/vim/vim9.md

:defc :defcompile
:defc[ompile] Compile functions and classes (class-compile)

defined in the current script that were not compiled
yet. This will report any errors found during
compilation.

:defc[ompile] MyClass Compile all methods in a class. class-compile

:defc[ompile] {func}
:defc[ompile] debug {func}
:defc[ompile] profile {func}

Compile function {func}, if needed. Use "debug" and
"profile" to specify the compilation mode.
This will report any errors found during compilation.
{func} call also be "ClassName.functionName" to
compile a function or method in a class.
{func} call also be "ClassName" to compile all
functions and methods in a class.

:disa :disassemble
:disa[ssemble] {func} Show the instructions generated for {func}.

This is for debugging and testing. E1061
Note that for command line completion of {func} you
can prepend "s:" to find script-local functions.

:disa[ssemble] profile {func}
Like `:disassemble` but with the instructions used for
profiling.

:disa[ssemble] debug {func}
Like `:disassemble` but with the instructions used for
debugging.

Limitations

Local variables will not be visible to string evaluation. For example:
def MapList(): list<string>

var list = ['aa', 'bb', 'cc', 'dd']
return range(1, 2)->map('list[v:val]')

enddef

The map argument is a string expression, which is evaluated without the
function scope. Instead, use a lambda:

def MapList(): list<string>
var list = ['aa', 'bb', 'cc', 'dd']
return range(1, 2)->map((_, v) => list[v])

enddef

For commands that are not compiled, such as `:edit`, backtick expansion can be
used and it can use the local scope. Example:

def Replace()
var fname = 'blah.txt'
edit `=fname`

enddef

Closures defined in a loop will share the same context. For example:
var flist: list<func>
for i in range(5)

var inloop = i

vim9.txt — 1604

flist[i] = () => inloop
endfor
echo range(5)->map((i, _) => flist[i]())
Result: [4, 4, 4, 4, 4]

E1271
A closure must be compiled in the context that it is defined in, so that
variables in that context can be found. This mostly happens correctly, except
when a function is marked for debugging with `:breakadd` after it was compiled.
Make sure to define the breakpoint before compiling the outer function.

The "inloop" variable will exist only once, all closures put in the list refer
to the same instance, which in the end will have the value 4. This is
efficient, also when looping many times. If you do want a separate context
for each closure, call a function to define it:

def GetClosure(i: number): func
var infunc = i
return () => infunc

enddef

var flist: list<func>
for i in range(5)

flist[i] = GetClosure(i)
endfor
echo range(5)->map((i, _) => flist[i]())
Result: [0, 1, 2, 3, 4]

In some situations, especially when calling a Vim9 closure from legacy
context, the evaluation will fail. E1248

Note that at the script level the loop variable will be invalid after the
loop, also when used in a closure that is called later, e.g. with a timer.
This will generate error E1302 :

for n in range(4)
timer_start(500 * n, (_) => {

echowin n
})

endfor

You need to use a block and define a variable there, and use that one in the
closure:

for n in range(4)
{

var nr = n
timer_start(500 * n, (_) => {

echowin nr
})

}
endfor

Using `:echowindow` is useful in a timer, the messages go into a popup and will
not interfere with what the user is doing when it triggers.

Converting a function from legacy to Vim9
convert_legacy_function_to_vim9

These are the most changes that need to be made to convert a legacy function
to a Vim9 function:

- Change `func` or `function` to `def`.
- Change `endfunc` or `endfunction` to `enddef`.

vim9.txt — 1605

- Add types to the function arguments.
- If the function returns something, add the return type.
- Change comments to start with # instead of ".

For example, a legacy function:
func MyFunc(text)

" function body
endfunc

Becomes:
def MyFunc(text: string): number

function body
enddef

- Remove "a:" used for arguments. E.g.:
return len(a:text)

Becomes:
return len(text)

- Change `let` used to declare a variable to `var`.
- Remove `let` used to assign a value to a variable. This is for local

variables already declared and b: w: g: and t: variables.

For example, legacy function:
let lnum = 1
let lnum += 3
let b:result = 42

Becomes:
var lnum = 1
lnum += 3
b:result = 42

- Insert white space in expressions where needed.
- Change "." used for concatenation to "..".

For example, legacy function:
echo line(1).line(2)

Becomes:
echo line(1) .. line(2)

- line continuation does not always require a backslash:
echo ['one',

\ 'two',
\ 'three'
\]

Becomes:
echo ['one',

'two',
'three'
]

Calling a function in an expr option
expr-option-function

The value of a few options, such as 'foldexpr', is an expression that is
evaluated to get a value. The evaluation can have quite a bit of overhead.
One way to minimize the overhead, and also to keep the option value very
simple, is to define a compiled function and set the option to call it
without arguments. Example:

vim9script
def MyFoldFunc(): any

vim9.txt — 1606

... compute fold level for line v:lnum
return level

enddef
set foldexpr=s:MyFoldFunc()

==

4. Types vim9-types
E1008 E1009 E1010 E1012
E1013 E1029 E1030

The following builtin types are supported:
bool
number
float
string
blob
list<{type}>
dict<{type}>
job
channel
func
func: {type}
func({type}, ...)
func({type}, ...): {type}
void

Not supported yet:
tuple<a: {type}, b: {type}, ...>

These types can be used in declarations, but no simple value will actually
have the "void" type. Trying to use a void (e.g. a function without a
return value) results in error E1031 E1186 .

There is no array type, use list<{type}> instead. For a list constant an
efficient implementation is used that avoids allocating a lot of small pieces
of memory.

vim9-func-declaration E1005 E1007
A partial and function can be declared in more or less specific ways:
func any kind of function reference, no type

checking for arguments or return value
func: void any number and type of arguments, no return

value
func: {type} any number and type of arguments with specific

return type

func() function with no argument, does not return a
value

func(): void same
func(): {type} function with no argument and return type

func({type}) function with argument type, does not return
a value

func({type}): {type} function with argument type and return type
func(?{type}) function with type of optional argument, does

not return a value
func(...list<{type}>) function with type of list for variable number

of arguments, does not return a value
func({type}, ?{type}, ...list<{type}>): {type}

function with:
- type of mandatory argument

vim9.txt — 1607

- type of optional argument
- type of list for variable number of
arguments

- return type

If the return type is "void" the function does not return a value.

The reference can also be a Partial , in which case it stores extra arguments
and/or a dictionary, which are not visible to the caller. Since they are
called in the same way the declaration is the same.

Custom types can be defined with `:type`:
:type MyList list<string>

Custom types must start with a capital letter, to avoid name clashes with
builtin types added later, similarly to user functions.
{not implemented yet}

And classes and interfaces can be used as types:
:class MyClass
:var mine: MyClass

:interface MyInterface
:var mine: MyInterface

:class MyTemplate<Targ>
:var mine: MyTemplate<number>
:var mine: MyTemplate<string>

:class MyInterface<Targ>
:var mine: MyInterface<number>
:var mine: MyInterface<string>

{not implemented yet}

Variable types and type casting
variable-types

Variables declared in Vim9 script or in a `:def` function have a type, either
specified explicitly or inferred from the initialization.

Global, buffer, window and tab page variables do not have a specific type, the
value can be changed at any time, possibly changing the type. Therefore, in
compiled code the "any" type is assumed.

This can be a problem when the "any" type is undesired and the actual type is
expected to always be the same. For example, when declaring a list:

var l: list<number> = [1, g:two]
At compile time Vim doesn't know the type of "g:two" and the expression type
becomes list<any>. An instruction is generated to check the list type before
doing the assignment, which is a bit inefficient.

type-casting E1104
To avoid this, use a type cast:

var l: list<number> = [1, <number>g:two]
The compiled code will then only check that "g:two" is a number and give an
error if it isn't. This is called type casting.

The syntax of a type cast is: "<" {type} ">". There cannot be white space
after the "<" or before the ">" (to avoid them being confused with
smaller-than and bigger-than operators).

The semantics is that, if needed, a runtime type check is performed. The

vim9.txt — 1608

value is not actually changed. If you need to change the type, e.g. to change
it to a string, use the string() function. Or use str2nr() to convert a
string to a number.

If a type is given where it is not expected you can get E1272 .

If a type is incomplete you get E1363 , e.g. when you have an object for
which the class is not known (usually that is a null object).

Type inference
type-inference

In general: Whenever the type is clear it can be omitted. For example, when
declaring a variable and giving it a value:

var name = 0 # infers number type
var name = 'hello' # infers string type

The type of a list and dictionary comes from the common type of the values.
If the values all have the same type, that type is used for the list or
dictionary. If there is a mix of types, the "any" type is used.

[1, 2, 3] list<number>
['a', 'b', 'c'] list<string>
[1, 'x', 3] list<any>

The common type of function references, if they do not all have the same
number of arguments, uses "(...)" to indicate the number of arguments is not
specified. For example:

def Foo(x: bool)
enddef
def Bar(x: bool, y: bool)
enddef
var funclist = [Foo, Bar]
echo funclist->typename()

Results in:
list<func(...)>

For script-local variables in Vim9 script the type is checked, also when the
variable was declared in a legacy function.

When a type has been declared this is attached to a List or Dictionary. When
later some expression attempts to change the type an error will be given:

var ll: list<number> = [1, 2, 3]
ll->extend(['x']) # Error, 'x' is not a number

If the type is not declared then it is allowed to change:
[1, 2, 3]->extend(['x']) # result: [1, 2, 3, 'x']

For a variable declaration an inferred type matters:
var ll = [1, 2, 3]
ll->extend(['x']) # Error, 'x' is not a number

That is because the declaration looks like a list of numbers, thus is
equivalent to:

var ll: list<number> = [1, 2, 3]
If you do want a more permissive list you need to declare the type:

var ll: list<any> = [1, 2, 3]
ll->extend(['x']) # OK

Stricter type checking
type-checking

In legacy Vim script, where a number was expected, a string would be

vim9.txt — 1609

automatically converted to a number. This was convenient for an actual number
such as "123", but leads to unexpected problems (and no error message) if the
string doesn't start with a number. Quite often this leads to hard-to-find
bugs. e.g.:

echo 123 == '123'
1

With an accidental space:
echo 123 == ' 123'
0

E1206 E1210 E1212
In Vim9 script this has been made stricter. In most places it works just as
before if the value used matches the expected type. There will sometimes be
an error, thus breaking backwards compatibility. For example:
- Using a number other than 0 or 1 where a boolean is expected. E1023
- Using a string value when setting a number option.
- Using a number where a string is expected. E1024 E1105

One consequence is that the item type of a list or dict given to map() must
not change, if the type was declared. This will give an error in Vim9
script:

var mylist: list<number> = [1, 2, 3]
echo map(mylist, (i, v) => 'item ' .. i)
E1012: Type mismatch; expected number but got string in map()

Instead use mapnew() , it creates a new list:
var mylist: list<number> = [1, 2, 3]
echo mapnew(mylist, (i, v) => 'item ' .. i)
['item 0', 'item 1', 'item 2']

If the item type was not declared or determined to be "any" it can change to a
more specific type. E.g. when a list of mixed types gets changed to a list of
strings:

var mylist = [1, 2.0, '3']
typename(mylist) == "list<any>"
map(mylist, (i, v) => 'item ' .. i)
typename(mylist) == "list<string>", no error

There is a subtle difference between using a list constant directly and
through a variable declaration. Because of type inference, when using a list
constant to initialize a variable, this also sets the declared type:

var mylist = [1, 2, 3]
typename(mylist) == "list<number>"
echo map(mylist, (i, v) => 'item ' .. i) # Error!

When using the list constant directly, the type is not declared and is allowed
to change:

echo map([1, 2, 3], (i, v) => 'item ' .. i) # OK

The reasoning behind this is that when a type is declared and the list is
passed around and changed, the declaration must always hold. So that you can
rely on the type to match the declared type. For a constant this is not
needed.

E1158
Same for extend() , use extendnew() instead, and for flatten() , use
flattennew() instead. Since flatten() is intended to always change the

type, it can not be used in Vim9 script.

Assigning to a funcref with specified arguments (see vim9-func-declaration)
does strict type checking of the arguments. For variable number of arguments

vim9.txt — 1610

the type must match:
var FuncRef: func(string, number, bool): number
FuncRef = (v1: string, v2: number, v3: bool) => 777 # OK
FuncRef = (v1: string, v2: number, v3: number) => 777 # Error!
variable number of arguments must have same type
var FuncVA: func(...list<string>): number
FuncVA = (...v: list<number>): number => v # Error!
FuncVA = (...v: list<any>): number => v # OK, `any` runtime check
FuncVA = (v1: string, v: string2): number => 333 # Error!
FuncVA = (v: list<string>): number => 3 # Error!

If the destination funcref has no specified arguments, then there is no
argument type checking:

var FuncUnknownArgs: func: number
FuncUnknownArgs = (v): number => v # OK
FuncUnknownArgs = (v1: string, v2: string): number => 3 # OK
FuncUnknownArgs = (...v1: list<string>): number => 333 # OK

E1211 E1217 E1218 E1219 E1220 E1221
E1222 E1223 E1224 E1225 E1226 E1227
E1228 E1238 E1250 E1251 E1252 E1256
E1297 E1298 E1301

Types are checked for most builtin functions to make it easier to spot
mistakes.

Categories of variables, defaults and null handling
variable-categories null-variables

There are categories of variables:
primitive number, float, boolean
container string, blob, list, dict
specialized function, job, channel, user-defined-object

When declaring a variable without an initializer, an explicit type must be
provided. Each category has different default initialization semantics. Here's
an example for each category:

var num: number # primitives default to a 0 equivalent
var cont: list<string> # containers default to an empty container
var spec: job # specialized variables default to null

Vim does not have a familiar null value; it has various null_<type> predefined
values, for example null_string , null_list , null_job . Primitives do not
have a null_<type>. The typical use cases for null_<type> are:
- to clear a variable and release its resources;
- as a default for a parameter in a function definition, see null-compare .

For a specialized variable, like `job`, null_<type> is used to clear the
resources. For a container variable, resources can also be cleared by
assigning an empty container to the variable. For example:

var j: job = job_start(...)
... job does its work
j = null_job # clear the variable and release the job's resources

var l: list<any>
... add lots of stuff to list
l = [] # clear the variable and release container resources

Using the empty container, rather than null_<type>, to clear a container
variable may avoid null complications as described in null-anomalies .

The initialization semantics of container variables and specialized variables
differ. An uninitialized container defaults to an empty container:

vim9.txt — 1611

var l1: list<string> # empty container
var l2: list<string> = [] # empty container
var l3: list<string> = null_list # null container

"l1" and "l2" are equivalent and indistinguishable initializations; but "l3"
is a null container. A null container is similar to, but different from, an
empty container, see null-anomalies .

Specialized variables default to null. These job initializations are
equivalent and indistinguishable:

var j1: job
var j2: job = null_job
var j3 = null_job

When a list or dict is declared, if the item type is not specified and can not
be inferred, then the type is "any":

var d1 = {} # type is "dict<any>"
var d2 = null_dict # type is "dict<any>"

Declaring a function, see vim9-func-declaration , is particularly unique.

null-compare
For familiar null compare semantics, where a null container is not equal to
an empty container, do not use null_<type> in a comparison:

vim9script
def F(arg: list<string> = null_list)

if arg == null
echo "null"

else
echo printf("not null, %sempty", empty(arg) ? '' : 'not ')

endif
enddef
F() # output: "null"
F(null_list) # output: "null"
F([]) # output: "not null, empty"
F(['']) # output: "not null, not empty"

The above function takes a list of strings and reports on it.
Change the above function signature to accept different types of arguments:

def F(arg: list<any> = null_list) # any type of list
def F(arg: any = null) # any type

In the above example, where the goal is to distinguish a null list from an
empty list, comparing against `null` instead of `null_list` is the correct
choice. The basic reason is because "null_list == null" and "[] != null".
Comparing to `null_list` fails since "[] == null_list". In the following section
there are details about comparison results.

null-details null-anomalies
This section describes issues about using null and null_<type>; included below
are the enumerated results of null comparisons. In some cases, if familiar
with vim9 null semantics, the programmer may chose to use null_<type> in
comparisons and/or other situations.

Elsewhere in the documentation it says:
Quite often a null value is handled the same as an empty value, but
not always

Here's an example:
vim9script
var s1: list<string>
var s2: list<string> = null_list
echo s1 # output: "[]"

vim9.txt — 1612

echo s2 # output: "[]"

echo s1 + ['a'] # output: "['a']"
echo s2 + ['a'] # output: "['a']"

echo s1->add('a') # output: "['a']"
echo s2->add('a') # E1130: Can not add to null list

Two values equal to a null_<type> are not necessarily equal to each other:
vim9script
echo {} == null_dict # true
echo null_dict == null # true
echo {} == null # false

Unlike the other containers, an uninitialized string is equal to null. The
'is' operator can be used to determine if it is a null_string:

vim9script
var s1: string
var s2 = null_string
echo s1 == null # true - this is unexpected
echo s2 == null # true
echo s2 is null_string # true

var b1: blob
var b2 = null_blob
echo b1 == null # false
echo b2 == null # true

Any variable initialized to the null_<type> is equal to the null_<type> and is
also equal to null. For example:

vim9script
var x = null_blob
echo x == null_blob # true
echo x == null # true

An uninitialized variable is usually equal to null; it depends on its type:
var s: string s == null
var b: blob b != null ***
var l: list<any> l != null ***
var d: dict<any> d != null ***
var f: func f == null
var j: job j == null
var c: channel c == null
var o: Class o == null

A variable initialized to empty equals null_<type>; but not null:
var s2: string = "" == null_string != null
var b2: blob = 0z == null_blob != null
var l2: list<any> = [] == null_list != null
var d2: dict<any> = {} == null_dict != null

NOTE: the specialized variables, like job, default to null value and have no
corresponding empty value.

==

5. Namespace, Import and Export
vim9script vim9-export vim9-import

A Vim9 script can be written to be imported. This means that some items are

vim9.txt — 1613

intentionally exported, made available to other scripts. When the exporting
script is imported in another script, these exported items can then be used in
that script. All the other items remain script-local in the exporting script
and cannot be accessed by the importing script.

This mechanism exists for writing a script that can be sourced (imported) by
other scripts, while making sure these other scripts only have access to what
you want them to. This also avoids using the global namespace, which has a
risk of name collisions. For example when you have two plugins with similar
functionality.

You can cheat by using the global namespace explicitly. That should be done
only for things that really are global.

Namespace
vim9-namespace

To recognize a file that can be imported the `vim9script` statement must
appear as the first statement in the file (see vim9-mix for an exception).
It tells Vim to interpret the script in its own namespace, instead of the
global namespace. If a file starts with:

vim9script
var myvar = 'yes'

Then "myvar" will only exist in this file. While without `vim9script` it would
be available as `g:myvar` from any other script and function.

E1101
The variables at the file level are very much like the script-local "s:"
variables in legacy Vim script, but the "s:" is omitted. And they cannot be
deleted.

In Vim9 script the global "g:" namespace can still be used as before. And the
"w:", "b:" and "t:" namespaces. These have in common that variables are not
declared, have no specific type and they can be deleted. E1304

A side effect of `:vim9script` is that the 'cpoptions' option is set to the
Vim default value, like with:

:set cpo&vim
One of the effects is that line-continuation is always enabled.
The original value of 'cpoptions' is restored at the end of the script, while
flags added or removed in the script are also added to or removed from the
original value to get the same effect. The order of flags may change.
In the vimrc file sourced on startup this does not happen.

vim9-mix
There is one way to use both legacy and Vim9 syntax in one script file:

" comments may go here
if !has('vim9script')

" legacy script commands go here
finish

endif
vim9script
Vim9 script commands go here

This allows for writing a script that takes advantage of the Vim9 script
syntax if possible, but will also work on a Vim version without it.

This can only work in two ways:
1. The "if" statement evaluates to false, the commands up to `endif` are

skipped and `vim9script` is then the first command actually executed.
2. The "if" statement evaluates to true, the commands up to `endif` are

executed and `finish` bails out before reaching `vim9script`.

vim9.txt — 1614

Export
:export :exp

Exporting an item can be written as:
export const EXPORTED_CONST = 1234
export var someValue = ...
export final someValue = ...
export const someValue = ...
export def MyFunc() ...
export class MyClass ...
export interface MyClass ...

E1043 E1044
As this suggests, only constants, variables, `:def` functions and classes can
be exported.

E1042
`:export` can only be used in Vim9 script, at the script level.

Import
:import :imp E1094 E1047 E1262
E1048 E1049 E1053 E1071 E1088 E1236

The exported items can be imported in another script. The import syntax has
two forms. The simple form:

import {filename}

Where {filename} is an expression that must evaluate to a string. In this
form the filename should end in ".vim" and the portion before ".vim" will
become the script local name of the namespace. For example:

import "myscript.vim"

This makes each exported item in "myscript.vim" available as "myscript.item".
:import-as E1257 E1261

In case the name is long or ambiguous, this form can be used to specify
another name:

import {longfilename} as {name}

In this form {name} becomes a specific script local name for the imported
namespace. Therefore {name} must consist of letters, digits and '_', like
internal-variables . The {longfilename} expression must evaluate to any

filename. For example:
import "thatscript.vim.v2" as that

E1060 E1258 E1259 E1260
Then you can use "that.item", etc. You are free to choose the name "that".
Use something that will be recognized as referring to the imported script.
Avoid command names, command modifiers and builtin function names, because the
name will shadow them. It's better not to start the name with a capital
letter, since it can then also shadow global user commands and functions.
Also, you cannot use the name for something else in the script, such as a
function or variable name.

In case the dot in the name is undesired, a local reference can be made for a
function:

var LongFunc = that.LongFuncName

This also works for constants:
const MAXLEN = that.MAX_LEN_OF_NAME

This does not work for variables, since the value would be copied once and

vim9.txt — 1615

when changing the variable the copy will change, not the original variable.
You will need to use the full name, with the dot.

`:import` can not be used in a function. Imported items are intended to exist
at the script level and only imported once.

The script name after `import` can be:
- A relative path, starting "." or "..". This finds a file relative to the

location of the script file itself. This is useful to split up a large
plugin into several files.

- An absolute path, starting with "/" on Unix or "D:/" on MS-Windows. This
will rarely be used.

- A path not being relative or absolute. This will be found in the
"import" subdirectories of 'runtimepath' entries. The name will usually be
longer and unique, to avoid loading the wrong file.
Note that "after/import" is not used.

If the name does not end in ".vim" then the use of "as name" is required.

Once a vim9 script file has been imported, the result is cached and used the
next time the same script is imported. It will not be read again.

It is not allowed to import the same script twice, also when using two
different "as" names.

When using the imported name the dot and the item name must be in the same
line, there can be no line break:

echo that.
name # Error!

echo that
.name # Error!

import-map
When you've imported a function from one script into a vim9 script you can
refer to the imported function in a mapping by prefixing it with <SID> :

noremap <silent> ,a :call <SID>name.Function()<CR>

When the mapping is defined "<SID>name." will be replaced with <SNR> and the
script ID of the imported script.
An even simpler solution is using <ScriptCmd> :

noremap ,a <ScriptCmd>name.Function()<CR>

Note that this does not work for variables, only for functions.

import-legacy legacy-import
`:import` can also be used in legacy Vim script. The imported namespace still
becomes script-local, even when the "s:" prefix is not given. For example:

import "myfile.vim"
call s:myfile.MyFunc()

And using the "as name" form:
import "otherfile.vim9script" as that
call s:that.OtherFunc()

However, the namespace cannot be resolved on its own:
import "that.vim"
echo s:that
" ERROR: E1060: Expected dot after name: s:that

This also affects the use of <SID> in the legacy mapping context. Since
<SID> is only a valid prefix for a function and NOT for a namespace, you

vim9.txt — 1616

cannot use it to scope a function in a script local namespace. Instead of
prefixing the function with <SID> you should use <ScriptCmd> . For example:

noremap ,a <ScriptCmd>:call s:that.OtherFunc()<CR>

:import-cycle
The `import` commands are executed when encountered. If script A imports
script B, and B (directly or indirectly) imports A, this will be skipped over.
At this point items in A after "import B" will not have been processed and
defined yet. Therefore cyclic imports can exist and not result in an error
directly, but may result in an error for items in A after "import B" not being
defined. This does not apply to autoload imports, see the next section.

Importing an autoload script
vim9-autoload import-autoload

For optimal startup speed, loading scripts should be postponed until they are
actually needed. Using the autoload mechanism is recommended:

E1264
1. In the plugin define user commands, functions and/or mappings that refer to

items imported from an autoload script.
import autoload 'for/search.vim'
command -nargs=1 SearchForStuff search.Stuff(<f-args>)

This goes in .../plugin/anyname.vim. "anyname.vim" can be freely chosen.
The "SearchForStuff" command is now available to the user.

The "autoload" argument to `:import` means that the script is not loaded
until one of the items is actually used. The script will be found under
the "autoload" directory in 'runtimepath' instead of the "import"
directory. Alternatively a relative or absolute name can be used, see
below.

2. In the autoload script put the bulk of the code.
vim9script
export def Stuff(arg: string)

...

This goes in .../autoload/for/search.vim.

Putting the "search.vim" script under the "/autoload/for/" directory has
the effect that "for#search#" will be prefixed to every exported item. The
prefix is obtained from the file name, as you would to manually in a
legacy autoload script. Thus the exported function can be found with
"for#search#Stuff", but you would normally use `import autoload` and not
use the prefix (which has the side effect of loading the autoload script
when compiling a function that encounters this name).

You can split up the functionality and import other scripts from the
autoload script as you like. This way you can share code between plugins.

Searching for the autoload script in all entries in 'runtimepath' can be a bit
slow. If the plugin knows where the script is located, quite often a relative
path can be used. This avoids the search and should be quite a bit faster.
Another advantage is that the script name does not need to be unique. An
absolute path is also possible. Examples:

import autoload '../lib/implement.vim'
import autoload MyScriptsDir .. '/lib/implement.vim'

For defining a mapping that uses the imported autoload script the special key

vim9.txt — 1617

<ScriptCmd> is useful. It allows for a command in a mapping to use the
script context of where the mapping was defined.

When compiling a `:def` function and a function in an autoload script is
encountered, the script is not loaded until the `:def` function is called.
This also means you get any errors only at runtime, since the argument and
return types are not known yet. If you would use the name with '#' characters
then the autoload script IS loaded.

Be careful to not refer to an item in an autoload script that does trigger
loading it unintentionally. For example, when setting an option that takes a
function name, make sure to use a string, not a function reference:

import autoload 'qftf.vim'
&quickfixtextfunc = 'qftf.Func' # autoload script NOT loaded
&quickfixtextfunc = qftf.Func # autoload script IS loaded

On the other hand, it can be useful to load the script early, at a time when
any errors should be given.

For testing the test_override() function can be used to have the
`import autoload` load the script right away, so that the items and types can
be checked without waiting for them to be actually used:

test_override('autoload', 1)
Reset it later with:

test_override('autoload', 0)
Or:

test_override('ALL', 0)

==

6. Classes and interfaces vim9-classes

In legacy script a Dictionary could be used as a kind-of object, by adding
members that are functions. However, this is quite inefficient and requires
the writer to do the work of making sure all the objects have the right
members. See Dictionary-function .

In Vim9 script you can have classes, objects and interfaces like in most
popular object-oriented programming languages. Since this is a lot of
functionality it is located in a separate help file: vim9class.txt .

==

9. Rationale vim9-rationale

The :def command

Plugin writers have asked for much faster Vim script. Investigations have
shown that keeping the existing semantics of function calls make this close to
impossible, because of the overhead involved with calling a function, setting
up the local function scope and executing lines. There are many details that
need to be handled, such as error messages and exceptions. The need to create
a dictionary for a: and l: scopes, the a:000 list and several others add too
much overhead that cannot be avoided.

Therefore the `:def` method to define a new-style function had to be added,
which allows for a function with different semantics. Most things still work
as before, but some parts do not. A new way to define a function was
considered the best way to separate the legacy style code from Vim9 style code.

vim9.txt — 1618

Using "def" to define a function comes from Python. Other languages use
"function" which clashes with legacy Vim script.

Type checking

When compiling lines of Vim commands into instructions as much as possible
should be done at compile time. Postponing it to runtime makes the execution
slower and means mistakes are found only later. For example, when
encountering the "+" character and compiling this into a generic add
instruction, at runtime the instruction would have to inspect the type of the
arguments and decide what kind of addition to do. And when the type is
dictionary throw an error. If the types are known to be numbers then an "add
number" instruction can be used, which is faster. The error can be given at
compile time, no error handling is needed at runtime, since adding two numbers
cannot fail.

The syntax for types, using <type> for compound types, is similar to Java. It
is easy to understand and widely used. The type names are what were used in
Vim before, with some additions such as "void" and "bool".

Removing clutter and weirdness

Once decided that `:def` functions have different syntax than legacy functions,
we are free to add improvements to make the code more familiar for users who
know popular programming languages. In other words: remove weird things that
only Vim does.

We can also remove clutter, mainly things that were done to make Vim script
backwards compatible with the good old Vi commands.

Examples:
- Drop `:call` for calling a function and `:eval` for evaluating an

expression.
- Drop using a leading backslash for line continuation, automatically figure

out where an expression ends.

However, this does require that some things need to change:
- Comments start with # instead of ", to avoid confusing them with strings.

This is good anyway, it is also used by several popular languages.
- Ex command ranges need to be prefixed with a colon, to avoid confusion with

expressions (single quote can be a string or a mark, "/" can be divide or a
search command, etc.).

Goal is to limit the differences. A good criteria is that when the old syntax
is accidentally used you are very likely to get an error message.

Syntax and semantics from popular languages

Script writers have complained that the Vim script syntax is unexpectedly
different from what they are used to. To reduce this complaint popular
languages are used as an example. At the same time, we do not want to abandon
the well-known parts of legacy Vim script.

For many things TypeScript is followed. It's a recent language that is
gaining popularity and has similarities with Vim script. It also has a
mix of static typing (a variable always has a known value type) and dynamic

vim9.txt — 1619

typing (a variable can have different types, this changes at runtime). Since
legacy Vim script is dynamically typed and a lot of existing functionality
(esp. builtin functions) depends on that, while static typing allows for much
faster execution, we need to have this mix in Vim9 script.

There is no intention to completely match TypeScript syntax and semantics. We
just want to take those parts that we can use for Vim and we expect Vim users
will be happy with. TypeScript is a complex language with its own history,
advantages and disadvantages. To get an idea of the disadvantages read the
book: "JavaScript: The Good Parts". Or find the article "TypeScript: the good
parts" and read the "Things to avoid" section.

People familiar with other languages (Java, Python, etc.) will also find
things in TypeScript that they do not like or do not understand. We'll try to
avoid those things.

Specific items from TypeScript we avoid:
- Overloading "+", using it both for addition and string concatenation. This

goes against legacy Vim script and often leads to mistakes. For that reason
we will keep using ".." for string concatenation. Lua also uses ".." this
way. And it allows for conversion to string for more values.

- TypeScript can use an expression like "99 || 'yes'" in a condition, but
cannot assign the value to a boolean. That is inconsistent and can be
annoying. Vim recognizes an expression with && or || and allows using the
result as a bool. The falsy-operator was added for the mechanism to use a
default value.

- TypeScript considers an empty string as Falsy, but an empty list or dict as
Truthy. That is inconsistent. In Vim an empty list and dict are also
Falsy.

- TypeScript has various "Readonly" types, which have limited usefulness,
since a type cast can remove the immutable nature. Vim locks the value,
which is more flexible, but is only checked at runtime.

- TypeScript has a complicated "import" statement that does not match how the
Vim import mechanism works. A much simpler mechanism is used instead, which
matches that the imported script is only sourced once.

Declarations

Legacy Vim script uses `:let` for every assignment, while in Vim9 declarations
are used. That is different, thus it's good to use a different command:
`:var`. This is used in many languages. The semantics might be slightly
different, but it's easily recognized as a declaration.

Using `:const` for constants is common, but the semantics varies. Some
languages only make the variable immutable, others also make the value
immutable. Since "final" is well known from Java for only making the variable
immutable we decided to use that. And then `:const` can be used for making
both immutable. This was also used in legacy Vim script and the meaning is
almost the same.

What we end up with is very similar to Dart:
:var name # mutable variable and value
:final name # immutable variable, mutable value
:const name # immutable variable and value

Since legacy and Vim9 script will be mixed and global variables will be
shared, optional type checking is desirable. Also, type inference will avoid
the need for specifying the type in many cases. The TypeScript syntax fits
best for adding types to declarations:

vim9.txt — 1620

var name: string # string type is specified
...
name = 'John'
const greeting = 'hello' # string type is inferred

This is how we put types in a declaration:
var mylist: list<string>
final mylist: list<string> = ['foo']
def Func(arg1: number, arg2: string): bool

Two alternatives were considered:
1. Put the type before the name, like Dart:

var list<string> mylist
final list<string> mylist = ['foo']
def Func(number arg1, string arg2) bool

2. Put the type after the variable name, but do not use a colon, like Go:
var mylist list<string>
final mylist list<string> = ['foo']
def Func(arg1 number, arg2 string) bool

The first is more familiar for anyone used to C or Java. The second one
doesn't really have an advantage over the first, so let's discard the second.

Since we use type inference the type can be left out when it can be inferred
from the value. This means that after `var` we don't know if a type or a name
follows. That makes parsing harder, not only for Vim but also for humans.
Also, it will not be allowed to use a variable name that could be a type name,
using `var string string` is too confusing.

The chosen syntax, using a colon to separate the name from the type, adds
punctuation, but it actually makes it easier to recognize the parts of a
declaration.

Expressions

Expression evaluation was already close to what other languages are doing.
Some details are unexpected and can be improved. For example a boolean
condition would accept a string, convert it to a number and check if the
number is non-zero. This is unexpected and often leads to mistakes, since
text not starting with a number would be converted to zero, which is
considered false. Thus using a string for a condition would often not give an
error and be considered false. That is confusing.

In Vim9 type checking is stricter to avoid mistakes. Where a condition is
used, e.g. with the `:if` command and the `||` operator, only boolean-like
values are accepted:

true: `true`, `v:true`, `1`, `0 < 9`
false: `false`, `v:false`, `0`, `0 > 9`

Note that the number zero is false and the number one is true. This is more
permissive than most other languages. It was done because many builtin
functions return these values, and changing that causes more problems than it
solves. After using this for a while it turned out to work well.

If you have any type of value and want to use it as a boolean, use the `!!`
operator:

true: `!!'text'` `!![99]` `!!{'x': 1}` `!!99`
false: `!!''` `!![]` `!!{}`

From a language like JavaScript we have this handy construct:

vim9.txt — 1621

GetName() || 'unknown'
However, this conflicts with only allowing a boolean for a condition.
Therefore the "??" operator was added:

GetName() ?? 'unknown'
Here you can explicitly express your intention to use the value as-is and not
result in a boolean. This is called the falsy-operator .

Import and Export

A problem of legacy Vim script is that by default all functions and variables
are global. It is possible to make them script-local, but then they are not
available in other scripts. This defies the concept of a package that only
exports selected items and keeps the rest local.

In Vim9 script a mechanism very similar to the JavaScript import and export
mechanism is supported. It is a variant to the existing `:source` command
that works like one would expect:
- Instead of making everything global by default, everything is script-local,

some of these are exported.
- When importing a script the symbols that are imported are explicitly listed,

avoiding name conflicts and failures if functionality is added later.
- The mechanism allows for writing a big, long script with a very clear API:

the exported functions, variables and classes.
- By using relative paths loading can be much faster for an import inside of a

package, no need to search many directories.
- Once an import has been used, its items are cached and loading it again is

not needed.
- The Vim-specific use of "s:" to make things script-local can be dropped.

When sourcing a Vim9 script (from a Vim9 or legacy script), only the items
defined globally can be used, not the exported items. Alternatives
considered:
- All the exported items become available as script-local items. This makes

it uncontrollable what items get defined and likely soon leads to trouble.
- Use the exported items and make them global. Disadvantage is that it's then

not possible to avoid name clashes in the global namespace.
- Completely disallow sourcing a Vim9 script, require using `:import`. That

makes it difficult to use scripts for testing, or sourcing them from the
command line to try them out.

Note that you CAN also use `:import` in legacy Vim script, see above.

Compiling functions early

Functions are compiled when called or when `:defcompile` is used. Why not
compile them early, so that syntax and type errors are reported early?

The functions can't be compiled right away when encountered, because there may
be forward references to functions defined later. Consider defining functions
A, B and C, where A calls B, B calls C, and C calls A again. It's impossible
to reorder the functions to avoid forward references.

An alternative would be to first scan through the file to locate items and
figure out their type, so that forward references are found, and only then
execute the script and compile the functions. This means the script has to be
parsed twice, which is slower, and some conditions at the script level, such
as checking if a feature is supported, are hard to use. An attempt was made
to see if it works, but it turned out to be impossible to make work well.

vim9.txt — 1622

It would be possible to compile all the functions at the end of the script.
The drawback is that if a function never gets called, the overhead of
compiling it counts anyway. Since startup speed is very important, in most
cases it's better to do it later and accept that syntax and type errors are
only reported then. In case these errors should be found early, e.g. when
testing, a `:defcompile` command at the end of the script will help out.

Why not use an existing embedded language?

Vim supports interfaces to Perl, Python, Lua, Tcl and a few others. But
these interfaces have never become widely used, for various reasons. When
Vim9 was designed a decision was made to make these interfaces lower priority
and concentrate on Vim script.

Still, plugin writers may find other languages more familiar, want to use
existing libraries or see a performance benefit. We encourage plugin authors
to write code in any language and run it as an external process, using jobs
and channels. We can try to make this easier somehow.

Using an external tool also has disadvantages. An alternative is to convert
the tool into Vim script. For that to be possible without too much
translation, and keeping the code fast at the same time, the constructs of the
tool need to be supported. Since most languages support classes the lack of
support for classes in Vim is then a problem.

vim9.txt — 1623

vim9.txt — 1624

indent.txt For Vim version 9.1. Last change: 2024 Feb 29

VIM REFERENCE MANUAL by Bram Moolenaar

This file is about indenting C programs and other files.

1. Indenting C style programs C-indenting
2. Indenting by expression indent-expression

==
1. Indenting C style programs C-indenting

The basics for C style indenting are explained in section 30.2 of the user
manual.

Vim has options for automatically indenting C style program files. Many
programming languages including Java and C++ follow very closely the
formatting conventions established with C. These options affect only the
indent and do not perform other formatting. There are additional options that
affect other kinds of formatting as well as indenting, see format-comments ,
fo-table , gq and formatting for the main ones.

There are in fact four main methods available for indentation, each one
overrides the previous if it is enabled, or non-empty for 'indentexpr':
'autoindent' uses the indent from the previous line.
'smartindent' is like 'autoindent' but also recognizes some C syntax to

increase/reduce the indent where appropriate.
'cindent' Works more cleverly than the other two and is configurable to

different indenting styles.
'indentexpr' The most flexible of all: Evaluates an expression to compute

the indent of a line. When non-empty this method overrides
the other ones. See indent-expression .

The rest of this section describes the 'cindent' option.

Note that 'cindent' indenting does not work for every code scenario. Vim
is not a C compiler: it does not recognize all syntax. One requirement is
that toplevel functions have a '{' in the first column. Otherwise they are
easily confused with declarations.

These five options control C program indenting:
'cindent' Enables Vim to perform C program indenting automatically.
'cinkeys' Specifies which keys trigger reindenting in insert mode.
'cinoptions' Sets your preferred indent style.
'cinwords' Defines keywords that start an extra indent in the next line.
'cinscopedecls' Defines strings that are recognized as a C++ scope declaration.

If 'lisp' is not on and 'equalprg' is empty, the "=" operator indents using
Vim's built-in algorithm rather than calling an external program.

See autocommand for how to set the 'cindent' option automatically for C code
files and reset it for others.

cinkeys-format indentkeys-format
The 'cinkeys' option is a string that controls Vim's indenting in response to
typing certain characters or commands in certain contexts. Note that this not
only triggers C-indenting. When 'indentexpr' is not empty 'indentkeys' is
used instead. The format of 'cinkeys' and 'indentkeys' is equal.

indent.txt — 1625

The default is "0{,0},0),0],:,0#,!^F,o,O,e" which specifies that indenting
occurs as follows:

"0{" if you type '{' as the first character in a line
"0}" if you type '}' as the first character in a line
"0)" if you type ')' as the first character in a line
"0]" if you type ']' as the first character in a line
":" if you type ':' after a label or case statement
"0#" if you type '#' as the first character in a line
"!^F" if you type CTRL-F (which is not inserted)
"o" if you type a <CR> anywhere or use the "o" command (not in

insert mode!)
"O" if you use the "O" command (not in insert mode!)
"e" if you type the second 'e' for an "else" at the start of a

line

Characters that can precede each key: i_CTRL-F
! When a '!' precedes the key, Vim will not insert the key but will

instead reindent the current line. This allows you to define a
command key for reindenting the current line. CTRL-F is the default
key for this. Be careful if you define CTRL-I for this because CTRL-I
is the ASCII code for <Tab>.

* When a '*' precedes the key, Vim will reindent the line before
inserting the key. If 'cinkeys' contains "*<Return>", Vim reindents
the current line before opening a new line.

0 When a zero precedes the key (but appears after '!' or '*') Vim will
reindent the line only if the key is the first character you type in
the line. When used before "=" Vim will only reindent the line if
there is only white space before the word.

When neither '!' nor '*' precedes the key, Vim reindents the line after you
type the key. So ';' sets the indentation of a line which includes the ';'.

Special key names:
<> Angle brackets mean spelled-out names of keys. For example: "<Up>",

"<Ins>" (see key-notation).
^ Letters preceded by a caret (^) are control characters. For example:

"^F" is CTRL-F.
o Reindent a line when you use the "o" command or when Vim opens a new

line below the current one (e.g., when you type <Enter> in insert
mode).

O Reindent a line when you use the "O" command.
e Reindent a line that starts with "else" when you type the second 'e'.
: Reindent a line when a ':' is typed which is after a label or case

statement. Don't reindent for a ":" in "class::method" for C++. To
Reindent for any ":", use "<:>".

=word Reindent when typing the last character of "word". "word" may
actually be part of another word. Thus "=end" would cause reindenting
when typing the "d" in "endif" or "endwhile". But not when typing
"bend". Also reindent when completion produces a word that starts
with "word". "0=word" reindents when there is only white space before
the word.

=~word Like =word, but ignore case.

If you really want to reindent when you type 'o', 'O', 'e', '0', '<', '>',
'*', ':' or '!', use "<o>", "<O>", "<e>", "<0>", "<<>", "<>>", "<*>", "<:>" or
"<!>", respectively, for those keys.

For an emacs-style indent mode where lines aren't indented every time you
press <Enter> but only if you press <Tab>, I suggest:

indent.txt — 1626

:set cinkeys=0{,0},:,0#,!<Tab>,!^F
You might also want to switch off 'autoindent' then.

Note: If you change the current line's indentation manually, Vim ignores the
cindent settings for that line. This prevents vim from reindenting after you
have changed the indent by typing <BS>, <Tab>, or <Space> in the indent or
used CTRL-T or CTRL-D.

cinoptions-values
The 'cinoptions' option sets how Vim performs indentation. The value after
the option character can be one of these (N is any number):

N indent N spaces
-N indent N spaces to the left
Ns N times 'shiftwidth' spaces
-Ns N times 'shiftwidth' spaces to the left

In the list below,
"N" represents a number of your choice (the number can be negative). When
there is an 's' after the number, Vim multiplies the number by 'shiftwidth':
"1s" is 'shiftwidth', "2s" is two times 'shiftwidth', etc. You can use a
decimal point, too: "-0.5s" is minus half a 'shiftwidth'.
The examples below assume a 'shiftwidth' of 4.

cino->
>N Amount added for "normal" indent. Used after a line that should

increase the indent (lines starting with "if", an opening brace,
etc.). (default 'shiftwidth').

cino= cino=>2 cino=>2s
if (cond) if (cond) if (cond)
{ { {

foo; foo; foo;
} } }

cino-e
eN Add N to the prevailing indent inside a set of braces if the

opening brace at the End of the line (more precise: is not the
first character in a line). This is useful if you want a
different indent when the '{' is at the start of the line from
when '{' is at the end of the line. (default 0).

cino= cino=e2 cino=e-2
if (cond) { if (cond) { if (cond) {

foo; foo; foo;
} } }
else else else
{ { {

bar; bar; bar;
} } }

cino-n
nN Add N to the prevailing indent for a statement after an "if",

"while", etc., if it is NOT inside a set of braces. This is
useful if you want a different indent when there is no '{'
before the statement from when there is a '{' before it.
(default 0).

cino= cino=n2 cino=n-2
if (cond) if (cond) if (cond)

foo; foo; foo;
else else else

indent.txt — 1627

{ { {
bar; bar; bar;

} } }

cino-f
fN Place the first opening brace of a function or other block in

column N. This applies only for an opening brace that is not
inside other braces and is at the start of the line. What comes
after the brace is put relative to this brace. (default 0).

cino= cino=f.5s cino=f1s
func() func() func()
{ { {

int foo; int foo; int foo;

cino-{
{N Place opening braces N characters from the prevailing indent.

This applies only for opening braces that are inside other
braces. (default 0).

cino= cino={.5s cino={1s
if (cond) if (cond) if (cond)
{ { {

foo; foo; foo;

cino-}
}N Place closing braces N characters from the matching opening

brace. (default 0).

cino= cino={2,}-0.5s cino=}2
if (cond) if (cond) if (cond)
{ { {

foo; foo; foo;
} } }

cino-^
^N Add N to the prevailing indent inside a set of braces if the

opening brace is in column 0. This can specify a different
indent for whole of a function (some may like to set it to a
negative number). (default 0).

cino= cino=^-2 cino=^-s
func() func() func()
{ { {

if (cond) if (cond) if (cond)
{ { {

a = b; a = b; a = b;
} } }

} } }

cino-L
LN Controls placement of jump labels. If N is negative, the label

will be placed at column 1. If N is non-negative, the indent of
the label will be the prevailing indent minus N. (default -1).

cino= cino=L2 cino=Ls
func() func() func()
{ { {

{ { {
stmt; stmt; stmt;

indent.txt — 1628

LABEL: LABEL: LABEL:
} } }

} } }

cino-:
:N Place case labels N characters from the indent of the switch().

(default 'shiftwidth').

cino= cino=:0
switch (x) switch(x)
{ {

case 1: case 1:
a = b; a = b;

default: default:
} }

cino-=
=N Place statements occurring after a case label N characters from

the indent of the label. (default 'shiftwidth').

cino= cino==10
case 11: case 11: a = a + 1;

a = a + 1; b = b + 1;

cino-l
lN If N != 0 Vim will align with a case label instead of the

statement after it in the same line.

cino= cino=l1
switch (a) { switch (a) {

case 1: { case 1: {
break; break;

} }

cino-b
bN If N != 0 Vim will align a final "break" with the case label,

so that case..break looks like a sort of block. (default: 0).
When using 1, consider adding "0=break" to 'cinkeys'.

cino= cino=b1
switch (x) switch(x)
{ {

case 1: case 1:
a = b; a = b;
break; break;

default: default:
a = 0; a = 0;
break; break;

} }

cino-g
gN Place C++ scope declarations N characters from the indent of the

block they are in. (default 'shiftwidth'). By default, a scope
declaration is "public:", "protected:" or "private:". This can
be adjusted with the 'cinscopedecls' option.

cino= cino=g0
{ {

public: public:

indent.txt — 1629

a = b; a = b;
private: private:

} }

cino-h
hN Place statements occurring after a C++ scope declaration N

characters from the indent of the label. (default
'shiftwidth').

cino= cino=h10
public: public: a = a + 1;

a = a + 1; b = b + 1;

cino-N
NN Indent inside C++ namespace N characters extra compared to a

normal block. (default 0).

cino= cino=N-s
namespace { namespace {

void function(); void function();
} }

namespace my namespace my
{ {

void function(); void function();
} }

cino-E
EN Indent inside C++ linkage specifications (extern "C" or

extern "C++") N characters extra compared to a normal block.
(default 0).

cino= cino=E-s
extern "C" { extern "C" {

void function(); void function();
} }

extern "C" extern "C"
{ {

void function(); void function();
} }

cino-p
pN Parameter declarations for K&R-style function declarations will

be indented N characters from the margin. (default
'shiftwidth').

cino= cino=p0 cino=p2s
func(a, b) func(a, b) func(a, b)

int a; int a; int a;
char b; char b; char b;

cino-t
tN Indent a function return type declaration N characters from the

margin. (default 'shiftwidth').

cino= cino=t0 cino=t7
int int int

func() func() func()

indent.txt — 1630

cino-i
iN Indent C++ base class declarations and constructor

initializations, if they start in a new line (otherwise they
are aligned at the right side of the ':').
(default 'shiftwidth').

cino= cino=i0
class MyClass : class MyClass :

public BaseClass public BaseClass
{} {}
MyClass::MyClass() : MyClass::MyClass() :

BaseClass(3) BaseClass(3)
{} {}

cino-+
+N Indent a continuation line (a line that spills onto the next)

inside a function N additional characters. (default
'shiftwidth').
Outside of a function, when the previous line ended in a
backslash, the 2 * N is used.

cino= cino=+10
a = b + 9 * a = b + 9 *

c; c;

cino-c
cN Indent comment lines after the comment opener, when there is no

other text with which to align, N characters from the comment
opener. (default 3). See also format-comments .

cino= cino=c5
/* /*

text. text.
*/ */

cino-C
CN When N is non-zero, indent comment lines by the amount specified

with the c flag above even if there is other text behind the
comment opener. (default 0).

cino=c0 cino=c0,C1
/******** /********

text. text.
********/ ********/

(Example uses ":set comments& comments-=s1:/* comments^=s0:/*")

cino-/
/N Indent comment lines N characters extra. (default 0).

cino= cino=/4
a = b; a = b;
/* comment */ /* comment */
c = d; c = d;

cino-(
(N When in unclosed parentheses, indent N characters from the line

with the unclosed parenthesis. Add a 'shiftwidth' for every
extra unclosed parentheses. When N is 0 or the unclosed
parenthesis is the first non-white character in its line, line
up with the next non-white character after the unclosed
parenthesis. (default 'shiftwidth' * 2).

indent.txt — 1631

cino= cino=(0
if (c1 && (c2 || if (c1 && (c2 ||

c3)) c3))
foo; foo;

if (c1 && if (c1 &&
(c2 || c3)) (c2 || c3))

{ {

cino-u
uN Same as (N, but for one nesting level deeper.

(default 'shiftwidth').

cino= cino=u2
if (c123456789 if (c123456789

&& (c22345 && (c22345
|| c3)) || c3))

cino-U
UN When N is non-zero, do not ignore the indenting specified by

(or u in case that the unclosed parenthesis is the first
non-white character in its line. (default 0).

cino= or cino=(s cino=(s,U1
c = c1 && c = c1 &&

((
c2 || c2 ||
c3 c3

) && c4;) && c4;

cino-w
wN When in unclosed parentheses and N is non-zero and either

using "(0" or "u0", respectively, or using "U0" and the unclosed
parenthesis is the first non-white character in its line, line
up with the character immediately after the unclosed parenthesis
rather than the first non-white character. (default 0).

cino=(0 cino=(0,w1
if (c1 if (c1

&& (c2 && (c2
|| c3)) || c3))

foo; foo;

cino-W
WN When in unclosed parentheses and N is non-zero and either

using "(0" or "u0", respectively and the unclosed parenthesis is
the last non-white character in its line and it is not the
closing parenthesis, indent the following line N characters
relative to the outer context (i.e. start of the line or the
next unclosed parenthesis). (default: 0).

cino=(0 cino=(0,W4
a_long_line(a_long_line(

argument, argument,
argument); argument);

a_short_line(argument, a_short_line(argument,
argument); argument);

cino-k
kN When in unclosed parentheses which follow "if", "for" or

indent.txt — 1632

"while" and N is non-zero, overrides the behaviour defined by
"(N": causes the indent to be N characters relative to the outer
context (i.e. the line where "if", "for" or "while" is). Has
no effect on deeper levels of nesting. Affects flags like "wN"
only for the "if", "for" and "while" conditions. If 0, defaults
to behaviour defined by the "(N" flag. (default: 0).

cino=(0 cino=(0,ks
if (condition1 if (condition1

&& condition2) && condition2)
action(); action();

function(argument1 function(argument1
&& argument2); && argument2);

cino-m
mN When N is non-zero, line up a line starting with a closing

parenthesis with the first character of the line with the
matching opening parenthesis. (default 0).

cino=(s cino=(s,m1
c = c1 && (c = c1 && (

c2 || c2 ||
c3 c3
) && c4;) && c4;

if (if (
c1 && c2 c1 && c2
))
foo; foo;

cino-M
MN When N is non-zero, line up a line starting with a closing

parenthesis with the first character of the previous line.
(default 0).

cino= cino=M1
if (cond1 && if (cond1 &&

cond2 cond2
))

java-cinoptions java-indenting cino-j
jN Indent Java anonymous classes correctly. Also works well for

Javascript. The value 'N' is currently unused but must be
non-zero (e.g. 'j1'). 'j1' will indent for example the
following code snippet correctly:

object.add(new ChangeListener() {
public void stateChanged(ChangeEvent e) {

do_something();
}

});

javascript-cinoptions javascript-indenting cino-J
JN Indent JavaScript object declarations correctly by not confusing

them with labels. The value 'N' is currently unused but must be
non-zero (e.g. 'J1'). If you enable this you probably also want
to set cino-j .

var bar = {
foo: {

that: this,

indent.txt — 1633

some: ok,
},
"bar":{

a : 2,
b: "123abc",
x: 4,
"y": 5

}
}

cino-)
)N Vim searches for unclosed parentheses at most N lines away.

This limits the time needed to search for parentheses. (default
20 lines).

cino-star
*N Vim searches for unclosed comments at most N lines away. This

limits the time needed to search for the start of a comment.
If your /* */ comments stop indenting after N lines this is the
value you will want to change.
(default 70 lines).

cino-#
#N When N is non-zero recognize shell/Perl comments starting with

'#', do not recognize preprocessor lines; allow right-shifting
lines that start with "#".
When N is zero (default): don't recognize '#' comments, do
recognize preprocessor lines; right-shifting lines that start
with "#" does not work.

cino-P
PN When N is non-zero recognize C pragmas, and indent them like any

other code; does not concern other preprocessor directives.
When N is zero (default): don't recognize C pragmas, treating
them like every other preprocessor directive.

The defaults, spelled out in full, are:
cinoptions=>s,e0,n0,f0,{0,}0,^0,L-1,:s,=s,l0,b0,gs,hs,N0,E0,ps,ts,is,+s,

c3,C0,/0,(2s,us,U0,w0,W0,k0,m0,j0,J0,)20,*70,#0,P0

Vim puts a line in column 1 if:
- It starts with '#' (preprocessor directives), if 'cinkeys' contains '#0'.
- It starts with a label (a keyword followed by ':', other than "case" and

"default") and 'cinoptions' does not contain an 'L' entry with a positive
value.

- Any combination of indentations causes the line to have less than 0
indentation.

==
2. Indenting by expression indent-expression

The basics for using flexible indenting are explained in section 30.3 of the
user manual.

If you want to write your own indent file, it must set the 'indentexpr'
option. Setting the 'indentkeys' option is often useful.
See the $VIMRUNTIME/indent/README.txt file for hints.
See the $VIMRUNTIME/indent directory for examples.

indent.txt — 1634

REMARKS ABOUT SPECIFIC INDENT FILES

CLOJURE ft-clojure-indent clojure-indent

Clojure indentation differs somewhat from traditional Lisps, due in part to
the use of square and curly brackets, and otherwise by community convention.
These conventions are not universally followed, so the Clojure indent script
offers a few configuration options.

(If the current Vim does not include searchpairpos() , the indent script falls
back to normal 'lisp' indenting, and the following options are ignored.)

g:clojure_maxlines

Sets maximum scan distance of `searchpairpos()`. Larger values trade
performance for correctness when dealing with very long forms. A value of
0 will scan without limits. The default is 300.

g:clojure_fuzzy_indent
g:clojure_fuzzy_indent_patterns
g:clojure_fuzzy_indent_blacklist

The 'lispwords' option is a list of comma-separated words that mark special
forms whose subforms should be indented with two spaces.

For example:

(defn bad []
"Incorrect indentation")

(defn good []
"Correct indentation")

If you would like to specify 'lispwords' with a pattern instead, you can use
the fuzzy indent feature:

" Default
let g:clojure_fuzzy_indent = 1
let g:clojure_fuzzy_indent_patterns = ['^with', '^def', '^let']
let g:clojure_fuzzy_indent_blacklist =

\ ['-fn$', '\v^with-%(meta|out-str|loading-context)$']

g:clojure_fuzzy_indent_patterns and g:clojure_fuzzy_indent_blacklist are
lists of patterns that will be matched against the unqualified symbol at the
head of a list. This means that a pattern like `"^foo"` will match all these
candidates: `foobar`, `my.ns/foobar`, and `#'foobar`.

Each candidate word is tested for special treatment in this order:

1. Return true if word is literally in 'lispwords'
2. Return false if word matches a pattern in

g:clojure_fuzzy_indent_blacklist
3. Return true if word matches a pattern in

g:clojure_fuzzy_indent_patterns
4. Return false and indent normally otherwise

indent.txt — 1635

g:clojure_special_indent_words

Some forms in Clojure are indented such that every subform is indented by only
two spaces, regardless of 'lispwords'. If you have a custom construct that
should be indented in this idiosyncratic fashion, you can add your symbols to
the default list below.

" Default
let g:clojure_special_indent_words =

\ 'deftype,defrecord,reify,proxy,extend-type,extend-protocol,letfn'

g:clojure_align_multiline_strings

Align subsequent lines in multi-line strings to the column after the opening
quote, instead of the same column.

For example:

(def default
"Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.")

(def aligned
"Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.")

g:clojure_align_subforms

By default, parenthesized compound forms that look like function calls and
whose head subform is on its own line have subsequent subforms indented by
two spaces relative to the opening paren:

(foo
bar
baz)

Setting this option to `1` changes this behaviour so that all subforms are
aligned to the same column, emulating the default behaviour of
clojure-mode.el:

(foo
bar
baz)

FORTRAN ft-fortran-indent

Block if, select case, select type, select rank, where, forall, type,
interface, associate, block, enum, critical, and change team constructs are
indented. The indenting of subroutines, functions, modules, and program blocks
is optional. Comments, labeled statements, and continuation lines are indented
if the Fortran is in free source form, whereas they are not indented if the
Fortran is in fixed source form because of the left margin requirements. Hence

indent.txt — 1636

manual indent corrections will be necessary for labeled statements and
continuation lines when fixed source form is being used. For further
discussion of the method used for the detection of source format see
ft-fortran-syntax .

Do loops
All do loops are left unindented by default. Do loops can be unstructured in
Fortran with (possibly multiple) loops ending on a labeled executable
statement of almost arbitrary type. Correct indentation requires
compiler-quality parsing. Old code with do loops ending on labeled statements
of arbitrary type can be indented with elaborate programs such as Tidy.
Structured do/continue loops are also left unindented because continue
statements are used for purposes other than ending a do loop. Programs such
as Tidy can convert structured do/continue loops to the do/enddo form. Do
loops of the do/enddo variety can be indented. If you use only structured
loops of the do/enddo form, you should declare this by setting the
fortran_do_enddo variable in your .vimrc as follows

let fortran_do_enddo=1

in which case do loops will be indented. If all your loops are of do/enddo
type only in, say, .f90 files, then you should set a buffer flag with an
autocommand such as

au! BufRead,BufNewFile *.f90 let b:fortran_do_enddo=1

to get do loops indented in .f90 files and left alone in Fortran files with
other extensions such as .for.

Program units
Indenting of program units (subroutines, functions, modules, and program
blocks) can be increased by setting the variable fortran_indent_more and can
be decreased by setting the variable fortran_indent_less. These variables
can be set for all fortran files in your .vimrc as follows

let fortran_indent_less=1

A finer level of control can be achieved by setting the corresponding
buffer-local variable as follows

let b:fortran_indent_less=1

HTML ft-html-indent html-indent html-indenting

This is about variables you can set in your vimrc to customize HTML indenting.

You can set the indent for the first line after <script> and <style>
"blocktags" (default "zero"):

:let g:html_indent_script1 = "inc"
:let g:html_indent_style1 = "inc"

VALUE MEANING
"zero" zero indent
"auto" auto indent (same indent as the blocktag)
"inc" auto indent + one indent step

You can set the indent for attributes after an open <tag line:

indent.txt — 1637

:let g:html_indent_attribute = 1

VALUE MEANING
1 auto indent, one indent step more than <tag
2 auto indent, two indent steps (default)
> 2 auto indent, more indent steps

Many tags increase the indent for what follows per default (see "Add Indent
Tags" in the script). You can add further tags with:

:let g:html_indent_inctags = "html,body,head,tbody"

You can also remove such tags with:

:let g:html_indent_autotags = "th,td,tr,tfoot,thead"

Default value is empty for both variables. Note: the initial "inctags" are
only defined once per Vim session.

User variables are only read when the script is sourced. To enable your
changes during a session, without reloading the HTML file, you can manually
do:

:call HtmlIndent_CheckUserSettings()

Detail:
Calculation of indent inside "blocktags" with "alien" content:

BLOCKTAG INDENT EXPR WHEN APPLICABLE
<script> : {customizable} if first line of block

: cindent(v:lnum) if attributes empty or contain "java"
: -1 else (vbscript, tcl, ...)

<style> : {customizable} if first line of block
: GetCSSIndent() else

<!-- --> : -1

MATLAB ft-matlab-indent matlab-indent matlab-indenting

The setting Function indenting format in MATLAB Editor/Debugger Language
Preferences corresponds to:

:let g:MATLAB_function_indent = {0, 1 or 2 (default)}

Where 0 is for Classic, 1 for Indent nested functions and 2 for Indent all
functions.

PHP ft-php-indent php-indent php-indenting

NOTE: PHP files will be indented correctly only if PHP syntax is active.

If you are editing a file in Unix 'fileformat' and '\r' characters are present
before new lines, indentation won't proceed correctly ; you have to remove
those useless characters first with a command like:

:%s /\r$//g

Or, you can simply :let the variable PHP_removeCRwhenUnix to 1 and the
script will silently remove them when Vim loads a PHP file (at each BufRead).

OPTIONS:

indent.txt — 1638

PHP indenting can be altered in several ways by modifying the values of some
global variables:

php-comment PHP_autoformatcomment
To not enable auto-formatting of comments by default (if you want to use your
own 'formatoptions'):

:let g:PHP_autoformatcomment = 0

Else, 't' will be removed from the 'formatoptions' string and "qrowcb" will be
added, see fo-table for more information.

PHP_outdentSLComments
To add extra indentation to single-line comments:

:let g:PHP_outdentSLComments = N

With N being the number of 'shiftwidth' to add.

Only single-line comments will be affected such as:
Comment
// Comment
/* Comment */

PHP_default_indenting
To add extra indentation to every PHP lines with N being the number of
'shiftwidth' to add:

:let g:PHP_default_indenting = N

For example, with N = 1, this will give:

<?php
if (!isset($History_lst_sel))

if (!isset($History_lst_sel))
if (!isset($History_lst_sel)) {

$History_lst_sel=0;
} else

$foo="bar";

$command_hist = TRUE;
?>

(Notice the extra indentation between the PHP container markers and the code)

PHP_outdentphpescape
To indent PHP escape tags as the surrounding non-PHP code (only affects the
PHP escape tags):

:let g:PHP_outdentphpescape = 0

PHP_removeCRwhenUnix
To automatically remove '\r' characters when the 'fileformat' is set to Unix:

:let g:PHP_removeCRwhenUnix = 1

PHP_BracesAtCodeLevel
To indent braces at the same level than the code they contain:

:let g:PHP_BracesAtCodeLevel = 1

indent.txt — 1639

This will give the following result:
if ($foo)

{
foo();
}

Instead of:
if ($foo)
{

foo();
}

NOTE: Indenting will be a bit slower if this option is used because some
optimizations won't be available.

PHP_vintage_case_default_indent
To indent 'case:' and 'default:' statements in switch() blocks:

:let g:PHP_vintage_case_default_indent = 1

In PHP braces are not required inside 'case/default' blocks therefore 'case:'
and 'default:' are indented at the same level than the 'switch()' to avoid
meaningless indentation. You can use the above option to return to the
traditional way.

PHP_noArrowMatching
By default the indent script will indent multi-line chained calls by matching
the position of the '->':

$user_name_very_long->name()
->age()
->info();

You can revert to the classic way of indenting by setting this option to 1:
:let g:PHP_noArrowMatching = 1

You will obtain the following result:

$user_name_very_long->name()
->age()
->info();

PHP_IndentFunctionCallParameters
Extra indentation levels to add to parameters in multi-line function calls.

let g:PHP_IndentFunctionCallParameters = 1

Function call arguments will indent 1 extra level. For two-space indentation:

function call_the_thing(
$with_this,
$and_that

) {
$this->do_the_thing(

$with_this,
$and_that

);
}

indent.txt — 1640

PHP_IndentFunctionDeclarationParameters
Extra indentation levels to add to arguments in multi-line function
definitions.

let g:PHP_IndentFunctionDeclarationParameters = 1

Function arguments in declarations will indent 1 extra level. For two-space
indentation:

function call_the_thing(
$with_this,
$and_that

) {
$this->do_the_thing(
$with_this,
$and_that

);
}

PYTHON ft-python-indent

The amount of indent can be set with the `g:python_indent` Dictionary , which
needs to be created before adding the items:

let g:python_indent = {}
The examples given are the defaults. Note that the dictionary values are set
to an expression, so that you can change the value of 'shiftwidth' later
without having to update these values.

Indent after an open paren:
let g:python_indent.open_paren = 'shiftwidth() * 2'

Indent after a nested paren:
let g:python_indent.nested_paren = 'shiftwidth()'

Indent for a continuation line:
let g:python_indent.continue = 'shiftwidth() * 2'

By default, the closing paren on a multiline construct lines up under the first
non-whitespace character of the previous line.
If you prefer that it's lined up under the first character of the line that
starts the multiline construct, reset this key:

let g:python_indent.closed_paren_align_last_line = v:false

The method uses searchpair() to look back for unclosed parentheses. This
can sometimes be slow, thus it timeouts after 150 msec. If you notice the
indenting isn't correct, you can set a larger timeout in msec:

let g:python_indent.searchpair_timeout = 500

If looking back for unclosed parenthesis is still too slow, especially during
a copy-paste operation, or if you don't need indenting inside multi-line
parentheses, you can completely disable this feature:

let g:python_indent.disable_parentheses_indenting = 1

For backward compatibility, these variables are also supported:
g:pyindent_open_paren
g:pyindent_nested_paren
g:pyindent_continue
g:pyindent_searchpair_timeout
g:pyindent_disable_parentheses_indenting

indent.txt — 1641

R ft-r-indent

Function arguments are aligned if they span for multiple lines. If you prefer
do not have the arguments of functions aligned, put in your vimrc :

let r_indent_align_args = 0

All lines beginning with a comment character, #, get the same indentation
level of the normal R code. Users of Emacs/ESS may be used to have lines
beginning with a single # indented in the 40th column, ## indented as R code,
and ### not indented. If you prefer that lines beginning with comment
characters are aligned as they are by Emacs/ESS, put in your vimrc :

let r_indent_ess_comments = 1

If you prefer that lines beginning with a single # are aligned at a column
different from the 40th one, you should set a new value to the variable
r_indent_comment_column, as in the example below:

let r_indent_comment_column = 30

Any code after a line that ends with "<-" is indented. Emacs/ESS does not
indent the code if it is a top-level function. If you prefer a behavior like
Emacs/ESS one in this regard, put in your vimrc :

let r_indent_ess_compatible = 1

Below is an example of indentation with and without this option enabled:

r_indent_ess_compatible = 1 ### r_indent_ess_compatible = 0
foo <- foo <-

function(x) function(x)
{ {

paste(x) paste(x)
} }

The code will be indented after lines that match the pattern
`'\(&\||\|+\|-\|*\|/\|=\|\~\|%\|->\)\s*$'`. If you want indentation after
lines that match a different pattern, you should set the appropriate value of
`r_indent_op_pattern` in your vimrc .

SHELL ft-sh-indent

The amount of indent applied under various circumstances in a shell file can
be configured by setting the following keys in the Dictionary
b:sh_indent_defaults to a specific amount or to a Funcref that references a
function that will return the amount desired:

b:sh_indent_options['default'] Default amount of indent.

b:sh_indent_options['continuation-line']
Amount of indent to add to a continued line.

b:sh_indent_options['case-labels']
Amount of indent to add for case labels.
(not actually implemented)

b:sh_indent_options['case-statements']

indent.txt — 1642

Amount of indent to add for case statements.

b:sh_indent_options['case-breaks']
Amount of indent to add (or more likely
remove) for case breaks.

VERILOG ft-verilog-indent

General block statements such as if, for, case, always, initial, function,
specify and begin, etc., are indented. The module block statements (first
level blocks) are not indented by default. you can turn on the indent with
setting a variable in the .vimrc as follows:

let b:verilog_indent_modules = 1

then the module blocks will be indented. To stop this, remove the variable:

:unlet b:verilog_indent_modules

To set the variable only for Verilog file. The following statements can be
used:

au BufReadPost * if exists("b:current_syntax")
au BufReadPost * if b:current_syntax == "verilog"
au BufReadPost * let b:verilog_indent_modules = 1
au BufReadPost * endif
au BufReadPost * endif

Furthermore, setting the variable b:verilog_indent_width to change the
indenting width (default is 'shiftwidth'):

let b:verilog_indent_width = 4
let b:verilog_indent_width = shiftwidth() * 2

In addition, you can turn the verbose mode for debug issue:

let b:verilog_indent_verbose = 1

Make sure to do ":set cmdheight=2" first to allow the display of the message.

VHDL ft-vhdl-indent

Alignment of generic/port mapping statements are performed by default. This
causes the following alignment example:

ENTITY sync IS
PORT (

clk : IN STD_LOGIC;
reset_n : IN STD_LOGIC;
data_input : IN STD_LOGIC;
data_out : OUT STD_LOGIC

);
END ENTITY sync;

To turn this off, add

let g:vhdl_indent_genportmap = 0

to the .vimrc file, which causes the previous alignment example to change:

indent.txt — 1643

ENTITY sync IS
PORT (

clk : IN STD_LOGIC;
reset_n : IN STD_LOGIC;
data_input : IN STD_LOGIC;
data_out : OUT STD_LOGIC

);
END ENTITY sync;

--

Alignment of right-hand side assignment "<=" statements are performed by
default. This causes the following alignment example:

sig_out <= (bus_a(1) AND
(sig_b OR sig_c)) OR
(bus_a(0) AND sig_d);

To turn this off, add

let g:vhdl_indent_rhsassign = 0

to the .vimrc file, which causes the previous alignment example to change:

sig_out <= (bus_a(1) AND
(sig_b OR sig_c)) OR
(bus_a(0) AND sig_d);

--

Full-line comments (lines that begin with "--") are indented to be aligned with
the very previous line's comment, PROVIDED that a whitespace follows after
"--".

For example:

sig_a <= sig_b; -- start of a comment
-- continuation of the comment
-- more of the same comment

While in Insert mode, after typing "-- " (note the space " "), hitting CTRL-F
will align the current "-- " with the previous line's "--".

If the very previous line does not contain "--", THEN the full-line comment
will be aligned with the start of the next non-blank line that is NOT a
full-line comment.

Indenting the following code:

sig_c <= sig_d; -- comment 0
-- comment 1

-- comment 2
--debug_code:
--PROCESS(debug_in)

--BEGIN
-- FOR i IN 15 DOWNTO 0 LOOP
-- debug_out(8*i+7 DOWNTO 8*i) <= debug_in(15-i);

-- END LOOP;
--END PROCESS debug_code;

indent.txt — 1644

-- comment 3
sig_e <= sig_f; -- comment 4

-- comment 5

results in:

sig_c <= sig_d; -- comment 0
-- comment 1
-- comment 2

--debug_code:
--PROCESS(debug_in)
--BEGIN
-- FOR i IN 15 DOWNTO 0 LOOP
-- debug_out(8*i+7 DOWNTO 8*i) <= debug_in(15-i);
-- END LOOP;
--END PROCESS debug_code;

-- comment 3
sig_e <= sig_f; -- comment 4

-- comment 5

Notice that "--debug_code:" does not align with "-- comment 2"
because there is no whitespace that follows after "--" in "--debug_code:".

Given the dynamic nature of indenting comments, indenting should be done TWICE.
On the first pass, code will be indented. On the second pass, full-line
comments will be indented according to the correctly indented code.

VIM ft-vim-indent
g:vim_indent

Vim scripts indentation can be configured with the `g:vim_indent` dictionary
variable. It supports 3 keys, `line_continuation`, `more_in_bracket_block`,
and `searchpair_timeout`.
`line_continuation` expects a number which will be added to the indent level of
a continuation line starting with a backslash, and defaults to
`shiftwidth() * 3` . It also accepts a string, which is evaluated at runtime.
`more_in_bracket_block` expects a boolean value; when on, an extra
`shiftwidth()` is added inside blocks surrounded with brackets. It defaults to
`v:false`.
`searchpair_timeout` expects a number which will be passed to `searchpair()` as
a timeout. Increasing the value might give more accurate results, but also
causes the indentation to take more time. It defaults to 100 (milliseconds).

Example of configuration:

let g:vim_indent = #{
\ line_continuation: shiftwidth() * 3,
\ more_in_bracket_block: v:false,
\ searchpair_timeout: 100,
\ }

g:vim_indent_cont
This variable is equivalent to `g:vim_indent.line_continuation`.
It's supported for backward compatibility.

YAML ft-yaml-indent

By default, the yaml indent script does not try to detect multiline scalars.

indent.txt — 1645

If you want to enable this, set the following variable:

let g:yaml_indent_multiline_scalar = 1

indent.txt — 1646

syntax.txt For Vim version 9.1. Last change: 2024 Mar 10

VIM REFERENCE MANUAL by Bram Moolenaar

Syntax highlighting syntax syntax-highlighting coloring

Syntax highlighting enables Vim to show parts of the text in another font or
color. Those parts can be specific keywords or text matching a pattern. Vim
doesn't parse the whole file (to keep it fast), so the highlighting has its
limitations. Lexical highlighting might be a better name, but since everybody
calls it syntax highlighting we'll stick with that.

Vim supports syntax highlighting on all terminals. But since most ordinary
terminals have very limited highlighting possibilities, it works best in the
GUI version, gvim.

In the User Manual:
usr_06.txt introduces syntax highlighting.
usr_44.txt introduces writing a syntax file.

1. Quick start :syn-qstart
2. Syntax files :syn-files
3. Syntax loading procedure syntax-loading
4. Converting to HTML 2html.vim
5. Syntax file remarks :syn-file-remarks
6. Defining a syntax :syn-define
7. :syntax arguments :syn-arguments
8. Syntax patterns :syn-pattern
9. Syntax clusters :syn-cluster
10. Including syntax files :syn-include
11. Synchronizing :syn-sync
12. Listing syntax items :syntax
13. Colorschemes color-schemes
14. Highlight command :highlight
15. Linking groups :highlight-link
16. Cleaning up :syn-clear
17. Highlighting tags tag-highlight
18. Window-local syntax :ownsyntax
19. Color xterms xterm-color
20. When syntax is slow :syntime

{Vi does not have any of these commands}

Syntax highlighting is not available when the +syntax feature has been
disabled at compile time.

==
1. Quick start :syn-qstart

:syn-enable :syntax-enable
This command switches on syntax highlighting:

:syntax enable

What this command actually does is to execute the command
:source $VIMRUNTIME/syntax/syntax.vim

If the VIM environment variable is not set, Vim will try to find

syntax.txt — 1647

the path in another way (see $VIMRUNTIME). Usually this works just
fine. If it doesn't, try setting the VIM environment variable to the
directory where the Vim stuff is located. For example, if your syntax files
are in the "/usr/vim/vim82/syntax" directory, set $VIMRUNTIME to
"/usr/vim/vim82". You must do this in the shell, before starting Vim.
This command also sources the menu.vim script when the GUI is running or
will start soon. See 'go-M' about avoiding that.

:syn-on :syntax-on
The `:syntax enable` command will keep most of your current color settings.
This allows using `:highlight` commands to set your preferred colors before or
after using this command. If you want Vim to overrule your settings with the
defaults, use:

:syntax on

:hi-normal :highlight-normal
If you are running in the GUI, you can get white text on a black background
with:

:highlight Normal guibg=Black guifg=White
For a color terminal see :hi-normal-cterm .
For setting up your own colors syntax highlighting see syncolor .

NOTE: The syntax files on MS-Windows have lines that end in <CR><NL>.
The files for Unix end in <NL>. This means you should use the right type of
file for your system. Although on MS-Windows the right format is
automatically selected if the 'fileformats' option is not empty.

NOTE: When using reverse video ("gvim -fg white -bg black"), the default value
of 'background' will not be set until the GUI window is opened, which is after
reading the gvimrc . This will cause the wrong default highlighting to be
used. To set the default value of 'background' before switching on
highlighting, include the ":gui" command in the gvimrc :

:gui " open window and set default for 'background'
:syntax on " start highlighting, use 'background' to set colors

NOTE: Using ":gui" in the gvimrc means that "gvim -f" won't start in the
foreground! Use ":gui -f" then.

g:syntax_on
You can toggle the syntax on/off with this command:

:if exists("g:syntax_on") | syntax off | else | syntax enable | endif

To put this into a mapping, you can use:
:map <F7> :if exists("g:syntax_on") <Bar>

\ syntax off <Bar>
\ else <Bar>
\ syntax enable <Bar>
\ endif <CR>

[using the <> notation, type this literally]

Details:
The ":syntax" commands are implemented by sourcing a file. To see exactly how
this works, look in the file:

command file
:syntax enable $VIMRUNTIME/syntax/syntax.vim
:syntax on $VIMRUNTIME/syntax/syntax.vim
:syntax manual $VIMRUNTIME/syntax/manual.vim
:syntax off $VIMRUNTIME/syntax/nosyntax.vim

Also see syntax-loading .

syntax.txt — 1648

NOTE: If displaying long lines is slow and switching off syntax highlighting
makes it fast, consider setting the 'synmaxcol' option to a lower value.

==
2. Syntax files :syn-files

The syntax and highlighting commands for one language are normally stored in
a syntax file. The name convention is: "{name}.vim". Where {name} is the
name of the language, or an abbreviation (to fit the name in 8.3 characters,
a requirement in case the file is used on a DOS filesystem).
Examples:

c.vim perl.vim java.vim html.vim
cpp.vim sh.vim csh.vim

The syntax file can contain any Ex commands, just like a vimrc file. But
the idea is that only commands for a specific language are included. When a
language is a superset of another language, it may include the other one,
for example, the cpp.vim file could include the c.vim file:

:so $VIMRUNTIME/syntax/c.vim

The .vim files are normally loaded with an autocommand. For example:
:au Syntax c runtime! syntax/c.vim
:au Syntax cpp runtime! syntax/cpp.vim

These commands are normally in the file $VIMRUNTIME/syntax/synload.vim.

MAKING YOUR OWN SYNTAX FILES mysyntaxfile

When you create your own syntax files, and you want to have Vim use these
automatically with ":syntax enable", do this:

1. Create your user runtime directory. You would normally use the first item
of the 'runtimepath' option. Example for Unix:

mkdir ~/.vim

2. Create a directory in there called "syntax". For Unix:
mkdir ~/.vim/syntax

3. Write the Vim syntax file. Or download one from the internet. Then write
it in your syntax directory. For example, for the "mine" syntax:

:w ~/.vim/syntax/mine.vim

Now you can start using your syntax file manually:
:set syntax=mine

You don't have to exit Vim to use this.

If you also want Vim to detect the type of file, see new-filetype .

If you are setting up a system with many users and you don't want each user
to add the same syntax file, you can use another directory from 'runtimepath'.

ADDING TO AN EXISTING SYNTAX FILE mysyntaxfile-add

If you are mostly satisfied with an existing syntax file, but would like to
add a few items or change the highlighting, follow these steps:

1. Create your user directory from 'runtimepath', see above.

syntax.txt — 1649

2. Create a directory in there called "after/syntax". For Unix:
mkdir ~/.vim/after
mkdir ~/.vim/after/syntax

3. Write a Vim script that contains the commands you want to use. For
example, to change the colors for the C syntax:

highlight cComment ctermfg=Green guifg=Green

4. Write that file in the "after/syntax" directory. Use the name of the
syntax, with ".vim" added. For our C syntax:

:w ~/.vim/after/syntax/c.vim

That's it. The next time you edit a C file the Comment color will be
different. You don't even have to restart Vim.

If you have multiple files, you can use the filetype as the directory name.
All the "*.vim" files in this directory will be used, for example:

~/.vim/after/syntax/c/one.vim
~/.vim/after/syntax/c/two.vim

REPLACING AN EXISTING SYNTAX FILE mysyntaxfile-replace

If you don't like a distributed syntax file, or you have downloaded a new
version, follow the same steps as for mysyntaxfile above. Just make sure
that you write the syntax file in a directory that is early in 'runtimepath'.
Vim will only load the first syntax file found, assuming that it sets
b:current_syntax.

NAMING CONVENTIONS group-name {group-name} E669 W18

A syntax group name is to be used for syntax items that match the same kind of
thing. These are then linked to a highlight group that specifies the color.
A syntax group name doesn't specify any color or attributes itself.

The name for a highlight or syntax group must consist of ASCII letters,
digits, underscores, dots, or hyphens. As a regexp: "[a-zA-Z0-9_.-]*".
However, Vim does not give an error when using other characters. The maximum
length of a group name is about 200 bytes. E1249

To be able to allow each user to pick their favorite set of colors, there must
be preferred names for highlight groups that are common for many languages.
These are the suggested group names (if syntax highlighting works properly
you can see the actual color, except for "Ignore"):

*Comment any comment

*Constant any constant
String a string constant: "this is a string"
Character a character constant: 'c', '\n'
Number a number constant: 234, 0xff
Boolean a boolean constant: TRUE, false
Float a floating point constant: 2.3e10

*Identifier any variable name
Function function name (also: methods for classes)

*Statement any statement
Conditional if, then, else, endif, switch, etc.

syntax.txt — 1650

Repeat for, do, while, etc.
Label case, default, etc.
Operator "sizeof", "+", "*", etc.
Keyword any other keyword
Exception try, catch, throw

*PreProc generic Preprocessor
Include preprocessor #include
Define preprocessor #define
Macro same as Define
PreCondit preprocessor #if, #else, #endif, etc.

*Type int, long, char, etc.
StorageClass static, register, volatile, etc.
Structure struct, union, enum, etc.
Typedef A typedef

*Special any special symbol
SpecialChar special character in a constant
Tag you can use CTRL-] on this
Delimiter character that needs attention
SpecialComment special things inside a comment
Debug debugging statements

*Underlined text that stands out, HTML links

*Ignore left blank, hidden hl-Ignore

*Error any erroneous construct

*Todo anything that needs extra attention; mostly the
keywords TODO FIXME and XXX

*Added added line in a diff
*Changed changed line in a diff
*Removed removed line in a diff

The names marked with * are the preferred groups; the others are minor groups.
For the preferred groups, the "syntax.vim" file contains default highlighting.
The minor groups are linked to the preferred groups, so they get the same
highlighting. You can override these defaults by using ":highlight" commands
after sourcing the "syntax.vim" file.

Note that highlight group names are not case sensitive. "String" and "string"
can be used for the same group.

The following names are reserved and cannot be used as a group name:
NONE ALL ALLBUT contains contained

hl-Ignore
When using the Ignore group, you may also consider using the conceal
mechanism. See conceal .

==
3. Syntax loading procedure syntax-loading

This explains the details that happen when the command ":syntax enable" is
issued. When Vim initializes itself, it finds out where the runtime files are
located. This is used here as the variable $VIMRUNTIME .

syntax.txt — 1651

":syntax enable" and ":syntax on" do the following:

Source $VIMRUNTIME/syntax/syntax.vim
|
+- Clear out any old syntax by sourcing $VIMRUNTIME/syntax/nosyntax.vim
|
+- Source first syntax/synload.vim in 'runtimepath'
| |
| +- Setup the colors for syntax highlighting. If a color scheme is
| | defined it is loaded again with ":colors {name}". Otherwise
| | ":runtime! syntax/syncolor.vim" is used. ":syntax on" overrules
| | existing colors, ":syntax enable" only sets groups that weren't
| | set yet.
| |
| +- Set up syntax autocmds to load the appropriate syntax file when
| | the 'syntax' option is set. synload-1
| |
| +- Source the user's optional file, from the mysyntaxfile variable.
| This is for backwards compatibility with Vim 5.x only. synload-2
|
+- Do ":filetype on", which does ":runtime! filetype.vim". It loads any
| filetype.vim files found. It should always Source
| $VIMRUNTIME/filetype.vim, which does the following.
| |
| +- Install autocmds based on suffix to set the 'filetype' option
| | This is where the connection between file name and file type is
| | made for known file types. synload-3
| |
| +- Source the user's optional file, from the myfiletypefile
| | variable. This is for backwards compatibility with Vim 5.x only.
| | synload-4
| |
| +- Install one autocommand which sources scripts.vim when no file
| | type was detected yet. synload-5
| |
| +- Source $VIMRUNTIME/menu.vim, to setup the Syntax menu. menu.vim
|
+- Install a FileType autocommand to set the 'syntax' option when a file
| type has been detected. synload-6
|
+- Execute syntax autocommands to start syntax highlighting for each

already loaded buffer.

Upon loading a file, Vim finds the relevant syntax file as follows:

Loading the file triggers the BufReadPost autocommands.
|
+- If there is a match with one of the autocommands from synload-3
| (known file types) or synload-4 (user's file types), the 'filetype'
| option is set to the file type.
|
+- The autocommand at synload-5 is triggered. If the file type was not
| found yet, then scripts.vim is searched for in 'runtimepath'. This
| should always load $VIMRUNTIME/scripts.vim, which does the following.
| |
| +- Source the user's optional file, from the myscriptsfile
| | variable. This is for backwards compatibility with Vim 5.x only.
| |
| +- If the file type is still unknown, check the contents of the file,

syntax.txt — 1652

| again with checks like "getline(1) =~ pattern" as to whether the
| file type can be recognized, and set 'filetype'.
|
+- When the file type was determined and 'filetype' was set, this
| triggers the FileType autocommand synload-6 above. It sets
| 'syntax' to the determined file type.
|
+- When the 'syntax' option was set above, this triggers an autocommand
| from synload-1 (and synload-2). This find the main syntax file in
| 'runtimepath', with this command:
| runtime! syntax/<name>.vim
|
+- Any other user installed FileType or Syntax autocommands are

triggered. This can be used to change the highlighting for a specific
syntax.

==
4. Conversion to HTML 2html.vim convert-to-HTML

2html is not a syntax file itself, but a script that converts the current
window into HTML. Vim opens a new window in which it builds the HTML file.

After you save the resulting file, you can view it with any browser. The
colors should be exactly the same as you see them in Vim. With
g:html_line_ids you can jump to specific lines by adding (for example) #L123

or #123 to the end of the URL in your browser's address bar. And with
g:html_dynamic_folds enabled, you can show or hide the text that is folded

in Vim.

You are not supposed to set the 'filetype' or 'syntax' option to "2html"!
Source the script to convert the current file:

:runtime! syntax/2html.vim

Many variables affect the output of 2html.vim; see below. Any of the on/off
options listed below can be enabled or disabled by setting them explicitly to
the desired value, or restored to their default by removing the variable using
:unlet .

Remarks:
- Some truly ancient browsers may not show the background colors.
- From most browsers you can also print the file (in color)!
- The latest TOhtml may actually work with older versions of Vim, but some

features such as conceal support will not function, and the colors may be
incorrect for an old Vim without GUI support compiled in.

Here is an example how to run the script over all .c and .h files from a
Unix shell:

for f in *.[ch]; do gvim -f +"syn on" +"run! syntax/2html.vim" +"wq" +"q" $f; done

g:html_start_line g:html_end_line
To restrict the conversion to a range of lines, use a range with the :TOhtml
command below, or set "g:html_start_line" and "g:html_end_line" to the first
and last line to be converted. Example, using the last set Visual area:

:let g:html_start_line = line("'<")
:let g:html_end_line = line("'>")
:runtime! syntax/2html.vim

:TOhtml

syntax.txt — 1653

:[range]TOhtml The ":TOhtml" command is defined in a standard plugin.
This command will source 2html.vim for you. When a
range is given, this command sets g:html_start_line
and g:html_end_line to the start and end of the
range, respectively. Default range is the entire
buffer.

If the current window is part of a diff , unless
g:html_diff_one_file is set, :TOhtml will convert

all windows which are part of the diff in the current
tab and place them side-by-side in a <table> element
in the generated HTML. With g:html_line_ids you can
jump to lines in specific windows with (for example)
#W1L42 for line 42 in the first diffed window, or
#W3L87 for line 87 in the third.

Examples:

:10,40TOhtml " convert lines 10-40 to html
:'<,'>TOhtml " convert current/last visual selection
:TOhtml " convert entire buffer

g:html_diff_one_file
Default: 0.
When 0, and using :TOhtml all windows involved in a diff in the current tab
page are converted to HTML and placed side-by-side in a <table> element. When
1, only the current buffer is converted.
Example:

let g:html_diff_one_file = 1

g:html_whole_filler
Default: 0.
When 0, if g:html_diff_one_file is 1, a sequence of more than 3 filler lines
is displayed as three lines with the middle line mentioning the total number
of inserted lines.
When 1, always display all inserted lines as if g:html_diff_one_file were
not set.

:let g:html_whole_filler = 1

TOhtml-performance g:html_no_progress
Default: 0.
When 0, display a progress bar in the statusline for each major step in the
2html.vim conversion process.
When 1, do not display the progress bar. This offers a minor speed improvement
but you won't have any idea how much longer the conversion might take; for big
files it can take a long time!
Example:

let g:html_no_progress = 1

You can obtain better performance improvements by also instructing Vim to not
run interactively, so that too much time is not taken to redraw as the script
moves through the buffer, switches windows, and the like:

vim -E -s -c "let g:html_no_progress=1" -c "syntax on" -c "set ft=c" -c "runtime syntax/2html.vim" -cwqa myfile.c

Note that the -s flag prevents loading your .vimrc and any plugins, so you
need to explicitly source/enable anything that will affect the HTML

syntax.txt — 1654

conversion. See -E and -s-ex for details. It is probably best to create a
script to replace all the -c commands and use it with the -u flag instead of
specifying each command separately.

hl-TOhtmlProgress TOhtml-progress-color
When displayed, the progress bar will show colored boxes along the statusline
as the HTML conversion proceeds. By default, the background color as the
current "DiffDelete" highlight group is used. If "DiffDelete" and "StatusLine"
have the same background color, TOhtml will automatically adjust the color to
differ. If you do not like the automatically selected colors, you can define
your own highlight colors for the progress bar. Example:

hi TOhtmlProgress guifg=#c0ffee ctermbg=7

g:html_number_lines
Default: Current 'number' setting.
When 0, buffer text is displayed in the generated HTML without line numbering.
When 1, a column of line numbers is added to the generated HTML with the same
highlighting as the line number column in Vim (hl-LineNr).
Force line numbers even if 'number' is not set:

:let g:html_number_lines = 1
Force to omit the line numbers:

:let g:html_number_lines = 0
Go back to the default to use 'number' by deleting the variable:

:unlet g:html_number_lines

g:html_line_ids
Default: 1 if g:html_number_lines is set, 0 otherwise.
When 1, adds an HTML id attribute to each line number, or to an empty
inserted for that purpose if no line numbers are shown. This ID attribute
takes the form of L123 for single-buffer HTML pages, or W2L123 for diff-view
pages, and is used to jump to a specific line (in a specific window of a diff
view). Javascript is inserted to open any closed dynamic folds
(g:html_dynamic_folds) containing the specified line before jumping. The
javascript also allows omitting the window ID in the url, and the leading L.
For example:

page.html#L123 jumps to line 123 in a single-buffer file
page.html#123 does the same

diff.html#W1L42 jumps to line 42 in the first window in a diff
diff.html#42 does the same

g:html_use_css
Default: 1.
When 1, generate valid HTML 5 markup with CSS styling, supported in all modern
browsers and many old browsers.
When 0, generate tags and similar outdated markup. This is not
recommended but it may work better in really old browsers, email clients,
forum posts, and similar situations where basic CSS support is unavailable.
Example:

:let g:html_use_css = 0

g:html_ignore_conceal
Default: 0.
When 0, concealed text is removed from the HTML and replaced with a character
from :syn-cchar or 'listchars' as appropriate, depending on the current
value of 'conceallevel'.
When 1, include all text from the buffer in the generated HTML, even if it is
conceal ed.

syntax.txt — 1655

Either of the following commands will ensure that all text in the buffer is
included in the generated HTML (unless it is folded):

:let g:html_ignore_conceal = 1
:setl conceallevel=0

g:html_ignore_folding
Default: 0.
When 0, text in a closed fold is replaced by the text shown for the fold in
Vim (fold-foldtext). See g:html_dynamic_folds if you also want to allow
the user to expand the fold as in Vim to see the text inside.
When 1, include all text from the buffer in the generated HTML; whether the
text is in a fold has no impact at all. g:html_dynamic_folds has no effect.

Either of these commands will ensure that all text in the buffer is included
in the generated HTML (unless it is concealed):

zR
:let g:html_ignore_folding = 1

g:html_dynamic_folds
Default: 0.
When 0, text in a closed fold is not included at all in the generated HTML.
When 1, generate javascript to open a fold and show the text within, just like
in Vim.

Setting this variable to 1 causes 2html.vim to always use CSS for styling,
regardless of what g:html_use_css is set to.

This variable is ignored when g:html_ignore_folding is set.

:let g:html_dynamic_folds = 1

g:html_no_foldcolumn
Default: 0.
When 0, if g:html_dynamic_folds is 1, generate a column of text similar to
Vim's foldcolumn (fold-foldcolumn) the user can click on to toggle folds
open or closed. The minimum width of the generated text column is the current
'foldcolumn' setting.
When 1, do not generate this column; instead, hovering the mouse cursor over
folded text will open the fold as if g:html_hover_unfold were set.

:let g:html_no_foldcolumn = 1

TOhtml-uncopyable-text g:html_prevent_copy
Default: Empty string.
This option prevents certain regions of the generated HTML from being copied,
when you select all text in document rendered in a browser and copy it. Useful
for allowing users to copy-paste only the source text even if a fold column or
line numbers are shown in the generated content. Specify regions to be
affected in this way as follows:

f: fold column
n: line numbers (also within fold text)
t: fold text
d: diff filler

Example, to make the fold column and line numbers uncopyable:
:let g:html_prevent_copy = "fn"

The method used to prevent copying in the generated page depends on the value
of g:html_use_input_for_pc .

syntax.txt — 1656

g:html_use_input_for_pc
Default: "none"
If g:html_prevent_copy is non-empty, then:

When "all", read-only <input> elements are used in place of normal text for
uncopyable regions. In some browsers, especially older browsers, after
selecting an entire page and copying the selection, the <input> tags are not
pasted with the page text. If g:html_no_invalid is 0, the <input> tags have
invalid type; this works in more browsers, but the page will not validate.
Note: This method does NOT work in recent versions of Chrome and equivalent
browsers; the <input> tags get pasted with the text.

When "fallback" (default value), the same <input> elements are generated for
older browsers, but newer browsers (detected by CSS feature query) hide the
<input> elements and instead use generated content in an ::before pseudoelement
to display the uncopyable text. This method should work with the largest
number of browsers, both old and new.

When "none", the <input> elements are not generated at all. Only the
generated-content method is used. This means that old browsers, notably
Internet Explorer, will either copy the text intended not to be copyable, or
the non-copyable text may not appear at all. However, this is the most
standards-based method, and there will be much less markup.

g:html_no_invalid
Default: 0.
When 0, if g:html_prevent_copy is non-empty and g:html_use_input_for_pc is
not "none", an invalid attribute is intentionally inserted into the <input>
element for the uncopyable areas. This prevents pasting the <input> elements
in some applications. Specifically, some versions of Microsoft Word will not
paste the <input> elements if they contain this invalid attribute. When 1, no
invalid markup is inserted, and the generated page should validate. However,
<input> elements may be pasted into some applications and can be difficult to
remove afterward.

g:html_hover_unfold
Default: 0.
When 0, the only way to open a fold generated by 2html.vim with
g:html_dynamic_folds set, is to click on the generated fold column.

When 1, use CSS 2.0 to allow the user to open a fold by moving the mouse
cursor over the displayed fold text. This is useful to allow users with
disabled javascript to view the folded text.

Note that old browsers (notably Internet Explorer 6) will not support this
feature. Browser-specific markup for IE6 is included to fall back to the
normal CSS1 styling so that the folds show up correctly for this browser, but
they will not be openable without a foldcolumn.

:let g:html_hover_unfold = 1

g:html_id_expr
Default: ""
Dynamic folding and jumping to line IDs rely on unique IDs within the document
to work. If generated HTML is copied into a larger document, these IDs are no
longer guaranteed to be unique. Set g:html_id_expr to an expression Vim can
evaluate to get a unique string to append to each ID used in a given document,
so that the full IDs will be unique even when combined with other content in a
larger HTML document. Example, to append _ and the buffer number to each ID:

syntax.txt — 1657

:let g:html_id_expr = '"_" .. bufnr("%")'

To append a string "_mystring" to the end of each ID:

:let g:html_id_expr = '"_mystring"'

Note: When converting a diff view to HTML, the expression will only be
evaluated for the first window in the diff, and the result used for all the
windows.

TOhtml-wrap-text g:html_pre_wrap
Default: Current 'wrap' setting.
When 0, if g:html_no_pre is 0 or unset, the text in the generated HTML does
not wrap at the edge of the browser window.
When 1, if g:html_use_css is 1, the CSS 2.0 "white-space:pre-wrap" value is
used, causing the text to wrap at whitespace at the edge of the browser
window.
Explicitly enable text wrapping:

:let g:html_pre_wrap = 1
Explicitly disable wrapping:

:let g:html_pre_wrap = 0
Go back to default, determine wrapping from 'wrap' setting:

:unlet g:html_pre_wrap

g:html_no_pre
Default: 0.
When 0, buffer text in the generated HTML is surrounded by <pre>...</pre>
tags. Series of whitespace is shown as in Vim without special markup, and tab
characters can be included literally (see g:html_expand_tabs).
When 1 (not recommended), the <pre> tags are omitted, and a plain <div> is
used instead. Whitespace is replaced by a series of character
references, and
 is used to end each line. This is another way to allow
text in the generated HTML is wrap (see g:html_pre_wrap) which also works in
old browsers, but may cause noticeable differences between Vim's display and
the rendered page generated by 2html.vim.

:let g:html_no_pre = 1

g:html_no_doc
Default: 0.
When 1 it doesn't generate a full HTML document with a DOCTYPE, <head>,
<body>, etc. If g:html_use_css is enabled (the default) you'll have to
define the CSS manually. The g:html_dynamic_folds and g:html_line_ids
settings (off by default) also insert some JavaScript.

g:html_no_links
Default: 0.
Don't generate <a> tags for text that looks like an URL.

g:html_no_modeline
Default: 0.
Don't generate a modeline disabling folding.

g:html_expand_tabs
Default: 0 if 'tabstop' is 8, 'expandtab' is 0, 'vartabstop' is not in use,

and no fold column or line numbers occur in the generated HTML;
1 otherwise.

When 1, <Tab> characters in the buffer text are replaced with an appropriate
number of space characters, or references if g:html_no_pre is 1.

syntax.txt — 1658

When 0, if g:html_no_pre is 0 or unset, <Tab> characters in the buffer text
are included as-is in the generated HTML. This is useful for when you want to
allow copy and paste from a browser without losing the actual whitespace in
the source document. Note that this can easily break text alignment and
indentation in the HTML, unless set by default.

Force 2html.vim to keep <Tab> characters:
:let g:html_expand_tabs = 0

Force tabs to be expanded:
:let g:html_expand_tabs = 1

TOhtml-encoding-detect TOhtml-encoding
It is highly recommended to set your desired encoding with
g:html_use_encoding for any content which will be placed on a web server.

If you do not specify an encoding, 2html.vim uses the preferred IANA name
for the current value of 'fileencoding' if set, or 'encoding' if not.
'encoding' is always used for certain 'buftype' values. 'fileencoding' will be
set to match the chosen document encoding.

Automatic detection works for the encodings mentioned specifically by name in
encoding-names , but TOhtml will only automatically use those encodings with

wide browser support. However, you can override this to support specific
encodings that may not be automatically detected by default (see options
below). See http://www.iana.org/assignments/character-sets for the IANA names.

Note: By default all Unicode encodings are converted to UTF-8 with no BOM in
the generated HTML, as recommended by W3C:

http://www.w3.org/International/questions/qa-choosing-encodings
http://www.w3.org/International/questions/qa-byte-order-mark

g:html_use_encoding
Default: none, uses IANA name for current 'fileencoding' as above.
To overrule all automatic charset detection, set g:html_use_encoding to the
name of the charset to be used. It is recommended to set this variable to
something widely supported, like UTF-8, for anything you will be hosting on a
webserver:

:let g:html_use_encoding = "UTF-8"
You can also use this option to omit the line that specifies the charset
entirely, by setting g:html_use_encoding to an empty string (NOT recommended):

:let g:html_use_encoding = ""
To go back to the automatic mechanism, delete the g:html_use_encoding
variable:

:unlet g:html_use_encoding

g:html_encoding_override
Default: none, autoload/tohtml.vim contains default conversions for encodings

mentioned by name at encoding-names .
This option allows 2html.vim to detect the correct 'fileencoding' when you
specify an encoding with g:html_use_encoding which is not in the default
list of conversions.

This is a dictionary of charset-encoding pairs that will replace existing
pairs automatically detected by TOhtml, or supplement with new pairs.

Detect the HTML charset "windows-1252" as the encoding "8bit-cp1252":
:let g:html_encoding_override = {'windows-1252': '8bit-cp1252'}

syntax.txt — 1659

http://www.iana.org/assignments/character-sets
http://www.w3.org/International/questions/qa-choosing-encodings
http://www.w3.org/International/questions/qa-byte-order-mark

g:html_charset_override
Default: none, autoload/tohtml.vim contains default conversions for encodings

mentioned by name at encoding-names and which have wide
browser support.

This option allows 2html.vim to detect the HTML charset for any
'fileencoding' or 'encoding' which is not detected automatically. You can also
use it to override specific existing encoding-charset pairs. For example,
TOhtml will by default use UTF-8 for all Unicode/UCS encodings. To use UTF-16
and UTF-32 instead, use:

:let g:html_charset_override = {'ucs-4': 'UTF-32', 'utf-16': 'UTF-16'}

Note that documents encoded in either UTF-32 or UTF-16 have known
compatibility problems with some major browsers.

g:html_font
Default: "monospace"
You can specify the font or fonts used in the converted document using
g:html_font. If this option is set to a string, then the value will be
surrounded with single quotes. If this option is set to a list then each list
item is surrounded by single quotes and the list is joined with commas. Either
way, "monospace" is added as the fallback generic family name and the entire
result used as the font family (using CSS) or font face (if not using CSS).
Examples:

" font-family: 'Consolas', monospace;
:let g:html_font = "Consolas"

" font-family: 'DejaVu Sans Mono', 'Consolas', monospace;
:let g:html_font = ["DejaVu Sans Mono", "Consolas"]

convert-to-XML convert-to-XHTML g:html_use_xhtml
Default: 0.
When 0, generate standard HTML 4.01 (strict when possible).
When 1, generate XHTML 1.0 instead (XML compliant HTML).

:let g:html_use_xhtml = 1

==
5. Syntax file remarks :syn-file-remarks

b:current_syntax-variable
Vim stores the name of the syntax that has been loaded in the
"b:current_syntax" variable. You can use this if you want to load other
settings, depending on which syntax is active. Example:

:au BufReadPost * if b:current_syntax == "csh"
:au BufReadPost * do-some-things
:au BufReadPost * endif

ABEL abel.vim ft-abel-syntax

ABEL highlighting provides some user-defined options. To enable them, assign
any value to the respective variable. Example:

:let abel_obsolete_ok=1
To disable them use ":unlet". Example:

:unlet abel_obsolete_ok

Variable Highlight
abel_obsolete_ok obsolete keywords are statements, not errors

syntax.txt — 1660

abel_cpp_comments_illegal do not interpret '//' as inline comment leader

ADA

See ft-ada-syntax

ANT ant.vim ft-ant-syntax

The ant syntax file provides syntax highlighting for javascript and python
by default. Syntax highlighting for other script languages can be installed
by the function AntSyntaxScript(), which takes the tag name as first argument
and the script syntax file name as second argument. Example:

:call AntSyntaxScript('perl', 'perl.vim')

will install syntax perl highlighting for the following ant code

<script language = 'perl'><![CDATA[
everything inside is highlighted as perl

]]></script>

See mysyntaxfile-add for installing script languages permanently.

APACHE apache.vim ft-apache-syntax

The apache syntax file provides syntax highlighting for Apache HTTP server
version 2.2.3.

asm.vim asmh8300.vim nasm.vim masm.vim asm68k
ASSEMBLY ft-asm-syntax ft-asmh8300-syntax ft-nasm-syntax

ft-masm-syntax ft-asm68k-syntax fasm.vim

Files matching "*.i" could be Progress or Assembly. If the automatic detection
doesn't work for you, or you don't edit Progress at all, use this in your
startup vimrc:

:let filetype_i = "asm"
Replace "asm" with the type of assembly you use.

There are many types of assembly languages that all use the same file name
extensions. Therefore you will have to select the type yourself, or add a
line in the assembly file that Vim will recognize. Currently these syntax
files are included:

asm GNU assembly (the default)
asm68k Motorola 680x0 assembly
asmh8300 Hitachi H-8300 version of GNU assembly
ia64 Intel Itanium 64
fasm Flat assembly (http://flatassembler.net)
masm Microsoft assembly (probably works for any 80x86)
nasm Netwide assembly
tasm Turbo Assembly (with opcodes 80x86 up to Pentium, and

MMX)
pic PIC assembly (currently for PIC16F84)

The most flexible is to add a line in your assembly file containing:
asmsyntax=nasm

Replace "nasm" with the name of the real assembly syntax. This line must be

syntax.txt — 1661

one of the first five lines in the file. No non-white text must be
immediately before or after this text. Note that specifying asmsyntax=foo is
equivalent to setting ft=foo in a modeline , and that in case of a conflict
between the two settings the one from the modeline will take precedence (in
particular, if you have ft=asm in the modeline, you will get the GNU syntax
highlighting regardless of what is specified as asmsyntax).

The syntax type can always be overruled for a specific buffer by setting the
b:asmsyntax variable:

:let b:asmsyntax = "nasm"

If b:asmsyntax is not set, either automatically or by hand, then the value of
the global variable asmsyntax is used. This can be seen as a default assembly
language:

:let asmsyntax = "nasm"

As a last resort, if nothing is defined, the "asm" syntax is used.

Netwide assembler (nasm.vim) optional highlighting

To enable a feature:
:let {variable}=1|set syntax=nasm

To disable a feature:
:unlet {variable} |set syntax=nasm

Variable Highlight
nasm_loose_syntax unofficial parser allowed syntax not as Error

(parser dependent; not recommended)
nasm_ctx_outside_macro contexts outside macro not as Error
nasm_no_warn potentially risky syntax not as ToDo

ASPPERL and ASPVBS ft-aspperl-syntax ft-aspvbs-syntax

*.asp and *.asa files could be either Perl or Visual Basic script. Since it's
hard to detect this you can set two global variables to tell Vim what you are
using. For Perl script use:

:let g:filetype_asa = "aspperl"
:let g:filetype_asp = "aspperl"

For Visual Basic use:
:let g:filetype_asa = "aspvbs"
:let g:filetype_asp = "aspvbs"

BAAN baan.vim baan-syntax

The baan.vim gives syntax support for BaanC of release BaanIV up to SSA ERP LN
for both 3 GL and 4 GL programming. Large number of standard defines/constants
are supported.

Some special violation of coding standards will be signalled when one specify
in ones .vimrc :

let baan_code_stds=1

baan-folding

Syntax folding can be enabled at various levels through the variables
mentioned below (Set those in your .vimrc). The more complex folding on
source blocks and SQL can be CPU intensive.

syntax.txt — 1662

To allow any folding and enable folding at function level use:
let baan_fold=1

Folding can be enabled at source block level as if, while, for ,... The
indentation preceding the begin/end keywords has to match (spaces are not
considered equal to a tab).

let baan_fold_block=1
Folding can be enabled for embedded SQL blocks as SELECT, SELECTDO,
SELECTEMPTY, ... The indentation preceding the begin/end keywords has to
match (spaces are not considered equal to a tab).

let baan_fold_sql=1
Note: Block folding can result in many small folds. It is suggested to :set
the options 'foldminlines' and 'foldnestmax' in .vimrc or use :setlocal in
.../after/syntax/baan.vim (see after-directory). Eg:

set foldminlines=5
set foldnestmax=6

BASIC basic.vim vb.vim ft-basic-syntax ft-vb-syntax

Both Visual Basic and "normal" BASIC use the extension ".bas". To detect
which one should be used, Vim checks for the string "VB_Name" in the first
five lines of the file. If it is not found, filetype will be "basic",
otherwise "vb". Files with the ".frm" extension will always be seen as Visual
Basic.

If the automatic detection doesn't work for you or you only edit, for
example, FreeBASIC files, use this in your startup vimrc:

:let filetype_bas = "freebasic"

C c.vim ft-c-syntax

A few things in C highlighting are optional. To enable them assign any value
(including zero) to the respective variable. Example:

:let c_comment_strings = 1
:let c_no_bracket_error = 0

To disable them use `:unlet`. Example:
:unlet c_comment_strings

Setting the value to zero doesn't work!

An alternative is to switch to the C++ highlighting:
:set filetype=cpp

Variable Highlight
c_gnu GNU gcc specific items
c_comment_strings strings and numbers inside a comment
c_space_errors trailing white space and spaces before a <Tab>
c_no_trail_space_error ... but no trailing spaces
c_no_tab_space_error ... but no spaces before a <Tab>
c_no_bracket_error don't highlight {}; inside [] as errors
c_no_curly_error don't highlight {}; inside [] and () as errors;

...except { and } in first column
Default is to highlight them, otherwise you
can't spot a missing ")".

c_curly_error highlight a missing } by finding all pairs; this
forces syncing from the start of the file, can be slow

c_no_ansi don't do standard ANSI types and constants
c_ansi_typedefs ... but do standard ANSI types
c_ansi_constants ... but do standard ANSI constants

syntax.txt — 1663

c_no_utf don't highlight \u and \U in strings
c_syntax_for_h for *.h files use C syntax instead of C++ and use objc

syntax instead of objcpp
c_no_if0 don't highlight "#if 0" blocks as comments
c_no_cformat don't highlight %-formats in strings
c_no_c99 don't highlight C99 standard items
c_no_c11 don't highlight C11 standard items
c_no_bsd don't highlight BSD specific types
c_functions highlight function calls and definitions
c_function_pointers highlight function pointers definitions

When 'foldmethod' is set to "syntax" then /* */ comments and { } blocks will
become a fold. If you don't want comments to become a fold use:

:let c_no_comment_fold = 1
"#if 0" blocks are also folded, unless:

:let c_no_if0_fold = 1

If you notice highlighting errors while scrolling backwards, which are fixed
when redrawing with CTRL-L, try setting the "c_minlines" internal variable
to a larger number:

:let c_minlines = 100
This will make the syntax synchronization start 100 lines before the first
displayed line. The default value is 50 (15 when c_no_if0 is set). The
disadvantage of using a larger number is that redrawing can become slow.

When using the "#if 0" / "#endif" comment highlighting, notice that this only
works when the "#if 0" is within "c_minlines" from the top of the window. If
you have a long "#if 0" construct it will not be highlighted correctly.

To match extra items in comments, use the cCommentGroup cluster.
Example:

:au Syntax c call MyCadd()
:function MyCadd()
: syn keyword cMyItem contained Ni
: syn cluster cCommentGroup add=cMyItem
: hi link cMyItem Title
:endfun

ANSI constants will be highlighted with the "cConstant" group. This includes
"NULL", "SIG_IGN" and others. But not "TRUE", for example, because this is
not in the ANSI standard. If you find this confusing, remove the cConstant
highlighting:

:hi link cConstant NONE

If you see '{' and '}' highlighted as an error where they are OK, reset the
highlighting for cErrInParen and cErrInBracket.

If you want to use folding in your C files, you can add these lines in a file
in the "after" directory in 'runtimepath'. For Unix this would be
~/.vim/after/syntax/c.vim.

syn sync fromstart
set foldmethod=syntax

CH ch.vim ft-ch-syntax

C/C++ interpreter. Ch has similar syntax highlighting to C and builds upon
the C syntax file. See c.vim for all the settings that are available for C.

By setting a variable you can tell Vim to use Ch syntax for *.h files, instead
of C or C++:

syntax.txt — 1664

:let ch_syntax_for_h = 1

CHILL chill.vim ft-chill-syntax

Chill syntax highlighting is similar to C. See c.vim for all the settings
that are available. Additionally there is:

chill_space_errors like c_space_errors
chill_comment_string like c_comment_strings
chill_minlines like c_minlines

CHANGELOG changelog.vim ft-changelog-syntax

ChangeLog supports highlighting spaces at the start of a line.
If you do not like this, add following line to your .vimrc:

let g:changelog_spacing_errors = 0
This works the next time you edit a changelog file. You can also use
"b:changelog_spacing_errors" to set this per buffer (before loading the syntax
file).

You can change the highlighting used, e.g., to flag the spaces as an error:
:hi link ChangelogError Error

Or to avoid the highlighting:
:hi link ChangelogError NONE

This works immediately.

CLOJURE ft-clojure-syntax

g:clojure_syntax_keywords

Syntax highlighting of public vars in "clojure.core" is provided by default,
but additional symbols can be highlighted by adding them to the
g:clojure_syntax_keywords variable. The value should be a Dictionary of

syntax group names, each containing a List of identifiers.

let g:clojure_syntax_keywords = {
\ 'clojureMacro': ["defproject", "defcustom"],
\ 'clojureFunc': ["string/join", "string/replace"]
\ }

Refer to the Clojure syntax script for valid syntax group names.

There is also b:clojure_syntax_keywords which is a buffer-local variant of
this variable intended for use by plugin authors to highlight symbols
dynamically.

By setting the b:clojure_syntax_without_core_keywords variable, vars from
"clojure.core" will not be highlighted by default. This is useful for
namespaces that have set `(:refer-clojure :only [])`

g:clojure_fold

Setting g:clojure_fold to `1` will enable the folding of Clojure code. Any
list, vector or map that extends over more than one line can be folded using
the standard Vim fold-commands .

syntax.txt — 1665

g:clojure_discard_macro

Set this variable to `1` to enable basic highlighting of Clojure's "discard
reader macro".

#_(defn foo [x]
(println x))

Note that this option will not correctly highlight stacked discard macros
(e.g. `#_#_`).

COBOL cobol.vim ft-cobol-syntax

COBOL highlighting has different needs for legacy code than it does for fresh
development. This is due to differences in what is being done (maintenance
versus development) and other factors. To enable legacy code highlighting,
add this line to your .vimrc:

:let cobol_legacy_code = 1
To disable it again, use this:

:unlet cobol_legacy_code

COLD FUSION coldfusion.vim ft-coldfusion-syntax

The ColdFusion has its own version of HTML comments. To turn on ColdFusion
comment highlighting, add the following line to your startup file:

:let html_wrong_comments = 1

The ColdFusion syntax file is based on the HTML syntax file.

CPP cpp.vim ft-cpp-syntax

Most things are the same as ft-c-syntax .

Variable Highlight
cpp_no_cpp11 don't highlight C++11 standard items
cpp_no_cpp14 don't highlight C++14 standard items
cpp_no_cpp17 don't highlight C++17 standard items
cpp_no_cpp20 don't highlight C++20 standard items

CSH csh.vim ft-csh-syntax

This covers the shell named "csh". Note that on some systems tcsh is actually
used.

Detecting whether a file is csh or tcsh is notoriously hard. Some systems
symlink /bin/csh to /bin/tcsh, making it almost impossible to distinguish
between csh and tcsh. In case VIM guesses wrong you can set the
"filetype_csh" variable. For using csh: g:filetype_csh

:let g:filetype_csh = "csh"

For using tcsh:

:let g:filetype_csh = "tcsh"

syntax.txt — 1666

Any script with a tcsh extension or a standard tcsh filename (.tcshrc,
tcsh.tcshrc, tcsh.login) will have filetype tcsh. All other tcsh/csh scripts
will be classified as tcsh, UNLESS the "filetype_csh" variable exists. If the
"filetype_csh" variable exists, the filetype will be set to the value of the
variable.

CYNLIB cynlib.vim ft-cynlib-syntax

Cynlib files are C++ files that use the Cynlib class library to enable
hardware modelling and simulation using C++. Typically Cynlib files have a .cc
or a .cpp extension, which makes it very difficult to distinguish them from a
normal C++ file. Thus, to enable Cynlib highlighting for .cc files, add this
line to your .vimrc file:

:let cynlib_cyntax_for_cc=1

Similarly for cpp files (this extension is only usually used in Windows)

:let cynlib_cyntax_for_cpp=1

To disable these again, use this:

:unlet cynlib_cyntax_for_cc
:unlet cynlib_cyntax_for_cpp

CWEB cweb.vim ft-cweb-syntax

Files matching "*.w" could be Progress or cweb. If the automatic detection
doesn't work for you, or you don't edit Progress at all, use this in your
startup vimrc:

:let filetype_w = "cweb"

DART dart.vim ft-dart-syntax

Dart is an object-oriented, typed, class defined, garbage collected language
used for developing mobile, desktop, web, and back-end applications. Dart uses
a C-like syntax derived from C, Java, and JavaScript, with features adopted
from Smalltalk, Python, Ruby, and others.

More information about the language and its development environment at the
official Dart language website at https://dart.dev

dart.vim syntax detects and highlights Dart statements, reserved words,
type declarations, storage classes, conditionals, loops, interpolated values,
and comments. There is no support idioms from Flutter or any other Dart
framework.

Changes, fixes? Submit an issue or pull request via:

https://github.com/pr3d4t0r/dart-vim-syntax/

DESKTOP desktop.vim ft-desktop-syntax

Primary goal of this syntax file is to highlight .desktop and .directory files
according to freedesktop.org standard:

syntax.txt — 1667

https://dart.dev
https://github.com/pr3d4t0r/dart-vim-syntax/

https://specifications.freedesktop.org/desktop-entry-spec/latest/
To highlight nonstandard extensions that does not begin with X-, set

let g:desktop_enable_nonstd = 1
Note that this may cause wrong highlight.
To highlight KDE-reserved features, set

let g:desktop_enable_kde = 1
g:desktop_enable_kde follows g:desktop_enable_nonstd if not supplied

DIFF diff.vim

The diff highlighting normally finds translated headers. This can be slow if
there are very long lines in the file. To disable translations:

:let diff_translations = 0

Also see diff-slow .

DIRCOLORS dircolors.vim ft-dircolors-syntax

The dircolors utility highlighting definition has one option. It exists to
provide compatibility with the Slackware GNU/Linux distributions version of
the command. It adds a few keywords that are generally ignored by most
versions. On Slackware systems, however, the utility accepts the keywords and
uses them for processing. To enable the Slackware keywords add the following
line to your startup file:

let dircolors_is_slackware = 1

DOCBOOK docbk.vim ft-docbk-syntax docbook
DOCBOOK XML docbkxml.vim ft-docbkxml-syntax
DOCBOOK SGML docbksgml.vim ft-docbksgml-syntax

There are two types of DocBook files: SGML and XML. To specify what type you
are using the "b:docbk_type" variable should be set. Vim does this for you
automatically if it can recognize the type. When Vim can't guess it the type
defaults to XML.
You can set the type manually:

:let docbk_type = "sgml"
or:

:let docbk_type = "xml"
You need to do this before loading the syntax file, which is complicated.
Simpler is setting the filetype to "docbkxml" or "docbksgml":

:set filetype=docbksgml
or:

:set filetype=docbkxml

You can specify the DocBook version:
:let docbk_ver = 3

When not set 4 is used.

DOSBATCH dosbatch.vim ft-dosbatch-syntax

Select the set of Windows Command interpreter extensions that should be
supported with the variable dosbatch_cmdextversion. For versions of Windows
NT (before Windows 2000) this should have the value of 1. For Windows 2000
and later it should be 2.
Select the version you want with the following line:

syntax.txt — 1668

https://specifications.freedesktop.org/desktop-entry-spec/latest/

:let dosbatch_cmdextversion = 1

If this variable is not defined it defaults to a value of 2 to support
Windows 2000 and later.

The original MS-DOS supports an idiom of using a double colon (::) as an
alternative way to enter a comment line. This idiom can be used with the
current Windows Command Interpreter, but it can lead to problems when used
inside (...) command blocks. You can find a discussion about this on
Stack Overflow -

https://stackoverflow.com/questions/12407800/which-comment-style-should-i-use-in-batch-files

To allow the use of the :: idiom for comments in command blocks with the
Windows Command Interpreter set the dosbatch_colons_comment variable to
anything:

:let dosbatch_colons_comment = 1

If this variable is set then a :: comment that is the last line in a command
block will be highlighted as an error.

There is an option that covers whether *.btm files should be detected as type
"dosbatch" (MS-DOS batch files) or type "btm" (4DOS batch files). The latter
is used by default. You may select the former with the following line:

:let g:dosbatch_syntax_for_btm = 1

If this variable is undefined or zero, btm syntax is selected.

DOXYGEN doxygen.vim doxygen-syntax

Doxygen generates code documentation using a special documentation format
(similar to Javadoc). This syntax script adds doxygen highlighting to c, cpp,
idl and php files, and should also work with java.

There are a few of ways to turn on doxygen formatting. It can be done
explicitly or in a modeline by appending '.doxygen' to the syntax of the file.
Example:

:set syntax=c.doxygen
or

// vim:syntax=c.doxygen

It can also be done automatically for C, C++, C#, IDL and PHP files by setting
the global or buffer-local variable load_doxygen_syntax. This is done by
adding the following to your .vimrc.

:let g:load_doxygen_syntax=1

There are a couple of variables that have an effect on syntax highlighting,
and are to do with non-standard highlighting options.

Variable Default Effect
g:doxygen_enhanced_color
g:doxygen_enhanced_colour 0 Use non-standard highlighting for

doxygen comments.

doxygen_my_rendering 0 Disable rendering of HTML bold, italic
and html_my_rendering underline.

syntax.txt — 1669

https://stackoverflow.com/questions/12407800/which-comment-style-should-i-use-in-batch-files

doxygen_javadoc_autobrief 1 Set to 0 to disable javadoc autobrief
colour highlighting.

doxygen_end_punctuation '[.]' Set to regexp match for the ending
punctuation of brief

There are also some highlight groups worth mentioning as they can be useful in
configuration.

Highlight Effect
doxygenErrorComment The colour of an end-comment when missing

punctuation in a code, verbatim or dot section
doxygenLinkError The colour of an end-comment when missing the

\endlink from a \link section.

DTD dtd.vim ft-dtd-syntax

The DTD syntax highlighting is case sensitive by default. To disable
case-sensitive highlighting, add the following line to your startup file:

:let dtd_ignore_case=1

The DTD syntax file will highlight unknown tags as errors. If
this is annoying, it can be turned off by setting:

:let dtd_no_tag_errors=1

before sourcing the dtd.vim syntax file.
Parameter entity names are highlighted in the definition using the
'Type' highlighting group and 'Comment' for punctuation and '%'.
Parameter entity instances are highlighted using the 'Constant'
highlighting group and the 'Type' highlighting group for the
delimiters % and ;. This can be turned off by setting:

:let dtd_no_param_entities=1

The DTD syntax file is also included by xml.vim to highlight included dtd's.

EIFFEL eiffel.vim ft-eiffel-syntax

While Eiffel is not case-sensitive, its style guidelines are, and the
syntax highlighting file encourages their use. This also allows to
highlight class names differently. If you want to disable case-sensitive
highlighting, add the following line to your startup file:

:let eiffel_ignore_case=1

Case still matters for class names and TODO marks in comments.

Conversely, for even stricter checks, add one of the following lines:

:let eiffel_strict=1
:let eiffel_pedantic=1

Setting eiffel_strict will only catch improper capitalization for the
five predefined words "Current", "Void", "Result", "Precursor", and
"NONE", to warn against their accidental use as feature or class names.

syntax.txt — 1670

Setting eiffel_pedantic will enforce adherence to the Eiffel style
guidelines fairly rigorously (like arbitrary mixes of upper- and
lowercase letters as well as outdated ways to capitalize keywords).

If you want to use the lower-case version of "Current", "Void",
"Result", and "Precursor", you can use

:let eiffel_lower_case_predef=1

instead of completely turning case-sensitive highlighting off.

Support for ISE's proposed new creation syntax that is already
experimentally handled by some compilers can be enabled by:

:let eiffel_ise=1

Finally, some vendors support hexadecimal constants. To handle them, add

:let eiffel_hex_constants=1

to your startup file.

EUPHORIA euphoria3.vim euphoria4.vim ft-euphoria-syntax

Two syntax highlighting files exist for Euphoria. One for Euphoria
version 3.1.1, which is the default syntax highlighting file, and one for
Euphoria version 4.0.5 or later.

Euphoria version 3.1.1 (http://www.rapideuphoria.com/) is still necessary
for developing applications for the DOS platform, which Euphoria version 4
(http://www.openeuphoria.org/) does not support.

The following file extensions are auto-detected as Euphoria file type:

*.e, *.eu, *.ew, *.ex, *.exu, *.exw
*.E, *.EU, *.EW, *.EX, *.EXU, *.EXW

To select syntax highlighting file for Euphoria, as well as for
auto-detecting the *.e and *.E file extensions as Euphoria file type,
add the following line to your startup file:

:let g:filetype_euphoria = "euphoria3"

or

:let g:filetype_euphoria = "euphoria4"

Elixir and Euphoria share the *.ex file extension. If the filetype is
specifically set as Euphoria with the g:filetype_euphoria variable, or the
file is determined to be Euphoria based on keywords in the file, then the
filetype will be set as Euphoria. Otherwise, the filetype will default to
Elixir.

ERLANG erlang.vim ft-erlang-syntax

Erlang is a functional programming language developed by Ericsson. Files with
the following extensions are recognized as Erlang files: erl, hrl, yaws.

syntax.txt — 1671

The BIFs (built-in functions) are highlighted by default. To disable this,
put the following line in your vimrc:

:let g:erlang_highlight_bifs = 0

To enable highlighting some special atoms, put this in your vimrc:

:let g:erlang_highlight_special_atoms = 1

ELIXIR elixir.vim ft-elixir-syntax

Elixir is a dynamic, functional language for building scalable and
maintainable applications.

The following file extensions are auto-detected as Elixir file types:

*.ex, *.exs, *.eex, *.leex, *.lock

Elixir and Euphoria share the *.ex file extension. If the filetype is
specifically set as Euphoria with the g:filetype_euphoria variable, or the
file is determined to be Euphoria based on keywords in the file, then the
filetype will be set as Euphoria. Otherwise, the filetype will default to
Elixir.

FLEXWIKI flexwiki.vim ft-flexwiki-syntax

FlexWiki is an ASP.NET-based wiki package available at http://www.flexwiki.com
NOTE: This site currently doesn't work, on Wikipedia is mentioned that
development stopped in 2009.

Syntax highlighting is available for the most common elements of FlexWiki
syntax. The associated ftplugin script sets some buffer-local options to make
editing FlexWiki pages more convenient. FlexWiki considers a newline as the
start of a new paragraph, so the ftplugin sets 'tw'=0 (unlimited line length),
'wrap' (wrap long lines instead of using horizontal scrolling), 'linebreak'
(to wrap at a character in 'breakat' instead of at the last char on screen),
and so on. It also includes some keymaps that are disabled by default.

If you want to enable the keymaps that make "j" and "k" and the cursor keys
move up and down by display lines, add this to your .vimrc:

:let flexwiki_maps = 1

FORM form.vim ft-form-syntax

The coloring scheme for syntax elements in the FORM file uses the default
modes Conditional, Number, Statement, Comment, PreProc, Type, and String,
following the language specifications in 'Symbolic Manipulation with FORM' by
J.A.M. Vermaseren, CAN, Netherlands, 1991.

If you want to include your own changes to the default colors, you have to
redefine the following syntax groups:

- formConditional
- formNumber
- formStatement
- formHeaderStatement
- formComment

syntax.txt — 1672

http://www.flexwiki.com

- formPreProc
- formDirective
- formType
- formString

Note that the form.vim syntax file implements FORM preprocessor commands and
directives per default in the same syntax group.

A predefined enhanced color mode for FORM is available to distinguish between
header statements and statements in the body of a FORM program. To activate
this mode define the following variable in your vimrc file

:let form_enhanced_color=1

The enhanced mode also takes advantage of additional color features for a dark
gvim display. Here, statements are colored LightYellow instead of Yellow, and
conditionals are LightBlue for better distinction.

Both Visual Basic and FORM use the extension ".frm". To detect which one
should be used, Vim checks for the string "VB_Name" in the first five lines of
the file. If it is found, filetype will be "vb", otherwise "form".

If the automatic detection doesn't work for you or you only edit, for
example, FORM files, use this in your startup vimrc:

:let filetype_frm = "form"

FORTH forth.vim ft-forth-syntax

Files matching "*.f" could be Fortran or Forth and those matching "*.fs" could
be F# or Forth. If the automatic detection doesn't work for you, or you don't
edit F# or Fortran at all, use this in your startup vimrc:

:let filetype_f = "forth"
:let filetype_fs = "forth"

FORTRAN fortran.vim ft-fortran-syntax

Default highlighting and dialect
Vim highlights according to Fortran 2023 (the most recent standard). This
choice should be appropriate for most users most of the time because Fortran
2023 is almost a superset of previous versions (Fortran 2018, 2008, 2003, 95,
90, 77, and 66). A few legacy constructs deleted or declared obsolescent,
respectively, in recent Fortran standards are highlighted as errors and todo
items.

The syntax script no longer supports Fortran dialects. The variable
fortran_dialect is now silently ignored. Since computers are much faster now,
the variable fortran_more_precise is no longer needed and is silently ignored.

Fortran source code form
Fortran code can be in either fixed or free source form. Note that the
syntax highlighting will not be correct if the form is incorrectly set.

When you create a new Fortran file, the syntax script assumes fixed source
form. If you always use free source form, then

:let fortran_free_source=1
in your .vimrc prior to the :syntax on command. If you always use fixed
source form, then

:let fortran_fixed_source=1

syntax.txt — 1673

in your .vimrc prior to the :syntax on command.

If the form of the source code depends, in a non-standard way, upon the file
extension, then it is most convenient to set fortran_free_source in a ftplugin
file. For more information on ftplugin files, see ftplugin . Note that this
will work only if the "filetype plugin indent on" command precedes the "syntax
on" command in your .vimrc file.

When you edit an existing Fortran file, the syntax script will assume free
source form if the fortran_free_source variable has been set, and assumes
fixed source form if the fortran_fixed_source variable has been set. Suppose
neither of these variables have been set. In that case, the syntax script attempts to
determine which source form has been used by examining the file extension
using conventions common to the ifort, gfortran, Cray, NAG, and PathScale
compilers (.f, .for, .f77 for fixed-source, .f90, .f95, .f03, .f08 for
free-source). No default is used for the .fpp and .ftn file extensions because
different compilers treat them differently. If none of this works, then the
script examines the first five columns of the first 500 lines of your file. If
no signs of free source form are detected, then the file is assumed to be in
fixed source form. The algorithm should work in the vast majority of cases.
In some cases, such as a file that begins with 500 or more full-line comments,
the script may incorrectly decide that the code is in fixed form. If that
happens, just add a non-comment statement beginning anywhere in the first five
columns of the first twenty-five lines, save (:w), and then reload (:e!) the
file.

Vendor extensions
Fixed-form Fortran requires a maximum line length of 72 characters but the
script allows a maximum line length of 80 characters as do all compilers
created in the last three decades. An even longer line length of 132
characters is allowed if you set the variable fortran_extended_line_length
with a command such as

:let fortran_extended_line_length=1
placed prior to the :syntax on command.

If you want additional highlighting of the CUDA Fortran extensions, you should
set the variable fortran_CUDA with a command such as

:let fortran_CUDA=1
placed prior to the :syntax on command.

To activate recognition of some common, non-standard, vendor-supplied
intrinsics, you should set the variable fortran_vendor_intrinsics with a
command such as

:let fortran_vendor_intrinsics=1
placed prior to the :syntax on command.

Tabs in Fortran files
Tabs are not recognized by the Fortran standards. Tabs are not a good idea in
fixed format Fortran source code which requires fixed column boundaries.
Therefore, tabs are marked as errors. Nevertheless, some programmers like
using tabs. If your Fortran files contain tabs, then you should set the
variable fortran_have_tabs in your .vimrc with a command such as

:let fortran_have_tabs=1
placed prior to the :syntax on command. Unfortunately, the use of tabs will
mean that the syntax file will not be able to detect incorrect margins.

Syntax folding of Fortran files
Vim will fold your file using foldmethod=syntax, if you set the variable
fortran_fold in your .vimrc with a command such as

:let fortran_fold=1

syntax.txt — 1674

to instruct the syntax script to define fold regions for program units, that
is main programs starting with a program statement, subroutines, function
subprograms, modules, submodules, blocks of comment lines, and block data
units. Block, interface, associate, critical, type definition, and change team
constructs will also be folded. If you also set the variable
fortran_fold_conditionals with a command such as

:let fortran_fold_conditionals=1
then fold regions will also be defined for do loops, if blocks, select case,
select type, and select rank constructs. Note that defining fold regions can
be slow for large files.

The syntax/fortran.vim script contains embedded comments that tell you how to
comment and/or uncomment some lines to (a) activate recognition of some
non-standard, vendor-supplied intrinsics and (b) to prevent features deleted
or declared obsolescent in the 2008 standard from being highlighted as todo
items.

Limitations
Parenthesis checking does not catch too few closing parentheses. Hollerith
strings are not recognized. Some keywords may be highlighted incorrectly
because Fortran90 has no reserved words.

For further information related to Fortran, see ft-fortran-indent and
ft-fortran-plugin .

FREEBASIC freebasic.vim ft-freebasic-syntax

FreeBASIC files will be highlighted differently for each of the four available
dialects, "fb", "qb", "fblite" and "deprecated". See ft-freebasic-plugin
for how to select the correct dialect.

Highlighting is further configurable via the following variables.

Variable Highlight
freebasic_no_comment_fold disable multiline comment folding
freebasic_operators non-alpha operators
freebasic_space_errors trailing white space and spaces before a <Tab>
freebasic_type_suffixes QuickBASIC style type suffixes

FVWM CONFIGURATION FILES fvwm.vim ft-fvwm-syntax

In order for Vim to recognize Fvwm configuration files that do not match
the patterns fvwmrc or fvwm2rc , you must put additional patterns
appropriate to your system in your myfiletypes.vim file. For these
patterns, you must set the variable "b:fvwm_version" to the major version
number of Fvwm, and the 'filetype' option to fvwm.

For example, to make Vim identify all files in /etc/X11/fvwm2/
as Fvwm2 configuration files, add the following:

:au! BufNewFile,BufRead /etc/X11/fvwm2/* let b:fvwm_version = 2 |
\ set filetype=fvwm

GSP gsp.vim ft-gsp-syntax

The default coloring style for GSP pages is defined by html.vim , and
the coloring for java code (within java tags or inline between backticks)
is defined by java.vim . The following HTML groups defined in html.vim

syntax.txt — 1675

are redefined to incorporate and highlight inline java code:

htmlString
htmlValue
htmlEndTag
htmlTag
htmlTagN

Highlighting should look fine most of the places where you'd see inline
java code, but in some special cases it may not. To add another HTML
group where you will have inline java code where it does not highlight
correctly, just copy the line you want from html.vim and add gspJava
to the contains clause.

The backticks for inline java are highlighted according to the htmlError
group to make them easier to see.

GROFF groff.vim ft-groff-syntax

The groff syntax file is a wrapper for nroff.vim , see the notes
under that heading for examples of use and configuration. The purpose
of this wrapper is to set up groff syntax extensions by setting the
filetype from a modeline or in a personal filetype definitions file
(see filetype.txt).

HASKELL haskell.vim lhaskell.vim ft-haskell-syntax

The Haskell syntax files support plain Haskell code as well as literate
Haskell code, the latter in both Bird style and TeX style. The Haskell
syntax highlighting will also highlight C preprocessor directives.

If you want to highlight delimiter characters (useful if you have a
light-coloured background), add to your .vimrc:

:let hs_highlight_delimiters = 1
To treat True and False as keywords as opposed to ordinary identifiers,
add:

:let hs_highlight_boolean = 1
To also treat the names of primitive types as keywords:

:let hs_highlight_types = 1
And to treat the names of even more relatively common types as keywords:

:let hs_highlight_more_types = 1
If you want to highlight the names of debugging functions, put in
your .vimrc:

:let hs_highlight_debug = 1

The Haskell syntax highlighting also highlights C preprocessor
directives, and flags lines that start with # but are not valid
directives as erroneous. This interferes with Haskell's syntax for
operators, as they may start with #. If you want to highlight those
as operators as opposed to errors, put in your .vimrc:

:let hs_allow_hash_operator = 1

The syntax highlighting for literate Haskell code will try to
automatically guess whether your literate Haskell code contains
TeX markup or not, and correspondingly highlight TeX constructs
or nothing at all. You can override this globally by putting
in your .vimrc

:let lhs_markup = none

syntax.txt — 1676

for no highlighting at all, or
:let lhs_markup = tex

to force the highlighting to always try to highlight TeX markup.
For more flexibility, you may also use buffer local versions of
this variable, so e.g.

:let b:lhs_markup = tex
will force TeX highlighting for a particular buffer. It has to be
set before turning syntax highlighting on for the buffer or
loading a file.

HTML html.vim ft-html-syntax

The coloring scheme for tags in the HTML file works as follows.

The <> of opening tags are colored differently than the </> of a closing tag.
This is on purpose! For opening tags the 'Function' color is used, while for
closing tags the 'Identifier' color is used (See syntax.vim to check how those
are defined for you)

Known tag names are colored the same way as statements in C. Unknown tag
names are colored with the same color as the <> or </> respectively which
makes it easy to spot errors

Note that the same is true for argument (or attribute) names. Known attribute
names are colored differently than unknown ones.

Some HTML tags are used to change the rendering of text. The following tags
are recognized by the html.vim syntax coloring file and change the way normal
text is shown: <I> <U> (is used as an alias for <I>,
while as an alias for), <H1> - <H6>, <HEAD>, <TITLE> and <A>, but
only if used as a link (that is, it must include a href as in
).

If you want to change how such text is rendered, you must redefine the
following syntax groups:

- htmlBold
- htmlBoldUnderline
- htmlBoldUnderlineItalic
- htmlUnderline
- htmlUnderlineItalic
- htmlItalic
- htmlTitle for titles
- htmlH1 - htmlH6 for headings

To make this redefinition work you must redefine them all with the exception
of the last two (htmlTitle and htmlH[1-6], which are optional) and define the
following variable in your vimrc (this is due to the order in which the files
are read during initialization)

:let html_my_rendering=1

If you'd like to see an example download mysyntax.vim at
http://www.fleiner.com/vim/download.html

You can also disable this rendering by adding the following line to your
vimrc file:

:let html_no_rendering=1

HTML comments are rather special (see an HTML reference document for the

syntax.txt — 1677

http://www.fleiner.com/vim/download.html

details), and the syntax coloring scheme will highlight all errors.
However, if you prefer to use the wrong style (starts with <!-- and
ends with -->) you can define

:let html_wrong_comments=1

JavaScript and Visual Basic embedded inside HTML documents are highlighted as
'Special' with statements, comments, strings and so on colored as in standard
programming languages. Note that only JavaScript and Visual Basic are
currently supported, no other scripting language has been added yet.

Embedded and inlined cascading style sheets (CSS) are highlighted too.

There are several html preprocessor languages out there. html.vim has been
written such that it should be trivial to include it. To do so add the
following two lines to the syntax coloring file for that language
(the example comes from the asp.vim file):

runtime! syntax/html.vim
syn cluster htmlPreproc add=asp

Now you just need to make sure that you add all regions that contain
the preprocessor language to the cluster htmlPreproc.

html-folding
The HTML syntax file provides syntax folding (see :syn-fold) between start
and end tags. This can be turned on by

:let g:html_syntax_folding = 1
:set foldmethod=syntax

Note: Syntax folding might slow down syntax highlighting significantly,
especially for large files.

HTML/OS (by Aestiva) htmlos.vim ft-htmlos-syntax

The coloring scheme for HTML/OS works as follows:

Functions and variable names are the same color by default, because VIM
doesn't specify different colors for Functions and Identifiers. To change
this (which is recommended if you want function names to be recognizable in a
different color) you need to add the following line to either your ~/.vimrc:

:hi Function term=underline cterm=bold ctermfg=LightGray

Of course, the ctermfg can be a different color if you choose.

Another issues that HTML/OS runs into is that there is no special filetype to
signify that it is a file with HTML/OS coding. You can change this by opening
a file and turning on HTML/OS syntax by doing the following:

:set syntax=htmlos

Lastly, it should be noted that the opening and closing characters to begin a
block of HTML/OS code can either be << or [[and >> or]], respectively.

IA64 ia64.vim intel-itanium ft-ia64-syntax

Highlighting for the Intel Itanium 64 assembly language. See asm.vim for
how to recognize this filetype.

syntax.txt — 1678

To have *.inc files be recognized as IA64, add this to your .vimrc file:
:let g:filetype_inc = "ia64"

INFORM inform.vim ft-inform-syntax

Inform highlighting includes symbols provided by the Inform Library, as
most programs make extensive use of it. If do not wish Library symbols
to be highlighted add this to your vim startup:

:let inform_highlight_simple=1

By default it is assumed that Inform programs are Z-machine targeted,
and highlights Z-machine assembly language symbols appropriately. If
you intend your program to be targeted to a Glulx/Glk environment you
need to add this to your startup sequence:

:let inform_highlight_glulx=1

This will highlight Glulx opcodes instead, and also adds glk() to the
set of highlighted system functions.

The Inform compiler will flag certain obsolete keywords as errors when
it encounters them. These keywords are normally highlighted as errors
by Vim. To prevent such error highlighting, you must add this to your
startup sequence:

:let inform_suppress_obsolete=1

By default, the language features highlighted conform to Compiler
version 6.30 and Library version 6.11. If you are using an older
Inform development environment, you may with to add this to your
startup sequence:

:let inform_highlight_old=1

IDL idl.vim idl-syntax

IDL (Interface Definition Language) files are used to define RPC calls. In
Microsoft land, this is also used for defining COM interfaces and calls.

IDL's structure is simple enough to permit a full grammar based approach to
rather than using a few heuristics. The result is large and somewhat
repetitive but seems to work.

There are some Microsoft extensions to idl files that are here. Some of them
are disabled by defining idl_no_ms_extensions.

The more complex of the extensions are disabled by defining idl_no_extensions.

Variable Effect

idl_no_ms_extensions Disable some of the Microsoft specific
extensions

idl_no_extensions Disable complex extensions
idlsyntax_showerror Show IDL errors (can be rather intrusive, but

quite helpful)
idlsyntax_showerror_soft Use softer colours by default for errors

JAVA java.vim ft-java-syntax

The java.vim syntax highlighting file offers several options:

syntax.txt — 1679

In Java 1.0.2 it was never possible to have braces inside parens, so this was
flagged as an error. Since Java 1.1 this is possible (with anonymous
classes), and therefore is no longer marked as an error. If you prefer the
old way, put the following line into your vim startup file:

:let java_mark_braces_in_parens_as_errors=1

All identifiers in java.lang.* are always visible in all classes. To
highlight them use:

:let java_highlight_java_lang_ids=1

You can also highlight identifiers of most standard Java packages if you
download the javaid.vim script at http://www.fleiner.com/vim/download.html.
If you prefer to only highlight identifiers of a certain package, say java.io
use the following:

:let java_highlight_java_io=1
Check the javaid.vim file for a list of all the packages that are supported.

Function names are not highlighted, as the way to find functions depends on
how you write Java code. The syntax file knows two possible ways to highlight
functions:

If you write function declarations that are always indented by either
a tab, 8 spaces or 2 spaces you may want to set

:let java_highlight_functions="indent"
However, if you follow the Java guidelines about how functions and classes are
supposed to be named (with respect to upper and lowercase), use

:let java_highlight_functions="style"
If both options do not work for you, but you would still want function
declarations to be highlighted create your own definitions by changing the
definitions in java.vim or by creating your own java.vim which includes the
original one and then adds the code to highlight functions.

In Java 1.1 the functions System.out.println() and System.err.println() should
only be used for debugging. Therefore it is possible to highlight debugging
statements differently. To do this you must add the following definition in
your startup file:

:let java_highlight_debug=1
The result will be that those statements are highlighted as 'Special'
characters. If you prefer to have them highlighted differently you must define
new highlightings for the following groups.:

Debug, DebugSpecial, DebugString, DebugBoolean, DebugType
which are used for the statement itself, special characters used in debug
strings, strings, boolean constants and types (this, super) respectively. I
have opted to choose another background for those statements.

Javadoc is a program that takes special comments out of Java program files and
creates HTML pages. The standard configuration will highlight this HTML code
similarly to HTML files (see html.vim). You can even add Javascript
and CSS inside this code (see below). There are four differences however:

1. The title (all characters up to the first '.' which is followed by
some white space or up to the first '@') is colored differently (to change
the color change the group CommentTitle).

2. The text is colored as 'Comment'.
3. HTML comments are colored as 'Special'
4. The special Javadoc tags (@see, @param, ...) are highlighted as specials

and the argument (for @see, @param, @exception) as Function.
To turn this feature off add the following line to your startup file:

:let java_ignore_javadoc=1

If you use the special Javadoc comment highlighting described above you

syntax.txt — 1680

http://www.fleiner.com/vim/download.html

can also turn on special highlighting for Javascript, visual basic
scripts and embedded CSS (stylesheets). This makes only sense if you
actually have Javadoc comments that include either Javascript or embedded
CSS. The options to use are

:let java_javascript=1
:let java_css=1
:let java_vb=1

In order to highlight nested parens with different colors define colors
for javaParen, javaParen1 and javaParen2, for example with

:hi link javaParen Comment
or

:hi javaParen ctermfg=blue guifg=#0000ff

If you notice highlighting errors while scrolling backwards, which are fixed
when redrawing with CTRL-L, try setting the "java_minlines" internal variable
to a larger number:

:let java_minlines = 50
This will make the syntax synchronization start 50 lines before the first
displayed line. The default value is 10. The disadvantage of using a larger
number is that redrawing can become slow.

JSON json.vim ft-json-syntax

The json syntax file provides syntax highlighting with conceal support by
default. To disable concealment:

let g:vim_json_conceal = 0

To disable syntax highlighting of errors:
let g:vim_json_warnings = 0

LACE lace.vim ft-lace-syntax

Lace (Language for Assembly of Classes in Eiffel) is case insensitive, but the
style guide lines are not. If you prefer case insensitive highlighting, just
define the vim variable 'lace_case_insensitive' in your startup file:

:let lace_case_insensitive=1

LEX lex.vim ft-lex-syntax

Lex uses brute-force synchronizing as the "^%%$" section delimiter
gives no clue as to what section follows. Consequently, the value for

:syn sync minlines=300
may be changed by the user if s/he is experiencing synchronization
difficulties (such as may happen with large lex files).

LIFELINES lifelines.vim ft-lifelines-syntax

To highlight deprecated functions as errors, add in your .vimrc:

:let g:lifelines_deprecated = 1

LISP lisp.vim ft-lisp-syntax

The lisp syntax highlighting provides two options:

syntax.txt — 1681

g:lisp_instring : If it exists, then "(...)" strings are highlighted
as if the contents of the string were lisp.
Useful for AutoLisp.

g:lisp_rainbow : If it exists and is nonzero, then differing levels
of parenthesization will receive different
highlighting.

The g:lisp_rainbow option provides 10 levels of individual colorization for
the parentheses and backquoted parentheses. Because of the quantity of
colorization levels, unlike non-rainbow highlighting, the rainbow mode
specifies its highlighting using ctermfg and guifg, thereby bypassing the
usual color scheme control using standard highlighting groups. The actual
highlighting used depends on the dark/bright setting (see 'bg').

LITE lite.vim ft-lite-syntax

There are two options for the lite syntax highlighting.

If you like SQL syntax highlighting inside Strings, use this:

:let lite_sql_query = 1

For syncing, minlines defaults to 100. If you prefer another value, you can
set "lite_minlines" to the value you desire. Example:

:let lite_minlines = 200

LPC lpc.vim ft-lpc-syntax

LPC stands for a simple, memory-efficient language: Lars Pensjö C. The
file name of LPC is usually *.c. Recognizing these files as LPC would bother
users writing only C programs. If you want to use LPC syntax in Vim, you
should set a variable in your .vimrc file:

:let lpc_syntax_for_c = 1

If it doesn't work properly for some particular C or LPC files, use a
modeline. For a LPC file:

// vim:set ft=lpc:

For a C file that is recognized as LPC:

// vim:set ft=c:

If you don't want to set the variable, use the modeline in EVERY LPC file.

There are several implementations for LPC, we intend to support most widely
used ones. Here the default LPC syntax is for MudOS series, for MudOS v22
and before, you should turn off the sensible modifiers, and this will also
assert the new efuns after v22 to be invalid, don't set this variable when
you are using the latest version of MudOS:

:let lpc_pre_v22 = 1

For LpMud 3.2 series of LPC:

syntax.txt — 1682

:let lpc_compat_32 = 1

For LPC4 series of LPC:

:let lpc_use_lpc4_syntax = 1

For uLPC series of LPC:
uLPC has been developed to Pike, so you should use Pike syntax
instead, and the name of your source file should be *.pike

LUA lua.vim ft-lua-syntax

The Lua syntax file can be used for versions 4.0, 5.0, 5.1 and 5.2 (5.2 is
the default). You can select one of these versions using the global variables
lua_version and lua_subversion. For example, to activate Lua
5.1 syntax highlighting, set the variables like this:

:let lua_version = 5
:let lua_subversion = 1

MAIL mail.vim ft-mail.vim

Vim highlights all the standard elements of an email (headers, signatures,
quoted text and URLs / email addresses). In keeping with standard conventions,
signatures begin in a line containing only "--" followed optionally by
whitespaces and end with a newline.

Vim treats lines beginning with ']', '}', '|', '>' or a word followed by '>'
as quoted text. However Vim highlights headers and signatures in quoted text
only if the text is quoted with '>' (optionally followed by one space).

By default mail.vim synchronises syntax to 100 lines before the first
displayed line. If you have a slow machine, and generally deal with emails
with short headers, you can change this to a smaller value:

:let mail_minlines = 30

MAKE make.vim ft-make-syntax

In makefiles, commands are usually highlighted to make it easy for you to spot
errors. However, this may be too much coloring for you. You can turn this
feature off by using:

:let make_no_commands = 1

MAPLE maple.vim ft-maple-syntax

Maple V, by Waterloo Maple Inc, supports symbolic algebra. The language
supports many packages of functions which are selectively loaded by the user.
The standard set of packages' functions as supplied in Maple V release 4 may be
highlighted at the user's discretion. Users may place in their .vimrc file:

:let mvpkg_all= 1

to get all package functions highlighted, or users may select any subset by
choosing a variable/package from the table below and setting that variable to

syntax.txt — 1683

1, also in their .vimrc file (prior to sourcing
$VIMRUNTIME/syntax/syntax.vim).

Table of Maple V Package Function Selectors
mv_DEtools mv_genfunc mv_networks mv_process
mv_Galois mv_geometry mv_numapprox mv_simplex
mv_GaussInt mv_grobner mv_numtheory mv_stats
mv_LREtools mv_group mv_orthopoly mv_student
mv_combinat mv_inttrans mv_padic mv_sumtools
mv_combstruct mv_liesymm mv_plots mv_tensor
mv_difforms mv_linalg mv_plottools mv_totorder
mv_finance mv_logic mv_powseries

MARKDOWN ft-markdown-syntax

If you have long regions there might be wrong highlighting. At the cost of
slowing down displaying, you can have the engine look further back to sync on
the start of a region, for example 500 lines (default is 50):

:let g:markdown_minlines = 500

If you want to enable fenced code block syntax highlighting in your markdown
documents you can enable like this:

:let g:markdown_fenced_languages = ['html', 'python', 'bash=sh']

To disable markdown syntax concealing add the following to your vimrc:

:let g:markdown_syntax_conceal = 0

MATHEMATICA mma.vim ft-mma-syntax ft-mathematica-syntax

Empty *.m files will automatically be presumed to be Matlab files unless you
have the following in your .vimrc:

let filetype_m = "mma"

MODULA2 modula2.vim ft-modula2-syntax

Vim will recognise comments with dialect tags to automatically select a given
dialect.

The syntax for a dialect tag comment is:

taggedComment :=
'(*!' dialectTag '*)'
;

dialectTag :=
m2pim | m2iso | m2r10
;

reserved words
m2pim = 'm2pim', m2iso = 'm2iso', m2r10 = 'm2r10'

A dialect tag comment is recognised by Vim if it occurs within the first 200
lines of the source file. Only the very first such comment is recognised, any

syntax.txt — 1684

additional dialect tag comments are ignored.

Example:

DEFINITION MODULE FooLib; (*!m2pim*)
...

Variable g:modula2_default_dialect sets the default Modula-2 dialect when the
dialect cannot be determined from the contents of the Modula-2 file: if
defined and set to 'm2pim', the default dialect is PIM.

Example:

let g:modula2_default_dialect = 'm2pim'

Highlighting is further configurable for each dialect via the following
variables.

Variable Highlight
modula2_iso_allow_lowline allow low line in identifiers
modula2_iso_disallow_octals disallow octal integer literals
modula2_iso_disallow_synonyms disallow "@", "&" and "~" synonyms

modula2_pim_allow_lowline allow low line in identifiers
modula2_pim_disallow_octals disallow octal integer literals
modula2_pim_disallow_synonyms disallow "&" and "~" synonyms

modula2_r10_allow_lowline allow low line in identifiers

MOO moo.vim ft-moo-syntax

If you use C-style comments inside expressions and find it mangles your
highlighting, you may want to use extended (slow!) matches for C-style
comments:

:let moo_extended_cstyle_comments = 1

To disable highlighting of pronoun substitution patterns inside strings:

:let moo_no_pronoun_sub = 1

To disable highlighting of the regular expression operator '%|', and matching
'%(' and '%)' inside strings:

:let moo_no_regexp = 1

Unmatched double quotes can be recognized and highlighted as errors:

:let moo_unmatched_quotes = 1

To highlight builtin properties (.name, .location, .programmer etc.):

:let moo_builtin_properties = 1

Unknown builtin functions can be recognized and highlighted as errors. If you
use this option, add your own extensions to the mooKnownBuiltinFunction group.
To enable this option:

:let moo_unknown_builtin_functions = 1

syntax.txt — 1685

An example of adding sprintf() to the list of known builtin functions:

:syn keyword mooKnownBuiltinFunction sprintf contained

MSQL msql.vim ft-msql-syntax

There are two options for the msql syntax highlighting.

If you like SQL syntax highlighting inside Strings, use this:

:let msql_sql_query = 1

For syncing, minlines defaults to 100. If you prefer another value, you can
set "msql_minlines" to the value you desire. Example:

:let msql_minlines = 200

N1QL n1ql.vim ft-n1ql-syntax

N1QL is a SQL-like declarative language for manipulating JSON documents in
Couchbase Server databases.

Vim syntax highlights N1QL statements, keywords, operators, types, comments,
and special values. Vim ignores syntactical elements specific to SQL or its
many dialects, like COLUMN or CHAR, that don't exist in N1QL.

NCF ncf.vim ft-ncf-syntax

There is one option for NCF syntax highlighting.

If you want to have unrecognized (by ncf.vim) statements highlighted as
errors, use this:

:let ncf_highlight_unknowns = 1

If you don't want to highlight these errors, leave it unset.

NROFF nroff.vim ft-nroff-syntax

The nroff syntax file works with AT&T n/troff out of the box. You need to
activate the GNU groff extra features included in the syntax file before you
can use them.

For example, Linux and BSD distributions use groff as their default text
processing package. In order to activate the extra syntax highlighting
features for groff, arrange for files to be recognized as groff (see
ft-groff-syntax) or add the following option to your start-up files:

:let nroff_is_groff = 1

Groff is different from the old AT&T n/troff that you may still find in
Solaris. Groff macro and request names can be longer than 2 characters and
there are extensions to the language primitives. For example, in AT&T troff
you access the year as a 2-digit number with the request \(yr. In groff you
can use the same request, recognized for compatibility, or you can use groff's

syntax.txt — 1686

native syntax, \[yr]. Furthermore, you can use a 4-digit year directly:
\[year]. Macro requests can be longer than 2 characters, for example, GNU mm
accepts the requests ".VERBON" and ".VERBOFF" for creating verbatim
environments.

In order to obtain the best formatted output g/troff can give you, you should
follow a few simple rules about spacing and punctuation.

1. Do not leave empty spaces at the end of lines.

2. Leave one space and one space only after an end-of-sentence period,
exclamation mark, etc.

3. For reasons stated below, it is best to follow all period marks with a
carriage return.

The reason behind these unusual tips is that g/n/troff have a line breaking
algorithm that can be easily upset if you don't follow the rules given above.

Unlike TeX, troff fills text line-by-line, not paragraph-by-paragraph and,
furthermore, it does not have a concept of glue or stretch, all horizontal and
vertical space input will be output as is.

Therefore, you should be careful about not using more space between sentences
than you intend to have in your final document. For this reason, the common
practice is to insert a carriage return immediately after all punctuation
marks. If you want to have "even" text in your final processed output, you
need to maintain regular spacing in the input text. To mark both trailing
spaces and two or more spaces after a punctuation as an error, use:

:let nroff_space_errors = 1

Another technique to detect extra spacing and other errors that will interfere
with the correct typesetting of your file, is to define an eye-catching
highlighting definition for the syntax groups "nroffDefinition" and
"nroffDefSpecial" in your configuration files. For example:

hi def nroffDefinition term=italic cterm=italic gui=reverse
hi def nroffDefSpecial term=italic,bold cterm=italic,bold

\ gui=reverse,bold

If you want to navigate preprocessor entries in your source file as easily as
with section markers, you can activate the following option in your .vimrc
file:

let b:preprocs_as_sections = 1

As well, the syntax file adds an extra paragraph marker for the extended
paragraph macro (.XP) in the ms package.

Finally, there is a groff.vim syntax file that can be used for enabling
groff syntax highlighting either on a file basis or globally by default.

OCAML ocaml.vim ft-ocaml-syntax

The OCaml syntax file handles files having the following prefixes: .ml,
.mli, .mll and .mly. By setting the following variable

:let ocaml_revised = 1

syntax.txt — 1687

you can switch from standard OCaml-syntax to revised syntax as supported
by the camlp4 preprocessor. Setting the variable

:let ocaml_noend_error = 1

prevents highlighting of "end" as error, which is useful when sources
contain very long structures that Vim does not synchronize anymore.

PAPP papp.vim ft-papp-syntax

The PApp syntax file handles .papp files and, to a lesser extent, .pxml
and .pxsl files which are all a mixture of perl/xml/html/other using xml
as the top-level file format. By default everything inside phtml or pxml
sections is treated as a string with embedded preprocessor commands. If
you set the variable:

:let papp_include_html=1

in your startup file it will try to syntax-highlight html code inside phtml
sections, but this is relatively slow and much too colourful to be able to
edit sensibly. ;)

The newest version of the papp.vim syntax file can usually be found at
http://papp.plan9.de.

PASCAL pascal.vim ft-pascal-syntax

Files matching "*.p" could be Progress or Pascal and those matching "*.pp"
could be Puppet or Pascal. If the automatic detection doesn't work for you,
or you only edit Pascal files, use this in your startup vimrc:

:let filetype_p = "pascal"
:let filetype_pp = "pascal"

The Pascal syntax file has been extended to take into account some extensions
provided by Turbo Pascal, Free Pascal Compiler and GNU Pascal Compiler.
Delphi keywords are also supported. By default, Turbo Pascal 7.0 features are
enabled. If you prefer to stick with the standard Pascal keywords, add the
following line to your startup file:

:let pascal_traditional=1

To switch on Delphi specific constructions (such as one-line comments,
keywords, etc):

:let pascal_delphi=1

The option pascal_symbol_operator controls whether symbol operators such as +,
*, .., etc. are displayed using the Operator color or not. To colorize symbol
operators, add the following line to your startup file:

:let pascal_symbol_operator=1

Some functions are highlighted by default. To switch it off:

:let pascal_no_functions=1

syntax.txt — 1688

http://papp.plan9.de

Furthermore, there are specific variables for some compilers. Besides
pascal_delphi, there are pascal_gpc and pascal_fpc. Default extensions try to
match Turbo Pascal.

:let pascal_gpc=1

or

:let pascal_fpc=1

To ensure that strings are defined on a single line, you can define the
pascal_one_line_string variable.

:let pascal_one_line_string=1

If you dislike <Tab> chars, you can set the pascal_no_tabs variable. Tabs
will be highlighted as Error.

:let pascal_no_tabs=1

PERL perl.vim ft-perl-syntax

There are a number of possible options to the perl syntax highlighting.

Inline POD highlighting is now turned on by default. If you don't wish
to have the added complexity of highlighting POD embedded within Perl
files, you may set the 'perl_include_pod' option to 0:

:let perl_include_pod = 0

To reduce the complexity of parsing (and increase performance) you can switch
off two elements in the parsing of variable names and contents.

To handle package references in variable and function names not differently
from the rest of the name (like 'PkgName::' in '$PkgName::VarName'):

:let perl_no_scope_in_variables = 1

(In Vim 6.x it was the other way around: "perl_want_scope_in_variables"
enabled it.)

If you do not want complex things like '@{${"foo"}}' to be parsed:

:let perl_no_extended_vars = 1

(In Vim 6.x it was the other way around: "perl_extended_vars" enabled it.)

The coloring strings can be changed. By default strings and qq friends will
be highlighted like the first line. If you set the variable
perl_string_as_statement, it will be highlighted as in the second line.

"hello world!"; qq|hello world|;
^^^^^^^^^^^^^^NN^^^^^^^^^^^^^^^N (unlet perl_string_as_statement)
S^^^^^^^^^^^^SNNSSS^^^^^^^^^^^SN (let perl_string_as_statement)

(^ = perlString, S = perlStatement, N = None at all)

syntax.txt — 1689

The syncing has 3 options. The first two switch off some triggering of
synchronization and should only be needed in case it fails to work properly.
If while scrolling all of a sudden the whole screen changes color completely
then you should try and switch off one of those. Let me know if you can
figure out the line that causes the mistake.

One triggers on "^\s*sub\s*" and the other on "^[$@%]" more or less.

:let perl_no_sync_on_sub
:let perl_no_sync_on_global_var

Below you can set the maximum distance VIM should look for starting points for
its attempts in syntax highlighting.

:let perl_sync_dist = 100

If you want to use folding with perl, set perl_fold:

:let perl_fold = 1

If you want to fold blocks in if statements, etc. as well set the following:

:let perl_fold_blocks = 1

Subroutines are folded by default if 'perl_fold' is set. If you do not want
this, you can set 'perl_nofold_subs':

:let perl_nofold_subs = 1

Anonymous subroutines are not folded by default; you may enable their folding
via 'perl_fold_anonymous_subs':

:let perl_fold_anonymous_subs = 1

Packages are also folded by default if 'perl_fold' is set. To disable this
behavior, set 'perl_nofold_packages':

:let perl_nofold_packages = 1

PHP3 and PHP4 php.vim php3.vim ft-php-syntax ft-php3-syntax

[Note: Previously this was called "php3", but since it now also supports php4
it has been renamed to "php"]

There are the following options for the php syntax highlighting.

If you like SQL syntax highlighting inside Strings:

let php_sql_query = 1

For highlighting the Baselib methods:

let php_baselib = 1

Enable HTML syntax highlighting inside strings:

let php_htmlInStrings = 1

Using the old colorstyle:

syntax.txt — 1690

let php_oldStyle = 1

Enable highlighting ASP-style short tags:

let php_asp_tags = 1

Disable short tags:

let php_noShortTags = 1

For highlighting parent error] or):

let php_parent_error_close = 1

For skipping a php end tag, if there exists an open (or [without a closing
one:

let php_parent_error_open = 1

Enable folding for classes and functions:

let php_folding = 1

Selecting syncing method:

let php_sync_method = x

x = -1 to sync by search (default),
x > 0 to sync at least x lines backwards,
x = 0 to sync from start.

PLAINTEX plaintex.vim ft-plaintex-syntax

TeX is a typesetting language, and plaintex is the file type for the "plain"
variant of TeX. If you never want your *.tex files recognized as plain TeX,
see ft-tex-plugin .

This syntax file has the option

let g:plaintex_delimiters = 1

if you want to highlight brackets "[]" and braces "{}".

PPWIZARD ppwiz.vim ft-ppwiz-syntax

PPWizard is a preprocessor for HTML and OS/2 INF files

This syntax file has the options:

- ppwiz_highlight_defs : Determines highlighting mode for PPWizard's
definitions. Possible values are

ppwiz_highlight_defs = 1 : PPWizard #define statements retain the
colors of their contents (e.g. PPWizard macros and variables).

ppwiz_highlight_defs = 2 : Preprocessor #define and #evaluate
statements are shown in a single color with the exception of line
continuation symbols.

syntax.txt — 1691

The default setting for ppwiz_highlight_defs is 1.

- ppwiz_with_html : If the value is 1 (the default), highlight literal
HTML code; if 0, treat HTML code like ordinary text.

PHTML phtml.vim ft-phtml-syntax

There are two options for the phtml syntax highlighting.

If you like SQL syntax highlighting inside Strings, use this:

:let phtml_sql_query = 1

For syncing, minlines defaults to 100. If you prefer another value, you can
set "phtml_minlines" to the value you desire. Example:

:let phtml_minlines = 200

POSTSCRIPT postscr.vim ft-postscr-syntax

There are several options when it comes to highlighting PostScript.

First which version of the PostScript language to highlight. There are
currently three defined language versions, or levels. Level 1 is the original
and base version, and includes all extensions prior to the release of level 2.
Level 2 is the most common version around, and includes its own set of
extensions prior to the release of level 3. Level 3 is currently the highest
level supported. You select which level of the PostScript language you want
highlighted by defining the postscr_level variable as follows:

:let postscr_level=2

If this variable is not defined it defaults to 2 (level 2) since this is
the most prevalent version currently.

Note: Not all PS interpreters will support all language features for a
particular language level. In particular the %!PS-Adobe-3.0 at the start of
PS files does NOT mean the PostScript present is level 3 PostScript!

If you are working with Display PostScript, you can include highlighting of
Display PS language features by defining the postscr_display variable as
follows:

:let postscr_display=1

If you are working with Ghostscript, you can include highlighting of
Ghostscript specific language features by defining the variable
postscr_ghostscript as follows:

:let postscr_ghostscript=1

PostScript is a large language, with many predefined elements. While it
useful to have all these elements highlighted, on slower machines this can
cause Vim to slow down. In an attempt to be machine friendly font names and
character encodings are not highlighted by default. Unless you are working
explicitly with either of these this should be ok. If you want them to be
highlighted you should set one or both of the following variables:

syntax.txt — 1692

:let postscr_fonts=1
:let postscr_encodings=1

There is a stylistic option to the highlighting of and, or, and not. In
PostScript the function of these operators depends on the types of their
operands - if the operands are booleans then they are the logical operators,
if they are integers then they are binary operators. As binary and logical
operators can be highlighted differently they have to be highlighted one way
or the other. By default they are treated as logical operators. They can be
highlighted as binary operators by defining the variable
postscr_andornot_binary as follows:

:let postscr_andornot_binary=1

ptcap.vim ft-printcap-syntax
PRINTCAP + TERMCAP ft-ptcap-syntax ft-termcap-syntax

This syntax file applies to the printcap and termcap databases.

In order for Vim to recognize printcap/termcap files that do not match
the patterns *printcap*, or *termcap*, you must put additional patterns
appropriate to your system in your myfiletypefile file. For these
patterns, you must set the variable "b:ptcap_type" to either "print" or
"term", and then the 'filetype' option to ptcap.

For example, to make Vim identify all files in /etc/termcaps/ as termcap
files, add the following:

:au BufNewFile,BufRead /etc/termcaps/* let b:ptcap_type = "term" |
\ set filetype=ptcap

If you notice highlighting errors while scrolling backwards, which
are fixed when redrawing with CTRL-L, try setting the "ptcap_minlines"
internal variable to a larger number:

:let ptcap_minlines = 50

(The default is 20 lines.)

PROGRESS progress.vim ft-progress-syntax

Files matching "*.w" could be Progress or cweb. If the automatic detection
doesn't work for you, or you don't edit cweb at all, use this in your
startup vimrc:

:let filetype_w = "progress"
The same happens for "*.i", which could be assembly, and "*.p", which could be
Pascal. Use this if you don't use assembly and Pascal:

:let filetype_i = "progress"
:let filetype_p = "progress"

PYTHON python.vim ft-python-syntax

There are six options to control Python syntax highlighting.

For highlighted numbers:
:let python_no_number_highlight = 1

syntax.txt — 1693

For highlighted builtin functions:
:let python_no_builtin_highlight = 1

For highlighted standard exceptions:
:let python_no_exception_highlight = 1

For highlighted doctests and code inside:
:let python_no_doctest_highlight = 1

or
:let python_no_doctest_code_highlight = 1

The first option implies the second one.

For highlighted trailing whitespace and mix of spaces and tabs:
:let python_space_error_highlight = 1

If you want all possible Python highlighting:
:let python_highlight_all = 1

This has the same effect as setting python_space_error_highlight and
unsetting all the other ones.

If you use Python 2 or straddling code (Python 2 and 3 compatible),
you can enforce the use of an older syntax file with support for
Python 2 and up to Python 3.5.

:let python_use_python2_syntax = 1
This option will exclude all modern Python 3.6 or higher features.

Note: Only existence of these options matters, not their value.
You can replace 1 above with anything.

QUAKE quake.vim ft-quake-syntax

The Quake syntax definition should work for most FPS (First Person Shooter)
based on one of the Quake engines. However, the command names vary a bit
between the three games (Quake, Quake 2, and Quake 3 Arena) so the syntax
definition checks for the existence of three global variables to allow users
to specify what commands are legal in their files. The three variables can
be set for the following effects:

set to highlight commands only available in Quake:
:let quake_is_quake1 = 1

set to highlight commands only available in Quake 2:
:let quake_is_quake2 = 1

set to highlight commands only available in Quake 3 Arena:
:let quake_is_quake3 = 1

Any combination of these three variables is legal, but might highlight more
commands than are actually available to you by the game.

R r.vim ft-r-syntax

The parsing of R code for syntax highlight starts 40 lines backwards, but you
can set a different value in your vimrc . Example:

let r_syntax_minlines = 60

You can also turn off syntax highlighting of ROxygen:

syntax.txt — 1694

let r_syntax_hl_roxygen = 0

enable folding of code delimited by parentheses, square brackets and curly
braces:

let r_syntax_folding = 1

and highlight as functions all keywords followed by an opening parenthesis:
let r_syntax_fun_pattern = 1

R MARKDOWN rmd.vim ft-rmd-syntax

To disable syntax highlight of YAML header, add to your vimrc :
let rmd_syn_hl_yaml = 0

To disable syntax highlighting of citation keys:
let rmd_syn_hl_citations = 0

To highlight R code in knitr chunk headers:
let rmd_syn_hl_chunk = 1

By default, chunks of R code will be highlighted following the rules of R
language. Moreover, whenever the buffer is saved, Vim scans the buffer and
highlights other languages if they are present in new chunks. LaTeX code also
is automatically recognized and highlighted when the buffer is saved. This
behavior can be controlled with the variables `rmd_dynamic_fenced_languages`,
and `rmd_include_latex` whose valid values are:

let rmd_dynamic_fenced_languages = 0 " No autodetection of languages
let rmd_dynamic_fenced_languages = 1 " Autodetection of languages
let rmd_include_latex = 0 " Don't highlight LaTeX code
let rmd_include_latex = 1 " Autodetect LaTeX code
let rmd_include_latex = 2 " Always include LaTeX highlighting

If the value of `rmd_dynamic_fenced_languages` is 0, you still can set the
list of languages whose chunks of code should be properly highlighted, as in
the example:

let rmd_fenced_languages = ['r', 'python']

R RESTRUCTURED TEXT rrst.vim ft-rrst-syntax

To highlight R code in knitr chunk headers, add to your vimrc :
let rrst_syn_hl_chunk = 1

READLINE readline.vim ft-readline-syntax

The readline library is primarily used by the BASH shell, which adds quite a
few commands and options to the ones already available. To highlight these
items as well you can add the following to your vimrc or just type it in the
command line before loading a file with the readline syntax:

let readline_has_bash = 1

This will add highlighting for the commands that BASH (version 2.05a and
later, and part earlier) adds.

REGO rego.vim ft-rego-syntax

Rego is a query language developed by Styra. It is mostly used as a policy

syntax.txt — 1695

language for kubernetes, but can be applied to almost anything. Files with
the following extensions are recognized as rego files: .rego.

RESTRUCTURED TEXT rst.vim ft-rst-syntax

Syntax highlighting is enabled for code blocks within the document for a
select number of file types. See $VIMRUNTIME/syntax/rst.vim for the default
syntax list.

To set a user-defined list of code block syntax highlighting:
let rst_syntax_code_list = ['vim', 'lisp', ...]

To assign multiple code block types to a single syntax, define
`rst_syntax_code_list` as a mapping:

let rst_syntax_code_list = {
\ 'cpp': ['cpp', 'c++'],
\ 'bash': ['bash', 'sh'],
...

\ }

To use color highlighting for emphasis text:
let rst_use_emphasis_colors = 1

To enable folding of sections:
let rst_fold_enabled = 1

Note that folding can cause performance issues on some platforms.

REXX rexx.vim ft-rexx-syntax

If you notice highlighting errors while scrolling backwards, which are fixed
when redrawing with CTRL-L, try setting the "rexx_minlines" internal variable
to a larger number:

:let rexx_minlines = 50
This will make the syntax synchronization start 50 lines before the first
displayed line. The default value is 10. The disadvantage of using a larger
number is that redrawing can become slow.

Vim tries to guess what type a ".r" file is. If it can't be detected (from
comment lines), the default is "r". To make the default rexx add this line to
your .vimrc: g:filetype_r

:let g:filetype_r = "r"

RUBY ruby.vim ft-ruby-syntax

Ruby: Operator highlighting ruby_operators
Ruby: Whitespace errors ruby_space_errors
Ruby: Folding ruby_fold ruby_foldable_groups
Ruby: Reducing expensive operations ruby_no_expensive ruby_minlines
Ruby: Spellchecking strings ruby_spellcheck_strings

ruby_operators
Ruby: Operator highlighting

Operators can be highlighted by defining "ruby_operators":

syntax.txt — 1696

:let ruby_operators = 1

ruby_space_errors
Ruby: Whitespace errors

Whitespace errors can be highlighted by defining "ruby_space_errors":

:let ruby_space_errors = 1

This will highlight trailing whitespace and tabs preceded by a space character
as errors. This can be refined by defining "ruby_no_trail_space_error" and
"ruby_no_tab_space_error" which will ignore trailing whitespace and tabs after
spaces respectively.

ruby_fold ruby_foldable_groups
Ruby: Folding

Folding can be enabled by defining "ruby_fold":

:let ruby_fold = 1

This will set the value of 'foldmethod' to "syntax" locally to the current
buffer or window, which will enable syntax-based folding when editing Ruby
filetypes.

Default folding is rather detailed, i.e., small syntax units like "if", "do",
"%w[]" may create corresponding fold levels.

You can set "ruby_foldable_groups" to restrict which groups are foldable:

:let ruby_foldable_groups = 'if case %'

The value is a space-separated list of keywords:

keyword meaning
-------- -------------------------------------
ALL Most block syntax (default)
NONE Nothing
if "if" or "unless" block
def "def" block
class "class" block
module "module" block
do "do" block
begin "begin" block
case "case" block
for "for", "while", "until" loops
{ Curly bracket block or hash literal
[Array literal
% Literal with "%" notation, e.g.: %w(STRING), %!STRING!
/ Regexp
string String and shell command output (surrounded by ', ", `)
: Symbol
Multiline comment
<< Here documents
__END__ Source code after "__END__" directive

ruby_no_expensive
Ruby: Reducing expensive operations

By default, the "end" keyword is colorized according to the opening statement

syntax.txt — 1697

of the block it closes. While useful, this feature can be expensive; if you
experience slow redrawing (or you are on a terminal with poor color support)
you may want to turn it off by defining the "ruby_no_expensive" variable:

:let ruby_no_expensive = 1

In this case the same color will be used for all control keywords.

ruby_minlines

If you do want this feature enabled, but notice highlighting errors while
scrolling backwards, which are fixed when redrawing with CTRL-L, try setting
the "ruby_minlines" variable to a value larger than 50:

:let ruby_minlines = 100

Ideally, this value should be a number of lines large enough to embrace your
largest class or module.

ruby_spellcheck_strings
Ruby: Spellchecking strings

Ruby syntax will perform spellchecking of strings if you define
"ruby_spellcheck_strings":

:let ruby_spellcheck_strings = 1

SCHEME scheme.vim ft-scheme-syntax

By default only R7RS keywords are highlighted and properly indented.

scheme.vim also supports extensions of the CHICKEN Scheme->C compiler.
Define b:is_chicken or g:is_chicken, if you need them.

SDL sdl.vim ft-sdl-syntax

The SDL highlighting probably misses a few keywords, but SDL has so many
of them it's almost impossibly to cope.

The new standard, SDL-2000, specifies that all identifiers are
case-sensitive (which was not so before), and that all keywords can be
used either completely lowercase or completely uppercase. To have the
highlighting reflect this, you can set the following variable:

:let sdl_2000=1

This also sets many new keywords. If you want to disable the old
keywords, which is probably a good idea, use:

:let SDL_no_96=1

The indentation is probably also incomplete, but right now I am very
satisfied with it for my own projects.

SED sed.vim ft-sed-syntax

To make tabs stand out from regular blanks (accomplished by using Todo
highlighting on the tabs), define "g:sed_highlight_tabs" by putting

syntax.txt — 1698

:let g:sed_highlight_tabs = 1

in the vimrc file. (This special highlighting only applies for tabs
inside search patterns, replacement texts, addresses or text included
by an Append/Change/Insert command.) If you enable this option, it is
also a good idea to set the tab width to one character; by doing that,
you can easily count the number of tabs in a string.

GNU sed allows comments after text on the same line. BSD sed only allows
comments where "#" is the first character of the line. To enforce BSD-style
comments, i.e. mark end-of-line comments as errors, use:

:let g:sed_dialect = "bsd"

Note that there are other differences between GNU sed and BSD sed which are
not (yet) affected by this setting.

Bugs:

The transform command (y) is treated exactly like the substitute
command. This means that, as far as this syntax file is concerned,
transform accepts the same flags as substitute, which is wrong.
(Transform accepts no flags.) I tolerate this bug because the
involved commands need very complex treatment (95 patterns, one for
each plausible pattern delimiter).

SGML sgml.vim ft-sgml-syntax

The coloring scheme for tags in the SGML file works as follows.

The <> of opening tags are colored differently than the </> of a closing tag.
This is on purpose! For opening tags the 'Function' color is used, while for
closing tags the 'Type' color is used (See syntax.vim to check how those are
defined for you)

Known tag names are colored the same way as statements in C. Unknown tag
names are not colored which makes it easy to spot errors.

Note that the same is true for argument (or attribute) names. Known attribute
names are colored differently than unknown ones.

Some SGML tags are used to change the rendering of text. The following tags
are recognized by the sgml.vim syntax coloring file and change the way normal
text is shown: <varname> <emphasis> <command> <function> <literal>
<replaceable> <ulink> and <link>.

If you want to change how such text is rendered, you must redefine the
following syntax groups:

- sgmlBold
- sgmlBoldItalic
- sgmlUnderline
- sgmlItalic
- sgmlLink for links

To make this redefinition work you must redefine them all and define the
following variable in your vimrc (this is due to the order in which the files
are read during initialization)

syntax.txt — 1699

let sgml_my_rendering=1

You can also disable this rendering by adding the following line to your
vimrc file:

let sgml_no_rendering=1

(Adapted from the html.vim help text by Claudio Fleiner <claudio@fleiner.com>)

ft-posix-syntax ft-dash-syntax
SH sh.vim ft-sh-syntax ft-bash-syntax ft-ksh-syntax

This covers syntax highlighting for the older Unix (Bourne) sh, and newer
shells such as bash, dash, posix, and the Korn shells.

Vim attempts to determine which shell type is in use by specifying that
various filenames are of specific types, e.g.:

ksh : .kshrc* *.ksh
bash: .bashrc* bashrc bash.bashrc .bash_profile* *.bash

See $VIMRUNTIME/filetype.vim for the full list of patterns. If none of these
cases pertain, then the first line of the file is examined (ex. looking for
/bin/sh /bin/ksh /bin/bash). If the first line specifies a shelltype, then
that shelltype is used. However some files (ex. .profile) are known to be
shell files but the type is not apparent. Furthermore, on many systems sh is
symbolically linked to "bash" (Linux, Windows+cygwin) or "ksh" (Posix).

One may specify a global default by instantiating one of the following
variables in your <.vimrc>:

ksh:
let g:is_kornshell = 1

posix: (using this is nearly the same as setting g:is_kornshell to 1)
let g:is_posix = 1

bash:
let g:is_bash = 1

sh: (default) Bourne shell
let g:is_sh = 1

(dash users should use posix)

If there's no "#! ..." line, and the user hasn't availed himself/herself of a
default sh.vim syntax setting as just shown, then syntax/sh.vim will assume
the Bourne shell syntax. No need to quote RFCs or market penetration
statistics in error reports, please -- just select the default version of the
sh your system uses and install the associated "let..." in your <.vimrc>.

The syntax/sh.vim file provides several levels of syntax-based folding:

let g:sh_fold_enabled= 0 (default, no syntax folding)
let g:sh_fold_enabled= 1 (enable function folding)
let g:sh_fold_enabled= 2 (enable heredoc folding)
let g:sh_fold_enabled= 4 (enable if/do/for folding)

then various syntax items (ie. HereDocuments and function bodies) become
syntax-foldable (see :syn-fold). You also may add these together
to get multiple types of folding:

let g:sh_fold_enabled= 3 (enables function and heredoc folding)

syntax.txt — 1700

If you notice highlighting errors while scrolling backwards which are fixed
when one redraws with CTRL-L, try setting the "sh_minlines" internal variable
to a larger number. Example:

let sh_minlines = 500

This will make syntax synchronization start 500 lines before the first
displayed line. The default value is 200. The disadvantage of using a larger
number is that redrawing can become slow.

If you don't have much to synchronize on, displaying can be very slow. To
reduce this, the "sh_maxlines" internal variable can be set. Example:

let sh_maxlines = 100

The default is to use the twice sh_minlines. Set it to a smaller number to
speed up displaying. The disadvantage is that highlight errors may appear.

syntax/sh.vim tries to flag certain problems as errors; usually things like
unmatched "]", "done", "fi", etc. If you find the error handling problematic
for your purposes, you may suppress such error highlighting by putting
the following line in your .vimrc:

let g:sh_no_error= 1

sh-embed sh-awk
Sh: EMBEDDING LANGUAGES

You may wish to embed languages into sh. I'll give an example courtesy of
Lorance Stinson on how to do this with awk as an example. Put the following
file into $HOME/.vim/after/syntax/sh/awkembed.vim:

" AWK Embedding:
" ==============
" Shamelessly ripped from aspperl.vim by Aaron Hope.
if exists("b:current_syntax")

unlet b:current_syntax
endif
syn include @AWKScript syntax/awk.vim
syn region AWKScriptCode matchgroup=AWKCommand start=+[=\\]\@<!'+ skip=+\\'+ end=+'+ contains=@AWKScript contained
syn region AWKScriptEmbedded matchgroup=AWKCommand start=+\<awk\>+ skip=+\\$+ end=+[=\\]\@<!'+me=e-1 contains=@shIdList,@shExprList2 nextgroup=AWKScriptCode
syn cluster shCommandSubList add=AWKScriptEmbedded
hi def link AWKCommand Type

This code will then let the awk code in the single quotes:
awk '...awk code here...'

be highlighted using the awk highlighting syntax. Clearly this may be
extended to other languages.

SPEEDUP spup.vim ft-spup-syntax
(AspenTech plant simulator)

The Speedup syntax file has some options:

- strict_subsections : If this variable is defined, only keywords for
sections and subsections will be highlighted as statements but not
other keywords (like WITHIN in the OPERATION section).

syntax.txt — 1701

- highlight_types : Definition of this variable causes stream types
like temperature or pressure to be highlighted as Type, not as a
plain Identifier. Included are the types that are usually found in
the DECLARE section; if you defined own types, you have to include
them in the syntax file.

- oneline_comments : This value ranges from 1 to 3 and determines the
highlighting of # style comments.

oneline_comments = 1 : Allow normal Speedup code after an even
number of #s.

oneline_comments = 2 : Show code starting with the second # as
error. This is the default setting.

oneline_comments = 3 : Show the whole line as error if it contains
more than one #.

Since especially OPERATION sections tend to become very large due to
PRESETting variables, syncing may be critical. If your computer is
fast enough, you can increase minlines and/or maxlines near the end of
the syntax file.

SQL sql.vim ft-sql-syntax
sqlinformix.vim ft-sqlinformix-syntax
sqlanywhere.vim ft-sqlanywhere-syntax

While there is an ANSI standard for SQL, most database engines add their own
custom extensions. Vim currently supports the Oracle and Informix dialects of
SQL. Vim assumes "*.sql" files are Oracle SQL by default.

Vim currently has SQL support for a variety of different vendors via syntax
scripts. You can change Vim's default from Oracle to any of the current SQL
supported types. You can also easily alter the SQL dialect being used on a
buffer by buffer basis.

For more detailed instructions see ft_sql.txt .

SQUIRREL squirrel.vim ft-squirrel-syntax

Squirrel is a high level imperative, object-oriented programming language,
designed to be a light-weight scripting language that fits in the size, memory
bandwidth, and real-time requirements of applications like video games. Files
with the following extensions are recognized as squirrel files: .nut.

TCSH tcsh.vim ft-tcsh-syntax

This covers the shell named "tcsh". It is a superset of csh. See csh.vim
for how the filetype is detected.

Tcsh does not allow \" in strings unless the "backslash_quote" shell variable
is set. If you want VIM to assume that no backslash quote constructs exist
add this line to your .vimrc:

:let tcsh_backslash_quote = 0

syntax.txt — 1702

If you notice highlighting errors while scrolling backwards, which are fixed
when redrawing with CTRL-L, try setting the "tcsh_minlines" internal variable
to a larger number:

:let tcsh_minlines = 1000

This will make the syntax synchronization start 1000 lines before the first
displayed line. If you set "tcsh_minlines" to "fromstart", then
synchronization is done from the start of the file. The default value for
tcsh_minlines is 100. The disadvantage of using a larger number is that
redrawing can become slow.

TEX tex.vim ft-tex-syntax latex-syntax
syntax-tex syntax-latex

Tex Contents
Tex: Want Syntax Folding? tex-folding
Tex: No Spell Checking Wanted g:tex_nospell
Tex: Don't Want Spell Checking In Comments? tex-nospell
Tex: Want Spell Checking in Verbatim Zones? tex-verb
Tex: Run-on Comments or MathZones tex-runon
Tex: Slow Syntax Highlighting? tex-slow
Tex: Want To Highlight More Commands? tex-morecommands
Tex: Excessive Error Highlighting? tex-error
Tex: Need a new Math Group? tex-math
Tex: Starting a New Style? tex-style
Tex: Taking Advantage of Conceal Mode tex-conceal
Tex: Selective Conceal Mode g:tex_conceal
Tex: Controlling iskeyword g:tex_isk
Tex: Fine Subscript and Superscript Control tex-supersub
Tex: Match Check Control tex-matchcheck

tex-folding g:tex_fold_enabled
Tex: Want Syntax Folding?

As of version 28 of <syntax/tex.vim>, syntax-based folding of parts, chapters,
sections, subsections, etc are supported. Put

let g:tex_fold_enabled=1
in your <.vimrc>, and :set fdm=syntax. I suggest doing the latter via a
modeline at the end of your LaTeX file:

% vim: fdm=syntax
If your system becomes too slow, then you might wish to look into

https://vimhelp.org/vim_faq.txt.html#faq-29.7

g:tex_nospell
Tex: No Spell Checking Wanted

If you don't want spell checking anywhere in your LaTeX document, put
let g:tex_nospell=1

into your .vimrc. If you merely wish to suppress spell checking inside
comments only, see g:tex_comment_nospell .

tex-nospell g:tex_comment_nospell
Tex: Don't Want Spell Checking In Comments?

Some folks like to include things like source code in comments and so would
prefer that spell checking be disabled in comments in LaTeX files. To do
this, put the following in your <.vimrc>:

let g:tex_comment_nospell= 1

syntax.txt — 1703

If you want to suppress spell checking everywhere inside your LaTeX document,
see g:tex_nospell .

tex-verb g:tex_verbspell
Tex: Want Spell Checking in Verbatim Zones?

Often verbatim regions are used for things like source code; seldom does
one want source code spell-checked. However, for those of you who do
want your verbatim zones spell-checked, put the following in your <.vimrc>:

let g:tex_verbspell= 1

tex-runon tex-stopzone
Tex: Run-on Comments or MathZones

The <syntax/tex.vim> highlighting supports TeX, LaTeX, and some AmsTeX. The
highlighting supports three primary zones/regions: normal, texZone, and
texMathZone. Although considerable effort has been made to have these zones
terminate properly, zones delineated by $..$ and $$..$$ cannot be synchronized
as there's no difference between start and end patterns. Consequently, a
special "TeX comment" has been provided

%stopzone
which will forcibly terminate the highlighting of either a texZone or a
texMathZone.

tex-slow tex-sync
Tex: Slow Syntax Highlighting?

If you have a slow computer, you may wish to reduce the values for
:syn sync maxlines=200
:syn sync minlines=50

(especially the latter). If your computer is fast, you may wish to
increase them. This primarily affects synchronizing (i.e. just what group,
if any, is the text at the top of the screen supposed to be in?).

Another cause of slow highlighting is due to syntax-driven folding; see
tex-folding for a way around this.

g:tex_fast

Finally, if syntax highlighting is still too slow, you may set

:let g:tex_fast= ""

in your .vimrc. Used this way, the g:tex_fast variable causes the syntax
highlighting script to avoid defining any regions and associated
synchronization. The result will be much faster syntax highlighting; the
price: you will no longer have as much highlighting or any syntax-based
folding, and you will be missing syntax-based error checking.

You may decide that some syntax is acceptable; you may use the following table
selectively to enable just some syntax highlighting:

b : allow bold and italic syntax
c : allow texComment syntax
m : allow texMatcher syntax (ie. {...} and [...])
M : allow texMath syntax
p : allow parts, chapter, section, etc syntax
r : allow texRefZone syntax (nocite, bibliography, label, pageref, eqref)
s : allow superscript/subscript regions
S : allow texStyle syntax

syntax.txt — 1704

v : allow verbatim syntax
V : allow texNewEnv and texNewCmd syntax

As an example, let g:tex_fast= "M" will allow math-associated highlighting
but suppress all the other region-based syntax highlighting.
(also see: g:tex_conceal and tex-supersub)

tex-morecommands tex-package
Tex: Want To Highlight More Commands?

LaTeX is a programmable language, and so there are thousands of packages full
of specialized LaTeX commands, syntax, and fonts. If you're using such a
package you'll often wish that the distributed syntax/tex.vim would support
it. However, clearly this is impractical. So please consider using the
techniques in mysyntaxfile-add to extend or modify the highlighting provided
by syntax/tex.vim. Please consider uploading any extensions that you write,
which typically would go in $HOME/after/syntax/tex/[pkgname].vim, to
http://vim.sf.net/.

I've included some support for various popular packages on my website:

http://www.drchip.org/astronaut/vim/index.html#LATEXPKGS

The syntax files there go into your .../after/syntax/tex/ directory.

tex-error g:tex_no_error
Tex: Excessive Error Highlighting?

The <tex.vim> supports lexical error checking of various sorts. Thus,
although the error checking is ofttimes very useful, it can indicate
errors where none actually are. If this proves to be a problem for you,
you may put in your <.vimrc> the following statement:

let g:tex_no_error=1
and all error checking by <syntax/tex.vim> will be suppressed.

tex-math
Tex: Need a new Math Group?

If you want to include a new math group in your LaTeX, the following
code shows you an example as to how you might do so:

call TexNewMathZone(sfx,mathzone,starform)
You'll want to provide the new math group with a unique suffix
(currently, A-L and V-Z are taken by <syntax/tex.vim> itself).
As an example, consider how eqnarray is set up by <syntax/tex.vim>:

call TexNewMathZone("D","eqnarray",1)
You'll need to change "mathzone" to the name of your new math group,
and then to the call to it in .vim/after/syntax/tex.vim.
The "starform" variable, if true, implies that your new math group
has a starred form (ie. eqnarray*).

tex-style b:tex_stylish
Tex: Starting a New Style?

One may use "\makeatletter" in *.tex files, thereby making the use of "@" in
commands available. However, since the *.tex file doesn't have one of the
following suffices: sty cls clo dtx ltx, the syntax highlighting will flag
such use of @ as an error. To solve this:

:let b:tex_stylish = 1
:set ft=tex

syntax.txt — 1705

http://vim.sf.net/

Putting "let g:tex_stylish=1" into your <.vimrc> will make <syntax/tex.vim>
always accept such use of @.

tex-cchar tex-cole tex-conceal
Tex: Taking Advantage of Conceal Mode

If you have 'conceallevel' set to 2 and if your encoding is utf-8, then a
number of character sequences can be translated into appropriate utf-8 glyphs,
including various accented characters, Greek characters in MathZones, and
superscripts and subscripts in MathZones. Not all characters can be made into
superscripts or subscripts; the constraint is due to what utf-8 supports.
In fact, only a few characters are supported as subscripts.

One way to use this is to have vertically split windows (see CTRL-W_v); one
with 'conceallevel' at 0 and the other at 2; and both using 'scrollbind' .

g:tex_conceal
Tex: Selective Conceal Mode

You may selectively use conceal mode by setting g:tex_conceal in your
<.vimrc>. By default, g:tex_conceal is set to "admgs" to enable concealment
for the following sets of characters:

a = accents/ligatures
b = bold and italic
d = delimiters
m = math symbols
g = Greek
s = superscripts/subscripts

By leaving one or more of these out, the associated conceal-character
substitution will not be made.

g:tex_isk g:tex_stylish
Tex: Controlling iskeyword

Normally, LaTeX keywords support 0-9, a-z, A-z, and 192-255 only. Latex
keywords don't support the underscore - except when in *.sty files. The
syntax highlighting script handles this with the following logic:

* If g:tex_stylish exists and is 1
then the file will be treated as a "sty" file, so the "_"
will be allowed as part of keywords
(regardless of g:tex_isk)

* Else if the file's suffix is sty, cls, clo, dtx, or ltx,
then the file will be treated as a "sty" file, so the "_"
will be allowed as part of keywords
(regardless of g:tex_isk)

* If g:tex_isk exists, then it will be used for the local 'iskeyword'
* Else the local 'iskeyword' will be set to 48-57,a-z,A-Z,192-255

tex-supersub g:tex_superscripts g:tex_subscripts
Tex: Fine Subscript and Superscript Control

See tex-conceal for how to enable concealed character replacement.

See g:tex_conceal for selectively concealing accents, bold/italic,
math, Greek, and superscripts/subscripts.

syntax.txt — 1706

One may exert fine control over which superscripts and subscripts one
wants syntax-based concealment for (see :syn-cchar). Since not all
fonts support all characters, one may override the
concealed-replacement lists; by default these lists are given by:

let g:tex_superscripts= "[0-9a-zA-W.,:;+-<>/()=]"
let g:tex_subscripts= "[0-9aehijklmnoprstuvx,+-/().]"

For example, I use Luxi Mono Bold; it doesn't support subscript
characters for "hklmnpst", so I put

let g:tex_subscripts= "[0-9aeijoruvx,+-/().]"
in ~/.vim/ftplugin/tex/tex.vim in order to avoid having inscrutable
utf-8 glyphs appear.

tex-matchcheck g:tex_matchcheck
Tex: Match Check Control

Sometimes one actually wants mismatched parentheses, square braces,
and or curly braces; for example, \text{(1,10]} is a range from but
not including 1 to and including 10. This wish, of course, conflicts
with the desire to provide delimiter mismatch detection. To
accommodate these conflicting goals, syntax/tex.vim provides

g:tex_matchcheck = '[({[]'
which is shown along with its default setting. So, if one doesn't
want [] and () to be checked for mismatches, try using

let g:tex_matchcheck= '[{}]'
If you don't want matching to occur inside bold and italicized
regions,

let g:tex_excludematcher= 1
will prevent the texMatcher group from being included in those regions.

TF tf.vim ft-tf-syntax

There is one option for the tf syntax highlighting.

For syncing, minlines defaults to 100. If you prefer another value, you can
set "tf_minlines" to the value you desire. Example:

:let tf_minlines = your choice

VIM vim.vim ft-vim-syntax
g:vimsyn_minlines g:vimsyn_maxlines

There is a trade-off between more accurate syntax highlighting versus screen
updating speed. To improve accuracy, you may wish to increase the
g:vimsyn_minlines variable. The g:vimsyn_maxlines variable may be used to
improve screen updating rates (see :syn-sync for more on this).

g:vimsyn_minlines : used to set synchronization minlines
g:vimsyn_maxlines : used to set synchronization maxlines

(g:vim_minlines and g:vim_maxlines are deprecated variants of
these two options)

g:vimsyn_embed
The g:vimsyn_embed option allows users to select what, if any, types of
embedded script highlighting they wish to have.

g:vimsyn_embed == 0 : don't support any embedded scripts
g:vimsyn_embed =~ 'l' : support embedded lua

syntax.txt — 1707

g:vimsyn_embed =~ 'm' : support embedded mzscheme
g:vimsyn_embed =~ 'p' : support embedded perl
g:vimsyn_embed =~ 'P' : support embedded python
g:vimsyn_embed =~ 'r' : support embedded ruby
g:vimsyn_embed =~ 't' : support embedded tcl

By default, g:vimsyn_embed is a string supporting interpreters that your vim
itself supports. Concatenate multiple characters to support multiple types
of embedded interpreters; ie. g:vimsyn_embed= "mp" supports embedded mzscheme
and embedded perl.

g:vimsyn_folding

Some folding is now supported with syntax/vim.vim:

g:vimsyn_folding == 0 or doesn't exist: no syntax-based folding
g:vimsyn_folding =~ 'a' : augroups
g:vimsyn_folding =~ 'f' : fold functions
g:vimsyn_folding =~ 'l' : fold lua script
g:vimsyn_folding =~ 'm' : fold mzscheme script
g:vimsyn_folding =~ 'p' : fold perl script
g:vimsyn_folding =~ 'P' : fold python script
g:vimsyn_folding =~ 'r' : fold ruby script
g:vimsyn_folding =~ 't' : fold tcl script

g:vimsyn_noerror
Not all error highlighting that syntax/vim.vim does may be correct; Vim script
is a difficult language to highlight correctly. A way to suppress error
highlighting is to put the following line in your vimrc :

let g:vimsyn_noerror = 1

WDL wdl.vim wdl-syntax

The Workflow Description Language is a way to specify data processing workflows
with a human-readable and writeable syntax. This is used a lot in
bioinformatics. More info on the spec can be found here:
https://github.com/openwdl/wdl

XF86CONFIG xf86conf.vim ft-xf86conf-syntax

The syntax of XF86Config file differs in XFree86 v3.x and v4.x. Both
variants are supported. Automatic detection is used, but is far from perfect.
You may need to specify the version manually. Set the variable
xf86conf_xfree86_version to 3 or 4 according to your XFree86 version in
your .vimrc. Example:

:let xf86conf_xfree86_version=3
When using a mix of versions, set the b:xf86conf_xfree86_version variable.

Note that spaces and underscores in option names are not supported. Use
"SyncOnGreen" instead of "__s yn con gr_e_e_n" if you want the option name
highlighted.

XML xml.vim ft-xml-syntax

Xml namespaces are highlighted by default. This can be inhibited by
setting a global variable:

syntax.txt — 1708

https://github.com/openwdl/wdl

:let g:xml_namespace_transparent=1

xml-folding
The xml syntax file provides syntax folding (see :syn-fold) between
start and end tags. This can be turned on by

:let g:xml_syntax_folding = 1
:set foldmethod=syntax

Note: Syntax folding might slow down syntax highlighting significantly,
especially for large files.

X Pixmaps (XPM) xpm.vim ft-xpm-syntax

xpm.vim creates its syntax items dynamically based upon the contents of the
XPM file. Thus if you make changes e.g. in the color specification strings,
you have to source it again e.g. with ":set syn=xpm".

To copy a pixel with one of the colors, yank a "pixel" with "yl" and insert it
somewhere else with "P".

Do you want to draw with the mouse? Try the following:
:function! GetPixel()
: let c = getline(".")[col(".") - 1]
: echo c
: exe "noremap <LeftMouse> <LeftMouse>r" .. c
: exe "noremap <LeftDrag> <LeftMouse>r" .. c
:endfunction
:noremap <RightMouse> <LeftMouse>:call GetPixel()<CR>
:set guicursor=n:hor20 " to see the color beneath the cursor

This turns the right button into a pipette and the left button into a pen.
It will work with XPM files that have one character per pixel only and you
must not click outside of the pixel strings, but feel free to improve it.

It will look much better with a font in a quadratic cell size, e.g. for X:
:set guifont=-*-clean-medium-r-*-*-8-*-*-*-*-80-*

YAML yaml.vim ft-yaml-syntax

g:yaml_schema b:yaml_schema
A YAML schema is a combination of a set of tags and a mechanism for resolving
non-specific tags. For user this means that YAML parser may, depending on
plain scalar contents, treat plain scalar (which can actually be only string
and nothing else) as a value of the other type: null, boolean, floating-point,
integer. `g:yaml_schema` option determines according to which schema values
will be highlighted specially. Supported schemas are

Schema Description
failsafe No additional highlighting.
json Supports JSON-style numbers, booleans and null.
core Supports more number, boolean and null styles.
pyyaml In addition to core schema supports highlighting timestamps,

but there are some differences in what is recognized as
numbers and many additional boolean values not present in core
schema.

Default schema is `core`.

syntax.txt — 1709

Note that schemas are not actually limited to plain scalars, but this is the
only difference between schemas defined in YAML specification and the only
difference defined in the syntax file.

ZSH zsh.vim ft-zsh-syntax

The syntax script for zsh allows for syntax-based folding:

:let g:zsh_fold_enable = 1

==
6. Defining a syntax :syn-define E410

Vim understands three types of syntax items:

1. Keyword
It can only contain keyword characters, according to the characters
specified with :syn-iskeyword or the 'iskeyword' option. It cannot
contain other syntax items. It will only match with a complete word (there
are no keyword characters before or after the match). The keyword "if"
would match in "if(a=b)", but not in "ifdef x", because "(" is not a
keyword character and "d" is.

2. Match
This is a match with a single regexp pattern.

3. Region
This starts at a match of the "start" regexp pattern and ends with a match
with the "end" regexp pattern. Any other text can appear in between. A
"skip" regexp pattern can be used to avoid matching the "end" pattern.

Several syntax ITEMs can be put into one syntax GROUP. For a syntax group
you can give highlighting attributes. For example, you could have an item
to define a "/* .. */" comment and another one that defines a "// .." comment,
and put them both in the "Comment" group. You can then specify that a
"Comment" will be in bold font and have a blue color. You are free to make
one highlight group for one syntax item, or put all items into one group.
This depends on how you want to specify your highlighting attributes. Putting
each item in its own group results in having to specify the highlighting
for a lot of groups.

Note that a syntax group and a highlight group are similar. For a highlight
group you will have given highlight attributes. These attributes will be used
for the syntax group with the same name.

In case more than one item matches at the same position, the one that was
defined LAST wins. Thus you can override previously defined syntax items by
using an item that matches the same text. But a keyword always goes before a
match or region. And a keyword with matching case always goes before a
keyword with ignoring case.

PRIORITY :syn-priority

When several syntax items may match, these rules are used:

1. When multiple Match or Region items start in the same position, the item
defined last has priority.

syntax.txt — 1710

2. A Keyword has priority over Match and Region items.
3. An item that starts in an earlier position has priority over items that

start in later positions.

DEFINING CASE :syn-case E390

:sy[ntax] case [match | ignore]
This defines if the following ":syntax" commands will work with
matching case, when using "match", or with ignoring case, when using
"ignore". Note that any items before this are not affected, and all
items until the next ":syntax case" command are affected.

:sy[ntax] case
Show either "syntax case match" or "syntax case ignore".

DEFINING FOLDLEVEL :syn-foldlevel

:sy[ntax] foldlevel start
:sy[ntax] foldlevel minimum

This defines how the foldlevel of a line is computed when using
foldmethod=syntax (see fold-syntax and :syn-fold):

start: Use level of item containing start of line.
minimum: Use lowest local-minimum level of items on line.

The default is "start". Use "minimum" to search a line horizontally
for the lowest level contained on the line that is followed by a
higher level. This produces more natural folds when syntax items
may close and open horizontally within a line.

:sy[ntax] foldlevel
Show the current foldlevel method, either "syntax foldlevel start" or
"syntax foldlevel minimum".

{not meaningful when Vim was compiled without |+folding| feature}

SPELL CHECKING :syn-spell

:sy[ntax] spell toplevel
:sy[ntax] spell notoplevel
:sy[ntax] spell default

This defines where spell checking is to be done for text that is not
in a syntax item:

toplevel: Text is spell checked.
notoplevel: Text is not spell checked.
default: When there is a @Spell cluster no spell checking.

For text in syntax items use the @Spell and @NoSpell clusters
spell-syntax . When there is no @Spell and no @NoSpell cluster then

spell checking is done for "default" and "toplevel".

To activate spell checking the 'spell' option must be set.

:sy[ntax] spell
Show the current syntax spell checking method, either "syntax spell
toplevel", "syntax spell notoplevel" or "syntax spell default".

syntax.txt — 1711

SYNTAX ISKEYWORD SETTING :syn-iskeyword

:sy[ntax] iskeyword [clear | {option}]
This defines the keyword characters. It's like the 'iskeyword' option
for but only applies to syntax highlighting.

clear: Syntax specific iskeyword setting is disabled and the
buffer-local 'iskeyword' setting is used.

{option} Set the syntax 'iskeyword' option to a new value.

Example:
:syntax iskeyword @,48-57,192-255,$,_

This would set the syntax specific iskeyword option to include all
alphabetic characters, plus the numeric characters, all accented
characters and also includes the "_" and the "$".

If no argument is given, the current value will be output.

Setting this option influences what /\k matches in syntax patterns
and also determines where :syn-keyword will be checked for a new
match.

It is recommended when writing syntax files, to use this command to
set the correct value for the specific syntax language and not change
the 'iskeyword' option.

DEFINING KEYWORDS :syn-keyword

:sy[ntax] keyword {group-name} [{options}] {keyword} .. [{options}]

This defines a number of keywords.

{group-name} Is a syntax group name such as "Comment".
[{options}] See :syn-arguments below.
{keyword} .. Is a list of keywords which are part of this group.

Example:
:syntax keyword Type int long char

The {options} can be given anywhere in the line. They will apply to
all keywords given, also for options that come after a keyword.
These examples do exactly the same:

:syntax keyword Type contained int long char
:syntax keyword Type int long contained char
:syntax keyword Type int long char contained

E789 E890
When you have a keyword with an optional tail, like Ex commands in
Vim, you can put the optional characters inside [], to define all the
variations at once:

:syntax keyword vimCommand ab[breviate] n[ext]

Don't forget that a keyword can only be recognized if all the
characters are included in the 'iskeyword' option. If one character
isn't, the keyword will never be recognized.
Multi-byte characters can also be used. These do not have to be in
'iskeyword'.
See :syn-iskeyword for defining syntax specific iskeyword settings.

syntax.txt — 1712

A keyword always has higher priority than a match or region, the
keyword is used if more than one item matches. Keywords do not nest
and a keyword can't contain anything else.

Note that when you have a keyword that is the same as an option (even
one that isn't allowed here), you can not use it. Use a match
instead.

The maximum length of a keyword is 80 characters.

The same keyword can be defined multiple times, when its containment
differs. For example, you can define the keyword once not contained
and use one highlight group, and once contained, and use a different
highlight group. Example:

:syn keyword vimCommand tag
:syn keyword vimSetting contained tag

When finding "tag" outside of any syntax item, the "vimCommand"
highlight group is used. When finding "tag" in a syntax item that
contains "vimSetting", the "vimSetting" group is used.

DEFINING MATCHES :syn-match

:sy[ntax] match {group-name} [{options}]
[excludenl]
[keepend]
{pattern}
[{options}]

This defines one match.

{group-name} A syntax group name such as "Comment".
[{options}] See :syn-arguments below.
[excludenl] Don't make a pattern with the end-of-line "$"

extend a containing match or region. Must be
given before the pattern. :syn-excludenl

keepend Don't allow contained matches to go past a
match with the end pattern. See
:syn-keepend .

{pattern} The search pattern that defines the match.
See :syn-pattern below.
Note that the pattern may match more than one
line, which makes the match depend on where
Vim starts searching for the pattern. You
need to make sure syncing takes care of this.

Example (match a character constant):
:syntax match Character /'.'/hs=s+1,he=e-1

DEFINING REGIONS :syn-region :syn-start :syn-skip :syn-end
E398 E399

:sy[ntax] region {group-name} [{options}]
[matchgroup={group-name}]
[keepend]
[extend]
[excludenl]
start={start-pattern} ..
[skip={skip-pattern}]
end={end-pattern} ..

syntax.txt — 1713

[{options}]

This defines one region. It may span several lines.

{group-name} A syntax group name such as "Comment".
[{options}] See :syn-arguments below.
[matchgroup={group-name}] The syntax group to use for the following

start or end pattern matches only. Not used
for the text in between the matched start and
end patterns. Use NONE to reset to not using
a different group for the start or end match.
See :syn-matchgroup .

keepend Don't allow contained matches to go past a
match with the end pattern. See
:syn-keepend .

extend Override a "keepend" for an item this region
is contained in. See :syn-extend .

excludenl Don't make a pattern with the end-of-line "$"
extend a containing match or item. Only
useful for end patterns. Must be given before
the patterns it applies to. :syn-excludenl

start={start-pattern} The search pattern that defines the start of
the region. See :syn-pattern below.

skip={skip-pattern} The search pattern that defines text inside
the region where not to look for the end
pattern. See :syn-pattern below.

end={end-pattern} The search pattern that defines the end of
the region. See :syn-pattern below.

Example:
:syntax region String start=+"+ skip=+\\"+ end=+"+

The start/skip/end patterns and the options can be given in any order.
There can be zero or one skip pattern. There must be one or more
start and end patterns. This means that you can omit the skip
pattern, but you must give at least one start and one end pattern. It
is allowed to have white space before and after the equal sign
(although it mostly looks better without white space).

When more than one start pattern is given, a match with one of these
is sufficient. This means there is an OR relation between the start
patterns. The last one that matches is used. The same is true for
the end patterns.

The search for the end pattern starts right after the start pattern.
Offsets are not used for this. This implies that the match for the
end pattern will never overlap with the start pattern.

The skip and end pattern can match across line breaks, but since the
search for the pattern can start in any line it often does not do what
you want. The skip pattern doesn't avoid a match of an end pattern in
the next line. Use single-line patterns to avoid trouble.

Note: The decision to start a region is only based on a matching start
pattern. There is no check for a matching end pattern. This does NOT
work:

:syn region First start="(" end=":"
:syn region Second start="(" end=";"

The Second always matches before the First (last defined pattern has
higher priority). The Second region then continues until the next

syntax.txt — 1714

';', no matter if there is a ':' before it. Using a match does work:
:syn match First "(_.\{-}:"
:syn match Second "(_.\{-};"

This pattern matches any character or line break with "_." and
repeats that with "\{-}" (repeat as few as possible).

:syn-keepend
By default, a contained match can obscure a match for the end pattern.
This is useful for nesting. For example, a region that starts with
"{" and ends with "}", can contain another region. An encountered "}"
will then end the contained region, but not the outer region:

{ starts outer "{}" region
{ starts contained "{}" region
} ends contained "{}" region

} ends outer "{} region
If you don't want this, the "keepend" argument will make the matching
of an end pattern of the outer region also end any contained item.
This makes it impossible to nest the same region, but allows for
contained items to highlight parts of the end pattern, without causing
that to skip the match with the end pattern. Example:

:syn match vimComment +"[^"]\+$+
:syn region vimCommand start="set" end="$" contains=vimComment keepend

The "keepend" makes the vimCommand always end at the end of the line,
even though the contained vimComment includes a match with the <EOL>.

When "keepend" is not used, a match with an end pattern is retried
after each contained match. When "keepend" is included, the first
encountered match with an end pattern is used, truncating any
contained matches.

:syn-extend
The "keepend" behavior can be changed by using the "extend" argument.
When an item with "extend" is contained in an item that uses
"keepend", the "keepend" is ignored and the containing region will be
extended.
This can be used to have some contained items extend a region while
others don't. Example:

:syn region htmlRef start=+<a>+ end=++ keepend contains=htmlItem,htmlScript
:syn match htmlItem +<[^>]*>+ contained
:syn region htmlScript start=+<script+ end=+</script[^>]*>+ contained extend

Here the htmlItem item does not make the htmlRef item continue
further, it is only used to highlight the <> items. The htmlScript
item does extend the htmlRef item.

Another example:
:syn region xmlFold start="<a>" end="" fold transparent keepend extend

This defines a region with "keepend", so that its end cannot be
changed by contained items, like when the "" is matched to
highlight it differently. But when the xmlFold region is nested (it
includes itself), the "extend" applies, so that the "" of a nested
region only ends that region, and not the one it is contained in.

:syn-excludenl
When a pattern for a match or end pattern of a region includes a '$'
to match the end-of-line, it will make a region item that it is
contained in continue on the next line. For example, a match with
"\\$" (backslash at the end of the line) can make a region continue
that would normally stop at the end of the line. This is the default
behavior. If this is not wanted, there are two ways to avoid it:

syntax.txt — 1715

1. Use "keepend" for the containing item. This will keep all
contained matches from extending the match or region. It can be
used when all contained items must not extend the containing item.

2. Use "excludenl" in the contained item. This will keep that match
from extending the containing match or region. It can be used if
only some contained items must not extend the containing item.
"excludenl" must be given before the pattern it applies to.

:syn-matchgroup
"matchgroup" can be used to highlight the start and/or end pattern
differently than the body of the region. Example:

:syntax region String matchgroup=Quote start=+"+ skip=+\\"+ end=+"+
This will highlight the quotes with the "Quote" group, and the text in
between with the "String" group.
The "matchgroup" is used for all start and end patterns that follow,
until the next "matchgroup". Use "matchgroup=NONE" to go back to not
using a matchgroup.

In a start or end pattern that is highlighted with "matchgroup" the
contained items of the region are not used. This can be used to avoid
that a contained item matches in the start or end pattern match. When
using "transparent", this does not apply to a start or end pattern
match that is highlighted with "matchgroup".

Here is an example, which highlights three levels of parentheses in
different colors:

:sy region par1 matchgroup=par1 start=/(/ end=/)/ contains=par2
:sy region par2 matchgroup=par2 start=/(/ end=/)/ contains=par3 contained
:sy region par3 matchgroup=par3 start=/(/ end=/)/ contains=par1 contained
:hi par1 ctermfg=red guifg=red
:hi par2 ctermfg=blue guifg=blue
:hi par3 ctermfg=darkgreen guifg=darkgreen

E849
The maximum number of syntax groups is 19999.

==
7. :syntax arguments :syn-arguments

The :syntax commands that define syntax items take a number of arguments.
The common ones are explained here. The arguments may be given in any order
and may be mixed with patterns.

Not all commands accept all arguments. This table shows which arguments
can not be used for all commands:

E395
contains oneline fold display extend concealends

:syntax keyword - - - - - -
:syntax match yes - yes yes yes -
:syntax region yes yes yes yes yes yes

These arguments can be used for all three commands:
conceal
cchar
contained
containedin
nextgroup
transparent
skipwhite
skipnl

syntax.txt — 1716

skipempty

conceal conceal :syn-conceal

When the "conceal" argument is given, the item is marked as concealable.
Whether or not it is actually concealed depends on the value of the
'conceallevel' option. The 'concealcursor' option is used to decide whether
concealable items in the current line are displayed unconcealed to be able to
edit the line.
Another way to conceal text is with matchadd() .

concealends :syn-concealends

When the "concealends" argument is given, the start and end matches of
the region, but not the contents of the region, are marked as concealable.
Whether or not they are actually concealed depends on the setting on the
'conceallevel' option. The ends of a region can only be concealed separately
in this way when they have their own highlighting via "matchgroup"

cchar :syn-cchar
E844

The "cchar" argument defines the character shown in place of the item
when it is concealed (setting "cchar" only makes sense when the conceal
argument is given.) If "cchar" is not set then the default conceal
character defined in the 'listchars' option is used. The character cannot be
a control character such as Tab. Example:

:syntax match Entity "&" conceal cchar=&
See hl-Conceal for highlighting.

contained :syn-contained

When the "contained" argument is given, this item will not be recognized at
the top level, but only when it is mentioned in the "contains" field of
another match. Example:

:syntax keyword Todo TODO contained
:syntax match Comment "//.*" contains=Todo

display :syn-display

If the "display" argument is given, this item will be skipped when the
detected highlighting will not be displayed. This will speed up highlighting,
by skipping this item when only finding the syntax state for the text that is
to be displayed.

Generally, you can use "display" for match and region items that meet these
conditions:
- The item does not continue past the end of a line. Example for C: A region

for a "/*" comment can't contain "display", because it continues on the next
line.

- The item does not contain items that continue past the end of the line or
make it continue on the next line.

- The item does not change the size of any item it is contained in. Example
for C: A match with "\\$" in a preprocessor match can't have "display",
because it may make that preprocessor match shorter.

- The item does not allow other items to match that didn't match otherwise,
and that item may extend the match too far. Example for C: A match for a
"//" comment can't use "display", because a "/*" inside that comment would
match then and start a comment which extends past the end of the line.

syntax.txt — 1717

Examples, for the C language, where "display" can be used:
- match with a number
- match with a label

transparent :syn-transparent

If the "transparent" argument is given, this item will not be highlighted
itself, but will take the highlighting of the item it is contained in. This
is useful for syntax items that don't need any highlighting but are used
only to skip over a part of the text.

The "contains=" argument is also inherited from the item it is contained in,
unless a "contains" argument is given for the transparent item itself. To
avoid that unwanted items are contained, use "contains=NONE". Example, which
highlights words in strings, but makes an exception for "vim":

:syn match myString /'[^']*'/ contains=myWord,myVim
:syn match myWord /\<[a-z]*\>/ contained
:syn match myVim /\<vim\>/ transparent contained contains=NONE
:hi link myString String
:hi link myWord Comment

Since the "myVim" match comes after "myWord" it is the preferred match (last
match in the same position overrules an earlier one). The "transparent"
argument makes the "myVim" match use the same highlighting as "myString". But
it does not contain anything. If the "contains=NONE" argument would be left
out, then "myVim" would use the contains argument from myString and allow
"myWord" to be contained, which will be highlighted as a Comment. This
happens because a contained match doesn't match inside itself in the same
position, thus the "myVim" match doesn't overrule the "myWord" match here.

When you look at the colored text, it is like looking at layers of contained
items. The contained item is on top of the item it is contained in, thus you
see the contained item. When a contained item is transparent, you can look
through, thus you see the item it is contained in. In a picture:

look from here

| | | | | |
V V V V V V

xxxx yyy more contained items
.................... contained item (transparent)

============================= first item

The 'x', 'y' and '=' represent a highlighted syntax item. The '.' represent a
transparent group.

What you see is:

=======xxxx=======yyy========

Thus you look through the transparent "....".

oneline :syn-oneline

The "oneline" argument indicates that the region does not cross a line
boundary. It must match completely in the current line. However, when the
region has a contained item that does cross a line boundary, it continues on
the next line anyway. A contained item can be used to recognize a line

syntax.txt — 1718

continuation pattern. But the "end" pattern must still match in the first
line, otherwise the region doesn't even start.

When the start pattern includes a "\n" to match an end-of-line, the end
pattern must be found in the same line as where the start pattern ends. The
end pattern may also include an end-of-line. Thus the "oneline" argument
means that the end of the start pattern and the start of the end pattern must
be within one line. This can't be changed by a skip pattern that matches a
line break.

fold :syn-fold

The "fold" argument makes the fold level increase by one for this item.
Example:

:syn region myFold start="{" end="}" transparent fold
:syn sync fromstart
:set foldmethod=syntax

This will make each {} block form one fold.

The fold will start on the line where the item starts, and end where the item
ends. If the start and end are within the same line, there is no fold.
The 'foldnestmax' option limits the nesting of syntax folds.
See :syn-foldlevel to control how the foldlevel of a line is computed
from its syntax items.
{not available when Vim was compiled without |+folding| feature}

:syn-contains E405 E406 E407 E408 E409
contains={group-name},..

The "contains" argument is followed by a list of syntax group names. These
groups will be allowed to begin inside the item (they may extend past the
containing group's end). This allows for recursive nesting of matches and
regions. If there is no "contains" argument, no groups will be contained in
this item. The group names do not need to be defined before they can be used
here.

contains=ALL
If the only item in the contains list is "ALL", then all
groups will be accepted inside the item.

contains=ALLBUT,{group-name},..
If the first item in the contains list is "ALLBUT", then all
groups will be accepted inside the item, except the ones that
are listed. Example:

:syntax region Block start="{" end="}" ... contains=ALLBUT,Function

contains=TOP
If the first item in the contains list is "TOP", then all
groups will be accepted that don't have the "contained"
argument.

contains=TOP,{group-name},..
Like "TOP", but excluding the groups that are listed.

contains=CONTAINED
If the first item in the contains list is "CONTAINED", then
all groups will be accepted that have the "contained"
argument.

contains=CONTAINED,{group-name},..

syntax.txt — 1719

Like "CONTAINED", but excluding the groups that are
listed.

The {group-name} in the "contains" list can be a pattern. All group names
that match the pattern will be included (or excluded, if "ALLBUT" is used).
The pattern cannot contain white space or a ','. Example:

... contains=Comment.*,Keyw[0-3]
The matching will be done at moment the syntax command is executed. Groups
that are defined later will not be matched. Also, if the current syntax
command defines a new group, it is not matched. Be careful: When putting
syntax commands in a file you can't rely on groups NOT being defined, because
the file may have been sourced before, and ":syn clear" doesn't remove the
group names.

The contained groups will also match in the start and end patterns of a
region. If this is not wanted, the "matchgroup" argument can be used
:syn-matchgroup . The "ms=" and "me=" offsets can be used to change the

region where contained items do match. Note that this may also limit the
area that is highlighted

containedin={group-name}... :syn-containedin

The "containedin" argument is followed by a list of syntax group names. The
item will be allowed to begin inside these groups. This works as if the
containing item has a "contains=" argument that includes this item.

The {group-name}... can be used just like for "contains", as explained above.

This is useful when adding a syntax item afterwards. An item can be told to
be included inside an already existing item, without changing the definition
of that item. For example, to highlight a word in a C comment after loading
the C syntax:

:syn keyword myword HELP containedin=cComment contained
Note that "contained" is also used, to avoid that the item matches at the top
level.

Matches for "containedin" are added to the other places where the item can
appear. A "contains" argument may also be added as usual. Don't forget that
keywords never contain another item, thus adding them to "containedin" won't
work.

nextgroup={group-name},.. :syn-nextgroup

The "nextgroup" argument is followed by a list of syntax group names,
separated by commas (just like with "contains", so you can also use patterns).

If the "nextgroup" argument is given, the mentioned syntax groups will be
tried for a match, after the match or region ends. If none of the groups have
a match, highlighting continues normally. If there is a match, this group
will be used, even when it is not mentioned in the "contains" field of the
current group. This is like giving the mentioned group priority over all
other groups. Example:

:syntax match ccFoobar "Foo.\{-}Bar" contains=ccFoo
:syntax match ccFoo "Foo" contained nextgroup=ccFiller
:syntax region ccFiller start="." matchgroup=ccBar end="Bar" contained

This will highlight "Foo" and "Bar" differently, and only when there is a

syntax.txt — 1720

"Bar" after "Foo". In the text line below, "f" shows where ccFoo is used for
highlighting, and "bbb" where ccBar is used.

Foo asdfasd Bar asdf Foo asdf Bar asdf
fff bbb fff bbb

Note the use of ".\{-}" to skip as little as possible until the next Bar.
when ".*" would be used, the "asdf" in between "Bar" and "Foo" would be
highlighted according to the "ccFoobar" group, because the ccFooBar match
would include the first "Foo" and the last "Bar" in the line (see pattern).

skipwhite :syn-skipwhite
skipnl :syn-skipnl
skipempty :syn-skipempty

These arguments are only used in combination with "nextgroup". They can be
used to allow the next group to match after skipping some text:

skipwhite skip over space and tab characters
skipnl skip over the end of a line
skipempty skip over empty lines (implies a "skipnl")

When "skipwhite" is present, the white space is only skipped if there is no
next group that matches the white space.

When "skipnl" is present, the match with nextgroup may be found in the next
line. This only happens when the current item ends at the end of the current
line! When "skipnl" is not present, the nextgroup will only be found after
the current item in the same line.

When skipping text while looking for a next group, the matches for other
groups are ignored. Only when no next group matches, other items are tried
for a match again. This means that matching a next group and skipping white
space and <EOL>s has a higher priority than other items.

Example:
:syn match ifstart "\<if.*" nextgroup=ifline skipwhite skipempty
:syn match ifline "[^ \t].*" nextgroup=ifline skipwhite skipempty contained
:syn match ifline "endif" contained

Note that the "[^ \t].*" match matches all non-white text. Thus it would also
match "endif". Therefore the "endif" match is put last, so that it takes
precedence.
Note that this example doesn't work for nested "if"s. You need to add
"contains" arguments to make that work (omitted for simplicity of the
example).

IMPLICIT CONCEAL :syn-conceal-implicit

:sy[ntax] conceal [on|off]
This defines if the following ":syntax" commands will define keywords,
matches or regions with the "conceal" flag set. After ":syn conceal
on", all subsequent ":syn keyword", ":syn match" or ":syn region"
defined will have the "conceal" flag set implicitly. ":syn conceal
off" returns to the normal state where the "conceal" flag must be
given explicitly.

:sy[ntax] conceal
Show either "syntax conceal on" or "syntax conceal off".

==

syntax.txt — 1721

8. Syntax patterns :syn-pattern E401 E402

In the syntax commands, a pattern must be surrounded by two identical
characters. This is like it works for the ":s" command. The most common to
use is the double quote. But if the pattern contains a double quote, you can
use another character that is not used in the pattern. Examples:

:syntax region Comment start="/*" end="*/"
:syntax region String start=+"+ end=+"+ skip=+\\"+

See pattern for the explanation of what a pattern is. Syntax patterns are
always interpreted like the 'magic' option is set, no matter what the actual
value of 'magic' is. And the patterns are interpreted like the 'l' flag is
not included in 'cpoptions'. This was done to make syntax files portable and
independent of 'compatible' and 'magic' settings.

Try to avoid patterns that can match an empty string, such as "[a-z]*".
This slows down the highlighting a lot, because it matches everywhere.

:syn-pattern-offset
The pattern can be followed by a character offset. This can be used to
change the highlighted part, and to change the text area included in the
match or region (which only matters when trying to match other items). Both
are relative to the matched pattern. The character offset for a skip
pattern can be used to tell where to continue looking for an end pattern.

The offset takes the form of "{what}={offset}"
The {what} can be one of seven strings:

ms Match Start offset for the start of the matched text
me Match End offset for the end of the matched text
hs Highlight Start offset for where the highlighting starts
he Highlight End offset for where the highlighting ends
rs Region Start offset for where the body of a region starts
re Region End offset for where the body of a region ends
lc Leading Context offset past "leading context" of pattern

The {offset} can be:

s start of the matched pattern
s+{nr} start of the matched pattern plus {nr} chars to the right
s-{nr} start of the matched pattern plus {nr} chars to the left
e end of the matched pattern
e+{nr} end of the matched pattern plus {nr} chars to the right
e-{nr} end of the matched pattern plus {nr} chars to the left
{nr} (for "lc" only): start matching {nr} chars right of the start

Examples: "ms=s+1", "hs=e-2", "lc=3".

Although all offsets are accepted after any pattern, they are not always
meaningful. This table shows which offsets are actually used:

ms me hs he rs re lc
match item yes yes yes yes - - yes
region item start yes - yes - yes - yes
region item skip - yes - - - - yes
region item end - yes - yes - yes yes

Offsets can be concatenated, with a ',' in between. Example:
:syn match String /"[^"]*"/hs=s+1,he=e-1

syntax.txt — 1722

some "string" text
^^^^^^ highlighted

Notes:
- There must be no white space between the pattern and the character

offset(s).
- The highlighted area will never be outside of the matched text.
- A negative offset for an end pattern may not always work, because the end

pattern may be detected when the highlighting should already have stopped.
- Before Vim 7.2 the offsets were counted in bytes instead of characters.

This didn't work well for multibyte characters, so it was changed with the
Vim 7.2 release.

- The start of a match cannot be in a line other than where the pattern
matched. This doesn't work: "a\nb"ms=e. You can make the highlighting
start in another line, this does work: "a\nb"hs=e.

Example (match a comment but don't highlight the /* and */):
:syntax region Comment start="/*"hs=e+1 end="*/"he=s-1

/* this is a comment */
^^^^^^^^^^^^^^^^^^^ highlighted

A more complicated Example:
:syn region Exa matchgroup=Foo start="foo"hs=s+2,rs=e+2 matchgroup=Bar end="bar"me=e-1,he=e-1,re=s-1

abcfoostringbarabc
mmmmmmmmmmm match

sssrrreee highlight start/region/end ("Foo", "Exa" and "Bar")

Leading context :syn-lc :syn-leading :syn-context

Note: This is an obsolete feature, only included for backwards compatibility
with previous Vim versions. It's now recommended to use the /\@<= construct
in the pattern. You can also often use /\zs .

The "lc" offset specifies leading context -- a part of the pattern that must
be present, but is not considered part of the match. An offset of "lc=n" will
cause Vim to step back n columns before attempting the pattern match, allowing
characters which have already been matched in previous patterns to also be
used as leading context for this match. This can be used, for instance, to
specify that an "escaping" character must not precede the match:

:syn match ZNoBackslash "[^\\]z"ms=s+1
:syn match WNoBackslash "[^\\]w"lc=1
:syn match Underline "_\+"

___zzzz ___wwww
^^^ ^^^ matches Underline

^ ^ matches ZNoBackslash
^^^^ matches WNoBackslash

The "ms" offset is automatically set to the same value as the "lc" offset,
unless you set "ms" explicitly.

Multi-line patterns :syn-multi-line

The patterns can include "\n" to match an end-of-line. Mostly this works as
expected, but there are a few exceptions.

syntax.txt — 1723

When using a start pattern with an offset, the start of the match is not
allowed to start in a following line. The highlighting can start in a
following line though. Using the "\zs" item also requires that the start of
the match doesn't move to another line.

The skip pattern can include the "\n", but the search for an end pattern will
continue in the first character of the next line, also when that character is
matched by the skip pattern. This is because redrawing may start in any line
halfway a region and there is no check if the skip pattern started in a
previous line. For example, if the skip pattern is "a\nb" and an end pattern
is "b", the end pattern does match in the second line of this:

x x a
b x x

Generally this means that the skip pattern should not match any characters
after the "\n".

External matches :syn-ext-match

These extra regular expression items are available in region patterns:

/\z(/\z(\) E50 E52 E879
\z(\) Marks the sub-expression as "external", meaning that it can be

accessed from another pattern match. Currently only usable in
defining a syntax region start pattern.

/\z1 /\z2 /\z3 /\z4 /\z5
\z1 ... \z9 /\z6 /\z7 /\z8 /\z9 E66 E67

Matches the same string that was matched by the corresponding
sub-expression in a previous start pattern match.

Sometimes the start and end patterns of a region need to share a common
sub-expression. A common example is the "here" document in Perl and many Unix
shells. This effect can be achieved with the "\z" special regular expression
items, which marks a sub-expression as "external", in the sense that it can be
referenced from outside the pattern in which it is defined. The here-document
example, for instance, can be done like this:

:syn region hereDoc start="<<\z(\I\i*\)" end="^\z1$"

As can be seen here, the \z actually does double duty. In the start pattern,
it marks the "\(\I\i*\)" sub-expression as external; in the end pattern, it
changes the \z1 back-reference into an external reference referring to the
first external sub-expression in the start pattern. External references can
also be used in skip patterns:

:syn region foo start="start \z(\I\i*\)" skip="not end \z1" end="end \z1"

Note that normal and external sub-expressions are completely orthogonal and
indexed separately; for instance, if the pattern "\z(..\)\(..\)" is applied
to the string "aabb", then \1 will refer to "bb" and \z1 will refer to "aa".
Note also that external sub-expressions cannot be accessed as back-references
within the same pattern like normal sub-expressions. If you want to use one
sub-expression as both a normal and an external sub-expression, you can nest
the two, as in "\(\z(...\)\)".

Note that only matches within a single line can be used. Multi-line matches
cannot be referred to.

==
9. Syntax clusters :syn-cluster E400

syntax.txt — 1724

:sy[ntax] cluster {cluster-name} [contains={group-name}..]
[add={group-name}..]
[remove={group-name}..]

This command allows you to cluster a list of syntax groups together under a
single name.

contains={group-name}..
The cluster is set to the specified list of groups.

add={group-name}..
The specified groups are added to the cluster.

remove={group-name}..
The specified groups are removed from the cluster.

A cluster so defined may be referred to in a contains=.., containedin=..,
nextgroup=.., add=.. or remove=.. list with a "@" prefix. You can also use
this notation to implicitly declare a cluster before specifying its contents.

Example:
:syntax match Thing "# [^#]\+ #" contains=@ThingMembers
:syntax cluster ThingMembers contains=ThingMember1,ThingMember2

As the previous example suggests, modifications to a cluster are effectively
retroactive; the membership of the cluster is checked at the last minute, so
to speak:

:syntax keyword A aaa
:syntax keyword B bbb
:syntax cluster AandB contains=A
:syntax match Stuff "(aaa bbb)" contains=@AandB
:syntax cluster AandB add=B " now both keywords are matched in Stuff

This also has implications for nested clusters:
:syntax keyword A aaa
:syntax keyword B bbb
:syntax cluster SmallGroup contains=B
:syntax cluster BigGroup contains=A,@SmallGroup
:syntax match Stuff "(aaa bbb)" contains=@BigGroup
:syntax cluster BigGroup remove=B " no effect, since B isn't in BigGroup
:syntax cluster SmallGroup remove=B " now bbb isn't matched within Stuff

E848
The maximum number of clusters is 9767.

==
10. Including syntax files :syn-include E397

It is often useful for one language's syntax file to include a syntax file for
a related language. Depending on the exact relationship, this can be done in
two different ways:

- If top-level syntax items in the included syntax file are to be
allowed at the top level in the including syntax, you can simply use
the :runtime command:

" In cpp.vim:
:runtime! syntax/c.vim
:unlet b:current_syntax

- If top-level syntax items in the included syntax file are to be
contained within a region in the including syntax, you can use the

syntax.txt — 1725

":syntax include" command:

:sy[ntax] include [@{grouplist-name}] {file-name}

All syntax items declared in the included file will have the
"contained" flag added. In addition, if a group list is specified,
all top-level syntax items in the included file will be added to
that list.

" In perl.vim:
:syntax include @Pod <sfile>:p:h/pod.vim
:syntax region perlPOD start="^=head" end="^=cut" contains=@Pod

When {file-name} is an absolute path (starts with "/", "c:", "$VAR"
or "<sfile>") that file is sourced. When it is a relative path
(e.g., "syntax/pod.vim") the file is searched for in 'runtimepath'.
All matching files are loaded. Using a relative path is
recommended, because it allows a user to replace the included file
with their own version, without replacing the file that does the
":syn include".

E847
The maximum number of includes is 999.

==
11. Synchronizing :syn-sync E403 E404

Vim wants to be able to start redrawing in any position in the document. To
make this possible it needs to know the syntax state at the position where
redrawing starts.

:sy[ntax] sync [ccomment [group-name] | minlines={N} | ...]

There are four ways to synchronize:
1. Always parse from the start of the file.

:syn-sync-first
2. Based on C-style comments. Vim understands how C-comments work and can

figure out if the current line starts inside or outside a comment.
:syn-sync-second

3. Jumping back a certain number of lines and start parsing there.
:syn-sync-third

4. Searching backwards in the text for a pattern to sync on.
:syn-sync-fourth

:syn-sync-maxlines :syn-sync-minlines
For the last three methods, the line range where the parsing can start is
limited by "minlines" and "maxlines".

If the "minlines={N}" argument is given, the parsing always starts at least
that many lines backwards. This can be used if the parsing may take a few
lines before it's correct, or when it's not possible to use syncing.

If the "maxlines={N}" argument is given, the number of lines that are searched
for a comment or syncing pattern is restricted to N lines backwards (after
adding "minlines"). This is useful if you have few things to sync on and a
slow machine. Example:

:syntax sync maxlines=500 ccomment

:syn-sync-linebreaks
When using a pattern that matches multiple lines, a change in one line may

syntax.txt — 1726

cause a pattern to no longer match in a previous line. This means has to
start above where the change was made. How many lines can be specified with
the "linebreaks" argument. For example, when a pattern may include one line
break use this:

:syntax sync linebreaks=1
The result is that redrawing always starts at least one line before where a
change was made. The default value for "linebreaks" is zero. Usually the
value for "minlines" is bigger than "linebreaks".

First syncing method: :syn-sync-first

:syntax sync fromstart

The file will be parsed from the start. This makes syntax highlighting
accurate, but can be slow for long files. Vim caches previously parsed text,
so that it's only slow when parsing the text for the first time. However,
when making changes some part of the text needs to be parsed again (worst
case: to the end of the file).

Using "fromstart" is equivalent to using "minlines" with a very large number.

Second syncing method: :syn-sync-second :syn-sync-ccomment

For the second method, only the "ccomment" argument needs to be given.
Example:

:syntax sync ccomment

When Vim finds that the line where displaying starts is inside a C-style
comment, the last region syntax item with the group-name "Comment" will be
used. This requires that there is a region with the group-name "Comment"!
An alternate group name can be specified, for example:

:syntax sync ccomment javaComment
This means that the last item specified with "syn region javaComment" will be
used for the detected C comment region. This only works properly if that
region does have a start pattern "\/*" and an end pattern "*\/".

The "maxlines" argument can be used to restrict the search to a number of
lines. The "minlines" argument can be used to at least start a number of
lines back (e.g., for when there is some construct that only takes a few
lines, but it hard to sync on).

Note: Syncing on a C comment doesn't work properly when strings are used
that cross a line and contain a "*/". Since letting strings cross a line
is a bad programming habit (many compilers give a warning message), and the
chance of a "*/" appearing inside a comment is very small, this restriction
is hardly ever noticed.

Third syncing method: :syn-sync-third

For the third method, only the "minlines={N}" argument needs to be given.
Vim will subtract {N} from the line number and start parsing there. This
means {N} extra lines need to be parsed, which makes this method a bit slower.
Example:

:syntax sync minlines=50

"lines" is equivalent to "minlines" (used by older versions).

syntax.txt — 1727

Fourth syncing method: :syn-sync-fourth

The idea is to synchronize on the end of a few specific regions, called a
sync pattern. Only regions can cross lines, so when we find the end of some
region, we might be able to know in which syntax item we are. The search
starts in the line just above the one where redrawing starts. From there
the search continues backwards in the file.

This works just like the non-syncing syntax items. You can use contained
matches, nextgroup, etc. But there are a few differences:
- Keywords cannot be used.
- The syntax items with the "sync" keyword form a completely separated group

of syntax items. You can't mix syncing groups and non-syncing groups.
- The matching works backwards in the buffer (line by line), instead of

forwards.
- A line continuation pattern can be given. It is used to decide which group

of lines need to be searched like they were one line. This means that the
search for a match with the specified items starts in the first of the
consecutive lines that contain the continuation pattern.

- When using "nextgroup" or "contains", this only works within one line (or
group of continued lines).

- When using a region, it must start and end in the same line (or group of
continued lines). Otherwise the end is assumed to be at the end of the
line (or group of continued lines).

- When a match with a sync pattern is found, the rest of the line (or group of
continued lines) is searched for another match. The last match is used.
This is used when a line can contain both the start end the end of a region
(e.g., in a C-comment like /* this */, the last "*/" is used).

There are two ways how a match with a sync pattern can be used:
1. Parsing for highlighting starts where redrawing starts (and where the

search for the sync pattern started). The syntax group that is expected
to be valid there must be specified. This works well when the regions
that cross lines cannot contain other regions.

2. Parsing for highlighting continues just after the match. The syntax group
that is expected to be present just after the match must be specified.
This can be used when the previous method doesn't work well. It's much
slower, because more text needs to be parsed.

Both types of sync patterns can be used at the same time.

Besides the sync patterns, other matches and regions can be specified, to
avoid finding unwanted matches.

[The reason that the sync patterns are given separately, is that mostly the
search for the sync point can be much simpler than figuring out the
highlighting. The reduced number of patterns means it will go (much)
faster.]

syn-sync-grouphere E393 E394
:syntax sync match {sync-group-name} grouphere {group-name} "pattern" ..

Define a match that is used for syncing. {group-name} is the
name of a syntax group that follows just after the match. Parsing
of the text for highlighting starts just after the match. A region
must exist for this {group-name}. The first one defined will be used.
"NONE" can be used for when there is no syntax group after the match.

syn-sync-groupthere
:syntax sync match {sync-group-name} groupthere {group-name} "pattern" ..

syntax.txt — 1728

Like "grouphere", but {group-name} is the name of a syntax group that
is to be used at the start of the line where searching for the sync
point started. The text between the match and the start of the sync
pattern searching is assumed not to change the syntax highlighting.
For example, in C you could search backwards for "/*" and "*/". If
"/*" is found first, you know that you are inside a comment, so the
"groupthere" is "cComment". If "*/" is found first, you know that you
are not in a comment, so the "groupthere" is "NONE". (in practice
it's a bit more complicated, because the "/*" and "*/" could appear
inside a string. That's left as an exercise to the reader...).

:syntax sync match ..
:syntax sync region ..

Without a "groupthere" argument. Define a region or match that is
skipped while searching for a sync point.

syn-sync-linecont
:syntax sync linecont {pattern}

When {pattern} matches in a line, it is considered to continue in
the next line. This means that the search for a sync point will
consider the lines to be concatenated.

If the "maxlines={N}" argument is given too, the number of lines that are
searched for a match is restricted to N. This is useful if you have very
few things to sync on and a slow machine. Example:

:syntax sync maxlines=100

You can clear all sync settings with:
:syntax sync clear

You can clear specific sync patterns with:
:syntax sync clear {sync-group-name} ..

==
12. Listing syntax items :syntax :sy :syn :syn-list

This command lists all the syntax items:

:sy[ntax] [list]

To show the syntax items for one syntax group:

:sy[ntax] list {group-name}

To list the syntax groups in one cluster: E392

:sy[ntax] list @{cluster-name}

See above for other arguments for the ":syntax" command.

Note that the ":syntax" command can be abbreviated to ":sy", although ":syn"
is mostly used, because it looks better.

==
13. Colorschemes color-schemes

In the next section you can find information about individual highlight groups

syntax.txt — 1729

and how to specify colors for them. Most likely you want to just select a set
of colors by using the `:colorscheme` command, for example:

colorscheme pablo

:colo :colorscheme E185
:colo[rscheme] Output the name of the currently active color scheme.

This is basically the same as
:echo g:colors_name

In case g:colors_name has not been defined :colo will
output "default". When compiled without the +eval
feature it will output "unknown".

:colo[rscheme] {name} Load color scheme {name}. This searches 'runtimepath'
for the file "colors/{name}.vim". The first one that
is found is loaded.
Also searches all plugins in 'packpath', first below
"start" and then under "opt".

Doesn't work recursively, thus you can't use
":colorscheme" in a color scheme script.

You have two options for customizing a color scheme. For changing the
appearance of specific colors, you can redefine a color name before loading
the scheme. The desert scheme uses the khaki color for the cursor. To use a
darker variation of the same color:

let v:colornames['khaki'] = '#bdb76b'
colorscheme desert

For further customization, such as changing :highlight-link associations,
use another name, e.g. "~/.vim/colors/mine.vim", and use `:runtime` to load
the original color scheme:

runtime colors/evening.vim
hi Statement ctermfg=Blue guifg=Blue

Before the color scheme will be loaded all default color list scripts
(`colors/lists/default.vim`) will be executed and then the ColorSchemePre
autocommand event is triggered. After the color scheme has been loaded the
ColorScheme autocommand event is triggered.

colorscheme-override
If a color scheme is almost right, you can add modifications on top of it by
using the ColorScheme autocommand. For example, to remove the background
color (can make it transparent in some terminals):

augroup my_colorschemes
au!
au Colorscheme pablo hi Normal ctermbg=NONE

augroup END

Change a couple more colors:
augroup my_colorschemes

au!
au Colorscheme pablo hi Normal ctermbg=NONE

\ | highlight Special ctermfg=63
\ | highlight Identifier ctermfg=44

augroup END

If you make a lot of changes it might be better to copy the distributed
colorscheme to your home directory and change it:

syntax.txt — 1730

:!cp $VIMRUNTIME/colors/pablo.vim ~/.vim/colors
:edit ~/.vim/colors/pablo.vim

With Vim 9.0 the collection of color schemes was updated and made work in many
different terminals. One change was to often define the Normal highlight
group to make sure the colors work well. In case you prefer the old version,
you can find them here:
https://github.com/vim/colorschemes/blob/master/legacy_colors/

For info about writing a color scheme file:
:edit $VIMRUNTIME/colors/README.txt

==
14. Highlight command :highlight :hi E28 E411 E415

There are three types of highlight groups:
- The ones used for specific languages. For these the name starts with the

name of the language. Many of these don't have any attributes, but are
linked to a group of the second type.

- The ones used for all syntax languages.
- The ones used for the 'highlight' option.

hitest.vim
You can see all the groups currently active with this command:

:so $VIMRUNTIME/syntax/hitest.vim
This will open a new window containing all highlight group names, displayed
in their own color.

:hi[ghlight] List all the current highlight groups that have
attributes set.

:hi[ghlight] {group-name}
List one highlight group.

highlight-clear :hi-clear
:hi[ghlight] clear Reset all highlighting to the defaults. Removes all

highlighting for groups added by the user.
Uses the current value of 'background' to decide which
default colors to use.
If there was a default link, restore it. :hi-link

:hi[ghlight] clear {group-name}
:hi[ghlight] {group-name} NONE

Disable the highlighting for one highlight group. It
is _not_ set back to the default colors.

:hi[ghlight] [default] {group-name} {key}={arg} ..
Add a highlight group, or change the highlighting for
an existing group. If a given color name is not
recognized, each `colors/lists/default.vim` found on
'runtimepath' will be loaded.

See highlight-args for the {key}={arg} arguments.
See :highlight-default for the optional [default]
argument.

Normally a highlight group is added once when starting up. This sets the
default values for the highlighting. After that, you can use additional
highlight commands to change the arguments that you want to set to non-default
values. The value "NONE" can be used to switch the value off or go back to
the default value.

syntax.txt — 1731

https://github.com/vim/colorschemes/blob/master/legacy_colors/

A simple way to change colors is with the :colorscheme command. This loads
a file with ":highlight" commands such as this:

:hi Comment gui=bold

Note that all settings that are not included remain the same, only the
specified field is used, and settings are merged with previous ones. So, the
result is like this single command has been used:

:hi Comment term=bold ctermfg=Cyan guifg=#80a0ff gui=bold

:highlight-verbose
When listing a highlight group and 'verbose' is non-zero, the listing will
also tell where it was last set. Example:

:verbose hi Comment
Comment xxx term=bold ctermfg=4 guifg=Blue

Last set from /home/mool/vim/vim7/runtime/syntax/syncolor.vim

When ":hi clear" is used then the script where this command is used will be
mentioned for the default values. See :verbose-cmd for more information.

highlight-args E416 E417 E423
There are three types of terminals for highlighting:
term a normal terminal (vt100, xterm)
cterm a color terminal (MS-Windows console, color-xterm, these have the "Co"

termcap entry)
gui the GUI

For each type the highlighting can be given. This makes it possible to use
the same syntax file on all terminals, and use the optimal highlighting.

1. highlight arguments for normal terminals

bold underline undercurl
underdouble underdotted
underdashed inverse italic
standout nocombine strikethrough

term={attr-list} attr-list highlight-term E418
attr-list is a comma-separated list (without spaces) of the
following items (in any order):

bold
underline
undercurl not always available
underdouble not always available
underdotted not always available
underdashed not always available
strikethrough not always available
reverse
inverse same as reverse
italic
standout
nocombine override attributes instead of combining them
NONE no attributes used (used to reset it)

Note that "bold" can be used here and by using a bold font. They
have the same effect.

underline-codes
"undercurl" is a curly underline. When "undercurl" is not possible
then "underline" is used. In general "undercurl" and "strikethrough"
are only available in the GUI and some terminals. The color is set

syntax.txt — 1732

with highlight-guisp or highlight-ctermul . You can try these
termcap entries to make undercurl work in a terminal:

let &t_Cs = "\e[4:3m"
let &t_Ce = "\e[4:0m"

"underdouble" is a double underline, "underdotted" is a dotted
underline and "underdashed" is a dashed underline. These are only
supported by some terminals. If your terminal supports them you may
have to specify the codes like this:

let &t_Us = "\e[4:2m"
let &t_ds = "\e[4:4m"
let &t_Ds = "\e[4:5m"

They are reset with t_Ce , the same as curly underline (undercurl).
When t_Us, t_ds or t_Ds is not set then underline will be used as a
fallback.

start={term-list} highlight-start E422
stop={term-list} term-list highlight-stop

These lists of terminal codes can be used to get
non-standard attributes on a terminal.

The escape sequence specified with the "start" argument
is written before the characters in the highlighted
area. It can be anything that you want to send to the
terminal to highlight this area. The escape sequence
specified with the "stop" argument is written after the
highlighted area. This should undo the "start" argument.
Otherwise the screen will look messed up.

The {term-list} can have two forms:

1. A string with escape sequences.
This is any string of characters, except that it can't start with
"t_" and blanks are not allowed. The <> notation is recognized
here, so you can use things like "<Esc>" and "<Space>". Example:

start=<Esc>[27h;<Esc>[<Space>r;

2. A list of terminal codes.
Each terminal code has the form "t_xx", where "xx" is the name of
the termcap entry. The codes have to be separated with commas.
White space is not allowed. Example:

start=t_C1,t_BL
The terminal codes must exist for this to work.

2. highlight arguments for color terminals

cterm={attr-list} highlight-cterm
See above for the description of {attr-list} attr-list .
The "cterm" argument is likely to be different from "term", when
colors are used. For example, in a normal terminal comments could
be underlined, in a color terminal they can be made Blue.
Note: Some terminals (e.g., DOS console) can't mix these attributes
with coloring. To be portable, use only one of "cterm=" OR "ctermfg="
OR "ctermbg=".

ctermfg={color-nr} highlight-ctermfg E421
ctermbg={color-nr} highlight-ctermbg
ctermul={color-nr} highlight-ctermul

syntax.txt — 1733

These give the foreground (ctermfg), background (ctermbg) and
underline (ctermul) color to use in the terminal.

The {color-nr} argument is a color number. Its range is zero to
(not including) the number given by the termcap entry "Co".
The actual color with this number depends on the type of terminal
and its settings. Sometimes the color also depends on the settings of
"cterm". For example, on some systems "cterm=bold ctermfg=3" gives
another color, on others you just get color 3.

For an xterm this depends on your resources, and is a bit
unpredictable. See your xterm documentation for the defaults. The
colors for a color-xterm can be changed from the .Xdefaults file.
Unfortunately this means that it's not possible to get the same colors
for each user. See xterm-color for info about color xterms.

tmux
When using tmux you may want to use this in the tmux config:

tmux colors
set -s default-terminal "tmux-256color"
set -as terminal-overrides ",*-256color:Tc"

More info at:
https://github.com/tmux/tmux/wiki/FAQ#how-do-i-use-a-256-colour-terminal
https://github.com/tmux/tmux/wiki/FAQ#how-do-i-use-rgb-colour

The MS-Windows standard colors are fixed (in a console window), so
these have been used for the names. But the meaning of color names in
X11 are fixed, so these color settings have been used, to make the
highlighting settings portable (complicated, isn't it?). The
following names are recognized, with the color number used:

cterm-colors
NR-16 NR-8 COLOR NAME
0 0 Black
1 4 DarkBlue
2 2 DarkGreen
3 6 DarkCyan
4 1 DarkRed
5 5 DarkMagenta
6 3 Brown, DarkYellow
7 7 LightGray, LightGrey, Gray, Grey
8 0* DarkGray, DarkGrey
9 4* Blue, LightBlue
10 2* Green, LightGreen
11 6* Cyan, LightCyan
12 1* Red, LightRed
13 5* Magenta, LightMagenta
14 3* Yellow, LightYellow
15 7* White

The number under "NR-16" is used for 16-color terminals ('t_Co'
greater than or equal to 16). The number under "NR-8" is used for
8-color terminals ('t_Co' less than 16). The '*' indicates that the
bold attribute is set for ctermfg. In many 8-color terminals (e.g.,
"linux"), this causes the bright colors to appear. This doesn't work
for background colors! Without the '*' the bold attribute is removed.
If you want to set the bold attribute in a different way, put a
"cterm=" argument AFTER the "ctermfg=" or "ctermbg=" argument. Or use
a number instead of a color name.

The case of the color names is ignored, however Vim will use lower

syntax.txt — 1734

https://github.com/tmux/tmux/wiki/FAQ#how-do-i-use-a-256-colour-terminal
https://github.com/tmux/tmux/wiki/FAQ#how-do-i-use-rgb-colour

case color names when reading from the v:colornames dictionary.
Note that for 16 color ansi style terminals (including xterms), the
numbers in the NR-8 column is used. Here '*' means 'add 8' so that
Blue is 12, DarkGray is 8 etc.

Note that for some color terminals these names may result in the wrong
colors!

You can also use "NONE" to remove the color.

:hi-normal-cterm
When setting the "ctermfg" or "ctermbg" colors for the Normal group,
these will become the colors used for the non-highlighted text.
Example:

:highlight Normal ctermfg=grey ctermbg=darkblue
When setting the "ctermbg" color for the Normal group, the
'background' option will be adjusted automatically, under the
condition that the color is recognized and 'background' was not set
explicitly. This causes the highlight groups that depend on
'background' to change! This means you should set the colors for
Normal first, before setting other colors.
When a color scheme is being used, changing 'background' causes it to
be reloaded, which may reset all colors (including Normal). First
delete the "g:colors_name" variable when you don't want this.

When you have set "ctermfg" or "ctermbg" for the Normal group, Vim
needs to reset the color when exiting. This is done with the "op"
termcap entry t_op . If this doesn't work correctly, try setting the
't_op' option in your .vimrc.

E419 E420 E453
When Vim knows the normal foreground, background and underline colors,
"fg", "bg" and "ul" can be used as color names. This only works after
setting the colors for the Normal group and for the MS-Windows
console. Example, for reverse video:

:highlight Visual ctermfg=bg ctermbg=fg
Note that the colors are used that are valid at the moment this
command is given. If the Normal group colors are changed later, the
"fg" and "bg" colors will not be adjusted.

ctermfont={font-nr} highlight-ctermfont
This gives the alternative font number to use in the terminal. The
available fonts depend on the terminal, and if the terminal is not set
up for alternative fonts this simply won't do anything. The range of
{font-nr} is 0-10 where 0 resets the font to the default font, 1-9
selects one of the 9 alternate fonts, and 10 selects the Fraktur font.
For more information see your terminal's handling of SGR parameters
10-20. t_CF

3. highlight arguments for the GUI

gui={attr-list} highlight-gui
These give the attributes to use in the GUI mode.
See attr-list for a description.
Note that "bold" can be used here and by using a bold font. They
have the same effect.
Note that the attributes are ignored for the "Normal" group.

font={font-name} highlight-font
font-name is the name of a font, as it is used on the system Vim
runs on. For X11 this is a complicated name, for example:

syntax.txt — 1735

font=-misc-fixed-bold-r-normal--14-130-75-75-c-70-iso8859-1

The font-name "NONE" can be used to revert to the default font.
When setting the font for the "Normal" group, this becomes the default
font (until the 'guifont' option is changed; the last one set is
used).
The following only works with Motif, not with other GUIs:
When setting the font for the "Menu" group, the menus will be changed.
When setting the font for the "Tooltip" group, the tooltips will be
changed.
All fonts used, except for Menu and Tooltip, should be of the same
character size as the default font! Otherwise redrawing problems will
occur.
To use a font name with an embedded space or other special character,
put it in single quotes. The single quote cannot be used then.
Example:

:hi comment font='Monospace 10'

guifg={color-name} highlight-guifg
guibg={color-name} highlight-guibg
guisp={color-name} highlight-guisp

These give the foreground (guifg), background (guibg) and special
(guisp) color to use in the GUI. "guisp" is used for undercurl and
strikethrough.
There are a few special names:

NONE no color (transparent) E1361
bg use normal background color
background use normal background color
fg use normal foreground color
foreground use normal foreground color

To use a color name with an embedded space or other special character,
put it in single quotes. The single quote cannot be used then.
Example:

:hi comment guifg='salmon pink'

gui-colors
Suggested color names (these are available on most systems):

Red LightRed DarkRed
Green LightGreen DarkGreen SeaGreen
Blue LightBlue DarkBlue SlateBlue
Cyan LightCyan DarkCyan
Magenta LightMagenta DarkMagenta
Yellow LightYellow Brown DarkYellow
Gray LightGray DarkGray
Black White
Orange Purple Violet

In the Win32 GUI version, additional system colors are available. See
win32-colors .

You can also specify a color by its Red, Green and Blue values.
The format is "#rrggbb", where

"rr" is the Red value
"gg" is the Green value
"bb" is the Blue value

All values are hexadecimal, range from "00" to "ff". Examples:
:highlight Comment guifg=#11f0c3 guibg=#ff00ff

If you are authoring a color scheme and use the same hexadecimal value
repeatedly, you can define a (lower case) name for it in v:colornames .

syntax.txt — 1736

For example:

provide a default value for this color but allow the user to
override it.
:call extend(v:colornames, {'alt_turquoise': '#11f0c3'}, 'keep')
:highlight Comment guifg=alt_turquoise guibg=magenta

If you are using a color scheme that relies on named colors and you
would like to adjust the precise appearance of those colors, you can
do so by overriding the values in v:colornames prior to loading the
scheme:

let v:colornames['alt_turquoise'] = '#22f0d3'
colorscheme alt

If you want to develop a color list that can be relied on by others,
it is best to prefix your color names. By convention these color lists
are placed in the colors/lists directory. You can see an example in
'$VIMRUNTIME/colors/lists/csscolors.vim'. This list would be sourced
by a color scheme using:

:runtime colors/lists/csscolors.vim
:highlight Comment guifg=css_turquoise

highlight-groups highlight-default
These are the default highlighting groups. These groups are used by the
'highlight' option default. Note that the highlighting depends on the value
of 'background'. You can see the current settings with the ":highlight"
command.
When possible the name is highlighted in the used colors. If this makes it
unreadable use Visual selection.

hl-ColorColumn
ColorColumn Used for the columns set with 'colorcolumn'.

hl-Conceal
Conceal Placeholder characters substituted for concealed

text (see 'conceallevel').
hl-Cursor hl-lCursor

Cursor Character under the cursor.
lCursor Character under the cursor when language-mapping

is used (see 'guicursor').
hl-CursorIM

CursorIM Like Cursor, but used when in IME mode. CursorIM
hl-CursorColumn

CursorColumn Screen column that the cursor is in when 'cursorcolumn' is set.
hl-CursorLine

CursorLine Screen line that the cursor is in when 'cursorline' is set.
hl-Directory

Directory Directory names (and other special names in listings).
hl-DiffAdd

DiffAdd Diff mode: Added line. diff.txt
hl-DiffChange

DiffChange Diff mode: Changed line. diff.txt
hl-DiffDelete

DiffDelete Diff mode: Deleted line. diff.txt
hl-DiffText

DiffText Diff mode: Changed text within a changed line. diff.txt
hl-EndOfBuffer

EndOfBuffer Filler lines (~) after the last line in the buffer.

syntax.txt — 1737

By default, this is highlighted like hl-NonText .
hl-ErrorMsg

ErrorMsg Error messages on the command line.
hl-VertSplit

VertSplit Column separating vertically split windows.
hl-Folded

Folded Line used for closed folds.
hl-FoldColumn

FoldColumn 'foldcolumn'
hl-SignColumn

SignColumn Column where signs are displayed.
hl-IncSearch

IncSearch 'incsearch' highlighting; also used for the text replaced with
":s///c".

hl-LineNr
LineNr Line number for ":number" and ":#" commands, and when 'number'

or 'relativenumber' option is set.
hl-LineNrAbove

LineNrAbove Line number for when the 'relativenumber'
option is set, above the cursor line.

hl-LineNrBelow
LineNrBelow Line number for when the 'relativenumber'

option is set, below the cursor line.
hl-CursorLineNr

CursorLineNr Like LineNr when 'cursorline' is set and 'cursorlineopt'
contains "number" or is "both", for the cursor line.

hl-CursorLineFold
CursorLineFold Like FoldColumn when 'cursorline' is set for the cursor line.

hl-CursorLineSign
CursorLineSign Like SignColumn when 'cursorline' is set for the cursor line.

hl-MatchParen
MatchParen Character under the cursor or just before it, if it

is a paired bracket, and its match. pi_paren.txt
hl-MessageWindow

MessageWindow Messages popup window used by `:echowindow`. If not defined
hl-WarningMsg is used.

hl-ModeMsg
ModeMsg 'showmode' message (e.g., "-- INSERT --").

hl-MoreMsg
MoreMsg more-prompt

hl-NonText
NonText '@' at the end of the window, "<<<" at the start of the window

for 'smoothscroll', characters from 'showbreak' and other
characters that do not really exist in the text, such as the
">" displayed when a double-wide character doesn't fit at the
end of the line.

hl-Normal
Normal Normal text.

hl-Pmenu
Pmenu Popup menu: Normal item.

hl-PmenuSel
PmenuSel Popup menu: Selected item.

hl-PmenuKind
PmenuKind Popup menu: Normal item "kind".

hl-PmenuKindSel
PmenuKindSel Popup menu: Selected item "kind".

hl-PmenuExtra
PmenuExtra Popup menu: Normal item "extra text".

hl-PmenuExtraSel
PmenuExtraSel Popup menu: Selected item "extra text".

syntax.txt — 1738

hl-PmenuSbar
PmenuSbar Popup menu: Scrollbar.

hl-PmenuThumb
PmenuThumb Popup menu: Thumb of the scrollbar.

hl-PopupNotification
PopupNotification

Popup window created with popup_notification() . If not
defined hl-WarningMsg is used.

hl-Question
Question hit-enter prompt and yes/no questions.

hl-QuickFixLine
QuickFixLine Current quickfix item in the quickfix window.

hl-Search
Search Last search pattern highlighting (see 'hlsearch').

Also used for similar items that need to stand out.
hl-CurSearch

CurSearch Current match for the last search pattern (see 'hlsearch').
Note: This is correct after a search, but may get outdated if
changes are made or the screen is redrawn.

hl-SpecialKey
SpecialKey Meta and special keys listed with ":map", also for text used

to show unprintable characters in the text, 'listchars'.
Generally: Text that is displayed differently from what it
really is.

hl-SpellBad
SpellBad Word that is not recognized by the spellchecker. spell

This will be combined with the highlighting used otherwise.
hl-SpellCap

SpellCap Word that should start with a capital. spell
This will be combined with the highlighting used otherwise.

hl-SpellLocal
SpellLocal Word that is recognized by the spellchecker as one that is

used in another region. spell
This will be combined with the highlighting used otherwise.

hl-SpellRare
SpellRare Word that is recognized by the spellchecker as one that is

hardly ever used. spell
This will be combined with the highlighting used otherwise.

hl-StatusLine
StatusLine Status line of current window.

hl-StatusLineNC
StatusLineNC status lines of not-current windows

Note: If this is equal to "StatusLine", Vim will use "^^^" in
the status line of the current window.

hl-StatusLineTerm
StatusLineTerm Status line of current window, if it is a terminal window.

hl-StatusLineTermNC
StatusLineTermNC Status lines of not-current windows that is a

terminal window.
hl-TabLine

TabLine Tab pages line, not active tab page label.
hl-TabLineFill

TabLineFill Tab pages line, where there are no labels.
hl-TabLineSel

TabLineSel Tab pages line, active tab page label.
hl-Terminal

Terminal terminal window (see terminal-size-color).
hl-Title

Title Titles for output from ":set all", ":autocmd" etc.
hl-Visual

syntax.txt — 1739

Visual Visual mode selection.
hl-VisualNOS

VisualNOS Visual mode selection when vim is "Not Owning the Selection".
Only X11 Gui's gui-x11 and xterm-clipboard supports this.

hl-WarningMsg
WarningMsg Warning messages.

hl-WildMenu
WildMenu Current match in 'wildmenu' completion.

hl-User1 hl-User1..9 hl-User9
The 'statusline' syntax allows the use of 9 different highlights in the
statusline and ruler (via 'rulerformat'). The names are User1 to User9.

For the GUI you can use the following groups to set the colors for the menu,
scrollbars and tooltips. They don't have defaults. This doesn't work for the
Win32 GUI. Only three highlight arguments have any effect here: font, guibg,
and guifg.

hl-Menu
Menu Current font, background and foreground colors of the menus.

Also used for the toolbar.
Applicable highlight arguments: font, guibg, guifg.

NOTE: For Motif the font argument actually
specifies a fontset at all times, no matter if 'guifontset' is
empty, and as such it is tied to the current :language when
set.

hl-Scrollbar
Scrollbar Current background and foreground of the main window's

scrollbars.
Applicable highlight arguments: guibg, guifg.

hl-Tooltip
Tooltip Current font, background and foreground of the tooltips.

Applicable highlight arguments: font, guibg, guifg.

NOTE: For Motif the font argument actually
specifies a fontset at all times, no matter if 'guifontset' is
empty, and as such it is tied to the current :language when
set.

==
15. Linking groups :hi-link :highlight-link E412 E413

When you want to use the same highlighting for several syntax groups, you
can do this more easily by linking the groups into one common highlight
group, and give the color attributes only for that group.

To set a link:

:hi[ghlight][!] [default] link {from-group} {to-group}

To remove a link:

:hi[ghlight][!] [default] link {from-group} NONE

Notes: E414
- If the {from-group} and/or {to-group} doesn't exist, it is created. You

don't get an error message for a non-existing group.

syntax.txt — 1740

- As soon as you use a ":highlight" command for a linked group, the link is
removed.

- If there are already highlight settings for the {from-group}, the link is
not made, unless the '!' is given. For a ":highlight link" command in a
sourced file, you don't get an error message. This can be used to skip
links for groups that already have settings.

:hi-default :highlight-default
The [default] argument is used for setting the default highlighting for a
group. If highlighting has already been specified for the group the command
will be ignored. Also when there is an existing link.

Using [default] is especially useful to overrule the highlighting of a
specific syntax file. For example, the C syntax file contains:

:highlight default link cComment Comment
If you like Question highlighting for C comments, put this in your vimrc file:

:highlight link cComment Question
Without the "default" in the C syntax file, the highlighting would be
overruled when the syntax file is loaded.

To have a link survive `:highlight clear`, which is useful if you have
highlighting for a specific filetype and you want to keep it when selecting
another color scheme, put a command like this in the
"after/syntax/{filetype}.vim" file:

highlight! default link cComment Question

==
16. Cleaning up :syn-clear E391

If you want to clear the syntax stuff for the current buffer, you can use this
command:

:syntax clear

This command should be used when you want to switch off syntax highlighting,
or when you want to switch to using another syntax. It's normally not needed
in a syntax file itself, because syntax is cleared by the autocommands that
load the syntax file.
The command also deletes the "b:current_syntax" variable, since no syntax is
loaded after this command.

To clean up specific syntax groups for the current buffer:
:syntax clear {group-name} ..

This removes all patterns and keywords for {group-name}.

To clean up specific syntax group lists for the current buffer:
:syntax clear @{grouplist-name} ..

This sets {grouplist-name}'s contents to an empty list.

:syntax-off :syn-off
If you want to disable syntax highlighting for all buffers, you need to remove
the autocommands that load the syntax files:

:syntax off

What this command actually does, is executing the command
:source $VIMRUNTIME/syntax/nosyntax.vim

See the "nosyntax.vim" file for details. Note that for this to work
$VIMRUNTIME must be valid. See $VIMRUNTIME .

:syntax-reset :syn-reset
If you have changed the colors and messed them up, use this command to get the

syntax.txt — 1741

defaults back:

:syntax reset

It is a bit of a wrong name, since it does not reset any syntax items, it only
affects the highlighting.

This doesn't change the colors for the 'highlight' option.

Note that the syntax colors that you set in your vimrc file will also be reset
back to their Vim default.
Note that if you are using a color scheme, the colors defined by the color
scheme for syntax highlighting will be lost.

What this actually does is:

let g:syntax_cmd = "reset"
runtime! syntax/syncolor.vim

Note that this uses the 'runtimepath' option.

syncolor
If you want to use different colors for syntax highlighting, you can add a Vim
script file to set these colors. Put this file in a directory in
'runtimepath' which comes after $VIMRUNTIME, so that your settings overrule
the default colors. This way these colors will be used after the ":syntax
reset" command.

For Unix you can use the file ~/.vim/after/syntax/syncolor.vim. Example:

if &background == "light"
highlight comment ctermfg=darkgreen guifg=darkgreen

else
highlight comment ctermfg=green guifg=green

endif

E679
Do make sure this syncolor.vim script does not use a "syntax on", set the
'background' option or uses a "colorscheme" command, because it results in an
endless loop.

Note that when a color scheme is used, there might be some confusion whether
your defined colors are to be used or the colors from the scheme. This
depends on the color scheme file. See :colorscheme .

syntax_cmd
The "syntax_cmd" variable is set to one of these values when the
syntax/syncolor.vim files are loaded:

"on" `:syntax on` command. Highlight colors are overruled but
links are kept

"enable" `:syntax enable` command. Only define colors for groups that
don't have highlighting yet. Use `:highlight default` .

"reset" `:syntax reset` command or loading a color scheme. Define all
the colors.

"skip" Don't define colors. Used to skip the default settings when a
syncolor.vim file earlier in 'runtimepath' has already set
them.

==
17. Highlighting tags tag-highlight

syntax.txt — 1742

If you want to highlight all the tags in your file, you can use the following
mappings.

<F11> -- Generate tags.vim file, and highlight tags.
<F12> -- Just highlight tags based on existing tags.vim file.

:map <F11> :sp tags<CR>:%s/^\([^ :]*:\)\=\([^]*\).*/syntax keyword Tag \2/<CR>:wq! tags.vim<CR>/^<CR><F12>
:map <F12> :so tags.vim<CR>

WARNING: The longer the tags file, the slower this will be, and the more
memory Vim will consume.

Only highlighting typedefs, unions and structs can be done too. For this you
must use Universal Ctags (found at https://ctags.io) or Exuberant ctags (found
at http://ctags.sf.net).

Put these lines in your Makefile:

Make a highlight file for types. Requires Universal/Exuberant ctags and awk
types: types.vim
types.vim: *.[ch]

ctags --c-kinds=gstu -o- *.[ch] |\
awk 'BEGIN{printf("syntax keyword Type\t")}\

{printf("%s ", $$1)}END{print ""}' > $@

And put these lines in your .vimrc:

" load the types.vim highlighting file, if it exists
autocmd BufRead,BufNewFile *.[ch] let fname = expand('<afile>:p:h') .. '/types.vim'
autocmd BufRead,BufNewFile *.[ch] if filereadable(fname)
autocmd BufRead,BufNewFile *.[ch] exe 'so ' .. fname
autocmd BufRead,BufNewFile *.[ch] endif

==
18. Window-local syntax :ownsyntax

Normally all windows on a buffer share the same syntax settings. It is
possible, however, to set a particular window on a file to have its own
private syntax setting. A possible example would be to edit LaTeX source
with conventional highlighting in one window, while seeing the same source
highlighted differently (so as to hide control sequences and indicate bold,
italic etc regions) in another. The 'scrollbind' option is useful here.

To set the current window to have the syntax "foo", separately from all other
windows on the buffer:

:ownsyntax foo
w:current_syntax

This will set the "w:current_syntax" variable to "foo". The value of
"b:current_syntax" does not change. This is implemented by saving and
restoring "b:current_syntax", since the syntax files do set
"b:current_syntax". The value set by the syntax file is assigned to
"w:current_syntax".
Note: This resets the 'spell', 'spellcapcheck' and 'spellfile' options.

Once a window has its own syntax, syntax commands executed from other windows
on the same buffer (including :syntax clear) have no effect. Conversely,
syntax commands executed from that window do not affect other windows on the
same buffer.

syntax.txt — 1743

https://ctags.io
http://ctags.sf.net

A window with its own syntax reverts to normal behavior when another buffer
is loaded into that window or the file is reloaded.
When splitting the window, the new window will use the original syntax.

==
19. Color xterms xterm-color color-xterm

Most color xterms have only eight colors. If you don't get colors with the
default setup, it should work with these lines in your .vimrc:

:if &term =~ "xterm"
: if has("terminfo")
: set t_Co=8
: set t_Sf=<Esc>[3%p1%dm
: set t_Sb=<Esc>[4%p1%dm
: else
: set t_Co=8
: set t_Sf=<Esc>[3%dm
: set t_Sb=<Esc>[4%dm
: endif
:endif

[<Esc> is a real escape, type CTRL-V <Esc>]

You might want to change the first "if" to match the name of your terminal,
e.g. "dtterm" instead of "xterm".

Note: Do these settings BEFORE doing ":syntax on". Otherwise the colors may
be wrong.

xiterm rxvt
The above settings have been mentioned to work for xiterm and rxvt too.
But for using 16 colors in an rxvt these should work with terminfo:

:set t_AB=<Esc>[%?%p1%{8}%<%t25;%p1%{40}%+%e5;%p1%{32}%+%;%dm
:set t_AF=<Esc>[%?%p1%{8}%<%t22;%p1%{30}%+%e1;%p1%{22}%+%;%dm

colortest.vim
To test your color setup, a file has been included in the Vim distribution.
To use it, execute this command:

:runtime syntax/colortest.vim

Some versions of xterm (and other terminals, like the Linux console) can
output lighter foreground colors, even though the number of colors is defined
at 8. Therefore Vim sets the "cterm=bold" attribute for light foreground
colors, when 't_Co' is 8.

xfree-xterm
To get 16 colors or more, get the newest xterm version (which should be
included with XFree86 3.3 and later). You can also find the latest version
at:

http://invisible-island.net/xterm/xterm.html
Here is a good way to configure it. This uses 88 colors and enables the
termcap-query feature, which allows Vim to ask the xterm how many colors it
supports.

./configure --disable-bold-color --enable-88-color --enable-tcap-query
If you only get 8 colors, check the xterm compilation settings.
(Also see UTF8-xterm for using this xterm with UTF-8 character encoding).

This xterm should work with these lines in your .vimrc (for 16 colors):
:if has("terminfo")
: set t_Co=16
: set t_AB=<Esc>[%?%p1%{8}%<%t%p1%{40}%+%e%p1%{92}%+%;%dm
: set t_AF=<Esc>[%?%p1%{8}%<%t%p1%{30}%+%e%p1%{82}%+%;%dm

syntax.txt — 1744

:else
: set t_Co=16
: set t_Sf=<Esc>[3%dm
: set t_Sb=<Esc>[4%dm
:endif

[<Esc> is a real escape, type CTRL-V <Esc>]

Without +terminfo , Vim will recognize these settings, and automatically
translate cterm colors of 8 and above to "<Esc>[9%dm" and "<Esc>[10%dm".
Colors above 16 are also translated automatically.

For 256 colors this has been reported to work:

:set t_AB=<Esc>[48;5;%dm
:set t_AF=<Esc>[38;5;%dm

Or just set the TERM environment variable to "xterm-color" or "xterm-16color"
and try if that works.

You probably want to use these X resources (in your ~/.Xdefaults file):
XTerm*color0: #000000
XTerm*color1: #c00000
XTerm*color2: #008000
XTerm*color3: #808000
XTerm*color4: #0000c0
XTerm*color5: #c000c0
XTerm*color6: #008080
XTerm*color7: #c0c0c0
XTerm*color8: #808080
XTerm*color9: #ff6060
XTerm*color10: #00ff00
XTerm*color11: #ffff00
XTerm*color12: #8080ff
XTerm*color13: #ff40ff
XTerm*color14: #00ffff
XTerm*color15: #ffffff
Xterm*cursorColor: Black

[Note: The cursorColor is required to work around a bug, which changes the
cursor color to the color of the last drawn text. This has been fixed by a
newer version of xterm, but not everybody is using it yet.]

To get these right away, reload the .Xdefaults file to the X Option database
Manager (you only need to do this when you just changed the .Xdefaults file):

xrdb -merge ~/.Xdefaults

xterm-blink xterm-blinking-cursor
To make the cursor blink in an xterm, see tools/blink.c. Or use Thomas
Dickey's xterm above patchlevel 107 (see above for where to get it), with
these resources:

XTerm*cursorBlink: on
XTerm*cursorOnTime: 400
XTerm*cursorOffTime: 250
XTerm*cursorColor: White

hpterm-color
These settings work (more or less) for an hpterm, which only supports 8
foreground colors:

:if has("terminfo")
: set t_Co=8

syntax.txt — 1745

: set t_Sf=<Esc>[&v%p1%dS
: set t_Sb=<Esc>[&v7S
:else
: set t_Co=8
: set t_Sf=<Esc>[&v%dS
: set t_Sb=<Esc>[&v7S
:endif

[<Esc> is a real escape, type CTRL-V <Esc>]

Eterm enlightened-terminal
These settings have been reported to work for the Enlightened terminal
emulator, or Eterm. They might work for all xterm-like terminals that use the
bold attribute to get bright colors. Add an ":if" like above when needed.

:set t_Co=16
:set t_AF=^[[%?%p1%{8}%<%t3%p1%d%e%p1%{22}%+%d;1%;m
:set t_AB=^[[%?%p1%{8}%<%t4%p1%d%e%p1%{32}%+%d;1%;m

TTpro-telnet
These settings should work for TTpro telnet. Tera Term Pro is a freeware /
open-source program for MS-Windows.

set t_Co=16
set t_AB=^[[%?%p1%{8}%<%t%p1%{40}%+%e%p1%{32}%+5;%;%dm
set t_AF=^[[%?%p1%{8}%<%t%p1%{30}%+%e%p1%{22}%+1;%;%dm

Also make sure TTpro's Setup / Window / Full Color is enabled, and make sure
that Setup / Font / Enable Bold is NOT enabled.
(info provided by John Love-Jensen <eljay@Adobe.COM>)

==
20. When syntax is slow :syntime

This is aimed at authors of a syntax file.

If your syntax causes redrawing to be slow, here are a few hints on making it
faster. To see slowness switch on some features that usually interfere, such
as 'relativenumber' and folding .

Note: This is only available when compiled with the +profile feature.
You many need to build Vim with "huge" features.

To find out what patterns are consuming most time, get an overview with this
sequence:

:syntime on
[redraw the text at least once with CTRL-L]
:syntime report

This will display a list of syntax patterns that were used, sorted by the time
it took to match them against the text.

:syntime on Start measuring syntax times. This will add some
overhead to compute the time spent on syntax pattern
matching.

:syntime off Stop measuring syntax times.

:syntime clear Set all the counters to zero, restart measuring.

:syntime report Show the syntax items used since ":syntime on" in the
current window. Use a wider display to see more of
the output.

syntax.txt — 1746

The list is sorted by total time. The columns are:
TOTAL Total time in seconds spent on

matching this pattern.
COUNT Number of times the pattern was used.
MATCH Number of times the pattern actually

matched
SLOWEST The longest time for one try.
AVERAGE The average time for one try.
NAME Name of the syntax item. Note that

this is not unique.
PATTERN The pattern being used.

Pattern matching gets slow when it has to try many alternatives. Try to
include as much literal text as possible to reduce the number of ways a
pattern does NOT match.

When using the "\@<=" and "\@<!" items, add a maximum size to avoid trying at
all positions in the current and previous line. For example, if the item is
literal text specify the size of that text (in bytes):

"<\@<=span" Matches "span" in "<span". This tries matching with "<" in
many places.

"<\@1<=span" Matches the same, but only tries one byte before "span".

syntax.txt — 1747

syntax.txt — 1748

textprop.txt For Vim version 9.1. Last change: 2023 Apr 23

VIM REFERENCE MANUAL by Bram Moolenaar

Displaying text with properties attached. textprop text-properties

1. Introduction text-prop-intro
2. Functions text-prop-functions
3. When text changes text-prop-changes

{not able to use text properties when the +textprop feature was
disabled at compile time}

==
1. Introduction text-prop-intro

Text properties can be attached to text in a buffer. They will move with the
text: If lines are deleted or inserted the properties move with the text they
are attached to. Also when inserting/deleting text in the line before the
text property. And when inserting/deleting text inside the text property, it
will increase/decrease in size.

The main use for text properties is to highlight text. This can be seen as a
replacement for syntax highlighting. Instead of defining patterns to match
the text, the highlighting is set by a script, possibly using the output of an
external parser. This only needs to be done once, not every time when
redrawing the screen, thus can be much faster, after the initial cost of
attaching the text properties.

Text properties can also be used for other purposes to identify text. For
example, add a text property on a function name, so that a search can be
defined to jump to the next/previous function.

A text property is attached at a specific line and column, and has a specified
length. The property can span multiple lines.

A text property has these fields:
"id" a number to be used as desired
"type" the name of a property type

Property Types
E971

A text property normally has the name of a property type, which defines
how to highlight the text. The property type can have these entries:

"highlight" name of the highlight group to use
"combine" when omitted or TRUE the text property highlighting is

combined with any syntax highlighting; when FALSE the
text property highlighting replaces the syntax
highlighting

"priority" when properties overlap, the one with the highest
priority will be used.

"start_incl" when TRUE inserts at the start position will be
included in the text property

"end_incl" when TRUE inserts at the end position will be
included in the text property

textprop.txt — 1749

Example

Suppose line 11 in a buffer has this text (excluding the indent):

The number 123 is smaller than 4567.

To highlight the numbers in this text:
call prop_type_add('number', {'highlight': 'Constant'})
call prop_add(11, 12, {'length': 3, 'type': 'number'})
call prop_add(11, 32, {'length': 4, 'type': 'number'})

Try inserting or deleting lines above the text, you will see that the text
properties stick to the text, thus the line number is adjusted as needed.

Setting "start_incl" and "end_incl" is useful when white space surrounds the
text, e.g. for a function name. Using false is useful when the text starts
and/or ends with a specific character, such as the quote surrounding a string.

func FuncName(arg)
^^^^^^^^ property with start_incl and end_incl set

var = "text";
^^^^^^ property with start_incl and end_incl not set

Nevertheless, when text is inserted or deleted the text may need to be parsed
and the text properties updated. But this can be done asynchronously.

Internal error E967

If you see E967, please report the bug. You can do this at Github:
https://github.com/vim/vim/issues/new

==
2. Functions text-prop-functions

Manipulating text property types:

prop_type_add({name}, {props}) define a new property type
prop_type_change({name}, {props}) change an existing property type
prop_type_delete({name} [, {props}]) delete a property type
prop_type_get({name} [, {props}]) get property type values
prop_type_list([{props}]) get list of property types

Manipulating text properties:

prop_add({lnum}, {col}, {props}) add a text property
prop_add_list({props}, [{item}, ...])

add a text property at multiple
positions.

prop_clear({lnum} [, {lnum-end} [, {bufnr}]])
remove all text properties

prop_find({props} [, {direction}]) search for a text property
prop_list({lnum} [, {props}]) text properties in {lnum}
prop_remove({props} [, {lnum} [, {lnum-end}]])

remove a text property

textprop.txt — 1750

https://github.com/vim/vim/issues/new

prop_add() E965
prop_add({lnum}, {col}, {props})

Attach a text property at position {lnum}, {col}. {col} is
counted in bytes, use one for the first column.
If {lnum} is invalid an error is given. E966
If {col} is invalid an error is given. E964

{props} is a dictionary with these fields:
type name of the text property type
length length of text in bytes, can only be used

for a property that does not continue in
another line; can be zero

end_lnum line number for the end of text (inclusive)
end_col column just after the text; not used when

"length" is present; when {col} and "end_col"
are equal, and "end_lnum" is omitted or equal
to {lnum}, this is a zero-width text property

bufnr buffer to add the property to; when omitted
the current buffer is used

id user defined ID for the property; must be a
number, should be positive; when using "text"
then "id" must not be present and will be set
automatically to a negative number; otherwise
zero is used

E1305
text text to be displayed before {col}, or

above/below the line if {col} is zero; prepend
and/or append spaces for padding with
highlighting; cannot be used with "length",
"end_lnum" and "end_col"
See virtual-text for more information.

E1294
text_align when "text" is present and {col} is zero;

specifies where to display the text:
after after the end of the line
right right aligned in the window (unless

the text wraps to the next screen
line)

below in the next screen line
above just above the line

When omitted "after" is used. Only one
"right" property can fit in each line, if
there are two or more these will go in a
separate line (still right aligned).

text_padding_left E1296
used when "text" is present and {col} is zero;
padding between the end of the text line
(leftmost column for "above" and "below") and
the virtual text, not highlighted

text_wrap when "text" is present and {col} is zero,
specifies what happens if the text doesn't
fit:

wrap wrap the text to the next line
truncate truncate the text to make it fit

When omitted "truncate" is used.
Note that this applies to the individual text
property, the 'wrap' option sets the overall
behavior

All fields except "type" are optional.

textprop.txt — 1751

It is an error when both "length" and "end_lnum" or "end_col"
are given. Either use "length" or "end_col" for a property
within one line, or use "end_lnum" and "end_col" for a
property that spans more than one line.
When neither "length" nor "end_col" are given the property
will be zero-width. That means it will move with the text, as
a kind of mark. One character will be highlighted, if the
type specifies highlighting.
The property can end exactly at the last character of the
text, or just after it. In the last case, if text is appended
to the line, the text property size will increase, also when
the property type does not have "end_incl" set.

"type" will first be looked up in the buffer the property is
added to. When not found, the global property types are used.
If not found an error is given.

virtual-text
When "text" is used and the column is non-zero then this text
will be displayed at the specified start location of the text
property. The text of the buffer line will be shifted to make
room. This is called "virtual text".
When the column is zero the virtual text will appear above,
after or below the buffer text. The "text_align" and
"text_wrap" arguments determine how it is displayed.
To separate the virtual text from the buffer text prepend
and/or append spaces to the "text" field or use the
"text_padding_left" value.

Make sure to use a highlight that makes clear to the user that
this is virtual text, otherwise it will be very confusing that
the text cannot be edited. When using "above" you need to
make clear this text belongs to the text line below it, when
using "below" you need to make sure it belongs to the text
line above it.

The text will be displayed but it is not part of the actual
buffer line, the cursor cannot be placed on it. A mouse click
in the text will move the cursor to the first character after
the text, or the last character of the line.
Any Tab and other control character in the text will be
changed to a space (Rationale: otherwise the size of the text
is difficult to compute).
A negative "id" will be chosen and is returned.

Before text properties with text were supported it was
possible to use a negative "id", even though this was very
rare. Now that negative "id"s are reserved for text
properties with text an error is given when using a negative
"id". When a text property with text already exists using a
negative "id" results in E1293 . If a negative "id" was
used and later a text property with text is added results in
E1339 .

Can also be used as a method :
GetLnum()->prop_add(col, props)

prop_add_list()
prop_add_list({props}, [{item}, ...])

Similar to prop_add(), but attaches a text property at
multiple positions in a buffer.

textprop.txt — 1752

{props} is a dictionary with these fields:
bufnr buffer to add the property to; when omitted

the current buffer is used
id user defined ID for the property; must be a

number; when omitted zero is used
type name of the text property type

All fields except "type" are optional.

The second argument is a List of items, where each {item} is a
list that specifies the starting and ending position of the
text: [{lnum}, {col}, {end-lnum}, {end-col}]
or: [{lnum}, {col}, {end-lnum}, {end-col}, {id}]

The first two items {lnum} and {col} specify the starting
position of the text where the property will be attached.
The next two items {end-lnum} and {end-col} specify the
position just after the text.
An optional fifth item {id} can be used to give a different ID
to a property. When omitted the ID from {props} is used,
falling back to zero if none are present.

It is not possible to add a text property with a "text" field
here.

Example:
call prop_add_list(#{type: 'MyProp', id: 2},

\ [[1, 4, 1, 7],
\ [1, 15, 1, 20],
\ [2, 30, 3, 30]]

Can also be used as a method :
GetProp()->prop_add_list([[1, 1, 1, 2], [1, 4, 1, 8]])

prop_clear({lnum} [, {lnum-end} [, {props}]]) prop_clear()
Remove all text properties from line {lnum}.
When {lnum-end} is given, remove all text properties from line
{lnum} to {lnum-end} (inclusive).

When {props} contains a "bufnr" item use this buffer,
otherwise use the current buffer.

Can also be used as a method :
GetLnum()->prop_clear()

prop_find()
prop_find({props} [, {direction}])

Search for a text property as specified with {props}:
id property with this ID
type property with this type name
both "id" and "type" must both match
bufnr buffer to search in; when present a

start position with "lnum" and "col"
must be given; when omitted the
current buffer is used

lnum start in this line (when omitted start
at the cursor)

col start at this column (when omitted
and "lnum" is given: use column 1,

textprop.txt — 1753

otherwise start at the cursor)
skipstart do not look for a match at the start

position

A property matches when either "id" or "type" matches.
{direction} can be "f" for forward and "b" for backward. When
omitted forward search is performed.

If a match is found then a Dict is returned with the entries
as with prop_list(), and additionally an "lnum" entry.
If no match is found then an empty Dict is returned.

prop_list({lnum} [, {props}]) prop_list()
Returns a List with all the text properties in line {lnum}.

The following optional items are supported in {props}:
bufnr use this buffer instead of the current buffer
end_lnum return text properties in all the lines

between {lnum} and {end_lnum} (inclusive).
A negative value is used as an offset from the
last buffer line; -1 refers to the last buffer
line.

types List of property type names. Return only text
properties that match one of the type names.

ids List of property identifiers. Return only text
properties with one of these identifiers.

The properties are ordered by starting column and priority.
Each property is a Dict with these entries:

lnum starting line number. Present only when
returning text properties between {lnum} and
{end_lnum}.

col starting column
length length in bytes, one more if line break is

included
id property ID
text text to be displayed before {col}. Only

present for virtual-text properties.
text_align alignment property of virtual-text .
text_padding_left

left padding used for virtual text.
text_wrap specifies whether virtual-text is wrapped.
type name of the property type, omitted if

the type was deleted
type_bufnr buffer number for which this type was defined;

0 if the type is global
start when TRUE property starts in this line
end when TRUE property ends in this line

When "start" is zero the property started in a previous line,
the current one is a continuation.
When "end" is zero the property continues in the next line.
The line break after this line is included.

Returns an empty list on error.

Examples:
" get text properties placed in line 5
echo prop_list(5)

textprop.txt — 1754

" get text properties placed in line 20 in buffer 4
echo prop_list(20, {'bufnr': 4})
" get all the text properties between line 1 and 20
echo prop_list(1, {'end_lnum': 20})
" get all the text properties of type 'myprop'
echo prop_list(1, {'types': ['myprop'],

\ 'end_lnum': -1})
" get all the text properties of type 'prop1' or 'prop2'
echo prop_list(1, {'types': ['prop1', 'prop2'],

\ 'end_lnum': -1})
" get all the text properties with ID 8
echo prop_list(1, {'ids': [8], 'end_lnum': line('$')})
" get all the text properties with ID 10 and 20
echo prop_list(1, {'ids': [10, 20], 'end_lnum': -1})
" get text properties with type 'myprop' and ID 100
" in buffer 4.
echo prop_list(1, {'bufnr': 4, 'types': ['myprop'],

\ 'ids': [100], 'end_lnum': -1})

Can also be used as a method :
GetLnum()->prop_list()

prop_remove() E968 E860
prop_remove({props} [, {lnum} [, {lnum-end}]])

Remove a matching text property from line {lnum}. When
{lnum-end} is given, remove matching text properties from line
{lnum} to {lnum-end} (inclusive).
When {lnum} is omitted remove matching text properties from
all lines (this requires going over all lines, thus will be a
bit slow for a buffer with many lines).

{props} is a dictionary with these fields:
id remove text properties with this ID
type remove text properties with this type name
types remove text properties with type names in this

List
both "id" and "type"/"types" must both match
bufnr use this buffer instead of the current one
all when TRUE remove all matching text properties,

not just the first one
Only one of "type" and "types" may be supplied. E1295

A property matches when either "id" or one of the supplied
types matches.
If buffer "bufnr" does not exist you get an error message.
If buffer "bufnr" is not loaded then nothing happens.

Returns the number of properties that were removed.

Can also be used as a method :
GetProps()->prop_remove()

prop_type_add({name}, {props}) prop_type_add() E969 E970
Add a text property type {name}. If a property type with this
name already exists an error is given. Nothing is returned.
{props} is a dictionary with these optional fields:

bufnr define the property only for this buffer; this
avoids name collisions and automatically
clears the property types when the buffer is

textprop.txt — 1755

deleted.
highlight name of highlight group to use
priority when a character has multiple text

properties the one with the highest priority
will be used; negative values can be used, the
default priority is zero

combine when omitted or TRUE combine the highlight
with any syntax highlight; when FALSE syntax
highlight will not be used

override when TRUE the highlight overrides any other,
including 'cursorline' and Visual

start_incl when TRUE inserts at the start position will
be included in the text property

end_incl when TRUE inserts at the end position will be
included in the text property

Can also be used as a method :
GetPropName()->prop_type_add(props)

prop_type_change({name}, {props}) prop_type_change()
Change properties of an existing text property type. If a
property with this name does not exist an error is given.
The {props} argument is just like prop_type_add() .

Can also be used as a method :
GetPropName()->prop_type_change(props)

prop_type_delete({name} [, {props}]) prop_type_delete()
Remove the text property type {name}. When text properties
using the type {name} are still in place, they will not have
an effect and can no longer be removed by name.

{props} can contain a "bufnr" item. When it is given, delete
a property type from this buffer instead of from the global
property types.

When text property type {name} is not found there is no error.

Can also be used as a method :
GetPropName()->prop_type_delete()

prop_type_get({name} [, {props}]) prop_type_get()
Returns the properties of property type {name}. This is a
dictionary with the same fields as was given to
prop_type_add().
When the property type {name} does not exist, an empty
dictionary is returned.

{props} can contain a "bufnr" item. When it is given, use
this buffer instead of the global property types.

Can also be used as a method :
GetPropName()->prop_type_get()

prop_type_list([{props}]) prop_type_list()
Returns a list with all property type names.

{props} can contain a "bufnr" item. When it is given, use
this buffer instead of the global property types.

textprop.txt — 1756

==
3. When text changes text-prop-changes

Vim will do its best to keep the text properties on the text where it was
attached. When inserting or deleting text the properties after the change
will move accordingly.

When text is deleted and a text property no longer includes any text, it is
deleted. However, a text property that was defined as zero-width will remain,
unless the whole line is deleted.

E275
When a buffer is unloaded, all the text properties are gone. There is no way
to store the properties in a file. You can only re-create them. When a
buffer is hidden the text is preserved and so are the text properties. It is
not possible to add text properties to an unloaded buffer.

When using replace mode, the text properties stay on the same character
positions, even though the characters themselves change.

To update text properties after the text was changed, install a callback with
`listener_add()`. E.g, if your plugin does spell checking, you can have the
callback update spelling mistakes in the changed text. Vim will move the
properties below the changed text, so that they still highlight the same text,
thus you don't need to update these.

Text property columns are not updated or copied:

- When setting the line with setline() or through an interface, such as Lua,
Tcl or Python. Vim does not know what text got inserted or deleted.

- With a command like `:move`, which takes a line of text out of context.

textprop.txt — 1757

textprop.txt — 1758

filetype.txt For Vim version 9.1. Last change: 2024 Feb 14

VIM REFERENCE MANUAL by Bram Moolenaar

Filetypes filetype file-type

1. Filetypes filetypes
2. Filetype plugin filetype-plugins
3. Docs for the default filetype plugins. ftplugin-docs

Also see autocmd.txt .

==
1. Filetypes filetypes file-types

Vim can detect the type of file that is edited. This is done by checking the
file name and sometimes by inspecting the contents of the file for specific
text.

:filetype :filet
To enable file type detection, use this command in your vimrc:

:filetype on
Each time a new or existing file is edited, Vim will try to recognize the type
of the file and set the 'filetype' option. This will trigger the FileType
event, which can be used to set the syntax highlighting, set options, etc.

NOTE: Filetypes and 'compatible' don't work together well, since being Vi
compatible means options are global. Resetting 'compatible' is recommended,
if you didn't do that already.

Detail: The ":filetype on" command will load one of these files:
Amiga $VIMRUNTIME/filetype.vim
Mac $VIMRUNTIME:filetype.vim
MS-Windows $VIMRUNTIME\filetype.vim
Unix $VIMRUNTIME/filetype.vim
VMS $VIMRUNTIME/filetype.vim

This file is a Vim script that defines autocommands for the
BufNewFile and BufRead events. If the file type is not found by the
name, the file $VIMRUNTIME/scripts.vim is used to detect it from the
contents of the file.
When the GUI is running or will start soon, the menu.vim script is
also sourced. See 'go-M' about avoiding that.

To add your own file types, see new-filetype below. To search for help on a
filetype prepend "ft-" and optionally append "-syntax", "-indent" or
"-plugin". For example:

:help ft-vim-indent
:help ft-vim-syntax
:help ft-man-plugin

If the file type is not detected automatically, or it finds the wrong type,
you can either set the 'filetype' option manually, or add a modeline to your
file. Example, for an IDL file use the command:

:set filetype=idl

or add this modeline to the file:
/* vim: set filetype=idl : */

filetype.txt — 1759

:filetype-plugin-on
You can enable loading the plugin files for specific file types with:

:filetype plugin on
If filetype detection was not switched on yet, it will be as well.
This actually loads the file "ftplugin.vim" in 'runtimepath'.
The result is that when a file is edited its plugin file is loaded (if there
is one for the detected filetype). filetype-plugin

:filetype-plugin-off
You can disable it again with:

:filetype plugin off
The filetype detection is not switched off then. But if you do switch off
filetype detection, the plugins will not be loaded either.
This actually loads the file "ftplugof.vim" in 'runtimepath'.

:filetype-indent-on
You can enable loading the indent file for specific file types with:

:filetype indent on
If filetype detection was not switched on yet, it will be as well.
This actually loads the file "indent.vim" in 'runtimepath'.
The result is that when a file is edited its indent file is loaded (if there
is one for the detected filetype). indent-expression

:filetype-indent-off
You can disable it again with:

:filetype indent off
The filetype detection is not switched off then. But if you do switch off
filetype detection, the indent files will not be loaded either.
This actually loads the file "indoff.vim" in 'runtimepath'.
This disables auto-indenting for files you will open. It will keep working in
already opened files. Reset 'autoindent', 'cindent', 'smartindent' and/or
'indentexpr' to disable indenting in an opened file.

:filetype-off
To disable file type detection, use this command:

:filetype off
This will keep the flags for "plugin" and "indent", but since no file types
are being detected, they won't work until the next ":filetype on".

Overview: :filetype-overview

command detection plugin indent
:filetype on on unchanged unchanged
:filetype off off unchanged unchanged
:filetype plugin on on on unchanged
:filetype plugin off unchanged off unchanged
:filetype indent on on unchanged on
:filetype indent off unchanged unchanged off
:filetype plugin indent on on on on
:filetype plugin indent off unchanged off off

To see the current status, type:
:filetype

The output looks something like this:
filetype detection:ON plugin:ON indent:OFF

The file types are also used for syntax highlighting. If the ":syntax on"
command is used, the file type detection is installed too. There is no need

filetype.txt — 1760

to do ":filetype on" after ":syntax on".

To disable one of the file types, add a line in your filetype file, see
remove-filetype .

filetype-detect
To detect the file type again:

:filetype detect
Use this if you started with an empty file and typed text that makes it
possible to detect the file type. For example, when you entered this in a
shell script: "#!/bin/csh".

When filetype detection was off, it will be enabled first, like the "on"
argument was used.

filetype-overrule
When the same extension is used for multiple filetypes, Vim tries to guess
what kind of file it is. This doesn't always work. A number of global
variables can be used to overrule the filetype used for certain extensions:

file name variable
*.asa g:filetype_asa ft-aspperl-syntax

ft-aspvbs-syntax
*.asm g:asmsyntax ft-asm-syntax
*.asp g:filetype_asp ft-aspperl-syntax

ft-aspvbs-syntax
*.bas g:filetype_bas ft-basic-syntax
*.cfg g:filetype_cfg
*.cls g:filetype_cls
*.csh g:filetype_csh ft-csh-syntax
*.dat g:filetype_dat
*.def g:filetype_def
*.f g:filetype_f ft-forth-syntax
*.frm g:filetype_frm ft-form-syntax
*.fs g:filetype_fs ft-forth-syntax
*.h g:c_syntax_for_h ft-c-syntax
*.i g:filetype_i ft-progress-syntax
*.inc g:filetype_inc
*.lsl g:filetype_lsl
*.m g:filetype_m ft-mathematica-syntax
*.mod g:filetype_mod
*.p g:filetype_p ft-pascal-syntax
*.pl g:filetype_pl
*.pp g:filetype_pp ft-pascal-syntax
*.prg g:filetype_prg
*.r g:filetype_r
*.sig g:filetype_sig
*.sql g:filetype_sql ft-sql-syntax
*.src g:filetype_src
*.sys g:filetype_sys
*.sh g:bash_is_sh ft-sh-syntax
*.tex g:tex_flavor ft-tex-plugin
*.typ g:filetype_typ
*.v g:filetype_v
*.w g:filetype_w ft-cweb-syntax

For a few filetypes the global variable is used only when the filetype could
not be detected:

*.r g:filetype_r ft-rexx-syntax

filetype-ignore

filetype.txt — 1761

To avoid that certain files are being inspected, the g:ft_ignore_pat variable
is used. The default value is set like this:

:let g:ft_ignore_pat = '\.\(Z\|gz\|bz2\|zip\|tgz\)$'
This means that the contents of compressed files are not inspected.

new-filetype
If a file type that you want to use is not detected yet, there are four ways
to add it. In any way, it's better not to modify the $VIMRUNTIME/filetype.vim
file. It will be overwritten when installing a new version of Vim.

A. If you want to overrule all default file type checks.
This works by writing one file for each filetype. The disadvantage is that
there can be many files. The advantage is that you can simply drop this
file in the right directory to make it work.

ftdetect
1. Create your user runtime directory. You would normally use the first

item of the 'runtimepath' option. Then create the directory "ftdetect"
inside it. Example for Unix:
:!mkdir ~/.vim
:!mkdir ~/.vim/ftdetect

2. Create a file that contains an autocommand to detect the file type.
Example:

au BufRead,BufNewFile *.mine set filetype=mine
Note that there is no "augroup" command, this has already been done
when sourcing your file. You could also use the pattern "*" and then
check the contents of the file to recognize it.
Write this file as "mine.vim" in the "ftdetect" directory in your user
runtime directory. For example, for Unix:
:w ~/.vim/ftdetect/mine.vim

3. To use the new filetype detection you must restart Vim.

The files in the "ftdetect" directory are used after all the default
checks, thus they can overrule a previously detected file type. But you
can also use :setfiletype to keep a previously detected filetype.

B. If you want to detect your file after the default file type checks.

This works like A above, but instead of setting 'filetype' unconditionally
use ":setfiletype". This will only set 'filetype' if no file type was
detected yet. Example:

au BufRead,BufNewFile *.txt setfiletype text

You can also use the already detected file type in your command. For
example, to use the file type "mypascal" when "pascal" has been detected:

au BufRead,BufNewFile * if &ft == 'pascal' | set ft=mypascal
| endif

C. If your file type can be detected by the file name.
1. Create your user runtime directory. You would normally use the first

item of the 'runtimepath' option. Example for Unix:
:!mkdir ~/.vim

2. Create a file that contains autocommands to detect the file type.
Example:
" my filetype file
if exists("did_load_filetypes")

finish
endif

filetype.txt — 1762

augroup filetypedetect
au! BufRead,BufNewFile *.mine setfiletype mine
au! BufRead,BufNewFile *.xyz setfiletype drawing

augroup END
Write this file as "filetype.vim" in your user runtime directory. For
example, for Unix:
:w ~/.vim/filetype.vim

3. To use the new filetype detection you must restart Vim.

Your filetype.vim will be sourced before the default FileType autocommands
have been installed. Your autocommands will match first, and the
":setfiletype" command will make sure that no other autocommands will set
'filetype' after this.

new-filetype-scripts
D. If your filetype can only be detected by inspecting the contents of the

file.

1. Create your user runtime directory. You would normally use the first
item of the 'runtimepath' option. Example for Unix:

:!mkdir ~/.vim

2. Create a vim script file for doing this. Example:
if did_filetype() " filetype already set..

finish " ..don't do these checks
endif
if getline(1) =~ '^#!.*\<mine\>'

setfiletype mine
elseif getline(1) =~? '\<drawing\>'

setfiletype drawing
endif

See $VIMRUNTIME/scripts.vim for more examples.
Write this file as "scripts.vim" in your user runtime directory. For
example, for Unix:
:w ~/.vim/scripts.vim

3. The detection will work right away, no need to restart Vim.

Your scripts.vim is loaded before the default checks for file types, which
means that your rules override the default rules in
$VIMRUNTIME/scripts.vim.

remove-filetype
If a file type is detected that is wrong for you, install a filetype.vim or
scripts.vim to catch it (see above). You can set 'filetype' to a non-existing
name to avoid that it will be set later anyway:

:set filetype=ignored

If you are setting up a system with many users, and you don't want each user
to add/remove the same filetypes, consider writing the filetype.vim and
scripts.vim files in a runtime directory that is used for everybody. Check
the 'runtimepath' for a directory to use. If there isn't one, set
'runtimepath' in the system-vimrc . Be careful to keep the default
directories!

autocmd-osfiletypes
NOTE: this code is currently disabled, as the RISC OS implementation was
removed. In the future this will use the 'filetype' option.

filetype.txt — 1763

On operating systems which support storing a file type with the file, you can
specify that an autocommand should only be executed if the file is of a
certain type.

The actual type checking depends on which platform you are running Vim
on; see your system's documentation for details.

To use osfiletype checking in an autocommand you should put a list of types to
match in angle brackets in place of a pattern, like this:

:au BufRead *.html,<&faf;HTML> runtime! syntax/html.vim

This will match:

- Any file whose name ends in ".html"
- Any file whose type is "&faf" or "HTML", where the meaning of these types

depends on which version of Vim you are using.
Unknown types are considered NOT to match.

You can also specify a type and a pattern at the same time (in which case they
must both match):

:au BufRead <&fff>diff*

This will match files of type "&fff" whose names start with "diff".

plugin-details
The "plugin" directory can be in any of the directories in the 'runtimepath'
option. All of these directories will be searched for plugins and they are
all loaded. For example, if this command:

set runtimepath

produces this output:

runtimepath=/etc/vim,~/.vim,/usr/local/share/vim/vim82

then Vim will load all plugins in these directories and below:

/etc/vim/plugin/
~/.vim/plugin/
/usr/local/share/vim/vim82/plugin/

Note that the last one is the value of $VIMRUNTIME which has been expanded.

Note that when using a plugin manager or packages many directories will be
added to 'runtimepath'. These plugins each require their own directory, don't
put them directly in ~/.vim/plugin.

What if it looks like your plugin is not being loaded? You can find out what
happens when Vim starts up by using the -V argument:

vim -V2

You will see a lot of messages, in between them is a remark about loading the
plugins. It starts with:

Searching for "plugin/**/*.vim" in

filetype.txt — 1764

There you can see where Vim looks for your plugin scripts.

==
2. Filetype plugin filetype-plugins

When loading filetype plugins has been enabled :filetype-plugin-on , options
will be set and mappings defined. These are all local to the buffer, they
will not be used for other files.

Defining mappings for a filetype may get in the way of the mappings you
define yourself. There are a few ways to avoid this:
1. Set the "maplocalleader" variable to the key sequence you want the mappings

to start with. Example:
:let maplocalleader = ","

All mappings will then start with a comma instead of the default, which
is a backslash. Also see <LocalLeader> .

2. Define your own mapping. Example:
:map ,p <Plug>MailQuote

You need to check the description of the plugin file below for the
functionality it offers and the string to map to.
You need to define your own mapping before the plugin is loaded (before
editing a file of that type). The plugin will then skip installing the
default mapping.

no_mail_maps g:no_mail_maps
3. Disable defining mappings for a specific filetype by setting a variable,

which contains the name of the filetype. For the "mail" filetype this
would be:

:let no_mail_maps = 1
no_plugin_maps g:no_plugin_maps

4. Disable defining mappings for all filetypes by setting a variable:
:let no_plugin_maps = 1

ftplugin-overrule
If a global filetype plugin does not do exactly what you want, there are three
ways to change this:

1. Add a few settings.
You must create a new filetype plugin in a directory early in
'runtimepath'. For Unix, for example you could use this file:

vim ~/.vim/ftplugin/fortran.vim
You can set those settings and mappings that you would like to add. Note
that the global plugin will be loaded after this, it may overrule the
settings that you do here. If this is the case, you need to use one of the
following two methods.

2. Make a copy of the plugin and change it.
You must put the copy in a directory early in 'runtimepath'. For Unix, for
example, you could do this:

cp $VIMRUNTIME/ftplugin/fortran.vim ~/.vim/ftplugin/fortran.vim
Then you can edit the copied file to your liking. Since the b:did_ftplugin
variable will be set, the global plugin will not be loaded.
A disadvantage of this method is that when the distributed plugin gets
improved, you will have to copy and modify it again.

3. Overrule the settings after loading the global plugin.
You must create a new filetype plugin in a directory from the end of
'runtimepath'. For Unix, for example, you could use this file:

vim ~/.vim/after/ftplugin/fortran.vim

filetype.txt — 1765

In this file you can change just those settings that you want to change.

==
3. Docs for the default filetype plugins. ftplugin-docs

plugin_exec g:plugin_exec
Enable executing of external commands. This was done historically for e.g.
the perl filetype plugin (and a few others) to set the search path.
Disabled by default for security reasons:

:let g:plugin_exec = 1
It is also possible to enable this only for certain filetypes:

:let g:<filetype>_exec = 1
So to enable this only for ruby, set the following variable:

:let g:ruby_exec = 1

If both, the global `plugin_exec` and the `<filetype>_exec` specific variable
are set, the filetype specific variable should have precedent.

AWK ft-awk-plugin

Support for features specific to GNU Awk, like @include, can be enabled by
setting:

:let g:awk_is_gawk = 1

CHANGELOG ft-changelog-plugin

Allows for easy entrance of Changelog entries in Changelog files. There are
some commands, mappings, and variables worth exploring:

Options:
'comments' is made empty to not mess up formatting.
'textwidth' is set to 78, which is standard.
'formatoptions' the 't' flag is added to wrap when inserting text.

Commands:
NewChangelogEntry Adds a new Changelog entry in an intelligent fashion

(see below).

Local mappings:
<Leader>o Starts a new Changelog entry in an equally intelligent

fashion (see below).

Global mappings:
NOTE: The global mappings are accessed by sourcing the
ftplugin/changelog.vim file first, e.g. with

runtime ftplugin/changelog.vim
in your .vimrc .

<Leader>o Switches to the ChangeLog buffer opened for the
current directory, or opens it in a new buffer if it
exists in the current directory. Then it does the
same as the local <Leader>o described above.

Variables:
g:changelog_timeformat Deprecated; use g:changelog_dateformat instead.
g:changelog_dateformat The date (and time) format used in ChangeLog entries.

The format accepted is the same as for the
strftime() function.

The default is "%Y-%m-%d" which is the standard format

filetype.txt — 1766

for many ChangeLog layouts.
g:changelog_username The name and email address of the user.

The default is deduced from environment variables and
system files. It searches /etc/passwd for the comment
part of the current user, which informally contains
the real name of the user up to the first separating
comma. then it checks the $NAME environment variable
and finally runs `whoami` and `hostname` to build an
email address. The final form is

Full Name <user@host>

g:changelog_new_date_format
The format to use when creating a new date-entry.
The following table describes special tokens in the
string:

%% insert a single '%' character
%d insert the date from above
%u insert the user from above
%p insert result of b:changelog_entry_prefix
%c where to position cursor when done

The default is "%d %u\n\n\t* %p%c\n\n", which produces
something like (| is where cursor will be, unless at
the start of the line where it denotes the beginning
of the line)

|2003-01-14 Full Name <user@host>
|
| * prefix|

g:changelog_new_entry_format
The format used when creating a new entry.
The following table describes special tokens in the
string:

%p insert result of b:changelog_entry_prefix
%c where to position cursor when done

The default is "\t*%c", which produces something
similar to

| * prefix|

g:changelog_date_entry_search
The search pattern to use when searching for a
date-entry.
The same tokens that can be used for
g:changelog_new_date_format can be used here as well.
The default is '^\s*%d_s*%u' which finds lines
matching the form

|2003-01-14 Full Name <user@host>
and some similar formats.

g:changelog_date_end_entry_search
The search pattern to use when searching for the end
of a date-entry.
The same tokens that can be used for
g:changelog_new_date_format can be used here as well.
The default is '^\s*$' which finds lines that contain
only whitespace or are completely empty.

b:changelog_name b:changelog_name
Name of the ChangeLog file to look for.
The default is 'ChangeLog'.

filetype.txt — 1767

b:changelog_path
Path of the ChangeLog to use for the current buffer.
The default is empty, thus looking for a file named
b:changelog_name in the same directory as the

current buffer. If not found, the parent directory of
the current buffer is searched. This continues
recursively until a file is found or there are no more
parent directories to search.

b:changelog_entry_prefix
Name of a function to call to generate a prefix to a
new entry. This function takes no arguments and
should return a string containing the prefix.
Returning an empty prefix is fine.
The default generates the shortest path between the
ChangeLog's pathname and the current buffers pathname.
In the future, it will also be possible to use other
variable contexts for this variable, for example, g:.

The Changelog entries are inserted where they add the least amount of text.
After figuring out the current date and user, the file is searched for an
entry beginning with the current date and user and if found adds another item
under it. If not found, a new entry and item is prepended to the beginning of
the Changelog.

ASCIIDOC ft-asciidoc-plugin

To enable folding use this:
let g:asciidoc_folding = 1

To disable nesting of folded headers use this:
let g:asciidoc_foldnested = 0

To disable folding everything under the title use this:
let asciidoc_fold_under_title = 0

FORTRAN ft-fortran-plugin

Options:
'expandtab' is switched on to avoid tabs as required by the Fortran

standards unless the user has set fortran_have_tabs in .vimrc.
'textwidth' is set to 80 for fixed source format whereas it is set to 132

for free source format. Setting the fortran_extended_line_length
variable increases the width to 132 for fixed source format.

'formatoptions' is set to break code and comment lines and to preserve long
lines. You can format comments with gq .

For further discussion of fortran_have_tabs and the method used for the
detection of source format see ft-fortran-syntax .

FREEBASIC ft-freebasic-plugin

This plugin aims to treat the four FreeBASIC dialects, "fb", "qb", "fblite"
and "deprecated", as distinct languages.

The dialect will be set to the first name found in g:freebasic_forcelang, any
#lang directive or $lang metacommand in the file being edited, or finally
g:freebasic_lang. These global variables conceptually map to the fbc options

filetype.txt — 1768

-forcelang and -lang. If no dialect is explicitly specified "fb" will be
used.

For example, to set the dialect to a default of "fblite" but still allow for
any #lang directive overrides, use the following command:

let g:freebasic_lang = "fblite"

GIT COMMIT ft-gitcommit-plugin

One command, :DiffGitCached, is provided to show a diff of the current commit
in the preview window. It is equivalent to calling "git diff --cached" plus
any arguments given to the command.

GPROF ft-gprof-plugin

The gprof filetype plugin defines a mapping <C-]> to jump from a function
entry in the gprof flat profile or from a function entry in the call graph
to the details of that function in the call graph.

The mapping can be disabled with:
let g:no_gprof_maps = 1

JSON-FORMAT ft-json-plugin

JSON filetype can be extended to use 'formatexpr' and "json.FormatExpr()"
function for json formatting (using gq).

Add following lines to $HOME/.vim/ftplugin/json.vim:

vim9script
import autoload 'dist/json.vim'
setl formatexpr=json.FormatExpr()

MAIL ft-mail-plugin

Options:
'modeline' is switched off to avoid the danger of trojan horses, and to

avoid that a Subject line with "Vim:" in it will cause an
error message.

'textwidth' is set to 72. This is often recommended for e-mail.
'formatoptions' is set to break text lines and to repeat the comment leader

in new lines, so that a leading ">" for quotes is repeated.
You can also format quoted text with gq .

Local mappings:
<LocalLeader>q or \\MailQuote

Quotes the text selected in Visual mode, or from the cursor position
to the end of the file in Normal mode. This means "> " is inserted in
each line.

MAN ft-man-plugin :Man man.vim

This plugin displays a manual page in a nice way. See find-manpage in the
user manual for more information.

filetype.txt — 1769

To start using the :Man command before any manual page has been loaded,
source this script from your startup vimrc file:

runtime ftplugin/man.vim

Options:
'iskeyword' The '.' character is added to support the use of CTRL-] on the

manual page name.

Commands:
Man {name} Display the manual page for {name} in a window.
Man {number} {name}

Display the manual page for {name} in a section {number}.

Global mapping:
<Leader>K Displays the manual page for the word under the cursor.
<Plug>ManPreGetPage

idem, allows for using a mapping:
nmap <F1> <Plug>ManPreGetPage

Local mappings:
CTRL-] Jump to the manual page for the word under the cursor.
CTRL-T Jump back to the previous manual page.
q Same as the :quit command.

To use a vertical split instead of horizontal:
let g:ft_man_open_mode = 'vert'

To use a new tab:
let g:ft_man_open_mode = 'tab'

To enable folding , use this:
let g:ft_man_folding_enable = 1

If you do not like the default folding, use an autocommand to add your desired
folding style instead. For example:

autocmd FileType man setlocal foldmethod=indent foldenable

If you would like :Man {number} {name} to behave like man {number} {name} by
not running man {name} if no page is found, then use this:

let g:ft_man_no_sect_fallback = 1

You may also want to set 'keywordprg' to make the K command open a manual
page in a Vim window:

set keywordprg=:Man

MANPAGER manpager.vim

The :Man command allows you to turn Vim into a manpager (that syntax
highlights manpages and follows linked manpages on hitting CTRL-]).

For bash,zsh,ksh or dash, add to the config file (.bashrc,.zshrc, ...)

export MANPAGER="vim +MANPAGER --not-a-term -"

For (t)csh, add to the config file

setenv MANPAGER "vim +MANPAGER --not-a-term -"

For fish, add to the config file

set -x MANPAGER "vim +MANPAGER --not-a-term -"

filetype.txt — 1770

MARKDOWN ft-markdown-plugin

To enable folding use this:
let g:markdown_folding = 1

'expandtab' will be set by default. If you do not want that use this:
let g:markdown_recommended_style = 0

PDF ft-pdf-plugin

Two maps, <C-]> and <C-T>, are provided to simulate a tag stack for navigating
the PDF. The following are treated as tags:

- The byte offset after "startxref" to the xref table
- The byte offset after the /Prev key in the trailer to an earlier xref table
- A line of the form "0123456789 00000 n" in the xref table
- An object reference like "1 0 R" anywhere in the PDF

These maps can be disabled with
:let g:no_pdf_maps = 1

PYTHON ft-python-plugin PEP8

By default the following options are set, in accordance with PEP8:

setlocal expandtab shiftwidth=4 softtabstop=4 tabstop=8

To disable this behavior, set the following variable in your vimrc:

let g:python_recommended_style = 0

QF QUICKFIX qf.vim ft-qf-plugin

The "qf" filetype is used for the quickfix window, see quickfix-window .

The quickfix filetype plugin includes configuration for displaying the command
that produced the quickfix list in the status-line . To disable this setting,
configure as follows:

:let g:qf_disable_statusline = 1

R MARKDOWN ft-rmd-plugin

By default ftplugin/html.vim is not sourced. If you want it sourced, add to
your vimrc :

let rmd_include_html = 1

The 'formatexpr' option is set dynamically with different values for R code
and for Markdown code. If you prefer that 'formatexpr' is not set, add to your
vimrc :

let rmd_dynamic_comments = 0

R RESTRUCTURED TEXT ft-rrst-plugin

filetype.txt — 1771

The 'formatexpr' option is set dynamically with different values for R code
and for ReStructured text. If you prefer that 'formatexpr' is not set, add to
your vimrc :

let rrst_dynamic_comments = 0

RESTRUCTUREDTEXT ft-rst-plugin

The following formatting setting are optionally available:
setlocal expandtab shiftwidth=3 softtabstop=3 tabstop=8

To enable this behavior, set the following variable in your vimrc:
let g:rst_style = 1

RNOWEB ft-rnoweb-plugin

The 'formatexpr' option is set dynamically with different values for R code
and for LaTeX code. If you prefer that 'formatexpr' is not set, add to your
vimrc :

let rnw_dynamic_comments = 0

RPM SPEC ft-spec-plugin

Since the text for this plugin is rather long it has been put in a separate
file: pi_spec.txt .

RUST ft-rust

Since the text for this plugin is rather long it has been put in a separate
file: ft_rust.txt .

SQL ft-sql

Since the text for this plugin is rather long it has been put in a separate
file: ft_sql.txt .

TEX ft-tex-plugin g:tex_flavor

If the first line of a *.tex file has the form
%&<format>

then this determined the file type: plaintex (for plain TeX), context (for
ConTeXt), or tex (for LaTeX). Otherwise, the file is searched for keywords to
choose context or tex. If no keywords are found, it defaults to plaintex.
You can change the default by defining the variable g:tex_flavor to the format
(not the file type) you use most. Use one of these:

let g:tex_flavor = "plain"
let g:tex_flavor = "context"
let g:tex_flavor = "latex"

Currently no other formats are recognized.

VIM ft-vim-plugin

The Vim filetype plugin defines mappings to move to the start and end of
functions with [[and]]. Move around comments with]" and [".

filetype.txt — 1772

The mappings can be disabled with:
let g:no_vim_maps = 1

ZIMBU ft-zimbu-plugin

The Zimbu filetype plugin defines mappings to move to the start and end of
functions with [[and]].

The mappings can be disabled with:
let g:no_zimbu_maps = 1

filetype.txt — 1773

filetype.txt — 1774

quickfix.txt For Vim version 9.1. Last change: 2023 Jan 18

VIM REFERENCE MANUAL by Bram Moolenaar

This subject is introduced in section 30.1 of the user manual.

1. Using QuickFix commands quickfix
2. The error window quickfix-window
3. Using more than one list of errors quickfix-error-lists
4. Using :make :make_makeprg
5. Using :grep grep
6. Selecting a compiler compiler-select
7. The error format error-file-format
8. The directory stack quickfix-directory-stack
9. Specific error file formats errorformats
10. Customizing the quickfix window quickfix-window-function

The quickfix commands are not available when the +quickfix feature was
disabled at compile time.

===
1. Using QuickFix commands quickfix Quickfix E42

Vim has a special mode to speedup the edit-compile-edit cycle. This is
inspired by the quickfix option of the Manx's Aztec C compiler on the Amiga.
The idea is to save the error messages from the compiler in a file and use Vim
to jump to the errors one by one. You can examine each problem and fix it,
without having to remember all the error messages.

In Vim the quickfix commands are used more generally to find a list of
positions in files. For example, :vimgrep finds pattern matches. You can
use the positions in a script with the getqflist() function. Thus you can
do a lot more than the edit/compile/fix cycle!

If you have the error messages in a file you can start Vim with:
vim -q filename

From inside Vim an easy way to run a command and handle the output is with the
:make command (see below).

The 'errorformat' option should be set to match the error messages from your
compiler (see errorformat below).

quickfix-ID
Each quickfix list has a unique identifier called the quickfix ID and this
number will not change within a Vim session. The getqflist() function can be
used to get the identifier assigned to a list. There is also a quickfix list
number which may change whenever more than ten lists are added to a quickfix
stack.

location-list E776
A location list is a window-local quickfix list. You get one after commands
like `:lvimgrep`, `:lgrep`, `:lhelpgrep`, `:lmake`, etc., which create a
location list instead of a quickfix list as the corresponding `:vimgrep`,
`:grep`, `:helpgrep`, `:make` do.

location-list-file-window
A location list is associated with a window and each window can have a
separate location list. A location list can be associated with only one

quickfix.txt — 1775

window. The location list is independent of the quickfix list.

When a window with a location list is split, the new window gets a copy of the
location list. When there are no longer any references to a location list,
the location list is destroyed.

quickfix-changedtick
Every quickfix and location list has a read-only changedtick variable that
tracks the total number of changes made to the list. Every time the quickfix
list is modified, this count is incremented. This can be used to perform an
action only when the list has changed. The getqflist() and getloclist()
functions can be used to query the current value of changedtick. You cannot
change the changedtick variable.

The following quickfix commands can be used. The location list commands are
similar to the quickfix commands, replacing the 'c' prefix in the quickfix
command with 'l'.

E924
If the current window was closed by an autocommand while processing a
location list command, it will be aborted.

E925 E926
If the current quickfix or location list was changed by an autocommand while
processing a quickfix or location list command, it will be aborted.

:cc
:cc[!] [nr] Display error [nr]. If [nr] is omitted, the same
:[nr]cc[!] error is displayed again. Without [!] this doesn't

work when jumping to another buffer, the current buffer
has been changed, there is the only window for the
buffer and both 'hidden' and 'autowrite' are off.
When jumping to another buffer with [!] any changes to
the current buffer are lost, unless 'hidden' is set or
there is another window for this buffer.
The 'switchbuf' settings are respected when jumping
to a buffer.
When used in the quickfix window the line number can
be used, including "." for the current line and "$"
for the last line.

:ll
:ll[!] [nr] Same as ":cc", except the location list for the
:[nr]ll[!] current window is used instead of the quickfix list.

:cn :cne :cnext E553
:[count]cn[ext][!] Display the [count] next error in the list that

includes a file name. If there are no file names at
all, go to the [count] next error. See :cc for
[!] and 'switchbuf'.

:lne :lnext
:[count]lne[xt][!] Same as ":cnext", except the location list for the

current window is used instead of the quickfix list.

:[count]cN[ext][!] :cp :cprevious :cprev :cN :cNext
:[count]cp[revious][!] Display the [count] previous error in the list that

includes a file name. If there are no file names at
all, go to the [count] previous error. See :cc for
[!] and 'switchbuf'.

quickfix.txt — 1776

:[count]lN[ext][!] :lp :lprevious :lprev :lN :lNext
:[count]lp[revious][!] Same as ":cNext" and ":cprevious", except the location

list for the current window is used instead of the
quickfix list.

:cabo :cabove
:[count]cabo[ve] Go to the [count] error above the current line in the

current buffer. If [count] is omitted, then 1 is
used. If there are no errors, then an error message
is displayed. Assumes that the entries in a quickfix
list are sorted by their buffer number and line
number. If there are multiple errors on the same line,
then only the first entry is used. If [count] exceeds
the number of entries above the current line, then the
first error in the file is selected.

:lab :labove
:[count]lab[ove] Same as ":cabove", except the location list for the

current window is used instead of the quickfix list.

:cbel :cbelow
:[count]cbel[ow] Go to the [count] error below the current line in the

current buffer. If [count] is omitted, then 1 is
used. If there are no errors, then an error message
is displayed. Assumes that the entries in a quickfix
list are sorted by their buffer number and line
number. If there are multiple errors on the same
line, then only the first entry is used. If [count]
exceeds the number of entries below the current line,
then the last error in the file is selected.

:lbel :lbelow
:[count]lbel[ow] Same as ":cbelow", except the location list for the

current window is used instead of the quickfix list.

:cbe :cbefore
:[count]cbe[fore] Go to the [count] error before the current cursor

position in the current buffer. If [count] is
omitted, then 1 is used. If there are no errors, then
an error message is displayed. Assumes that the
entries in a quickfix list are sorted by their buffer,
line and column numbers. If [count] exceeds the
number of entries before the current position, then
the first error in the file is selected.

:lbe :lbefore
:[count]lbe[fore] Same as ":cbefore", except the location list for the

current window is used instead of the quickfix list.

:caf :cafter
:[count]caf[ter] Go to the [count] error after the current cursor

position in the current buffer. If [count] is
omitted, then 1 is used. If there are no errors, then
an error message is displayed. Assumes that the
entries in a quickfix list are sorted by their buffer,
line and column numbers. If [count] exceeds the
number of entries after the current position, then
the last error in the file is selected.

quickfix.txt — 1777

:laf :lafter
:[count]laf[ter] Same as ":cafter", except the location list for the

current window is used instead of the quickfix list.

:cnf :cnfile
:[count]cnf[ile][!] Display the first error in the [count] next file in

the list that includes a file name. If there are no
file names at all or if there is no next file, go to
the [count] next error. See :cc for [!] and
'switchbuf'.

:lnf :lnfile
:[count]lnf[ile][!] Same as ":cnfile", except the location list for the

current window is used instead of the quickfix list.

:[count]cNf[ile][!] :cpf :cpfile :cNf :cNfile
:[count]cpf[ile][!] Display the last error in the [count] previous file in

the list that includes a file name. If there are no
file names at all or if there is no next file, go to
the [count] previous error. See :cc for [!] and
'switchbuf'.

:[count]lNf[ile][!] :lpf :lpfile :lNf :lNfile
:[count]lpf[ile][!] Same as ":cNfile" and ":cpfile", except the location

list for the current window is used instead of the
quickfix list.

:crewind :cr
:cr[ewind][!] [nr] Display error [nr]. If [nr] is omitted, the FIRST

error is displayed. See :cc .

:lrewind :lr
:lr[ewind][!] [nr] Same as ":crewind", except the location list for the

current window is used instead of the quickfix list.

:cfirst :cfir
:cfir[st][!] [nr] Same as ":crewind".

:lfirst :lfir
:lfir[st][!] [nr] Same as ":lrewind".

:clast :cla
:cla[st][!] [nr] Display error [nr]. If [nr] is omitted, the LAST

error is displayed. See :cc .

:llast :lla
:lla[st][!] [nr] Same as ":clast", except the location list for the

current window is used instead of the quickfix list.

:cq :cquit
:cq[uit][!]
:{N}cq[uit][!]
:cq[uit][!] {N} Quit Vim with error code {N}. {N} defaults to one.

Useful when Vim is called from another program:
e.g., a compiler will not compile the same file again,
`git commit` will abort the committing process, `fc`
(built-in for shells like bash and zsh) will not
execute the command, etc.

quickfix.txt — 1778

{N} can also be zero, in which case Vim exits
normally.
WARNING: All changes in files are lost! Also when the
[!] is not used. It works like ":qall!" :qall ,
except that Vim returns a non-zero exit code.

:cf :cfi :cfile
:cf[ile][!] [errorfile] Read the error file and jump to the first error.

This is done automatically when Vim is started with
the -q option. You can use this command when you
keep Vim running while compiling. If you give the
name of the errorfile, the 'errorfile' option will
be set to [errorfile]. See :cc for [!].
If the encoding of the error file differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.

:lf :lfi :lfile
:lf[ile][!] [errorfile] Same as ":cfile", except the location list for the

current window is used instead of the quickfix list.
You can not use the -q command-line option to set
the location list.

:cg[etfile] [errorfile] :cg :cgetfile
Read the error file. Just like ":cfile" but don't
jump to the first error.
If the encoding of the error file differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.

:lg[etfile] [errorfile] :lg :lge :lgetfile
Same as ":cgetfile", except the location list for the
current window is used instead of the quickfix list.

:caddf :caddfile
:caddf[ile] [errorfile] Read the error file and add the errors from the

errorfile to the current quickfix list. If a quickfix
list is not present, then a new list is created.
If the encoding of the error file differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.

:laddf :laddfile
:laddf[ile] [errorfile] Same as ":caddfile", except the location list for the

current window is used instead of the quickfix list.

:cb :cbuffer E681
:cb[uffer][!] [bufnr] Read the error list from the current buffer.

When [bufnr] is given it must be the number of a
loaded buffer. That buffer will then be used instead
of the current buffer.
A range can be specified for the lines to be used.
Otherwise all lines in the buffer are used.
See :cc for [!].

:lb :lbuffer
:lb[uffer][!] [bufnr] Same as ":cbuffer", except the location list for the

current window is used instead of the quickfix list.

quickfix.txt — 1779

:cgetb :cgetbuffer
:cgetb[uffer] [bufnr] Read the error list from the current buffer. Just

like ":cbuffer" but don't jump to the first error.

:lgetb :lgetbuffer
:lgetb[uffer] [bufnr] Same as ":cgetbuffer", except the location list for

the current window is used instead of the quickfix
list.

:cad :cadd :caddbuffer
:cad[dbuffer] [bufnr] Read the error list from the current buffer and add

the errors to the current quickfix list. If a
quickfix list is not present, then a new list is
created. Otherwise, same as ":cbuffer".

:laddb :laddbuffer
:laddb[uffer] [bufnr] Same as ":caddbuffer", except the location list for

the current window is used instead of the quickfix
list.

:cex :cexpr E777
:cex[pr][!] {expr} Create a quickfix list using the result of {expr} and

jump to the first error.
If {expr} is a String, then each newline terminated
line in the String is processed using the global value
of 'errorformat' and the result is added to the
quickfix list.
If {expr} is a List, then each String item in the list
is processed and added to the quickfix list. Non
String items in the List are ignored.
See :cc for [!].
Examples:

:cexpr system('grep -n xyz *')
:cexpr getline(1, '$')

:lex :lexpr
:lex[pr][!] {expr} Same as :cexpr , except the location list for the

current window is used instead of the quickfix list.

:cgete :cgetexpr
:cgete[xpr] {expr} Create a quickfix list using the result of {expr}.

Just like :cexpr , but don't jump to the first error.

:lgete :lgetexpr
:lgete[xpr] {expr} Same as :cgetexpr , except the location list for the

current window is used instead of the quickfix list.

:cadde :caddexpr
:cadde[xpr] {expr} Evaluate {expr} and add the resulting lines to the

current quickfix list. If a quickfix list is not
present, then a new list is created. The current
cursor position will not be changed. See :cexpr for
more information.
Example:

:g/mypattern/caddexpr expand("%") .. ":" .. line(".") .. ":" .. getline(".")

:lad :addd :laddexpr
:lad[dexpr] {expr} Same as ":caddexpr", except the location list for the

current window is used instead of the quickfix list.

quickfix.txt — 1780

:cl :clist
:cl[ist] [from] [, [to]]

List all errors that are valid quickfix-valid .
If numbers [from] and/or [to] are given, the respective
range of errors is listed. A negative number counts
from the last error backwards, -1 being the last error.
The :filter command can be used to display only the
quickfix entries matching a supplied pattern. The
pattern is matched against the filename, module name,
pattern and text of the entry.

:cl[ist] +{count} List the current and next {count} valid errors. This
is similar to ":clist from from+count", where "from"
is the current error position.

:cl[ist]! [from] [, [to]]
List all errors.

:cl[ist]! +{count} List the current and next {count} error lines. This
is useful to see unrecognized lines after the current
one. For example, if ":clist" shows:

8384 testje.java:252: error: cannot find symbol
Then using ":cl! +3" shows the reason:

8384 testje.java:252: error: cannot find symbol
8385: ZexitCode = Fmainx();
8386: ^
8387: symbol: method Fmainx()

:lli[st] [from] [, [to]] :lli :llist
Same as ":clist", except the location list for the
current window is used instead of the quickfix list.

:lli[st]! [from] [, [to]]
List all the entries in the location list for the
current window.

If you insert or delete lines, mostly the correct error location is still
found because hidden marks are used. Sometimes, when the mark has been
deleted for some reason, the message "line changed" is shown to warn you that
the error location may not be correct. If you quit Vim and start again the
marks are lost and the error locations may not be correct anymore.

Two autocommands are available for running commands before and after a
quickfix command (':make', ':grep' and so on) is executed. See
QuickFixCmdPre and QuickFixCmdPost for details.

QuickFixCmdPost-example
When 'encoding' differs from the locale, the error messages may have a
different encoding from what Vim is using. To convert the messages you can
use this code:

function QfMakeConv()
let qflist = getqflist()
for i in qflist

let i.text = iconv(i.text, "cp936", "utf-8")
endfor
call setqflist(qflist)

endfunction

au QuickfixCmdPost make call QfMakeConv()

quickfix.txt — 1781

Another option is using 'makeencoding'.

quickfix-title
Every quickfix and location list has a title. By default the title is set to
the command that created the list. The getqflist() and getloclist()
functions can be used to get the title of a quickfix and a location list
respectively. The setqflist() and setloclist() functions can be used to
modify the title of a quickfix and location list respectively. Examples:

call setqflist([], 'a', {'title' : 'Cmd output'})
echo getqflist({'title' : 1})
call setloclist(3, [], 'a', {'title' : 'Cmd output'})
echo getloclist(3, {'title' : 1})

quickfix-index
When you jump to a quickfix/location list entry using any of the quickfix
commands (e.g. :cc , :cnext , :cprev , etc.), that entry becomes the
currently selected entry. The index of the currently selected entry in a
quickfix/location list can be obtained using the getqflist()/getloclist()
functions. Examples:

echo getqflist({'idx' : 0}).idx
echo getqflist({'id' : qfid, 'idx' : 0}).idx
echo getloclist(2, {'idx' : 0}).idx

For a new quickfix list, the first entry is selected and the index is 1. Any
entry in any quickfix/location list can be set as the currently selected entry
using the setqflist() function. Examples:

call setqflist([], 'a', {'idx' : 12})
call setqflist([], 'a', {'id' : qfid, 'idx' : 7})
call setloclist(1, [], 'a', {'idx' : 7})

quickfix-size
You can get the number of entries (size) in a quickfix and a location list
using the getqflist() and getloclist() functions respectively. Examples:

echo getqflist({'size' : 1})
echo getloclist(5, {'size' : 1})

quickfix-context
Any Vim type can be associated as a context with a quickfix or location list.
The setqflist() and the setloclist() functions can be used to associate a
context with a quickfix and a location list respectively. The getqflist()
and the getloclist() functions can be used to retrieve the context of a
quickfix and a location list respectively. This is useful for a Vim plugin
dealing with multiple quickfix/location lists.
Examples:

let somectx = {'name' : 'Vim', 'type' : 'Editor'}
call setqflist([], 'a', {'context' : somectx})
echo getqflist({'context' : 1})

let newctx = ['red', 'green', 'blue']
call setloclist(2, [], 'a', {'id' : qfid, 'context' : newctx})
echo getloclist(2, {'id' : qfid, 'context' : 1})

quickfix-parse
You can parse a list of lines using 'errorformat' without creating or
modifying a quickfix list using the getqflist() function. Examples:

echo getqflist({'lines' : ["F1:10:Line10", "F2:20:Line20"]})
echo getqflist({'lines' : systemlist('grep -Hn quickfix *')})

This returns a dictionary where the "items" key contains the list of quickfix
entries parsed from lines. The following shows how to use a custom

quickfix.txt — 1782

'errorformat' to parse the lines without modifying the 'errorformat' option:
echo getqflist({'efm' : '%f#%l#%m', 'lines' : ['F1#10#Line']})

EXECUTE A COMMAND IN ALL THE BUFFERS IN QUICKFIX OR LOCATION LIST:
:cdo

:cdo[!] {cmd} Execute {cmd} in each valid entry in the quickfix list.
It works like doing this:

:cfirst
:{cmd}
:cnext
:{cmd}
etc.

When the current file can't be abandon ed and the [!]
is not present, the command fails.
When going to the next entry fails execution stops.
The last buffer (or where an error occurred) becomes
the current buffer.
{cmd} can contain '|' to concatenate several commands.

Only valid entries in the quickfix list are used.
A range can be used to select entries, e.g.:

:10,$cdo cmd
To skip entries 1 to 9.

Note: While this command is executing, the Syntax
autocommand event is disabled by adding it to
'eventignore'. This considerably speeds up editing
each buffer.
Also see :bufdo , :tabdo , :argdo , :windo ,
:ldo , :cfdo and :lfdo .

:cfdo
:cfdo[!] {cmd} Execute {cmd} in each file in the quickfix list.

It works like doing this:
:cfirst
:{cmd}
:cnfile
:{cmd}
etc.

Otherwise it works the same as `:cdo`.

:ldo
:ld[o][!] {cmd} Execute {cmd} in each valid entry in the location list

for the current window.
It works like doing this:

:lfirst
:{cmd}
:lnext
:{cmd}
etc.

Only valid entries in the location list are used.
Otherwise it works the same as `:cdo`.

:lfdo
:lfdo[!] {cmd} Execute {cmd} in each file in the location list for

the current window.
It works like doing this:

:lfirst
:{cmd}

quickfix.txt — 1783

:lnfile
:{cmd}
etc.

Otherwise it works the same as `:ldo`.

FILTERING A QUICKFIX OR LOCATION LIST:
cfilter-plugin :Cfilter :Lfilter

If you have too many entries in a quickfix list, you can use the cfilter
plugin to reduce the number of entries. Load the plugin with:

packadd cfilter

Then you can use the following commands to filter a quickfix/location list:

:Cfilter[!] /{pat}/
:Lfilter[!] /{pat}/

The :Cfilter command creates a new quickfix list from the entries matching
{pat} in the current quickfix list. {pat} is a Vim regular-expression
pattern. Both the file name and the text of the entries are matched against
{pat}. If the optional ! is supplied, then the entries not matching {pat} are
used. The pattern can be optionally enclosed using one of the following
characters: ', ", /. If the pattern is empty, then the last used search
pattern is used.

The :Lfilter command does the same as :Cfilter but operates on the current
location list.

The current quickfix/location list is not modified by these commands, so you
can go back to the unfiltered list using the :colder|/|:lolder command.

===
2. The error window quickfix-window

:cope :copen w:quickfix_title
:cope[n] [height] Open a window to show the current list of errors.

When [height] is given, the window becomes that high
(if there is room). When [height] is omitted the
window is made ten lines high.

If there already is a quickfix window, it will be made
the current window. It is not possible to open a
second quickfix window. If [height] is given the
existing window will be resized to it.

quickfix-buffer
The window will contain a special buffer, with
'buftype' equal to "quickfix". Don't change this!
The window will have the w:quickfix_title variable set
which will indicate the command that produced the
quickfix list. This can be used to compose a custom
status line if the value of 'statusline' is adjusted
properly. Whenever this buffer is modified by a
quickfix command or function, the b:changedtick
variable is incremented. You can get the number of
this buffer using the getqflist() and getloclist()
functions by passing the "qfbufnr" item. For a
location list, this buffer is wiped out when the
location list is removed.

quickfix.txt — 1784

:lop :lopen
:lop[en] [height] Open a window to show the location list for the

current window. Works only when the location list for
the current window is present. You can have more than
one location window opened at a time. Otherwise, it
acts the same as ":copen".

:ccl :cclose
:ccl[ose] Close the quickfix window.

:lcl :lclose
:lcl[ose] Close the window showing the location list for the

current window.

:cw :cwindow
:cw[indow] [height] Open the quickfix window when there are recognized

errors. If the window is already open and there are
no recognized errors, close the window.

:lw :lwindow
:lw[indow] [height] Same as ":cwindow", except use the window showing the

location list for the current window.

:cbo :cbottom
:cbo[ttom] Put the cursor in the last line of the quickfix window

and scroll to make it visible. This is useful for
when errors are added by an asynchronous callback.
Only call it once in a while if there are many
updates to avoid a lot of redrawing.

:lbo :lbottom
:lbo[ttom] Same as ":cbottom", except use the window showing the

location list for the current window.

Normally the quickfix window is at the bottom of the screen. If there are
vertical splits, it's at the bottom of the rightmost column of windows. To
make it always occupy the full width:

:botright cwindow
You can move the window around with window-moving commands.
For example, to move it to the top: CTRL-W K
The 'winfixheight' option will be set, which means that the window will mostly
keep its height, ignoring 'winheight' and 'equalalways'. You can change the
height manually (e.g., by dragging the status line above it with the mouse).

In the quickfix window, each line is one error. The line number is equal to
the error number. The current entry is highlighted with the QuickFixLine
highlighting. You can change it to your liking, e.g.:

:hi QuickFixLine ctermbg=Yellow guibg=Yellow

You can use ":.cc" to jump to the error under the cursor.
Hitting the <Enter> key or double-clicking the mouse on a line has the same
effect. The file containing the error is opened in the window above the
quickfix window. If there already is a window for that file, it is used
instead. If the buffer in the used window has changed, and the error is in
another file, jumping to the error will fail. You will first have to make
sure the window contains a buffer which can be abandoned.

When you select a file from the quickfix window, the following steps are used
to find a window to edit the file:

quickfix.txt — 1785

1. If a window displaying the selected file is present in the current tabpage
(starting with the window before the quickfix window), then that window is
used.

2. If the above step fails and if 'switchbuf' contains "usetab" and a window
displaying the selected file is present in any one of the tabpages
(starting with the first tabpage) then that window is used.

3. If the above step fails then a window in the current tabpage displaying a
buffer with 'buftype' not set (starting with the window before the quickfix
window) is used.

4. If the above step fails and if 'switchbuf' contains "uselast", then the
previously accessed window is used.

5. If the above step fails then the window before the quickfix window is used.
If there is no previous window, then the window after the quickfix window
is used.

6. If the above step fails, then a new horizontally split window above the
quickfix window is used.

CTRL-W_<Enter> CTRL-W_<CR>
You can use CTRL-W <Enter> to open a new window and jump to the error there.

When the quickfix window has been filled, two autocommand events are
triggered. First the 'filetype' option is set to "qf", which triggers the
FileType event (also see qf.vim). Then the BufReadPost event is triggered,
using "quickfix" for the buffer name. This can be used to perform some action
on the listed errors. Example:

au BufReadPost quickfix setlocal modifiable
\ | silent exe 'g/^/s//\=line(".") .. " "/'
\ | setlocal nomodifiable

This prepends the line number to each line. Note the use of "\=" in the
substitute string of the ":s" command, which is used to evaluate an
expression.
The BufWinEnter event is also triggered, again using "quickfix" for the buffer
name.

Note: When adding to an existing quickfix list the autocommand are not
triggered.

Note: Making changes in the quickfix window has no effect on the list of
errors. 'modifiable' is off to avoid making changes. If you delete or insert
lines anyway, the relation between the text and the error number is messed up.
If you really want to do this, you could write the contents of the quickfix
window to a file and use ":cfile" to have it parsed and used as the new error
list.

location-list-window
The location list window displays the entries in a location list. When you
open a location list window, it is created below the current window and
displays the location list for the current window. The location list window
is similar to the quickfix window, except that you can have more than one
location list window open at a time. When you use a location list command in
this window, the displayed location list is used.

When you select a file from the location list window, the following steps are
used to find a window to edit the file:

1. If a non-quickfix window associated with the location list is present in
the current tabpage, then that window is used.

2. If the above step fails and if the file is already opened in another window
in the current tabpage, then that window is used.

quickfix.txt — 1786

3. If the above step fails and 'switchbuf' contains "usetab" and if the file
is opened in a window in any one of the tabpages, then that window is used.

4. If the above step fails then a window in the current tabpage showing a
buffer with 'buftype' not set is used.

5. If the above step fails, then the file is edited in a new window.

In all of the above cases, if the location list for the selected window is not
yet set, then it is set to the location list displayed in the location list
window.

quickfix-window-ID
You can use the getqflist() and getloclist() functions to obtain the
window ID of the quickfix window and location list window respectively (if
present). Examples:

echo getqflist({'winid' : 1}).winid
echo getloclist(2, {'winid' : 1}).winid

getqflist-examples
The getqflist() and getloclist() functions can be used to get the various
attributes of a quickfix and location list respectively. Some examples for
using these functions are below:

" get the title of the current quickfix list
:echo getqflist({'title' : 0}).title

" get the identifier of the current quickfix list
:let qfid = getqflist({'id' : 0}).id

" get the identifier of the fourth quickfix list in the stack
:let qfid = getqflist({'nr' : 4, 'id' : 0}).id

" check whether a quickfix list with a specific identifier exists
:if getqflist({'id' : qfid}).id == qfid

" get the index of the current quickfix list in the stack
:let qfnum = getqflist({'nr' : 0}).nr

" get the items of a quickfix list specified by an identifier
:echo getqflist({'id' : qfid, 'items' : 0}).items

" get the number of entries in a quickfix list specified by an id
:echo getqflist({'id' : qfid, 'size' : 0}).size

" get the context of the third quickfix list in the stack
:echo getqflist({'nr' : 3, 'context' : 0}).context

" get the number of quickfix lists in the stack
:echo getqflist({'nr' : '$'}).nr

" get the number of times the current quickfix list is changed
:echo getqflist({'changedtick' : 0}).changedtick

" get the current entry in a quickfix list specified by an identifier
:echo getqflist({'id' : qfid, 'idx' : 0}).idx

" get all the quickfix list attributes using an identifier
:echo getqflist({'id' : qfid, 'all' : 0})

" parse text from a List of lines and return a quickfix list
:let myList = ["a.java:10:L10", "b.java:20:L20"]

quickfix.txt — 1787

:echo getqflist({'lines' : myList}).items

" parse text using a custom 'efm' and return a quickfix list
:echo getqflist({'lines' : ['a.c#10#Line 10'], 'efm':'%f#%l#%m'}).items

" get the quickfix list window id
:echo getqflist({'winid' : 0}).winid

" get the quickfix list window buffer number
:echo getqflist({'qfbufnr' : 0}).qfbufnr

" get the context of the current location list
:echo getloclist(0, {'context' : 0}).context

" get the location list window id of the third window
:echo getloclist(3, {'winid' : 0}).winid

" get the location list window buffer number of the third window
:echo getloclist(3, {'qfbufnr' : 0}).qfbufnr

" get the file window id of a location list window (winnr: 4)
:echo getloclist(4, {'filewinid' : 0}).filewinid

setqflist-examples
The setqflist() and setloclist() functions can be used to set the various
attributes of a quickfix and location list respectively. Some examples for
using these functions are below:

" create an empty quickfix list with a title and a context
:let t = 'Search results'
:let c = {'cmd' : 'grep'}
:call setqflist([], ' ', {'title' : t, 'context' : c})

" set the title of the current quickfix list
:call setqflist([], 'a', {'title' : 'Mytitle'})

" change the current entry in the list specified by an identifier
:call setqflist([], 'a', {'id' : qfid, 'idx' : 10})

" set the context of a quickfix list specified by an identifier
:call setqflist([], 'a', {'id' : qfid, 'context' : {'val' : 100}})

" create a new quickfix list from a command output
:call setqflist([], ' ', {'lines' : systemlist('grep -Hn main *.c')})

" parse text using a custom efm and add to a particular quickfix list
:call setqflist([], 'a', {'id' : qfid,

\ 'lines' : ["a.c#10#L10", "b.c#20#L20"], 'efm':'%f#%l#%m'})

" add items to the quickfix list specified by an identifier
:let newItems = [{'filename' : 'a.txt', 'lnum' : 10, 'text' : "Apple"},

\ {'filename' : 'b.txt', 'lnum' : 20, 'text' : "Orange"}]
:call setqflist([], 'a', {'id' : qfid, 'items' : newItems})

" empty a quickfix list specified by an identifier
:call setqflist([], 'r', {'id' : qfid, 'items' : []})

" free all the quickfix lists in the stack
:call setqflist([], 'f')

quickfix.txt — 1788

" set the title of the fourth quickfix list
:call setqflist([], 'a', {'nr' : 4, 'title' : 'SomeTitle'})

" create a new quickfix list at the end of the stack
:call setqflist([], ' ', {'nr' : '$',

\ 'lines' : systemlist('grep -Hn class *.java')})

" create a new location list from a command output
:call setloclist(0, [], ' ', {'lines' : systemlist('grep -Hn main *.c')})

" replace the location list entries for the third window
:call setloclist(3, [], 'r', {'items' : newItems})

===
3. Using more than one list of errors quickfix-error-lists

So far has been assumed that there is only one list of errors. Actually the
ten last used lists are remembered. When starting a new list, the previous
ones are automatically kept. Two commands can be used to access older error
lists. They set one of the existing error lists as the current one.

:colder :col E380
:col[der] [count] Go to older error list. When [count] is given, do

this [count] times. When already at the oldest error
list, an error message is given.

:lolder :lol
:lol[der] [count] Same as `:colder`, except use the location list for

the current window instead of the quickfix list.

:cnewer :cnew E381
:cnew[er] [count] Go to newer error list. When [count] is given, do

this [count] times. When already at the newest error
list, an error message is given.

:lnewer :lnew
:lnew[er] [count] Same as `:cnewer`, except use the location list for

the current window instead of the quickfix list.

:chistory :chi
:[count]chi[story] Show the list of error lists. The current list is

marked with ">". The output looks like:
error list 1 of 3; 43 errors :make

> error list 2 of 3; 0 errors :helpgrep tag
error list 3 of 3; 15 errors :grep ex_help *.c

When [count] is given, then the count'th quickfix
list is made the current list. Example:

" Make the 4th quickfix list current
:4chistory

:lhistory :lhi
:[count]lhi[story] Show the list of location lists, otherwise like

`:chistory`.

When adding a new error list, it becomes the current list.

When ":colder" has been used and ":make" or ":grep" is used to add a new error
list, one newer list is overwritten. This is especially useful if you are
browsing with ":grep" grep . If you want to keep the more recent error

quickfix.txt — 1789

lists, use ":cnewer 99" first.

To get the number of lists in the quickfix and location list stack, you can
use the getqflist() and getloclist() functions respectively with the list
number set to the special value '$'. Examples:

echo getqflist({'nr' : '$'}).nr
echo getloclist(3, {'nr' : '$'}).nr

To get the number of the current list in the stack:
echo getqflist({'nr' : 0}).nr

===
4. Using :make :make_makeprg

:mak :make
:mak[e][!] [arguments] 1. All relevant QuickFixCmdPre autocommands are

executed.
2. If the 'autowrite' option is on, write any changed

buffers
3. An errorfile name is made from 'makeef'. If

'makeef' doesn't contain "##", and a file with this
name already exists, it is deleted.

4. The program given with the 'makeprg' option is
started (default "make") with the optional
[arguments] and the output is saved in the
errorfile (for Unix it is also echoed on the
screen).

5. The errorfile is read using 'errorformat'.
6. All relevant QuickFixCmdPost autocommands are

executed. See example below.
7. If [!] is not given the first error is jumped to.
8. The errorfile is deleted.
9. You can now move through the errors with commands

like :cnext and :cprevious , see above.
This command does not accept a comment, any "
characters are considered part of the arguments.
If the encoding of the program output differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.

:lmak :lmake
:lmak[e][!] [arguments]

Same as ":make", except the location list for the
current window is used instead of the quickfix list.

The ":make" command executes the command given with the 'makeprg' option.
This is done by passing the command to the shell given with the 'shell'
option. This works almost like typing

":!{makeprg} [arguments] {shellpipe} {errorfile}".

{makeprg} is the string given with the 'makeprg' option. Any command can be
used, not just "make". Characters '%' and '#' are expanded as usual on a
command-line. You can use "%<" to insert the current file name without
extension, or "#<" to insert the alternate file name without extension, for
example:

:set makeprg=make\ #<.o

[arguments] is anything that is typed after ":make".
{shellpipe} is the 'shellpipe' option.
{errorfile} is the 'makeef' option, with ## replaced to make it unique.

quickfix.txt — 1790

The placeholder "$*" can be used for the argument list in {makeprg} if the
command needs some additional characters after its arguments. The $* is
replaced then by all arguments. Example:

:set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
or simpler

:let &mp = 'latex \\nonstopmode \\input\{$*}'
"$*" can be given multiple times, for example:

:set makeprg=gcc\ -o\ $*\ $*

The 'shellpipe' option defaults to ">" for the Amiga and ">%s 2>&1" for Win32.
This means that the output of the compiler is saved in a file and not shown on
the screen directly. For Unix "| tee" is used. The compiler output is shown
on the screen and saved in a file the same time. Depending on the shell used
"|& tee" or "2>&1| tee" is the default, so stderr output will be included.

If 'shellpipe' is empty, the {errorfile} part will be omitted. This is useful
for compilers that write to an errorfile themselves (e.g., Manx's Amiga C).

Using QuickFixCmdPost to fix the encoding

It may be that 'encoding' is set to an encoding that differs from the messages
your build program produces. This example shows how to fix this after Vim has
read the error messages:

function QfMakeConv()
let qflist = getqflist()
for i in qflist

let i.text = iconv(i.text, "cp936", "utf-8")
endfor
call setqflist(qflist)

endfunction

au QuickfixCmdPost make call QfMakeConv()

(Example by Faque Cheng)
Another option is using 'makeencoding'.

==
5. Using :vimgrep and :grep grep lid

Vim has two ways to find matches for a pattern: Internal and external. The
advantage of the internal grep is that it works on all systems and uses the
powerful Vim search patterns. An external grep program can be used when the
Vim grep does not do what you want.

The internal method will be slower, because files are read into memory. The
advantages are:
- Line separators and encoding are automatically recognized, as if a file is

being edited.
- Uses Vim search patterns. Multi-line patterns can be used.
- When plugins are enabled: compressed and remote files can be searched.

gzip netrw

To be able to do this Vim loads each file as if it is being edited. When
there is no match in the file the associated buffer is wiped out again. The
'hidden' option is ignored here to avoid running out of memory or file
descriptors when searching many files. However, when the :hide command
modifier is used the buffers are kept loaded. This makes following searches

quickfix.txt — 1791

in the same files a lot faster.

Note that :copen (or :lopen for :lgrep) may be used to open a buffer
containing the search results in linked form. The :silent command may be
used to suppress the default full screen grep output. The ":grep!" form of
the :grep command doesn't jump to the first match automatically. These
commands can be combined to create a NewGrep command:

command! -nargs=+ NewGrep execute 'silent grep! <args>' | copen 42

5.1 using Vim's internal grep

:vim :vimgrep E682 E683
:vim[grep][!] /{pattern}/[g][j][f] {file} ...

Search for {pattern} in the files {file} ... and set
the error list to the matches. Files matching
'wildignore' are ignored; files in 'suffixes' are
searched last.

{pattern} is a Vim search pattern. Instead of
enclosing it in / any non-ID character (see
'isident') can be used, so long as it does not

appear in {pattern}.
'ignorecase' applies. To overrule it put /\c in the
pattern to ignore case or /\C to match case.
'smartcase' is not used.
If {pattern} is empty (e.g. // is specified), the last
used search pattern is used. last-pattern

Flags:
'g' Without the 'g' flag each line is added only

once. With 'g' every match is added.

'j' Without the 'j' flag Vim jumps to the first
match. With 'j' only the quickfix list is
updated. With the [!] any changes in the current
buffer are abandoned.

'f' When the 'f' flag is specified, fuzzy string
matching is used to find matching lines. In this
case, {pattern} is treated as a literal string
instead of a regular expression. See
fuzzy-matching for more information about fuzzy

matching strings.

QuickFixCmdPre and QuickFixCmdPost are triggered.
A file that is opened for matching may use a buffer
number, but it is reused if possible to avoid
consuming buffer numbers.

:{count}vim[grep] ...
When a number is put before the command this is used
as the maximum number of matches to find. Use
":1vimgrep pattern file" to find only the first.
Useful if you only want to check if there is a match
and quit quickly when it's found.

Every second or so the searched file name is displayed
to give you an idea of the progress made.

quickfix.txt — 1792

Examples:
:vimgrep /an error/ *.c
:vimgrep /\<FileName\>/ *.h include/*
:vimgrep /myfunc/ **/*.c

For the use of "**" see starstar-wildcard .

:vim[grep][!] {pattern} {file} ...
Like above, but instead of enclosing the pattern in a
non-ID character use a white-separated pattern. The
pattern must start with an ID character.
Example:

:vimgrep Error *.c

:lv :lvimgrep
:lv[imgrep][!] /{pattern}/[g][j][f] {file} ...
:lv[imgrep][!] {pattern} {file} ...

Same as ":vimgrep", except the location list for the
current window is used instead of the quickfix list.

:vimgrepa :vimgrepadd
:vimgrepa[dd][!] /{pattern}/[g][j][f] {file} ...
:vimgrepa[dd][!] {pattern} {file} ...

Just like ":vimgrep", but instead of making a new list
of errors the matches are appended to the current
list.

:lvimgrepa :lvimgrepadd
:lvimgrepa[dd][!] /{pattern}/[g][j][f] {file} ...
:lvimgrepa[dd][!] {pattern} {file} ...

Same as ":vimgrepadd", except the location list for
the current window is used instead of the quickfix
list.

5.2 External grep

Vim can interface with "grep" and grep-like programs (such as the GNU
id-utils) in a similar way to its compiler integration (see :make above).

[Unix trivia: The name for the Unix "grep" command comes from ":g/re/p", where
"re" stands for Regular Expression.]

:gr :grep
:gr[ep][!] [arguments] Just like ":make", but use 'grepprg' instead of

'makeprg' and 'grepformat' instead of 'errorformat'.
When 'grepprg' is "internal" this works like
:vimgrep . Note that the pattern needs to be

enclosed in separator characters then.
If the encoding of the program output differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.

:lgr :lgrep
:lgr[ep][!] [arguments] Same as ":grep", except the location list for the

current window is used instead of the quickfix list.

:grepa :grepadd
:grepa[dd][!] [arguments]

Just like ":grep", but instead of making a new list of
errors the matches are appended to the current list.
Example:

quickfix.txt — 1793

:call setqflist([])
:bufdo grepadd! something %

The first command makes a new error list which is
empty. The second command executes "grepadd" for each
listed buffer. Note the use of ! to avoid that
":grepadd" jumps to the first error, which is not
allowed with :bufdo .
An example that uses the argument list and avoids
errors for files without matches:

:silent argdo try
\ | grepadd! something %
\ | catch /E480:/
\ | endtry"

If the encoding of the program output differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.

:lgrepa :lgrepadd
:lgrepa[dd][!] [arguments]

Same as ":grepadd", except the location list for the
current window is used instead of the quickfix list.

5.3 Setting up external grep

If you have a standard "grep" program installed, the :grep command may work
well with the defaults. The syntax is very similar to the standard command:

:grep foo *.c

Will search all files with the .c extension for the substring "foo". The
arguments to :grep are passed straight to the "grep" program, so you can use
whatever options your "grep" supports.

By default, :grep invokes grep with the -n option (show file and line
numbers). You can change this with the 'grepprg' option. You will need to set
'grepprg' if:

a) You are using a program that isn't called "grep"
b) You have to call grep with a full path
c) You want to pass other options automatically (e.g. case insensitive

search.)

Once "grep" has executed, Vim parses the results using the 'grepformat'
option. This option works in the same way as the 'errorformat' option - see
that for details. You may need to change 'grepformat' from the default if
your grep outputs in a non-standard format, or you are using some other
program with a special format.

Once the results are parsed, Vim loads the first file containing a match and
jumps to the appropriate line, in the same way that it jumps to a compiler
error in quickfix mode. You can then use the :cnext , :clist , etc.
commands to see the other matches.

5.4 Using :grep with id-utils

You can set up :grep to work with the GNU id-utils like this:

:set grepprg=lid\ -Rgrep\ -s

quickfix.txt — 1794

:set grepformat=%f:%l:%m

then
:grep (regexp)

works just as you'd expect.
(provided you remembered to mkid first :)

5.5 Browsing source code with :vimgrep or :grep

Using the stack of error lists that Vim keeps, you can browse your files to
look for functions and the functions they call. For example, suppose that you
have to add an argument to the read_file() function. You enter this command:

:vimgrep /\<read_file\>/ *.c

You use ":cn" to go along the list of matches and add the argument. At one
place you have to get the new argument from a higher level function msg(), and
need to change that one too. Thus you use:

:vimgrep /\<msg\>/ *.c

While changing the msg() functions, you find another function that needs to
get the argument from a higher level. You can again use ":vimgrep" to find
these functions. Once you are finished with one function, you can use

:colder

to go back to the previous one.

This works like browsing a tree: ":vimgrep" goes one level deeper, creating a
list of branches. ":colder" goes back to the previous level. You can mix
this use of ":vimgrep" and "colder" to browse all the locations in a tree-like
way. If you do this consistently, you will find all locations without the
need to write down a "todo" list.

===
6. Selecting a compiler compiler-select

:comp :compiler E666
:comp[iler][!] {name} Set options to work with compiler {name}.

Without the "!" options are set for the
current buffer. With "!" global options are
set.
If you use ":compiler foo" in "file.foo" and
then ":compiler! bar" in another buffer, Vim
will keep on using "foo" in "file.foo".
{not available when compiled without the
+eval feature}

The Vim plugins in the "compiler" directory will set options to use the
selected compiler. For `:compiler` local options are set, for `:compiler!`
global options.

current_compiler
To support older Vim versions, the plugins always use "current_compiler" and
not "b:current_compiler". What the command actually does is the following:

- Delete the "current_compiler" and "b:current_compiler" variables.

quickfix.txt — 1795

- Define the "CompilerSet" user command. With "!" it does ":set", without "!"
it does ":setlocal".

- Execute ":runtime! compiler/{name}.vim". The plugins are expected to set
options with "CompilerSet" and set the "current_compiler" variable to the
name of the compiler.

- Delete the "CompilerSet" user command.
- Set "b:current_compiler" to the value of "current_compiler".
- Without "!" the old value of "current_compiler" is restored.

For writing a compiler plugin, see write-compiler-plugin .

DOTNET compiler-dotnet

The .NET CLI compiler outputs both errors and warnings by default. The output
may be limited to include only errors, by setting the g:dotnet_errors_only
variable to v:true .

The associated project name is included in each error and warning. To suppress
the project name, set the g:dotnet_show_project_file variable to v:false .

Example: limit output to only display errors, and suppress the project name:
let dotnet_errors_only = v:true
let dotnet_show_project_file = v:false
compiler dotnet

GCC quickfix-gcc compiler-gcc

There's one variable you can set for the GCC compiler:

g:compiler_gcc_ignore_unmatched_lines
Ignore lines that don't match any patterns
defined for GCC. Useful if output from
commands run from make are generating false
positives.

MANX AZTEC C quickfix-manx compiler-manx

To use Vim with Manx's Aztec C compiler on the Amiga you should do the
following:
- Set the CCEDIT environment variable with the command:

mset "CCEDIT=vim -q"
- Compile with the -qf option. If the compiler finds any errors, Vim is

started and the cursor is positioned on the first error. The error message
will be displayed on the last line. You can go to other errors with the
commands mentioned above. You can fix the errors and write the file(s).

- If you exit Vim normally the compiler will re-compile the same file. If you
exit with the :cq command, the compiler will terminate. Do this if you
cannot fix the error, or if another file needs to be compiled first.

There are some restrictions to the Quickfix mode on the Amiga. The
compiler only writes the first 25 errors to the errorfile (Manx's
documentation does not say how to get more). If you want to find the others,
you will have to fix a few errors and exit the editor. After recompiling,
up to 25 remaining errors will be found.

If Vim was started from the compiler, the :sh and some :! commands will not

quickfix.txt — 1796

work, because Vim is then running in the same process as the compiler and
stdin (standard input) will not be interactive.

PERL quickfix-perl compiler-perl

The Perl compiler plugin doesn't actually compile, but invokes Perl's internal
syntax checking feature and parses the output for possible errors so you can
correct them in quick-fix mode.

Warnings are forced regardless of "no warnings" or "$^W = 0" within the file
being checked. To disable this set g:perl_compiler_force_warnings to a zero
value. For example:

let g:perl_compiler_force_warnings = 0

PYUNIT COMPILER compiler-pyunit

This is not actually a compiler, but a unit testing framework for the
Python language. It is included into standard Python distribution
starting from version 2.0. For older versions, you can get it from
http://pyunit.sourceforge.net.

When you run your tests with the help of the framework, possible errors
are parsed by Vim and presented for you in quick-fix mode.

Unfortunately, there is no standard way to run the tests.
The alltests.py script seems to be used quite often, that's all.
Useful values for the 'makeprg' options therefore are:
setlocal makeprg=./alltests.py " Run a testsuite
setlocal makeprg=python\ %:S " Run a single testcase

Also see http://vim.sourceforge.net/tip_view.php?tip_id=280.

TEX COMPILER compiler-tex

Included in the distribution compiler for TeX ($VIMRUNTIME/compiler/tex.vim)
uses make command if possible. If the compiler finds a file named "Makefile"
or "makefile" in the current directory, it supposes that you want to process
your *TeX files with make, and the makefile does the right work. In this case
compiler sets 'errorformat' for *TeX output and leaves 'makeprg' untouched. If
neither "Makefile" nor "makefile" is found, the compiler will not use make.
You can force the compiler to ignore makefiles by defining
b:tex_ignore_makefile or g:tex_ignore_makefile variable (they are checked for
existence only).

If the compiler chose not to use make, it needs to choose a right program for
processing your input. If b:tex_flavor or g:tex_flavor (in this precedence)
variable exists, it defines TeX flavor for :make (actually, this is the name
of executed command), and if both variables do not exist, it defaults to
"latex". For example, while editing chapter2.tex \input-ed from mypaper.tex
written in AMS-TeX:

:let b:tex_flavor = 'amstex'
:compiler tex
[editing...]
:make mypaper

Note that you must specify a name of the file to process as an argument (to

quickfix.txt — 1797

http://pyunit.sourceforge.net
http://vim.sourceforge.net/tip_view.php?tip_id=280

process the right file when editing \input-ed or \include-ed file; portable
solution for substituting % for no arguments is welcome). This is not in the
semantics of make, where you specify a target, not source, but you may specify
filename without extension ".tex" and mean this as "make filename.dvi or
filename.pdf or filename.some_result_extension according to compiler".

Note: tex command line syntax is set to usable both for MikTeX (suggestion
by Srinath Avadhanula) and teTeX (checked by Artem Chuprina). Suggestion
from errorformat-LaTeX is too complex to keep it working for different
shells and OSes and also does not allow to use other available TeX options,
if any. If your TeX doesn't support "-interaction=nonstopmode", please
report it with different means to express \nonstopmode from the command line.

===
7. The error format error-file-format

errorformat E372 E373 E374
E375 E376 E377 E378

The 'errorformat' option specifies a list of formats that are recognized. The
first format that matches with an error message is used. You can add several
formats for different messages your compiler produces, or even entries for
multiple compilers. See efm-entries .

Each entry in 'errorformat' is a scanf-like string that describes the format.
First, you need to know how scanf works. Look in the documentation of your
C compiler. Below you find the % items that Vim understands. Others are
invalid.

Special characters in 'errorformat' are comma and backslash. See
efm-entries for how to deal with them. Note that a literal "%" is matched

by "%%", thus it is not escaped with a backslash.
Keep in mind that in the `:make` and `:grep` output all NUL characters are
replaced with SOH (0x01).

Note: By default the difference between upper and lowercase is ignored. If
you want to match case, add "\C" to the pattern /\C .

Vim will read lines of any length, but only the first 4095 bytes are used, the
rest is ignored. Items can only be 1023 bytes long.

Basic items

%f file name (finds a string)
%b buffer number (finds a number)
%o module name (finds a string)
%l line number (finds a number)
%e end line number (finds a number)
%c column number (finds a number representing character

column of the error, byte index, a <tab> is 1
character column)

%v virtual column number (finds a number representing
screen column of the error (1 <tab> == 8 screen
columns))

%k end column number (finds a number representing
the character column of the error, byte index, or a
number representing screen end column of the error if
it's used with %v)

%t error type (finds a single character):
e - error message

quickfix.txt — 1798

w - warning message
i - info message
n - note message

%n error number (finds a number)
%m error message (finds a string)
%r matches the "rest" of a single-line file message %O/P/Q
%p pointer line (finds a sequence of '-', '.', ' ' or

tabs and uses the length for the column number)
%*{conv} any scanf non-assignable conversion
%% the single '%' character
%s search text (finds a string)

The "%f" conversion may depend on the current 'isfname' setting. "~/" is
expanded to the home directory and environment variables are expanded.

The "%f" and "%m" conversions have to detect the end of the string. This
normally happens by matching following characters and items. When nothing is
following the rest of the line is matched. If "%f" is followed by a '%' or a
backslash, it will look for a sequence of 'isfname' characters.

On MS-Windows a leading "C:" will be included in "%f", even when using "%f:".
This means that a file name which is a single alphabetical letter will not be
detected.

The "%b" conversion is used to parse a buffer number. This is useful for
referring to lines in a scratch buffer or a buffer with no name. If a buffer
with the matching number doesn't exist, then that line is used as a non-error
line.

The "%p" conversion is normally followed by a "^". It's used for compilers
that output a line like:

^
or

---------^
to indicate the column of the error. This is to be used in a multi-line error
message. See errorformat-javac for a useful example.

The "%s" conversion specifies the text to search for, to locate the error line.
The text is used as a literal string. The anchors "^" and "$" are added to
the text to locate the error line exactly matching the search text and the
text is prefixed with the "\V" atom to make it "very nomagic". The "%s"
conversion can be used to locate lines without a line number in the error
output. Like the output of the "grep" shell command.
When the pattern is present the line number will not be used.

The "%o" conversion specifies the module name in quickfix entry. If present
it will be used in quickfix error window instead of the filename. The module
name is used only for displaying purposes, the file name is used when jumping
to the file.

Changing directory

The following uppercase conversion characters specify the type of special
format strings. At most one of them may be given as a prefix at the beginning
of a single comma-separated format pattern.
Some compilers produce messages that consist of directory names that have to
be prepended to each file name read by %f (example: GNU make). The following
codes can be used to scan these directory names; they will be stored in an
internal directory stack. E379

%D "enter directory" format string; expects a following

quickfix.txt — 1799

%f that finds the directory name
%X "leave directory" format string; expects following %f

When defining an "enter directory" or "leave directory" format, the "%D" or
"%X" has to be given at the start of that substring. Vim tracks the directory
changes and prepends the current directory to each erroneous file found with a
relative path. See quickfix-directory-stack for details, tips and
limitations.

Multi-line messages errorformat-multi-line

It is possible to read the output of programs that produce multi-line
messages, i.e. error strings that consume more than one line. Possible
prefixes are:

%E start of a multi-line error message
%W start of a multi-line warning message
%I start of a multi-line informational message
%N start of a multi-line note message
%A start of a multi-line message (unspecified type)
%> for next line start with current pattern again efm-%>
%C continuation of a multi-line message
%Z end of a multi-line message

These can be used with '+' and '-', see efm-ignore below.

Using "\n" in the pattern won't work to match multi-line messages.

Example: Your compiler happens to write out errors in the following format
(leading line numbers not being part of the actual output):

1 Error 275
2 line 42
3 column 3
4 ' ' expected after '--'

The appropriate error format string has to look like this:
:set efm=%EError\ %n,%Cline\ %l,%Ccolumn\ %c,%Z%m

And the :clist error message generated for this error is:

1:42 col 3 error 275: ' ' expected after '--'

Another example: Think of a Python interpreter that produces the following
error message (line numbers are not part of the actual output):

1 ==
2 FAIL: testGetTypeIdCachesResult (dbfacadeTest.DjsDBFacadeTest)
3 --
4 Traceback (most recent call last):
5 File "unittests/dbfacadeTest.py", line 89, in testFoo
6 self.assertEquals(34, dtid)
7 File "/usr/lib/python2.2/unittest.py", line 286, in
8 failUnlessEqual
9 raise self.failureException, \
10 AssertionError: 34 != 33
11
12 --
13 Ran 27 tests in 0.063s

Say you want :clist write the relevant information of this message only,

quickfix.txt — 1800

namely:
5 unittests/dbfacadeTest.py:89: AssertionError: 34 != 33

Then the error format string could be defined as follows:
:set efm=%C\ %.%#,%A\ \ File\ \"%f\"\\,\ line\ %l%.%#,%Z%[%^\]%\\@=%m

Note that the %C string is given before the %A here: since the expression
' %.%#' (which stands for the regular expression ' .*') matches every line
starting with a space, followed by any characters to the end of the line,
it also hides line 7 which would trigger a separate error message otherwise.
Error format strings are always parsed pattern by pattern until the first
match occurs.

efm-%>
The %> item can be used to avoid trying patterns that appear earlier in
'errorformat'. This is useful for patterns that match just about anything.
For example, if the error looks like this:

Error in line 123 of foo.c:
unknown variable "i"

This can be found with:
:set efm=xxx,%E%>Error in line %l of %f:,%Z%m

Where "xxx" has a pattern that would also match the second line.

Important: There is no memory of what part of the errorformat matched before;
every line in the error file gets a complete new run through the error format
lines. For example, if one has:

setlocal efm=aa,bb,cc,dd,ee
Where aa, bb, etc. are error format strings. Each line of the error file will
be matched to the pattern aa, then bb, then cc, etc. Just because cc matched
the previous error line does _not_ mean that dd will be tried first on the
current line, even if cc and dd are multi-line errorformat strings.

Separate file name errorformat-separate-filename

These prefixes are useful if the file name is given once and multiple messages
follow that refer to this file name.

%O single-line file message: overread the matched part
%P single-line file message: push file %f onto the stack
%Q single-line file message: pop the last file from stack

Example: Given a compiler that produces the following error logfile (without
leading line numbers):

1 [a1.tt]
2 (1,17) error: ';' missing
3 (21,2) warning: variable 'z' not defined
4 (67,3) error: end of file found before string ended
5
6 [a2.tt]
7
8 [a3.tt]
9 NEW compiler v1.1
10 (2,2) warning: variable 'x' not defined
11 (67,3) warning: 's' already defined

This logfile lists several messages for each file enclosed in [...] which are
properly parsed by an error format like this:

quickfix.txt — 1801

:set efm=%+P[%f],(%l\\,%c)%*[\]%t%*[^:]:\ %m,%-Q

A call of :clist writes them accordingly with their correct filenames:

2 a1.tt:1 col 17 error: ';' missing
3 a1.tt:21 col 2 warning: variable 'z' not defined
4 a1.tt:67 col 3 error: end of file found before string ended
8 a3.tt:2 col 2 warning: variable 'x' not defined
9 a3.tt:67 col 3 warning: 's' already defined

Unlike the other prefixes that all match against whole lines, %P, %Q and %O
can be used to match several patterns in the same line. Thus it is possible
to parse even nested files like in the following line:

{"file1" {"file2" error1} error2 {"file3" error3 {"file4" error4 error5}}}
The %O then parses over strings that do not contain any push/pop file name
information. See errorformat-LaTeX for an extended example.

Ignoring and using whole messages efm-ignore

The codes '+' or '-' can be combined with the uppercase codes above; in that
case they have to precede the letter, e.g. '%+A' or '%-G':

%- do not include the matching multi-line in any output
%+ include the whole matching line in the %m error string

One prefix is only useful in combination with '+' or '-', namely %G. It parses
over lines containing general information like compiler version strings or
other headers that can be skipped.

%-G ignore this message
%+G general message

Pattern matching

The scanf()-like "%*[]" notation is supported for backward-compatibility
with previous versions of Vim. However, it is also possible to specify
(nearly) any Vim supported regular expression in format strings.
Since meta characters of the regular expression language can be part of
ordinary matching strings or file names (and therefore internally have to
be escaped), meta symbols have to be written with leading '%':

%\ The single '\' character. Note that this has to be
escaped ("%\\") in ":set errorformat=" definitions.

%. The single '.' character.
%# The single '*'(!) character.
%^ The single '^' character. Note that this is not

useful, the pattern already matches start of line.
%$ The single '$' character. Note that this is not

useful, the pattern already matches end of line.
%[The single '[' character for a [] character range.
%~ The single '~' character.

When using character classes in expressions (see /\i for an overview),
terms containing the "\+" quantifier can be written in the scanf() "%*"
notation. Example: "%\\d%\\+" ("\d\+", "any number") is equivalent to "%*\\d".
Important note: The \(...\) grouping of sub-matches can not be used in format
specifications because it is reserved for internal conversions.

Multiple entries in 'errorformat' efm-entries

To be able to detect output from several compilers, several format patterns

quickfix.txt — 1802

may be put in 'errorformat', separated by commas (note: blanks after the comma
are ignored). The first pattern that has a complete match is used. If no
match is found, matching parts from the last one will be used, although the
file name is removed and the error message is set to the whole message. If
there is a pattern that may match output from several compilers (but not in a
right way), put it after one that is more restrictive.

To include a comma in a pattern precede it with a backslash (you have to type
two in a ":set" command). To include a backslash itself give two backslashes
(you have to type four in a ":set" command). You also need to put a backslash
before a space for ":set".

Valid matches quickfix-valid

If a line does not completely match one of the entries in 'errorformat', the
whole line is put in the error message and the entry is marked "not valid"
These lines are skipped with the ":cn" and ":cp" commands (unless there is
no valid line at all). You can use ":cl!" to display all the error messages.

If the error format does not contain a file name Vim cannot switch to the
correct file. You will have to do this by hand.

Examples

The format of the file from the Amiga Aztec compiler is:

filename>linenumber:columnnumber:errortype:errornumber:errormessage

filename name of the file in which the error was detected
linenumber line number where the error was detected
columnnumber column number where the error was detected
errortype type of the error, normally a single 'E' or 'W'
errornumber number of the error (for lookup in the manual)
errormessage description of the error

This can be matched with this 'errorformat' entry:
%f>%l:%c:%t:%n:%m

Some examples for C compilers that produce single-line error outputs:
%f:%l:\ %t%*[^0123456789]%n:\ %m for Manx/Aztec C error messages

(scanf() doesn't understand [0-9])
%f\ %l\ %t%*[^0-9]%n:\ %m for SAS C
\"%f\"\\,%*[^0-9]%l:\ %m for generic C compilers
%f:%l:\ %m for GCC
%f:%l:\ %m,%Dgmake[%*\\d]:\ Entering\ directory\ `%f',
%Dgmake[%*\\d]:\ Leaving\ directory\ `%f'

for GCC with gmake (concat the lines!)
%f(%l)\ :\ %*[^:]:\ %m old SCO C compiler (pre-OS5)
%f(%l)\ :\ %t%*[^0-9]%n:\ %m idem, with error type and number
%f:%l:\ %m,In\ file\ included\ from\ %f:%l:,\^I\^Ifrom\ %f:%l%m

for GCC, with some extras

Extended examples for the handling of multi-line messages are given below,
see errorformat-Jikes and errorformat-LaTeX .

Note the backslash in front of a space and double quote. It is required for
the :set command. There are two backslashes in front of a comma, one for the
:set command and one to avoid recognizing the comma as a separator of error

quickfix.txt — 1803

formats.

Filtering messages

If you have a compiler that produces error messages that do not fit in the
format string, you could write a program that translates the error messages
into this format. You can use this program with the ":make" command by
changing the 'makeprg' option. For example:

:set mp=make\ \\\|&\ error_filter
The backslashes before the pipe character are required to avoid it to be
recognized as a command separator. The backslash before each space is
required for the set command.

===
8. The directory stack quickfix-directory-stack

Quickfix maintains a stack for saving all used directories parsed from the
make output. For GNU-make this is rather simple, as it always prints the
absolute path of all directories it enters and leaves. Regardless if this is
done via a 'cd' command in the makefile or with the parameter "-C dir" (change
to directory before reading the makefile). It may be useful to use the switch
"-w" to force GNU-make to print out the working directory before and after
processing.

Maintaining the correct directory is more complicated if you don't use
GNU-make. AIX-make for example doesn't print any information about its
working directory. Then you need to enhance the makefile. In the makefile of
LessTif there is a command which echoes "Making {target} in {dir}". The
special problem here is that it doesn't print information on leaving the
directory and that it doesn't print the absolute path.

To solve the problem with relative paths and missing "leave directory"
messages Vim uses the following algorithm:

1) Check if the given directory is a subdirectory of the current directory.
If this is true, store it as the current directory.

2) If it is not a subdir of the current directory, try if this is a
subdirectory of one of the upper directories.

3) If the directory still isn't found, it is assumed to be a subdirectory
of Vim's current directory.

Additionally it is checked for every file, if it really exists in the
identified directory. If not, it is searched in all other directories of the
directory stack (NOT the directory subtree!). If it is still not found, it is
assumed that it is in Vim's current directory.

There are limitations in this algorithm. These examples assume that make just
prints information about entering a directory in the form "Making all in dir".

1) Assume you have following directories and files:
./dir1
./dir1/file1.c
./file1.c

If make processes the directory "./dir1" before the current directory and
there is an error in the file "./file1.c", you will end up with the file
"./dir1/file.c" loaded by Vim.

This can only be solved with a "leave directory" message.

quickfix.txt — 1804

2) Assume you have following directories and files:
./dir1
./dir1/dir2
./dir2

You get the following:

Make output Directory interpreted by Vim
------------------------ ----------------------------
Making all in dir1 ./dir1
Making all in dir2 ./dir1/dir2
Making all in dir2 ./dir1/dir2

This can be solved by printing absolute directories in the "enter directory"
message or by printing "leave directory" messages.

To avoid this problem, ensure to print absolute directory names and "leave
directory" messages.

Examples for Makefiles:

Unix:
libs:

for dn in $(LIBDIRS); do \
(cd $$dn; echo "Entering dir '$$(pwd)'"; make); \
echo "Leaving dir"; \

done

Add
%DEntering\ dir\ '%f',%XLeaving\ dir

to your 'errorformat' to handle the above output.

Note that Vim doesn't check if the directory name in a "leave directory"
messages is the current directory. This is why you could just use the message
"Leaving dir".

===
9. Specific error file formats errorformats

errorformat-Jikes
Jikes(TM), a source-to-bytecode Java compiler published by IBM Research,
produces simple multi-line error messages.

An 'errorformat' string matching the produced messages is shown below.
The following lines can be placed in the user's vimrc to overwrite Vim's
recognized default formats, or see :set+= how to install this format
additionally to the default.

:set efm=%A%f:%l:%c:%*\\d:%*\\d:,
\%C%*\\s%trror:%m,
\%+C%*[^:]%trror:%m,
\%C%*\\s%tarning:%m,
\%C%m

Jikes(TM) produces a single-line error message when invoked with the option
"+E", and can be matched with the following:

:setl efm=%f:%l:%v:%*\\d:%*\\d:%*\\s%m

quickfix.txt — 1805

errorformat-javac
This 'errorformat' has been reported to work well for javac, which outputs a
line with "^" to indicate the column of the error:

:setl efm=%A%f:%l:\ %m,%-Z%p^,%-C%.%#
or:

:setl efm=%A%f:%l:\ %m,%+Z%p^,%+C%.%#,%-G%.%#

Here is an alternative from Michael F. Lamb for Unix that filters the errors
first:

:setl errorformat=%Z%f:%l:\ %m,%A%p^,%-G%*[^sl]%.%#
:setl makeprg=javac\ %:S\ 2>&1\ \\\|\ vim-javac-filter

You need to put the following in "vim-javac-filter" somewhere in your path
(e.g., in ~/bin) and make it executable:

#!/bin/sed -f
/\^$/s/\t/\ /g;/:[0-9]\+:/{h;d};/^[\t]*\^/G;

In English, that sed script:
- Changes single tabs to single spaces and
- Moves the line with the filename, line number, error message to just after

the pointer line. That way, the unused error text between doesn't break
vim's notion of a "multi-line message" and also doesn't force us to include
it as a "continuation of a multi-line message."

errorformat-ant
For ant (http://jakarta.apache.org/) the above errorformat has to be modified
to honour the leading [javac] in front of each javac output line:

:set efm=%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#

The 'errorformat' can also be configured to handle ant together with either
javac or jikes. If you're using jikes, you should tell ant to use jikes' +E
command line switch which forces jikes to generate one-line error messages.
This is what the second line (of a build.xml file) below does:

<property name = "build.compiler" value = "jikes"/>
<property name = "build.compiler.emacs" value = "true"/>

The 'errorformat' which handles ant with both javac and jikes is:
:set efm=\ %#[javac]\ %#%f:%l:%c:%*\\d:%*\\d:\ %t%[%^:]%#:%m,

\%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#

errorformat-jade
parsing jade (see http://www.jclark.com/) errors is simple:

:set efm=jade:%f:%l:%c:%t:%m

errorformat-LaTeX
The following is an example how an 'errorformat' string can be specified
for the (La)TeX typesetting system which displays error messages over
multiple lines. The output of ":clist" and ":cc" etc. commands displays
multi-lines in a single line, leading white space is removed.
It should be easy to adopt the above LaTeX errorformat to any compiler output
consisting of multi-line errors.

The commands can be placed in a vimrc file or some other Vim script file,
e.g. a script containing LaTeX related stuff which is loaded only when editing
LaTeX sources.
Make sure to copy all lines of the example (in the given order), afterwards
remove the comment lines. For the '\' notation at the start of some lines see
line-continuation .

First prepare 'makeprg' such that LaTeX will report multiple

quickfix.txt — 1806

http://www.jclark.com/

errors; do not stop when the first error has occurred:
:set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}

Start of multi-line error messages:
:set efm=%E!\ LaTeX\ %trror:\ %m,

\%E!\ %m,
Start of multi-line warning messages; the first two also
include the line number. Meaning of some regular expressions:

- "%.%#" (".*") matches a (possibly empty) string
- "%*\\d" ("\d\+") matches a number

\%+WLaTeX\ %.%#Warning:\ %.%#line\ %l%.%#,
\%+W%.%#\ at\ lines\ %l--%*\\d,
\%WLaTeX\ %.%#Warning:\ %m,

Possible continuations of error/warning messages; the first
one also includes the line number:

\%Cl.%l\ %m,
\%+C\ \ %m.,
\%+C%.%#-%.%#,
\%+C%.%#[]%.%#,
\%+C[]%.%#,
\%+C%.%#%[{}\\]%.%#,
\%+C<%.%#>%.%#,
\%C\ \ %m,

Lines that match the following patterns do not contain any
important information; do not include them in messages:

\%-GSee\ the\ LaTeX%m,
\%-GType\ \ H\ <return>%m,
\%-G\ ...%.%#,
\%-G%.%#\ (C)\ %.%#,
\%-G(see\ the\ transcript%.%#),

Generally exclude any empty or whitespace-only line from
being displayed:

\%-G\\s%#,
The LaTeX output log does not specify the names of erroneous
source files per line; rather they are given globally,
enclosed in parentheses.
The following patterns try to match these names and store
them in an internal stack. The patterns possibly scan over
the same input line (one after another), the trailing "%r"
conversion indicates the "rest" of the line that will be
parsed in the next go until the end of line is reached.

Overread a file name enclosed in '('...')'; do not push it
on a stack since the file apparently does not contain any
error:

\%+O(%f)%r,
Push a file name onto the stack. The name is given after '(':

\%+P(%f%r,
\%+P\ %\\=(%f%r,
\%+P%*[^()](%f%r,
\%+P[%\\d%[^()]%#(%f%r,

Pop the last stored file name when a ')' is scanned:
\%+Q)%r,
\%+Q%*[^()])%r,
\%+Q[%\\d%*[^()])%r

Note that in some cases file names in the LaTeX output log cannot be parsed
properly. The parser might have been messed up by unbalanced parentheses
then. The above example tries to catch the most relevant cases only.
You can customize the given setting to suit your own purposes, for example,

quickfix.txt — 1807

all the annoying "Overfull ..." warnings could be excluded from being
recognized as an error.
Alternatively to filtering the LaTeX compiler output, it is also possible
to directly read the *.log file that is produced by the [La]TeX compiler.
This contains even more useful information about possible error causes.
However, to properly parse such a complex file, an external filter should
be used. See the description further above how to make such a filter known
by Vim.

errorformat-Perl
In $VIMRUNTIME/tools you can find the efm_perl.pl script, which filters Perl
error messages into a format that quickfix mode will understand. See the
start of the file about how to use it. (This script is deprecated, see
compiler-perl .)

===
10. Customizing the quickfix window quickfix-window-function

The default format for the lines displayed in the quickfix window and location
list window is:

<filename>|<lnum> col <col>|<text>

The values displayed in each line correspond to the "bufnr", "lnum", "col" and
"text" fields returned by the getqflist() function.

For some quickfix/location lists, the displayed text needs to be customized.
For example, if only the filename is present for a quickfix entry, then the
two "|" field separator characters after the filename are not needed. Another
use case is to customize the path displayed for a filename. By default, the
complete path (which may be too long) is displayed for files which are not
under the current directory tree. The file path may need to be simplified to a
common parent directory.

The displayed text can be customized by setting the 'quickfixtextfunc' option
to a Vim function. This function will be called with a dict argument and
should return a List of strings to be displayed in the quickfix or location
list window. The dict argument will have the following fields:

quickfix set to 1 when called for a quickfix list and 0 when called for
a location list.

winid for a location list, set to the id of the window with the
location list. For a quickfix list, set to 0. Can be used in
getloclist() to get the location list entry.

id quickfix or location list identifier
start_idx index of the first entry for which text should be returned
end_idx index of the last entry for which text should be returned

The function should return a single line of text to display in the quickfix
window for each entry from start_idx to end_idx. The function can obtain
information about the entries using the getqflist() function and specifying
the quickfix list identifier "id". For a location list, getloclist() function
can be used with the "winid" argument. If an empty list is returned, then the
default format is used to display all the entries. If an item in the returned
list is an empty string, then the default format is used to display the
corresponding entry.

If a quickfix or location list specific customization is needed, then the
'quickfixtextfunc' attribute of the list can be set using the setqflist() or
setloclist() function. This overrides the global 'quickfixtextfunc' option.

quickfix.txt — 1808

The example below displays the list of old files (v:oldfiles) in a quickfix
window. As there is no line, column number and error text information
associated with each entry, the 'quickfixtextfunc' function returns only the
filename.
Example:

" create a quickfix list from v:oldfiles
call setqflist([], ' ', {'lines' : v:oldfiles, 'efm' : '%f',

\ 'quickfixtextfunc' : 'QfOldFiles'})
func QfOldFiles(info)

" get information about a range of quickfix entries
let items = getqflist({'id' : a:info.id, 'items' : 1}).items
let l = []
for idx in range(a:info.start_idx - 1, a:info.end_idx - 1)

" use the simplified file name
call add(l, fnamemodify(bufname(items[idx].bufnr), ':p:.'))

endfor
return l

endfunc

quickfix.txt — 1809

quickfix.txt — 1810

ft_ada.txt For Vim version 9.1. Last change: 2022 Mar 13

ADA FILE TYPE PLUG-INS REFERENCE MANUAL

ADA ada.vim

1. Syntax Highlighting ft-ada-syntax
2. File type Plug-in ft-ada-plugin
3. Omni Completion ft-ada-omni

3.1 Omni Completion with "gnat xref" gnat-xref
3.2 Omni Completion with "ctags" ada-ctags

4. Compiler Support ada-compiler
4.1 GNAT compiler-gnat
4.2 Dec Ada compiler-decada

5. References ada-reference
5.1 Options ft-ada-options
5.2 Commands ft-ada-commands
5.3 Variables ft-ada-variables
5.4 Constants ft-ada-constants
5.5 Functions ft-ada-functions

6. Extra Plug-ins ada-extra-plugins

==
1. Syntax Highlighting

ft-ada-syntax

This mode is designed for the 2005 edition of Ada ("Ada 2005"), which includes
support for objected-programming, protected types, and so on. It handles code
written for the original Ada language ("Ada83", "Ada87", "Ada95") as well,
though code which uses Ada 2005-only keywords will be wrongly colored (such
code should be fixed anyway). For more information about Ada, see
http://www.adapower.com.

The Ada mode handles a number of situations cleanly.

For example, it knows that the "-" in "-5" is a number, but the same character
in "A-5" is an operator. Normally, a "with" or "use" clause referencing
another compilation unit is coloured the same way as C's "#include" is coloured.
If you have "Conditional" or "Repeat" groups coloured differently, then "end
if" and "end loop" will be coloured as part of those respective groups.

You can set these to different colours using vim's "highlight" command (e.g.,
to change how loops are displayed, enter the command ":hi Repeat" followed by
the colour specification; on simple terminals the colour specification
ctermfg=White often shows well).

There are several options you can select in this Ada mode. See ft-ada-options
for a complete list.

To enable them, assign a value to the option. For example, to turn one on:

> let g:ada_standard_types = 1

To disable them use ":unlet". Example:

> unlet g:ada_standard_types

You can just use ":" and type these into the command line to set these
temporarily before loading an Ada file. You can make these option settings

ft_ada.txt — 1811

http://www.adapower.com

permanent by adding the "let" command(s), without a colon, to your "~/.vimrc"
file.

Even on a slow (90Mhz) PC this mode works quickly, but if you find the
performance unacceptable, turn on g:ada_withuse_ordinary .

Syntax folding instructions (fold-syntax) are added when g:ada_folding is
set.

==
2. File type Plug-in

ft-ada-indent ft-ada-plugin

The Ada plug-in provides support for:

- auto indenting (indent.txt)
- insert completion (i_CTRL-N)
- user completion (i_CTRL-X_CTRL-U)
- tag searches (tagsrch.txt)
- Quick Fix (quickfix.txt)
- backspace handling ('backspace')
- comment handling ('comments' , 'commentstring')

The plug-in only activates the features of the Ada mode whenever an Ada
file is opened and adds Ada related entries to the main and pop-up menu.

==
3. Omni Completion

ft-ada-omni

The Ada omni-completions (i_CTRL-X_CTRL-O) uses tags database created either
by "gnat xref -v" or the "Universal Ctags" (https://ctags.io). The complete
function will automatically detect which tool was used to create the tags
file.

--
3.1 Omni Completion with "gnat xref"

gnat-xref

GNAT XREF uses the compiler internal information (ali-files) to produce the
tags file. This has the advantage to be 100% correct and the option of deep
nested analysis. However the code must compile, the generator is quite
slow and the created tags file contains only the basic Ctags information for
each entry - not enough for some of the more advanced Vim code browser
plug-ins.

NOTE: "gnat xref -v" is very tricky to use as it has almost no diagnostic
output - If nothing is printed then usually the parameters are wrong.
Here some important tips:

1) You need to compile your code first and use the "-aO" option to point to
your .ali files.

2) "gnat xref -v ../Include/adacl.ads" won't work - use the "gnat xref -v
-aI../Include adacl.ads" instead.

3) "gnat xref -v -aI../Include *.ad?" won't work - use "cd ../Include" and
then "gnat xref -v *.ad?"

4) Project manager support is completely broken - don't even try "gnat xref
-Padacl.gpr".

5) Vim is faster when the tags file is sorted - use "sort --unique
--ignore-case --output=tags tags" .

ft_ada.txt — 1812

6) Remember to insert "!_TAG_FILE_SORTED 2 %sort ui" as first line to mark
the file assorted.

--
3.2 Omni Completion with "ctags"

ada-ctags

Universal/Exuberant Ctags use their own multi-language code parser. The
parser is quite fast, produces a lot of extra information and can run on files
which currently do not compile.

There are also lots of other Vim-tools which use Universal/Exuberant Ctags.
Universal Ctags is preferred, Exuberant Ctags is no longer being developed.

You will need to install Universal Ctags which is available from
https://ctags.io

The Ada parser for Universal/Exuberant Ctags is fairly new - don't expect
complete support yet.

==
4. Compiler Support

ada-compiler

The Ada mode supports more than one Ada compiler and will automatically load the
compiler set in g:ada_default_compiler whenever an Ada source is opened. The
provided compiler plug-ins are split into the actual compiler plug-in and a
collection of support functions and variables. This allows the easy
development of specialized compiler plug-ins fine tuned to your development
environment.

--
4.1 GNAT

compiler-gnat

GNAT is the only free (beer and speech) Ada compiler available. There are
several versions available which differ in the licence terms used.

The GNAT compiler plug-in will perform a compile on pressing <F7> and then
immediately shows the result. You can set the project file to be used by
setting:

> call g:gnat.Set_Project_File ('my_project.gpr')

Setting a project file will also create a Vim session (views-sessions) so -
like with the GPS - opened files, window positions etc. will be remembered
separately for all projects.

gnat_members
GNAT OBJECT

g:gnat.Make()
g:gnat.Make()

Calls g:gnat.Make_Command and displays the result inside a
quickfix window.

g:gnat.Pretty()
g:gnat.Pretty()

Calls g:gnat.Pretty_Program

ft_ada.txt — 1813

https://ctags.io

g:gnat.Find()
g:gnat.Find()

Calls g:gnat.Find_Program

g:gnat.Tags()
g:gnat.Tags()

Calls g:gnat.Tags_Command

g:gnat.Set_Project_File()
g:gnat.Set_Project_File([{file}])

Set gnat project file and load associated session. An open
project will be closed and the session written. If called
without file name the file selector opens for selection of a
project file. If called with an empty string then the project
and associated session are closed.

g:gnat.Project_File
g:gnat.Project_File string

Current project file.

g:gnat.Make_Command
g:gnat.Make_Command string

External command used for g:gnat.Make() ('makeprg').

g:gnat.Pretty_Program
g:gnat.Pretty_Program string

External command used for g:gnat.Pretty()

g:gnat.Find_Program
g:gnat.Find_Program string

External command used for g:gnat.Find()

g:gnat.Tags_Command
g:gnat.Tags_Command string

External command used for g:gnat.Tags()

g:gnat.Error_Format
g:gnat.Error_Format string

Error format ('errorformat')

--
4.2 Dec Ada

compiler-hpada compiler-decada
compiler-vaxada compiler-compaqada

Dec Ada (also known by - in chronological order - VAX Ada, Dec Ada, Compaq Ada
and HP Ada) is a fairly dated Ada 83 compiler. Support is basic: <F7> will
compile the current unit.

The Dec Ada compiler expects the package name and not the file name to be
passed as a parameter. The compiler plug-in supports the usual file name
convention to convert the file into a unit name. Both '-' and '__' are allowed
as separators.

decada_members
DEC ADA OBJECT

g:decada.Make()
g:decada.Make() function

Calls g:decada.Make_Command and displays the result inside a

ft_ada.txt — 1814

quickfix window.

g:decada.Unit_Name()
g:decada.Unit_Name() function

Get the Unit name for the current file.

g:decada.Make_Command
g:decada.Make_Command string

External command used for g:decada.Make() ('makeprg').

g:decada.Error_Format
g:decada.Error_Format string

Error format ('errorformat').

==
5. References

ada-reference

--
5.1 Options

ft-ada-options

g:ada_standard_types
g:ada_standard_types bool (true when exists)

Highlight types in package Standard (e.g., "Float").

g:ada_space_errors
g:ada_no_trail_space_error
g:ada_no_tab_space_error

g:ada_all_tab_usage
g:ada_space_errors bool (true when exists)

Highlight extraneous errors in spaces ...
g:ada_no_trail_space_error

- but ignore trailing spaces at the end of a line
g:ada_no_tab_space_error

- but ignore tabs after spaces
g:ada_all_tab_usage

- highlight all tab use

g:ada_line_errors
g:ada_line_errors bool (true when exists)

Highlight lines which are too long. Note: This highlighting
option is quite CPU intensive.

g:ada_rainbow_color
g:ada_rainbow_color bool (true when exists)

Use rainbow colours for '(' and ')'. You need the
rainbow_parenthesis for this to work.

g:ada_folding
g:ada_folding set ('sigpft')

Use folding for Ada sources.
's': activate syntax folding on load

'p': fold packages
'f': fold functions and procedures
't': fold types
'c': fold conditionals

'g': activate gnat pretty print folding on load
'i': lone 'is' folded with line above
'b': lone 'begin' folded with line above

ft_ada.txt — 1815

'p': lone 'private' folded with line above
'x': lone 'exception' folded with line above

'i': activate indent folding on load

Note: Syntax folding is in an early (unusable) stage and
indent or gnat pretty folding is suggested.

For gnat pretty folding to work the following settings are
suggested: -cl3 -M79 -c2 -c3 -c4 -A1 -A2 -A3 -A4 -A5

For indent folding to work the following settings are
suggested: shiftwidth=3 softtabstop=3

g:ada_abbrev
g:ada_abbrev bool (true when exists)

Add some abbreviations. This feature is more or less superseded
by the various completion methods.

g:ada_withuse_ordinary
g:ada_withuse_ordinary bool (true when exists)

Show "with" and "use" as ordinary keywords (when used to
reference other compilation units they're normally highlighted
specially).

g:ada_begin_preproc
g:ada_begin_preproc bool (true when exists)

Show all begin-like keywords using the colouring of C
preprocessor commands.

g:ada_omni_with_keywords
g:ada_omni_with_keywords

Add Keywords, Pragmas, Attributes to omni-completions
(compl-omni). Note: You can always complete then with user
completion (i_CTRL-X_CTRL-U).

g:ada_extended_tagging
g:ada_extended_tagging enum ('jump', 'list')

use extended tagging, two options are available
'jump': use tjump to jump.
'list': add tags quick fix list.

Normal tagging does not support function or operator
overloading as these features are not available in C and
tagging was originally developed for C.

g:ada_extended_completion
g:ada_extended_completion

Uses extended completion for <C-N> and <C-R> completions
(i_CTRL-N). In this mode the '.' is used as part of the
identifier so that 'Object.Method' or 'Package.Procedure' are
completed together.

g:ada_gnat_extensions
g:ada_gnat_extensions bool (true when exists)

Support GNAT extensions.

g:ada_with_gnat_project_files
g:ada_with_gnat_project_files bool (true when exists)

Add gnat project file keywords and Attributes.

g:ada_default_compiler

ft_ada.txt — 1816

g:ada_default_compiler string
set default compiler. Currently supported are 'gnat' and
'decada'.

An "exists" type is a boolean considered true when the variable is defined and
false when the variable is undefined. The value to which the variable is set
makes no difference.

--
5.2 Commands

ft-ada-commands

:AdaRainbow :AdaRainbow
Toggles rainbow colour (g:ada_rainbow_color) mode for
'(' and ')'.

:AdaLines :AdaLines
Toggles line error (g:ada_line_errors) display.

:AdaSpaces :AdaSpaces
Toggles space error (g:ada_space_errors) display.

:AdaTagDir :AdaTagDir
Creates tags file for the directory of the current file.

:AdaTagFile :AdaTagFile
Creates tags file for the current file.

:AdaTypes :AdaTypes
Toggles standard types (g:ada_standard_types) colour.

:GnatFind :GnatFind
Calls g:gnat.Find()

:GnatPretty :GnatPretty
Calls g:gnat.Pretty()

:GnatTags :GnatTags
Calls g:gnat.Tags()

--
5.3 Variables

ft-ada-variables

g:gnat
g:gnat object

Control object which manages GNAT compiles. The object
is created when the first Ada source code is loaded provided
that g:ada_default_compiler is set to 'gnat'. See
gnat_members for details.

g:decada
g:decada object

Control object which manages Dec Ada compiles. The object
is created when the first Ada source code is loaded provided
that g:ada_default_compiler is set to 'decada'. See
decada_members for details.

--
5.4 Constants

ft_ada.txt — 1817

ft-ada-constants

All constants are locked. See :lockvar for details.

g:ada#WordRegex
g:ada#WordRegex string

Regular expression to search for Ada words.

g:ada#DotWordRegex
g:ada#DotWordRegex string

Regular expression to search for Ada words separated by dots.

g:ada#Comment
g:ada#Comment string

Regular expression to search for Ada comments.

g:ada#Keywords
g:ada#Keywords list of dictionaries

List of keywords, attributes etc. pp. in the format used by
omni completion. See complete-items for details.

g:ada#Ctags_Kinds
g:ada#Ctags_Kinds dictionary of lists

Dictionary of the various kinds of items which the Ada support
for Ctags generates.

--
5.5 Functions

ft-ada-functions

ada#Word([{line}, {col}]) ada#Word()
Return full name of Ada entity under the cursor (or at given
line/column), stripping white space/newlines as necessary.

ada#List_Tag([{line}, {col}]) ada#Listtags()
List all occurrences of the Ada entity under the cursor (or at
given line/column) inside the quick-fix window.

ada#Jump_Tag ({ident}, {mode}) ada#Jump_Tag()
List all occurrences of the Ada entity under the cursor (or at
given line/column) in the tag jump list. Mode can either be
'tjump' or 'stjump'.

ada#Create_Tags ({option}) ada#Create_Tags()
Creates tag file using Ctags. The option can either be 'file'
for the current file, 'dir' for the directory of the current
file or a file name.

gnat#Insert_Tags_Header() gnat#Insert_Tags_Header()
Adds the tag file header (!_TAG_) information to the current
file which are missing from the GNAT XREF output.

ada#Switch_Syntax_Option ({option}) ada#Switch_Syntax_Option()
Toggles highlighting options on or off. Used for the Ada menu.

gnat#New()
gnat#New ()

Create a new gnat object. See g:gnat for details.

ft_ada.txt — 1818

==
6. Extra Plugins

ada-extra-plugins

You can optionally install the following extra plug-ins. They work well with
Ada and enhance the ability of the Ada mode:

backup.vim
http://www.vim.org/scripts/script.php?script_id=1537
Keeps as many backups as you like so you don't have to.

rainbow_parenthsis.vim
http://www.vim.org/scripts/script.php?script_id=1561
Very helpful since Ada uses only '(' and ')'.

nerd_comments.vim
http://www.vim.org/scripts/script.php?script_id=1218
Excellent commenting and uncommenting support for almost any
programming language.

matchit.vim
http://www.vim.org/scripts/script.php?script_id=39
'%' jumping for any language. The normal '%' jump only works for '{}'
style languages. The Ada mode will set the needed search patterns.

taglist.vim
http://www.vim.org/scripts/script.php?script_id=273
Source code explorer sidebar. There is a patch for Ada available.

The GNU Ada Project distribution (http://gnuada.sourceforge.net) of Vim
contains all of the above.

==
vim: textwidth=78 nowrap tabstop=8 shiftwidth=4 softtabstop=4 noexpandtab

ft_ada.txt — 1819

http://www.vim.org/scripts/script.php?script_id=1537
http://www.vim.org/scripts/script.php?script_id=1561
http://www.vim.org/scripts/script.php?script_id=1218
http://www.vim.org/scripts/script.php?script_id=39
http://www.vim.org/scripts/script.php?script_id=273

ft_ada.txt — 1820

ft_ps1.txt A Windows PowerShell syntax plugin for Vim

Author: Peter Provost <https://www.github.com/PProvost>
License: Apache 2.0
URL: https://github.com/PProvost/vim-ps1

INTRODUCTION ps1-syntax

This plugin provides Vim syntax, indent and filetype detection for Windows
PowerShell scripts, modules, and XML configuration files.

ABOUT ps1-about

Grab the latest version or report a bug on GitHub:

https://github.com/PProvost/vim-ps1

FOLDING ps1-folding

The ps1 syntax file provides syntax folding (see :syn-fold) for script blocks
and digital signatures in scripts.

When 'foldmethod' is set to "syntax" then function script blocks will be
folded unless you use the following in your .vimrc or before opening a script:

:let g:ps1_nofold_blocks = 1

Digital signatures in scripts will also be folded unless you use:

:let g:ps1_nofold_sig = 1

Note: syntax folding might slow down syntax highlighting significantly,
especially for large files.

COMPILER ps1-compiler

The powershell `:compiler` script configures :make to execute the script in
PowerShell.

It tries to pick a smart default PowerShell command: `pwsh` if available and
`powershell` otherwise, but you can customize the command:

:let g:ps1_makeprg_cmd = '/path/to/pwsh'

To configure whether to show the exception type information:

:let g:ps1_efm_show_error_categories = 1

KEYWORD LOOKUP ps1-keyword

To look up keywords using PowerShell's Get-Help, press the K key. For more
convenient paging, the pager `less` should be installed, which is included in
many Linux distributions and in macOS.

Many other distributions are available for Windows like
https://chocolatey.org/packages/less/. Make sure `less` is in a directory

ft_ps1.txt — 1821

https://github.com/PProvost/vim-ps1
https://github.com/PProvost/vim-ps1
https://chocolatey.org/packages/less/

listed in the `PATH` environment variable, which chocolatey above does.

--

ft_ps1.txt — 1822

ft_raku.txt The Raku programming language filetype

vim-raku

Vim-raku provides syntax highlighting, indentation, and other support for
editing Raku programs.

1. Using Unicode in your Raku files raku-unicode

==
1. Using Unicode in your Raku files raku-unicode

Defining new operators using Unicode symbols is a good way to make your
Raku program easy to read. See:
https://perl6advent.wordpress.com/2012/12/18/day-18-formulas-resistance-is-futile/

While Raku does define ASCII alternatives for some common operators (see
https://docs.raku.org/language/unicode_ascii), using the full range of
Unicode operators is highly desirable. Your operating system provides input
facilities, but using the features built in to Vim may be preferable.

The natural way to produce these symbols in Vim is to use digraph shortcuts
(:help digraphs-use). Many of them are defined; type `:digraphs` to get
the list. A convenient way to read the list of digraphs is to save them in a
file. From the shell:

vim +'redir >/tmp/vim-digraphs-listing.txt' +digraphs +'redir END' +q

Some of them are available with standard Vim digraphs:
<< « /0 � !< �
>> » Ob � !> �
., … 00 ∞ (C �
(U � -: ÷)C �
)U � (_ � >= ≥
?= �)_ � =< ≤
(- � ?= � != ≠
-) � ?- �

The Greek alphabet is available with '*' followed by a similar Latin symbol:
*p π
*t �
*X ×

Numbers, subscripts and superscripts are available with 's' and 'S':
0s ₀ 0S ⁰
1s ₁ 1S ¹
2s ₂ 9S ⁹

But some don't come defined by default. Those are digraph definitions you can
add in your ~/.vimrc file.

exec 'digraph \\ ' .. char2nr('�')
exec 'digraph \< ' .. char2nr('�')
exec 'digraph \> ' .. char2nr('�')
exec 'digraph (L ' .. char2nr('�')
exec 'digraph)L ' .. char2nr('�')
exec 'digraph (/ ' .. char2nr('�')
exec 'digraph)/ ' .. char2nr('�')
exec 'digraph)/ ' .. char2nr('�')
exec 'digraph U+ ' .. char2nr('�')
exec 'digraph 0- ' .. char2nr('�')
" Euler's constant

ft_raku.txt — 1823

https://perl6advent.wordpress.com/2012/12/18/day-18-formulas-resistance-is-futile/
https://docs.raku.org/language/unicode_ascii

exec 'digraph ne ' .. char2nr('�')
" Raku's atomic operations marker
exec 'digraph @@ ' .. char2nr('�')

Alternatively, you can write Insert mode abbreviations that convert ASCII-
based operators into their single-character Unicode equivalent.

iabbrev <buffer> !(<) �
iabbrev <buffer> !(<=) �
iabbrev <buffer> !(>) �
iabbrev <buffer> !(>=) �
iabbrev <buffer> !(cont) �
iabbrev <buffer> !(elem) �
iabbrev <buffer> != ≠
iabbrev <buffer> (&) �
iabbrev <buffer> (+) �
iabbrev <buffer> (-) �
iabbrev <buffer> (.) �
iabbrev <buffer> (<) �
iabbrev <buffer> (<+) �
iabbrev <buffer> (<=) �
iabbrev <buffer> (>) �
iabbrev <buffer> (>+) �
iabbrev <buffer> (>=) �
iabbrev <buffer> (\|) �
iabbrev <buffer> (^) �
iabbrev <buffer> (atomic) �
iabbrev <buffer> (cont) �
iabbrev <buffer> (elem) �
iabbrev <buffer> * ×
iabbrev <buffer> **0 ⁰
iabbrev <buffer> **1 ¹
iabbrev <buffer> **2 ²
iabbrev <buffer> **3 ³
iabbrev <buffer> **4 ⁴
iabbrev <buffer> **5 ⁵
iabbrev <buffer> **6 ⁶
iabbrev <buffer> **7 ⁷
iabbrev <buffer> **8 ⁸
iabbrev <buffer> **9 ⁹
iabbrev <buffer> ... …
iabbrev <buffer> / ÷
iabbrev <buffer> << «
iabbrev <buffer> <<[=]<< «=«
iabbrev <buffer> <<[=]>> «=»
iabbrev <buffer> <= ≤
iabbrev <buffer> =~= �
iabbrev <buffer> >= ≥
iabbrev <buffer> >> »
iabbrev <buffer> >>[=]<< »=«
iabbrev <buffer> >>[=]>> »=»
iabbrev <buffer> Inf ∞
iabbrev <buffer> atomic-add-fetch �+=
iabbrev <buffer> atomic-assign �=
iabbrev <buffer> atomic-fetch �
iabbrev <buffer> atomic-dec-fetch --�
iabbrev <buffer> atomic-fetch-dec �--
iabbrev <buffer> atomic-fetch-inc �++
iabbrev <buffer> atomic-inc-fetch ++�
iabbrev <buffer> atomic-sub-fetch �−=
iabbrev <buffer> e �

ft_raku.txt — 1824

iabbrev <buffer> o �
iabbrev <buffer> pi π
iabbrev <buffer> set() �
iabbrev <buffer> tau �

ft_raku.txt — 1825

ft_raku.txt — 1826

ft_rust.txt Filetype plugin for Rust

==
CONTENTS rust

1. Introduction rust-intro
2. Settings rust-settings
3. Commands rust-commands
4. Mappings rust-mappings

==
INTRODUCTION rust-intro

This plugin provides syntax and supporting functionality for the Rust
filetype. It requires Vim 8 or higher for full functionality. Some commands
will not work on earlier versions.

==
SETTINGS rust-settings

This plugin has a few variables you can define in your vimrc that change the
behavior of the plugin.

Some variables can be set buffer local (`:b` prefix), and the buffer local
will take precedence over the global `g:` counterpart.

g:rustc_path
g:rustc_path

Set this option to the path to rustc for use in the :RustRun and
:RustExpand commands. If unset, "rustc" will be located in $PATH:

let g:rustc_path = $HOME."/bin/rustc"

g:rustc_makeprg_no_percent
g:rustc_makeprg_no_percent

Set this option to 1 to have 'makeprg' default to "rustc" instead of
"rustc %":

let g:rustc_makeprg_no_percent = 1

g:rust_conceal
g:rust_conceal

Set this option to turn on the basic conceal support:
let g:rust_conceal = 1

g:rust_conceal_mod_path
g:rust_conceal_mod_path

Set this option to turn on conceal for the path connecting token
"::":

let g:rust_conceal_mod_path = 1

g:rust_conceal_pub
g:rust_conceal_pub

Set this option to turn on conceal for the "pub" token:
let g:rust_conceal_pub = 1

g:rust_recommended_style

ft_rust.txt — 1827

g:rust_recommended_style
Set this option to enable vim indentation and textwidth settings to
conform to style conventions of the rust standard library (i.e. use 4
spaces for indents and sets 'textwidth' to 99). This option is enabled
by default. To disable it:

let g:rust_recommended_style = 0

g:rust_fold
g:rust_fold

Set this option to turn on folding :
let g:rust_fold = 1

Value Effect
0 No folding
1 Braced blocks are folded. All folds are open by

default.
2 Braced blocks are folded. 'foldlevel' is left at the

global value (all folds are closed by default).

g:rust_bang_comment_leader
g:rust_bang_comment_leader

Set this option to 1 to preserve the leader on multi-line doc comments
using the /*! syntax:

let g:rust_bang_comment_leader = 1

g:rust_use_custom_ctags_defs
g:rust_use_custom_ctags_defs

Set this option to 1 if you have customized ctags definitions for Rust
and do not wish for those included with rust.vim to be used:

let g:rust_use_custom_ctags_defs = 1

NOTE: rust.vim's built-in definitions are only used for the Tagbar Vim
plugin, if you have it installed, AND if Universal Ctags is not
detected. This is because Universal Ctags already has built-in
support for Rust when used with Tagbar.

Also, note that when using ctags other than Universal Ctags, it is not
automatically used when generating tags files that Vim can use to
navigate to definitions across different source files. Feel free to
copy `rust.vim/ctags/rust.ctags` into your own `~/.ctags` if you wish
to generate tags files.

g:ftplugin_rust_source_path
g:ftplugin_rust_source_path

Set this option to a path that should be prepended to 'path' for Rust
source files:

let g:ftplugin_rust_source_path = $HOME.'/dev/rust'

g:rustfmt_command
g:rustfmt_command

Set this option to the name of the 'rustfmt' executable in your $PATH. If
not specified it defaults to 'rustfmt' :

let g:rustfmt_command = 'rustfmt'

g:rustfmt_autosave

ft_rust.txt — 1828

g:rustfmt_autosave
Set this option to 1 to run :RustFmt automatically when saving a
buffer. If not specified it defaults to 0 :

let g:rustfmt_autosave = 0

There is also a buffer-local b:rustfmt_autosave that can be set for
the same purpose, and can override the global setting.

g:rustfmt_autosave_if_config_present
g:rustfmt_autosave_if_config_present

Set this option to 1 to have b:rustfmt_autosave be set automatically
if a `rustfmt.toml` file is present in any parent directly leading to
the file being edited. If not set, default to 0:

let g:rustfmt_autosave_if_config_present = 0

This is useful to have `rustfmt` only execute on save, on projects
that have `rustfmt.toml` configuration.

There is also a buffer-local b:rustfmt_autosave_if_config_present
that can be set for the same purpose, which can overrides the global
setting.

g:rustfmt_fail_silently
g:rustfmt_fail_silently

Set this option to 1 to prevent 'rustfmt' from populating the
location-list with errors. If not specified it defaults to 0:

let g:rustfmt_fail_silently = 0

g:rustfmt_options
g:rustfmt_options

Set this option to a string of options to pass to 'rustfmt'. The
write-mode is already set to 'overwrite'. If not specified it
defaults to '' :

let g:rustfmt_options = ''

g:rustfmt_emit_files
g:rustfmt_emit_files

If not specified rust.vim tries to detect the right parameter to
pass to rustfmt based on its reported version. Otherwise, it
determines whether to run rustfmt with '--emit=files' (when 1 is
provided) instead of '--write-mode=overwrite'.

let g:rustfmt_emit_files = 0

g:rust_playpen_url
g:rust_playpen_url

Set this option to override the url for the playpen to use:
let g:rust_playpen_url = 'https://play.rust-lang.org/'

g:rust_shortener_url
g:rust_shortener_url

Set this option to override the url for the url shortener:
let g:rust_shortener_url = 'https://is.gd/'

g:rust_clip_command
g:rust_clip_command

Set this option to the command used in your OS to copy the Rust Play
url to the clipboard:

let g:rust_clip_command = 'xclip -selection clipboard'

ft_rust.txt — 1829

g:cargo_makeprg_params
g:cargo_makeprg_params

Set this option to the string of parameters to pass to cargo. If not
specified it defaults to '$*' :

let g:cargo_makeprg_params = 'build'

g:cargo_shell_command_runner
g:cargo_shell_command_runner

Set this option to change how to run shell commands for cargo commands
:Cargo , :Cbuild , :Crun , ...

By default, :terminal is used to run shell command in terminal window
asynchronously. But if you prefer :! for running the commands, it can
be specified:

let g:cargo_shell_command_runner = '!'

Integration with Syntastic rust-syntastic

This plugin automatically integrates with the Syntastic checker. There are two
checkers provided: 'rustc', and 'cargo'. The latter invokes 'Cargo' in order to
build code, and the former delivers a single edited '.rs' file as a compilation
target directly to the Rust compiler, `rustc`.

Because Cargo is almost exclusively being used for building Rust code these
days, 'cargo' is the default checker.

let g:syntastic_rust_checkers = ['cargo']

If you would like to change it, you can set `g:syntastic_rust_checkers` to a
different value.

g:rust_cargo_avoid_whole_workspace
b:rust_cargo_avoid_whole_workspace

g:rust_cargo_avoid_whole_workspace
When editing a crate that is part of a Cargo workspace, and this
option is set to 1 (the default), then 'cargo' will be executed
directly in that crate directory instead of in the workspace
directory. Setting 0 prevents this behavior - however be aware that if
you are working in large workspace, Cargo commands may take more time,
plus the Syntastic error list may include all the crates in the
workspace.

let g:rust_cargo_avoid_whole_workspace = 0

g:rust_cargo_check_all_targets
b:rust_cargo_check_all_targets

g:rust_cargo_check_all_targets
When set to 1, the `--all-targets` option will be passed to cargo when
Syntastic executes it, allowing the linting of all targets under the
package.
The default is 0.

g:rust_cargo_check_all_features
b:rust_cargo_check_all_features

g:rust_cargo_check_all_features
When set to 1, the `--all-features` option will be passed to cargo when
Syntastic executes it, allowing the linting of all features of the

ft_rust.txt — 1830

package.
The default is 0.

g:rust_cargo_check_examples
b:rust_cargo_check_examples

g:rust_cargo_check_examples
When set to 1, the `--examples` option will be passed to cargo when
Syntastic executes it, to prevent the exclusion of examples from
linting. The examples are normally under the `examples/` directory of
the crate.
The default is 0.

g:rust_cargo_check_tests
b:rust_cargo_check_tests

g:rust_cargo_check_tests
When set to 1, the `--tests` option will be passed to cargo when
Syntastic executes it, to prevent the exclusion of tests from linting.
The tests are normally under the `tests/` directory of the crate.
The default is 0.

g:rust_cargo_check_benches
b:rust_cargo_check_benches

g:rust_cargo_check_benches
When set to 1, the `--benches` option will be passed to cargo when
Syntastic executes it. The benches are normally under the `benches/`
directory of the crate.
The default is 0.

Integration with auto-pairs rust-auto-pairs

This plugin automatically configures the auto-pairs plugin not to duplicate
single quotes, which are used more often for lifetime annotations than for
single character literals.

g:rust_keep_autopairs_default
g:rust_keep_autopairs_default

Don't override auto-pairs default for the Rust filetype. The default
is 0.

==
COMMANDS rust-commands

Invoking Cargo

This plug defines very simple shortcuts for invoking Cargo from with Vim.

:Cargo <args> :Cargo
Runs 'cargo' with the provided arguments.

:Cbuild <args> :Cbuild
Shortcut for 'cargo build`.

:Cclean <args> :Cclean
Shortcut for 'cargo clean`.

:Cdoc <args> :Cdoc
Shortcut for 'cargo doc`.

ft_rust.txt — 1831

:Cinit <args> :Cinit
Shortcut for 'cargo init`.

:Crun <args> :Crun
Shortcut for 'cargo run`.

:Ctest <args> :Ctest
Shortcut for 'cargo test`.

:Cupdate <args> :Cupdate
Shortcut for 'cargo update`.

:Cbench <args> :Cbench
Shortcut for 'cargo bench`.

:Csearch <args> :Csearch
Shortcut for 'cargo search`.

:Cpublish <args> :Cpublish
Shortcut for 'cargo publish`.

:Cinstall <args> :Cinstall
Shortcut for 'cargo install`.

:Cruntarget <args> :Cruntarget
Shortcut for 'cargo run --bin' or 'cargo run --example',
depending on the currently open buffer.

Formatting

:RustFmt :RustFmt
Runs g:rustfmt_command on the current buffer. If
g:rustfmt_options is set then those will be passed to the
executable.

If g:rustfmt_fail_silently is 0 (the default) then it
will populate the location-list with the errors from
g:rustfmt_command . If g:rustfmt_fail_silently is set to 1
then it will not populate the location-list .

:RustFmtRange :RustFmtRange
Runs g:rustfmt_command with selected range. See
:RustFmt for any other information.

Playpen integration

:RustPlay :RustPlay
This command will only work if you have web-api.vim installed
(available at https://github.com/mattn/webapi-vim). It sends the
current selection, or if nothing is selected, the entirety of the
current buffer to the Rust playpen, and emits a message with the
shortened URL to the playpen.

g:rust_playpen_url is the base URL to the playpen, by default
"https://play.rust-lang.org/".

ft_rust.txt — 1832

https://github.com/mattn/webapi-vim
https://play.rust-lang.org/

g:rust_shortener_url is the base url for the shorterner, by
default "https://is.gd/"

g:rust_clip_command is the command to run to copy the
playpen url to the clipboard of your system.

Evaluation of a single Rust file

NOTE: These commands are useful only when working with standalone Rust files,
which is usually not the case for common Rust development. If you wish to
building Rust crates from with Vim can should use Vim's make, Syntastic, or
functionality from other plugins.

:RustRun [args] :RustRun
:RustRun! [rustc-args] [--] [args]

Compiles and runs the current file. If it has unsaved changes,
it will be saved first using :update . If the current file is
an unnamed buffer, it will be written to a temporary file
first. The compiled binary is always placed in a temporary
directory, but is run from the current directory.

The arguments given to :RustRun will be passed to the
compiled binary.

If ! is specified, the arguments are passed to rustc instead.
A "--" argument will separate the rustc arguments from the
arguments passed to the binary.

If g:rustc_path is defined, it is used as the path to rustc.
Otherwise it is assumed rustc can be found in $PATH.

:RustExpand [args] :RustExpand
:RustExpand! [TYPE] [args]

Expands the current file using --pretty and displays the
results in a new split. If the current file has unsaved
changes, it will be saved first using :update . If the
current file is an unnamed buffer, it will be written to a
temporary file first.

The arguments given to :RustExpand will be passed to rustc.
This is largely intended for specifying various --cfg
configurations.

If ! is specified, the first argument is the expansion type to
pass to rustc --pretty. Otherwise it will default to
"expanded".

If g:rustc_path is defined, it is used as the path to rustc.
Otherwise it is assumed rustc can be found in $PATH.

:RustEmitIr [args] :RustEmitIr
Compiles the current file to LLVM IR and displays the results
in a new split. If the current file has unsaved changes, it
will be saved first using :update . If the current file is an
unnamed buffer, it will be written to a temporary file first.

The arguments given to :RustEmitIr will be passed to rustc.

ft_rust.txt — 1833

https://is.gd/

If g:rustc_path is defined, it is used as the path to rustc.
Otherwise it is assumed rustc can be found in $PATH.

:RustEmitAsm [args] :RustEmitAsm
Compiles the current file to assembly and displays the results
in a new split. If the current file has unsaved changes, it
will be saved first using :update . If the current file is an
unnamed buffer, it will be written to a temporary file first.

The arguments given to :RustEmitAsm will be passed to rustc.

If g:rustc_path is defined, it is used as the path to rustc.
Otherwise it is assumed rustc can be found in $PATH.

Running test(s)

:[N]RustTest[!] [options] :RustTest
Runs a test under the cursor when the current buffer is in a
cargo project with "cargo test" command. If the command did
not find any test function under the cursor, it stops with an
error message.

When N is given, adjust the size of the new window to N lines
or columns.

When ! is given, runs all tests regardless of current cursor
position.

When [options] is given, it is passed to "cargo" command
arguments.

When the current buffer is outside cargo project, the command
runs "rustc --test" command instead of "cargo test" as
fallback. All tests are run regardless of adding ! since there
is no way to run specific test function with rustc. [options]
is passed to "rustc" command arguments in the case.

Takes optional modifiers (see <mods>):
:tab RustTest
:belowright 16RustTest
:leftabove vert 80RustTest

rust.vim Debugging

:RustInfo :RustInfo
Emits debugging info of the Vim Rust plugin.

:RustInfoToClipboard :RustInfoClipboard
Saves debugging info of the Vim Rust plugin to the default
register.

:RustInfoToFile [filename] :RustInfoToFile
Saves debugging info of the Vim Rust plugin to the given file,
overwriting it.

==

ft_rust.txt — 1834

MAPPINGS rust-mappings

This plugin defines mappings for [[and]] to support hanging indents.

==

ft_rust.txt — 1835

ft_rust.txt — 1836

ft_sql.txt For Vim version 9.1. Last change: 2022 Apr 06

by David Fishburn

This is a filetype plugin to work with SQL files.

The Structured Query Language (SQL) is a standard which specifies statements
that allow a user to interact with a relational database. Vim includes
features for navigation, indentation and syntax highlighting.

1. Navigation sql-navigation
1.1 Matchit sql-matchit
1.2 Text Object Motions sql-object-motions
1.3 Predefined Object Motions sql-predefined-objects
1.4 Macros sql-macros

2. SQL Dialects sql-dialects
2.1 SQLSetType SQLSetType
2.2 SQLGetType SQLGetType
2.3 SQL Dialect Default sql-type-default

3. Adding new SQL Dialects sql-adding-dialects
4. OMNI SQL Completion sql-completion

4.1 Static mode sql-completion-static
4.2 Dynamic mode sql-completion-dynamic
4.3 Tutorial sql-completion-tutorial

4.3.1 Complete Tables sql-completion-tables
4.3.2 Complete Columns sql-completion-columns
4.3.3 Complete Procedures sql-completion-procedures
4.3.4 Complete Views sql-completion-views

4.4 Completion Customization sql-completion-customization
4.5 SQL Maps sql-completion-maps
4.6 Using with other filetypes sql-completion-filetypes

==
1. Navigation sql-navigation

The SQL ftplugin provides a number of options to assist with file
navigation.

1.1 Matchit sql-matchit

The matchit plugin (http://www.vim.org/scripts/script.php?script_id=39)
provides many additional features and can be customized for different
languages. The matchit plugin is configured by defining a local
buffer variable, b:match_words. Pressing the % key while on various
keywords will move the cursor to its match. For example, if the cursor
is on an "if", pressing % will cycle between the "else", "elseif" and
"end if" keywords.

The following keywords are supported:
if
elseif | elsif
else [if]
end if

[while condition] loop
leave
break
continue
exit

ft_sql.txt — 1837

end loop

for
leave
break
continue
exit

end loop

do
statements

doend

case
when
when
default
end case

merge
when not matched
when matched

create[or replace] procedure|function|event
returns

1.2 Text Object Motions sql-object-motions

Vim has a number of predefined keys for working with text object-motions .
This filetype plugin attempts to translate these keys to maps which make sense
for the SQL language.

The following Normal mode and Visual mode maps exist (when you edit a SQL
file):

]] move forward to the next 'begin'
[[move backwards to the previous 'begin'
][move forward to the next 'end'
[] move backwards to the previous 'end'

1.3 Predefined Object Motions sql-predefined-objects

Most relational databases support various standard features, tables, indices,
triggers and stored procedures. Each vendor also has a variety of proprietary
objects. The next set of maps have been created to help move between these
objects. Depends on which database vendor you are using, the list of objects
must be configurable. The filetype plugin attempts to define many of the
standard objects, plus many additional ones. In order to make this as
flexible as possible, you can override the list of objects from within your
vimrc with the following:

let g:ftplugin_sql_objects = 'function,procedure,event,table,trigger' ..
\ ',schema,service,publication,database,datatype,domain' ..
\ ',index,subscription,synchronization,view,variable'

The following Normal mode and Visual mode maps have been created which use
the above list:

]} move forward to the next 'create <object name>'
[{ move backward to the previous 'create <object name>'

ft_sql.txt — 1838

Repeatedly pressing]} will cycle through each of these create statements:
create table t1 (

...
);

create procedure p1
begin

...
end;

create index i1 on t1 (c1);

The default setting for g:ftplugin_sql_objects is:
let g:ftplugin_sql_objects = 'function,procedure,event,' ..

\ '\\(existing\\\\|global\\s\\+temporary\\s\\+\\)\\\{,1}' ..
\ 'table,trigger' ..
\ ',schema,service,publication,database,datatype,domain' ..
\ ',index,subscription,synchronization,view,variable'

The above will also handle these cases:
create table t1 (

...
);
create existing table t2 (

...
);
create global temporary table t3 (

...
);

By default, the ftplugin only searches for CREATE statements. You can also
override this via your vimrc with the following:

let g:ftplugin_sql_statements = 'create,alter'

The filetype plugin defines three types of comments:
1. --
2. //
3. /*

*
*/

The following Normal mode and Visual mode maps have been created to work
with comments:

]" move forward to the beginning of a comment
[" move forward to the end of a comment

1.4 Macros sql-macros

Vim's feature to find macro definitions, 'define' , is supported using this
regular expression:

\c\<\(VARIABLE\|DECLARE\|IN\|OUT\|INOUT\)\>

This addresses the following code:
CREATE VARIABLE myVar1 INTEGER;

CREATE PROCEDURE sp_test(
IN myVar2 INTEGER,
OUT myVar3 CHAR(30),

ft_sql.txt — 1839

INOUT myVar4 NUMERIC(20,0)
)
BEGIN

DECLARE myVar5 INTEGER;

SELECT c1, c2, c3
INTO myVar2, myVar3, myVar4
FROM T1
WHERE c4 = myVar1;

END;

Place your cursor on "myVar1" on this line:
WHERE c4 = myVar1;

^

Press any of the following keys:
[d
[D
[CTRL-D

==
2. SQL Dialects sql-dialects sql-types

sybase TSQL Transact-SQL
sqlanywhere
oracle plsql sqlj
sqlserver
mysql postgresql psql
informix

All relational databases support SQL. There is a portion of SQL that is
portable across vendors (ex. CREATE TABLE, CREATE INDEX), but there is a
great deal of vendor specific extensions to SQL. Oracle supports the
"CREATE OR REPLACE" syntax, column defaults specified in the CREATE TABLE
statement and the procedural language (for stored procedures and triggers).

The default Vim distribution ships with syntax highlighting based on Oracle's
PL/SQL. The default SQL indent script works for Oracle and SQL Anywhere.
The default filetype plugin works for all vendors and should remain vendor
neutral, but extendable.

Vim currently has support for a variety of different vendors, currently this
is via syntax scripts. Unfortunately, to flip between different syntax rules
you must either create:

1. New filetypes
2. Custom autocmds
3. Manual steps / commands

The majority of people work with only one vendor's database product, it would
be nice to specify a default in your vimrc .

2.1 SQLSetType sqlsettype SQLSetType

For the people that work with many different databases, it is nice to be
able to flip between the various vendors rules (indent, syntax) on a per
buffer basis, at any time. The ftplugin/sql.vim file defines this function:

SQLSetType

Executing this function without any parameters will set the indent and syntax

ft_sql.txt — 1840

scripts back to their defaults, see sql-type-default . If you have turned
off Vi's compatibility mode, 'compatible' , you can use the <Tab> key to
complete the optional parameter.

After typing the function name and a space, you can use the completion to
supply a parameter. The function takes the name of the Vim script you want to
source. Using the cmdline-completion feature, the SQLSetType function will
search the 'runtimepath' for all Vim scripts with a name containing 'sql'.
This takes the guess work out of the spelling of the names. The following are
examples:

:SQLSetType
:SQLSetType sqloracle
:SQLSetType sqlanywhere
:SQLSetType sqlinformix
:SQLSetType mysql

The easiest approach is to the use <Tab> character which will first complete
the command name (SQLSetType), after a space and another <Tab>, display a list
of available Vim script names:

:SQL<Tab><space><Tab>

2.2 SQLGetType sqlgettype SQLGetType

At anytime you can determine which SQL dialect you are using by calling the
SQLGetType command. The ftplugin/sql.vim file defines this function:

SQLGetType

This will echo:
Current SQL dialect in use:sqlanywhere

2.3 SQL Dialect Default sql-type-default

As mentioned earlier, the default syntax rules for Vim is based on Oracle
(PL/SQL). You can override this default by placing one of the following in
your vimrc :

let g:sql_type_default = 'sqlanywhere'
let g:sql_type_default = 'sqlinformix'
let g:sql_type_default = 'mysql'

If you added the following to your vimrc :
let g:sql_type_default = 'sqlinformix'

The next time edit a SQL file the following scripts will be automatically
loaded by Vim:

ftplugin/sql.vim
syntax/sqlinformix.vim
indent/sql.vim

Notice indent/sqlinformix.sql was not loaded. There is no indent file
for Informix, Vim loads the default files if the specified files does not
exist.

==
3. Adding new SQL Dialects sql-adding-dialects

If you begin working with a SQL dialect which does not have any customizations
available with the default Vim distribution you can check http://www.vim.org

ft_sql.txt — 1841

http://www.vim.org

to see if any customization currently exist. If not, you can begin by cloning
an existing script. Read filetype-plugins for more details.

To help identify these scripts, try to create the files with a "sql" prefix.
If you decide you wish to create customizations for the SQLite database, you
can create any of the following:

Unix
~/.vim/syntax/sqlite.vim
~/.vim/indent/sqlite.vim

Windows
$VIM/vimfiles/syntax/sqlite.vim
$VIM/vimfiles/indent/sqlite.vim

No changes are necessary to the SQLSetType function. It will automatically
pick up the new SQL files and load them when you issue the SQLSetType command.

==
4. OMNI SQL Completion sql-completion

omni-sql-completion

Vim 7 includes a code completion interface and functions which allows plugin
developers to build in code completion for any language. Vim 7 includes
code completion for the SQL language.

There are two modes to the SQL completion plugin, static and dynamic. The
static mode populates the popups with the data generated from current syntax
highlight rules. The dynamic mode populates the popups with data retrieved
directly from a database. This includes, table lists, column lists,
procedures names and more.

4.1 Static Mode sql-completion-static

The static popups created contain items defined by the active syntax rules
while editing a file with a filetype of SQL. The plugin defines (by default)
various maps to help the user refine the list of items to be displayed.
The defaults static maps are:

imap <buffer> <C-C>a <C-\><C-O>:call sqlcomplete#Map('syntax')<CR><C-X><C-O>
imap <buffer> <C-C>k <C-\><C-O>:call sqlcomplete#Map('sqlKeyword')<CR><C-X><C-O>
imap <buffer> <C-C>f <C-\><C-O>:call sqlcomplete#Map('sqlFunction')<CR><C-X><C-O>
imap <buffer> <C-C>o <C-\><C-O>:call sqlcomplete#Map('sqlOption')<CR><C-X><C-O>
imap <buffer> <C-C>T <C-\><C-O>:call sqlcomplete#Map('sqlType')<CR><C-X><C-O>
imap <buffer> <C-C>s <C-\><C-O>:call sqlcomplete#Map('sqlStatement')<CR><C-X><C-O>

The use of "<C-C>" can be user chosen by using the following in your .vimrc
as it may not work properly on all platforms:

let g:ftplugin_sql_omni_key = '<C-C>'

The static maps (which are based on the syntax highlight groups) follow this
format:

imap <buffer> <C-C>k <C-\><C-O>:call sqlcomplete#Map('sqlKeyword')<CR><C-X><C-O>
imap <buffer> <C-C>k <C-\><C-O>:call sqlcomplete#Map('sqlKeyword\w*')<CR><C-X><C-O>

This command breaks down as:
imap - Create an insert map
<buffer> - Only for this buffer
<C-C>k - Your choice of key map
<C-\><C-O> - Execute one command, return to Insert mode
:call sqlcomplete#Map(- Allows the SQL completion plugin to perform some

housekeeping functions to allow it to be used in

ft_sql.txt — 1842

conjunction with other completion plugins.
Indicate which item you want the SQL completion
plugin to complete.
In this case we are asking the plugin to display
items from the syntax highlight group
'sqlKeyword'.
You can view a list of highlight group names to
choose from by executing the

:syntax list
command while editing a SQL file.

'sqlKeyword' - Display the items for the sqlKeyword highlight
group

'sqlKeyword\w*' - A second option available with Vim 7.4 which
uses a regular expression to determine which
syntax groups to use

)<CR> - Execute the :let command
<C-X><C-O> - Trigger the standard omni completion key stroke.

Passing in 'sqlKeyword' instructs the SQL
completion plugin to populate the popup with
items from the sqlKeyword highlight group. The
plugin will also cache this result until Vim is
restarted. The syntax list is retrieved using
the syntaxcomplete plugin.

Using the 'syntax' keyword is a special case. This instructs the
syntaxcomplete plugin to retrieve all syntax items. So this will effectively
work for any of Vim's SQL syntax files. At the time of writing this includes
10 different syntax files for the different dialects of SQL (see section 3
above, sql-dialects).

Here are some examples of the entries which are pulled from the syntax files:
All

- Contains the contents of all syntax highlight groups
Statements

- Select, Insert, Update, Delete, Create, Alter, ...
Functions

- Min, Max, Trim, Round, Date, ...
Keywords

- Index, Database, Having, Group, With
Options

- Isolation_level, On_error, Qualify_owners, Fire_triggers, ...
Types

- Integer, Char, Varchar, Date, DateTime, Timestamp, ...

4.2 Dynamic Mode sql-completion-dynamic

Dynamic mode populates the popups with data directly from a database. In
order for the dynamic feature to be enabled you must have the dbext.vim
plugin installed, (http://vim.sourceforge.net/script.php?script_id=356).

Dynamic mode is used by several features of the SQL completion plugin.
After installing the dbext plugin see the dbext-tutorial for additional
configuration and usage. The dbext plugin allows the SQL completion plugin
to display a list of tables, procedures, views and columns.

Table List
- All tables for all schema owners

Procedure List
- All stored procedures for all schema owners

View List

ft_sql.txt — 1843

- All stored procedures for all schema owners
Column List

- For the selected table, the columns that are part of the table

To enable the popup, while in INSERT mode, use the following key combinations
for each group (where <C-C> means hold the CTRL key down while pressing
the space bar):

Table List - <C-C>t
- <C-X><C-O> (the default map assumes tables)

Stored Procedure List - <C-C>p
View List - <C-C>v
Column List - <C-C>c

Drilling In / Out - When viewing a popup window displaying the list
of tables, you can press <Right>, this will
replace the table currently highlighted with
the column list for that table.

- When viewing a popup window displaying the list
of columns, you can press <Left>, this will
replace the column list with the list of tables.

- This allows you to quickly drill down into a
table to view its columns and back again.

- <Right> and <Left> can also be chosen via
your .vimrc

let g:ftplugin_sql_omni_key_right = '<Right>'
let g:ftplugin_sql_omni_key_left = '<Left>'

The SQL completion plugin caches various lists that are displayed in
the popup window. This makes the re-displaying of these lists very
fast. If new tables or columns are added to the database it may become
necessary to clear the plugins cache. The default map for this is:

imap <buffer> <C-C>R <C-\><C-O>:call sqlcomplete#Map('ResetCache')<CR><C-X><C-O>

4.3 SQL Tutorial sql-completion-tutorial

This tutorial is designed to take you through the common features of the SQL
completion plugin so that:

a) You gain familiarity with the plugin
b) You are introduced to some of the more common features
c) Show how to customize it to your preferences
d) Demonstrate "Best of Use" of the plugin (easiest way to configure).

First, create a new buffer:
:e tutorial.sql

Static features

To take you through the various lists, simply enter insert mode, hit:

<C-C>s (show SQL statements)
At this point, you can page down through the list until you find "select".
If you are familiar with the item you are looking for, for example you know
the statement begins with the letter "s". You can type ahead (without the
quotes) "se" then press:

<C-Space>t
Assuming "select" is highlighted in the popup list press <Enter> to choose
the entry. Now type:

* fr<C-C>a (show all syntax items)

ft_sql.txt — 1844

choose "from" from the popup list.

When writing stored procedures using the "type" list is useful. It contains
a list of all the database supported types. This may or may not be true
depending on the syntax file you are using. The SQL Anywhere syntax file
(sqlanywhere.vim) has support for this:

BEGIN
DECLARE customer_id <C-C>T <-- Choose a type from the list

Dynamic features

To take advantage of the dynamic features you must first install the
dbext.vim plugin (http://vim.sourceforge.net/script.php?script_id=356). It
also comes with a tutorial. From the SQL completion plugin's perspective,
the main feature dbext provides is a connection to a database. dbext
connection profiles are the most efficient mechanism to define connection
information. Once connections have been setup, the SQL completion plugin
uses the features of dbext in the background to populate the popups.

What follows assumes dbext.vim has been correctly configured, a simple test
is to run the command, :DBListTable. If a list of tables is shown, you know
dbext.vim is working as expected. If not, please consult the dbext.txt
documentation.

Assuming you have followed the dbext-tutorial you can press <C-C>t to
display a list of tables. There is a delay while dbext is creating the table
list. After the list is displayed press <C-W>. This will remove both the
popup window and the table name already chosen when the list became active.

4.3.1 Table Completion: sql-completion-tables

Press <C-C>t to display a list of tables from within the database you
have connected via the dbext plugin.
NOTE: All of the SQL completion popups support typing a prefix before pressing
the key map. This will limit the contents of the popup window to just items
beginning with those characters.

4.3.2 Column Completion: sql-completion-columns

The SQL completion plugin can also display a list of columns for particular
tables. The column completion is triggered via <C-C>c.

NOTE: The following example uses <Right> to trigger a column list while
the popup window is active.

Example of using column completion:
- Press <C-C>t again to display the list of tables.
- When the list is displayed in the completion window, press <Right>,

this will replace the list of tables, with a list of columns for the
table highlighted (after the same short delay).

- If you press <Left>, this will again replace the column list with the
list of tables. This allows you to drill into tables and column lists
very quickly.

- Press <Right> again while the same table is highlighted. You will
notice there is no delay since the column list has been cached. If you
change the schema of a cached table you can press <C-C>R, which
clears the SQL completion cache.

- NOTE: <Right> and <Left> have been designed to work while the
completion window is active. If the completion popup window is

ft_sql.txt — 1845

not active, a normal <Right> or <Left> will be executed.

Let's look at how we can build a SQL statement dynamically. A select statement
requires a list of columns. There are two ways to build a column list using
the SQL completion plugin.

One column at a time:
1. After typing SELECT press <C-C>t to display a list of tables.
2. Choose a table from the list.
3. Press <Right> to display a list of columns.
4. Choose the column from the list and press enter.
5. Enter a "," and press <C-C>c. Generating a column list

generally requires having the cursor on a table name. The plugin
uses this name to determine what table to retrieve the column list.
In this step, since we are pressing <C-C>c without the cursor
on a table name the column list displayed will be for the previous
table. Choose a different column and move on.

6. Repeat step 5 as often as necessary.
All columns for a table:

1. After typing SELECT press <C-C>t to display a list of tables.
2. Highlight the table you need the column list for.
3. Press <Enter> to choose the table from the list.
4. Press <C-C>l to request a comma-separated list of all columns

for this table.
5. Based on the table name chosen in step 3, the plugin attempts to

decide on a reasonable table alias. You are then prompted to
either accept of change the alias. Press OK.

6. The table name is replaced with the column list of the table is
replaced with the comma separate list of columns with the alias
prepended to each of the columns.

7. Step 3 and 4 can be replaced by pressing <C-C>L, which has
a <C-Y> embedded in the map to choose the currently highlighted
table in the list.

There is a special provision when writing select statements. Consider the
following statement:

select *
from customer c,

contact cn,
department as dp,
employee e,
site_options so

where c.

In INSERT mode after typing the final "c." which is an alias for the
"customer" table, you can press either <C-C>c or <C-X><C-O>. This will
popup a list of columns for the customer table. It does this by looking back
to the beginning of the select statement and finding a list of the tables
specified in the FROM clause. In this case it notes that in the string
"customer c", "c" is an alias for the customer table. The optional "AS"
keyword is also supported, "customer AS c".

4.3.3 Procedure Completion: sql-completion-procedures

Similar to the table list, <C-C>p, will display a list of stored
procedures stored within the database.

4.3.4 View Completion: sql-completion-views

Similar to the table list, <C-C>v, will display a list of views in the

ft_sql.txt — 1846

database.

4.4 Completion Customization sql-completion-customization

The SQL completion plugin can be customized through various options set in
your vimrc :

omni_sql_no_default_maps
- Default: This variable is not defined
- If this variable is defined, no maps are created for OMNI

completion. See sql-completion-maps for further discussion.

omni_sql_use_tbl_alias
- Default: a
- This setting is only used when generating a comma-separated
column list. By default the map is <C-C>l. When generating
a column list, an alias can be prepended to the beginning of each
column, for example: e.emp_id, e.emp_name. This option has three
settings:

n - do not use an alias
d - use the default (calculated) alias
a - ask to confirm the alias name

An alias is determined following a few rules:
1. If the table name has an '_', then use it as a separator:

MY_TABLE_NAME --> MTN
my_table_name --> mtn
My_table_NAME --> MtN

2. If the table name does NOT contain an '_', but DOES use
mixed case then the case is used as a separator:
MyTableName --> MTN

3. If the table name does NOT contain an '_', and does NOT
use mixed case then the first letter of the table is used:
mytablename --> m
MYTABLENAME --> M

omni_sql_ignorecase
- Default: Current setting for 'ignorecase'
- Valid settings are 0 or 1.
- When entering a few letters before initiating completion, the list

will be filtered to display only the entries which begin with the
list of characters. When this option is set to 0, the list will be
filtered using case sensitivity.

omni_sql_include_owner
- Default: 0, unless dbext.vim 3.00 has been installed
- Valid settings are 0 or 1.
- When completing tables, procedure or views and using dbext.vim 3.00

or higher the list of objects will also include the owner name.
When completing these objects and omni_sql_include_owner is enabled
the owner name will be replaced.

omni_sql_precache_syntax_groups
- Default:

['syntax','sqlKeyword','sqlFunction','sqlOption','sqlType','sqlStatement']
- sqlcomplete can be used in conjunction with other completion

plugins. This is outlined at sql-completion-filetypes . When the
filetype is changed temporarily to SQL, the sqlcompletion plugin
will cache the syntax groups listed in the List specified in this

ft_sql.txt — 1847

option.

4.5 SQL Maps sql-completion-maps

The default SQL maps have been described in other sections of this document in
greater detail. Here is a list of the maps with a brief description of each.

Static Maps

These are maps which use populate the completion list using Vim's syntax
highlighting rules.

<C-C>a
- Displays all SQL syntax items.

<C-C>k
- Displays all SQL syntax items defined as 'sqlKeyword'.

<C-C>f
- Displays all SQL syntax items defined as 'sqlFunction.

<C-C>o
- Displays all SQL syntax items defined as 'sqlOption'.

<C-C>T
- Displays all SQL syntax items defined as 'sqlType'.

<C-C>s
- Displays all SQL syntax items defined as 'sqlStatement'.

Dynamic Maps

These are maps which use populate the completion list using the dbext.vim
plugin.

<C-C>t
- Displays a list of tables.

<C-C>p
- Displays a list of procedures.

<C-C>v
- Displays a list of views.

<C-C>c
- Displays a list of columns for a specific table.

<C-C>l
- Displays a comma-separated list of columns for a specific table.

<C-C>L
- Displays a comma-separated list of columns for a specific table.

This should only be used when the completion window is active.
<Right>

- Displays a list of columns for the table currently highlighted in
the completion window. <Right> is not recognized on most Unix
systems, so this maps is only created on the Windows platform.
If you would like the same feature on Unix, choose a different key
and make the same map in your vimrc.

<Left>
- Displays the list of tables.

<Left> is not recognized on most Unix systems, so this maps is
only created on the Windows platform. If you would like the same
feature on Unix, choose a different key and make the same map in
your vimrc.

<C-C>R
- This maps removes all cached items and forces the SQL completion

to regenerate the list of items.

Customizing Maps

ft_sql.txt — 1848

You can create as many additional key maps as you like. Generally, the maps
will be specifying different syntax highlight groups.

If you do not wish the default maps created or the key choices do not work on
your platform (often a case on *nix) you define the following variable in
your vimrc :

let g:omni_sql_no_default_maps = 1

Do not edit ftplugin/sql.vim directly! If you change this file your changes
will be over written on future updates. Vim has a special directory structure
which allows you to make customizations without changing the files that are
included with the Vim distribution. If you wish to customize the maps
create an after/ftplugin/sql.vim (see after-directory) and place the same
maps from the ftplugin/sql.vim in it using your own key strokes. <C-C> was
chosen since it will work on both Windows and *nix platforms. On the windows
platform you can also use <C-Space> or ALT keys.

4.6 Using with other filetypes sql-completion-filetypes

Many times SQL can be used with different filetypes. For example Perl, Java,
PHP, Javascript can all interact with a database. Often you need both the SQL
completion and the completion capabilities for the current language you are
editing.

This can be enabled easily with the following steps (assuming a Perl file):
1. :e test.pl
2. :set filetype=sql
3. :set ft=perl

Step 1

Begins by editing a Perl file. Vim automatically sets the filetype to
"perl". By default, Vim runs the appropriate filetype file
ftplugin/perl.vim. If you are using the syntax completion plugin by following
the directions at ft-syntax-omni then the 'omnifunc' option has been set to
"syntax#Complete". Pressing <C-X><C-O> will display the omni popup containing
the syntax items for Perl.

Step 2

Manually setting the filetype to 'sql' will also fire the appropriate filetype
files ftplugin/sql.vim. This file will define a number of buffer specific
maps for SQL completion, see sql-completion-maps . Now these maps have
been created and the SQL completion plugin has been initialized. All SQL
syntax items have been cached in preparation. The SQL filetype script detects
we are attempting to use two different completion plugins. Since the SQL maps
begin with <C-C>, the maps will toggle the 'omnifunc' when in use. So you
can use <C-X><C-O> to continue using the completion for Perl (using the syntax
completion plugin) and <C-C> to use the SQL completion features.

Step 3

Setting the filetype back to Perl sets all the usual "perl" related items back
as they were.

ft_sql.txt — 1849

ft_sql.txt — 1850

digraph.txt For Vim version 9.1. Last change: 2023 Oct 20

VIM REFERENCE MANUAL by Bram Moolenaar

Digraphs digraph digraphs Digraphs

Digraphs are used to enter characters that normally cannot be entered by
an ordinary keyboard. These are mostly printable non-ASCII characters. The
digraphs are easier to remember than the decimal number that can be entered
with CTRL-V (see i_CTRL-V).

There is a brief introduction on digraphs in the user manual: 24.9
An alternative is using the 'keymap' option.

1. Defining digraphs digraphs-define
2. Using digraphs digraphs-use
3. Default digraphs digraphs-default

==
1. Defining digraphs digraphs-define

:dig :digraphs
:dig[raphs][!] Show currently defined digraphs.

With [!] headers are used to make it a bit easier to
find a specific character.

E104 E39
:dig[raphs] {char1}{char2} {number} ...

Add digraph {char1}{char2} to the list. {number} is
the decimal representation of the character. Normally
it is the Unicode character, see digraph-encoding .
Example:

:digr e: 235 a: 228
You can use `:exe` to enter a hex number:

:exe 'digr += ' .. 0x2A72
Avoid defining a digraph with '_' (underscore) as the
first character, it has a special meaning in the
future.
NOTE: This command cannot add a digraph that starts
with a white space. If you want to add such digraph,
you can use digraph_set() instead.

Vim is normally compiled with the +digraphs feature. If the feature is
disabled, the ":digraph" command will display an error message.

Example of the output of ":digraphs":
TH Þ 222 ss ß 223 a! à 224 a' á 225 a> â 226 a? ã 227 a: ä 228

The first two characters in each column are the characters you have to type to
enter the digraph.

In the middle of each column is the resulting character. This may be mangled
if you look at it on a system that does not support digraphs or if you print
this file.

digraph-encoding
The decimal number normally is the Unicode number of the character. Note that
the meaning doesn't change when 'encoding' changes. The character will be

digraph.txt — 1851

converted from Unicode to 'encoding' when needed. This does require the
conversion to be available, it might fail. For the NUL character you will see
"10". That's because NUL characters are internally represented with a NL
character. When you write the file it will become a NUL character.

Example:
digraph oe 339

This defines the "oe" digraph for a character that is number 339 in Unicode.

==
2. Using digraphs digraphs-use

There are two methods to enter digraphs: i_digraph
CTRL-K {char1} {char2} or
{char1} <BS> {char2}

The first is always available; the second only when the 'digraph' option is
set.

If a digraph with {char1}{char2} does not exist, Vim searches for a digraph
{char2}{char1}. This helps when you don't remember which character comes
first.

Note that when you enter CTRL-K {char1}, where {char1} is a special key, Vim
enters the code for that special key. This is not a digraph.

Once you have entered the digraph, Vim treats the character like a normal
character that occupies only one character in the file and on the screen.
Example:

'B' <BS> 'B' will enter the broken '|' character (166)
'a' <BS> '>' will enter an 'a' with a circumflex (226)
CTRL-K '-' '-' will enter a soft hyphen (173)

The current digraphs are listed with the ":digraphs" command. Some of the
default ones are listed below digraph-table .

For CTRL-K, there is one general digraph: CTRL-K <Space> {char} will enter
{char} with the highest bit set. You can use this to enter meta-characters.

The <Esc> character cannot be part of a digraph. When hitting <Esc>, Vim
stops digraph entry and ends Insert mode or Command-line mode, just like
hitting an <Esc> out of digraph context. Use CTRL-V 155 to enter meta-ESC
(CSI).

If you accidentally typed an 'a' that should be an 'e', you will type 'a' <BS>
'e'. But that is a digraph, so you will not get what you want. To correct
this, you will have to type <BS> e again. To avoid this don't set the
'digraph' option and use CTRL-K to enter digraphs.

You may have problems using Vim with characters which have a value above 128.
For example: You insert ue (u-umlaut) and the editor echoes \334 in Insert
mode. After leaving the Insert mode everything is fine. On some Unix systems
this means you have to define the environment-variable LC_CTYPE. If you are
using csh, then put the following line in your .cshrc:

setenv LC_CTYPE en_US.utf8
(or similar for a different language or country). The value must be a valid
locale on your system, i.e. on Unix-like systems it must be present in the
output of

locale -a

==

digraph.txt — 1852

3. Default digraphs digraphs-default

Vim comes with a set of default digraphs. Check the output of ":digraphs" to
see them.

On most systems Vim uses the same digraphs. They work for the Unicode and
ISO-8859-1 character sets. These default digraphs are taken from the RFC1345
mnemonics. To make it easy to remember the mnemonic, the second character has
a standard meaning:

char name char meaning
Exclamation mark ! Grave
Apostrophe ' Acute accent
Greater-Than sign > Circumflex accent
Question mark ? Tilde
Hyphen-Minus - Macron
Left parenthesis (Breve
Full stop . Dot above
Colon : Diaeresis
Comma , Cedilla
Underline _ Underline
Solidus / Stroke
Quotation mark " Double acute accent
Semicolon ; Ogonek
Less-Than sign < Caron
Zero 0 Ring above
Two 2 Hook
Nine 9 Horn

Equals = Cyrillic (= used as second char)
Asterisk * Greek
Percent sign % Greek/Cyrillic special
Plus + smalls: Arabic, capitals: Hebrew
Three 3 some Latin/Greek/Cyrillic letters
Four 4 Bopomofo
Five 5 Hiragana
Six 6 Katakana

Example: a: is ä and o: is ö

These are the RFC1345 digraphs for the one-byte characters. See the output of
":digraphs" for the others.

EURO
euro euro-digraph

Exception: RFC1345 doesn't specify the euro sign. In Vim the digraph =e was
added for this. Note the difference between latin1, where the digraph Cu is
used for the currency sign, and latin9 (iso-8859-15), where the digraph =e is
used for the euro sign, while both of them are the character 164, 0xa4. For
compatibility with zsh Eu can also be used for the euro sign.

ROUBLE

The rouble sign was added in 2014 as 0x20bd. Vim supports the digraphs =R and
=P for this. Note that R= and P= are other characters.

QUADRUPLE PRIME

The quadruple prime using the digraph 4' was added in 2023. Although it is
not part of RFC 1345, it supplements the existing digraph implementation as

digraph.txt — 1853

there already exist digraphs for PRIME, DOUBLE PRIME and TRIPLE PRIME using
the 1', 2' and 3' digraphs.

digraph-table
char digraph hex dec official name
^@ NU 0x00 0 NULL (NUL)
^A SH 0x01 1 START OF HEADING (SOH)
^B SX 0x02 2 START OF TEXT (STX)
^C EX 0x03 3 END OF TEXT (ETX)
^D ET 0x04 4 END OF TRANSMISSION (EOT)
^E EQ 0x05 5 ENQUIRY (ENQ)
^F AK 0x06 6 ACKNOWLEDGE (ACK)
^G BL 0x07 7 BELL (BEL)
^H BS 0x08 8 BACKSPACE (BS)
^I HT 0x09 9 CHARACTER TABULATION (HT)
^@ LF 0x0a 10 LINE FEED (LF)
^K VT 0x0b 11 LINE TABULATION (VT)
^L FF 0x0c 12 FORM FEED (FF)
^M CR 0x0d 13 CARRIAGE RETURN (CR)
^N SO 0x0e 14 SHIFT OUT (SO)
^O SI 0x0f 15 SHIFT IN (SI)
^P DL 0x10 16 DATALINK ESCAPE (DLE)
^Q D1 0x11 17 DEVICE CONTROL ONE (DC1)
^R D2 0x12 18 DEVICE CONTROL TWO (DC2)
^S D3 0x13 19 DEVICE CONTROL THREE (DC3)
^T D4 0x14 20 DEVICE CONTROL FOUR (DC4)
^U NK 0x15 21 NEGATIVE ACKNOWLEDGE (NAK)
^V SY 0x16 22 SYNCHRONOUS IDLE (SYN)
^W EB 0x17 23 END OF TRANSMISSION BLOCK (ETB)
^X CN 0x18 24 CANCEL (CAN)
^Y EM 0x19 25 END OF MEDIUM (EM)
^Z SB 0x1a 26 SUBSTITUTE (SUB)
^[EC 0x1b 27 ESCAPE (ESC)
^\ FS 0x1c 28 FILE SEPARATOR (IS4)
^] GS 0x1d 29 GROUP SEPARATOR (IS3)
^^ RS 0x1e 30 RECORD SEPARATOR (IS2)
^_ US 0x1f 31 UNIT SEPARATOR (IS1)

SP 0x20 32 SPACE
Nb 0x23 35 NUMBER SIGN
$ DO 0x24 36 DOLLAR SIGN
@ At 0x40 64 COMMERCIAL AT
[<(0x5b 91 LEFT SQUARE BRACKET
\ // 0x5c 92 REVERSE SOLIDUS
])> 0x5d 93 RIGHT SQUARE BRACKET
^ '> 0x5e 94 CIRCUMFLEX ACCENT
` '! 0x60 96 GRAVE ACCENT
{ (! 0x7b 123 LEFT CURLY BRACKET
| !! 0x7c 124 VERTICAL LINE
} !) 0x7d 125 RIGHT CURLY BRACKET
~ '? 0x7e 126 TILDE
^? DT 0x7f 127 DELETE (DEL)
~@ PA 0x80 128 PADDING CHARACTER (PAD)
~A HO 0x81 129 HIGH OCTET PRESET (HOP)
~B BH 0x82 130 BREAK PERMITTED HERE (BPH)
~C NH 0x83 131 NO BREAK HERE (NBH)
~D IN 0x84 132 INDEX (IND)
~E NL 0x85 133 NEXT LINE (NEL)
~F SA 0x86 134 START OF SELECTED AREA (SSA)
~G ES 0x87 135 END OF SELECTED AREA (ESA)
~H HS 0x88 136 CHARACTER TABULATION SET (HTS)

digraph.txt — 1854

~I HJ 0x89 137 CHARACTER TABULATION WITH JUSTIFICATION (HTJ)
~J VS 0x8a 138 LINE TABULATION SET (VTS)
~K PD 0x8b 139 PARTIAL LINE FORWARD (PLD)
~L PU 0x8c 140 PARTIAL LINE BACKWARD (PLU)
~M RI 0x8d 141 REVERSE LINE FEED (RI)
~N S2 0x8e 142 SINGLE-SHIFT TWO (SS2)
~O S3 0x8f 143 SINGLE-SHIFT THREE (SS3)
~P DC 0x90 144 DEVICE CONTROL STRING (DCS)
~Q P1 0x91 145 PRIVATE USE ONE (PU1)
~R P2 0x92 146 PRIVATE USE TWO (PU2)
~S TS 0x93 147 SET TRANSMIT STATE (STS)
~T CC 0x94 148 CANCEL CHARACTER (CCH)
~U MW 0x95 149 MESSAGE WAITING (MW)
~V SG 0x96 150 START OF GUARDED AREA (SPA)
~W EG 0x97 151 END OF GUARDED AREA (EPA)
~X SS 0x98 152 START OF STRING (SOS)
~Y GC 0x99 153 SINGLE GRAPHIC CHARACTER INTRODUCER (SGCI)
~Z SC 0x9a 154 SINGLE CHARACTER INTRODUCER (SCI)
~[CI 0x9b 155 CONTROL SEQUENCE INTRODUCER (CSI)
~\ ST 0x9c 156 STRING TERMINATOR (ST)
~] OC 0x9d 157 OPERATING SYSTEM COMMAND (OSC)
~^ PM 0x9e 158 PRIVACY MESSAGE (PM)
~_ AC 0x9f 159 APPLICATION PROGRAM COMMAND (APC)
| NS 0xa0 160 NO-BREAK SPACE
¡ !I 0xa1 161 INVERTED EXCLAMATION MARK
¢ Ct 0xa2 162 CENT SIGN
£ Pd 0xa3 163 POUND SIGN
¤ Cu 0xa4 164 CURRENCY SIGN
¥ Ye 0xa5 165 YEN SIGN
¦ BB 0xa6 166 BROKEN BAR
§ SE 0xa7 167 SECTION SIGN
¨ ': 0xa8 168 DIAERESIS
© Co 0xa9 169 COPYRIGHT SIGN
ª -a 0xaa 170 FEMININE ORDINAL INDICATOR
« << 0xab 171 LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
¬ NO 0xac 172 NOT SIGN
 -- 0xad 173 SOFT HYPHEN
® Rg 0xae 174 REGISTERED SIGN
¯ 'm 0xaf 175 MACRON
° DG 0xb0 176 DEGREE SIGN
± +- 0xb1 177 PLUS-MINUS SIGN
² 2S 0xb2 178 SUPERSCRIPT TWO
³ 3S 0xb3 179 SUPERSCRIPT THREE
´ '' 0xb4 180 ACUTE ACCENT
µ My 0xb5 181 MICRO SIGN
¶ PI 0xb6 182 PILCROW SIGN
· .M 0xb7 183 MIDDLE DOT
¸ ', 0xb8 184 CEDILLA
¹ 1S 0xb9 185 SUPERSCRIPT ONE
º -o 0xba 186 MASCULINE ORDINAL INDICATOR
» >> 0xbb 187 RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
¼ 14 0xbc 188 VULGAR FRACTION ONE QUARTER
½ 12 0xbd 189 VULGAR FRACTION ONE HALF
¾ 34 0xbe 190 VULGAR FRACTION THREE QUARTERS
¿ ?I 0xbf 191 INVERTED QUESTION MARK
À A! 0xc0 192 LATIN CAPITAL LETTER A WITH GRAVE
Á A' 0xc1 193 LATIN CAPITAL LETTER A WITH ACUTE
Â A> 0xc2 194 LATIN CAPITAL LETTER A WITH CIRCUMFLEX
Ã A? 0xc3 195 LATIN CAPITAL LETTER A WITH TILDE
Ä A: 0xc4 196 LATIN CAPITAL LETTER A WITH DIAERESIS

digraph.txt — 1855

Å AA 0xc5 197 LATIN CAPITAL LETTER A WITH RING ABOVE
Æ AE 0xc6 198 LATIN CAPITAL LETTER AE
Ç C, 0xc7 199 LATIN CAPITAL LETTER C WITH CEDILLA
È E! 0xc8 200 LATIN CAPITAL LETTER E WITH GRAVE
É E' 0xc9 201 LATIN CAPITAL LETTER E WITH ACUTE
Ê E> 0xca 202 LATIN CAPITAL LETTER E WITH CIRCUMFLEX
Ë E: 0xcb 203 LATIN CAPITAL LETTER E WITH DIAERESIS
Ì I! 0xcc 204 LATIN CAPITAL LETTER I WITH GRAVE
Í I' 0xcd 205 LATIN CAPITAL LETTER I WITH ACUTE
Î I> 0xce 206 LATIN CAPITAL LETTER I WITH CIRCUMFLEX
Ï I: 0xcf 207 LATIN CAPITAL LETTER I WITH DIAERESIS
Ð D- 0xd0 208 LATIN CAPITAL LETTER ETH (Icelandic)
Ñ N? 0xd1 209 LATIN CAPITAL LETTER N WITH TILDE
Ò O! 0xd2 210 LATIN CAPITAL LETTER O WITH GRAVE
Ó O' 0xd3 211 LATIN CAPITAL LETTER O WITH ACUTE
Ô O> 0xd4 212 LATIN CAPITAL LETTER O WITH CIRCUMFLEX
Õ O? 0xd5 213 LATIN CAPITAL LETTER O WITH TILDE
Ö O: 0xd6 214 LATIN CAPITAL LETTER O WITH DIAERESIS
× *X 0xd7 215 MULTIPLICATION SIGN
Ø O/ 0xd8 216 LATIN CAPITAL LETTER O WITH STROKE
Ù U! 0xd9 217 LATIN CAPITAL LETTER U WITH GRAVE
Ú U' 0xda 218 LATIN CAPITAL LETTER U WITH ACUTE
Û U> 0xdb 219 LATIN CAPITAL LETTER U WITH CIRCUMFLEX
Ü U: 0xdc 220 LATIN CAPITAL LETTER U WITH DIAERESIS
Ý Y' 0xdd 221 LATIN CAPITAL LETTER Y WITH ACUTE
Þ TH 0xde 222 LATIN CAPITAL LETTER THORN (Icelandic)
ß ss 0xdf 223 LATIN SMALL LETTER SHARP S (German)
à a! 0xe0 224 LATIN SMALL LETTER A WITH GRAVE
á a' 0xe1 225 LATIN SMALL LETTER A WITH ACUTE
â a> 0xe2 226 LATIN SMALL LETTER A WITH CIRCUMFLEX
ã a? 0xe3 227 LATIN SMALL LETTER A WITH TILDE
ä a: 0xe4 228 LATIN SMALL LETTER A WITH DIAERESIS
å aa 0xe5 229 LATIN SMALL LETTER A WITH RING ABOVE
æ ae 0xe6 230 LATIN SMALL LETTER AE
ç c, 0xe7 231 LATIN SMALL LETTER C WITH CEDILLA
è e! 0xe8 232 LATIN SMALL LETTER E WITH GRAVE
é e' 0xe9 233 LATIN SMALL LETTER E WITH ACUTE
ê e> 0xea 234 LATIN SMALL LETTER E WITH CIRCUMFLEX
ë e: 0xeb 235 LATIN SMALL LETTER E WITH DIAERESIS
ì i! 0xec 236 LATIN SMALL LETTER I WITH GRAVE
í i' 0xed 237 LATIN SMALL LETTER I WITH ACUTE
î i> 0xee 238 LATIN SMALL LETTER I WITH CIRCUMFLEX
ï i: 0xef 239 LATIN SMALL LETTER I WITH DIAERESIS
ð d- 0xf0 240 LATIN SMALL LETTER ETH (Icelandic)
ñ n? 0xf1 241 LATIN SMALL LETTER N WITH TILDE
ò o! 0xf2 242 LATIN SMALL LETTER O WITH GRAVE
ó o' 0xf3 243 LATIN SMALL LETTER O WITH ACUTE
ô o> 0xf4 244 LATIN SMALL LETTER O WITH CIRCUMFLEX
õ o? 0xf5 245 LATIN SMALL LETTER O WITH TILDE
ö o: 0xf6 246 LATIN SMALL LETTER O WITH DIAERESIS
÷ -: 0xf7 247 DIVISION SIGN
ø o/ 0xf8 248 LATIN SMALL LETTER O WITH STROKE
ù u! 0xf9 249 LATIN SMALL LETTER U WITH GRAVE
ú u' 0xfa 250 LATIN SMALL LETTER U WITH ACUTE
û u> 0xfb 251 LATIN SMALL LETTER U WITH CIRCUMFLEX
ü u: 0xfc 252 LATIN SMALL LETTER U WITH DIAERESIS
ý y' 0xfd 253 LATIN SMALL LETTER Y WITH ACUTE
þ th 0xfe 254 LATIN SMALL LETTER THORN (Icelandic)
ÿ y: 0xff 255 LATIN SMALL LETTER Y WITH DIAERESIS

digraph.txt — 1856

If you are using a multibyte 'encoding', Vim provides this enhanced set of
additional digraphs:

digraph-table-mbyte
char digraph hex dec official name
Ā A- 0100 0256 LATIN CAPITAL LETTER A WITH MACRON
ā a- 0101 0257 LATIN SMALL LETTER A WITH MACRON
Ă A(0102 0258 LATIN CAPITAL LETTER A WITH BREVE
ă a(0103 0259 LATIN SMALL LETTER A WITH BREVE
Ą A; 0104 0260 LATIN CAPITAL LETTER A WITH OGONEK
ą a; 0105 0261 LATIN SMALL LETTER A WITH OGONEK
Ć C' 0106 0262 LATIN CAPITAL LETTER C WITH ACUTE
ć c' 0107 0263 LATIN SMALL LETTER C WITH ACUTE
Ĉ C> 0108 0264 LATIN CAPITAL LETTER C WITH CIRCUMFLEX
ĉ c> 0109 0265 LATIN SMALL LETTER C WITH CIRCUMFLEX
Ċ C. 010A 0266 LATIN CAPITAL LETTER C WITH DOT ABOVE
ċ c. 010B 0267 LATIN SMALL LETTER C WITH DOT ABOVE
Č C< 010C 0268 LATIN CAPITAL LETTER C WITH CARON
č c< 010D 0269 LATIN SMALL LETTER C WITH CARON
Ď D< 010E 0270 LATIN CAPITAL LETTER D WITH CARON
ď d< 010F 0271 LATIN SMALL LETTER D WITH CARON
Đ D/ 0110 0272 LATIN CAPITAL LETTER D WITH STROKE
đ d/ 0111 0273 LATIN SMALL LETTER D WITH STROKE
Ē E- 0112 0274 LATIN CAPITAL LETTER E WITH MACRON
ē e- 0113 0275 LATIN SMALL LETTER E WITH MACRON
Ĕ E(0114 0276 LATIN CAPITAL LETTER E WITH BREVE
ĕ e(0115 0277 LATIN SMALL LETTER E WITH BREVE
Ė E. 0116 0278 LATIN CAPITAL LETTER E WITH DOT ABOVE
ė e. 0117 0279 LATIN SMALL LETTER E WITH DOT ABOVE
Ę E; 0118 0280 LATIN CAPITAL LETTER E WITH OGONEK
ę e; 0119 0281 LATIN SMALL LETTER E WITH OGONEK
Ě E< 011A 0282 LATIN CAPITAL LETTER E WITH CARON
ě e< 011B 0283 LATIN SMALL LETTER E WITH CARON
Ĝ G> 011C 0284 LATIN CAPITAL LETTER G WITH CIRCUMFLEX
ĝ g> 011D 0285 LATIN SMALL LETTER G WITH CIRCUMFLEX
Ğ G(011E 0286 LATIN CAPITAL LETTER G WITH BREVE
ğ g(011F 0287 LATIN SMALL LETTER G WITH BREVE
Ġ G. 0120 0288 LATIN CAPITAL LETTER G WITH DOT ABOVE
ġ g. 0121 0289 LATIN SMALL LETTER G WITH DOT ABOVE
Ģ G, 0122 0290 LATIN CAPITAL LETTER G WITH CEDILLA
ģ g, 0123 0291 LATIN SMALL LETTER G WITH CEDILLA
Ĥ H> 0124 0292 LATIN CAPITAL LETTER H WITH CIRCUMFLEX
ĥ h> 0125 0293 LATIN SMALL LETTER H WITH CIRCUMFLEX
Ħ H/ 0126 0294 LATIN CAPITAL LETTER H WITH STROKE
ħ h/ 0127 0295 LATIN SMALL LETTER H WITH STROKE
Ĩ I? 0128 0296 LATIN CAPITAL LETTER I WITH TILDE
ĩ i? 0129 0297 LATIN SMALL LETTER I WITH TILDE
Ī I- 012A 0298 LATIN CAPITAL LETTER I WITH MACRON
ī i- 012B 0299 LATIN SMALL LETTER I WITH MACRON
Ĭ I(012C 0300 LATIN CAPITAL LETTER I WITH BREVE
ĭ i(012D 0301 LATIN SMALL LETTER I WITH BREVE
Į I; 012E 0302 LATIN CAPITAL LETTER I WITH OGONEK
į i; 012F 0303 LATIN SMALL LETTER I WITH OGONEK
İ I. 0130 0304 LATIN CAPITAL LETTER I WITH DOT ABOVE
ı i. 0131 0305 LATIN SMALL LETTER DOTLESS I
� IJ 0132 0306 LATIN CAPITAL LIGATURE IJ
� ij 0133 0307 LATIN SMALL LIGATURE IJ
Ĵ J> 0134 0308 LATIN CAPITAL LETTER J WITH CIRCUMFLEX
ĵ j> 0135 0309 LATIN SMALL LETTER J WITH CIRCUMFLEX
Ķ K, 0136 0310 LATIN CAPITAL LETTER K WITH CEDILLA

digraph.txt — 1857

ķ k, 0137 0311 LATIN SMALL LETTER K WITH CEDILLA
ĸ kk 0138 0312 LATIN SMALL LETTER KRA
Ĺ L' 0139 0313 LATIN CAPITAL LETTER L WITH ACUTE
ĺ l' 013A 0314 LATIN SMALL LETTER L WITH ACUTE
Ļ L, 013B 0315 LATIN CAPITAL LETTER L WITH CEDILLA
ļ l, 013C 0316 LATIN SMALL LETTER L WITH CEDILLA
Ľ L< 013D 0317 LATIN CAPITAL LETTER L WITH CARON
ľ l< 013E 0318 LATIN SMALL LETTER L WITH CARON
Ŀ L. 013F 0319 LATIN CAPITAL LETTER L WITH MIDDLE DOT
ŀ l. 0140 0320 LATIN SMALL LETTER L WITH MIDDLE DOT
Ł L/ 0141 0321 LATIN CAPITAL LETTER L WITH STROKE
ł l/ 0142 0322 LATIN SMALL LETTER L WITH STROKE
Ń N' 0143 0323 LATIN CAPITAL LETTER N WITH ACUTE
ń n' 0144 0324 LATIN SMALL LETTER N WITH ACUTE
Ņ N, 0145 0325 LATIN CAPITAL LETTER N WITH CEDILLA
ņ n, 0146 0326 LATIN SMALL LETTER N WITH CEDILLA
Ň N< 0147 0327 LATIN CAPITAL LETTER N WITH CARON
ň n< 0148 0328 LATIN SMALL LETTER N WITH CARON
ŉ 'n 0149 0329 LATIN SMALL LETTER N PRECEDED BY APOSTROPHE
� NG 014A 0330 LATIN CAPITAL LETTER ENG
� ng 014B 0331 LATIN SMALL LETTER ENG
Ō O- 014C 0332 LATIN CAPITAL LETTER O WITH MACRON
ō o- 014D 0333 LATIN SMALL LETTER O WITH MACRON
Ŏ O(014E 0334 LATIN CAPITAL LETTER O WITH BREVE
ŏ o(014F 0335 LATIN SMALL LETTER O WITH BREVE
Ő O" 0150 0336 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
ő o" 0151 0337 LATIN SMALL LETTER O WITH DOUBLE ACUTE
Œ OE 0152 0338 LATIN CAPITAL LIGATURE OE
œ oe 0153 0339 LATIN SMALL LIGATURE OE
Ŕ R' 0154 0340 LATIN CAPITAL LETTER R WITH ACUTE
ŕ r' 0155 0341 LATIN SMALL LETTER R WITH ACUTE
Ŗ R, 0156 0342 LATIN CAPITAL LETTER R WITH CEDILLA
ŗ r, 0157 0343 LATIN SMALL LETTER R WITH CEDILLA
Ř R< 0158 0344 LATIN CAPITAL LETTER R WITH CARON
ř r< 0159 0345 LATIN SMALL LETTER R WITH CARON
Ś S' 015A 0346 LATIN CAPITAL LETTER S WITH ACUTE
ś s' 015B 0347 LATIN SMALL LETTER S WITH ACUTE
Ŝ S> 015C 0348 LATIN CAPITAL LETTER S WITH CIRCUMFLEX
ŝ s> 015D 0349 LATIN SMALL LETTER S WITH CIRCUMFLEX
Ş S, 015E 0350 LATIN CAPITAL LETTER S WITH CEDILLA
ş s, 015F 0351 LATIN SMALL LETTER S WITH CEDILLA
Š S< 0160 0352 LATIN CAPITAL LETTER S WITH CARON
š s< 0161 0353 LATIN SMALL LETTER S WITH CARON
Ţ T, 0162 0354 LATIN CAPITAL LETTER T WITH CEDILLA
ţ t, 0163 0355 LATIN SMALL LETTER T WITH CEDILLA
Ť T< 0164 0356 LATIN CAPITAL LETTER T WITH CARON
ť t< 0165 0357 LATIN SMALL LETTER T WITH CARON
� T/ 0166 0358 LATIN CAPITAL LETTER T WITH STROKE
� t/ 0167 0359 LATIN SMALL LETTER T WITH STROKE
Ũ U? 0168 0360 LATIN CAPITAL LETTER U WITH TILDE
ũ u? 0169 0361 LATIN SMALL LETTER U WITH TILDE
Ū U- 016A 0362 LATIN CAPITAL LETTER U WITH MACRON
ū u- 016B 0363 LATIN SMALL LETTER U WITH MACRON
Ŭ U(016C 0364 LATIN CAPITAL LETTER U WITH BREVE
ŭ u(016D 0365 LATIN SMALL LETTER U WITH BREVE
Ů U0 016E 0366 LATIN CAPITAL LETTER U WITH RING ABOVE
ů u0 016F 0367 LATIN SMALL LETTER U WITH RING ABOVE
Ű U" 0170 0368 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
ű u" 0171 0369 LATIN SMALL LETTER U WITH DOUBLE ACUTE
Ų U; 0172 0370 LATIN CAPITAL LETTER U WITH OGONEK

digraph.txt — 1858

ų u; 0173 0371 LATIN SMALL LETTER U WITH OGONEK
Ŵ W> 0174 0372 LATIN CAPITAL LETTER W WITH CIRCUMFLEX
ŵ w> 0175 0373 LATIN SMALL LETTER W WITH CIRCUMFLEX
Ŷ Y> 0176 0374 LATIN CAPITAL LETTER Y WITH CIRCUMFLEX
ŷ y> 0177 0375 LATIN SMALL LETTER Y WITH CIRCUMFLEX
Ÿ Y: 0178 0376 LATIN CAPITAL LETTER Y WITH DIAERESIS
Ź Z' 0179 0377 LATIN CAPITAL LETTER Z WITH ACUTE
ź z' 017A 0378 LATIN SMALL LETTER Z WITH ACUTE
Ż Z. 017B 0379 LATIN CAPITAL LETTER Z WITH DOT ABOVE
ż z. 017C 0380 LATIN SMALL LETTER Z WITH DOT ABOVE
Ž Z< 017D 0381 LATIN CAPITAL LETTER Z WITH CARON
ž z< 017E 0382 LATIN SMALL LETTER Z WITH CARON
Ơ O9 01A0 0416 LATIN CAPITAL LETTER O WITH HORN
ơ o9 01A1 0417 LATIN SMALL LETTER O WITH HORN
� OI 01A2 0418 LATIN CAPITAL LETTER OI
� oi 01A3 0419 LATIN SMALL LETTER OI
� yr 01A6 0422 LATIN LETTER YR
Ư U9 01AF 0431 LATIN CAPITAL LETTER U WITH HORN
ư u9 01B0 0432 LATIN SMALL LETTER U WITH HORN
� Z/ 01B5 0437 LATIN CAPITAL LETTER Z WITH STROKE
� z/ 01B6 0438 LATIN SMALL LETTER Z WITH STROKE
� ED 01B7 0439 LATIN CAPITAL LETTER EZH
Ǎ A< 01CD 0461 LATIN CAPITAL LETTER A WITH CARON
ǎ a< 01CE 0462 LATIN SMALL LETTER A WITH CARON
Ǐ I< 01CF 0463 LATIN CAPITAL LETTER I WITH CARON
ǐ i< 01D0 0464 LATIN SMALL LETTER I WITH CARON
Ǒ O< 01D1 0465 LATIN CAPITAL LETTER O WITH CARON
ǒ o< 01D2 0466 LATIN SMALL LETTER O WITH CARON
Ǔ U< 01D3 0467 LATIN CAPITAL LETTER U WITH CARON
ǔ u< 01D4 0468 LATIN SMALL LETTER U WITH CARON
Ǟ A1 01DE 0478 LATIN CAPITAL LETTER A WITH DIAERESIS AND MACRON
ǟ a1 01DF 0479 LATIN SMALL LETTER A WITH DIAERESIS AND MACRON
Ā̇ A7 01E0 0480 LATIN CAPITAL LETTER A WITH DOT ABOVE AND MACRON
ǡ a7 01E1 0481 LATIN SMALL LETTER A WITH DOT ABOVE AND MACRON
Ǣ A3 01E2 0482 LATIN CAPITAL LETTER AE WITH MACRON
ǣ a3 01E3 0483 LATIN SMALL LETTER AE WITH MACRON
� G/ 01E4 0484 LATIN CAPITAL LETTER G WITH STROKE
� g/ 01E5 0485 LATIN SMALL LETTER G WITH STROKE
Ǧ G< 01E6 0486 LATIN CAPITAL LETTER G WITH CARON
ǧ g< 01E7 0487 LATIN SMALL LETTER G WITH CARON
Ǩ K< 01E8 0488 LATIN CAPITAL LETTER K WITH CARON
ǩ k< 01E9 0489 LATIN SMALL LETTER K WITH CARON
Ǫ O; 01EA 0490 LATIN CAPITAL LETTER O WITH OGONEK
ǫ o; 01EB 0491 LATIN SMALL LETTER O WITH OGONEK
Ǭ O1 01EC 0492 LATIN CAPITAL LETTER O WITH OGONEK AND MACRON
ǭ o1 01ED 0493 LATIN SMALL LETTER O WITH OGONEK AND MACRON
� EZ 01EE 0494 LATIN CAPITAL LETTER EZH WITH CARON
� ez 01EF 0495 LATIN SMALL LETTER EZH WITH CARON
ǰ j< 01F0 0496 LATIN SMALL LETTER J WITH CARON
Ǵ G' 01F4 0500 LATIN CAPITAL LETTER G WITH ACUTE
ǵ g' 01F5 0501 LATIN SMALL LETTER G WITH ACUTE
ʿ ;S 02BF 0703 MODIFIER LETTER LEFT HALF RING
ˇ '< 02C7 0711 CARON
˘ '(02D8 0728 BREVE
˙ '. 02D9 0729 DOT ABOVE
˚ '0 02DA 0730 RING ABOVE
˛ '; 02DB 0731 OGONEK
˝ '" 02DD 0733 DOUBLE ACUTE ACCENT
� A% 0386 0902 GREEK CAPITAL LETTER ALPHA WITH TONOS
� E% 0388 0904 GREEK CAPITAL LETTER EPSILON WITH TONOS

digraph.txt — 1859

� Y% 0389 0905 GREEK CAPITAL LETTER ETA WITH TONOS
� I% 038A 0906 GREEK CAPITAL LETTER IOTA WITH TONOS
� O% 038C 0908 GREEK CAPITAL LETTER OMICRON WITH TONOS
� U% 038E 0910 GREEK CAPITAL LETTER UPSILON WITH TONOS
� W% 038F 0911 GREEK CAPITAL LETTER OMEGA WITH TONOS
� i3 0390 0912 GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
� A* 0391 0913 GREEK CAPITAL LETTER ALPHA
� B* 0392 0914 GREEK CAPITAL LETTER BETA
� G* 0393 0915 GREEK CAPITAL LETTER GAMMA
� D* 0394 0916 GREEK CAPITAL LETTER DELTA
� E* 0395 0917 GREEK CAPITAL LETTER EPSILON
� Z* 0396 0918 GREEK CAPITAL LETTER ZETA
� Y* 0397 0919 GREEK CAPITAL LETTER ETA
� H* 0398 0920 GREEK CAPITAL LETTER THETA
� I* 0399 0921 GREEK CAPITAL LETTER IOTA
� K* 039A 0922 GREEK CAPITAL LETTER KAPPA
� L* 039B 0923 GREEK CAPITAL LETTER LAMDA (aka LAMBDA)
� M* 039C 0924 GREEK CAPITAL LETTER MU
� N* 039D 0925 GREEK CAPITAL LETTER NU
� C* 039E 0926 GREEK CAPITAL LETTER XI
� O* 039F 0927 GREEK CAPITAL LETTER OMICRON
� P* 03A0 0928 GREEK CAPITAL LETTER PI
� R* 03A1 0929 GREEK CAPITAL LETTER RHO
� S* 03A3 0931 GREEK CAPITAL LETTER SIGMA
� T* 03A4 0932 GREEK CAPITAL LETTER TAU
� U* 03A5 0933 GREEK CAPITAL LETTER UPSILON
� F* 03A6 0934 GREEK CAPITAL LETTER PHI
� X* 03A7 0935 GREEK CAPITAL LETTER CHI
� Q* 03A8 0936 GREEK CAPITAL LETTER PSI
� W* 03A9 0937 GREEK CAPITAL LETTER OMEGA
� J* 03AA 0938 GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
� V* 03AB 0939 GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
� a% 03AC 0940 GREEK SMALL LETTER ALPHA WITH TONOS
� e% 03AD 0941 GREEK SMALL LETTER EPSILON WITH TONOS
� y% 03AE 0942 GREEK SMALL LETTER ETA WITH TONOS
� i% 03AF 0943 GREEK SMALL LETTER IOTA WITH TONOS
� u3 03B0 0944 GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
� a* 03B1 0945 GREEK SMALL LETTER ALPHA
� b* 03B2 0946 GREEK SMALL LETTER BETA
� g* 03B3 0947 GREEK SMALL LETTER GAMMA
� d* 03B4 0948 GREEK SMALL LETTER DELTA
� e* 03B5 0949 GREEK SMALL LETTER EPSILON
� z* 03B6 0950 GREEK SMALL LETTER ZETA
� y* 03B7 0951 GREEK SMALL LETTER ETA
� h* 03B8 0952 GREEK SMALL LETTER THETA
� i* 03B9 0953 GREEK SMALL LETTER IOTA
� k* 03BA 0954 GREEK SMALL LETTER KAPPA
� l* 03BB 0955 GREEK SMALL LETTER LAMDA (aka LAMBDA)
� m* 03BC 0956 GREEK SMALL LETTER MU
� n* 03BD 0957 GREEK SMALL LETTER NU
� c* 03BE 0958 GREEK SMALL LETTER XI
� o* 03BF 0959 GREEK SMALL LETTER OMICRON
π p* 03C0 0960 GREEK SMALL LETTER PI
� r* 03C1 0961 GREEK SMALL LETTER RHO
� *s 03C2 0962 GREEK SMALL LETTER FINAL SIGMA
� s* 03C3 0963 GREEK SMALL LETTER SIGMA
� t* 03C4 0964 GREEK SMALL LETTER TAU
� u* 03C5 0965 GREEK SMALL LETTER UPSILON
� f* 03C6 0966 GREEK SMALL LETTER PHI
� x* 03C7 0967 GREEK SMALL LETTER CHI

digraph.txt — 1860

� q* 03C8 0968 GREEK SMALL LETTER PSI
� w* 03C9 0969 GREEK SMALL LETTER OMEGA
� j* 03CA 0970 GREEK SMALL LETTER IOTA WITH DIALYTIKA
� v* 03CB 0971 GREEK SMALL LETTER UPSILON WITH DIALYTIKA
� o% 03CC 0972 GREEK SMALL LETTER OMICRON WITH TONOS
� u% 03CD 0973 GREEK SMALL LETTER UPSILON WITH TONOS
� w% 03CE 0974 GREEK SMALL LETTER OMEGA WITH TONOS
� 'G 03D8 0984 GREEK LETTER ARCHAIC KOPPA
� ,G 03D9 0985 GREEK SMALL LETTER ARCHAIC KOPPA
� T3 03DA 0986 GREEK LETTER STIGMA
� t3 03DB 0987 GREEK SMALL LETTER STIGMA
� M3 03DC 0988 GREEK LETTER DIGAMMA
� m3 03DD 0989 GREEK SMALL LETTER DIGAMMA
� K3 03DE 0990 GREEK LETTER KOPPA
� k3 03DF 0991 GREEK SMALL LETTER KOPPA
� P3 03E0 0992 GREEK LETTER SAMPI
� p3 03E1 0993 GREEK SMALL LETTER SAMPI
� '% 03F4 1012 GREEK CAPITAL THETA SYMBOL
� j3 03F5 1013 GREEK LUNATE EPSILON SYMBOL
� IO 0401 1025 CYRILLIC CAPITAL LETTER IO
� D% 0402 1026 CYRILLIC CAPITAL LETTER DJE
� G% 0403 1027 CYRILLIC CAPITAL LETTER GJE
� IE 0404 1028 CYRILLIC CAPITAL LETTER UKRAINIAN IE
� DS 0405 1029 CYRILLIC CAPITAL LETTER DZE
� II 0406 1030 CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
� YI 0407 1031 CYRILLIC CAPITAL LETTER YI
� J% 0408 1032 CYRILLIC CAPITAL LETTER JE
� LJ 0409 1033 CYRILLIC CAPITAL LETTER LJE
� NJ 040A 1034 CYRILLIC CAPITAL LETTER NJE
� Ts 040B 1035 CYRILLIC CAPITAL LETTER TSHE
� KJ 040C 1036 CYRILLIC CAPITAL LETTER KJE
� V% 040E 1038 CYRILLIC CAPITAL LETTER SHORT U
� DZ 040F 1039 CYRILLIC CAPITAL LETTER DZHE
� A= 0410 1040 CYRILLIC CAPITAL LETTER A
� B= 0411 1041 CYRILLIC CAPITAL LETTER BE
� V= 0412 1042 CYRILLIC CAPITAL LETTER VE
� G= 0413 1043 CYRILLIC CAPITAL LETTER GHE
� D= 0414 1044 CYRILLIC CAPITAL LETTER DE
� E= 0415 1045 CYRILLIC CAPITAL LETTER IE
� Z% 0416 1046 CYRILLIC CAPITAL LETTER ZHE
� Z= 0417 1047 CYRILLIC CAPITAL LETTER ZE
� I= 0418 1048 CYRILLIC CAPITAL LETTER I
� J= 0419 1049 CYRILLIC CAPITAL LETTER SHORT I
� K= 041A 1050 CYRILLIC CAPITAL LETTER KA
� L= 041B 1051 CYRILLIC CAPITAL LETTER EL
� M= 041C 1052 CYRILLIC CAPITAL LETTER EM
� N= 041D 1053 CYRILLIC CAPITAL LETTER EN
� O= 041E 1054 CYRILLIC CAPITAL LETTER O
� P= 041F 1055 CYRILLIC CAPITAL LETTER PE
� R= 0420 1056 CYRILLIC CAPITAL LETTER ER
� S= 0421 1057 CYRILLIC CAPITAL LETTER ES
� T= 0422 1058 CYRILLIC CAPITAL LETTER TE
� U= 0423 1059 CYRILLIC CAPITAL LETTER U
� F= 0424 1060 CYRILLIC CAPITAL LETTER EF
� H= 0425 1061 CYRILLIC CAPITAL LETTER HA
� C= 0426 1062 CYRILLIC CAPITAL LETTER TSE
� C% 0427 1063 CYRILLIC CAPITAL LETTER CHE
� S% 0428 1064 CYRILLIC CAPITAL LETTER SHA
� Sc 0429 1065 CYRILLIC CAPITAL LETTER SHCHA
� =" 042A 1066 CYRILLIC CAPITAL LETTER HARD SIGN

digraph.txt — 1861

� Y= 042B 1067 CYRILLIC CAPITAL LETTER YERU
� %" 042C 1068 CYRILLIC CAPITAL LETTER SOFT SIGN
� JE 042D 1069 CYRILLIC CAPITAL LETTER E
� JU 042E 1070 CYRILLIC CAPITAL LETTER YU
� JA 042F 1071 CYRILLIC CAPITAL LETTER YA
� a= 0430 1072 CYRILLIC SMALL LETTER A
� b= 0431 1073 CYRILLIC SMALL LETTER BE
� v= 0432 1074 CYRILLIC SMALL LETTER VE
� g= 0433 1075 CYRILLIC SMALL LETTER GHE
� d= 0434 1076 CYRILLIC SMALL LETTER DE
� e= 0435 1077 CYRILLIC SMALL LETTER IE
� z% 0436 1078 CYRILLIC SMALL LETTER ZHE
� z= 0437 1079 CYRILLIC SMALL LETTER ZE
� i= 0438 1080 CYRILLIC SMALL LETTER I
� j= 0439 1081 CYRILLIC SMALL LETTER SHORT I
� k= 043A 1082 CYRILLIC SMALL LETTER KA
� l= 043B 1083 CYRILLIC SMALL LETTER EL
� m= 043C 1084 CYRILLIC SMALL LETTER EM
� n= 043D 1085 CYRILLIC SMALL LETTER EN
� o= 043E 1086 CYRILLIC SMALL LETTER O
� p= 043F 1087 CYRILLIC SMALL LETTER PE
� r= 0440 1088 CYRILLIC SMALL LETTER ER
� s= 0441 1089 CYRILLIC SMALL LETTER ES
� t= 0442 1090 CYRILLIC SMALL LETTER TE
� u= 0443 1091 CYRILLIC SMALL LETTER U
� f= 0444 1092 CYRILLIC SMALL LETTER EF
� h= 0445 1093 CYRILLIC SMALL LETTER HA
� c= 0446 1094 CYRILLIC SMALL LETTER TSE
� c% 0447 1095 CYRILLIC SMALL LETTER CHE
� s% 0448 1096 CYRILLIC SMALL LETTER SHA
� sc 0449 1097 CYRILLIC SMALL LETTER SHCHA
� =' 044A 1098 CYRILLIC SMALL LETTER HARD SIGN
� y= 044B 1099 CYRILLIC SMALL LETTER YERU
� %' 044C 1100 CYRILLIC SMALL LETTER SOFT SIGN
� je 044D 1101 CYRILLIC SMALL LETTER E
� ju 044E 1102 CYRILLIC SMALL LETTER YU
� ja 044F 1103 CYRILLIC SMALL LETTER YA
� io 0451 1105 CYRILLIC SMALL LETTER IO
� d% 0452 1106 CYRILLIC SMALL LETTER DJE
� g% 0453 1107 CYRILLIC SMALL LETTER GJE
� ie 0454 1108 CYRILLIC SMALL LETTER UKRAINIAN IE
� ds 0455 1109 CYRILLIC SMALL LETTER DZE
� ii 0456 1110 CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
� yi 0457 1111 CYRILLIC SMALL LETTER YI
� j% 0458 1112 CYRILLIC SMALL LETTER JE
� lj 0459 1113 CYRILLIC SMALL LETTER LJE
� nj 045A 1114 CYRILLIC SMALL LETTER NJE
� ts 045B 1115 CYRILLIC SMALL LETTER TSHE
� kj 045C 1116 CYRILLIC SMALL LETTER KJE
� v% 045E 1118 CYRILLIC SMALL LETTER SHORT U
� dz 045F 1119 CYRILLIC SMALL LETTER DZHE
� Y3 0462 1122 CYRILLIC CAPITAL LETTER YAT
� y3 0463 1123 CYRILLIC SMALL LETTER YAT
� O3 046A 1130 CYRILLIC CAPITAL LETTER BIG YUS
� o3 046B 1131 CYRILLIC SMALL LETTER BIG YUS
� F3 0472 1138 CYRILLIC CAPITAL LETTER FITA
� f3 0473 1139 CYRILLIC SMALL LETTER FITA
� V3 0474 1140 CYRILLIC CAPITAL LETTER IZHITSA
� v3 0475 1141 CYRILLIC SMALL LETTER IZHITSA
� C3 0480 1152 CYRILLIC CAPITAL LETTER KOPPA

digraph.txt — 1862

� c3 0481 1153 CYRILLIC SMALL LETTER KOPPA
� G3 0490 1168 CYRILLIC CAPITAL LETTER GHE WITH UPTURN
� g3 0491 1169 CYRILLIC SMALL LETTER GHE WITH UPTURN
� A+ 05D0 1488 HEBREW LETTER ALEF
� B+ 05D1 1489 HEBREW LETTER BET
� G+ 05D2 1490 HEBREW LETTER GIMEL
� D+ 05D3 1491 HEBREW LETTER DALET
� H+ 05D4 1492 HEBREW LETTER HE
� W+ 05D5 1493 HEBREW LETTER VAV
� Z+ 05D6 1494 HEBREW LETTER ZAYIN
� X+ 05D7 1495 HEBREW LETTER HET
� Tj 05D8 1496 HEBREW LETTER TET
� J+ 05D9 1497 HEBREW LETTER YOD
� K% 05DA 1498 HEBREW LETTER FINAL KAF
� K+ 05DB 1499 HEBREW LETTER KAF
� L+ 05DC 1500 HEBREW LETTER LAMED
� M% 05DD 1501 HEBREW LETTER FINAL MEM
� M+ 05DE 1502 HEBREW LETTER MEM
� N% 05DF 1503 HEBREW LETTER FINAL NUN
� N+ 05E0 1504 HEBREW LETTER NUN
� S+ 05E1 1505 HEBREW LETTER SAMEKH
� E+ 05E2 1506 HEBREW LETTER AYIN
� P% 05E3 1507 HEBREW LETTER FINAL PE
� P+ 05E4 1508 HEBREW LETTER PE
� Zj 05E5 1509 HEBREW LETTER FINAL TSADI
� ZJ 05E6 1510 HEBREW LETTER TSADI
� Q+ 05E7 1511 HEBREW LETTER QOF
� R+ 05E8 1512 HEBREW LETTER RESH
� Sh 05E9 1513 HEBREW LETTER SHIN
� T+ 05EA 1514 HEBREW LETTER TAV
� ,+ 060C 1548 ARABIC COMMA
� ;+ 061B 1563 ARABIC SEMICOLON
� ?+ 061F 1567 ARABIC QUESTION MARK
� H' 0621 1569 ARABIC LETTER HAMZA
� aM 0622 1570 ARABIC LETTER ALEF WITH MADDA ABOVE
� aH 0623 1571 ARABIC LETTER ALEF WITH HAMZA ABOVE
� wH 0624 1572 ARABIC LETTER WAW WITH HAMZA ABOVE
� ah 0625 1573 ARABIC LETTER ALEF WITH HAMZA BELOW
� yH 0626 1574 ARABIC LETTER YEH WITH HAMZA ABOVE
� a+ 0627 1575 ARABIC LETTER ALEF
� b+ 0628 1576 ARABIC LETTER BEH
� tm 0629 1577 ARABIC LETTER TEH MARBUTA
� t+ 062A 1578 ARABIC LETTER TEH
� tk 062B 1579 ARABIC LETTER THEH
� g+ 062C 1580 ARABIC LETTER JEEM
� hk 062D 1581 ARABIC LETTER HAH
� x+ 062E 1582 ARABIC LETTER KHAH
� d+ 062F 1583 ARABIC LETTER DAL
� dk 0630 1584 ARABIC LETTER THAL
� r+ 0631 1585 ARABIC LETTER REH
� z+ 0632 1586 ARABIC LETTER ZAIN
� s+ 0633 1587 ARABIC LETTER SEEN
� sn 0634 1588 ARABIC LETTER SHEEN
� c+ 0635 1589 ARABIC LETTER SAD
� dd 0636 1590 ARABIC LETTER DAD
� tj 0637 1591 ARABIC LETTER TAH
� zH 0638 1592 ARABIC LETTER ZAH
� e+ 0639 1593 ARABIC LETTER AIN
� i+ 063A 1594 ARABIC LETTER GHAIN
� ++ 0640 1600 ARABIC TATWEEL

digraph.txt — 1863

� f+ 0641 1601 ARABIC LETTER FEH
� q+ 0642 1602 ARABIC LETTER QAF
� k+ 0643 1603 ARABIC LETTER KAF
� l+ 0644 1604 ARABIC LETTER LAM
� m+ 0645 1605 ARABIC LETTER MEEM
� n+ 0646 1606 ARABIC LETTER NOON
� h+ 0647 1607 ARABIC LETTER HEH
� w+ 0648 1608 ARABIC LETTER WAW
� j+ 0649 1609 ARABIC LETTER ALEF MAKSURA
� y+ 064A 1610 ARABIC LETTER YEH
� :+ 064B 1611 ARABIC FATHATAN
� "+ 064C 1612 ARABIC DAMMATAN
� =+ 064D 1613 ARABIC KASRATAN
� /+ 064E 1614 ARABIC FATHA
� '+ 064F 1615 ARABIC DAMMA
� 1+ 0650 1616 ARABIC KASRA
� 3+ 0651 1617 ARABIC SHADDA
� 0+ 0652 1618 ARABIC SUKUN
� aS 0670 1648 ARABIC LETTER SUPERSCRIPT ALEF
� p+ 067E 1662 ARABIC LETTER PEH
� v+ 06A4 1700 ARABIC LETTER VEH
� gf 06AF 1711 ARABIC LETTER GAF
� 0a 06F0 1776 EXTENDED ARABIC-INDIC DIGIT ZERO
� 1a 06F1 1777 EXTENDED ARABIC-INDIC DIGIT ONE
� 2a 06F2 1778 EXTENDED ARABIC-INDIC DIGIT TWO
� 3a 06F3 1779 EXTENDED ARABIC-INDIC DIGIT THREE
� 4a 06F4 1780 EXTENDED ARABIC-INDIC DIGIT FOUR
� 5a 06F5 1781 EXTENDED ARABIC-INDIC DIGIT FIVE
� 6a 06F6 1782 EXTENDED ARABIC-INDIC DIGIT SIX
� 7a 06F7 1783 EXTENDED ARABIC-INDIC DIGIT SEVEN
� 8a 06F8 1784 EXTENDED ARABIC-INDIC DIGIT EIGHT
� 9a 06F9 1785 EXTENDED ARABIC-INDIC DIGIT NINE
Ḃ B. 1E02 7682 LATIN CAPITAL LETTER B WITH DOT ABOVE
ḃ b. 1E03 7683 LATIN SMALL LETTER B WITH DOT ABOVE
Ḇ B_ 1E06 7686 LATIN CAPITAL LETTER B WITH LINE BELOW
ḇ b_ 1E07 7687 LATIN SMALL LETTER B WITH LINE BELOW
Ḋ D. 1E0A 7690 LATIN CAPITAL LETTER D WITH DOT ABOVE
ḋ d. 1E0B 7691 LATIN SMALL LETTER D WITH DOT ABOVE
Ḏ D_ 1E0E 7694 LATIN CAPITAL LETTER D WITH LINE BELOW
ḏ d_ 1E0F 7695 LATIN SMALL LETTER D WITH LINE BELOW
Ḑ D, 1E10 7696 LATIN CAPITAL LETTER D WITH CEDILLA
ḑ d, 1E11 7697 LATIN SMALL LETTER D WITH CEDILLA
Ḟ F. 1E1E 7710 LATIN CAPITAL LETTER F WITH DOT ABOVE
ḟ f. 1E1F 7711 LATIN SMALL LETTER F WITH DOT ABOVE
Ḡ G- 1E20 7712 LATIN CAPITAL LETTER G WITH MACRON
ḡ g- 1E21 7713 LATIN SMALL LETTER G WITH MACRON
Ḣ H. 1E22 7714 LATIN CAPITAL LETTER H WITH DOT ABOVE
ḣ h. 1E23 7715 LATIN SMALL LETTER H WITH DOT ABOVE
Ḧ H: 1E26 7718 LATIN CAPITAL LETTER H WITH DIAERESIS
ḧ h: 1E27 7719 LATIN SMALL LETTER H WITH DIAERESIS
Ḩ H, 1E28 7720 LATIN CAPITAL LETTER H WITH CEDILLA
ḩ h, 1E29 7721 LATIN SMALL LETTER H WITH CEDILLA
Ḱ K' 1E30 7728 LATIN CAPITAL LETTER K WITH ACUTE
ḱ k' 1E31 7729 LATIN SMALL LETTER K WITH ACUTE
Ḵ K_ 1E34 7732 LATIN CAPITAL LETTER K WITH LINE BELOW
ḵ k_ 1E35 7733 LATIN SMALL LETTER K WITH LINE BELOW
Ḻ L_ 1E3A 7738 LATIN CAPITAL LETTER L WITH LINE BELOW
ḻ l_ 1E3B 7739 LATIN SMALL LETTER L WITH LINE BELOW
Ḿ M' 1E3E 7742 LATIN CAPITAL LETTER M WITH ACUTE
ḿ m' 1E3F 7743 LATIN SMALL LETTER M WITH ACUTE

digraph.txt — 1864

Ṁ M. 1E40 7744 LATIN CAPITAL LETTER M WITH DOT ABOVE
ṁ m. 1E41 7745 LATIN SMALL LETTER M WITH DOT ABOVE
Ṅ N. 1E44 7748 LATIN CAPITAL LETTER N WITH DOT ABOVE
ṅ n. 1E45 7749 LATIN SMALL LETTER N WITH DOT ABOVE
Ṉ N_ 1E48 7752 LATIN CAPITAL LETTER N WITH LINE BELOW
ṉ n_ 1E49 7753 LATIN SMALL LETTER N WITH LINE BELOW
Ṕ P' 1E54 7764 LATIN CAPITAL LETTER P WITH ACUTE
ṕ p' 1E55 7765 LATIN SMALL LETTER P WITH ACUTE
Ṗ P. 1E56 7766 LATIN CAPITAL LETTER P WITH DOT ABOVE
ṗ p. 1E57 7767 LATIN SMALL LETTER P WITH DOT ABOVE
Ṙ R. 1E58 7768 LATIN CAPITAL LETTER R WITH DOT ABOVE
ṙ r. 1E59 7769 LATIN SMALL LETTER R WITH DOT ABOVE
Ṟ R_ 1E5E 7774 LATIN CAPITAL LETTER R WITH LINE BELOW
ṟ r_ 1E5F 7775 LATIN SMALL LETTER R WITH LINE BELOW
Ṡ S. 1E60 7776 LATIN CAPITAL LETTER S WITH DOT ABOVE
ṡ s. 1E61 7777 LATIN SMALL LETTER S WITH DOT ABOVE
Ṫ T. 1E6A 7786 LATIN CAPITAL LETTER T WITH DOT ABOVE
ṫ t. 1E6B 7787 LATIN SMALL LETTER T WITH DOT ABOVE
Ṯ T_ 1E6E 7790 LATIN CAPITAL LETTER T WITH LINE BELOW
ṯ t_ 1E6F 7791 LATIN SMALL LETTER T WITH LINE BELOW
Ṽ V? 1E7C 7804 LATIN CAPITAL LETTER V WITH TILDE
ṽ v? 1E7D 7805 LATIN SMALL LETTER V WITH TILDE
Ẁ W! 1E80 7808 LATIN CAPITAL LETTER W WITH GRAVE
ẁ w! 1E81 7809 LATIN SMALL LETTER W WITH GRAVE
Ẃ W' 1E82 7810 LATIN CAPITAL LETTER W WITH ACUTE
ẃ w' 1E83 7811 LATIN SMALL LETTER W WITH ACUTE
Ẅ W: 1E84 7812 LATIN CAPITAL LETTER W WITH DIAERESIS
ẅ w: 1E85 7813 LATIN SMALL LETTER W WITH DIAERESIS
Ẇ W. 1E86 7814 LATIN CAPITAL LETTER W WITH DOT ABOVE
ẇ w. 1E87 7815 LATIN SMALL LETTER W WITH DOT ABOVE
Ẋ X. 1E8A 7818 LATIN CAPITAL LETTER X WITH DOT ABOVE
ẋ x. 1E8B 7819 LATIN SMALL LETTER X WITH DOT ABOVE
Ẍ X: 1E8C 7820 LATIN CAPITAL LETTER X WITH DIAERESIS
ẍ x: 1E8D 7821 LATIN SMALL LETTER X WITH DIAERESIS
Ẏ Y. 1E8E 7822 LATIN CAPITAL LETTER Y WITH DOT ABOVE
ẏ y. 1E8F 7823 LATIN SMALL LETTER Y WITH DOT ABOVE
Ẑ Z> 1E90 7824 LATIN CAPITAL LETTER Z WITH CIRCUMFLEX
ẑ z> 1E91 7825 LATIN SMALL LETTER Z WITH CIRCUMFLEX
Ẕ Z_ 1E94 7828 LATIN CAPITAL LETTER Z WITH LINE BELOW
ẕ z_ 1E95 7829 LATIN SMALL LETTER Z WITH LINE BELOW
ẖ h_ 1E96 7830 LATIN SMALL LETTER H WITH LINE BELOW
ẗ t: 1E97 7831 LATIN SMALL LETTER T WITH DIAERESIS
ẘ w0 1E98 7832 LATIN SMALL LETTER W WITH RING ABOVE
ẙ y0 1E99 7833 LATIN SMALL LETTER Y WITH RING ABOVE
Ả A2 1EA2 7842 LATIN CAPITAL LETTER A WITH HOOK ABOVE
ả a2 1EA3 7843 LATIN SMALL LETTER A WITH HOOK ABOVE
Ẻ E2 1EBA 7866 LATIN CAPITAL LETTER E WITH HOOK ABOVE
ẻ e2 1EBB 7867 LATIN SMALL LETTER E WITH HOOK ABOVE
Ẽ E? 1EBC 7868 LATIN CAPITAL LETTER E WITH TILDE
ẽ e? 1EBD 7869 LATIN SMALL LETTER E WITH TILDE
Ỉ I2 1EC8 7880 LATIN CAPITAL LETTER I WITH HOOK ABOVE
ỉ i2 1EC9 7881 LATIN SMALL LETTER I WITH HOOK ABOVE
Ỏ O2 1ECE 7886 LATIN CAPITAL LETTER O WITH HOOK ABOVE
ỏ o2 1ECF 7887 LATIN SMALL LETTER O WITH HOOK ABOVE
Ủ U2 1EE6 7910 LATIN CAPITAL LETTER U WITH HOOK ABOVE
ủ u2 1EE7 7911 LATIN SMALL LETTER U WITH HOOK ABOVE
Ỳ Y! 1EF2 7922 LATIN CAPITAL LETTER Y WITH GRAVE
ỳ y! 1EF3 7923 LATIN SMALL LETTER Y WITH GRAVE
Ỷ Y2 1EF6 7926 LATIN CAPITAL LETTER Y WITH HOOK ABOVE
ỷ y2 1EF7 7927 LATIN SMALL LETTER Y WITH HOOK ABOVE

digraph.txt — 1865

Ỹ Y? 1EF8 7928 LATIN CAPITAL LETTER Y WITH TILDE
ỹ y? 1EF9 7929 LATIN SMALL LETTER Y WITH TILDE
� ;' 1F00 7936 GREEK SMALL LETTER ALPHA WITH PSILI
� ,' 1F01 7937 GREEK SMALL LETTER ALPHA WITH DASIA
� ;! 1F02 7938 GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA
� ,! 1F03 7939 GREEK SMALL LETTER ALPHA WITH DASIA AND VARIA
� ?; 1F04 7940 GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA
� ?, 1F05 7941 GREEK SMALL LETTER ALPHA WITH DASIA AND OXIA
� !: 1F06 7942 GREEK SMALL LETTER ALPHA WITH PSILI AND PERISPOMENI
� ?: 1F07 7943 GREEK SMALL LETTER ALPHA WITH DASIA AND PERISPOMENI
 1N 2002 8194 EN SPACE
 1M 2003 8195 EM SPACE
 3M 2004 8196 THREE-PER-EM SPACE
 4M 2005 8197 FOUR-PER-EM SPACE
 6M 2006 8198 SIX-PER-EM SPACE
 1T 2009 8201 THIN SPACE
 1H 200A 8202 HAIR SPACE
� -1 2010 8208 HYPHEN
– -N 2013 8211 EN DASH
— -M 2014 8212 EM DASH
― -3 2015 8213 HORIZONTAL BAR
� !2 2016 8214 DOUBLE VERTICAL LINE
� =2 2017 8215 DOUBLE LOW LINE
‘ '6 2018 8216 LEFT SINGLE QUOTATION MARK
’ '9 2019 8217 RIGHT SINGLE QUOTATION MARK
‚ .9 201A 8218 SINGLE LOW-9 QUOTATION MARK
� 9' 201B 8219 SINGLE HIGH-REVERSED-9 QUOTATION MARK
“ "6 201C 8220 LEFT DOUBLE QUOTATION MARK
” "9 201D 8221 RIGHT DOUBLE QUOTATION MARK
„ :9 201E 8222 DOUBLE LOW-9 QUOTATION MARK
� 9" 201F 8223 DOUBLE HIGH-REVERSED-9 QUOTATION MARK
† /- 2020 8224 DAGGER
‡ /= 2021 8225 DOUBLE DAGGER
• oo 2022 8226 BULLET
� .. 2025 8229 TWO DOT LEADER
… ,. 2026 8230 HORIZONTAL ELLIPSIS
‰ %0 2030 8240 PER MILLE SIGN
′ 1' 2032 8242 PRIME
″ 2' 2033 8243 DOUBLE PRIME
� 3' 2034 8244 TRIPLE PRIME
� 4' 2057 8279 QUADRUPLE PRIME
� 1" 2035 8245 REVERSED PRIME
� 2" 2036 8246 REVERSED DOUBLE PRIME
� 3" 2037 8247 REVERSED TRIPLE PRIME
� Ca 2038 8248 CARET
‹ <1 2039 8249 SINGLE LEFT-POINTING ANGLE QUOTATION MARK
› >1 203A 8250 SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
� :X 203B 8251 REFERENCE MARK
� '- 203E 8254 OVERLINE
⁄ /f 2044 8260 FRACTION SLASH
⁰ 0S 2070 8304 SUPERSCRIPT ZERO
⁴ 4S 2074 8308 SUPERSCRIPT FOUR
⁵ 5S 2075 8309 SUPERSCRIPT FIVE
⁶ 6S 2076 8310 SUPERSCRIPT SIX
⁷ 7S 2077 8311 SUPERSCRIPT SEVEN
⁸ 8S 2078 8312 SUPERSCRIPT EIGHT
⁹ 9S 2079 8313 SUPERSCRIPT NINE
� +S 207A 8314 SUPERSCRIPT PLUS SIGN
� -S 207B 8315 SUPERSCRIPT MINUS
� =S 207C 8316 SUPERSCRIPT EQUALS SIGN

digraph.txt — 1866

⁽ (S 207D 8317 SUPERSCRIPT LEFT PARENTHESIS
⁾)S 207E 8318 SUPERSCRIPT RIGHT PARENTHESIS
ⁿ nS 207F 8319 SUPERSCRIPT LATIN SMALL LETTER N
₀ 0s 2080 8320 SUBSCRIPT ZERO
₁ 1s 2081 8321 SUBSCRIPT ONE
₂ 2s 2082 8322 SUBSCRIPT TWO
₃ 3s 2083 8323 SUBSCRIPT THREE
₄ 4s 2084 8324 SUBSCRIPT FOUR
₅ 5s 2085 8325 SUBSCRIPT FIVE
₆ 6s 2086 8326 SUBSCRIPT SIX
₇ 7s 2087 8327 SUBSCRIPT SEVEN
₈ 8s 2088 8328 SUBSCRIPT EIGHT
₉ 9s 2089 8329 SUBSCRIPT NINE
� +s 208A 8330 SUBSCRIPT PLUS SIGN
� -s 208B 8331 SUBSCRIPT MINUS
� =s 208C 8332 SUBSCRIPT EQUALS SIGN
₍ (s 208D 8333 SUBSCRIPT LEFT PARENTHESIS
₎)s 208E 8334 SUBSCRIPT RIGHT PARENTHESIS
₤ Li 20A4 8356 LIRA SIGN
₧ Pt 20A7 8359 PESETA SIGN
� W= 20A9 8361 WON SIGN
€ Eu 20AC 8364 EURO SIGN
� =R 20BD 8381 ROUBLE SIGN
� =P 20BD 8381 ROUBLE SIGN
� oC 2103 8451 DEGREE CELSIUS
� co 2105 8453 CARE OF
� oF 2109 8457 DEGREE FAHRENHEIT
� N0 2116 8470 NUMERO SIGN
℗ PO 2117 8471 SOUND RECORDING COPYRIGHT
� Rx 211E 8478 PRESCRIPTION TAKE
℠ SM 2120 8480 SERVICE MARK
™ TM 2122 8482 TRADE MARK SIGN
Ω Om 2126 8486 OHM SIGN
Å AO 212B 8491 ANGSTROM SIGN
⅓ 13 2153 8531 VULGAR FRACTION ONE THIRD
⅔ 23 2154 8532 VULGAR FRACTION TWO THIRDS
� 15 2155 8533 VULGAR FRACTION ONE FIFTH
� 25 2156 8534 VULGAR FRACTION TWO FIFTHS
� 35 2157 8535 VULGAR FRACTION THREE FIFTHS
� 45 2158 8536 VULGAR FRACTION FOUR FIFTHS
� 16 2159 8537 VULGAR FRACTION ONE SIXTH
� 56 215A 8538 VULGAR FRACTION FIVE SIXTHS
⅛ 18 215B 8539 VULGAR FRACTION ONE EIGHTH
⅜ 38 215C 8540 VULGAR FRACTION THREE EIGHTHS
⅝ 58 215D 8541 VULGAR FRACTION FIVE EIGHTHS
⅞ 78 215E 8542 VULGAR FRACTION SEVEN EIGHTHS
� 1R 2160 8544 ROMAN NUMERAL ONE
� 2R 2161 8545 ROMAN NUMERAL TWO
� 3R 2162 8546 ROMAN NUMERAL THREE
� 4R 2163 8547 ROMAN NUMERAL FOUR
� 5R 2164 8548 ROMAN NUMERAL FIVE
� 6R 2165 8549 ROMAN NUMERAL SIX
� 7R 2166 8550 ROMAN NUMERAL SEVEN
� 8R 2167 8551 ROMAN NUMERAL EIGHT
� 9R 2168 8552 ROMAN NUMERAL NINE
� aR 2169 8553 ROMAN NUMERAL TEN
� bR 216A 8554 ROMAN NUMERAL ELEVEN
� cR 216B 8555 ROMAN NUMERAL TWELVE
� 1r 2170 8560 SMALL ROMAN NUMERAL ONE
� 2r 2171 8561 SMALL ROMAN NUMERAL TWO

digraph.txt — 1867

� 3r 2172 8562 SMALL ROMAN NUMERAL THREE
� 4r 2173 8563 SMALL ROMAN NUMERAL FOUR
� 5r 2174 8564 SMALL ROMAN NUMERAL FIVE
� 6r 2175 8565 SMALL ROMAN NUMERAL SIX
� 7r 2176 8566 SMALL ROMAN NUMERAL SEVEN
� 8r 2177 8567 SMALL ROMAN NUMERAL EIGHT
� 9r 2178 8568 SMALL ROMAN NUMERAL NINE
� ar 2179 8569 SMALL ROMAN NUMERAL TEN
� br 217A 8570 SMALL ROMAN NUMERAL ELEVEN
� cr 217B 8571 SMALL ROMAN NUMERAL TWELVE
← <- 2190 8592 LEFTWARDS ARROW
↑ -! 2191 8593 UPWARDS ARROW
→ -> 2192 8594 RIGHTWARDS ARROW
↓ -v 2193 8595 DOWNWARDS ARROW
� <> 2194 8596 LEFT RIGHT ARROW
� UD 2195 8597 UP DOWN ARROW
� <= 21D0 8656 LEFTWARDS DOUBLE ARROW
� => 21D2 8658 RIGHTWARDS DOUBLE ARROW
� == 21D4 8660 LEFT RIGHT DOUBLE ARROW
� FA 2200 8704 FOR ALL
∂ dP 2202 8706 PARTIAL DIFFERENTIAL
� TE 2203 8707 THERE EXISTS
� /0 2205 8709 EMPTY SET
∆ DE 2206 8710 INCREMENT
� NB 2207 8711 NABLA
� (- 2208 8712 ELEMENT OF
� -) 220B 8715 CONTAINS AS MEMBER
∏ *P 220F 8719 N-ARY PRODUCT
∑ +Z 2211 8721 N-ARY SUMMATION
− -2 2212 8722 MINUS SIGN
� -+ 2213 8723 MINUS-OR-PLUS SIGN
� *- 2217 8727 ASTERISK OPERATOR
� Ob 2218 8728 RING OPERATOR
∙ Sb 2219 8729 BULLET OPERATOR
√ RT 221A 8730 SQUARE ROOT
� 0(221D 8733 PROPORTIONAL TO
∞ 00 221E 8734 INFINITY
� -L 221F 8735 RIGHT ANGLE
� -V 2220 8736 ANGLE
� PP 2225 8741 PARALLEL TO
� AN 2227 8743 LOGICAL AND
� OR 2228 8744 LOGICAL OR
� (U 2229 8745 INTERSECTION
�)U 222A 8746 UNION
∫ In 222B 8747 INTEGRAL
� DI 222C 8748 DOUBLE INTEGRAL
� Io 222E 8750 CONTOUR INTEGRAL
� .: 2234 8756 THEREFORE
� :. 2235 8757 BECAUSE
� :R 2236 8758 RATIO
� :: 2237 8759 PROPORTION
� ?1 223C 8764 TILDE OPERATOR
� CG 223E 8766 INVERTED LAZY S
� ?- 2243 8771 ASYMPTOTICALLY EQUAL TO
� ?= 2245 8773 APPROXIMATELY EQUAL TO
≈ ?2 2248 8776 ALMOST EQUAL TO
� =? 224C 8780 ALL EQUAL TO
� HI 2253 8787 IMAGE OF OR APPROXIMATELY EQUAL TO
≠ != 2260 8800 NOT EQUAL TO
� =3 2261 8801 IDENTICAL TO

digraph.txt — 1868

≤ =< 2264 8804 LESS-THAN OR EQUAL TO
≥ >= 2265 8805 GREATER-THAN OR EQUAL TO
� <* 226A 8810 MUCH LESS-THAN
� *> 226B 8811 MUCH GREATER-THAN
� !< 226E 8814 NOT LESS-THAN
� !> 226F 8815 NOT GREATER-THAN
� (C 2282 8834 SUBSET OF
�)C 2283 8835 SUPERSET OF
� (_ 2286 8838 SUBSET OF OR EQUAL TO
�)_ 2287 8839 SUPERSET OF OR EQUAL TO
� 0. 2299 8857 CIRCLED DOT OPERATOR
� 02 229A 8858 CIRCLED RING OPERATOR
� -T 22A5 8869 UP TACK
� .P 22C5 8901 DOT OPERATOR
� :3 22EE 8942 VERTICAL ELLIPSIS
� .3 22EF 8943 MIDLINE HORIZONTAL ELLIPSIS
� Eh 2302 8962 HOUSE
� <7 2308 8968 LEFT CEILING
� >7 2309 8969 RIGHT CEILING
� 7< 230A 8970 LEFT FLOOR
� 7> 230B 8971 RIGHT FLOOR
� NI 2310 8976 REVERSED NOT SIGN
� (A 2312 8978 ARC
� TR 2315 8981 TELEPHONE RECORDER
� Iu 2320 8992 TOP HALF INTEGRAL
� Il 2321 8993 BOTTOM HALF INTEGRAL
� </ 2329 9001 LEFT-POINTING ANGLE BRACKET
� /> 232A 9002 RIGHT-POINTING ANGLE BRACKET
� Vs 2423 9251 OPEN BOX
� 1h 2440 9280 OCR HOOK
� 3h 2441 9281 OCR CHAIR
� 2h 2442 9282 OCR FORK
� 4h 2443 9283 OCR INVERTED FORK
� 1j 2446 9286 OCR BRANCH BANK IDENTIFICATION
� 2j 2447 9287 OCR AMOUNT OF CHECK
� 3j 2448 9288 OCR DASH
� 4j 2449 9289 OCR CUSTOMER ACCOUNT NUMBER
� 1. 2488 9352 DIGIT ONE FULL STOP
� 2. 2489 9353 DIGIT TWO FULL STOP
� 3. 248A 9354 DIGIT THREE FULL STOP
� 4. 248B 9355 DIGIT FOUR FULL STOP
� 5. 248C 9356 DIGIT FIVE FULL STOP
� 6. 248D 9357 DIGIT SIX FULL STOP
� 7. 248E 9358 DIGIT SEVEN FULL STOP
� 8. 248F 9359 DIGIT EIGHT FULL STOP
� 9. 2490 9360 DIGIT NINE FULL STOP
─ hh 2500 9472 BOX DRAWINGS LIGHT HORIZONTAL
━ HH 2501 9473 BOX DRAWINGS HEAVY HORIZONTAL
│ vv 2502 9474 BOX DRAWINGS LIGHT VERTICAL
┃ VV 2503 9475 BOX DRAWINGS HEAVY VERTICAL
┄ 3- 2504 9476 BOX DRAWINGS LIGHT TRIPLE DASH HORIZONTAL
┅ 3_ 2505 9477 BOX DRAWINGS HEAVY TRIPLE DASH HORIZONTAL
┆ 3! 2506 9478 BOX DRAWINGS LIGHT TRIPLE DASH VERTICAL
┇ 3/ 2507 9479 BOX DRAWINGS HEAVY TRIPLE DASH VERTICAL
┈ 4- 2508 9480 BOX DRAWINGS LIGHT QUADRUPLE DASH HORIZONTAL
┉ 4_ 2509 9481 BOX DRAWINGS HEAVY QUADRUPLE DASH HORIZONTAL
┊ 4! 250A 9482 BOX DRAWINGS LIGHT QUADRUPLE DASH VERTICAL
┋ 4/ 250B 9483 BOX DRAWINGS HEAVY QUADRUPLE DASH VERTICAL
┌ dr 250C 9484 BOX DRAWINGS LIGHT DOWN AND RIGHT
┍ dR 250D 9485 BOX DRAWINGS DOWN LIGHT AND RIGHT HEAVY

digraph.txt — 1869

┎ Dr 250E 9486 BOX DRAWINGS DOWN HEAVY AND RIGHT LIGHT
┏ DR 250F 9487 BOX DRAWINGS HEAVY DOWN AND RIGHT
┐ dl 2510 9488 BOX DRAWINGS LIGHT DOWN AND LEFT
┑ dL 2511 9489 BOX DRAWINGS DOWN LIGHT AND LEFT HEAVY
┒ Dl 2512 9490 BOX DRAWINGS DOWN HEAVY AND LEFT LIGHT
┓ LD 2513 9491 BOX DRAWINGS HEAVY DOWN AND LEFT
└ ur 2514 9492 BOX DRAWINGS LIGHT UP AND RIGHT
┕ uR 2515 9493 BOX DRAWINGS UP LIGHT AND RIGHT HEAVY
┖ Ur 2516 9494 BOX DRAWINGS UP HEAVY AND RIGHT LIGHT
┗ UR 2517 9495 BOX DRAWINGS HEAVY UP AND RIGHT
┘ ul 2518 9496 BOX DRAWINGS LIGHT UP AND LEFT
┙ uL 2519 9497 BOX DRAWINGS UP LIGHT AND LEFT HEAVY
┚ Ul 251A 9498 BOX DRAWINGS UP HEAVY AND LEFT LIGHT
┛ UL 251B 9499 BOX DRAWINGS HEAVY UP AND LEFT
├ vr 251C 9500 BOX DRAWINGS LIGHT VERTICAL AND RIGHT
┝ vR 251D 9501 BOX DRAWINGS VERTICAL LIGHT AND RIGHT HEAVY
┠ Vr 2520 9504 BOX DRAWINGS VERTICAL HEAVY AND RIGHT LIGHT
┣ VR 2523 9507 BOX DRAWINGS HEAVY VERTICAL AND RIGHT
┤ vl 2524 9508 BOX DRAWINGS LIGHT VERTICAL AND LEFT
┥ vL 2525 9509 BOX DRAWINGS VERTICAL LIGHT AND LEFT HEAVY
┨ Vl 2528 9512 BOX DRAWINGS VERTICAL HEAVY AND LEFT LIGHT
┫ VL 252B 9515 BOX DRAWINGS HEAVY VERTICAL AND LEFT
┬ dh 252C 9516 BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
┯ dH 252F 9519 BOX DRAWINGS DOWN LIGHT AND HORIZONTAL HEAVY
┰ Dh 2530 9520 BOX DRAWINGS DOWN HEAVY AND HORIZONTAL LIGHT
┳ DH 2533 9523 BOX DRAWINGS HEAVY DOWN AND HORIZONTAL
┴ uh 2534 9524 BOX DRAWINGS LIGHT UP AND HORIZONTAL
┷ uH 2537 9527 BOX DRAWINGS UP LIGHT AND HORIZONTAL HEAVY
┸ Uh 2538 9528 BOX DRAWINGS UP HEAVY AND HORIZONTAL LIGHT
┻ UH 253B 9531 BOX DRAWINGS HEAVY UP AND HORIZONTAL
┼ vh 253C 9532 BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
┿ vH 253F 9535 BOX DRAWINGS VERTICAL LIGHT AND HORIZONTAL HEAVY
╂ Vh 2542 9538 BOX DRAWINGS VERTICAL HEAVY AND HORIZONTAL LIGHT
╋ VH 254B 9547 BOX DRAWINGS HEAVY VERTICAL AND HORIZONTAL
╱ FD 2571 9585 BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT
╲ BD 2572 9586 BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT
▀ TB 2580 9600 UPPER HALF BLOCK
▄ LB 2584 9604 LOWER HALF BLOCK
█ FB 2588 9608 FULL BLOCK
▌ lB 258C 9612 LEFT HALF BLOCK
▐ RB 2590 9616 RIGHT HALF BLOCK
░ .S 2591 9617 LIGHT SHADE
▒ :S 2592 9618 MEDIUM SHADE
▓ ?S 2593 9619 DARK SHADE
■ fS 25A0 9632 BLACK SQUARE
� OS 25A1 9633 WHITE SQUARE
� RO 25A2 9634 WHITE SQUARE WITH ROUNDED CORNERS
� Rr 25A3 9635 WHITE SQUARE CONTAINING BLACK SMALL SQUARE
� RF 25A4 9636 SQUARE WITH HORIZONTAL FILL
� RY 25A5 9637 SQUARE WITH VERTICAL FILL
� RH 25A6 9638 SQUARE WITH ORTHOGONAL CROSSHATCH FILL
� RZ 25A7 9639 SQUARE WITH UPPER LEFT TO LOWER RIGHT FILL
� RK 25A8 9640 SQUARE WITH UPPER RIGHT TO LOWER LEFT FILL
� RX 25A9 9641 SQUARE WITH DIAGONAL CROSSHATCH FILL
� sB 25AA 9642 BLACK SMALL SQUARE
� SR 25AC 9644 BLACK RECTANGLE
� Or 25AD 9645 WHITE RECTANGLE

digraph.txt — 1870

▲ UT 25B2 9650 BLACK UP-POINTING TRIANGLE
△ uT 25B3 9651 WHITE UP-POINTING TRIANGLE
▶ PR 25B6 9654 BLACK RIGHT-POINTING TRIANGLE
▷ Tr 25B7 9655 WHITE RIGHT-POINTING TRIANGLE
▼ Dt 25BC 9660 BLACK DOWN-POINTING TRIANGLE
▽ dT 25BD 9661 WHITE DOWN-POINTING TRIANGLE
◀ PL 25C0 9664 BLACK LEFT-POINTING TRIANGLE
◁ Tl 25C1 9665 WHITE LEFT-POINTING TRIANGLE
◆ Db 25C6 9670 BLACK DIAMOND
� Dw 25C7 9671 WHITE DIAMOND
◊ LZ 25CA 9674 LOZENGE
� 0m 25CB 9675 WHITE CIRCLE
� 0o 25CE 9678 BULLSEYE
� 0M 25CF 9679 BLACK CIRCLE
� 0L 25D0 9680 CIRCLE WITH LEFT HALF BLACK
� 0R 25D1 9681 CIRCLE WITH RIGHT HALF BLACK
� Sn 25D8 9688 INVERSE BULLET
� Ic 25D9 9689 INVERSE WHITE CIRCLE
� Fd 25E2 9698 BLACK LOWER RIGHT TRIANGLE
� Bd 25E3 9699 BLACK LOWER LEFT TRIANGLE
� *2 2605 9733 BLACK STAR
� *1 2606 9734 WHITE STAR
� <H 261C 9756 WHITE LEFT POINTING INDEX
� >H 261E 9758 WHITE RIGHT POINTING INDEX
� 0u 263A 9786 WHITE SMILING FACE
� 0U 263B 9787 BLACK SMILING FACE
� SU 263C 9788 WHITE SUN WITH RAYS
� Fm 2640 9792 FEMALE SIGN
� Ml 2642 9794 MALE SIGN
� cS 2660 9824 BLACK SPADE SUIT
� cH 2661 9825 WHITE HEART SUIT
� cD 2662 9826 WHITE DIAMOND SUIT
� cC 2663 9827 BLACK CLUB SUIT
� Md 2669 9833 QUARTER NOTE
♪ M8 266A 9834 EIGHTH NOTE
� M2 266B 9835 BEAMED EIGHTH NOTES
� Mb 266D 9837 MUSIC FLAT SIGN
� Mx 266E 9838 MUSIC NATURAL SIGN
� MX 266F 9839 MUSIC SHARP SIGN
✓ OK 2713 10003 CHECK MARK
� XX 2717 10007 BALLOT X
� -X 2720 10016 MALTESE CROSS
 IS 3000 12288 IDEOGRAPHIC SPACE
� ,_ 3001 12289 IDEOGRAPHIC COMMA
� ._ 3002 12290 IDEOGRAPHIC FULL STOP
� +" 3003 12291 DITTO MARK
� +_ 3004 12292 JAPANESE INDUSTRIAL STANDARD SYMBOL
� *_ 3005 12293 IDEOGRAPHIC ITERATION MARK
� ;_ 3006 12294 IDEOGRAPHIC CLOSING MARK
� 0_ 3007 12295 IDEOGRAPHIC NUMBER ZERO
� <+ 300A 12298 LEFT DOUBLE ANGLE BRACKET
� >+ 300B 12299 RIGHT DOUBLE ANGLE BRACKET
� <' 300C 12300 LEFT CORNER BRACKET
� >' 300D 12301 RIGHT CORNER BRACKET
� <" 300E 12302 LEFT WHITE CORNER BRACKET
� >" 300F 12303 RIGHT WHITE CORNER BRACKET
� (" 3010 12304 LEFT BLACK LENTICULAR BRACKET
�)" 3011 12305 RIGHT BLACK LENTICULAR BRACKET
� =T 3012 12306 POSTAL MARK
� =_ 3013 12307 GETA MARK

digraph.txt — 1871

� (' 3014 12308 LEFT TORTOISE SHELL BRACKET
�)' 3015 12309 RIGHT TORTOISE SHELL BRACKET
� (I 3016 12310 LEFT WHITE LENTICULAR BRACKET
�)I 3017 12311 RIGHT WHITE LENTICULAR BRACKET
� -? 301C 12316 WAVE DASH
� A5 3041 12353 HIRAGANA LETTER SMALL A
� a5 3042 12354 HIRAGANA LETTER A
� I5 3043 12355 HIRAGANA LETTER SMALL I
� i5 3044 12356 HIRAGANA LETTER I
� U5 3045 12357 HIRAGANA LETTER SMALL U
� u5 3046 12358 HIRAGANA LETTER U
� E5 3047 12359 HIRAGANA LETTER SMALL E
� e5 3048 12360 HIRAGANA LETTER E
� O5 3049 12361 HIRAGANA LETTER SMALL O
� o5 304A 12362 HIRAGANA LETTER O
� ka 304B 12363 HIRAGANA LETTER KA
� ga 304C 12364 HIRAGANA LETTER GA
� ki 304D 12365 HIRAGANA LETTER KI
� gi 304E 12366 HIRAGANA LETTER GI
� ku 304F 12367 HIRAGANA LETTER KU
� gu 3050 12368 HIRAGANA LETTER GU
� ke 3051 12369 HIRAGANA LETTER KE
� ge 3052 12370 HIRAGANA LETTER GE
� ko 3053 12371 HIRAGANA LETTER KO
� go 3054 12372 HIRAGANA LETTER GO
� sa 3055 12373 HIRAGANA LETTER SA
� za 3056 12374 HIRAGANA LETTER ZA
� si 3057 12375 HIRAGANA LETTER SI
� zi 3058 12376 HIRAGANA LETTER ZI
� su 3059 12377 HIRAGANA LETTER SU
� zu 305A 12378 HIRAGANA LETTER ZU
� se 305B 12379 HIRAGANA LETTER SE
� ze 305C 12380 HIRAGANA LETTER ZE
� so 305D 12381 HIRAGANA LETTER SO
� zo 305E 12382 HIRAGANA LETTER ZO
� ta 305F 12383 HIRAGANA LETTER TA
� da 3060 12384 HIRAGANA LETTER DA
� ti 3061 12385 HIRAGANA LETTER TI
� di 3062 12386 HIRAGANA LETTER DI
� tU 3063 12387 HIRAGANA LETTER SMALL TU
� tu 3064 12388 HIRAGANA LETTER TU
� du 3065 12389 HIRAGANA LETTER DU
� te 3066 12390 HIRAGANA LETTER TE
� de 3067 12391 HIRAGANA LETTER DE
� to 3068 12392 HIRAGANA LETTER TO
� do 3069 12393 HIRAGANA LETTER DO
� na 306A 12394 HIRAGANA LETTER NA
� ni 306B 12395 HIRAGANA LETTER NI
� nu 306C 12396 HIRAGANA LETTER NU
� ne 306D 12397 HIRAGANA LETTER NE
� no 306E 12398 HIRAGANA LETTER NO
� ha 306F 12399 HIRAGANA LETTER HA
� ba 3070 12400 HIRAGANA LETTER BA
� pa 3071 12401 HIRAGANA LETTER PA
� hi 3072 12402 HIRAGANA LETTER HI
� bi 3073 12403 HIRAGANA LETTER BI
� pi 3074 12404 HIRAGANA LETTER PI
� hu 3075 12405 HIRAGANA LETTER HU
� bu 3076 12406 HIRAGANA LETTER BU
� pu 3077 12407 HIRAGANA LETTER PU

digraph.txt — 1872

� he 3078 12408 HIRAGANA LETTER HE
� be 3079 12409 HIRAGANA LETTER BE
� pe 307A 12410 HIRAGANA LETTER PE
� ho 307B 12411 HIRAGANA LETTER HO
� bo 307C 12412 HIRAGANA LETTER BO
� po 307D 12413 HIRAGANA LETTER PO
� ma 307E 12414 HIRAGANA LETTER MA
� mi 307F 12415 HIRAGANA LETTER MI
� mu 3080 12416 HIRAGANA LETTER MU
� me 3081 12417 HIRAGANA LETTER ME
� mo 3082 12418 HIRAGANA LETTER MO
� yA 3083 12419 HIRAGANA LETTER SMALL YA
� ya 3084 12420 HIRAGANA LETTER YA
� yU 3085 12421 HIRAGANA LETTER SMALL YU
� yu 3086 12422 HIRAGANA LETTER YU
� yO 3087 12423 HIRAGANA LETTER SMALL YO
� yo 3088 12424 HIRAGANA LETTER YO
� ra 3089 12425 HIRAGANA LETTER RA
� ri 308A 12426 HIRAGANA LETTER RI
� ru 308B 12427 HIRAGANA LETTER RU
� re 308C 12428 HIRAGANA LETTER RE
� ro 308D 12429 HIRAGANA LETTER RO
� wA 308E 12430 HIRAGANA LETTER SMALL WA
� wa 308F 12431 HIRAGANA LETTER WA
� wi 3090 12432 HIRAGANA LETTER WI
� we 3091 12433 HIRAGANA LETTER WE
� wo 3092 12434 HIRAGANA LETTER WO
� n5 3093 12435 HIRAGANA LETTER N
� vu 3094 12436 HIRAGANA LETTER VU
� "5 309B 12443 KATAKANA-HIRAGANA VOICED SOUND MARK
� 05 309C 12444 KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK
� *5 309D 12445 HIRAGANA ITERATION MARK
� +5 309E 12446 HIRAGANA VOICED ITERATION MARK
� a6 30A1 12449 KATAKANA LETTER SMALL A
� A6 30A2 12450 KATAKANA LETTER A
� i6 30A3 12451 KATAKANA LETTER SMALL I
� I6 30A4 12452 KATAKANA LETTER I
� u6 30A5 12453 KATAKANA LETTER SMALL U
� U6 30A6 12454 KATAKANA LETTER U
� e6 30A7 12455 KATAKANA LETTER SMALL E
� E6 30A8 12456 KATAKANA LETTER E
� o6 30A9 12457 KATAKANA LETTER SMALL O
� O6 30AA 12458 KATAKANA LETTER O
� Ka 30AB 12459 KATAKANA LETTER KA
� Ga 30AC 12460 KATAKANA LETTER GA
� Ki 30AD 12461 KATAKANA LETTER KI
� Gi 30AE 12462 KATAKANA LETTER GI
� Ku 30AF 12463 KATAKANA LETTER KU
� Gu 30B0 12464 KATAKANA LETTER GU
� Ke 30B1 12465 KATAKANA LETTER KE
� Ge 30B2 12466 KATAKANA LETTER GE
� Ko 30B3 12467 KATAKANA LETTER KO
� Go 30B4 12468 KATAKANA LETTER GO
� Sa 30B5 12469 KATAKANA LETTER SA
� Za 30B6 12470 KATAKANA LETTER ZA
� Si 30B7 12471 KATAKANA LETTER SI
� Zi 30B8 12472 KATAKANA LETTER ZI
� Su 30B9 12473 KATAKANA LETTER SU
� Zu 30BA 12474 KATAKANA LETTER ZU
� Se 30BB 12475 KATAKANA LETTER SE

digraph.txt — 1873

� Ze 30BC 12476 KATAKANA LETTER ZE
� So 30BD 12477 KATAKANA LETTER SO
� Zo 30BE 12478 KATAKANA LETTER ZO
� Ta 30BF 12479 KATAKANA LETTER TA
� Da 30C0 12480 KATAKANA LETTER DA
� Ti 30C1 12481 KATAKANA LETTER TI
� Di 30C2 12482 KATAKANA LETTER DI
� TU 30C3 12483 KATAKANA LETTER SMALL TU
� Tu 30C4 12484 KATAKANA LETTER TU
� Du 30C5 12485 KATAKANA LETTER DU
� Te 30C6 12486 KATAKANA LETTER TE
� De 30C7 12487 KATAKANA LETTER DE
� To 30C8 12488 KATAKANA LETTER TO
� Do 30C9 12489 KATAKANA LETTER DO
� Na 30CA 12490 KATAKANA LETTER NA
� Ni 30CB 12491 KATAKANA LETTER NI
� Nu 30CC 12492 KATAKANA LETTER NU
� Ne 30CD 12493 KATAKANA LETTER NE
� No 30CE 12494 KATAKANA LETTER NO
� Ha 30CF 12495 KATAKANA LETTER HA
� Ba 30D0 12496 KATAKANA LETTER BA
� Pa 30D1 12497 KATAKANA LETTER PA
� Hi 30D2 12498 KATAKANA LETTER HI
� Bi 30D3 12499 KATAKANA LETTER BI
� Pi 30D4 12500 KATAKANA LETTER PI
� Hu 30D5 12501 KATAKANA LETTER HU
� Bu 30D6 12502 KATAKANA LETTER BU
� Pu 30D7 12503 KATAKANA LETTER PU
� He 30D8 12504 KATAKANA LETTER HE
� Be 30D9 12505 KATAKANA LETTER BE
� Pe 30DA 12506 KATAKANA LETTER PE
� Ho 30DB 12507 KATAKANA LETTER HO
� Bo 30DC 12508 KATAKANA LETTER BO
� Po 30DD 12509 KATAKANA LETTER PO
� Ma 30DE 12510 KATAKANA LETTER MA
� Mi 30DF 12511 KATAKANA LETTER MI
� Mu 30E0 12512 KATAKANA LETTER MU
� Me 30E1 12513 KATAKANA LETTER ME
� Mo 30E2 12514 KATAKANA LETTER MO
� YA 30E3 12515 KATAKANA LETTER SMALL YA
� Ya 30E4 12516 KATAKANA LETTER YA
� YU 30E5 12517 KATAKANA LETTER SMALL YU
� Yu 30E6 12518 KATAKANA LETTER YU
� YO 30E7 12519 KATAKANA LETTER SMALL YO
� Yo 30E8 12520 KATAKANA LETTER YO
� Ra 30E9 12521 KATAKANA LETTER RA
� Ri 30EA 12522 KATAKANA LETTER RI
� Ru 30EB 12523 KATAKANA LETTER RU
� Re 30EC 12524 KATAKANA LETTER RE
� Ro 30ED 12525 KATAKANA LETTER RO
� WA 30EE 12526 KATAKANA LETTER SMALL WA
� Wa 30EF 12527 KATAKANA LETTER WA
� Wi 30F0 12528 KATAKANA LETTER WI
� We 30F1 12529 KATAKANA LETTER WE
� Wo 30F2 12530 KATAKANA LETTER WO
� N6 30F3 12531 KATAKANA LETTER N
� Vu 30F4 12532 KATAKANA LETTER VU
� KA 30F5 12533 KATAKANA LETTER SMALL KA
� KE 30F6 12534 KATAKANA LETTER SMALL KE
� Va 30F7 12535 KATAKANA LETTER VA

digraph.txt — 1874

� Vi 30F8 12536 KATAKANA LETTER VI
� Ve 30F9 12537 KATAKANA LETTER VE
� Vo 30FA 12538 KATAKANA LETTER VO
� .6 30FB 12539 KATAKANA MIDDLE DOT
� -6 30FC 12540 KATAKANA-HIRAGANA PROLONGED SOUND MARK
� *6 30FD 12541 KATAKANA ITERATION MARK
� +6 30FE 12542 KATAKANA VOICED ITERATION MARK
� b4 3105 12549 BOPOMOFO LETTER B
� p4 3106 12550 BOPOMOFO LETTER P
� m4 3107 12551 BOPOMOFO LETTER M
� f4 3108 12552 BOPOMOFO LETTER F
� d4 3109 12553 BOPOMOFO LETTER D
� t4 310A 12554 BOPOMOFO LETTER T
� n4 310B 12555 BOPOMOFO LETTER N
� l4 310C 12556 BOPOMOFO LETTER L
� g4 310D 12557 BOPOMOFO LETTER G
� k4 310E 12558 BOPOMOFO LETTER K
� h4 310F 12559 BOPOMOFO LETTER H
� j4 3110 12560 BOPOMOFO LETTER J
� q4 3111 12561 BOPOMOFO LETTER Q
� x4 3112 12562 BOPOMOFO LETTER X
� zh 3113 12563 BOPOMOFO LETTER ZH
� ch 3114 12564 BOPOMOFO LETTER CH
� sh 3115 12565 BOPOMOFO LETTER SH
� r4 3116 12566 BOPOMOFO LETTER R
� z4 3117 12567 BOPOMOFO LETTER Z
� c4 3118 12568 BOPOMOFO LETTER C
� s4 3119 12569 BOPOMOFO LETTER S
� a4 311A 12570 BOPOMOFO LETTER A
� o4 311B 12571 BOPOMOFO LETTER O
� e4 311C 12572 BOPOMOFO LETTER E
� ai 311E 12574 BOPOMOFO LETTER AI
� ei 311F 12575 BOPOMOFO LETTER EI
� au 3120 12576 BOPOMOFO LETTER AU
� ou 3121 12577 BOPOMOFO LETTER OU
� an 3122 12578 BOPOMOFO LETTER AN
� en 3123 12579 BOPOMOFO LETTER EN
� aN 3124 12580 BOPOMOFO LETTER ANG
� eN 3125 12581 BOPOMOFO LETTER ENG
� er 3126 12582 BOPOMOFO LETTER ER
� i4 3127 12583 BOPOMOFO LETTER I
� u4 3128 12584 BOPOMOFO LETTER U
� iu 3129 12585 BOPOMOFO LETTER IU
� v4 312A 12586 BOPOMOFO LETTER V
� nG 312B 12587 BOPOMOFO LETTER NG
� gn 312C 12588 BOPOMOFO LETTER GN
� 1c 3220 12832 PARENTHESIZED IDEOGRAPH ONE
� 2c 3221 12833 PARENTHESIZED IDEOGRAPH TWO
� 3c 3222 12834 PARENTHESIZED IDEOGRAPH THREE
� 4c 3223 12835 PARENTHESIZED IDEOGRAPH FOUR
� 5c 3224 12836 PARENTHESIZED IDEOGRAPH FIVE
� 6c 3225 12837 PARENTHESIZED IDEOGRAPH SIX
� 7c 3226 12838 PARENTHESIZED IDEOGRAPH SEVEN
� 8c 3227 12839 PARENTHESIZED IDEOGRAPH EIGHT
� 9c 3228 12840 PARENTHESIZED IDEOGRAPH NINE
� ff FB00 64256 LATIN SMALL LIGATURE FF
fi fi FB01 64257 LATIN SMALL LIGATURE FI
fl fl FB02 64258 LATIN SMALL LIGATURE FL
� ft FB05 64261 LATIN SMALL LIGATURE LONG S T
� st FB06 64262 LATIN SMALL LIGATURE ST

digraph.txt — 1875

digraph.txt — 1876

mbyte.txt For Vim version 9.1. Last change: 2022 Apr 03

VIM REFERENCE MANUAL by Bram Moolenaar et al.

Multi-byte support multibyte multi-byte
Chinese Japanese Korean

This is about editing text in languages which have many characters that can
not be represented using one byte (one octet). Examples are Chinese, Japanese
and Korean. Unicode is also covered here.

For an introduction to the most common features, see usr_45.txt in the user
manual.
For changing the language of messages and menus see mlang.txt .

1. Getting started mbyte-first
2. Locale mbyte-locale
3. Encoding mbyte-encoding
4. Using a terminal mbyte-terminal
5. Fonts on X11 mbyte-fonts-X11
6. Fonts on MS-Windows mbyte-fonts-MSwin
7. Input on X11 mbyte-XIM
8. Input on MS-Windows mbyte-IME
9. Input with a keymap mbyte-keymap
10. Input with imactivatefunc() mbyte-func
11. Using UTF-8 mbyte-utf8
12. Overview of options mbyte-options

NOTE: This file contains UTF-8 characters. These may show up as strange
characters or boxes when using another encoding.

==
1. Getting started mbyte-first

This is a summary of the multibyte features in Vim. If you are lucky it works
as described and you can start using Vim without much trouble. If something
doesn't work you will have to read the rest. Don't be surprised if it takes
quite a bit of work and experimenting to make Vim use all the multibyte
features. Unfortunately, every system has its own way to deal with multibyte
languages and it is quite complicated.

LOCALE

First of all, you must make sure your current locale is set correctly. If
your system has been installed to use the language, it probably works right
away. If not, you can often make it work by setting the $LANG environment
variable in your shell:

setenv LANG ja_JP.EUC

Unfortunately, the name of the locale depends on your system. Japanese might
also be called "ja_JP.EUCjp" or just "ja". To see what is currently used:

:language

To change the locale inside Vim use:

:language ja_JP.EUC

mbyte.txt — 1877

Vim will give an error message if this doesn't work. This is a good way to
experiment and find the locale name you want to use. But it's always better
to set the locale in the shell, so that it is used right from the start.

See mbyte-locale for details.

ENCODING

If your locale works properly, Vim will try to set the 'encoding' option
accordingly. If this doesn't work you can overrule its value:

:set encoding=utf-8

See encoding-values for a list of acceptable values.

The result is that all the text that is used inside Vim will be in this
encoding. Not only the text in the buffers, but also in registers, variables,
etc. This also means that changing the value of 'encoding' makes the existing
text invalid! The text doesn't change, but it will be displayed wrong.

You can edit files in another encoding than what 'encoding' is set to. Vim
will convert the file when you read it and convert it back when you write it.
See 'fileencoding', 'fileencodings' and ++enc .

DISPLAY AND FONTS

If you are working in a terminal (emulator) you must make sure it accepts the
same encoding as which Vim is working with. If this is not the case, you can
use the 'termencoding' option to make Vim convert text automatically.

For the GUI you must select fonts that work with the current 'encoding'. This
is the difficult part. It depends on the system you are using, the locale and
a few other things. See the chapters on fonts: mbyte-fonts-X11 for
X-Windows and mbyte-fonts-MSwin for MS-Windows.

For GTK+ 2, you can skip most of this section. The option 'guifontset' does
no longer exist. You only need to set 'guifont' and everything should "just
work". If your system comes with Xft2 and fontconfig and the current font
does not contain a certain glyph, a different font will be used automatically
if available. The 'guifontwide' option is still supported but usually you do
not need to set it. It is only necessary if the automatic font selection does
not suit your needs.

For X11 you can set the 'guifontset' option to a list of fonts that together
cover the characters that are used. Example for Korean:

:set guifontset=k12,r12

Alternatively, you can set 'guifont' and 'guifontwide'. 'guifont' is used for
the single-width characters, 'guifontwide' for the double-width characters.
Thus the 'guifontwide' font must be exactly twice as wide as 'guifont'.
Example for UTF-8:

:set guifont=-misc-fixed-medium-r-normal-*-18-120-100-100-c-90-iso10646-1
:set guifontwide=-misc-fixed-medium-r-normal-*-18-120-100-100-c-180-iso10646-1

You can also set 'guifont' alone, Vim will try to find a matching

mbyte.txt — 1878

'guifontwide' for you.

INPUT

There are several ways to enter multibyte characters:
- For X11 XIM can be used. See XIM .
- For MS-Windows IME can be used. See IME .
- For all systems keymaps can be used. See mbyte-keymap .

The options 'iminsert', 'imsearch' and 'imcmdline' can be used to choose
the different input methods or disable them temporarily.

==
2. Locale mbyte-locale

The easiest setup is when your whole system uses the locale you want to work
in. But it's also possible to set the locale for one shell you are working
in, or just use a certain locale inside Vim.

WHAT IS A LOCALE? locale

There are many languages in the world. And there are different cultures and
environments at least as many as the number of languages. A linguistic
environment corresponding to an area is called "locale". This includes
information about the used language, the charset, collating order for sorting,
date format, currency format and so on. For Vim only the language and charset
really matter.

You can only use a locale if your system has support for it. Some systems
have only a few locales, especially in the USA. The language which you want
to use may not be on your system. In that case you might be able to install
it as an extra package. Check your system documentation for how to do that.

The location in which the locales are installed varies from system to system.
For example, "/usr/share/locale" or "/usr/lib/locale". See your system's
setlocale() man page.

Looking in these directories will show you the exact name of each locale.
Mostly upper/lowercase matters, thus "ja_JP.EUC" and "ja_jp.euc" are
different. Some systems have a locale.alias file, which allows translation
from a short name like "nl" to the full name "nl_NL.ISO_8859-1".

Note that X-windows has its own locale stuff. And unfortunately uses locale
names different from what is used elsewhere. This is confusing! For Vim it
matters what the setlocale() function uses, which is generally NOT the
X-windows stuff. You might have to do some experiments to find out what
really works.

locale-name
The (simplified) format of locale name is:

language
or language_territory
or language_territory.codeset

Territory means the country (or part of it), codeset means the charset . For
example, the locale name "ja_JP.eucJP" means:

ja the language is Japanese

mbyte.txt — 1879

JP the country is Japan
eucJP the codeset is EUC-JP

But it also could be "ja", "ja_JP.EUC", "ja_JP.ujis", etc. And unfortunately,
the locale name for a specific language, territory and codeset is not unified
and depends on your system.

Examples of locale name:
charset language locale name
GB2312 Chinese (simplified) zh_CN.EUC, zh_CN.GB2312
Big5 Chinese (traditional) zh_TW.BIG5, zh_TW.Big5
CNS-11643 Chinese (traditional) zh_TW
EUC-JP Japanese ja, ja_JP.EUC, ja_JP.ujis, ja_JP.eucJP
Shift_JIS Japanese ja_JP.SJIS, ja_JP.Shift_JIS
EUC-KR Korean ko, ko_KR.EUC

USING A LOCALE

To start using a locale for the whole system, see the documentation of your
system. Mostly you need to set it in a configuration file in "/etc".

To use a locale in a shell, set the $LANG environment value. When you want to
use Korean and the locale name is "ko", do this:

sh: export LANG=ko
csh: setenv LANG ko

You can put this in your ~/.profile or ~/.cshrc file to always use it.

To use a locale in Vim only, use the :language command:

:language ko

Put this in your ~/.vimrc file to use it always.

Or specify $LANG when starting Vim:

sh: LANG=ko vim {vim-arguments}
csh: env LANG=ko vim {vim-arguments}

You could make a small shell script for this.

==
3. Encoding mbyte-encoding

Vim uses the 'encoding' option to specify how characters are identified and
encoded when they are used inside Vim. This applies to all the places where
text is used, including buffers (files loaded into memory), registers and
variables.

charset codeset
Charset is another name for encoding. There are subtle differences, but these
don't matter when using Vim. "codeset" is another similar name.

Each character is encoded as one or more bytes. When all characters are
encoded with one byte, we call this a single-byte encoding. The most often
used one is called "latin1". This limits the number of characters to 256.
Some of these are control characters, thus even fewer can be used for text.

When some characters use two or more bytes, we call this a multibyte

mbyte.txt — 1880

encoding. This allows using much more than 256 characters, which is required
for most East Asian languages.

Most multibyte encodings use one byte for the first 127 characters. These
are equal to ASCII, which makes it easy to exchange plain-ASCII text, no
matter what language is used. Thus you might see the right text even when the
encoding was set wrong.

encoding-names
Vim can use many different character encodings. There are three major groups:

1 8bit Single-byte encodings, 256 different characters. Mostly used
in USA and Europe. Example: ISO-8859-1 (Latin1). All
characters occupy one screen cell only.

2 2byte Double-byte encodings, over 10000 different characters.
Mostly used in Asian countries. Example: euc-kr (Korean)
The number of screen cells is equal to the number of bytes
(except for euc-jp when the first byte is 0x8e).

u Unicode Universal encoding, can replace all others. ISO 10646.
Millions of different characters. Example: UTF-8. The
relation between bytes and screen cells is complex.

Other encodings cannot be used by Vim internally. But files in other
encodings can be edited by using conversion, see 'fileencoding'.
Note that all encodings must use ASCII for the characters up to 128 (except
when compiled for EBCDIC).

Supported 'encoding' values are: encoding-values
1 latin1 8-bit characters (ISO 8859-1, also used for cp1252)
1 iso-8859-n ISO_8859 variant (n = 2 to 15)
1 koi8-r Russian
1 koi8-u Ukrainian
1 macroman MacRoman (Macintosh encoding)
1 8bit-{name} any 8-bit encoding (Vim specific name)
1 cp437 similar to iso-8859-1
1 cp737 similar to iso-8859-7
1 cp775 Baltic
1 cp850 similar to iso-8859-4
1 cp852 similar to iso-8859-1
1 cp855 similar to iso-8859-2
1 cp857 similar to iso-8859-5
1 cp860 similar to iso-8859-9
1 cp861 similar to iso-8859-1
1 cp862 similar to iso-8859-1
1 cp863 similar to iso-8859-8
1 cp865 similar to iso-8859-1
1 cp866 similar to iso-8859-5
1 cp869 similar to iso-8859-7
1 cp874 Thai
1 cp1250 Czech, Polish, etc.
1 cp1251 Cyrillic
1 cp1253 Greek
1 cp1254 Turkish
1 cp1255 Hebrew
1 cp1256 Arabic
1 cp1257 Baltic
1 cp1258 Vietnamese
1 cp{number} MS-Windows: any installed single-byte codepage

mbyte.txt — 1881

2 cp932 Japanese (Windows only)
2 euc-jp Japanese (Unix only)
2 sjis Japanese (Unix only)
2 cp949 Korean (Unix and Windows)
2 euc-kr Korean (Unix only)
2 cp936 simplified Chinese (Windows only)
2 euc-cn simplified Chinese (Unix only)
2 cp950 traditional Chinese (on Unix alias for big5)
2 big5 traditional Chinese (on Windows alias for cp950)
2 euc-tw traditional Chinese (Unix only)
2 2byte-{name} Unix: any double-byte encoding (Vim specific name)
2 cp{number} MS-Windows: any installed double-byte codepage
u utf-8 32 bit UTF-8 encoded Unicode (ISO/IEC 10646-1)
u ucs-2 16 bit UCS-2 encoded Unicode (ISO/IEC 10646-1)
u ucs-2le like ucs-2, little endian
u utf-16 ucs-2 extended with double-words for more characters
u utf-16le like utf-16, little endian
u ucs-4 32 bit UCS-4 encoded Unicode (ISO/IEC 10646-1)
u ucs-4le like ucs-4, little endian

The {name} can be any encoding name that your system supports. It is passed
to iconv() to convert between the encoding of the file and the current locale.
For MS-Windows "cp{number}" means using codepage {number}.
Examples:

:set encoding=8bit-cp1252
:set encoding=2byte-cp932

The MS-Windows codepage 1252 is very similar to latin1. For practical reasons
the same encoding is used and it's called latin1. 'isprint' can be used to
display the characters 0x80 - 0xA0 or not.

Several aliases can be used, they are translated to one of the names above.
An incomplete list:

1 ansi same as latin1 (obsolete, for backward compatibility)
2 japan Japanese: on Unix "euc-jp", on MS-Windows cp932
2 korea Korean: on Unix "euc-kr", on MS-Windows cp949
2 prc simplified Chinese: on Unix "euc-cn", on MS-Windows cp936
2 chinese same as "prc"
2 taiwan traditional Chinese: on Unix "euc-tw", on MS-Windows cp950
u utf8 same as utf-8
u unicode same as ucs-2
u ucs2be same as ucs-2 (big endian)
u ucs-2be same as ucs-2 (big endian)
u ucs-4be same as ucs-4 (big endian)
u utf-32 same as ucs-4
u utf-32le same as ucs-4le

default stands for the default value of 'encoding', depends on the
environment

For the UCS codes the byte order matters. This is tricky, use UTF-8 whenever
you can. The default is to use big-endian (most significant byte comes
first):

name bytes char
ucs-2 11 22 1122
ucs-2le 22 11 1122
ucs-4 11 22 33 44 11223344
ucs-4le 44 33 22 11 11223344

On MS-Windows systems you often want to use "ucs-2le", because it uses little

mbyte.txt — 1882

endian UCS-2.

There are a few encodings which are similar, but not exactly the same. Vim
treats them as if they were different encodings, so that conversion will be
done when needed. You might want to use the similar name to avoid conversion
or when conversion is not possible:

cp932, shift-jis, sjis
cp936, euc-cn

encoding-table
Normally 'encoding' is equal to your current locale and 'termencoding' is
empty. This means that your keyboard and display work with characters encoded
in your current locale, and Vim uses the same characters internally.

You can make Vim use characters in a different encoding by setting the
'encoding' option to a different value. Since the keyboard and display still
use the current locale, conversion needs to be done. The 'termencoding' then
takes over the value of the current locale, so Vim converts between 'encoding'
and 'termencoding'. Example:

:let &termencoding = &encoding
:set encoding=utf-8

However, not all combinations of values are possible. The table below tells
you how each of the nine combinations works. This is further restricted by
not all conversions being possible, iconv() being present, etc. Since this
depends on the system used, no detailed list can be given.

('tenc' is the short name for 'termencoding' and 'enc' short for 'encoding')

'tenc' 'enc' remark

8bit 8bit Works. When 'termencoding' is different from
'encoding' typing and displaying may be wrong for some
characters, Vim does NOT perform conversion (set
'encoding' to "utf-8" to get this).

8bit 2byte MS-Windows: works for all codepages installed on your
system; you can only type 8bit characters;
Other systems: does NOT work.

8bit Unicode Works, but only 8bit characters can be typed directly
(others through digraphs, keymaps, etc.); in a
terminal you can only see 8bit characters; the GUI can
show all characters that the 'guifont' supports.

2byte 8bit Works, but typing non-ASCII characters might
be a problem.

2byte 2byte MS-Windows: works for all codepages installed on your
system; typing characters might be a problem when
locale is different from 'encoding'.
Other systems: Only works when 'termencoding' is equal
to 'encoding', you might as well leave it empty.

2byte Unicode works, Vim will translate typed characters.

Unicode 8bit works (unusual)
Unicode 2byte does NOT work
Unicode Unicode works very well (leaving 'termencoding' empty works

the same way, because all Unicode is handled
internally as UTF-8)

CONVERSION charset-conversion

mbyte.txt — 1883

Vim will automatically convert from one to another encoding in several places:
- When reading a file and 'fileencoding' is different from 'encoding'
- When writing a file and 'fileencoding' is different from 'encoding'
- When displaying characters and 'termencoding' is different from 'encoding'
- When reading input and 'termencoding' is different from 'encoding'
- When displaying messages and the encoding used for LC_MESSAGES differs from

'encoding' (requires a gettext version that supports this).
- When reading a Vim script where :scriptencoding is different from

'encoding'.
- When reading or writing a viminfo file.
Most of these require the +iconv feature. Conversion for reading and
writing files may also be specified with the 'charconvert' option.

Useful utilities for converting the charset:
All: iconv

GNU iconv can convert most encodings. Unicode is used as the
intermediate encoding, which allows conversion from and to all other
encodings. See http://www.gnu.org/directory/libiconv.html.

Japanese: nkf
Nkf is "Network Kanji code conversion Filter". One of the most unique
facility of nkf is the guess of the input Kanji code. So, you don't
need to know what the inputting file's charset is. When convert to
EUC-JP from ISO-2022-JP or Shift_JIS, simply do the following command
in Vim:

:%!nkf -e
Nkf can be found at:
http://www.sfc.wide.ad.jp/~max/FreeBSD/ports/distfiles/nkf-1.62.tar.gz

Chinese: hc
Hc is "Hanzi Converter". Hc convert a GB file to a Big5 file, or Big5
file to GB file. Hc can be found at:
ftp://ftp.cuhk.hk/pub/chinese/ifcss/software/unix/convert/hc-30.tar.gz

Korean: hmconv
Hmconv is Korean code conversion utility especially for E-mail. It can
convert between EUC-KR and ISO-2022-KR. Hmconv can be found at:
ftp://ftp.kaist.ac.kr/pub/hangul/code/hmconv/

Multilingual: lv
Lv is a Powerful Multilingual File Viewer. And it can be worked as
charset converter. Supported charset : ISO-2022-CN, ISO-2022-JP,

ISO-2022-KR, EUC-CN, EUC-JP, EUC-KR, EUC-TW, UTF-7, UTF-8, ISO-8859
series, Shift_JIS, Big5 and HZ. Lv can be found at:
http://www.ff.iij4u.or.jp/~nrt/lv/index.html

mbyte-conversion
When reading and writing files in an encoding different from 'encoding',
conversion needs to be done. These conversions are supported:
- All conversions between Latin-1 (ISO-8859-1), UTF-8, UCS-2 and UCS-4 are

handled internally.
- For MS-Windows, when 'encoding' is a Unicode encoding, conversion from and

to any codepage should work.
- Conversion specified with 'charconvert'
- Conversion with the iconv library, if it is available.

Old versions of GNU iconv() may cause the conversion to fail (they
request a very large buffer, more than Vim is willing to provide).
Try getting another iconv() implementation.

mbyte.txt — 1884

http://www.gnu.org/directory/libiconv.html
http://www.sfc.wide.ad.jp/~max/FreeBSD/ports/distfiles/nkf-1.62.tar.gz
ftp://ftp.cuhk.hk/pub/chinese/ifcss/software/unix/convert/hc-30.tar.gz
ftp://ftp.kaist.ac.kr/pub/hangul/code/hmconv/
http://www.ff.iij4u.or.jp/~nrt/lv/index.html

iconv-dynamic
On MS-Windows Vim can be compiled with the +iconv/dyn feature. This means
Vim will search for the "iconv.dll" and "libiconv.dll" libraries. When
neither of them can be found Vim will still work but some conversions won't be
possible.

==
4. Using a terminal mbyte-terminal

The GUI fully supports multibyte characters. It is also possible in a
terminal, if the terminal supports the same encoding that Vim uses. Thus this
is less flexible.

For example, you can run Vim in a xterm with added multibyte support and/or
XIM . Examples are kterm (Kanji term) and hanterm (for Korean), Eterm

(Enlightened terminal) and rxvt.

If your terminal does not support the right encoding, you can set the
'termencoding' option. Vim will then convert the typed characters from
'termencoding' to 'encoding'. And displayed text will be converted from
'encoding' to 'termencoding'. If the encoding supported by the terminal
doesn't include all the characters that Vim uses, this leads to lost
characters. This may mess up the display. If you use a terminal that
supports Unicode, such as the xterm mentioned below, it should work just fine,
since nearly every character set can be converted to Unicode without loss of
information.

UTF-8 IN XFREE86 XTERM UTF8-xterm

This is a short explanation of how to use UTF-8 character encoding in the
xterm that comes with XFree86 by Thomas Dickey (text by Markus Kuhn).

Get the latest xterm version which has now UTF-8 support:

http://invisible-island.net/xterm/xterm.html

Compile it with "./configure --enable-wide-chars ; make"

Also get the ISO 10646-1 version of various fonts, which is available on

http://www.cl.cam.ac.uk/~mgk25/download/ucs-fonts.tar.gz

and install the font as described in the README file.

Now start xterm with

xterm -u8 -fn -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso10646-1
or, for bigger character:

xterm -u8 -fn -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso10646-1

and you will have a working UTF-8 terminal emulator. Try both

cat utf-8-demo.txt
vim utf-8-demo.txt

with the demo text that comes with ucs-fonts.tar.gz in order to see
whether there are any problems with UTF-8 in your xterm.

mbyte.txt — 1885

http://invisible-island.net/xterm/xterm.html
http://www.cl.cam.ac.uk/~mgk25/download/ucs-fonts.tar.gz

For Vim you may need to set 'encoding' to "utf-8".

==
5. Fonts on X11 mbyte-fonts-X11

Unfortunately, using fonts in X11 is complicated. The name of a single-byte
font is a long string. For multibyte fonts we need several of these...

Note: Most of this is no longer relevant for GTK+ 2. Selecting a font via
its XLFD is not supported; see 'guifont' for an example of how to
set the font. Do yourself a favor and ignore the XLFD and xfontset
sections below.

First of all, Vim only accepts fixed-width fonts for displaying text. You
cannot use proportionally spaced fonts. This excludes many of the available
(and nicer looking) fonts. However, for menus and tooltips any font can be
used.

Note that Display and Input are independent. It is possible to see your
language even though you have no input method for it.

You should get a default font for menus and tooltips that works, but it might
be ugly. Read the following to find out how to select a better font.

X LOGICAL FONT DESCRIPTION (XLFD)
XLFD

XLFD is the X font name and contains the information about the font size,
charset, etc. The name is in this format:

FOUNDRY-FAMILY-WEIGHT-SLANT-WIDTH-STYLE-PIXEL-POINT-X-Y-SPACE-AVE-CR-CE

Each field means:

- FOUNDRY: FOUNDRY field. The company that created the font.
- FAMILY: FAMILY_NAME field. Basic font family name. (helvetica, gothic,

times, etc)
- WEIGHT: WEIGHT_NAME field. How thick the letters are. (light, medium,

bold, etc)
- SLANT: SLANT field.

r: Roman (no slant)
i: Italic
o: Oblique
ri: Reverse Italic
ro: Reverse Oblique
ot: Other
number: Scaled font

- WIDTH: SETWIDTH_NAME field. Width of characters. (normal, condensed,
narrow, double wide)

- STYLE: ADD_STYLE_NAME field. Extra info to describe font. (Serif, Sans
Serif, Informal, Decorated, etc)

- PIXEL: PIXEL_SIZE field. Height, in pixels, of characters.
- POINT: POINT_SIZE field. Ten times height of characters in points.
- X: RESOLUTION_X field. X resolution (dots per inch).
- Y: RESOLUTION_Y field. Y resolution (dots per inch).
- SPACE: SPACING field.

p: Proportional
m: Monospaced
c: CharCell

- AVE: AVERAGE_WIDTH field. Ten times average width in pixels.

mbyte.txt — 1886

- CR: CHARSET_REGISTRY field. The name of the charset group.
- CE: CHARSET_ENCODING field. The rest of the charset name. For some

charsets, such as JIS X 0208, if this field is 0, code points has
the same value as GL, and GR if 1.

For example, in case of a 16 dots font corresponding to JIS X 0208, it is
written like:

-misc-fixed-medium-r-normal--16-110-100-100-c-160-jisx0208.1990-0

X FONTSET
fontset xfontset

A single-byte charset is typically associated with one font. For multibyte
charsets a combination of fonts is often used. This means that one group of
characters are used from one font and another group from another font (which
might be double wide). This collection of fonts is called a fontset.

Which fonts are required in a fontset depends on the current locale. X
windows maintains a table of which groups of characters are required for a
locale. You have to specify all the fonts that a locale requires in the
'guifontset' option.

Setting the 'guifontset' option also means that all font names will be handled
as a fontset name. Also the ones used for the "font" argument of the
:highlight command.

Note the difference between 'guifont' and 'guifontset': In 'guifont'
the comma-separated names are alternative names, one of which will be
used. In 'guifontset' the whole string is one fontset name,
including the commas. It is not possible to specify alternative
fontset names.
This example works on many X11 systems:

:set guifontset=-*-*-medium-r-normal--16-*-*-*-c-*-*-*

The fonts must match with the current locale. If fonts for the character sets
that the current locale uses are not included, setting 'guifontset' will fail.

NOTE: The fontset always uses the current locale, even though 'encoding' may
be set to use a different charset. In that situation you might want to use
'guifont' and 'guifontwide' instead of 'guifontset'.

Example:
|charset| language "groups of characters"
GB2312 Chinese (simplified) ISO-8859-1 and GB 2312
Big5 Chinese (traditional) ISO-8859-1 and Big5
CNS-11643 Chinese (traditional) ISO-8859-1, CNS 11643-1 and CNS 11643-2
EUC-JP Japanese JIS X 0201 and JIS X 0208
EUC-KR Korean ISO-8859-1 and KS C 5601 (KS X 1001)

You can search for fonts using the xlsfonts command. For example, when you're
searching for a font for KS C 5601:

xlsfonts | grep ksc5601

This is complicated and confusing. You might want to consult the X-Windows
documentation if there is something you don't understand.

base_font_name_list
When you have found the names of the fonts you want to use, you need to set
the 'guifontset' option. You specify the list by concatenating the font names
and putting a comma in between them.

mbyte.txt — 1887

For example, when you use the ja_JP.eucJP locale, this requires JIS X 0201
and JIS X 0208. You could supply a list of fonts that explicitly specifies
the charsets, like:

:set guifontset=-misc-fixed-medium-r-normal--14-130-75-75-c-140-jisx0208.1983-0,
\-misc-fixed-medium-r-normal--14-130-75-75-c-70-jisx0201.1976-0

Alternatively, you can supply a base font name list that omits the charset
name, letting X-Windows select font characters required for the locale. For
example:

:set guifontset=-misc-fixed-medium-r-normal--14-130-75-75-c-140,
\-misc-fixed-medium-r-normal--14-130-75-75-c-70

Alternatively, you can supply a single base font name that allows X-Windows to
select from all available fonts. For example:

:set guifontset=-misc-fixed-medium-r-normal--14-*

Alternatively, you can specify alias names. See the fonts.alias file in the
fonts directory (e.g., /usr/X11R6/lib/X11/fonts/). For example:

:set guifontset=k14,r14

E253
Note that in East Asian fonts, the standard character cell is square. When
mixing a Latin font and an East Asian font, the East Asian font width should
be twice the Latin font width.

If 'guifontset' is not empty, the "font" argument of the :highlight command
is also interpreted as a fontset. For example, you should use for
highlighting:

:hi Comment font=english_font,your_font
If you use a wrong "font" argument you will get an error message.
Also make sure that you set 'guifontset' before setting fonts for highlight
groups.

USING RESOURCE FILES

Instead of specifying 'guifontset', you can set X11 resources and Vim will
pick them up. This is only for people who know how X resource files work.

For Motif insert these three lines in your $HOME/.Xdefaults file:

Vim.font: base_font_name_list
Vim*fontSet: base_font_name_list
Vim*fontList: your_language_font

Note: Vim.font is for text area.
Vim*fontSet is for menu.
Vim*fontList is for menu (for Motif GUI)

For example, when you are using Japanese and a 14 dots font,

Vim.font: -misc-fixed-medium-r-normal--14-*
Vim*fontSet: -misc-fixed-medium-r-normal--14-*
Vim*fontList: -misc-fixed-medium-r-normal--14-*

mbyte.txt — 1888

or:

Vim*font: k14,r14
Vim*fontSet: k14,r14
Vim*fontList: k14,r14

To have them take effect immediately you will have to do

xrdb -merge ~/.Xdefaults

Otherwise you will have to stop and restart the X server before the changes
take effect.

The GTK+ version of GUI Vim does not use .Xdefaults, use ~/.gtkrc instead.
The default mostly works OK. But for the menus you might have to change
it. Example:

style "default"
{

fontset="-*-*-medium-r-normal--14-*-*-*-c-*-*-*"
}
widget_class "*" style "default"

==
6. Fonts on MS-Windows mbyte-fonts-MSwin

The simplest is to use the font dialog to select fonts and try them out. You
can find this at the "Edit/Select Font..." menu. Once you find a font name
that works well you can use this command to see its name:

:set guifont

Then add a command to your gvimrc file to set 'guifont':

:set guifont=courier_new:h12

==
7. Input on X11 mbyte-XIM

X INPUT METHOD (XIM) BACKGROUND XIM xim x-input-method

XIM is an international input module for X. There are two kinds of structures,
Xlib unit type and IM-server (Input-Method server) type. IM-server type
is suitable for complex input, such as CJK.

- IM-server
IM-server

In IM-server type input structures, the input event is handled by either
of the two ways: FrontEnd system and BackEnd system. In the FrontEnd
system, input events are snatched by the IM-server first, then IM-server
give the application the result of input. On the other hand, the BackEnd
system works reverse order. MS-Windows adopt BackEnd system. In X, most of
IM-server s adopt FrontEnd system. The demerit of BackEnd system is the
large overhead in communication, but it provides safe synchronization with
no restrictions on applications.

For example, there are xwnmo and kinput2 Japanese IM-server , both are
FrontEnd system. Xwnmo is distributed with Wnn (see below), kinput2 can be
found at: ftp://ftp.sra.co.jp/pub/x11/kinput2/

mbyte.txt — 1889

ftp://ftp.sra.co.jp/pub/x11/kinput2/

For Chinese, there's a great XIM server named "xcin", you can input both
Traditional and Simplified Chinese characters. And it can accept other
locale if you make a correct input table. Xcin can be found at:
http://cle.linux.org.tw/xcin/
Others are scim: http://scim.freedesktop.org/ and fcitx:
http://www.fcitx.org/

- Conversion Server
conversion-server

Some system needs additional server: conversion server. Most of Japanese
IM-server s need it, Kana-Kanji conversion server. For Chinese inputting,
it depends on the method of inputting, in some methods, PinYin or ZhuYin to
HanZi conversion server is needed. For Korean inputting, if you want to
input Hanja, Hangul-Hanja conversion server is needed.

For example, the Japanese inputting process is divided into 2 steps. First
we pre-input Hira-gana, second Kana-Kanji conversion. There are so many
Kanji characters (6349 Kanji characters are defined in JIS X 0208) and the
number of Hira-gana characters are 76. So, first, we pre-input text as
pronounced in Hira-gana, second, we convert Hira-gana to Kanji or Kata-Kana,
if needed. There are some Kana-Kanji conversion server: jserver
(distributed with Wnn, see below) and canna. Canna can be found at:
http://canna.sourceforge.jp/

There is a good input system: Wnn4.2. Wnn 4.2 contains,
xwnmo (IM-server)
jserver (Japanese Kana-Kanji conversion server)
cserver (Chinese PinYin or ZhuYin to simplified HanZi conversion server)
tserver (Chinese PinYin or ZhuYin to traditional HanZi conversion server)
kserver (Hangul-Hanja conversion server)

Wnn 4.2 for several systems can be found at various places on the internet.
Use the RPM or port for your system.

- Input Style
xim-input-style

When inputting CJK, there are four areas:
1. The area to display of the input while it is being composed
2. The area to display the currently active input mode.
3. The area to display the next candidate for the selection.
4. The area to display other tools.

The third area is needed when converting. For example, in Japanese
inputting, multiple Kanji characters could have the same pronunciation, so
a sequence of Hira-gana characters could map to a distinct sequence of Kanji
characters.

The first and second areas are defined in international input of X with the
names of "Preedit Area", "Status Area" respectively. The third and fourth
areas are not defined and are left to be managed by the IM-server . In the
international input, four input styles have been defined using combinations
of Preedit Area and Status Area: OnTheSpot , OffTheSpot , OverTheSpot
and Root .

Currently, GUI Vim supports three styles, OverTheSpot , OffTheSpot and
Root .
When compiled with +GUI_GTK feature, GUI Vim supports two styles,
OnTheSpot and OverTheSpot . You can select the style with the 'imstyle'
option.

mbyte.txt — 1890

http://cle.linux.org.tw/xcin/
http://scim.freedesktop.org/
http://www.fcitx.org/
http://canna.sourceforge.jp/

*. on-the-spot OnTheSpot
Preedit Area and Status Area are performed by the client application in
the area of application. The client application is directed by the
IM-server to display all pre-edit data at the location of text
insertion. The client registers callbacks invoked by the input method
during pre-editing.

*. over-the-spot OverTheSpot
Status Area is created in a fixed position within the area of application,
in case of Vim, the position is the additional status line. Preedit Area
is made at present input position of application. The input method
displays pre-edit data in a window which it brings up directly over the
text insertion position.

*. off-the-spot OffTheSpot
Preedit Area and Status Area are performed in the area of application, in
case of Vim, the area is additional status line. The client application
provides display windows for the pre-edit data to the input method which
displays into them directly.

*. root-window Root
Preedit Area and Status Area are outside of the application. The input
method displays all pre-edit data in a separate area of the screen in a
window specific to the input method.

USING XIM multibyte-input E284 E285 E286 E287
E288 E289

Note that Display and Input are independent. It is possible to see your
language even though you have no input method for it. But when your Display
method doesn't match your Input method, the text will be displayed wrong.

Note: You can not use IM unless you specify 'guifontset'.
Therefore, Latin users, you have to also use 'guifontset'
if you use IM.

To input your language you should run the IM-server which supports your
language and conversion-server if needed.

The next 3 lines should be put in your ~/.Xdefaults file. They are common for
all X applications which uses XIM . If you already use XIM , you can skip
this.

*international: True
*.inputMethod: your_input_server_name
*.preeditType: your_input_style

input_server_name is your IM-server name (check your IM-server
manual).

your_input_style is one of OverTheSpot , OffTheSpot , Root . See
also xim-input-style .

*international may not be necessary if you use X11R6.
*.inputMethod and *.preeditType are optional if you use X11R6.

For example, when you are using kinput2 as IM-server ,

*international: True
*.inputMethod: kinput2
*.preeditType: OverTheSpot

mbyte.txt — 1891

When using OverTheSpot , GUI Vim always connects to the IM Server even in
Normal mode, so you can input your language with commands like "f" and "r".
But when using one of the other two methods, GUI Vim connects to the IM Server
only if it is not in Normal mode.

If your IM Server does not support OverTheSpot , and if you want to use your
language with some Normal mode command like "f" or "r", then you should use a
localized xterm or an xterm which supports XIM

If needed, you can set the XMODIFIERS environment variable:

sh: export XMODIFIERS="@im=input_server_name"
csh: setenv XMODIFIERS "@im=input_server_name"

For example, when you are using kinput2 as IM-server and sh,

export XMODIFIERS="@im=kinput2"

FULLY CONTROLLED XIM

You can fully control XIM, like with IME of MS-Windows (see multibyte-ime).
This is currently only available for the GTK GUI.

Before using fully controlled XIM, one setting is required. Set the
'imactivatekey' option to the key that is used for the activation of the input
method. For example, when you are using kinput2 + canna as IM Server, the
activation key is probably Shift+Space:

:set imactivatekey=S-space

See 'imactivatekey' for the format.

==
8. Input on MS-Windows mbyte-IME

(Windows IME support) multibyte-ime IME

{only works Windows GUI and compiled with the |+multi_byte_ime| feature}

To input multibyte characters on Windows, you can use an Input Method Editor
(IME). In process of your editing text, you must switch status (on/off) of
IME many many many times. Because IME with status on is hooking all of your
key inputs, you cannot input 'j', 'k', or almost all of keys to Vim directly.

The +multi_byte_ime feature helps for this. It reduces the number of times
the IME status has to be switched manually. In Normal mode, there is almost
no need to use IME, even when editing multibyte text. So when exiting Insert
mode, Vim memorizes the last status of IME and turns off IME. When
re-entering Insert mode, Vim sets the IME status to that memorized status
automatically.

This works on not only insert-normal mode, but also search-command input and
replace mode.
The options 'iminsert', 'imsearch' and 'imcmdline' can be used to choose
the different input methods or disable them temporarily.

On Windows 9x and Windows NT 4.0 there was global-ime , but this is no
longer supported. You can still find documentation for Active Input Method
Manager (Global IME) here:

mbyte.txt — 1892

http://msdn.microsoft.com/en-us/library/aa741221(v=VS.85).aspx

NOTE: For IME to work you must make sure the input locales of your language
are added to your system. The exact location of this depends on the version
of Windows you use. For example, on my Windows 2000 box:
1. Control Panel
2. Regional Options
3. Input Locales Tab
4. Add Installed input locales -> Chinese(PRC)

The default is still English (United Stated)

Cursor color when IME or XIM is on CursorIM
There is a little cute feature for IME. Cursor can indicate status of IME
by changing its color. Usually status of IME was indicated by little icon
at a corner of desktop (or taskbar). It is not easy to verify status of
IME. But this feature help this.
This works in the same way when using XIM.

You can select cursor color when status is on by using highlight group
CursorIM. For example, add these lines to your gvimrc :

if has('multi_byte_ime')
highlight Cursor guifg=NONE guibg=Green
highlight CursorIM guifg=NONE guibg=Purple

endif

Cursor color with off IME is green. And purple cursor indicates that
status is on.

==
9. Input with a keymap mbyte-keymap

When the keyboard doesn't produce the characters you want to enter in your
text, you can use the 'keymap' option. This will translate one or more
(English) characters to another (non-English) character. This only happens
when typing text, not when typing Vim commands. This avoids having to switch
between two keyboard settings.
{only available when compiled with the |+keymap| feature}

The value of the 'keymap' option specifies a keymap file to use. The name of
this file is one of these two:

keymap/{keymap}_{encoding}.vim
keymap/{keymap}.vim

Here {keymap} is the value of the 'keymap' option and {encoding} of the
'encoding' option. The file name with the {encoding} included is tried first.

'runtimepath' is used to find these files. To see an overview of all
available keymap files, use this:

:echo globpath(&rtp, "keymap/*.vim")

In Insert and Command-line mode you can use CTRL-^ to toggle between using the
keyboard map or not. i_CTRL-^ c_CTRL-^
This flag is remembered for Insert mode with the 'iminsert' option. When
leaving and entering Insert mode the previous value is used. The same value
is also used for commands that take a single character argument, like f and
r .

For Command-line mode the flag is NOT remembered. You are expected to type an

mbyte.txt — 1893

http://msdn.microsoft.com/en-us/library/aa741221(v=VS.85).aspx

Ex command first, which is ASCII.
For typing search patterns the 'imsearch' option is used. It can be set to
use the same value as for 'iminsert'.

lCursor
It is possible to give the GUI cursor another color when the language mappings
are being used. This is disabled by default, to avoid that the cursor becomes
invisible when you use a non-standard background color. Here is an example to
use a brightly colored cursor:

:highlight Cursor guifg=NONE guibg=Green
:highlight lCursor guifg=NONE guibg=Cyan

keymap-file-format :loadk :loadkeymap E105 E791
The keymap file looks something like this:

" Maintainer: name <email@address>
" Last Changed: 2001 Jan 1

let b:keymap_name = "short"

loadkeymap
a A
b B comment

The lines starting with a " are comments and will be ignored. Blank lines are
also ignored. The lines with the mappings may have a comment after the useful
text.

The "b:keymap_name" can be set to a short name, which will be shown in the
status line. The idea is that this takes less room than the value of
'keymap', which might be long to distinguish between different languages,
keyboards and encodings.

The actual mappings are in the lines below "loadkeymap". In the example "a"
is mapped to "A" and "b" to "B". Thus the first item is mapped to the second
item. This is done for each line, until the end of the file.
These items are exactly the same as what can be used in a :lnoremap command,
using "<buffer>" to make the mappings local to the buffer.
You can check the result with this command:

:lmap
The two items must be separated by white space. You cannot include white
space inside an item, use the special names "<Tab>" and "<Space>" instead.
The length of the two items together must not exceed 200 bytes.

It's possible to have more than one character in the first column. This works
like a dead key. Example:

'a á
Since Vim doesn't know if the next character after a quote is really an "a",
it will wait for the next character. To be able to insert a single quote,
also add this line:

'' '
Since the mapping is defined with :lnoremap the resulting quote will not be
used for the start of another character.
The "accents" keymap uses this. keymap-accents

The first column can also be in <> form:
<C-c> Ctrl-C
<A-c> Alt-c
<A-C> Alt-C

Note that the Alt mappings may not work, depending on your keyboard and
terminal.

mbyte.txt — 1894

Although it's possible to have more than one character in the second column,
this is unusual. But you can use various ways to specify the character:

A a literal character
A <char-97> decimal value
A <char-0x61> hexadecimal value
A <char-0141> octal value
x <Space> special key name

The characters are assumed to be encoded for the current value of 'encoding'.
It's possible to use ":scriptencoding" when all characters are given
literally. That doesn't work when using the <char-> construct, because the
conversion is done on the keymap file, not on the resulting character.

The lines after "loadkeymap" are interpreted with 'cpoptions' set to "C".
This means that continuation lines are not used and a backslash has a special
meaning in the mappings. Examples:

" a comment line
\" x maps " to x
\\ y maps \ to y

If you write a keymap file that will be useful for others, consider submitting
it to the Vim maintainer for inclusion in the distribution:
<maintainer@vim.org>

HEBREW KEYMAP keymap-hebrew

This file explains what characters are available in UTF-8 and CP1255 encodings,
and what the keymaps are to get those characters:

glyph encoding keymap
Char UTF-8 cp1255 hebrew hebrewp name
� 0x5d0 0xe0 t a 'alef
� 0x5d1 0xe1 c b bet
� 0x5d2 0xe2 d g gimel
� 0x5d3 0xe3 s d dalet
� 0x5d4 0xe4 v h he
� 0x5d5 0xe5 u v vav
� 0x5d6 0xe6 z z zayin
� 0x5d7 0xe7 j j het
� 0x5d8 0xe8 y T tet
� 0x5d9 0xe9 h y yod
� 0x5da 0xea l K kaf sofit
� 0x5db 0xeb f k kaf
� 0x5dc 0xec k l lamed
� 0x5dd 0xed o M mem sofit
� 0x5de 0xee n m mem
� 0x5df 0xef i N nun sofit
� 0x5e0 0xf0 b n nun
� 0x5e1 0xf1 x s samech
� 0x5e2 0xf2 g u `ayin
� 0x5e3 0xf3 ; P pe sofit
� 0x5e4 0xf4 p p pe
� 0x5e5 0xf5 . X tsadi sofit
� 0x5e6 0xf6 m x tsadi
� 0x5e7 0xf7 e q qof
� 0x5e8 0xf8 r r resh
� 0x5e9 0xf9 a w shin

mbyte.txt — 1895

� 0x5ea 0xfa , t tav

Vowel marks and special punctuation:
�� 0x5b0 0xc0 A: A: sheva
�� 0x5b1 0xc1 HE HE hataf segol
�� 0x5b2 0xc2 HA HA hataf patah
�� 0x5b3 0xc3 HO HO hataf qamats
�� 0x5b4 0xc4 I I hiriq
�� 0x5b5 0xc5 AY AY tsere
�� 0x5b6 0xc6 E E segol
�� 0x5b7 0xc7 AA AA patah
�� 0x5b8 0xc8 AO AO qamats
�� 0x5b9 0xc9 O O holam
�� 0x5bb 0xcb U U qubuts
�� 0x5bc 0xcc D D dagesh
�� 0x5bd 0xcd]T]T meteg
�� 0x5be 0xce]Q]Q maqaf
�� 0x5bf 0xcf]R]R rafe
�� 0x5c0 0xd0]p]p paseq
�� 0x5c1 0xd1 SR SR shin-dot
�� 0x5c2 0xd2 SL SL sin-dot
� 0x5c3 0xd3]P]P sof-pasuq
� 0x5f0 0xd4 VV VV double-vav
� 0x5f1 0xd5 VY VY vav-yod
� 0x5f2 0xd6 YY YY yod-yod

The following are only available in UTF-8

Cantillation marks:
glyph
Char UTF-8 hebrew name
�� 0x591 C: etnahta
�� 0x592 Cs segol
�� 0x593 CS shalshelet
�� 0x594 Cz zaqef qatan
�� 0x595 CZ zaqef gadol
�� 0x596 Ct tipeha
�� 0x597 Cr revia
�� 0x598 Cq zarqa
�� 0x599 Cp pashta
�� 0x59a C! yetiv
�� 0x59b Cv tevir
�� 0x59c Cg geresh
�� 0x59d C* geresh qadim
�� 0x59e CG gershayim
�� 0x59f CP qarnei-parah
�� 0x5aa Cy yerach-ben-yomo
�� 0x5ab Co ole
�� 0x5ac Ci iluy
�� 0x5ad Cd dehi
�� 0x5ae Cn zinor
�� 0x5af CC masora circle

Combining forms:
� 0xfb20 X` Alternative `ayin
� 0xfb21 X' Alternative 'alef
� 0xfb22 X-d Alternative dalet
� 0xfb23 X-h Alternative he
� 0xfb24 X-k Alternative kaf
� 0xfb25 X-l Alternative lamed

mbyte.txt — 1896

� 0xfb26 X-m Alternative mem-sofit
� 0xfb27 X-r Alternative resh
� 0xfb28 X-t Alternative tav
� 0xfb29 X-+ Alternative plus
� 0xfb2a XW shin+shin-dot
� 0xfb2b Xw shin+sin-dot
� 0xfb2c X..W shin+shin-dot+dagesh
� 0xfb2d X..w shin+sin-dot+dagesh
� 0xfb2e XA alef+patah
� 0xfb2f XO alef+qamats
� 0xfb30 XI alef+hiriq (mapiq)
� 0xfb31 X.b bet+dagesh
� 0xfb32 X.g gimel+dagesh
� 0xfb33 X.d dalet+dagesh
� 0xfb34 X.h he+dagesh
� 0xfb35 Xu vav+dagesh
� 0xfb36 X.z zayin+dagesh
� 0xfb38 X.T tet+dagesh
� 0xfb39 X.y yud+dagesh
� 0xfb3a X.K kaf sofit+dagesh
� 0xfb3b X.k kaf+dagesh
� 0xfb3c X.l lamed+dagesh
� 0xfb3e X.m mem+dagesh
� 0xfb40 X.n nun+dagesh
� 0xfb41 X.s samech+dagesh
� 0xfb43 X.P pe sofit+dagesh
� 0xfb44 X.p pe+dagesh
� 0xfb46 X.x tsadi+dagesh
� 0xfb47 X.q qof+dagesh
� 0xfb48 X.r resh+dagesh
� 0xfb49 X.w shin+dagesh
� 0xfb4a X.t tav+dagesh
� 0xfb4b Xo vav+holam
� 0xfb4c XRb bet+rafe
� 0xfb4d XRk kaf+rafe
� 0xfb4e XRp pe+rafe
� 0xfb4f Xal alef-lamed

==
10. Input with imactivatefunc() mbyte-func

Vim has the 'imactivatefunc' and 'imstatusfunc' options. These are useful to
activate/deactivate the input method from Vim in any way, also with an external
command. For example, fcitx provide fcitx-remote command:

set iminsert=2
set imsearch=2
set imcmdline

set imactivatefunc=ImActivate
function! ImActivate(active)

if a:active
call system('fcitx-remote -o')

else
call system('fcitx-remote -c')

endif
endfunction

set imstatusfunc=ImStatus
function! ImStatus()

mbyte.txt — 1897

return system('fcitx-remote')[0] is# '2'
endfunction

Using this script, you can activate/deactivate XIM via Vim even when it is not
compiled with +xim .

==
11. Using UTF-8 mbyte-utf8 UTF-8 utf-8 utf8

Unicode unicode
The Unicode character set was designed to include all characters from other
character sets. Therefore it is possible to write text in any language using
Unicode (with a few rarely used languages excluded). And it's mostly possible
to mix these languages in one file, which is impossible with other encodings.

Unicode can be encoded in several ways. The most popular one is UTF-8, which
uses one or more bytes for each character and is backwards compatible with
ASCII. On MS-Windows UTF-16 is also used (previously UCS-2), which uses
16-bit words. Vim can support all of these encodings, but always uses UTF-8
internally.

Vim has comprehensive UTF-8 support. It works well in:
- xterm with UTF-8 support enabled
- Motif and GTK GUI
- MS-Windows GUI
- several other platforms

Double-width characters are supported. This works best with 'guifontwide' or
'guifontset'. When using only 'guifont' the wide characters are drawn in the
normal width and a space to fill the gap. Note that the 'guifontset' option
is no longer relevant in the GTK+ 2 GUI.

bom-bytes
When reading a file a BOM (Byte Order Mark) can be used to recognize the
Unicode encoding:

EF BB BF UTF-8
FE FF UTF-16 big endian
FF FE UTF-16 little endian
00 00 FE FF UTF-32 big endian
FF FE 00 00 UTF-32 little endian

UTF-8 is the recommended encoding. Note that it's difficult to tell utf-16
and utf-32 apart. Utf-16 is often used on MS-Windows, utf-32 is not
widespread as file format.

mbyte-combining mbyte-composing
A composing or combining character is used to change the meaning of the
character before it. The combining characters are drawn on top of the
preceding character.
Up to two combining characters can be used by default. This can be changed
with the 'maxcombine' option.
When editing text a composing character is mostly considered part of the
preceding character. For example "x" will delete a character and its
following composing characters by default.
If the 'delcombine' option is on, then pressing 'x' will delete the combining
characters, one at a time, then the base character. But when inserting, you
type the first character and the following composing characters separately,
after which they will be joined. The "r" command will not allow you to type a
combining character, because it doesn't know one is coming. Use "R" instead.

mbyte.txt — 1898

Bytes which are not part of a valid UTF-8 byte sequence are handled like a
single character and displayed as <xx>, where "xx" is the hex value of the
byte.

Overlong sequences are not handled specially and displayed like a valid
character. However, search patterns may not match on an overlong sequence.
(an overlong sequence is where more bytes are used than required for the
character.) An exception is NUL (zero) which is displayed as "<00>".

In the file and buffer the full range of Unicode characters can be used (31
bits). However, displaying only works for the characters present in the
selected font.

Useful commands:
- "ga" shows the decimal, hexadecimal and octal value of the character under

the cursor. If there are composing characters these are shown too. (If the
message is truncated, use ":messages").

- "g8" shows the bytes used in a UTF-8 character, also the composing
characters, as hex numbers.

- ":set encoding=utf-8 fileencodings=" forces using UTF-8 for all files. The
default is to use the current locale for 'encoding' and set 'fileencodings'
to automatically detect the encoding of a file.

STARTING VIM

If your current locale is in an UTF-8 encoding, Vim will automatically start
in UTF-8 mode.

If you are using another locale:

set encoding=utf-8

You might also want to select the font used for the menus. Unfortunately this
doesn't always work. See the system specific remarks below, and 'langmenu'.

USING UTF-8 IN X-Windows utf-8-in-xwindows

Note: This section does not apply to the GTK+ 2 GUI.

You need to specify a font to be used. For double-wide characters another
font is required, which is exactly twice as wide. There are three ways to do
this:

1. Set 'guifont' and let Vim find a matching 'guifontwide'
2. Set 'guifont' and 'guifontwide'
3. Set 'guifontset'

See the documentation for each option for details. Example:

:set guifont=-misc-fixed-medium-r-normal--15-140-75-75-c-90-iso10646-1

You might also want to set the font used for the menus. This only works for
Motif. Use the ":hi Menu font={fontname}" command for this. :highlight

TYPING UTF-8 utf-8-typing

If you are using X-Windows, you should find an input method that supports

mbyte.txt — 1899

UTF-8.

If your system does not provide support for typing UTF-8, you can use the
'keymap' feature. This allows writing a keymap file, which defines a UTF-8
character as a sequence of ASCII characters. See mbyte-keymap .

Another method is to set the current locale to the language you want to use
and for which you have a XIM available. Then set 'termencoding' to that
language and Vim will convert the typed characters to 'encoding' for you.

If everything else fails, you can type any character as four hex bytes:

CTRL-V u 1234

"1234" is interpreted as a hex number. You must type four characters, prepend
a zero if necessary.

COMMAND ARGUMENTS utf-8-char-arg

Commands like f , F , t and r take an argument of one character. For
UTF-8 this argument may include one or two composing characters. These need
to be produced together with the base character, Vim doesn't wait for the next
character to be typed to find out if it is a composing character or not.
Using 'keymap' or :lmap is a nice way to type these characters.

The commands that search for a character in a line handle composing characters
as follows. When searching for a character without a composing character,
this will find matches in the text with or without composing characters. When
searching for a character with a composing character, this will only find
matches with that composing character. It was implemented this way, because
not everybody is able to type a composing character.

==
12. Overview of options mbyte-options

These options are relevant for editing multibyte files. Check the help in
options.txt for detailed information.

'encoding' Encoding used for the keyboard and display. It is also the
default encoding for files.

'fileencoding' Encoding of a file. When it's different from 'encoding'
conversion is done when reading or writing the file.

'fileencodings' List of possible encodings of a file. When opening a file
these will be tried and the first one that doesn't cause an
error is used for 'fileencoding'.

'charconvert' Expression used to convert files from one encoding to another.

'formatoptions' The 'm' flag can be included to have formatting break a line
at a multibyte character of 256 or higher. Thus is useful for
languages where a sequence of characters can be broken
anywhere.

'guifontset' The list of font names used for a multibyte encoding. When
this option is not empty, it replaces 'guifont'.

mbyte.txt — 1900

'keymap' Specify the name of a keyboard mapping.

==

Contributions specifically for the multibyte features by:
Chi-Deok Hwang <hwang@mizi.co.kr>
SungHyun Nam <goweol@gmail.com>
K.Nagano <nagano@atese.advantest.co.jp>
Taro Muraoka <koron@tka.att.ne.jp>
Yasuhiro Matsumoto <mattn@mail.goo.ne.jp>

mbyte.txt — 1901

mbyte.txt — 1902

mlang.txt For Vim version 9.1. Last change: 2022 Sep 17

VIM REFERENCE MANUAL by Bram Moolenaar

Multi-language features multilang multi-lang

This is about using messages and menus in various languages. For editing
multibyte text see multibyte .

The basics are explained in the user manual: usr_45.txt .

1. Messages multilang-messages
2. Menus multilang-menus
3. Scripts multilang-scripts

Also see help-translated for multi-language help.

{not available when compiled without the |+multi_lang| feature}

==
1. Messages multilang-messages

Vim picks up the locale from the environment. In most cases this means Vim
will use the language that you prefer, unless it's not available.

To see a list of supported locale names on your system, look in one of these
directories (for Unix):

/usr/lib/locale
/usr/share/locale

Unfortunately, upper/lowercase differences matter. Also watch out for the
use of "-" and "_".

:lan :lang :language E197
:lan[guage]
:lan[guage] mes[sages]
:lan[guage] cty[pe]
:lan[guage] tim[e]
:lan[guage] col[late]

Print the current language (aka locale).
With the "messages" argument the language used for
messages is printed. Technical: LC_MESSAGES.
With the "ctype" argument the language used for
character encoding is printed. Technical: LC_CTYPE.
With the "time" argument the language used for
strftime() is printed. Technical: LC_TIME.
With the "collate" argument the language used for
collation order is printed. Technical: LC_COLLATE.
Without argument all parts of the locale are printed
(this is system dependent).
The current language can also be obtained with the
v:lang , v:ctype , v:collate and v:lc_time

variables.

:lan[guage] {name}
:lan[guage] mes[sages] {name}
:lan[guage] cty[pe] {name}
:lan[guage] tim[e] {name}
:lan[guage] col[late] {name}

mlang.txt — 1903

Set the current language (aka locale) to {name}.
The locale {name} must be a valid locale on your
system. Some systems accept aliases like "en" or
"en_US", but some only accept the full specification
like "en_US.ISO_8859-1". On Unix systems you can use
this command to see what locales are supported:

:!locale -a
With the "messages" argument the language used for
messages is set. This can be different when you want,
for example, English messages while editing Japanese
text. This sets $LC_MESSAGES.
With the "ctype" argument the language used for
character encoding is set. This affects the libraries
that Vim was linked with. It's unusual to set this to
a different value from 'encoding' or "C". This sets
$LC_CTYPE.
With the "time" argument the language used for time
and date messages is set. This affects strftime().
This sets $LC_TIME.
With the "collate" argument the language used for the
collation order is set. This affects sorting of
characters. This sets $LC_COLLATE.
Without an argument all are set, and additionally
$LANG is set.
If available the LC_NUMERIC value will always be set
to "C", so that floating point numbers use '.' as the
decimal point.
This will make a difference for items that depend on
the language (some messages, time and date format).
Not fully supported on all systems
If this fails there will be an error message. If it
succeeds there is no message. Example:

:language
Current language: C
:language de_DE.ISO_8859-1
:language mes
Current messages language: de_DE.ISO_8859-1
:lang mes en

MS-WINDOWS MESSAGE TRANSLATIONS win32-gettext

If you used the self-installing .exe file, message translations should work
already. Otherwise get the libintl.dll file if you don't have it yet:

http://sourceforge.net/projects/gettext
Or:

https://mlocati.github.io/gettext-iconv-windows/

This also contains tools xgettext, msgformat and others.

libintl.dll should be placed in same directory as (g)vim.exe, or one of the
directories listed in the PATH environment value. Vim also looks for the
alternate names "libintl-8.dll" and "intl.dll".

Message files (vim.mo) have to be placed in "$VIMRUNTIME/lang/xx/LC_MESSAGES",
where "xx" is the abbreviation of the language (mostly two letters).

If you write your own translations you need to generate the .po file and
convert it to a .mo file. You need to get the source distribution and read

mlang.txt — 1904

http://sourceforge.net/projects/gettext
https://mlocati.github.io/gettext-iconv-windows/

the file "src/po/README.txt".

To overrule the automatic choice of the language, set the $LANG variable to
the language of your choice. use "en" to disable translations.

:let $LANG = 'ja'

(text for Windows by Muraoka Taro)

==
2. Menus multilang-menus

See 45.2 for the basics, esp. using 'langmenu'.

Note that if changes have been made to the menus after the translation was
done, some of the menus may be shown in English. Please try contacting the
maintainer of the translation and ask him to update it. You can find the
name and e-mail address of the translator in
"$VIMRUNTIME/lang/menu_<lang>.vim".

To set the font (or fontset) to use for the menus, use the :highlight
command. Example:

:highlight Menu font=k12,r12

ALIAS LOCALE NAMES

Unfortunately, the locale names are different on various systems, even though
they are for the same language and encoding. If you do not get the menu
translations you expected, check the output of this command:

echo v:lang

Now check the "$VIMRUNTIME/lang" directory for menu translation files that use
a similar language. A difference in a "-" being a "_" already causes a file
not to be found! Another common difference to watch out for is "iso8859-1"
versus "iso_8859-1". Fortunately Vim makes all names lowercase, thus you
don't have to worry about case differences. Spaces are changed to
underscores, to avoid having to escape them.

If you find a menu translation file for your language with a different name,
create a file in your own runtime directory to load that one. The name of
that file could be:

~/.vim/lang/menu_<v:lang>.vim

Check the 'runtimepath' option for directories which are searched. In that
file put a command to load the menu file with the other name:

runtime lang/menu_<other_lang>.vim

TRANSLATING MENUS

If you want to do your own translations, you can use the :menutrans command,
explained below. It is recommended to put the translations for one language
in a Vim script. For a language that has no translation yet, please consider
becoming the maintainer and make your translations available to all Vim users.
Send an e-mail to the Vim maintainer <maintainer@vim.org>.

mlang.txt — 1905

:menut :menutrans :menutranslate
:menut[ranslate] clear

Clear all menu translations.

:menut[ranslate] {english} {mylang}
Translate menu name {english} to {mylang}. All
special characters like "&" and "<Tab>" need to be
included. Spaces and dots need to be escaped with a
backslash, just like in other :menu commands.
Case in {english} is ignored.

See the $VIMRUNTIME/lang directory for examples.

To try out your translations you first have to remove all menus. This is how
you can do it without restarting Vim:

:source $VIMRUNTIME/delmenu.vim
:source <your-new-menu-file>
:source $VIMRUNTIME/menu.vim

Each part of a menu path is translated separately. The result is that when
"Help" is translated to "Hilfe" and "Overview" to "Überblick" then
"Help.Overview" will be translated to "Hilfe.Überblick".

==
3. Scripts multilang-scripts

In Vim scripts you can use the v:lang variable to get the current language
(locale). The default value is "C" or comes from the $LANG environment
variable.

The following example shows how this variable is used in a simple way, to make
a message adapt to language preferences of the user,

:if v:lang =~ "de_DE"
: echo "Guten Morgen"
:else
: echo "Good morning"
:endif

mlang.txt — 1906

rileft.txt For Vim version 9.1. Last change: 2022 Oct 12

VIM REFERENCE MANUAL by Avner Lottem
updated by Nadim Shaikli

Right to Left display mode for Vim rileft

These functions were originally created by Avner Lottem:
E-mail: alottem@iil.intel.com
Phone: +972-4-8307322

E26
{only available when compiled with the |+rightleft| feature}

Introduction

Some languages such as Arabic, Farsi, Hebrew (among others) require the
ability to display their text from right-to-left. Files in those languages
are stored conventionally and the right-to-left requirement is only a
function of the display engine (per the Unicode specification). In
right-to-left oriented files the characters appear on the screen from
right to left.

Bidirectionality (or bidi for short) is what Unicode offers as a full
solution to these languages. Bidi offers the user the ability to view
both right-to-left as well as left-to-right text properly at the same time
within the same window. Vim currently, due to simplicity, does not offer
bidi and is merely opting to present a functional means to display/enter/use
right-to-left languages. An older hybrid solution in which direction is
encoded for every character (or group of characters) are not supported either
as this kind of support is out of the scope of a simple addition to an
existing editor (and it's not sanctioned by Unicode either).

As many people working on the code do not use the right-to-left mode, this
feature may not work in some situations. If you can describe what is wrong
and how it would work when fixed, please create an issue on github, see
bug-reports .

Highlights

o Editing left-to-right files as in the original Vim, no change.

o Viewing and editing files in right-to-left windows. File orientation
is per window, so it is possible to view the same file in right-to-left
and left-to-right modes, simultaneously. (Useful for editing mixed files
in which both right-to-left and left-to-right text exist).

o Compatibility to the original Vim. Almost all features work in
right-to-left mode (see Bugs below).

o Backing from reverse insert mode to the correct place in the file
(if possible).

o No special terminal with right-to-left capabilities is required. The
right-to-left changes are completely hardware independent.

rileft.txt — 1907

o Many languages use and require right-to-left support. These languages
can quite easily be supported given the inclusion of their required
keyboard mappings and some possible minor code change. Some of the
current supported languages include - arabic.txt , farsi.txt and
hebrew.txt .

Of Interest...

o Invocations

+ 'rightleft' ('rl') sets window orientation to right-to-left.
+ 'delcombine' ('deco'), boolean, if editing UTF-8 encoded languages,
allows one to remove a composing character which gets superimposed
on those that preceded them (some languages require this).

+ 'rightleftcmd' ('rlc') sets the command-line within certain modes
(such as search) to be utilized in right-to-left orientation as well.

o Typing backwards ins-reverse

In lieu of using the full-fledged 'rightleft' option, one can opt for
reverse insertion. When the 'revins' (reverse insert) option is set,
inserting happens backwards. This can be used to type right-to-left
text. When inserting characters the cursor is not moved and the text
moves rightwards. A <BS> deletes the character under the cursor.
CTRL-W and CTRL-U also work in the opposite direction. <BS>, CTRL-W
and CTRL-U do not stop at the start of insert or end of line, no matter
how the 'backspace' option is set.

There is no reverse replace mode (yet).

If the 'showmode' option is set, "-- REVERSE INSERT --" will be shown
in the status line when reverse Insert mode is active.

o Pasting when in a rightleft window

When cutting text with the mouse and pasting it in a rightleft window
the text will be reversed, because the characters come from the cut buffer
from the left to the right, while inserted in the file from the right to
the left. In order to avoid it, toggle 'revins' before pasting.

Bugs

o Does not handle CTRL-A and CTRL-X commands (add and subtract) correctly

when in rightleft window.

o Does not support reverse insert and rightleft modes on the command-line.
However, functionality of the editor is not reduced, because it is
possible to enter mappings, abbreviations and searches typed from the
left to the right on the command-line.

o Somewhat slower in right-to-left mode, because right-to-left motion is
emulated inside Vim, not by the controlling terminal.

o When both 'rightleft' and 'revins' are on: 'textwidth' does not work.
Lines do not wrap at all; you just get a single, long line.

rileft.txt — 1908

o There is no full bidirectionality (bidi) support.

rileft.txt — 1909

rileft.txt — 1910

arabic.txt For Vim version 9.1. Last change: 2021 Jun 22

VIM REFERENCE MANUAL by Nadim Shaikli

Arabic Language support (options & mappings) for Vim Arabic

E800
In order to use right-to-left and Arabic mapping support, it is
necessary to compile Vim with the +arabic feature.

These functions have been created by Nadim Shaikli <nadim-at-arabeyes.org>

It is best to view this file with these settings within Vim's GUI:

:set encoding=utf-8
:set arabicshape

Introduction

Arabic is a rather demanding language in which a number of special
features are required. Characters are right-to-left oriented and
ought to appear as such on the screen (i.e. from right to left).
Arabic also requires shaping of its characters, meaning the same
character has a different visual form based on its relative location
within a word (initial, medial, final or stand-alone). Arabic also
requires two different forms of combining and the ability, in
certain instances, to either superimpose up to two characters on top
of another (composing) or the actual substitution of two characters
into one (combining). Lastly, to display Arabic properly one will
require not only ISO-8859-6 (U+0600-U+06FF) fonts, but will also
require Presentation Form-B (U+FE70-U+FEFF) fonts both of which are
subsets within a so-called ISO-10646-1 font.

The commands, prompts and help files are not in Arabic, therefore
the user interface remains the standard Vi interface.

Highlights

o Editing left-to-right files as in the original Vim hasn't changed.

o Viewing and editing files in right-to-left windows. File
orientation is per window, so it is possible to view the same
file in right-to-left and left-to-right modes, simultaneously.

o No special terminal with right-to-left capabilities is required.
The right-to-left changes are completely hardware independent.
Only Arabic fonts are necessary.

o Compatible with the original Vim. Almost all features work in
right-to-left mode (there are liable to be bugs).

o Changing keyboard mapping and reverse insert modes using a single
command.

o Toggling complete Arabic support via a single command.

arabic.txt — 1911

o While in Arabic mode, numbers are entered from left to right. Upon
entering a none number character, that character will be inserted
just into the left of the last number.

o Arabic keymapping on the command line in reverse insert mode.

o Proper Bidirectional functionality is possible given Vim is
started within a Bidi capable terminal emulator.

Arabic Fonts arabicfonts

Vim requires monospaced fonts of which there are many out there.
Arabic requires ISO-8859-6 as well as Presentation Form-B fonts
(without Form-B, Arabic will _NOT_ be usable). It is highly
recommended that users search for so-called 'ISO-10646-1' fonts.
Do an Internet search or check www.arabeyes.org for further
info on where to obtain the necessary Arabic fonts.

Font Installation

o Installation of fonts for X Window systems (Unix/Linux)

Depending on your system, copy your_ARABIC_FONT file into a
directory of your choice. Change to the directory containing
the Arabic fonts and execute the following commands:

% mkfontdir
% xset +fp path_name_of_arabic_fonts_directory

Usage

Prior to the actual usage of Arabic within Vim, a number of settings
need to be accounted for and invoked.

o Setting the Arabic fonts

+ For Vim GUI set the 'guifont' to your_ARABIC_FONT. This is done
by entering the following command in the Vim window.

:set guifont=your_ARABIC_FONT

NOTE: the string 'your_ARABIC_FONT' is used to denote a complete
font name akin to that used in Linux/Unix systems.
(e.g. -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso10646-1)

You can append the 'guifont' set command to your .vimrc file
in order to get the same above noted results. In other words,
you can include ':set guifont=your_ARABIC_FONT' to your .vimrc
file.

+ Under the X Window environment, you can also start Vim with
'-fn your_ARABIC_FONT' option.

o Setting the appropriate character Encoding

arabic.txt — 1912

To enable the correct Arabic encoding the following command needs
to be appended,

:set encoding=utf-8

to your .vimrc file (entering the command manually into your Vim
window is highly discouraged). In short, include ':set
encoding=utf-8' to your .vimrc file.

Attempts to use Arabic without UTF-8 will result the following
warning message,

W17
Arabic requires UTF-8, do ':set encoding=utf-8'

o Enable Arabic settings [short-cut]

In order to simplify and streamline things, you can either invoke
Vim with the command-line option,

% vim -A my_utf8_arabic_file ...

or enable 'arabic' via the following command within Vim

:set arabic

The two above noted possible invocations are the preferred manner
in which users are instructed to proceed. Barring an enabled 'termbidi'
setting, both command options:

1. set the appropriate keymap
2. enable the deletion of a single combined pair character
3. enable rightleft mode
4. enable rightleftcmd mode (affecting the command-line)
5. enable arabicshape mode (do visual character alterations)

You may also append the command to your .vimrc file and simply
include ':set arabic' to it.

You are also capable of disabling Arabic support via

:set noarabic

which resets everything that the command had enabled without touching
the global settings as they could affect other possible open buffers.
In short the 'noarabic' command,

1. resets to the alternate keymap
2. disables the deletion of a single combined pair character
3. disables rightleft mode

NOTE: the 'arabic' command takes into consideration 'termbidi' for
possible external bi-directional (bidi) support from the
terminal ("mlterm" for instance offers such support).
'termbidi', if available, is superior to rightleft support
and its support is preferred due to its level of offerings.
'arabic' when 'termbidi' is enabled only sets the keymap.

For vertical window isolation while setting 'termbidi' an LTR
vertical separator like "l" or "�" may be used. It may also be

arabic.txt — 1913

hidden by changing its color to the foreground color:
:set fillchars=vert:l
:hi VertSplit ctermbg=White

Note that this is a workaround, not a proper solution.

If, on the other hand, you'd like to be verbose and explicit and
are opting not to use the 'arabic' short-cut command, here's what
is needed (i.e. if you use ':set arabic' you can skip this section) -

+ Arabic Keymapping Activation

To activate the Arabic keymap (i.e. to remap your English/Latin
keyboard to look-n-feel like a standard Arabic one), set the
'keymap' command to "arabic". This is done by entering

:set keymap=arabic

in your Vim window. You can also append the 'keymap' set command to
your .vimrc file. In other words, you can include ':set keymap=arabic'
to your .vimrc file.

To turn toggle (or switch) your keymapping between Arabic and the
default mapping (English), it is advised that users use the 'CTRL-^'
key press while in insert (or add/replace) mode. The command-line
will display your current mapping by displaying an "Arabic" string
next to your insertion mode (e.g. -- INSERT Arabic --) indicating
your current keymap.

+ Arabic deletion of a combined pair character

By default Vim has the 'delcombine' option disabled. This option
allows the deletion of ALEF in a LAM_ALEF (LAA) combined character
and still retain the LAM (i.e. it reverts to treating the combined
character as its natural two characters form -- this also pertains
to harakat and their combined forms). You can enable this option
by entering

:set delcombine

in our Vim window. You can also append the 'delcombine' set command
to your .vimrc file. In other words, you can include ':set delcombine'
to your .vimrc file.

+ Arabic right-to-left Mode

By default Vim starts in Left-to-right mode. 'rightleft' is the
command that allows one to alter a window's orientation - that can
be accomplished via,

- Toggling between left-to-right and right-to-left modes is
accomplished through ':set rightleft' and ':set norightleft'.

- While in Left-to-right mode, enter ':set rl' in the command line
('rl' is the abbreviation for rightleft).

- Put the ':set rl' line in your '.vimrc' file to start Vim in
right-to-left mode permanently.

+ Arabic right-to-left command-line Mode

arabic.txt — 1914

For certain commands the editing can be done in right-to-left mode.
Currently this is only applicable to search commands.

This is controlled with the 'rightleftcmd' option. The default is
"search", which means that windows in which 'rightleft' is set will
edit search commands in right-left mode. To disable this behavior,

:set rightleftcmd=

To enable right-left editing of search commands again,

:set rightleftcmd&

+ Arabic Shaping Mode

To activate the required visual characters alterations (shaping,
composing, combining) which the Arabic language requires, enable
the 'arabicshape' command. This is done by entering

:set arabicshape

in our Vim window. You can also append the 'arabicshape' set
command to your .vimrc file. In other words, you can include
':set arabicshape' to your .vimrc file.

Keymap/Keyboard arabickeymap

The character/letter encoding used in Vim is the standard UTF-8.
It is widely discouraged that any other encoding be used or even
attempted.

Note: UTF-8 is an all encompassing encoding and as such is
the only supported (and encouraged) encoding with
regard to Arabic (all other proprietary encodings
should be discouraged and frowned upon).

o Keyboard

+ CTRL-^ in insert/replace mode toggles between Arabic/Latin mode

+ Keyboard mapping is based on the Microsoft's Arabic keymap (the
de facto standard in the Arab world):

+---+
|! |@ |# |$ |% |^ |& |* |(|) |_ |+ || |~ � |
|1 � |2 � |3 � |4 � |5 � |6 � |7 � |8 � |9 � |0 � |- |= |\ |` � |
+---+

|Q � |W � |E � |R � |T �� |Y � |U ` |I ÷ |O x |P � |{ < |} > |
|q � |w � |e � |r � |t � |y � |u � |i � |o � |p � |[� |] � |
+---+

|A � |S � |D [|F] |G �� |H � |J � |K � |L / |: |" |
|a � |s � |d � |f � |g � |h � |j � |k � |l � |; � |' � |
+--+

|Z ~ |X � |C { |V } |B �� |N � |M ' |< , |> . |? � |
|z � |x � |c � |v � |b �� |n � |m � |, � |. � |/ � |
+---+

Restrictions

arabic.txt — 1915

o Vim in its GUI form does not currently support Bi-directionality
(i.e. the ability to see both Arabic and Latin intermixed within
the same line).

Known Bugs

There is one known minor bug,

1. If you insert a haraka (e.g. Fatha (U+064E)) after a LAM (U+0644)
and then insert an ALEF (U+0627), the appropriate combining will
not happen due to the sandwiched haraka resulting in something
that will NOT be displayed correctly.

WORK-AROUND: Don't include harakats between LAM and ALEF combos.
In general, don't anticipate to see correct visual
representation with regard to harakats and LAM+ALEF
combined characters (even those entered after both
characters). The problem noted is strictly a visual
one, meaning saving such a file will contain all the
appropriate info/encodings - nothing is lost.

No other bugs are known to exist.

arabic.txt — 1916

farsi.txt For Vim version 9.1. Last change: 2019 May 05

VIM REFERENCE MANUAL by Mortaza Ghassab Shiran

Right to Left and Farsi Mapping for Vim farsi Farsi

E27
Farsi support has been removed in patch 8.1.0932. At that time it was
outdated and unused.

If you would like to bring Farsi support back, please have a look at the old
Farsi code, as it was present at the 8.1 release. It should be merged with
Arabic support using the Unicode character set.

farsi.txt — 1917

farsi.txt — 1918

hebrew.txt For Vim version 9.1. Last change: 2019 May 05

VIM REFERENCE MANUAL by Ron Aaron (and Avner Lottem)

Hebrew Language support (options & mapping) for Vim hebrew

The supporting 'rightleft' functionality was originally created by Avner
Lottem. <alottem at gmail dot com> Ron Aaron <ron at ronware dot org> is
currently helping support these features.

{only available when the |+rightleft| feature was enabled at compile time}

Introduction

Hebrew-specific options are 'hkmap', 'hkmapp' 'keymap'=hebrew and 'aleph'.
Hebrew-useful options are 'delcombine', 'allowrevins', 'revins', 'rightleft'
and 'rightleftcmd'.

The 'rightleft' mode reverses the display order, so characters are displayed
from right to left instead of the usual left to right. This is useful
primarily when editing Hebrew or other Middle-Eastern languages.
See rileft.txt for further details.

Details

+ Options:

+ 'rightleft' ('rl') sets window orientation to right-to-left. This means
that the logical text 'ABC' will be displayed as 'CBA', and will start
drawing at the right edge of the window, not the left edge.

+ 'hkmap' ('hk') sets keyboard mapping to Hebrew, in insert/replace modes.
+ 'aleph' ('al'), numeric, holds the decimal code of Aleph, for keyboard

mapping.
+ 'hkmapp' ('hkp') sets keyboard mapping to 'phonetic hebrew'

NOTE: these three ('hkmap', 'hkmapp' and 'aleph') are obsolete. You should
use ":set keymap=hebrewp" instead.

+ 'delcombine' ('deco'), boolean, if editing UTF-8 encoded Hebrew, allows
one to remove the niqud or te`amim by pressing 'x' on a character (with
associated niqud).

+ 'rightleftcmd' ('rlc') makes the command-prompt for searches show up on
the right side. It only takes effect if the window is 'rightleft'.

+ Encoding:
+ Under Unix, ISO 8859-8 encoding (Hebrew letters codes: 224-250).
+ Under MS DOS, PC encoding (Hebrew letters codes: 128-154).

These are defaults, that can be overridden using the 'aleph' option.
+ You should prefer using UTF8, as it supports the combining-characters

('deco' does nothing if UTF8 encoding is not active).

+ Vim arguments:
+ 'vim -H file' starts editing a Hebrew file, i.e. 'rightleft' and 'hkmap'

are set.

+ Keyboard:
+ The 'allowrevins' option enables the CTRL-_ command in Insert mode and

hebrew.txt — 1919

in Command-line mode.

+ CTRL-_ in insert/replace modes toggles 'revins' and 'hkmap' as follows:

When in rightleft window, 'revins' and 'nohkmap' are toggled, since
English will likely be inserted in this case.

When in norightleft window, 'revins' 'hkmap' are toggled, since Hebrew
will likely be inserted in this case.

CTRL-_ moves the cursor to the end of the typed text.

+ CTRL-_ in command mode only toggles keyboard mapping (see Bugs below).
This setting is independent of 'hkmap' option, which only applies to
insert/replace mode.

Note: On some keyboards, CTRL-_ is mapped to CTRL-?.

+ Keyboard mapping while 'hkmap' is set (standard Israeli keyboard):

q w e r t y u i o p
/ ' � � � � � � � �

a s d f g h j k l ; '
� � � � � � � � � � ,

z x c v b n m , . /
� � � � � � � � � .

This is also the keymap when 'keymap=hebrew' is set. The advantage of
'keymap' is that it works properly when using UTF8, e.g. it inserts the
correct characters; 'hkmap' does not. The 'keymap' keyboard can also
insert niqud and te`amim. To see what those mappings are, look at the
keymap file 'hebrew.vim' etc.

Typing backwards

If the 'revins' (reverse insert) option is set, inserting happens backwards.
This can be used to type Hebrew. When inserting characters the cursor is not
moved and the text moves rightwards. A <BS> deletes the character under the
cursor. CTRL-W and CTRL-U also work in the opposite direction. <BS>, CTRL-W
and CTRL-U do not stop at the start of insert or end of line, no matter how
the 'backspace' option is set.

There is no reverse replace mode (yet).

If the 'showmode' option is set, "-- REVERSE INSERT --" will be shown in the
status line when reverse Insert mode is active.

When the 'allowrevins' option is set, reverse Insert mode can be also entered
via CTRL-_, which has some extra functionality: First, keyboard mapping is
changed according to the window orientation -- if in a left-to-right window,
'revins' is used to enter Hebrew text, so the keyboard changes to Hebrew
('hkmap' is set); if in a right-to-left window, 'revins' is used to enter
English text, so the keyboard changes to English ('hkmap' is reset). Second,
when exiting 'revins' via CTRL-_, the cursor moves to the end of the typed
text (if possible).

hebrew.txt — 1920

Pasting when in a rightleft window

When cutting text with the mouse and pasting it in a rightleft window
the text will be reversed, because the characters come from the cut buffer
from the left to the right, while inserted in the file from the right to
the left. In order to avoid it, toggle 'revins' (by typing CTRL-? or CTRL-_)
before pasting.

Hebrew characters and the 'isprint' variable
--
Sometimes Hebrew character codes are in the non-printable range defined by
the 'isprint' variable. For example in the Linux console, the Hebrew font
encoding starts from 128, while the default 'isprint' variable is @,161-255.
The result is that all Hebrew characters are displayed as ~x. To solve this
problem, set isprint=@,128-255.

hebrew.txt — 1921

hebrew.txt — 1922

russian.txt For Vim version 9.1. Last change: 2006 Apr 24

VIM REFERENCE MANUAL by Vassily Ragosin

Russian language localization and support in Vim russian Russian

1. Introduction russian-intro
2. Russian keymaps russian-keymap
3. Localization russian-l18n
4. Known issues russian-issues

===
1. Introduction russian-intro

Russian language is supported perfectly well in Vim. You can type and view
Russian text just as any other, without the need to tweak the settings.

===
2. Russian keymaps russian-keymap

To switch between languages you can use your system native keyboard switcher,
or use one of the Russian keymaps, included in the Vim distribution. For
example,

:set keymap=russian-jcukenwin

In the latter case, you can switch between languages even if you do not have
system Russian keyboard or independently from a system-wide keyboard settings.
See 'keymap'. You can also map a key to switch between keyboards, if you
choose the latter option. See :map .

For your convenience, to avoid switching between keyboards, when you need to
enter Normal mode command, you can also set 'langmap' option:

:set langmap=��������������������������;ABCDEFGHIJKLMNOPQRSTUVWXYZ,
��������������������������;abcdefghijklmnopqrstuvwxyz

This is in utf-8, you cannot read this if your 'encoding' is not utf-8.
You have to type this command in one line, it is wrapped for the sake of
readability.

===
3. Localization russian-l18n

If you wish to use messages, help files, menus and other items translated to
Russian, you will need to install the RuVim Language Pack, available in
different codepages from

http://www.sourceforge.net/projects/ruvim/

Make sure that your Vim is at least 6.2.506 and use ruvim 0.5 or later for
automatic installs. Vim also needs to be compiled with +gettext feature for
user interface items translations to work.

After downloading an archive from RuVim project, unpack it into your
$VIMRUNTIME directory. We recommend using UTF-8 archive.

In order to use the Russian documentation, make sure you have set the

russian.txt — 1923

http://www.sourceforge.net/projects/ruvim/

'helplang' option to "ru".

===
4. Known issues russian-issues

-- If you are using Russian message translations in Win32 console, then
you may see the output produced by "vim --help", "vim --version" commands
and Win32 console window title appearing in a wrong codepage. This problem
is related to a bug in GNU gettext library and may be fixed in the future
releases of gettext.

===

russian.txt — 1924

hangulin.txt For Vim version 9.1. Last change: 2019 Nov 21

VIM REFERENCE MANUAL by Chi-Deok Hwang and Sung-Hyun Nam

hangul
Vim had built-in support for hangul, the Korean language, for users without
XIM (X Input Method). Since it didn't work well and was not maintained it was
removed in Vim 8.1.2327.

If you want this hangul input method you can go back to Vim 8.1.2326 or
earlier. If you think this code is still useful and want to maintain it, make
a patch to add it back. However, making it work with UTF-8 encoding would be
best.

hangulin.txt — 1925

hangulin.txt — 1926

gui.txt For Vim version 9.1. Last change: 2023 Apr 29

VIM REFERENCE MANUAL by Bram Moolenaar

Vim's Graphical User Interface gui GUI

1. Starting the GUI gui-start
2. Scrollbars gui-scrollbars
3. Mouse Control gui-mouse
4. Making GUI Selections gui-selections
5. Menus menus
6. Font gui-font
7. Extras gui-extras
8. Shell Commands gui-shell

Other GUI documentation:
gui_x11.txt For specific items of the X11 GUI.
gui_w32.txt For specific items of the Win32 GUI.

==
1. Starting the GUI gui-start E229 E233

First you must make sure you actually have a version of Vim with the GUI code
included. You can check this with the ":version" command, it says "with xxx
GUI", where "xxx" is X11-Motif, Photon, GTK2, GTK3, etc., or
"MS-Windows 32 bit GUI version".

How to start the GUI depends on the system used. Mostly you can run the
GUI version of Vim with:

gvim [options] [files...]

The X11 version of Vim can run both in GUI and in non-GUI mode. See
gui-x11-start .

gui-init gvimrc .gvimrc _gvimrc $MYGVIMRC
The gvimrc file is where GUI-specific startup commands should be placed. It
is always sourced after the vimrc file. If you have one then the $MYGVIMRC
environment variable has its name.

When the GUI starts up initializations are carried out, in this order:
- The 'term' option is set to "builtin_gui" and terminal options are reset to

their default value for the GUI terminal-options .
- If the system menu file exists, it is sourced. The name of this file is

normally "$VIMRUNTIME/menu.vim". You can check this with ":version". Also
see $VIMRUNTIME . To skip loading the system menu include 'M' in
'guioptions'. buffers-menu no_buffers_menu
The system menu file includes a "Buffers" menu. If you don't want this, set
the "no_buffers_menu" variable in your .vimrc (not .gvimrc!):

:let no_buffers_menu = 1
NOTE: Switching on syntax highlighting also loads the menu file, thus
disabling the Buffers menu must be done before ":syntax on".
The path names are truncated to 35 characters. You can truncate them at a
different length, for example 50, like this:

:let bmenu_max_pathlen = 50
- If the "-U {gvimrc}" command-line option has been used when starting Vim,

the {gvimrc} file will be read for initializations. The following
initializations are skipped. When {gvimrc} is "NONE" no file will be read

gui.txt — 1927

for initializations.
- For Unix and MS-Windows, if the system gvimrc exists, it is sourced. The

name of this file is normally "$VIM/gvimrc". You can check this with
":version". Also see $VIM .

- The following are tried, and only the first one that exists is used:
- If the GVIMINIT environment variable exists and is not empty, it is

executed as an Ex command.
- If the user gvimrc file exists, it is sourced. The name of this file is

normally "$HOME/.gvimrc". You can check this with ":version".
- For Win32, $HOME is set by Vim if needed, see $HOME-windows .
- When a "_gvimrc" file is not found, ".gvimrc" is tried too. And vice
versa.

The name of the first file found is stored in $MYGVIMRC, unless it was
already set.

- If the 'exrc' option is set (which is NOT the default) the file ./.gvimrc
is sourced, if it exists and isn't the same file as the system or user
gvimrc file. If this file is not owned by you, some security restrictions
apply. When ".gvimrc" is not found, "_gvimrc" is tried too. For Macintosh
and DOS/Win32 "_gvimrc" is tried first.

NOTE: All but the first one are not carried out if Vim was started with
"-u NONE" or "-u DEFAULTS" and no "-U" argument was given, or when started
with "-U NONE".

All this happens AFTER the normal Vim initializations, like reading your
.vimrc file. See initialization .
But the GUI window is only opened after all the initializations have been
carried out. If you want some commands to be executed just after opening the
GUI window, use the GUIEnter autocommand event. Example:

:autocmd GUIEnter * winpos 100 50

You can use the gvimrc files to set up your own customized menus (see :menu)
and initialize other things that you may want to set up differently from the
terminal version.

Recommended place for your personal GUI initializations:
Unix $HOME/.gvimrc or $HOME/.vim/gvimrc
Win32 $HOME/_gvimrc, $HOME/vimfiles/gvimrc

or $VIM/_gvimrc
Amiga s:.gvimrc, home:.gvimrc, home:vimfiles:gvimrc

or $VIM/.gvimrc
Haiku $HOME/config/settings/vim/gvimrc

The personal initialization files are searched in the order specified above
and only the first one that is found is read.

There are a number of options which only have meaning in the GUI version of
Vim. These are 'guicursor', 'guifont', 'guipty' and 'guioptions'. They are
documented in options.txt with all the other options.

If using the Motif version of the GUI (but not for the GTK+ or
Win32 version), a number of X resources are available. See gui-resources .

Another way to set the colors for different occasions is with highlight
groups. The "Normal" group is used to set the background and foreground
colors. Example (which looks nice):

:highlight Normal guibg=grey90

The "guibg" and "guifg" settings override the normal background and

gui.txt — 1928

foreground settings. The other settings for the Normal highlight group are
not used. Use the 'guifont' option to set the font.

Also check out the 'guicursor' option, to set the colors for the cursor in
various modes.

Vim tries to make the window fit on the screen when it starts up. This avoids
that you can't see part of it. On the X Window System this requires a bit of
guesswork. You can change the height that is used for the window title and a
task bar with the 'guiheadroom' option.

:winp :winpos E188
:winp[os]

Display current position of the top left corner of the GUI vim
window in pixels. Does not work in all versions.
Also see getwinpos() , getwinposx() and getwinposy() .

:winp[os] {X} {Y} E466
Put the GUI vim window at the given {X} and {Y} coordinates.
The coordinates should specify the position in pixels of the
top left corner of the window. Does not work in all versions.
Does work in an (new) xterm xterm-color .
When the GUI window has not been opened yet, the values are
remembered until the window is opened. The position is
adjusted to make the window fit on the screen (if possible).

:wi :win :winsize E465
:win[size] {width} {height}

Set the window height to {width} by {height} characters.
It is recommended to use `:set lines=11 columns=22` instead,
since it's easy to see what the numbers mean.
If you get less lines than expected, check the 'guiheadroom'
option.

If you are running the X Window System, you can get information about the
window Vim is running in with these commands:

:!xwininfo -id $WINDOWID
:!xprop -id $WINDOWID
:execute '!xwininfo -id ' .. v:windowid
:execute '!xprop -id ' .. v:windowid

gui-IME iBus
Input methods for international characters in X that rely on the XIM
framework, most notably iBus, have been known to produce undesirable results
in gvim. These may include an inability to enter spaces, or long delays
between typing a character and it being recognized by the application.

One workaround that has been successful, for unknown reasons, is to prevent
gvim from forking into the background by starting it with the -f argument.

==
2. Scrollbars gui-scrollbars

There are vertical scrollbars and a horizontal scrollbar. You may
configure which ones appear with the 'guioptions' option.

The interface looks like this (with ":set guioptions=mlrb"):

+------------------------------+
| File Edit Help | <- Menu bar (m)

gui.txt — 1929

+-+--------------------------+-+
^		^
#	Text area.	#
v	__________________________	v

Normal status line -> |-+ File.c 5,2 +-|
between Vim windows |^|""""""""""""""""""""""""""|^|

	Another file buffer.	
#		#

Left scrollbar (l) -> |#| |#| <- Right
|#| |#| scrollbar (r)
| | | |
|v| |v|
+-+--------------------------+-+
| |< #### >| | <- Bottom
+-+--------------------------+-+ scrollbar (b)

Any of the scrollbar or menu components may be turned off by not putting the
appropriate letter in the 'guioptions' string. The bottom scrollbar is
only useful when 'nowrap' is set.

VERTICAL SCROLLBARS gui-vert-scroll

Each Vim window has a scrollbar next to it which may be scrolled up and down
to move through the text in that buffer. The size of the scrollbar-thumb
indicates the fraction of the buffer which can be seen in the window.
When the scrollbar is dragged all the way down, the last line of the file
will appear in the top of the window.

If a window is shrunk to zero height (by the growth of another window) its
scrollbar disappears. It reappears when the window is restored.

If a window is vertically split, it will get a scrollbar when it is the
current window and when, taking the middle of the current window and drawing a
vertical line, this line goes through the window.
When there are scrollbars on both sides, and the middle of the current window
is on the left half, the right scrollbar column will contain scrollbars for
the rightmost windows. The same happens on the other side.

HORIZONTAL SCROLLBARS gui-horiz-scroll

The horizontal scrollbar (at the bottom of the Vim GUI) may be used to
scroll text sideways when the 'wrap' option is turned off. The
scrollbar-thumb size is such that the text of the longest visible line may be
scrolled as far as possible left and right. The cursor is moved when
necessary, it must remain on a visible character (unless 'virtualedit' is
set).

Computing the length of the longest visible line takes quite a bit of
computation, and it has to be done every time something changes. If this
takes too much time or you don't like the cursor jumping to another line,
include the 'h' flag in 'guioptions'. Then the scrolling is limited by the
text of the current cursor line.

motif-intellimouse
If you have an Intellimouse and an X server that supports using the wheel,

gui.txt — 1930

then you can use the wheel to scroll the text up and down in gvim. This works
with XFree86 4.0 and later, and with some older versions when you add patches.
See scroll-mouse-wheel .

For older versions of XFree86 you must patch your X server. The following
page has a bit of information about using the Intellimouse on Linux as well as
links to the patches and X server binaries (may not have the one you need
though):

http://www.inria.fr/koala/colas/mouse-wheel-scroll/

==
3. Mouse Control gui-mouse

The mouse only works if the appropriate flag in the 'mouse' option is set.
When the GUI is switched on, and 'mouse' wasn't set yet, the 'mouse' option is
automatically set to "a", enabling it for all modes except for the
hit-enter prompt. If you don't want this, a good place to change the

'mouse' option is the "gvimrc" file.

Other options that are relevant:
'mousefocus' window focus follows mouse pointer gui-mouse-focus
'mousemodel' what mouse button does which action
'mousehide' hide mouse pointer while typing text
'mousemoveevent' enable mouse move events so that <MouseMove> can be mapped
'selectmode' whether to start Select mode or Visual mode

A quick way to set these is with the ":behave" command.
:behave :be

:be[have] {model} Set behavior for mouse and selection. Valid
arguments are:

mswin MS-Windows behavior
xterm Xterm behavior

Using ":behave" changes these options:
option mswin xterm
'selectmode' "mouse,key" ""
'mousemodel' "popup" "extend"
'keymodel' "startsel,stopsel" ""
'selection' "exclusive" "inclusive"

In the $VIMRUNTIME directory, there is a script called mswin.vim , which will
also map a few keys to the MS-Windows cut/copy/paste commands. This is NOT
compatible, since it uses the CTRL-V, CTRL-X and CTRL-C keys. If you don't
mind, use this command:

:so $VIMRUNTIME/mswin.vim

For scrolling with a wheel on a mouse, see scroll-mouse-wheel .

3.1 Moving Cursor with Mouse gui-mouse-move

Click the left mouse button somewhere in a text buffer where you want the
cursor to go, and it does!
This works in when 'mouse' contains
Normal mode 'n' or 'a'
Visual mode 'v' or 'a'
Insert mode 'i' or 'a'

Select mode is handled like Visual mode.

gui.txt — 1931

http://www.inria.fr/koala/colas/mouse-wheel-scroll/

You may use this with an operator such as 'd' to delete text from the current
cursor position to the position you point to with the mouse. That is, you hit
'd' and then click the mouse somewhere.

gui-mouse-focus
The 'mousefocus' option can be set to make the keyboard focus follow the
mouse pointer. This means that the window where the mouse pointer is, is the
active window. Warning: this doesn't work very well when using a menu,
because the menu command will always be applied to the top window.

If you are on the ':' line (or '/' or '?'), then clicking the left or right
mouse button will position the cursor on the ':' line (if 'mouse' contains
'c' or 'a').

In any situation the middle mouse button may be clicked to paste the current
selection.

3.2 Selection with Mouse gui-mouse-select

The mouse can be used to start a selection. How depends on the 'mousemodel'
option:
'mousemodel' is "extend": use the right mouse button
'mousemodel' is "popup": use the left mouse button, while keeping the Shift
key pressed.

If there was no selection yet, this starts a selection from the old cursor
position to the position pointed to with the mouse. If there already is a
selection then the closest end will be extended.

If 'selectmode' contains "mouse", then the selection will be in Select mode.
This means that typing normal text will replace the selection. See
Select-mode . Otherwise, the selection will be in Visual mode.

Double clicking may be done to make the selection word-wise, triple clicking
makes it line-wise, and quadruple clicking makes it rectangular block-wise.

See gui-selections on how the selection is used.

3.3 Other Text Selection with Mouse gui-mouse-modeless
modeless-selection

A different kind of selection is used when:
- in Command-line mode
- in the Command-line window and pointing in another window
- at the hit-enter prompt
- whenever the current mode is not in the 'mouse' option
- when holding the CTRL and SHIFT keys in the GUI

Since Vim continues like the selection isn't there, and there is no mode
associated with the selection, this is called modeless selection. Any text in
the Vim window can be selected. Select the text by pressing the left mouse
button at the start, drag to the end and release. To extend the selection,
use the right mouse button when 'mousemodel' is "extend", or the left mouse
button with the shift key pressed when 'mousemodel' is "popup".
The selection is removed when the selected text is scrolled or changed.

On the command line CTRL-Y can be used to copy the selection into the
clipboard. To do this from Insert mode, use CTRL-O : CTRL-Y <CR>. When
'guioptions' contains a or A (default on X11), the selection is automatically

gui.txt — 1932

copied to the "* register.

The middle mouse button can then paste the text. On non-X11 systems, you can
use CTRL-R +.

3.4 Using Mouse on Status Lines gui-mouse-status

Clicking the left or right mouse button on the status line below a Vim
window makes that window the current window. This actually happens on button
release (to be able to distinguish a click from a drag action).

With the left mouse button a status line can be dragged up and down, thus
resizing the windows above and below it. This does not change window focus.

The same can be used on the vertical separator: click to give the window left
of it focus, drag left and right to make windows wider and narrower.

3.5 Various Mouse Clicks gui-mouse-various

<S-LeftMouse> Search forward for the word under the mouse click.
When 'mousemodel' is "popup" this starts or extends a
selection.

<S-RightMouse> Search backward for the word under the mouse click.
<C-LeftMouse> Jump to the tag name under the mouse click.
<C-RightMouse> Jump back to position before the previous tag jump

(same as "CTRL-T")

3.6 Mouse Mappings gui-mouse-mapping

The mouse events, complete with modifiers, may be mapped. Eg:
:map <S-LeftMouse> <RightMouse>
:map <S-LeftDrag> <RightDrag>
:map <S-LeftRelease> <RightRelease>
:map <2-S-LeftMouse> <2-RightMouse>
:map <2-S-LeftDrag> <2-RightDrag>
:map <2-S-LeftRelease> <2-RightRelease>
:map <3-S-LeftMouse> <3-RightMouse>
:map <3-S-LeftDrag> <3-RightDrag>
:map <3-S-LeftRelease> <3-RightRelease>
:map <4-S-LeftMouse> <4-RightMouse>
:map <4-S-LeftDrag> <4-RightDrag>
:map <4-S-LeftRelease> <4-RightRelease>

These mappings make selection work the way it probably should in a Motif
application, with shift-left mouse allowing for extending the visual area
rather than the right mouse button.

<MouseMove> may be mapped, but 'mousemoveevent' must be enabled to use the
mapping.

Mouse mapping with modifiers does not work for modeless selection.

3.7 Drag and drop drag-n-drop

You can drag and drop one or more files into the Vim window, where they will
be opened as if a :drop command was used. You can check if this is
supported with the drop_file feature: `has('drop_file')`.

gui.txt — 1933

If you hold down Shift while doing this, Vim changes to the first dropped
file's directory. If you hold Ctrl Vim will always split a new window for the
file. Otherwise it's only done if the current buffer has been changed.

You can also drop a directory on Vim. This starts the explorer plugin for
that directory (assuming it was enabled, otherwise you'll get an error
message). Keep Shift pressed to change to the directory instead.

If Vim happens to be editing a command line, the names of the dropped files
and directories will be inserted at the cursor. This allows you to use these
names with any Ex command. Special characters (space, tab, double quote and
'|'; backslash on non-MS-Windows systems) will be escaped.

==
4. Making GUI Selections gui-selections

quotestar
You may make selections with the mouse (see gui-mouse-select), or by using
Vim's Visual mode (see v). If 'a' is present in 'guioptions', then
whenever a selection is started (Visual or Select mode), or when the selection
is changed, Vim becomes the owner of the windowing system's primary selection
(on MS-Windows the gui-clipboard is used; under X11, the x11-selection is
used - you should read whichever of these is appropriate now).

clipboard
There is a special register for storing this selection, it is the "*
register. Nothing is put in here unless the information about what text is
selected is about to change (e.g. with a left mouse click somewhere), or when
another application wants to paste the selected text. Then the text is put
in the "* register. For example, to cut a line and make it the current
selection/put it on the clipboard:

"*dd

Similarly, when you want to paste a selection from another application, e.g.,
by clicking the middle mouse button, the selection is put in the "* register
first, and then 'put' like any other register. For example, to put the
selection (contents of the clipboard):

"*p

When using this register under X11, also see x11-selection . This also
explains the related "+ register.

Note that when pasting text from one Vim into another separate Vim, the type
of selection (character, line, or block) will also be copied. For other
applications the type is always character. However, if the text gets
transferred via the x11-cut-buffer , the selection type is ALWAYS lost.

When the "unnamed" string is included in the 'clipboard' option, the unnamed
register is the same as the "* register. Thus you can yank to and paste the
selection without prepending "* to commands.

==
5. Menus menus

For an introduction see usr_42.txt in the user manual.

gui.txt — 1934

5.1 Using Menus using-menus

Basically, menus can be used just like mappings. You can define your own
menus, as many as you like.
Long-time Vim users won't use menus much. But the power is in adding your own
menus and menu items. They are most useful for things that you can't remember
what the key sequence was.

For creating menus in a different language, see :menutrans .
If you don't want to use menus at all, see 'go-M' .

menu.vim
The default menus are read from the file "$VIMRUNTIME/menu.vim". See
$VIMRUNTIME for where the path comes from. You can set up your own menus.

Starting off with the default set is a good idea. You can add more items, or,
if you don't like the defaults at all, start with removing all menus
:unmenu-all . You can also avoid the default menus being loaded by adding

this line to your .vimrc file (NOT your .gvimrc file!):
:let did_install_default_menus = 1

If you also want to avoid the Syntax menu:
:let did_install_syntax_menu = 1

The first item in the Syntax menu can be used to show all available filetypes
in the menu (which can take a bit of time to load). If you want to have all
filetypes already present at startup, add:

:let do_syntax_sel_menu = 1

The following menuitems show all available color schemes, keymaps and compiler
settings:

Edit > Color Scheme
Edit > Keymap
Tools > Set Compiler

However, they can also take a bit of time to load, because they search all
related files from the directories in 'runtimepath'. Therefore they are
loaded lazily (by the CursorHold event), or you can also load them manually.
If you want to have all these items already present at startup, add:

:let do_no_lazyload_menus = 1

Note that the menu.vim is sourced when `:syntax on` or `:filetype on` is
executed or after your .vimrc file is sourced. This means that the 'encoding'
option and the language of messages (`:language messages`) must be set before
that (if you want to change them).

console-menus
Although this documentation is in the GUI section, you can actually use menus
in console mode too. You will have to load menu.vim explicitly then, it is
not done by default. You can use the :emenu command and command-line
completion with 'wildmenu' to access the menu entries almost like a real menu
system. To do this, put these commands in your .vimrc file:

:source $VIMRUNTIME/menu.vim
:set wildmenu
:set cpo-=<
:set wcm=<C-Z>
:map <F4> :emenu <C-Z>

Pressing <F4> will start the menu. You can now use the cursor keys to select
a menu entry. Hit <Enter> to execute it. Hit <Esc> if you want to cancel.
This does require the +menu feature enabled at compile time.

tear-off-menus
GTK+ 2 and Motif support Tear-off menus. These are sort of sticky menus or
pop-up menus that are present all the time. If the resizing does not work

gui.txt — 1935

correctly, this may be caused by using something like "Vim*geometry" in the
defaults. Use "Vim.geometry" instead.

As to GTK+ 3, tear-off menus have been deprecated since GTK+ 3.4.
Accordingly, they are disabled if gvim is linked against GTK+ 3.4 or later.

The Win32 GUI version emulates Motif's tear-off menus. Actually, a Motif user
will spot the differences easily, but hopefully they're just as useful. You
can also use the :tearoff command together with hidden-menus to create
floating menus that do not appear on the main menu bar.

5.2 Creating New Menus creating-menus

:me :menu :noreme :noremenu
E330 E327 E331 E336 E333
E328 E329 E337 E792

To create a new menu item, use the ":menu" commands. They are mostly like
the ":map" set of commands (see map-modes), but the first argument is a menu
item name, given as a path of menus and submenus with a '.' between them,
e.g.:

:menu File.Save :w<CR>
:inoremenu File.Save <C-O>:w<CR>
:menu Edit.Big\ Changes.Delete\ All\ Spaces :%s/[^I]//g<CR>

This last one will create a new item in the menu bar called "Edit", holding
the mouse button down on this will pop up a menu containing the item
"Big Changes", which is a sub-menu containing the item "Delete All Spaces",
which when selected, performs the operation.

To create a menu for terminal mode, use :tlmenu instead of :tmenu unlike
key mapping (:tmap). This is because :tmenu is already used for defining
tooltips for menus. See terminal-typing .

Special characters in a menu name:

menu-shortcut
& The next character is the shortcut key. Make sure each

shortcut key is only used once in a (sub)menu. If you want to
insert a literal "&" in the menu name use "&&".

menu-text
<Tab> Separates the menu name from right-aligned text. This can be

used to show the equivalent typed command. The text "<Tab>"
can be used here for convenience. If you are using a real
tab, don't forget to put a backslash before it!

Example:

:amenu &File.&Open<Tab>:e :browse e<CR>

[typed literally]
With the shortcut "F" (while keeping the <Alt> key pressed), and then "O",
this menu can be used. The second part is shown as "Open :e". The ":e"
is right aligned, and the "O" is underlined, to indicate it is the shortcut.

:am :amenu :an :anoremenu
The ":amenu" command can be used to define menu entries for all modes at once,
except for Terminal mode. To make the command work correctly, a character is
automatically inserted for some modes:

mode inserted appended

gui.txt — 1936

Normal nothing nothing
Visual <C-C> <C-\><C-G>
Insert <C-\><C-O>
Cmdline <C-C> <C-\><C-G>
Op-pending <C-C> <C-\><C-G>

Appending CTRL-\ CTRL-G is for going back to insert mode when 'insertmode' is
set. CTRL-_CTRL-G

Example:

:amenu File.Next :next^M

is equal to:

:nmenu File.Next :next^M
:vmenu File.Next ^C:next^M^\^G
:imenu File.Next ^\^O:next^M
:cmenu File.Next ^C:next^M^\^G
:omenu File.Next ^C:next^M^\^G

Careful: In Insert mode this only works for a SINGLE Normal mode command,
because of the CTRL-O. If you have two or more commands, you will need to use
the ":imenu" command. For inserting text in any mode, you can use the
expression register:

:amenu Insert.foobar "='foobar'<CR>P

The special text <Cmd> begins a "command menu", it executes the command
directly without changing modes. Where you might use ":...<CR>" you can
instead use "<Cmd>...<CR>". See <Cmd> for more info. Example:

anoremenu File.Next <Cmd>next<CR>

Note that the '<' and 'k' flags in 'cpoptions' also apply here (when
included they make the <> form and raw key codes not being recognized).

Note that <Esc> in Cmdline mode executes the command, like in a mapping. This
is Vi compatible. Use CTRL-C to quit Cmdline mode.

:nme :nmenu :nnoreme :nnoremenu :nunme :nunmenu
Menu commands starting with "n" work in Normal mode. mapmode-n

:ome :omenu :onoreme :onoremenu :ounme :ounmenu
Menu commands starting with "o" work in Operator-pending mode. mapmode-o

:vme :vmenu :vnoreme :vnoremenu :vunme :vunmenu
Menu commands starting with "v" work in Visual mode. mapmode-v

:xme :xmenu :xnoreme :xnoremenu :xunme :xunmenu
Menu commands starting with "x" work in Visual and Select mode. mapmode-x

:sme :smenu :snoreme :snoremenu :sunme :sunmenu
Menu commands starting with "s" work in Select mode. mapmode-s

:ime :imenu :inoreme :inoremenu :iunme :iunmenu
Menu commands starting with "i" work in Insert mode. mapmode-i

:cme :cmenu :cnoreme :cnoremenu :cunme :cunmenu
Menu commands starting with "c" work in Cmdline mode. mapmode-c

gui.txt — 1937

:tlm :tlmenu :tln :tlnoremenu :tlu :tlunmenu
Menu commands starting with "tl" work in Terminal mode. mapmode-t

:menu-<silent> :menu-silent
To define a menu which will not be echoed on the command line, add
"<silent>" as the first argument. Example:

:menu <silent> Settings.Ignore\ case :set ic<CR>
The ":set ic" will not be echoed when using this menu. Messages from the
executed command are still given though. To shut them up too, add a ":silent"
in the executed command:

:menu <silent> Search.Header :exe ":silent normal /Header\r"<CR>
"<silent>" may also appear just after "<special>" or "<script>".

:menu-<special> :menu-special
Define a menu with <> notation for special keys, even though the "<" flag
may appear in 'cpoptions'. This is useful if the side effect of setting
'cpoptions' is not desired. Example:

:menu <special> Search.Header /Header<CR>
"<special>" must appear as the very first argument to the ":menu" command or
just after "<silent>" or "<script>".

:menu-<script> :menu-script
The "to" part of the menu will be inspected for mappings. If you don't want
this, use the ":noremenu" command (or the similar one for a specific mode).
If you do want to use script-local mappings, add "<script>" as the very first
argument to the ":menu" command or just after "<silent>" or "<special>".

menu-priority
You can give a priority to a menu. Menus with a higher priority go more to
the right. The priority is given as a number before the ":menu" command.
Example:

:80menu Buffer.next :bn<CR>

The default menus have these priorities:
File 10
Edit 20
Tools 40
Syntax 50
Buffers 60
Window 70
Help 9999

When no or zero priority is given, 500 is used.
The priority for the PopUp menu is not used.

The Help menu will be placed on the far right side of the menu bar on systems
which support this (Motif and GTK+). For GTK+ 2 and 3, this is not done
anymore because right-aligning the Help menu is now discouraged UI design.

You can use a priority higher than 9999, to make it go after the Help menu,
but that is non-standard and is discouraged. The highest possible priority is
about 32000. The lowest is 1.

sub-menu-priority
The same mechanism can be used to position a sub-menu. The priority is then
given as a dot-separated list of priorities, before the menu name:

:menu 80.500 Buffer.next :bn<CR>
Giving the sub-menu priority is only needed when the item is not to be put
in a normal position. For example, to put a sub-menu before the other items:

:menu 80.100 Buffer.first :brew<CR>

gui.txt — 1938

Or to put a sub-menu after the other items, and further items with default
priority will be put before it:

:menu 80.900 Buffer.last :blast<CR>
When a number is missing, the default value 500 will be used:

:menu .900 myMenu.test :echo "text"<CR>
The menu priority is only used when creating a new menu. When it already
existed, e.g., in another mode, the priority will not change. Thus, the
priority only needs to be given the first time a menu is used.
An exception is the PopUp menu. There is a separate menu for each mode
(Normal, Op-pending, Visual, Insert, Cmdline). The order in each of these
menus can be different. This is different from menu-bar menus, which have
the same order for all modes.
NOTE: sub-menu priorities currently don't work for all versions of the GUI.

menu-separator E332
Menu items can be separated by a special item that inserts some space between
items. Depending on the system this is displayed as a line or a dotted line.
These items must start with a '-' and end in a '-'. The part in between is
used to give it a unique name. Priorities can be used as with normal items.
Example:

:menu Example.item1 :do something
:menu Example.-Sep- :
:menu Example.item2 :do something different

Note that the separator also requires a rhs. It doesn't matter what it is,
because the item will never be selected. Use a single colon to keep it
simple.

gui-toolbar
The toolbar is currently available in the Win32, Motif, GTK+ (X11),
and Photon GUI. It should turn up in other GUIs in due course. The
default toolbar is setup in menu.vim.
The display of the toolbar is controlled by the 'guioptions' letter 'T'. You
can thus have menu & toolbar together, or either on its own, or neither.
The appearance is controlled by the 'toolbar' option. You can choose between
an image, text or both.

toolbar-icon
The toolbar is defined as a special menu called ToolBar, which only has one
level. Vim interprets the items in this menu as follows:
1) If an "icon=" argument was specified, the file with this name is used.

The file can either be specified with the full path or with the base name.
In the last case it is searched for in the "bitmaps" directory in
'runtimepath', like in point 3. Examples:

:amenu icon=/usr/local/pixmaps/foo_icon.xpm ToolBar.Foo :echo "Foo"<CR>
:amenu icon=FooIcon ToolBar.Foo :echo "Foo"<CR>

Note that in the first case the extension is included, while in the second
case it is omitted.
If the file cannot be opened the next points are tried.
A space in the file name must be escaped with a backslash.
A menu priority must come _after_ the icon argument:

:amenu icon=foo 1.42 ToolBar.Foo :echo "42!"<CR>
2) An item called 'BuiltIn##', where ## is a number, is taken as number ## of

the built-in bitmaps available in Vim. Currently there are 31 numbered
from 0 to 30 which cover most common editing operations builtin-tools .

:amenu ToolBar.BuiltIn22 :call SearchNext("back")<CR>
3) An item with another name is first searched for in the directory

"bitmaps" in 'runtimepath'. If found, the bitmap file is used as the
toolbar button image. Note that the exact filename is OS-specific: For
example, under Win32 the command

:amenu ToolBar.Hello :echo "hello"<CR>

gui.txt — 1939

would find the file 'hello.bmp'. Under GTK+/X11 it is 'Hello.xpm'. With
GTK+ 2 the files 'Hello.png', 'Hello.xpm' and 'Hello.bmp' are checked for
existence, and the first one found would be used.
For MS-Windows and GTK+ 2 the bitmap is scaled to fit the button. For
MS-Windows a size of 18 by 18 pixels works best.
For MS-Windows the bitmap should have 16 colors with the standard palette.
The light grey pixels will be changed to the Window frame color and the
dark grey pixels to the window shadow color. More colors might also work,
depending on your system.

4) If the bitmap is still not found, Vim checks for a match against its list
of built-in names. Each built-in button image has a name.
So the command

:amenu ToolBar.Open :e
will show the built-in "open a file" button image if no open.bmp exists.
All the built-in names can be seen used in menu.vim.

5) If all else fails, a blank, but functioning, button is displayed.

builtin-tools
nr Name Normal action
00 New open new window
01 Open browse for file to open in current window
02 Save write buffer to file
03 Undo undo last change
04 Redo redo last undone change
05 Cut delete selected text to clipboard
06 Copy copy selected text to clipboard
07 Paste paste text from clipboard
08 Print print current buffer
09 Help open a buffer on Vim's builtin help
10 Find start a search command
11 SaveAll write all modified buffers to file
12 SaveSesn write session file for current situation
13 NewSesn write new session file
14 LoadSesn load session file
15 RunScript browse for file to run as a Vim script
16 Replace prompt for substitute command
17 WinClose close current window
18 WinMax make current window use many lines
19 WinMin make current window use few lines
20 WinSplit split current window
21 Shell start a shell
22 FindPrev search again, backward
23 FindNext search again, forward
24 FindHelp prompt for word to search help for
25 Make run make and jump to first error
26 TagJump jump to tag under the cursor
27 RunCtags build tags for files in current directory
28 WinVSplit split current window vertically
29 WinMaxWidth make current window use many columns
30 WinMinWidth make current window use few columns

hidden-menus win32-hidden-menus
In the Win32 and GTK+ GUI, starting a menu name with ']' excludes that menu
from the main menu bar. You must then use the :popup or :tearoff command
to display it.

window-toolbar WinBar
Each window can have a local toolbar. This uses the first line of the window,
thus reduces the space for the text by one line. The items in the toolbar
must start with "WinBar".

gui.txt — 1940

Only text can be used. When using Unicode, special characters can be used to
make the items look like icons.

If the items do not fit then the last ones cannot be used. The toolbar does
not wrap.

Note that Vim may be in any mode when executing these commands. The menu
should be defined for Normal mode and will be executed without changing the
current mode. Thus if the current window is in Visual mode and the menu
command does not intentionally change the mode, Vim will remain in Visual
mode. Best is to use `:nnoremenu` to avoid side effects.

Example for debugger tools:
nnoremenu 1.10 WinBar.Step :Step<CR>
nnoremenu 1.20 WinBar.Next :Next<CR>
nnoremenu 1.30 WinBar.Finish :Finish<CR>
nnoremenu 1.40 WinBar.Cont :Continue<CR>

hl-ToolbarLine hl-ToolbarButton
The window toolbar uses the ToolbarLine and ToolbarButton highlight groups.

When splitting the window the window toolbar is not copied to the new window.

popup-menu
In the Win32, GTK+, Motif and Photon GUI, you can define the
special menu "PopUp". This is the menu that is displayed when the right mouse
button is pressed, if 'mousemodel' is set to popup or popup_setpos.
Example:

nnoremenu 1.40 PopUp.&Paste "+gP
menu PopUp

5.3 Showing What Menus Are Mapped To showing-menus

To see what an existing menu is mapped to, use just one argument after the
menu commands (just like you would with the ":map" commands). If the menu
specified is a submenu, then all menus under that hierarchy will be shown.
If no argument is given after :menu at all, then ALL menu items are shown
for the appropriate mode (e.g., Command-line mode for :cmenu).

Special characters in the list, just before the rhs:
* The menu was defined with "nore" to disallow remapping.
& The menu was defined with "<script>" to allow remapping script-local

mappings only.
s The menu was defined with "<silent>" to avoid showing what it is

mapped to when triggered.
- The menu was disabled.

Note that hitting <Tab> while entering a menu name after a menu command may
be used to complete the name of the menu item.

It is not allowed to change menus while listing them. E1310
This doesn't normally happen, only when, for example, you would have a timer
callback define a menu and the user lists menus in a way it shows
more-prompt .

5.4 Executing Menus execute-menus

:em :emenu E334 E335

gui.txt — 1941

:[range]em[enu] {menu} Execute {menu} from the command line.
The default is to execute the Normal mode
menu. If a range is specified, it executes
the Visual mode menu.
If used from <c-o>, it executes the
insert-mode menu Eg:

:emenu File.Exit

:[range]em[enu] {mode} {menu} Like above, but execute the menu for {mode}:
'n': :nmenu Normal mode
'v': :vmenu Visual mode
's': :smenu Select mode
'o': :omenu Operator-pending mode
't': :tlmenu Terminal mode
'i': :imenu Insert mode
'c': :cmenu Cmdline mode

If the console-mode vim has been compiled with WANT_MENU defined, you can
use :emenu to access useful menu items you may have got used to from GUI
mode. See 'wildmenu' for an option that works well with this. See
console-menus for an example.

When using a range, if the lines match with '<,'>, then the menu is executed
using the last visual selection.

5.5 Deleting Menus delete-menus

:unme :unmenu
:aun :aunmenu

To delete a menu item or a whole submenu, use the unmenu commands, which are
analogous to the unmap commands. Eg:

:unmenu! Edit.Paste

This will remove the Paste item from the Edit menu for Insert and
Command-line modes.

Note that hitting <Tab> while entering a menu name after an umenu command
may be used to complete the name of the menu item for the appropriate mode.

To remove all menus use: :unmenu-all
:unmenu * " remove all menus in Normal and visual mode
:unmenu! * " remove all menus in Insert and Command-line mode
:aunmenu * " remove all menus in all modes, except for Terminal

" mode
:tlunmenu * " remove all menus in Terminal mode

If you want to get rid of the menu bar:
:set guioptions-=m

5.6 Disabling Menus disable-menus

:menu-disable :menu-enable
If you do not want to remove a menu, but disable it for a moment, this can be
done by adding the "enable" or "disable" keyword to a ":menu" command.
Examples:

:menu disable &File.&Open\.\.\.
:amenu enable *

gui.txt — 1942

:amenu disable &Tools.*

The command applies to the modes as used with all menu commands. Note that
characters like "&" need to be included for translated names to be found.
When the argument is "*", all menus are affected. Otherwise the given menu
name and all existing submenus below it are affected.

5.7 Examples for Menus menu-examples

Here is an example on how to add menu items with menu's! You can add a menu
item for the keyword under the cursor. The register "z" is used.

:nmenu Words.Add\ Var wb"zye:menu! Words.<C-R>z <C-R>z<CR>
:nmenu Words.Remove\ Var wb"zye:unmenu! Words.<C-R>z<CR>
:vmenu Words.Add\ Var "zy:menu! Words.<C-R>z <C-R>z <CR>
:vmenu Words.Remove\ Var "zy:unmenu! Words.<C-R>z<CR>
:imenu Words.Add\ Var <Esc>wb"zye:menu! Words.<C-R>z <C-R>z<CR>a
:imenu Words.Remove\ Var <Esc>wb"zye:unmenu! Words.<C-R>z<CR>a

(the rhs is in <> notation, you can copy/paste this text to try out the
mappings, or put these lines in your gvimrc; "<C-R>" is CTRL-R, "<CR>" is
the <CR> key. <>)

tooltips menu-tips
5.8 Tooltips & Menu tips

See section 42.4 in the user manual.

:tmenu :tm
:tm[enu] {menupath} {rhs} Define a tip for a menu or tool. {only in

X11 and Win32 GUI}

:tm[enu] [menupath] List menu tips. {only in X11 and Win32 GUI}

:tunmenu :tu
:tu[nmenu] {menupath} Remove a tip for a menu or tool.

{only in X11 and Win32 GUI}

Note: To create menus for terminal mode, use :tlmenu instead.

When a tip is defined for a menu item, it appears in the command-line area
when the mouse is over that item, much like a standard Windows menu hint in
the status bar. (Except when Vim is in Command-line mode, when of course
nothing is displayed.)
When a tip is defined for a ToolBar item, it appears as a tooltip when the
mouse pauses over that button, in the usual fashion. Use the hl-Tooltip
highlight group to change its colors.

A "tip" can be defined for each menu item. For example, when defining a menu
item like this:

:amenu MyMenu.Hello :echo "Hello"<CR>
The tip is defined like this:

:tmenu MyMenu.Hello Displays a greeting.
And delete it with:

:tunmenu MyMenu.Hello

Tooltips are currently only supported for the X11 and Win32 GUI. However, they
should appear for the other gui platforms in the not too distant future.

gui.txt — 1943

The ":tmenu" command works just like other menu commands, it uses the same
arguments. ":tunmenu" deletes an existing menu tip, in the same way as the
other unmenu commands.

If a menu item becomes invalid (i.e. its actions in all modes are deleted) Vim
deletes the menu tip (and the item) for you. This means that :aunmenu deletes
a menu item - you don't need to do a :tunmenu as well.

5.9 Popup Menus

In the Win32 and GTK+ GUI, you can cause a menu to popup at the cursor.
This behaves similarly to the PopUp menus except that any menu tree can
be popped up.

This command is for backwards compatibility, using it is discouraged, because
it behaves in a strange way.

:popup :popu
:popu[p] {name} Popup the menu {name}. The menu named must

have at least one subentry, but need not
appear on the menu-bar (see hidden-menus).
{only available for Win32 and GTK GUI or in
the terminal}

:popu[p]! {name} Like above, but use the position of the mouse
pointer instead of the cursor.
In the terminal this is the last known
position, which is usually at the last click
or release (mouse movement is irrelevant).

Example:
:popup File

will make the "File" menu (if there is one) appear at the text cursor (mouse
pointer if ! was used).

:amenu]Toolbar.Make :make<CR>
:popup]Toolbar

This creates a popup menu that doesn't exist on the main menu-bar.

Note that in the GUI the :popup command will return immediately, before a
selection has been made. In the terminal the commands waits for the user to
make a selection.

Note that a menu that starts with ']' will not be displayed.

==
6. Font

This section describes font related options.

GUIFONT gui-font

'guifont' is the option that tells Vim what font to use. In its simplest form
the value is just one font name. It can also be a list of font names
separated with commas. The first valid font is used. When no valid font can
be found you will get an error message.

On systems where 'guifontset' is supported (X11) and 'guifontset' is not
empty, then 'guifont' is not used. See xfontset .

gui.txt — 1944

Note: As to the GTK GUIs, no error is given against any invalid names, and the
first element of the list is always picked up and made use of. This is
because, instead of identifying a given name with a font, the GTK GUIs use it
to construct a pattern and try to look up a font which best matches the
pattern among available fonts, and this way, the matching never fails. An
invalid name doesn't matter because a number of font properties other than
name will do to get the matching done.

Spaces after a comma are ignored. To include a comma in a font name precede
it with a backslash. Setting an option requires an extra backslash before a
space and a backslash. See also option-backslash . For example:

:set guifont=Screen15,\ 7x13,font\\,with\\,commas
will make Vim try to use the font "Screen15" first, and if it fails it will
try to use "7x13" and then "font,with,commas" instead.

If none of the fonts can be loaded, Vim will keep the current setting. If an
empty font list is given, Vim will try using other resource settings (for X,
it will use the Vim.font resource), and finally it will try some builtin
default which should always be there ("7x13" in the case of X). The font
names given should be "normal" fonts. Vim will try to find the related bold
and italic fonts.

For Win32, GTK, Motif, Mac OS and Photon:
:set guifont=*

will bring up a font requester, where you can pick the font you want.

The font name depends on the GUI used. See setting-guifont for a way to set
'guifont' for various systems.

For the GTK+ 2 and 3 GUIs, the font name looks like this:
:set guifont=Andale\ Mono\ 11

That's all. XLFDs are not used. For Chinese this is reported to work well:
if has("gui_gtk2")

set guifont=Bitstream\ Vera\ Sans\ Mono\ 12,Fixed\ 12
set guifontwide=Microsoft\ Yahei\ 12,WenQuanYi\ Zen\ Hei\ 12

endif

(Replace gui_gtk2 with gui_gtk3 for the GTK+ 3 GUI)

For Mac OSX you can use something like this:
:set guifont=Monaco:h10

Mono-spaced fonts E236

Note that the fonts must be mono-spaced (all characters have the same width).
An exception is GTK: all fonts are accepted, but mono-spaced fonts look best.

To preview a font on X11, you might be able to use the "xfontsel" program.
The "xlsfonts" program gives a list of all available fonts.

For the Win32 GUI E244 E245
- Takes these options in the font name (use a ':' to separate the options):

hXX - height is XX (points, can be floating-point)
wXX - width is XX (points, can be floating-point)
WXX - weight is XX (see Note on Weights below)
b - bold. This is equivalent to setting the weight to 700.
i - italic
u - underline
s - strikeout

gui.txt — 1945

cXX - character set XX. Valid charsets are: ANSI, ARABIC, BALTIC,
CHINESEBIG5, DEFAULT, EASTEUROPE, GB2312, GREEK, HANGEUL,
HEBREW, JOHAB, MAC, OEM, RUSSIAN, SHIFTJIS, SYMBOL, THAI,
TURKISH and VIETNAMESE. Normally you would use "cDEFAULT".

qXX - quality XX. Valid quality names are: PROOF, DRAFT, ANTIALIASED,
NONANTIALIASED, CLEARTYPE and DEFAULT. Normally you would use
"qDEFAULT".
Some quality values are not supported in legacy OSs.

- A '_' can be used in the place of a space, so you don't need to use
backslashes to escape the spaces.

Examples:
:set guifont=courier_new:h12:w5:b:cRUSSIAN
:set guifont=Andale_Mono:h7.5:w4.5

See also font-sizes .

Note on Weights: Fonts often come with a variety of weights. "Normal" weights
in Windows have a value of 400 and, left unspecified, this is the value that
will be used when attempting to find fonts. Windows will often match fonts
based on their weight with higher priority than the font name which means a
Book or Medium variant of a font might be used despite specifying a Light or
ExtraLight variant. If you are experiencing heavier weight substitution, then
explicitly setting a lower weight value may mitigate against this unwanted
substitution.

GUIFONTWIDE gui-fontwide

When not empty, 'guifontwide' specifies a comma-separated list of fonts to be
used for double-width characters. The first font that can be loaded is used.

Note: The size of these fonts must be exactly twice as wide as the one
specified with 'guifont' and the same height. If there is a mismatch then the
text will not be drawn correctly.

All GUI versions but GTK+:

'guifontwide' is only used when 'encoding' is set to "utf-8" and 'guifontset'
is empty or invalid.
When 'guifont' is set and a valid font is found in it and 'guifontwide' is
empty Vim will attempt to find a matching double-width font and set
'guifontwide' to it.

GTK+ GUI only: guifontwide_gtk

If set and valid, 'guifontwide' is always used for double width characters,
even if 'encoding' is not set to "utf-8".
Vim does not attempt to find an appropriate value for 'guifontwide'
automatically. If 'guifontwide' is empty Pango/Xft will choose the font for
characters not available in 'guifont'. Thus you do not need to set
'guifontwide' at all unless you want to override the choice made by Pango/Xft.

Windows +multibyte only: guifontwide_win_mbyte

If set and valid, 'guifontwide' is used for IME instead of 'guifont'.

==
7. Extras gui-extras

This section describes other features which are related to the GUI.

gui.txt — 1946

- With the GUI, there is no wait for one second after hitting escape, because
the key codes don't start with <Esc>.

- Typing ^V followed by a special key in the GUI will insert "<Key>", since
the internal string used is meaningless. Modifiers may also be held down to
get "<Modifiers-Key>".

- In the GUI, the modifiers SHIFT, CTRL, and ALT (or META) may be used within
mappings of special keys and mouse events.
E.g.: :map <M-LeftDrag> <LeftDrag>

- In the GUI, several normal keys may have modifiers in mappings etc, these
are <Space>, <Tab>, <NL>, <CR>, <Esc>.

- To check in a Vim script if the GUI is being used, you can use something
like this:

if has("gui_running")
echo "yes, we have a GUI"

else
echo "Boring old console"

endif
setting-guifont

- When you use the same vimrc file on various systems, you can use something
like this to set options specifically for each type of GUI:

if has("gui_running")
if has("gui_gtk")

:set guifont=Luxi\ Mono\ 12
elseif has("x11")

:set guifont=*-lucidatypewriter-medium-r-normal-*-*-180-*-*-m-*-*
elseif has("gui_win32")

:set guifont=Luxi_Mono:h12:cANSI
endif

endif

A recommended Japanese font is MS Mincho. You can find info here:
http://www.lexikan.com/mincho.htm

==
8. Shell Commands gui-shell

For the X11 GUI the external commands are executed inside the gvim window.
See gui-pty .

WARNING: Executing an external command from the X11 GUI will not always work.
"normal" commands like "ls", "grep" and "make" mostly work fine.
Commands that require an intelligent terminal like "less" and "ispell" won't
work. Some may even hang and need to be killed from another terminal. So be
careful!

For the Win32 GUI the external commands are executed in a separate window.
See gui-shell-win32 .

gui.txt — 1947

http://www.lexikan.com/mincho.htm

gui.txt — 1948

gui_w32.txt For Vim version 9.1. Last change: 2024 Jan 23

VIM REFERENCE MANUAL by Bram Moolenaar

Vim's Win32 Graphical User Interface gui-w32 win32-gui

1. Starting the GUI gui-w32-start
2. Vim as default editor vim-default-editor
3. Using the clipboard gui-clipboard
4. Shell Commands gui-shell-win32
5. Special colors win32-colors
6. Windows dialogs & browsers gui-w32-dialogs
7. Command line arguments gui-w32-cmdargs
8. Various gui-w32-various

Other relevant documentation:
gui.txt For generic items of the GUI.
os_win32.txt For Win32 specific items.

==
1. Starting the GUI gui-w32-start

The Win32 GUI version of Vim will always start the GUI, no matter how you
start it or what it's called.

The GUI will always run in the Windows subsystem. Mostly shells automatically
return with a command prompt after starting gvim. If not, you should use the
"start" command:

start gvim [options] file ..
E988

The console version with the -g option may also start the GUI by executing
gvim.exe:

vim -g [options] file ..
To make this work, gvim.exe must exist in the same directory as the vim.exe,
and this feature must be enabled at compile time.

One may also use `:gui` from the console version. However, this is an
experimental feature and this feature must be enabled at compile time.
It uses a session file to recreate the current state of the console Vim in the
GUI Vim.

Note: All fonts (bold, italic) must be of the same size!!! If you don't do
this, text will disappear or mess up the display. Vim does not check the font
sizes. It's the size in screen pixels that must be the same. Note that some
fonts that have the same point size don't have the same pixel size!
Additionally, the positioning of the fonts must be the same (ascent and
descent).

The Win32 GUI has an extra menu item: "Edit/Select Font". It brings up the
standard Windows font selector.

Setting the menu height doesn't work for the Win32 GUI.

gui-win32-maximized
If you want Vim to start with a maximized window, add this command to your
vimrc or gvimrc file:

au GUIEnter * simalt ~x

gui_w32.txt — 1949

Using Vim as a plugin gui-w32-windowid

When gvim starts up normally, it creates its own top level window. If you
pass Vim the command-line option --windowid with a decimal or hexadecimal
value, Vim will create a window that is a child of the window with the given
ID. This enables Vim to act as a plugin in another application. This really
is a programmer's interface, and is of no use without a supporting application
to spawn Vim correctly.

==
2. Vim as default editor vim-default-editor

To set Vim as the default editor for a file type:
1. Start a Windows Explorer
2. Choose View/Options -> File Types
3. Select the path to gvim for every file type that you want to use it for.

(you can also use three spaces in the file type field, for files without an
extension).
In the "open" action, use:

gvim "%1"
The quotes are required for using file names with embedded spaces.
You can also use this:

gvim "%L"
This should avoid short (8.3 character) file names in some situations. But
I'm not sure if this works everywhere.

When you open a file in Vim by double clicking it, Vim changes to that
file's directory.

If you want Vim to start full-screen, use this for the Open action:
gvim -c "simalt ~x" "%1"

Another method, which also works when you put Vim in another directory (e.g.,
when you have got a new version):
1. select a file you want to use Vim with
2. <Shift-F10>
3. select "Open With..." menu entry
4. click "Other..."
5. browse to the (new) location of Vim and click "Open"
6. make "Always Use this program..." checked
7. <OK>

send-to-menu sendto
You can also install Vim in the "Send To" menu:
1. Start a Windows Explorer
2. Navigate to your sendto directory:

C:\Users\%user%\AppData\Roaming\Microsoft\Windows\SendTo .
3. Right-click in the file pane and select New->Shortcut
4. Follow the shortcut wizard, using the full path to VIM/GVIM.

When you 'send a file to Vim', Vim changes to that file's directory. Note,
however, that any long directory names will appear in their short (MS-DOS)
form on some Windows versions. This is a limitation of the Windows "Send To"
mechanism.

notepad
You could replace notepad.exe with gvim.exe, but that has a few side effects.
Some programs rely on notepad arguments, which are not recognized by Vim. For

gui_w32.txt — 1950

example "notepad -p" is used by some applications to print a file. It's
better to leave notepad where it is and use another way to start Vim.

win32-popup-menu
A more drastic approach is to install an "Edit with Vim" entry in the popup
menu for the right mouse button. With this you can edit any file with Vim.

This can co-exist with the file associations mentioned above. The difference
is that the file associations will make starting Vim the default action. With
the "Edit with Vim" menu entry you can keep the existing file association for
double clicking on the file, and edit the file with Vim when you want. For
example, you can associate "*.mak" with your make program. You can execute
the makefile by double clicking it and use the "Edit with Vim" entry to edit
the makefile.

You can select any files and right-click to see a menu option called "Edit
with gvim". Choosing this menu option will invoke gvim with the file you have
selected. If you select multiple files, you will find two gvim-related menu
options:
"Edit with multiple gvims" -- one gvim for each file in the selection
"Edit with single gvim" -- one gvim for all the files in the selection
And if there already is a gvim running:
"Edit with existing gvim" -- edit the file with the running gvim

The "edit with existing Vim" entries can be disabled by adding an entry in the
registry under HKLM\Software\Vim\Gvim, named DisableEditWithExisting, and with
any value.

install-registry
You can add the "Edit with Vim" menu entry in an easy way by using the
"install.exe" program. It will add several registry entries for you.

You can also do this by hand. This is complicated! Use the install.exe if
you can.

1. Start the registry editor with "regedit".
2. Add these keys:

key value name value
HKEY_CLASSES_ROOT\CLSID\{51EEE242-AD87-11d3-9C1E-0090278BBD99}

{default} Vim Shell Extension
HKEY_CLASSES_ROOT\CLSID\{51EEE242-AD87-11d3-9C1E-0090278BBD99}\InProcServer32

{default} {path}\gvimext.dll
ThreadingModel Apartment

HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers\gvim
{default} {51EEE242-AD87-11d3-9C1E-0090278BBD99}

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved
{51EEE242-AD87-11d3-9C1E-0090278BBD99}

Vim Shell Extension
HKEY_LOCAL_MACHINE\Software\Vim\Gvim

path {path}\gvim.exe
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall\vim 8.2

DisplayName Vim 8.2: Edit with Vim popup menu entry
UninstallString {path}\uninstall.exe

Replace {path} with the path that leads to the executable.
Don't type {default}, this is the value for the key itself.

To remove "Edit with Vim" from the popup menu, just remove the registry
entries mentioned above. The "uninstall.exe" program can do this for you.
You can also use the entry in the Windows standard "Add/Remove Programs" list.

gui_w32.txt — 1951

If you notice that this entry overrules other file type associations, set
those associations again by hand (using Windows Explorer, see above). This
only seems to happen on some Windows NT versions (Windows bug?). Procedure:
1. Find the name of the file type. This can be done by starting the registry

editor, and searching for the extension in \\HKEY_CLASSES_ROOT
2. In a Windows Explorer, use View/Options/File Types. Search for the file

type in the list and click "Edit". In the actions list, you can select on
to be used as the default (normally the "open" action) and click on the
"Set Default" button.

Vim in the "Open With..." context menu win32-open-with-menu

If you use the Vim install program you have the choice to add Vim to the "Open
With..." menu. This means you can use Vim to edit many files. Not every file
(for unclear reasons...), thus the "Edit with Vim" menu entry is still useful.

One reason to add this is to be able to edit HTML files directly from Internet
Explorer. To enable this use the "Tools" menu, "Internet Options..." entry.
In the dialog select the "Programs" tab and select Vim in the "HTML editor"
choice. If it's not there then installing didn't work properly.

Doing this manually can be done with this script:

--
REGEDIT4

[HKEY_CLASSES_ROOT\Applications\gvim.exe]

[HKEY_CLASSES_ROOT\Applications\gvim.exe\shell]

[HKEY_CLASSES_ROOT\Applications\gvim.exe\shell\edit]

[HKEY_CLASSES_ROOT\Applications\gvim.exe\shell\edit\command]
@="c:\\vim\\vim82\\gvim.exe \"%1\""

[HKEY_CLASSES_ROOT\.htm\OpenWithList\gvim.exe]

[HKEY_CLASSES_ROOT*\OpenWithList\gvim.exe]

--

Change the "c:\\vim\\vim82" bit to where gvim.exe is actually located.

To uninstall this run the Vim uninstall program or manually delete the
registry entries with "regedit".

==
3. Using the clipboard gui-clipboard

Windows has a clipboard, where you can copy text to, and paste text from. Vim
supports this in several ways. For other systems see gui-selections .

The "* register reflects the contents of the clipboard. quotestar

When the "unnamed" string is included in the 'clipboard' option, the unnamed
register is the same. Thus you can yank to and paste from the clipboard
without prepending "* to commands. If this doesn't work use the "unnamedplus"
string in the 'clipboard' option.

gui_w32.txt — 1952

The 'a' flag in 'guioptions' is not included by default. This means that text
is only put on the clipboard when an operation is performed on it. Just
Visually selecting text doesn't put it on the clipboard. When the 'a' flag is
included, the text is copied to the clipboard even when it is not operated
upon.

mswin.vim
To use the standard MS-Windows way of CTRL-X, CTRL-C and CTRL-V, use the
$VIMRUNTIME/mswin.vim script. You could add this line to your _vimrc file:

source $VIMRUNTIME/mswin.vim

Since CTRL-C is used to copy the text to the clipboard, it can't be used to
cancel an operation. Use CTRL-Break for that.

CTRL-Z is used for undo. This means you can't suspend Vim with this key, use
:suspend instead (if it's supported at all).

CTRL-V-alternative CTRL-Q
Since CTRL-V is used to paste, you can't use it to start a blockwise Visual
selection. You can use CTRL-Q instead. You can also use CTRL-Q in Insert
mode and Command-line mode to get the old meaning of CTRL-V. But CTRL-Q
doesn't work for terminals when it's used for control flow.

NOTE: The clipboard support still has a number of bugs. See todo .

==
4. Shell Commands gui-shell-win32

Vim uses another window for external commands, to make it possible to run any
command. The external command gets its own environment for running, just like
it was started from a DOS prompt.

win32-vimrun
Executing an external command is done indirectly by the "vimrun" command. The
"vimrun.exe" must be in the path for this to work. Or it must be in the same
directory as the Vim executable. If "vimrun" cannot be found, the command is
executed directly, but then the DOS window closes immediately after the
external command has finished.
WARNING: If you close this window with the "X" button, and confirm the
question if you really want to kill the application, Vim may be killed too!
(This does not apply to commands run asynchronously with ":!start".)

The window in which the commands are executed will be the default you have set
up for "Console" in Control Panel.

win32-!start
Normally, Vim waits for a command to complete before continuing (this makes
sense for most shell commands which produce output for Vim to use). If you
want Vim to start a program and return immediately, you can use the following
syntax:

:!start [/min] {command}
The optional "/min" causes the window to be minimized.

==
5. Special colors win32-colors

On Win32, the normal DOS colors can be used. See dos-colors .

Additionally the system configured colors can also be used. These are known
by the names Sys_XXX, where XXX is the appropriate system color name, from the

gui_w32.txt — 1953

following list (see the Win32 documentation for full descriptions). Case is
ignored.

Sys_3DDKShadow Sys_3DFace Sys_BTNFace
Sys_3DHilight Sys_3DHighlight Sys_BTNHilight
Sys_BTNHighlight Sys_3DLight Sys_3DShadow
Sys_BTNShadow Sys_ActiveBorder Sys_ActiveCaption
Sys_AppWorkspace Sys_Background Sys_Desktop
Sys_BTNText Sys_CaptionText Sys_GrayText
Sys_Highlight Sys_HighlightText Sys_InactiveBorder
Sys_InactiveCaption Sys_InactiveCaptionText Sys_InfoBK
Sys_InfoText Sys_Menu Sys_MenuText
Sys_ScrollBar Sys_Window Sys_WindowFrame
Sys_WindowText

Probably the most useful values are
Sys_Window Normal window background
Sys_WindowText Normal window text
Sys_Highlight Highlighted background
Sys_HighlightText Highlighted text

These extra colors are also available:
Gray, Grey, LightYellow, SeaGreen, Orange, Purple, SlateBlue, Violet,

rgb.txt
Additionally, colors defined by a default color list can be used. For more
info see :colorscheme . These colors used to be defined in
$VIMRUNTIME/rgb.txt, now they are in v:colornames which is initialized from
$VIMRUNTIME/colors/lists/default.vim.

==
gui-w32-dialogs dialog

6. Windows dialogs & browsers

The Win32 GUI can use familiar Windows components for some operations, as well
as the traditional interface shared with the console version.

6.1 Dialogs

The dialogs displayed by the "confirm" family (i.e. the 'confirm' option,
:confirm command and confirm() function) are GUI-based rather than the

console-based ones used by other versions. The 'c' flag in 'guioptions'
changes this.

6.2 File Browsers

When prepending ":browse" before file editing commands, a file requester is
used to allow you to select an existing file. See :browse .

6.3 Tearoff Menus

The Win32 GUI emulates Motif's tear-off menus. At the top of each menu you
will see a small graphic "rip here" sign. Selecting it will cause a floating
window to be created with the same menu entries on it. The floating menu can
then be accessed just as if it was the original (including sub-menus), but
without having to go to the menu bar each time.
This is most useful if you find yourself using a command buried in a sub-menu

gui_w32.txt — 1954

over and over again.
The tearoff menus can be positioned where you like, and always stay just above
the Main Vim window. You can get rid of them by closing them as usual; they
also of course close when you exit Vim.

:tearoff :te
:te[aroff] {name} Tear-off the menu {name}. The menu named must have at

least one subentry, but need not appear on the
menu-bar (see win32-hidden-menus).

Example:
:tearoff File

will make the "File" menu (if there is one) appear as a tearoff menu.

:amenu]Toolbar.Make :make<CR>
:tearoff]Toolbar

This creates a floating menu that doesn't exist on the main menu-bar.

Note that a menu that starts with ']' will not be displayed.

==
7. Command line arguments gui-w32-cmdargs

Command line arguments behave the same way as with the console application,
see win32-cmdargs .

==
8. Various gui-w32-various

gui-w32-printing
The "File/Print" menu prints the text with syntax highlighting, see
:hardcopy . If you just want to print the raw text and have a default

printer installed this should also work:
:w >>prn

Vim supports a number of standard MS-Windows features. Some of these are
detailed elsewhere: see 'mouse' , win32-hidden-menus .

drag-n-drop-win32
You can drag and drop one or more files into the Vim window, where they will
be opened as normal. See drag-n-drop .

:simalt :sim
:sim[alt] {key} simulate pressing {key} while holding Alt pressed.

{only for Win32 versions}
Note: ":si" means ":s" with the "i" flag.

Normally, Vim takes control of all Alt-<Key> combinations, to increase the
number of possible mappings. This clashes with the standard use of Alt as the
key for accessing menus.
The quick way of getting standard behavior is to set the 'winaltkeys' option
to "yes". This however prevents you from mapping Alt keys at all.
Another way is to set 'winaltkeys' to "menu". Menu shortcut keys are then
handled by windows, other ALT keys can be mapped. This doesn't allow a
dependency on the current state though.
To get round this, the :simalt command allows Vim (when 'winaltkeys' is not
"yes") to fake a Windows-style Alt keypress. You can use this to map Alt key
combinations (or anything else for that matter) to produce standard Windows
actions. Here are some examples:

gui_w32.txt — 1955

:map <M-f> :simalt f<CR>
This makes Alt-F pop down the 'File' menu (with the stock Menu.vim) by
simulating the keystrokes Alt, F.

:map <M-Space> :simalt ~<CR>
This maps Alt-Space to pop down the system menu for the Vim window. Note that
~ is used by simalt to represent the <Space> character.

:map <C-n> :simalt ~n<CR>
Maps Control-N to produce the keys Alt-Space followed by N. This minimizes the
Vim window via the system menu.

Note that the key changes depending on the language you are using.

intellimouse-wheel-problems
When using the Intellimouse mouse wheel causes Vim to stop accepting input, go
to:

ControlPanel - Mouse - Wheel - UniversalScrolling - Exceptions

And add gvim to the list of applications. This problem only appears to happen
with the Intellimouse driver 2.2 and when "Universal Scrolling" is turned on.

XPM support w32-xpm-support

GVim can be built on MS-Windows with support for XPM files. +xpm_w32
See the Make_mvc.mak file for instructions, search for XPM.

To try out if XPM support works do this:
:help
:let runtime = escape($VIMRUNTIME, ' \')
:exe 'sign define vimxpm icon=' .. runtime .. '\\vim16x16.xpm'
:exe 'sign place 1 line=1 name=vimxpm file=' .. expand('%:p')

You may need to get the vim16x16.xpm file from github:
https://github.com/vim/vim/blob/master/runtime/vim16x16.xpm

Keycode translation strategy w32-experimental-keycode-trans-strategy

In Patch v8.2.4807 W32 GVIM was changed over to experimental keycode
translation method with the aim to be able to use more keyboard shortcuts and
especially supporting non-standard keyboard layouts. In order to implement
this support Win API TranslateMessage() call was dropped, and instead the
recognition of keycode was changed over to ToUnicode() Win API call. This
approach uncovered numerous corner cases, which are apparently covered by
TranslateMessage() implementation, each of it is necessary to be dealt with on
an individual basis. Therefore the decision was taken to declare this
functionality experimental for the time being and to recover "classic" keycode
translation method as default again.

Discussion about use of "experimental" keycode translation method will
probably last some time yet. In the meantime, if you are impacted by this
change over back to "classic" keycode translation method in W32 GVIM, you can
enable "experimental" translation method again in your vimrc using following
snippet:

:call test_mswin_event('set_keycode_trans_strategy', {'strategy': 'experimental'})

Similarly, in case you need to turn back "classic" keycode translation method
(for example for testing purposes), please use:

gui_w32.txt — 1956

https://github.com/vim/vim/blob/master/runtime/vim16x16.xpm

:call test_mswin_event('set_keycode_trans_strategy', {'strategy': 'classic'})

Alternatively (this method is especially useful for the TINY GVIM build, where
test_mswin_event() cannot be called), an environment variable
VIM_KEYCODE_TRANS_STRATEGY can be set to the desired value ("experimental" or
"classic"), to override the default, e.g., type in dos prompt:

set VIM_KEYCODE_TRANS_STRATEGY=experimental
gvim.exe

gui_w32.txt — 1957

gui_w32.txt — 1958

gui_x11.txt For Vim version 9.1. Last change: 2024 Jan 30

VIM REFERENCE MANUAL by Bram Moolenaar

Vim's Graphical User Interface gui-x11 GUI-X11
Motif

1. Starting the X11 GUI gui-x11-start
2. GUI Resources gui-resources
3. Shell Commands gui-pty
4. Various gui-x11-various
5. GTK version gui-gtk
6. GNOME version gui-gnome
7. KDE version gui-kde
8. Compiling gui-x11-compiling
9. X11 selection mechanism x11-selection

Other relevant documentation:
gui.txt For generic items of the GUI.

==
1. Starting the X11 GUI gui-x11-start E665

Then you can run the GUI version of Vim in either of these ways:
gvim [options] [files...]
vim -g [options] [files...]

So if you call the executable "gvim", or make "gvim" a link to the executable,
then the GUI version will automatically be used. Additional characters may be
added after "gvim", for example "gvim-5".

You may also start up the GUI from within the terminal version by using one of
these commands:

:gui [++opt] [+cmd] [-f|-b] [files...] :gu :gui
:gvim [++opt] [+cmd] [-f|-b] [files...] :gv :gvim

The "-f" option runs Vim in the foreground.
The "-b" option runs Vim in the background (this is the default).
Also see ++opt and +cmd .

gui-fork
When the GUI is started, it does a fork() and exits the current process.
When gvim was started from a shell this makes the shell accept further
commands. If you don't want this (e.g. when using gvim for a mail program
that waits for gvim to exit), start gvim with "gvim -f", "vim -gf" or use
":gui -f". Don't use "vim -fg", because "-fg" specifies the foreground
color.

When using "vim -f" and then ":gui", Vim will run in the foreground. The
"-f" argument will be remembered. To force running Vim in the background use
":gui -b".

"gvim --nofork" does the same as "gvim -f".

When there are running jobs Vim will not fork, because the processes would no
longer be child processes.

E851 E852
When starting the GUI fails Vim will try to continue running in the terminal.

gui_x11.txt — 1959

If you want the GUI to run in the foreground always, include the 'f'
flag in 'guioptions'. -f .

==
2. GUI Resources gui-resources .Xdefaults

If using the Motif version of the GUI (not for the KDE, GTK+ or Win32
version), a number of X resources are available. You should use Vim's class
"Vim" when setting these. They are as follows:

Resource name Meaning

reverseVideo Boolean: should reverse video be used?
background Color of background.
foreground Color of normal text.
scrollBackground Color of trough portion of scrollbars.
scrollForeground Color of slider and arrow portions of scrollbars.
menuBackground Color of menu backgrounds.
menuForeground Color of menu foregrounds.
tooltipForeground Color of tooltip and balloon foreground.
tooltipBackground Color of tooltip and balloon background.

font Name of font used for normal text.
boldFont Name of font used for bold text.
italicFont Name of font used for italic text.
boldItalicFont Name of font used for bold, italic text.
menuFont Name of font used for the menus, used when compiled

without the +xfontset feature
menuFontSet Name of fontset used for the menus, used when compiled

with the +xfontset feature
tooltipFont Name of the font used for the tooltip and balloons.

When compiled with the +xfontset feature this is a
fontset name.

geometry Initial geometry to use for gvim's window (default
is same size as terminal that started it).

scrollbarWidth Thickness of scrollbars.
borderWidth Thickness of border around text area.

A special font for italic, bold, and italic-bold text will only be used if
the user has specified one via a resource. No attempt is made to guess what
fonts should be used for these based on the normal text font.

Note that the colors can also be set with the ":highlight" command, using the
"Normal", "Menu", "Tooltip", and "Scrollbar" groups. Example:

:highlight Menu guibg=lightblue
:highlight Tooltip guibg=yellow
:highlight Scrollbar guibg=lightblue guifg=blue
:highlight Normal guibg=grey90

font-sizes
Note: All fonts (except for the menu and tooltip) must be of the same size!!!
If you don't do this, text will disappear or mess up the display. Vim does
not check the font sizes. It's the size in screen pixels that must be the
same. Note that some fonts that have the same point size don't have the same
pixel size! Additionally, the positioning of the fonts must be the same
(ascent and descent). You can check this with "xlsfonts -l {fontname}".

If any of these things are also set with Vim commands, e.g. with
":set guifont=Screen15", then this will override the X resources (currently

gui_x11.txt — 1960

'guifont' is the only option that is supported).

Here is an example of what you might put in your ~/.Xdefaults file:

Vim*useSchemes: all
Vim*sgiMode: true
Vim*useEnhancedFSB: true
Vim.foreground: Black
Vim.background: Wheat
Vim*fontList: 7x13

The first three of these are standard resources on Silicon Graphics machines
which make Motif applications look even better, highly recommended!

The "Vim*fontList" is to set the menu font for Motif. Example:
Vim*menuBar*fontList: -*-courier-medium-r-*-*-10-*-*-*-*-*-*-*

NOTE: A more portable, and indeed more correct, way to specify the menu font
in Motif is through the resource:

Vim.menuFont: -*-courier-medium-r-*-*-10-*-*-*-*-*-*-*
Or, when compiled with the +xfontset feature:

Vim.menuFontSet: -*-courier-medium-r-*-*-10-*-*-*-*-*-*-*

Don't use "Vim*geometry" in the defaults. This will break the menus. Use
"Vim.geometry" instead.

If you get an error message "Cannot allocate colormap entry for "gray60",
try adding this to your Vim resources (change the colors to your liking):

Vim*scrollBackground: Black
Vim*scrollForeground: Blue

The resources can also be set with arguments to Vim:

argument meaning
-gui

-display {display} Run vim on {display} -display
-iconic Start vim iconified -iconic
-background {color} Use {color} for the background -background
-bg {color} idem -bg
-foreground {color} Use {color} for normal text -foreground
-fg {color} idem -fg
-ul {color} idem -ul
-font {font} Use {font} for normal text -font
-fn {font} idem -fn
-boldfont {font} Use {font} for bold text -boldfont
-italicfont {font} Use {font} for italic text -italicfont
-menufont {font} Use {font} for menu items -menufont
-menufontset {fontset} Use {fontset} for menu items -menufontset
-mf {font} idem -mf
-geometry {geom} Use {geom} for initial geometry -geometry
-geom {geom} idem, see -geometry-example -geom
-borderwidth {width} Use a border width of {width} -borderwidth
-bw {width} idem -bw

-scrollbarwidth
-scrollbarwidth {width} Use a scrollbar width of {width}
-sw {width} idem -sw
-menuheight {height} Use a menu bar height of {height} -menuheight
-mh {height} idem -mh

NOTE: On Motif the value is ignored, the menu height

gui_x11.txt — 1961

is computed to fit the menus.
-reverse Use reverse video -reverse
-rv idem -rv
+reverse Don't use reverse video -+reverse
+rv idem -+rv
-xrm {resource} Set the specified resource -xrm

Note about reverse video: Vim checks that the result is actually a light text
on a dark background. The reason is that some X11 versions swap the colors,
and some don't. These two examples will both give yellow text on a blue
background:

gvim -fg Yellow -bg Blue -reverse
gvim -bg Yellow -fg Blue -reverse

-geometry-example
An example for the geometry argument:

gvim -geometry 80x63+8+100
This creates a window with 80 columns and 63 lines at position 8 pixels from
the left and 100 pixels from the top of the screen.

==
3. Shell Commands gui-pty

WARNING: Executing an external command from the GUI will not always work.
"normal" commands like "ls", "grep" and "make" mostly work fine. Commands
that require an intelligent terminal like "less" and "ispell" won't work.
Some may even hang and need to be killed from another terminal. So be
careful!

There are two ways to do the I/O with a shell command: Pipes and a pseudo-tty.
The default is to use a pseudo-tty. This should work best on most systems.

Unfortunately, the implementation of the pseudo-tty is different on every Unix
system. And some systems require root permission. To avoid running into
problems with a pseudo-tty when you least expect it, test it when not editing
a file. Be prepared to "kill" the started command or Vim. Commands like
":r !cat" may hang!

If using a pseudo-tty does not work for you, reset the 'guipty' option:

:set noguipty

Using a pipe should work on any Unix system, but there are disadvantages:
- Some shell commands will notice that a pipe is being used and behave

differently. E.g., ":!ls" will list the files in one column.
- The ":sh" command won't show a prompt, although it will sort of work.
- When using ":make" it's not possible to interrupt with a CTRL-C.

Typeahead while the external command is running is often lost. This happens
both with a pipe and a pseudo-tty. This is a known problem, but it seems it
can't be fixed (or at least, it's very difficult).

gui-pty-erase
When your erase character is wrong for an external command, you should fix
this in your "~/.cshrc" file, or whatever file your shell uses for
initializations. For example, when you want to use backspace to delete
characters, but hitting backspaces produces "^H" instead, try adding this to
your "~/.cshrc":

stty erase ^H
The ^H is a real CTRL-H, type it as CTRL-V CTRL-H.

gui_x11.txt — 1962

==
4. Various gui-x11-various

gui-x11-printing
The "File/Print" menu simply sends the current buffer to "lpr". No options or
whatever. If you want something else, you can define your own print command.
For example:

:10amenu File.Print :w !lpr -Php3
:10vmenu File.Print :w !lpr -Php3

X11-icon
Vim uses a black&white icon by default when compiled with Motif. A
colored Vim icon is included as $VIMRUNTIME/vim32x32.xpm. For GTK+, this is
the builtin icon used. Unfortunately, how you should install it depends on
your window manager. When you use this, remove the 'i' flag from
'guioptions', to remove the black&white icon:

:set guioptions-=i

If you use one of the fvwm* family of window managers simply add this line to
your .fvwm2rc configuration file:

Style "vim" Icon vim32x32.xpm

Make sure the icon file's location is consistent with the window manager's
ImagePath statement. Either modify the ImagePath from within your .fvwm2rc or
drop the icon into one the pre-defined directories:

ImagePath /usr/X11R6/include/X11/pixmaps:/usr/X11R6/include/X11/bitmaps

Note: older versions of fvwm use "IconPath" instead of "ImagePath".

For CDE "dtwm" (a derivative of Motif) add this line in the .Xdefaults:
Dtwm*Vim*iconImage: /usr/local/share/vim/vim32x32.xpm

For "mwm" (Motif window manager) the line would be:
Mwm*Vim*iconImage: /usr/local/share/vim/vim32x32.xpm

Mouse Pointers Available in X11
X11_mouse_shapes

By using the 'mouseshape' option, the mouse pointer can be automatically
changed whenever Vim enters one of its various modes (e.g., Insert or
Command). Currently, the available pointers are:

arrow an arrow pointing northwest
beam a I-like vertical bar
size an arrow pointing up and down
busy a wristwatch
blank an invisible pointer
crosshair a thin "+" sign
hand1 a dark hand pointing northeast
hand2 a light hand pointing northwest
pencil a pencil pointing southeast
question question_arrow
right_arrow an arrow pointing northeast
up_arrow an arrow pointing upwards

Additionally, any of the mouse pointers that are built into X11 may be

gui_x11.txt — 1963

used by specifying an integer from the X11/cursorfont.h include file.

If a name is used that exists on other systems, but not in X11, the default
"arrow" pointer is used.

==
5. GTK version gui-gtk GTK+ GTK GTK3

The GTK version of the GUI works a little bit different.

GTK does _not_ use the traditional X resource settings. Thus items in your
~/.Xdefaults or app-defaults files are not used.
Many of the traditional X command line arguments are not supported. (e.g.,
stuff like -bg, -fg, etc). The ones that are supported are:

command line argument resource name meaning
-fn or -font .font font name for the text
-geom or -geometry .geometry size of the gvim window
-rv or -reverse *reverseVideo white text on black background
-display display to be used
-fg -foreground {color} foreground color
-bg -background {color} background color

To set the font, see 'guifont' . For GTK, there's also a menu option that
does this.

Additionally, there are these command line arguments, which are handled by GTK
internally. Look in the GTK documentation for how they are used:

--sync
--gdk-debug
--gdk-no-debug
--no-xshm (not in GTK+ 2)
--xim-preedit (not in GTK+ 2)
--xim-status (not in GTK+ 2)
--gtk-debug
--gtk-no-debug
--g-fatal-warnings
--gtk-module
--display (GTK+ counterpart of -display; works the same way.)
--screen (The screen number; for GTK+ 2.2 multihead support.)

These arguments are ignored when the +netbeans_intg feature is used:
-xrm
-mf

As for colors, Vim's color settings (for syntax highlighting) is still
done the traditional Vim way. See :highlight for more help.

If you want to set the colors of remaining gui components (e.g., the
menubar, scrollbar, whatever), those are GTK specific settings and you
need to set those up in some sort of gtkrc file. You'll have to refer
to the GTK documentation, however little there is, on how to do this.
See http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html
for more information.

gtk3-slow
If you are using GTK3 and Vim appears to be slow, try setting the environment
variable $GDK_RENDERING to "image".

Tooltip Colors

gui_x11.txt — 1964

http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html

gtk-tooltip-colors
Example, which sets the tooltip colors to black on light-yellow:

style "tooltips"
{

bg[NORMAL] = "#ffffcc"
fg[NORMAL] = "#000000"

}

widget "gtk-tooltips*" style "tooltips"

Write this in the file ~/.gtkrc and it will be used by GTK+. For GTK+ 2
you might have to use the file ~/.gtkrc-2.0 instead, depending on your
distribution.

For GTK+ 3, an effect similar to the above can be obtained by adding the
following snippet of CSS code to $XDG_HOME_DIR/gtk-3.0/gtk.css (see the next
section):

For GTK+ 3 < 3.20:

.tooltip {
background-color: #ffffcc;
color: #000000;

}

For GTK+ 3 >= 3.20:

tooltip {
background-color: #ffffcc;
text-shadow: none;

}

tooltip label {
color: #2e3436;

}

A Quick Look at GTK+ CSS
gtk-css

The contents of this subsection apply to GTK+ 3.20 or later which provides
stable support for GTK+ CSS:

https://developer.gnome.org/gtk3/stable/theming.html

GTK+ uses CSS for styling and layout of widgets. In this subsection, we'll
have a quick look at GTK+ CSS through simple, illustrative examples.

You can usually edit the config with:
vim $HOME/.config/gtk-3.0/gtk.css

Example 1. Empty Space Adjustment

By default, the toolbar and the tabline of the GTK+ 3 GUI are somewhat larger
than those of the GTK+ 2 GUI. Some people may want to make them look similar
to the GTK+ 2 GUI in size.

To do that, we'll try reducing empty space around icons and labels that looks
apparently superfluous.

gui_x11.txt — 1965

https://developer.gnome.org/gtk3/stable/theming.html

Add the following lines to $XDG_HOME_DIR/gtk-3.0/gtk.css (usually,
$HOME/.config/gtk-3.0/gtk.css):

toolbar button {
margin-top: -2px;
margin-right: 0px;
margin-bottom: -2px;
margin-left: 0px;

padding-top: 0px;
padding-right: 0px;
padding-bottom: 0px;
padding-left: 0px

}

notebook tab {
margin-top: -1px;
margin-right: 3px;
margin-bottom: -1px;
margin-left: 3px;

padding-top: 0px;
padding-right: 0px;
padding-bottom: 0px;
padding-left: 0px

}

Since it's a CSS, they can be rewritten using shorthand:

toolbar button {
margin: -2px 0px;
padding: 0px;

}

notebook tab {
margin: -1px 3px;
padding: 0px

}

Note: You might want to use 'toolbariconsize' to adjust the icon size, too.

Note: Depending on the icon theme and/or the font in use, some extra tweaks
may be needed for a satisfactory result.

Note: In addition to margin and padding, you can use border. For details,
refer to the box model of CSS, e.g.,

https://www.w3schools.com/css/css_boxmodel.asp

Example 2. More Than Just Colors

GTK+ CSS supports gradients as well:

tooltip {
background-image: -gtk-gradient(linear,

0 0, 0 1,
color-stop(0, #344752),
color-stop(0.5, #546772),
color-stop(1, #243742));

gui_x11.txt — 1966

https://www.w3schools.com/css/css_boxmodel.asp

}

tooltip label {
color: #f3f3f3;

}

Gradients can be used to make a GUI element visually distinguishable from
others without relying on high contrast. Accordingly, effective use of them is
a useful technique to give a theme a sense of unity in color and luminance.

Note: Theming can be difficult since it must make every application look
equally good; making a single application more charming often gets others
unexpectedly less attractive or even deteriorates their usability. Keep this
in mind always when you try improving a theme.

Example 3. border color

To eliminate borders when maximized:

@define-color bg_color #1B2B34;
#vim-main-window {

background-color: @bg_color;
}

Using Vim as a GTK+ plugin
gui-gtk-socketid

When the GTK+ version of Vim starts up normally, it creates its own top level
window (technically, a 'GtkWindow'). GTK+ provides an embedding facility with
its GtkSocket and GtkPlug widgets. If one GTK+ application creates a
GtkSocket widget in one of its windows, an entirely different GTK+ application
may embed itself into the first application by creating a top-level GtkPlug
widget using the socket's ID.

If you pass Vim the command-line option '--socketid' with a decimal or
hexadecimal value, Vim will create a GtkPlug widget using that value instead
of the normal GtkWindow. This enables Vim to act as a GTK+ plugin.

This really is a programmer's interface, and is of no use without a supporting
application to spawn the Vim correctly. For more details on GTK+ sockets, see
http://www.gtk.org/api/

Note that this feature requires the latest GTK version. GTK 1.2.10 still has
a small problem. The socket feature has not yet been tested with GTK+ 2 --
feel free to volunteer.

==
6. GNOME version gui-gnome Gnome GNOME

The GNOME GUI works just like the GTK+ version. See GTK+ above for how it
works. It looks a bit different though, and implements one important feature
that's not available in the plain GTK+ GUI: Interaction with the session
manager. gui-gnome-session

These are the different looks:
- Uses GNOME dialogs (GNOME 1 only). The GNOME 2 GUI uses the same nice

dialogs as the GTK+ 2 version.
- Uses the GNOME dock, so that the toolbar and menubar can be moved to

different locations other than the top (e.g., the toolbar can be placed on

gui_x11.txt — 1967

http://www.gtk.org/api/

the left, right, top, or bottom). The placement of the menubar and
toolbar is only saved in the GNOME 2 version.

- That means the menubar and toolbar handles are back! Yeah! And the
resizing grid still works too.

GNOME is compiled with if it was found by configure and the
--enable-gnome-check argument was used.

Note: Avoid use of --enable-gnome-check with GTK+ 3 GUI build. The
functionality mentioned above is consolidated in GTK+ 3.

GNOME session support
gui-gnome-session gnome-session

On logout, Vim shows the well-known exit confirmation dialog if any buffers
are modified. Clicking [Cancel] will stop the logout process. Otherwise the
current session is stored to disk by using the :mksession command, and
restored the next time you log in.

The GNOME session support should also work with the KDE session manager.
If you are experiencing any problems please report them as bugs.

Note: The automatic session save works entirely transparent, in order to
avoid conflicts with your own session files, scripts and autocommands. That
means in detail:
- The session file is stored to a separate directory (usually $HOME/.gnome2).
- 'sessionoptions' is ignored, and a hardcoded set of appropriate flags is

used instead:
blank,curdir,folds,globals,help,options,tabpages,winsize

- The internal variable v:this_session is not changed when storing the
session. Also, it is restored to its old value when logging in again.

The position and size of the GUI window is not saved by Vim since doing so
is the window manager's job. But if compiled with GTK+ 2 support, Vim helps
the WM to identify the window by restoring the window role (using the --role
command line argument).

==
7. KDE version gui-kde kde KDE KVim

gui-x11-kde
There is no KDE version of Vim. There has been some work on a port using the
Qt toolkit, but it never worked properly and it has been abandoned. Work
continues on Yzis: https://github.com/chrizel/Yzis but it seems also
abandoned.

==
8. Compiling gui-x11-compiling

If using X11, Vim's configure will by default first try to find the necessary
GTK+ files on your system. When both GTK+ 2 and GTK+ 3 are available, GTK+ 2
will be chosen unless --enable-gui=gtk3 is passed explicitly to configure.

If the GTK+ files cannot be found, then the Motif files will be searched for.
If both fail, the GUI will be disabled.

For GTK+, Vim's configuration process uses pkg-config(1) to check if the
GTK+ required for a specified build is properly installed and usable.
Accordingly, it is a good idea to make sure before running configure that
your system has a working pkg-config together with the .pc file of the
required GTK+. For that, say, run the following on the command line to see if

gui_x11.txt — 1968

https://github.com/chrizel/Yzis

your pkg-config works with your GTK+ 2:

$ pkg-config --modversion gtk+-2.0

Replace gtk+-2.0 with gtk+-3.0 for GTK+ 3. If you get the correct version
number of your GTK+, you can proceed; if not, you probably need to do some
system administration chores to set up pkg-config and GTK+ correctly.

The GTK+ 2 GUI is built by default. Therefore, you usually don't need to pass
any options such as --enable-gui=gtk2 to configure and build that.

Optionally, the GTK+ 2 GUI can consolidate the GNOME 2 support. This support
is enabled by passing --enable-gnome-check to configure.

If you want to build the GTK+ 3 GUI, you have to pass --enable-gui=gtk3
explicitly to configure, and avoid passing --enable-gnome-check to that, as
the functionality of the GNOME 2 support has already been consolidated in
GTK+ 3.

Otherwise, if you are using Motif, when you have the Motif files in a
directory where configure doesn't look, edit the Makefile to enter the names
of the directories. Search for "GUI_INC_LOC" for an example to set
the Motif directories.

gui-x11-gtk
Currently, Vim supports both GTK+ 2 and GTK+ 3.

The GTK+ 2 GUI requires GTK+ 2.2 or later.

Although the GTK+ 3 GUI is written in such a way that the source code can be
compiled against all versions of the 3.x series, we recommend GTK+ 3.10 or
later because of its substantial implementation changes in redraw done at
that version.

gui-x11-motif
For Motif, you need at least Motif version 1.2 and/or X11R5. Motif 2.0 and
X11R6 are OK. Motif 1.1 and X11R4 might work, no guarantee (there may be a
few problems, but you might make it compile and run with a bit of work, please
send me the patches if you do). The newest releases of LessTif have been
reported to work fine too.

gui-x11-athena gui-x11-neXtaw
Support for the Athena GUI and neXtaw was removed in patch 8.2.4677.

gui-x11-misc
In general, do not try to mix files from different GTK+, Motif and X11
versions. This will cause problems. For example, using header files for
X11R5 with a library for X11R6 probably doesn't work (although the linking
won't give an error message, Vim will crash later).

gui-wayland
Initial support for the Wayland display server protocol has landed in patch
9.1.0064. To enable it, you need to set the environment variable
"$GVIM_ENABLE_WAYLAND" in your shell.

Note: The Wayland protocol is subject to some restrictions, so the following
functions won't work: getwinpos() , getwinposx() , getwinposy() and the
v:windowid variable won't be available.

==

gui_x11.txt — 1969

9. X11 selection mechanism x11-selection

If using X11, in either the GUI or an xterm with an X11-aware Vim, then Vim
provides varied access to the X11 selection and clipboard. These are accessed
by using the two selection registers "* and "+.

X11 provides two basic types of global store, selections and cut-buffers,
which differ in one important aspect: selections are "owned" by an
application, and disappear when that application (e.g., Vim) exits, thus
losing the data, whereas cut-buffers, are stored within the X-server itself
and remain until written over or the X-server exits (e.g., upon logging out).

The contents of selections are held by the originating application (e.g., upon
a copy), and only passed on to another application when that other application
asks for them (e.g., upon a paste).

The contents of cut-buffers are immediately written to, and are then
accessible directly from the X-server, without contacting the originating
application.

quoteplus quote+
There are three documented X selections: PRIMARY (which is expected to
represent the current visual selection - as in Vim's Visual mode), SECONDARY
(which is ill-defined) and CLIPBOARD (which is expected to be used for
cut, copy and paste operations).

Of these three, Vim uses PRIMARY when reading and writing the "* register
(hence when the X11 selections are available, Vim sets a default value for
'clipboard' of "autoselect"), and CLIPBOARD when reading and writing the "+

register. Vim does not access the SECONDARY selection.

This applies both to the GUI and the terminal version. For non-X11 systems
the plus and the star register both use the system clipboard.

Examples: (assuming the default option values)
- Select a URL in Visual mode in Vim. Go to your browser and click the

middle mouse button in the URL text field. The selected text will be
inserted (hopefully!). Note: in Firefox you can set the
middlemouse.contentLoadURL preference to true in about:config, then the
selected URL will be used when pressing middle mouse button in most places
in the window.

- Select some text in your browser by dragging with the mouse. Go to Vim and
press the middle mouse button: The selected text is inserted.

- Select some text in Vim and do "+y. Go to your browser, select some text in
a textfield by dragging with the mouse. Now use the right mouse button and
select "Paste" from the popup menu. The selected text is overwritten by the
text from Vim.

Note that the text in the "+ register remains available when making a Visual
selection, which makes other text available in the "* register. That allows
overwriting selected text.

x11-cut-buffer
There are, by default, 8 cut-buffers: CUT_BUFFER0 to CUT_BUFFER7. Vim only
uses CUT_BUFFER0, which is the one that xterm uses by default.

Whenever Vim is about to become unavailable (either via exiting or becoming
suspended), and thus unable to respond to another application's selection
request, it writes the contents of any owned selection to CUT_BUFFER0. If the
"+ CLIPBOARD selection is owned by Vim, then this is written in preference,
otherwise if the "* PRIMARY selection is owned by Vim, then that is written.

gui_x11.txt — 1970

Similarly, when Vim tries to paste from "* or "+ (either explicitly, or, in
the case of the "* register, when the middle mouse button is clicked), if the
requested X selection is empty or unavailable, Vim reverts to reading the
current value of the CUT_BUFFER0.

Note that when text is copied to CUT_BUFFER0 in this way, the type of
selection (character, line or block) is always lost, even if it is a Vim which
later pastes it.

Xterm, by default, always writes visible selections to both PRIMARY and
CUT_BUFFER0. When it pastes, it uses PRIMARY if this is available, or else
falls back upon CUT_BUFFER0. For this reason, when cutting and pasting
between Vim and an xterm, you should use the "* register. Xterm doesn't use
CLIPBOARD, thus the "+ doesn't work with xterm.

Most newer applications will provide their current selection via PRIMARY ("*)
and use CLIPBOARD ("+) for cut/copy/paste operations. You thus have access to
both by choosing to use either of the "* or "+ registers.

gui_x11.txt — 1971

gui_x11.txt — 1972

if_cscop.txt For Vim version 9.1. Last change: 2022 Jan 08

VIM REFERENCE MANUAL by Andy Kahn

cscope Cscope
This document explains how to use Vim's cscope interface.

Cscope is a tool like ctags, but think of it as ctags on steroids since it
does a lot more than what ctags provides. In Vim, jumping to a result from
a cscope query is just like jumping to any tag; it is saved on the tag stack
so that with the right keyboard mappings, you can jump back and forth between
functions as you normally would with tags .

1. Cscope introduction cscope-intro
2. Cscope related commands cscope-commands
3. Cscope options cscope-options
4. How to use cscope in Vim cscope-howtouse
5. Limitations cscope-limitations
6. Suggested usage cscope-suggestions
7. Availability & Information cscope-info

This is currently for Unix and Win32 only.

==
1. Cscope introduction cscope-intro

The following text is taken from a version of the cscope man page:

Cscope is an interactive screen-oriented tool that helps you:

Learn how a C program works without endless flipping through a thick
listing.

Locate the section of code to change to fix a bug without having to
learn the entire program.

Examine the effect of a proposed change such as adding a value to an
enum variable.

Verify that a change has been made in all source files such as adding
an argument to an existing function.

Rename a global variable in all source files.

Change a constant to a preprocessor symbol in selected lines of files.

It is designed to answer questions like:
Where is this symbol used?
Where is it defined?
Where did this variable get its value?
What is this global symbol's definition?
Where is this function in the source files?
What functions call this function?
What functions are called by this function?
Where does the message "out of space" come from?
Where is this source file in the directory structure?
What files include this header file?

if_cscop.txt — 1973

Cscope answers these questions from a symbol database that it builds the
first time it is used on the source files. On a subsequent call, cscope
rebuilds the database only if a source file has changed or the list of
source files is different. When the database is rebuilt the data for the
unchanged files is copied from the old database, which makes rebuilding
much faster than the initial build.

When cscope is normally invoked, you will get a full-screen selection
screen allowing you to make a query for one of the above questions.
However, once a match is found to your query and you have entered your
text editor to edit the source file containing match, you cannot simply
jump from tag to tag as you normally would with vi's Ctrl-] or :tag
command.

Vim's cscope interface is done by invoking cscope with its line-oriented
interface, and then parsing the output returned from a query. The end
result is that cscope query results become just like regular tags, so
you can jump to them just like you do with normal tags (Ctrl-] or :tag)
and then go back by popping off the tagstack with Ctrl-T. (Please note
however, that you don't actually jump to a cscope tag simply by doing
Ctrl-] or :tag without remapping these commands or setting an option.
See the remaining sections on how the cscope interface works and for
suggested use.)

==
2. Cscope related commands cscope-commands

:cscope :cs :scs :scscope E259 E262 E560 E561
All cscope commands are accessed through suboptions to the cscope commands.

`:cscope` or `:cs` is the main command
`:scscope` or `:scs` does the same and splits the window
`:lcscope` or `:lcs` uses the location list, see :lcscope

The available subcommands are:

E563 E564 E566 E568 E622 E623 E625
E626 E609

add : Add a new cscope database/connection.

USAGE :cs add {file|dir} [pre-path] [flags]

[pre-path] is the pathname used with the -P command to cscope.

[flags] are any additional flags you want to pass to cscope.

EXAMPLES
:cscope add /usr/local/cdb/cscope.out
:cscope add /projects/vim/cscope.out /usr/local/vim
:cscope add cscope.out /usr/local/vim -C

cscope-find cs-find E567
find : Query cscope. All cscope query options are available

except option #5 ("Change this grep pattern").

USAGE :cs find {querytype} {name}

if_cscop.txt — 1974

{querytype} corresponds to the actual cscope line
interface numbers as well as default nvi commands:

0 or s: Find this C symbol
1 or g: Find this definition
2 or d: Find functions called by this function
3 or c: Find functions calling this function
4 or t: Find this text string
6 or e: Find this egrep pattern
7 or f: Find this file
8 or i: Find files #including this file
9 or a: Find places where this symbol is assigned a value

For all types, except 4 and 6, leading white space for {name} is
removed. For 4 and 6 there is exactly one space between {querytype}
and {name}. Further white space is included in {name}.

EXAMPLES
:cscope find c vim_free
:cscope find 3 vim_free

These two examples perform the same query: functions calling
"vim_free".

:cscope find t initOnce
:cscope find t initOnce

The first one searches for the text "initOnce", the second one for
" initOnce".

:cscope find 0 DEFAULT_TERM

Executing this example on the source code for Vim 5.1 produces the
following output:

Cscope tag: DEFAULT_TERM
line filename / context / line
1 1009 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"amiga"
2 1013 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"win32"
3 1017 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"pcterm"
4 1021 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"ansi"
5 1025 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"vt52"
6 1029 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"os2ansi"
7 1033 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"ansi"
8 1037 vim-5.1-gtk/src/term.c <<GLOBAL>>

undef DEFAULT_TERM
9 1038 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"beos-ansi"
10 1042 vim-5.1-gtk/src/term.c <<GLOBAL>>

#define DEFAULT_TERM (char_u *)"mac-ansi"
11 1335 vim-5.1-gtk/src/term.c <<set_termname>>

term = DEFAULT_TERM;
12 1459 vim-5.1-gtk/src/term.c <<set_termname>>

if_cscop.txt — 1975

if (STRCMP(term, DEFAULT_TERM))
13 1826 vim-5.1-gtk/src/term.c <<termcapinit>>

term = DEFAULT_TERM;
14 1833 vim-5.1-gtk/src/term.c <<termcapinit>>

term = DEFAULT_TERM;
15 3635 vim-5.1-gtk/src/term.c <<update_tcap>>

p = find_builtin_term(DEFAULT_TERM);
Enter nr of choice (<CR> to abort):

The output shows several pieces of information:
1. The tag number (there are 15 in this example).
2. The line number where the tag occurs.
3. The filename where the tag occurs.
4. The context of the tag (e.g., global, or the function name).
5. The line from the file itself.

help : Show a brief synopsis.

USAGE :cs help

E261
kill : Kill a cscope connection (or kill all cscope connections).

USAGE :cs kill {num|partial_name}

To kill a cscope connection, the connection number or a partial
name must be specified. The partial name is simply any part of
the pathname of the cscope database. Kill a cscope connection
using the partial name with caution!

If the specified connection number is -1, then _ALL_ cscope
connections will be killed.

reset : Reinit all cscope connections.

USAGE :cs reset

show : Show cscope connections.

USAGE :cs show

:lcscope :lcs
This command is same as the ":cscope" command, except when the
'cscopequickfix' option is set, the location list for the current window is
used instead of the quickfix list to show the cscope results.

:cstag E257 E562
If you use cscope as well as ctags, :cstag allows you to search one or
the other before making a jump. For example, you can choose to first
search your cscope database(s) for a match, and if one is not found, then
your tags file(s) will be searched. The order in which this happens
is determined by the value of csto . See cscope-options for more
details.

:cstag performs the equivalent of ":cs find g" on the identifier when
searching through the cscope database(s).

:cstag performs the equivalent of :tjump on the identifier when searching
through your tags file(s).

if_cscop.txt — 1976

==
3. Cscope options cscope-options

Use the :set command to set all cscope options. Ideally, you would do
this in one of your startup files (e.g., .vimrc). Some cscope related
variables are only valid within .vimrc . Setting them after vim has
started will have no effect!

cscopeprg csprg
'cscopeprg' specifies the command to execute cscope. The default is
"cscope". For example:

:set csprg=/usr/local/bin/cscope

cscopequickfix csqf E469
{not available when compiled without the |+quickfix| feature}
'cscopequickfix' specifies whether to use quickfix window to show cscope
results. This is a list of comma-separated values. Each item consists of
cscope-find command (s, g, d, c, t, e, f, i or a) and flag (+, - or 0).

'+' indicates that results must be appended to quickfix window,
'-' implies previous results clearance, '0' or command absence - don't use
quickfix. Search is performed from start until first command occurrence.
The default value is "" (don't use quickfix anyway). The following value
seems to be useful:

:set cscopequickfix=s-,c-,d-,i-,t-,e-,a-

cscopetag cst
If 'cscopetag' is set, the commands ":tag" and CTRL-] as well as "vim -t"
will always use :cstag instead of the default :tag behavior. Effectively,
by setting 'cst', you will always search your cscope databases as well as
your tag files. The default is off. Examples:

:set cst
:set nocst

cscoperelative csre
If 'cscoperelative' is set, then in absence of a prefix given to cscope
(prefix is the argument of -P option of cscope), basename of cscope.out
location (usually the project root directory) will be used as the prefix
to construct an absolute path. The default is off. Note: This option is
only effective when cscope (cscopeprg) is initialized without a prefix
path (-P). Examples:

:set csre
:set nocsre

cscopetagorder csto
The value of 'csto' determines the order in which :cstag performs a search.
If 'csto' is set to zero, cscope database(s) are searched first, followed
by tag file(s) if cscope did not return any matches. If 'csto' is set to
one, tag file(s) are searched before cscope database(s). The default is zero.
Examples:

:set csto=0
:set csto=1

cscopeverbose csverb
If 'cscopeverbose' is not set (the default), messages will not be printed
indicating success or failure when adding a cscope database. Ideally, you
should reset this option in your .vimrc before adding any cscope databases,
and after adding them, set it. From then on, when you add more databases
within Vim, you will get a (hopefully) useful message should the database fail
to be added. Examples:

if_cscop.txt — 1977

:set csverb
:set nocsverb

cscopepathcomp cspc
The value of 'cspc' determines how many components of a file's path to
display. With the default value of zero the entire path will be displayed.
The value one will display only the filename with no path. Other values
display that many components. For example:

:set cspc=3
will display the last 3 components of the file's path, including the file
name itself.

==
4. How to use cscope in Vim cscope-howtouse

The first thing you need to do is to build a cscope database for your
source files. For the most basic case, simply do "cscope -b". Please
refer to the cscope man page for more details.

Assuming you have a cscope database, you need to "add" the database to Vim.
This establishes a cscope "connection" and makes it available for Vim to use.
You can do this in your .vimrc file, or you can do it manually after starting
vim. For example, to add the cscope database "cscope.out", you would do:

:cs add cscope.out

You can double-check the result of this by executing ":cs show". This will
produce output which looks like this:

pid database name prepend path
0 28806 cscope.out <none>

Note:
Because of the Microsoft RTL limitations, Win32 version shows 0 instead
of the real pid.

Once a cscope connection is established, you can make queries to cscope and
the results will be printed to you. Queries are made using the command
":cs find". For example:

:cs find g ALIGN_SIZE

This can get a little cumbersome since one ends up doing a significant
amount of typing. Fortunately, there are ways around this by mapping
shortcut keys. See cscope-suggestions for suggested usage.

If the results return only one match, you will automatically be taken to it.
If there is more than one match, you will be given a selection screen to pick
the match you want to go to. After you have jumped to the new location,
simply hit Ctrl-T to get back to the previous one.

==
5. Limitations cscope-limitations

Cscope support for Vim is only available on systems that support these four
system calls: fork(), pipe(), execl(), waitpid(). This means it is mostly
limited to Unix systems.

Additionally Cscope support works for Win32. For more information and a

if_cscop.txt — 1978

cscope version for Win32 see:

http://iamphet.nm.ru/cscope/index.html

The DJGPP-built version from http://cscope.sourceforge.net is known to not
work with Vim.

Hard-coded limitation: doing a :tjump when :cstag searches the tag files
is not configurable (e.g., you can't do a tselect instead).

==
6. Suggested usage cscope-suggestions

Put these entries in your .vimrc (adjust the pathname accordingly to your
setup):

if has("cscope")
set csprg=/usr/local/bin/cscope
set csto=0
set cst
set nocsverb
" add any database in current directory
if filereadable("cscope.out")

cs add cscope.out
" else add database pointed to by environment
elseif $CSCOPE_DB != ""

cs add $CSCOPE_DB
endif
set csverb

endif

By setting 'cscopetag', we have effectively replaced all instances of the :tag
command with :cstag. This includes :tag, Ctrl-], and "vim -t". In doing
this, the regular tag command not only searches your ctags generated tag
files, but your cscope databases as well.

Some users may want to keep the regular tag behavior and have a different
shortcut to access :cstag. For example, one could map Ctrl-_ (underscore)
to :cstag with the following command:

map <C-_> :cstag <C-R>=expand("<cword>")<CR><CR>

A couple of very commonly used cscope queries (using ":cs find") is to
find all functions calling a certain function and to find all occurrences
of a particular C symbol. To do this, you can use these mappings as an
example:

map g<C-]> :cs find 3 <C-R>=expand("<cword>")<CR><CR>
map g<C-\> :cs find 0 <C-R>=expand("<cword>")<CR><CR>

These mappings for Ctrl-] (right bracket) and Ctrl-\ (backslash) allow you to
place your cursor over the function name or C symbol and quickly query cscope
for any matches.

Or you may use the following scheme, inspired by Vim/Cscope tutorial from
Cscope Home Page (http://cscope.sourceforge.net/):

nmap <C-_>s :cs find s <C-R>=expand("<cword>")<CR><CR>
nmap <C-_>g :cs find g <C-R>=expand("<cword>")<CR><CR>
nmap <C-_>c :cs find c <C-R>=expand("<cword>")<CR><CR>

if_cscop.txt — 1979

http://iamphet.nm.ru/cscope/index.html
http://cscope.sourceforge.net

nmap <C-_>t :cs find t <C-R>=expand("<cword>")<CR><CR>
nmap <C-_>e :cs find e <C-R>=expand("<cword>")<CR><CR>
nmap <C-_>f :cs find f <C-R>=expand("<cfile>")<CR><CR>
nmap <C-_>i :cs find i ^<C-R>=expand("<cfile>")<CR>$<CR>
nmap <C-_>d :cs find d <C-R>=expand("<cword>")<CR><CR>
nmap <C-_>a :cs find a <C-R>=expand("<cword>")<CR><CR>

" Using 'CTRL-spacebar' then a search type makes the vim window
" split horizontally, with search result displayed in
" the new window.

nmap <C-Space>s :scs find s <C-R>=expand("<cword>")<CR><CR>
nmap <C-Space>g :scs find g <C-R>=expand("<cword>")<CR><CR>
nmap <C-Space>c :scs find c <C-R>=expand("<cword>")<CR><CR>
nmap <C-Space>t :scs find t <C-R>=expand("<cword>")<CR><CR>
nmap <C-Space>e :scs find e <C-R>=expand("<cword>")<CR><CR>
nmap <C-Space>f :scs find f <C-R>=expand("<cfile>")<CR><CR>
nmap <C-Space>i :scs find i ^<C-R>=expand("<cfile>")<CR>$<CR>
nmap <C-Space>d :scs find d <C-R>=expand("<cword>")<CR><CR>
nmap <C-Space>a :scs find a <C-R>=expand("<cword>")<CR><CR>

" Hitting CTRL-space *twice* before the search type does a vertical
" split instead of a horizontal one

nmap <C-Space><C-Space>s
\:vert scs find s <C-R>=expand("<cword>")<CR><CR>

nmap <C-Space><C-Space>g
\:vert scs find g <C-R>=expand("<cword>")<CR><CR>

nmap <C-Space><C-Space>c
\:vert scs find c <C-R>=expand("<cword>")<CR><CR>

nmap <C-Space><C-Space>t
\:vert scs find t <C-R>=expand("<cword>")<CR><CR>

nmap <C-Space><C-Space>e
\:vert scs find e <C-R>=expand("<cword>")<CR><CR>

nmap <C-Space><C-Space>i
\:vert scs find i ^<C-R>=expand("<cfile>")<CR>$<CR>

nmap <C-Space><C-Space>d
\:vert scs find d <C-R>=expand("<cword>")<CR><CR>

nmap <C-Space><C-Space>a
\:vert scs find a <C-R>=expand("<cword>")<CR><CR>

==
7. Cscope availability and information cscope-info

If you do not already have cscope (it did not come with your compiler
license or OS distribution), then you can download it for free from:

http://cscope.sourceforge.net/
This is released by SCO under the BSD license.

In Solaris 2.x, if you have the C compiler license, you will also have
cscope. Both are usually located under /opt/SUNWspro/bin

There is source to an older version of a cscope clone (called "cs") available
on the net. Due to various reasons, this is not supported with Vim.

The cscope interface/support for Vim was originally written by
Andy Kahn <ackahn@netapp.com>. The original structure (as well as a tiny
bit of code) was adapted from the cscope interface in nvi.

cscope-win32
For a cscope version for Win32 see (seems abandoned):

if_cscop.txt — 1980

http://cscope.sourceforge.net/

https://code.google.com/archive/p/cscope-win32/

Win32 support was added by Sergey Khorev <sergey.khorev@gmail.com>. Contact
him if you have Win32-specific issues.

if_cscop.txt — 1981

https://code.google.com/archive/p/cscope-win32/

if_cscop.txt — 1982

if_lua.txt For Vim version 9.1. Last change: 2021 Aug 06

VIM REFERENCE MANUAL by Luis Carvalho

The Lua Interface to Vim lua Lua

1. Commands lua-commands
2. The vim module lua-vim
3. List userdata lua-list
4. Dict userdata lua-dict
5. Blob userdata lua-blob
6. Funcref userdata lua-funcref
7. Buffer userdata lua-buffer
8. Window userdata lua-window
9. luaeval() Vim function lua-luaeval
10. Dynamic loading lua-dynamic

{only available when Vim was compiled with the |+lua| feature}

==
1. Commands lua-commands

:lua
:[range]lua {chunk}

Execute Lua chunk {chunk}.

Examples:

:lua print("Hello, Vim!")
:lua local curbuf = vim.buffer() curbuf[7] = "line #7"

:[range]lua << [trim] [{endmarker}]
{script}
{endmarker}

Execute Lua script {script}.
Note: This command doesn't work when the Lua
feature wasn't compiled in. To avoid errors, see
script-here .

If [endmarker] is omitted from after the "<<", a dot '.' must be used after
{script}, like for the :append and :insert commands. Refer to
:let-heredoc for more information.

This form of the :lua command is mainly useful for including Lua code
in Vim scripts.

Example:

function! CurrentLineInfo()
lua << EOF
local linenr = vim.window().line
local curline = vim.buffer()[linenr]
print(string.format("Current line [%d] has %d chars",

linenr, #curline))
EOF
endfunction

if_lua.txt — 1983

To see what version of Lua you have:
:lua print(_VERSION)

If you use LuaJIT you can also use this:
:lua print(jit.version)

:luado
:[range]luado {body} Execute Lua function "function (line, linenr) {body}

end" for each line in the [range], with the function
argument being set to the text of each line in turn,
without a trailing <EOL>, and the current line number.
If the value returned by the function is a string it
becomes the text of the line in the current turn. The
default for [range] is the whole file: "1,$".

Examples:

:luado return string.format("%s\t%d", line:reverse(), #line)

:lua require"lpeg"
:lua -- balanced parenthesis grammar:
:lua bp = lpeg.P{ "(" * ((1 - lpeg.S"()") + lpeg.V(1))^0 * ")" }
:luado if bp:match(line) then return "-->\t" .. line end

:luafile
:[range]luafile {file}

Execute Lua script in {file}.
The whole argument is used as a single file name.

Examples:

:luafile script.lua
:luafile %

All these commands execute a Lua chunk from either the command line (:lua and
:luado) or a file (:luafile) with the given line [range]. Similarly to the Lua
interpreter, each chunk has its own scope and so only global variables are
shared between command calls. All Lua default libraries are available. In
addition, Lua "print" function has its output redirected to the Vim message
area, with arguments separated by a white space instead of a tab.

Lua uses the "vim" module (see lua-vim) to issue commands to Vim
and manage buffers (lua-buffer) and windows (lua-window). However,
procedures that alter buffer content, open new buffers, and change cursor
position are restricted when the command is executed in the sandbox .

==
2. The vim module lua-vim

Lua interfaces Vim through the "vim" module. The first and last line of the
input range are stored in "vim.firstline" and "vim.lastline" respectively. The
module also includes routines for buffer, window, and current line queries,
Vim evaluation and command execution, and others.

vim.list([arg]) Returns an empty list or, if "arg" is a Lua
table with numeric keys 1, ..., n (a

if_lua.txt — 1984

"sequence"), returns a list l such that l[i] =
arg[i] for i = 1, ..., n (see List).
Non-numeric keys are not used to initialize
the list. See also lua-eval for conversion
rules. Example:

:lua t = {math.pi, false, say = 'hi'}
:echo luaeval('vim.list(t)')
:" [3.141593, v:false], 'say' is ignored

vim.dict([arg]) Returns an empty dictionary or, if "arg" is a
Lua table, returns a dict d such that d[k] =
arg[k] for all string keys k in "arg" (see
Dictionary). Number keys are converted to

strings. Keys that are not strings are not
used to initialize the dictionary. See also
lua-eval for conversion rules. Example:

:lua t = {math.pi, false, say = 'hi'}
:echo luaeval('vim.dict(t)')
:" {'1': 3.141593, '2': v:false,
:" 'say': 'hi'}

vim.blob([arg]) Returns an empty blob or, if "arg" is a Lua
string, returns a blob b such that b is
equivalent to "arg" as a byte string.
Examples:

:lua s = "12ab\x00\x80\xfe\xff"
:echo luaeval('vim.blob(s)')
:" 0z31326162.0080FEFF

vim.funcref({name}) Returns a Funcref to function {name} (see
Funcref). It is equivalent to Vim's

function().

vim.buffer([arg]) If "arg" is a number, returns buffer with
number "arg" in the buffer list or, if "arg"
is a string, returns buffer whose full or short
name is "arg". In both cases, returns 'nil'
(nil value, not string) if the buffer is not
found. Otherwise, if "toboolean(arg)" is
'true' returns the first buffer in the buffer
list or else the current buffer.

vim.window([arg]) If "arg" is a number, returns window with
number "arg" or 'nil' (nil value, not string)
if not found. Otherwise, if "toboolean(arg)"
is 'true' returns the first window or else the
current window.

vim.type({arg}) Returns the type of {arg}. It is equivalent to
Lua's "type" function, but returns "list",
"dict", "funcref", "buffer", or "window" if
{arg} is a list, dictionary, funcref, buffer,
or window, respectively. Examples:

:lua l = vim.list()
:lua print(type(l), vim.type(l))
:" list

vim.command({cmds}) Executes one or more lines of Ex-mode commands
in {cmds}.
Examples:

if_lua.txt — 1985

:lua vim.command"set tw=60"
:lua vim.command"normal ddp"
lua << trim END
vim.command([[

new Myfile.js
call search('start')

]])
END

vim.eval({expr}) Evaluates expression {expr} (see expression),
converts the result to Lua, and returns it.
Vim strings and numbers are directly converted
to Lua strings and numbers respectively. Vim
lists and dictionaries are converted to Lua
userdata (see lua-list and lua-dict).
Examples:

:lua tw = vim.eval"&tw"
:lua print(vim.eval"{'a': 'one'}".a)

vim.line() Returns the current line (without the trailing
<EOL>), a Lua string.

vim.beep() Beeps.

vim.open({fname}) Opens a new buffer for file {fname} and
returns it. Note that the buffer is not set as
current.

vim.call({name} [, {args}])
Proxy to call Vim function named {name} with
arguments {args}. Example:

:lua print(vim.call('has', 'timers'))

vim.fn Proxy to call Vim functions. Proxy methods are
created on demand. Example:

:lua print(vim.fn.has('timers'))

vim.lua_version The Lua version Vim was compiled with, in the
form {major}.{minor}.{patch}, e.g. "5.1.4".

vim.version() Returns a Lua table with the Vim version.
The table will have the following keys:

major - major Vim version.
minor - minor Vim version.
patch - latest patch included.

lua-vim-variables
The Vim editor global dictionaries g: w: b: t: v: can be accessed
from Lua conveniently and idiomatically by referencing the `vim.*` Lua tables
described below. In this way you can easily read and modify global Vim script
variables from Lua.

Example:

vim.g.foo = 5 -- Set the g:foo Vim script variable.
print(vim.g.foo) -- Get and print the g:foo Vim script variable.
vim.g.foo = nil -- Delete (:unlet) the Vim script variable.

vim.g vim.g
Global (g:) editor variables.

if_lua.txt — 1986

Key with no value returns `nil`.

vim.b vim.b
Buffer-scoped (b:) variables for the current buffer.
Invalid or unset key returns `nil`.

vim.w vim.w
Window-scoped (w:) variables for the current window.
Invalid or unset key returns `nil`.

vim.t vim.t
Tabpage-scoped (t:) variables for the current tabpage.
Invalid or unset key returns `nil`.

vim.v vim.v
v: variables.

Invalid or unset key returns `nil`.

==
3. List userdata lua-list

List userdata represent vim lists, and the interface tries to follow closely
Vim's syntax for lists. Since lists are objects, changes in list references in
Lua are reflected in Vim and vice-versa. A list "l" has the following
properties and methods:

NOTE: In patch 8.2.1066 array indexes were changed from zero-based to
one-based. You can check with:

if has("patch-8.2.1066")

Properties

o "#l" is the number of items in list "l", equivalent to "len(l)"
in Vim.

o "l[k]" returns the k-th item in "l"; "l" is one-indexed, as in Lua.
To modify the k-th item, simply do "l[k] = newitem"; in
particular, "l[k] = nil" removes the k-th item from "l". Item can
be added to the end of the list by "l[#l + 1] = newitem"

o "l()" returns an iterator for "l".
o "table.insert(l, newitem)" inserts an item at the end of the list.

(only Lua 5.3 and later)
o "table.insert(l, position, newitem)" inserts an item at the

specified position. "position" is one-indexed. (only Lua 5.3 and
later)

o "table.remove(l, position)" removes an item at the specified
position. "position" is one-indexed.

Methods

o "l:add(item)" appends "item" to the end of "l".
o "l:insert(item[, pos])" inserts "item" at (optional)

position "pos" in the list. The default value for "pos" is 0.

Examples:

:let l = [1, 'item']
:lua l = vim.eval('l') -- same 'l'
:lua l:add(vim.list())
:lua l[1] = math.pi

if_lua.txt — 1987

:echo l[0] " 3.141593
:lua l[1] = nil -- remove first item
:lua l:insert(true, 1)
:lua print(l, #l, l[1], l[2])
:lua l[#l + 1] = 'value'
:lua table.insert(l, 100)
:lua table.insert(l, 2, 200)
:lua table.remove(l, 1)
:lua for item in l() do print(item) end

==
4. Dict userdata lua-dict

Similarly to list userdata, dict userdata represent vim dictionaries; since
dictionaries are also objects, references are kept between Lua and Vim. A dict
"d" has the following properties:

Properties

o "#d" is the number of items in dict "d", equivalent to "len(d)"
in Vim.

o "d.key" or "d['key']" returns the value at entry "key" in "d".
To modify the entry at this key, simply do "d.key = newvalue"; in
particular, "d.key = nil" removes the entry from "d".

o "d()" returns an iterator for "d" and is equivalent to "items(d)" in
Vim.

Examples:

:let d = {'n':10}
:lua d = vim.eval('d') -- same 'd'
:lua print(d, d.n, #d)
:let d.self = d
:lua for k, v in d() do print(d, k, v) end
:lua d.x = math.pi
:lua d.self = nil -- remove entry
:echo d

==
5. Blob userdata lua-blob

Blob userdata represent vim blobs. A blob "b" has the following properties:

Properties

o "#b" is the length of blob "b", equivalent to "len(b)" in Vim.
o "b[k]" returns the k-th item in "b"; "b" is zero-indexed, as in Vim.

To modify the k-th item, simply do "b[k] = number"; in particular,
"b[#b] = number" can append a byte to tail.

Methods

o "b:add(bytes)" appends "bytes" to the end of "b".

Examples:

:let b = 0z001122
:lua b = vim.eval('b') -- same 'b'
:lua print(b, b[0], #b)

if_lua.txt — 1988

:lua b[1] = 32
:lua b[#b] = 0x33 -- append a byte to tail
:lua b:add("\x80\x81\xfe\xff")
:echo b

==
6. Funcref userdata lua-funcref

Funcref userdata represent funcref variables in Vim. Funcrefs that were
defined with a "dict" attribute need to be obtained as a dictionary key
in order to have "self" properly assigned to the dictionary (see examples
below.) A funcref "f" has the following properties:

Properties

o "#f" is the name of the function referenced by "f"
o "f(...)" calls the function referenced by "f" (with arguments)

Examples:

:function I(x)
: return a:x
: endfunction
:let R = function('I')
:lua i1 = vim.funcref('I')
:lua i2 = vim.eval('R')
:lua print(#i1, #i2) -- both 'I'
:lua print(i1, i2, #i2(i1) == #i1(i2))
:function Mylen() dict
: return len(self.data)
: endfunction
:let mydict = {'data': [0, 1, 2, 3]}
:lua d = vim.eval('mydict'); d.len = vim.funcref('Mylen')
:echo mydict.len()
:lua l = d.len -- assign d as 'self'
:lua print(l())

Lua functions and closures are automatically converted to a Vim Funcref and
can be accessed in Vim scripts. Example:

lua <<EOF
vim.fn.timer_start(1000, function(timer)

print('timer callback')
end)
EOF

==
7. Buffer userdata lua-buffer

Buffer userdata represent vim buffers. A buffer userdata "b" has the following
properties and methods:

Properties

o "b()" sets "b" as the current buffer.
o "#b" is the number of lines in buffer "b".
o "b[k]" represents line number k: "b[k] = newline" replaces line k

with string "newline" and "b[k] = nil" deletes line k.
o "b.name" contains the short name of buffer "b" (read-only).

if_lua.txt — 1989

o "b.fname" contains the full name of buffer "b" (read-only).
o "b.number" contains the position of buffer "b" in the buffer list

(read-only).

Methods

o "b:insert(newline[, pos])" inserts string "newline" at (optional)
position "pos" in the buffer. The default value for "pos" is
"#b + 1". If "pos == 0" then "newline" becomes the first line in
the buffer.

o "b:next()" returns the buffer next to "b" in the buffer list.
o "b:previous()" returns the buffer previous to "b" in the buffer

list.
o "b:isvalid()" returns 'true' (boolean) if buffer "b" corresponds to

a "real" (not freed from memory) Vim buffer.

Examples:

:lua b = vim.buffer() -- current buffer
:lua print(b.name, b.number)
:lua b[1] = "first line"
:lua b:insert("FIRST!", 0)
:lua b[1] = nil -- delete top line
:lua for i=1,3 do b:insert(math.random()) end
:3,4lua for i=vim.lastline,vim.firstline,-1 do b[i] = nil end
:lua vim.open"myfile"() -- open buffer and set it as current

function! ListBuffers()
lua << EOF
local b = vim.buffer(true) -- first buffer in list
while b ~= nil do

print(b.number, b.name, #b)
b = b:next()

end
vim.beep()
EOF
endfunction

==
8. Window userdata lua-window

Window objects represent vim windows. A window userdata "w" has the following
properties and methods:

Properties

o "w()" sets "w" as the current window.
o "w.buffer" contains the buffer of window "w" (read-only).
o "w.line" represents the cursor line position in window "w".
o "w.col" represents the cursor column position in window "w".
o "w.width" represents the width of window "w".
o "w.height" represents the height of window "w".

Methods

o "w:next()" returns the window next to "w".
o "w:previous()" returns the window previous to "w".
o "w:isvalid()" returns 'true' (boolean) if window "w" corresponds to

a "real" (not freed from memory) Vim window.

if_lua.txt — 1990

Examples:

:lua w = vim.window() -- current window
:lua print(w.buffer.name, w.line, w.col)
:lua w.width = w.width + math.random(10)
:lua w.height = 2 * math.random() * w.height
:lua n,w = 0,vim.window(true) while w~=nil do n,w = n + 1,w:next() end
:lua print("There are " .. n .. " windows")

==
9. luaeval() Vim function lua-luaeval lua-eval

The (dual) equivalent of "vim.eval" for passing Lua values to Vim is
"luaeval". "luaeval" takes an expression string and an optional argument and
returns the result of the expression. It is semantically equivalent in Lua to:

local chunkheader = "local _A = select(1, ...) return "
function luaeval (expstr, arg)

local chunk = assert(loadstring(chunkheader .. expstr, "luaeval"))
return chunk(arg) -- return typval

end

Note that "_A" receives the argument to "luaeval". Lua numbers, strings, and
list, dict, blob, and funcref userdata are converted to their Vim respective
types, while Lua booleans are converted to numbers. An error is thrown if
conversion of any of the remaining Lua types, including userdata other than
lists, dicts, blobs, and funcrefs, is attempted.

Examples:

:echo luaeval('math.pi')
:lua a = vim.list():add('newlist')
:let a = luaeval('a')
:echo a[0] " 'newlist'
:function Rand(x,y) " random uniform between x and y
: return luaeval('(_A.y-_A.x)*math.random()+_A.x', {'x':a:x,'y':a:y})
: endfunction
:echo Rand(1,10)

==
10. Dynamic loading lua-dynamic

On MS-Windows and Unix the Lua library can be loaded dynamically. The
:version output then includes +lua/dyn .

This means that Vim will search for the Lua DLL or shared library file only
when needed. When you don't use the Lua interface you don't need it, thus
you can use Vim without this file.

MS-Windows

To use the Lua interface the Lua DLL must be in your search path. In a
console window type "path" to see what directories are used. The 'luadll'
option can be also used to specify the Lua DLL. The version of the DLL must
match the Lua version Vim was compiled with.

if_lua.txt — 1991

Unix

The 'luadll' option can be used to specify the Lua shared library file instead
of DYNAMIC_LUA_DLL file what was specified at compile time. The version of
the shared library must match the Lua version Vim was compiled with.

==

if_lua.txt — 1992

if_mzsch.txt For Vim version 9.1. Last change: 2020 Oct 14

VIM REFERENCE MANUAL by Sergey Khorev

The MzScheme Interface to Vim mzscheme MzScheme

1. Commands mzscheme-commands
2. Examples mzscheme-examples
3. Threads mzscheme-threads
4. Vim access from MzScheme mzscheme-vim
5. mzeval() Vim function mzscheme-mzeval
6. Using Function references mzscheme-funcref
7. Dynamic loading mzscheme-dynamic
8. MzScheme setup mzscheme-setup

{only available when Vim was compiled with the |+mzscheme| feature}

Based on the work of Brent Fulgham.
Dynamic loading added by Sergey Khorev

MzScheme and PLT Scheme names have been rebranded as Racket. For more
information please check http://racket-lang.org

Futures and places of Racket version 5.x up to and including 5.3.1 do not
work correctly with processes created by Vim.
The simplest solution is to build Racket on your own with these features
disabled:

./configure --disable-futures --disable-places --prefix=your-install-prefix

To speed up the process, you might also want to use --disable-gracket and
--disable-docs

==
1. Commands mzscheme-commands

:mzscheme :mz
:[range]mz[scheme] {stmt}

Execute MzScheme statement {stmt}.

:[range]mz[scheme] << [trim] [{endmarker}]
{script}
{endmarker}

Execute inlined MzScheme script {script}.
Note: This command doesn't work when the MzScheme
feature wasn't compiled in. To avoid errors, see
script-here .

If [endmarker] is omitted from after the "<<", a dot
'.' must be used after {script}, like for the
:append and :insert commands. Refer to
:let-heredoc for more information.

:mzfile :mzf
:[range]mzf[ile] {file} Execute the MzScheme script in {file}.

All of these commands do essentially the same thing - they execute a piece of
MzScheme code, with the "current range" set to the given line

if_mzsch.txt — 1993

http://racket-lang.org

range.

In the case of :mzscheme, the code to execute is in the command-line.
In the case of :mzfile, the code to execute is the contents of the given file.

MzScheme interface defines exception exn:vim, derived from exn.
It is raised for various Vim errors.

During compilation, the MzScheme interface will remember the current MzScheme
collection path. If you want to specify additional paths use the
'current-library-collection-paths' parameter. E.g., to cons the user-local
MzScheme collection path:

:mz << EOF
(current-library-collection-paths

(cons
(build-path (find-system-path 'addon-dir) (version) "collects")
(current-library-collection-paths)))

EOF

All functionality is provided through module vimext.

The exn:vim is available without explicit import.

To avoid clashes with MzScheme, consider using prefix when requiring module,
e.g.:

:mzscheme (require (prefix vim- vimext))

All the examples below assume this naming scheme.

mzscheme-sandbox
When executed in the sandbox , access to some filesystem and Vim interface
procedures is restricted.

==
2. Examples mzscheme-examples

:mzscheme (display "Hello")
:mz (display (string-append "Using MzScheme version " (version)))
:mzscheme (require (prefix vim- vimext)) ; for MzScheme < 4.x
:mzscheme (require (prefix-in vim- 'vimext)) ; MzScheme 4.x
:mzscheme (vim-set-buff-line 10 "This is line #10")

To see what version of MzScheme you have:
:mzscheme (display (version))

Inline script usage:
function! <SID>SetFirstLine()

:mz << EOF
(display "!!!")
(require (prefix vim- vimext))
; for newer versions (require (prefix-in vim- 'vimext))
(vim-set-buff-line 1 "This is line #1")
(vim-beep)

EOF
endfunction

nmap <F9> :call <SID>SetFirstLine() <CR>

File execution:

if_mzsch.txt — 1994

:mzfile supascript.scm

Vim exception handling:
:mz << EOF
(require (prefix vim- vimext))
; for newer versions (require (prefix-in vim- 'vimext))
(with-handlers

([exn:vim? (lambda (e) (display (exn-message e)))])
(vim-eval "nonsense-string"))

EOF

Auto-instantiation of vimext module (can be placed in your vimrc):
function! MzRequire()

:redir => l:mzversion
:mz (version)
:redir END
if strpart(l:mzversion, 1, 1) < "4"

" MzScheme versions < 4.x:
:mz (require (prefix vim- vimext))

else
" newer versions:
:mz (require (prefix-in vim- 'vimext))

endif
endfunction

if has("mzscheme")
silent call MzRequire()

endif

==
3. Threads mzscheme-threads

The MzScheme interface supports threads. They are independent from OS threads,
thus scheduling is required. The option 'mzquantum' determines how often
Vim should poll for available MzScheme threads.
NOTE
Thread scheduling in the console version of Vim is less reliable than in the
GUI version.

==
4. Vim access from MzScheme mzscheme-vim

mzscheme-vimext
The 'vimext' module provides access to procedures defined in the MzScheme
interface.

Common

(command {command-string}) Perform the vim ":Ex" style command.
(eval {expr-string}) Evaluate the vim expression into

respective MzScheme object: Lists are
represented as Scheme lists,
Dictionaries as hash tables,
Funcref s as functions (see also
mzscheme-funcref)

NOTE the name clashes with MzScheme eval,
use module qualifiers to overcome this.

(range-start) Start/End of the range passed with
(range-end) the Scheme command.
(beep) beep

if_mzsch.txt — 1995

(get-option {option-name} [buffer-or-window]) Get Vim option value (either
local or global, see set-option).

(set-option {string} [buffer-or-window])
Set a Vim option. String must have option
setting form (like optname=optval, or
optname+=optval, etc.) When called with
{buffer} or {window} the local option will
be set. The symbol 'global can be passed
as {buffer-or-window}. Then :setglobal
will be used.

Buffers mzscheme-buffer

(buff? {object}) Is object a buffer?
(buff-valid? {object}) Is object a valid buffer? (i.e.

corresponds to the real Vim buffer)
(get-buff-line {linenr} [buffer])

Get line from a buffer.
(set-buff-line {linenr} {string} [buffer])

Set a line in a buffer. If {string} is #f,
the line gets deleted. The [buffer]
argument is optional. If omitted, the
current buffer will be used.

(get-buff-line-list {start} {end} [buffer])
Get a list of lines in a buffer. {Start}
and {end} are 1-based and inclusive.

(set-buff-line-list {start} {end} {string-list} [buffer])
Set a list of lines in a buffer. If
string-list is #f or null, the lines get
deleted. If a list is shorter than
{end}-{start} the remaining lines will
be deleted.

(get-buff-name [buffer]) Get a buffer's text name.
(get-buff-num [buffer]) Get a buffer's number.
(get-buff-size [buffer]) Get buffer line count.
(insert-buff-line-list {linenr} {string/string-list} [buffer])

Insert a list of lines into a buffer after
{linenr}. If {linenr} is 0, lines will be
inserted at start.

(curr-buff) Get the current buffer. Use other MzScheme
interface procedures to change it.

(buff-count) Get count of total buffers in the editor.
(get-next-buff [buffer]) Get next buffer.
(get-prev-buff [buffer]) Get previous buffer. Return #f when there

are no more buffers.
(open-buff {filename}) Open a new buffer (for file "name")
(get-buff-by-name {buffername}) Get a buffer by its filename or #f

if there is no such buffer.
(get-buff-by-num {buffernum}) Get a buffer by its number (return #f if

there is no buffer with this number).

Windows mzscheme-window

(win? {object}) Is object a window?
(win-valid? {object}) Is object a valid window (i.e. corresponds

to the real Vim window)?
(curr-win) Get the current window.
(win-count) Get count of windows.
(get-win-num [window]) Get window number.
(get-win-by-num {windownum}) Get window by its number.

if_mzsch.txt — 1996

(get-win-buffer [window]) Get the buffer for a given window.
(get-win-height [window])
(set-win-height {height} [window]) Get/Set height of window.
(get-win-width [window])
(set-win-width {width} [window])Get/Set width of window.
(get-win-list [buffer]) Get list of windows for a buffer.
(get-cursor [window]) Get cursor position in a window as

a pair (linenr . column).
(set-cursor (line . col) [window]) Set cursor position.

==
5. mzeval() Vim function mzscheme-mzeval

To facilitate bi-directional interface, you can use mzeval() function to
evaluate MzScheme expressions and pass their values to Vim script.

==
6. Using Function references mzscheme-funcref

MzScheme interface allows use of Funcref s so you can call Vim functions
directly from Scheme. For instance:

function! MyAdd2(arg)
return a:arg + 2

endfunction
mz (define f2 (vim-eval "function(\"MyAdd2\")"))
mz (f2 7)

or :
:mz (define indent (vim-eval "function('indent')"))
" return Vim indent for line 12
:mz (indent 12)

==
7. Dynamic loading mzscheme-dynamic E815

On MS-Windows the MzScheme libraries can be loaded dynamically. The :version
output then includes +mzscheme/dyn .

This means that Vim will search for the MzScheme DLL files only when needed.
When you don't use the MzScheme interface you don't need them, thus you can
use Vim without these DLL files.
NOTE: Newer version of MzScheme (Racket) require earlier (trampolined)
initialisation via scheme_main_setup. So Vim always loads the MzScheme DLL at
startup if possible. This may make Vim startup slower.

To use the MzScheme interface the MzScheme DLLs must be in your search path.
In a console window type "path" to see what directories are used.

On MS-Windows the options 'mzschemedll' and 'mzschemegcdll' are used for the
name of the library to load. The initial value is specified at build time.

The version of the DLL must match the MzScheme version Vim was compiled with.
For MzScheme version 209 they will be "libmzsch209_000.dll" and
"libmzgc209_000.dll". To know for sure look at the output of the ":version"
command, look for -DDYNAMIC_MZSCH_DLL="something" and
-DDYNAMIC_MZGC_DLL="something" in the "Compilation" info.

For example, if MzScheme (Racket) is installed at C:\Racket63, you may need
to set the environment variable as the following:

if_mzsch.txt — 1997

PATH=%PATH%;C:\Racket63\lib
PLTCOLLECTS=C:\Racket63\collects
PLTCONFIGDIR=C:\Racket63\etc

==
8. MzScheme setup mzscheme-setup E895

Vim requires "racket/base" module for if_mzsch core (fallback to "scheme/base"
if it doesn't exist), "r5rs" module for test and "raco ctool" command for
building Vim. If MzScheme did not have them, you can install them with
MzScheme's raco command:

raco pkg install scheme-lib # scheme/base module
raco pkg install r5rs-lib # r5rs module
raco pkg install cext-lib # raco ctool command

==

if_mzsch.txt — 1998

if_perl.txt For Vim version 9.1. Last change: 2023 May 14

VIM REFERENCE MANUAL by Sven Verdoolaege
and Matt Gerassimof

Perl and Vim perl Perl

1. Editing Perl files perl-editing
2. Compiling Vim with Perl interface perl-compiling
3. Using the Perl interface perl-using
4. Dynamic loading perl-dynamic

{only available when Vim was compiled with the |+perl| feature}

==
1. Editing Perl files perl-editing

Vim syntax highlighting supports Perl and POD files. Vim assumes a file is
Perl code if the filename has a .pl or .pm suffix. Vim also examines the first
line of a file, regardless of the filename suffix, to check if a file is a
Perl script (see scripts.vim in Vim's syntax directory). Vim assumes a file
is POD text if the filename has a .POD suffix.

To use tags with Perl, you need Universal/Exuberant Ctags. Look here:
Universal Ctags (preferred): https://ctags.io
Exuberant Ctags: http://ctags.sourceforge.net

Alternatively, you can use the Perl script pltags.pl, which is shipped with
Vim in the $VIMRUNTIME/tools directory. This script has currently more
features than Exuberant ctags' Perl support.

==
2. Compiling Vim with Perl interface perl-compiling

To compile Vim with Perl interface, you need Perl 5.004 (or later). Perl must
be installed before you compile Vim. Vim's Perl interface does NOT work with
the 5.003 version that has been officially released! It will probably work
with Perl 5.003_05 and later.

The Perl patches for Vim were made by:
Sven Verdoolaege <skimo@breughel.ufsia.ac.be>
Matt Gerassimof

Perl for MS-Windows (and other platforms) can be found at:
http://www.perl.org/

The ActiveState one should work, Strawberry Perl is a good alternative.

==
3. Using the Perl interface perl-using

:perl :pe
:pe[rl] {cmd} Execute Perl command {cmd}. The current package

is "main". Simple example to test if `:perl` is
working:

:perl VIM::Msg("Hello")

:pe[rl] << [trim] [{endmarker}]
{script}
{endmarker}

if_perl.txt — 1999

https://ctags.io
http://ctags.sourceforge.net
http://www.perl.org/

Execute Perl script {script}.
The {endmarker} after {script} must NOT be preceded by
any white space.

If [endmarker] is omitted, it defaults to a dot '.'
like for the :append and :insert commands. Using
'.' helps when inside a function, because "$i;" looks
like the start of an :insert command to Vim.

This form of the :perl command is mainly useful for
including perl code in vim scripts.
Note: This command doesn't work when the Perl feature
wasn't compiled in. To avoid errors, see
script-here .

Example vim script:

function! WhitePearl()
perl << EOF

VIM::Msg("pearls are nice for necklaces");
VIM::Msg("rubys for rings");
VIM::Msg("pythons for bags");
VIM::Msg("tcls????");

EOF
endfunction

To see what version of Perl you have:
:perl print $^V

:perldo :perld
:[range]perld[o] {cmd} Execute Perl command {cmd} for each line in the

[range], with $_ being set to the text of each line in
turn, without a trailing <EOL>. Setting $_ will change
the text, but note that it is not possible to add or
delete lines using this command.
The default for [range] is the whole file: "1,$".

Here are some things you can try:

:perl $a=1
:perldo $_ = reverse($_);1
:perl VIM::Msg("hello")
:perl $line = $curbuf->Get(42)

E299
Executing Perl commands in the sandbox is limited. ":perldo" will not be
possible at all. ":perl" will be evaluated in the Safe environment, if
possible.

perl-overview
Here is an overview of the functions that are available to Perl:

:perl VIM::Msg("Text") # displays a message
:perl VIM::Msg("Wrong!", "ErrorMsg") # displays an error message
:perl VIM::Msg("remark", "Comment") # displays a highlighted message
:perl VIM::SetOption("ai") # sets a vim option
:perl $nbuf = VIM::Buffers() # returns the number of buffers
:perl @buflist = VIM::Buffers() # returns array of all buffers

if_perl.txt — 2000

:perl $mybuf = (VIM::Buffers('qq.c'))[0] # returns buffer object for 'qq.c'
:perl @winlist = VIM::Windows() # returns array of all windows
:perl $nwin = VIM::Windows() # returns the number of windows
:perl ($success, $v) = VIM::Eval('&path') # $v: option 'path', $success: 1
:perl ($success, $v) = VIM::Eval('&xyz') # $v: '' and $success: 0
:perl $v = VIM::Eval('expand("<cfile>")') # expands <cfile>
:perl $curwin->SetHeight(10) # sets the window height
:perl @pos = $curwin->Cursor() # returns (row, col) array
:perl @pos = (10, 10)
:perl $curwin->Cursor(@pos) # sets cursor to @pos
:perl $curwin->Cursor(10,10) # sets cursor to row 10 col 10
:perl $mybuf = $curwin->Buffer() # returns the buffer object for window
:perl $curbuf->Name() # returns buffer name
:perl $curbuf->Number() # returns buffer number
:perl $curbuf->Count() # returns the number of lines
:perl $l = $curbuf->Get(10) # returns line 10
:perl @l = $curbuf->Get(1 .. 5) # returns lines 1 through 5
:perl $curbuf->Delete(10) # deletes line 10
:perl $curbuf->Delete(10, 20) # delete lines 10 through 20
:perl $curbuf->Append(10, "Line") # appends a line
:perl $curbuf->Append(10, "Line1", "Line2", "Line3") # appends 3 lines
:perl @l = ("L1", "L2", "L3")
:perl $curbuf->Append(10, @l) # appends L1, L2 and L3
:perl $curbuf->Set(10, "Line") # replaces line 10
:perl $curbuf->Set(10, "Line1", "Line2") # replaces lines 10 and 11
:perl $curbuf->Set(10, @l) # replaces 3 lines

perl-Msg
VIM::Msg({msg}, {group}?)

Displays the message {msg}. The optional {group}
argument specifies a highlight group for Vim to use
for the message.

perl-SetOption
VIM::SetOption({arg}) Sets a vim option. {arg} can be any argument that the

":set" command accepts. Note that this means that no
spaces are allowed in the argument! See :set .

perl-Buffers
VIM::Buffers([{bn}...]) With no arguments, returns a list of all the buffers

in an array context or returns the number of buffers
in a scalar context. For a list of buffer names or
numbers {bn}, returns a list of the buffers matching
{bn}, using the same rules as Vim's internal
bufname() function.

WARNING: the list becomes invalid when :bwipe is
used. Using it anyway may crash Vim.

perl-Windows
VIM::Windows([{wn}...]) With no arguments, returns a list of all the windows

in an array context or returns the number of windows
in a scalar context. For a list of window numbers
{wn}, returns a list of the windows with those
numbers.
WARNING: the list becomes invalid when a window is
closed. Using it anyway may crash Vim.

perl-DoCommand
VIM::DoCommand({cmd}) Executes Ex command {cmd}.

if_perl.txt — 2001

perl-Eval
VIM::Eval({expr}) Evaluates {expr} and returns (success, value) in list

context or just value in scalar context.
success=1 indicates that val contains the value of
{expr}; success=0 indicates a failure to evaluate
the expression. '@x' returns the contents of register
x, '&x' returns the value of option x, 'x' returns the
value of internal variables x, and '$x' is equivalent
to perl's $ENV{x}. All functions accessible from
the command-line are valid for {expr}.
A List is turned into a string by joining the items
and inserting line breaks.

perl-Blob
VIM::Blob({expr}) Return Blob literal string 0zXXXX from scalar value.

perl-SetHeight
Window->SetHeight({height})

Sets the Window height to {height}, within screen
limits.

perl-GetCursor
Window->Cursor({row}?, {col}?)

With no arguments, returns a (row, col) array for the
current cursor position in the Window. With {row} and
{col} arguments, sets the Window's cursor position to
{row} and {col}. Note that {col} is numbered from 0,
Perl-fashion, and thus is one less than the value in
Vim's ruler.

Window->Buffer() perl-Buffer
Returns the Buffer object corresponding to the given
Window.

perl-Name
Buffer->Name() Returns the filename for the Buffer.

perl-Number
Buffer->Number() Returns the number of the Buffer.

perl-Count
Buffer->Count() Returns the number of lines in the Buffer.

perl-Get
Buffer->Get({lnum}, {lnum}?, ...)

Returns a text string of line {lnum} in the Buffer
for each {lnum} specified. An array can be passed
with a list of {lnum}'s specified.

perl-Delete
Buffer->Delete({lnum}, {lnum}?)

Deletes line {lnum} in the Buffer. With the second
{lnum}, deletes the range of lines from the first
{lnum} to the second {lnum}.

perl-Append
Buffer->Append({lnum}, {line}, {line}?, ...)

Appends each {line} string after Buffer line {lnum}.
The list of {line}s can be an array.

if_perl.txt — 2002

perl-Set
Buffer->Set({lnum}, {line}, {line}?, ...)

Replaces one or more Buffer lines with specified
{lines}s, starting at Buffer line {lnum}. The list of
{line}s can be an array. If the arguments are
invalid, replacement does not occur.

$main::curwin
The current window object.

$main::curbuf
The current buffer object.

script-here
When using a script language in-line, you might want to skip this when the
language isn't supported.

if has('perl')
perl << EOF

print 'perl works'
EOF
endif

Note that "EOF" must be at the start of the line without preceding white
space.

==
4. Dynamic loading perl-dynamic

On MS-Windows and Unix the Perl library can be loaded dynamically. The
:version output then includes +perl/dyn .

This means that Vim will search for the Perl DLL or shared library file only
when needed. When you don't use the Perl interface you don't need it, thus
you can use Vim without this file.

MS-Windows

You can download Perl from http://www.perl.org. The one from ActiveState was
used for building Vim.

To use the Perl interface the Perl DLL must be in your search path.
If Vim reports it cannot find the perl512.dll, make sure your $PATH includes
the directory where it is located. The Perl installer normally does that.
In a console window type "path" to see what directories are used. The
'perldll' option can be also used to specify the Perl DLL.

The name of the DLL must match the Perl version Vim was compiled with.
Currently the name is "perl512.dll". That is for Perl 5.12. To know for
sure edit "gvim.exe" and search for "perl\d*.dll\c".

Unix

The 'perldll' option can be used to specify the Perl shared library file
instead of DYNAMIC_PERL_DLL file what was specified at compile time. The
version of the shared library must match the Perl version Vim was compiled
with.

Note: If you are building Perl locally, you have to use a version compiled

if_perl.txt — 2003

http://www.perl.org

with threading support for it for Vim to successfully link against it. You can
use the `-Dusethreads` flags when configuring Perl, and check that a Perl
binary has it enabled by running `perl -V` and verify that `USE_ITHREADS` is
under "Compile-time options".

==

if_perl.txt — 2004

if_pyth.txt For Vim version 9.1. Last change: 2023 Oct 25

VIM REFERENCE MANUAL by Paul Moore

The Python Interface to Vim python Python

1. Commands python-commands
2. The vim module python-vim
3. Buffer objects python-buffer
4. Range objects python-range
5. Window objects python-window
6. Tab page objects python-tabpage
7. vim.bindeval objects python-bindeval-objects
8. pyeval(), py3eval() Vim functions python-pyeval
9. Dynamic loading python-dynamic
10. Python 3 python3
11. Python X python_x
12. Building with Python support python-building

The Python 2.x interface is available only when Vim was compiled with the
+python feature.

The Python 3 interface is available only when Vim was compiled with the
+python3 feature.

Both can be available at the same time, but read python-2-and-3 .

NOTE: Python 2 is old and no longer being developed. Using Python 3 is highly
recommended. Python 2 support will be dropped when it does not work properly
anymore.

==
1. Commands python-commands

:python :py E263 E264 E887
:[range]py[thon] {stmt}

Execute Python statement {stmt}. A simple check if
the `:python` command is working:

:python print "Hello"

:[range]py[thon] << [trim] [{endmarker}]
{script}
{endmarker}

Execute Python script {script}.
Note: This command doesn't work when the Python
feature wasn't compiled in. To avoid errors, see
script-here .

If [endmarker] is omitted from after the "<<", a dot '.' must be used after
{script}, like for the :append and :insert commands. Refer to
:let-heredoc for more information.

This form of the :python command is mainly useful for including python code
in Vim scripts.

Example:
function! IcecreamInitialize()
python << EOF
class StrawberryIcecream:

def __call__(self):

if_pyth.txt — 2005

print 'EAT ME'
EOF
endfunction

To see what version of Python you have:
:python print(sys.version)

There is no need to import sys, it's done by default.

python-environment
Environment variables set in Vim are not always available in Python. This
depends on how Vim and Python were built. Also see
https://docs.python.org/3/library/os.html#os.environ

Note: Python is very sensitive to the indenting. Make sure the "class" line
and "EOF" do not have any indent.

:pydo
:[range]pydo {body} Execute Python function "def _vim_pydo(line, linenr):

{body}" for each line in the [range], with the
function arguments being set to the text of each line
in turn, without a trailing <EOL>, and the current
line number. The function should return a string or
None. If a string is returned, it becomes the text of
the line in the current turn. The default for [range]
is the whole file: "1,$".

Examples:

:pydo return "%s\t%d" % (line[::-1], len(line))
:pydo if line: return "%4d: %s" % (linenr, line)

One can use `:pydo` in possible conjunction with `:py` to filter a range using
python. For example:

:py3 << EOF
needle = vim.eval('@a')
replacement = vim.eval('@b')

def py_vim_string_replace(str):
return str.replace(needle, replacement)

EOF
:'<,'>py3do return py_vim_string_replace(line)

:pyfile :pyf
:[range]pyf[ile] {file}

Execute the Python script in {file}. The whole
argument is used as a single file name.

Both of these commands do essentially the same thing - they execute a piece of
Python code, with the "current range" python-range set to the given line
range.

In the case of :python, the code to execute is in the command-line.
In the case of :pyfile, the code to execute is the contents of the given file.

Python commands cannot be used in the sandbox .

To pass arguments you need to set sys.argv[] explicitly. Example:

if_pyth.txt — 2006

https://docs.python.org/3/library/os.html#os.environ

:python sys.argv = ["foo", "bar"]
:pyfile myscript.py

Here are some examples python-examples

:python from vim import *
:python from string import upper
:python current.line = upper(current.line)
:python print "Hello"
:python str = current.buffer[42]

(Note that changes - like the imports - persist from one command to the next,
just like in the Python interpreter.)

==
2. The vim module python-vim

Python code gets all of its access to vim (with one exception - see
python-output below) via the "vim" module. The vim module implements two

methods, three constants, and one error object. You need to import the vim
module before using it:

:python import vim

Overview
:py print "Hello" # displays a message
:py vim.command(cmd) # execute an Ex command
:py w = vim.windows[n] # gets window "n"
:py cw = vim.current.window # gets the current window
:py b = vim.buffers[n] # gets buffer "n"
:py cb = vim.current.buffer # gets the current buffer
:py w.height = lines # sets the window height
:py w.cursor = (row, col) # sets the window cursor position
:py pos = w.cursor # gets a tuple (row, col)
:py name = b.name # gets the buffer file name
:py line = b[n] # gets a line from the buffer
:py lines = b[n:m] # gets a list of lines
:py num = len(b) # gets the number of lines
:py b[n] = str # sets a line in the buffer
:py b[n:m] = [str1, str2, str3] # sets a number of lines at once
:py del b[n] # deletes a line
:py del b[n:m] # deletes a number of lines

Methods of the "vim" module

vim.command(str) python-command
Executes the vim (ex-mode) command str. Returns None.
Examples:

:py vim.command("set tw=72")
:py vim.command("%s/aaa/bbb/g")

The following definition executes Normal mode commands:
def normal(str):

vim.command("normal "+str)
Note the use of single quotes to delimit a string containing
double quotes
normal('"a2dd"aP')

E659
The ":python" command cannot be used recursively with Python 2.2 and
older. This only works with Python 2.3 and later:

:py vim.command("python print 'Hello again Python'")

if_pyth.txt — 2007

vim.eval(str) python-eval
Evaluates the expression str using the vim internal expression
evaluator (see expression). Returns the expression result as:
- a string if the Vim expression evaluates to a string or number
- a list if the Vim expression evaluates to a Vim list
- a dictionary if the Vim expression evaluates to a Vim dictionary
Dictionaries and lists are recursively expanded.
Examples:

:" value of the 'textwidth' option
:py text_width = vim.eval("&tw")
:
:" contents of the 'a' register
:py a_reg = vim.eval("@a")
:
:" Result is a string! Use string.atoi() to convert to a number.
:py str = vim.eval("12+12")
:
:py tagList = vim.eval('taglist("eval_expr")')

The latter will return a python list of python dicts, for instance:
[{'cmd': '/^eval_expr(arg, nextcmd)$/', 'static': 0, 'name':
'eval_expr', 'kind': 'f', 'filename': './src/eval.c'}]

vim.bindeval(str) python-bindeval
Like python-eval , but returns special objects described in
python-bindeval-objects . These python objects let you modify (List

or Dictionary) or call (Funcref) vim objects.

vim.strwidth(str) python-strwidth
Like strwidth() : returns number of display cells str occupies, tab
is counted as one cell.

vim.foreach_rtp(callable) python-foreach_rtp
Call the given callable for each path in 'runtimepath' until either
callable returns something but None, the exception is raised or there
are no longer paths. If stopped in case callable returned non-None,
vim.foreach_rtp function returns the value returned by callable.

vim.chdir(*args, **kwargs) python-chdir
vim.fchdir(*args, **kwargs) python-fchdir

Run os.chdir or os.fchdir, then all appropriate vim stuff.
Note: you should not use these functions directly, use os.chdir and

os.fchdir instead. Behavior of vim.fchdir is undefined in case
os.fchdir does not exist.

Error object of the "vim" module

vim.error python-error
Upon encountering a Vim error, Python raises an exception of type
vim.error.
Example:

try:
vim.command("put a")

except vim.error:
nothing in register a

Constants of the "vim" module

Note that these are not actually constants - you could reassign them.
But this is silly, as you would then lose access to the vim objects

if_pyth.txt — 2008

to which the variables referred.

vim.buffers python-buffers
A mapping object providing access to the list of vim buffers. The
object supports the following operations:

:py b = vim.buffers[i] # Indexing (read-only)
:py b in vim.buffers # Membership test
:py n = len(vim.buffers) # Number of elements
:py for b in vim.buffers: # Iterating over buffer list

vim.windows python-windows
A sequence object providing access to the list of vim windows. The
object supports the following operations:

:py w = vim.windows[i] # Indexing (read-only)
:py w in vim.windows # Membership test
:py n = len(vim.windows) # Number of elements
:py for w in vim.windows: # Sequential access

Note: vim.windows object always accesses current tab page.
python-tabpage .windows objects are bound to parent python-tabpage

object and always use windows from that tab page (or throw vim.error
in case tab page was deleted). You can keep a reference to both
without keeping a reference to vim module object or python-tabpage ,
they will not lose their properties in this case.

vim.tabpages python-tabpages
A sequence object providing access to the list of vim tab pages. The
object supports the following operations:

:py t = vim.tabpages[i] # Indexing (read-only)
:py t in vim.tabpages # Membership test
:py n = len(vim.tabpages) # Number of elements
:py for t in vim.tabpages: # Sequential access

vim.current python-current
An object providing access (via specific attributes) to various
"current" objects available in vim:

vim.current.line The current line (RW) String
vim.current.buffer The current buffer (RW) Buffer
vim.current.window The current window (RW) Window
vim.current.tabpage The current tab page (RW) TabPage
vim.current.range The current line range (RO) Range

The last case deserves a little explanation. When the :python or
:pyfile command specifies a range, this range of lines becomes the
"current range". A range is a bit like a buffer, but with all access
restricted to a subset of lines. See python-range for more details.

Note: When assigning to vim.current.{buffer,window,tabpage} it expects
valid python-buffer , python-window or python-tabpage objects
respectively. Assigning triggers normal (with autocommand s)
switching to given buffer, window or tab page. It is the only way to
switch UI objects in python: you can't assign to
python-tabpage .window attribute. To switch without triggering

autocommands use
py << EOF
saved_eventignore = vim.options['eventignore']
vim.options['eventignore'] = 'all'
try:

vim.current.buffer = vim.buffers[2] # Switch to buffer 2
finally:

vim.options['eventignore'] = saved_eventignore

if_pyth.txt — 2009

EOF

vim.vars python-vars
vim.vvars python-vvars

Dictionary-like objects holding dictionaries with global (g:) and
vim (v:) variables respectively. Identical to `vim.bindeval("g:")`,
but faster.

vim.options python-options
Object partly supporting mapping protocol (supports setting and
getting items) providing a read-write access to global options.
Note: unlike :set this provides access only to global options. You
cannot use this object to obtain or set local options' values or
access local-only options in any fashion. Raises KeyError if no global
option with such name exists (i.e. does not raise KeyError for
global-local options and global only options, but does for window-

and buffer-local ones). Use python-buffer objects to access to
buffer-local options and python-window objects to access to
window-local options.

Type of this object is available via "Options" attribute of vim
module.

Output from Python python-output
Vim displays all Python code output in the Vim message area. Normal
output appears as information messages, and error output appears as
error messages.

In implementation terms, this means that all output to sys.stdout
(including the output from print statements) appears as information
messages, and all output to sys.stderr (including error tracebacks)
appears as error messages.

python-input
Input (via sys.stdin, including input() and raw_input()) is not
supported, and may cause the program to crash. This should probably be
fixed.

python2-directory python3-directory pythonx-directory
Python 'runtimepath' handling python-special-path

In python vim.VIM_SPECIAL_PATH special directory is used as a replacement for
the list of paths found in 'runtimepath': with this directory in sys.path and
vim.path_hooks in sys.path_hooks python will try to load module from
{rtp}/python2 (or python3) and {rtp}/pythonx (for both python versions) for
each {rtp} found in 'runtimepath'.

Implementation is similar to the following, but written in C:

from imp import find_module, load_module
import vim
import sys

class VimModuleLoader(object):
def __init__(self, module):

self.module = module

def load_module(self, fullname, path=None):
return self.module

if_pyth.txt — 2010

def _find_module(fullname, oldtail, path):
idx = oldtail.find('.')
if idx > 0:

name = oldtail[:idx]
tail = oldtail[idx+1:]
fmr = find_module(name, path)
module = load_module(fullname[:-len(oldtail)] + name, *fmr)
return _find_module(fullname, tail, module.__path__)

else:
fmr = find_module(fullname, path)
return load_module(fullname, *fmr)

It uses vim module itself in place of VimPathFinder class: it does not
matter for python which object has find_module function attached to as
an attribute.
class VimPathFinder(object):

@classmethod
def find_module(cls, fullname, path=None):

try:
return VimModuleLoader(_find_module(fullname, fullname, path or vim._get_paths()))

except ImportError:
return None

@classmethod
def load_module(cls, fullname, path=None):

return _find_module(fullname, fullname, path or vim._get_paths())

def hook(path):
if path == vim.VIM_SPECIAL_PATH:

return VimPathFinder
else:

raise ImportError

sys.path_hooks.append(hook)

vim.VIM_SPECIAL_PATH python-VIM_SPECIAL_PATH
String constant used in conjunction with vim path hook. If path hook
installed by vim is requested to handle anything but path equal to
vim.VIM_SPECIAL_PATH constant it raises ImportError. In the only other
case it uses special loader.

Note: you must not use value of this constant directly, always use
vim.VIM_SPECIAL_PATH object.

vim.find_module(...) python-find_module
vim.path_hook(path) python-path_hook

Methods or objects used to implement path loading as described above.
You should not be using any of these directly except for vim.path_hook
in case you need to do something with sys.meta_path. It is not
guaranteed that any of the objects will exist in the future vim
versions.

vim._get_paths python-_get_paths
Methods returning a list of paths which will be searched for by path
hook. You should not rely on this method being present in future
versions, but can use it for debugging.

It returns a list of {rtp}/python2 (or {rtp}/python3) and
{rtp}/pythonx directories for each {rtp} in 'runtimepath'.

if_pyth.txt — 2011

==
3. Buffer objects python-buffer

Buffer objects represent vim buffers. You can obtain them in a number of ways:
- via vim.current.buffer (python-current)
- from indexing vim.buffers (python-buffers)
- from the "buffer" attribute of a window (python-window)

Buffer objects have two read-only attributes - name - the full file name for
the buffer, and number - the buffer number. They also have three methods
(append, mark, and range; see below).

You can also treat buffer objects as sequence objects. In this context, they
act as if they were lists (yes, they are mutable) of strings, with each
element being a line of the buffer. All of the usual sequence operations,
including indexing, index assignment, slicing and slice assignment, work as
you would expect. Note that the result of indexing (slicing) a buffer is a
string (list of strings). This has one unusual consequence - b[:] is different
from b. In particular, "b[:] = None" deletes the whole of the buffer, whereas
"b = None" merely updates the variable b, with no effect on the buffer.

Buffer indexes start at zero, as is normal in Python. This differs from vim
line numbers, which start from 1. This is particularly relevant when dealing
with marks (see below) which use vim line numbers.

The buffer object attributes are:
b.vars Dictionary-like object used to access

buffer-variable s.
b.options Mapping object (supports item getting, setting and

deleting) that provides access to buffer-local options
and buffer-local values of global-local options. Use
python-window .options if option is window-local,

this object will raise KeyError. If option is
global-local and local value is missing getting it

will return None.
b.name String, RW. Contains buffer name (full path).

Note: when assigning to b.name BufFilePre and
BufFilePost autocommands are launched.

b.number Buffer number. Can be used as python-buffers key.
Read-only.

b.valid True or False. Buffer object becomes invalid when
corresponding buffer is wiped out.

The buffer object methods are:
b.append(str) Append a line to the buffer
b.append(str, nr) Idem, below line "nr"
b.append(list) Append a list of lines to the buffer

Note that the option of supplying a list of strings to
the append method differs from the equivalent method
for Python's built-in list objects.

b.append(list, nr) Idem, below line "nr"
b.mark(name) Return a tuple (row,col) representing the position

of the named mark (can also get the []"<> marks)
b.range(s,e) Return a range object (see python-range) which

represents the part of the given buffer between line
numbers s and e inclusive .

Note that when adding a line it must not contain a line break character '\n'.
A trailing '\n' is allowed and ignored, so that you can do:

:py b.append(f.readlines())

if_pyth.txt — 2012

Buffer object type is available using "Buffer" attribute of vim module.

Examples (assume b is the current buffer)
:py print b.name # write the buffer file name
:py b[0] = "hello!!!" # replace the top line
:py b[:] = None # delete the whole buffer
:py del b[:] # delete the whole buffer
:py b[0:0] = ["a line"] # add a line at the top
:py del b[2] # delete a line (the third)
:py b.append("bottom") # add a line at the bottom
:py n = len(b) # number of lines
:py (row,col) = b.mark('a') # named mark
:py r = b.range(1,5) # a sub-range of the buffer
:py b.vars["foo"] = "bar" # assign b:foo variable
:py b.options["ff"] = "dos" # set fileformat
:py del b.options["ar"] # same as :set autoread<

==
4. Range objects python-range

Range objects represent a part of a vim buffer. You can obtain them in a
number of ways:

- via vim.current.range (python-current)
- from a buffer's range() method (python-buffer)

A range object is almost identical in operation to a buffer object. However,
all operations are restricted to the lines within the range (this line range
can, of course, change as a result of slice assignments, line deletions, or
the range.append() method).

The range object attributes are:
r.start Index of first line into the buffer
r.end Index of last line into the buffer

The range object methods are:
r.append(str) Append a line to the range
r.append(str, nr) Idem, after line "nr"
r.append(list) Append a list of lines to the range

Note that the option of supplying a list of strings to
the append method differs from the equivalent method
for Python's built-in list objects.

r.append(list, nr) Idem, after line "nr"

Range object type is available using "Range" attribute of vim module.

Example (assume r is the current range):
Send all lines in a range to the default printer
vim.command("%d,%dhardcopy!" % (r.start+1,r.end+1))

==
5. Window objects python-window

Window objects represent vim windows. You can obtain them in a number of ways:
- via vim.current.window (python-current)
- from indexing vim.windows (python-windows)
- from indexing "windows" attribute of a tab page (python-tabpage)
- from the "window" attribute of a tab page (python-tabpage)

You can manipulate window objects only through their attributes. They have no

if_pyth.txt — 2013

methods, and no sequence or other interface.

Window attributes are:
buffer (read-only) The buffer displayed in this window
cursor (read-write) The current cursor position in the window

This is a tuple, (row,col).
height (read-write) The window height, in rows
width (read-write) The window width, in columns
vars (read-only) The window w: variables. Attribute is

unassignable, but you can change window
variables this way

options (read-only) The window-local options. Attribute is
unassignable, but you can change window
options this way. Provides access only to
window-local options, for buffer-local use
python-buffer and for global ones use
python-options . If option is global-local

and local value is missing getting it will
return None.

number (read-only) Window number. The first window has number 1.
This is zero in case it cannot be determined
(e.g. when the window object belongs to other
tab page).

row, col (read-only) On-screen window position in display cells.
First position is zero.

tabpage (read-only) Window tab page.
valid (read-write) True or False. Window object becomes invalid

when corresponding window is closed.

The height attribute is writable only if the screen is split horizontally.
The width attribute is writable only if the screen is split vertically.

Window object type is available using "Window" attribute of vim module.

==
6. Tab page objects python-tabpage

Tab page objects represent vim tab pages. You can obtain them in a number of
ways:

- via vim.current.tabpage (python-current)
- from indexing vim.tabpages (python-tabpages)

You can use this object to access tab page windows. They have no methods and
no sequence or other interfaces.

Tab page attributes are:
number The tab page number like the one returned by

tabpagenr() .
windows Like python-windows , but for current tab page.
vars The tab page t: variables.
window Current tabpage window.
valid True or False. Tab page object becomes invalid when

corresponding tab page is closed.

TabPage object type is available using "TabPage" attribute of vim module.

==
7. vim.bindeval objects python-bindeval-objects

vim.Dictionary object python-Dictionary

if_pyth.txt — 2014

Dictionary-like object providing access to vim Dictionary type.
Attributes:

Attribute Description
locked One of python-.locked

Value Description
zero Variable is not locked
vim.VAR_LOCKED Variable is locked, but can be unlocked
vim.VAR_FIXED Variable is locked and can't be unlocked
Read-write. You can unlock locked variable by assigning
`True` or `False` to this attribute. No recursive locking
is supported.

scope One of
Value Description
zero Dictionary is not a scope one
vim.VAR_DEF_SCOPE g: or l: dictionary
vim.VAR_SCOPE Other scope dictionary,

see internal-variables
Methods (note: methods do not support keyword arguments):

Method Description
keys() Returns a list with dictionary keys.
values() Returns a list with dictionary values.
items() Returns a list of 2-tuples with dictionary contents.
update(iterable), update(dictionary), update(**kwargs)

Adds keys to dictionary.
get(key[, default=None])

Obtain key from dictionary, returning the default if it is
not present.

pop(key[, default])
Remove specified key from dictionary and return
corresponding value. If key is not found and default is
given returns the default, otherwise raises KeyError.

popitem()
Remove random key from dictionary and return (key, value)
pair.

has_key(key)
Check whether dictionary contains specified key, similar
to `key in dict`.

__new__(), __new__(iterable), __new__(dictionary), __new__(update)
You can use `vim.Dictionary()` to create new vim
dictionaries. `d=vim.Dictionary(arg)` is the same as
`d=vim.bindeval('{}');d.update(arg)`. Without arguments
constructs empty dictionary.

Examples:
d = vim.Dictionary(food="bar") # Constructor
d['a'] = 'b' # Item assignment
print d['a'] # getting item
d.update({'c': 'd'}) # .update(dictionary)
d.update(e='f') # .update(**kwargs)
d.update((('g', 'h'), ('i', 'j'))) # .update(iterable)
for key in d.keys(): # .keys()
for val in d.values(): # .values()
for key, val in d.items(): # .items()
print isinstance(d, vim.Dictionary) # True
for key in d: # Iteration over keys
class Dict(vim.Dictionary): # Subclassing

Note: when iterating over keys you should not modify dictionary.

if_pyth.txt — 2015

vim.List object python-List
Sequence-like object providing access to vim List type.
Supports `.locked` attribute, see python-.locked . Also supports the
following methods:

Method Description
extend(item) Add items to the list.

__new__(), __new__(iterable)
You can use `vim.List()` to create new vim lists.
`l=vim.List(iterable)` is the same as
`l=vim.bindeval('[]');l.extend(iterable)`. Without
arguments constructs empty list.

Examples:
l = vim.List("abc") # Constructor, result: ['a', 'b', 'c']
l.extend(['abc', 'def']) # .extend() method
print l[1:] # slicing
l[:0] = ['ghi', 'jkl'] # slice assignment
print l[0] # getting item
l[0] = 'mno' # assignment
for i in l: # iteration
print isinstance(l, vim.List) # True
class List(vim.List): # Subclassing

vim.Function object python-Function
Function-like object, acting like vim Funcref object. Accepts special
keyword argument `self`, see Dictionary-function . You can also use
`vim.Function(name)` constructor, it is the same as
`vim.bindeval('function(%s)'%json.dumps(name))`.

Attributes (read-only):
Attribute Description
name Function name.
args `None` or a python-List object with arguments. Note

that this is a copy of the arguments list, constructed
each time you request this attribute. Modifications made
to the list will be ignored (but not to the containers
inside argument list: this is like copy() and not
deepcopy()).

self `None` or a python-Dictionary object with self
dictionary. Note that explicit `self` keyword used when
calling resulting object overrides this attribute.

auto_rebind Boolean. True if partial created from this Python object
and stored in the Vim script dictionary should be
automatically rebound to the dictionary it is stored in
when this dictionary is indexed. Exposes Vim internal
difference between `dict.func` (auto_rebind=True) and
`function(dict.func,dict)` (auto_rebind=False). This
attribute makes no sense if `self` attribute is `None`.

Constructor additionally accepts `args`, `self` and `auto_rebind`
keywords. If `args` and/or `self` argument is given then it constructs
a partial, see function() . `auto_rebind` is only used when `self`
argument is given, otherwise it is assumed to be `True` regardless of
whether it was given or not. If `self` is given then it defaults to
`False`.

Examples:
f = vim.Function('tr') # Constructor
print f('abc', 'a', 'b') # Calls tr('abc', 'a', 'b')
vim.command('''

if_pyth.txt — 2016

function DictFun() dict
return self

endfunction
''')
f = vim.bindeval('function("DictFun")')
print f(self={}) # Like call('DictFun', [], {})
print isinstance(f, vim.Function) # True

p = vim.Function('DictFun', self={})
print f()
p = vim.Function('tr', args=['abc', 'a'])
print f('b')

==
8. pyeval() and py3eval() Vim functions python-pyeval

To facilitate bi-directional interface, you can use pyeval() and py3eval()
functions to evaluate Python expressions and pass their values to Vim script.
pyxeval() is also available.

The Python value "None" is converted to v:none.

==
9. Dynamic loading python-dynamic

On MS-Windows and Unix the Python library can be loaded dynamically. The
:version output then includes +python/dyn or +python3/dyn .

This means that Vim will search for the Python DLL or shared library file only
when needed. When you don't use the Python interface you don't need it, thus
you can use Vim without this file.

MS-Windows

To use the Python interface the Python DLL must be in your search path. In a
console window type "path" to see what directories are used. If the DLL is
not found in your search path, Vim will check the registry to find the path
where Python is installed. The 'pythondll' or 'pythonthreedll' option can be
also used to specify the Python DLL.

The name of the DLL should match the Python version Vim was compiled with.
Currently the name for Python 2 is "python27.dll", that is for Python 2.7.
That is the default value for 'pythondll'. For Python 3 it is python36.dll
(Python 3.6). To know for sure edit "gvim.exe" and search for
"python\d*.dll\c".

Unix

The 'pythondll' or 'pythonthreedll' option can be used to specify the Python
shared library file instead of DYNAMIC_PYTHON_DLL or DYNAMIC_PYTHON3_DLL file
what were specified at compile time. The version of the shared library must
match the Python 2.x or Python 3 version (v:python3_version) Vim was
compiled with unless using python3-stable-abi .

Stable ABI and mixing Python versions
python-stable python-stable-abi python3-stable-abi

If Vim was not compiled with Stable ABI (only available for Python 3), the

if_pyth.txt — 2017

version of the Python shared library must match the version that Vim was
compiled with. Otherwise, mixing versions could result in unexpected crashes
and failures. With Stable ABI, this restriction is relaxed, and any Python 3
library with version of at least v:python3_version will work. See
has-python for how to check if Stable ABI is supported, or see if version

output includes +python3/dyn-stable .
On MS-Windows, 'pythonthreedll' will be set to "python3.dll". When searching
the DLL from the registry, Vim will search the latest version of Python.

==
10. Python 3 python3

:py3 :python3
:[range]py3 {stmt}
:[range]py3 << [trim] [{endmarker}]
{script}
{endmarker}

:[range]python3 {stmt}
:[range]python3 << [trim] [{endmarker}]
{script}
{endmarker}

The `:py3` and `:python3` commands work similar to `:python`. A
simple check if the `:py3` command is working:

:py3 print("Hello")

To see what version of Python you have:
:py3 import sys
:py3 print(sys.version)

:py3file
:[range]py3f[ile] {file}

The `:py3file` command works similar to `:pyfile`.
:py3do

:[range]py3do {body}
The `:py3do` command works similar to `:pydo`.

Vim can be built in four ways (:version output):
1. No Python support (-python, -python3)
2. Python 2 support only (+python or +python/dyn, -python3)
3. Python 3 support only (-python, +python3 or +python3/dyn)
4. Python 2 and 3 support (+python/dyn, +python3/dyn)

Some more details on the special case 4: python-2-and-3

When Python 2 and Python 3 are both supported they must be loaded dynamically.

When doing this on Linux/Unix systems and importing global symbols, this leads
to a crash when the second Python version is used. So either global symbols
are loaded but only one Python version is activated, or no global symbols are
loaded. The latter makes Python's "import" fail on libraries that expect the
symbols to be provided by Vim.

E836 E837
Vim's configuration script makes a guess for all libraries based on one
standard Python library (termios). If importing this library succeeds for
both Python versions, then both will be made available in Vim at the same
time. If not, only the version first used in a session will be enabled.
When trying to use the other one you will get the E836 or E837 error message.

Here Vim's behavior depends on the system in which it was configured. In a

if_pyth.txt — 2018

system where both versions of Python were configured with --enable-shared,
both versions of Python will be activated at the same time. There will still
be problems with other third party libraries that were not linked to
libPython.

To work around such problems there are these options:
1. The problematic library is recompiled to link to the according

libpython.so.
2. Vim is recompiled for only one Python version.
3. You undefine PY_NO_RTLD_GLOBAL in auto/config.h after configuration. This

may crash Vim though.

E880
Raising SystemExit exception in python isn't endorsed way to quit vim, use:

:py vim.command("qall!")

E1266
This error can occur when Python 3 cannot load the required modules. This
means that your Python 3 is not correctly installed or there are some mistakes
in your settings. Please check the following items:
1. Make sure that Python 3 is correctly installed. Also check the version of

python.
2. Check the 'pythonthreedll' option.
3. Check the 'pythonthreehome' option.
4. Check the PATH environment variable if you don't set 'pythonthreedll'.

On MS-Windows, you can use where.exe to check which dll will be loaded.
E.g.

where.exe python310.dll
5. Check the PYTHONPATH and PYTHONHOME environment variables.

has-python
You can test what Python version is available with:

if has('python')
echo 'there is Python 2.x'

endif
if has('python3')

echo 'there is Python 3.x'
endif

Note however, that when Python 2 and 3 are both available and loaded
dynamically, these has() calls will try to load them. If only one can be
loaded at a time, just checking if Python 2 or 3 are available will prevent
the other one from being available.

To avoid loading the dynamic library, only check if Vim was compiled with
python support:

if has('python_compiled')
echo 'compiled with Python 2.x support'
if has('python_dynamic')

echo 'Python 2.x dynamically loaded'
endif

endif
if has('python3_compiled')

echo 'compiled with Python 3.x support'
if has('python3_dynamic')

echo 'Python 3.x dynamically loaded'
endif

endif

When loading the library dynamically, Vim can be compiled to support Python 3

if_pyth.txt — 2019

Stable ABI (python3-stable-abi) which allows you to load a different version
of Python 3 library than the one Vim was compiled with. To check it:

if has('python3_dynamic')
if has('python3_stable')

echo 'support Python 3 Stable ABI.'
else

echo 'does not support Python 3 Stable ABI.'
echo 'only use Python 3 version ' .. v:python3_version

endif
endif

This also tells you whether Python is dynamically loaded, which will fail if
the runtime library cannot be found.

==
11. Python X python_x pythonx

Because most python code can be written so that it works with Python 2.6+ and
Python 3 the pyx* functions and commands have been written. They work exactly
the same as the Python 2 and 3 variants, but select the Python version using
the 'pyxversion' setting.

You should set 'pyxversion' in your .vimrc to prefer Python 2 or Python 3
for Python commands. If you change this setting at runtime you may risk that
state of plugins (such as initialization) may be lost.

If you want to use a module, you can put it in the {rtp}/pythonx directory.
See pythonx-directory .

:pyx :pythonx
The `:pyx` and `:pythonx` commands work similar to `:python`. A simple check
if the `:pyx` command is working:

:pyx print("Hello")

To see what version of Python is being used:
:pyx import sys
:pyx print(sys.version)

:pyxfile python_x-special-comments
The `:pyxfile` command works similar to `:pyfile`. However you can add one of
these comments to force Vim using `:pyfile` or `:py3file`:

#!/any string/python2 " Shebang. Must be the first line of the file.
#!/any string/python3 " Shebang. Must be the first line of the file.
requires python 2.x " Maximum lines depend on 'modelines'.
requires python 3.x " Maximum lines depend on 'modelines'.

Unlike normal modelines, the bottom of the file is not checked.
If none of them are found, the 'pyxversion' setting is used.

W20 W21
If Vim does not support the selected Python version a silent message will be
printed. Use `:messages` to read them.

:pyxdo
The `:pyxdo` command works similar to `:pydo`.

has-pythonx
You can test if pyx* commands are available with:

if has('pythonx')
echo 'pyx* commands are available. (Python ' .. &pyx .. ')'

endif

if_pyth.txt — 2020

When compiled with only one of +python or +python3 , the has() returns 1.
When compiled with both +python and +python3 , the test depends on the
'pyxversion' setting. If 'pyxversion' is 0, it tests Python 3 first, and if
it is not available then Python 2. If 'pyxversion' is 2 or 3, it tests only
Python 2 or 3 respectively.

Note that for `has('pythonx')` to work it may try to dynamically load Python 3
or 2. This may have side effects, especially when Vim can only load one of
the two.

If a user prefers Python 2 and want to fallback to Python 3, he needs to set
'pyxversion' explicitly in his .vimrc . E.g.:

if has('python')
set pyx=2

elseif has('python3')
set pyx=3

endif

==
12. Building with Python support python-building

A few hints for building with Python 2 or 3 support.

UNIX

See src/Makefile for how to enable including the Python interface.

On Ubuntu you will want to install these packages for Python 2:
python
python-dev

For Python 3:
python3
python3-dev

For Python 3.6:
python3.6
python3.6-dev

If you have more than one version of Python 3, you need to link python3 to the
one you prefer, before running configure.

==

if_pyth.txt — 2021

if_pyth.txt — 2022

if_tcl.txt For Vim version 9.1. Last change: 2022 Jan 08

VIM REFERENCE MANUAL by Ingo Wilken

The Tcl Interface to Vim tcl Tcl TCL

1. Commands tcl-ex-commands
2. Tcl commands tcl-commands
3. Tcl variables tcl-variables
4. Tcl window commands tcl-window-cmds
5. Tcl buffer commands tcl-buffer-cmds
6. Miscellaneous; Output from Tcl tcl-misc tcl-output
7. Known bugs & problems tcl-bugs
8. Examples tcl-examples
9. Dynamic loading tcl-dynamic

{only available when Vim was compiled with the |+tcl| feature}

E280
WARNING: There are probably still some bugs. Please send bug reports,
comments, ideas etc to <Ingo.Wilken@informatik.uni-oldenburg.de>

==
1. Commands tcl-ex-commands E571 E572

:tcl
:tcl {cmd} Execute Tcl command {cmd}. A simple check if `:tcl`

is working:
:tcl puts "Hello"

:[range]tcl << [trim] [{endmarker}]
{script}
{endmarker}

Execute Tcl script {script}.
Note: This command doesn't work when the Tcl feature
wasn't compiled in. To avoid errors, see
script-here .

If [endmarker] is omitted from after the "<<", a dot '.' must be used after
{script}, like for the :append and :insert commands. Refer to
:let-heredoc for more information.

This form of the :tcl command is mainly useful for including tcl code in Vim
scripts.

Example:
function! DefineDate()

tcl << EOF
proc date {} {

return [clock format [clock seconds]]
}

EOF
endfunction

To see what version of Tcl you have:
:tcl puts [info patchlevel]

if_tcl.txt — 2023

:tcldo :tcld
:[range]tcld[o] {cmd} Execute Tcl command {cmd} for each line in [range]

with the variable "line" being set to the text of each
line in turn, and "lnum" to the line number. Setting
"line" will change the text, but note that it is not
possible to add or delete lines using this command.
If {cmd} returns an error, the command is interrupted.
The default for [range] is the whole file: "1,$".
See tcl-var-line and tcl-var-lnum .

:tclfile :tclf
:tclf[ile] {file} Execute the Tcl script in {file}. This is the same as

":tcl source {file}", but allows file name completion.

Note that Tcl objects (like variables) persist from one command to the next,
just as in the Tcl shell.

Executing Tcl commands is not possible in the sandbox .

==
2. Tcl commands tcl-commands

Tcl code gets all of its access to vim via commands in the "::vim" namespace.
The following commands are implemented:

::vim::beep # Guess.
::vim::buffer {n} # Create Tcl command for one buffer.
::vim::buffer list # Create Tcl commands for all buffers.
::vim::command [-quiet] {cmd} # Execute an Ex command.
::vim::expr {expr} # Use Vim's expression evaluator.
::vim::option {opt} # Get vim option.
::vim::option {opt} {val} # Set vim option.
::vim::window list # Create Tcl commands for all windows.

Commands:
::vim::beep tcl-beep
Honk. Does not return a result.

::vim::buffer {n} tcl-buffer
::vim::buffer exists {n}
::vim::buffer list
Provides access to vim buffers. With an integer argument, creates a
buffer command (see tcl-buffer-cmds) for the buffer with that
number, and returns its name as the result. Invalid buffer numbers
result in a standard Tcl error. To test for valid buffer numbers,
vim's internal functions can be used:

set nbufs [::vim::expr bufnr("$")]
set isvalid [::vim::expr "bufexists($n)"]

The "list" option creates a buffer command for each valid buffer, and
returns a list of the command names as the result.
Example:

set bufs [::vim::buffer list]
foreach b $bufs { $b append end "The End!" }

The "exists" option checks if a buffer with the given number exists.
Example:

if { [::vim::buffer exists $n] } { ::vim::command ":e #$n" }
This command might be replaced by a variable in future versions.
See also tcl-var-current for the current buffer.

if_tcl.txt — 2024

::vim::command {cmd} tcl-command
::vim::command -quiet {cmd}
Execute the vim (ex-mode) command {cmd}. Any Ex command that affects
a buffer or window uses the current buffer/current window. Does not
return a result other than a standard Tcl error code. After this
command is completed, the "::vim::current" variable is updated.
The "-quiet" flag suppresses any error messages from vim.
Examples:

::vim::command "set ts=8"
::vim::command "%s/foo/bar/g"

To execute normal-mode commands, use "normal" (see :normal):
set cmd "jj"
::vim::command "normal $cmd"

See also tcl-window-command and tcl-buffer-command .

::vim::expr {expr} tcl-expr
Evaluates the expression {expr} using vim's internal expression
evaluator (see expression). Any expression that queries a buffer
or window property uses the current buffer/current window. Returns
the result as a string. A List is turned into a string by joining
the items and inserting line breaks.
Examples:

set perl_available [::vim::expr has("perl")]
See also tcl-window-expr and tcl-buffer-expr .

::vim::option {opt} tcl-option
::vim::option {opt} {value}
Without second argument, queries the value of a vim option. With this
argument, sets the vim option to {value}, and returns the previous
value as the result. Any options that are marked as 'local to buffer'
or 'local to window' affect the current buffer/current window. The
global value is not changed, use the ":set" command for that. For
boolean options, {value} should be "0" or "1", or any of the keywords
"on", "off" or "toggle". See option-summary for a list of options.
Example:

::vim::option ts 8
See also tcl-window-option and tcl-buffer-option .

::vim::window {option} tcl-window
Provides access to vim windows. Currently only the "list" option is
implemented. This creates a window command (see tcl-window-cmds) for
each window, and returns a list of the command names as the result.
Example:

set wins [::vim::window list]
foreach w $wins { $w height 4 }

This command might be replaced by a variable in future versions.
See also tcl-var-current for the current window.

==
3. Tcl variables tcl-variables

The ::vim namespace contains a few variables. These are created when the Tcl
interpreter is called from vim and set to current values.

::vim::current # array containing "current" objects
::vim::lbase # number of first line
::vim::range # array containing current range numbers
line # current line as a string (:tcldo only)
lnum # current line number (:tcldo only)

if_tcl.txt — 2025

Variables:
::vim::current tcl-var-current
This is an array providing access to various "current" objects
available in vim. The contents of this array are updated after
"::vim::command" is called, as this might change vim's current
settings (e.g., by deleting the current buffer).
The "buffer" element contains the name of the buffer command for the
current buffer. This can be used directly to invoke buffer commands
(see tcl-buffer-cmds). This element is read-only.
Example:

$::vim::current(buffer) insert begin "Hello world"
The "window" element contains the name of the window command for the
current window. This can be used directly to invoke window commands
(see tcl-window-cmds). This element is read-only.
Example:

$::vim::current(window) height 10

::vim::lbase tcl-var-lbase
This variable controls how Tcl treats line numbers. If it is set to
'1', then lines and columns start at 1. This way, line numbers from
Tcl commands and vim expressions are compatible. If this variable is
set to '0', then line numbers and columns start at 0 in Tcl. This is
useful if you want to treat a buffer as a Tcl list or a line as a Tcl
string and use standard Tcl commands that return an index ("lsort" or
"string first", for example). The default value is '1'. Currently,
any non-zero values is treated as '1', but your scripts should not
rely on this. See also tcl-linenumbers .

::vim::range tcl-var-range
This is an array with three elements, "start", "begin" and "end". It
contains the line numbers of the start and end row of the current
range. "begin" is the same as "start". This variable is read-only.
See tcl-examples .

line tcl-var-line
lnum tcl-var-lnum
These global variables are only available if the ":tcldo" Ex command
is being executed. They contain the text and line number of the
current line. When the Tcl command invoked by ":tcldo" is completed,
the current line is set to the contents of the "line" variable, unless
the variable was unset by the Tcl command. The "lnum" variable is
read-only. These variables are not in the "::vim" namespace so they
can be used in ":tcldo" without much typing (this might be changed in
future versions). See also tcl-linenumbers .

==
4. Tcl window commands tcl-window-cmds

Window commands represent vim windows. They are created by several commands:
::vim::window list tcl-window
"windows" option of a buffer command tcl-buffer-windows

The ::vim::current(window) variable contains the name of the window command
for the current window. A window command is automatically deleted when the
corresponding vim window is closed.

Let's assume the name of the window command is stored in the Tcl variable "win",
i.e. "$win" calls the command. The following options are available:

$win buffer # Create Tcl command for window's buffer.
$win command {cmd} # Execute Ex command in windows context.

if_tcl.txt — 2026

$win cursor # Get current cursor position.
$win cursor {var} # Set cursor position from array variable.
$win cursor {row} {col} # Set cursor position.
$win delcmd {cmd} # Call Tcl command when window is closed.
$win expr {expr} # Evaluate vim expression in windows context.
$win height # Report the window's height.
$win height {n} # Set the window's height.
$win option {opt} [val] # Get/Set vim option in windows context.

Options:
$win buffer tcl-window-buffer
Creates a Tcl command for the window's buffer, and returns its name as
the result. The name should be stored in a variable:

set buf [$win buffer]
$buf is now a valid Tcl command. See tcl-buffer-cmds for the
available options.

$win cursor tcl-window-cursor
$win cursor {var}
$win cursor {row} {col}
Without argument, reports the current cursor position as a string.
This can be converted to a Tcl array variable:

array set here [$win cursor]
"here(row)" and "here(column)" now contain the cursor position.
With a single argument, the argument is interpreted as the name of a
Tcl array variable, which must contain two elements "row" and "column".
These are used to set the cursor to the new position:

$win cursor here ;# not $here !
With two arguments, sets the cursor to the specified row and column:

$win cursor $here(row) $here(column)
Invalid positions result in a standard Tcl error, which can be caught
with "catch". The row and column values depend on the "::vim::lbase"
variable. See tcl-var-lbase .

$win delcmd {cmd} tcl-window-delcmd
Registers the Tcl command {cmd} as a deletion callback for the window.
This command is executed (in the global scope) just before the window
is closed. Complex commands should be built with "list":

$win delcmd [list puts vimerr "window deleted"]
See also tcl-buffer-delcmd .

$win height tcl-window-height
$win height {n}
Without argument, reports the window's current height. With an
argument, tries to set the window's height to {n}, then reports the
new height (which might be different from {n}).

$win command [-quiet] {cmd} tcl-window-command
$win expr {expr} tcl-window-expr
$win option {opt} [val] tcl-window-option
These are similar to "::vim::command" etc., except that everything is
done in the context of the window represented by $win, instead of the
current window. For example, setting an option that is marked 'local
to window' affects the window $win. Anything that affects or queries
a buffer uses the buffer displayed in this window (i.e. the buffer
that is represented by "$win buffer"). See tcl-command , tcl-expr
and tcl-option for more information.
Example:

$win option number on

if_tcl.txt — 2027

==
5. Tcl buffer commands tcl-buffer-cmds

Buffer commands represent vim buffers. They are created by several commands:
::vim::buffer {N} tcl-buffer
::vim::buffer list tcl-buffer
"buffer" option of a window command tcl-window-buffer

The ::vim::current(buffer) variable contains the name of the buffer command
for the current buffer. A buffer command is automatically deleted when the
corresponding vim buffer is destroyed. Whenever the buffer's contents are
changed, all marks in the buffer are automatically adjusted. Any changes to
the buffer's contents made by Tcl commands can be undone with the "undo" vim
command (see undo).

Let's assume the name of the buffer command is stored in the Tcl variable "buf",
i.e. "$buf" calls the command. The following options are available:

$buf append {n} {str} # Append a line to buffer, after line {n}.
$buf command {cmd} # Execute Ex command in buffers context.
$buf count # Report number of lines in buffer.
$buf delcmd {cmd} # Call Tcl command when buffer is deleted.
$buf delete {n} # Delete a single line.
$buf delete {n} {m} # Delete several lines.
$buf expr {expr} # Evaluate vim expression in buffers context.
$buf get {n} # Get a single line as a string.
$buf get {n} {m} # Get several lines as a list.
$buf insert {n} {str} # Insert a line in buffer, as line {n}.
$buf last # Report line number of last line in buffer.
$buf mark {mark} # Report position of buffer mark.
$buf name # Report name of file in buffer.
$buf number # Report number of this buffer.
$buf option {opt} [val] # Get/Set vim option in buffers context.
$buf set {n} {text} # Replace a single line.
$buf set {n} {m} {list} # Replace several lines.
$buf windows # Create Tcl commands for buffer's windows.

tcl-linenumbers
Most buffer commands take line numbers as arguments. How Tcl treats these
numbers depends on the "::vim::lbase" variable (see tcl-var-lbase). Instead
of line numbers, several keywords can be also used: "top", "start", "begin",
"first", "bottom", "end" and "last".

Options:
$buf append {n} {str} tcl-buffer-append
$buf insert {n} {str} tcl-buffer-insert
Add a line to the buffer. With the "insert" option, the string
becomes the new line {n}, with "append" it is inserted after line {n}.
Example:

$buf insert top "This is the beginning."
$buf append end "This is the end."

To add a list of lines to the buffer, use a loop:
foreach line $list { $buf append $num $line ; incr num }

$buf count tcl-buffer-count
Reports the total number of lines in the buffer.

$buf delcmd {cmd} tcl-buffer-delcmd
Registers the Tcl command {cmd} as a deletion callback for the buffer.
This command is executed (in the global scope) just before the buffer
is deleted. Complex commands should be built with "list":

if_tcl.txt — 2028

$buf delcmd [list puts vimerr "buffer [$buf number] gone"]
See also tcl-window-delcmd .

$buf delete {n} tcl-buffer-delete
$buf delete {n} {m}
Deletes line {n} or lines {n} through {m} from the buffer.
This example deletes everything except the last line:

$buf delete first [expr [$buf last] - 1]

$buf get {n} tcl-buffer-get
$buf get {n} {m}
Gets one or more lines from the buffer. For a single line, the result
is a string; for several lines, a list of strings.
Example:

set topline [$buf get top]

$buf last tcl-buffer-last
Reports the line number of the last line. This value depends on the
"::vim::lbase" variable. See tcl-var-lbase .

$buf mark {mark} tcl-buffer-mark
Reports the position of the named mark as a string, similar to the
cursor position of the "cursor" option of a window command (see
tcl-window-cursor). This can be converted to a Tcl array variable:

array set mpos [$buf mark "a"]
"mpos(column)" and "mpos(row)" now contain the position of the mark.
If the mark is not set, a standard Tcl error results.

$buf name
Reports the name of the file in the buffer. For a buffer without a
file, this is an empty string.

$buf number
Reports the number of this buffer. See :buffers .
This example deletes a buffer from vim:

::vim::command "bdelete [$buf number]"

$buf set {n} {string} tcl-buffer-set
$buf set {n} {m} {list}
Replace one or several lines in the buffer. If the list contains more
elements than there are lines to replace, they are inserted into the
buffer. If the list contains fewer elements, any unreplaced line is
deleted from the buffer.

$buf windows tcl-buffer-windows
Creates a window command for each window that displays this buffer, and
returns a list of the command names as the result.
Example:

set winlist [$buf windows]
foreach win $winlist { $win height 4 }

See tcl-window-cmds for the available options.

$buf command [-quiet] {cmd} tcl-buffer-command
$buf expr {expr} tcl-buffer-expr
$buf option {opt} [val] tcl-buffer-option
These are similar to "::vim::command" etc., except that everything is
done in the context of the buffer represented by $buf, instead of the
current buffer. For example, setting an option that is marked 'local
to buffer' affects the buffer $buf. Anything that affects or queries
a window uses the first window in vim's window list that displays this

if_tcl.txt — 2029

buffer (i.e. the first entry in the list returned by "$buf windows").
See tcl-command , tcl-expr and tcl-option for more information.
Example:

if { [$buf option modified] } { $buf command "w" }

==
6. Miscellaneous; Output from Tcl tcl-misc tcl-output

The standard Tcl commands "exit" and "catch" are replaced by custom versions.
"exit" terminates the current Tcl script and returns to vim, which deletes the
Tcl interpreter. Another call to ":tcl" then creates a new Tcl interpreter.
"exit" does NOT terminate vim! "catch" works as before, except that it does
not prevent script termination from "exit". An exit code != 0 causes the ex
command that invoked the Tcl script to return an error.

Two new I/O streams are available in Tcl, "vimout" and "vimerr". All output
directed to them is displayed in the vim message area, as information messages
and error messages, respectively. The standard Tcl output streams stdout and
stderr are mapped to vimout and vimerr, so that a normal "puts" command can be
used to display messages in vim.

==
7. Known bugs & problems tcl-bugs

Calling one of the Tcl Ex commands from inside Tcl (via "::vim::command") may
have unexpected side effects. The command creates a new interpreter, which
has the same abilities as the standard interpreter - making "::vim::command"
available in a safe child interpreter therefore makes the child unsafe. (It
would be trivial to block nested :tcl* calls or ensure that such calls from a
safe interpreter create only new safe interpreters, but quite pointless -
depending on vim's configuration, "::vim::command" may execute arbitrary code
in any number of other scripting languages.) A call to "exit" within this new
interpreter does not affect the old interpreter; it only terminates the new
interpreter, then script processing continues normally in the old interpreter.

Input from stdin is currently not supported.

==
8. Examples: tcl-examples

Here are a few small (and maybe useful) Tcl scripts.

This script sorts the lines of the entire buffer (assume it contains a list
of names or something similar):

set buf $::vim::current(buffer)
set lines [$buf get top bottom]
set lines [lsort -dictionary $lines]
$buf set top bottom $lines

This script reverses the lines in the buffer. Note the use of "::vim::lbase"
and "$buf last" to work with any line number setting.

set buf $::vim::current(buffer)
set t $::vim::lbase
set b [$buf last]
while { $t < $b } {

set tl [$buf get $t]
set bl [$buf get $b]
$buf set $t $bl
$buf set $b $tl
incr t

if_tcl.txt — 2030

incr b -1
}

This script adds a consecutive number to each line in the current range:
set buf $::vim::current(buffer)
set i $::vim::range(start)
set n 1
while { $i <= $::vim::range(end) } {

set line [$buf get $i]
$buf set $i "$n\t$line"
incr i ; incr n

}

The same can also be done quickly with two Ex commands, using ":tcldo":
:tcl set n 1
:[range]tcldo set line "$n\t$line" ; incr n

This procedure runs an Ex command on each buffer (idea stolen from Ron Aaron):
proc eachbuf { cmd } {

foreach b [::vim::buffer list] {
$b command $cmd

}
}

Use it like this:
:tcl eachbuf %s/foo/bar/g

Be careful with Tcl's string and backslash substitution, tough. If in doubt,
surround the Ex command with curly braces.

If you want to add some Tcl procedures permanently to vim, just place them in
a file (e.g. "~/.vimrc.tcl" on Unix machines), and add these lines to your
startup file (usually "~/.vimrc" on Unix):

if has("tcl")
tclfile ~/.vimrc.tcl

endif

==
9. Dynamic loading tcl-dynamic

On MS-Windows and Unix the Tcl library can be loaded dynamically. The
:version output then includes +tcl/dyn .

This means that Vim will search for the Tcl DLL or shared library file only
when needed. When you don't use the Tcl interface you don't need it, thus you
can use Vim without this file.

MS-Windows

To use the Tcl interface the Tcl DLL must be in your search path. In a
console window type "path" to see what directories are used. The 'tcldll'
option can be also used to specify the Tcl DLL.

The name of the DLL must match the Tcl version Vim was compiled with.
Currently the name is "tcl86.dll". That is for Tcl 8.6. To know for sure
edit "gvim.exe" and search for "tcl\d*.dll\c".

Unix

if_tcl.txt — 2031

The 'tcldll' option can be used to specify the Tcl shared library file instead
of DYNAMIC_TCL_DLL file what was specified at compile time. The version of
the shared library must match the Tcl version Vim was compiled with.

==

if_tcl.txt — 2032

if_ole.txt For Vim version 9.1. Last change: 2023 Nov 19

VIM REFERENCE MANUAL by Paul Moore

The OLE Interface to Vim ole-interface

1. Activation ole-activation
2. Methods ole-methods
3. The "normal" command ole-normal
4. Registration ole-registration
5. MS Visual Studio integration MSVisualStudio

{only available when compiled with the +ole feature. See
src/if_ole.INSTALL}
An alternative is using the client-server communication clientserver .

==
1. Activation ole-activation

Vim acts as an OLE automation server, accessible from any automation client,
for example, Visual Basic, Python, or Perl. The Vim application "name" (its
"ProgID", in OLE terminology) is "Vim.Application".

Hence, in order to start a Vim instance (or connect to an already running
instance), code similar to the following should be used:

[Visual Basic]
Dim Vim As Object
Set Vim = CreateObject("Vim.Application")

[Python]
from win32com.client.dynamic import Dispatch
vim = Dispatch('Vim.Application')

[Perl]
use Win32::OLE;
$vim = new Win32::OLE 'Vim.Application';

[C#]
// Add a reference to Vim in your project.
// Choose the COM tab.
// Select "Vim Ole Interface 1.1 Type Library"
Vim.Vim vimobj = new Vim.Vim();

Vim does not support acting as a "hidden" OLE server, like some other OLE
Automation servers. When a client starts up an instance of Vim, that instance
is immediately visible. Simply closing the OLE connection to the Vim instance
is not enough to shut down the Vim instance - it is necessary to explicitly
execute a quit command (for example, :qa!, :wqa).

==
2. Methods ole-methods

Vim exposes four methods for use by clients.

ole-sendkeys
SendKeys(keys) Execute a series of keys.

if_ole.txt — 2033

This method takes a single parameter, which is a string of keystrokes. These
keystrokes are executed exactly as if they had been typed in at the keyboard.
Special keys can be given using their <..> names, as for the right hand side
of a mapping. Note: Execution of the Ex "normal" command is not supported -
see below ole-normal .

Examples (Visual Basic syntax)
Vim.SendKeys "ihello<Esc>"
Vim.SendKeys "ma1GV4jy`a"

These examples assume that Vim starts in Normal mode. To force Normal mode,
start the key sequence with CTRL-\ CTRL-N as in

Vim.SendKeys "<C-\><C-N>ihello<Esc>"

CTRL-\ CTRL-N returns Vim to Normal mode, when in Insert or Command-line mode.
Note that this doesn't work halfway a Vim command

ole-eval
Eval(expr) Evaluate an expression.

This method takes a single parameter, which is an expression in Vim's normal
format (see expression). It returns a string, which is the result of
evaluating the expression. A List is turned into a string by joining the
items and inserting line breaks.

Examples (Visual Basic syntax)
Line20 = Vim.Eval("getline(20)")
Twelve = Vim.Eval("6 + 6") ' Note this is a STRING
Font = Vim.Eval("&guifont")

ole-setforeground
SetForeground() Make the Vim window come to the foreground

This method takes no arguments. No value is returned.

Example (Visual Basic syntax)
Vim.SetForeground

ole-gethwnd
GetHwnd() Return the handle of the Vim window.

This method takes no arguments. It returns the hwnd of the main Vimwindow.
You can use this if you are writing something which needs to manipulate the
Vim window, or to track it in the z-order, etc.

Example (Visual Basic syntax)
Vim_Hwnd = Vim.GetHwnd

==
3. The "normal" command ole-normal

Due to the way Vim processes OLE Automation commands, combined with the method
of implementation of the Ex command :normal, it is not possible to execute the
:normal command via OLE automation. Any attempt to do so will fail, probably
harmlessly, although possibly in unpredictable ways.

There is currently no practical way to trap this situation, and users must

if_ole.txt — 2034

simply be aware of the limitation.
==
4. Registration ole-registration E243

Before Vim will act as an OLE server, it must be registered in the system
registry. In order to do this, Vim should be run with a single parameter of
"-register".

-register
gvim -register

If gvim with OLE support is run and notices that no Vim OLE server has been
registered, it will present a dialog and offers you the choice to register by
clicking "Yes".

In some situations registering is not possible. This happens when the
registry is not writable. If you run into this problem you need to run gvim
as "Administrator".

Once vim is registered, the application path is stored in the registry.
Before moving, deleting, or upgrading Vim, the registry entries should be
removed using the "-unregister" switch.

-unregister
gvim -unregister

The OLE mechanism will use the first registered Vim it finds. If a Vim is
already running, this one will be used. If you want to have (several) Vim
sessions open that should not react to OLE commands, use the non-OLE version,
and put it in a different directory. The OLE version should then be put in a
directory that is not in your normal path, so that typing "gvim" will start
the non-OLE version.

-silent
To avoid the message box that pops up to report the result, prepend "-silent":

gvim -silent -register
gvim -silent -unregister

==
5. MS Visual Studio integration MSVisualStudio

The old "VisVim" integration was removed from Vim in patch 9.0.0698.

Using Vim with Visual Studio .Net

.Net studio has support for external editors. Follow these directions:

In .Net Studio choose from the menu Tools->External Tools...
Add

Title - Vim
Command - c:\vim\vim63\gvim.exe
Arguments - --servername VS_NET --remote-silent "+call cursor($(CurLine), $(CurCol))" $(ItemPath)
Init Dir - Empty

Now, when you open a file in .Net, you can choose from the .Net menu:
Tools->Vim

That will open the file in Vim.
You can then add this external command as an icon and place it anywhere you
like. You might also be able to set this as your default editor.

if_ole.txt — 2035

If you refine this further, please post back to the Vim maillist so we have a
record of it.

--servername VS_NET
This will create a new instance of vim called VS_NET. So if you open multiple
files from VS, they will use the same instance of Vim. This allows you to
have multiple copies of Vim running, but you can control which one has VS
files in it.

--remote-silent "+call cursor(10, 27)"
- Places the cursor on line 10 column 27

In Vim
:h --remote-silent for more details

[.Net remarks provided by Dave Fishburn and Brian Sturk]

==

if_ole.txt — 2036

if_ruby.txt For Vim version 9.1. Last change: 2019 Jul 21

VIM REFERENCE MANUAL by Shugo Maeda

The Ruby Interface to Vim ruby Ruby

1. Commands ruby-commands
2. The Vim module ruby-vim
3. Vim::Buffer objects ruby-buffer
4. Vim::Window objects ruby-window
5. Global variables ruby-globals
6. rubyeval() Vim function ruby-rubyeval
7. Dynamic loading ruby-dynamic

E266 E267 E268 E269 E270 E271 E272 E273

{only available when Vim was compiled with the |+ruby| feature}

The home page for ruby is http://www.ruby-lang.org/. You can find links for
downloading Ruby there.

==
1. Commands ruby-commands

:ruby :rub
:rub[y] {cmd} Execute Ruby command {cmd}. A command to try it out:

:ruby print "Hello"

:rub[y] << [trim] [{endmarker}]
{script}
{endmarker}

Execute Ruby script {script}.

If [endmarker] is omitted, it defaults to a dot '.'
like for the :append and :insert commands. Refer
to :let-heredoc for more information.

This form of the :ruby command is mainly useful for
including ruby code in vim scripts.

Note: This command doesn't work when the Ruby feature
wasn't compiled in. To avoid errors, see
script-here .

Example Vim script:

function! RedGem()
ruby << EOF
class Garnet

def initialize(s)
@buffer = Vim::Buffer.current
vimputs(s)

end
def vimputs(s)

@buffer.append(@buffer.count,s)
end

end

if_ruby.txt — 2037

http://www.ruby-lang.org/

gem = Garnet.new("pretty")
EOF
endfunction

To see what version of Ruby you have:
:ruby print RUBY_VERSION

:rubydo :rubyd E265
:[range]rubyd[o] {cmd} Evaluate Ruby command {cmd} for each line in the

[range], with $_ being set to the text of each line in
turn, without a trailing <EOL>. Setting $_ will change
the text, but note that it is not possible to add or
delete lines using this command.
The default for [range] is the whole file: "1,$".

:rubyfile :rubyf
:rubyf[ile] {file} Execute the Ruby script in {file}. This is the same as

`:ruby load 'file'`, but allows file name completion.

Executing Ruby commands is not possible in the sandbox .

==
2. The Vim module ruby-vim

Ruby code gets all of its access to vim via the "Vim" module.

Overview:
print "Hello" # displays a message
Vim.command(cmd) # execute an Ex command
num = Vim::Window.count # gets the number of windows
w = Vim::Window[n] # gets window "n"
cw = Vim::Window.current # gets the current window
num = Vim::Buffer.count # gets the number of buffers
b = Vim::Buffer[n] # gets buffer "n"
cb = Vim::Buffer.current # gets the current buffer
w.height = lines # sets the window height
w.cursor = [row, col] # sets the window cursor position
pos = w.cursor # gets an array [row, col]
name = b.name # gets the buffer file name
line = b[n] # gets a line from the buffer
num = b.count # gets the number of lines
b[n] = str # sets a line in the buffer
b.delete(n) # deletes a line
b.append(n, str) # appends a line after n
line = Vim::Buffer.current.line # gets the current line
num = Vim::Buffer.current.line_number # gets the current line number
Vim::Buffer.current.line = "test" # sets the current line number

Module Functions:

ruby-message
Vim::message({msg})

Displays the message {msg}.

ruby-blob
Vim::blob({arg})

Return Blob literal string from {arg}.

if_ruby.txt — 2038

ruby-set_option
Vim::set_option({arg})

Sets a vim option. {arg} can be any argument that the ":set" command
accepts. Note that this means that no spaces are allowed in the
argument! See :set .

ruby-command
Vim::command({cmd})

Executes Ex command {cmd}.

ruby-evaluate
Vim::evaluate({expr})

Evaluates {expr} using the vim internal expression evaluator (see
expression). Returns the expression result as:

- a Integer if the Vim expression evaluates to a number
- a Float if the Vim expression evaluates to a float
- a String if the Vim expression evaluates to a string
- a Array if the Vim expression evaluates to a Vim list
- a Hash if the Vim expression evaluates to a Vim dictionary
Dictionaries and lists are recursively expanded.

==
3. Vim::Buffer objects ruby-buffer

Vim::Buffer objects represent vim buffers.

Class Methods:

current Returns the current buffer object.
count Returns the number of buffers.
self[{n}] Returns the buffer object for the number {n}. The first number

is 0.

Methods:

name Returns the full name of the buffer.
number Returns the number of the buffer.
count Returns the number of lines.
length Returns the number of lines.
self[{n}] Returns a line from the buffer. {n} is the line number.
self[{n}] = {str}

Sets a line in the buffer. {n} is the line number.
delete({n}) Deletes a line from the buffer. {n} is the line number.
append({n}, {str})

Appends a line after the line {n}.
line Returns the current line of the buffer if the buffer is

active.
line = {str} Sets the current line of the buffer if the buffer is active.
line_number Returns the number of the current line if the buffer is

active.

==
4. Vim::Window objects ruby-window

Vim::Window objects represent vim windows.

Class Methods:

current Returns the current window object.
count Returns the number of windows.

if_ruby.txt — 2039

self[{n}] Returns the window object for the number {n}. The first number
is 0.

Methods:

buffer Returns the buffer displayed in the window.
height Returns the height of the window.
height = {n} Sets the window height to {n}.
width Returns the width of the window.
width = {n} Sets the window width to {n}.
cursor Returns a [row, col] array for the cursor position.

First line number is 1 and first column number is 0.
cursor = [{row}, {col}]

Sets the cursor position to {row} and {col}.

==
5. Global variables ruby-globals

There are two global variables.

$curwin The current window object.
$curbuf The current buffer object.

==
6. rubyeval() Vim function ruby-rubyeval

To facilitate bi-directional interface, you can use rubyeval() function to
evaluate Ruby expressions and pass their values to Vim script.

The Ruby value "true", "false" and "nil" are converted to v:true, v:false and
v:null, respectively.

==
7. Dynamic loading ruby-dynamic

On MS-Windows and Unix the Ruby library can be loaded dynamically. The
:version output then includes +ruby/dyn .

This means that Vim will search for the Ruby DLL file or shared library only
when needed. When you don't use the Ruby interface you don't need it, thus
you can use Vim even though this library file is not on your system.

MS-Windows

You need to install the right version of Ruby for this to work. You can find
the package to download from:
http://rubyinstaller.org/downloads/
Currently that is rubyinstaller-2.2.5.exe

To use the Ruby interface the Ruby DLL must be in your search path. In a
console window type "path" to see what directories are used. The 'rubydll'
option can be also used to specify the Ruby DLL.

The name of the DLL must match the Ruby version Vim was compiled with.
Currently the name is "msvcrt-ruby220.dll". That is for Ruby 2.2.X. To know
for sure edit "gvim.exe" and search for "ruby\d*.dll\c".

If you want to build Vim with RubyInstaller 1.9 or 2.X using MSVC, you need
some tricks. See the src/INSTALLpc.txt for detail.

if_ruby.txt — 2040

http://rubyinstaller.org/downloads/

If Vim is built with RubyInstaller 2.4 or later, you may also need to add
"C:\Ruby<version>\bin\ruby_builtin_dlls" to the PATH environment variable.

Unix

The 'rubydll' option can be used to specify the Ruby shared library file
instead of DYNAMIC_RUBY_DLL file what was specified at compile time. The
version of the shared library must match the Ruby version Vim was compiled
with.

==

if_ruby.txt — 2041

if_ruby.txt — 2042

debugger.txt For Vim version 9.1. Last change: 2019 Dec 21

VIM REFERENCE MANUAL by Gordon Prieur

Debugger Support Features debugger-support

These features are for integration with a debugger or an Integrated
Programming Environment (IPE) or Integrated Development Environment (IDE).
For the debugger running in a Vim terminal window see terminal-debugger .

1. Debugger Features debugger-features
2. Vim Compile Options debugger-compilation

==
1. Debugger Features debugger-features

The following features are available:

Alternate Command Input alt-input
Debug Signs debug-signs
Debug Source Highlight debug-highlight
Message Footer gui-footer
Balloon Evaluation balloon-eval

These features were added specifically for use in the Motif version of gvim.
However, the alt-input and debug-highlight were written to be usable in
both vim and gvim. Some of the other features could be used in the non-GUI
vim with slight modifications. However, I did not do this nor did I test the
reliability of building for vim or non Motif GUI versions.

1.1 Alternate Command Input alt-input

For Vim to work with a debugger there must be at least an input connection
with a debugger or external tool. In many cases there will also be an output
connection but this isn't absolutely necessary.

The purpose of the input connection is to let the external debugger send
commands to Vim. The commands sent by the debugger should give the debugger
enough control to display the current debug environment and state.

The current implementation is based on the X Toolkit dispatch loop and the
XtAddInput() function call.

1.2 Debug Signs debug-signs

Many debuggers mark specific lines by placing a small sign or color highlight
on the line. The :sign command lets the debugger set this graphic mark. Some
examples where this feature would be used would be a debugger showing an arrow
representing the Program Counter (PC) of the program being debugged. Another
example would be a small stop sign for a line with a breakpoint. These visible
highlights let the user keep track of certain parts of the state of the
debugger.

This feature can be used with more than debuggers, too. An IPE can use a sign
to highlight build errors, searched text, or other things. The sign feature
can also work together with the debug-highlight to ensure the mark is

debugger.txt — 2043

highly visible.

Debug signs are defined and placed using the :sign command.

1.3 Debug Source Highlight debug-highlight

This feature allows a line to have a predominant highlight. The highlight is
intended to make a specific line stand out. The highlight could be made to
work for both vim and gvim, whereas the debug sign is, in most cases, limited
to gvim. The one exception to this is Sun Microsystem's dtterm. The dtterm
from Sun has a "sign gutter" for showing signs.

1.4 Message Footer gui-footer

The message footer can be used to display messages from a debugger or IPE. It
can also be used to display menu and toolbar tips. The footer area is at the
bottom of the GUI window, below the line used to display colon commands.

The display of the footer is controlled by the 'guioptions' letter 'F'.

1.5 Balloon Evaluation balloon-eval

This feature allows a debugger, or other external tool, to display dynamic
information based on where the mouse is pointing. The purpose of this feature
was to allow Sun's Visual WorkShop debugger to display expression evaluations.
However, the feature was implemented in as general a manner as possible and
could be used for displaying other information as well. The functionality is
limited though, for advanced popups see popup-window .

Another way to use the balloon is with the 'balloonexpr' option. This is
completely user definable.

The Balloon Evaluation has some settable parameters too. For Motif the font
list and colors can be set via X resources (XmNballoonEvalFontList,
XmNballoonEvalBackground, and XmNballoonEvalForeground).
The 'balloondelay' option sets the delay before an attempt is made to show a
balloon.
The 'ballooneval' and/or the 'balloonevalterm' option needs to be set to
switch it on.

Balloon evaluation is only available in the GUI when compiled with the
+balloon_eval feature. For the terminal the +balloon_eval_term feature

matters.

The Balloon evaluation functions are also used to show a tooltip for the
toolbar. The 'ballooneval' option does not need to be set for this. But the
other settings apply.

==
2. Vim Compile Options debugger-compilation

The debugger features were added for use with Sun's Visual WorkShop Integrated
Programming Environment (ipe). However, they were done in as generic a manner
as possible so that integration with other debuggers could also use these
features.

The following compile time preprocessor variables control the features:

debugger.txt — 2044

Alternate Command Input ALT_X_INPUT
Debug Glyphs FEAT_SIGNS
Debug Highlights FEAT_SIGNS
Message Footer FEAT_FOOTER
Balloon Evaluation FEAT_BEVAL

The support specifically for Sun Visual WorkShop has been removed, since the
product no longer exists.

For Sun NetBeans support see netbeans .

debugger.txt — 2045

debugger.txt — 2046

netbeans.txt For Vim version 9.1. Last change: 2023 Nov 26

VIM REFERENCE MANUAL by Gordon Prieur et al.

netbeans NetBeans netbeans-support

Vim NetBeans Protocol: a socket interface for Vim integration into an IDE.

1. Introduction netbeans-intro
2. Integration features netbeans-integration
3. Configuring Vim for NetBeans netbeans-configure
4. Error Messages netbeans-messages
5. Running Vim in NetBeans mode netbeans-run
6. NetBeans protocol netbeans-protocol
7. NetBeans commands netbeans-commands
8. Known problems netbeans-problems
9. Debugging NetBeans protocol netbeans-debugging
10. NetBeans External Editor

10.1. Downloading NetBeans netbeans-download
10.2. NetBeans Key Bindings netbeans-keybindings
10.3. Preparing NetBeans for Vim netbeans-preparation
10.4. Obtaining the External Editor Module obtaining-exted
10.5. Setting up NetBeans to run with Vim netbeans-setup

{only available when compiled with the |+netbeans_intg| feature}

==
1. Introduction netbeans-intro

The NetBeans interface was initially developed to integrate Vim into the
NetBeans Java IDE, using the external editor plugin. This NetBeans plugin no
longer exists for recent versions of NetBeans but the protocol was developed
in such a way that any IDE can use it to integrate Vim.

The NetBeans protocol of Vim is a text based communication protocol, over a
classical TCP socket. There is no dependency on Java or NetBeans. Any language
or environment providing a socket interface can control Vim using this
protocol. There are existing implementations in C, C++, Python and Java. The
name NetBeans is kept today for historical reasons.

Active project using the NetBeans protocol of Vim:
- Eclim, http://eclim.org/

VimIntegration, description of various projects doing Vim Integration:
http://www.freehackers.org/VimIntegration

Projects using the NetBeans protocol of Vim are or were:
- Agide, an IDE for the AAP project, written in Python (now replaced by

:Termdebug): http://www.a-a-p.org
- Clewn, a gdb integration into Vim, written in C:

http://clewn.sourceforge.net/
- Pyclewn, a gdb integration into Vim, written in Python:

http://pyclewn.sourceforge.net/
- VimWrapper, library to easy Vim integration into IDE:

http://www.freehackers.org/VimWrapper
Outdated projects (links don't work):
- VimPlugin, integration of Vim inside Eclipse:

http://vimplugin.sourceforge.net/wiki/pmwiki.php

netbeans.txt — 2047

http://eclim.org/
http://www.freehackers.org/VimIntegration
http://www.a-a-p.org
http://clewn.sourceforge.net/
http://pyclewn.sourceforge.net/
http://www.freehackers.org/VimWrapper
http://vimplugin.sourceforge.net/wiki/pmwiki.php

- PIDA, IDE written in Python integrating Vim:
http://pida.co.uk/

Check the specific project pages to see how to use Vim with these projects.

An alternative is to use a channel, see channel .

In the rest of this help page, we will use the term "Vim Controller" to
describe the program controlling Vim through the NetBeans socket interface.

About the NetBeans IDE

NetBeans is an open source Integrated Development Environment developed
jointly by Sun Microsystems, Inc. and the netbeans.org developer community.
Initially just a Java IDE, NetBeans has had C, C++, and Fortran support added
in recent releases.

For more information visit the main NetBeans web site http://www.netbeans.org.
The External Editor is now, unfortunately, declared obsolete. See
http://externaleditor.netbeans.org.

Sun Microsystems, Inc. also ships NetBeans under the name Sun ONE Studio.
Visit http://www.sun.com for more information regarding the Sun ONE Studio
product line.

Current releases of NetBeans provide full support for Java and limited support
for C, C++, and Fortran. Current releases of Sun ONE Studio provide full
support for Java, C, C++, and Fortran.

==
2. Integration features netbeans-integration

The NetBeans socket interface of Vim allows to get information from Vim or to
ask Vim to perform specific actions:
- get information about buffer: buffer name, cursor position, buffer content,

etc.
- be notified when buffers are open or closed
- be notified of how the buffer content is modified
- load and save files
- modify the buffer content
- installing special key bindings
- raise the window, control the window geometry

For sending key strokes to Vim or for evaluating functions in Vim, you must
use the clientserver interface.

==
3. Configuring Vim for NetBeans netbeans-configure

For more help about installing Vim, please read usr_90.txt in the Vim User
Manual.

On Unix:

When running configure without arguments the NetBeans interface should be
included. That is, if the configure check to find out if your system supports

netbeans.txt — 2048

http://pida.co.uk/
http://www.netbeans.org
http://externaleditor.netbeans.org
http://www.sun.com

the required features succeeds.

In case you do not want the NetBeans interface you can disable it by
uncommenting a line with "--disable-netbeans" in the Makefile.

Currently the NetBeans interface is supported by Vim running in a terminal and
by gvim when it is run with one of the following GUIs: GTK, GNOME, Windows
and Motif.

netbeans-xpm
If Motif support is required the user must supply XPM libraries.
The XPM library is required to show images within Vim with Motif.
Without it the toolbar and signs will be disabled.

The XPM library is provided by Arnaud Le Hors of the French National Institute
for Research in Computer Science and Control. It can be downloaded from
http://cgit.freedesktop.org/xorg/lib/libXpm. The current release, as of this
writing, is xpm-3.4k-solaris.tgz, which is a gzip'ed tar file. If you create
the directory /usr/local/xpm and untar the file there you can use the
uncommented lines in the Makefile without changing them. If you use another
xpm directory you will need to change the XPM_DIR in src/Makefile.

On MS-Windows:

The Win32 support is now in beta stage.

To use XPM signs on Win32 (e.g. when using with NetBeans) you can compile
XPM by yourself or use precompiled libraries from http://iamphet.nm.ru/misc/
(for MS Visual C++) or http://gnuwin32.sourceforge.net (for MinGW).

Enable debugging:

To enable debugging of Vim and of the NetBeans protocol, the "NBDEBUG" macro
needs to be defined. Search in the Makefile of the platform you are using for
"NBDEBUG" to see what line needs to be uncommented. This effectively adds
"-DNBDEBUG" to the compile command. Also see netbeans-debugging

==
4. Error Messages netbeans-messages

These error messages are specific to NetBeans socket protocol:

E463
Region is guarded, cannot modify

The Vim Controller has defined guarded areas in the text,
which you cannot change. Also sets the current buffer, if
necessary.

E532
The defineAnnoType highlighting color name is too long

The maximum length of the "fg" or "bg" color argument in the
defineAnnoType command is 32 characters.
New in version 2.5.

E656
Writes of unmodified buffers forbidden

Writes of unmodified buffers that were opened from the

netbeans.txt — 2049

http://cgit.freedesktop.org/xorg/lib/libXpm
http://iamphet.nm.ru/misc/
http://gnuwin32.sourceforge.net

Vim Controller are not possible.

E657
Partial writes disallowed

Partial writes for buffers that were opened from the
Vim Controller are not allowed.

E658
Connection lost for this buffer

The Vim Controller has become confused about the state of
this file. Rather than risk data corruption, it has severed
the connection for this file. Vim will take over
responsibility for saving changes to this file and the
Vim Controller will no longer know of these changes.

E744
Read-only file

Vim normally allows changes to a read-only file and only
enforces the read-only rule if you try to write the file.
However, NetBeans does not let you make changes to a file
which is read-only and becomes confused if Vim does this.
So Vim does not allow modifications to files when run
in NetBeans mode.

==
5. Running Vim in NetBeans mode netbeans-run

There are two different ways to run Vim in NetBeans mode:

+ an IDE may start Vim with the -nb command line argument
+ NetBeans can be started from within Vim with the :nbstart command

Vim uses a 3 second timeout on trying to make the connection.

netbeans-parameters
Three forms can be used to setup the NetBeans connection parameters.
When started from the command line, the -nb command line argument may be:

-nb={fname} from a file
-nb:{hostname}:{addr}:{password} directly
-nb from a file or environment

When started from within Vim, the :nbstart optional argument may be:

={fname} from a file
:{hostname}:{addr}:{password} directly
<MISSING ARGUMENT> from a file or environment

E660 E668
When NetBeans is started from the command line, for security reasons, the best
method is to write the information in a file readable only by the user. The
name of the file can be passed with the "-nb={fname}" argument or, when "-nb"
is used without a parameter, the environment variable "__NETBEANS_CONINFO".
The file must contain these three lines, in any order:

host={hostname}
port={addr}
auth={password}

Other lines are ignored. The Vim Controller is responsible for deleting the

netbeans.txt — 2050

file afterwards.

{hostname} is the name of the machine where Vim Controller is running. When
omitted the environment variable "__NETBEANS_HOST" is used or the default
"localhost".

{addr} is the port number for the NetBeans interface. When omitted the
environment variable "__NETBEANS_SOCKET" is used or the default 3219.

{password} is the password for connecting to NetBeans. When omitted the
environment variable "__NETBEANS_VIM_PASSWORD" is used or "changeme".

Vim will initiate a socket connection (client side) to the specified host and
port upon startup. The password will be sent with the AUTH event when the
connection has been established.

==
6. NetBeans protocol netbeans-protocol

The communication between the Vim Controller and Vim uses plain text
messages. This protocol was first designed to work with the external editor
module of NetBeans. Later it was extended to work with Agide (A-A-P GUI IDE,
see http://www.a-a-p.org) and then with other IDE. The extensions are marked
with "version 2.1".

Version 2.2 of the protocol has several minor changes which should only affect
NetBeans users (ie, not Agide users). However, a bug was fixed which could
cause confusion. The netbeans_saved() function sent a "save" protocol
command. In protocol version 2.1 and earlier this was incorrectly interpreted
as a notification that a write had taken place. In reality, it told NetBeans
to save the file so multiple writes were being done. This caused various
problems and has been fixed in 2.2. To decrease the likelihood of this
confusion happening again, netbeans_saved() has been renamed to
netbeans_save_buffer().

We are now at version 2.5. For the differences between 2.4 and 2.5 search for
"2.5" below.

The messages are currently sent over a socket. Since the messages are in
plain UTF-8 text this protocol could also be used with any other communication
mechanism.

Netbeans messages are processed when Vim is idle, waiting for user input.
When Vim is run in non-interactive mode, for example when running an automated
test case that sources a Vim script, the idle loop may not be called often
enough. In that case, insert :sleep commands in the Vim script. The :sleep
command does invoke Netbeans messages processing.

6.1 Kinds of messages nb-messages
6.2 Terms nb-terms
6.3 Commands nb-commands
6.4 Functions and Replies nb-functions
6.5 Events nb-events
6.6 Special messages nb-special
6.7 Protocol errors nb-protocol_errors

6.1 Kinds of messages nb-messages

netbeans.txt — 2051

http://www.a-a-p.org

There are four kinds of messages:

kind direction comment
Command IDE -> editor no reply necessary
Function IDE -> editor editor must send back a reply
Reply editor -> IDE only in response to a Function
Event editor -> IDE no reply necessary

The messages are sent as a single line with a terminating newline character.
Arguments are separated by a single space. The first item of the message
depends on the kind of message:

kind first item example
Command bufID:name!seqno 11:showBalloon!123 "text"
Function bufID:name/seqno 11:getLength/123
Reply seqno 123 5000
Event bufID:name=seqno 11:keyCommand=123 "S-F2"

6.2 Terms nb-terms

bufID Buffer number. A message may be either for a specific buffer
or generic. Generic messages use a bufID of zero. NOTE: this
buffer ID is assigned by the IDE, it is not Vim's buffer
number. The bufID must be a sequentially rising number,
starting at one. When the 'switchbuf' option is set to
"usetab" and the "bufID" buffer is not found in the current
tab page, the netbeans commands and functions that set this
buffer as the current buffer will jump to the first open
window that contains this buffer in other tab pages instead of
replacing the buffer in the current window.

seqno The IDE uses a sequence number for Commands and Functions. A
Reply must use the sequence number of the Function that it is
associated with. A zero sequence number can be used for
Events (the seqno of the last received Command or Function can
also be used).

string Argument in double quotes. Text is in UTF-8 encoding. This
means ASCII is passed as-is. Special characters are
represented with a backslash:

\" double quote
\n newline
\r carriage-return
\t tab (optional, also works literally)
\\ backslash

NUL bytes are not allowed!

boolean Argument with two possible values:
T true
F false

number Argument with a decimal number.

color Argument with either a decimal number, "none" (without the
quotes) or the name of a color (without the quotes) defined
both in the color list in highlight-ctermfg and in the color
list in gui-colors .
New in version 2.5.

netbeans.txt — 2052

offset A number argument that indicates a byte position in a buffer.
The first byte has offset zero. Line breaks are counted for
how they appear in the file (CR/LF counts for two bytes).
Note that a multibyte character is counted for the number of
bytes it takes.

lnum/col Argument with a line number and column number position. The
line number starts with one, the column is the byte position,
starting with zero. Note that a multibyte character counts
for several columns.

pathname String argument: file name with full path.

6.3 Commands nb-commands

actionMenuItem Not implemented.

actionSensitivity
Not implemented.

addAnno serNum typeNum off len
Place an annotation in this buffer.
Arguments:

serNum number serial number of this placed
annotation, used to be able to remove
it

typeNum number sequence number of the annotation
defined with defineAnnoType for this
buffer

off number offset where annotation is to be placed
len number not used

In version 2.1 "lnum/col" can be used instead of "off".

balloonResult text
Not implemented.

close Close the buffer. This leaves us without current buffer, very
dangerous to use!

create Creates a buffer without a name. Replaces the current buffer
(it's hidden when it was changed).
The Vim Controller should use this as the first command for a
file that is being opened. The sequence of commands could be:

create
setCaretListener (ignored)
setModified (no effect)
setContentType (ignored)
startDocumentListen
setTitle
setFullName

defineAnnoType typeNum typeName tooltip glyphFile fg bg
Define a type of annotation for this buffer.
Arguments:

typeNum number sequence number (not really used)
typeName string name that identifies this annotation
tooltip string not used
glyphFile string name of icon file

netbeans.txt — 2053

fg color foreground color for line highlighting
bg color background color for line highlighting

Vim will define a sign for the annotation.
When color is a number, this is the "#rrggbb" Red, Green and
Blue values of the color (see gui-colors) and the
highlighting is only defined for gVim.
When color is a name, this color is defined both for Vim
running in a color terminal and for gVim.
When both "fg" and "bg" are "none" no line highlighting is
used (new in version 2.1).
When "glyphFile" is empty, no text sign is used (new in
version 2.1).
When "glyphFile" is one or two characters long, a text sign is
defined (new in version 2.1).
Note: the annotations will be defined in sequence, and the
sequence number is later used with addAnno.

editFile pathname
Set the name for the buffer and edit the file "pathname", a
string argument.
Normal way for the IDE to tell the editor to edit a file.

You must set a bufId different of 0 with this command to
assign a bufId to the buffer. It will trigger an event
fileOpened with a bufId of 0 but the buffer has been assigned.

If the IDE is going to pass the file text to the editor use
these commands instead:

setFullName
insert
initDone

New in version 2.1.

enableBalloonEval
Not implemented.

endAtomic End an atomic operation. The changes between "startAtomic"
and "endAtomic" can be undone as one operation. But it's not
implemented yet. Redraw when necessary.

guard off len
Mark an area in the buffer as guarded. This means it cannot
be edited. "off" and "len" are numbers and specify the text
to be guarded.

initDone Mark the buffer as ready for use. Implicitly makes the buffer
the current buffer. Fires the BufReadPost autocommand event.

insertDone starteol readonly
Sent by Vim Controller to tell Vim an initial file insert is
done. This triggers a read message being printed. If
"starteol" is "F" then the last line doesn't have a EOL. If
"readonly" is "T" then the file is marked as readonly. Prior
to version 2.3, no read messages were displayed after opening
a file. New in version 2.3.

moveAnnoToFront serNum
Not implemented.

netbeansBuffer isNetbeansBuffer

netbeans.txt — 2054

If "isNetbeansBuffer" is "T" then this buffer is "owned" by
NetBeans.
New in version 2.2.

putBufferNumber pathname
Associate a buffer number with the Vim buffer by the name
"pathname", a string argument. To be used when the editor
reported editing another file to the IDE and the IDE needs to
tell the editor what buffer number it will use for this file.
Also marks the buffer as initialized.
New in version 2.1.

raise Bring the editor to the foreground.
Only when Vim is run with a GUI.
New in version 2.1.

removeAnno serNum
Remove a previously placed annotation for this buffer.
"serNum" is the same number used in addAnno.

save Save the buffer when it was modified. The other side of the
interface is expected to write the buffer and invoke
"setModified" to reset the "changed" flag of the buffer.
The writing is skipped when one of these conditions is true:
- 'write' is not set
- the buffer is read-only
- the buffer does not have a file name
- 'buftype' disallows writing
New in version 2.2.

saveDone
Sent by Vim Controller to tell Vim a save is done. This
triggers a save message being printed. Prior to version 2.3,
no save messages were displayed after a save.
New in version 2.3.

setAsUser Not implemented.

setBufferNumber pathname
Associate a buffer number with Vim buffer by the name
"pathname". To be used when the editor reported editing
another file to the IDE and the IDE needs to tell the editor
what buffer number it will use for this file.
Has the side effect of making the buffer the current buffer.
See "putBufferNumber" for a more useful command.

setContentType
Not implemented.

setDot off Make the buffer the current buffer and set the cursor at the
specified position. If the buffer is open in another window
than make that window the current window.
If there are folds they are opened to make the cursor line
visible.
In version 2.1 "lnum/col" can be used instead of "off".

setExitDelay seconds
Set the delay for exiting to "seconds", a number.
This delay is used to give the IDE a chance to handle things
before really exiting. The default delay is two seconds.

netbeans.txt — 2055

New in version 2.1.
Obsolete in version 2.3.

setFullName pathname
Set the file name to be used for a buffer to "pathname", a
string argument.
Used when the IDE wants to edit a file under control of the
IDE. This makes the buffer the current buffer, but does not
read the file. "insert" commands will be used next to set the
contents.

setLocAndSize Not implemented.

setMark Not implemented.

setModified modified
When the boolean argument "modified" is "T" mark the buffer as
modified, when it is "F" mark it as unmodified.

setModtime time
Update a buffers modification time after the file has been
saved directly by the Vim Controller.
New in version 2.3.

setReadOnly readonly
When the boolean argument "readonly" is "T" for True, mark the
buffer as readonly, when it is "F" for False, mark it as not
readonly. Implemented in version 2.3.

setStyle Not implemented.

setTitle name
Set the title for the buffer to "name", a string argument.
The title is only used for the Vim Controller functions, not
by Vim.

setVisible visible
When the boolean argument "visible" is "T", goto the buffer.
The "F" argument does nothing.

showBalloon text
Show a balloon (popup window) at the mouse pointer position,
containing "text", a string argument. The balloon should
disappear when the mouse is moved more than a few pixels.
Only when Vim is run with a GUI.
New in version 2.1.

specialKeys
Map a set of keys (mostly function keys) to be passed back
to the Vim Controller for processing. This lets regular IDE
hotkeys be used from Vim.
Implemented in version 2.3.

startAtomic Begin an atomic operation. The screen will not be updated
until "endAtomic" is given.

startCaretListen
Not implemented.

startDocumentListen

netbeans.txt — 2056

Mark the buffer to report changes to the IDE with the
"insert" and "remove" events. The default is to report
changes.

stopCaretListen
Not implemented.

stopDocumentListen
Mark the buffer to stop reporting changes to the IDE.
Opposite of startDocumentListen.
NOTE: if "netbeansBuffer" was used to mark this buffer as a
NetBeans buffer, then the buffer is deleted in Vim. This is
for compatibility with Sun Studio 10.

unguard off len
Opposite of "guard", remove guarding for a text area.
Also sets the current buffer, if necessary.

version Not implemented.

6.4 Functions and Replies nb-functions

getDot Not implemented.

getCursor Return the current buffer and cursor position.
The reply is:

seqno bufID lnum col off
seqno = sequence number of the function
bufID = buffer ID of the current buffer (if this is unknown -1

is used)
lnum = line number of the cursor (first line is one)
col = column number of the cursor (in bytes, zero based)
off = offset of the cursor in the buffer (in bytes)
New in version 2.1.

getLength Return the length of the buffer in bytes.
Reply example for a buffer with 5000 bytes:

123 5000
TODO: explain use of partial line.

getMark Not implemented.

getAnno serNum
Return the line number of the annotation in the buffer.
Argument:

serNum serial number of this placed annotation
The reply is:

123 lnum line number of the annotation
123 0 invalid annotation serial number

New in version 2.4.

getModified When a buffer is specified: Return zero if the buffer does not
have changes, one if it does have changes.
When no buffer is specified (buffer number zero): Return the
number of buffers with changes. When the result is zero it's
safe to tell Vim to exit.
New in version 2.1.

getText Return the contents of the buffer as a string.

netbeans.txt — 2057

Reply example for a buffer with two lines
123 "first line\nsecond line\n"

NOTE: docs indicate an offset and length argument, but this is
not implemented.

insert off text
Insert "text" before position "off". "text" is a string
argument, "off" a number.
"text" should have a "\n" (newline) at the end of each line.
Or "\r\n" when 'fileformat' is "dos". When using "insert" in
an empty buffer Vim will set 'fileformat' accordingly.
When "off" points to the start of a line the text is inserted
above this line. Thus when "off" is zero lines are inserted
before the first line.
When "off" points after the start of a line, possibly on the
NUL at the end of a line, the first line of text is appended
to this line. Further lines come below it.
Possible replies:

123 no problem
123 !message failed

Note that the message in the reply is not quoted.
Also sets the current buffer, if necessary.
Does not move the cursor to the changed text.
Resets undo information.

remove off length
Delete "length" bytes of text at position "off". Both
arguments are numbers.
Possible replies:

123 no problem
123 !message failed

Note that the message in the reply is not quoted.
Also sets the current buffer, if necessary.

saveAndExit Perform the equivalent of closing Vim: ":confirm qall".
If there are no changed files or the user does not cancel the
operation Vim exits and no result is sent back. The IDE can
consider closing the connection as a successful result.
If the user cancels the operation the number of modified
buffers that remains is returned and Vim does not exit.
New in version 2.1.

6.5 Events nb-events

balloonEval off len type
The mouse pointer rests on text for a short while. When "len"
is zero, there is no selection and the pointer is at position
"off". When "len" is non-zero the text from position "off" to
"off" + "len" is selected.
Only sent after "enableBalloonEval" was used for this buffer.
"type" is not yet defined.
Not implemented yet.

balloonText text
Used when 'ballooneval' is set and the mouse pointer rests on
some text for a moment. "text" is a string, the text under
the mouse pointer.
Only when Vim is run with a GUI.
New in version 2.1.

netbeans.txt — 2058

buttonRelease button lnum col
Report which button was pressed and the location of the cursor
at the time of the release. Only for buffers that are owned
by the Vim Controller. This event is not sent if the button
was released while the mouse was in the status line or in a
separator line. If col is less than 1 the button release was
in the sign area.
New in version 2.2.

disconnect
Tell the Vim Controller that Vim is exiting and not to try and
read or write more commands.
New in version 2.3.

fileClosed Not implemented.

fileModified Not implemented.

fileOpened pathname open modified
A file was opened by the user.
Arguments:

pathname string name of the file
open boolean always "T"
modified boolean always "F"

geometry cols rows x y
Report the size and position of the editor window.
Arguments:

cols number number of text columns
rows number number of text rows
x number pixel position on screen
y number pixel position on screen

Only works for Motif.

insert off text
Text "text" has been inserted in Vim at position "off".
Only fired when enabled, see "startDocumentListen".

invokeAction Not implemented.

keyCommand keyName
Reports a special key being pressed with name "keyName", which
is a string.
Supported key names:

F1 function key 1
F2 function key 2
...
F12 function key 12

' ' space (without the quotes)
! exclamation mark
... any other ASCII printable character
~ tilde

X any unrecognized key

The key may be prepended by "C", "S" and/or "M" for Control,
Shift and Meta (Alt) modifiers. If there is a modifier a dash
is used to separate it from the key name. For example:

netbeans.txt — 2059

"C-F2".
ASCII characters are new in version 2.1.

keyAtPos keyName lnum/col
Like "keyCommand" and also report the line number and column
of the cursor.
New in version 2.1.

killed A file was deleted or wiped out by the user and the buffer
annotations have been removed. The bufID number for this
buffer has become invalid. Only for files that have been
assigned a bufID number by the IDE.

newDotAndMark off off
Reports the position of the cursor being at "off" bytes into
the buffer. Only sent just before a "keyCommand" event.

quit Not implemented.

remove off len
Text was deleted in Vim at position "off" with byte length
"len".
Only fired when enabled, see "startDocumentListen".

revert Not implemented.

save The buffer has been saved and is now unmodified.
Only fired when enabled, see "startDocumentListen".

startupDone The editor has finished its startup work and is ready for
editing files.
New in version 2.1.

unmodified The buffer is now unmodified.
Only fired when enabled, see "startDocumentListen".

version vers Report the version of the interface implementation. Vim
reports "2.4" (including the quotes).

6.6 Special messages nb-special

These messages do not follow the style of the messages above. They are
terminated by a newline character.

ACCEPT Not used.

AUTH password editor -> IDE: First message that the editor sends to the IDE.
Must contain the password for the socket server, as specified
with the -nb argument. No quotes are used!

DISCONNECT IDE -> editor: break the connection. The editor will exit.
The IDE must only send this message when there are no unsaved
changes!

DETACH IDE -> editor: break the connection without exiting the
editor. Used when the IDE exits without bringing down the
editor as well.
New in version 2.1.

netbeans.txt — 2060

REJECT Not used.

6.7 Protocol errors nb-protocol_errors

These errors occur when a message violates the protocol:
E627 E628 E629 E632 E633 E634 E635 E636
E637 E638 E639 E640 E641 E642 E643 E644 E645 E646
E647 E648 E650 E651 E652

==
7. NetBeans commands netbeans-commands

:nbstart E511 E838
:nbs[tart] {connection} Start a new Netbeans session with {connection} as the

socket connection parameters. The format of
{connection} is described in netbeans-parameters .
At any time, one may check if the netbeans socket is
connected by running the command:
':echo has("netbeans_enabled")'

:nbclose
:nbc[lose] Close the current NetBeans session. Remove all placed

signs.

:nbkey
:nb[key] {key} Pass the {key} to the Vim Controller for processing.

When a hot-key has been installed with the specialKeys
command, this command can be used to generate a hotkey
message to the Vim Controller.
This command can also be used to pass any text to the
Vim Controller. It is used by Pyclewn, for example,
to build the complete set of gdb commands as Vim user
commands.
The events newDotAndMark, keyCommand and keyAtPos are
generated (in this order).

==
8. Known problems netbeans-problems

NUL bytes are not possible. For editor -> IDE they will appear as NL
characters. For IDE -> editor they cannot be inserted.

A NetBeans session may be initiated with Vim running in a terminal, and
continued later in a GUI environment after running the :gui command. In this
case, the highlighting defined for the NetBeans annotations may be cleared
when the ":gui" command sources .gvimrc and this file loads a colorscheme
that runs the command ":highlight clear".
New in version 2.5.

==
9. Debugging NetBeans protocol netbeans-debugging

To debug the Vim protocol, you must first compile Vim with debugging support
and NetBeans debugging support. See netbeans-configure for instructions
about Vim compiling and how to enable debug support.

netbeans.txt — 2061

When running Vim, set the following environment variables:

export SPRO_GVIM_DEBUG=netbeans.log
export SPRO_GVIM_DLEVEL=0xffffffff

Vim will then log all the incoming and outgoing messages of the NetBeans
protocol to the file netbeans.log .

The content of netbeans.log after a session looks like this:
Tue May 20 17:19:27 2008
EVT: 0:startupDone=0
CMD 1: (1) create
CMD 2: (1) setTitle "testfile1.txt"
CMD 3: (1) setFullName "testfile1.txt"
EVT(suppressed): 1:remove=3 0 -1
EVT: 1:fileOpened=0 "d:\\work\\vimWrapper\\vimWrapper2\\pyvimwrapper\\tests\\testfile1.txt" T F
CMD 4: (1) initDone
FUN 5: (0) getCursor
REP 5: 1 1 0 0
CMD 6: (2) create
CMD 7: (2) setTitle "testfile2.txt"
CMD 8: (2) setFullName "testfile2.txt"
EVT(suppressed): 2:remove=8 0 -1
EVT: 2:fileOpened=0 "d:\\work\\vimWrapper\\vimWrapper2\\pyvimwrapper\\tests\\testfile2.txt" T F
CMD 9: (2) initDone

==
10. NetBeans External Editor

NOTE: This information is obsolete! Only relevant if you are using an old
version of NetBeans.

10.1. Downloading NetBeans netbeans-download

The NetBeans IDE is available for download from netbeans.org. You can download
a released version, download sources, or use CVS to download the current
source tree. If you choose to download sources, follow directions from
netbeans.org on building NetBeans.

Depending on the version of NetBeans you download, you may need to do further
work to get the required External Editor module. This is the module which lets
NetBeans work with gvim (or xemacs :-). See http://externaleditor.netbeans.org
for details on downloading this module if your NetBeans release does not have
it.

For C, C++, and Fortran support you will also need the cpp module. See
http://cpp.netbeans.org for information regarding this module.

You can also download Sun ONE Studio from Sun Microsystems, Inc for a 30 day
free trial. See http://www.sun.com for further details.

10.2. NetBeans Key Bindings netbeans-keybindings

Vim understands a number of key bindings that execute NetBeans commands.
These are typically all the Function key combinations. To execute a NetBeans
command, the user must press the Pause key followed by a NetBeans key binding.
For example, in order to compile a Java file, the NetBeans key binding is

netbeans.txt — 2062

http://externaleditor.netbeans.org
http://cpp.netbeans.org
http://www.sun.com

"F9". So, while in vim, press "Pause F9" to compile a java file. To toggle a
breakpoint at the current line, press "Pause Shift F8".

The Pause key is Function key 21. If you don't have a working Pause key and
want to use F8 instead, use:

:map <F8> <F21>

The External Editor module dynamically reads the NetBeans key bindings so vim
should always have the latest key bindings, even when NetBeans changes them.

10.3. Preparing NetBeans for Vim netbeans-preparation

In order for NetBeans to work with vim, the NetBeans External Editor module
must be loaded and enabled. If you have a Sun ONE Studio Enterprise Edition
then this module should be loaded and enabled. If you have a NetBeans release
you may need to find another way of obtaining this open source module.

You can check if you have this module by opening the Tools->Options dialog
and drilling down to the "Modules" list (IDE Configuration->System->Modules).
If your Modules list has an entry for "External Editor" you must make sure
it is enabled (the "Enabled" property should have the value "True"). If your
Modules list has no External Editor see the next section on obtaining-exted .

10.4. Obtaining the External Editor Module obtaining-exted

There are 2 ways of obtaining the External Editor module. The easiest way
is to use the NetBeans Update Center to download and install the module.
Unfortunately, some versions do not have this module in their update
center. If you cannot download via the update center you will need to
download sources and build the module. I will try and get the module
available from the NetBeans Update Center so building will be unnecessary.
Also check http://externaleditor.netbeans.org for other availability options.

To download the External Editor sources via CVS and build your own module,
see http://externaleditor.netbeans.org and http://www.netbeans.org.
Unfortunately, this is not a trivial procedure.

10.5. Setting up NetBeans to run with Vim netbeans-setup

Assuming you have loaded and enabled the NetBeans External Editor module
as described in netbeans-preparation all you need to do is verify that
the gvim command line is properly configured for your environment.

Open the Tools->Options dialog and open the Editing category. Select the
External Editor. The right hand pane should contain a Properties tab and
an Expert tab. In the Properties tab make sure the "Editor Type" is set
to "Vim". In the Expert tab make sure the "Vim Command" is correct.

You should be careful if you change the "Vim Command". There are command
line options there which must be there for the connection to be properly
set up. You can change the command name but that's about it. If your gvim
can be found by your $PATH then the Vim Command can start with "gvim". If
you don't want gvim searched from your $PATH then hard code in the full
Unix path name. At this point you should get a gvim for any source file
you open in NetBeans.

netbeans.txt — 2063

http://externaleditor.netbeans.org
http://externaleditor.netbeans.org
http://www.netbeans.org

If some files come up in gvim and others (with different file suffixes) come
up in the default NetBeans editor you should verify the MIME type in the
Expert tab MIME Type property. NetBeans is MIME oriented and the External
Editor will only open MIME types specified in this property.

netbeans.txt — 2064

sign.txt For Vim version 9.1. Last change: 2023 Feb 21

VIM REFERENCE MANUAL by Gordon Prieur
and Bram Moolenaar

Sign Support Features sign-support

1. Introduction sign-intro
2. Commands sign-commands
3. Functions sign-functions-details

{only available when compiled with the |+signs| feature}

==
1. Introduction sign-intro signs

When a debugger or other IDE tool is driving an editor it needs to be able
to give specific highlights which quickly tell the user useful information
about the file. One example of this would be a debugger which had an icon
in the left-hand column denoting a breakpoint. Another example might be an
arrow representing the Program Counter (PC). The sign features allow both
placement of a sign, or icon, in the left-hand side of the window and
definition of a highlight which will be applied to that line. Displaying the
sign as an image is most likely only feasible in gvim (although Sun
Microsystem's dtterm does support this it's the only terminal emulator I know
of which does). A text sign and the highlight should be feasible in any color
terminal emulator.

Signs and highlights are not useful just for debuggers. Sun's Visual
WorkShop uses signs and highlights to mark build errors and SourceBrowser
hits. Additionally, the debugger supports 8 to 10 different signs and
highlight colors, see NetBeans .

There are two steps in using signs:

1. Define the sign. This specifies the image, text and highlighting. For
example, you can define a "break" sign with an image of a stop roadsign and
text "!!".

2. Place the sign. This specifies the file and line number where the sign is
displayed. A defined sign can be placed several times in different lines
and files.

sign-column
When signs are defined for a file, Vim will automatically add a column of two
characters to display them in. When the last sign is unplaced the column
disappears again. This behavior can be changed with the 'signcolumn' option.

The color of the column is set with the SignColumn highlight group
hl-SignColumn . Example to set the color:

:highlight SignColumn guibg=darkgrey

If 'cursorline' is enabled, then the CursorLineSign highlight group is used
hl-CursorLineSign .

sign-identifier
Each placed sign is identified by a number called the sign identifier. This
identifier is used to jump to the sign or to remove the sign. The identifier

sign.txt — 2065

is assigned when placing the sign using the :sign-place command or the
sign_place() function. Each sign identifier should be a unique number. If

multiple placed signs use the same identifier, then jumping to or removing a
sign becomes unpredictable. To avoid overlapping identifiers, sign groups can
be used. The sign_place() function can be called with a zero sign identifier
to allocate the next available identifier.

sign-group
Each placed sign can be assigned to either the global group or a named group.
When placing a sign, if a group name is not supplied, or an empty string is
used, then the sign is placed in the global group. Otherwise the sign is
placed in the named group. The sign identifier is unique within a group. The
sign group allows Vim plugins to use unique signs without interfering with
other plugins using signs.

To place a sign in a popup window the group name must start with "PopUp".
Other signs will not show in a popup window. The group name "PopUpMenu" is
used by popup windows where 'cursorline' is set.

sign-priority
Each placed sign is assigned a priority value. When multiple signs are placed
on the same line, the attributes of the sign with the highest priority is used
independently of the sign group. The default priority for a sign is 10. The
priority is assigned at the time of placing a sign.

When two signs with the same priority are present, and one has an icon or text
in the signcolumn while the other has line highlighting, then both are
displayed.

When the line on which the sign is placed is deleted, the sign is moved to the
next line (or the last line of the buffer, if there is no next line). When
the delete is undone the sign does not move back.

When a sign with line highlighting and 'cursorline' highlighting are both
present, if the priority is 100 or more then the sign highlighting takes
precedence, otherwise the 'cursorline' highlighting.

==
2. Commands sign-commands :sig :sign

Here is an example that places a sign "piet", displayed with the text ">>", in
line 23 of the current file:

:sign define piet text=>> texthl=Search
:exe ":sign place 2 line=23 name=piet file=" .. expand("%:p")

And here is the command to delete it again:
:sign unplace 2

Note that the ":sign" command cannot be followed by another command or a
comment. If you do need that, use the :execute command.

DEFINING A SIGN. :sign-define E255 E160 E612

See sign_define() for the equivalent Vim script function.

:sign define {name} {argument}...
Define a new sign or set attributes for an existing sign.
The {name} can either be a number (all digits) or a name
starting with a non-digit. Leading zeros are ignored, thus

sign.txt — 2066

"0012", "012" and "12" are considered the same name.
About 120 different signs can be defined.

Accepted arguments:

icon={bitmap}
Define the file name where the bitmap can be found. Should be
a full path. The bitmap should fit in the place of two
characters. This is not checked. If the bitmap is too big it
will cause redraw problems. Only GTK 2 can scale the bitmap
to fit the space available.

toolkit supports
GTK 1 pixmap (.xpm)
GTK 2 many
Motif pixmap (.xpm)
Win32 .bmp, .ico, .cur

pixmap (.xpm) +xpm_w32

linehl={group}
Highlighting group used for the whole line the sign is placed
in. Most useful is defining a background color.

numhl={group}
Highlighting group used for the line number on the line where
the sign is placed. Overrides hl-LineNr , hl-LineNrAbove ,
hl-LineNrBelow , and hl-CursorLineNr .

text={text} E239
Define the text that is displayed when there is no icon or the
GUI is not being used. Only printable characters are allowed
and they must occupy one or two display cells.

texthl={group}
Highlighting group used for the text item.

culhl={group}
Highlighting group used for the text item when the cursor is
on the same line as the sign and 'cursorline' is enabled.

Example:
:sign define MySign text=>> texthl=Search linehl=DiffText

DELETING A SIGN :sign-undefine E155

See sign_undefine() for the equivalent Vim script function.

:sign undefine {name}
Deletes a previously defined sign. If signs with this {name}
are still placed this will cause trouble.

Example:
:sign undefine MySign

LISTING SIGNS :sign-list E156

See sign_getdefined() for the equivalent Vim script function.

:sign list Lists all defined signs and their attributes.

sign.txt — 2067

:sign list {name}
Lists one defined sign and its attributes.

PLACING SIGNS :sign-place E158

See sign_place() for the equivalent Vim script function.

:sign place {id} line={lnum} name={name} file={fname}
Place sign defined as {name} at line {lnum} in file {fname}.

:sign-fname
The file {fname} must already be loaded in a buffer. The
exact file name must be used, wildcards, $ENV and ~ are not
expanded, white space must not be escaped. Trailing white
space is ignored.

The sign is remembered under {id}, this can be used for
further manipulation. {id} must be a number.
It's up to the user to make sure the {id} is used only once in
each file (if it's used several times unplacing will also have
to be done several times and making changes may not work as
expected).

The following optional sign attributes can be specified before
"file=":

group={group} Place sign in sign group {group}
priority={prio} Assign priority {prio} to sign

By default, the sign is placed in the global sign group.

By default, the sign is assigned a default priority of 10. To
assign a different priority value, use "priority={prio}" to
specify a value. The priority is used to determine the sign
that is displayed when multiple signs are placed on the same
line.

Examples:
:sign place 5 line=3 name=sign1 file=a.py
:sign place 6 group=g2 line=2 name=sign2 file=x.py
:sign place 9 group=g2 priority=50 line=5

\ name=sign1 file=a.py

:sign place {id} line={lnum} name={name} [buffer={nr}]
Same, but use buffer {nr}. If the buffer argument is not
given, place the sign in the current buffer.

Example:
:sign place 10 line=99 name=sign3
:sign place 10 line=99 name=sign3 buffer=3

E885
:sign place {id} name={name} file={fname}

Change the placed sign {id} in file {fname} to use the defined
sign {name}. See remark above about {fname} :sign-fname .
This can be used to change the displayed sign without moving
it (e.g., when the debugger has stopped at a breakpoint).

The optional "group={group}" attribute can be used before
"file=" to select a sign in a particular group. The optional

sign.txt — 2068

"priority={prio}" attribute can be used to change the priority
of an existing sign.

Example:
:sign place 23 name=sign1 file=/path/to/edit.py

:sign place {id} name={name} [buffer={nr}]
Same, but use buffer {nr}. If the buffer argument is not
given, use the current buffer.

Example:
:sign place 23 name=sign1
:sign place 23 name=sign1 buffer=7

REMOVING SIGNS :sign-unplace E159

See sign_unplace() for the equivalent Vim script function.

:sign unplace {id} file={fname}
Remove the previously placed sign {id} from file {fname}.
See remark above about {fname} :sign-fname .

:sign unplace {id} group={group} file={fname}
Same but remove the sign {id} in sign group {group}.

:sign unplace {id} group=* file={fname}
Same but remove the sign {id} from all the sign groups.

:sign unplace * file={fname}
Remove all placed signs in file {fname}.

:sign unplace * group={group} file={fname}
Remove all placed signs in group {group} from file {fname}.

:sign unplace * group=* file={fname}
Remove all placed signs in all the groups from file {fname}.

:sign unplace {id} buffer={nr}
Remove the previously placed sign {id} from buffer {nr}.

:sign unplace {id} group={group} buffer={nr}
Remove the previously placed sign {id} in group {group} from
buffer {nr}.

:sign unplace {id} group=* buffer={nr}
Remove the previously placed sign {id} in all the groups from
buffer {nr}.

:sign unplace * buffer={nr}
Remove all placed signs in buffer {nr}.

:sign unplace * group={group} buffer={nr}
Remove all placed signs in group {group} from buffer {nr}.

:sign unplace * group=* buffer={nr}
Remove all placed signs in all the groups from buffer {nr}.

:sign unplace {id}
Remove the previously placed sign {id} from all files it

sign.txt — 2069

appears in.

:sign unplace {id} group={group}
Remove the previously placed sign {id} in group {group} from
all files it appears in.

:sign unplace {id} group=*
Remove the previously placed sign {id} in all the groups from
all the files it appears in.

:sign unplace *
Remove all placed signs in the global group from all the files.

:sign unplace * group={group}
Remove all placed signs in group {group} from all the files.

:sign unplace * group=*
Remove all placed signs in all the groups from all the files.

:sign unplace
Remove a placed sign at the cursor position. If multiple signs
are placed in the line, then only one is removed.

:sign unplace group={group}
Remove a placed sign in group {group} at the cursor
position.

:sign unplace group=*
Remove a placed sign in any group at the cursor position.

LISTING PLACED SIGNS :sign-place-list

See sign_getplaced() for the equivalent Vim script function.

:sign place file={fname}
List signs placed in file {fname}.
See remark above about {fname} :sign-fname .

:sign place group={group} file={fname}
List signs in group {group} placed in file {fname}.

:sign place group=* file={fname}
List signs in all the groups placed in file {fname}.

:sign place buffer={nr}
List signs placed in buffer {nr}.

:sign place group={group} buffer={nr}
List signs in group {group} placed in buffer {nr}.

:sign place group=* buffer={nr}
List signs in all the groups placed in buffer {nr}.

:sign place List placed signs in the global group in all files.

:sign place group={group}
List placed signs with sign group {group} in all files.

:sign place group=*

sign.txt — 2070

List placed signs in all sign groups in all files.

JUMPING TO A SIGN :sign-jump E157

See sign_jump() for the equivalent Vim script function.

:sign jump {id} file={fname}
Open the file {fname} or jump to the window that contains
{fname} and position the cursor at sign {id}.
See remark above about {fname} :sign-fname .
If the file isn't displayed in window and the current file can
not be abandon ed this fails.

:sign jump {id} group={group} file={fname}
Same but jump to the sign in group {group}

:sign jump {id} [buffer={nr}] E934
Same, but use buffer {nr}. This fails if buffer {nr} does not
have a name. If the buffer argument is not given, use the
current buffer.

:sign jump {id} group={group} [buffer={nr}]
Same but jump to the sign in group {group}

==
3. Functions sign-functions-details

sign_define({name} [, {dict}]) sign_define()
sign_define({list})

Define a new sign named {name} or modify the attributes of an
existing sign. This is similar to the :sign-define command.

Prefix {name} with a unique text to avoid name collisions.
There is no {group} like with placing signs.

The {name} can be a String or a Number. The optional {dict}
argument specifies the sign attributes. The following values
are supported:

icon full path to the bitmap file for the sign.
linehl highlight group used for the whole line the

sign is placed in.
numhl highlight group used for the line number where

the sign is placed.
text text that is displayed when there is no icon

or the GUI is not being used.
texthl highlight group used for the text item
culhl highlight group used for the text item when

the cursor is on the same line as the sign and
'cursorline' is enabled.

If the sign named {name} already exists, then the attributes
of the sign are updated.

The one argument {list} can be used to define a list of signs.
Each list item is a dictionary with the above items in {dict}
and a "name" item for the sign name.

Returns 0 on success and -1 on failure. When the one argument

sign.txt — 2071

{list} is used, then returns a List of values one for each
defined sign.

Examples:
call sign_define("mySign", {

\ "text" : "=>",
\ "texthl" : "Error",
\ "linehl" : "Search"})

call sign_define([
\ {'name' : 'sign1',
\ 'text' : '=>'},
\ {'name' : 'sign2',
\ 'text' : '!!'}
\])

Can also be used as a method :
GetSignList()->sign_define()

sign_getdefined([{name}]) sign_getdefined()
Get a list of defined signs and their attributes.
This is similar to the :sign-list command.

If the {name} is not supplied, then a list of all the defined
signs is returned. Otherwise the attribute of the specified
sign is returned.

Each list item in the returned value is a dictionary with the
following entries:

icon full path to the bitmap file of the sign
linehl highlight group used for the whole line the

sign is placed in; not present if not set
name name of the sign
numhl highlight group used for the line number where

the sign is placed; not present if not set
text text that is displayed when there is no icon

or the GUI is not being used.
texthl highlight group used for the text item; not

present if not set
culhl highlight group used for the text item when

the cursor is on the same line as the sign and
'cursorline' is enabled; not present if not
set

Returns an empty List if there are no signs and when {name} is
not found.

Examples:
" Get a list of all the defined signs
echo sign_getdefined()

" Get the attribute of the sign named mySign
echo sign_getdefined("mySign")

Can also be used as a method :
GetSignList()->sign_getdefined()

sign_getplaced([{buf} [, {dict}]]) sign_getplaced()
Return a list of signs placed in a buffer or all the buffers.
This is similar to the :sign-place-list command.

sign.txt — 2072

If the optional buffer name {buf} is specified, then only the
list of signs placed in that buffer is returned. For the use
of {buf}, see bufname() . The optional {dict} can contain
the following entries:

group select only signs in this group
id select sign with this identifier
lnum select signs placed in this line. For the use

of {lnum}, see line() .
If {group} is '*', then signs in all the groups including the
global group are returned. If {group} is not supplied or is an
empty string, then only signs in the global group are
returned. If no arguments are supplied, then signs in the
global group placed in all the buffers are returned.
See sign-group .

Each list item in the returned value is a dictionary with the
following entries:

bufnr number of the buffer with the sign
signs list of signs placed in {bufnr}. Each list

item is a dictionary with the below listed
entries

The dictionary for each sign contains the following entries:
group sign group. Set to '' for the global group.
id identifier of the sign
lnum line number where the sign is placed
name name of the defined sign
priority sign priority

The returned signs in a buffer are ordered by their line
number and priority.

Returns an empty list on failure or if there are no placed
signs.

Examples:
" Get a List of signs placed in eval.c in the
" global group
echo sign_getplaced("eval.c")

" Get a List of signs in group 'g1' placed in eval.c
echo sign_getplaced("eval.c", {'group' : 'g1'})

" Get a List of signs placed at line 10 in eval.c
echo sign_getplaced("eval.c", {'lnum' : 10})

" Get sign with identifier 10 placed in a.py
echo sign_getplaced("a.py", {'id' : 10})

" Get sign with id 20 in group 'g1' placed in a.py
echo sign_getplaced("a.py", {'group' : 'g1',

\ 'id' : 20})

" Get a List of all the placed signs
echo sign_getplaced()

Can also be used as a method :
GetBufname()->sign_getplaced()

sign_jump()

sign.txt — 2073

sign_jump({id}, {group}, {buf})
Open the buffer {buf} or jump to the window that contains
{buf} and position the cursor at sign {id} in group {group}.
This is similar to the :sign-jump command.

If {group} is an empty string, then the global group is used.
For the use of {buf}, see bufname() .

Returns the line number of the sign. Returns -1 if the
arguments are invalid.

Example:
" Jump to sign 10 in the current buffer
call sign_jump(10, '', '')

Can also be used as a method :
GetSignid()->sign_jump()

sign_place()
sign_place({id}, {group}, {name}, {buf} [, {dict}])

Place the sign defined as {name} at line {lnum} in file or
buffer {buf} and assign {id} and {group} to sign. This is
similar to the :sign-place command.

If the sign identifier {id} is zero, then a new identifier is
allocated. Otherwise the specified number is used. {group} is
the sign group name. To use the global sign group, use an
empty string. {group} functions as a namespace for {id}, thus
two groups can use the same IDs. Refer to sign-identifier
and sign-group for more information.

{name} refers to a defined sign.
{buf} refers to a buffer name or number. For the accepted
values, see bufname() .

The optional {dict} argument supports the following entries:
lnum line number in the file or buffer

{buf} where the sign is to be placed.
For the accepted values, see line() .

priority priority of the sign. See
sign-priority for more information.

If the optional {dict} is not specified, then it modifies the
placed sign {id} in group {group} to use the defined sign
{name}.

Returns the sign identifier on success and -1 on failure.

Examples:
" Place a sign named sign1 with id 5 at line 20 in
" buffer json.c
call sign_place(5, '', 'sign1', 'json.c',

\ {'lnum' : 20})

" Updates sign 5 in buffer json.c to use sign2
call sign_place(5, '', 'sign2', 'json.c')

" Place a sign named sign3 at line 30 in
" buffer json.c with a new identifier
let id = sign_place(0, '', 'sign3', 'json.c',

sign.txt — 2074

\ {'lnum' : 30})

" Place a sign named sign4 with id 10 in group 'g3'
" at line 40 in buffer json.c with priority 90
call sign_place(10, 'g3', 'sign4', 'json.c',

\ {'lnum' : 40, 'priority' : 90})

Can also be used as a method :
GetSignid()->sign_place(group, name, expr)

sign_placelist()
sign_placelist({list})

Place one or more signs. This is similar to the
sign_place() function. The {list} argument specifies the
List of signs to place. Each list item is a dict with the
following sign attributes:

buffer Buffer name or number. For the accepted
values, see bufname() .

group Sign group. {group} functions as a namespace
for {id}, thus two groups can use the same
IDs. If not specified or set to an empty
string, then the global group is used. See
sign-group for more information.

id Sign identifier. If not specified or zero,
then a new unique identifier is allocated.
Otherwise the specified number is used. See
sign-identifier for more information.

lnum Line number in the buffer where the sign is to
be placed. For the accepted values, see
line() .

name Name of the sign to place. See sign_define()
for more information.

priority Priority of the sign. When multiple signs are
placed on a line, the sign with the highest
priority is used. If not specified, the
default value of 10 is used. See
sign-priority for more information.

If {id} refers to an existing sign, then the existing sign is
modified to use the specified {name} and/or {priority}.

Returns a List of sign identifiers. If failed to place a
sign, the corresponding list item is set to -1.

Examples:
" Place sign s1 with id 5 at line 20 and id 10 at line
" 30 in buffer a.c
let [n1, n2] = sign_placelist([

\ {'id' : 5,
\ 'name' : 's1',
\ 'buffer' : 'a.c',
\ 'lnum' : 20},
\ {'id' : 10,
\ 'name' : 's1',
\ 'buffer' : 'a.c',
\ 'lnum' : 30}
\])

" Place sign s1 in buffer a.c at line 40 and 50
" with auto-generated identifiers

sign.txt — 2075

let [n1, n2] = sign_placelist([
\ {'name' : 's1',
\ 'buffer' : 'a.c',
\ 'lnum' : 40},
\ {'name' : 's1',
\ 'buffer' : 'a.c',
\ 'lnum' : 50}
\])

Can also be used as a method :
GetSignlist()->sign_placelist()

sign_undefine([{name}]) sign_undefine()
sign_undefine({list})

Deletes a previously defined sign {name}. This is similar to
the :sign-undefine command. If {name} is not supplied, then
deletes all the defined signs.

The one argument {list} can be used to undefine a list of
signs. Each list item is the name of a sign.

Returns 0 on success and -1 on failure. For the one argument
{list} call, returns a list of values one for each undefined
sign.

Examples:
" Delete a sign named mySign
call sign_undefine("mySign")

" Delete signs 'sign1' and 'sign2'
call sign_undefine(["sign1", "sign2"])

" Delete all the signs
call sign_undefine()

Can also be used as a method :
GetSignlist()->sign_undefine()

sign_unplace({group} [, {dict}]) sign_unplace()
Remove a previously placed sign in one or more buffers. This
is similar to the :sign-unplace command.

{group} is the sign group name. To use the global sign group,
use an empty string. If {group} is set to '*', then all the
groups including the global group are used.
The signs in {group} are selected based on the entries in
{dict}. The following optional entries in {dict} are
supported:

buffer buffer name or number. See bufname() .
id sign identifier

If {dict} is not supplied, then all the signs in {group} are
removed.

Returns 0 on success and -1 on failure.

Examples:
" Remove sign 10 from buffer a.vim
call sign_unplace('', {'buffer' : "a.vim", 'id' : 10})

" Remove sign 20 in group 'g1' from buffer 3

sign.txt — 2076

call sign_unplace('g1', {'buffer' : 3, 'id' : 20})

" Remove all the signs in group 'g2' from buffer 10
call sign_unplace('g2', {'buffer' : 10})

" Remove sign 30 in group 'g3' from all the buffers
call sign_unplace('g3', {'id' : 30})

" Remove all the signs placed in buffer 5
call sign_unplace('*', {'buffer' : 5})

" Remove the signs in group 'g4' from all the buffers
call sign_unplace('g4')

" Remove sign 40 from all the buffers
call sign_unplace('*', {'id' : 40})

" Remove all the placed signs from all the buffers
call sign_unplace('*')

Can also be used as a method :
GetSigngroup()->sign_unplace()

sign_unplacelist({list}) sign_unplacelist()
Remove previously placed signs from one or more buffers. This
is similar to the sign_unplace() function.

The {list} argument specifies the List of signs to remove.
Each list item is a dict with the following sign attributes:

buffer buffer name or number. For the accepted
values, see bufname() . If not specified,
then the specified sign is removed from all
the buffers.

group sign group name. If not specified or set to an
empty string, then the global sign group is
used. If set to '*', then all the groups
including the global group are used.

id sign identifier. If not specified, then all
the signs in the specified group are removed.

Returns a List where an entry is set to 0 if the corresponding
sign was successfully removed or -1 on failure.

Example:
" Remove sign with id 10 from buffer a.vim and sign
" with id 20 from buffer b.vim
call sign_unplacelist([

\ {'id' : 10, 'buffer' : "a.vim"},
\ {'id' : 20, 'buffer' : 'b.vim'},
\])

Can also be used as a method :
GetSignlist()->sign_unplacelist()

sign.txt — 2077

sign.txt — 2078

vi_diff.txt For Vim version 9.1. Last change: 2022 Apr 03

VIM REFERENCE MANUAL by Bram Moolenaar

Differences between Vim and Vi vi-differences

This file lists the differences between Vim and Vi/Ex and gives an overview of
what is in Vim that is not in Vi.

Vim is mostly POSIX 1003.2-1 compliant. The only command known to be missing
is ":open". There are probably a lot of small differences (either because Vim
is missing something or because Posix is beside the mark).

1. Simulated command simulated-command
2. Missing options missing-options
3. Limits limits
4. The most interesting additions vim-additions
5. Other vim features other-features
6. Supported Vi features vi-features
7. Command-line arguments cmdline-arguments
8. POSIX compliance posix-compliance

==
1. Simulated command simulated-command

This command is in Vi, but Vim only simulates it:

:o :op :open
:[range]o[pen] Works like :visual : end Ex mode.

{Vi: start editing in open mode}

:[range]o[pen] /pattern/ As above, additionally move the cursor to the
column where "pattern" matches in the cursor
line.

Vim does not support open mode, since it's not really useful. For those
situations where ":open" would start open mode Vim will leave Ex mode, which
allows executing the same commands, but updates the whole screen instead of
only one line.

==
2. Missing options missing-options

These options are in the Unix Vi, but not in Vim. If you try to set one of
them you won't get an error message, but the value is not used and cannot be
printed.

autoprint (ap) boolean (default on) 'autoprint' 'ap'
beautify (bf) boolean (default off) 'beautify' 'bf'
flash (fl) boolean (default ??) 'flash' 'fl'
graphic (gr) boolean (default off) 'graphic' 'gr'
hardtabs (ht) number (default 8) 'hardtabs' 'ht'

number of spaces that a <Tab> moves on the display
mesg boolean (default on) 'mesg'
novice boolean (default off) 'novice'
open boolean (default on) 'open'
optimize (op) boolean (default off) 'optimize' 'op'
redraw boolean (default off) 'redraw'

vi_diff.txt — 2079

slowopen (slow) boolean (default off) 'slowopen' 'slow'
sourceany boolean (default off) 'sourceany'
w300 number (default 23) 'w300'
w1200 number (default 23) 'w1200'
w9600 number (default 23) 'w9600'

Vi did not allow for changing the termcap entries, you would have to exit Vi,
edit the termcap entry and try again. Vim has the terminal-options .

==
3. Limits limits

Vim has only a few limits for the files that can be edited {Vi: can not handle
<Nul> characters and characters above 128, has limited line length, many other
limits}.

Maximum line length 2147483647 characters. Longer lines are split.
Maximum number of lines 2147483647 lines.
Maximum file size 2147483647 bytes (2 Gbyte) when a long integer is

32 bits. Much more for 64 bit longs. Also limited
by available disk space for the swap-file .

E75
Length of a file path Unix and Win32: 1024 characters, otherwise 256

characters (or as much as the system supports).
Length of an expanded string option

Unix and Win32: 1024 characters, otherwise 256
characters

Maximum display width Unix and Win32: 1024 characters, otherwise 255
characters

Maximum lhs of a mapping 50 characters.
Number of different highlighting types: over 30000
Range of a Number variable: -2147483648 to 2147483647 (might be more on 64

bit systems)
Maximum length of a line in a tags file: 512 bytes.

Information for undo and text in registers is kept in memory, thus when making
(big) changes the amount of (virtual) memory available limits the number of
undo levels and the text that can be kept in registers. Other things are also
kept in memory: Command-line history, error messages for Quickfix mode, etc.

Memory usage limits

The option 'maxmem' ('mm') is used to set the maximum memory used for one
buffer (in kilobytes). 'maxmemtot' is used to set the maximum memory used for
all buffers (in kilobytes). The defaults depend on the system used. For the
Amiga, 'maxmemtot' is set depending on the amount of memory available.
These are not hard limits, but tell Vim when to move text into a swap file.
If you don't like Vim to swap to a file, set 'maxmem' and 'maxmemtot' to a
very large value. The swap file will then only be used for recovery. If you
don't want a swap file at all, set 'updatecount' to 0, or use the "-n"
argument when starting Vim.

==
4. The most interesting additions vim-additions

Vi compatibility. 'compatible'
Although Vim is 99% Vi compatible, some things in Vi can be
considered to be a bug, or at least need improvement. But still, Vim
starts in a mode which behaves like the "real" Vi as much as possible.

vi_diff.txt — 2080

To make Vim behave a little bit better, try resetting the 'compatible'
option:

:set nocompatible
Or start Vim with the "-N" argument:

vim -N
Vim starts with 'nocompatible' automatically if you have a .vimrc
file. See startup .
The 'cpoptions' option can be used to set Vi compatibility on/off for
a number of specific items.

Support for different systems.
Vim can be used on:
- All Unix systems (it works on all systems it was tested on, although
the GUI and Perl interface may not work everywhere).

- Amiga (500, 1000, 1200, 2000, 3000, 4000, ...).
- MS-Windows
- VMS
- Macintosh
- IBM OS/390
Note that on some systems features need to be disabled to reduce
resource usage. For some outdated systems you need to use an older
Vim version.

Multi level persistent undo. undo
'u' goes backward in time, 'CTRL-R' goes forward again. Set option
'undolevels' to the number of changes to be remembered (default 1000).
Set 'undolevels' to 0 for a Vi-compatible one level undo. Set it to
-1 for no undo at all.
When all changes in a buffer have been undone, the buffer is not
considered changed anymore. You can exit it with :q, without <!>.
When undoing a few changes and then making a new change Vim will
create a branch in the undo tree. This means you can go back to any
state of the text, there is no risk of a change causing text to be
lost forever. undo-tree
The undo information is stored in a file when the 'undofile' option is
set. This means you can exit Vim, start Vim on a previously edited
file and undo changes that were made before exiting Vim.

Graphical User Interface (GUI). gui
Included support for GUI: menu's, mouse, scrollbars, etc. You can
define your own menus. Better support for CTRL/SHIFT/ALT keys in
combination with special keys and mouse. Supported for various
platforms, such as X11 with Motif, GTK, Win32 (Windows XP and later),
Amiga and Macintosh.

Multiple windows and buffers. windows.txt
Vim can split the screen into several windows, each editing a
different buffer or the same buffer at a different location. Buffers
can still be loaded (and changed) but not displayed in a window. This
is called a hidden buffer. Many commands and options have been added
for this facility.
Vim can also use multiple tab pages, each with one or more windows. A
line with tab labels can be used to quickly switch between these pages.
tab-page

Terminal window. :terminal
Vim can create a window in which a terminal emulator runs. This can
be used to execute an arbitrary command, a shell or a debugger.

Syntax highlighting. :syntax

vi_diff.txt — 2081

Vim can highlight keywords, patterns and other things. This is
defined by a number of :syntax commands, and can be made to
highlight most languages and file types. A number of files are
included for highlighting the most common languages, like C, C++,
Java, Pascal, Makefiles, shell scripts, etc. The colors used for
highlighting can be defined for ordinary terminals, color terminals
and the GUI with the :highlight command. A convenient way to do
this is using a :colorscheme command.
The highlighted text can be exported as HTML. convert-to-HTML
Other items that can be highlighted are matches with the search string
'hlsearch' , matching parens matchparen and the cursor line and

column 'cursorline' 'cursorcolumn' .

Text properties textprop.txt
Vim supports highlighting text by a plugin. Property types can be
specified with prop_type_add() and properties can be placed with
prop_add() .

Spell checking. spell
When the 'spell' option is set Vim will highlight spelling mistakes.
About 50 languages are currently supported, selected with the
'spelllang' option. In source code only comments and strings are
checked for spelling.

Folding. folding
A range of lines can be shown as one "folded" line. This allows
overviewing a file and moving blocks of text around quickly.
Folds can be created manually, from the syntax of the file, by indent,
etc.

Diff mode. diff
Vim can show two versions of a file with the differences highlighted.
Parts of the text that are equal are folded away. Commands can be
used to move text from one version to the other.

Plugins. add-plugin
The functionality can be extended by dropping a plugin file in the
right directory. That's an easy way to start using Vim scripts
written by others. Plugins can be for all kind of files, or
specifically for a filetype.
Packages make this even easier. packages

Asynchronous communication and timers. channel job timer
Vim can exchange messages with other processes in the background.
This makes it possible to have servers do work and send back the
results to Vim. channel
Vim can start a job, communicate with it and stop it. job
Timers can fire once or repeatedly and invoke a function to do any
work. timer

Repeat a series of commands. q
"q{c}" starts recording typed characters into named register {c}.
A subsequent "q" stops recording. The register can then be executed
with the "@{c}" command. This is very useful to repeat a complex
action.

Flexible insert mode. ins-special-special
The arrow keys can be used in insert mode to move around in the file.
This breaks the insert in two parts as far as undo and redo is
concerned.

vi_diff.txt — 2082

CTRL-O can be used to execute a single Normal mode command. This is
almost the same as hitting <Esc>, typing the command and doing a .

Visual mode. Visual-mode
Visual mode can be used to first highlight a piece of text and then
give a command to do something with it. This is an (easy to use)
alternative to first giving the operator and then moving to the end of
the text to be operated upon.
v and V are used to start Visual mode. v works on characters

and V on lines. Move the cursor to extend the Visual area. It is
shown highlighted on the screen. By typing "o" the other end of the
Visual area can be moved. The Visual area can be affected by an
operator:

d delete
c change
y yank
> or < insert or delete indent
! filter through external program
= filter through indent
: start : command for the Visual lines.
gq format text to 'textwidth' columns
J join lines
~ swap case
u make lowercase
U make uppercase

{Vi has no Visual mode, the name "visual" is used for Normal mode, to
distinguish it from Ex mode}

Block operators. visual-block
With Visual mode a rectangular block of text can be selected. Start
Visual mode with CTRL-V. The block can be deleted ("d"), yanked ("y")
or its case can be changed ("~", "u" and "U"). A deleted or yanked
block can be put into the text with the "p" and "P" commands.

Help system. :help
Help is displayed in a window. The usual commands can be used to
move around, search for a string, etc. Tags can be used to jump
around in the help files, just like hypertext links. The :help
command takes an argument to quickly jump to the info on a subject.
<F1> is the quick access to the help system. The name of the help
index file can be set with the 'helpfile' option.

Command-line editing and history. cmdline-editing
You can insert or delete at any place in the command-line using the
cursor keys. The right/left cursor keys can be used to move
forward/backward one character. The shifted right/left cursor keys
can be used to move forward/backward one word. CTRL-B/CTRL-E can be
used to go to the begin/end of the command-line.
{Vi: can only alter the last character in the line}
{Vi: when hitting <Esc> the command-line is executed. This is
unexpected for most people; therefore it was changed in Vim. But when
the <Esc> is part of a mapping, the command-line is executed. If you
want the Vi behaviour also when typing <Esc>, use ":cmap ^V<Esc>
^V^M"}

cmdline-history
The command-lines are remembered. The up/down cursor keys can be used
to recall previous command-lines. The 'history' option can be set to
the number of lines that will be remembered. There is a separate
history for commands and for search patterns.

vi_diff.txt — 2083

Command-line completion. cmdline-completion
While entering a command-line (on the bottom line of the screen)
<Tab> can be typed to complete

what example
- command :e<Tab>
- tag :ta scr<Tab>
- option :set sc<Tab>
- option value :set hf=<Tab>
- file name :e ve<Tab>
- etc.

If there are multiple matches, CTRL-N (next) and CTRL-P (previous)
will walk through the matches. <Tab> works like CTRL-N, but wraps
around to the first match.

The 'wildchar' option can be set to the character for command-line
completion, <Tab> is the default. CTRL-D can be typed after an
(incomplete) wildcard; all matches will be listed. CTRL-A will insert
all matches. CTRL-L will insert the longest common part of the
matches.

Insert-mode completion. ins-completion
In Insert mode the CTRL-N and CTRL-P keys can be used to complete a
word that appears elsewhere. i_CTRL-N
With CTRL-X another mode is entered, through which completion can be
done for:
i_CTRL-X_CTRL-F file names
i_CTRL-X_CTRL-K words from 'dictionary' files
i_CTRL-X_CTRL-T words from 'thesaurus' files
i_CTRL-X_CTRL-I words from included files
i_CTRL-X_CTRL-L whole lines
i_CTRL-X_CTRL-] words from the tags file
i_CTRL-X_CTRL-D definitions or macros
i_CTRL-X_CTRL-O Omni completion: clever completion

specifically for a file type
etc.

Long line support. 'wrap' 'linebreak'
If the 'wrap' option is off, long lines will not wrap and only part
of them will be shown. When the cursor is moved to a part that is not
shown, the screen will scroll horizontally. The minimum number of
columns to scroll can be set with the 'sidescroll' option. The zh
and zl commands can be used to scroll sideways.
Alternatively, long lines are broken in between words when the
'linebreak' option is set. This allows editing a single-line
paragraph conveniently (e.g. when the text is later read into a DTP
program). Move the cursor up/down with the gk and gj commands.

Text formatting. formatting
The 'textwidth' option can be used to automatically limit the line
length. This supplements the 'wrapmargin' option of Vi, which was not
very useful. The gq operator can be used to format a piece of text
(for example, gqap formats the current paragraph). Commands for
text alignment: :center , :left and :right .

Extended search patterns. pattern
There are many extra items to match various text items. Examples:
A "\n" can be used in a search pattern to match a line break.
"x\{2,4}" matches "x" 2 to 4 times.

vi_diff.txt — 2084

"\s" matches a white space character.

Directory, remote and archive browsing. netrw
Vim can browse the file system. Simply edit a directory. Move around
in the list with the usual commands and press <Enter> to go to the
directory or file under the cursor.
This also works for remote files over ftp, http, ssh, etc.
Zip and tar archives can also be browsed. tar zip

Edit-compile-edit speedup. quickfix
The :make command can be used to run the compilation and jump to the
first error. A file with compiler error messages is interpreted. Vim
jumps to the first error.

Each line in the error file is scanned for the name of a file, line
number and error message. The 'errorformat' option can be set to a
list of scanf-like strings to handle output from many compilers.

The :cn command can be used to jump to the next error.
:cl lists all the error messages. Other commands are available.

The 'makeef' option has the name of the file with error messages.
The 'makeprg' option contains the name of the program to be executed
with the :make command.
The 'shellpipe' option contains the string to be used to put the
output of the compiler into the errorfile.

Finding matches in files. :vimgrep
Vim can search for a pattern in multiple files. This uses the
advanced Vim regexp pattern, works on all systems and also works to
search in compressed files.

Improved indenting for programs. 'cindent'
When the 'cindent' option is on the indent of each line is
automatically adjusted. C syntax is mostly recognized. The indent
for various styles can be set with 'cinoptions'. The keys to trigger
indenting can be set with 'cinkeys'.

Comments can be automatically formatted. The 'comments' option can be
set to the characters that start and end a comment. This works best
for C code, but also works for e-mail (">" at start of the line) and
other types of text. The = operator can be used to re-indent
lines.

For many other languages an indent plugin is present to support
automatic indenting. 30.3

Searching for words in included files. include-search
The [i command can be used to search for a match of the word under
the cursor in the current and included files. The 'include' option
can be set to a pattern that describes a command to include a file
(the default is for C programs).
The [I command lists all matches, the [_CTRL-I command jumps to
a match.
The [d , [D and [_CTRL-D commands do the same, but only for
lines where the pattern given with the 'define' option matches.

Automatic commands. autocommand
Commands can be automatically executed when reading a file, writing a
file, jumping to another buffer, etc., depending on the file name.
This is useful to set options and mappings for C programs,

vi_diff.txt — 2085

documentation, plain text, e-mail, etc. This also makes it possible
to edit compressed files.

Scripts and Expressions. expression
Commands have been added to form up a powerful script language.
:if Conditional execution, which can be used for example

to set options depending on the value of $TERM.
:while Repeat a number of commands.
:for Loop over a list.
:echo Print the result of an expression.
:let Assign a value to an internal variable, option, etc.

Variable types are Number, String, List and Dictionary.
:execute Execute a command formed by an expression.
:try Catch exceptions.

etc., etc. See eval .
Debugging and profiling are supported. debug-scripts profile
If this is not enough, an interface is provided to Python , Ruby ,
Tcl , Lua , Perl and MzScheme .

Viminfo. viminfo-file
The command-line history, marks and registers can be stored in a file
that is read on startup. This can be used to repeat a search command
or command-line command after exiting and restarting Vim. It is also
possible to jump right back to where the last edit stopped with '0 .
The 'viminfo' option can be set to select which items to store in the
.viminfo file. This is off by default.

Printing. printing
The :hardcopy command sends text to the printer. This can include
syntax highlighting.

Mouse support. mouse-using
The mouse is supported in the GUI version, in an xterm for Unix, for
BSDs with sysmouse, for Linux with gpm, and Win32. It can be used to
position the cursor, select the visual area, paste a register, etc.

Usage of key names. <> key-notation
Special keys now all have a name like <Up>, <End>, etc.
This name can be used in mappings, to make it easy to edit them.

Editing binary files. edit-binary
Vim can edit binary files. You can change a few characters in an
executable file, without corrupting it. Vim doesn't remove NUL
characters (they are represented as <NL> internally).
-b command-line argument to start editing a binary file
'binary' Option set by -b . Prevents adding an <EOL> for the

last line in the file.

Multi-language support. multi-lang
Files in double-byte or multibyte encodings can be edited. There is
UTF-8 support to be able to edit various languages at the same time,
without switching fonts. UTF-8
Messages and menus are available in different languages.

Move cursor beyond lines.
When the 'virtualedit' option is set the cursor can move all over the
screen, also where there is no text. This is useful to edit tables
and figures easily.

==

vi_diff.txt — 2086

5. Other vim features other-features

A random collection of nice extra features.

When Vim is started with "-s scriptfile", the characters read from
"scriptfile" are treated as if you typed them. If end of file is reached
before the editor exits, further characters are read from the console.

The "-w" option can be used to record all typed characters in a script file.
This file can then be used to redo the editing, possibly on another file or
after changing some commands in the script file.

The "-o" option opens a window for each argument. "-o4" opens four windows.

Vi requires several termcap entries to be able to work full-screen. Vim only
requires the "cm" entry (cursor motion).

In command mode:

When the 'showcmd' option is set, the command characters are shown in the last
line of the screen. They are removed when the command is finished.

If the 'ruler' option is set, the current cursor position is shown in the
last line of the screen.

"U" still works after having moved off the last changed line and after "u".

Characters with the 8th bit set are displayed. The characters between '~' and
0xa0 are displayed as "~?", "~@", "~A", etc., unless they are included in the
'isprint' option.

"][" goes to the next ending of a C function ('}' in column 1).
"[]" goes to the previous ending of a C function ('}' in column 1).

"]f", "[f" and "gf" start editing the file whose name is under the cursor.
CTRL-W f splits the window and starts editing the file whose name is under
the cursor.

"*" searches forward for the identifier under the cursor, "#" backward.
"K" runs the program defined by the 'keywordprg' option, with the identifier
under the cursor as argument.

"%" can be preceded with a count. The cursor jumps to the line that
percentage down in the file. The normal "%" function to jump to the matching
brace skips braces inside quotes.

With the CTRL-] command, the cursor may be in the middle of the identifier.

The used tags are remembered. Commands that can be used with the tag stack
are CTRL-T, ":pop" and ":tag". ":tags" lists the tag stack.

Vi uses 'wrapscan' when searching for a tag. When jumping to a tag Vi starts
searching in line 2 of another file. It does not find a tag in line 1 of
another file when 'wrapscan' is not set.

The 'tags' option can be set to a list of tag file names. Thus multiple
tag files can be used. For file names that start with "./", the "./" is
replaced with the path of the current file. This makes it possible to use a

vi_diff.txt — 2087

tags file in the same directory as the file being edited.
{Vi: always uses binary search in some versions}
{Vi does not have the security prevention for commands in tag files}

Previously used file names are remembered in the alternate file name list.
CTRL-^ accepts a count, which is an index in this list.
":files" command shows the list of alternate file names.
"#<N>" is replaced with the <N>th alternate file name in the list.
"#<" is replaced with the current file name without extension.

Search patterns have more features. The <NL> character is seen as part of the
search pattern and the substitute string of ":s". Vi sees it as the end of
the command.

Searches can put the cursor on the end of a match and may include a character
offset.

Count added to "~", ":next", ":Next", "n" and "N".

The command ":next!" with 'autowrite' set does not write the file. In vi the
file was written, but this is considered to be a bug, because one does not
expect it and the file is not written with ":rewind!".

In Vi when entering a <CR> in replace mode deletes a character only when 'ai'
is set (but does not show it until you hit <Esc>). Vim always deletes a
character (and shows it immediately).

Added :wnext command. Same as ":write" followed by ":next".

The ":w!" command always writes, also when the file is write protected. In Vi
you would have to do ":!chmod +w %:S" and ":set noro".

When 'tildeop' has been set, "~" is an operator (must be followed by a
movement command).

With the "J" (join) command you can reset the 'joinspaces' option to have only
one space after a period (Vi inserts two spaces).

"cw" can be used to change white space formed by several characters (Vi is
confusing: "cw" only changes one space, while "dw" deletes all white space).
{Vi: "cw" when on a blank followed by other blanks changes only the first
blank; this is probably a bug, because "dw" deletes all the blanks}

"o" and "O" accept a count for repeating the insert (Vi clears a part of
display).

Flags after Ex commands not supported (no plans to include it).

On non-UNIX systems ":cd" command shows current directory instead of going to
the home directory (there isn't one). ":pwd" prints the current directory on
all systems.

After a ":cd" command the file names (in the argument list, opened files)
still point to the same files. In Vi ":cd" is not allowed in a changed file;
otherwise the meaning of file names change.

":source!" command reads Vi commands from a file.

":mkexrc" command writes current modified options and mappings to a ".exrc"
file. ":mkvimrc" writes to a ".vimrc" file.

vi_diff.txt — 2088

No check for "tail recursion" with mappings. This allows things like
":map! foo ^]foo".

When a mapping starts with number, vi loses the count typed before it (e.g.
when using the mapping ":map g 4G" the command "7g" goes to line 4). This is
considered a vi bug. Vim concatenates the counts (in the example it becomes
"74G"), as most people would expect.

The :put! command inserts the contents of a register above the current line.

The "p" and "P" commands of vi cannot be repeated with "." when the putted
text is less than a line. In Vim they can always be repeated.

":noremap" command can be used to enter a mapping that will not be remapped.
This is useful to exchange the meaning of two keys. ":cmap", ":cunmap" and
":cnoremap" can be used for mapping in command-line editing only. ":imap",
":iunmap" and ":inoremap" can be used for mapping in insert mode only.
Similar commands exist for abbreviations: ":noreabbrev", ":iabbrev"
":cabbrev", ":iunabbrev", ":cunabbrev", ":inoreabbrev", ":cnoreabbrev".

In Vi the command ":map foo bar" would remove a previous mapping
":map bug foo". This is considered a bug, so it is not included in Vim.
":unmap! foo" does remove ":map! bug foo", because unmapping would be very
difficult otherwise (this is vi compatible).

The ':' register contains the last command-line.
The '%' register contains the current file name.
The '.' register contains the last inserted text.

":dis" command shows the contents of the yank registers.

CTRL-O/CTRL-I can be used to jump to older/newer positions. These are the
same positions as used with the '' command, but may be in another file. The
":jumps" command lists the older positions.

If the 'shiftround' option is set, an indent is rounded to a multiple of
'shiftwidth' with ">" and "<" commands.

The 'scrolljump' option can be set to the minimum number of lines to scroll
when the cursor gets off the screen. Use this when scrolling is slow.

The 'scrolloff' option can be set to the minimum number of lines to keep
above and below the cursor. This gives some context to where you are
editing. When set to a large number the cursor line is always in the middle
of the window.

Uppercase marks can be used to jump between files. The ":marks" command lists
all currently set marks. The commands "']" and "`]" jump to the end of the
previous operator or end of the text inserted with the put command. "'[" and
"`[" do jump to the start. {Vi: no uppercase marks}

The 'shelltype' option can be set to reflect the type of shell used on the
Amiga.

The 'highlight' option can be set for the highlight mode to be used for
several commands.

The CTRL-A (add) and CTRL-X (subtract) commands are new. The count to the
command (default 1) is added to/subtracted from the number at or after the

vi_diff.txt — 2089

cursor. That number may be decimal, octal (starts with a '0') or hexadecimal
(starts with '0x'). Very useful in macros.

With the :set command the prefix "inv" can be used to invert boolean options.

In both Vi and Vim you can create a line break with the ":substitute" command
by using a CTRL-M. For Vi this means you cannot insert a real CTRL-M in the
text. With Vim you can put a real CTRL-M in the text by preceding it with a
CTRL-V.

In Insert mode:

If the 'revins' option is set, insert happens backwards. This is for typing
Hebrew. When inserting normal characters the cursor will not be shifted and
the text moves rightwards. Backspace, CTRL-W and CTRL-U will also work in
the opposite direction. CTRL-B toggles the 'revins' option. In replace mode
'revins' has no effect. Only when enabled at compile time.

The backspace key can be used just like CTRL-D to remove auto-indents.

You can backspace, CTRL-U and CTRL-W over line breaks if the 'backspace' (bs)
option includes "eol". You can backspace over the start of insert if the
'backspace' option includes "start".

When the 'paste' option is set, a few options are reset and mapping in insert
mode and abbreviation are disabled. This allows for pasting text in windowing
systems without unexpected results. When the 'paste' option is reset, the old
option values are restored.

CTRL-T/CTRL-D always insert/delete an indent in the current line, no matter
what column the cursor is in.

CTRL-@ (insert previously inserted text) works always (Vi: only when typed as
first character).

CTRL-A works like CTRL-@ but does not leave insert mode.

CTRL-R {register} can be used to insert the contents of a register.

When the 'smartindent' option is set, C programs will be better auto-indented.
With 'cindent' even more.

CTRL-Y and CTRL-E can be used to copy a character from above/below the
current cursor position.

After CTRL-V you can enter a three digit decimal number. This byte value is
inserted in the text as a single character. Useful for international
characters that are not on your keyboard.

When the 'expandtab' (et) option is set, a <Tab> is expanded to the
appropriate number of spaces.

The window always reflects the contents of the buffer (Vi does not do this
when changing text and in some other cases).

If Vim is compiled with DIGRAPHS defined, digraphs are supported. A set of
normal digraphs is included. They are shown with the ":digraph" command.
More can be added with ":digraph {char1}{char2} {number}". A digraph is
entered with "CTRL-K {char1} {char2}" or "{char1} BS {char2}" (only when

vi_diff.txt — 2090

'digraph' option is set).

When repeating an insert, e.g. "10atest <Esc>" vi would only handle wrapmargin
for the first insert. Vim does it for all.

A count to the "i" or "a" command is used for all the text. Vi uses the count
only for one line. "3iabc<NL>def<Esc>" would insert "abcabcabc<NL>def" in Vi
but "abc<NL>defabc<NL>defabc<NL>def" in Vim.

In Command-line mode:

<Esc> terminates the command-line without executing it. In vi the command
line would be executed, which is not what most people expect (hitting <Esc>
should always get you back to command mode). To avoid problems with some
obscure macros, an <Esc> in a macro will execute the command. If you want a
typed <Esc> to execute the command like vi does you can fix this with

":cmap ^V<Esc> ^V<CR>"

General:

The 'ttimeout' option is like 'timeout', but only works for cursor and
function keys, not for ordinary mapped characters. The 'timeoutlen' option
gives the number of milliseconds that is waited for. If the 'esckeys' option
is not set, cursor and function keys that start with <Esc> are not recognized
in insert mode.

There is an option for each terminal string. Can be used when termcap is not
supported or to change individual strings.

The 'fileformat' option can be set to select the <EOL>: "dos" <CR><NL>, "unix"
<NL> or "mac" <CR>.
When the 'fileformats' option is not empty, Vim tries to detect the type of
<EOL> automatically. The 'fileformat' option is set accordingly.

On systems that have no job control (older Unix systems and non-Unix systems)
the CTRL-Z, ":stop" or ":suspend" command starts a new shell.

If Vim is started on the Amiga without an interactive window for output, a
window is opened (and :sh still works). You can give a device to use for
editing with the -d argument, e.g. "-d con:20/20/600/150".

The 'columns' and 'lines' options are used to set or get the width and height
of the display.

Option settings are read from the first and last few lines of the file.
Option 'modelines' determines how many lines are tried (default is 5). Note
that this is different from the Vi versions that can execute any Ex command
in a modeline (a major security problem). trojan-horse

If the 'insertmode' option is set (e.g. in .exrc), Vim starts in insert mode.
And it comes back there, when pressing <Esc>.

Undo information is kept in memory. Available memory limits the number and
size of change that can be undone. This is hardly a problem on the Amiga and
almost never with Unix and Win32.

If the 'backup' or 'writebackup' option is set: Before a file is overwritten,
a backup file (.bak) is made. If the "backup" option is set it is left
behind.

vi_diff.txt — 2091

Vim creates a file ending in ".swp" to store parts of the file that have been
changed or that do not fit in memory. This file can be used to recover from
an aborted editing session with "vim -r file". Using the swap file can be
switched off by setting the 'updatecount' option to 0 or starting Vim with
the "-n" option. Use the 'directory' option for placing the .swp file
somewhere else.

Vim is able to work correctly on filesystems with 8.3 file names, also when
using messydos or crossdos filesystems on the Amiga, or any 8.3 mounted
filesystem under Unix. See 'shortname' .

Error messages are shown at least one second (Vi overwrites error messages).

If Vim gives the hit-enter prompt, you can hit any key. Characters other
than <CR>, <NL> and <Space> are interpreted as the (start of) a command.
{Vi: only ":" commands are interpreted}

The contents of the numbered and unnamed registers is remembered when
changing files.

The "No lines in buffer" message is a normal message instead of an error
message, since that may cause a mapping to be aborted.
{Vi: error messages may be overwritten with other messages before you have a
chance to read them}

The AUX: device of the Amiga is supported.

==
6. Supported Vi features vi-features

Vim supports nearly all Vi commands and mostly in the same way. That is when
the 'compatible' option is set and 'cpoptions' contains all flags. What the
effect is of resetting 'compatible' and removing flags from 'cpoptions' can be
found at the help for the specific command.

The help files used to mark features that are in Vim but not in Vi with {not
in Vi}. However, since these remarks cluttered the help files we now do it
the other way around: Below is listed what Vi already supported. Anything
else has been added by Vim.

The following Ex commands are supported by Vi:

`:abbreviate` enter abbreviation
`:append` append text
`:args` print the argument list
`:cd` change directory; Vi: no "cd -"
`:change` replace a line or series of lines
`:chdir` change directory
`:copy` copy lines
`:delete` delete lines
`:edit` edit a file
`:exit` same as `:xit`
`:file` show or set the current file name; Vi: without the column number
`:global` execute commands for matching lines
`:insert` insert text
`:join` join lines; Vi: not :join!
`:k` set a mark
`:list` print lines

vi_diff.txt — 2092

`:map` show or enter a mapping
`:mark` set a mark
`:move` move lines
`:Next` go to previous file in the argument list {Vi: no count}
`:next` go to next file in the argument list {Vi: no count}
`:number` print lines with line number
`:open` start open mode (not implemented in Vim)
`:pop` jump to older entry in tag stack (only in some versions)
`:preserve` write all text to swap file {Vi: might also exit}
`:previous` same as `:Next` {Vi: only in some versions}
`:print` print lines
`:put` insert contents of register in the text
`:quit` quit Vi
`:read` read file into the text
`:recover` recover a file from a swap file {Vi: recovers in another way

and sends mail if there is something to recover}
`:rewind` go to the first file in the argument list; no ++opt
`:set` set option; but not `:set inv{option}`, `:set option&`,

`:set all&`, `:set option+=value`, `:set option^=value`
`:set option-=value` `:set option<`

`:shell` escape to a shell
`:source` read Vi or Ex commands from a file
`:stop` suspend the editor or escape to a shell
`:substitute` find and replace text; Vi: no '&', 'i', 's', 'r' or 'I' flag,

confirm prompt only supports 'y' and 'n', no highlighting
`:suspend` same as ":stop"
`:t` same as ":copy"
`:tag` jump to tag
`:unabbreviate` remove abbreviation
`:undo` undo last change {Vi: only one level}
`:unmap` remove mapping
`:vglobal` execute commands for not matching lines
`:version` print version number and other info
`:visual` same as ":edit", but turns off "Ex" mode
`:wq` write to a file and quit Vi
`:write` write to a file
`:xit` write if buffer changed and quit Vi
`:yank` yank lines into a register
`:z` print some lines {not in all versions of Vi}
`:!` filter lines or execute an external command
`:"` comment
`:#` same as ":number"
`:*` execute contents of a register
`:&` repeat last ":substitute"
`:<` shift lines one 'shiftwidth' left
`:=` print the cursor line number
`:>` shift lines one 'shiftwidth' right
`:@` execute contents of a register; but not `:@`; `:@@` only in

some versions

Common for these commands is that Vi doesn't support the ++opt argument on
`:edit` and other commands that open a file.

The following Normal mode commands are supported by Vi:

note: See the beginning of normal-index for the meaning of WORD, N, Nmove
and etc in the description text.

CTRL-B scroll N screens Backwards

vi_diff.txt — 2093

CTRL-C interrupt current (search) command
CTRL-D scroll Down N lines (default: half a screen); Vim scrolls

'scroll' screen lines, Vi scrolls file lines; makes a
difference when lines wrap

CTRL-E scroll N lines upwards (N lines Extra)
CTRL-F scroll N screens Forward
CTRL-G display current file name and position
<BS> same as "h"
CTRL-H same as "h"
<NL> same as "j"
CTRL-J same as "j"
CTRL-L redraw screen
<CR> cursor to the first CHAR N lines lower
CTRL-M same as <CR>
CTRL-N same as "j"
CTRL-P same as "k"
CTRL-R in some Vi versions: same as CTRL-L
CTRL-T jump to N older Tag in tag list
CTRL-U N lines Upwards (default: half a screen) {Vi used file lines

while Vim scrolls 'scroll' screen lines; makes a difference
when lines wrap}

CTRL-Y scroll N lines downwards
CTRL-Z suspend program (or start new shell)
CTRL-] :ta to ident under cursor {Vi: identifier after the cursor}
CTRL-^ edit alternate file {Vi: no count}
<Space> same as "l"
! filter Nmove text through the {filter} command
!! filter N lines through the {filter} command

" use register {a-zA-Z0-9.%#:-"} for next delete, yank or put
(uppercase to append) ({.%#:} only work with put)

$ cursor to the end of Nth next line
% find the next (curly/square) bracket on this line and go to

its match, or go to matching comment bracket, or go to
matching preprocessor directive (Vi: no count supported)

& repeat last :s
' jump to mark (Vi: only lowercase marks)
(cursor N sentences backward
) cursor N sentences forward
+ same as <CR>
, repeat latest f, t, F or T in opposite direction N times
- cursor to the first CHAR N lines higher
. repeat last change with count replaced with N
/ search forward for the Nth occurrence of {pattern}
0 cursor to the first char of the line
: start entering an Ex command
; repeat latest f, t, F or T N times
< shift Nmove lines one 'shiftwidth' leftwards
<< shift N lines one 'shiftwidth' leftwards
= filter Nmove lines through "indent"
== filter N lines through "indent"
> shift Nmove lines one 'shiftwidth' rightwards
>> shift N lines one 'shiftwidth' rightwards
? search backward for the Nth previous occurrence of {pattern}
@ execute the contents of register {a-z} N times

{Vi: only named registers}
@@ repeat the previous @{a-z} N times
A append text after the end of the line N times
B cursor N WORDS backward
C change from the cursor position to the end of the line
D delete the characters under the cursor until the end of the

vi_diff.txt — 2094

line and N-1 more lines [into register x]; synonym for "d$"
E cursor forward to the end of WORD N
F cursor to the Nth occurrence of {char} to the left
G cursor to line N, default last line
H cursor to line N from top of screen
I insert text before the first CHAR on the line N times
J Join N lines; default is 2
L cursor to line N from bottom of screen
M cursor to middle line of screen
N repeat the latest '/' or '?' N times in opposite direction
O begin a new line above the cursor and insert text, repeat N

times {Vi: blank [count] screen lines}
P put the text [from register x] before the cursor N times

{Vi: no count}
Q switch to "Ex" mode
R enter replace mode: overtype existing characters, repeat the

entered text N-1 times
S delete N lines [into register x] and start insert; synonym for

"cc".
T cursor till after Nth occurrence of {char} to the left
U undo all latest changes on one line

{Vi: while not moved off of the last modified line}
W cursor N WORDS forward
X delete N characters before the cursor [into register x]
Y yank N lines [into register x]; synonym for "yy"
ZZ store current file if modified, and exit
[[cursor N sections backward
]] cursor N sections forward
^ cursor to the first CHAR of the line
_ cursor to the first CHAR N - 1 lines lower
` cursor to the mark {a-zA-Z0-9}
a append text after the cursor N times
b cursor N words backward
c delete Nmove text [into register x] and start insert
cc delete N lines [into register x] and start insert
d delete Nmove text [into register x]
dd delete N lines [into register x]
e cursor forward to the end of word N
f cursor to Nth occurrence of {char} to the right
h cursor N chars to the left
i insert text before the cursor N times
j cursor N lines downward
k cursor N lines upward
l cursor N chars to the right
m set mark {A-Za-z} at cursor position
n repeat the latest '/' or '?' N times
o begin a new line below the cursor and insert text

{Vi: blank [count] screen lines}
p put the text [from register x] after the cursor N times

{Vi: no count}
r replace N chars with {char} {Vi: CTRL-V <CR> still replaces

with a line break, cannot replace something with a <CR>}
s (substitute) delete N characters [into register x] and start

insert
t cursor till before Nth occurrence of {char} to the right
u undo changes {Vi: only one level}
w cursor N words forward
x delete N characters under and after the cursor [into register

x]
y yank Nmove text [into register x]

vi_diff.txt — 2095

yy yank N lines [into register x]
z<CR> current line to the top
z- current line to the bottom
z+ cursor on line N
z^ cursor on line N
{ cursor N paragraphs backward

| cursor to column N
} cursor N paragraphs forward
~ switch case of N characters under the cursor; Vim: depends on

'tildeop' {Vi: no count, no 'tildeop'}
 same as "x"

The following commands are supported in Insert mode by Vi:

CTRL-@ insert previously inserted text and stop insert
{Vi: only when typed as first char, only up to 128 chars}

CTRL-C quit insert mode, without checking for abbreviation, unless
'insertmode' set.

CTRL-D delete one shiftwidth of indent in the current line
{Vi: CTRL-D works only when used after autoindent}

<BS> delete character before the cursor {Vi: does not delete
autoindents, does not cross lines, does not delete past start
position of insert}

CTRL-H same as <BS>
<Tab> insert a <Tab> character
CTRL-I same as <Tab>
<NL> same as <CR>
CTRL-J same as <CR>
<CR> begin new line
CTRL-M same as <CR>
CTRL-T insert one shiftwidth of indent in current line {Vi: only when

in indent}
CTRL-V {char} insert next non-digit literally {Vi: no decimal byte entry}
CTRL-W delete word before the cursor
CTRL-Z when 'insertmode' set: suspend Vi
<Esc> end insert mode (unless 'insertmode' set)
CTRL-[same as <Esc>
0 CTRL-D delete all indent in the current line
^ CTRL-D delete all indent in the current line, restore it in the next

line
 delete character under the cursor

The following options are supported by Vi:

'autoindent' 'ai' take indent for new line from previous line
{Vi does this slightly differently: After the
indent is deleted when typing <Esc> or <CR>, the
cursor position when moving up or down is after
the deleted indent; Vi puts the cursor somewhere
in the deleted indent}.

'autowrite' 'aw' automatically write file if changed
'directory' 'dir' list of directory names for the swap file

{Vi: directory to put temp file in, defaults to
"/tmp"}

'edcompatible' 'ed' toggle flags of ":substitute" command
'errorbells' 'eb' ring the bell for error messages
'ignorecase' 'ic' ignore case in search patterns
'lines' number of lines in the display

vi_diff.txt — 2096

'lisp' automatic indenting for Lisp {Vi: Does it a little
bit differently}

'list' show <Tab> and <EOL>
'magic' changes special characters in search patterns
'modeline' 'ml' recognize 'modelines' at start or end of file

{called modelines in some Vi versions}
'number' 'nu' print the line number in front of each line
'paragraphs' 'para' nroff macros that separate paragraphs
'prompt' 'prompt' enable prompt in Ex mode
'readonly' 'ro' disallow writing the buffer {Vim sets 'readonly'

when editing a file with `:view`}
'remap' allow mappings to work recursively
'report' threshold for reporting nr. of lines changed
'scroll' 'scr' lines to scroll with CTRL-U and CTRL-D
'sections' 'sect' nroff macros that separate sections
'shell' 'sh' name of shell to use for external commands
'shiftwidth' 'sw' number of spaces to use for (auto)indent step
'showmatch' 'sm' briefly jump to matching bracket if insert one
'showmode' 'smd' message on status line to show current mode
'tabstop' 'ts' number of spaces that <Tab> in file uses
'taglength' 'tl' number of significant characters for a tag
'tags' 'tag' list of file names used by the tag command

{Vi: default is "tags /usr/lib/tags"}
'tagstack' 'tgst' push tags onto the tag stack {not in all versions

of Vi}
'term' name of the terminal
'terse' shorten some messages
'timeout' 'to' time out on mappings and key codes
'timeoutlen' 'tm' time for 'timeout' {only in some Vi versions}
'ttytype' 'tty' alias for 'term'
'verbose' 'vbs' give informative messages {only in some Vi

versions as a boolean option}
'warn' warn for shell command when buffer was changed
'window' 'wi' nr of lines to scroll for CTRL-F and CTRL-B

{Vi also uses the option to specify the number of
displayed lines}

'wrapmargin' 'wm' chars from the right where wrapping starts
{Vi: works differently and less usefully}

'wrapscan' 'ws' searches wrap around the end of the file
'writeany' 'wa' write to file with no need for "!" override

Also see missing-options .

==
7. Command-line arguments cmdline-arguments

Different versions of Vi have different command-line arguments. This can be
confusing. To help you, this section gives an overview of the differences.

Five variants of Vi will be considered here:
Elvis Elvis version 2.1b
Nvi Nvi version 1.79
Posix Posix 1003.2
Vi Vi version 3.7 (for Sun 4.1.x)
Vile Vile version 7.4 (incomplete)
Vim Vim version 5.2

Only Vim is able to accept options in between and after the file names.

+{command} Elvis, Nvi, Posix, Vi, Vim: Same as "-c {command}".

vi_diff.txt — 2097

- Nvi, Posix, Vi: Run Ex in batch mode.
Vim: Read file from stdin (use -s for batch mode).

-- Vim: End of options, only file names are following.

--cmd {command} Vim: execute {command} before sourcing vimrc files.

--echo-wid Vim: GTK+ echoes the Window ID on stdout

--help Vim: show help message and exit.

--literal Vim: take file names literally, don't expand wildcards.

--nofork Vim: same as -f

--noplugin[s] Vim: Skip loading plugins.

--remote Vim: edit the files in another Vim server

--remote-expr {expr} Vim: evaluate {expr} in another Vim server

--remote-send {keys} Vim: send {keys} to a Vim server and exit

--remote-silent {file} Vim: edit the files in another Vim server if possible

--remote-wait Vim: edit the files in another Vim server and wait for it

--remote-wait-silent Vim: like --remote-wait, no complaints if not possible

--role {role} Vim: GTK+ 2: set role of main window

--serverlist Vim: Output a list of Vim servers and exit

--servername {name} Vim: Specify Vim server name

--socketid {id} Vim: GTK window socket to run Vim in

--windowid {id} Vim: Win32 window ID to run Vim in

--version Vim: show version message and exit.

-? Vile: print usage summary and exit.

-a Elvis: Load all specified file names into a window (use -o for
Vim).

-A Vim: Start in Arabic mode (when compiled with Arabic).

-b {blksize} Elvis: Use {blksize} blocksize for the session file.
-b Vim: set 'binary' mode.

-C Vim: Compatible mode.

-c {command} Elvis, Nvi, Posix, Vim: run {command} as an Ex command after
loading the edit buffer.
Vim: allow up to 10 "-c" arguments

-d {device} Vim: Use {device} for I/O (Amiga only). {only when compiled
without the +diff feature}

vi_diff.txt — 2098

-d Vim: start with 'diff' set. vimdiff

-dev {device} Vim: Use {device} for I/O (Amiga only).

-D Vim: debug mode.

-e Elvis, Nvi, Vim: Start in Ex mode, as if the executable is
called "ex".

-E Vim: Start in improved Ex mode gQ , like "exim".

-f Vim: Run GUI in foreground (Amiga: don't open new window).
-f {session} Elvis: Use {session} as the session file.

-F Vim: Start in Farsi mode (when compiled with Farsi).
Nvi: Fast start, don't read the entire file when editing
starts.

-G {gui} Elvis: Use the {gui} as user interface.

-g Vim: Start GUI.
-g N Vile: start editing at line N

-h Vim: Give help message.
Vile: edit the help file

-H Vim: start Hebrew mode (when compiled with it).

-i Elvis: Start each window in Insert mode.
-i {viminfo} Vim: Use {viminfo} for viminfo file.

-L Vim: Same as "-r" {only in some versions of Vi: "List
recoverable edit sessions"}.

-l Nvi, Vi, Vim: Set 'lisp' and 'showmatch' options.

-m Vim: Modifications not allowed to be written, resets 'write'
option.

-M Vim: Modifications not allowed, resets 'modifiable' and the
'write' option.

-N Vim: No-compatible mode.

-n Vim: No swap file used.

-nb[args] Vim: open a NetBeans interface connection

-O[N] Vim: Like -o, but use vertically split windows.

-o[N] Vim: Open [N] windows, or one for each file.

-p[N] Vim: Open [N] tab pages, or one for each file.

-P {parent-title} Win32 Vim: open Vim inside a parent application window

-q {name} Vim: Use {name} for quickfix error file.
-q{name} Vim: Idem.

-R Elvis, Nvi, Posix, Vile, Vim: Set the 'readonly' option.

vi_diff.txt — 2099

-r Elvis, Nvi, Posix, Vi, Vim: Recovery mode.

-S Nvi: Set 'secure' option.
-S {script} Vim: source script after starting up.

-s Nvi, Posix, Vim: Same as "-" (silent mode), when in Ex mode.
Elvis: Sets the 'safer' option.

-s {scriptin} Vim: Read from script file {scriptin}; only when not in Ex
mode.

-s {pattern} Vile: search for {pattern}

-t {tag} Elvis, Nvi, Posix, Vi, Vim: Edit the file containing {tag}.
-t{tag} Vim: Idem.

-T {term} Vim: Set terminal name to {term}.

-u {vimrc} Vim: Read initializations from {vimrc} file.

-U {gvimrc} Vim: Read GUI initializations from {gvimrc} file.

-v Nvi, Posix, Vi, Vim: Begin in Normal mode (visual mode, in Vi
terms).
Vile: View mode, no changes possible.

-V Elvis, Vim: Verbose mode.
-V{nr} Vim: Verbose mode with specified level.

-w {size} Elvis, Posix, Nvi, Vi, Vim: Set value of 'window' to {size}.
-w{size} Nvi, Vi: Same as "-w {size}".
-w {name} Vim: Write to script file {name} (must start with non-digit).

-W {name} Vim: Append to script file {name}.

-x Vi, Vim: Ask for encryption key. See encryption .

-X Vim: Don't connect to the X server.

-y Vim: Start in easy mode, like evim .

-Z Vim: restricted mode

@{cmdfile} Vile: use {cmdfile} as startup file.

==
8. POSIX compliance posix posix-compliance

In 2005 the POSIX test suite was run to check the compatibility of Vim. Most
of the test was executed properly. There are the few things where Vim
is not POSIX compliant, even when run in Vi compatibility mode.

$VIM_POSIX
Set the $VIM_POSIX environment variable to have 'cpoptions' include the POSIX
flags when Vim starts up. This makes Vim run as POSIX as it can. That's
a bit different from being Vi compatible.

You can find the Posix specification for Vi here:
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/vi.html
And the related Ex specification:
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/ex.html

vi_diff.txt — 2100

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/vi.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/ex.html

This is where Vim does not behave as POSIX specifies and why:

posix-screen-size
The $COLUMNS and $LINES environment variables are ignored by Vim if
the size can be obtained from the terminal in a more reliable way.
Add the '|' flag to 'cpoptions' to have $COLUMNS and $LINES overrule
sizes obtained in another way.

The "{" and "}" commands don't stop at a "{" in the original Vi, but
POSIX specifies it does. Add the '{' flag to 'cpoptions' if you want
it the POSIX way.

The "D", "o" and "O" commands accept a count. Also when repeated.
Add the '#' flag to 'cpoptions' if you want to ignore the count.

The ":cd" command fails if the current buffer is modified when the '.'
flag is present in 'cpoptions'.

There is no ATTENTION message, the "A" flag is added to 'shortmess'.

These are remarks about running the POSIX test suite:
- vi test 33 sometimes fails for unknown reasons
- vi test 250 fails; behavior will be changed in a new revision

http://www.opengroup.org/austin/mailarchives/ag-review/msg01710.html
(link no longer works, perhaps it's now:
https://www.opengroup.org/sophocles/show_mail.tpl?CALLER=show_archive.tpl&source=L&listname=austin-review-l&id=1711)

- vi test 310 fails; exit code non-zero when any error occurred?
- ex test 24 fails because test is wrong. Changed between SUSv2 and SUSv3.
- ex tests 47, 48, 49, 72, 73 fail because .exrc file isn't read in silent

mode and $EXINIT isn't used.
- ex tests 76, 78 fail because echo is used instead of printf. (fixed)

Also: problem with \s not changed to space.
- ex test 355 fails because 'window' isn't used for "30z".
- ex test 368 fails because shell command isn't echoed in silent mode.
- ex test 394 fails because "=" command output isn't visible in silent mode.
- ex test 411 fails because test file is wrong, contains stray ':'.
- ex test 475 and 476 fail because reprint output isn't visible in silent mode.
- ex test 480 and 481 fail because the tags file has spaces instead of a tab.
- ex test 502 fails because .exrc isn't read in silent mode.
- ex test 509 fails because .exrc isn't read in silent mode. and exit code is

1 instead of 2.
- ex test 534 fails because .exrc isn't read in silent mode.

vi_diff.txt — 2101

http://www.opengroup.org/austin/mailarchives/ag-review/msg01710.html
https://www.opengroup.org/sophocles/show_mail.tpl?CALLER=show_archive.tpl&source=L&listname=austin-review-l&id=1711

vi_diff.txt — 2102

version4.txt For Vim version 9.1. Last change: 2006 Apr 24

VIM REFERENCE MANUAL by Bram Moolenaar

This document lists the incompatible differences between Vim 3.0 and Vim 4.0.
Although 4.0 is mentioned here, this is also for version 4.1, 4.2, etc..

This file is important for everybody upgrading from Vim 3.0. Read it
carefully to avoid unexpected problems.

'backup' option default changed backup-changed
Extension for backup file changed backup-extension
Structure of swap file changed swapfile-changed
"-w scriptout" argument changed scriptout-changed
Backspace and Delete keys backspace-delete
Escape for | changed escape-bar
Key codes changed key-codes-changed
Terminal options changed termcap-changed
'errorformat' option changed errorformat-changed
'graphic' option gone graphic-option-gone
'yankendofline' option gone ye-option-gone
'icon' and 'title' default value changed icon-changed
'highlight' option changed highlight-changed
'tildeop' and 'weirdinvert' short names changed short-name-changed
Use of "v", "V" and "CTRL-V" in Visual mode use-visual-cmds
CTRL-B in Insert mode removed toggle-revins

'backup' option default changed backup-changed

The default value for 'backup' used to be on. This resulted in a backup file
being made when the original file was overwritten.

Now the default for 'backup' is off. As soon as the writing of the file has
successfully finished, the backup file is deleted. If you want to keep the
backup file, set 'backup' on in your vimrc. The reason for this change is
that many people complained that leaving a backup file behind is not
Vi-compatible. 'backup'

Extension for backup file changed backup-extension

The extension for the backup file used to be ".bak". Since other programs
also use this extension and some users make copies with this extension, it was
changed to the less obvious "~". Another advantage is that this takes less
space, which is useful when working on a system with short file names. For
example, on MS-DOS the backup files for "longfile.c" and "longfile.h" would
both become "longfile.bak"; now they will be "longfile.c~" and "longfile.h~".

If you prefer to use ".bak", you can set the 'backupext' option:
:set bex=.bak

Structure of swap file changed swapfile-changed

version4.txt — 2103

The contents of the swap file were extended with several parameters. Vim
stores the user name and other information about the edited file to make
recovery more easy and to be able to know where the swap file comes from. The
first part of the swap file can now be understood on a machine with a
different byte order or sizeof(int). When you try to recover a file on such a
machine, you will get an error message that this is not possible.

Because of this change, swap files cannot be exchanged between 3.0 and 4.0.
If you have a swap file from a crashed session with 3.0, use Vim 3.0 to
recover the file---don't use 4.0. swap-file

"-w scriptout" argument changed scriptout-changed

"vim -w scriptout" used to append to the scriptout file. Since this was
illogical, it now creates a new file. An existing file is not overwritten
(to avoid destroying an existing file for those who rely on the appending).
[This was removed again later] -w

Backspace and Delete keys backspace-delete

In 3.0 both the delete key and the backspace key worked as a backspace in
insert mode; they deleted the character to the left of the cursor. In 4.0 the
delete key has a new function: it deletes the character under the cursor, just
like it does on the command-line. If the cursor is after the end of the line
and 'bs' is set, two lines are joined. i_

In 3.0 the backspace key was always defined as CTRL-H and delete as CTRL-?.
In 4.0 the code for the backspace and delete key is obtained from termcap or
termlib, and adjusted for the "stty erase" value on Unix. This helps people
who define the erase character according to the keyboard they are working on.

<BS> i_<BS>

If you prefer backspace and delete in Insert mode to have the old behavior,
put this line in your vimrc:

inoremap ^? ^H

And you may also want to add these, to fix the values for <BS> and :

set t_kb=^H
set t_kD=^?

(Enter ^H with CTRL-V CTRL-H and ^? with CTRL-V CTRL-? or .)

If the value for t_kb is correct, but the t_kD value is not, use the ":fixdel"
command. It will set t_kD according to the value of t_kb. This is useful if
you are using several different terminals. :fixdel

When ^H is not recognized as <BS> or , it is used like a backspace.

Escape for | changed escape-bar

When the 'b' flag is present in 'cpoptions', the backslash cannot be used to
escape '|' in mapping and abbreviate commands, only CTRL-V can. This is

version4.txt — 2104

Vi-compatible. If you work in Vi-compatible mode and had used "\|" to include
a bar in a mapping, this needs to be replaced by "^V|". See :bar .

Key codes changed key-codes-changed

The internal representation of key codes has changed dramatically. In 3.0 a
one-byte code was used to represent a key. This caused problems with
different characters sets that also used these codes. In 4.0 a three-byte
code is used that cannot be confused with a character. key-notation

If you have used the single-byte key codes in your vimrc for mappings, you
will have to replace them with the 4.0 codes. Instead of using the three-byte
code directly, you should use the symbolic representation for this in <>. See
the table below. The table also lists the old name, as it was used in the 3.0
documentation.

The key names in <> can be used in mappings directly. This makes it possible
to copy/paste examples or type them literally. The <> notation has been
introduced for this <> . The 'B' and '<' flags must not be present in
'cpoptions' to enable this to work 'cpoptions' .

old name new name old code old MS-DOS code
hex dec hex dec

<ESC> <Esc>
<TAB> <Tab>
<LF> <NL> <NewLine> <LineFeed>
<SPACE> <Space>
<NUL> <Nul>
<BELL> <Bell>
<BS> <BS> <BackSpace>
<INSERT> <Insert>
 <Delete>
<HOME> <Home>
<END> <End>
<PAGE_UP> <PageUp>
<PAGE_DOWN> <PageDown>

<C_UP> <Up> 0x80 128 0xb0 176
<C_DOWN> <Down> 0x81 129 0xb1 177
<C_LEFT> <Left> 0x82 130 0xb2 178
<C_RIGHT> <Right> 0x83 131 0xb3 179
<SC_UP> <S-Up> 0x84 132 0xb4 180
<SC_DOWN> <S-Down> 0x85 133 0xb5 181
<SC_LEFT> <S-Left> 0x86 134 0xb6 182
<SC_RIGHT> <S-Right> 0x87 135 0xb7 183

<F1> <F1> 0x88 136 0xb8 184
<F2> <F2> 0x89 137 0xb9 185
<F3> <F3> 0x8a 138 0xba 186
<F4> <F4> 0x8b 139 0xbb 187
<F5> <F5> 0x8c 140 0xbc 188
<F6> <F6> 0x8d 141 0xbd 189
<F7> <F7> 0x8e 142 0xbe 190
<F8> <F8> 0x8f 143 0xbf 191
<F9> <F9> 0x90 144 0xc0 192
<F10> <F10> 0x91 145 0xc1 193

<SF1> <S-F1> 0x92 146 0xc2 194

version4.txt — 2105

<SF2> <S-F2> 0x93 147 0xc3 195
<SF3> <S-F3> 0x94 148 0xc4 196
<SF4> <S-F4> 0x95 149 0xc5 197
<SF5> <S-F5> 0x96 150 0xc6 198
<SF6> <S-F6> 0x97 151 0xc7 199
<SF7> <S-F7> 0x98 152 0xc8 200
<SF8> <S-F8> 0x99 153 0xc9 201
<SF9> <S-F9> 0x9a 154 0xca 202
<SF10> <S-F10> 0x9b 155 0xcb 203

<HELP> <Help> 0x9c 156 0xcc 204
<UNDO> <Undo> 0x9d 157 0xcd 205

(not used) 0x9e 158 0xce 206
(not used) 0x9f 159 0xcf 207

Terminal options changed termcap-changed

The names of the terminal options have been changed to match the termcap names
of these options. All terminal options now have the name t_xx, where xx is
the termcap name. Normally these options are not used, unless you have a
termcap entry that is wrong or incomplete, or you have set the highlight
options to a different value. terminal-options

Note that for some keys there is no termcap name. Use the <> type of name
instead, which is a good idea anyway.

Note that "t_ti" has become "t_mr" (invert/reverse output) and "t_ts" has
become "t_ti" (init terminal mode). Be careful when you use "t_ti"!

old name new name meaning
t_cdl t_DL delete number of lines t_cdl
t_ci t_vi cursor invisible t_ci
t_cil t_AL insert number of lines t_cil
t_cm t_cm move cursor
t_cri t_RI cursor number of chars right t_cri
t_cv t_ve cursor visible t_cv
t_cvv t_vs cursor very visible t_cvv
t_dl t_dl delete line
t_cs t_cs scroll region
t_ed t_cl clear display t_ed
t_el t_ce clear line t_el
t_il t_al insert line t_il

t_da display may be retained above the screen
t_db display may be retained below the screen

t_ke t_ke put terminal out of keypad transmit mode
t_ks t_ks put terminal in keypad transmit mode
t_ms t_ms save to move cursor in highlight mode
t_se t_se normal mode (undo t_so)
t_so t_so shift out (standout) mode
t_ti t_mr reverse highlight
t_tb t_md bold mode t_tb
t_tp t_me highlight end t_tp
t_sr t_sr scroll reverse
t_te t_te out of termcap mode
t_ts t_ti into termcap mode t_ts_old
t_vb t_vb visual bell
t_csc t_CS cursor is relative to scroll region t_csc

version4.txt — 2106

t_ku t_ku <Up> arrow up
t_kd t_kd <Down> arrow down
t_kr t_kr <Right> arrow right
t_kl t_kl <Left> arrow left
t_sku <S-Up> shifted arrow up t_sku
t_skd <S-Down> shifted arrow down t_skd
t_skr t_%i <S-Right> shifted arrow right t_skr
t_skl t_#4 <S-Left> shifted arrow left t_skl
t_f1 t_k1 <F1> function key 1 t_f1
t_f2 t_k2 <F2> function key 2 t_f2
t_f3 t_k3 <F3> function key 3 t_f3
t_f4 t_k4 <F4> function key 4 t_f4
t_f5 t_k5 <F5> function key 5 t_f5
t_f6 t_k6 <F6> function key 6 t_f6
t_f7 t_k7 <F7> function key 7 t_f7
t_f8 t_k8 <F8> function key 8 t_f8
t_f9 t_k9 <F9> function key 9 t_f9
t_f10 t_k; <F10> function key 10 t_f10
t_sf1 <S-F1> shifted function key 1 t_sf1
t_sf2 <S-F2> shifted function key 2 t_sf2
t_sf3 <S-F3> shifted function key 3 t_sf3
t_sf4 <S-F4> shifted function key 4 t_sf4
t_sf5 <S-F5> shifted function key 5 t_sf5
t_sf6 <S-F6> shifted function key 6 t_sf6
t_sf7 <S-F7> shifted function key 7 t_sf7
t_sf8 <S-F8> shifted function key 8 t_sf8
t_sf9 <S-F9> shifted function key 9 t_sf9
t_sf10 <S-F10> shifted function key 10 t_sf10
t_help t_%1 <Help> help key t_help
t_undo t_&8 <Undo> undo key t_undo

'errorformat' option changed errorformat-changed

'errorformat' can now contain several formats, separated by commas. The first
format that matches is used. The default values have been adjusted to catch
the most common formats. errorformat

If you have a format that contains a comma, it needs to be preceded with a
backslash. Type two backslashes, because the ":set" command will eat one.

'graphic' option gone graphic-option-gone

The 'graphic' option was used to make the characters between <~> and 0xa0
display directly on the screen. Now the 'isprint' option takes care of this
with many more possibilities. The default setting is the same; you only need
to look into this if you previously set the 'graphic' option in your vimrc.

'isprint'

'yankendofline' option gone ye-option-gone

The 'yankendofline' option has been removed. Instead you can just use
:map Y y$

version4.txt — 2107

'icon' and 'title' default value changed icon-changed
--

The 'title' option is now only set by default if the original title can be
restored. Avoids "Thanks for flying Vim" titles. If you want them anyway,
put ":set title" in your vimrc. 'title'

The default for 'icon' now depends on the possibility of restoring the
original value, just like 'title'. If you don't like your icon titles to be
changed, add this line to your vimrc: 'icon'

:set noicon

'highlight' option changed highlight-changed

The 'i' flag now means italic highlighting, instead of invert. The 'r' flag
is used for reverse highlighting, which is what 'i' used to be. Normally you
won't see the difference, because italic mode is not supported on most
terminals and reverse mode is used as a fallback. 'highlight'

When an occasion is not present in 'highlight', use the mode from the default
value for 'highlight', instead of reverse mode.

'tildeop' and 'weirdinvert' short names changed short-name-changed

Renamed 'to' (abbreviation for 'tildeop') to 'top'. 'tildeop'
Renamed 'wi' (abbreviation for 'weirdinvert') to 'wiv'. 'weirdinvert'

This was done because Vi uses 'wi' as the short name for 'window' and 'to' as
the short name for 'timeout'. This means that if you try setting these
options, you won't get an error message, but the effect will be different.

Use of "v", "V" and "CTRL-V" in Visual mode use-visual-cmds

In Visual mode, "v", "V", and "CTRL-V" used to end Visual mode. Now this
happens only if the Visual mode was in the corresponding type. Otherwise the
type of Visual mode is changed. Now only ESC can be used in all circumstances
to end Visual mode without doing anything. v_V

CTRL-B in Insert mode removed toggle-revins

CTRL-B in Insert mode used to toggle the 'revins' option. If you don't know
this and accidentally hit CTRL-B, it is very difficult to find out how to undo
it. Since hardly anybody uses this feature, it is disabled by default. If
you want to use it, define RIGHTLEFT in feature.h before compiling. 'revins'

version4.txt — 2108

version5.txt For Vim version 9.1. Last change: 2022 Nov 09

VIM REFERENCE MANUAL by Bram Moolenaar

Welcome to Vim Version 5.0!

This document lists the differences between Vim 4.x and Vim 5.0.
Although 5.0 is mentioned here, this is also for version 5.1, 5.2, etc.
See vi_diff.txt for an overview of differences between Vi and Vim 5.0.
See version4.txt for differences between Vim 3.0 and Vim 4.0.

INCOMPATIBLE: incompatible-5

Default value for 'compatible' changed cp-default
Text formatting command "Q" changed Q-command-changed
Command-line arguments changed cmdline-changed
Autocommands are kept autocmds-kept
Use of 'hidden' changed hidden-changed
Text object commands changed text-objects-changed
X-Windows Resources removed x-resources
Use of $VIM $VIM-use
Use of $HOME for MS-DOS and Win32 $HOME-use
Tags file format changed tags-file-changed
Options changed options-changed
CTRL-B in Insert mode gone i_CTRL-B-gone

NEW FEATURES: new-5

Syntax highlighting new-highlighting
Built-in script language new-script
Perl and Python support new-perl-python
Win32 GUI version added-win32-GUI
VMS version added-VMS
BeOS version added-BeOS
Macintosh GUI version added-Mac
More Vi compatible more-compatible
Read input from stdin read-stdin
Regular expression patterns added-regexp
Overloaded tags tag-overloaded
New commands new-commands
New options added-options
New command-line arguments added-cmdline-args
Various additions added-various

IMPROVEMENTS improvements-5

COMPILE TIME CHANGES compile-changes-5

BUG FIXES bug-fixes-5

VERSION 5.1 version-5.1
Changed changed-5.1
Added added-5.1
Fixed fixed-5.1

VERSION 5.2 version-5.2
Long lines editable long-lines
File browser added file-browser-5.2
Dialogs added dialogs-added

version5.txt — 2109

Popup menu added popup-menu-added
Select mode added new-Select-mode
Session files added new-session-files
User defined functions and commands new-user-defined
New interfaces interfaces-5.2
New ports ports-5.2
Multi-byte support new-multi-byte
New functions new-functions-5.2
New options new-options-5.2
New Ex commands new-ex-commands-5.2
Changed changed-5.2
Added added-5.2
Fixed fixed-5.2

VERSION 5.3 version-5.3
Changed changed-5.3
Added added-5.3
Fixed fixed-5.3

VERSION 5.4 version-5.4
Runtime directory introduced new-runtime-dir
Filetype introduced new-filetype-5.4
Vim script line continuation new-line-continuation
Improved session files improved-sessions
Autocommands improved improved-autocmds-5.4
Encryption new-encryption
GTK GUI port new-GTK-GUI
Menu changes menu-changes-5.4
Viminfo improved improved-viminfo
Various new commands new-commands-5.4
Various new options new-options-5.4
Vim scripts new-script-5.4
Avoid hit-enter prompt avoid-hit-enter
Improved quickfix improved-quickfix
Regular expressions regexp-changes-5.4
Changed changed-5.4
Added added-5.4
Fixed fixed-5.4

VERSION 5.5 version-5.5
Changed changed-5.5
Added added-5.5
Fixed fixed-5.5

VERSION 5.6 version-5.6
Changed changed-5.6
Added added-5.6
Fixed fixed-5.6

VERSION 5.7 version-5.7
Changed changed-5.7
Added added-5.7
Fixed fixed-5.7

VERSION 5.8 version-5.8
Changed changed-5.8
Added added-5.8
Fixed fixed-5.8

==

version5.txt — 2110

INCOMPATIBLE incompatible-5

Default value for 'compatible' changed cp-default

Vim version 5.0 tries to be more Vi compatible. This helps people who use Vim
as a drop-in replacement for Vi, but causes some things to be incompatible
with version 4.x.

In version 4.x the default value for the 'compatible' option was off. Now the
default is on. The first thing you will notice is that the "u" command undoes
itself. Other side effects will be that mappings may work differently or not
work at all.

Since a lot of people switching from Vim 4.x to 5.0 will find this annoying,
the 'compatible' option is switched off if Vim finds a vimrc file. This is a
bit of magic to make sure that 90% of the Vim users will not be bitten by
this change.

What does this mean?
- If you prefer to run in 'compatible' mode and don't have a vimrc file, you

don't have to do anything.
- If you prefer to run in 'nocompatible' mode and do have a vimrc file, you

don't have to do anything.
- If you prefer to run in 'compatible' mode and do have a vimrc file, you

should put this line first in your vimrc file:
:set compatible

- If you prefer to run in 'nocompatible' mode and don't have a vimrc file,
you can do one of the following:
- Create an empty vimrc file (e.g.: "~/.vimrc" for Unix).
- Put this command in your .exrc file or $EXINIT:

:set nocompatible
- Start Vim with the "-N" argument.

If you are new to Vi and Vim, using 'nocompatible' is strongly recommended,
because Vi has a lot of unexpected side effects, which are avoided by this
setting. See 'compatible'.

If you like some things from 'compatible' and some not, you can tune the
compatibility with 'cpoptions'.

When you invoke Vim as "ex" or "gex", Vim always starts in compatible mode.

Text formatting command "Q" changed Q-command-changed

The "Q" command formerly formatted lines to the width the 'textwidth' option
specifies. The command for this is now "gq" (see gq for more info). The
reason for this change is that "Q" is the standard Vi command to enter "Ex"
mode, and Vim now does in fact have an "Ex" mode (see Q for more info).

If you still want to use "Q" for formatting, use this mapping:
:noremap Q gq

And if you also want to use the functionality of "Q":
:noremap gQ Q

Command-line arguments changed cmdline-changed

version5.txt — 2111

Command-line file-arguments and option-arguments can now be mixed. You can
give options after the file names. Example:

vim main.c -g

This is not possible when editing a file that starts with a '-'. Use the "--"
argument then --- :

vim -g -- -main.c

"-v" now means to start Ex in Vi mode, use "-R" for read-only mode.
old: "vim -v file" -v
new: "vim -R file" -R

"-e" now means to start Vi in Ex mode, use "-q" for quickfix.
old: "vim -e errorfile" -e
new: "vim -q errorfile" -q

"-s" in Ex mode now means to run in silent (batch) mode. -s-ex

"-x" reserved for crypt, use "-f" to avoid starting a new CLI (Amiga).
old: "vim -x file" -x
new: "vim -f file" -f

Vim allows up to ten "+cmd" and "-c cmd" arguments. Previously Vim executed
only the last one.

"-n" now overrides any setting for 'updatecount' in a vimrc file, but not in
a gvimrc file.

Autocommands are kept autocmds-kept

Before version 5.0, autocommands with the same event, file name pattern, and
command could appear only once. This was fine for simple autocommands (like
setting option values), but for more complicated autocommands, where the same
command might appear twice, this restriction caused problems. Therefore
Vim stores all autocommands and keeps them in the order that they are defined.

The most obvious side effect of this change is that when you source a vimrc
file twice, the autocommands in it will be defined twice. To avoid this, do
one of these:

- Remove any autocommands that might already be defined before defining
them. Example:

:au! * *.ext
:au BufEnter *.ext ...

- Put the autocommands inside an ":if" command. Example:
if !exists("did_ext_autocmds")

let did_ext_autocmds = 1
autocmd BufEnter *.ext ...

endif

- Put your autocommands in a different autocommand group so you can remove
them before defining them :augroup :

augroup uncompress
au!
au BufReadPost *.gz ...

augroup END

version5.txt — 2112

Use of 'hidden' changed hidden-changed

In version 4.x, only some commands used the 'hidden' option. Now all commands
uses it whenever a buffer disappears from a window.

Previously you could do ":buf xxx" in a changed buffer and that buffer would
then become hidden. Now you must set the 'hidden' option for this to work.

The new behavior is simpler: whether Vim hides buffers no longer depends on
the specific command that you use.
- with 'hidden' not set, you never get hidden buffers. Exceptions are the

":hide" and ":close!" commands and, in rare cases, where you would otherwise
lose changes to the buffer.

- With 'hidden' set, you almost never unload a buffer. Exceptions are the
":bunload" or ":bdel" commands.

":buffer" now supports a "!": abandon changes in current buffer. So do
":bnext", ":brewind", etc.

Text object commands changed text-objects-changed

Text object commands have new names. This allows more text objects and makes
characters available for other Visual mode commands. Since no more single
characters were available, text objects names now require two characters.
The first one is always 'i' or 'a'.

OLD NEW
a aw a word v_aw
A aW a WORD v_aW
s as a sentence v_as
p ap a paragraph v_ap
S ab a () block v_ab
P aB a {} block v_aB

There is another set of text objects that starts with "i", for "inner". These
select the same objects, but exclude white space.

X-Windows Resources removed x-resources

Vim no longer supports the following X resources:
- boldColor
- italicColor
- underlineColor
- cursorColor

Vim now uses highlight groups to set colors. This avoids the confusion of
using a bold Font, which would imply a certain color. See :highlight and
gui-resources .

Use of $VIM $VIM-use

Vim now uses the VIM environment variable to find all Vim system files. This

version5.txt — 2113

includes the global vimrc, gvimrc, and menu.vim files and all on-line help
and syntax files. See $VIM . Starting with version 5.4, $VIMRUNTIME can
also be used.
For Unix, Vim sets a default value for $VIM when doing "make install".
When $VIM is not set, its default value is the directory from 'helpfile',
excluding "/doc/help.txt".

Use of $HOME for MS-DOS and Win32 $HOME-use

The MS-DOS and Win32 versions of Vim now first check $HOME when searching for
a vimrc or exrc file and for reading/storing the viminfo file. Previously Vim
used $VIM for these systems, but this causes trouble on a system with several
users. Now Vim uses $VIM only when $HOME is not set or the file is not found
in $HOME. See _vimrc .

Tags file format changed tags-file-changed

Only tabs are allowed to separate fields in a tags file. This allows for
spaces in a file name and is still Vi compatible. In previous versions of
Vim, any white space was allowed to separate the fields. If you have a file
which doesn't use a single tab between fields, edit the tags file and execute
this command:

:%s/\(\S*\)\s\+\(\S*\)\s\+\(.*\)/\1\t\2\t\3/

Options changed options-changed

The default value of 'errorfile' has changed from "errors.vim" to "errors.err".
The reason is that only Vim scripts should have the ".vim" extensions.

The ":make" command no longer uses the 'errorfile' option. This prevents the
output of the ":make" command from overwriting a manually saved error file.
":make" uses the 'makeef' option instead. This also allows for generating a
unique name, to prevent concurrently running ":make" commands from overwriting
each other's files.

With 'insertmode' set, a few more things change:
- <Esc> in Normal mode goes to Insert mode.
- <Esc> in Insert mode doesn't leave Insert mode.
- When doing ":set im", go to Insert mode immediately.

Vim considers a buffer to be changed when the 'fileformat' (formerly the
'textmode' option) is different from the buffer's initial format.

CTRL-B in Insert mode gone i_CTRL-B-gone

When Vim was compiled with the +rightleft feature, you could use CTRL-B to
toggle the 'revins' option. Unfortunately, some people hit the 'B' key
accidentally when trying to type CTRL-V or CTRL-N and then didn't know how to
undo this. Since toggling the 'revins' option can easily be done with the
mapping below, this use of the CTRL-B key is disabled. You can still use the
CTRL-_ key for this i_CTRL-_ .

:imap <C-B> <C-O>:set revins!<CR>

version5.txt — 2114

==
NEW FEATURES new-5

Syntax highlighting new-highlighting

Vim now has a very flexible way to highlighting just about any type of file.
See syntax . Summary:

:syntax on

Colors and attributes can be set for the syntax highlighting, and also for
other highlighted items with the ':' flag in the 'highlight' option. All
highlighted items are assigned a highlight group which specifies their
highlighting. See :highlight . The default colors have been improved.

You can use the "Normal" group to set the default fore/background colors for a
color terminal. For the GUI, you can use this group to specify the font, too.

The "2html.vim" script can be used to convert any file that has syntax
highlighting to HTML. The colors will be exactly the same as how you see them
in Vim. With a HTML viewer you can also print the file with colors.

Built-in script language new-script

A few extra commands and an expression evaluator enable you to write simple
but powerful scripts. Commands include ":if" and ":while". Expressions can
manipulate numbers and strings. You can use the '=' register to insert
directly the result of an expression. See expression .

Perl and Python support new-perl-python

Vim can call Perl commands with ":perldo", ":perl", etc. See perl .
Patches made by Sven Verdoolaege and Matt Gerassimoff.

Vim can call Python commands with ":python" and ":pyfile". See python .

Both of these are only available when enabled at compile time.

Win32 GUI version added-win32-GUI

The GUI has been ported to MS-Windows 95 and NT. All the features of the X11
GUI are available to Windows users now. gui-w32
This also fixes problems with running the Win32 console version under Windows
95, where console support has always been bad.
There is also a version that supports OLE automation interface. if_ole.txt
Vim can be integrated with Microsoft Developer Studio using the VisVim DLL.
It is possible to produce a DLL version of gvim with Borland C++ (Aaron).

VMS version added-VMS

Vim can now also be used on VMS systems. Port done by Henk Elbers.

version5.txt — 2115

This has not been tested much, but it should work.
Sorry, no documentation!

BeOS version added-BeOS

Vim can be used on BeOS systems (including the BeBox). (Olaf Seibert)
See os_beos.txt .

Macintosh GUI version added-Mac

Vim can now be used on the Macintosh. (Dany St-Amant)
It has not been tested much yet, be careful!
See os_mac.txt .

More Vi compatible more-compatible

There is now a real Ex mode. Started with the "Q" command, or by calling the
executable "ex" or "gex". Ex-mode

Always allow multi-level undo, also in Vi compatible mode. When the 'u' flag
in 'cpoptions' is included, CTRL-R is used for repeating the undo or redo
(like "." in Nvi).

Read input from stdin read-stdin

When using the "-" command-line argument, Vim reads its text input from stdin.
This can be used for putting Vim at the end of a pipe:

grep "^a.*" *.c | vim -
See -- .

Regular expression patterns added-regexp

Added specifying a range for the number of matches of an atom: "\{a,b}". /\{
Added the "shortest match" regexp "\{-}" (Webb).
Added "\s", matches a white character. Can replace "[\t]". /\s
Added "\S", matches a non-white character. Can replace "[^ \t]". /\S

Overloaded tags tag-overloaded

When using a language like C++, there can be several tags for the same
tagname. Commands have been added to be able to jump to any of these
overloaded tags:
:tselect List matching tags, and jump to one of them.
:stselect Idem, and split window.
g_CTRL-] Do ":tselect" with the word under the cursor.

After ":ta {tagname}" with multiple matches:
:tnext Go to next matching tag.

version5.txt — 2116

:tprevious Go to previous matching tag.
:trewind Go to first matching tag.
:tlast Go to last matching tag.

The ":tag" command now also accepts wildcards. When doing command-line
completion on tags, case-insensitive matching is also available (at the end).

New commands new-commands

:amenu Define menus for all modes, inserting a CTRL-O for Insert
mode, ESC for Visual and CTRL-C for Cmdline mode. "amenu" is
used for the default menus and the Syntax menu.

:augroup Set group to be used for following autocommands. Allows the
grouping of autocommands to enable deletion of a specific
group.

:crewind Go to first error.
:clast Go to last error.

:doautoall Execute autocommands for all loaded buffers.

:echo Echo its argument, which is an expression. Can be used to
display messages which include variables.

:execute Execute its argument, which is an expression. Can be used to
built up an Ex command with anything.

:hide Works like ":close".

:if Conditional execution, for built-in script language.

:intro Show introductory message. This is always executed when Vim
is started without file arguments.

:let Assign a value to an internal variable.

:omap Map only in operator-pending mode. Makes it possible to map
text-object commands.

:redir Redirect output of messages to a file.

:update Write when buffer has changed.

:while While-loop for built-in script language.

Visual mode:
v_O "O" in Visual block mode, moves the cursor to the other corner

horizontally.
v_D "D" in Visual block mode deletes till end of line.

Insert mode:
i_CTRL-] Triggers abbreviation, without inserting any character.

New options added-options

version5.txt — 2117

'background' Used for selecting highlight color defaults. Also used in
"syntax.vim" for selecting the syntax colors. Often set
automatically, depending on the terminal used.

'complete' Specifies how Insert mode completion works.

'eventignore' Makes it possible to ignore autocommands temporarily.

'fileformat' Current file format. Replaces 'textmode'.
'fileformats' Possible file formats. Replaces 'textauto'.

New is that this also supports Macintosh format: A single <CR>
separates lines.
The default for 'fileformats' for MS-DOS, Win32 and OS/2 is
"dos,unix", also when 'compatible' set. Unix type files
didn't work anyway when 'fileformats' was empty.

'guicursor' Set the cursor shape and blinking in various modes.
Default is to adjust the cursor for Insert and Replace mode,
and when an operator is pending. Blinking is default on.

'fkmap' Farsi key mapping.

'hlsearch' Highlight all matches with the last used search pattern.

'hkmapp' Phonetic Hebrew mapping. (Ilya Dogolazky)

'iconstring' Define the name of the icon, when not empty. (Version 5.2: the
string is used literally, a newline can be used to make two
lines.)

'lazyredraw' Don't redraw the screen while executing macros, registers or
other not typed commands.

'makeef' Errorfile to be used for ":make". "##" is replaced with a
unique number. Avoids that two Vim sessions overwrite each
others errorfile. The Unix default is "/tmp/vim##.err"; for
Amiga "t:vim##.Err, for others "vim##.err".

'matchtime' 1/10s of a second to show a matching paren, when 'showmatch'
is set. Like Nvi.

'mousehide' Hide mouse pointer in GUI when typing text.

'nrformats' Defines what bases Vim will consider for numbers when using
the CTRL-A and CTRL-X commands. Default: "hex,octal".

'shellxquote' Add extra quotes around the whole shell command, including
redirection.

'softtabstop' Make typing behave like tabstop is set at this value, without
changing the value of 'tabstop'. Makes it more easy to keep
'ts' at 8, while still getting four spaces for a <Tab>.

'titlestring' String for the window title, when not empty. (Version 5.2:
this string is used literally, a newline can be used to make
two lines.)

'verbose' Level of verbosity. Makes it possible to show which .vimrc,
.exrc, .viminfo files etc. are used for initializing. Also
to show autocommands that are being executed. Can also be set

version5.txt — 2118

by using the "-V" command-line argument.

New command-line arguments added-cmdline-args

-U Set the gvimrc file to be used. Like "-u" for the vimrc.

-V Set the 'verbose' option. E.g. "vim -V10".

-N Start in non-compatible mode.

-C Start in compatible mode.

-Z Start in restricted mode, disallow shell commands. Can also
be done by calling the executable "rvim".

-h Show usage information and exit.

Various additions added-various

Added support for SNiFF+ connection (submitted by Toni Leherbauer). Vim can
be used as an editor for SNiFF. No documentation available...

For producing a bug report, the bugreport.vim script has been included.
Can be used with ":so $VIMRUNTIME/bugreport.vim", which creates the file
"bugreport.txt" in the current directory. bugs

Added range to ":normal" command. Now you can repeat the same command for
each line in the range. :normal-range

Included support for the Farsi language (Shiran). Only when enabled at
compile time. See farsi .

==
IMPROVEMENTS improvements-5

Performance:
- When 'showcmd' was set, mappings would execute much more slowly because the

output would be flushed very often. Helps a lot when executing the "life"
macros with 'showcmd' set.

- Included patches for binary searching in tags file (David O'Neill).
Can be disabled by resetting the 'tagbsearch' option.

- Don't update the ruler when repeating insert (slowed it down a lot).
- For Unix, file name expansion is now done internally instead of starting a

shell for it.
- Expand environment variables with expand_env(), instead of calling the

shell. Makes ":so $VIMRUNTIME/syntax/syntax.vim" a LOT faster.
- Reduced output for cursor positioning: Use CR-LF for moving to first few

columns in next few lines; Don't output CR twice when using termios.
- Optimized cursor positioning. Use CR, BS and NL when it's shorter than

absolute cursor positioning.
- Disable redrawing while repeating insert "1000ii<Esc>".
- Made "d$" or "D" for long lines a lot faster (delete all characters at once,

instead of one by one).
- Access option table by first letter, instead of searching from start.
- Made setting special highlighting attributes a lot faster by using

highlight_attr[], instead of searching in the 'highlight' string.

version5.txt — 2119

- Don't show the mode when redrawing is disabled.
- When setting an option, only redraw the screen when required.
- Improved performance of Ex commands by using a lookup table for the first

character.

Options:
'cinoptions' Added 'g' flag, for C++ scope declarations.
'cpoptions' Added 'E' flag: Disallow yanking, deleting, etc. empty text

area. Default is to allow empty yanks. When 'E' is included,
"y$" in an empty line now is handled as an error (Vi
compatible).
Added 'j' flag: Only add two spaces for a join after a '.',
not after a '?' or '!'.
Added 'A' flag: don't give ATTENTION message.
Added 'L' flag: When not included, and 'list' is set,
'textwidth' formatting works like 'list' is not set.
Added 'W' flag: Let ":w!" behave like Vi: don't overwrite
readonly files, or a file owned by someone else.

'highlight' Added '@' flag, for '@' characters after the last line on the
screen, and '$' at the end of the line when 'list' is set.
Added 'i' flag: Set highlighting for 'incsearch'. Default
uses "IncSearch" highlight group, which is linked to "Visual".
Disallow 'h' flag in 'highlight' (wasn't used anymore since
3.0).

'guifont' Win32 GUI only: When set to "*" brings up a font requester.
'guipty' Default on, because so many people need it.
'path' Can contain wildcards, and "**" for searching a whole tree.
'shortmess' Added 'I' flag to avoid the intro message.
'viminfo' Added '%' flag: Store buffer list in viminfo file.

- Increased defaults for 'maxmem' and 'maxmemtot' for Unix and Win32. Most
machines have much more RAM now that prices have dropped.

- Implemented ":set all&", set all options to their default value. :set

Swap file:
- Don't create a swap file for a readonly file. Then create one on the first

change. Also create a swapfile when the amount of memory used is getting
too high. swap-file

- Make swap file "hidden", if possible. On Unix this is done by prepending a
dot to the swap file name. When long file names are used, the DJGPP and
Win32 versions also prepend a dot, in case a file on a mounted Unix file
system is edited. :swapname On MSDOS the hidden file attribute is NOT
set, because this causes problems with share.exe.

- 'updatecount' always defaults to non-zero, also for Vi compatible mode.
This means there is a swap file, which can be used for recovery.

Tags:
- Included ctags 2.0 (Darren Hiebert). The syntax for static tags changed

from
{tag}:{fname} {fname} {command}

to
{tag} {fname} {command};" file:

Which is both faster to parse, shorter and Vi compatible. The old format is
also still accepted, unless disabled in src/feature.h (see OLD_STATIC_TAGS).
tags-file-format

- Completion of tags now also includes static tags for other files, at the
end.

- Included "shtags" from Stephen Riehm.
- When finding a matching tag, but the file doesn't exist, continue searching

for another match. Helps when using the same tags file (with links) for

version5.txt — 2120

different versions of source code.
- Give a tag with a global match in the current file a higher priority than a

global match in another file.

Included xxd version V1.8 (Juergen Weigert).

Autocommands:
- VimLeave autocommands are executed after writing the viminfo file, instead

of before. VimLeave
- Allow changing autocommands while executing them. This allows for

self-modifying autocommands. (idea from Goldberg)
- When using autocommands with two or more patterns, could not split

":if/:endif" over two lines. Now all matching autocommands are executed in
one do_cmdline().

- Autocommands no longer change the command repeated with ".".
- Search patterns are restored after executing autocommands. This avoids

that the 'hlsearch' highlighting is messed up by autocommands.
- When trying to execute an autocommand, also try matching the pattern with

the short file name. Helps when short file name is different from full
file name (expanded symbolic links). autocmd-patterns

- Made the output of ":autocmd" shorter and look better.
- Expand <sfile> in an ":autocmd" when it is defined. <sfile>
- Added "nested" flag to ":autocmd", allows nesting. autocmd-nested
- Added [group] argument to ":autocmd". Overrides the currently set group.

autocmd-groups
- new events:

BufUnload before a buffer is unloaded
BufDelete before a buffer is deleted from the buffer list
FileChangedShell when a file's modification time has changed after

executing a shell command
User user-defined autocommand

- When 'modified' was set by a BufRead* autocommand, it was reset again
afterwards. Now the ":set modified" is remembered.

GUI:
- Improved GUI scrollbar handling when redrawing is slower than the scrollbar

events are generated.
- "vim -u NONE" now also stops loading the .gvimrc and other GUI inits. -u

Use "-U" to use another gvimrc file. -U
- Handle CTRL-C for external command, also for systems where "setsid()" is

supported.
- When starting the GUI, restrict the window size to the screen size.
- The default menus are read from $VIMRUNTIME/menu.vim. This allows for a

customized default menu. menu.vim
- Improved the default menus. Added File/Print, a Window menu, Syntax menu,

etc.
- Added priority to the ":menu" command. Now each menu can be put in a place

where you want it, independent of the order in which the menus are defined.
menu-priority

Give a warning in the intro screen when running the Win32 console version on
Windows 95 because there are problems using this version under Windows 95.
win32-problems

Added 'e' flag for ":substitute" command: Don't complain when not finding a
match (Campbell). :s

When using search commands in a mapping, only the last one is kept in the
history. Avoids that the history is trashed by long mappings.

version5.txt — 2121

Ignore characters after "ex", "view" and "gvim" when checking startup mode.
Allows the use of "gvim5" et. al. gvim "gview" starts the GUI in readonly
mode. gview

When resizing windows, the cursor is kept in the same relative position, if
possible. (Webb)

":all" and ":ball" no longer close and then open a window for the same buffer.
Avoids losing options, jumplist, and other info.

"-f" command-line argument is now ignored if Vim was compiled without GUI.
-f

In Visual block mode, the right mouse button picks up the nearest corner.

Changed default mappings for DOS et al. Removed the DOS-specific mappings,
only use the Windows ones. Added Shift-Insert, Ctrl-Insert, Ctrl-Del and
Shift-Del.

Changed the numbers in the output of ":jumps", so you can see where {count}
CTRL-O takes you. :jumps

Using "~" for $HOME now works for all systems. $HOME

Unix: Besides using CTRL-C, also use the INTR character from the tty settings.
Somebody has INTR set to DEL.

Allow a <NL> in a ":help" command argument to end the help command, so another
command can follow.

Doing "%" on a line that starts with " #if" didn't jump to matching "#else".
Don't recognize "#if", "#else" etc. for '%' when 'cpo' contains the '%' flag.
%

Insert mode expansion with "CTRL-N", "CTRL-P" and "CTRL-X" improved
ins-completion :

- 'complete' option added.
- When 'nowrapscan' is set, and no match found, report the searched direction

in the error message.
- Repeating CTRL-X commands adds following words/lines after the match.
- When adding-expansions, accept single character matches.
- Made repeated CTRL-X CTRL-N not break undo, and "." repeats the whole

insertion. Also fixes not being able to backspace over a word that has been
inserted with CTRL-N.

When copying characters in Insert mode from previous/next line, with CTRL-E or
CTRL-Y, 'textwidth' is no longer used. i_CTRL-E

Commands that move in the arglist, like ":n" and ":rew", keep the old cursor
position of the file (this is mostly Vi compatible).

Vim now remembers the '< and '> marks for each buffer. This fixes a problem
that a line-delete in one buffer invalidated the '< and '> marks in another
buffer. '<

For MSDOS, Unix and OS/2: When $VIM not set, use the path from the executable.
When using the executable path for $VIM, remove "src/" when present. Should
make Vim find the docs and syntax files when it is run directly after
compiling. $VIM

version5.txt — 2122

When quitting Visual mode with <Esc>, the cursor is put at start of the Visual
area (like after executing an operator).

Win32 and Unix version: Removed 1100 character limit on external commands.

Added possibility to include a space in a ":edit +command" argument, by
putting a backslash before it. +cmd

After recovery, BufReadPost autocommands are applied. :recover

Added color support for "os2ansi", OS/2 console. (Slootman)

Allow "%:p:h" when % is empty. :_%

Included "<sfile>": file name from the ":source" command. <sfile>

Added "<Bslash>" special character. Helps for avoiding multiple backslashes
in mappings and menus.

In a help window, a double-click jumps to the tag under the cursor (like
CTRL-]).

<C-Left> and <C-Right> now work like <S-Left> and <S-Right>, move a word
forward/backward (Windows compatible). <C-Left>

Removed the requirement for a ":version" command in a .vimrc file. It wasn't
used for anything. You can use ":if" to handle differences between versions.
:version

For MS-DOS, Win32 and OS/2: When comparing file names for autocommands, don't
make a difference between '/' and '\' for path separator.

New termcap options:
"mb": blink. Can only be used by assigning it to one of the other highlight

options. t_mb
"bc": backspace character. t_bc
"nd": Used for moving the cursor right in the GUI, to avoid removing one line

of pixels from the last bold character. t_nd
"xs": highlighting not erased by overwriting, for hpterm. Combined with

'weirdinvert'. Visual mode works on hpterm now. t_xs

Unix: Set time of patch and backup file same as original file. (Hiebert).

Amiga: In QuickFix mode no longer opens another window. Shell commands can be
used now.

Added decmouse patches from David Binette. Can now use Dec and Netterm mouse.
But only when enabled at compile time.

Added '#' register: Alternate file name quote# . Display '#' register with
":dis" command. :display

Removed ':' from 'isfname' default for Unix. Check for "://" in a file name
anyway. Also check for ":\\", for MS-DOS.

Added count to "K"eyword command, when 'keywordprg' is "man", is inserted in
the man command. "2K" results in "!man 2 <cword>". K

When using "gf" on a relative path name, remove "../" from the file name, like
it's done for file names in the tags file. gf

version5.txt — 2123

When finishing recording, don't make the recorded register the default put
register.

When using "!!", don't put ":5,5!" on the command-line, but ":.!". And some
other enhancements to replace the line number with "." or "$" when possible.

MSDOS et al.: Renamed $VIM/viminfo to $VIM/_viminfo. It's more consistent:
.vimrc/_vimrc and .viminfo/_viminfo

For systems where case doesn't matter in file names (MSDOS, Amiga), ignore
case while sorting file names. For buffer names too.

When reading from stdin doesn't work, read from stderr (helps for "foo | xargs
vim").

32 bit MS-DOS version: Replaced csdpmi3 by csdpmi4.

Changed <C-Left> and <C-Right> to skip a WORD instead of a word.

Warning for changed modified time when overwriting a file now also works on
other systems than Unix.

Unix: Changed the defaults for configure to be the same as the defaults for
Makefile: include GUI, Perl, and Python.

Some versions of Motif require "-lXpm". Added check for this in configure.

Don't add "-L/usr/lib" to the link line, causes problems on a few systems.

==
COMPILE TIME CHANGES compile-changes-5

When compiling, allow a choice for minimal, normal or maximal features in an
easy way, by changing a single line in src/feature.h.
The DOS16 version has been compiled with minimal features to avoid running
out of memory too quickly.
The Win32, DJGPP, and OS/2 versions use maximal features, because they have
enough memory.
The Amiga version is available with normal and maximal features.

Added "make test" to Unix version Makefile. Allows for a quick check if most
"normal" commands work properly. Also tests a few specific commands.

Added setlocale() with codepage support for DJGPP version.

autoconf:
- Added autoconf check for -lXdmcp.
- Included check for -lXmu, no longer needed to edit the Makefile for this.
- Switched to autoconf 2.12.
- Added configure check for <poll.h>. Seems to be needed when including

Perl on Linux?
- termlib is now checked before termcap.
- Added configure check for strncasecmp(), stricmp() and strnicmp(). Added

vim_stricmp() for when there's no library function for stricmp().
- Use "datadir" in configure, instead of our own check for HELPDIR.

Removed "make proto" from Makefile.manx. Could not make it work without a lot
of #ifdefs.

version5.txt — 2124

Removed "proto/" from paths in proto.h. Needed for the Mac port.

Drastically changed Makefile.mint. Now it includes the Unix Makefile.

Added support for Dos16 in Makefile.b32 (renamed Makefile.b32 to Makefile.bor)

All source files are now edited with a tabstop of 8 instead of 4, which is
better when debugging and using other tools. 'softtabstop' is set to 4, to
make editing easier.

Unix: Added "link.sh" script, which removes a few unnecessary libraries from
the link command.

Don't use HPUX digraphs by default, but only when HPUX_DIGRAPHS is defined.
digraphs-default

==
BUG FIXES bug-fixes-5

Note: Some of these fixes may only apply to test versions which were
created after version 4.6, but before 5.0.

When doing ":bdel", try going to the next loaded buffer. Don't rewind to the
start of the buffer list.

mch_isdir() for Unix returned TRUE for "" on some systems.

Win32: 'shell' set to "mksnt/sh.exe" breaks ":!" commands. Don't use
backslashes in the temp file names.

On linux, with a FAT file system, could get spurious "file xxx changed since
editing started" messages, because the time is rounded off to two seconds
unexpectedly.

Crash in GUI, when selecting a word (double click) and then extend until an
empty line.

For systems where isdigit() can't handle characters > 255, get_number() caused
a crash when moving the mouse during the prompt for recovery.

In Insert mode, "CTRL-O P" left the cursor on the last inserted character.
Now the cursor is left after the last putted character.

When quickfix found an error type other than 'e' or 'w', it was never printed.

A setting for 'errorfile' in a .vimrc overruled the "-q errorfile" argument.

Some systems create a file when generating a temp file name. Filtering would
then create a backup file for this, which was never deleted. Now no backup
file is made when filtering.

simplify_filename() could remove a ".." after a link, resulting in the wrong
file name. Made simplify_filename also work for MSDOS. Don't use it for
Amiga, since it doesn't have "../".

otherfile() was unreliable when using links. Could think that reading/writing
was for a different file, when it was the same.

Pasting with mouse in Replace mode didn't replace anything.

version5.txt — 2125

Window height computed wrong when resizing a window with an autocommand (could
cause a crash).

":s!foo!bar!" wasn't possible (Vi compatible).

do_bang() freed memory twice when called recursively, because of autocommands
(test11). Thanks to Electric Fence!

"v$d" on an empty line didn't remove the "-- VISUAL --" mode message from the
command-line, and inverted the cursor.

":mkexrc" didn't check for failure to open the file, causing a crash.
(Felderhoff).

Win32 mch_write() wrote past fixed buffer, causing terminal keys no longer to
be recognized. Both console and GUI version.

Athena GUI: Crash when removing a menu item. Now Vim doesn't crash, but the
reversing of the menu item is still wrong.

Always reset 'list' option for the help window.

When 'scrolloff' is non-zero, a 'showmatch' could cause the shown match to be
in the wrong line and the window to be scrolled (Acevedo).

After ":set all&", 'lines' and 'ttytype' were still non-default, because the
defaults never got set. Now the defaults for 'lines' and 'columns' are set
after detecting the window size. 'term' and 'ttytype' defaults are set when
detecting the terminal type.

For (most) non-Unix systems, don't add file names with illegal characters when
expanding. Fixes "cannot open swapfile" error when doing ":e *.burp", when
there is no match.

In X11 GUI, drawing part of the cursor obscured the text. Now the text is
drawn over the cursor, like when it fills the block. (Seibert)

when started with "-c cmd -q errfile", the cursor would be left in line 1.
Now a ":cc" is done after executing "cmd".

":ilist" never ignored case, even when 'ignorecase' set.

"vim -r file" for a readonly file, then making a change, got ATTENTION message
in insert mode, display mixed up until <Esc> typed. Also don't give ATTENTION
message after recovering a file.

The abbreviation ":ab #i #include" could not be removed.

CTRL-L completion (longest common match) on command-line didn't work properly
for case-insensitive systems (MS-DOS, Windows, etc.). (suggested by Richard
Kilgore).

For terminals that can hide the cursor ("vi" termcap entry), resizing the
window caused the cursor to disappear.

Using an invalid mark in an Ex address didn't abort the command.

When 'smarttab' set, would use 'shiftround' when inserting a TAB after a
space. Now it always rounds to a tabstop.

version5.txt — 2126

Set '[and '] marks for ":copy", ":move", ":append", ":insert", ":substitute"
and ":change". (Acevedo).

"d$" in an empty line still caused an error, even when 'E' is not in
'cpoptions'.

Help files were stored in the viminfo buffer list without a path.

GUI: Displaying cursor was not synchronized with other displaying. Caused
several display errors. For example, when the last two lines in the file
start with spaces, "dd" on the last line copied text to the (then) last line.

Win32: Needed to type CTRL-SHIFT-- to get CTRL-_.

GUI: Moving the cursor forwards over bold text would remove one column of bold
pixels.

X11 GUI: When a bold character in the last column was scrolled up or down, one
column of pixels would not be copied.

Using <BS> to move the cursor left can sometimes erase a character. Now use
"le" termcap entry for this.

Keyword completion with regexp didn't work. e.g., for "b.*crat".

Fixed: With CTRL-O that jumps to another file, cursor could end up just after
the line.

Amiga: '$' was missing from character recognized as wildcards, causing $VIM
sometimes not to be expanded.

":change" didn't adjust marks for deleted lines.

":help [range]" didn't work. Also for [pattern], [count] and [quotex].

For 'cindent'ing, typing "class::method" doesn't align like a label when the
second ':' is typed.
When inserting a CR with 'cindent' set (and a bunch of other conditions) the
cursor went to a wrong location.
'cindent' was wrong for a line that ends in '}'.
'cindent' was wrong after "else {".

While editing the cmdline in the GUI, could not use the mouse to select text
from the command-line itself.

When deleting lines, marks in tag stack were only adjusted for the current
window, not for other windows on the same buffer.

Tag guessing could find a function "some_func" instead of the "func" we were
looking for.

Tags file name relative to the current file didn't work.

":g/pat2/s//pat2/g", causing the number of subs to be reported, used to cause
a scroll up. Now you no longer have to hit <CR>.

X11 GUI: Selecting text could cause a crash.

32 bit DOS version: CTRL-C in external command killed Vim. When SHELL is set

version5.txt — 2127

to "sh.exe", external commands didn't work. Removed using of command.com, no
longer need to set 'shellquote'.

Fixed crash when using ":g/pat/i".

Fixed (potential) crash for X11 GUI, when using an X selection. Was giving a
pointer on the stack to a callback function, now it's static.

Using "#" and "*" with an operator didn't work. E.g. "c#".

Command-line expansion didn't work properly after ":*". (Acevedo)

Setting 'weirdinvert' caused highlighting to be wrong in the GUI.

":e +4 #" didn't work, because the "4" was in unallocated memory (could cause
a crash).

Cursor position was wrong for ":e #", after ":e #" failed, because of changes
to the buffer.

When doing ":buf N", going to a buffer that was edited with ":view", the
readonly flag was reset. Now make a difference between ":e file" and ":buf
file": Only set/reset 'ro' for the first one.

Avoid hit-enter prompt when not able to write viminfo on exit.

When giving error messages in the terminal where the GUI was started, GUI
escape codes would be written to the terminal. In an xterm this could be seen
as a '$' after the message.

Mouse would not work directly after ":gui", because full_screen isn't set,
which causes starttermcap() not to do its work.

'incsearch' did not scroll the window in the same way as the actual search.
When 'nowrap' set, incsearch didn't show a match when it was off the side of
the screen. Now it also shows the whole match, instead of just the cursor
position (if possible).

":unmap", ":unab" and ":unmenu" did not accept a double quote, it was seen as
the start of a comment. Now it's Vi compatible.

Using <Up><Left><Left><Up> in the command-line, when there is no previous
cmdline in the history, inserted a NUL on the command-line.

"i<Esc>" when on a <Tab> in column 0 left the cursor in the wrong place.

GUI Motif: When adding a lot of menu items, the menu bar goes into two rows.
Deleting menu items, reducing the number of rows, now also works.

With ":g/pat/s//foo/c", a match in the first line was scrolled off of the
screen, so you could not see it.
When using ":s//c", with 'nowrap' set, a match could be off the side of the
screen, so you could not see it.

When 'helpfile' was set to a fixed, non-absolute path in feature.h, Vim would
crash. mch_Fullname can now handle file names in read-only memory. (Lottem)

When using CTRL-A or CTRL-@ in Insert mode, there could be strange effects
when using CTRL-D next. Also, when repeating inserted text that included "0
CTRL-D" or "^ CTRL-D" this didn't work. (Acevedo)

version5.txt — 2128

Using CTRL-D after using CTRL-E or CTRL-Y in Insert mode that inserted a '0'
or '^', removed the '0' or '^' and more indent.

The command "2".p" caused the last inserted text to be executed as commands.
(Acevedo)

Repeating the insert of "CTRL-V 048" resulted in "^@" to be inserted.

Repeating Insert completion could fail if there are special characters in the
text. (Acevedo)

":normal /string<CR>" caused the window to scroll. Now all ":normal" commands
are executed without scrolling messages.

Redo of CTRL-E or CTRL-Y in Insert mode interpreted special characters as
commands.

Line wrapping for 'tw' was done one character off for insert expansion
inserts.

buffer_exists() function didn't work properly for buffer names with a symbolic
link in them (e.g. when using buffer_exists(#)).

Removed the "MOTIF_COMMENT" construction from Makefile. It now works with
FreeBSD make, and probably with NeXT make too.

Matching the 'define' and 'include' arguments now honor the settings for
'ignorecase'. (Acevedo)

When one file shown in two windows, Visual selection mixed up cursor position
in current window and other window.

When doing ":e file" from a help file, the 'isk' option wasn't reset properly,
because of a modeline in the help file.

When doing ":e!", a cursor in another window on the same buffer could become
invalid, leading to "ml_get: invalid lnum" errors.

Matching buffer name for when expanded name has a different path from not
expanded name (Brugnara).

Normal mappings didn't work after an operator. For example, with ":map Q gq",
"QQ" didn't work.

When ":make" resulted in zero errors, a "No Errors" error message was given
(which breaks mappings).

When ":sourcing" a file, line length was limited to 1024 characters. CTRL-V
before <EOL> was not handled Vi compatible. (Acevedo)

Unexpected exit for X11 GUI, caused by SAVE_YOURSELF event. (Heimann)

CTRL-X CTRL-I only found one match per line. (Acevedo)
When using an illegal CTRL-X key in Insert mode, the CTRL-X mode message
was stuck.

Finally managed to ignore the "Quit" menu entry of the Window manager! Now
Vim only exists when there are no changed buffers.

Trying to start the GUI when $DISPLAY is not set resulted in a crash.

version5.txt — 2129

When $DISPLAY is not set and gvim starts vim, title was restored to "Thanks
for flying Vim".
When $DISPLAY not set, starting "gvim" (dropping back to vim) and then
selecting text with the mouse caused a crash.

"J", with 'joinspaces' set, on a line ending in ". ", caused one space too
many to be added. (Acevedo)

In insert mode, a CTRL-R {regname} which didn't insert anything left the '"'
on the screen.

":z10" didn't work. (Clapp)

"Help "*" didn't work.

Renamed a lot of functions, to avoid clashes with POSIX name space.

When adding characters to a line, making it wrap, the following lines were
sometimes not shifted down (e.g. after a tag jump).

CTRL-E, with 'so' set and cursor on last line, now does not move cursor as
long as the last line is on the screen.

When there are two windows, doing "^W+^W-" in the bottom window could cause
the status line to be doubled (not redrawn correctly).

This command would hang: ":n `cat`". Now connect stdin of the external
command to /dev/null, when expanding.

Fixed lalloc(0,) error for ":echo %:e:r". (Acevedo)

The "+command" argument to ":split" didn't work when there was no file name.

When selecting text in the GUI, which is the output of a command-line command
or an external command, the inversion would sometimes remain.

GUI: "-mh 70" argument was broken. Now, when menuheight is specified, it is
not changed anymore.

GUI: When using the scrollbar or mouse while executing an external command,
this caused garbage characters.

Showmatch sometimes jumped to the wrong position. Was caused by a call to
findmatch() when redrawing the display (when syntax highlighting is on).

Search pattern "\(a *\)\{3} did not work correctly, also matched "a a".
Problem with brace_count not being decremented.

Wildcard expansion added too many non-matching file names.

When 'iskeyword' contains characters like '~', "*" and "#" didn't work
properly. (Acevedo)

On Linux, on a FAT file system, modification time can change by one second.
Avoid a "file has changed" warning for a one second difference.

When using the page-switching in an xterm, Vim would position the cursor on
the last line of the window on exit. Also removed the cursor positioning for
":!" commands.

version5.txt — 2130

":g/pat/p" command (partly) overwrote the command. Now the output is on a
separate line.

With 'ic' and 'scs' set, a search for "Keyword", ignore-case matches were
highlighted too.

"^" on a line with only white space, put cursor beyond the end of the line.

When deleting characters before where insertion started ('bs' == 2), could not
use abbreviations.

CTRL-E at end of file puts cursor below the file, in Visual mode, when 'so' is
non-zero. CTRL-E didn't work when 'so' is big and the line below the window
wraps. CTRL-E, when 'so' is non-zero, at end of the file, caused jumping
up-down.

":retab" didn't work well when 'list' is set.

Amiga: When inserting characters at the last line on the screen, causing it
to wrap, messed up the display. It appears that a '\n' on the last line
doesn't always cause a scroll up.

In Insert mode "0<C-D><C-D>" deleted an extra character, because Vim thought
that the "0" was still there. (Acevedo)

"z{count}l" ignored the count. Also for "zh" et. al. (Acevedo)

"S" when 'autoindent' is off didn't delete leading white space.

"/<Tab>" landed on the wrong character when 'incsearch' is set.

Asking a yes/no question could cause a hit-enter prompt.

When the file consists of one long line (>4100 characters), making changes
caused various errors and a crash.

DJGPP version could not save long lines (>64000) for undo.

"yw" on the last char in the file didn't work. Also fixed "6x" at the end of
the line. "6X" at the start of a line fails, but does not break a mapping. In
general, a movement for an operator doesn't beep or flush a mapping, but when
there is nothing to operate on it beeps (this is Vi compatible).

"m'" and "m`" now set the '' mark at the cursor position.

Unix: Resetting of signals for external program didn't work, because SIG_DFL
and NULL are the same! For "!!yes|dd count=1|, the yes command kept on
running.

Partly fixed: Unix GUI: Typeahead while executing an external command was lost.
Now it's not lost while the command is producing output.

Typing <S-Tab> in Insert mode, when it isn't mapped, inserted "<S-Tab>". Now
it works like a normal <Tab>, just like <C-Tab> and <M-Tab>.

Redrawing ruler didn't check for old value correctly (caused UMR warnings in
Purify).

Negative array index in finish_viminfo_history().

version5.txt — 2131

":g/^/d|mo $" deleted all the lines. The ":move" command now removes the
:global mark from the moved lines.

Using "vG" while the last line in the window is a "@" line, didn't update
correctly. Just the "v" showed "~" lines.

"daw" on the last char of the file, when it's a space, moved the cursor beyond
the end of the line.

When 'hlsearch' was set or reset, only the current buffer was redrawn, while
this affects all windows.

CTRL-^, positioning the cursor somewhere from 1/2 to 1 1/2 screen down the
file, put the cursor at the bottom of the window, instead of halfway.

When scrolling up for ":append" command, not all windows were updated
correctly.

When 'hlsearch' is set, and an auto-indent is highlighted, pressing <Esc>
didn't remove the highlighting, although the indent was deleted.

When 'ru' set and 'nosc', using "$j" showed a wrong ruler.

Under Xfree 3.2, Shift-Tab didn't work (wrong keysym is used).

Mapping <S-Tab> didn't work. Changed the key translations to use the shortest
key code possible. This makes the termcode translations and mappings more
consistent. Now all modifiers work in all combinations, not only with <Tab>,
but also with <Space>, <CR>, etc.

For Unix, restore three more signals. And Vim catches SIGINT now, so CTRL-C
in Ex mode doesn't make Vim exit.

""a5Y" yanked 25 lines instead of 5.

"vrxxx<Esc>" in an empty line could not be undone.

A CTRL-C that breaks ":make" caused the errorfile not to be read (annoying
when you want to handle what ":make" produced so far).

":0;/pat" didn't find "pat" in line 1.

Search for "/test/s+1" at first char of file gave bottom-top message, or
didn't work at all with 'nowrapscan'.

Bug in viminfo history. Could cause a crash on exit.

":print" didn't put cursor on first non-blank in line.

":0r !cat </dev/null" left cursor in line zero, with very strange effects.

With 'showcmd' set and 'timeoutlen' set to a few seconds, trick to position
the cursor leftwards didn't work.

AIX stty settings were restored to cs5 instead of cs8 (Winn).

File name completion didn't work for "zsh" versions that put spaces between
file names, instead of NULs.

Changed "XawChain*" to "XtChain*", should work for more systems.

version5.txt — 2132

Included quite a few fixes for rightleft mode (Lottem).

Didn't ask to hit-enter when GUI is started and error messages are printed.

When trying to edit a file in a non-existent directory, ended up with editing
"No file".

"gqap" to format a paragraph did too much redrawing.

When 'hlsearch' set, only the current window was updated for a new search
pattern.

Sometimes error messages on startup didn't cause a hit-enter prompt,
because of autocommands containing an empty line.

Was possible to select part of the window in the border, below the command
line.

'< and '> marks were not at the correct position after linewise Visual
selection.

When translating a help argument to "CTRL-x", prepend or append a '_', when
applicable.

Blockwise visual mode wasn't correct when moving vertically over a special
character (displayed as two screen characters).

Renamed "struct option" to "struct vimoption" to avoid name clash with GNU
getopt().

":abclear" didn't work (but ":iabclear" and ":cabclear" did work).

When 'nowrap' used, screen wasn't always updated correctly.

"vim -c split file" displayed extra lines.

After starting the GUI, searched the termcap for a "gui" term.

When 'hls' used, search for "^$" caused a hang.
When 'hls' was set, an error in the last regexp caused trouble.

Unix: Only output an extra <EOL> on exit when outputted something in the
alternate screen, or when there is a message that needs to be cleared.

"/a\{" did strange things, depending on previous search.

"c}" only redrew one line (with -u NONE).

For mappings, CTRL-META-A was shown as <M-^A> instead of <MC-A>, while :map
only accepts <MC-A>. Now <M-C-A> is shown.

Unix: When using full path name in a tags file, which contains a link, and
'hidden' set and jumping to a tag in the current file, would get bogus
ATTENTION message. Solved by always expanding file names, even when starting
with '/'.

'hlsearch' highlighting of special characters (e.g., a TAB) didn't highlight
the whole thing.

version5.txt — 2133

"r<CR>" didn't work correctly on the last char of a line.

Sometimes a window resize or other signal caused an endless loop, involving
set_winsize().

"vim -r" didn't work, it would just hang (using tgetent() while 'term' is
empty).

"gk" while 'nowrap' set moved two lines up.

When windows are split, a message that causes a scroll-up messed up one of the
windows, which required a CTRL-L to be typed.

Possible endless loop when using shell command in the GUI.

Menus defined in the .vimrc were removed when GUI started.

Crash when pasting with the mouse in insert mode.

Crash with ":unmenu *" in .gvimrc for Athena.

"5>>" shifted 5 lines 5 times, instead of 1 time.

CTRL-C when getting a prompt in ":global" didn't interrupt.

When 'so' is non-zero, and moving the scrollbar completely to the bottom,
there was a lot of flashing.

GUI: Scrollbar ident must be long for DEC Alpha.

Some functions called vim_regcomp() without setting reg_magic, which could
lead to unpredictable magicness.

Crash when clicking around the status line, could get a selection with a
backwards range.

When deleting more than one line characterwise, the last character wasn't
deleted.

GUI: Status line could be overwritten when moving the scrollbar quickly (or
when 'wd' is non-zero).

An ESC at the end of a ":normal" command caused a wait for a terminal code to
finish. Now, a terminal code is not recognized when its start comes from a
mapping or ":normal" command.

Included patches from Robert Webb for GUI. Layout of the windows is now done
inside Vim, instead of letting the layout manager do this. Makes Vim work
with Lesstif!

UMR warning in set_expand_context().

Memory leak: b_winlnum list was never freed.

Removed TIOCLSET/TIOCLGET code from os_unix.c. Was changing some of the
terminal settings, and looked like it wasn't doing anything good. (suggested
by Juergen Weigert).

Ruler overwrote "is a directory" message. When starting up, and 'cmdheight'
set to > 1, first message could still be in the last line.

version5.txt — 2134

Removed prototype for putenv() from proto.h, it's already in osdef2.h.in.

In replace mode, when moving the cursor and then backspacing, wrong characters
were inserted.

Win32 GUI was checking for a CTRL-C too often, making it slow.

Removed mappings for MS-DOS that were already covered by commands.

When visually selecting all lines in a file, cursor at last line, then "J".
Gave ml_get errors. Was a problem with scrolling down during redrawing.

When doing a linewise operator, and then an operator with a mouse click, it
was also linewise, instead of characterwise.

When 'list' is set, the column of the ruler was wrong.

Spurious error message for "/\(b\+\)*".

When visually selected many lines, message from ":w file" disappeared when
redrawing the screen.

":set <M-b>=^[b", then insert "^[b", waited for another character. And then
inserted "<M-b>" instead of the real <M-b> character. Was trying to insert
K_SPECIAL x NUL.

CTRL-W] didn't use count to set window height.

GUI: "-font" command-line argument didn't override 'guifont' setting from
.gvimrc. (Acevedo)

GUI: clipboard wasn't used for "*y". And some more Win32/X11 differences
fixed for the clipboard (Webb).

Jumping from one help file to another help file, with 'compatible' set,
removed the 'help' flag from the buffer.

File-writable bit could be reset when using ":w!" for a readonly file.

There was a wait for CTRL-O n in Insert mode, because the search pattern was
shown.
Reduced wait, to allow reading a message, from 10 to 3 seconds. It seemed
nothing was happening.

":recover" found same swap file twice.

GUI: "*yy only worked the second time (when pasting to an xterm)."

DJGPP version (dos32): The system flags were cleared.

Dos32 version: Underscores were sometimes replaced with y-umlaut (Levin).

Version 4.1 of ncurses can't handle tputs("", ..). Avoid calling tputs() with
an empty string.

<S-Tab> in the command-line worked like CTRL-P when no completion started yet.
Now it does completion, last match first.

Unix: Could get annoying "can't write viminfo" message after doing "su". Now

version5.txt — 2135

the viminfo file is overwritten, and the user set back to the original one.

":set term=builtin_gui" started the GUI in a wrong way. Now it's not
allowed anymore. But "vim -T gui" does start the GUI correctly now.

GUI: Triple click after a line only put last char in selection, when it is a
single character word.

When the window is bigger than the screen, the scrolling up of messages was
wrong (e.g. ":vers", ":hi"). Also when the bottom part of the window was
obscured by another window.

When using a wrong option only an error message is printed, to avoid that the
usage information makes it scroll off the screen.

When exiting because of not being able to read from stdin, didn't preserve the
swap files properly.

Visual selecting all chars in more than one line, then hit "x" didn't leave an
empty line. For one line it did leave an empty line.

Message for which autocommand is executing messed up file write message (for
FileWritePost event).

"vim -h" included "-U" even when GUI is not available, and "-l" when lisp is
not available.

Crash for ":he <C-A>" (command-line longer than screen).

":s/this/that/gc", type "y" two times, then undo, did reset the modified
option, even though the file is still modified.

Empty lines in a tags file caused a ":tag" to be aborted.

When hitting 'q' at the more prompt for ":menu", still scrolled a few lines.

In an xterm that uses the bold trick a single row of characters could remain
after an erased bold character. Now erase one extra char after the bold char,
like for the GUI.

":pop!" didn't work.

When the reading a buffer was interrupted, ":w" should not be able to
overwrite the file, ":w!" is required.

":cf%" caused a crash.

":gui longfilename", when forking is enabled, could leave part of the
longfilename at the shell prompt.

==
VERSION 5.1 version-5.1

Improvements made between version 5.0 and 5.1.

This was mostly a bug-fix release, not many new features.

Changed changed-5.1

version5.txt — 2136

The expand() function now separates file names with <NL> instead of a space.
This avoids problems for file names with embedded spaces. To get the old
result, use substitute(expand(foo), "\n", " ", "g").

For Insert-expanding dictionaries allow a backslash to be used for
wildchars. Allows expanding "ze\kra", when 'isk' includes a backslash.

New icon for the Win32 GUI.

":tag", ":tselect" etc. only use the argument as a regexp when it starts
with '/'. Avoids that ":tag xx~" gives an error message: "No previous sub.
regexp". Also, when the :tag argument contained wildcard characters, it was
not Vi compatible.
When using '/', the argument is taken literally too, with a higher priority,
so it's found before wildcard matches.
Only when the '/' is used are matches with different case found, even though
'ignorecase' isn't set.
Changed "g^]" to only do ":tselect" when there is more than on matching tag.

Changed some of the default colors, because they were not very readable on a
dark background.

A character offset to a search pattern can move the cursor to the next or
previous line. Also fixes that "/pattern/e+2" got stuck on "pattern" at the
end of a line.

Double-clicks in the status line do no longer start Visual mode. Dragging a
status line no longer stops Visual mode.

Perl interface: Buffers() and Windows() now use more logical arguments, like
they are used in the rest of Vim (Moore).

Init '" mark to the first character of the first line. Makes it possible to
use '" in an autocommand without getting an error message.

Added added-5.1

"shell_error" internal variable: result of last shell command.

":echohl" command: Set highlighting for ":echo".

'S' flag in 'highlight' and StatusLineNC highlight group: highlighting for
status line of not-current window. Default is to use bold for current
window.

Added buffer_name() and buffer_number() functions (Aaron).
Added flags argument "g" to substitute() function (Aaron).
Added winheight() function.

Win32: When an external command starts with "start ", no console is opened
for it (Aaron).

Win32 console: Use termcap codes for bold/reverse based on the current
console attributes.

Configure check for "strip". (Napier)

version5.txt — 2137

CTRL-R CTRL-R x in Insert mode: Insert the contents of a register literally,
instead of as typed.

Made a few "No match" error messages more informative by adding the pattern
that didn't match.

"make install" now also copies the macro files.

tools/tcltags, a shell script to generate a tags file from a TCL file.

"--with-tlib" setting for configure. Easy way to use termlib: "./configure
--with-tlib=termlib".

'u' flag in 'cino' for setting the indent for contained () parts.

When Win32 OLE version can't load the registered type library, ask the user
if he wants to register Vim now. (Erhardt)
Win32 with OLE: When registered automatically, exit Vim.
Included VisVim 1.1b, with a few enhancements and the new icon (Heiko
Erhardt).

Added patch from Vince Negri for Win32s support. Needs to be compiled with
VC 4.1!

Perl interface: Added $curbuf. Rationalized Buffers() and Windows().
(Moore) Added "group" argument to Msg().

Included Perl files in DOS source archive. Changed Makefile.bor and
Makefile.w32 to support building a Win32 version with Perl included.

Included new Makefile.w32 from Ken Scott. Now it's able to make all Win32
versions, including OLE, Perl and Python.

Added CTRL-W g] and CTRL-W g ^]: split window and do g] or g^].

Added "g]" to always do ":tselect" for the ident under the cursor.
Added ":tjump" and ":stjump" commands.
Improved listing of ":tselect" when tag names are a bit long.

Included patches for the Macintosh version. Also for Python interface.
(St-Amant)

":buf foo" now also restores cursor column, when the buffer was used before.

Adjusted the Makefile for different final destinations for the syntax files
and scripts (for Debian Linux).

Amiga: $VIM can be used everywhere. When $VIM is not defined, "VIM:" is
used. This fixes that "VIM:" had to be assigned for the help files, and
$VIM set for the syntax files. Now either of these work.

Some xterms send vt100 compatible function keys F1-F4. Since it's not
possible to detect this, recognize both type of keys and translate them to
<F1> - <F4>.

Added "VimEnter" autocommand. Executed after loading all the startup stuff.

BeOS version now also runs on Intel CPUs (Seibert).

version5.txt — 2138

Fixed fixed-5.1

":ts" changed position in the tag stack when cancelled with <CR>.
":ts" changed the cursor position for CTRL-T when cancelled with <CR>.
":tn" would always jump to the second match. Was using the wrong entry in
the tag stack.
Doing "tag foo", then ":tselect", overwrote the original cursor position in
the tag stack.

"make install" changed the vim.1 manpage in a wrong way, causing "doc/doc"
to appear for the documentation files.

When compiled with MAX_FEAT, xterm mouse handling failed. Was caused by DEC
mouse handling interfering.

Was leaking memory when using selection in X11.

CTRL-D halfway a command-line left some characters behind the first line(s)
of the listing.

When expanding directories for ":set path=", put two extra backslashes
before a space in a directory name.

When 'lisp' set, first line of a function would be indented. Now its indent
is set to zero. And use the indent of the first previous line that is at
the same () level. Added test33.

"so<Esc>u" in an empty file didn't work.

DOS: "seek error in swap file write" errors, when using DOS 6.2 share.exe,
because the swap file was made hidden. It's no longer hidden.

":global" command would sometimes not execute on a matching line. Happened
when a data block is full in ml_replace().

For AIX use a tgetent buffer of 2048 bytes, instead of 1024.

Win32 gvim now only sets the console size for external commands to 25x80
on Windows 95, not on NT.

Win32 console: Dead key could cause a crash, because of a missing "WINAPI"
(Deshpande).

The right mouse button started Visual mode, even when 'mouse' is empty, and
in the command-line, a left click moved the cursor when 'mouse' is empty.
In Visual mode, 'n' in 'mouse' would be used instead of 'v'.

A blinking cursor or focus change cleared a non-Visual selection.

CTRL-Home and CTRL-End didn't work for MS-DOS versions.

Could include NUL in 'iskeyword', causing a crash when doing insert mode
completion.

Use _dos_commit() to flush the swap file to disk for MSDOS 16 bit version.

In mappings, CTRL-H was replaced by the backspace key code. This caused
problems when it was used as text, e.g. ":map _U :%s/.^H//g<CR>".

version5.txt — 2139

":set t_Co=0" was not handled like a normal term. Now it's translated into
":set t_Co=", which works.

For ":syntax keyword" the "transparent" option did work, although not
mentioned in the help. But synID() returned wrong name.

"gqG" in a file with one-word-per-line (e.g. a dictionary) was very slow and
not interruptible.

"gq" operator inserted screen lines in the wrong situation. Now screen
lines are inserted or deleted when this speeds up displaying.

cindent was wrong when an "if" contained "((".

'r' flag in 'viminfo' was not used for '%'. Could get files in the buffer
list from removable media.

Win32 GUI with OLE: if_ole_vc.mak could not be converted into a project.
Hand-edited to fix this...

With 'nosol' set, doing "$kdw" below an empty line positioned the cursor at
the end of the line.

Dos32 version changed "\dir\file" into "/dir/file", to work around a DJGPP
bug. That bug appears to have been fixed, therefore this translation has
been removed.

"/^*" didn't work (find '*' in first column).

"<afile>" was not always set for autocommands. E.g., for ":au BufEnter *
let &tags = expand("<afile>:p:h") . "/tags".

In an xterm, the window may be a child of the outer xterm window. Use the
parent window when getting the title and icon names. (Smith)

When starting with "gvim -bg black -fg white", the value of 'background' is
only set after reading the .gvimrc file. This causes a ":syntax on" to use
the wrong colors. Now allow using ":gui" to open the GUI window and set the
colors. Previously ":gui" in a gvimrc crashed Vim.

tempname() returned the same name all the time, unless the file was actually
created. Now there are at least 26 different names.

File name used for <afile> was sometimes full path, sometimes file name
relative to current directory.

When 'background' was set after the GUI window was opened, it could change
colors that were set by the user in the .gvimrc file. Now it only changes
colors that have not been set by the user.

Ignore special characters after a CSI in the GUI version. These could be
interpreted as special characters in a wrong way. (St-Amant)

Memory leak in farsi code, when using search or ":s" command.
Farsi string reversing for a mapping was only done for new mappings. Now it
also works for replacing a mapping.

Crash in Win32 when using a file name longer than _MAX_PATH. (Aaron)

When BufDelete autocommands were executed, some things for the buffer were

version5.txt — 2140

already deleted (esp. Perl stuff).

Perl interface: Buffer specific items were deleted too soon; fixes "screen
no longer exists" messages. (Moore)

The Perl functions didn't set the 'modified' flag.

link.sh did not return an error on exit, which may cause Vim to start
installing, even though there is no executable to install. (Riehm)

Vi incompatibility: In Vi "." redoes the "y" command. Added the 'y' flag to
'cpoptions'. Only for 'compatible' mode.

":echohl" defined a new group, when the argument was not an existing group.

"syn on" and ":syn off" could move the cursor, if there is a hidden buffer
that is shorter that the current cursor position.

The " mark was not set when doing ":b file".

When a "nextgroup" is used with "skipwhite" in syntax highlighting, space at
the end of the line made the nextgroup also be found in the next line.

":he g<CTRL-D>", then ":" and backspace to the start didn't redraw.

X11 GUI: "gvim -rv" reversed the colors twice on Sun. Now Vim checks if the
result is really reverse video (background darker than foreground).

"cat link.sh | vim -" didn't set syntax highlighting.

Win32: Expanding "file.sw?" matched ".file.swp". This is an error of
FindnextFile() that we need to work around. (Kilgore)

"gqgq" gave an "Invalid lnum" error on the last line.
Formatting with "gq" didn't format the first line after a change of comment
leader.

There was no check for out-of-memory in win_alloc().

"vim -h" didn't mention "-register" and "-unregister" for the OLE version.

Could not increase 'cmdheight' when the last window is only one line. Now
other windows are also made smaller, when necessary.

Added a few {} to avoid "suggest braces around" warnings from gcc 2.8.x.
Changed return type of main() from void to int. (Nam)

Using '~' twice in a substitute pattern caused a crash.

"syn on" and ":syn off" could scroll the window, if there is a hidden buffer
that is shorter that the current cursor position.

":if 0 | if 1 | endif | endif" didn't work. Same for ":while" and "elseif".

With two windows on modified files, with 'autowrite' set, cursor in second
window, ":qa" gave a warning for the file in the first window, but then
auto-wrote the file in the second window. (Webb)

Win32 GUI scrollbar could only handle 32767 lines. Also makes the
intellimouse wheel use the configurable number of scrolls. (Robinson)

version5.txt — 2141

When using 'patchmode', and the backup file is on another partition, the file
copying messed up the write-file message.

GUI X11: Alt-Backspace and Alt-Delete didn't work.

"`0" could put the cursor after the last character in the line, causing
trouble for other commands, like "i".

When completing tags in insert mode with ^X^], some matches were skipped,
because the compare with other tags was wrong. E.g., when "mnuFileSave" was
already there, "mnuFile" would be skipped. (Negri)

When scrolling up/down, a syntax item with "keepend" didn't work properly.
Now the flags are also stored for the syntax state at the start of each line.

When 'ic' was changed while 'hlsearch' is on, there was no redraw to show the
effect.

Win32 GUI: Don't display "No write since last chance" in a message box, but in
the Vim window.

==
VERSION 5.2 version-5.2

Improvements made between version 5.1 and 5.2.

Long lines editable long-lines

A single long line that doesn't fit in the window doesn't show a line of @@@
anymore. Redrawing starts at a character further on in the line, such that
the text around the cursor can be seen. This makes it possible to edit these
long lines when wrapping is on.

File browser added file-browser-5.2

The Win32, Athena and Motif GUI bring up a file requester if the user asks to
":browse" for the ":e", ":w", ":r", ":so", ":redirect" and
":mkexrc/vimrc/vsess" commands. ":browse e /foo/bar" opens the requester in
the /foo/bar directory, so you can have nice mapping rhs's like ":browse so
$vim/macros". If no initial dir specified for ":browse e", can be compiled to
either begin in the current directory, or that of the current buffer. (Negri
and Kahn)
Added the 'browsedir' option, with value "current", "last" or "buffer". Tells
whether a browse dialog starts in last used dir, dir of current buffer, or
current dir. ":browse w" is unaffected.
The default menus have been changed to use the ":browse" command.

Dialogs added dialogs-added

Added the ":confirm" command. Works on ":e", ":q", ":w", ":cl". Win32,
Athena and Motif GUI uses a window-dialog. All other platforms can use
prompt in command-line. ":confirm qa" offers a choice to save all modified
files.

version5.txt — 2142

confirm() function: allows user access to the confirm engine.

Added 'v' flag to 'guioptions'. When included, a vertical button layout is
always used for the Win32 GUI dialog. Otherwise, a horizontal layout is
preferred.

Win32 GUI: ":promptfind" and ":promptrepl" pop up a dialog to find/replace.
To be used from a menu entry. (Negri)

Popup menu added popup-menu-added

When the 'mousemodel' option is set to "popup", the right mouse button
displays the top level menu headed with "PopUp" as pop-up context menu. The
"PopUp" menu is not displayed in the normal menu bar. This currently only
works for Win32 and Athena GUI.

Select mode added new-Select-mode

A new mode has been added: "Select mode". It is like Visual mode, but typing
a printable character replaces the selection.
- CTRL-G can be used to toggle between Visual mode and Select mode.
- CTRL-O can be used to switch from Select mode to Visual mode for one command.
- Added 'selectmode' option: tells when to start Select mode instead of Visual

mode.
- Added 'mousemodel' option: Change use of mouse buttons.
- Added 'keymodel' option: tells to use shifted special keys to start a

Visual or Select mode selection.
- Added ":behave". Can be used to quickly set 'selectmode', 'mousemodel'

and 'keymodel' for MS-Windows and xterm behavior.
- The xterm-like selection is now called modeless selection.
- Visual mode mappings and menus are used in Select mode. They automatically

switch to Visual mode first. Afterwards, reselect the area, unless it was
deleted. The "gV" command can be used in a mapping to skip the reselection.

- Added the "gh", "gH" and "g^H" commands: start Select (highlight) mode.
- Backspace in Select mode deletes the selected area.

"mswin.vim" script. Sets behavior mostly like MS-Windows.

Session files added new-session-files

":mks[ession]" acts like "mkvimrc", but also writes the full filenames of the
currently loaded buffers and current directory, so that :so'ing the file
re-loads those files and cd's to that directory. Also stores and restores
windows. File names are made relative to session file.
The 'sessionoptions' option sets behavior of ":mksession". (Negri)

User defined functions and commands new-user-defined

Added user defined functions. Defined with ":function" until ":endfunction".
Called with "Func()". Allows the use of a variable number of arguments.
Included support for local variables "l:name". Return a value with ":return".

version5.txt — 2143

See :function .
Call a function with ":call". When using a range, the function is called for
each line in the range. :call
"macros/justify.vim" is an example of using user defined functions.
User functions do not change the last used search pattern or the command to be
redone with ".".
'maxfuncdepth' option. Restricts the depth of function calls. Avoids trouble
(crash because of out-of-memory) when a function uses endless recursion.

User definable Ex commands: ":command", ":delcommand" and ":comclear".
(Moore) See user-commands .

New interfaces interfaces-5.2

Tcl interface. (Wilken) See tcl .
Uses the ":tcl", ":tcldo" and "tclfile" commands.

Cscope support. (Kahn) (Sekera) See cscope .
Uses the ":cscope" and ":cstag" commands. Uses the options 'cscopeprg',
'cscopetag', 'cscopetagorder' and 'cscopeverbose'.

New ports ports-5.2

Amiga GUI port. (Nielsen) Not tested much yet!

RISC OS version. (Thomas Leonard) See riscos .
This version can run either with a GUI or in text mode, depending upon where
it is invoked.
Deleted the "os_archie" files, they were not working anyway.

Multi-byte support new-multi-byte new-multibyte

MultiByte support for Win32 GUI. (Baek)
The 'fileencoding' option decides how the text in the file is encoded.
":ascii" works for multibyte characters. Multi-byte characters work on
Windows 95, even when using the US version. (Aaron)
Needs to be enabled in feature.h.
This has not been tested much yet!

New functions new-functions-5.2

browse() puts up a file requester when available. (Negri)
escape() escapes characters in a string with a backslash.
fnamemodify() modifies a file name.
input() asks the user to enter a line. (Aaron) There is a separate

history for lines typed for the input() function.
argc()
argv() can be used to access the argument list.
winbufnr() buffer number of a window. (Aaron)
winnr() window number. (Aaron)
matchstr() Return matched string.
setline() Set a line to a string value.

version5.txt — 2144

New options new-options-5.2

'allowrevins' Enable the CTRL-_ command in Insert and Command-line mode.
'browsedir' Tells in which directory a browse dialog starts.
'confirm' when set, :q :w and :e commands always act as if ":confirm"

is used. (Negri)
'cscopeprg'
'cscopetag'
'cscopetagorder'
'cscopeverbose' Set the cscope behavior.
'filetype' RISC-OS specific type of file.
'grepformat'
'grepprg' For the :grep command.
'keymodel' Tells to use shifted special keys to start a Visual or Select

mode selection.
'listchars' Set character to show in 'list' mode for end-of-line, tabs and

trailing spaces. (partly by Smith) Also sets character to
display if a line doesn't fit when 'nowrap' is set.

'matchpairs' Allows matching '<' with '>', and other single character
pairs.

'mousefocus' Window focus follows mouse (partly by Terhaar). Changing the
focus with a keyboard command moves the pointer to that
window. Also move the pointer when changing the window layout
(split window, change window height, etc.).

'mousemodel' Change use of mouse buttons.
'selection' When set to "inclusive" or "exclusive", the cursor can go one

character past the end of the line in Visual or Select mode.
When set to "old" the old behavior is used. When
"inclusive", the character under the cursor is included in the
operation. When using "exclusive", the new "ve" entry of
'guicursor' is used. The default is a vertical bar.

'selectmode' Tells when to start Select mode instead of Visual mode.
'sessionoptions' Sets behavior of ":mksession". (Negri)
'showfulltag' When completing a tag in Insert mode, show the tag search

pattern (tidied up) as a choice as well (if there is one).
'swapfile' Whether to use a swap file for a buffer.
'syntax' When it is set, the syntax by that name is loaded. Allows for

setting a specific syntax from a modeline.
'ttymouse' Allows using xterm mouse codes for terminals which name

doesn't start with "xterm".
'wildignore' List of patterns for files that should not be completed at

all.
'wildmode' Can be used to set the type of expansion for 'wildchar'.

Replaces the CTRL-T command for command line completion.
Don't beep when listing all matches.

'winaltkeys' Win32 and Motif GUI. When "yes", ALT keys are handled
entirely by the window system. When "no", ALT keys are never
used by the window system. When "menu" it depends on whether
a key is a menu shortcut.

'winminheight' Minimal height for each window. Default is 1. Set to 0 if
you want zero-line windows. Scrollbar is removed for
zero-height windows. (Negri)

New Ex commands new-ex-commands-5.2

version5.txt — 2145

:badd Add file name to buffer list without side effects. (Negri)
:behave Quickly set MS-Windows or xterm behavior.
:browse Use file selection dialog.
:call Call a function, optionally with a range.
:cnewer
:colder To access a stack of quickfix error lists.
:comclear Clear all user-defined commands.
:command Define a user command.
:continue Go back to ":while".
:confirm Ask confirmation if something unexpected happens.
:cscope Execute cscope command.
:cstag Use cscope to jump to a tag.
:delcommand Delete a user-defined command.
:delfunction Delete a user-defined function.
:endfunction End of user-defined function.
:function Define a user function.
:grep Works similar to ":make". (Negri)
:mksession Create a session file.
:nohlsearch Stop 'hlsearch' highlighting for a moment.
:Print This is Vi compatible. Does the same as ":print".
:promptfind Search dialog (Win32 GUI).
:promptrepl Search/replace dialog (Win32 GUI).
:return Return from a user-defined function.
:simalt Win32 GUI: Simulate alt-key pressed. (Negri)
:smagic Like ":substitute", but always use 'magic'.
:snomagic Like ":substitute", but always use 'nomagic'.
:tcl Execute TCL command.
:tcldo Execute TCL command for a range of lines.
:tclfile Execute a TCL script file.
:tearoff Tear-off a menu (Win32 GUI).
:tmenu
:tunmenu Win32 GUI: menu tooltips. (Negri)
:star :* Execute a register.

Changed changed-5.2

Renamed functions:
buffer_exists() -> bufexists()
buffer_name() -> bufname()
buffer_number() -> bufnr()
file_readable() -> filereadable()
highlight_exists() -> hlexists()
highlightID() -> hlID()
last_buffer_nr() -> bufnr("$")

The old ones are still there, for backwards compatibility.

The CTRL-_ command in Insert and Command-line mode is only available when the
new 'allowrevins' option is set. Avoids that people who want to type SHIFT-_
accidentally enter reverse Insert mode, and don't know how to get out.

When a file name path in ":tselect" listing is too long, remove a part in the
middle and put "..." there.

Win32 GUI: Made font selector appear inside Vim window, not just any odd
place. (Negri)

":bn" skips help buffers, unless currently in a help buffer. (Negri)

version5.txt — 2146

When there is a status line and only one window, don't show '^' in the status
line of the current window.

":*" used to be used for "'<,'>", the Visual area. But in Vi it's used as an
alternative for ":@". When 'cpoptions' includes '*' this is Vi compatible.

When 'insertmode' is set, using CTRL-O to execute a mapping will work like
'insertmode' was not set. This allows "normal" mappings to be used even when
'insertmode' is set.

When 'mouse' was set already (e.g., in the .vimrc file), don't automatically
set 'mouse' when the GUI starts.

Removed the 'N', 'I' and 'A' flags from the 'mouse' option.

Renamed "toggle option" to "boolean option". Some people thought that ":set
xyz" would toggle 'xyz' on/off each time.

The internal variable "shell_error" contains the error code from the shell,
instead of just 0 or 1.

When inserting or replacing, typing CTRL-V CTRL-<CR> used to insert "<C-CR>".
That is not very useful. Now the CTRL key is ignored and a <CR> is inserted.
Same for all other "normal" keys with modifiers. Mapping these modified key
combinations is still possible.
In Insert mode, <C-CR> and <S-Space> can be inserted by using CTRL-K and then
the special character.

Moved "quotes" file to doc/quotes.txt, and "todo" file to doc/todo.txt. They
are now installed like other documentation files.

winheight() function returns -1 for a non-existing window. It used to be
zero, but that is a valid height now.

The default for 'selection' is "inclusive", which makes a difference when
using "$" or the mouse to move the cursor in Visual mode.

":q!" does not exit when there are changed buffers which are hidden. Use
":qa!" to exit anyway.

Disabled the Perl/Python/Tcl interfaces by default. Not many people use them
and they make the executable a lot bigger. The internal scripting language is
now powerful enough for most tasks.

The strings from the 'titlestring' and 'iconstring' options are used
untranslated for the Window title and icon. This allows for including a <CR>.
Previously a <CR> would be shown as "^M" (two characters).

When a mapping is started in Visual or Select mode which was started from
Insert mode (the mode shows "(insert) Visual"), don't return to Insert mode
until the mapping has ended. Makes it possible to use a mapping in Visual
mode that also works when the Visual mode was started from Select mode.

Menus in $VIMRUNTIME/menu.vim no longer overrule existing menus. This helps
when defining menus in the .vimrc file, or when sourcing mswin.vim.

Unix: Use /var/tmp for .swp files, if it exists. Files there survive a
reboot (at least on Linux).

version5.txt — 2147

Added added-5.2

--with-motif-lib configure argument. Allows for using a static Motif library.

Support for mapping numeric keypad +,-,*,/ keys. (Negri)
When not mapped, they produce the normal character.

Win32 GUI: When directory dropped on gVim, cd there and edit new buffer.
(Negri)

Win32 GUI: Made CTRL-Break work as interrupt, so that CTRL-C can be
used for mappings.

In the output of ":map", highlight the "*" to make clear it's not part of the
rhs. (Roemer)

When showing the Visual area, the cursor is not switched off, so that it can
be located. The Visual area is now highlighted with a grey background in the
GUI. This makes the cursor visible when it's also reversed.

Win32: When started with single full pathname (e.g. via double-clicked file),
cd to that file's directory. (Negri)

Win32 GUI: Tear-off menus, with ":tearoff <menu-name>" command. (Negri)
't' option to 'guioptions': Add tearoff menu items for Win32 GUI and Motif.
It's included by default.
Win32 GUI: tearoff menu with submenus is indicated with a ">>". (Negri)

Added ^Kaa and ^KAA digraphs.
Added "euro" symbol to digraph.c. (Corry)

Support for Motif menu shortcut keys, using '&' like MS-Windows (Ollis).
Other GUIs ignore '&' in a menu name.

DJGPP: Faster screen updating (John Lange).

Clustering of syntax groups ":syntax cluster" (Bigham).
Including syntax files: ":syntax include" (Bigham).

Keep column when switching buffers, when 'nosol' is set (Radics).

Number function for Perl interface.

Support for Intellimouse in Athena GUI. (Jensen)

":sleep" also accepts an argument in milliseconds, when "m" is used.

Added 'p' flag in 'guioptions': Install callbacks for enter/leave window
events. Makes cursor blinking work for Terhaar, breaks it for me.

"--help" and "--version" command-line arguments.

Non-text in ":list" output is highlighted with NonText.

Added text objects: "i(" and "i)" as synonym for "ib". "i{" and "i}" as
synonym for "iB". New: "i<" and "i>", to select <thing>. All this also for
"a" objects.

version5.txt — 2148

'O' flag in 'shortmess': message for reading a file overwrites any previous
message. (Negri)

Win32 GUI: 'T' flag in 'guioptions': switch toolbar on/off.
Included a list with self-made toolbar bitmaps. (Negri)

Added menu priority for sub-menus. Implemented for Win32 and Motif GUI.
Display menu priority with ":menu" command.
Default and Syntax menus now include priority for items. Allows inserting
menu items in between the default ones.

When the 'number' option is on, highlight line numbers with the LineNr group.

"Ignore" highlight group: Text highlighted with this is made blank. It is
used to hide special characters in the help text.

Included Exuberant Ctags version 2.3, with C++ support, Java support and
recurse into directories. (Hiebert)

When a tags file is not sorted, and this is detected (in a simplistic way), an
error message is given.

":unlet" accepts a "!", to ignore non-existing variables, and accepts more
than one argument. (Roemer)
Completion of variable names for ":unlet". (Roemer)

When there is an error in a function which is called by another function, show
the call stack in the error message.

New file name modifiers:
":.": reduce file name to be relative to current dir.
":~": reduce file name to be relative to home dir.
":s?pat?sub?": substitute "pat" with "sub" once.
":gs?pat?sub?": substitute "pat" with "sub" globally.

New configure arguments: --enable-min-features and --enable-max-features.
Easy way to switch to minimum or maximum features.

New compile-time feature: modify_fname. For file name modifiers, e.g,
"%:p:h". Can be disabled to save some code (16 bit DOS).

When using whole-line completion in Insert mode, and 'cindent' is set, indent
the line properly.

MSDOS and Win32 console: 'guicursor' sets cursor thickness. (Negri)

Included new set of Farsi fonts. (Shiran)

Accelerator text now also works in Motif. All menus can be defined with & for
mnemonic and TAB for accelerator text. They are ignored on systems that don't
support them.
When removing or replacing a menu, compare the menu name only up to the <Tab>
before the mnemonic.

'i' and 'I' flags after ":substitute": ignore case or not.

"make install" complains if the runtime files are missing.

Unix: When finding an existing swap file that can't be opened, mention the
owner of the file in the ATTENTION message.

version5.txt — 2149

The 'i', 't' and 'k' options in 'complete' now also print the place where they
are looking for matches. (Acevedo)

"gJ" command: Join lines without inserting a space.

Setting 'keywordprg' to "man -s" is handled specifically. The "-s" is removed
when no count given, the count is added otherwise. Configure checks if "man
-s 2 read" works, and sets the default for 'keywordprg' accordingly.

If you do a ":bd" and there is only one window open, Vim tries to move to a
buffer of the same type (i.e. non-help to non-help, help to help), for
consistent behavior to :bnext/:bprev. (Negri)

Allow "<Nop>" to be used as the rhs of a mapping. ":map xx <Nop>", maps "xx"
to nothing at all.

In a ":menu" command, "<Tab>" can be used instead of a real tab, in the menu
path. This makes it more easy to type, no backslash needed.

POSIX compatible character classes for regexp patterns: [:alnum:], [:alpha:],
[:blank:], [:cntrl:], [:digit:], [:graph:], [:lower:], [:print:], [:punct:],
[:space:], [:upper:] and [:xdigit:]. (Briscoe)

regexp character classes (for fast syntax highlight matching):
digits: \d [0-9] \D not digit (Roemer)
hex: \x [0-9a-fA-F] \X not hex
octal: \o [0-7] \O not octal
word: \w [a-zA-Z0-9_] \W not word
head: \h [a-zA-Z_] \H not head
alphabetic: \a [a-zA-Z] \A not alphabetic
lowercase: \l [a-z] \L not lowercase
uppercase: \u [A-Z] \U not uppercase

":set" now accepts "+=", |^=" and "-=": add or remove parts of a string
option, add or subtract a number from a number option. A comma is
automagically inserted or deleted for options that are a comma-separated list.

Filetype feature, for autocommands. Uses a file type instead of a pattern to
match a file. Currently only used for RISC OS. (Leonard)

In a pattern for an autocommand, environment variables can be used. They are
expanded when the autocommand is defined.

"BufFilePre" and "BufFilePost" autocommand evens: Before and after applying
the ":file" command to change the name of a buffer.
"VimLeavePre" autocommand event: before writing the .viminfo file.

For autocommands argument: <abuf> is buffer number, like <afile>.

Made syntax highlighting a bit faster when scrolling backwards, by keeping
more syncing context.

Win32 GUI: Made scrolling faster by avoiding a redraw when deleting or
inserting screen lines.

GUI: Made scrolling faster by not redrawing the scrollbar when the thumb moved
less than a pixel.

Included ":highlight" in bugreport.vim.

version5.txt — 2150

Created install.exe program, for simplistic installation on DOS and
MS-Windows.

New register: '_', the black hole. When writing to it, nothing happens. When
reading from it, it's always empty. Can be used to avoid a delete or change
command to modify the registers, or reduce memory use for big changes.

CTRL-V xff enters character by hex number. CTRL-V o123 enters character by
octal number. (Aaron)

Improved performance of syntax highlighting by skipping check for "keepend"
when there isn't any.

Moved the mode message ("-- INSERT --") to the last line of the screen. When
'cmdheight' is more than one, messages will remain readable.

When listing matching files, they are also sorted on 'suffixes', such that
they are listed in the same order as CTRL-N retrieves them.

synIDattr() takes a third argument (optionally), which tells for which
terminal type to get the attributes for. This makes it possible to run
2html.vim outside of gvim (using color names instead of #RRGGBB).

Memory profiling, only for debugging. Prints at exit, and with "g^A" command.
(Kahn)

DOS: When using a file in the current drive, remove the drive name:
"A:\dir\file" -> "\dir\file". This helps when moving a session file on a
floppy from "A:\dir" to "B:\dir".

Increased number of remembered jumps from 30 to 50 per window.

Command to temporarily disable 'hls' highlighting until the next search:
":nohlsearch".

"gp" and "gP" commands: like "p" and "P", but leave the cursor just after the
inserted text. Used for the CTRL-V command in MS-Windows mode.

Fixed fixed-5.2

Win32 GUI: Could draw text twice in one place, for fake-bold text. Removed
this, Windows will handle the bold text anyway. (Negri)

patch 5.1.1: Win32s GUI: pasting caused a crash (Negri)

patch 5.1.2: When entering another window, where characters before the cursor
have been deleted, could have a cursor beyond the end of the line.

patch 5.1.3: Win32s GUI: Didn't wait for external command to finish. (Negri)

patch 5.1.4: Makefile.w32 can now also be used to generate the OLE version
(Scott).

patch 5.1.5: Crashed when using syntax highlighting: cursor on a line that
doesn't fit in the window, and splitting that line in two.

patch 5.1.6: Visual highlighting bug: After ":set nowrap", go to end of line

version5.txt — 2151

(so that the window scrolls horizontally), ":set wrap". Following Visual
selection was wrong.

patch 5.1.7: When 'tagbsearch' off, and 'ignorecase' off, still could do
binary searching.

patch 5.1.8: Win32 GUI: dragging the scrollbar didn't update the ruler.

patch 5.1.9: Using ":gui" in .vimrc, caused xterm cursor to disappear.

patch 5.1.10: A CTRL-N in Insert mode could cause a crash, when a buffer
without a name exists.

patch 5.1.11: "make test" didn't work in the shadow directory. Also adjusted
"make shadow" for the links in the ctags directory.

patch 5.1.12: "buf 123foo" used "123" as a count, instead as the start of a
buffer name.

patch 5.1.13: When completing file names on the command-line, reallocating the
command-line may go wrong.

patch 5.1.14: ":[nvci]unmenu" removed menu for all modes, when full menu patch
specified.

Graceful handling of NULLs in drag-dropped file list. Handle passing NULL to
Fullname_save(). (Negri)

Win32: ":!start" to invoke a program without opening a console, swapping
screens, or waiting for completion in either console or gui version, e.g. you
can type ":!start winfile". ALSO fixes "can't delete swapfile after spawning
a shell" bug. (enhancement of Aaron patch) (Negri)

Win32 GUI: Fix CTRL-X default keymapping to be more Windows-like. (Negri)

Shorten filenames on startup. If in /foo/bar, entering "vim ../bar/bang.c"
displays "bang.c" in status bar, not "/foo/bar/bang.c" (Negri)

Win32 GUI: No copy to Windows clipboard when it's not desired.

Win32s: Fix pasting from clipboard - made an assumption not valid under
Win32s. (Negri)

Win32 GUI: Speed up calls to gui_mch_draw_string() and cursor drawing
functions. (Negri)

Win32 GUI: Middle mouse button emulation now works in GUI! (Negri)

Could skip messages when combining commands in one line, e.g.:
":echo "hello" | write".

Perl interpreter was disabled before executing VimLeave autocommands. Could
not use ":perl" in them. (Aaron)

Included patch for the Intellimouse (Aaron/Robinson).

Could not set 'ls' to one, when last window has only one line. (Mitterand)

Fixed a memory leak when removing menus.

version5.txt — 2152

After ":only" the ruler could overwrite a message.

Dos32: removed changing of __system_flags. It appears to work better when
it's left at the default value.

p_aleph was an int instead of along, caused trouble on systems where
sizeof(int) != sizeof(long). (Schmidt)

Fixed enum problems for Ultrix. (Seibert)

Small redraw problem: "dd" on last line in file cleared wrong line.

Didn't interpret "cmd | endif" when "cmd" starts with a range. E.g. "if 0 |
.d | endif".

Command "+|" on the last line of the file caused ml_get errors.

Memory underrun in eval_vars(). (Aaron)

Don't rename files in a difficult way, except on Windows 95 (was also done on
Windows NT).

Win32 GUI: An external command that produces an error code put the error
message in a dialog box. had to close the window and close the dialog. Now
the error code is displayed in the console. (Negri)

"comctl32.lib" was missing from the GUI libraries in Makefile.w32. (Battle)

In Insert mode, when entering a window in Insert mode, allow the cursor to be
one char beyond the text.

Renamed machine dependent rename() to mch_rename(). Define mch_rename() to
rename() when it works properly.

Rename vim_chdir() to mch_chdir(), because it's machine dependent.

When using an arglist, and editing file 5 of 4, ":q" could cause "-1 more
files to edit" error.

In if_python.c, VimCommand() caused an assertion when a do_cmdline() failed.
Moved the Python_Release_Vim() to before the VimErrorCheck(). (Harkins)

Give an error message for an unknown argument after "--". E.g. for "vim
--xyz".

The FileChangedShell autocommand didn't set <afile> to the name of the changed
file.

When doing ":e file", causing the attention message, there sometimes was no
hit-enter prompt. Caused by empty line or "endif" at end of sourced file.

A large number of patches for the VMS version. (Hunsaker)

When CTRL-L completion (find longest match) results in a shorter string, no
completion is done (happens with ":help").

Crash in Win32 GUI version, when using an Ex "@" command, because
LinePointers[] was used while not initialized.

Win32 GUI: allow mapping of Alt-Space.

version5.txt — 2153

Output from "vim -h" was sent to stderr. Sending it to stdout is better, so
one can use "vim -h | more".

In command-line mode, ":vi[!]" should reload the file, just like ":e[!]".
In Ex mode, ":vi" stops Ex mode, but doesn't reload the file. This is Vi
compatible.

When using a ":set ls=1" in the .gvimrc file, would get a status line for a
single window. (Robinson)

Didn't give an error message for ":set ai,xx". (Roemer)
Didn't give an error message for ":set ai?xx", ":set ai&xx", ":set ai!xx".

Non-Unix systems: That a file exists but is unreadable is recognized as "new
file". Now check for existence when file can't be opened (like Unix).

Unix: osdef.sh didn't handle declarations where the function name is at the
first column of the line.

DJGPP: Shortening of file names didn't work properly, because get_cwd()
returned a path with backslashes. (Negri)

When using a 'comments' part where a space is required after the middle part,
always insert a space when starting a new line. Helps for C comments, below a
line with "/****".

Replacing path of home directory with "~/" could be wrong for file names
with embedded spaces or commas.

A few fixes for the Sniff interface. (Leherbauer)

When asking to hit 'y' or 'n' (e.g. for ":3,1d"), using the mouse caused
trouble. Same for ":s/x/y/c" prompt.

With 'nowrap' and 'list', a Tab halfway on the screen was displayed as blanks,
instead of the characters specified with 'listchars'. Also for other
characters that take more than one screen character.

When setting 'guifont' to an unknown font name, the previous font was lost and
a default font would be used. (Steed)

DOS: Filenames in the root directory didn't get shortened properly. (Negri)

DJGPP: making a full path name out of a file name didn't work properly when
there is no _fullpath() function. (Negri)

Win32 console: ":sh" caused a crash. (Negri)

Win32 console: Setting 'lines' and/or 'columns' in the _vimrc failed miserably
(could hang Windows 95). (Negri)

Win32: The change-drive function was not correct, went to the wrong drive.
(Tsindlekht)

GUI: When editing a command line in Ex mode, Tabs were sometimes not
backspaced properly, and unprintable characters were displayed directly.
non-GUI can still be wrong, because a system function is called for this.

":set" didn't stop after an error. For example ":set no ai" gave an error for

version5.txt — 2154

"no", but still set "ai". Now ":set" stops after the first error.

When running configure for ctags, $LDFLAGS wasn't passed to it, causing
trouble for IRIX.

"@%" and "@#" when file name not set gave an error message. Now they just
return an empty string. (Steed)

CTRL-X and CTRL-A didn't work correctly with negative hex and octal numbers.
(Steed)

":echo" always started with a blank.

Updating GUI cursor shape didn't always work (e.g., when blinking is off).

In silent Ex mode ("ex -s" or "ex <file") ":s///p" didn't print a line. Also
a few other commands that explicitly print a text line didn't work. Made this
Vi compatible.

Win32 version of _chdrive() didn't return correct value. (Tsindlekht)

When using 't' in 'complete' option, no longer give an error message for a
missing tags file.

Unix: tgoto() can return NULL, which was not handled correctly in configure.

When doing ":help" from a buffer where 'binary' is set, also edited the help
file in binary mode. Caused extra ^Ms for DOS systems.

Cursor position in a file was reset to 1 when closing a window.

":!ls" in Ex mode switched off echo.

When doing a double click in window A, while currently in window B, first
click would reset double click time, had to click three times to select a
word.

When using <F11> in mappings, ":mkexrc" produced an exrc file that can't be
used in Vi compatible mode. Added setting of 'cpo' to avoid this. Also, add
a CTRL-V in front of a '<', to avoid a normal string to be interpreted as a
special key name.

Gave confusing error message for ":set guifont=-*-lucida-*": first "font is
not fixed width", then "Unknown font".

Some options were still completely left out, instead of included as hidden
options.

While running the X11 GUI, ignore SIGHUP signals. Avoids a crash after
executing an external command (in rare cases).

In os_unixx.h, signal() was defined to sigset(), while it already was.

Memory leak when executing autocommands (was reported as a memory leak in
syntax highlighting).

Didn't print source of error sometimes, because pointers were the same,
although names were different.

Avoid a number of UMR errors from Purify (third argument to open()).

version5.txt — 2155

A swap file could still be created just after setting 'updatecount' to zero,
when there is an empty buffer and doing ":e file". (Kutschera)

Test 35 failed on 64 bit machines. (Schild)

With "p" and "P" commands, redrawing was slow.

Awk script for html documentation didn't work correctly with AIX awk.
Replaced "[,.);\]]" with "[] ,.);]". (Briscoe)
The makehtml.awk script had a small problem, causing extra lines to be
inserted. (Briscoe)

"gqgq" could not be repeated. Repeating for "gugu" and "gUgU" worked in a
wrong way. Also made "gqq" work to be consistent with "guu".

C indent was wrong after "case ':':".

":au BufReadPre *.c put": Line from put text was deleted, because the buffer
was still assumed to be empty.

Text pasted with the Edit/Paste menu was subject to 'textwidth' and
'autoindent'. That was inconsistent with using the mouse to paste. Now "*p
is used.

When using CTRL-W CTRL-] on a word that's not a tag, and then CTRL-] on a tag,
window was split.

":ts" got stuck on a tags line that has two extra fields.

In Insert mode, with 'showmode' on, <C-O><C-G> message was directly
overwritten by mode message, if preceded with search command warning message.

When putting the result of an expression with "=<expr>p, newlines were
inserted like ^@ (NUL in the file). Now the string is split up in lines at
the newline.

putenv() was declared with "const char *" in pty.c, but with "char *" in
osdef2.h.in. Made the last one also "const char *".

":help {word}", where +{word} is a feature, jumped to the feature list instead
of where the command was explained. E.g., ":help browse", ":help autocmd".

Using the "\<xx>" form in an expression only got one byte, even when using a
special character that uses several bytes (e.g., "\<F9>").
Changed "\<BS>" to produce CTRL-H instead of the special key code for the
backspace key. "\" produces 0x7f.

":mkvimrc" didn't write a command to set 'compatible' or 'nocompatible'.

The shell syntax didn't contain a "syn sync maxlines" setting. In a long file
without recognizable items, syncing took so long it looked like Vim hangs.
Added a maxlines setting, and made syncing interruptible.

The "gs" command didn't flush output before waiting.

Memory leaks for:
":if 0 | let a = b . c | endif"
"let a = b[c]"
":so {file}" where {file} contains a ":while"

version5.txt — 2156

GUI: allocated fonts were never released. (Leonard)

Makefile.bor:
- Changed $(DEFINES) into a list of "-D" options, so that it can also be used

for the resource compiler. (not tested!)
- "bcc.cfg" was used for all configurations. When building for another

configuration, the settings for the previous one would be used. Moved
"bcc.cfg" to the object directory. (Geddes)

- Included targets for vimrun, install, ctags and xxd. Changed the default to
use the Borland DLL Runtime Library, makes Vim.exe a log smaller. (Aaron)

"2*" search for the word under the cursor with "2" prepended. (Leonard)

When deleting into a specific register, would still overwrite the non-Win32
GUI selection. Now ""x"*P works.

When deleting into the "" register, would write to the last used register.
Now ""x always writes to the unnamed register.

GUI Athena: A submenu with a '.' in it didn't work. E.g.,
":amenu Syntax.XY\.Z.foo lll".

When first doing ":tag foo" and then ":tnext" and/or ":tselect" the order of
matching tags could change, because the current file is different. Now the
existing matches are kept in the same order, newly found matches are added
after them, not matter what the current file is.

":ta" didn't find the second entry in a tags file, if the second entry was
longer than the first one.

When using ":set si tw=7" inserting "foo {^P}" made the "}" inserted at the
wrong position. can_si was still TRUE when the cursor is not in the indent of
the line.

Running an external command in Win32 version had the problem that Vim exits
when the X on the console is hit (and confirmed). Now use the "vimrun"
command to start the external command indirectly. (Negri)

Win32 GUI: When running an external filter, do it in a minimized DOS box.
(Negri)

":let" listed variables without translation into printable characters.

Win32 console: When resizing the window, switching back to the old size
(when exiting or executing an external command) sometimes failed. (Negri)
This appears to also fix a "non fixable" problem:
Win32 console in NT 4.0: When running Vim in a cmd window with a scrollbar,
the scrollbar disappeared and was not restored when Vim exits. This does work
under NT 3.51, it appears not to be a Vim problem.

When executing BufDelete and BufUnload autocommands for a buffer without a
name, the name of the current buffer was used for <afile>.

When jumping to a tag it reported "tag 1 of >2", while in fact there could be
only two matches. Changed to "tag 1 of 2 or more".

":tjump tag" did a linear search in the tags file, which can be slow.

Configure didn't find "LibXm.so.2.0", a Xm library with a version number.

version5.txt — 2157

Win32 GUI: When using a shifted key with ALT, the shift modifier would remain
set, even when it was already used by changing the used key. E.g., "<M-S-9>"
resulted in "<M-S-(>", but it should be "<M-(>". (Negri)

A call to ga_init() was often followed by setting growsize and itemsize.
Created ga_init2() for this, which looks better. (Aaron)

Function filereadable() could call fopen() with an empty string, which might
be illegal.

X Windows GUI: When executing an external command that outputs text, could
write one character beyond the end of a buffer, which caused a crash. (Kohan)

When using "*" or "#" on a string that includes '/' or '?' (when these are
included in 'isk'), they were not escaped. (Parmelan)

When adding a ToolBar menu in the Motif GUI, the submenu_id field was not
cleared, causing random problems.

When adding a menu, the check if this menu (or submenu) name already exists
didn't compare with the simplified version (no mnemonic or accelerator) of the
new menu. Could get two menus with the same name, e.g., "File" and "&File".

Breaking a line because of 'textwidth' at the last line in the window caused a
redraw of the whole window instead of a scroll. Speeds up normal typing with
'textwidth' a lot for slow terminals.

An invalid line number produced an "invalid range" error, even when it wasn't
to be executed (inside "if 0").

When the unnamed, first buffer is re-used, the "BufDelete" autocommand was
not called. It would stick in a buffer list menu.

When doing "%" on the NUL after the line, a "{" or "}" in the last character
of the line was not found.

The Insert mode menu was not used for the "s" command, the Operator-pending
menu was used instead.

With 'compatible' set, some syntax highlighting was not correct, because of
using "[\t]" for a search pattern. Now use the regexps for syntax
highlighting like the 'cpoptions' option is empty (as was documented already).

When using "map <M-Space> ms" or "map <Space> sss" the output of ":map" didn't
show any lhs for the mapping (if 'isprint' includes 160). Now always use
<Space> and <M-Space>, even when they are printable.

Adjusted the Syntax menu, so that the lowest entry fits on a small screen (for
Athena, where menus don't wrap).

When using CTRL-E or CTRL-Y in Insert mode for characters like 'o', 'x' and
digits, repeating the insert didn't work.

The file "tools/ccfilter.README.txt" could not be unpacked when using short
file names, because of the two dots. Renamed it to
"tools/ccfilter_README.txt".

For a dark 'background', using Blue for Directory and SpecialKey highlight
groups is not very readable. Use Cyan instead.

version5.txt — 2158

In the function uc_scan_attr() in ex_docmd.c there was a goto that jumped into
a block with a local variable. That's illegal for some compilers.

Win32 GUI: There was a row of pixels at the bottom of the window which was not
drawn. (Aaron)

Under DOS, editing "filename/" created a swap file of "filename/.swp". Should
be "filename/_swp".

Win32 GUI: pointer was hidden when executing an external command.

When 'so' is 999, "J" near the end of the file didn't redisplay correctly.

":0a" inserted after the first line, instead of before the first line.

Unix: Wildcard expansion didn't handle single quotes and {} patterns. Now
":file 'window.c'" removes the quotes and ":e 'main*.c'" works (literal '*').
":file {o}{n}{e}" now results in file name "one".

Memory leak when setting a string option back to its default value.

==
VERSION 5.3 version-5.3

Version 5.3 was a bug-fix version of 5.2. There are not many changes.
Improvements made between version 5.2 and 5.3:

Changed changed-5.3

Renamed "IDE" menu to "Tools" menu.

Added added-5.3

Win32 GUI: Give a warning when Vim is activated, and one of the files changed
since editing started. (Negri)

Fixed fixed-5.3

5.2.1: Win32 GUI: space for external command was not properly allocated, could
cause a crash. (Aaron) This was the reason to bring out 5.3 quickly after
5.2.

5.2.2: Some commands didn't complain when used without an argument, although
they need one: ":badd", ":browse", ":call", ":confirm", ":behave",
":delfunction", ":delcommand" and ":tearoff".
":endfunction" outside of a function gave wrong error message: "Command not
implemented". Should be ":endfunction not inside a function".

5.2.3: Win32 GUI: When gvim was installed in "Program files", or another path
with a space in it, executing external commands with vimrun didn't work.

5.2.4: Pasting with the mouse in Insert mode left the cursor on the last
pasted character, instead of behind it.

version5.txt — 2159

5.2.5: In Insert mode, cursor after the end of the line, a shift-cursor-left
didn't include the last character in the selection.

5.2.6: When deleting text from Insert mode (with "<C-O>D" or the mouse), which
includes the last character in the line, the cursor could be left on the last
character in the line, instead of just after it.

5.2.7: Win32 GUI: scrollbar was one pixel too big.

5.2.8: Completion of "PopUp" menu showed the derivatives "PopUpc", "PopUPi",
etc. ":menu" also showed these.

5.2.9: When using two input() functions on a row, the prompt would not be
drawn in column 0.

5.2.10: A loop with input() could not be broken with CTRL-C.

5.2.11: ":call asdf" and ":call asdf(" didn't give an error message.

5.2.12: Recursively using ":normal" crashes Vim after a while. E.g.:
":map gq :normal gq<CR>"

5.2.13: Syntax highlighting used 'iskeyword' from wrong buffer. When using
":help", then "/\k*" in another window with 'hlsearch' set.

5.2.14: When using ":source" from a function, global variables would not be
available unless "g:" was used.

5.2.15: XPM files can have the extension ".pm", which is the same as for Perl
modules. Added "syntax/pmfile.vim" to handle this.

5.2.16: On Win32 and Amiga, "echo expand("%:p:h")" removed one dirname in an
empty buffer. mch_Fullname() didn't append a slash at the end of a directory
name.

Should include the character under the cursor in the Visual area when using
'selection' "exclusive". This wasn't done for "%", "e", "E", "t" and "f".

""p would always put register 0, instead of the unnamed (last used) register.
Reverse the change that ""x doesn't write in the unnamed (last used) register.
It would always write in register 0, which isn't very useful. Use "-x for the
paste mappings in Visual mode.

When there is one long line on the screen, and 'showcmd' is off, "0$" didn't
redraw the screen.

Win32 GUI: When using 'mousehide', the pointer would flicker when the cursor
shape is changed. (Negri)

When cancelling Visual mode, and the cursor moves to the start, the wanted
column wasn't set, "k" or "j" moved to the wrong column.

When using ":browse" or ":confirm", was checking for a comment and separating
bar, which can break some commands.

Included fixes for Macintosh. (Kielhorn)

==
VERSION 5.4 version-5.4

version5.txt — 2160

Version 5.4 adds new features, useful changes and a lot of bug fixes.

Runtime directory introduced new-runtime-dir

The distributed runtime files are now in $VIMRUNTIME, the user files in $VIM.
You normally don't set $VIMRUNTIME but let Vim find it, by using
$VIM/vim{version}, or use $VIM when that doesn't exist. This allows for
separating the user files from the distributed files and makes it more easy to
upgrade to another version. It also makes it possible to keep two versions of
Vim around, each with their own runtime files.

In the Unix distribution the runtime files have been moved to the "runtime"
directory. This makes it possible to copy all the runtime files at once,
without the need to know what needs to be copied.

The archives for DOS, Windows, Amiga and OS/2 now have an extra top-level
"vim" directory. This is to make clear that user-modified files should be put
here. The directory that contains the executables doesn't have '-' or '.'
characters. This avoids strange extensions.

The $VIM and $VIMRUNTIME variables are set when they are first used. This
allows them to be used by Perl, for example.

The runtime files are also found in a directory called "$VIM/runtime". This
helps when running Vim after just unpacking the runtime archive. When using
an executable in the "src" directory, Vim checks if "vim54" or "runtime" can
be added after removing it. This make the runtime files be found just after
compiling.

A default for $VIMRUNTIME can be given in the Unix Makefile. This is useful
if $VIM doesn't point to above the runtime directory but to e.g., "/etc/".

Filetype introduced new-filetype-5.4

Syntax files are now loaded with the new FileType autocommand. Old
"mysyntaxfile" files will no longer work. filetypes

The scripts for loading syntax highlighting have been changed to use the
new Syntax autocommand event.

This combination of Filetype and Syntax events allows tuning the syntax
highlighting a bit more, also when selected from the Syntax menu. The
FileType autocommand can also be used to set options and mappings specifically
for that type of file.

The "$VIMRUNTIME/filetype.vim" file is not loaded automatically. The
":filetype on" command has been added for this. ":syntax on" also loads it.

The 'filetype' option has been added. It is used to trigger the FileType
autocommand event, like the 'syntax' option does for the Syntax event.

":set syntax=OFF" and ":set syntax=ON" can be used (in a modeline) to switch
syntax highlighting on/off for the current file.

The Syntax menu commands have been moved to $VIMRUNTIME/menu.vim. The Syntax
menu is included both when ":filetype on" and when ":syntax manual" is used.

version5.txt — 2161

Renamed the old 'filetype' option to 'osfiletype'. It was only used for
RISCOS. 'filetype' is now used for the common file type.

Added the ":syntax manual" command. Allows manual selection of the syntax to
be used, e.g., from a modeline.

Vim script line continuation new-line-continuation

When an Ex line starts with a backslash, it is concatenated to the previous
line. This avoids the need for long lines. line-continuation (Roemer)
Example:

if has("dialog_con") ||
\ has("dialog_gui")
:let result = confirm("Enter your choice",

\ "&Yes\n&No\n&Maybe",
\ 2)

endif

Improved session files improved-sessions

New words for 'sessionoptions':
- "help" Restore the help window.
- "blank" Restore empty windows.
- "winpos" Restore the Vim window position. Uses the new ":winpos"

command
- "buffers" Restore hidden and unloaded buffers. Without it only the

buffers in windows are restored.
- "slash" Replace backward by forward slashes in file names.
- "globals" Store global variables.
- "unix" Use unix file format (<NL> instead of <CR><NL>)

The ":mksession" and 'sessionoptions' are now in the +mksession feature.

The top line of the window is also restored when using a session file.

":mksession" and ":mkvimrc" don't store 'fileformat', it should be detected
when loading a file.

(Most of this was done by Vince Negri and Robert Webb)

Autocommands improved improved-autocmds-5.4

New events:
FileType When the file type has been detected.
FocusGained When Vim got input focus. (Negri)
FocusLost When Vim lost input focus. (Negri)
BufCreate Called just after a new buffer has been created or has been

renamed. (Madsen)
CursorHold Triggered when no key has been typed for 'updatetime'. Can be

used to do something with the word under the cursor. (Negri)
Implemented CursorHold autocommand event for Unix. (Zellner)
Also for Amiga and MS-DOS.

GUIEnter Can be used to do something with the GUI window after it has

version5.txt — 2162

been created (e.g., a ":winpos 100 50").
BufHidden When a buffer becomes hidden. Used to delete the

option-window when it becomes hidden.

Also trigger BufDelete just before a buffer is going to be renamed. (Madsen)

The "<amatch>" pattern can be used like "<afile>" for autocommands, except
that it is the matching value for the FileType and Syntax events.

When ":let @/ = <string>" is used in an autocommand, this last search pattern
will be used after the autocommand finishes.

Made loading autocommands a bit faster. Avoid doing strlen() on each exiting
pattern for each new pattern by remembering the length.

Encryption new-encryption

Files can be encrypted when writing and decrypted when reading. Added the
'key' option, "-x" command line argument and ":X" command. encryption (based
on patch from Mohsin Ahmed)

When reading a file, there is an automatic detection whether it has been
encrypted. Vim will then prompt for the key.

Note that the encryption method is not compatible with Vi. The encryption is
not unbreakable. This allows it to be exported from the US.

GTK GUI port new-GTK-GUI

New GUI port for GTK+. Includes a toolbar, menu tearoffs, etc. gui-gtk
Added the :helpfind command. (Kahn and Dalecki)

Menu changes menu-changes-5.4

Menus can now also be used in the console. It is enabled by the new
'wildmenu' option. This shows matches for command-line completion like a
menu. This works as a minimal file browser.

The new :emenu command can be used to execute a menu item.

Uses the last status line to list items, or inserts a line just above the
command line. (Negri)

The 'wildcharx' option can be used to trigger 'wildmenu' completion from a
mapping.

When compiled without menus, this can be detected with has("menu"). Also show
this in the ":version" output. Allow compiling GUI versions without menu
support. Only include toolbar support when there is menu support.

Moved the "Window" menu all the way to the right (priority 70). Looks more
familiar for people working with MS-Windows, shouldn't matter for others.

Included "Buffers" menu. Works with existing autocommands and functions. It

version5.txt — 2163

can be disabled by setting the "no_buffers_menu" variable. (Aaron and Madsen)

Win32 supports separators in a menu: "-.*-". (Geddes)
Menu separators for Motif now work too.

Made Popup menu for Motif GUI work. (Madsen)

'M' flag in 'guioptions': Don't source the system menu.

All the menu code has been moved from gui.c to menu.c.

Viminfo improved improved-viminfo

New flags for 'viminfo':
'!' Store global variables in the viminfo file if they are in uppercase

letters. (Negri)
'h' Do ":nohlsearch" when loading a viminfo file.

Store search patterns in the viminfo file with their offset, magic, etc. Also
store the flag whether 'hlsearch' highlighting is on or off (which is not used
if the 'h' flag is in 'viminfo').

Give an error message when setting 'viminfo' without commas.

Various new commands new-commands-5.4

Operator g? : rot13 encoding. (Negri)

zH and zL commands: Horizontal scrolling by half a page.
gm move cursor to middle of screen line. (Ideas by Campbell)

Operations on Visual blocks: v_b_I , v_b_A , v_b_c , v_b_C , v_b_r ,
v_b_< and v_b_> . (Kelly)

New command: CTRL-\ CTRL-N, which does nothing in Normal mode, and goes to
Normal mode when in Insert or Command-line mode. Can be used by VisVim or
other OLE programs to make sure Vim is in Normal mode, without causing a beep.
CTRL-_CTRL-N

":cscope kill" command to use the connection filename. :cscope (Kahn)

:startinsert command: Start Insert mode next.

:history command, to show all four types of histories. (Roemer)

[m , [M ,]m and]M commands, for jumping backward/forward to start/end
of method in a (Java) class.

":@*" executes the * register. :@ (Acevedo)

go and :goto commands: Jump to byte offset in the file.

gR and gr command: Virtual Replace mode. Replace characters without
changing the layout. (Webb)

":cd -" changes to the directory from before the previous ":cd" command.

version5.txt — 2164

:cd- (Webb)

Tag preview commands :ptag . Shows the result of a ":tag" in a dedicated
window. Can be used to see the context of the tag (e.g., function arguments).
(Negri)
:pclose command, and CTRL-W CTRL-Z: Close preview window. (Moore)

'previewheight' option, height for the preview window.
Also :ppop , :ptnext , :ptprevious , :ptNext , :ptrewind , :ptlast .

:find and :sfind commands: Find a file in 'path', (split window) and edit
it.

The :options command opens an option window that shows the current option
values. Or use ":browse set" to open it. Options are grouped by function.
Offers short help on each option. Hit <CR> to jump to more help. Edit the
option value and hit <CR> on a "set" line to set a new value.

Various new options new-options-5.4

Scroll-binding: 'scrollbind' and 'scrollopt' options. Added :syncbind
command. Makes windows scroll the same amount (horizontally and/or
vertically). (Ralston)

'conskey' option for MS-DOS. Use direct console I/O. This should work with
telnet (untested!).

'statusline' option: Configurable contents of the status line. Also allows
showing the byte offset in the file. Highlighting with %1* to %9*, using the
new highlight groups User1 to User9. (Madsen)

'rulerformat' option: Configurable contents of the ruler, like 'statusline'.
(Madsen)

'write' option: When off, writing files is not allowed. Avoids overwriting a
file even with ":w!". The -m command line option resets 'write'.

'clipboard' option: How the clipboard is used. Value "unnamed": Use unnamed
register like "*. (Cortopassi) Value "autoselect": Like what 'a' in
'guioptions' does but works in the terminal.

'guifontset' option: Specify fonts for the +fontset feature, for the X11 GUI
versions. Allows using normal fonts when vim is compiled with this feature.
(Nam)

'guiheadroom' option: How much room to allow above/below the GUI window.
Used for Motif, Athena and GTK.

Implemented 'tagstack' option: When off, pushing tags onto the stack is
disabled (Vi compatible). Useful for mappings.

'shellslash' option. Only for systems that use a backslash as a file
separator. This option will use a forward slash in file names when expanding
it. Useful when 'shell' is sh or csh.

'pastetoggle' option: Key sequence that toggles 'paste'. Works around the
problem that mappings don't work in Insert mode when 'paste' is set.

'display' option: When set to "lastline", the last line fills the window,

version5.txt — 2165

instead of being replaced with "@" lines. Only the last three characters are
replaced with "@@@", to indicate that the line has not finished yet.

'switchbuf' option: Allows re-using existing windows on a buffer that is being
jumped to, or split the window to open a new buffer. (Roemer)

'titleold' option. Replaces the fixed string "Thanks for flying Vim", which
is used to set the title when exiting. (Schild)

Vim scripts new-script-5.4

The exists() function can also check for existence of a function. (Roemer)
An internal function is now found with a binary search, should be a bit
faster. (Roemer)

New functions:
- getwinposx() and getwinposy() : get Vim window position. (Webb)
- histnr() , histadd() , histget() and histdel() : Make history

available. (Roemer)
- maparg() : Returns rhs of a mapping. Based on a patch from Vikas.
- mapcheck() : Check if a map name matches with an existing one.
- visualmode() : Return type of last Visual mode. (Webb)
- libcall() : Call a function in a library. Currently only for Win32. (Negri)
- bufwinnr() : find window that contains the specified buffer. (Roemer)
- bufloaded() : Whether a buffer exists and is loaded.
- localtime() and getftime() : wall clock time and last modification time

of a file (Webb)
- glob() : expand file name wildcards only.
- system() : get the raw output of an external command. (based on a patch

from Aaron).
- strtrans() : Translate String into printable characters. Used for

2html.vim script.
- append() : easy way to append a line of text in a buffer.

Changed functions:
- Optional argument to strftime() to give the time in seconds. (Webb)
- expand() now also returns names for files that don't exist.

Allow numbers in the name of a user command. (Webb)

Use "v:" for internal Vim variables: "v:errmsg", "v:shell_error", etc. The
ones from version 5.3 can be used without "v:" too, for backwards
compatibility.

New variables:
"v:warningmsg" and "v:statusmsg" internal variables. Contain the last given
warning and status message. v:warningmsg v:statusmsg (Madsen)
"v:count1" variable: like "v:count", but defaults to one when no count is
used. v:count1

When compiling without expression evaluation, "if 1" can be used around the
not supported commands to avoid it being executed. Works like in Vim 4.x.
Some of the runtime scripts gave errors when used with a Vim that was compiled
with minimal features. Now "if 1" is used around code that is not always
supported.

When evaluating an expression with && and ||, skip the parts that will not
influence the outcome. This makes it faster and avoids error messages. (Webb)

version5.txt — 2166

Also optimized the skipping of expressions inside an "if 0".

Avoid hit-enter prompt avoid-hit-enter

Added 'T' flag to 'shortmess': Truncate all messages that would cause the
hit-enter prompt (unless that would happen anyway).
The 'O' flag in 'shortmess' now also applies to quickfix messages, e.g., from
the ":cn" command.

The default for 'shortmess' is now "filnxtToO", to make most messages fit on
the command line, and not cause the hit-enter prompt.

Previous messages can be viewed with the new :messages command.

Some messages are shown fully, even when 'shortmess' tells to shorten
messages, because the user is expected to want to see them in full: CTRL-G and
some quickfix commands.

Improved quickfix improved-quickfix

Parse change-directory lines for gmake: "make[1]: Entering directory 'name'".
Uses "%D" and "%X" in 'errorformat'.
Also parse "Making {target} in {dir}" messages from make. Helps when not
using GNU make. (Schandl)

Use 'isfname' for "%f" in 'errorformat'.

Parsing of multi-line messages. errorformat-multi-line

Allow a range for the :clist command. (Roemer)

Support for "global" file names, for error formats that output the file name
once for several errors. (Roemer)

:cnfile jumps to first error in next file.

"$*" in 'makeprg' is replaced by arguments to ":make". (Roemer)

Regular expressions regexp-changes-5.4

In a regexp, a '$' before "\)" is also considered to be an end-of-line. /$
In patterns "^" after "\|" or "\(" is a start-of-line. /^ (Robinson)

In a regexp, in front of "\)" and "\|" both "$" and "\$" were considered
end-of-line. Now use "$" as end-of-line and "\$" for a literal dollar. Same
for '^' after "\(" and "\|". /\$ /\^

Some search patterns can be extremely slow, even though they are not really
illegal. For example: "\([^a-z]\+\)\+Q". Allow interrupting any regexp
search with CTRL-C.

Register "/: last search string (read-only). (Kohan) Changed to use last used
search pattern (like what 'hlsearch' uses). Can set the search pattern with
":let @/ = {expr}".

version5.txt — 2167

Added character classes to search patterns, to avoid the need for removing the
'l' flag from 'cpoptions': [:tab:] , [:return:] , [:backspace:] and
[:escape:] .

By adding a '?' after a comparative operator in an expression, the comparison
is done by ignoring case. expr-==?

Other improvements made between version 5.3 and 5.4

Changed changed-5.4

Unix: Use $TMPDIR for temporary files, if it is set and exists.

Removed "Empty buffer" message. It isn't useful and can cause a hit-enter
prompt. (Negri)

"ex -" now reads commands from stdin and works in silent mode. This is to be
compatible with the original "ex" command that is used for scripts.

Default range for ":tcldo" is the whole file.

Cancelling Visual mode with ESC moved the cursor. There appears to be no
reason for this. Now leave the cursor where it is.

The ":grep" and ":make" commands see " as part of the arguments, instead of
the start of a comment.

In expressions the "=~" and "!~" operators no longer are affected by
'ignorecase'.

Renamed vimrc_example to vimrc_example.vim and gvimrc_example to
gvimrc_example.vim. Makes them being recognized as vim scripts.

"gd" no longer starts searching at the end of the previous function, but at
the first blank line above the start of the current function. Avoids that
using "gd" in the first function finds global a variable.

Default for 'complete' changed from ".,b" to ".,w,b,u,t,i". Many more matches
will be found, at the cost of time (the search can be interrupted).

It is no longer possible to set 'shell*' options from a modeline. Previously
only a warning message was given. This reduces security risks.

The ordering of the index of documentation files was changed to make it more
easy to find a subject.

On MS-DOS and win32, when $VIM was not set, $HOME was used. This caused
trouble if $HOME was set to e.g., "C:\" for some other tool, the runtime files
would not be found. Now use $HOME only for _vimrc, _gvimrc, etc., not to find
the runtime file.

When 'tags' is "./{fname}" and there is no file name for the current buffer,
just use it. Previously it was skipped, causing "vim -t {tag}" not to find
many tags.

When trying to select text in the 'scrolloff' area by mouse dragging, the

version5.txt — 2168

resulting scrolling made this difficult. Now 'scrolloff' is temporarily set
to 0 or 1 to avoid this. But still allow scrolling in the top line to extend
to above the displayed text.

Default for 'comments' now includes "sl:/*,mb: *,ex:*/", to make javadoc
comments work. Also helps for C comments that start with "/*******".

CTRL-X CTRL-] Insert mode tag expansion tried to expand to all tags when used
after a non-ID character, which can take a very long time. Now limit this to
200 matches. Also used for command-line tag completion.

The OS/2 distribution has been split in two files. It was too big to fit on a
floppy. The same runtime archive as for the PC is now used.

In the documentation, items like <a-z> have been replaced with {a-z} for
non-optional arguments. This avoids confusion with key names: <C-Z> is a
CTRL-Z, not a character between C and Z, that is {C-Z}.

Added added-5.4

Color support for the iris-ansi builtin termcap entry. (Tubman)

Included VisVim version 1.3a. (Erhardt)

Win32 port for SNiFF+ interface. (Leherbauer)
Documentation file for sniff interface: if_sniff.txt. (Leherbauer)

Included the "SendToVim" and "OpenWithVim" programs in the OleVim directory.
To be used with the OLE version of gvim under MS-Windows. (Schaller)

Included Exuberant Ctags version 3.2.4 with Eiffel support. (Hiebert)

When a file that is being edited is deleted, give a warning (like when the
time stamp changed).

Included newer versions of the HTML-generating Awk and Perl scripts. (Colombo)

Linux console mouse support through "gpm". (Tsindlekht)

Security fix: Disallow changing 'secure' and 'exrc' from a modeline. When
'secure' is set, give a warning for changing options that contain a program
name.

Made the Perl interface work with Perl 5.005 and threads. (Verdoolaege)

When giving an error message for an ambiguous mapping, include the offending
mapping. (Roemer)

Command line editing:
- Command line completion of mappings. (Roemer)
- Command line completion for ":function", ":delfunction", ":let", ":call",

":if", etc. (Roemer)
- When using CTRL-D completion for user commands that have

"-complete=tag_listfiles" also list the file names. (Madsen)
- Complete the arguments of the ":command" command. (Webb)
- CTRL-R . in command line inserts last inserted text. CTRL-F, CTRL-P, CTRL-W

and CTRL-A after CTRL-R are used to insert an object from under the cursor.
(Madsen)

version5.txt — 2169

Made the text in uganda.txt about copying Vim a bit more clear.

Updated the Vim tutor. Added the "vimtutor" command, which copies the tutor
and starts Vim on it. "make install" now also copies the tutor.

In the output of ":clist" the current entry is highlighted, with the 'i'
highlighting (same as used for 'incsearch').

For the ":clist" command, you can scroll backwards with "b" (one screenful),
"u" (half a screenful) and "k" (one line).

Multi-byte support:
- X-input method for multibyte characters. And various fixes for multibyte

support. (Nam)
- Hangul input method feature: hangul . (Nam)
- Cleaned up configuration of multibyte support, XIM, fontset and Hangul

input. Each is now configurable separately.
- Changed check for GTK_KEYBOARD to HANGUL_KEYBOARD_TYPE. (Nam)
- Added doc/hangulin.txt: Documentation for the Hangul input code. (Nam)
- XIM support for GTK+. (Nam)
- First attempt to include support for SJIS encoding. (Nagano)
- When a double-byte character doesn't fit at the end of the line, put a "~"

there and print it on the next line.
- Optimize output of multibyte text. (Park)
- Win32 IME: preedit style is like over-the-spot. (Nagano)
- Win32 IME: IME mode change now done with ImmSetOpenStatus. (Nagano)
- GUI Athena: file selection dialog can display multibyte characters.

(Nagano)
- Selection reply for XA_TEXT as XA_STRING. (Nagano)

"runtime/macros/diffwin.vim". Mappings to make a diff window. (Campbell)

Added ".obj" to the 'suffixes' option.

Reduced size of syntax/synload.vim by using the ":SynAu" user command.
Automated numbering of Syntax menu entries in menu.vim.
In the Syntax menu, insert separators between syntax names that start with
a different letter. (Geddes)

Xterm:
- Clipboard support when using the mouse in an xterm. (Madsen)
- When using the xterm mouse, track dragging of the mouse. Use xterm escape

sequences when possible. It is more precise than other methods, but
requires a fairly recent xterm version. It is enabled with "xterm2" in
'ttymouse'. (Madsen)

- Check xterm patch level, to set the value of 'ttymouse'. Has only been
added to xterm recently (patch level > 95). Uses the new 't_RV' termcap
option. Set 'ttymouse' to "xterm2" when a correct response is recognized.
Will make xterm mouse dragging work better.

- Support for shifted function keys on xterm. Changed codes for shifted
cursor keys to what the xterm actually produces. Added codes for shifted
<End> and <Home>.

- Added 't_WP' to set the window position in pixels and 't_WS' to set the
window size in characters. Xterm can now move (used for ":winpos") and
resize (use for ":set lines=" and ":set columns=").

X11:
- When in Visual mode but not owning the selection, display the Visual area

with the VisualNOS group to show this. (Madsen)

version5.txt — 2170

- Support for requesting the type of clipboard support. Used for AIX and
dtterm. (Wittig)

- Support compound_text selection (even when compiled without multibyte).

Swap file:
- New variation for naming swap files: Replace path separators into %, place

all swap files in one directory. Used when a name in 'dir' ends in two path
separators. (Madsen)

- When a swap file is found, show whether it contains modifications or not in
the informative message. (Madsen)

- When dialogs are supported, use a dialog to ask the user what to do when a
swapfile already exists.

"popup_setpos" in 'mousemodel' option. Allows for moving the cursor when
using the right mouse button.

When a buffer is deleted, the selection for which buffer to display instead
now uses the most recent entry from the jump list. (Madsen)

When using CTRL-O/CTRL-I, skip deleted buffers.

A percentage is shown in the ruler, when there is room.

Used autoconf 1.13 to generate configure.

Included get_lisp_indent() from Dirk van Deun. Does better Lisp indenting
when 'p' flag in 'cpoptions' is not included.

Made the 2html.vim script quite a bit faster. (based on ideas from Geddes)

Unix:
- Included the name of the user that compiled Vim and the system name it was

compiled on in the version message.
- "make install" now also installs the "tools" directory. Makes them

available for everybody.
- "make check" now does the same as "make test". "make test" checks for

Visual block mode shift, insert, replace and change.
- Speed up comparing a file name with existing buffers by storing the

device/inode number with the buffer.
- Added configure arguments "--disable-gtk", "--disable-motif" and

"--disable-athena", to be able to disable a specific GUI (when it doesn't
work).

- Renamed the configure arguments for disabling the check for specific GUIs.
Should be clearer now. (Kahn)

- On a Digital Unix system ("OSF1") check for the curses library before
termlib and termcap. (Schild)

- "make uninstall_runtime" will only delete the version-specific files. Can
be used to delete the runtime files of a previous version.

Macintosh: (St-Amant)
- Dragging the scrollbar, like it's done for the Win32 GUI. Moved common code

from gui_w32.c to gui.c
- Added dialogs and file browsing.
- Resource fork preserved, warning when it will be lost.
- Copy original file attributes to newly written file.
- Set title/notitle bug solved.
- Filename completion improved.
- Grow box limit resize to a char by char size.
- Use of rgb.txt for more colors (but give back bad color).
- Apple menu works (beside the about...).

version5.txt — 2171

- Internal border now vim compliant.
- Removing a menu doesn't crash anymore.
- Weak-linking of Python 1.5.1 (only on PPC). Python is supported when the

library is available.
- If an error is encountered when sourcing the users .vimrc, the alert box now

shows right away with the OK button defaulted. There's no more "Delete"-key
sign at the start of each line

- Better management of environment variables. Now $VIM is calculated only
once, not regenerated every time it is used.

- No more CPU hog when in background.
- In a sourced Vim script the Mac file format can be recognized, just like DOS

file format is.

When both "unix" and "mac" are present in 'fileformats', prefer "mac" format
when there are more CR than NL characters.
When using "mac" fileformat, use CR instead of a NL, because NL is used for
NUL. Will preserve all characters in a file. (Madsen)

The DOS install.exe now contains checks for an existing installation. It
avoids setting $VIM and $PATH again.
The install program for Dos/Windows can now install Vim in the popup menu, by
adding two registry keys.

Port to EGCS/mingw32. New Makefile.ming. (Aaron)

DOS 16 bit: Don't include cursor shape stuff. Save some bytes.

TCL support to Makefile.w32. (Duperval)

OS/2: Use argv[0] to find runtime files.

When using "gf" to go to a buffer that has already been used, jump to the
line where the cursor last was.

Colored the output of ":tselect" a bit more. Different highlighting between
tag name and file name. Highlight field name ("struct:") separately from
argument.

Backtick expansion for non-Unix systems. Based on a patch from Aaron.
Allows the use of things like ":n `grep -l test *.c`" and
"echo expand('`ls m*`')".

Check for the 'complete' option when it is set. (Acevedo)
'd' flag in 'complete' searches for defined names or macros.
While searching for Insert mode completions in include files and tags files,
check for typeahead, so that you can use matches early. (Webb)
The '.' flag in 'complete' now scans the current buffer completely, ignoring
'nowrapscan'. (Webb)

Added '~' flag to 'whichwrap'. (Acevedo)

When ending the Visual mode (e.g., with ESC) don't grab ownership of the
selection.

In a color terminal, "fg" and "bg" can be used as color names. They stand for
the "Normal" colors.

A few cscope cleanups. (Kahn)

Included changed vimspell.sh from Schemenauer.

version5.txt — 2172

Concatenation of strings in an expression with "." is a bit faster. (Roemer)

The ":redir" command can now redirect to a register: ":redir @r". (Roemer)

Made the output of ":marks" and ":jumps" look similar. When the mark is in
the current file, show the text at the mark. Also for ":tags".

When configure finds ftello() and fseeko(), they are used in tag.c (for when
you have extremely big tags files).

Configure check for "-FOlimit,2000" argument for the compiler. (Borsenkow)

GUI:
- When using ":gui" in a non-GUI Vim, give a clear error message.
- "gvim -v" doesn't start the GUI (if console support is present).
- When in Ex mode, use non-Visual selection for the whole screen.
- When starting with "gvim -f" and using ":gui" in the .gvimrc file, Vim

forked anyway. Now the "-f" flag is remembered for ":gui". Added "gui -b"
to run gvim in the background anyway.

Motif GUI:
- Check for "-lXp" library in configure (but it doesn't work yet...).
- Let configure check for Lesstif in "/usr/local/Lesstif/Motif*". Changed the

order to let a local Motif version override a system standard version.

Win32 GUI:
- When using "-register" or "-unregister" in the non-OLE version, give an

error message.
- Use GTK toolbar icons. Make window border look better. Use sizing handles

on the lower left&right corners of the window. (Negri)
- When starting an external command with ":!start" and the command can not be

executed, give an error message. (Webb)
- Use sizing handles for the grey rectangles below the scrollbars. Can draw

toolbar in flat mode now, looks better. (Negri)
- Preparations for MS-Windows 3.1 addition. Mostly changing WIN32 to MSWIN

and USE_GUI_WIN32 to USE_GUI_MSWIN. (Negri)

Avoid allocating the same string four times in buflist_findpat(). (Williams)

Set title and icon text with termcap options 't_ts', 't_fs', 't_IS' and
't_IE'. Allows doing this on any terminal that supports setting the title
and/or icon text. (Schild)

New 'x' flag in 'comments': Automatically insert the end part when its last
character is typed. Helps to close a /* */ comment in C. (Webb)

When expand() has a second argument which is non-zero, don't use 'suffixes'
and 'wildignore', return all matches.

'O' flag in 'cpoptions' When not included, Vim will not overwrite a file, if
it didn't exist when editing started but it does exist when the buffer is
written to the file. The file must have been created outside of Vim, possibly
without the user knowing it. When this is detected after a shell command,
give a warning message.

When editing a new file, CTRL-G will show [New file]. When there were errors
while reading the file, CTRL-G will show [Read errors].

":wall" can now use a dialog and file-browsing when needed.

version5.txt — 2173

Grouped functionality into new features, mainly to reduce the size of the
minimal version:
+linebreak: 'showbreak', 'breakat' and 'linebreak'
+visualextra: "I"nsert and "A"ppend in Visual block mode, "c"hange all lines

in a block, ">" and "<": Shifting a block, "r": Replacing a
Visual area with one character.

+comments: 'comments'
+cmdline_info: 'ruler' and 'showcmd'. Replaces +showcmd.
"+title" Don't add code to set title or icon for MSDOS, this was not

possible anyway.
+cmdline_compl Disable commandline completion at compile time, except for

files, directories and help items.

Moved features from a list of function calls into an array. Should save a bit
of space.

While entering the body of a function, adjust indent according to "if" and
"while" commands.

VMS: Adjusted os_vms.mms a bit according to suggestions from Arpadffy.

The flags in the 'comments' option can now include an offset. This makes it
possible to align "/*****", "/* xxx" and "/*" comments with the same
'comments' setting. The default value for 'comments' uses this.
Added 'O' flag: Don't use this part for the "O" command. Useful for "set
com=sO:*\ -,mO:*\ \ ,exO:*/"

FileType autocommands recognize ".bak", ".orig" and "~" extensions and remove
them to find the relevant extension.

The tutorial for writing a Vim script file has been extended.

Some more highlighting in help files, for items that are not typed literally.

Can use "CTRL-W CTRL-G" like "CTRL-W g".

"make test" for OS/2.

Adjusted configure to automatically use the GUI for BeOS.

Fixed fixed-5.4

5.3.1: When using an autocommand for BufWritePre that changes the name of the
buffer, freed memory would be used. (Geddes)

Mac: Compiler didn't understand start of skip_class_name().

Win32 GUI:
- When cancelling the font requester, don't give an error message.
- When a tearoff-menu is open and its menu is deleted, Vim could crash.

(Negri)
- There was a problem on Windows 95 with (un)maximizing the window.

(Williams)
- when 'mousehide' is set, the mouse would stay hidden when a menu is dropped

with the keyboard. (Ralston)
- The tempname() function already created the file. Caused problems when

using ":w". Now the file is deleted.

version5.txt — 2174

- Cursor disappeared when ending up in the top-left character on the screen
after scrolling. (Webb)

- When adding a submenu for a torn-off menu, it was not updated.
- Menu tooltip was using the toolbar tooltip. (Negri)
- Setting 'notitle' didn't remove the title. (Steed)
- Using ":!start cmd" scrolled the screen one line up, and didn't wait for

return when the command wasn't found.

Cscope interface: Sorting of matches was wrong. Starting the interface could
fail. (Kahn)

Motif GUI: Could not compile with Motif 1.1, because some tear-off
functionality was not in #ifdefs.

Configure could sometimes not compile or link the test program for sizeof(int)
properly. This caused alignment problems for the undo structure allocations.
Added a safety check that SIZEOF_INT is not zero.

Added configure check to test if strings.h can be included after string.h.
Some systems can't handle it.
Some systems need both string.h and strings.h included. Adjusted vim.h for
that. Removed including string.h from os_unixx.h, since it's already in
vim.h. (Savage)
AIX: defining _NO_PROTO in os_unix.h causes a conflict between string.h and
strings.h, but after the configure check said it was OK. Also define
_NO_PROTO for AIX in the configure check. (Winn)

When closing a window with CTRL-W c, the value of 'hidden' was not taken into
account, the buffer was always unloaded. (Negri)

Unix Makefile: "make install" always tried to rename an older executable and
remove it. This caused an error message when it didn't exit. Added a check
for the existence of an old executable.
The command line for "make install" could get too long, because of the many
syntax files. Now first do a "cd" to reduce the length.

On RISCOS and MSDOS, reading a file could fail, because the short filename was
used, which can be wrong after a ":!cd".

In the DOS versions, the wrong install.exe was included (required Windows).
Now the install.exe version is included that is the same as the Vim version.
This also supports long file names where possible.

When recording, and stopping while in Insert mode with CTRL-O q, the CTRL-O
would also be recorded.

32bit DOS version: "vim \file", while in a subdirectory, resulted in "new
file" for "file" in the local directory, while "\file" did exist. When
"file" in the current directory existed, this didn't happen.

MSDOS: Mouse could not go beyond 80 columns in 132 columns mode. (Young)

"make test" failed in the RedHat RPM, because compatible is off by default.

In Insert mode <C-O><C-W><C-W> changes to other window, but the status bars
were not updated until another character was typed.

MSDOS: environment options in lowercase didn't work, although they did in the
Win32 versions. (Negri)

version5.txt — 2175

After ":nohlsearch", a tag command switched highlighting back on.

When using "append" command as the last line in an autocommand, Vim would
crash.

RISCOS: The scroll bumpers (?) were not working properly. (Leonard)

"zl" and "zh" could move the cursor, but this didn't set the column in which
e.g., "k" would move the cursor.

When doing ":set all&" the value of 'scroll' was not set correctly. This
caused an error message when later setting any other number option.

When 'hlsearch' highlighting has been disabled with ":nohlsearch",
incremental searching would switch it back on too early.

When listing tags for ":tselect", and using a non-search command, and the last
character was equal to the first (e.g., "99"), the last char would not be
shown.

When searching for tags with ":tag" Vim would assume that all matches had been
found when there were still more (e.g. from another tags file).

Win32: Didn't recognize "c:\" (e.g., in tags file) as absolute path when
upper/lowercase was different.

Some xterms (Debian) send <Esc>OH for HOME and <Esc>OF for END. Added these
to the builtin-xterm.

In ex mode, any CR was seen as the end of the line. Only a NL should be
handled that way. broke ":s/foo/some^Mtext/".

In menu.vim, a vmenu was used to override an amenu. That didn't work, because
the system menu file doesn't overwrite existing menus. Added explicit vunmenu
to solve this.

Configure check for terminal library could find a library that doesn't work at
runtime (Solaris: shared library not found). Added a check that a program
with tgoto() can run correctly.

Unix: "echo -n" in the Makefile doesn't work on all systems, causing errors
compiling pathdef.c. Replaced it with "tr".

Perl: DO_JOIN was redefined by Perl. Undefined it in the perl files.

Various XIM and multibyte fixes:
- Fix user cannot see his language while he is typing his language with

off-the-spot method. (Nagano)
- Fix preedit position using text/edit area (using gui.wid). (Nagano)
- remove 'fix dead key' codes. It was needed since XNFocusWindow was

"x11_window", XNFocusWindow is now gui.wid. (Nagano)
- Remove some compile warnings and fix typos. (Namsh)
- For status area, check the gtk+ version while Vim runs. I believe it is

better than compile time check. (Namsh)
- Remove one FIXME for gtk+-xim. (Namsh)
- XIM: Dead keys didn't work for Czech. (Vyskovsky)
- Multibyte: If user input only 3byte such as mb1_mb2_eng or eng_mb1_mb2 VIM

could convert it to special character. (Nam)
- Athena/Motif with XIM: fix preedit area. (Nam)
- XIM: Composed strings were sometimes ignored. Vim crashed when compose

version5.txt — 2176

string was longer than 256 bytes. IM's geometry control is fixed. (Nam,
Nagano)

- Win32 multibyte: hollowed cursor width on a double byte char was wrong.
(Nagano)

- When there is no GUI, selecting XIM caused compilation problems.
Automatically disable XIM when there is no GUI in configure.

- Motif and Athena: When compiled with XIM, but the input method was not
enabled, there would still be a status line. Now the status line is gone if
the input method doesn't work. (Nam)

Win32: tooltip was not removed when selecting a parent menu (it was when
selecting a menu entry). (Negri)

Unix with X: Some systems crash on exit, because of the XtCloseDisplay() call.
Removed it, it should not be necessary when exiting.

Win32: Crash on keypress when compiled with Borland C++. (Aaron)

When checking for Motif library files, prefer the same location as the include
files (with "include" replaced with "lib") above another entry.

Athena GUI: Changed "XtOffset()" in gui_at_fs.c to "XtOffsetOf()", like it's
used in gui_x11.c.

Win32: When testing for a timestamp of a file on floppy, would get a dialog
box when the floppy has been removed. Now return with an error. (Negri)

Win32 OLE: When forced to come to the foreground, a minimized window was still
minimized, now it's restored. (Zivkov)

There was no check for a positive 'shiftwidth'. A negative value could cause
a hangup, a zero value a crash.

Athena GUI: horizontal scrollbar wasn't updated correctly when clicking right
or left of the thumb.

When making a Visual-block selection in one window, and trying to scroll
another, could cause errors for accessing non-existent line numbers.

When 'matchpairs' contains "`:'", jumping from the ` to the ' didn't work
properly.

Changed '\"' to '"' to make it compatible with old C compilers.

The command line expansion for mappings caused a script with a TAB between lhs
and rhs of a map command to fail. Assume the TAB is to separate lhs and rhs
when there are no mappings to expand.

When editing a file with very long lines with 'scrolloff' set, "j" would
sometimes end up in a line which wasn't displayed.

When editing a read-only file, it was completely read into memory, even when
it would not fit. Now create a swap file for a read-only file when running
out of memory while reading the file.

When using ":set cino={s,e-s", a line after "} else {" was not indented
properly. Also added a check for this in test3.in.

The Hebrew mapping for the command line was remembered for the next command
line. That isn't very useful, a command is not Hebrew. (Kol)

version5.txt — 2177

When completing file names with embedded spaces, like "Program\ files", this
didn't work. Also for user commands. Moved backslash_halve() down to
mch_expandpath().

When using "set mouse=a" in Ex mode, mouse events were handled like typed
text. Then typing "quit" screwed up the mouse behavior of the xterm.

When repeating an insert with "." that contains a CTRL-Y, a number 5 was
inserted as "053".

Yanking a Visual area, with the cursor past the line, didn't move the cursor
back onto the line. Same for "~", "u", "U" and "g?"

Win32: Default for 'grepprg' could be "findstr /n" even though there is no
findstr.exe (Windows 95). Check if it exists, and fall back to "grep -n" if
it doesn't.

Because gui_mouse_moved() inserted a leftmouse click in the input buffer,
remapping a leftmouse click caused strange effects. Now Insert another code
in the input buffer. Also insert a leftmouse release, to avoid the problem
with ":map <LeftMouse> l" that the next release is seen as the release for the
focus click.

With 'wrap' on, when using a line that doesn't fit on the screen, if the start
of the Visual area is before the start of the screen, there was no
highlighting. Also, 'showbreak' doesn't work properly.

DOS, Win32: A pattern "[0-9]\+" didn't work in autocommands.

When creating a swap file for a buffer which isn't the current buffer, could
get a mixup of short file name, resulting in a long file name when a short
file name was required. makeswapname() was calling modname() instead of
buf_modname().

When a function caused an error, and the error message was very long because
of recursiveness, this would cause a crash.

'suffixes' were always compared with matching case. For MS-DOS, Win32 and
OS/2 case is now ignored.

The use of CHARBITS in regexp.c didn't work on some Linux. Don't use it.

When generating a script file, 'cpo' was made empty. This caused backslashes
to disappear from mappings. Set it to "B" to avoid that.

Lots of typos in the documentation. (Campbell)

When editing an existing (hidden) buffer, jump to the last used cursor
position. (Madsen)

On a Sun the xterm screen was not restored properly when suspending. (Madsen)

When $VIMINIT is processed, 'nocompatible' was only set after processing it.

Unix: Polling for a character wasn't done for GPM, Sniff and Xterm clipboard
all together. Cleaned up the code for using select() too.

When executing external commands from the GUI, some typeahead was lost. Added
some code to regain as much typeahead as possible.

version5.txt — 2178

When the window height is 5 lines or fewer, <PageDown> didn't use a one-line
overlap, while <PageUp> does. Made sure that <PageUp> uses the same overlap
as <PageDown>, so that using them both always displays the same lines.

Removed a few unused functions and variables (found with lint).

Dictionary completion didn't use 'infercase'. (Raul)

Configure tests failed when the Perl library was not in LD_LIBRARY_PATH.
Don't use the Perl library for configure tests, add it to the linker line only
when linking Vim.

When using ncurses/terminfo, could get a 't_Sf' and 't_Sb' termcap entry that
has "%d" instead of "%p1%d". The light background colors didn't work then.

GTK GUI with ncurses: Crashed when starting up in tputs(). Don't use tputs()
when the GUI is active.

Could use the ":let" command to set the "count", "shell_error" and "version"
variables, but that didn't work. Give an error message when trying to set
them.

On FreeBSD 3.0, tclsh is called tclsh8.0. Adjusted configure.in to find it.

When Vim is linked with -lncurses, but python uses -ltermcap, this causes
trouble: "OOPS". Configure now removes the -ltermcap.

:@" and :*" didn't work properly, because the " was recognized as the start of
a comment.

Win32s GUI: Minimizing the console where a filter command runs in caused
trouble for detecting that the filter command has finished. (Negri)

After executing a filter command from an xterm, the mouse would be disabled.
It would work again after changing the mode.

Mac GUI: Crashed in newenv(). (St-Amant)

The menus and mappings in mswin.vim didn't handle text ending in a NL
correctly. (Acevedo)

The ":k" command didn't check if it had a valid argument or extra characters.
Now give a meaningful error message. (Webb)

On SGI, the signal function doesn't always have three arguments. Check for
struct sigcontext to find out. Might still be wrong...

Could crash when using 'hlsearch' and search pattern is "^".

When search patterns were saved and restored, status of no_hlsearch was not
also saved and restored (from ":nohlsearch" command).

When using setline() to make a line shorter, the cursor position was not
adjusted.

MS-DOS and Win95: When trying to edit a file and accidentally adding a slash
or backslash at the end, the file was deleted. Probably when trying to create
the swap file. Explicitly check for a trailing slash or backslash before
trying to read a file.

version5.txt — 2179

X11 GUI: When starting the GUI failed and received a deadly signal while
setting the title, would lock up when trying to exit, because the title is
reset again. Avoid using mch_settitle() recursively.

X11 GUI: When starting the GUI fails, and then trying it again, would crash,
because argv[] has been freed and x11_display was reset to NULL.

Win32: When $HOME was set, would put "~user" in the swap file, which would
never compare with a file name, and never cause the attention message. Put
the full path in the swap file instead.

Win32 console: There were funny characters at the end of the "vim -r" swap
files message (direct output of CR CR LF).

DOS 32 bit: "vim -r" put the text at the top of the window.

GUI: With 'mousefocus' set, got mouse codes as text with "!sleep 100" or "Q".

Motif and Win32 GUI: When changing 'guifont' to a font of the same size the
screen wasn't redrawn.

Unix: When using ":make", jumping to a file b.c, which is already open as a
symbolic link a.c, opened a new buffer instead of using the existing one.

Inserting text in the current buffer while sourcing the .vimrc file would
cause a crash or hang. The memfile for the current buffer was never
allocated. Now it's allocated as soon as something is written in the buffer.

DOS 32 bit: "lightblue" background worked for text, but not drawn parts were
black.

DOS: Colors of console were not restored upon exiting.

When recording, with 'cmdheight' set to 2 and typing Esc> in Insert mode
caused the "recording" message to be doubled.

Spurious "file changed" messages could happen on Windows. Now tolerate a one
second difference, like for Linux.

GUI: When returning from Ex mode, scrollbars were not updated.

Win32: Copying text to the clipboard containing a <CR>, pasting it would
replace it with a <NL> and drop the next character.

Entering a double byte character didn't work if the second byte is in [xXoO].
(Eric Lee)

vim_realloc was both defined and had a prototype in proto/misc2.pro. Caused
conflicts on Solaris.

A pattern in an autocommand was treated differently on DOS et al. than on
Unix. Now it's the same, also when using backslashes.

When using <Tab> twice for command line completion, without a match, the <Tab>
would be inserted. (Negri)

Bug in MS-Visual C++ 6.0 when compiling ex_docmd.c with optimization. (Negri)

Testing the result of mktemp() for failure was wrong. Could cause a crash.

version5.txt — 2180

(Peters)

GUI: When checking for a ".gvimrc" file in the current directory, didn't check
for a "_gvimrc" file too.

Motif GUI: When using the popup menu and then adding an item to the menu bar,
the menu bar would get very high.

Mouse clicks and special keys (e.g. cursor keys) quit the more prompt and
dialogs. Now they are ignored.

When at the more-prompt, xterm selection didn't work. Now use the 'r' flag in
'mouse' also for the more-prompt.

When selecting a Visual area of more than 1023 lines, with 'guioptions' set to
"a", could mess up the display because of a message in free_yank(). Removed
that message, except for the Amiga.

Moved auto-selection from ui_write() to the screen update functions. Avoids
unexpected behavior from a low-level function. Also makes the different
feedback of owning the selection possible.

Vi incompatibility: Using "i<CR>" in an indent, with 'ai' set, used the
original indent instead of truncating it at the cursor. (Webb)

":echo x" didn't stop at "q" for the more prompt.

Various fixes for Macintosh. (St-Amant)

When using 'selectmode' set to "exclusive", selecting a word and then using
CTRL-] included the character under the cursor.

Using ":let a:name" in a function caused a crash. (Webb)

When using ":append", an empty line didn't scroll up.

DOS etc.: A file name starting with '!' didn't work. Added '!' to default for
'isfname'.

BeOS: Compilation problem with prototype of skip_class_name(). (Price)

When deleting more than one line, e.g., with "de", could still use "U"
command, which didn't work properly then.

Amiga: Could not compile ex_docmd.c, it was getting too big. Moved some
functions to ex_cmds.c.

The expand() function would add a trailing slash for directories.

Didn't give an error message when trying to assign a value to an argument of a
function. (Webb)

Moved including sys/ptem.h to after termios.h. Needed for Sinix.

OLE interface: Don't delete the object in CVimCF::Release() when the reference
count becomes zero. (Cordell)
VisVim could still crash on exit. (Erhardt)

"case a: case b:" (two case statements in one line) aligned with the second
case. Now it uses one 'sw' for indent. (Webb)

version5.txt — 2181

Font initialisation wasn't right for Athena/Motif GUI. Moved the call to
highlight_gui_started() gui_mch_init() to gui_mch_open(). (Nam)

In Replace mode, backspacing over a TAB before where the replace mode started
while 'sts' is different from 'ts', would delete the TAB.

Win32 console: When executing external commands and switching between the two
console screens, Vim would copy the text between the buffers. That caused the
screen to be messed up for backtick expansion.

":winpos -1" then ":winpos" gave wrong error message.

Windows commander creates files called c:\tmp\$wc\abc.txt. Don't remove the
backslash before the $. Environment variables were not expanded anyway,
because of the backslash before the dollar.

Using "-=" with ":set" could remove half a part when it contains a "\,".
E.g., ":set path+=a\\,b" and then "set path-=b" removed ",b".

When Visually selecting lines, with 'selection' set to "inclusive", including
the last char of the line, "<<" moved an extra line. Also for other operators
that always work on lines.

link.sh changed "-lnsl_s" to "_s" when looking for "nsl" to be removed.
Now it only removes whole words.

When jumped to a mark or using "fz", and there is an error, the current column
was lost. E.g. when using "$fzj".

The "g CTRL-G" command could not be interrupted, even though it can take a
long time.

Some terminals do have <F4> and <xF4>. <xF4> was always interpreted as <F4>.
Now map <xF4> to <F4>, so that the user can override this.

When compiling os_win32.c with MIN_FEAT the apply_autocmds() should not be
used. (Aaron)

This autocommand looped forever: ":au FileChangedShell * ++nested e <afile>"
Now FileChangeShell never nests. (Roemer)

When evaluating an ":elseif" that was not going to matter anyway, ignore
errors. (Roemer)

GUI Lesstif: Tearoff bar was the last item, instead of the first.

GUI Motif: Colors of tear-off widgets was wrong when 't' flag added to
'guioptions' afterwards. When 't' flag in 'guioptions' is excluded, would
still get a tearoff item in a new menu.

An inode number can be "long long". Use ino_t instead of long. Added
configure check for ino_t.

Binary search for tags was using a file offset "long" instead of "off_t".

Insert mode completion of tags was not using 'ignorecase' properly.

In Insert mode, the <xFn> keys were not properly mapped to <Fn> for the
default mappings. Also caused errors for ":mkvimrc" and ":mksession".

version5.txt — 2182

When jumping to another window while in Insert mode, would get the "warning:
changing readonly file" even when not making a change.

A '(' or '{' inside a trailing "//" comment would disturb C-indenting.
When using two labels below each other, the second one was not indented
properly. Comments could mess up C-indenting in many places. (Roemer)

Could delete or redefine a function while it was being used. Could cause a
crash.
In a function it's logical to prepend "g:" to a system variable, but this
didn't work. (Roemer)

Hangul input: Buffer would overflow when user inputs invalid key sequence.
(Nam)

When BufLoad or BufEnter autocommands change the topline of the buffer in the
window, it was overruled and the cursor put halfway the window. Now only put
the cursor halfway if the autocommands didn't change the topline.

Calling exists("&option") always returned 1. (Roemer)

Win32: Didn't take actually available memory into account. (Williams)

White space after an automatically inserted comment leader was not removed
when 'ai' is not set and <CR> hit just after inserting it. (Webb)

A few menus had duplicated accelerators. (Roemer)

Spelling errors in documentation, quite a few "the the". (Roemer)

Missing prototypes for Macintosh. (Kielhorn)

Win32: When using 'shellquote' or 'shellxquote', the "!start cmd" wasn't
executed in a disconnected process.

When resizing the window, causing a line before the cursor to wrap or unwrap,
the cursor was displayed in the wrong position.

There was quite a bit of dead code when compiling with minimal features.

When doing a ":%s///" command that makes lines shorter, such that lines above
the final cursor position no longer wrap, the cursor position was not updated.

get_id_list() could allocate an array one too small, when a "contains=" item
has a wildcard that matches a group name that is added just after it. E.g.:
"contains=a.*b,axb". Give an error message for it.

When yanking a Visual area and using the middle mouse button -> crash. When
clipboard doesn't work, now make "* always use "".

Win32: Using ":buf a\ b\file" didn't work, it was interpreted as "ab\file".

Using ":ts ident", then hit <CR>, with 'cmdheight' set to 2: command line was
not cleared, the tselect prompt was on the last but one line.

mksession didn't restore the cursor column properly when it was after a tab.
Could not get all windows back when using a smaller terminal screen. Didn't
restore all windows when "winsize" was not in 'sessionoptions'. (Webb)

version5.txt — 2183

Command line completion for ":buffer" depended on 'ignorecase' for Unix, but
not for DOS et al. Now don't use 'ignorecase', but let it depend on whether
file names are case sensitive or not (like when expanding file names).

Win32 GUI: (Negri)
- Redrawing the background caused flicker when resizing the window. Removed

_OnEraseBG(). Removed CS_HREDRAW and CS_VREDRAW flags from the
sndclass.style.

- Some parts of the window were drawn in grey, instead of using the color from
the user color scheme.

- Dropping a file on gvim didn't activate the window.
- When there is no menu ('guioptions' excludes 'm'), never use the ALT key for

it.

GUI: When resizing the window, would make the window height a bit smaller.
Now round off to the nearest char cell size. (Negri)

In Vi the ")" and "(" commands don't stop at a single space after a dot.
Added 'J' flag in 'cpoptions' to make this behave Vi compatible. (Roemer)

When saving a session without any buffers loaded, there would be a ":normal"
command without arguments in it. (Webb)

Memory leaks fixed: (Madsen)
- eval.c: forgot to release func structure when func deleted
- ex_docmd.c: forgot to release string after "<sfile>"
- misc1.c: leak when completion pattern had no matches.
- os_unix.c: forgot to release regexp after file completions

Could crash when using a buffer without a name. (Madsen)
Could crash when doing file name completion, because of backslash_halve().
(Madsen)

":@a" would do mappings on register a, which is not Vi compatible. (Roemer)

":g/foo.*()/s/foobar/_&/gc" worked fine, but then "n" searched for "foobar"
and displayed "/foo.*()". (Roemer)

OS/2: get_cmd_output() was not included. Didn't check for $VIM/.vimrc file.

Command line completion of options didn't work after "+=" and "-=".

Unix configure: Test for memmove()/bcopy()/memcpy() tried redefining these
functions, which could fail if they are defined already. Use mch_memmove() to
redefine.

Unix: ":let a = expand("`xterm`&")" started an xterm asynchronously, but
":let a = expand("`xterm&`")" generated an error message, because the
redirection was put after the '&'.

Win32 GUI: Dialog buttons could not be selected properly with cursor keys,
when the default is not the first button. (Webb)

The "File has changed since editing started" (when regaining focus) could not
always be seen. (Webb)

When starting with "ex filename", the file message was overwritten with
the "entering Ex mode" message.

Output of ":tselect" listed name of file directly from the tags file. Now it

version5.txt — 2184

is corrected for the position of the tags file.

When 'backspace' is 0, could backspace over autoindent. Now it is no longer
allowed (Vi compatible).

In Replace mode, when 'noexpandtab' and 'smarttab' were set, and inserting
Tabs, backspacing didn't work correctly for Tabs inserted at the start of the
line (unless 'sts' was set too). Also, when replacing the first non-blank
after which is a space, rounding the indent was done on the first non-blank
instead of on the character under the cursor.

When 'sw' at 4, 'ts' at 8 and 'smarttab' set: When a tab was appended after
four spaces (they are replaced with a tab) couldn't backspace over the tab.

In Insert mode, with 'bs' set to 0, couldn't backspace to before autoindent,
even when it was removed with CTRL-D.

When repeating an insert command where a <BS>, <Left> or other key causes an
error, would flush buffers and remain in Insert mode. No longer flush
buffers, only beep and continue with the insert command.

Dos and Win32 console: Setting t_me didn't work to get another color. Made
this works backwards compatible.

For Turkish (LANG = "tr") uppercase 'i' is not an 'I'. Use ASCII uppercase
translation in vim_strup() to avoid language problems. (Komur)

Unix: Use usleep() or nanosleep() for mch_delay() when available. Hopefully
this avoids a hangup in select(0, ..) for Solaris 2.6.

Vim would crash when using a script file with 'let &sp = "| tee"', starting
vim with "vim -u test", then doing ":set sp=". The P_WAS_SET flag wasn't set
for a string option, could cause problems with any string option.

When using "cmd | vim -", stdin is not a terminal. This gave problems with
GPM (Linux console mouse) and when executing external commands. Now close
stdin and re-open it as a copy of stderr.

Syntax highlighting: A "nextgroup" item was not properly stored in the state
list. This caused missing of next groups when not redrawing from start to
end, but starting halfway.

Didn't check for valid values of 'ttymouse'.

When executing an external command from the GUI, waiting for the child to
terminate might not work, causing a hang. (Parmelan)

"make uninstall" didn't delete the vimrc_example.vim and gvimrc_example.vim
files and the vimtutor.

Win32: "expand("%:p:h")" with no buffer name removed the directory name.
"fnamemodify("", ":p")" did not add a trailing slash, fname_case() removed it.

Fixed: When 'hlsearch' was set and the 'c' flag was not in 'cpoptions':
highlighting was not correct. Now overlapping matches are handled correctly.

Athena, Motif and GTK GUI: When started without focus, cursor was shown as if
with focus.

Don't include 'shellpipe' when compiled without quickfix, it's not used.

version5.txt — 2185

Don't include 'dictionary' option when compiled without the +insert_expand
feature.
Only include the 'shelltype' option for the Amiga.

When making a change to a line, with 'hlsearch' on, causing it to wrap, while
executing a register, the screen would not be updated correctly. This was a
generic problem in update_screenline() being called while must_redraw is
VALID.

Using ":bdelete" in a BufUnload autocommand could cause a crash. The window
height was added to another window twice in close_window().

Win32 GUI: When removing a menu item, the tearoff wasn't updated. (Negri)

Some performance bottlenecks removed. Allocating memory was not efficient.
For Win32 checking for available memory was slow, don't check it every time
now. On NT obtaining the user name takes a long time, cache the result (for
all systems).

fnamemodify() with an argument ":~:." or ":.:~" didn't work properly.

When editing a new file and exiting, the marks for the buffer were not saved
in the viminfo file.

":confirm only" didn't put up a dialog.

These text objects didn't work when 'selection' was "exclusive": va(vi(va{
vi{ va< vi< vi[va[.

The dialog for writing a readonly file didn't have a valid default. (Negri)

The line number used for error messages when sourcing a file was reset when
modelines were inspected. It was wrong when executing a function.

The file name and line number for an error message wasn't displayed when it
was the same as for the last error, even when this was long ago. Now reset
the name/lnum after a hit-enter prompt.

In a session file, a "%" in a file name caused trouble, because fprintf() was
used to write it to the file.

When skipping statements, a mark in an address wasn't skipped correctly:
"ka|if 0 'ad|else|echo endif". (Roemer)

":wall" could overwrite a not-edited file without asking.

GUI: When $DISPLAY was not set or starting the GUI failed in another way, the
console mode then started with wrong colors and skipped initializations. Now
do an early check if the GUI can be started. Don't source the menu.vim or
gvimrc when it will not. Also do normal terminal initializations if the GUI
might not start.

When using a BufEnter autocommand to position the cursor and scroll the
window, the cursor was always put at the last used line and halfway the window
anyhow.

When 'wildmode' was set to "longest,list:full", ":e *.c<Tab><Tab>" didn't list
the matches. Also avoid that listing after a "longest" lists the wrong
matches when the first expansion changed the string in front of the cursor.

version5.txt — 2186

When using ":insert", ":append" or ":change" inside a while loop, was not able
to break out of it with a CTRL-C.

Win32: ":e ." took an awful long time before an error message when used in
"C:\". Was caused by adding another backslash and then trying to get the full
name for "C:\\".

":winpos -10 100" was working like ":winpos -10 -10", because a pointer was
not advanced past the '-' sign.

When obtaining the value of a hidden option, would give an error message. Now
just use a zero value.

OS/2: Was using argv[0], even though it was not a useful name. It could be
just "vim", found in the search path.

Xterm: ":set columns=78" didn't redraw properly (when lines wrap/unwrap) until
after a delay of 'updatetime'. Didn't check for the size-changed signal.

'scrollbind' didn't work in Insert mode.
Horizontal scrollbinding didn't always work for "0" and "$" commands (e.g.,
when 'showcmd' was off).

When compiled with minimal features but with GUI, switching on the mouse in an
xterm caused garbage, because the mouse codes were not recognized. Don't
enable the mouse when it can't be recognized. In the GUI it also didn't work,
the arguments to the mouse code were not interpreted.

When 'showbreak' used, in Insert mode, when the cursor is just after the last
character in the line, which is also the in the rightmost column, the cursor
position would be like the 'showbreak' string is shown, but it wasn't.

Autocommands could move the cursor in a new file, so that CTRL-W i didn't show
the right line. Same for when using a filemark to jump to another file.

When redefining the argument list, the title used for other windows could be
showing the wrong info about the position in the argument list. Also update
this for a ":split" command without arguments.

When editing file 97 of 13, ":Next" didn't work. Now it goes to the last
file in the argument list.

Insert mode completion (for dictionaries or included files) could not be
interrupted by typing an <Esc>. Could get hit-enter prompt after line
completion, or whenever the informative message would get too long.

When using the ":edit" command to re-edit the same file, an autocommand to
jump to the last cursor position caused the cursor to move. Now set the last
used cursor position to avoid this.

When 'comments' has a part that starts with white space, formatting the
comment didn't work.

At the ":tselect" prompt Normal mode mappings were used. That has been
disabled.

When 'selection' is not "old", some commands still didn't allow the cursor
past the end-of-line in Visual mode.

Athena: When a menu was deleted, it would appear again (but not functional)

version5.txt — 2187

when adding another menu. Now they don't reappear anymore (although they are
not really deleted either).

Borland C++ 4.x had an optimizer problem in fill_breakat_flags(). (Negri)

"ze" didn't work when 'number' was on. (Davis)

Win32 GUI: Intellimouse code didn't work properly on Windows 98. (Robinson)

A few files were including proto.h a second time, after vim.h had already done
that, which could cause problems with the vim_realloc() macro.

Win32 console: <M-x> or ALT-x was not recognized. Also keypad '+', '-' and
'*'. (Negri)
MS-DOS: <M-x> didn't work, produced a two-byte code. Now the alphabetic and
number keys work. (Negri)

When finding a lot of matches for a tag completion, the check for avoiding
double matches could take a lot of time. Add a line_breakcheck() to be able
to interrupt this. (Deshpande)

When the command line was getting longer than the screen, the more-prompt
would be given regularly, and the cursor position would be wrong. Now only
show the part of the command line that fits on the screen and force the cursor
to be positioned on the visible part. There can be text after the cursor
which isn't editable.

At the more prompt and with the console dialog, a cursor key was interpreted
as <Esc> and OA. Now recognize special keys in get_keystroke(). Ignore mouse
and scrollbar events.

When typing a BS after inserting a middle comment leader, typing the last char
of the end comment leader still changed it into the end comment leader. (Webb)

When a file system is full, writing to a swap file failed. Now first try to
write one block to the file. Try next entry in 'dir' if it fails.

When "~" is in 'whichwrap', doing "~" on last char of a line didn't update the
display.

Unix: Expanding wildcards for ":file {\\}" didn't work, because "\}" was
translated to "}" before the shell got it. Now don't remove backslashes when
wildcards are going to be expanded.

Unix: ":e /tmp/$uid" didn't work. When expanding environment variables in a
file name doesn't work, use the shell to expand the file name. ":e /tmp/$tty"
still doesn't work though.

"make test" didn't always work on DOS/Windows for test30, because it depended
on the external "echo" command.

The link.sh script used "make" instead of $MAKE from the Makefile. Caused
problems for generating pathdef.c when "make" doesn't work properly.

On versions that can do console and GUI: In the console a typed CSI code could
cause trouble.

The patterns in expression evaluation didn't ignore the 'l' flag in
'cpoptions'. This broke the working of <CR> in the options window.

version5.txt — 2188

When 'hls' off and 'ai' on, "O<Esc>" did remove the indent, but it was still
highlighted red for trailing space.

Win32 GUI: Dropping an encrypted file on a running gvim didn't work right. Vim
would loop while outputting "*" characters. vgetc() was called recursively,
thus it returns NUL. Added safe_vgetc(), which reads input directly from the
user in this situation.

While reading text from stdin, only an empty screen was shown. Now show that
Vim is reading from stdin.

The cursor shape wasn't set properly when returning to Insert mode, after
using a CTRL-O /asdf command which fails. It would be OK after a few seconds.
Now it's OK right away.

The 'isfname' default for DOS/Windows didn't include the '@' character. File
names that contained "dir\@file" could not be edited.

Win32 console: <C-S-Left> could cause a crash when compiled with Borland or
egcs. (Aaron)

Unix and VMS: "#if HAVE_DIRENT_H" caused problems for some compilers. Use
"#ifdef HAVE_DIRENT_H" instead. (Jones)

When a matching tag is in the current file but has a search pattern that
doesn't match, the cursor would jump to the first line.

Unix: Dependencies for pty.c were not included in Makefile. Dependency of
ctags/config.h was not included (only matters for parallel make).

Removed a few Uninitialized Memory Reads (potential crashes). In do_call()
calling clear_var() when not evaluating. In win32_expandpath() and
dos_expandpath() calling backslash_halve() past the end of a file name.

Removed memory leaks: Set_vim_var_string() never freed the value. The
next_list for a syntax keyword was never freed.

On non-Unix systems, using a file name with wildcards without a match would
silently fail. E.g., ":e *.sh". Now give a "No match" error message.

The life/life.mac, urm/urm.mac and hanoi/hanoi.mac files were not recognized
as Vim scripts. Renamed them to *.vim.

[Note: some numbered patches are not relevant when upgrading from version 5.3,
they have been removed]

Patch 5.4m.1
Problem: When editing a file with a long name, would get the hit-enter

prompt, even though all settings are such that the name should be
truncated to avoid that. filemess() was printing the file name
without truncating it.

Solution: Truncate the message in filemess(). Use the same code as for
msg_trunc_attr(), which is moved to the new function
msg_may_trunc().

Files: src/message.c, src/proto/message.pro, src/fileio.c

Patch 5.4m.3
Problem: The Motif libraries were not found by configure for Digital Unix.
Solution: Add "/usr/shlib" to the search path. (Andy Kahn)
Files: src/configure.in, src/configure

version5.txt — 2189

Patch 5.4m.5
Problem: Win32 GUI: When using the Save-As menu entry and selecting an

existing file in the file browser, would get a dialog to confirm
overwriting twice. (Ed Krall)

Solution: Removed the dialog from the file browser. It would be nicer to
set the "forceit" flag and skip Vim's ":confirm" dialog, but it
requires quite a few changes to do that.

Files: src/gui_w32.c

Patch 5.4m.6
Problem: Win32 GUI: When reading text from stdin, e.g., "cat foo | gvim -",

a message box would pop up with "-stdin-" (when exiting). (Michael
Schaap)

Solution: Don't switch off termcap mode for versions that are GUI-only.
They use another terminal to read from stdin.

Files: src/main.c, src/fileio.c

Patch 5.4m.7
Problem: Unix: running configure with --enable-gtk-check,

--enable-motif-check, --enable-athena-check or --enable-gtktest
had the reverse effect. (Thomas Koehler)

Solution: Use $enable_gtk_check variable correctly in AC_ARG_ENABLE().
Files: src/configure.in, src/configure

Patch 5.4m.9
Problem: Multi-byte: With wrapping lines, the cursor was sometimes 2

characters to the left. Syntax highlighting was wrong when a
double-byte character was split for a wrapping line. When
'showbreak' was on the splitting also didn't work.

Solution: Adjust getvcol() and win_line(). (Chong-Dae Park)
Files: src/charset.c, src/screen.c

Patch 5.4m.11
Problem: The ":call" command didn't check for illegal trailing characters.

(Stefan Roemer)
Solution: Add the check in do_call().
Files: src/eval.c

Patch 5.4m.13
Problem: With the ":s" command:

1. When performing a substitute command, the mouse would be
disabled and enabled for every substitution.

2. The cursor position could be beyond the end of the line.
Calling line_breakcheck() could try to position the cursor,
which causes a crash in the Win32 GUI.

3. When using ":s" in a ":g" command, the cursor was not put on
the first non-white in the line.

4. There was a hit-enter prompt when confirming the substitution
and the replacement was a bit longer.

Solution: 1. Only disable/enable the mouse when asking for confirmation.
2. Always put the cursor on the first character, it is going to be

moved to the first non-blank anyway.
Don't use the cursor position in gui_mch_draw_hollow_cursor(),
get the character from the screen buffer.

3. Added global_need_beginline flag to call beginline() after ":g"
has finished all substitutions.

4. Clear the need_wait_return flag after prompting the user.
Files: src/ex_cmds.c, src/gui_w32.c

version5.txt — 2190

Patch 5.4m.14
Problem: When doing "vim xxx", ":opt", ":only" and then ":e xxx" we end

up with two swapfiles for "xxx". That is caused by the ":bdel"
command which is executed when unloading the option-window.
Also, there was no check if closing a buffer made the new one
invalid, this could cause a crash.

Solution: When closing a buffer causes the current buffer to be deleted,
use the new buffer to replace it. Also detect that the new buffer
has become invalid as a side effect of closing the current one.
Make autocommand that calls ":bdel" in optwin.vim nested, so that
the buffer loading it triggers also executes autocommands.
Also added a test for this in test13.

Files: runtime/optwin.vim, src/buffer.c, src/ex_cmds.c, src/globals.h
src/testdir/test13.in, src/testdir/test13.ok

Patch 5.4m.15
Problem: When using a BufEnter autocommand to reload the syntax file,

conversion to HTML caused a crash. (Sung-Hyun Nam)
Solution: When using ":syntax clear" the current stack of syntax items was

not cleared. This will cause memory to be used that has already
been freed. Added call to invalidate_current_state() in
syntax_clear().

Files: src/syntax.c

Patch 5.4m.17
Problem: When omitting a ')' in an expression it would not be seen as a

failure.
When detecting an error inside (), there would be an error message
for a missing ')' too.
When using ":echo 1+|echo 2" there was no error message. (Roemer)
When using ":exe 1+" there was no error message.
When using ":return 1+" there was no error message.

Solution: Fix do_echo(), do_execute() and do_return() to give an error
message when eval1() returns FAIL.
Fix eval6() to handle trailing ')' correctly and return FAIL when
it's missing.

Files: src/eval.c

Patch 5.4m.18
Problem: When using input() from inside an expression entered with

"CTRL-R =" on the command line, there could be a crash. And the
resulting command line was wrong.

Solution: Added getcmdline_prompt(), which handles recursive use of
getcmdline() correctly. It also sets the command line prompt.
Removed cmdline_prompt(). Also use getcmdline_prompt() for
getting the crypt key in get_crypt_key().

Files: src/proto/ex_getln.pro, src/ex_getln.c, src/eval.c, src/misc2.c

Patch 5.4m.21
Problem: When starting up, the screen structures were first allocated at

the minimal size, then initializations were done with Rows
possibly different from screen_Rows. Caused a crash in rare
situations (GTK with XIM and fontset).

Solution: Call screenalloc() in main() only after calling ui_get_winsize().
Also avoids a potential delay because of calling screenclear()
while "starting" is non-zero.

Files: src/main.c

Patch 5.4m.22
Problem: In the GUI it was possible that the screen was resized and the

version5.txt — 2191

screen structures re-allocated while redrawing the screen. This
could cause a crash (hard to reproduce). The call sequence goes
through update_screen() .. syntax_start() .. ui_breakcheck() ..
gui_resize_window() .. screenalloc().

Solution: Set updating_screen while redrawing. If the window is resized
remember the new size and handle it only after redrawing is
finished.
This also fixes that resizing the screen while still redrawing
(slow syntax highlighting) would not work properly.
Also disable display_hint, it was never used.

Files: src/globals.h, src/gui.c, src/screen.c, src/proto/gui.pro

Patch 5.4m.23
Problem: When using expand("<cword>") when there was no word under the

cursor, would get an error message. Same for <cWORD> and <cfile>.
Solution: Don't give an error message, return an empty string.
Files: src/eval.c

Patch 5.4m.24
Problem: ":help \|" didn't find anything. It was translated to "/\\|".
Solution: Translate "\|" into "\\bar". First check the table for specific

translations before checking for "\x".
Files: src/ex_cmds.c

Patch 5.4m.25
Problem: Unix: When using command line completion on files that contain

''', '"' or '|' the file name could not be used.
Adding this file name to the Buffers menu caused an error message.

Solution: Insert a backslash before these three characters.
Adjust Mungename() function to insert a backslash before '|'.

Files: src/ex_getln.c, runtime/menu.vim

Patch 5.4m.26
Problem: When using a mapping of two function keys, e.g., <F1><F1>, and

only the first char of the second key has been read, the mapping
would not be recognized. Noticed on some Unix systems with xterm.

Solution: Add 'K' flag to 'cpoptions' to wait for the whole key code, even
when halfway a mapping.

Files: src/option.h, src/term.c

Patch 5.4m.27
Problem: When making test33 without the lisp feature it hangs. Interrupting

the execution of the script then might cause a crash.
Solution: In inchar(), after closing a script, don't use buf[] anymore.

closescript() has freed typebuf[] and buf[] might be pointing
inside typebuf[].
Avoid that test33 hangs when the lisp feature is missing.

Files: src/getchar.c src/testdir/test33.in

"os2" was missing from the feature list. Useful for has("os2").

BeOS:
- Included patches from Richard Offer for BeOS R4.5.
- menu code didn't work right. Crashed in the Buffers menu. The window title

wasn't set. (Offer)

Patch 5.4n.3
Problem: C-indenting was wrong after " } else". The white space was not

skipped. Visible when 'cino' has "+10".
Solution: Skip white space before calling cin_iselse(). (Norbert Zeh)

version5.txt — 2192

Files: src/misc1.c

Patch 5.4n.4
Problem: When the 't' flag in 'cpoptions' is included, after a

":nohlsearch" the search highlighting would not be enabled again
after a tag search. (Norbert Zeh)

Solution: When setting the new search pattern in jumpto_tag(), don't restore
no_hlsearch.

Files: src/tag.c

Patch 5.4n.5
Problem: When using ":normal" from a CursorHold autocommand Vim hangs. The

autocommand is executed down from vgetc(). Calling vgetc()
recursively to execute the command doesn't work then.

Solution: Forbid the use of ":normal" when vgetc_busy is set. Give an error
message when this happens.

Files: src/ex_docmd.c, runtime/doc/autocmd.txt

Patch 5.4n.6
Problem: "gv" could reselect a Visual that starts and/or ends past the end

of a line. (Robert Webb)
Solution: Check that the start and end of the Visual area are on a valid

character by calling adjust_cursor().
Files: src/normal.c

Patch 5.4n.8
Problem: When a mark was on a non existing line (e.g., when the .viminfo

was edited), jumping to it caused ml_get errors. (Alexey
Marinichev).

Solution: Added check_cursor_lnum() in nv_gomark().
Files: src/normal.c

Patch 5.4n.9
Problem: ":-2" moved the cursor to a negative line number. (Ralf Schandl)
Solution: Give an error message for a negative line number.
Files: src/ex_docmd.c

Patch 5.4n.10
Problem: Win32 GUI: At the hit-enter prompt, it was possible to scroll the

text. This erased the prompt and made Vim look like it is in
Normal mode, while it is actually still waiting for a <CR>.

Solution: Disallow scrolling at the hit-enter prompt for systems that use
on the fly scrolling.

Files: src/message.c

Patch 5.4n.14
Problem: Win32 GUI: When using ":winsize 80 46" and the height is more than

what fits on the screen, the window size was made smaller than
asked for (that's OK) and Vim crashed (that's not OK)>

Solution: Call check_winsize() from gui_set_winsize() to resize the windows.
Files: src/gui.c

Patch 5.4n.16
Problem: Win32 GUI: The <F10> key both selected the menu and was handled as

a key hit.
Solution: Apply 'winaltkeys' to <F10>, like it is used for Alt keys.
Files: src/gui_w32.c

Patch 5.4n.17
Problem: Local buffer variables were freed when the buffer is unloaded.

version5.txt — 2193

That's not logical, since options are not freed. (Ron Aaron)
Solution: Free local buffer variables only when deleting the buffer.
Files: src/buffer.c

Patch 5.4n.19
Problem: Doing ":e" (without argument) in an option-window causes trouble.

The mappings for <CR> and <Space> are not removed. When there is
another buffer loaded, the swap file for it gets mixed up.
(Steve Mueller)

Solution: Also remove the mappings at the BufUnload event, if they are still
present.
When re-editing the same file causes the current buffer to be
deleted, don't try editing it.
Also added a test for this situation.

Files: runtime/optwin.vim, src/ex_cmds.c, src/testdir/test13.in,
src/testdir/test13.ok

Patch 5.4n.24
Problem: BeOS: configure never enabled the GUI, because $with_x was "no".

Unix prototypes caused problems, because Display and Widget are
undefined.
Freeing fonts on exit caused a crash.

Solution: Only disable the GUI when $with_x is "no" and $BEOS is not "yes".
Add dummy defines for Display and Widget in proto.h.
Don't free the fonts in gui_exit() for BeOS.

Files: src/configure.in, src/configure, src/proto.h, src/gui.c.

The runtime/vim48x48.xpm icon didn't have a transparent background. (Schild)

Some versions of the mingw32/egcs compiler didn't have WINBASEAPI defined.
(Aaron)

VMS:
- mch_setenv() had two arguments instead of three.
- The system vimrc and gvimrc files were called ".vimrc" and ".gvimrc".

Removed the dot.
- call to RealWaitForChar() had one argument too many. (Campbell)
- WaitForChar() is static, removed the prototype from proto/os_vms.pro.
- Many file accesses failed, because Unix style file names were used.

Translate file names to VMS style by using vim_fopen().
- Filtering didn't work, because the temporary file name was generated wrong.
- There was an extra newline every 9192 characters when writing a file. Work

around it by writing line by line. (Campbell)
- os_vms.c contained "# typedef int DESC". Should be "typedef int DESC;".

Only mattered for generating prototypes.
- Added file name translation to many places. Made easy by defining macros

mch_access(), mch_fopen(), mch_fstat(), mch_lstat() and mch_stat().
- Set default for 'tagbsearch' to off, because binary tag searching apparently

doesn't work for VMS.
- make mch_get_host_name() work with /dec and /standard=vaxc. (Campbell)

Patch 5.4o.2
Problem: Crash when using "gf" on "file.c://comment here". (Scott Graham)
Solution: Fix wrong use of pointers in get_file_name_in_path().
Files: src/window.c

Patch 5.4o.3
Problem: The horizontal scrollbar was not sized correctly when 'number' is

version5.txt — 2194

set and 'wrap' not set.
Athena: Horizontal scrollbar wasn't updated when the cursor was
positioned with a mouse click just after dragging.

Solution: Subtract 8 from the size when 'number' set and 'wrap' not set.
Reset gui.dragged_sb when a mouse click is received.

Files: src/gui.c

Patch 5.4o.4
Problem: When running in an xterm and $WINDOWID is set to an illegal value,

Vim would exit with "Vim: Got X error".
Solution: When using the display which was opened for the xterm clipboard,

check if x11_window is valid by trying to obtain the window title.
Also add a check in setup_xterm_clip(), for when using X calls to
get the pointer position in an xterm.

Files: src/os_unix.c

Patch 5.4o.5
Problem: Motif version with Lesstif: When removing the menubar and then

using a menu shortcut key, Vim would crash. (raf)
Solution: Disable the menu mnemonics when the menu bar is removed.
Files: src/gui_motif.c

Patch 5.4o.9
Problem: The DOS install.exe program used the "move" program. That doesn't

work on Windows NT, where "move" is internal to cmd.exe.
Solution: Don't use an external program for moving the executables. Use C

functions to copy the file and delete the original.
Files: src/dosinst.c

Motif and Athena obtained the status area height differently from GTK. Moved
status_area_enabled from global.h to gui_x11.c and call
xim_get_status_area_height() to get the status area height.

Patch 5.4p.1
Problem: When using auto-select, and the "gv" command is used, would not

always obtain ownership of the selection. Caused by the Visual
area still being the same, but ownership taken away by another
program.

Solution: Reset the clipboard Visual mode to force updating the selection.
Files: src/normal.c

Patch 5.4p.2
Problem: Motif and Athena with XIM: Typing 3-byte

<multibyte><multibyte><space> doesn't work correctly with Ami XIM.
Solution: Avoid using key_sym XK_VoidSymbol. (Nam)
Files: src/multbyte.c, src/gui_x11.c

Patch 5.4p.4
Problem: Win32 GUI: The scrollbar values were reduced for a file with more

than 32767 lines. But this info was kept global for all
scrollbars, causing a mixup between the windows.
Using the down arrow of a scrollbar in a large file didn't work.
Because of round-off errors there is no scroll at all.

Solution: Give each scrollbar its own scroll_shift field. When the down
arrow is used, scroll several lines.

Files: src/gui.h, src/gui_w32.c

Patch 5.4p.5
Problem: When changing buffers in a BufDelete autocommand, there could be

ml_line errors and/or a crash. (Schandl) Was caused by deleting

version5.txt — 2195

the current buffer.
Solution: When the buffer to be deleted unexpectedly becomes the current

buffer, don't delete it.
Also added a check for this in test13.

Files: src/buffer.c, src/testdir/test13.in, src/testdir/test13.ok

Patch 5.4p.7
Problem: Win32 GUI: When using 'mousemodel' set to "popup_setpos" and

clicking the right mouse button outside of the selected area, the
selected area wasn't removed until the popup menu has gone.
(Aaron)

Solution: Set the cursor and update the display before showing the popup
menu.

Files: src/normal.c

Patch 5.4p.8
Problem: The generated bugreport didn't contain information about

$VIMRUNTIME and whether runtime files actually exist.
Solution: Added a few checks to the bugreport script.
Files: runtime/bugreport.vim

Patch 5.4p.9
Problem: The windows install.exe created a wrong entry in the popup menu.

The "%1" was "". The full directory was included, even when the
executable had been moved elsewhere. (Ott)

Solution: Double the '%' to get one from printf. Only include the path to
gvim.exe when it wasn't moved and it's not in $PATH.

Files: src/dosinst.c

Patch 5.4p.10
Problem: Win32: On top of 5.4p.9: The "Edit with Vim" entry sometimes used

a short file name for a directory.
Solution: Change the "%1" to "%L" in the registry entry.
Files: src/dosinst.c

Patch 5.4p.11
Problem: Motif, Athena and GTK: When closing the GUI window when there is a

changed buffer, there was only an error message and Vim would not
exit.

Solution: Put up a dialog, like for ":confirm qa". Uses the code that was
already used for MS-Windows.

Files: src/gui.c, src/gui_w32.c

Patch 5.4p.12
Problem: Win32: Trying to expand a string that is longer than 256

characters could cause a crash. (Steed)
Solution: For the buffer in win32_expandpath() don't use a fixed size array,

allocate it.
Files: src/os_win32.c

MSDOS: Added "-Wall" to Makefile.djg compile flags. Function prototypes for
fname_case() and mch_update_cursor() were missing. "fd" was unused in
mf_sync(). "puiLocation" was unused in myputch(). "newcmd" unused in
mch_call_shell() for DJGPP version.

==
VERSION 5.5 version-5.5

Version 5.5 is a bug-fix version of 5.4.

version5.txt — 2196

Changed changed-5.5

The DJGPP version is now compiled with "-O2" instead of "-O4" to reduce the
size of the executables.

Moved the src/STYLE file to runtime/doc/develop.txt. Added the design goals
to it.

'backspace' is now a string option. See patch 5.4.15.

Added added-5.5

Included Exuberant Ctags version 3.3. (Darren Hiebert)

In runtime/mswin.vim, map CTRL-Q to CTRL-V, so that CTRL-Q can be used
everywhere to do what CTRL-V used to do.

Support for decompression of bzip2 files in vimrc_example.vim.

When a patch is included, the patch number is entered in a table in version.c.
This allows skipping a patch without breaking a next one.

Support for mouse scroll wheel in X11. See patch 5.5a.14.

line2byte() can be used to get the size of the buffer. See patch 5.4.35.

The CTRL-R CTRL-O r and CTRL-R CTRL-P r commands in Insert mode are used to
insert a register literally. See patch 5.4.48.

Uninstall program for MS-Windows. To be able to remove the registry entries
for "Edit with Vim". It is registered to be run from the "Add/Remove
programs" application. See patch 5.4.x7.

Fixed fixed-5.5

When using vimrc_example.vim: An error message when the cursor is on a line
higher than the number of lines in the compressed file. Move the autocommand
for jumping to the last known cursor position to after the decompressing
autocommands.

":mkexrc" and ":mksession" wrote the current value of 'textmode'. That may
mark a file as modified, which causes problems. This is a buffer-specific
setting, it should not affect all files.

"vim --version" wrote two empty lines.

Unix: The alarm signal could kill Vim. It is generated by the Perl alarm()
function. Ignore SIGALRM.

Win32 GUI: Toolbar still had the yellow bitmap for running a Vim script.

BeOS: "tmo" must be bigtime_t, instead of double. (Seibert)

Patch 5.4.1

version5.txt — 2197

Problem: Test11 fails when $GZIP is set to "-v". (Matthew Jackson)
Solution: Set $GZIP to an empty string.
Files: src/testdir/test11.in

Patch 5.4.2
Problem: Typing <Esc> at the crypt key prompt caused a crash. (Kallingal)
Solution: Check for a NULL pointer returned from get_crypt_key().
Files: src/fileio.c

Patch 5.4.3
Problem: Python: Trying to use the name of an unnamed buffer caused a

crash. (Daniel Burrows)
Solution: Check for b_fname being a NULL pointer.
Files: src/if_python.c

Patch 5.4.4
Problem: Win32: When compiled without toolbar, but the 'T' flag is in

'guioptions', there would be an empty space for the toolbar.
Solution: Add two #ifdefs where checking for the 'T' flag. (Vince Negri)
Files: src/gui.c

Patch 5.4.5
Problem: Athena GUI: Using the Buffers.Refresh menu entry caused a crash.

Looks like any ":unmenu" command may cause trouble.
Solution: Disallow ":unmenu" in the Athena version. Disable the Buffers

menu, because the Refresh item would not work.
Files: src/menu.c, runtime/menu.vim

Patch 5.4.6
Problem: GTK GUI: Using ":gui" in the .gvimrc file caused an error. Only

happens when the GUI forks.
Solution: Don't fork in a recursive call of gui_start().
Files: src/gui.c

Patch 5.4.7
Problem: Typing 'q' at the more prompt for the ATTENTION message causes the

file loading to be interrupted. (Will Day)
Solution: Reset got_int after showing the ATTENTION message.
Files: src/memline.c

Patch 5.4.8
Problem: Edit some file, ":he", ":opt": options from help window are shown,

but pressing space updates from the other window. (Phillipps)
Also: When there are changes in the option-window, ":q!" gives an
error message.

Solution: Before creating the option-window, go to a non-help window.
Use ":bdel!" to delete the buffer.

Files: runtime/optwin.vim

Patch 5.4.9
Just updates version.h. The real patch has been moved to 5.4.x1.
This patch is just to keep the version number correct.

Patch 5.4.10
Problem: GTK GUI: When $DISPLAY is invalid, "gvim -f" just exits. It

should run in the terminal.
Solution: Use gtk_init_check() instead of gtk_init().
Files: src/gui_gtk_x11.c

Patch 5.4.11

version5.txt — 2198

Problem: When using the 'S' flag in 'cpoptions', 'tabstop' is not copied to
the next buffer for some commands, e.g., ":buffer".

Solution: When the BCO_NOHELP flag is given to buf_copy_options(), still
copy the options used by do_help() when neither the "from" or "to"
buffer is a help buffer.

Files: src/option.c

Patch 5.4.12
Problem: When using 'smartindent', there would be no extra indent if the

current line did not have any indent already. (Hanus Adler)
Solution: There was a wrongly placed "else", that previously matched with

the "if" that set trunc_line. Removed the "else" and added a
check for trunc_line to be false.

Files: src/misc1.c

Patch 5.4.13
Problem: New SGI C compilers need another option for optimisation.
Solution: Add a check in configure for "-OPT:Olimit". (Chin A Young)
Files: src/configure.in, src/configure

Patch 5.4.14
Problem: Motif GUI: When the popup menu is present, a tiny window appears

on the desktop for some users.
Solution: Set the menu widget ID for a popup menu to 0. (Thomas Koehler)
Files: src/gui_motif.c

Patch 5.4.15
Problem: Since 'backspace' set to 0 has been made Vi compatible, it is no

longer possible to only allow deleting autoindent.
Solution: Make 'backspace' a list of parts, to allow each kind of

backspacing separately.
Files: src/edit.c, src/option.c, src/option.h, src/proto/option.pro,

runtime/doc/option.txt, runtime/doc/insert.txt

Patch 5.4.16
Problem: Multibyte: Locale zh_TW.Big5 was not checked for in configure.
Solution: Add zh_TW.Big5 to configure check. (Chih-Tsun Huang)
Files: src/configure.in, src/configure

Patch 5.4.17
Problem: GUI: When started from inside gvim with ":!gvim", Vim would not

start. ":!gvim -f" works fine.
Solution: After forking, wait a moment in the parent process, to give the

child a chance to set its process group.
Files: src/gui.c

Patch 5.4.18
Problem: Python: The clear_history() function also exists in a library.
Solution: Rename clear_history() to clear_hist().
Files: src/ex_getln.c, src/eval.c, src/proto/ex_getln.pro

Patch 5.4.19
Problem: In a terminal with 25 lines, there is a more prompt after the

ATTENTION message. When hitting 'q' here the dialog prompt
doesn't appear and file loading is interrupted. (Will Day)

Solution: Don't allow quitting the printing of a message for the dialog
prompt. Added the msg_noquit_more flag for this.

Files: src/message.c

Patch 5.4.20

version5.txt — 2199

Problem: GTK: When starting gvim, would send escape sequences to the
terminal to switch the cursor off and on.

Solution: Don't call msg_start() if the GUI is expected to start.
Files: src/main.c

Patch 5.4.21
Problem: Motif: Toplevel menu ordering was wrong when using tear-off items.
Solution: Don't add one to the index for a toplevel menu.
Files: src/gui_motif.c

Patch 5.4.22
Problem: In Insert mode, <C-Left>, <S-Left>, <C-Right> and <S-Right> didn't

update the column used for vertical movement.
Solution: Set curwin->w_set_curswant for those commands.
Files: src/edit.c

Patch 5.4.23
Problem: When a Visual selection is lost to another program, and then the

same text is Visually selected again, the clipboard ownership
wasn't regained.

Solution: Set clipboard.vmode to NUL to force regaining the clipboard.
Files: src/normal.c

Patch 5.4.24
Problem: Encryption: When using ":r file" while 'key' has already entered,

the 'key' option would be messed up. When writing the file it
would be encrypted with an unknown key and lost! (Brad Despres)

Solution: Don't free cryptkey when it is equal to the 'key' option.
Files: src/fileio.c

Patch 5.4.25
Problem: When 'cindent' is set, but 'autoindent' isn't, comments are not

properly indented when starting a new line. (Mitterand)
Solution: When there is a comment leader for the new line, but 'autoindent'

isn't set, do C-indenting.
Files: src/misc1.c

Patch 5.4.26
Problem: Multi-byte: a multibyte character is never recognized in a file

name, causing a backslash before it to be removed on Windows.
Solution: Assume that a leading-byte character is a file name character in

vim_isfilec().
Files: src/charset.c

Patch 5.4.27
Problem: Entries in the PopUp[nvic] menus were added for several modes, but

only deleted for the mode they were used for. This resulted in
the entry remaining in the PopUp menu.
When removing a PopUp[nvic] menu, the name had been truncated,
could result in greying-out the whole PopUp menu.

Solution: Remove entries for all modes from the PopUp[nvic] menus. Remove
the PopUp[nvic] menu entries first, before the name is changed.

Files: src/menu.c

Patch 5.4.28
Problem: When using a BufWritePre autocommand to change 'fileformat', the

new value would not be used for writing the file.
Solution: Check 'fileformat' after executing the autocommands instead of

before.
Files: src/fileio.c

version5.txt — 2200

Patch 5.4.29
Problem: Athena GUI: When removing the 'g' flag from 'guioptions', using a

menu can result in a crash.
Solution: Always grey-out menus for Athena, don't hide them.
Files: src/menu.c

Patch 5.4.30
Problem: BeOS: Suspending Vim with CTRL-Z didn't work (killed Vim). The

first character typed after ":sh" goes to Vim, instead of the
started shell.

Solution: Don't suspend Vim, start a new shell. Kill the async read thread
when starting a new shell. It will be restarted later. (Will Day)

Files: src/os_unix.c, src/ui.c

Patch 5.4.31
Problem: GUI: When 'mousefocus' is set, moving the mouse over where a

window boundary was, causes a hit-enter prompt to be finished.
(Jeff Walker)

Solution: Don't use 'mousefocus' at the hit-enter prompt. Also ignore it
for the more prompt and a few other situations. When an operator
is pending, abort it first.

Files: src/gui.c

Patch 5.4.32
Problem: Unix: $LDFLAGS was not passed to configure.
Solution: Pass $LDFLAGS to configure just like $CFLAGS. (Jon Miner)
Files: src/Makefile

Patch 5.4.33
Problem: Unix: After expanding an environment variable with the shell, the

next expansion would also use the shell, even though it is not
needed.

Solution: Reset "recursive" before returning from gen_expand_wildcards().
Files: src/misc1.c

Patch 5.4.34 (also see 5.4.x5)
Problem: When editing a file, and the file name is relative to a directory

above the current directory, the file name was made absolute.
(Gregory Margo)

Solution: Add an argument to shorten_fnames() which indicates if all file
names should be shortened, or only absolute names. In main() only
use shorten_fnames() to shorten absolute names.

Files: src/ex_docmd.c, src/fileio.c, src/main.c, src/proto/fileio.pro

Patch 5.4.35
Problem: There is no function to get the current file size.
Solution: Allow using line2byte() with the number of lines in the file plus

one. This returns the offset of the line past the end of the
file, which is the file size plus one.

Files: src/eval.c, runtime/doc/eval.txt

Patch 5.4.36
Problem: Comparing strings while ignoring case didn't work correctly for

some machines. (Mide Steed)
Solution: vim_stricmp() and vim_strnicmp() only returned 0 or 1. Changed

them to return -1 when the first argument is smaller.
Files: src/misc2.c

Patch 5.4.37 (also see 5.4.40 and 5.4.43)

version5.txt — 2201

Problem: Long strings from the viminfo file are truncated.
Solution: When writing a long string to the viminfo file, first write a line

with the length, then the string itself in a second line.
Files: src/eval.c, src/ex_cmds.c, src/ex_getln.c, src/mark.c, src/ops.c,

src/search.c, src/proto/ex_cmds.pro, runtime/syntax/viminfo.vim

Patch 5.4.38
Problem: In the option-window, ":set go&" resulted in 'go' being handled

like a boolean option.
Mappings for <Space> and <CR> were overruled by the option-window.

Solution: When the value of an option isn't 0 or 1, don't handle it like a
boolean option.
Save and restore mappings for <Space> and <CR> when entering and
leaving the option-window.

Files: runtime/optwin.vim

Patch 5.4.39
Problem: When setting a hidden option, spaces before the equal sign were

not skipped and cause an error message. E.g., ":set csprg =cmd".
Solution: When skipping over a hidden option, check for a following "=val"

and skip it too.
Files: src/option.c

Patch 5.4.40 (depends on 5.4.37)
Problem: Compiler error for "atol(p + 1)". (Axel Kielhorn)
Solution: Add a typecast: "atol((char *)p + 1)".
Files: src/ex_cmds.c

Patch 5.4.41
Problem: Some commands that were not included would give an error message,

even when after "if 0".
Solution: Don't give an error message for an unsupported command when not

executing the command.
Files: src/ex_docmd.c

Patch 5.4.42
Problem: ":w" would also cause a truncated message to appear in the message

history.
Solution: Don't put a kept message in the message history when it starts

with "<".
Files: src/message.c

Patch 5.4.43 (depends on 5.4.37)
Problem: Mixing long lines with multiple lines in a register causes errors

when writing the viminfo file. (Robinson)
Solution: When reading the viminfo file to skip register contents, skip

lines that start with "<".
Files: src/ops.c

Patch 5.4.44
Problem: When 'whichwrap' includes '~', a "~" command that goes on to the

next line cannot be properly undone. (Zellner)
Solution: Save each line for undo in n_swapchar().
Files: src/normal.c

Patch 5.4.45 (also see 5.4.x8)
Problem: When expand("$ASDF") fails, there is an error message.
Solution: Remove the global expand_interactively. Pass a flag down to skip

the error message.
Also: expand("$ASDF") returns an empty string if $ASDF isn't set.

version5.txt — 2202

Previously it returned "$ASDF" when 'shell' is "sh".
Also: system() doesn't print an error when the command returns an
error code.

Files: many

Patch 5.4.46
Problem: Backspacing did not always use 'softtabstop' after hitting <CR>,

inserting a register, moving the cursor, etc.
Solution: Reset inserted_space much more often in edit().
Files: src/edit.c

Patch 5.4.47
Problem: When executing BufWritePre or BufWritePost autocommands for a

hidden buffer, the cursor could be moved to a non-existing
position. (Vince Negri)

Solution: Save and restore the cursor and topline for the current window
when it is going to be used to execute autocommands for a hidden
buffer. Use an existing window for the buffer when it's not
hidden.

Files: src/fileio.c

Patch 5.4.48
Problem: A paste with the mouse in Insert mode was not repeated exactly the

same with ".". For example, when 'autoindent' is set and pasting
text with leading indent. (Perry)

Solution: Add the CTRL-R CTRL-O r and CTRL-R CTRL-P r commands in Insert
mode, which insert the contents of a register literally.

Files: src/edit.c, src/normal.c, runtime/doc/insert.txt

Patch 5.4.49
Problem: When pasting text with [<MiddleMouse>, the cursor could end up

after the last character of the line.
Solution: Correct the cursor position for the change in indent.
Files: src/ops.c

Patch 5.4.x1 (note: Replaces patch 5.4.9)
Problem: Win32 GUI: menu hints were never used, because WANT_MENU is not

defined until vim.h is included.
Solution: Move the #ifdef WANT_MENU from where MENUHINTS is defined to where

it is used.
Files: src/gui_w32.c

Patch 5.4.x2
Problem: BeOS: When pasting text, one character was moved to the end.
Solution: Re-enable the BeOS code in fill_input_buf(), and fix timing out

with acquire_sem_etc(). (Will Day)
Files: src/os_beos.c, src/ui.c

Patch 5.4.x3
Problem: Win32 GUI: When dropping a directory on a running gvim it crashes.
Solution: Avoid using a NULL file name. Also display a message to indicate

that the current directory was changed.
Files: src/gui_w32.c

Patch 5.4.x4
Problem: Win32 GUI: Removing an item from the popup menu doesn't work.
Solution: Don't remove the item from the menubar, but from the parent popup

menu.
Files: src/gui_w32.c

version5.txt — 2203

Patch 5.4.x5 (addition to 5.4.34)
Files: src/gui_w32.c

Patch 5.4.x6
Problem: Win32: Expanding (dir)name starting with a dot doesn't work.

(McCormack) Only when there is a path before it.
Solution: Fix the check, done before expansion, if the file name pattern

starts with a dot.
Files: src/os_win32.c

Patch 5.4.x7
Problem: Win32 GUI: Removing "Edit with Vim" from registry is difficult.
Solution: Add uninstall program to remove the registry keys. It is installed

in the "Add/Remove programs" list for ease of use.
Also: don't set $VIM when the executable is with the runtime files.
Also: Add a text file with a step-by-step description of how to
uninstall Vim for DOS and Windows.

Files: src/uninstal.c, src/dosinst.c, src/Makefile.w32, uninstal.txt

Patch 5.4.x8 (addition to 5.4.45)
Files: many

Patch 5.4.x9
Problem: Win32 GUI: After executing an external command, focus is not

always regained (when using focus-follows-mouse).
Solution: Add SetFocus() in mch_system(). (Mike Steed)
Files: src/os_win32.c

Patch 5.5a.1
Problem: ":let @* = @:" did not work. The text was not put on the

I clipboard. (Fisher)
Solution: Own the clipboard and put the text on it.
Files: src/ops.c

Patch 5.5a.2
Problem: append() did not mark the buffer modified. Marks below the

new line were not adjusted.
Solution: Fix the f_append() function.
Files: src/eval.c

Patch 5.5a.3
Problem: Editing compressed ".gz" files doesn't work on non-Unix systems,

because there is no "mv" command.
Solution: Add the rename() function and use it instead of ":!mv".

Also: Disable the automatic jump to the last position, because it
changes the jumplist.

Files: src/eval.c, runtime/doc/eval.txt, runtime/vimrc_example.vim

Patch 5.5a.4
Problem: When using whole-line completion in insert mode while the cursor

is in the indent, get "out of memory" error. (Stekrt)
Solution: Don't allocate a negative amount of memory in ins_complete().
Files: src/edit.c

Patch 5.5a.5
Problem: Win32: The 'path' option can hold only up to 256 characters,

because _MAX_PATH is 256. (Robert Webb)
Solution: Use a fixed path length of 1024.
Files: src/os_win32.h

version5.txt — 2204

Patch 5.5a.6
Problem: Compiling with gcc on Win32, using the Unix Makefile, didn't work.
Solution: Add $(SUFFIX) to all places where an executable is used. Also

pass it to ctags. (Reynolds)
Files: src/Makefile

Patch 5.5a.7
Problem: When using "cat | vim -" in an xterm, the xterm version reply

would end up in the file.
Solution: Read the file from stdin before switching the terminal to RAW

mode. Should also avoid problems with programs that use a
specific terminal setting.
Also: when using the GUI, print "Reading from stdin..." in the GUI
window, to give a hint why it doesn't do anything.

Files: src/main.c, src/fileio.c

Patch 5.5a.8
Problem: On multi-threaded Solaris, suspending doesn't work.
Solution: Call pause() when the SIGCONT signal was not received after

sending the SIGTSTP signal. (Nagano)
Files: src/os_unix.c

Patch 5.5a.9
Problem: 'winaltkeys' could be set to an empty argument, which is illegal.
Solution: Give an error message when doing ":set winaltkeys=".
Files: src/option.c

Patch 5.5a.10
Problem: Win32 console: Using ALTGR on a German keyboard to produce "}"

doesn't work, because the 8th bit is set when ALT is pressed.
Solution: Don't set the 8th bit when ALT and CTRL are used. (Leipert)
Files: src/os_win32.c

Patch 5.5a.11
Problem: Tcl: Configure always uses tclsh8.0.

Also: Loading a library doesn't work.
Solution: Add "--with-tclsh" configure argument to allow specifying another

name for the tcl shell.
Call Tcl_Init() in tclinit() to make loading libraries work.
(Johannes Zellner)

Files: src/configure.in, src/configure, src/if_tcl.c

Patch 5.5a.12
Problem: The "user_commands" feature is called "user-commands".
Solution: Replace "user-commands" with "user_commands". (Kim Sung-bom)

Keep "user-commands" for the has() function, to remain backwards
compatible with 5.4.

Files: src/eval.c, src/version.c

Patch 5.5a.13
Problem: OS/2: When $HOME is not defined, "C:/" is used for the viminfo

file. That is very wrong when OS/2 is on another partition.
Solution: Use $VIM for the viminfo file when it is defined, like for MSDOS.

Also: Makefile.os2 didn't depend on os_unix.h.
Files: src/os_unix.h, src/Makefile.os2

Patch 5.5a.14
Problem: Athena, Motif and GTK: The Mouse scroll wheel doesn't work.
Solution: Interpret a click of the wheel as a key press of the <MouseDown>

version5.txt — 2205

or <MouseUp> keys. Default behavior is to scroll three lines, or
a full page when Shift is used.

Files: src/edit.c, src/ex_getln.c, src/gui.c, src/gui_gtk_x11.c,
src/gui_x11.c, src/keymap.h, src/message.c, src/misc1.c,
src/misc2.c, src/normal.c, src/proto/normal.pro, src/vim.h,
runtime/doc/scroll.txt

Patch 5.5a.15
Problem: Using CTRL-A in Insert mode doesn't work correctly when the insert

started with the <Insert> key. (Andreas Rohrschneider)
Solution: Replace <Insert> with "i" before setting up the redo buffer.
Files: src/normal.c

Patch 5.5a.16
Problem: VMS: GUI does not compile and run.
Solution: Various fixes. (Zoltan Arpadffy)

Moved functions from os_unix.c to ui.c, so that VMS can use them
too: open_app_context(), x11_setup_atoms() and clip_x11* functions.
Made xterm_dpy global, it's now used by ui.c and os_unix.c.
Use gethostname() always, sys_hostname doesn't exist.

Files: src/globals.h, src/gui_x11.c, src/os_vms.mms, src/os_unix.c,
src/os_vms.c, src/ui.c, src/proto/os_unix.pro, src/proto/ui.pro

Renamed AdjustCursorForMultiByteCharacter() to AdjustCursorForMultiByteChar()
to avoid symbol length limit of 31 characters. (Steve P. Wall)

Patch 5.5b.1
Problem: SASC complains about dead assignments and implicit type casts.
Solution: Removed the dead assignments. Added explicit type casts.
Files: src/buffer.c, src/edit.c, src/eval.c, src/ex_cmds.c,

src/ex_getln.c, src/fileio.c, src/getchar.c, src/memline.c,
src/menu.c, src/misc1.c, src/normal.c, src/ops.c, src/quickfix.c,
src/screen.c

Patch 5.5b.2
Problem: When using "CTRL-O O" in Insert mode, hit <Esc> and then "o" in

another line truncates that line. (Devin Weaver)
Solution: When using a command that starts Insert mode from CTRL-O, reset

"restart_edit" first. This avoids that edit() is called with a
mix of starting a new edit command and restarting a previous one.

Files: src/normal.c

==
VERSION 5.6 version-5.6

Version 5.6 is a bug-fix version of 5.5.

Changed changed-5.6

Small changes to OleVim files. (Christian Schaller)

Inserted "/**/" between patch numbers in src/version.c. This allows for one
line of context, which some versions of patch need.

Reordered the Syntax menu to avoid long submenus. Removed keyboard shortcuts
for alphabetical items to avoid a clash with fixed items.

version5.txt — 2206

Added added-5.6

Included Exuberant Ctags version 3.4. (Darren Hiebert)

OpenWithVim in Python. (Christian Schaller)

Win32 GUI: gvimext.dll, for the context menu "Edit with Vim" entry. Avoids
the reported problems with the MS Office taskbar. Now it's a Shell Extension.
(Tianmiao Hu)

New syntax files:
abel Abel (John Cook)
aml Arc Macro Language (Nikki Knuit)
apachestyle Apache-style config file (Christian Hammers)
cf Cold Fusion (Jeff Lanzarotta)
ctrlh files with CTRL-H sequences (Bram Moolenaar)
cupl CUPL (John Cook)
cuplsim CUPL simulation (John Cook)
erlang Erlang (Kresimir Marzic)
gedcom Gedcom (Paul Johnson)
icon Icon (Wendell Turner)
ist MakeIndex style (Peter Meszaros)
jsp Java Server Pages (Rafael Garcia-Suarez)
rcslog Rcslog (Joe Karthauser)
remind Remind (Davide Alberani)
sqr Structured Query Report Writer (Paul Moore)
tads TADS (Amir Karger)
texinfo Texinfo (Sandor Kopanyi)
xpm2 X Pixmap v2 (Steve Wall)

The 'C' flag in 'cpoptions' can be used to switch off concatenation for
sourced lines. See patch 5.5.013 below. line-continuation

"excludenl" argument for the ":syntax" command. See patch 5.5.032 below.
:syn-excludenl

Implemented z+ and z^ commands. See patch 5.5.050 below.

Vim logo in Corel Draw format. Can be scaled to any resolution.

Fixed fixed-5.6

Using this mapping in Select mode, terminated completion:
":vnoremap <C-N> <Esc>a<C-N>" (Benji Fisher)
Ignore K_SELECT in ins_compl_prep().

VMS (Zoltan Arpadffy, David Elins):
- ioctl() in pty.c caused trouble, #ifndef VMS added.
- Cut & paste mismatch corrected.
- Popup menu line crash corrected. (Patch 5.5.047)
- Motif directories during open and save as corrected.
- Handle full file names with version numbers. (Patch 5.5.046)
- Directory handling (CD command etc.)
- Corrected file name conversion VMS to Unix and v.v.
- Recovery was not working.
- Terminal and signal handling was outdated compared to os_unix.c.
- Improved os_vms.txt.

version5.txt — 2207

Configure used fprintf() instead of printf() to check for __DATE__ and
__TIME__. (John Card II)

BeOS: Adjust computing the char_height and char_ascent. Round them up
separately, avoids redrawing artifacts. (Mike Steed)

Fix a few multibyte problems in menu_name_skip(), set_reg_ic(), searchc() and
findmatchlimit(). (Taro Muraoka)

GTK GUI:
- With GTK 1.2.5 and later the scrollbars were not redrawn correctly.
- Adjusted the gtk_form_draw() function.
- SNiFF connection didn't work.
- 'mousefocus' was not working. (Dalecki)
- Some keys were not working with modifiers: Shift-Tab, Ctrl-Space and CTRL-@.

Patch 5.5.001
Problem: Configure in the top directory did not pass on an argument with a

space correctly. For example "./configure --previs="/My home".
(Stephane Chazelas)

Solution: Use '"$@"' instead of '$*' to pass on the arguments.
Files: configure

Patch 5.5.002
Problem: Compilation error for using "fds[] & POLLIN". (Jeff Walker)
Solution: Use "fds[].revents & POLLIN".
Files: src/os_unix.c

Patch 5.5.003
Problem: The autoconf check for sizeof(int) is wrong on machines where

sizeof(size_t) != sizeof(int).
Solution: Use our own configure check. Also fixes the warning for

cross-compiling.
Files: src/configure.in, src/configure

Patch 5.5.004
Problem: On Unix it's not possible to interrupt ":sleep 100".
Solution: Switch terminal to cooked mode while asleep, to allow a SIGINT to

wake us up. But switch off echo, added TMODE_SLEEP.
Files: src/term.h, src/os_unix.c

Patch 5.5.005
Problem: When using <f-args> with a user command, an empty argument to the

command resulted in one empty string, while no string was
expected.

Solution: Catch an empty argument and pass no argument to the function.
(Paul Moore)

Files: src/ex_docmd.c

Patch 5.5.006
Problem: Python: When platform-dependent files are in another directory

than the platform-independent files it doesn't work.
Solution: Also check the executable directory, and add it to CFLAGS. (Tessa

Lau)
Files: src/configure.in, src/configure

Patch 5.5.007 (extra)
Problem: Win32 OLE: Occasional crash when exiting while still being used

version5.txt — 2208

via OLE.
Solution: Move OleUninitialize() to before deleting the application object.

(Vince Negri)
Files: src/if_ole.cpp

Patch 5.5.008
Problem: 10000@@ takes a long time and cannot be interrupted.
Solution: Check for CTRL-C typed while in the loop to push the register.
Files: src/normal.c

Patch 5.5.009
Problem: Recent Sequent machines don't link with "-linet". (Kurtis Rader)
Solution: Remove configure check for Sequent.
Files: src/configure.in, src/configure

Patch 5.5.010
Problem: Ctags freed a memory block twice when exiting. When out of

memory, a misleading error message was given.
Solution: Update to ctags 3.3.2. Also fixes a few other problems. (Darren

Hiebert)
Files: src/ctags/*

Patch 5.5.011
Problem: After "CTRL-V s", the cursor jumps back to the start, while all

other operators leave the cursor on the last changed character.
(Xiangjiang Ma)

Solution: Position cursor on last changed character, if possible.
Files: src/ops.c

Patch 5.5.012
Problem: Using CTRL-] in Visual mode doesn't work when the text includes a

space (just where it's useful). (Stefan Bittner)
Solution: Don't escape special characters in a tag name with a backslash.
Files: src/normal.c

Patch 5.5.013
Problem: The ":append" and ":insert" commands allow using a leading

backslash in a line. The ":source" command concatenates those
lines. (Heinlein)

Solution: Add the 'C' flag in 'cpoptions' to switch off concatenation.
Files: src/ex_docmd.c, src/option.h, runtime/doc/options.txt,

runtime/filetype.vim, runtime/scripts.vim

Patch 5.5.014
Problem: When executing a register with ":@", the ":append" command would

get text lines with a ':' prepended. (Heinlein)
Solution: Remove the ':' characters.
Files: src/ex_docmd.c, src/ex_getln.c, src/globals.h

Patch 5.5.015
Problem: When using ":g/pat/p", it's hard to see where the output starts,

the ":g" command is overwritten. Vi keeps the ":g" command.
Solution: Keep the ":g" command, but allow overwriting it with the report

for the number of changes.
Files: src/ex_cmds.c

Patch 5.5.016 (extra)
Problem: Win32: Using regedit to install Vim in the popup menu requires the

user to confirm this in a dialog.
Solution: Use "regedit /s" to avoid the dialog

version5.txt — 2209

Files: src/dosinst.c

Patch 5.5.017
Problem: If an error occurs when closing the current window, Vim could get

stuck in the error handling.
Solution: Don't set curwin to NULL when closing the current window.
Files: src/window.c

Patch 5.5.018
Problem: Absolute paths in shell scripts do not always work.
Solution: Use /usr/bin/env to find out the path.
Files: runtime/doc/vim2html.pl, runtime/tools/efm_filter.pl,

runtime/tools/shtags.pl

Patch 5.5.019
Problem: A function call in 'statusline' stops using ":q" twice from

exiting, when the last argument hasn't been edited.
Solution: Don't decrement quitmore when executing a function. (Madsen)
Files: src/ex_docmd.c

Patch 5.5.020
Problem: When the output of CTRL-D completion in the commandline goes all

the way to the last column, there is an empty line.
Solution: Don't add a newline when the cursor wrapped already. (Madsen)
Files: src/ex_getln.c

Patch 5.5.021
Problem: When checking if a file name in the tags file is relative,

environment variables were not expanded.
Solution: Expand the file name before checking if it is relative. (Madsen)
Files: src/tag.c

Patch 5.5.022
Problem: When setting or resetting 'paste' the ruler wasn't updated.
Solution: Update the status lines when 'ruler' changes because of 'paste'.
Files: src/option.c

Patch 5.5.023
Problem: When editing a new file and autocommands change the cursor

position, the cursor was moved back to the first non-white, unless
'startofline' was reset.

Solution: Keep the new column, just like the line number.
Files: src/ex_cmds.c

Patch 5.5.024 (extra)
Problem: Win32 GUI: When using confirm() to put up a dialog without a

default button, the dialog would not have keyboard focus.
(Krishna)

Solution: Always set focus to the dialog window. Only set focus to a button
when a default one is specified.

Files: src/gui_w32.c

Patch 5.5.025
Problem: When using "keepend" in a syntax region, a contained match that

includes the end-of-line could still force that region to
continue, if there is another contained match in between.

Solution: Check the keepend_level in check_state_ends().
Files: src/syntax.c

Patch 5.5.026

version5.txt — 2210

Problem: When starting Vim in a white-on-black xterm, with 'bg' set to
"dark", and then starting the GUI with ":gui", setting 'bg' to
"light" in the gvimrc, the highlighting isn't set. (Tsjokwing)

Solution: Set the highlighting when 'bg' is changed in the gvimrc, even
though full_screen isn't set.

Files: src/option.c

Patch 5.5.027
Problem: Unix: os_unix.c doesn't compile when XTERM_CLIP is used but

WANT_TITLE isn't. (Barnum)
Solution: Move a few functions that are used by the X11 title and clipboard

and put another "#if" around it.
Files: src/os_unix.c

Patch 5.5.028 (extra)
Problem: Win32 GUI: When a file is dropped on Win32 gvim while at the ":"

prompt, the file is edited but the command line is actually still
there, the cursor goes back to command line on the next command.
(Krishna)

Solution: When dropping a file or directory on gvim while at the ":" prompt,
insert the name of the file/directory. Allows using the
file/directory name for any Ex command.

Files: src/gui_w32.c

Patch 5.5.029
Problem: "das" at the end of the file didn't delete the last character of

the sentence.
Solution: When there is no character after the sentence, make the operation

inclusive in current_sent().
Files: src/search.c

Patch 5.5.030
Problem: Unix: in os_unix.c, "term_str" is used, which is also defined in

vim.h as a macro. (wuxin)
Solution: Renamed "term_str" to "buf" in do_xterm_trace().
Files: src/os_unix.c

Patch 5.5.031 (extra)
Problem: Win32 GUI: When exiting Windows, gvim will leave swap files behind

and will be killed ungracefully. (Krishna)
Solution: Catch the WM_QUERYENDSESSION and WM_ENDSESSION messages and try to

exit gracefully. Allow the user to cancel the shutdown if there
is a changed buffer.

Files: src/gui_w32.c

Patch 5.5.032
Problem: Patch 5.5.025 wasn't right. And C highlighting was still not

working correctly for a #define.
Solution: Added "excludenl" argument to ":syntax", to be able not to extend

a containing item when there is a match with the end-of-line.
Files: src/syntax.c, runtime/doc/syntax.txt, runtime/syntax/c.vim

Patch 5.5.033
Problem: When reading from stdin, a long line in viminfo would mess up the

file message. readfile() uses IObuff for keep_msg, which could be
overwritten by anyone.

Solution: Copy the message from IObuff to msg_buf and set keep_msg to that.
Also change vim_fgets() to not use IObuff any longer.

Files: src/fileio.c

version5.txt — 2211

Patch 5.5.034
Problem: "gvim -rv" caused a crash. Using 't_Co' before it's set.
Solution: Don't try to initialize the highlighting before it has been

initialized from main().
Files: src/syntax.c

Patch 5.5.035
Problem: GTK with XIM: Resizing with status area was messy, and

":set guioptions+=b" didn't work.
Solution: Make status area a separate widget, but not a separate window.

(Chi-Deok Hwang)
Files: src/gui_gtk_f.c, src/gui_gtk_x11.c, src/multbyte.c

Patch 5.5.036
Problem: The GZIP_read() function in $VIMRUNTIME/vimrc_example.vim to

uncompress a file did not do detection for 'fileformat'. This is
because the filtering is done with 'binary' set.

Solution: Split the filtering into separate write, filter and read commands.
Files: runtime/vimrc_example.vim

Patch 5.5.037
Problem: The "U" command didn't mark the buffer as changed. (McCormack)
Solution: Set the 'modified' flag when using "U".
Files: src/undo.c

Patch 5.5.038
Problem: When typing a long ":" command, so that the screen scrolls up,

causes the hit-enter prompt, even though the user just typed
return to execute the command.

Solution: Reset need_wait_return if (part of) the command was typed in
getcmdline().

Files: src/ex_getln.c

Patch 5.5.039
Problem: When using a custom status line, "%a" (file # of #) reports the

index of the current window for all windows.
Solution: Pass a window pointer to append_arg_number(), and pass the window

being updated from build_stl_str_hl(). (Stephen P. Wall)
Files: src/buffer.c, src/screen.c, src/proto/buffer.pro

Patch 5.5.040
Problem: Multi-byte: When there is some error in xim_real_init(), it can

close XIM and return. After this there can be a segv.
Solution: Test "xic" for being non-NULL, don't set "xim" to NULL. Also try

to find more matches for supported styles. (Sung-Hyun Nam)
Files: src/multbyte.c

Patch 5.5.041
Problem: X11 GUI: CTRL-_ requires the SHIFT key only on some machines.
Solution: Translate CTRL-- to CTRL-_. (Robert Webb)
Files: src/gui_x11.c

Patch 5.5.042
Problem: X11 GUI: keys with ALT were assumed to be used for the menu, even

when the menu has been disabled by removing 'm' from 'guioptions'.
Solution: Ignore keys with ALT only when gui.menu_is_active is set. (Raf)
Files: src/gui_x11.c

Patch 5.5.043
Problem: GTK: Handling of fontset fonts was not right when 'guifontset'

version5.txt — 2212

contains exactly 14 times '-'.
Solution: Avoid setting fonts when working with a fontset. (Sung-Hyun Nam)
Files: src/gui_gtk_x11.c

Patch 5.5.044
Problem: pltags.pl contains an absolute path "/usr/local/bin/perl". That

might not work everywhere.
Solution: Use "/usr/bin/env perl" instead.
Files: runtime/tools/pltags.pl

Patch 5.5.045
Problem: Using "this_session" variable does not work, requires preceding it

with "v:". Default filename for ":mksession" isn't mentioned
in the docs. (Fisher)

Solution: Support using "this_session" to be backwards compatible.
Files: src/eval.c, runtime/doc/options.txt

Patch 5.5.046 (extra)
Problem: VMS: problems with path and filename.
Solution: Truncate file name at last ';', etc. (Zoltan Arpadffy)
Files: src/buffer.c, src/fileio.c, src/gui_motif.c, src/os_vms.c,

src/proto/os_vms.pro

Patch 5.5.047
Problem: VMS: Crash when using the popup menu
Solution: Turn the #define MENU_MODE_CHARS into an array. (Arpadffy)
Files: src/structs.h, src/menu.c

Patch 5.5.048
Problem: HP-UX 11: Compiling doesn't work, because both string.h and

strings.h are included. (Squassabia)
Solution: The configure test for including both string.h and strings.h

must include <Xm/Xm.h> first, because it causes problems.
Files: src/configure.in, src/configure, src/config.h.in

Patch 5.5.049
Problem: Unix: When installing Vim, the protection bits of files might be

influenced by the umask.
Solution: Add $(FILEMOD) to Makefile. (Shetye)
Files: src/Makefile

Patch 5.5.050
Problem: "z+" and "z^" commands are missing.
Solution: Implemented "z+" and "z^".
Files: src/normal.c, runtime/doc/scroll.txt, runtime/doc/index.txt

Patch 5.5.051
Problem: Several Unix systems have a problem with the optimization limits

check in configure.
Solution: Removed the configure check, let the user add it manually in

Makefile or the environment.
Files: src/configure.in, src/configure, src/Makefile

Patch 5.5.052
Problem: Crash when using a cursor key at the ATTENTION prompt. (Alberani)
Solution: Ignore special keys at the console dialog. Also ignore characters

> 255 for other uses of tolower() and toupper().
Files: src/menu.c, src/message.c, src/misc2.c

Patch 5.5.053

version5.txt — 2213

Problem: Indenting is wrong after a function when 'cino' has "fs". Another
problem when 'cino' has "{s".

Solution: Put line after closing "}" of a function at the left margin.
Apply ind_open_extra in the right way after a '{'.

Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 5.5.054
Problem: Unix: ":e #" doesn't work if the alternate file name contains a

space or backslash. (Hudacek)
Solution: When replacing "#", "%" or other items that stand for a file name,

prepend a backslash before special characters.
Files: src/ex_docmd.c

Patch 5.5.055
Problem: Using "<C-V>$r-" in blockwise Visual mode replaces one character

beyond the end of the line. (Zivkov)
Solution: Only replace existing characters.
Files: src/ops.c

Patch 5.5.056
Problem: After "z20<CR>" messages were printed at the old command line

position once. (Veselinovic)
Solution: Set msg_row and msg_col when changing cmdline_row in

win_setheight().
Files: src/window.c

Patch 5.5.057
Problem: After "S<Esc>" it should be possible to restore the line with "U".

(Veselinovic)
Solution: Don't call u_clearline() in op_delete() when changing only one

line.
Files: src/ops.c

Patch 5.5.058
Problem: Using a long search pattern and then "n" causes the hit-enter

prompt. (Krishna)
Solution: Truncate the echoed pattern, like other messages. Moved code for

truncating from msg_attr() to msg_strtrunc().
Files: src/message.c, src/proto/message.pro, src/search.c

Patch 5.5.059
Problem: GTK GUI: When $term is invalid, using "gvim" gives an error

message, even though $term isn't really used. (Robbins)
Solution: When the GUI is about to start, skip the error messages for a

wrong $term.
Files: src/term.c

Patch 5.5.060 (extra)
Problem: Dos 32 bit: When a directory in 'backupdir' doesn't exist, ":w"

causes the file to be renamed to "axlqwqhy.ba~". (Matzdorf)
Solution: The code to work around a LFN bug in Windows 95 doesn't handle a

non-existing target name correctly. When renaming fails, make
sure the file has its original name. Also do this for the Win32
version, although it's unlikely that it runs into this problem.

Files: src/os_msdos.c, src/os_win32.c

Patch 5.5.061
Problem: When using "\:" in a modeline, the backslash is included in the

option value. (Mohsin)
Solution: Remove one backslash before the ':' in a modeline.

version5.txt — 2214

Files: src/buffer.c, runtime/doc/options.txt

Patch 5.5.062 (extra)
Problem: Win32 console: Temp files are created in the root of the current

drive, which may be read-only. (Peterson)
Solution: Use the same mechanism of the GUI version: Use $TMP, $TEMP or the

current directory. Cleaned up vim_tempname() a bit.
Files: src/fileio.c, src/os_win32.h, runtime/doc/os_dos.txt

Patch 5.5.063
Problem: When using whole-line completion in Insert mode, 'cindent' is

applied, even after changing the indent of the line.
Solution: Don't reindent the completed line after inserting/removing indent.

(Robert Webb)
Files: src/edit.c

Patch 5.5.064
Problem: has("sniff") doesn't work correctly.
Solution: Return 1 when Vim was compiled with the +sniff feature. (Pruemmer)
Files: src/eval.c

Patch 5.5.065
Problem: When dropping a file on Vim, the 'shellslash' option is not

effective. (Krishna)
Solution: Fix the slashes in the dropped file names according to

'shellslash'.
Files: src/ex_docmd.c, runtime/doc/options.txt

Patch 5.5.066
Problem: For systems with backslash in file name: Setting a file name

option to a value starting with "\\machine" removed a backslash.
Solution: Keep the double backslash for "\\machine", but do change

"\\\\machine" to "\\machine" for backwards compatibility.
Files: src/option.c, runtime/doc/options.txt

Patch 5.5.067
Problem: With 'hlsearch' set, the pattern "\>" doesn't highlight the first

match in a line. (Benji Fisher)
Solution: Fix highlighting an empty match. Also highlight the first

character in an empty line for "$".
Files: src/screen.c

Patch 5.5.068
Problem: Crash when a ":while" is used with an argument that has an error.

(Sylvain Viart)
Solution: Was using an uninitialized index in the cs_line[] array. The

crash only happened when the index was far off. Made sure the
uninitialized index isn't used.

Files: src/ex_docmd.c

Patch 5.5.069
Problem: Shifting lines in blockwise Visual mode didn't set the 'modified'

flag.
Solution: Do set the 'modified' flag.
Files: src/ops.c

Patch 5.5.070
Problem: When editing a new file, creating that file outside of Vim, then

editing it again, ":w" still warns for overwriting an existing
file. (Nam)

version5.txt — 2215

Solution: The BF_NEW flag in the "b_flags" field wasn't cleared properly.
Files: src/buffer.c, src/fileio.c

Patch 5.5.071
Problem: Using a matchgroup in a ":syn region", which is the same syntax

group as the region, didn't stop a contained item from matching in
the start pattern.

Solution: Also push an item on the stack when the syntax ID of the
matchgroup is the same as the syntax ID of the region.

Files: src/syntax.c

Patch 5.5.072 (extra)
Problem: Dos 32 bit: When setting 'columns' to a too large value, Vim may

crash, and the DOS console too.
Solution: Check that the value of 'columns' isn't larger than the number of

columns that the BIOS reports.
Files: src/os_msdos.c, src/proto/os_msdos.pro, src/option.c

Patch 5.5.073 (extra)
Problem: Win 32 GUI: The Find and Find/Replace dialogs didn't show the

"match case" checkbox. The Find/Replace dialog didn't handle the
"match whole word" checkbox.

Solution: Support the "match case" and "match whole word" checkboxes.
Files: src/gui_w32.c

Patch 5.6a.001
Problem: Using <C-End> with a count doesn't work like it does with "G".

(Benji Fisher)
Solution: Accept a count for <C-End> and <C-Home>.
Files: src/normal.c

Patch 5.6a.002
Problem: The script for conversion to HTML was an older version.
Solution: Add support for running 2html.vim on a color terminal.
Files: runtime/syntax/2html.vim

Patch 5.6a.003
Problem: Defining a function inside a function didn't give an error

message. A missing ":endfunction" doesn't give an error message.
Solution: Allow defining a function inside a function.
Files: src/eval.c, runtime/doc/eval.txt

Patch 5.6a.004
Problem: A missing ":endwhile" or ":endif" doesn't give an error message.

(Johannes Zellner)
Solution: Check for missing ":endwhile" and ":endif" in sourced files.

Add missing ":endif" in file selection macros.
Files: src/ex_docmd.c, runtime/macros/file_select.vim

Patch 5.6a.005
Problem: 'hlsearch' was not listed alphabetically. The value of 'toolbar'

was changed when 'compatible' is set.
Solution: Moved entry of 'hlsearch' in options[] table down.

Don't reset 'toolbar' option to the default value when
'compatible' is set.

Files: src/option.c

Patch 5.6a.006
Problem: Using a backwards range inside ":if 0" gave an error message.
Solution: Don't complain about a range when it is not going to be used.

version5.txt — 2216

(Stefan Roemer)
Files: src/ex_docmd.c

Patch 5.6a.007
Problem: ":let" didn't show internal Vim variables. (Ron Aaron)
Solution: Do show ":v" variables for ":let" and ":let v:name".
Files: src/eval.c

Patch 5.6a.008
Problem: Selecting a syntax from the Syntax menu gives an error message.
Solution: Replace "else if" in SetSyn() with "elseif". (Ronald Schild)
Files: runtime/menu.vim

Patch 5.6a.009
Problem: When compiling with +extra_search but without +syntax, there is a

compilation error in screen.c. (Axel Kielhorn)
Solution: Adjust the #ifdef for declaring and initializing "line" in

win_line(). Also solve compilation problem when +statusline is
used without +eval. Another one when +cmdline_compl is used
without +eval.

Files: src/screen.c, src/misc2.c

Patch 5.6a.010
Problem: In a function, ":startinsert!" does not append to the end of the

line if a ":normal" command was used to move the cursor. (Fisher)
Solution: Reset "w_set_curswant" to avoid that w_curswant is changed again.
Files: src/ex_docmd.c

Patch 5.6a.011 (depends on 5.6a.004)
Problem: A missing ":endif" or ":endwhile" in a function doesn't give an

error message.
Solution: Give that error message.
Files: src/ex_docmd.c

Patch 5.6a.012 (depends on 5.6a.008)
Problem: Some Syntax menu entries caused a hit-enter prompt.
Solution: Call a function to make the command shorter. Also rename a few

functions to avoid name clashes.
Files: runtime/menu.vim

Patch 5.6a.013
Problem: Command line completion works different when another completion

was done earlier. (Johannes Zellner)
Solution: Reset wim_index when starting a new completion.
Files: src/ex_getln.c

Patch 5.6a.014
Problem: Various warning messages when compiling and running lint with

different combinations of features.
Solution: Fix the warning messages.
Files: src/eval.c, src/ex_cmds.c, src/ex_docmd.c, src/gui_gtk_x11.c,

src/option.c, src/screen.c, src/search.c, src/syntax.c,
src/feature.h, src/globals.h

Patch 5.6a.015
Problem: The vimtutor command doesn't always know the value of $VIMRUNTIME.
Solution: Let Vim expand $VIMRUNTIME, instead of the shell.
Files: src/vimtutor

Patch 5.6a.016 (extra)

version5.txt — 2217

Problem: Mac: Window size is restricted when starting. Cannot drag the
window all over the desktop.

Solution: Get real screen size instead of assuming 640x400. Do not use a
fixed number for the drag limits. (Axel Kielhorn)

Files: src/gui_mac.c

Patch 5.6a.017
Problem: The "Paste" entry in popup menu for Visual, Insert and Cmdline

mode is in the wrong position. (Stol)
Solution: Add priority numbers for all Paste menu entries.
Files: runtime/menu.vim

Patch 5.6a.018
Problem: GTK GUI: submenu priority doesn't work.

Help dialog could be destroyed too soon.
When closing a dialog window (e.g. the "ATTENTION" one), Vim would
just hang.
When GTK theme is changed, Vim doesn't adjust to the new colors.
Argument for ":promptfind" isn't used.

Solution: Fixed the mentioned problems.
Made the dialogs look&feel nicer.
Moved functions to avoid the need for a forward declaration.
Fixed reentrancy of the file browser dialog.
Added drag&drop support for GNOME.
Init the text for the Find/replace dialog from the last used
search string. Set "match whole word" toggle button correctly.
Made repeat rate for drag outside of window depend on the
distance from the window. (Marcin Dalecki)
Made the drag in Visual mode actually work.
Removed recursiveness protection from gui_mch_get_rgb(), it might
cause more trouble than it solves.

Files: src/ex_docmd.c, src/gui_gtk.c, src/gui_gtk_x11.c, src/ui.c,
src/proto/ui.pro, src/misc2.c

Patch 5.6a.019
Problem: When trying to recover through NFS, which uses a large block size,

Vim might think the swap file is empty, because mf_blocknr_max is
zero. (Scott McDermott)

Solution: When computing the number of blocks of the file in mf_open(),
round up instead of down.

Files: src/memfile.c

Patch 5.6a.020
Problem: GUI GTK: Could not set display for gvim.
Solution: Add "-display" and "--display" arguments. (Marcin Dalecki)
Files: src/gui_gtk_x11.c

Patch 5.6a.021
Problem: Recovering still may not work when the block size of the device

where the swap file is located is larger than 4096.
Solution: Read block 0 with the minimal block size.
Files: src/memline.c, src/memfile.c, src/vim.h

Patch 5.6a.022 (extra)
Problem: Win32 GUI: When an error in the vimrc causes a dialog to pop up

(e.g., for an existing swap file), Vim crashes. (David Elins)
Solution: Before showing a dialog, open the main window.
Files: src/gui_w32.c

Patch 5.6a.023

version5.txt — 2218

Problem: Using expand("%:gs??/?") causes a crash. (Ron Aaron)
Solution: Check for running into the end of the string in do_string_sub().
Files: src/eval.c

Patch 5.6a.024
Problem: Using an autocommand to delete a buffer when leaving it can cause

a crash when jumping to a tag. (Franz Gorkotte)
Solution: In do_tag(), store tagstacklen before jumping to another buffer.

Check tagstackidx after jumping to another buffer.
Add extra check in win_split() if tagname isn't NULL.

Files: src/tag.c, src/window.c

Patch 5.6a.025 (extra)
Problem: Win32 GUI: The tables for toupper() and tolower() are initialized

too late. (Mike Steed)
Solution: Move the initialization to win32_init() and call it from main().
Files: src/main.c, src/os_w32.c, src/proto/os_w32.pro

Patch 5.6a.026
Problem: When the SNiFF connection is open, shell commands hang. (Pruemmer)
Solution: Skip a second wait() call if waitpid() already detected that the

child has exited.
Files: src/os_unix.c

Patch 5.6a.027 (extra)
Problem: Win32 GUI: The "Edit with Vim" popup menu entry causes problems

for the Office toolbar.
Solution: Use a shell extension dll. (Tianmiao Hu)

Added it to the install and uninstal programs, replaces the old
"Edit with Vim" menu registry entries.

Files: src/dosinst.c, src/uninstal.c, gvimext/*, runtime/doc/gui_w32.txt

Patch 5.6a.028 (extra)
Problem: Win32 GUI: Dialogs and tear-off menus can't handle multibyte

characters.
Solution: Adjust nCopyAnsiToWideChar() to handle multibyte characters

correctly.
Files: src/gui_w32.c

==
VERSION 5.7 version-5.7

Version 5.7 is a bug-fix version of 5.6.

Changed changed-5.7

Renamed src/INSTALL.mac to INSTALL_mac.txt to avoid it being recognized with a
wrong file type. Also renamed src/INSTALL.amiga to INSTALL_ami.txt.

Added added-5.7

New syntax files:
stp Stored Procedures (Jeff Lanzarotta)
snnsnet, snnspat, snnsres SNNS (Davide Alberani)
mel MEL (Robert Minsk)
ruby Ruby (Mirko Nasato)
tli TealInfo (Kurt W. Andrews)

version5.txt — 2219

ora Oracle config file (Sandor Kopanyi)
abaqus Abaqus (Carl Osterwisch)
jproperties Java Properties (Simon Baldwin)
apache Apache config (Allan Kelly)
csp CSP (Jan Bredereke)
samba Samba config (Rafael Garcia-Suarez)
kscript KDE script (Thomas Capricelli)
hb Hyper Builder (Alejandro Forero Cuervo)
fortran Fortran (rewritten) (Ajit J. Thakkar)
sml SML (Fabrizio Zeno Cornelli)
cvs CVS commit (Matt Dunford)
aspperl ASP Perl (Aaron Hope)
bc BC calculator (Vladimir Scholtz)
latte Latte (Nick Moffitt)
wml WML (Gerfried Fuchs)

Included Exuberant ctags 3.5.1. (Darren Hiebert)

"display" and "fold" arguments for syntax items. For future extension, they
are ignored now.

strftime() function for the Macintosh.

macros/explorer.vim: A file browser script (M A Aziz Ahmed)

Fixed fixed-5.7

The 16 bit MS-DOS version is now compiled with Bcc 3.1 instead of 4.0. The
executable is smaller.

When a "make test" failed, the output file was lost. Rename it to
test99.failed to be able to see what went wrong.

After sourcing bugreport.vim, it's not clear that bugreport.txt has been
written in the current directory. Edit bugreport.txt to avoid that.

Adding IME support when using Makefile.w32 didn't work. (Taro Muraoka)

Win32 console: Mouse drags were passed on even when the mouse didn't move.

Perl interface: In Buffers(), type of argument to SvPV() was int, should be
STRLEN. (Tony Leneis)

Problem with prototype for index() on AIX 4.3.0. Added check for _AIX43 in
os_unix.h. (Jake Hamby)

Mappings in mswin.vim could break when some commands are mapped. Add "nore"
to most mappings to avoid re-mapping.

modify_fname() made a copy of a file name for ":p" when it already was a full
path name, which is a bit slow.

Win32 with Borland C++ 5.5: Pass the path to the compiler on to xxd and ctags,
to avoid depending on $PATH. Fixed "make clean".

Many fixes to Macintosh specific parts: (mostly by Dany StAmant)
- Only one Help menu.
- No more crash when removing a menu item.

version5.txt — 2220

- Support as External Editor for Codewarrior (still some little glitches).
- Popup menu support.
- Fixed crash when pasting after application switch.
- Color from rgb.txt properly displayed.
- 'isprint' default includes all chars above '~'. (Axel Kielhorn)
- mac_expandpath() was leaking memory.
- Add digraphs table. (Axel Kielhorn)
- Multi-byte support: (Kenichi Asai)

Switch keyscript when going in/out of Insert mode.
Draw multibyte character correctly.
Don't use mblen() but highest bit of char to detect multibyte char.
Display value of multibyte in statusline (also for other systems).

- mouse button was not initialized properly to MOUSE_LEFT when
USE_CTRLCLICKMENU not defined.

- With Japanese SJIS characters: Make "w", "b", and "e" work
properly. (Kenichi Asai)

- Replaced old CodeWarrior file os_mac.CW9.hqx with os_mac.cw5.sit.hqx.

Fixes for VMS: (Zoltan Arpadffy) (also see patch 5.6.045 below)
- Added Makefile_vms.mms and vimrc.vms to src/testdir to be able to run the

tests.
- Various fixes.
- Set 'undolevels' to 1000 by default.
- Made mch_settitle() equivalent to the one in os_unix.c.

RiscOS: A few prototypes for os_riscos.c were outdated. Generate prototypes
automatically.

Previously released patches:

Patch 5.6.001
Problem: When using "set bs=0 si cin", Inserting "#<BS>" or "}<BS>" which

reduces the indent doesn't delete the "#" or "}". (Lorton)
Solution: Adjust ai_col in ins_try_si().
Files: src/edit.c

Patch 5.6.002
Problem: When using the vim.vim syntax file, a comment with all uppercase

characters causes a hang.
Solution: Adjust pattern for vimCommentTitle (Charles Campbell)
Files: runtime/syntax/vim.vim

Patch 5.6.003
Problem: GTK GUI: Loading a user defined toolbar bitmap gives a warning

about the colormap. Probably because the window has not been
opened yet.

Solution: Use gdk_pixmap_colormap_create_from_xpm() to convert the xpm file.
(Keith Radebaugh)

Files: src/gui_gtk.c

Patch 5.6.004 (extra)
Problem: Win32 GUI with IME: When setting 'guifont' to "*", the font

requester appears twice.
Solution: In gui_mch_init_font() don't call get_logfont() but copy

norm_logfont from fh. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 5.6.005
Problem: When 'winminheight' is zero, CTRL-W - with a big number causes a

version5.txt — 2221

crash. (David Kotchan)
Solution: Check for negative window height in win_setheight().
Files: src/window.c

Patch 5.6.006
Problem: GTK GUI: Bold font cannot always be used. Memory is freed too

early in gui_mch_init_font().
Solution: Move call to g_free() to after where sdup is used. (Artem Hodyush)
Files: src/gui_gtk_x11.c

Patch 5.6.007 (extra)
Problem: Win32 IME: Font is not changed when screen font is changed. And

IME composition window does not trace the cursor.
Solution: Initialize IME font. When cursor is moved, set IME composition

window with ImeSetCompositionWindow(). Add call to
ImmReleaseContext() in several places. (Taro Muraoka)

Files: src/gui.c, src/gui_w32.c, src/proto/gui_w32.pro

Patch 5.6.008 (extra)
Problem: Win32: When two files exist with the same name but different case

(through NFS or Samba), fixing the file name case could cause the
wrong one to be edited.

Solution: Prefer a perfect match above a match while ignoring case in
fname_case(). (Flemming Madsen)

Files: src/os_win32.c

Patch 5.6.009 (extra)
Problem: Win32 GUI: Garbage in Windows Explorer help line when selecting

"Edit with Vim" popup menu entry.
Solution: Only return the help line when called with the GCS_HELPTEXT flag.

(Tianmiao Hu)
Files: GvimExt/gvimext.cpp

Patch 5.6.010
Problem: A file name which contains a TAB was not read correctly from the

viminfo file and the ":ls" listing was not aligned properly.
Solution: Parse the buffer list lines in the viminfo file from the end

backwards. Count a Tab for two characters to align the ":ls" list.
Files: src/buffer.c

Patch 5.6.011
Problem: When 'columns' is huge (using a tiny font) and 'statusline' is

used, Vim can crash.
Solution: Limit maxlen to MAXPATHL in win_redr_custom(). (John Mullin)
Files: src/screen.c

Patch 5.6.012
Problem: When using "zsh" for /bin/sh, toolcheck may hang until "exit" is

typed. (Kuratczyk)
Solution: Add "-c exit" when checking for the shell version.
Files: src/toolcheck

Patch 5.6.013
Problem: Multibyte char in tooltip is broken.
Solution: Consider multibyte char in replace_termcodes(). (Taro Muraoka)
Files: src/term.c

Patch 5.6.014
Problem: When cursor is at the end of line and the character under cursor

is a multibyte character, "yl" doesn't yank 1 multibyte-char.

version5.txt — 2222

(Takuhiro Nishioka)
Solution: Recognize a multibyte-char at end-of-line correctly in oneright().

(Taro Muraoka)
Also: make "+quickfix" in ":version" output appear alphabetically.

Files: src/edit.c

Patch 5.6.015
Problem: New xterm delete key sends <Esc>[3~ by default.
Solution: Added <kDel> and <kIns> to make the set of keypad keys complete.
Files: src/edit.c, src/ex_getln.c, src/keymap.h, src/misc1.c,

src/misc2.c, src/normal.c, src/os_unix.c, src/term.c

Patch 5.6.016
Problem: When deleting a search string from history from inside a mapping,

another entry is deleted too. (Benji Fisher)
Solution: Reset last_maptick when deleting the last entry of the search

history. Also: Increment maptick when starting a mapping from
typed characters to avoid a just added search string being
overwritten or removed from history.

Files: src/ex_getln.c, src/getchar.c

Patch 5.6.017
Problem: ":s/e/\^M/" should replace an "e" with a CTRL-M, not split the

line. (Calder)
Solution: Replace the backslash with a CTRL-V internally. (Stephen P. Wall)
Files: src/ex_cmds.c

Patch 5.6.018
Problem: ":help [:digit:]" takes a long time to jump to the wrong place.
Solution: Insert a backslash to avoid the special meaning of '[]'.
Files: src/ex_cmds.c

Patch 5.6.019
Problem: "snd.c", "snd.java", etc. were recognized as "mail" filetype.
Solution: Make pattern for mail filetype more strict.
Files: runtime/filetype.vim

Patch 5.6.020 (extra)
Problem: The DJGPP version eats processor time (Walter Briscoe).
Solution: Call __dpmi_yield() in the busy-wait loop.
Files: src/os_msdos.c

Patch 5.6.021
Problem: When 'selection' is "exclusive", a double mouse click in Insert

mode doesn't select last char in line. (Lutz)
Solution: Allow leaving the cursor on the NUL past the line in this case.
Files: src/edit.c

Patch 5.6.022
Problem: ":e \~<Tab>" expands to ":e ~\$ceelen", which doesn't work.
Solution: Re-insert the backslash before the '~'.
Files: src/ex_getln.c

Patch 5.6.023 (extra)
Problem: Various warnings for the Ming compiler.
Solution: Changes to avoid the warnings. (Bill McCarthy)
Files: src/ex_cmds.c, src/gui_w32.c, src/os_w32exe.c, src/os_win32.c,

src/syntax.c, src/vim.rc

Patch 5.6.024 (extra)

version5.txt — 2223

Problem: Win32 console: Entering CTRL-_ requires the shift key. (Kotchan)
Solution: Specifically catch keycode 0xBD, like the GUI.
Files: src/os_win32.c

Patch 5.6.025
Problem: GTK GUI: Starting the GUI could be interrupted by a SIGWINCH.

(Nils Lohner)
Solution: Repeat the read() call to get the gui_in_use value when

interrupted by a signal.
Files: src/gui.c

Patch 5.6.026 (extra)
Problem: Win32 GUI: Toolbar bitmaps are searched for in

$VIMRUNTIME/bitmaps, while GTK looks in $VIM/bitmaps. (Keith
Radebaugh)

Solution: Use $VIM/bitmaps for both, because these are not part of the
distribution but defined by the user.

Files: src/gui_w32.c, runtime/doc/gui.txt

Patch 5.6.027
Problem: TCL: Crash when using a Tcl script (reported for Win32).
Solution: Call Tcl_FindExecutable() in main(). (Brent Fulgham)
Files: src/main.c

Patch 5.6.028
Problem: Xterm patch level 126 sends codes for mouse scroll wheel.

Fully works with xterm patch level 131.
Solution: Recognize the codes for button 4 (0x60) and button 5 (0x61).
Files: src/term.c

Patch 5.6.029
Problem: GTK GUI: Shortcut keys cannot be used for a dialog. (Johannes

Zellner)
Solution: Add support for shortcut keys. (Marcin Dalecki)
Files: src/gui_gtk.c

Patch 5.6.030
Problem: When closing a window and 'ea' is set, Vim can crash. (Yasuhiro

Matsumoto)
Solution: Set "curbuf" to a valid value in win_close().
Files: src/window.c

Patch 5.6.031
Problem: Multi-byte: When a double-byte character ends in CSI, Vim waits

for another character to be typed.
Solution: Recognize the CSI as the second byte of a character and don't wait

for another one. (Yasuhiro Matsumoto)
Files: src/getchar.c

Patch 5.6.032
Problem: Functions with an argument that is a line number don't all accept

".", "$", etc. (Ralf Arens)
Solution: Add get_art_lnum() and use it for setline(), line2byte() and

synID().
Files: src/eval.c

Patch 5.6.033
Problem: Multi-byte: "f " sometimes skips to the second space. (Sung-Hyun

Nam)
Solution: Change logic in searchc() to skip trailing byte of a double-byte

version5.txt — 2224

character.
Also: Ask for second byte when searching for double-byte
character. (Park Chong-Dae)

Files: src/search.c

Patch 5.6.034 (extra)
Problem: Compiling with Borland C++ 5.5 fails on tolower() and toupper().
Solution: Use TO_LOWER() and TO_UPPER() instead. Also adjust the Makefile

to make using bcc 5.5 easier.
Files: src/edit.c, src/ex_docmd.c, src/misc1.c, src/Makefile.bor

Patch 5.6.035
Problem: Listing the"+comments" feature in the ":version" output depended

on the wrong ID. (Stephen P. Wall)
Solution: Change "CRYPTV" to "COMMENTS".
Files: src/version.c

Patch 5.6.036
Problem: GTK GUI: Copy/paste text doesn't work between gvim and Eterm.
Solution: Support TEXT and COMPOUND_TEXT selection targets. (ChiDeok Hwang)
Files: src/gui_gtk_x11.c

Patch 5.6.037
Problem: Multi-byte: Can't use "f" command with multibyte character in GUI.
Solution: Enable XIM in Normal mode for the GUI. (Sung-Hyun Nam)
Files: src/gui_gtk_x11.c, src/multbyte.c

Patch 5.6.038
Problem: Multi-clicks in GUI are interpreted as a mouse wheel click. When

'ttymouse' is "xterm" a mouse click is interpreted as a mouse
wheel click.

Solution: Don't recognize the mouse wheel in check_termcode() in the GUI.
Use 0x43 for a mouse drag in do_xterm_trace(), not 0x63.

Files: src/term.c, src/os_unix.c

Patch 5.6.039
Problem: Motif GUI under KDE: When trying to logout, Vim hangs up the

system. (Hermann Rochholz)
Solution: When handling the WM_SAVE_YOURSELF event, set the WM_COMMAND

property of the window to let the session manager know we finished
saving ourselves.

Files: src/gui_x11.c

Patch 5.6.040
Problem: When using ":s" command, matching the regexp is done twice.
Solution: After copying the matched line, adjust the pointers instead of

finding the match again. (Loic Grenie) Added vim_regnewptr().
Files: src/ex_cmds.c, src/regexp.c, src/proto/regexp.pro

Patch 5.6.041
Problem: GUI: Athena, Motif and GTK don't give more than 10 dialog buttons.
Solution: Remove the limit on the number of buttons.

Also support the 'v' flag in 'guioptions'.
For GTK: Center the buttons.

Files: src/gui_athena.c, src/gui_gtk.c, src/gui_motif.c

Patch 5.6.042
Problem: When doing "vim -u vimrc" and vimrc contains ":q", the cursor in

the terminal can remain off.
Solution: Call cursor_on() in mch_windexit().

version5.txt — 2225

Files: src/os_unix.c

Patch 5.6.043 (extra)
Problem: Win32 GUI: When selecting guifont with the dialog, 'guifont'

doesn't include the bold or italic attributes.
Solution: Append ":i" and/or ":b" to 'guifont' in gui_mch_init_font().
Files: src/gui_w32.c

Patch 5.6.044 (extra)
Problem: MS-DOS and Windows: The line that dosinst.exe appends to

autoexec.bat to set PATH is wrong when Vim is in a directory with
an embedded space.

Solution: Use double quotes for the value when there is an embedded space.
Files: src/dosinst.c

Patch 5.6.045 (extra) (fixed version)
Problem: VMS: Various small problems.
Solution: Many small changes. (Zoltan Arpadffy)

File name modifier ":h" keeps the path separator.
File name modifier ":e" also removes version.
Compile with MAX_FEAT by default.
When checking for autocommands ignore version in file name.
Be aware of file names being case insensitive.
Added vt320 builtin termcap.
Be prepared for an empty default_vim_dir.

Files: runtime/gvimrc_example.vim, runtime/vimrc_example.vim,
runtime/doc/os_vms.txt, src/eval.c, src/feature.h, src/fileio.c,
src/gui_motif.c, src/gui_vms_conf.h, src/main.c, src/memline.c,
src/misc1.c, src/option.c, src/os_vms_conf.h, src/os_vms.c,
src/os_vms.h, src/os_vms.mms, src/tag.c, src/term.c, src/version.c

Patch 5.6.046
Problem: Systems with backslash in file name: With 'shellslash' set, "vim

/.c" only uses a slash for the first file name. (Har'El)
Solution: Fix slashes in file name arguments after reading the vimrc file.
Files: src/option.c

Patch 5.6.047
Problem: $CPPFLAGS is not passed on to ctags configure.
Solution: Add it. (Walter Briscoe)
Files: src/config.mk.in, src/Makefile

Patch 5.6.048
Problem: CTRL-R in Command-line mode is documented to insert text as typed,

but inserts text literally.
Solution: Make CTRL-R insert text as typed, use CTRL-R CTRL-R to insert

literally. This is consistent with Insert mode. But characters
that end Command-line mode are inserted literally.

Files: runtime/doc/index.txt, runtime/doc/cmdline.txt, src/ex_getln.c,
src/ops.c, src/proto/ops.pro

Patch 5.6.049
Problem: Documentation for [!] after ":ijump" is wrong way around. (Benji

Fisher)
Solution: Fix the documentation. Also improve the code to check for a match

after a /* */ comment.
Files: runtime/doc/tagsearch.txt, src/search.c

Patch 5.6.050
Problem: Replacing is wrong when replacing a single-byte char with

version5.txt — 2226

double-byte char or the other way around.
Solution: Shift the text after the character when it is replaced.

(Yasuhiro Matsumoto)
Files: src/normal.c, src/misc1.c

Patch 5.6.051
Problem: ":tprev" and ":tnext" don't give an error message when trying to

go before the first or beyond the last tag. (Robert Webb)
Solution: Added error messages. Also: Delay a second when a file-read

message is going to overwrite an error message, otherwise it won't
be seen.

Files: src/fileio.c, src/tag.c

Patch 5.6.052
Problem: Multi-byte: When an Ex command has a '|' or '"' as a second byte,

it terminates the command.
Solution: Skip second byte of multibyte char when checking for '|' and '"'.

(Asai Kenichi)
Files: src/ex_docmd.c

Patch 5.6.053
Problem: CTRL-] doesn't work on a tag that contains a '|'. (Cesar Crusius)
Solution: Escape '|', '"' and '\' in tag names when using CTRL-] and also

for command-line completion.
Files: src/ex_getln.c, src/normal.c

Patch 5.6.054
Problem: When using ":e" and ":e #" the cursor is put in the first column

when 'startofline' is set. (Cordell)
Solution: Use the last known column when 'startofline' is set.

Also, use ECMD_LAST more often to simplify the code.
Files: src/buffer.c, src/ex_cmds.c, src/ex_docmd.c, src/proto/buffer.pro

Patch 5.6.055
Problem: When 'statusline' only contains a text without "%" and doesn't fit

in the window, Vim crashes. (Ron Aaron)
Solution: Don't use the pointer for the first item if there is no item.
Files: src/screen.c

Patch 5.6.056 (extra)
Problem: MS-DOS: F11 and F12 don't work when 'bioskey' is set.
Solution: Use enhanced keyboard functions. (Vince Negri)

Detect presence of enhanced keyboard and set bioskey_read and
bioskey_ready.

Files: src/os_msdos.c

Patch 5.6.057 (extra)
Problem: Win32 GUI: Multi-byte characters are wrong in dialogs and tear-off

menus.
Solution: Use system font instead of a fixed font. (Matsumoto, Muraoka)
Files: src/gui_w32.c

Patch 5.6.058
Problem: When the 'a' flag is not in 'guioptions', non-Windows systems

copy Visually selected text to the clipboard/selection on a yank
or delete command anyway. On Windows it isn't done even when the
'a' flag is included.

Solution: Respect the 'a' flag in 'guioptions' on all systems.
Files: src/normal.c

version5.txt — 2227

Patch 5.6.059 (extra)
Problem: When moving the cursor over italic text and the characters spill

over to the cell on the right, that spill-over is deleted.
Noticed in the Win32 GUI, can happen on other systems too.

Solution: Redraw italic text starting from a blank, like this is already
done for bold text. (Vince Negri)

Files: src/gui.c, src/gui.h, src/gui_w32.c

Patch 5.6.060
Problem: Some bold characters spill over to the cell on the left, that

spill-over can remain sometimes.
Solution: Redraw a character when the next character was bold and needs

redrawing. (Robert Webb)
Files: src/screen.c

Patch 5.6.061
Problem: When xterm sends 8-bit controls, recognizing the version response

doesn't work.
When using CSI instead of <Esc>[for the termcap color codes,
using 16 colors doesn't work. (Neil Bird)

Solution: Also accept CSI in place of <Esc>[for the version string.
Also check for CSI when handling colors 8-15 in term_color().
Use CSI for builtin xterm termcap entries when 'term' contains
"8bit".

Files: runtime/doc/term.txt, src/ex_cmds.c, src/option.c, src/term.c,
src/os_unix.c, src/proto/option.pro, src/proto/term.pro

Patch 5.6.062
Problem: The documentation says that setting 'smartindent' doesn't have an

effect when 'cindent' is set, but it does make a difference for
lines starting with "#". (Neil Bird)

Solution: Really ignore 'smartindent' when 'cindent' is set.
Files: src/misc1.c, src/ops.c

Patch 5.6.063
Problem: Using "I" in Visual-block mode doesn't accept a count. (Johannes

Zellner)
Solution: Pass the count on to do_insert() and edit(). (Allan Kelly)
Files: src/normal.c, src/ops.c, src/proto/ops.pro

Patch 5.6.064
Problem: MS-DOS and Win32 console: Mouse doesn't work correctly after

including patch 5.6.28. (Vince Negri)
Solution: Don't check for mouse scroll wheel when the mouse code contains

the number of clicks.
Files: src/term.c

Patch 5.6.065
Problem: After moving the cursor around in Insert mode, typing a space can

still trigger an abbreviation. (Benji Fisher)
Solution: Don't check for an abbreviation after moving around in Insert mode.
Files: src/edit.c

Patch 5.6.066
Problem: Still a few bold character spill-over remains after patch 60.
Solution: Clear character just in front of blanking out rest of the line.

(Robert Webb)
Files: src/screen.c

Patch 5.6.067

version5.txt — 2228

Problem: When a file name contains a NL, the viminfo file is corrupted.
Solution: Use viminfo_writestring() to convert the NL to CTRL-V n.

Also fix the Buffers menu and listing a menu name with a newline.
Files: runtime/menu.vim, src/buffer.c, src/mark.c, src/menu.c

Patch 5.6.068
Problem: Compiling the Perl interface doesn't work with Perl 5.6.0.

(Bernhard Rosenkraenzer)
Solution: Also check xs_apiversion for the version number when prepending

defines for PL_*.
Files: src/Makefile

Patch 5.6.069
Problem: "go" doesn't always end up at the right character when

'fileformat' is "dos". (Bruce DeVisser)
Solution: Correct computations in ml_find_line_or_offset().
Files: src/memline.

Patch 5.6.070 (depends on 5.6.068)
Problem: Compiling the Perl interface doesn't work with Perl 5.6.0.

(Bernhard Rosenkraenzer)
Solution: Simpler check instead of the one from patch 68.
Files: src/Makefile

Patch 5.6.071
Problem: "A" in Visual block mode on a Tab positions the cursor one char to

the right. (Michael Haumann)
Solution: Correct the column computation in op_insert().
Files: src/ops.c

Patch 5.6.072
Problem: When starting Vim with "vim +startinsert", it enters Insert mode

only after typing the first command. (Andrew Pimlott)
Solution: Insert a dummy command in the stuff buffer.
Files: src/main.c

Patch 5.6.073 (extra) (depends on 5.6.034)
Problem: Win32 GUI: When compiled with Bcc 5.5 menus don't work.

In dosinst.c toupper() and tolower() give an "internal compiler
error" for Bcc 5.5.

Solution: Define WINVER to 4 to avoid compiling for Windows 2000. (Dan
Sharp) Also cleaned up compilation arguments.
Use our own implementation of toupper() in dosinst.c. Use
mytoupper() instead of tolower().

Files: src/Makefile.bor, src/dosinst.c

Patch 5.6.074 (extra)
Problem: Entering CSI directly doesn't always work, because it's recognized

as the start of a special key. Mostly a problem with multibyte
in the GUI.

Solution: Use K_CSI for a typed CSI character. Use <CSI> for a normal CSI,
<xCSI> for a CSI typed in the GUI.

Files: runtime/doc/intro.txt, src/getchar.c, src/gui_amiga.c,
src/gui_gtk_x11.c, src/gui_mac.c, src/gui_riscos.c, src/gui_w32.c,
src/keymap.h, src/misc2.c

Patch 5.6.075
Problem: When using "I" or "A" in Visual block mode while 'sts' is set may

change spaces to a Tab the inserted text is not correct. (Mike
Steed) And some other problems when using "A" to append after the

version5.txt — 2229

end of the line.
Solution: Check for change in spaces/tabs after inserting the text. Append

spaces to fill the gap between the end-of-line and the right edge
of the block.

Files: src/ops.c

Patch 5.6.076
Problem: GTK GUI: Mapping <M-Space> doesn't work.
Solution: Don't use the "Alt" modifier twice in key_press_event().
Files: src/gui_gtk_x11.c

Patch 5.6.077
Problem: GUI: When interrupting an external program with CTRL-C, gvim might

crash. (Benjamin Korvemaker)
Solution: Avoid using a NULL pointer in ui_inchar_undo().
Files: src/ui.c

Patch 5.6.078
Problem: Locale doesn't always work on FreeBSD. (David O'Brien)
Solution: Link with the "xpg4" library when available.
Files: src/configure.in, src/configure

Patch 5.6.079
Problem: Vim could crash when several Tcl interpreters are created and

destroyed.
Solution: handle the "exit" command and nested ":tcl" commands better. (Ingo

Wilken)
Files: runtime/doc/if_tcl.txt, src/if_tcl.c

Patch 5.6.080
Problem: When jumping to a tag, generating the tags file and jumping to the

same tag again uses the old search pattern. (Sung-Hyun Nam)
Solution: Flush cached tag matches when executing an external command.
Files: src/misc2.c, src/proto/tag.pro, src/tag.c

Patch 5.6.081
Problem: ":syn include" uses a level for the included file, this confuses

contained items included at the same level.
Solution: Use a unique tag for each included file. Changed sp_syn_inc_lvl

to sp_syn_inc_tag. (Scott Bigham)
Files: src/syntax.c, src/structs.h

Patch 5.6.082
Problem: When using cscope, Vim can crash.
Solution: Initialize tag_fname in find_tags(). (Anton Blanchard)
Files: src/tag.c

Patch 5.6.083 (extra)
Problem: Win32: The visual beep can't be seen. (Eric Roesinger)
Solution: Flush the output before waiting with GdiFlush(). (Maurice S. Barnum)

Also: Allow specifying the delay in t_vb for the GUI.
Files: src/gui.c, src/gui_amiga.c, src/gui_gtk_x11.c, src/gui_mac.c,

src/gui_riscos.c, src/gui_w32.c, src/gui_x11.c, src/gui_beos.cc,
src/proto/gui_amiga.pro, src/proto/gui_gtk_x11.pro,
src/proto/gui_mac.pro, src/proto/gui_riscos.pro,
src/proto/gui_w32.pro, src/proto/gui_x11.pro,
src/proto/gui_beos.pro

Patch 5.6.084 (depends on 5.6.074)
Problem: GUI: Entering CSI doesn't always work for Athena and Motif.

version5.txt — 2230

Solution: Handle typed CSI as <xCSI> (forgot this bit in 5.6.074).
Files: src/gui_x11.c

Patch 5.6.085
Problem: Multi-byte: Using "r" to replace a double-byte char with a

single-byte char moved the cursor one character. (Matsumoto)
Also, using a count when replacing a single-byte char with a
double-byte char didn't work.

Solution: Don't use del_char() to delete the second byte.
Get "ptr" again after calling ins_char().

Files: src/normal.c

Patch 5.6.086 (extra)
Problem: Win32: When using libcall() and the returned value is not a valid

pointer, Vim crashes.
Solution: Use IsBadStringPtr() to check if the pointer is valid.
Files: src/os_win32.c

Patch 5.6.087
Problem: Multi-byte: Commands and messages with multibyte characters are

displayed wrong.
Solution: Detect double-byte characters. (Yasuhiro Matsumoto)
Files: src/ex_getln.c, src/message.c, src/misc2.c, src/screen.c

Patch 5.6.088
Problem: Multi-byte with Motif or Athena: The message "XIM requires

fontset" is annoying when Vim was compiled with XIM support but it
is not being used.

Solution: Remove that message.
Files: src/multbyte.c

Patch 5.6.089
Problem: On non-Unix systems it's possible to overwrite a read-only file

without using "!".
Solution: Check if the file permissions allow overwriting before moving the

file to become the backup file.
Files: src/fileio.c

Patch 5.6.090
Problem: When editing a file in "/home/dir/home/dir" this was replaced with

"~~". (Andreas Jellinghaus)
Solution: Replace the home directory only once in home_replace().
Files: src/misc1.c

Patch 5.6.091
Problem: When editing many "no file" files, can't create swap file, because

.sw[a-p] have all been used. (Neil Bird)
Solution: Also use ".sv[a-z]", ".su[a-z]", etc.
Files: src/memline.c

Patch 5.6.092
Problem: FreeBSD: When setting $TERM to a non-valid terminal name, Vim

hangs in tputs().
Solution: After tgetent() returns an error code, call it again with the

terminal name "dumb". This apparently creates an environment in
which tputs() doesn't fail.

Files: src/term.c

Patch 5.6.093 (extra)
Problem: Win32 GUI: "ls | gvim -" will show a message box about reading

version5.txt — 2231

stdin when Vim exits. (Donohue)
Solution: Don't write a message about the file read from stdin until the GUI

has started.
Files: src/fileio.c

Patch 5.6.094
Problem: Problem with multibyte string for ":echo var".
Solution: Check for length in msg_outtrans_len_attr(). (Sung-Hyun Nam)

Also make do_echo() aware of multibyte characters.
Files: src/eval.c, src/message.c

Patch 5.6.095
Problem: With an Emacs TAGS file that include another a relative path

doesn't always work.
Solution: Use expand_tag_fname() on the name of the included file.

(Utz-Uwe Haus)
Files: src/tag.c

Patch 5.6.096
Problem: Unix: When editing many files, startup can be slow. (Paul

Ackersviller)
Solution: Halve the number of stat() calls used to add a file to the buffer

list.
Files: src/buffer.c

Patch 5.7a.001
Problem: GTK doesn't respond on drag&drop from ROX-Filer.
Solution: Add "text/uri-list" target. (Thomas Leonard)

Also: fix problem with checking for trash arguments.
Files: src/gui_gtk_x11.c

Patch 5.7a.002
Problem: Multi-byte: 'showmatch' is performed when second byte of an

inserted double-byte char is a paren or brace.
Solution: Check IsTrailByte() before calling showmatch(). (Taro Muraoka)
Files: src/misc1.c

Patch 5.7a.003
Problem: Multi-byte: After using CTRL-O in Insert mode with the cursor at

the end of the line on a multibyte character the cursor moves to
the left.

Solution: Check for multibyte character at end-of-line. (Taro Muraoka)
Also: fix cls() to detect a double-byte character. (Chong-Dae Park)

Files: src/edit.c, src/search.c

Patch 5.7a.004
Problem: When reporting the search pattern offset, the string could be

unterminated, which may cause a crash.
Solution: Terminate the string for the search offset. (Stephen P. Wall)
Files: src/search.c

Patch 5.7a.005
Problem: When ":s//~/" doesn't find a match it reports "[NULL]" for the

pattern.
Solution: Use get_search_pat() to obtain the actually used pattern.
Files: src/ex_cmds.c, src/proto/search.pro, src/search.c

Patch 5.7a.006 (extra)
Problem: VMS: Various problems, also with the VAXC compiler.
Solution: In many places use the Unix code for VMS too.

version5.txt — 2232

Added time, date and compiler version to version message.
(Zoltan Arpadffy)

Files: src/ex_cmds.c, src/ex_docmd.c, src/globals.h, src/gui_vms_conf.h,
src/main.c, src/message.c, src/misc1.c, src/os_vms.c,
src/os_vms.h, src/os_vms.mms, src/os_vms_conf.h,
src/proto/os_vms.pro, src/proto/version.pro, src/term.c,
src/version.c, src/xxd/os_vms.mms, src/xxd/xxd.c

Patch 5.7a.007
Problem: Motif and Athena GUI: CTRL-@ is interpreted as CTRL-C.
Solution: Only use "intr_char" when it has been set.
Files: src/gui_x11.c

Patch 5.7a.008
Problem: GTK GUI: When using CTRL-L the screen is redrawn twice, causing

trouble for bold characters. Also happens when moving with the
scrollbar. Best seen when 'writedelay' is non-zero.
When starting the GUI with ":gui" the screen is redrawn once with
the wrong colors.

Solution: Only set the geometry hints when the window size really changed.
This avoids setting it each time the scrollbar is forcefully
redrawn.
Don't redraw in expose_event() when gui.starting is still set.

Files: src/gui_gtk_x11.c

==
VERSION 5.8 version-5.8

Version 5.8 is a bug-fix version of 5.7.

Changed changed-5.8

Ctags is no longer included with Vim. It has grown into a project of its own.
You can find it here: http://ctags.sf.net. It is highly recommended as a Vim
companion when you are writing programs.

Added added-5.8

New syntax files:
acedb AceDB (Stewart Morris)
aflex Aflex (Mathieu Clabaut)
antlr Antlr (Mathieu Clabaut)
asm68k 68000 Assembly (Steve Wall)
automake Automake (John Williams)
ayacc Ayacc (Mathieu Clabaut)
b B (Mathieu Clabaut)
bindzone BIND zone (glory hump)
blank Blank (Rafal Sulejman)
cfg Configure files (Igor Prischepoff)
changelog ChangeLog (Gediminas Paulauskas)
cl Clever (Phil Uren)
crontab Crontab (John Hoelzel)
csc Essbase script (Raul Segura Acevedo)
cynlib Cynlib(C++) (Phil Derrick)
cynpp Cyn++ (Phil Derrick)

version5.txt — 2233

http://ctags.sf.net

debchangelog Debian Changelog (Wichert Akkerman)
debcontrol Debian Control (Wichert Akkerman)
dns DNS zone file (Jehsom)
dtml Zope's DTML (Jean Jordaan)
dylan Dylan, Dylan-intr and Dylan-lid (Brent Fulgham)
ecd Embedix Component Description (John Beppu)
fgl Informix 4GL (Rafal Sulejman)
foxpro FoxPro (Powing Tse)
gsp GNU Server Pages (Nathaniel Harward)
gtkrc GTK rc (David Necas)
hercules Hercules (Avant! Corporation) (Dana Edwards)
htmlos HTML/OS by Aestiva (Jason Rust)
inittab SysV process control (David Necas)
iss Inno Setup (Dominique Stephan)
jam Jam (Ralf Lemke)
jess Jess (Paul Baleme)
lprolog LambdaProlog (Markus Mottl)
ia64 Intel Itanium (parth malwankar)
kix Kixtart (Nigel Gibbs)
mgp MaGic Point (Gerfried Fuchs)
mason Mason (HTML with Perl) (Andrew Smith)
mma Mathematica (Wolfgang Waltenberger)
nqc Not Quite C (Stefan Scherer)
omnimark Omnimark (Paul Terray)
openroad OpenROAD (Luis Moreno Serrano)
named BIND configuration (glory hump)
papp PApp (Marc Lehmann)
pfmain Postfix main config (Peter Kelemen)
pic PIC assembly (Aleksandar Veselinovic)
ppwiz PPWizard (Stefan Schwarzer)
progress Progress (Phil Uren)
psf Product Specification File (Rex Barzee)
r R (Tom Payne)
registry MS-Windows registry (Dominique Stephan)
robots Robots.txt (Dominique Stephan)
rtf Rich Text Format (Dominique Stephan)
setl SETL (Alex Poylisher)
sgmldecl SGML Declarations (Daniel A. Molina W.)
sinda Sinda input (Adrian Nagle)
sindacmp Sinda compare (Adrian Nagle)
sindaout Sinda output (Adrian Nagle)
smith SMITH (Rafal Sulejman)
snobol4 Snobol 4 (Rafal Sulejman)
strace Strace (David Necas)
tak TAK input (Adrian Nagle)
takcmp TAK compare (Adrian Nagle)
takout TAK output (Adrian Nagle)
tasm Turbo assembly (FooLman)
texmf TeX configuration (David Necas)
trasys Trasys input (Adrian Nagle)
tssgm TSS Geometry (Adrian Nagle)
tssop TSS Optics (Adrian Nagle)
tsscl TSS Command line (Adrian Nagle)
virata Virata Configuration Script (Manuel M.H. Stol)
vsejcl VSE JCL (David Ondrejko)
wdiff Wordwise diff (Gerfried Fuchs)
wsh Windows Scripting Host (Paul Moore)
xkb X Keyboard Extension (David Necas)

Renamed php3 to php, it now also supports php4 (Lutz Eymers)

version5.txt — 2234

Patch 5.7.015
Problem: Syntax files for Vim 6.0 can't be used with 5.x.
Solution: Add the "default" argument to the ":highlight" command: Ignore the

command if highlighting was already specified.
Files: src/syntax.c

Generate the Syntax menu with makemenu.vim, so that it doesn't have to be done
when Vim is starting up. Reduces the startup time of the GUI.

Fixed fixed-5.8

Conversion of docs to HTML didn't convert " tag s" to a hyperlink.

Fixed compiling under NeXT. (Jeroen C.M. Goudswaard)

optwin.vim gave an error when used in Vi compatible mode ('cpo' contains 'C').

Tcl interpreter: "buffer" command didn't check for presence of an argument.
(Dave Bodenstab)

dosinst.c: Added checks for too long file name.

Amiga: a file name starting with a colon was considered absolute but it isn't.
Amiga: ":pwd" added a slash when in the root of a drive.

Macintosh: Warnings for unused variables. (Bernhard Pruemmer)

Unix: When catching a deadly signal, handle it in such a way that it's
unlikely that Vim will hang. Call _exit() instead of exit() in case of a
severe problem.

Setting the window title from nothing to something didn't work after patch 29.

Check for ownership of .exrc and .vimrc was done with stat(). Use lstat() as
well for extra security.

Win32 GUI: Printing a file with 'fileformat' "unix" didn't work. Set
'fileformat' to "dos" before writing the temp file.

Unix: Could start waiting for a character when checking for a CTRL-C typed
when an X event is received.

Could not use Perl and Python at the same time on FreeBSD, because Perl used
"-lc" and Python used the threaded C library.

Win32: The Mingw compiler gave a few warning messages.

When using "ZZ" and an autocommand for writing uses an abbreviation it didn't
work. Don't stuff the ":x" command but execute it directly. (Mikael Berthe)

VMS doesn't always have lstat(), added an #ifdef around it.

Added a few corrections for the Macintosh. (Axel Kielhorn)

Win32: GvimExt could not edit more than a few files at once, the length of the
argument was fixed.

version5.txt — 2235

Previously released patches for Vim 5.7:

Patch 5.7.001
Problem: When the current buffer is encrypted, and another modified buffer

isn't, ":wall" will encrypt the other buffer.
Solution: In buf_write() use "buf" instead of "curbuf" to check for the

crypt key.
Files: src/fileio.c

Patch 5.7.002
Problem: When 'showmode' is set, using "CTRL-O :r file" waits three seconds

before displaying the read text. (Wichert Akkerman)
Solution: Set "keep_msg" to the file message so that the screen is redrawn

before the three seconds wait for displaying the mode message.
Files: src/fileio.c

Patch 5.7.003
Problem: Searching for "[[:cntrl:]]" doesn't work.
Solution: Exclude NUL from the matching characters, it terminates the list.
Files: src/regexp.c

Patch 5.7.004
Problem: GTK: When selecting a new font, Vim can crash.
Solution: In gui_mch_init_font() unreference the old font, not the new one.
Files: src/gui_gtk_x11.c

Patch 5.7.005
Problem: Multibyte: Inserting a wrapped line corrupts kterm screen.

Pasting TEXT/COMPOUND_TEXT into Vim does not work.
On Motif no XIM status line is displayed even though it is
available.

Solution: Don't use xterm trick for wrapping lines for multibyte mode.
Correct a missing "break", added TEXT/COMPOUND_TEXT selection
request.
Add XIMStatusArea fallback code.
(Katsuhito Nagano)

Files: src/gui_gtk_x11.c, src/multbyte.c, src/screen.c, src/ui.c

Patch 5.7.006
Problem: GUI: redrawing the non-Visual selection is wrong when the window

is unobscured. (Jean-Pierre Etienne)
Solution: Redraw the selection properly and don't clear it. Added "len"

argument to clip_may_redraw_selection().
Files: src/gui.c, src/ui.c, src/proto/ui.pro

Patch 5.7.007
Problem: Python: Crash when using the current buffer twice.
Solution: Increase the reference count for buffer and window objects.

(Johannes Zellner)
Files: src/if_python.c

Patch 5.7.008
Problem: In Ex mode, backspacing over the first TAB doesn't work properly.

(Wichert Akkerman)
Solution: Switch the cursor on before printing the newline.
Files: src/ex_getln.c

Patch 5.7.009 (extra)
Problem: Mac: Crash when using a long file.

version5.txt — 2236

Solution: Don't redefine malloc() and free(), because it will break using
realloc().

Files: src/os_mac.h

Patch 5.7.010
Problem: When using CTRL-A on a very long number Vim can crash. (Michael

Naumann)
Solution: Truncate the length of the new number to avoid a buffer overflow.
Files: src/ops.c

Patch 5.7.011 (extra)
Problem: Win32 GUI on NT 5 and Win98: Displaying Hebrew is reversed.
Solution: Output each character separately, to avoid that Windows reverses

the text for some fonts. (Ron Aaron)
Files: src/gui_w32.c

Patch 5.7.012
Problem: When using "-complete=buffer" for ":command" the user command

fails.
Solution: In a user command don't replace the buffer name with a count for

the buffer number.
Files: src/ex_docmd.c

Patch 5.7.013
Problem: "gD" didn't always find a match in the first line, depending on

the column the search started at.
Solution: Reset the column to zero before starting to search.
Files: src/normal.c

Patch 5.7.014
Problem: Rot13 encoding was done on characters with accents, which is

wrong. (Sven Gottwald)
Solution: Only do rot13 encoding on ASCII characters.
Files: src/ops.c

Patch 5.7.016
Problem: When hitting 'n' for a ":s///c" command, the ignore-case flag was

not restored, some matches were skipped. (Daniel Blaustein)
Solution: Restore the reg_ic variable when 'n' was hit.
Files: src/ex_cmds.c

Patch 5.7.017
Problem: When using a Vim script for Vim 6.0 with <SID> before a function

name, it produces an error message even when inside an "if version
>= 600". (Charles Campbell)

Solution: Ignore errors in the function name when the function is not going
to be defined.

Files: src/eval.c

Patch 5.7.018
Problem: When running "rvim" or "vim -Z" it was still possible to execute a

shell command with system() and backtick-expansion. (Antonios A.
Kavarnos)

Solution: Disallow executing a shell command in get_cmd_output() and
mch_expand_wildcards().

Files: src/misc1.c, src/os_unix.c

Patch 5.7.019
Problem: Multibyte: In a substitute string, a multibyte character isn't

skipped properly, can be a problem when the second byte is a

version5.txt — 2237

backslash.
Solution: Skip an extra byte for a double-byte character. (Muraoka Taro)
Files: src/ex_cmds.c

Patch 5.7.020
Problem: Compilation doesn't work on MacOS-X.
Solution: Add a couple of #ifdefs. (Jamie Curmi)
Files: src/regexp.c, src/ctags/general.h

Patch 5.7.021
Problem: Vim sometimes produces a beep when started in an xterm. Only

happens when compiled without mouse support.
Solution: Requesting the xterm version results in a K_IGNORE. This wasn't

handled when mouse support is disabled. Accept K_IGNORE always.
Files: src/normal.c

Patch 5.7.022
Problem: %v in 'statusline' is not displayed when it's equal to %c.
Solution: Check if %V or %v is used and handle them differently.
Files: src/screen.c

Patch 5.7.023
Problem: Crash when a WinLeave autocommand deletes the buffer in the other

window.
Solution: Check that after executing the WinLeave autocommands there still

is a window to be closed. Also update the test that was supposed
to check for this problem.

Files: src/window.c, testdir/test13.in, testdir/test13.ok

Patch 5.7.024
Problem: Evaluating an expression for 'statusline' can have side effects.
Solution: Evaluate the expression in a sandbox.
Files: src/edit.c, src/eval.c, src/proto/eval.pro, src/ex_cmds.c,

src/ex_cmds.h, src/ex_docmd.c, src/globals.h, src/option.c,
src/screen.c, src/undo.c

Patch 5.7.025 (fixed)
Problem: Creating a temp file has a race condition.
Solution: Create a private directory to write the temp files in.
Files: src/fileio.c, src/misc1.c, src/proto/misc1.pro,

src/proto/fileio.pro, src/memline.c, src/os_unix.h

Patch 5.7.026 (extra)
Problem: Creating a temp file has a race condition.
Solution: Create a private directory to write the temp files in.

This is the extra part of patch 5.7.025.
Files: src/os_msdos.h

Patch 5.7.027
Problem: Starting to edit a file can cause a crash. For example when in

Insert mode, using CTRL-O :help abbr<Tab> to scroll the screen and
then <CR>, which edits a help file. (Robert Bogomip)

Solution: Check if keep_msg is NULL before copying it.
Files: src/fileio.c

Patch 5.7.028
Problem: Creating a backup or swap file could fail in rare situations.
Solution: Use O_EXCL for open().
Files: src/fileio.c, src/memfile.c

version5.txt — 2238

Patch 5.7.029
Problem: Editing a file with an extremely long name crashed Vim.
Solution: Check for length of the name when setting the window title.
Files: src/buffer.c

Patch 5.7.030
Problem: A ":make" or ":grep" command with a very long argument could cause

a crash.
Solution: Allocate the buffer for the shell command.
Files: src/ex_docmd.c

version5.txt — 2239

version5.txt — 2240

version6.txt For Vim version 9.1. Last change: 2022 Apr 06

VIM REFERENCE MANUAL by Bram Moolenaar

Welcome to Vim Version 6.0! A large number of features has been added. This
file mentions all the new items that have been added, changes to existing
features and bug fixes compared to Vim 5.x.

See vi_diff.txt for an overview of differences between Vi and Vim 6.0.
See version4.txt for differences between Vim 3.0 and Vim 4.0.
See version5.txt for differences between Vim 4.0 and Vim 5.0.

INCOMPATIBLE CHANGES incompatible-6

Cursor position in Visual mode curpos-visual
substitute command Vi compatible substitute-CR
global option values introduced new-global-values
'fileencoding' changed fileencoding-changed
Digraphs changed digraphs-changed
Filetype detection changed filetypedetect-changed
Unlisted buffers introduced new-unlisted-buffers
CTRL-U in Command-line mode changed CTRL-U-changed
Ctags gone ctags-gone
Documentation reorganized documentation-6
Modeless selection and clipboard modeless-and-clipboard
Small incompatibilities incomp-small-6

NEW FEATURES new-6

Folding new-folding
Vertically split windows new-vertsplit
Diff mode new-diff-mode
Easy Vim: click-and-type new-evim
User manual new-user-manual
Flexible indenting new-indent-flex
Extended search patterns new-searchpat
UTF-8 support new-utf-8
Multi-language support new-multi-lang
Plugin support new-plugins
Filetype plugins new-filetype-plugins
File browser new-file-browser
Editing files over a network new-network-files
Window for command-line editing new-cmdwin
Debugging mode new-debug-mode
Cursor in virtual position new-virtedit
Debugger interface new-debug-itf
Communication between Vims new-vim-server
Buffer type options new-buftype
Printing new-printing
Ports ports-6
Quickfix extended quickfix-6
Operator modifiers new-operator-mod
Search Path new-search-path
Writing files improved new-file-writing
Argument list new-argument-list
Restore a View new-View
Color schemes new-color-schemes
Various new items new-items-6

version6.txt — 2241

IMPROVEMENTS improvements-6

COMPILE TIME CHANGES compile-changes-6

BUG FIXES bug-fixes-6

VERSION 6.1 version-6.1
Changed changed-6.1
Added added-6.1
Fixed fixed-6.1

VERSION 6.2 version-6.2
Changed changed-6.2
Added added-6.2
Fixed fixed-6.2

VERSION 6.3 version-6.3
Changed changed-6.3
Added added-6.3
Fixed fixed-6.3

VERSION 6.4 version-6.4
Changed changed-6.4
Added added-6.4
Fixed fixed-6.4

==
INCOMPATIBLE CHANGES incompatible-6

These changes are incompatible with previous releases. Check this list if you
run into a problem when upgrading from Vim 5.x to 6.0

Cursor position in Visual mode curpos-visual

When going from one window to another window on the same buffer while in
Visual mode, the cursor position of the other window is adjusted to keep the
same Visual area. This can be used to set the start of the Visual area in one
window and the end in another. In vim 5.x the cursor position of the other
window would be used, which could be anywhere and was not very useful.

Substitute command Vi compatible substitute-CR

The substitute string (the "to" part of the substitute command) has been made
Vi compatible. Previously a CTRL-V had a special meaning and could be used to
prevent a <CR> to insert a line break. This made it impossible to insert a
CTRL-V before a line break. Now a backslash is used to prevent a <CR> to
cause a line break. Since the number of backslashes is halved, it is still
possible to insert a line break at the end of the line. This now works just
like Vi, but it's not compatible with Vim versions before 6.0.

When a ":s" command doesn't make any substitutions, it no longer sets the '[
and '] marks. This is not related to Vi, since it doesn't have these marks.

Global option values introduced new-global-values

version6.txt — 2242

There are now global values for options which are local to a buffer or window.
Previously the local options were copied from one buffer to another. When
editing another file this could cause option values from a modeline to be used
for the wrong file. Now the global values are used when entering a buffer
that has not been used before. Also, when editing another buffer in a window,
the local window options are reset to their global values. The ":set" command
sets both the local and global values, this is still compatible. But a
modeline only sets the local value, this is not backwards compatible.

":let &opt = val" now sets the local and global values, like ":set". New
commands have been added to set the global or local value:

:let &opt = val like ":set"
:let &g:opt = val like ":setglobal"
:let &l:opt = val like ":setlocal"

'fileencoding' changed fileencoding-changed

'fileencoding' was used in Vim 5.x to set the encoding used inside all of Vim.
This was a bit strange, because it was local to a buffer and worked for all
buffers. It could never be different between buffers, because it changed the
way text in all buffers was interpreted.
It is now used for the encoding of the file related to the buffer. If you
still set 'fileencoding' it is likely to be overwritten by the detected
encoding from 'fileencodings', thus it is "mostly harmless".
The old FileEncoding autocommand now does the same as the new EncodingChanged
event.

Digraphs changed digraphs-changed

The default digraphs now correspond to RFC1345. This is very different from
what was used in Vim 5.x. digraphs

Filetype detection changed filetypedetect-changed

The filetype detection previously was using the "filetype" autocommand group.
This caused confusion with the FileType event name (case is ignored). The
group is now called "filetypedetect". It still works, but if the "filetype"
group is used the autocommands will not be removed by ":filetype off".

The support for 'runtimepath' has made the "myfiletypefile" and
"mysyntaxfile" mechanism obsolete. They are still used for backwards
compatibility.

The connection between the FileType event and setting the 'syntax' option was
previously in the "syntax" autocommand group. That caused confusion with the
Syntax event name. The group is now called "syntaxset".

The distributed syntax files no longer contain "syntax clear". That makes it
possible to include one in the other without tricks. The syntax is now
cleared when the 'syntax' option is set (by an autocommand added from
synload.vim). This makes the syntax cleared when the value of 'syntax' does
not correspond to a syntax file. Previously the existing highlighting was
kept.

version6.txt — 2243

Unlisted buffers introduced new-unlisted-buffers

There is now a difference between buffers which don't appear in the buffer
list and buffers which are really not in the buffer list. Commands like
":ls", ":bnext", ":blast" and the Buffers menu will skip buffers not in the
buffer list. unlisted-buffer
The 'buflisted' option can be used to make a buffer appear in the buffer list
or not.

Several commands that previously added a buffer to the buffer list now create
an unlisted buffer. This means that a ":bnext" and ":ball" will not find these
files until they have actually been edited. For example, buffers used for the
alternative file by ":write file" and ":read file".

Other commands previously completely deleted a buffer and now only remove
the buffer from the buffer list. Commands relying on a buffer not to be
present might fail. For example, a ":bdelete" command in an autocommand that
relied on something following to fail (was used in the automatic tests).
:bwipeout can be used for the old meaning of ":bdelete".

The BufDelete autocommand event is now triggered when a buffer is removed from
the buffer list. The BufCreate event is only triggered when a buffer is
created that is added to the buffer list, or when an existing buffer is added
to the buffer list. BufAdd is a new name for BufCreate.
The new BufNew event is for creating any buffer and BufWipeout for really
deleting a buffer.

When doing Insert mode completion, only buffers in the buffer list are
scanned. Added the 'U' flag to 'complete' to do completion from unlisted
buffers.

Unlisted buffers are not stored in a viminfo file.

CTRL-U in Command-line mode changed CTRL-U-changed

Using CTRL-U when editing the command line cleared the whole line. Most
shells only delete the characters before the cursor. Made it work like that.
(Steve Wall)

You can get the old behavior with CTRL-E CTRL-U:
:cnoremap <C-U> <C-E><C-U>

Ctags gone ctags-gone

Ctags is no longer part of the Vim distribution. It's now a grown-up program
by itself, it deserves to be distributed separately.
Ctags can be found here: http://ctags.sf.net/.

Documentation reorganized documentation-6

The documentation has been reorganized, an item may not be where you found it
in Vim 5.x.

version6.txt — 2244

http://ctags.sf.net/

- The user manual was added, some items have been moved to it from the
reference manual.

- The quick reference is now in a separate file (so that it can be printed).

The examples in the documentation were previously marked with a ">" in the
first column. This made it difficult to copy/paste them. There is now a
single ">" before the example and it ends at a "<" or a non-blank in the first
column. This also looks better without highlighting.

'helpfile' is no longer used to find the help tags file. This allows a user
to add its own help files (e.g., for plugins).

Modeless selection and clipboard modeless-and-clipboard

The modeless selection is used to select text when Visual mode can't be used,
for example when editing the command line or at the more prompt.
In Vim 5.x the modeless selection was always used. On MS-Windows this caused
the clipboard to be overwritten, with no way to avoid that. The modeless
selection now obeys the 'a' and 'A' flags in 'guioptions' and "autoselect" and
"autoselectml" in 'clipboard'. By default there is no automatic copy on
MS-Windows. Use the c_CTRL-Y command to manually copy the selection.

To get the old behavior back, do this:

:set clipboard^=autoselectml guioptions+=A

Small incompatibilities incomp-small-6

'backupdir', 'cdpath', 'directory', 'equalprg', 'errorfile', 'formatprg',
'grepprg', 'helpfile', 'makeef', 'makeprg', 'keywordprg', 'cscopeprg',
'viminfo' and 'runtimepath' can no longer be set from a modeline, for better
security.

Removed '_' from the 'breakat' default: It's commonly used in keywords.

The default for 'mousehide' is on, because this works well for most people.

The Amiga binary is now always compiled with "big" features. The "big" binary
archive no longer exists.

The items "[RO]", "[+]", "[help]", "[Preview]" and "[filetype]" in
'statusline' no longer have a leading space.

Non-Unix systems: When expanding wildcards for the Vim arguments, don't use
'suffixes'. It now works as if the shell had expanded the arguments.

The 'lisp', 'smartindent' and 'cindent' options are not switched off when
'paste' is set. The auto-indenting is disabled when 'paste' is set, but
manual indenting with "=" still works.

When formatting with "=" uses 'cindent' or 'indentexpr' indenting, and there
is no change in indent, this is not counted as a change ('modified' isn't set
and there is nothing to undo).

Report 'modified' as changed when 'fileencoding' or 'fileformat' was set.
Thus it reflects the possibility to abandon the buffer without losing changes.

version6.txt — 2245

The "Save As" menu entry now edits the saved file. Most people expect it to
work like this.

A buffer for a directory is no longer added to the Buffers menu.

Renamed <Return> to <Enter>, since that's what it's called on most keyboards.
Thus it's now the hit-enter prompt instead of the hit-return prompt.
Can map <Enter> just like <CR> or <Return>.

The default for the 'viminfo' option is now '20,"50,h when 'compatible' isn't
set. Most people will want to use it, including beginners, but it required
setting the option, which isn't that easy.

After using ":colder" the newer error lists are overwritten. This makes it
possible to use ":grep" to browse in a tree-like way. Must use ":cnewer 99"
to get the old behavior.

The patterns in 'errorformat' would sometimes ignore case (MS-Windows) and
sometimes not (Unix). Now case is always ignored. Add "\C" to the pattern to
match case.

The 16 bit MS-DOS version is now compiled without the +listcmds feature
(buffer list manipulation commands). They are not often needed and this
executable needs to be smaller.

'sessionoptions' now includes "curdir" by default. This means that restoring
a session will result in the current directory being restored, instead of
going to the directory where the session file is located.

A session deleted all buffers, deleting all marks. Now keep the buffer list,
it shouldn't hurt for some existing buffers to remain present.
When the argument list is empty ":argdel *" caused an error message.

No longer put the search pattern from a tag jump in the history.

Use "SpecialKey" highlighting for unprintable characters instead of "NonText".
The idea is that unprintable text or any text that's displayed differently
from the characters in the file is using "SpecialKey", and "NonText" is used
for text that doesn't really exist in the file.

Motif now uses the system default colors for the menu and scrollbar. Used to
be grey. It's still possible to set the colors with ":highlight" commands and
resources.

Formatting text with "gq" breaks a paragraph at a non-empty blank line.
Previously the line would be removed, which wasn't very useful.

":normal" does no longer hang when the argument ends in half a command.
Previously Vim would wait for more characters to be typed, without updating
the screen. Now it pretends an <Esc> was typed.

Bitmaps for the toolbar are no longer searched for in "$VIM/bitmaps" but in
the "bitmaps" directories in 'runtimepath'.

Now use the Cmdline-mode menus for the hit-enter prompt instead of the Normal
mode menus. This generally works better and allows using the "Copy" menu to
produce CTRL-Y to copy the modeless selection.

Moved the font selection from the Window to the Edit menu, together with the

version6.txt — 2246

other settings.

The default values for 'isfname' include more characters to make "gf" work
better.

Changed the license for the documentation to the Open Publication License.
This seemed fair, considering the inclusion of parts of the Vim book, which is
also published under the OPL. The downside is that we can't force someone who
would sell copies of the manual to contribute to Uganda.

After "ayy don't let ""yy or :let @" = val overwrite the "a register.
Use the unnamed register instead.

MSDOS: A pattern "*.*" previously also matched a file name without a dot.
This was inconsistent with other versions.

In Insert mode, CTRL-O CTRL-\ CTRL-N {cmd} remains in Normal mode. Previously
it would go back to Insert mode, thus confusing the meaning of CTRL-\ CTRL-N,
which is supposed to take us to Normal mode (especially in ":amenu").

Allow using ":" commands after an operator. Could be used to implement a new
movement command. Thus it no longer aborts a pending operator.

For the Amiga the "-d {device}" argument was possible. When compiled with the
diff feature, this no longer works. Use "-dev {device}" instead. -dev

Made the default mappings for <S-Insert> in Insert mode insert the text
literally, avoids that special characters like BS cause side effects.

Using ":confirm" applied to the rest of the line. Now it applies only to the
command right after it. Thus ":confirm if x | edit | endif" no longer works,
use ":if x | confirm edit | endif". This was the original intention, that it
worked differently was a bug.

==
NEW FEATURES new-6

Folding new-folding

Vim can now display a buffer with text folded. This allows overviewing the
structure of a file quickly. It is also possible to yank, delete and put
folded text, for example to move a function to another position.

There is a whole bunch of new commands and options related to folding.
See folding .

Vertically split windows new-vertsplit

Windows can also be split vertically. This makes it possible to have windows
side by side. One nice use for this is to compare two similar files (see
new-diff-mode). The 'scrollbind' option can be used to synchronize

scrolling.

A vertical split can be created with the commands:
:vsplit or CTRL-W v or CTRL-W CTRL-V :vsplit
:vnew :vnew
:vertical {cmd} :vertical

version6.txt — 2247

The last one is a modifier, which has a meaning for any command that splits a
window. For example:

:vertical stag main
Will vertically split the window and jump to the tag "main" in the new window.

Moving from window to window horizontally can be done with the CTRL-W_h and
CTRL-W_l commands. The CTRL-W_k and CTRL-W_j commands have been changed

to jump to the window above or below the cursor position.

The vertical and horizontal splits can be mixed as you like. Resizing windows
is easy when using the mouse, just position the pointer on a status line or
vertical separator and drag it. In the GUI a special mouse pointer shape
indicates where you can drag a status or separator line.

To resize vertically split windows use the CTRL-W_< and CTRL-W_> commands.
To make a window the maximum width use the CTRL-W | command CTRL-W_bar .

To force a new window to use the full width or height of the Vim window,
these two modifiers are available:

:topleft {cmd} New window appears at the top with full
width or at the left with full height.

:botright {cmd} New window appears at the bottom with full
width or at the right with full height.

This can be combined with ":vertical" to force a vertical split:
:vert bot dsplit DEBUG

This will open a window at the far right, occupying the full height of the Vim
window, with the cursor on the first definition of "DEBUG".
The help window is opened at the top, like ":topleft" was used, if the current
window is fewer than 80 characters wide.

A few options can be used to set the preferences for vertically split windows.
They work similarly to their existing horizontal equivalents:

horizontal vertical
'splitbelow' 'splitright'
'winheight' 'winwidth'
'winminheight' 'winminwidth'

It's possible to set 'winminwidth' to zero, so that temporarily unused windows
hardly take up space without closing them.

The new 'eadirection' option tells where 'equalalways' applies:
:set eadirection=both both directions
:set eadirection=ver equalize window heights
:set eadirection=hor equalize windows widths

This can be used to avoid changing window sizes when you want to keep them.

Since windows can become quite narrow with vertical splits, text lines will
often not fit. The 'sidescrolloff' has been added to keep some context left
and right of the cursor. The 'listchars' option has been extended with the
"precedes" item, to show a "<" for example, when there is text left off the
screen. (Utz-Uwe Haus)

"-O" command line argument: Like "-o" but split windows vertically. (Scott
Urban)

Added commands to move the current window to the very top (CTRL-W K), bottom
(CTRL-W J), left (CTRL-W H) and right (CTRL-W L). In the new position the
window uses the full width/height of the screen.

When there is not enough room in the status line for both the file name and
the ruler, use up to half the width for the ruler. Useful for narrow windows.

version6.txt — 2248

Diff mode new-diff-mode

In diff mode Vim shows the differences between two, three or four files.
Folding is used to hide the parts of the file that are equal.
Highlighting is used to show deleted and changed lines.
See diff-mode .

An easy way to start in diff mode is to start Vim as "vimdiff file1 file2".
Added the vimdiff manpage.

In a running Vim the :diffsplit command starts diff mode for the current
file and another file. The :diffpatch command starts diff mode using the
current file and a patch file. The :diffthis command starts diff mode for
the current window.

Differences can be removed with the :diffget and :diffput commands.

- The 'diff' option switches diff mode on in a window.
- The :diffupdate command refreshes the diffs.
- The 'diffopt' option changes how diffs are displayed.
- The 'diffexpr' option can be set how a diff is to be created.
- The 'patchexpr' option can be set how patch is applied to a file.
- Added the "diff" folding method. When opening a window for diff-mode, set

'foldlevel' to zero and 'foldenable' on, to close the folds.
- Added the DiffAdd, DiffChange, DiffDelete and DiffText highlight groups to

specify the highlighting for differences. The defaults are ugly...
- Unix: make a vimdiff symbolic link for "make install".
- Removed the now obsolete "vimdiff.vim" script from the distribution.
- Added the "[c" and "]c" commands to move to the next/previous change in diff

mode.

Easy Vim: click-and-type new-evim

eVim stands for "Easy Vim". This is a separate program, but can also be
started as "vim -y".

This starts Vim with 'insertmode' set to allow click-and-type editing. The
$VIMRUNTIME/evim.vim script is used to add mappings and set options to be able
to do most things like Notepad. This is only for people who can't stand two
modes.

eView does the same but in readonly mode.

In the GUI a CTRL-C now only interrupts when busy with something, not when
waiting for a character. Allows using CTRL-C to copy text to the clipboard.

User manual new-user-manual

The user manual has been added. It is organised around editing tasks. It
reads like a book, from start to end. It should allow beginners to start
learning Vim. It helps everybody to learn using the most useful Vim features.
It is much easier to read than the reference manual, but omits details. See
user-manual .

version6.txt — 2249

The user manual includes parts of the Vim book by Steve Oualline frombook .
It is published under the OPL manual-copyright .

When syntax highlighting is not enabled, the characters in the help file which
mark examples ('>' and '<') and header lines ('~') are replaced with a space.

When closing the help window, the window layout is restored from before
opening it, if the window layout didn't change since then.
When opening the help window, put it at the top of the Vim window if the
current window is fewer than 80 characters and not full width.

Flexible indenting new-indent-flex

Automatic indenting is now possible for any language. It works with a Vim
script, which makes it very flexible to compute the indent.

The ":filetype indent on" command enables using the provided indent scripts.
This is explained in the user manual: 30.3 .

The 'indentexpr' option is evaluated to get the indent for a line. The
'indentkeys' option tells when to trigger re-indenting. Normally these
options are set from an indent script. Like Syntax files, indent scripts will
be created and maintained by many people.

Extended search patterns new-searchpat

Added the possibility to match more than one line with a pattern. (partly by
Loic Grenie)
New items in a search pattern for multi-line matches:
\n match end-of-line, also in []
_[] match characters in range and end-of-line
_x match character class and end-of-line
_. match any character or end-of-line
_^ match start-of-line, can be used anywhere in the regexp
_$ match end-of-line, can be used anywhere in the regexp

Various other new items in search patterns:
\c ignore case for the whole pattern
\C match case for the whole pattern
\m magic on for the following
\M magic off for the following
\v make following characters "very magic"
\V make following characters "very nomagic"

\@! don't match atom before this.
Example: "foo\(bar\)\@!" matches "foo " but not "foobar".

\@= match atom, resulting in zero-width match
Example: "foo\(bar\)\@=" matches "foo" in "foobar".

\@<! don't match preceding atom before the current position
\@<= match preceding atom before the current position
\@> match preceding atom as a subexpression

\& match only when branch before and after it match

\%[] optionally match a list of atoms; "end\%[if]" matches "end",

version6.txt — 2250

"endi" and "endif"
\%(\) like \(\), but without creating a back-reference; there can be

any number of these, overcomes the limit of nine \(\) pairs
\%^ match start-of-file (Chase Tingley)
\%$ match end-of-file (Chase Tingley)
\%# Match with the cursor position. (Chase Tingley)
\? Just like "\=" but can't be used in a "?" command.

\%23l match in line 23
\%<23l match before line 23
\%>23l match after line 23
\%23c, \%<23c, \%>23c match in/before/after column 23
\%23v, \%<23v, \%>23v match in/before/after virtual column 23

For syntax items:
\z(...\) external reference match set (in region start pattern)
\z1 - \z9 external reference match use (in region skip or end pattern)

(Scott Bigham)

\zs use position as start of match
\ze use position as end of match

Removed limit of matching only up to 32767 times with *, \+, etc.

Added support to match multibyte characters. (partly by Muraoka Taro)
Made "\<" and "\>" work for UTF-8. (Muraoka Taro)

UTF-8 support new-utf-8

Vim can now edit files in UTF-8 encoding. Up to 31 bit characters can be
used, but only 16 bit characters are displayed. Up to two combining
characters are supported, they overprint the preceding character.
Double-wide characters are also supported. See UTF-8 .

UCS-2, UCS-4 and UTF-16 encodings are supported too, they are converted to
UTF-8 internally. There is also support for editing Unicode files in a Latin1
environment. Other encodings are converted with iconv() or an external
converter specified with 'charconvert'.

Many new items for Multi-byte support:
- Added 'encoding' option: specifies character encoding used inside Vim. It

can be any 8-bit encoding, some double-byte encodings or Unicode.
It is initialized from the environment when a supported value is found.

- Added 'fileencoding' and 'fileencodings': specify character coding in a
file, similar to 'fileformat' and 'fileformats'.
When 'encoding' is "utf-8" and 'fileencodings' is "utf-8,latin1" this will
automatically switch to latin1 if a file does not contain valid UTF-8.

- Added 'bomb' option and detection of a BOM at the start of a file. Can be
used with "ucs-bom" in 'fileencodings' to automatically detect a Unicode
file if it starts with a BOM. Especially useful on MS-Windows (NT and
2000), which uses ucs-2le files with a BOM (e.g., when exporting the
registry).

- Added the 'termencoding' option: Specifies the encoding used for the
terminal. Useful to put Vim in utf-8 mode while in a non-Unicode locale:
:let &termencoding = &encoding
:set encoding=utf-8

- When 'viminfo' contains the 'c' flag, the viminfo file is converted from the

version6.txt — 2251

'encoding' it was written with to the current 'encoding'.
- Added ":scriptencoding" command: convert lines in a sourced script to

'encoding'. Useful for menu files.
- Added 'guifontwide' to specify a font for double-wide characters.
- Added Korean support for character class detection. Also fix cls() in

search.c. (Chong-Dae Park)
- Win32: Typing multibyte characters without IME. (Alexander Smishlajev)
- Win32 with Mingw: compile with iconv library. (Ron Aaron)
- Win32 with MSVC: dynamically load iconv.dll library. (Muraoka Taro)
- Make it possible to build a version with multibyte and iconv support with

Borland 5.5. (Yasuhiro Matsumoto)
- Added 'delcombine' option: Delete combining character separately. (Ron

Aaron)
- The "xfontset" feature isn't required for "xim". These are now two

independent features.
- XIM: enable XIM when typing a language character (Insert mode, Search

pattern, "f" or "r" command). Disable XIM when typing a Normal mode
command.

- When the XIM is active, show "XIM" in the 'showmode' message. (Nam SungHyun)
- Support "CursorIM" for XIM. (Nam SungHyun)
- Added 'm' flag to 'formatoptions': When wrapping words, allow splitting at

each multibyte character, not only at a space.
- Made ":syntax keyword" work with multibyte characters.
- Added support for Unicode upper/lowercase flipping and comparing. (based on

patch by Raphael Finkel)
Let "~" on multibyte characters that have a third case ("title case")
switch between the three cases. (Raphael Finkel)

Allow defining digraphs for multibyte characters.
Added RFC1345 digraphs for Unicode.
Most Normal mode commands that accept a character argument, like "r", "t" and
"f" now accept a digraph. The 'D' flag in 'cpoptions' disables this to remain
Vi compatible.

Added Language mapping and 'keymap' to be able to type multibyte characters:
- Added the ":lmap" command and friends: Define mappings that are used when

typing characters in the language of the text. Also for "r", "t", etc. In
Insert and Command-line mode CTRL-^ switches the use of the mappings on/off.
CTRL-^ also toggles the use of an input method when no language mappings are
present. Allows switching the IM back on halfway typing.

- "<char-123>" argument to ":map", allows to specify the decimal, octal or
hexadecimal value of a character.

- Implemented the 'keymap' option: Load a keymap file. Uses ":lnoremap" to
define mappings for the keymap. The new ":loadkeymap" command is used in
the keymap file.

- Added 'k' flag in 'statusline': Value of "b:keymap_name" or 'keymap' when
it's being used. Uses "<lang>" when no keymap is loaded and ":lmap"s are
active. Show this text in the default statusline too.

- Added the 'iminsert' and 'imsearch' options: Specify use of langmap mappings
and Input Method with an option. (Muraoka Taro)
Added 'imcmdline' option: When set the input method is always enabled when
starting to edit a command line. Useful for a XIM that uses dead keys to
type accented characters.
Added 'imactivatekey' option to better control XIM. (Muraoka Taro)

- When typing a mapping that's not finished yet, display the last character
under the cursor in Insert mode and Command-line mode. Looks good for dead
characters.

- Made the 'langmap' option recognize multibyte characters. But mapping only
works for 8-bit characters. Helps when using UTF-8.

- Use a different cursor for when ":lmap" mappings are active. Can specify

version6.txt — 2252

two highlight groups for an item in 'guicursor'. By default "lCursor" and
"Cursor" are equal, the user must set a color he likes.
Use the cursor color for hangul input as well. (Sung-Hyun Nam)

- Show "(lang)" for 'showmode' when language mapping is enabled.
- UTF-8: Made "r" work with a ":lmap" that includes a composing character.

Also works for "f", which now works to find a character that includes a
composing character.

Other multibyte character additions:
- Support double-byte single-width characters for euc-jp: Characters starting

with 0x8E. Added ScreenLines2[] to store the second byte.

Multi-language support new-multi-lang

The messages used in Vim can be translated. Several translations are
available. This uses the gettext mechanism. It allows adding a translation
without recompiling Vim. multi-lang (partly by Marcin Dalecki)

The translation files are in the src/po directory. The src/po/README.txt file
explains a few things about doing a translation.

Menu translations are available as well. This uses the new :menutranslate
command. The translations are found in the runtime directory "lang". This
allows a user to add a translation.

Added :language command to set the language (locale) for messages, time and
character type. This allows switching languages in Vim without changing the
locale outside of Vim.

Made it possible to have vimtutor use different languages. (Eduardo Fernandez)
Spanish (Eduardo Fernandez), Italian (Antonio Colombo), Japanese (Yasuhiro
Matsumoto) and French (Adrien Beau) translations are included.
Added "vimtutor.bat": script to start Vim on a copy of the tutor file for
MS-Windows. (Dan Sharp)

- Added v:lang variable to be able to get current language setting.
(Marcin Dalecki) Also v:lc_time and v:ctype.

- Make it possible to translate the dialogs used by the menus. Uses global
"menutrans_" variables. ":menutrans clear" deletes them.

- removed "broken locale" (Marcin Dalecki).
- Don't use color names in icons, use RGB values. The names could be

translated.
- Win32: Added global IME support (Muraoka)
- Win32: Added dynamic loading of IME support.
- ":messages" prints a message about who maintains the messages or the

translations. Useful to find out where to make a remark about a wrong
translation.

- --disable-nls argument for configure: Disable use of gettext(). (Sung-Hyun
Nam)

- Added NLS support for Win32 with the MingW compiler. (Eduardo Fernandez)
- When available, call bind_textdomain_codeset() to have gettext() translate

messages to 'encoding'. This requires GNU gettext 0.10.36 or later.
- Added gettext support for Win32. This means messages will be translated

when the locale is set and libintl.dll can be found. (Muraoka Taro)
Also made it work with MingW compiler. (Eduardo Fernandez)
Detect the language and set $LANG to get the appropriate translated messages
(if supported). Also use $LANG to select a language, v:lang is a very
different kind of name.

version6.txt — 2253

- Made gvimext.dll use translated messages, if possible. (Yasuhiro Matsumoto)

Plugin support new-plugins

To make it really easy to load a Vim script when starting Vim, the "plugin"
runtime directory can be used. All "*.vim" files in it will be automatically
loaded. For Unix, the directory "~/.vim/plugin" is used by default. The
'runtimepath' option can be set to look in other directories for plugins.
load-plugins add-plugin

The :runtime command has been added to load one or more files in
'runtimepath'.

Standard plugins:
netrw.vim - Edit files over a network new-network-files
gzip.vim - Edit compressed files
explorer.vim - Browse directories new-file-browser

Added support for local help files. add-local-help .
When searching for help tags, all "doc/tags" files in 'runtimepath' are used.
Added the ":helptags" command: Generate a tags file for a help directory.
The first line of each help file is automagically added to the "LOCAL
ADDITIONS" section in doc/help.txt.

Added the <unique> argument to ":map": only add a mapping when it wasn't
defined before.

When displaying an option value with 'verbose' set will give a message about
where the option was last set. Very useful to find out which script did set
the value.

The new :scriptnames command displays a list of all scripts that have been
sourced.

GUI: For Athena, Motif and GTK look for a toolbar bitmap in the "bitmaps"
directories in 'runtimepath'. Allows adding your own bitmaps.

Filetype plugins new-filetype-plugins

A new group of files has been added to do settings for specific file types.
These can be options and mappings which are specifically used for one value of
'filetype'.

The files are located in "$VIMRUNTIME/ftplugin". The 'runtimepath' option
makes it possible to use several sets of plugins: Your own, system-wide,
included in the Vim distribution, etc.

To be able to make this work, several features were added:
- Added the "s:" variables, local to a script. Avoids name conflicts with

global variables. They can be used in the script and in functions,
autocommands and user commands defined in the script. They are kept between
invocations of the same script. s:var

- Added the global value for local options. This value is used when opening
a new buffer or editing another file. The option value specified in a
modeline or filetype setting is not carried over to another buffer.
":set" sets both the local and the global value.

version6.txt — 2254

":setlocal" sets the local option value only.
":setglobal" sets or displays the global value for a local option.
":setlocal name<" sets a local option to its global value.

- Added the buffer-local value for some global options: 'equalprg', 'makeprg',
'errorformat', 'grepprg', 'path', 'dictionary', 'thesaurus', 'tags',
'include' and 'define'. This allows setting a local value for these global
options, without making it incompatible.

- Added mappings and abbreviations local to a buffer: ":map <buffer>".
- In a mapping "<Leader>" can be used to get the value of the "mapleader"

variable. This simplifies mappings that use "mapleader". "<Leader>"
defaults to "\". "<LocalLeader>" does the same with "maplocalleader". This
is to be used for mappings local to a buffer.

- Added <SID> Script ID to define functions and mappings local to a script.
- Added <script> argument to ":noremap" and ":noremenu": Only remap

script-local mappings. Avoids that mappings from other scripts get in the
way, but does allow using mappings defined in the script.

- User commands can be local to a buffer: ":command -buffer".

The new ":setfiletype" command is used in the filetype detection autocommands,
to avoid that 'filetype' is set twice.

File browser new-file-browser

When editing a directory, the explorer plugin will list the files in the
directory. Pressing <Enter> on a file name edits that file. Pressing <Enter>
on a directory moves the browser to that directory.

There are several other possibilities, such as opening a file in the preview
window, renaming files and deleting files.

Editing files over a network new-network-files

Files starting with scp://, rcp://, ftp:// and http:// are recognized as
remote files. An attempt is made to access these files with the indicated
method. For http:// only reading is possible, for the others writing is also
supported. Uses the netrw.vim script as a standard "plugin". netrw

Made "gf" work on a URL. It no longer assumes the file is local on the
computer (mostly didn't work anyway, because the full path was required).
Adjusted test2 for this.

Allow using a URL in 'path'. Makes ":find index.html" work.

GTK: Allow dropping a http:// and ftp:// URL on Vim. The netrw plugin takes
care of downloading the file. (Mikael Berthe)

Window for command-line editing new-cmdwin

The Command-line window can be used to edit a command-line with Normal and
Insert mode commands. When it is opened it contains the history. This allows
copying parts of previous command lines. cmdwin

The command-line window can be opened from the command-line with the key
specified by the 'cedit' option (like Nvi). It can also be opened directly

version6.txt — 2255

from Normal mode with "q:", "q/" and "q?".

The 'cmdwinheight' is used to specify the initial height of the window.

In Insert mode CTRL-X CTRL-V can be used to complete an Ex command line, like
it's done on the command-line. This is also useful for writing Vim scripts!

Additionally, there is "improved Ex mode". Entered when Vim is started as
"exim" or "vim -E", and with the "gQ" command. Works like repeated use of
":", with full command-line editing and completion. (Ulf Carlsson)

Debugging mode new-debug-mode

In debugging mode sourced scripts and user functions can be executed line by
line. There are commands to step over a command or step into it. debug-mode

Breakpoints can be set to run until a certain line in a script or user
function is executed. :breakadd

Debugging can be started with ":debug {cmd}" to debug what happens when a
command executes. The -D argument can be used to debug while starting up.

Cursor in virtual position new-virtedit

Added the 'virtualedit' option: Allow positioning the cursor where there is no
actual character in Insert mode, Visual mode or always. (Matthias Kramm)
This is especially useful in Visual-block mode. It allows positioning a
corner of the area where there is no text character. (Many improvements by
Chase Tingley)

Debugger interface new-debug-itf

This was originally made to work with Sun Visual Workshop. (Gordon Prieur)
See debugger.txt , sign.txt and workshop.txt .

Added the ":sign" command to define and place signs. They can be displayed
with two ASCII characters or an icon. The line after it can be highlighted.
Useful to display breakpoints and the current PC position.

Added the :wsverb command to execute debugger commands.

Added balloon stuff: 'balloondelay' and 'ballooneval' options.

Added "icon=" argument for ":menu". Allows defining a specific icon for a
ToolBar item.

Communication between Vims new-vim-server

Added communication between two Vims. Makes it possible to send commands from
one Vim to another. Works for X-Windows and MS-Windows clientserver .

Use "--remote" to have files be edited in an already running Vim.

version6.txt — 2256

Use "--remote-wait" to do the same and wait for the editing to finish.
Use "--remote-send" to send commands from one Vim to another.
Use "--remote-expr" to have an expression evaluated in another Vim.
Use "--serverlist" to list the currently available Vim servers. (X only)
There are also functions to communicate between the server and the client.
remote_send() remote_expr()

(X-windows version implemented by Flemming Madsen, MS-Windows version by Paul
Moore)

Added the command server name to the window title, so you can see which server
name belongs to which Vim.

Removed the OleVim directory and SendToVim.exe and EditWithVim.exe from the
distribution. Can now use "gvim --remote" and "gvim --remote-send", which is
portable.

GTK+: Support running Vim inside another window. Uses the --socketid argument
(Neil Bird)

Buffer type options new-buftype

The 'buftype' and 'bufhidden' options have been added. They can be set to
have different kinds of buffers. For example:
- 'buftype' = "quickfix": buffer with error list
- 'buftype' = "nofile" and 'bufhidden' = "delete": scratch buffer that will be

deleted as soon as there is no window displaying it.

'bufhidden' can be used to overrule the 'hidden' option for one buffer.

In combination with 'buflisted' and 'swapfile' this offers the possibility to
use various kinds of special buffers. See special-buffers .

Printing new-printing

Included first implementation of the ":hardcopy" command for printing
to paper. For MS-Windows any installed printer can be used. For other
systems a PostScript file is generated, which can be printed with the
'printexpr' option.
(MS-Windows part by Vince Negri, Vipin Aravind, PostScript by Vince Negri and
Mike Williams)

Made ":hardcopy" work with multibyte characters. (Muraoka Taro, Yasuhiro
Matsumoto)

Added options to tune the way printing works: (Vince Negri)
- 'printoptions' defines various things.
- 'printheader' specifies the header format. Added "N" field to 'statusline'

for the page number.
- 'printfont' specifies the font name and attributes.
- 'printdevice' defines the default printer for ":hardcopy!".

Ports ports-6

version6.txt — 2257

Port to OS/390 Unix (Ralf Schandl)
- A lot of changes to handle EBCDIC encoding.
- Changed Ctrl('x') to Ctrl_x define.

Included jsbmouse support. (Darren Garth)
Support for dec mouse in Unix. (Steve Wall)

Port to 16-bit MS-Windows (Windows 3.1x) (Vince Negri)

Port to QNX. Supports the Photon GUI, mouse, etc. (Julian Kinraid)

Allow cross-compiling the Win32 version with Make_ming.mak. (Ron Aaron)
Added Python support for compiling with Mingw. (Ron Aaron)

Dos 32 bit: Added support the Windows clipboard. (David Kotchan)

Win32: Dynamically load Perl and Python. Allows compiling Vim with these
interfaces and will try to find the DLLs at runtime. (Muraoka Taro)

Compiling the Win32 GUI with Cygwin. Also compile vimrun, dosinst and
uninstall. (Gerfried)

Mac: Make Vim compile with the free MPW compiler supplied by Apple. And
updates for CodeWarrior. (Axel Kielhorn)

Added typecasts and ifdefs as a start to make Vim work on Win64 (George
Reilly)

Quickfix extended quickfix-6

Added the "error window". It contains all the errors of the current error
list. Pressing <Enter> in a line makes Vim jump to that line (in another
window). This makes it easy to navigate through the error list.
quickfix-window .

- :copen opens the quickfix window.
- :cclose closes the quickfix window.
- :cwindow takes care that there is a quickfix window only when there are

recognized errors. (Dan Sharp)

- Quickfix also knows "info", next to "warning" and "error" types. "%I" can be
used for the start of a multi-line informational message. (Tony Leneis)

- The "%p" argument can be used in 'errorformat' to get the column number from
a line where "^" points to the column. (Stefan Roemer)

- When using "%f" in 'errorformat' on a DOS/Windows system, also include "c:"
in the filename, even when using "%f:".

Operator modifiers new-operator-mod

Insert "v", "V" or CTRL-V between an operator and a motion command to force
the operator to work characterwise, linewise or blockwise. o_v

Search Path new-search-path

version6.txt — 2258

Vim can search in a directory tree not only in downwards but also upwards.
Works for the 'path', 'cdpath' and 'tags' options. (Ralf Schandl)

Also use "**" for 'tags' option. (Ralf Schandl)

Added 'includeexpr', can be used to modify file name found by 'include'
option.
Also use 'includeexpr' for "gf" and "<cfile>" when the file can't be found
without modification. Useful for doing "gf" on the name after an include or
import statement.

Added the 'cdpath' option: Locations to find a ":cd" argument. (Raf)

Added the 'suffixesadd' option: Suffixes to be added to a file name when
searching for a file for the "gf", "[I", etc. commands.

Writing files improved new-file-writing

Added the 'backupcopy' option: Select whether a file is to be copied or
renamed to make a backup file. Useful on Unix to speed up writing an ordinary
file. Useful on other systems to preserve file attributes and when editing a
file on a Unix filesystem.

Added the 'autowriteall' option. Works like 'autowrite' but for more
commands.

Added the 'backupskip' option: A list of file patterns to skip making a backup
file when it matches. The default for Unix includes "/tmp/*", this makes
"crontab -e" work.

Added support for Access Control Lists (ACL) for FreeBSD and Win32. The ACL
is copied from the original file to the new file (or the backup if it's
copied).
ACL is also supported for AIX, Solaris and generic POSIX. (Tomas Ogren)
And on SGI.

Argument list new-argument-list

The support for the argument list has been extended. It can now be
manipulated to contain the files you want it to contain.

The argument list can now be local to a window. It is created with the
:arglocal command. The :argglobal command can be used to go back to the

global argument list.

The :argdo command executes a command on all files in the argument list.

File names can be added to the argument list with :argadd . File names can
be removed with :argdelete .

"##" can be used like "#", it is replaced by all the names in the argument
list concatenated. Useful for ":grep foo ##".

The :argedit adds a file to the argument list and edits it. Like ":argadd"
and then ":edit".

version6.txt — 2259

Restore a View new-View

The ":mkview" command writes a Vim script with the settings and mappings for
one window. When the created file is sourced, the view of the window is
restored. It's like ":mksession" for one window.
The View also contains the local argument list and manually created, opened
and closed folds.

Added the ":loadview" command and the 'viewdir' option: Allows for saving and
restoring views of a file with simple commands. ":mkview 1" saves view 1 for
the current file, ":loadview 1" loads it again. Also allows quickly switching
between two views on one file. And saving and restoring manual folds and the
folding state.

Added 'viewoptions' to specify how ":mkview" works.

":mksession" now also works fine with vertical splits. It has been further
improved and restores the view of each window. It also works properly with
preview and quickfix windows.

'sessionoptions' is used for ":mkview" as well.
Added "curdir" and "sesdir" to 'sessionoptions'. Allows selection of what
the current directory will be restored to.

The session file now also contains the argument list(s).

Color schemes new-color-schemes

Support for loading a color scheme. Added the ":colorscheme" command.
Automatically add menu entries for available schemes.
Should now properly reset the colors when 'background' or 't_Co' is changed.
":highlight clear" sets the default colors again.
":syntax reset" sets the syntax highlight colors back to the defaults.
For ":set bg&" guess the value. This allows a color scheme to switch back to
the default colors.
When syntax highlighting is switched on and a color scheme was defined, reload
the color scheme to define the colors.

Various new items new-items-6

Normal mode commands:

"gi" Jump to the ^ mark and start Insert mode. Also works when the
mark is just after the line. gi

"g'm" and "g`m"
Jump to a mark without changing the jumplist. Now you can use
g`" to jump to the last known position in a file without side
effects. Also useful in mappings.

[', [`,]' and]`
move the cursor to the next/previous lowercase mark.

g_ Go to last non-blank in line. (Steve Wall)

version6.txt — 2260

Options:

'autoread' When detected that a file changed outside of Vim,
automatically read a buffer again when it's not changed.
It has a global and a local value. Use ":setlocal autoread<"
to go back to using the global value for 'autoread'.

'debug' When set to "msg" it will print error messages that would
otherwise be omitted. Useful for debugging 'indentexpr' and
'foldexpr'.

'lispwords' List of words used for lisp indenting. It was previously hard
coded. Added a number of Lisp names to the default.

'fold...' Many new options for folding.

'modifiable' When off, it is impossible to make changes to a buffer.
The %m and %M items in 'statusline' show a '-'.

'previewwindow' Set in the preview window. Used in a session file to mark a
window as the preview window.

'printfont'
'printexpr'
'printheader'
'printdevice'
'printoptions' for ":hardcopy".

'buflisted' Makes a buffer appear in the buffer list or not.

Use "vim{version}:" for modelines, only to be executed when the version is
>= {version}. Also "vim>{version}", "vim<{version}" and "vim={version}".

Ex commands:

:sav[eas][!] {file}
Works like ":w file" and ":e #", but without loading the file
again and avoiding other side effects. :saveas

:silent[!] {cmd}
Execute a command silently. Also don't use a delay that would
come after the message. And don't do 'showmatch'.
RISCOS: Removed that "!~cmd" didn't output anything, and
didn't wait for <Enter> afterwards. Can use ":silent !cmd"
now.

:menu <silent> Add a menu that won't echo Ex commands.
:map <silent> Add a mapping that won't echo Ex commands.

:checktime Check for changed buffers.

:verbose {cmd} Set 'verbose' for one command.

:echomsg {expr}
:echoerr {expr} Like ":echo" but store the message in the history. (Mark

Waggoner)

:grepadd Works just like ":grep" but adds to the current error list

version6.txt — 2261

instead of defining a new list. :grepadd

:finish Finish sourcing a file. Can be used to skip the rest of a Vim
script. :finish

:leftabove
:aboveleft Split left/above current window.

:rightbelow
:belowright Split right/below current window.

:first, :bfirst, :ptfirst, etc.
Alias for ":rewind". It's more logical compared to ":last".

:enew Edit a new, unnamed buffer. This is needed, because ":edit"
re-edits the same file. (Wall)

:quitall Same as ":qall".

:match Define match highlighting local to a window. Allows
highlighting an item in the current window without interfering
with syntax highlighting.

:menu enable
:menu disable Commands to enable/disable menu entries without removing them.

(Monish Shah)

:windo Execute a command in all windows.
:bufdo Execute a command in all buffers.

:wincmd Window (CTRL-W) command. Useful when a Normal mode command
can't be used (e.g., for a CursorHold autocommand). See
CursorHold-example for a nice application with it.

:lcd and :lchdir
Set local directory for a window. (Benjie Chen)

:hide {command}
Execute {command} with 'hidden' set.

:emenu in Visual mode to execute a ":vmenu" entry.

:popup Pop up a popup menu.

:redraw Redraw the screen even when busy with a script or function.

:hardcopy Print to paper.

:compiler Load a Vim script to do settings for a specific compiler.

:z# List numbered lines. (Bohdan Vlasyuk)

New marks:

'(and ') Begin or end of current sentence. Useful in Ex commands.
'{ and '} Begin or end of current paragraph. Useful in Ex commands.
'. Position of the last change in the current buffer.
'^ Position where Insert mode was stopped.

version6.txt — 2262

Store the ^ and . marks in the viminfo file. Makes it possible to jump to the
last insert position or changed text.

New functions:
argidx() Current index in argument list.
buflisted() Checks if the buffer exists and has 'buflisted' set.
cindent() Get indent according to 'cindent'.
eventhandler() Returns 1 when inside an event handler and interactive

commands can't be used.
executable() Checks if a program or batch script can be executed.
filewritable() Checks if a file can be written. (Ron Aaron)
foldclosed() Find out if there is a closed fold. (Johannes Zellner).
foldclosedend() Find the end of a closed fold.
foldlevel() Find out the foldlevel. (Johannes Zellner)
foreground() Move the GUI window to the foreground.
getchar() Get one character from the user. Can be used to define a

mapping that takes an argument.
getcharmod() Get last used key modifier.
getbufvar() gets the value of an option or local variable in a buffer (Ron

Aaron)
getfsize() Return the size of a file.
getwinvar() gets the value of an option or local variable in a window (Ron

Aaron)
globpath() Find matching files in a list of directories.
hasmapto() Detect if a mapping to a string is already present.
iconv() Convert a string from one encoding to another.
indent() gets the indent of a line (Ron Aaron)
inputdialog() Like input() but use a GUI dialog when possible. Currently

only works for Win32, Motif, Athena and GTK.
Use inputdialog() for the Edit/Settings/Text Width menu. Also
for the Help/Find.. and Toolbar FindHelp items.
(Win32 support by Thore B. Karlsen)
(Win16 support by Vince Negri)

inputsecret() Ask the user to type a string without showing the typed keys.
(Charles Campbell)

libcall() for Unix (Neil Bird, Johannes Zellner, Stephen Wall)
libcallnr() for Win32 and Unix
lispindent() Get indent according to 'lisp'.
mode() Return a string that indicates the current mode.
nextnonblank() Skip blank lines forwards.
prevnonblank() Skip blank lines backwards. Useful to for indent scripts.
resolve() MS-Windows: resolve a shortcut to the file it points to.

Unix: resolve a symbolic link.
search() Search for a pattern.
searchpair() Search for matching pair. Can be used in indent files to find

the "if" matching an endif.
setbufvar() sets an option or variable local to a buffer (Ron Aaron)
setwinvar() sets an option or variable local to a window (Ron Aaron)
stridx() Search for first occurrence of one string in another.
strridx() Search for last occurrence of one string in another.
tolower() Convert string to all-lowercase.
toupper() Convert string to all-uppercase.
type() Check the type of an expression.
wincol() window column of the cursor
winwidth() Width of a window. (Johannes Zellner)
winline() window line of the cursor

Added expansion of curly braces in variable and function names. This can be

version6.txt — 2263

used for variable names that include the value of an option. Or a primitive
form of arrays. (Vince Negri)

New autocommand events:
BufWinEnter Triggered when a buffer is displayed in a window, after using

the modelines. Can be used to load a view.
BufWinLeave Triggered when a buffer is no longer in a window. Also

triggered when exiting Vim. Can be used to save views.
FileChangedRO Triggered before making the first change to a read-only file.

Can be used to check-out the file. (Scott Graham)
TermResponse Triggered when the terminal replies to the version-request.

The v:termresponse internal variable holds the result. Can be
used to react to the version of the terminal. (Ronald Schild)

FileReadCmd Triggered before reading a file.
BufReadCmd Triggered before reading a file into a buffer.
FileWriteCmd Triggered before writing a file.
BufWriteCmd Triggered before writing a buffer into a file.
FileAppendCmd Triggered before appending to a file.
FuncUndefined Triggered when a user function is not defined. (Ron Aaron)

The autocommands for the *Cmd events read or write the file instead of normal
file read/write. Use this in netrw.vim to be able to edit files on a remote
system. (Charles Campbell)

New Syntax files:

bdf BDF font definition (Nikolai Weibull)
catalog SGML catalog (Johannes Zellner)
debchangelog Debian Changelog (Wichert Akkerman)
debcontrol Debian Control (Wichert Akkerman)
dot dot (Markus Mottl)
dsl DSSSL syntax (Johannes Zellner)
eterm Eterm configuration (Nikolai Weibull)
indent Indent profile (Nikolai Weibull)
lftp LFTP (Nikolai Weibull)
lynx Lynx config (Doug Kearns)
mush mush sourcecode (Bek Oberin)
natural Natural (Marko Leipert)
pilrc Pal resource compiler (Brian Schau)
plm PL/M (Philippe Coulonges)
povini Povray configuration (David Necas)
ratpoison Ratpoison config/command (Doug Kearns)
readline readline config (Nikolai Weibull)
screen Screen RC (Nikolai Weibull)
specman Specman (Or Freund)
sqlforms SQL*Forms (Austin Ziegler)
terminfo terminfo (Nikolai Weibull)
tidy Tidy configuration (Doug Kearns)
wget Wget configuration (Doug Kearns)

Updated many syntax files to work both with Vim 5.7 and 6.0.

Interface to Ruby. (Shugo Maeda)
Support dynamic loading of the Ruby interface on MS-Windows. (Muraoka Taro)
Support this for Mingw too. (Benoit Cerrina)

Win32: Added possibility to load TCL dynamically. (Muraoka Taro)

version6.txt — 2264

Also for Borland 5.5. (Dan Sharp)

Win32: When editing a file that is a shortcut (*.lnk file), edit the file it
links to. Unless 'binary' is set, then edit the shortcut file itself.
(Yasuhiro Matsumoto)

The ":command" command now accepts a "-bar" argument. This allows the user
command to be followed by "| command".

The preview window is now also used by these commands:
- :pedit edits the specified file in the preview window
- :psearch searches for a word in included files, like :ijump , and

displays the found text in the preview window.
Added the CTRL-W P command: go to preview window.

MS-DOS and MS-Windows also read the system-wide vimrc file $VIM/vimrc. Mostly
for NT systems with multiple users.

A double-click of the mouse on a character that has a "%" match selects from
that character to the match. Similar to "v%".

"-S session.vim" argument: Source a script file when starting up. Convenient
way to start Vim with a session file.

Added "--cmd {command}" Vim argument to execute a command before a vimrc file
is loaded. (Vince Negri)

Added the "-M" Vim argument: reset 'modifiable' and 'write', thus disallow
making changes and writing files.

Added runtime/delmenu.vim. Source this to remove all menus and prepare for
loading new menus. Useful when changing 'langmenu'.

Perl script to filter Perl error messages to quickfix usable format. (Joerg
Ziefle)

Added runtime/macros/less.vim: Vim script to simulate less, but with syntax
highlighting.

MS-Windows install program: (Jon Merz)
- The Win32 program can now create shortcuts on the desktop and install Vim in

the Start menu.
- Possibly remove old "Edit with Vim" entries.
- The Vim executable is never moved or $PATH changed. A small batch file is

created in a directory in $PATH. Fewer choices to be made.
- Detect already installed Vim versions and offer to uninstall them first.

Improved the MS-Windows uninstal program. It now also deletes the entries in
the Start menu, icons from the desktop and the created batch files. (Jon Merz)
Also made it possible to delete only some of these. Also unregister gvim for
OLE.

Generate a self-installing Vim package for MS-Windows. This uses NSIS. (Jon
Merz et al.)

Added ":filetype detect". Try detecting the filetype again. Helps when
writing a new shell script, after adding "#!/bin/csh".

Added ":augroup! name" to delete an autocommand group. Needed for the
client-server "--remote-wait".

version6.txt — 2265

Add the Vim version number to the viminfo file, useful for debugging.

==
IMPROVEMENTS improvements-6

Added the 'n' flag in 'cpoptions': When omitted text of wrapped lines is not
put between line numbers from 'number' option. Makes it a lot easier to read
wrapped lines.

When there is a format error in a tags file, the byte position is reported so
that the error can be located.

"gf" works in Visual mode: Use the selected text as the file name. (Chase
Tingley)

Allow ambiguous mappings. Thus "aa" and "aaa" can both be mapped, the longest
matching one is used. Especially useful for ":lmap" and 'keymap'.

Encryption: Ask the key to be typed twice when crypting the first time.
Otherwise a typo might cause the text to be lost forever. (Chase Tingley)

The window title now has "VIM" on the end. The file name comes first, useful
in the taskbar. A "+" is added when the file is modified. "=" is added for
a read-only file. "-" is added for a file with 'modifiable' off.

In Visual mode, mention the size of the selected area in the 'showcmd'
position.

Added the "b:changedtick" variable. Incremented at each change, also for
undo. Can be used to take action only if the buffer has been changed.

In the replacement string of a ":s" command "\=" can be used to replace with
the result of an expression. From this expression the submatch() function can
be used to access submatches.

When doing ":qall" and there is a change in a buffer that is being edited in
another window, jump to that window, instead of editing that buffer in the
current window.

Added the "++enc=" and "++ff=" arguments to file read/write commands to force
using the given 'encoding' or 'fileformat'. And added the "v:cmdarg"
variable, to be used for FileReadCmd autocommands that read/write the file
themselves.

When reading stdin, first read the text in binary mode and then re-read it
with automatic selection of 'fileformat' and 'fileencoding'. This avoids
problems with not being able to rewind the file (e.g., when a line near the
end of the file ends in LF instead of CR-LF).
When reading text from stdin and the buffer is empty, don't mark it changed.
Allows exiting without trouble.

Added an ID to many error messages. This will make it easier to find help for
a message.

Insert mode:
- "CTRL-G j" and "CTRL-G k" can be used to insert in another line in the same

column. Useful for editing a table.
- Added Thesaurus completion with CTRL-X CTRL-T. (Vince Negri)
- Added the 'thesaurus' option, to use instead of 'dictionary' for thesaurus

version6.txt — 2266

completion. Added the 's' flag in 'complete'.
- Made CTRL-X CTRL-L in Insert mode use the 'complete' option. It now also

scans other loaded buffers for matching lines.
- CTRL-R now also works in Insert mode while doing completion with CTRL-X or

CTRL-N. (Neil Bird)
- When doing Insert mode completion, when completion is finished check for a

match with words from 'cinkeys' or 'indentkeys'.

Performance:
- Made display updating more efficient. Insert/delete lines may be used for

all changes, also for undo/redo.
- The display is not redrawn when there is typeahead in Insert mode. Speeds

up CTRL-R a lot.
- Improved speed of screen output for 32 bit DOS version. (Vince Negri)
- When dragging with the mouse, there is a lookahead to skip mouse codes when

there is another one next. Makes dragging with the mouse a lot faster.
- Also a memory usage improvement: When calling u_save with a single line,

don't save it if the line was recently saved for the same undo already.
- When using a script that appends one character at a time, the amount of

allocated memory was growing steadily. Also when 'undolevels' is -1.
Caused by the line saved for "U" never to be freed. Now free an undo block
when it becomes empty.

- GUI and Dos32: Use a vertical scroll region, to make scrolling in a
vertically split window faster. No need to redraw the whole window.

- When scrolling isn't possible with terminal codes (e.g., for a vertically
split window) redraw from ScreenLines[]. That should be faster than going
through the lines with win_line(), especially when using syntax
highlighting.

- The Syntax menu is now pre-generated by a separate script. Makes loading
the menu 70% faster. This can halve the startup time of gvim.

- When doing ":help tag", don't open help.txt first, jump directly to the help
tag. It's faster and avoids an extra message.

- Win32: When a file name doesn't end in ".lnk" don't try resolving a
shortcut, it takes quite a bit of time.

- Don't update the mouse pointer shape while there are typeahead characters.
- Change META[] from a string into an array, avoids using strchr() on it.
- Don't clear the command line when adding characters, avoids that screen_fill

is called but doesn't do anything.

Robustness:
- Unix: Check for running out of stack space when executing a regexp. Avoids

a nasty crash. Only works when the system supports running the signal
function on another stack.

- Disallow ":source <dirname>". On unix it's possible to read a directory,
does not make sense to use it as Vim commands.

Security:
- When reading from or writing to a temporary file, check that it isn't a

symbolic link. Gives some protection against symlink attacks.
- When creating a backup file copy or a swap file, check for it already

existing to avoid a symlink attack. (Colin Phipps)
- Evaluating options which are an expression is done in a sandbox . If the

option was set by a modeline, it cannot cause damage.
- Use a secure way to generate temp file names: Create a private directory for

temp files. Used for Unix, MS-DOS and OS/2.
- 'makeef' can be empty, which means that an internally generated file name is

used. The old default was "/tmp/file", which is a security risk.
Writing 'makeef' in the current directory fails in a read-only directory and
causes trouble when using ":grep" on all files. Made the default empty for
all systems, so that a temp file is used.

version6.txt — 2267

- The command from a tags file is executed in the sandbox for better security.
- The Ruby, Tcl and Python interfaces cannot be used from the sandbox. They

might do dangerous things. Perl is still possible, but limited to the Safe
environment. (Donnie Smith)

Syntax highlighting:
- Optimized the speed by caching the state stack all over the file, not just

the part being displayed. Required for folding.
- Added ":syntax sync fromstart": Always parse from the start of the file.
- Added the "display" argument for syntax items: use the item only when

displaying the result. Can make parsing faster for text that isn't going to
be displayed.

- When using CTRL-L, the cached states are deleted, to force parsing the text
again.

- Use elfhash algorithm for table of keywords. This should give a better
distribution and speedup keyword lookup. (Campbell)

- Also allow the "lc" leading context for skip and end patterns. (Scott
Bigham)

- Syntax items can have the "extend" argument to undo the effect of a
"keepend" argument of an item it is contained in. Makes it possible to have
some contained items extend a region while others don't.

- ":syntax clear" now deletes the b:current_syntax variable. That's logical,
since no syntax is defined after this command.

- Added ":syntax enable": switch on syntax highlighting without changing the
colors. This allows specifying the colors in the .vimrc file without the
need for a mysyntaxfile.

- Added ":syntax reset": reset the colors to their defaults.
- Added the "contains=TOP" and "contains=CONTAINED" arguments. Makes it

possible to define a transparent item that doesn't contain itself.
- Added a "containedin" argument to syntax items. Allows adding a contained

item to an existing item (e.g., to highlight a name in a comment).

Modeless selection:
- When in the command-line window, use modeless selection in the other

windows. Makes it possible to copy visible text to the command-line window.
- Support modeless selection on the cmdline in a terminal. Previously it was

only possible for the GUI.
- Make double-right-click in modeless selection select a whole word. Single

right click doesn't use the word selection started by a double-left-click.
Makes it work like in Visual mode.

- The modeless selection no longer has an implied automatic copy to the
clipboard. It now obeys the 'a' and 'A' flags in 'guioptions' or
"autoselect" and "autoselectml" in 'clipboard'.

- Added the CTRL-Y command in Cmdline-mode to copy the modeless selection to
the clipboard. Also works at the hit-enter prompt and the more prompt.
Removed the mappings in runtime/mswin.vim for CTRL-Y and CTRL-Z in
cmdline-mode to be able to use CTRL-Y in the new way.

Reduced the amount of stack space used by regmatch() to allow it to handle
complicated patterns on a longer text.

'isfname' now includes '%' and '#'. Makes "vim dir\#file" work for MS-DOS.

Added keypad special keys <kEnter>, <k0> - <k9>. When not mapped they behave
like the ASCII equivalent. (Ivan Wellesz and Vince Negri)
Recognize a few more xterm keys: <C-Right>, <C-Left>, <C-End>, <C-Home>

Also trigger the BufUnload event when Vim is going to exit. Perhaps a script
needs to do some cleaning up.

version6.txt — 2268

Expand expression in backticks: `={expr}`. Can be used where backtick
expansion is done. (Vince Negri)

GUI:
- Added 'L' and 'R' flags in 'guioptions': Add a left or right scrollbar only

when there is a vertically split window.
- X11: When a color can't be allocated, use the nearest match from the

colormap. This avoids that black is used for many things. (Monish Shah)
Also do this for the menu and scrollbar, to avoid that they become black.

- Win32 and X11: Added 'mouseshape' option: Adjust the mouse pointer shape to
the current mode. (Vince Negri)

- Added the 'linespace' option: Insert a pixel line between lines. (Nam)
- Allow modeless selection (without moving the cursor) by keeping CTRL and

SHIFT pressed. (Ivan Wellesz)
- Motif: added toolbar. (Gordon Prieur) Also added tooltips.
- Athena: added toolbar and tooltips. (David Harrison -- based on Gordon

Prieur's work)
- Made the 'toolbar' option work for Athena and Motif. Can now switch between

text and icons on the fly. (David Harrison)
- Support menu separator lines for Athena. (David Harrison)
- Athena: Adjust the arrow pixmap used in a pullright menu to the size of the

font. (David Harrison)
- Win32: Added "c" flag to 'guifont' to be able to specify the charset. (Artem

Khodush)
- When no --enable-xim argument is given, automatically enable it when a X GUI

is used. Required for dead key support (and multibyte input).
- After a file selection dialog, check that the edited files were not changed

or deleted. The Win32 dialog allows deleting and renaming files.
- Motif and Athena: Added support for "editres". (Marcin Dalecki)
- Motif and Athena: Added "menuFont" to be able to specify a font or fontset

for the menus. Can also be set with the "Menu" highlight group. Useful
when the locale is different from 'encoding'. (David Harrison)
When FONTSET_ALWAYS is defined, always use a fontset for the menus. Should
avoid trouble with changing from a font to a fontset. (David Harrison)

- Highlighting and font for the tooltips can be specified with the "Tooltip"
highlight group. (David Harrison)

- The Cmdline-mode menus can be used at the more-prompt. This mostly works
fine, because they start with a CTRL-C. The "Copy" menu works to copy the
modeless selection. Allows copying the output of ":set all" or ":intro"
without auto-selection.

- When starting the GUI when there is no terminal connected to stdout and
stderr, display error messages in a dialog. Previously they wouldn't be
displayed at all.

- Allow setting 'browsedir' to the name of a directory, to be used for the
file dialog. (Dan Sharp)

- b:browsefilter and g:browsefilter can be set to the filters used for the
file dialog. Supported for Win32 and Motif GUI. (Dan Sharp)

X11:
- Support for the clipboard selection as register "+. When exiting or

suspending copy the selection to cut buffer 0. Should allow copy/paste with
more applications in a X11-standard way. (Neil Bird)

- Use the X clipboard in any terminal, not just in an xterm.
Added "exclude:" in 'clipboard': Specify a pattern to match against terminal
names for which no connection should be made to the X server. The default
currently work for FreeBSD and Linux consoles.

- Added a few messages for when 'verbose' is non-zero to show what happens
when trying to connect to the X server. Should help when trying to find out
why startup is slow.

version6.txt — 2269

GTK GUI: (partly by Marcin Dalecki)
- With some fonts the characters can be taller than ascent + descent. E.g.,

"-misc-fixed-*-*-*-*-18-*-*-*-*-*-iso10646-1". Add one to the character
cell height.

- Implement "no" value for 'winaltkeys': don't use Alt-Key as a menu shortcut,
when 'wak' changed after creating the menus.

- Setting 'wak' after the GUI started works.
- recycle text GC's to reduce communication.
- Adjust icon size to window manager.
- Cleanup in font handling.
- Replace XQueryColor with GDK calls.
- Gnome support. Detects Gnome in configure and uses different widgets.

Otherwise it's much like GTK. (Andy Kahn)
It is disabled by default, because it causes a few problems.

- Removed the special code to fork first and then start the GUI. Now use
_exit() instead of exit(), this works fine without special tricks.

- Dialogs sometimes appeared a bit far away. Position the dialogs inside
the gvim window. (Brent Verner)

- When dropping a file on Vim, remove extra slashes from the start of the
path. Also shorten the file name if possible.

Motif: (Marcin Dalecki)
- Made the dialog layout better.
- Added find and find/replace dialogs.
- For the menus, change "iso-8859" to "iso_8859", Linux appears to need this.
- Added icon to dialogs, like for GTK.
- Use XPM bitmaps for the icon when possible. Use the Solaris XpmP.h include

file when it's available.
- Change the shadow of the toolbar items to get a visual feedback of it being

pressed on non-LessTif.
- Use gadgets instead of windows for some items for speed.

Command line completion:
- Complete environment variable names. (Mike Steed)
- For ":command", added a few completion methods: "mapping", "function",

"expression" and "environment".
- When a function doesn't take arguments, let completion add () instead of (.

For MS-DOS, MS-Windows and OS/2: Expand %VAR% environment variables like $VAR.
(Walter Briscoe)

Redirect messages to the clipboard ":redir @*" and to the unnamed register
":redir @"". (Wall)

":let @/ = ''" clears the search pattern, instead of setting it to an empty
string.

Expression evaluation:
- "? :" can be used like in C.
- col("$") returns the length of the cursor line plus one. (Stephen P. Wall)
- Optional extra argument for match(), matchend() and matchstr(): Offset to

start looking for a match.
- Made third argument to strpart() optional. (Paul Moore, Zdenek Sekera)
- exists() can also be used to check for Ex commands and defined autocommands.
- Added extra argument to input(): Default text.
- Also set "v:errmsg" when using ":silent! cmd".
- Added the v:prevcount variable: v:count for the previous command.
- Added "v:progname", name with which Vim was started. (Vince Negri)
- In the verbose message about returning from a function, also show the return

value.

version6.txt — 2270

Cscope:
- Added the cscope_connection() function. (Andy Kahn)
- ":cscope kill -1" kills all cscope connections. (Andy Kahn)
- Added the 'cscopepathcomp' option. (Scott Hauck)
- Added ":scscope" command, split window and execute Cscope command. (Jason

Duell)

VMS:
- Command line arguments are always uppercase. Interpret a "-X" argument as

"-x" and "-/X" as "-X".
- Set 'makeprg' and 'grepprg' to meaningful defaults. (Zoltan Arpadffy)
- Use the X-clipboard feature and the X command server. (Zoltan Arpadffy)

Macintosh: (Dany St-Amant)
- Allow a tags file to have CR, CR-LF or LF line separator. (Axel Kielhorn)
- Carbonized (while keeping non Carbon code)

(Some work "stolen" from Ammon Skidmore)
- Improved the menu item index handling (should be faster)
- Runtime commands now handle / in file name (MacOS 9 version)
- Added ":winpos" support.
- Support using "~" in file names for home directory.

Options:
- When using set += or ^= , check for items used twice. Duplicates are

removed. (Vince Negri)
- When setting an option that is a list of flags, remove duplicate flags.
- If possible, use getrlimit() to set 'maxmemtot' and 'maxmem'. (Pina)
- Added "alpha" to 'nrformats': increment or decrement an alphabetic character

with CTRL-A and CTRL-X.
- ":set opt&vi" sets an option to its Vi default, ":set opt&vim" to its Vim

default. Useful to set 'cpo' to its Vim default without knowing what flags
that includes.

- 'scrolloff' now also applies to a long, wrapped line that doesn't fit in the
window.

- Added more option settings to the default menus.
- Updated the option window with new options. Made it a bit easier to read.

Internal changes:
- Split line pointers in text part and attributes part. Allows for future

change to make attribute more than one byte.
- Provide a qsort() function for systems that don't have it.
- Changed the big switch for Normal mode commands into a table. This cleans

up the code considerably and avoids trouble for some optimizing compilers.
- Assigned a negative value to special keys, to avoid them being mixed up with

Unicode characters.
- Global variables expand_context and expand_pattern were not supposed to be

global. Pass them to ExpandOne() and all functions called by it.
- No longer use the global reg_ic flag. It caused trouble and in a few places

it was not set.
- Removed the use of the stuff buffer for "*", "K", CTRL-], etc. Avoids

problem with autocommands.
- Moved some code from ex_docmd.c to ex_cmds2.c. The file was getting too

big. Also moved some code from screen.c to move.c.
- Don't include the CRC table for encryption, generate it. Saves quite a bit

of space in the source code. (Matthias Kramm)
- Renamed multibyte.c to mbyte.c to avoid a problem with 8.3 filesystems.
- Removed the GTK implementation of ":findhelp", it now uses the

ToolBar.FindHelp menu entry.
- Renamed mch_windexit() to mch_exit(), mch_init() to mch_early_init() and

version6.txt — 2271

mch_shellinit() to mch_init().

Highlighting:
- In a ":highlight" listing, show "xxx" with the highlight color.
- Added support for xterm with 88 or 256 colors. The right color numbers will

be used for the name used in a ":highlight" command. (Steve Wall)
- Added "default" argument for ":highlight". When included, the command is

ignored if highlighting for the group was already defined.
All syntax files now use ":hi default ..." to allow the user to specify
colors in his vimrc file. Also, the "if did_xxx_syntax_inits" is not needed
anymore. This greatly simplifies using non-default colors for a specific
language.

- Adjusted colortest.vim: Included colors on normal background and reduced the
size by using a while loop. (Rafael Garcia-Suarez)

- Added the "DarkYellow" color name. Just to make the list of standard colors
consistent, it's not really a nice color to use.

When an xterm is in 8-bit mode this is detected by the code returned for
t_RV . All key codes are automatically converted to their 8-bit versions.

The OPT_TCAP_QUERY in xterm patch level 141 and later is used to obtain the
actual key codes used and the number of colors for t_Co. Only when t_RV is
also used.

":browse set" now also works in the console mode. ":browse edit" will give an
error message.

":bdelete" and ":bunload" only report the number of deleted/unloaded buffers
when more than 'report'. The message was annoying when deleting a buffer in a
script.

Jump list:
- The number of marks kept in the jumplist has been increased from 50 to 100.
- The jumplist is now stored in the viminfo file. CTRL-O can be used to jump

to positions from a previous edit session.
- When doing ":split" copy the jumplist to the new window.

Also set the '[and '] marks for the "~" and "r" commands. These marks are
now always set when making a change with a Normal mode command.

Python interface: Allow setting the width of a vertically split window. (John
Cook)

Added "=word" and "=~word" to 'cinkeys' (also used in 'indentkeys').

Added "j1" argument in 'cinoptions': indent {} inside () for Java. (Johannes
Zellner)
Added the "l" flag in 'cinoptions'. (Anduin Withers)
Added 'C', 'U', 'w' and 'm' flags to 'cinoptions'. (Servatius Brandt)

When doing ":wall" or ":wqall" and a modified buffer doesn't have a name,
mention its buffer number in the error message.

":function Name" lists the function with line numbers. Makes it easier to
find out where an error happened.

In non-blockwise Visual mode, "r" replaces all selected characters with the
typed one, like in blockwise Visual mode.

When editing the last file in the argument list in any way, allow exiting.

version6.txt — 2272

Previously this was only possible when getting to that file with ":next" or
":last".

Added the '1' flag to 'formatoptions'. (Vit Stradal)
Added 'n' flag in 'formatoptions': format a numbered list.

Swap file:
- When a swap file already exists, and the user selects "Delete" at the

ATTENTION prompt, use the same ".swp" swapfile, to avoid creating a ".swo"
file which won't always be found.

- When giving the ATTENTION message and the date of the file is newer than the
date of swap file, give a warning about this.

- Made the info for an existing swap file a bit shorter, so that it still fits
on a 24 line screen.

- It was possible to make a symlink with the name of a swap file, linking to a
file that doesn't exist. Vim would then silently use another file (if open
with O_EXCL refuses a symlink). Now check for a symlink to exist. Also do
another check for an existing swap file just before creating it to catch a
symlink attack.

The g CTRL-G command also works in Visual mode and counts the number of words.
(Chase Tingley)

Give an error message when using 'shell' and it's empty.

Added the possibility to include "%s" in 'shellpipe'.

Added "uhex" value for 'display': show non-printable characters as <xx>.
Show unprintable characters with NonText highlighting, also in the command
line.

When asked to display the value of a hidden option, tell it's not supported.

Win32:
- When dropping a shortcut on gvim (.lnk file) edit the target, not the

shortcut itself. (Yasuhiro Matsumoto)
- Added C versions of the OpenWithVim and SendToVim programs. (Walter Briscoe)
- When 'shell' is "cmd" or "cmd.exe", set 'shellredir' to redirect stderr too.

Also check for the Unix shell names.
- When $HOMEDRIVE and $HOMEPATH are defined, use them to define $HOME. (Craig

Barkhouse)

Win32 console version:
- Includes the user and system name in the ":version" message, when available.

It generates a pathdef.c file for this. (Jon Miner)
- Set the window icon to Vim's icon (only for Windows 2000). While executing

a shell command, modify the window title to show this. When exiting,
restore the cursor position too. (Craig Barkhouse)

- The Win32 console version can be compiled with OLE support. It can only
function as a client, not as an OLE server.

Errorformat:
- Let "%p" in 'errorformat' (column of error indicated by a row of characters)

also accept a line of dots.
- Added "%v" item in 'errorformat': Virtual column number. (Dan Sharp)
- Added a default 'errorformat' value for VMS. (Jim Bush)

The "p" command can now be used in Visual mode. It overwrites the selected
text with the contents of a register.

version6.txt — 2273

Highlight the <> items in the intro message to make clear they are special.

When using the "c" flag for ":substitute", allow typing "l" for replacing this
item and then stop: "last".

When printing a verbose message about sourcing another file, print the line
number.

When resizing the Vim window, don't use 'equalalways'. Avoids that making the
Vim window smaller makes split windows bigger. And it's what the docs say.

When typing CTRL-D in Insert mode, just after an autoindent, then hitting CR
kept the remaining white space. Now made it work like BS: delete the
autoindent to avoid a blank non-empty line results.

Added a GetHwnd() call to the OLE interface. (Vince Negri)

Made ":normal" work in an event handler. Useful when dropping a file on Vim
and for CursorHold autocommands.

For the MS-Windows version, don't change to the directory of the file when a
slash is used instead of a backslash. Explorer should always use a backslash,
the user can use a slash when typing the command.

Timestamps:
- When a buffer was changed outside of Vim and regaining focus, give a dialog

to allow the user to reload the file. Now also for other GUIs than
MS-Windows. And also used in the console, when compiled with dialog
support.

- Inspect the file contents to find out if it really changed, ignore
situations where only the time stamp changed (e.g., checking the file out
from CVS).

- When checking the timestamp, first check if the file size changed, to avoid
a file compare then. Makes it quicker for large (log) files that are
appended to.

- Don't give a warning for a changed or deleted file when 'buftype' is set.
- No longer warn for a changed directory. This avoids that the file explorer

produces warnings.
- Checking timestamps is only done for buffers that are not hidden. These

will be checked when they become unhidden.
- When checking for a file being changed outside of Vim, also check if the

file permissions changed. When the file contents didn't change but the
permissions did, give a warning.

- Avoid checking too often, otherwise the dialog keeps popping up for a log
file that steadily grows.

Mapping <M-A> when 'encoding' is "latin1" and then setting 'encoding' to
"utf-8" causes the first byte of a multibyte to be mapped. Can cause very
hard to find problems. Disallow mapping part of a multibyte character.

For ":python" and ":tcl" accept an in-line script. (Johannes Zellner)
Also for ":ruby" and ":perl". (Benoit Cerrina)

Made ":syn include" use 'runtimepath' when the file name is not a full path.

When 'switchbuf' contains "split" and the current window is empty, don't split
the window.

Unix: Catch SIGPWR to preserve files when the power is about to go down.

version6.txt — 2274

Sniff interface: (Anton Leherbauer)
- fixed windows code, esp. the event handling stuff
- adaptations for sniff 4.x ($SNIFF_DIR4)
- support for adding sniff requests at runtime

Support the notation <A-x> as an alias for <M-x>. This logical, since the Alt
key is used.

":find" accepts a count, which means that the count'th match in 'path' is
used.

":ls" and ":buffers" output shows modified/readonly/modifiable flag. When a
buffer is active show "a" instead of nothing. When a buffer isn't loaded
show nothing instead of "-".

Unix install:
- When installing the tools, set absolute paths in tools scripts efm_perl.pl

and mve.awk. Avoids that the user has to edit these files.
- Install Icons for KDE when the directories exist and the icons do not exist

yet.

Added has("win95"), to be able to distinguish between MS-Windows 95/98/ME and
NT/2000/XP in a Vim script.

When a ":cd" command was typed, echo the new current directory. (Dan Sharp)

When using ":winpos" before the GUI window has been opened, remember the
values until it is opened.

In the ":version" output, add "/dyn" for features that are dynamically loaded.
This indicates the feature may not always work.

On Windows NT it is possible that a directory is read-only, but a file can be
deleted. When making a backup by renaming the file and 'backupdir' doesn't
use the current directory, this causes the original file to be deleted,
without the possibility to create a new file. Give an extra error message
then to warn to user about this.

Made CTRL-R CTRL-O at the command line work like CTRL-R CTRL-R, so that it's
consistent with Insert mode.

==
COMPILE TIME CHANGES compile-changes-6

All generated files have been moved out of the "src" directory. This makes it
easy to see which files are not edited by hand. The files generated by
configure are now in the "src/auto" directory. For Unix, compiled object
files go in the objects directory.

The source archive was over the 1.4M floppy limit. The archives are now split
up into two runtime and two source archives. Also provide a bzip2 compressed
archive that contains all the sources and runtime files.

Added "reconfig" as a target for make. Useful when changing some of the
arguments that require flushing the cache, such as switching from GTK to
Motif. Adjusted the meaning of GUI_INC_LOC and GUI_LIB_LOC to be consistent
over different GUIs.

Added src/README.txt to give an overview of the main parts of the source code.

version6.txt — 2275

The Unix Makefile now fully supports using $(DESTDIR) to install to a specific
location. Replaces the manual setting of *ENDLOC variables.

Added the possibility for a maintainer of a binary version to include his
e-mail address with the --with-compiledby configure argument.

Included features are now grouped in "tiny", "small", "normal", "big" and
"huge". This replaces "min-features" and "max-features". Using "tiny"
disables multiple windows for a really small Vim.

For the tiny version or when FEAT_WINDOWS is not defined: Firstwin and lastwin
are equal to curwin and don't use w_next and w_prev.

Added the +listcmds feature. Can be used to compile without the Vim commands
that manipulate the buffer list and argument list (the buffer list itself is
still there, can't do without it).

Added the +vreplace feature. It is disabled in the "small" version to avoid
that the 16 bit DOS version runs out of memory.

Removed GTK+ support for versions older than 1.1.16.

The configure checks for using PTYs have been improved. Code taken from a
recent version of screen.

Added configure options to install Vim, Ex and View under another name (e.g.,
vim6, ex6 and view6).

Added "--with-global-runtime" configure argument. Allows specifying the
global directory used in the 'runtimepath' default.

Made enabling the SNiFF+ interface possible with a configure argument.

Configure now always checks /usr/local/lib for libraries and
/usr/local/include for include files. Helps finding the stuff for iconv() and
gettext().

Moved the command line history stuff into the +cmdline_hist feature, to
exclude the command line history from the tiny version.

MS-Windows: Moved common functions from Win16 and Win32 to os_mswin.c. Avoids
having to change two files for one problem. (Vince Negri)

Moved common code from gui_w16.c and gui_w32.c to gui_w48.c (Vince Negri)

The jumplist is now a separate feature. It is disabled for the "small"
version (16 bit MS-DOS).

Renamed all types ending in _t to end in _T. Avoids potential problems with
system types.

Added a configure check for X11 header files that implicitly define the return
type to int. (Steve Wall)

"make doslang" in the top directory makes an archive with the menu and .mo
files for Windows. This uses the files generated on Unix, these should work
on MS-Windows as well.

Merged a large part of os_vms.c with os_unix.c. The code was duplicated in
the past which made maintenance more work. (Zoltan Arpadffy)

version6.txt — 2276

Updated the Borland C version 5 Makefile: (Dan Sharp)
- Fixed the Perl build
- Added python and tcl builds
- Added dynamic perl and dynamic python builds
- Added uninstal.exe build
- Use "yes" and "no" for the options, like in Make_mvc.mak.

Win32: Merged Make_gvc.mak and Make_ovc.mak into one file: Make_ivc.mak. It's
much smaller, many unnecessary text has been removed. (Walter Briscoe)
Added Make_dvc.mak to be able to debug exe generated with Make_mvc.mak in
MS-Devstudio. (Walter Briscoe)

MS-Windows: The big gvim.exe, which includes OLE, now also includes
dynamically loaded Tcl, Perl and Python. This uses ActivePerl 5.6.1,
ActivePython 2.1.1 and ActiveTCL 8.3.3

Added AC_EXEEXT to configure.in, to check if the executable needs ".exe" for
Cygwin or MingW. Renamed SUFFIX to EXEEXT in Makefile.

Win32: Load comdlg32.dll delayed for faster startup. Only when using VC 6.
(Vipin Aravind)

Win32: When compiling with Borland, allow using IME. (Yasuhiro Matsumoto)

Win32: Added Makefile for Borland 5 to compile gvimext.dll. (Yasuhiro
Matsumoto)

==
BUG FIXES bug-fixes-6

When checking the command name for "gvim", "ex", etc. ignore case. Required
for systems where case is ignored in command names.

Search pattern "[a-c-e]" also matched a 'd' and didn't match a '-'.

When double-clicking in another window, wasn't recognized as double click,
because topline is different. Added set_mouse_topline().

The BROKEN_LOCALE check was broken. (Marcin Dalecki)

When "t_Co" is set, the default colors remain the same, thus wrong. Reset the
colors after changing "t_Co". (Steve Wall)

When exiting with ":wqall" the messages about writing files could overwrite
each other and be lost forever.

When starting Vim with an extremely long file name (around 1024 characters) it
would crash. Added a few checks to avoid buffer overflows.

CTRL-E could get stuck in a file with very long lines.

":au syntax<Tab>" expanded event names while it should expand groups starting
with "syntax".

When expanding a file name caused an error (e.g., for <amatch>) it was
produced even when inside an "if 0".

'cindent' formatted C comments differently from what the 'comments' option
specified. (Steve Wall)

version6.txt — 2277

Default for 'grepprg' didn't include the file name when only grepping in one
file. Now /dev/null has been added for Unix.

Opening the option window twice caused trouble. Now the cursor goes to the
existing option window.

":sview" and ":view" didn't set 'readonly' for an existing buffer. Now do set
'readonly', unless the buffer is also edited in another window.

GTK GUI: When 'guioptions' excluded 'g', the more prompt caused the toolbar
and menubar to disappear and resize the window (which clears the text).
Now always grey-out the toplevel menus to avoid that the menubar changes size
or disappears.

When re-using the current buffer for a new buffer, buffer-local variables were
not deleted.

GUI: when 'scrolloff' is 0 dragging the mouse above the window didn't cause a
down scroll. Now pass on a mouse event with mouse_row set to -1.

Win32: Console version didn't work on telnet, because of switching between two
console screens. Now use one console screen and save/restore the contents
when needed. (Craig Barkhouse)

When reading a file the magic number for encryption was included in the file
length. (Antonio Colombo)

The quickfix window contained leading whitespace and NULs for multi-line
messages. (David Harrison)

When using cscope, redundant tags were removed. This caused a numbering
problem, because they were all listed. Don't remove redundant cscope tags.
(David Bustos).

Cscope: Test for which matches are in the current buffer sometimes failed,
causing a jump to another match than selected. (David Bustos)

Win32: Buffer overflow when adding a charset name in a font.

'titlestring' and 'iconstring' were evaluating an expression in the current
context, which could be a user function, which is a problem for local
variables vs global variables.

Win32 GUI: Mapping <M-F> didn't work. Now handle SHIFT and CTRL in
_OnSysChar().

Win32 GUI: (on no file), :vs<CR>:q<CR> left a trail of pixels down the middle.
Could also happen for the ruler. screen_puts() didn't clear the right char in
ScreenLines[] for the bold trick.

Win32: ":%!sort|uniq" didn't work, because the input file name touches the
"|". Insert a space before the "|".

OS/2: Expanding wildcards included non-existing files. Caused ":runtime" to
fail, which caused syntax highlighting to fail.

Pasting a register containing CTRL-R on the command line could cause an
endless loop that can't be interrupted. Now it can be stopped with CTRL-C.

version6.txt — 2278

When 'verbose' is set, a message for file read/write could overwrite the
previous message.
When 'verbose' is set, the header from ":select" was put after the last
message. Now start a new line.

The hit-enter prompt reacted to the response of the t_RV string, causing
messages at startup to disappear.

When t_Co was set to 1, colors were still used. Now only use color when t_Co
> 1.

Listing functions with ":function" didn't quit when 'q' or ':' was typed at
the more prompt.

Use mkstemp() instead of mktemp() when it's available, avoids a warning for
linking on FreeBSD.

When doing Insert mode completion it's possible that b_sfname is NULL. Don't
give it to printf() for the "Scanning" message.

":set runtimepath-=$VIMRUNTIME" didn't work, because expansion of wildcards
was done after trying to remove the string. Now for ":set opt+=val" and ":set
opt-=val" the expansion of wildcards is done before adding or removing "val".

Using CTRL-V with the "r" command with a blockwise Visual selection inserted a
CTRL-V instead of getting a special character.

Unix: Changed the order of libraries: Put -lXdmcp after -lX11 and -lSM -lICE
after -lXdmcp. Should fix link problem on HP-UX 10.20.

Don't remove the last "-lm" from the link line. Vim may link but fail later
when the GUI starts.

When the shell returns with an error when trying to expand wildcards, do
include the pattern when the "EW_NOTFOUND" flag was set.
When expanding wildcards with the shell fails, give a clear error message
instead of just "1 returned".

Selecting a Visual block, with the start partly on a Tab, deleting it leaves
the cursor too far to the left. Causes "s" to work in the wrong position.

Pound sign in normal.c caused trouble on some compilers. Use 0xA3 instead.

Warning for changing a read-only file wasn't given when 'insertmode' was set.

Win32: When 'shellxquote' is set to a double quote (e.g., using csh), ":!start
notepad file" doesn't work. Remove the double quotes added by 'shellxquote'
when using ":!start". (Pavol Juhas)

The "<f-args>" argument of ":command" didn't accept Tabs for white space.
Also, don't add an empty argument when there are trailing blanks.

":e test\\je" edited "test\je", but ":next test\\je" edited "testje".
Backslashes were removed one time too many for ":next".

VMS: "gf" didn't work properly. Use vms_fixfilename() to translate the file
name. (Zoltan Arpadffy)

After ":hi Normal ctermbg=black ctermfg=white" and suspending Vim not all
characters are redrawn with the right background.

version6.txt — 2279

When doing "make test" without +eval or +windows feature, many tests failed.
Now have test1 generate a script to copy the correct output, so that a test
that doesn't work is skipped.

On FreeBSD the Perl interface added "-lc" to the link command and Python added
"-pthread". These two don't work together, because the libc_r library should
be used. Removed "-lc" from Perl, it should not be needed.
Also: Add "-pthread" to $LIBS, so that the checks for functions is done with
libc_r. Sigaltstack() appears to be missing from libc_r.

The Syntax sub-menus were getting too long, reorganized them and added another
level for some languages.

Visual block "r"eplace didn't work well when a Tab is partly included.
(Matthias Kramm)

When yanking a Visual block, where some lines end halfway the block, putting
the text somewhere else doesn't insert a block. Padd with spaces for missing
characters. Added "y_width" to struct yankreg. (Matthias Kramm)

If a substitute string has a multibyte character after a backslash only the
first byte of it was skipped. (Muraoka Taro)

Win32: Numeric keypad keys were missing from the builtin termcap entry.

When a file was read-only ":wa!" didn't force it to be written. (Vince Negri)

Amiga: A file name starting with a colon was considered absolute but it isn't.
Amiga: ":pwd" added a slash when in the root of a drive.

Don't let 'ttymouse' default to "dec" when compiled with dec mouse support.
It breaks the gpm mouse (Linux console).

The prototypes for the Perl interface didn't work for threaded Perl. Added a
sed command to remove the prototypes from proto/if_perl.pro and added them
manually to if_perl.xs.

When ":w!" resets the 'readonly' option the title and status lines were not
updated.

":args" showed the current file when the argument list was empty. Made this
work like Vi: display nothing.

"99:<C-U>echo v:count" echoed "99" in Normal mode, but 0 in Visual mode.
Don't set v:count when executing a stuffed command.

Amiga: Got a requester for "home:" because it's in the default runtime path.
Don't bring up a requester when searching for a file in 'path', sourcing the
.vimrc file or using ":runtime".

Win16 and Win32: Considered a file "\path\file" absolute. Can cause the same
file to appear as two different buffers.

Win32: Renaming a file to an empty string crashed Vim. Happened when using
explorer.vim and hitting ESC at the rename prompt.

Win32: strftime() crashed when called with a "-1" value for the time.

Win32 with Borland compiler: mch_FullName() didn't work, caused tag file not

version6.txt — 2280

to be found.

Cscope sometimes jumped to the wrong tag. (David Bustos)

OS/2: Could not find the tags file. mch_expand_wildcards() added another
slash to a directory name.

When using ">>" the `] mark was not in the last column.

When Vim was compiled without menu support, filetype.vim was still trying to
source the menu.vim script. (Rafael Garcia-Suarez)

":ptag" added an item to the tag stack.

Win32 IME: "gr" didn't use IME mode.

In the "vim --help" message the term "options" was used for arguments. That's
confusing, call them "arguments".

When there are two windows, and a BufUnload autocommand for closing window #1
closed window #2, Vim would crash.

When there is a preview window and only one other window, ":q" wouldn't exit.

In Insert mode, when cancelling a digraph with ESC, the '?' wasn't removed.

On Unix glob(".*") returned "." and "..", on Windows it didn't. On Windows
glob("*") also returned files starting with a dot. Made this work like Unix
on all systems.

Win32: Removed old code to open a console. Vimrun is now used and works fine.

Compute the room needed by the intro message accurately, so that it also fits
on a 25 line console. (Craig Barkhouse)

":ptnext" was broken. Now remember the last tag used in the preview window
separately from the tagstack.

Didn't check for "-display" being the last argument. (Wichert Akkerman)

GTK GUI: When starting "gvim" under some conditions there would be an X error.
Don't replace the error handler when creating the xterm clipboard. (Wichert
Akkerman)

Adding a space after a help tag caused the tag not to be found. E.g., ":he
autoindent ".

Was trying to expand a URL into a full path name. On Windows this resulted in
the current directory to be prepended to the URL. Added vim_isAbsName() and
vim_FullName() to avoid that various machine specific functions do it
differently.

":n *.c" ":cd .." ":n" didn't use the original directory of the file. Vi only
does it for the current file (looks like a bug). Now remember the buffer used
for the entry in the argument list and use its name (adjusted when doing
":cd"), unless it's deleted.

When inserting a special key as its name ("<F8>" as four characters) after
moving around in Insert mode, undo didn't work properly.

version6.txt — 2281

Motif GUI: When using the right mouse button, for some people gvim froze for
a couple of seconds (Motif 1.2?). This doesn't happen when there is no Popup
menu. Solved by only creating a popup menu when 'mousemodel' is "popup" or
"popup_setpos". (David Harrison)

Motif: When adding many menu items, the "Help" menu disappeared but the
menubar didn't wrap. Now manually set the menubar height.

When using <BS> in Insert mode to remove a line break, or using "J" to join
lines, the cursor could end up halfway a multibyte character. (Muraoka Taro)

Removed defining SVR4 in configure. It causes problems for some X header
files and doesn't appear to be used anywhere.

When 'wildignore' is used, 'ignorecase' for a tag match was not working.

When 'wildignore' contains "*~" it was impossible to edit a file ending in a
"~". Now don't recognize a file ending in "~" as containing wildcards.

Disabled the mouse code for OS/2. It was not really used.

":mksession" always used the full path name for a buffer, also when the short
name could be used.
":mkvimrc" and ":mksession" didn't save 'wildchar' and 'pastetoggle' in such a
way that they would be restored. Now use the key name if possible, this is
portable.

After recovering a file and abandoning it, an ":edit" command didn't give the
ATTENTION prompt again. Would be useful to be able to delete the file in an
easy way. Reset the BF_RECOVERED flag when unloading the buffer.

histdel() could match or ignore case, depending on what happened before it.
Now always match case.

When a window size was specified when splitting a window, it would still get
the size from 'winheight' or 'winwidth' if it's larger.

When using "append" or "insert" inside a function definition, a line starting
with "function" or "endfunction" caused confusion. Now recognize the commands
and skip lines until a ".".

At the end of any function or sourced file need_wait_return could be reset,
causing messages to disappear when redrawing.

When in a while loop the line number for error messages stayed fixed. Now the
line number is remembered in the while loop.

"cd c:/" didn't work on MS-DOS. mch_isdir() removed a trailing slash.

MS-Windows: getftime() didn't work when a directory had a trailing slash or
backslash. Didn't show the time in the explorer because of this.

When doing wildcard completion, a directory "a/" sorted after "a-b". Now
recognize path separators when sorting files.

Non-Unix systems: When editing "c:/dir/../file" and "c:/file" they were
created as different buffers, although it's the same file. Expand to a full
file name also when an absolute name contains "..".

"g&" didn't repeat the last substitute properly.

version6.txt — 2282

When 'clipboard' was set to "unnamed", a "Y" command would not write to "0.
Now make a copy of register 0 to the clipboard register.

When the search pattern matches in many ways, it could not always be
interrupted with a CTRL-C. And CTRL-C would have to be hit once for every
line when 'hlsearch' is on.
When 'incsearch' is on and interrupting the search for a match, don't abandon
the command line.

When turning a directory name into a full path, e.g., with fnamemodify(),
sometimes a slash was added. Make this consistent: Don't add a slash.

When a file name contains a "!", using it in a shell command will cause
trouble: ":!cat %". Escape the "!" to avoid that. Escape it another time
when 'shell' contains "sh".

Completing a file name that has a tail that starts with a "~" didn't work:
":e view/~<Tab>".

Using a ":command" argument that contains < and > but not for a special
argument was not skipped properly.

The DOS install program: On Win2000 the check for a vim.exe or gvim.exe in
$PATH didn't work, it always found it in the current directory.
Rename the vim.exe in the current dir to avoid this. (Walter Briscoe)

In the MS-DOS/Windows install program, use %VIM% instead of an absolute path,
so that moving Vim requires only one change in the batch file.

Mac: mch_FullName() changed the "fname" argument and didn't always initialize
the buffer.

MS-DOS: mch_FullName() didn't fix forward/backward slashes in an absolute file
name.

"echo expand("%:p:h")" with an empty file name removed one directory name on
MS-DOS. For Unix, when the file name is a directory, the directory name was
removed. Now make it consistent: "%:p" adds a path separator for all systems,
but no path separator is added in other situations.

Unix: When checking for a CTRL-C (could happen any time) and there is an X
event (e.g., clipboard updated) and there is typeahead, Vim would hang until a
character was typed.

MS-DOS, MS-Windows and Amiga: expanding "$ENV/foo" when $ENV ends in a colon,
had the slash removed.

":he \^=" gave an error for using _. ":he ^=" didn't find tag :set^=. Even
"he :set^=" didn't find it.

A tags file name "D:/tags" was used as file "tags" in "D:". That doesn't work
when the current path for D: isn't the root of the drive.

Removed calls to XtInitializeWidgetClass(), they shouldn't be necessary.

When using a dtterm or various other color terminals, and the Normal group has
been set to use a different background color, the background wouldn't always
be displayed with that color. Added check for "ut" termcap entry: If it's
missing, clearing the screen won't give us the current background color. Need

version6.txt — 2283

to draw each character instead. Vim now also works when the "cl" (clear
screen) termcap entry is missing.

When repeating a "/" search command with a line offset, the "n" did use the
offset but didn't make the motion linewise. Made "d/pat/+2" and "dn" do the
same.

Win32: Trying to use ":tearoff" for a menu that doesn't exist caused a crash.

OpenPTY() didn't work on Sequent. Add a configure check for getpseudotty().

C-indenting: Indented a line starting with ")" with the matching "(", but not
a line starting with "x)" looks strange. Also compute the indent for aligning
with items inside the () and use the lowest indent.

MS-DOS and Windows: ":n *.vim" also matched files ending in "~".
Moved mch_expandpath() from os_win16.c and os_msdos.c to misc1.c, they are
equal.

Macintosh: (Dany St-Amant)
- In Vi-compatible mode didn't read files with CR line separators.
- Fixed a bug in the handling of Activate/Deactivate Event
- Fixed a bug in gui_mch_dialog (using wrong pointer)

Multibyte GDK XIM: While composing a multibyte-word, if user presses a
mouse button, then the word is removed. It should remain and composing end.
(Sung-Hyun Nam)

MS-DOS, MS-Windows and OS/2: When reading from stdin, automatic CR-LF
conversion by the C library got in the way of detecting a "dos" 'fileformat'.

When 'smartcase' is set, patterns with "\S" would also make 'ignorecase'
reset.

When clicking the mouse in a column larger than 222, it moved to the first
column. Can't encode a larger number in a character. Now limit the number to
222, don't jump back to the first column.

GUI: In some versions CSI would cause trouble, either when typed directly or
when part of a multibyte sequence.

When using multibyte characters in a ":normal" command, a trailing byte that
is CSI or K_SPECIAL caused problems.

Wildmenu didn't handle multibyte characters.

":sleep 10" could not be interrupted on Windows, while "gs" could. Made them
both work the same.

Unix: When waiting for a character is interrupted by an X-windows event (e.g.,
to obtain the contents of the selection), the wait time would not be honored.
A message could be overwritten quickly. Now compute the remaining waiting
time.

Windows: Completing "\\share\c$\S" inserted a backslash before the $ and then
the name is invalid. Don't insert the backslash.

When doing an auto-write before ":make", IObuff was overwritten and the wrong
text displayed later.

version6.txt — 2284

On the Mac the directories "c:/tmp" and "c:/temp" were used in the defaults
for 'backupdir' and 'directory', they don't exist.

The check for a new file not to be on an MS-DOS filesystem created the file
temporarily, which can be slow. Don't do this if there is another check for
the swap file being on an MS-DOS filesystem.

Don't give the "Changing a readonly file" warning when reading from stdin.

When using the "Save As" menu entry and not entering a file name, would get an
error message for the trailing ":edit #". Now only do that when the
alternate file name was changed.

When Vim owns the X11 selection and is being suspended, an application that
tries to use the selection hangs. When Vim continues it could no longer
obtain the selection. Now give up the selection when suspending.

option.h and globals.h were included in some files, while they were already
included in vim.h. Moved the definition of EXTERN to vim.h to avoid doing it
twice.

When repeating an operator that used a search pattern and the search pattern
contained characters that have a special meaning on the cmdline (e.g., CTRL-U)
it didn't work.

Fixed various problems with using K_SPECIAL (0x80) and CSI (0x9b) as a byte in
a (multibyte) character. For example, the "r" command could not be repeated.

The DOS/Windows install program didn't always work from a directory with a
long filename, because $VIM and the executable name would not have the same
path.

Multi-byte:
- Using an any-but character range [^x] in a regexp didn't work for UTF-8.

(Muraoka Taro)
- When backspacing over inserted characters in Replace mode multibyte

characters were not handled correctly. (Muraoka Taro)
- Search commands "#" and "*" didn't work with multibyte characters. (Muraoka

Taro)
- Word completion in Insert mode didn't work with multibyte characters.

(Muraoka Taro)
- Athena/Motif GUI: when 'linespace' is non-zero the cursor would be drawn too

wide (number of bytes instead of cell width).
- When changing 'encoding' to "euc-jp" and inserting a character Vim would

crash.
- For euc-jp characters positioning the cursor would sometimes be wrong.

Also, with two characters with 0x8e leading byte only the first one would be
displayed.

- When using DYNAMIC_ICONV on Win32 conversion might fail because of using the
wrong error number. (Muraoka Taro)

- Using Alt-x in the GUI while 'encoding' was set to "utf-8" didn't produce
the right character.

- When using Visual block selection and only the left half of a double-wide
character is selected, the highlighting continued to the end of the line.

- Visual-block delete didn't work properly when deleting the right half of a
double-wide character.

- Overstrike mode for the cmdline replaced only the first byte of a multibyte
character.

- The cursor in Replace mode (also in the cmdline) was too small on a
double-wide character.

version6.txt — 2285

- When a multibyte character contained a 0x80 byte, it didn't work (was using
a CSI byte instead). (Muraoka Taro)

- Wordwise selection with the mouse didn't work.
- Yanking a modeless selection of multibyte characters didn't work.
- When 'selection' is "exclusive", selecting a word that ends in a multibyte

character used wrong highlighting for the following character.

Win32 with Make_mvc.mak: Didn't compile for debugging. (Craig Barkhouse)

Win32 GUI: When "vimrun.exe" is used to execute an external command, don't
give a message box with the return value, it was already printed by vimrun.
Also avoid printing the return value of the shell when ":silent!" is used.

Win32: selecting a lot of text and using the "find/replace" dialog caused a
crash.

X11 GUI: When typing a character with the 8th bit set and the Meta/Alt
modifier, the modifier was removed without changing the character.

Truncating a message to make it fit on the command line, using "..." for the
middle, didn't always compute the space correctly.

Could not imap <C-@>. Now it works like <Nul>.

VMS:
- Fixed a few things for VAXC. os_vms_fix.com had some strange CTRL-M

characters. (Zoltan Arpadffy and John W. Hamill)
- Added VMS-specific defaults for the 'isfname' and 'isprint' options.

(Zoltan Arpadffy)
- Removed os_vms_osdef.h, it's no longer used.

The gzip plugin used a ":normal" command, this doesn't work when dropping a
compressed file on Vim.

In very rare situations a binary search for a tag would fail, because an
uninitialized value happens to be half the size of the tag file. (Narendran)

When using BufEnter and BufLeave autocommands to enable/disable a menu, it
wasn't updated right away.

When doing a replace with the "c"onfirm flag, the cursor was positioned after
the ruler, instead of after the question. With a long replacement string the
screen could scroll up and cause a "more" prompt. Now the message is
truncated to make it fit.

Motif: The autoconf check for the Xp library didn't work.

When 'verbose' is set to list lines of a sourced file, defining a function
would reset the counter used for the "more" prompt.

In the Win32 find/replace dialog, a '/' character caused problems. Escape it
with a backslash.

Starting a shell with ":sh" was different from starting a shell for CTRL-Z
when suspending doesn't work. They now work the same way.

Jumping to a file mark while in a changed buffer gave a "mark not set" error.

":execute histget("cmd")" causes an endless loop and crashed Vim. Now catch
all commands that cause too much recursiveness.

version6.txt — 2286

Removed "Failed to open input method" error message, too many people got this
when they didn't want to use a XIM.

GUI: When compiled without the +windows feature, the scrollbar would start
below line one.

Removed the trick with redefining character class functions from regexp.c.

Win32 GUI: Find dialog gives focus back to main window, when typing a
character mouse pointer is blanked, it didn't reappear when moving it in the
dialog window. (Vince Negri)

When recording and typing a CTRL-C, no character was recorded. When in Insert
mode or cancelling half a command, playing back the recorded sequence wouldn't
work. Now record the CTRL-C.

When the GUI was started, mouse codes for DEC and netterm were still checked
for.

GUI: When scrolling and 'writedelay' is non-zero, the character under the
cursor was displayed in the wrong position (one line above/below with
CTRL-E/CTRL-Y).

A ":normal" command would reset the 'scrollbind' info. Causes problems when
using a ":normal" command in an autocommand for opening a file.

Windows GUI: a point size with a dot, like "7.5", wasn't recognized. (Muraoka
Taro)

When 'scrollbind' wasn't set would still remember the current position,
wasting time.

GTK: Crash when 'shell' doesn't exist and doing":!ls". Use _exit() instead of
exit() when the child couldn't execute the shell.

Multi-byte:
- GUI with double-byte encoding: a mouse click in left half of double-wide

character put the cursor in previous char.
- Using double-byte encoding and 'selection' is "exclusive": "vey" and "^Vey"

included the character after the word.
- When using a double-byte encoding and there is a lead byte at the end of the

line, the preceding line would be displayed. "ga" also showed wrong info.
- "gf" didn't include multibyte characters before the cursor properly.

(Muraoka Taro)

GUI: The cursor was sometimes not removed when scrolling. Changed the policy
from redrawing the cursor after each call to gui_write() to only update it at
the end of update_screen() or when setting the cursor position. Also only
update the scrollbars at the end of update_screen(), that's the only place
where the window text may have been scrolled.

Formatting "/*<Tab>long text", produced "* <Tab>" in the next line. Now
remove the space before the Tab.
Formatting "/*<Tab> long text", produced "* <Tab> long text" in the next
line. Now keep the space after the Tab.

In some places non-ASCII alphabetical characters were accepted, which could
cause problems. For example, ":X" (X being such a character).

version6.txt — 2287

When a pattern matches the end of the line, the last character in the line was
highlighted for 'hlsearch'. That looks wrong for "/\%3c". Now highlight the
character just after the line.

Motif: If a dialog was closed by clicking on the "X" of the window frame Vim
would no longer respond.

When using CTRL-X or CTRL-A on a number with many leading zeros, Vim would
crash. (Matsumoto)

When 'insertmode' is set, the mapping in mswin.vim for CTRL-V didn't work in
Select mode. Insert mode wasn't restarted after overwriting the text.
Now allow nesting Insert mode with insert and change commands. CTRL-O
cwfoo<Esc> now also works.

Clicking with the right mouse button in another window started Visual mode,
but used the start position of the current window. Caused ml_get errors when
the line number was invalid. Now stay in the same window.

When 'selection' is "exclusive", "gv" sometimes selected one character fewer.

When 'comments' contains more than one start/middle/end triplet, the optional
flags could be mixed up. Also didn't align the end with the middle part.

Double-right-click in Visual mode didn't update the shown mode.

When the Normal group has a font name, it was never used when starting up.
Now use it when 'guifont' and 'guifontset' are empty.
Setting a font name to a highlight group before the GUI was started didn't
work.

"make test" didn't use the name of the generated Vim executable.

'cindent' problems:
- Aligned with an "else" inside a do-while loop for a line below that loop.

(Meikel Brandmeyer)
- A line before a function would be indented even when terminated with a

semicolon. (Meikel Brandmeyer)
- 'cindent' gave too much indent to a line after a "};" that ends an array

init.
- Support declaration lines ending in "," and "\". (Meikel Brandmeyer)
- A case statement inside a do-while loop was used for indenting a line after

the do-while loop. (Meikel Brandmeyer)
- When skipping a string in a line with one double quote it could continue in

the previous line. (Meikel Brandmeyer)

When 'list' is set, 'hlsearch' didn't highlight a match at the end of the
line. Now highlight the '$'.

The Paste menu item in the menu bar, the popup menu and the toolbar were all
different. Now made them all equal to how it was done in mswin.vim.

st_dev can be smaller than "unsigned". The compiler may give an overflow
warning. Added a configure check for dev_t.

Athena: closing a confirm() dialog killed Vim.

Various typos in the documentation. (Matt Dunford)

Python interface: The definition of _DEBUG could cause trouble, undefine it.

version6.txt — 2288

The error message for not being able to load the shared library wasn't
translated. (Muraoka Taro)

Mac: (Dany St-Amant and Axel Kielhorn)
- Several fixes.
- Vim was eating 80% of the CPU time.
- The project os_mac.pbxproj didn't work, Moved it to a subdirectory.
- Made the menu priority work for the menubar.
- Fixed a problem with dragging the scrollbar.
- Cleaned up the various #ifdefs.

Unix: When catching a deadly signal and we keep getting one use _exit() to
exit in a quick and dirty way.

Athena menu ordering didn't work correctly. (David Harrison)

A ":make" or ":grep" command with a long argument could cause a crash.

Doing ":new file" and using "Quit" for the ATTENTION dialog still opened a new
window.

GTK: When starting the GUI and there is an error in the .vimrc file, don't
present the wait-return prompt, since the message was given in the terminal.

When there was an error in a .vimrc file the terminal where gvim was started
could be cleared. Set msg_row in main.c before writing any messages.

GTK and X11 GUI: When trying to read characters from the user (e.g. with
input()) before the Vim window was opened caused Vim to hang when it was
started from the desktop.

OS/390 uses 31 bit pointers. That broke some computations with MAX_COL.
Reduce MAX_COL by one bit for OS/390. (Ralf Schandl)

When defining a function and it already exists, Vim didn't say it existed
until after typing it. Now do this right away when typing it.

The message remembered for displaying later (keep_msg) was sometimes pointing
into a generic buffer, which might be changed by the time the message is
displayed. Now make a copy of the message.

When using multibyte characters in a menu and a trailing byte is a backslash,
the menu would not be created correctly. (Muraoka Taro)
Using a multibyte character in the substitute string where a trail byte is a
backslash didn't work. (Muraoka Taro)

When setting "t_Co" in a vimrc file, then setting it automatically from an
xterm termresponse and then setting it again manually caused a crash.

When getting the value of a string option that is not supported, the number
zero was returned. This breaks a check like "&enc == "asdf". Now an empty
string is returned for string options.

Crashed when starting the GTK GUI while using 'notitle' in the vimrc, setting
'title' in the gvimrc and starting the GUI with ":gui". Closed the connection
to the X server accidentally.

Had to hit return after selecting an entry for ":ts".

The message from ":cn" message was sometimes cleared. Now display it after

version6.txt — 2289

redrawing if it doesn't cause a scroll (truncated when necessary).

hangulin.c didn't compile when the GUI was disabled. Disable it when it won't
work.

When setting a termcap option like "t_CO", the value could be displayed as
being for a normal key with a modifier, like "<M-=>".

When expanding the argument list, entries which are a directory name did not
get included. This stopped "vim c:/" from opening the file explorer.

":syn match sd "^" nextgroup=asdf" skipped the first column and matched the
nextgroup in the second column.

GUI: When 'lazyredraw' is set, 'showmatch' didn't work. Required flushing
the output.

Don't define the <NetMouse> termcode in an xterm, reduces the problem when
someone types <Esc> } in Insert mode.

Made slash_adjust() work correctly for multibyte characters. (Yasuhiro
Matsumoto)
Using a filename in Big5 encoding for autocommands didn't work (backslash in
trailbyte). (Yasuhiro Matsumoto)

DOS and Windows: Expanding *.vim also matched file.vimfoo. Expand path like
Unix to avoid problems with Windows dir functions. Merged the DOS and Win32
functions.

Win32: GvimExt could not edit more than a few files at once, the length of the
argument was fixed.

"ls -1 * | xargs vim" worked, but the input was in cooked mode. Now switch to
raw mode when needed. Use dup() to copy the stderr file descriptor to stdin
to make shell commands work. No longer requires an external program to do
this.

When using ":filetype off", ftplugin and indent usage would be switched off at
the same time. Don't do this, setting 'filetype' manually can still use them.

GUI: When writing a double-byte character, it could be split up in two calls
to gui_write(), which doesn't work. Now flush before the output buffer
becomes full.

When 'laststatus' is set and 'cmdheight' is two or bigger, the intro message
would be written over the status line.
The ":intro" command didn't work when there wasn't enough room.

Configuring for Ruby failed with a recent version of Ruby. (Akinori Musha)

Athena: When deleting the directory in which Vim was started, using the file
browser made Vim exit. Removed the use of XtAppError().

When using autoconf 2.50, UNIX was not defined. Moved the comment for "#undef
UNIX" to a separate line.

Win32: Disabled _OnWindowPosChanging() to make maximize work better.

Win32: Compiling with VC 4.0 didn't work. (Walter Briscoe)

version6.txt — 2290

Athena:
- Finally fixed the problems with deleting a menu. (David Harrison)
- Athena: When closing the confirm() dialog, worked like OK was pressed,

instead of Cancel.

The file explorer didn't work in compatible mode, because of line
continuation.

Didn't give an error message for ":digraph a".

When using Ex mode in the GUI and typing a special key, <BS> didn't delete it
correctly. Now display '?' for a special key.

When an operator is pending, clicking in another window made it apply to that
window, even though the line numbers could be beyond the end of the buffer.

When a function call doesn't have a terminating ")" Vim could crash.

Perl interface: could crash on exit with perl 5.6.1. (Anduin Withers)

Using %P in 'errorformat' wasn't handled correctly. (Tomas Zellerin)

Using a syntax cluster that includes itself made Vim crash.

GUI: With 'ls' set to 2, dragging the status line all the way up, then making
the Vim window smaller: Could not the drag status line anymore.

"vim -c startinsert! file" placed cursor on last char of a line, instead of
after it. A ":set" command in the buffer menu set w_set_curswant. Now don't
do this when w_curswant is MAXCOL.

Win32: When the gvim window was maximized and selecting another font, the
window would no longer fill the screen.

The line with 'pastetoggle' in ":options" didn't show the right value when it
is a special key. Hitting <CR> didn't work either.

Formatting text, resulting in a % landing in the first line, repeated the % in
the following lines, like it's the start of a comment.

GTK: When adding a toolbar item while gvim is already running, it wasn't
possible to use the tooltip. Now it works by adding the tooltip first.

The output of "g CTRL-G" mentioned "Char" but it's actually bytes.

Searching for the end of a oneline region didn't work correctly when there is
an offset for the highlighting.

Syntax highlighting: When synchronizing on C-comments, //*/ was seen as the
start of a comment.

Win32: Without scrollbars present, the MS mouse scroll wheel didn't work.
Also handle the scrollbars when they are not visible.

Motif: When there is no right scrollbar, the bottom scrollbar would still
leave room for it. (Marcin Dalecki)

When changing 'guicursor' and the value is invalid, some of the effects would
still take place. Now first check for errors and only make the new value
effective when it's OK.

version6.txt — 2291

Using "A" In Visual block mode, appending to lines that don't extend into the
block, padding was wrong.

When pasting a block of text, a character that occupies more than one screen
column could be deleted and spaces inserted instead. Now only do that with a
tab.

Fixed conversion of documentation to HTML using Perl. (Dan Sharp)

Give an error message when a menu name starts with a dot.

Avoid a hang when executing a shell from the GUI on HP-UX by pushing "ptem"
even when sys/ptem.h isn't present.

When creating the temp directory, make sure umask is 077, otherwise the
directory is not accessible when it was set to 0177.

Unix: When resizing the window and a redraw is a bit slow, could get a window
resize event while redrawing, resulting in a messed up window. Any input
(e.g., a mouse click) would redraw.

The "%B" item in the status line became zero in Insert mode (that's normal)
for another than the current window.

The menu entries to convert to xxd and back didn't work in Insert mode.

When ":vglobal" didn't find a line where the pattern doesn't match, the error
message would be the wrong way around.

When ignoring a multi-line error message with "%-A", the continuation lines
would be used anyway. (Servatius Brandt)

"grx" on a double-wide character inserted "x", instead of replacing the
character with "x ". "gR" on <xx> ('display' set the "uhex") didn't replace
at all. When doing "gRxx" on a control character the first "x" would be
inserted, breaking the alignment.

Added "0)" to 'cinkeys', so that when typing a) it is put in the same place
as where "==" would put it.

Win32: When maximized, adding/removing toolbar didn't resize the text area.

When using <C-RightMouse> a count was discarded.

When typing CTRL-V and <RightMouse> in the command line, would insert
<LeftMouse>.

Using "vis" or "vas" when 'selection' is exclusive didn't include the last
character.

When adding to an option like 'grepprg', leading space would be lost. Don't
expand environment variables when there is no comma separating the items.

GUI: When using a bold-italic font, would still use the bold trick and
underlining.

Motif: The default button didn't work in dialogs, the first one was always
used. Had to give input focus to the default button.

version6.txt — 2292

When using CTRL-T to jump within the same file, the '' mark wasn't set.

Undo wasn't Vi compatible when using the 'c' flag for ":s". Now it undoes the
whole ":s" command instead of each confirmed replacement.

The Buffers menu, when torn-off, disappeared when being refreshed. Add a
dummy item to avoid this.

Removed calling msg_start() in main(), it should not be needed.

vim_strpbrk() did not support multibyte characters. (Muraoka Taro)

The Amiga version didn't compile, the code was too big for relative jumps.
Moved a few files from ex_docmd.c to ex_cmds2.c

When evaluating the "= register resulted in the "= register being changed, Vim
would crash.

When doing ":view file" and it fails, the current buffer was made read-only.

Motif: For some people the separators in the toolbar disappeared when resizing
the Vim window. (Marcin Dalecki)

Win32 GUI: when setting 'lines' to a huge number, would not compute the
available space correctly. Was counting the menu height twice.

Conversion of the docs to HTML didn't handle the line with the +quickfix tag
correctly. (Antonio Colombo)

Win32: fname_case() didn't handle multibyte characters correctly. (Yasuhiro
Matsumoto)

The Cygwin version had trouble with fchdir(). Don't use that function for
Cygwin.

The generic check in scripts.vim for "conf" syntax was done before some checks
in filetype.vim, resulting in "conf" syntax too often.

Dos32: Typing lagged behind. Would wait for one biostick when checking if a
character is available.

GTK: When setting 'columns' while starting up "gvim", would set the width of
the terminal it was started in.

When using ESC in Insert mode, an autoindent that wraps to the next line
caused the cursor to move to the end of the line temporarily. When the
character before the cursor was a double-wide multibyte character the cursor
would be on the right half, which causes problems with some terminals.

Didn't handle multibyte characters correctly when expanding a file name.
(Yasuhiro Matsumoto)

Win32 GUI: Errors generated before the GUI is decided to start were not
reported.

globpath() didn't reserve enough room for concatenated results. (Anduin
Withers)

When expanding an option that is very long already, don't do the expansion, it
would be truncated to MAXPATHL. (Anduin Withers)

version6.txt — 2293

When 'selection' is "exclusive", using "Fx" in Visual mode only moved until
just after the character.

When using IME on the console to enter a file name, the screen may scroll up.
Redraw the screen then. (Yasuhiro Matsumoto)

Motif: In the find/replace dialog the "Replace" button didn't work first time,
second time it replaced all matches. Removed the use of ":s///c".
GTK: Similar problems with the find/replace dialog, moved the code to a common
function.

X11: Use shared GC's for text. (Marcin Dalecki)

"]i" found the match under the cursor, instead of the first one below it.
Same for "]I", "] CTRL-I", "]d", "]D" and "] CTRL-D".

Win16: When maximized and the font is changed, don't change the window size.
(Vince Negri)

When 'lbr' is set, deleting a block of text could leave the cursor in the
wrong position.

Win32: When opening a file with the "Edit with Vim" popup menu entry,
wildcards would cause trouble. Added the "--literal" argument to avoid
expanding file names.

When using "gv", it didn't restore that "$" was used in Visual block mode.

Win32 GUI: While waiting for a shell command to finish, the window wasn't
redrawn at all. (Yasuhiro Matsumoto)

Syntax highlighting: A match that continues on a next line because of a
contained region didn't end when that region ended.

The ":s" command didn't allow flags like 'e' and 'i' right after it.

When using ":s" to split a line, marks were moved to the next line. Vi keeps
them in the first line.

When using ":n" ":rew", the previous context mark was at the top of the file,
while Vi puts it in the same place as the cursor. Made it Vi compatible.

Fixed Vi incompatibility: Text was not put in register 1 when using "c" and
"d" with a motion character, when deleting within one line with one of the
commands: % () `<character> / ? N n { }

Win32 GUI: The tooltip for tear-off items remained when the tear-off item was
no longer selected.

GUI: When typing ":" at the more prompt, would return to Normal mode and not
redraw the screen.

When starting Vim with an argument "-c g/at/p" the printed lines would
overwrite each other.

BeOS: Didn't compile. Configure didn't add the os_beos files, the QNX check
removed them. Various changes to os_beos.cc. (Joshua Haberman)
Removed the check for the hardware platform, the BeBox has not been produced
for a long time now.

version6.txt — 2294

Win32 GUI: don't use a message box when the shell returns an error code,
display the message in the Vim window.

Make_mvc.mak always included "/debug" for linking. "GUI=no" argument didn't
work. Use "DEBUG=yes" instead of "DEBUG=1" to make it consistent. (Dan Sharp)

When a line in the tags file ended in ;" (no TAB following) the command would
not be recognized as a search command.

X11: The inputMethod resource never worked. Don't use the "none" input method
for SGI, it apparently makes the first character in Input method dropped.

Fixed incorrect tests in os_mac.h. (Axel Kielhorn)

Win32 console: When the console where Vim runs in is closed, Vim could hang in
trying to restore the window icon. (Yasuhiro Matsumoto)

When using ":3call func()" or ":3,3call func() the line number was ignored.

When 'showbreak' and 'linebreak' were both set, Visual highlighting sometimes
continued until the end of the line.

GTK GUI: Tearoff items were added even when 'guioptions' didn't contain 't'
when starting up.

MS-Windows: When the current directory includes a "~", searching files with
"gf" or ":find" didn't work. A "$" in the directory had the same problem.
Added mch_has_exp_wildcard() functions.

When reducing the Vim window height while starting up, would get an
out-of-memory error message.

When editing a very long search pattern, 'incsearch' caused the redraw of the
command line to fail.

Motif GUI: On some systems the "Help" menu would not be on the far right, as
it should be. On some other systems (esp. IRIX) the command line would not
completely show. Solution is to only resize the menubar for Lesstif.

Using "%" in a line that contains "\\" twice didn't take care of the quotes
properly. Now make a difference between \" and \\".

For non-Unix systems a dummy file is created when finding a swap name to
detect a 8.3 filesystem. When there is an existing swap file, would get a
warning for the file being created outside of Vim. Also, when closing the Vim
window the file would remain.

Motif: The menu height was always computed, using a "-menuheight" argument
was setting the room for the command line. Now make clear the argument is not
supported.

For some (EBCDIC) systems, POUND was equal to '#'. Added an #if for that to
avoid a duplicate case in a switch.

The GUI may have problems when forking. Always call _exit() instead of exit()
in the parent, the child will call exit().

Win32 GUI: Accented characters were often wrong in dialogs and tearoff menus.
Now use CP_ACP instead of CP_OEMCP. (Vince Negri)

version6.txt — 2295

When displaying text with syntax highlighting causes an error (e.g., running
out of stack) the syntax highlighting is disabled to avoid further messages.

When a command in a .vimrc or .gvimrc causes an ATTENTION prompt, and Vim was
started from the desktop (no place to display messages) it would hang. Now
open the GUI window early to be able to display the messages and pop up the
dialog.

"r<CR>" on a multibyte character deleted only the first byte of the
character. "3r<CR>" deleted three bytes instead of three characters.

When interrupting reading a file, Vi considers the buffer modified. Added the
'i' flag in 'cpoptions' flag for this (we don't want it modified to be able to
do ":q").

When using an item in 'guicursor' that starts with a colon, Vim would get
stuck or crash.

When putting a file mark in a help file and later jumping back to it, the
options would not be set. Extended the modeline in all help files to make
this work better.

When a modeline contained "::" the local option values would be printed. Now
ignore it.

Some help files did not use a 8.3 names, which causes problems when using
MS-DOS unzip. Renamed "multibyte.txt" to "mbyte.txt", "rightleft.txt" to
"rileft.txt", "tagsearch.txt" to "tagsrch.txt", "os_riscos.txt" to
"os_risc.txt".

When Visual mode is blockwise, using "iw" or "aw" made it characterwise. That
doesn't seem right, only do this when in linewise mode. But then do it
always, not only when start and end of Visual mode are equal.

When using "viw" on a single-letter word and 'selection' is exclusive, would
not include the word.

When formatting text from Insert mode, using CTRL-O, could mess up undo
information.

While writing a file (also for the backup file) there was no check for an
interrupt (hitting CTRL-C). Vim could hang when writing a large file over a
slow network, and moving the mouse didn't make it appear (when 'mousehide' is
set) and the screen wasn't updated in the GUI. Also allow interrupting when
syncing the swap file, it can take a long time.

When using ":mksession" while there is help window, it would later be restored
to the right file but not marked as a help buffer. ":help" would then open
another window. Now use the value "help" for 'buftype' to mark a help buffer.

The session file contained absolute path names in option values, that doesn't
work when the home directory depends on the situation. Replace the home
directory with ~/ when possible.

When using 'showbreak' a TAB just after the shown break would not be counted
correctly, the cursor would be positioned wrong.

With 'showbreak' set to "--->" or "------->" and 'sts' set to 4, inserting
tabs did not work right. Could cause a crash. Backspacing was also wrong,

version6.txt — 2296

could get stuck at a line break.

Win32: crashed when tearing off a menu with over 300 items.

GUI: A menu or toolbar item would appear when only a tooltip was defined for
it.

When 'scrolloff' is non-zero and "$" is in 'cpoptions', using "s" while the
last line of the file is the first line on screen, the text wasn't displayed.

When running "autoconf", delete the configure cache to force starting cleanly
when configure is run again.

When changing the Normal colors for cterm, the value of 'background' was
changed even when the GUI was used.

The warning for a missing vimrun.exe was always given on startup, but some
people just editing a file don't need to be bothered by it. Only show it when
vimrun would be used.

When using "%" in a multibyte text it could get confused by trailbytes that
match. (Muraoka Taro)

Termcap entry for RiscOS was wrong, using 7 and 8 in octal codes.

Athena: The title of a dialog window and the file selector window were not
set. (David Harrison)

The "htmlLink" highlight group specified colors, which gives problems when
using a color scheme. Added the "Underlined" highlight group for this.

After using ":insert" or ":change" the '[mark would be one line too low.

When looking for the file name after a match with 'include' one character was
skipped. Same for 'define'.

Win32 and DJGPP: When editing a file with a short name in a directory, and
editing the same file but using the long name, would end up with two buffers
on the same file.

"gf" on a filename that starts with "../" only worked when the file being
edited is in the current directory. An include file search didn't work
properly for files starting with "../" or ".". Now search both relative to
the file and to the current directory.

When 'printheader', 'titlestring', 'iconstring', 'rulerformat' or 'statusline'
contained "%{" but no following "}" memory was corrupted and a crash could
happen.

":0append" and then inserting two lines did not redraw the blank lines that
were scrolled back down.

When using insert mode completion in a narrow window, the message caused a
scroll up. Now shorten the message if it doesn't fit and avoid writing the
ruler over the message.

XIM still didn't work correctly on some systems, especially SGI/IRIX. Added
the 'imdisable' option, which is set by default for that system.

Patch 6.0aw.008

version6.txt — 2297

Problem: When the first character of a file name is over 127, the Buffers
menu entry would get a negative priority and cause problems.

Solution: Reduce the multiplier for the first character when computing
the hash value for a Buffers menu entry.

Files: runtime/menu.vim

Patch 6.0aw.010
Problem: Win32: ":browse edit dir/dir" didn't work. (Vikas)
Solution: Change slashes to backslashes in the directory passed to the file

browser.
Files: src/gui_w48.c

Athena file browser: On some systems wcstombs() can't be used to get the
length of a multibyte string. Use the maximum length then. (Yasuhiro
Matsumoto)

Patch 6.0ax.001
Problem: When 'patchmode' is set, appending to a file gives an empty

original file. (Ed Ralston)
Solution: Also make a backup copy when appending and 'patchmode' is set.
Files: src/fileio.c

Patch 6.0ax.002
Problem: When 'patchmode' is set, appending to a compressed file gives an

uncompressed original file. (Ed Ralston)
Solution: Create the original file before decompressing.
Files: runtime/plugin/gzip.vim

Patch 6.0ax.005
Problem: Athena file selector keeps the title of the first invocation.
Solution: Set the title each time the file selector is opened. (David

Harrison)
Files: src/gui_at_fs.c

Patch 6.0ax.007
Problem: When using GPM (mouse driver in a Linux console) a double click is

interpreted as a scroll wheel click.
Solution: Check if GPM is being used when deciding if a mouse event is for

the scroll wheel.
Files: src/term.c

Patch 6.0ax.010
Problem: The Edit.Save menu and the Save toolbar button didn't work when

the buffer has no file name.
Solution: Use a file browser to ask for a file name. Also fix the toolbar

Find item in Visual mode.
Files: runtime/menu.vim

Patch 6.0ax.012
Problem: When 'cpoptions' contains "$", breaking a line for 'textwidth'

doesn't redraw properly. (Stefan Schulze)
Solution: Remove the dollar before breaking the line.
Files: src/edit.c

Patch 6.0ax.014
Problem: Win32: On Windows 98 ":make -f file" doesn't work when 'shell' is

"command.com" and 'makeprg' is "nmake". The environment isn't
passed on to "nmake".

Solution: Also use vimrun.exe when redirecting the output of a command.
Files: src/os_win32.c

version6.txt — 2298

Patch 6.0ax.016
Problem: The version number was reported wrong in the intro screen.
Solution: Check for a version number with two additional letters.
Files: src/version.c

Patch 6.0ax.019
Problem: When scrolling a window with folds upwards, switching to another

vertically split window and back may not update the scrollbar.
Solution: Limit w_botline to the number of lines in the buffer plus one.
Files: src/move.c

==
VERSION 6.1 version-6.1

This section is about improvements made between version 6.0 and 6.1.

This is a bug-fix release, there are not really any new features.

Changed changed-6.1

'iminsert' and 'imsearch' are no longer set as a side effect of defining a
language-mapping using ":lmap".

Added added-6.1

Syntax files:
ampl AMPL (David Krief)
ant Ant (Johannes Zellner)
baan Baan (Her van de Vliert)
cs C# (Johannes Zellner)
lifelines Lifelines (Patrick Texier)
lscript LotusScript (Taryn East)
moo MOO (Timo Frenay)
nsis NSIS (Alex Jakushev)
ppd Postscript Printer Description (Bjoern Jacke)
rpl RPL/2 (Joel Bertrand)
scilab Scilab (Benoit Hamelin)
splint Splint (Ralf Wildenhues)
sqlj SQLJ (Andreas Fischbach)
wvdial WvDial (Prahlad Vaidyanathan)
xf86conf XFree86 config (Nikolai Weibull)
xmodmap Xmodmap (Nikolai Weibull)
xslt Xslt (Johannes Zellner)
monk Monk (Mike Litherland)
xsd Xsd (Johannes Zellner)
cdl CDL (Raul Segura Acevedo)
sendpr Send-pr (Hendrik Scholz)

Added indent file for Scheme. (Dorai Sitaram)
Added indent file for Prolog. (Kontra Gergely)
Added indent file for Povray (David Necas)
Added indent file for IDL (Aleksandar Jelenak)
Added C# indent and ftplugin scripts.

version6.txt — 2299

Added Ukrainian menu translations. (Bohdan Vlasyuk)
Added ASCII version of the Czech menus. (Jiri Brezina)

Added Simplified Chinese translation of the tutor. (Mendel L Chan)

Added Russian keymap for yawerty keyboard.

Added an explanation of using the vimrc file in the tutor.
Changed tutor.vim to get the right encoding for the Taiwanese tutor.

Added Russian tutor. (Andrey Kiselev)
Added Polish tutor. (Mikolaj Machowski)

Added darkblue color scheme. (Bohdan Vlasyuk)

When packing the dos language archive automatically generate the .mo files
that are required.

Improved NSIS script to support NSIS 180. Added icons for the
enabled/disabled status. (Mirek Pruchnik)

cp1250 version of the Slovak message translations.

Compiler plugins for IRIX compilers. (David Harrison)

Fixed fixed-6.1

The license text was updated to make the meaning clearer and make it
compatible with the GNU GPL. Otherwise distributors have a problem when
linking Vim with a GPL'ed library.

When installing the "less.sh" script it was not made executable. (Chuck Berg)

Win32: The "9" key on the numpad wasn't working. (Julian Kinraid)

The NSIS install script didn't work with NSIS 1.80 or later. Also add
Vim-specific icons. (Pruchnik)

The script for conversion to HTML contained an "if" in the wrong place.
(Michael Geddes)

Allow using ":ascii" in the sandbox, it's harmless.

Removed creat() from osdef2.h.in, it wasn't used and may cause a problem when
it's redefined to creat64().

The text files in the VisVim directory were in "dos" format. This caused
problems when applying a patch. Now keep them in "unix" format and convert
them to "dos" format only for the PC archives.

Add ruby files to the dos source archive, they can be used by Make_mvc.mak.
(Mirek Pruchnik)

"cp -f" doesn't work on all systems. Change "cp -f" in the Makefile to "rm
-f" and "cp".

Didn't compile on a Compaq Tandem Himalaya OSS. (Michael A. Benzinger)

version6.txt — 2300

The GTK file selection dialog didn't include the "Create Dir", "Delete File"
and "Rename File" buttons.

When doing ":browse source" the dialog has the title "Run Macro". Better
would be "Source Vim script". (Yegappan Lakshmanan)

Win32: Don't use the printer font as default for the font dialog.

"make doslang" didn't work when configure didn't run (yet). Set $MAKEMO to
"yes". (Mirek Pruchnik)

The ToolBar TagJump item used "g]", which prompts for a selection even when
there is only one matching tag. Use "g<C-]>" instead.

The ming makefile for message translations didn't have the right list of
files.

The MS-Windows 3.1 version complains about LIBINTL.DLL not found. Compile
this version without message translations.

The Borland 5 makefile contained a check for Ruby which is no longer needed.
The URLs for the TCL library was outdated. (Dan Sharp)

The eviso.ps file was missing from the DOS runtime archive, it's needed for
printing PostScript in the 32bit DOS version.

In menu files ":scriptencoding" was used in a wrong way after patch 6.1a.032
Now use ":scriptencoding" in the file where the translations are given. Do
the same for all menus in latin1 encoding.

Included a lot of fixes for the Macintosh, mostly to make it work with Carbon.
(Dany StAmant, Axel Kielhorn, Benji Fisher)

Improved the vimtutor shell script to use $TMPDIR when it exists, and delete
the copied file when exiting in an abnormal way. (Max Ischenko)

When "iconv.dll" can't be found, try using "libiconv.dll".

When encryption is used, filtering with a shell command wasn't possible.

DJGPP: ":cd c:" always failed, can't get permissions for "c:".
Win32: ":cd c:/" failed if the previous current directory on c: had become
invalid.

DJGPP: Shift-Del and Del both produce \316\123. Default mapping for Del is
wrong. Disabled it.

Dependencies on header files in MingW makefile was wrong.

Win32: Don't use ACL stuff for MSVC 4.2, it's not supported. (Walter Briscoe)

Win32 with Borland: bcc.cfg was caching the value for $(BOR), but providing a
different argument to make didn't regenerate it.

Win32 with MSVC: Make_ivc.mak generates a new if_ole.h in a different
directory, the if_ole.h in the src directory may be used instead. Delete the
distributed file.

When a window is vertically split and then ":ball" is used, the window layout
is messed up, can cause a crash. (Muraoka Taro)

version6.txt — 2301

When 'insertmode' is set, using File/New menu and then double clicking, "i" is
soon inserted. (Merlin Hansen)

When Select mode is active and using the Buffers menu to switch to another
buffer, an old selection comes back. Reset VIsual_reselect for a ":buffer"
command.

When Select mode is active and 'insertmode' is set, using the Buffers menu to
switch to another buffer, did not return to Insert mode. Make sure
"restart_edit" is set.

When double clicking on the first character of a word while 'selection' is
"exclusive" didn't select that word.

Patch 6.0.001
Problem: Loading the sh.vim syntax file causes error messages. (Corinna

Vinschen)
Solution: Add an "if". (Charles Campbell)
Files: runtime/syntax/sh.vim

Patch 6.0.002
Problem: Using a '@' item in 'viminfo' doesn't work. (Marko Leipert)
Solution: Add '@' to the list of accepted items.
Files: src/option.c

Patch 6.0.003
Problem: The configure check for ACLs on AIX doesn't work.
Solution: Fix the test program so that it compiles. (Tomas Ogren)
Files: src/configure.in, src/auto/configure

Patch 6.0.004
Problem: The find/replace dialog doesn't reuse a previous argument

properly.
Solution: After removing a "\V" terminate the string. (Zwane Mwaikambo)
Files: src/gui.c

Patch 6.0.005
Problem: In Insert mode, "CTRL-O :ls" has a delay before redrawing.
Solution: Don't delay just after wait_return() was called. Added the

did_wait_return flag.
Files: src/globals.h, src/message.c, src/normal.c, src/screen.c

Patch 6.0.006
Problem: With a vertical split, 'number' set and 'scrolloff' non-zero,

making the window width very small causes a crash. (Niklas
Lindstrom)

Solution: Check for a zero width.
Files: src/move.c

Patch 6.0.007
Problem: When setting 'filetype' while there is no FileType autocommand, a

following ":setfiletype" would set 'filetype' again. (Kobus
Retief)

Solution: Set did_filetype always when 'filetype' has been set.
Files: src/option.c

Patch 6.0.008
Problem: 'imdisable' is missing from the options window. (Michael Naumann)

version6.txt — 2302

Solution: Add an entry for it.
Files: runtime/optwin.vim

Patch 6.0.009
Problem: Nextstep doesn't have S_ISBLK. (John Beppu)
Solution: Define S_ISBLK using S_IFBLK.
Files: src/os_unix.h

Patch 6.0.010
Problem: Using "gf" on a file name starting with "./" or "../" in a buffer

without a name causes a crash. (Roy Lewis)
Solution: Check for a NULL file name.
Files: src/misc2.c

Patch 6.0.011
Problem: Python: After replacing or deleting lines get an ml_get error.

(Leo Lipelis)
Solution: Adjust the cursor position for deleted or added lines.
Files: src/if_python.c

Patch 6.0.012
Problem: Polish translations contain printf format errors, this can result

in a crash when using one of them.
Solution: Fix for translated messages. (Michal Politowski)
Files: src/po/pl.po

Patch 6.0.013
Problem: Using ":silent! cmd" still gives some error messages, like for an

invalid range. (Salman Halim)
Solution: Reset emsg_silent after calling emsg() in do_one_cmd().
Files: src/ex_docmd.c

Patch 6.0.014
Problem: When 'modifiable' is off and 'virtualedit' is "all", "rx" on a TAB

still changes the buffer. (Muraoka Taro)
Solution: Check if saving the line for undo fails.
Files: src/normal.c

Patch 6.0.015
Problem: When 'cpoptions' includes "S" and "filetype plugin on" has been

used, can get an error for deleting the b:did_ftplugin variable.
(Ralph Henderson)

Solution: Only delete the variable when it exists.
Files: runtime/ftplugin.vim

Patch 6.0.016
Problem: bufnr(), bufname() and bufwinnr() don't find unlisted buffers when

the argument is a string. (Hari Krishna Dara)
Also for setbufvar() and getbufvar().

Solution: Also find unlisted buffers.
Files: src/eval.c

Patch 6.0.017
Problem: When 'ttybuiltin' is set and a builtin termcap entry defines t_Co

and the external one doesn't, it gets reset to empty. (David
Harrison)

Solution: Only set t_Co when it wasn't set yet.
Files: src/term.c

Patch 6.0.018

version6.txt — 2303

Problem: Initializing 'encoding' may cause a crash when setlocale() is not
used. (Dany St-Amant)

Solution: Check for a NULL pointer.
Files: src/mbyte.c

Patch 6.0.019
Problem: Converting a string with multibyte characters to a printable

string, e.g., with strtrans(), may cause a crash. (Tomas Zellerin)
Solution: Correctly compute the length of the result in transstr().
Files: src/charset.c

Patch 6.0.020
Problem: When obtaining the value of a global variable internally, could

get the function-local value instead. Applies to using <Leader>
and <LocalLeader> and resetting highlighting in a function.

Solution: Prepend "g:" to the variable name. (Aric Blumer)
Files: src/syntax.c, src/term.c

Patch 6.0.021
Problem: The 'cscopepathcomp' option didn't work.
Solution: Change USE_CSCOPE to FEAT_CSCOPE. (Mark Feng)
Files: src/option.c

Patch 6.0.022
Problem: When using the 'langmap' option, the second character of a command

starting with "g" isn't adjusted.
Solution: Apply 'langmap' to the second character. (Alex Kapranoff)
Files: src/normal.c

Patch 6.0.023
Problem: Loading the lhaskell syntax doesn't work. (Thore B. Karlsen)
Solution: Use ":runtime" instead of "source" to load haskell.vim.
Files: runtime/syntax/lhaskell.vim

Patch 6.0.024
Problem: Using "CTRL-V u 9900" in Insert mode may cause a crash. (Noah

Levitt)
Solution: Don't insert a NUL byte in the text, use a newline.
Files: src/misc1.c

Patch 6.0.025
Problem: The pattern "\vx(.|$)" doesn't match "x" at the end of a line.

(Preben Peppe Guldberg)
Solution: Always see a "$" as end-of-line after "\v". Do the same for "^".
Files: src/regexp.c

Patch 6.0.026
Problem: GTK: When using arrow keys to navigate through the menus, the

separators are selected.
Solution: Set the separators "insensitive". (Pavel Kankovsky)
Files: src/gui_gtk.c, src/gui_gtk_x11.c

Patch 6.0.027
Problem: VMS: Printing doesn't work, the file is deleted too quickly.

No longer need the VMS specific printing menu.
gethostname() is not available with VAXC.
The makefile was lacking selection of the tiny-huge feature set.

Solution: Adjust the 'printexpr' option default. Fix the other problems and
update the documentation. (Zoltan Arpadffy)

Files: runtime/doc/os_vms.txt, runtime/menu.vim, src/INSTALLvms.txt,

version6.txt — 2304

src/Make_vms.mms, src/option.c, src/os_unix.c, src/os_vms_conf.h

Patch 6.0.028
Problem: Can't compile without +virtualedit and with +visualextra. (Geza

Lakner)
Solution: Add an #ifdef for +virtualedit.
Files: src/ops.c

Patch 6.0.029
Problem: When making a change in line 1, then in line 2 and then deleting

line 1, undo info could be wrong. Only when the changes are undone
at once. (Gerhard Hochholzer)

Solution: When not saving a line for undo because it was already done
before, remember for which entry the last line must be computed.
Added ue_getbot_entry pointer for this. When the number of lines
changes, adjust the position of newer undo entries.

Files: src/structs.h, src/undo.c

Patch 6.0.030
Problem: Using ":source! file" doesn't work inside a loop or after

":argdo". (Pavol Juhas)
Solution: Execute the commands in the file right away, do not let the main

loop do it.
Files: src/ex_cmds2.c, src/ex_docmd.c, src/getchar.c, src/globals.h,

src/proto/ex_docmd.pro, src/proto/getchar.pro

Patch 6.0.031
Problem: Nextstep doesn't have setenv() or putenv(). (John Beppu)
Solution: Move putenv() from pty.c to misc2.c
Files: src/misc2.c, src/pty.c

Patch 6.0.032
Problem: When changing a setting that affects all folds, they are not

displayed immediately.
Solution: Set the redraw flag in foldUpdateAll().
Files: src/fold.c

Patch 6.0.033
Problem: Using 'wildmenu' on MS-Windows, file names that include a space

are only displayed starting with that space. (Xie Yuheng)
Solution: Don't recognize a backslash before a space as a path separator.
Files: src/screen.c

Patch 6.0.034
Problem: Calling searchpair() with three arguments could result in a crash

or strange error message. (Kalle Bjorklid)
Solution: Don't use the fifth argument when there is no fourth argument.
Files: src/eval.c

Patch 6.0.035
Problem: The menu item Edit/Global_Settings/Toggle_Toolbar doesn't work

when 'ignorecase' is set. (Allen Castaban)
Solution: Always match case when checking if a flag is already present in

'guioptions'.
Files: runtime/menu.vim

Patch 6.0.036
Problem: OS/2, MS-DOS and MS-Windows: Using a path that starts with a

slash in 'tags' doesn't work as expected. (Mathias Koehrer)
Solution: Only use the drive, not the whole path to the current directory.

version6.txt — 2305

Also make it work for "c:dir/file".
Files: src/misc2.c

Patch 6.0.037
Problem: When the user has set "did_install_syntax_menu" to avoid the

default Syntax menu it still appears. (Virgilio)
Solution: Don't add the three default items when "did_install_syntax_menu"

is set.
Files: runtime/menu.vim

Patch 6.0.038
Problem: When 'selection' is "exclusive", deleting a block of text at the

end of a line can leave the cursor beyond the end of the line.
Solution: Correct the cursor position.
Files: src/ops.c

Patch 6.0.039
Problem: "gP" leaves the cursor in the wrong position when 'virtualedit' is

used. Using "c" in blockwise Visual mode leaves the cursor in a
strange position.

Solution: For "gP" reset the "coladd" field for the '] mark. For "c" leave
the cursor on the last inserted character.

Files: src/ops.c

Patch 6.0.040
Problem: When 'fileencoding' is invalid and writing fails because of

this, the original file is gone. (Eric Carlier)
Solution: Restore the original file from the backup.
Files: src/fileio.c

Patch 6.0.041
Problem: Using ":language messages en" when LC_MESSAGES is undefined

results in setting LC_CTYPE. (Eric Carlier)
Solution: Set $LC_MESSAGES instead.
Files: src/ex_cmds2.c

Patch 6.0.042
Problem: ":mksession" can't handle file names with a space.
Solution: Escape special characters in file names with a backslash.
Files: src/ex_docmd.c

Patch 6.0.043
Problem: Patch 6.0.041 was wrong.
Solution: Use mch_getenv() instead of vim_getenv().
Files: src/ex_cmds2.c

Patch 6.0.044
Problem: Using a "containedin" list for a syntax item doesn't work for an

item that doesn't have a "contains" argument. Also, "containedin"
doesn't ignore a transparent item. (Timo Frenay)

Solution: When there is a "containedin" argument somewhere, always check for
contained items. Don't check for the transparent item but the
item it's contained in.

Files: src/structs.h, src/syntax.c

Patch 6.0.045
Problem: After creating a fold with a Visual selection, another window

with the same buffer still has inverted text. (Sami Salonen)
Solution: Redraw the inverted text.
Files: src/normal.c

version6.txt — 2306

Patch 6.0.046
Problem: When getrlimit() returns an 8 byte number the check for running

out of stack may fail. (Anthony Meijer)
Solution: Skip the stack check if the limit doesn't fit in a long.
Files: src/auto/configure, src/config.h.in, src/configure.in,

src/os_unix.c

Patch 6.0.047
Problem: Using a regexp with "\(\)" inside a "\%[]" item causes a crash.

(Samuel Lacas)
Solution: Don't allow nested atoms inside "\%[]".
Files: src/regexp.c

Patch 6.0.048
Problem: Win32: In the console the mouse doesn't always work correctly.

Sometimes after getting focus a mouse movement is interpreted like
a button click.

Solution: Use a different function to obtain the number of mouse buttons.
Avoid recognizing a button press from undefined bits. (Vince Negri)

Files: src/os_win32.c

Patch 6.0.049
Problem: When using evim the intro screen is misleading. (Adrian Nagle)
Solution: Mention whether 'insertmode' is set and the menus to be used.
Files: runtime/menu.vim, src/version.c

Patch 6.0.050
Problem: UTF-8: "viw" doesn't include non-ASCII characters before the

cursor. (Bertilo Wennergren)
Solution: Use dec_cursor() instead of decrementing the column number.
Files: src/search.c

Patch 6.0.051
Problem: UTF-8: Using CTRL-R on the command line doesn't insert composing

characters. (Ron Aaron)
Solution: Also include the composing characters and fix redrawing them.
Files: src/ex_getln.c, src/ops.c

Patch 6.0.052
Problem: The check for rlim_t in patch 6.0.046 does not work on some

systems. (Zdenek Sekera)
Solution: Also look in sys/resource.h for rlim_t.
Files: src/auto/configure, src/configure.in

Patch 6.0.053 (extra)
Problem: Various problems with QNX.
Solution: Minor fix for configure. Switch on terminal clipboard support in

main.c. Fix "pterm" mouse support. os_qnx.c didn't build without
photon. (Julian Kinraid)

Files: src/auto/configure, src/configure.in, src/gui_photon.c,
src/main.c, src/misc2.c, src/option.h, src/os_qnx.c, src/os_qnx.h,
src/syntax.c

Patch 6.0.054
Problem: When using mswin.vim, CTRL-V pastes a block of text like it is

normal text. Using CTRL-V in blockwise Visual mode leaves "x"
characters behind.

Solution: Make CTRL-V work as it should. Do the same for the Paste menu
entries.

version6.txt — 2307

Files: runtime/menu.vim, runtime/mswin.vim

Patch 6.0.055
Problem: GTK: The selection isn't copied the first time.
Solution: Own the selection at the right moment.
Files: src/gui_gtk_x11.c

Patch 6.0.056
Problem: Using "CTRL-O cw" in Insert mode results in a nested Insert mode.

<Esc> doesn't leave Insert mode then.
Solution: Only use nested Insert mode when 'insertmode' is set or when a

mapping is used.
Files: src/normal.c

Patch 6.0.057
Problem: Using ":wincmd g}" in a function doesn't work. (Gary Holloway)
Solution: Execute the command directly, instead of putting it in the

typeahead buffer.
Files: src/normal.c, src/proto/normal.pro, src/window.c

Patch 6.0.058
Problem: When a Cursorhold autocommand moved the cursor, the ruler wasn't

updated. (Bohdan Vlasyuk)
Solution: Update the ruler after executing the autocommands.
Files: src/gui.c

Patch 6.0.059
Problem: Highlighting for 'hlsearch' isn't visible in lines that are

highlighted for diff highlighting. (Gary Holloway)
Solution: Let 'hlsearch' highlighting overrule diff highlighting.
Files: src/screen.c

Patch 6.0.060
Problem: Motif: When the tooltip is to be popped up, Vim crashes.

(Gary Holloway)
Solution: Check for a NULL return value from gui_motif_fontset2fontlist().
Files: src/gui_beval.c

Patch 6.0.061
Problem: The toolbar buttons to load and save a session do not correctly

use v:this_session.
Solution: Check for v:this_session to be empty instead of existing.
Files: runtime/menu.vim

Patch 6.0.062
Problem: Crash when 'verbose' is > 3 and using ":shell". (Yegappan

Lakshmanan)
Solution: Avoid giving a NULL pointer to printf(). Also output a newline

and switch the cursor on.
Files: src/misc2.c

Patch 6.0.063
Problem: When 'cpoptions' includes "$", using "cw" to type a ')' on top of

the "$" doesn't update syntax highlighting after it.
Solution: Stop displaying the "$" when typing a ')' in its position.
Files: src/search.c

Patch 6.0.064 (extra)
Problem: The NSIS install script doesn't work with newer versions of NSIS.

The diff feature doesn't work when there isn't a good diff.exe on

version6.txt — 2308

the system.
Solution: Replace the GetParentDir instruction by a user function.

Fix a few cosmetic problems. Use defined constants for the
version number, so that it's defined in one place only.
Only accept the install directory when it ends in "vim".
(Eduardo Fernandez)
Add a diff.exe and use it from the default _vimrc.

Files: nsis/gvim.nsi, nsis/README.txt, src/dosinst.c

Patch 6.0.065
Problem: When using ":normal" in 'indentexpr' it may use redo characters

before its argument. (Neil Bird)
Solution: Save and restore the stuff buffer in ex_normal().
Files: src/ex_docmd.c, src/getchar.c, src/globals.h, src/structs.h

Patch 6.0.066
Problem: Sometimes undo for one command is split into two undo actions.

(Halim Salman)
Solution: Don't set the undo-synced flag when reusing a line that was

already saved for undo.
Files: src/undo.c

Patch 6.0.067
Problem: if_xcmdsrv.c doesn't compile on systems where fd_set isn't defined

in the usual header file (e.g., AIX). (Mark Waggoner)
Solution: Include sys/select.h in if_xcmdsrv.c for systems that have it.
Files: src/if_xcmdsrv.c

Patch 6.0.068
Problem: When formatting a Visually selected area with "gq" and the number

of lines increases the last line may not be redrawn correctly.
(Yegappan Lakshmanan)

Solution: Correct the area to be redrawn for inserted/deleted lines.
Files: src/ops.c

Patch 6.0.069
Problem: Using "K" on a word that includes a "!" causes a "No previous

command" error, because the "!" is expanded. (Craig Jeffries)
Solution: Put a backslash before the "!".
Files: src/normal.c

Patch 6.0.070
Problem: Win32: The error message for a failed dynamic linking of a Perl,

Ruby, Tcl and Python library is unclear about what went wrong.
Solution: Give the name of the library or function that could not be loaded.

Also for the iconv and gettext libraries when 'verbose' is set.
Files: src/eval.c, src/if_perl.xs, src/if_python.c, src/if_ruby.c,

src/if_tcl.c, src/mbyte.c, src/os_win32.c, src/proto/if_perl.pro,
src/proto/if_python.pro, src/proto/if_ruby.pro,
src/proto/if_tcl.pro, src/proto/mbyte.pro

Patch 6.0.071
Problem: The "iris-ansi" builtin termcap isn't very good.
Solution: Fix the wrong entries. (David Harrison)
Files: src/term.c

Patch 6.0.072
Problem: When 'lazyredraw' is set, a mapping that stops Visual mode, moves

the cursor and starts Visual mode again causes a redraw problem.
(Brian Silverman)

version6.txt — 2309

Solution: Redraw both the old and the new Visual area when necessary.
Files: src/normal.c, src/screen.c

Patch 6.0.073 (extra)
Problem: DJGPP: When using CTRL-Z to start a shell, the prompt is halfway

the text. (Volker Kiefel)
Solution: Position the system cursor before starting the shell.
Files: src/os_msdos.c

Patch 6.0.074
Problem: When using "&" in a substitute string a multibyte character with

a trailbyte 0x5c is not handled correctly.
Solution: Recognize multibyte characters inside the "&" part. (Muraoka Taro)
Files: src/regexp.c

Patch 6.0.075
Problem: When closing a horizontally split window while 'eadirection' is

"hor" another horizontally split window is still resized. (Aron
Griffis)

Solution: Only resize windows in the same top frame as the window that is
split or closed.

Files: src/main.c, src/proto/window.pro, src/window.c

Patch 6.0.076
Problem: Warning for wrong pointer type when compiling.
Solution: Use char instead of char_u pointer.
Files: src/version.c

Patch 6.0.077
Problem: Patch 6.0.075 was incomplete.
Solution: Fix another call to win_equal().
Files: src/option.c

Patch 6.0.078
Problem: Using "daw" at the end of a line on a single-character word didn't

include the white space before it. At the end of the file it
didn't work at all. (Gavin Sinclair)

Solution: Include the white space before the word.
Files: src/search.c

Patch 6.0.079
Problem: When "W" is in 'cpoptions' and 'backupcopy' is "no" or "auto", can

still overwrite a read-only file, because it's renamed. (Gary
Holloway)

Solution: Add a check for a read-only file before renaming the file to
become the backup.

Files: src/fileio.c

Patch 6.0.080
Problem: When using a session file that has the same file in two windows,

the fileinfo() call in do_ecmd() causes a scroll and a hit-enter
prompt. (Robert Webb)

Solution: Don't scroll this message when 'shortmess' contains 'O'.
Files: src/ex_cmds.c

Patch 6.0.081
Problem: After using ":saveas" the new buffer name is added to the Buffers

menu with a wrong number. (Chauk-Mean Proum)
Solution: Trigger BufFilePre and BufFilePost events for the renamed buffer

and BufAdd for the old name (which is with a new buffer).

version6.txt — 2310

Files: src/ex_cmds.c

Patch 6.0.082
Problem: When swapping screens in an xterm and there is an (error) message

from the vimrc script, the shell prompt is after the message.
Solution: Output a newline when there was output on the alternate screen.

Also when starting the GUI.
Files: src/main.c

Patch 6.0.083
Problem: GTK: When compiled without menu support the buttons in a dialog

don't have any text. (Erik Edelmann)
Solution: Add the text also when GTK_USE_ACCEL isn't defined. And define

GTK_USE_ACCEL also when not using menus.
Files: src/gui_gtk.c

Patch 6.0.084
Problem: UTF-8: a "r" command with an argument that is a keymap for a

character with a composing character can't be repeated with ".".
(Raphael Finkel)

Solution: Add the composing characters to the redo buffer.
Files: src/normal.c

Patch 6.0.085
Problem: When 'mousefocus' is set, using "s" to go to Insert mode and then

moving the mouse pointer to another window stops Insert mode,
while this doesn't happen with "a" or "i". (Robert Webb)

Solution: Reset finish_op before calling edit().
Files: src/normal.c

Patch 6.0.086
Problem: When using "gu" the message says "~ed".
Solution: Make the message say "changed".
Files: src/ops.c

Patch 6.0.087 (lang)
Problem: Message translations are incorrect, which may cause a crash.

(Peter Figura)
The Turkish translations needed more work and the maintainer
didn't have time.

Solution: Fix order of printf arguments. Remove %2$d constructs.
Add "-v" to msgfmt to get a warning for wrong translations.
Don't install the Turkish translations for now.
Update a few more translations.

Files: src/po/Makefile, src/po/af.po, src/po/cs.po, src/po/cs.cp1250.po,
src/po/de.po, src/po/es.po, src/po/fr.po, src/po/it.po,
src/po/ja.po, src/po/ja.sjis.po, src/po/ko.po, src/po/pl.po,
src/po/sk.po, src/po/uk.po, src/po/zh_CN.UTF-8.po,
src/po/zh_CN.cp936.po, src/po/zh_CN.po, src/po/zh_TW.po

Patch 6.0.088
Problem: "." doesn't work after using "rx" in Visual mode. (Charles

Campbell)
Solution: Also store the replacement character in the redo buffer.
Files: src/normal.c

Patch 6.0.089
Problem: In a C file, using "==" to align a line starting with "* " after

a line with "* -" indents one space too few. (Piet Delport)
Solution: Align with the previous line if the comment-start-string matches

version6.txt — 2311

there.
Files: src/misc1.c

Patch 6.0.090
Problem: When a wrapping line does not fit in a window and 'scrolloff' is

bigger than half the window height, moving the cursor left or
right causes the screen to flash badly. (Lubomir Host)

Solution: When there is not enough room to show 'scrolloff' screen lines and
near the end of the line, show the end of the line.

Files: src/move.c

Patch 6.0.091
Problem: Using CTRL-O in Insert mode, while 'virtualedit' is "all" and the

cursor is after the end-of-line, moves the cursor left. (Yegappan
Lakshmanan)

Solution: Keep the cursor in the same position.
Files: src/edit.c

Patch 6.0.092
Problem: The explorer plugin doesn't ignore case of 'suffixes' on

MS-Windows. (Mike Williams)
Solution: Match or ignore case as appropriate for the OS.
Files: runtime/plugin/explorer.vim

Patch 6.0.093
Problem: When the Tcl library couldn't be loaded dynamically, get an error

message when closing a buffer or window. (Muraoka Taro)
Solution: Only free structures if already using the Tcl interpreter.
Files: src/if_tcl.c

Patch 6.0.094
Problem: Athena: When clicking in the horizontal scrollbar Vim crashes.

(Paul Ackersviller)
Solution: Use the thumb size instead of the window pointer of the scrollbar

(which is NULL). (David Harrison)
Also avoid that scrolling goes the wrong way in a narrow window.

Files: src/gui_athena.c

Patch 6.0.095
Problem: Perl: Deleting lines may leave the cursor beyond the end of the

file.
Solution: Check the cursor position after deleting a line. (Serguei)
Files: src/if_perl.xs

Patch 6.0.096
Problem: When ":saveas fname" fails because the file already exists, the

file name is changed anyway and a following ":w" will overwrite
the file. (Eric Carlier)

Solution: Don't change the file name if the file already exists.
Files: src/ex_cmds.c

Patch 6.0.097
Problem: Re-indenting in Insert mode with CTRL-F may cause a crash with a

multibyte encoding.
Solution: Avoid using a character before the start of a line. (Sergey

Vlasov)
Files: src/edit.c

Patch 6.0.098
Problem: GTK: When using Gnome the "Search" and "Search and Replace" dialog

version6.txt — 2312

boxes are not translated.
Solution: Define ENABLE_NLS before including gnome.h. (Eduardo Fernandez)
Files: src/gui_gtk.c, src/gui_gtk_x11.c

Patch 6.0.099
Problem: Cygwin: When running Vi compatible MS-DOS line endings cause

trouble.
Solution: Make the default for 'fileformats' "unix,dos" in Vi compatible

mode. (Michael Schaap)
Files: src/option.h

Patch 6.0.100
Problem: ":badd +0 test%file" causes a crash.
Solution: Take into account that the "+0" is NUL terminated when allocating

room for replacing the "%".
Files: src/ex_docmd.c

Patch 6.0.101
Problem: ":mksession" doesn't restore editing a file that has a '#' or '%'

in its name. (Wolfgang Blankenburg)
Solution: Put a backslash before the '#' and '%'.
Files: src/ex_docmd.c

Patch 6.0.102
Problem: When changing folds the cursor may appear halfway a closed fold.

(Nam SungHyun)
Solution: Set w_cline_folded correctly. (Yasuhiro Matsumoto)
Files: src/move.c

Patch 6.0.103
Problem: When using 'scrollbind' a large value of 'scrolloff' will make the

scroll binding stop near the end of the file. (Coen Engelbarts)
Solution: Don't use 'scrolloff' when limiting the topline for scroll

binding. (Dany StAmant)
Files: src/normal.c

Patch 6.0.104
Problem: Multi-byte: When '$' is in 'cpoptions', typing a double-wide

character that overwrites the left half of an old double-wide
character causes a redraw problem and the cursor stops blinking.

Solution: Clear the right half of the old character. (Yasuhiro Matsumoto)
Files: src/edit.c, src/screen.c

Patch 6.0.105
Problem: Multi-byte: In a window of one column wide, with syntax

highlighting enabled a crash might happen.
Solution: Skip getting the syntax attribute when the character doesn't fit

anyway. (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 6.0.106 (extra)
Problem: Win32: When the printer font is wrong, there is no error message.
Solution: Give an appropriate error message. (Yasuhiro Matsumoto)
Files: src/os_mswin.c

Patch 6.0.107 (extra)
Problem: VisVim: When editing another file, a modified file may be written

unexpectedly and without warning.
Solution: Split the window if a file was modified.
Files: VisVim/Commands.cpp

version6.txt — 2313

Patch 6.0.108
Problem: When using folding could try displaying line zero, resulting in an

error for a NULL pointer.
Solution: Stop decrementing w_topline when the first line of a window is in

a closed fold.
Files: src/window.c

Patch 6.0.109
Problem: XIM: When the input method is enabled, repeating an insertion with

"." disables it. (Marcel Svitalsky)
Solution: Don't store the input method status when a command comes from the

stuff buffer.
Files: src/ui.c

Patch 6.0.110
Problem: Using undo after executing "Ox?jAx?kdd" from a register in

an empty buffer gives an error message. (Gerhard Hochholzer)
Solution: Don't adjust the bottom line number of an undo block when it's

zero. Add a test for this problem.
Files: src/undo.c, src/testdir/test20.in, src/testdir/test20.ok

Patch 6.0.111
Problem: The virtcol() function doesn't take care of 'virtualedit'.
Solution: Add the column offset when needed. (Yegappan Lakshmanan)
Files: src/eval.c

Patch 6.0.112
Problem: The explorer plugin doesn't sort directories with a space or

special character after a directory with a shorter name.
Solution: Ignore the trailing slash when comparing directory names. (Mike

Williams)
Files: runtime/plugin/explorer.vim

Patch 6.0.113
Problem: ":edit ~/fname" doesn't work if $HOME includes a space. Also,

expanding wildcards with the shell may fail. (John Daniel)
Solution: Escape spaces with a backslash when needed.
Files: src/ex_docmd.c, src/misc1.c, src/proto/misc1.pro, src/os_unix.c

Patch 6.0.114
Problem: Using ":p" with fnamemodify() didn't expand "~/" or "~user/" to a

full path. For Win32 the current directory was prepended.
(Michael Geddes)

Solution: Expand the home directory.
Files: src/eval.c

Patch 6.0.115 (extra)
Problem: Win32: When using a dialog with a textfield it cannot scroll the

text.
Solution: Add ES_AUTOHSCROLL to the textfield style. (Pedro Gomes)
Files: src/gui_w32.c

Patch 6.0.116 (extra)
Problem: MS-Windows NT/2000/XP: filewritable() doesn't work correctly for

filesystems that use ACLs.
Solution: Use ACL functions to check if a file is writable. (Mike Williams)
Files: src/eval.c, src/macros.h, src/os_win32.c, src/proto/os_win32.pro

Patch 6.0.117 (extra)

version6.txt — 2314

Problem: Win32: when disabling the menu, "set lines=999" doesn't use all
the available screen space.

Solution: Don't subtract the fixed caption height but the real menu height
from the available screen space. Also: Avoid recursion in
gui_mswin_get_menu_height().

Files: src/gui_w32.c, src/gui_w48.c

Patch 6.0.118
Problem: When $TMPDIR is a relative path, the temp directory is missing a

trailing slash and isn't deleted when Vim exits. (Peter Holm)
Solution: Add the slash after expanding the directory to an absolute path.
Files: src/fileio.c

Patch 6.0.119 (depends on patch 6.0.116)
Problem: VMS: filewritable() doesn't work properly.
Solution: Use the same method as for Unix. (Zoltan Arpadffy)
Files: src/eval.c

Patch 6.0.120
Problem: The conversion to html isn't compatible with XHTML.
Solution: Quote the values. (Jess Thrysoee)
Files: runtime/syntax/2html.vim

Patch 6.0.121 (extra) (depends on patch 6.0.116)
Problem: Win32: After patch 6.0.116 Vim doesn't compile with mingw32.
Solution: Add an #ifdef HAVE_ACL.
Files: src/os_win32.c

Patch 6.0.122 (extra)
Problem: Win16: Same resize problems as patch 6.0.117 fixed for Win32. And

dialog textfield problem from patch 6.0.115.
Solution: Set old_menu_height only when used. Add ES_AUTOHSCROLL flag.

(Vince Negri)
Files: src/gui_w16.c

Patch 6.0.123 (depends on patch 6.0.119)
Problem: Win16: Compilation problems.
Solution: Move "&&" to other lines. (Vince Negri)
Files: src/eval.c

Patch 6.0.124
Problem: When using a ":substitute" command that starts with "\="

(evaluated as an expression), "~" was still replaced with the
previous substitute string.

Solution: Skip the replacement when the substitute string starts with "\=".
Also adjust the documentation about doubling backslashes.

Files: src/ex_cmds.c, runtime/doc/change.txt

Patch 6.0.125 (extra)
Problem: Win32: When using the multi_byte_ime feature pressing the shift

key would be handled as if a character was entered, thus mappings
with a shifted key didn't work. (Charles Campbell)

Solution: Ignore pressing the shift, control and alt keys.
Files: src/os_win32.c

Patch 6.0.126
Problem: The python library was always statically linked.
Solution: Link the python library dynamically. (Matthias Klose)
Files: src/auto/configure, src/configure.in

version6.txt — 2315

Patch 6.0.127
Problem: When using a terminal that swaps screens and the Normal background

color has a different background, using an external command may
cause the color of the wrong screen to be changed. (Mark Waggoner)

Solution: Don't call screen_stop_highlight() in stoptermcap().
Files: src/term.c

Patch 6.0.128
Problem: When moving a vertically split window to the far left or right,

the scrollbars are not adjusted. (Scott E Lee) When 'mousefocus'
is set the mouse pointer wasn't adjusted.

Solution: Adjust the scrollbars and the mouse pointer.
Files: src/window.c

Patch 6.0.129
Problem: When using a very long file name, ":ls" (repeated a few times)

causes a crash. Test with "vim `perl -e 'print "A"x1000'`".
(Tejeda)

Solution: Terminate a string before getting its length in buflist_list().
Files: src/buffer.c

Patch 6.0.130
Problem: When using ":cprev" while the error window is open, and the new

line at the top wraps, the window isn't correctly drawn.
(Yegappan Lakshmanan)

Solution: When redrawing the topline don't scroll twice.
Files: src/screen.c

Patch 6.0.131
Problem: When using bufname() and there are two matches for listed buffers

and one match for an unlisted buffer, the unlisted buffer is used.
(Aric Blumer)

Solution: When there is a match with a listed buffer, don't check for
unlisted buffers.

Files: src/buffer.c

Patch 6.0.132
Problem: When setting 'iminsert' in the vimrc and using an xterm with two

screens the ruler is drawn in the wrong screen. (Igor Goldenberg)
Solution: Only draw the ruler when using the right screen.
Files: src/option.c

Patch 6.0.133
Problem: When opening another buffer while 'keymap' is set and 'iminsert'

is zero, 'iminsert' is set to one unexpectedly. (Igor Goldenberg)
Solution: Don't set 'iminsert' as a side effect of defining a ":lmap"

mapping. Only do that when 'keymap' is set.
Files: src/getchar.c, src/option.c

Patch 6.0.134
Problem: When completing ":set tags=" a path with an embedded space causes

the completion to stop. (Sektor van Skijlen)
Solution: Escape spaces with backslashes, like for ":set path=". Also take

backslashes into account when searching for the start of the path
to complete (e.g., for 'backupdir' and 'cscopeprg').

Files: src/ex_docmd.c, src/ex_getln.c, src/option.c, src/structs.h

Patch 6.0.135
Problem: Menus that are not supposed to do anything used "<Nul>", which

still produced an error beep.

version6.txt — 2316

When CTRL-O is mapped for Insert mode, ":amenu" commands didn't
work in Insert mode.
Menu language falls back to English when $LANG ends in "@euro".

Solution: Use "<Nop>" for a menu item that doesn't do anything, just like
mappings.
Use ":anoremenu" instead of ":amenu".
Ignore "@euro" in the locale name.

Files: runtime/makemenu.vim, runtime/menu.vim, src/menu.c

Patch 6.0.136
Problem: When completing in Insert mode, a mapping could be unexpectedly

applied.
Solution: Don't use mappings when checking for a typed character.
Files: src/edit.c

Patch 6.0.137
Problem: GUI: When using the find or find/replace dialog from Insert mode,

the input mode is stopped.
Solution: Don't use the input method status when the main window doesn't

have focus.
Files: src/ui.c

Patch 6.0.138
Problem: GUI: When using the find or find/replace dialog from Insert mode,

the text is inserted when CTRL-O is mapped. (Andre Pang)
When opening the dialog again, a whole word search isn't
recognized.
When doing "replace all" a whole word search was never done.

Solution: Don't put a search or replace command in the input buffer,
execute it directly.
Recognize "\<" and "\>" after removing "\V".
Add "\<" and "\>" also for "replace all".

Files: src/gui.c

Patch 6.0.139
Problem: When stopping 'wildmenu' completion, the statusline of the

bottom-left vertically split window isn't redrawn. (Yegappan
Lakshmanan)

Solution: Redraw all the bottom statuslines.
Files: src/ex_getln.c, src/proto/screen.pro, src/screen.c

Patch 6.0.140
Problem: Memory allocated for local mappings and abbreviations is leaked

when the buffer is wiped out.
Solution: Clear the local mappings when deleting a buffer.
Files: src/buffer.c, src/getchar.c, src/proto/getchar.pro, src/vim.h

Patch 6.0.141
Problem: When using ":enew" in an empty buffer, some buffer-local things

are not cleared. b:keymap_name is not set.
Solution: Clear user commands and mappings local to the buffer when re-using

the current buffer. Reload the keymap.
Files: src/buffer.c

Patch 6.0.142
Problem: When Python is linked statically, loading dynamic extensions might

fail.
Solution: Add an extra linking flag when needed. (Andrew Rodionoff)
Files: src/configure.in, src/auto/configure

version6.txt — 2317

Patch 6.0.143
Problem: When a syntax item includes a line break in a pattern, the syntax

may not be updated properly when making a change.
Solution: Add the "linebreaks" argument to ":syn sync".
Files: runtime/doc/syntax.txt, src/screen.c, src/structs.h, src/syntax.c

Patch 6.0.144
Problem: After patch 6.0.088 redoing "veU" doesn't work.
Solution: Don't add the "U" to the redo buffer, it will be used as an undo

command.
Files: src/normal.c

Patch 6.0.145
Problem: When Vim can't read any input it might get stuck. When

redirecting stdin and stderr Vim would not read commands from a
file. (Servatius Brandt)

Solution: When repeatedly trying to read a character when it's not possible,
exit Vim. When stdin and stderr are not a tty, still try reading
from them, but don't do a blocking wait.

Files: src/ui.c

Patch 6.0.146
Problem: When 'statusline' contains "%{'-'}" this results in a zero.

(Milan Vancura)
Solution: Don't handle numbers with a minus as a number, they were not

displayed anyway.
Files: src/buffer.c

Patch 6.0.147
Problem: It's not easy to mark a Vim version as being modified. The new

license requires this.
Solution: Add the --modified-by argument to configure and the MODIFIED_BY

define. It's used in the intro screen and the ":version" output.
Files: src/auto/configure, src/configure.in, src/config.h.in,

src/feature.h, src/version.c

Patch 6.0.148
Problem: After "p" in an empty line, `[goes to the second character.

(Kontra Gergely)
Solution: Don't increment the column number in an empty line.
Files: src/ops.c

Patch 6.0.149
Problem: The pattern "\(.\{-}\)*" causes a hang. When using a search

pattern that causes a stack overflow to be detected Vim could
still hang.

Solution: Correctly report "operand could be empty" when using "\{-}".
Check for "out_of_stack" inside loops to avoid a hang.

Files: src/regexp.c

Patch 6.0.150
Problem: When using a multibyte encoding, patch 6.0.148 causes "p" to work

like "P". (Sung-Hyun Nam)
Solution: Compute the byte length of a multibyte character.
Files: src/ops.c

Patch 6.0.151
Problem: Redrawing the status line and ruler can be wrong when it contains

multibyte characters.
Solution: Use character width and byte length correctly. (Yasuhiro Matsumoto)

version6.txt — 2318

Files: src/screen.c

Patch 6.0.152
Problem: strtrans() could hang on an illegal UTF-8 byte sequence.
Solution: Skip over illegal bytes. (Yasuhiro Matsumoto)
Files: src/charset.c

Patch 6.0.153
Problem: When using (illegal) double-byte characters and Vim syntax

highlighting Vim can crash. (Yasuhiro Matsumoto)
Solution: Increase a pointer over a character instead of a byte.
Files: src/regexp.c

Patch 6.0.154
Problem: MS-DOS and MS-Windows: The menu entries for xxd don't work when

there is no xxd in the path.
When converting back from Hex the filetype may remain "xxd" if it
is not detected.

Solution: When xxd is not in the path use the one in the runtime directory,
where the install program has put it.
Clear the 'filetype' option before detecting the new value.

Files: runtime/menu.vim

Patch 6.0.155
Problem: Mac: compilation problems in ui.c after patch 6.0.145. (Axel

Kielhorn)
Solution: Don't call mch_inchar() when NO_CONSOLE is defined.
Files: src/ui.c

Patch 6.0.156
Problem: Starting Vim with the -b argument and two files, ":next" doesn't

set 'binary' in the second file, like Vim 5.7. (Norman Diamond)
Solution: Set the global value for 'binary'.
Files: src/option.c

Patch 6.0.157
Problem: When defining a user command with "-complete=dir" files will also

be expanded. Also, "-complete=mapping" doesn't appear to work.
(Michael Naumann)

Solution: Use the expansion flags defined with the user command.
Handle expanding mappings specifically.

Files: src/ex_docmd.c

Patch 6.0.158
Problem: When getting the warning for a file being changed outside of Vim

and reloading the file, the 'readonly' option is reset, even when
the permissions didn't change. (Marcel Svitalsky)

Solution: Keep 'readonly' set when reloading a file and the permissions
didn't change.

Files: src/fileio.c

Patch 6.0.159
Problem: Wildcard expansion for ":emenu" also shows separators.
Solution: Skip menu separators for ":emenu", ":popup" and ":tearoff".

Also, don't handle ":tmenu" as if it was ":tearoff". And leave
out the alternatives with "&" included.

Files: src/menu.c

Patch 6.0.160
Problem: When compiling with GCC 3.0.2 and using the "-O2" argument, the

version6.txt — 2319

optimizer causes a problem that makes Vim crash.
Solution: Add a configure check to avoid "-O2" for this version of gcc.
Files: src/configure.in, src/auto/configure

Patch 6.0.161 (extra)
Problem: Win32: Bitmaps don't work with signs.
Solution: Make it possible to use bitmaps with signs. (Muraoka Taro)
Files: src/ex_cmds.c, src/feature.h, src/gui_w32.c, src/gui_x11.c,

src/proto/gui_w32.pro, src/proto/gui_x11.pro

Patch 6.0.162
Problem: Client-server: An error message for a wrong expression appears in

the server instead of the client.
Solution: Pass the error message from the server to the client. Also

adjust the example code. (Flemming Madsen)
Files: src/globals.h, src/if_xcmdsrv.c, src/main.c, src/os_mswin.c,

src/proto/if_xcmdsrv.pro, src/proto/os_mswin.pro,
runtime/doc/eval.txt, runtime/tools/xcmdsrv_client.c

Patch 6.0.163
Problem: When using a GUI dialog, a file name is sometimes used like it was

a directory.
Solution: Separate path and file name properly.

For GTK, Motif and Athena concatenate directory and file name for
the default selection.

Files: src/diff.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/gui_athena.c, src/gui_gtk.c, src/gui_motif.c, src/message.c

Patch 6.0.164
Problem: After patch 6.0.135 the menu entries for pasting don't work in

Insert and Visual mode. (Muraoka Taro)
Solution: Add <script> to allow script-local mappings.
Files: runtime/menu.vim

Patch 6.0.165
Problem: Using --remote and executing locally gives unavoidable error

messages.
Solution: Add --remote-silent and --remote-wait-silent to silently execute

locally.
For Win32 there was no error message when a server didn't exist.

Files: src/eval.c, src/if_xcmdsrv.c, src/main.c, src/os_mswin.c,
src/proto/if_xcmdsrv.pro, src/proto/os_mswin.pro

Patch 6.0.166
Problem: GUI: There is no way to avoid dialogs to pop up.
Solution: Add the 'c' flag to 'guioptions': Use console dialogs. (Yegappan

Lakshmanan)
Files: runtime/doc/options.txt, src/option.h, src/message.c

Patch 6.0.167
Problem: When 'fileencodings' is "latin2" some characters in the help files

are displayed wrong.
Solution: Force the 'fileencoding' for the help files to be "latin1".
Files: src/fileio.c

Patch 6.0.168
Problem: ":%s/\n/#/" doesn't replace at an empty line. (Bruce DeVisser)
Solution: Don't skip matches after joining two lines.
Files: src/ex_cmds.c

version6.txt — 2320

Patch 6.0.169
Problem: When run as evim and the GUI can't be started we get stuck in a

terminal without menus in Insert mode.
Solution: Exit when using "evim" and "gvim -y" when the GUI can't be

started.
Files: src/main.c

Patch 6.0.170
Problem: When printing double-width characters the size of tabs after them

is wrong. (Muraoka Taro)
Solution: Correctly compute the column after a double-width character.
Files: src/ex_cmds2.c

Patch 6.0.171
Problem: With 'keymodel' including "startsel", in Insert mode after the end

of a line, shift-Left does not move the cursor. (Steve Hall)
Solution: CTRL-O doesn't move the cursor left, need to do that explicitly.
Files: src/edit.c

Patch 6.0.172
Problem: CTRL-Q doesn't replace CTRL-V after CTRL-X in Insert mode while it

does in most other situations.
Solution: Make CTRL-X CTRL-Q work like CTRL-X CTRL-V in Insert mode.
Files: src/edit.c

Patch 6.0.173
Problem: When using "P" to insert a line break the cursor remains past the

end of the line.
Solution: Check for the cursor being beyond the end of the line.
Files: src/ops.c

Patch 6.0.174
Problem: After using "gd" or "gD" the search direction for "n" may still be

backwards. (Servatius Brandt)
Solution: Reset the search direction to forward.
Files: src/normal.c, src/search.c, src/proto/search.pro

Patch 6.0.175
Problem: ":help /\z(\)" doesn't work. (Thomas Koehler)
Solution: Double the backslashes.
Files: src/ex_cmds.c

Patch 6.0.176
Problem: When killed by a signal autocommands are still triggered as if

nothing happened.
Solution: Add the v:dying variable to allow autocommands to work differently

when a deadly signal has been trapped.
Files: src/eval.c, src/os_unix.c, src/vim.h

Patch 6.0.177
Problem: When 'commentstring' is empty and 'foldmethod' is "marker", "zf"

doesn't work. (Thomas S. Urban)
Solution: Add the marker even when 'commentstring' is empty.
Files: src/fold.c, src/normal.c

Patch 6.0.178
Problem: Uninitialized memory read from xp_backslash field.
Solution: Initialize xp_backslash field properly.
Files: src/eval.c, src/ex_docmd.c, src/ex_getln.c, src/misc1.c, src/tag.c

version6.txt — 2321

Patch 6.0.179
Problem: Win32: When displaying UTF-8 characters may read uninitialized

memory.
Solution: Add utfc_ptr2len_check_len() to avoid reading past the end of a

string.
Files: src/mbyte.c, src/proto/mbyte.pro, src/gui_w32.c

Patch 6.0.180
Problem: Expanding environment variables in a string that ends in a

backslash could go past the end of the string.
Solution: Detect the trailing backslash.
Files: src/misc1.c

Patch 6.0.181
Problem: When using ":cd dir" memory was leaked.
Solution: Free the allocated memory. Also avoid an uninitialized memory

read.
Files: src/misc2.c

Patch 6.0.182
Problem: When using a regexp on multibyte characters, could try to read a

character before the start of the line.
Solution: Don't decrement a pointer to before the start of the line.
Files: src/regexp.c

Patch 6.0.183
Problem: Leaking memory when ":func!" redefines a function.
Solution: Free the function name when it's not used.
Files: src/eval.c

Patch 6.0.184
Problem: Leaking memory when expanding option values.
Solution: Don't always copy the expanded option into allocated memory.
Files: src/option.c

Patch 6.0.185
Problem: Crash in Vim when pasting a selection in another application, on a

64 bit machine.
Solution: Fix the format for an Atom to 32 bits. (Peter Derr)
Files: src/ui.c

Patch 6.0.186
Problem: X11: Three warnings when compiling the client-server code.
Solution: Add a typecast to unsigned char.
Files: src/if_xcmdsrv.c

Patch 6.0.187
Problem: "I" in Visual mode and then "u" reports too many changes. (Andrew

Stryker)
"I" in Visual linewise mode adjusts the indent for no apparent
reason.

Solution: Only save those lines for undo that are changed.
Don't change the indent after inserting in Visual linewise mode.

Files: src/ops.c

Patch 6.0.188
Problem: Win32: After patch 6.0.161 signs defined in the vimrc file don't

work.
Solution: Initialize the sign icons after initializing the GUI. (Vince

Negri)

version6.txt — 2322

Files: src/gui.c, src/gui_x11.c

Patch 6.0.189
Problem: The size of the Visual area isn't always displayed when scrolling

('ruler' off, 'showcmd' on). Also not when using a search
command. (Sylvain Hitier)

Solution: Redisplay the size of the selection after showing the mode.
Files: src/screen.c

Patch 6.0.190
Problem: GUI: when 'mouse' is empty a click with the middle button still

moves the cursor.
Solution: Paste at the cursor position instead of the mouse position.
Files: src/normal.c

Patch 6.0.191
Problem: When no servers are available serverlist() gives an error instead

of returning an empty string. (Hari Krishna)
Solution: Don't give an error message.
Files: src/eval.c

Patch 6.0.192
Problem: When 'virtualedit' is set, "ylj" goes to the wrong column. (Andrew

Nikitin)
Solution: Reset the flag that w_virtcol is valid when moving the cursor back

to the start of the operated area.
Files: src/normal.c

Patch 6.0.193
Problem: When 'virtualedit' is set, col(".") after the end of the line

should return one extra.
Solution: Add one to the column.
Files: src/eval.c

Patch 6.0.194
Problem: "--remote-silent" tries to send a reply to the client, like it was

"--remote-wait".
Solution: Properly check for the argument.
Files: src/main.c

Patch 6.0.195
Problem: When 'virtualedit' is set and a search starts in virtual space

":call search('x')" goes to the wrong position. (Eric Long)
Solution: Reset coladd when finding a match.
Files: src/search.c

Patch 6.0.196
Problem: When 'virtualedit' is set, 'selection' is "exclusive" and visually

selecting part of a tab at the start of a line, "x" joins it with
the previous line. Also, when the selection spans more than one
line the whole tab is deleted.

Solution: Take coladd into account when adjusting for 'selection' being
"exclusive". Also expand a tab into spaces when deleting more
than one line.

Files: src/normal.c, src/ops.c

Patch 6.0.197
Problem: When 'virtualedit' is set and 'selection' is "exclusive", "v$x"

doesn't delete the last character in the line. (Eric Long)
Solution: Don't reset the inclusive flag. (Helmut Stiegler)

version6.txt — 2323

Files: src/normal.c

Patch 6.0.198
Problem: When 'virtualedit' is set and 'showbreak' is not empty, moving the

cursor over the line break doesn't work properly. (Eric Long)
Solution: Make getviscol() and getviscol2() use getvvcol() to obtain the

virtual cursor position. Adjust coladvance() and oneleft() to
skip over the 'showbreak' characters.

Files: src/edit.c, src/misc2.c

Patch 6.0.199
Problem: Multi-byte: could use iconv() after calling iconv_end().

(Yasuhiro Matsumoto)
Solution: Stop converting input and output stream after calling iconv_end().
Files: src/mbyte.c

Patch 6.0.200
Problem: A script that starts with "#!perl" isn't recognized as a Perl

filetype.
Solution: Ignore a missing path in a script header. Also, speed up

recognizing scripts by simplifying the patterns used.
Files: runtime/scripts.vim

Patch 6.0.201
Problem: When scrollbinding and doing a long jump, switching windows jumps

to another position in the file. Scrolling a few lines at a time
is OK. (Johannes Zellner)

Solution: When setting w_topline reset the flag that indicates w_botline is
valid.

Files: src/diff.c

Patch 6.0.202
Problem: The "icon=" argument for the menu command to define a toolbar icon

with a file didn't work for GTK. (Christian J. Robinson)
For Motif and Athena a full path was required.

Solution: Search the icon file using the specified path. Expand environment
variables in the file name.

Files: src/gui_gtk.c, src/gui_x11.c

Patch 6.0.203
Problem: Can change 'fileformat' even though 'modifiable' is off.

(Servatius Brandt)
Solution: Correct check for kind of set command.
Files: src/option.c

Patch 6.0.204
Problem: ":unlet" doesn't work for variables with curly braces. (Thomas

Scott Urban)
Solution: Handle variable names with curly braces properly. (Vince Negri)
Files: src/eval.c

Patch 6.0.205 (extra)
Problem: "gvim -f" still forks when using the batch script to start Vim.
Solution: Add an argument to "start" to use a foreground session (Michael

Geddes)
Files: src/dosinst.c

Patch 6.0.206
Problem: Unix: if expanding a wildcard in a file name results in a

wildcard character and there are more parts in the path with a

version6.txt — 2324

wildcard, it is expanded again.
Windows: ":edit \[abc]" could never edit the file "[abc]".

Solution: Don't expand wildcards in already expanded parts.
Don't remove backslashes used to escape the special meaning of a
wildcard; can edit "[abc]" if '[' is removed from 'isfname'.

Files: src/misc1.c, src/os_unix.c

Patch 6.0.207 (extra)
Problem: Win32: The shortcuts and start menu entries let Vim startup in the

desktop directory, which is not very useful.
Solution: Let shortcuts start Vim in $HOME or $HOMEDIR$HOMEPATH.
Files: src/dosinst.c

Patch 6.0.208
Problem: GUI: When using a keymap and the cursor is not blinking, CTRL-^ in

Insert mode doesn't directly change the cursor color. (Alex
Solow)

Solution: Force a redraw of the cursor after CTRL-^.
Files: src/edit.c

Patch 6.0.209
Problem: GUI GTK: After selecting a 'guifont' with the font dialog there

are redraw problems for multibyte characters.
Solution: Separate the font dialog from setting the new font name to avoid

that "*" is used to find wide and bold fonts.
When redrawing extra characters for the bold trick, take care of
UTF-8 characters.

Files: src/gui.c, src/gui_gtk_x11.c, src/option.c, src/proto/gui.pro,
src/proto/gui_gtk_x11.pro

Patch 6.0.210
Problem: After patch 6.0.167 it's no longer possible to edit a help file in

another encoding than latin1.
Solution: Let the "++enc=" argument overrule the encoding.
Files: src/fileio.c

Patch 6.0.211
Problem: When reading a file fails, the buffer is empty, but it might still

be possible to write it with ":w" later. The original file is
lost then. (Steve Amerige)

Solution: Set the 'readonly' option for the buffer.
Files: src/fileio.c

Patch 6.0.212
Problem: GUI GTK: confirm("foo", "") causes a crash.
Solution: Don't make a non-existing button the default. Add a default "OK"

button if none is specified.
Files: src/eval.c, src/gui_gtk.c

Patch 6.0.213
Problem: When a file name contains unprintable characters, CTRL-G and other

commands don't work well.
Solution: Turn unprintable into printable characters. (Yasuhiro Matsumoto)
Files: src/buffer.c, src/charset.c

Patch 6.0.214
Problem: When there is a buffer without a name, empty entries appear in the

jumplist saved in the viminfo file.
Solution: Don't write jumplist entries without a file name.
Files: src/mark.c

version6.txt — 2325

Patch 6.0.215
Problem: After using "/" from Visual mode the Paste menu and Toolbar

entries don't work. Pasting with the middle mouse doesn't work
and modeless selection doesn't work.

Solution: Use the command line mode menus and use the mouse like in the
command line.

Files: src/gui.c, src/menu.c, src/ui.c

Patch 6.0.216
Problem: After reloading a file, displayed in another window than the

current one, which was changed outside of Vim the part of the file
around the cursor set by autocommands may be displayed, but
jumping back to the original cursor position when entering the
window again.

Solution: Restore the topline of the window.
Files: src/fileio.c

Patch 6.0.217
Problem: When getting help from a help file that was used before, an empty

unlisted buffer remains in the buffer list. (Eric Long)
Solution: Wipe out the buffer used to do the tag jump from.
Files: src/buffer.c, src/ex_cmds.c, src/proto/buffer.pro

Patch 6.0.218
Problem: With explorer plugin: "vim -o filename dirname" doesn't load the

explorer window until entering the window.
Solution: Call s:EditDir() for each window after starting up.
Files: runtime/plugin/explorer.vim

Patch 6.0.219
Problem: ":setlocal" and ":setglobal", without arguments, display terminal

options. (Zdenek Sekera)
Solution: Skip terminal options for these two commands.
Files: src/option.c

Patch 6.0.220
Problem: After patch 6.0.218 get a beep on startup. (Muraoka Taro)
Solution: Don't try going to another window when there isn't one.
Files: runtime/plugin/explorer.vim

Patch 6.0.221
Problem: When using ":bdel" and all other buffers are unloaded the lowest

numbered buffer is jumped to instead of the most recent one. (Dave
Cecil)

Solution: Prefer an unloaded buffer from the jumplist.
Files: src/buffer.c

Patch 6.0.222
Problem: When 'virtualedit' is set and using autoindent, pressing Esc after

starting a new line leaves behind part of the autoindent. (Helmut
Stiegler)

Solution: After deleting the last char in the line adjust the cursor
position in del_bytes().

Files: src/misc1.c, src/ops.c

Patch 6.0.223
Problem: When splitting a window that contains the explorer, hitting CR on

a file name gives error messages.
Solution: Set the window variables after splitting the window.

version6.txt — 2326

Files: runtime/plugin/explorer.vim

Patch 6.0.224
Problem: When 'sidescroll' and 'sidescrolloff' are set in a narrow window

the text may jump left-right and the cursor is displayed in the
wrong position. (Aric Blumer)

Solution: When there is not enough room, compute the left column for the
window to put the cursor in the middle.

Files: src/move.c

Patch 6.0.225
Problem: In Visual mode "gk" gets stuck in a closed fold. (Srinath

Avadhanula)
Solution: Behave differently in a closed fold.
Files: src/normal.c

Patch 6.0.226
Problem: When doing ":recover file" get the ATTENTION prompt.

After recovering the same file five times get a read error or a
crash. (Alex Davis)

Solution: Set the recoverymode flag before setting the file name.
Correct the amount of used memory for the size of block zero.

Files: src/ex_docmd.c

Patch 6.0.227 (extra)
Problem: The RISC OS port has several problems.
Solution: Update the makefile and fix some of the problems. (Andy Wingate)
Files: src/Make_ro.mak, src/os_riscos.c, src/os_riscos.h,

src/proto/os_riscos.pro, src/search.c

Patch 6.0.228
Problem: After putting text in Visual mode the '] mark is not at the end of

the put text.
Undo doesn't work properly when putting a word into a Visual
selection that spans more than one line.

Solution: Correct the '] mark for the deleting the Visually selected text.
#ifdef code that depends on FEAT_VISUAL properly.
Also fix that "d" crossing line boundary puts '[just before
deleted text.
Fix undo by saving all deleted lines at once.

Files: src/ex_docmd.c, src/globals.h, src/normal.c, src/ops.c,
src/structs.h, src/vim.h

Patch 6.0.229
Problem: Multi-byte: With 'm' in 'formatoptions', formatting doesn't break

at a multibyte char followed by an ASCII char, and the other way
around. (Muraoka Taro)
When joining lines a space is inserted between multibyte
characters, which is not always wanted.

Solution: Check for multibyte character before and after the breakpoint.
Don't insert a space before or after a multibyte character when
joining lines and the 'M' flag is in 'formatoptions'. Don't
insert a space between multibyte characters when the 'B' flag is
in 'formatoptions'.

Files: src/edit.c, src/ops.c, src/option.h

Patch 6.0.230
Problem: The ":" used as a motion after an operator is exclusive, but

sometimes it should be inclusive.
Solution: Make the "v" in between an operator and motion toggle

version6.txt — 2327

inclusive/exclusive. (Servatius Brandt)
Files: runtime/doc/motion.txt, src/normal.c

Patch 6.0.231
Problem: "gd" and "gD" don't work when the variable matches in a comment

just above the match to be found. (Servatius Brandt)
Solution: Continue searching in the first column below the comment.
Files: src/normal.c

Patch 6.0.232
Problem: "vim --version" prints on stderr while "vim --help" prints on

stdout.
Solution: Make "vim --version" use stdout.
Files: runtime/doc/starting.txt, src/globals.h, src/main.c, src/message.c

Patch 6.0.233
Problem: "\1\{,8}" in a regexp is not allowed, but it should work, because

there is an upper limit. (Jim Battle)
Solution: Allow using "\{min,max}" after an atom that can be empty if there

is an upper limit.
Files: src/regexp.c

Patch 6.0.234
Problem: It's not easy to set the cursor position without modifying marks.
Solution: Add the cursor() function. (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/eval.c

Patch 6.0.235
Problem: When writing a file and renaming the original file to make the

backup, permissions could change when setting the owner.
Solution: Only set the owner when it's needed and set the permissions again

afterwards.
When 'backupcopy' is "auto" check that the owner and permissions
of a newly created file can be set properly.

Files: src/fileio.c

Patch 6.0.236
Problem: ":edit" without argument should move cursor to line 1 in Vi

compatible mode.
Solution: Add 'g' flag to 'cpoptions'.
Files: runtime/doc/options.txt, src/ex_docmd.c, src/option.h

Patch 6.0.237
Problem: In a C file, using the filetype plugin, re-indenting a comment

with two spaces after the middle "*" doesn't align properly.
Solution: Don't use a middle entry from a start/middle/end to line up with

the start of the comment when the start part doesn't match with
the actual comment start.

Files: src/misc1.c

Patch 6.0.238
Problem: Using a ":substitute" command with a substitute() call in the

substitution expression causes errors. (Srinath Avadhanula)
Solution: Save and restore pointers when doing substitution recursively.
Files: src/regexp.c

Patch 6.0.239
Problem: Using "A" to append after a Visually selected block which is after

the end of the line, spaces are inserted in the wrong line and
other unexpected effects. (Michael Naumann)

version6.txt — 2328

Solution: Don't advance the cursor to the next line.
Files: src/ops.c

Patch 6.0.240
Problem: Win32: building with Python 2.2 doesn't work.
Solution: Add support for Python 2.2 with dynamic linking. (Paul Moore)
Files: src/if_python.c

Patch 6.0.241
Problem: Win32: Expanding the old value of an option that is a path that

starts with a backslash, an extra backslash is inserted.
Solution: Only insert backslashes where needed.

Also handle multibyte characters properly when removing
backslashes.

Files: src/option.c

Patch 6.0.242
Problem: GUI: On a system with an Exceed X server sometimes get a "Bad

Window" error. (Tommi Maekitalo)
Solution: When forking, use a pipe to wait in the parent for the child to

have done the setsid() call.
Files: src/gui.c

Patch 6.0.243
Problem: Unix: "vim --version" outputs a NL before the last line instead of

after it. (Charles Campbell)
Solution: Send the NL to the same output stream as the text.
Files: src/message.c, src/os_unix.c, src/proto/message.pro

Patch 6.0.244
Problem: Multi-byte: Problems with (illegal) UTF-8 characters in menu and

file name (e.g., icon text, status line).
Solution: Correctly handle unprintable characters. Catch illegal UTF-8

characters and replace them with <xx>. Truncating the status line
wasn't done correctly at a multibyte character. (Yasuhiro
Matsumoto)
Added correct_cmdspos() and transchar_byte().

Files: src/buffer.c, src/charset.c, src/ex_getln.c, src/gui.c,
src/message.c, src/screen.c, src/vim.h

Patch 6.0.245
Problem: After using a color scheme, setting the 'background' option might

not work. (Peter Horst)
Solution: Disable the color scheme if it switches 'background' back to the

wrong value.
Files: src/option.c

Patch 6.0.246
Problem: ":echomsg" didn't use the highlighting set by ":echohl". (Gary

Holloway)
Solution: Use the specified attributes for the message. (Yegappan

Lakshmanan)
Files: src/eval.c

Patch 6.0.247
Problem: GTK GUI: Can't use gvim in a kpart widget.
Solution: Add the "--echo-wid" argument to let Vim echo the window ID on

stdout. (Philippe Fremy)
Files: runtime/doc/starting.txt, src/globals.h, src/gui_gtk_x11.c,

src/main.c

version6.txt — 2329

Patch 6.0.248
Problem: When using compressed help files and 'encoding' isn't "latin1",

Vim converts the help file before decompressing. (David Reviejo)
Solution: Don't convert a help file when 'binary' is set.
Files: src/fileio.c

Patch 6.0.249
Problem: "vim -t edit -c 'sta ex_help'" doesn't move cursor to edit().
Solution: Don't set the cursor on the first line for "-c" arguments when

there also is a "-t" argument.
Files: src/main.c

Patch 6.0.250 (extra)
Problem: Macintosh: Various problems when compiling.
Solution: Various fixes, mostly #ifdefs. (Dany St. Amant)
Files: src/gui_mac.c, src/main.c, src/misc2.c, src/os_mac.h,

src/os_mac.pbproj/project.pbxproj, src/os_unix.c

Patch 6.0.251 (extra)
Problem: Macintosh: menu shortcuts are not very clear.
Solution: Show the shortcut with the Mac clover symbol. (raindog)
Files: src/gui_mac.c

Patch 6.0.252
Problem: When a user function was defined with "abort", an error that is

not inside if/endif or while/endwhile doesn't abort the function.
(Servatius Brandt)

Solution: Don't reset did_emsg when the function is to be aborted.
Files: src/ex_docmd.c

Patch 6.0.253
Problem: When 'insertmode' is set, after "<C-O>:edit file" the next <C-O>

doesn't work. (Benji Fisher) <C-L> has the same problem.
Solution: Reset need_start_insertmode once in edit().
Files: src/edit.c

Patch 6.0.254 (extra)
Problem: Borland C++ 5.5: Checking for stack overflow doesn't work

correctly. Matters when using a complicated regexp.
Solution: Remove -N- from Make_bc5.mak. (Yasuhiro Matsumoto)
Files: src/Make_bc5.mak

Patch 6.0.255 (extra) (depends on patch 6.0.116 and 6.0.121)
Problem: Win32: ACL support doesn't work well on Samba drives.
Solution: Add a check for working ACL support. (Mike Williams)
Files: src/os_win32.c

Patch 6.0.256 (extra)
Problem: Win32: ":highlight Comment guifg=asdf" does not give an error

message. (Randall W. Morris) Also for other systems.
Solution: Add gui_get_color() to give one error message for all systems.
Files: src/gui.c, src/gui_amiga.c, src/gui_athena.c, src/gui_motif.c,

src/gui_riscos.c, src/gui_x11.c, src/gui_gtk_x11.c,
src/proto/gui.pro, src/syntax.c

Patch 6.0.257
Problem: Win32: When 'mousefocus' is set and there is a BufRead

autocommand, after the dialog for permissions changed outside of
Vim: 'mousefocus' stops working. (Robert Webb)

version6.txt — 2330

Solution: Reset need_mouse_correct after checking timestamps.
Files: src/fileio.c

Patch 6.0.258
Problem: When 'scrolloff' is 999 and there are folds, the text can jump up

and down when moving the cursor down near the end of the file.
(Lubomir Host)

Solution: When putting the cursor halfway the window start counting lines at
the end of a fold.

Files: src/move.c

Patch 6.0.259
Problem: MS-DOS: after editing the command line the cursor shape may remain

like in Insert mode. (Volker Kiefel)
Solution: Reset the cursor shape after editing the command line.
Files: src/ex_getln.c

Patch 6.0.260
Problem: GUI: May crash while starting up when giving an error message for

missing color. (Servatius Brandt)
Solution: Don't call gui_write() when still starting up. Don't give error

message for empty color name. Don't use 't_vb' while the GUI is
still starting up.

Files: src/fileio.c, src/gui.c, src/misc1.c, src/ui.c

Patch 6.0.261
Problem: nr2char() and char2nr() don't work with multibyte characters.
Solution: Use 'encoding' for these functions. (Yasuhiro Matsumoto)
Files: runtime/doc/eval.txt, src/eval.c

Patch 6.0.262 (extra)
Problem: Win32: IME doesn't work properly. OnImeComposition() isn't used

at all.
Solution: Adjust various things for IME.
Files: src/globals.h, src/gui_w32.c, src/mbyte.c, src/proto/ui.pro,

src/structs.h, src/ui.c

Patch 6.0.263
Problem: GTK: When a dialog is closed by the window manager, Vim hangs.

(Christian J. Robinson)
Solution: Use GTK_WIDGET_DRAWABLE() instead of GTK_WIDGET_VISIBLE().
Files: src/gui_gtk.c, src/gui_gtk_x11.c

Patch 6.0.264
Problem: The amount of virtual memory is used to initialize 'maxmemtot',

which may be much more than the amount of physical memory,
resulting in a lot of swapping.

Solution: Get the amount of physical memory with sysctl(), sysconf() or
sysinfo() when possible.

Files: src/auto/configure, src/configure.in, src/config.h.in,
src/os_unix.c, src/os_unix.h

Patch 6.0.265
Problem: Win32: Using backspace while 'fkmap' is set causes a crash.

(Jamshid Oasjmoha)
Solution: Don't try mapping special keys.
Files: src/farsi.c

Patch 6.0.266
Problem: The rename() function deletes the file if the old and the new name

version6.txt — 2331

are the same. (Volker Kiefel)
Solution: Don't do anything if the names are equal.
Files: src/fileio.c

Patch 6.0.267
Problem: UTF-8: Although 'isprint' says a character is printable,

utf_char2cells() still considers it unprintable.
Solution: Use vim_isprintc() for characters up to 0x100. (Yasuhiro Matsumoto)
Files: src/mbyte.c

Patch 6.0.268 (extra) (depends on patch 6.0.255)
Problem: Win32: ACL check crashes when using forward slash in file name.
Solution: Improve the check for the path in the file name.
Files: src/os_win32.c

Patch 6.0.269
Problem: Unprintable characters in a file name may cause problems when

using the 'statusline' option or when 'buftype' is "nofile".
Solution: call trans_characters() for the resulting statusline. (Yasuhiro

Matsumoto)
Files: src/buffer.c, src/screen.c, src/charset.c

Patch 6.0.270 (depends on patch 6.0.267)
Problem: A tab causes UTF-8 text to be displayed in the wrong position.

(Ron Aaron)
Solution: Correct utf_char2cells() again.
Files: src/mbyte.c

Patch 6.1a.001 (extra)
Problem: 32bit DOS: copying text to the clipboard may cause a crash.

(Jonathan D Johnston)
Solution: Don't copy one byte too much in SetClipboardData().
Files: src/os_msdos.c

Patch 6.1a.002
Problem: GTK: On some configurations, when closing a dialog from the window

manager, Vim hangs.
Solution: Catch the "destroy" signal. (Aric Blumer)
Files: src/gui_gtk.c

Patch 6.1a.003
Problem: Multi-byte: With UTF-8 double-wide char and 'virtualedit' set:

yanking in Visual mode doesn't include the last byte. (Eric Long)
Solution: Don't add a space for a double-wide character.
Files: src/ops.c

Patch 6.1a.004 (extra)
Problem: MINGW: undefined type. (Ron Aaron)
Solution: Make GetCompositionString_inUCS2() static.
Files: src/gui_w32.c, src/gui_w48.c, src/proto/gui_w32.pro

Patch 6.1a.005 (extra)
Problem: Win32: ":hardcopy" doesn't work after ":hardcopy!". (Jonathan

Johnston)
Solution: Don't keep the driver context when using ":hardcopy!". (Vince

Negri)
Files: src/os_mswin.c

Patch 6.1a.006
Problem: multibyte: after setting 'encoding' the window title might be

version6.txt — 2332

wrong.
Solution: Force resetting the title. (Yasuhiro Matsumoto)
Files: src/option.c

Patch 6.1a.007
Problem: Filetype detection for "*.inc" doesn't work.
Solution: Use a ":let" command. (David Schweikert)
Files: runtime/filetype.vim

Patch 6.1a.008 (extra)
Problem: Win32: ACL detection for network shares doesn't work.
Solution: Include the trailing (back)slash in the root path. (Mike Williams)
Files: src/os_win32.c

Patch 6.1a.009
Problem: When using "\@<=" or "\@<!" in a pattern, a "\1" may refer to a ()

part that follows, but it generates an error message.
Solution: Allow a forward reference when there is a following "\@<=" or

"\@<!".
Files: runtime/doc/pattern.txt, src/regexp.c

Patch 6.1a.010
Problem: When using ":help" and opening a new window, the alternate file

isn't set.
Solution: Set the alternate file to the previously edited file.
Files: src/ex_cmds.c

Patch 6.1a.011
Problem: GTK: ":set co=77", change width with the mouse, ":set co=77"

doesn't resize the window. (Darren Hiebert)
Solution: Set the form size after handling a resize event.
Files: src/gui_gtk_x11.c

Patch 6.1a.012
Problem: GTK: The file browser always returns a full path. (Lohner)
Solution: Shorten the file name if possible.
Files: src/gui_gtk.c

Patch 6.1a.013
Problem: When using "=~word" in 'cinkeys' or 'indentkeys', the case of the

last character of the word isn't ignored. (Raul Segura Acevedo)
Solution: Ignore case when checking the last typed character.
Files: src/edit.c

Patch 6.1a.014
Problem: After patch 6.1a.006 can't compile without the title feature.
Solution: Add an #ifdef.
Files: src/option.c

Patch 6.1a.015
Problem: MS-Windows: When expanding a file name that contains a '[' or '{'

an extra backslash is inserted. (Raul Segura Acevedo)
Solution: Avoid adding the backslash.
Files: src/ex_getln.c

Patch 6.1a.016
Problem: Completion after ":language" doesn't include "time". (Raul Segura

Acevedo)
Solution: Add the alternative to the completions.
Files: src/ex_cmds2.c

version6.txt — 2333

Patch 6.1a.017
Problem: Clicking the mouse in the top row of a window where the first line

doesn't fit moves the cursor to the wrong column.
Solution: Add the skipcol also for the top row of a window.
Files: src/ui.c

Patch 6.1a.018
Problem: When 'scrolloff' is one and the window height is one, "gj" can put

the cursor above the window. (Raul Segura Acevedo)
Solution: Don't let skipcol become bigger than the cursor column.
Files: src/move.c

Patch 6.1a.019
Problem: When using a composing character on top of an ASCII character, the

"l" command clears the composing character. Only when 'ruler' and
'showcmd' are off. (Raphael Finkel)

Solution: Don't move the cursor by displaying characters when there are
composing characters.

Files: src/screen.c

Patch 6.1a.020
Problem: GTK: after patch 6.1a.011 resizing with the mouse doesn't always

work well for small sizes. (Adrien Beau)
Solution: Use another way to avoid the problem with ":set co=77".
Files: src/gui_gtk_x11.c

Patch 6.1a.021
Problem: Several Syntax menu entries are wrong or confusing.
Solution: Rephrase and correct the menu entries. (Adrien Beau)
Files: runtime/makemenu.vim, runtime/menu.vim

Patch 6.1a.022
Problem: A tags file might be used twice on case insensitive systems.

(Rick Swanton)
Solution: Don't use the same file name twice in the default for the 'tags'

option. Ignore case when comparing names of already visited
files.

Files: src/misc2.c, src/option.c

Patch 6.1a.023
Problem: When starting the GUI get "C" characters echoed in the terminal.
Solution: Don't try sending a clear-screen command while the GUI is starting

up.
Files: src/screen.c

Patch 6.1a.024
Problem: In other editors CTRL-F is often used for a find dialog.
Solution: In evim use CTRL-F for the find dialog.
Files: runtime/evim.vim

Patch 6.1a.025
Problem: The choices for the fileformat dialog can't be translated.
Solution: Add g:menutrans_fileformat_choices. (Adrien Beau)
Files: runtime/menu.vim

Patch 6.1a.026
Problem: Indenting Java files is wrong with "throws", "extends" and

"implements" clauses.
Solution: Update the Java indent script.

version6.txt — 2334

Files: runtime/indent/java.vim

Patch 6.1a.027
Problem: A few Syntax menu entries missing or incorrect.
Solution: Add and correct the menu entries. (Adrien Beau)

Shorten a few menus to avoid they become too long.
Files: runtime/makemenu.vim, runtime/menu.vim

Patch 6.1a.028
Problem: XIM: problems with feedback and some input methods.
Solution: Use iconv for calculating the cells. Remove the queue for

key_press_event only when text was changed. (Yasuhiro Matsumoto)
Files: src/globals.h, src/mbyte.c, src/screen.c

Patch 6.1a.029
Problem: After patch 6.1a.028 can't compile GTK version with XIM but

without multibyte chars.
Solution: Add an #ifdef. (Aschwin Marsman)
Files: src/mbyte.c

Patch 6.1a.030
Problem: With double-byte encodings toupper() and tolower() may have wrong

results.
Solution: Skip double-byte characters. (Eric Long)
Files: src/eval.c

Patch 6.1a.031
Problem: Accessing the 'balloondelay' variable may cause a crash.
Solution: Make the variable for 'balloondelay' a long. (Olaf Seibert)
Files: src/option.h

Patch 6.1a.032 (extra)
Problem: Some menu files used a wrong encoding name for "scriptencoding".
Solution: Move the translations to a separate file, which is sourced after

setting "scriptencoding".
Also add Czech menu translations in ASCII and update the other
encodings.

Files: runtime/lang/menu_cs_cz.iso_8859-1.vim,
runtime/lang/menu_cs_cz.iso_8859-2.vim,
runtime/lang/menu_czech_czech_republic.1250.vim,
runtime/lang/menu_czech_czech_republic.1252.vim,
runtime/lang/menu_czech_czech_republic.ascii.vim,
runtime/lang/menu_de_de.iso_8859-1.vim,
runtime/lang/menu_de_de.latin1.vim,
runtime/lang/menu_fr_fr.iso_8859-1.vim,
runtime/lang/menu_fr_fr.latin1.vim,
runtime/lang/menu_french_france.1252.vim,
runtime/lang/menu_german_germany.1252.vim,
runtime/lang/menu_ja_jp.euc-jp.vim,
runtime/lang/menu_ja_jp.utf-8.vim,
runtime/lang/menu_japanese_japan.932.vim

Patch 6.1a.033
Problem: XIM: doesn't reset input context.
Solution: call xim_reset() with im_set_active(FALSE). (Takuhiro Nishioka)
Files: src/mbyte.c

Patch 6.1a.034 (extra)
Problem: Win32: The ACL checks for a readonly file still don't work well.
Solution: Remove the ACL checks, go back to how it worked in Vim 6.0.

version6.txt — 2335

Files: src/os_win32.c

Patch 6.1a.035
Problem: multibyte: When using ":sh" in the GUI, typed and displayed

multibyte characters are not handled correctly.
Solution: Deal with multibyte characters to and from the shell. (Yasuhiro

Matsumoto) Also handle UTF-8 composing characters.
Files: src/os_unix.c

Patch 6.1a.036
Problem: GTK: the save-yourself event was not handled.
Solution: Catch the save-yourself event and preserve swap files. (Neil Bird)
Files: src/gui_gtk_x11.c

Patch 6.1a.037
Problem: The MS-Windows key mapping doesn't include CTRL-S for saving.

(Vlad Sandrini)
Solution: Map CTRL-S to ":update".
Files: runtime/mswin.vim

Patch 6.1a.038
Problem: Solaris: Including both sys/sysctl.h and sys/sysinfo.h doesn't

work. (Antonio Colombo)
Solution: Don't include sys/sysinfo.h when not calling sysinfo().
Files: src/os_unix.c

Patch 6.1a.039
Problem: Not all visual basic files are recognized.
Solution: Add checks to catch *.ctl files. (Raul Segura Acevedo)
Files: runtime/filetype.vim

Patch 6.1a.040
Problem: A *.pl file is recognized as Perl, but it could be a prolog file.
Solution: Check the first non-empty line. (Kontra Gergely)
Files: runtime/filetype.vim

Patch 6.1a.041
Problem: When pressing the left mouse button in the command line and them

moving the mouse upwards, nearly all the text is selected.
Solution: Don't try extending a modeless selection when there isn't one.
Files: src/ui.c

Patch 6.1a.042
Problem: When merging files, ":diffput" and ":diffget" are used a lot, but

they require a lot of typing.
Solution: Add "dp" for ":diffput" and "do" for ":diffget".
Files: runtime/doc/diff.txt, src/diff.c, src/normal.c, src/proto/diff.pro

Patch 6.1b.001 (extra)
Problem: Checking for wildcards in a path does not handle multibyte

characters with a trail byte which is a wildcard.
Solution: Handle multibyte characters correctly. (Muraoka Taro)
Files: src/os_amiga.c, src/os_mac.c, src/os_msdos.c, src/os_mswin.c,

src/os_unix.c

Patch 6.1b.002
Problem: A regexp that ends in "\{" is not flagged as an error. May cause

a stack overflow when 'incsearch' is set. (Gerhard Hochholzer)
Solution: Handle a missing "}" as an error.

version6.txt — 2336

Files: src/regexp.c

Patch 6.1b.003 (extra)
Problem: The RISC OS GUI doesn't compile.
Solution: Include changes since Vim 5.7. (Andy Wingate)
Files: src/Make_ro.mak, src/gui_riscos.c, src/os_riscos.c,

src/os_riscos.h, src/proto/gui_riscos.pro

Patch 6.1b.004
Problem: col("'>") returns a negative number for linewise selection. (Neil

Bird)
Solution: Don't add one to MAXCOL.
Files: src/eval.c

Patch 6.1b.005
Problem: Using a search pattern that causes an out-of-stack error while

'hlsearch' is set keeps giving the hit-Enter prompt.
A search pattern that takes a long time delays typing when
'incsearch' is set.

Solution: Stop 'hlsearch' highlighting when the regexp causes an error.
Stop searching for 'incsearch' when a character is typed.

Files: src/globals.h, src/message.c, src/screen.c, src/search.c,
src/vim.h

Patch 6.1b.006
Problem: When entering a composing character on the command line with

CTRL-V, the text isn't redrawn correctly.
Solution: Redraw the text under and after the cursor.
Files: src/ex_getln.c

Patch 6.1b.007
Problem: When the cursor is in the white space between two sentences, "dis"

deletes the first character of the following sentence, "das"
deletes a space after the sentence.

Solution: Backup the cursor one character in these situations.
Files: src/search.c

Patch 6.1b.008
Problem: *.xsl files are not recognized as xslt but xml.

Monk files are not recognized.
Solution: Delete the duplicate line for *.xsl. (Johannes Zellner)

Recognize monk files.
Files: runtime/filetype.vim

Patch 6.1b.009
Problem: Can't always compile small features and then adding eval feature,

"sandbox" is undefined. (Axel Kielhorn)
Solution: Always define "sandbox" when the eval feature is used.
Files: src/globals.h

Patch 6.1b.010 (extra)
Problem: When compiling gvimext.cpp with MSVC 4.2 get a number of warnings.
Solution: Change "true" to "TRUE". (Walter Briscoe)
Files: GvimExt/gvimext.cpp

Patch 6.1b.011
Problem: When using a very long string for confirm(), can't quit the

displaying at the more prompt. (Hari Krishna Dara)
Solution: Jump to the end of the message to show the choices.
Files: src/message.c

version6.txt — 2337

Patch 6.1b.012
Problem: Multi-byte: When 'showbreak' is set and a double-wide character

doesn't fit at the right window edge the cursor gets stuck there.
Using cursor-left gets stuck when 'virtualedit' is set. (Eric
Long)

Solution: Fix the way the extra ">" character is counted when 'showbreak' is
set. Don't correct cursor for virtual editing on a double-wide
character.

Files: src/charset.c, src/edit.c

Patch 6.1b.013
Problem: A user command that partly matches with a buffer-local user

command and matches full with a global user command unnecessarily
gives an 'ambiguous command' error.

Solution: Find the full global match even after a partly local match.
Files: src/ex_docmd.c

Patch 6.1b.014
Problem: EBCDIC: switching mouse events off causes garbage on screen.

Positioning the cursor in the GUI causes garbage.
Solution: Insert an ESC in the terminal code. (Ralf Schandl)

Use "\b" instead of "\010" for KS_LE.
Files: src/os_unix.c, src/term.c

Patch 6.1b.015
Problem: Vimtutor has a typo. Get a warning for "tempfile" if it

doesn't exist.
Solution: Move a quote to the end of a line. (Max Ischenko)

Use "mktemp" first, more systems have it.
Files: src/vimtutor

Patch 6.1b.016
Problem: GTK: loading a fontset that works partly, Vim might hang or crash.
Solution: Avoid that char_width becomes zero. (Yasuhiro Matsumoto)
Files: src/gui_gtk_x11.c

Patch 6.1b.017
Problem: GUI: When using ":shell" and there is a beep, nothing happens.
Solution: Call vim_beep() to produce the beep from the shell. (Yasuhiro

Matsumoto)
Files: src/message.c

Patch 6.1b.018 (depends on 6.1b.006)
Problem: When entering the encryption key, special keys may still reveal

the typed characters.
Solution: Make sure stars are used or nothing is shown in all cases.
Files: src/digraph.c, src/getchar.c, src/ex_getln.c

Patch 6.1b.019 (depends on 6.1b.005)
Problem: A search pattern that takes a long time slows down typing when

'incsearch' is set.
Solution: Pass SEARCH_PEEK to dosearch().
Files: src/ex_getln.c

Patch 6.1b.020
Problem: When using the matchit plugin, "%" finds a match on the "end" of a

":syntax region" command in Vim scripts.
Solution: Skip over ":syntax region" commands by setting b:match_skip.
Files: runtime/ftplugin/vim.vim

version6.txt — 2338

Patch 6.1b.021
Problem: when 'mousefocus' is set, CTRL-W CTRL-] sometimes doesn't warp the

pointer to the new window. (Robert Webb)
Solution: Don't reset need_mouse_correct when checking the timestamp of a

file.
Files: src/fileio.c

Patch 6.1b.022
Problem: With lots of folds "j" does not obey 'scrolloff' properly.

(Srinath Avadhanula)
Solution: Go to end of the fold before counting context lines.
Files: src/move.c

Patch 6.1b.023
Problem: On MS-Windows system() may cause checking timestamps, because Vim

loses and gains input focus, while this doesn't happen on Unix.
Solution: Don't check timestamps while system() is busy.
Files: src/ex_cmds2.c, src/fileio.c, src/globals.h, src/misc1.c

Patch 6.1b.024 (extra)
Problem: Gettext 0.11 complains that "sjis" is not a standard name.
Solution: Use "cp932" instead.
Files: src/po/sjiscorr.c

Patch 6.1b.025 (extra)
Problem: Win32: When closing gvim while it is minimized and has a changed

file, the file-changed dialog pops up in a corner of the screen.
Solution: Put the dialog in the middle of the screen.
Files: src/gui_w48.c

Patch 6.1b.026
Problem: When 'diffopt' contains 'iwhite' but not 'icase': differences in

case are not highlighted properly. (Gerhard Hochholzer)
Solution: Don't ignore case when ignoring white space differences.
Files: src/diff.c

Patch 6.1b.027
Problem: "vim --remote +" may cause a crash.
Solution: Check for missing file name argument. (Martin Kahlert)
Files: src/main.c

Patch 6.1b.028 (extra)
Problem: Win16: Can't compile after patch 6.1b.025.
Solution: Add code specifically for Win16. (Vince Negri)
Files: src/gui_w48.c

Patch 6.1b.029
Problem: Win32: When a directory on an NTFS partition is read/execute (no

delete,modify,write) and the file has modify rights, trying to
write the file deletes it. Making the file read/write/execute
(not delete) solves it. (Mark Canup)

Solution: Use the Unix code to check for a writable directory. If not, then
make a backup copy and overwrite the file.

Files: src/fileio.c

Patch 6.1b.030 (extra)
Problem: Mac: small mistake in the build script and prototypes.
Solution: Fix the build script and add the prototypes. (Axel Kielhorn)
Files: src/os_mac.build, src/gui_mac.c

version6.txt — 2339

Patch 6.1b.031 (extra)
Problem: Win32 GUI: ":set guifont=*" doesn't set 'guifont' to the resulting

font name. (Vlad Sandrini)
Solution: Put the code back in gui_mch_init_font() to form the font name out

of the logfont.
Files: src/gui_w48.c

Patch 6.1b.032
Problem: Athena: Setting a color scheme before the GUI has started causes a

crash. (Todd Blumer)
Solution: Don't try using color names that haven't been set yet.
Files: src/gui_athena.c

Patch 6.1b.033
Problem: When using a count after a ":s" command may get ml_get errors.

(Dietmar Lang)
Solution: Check that the resulting range does not go past the end of the

buffer.
Files: src/ex_cmds.c

Patch 6.1b.034
Problem: After sourcing mswin.vim, when using <C-S-Right> after

auto-indenting and then , get warning for allocating
ridiculous amount of memory. (Dave Delgreco)

Solution: Adjust the start of the Visual area when deleting the auto-indent.
Files: src/edit.c

Patch 6.1b.035
Problem: When using evim, dropping a file on Vim and then double clicking

on a word, it is changed to "i". (Merlin Hansen)
Solution: Reset need_start_insertmode after editing the file.
Files: src/ex_docmd.c

==
VERSION 6.2 version-6.2

This section is about improvements made between version 6.1 and 6.2.

This is mainly a bug-fix release. There are also a few new features.

Main new features:
- Support for GTK 2. (Daniel Elstner)
- Support for editing Arabic text. (Nadim Shaikli & Isam Bayazidi)
- ":try" command and exception handling. (Servatius Brandt)
- Support for the neXtaw GUI toolkit (mostly like Athena). (Alexey Froloff)
- Cscope support for Win32. (Khorev Sergey)
- Support for PostScript printing in various 8-bit encodings. (Mike Williams)

Changed changed-6.2

Removed the scheme indent file, the internal Lisp indenting works well now.

Moved the GvimEXt, OleVim and VisVim directories into the "src" directory.
This is more consistent with how xxd is handled.

The VisVim.dll file is installed in the top directory, next to gvimext.dll,

version6.txt — 2340

instead of in a subdirectory "VisVim". Fixes that NSIS was uninstalling it
from the wrong directory.

Removed the art indent file, it didn't do anything.

submatch() returned line breaks with CR instead of LF.

Changed the Win32 Makefiles to become more uniform and compile gvimext.dll.
(Dan Sharp)

'cindent': Align a "//" comment with a "//" comment in a previous line.
(Helmut Stiegler)

Previously only for xterm-like terminals parent widgets were followed to find
the title and icon label. Now do this for all terminal emulators.

Made it possible to recognize backslashes for "%" matching. The 'M' flag in
'cpoptions' disables it. (Haakon Riiser)

Removed the Make_tcc.mak makefile for Turbo C. It didn't work and we probably
can't make it work (the compiler runs out of memory).

Even though the documentation refers to keywords, "[CTRL-D" was using
'isident' to find matches. Changed it to use 'iskeyword'. Also applies to
other commands that search for defined words in included files such as
":dsearch", "[D" and "[d".

Made 'keywordprg' global-local. (Christian Robinson)

Enabled the Netbeans interface by default. Reversed the configure argument
from "--enable-netbeans" to "--disable-netbeans".

Added added-6.2

New options:
'arabic'
'arabicshape'
'ambiwidth'
'autochdir'
'casemap'
'copyindent'
'cscopequickfix'
'preserveindent'
'printencoding'
'rightleftcmd'
'termbidi'
'toolbariconsize'
'winfixheight'

New keymaps:
Serbian (Aleksandar Veselinovic)
Chinese Pinyin (Fredrik Roubert)
Esperanto (Antoine J. Mechelynck)

New syntax files:
Valgrind (Roger Luethi)
Smarty template (Manfred Stienstra)
MySQL (Kenneth Pronovici)

version6.txt — 2341

RockLinux package description (Piotr Esden-Tempski)
MMIX (Dirk Huesken)
gkrellmrc (David Necas)
Tilde (Tobias Rundtrom)
Logtalk (Paulo Moura)
PLP (Juerd Waalboer)
fvwm2m4 (David Necas)
IPfilter (Hendrik Scholz)
fstab (Radu Dineiu)
Quake (Nikolai Weibull)
Occam (Mario Schweigler)
lpc (Shizhu Pan)
Exim conf (David Necas)
EDIF (Artem Zankovich)
.cvsrc (Nikolai Weibull)
.fetchmailrc (Nikolai Weibull)
GNU gpg (Nikolai Weibull)
Grub (Nikolai Weibull)
Modconf (Nikolai Weibull)
RCS (Dmitry Vasiliev)
Art (Dorai Sitaram)
Renderman Interface Bytestream (Andrew J Bromage)
Mailcap (Doug Kearns)
Subversion commit file (Dmitry Vasiliev)
Microsoft IDL (Vadim Zeitlin)
WildPackets EtherPeek Decoder (Christopher Shinn)
Spyce (Rimon Barr)
Resolv.conf (Radu Dineiu)
A65 (Clemens Kirchgatterer)
sshconfig and sshdconfig (David Necas)
Cheetah and HTMLCheetah (Max Ischenko)
Packet filter (Camiel Dobbelaar)

New indent files:
Eiffel (David Clarke)
Tilde (Tobias Rundtrom)
Occam (Mario Schweigler)
Art (Dorai Sitaram)
PHP (Miles Lott)
Dylan (Brent Fulgham)

New tutor translations:
Slovak (Lubos Celko)
Greek (Christos Kontas)
German (Joachim Hofmann)
Norwegian (Øyvind Holm)

New filetype plugins:
Occam (Mario Schweigler)
Art (Dorai Sitaram)
ant.vim, aspvbs.vim, config.vim, csc.vim, csh.vim, dtd.vim, html.vim,
jsp.vim, pascal.vim, php.vim, sgml.vim, sh.vim, svg.vim, tcsh.vim,
xhtml.vim, xml.vim, xsd.vim. (Dan Sharp)

New compiler plugins:
Checkstyle (Doug Kearns)
g77 (Ralf Wildenhues)
fortran (Johann-Guenter Simon)
Xmllint (Doug Kearns)
Ruby (Tim Hammerquist)

version6.txt — 2342

Modelsim vcom (Paul Baleme)

New menu translations:
Brazilian (José de Paula)
British (Mike Williams)
Korean in UTF-8. (Nam SungHyun)
Norwegian (Øyvind Holm)
Serbian (Aleksandar Jelenak)

New message translation for Norwegian. (Øyvind Holm)

New color scheme:
desert (Hans Fugal)

Arabic specific features. 'arabicshape', 'termbidi', 'arabic' and
'rightleftcmd' options. (Nadim Shaikli & Isam Bayazidi)

Support for neXtaw GUI toolkit, mostly like Athena. (Alexey Froloff)

Win32: cscope support. (Khorev Sergey)

VMS: various improvements to documentation and makefiles. (Zoltan Arpadffy)

Added "x" key to the explorer plugin: execute the default action. (Yasuhiro
Matsumoto)

Compile gvimext.dll with MingW. (Rene de Zwart)

Add the "tohtml.vim" plugin. It defines the ":TOhtml" user command, an easy
way to convert text to HTML.

Added ":try" / ":catch" / ":finally" / ":endtry" commands. Add E999 numbers
to all error messages, so that they can be caught by the number.
(Servatius Brandt)
Moved part of ex_docmd.c to the new ex_eval.c source file.

Include support for GTK+ 2.2.x (Daniel Elstner)
Adds the "~" register: drag & drop text.
Adds the 'toolbariconsize' option.
Add -Dalloca when running lint to work around a problem with alloca()
prototype.

When selecting an item in the error window to jump to, take some effort to
find an ordinary window to show the file in (not a preview window).

Support for PostScript printing of various 8-bit encodings. (Mike Williams)

inputdialog() accepts a third argument that is used when the dialog is
cancelled. Makes it possible to see a difference between cancelling and
entering nothing.

Included Aap recipes. Can be used to update Vim to the latest version,
building and installing.

"/" option in 'cinoptions': extra indent for comment lines. (Helmut Stiegler)

Vim variable "v:register" and functions setreg(), getreg() and getregtype().
(Michael Geddes)

"v" flag in 'cpoptions': Leave text on screen with backspace in Insert mode.

version6.txt — 2343

(Phillip Vandry)

Dosinst.exe also finds gvimext.dll in the "GvimExt" directory. Useful when
running install in the "src" directory for testing.

Support tag files that were sorted with case ignored. (Flemming Madsen)

When completing a wildcard in a leading path element, as in "../*/Makefile",
only the last part ("Makefile") was listed. Support custom defined
command line completion. (Flemming Madsen)

Also recognize "rxvt" as an xterm-like terminal. (Tomas Styblo)

Proper X11 session management. Fixes that the WM_SAVE_YOURSELF event was not
used by popular desktops. (Neil Bird)
Not used for Gnome 2, it has its own handling.

Support BOR, DEBUG and SPAWNO arguments for the Borland 3 Makefile. (Walter
Briscoe)

Support page breaks for printing. Adds the "formfeed" field in
'printoptions'. (Mike Williams)

Mac OSX: multi-language support: iconv and gettext. (Muraoka Taro, Axel
Kielhorn)

"\Z" flag in patterns: ignore differences in combining characters. (Ron Aaron)

Added 'preserveindent' and 'copyindent' options. They use existing white
space characters instead of using Tabs as much as possible. (Chris Leishman)

Updated Unicode tables to Unicode 4.0. (Raphael Finkel)

Support for the mouse wheel in rxvt. (AIDA Shinra)

Win32: Added ":8" file modifier to get short filename. Test50 tests the ":8"
expansion on Win32 systems. (Michael Geddes)

'cscopequickfix' option: Open quickfix window for Cscope commands. Also
cleanup the code for giving messages. (Khorev Sergey)

GUI: Support more than 222 columns for mouse positions.

":stopinsert" command: Don't return to Insert mode.

"interrupt" command for debug mode. Useful for simulating CTRL-C. (Servatius
Brandt)

Fixed fixed-6.2

Removed a few unused #defines from config.h.in, os_os2_cfg.h and os_vms_conf.h.

The Vim icons in PNG format didn't have a transparent background. (Greg
Roelofs)

Fixed a large number of spelling mistakes in the docs. (Adri Verhoef)

The #defines for prototype generation were causing trouble. Changed them to

version6.txt — 2344

typedefs.

A new version of libintl.h uses __asm__, which confuses cproto. Define a
dummy __asm__ macro.

When 'virtualedit' is set can't move to halfway an unprintable character.
Cripples CTRL-V selection. (Taro Muraoka)
Allow moving to halfway an unprintable character. Don't let getvvcol() change
the pos->coladd argument.

When a tab wraps to the next line, 'listchars' is set and 'foldcolumn' is
non-zero, only one character of the foldcolumn is highlighted. (Muraoka Taro)

When using ":catch" without an argument Vim crashes. (Yasuhiro Matsumoto)
When no argument given use the ".*" pattern.

Win32: When gvim.exe is started from a shortcut with the window style property
set to maximize Vim doesn't start with a maximized window. (Yasuhiro
Matsumoto) Open the window with the default size and don't call ShowWindow()
again when it's already visible. (Helmut Stiegler)

gui_gtk.c used MAX, but it's undefined to avoid a conflict with system header
files.

Win32: When closing a window from a mapping some pixels remain on the
statusline. (Yasuhiro Matsumoto)

A column number in an errorformat that goes beyond the end of the line may
cause a crash.

":throw 'test'" crashes Vim. (Yasuhiro Matsumoto)

The file selector's scrollbar colors are not set after doing a ":hi Scrollbar
guifg=color". And the file selector's colors are not changed by the
colorscheme command. (David Harrison)

Motif: When compiling with FEAT_FOOTER defined, the text area gets a few
pixels extra space on the right. Remove the special case in
gui_get_base_width(). (David Harrison)

Using CTRL-R CTRL-P in Insert mode puts the '] mark in the wrong position.
(Helmut Stiegler)

When 'formatoptions' includes "awct" a non-comment wasn't auto-formatted.

Using a "--cmd" argument more than 10 times caused a crash.

DEC style mouse support didn't work if the page field is not empty.
(Uribarri)

"vim -l one two" did only set 'lisp' in the first file. Vi does it for every
file.

":set tw<" didn't work. Was checking for '^' instead of '<'.

In ":hardcopy > %.ps" the "%" was not expanded to the current filename.

Made ":redraw" also update the Visual area.

When a not implemented command, such as ":perl", has wrong arguments the less

version6.txt — 2345

important error was reported, giving the user the idea the command could work.

On non-Unix systems autocommands for writing did not attempt a match with the
short file name, causing a pattern like "a/b" to fail.

VMS: e_screenmode was not defined and a few other fixes for VMS. (Zoltan
Arpadffy)

redraw_msg() depended on FEAT_ARABIC instead of FEAT_RIGHTLEFT. (Walter
Briscoe)

Various changes for the PC Makefiles. (Walter Briscoe)

Use _truename() instead of our own code to expand a file name into a full
path. (Walter Briscoe)

Error in filetype check for /etc/modutils. (Lubomir Host)

Cscope interface: allocated a buffer too small.

Win16: remove a trailing backslash from a path when obtaining the permission
flags. (Vince Negri)

When searching for tags with case ignored Vim could hang.

When searching directories with a stopdir could get a crash. Did not
re-allocate enough memory. (Vince Negri)

A user command may cause a crash. Don't use the command index when it's
negative. (Vince Negri)

putenv() didn't work for MingW and Cygwin. (Dan Sharp)

Many functions were common between os_msdos.c and os_win16.c. Use os_msdos.c
for compiling the Win16 version and remove the functions from os_win16.c.
(Vince Negri)

For terminals that behave like an xterm but didn't have a name that is
recognized, the window title would not always be set.

When syntax highlighting is off ":hardcopy" could still attempt printing
colors.

Crash when using ":catch" without an argument. (Servatius Brandt)

Win32: ":n #" doubled the backslashes.

Fixed Arabic shaping for the command line. (Nadim Shaikli)

Avoid splitting up a string displayed on the command line into individual
characters, it breaks Arabic shaping.

Updated Cygwin and MingW makefiles to use more dependencies. (Dan Sharp)

2html.vim didn't work with 'nomagic' set.

When a local argument list is used and doing ":only" Vim could crash later.
(Muraoka Taro)

When using "%P" in 'statusline' and the fillchar is "-", a percentage of 3%

version6.txt — 2346

could result in "-3%". Also avoid changing a space inside a filename to the
fill character.

MSwin: Handling of backslashes and double quotes for command line arguments
was not like what other applications do. (Walter Briscoe)

Test32 sometimes didn't work, because test11.out was written as TEST11.OUT.

Avoid pointer conversions warnings for Borland C 5.5 in dosinst.c and
uninstal.c.

More improvements for Make_bc3.mak file. (Walter Briscoe)

When ":syn sync linebreaks=1" is used, editing the first line caused a redraw
of the whole screen.

Making translated messages didn't work, if_perl.xs wasn't found. (Vlad
Sandrini)

Motif and Athena: moving Vim to the foreground didn't uniconify it. Use
XMapRaised() instead of XRaiseWindow(). (Srikanth Sankaran)

When using ":ptag" in a window where 'scrollbind' is set the preview window
would also have 'scrollbind' set. Also reset 'foldcolumn' and 'diff'.

Various commands that split a window took over 'scrollbind', which is hardly
ever desired. Esp. for "q:" and ":copen". Mostly reset 'scrollbind' when
splitting a window.

When 'shellslash' is set in the vimrc file the first entry of ":scriptnames"
would still have backslashes. Entries in the quickfix list could also have
wrong (back)slashes.

Win32: printer dialog texts were not translated. (Yasuhiro Matsumoto)

When using a multibyte character with a K_SPECIAL byte or a special key code
with "--remote-send" the received byte sequence was mangled. Put it in the
typeahead buffer instead of the input buffer.

Win32: The cursor position was incorrect after changing cursor shape.
(Yasuhiro Matsumoto).

Win32: When 'encoding' is not the current codepage the title could not be set
to non-ascii characters.

"vim -d scp://machine/file1 scp://machine/file2" did not work, there was only
one window. Fixed the netrw plugin not to wipe out the buffer if it is
displayed in other windows.

"/$" caused "e" in last column of screen to disappear, a highlighted blank was
displayed instead.

":s/ *\ze\n//e" removed the line break and introduced arbitrary text. Was
using the line count including what matched after the "\ze".

Using the "c" flag with ":s" changed the behavior when a line break is
replaced and "\@<=" is used. Without "c" a following match was not found.

":%s/\vA@<=\nB@=//gce" got stuck on "A\nB" when entering "n".

version6.txt — 2347

VMS: add HAVE_STRFTIME in the config file. (Zoltan Arpadffy)

When a delete prompts if a delete should continue when yanking is not
possible, restore msg_silent afterwards.

":sign" did not complain about a missing argument.

When adding or deleting a sign 'hlsearch' highlighting could disappear.
Use the generic functions for updating signs.

On MS-Windows NT, 2K and XP don't use command.com but cmd.exe for testing.
Makes the tests work on more systems.

In the DOS tests don't create "/tmp" to avoid an error.

Mac classic: Problems with reading files with CR vs CR/LF. Rely on the
library version of fgets() to work correctly for Metrowerks 2.2. (Axel
Kielhorn)

When typing a password a "*" was shown for each byte instead of for each
character. Added multibyte handling to displaying the stars. (Yasuhiro
Matsumoto)

When using Perl 5.6 accessing $curbuf doesn't work. Add an #ifdef to use
different code for 5.6 and 5.8. (Dan Sharp)

MingW and Cygwin: Don't strip the debug executable. (Dan Sharp)

An assignment to a variable with curlies that includes "==" doesn't work.
Skip over the curlies before searching for an "=". (Vince Negri)

When cancelling the selection of alternate matching tags the tag stack index
could be advanced too far, resulting in an error message when using CTRL-T.

Patch 6.1.001
Problem: When formatting UTF-8 text it might be wrapped at a space that is

followed by a composing character. (Raphael Finkel)
Also correct a display error for removing a composing char on top
of a space.

Solution: Check for a composing character on a space.
Files: src/edit.c, src/misc1.c, src/screen.c

Patch 6.1.002 (extra)
Problem: Win32: after a ":popup" command the mouse pointer stays hidden.
Solution: Unhide the mouse pointer before showing the menu.
Files: src/gui_w48.c

Patch 6.1.003
Problem: When 'laststatus' is zero and there is a vertical split, the

vertical separator is drawn in the command line. (Srikant
Sankaran)

Solution: Don't draw the vertical separator where there is no statusline.
Files: src/screen.c

Patch 6.1.004
Problem: Unicode 3.2 changes width and composing of a few characters.

(Markus Kuhn)
Solution: Adjust the Unicode functions for the character width and composing

characters.

version6.txt — 2348

Files: src/mbyte.c

Patch 6.1.005
Problem: When using more than 50 items in 'statusline' Vim might crash.

(Steve Hall)
Solution: Increment itemcnt in check_stl_option(). (Flemming Madsen)
Files: src/option.c

Patch 6.1.006
Problem: When using "P" in Visual mode to put linewise selected text, the

wrong text is deleted. (Jakub Turski)
Solution: Put the text before the Visual area and correct the text to be

deleted for the inserted lines.
Also fix that "p" of linewise text in Visual block mode doesn't
work correctly.

Files: src/normal.c, src/ops.c

Patch 6.1.007
Problem: Using ":filetype plugin off" when filetype plugins were never

enabled causes an error message. (Yiu Wing)
Solution: Use ":silent!" to avoid the error message.
Files: runtime/ftplugof.vim

Patch 6.1.008
Problem: The "%" command doesn't ignore \" inside a string, it's seen as

the end of the string. (Ken Clark)
Solution: Skip a double quote preceded by an odd number of backslashes.
Files: src/search.c

Patch 6.1.009
Problem: Vim crashes when using a huge number for the maxwid value in a

statusline. (Robert M. Nowotniak)
Solution: Check for an overflow that makes maxwid negative.
Files: src/buffer.c

Patch 6.1.010
Problem: Searching backwards for a question mark with "?\?" doesn't work.

(Alan Isaac) Same problem in ":s?\??" and ":g?\??".
Solution: Change the "\?" in a pattern to "?" when using "?" as delimiter.
Files: src/ex_cmds.c, src/ex_docmd.c, src/proto/regexp.pro, src/regexp.c,

src/search.c, src/syntax.c, src/tag.c

Patch 6.1.011
Problem: XIM: doesn't work correctly when 'number' is set. Also, a focus

problem when selecting candidates.
Solution: Fix the XIM problems. (Yasuhiro Matsumoto)
Files: src/mbyte.c, src/screen.c

Patch 6.1.012
Problem: A system() call might fail if fread() does CR-LF to LF

translation.
Solution: Open the output file in binary mode. (Pavol Huhas)
Files: src/misc1.c

Patch 6.1.013
Problem: Win32: The default for 'printexpr' doesn't work when there are

special characters in 'printdevice'.
Solution: Add double quotes around the device name. (Mike Williams)
Files: runtime/doc/option.txt, src/option.c

version6.txt — 2349

Patch 6.1.014
Problem: An operator like "r" used in Visual block mode doesn't use

'virtualedit' when it's set to "block".
Solution: Check for 'virtualedit' being active in Visual block mode when the

operator was started.
Files: src/ex_docmd.c, src/globals.h, src/misc2.c, src/normal.c,

src/ops.c, src/undo.c

Patch 6.1.015
Problem: After patch 6.1.014 can't compile with tiny features. (Christian

J. Robinson)
Solution: Add the missing define of virtual_op.
Files: src/vim.h

Patch 6.1.016 (extra)
Problem: Win32: Outputting Hebrew or Arabic text might have a problem with

reversing.
Solution: Replace the RevOut() function with ETO_IGNORELANGUAGE. (Ron Aaron)
Files: src/gui_w32.c

Patch 6.1.017
Problem: Cygwin: After patch 6.1.012 Still doesn't do binary file I/O.

(Pavol Juhas)
Solution: Define BINARY_FILE_IO for Cygwin.
Files: src/os_unix.h

Patch 6.1.018
Problem: Error message when using cterm highlighting. (Leonardo Di Lella)
Solution: Remove a backslash before a question mark.
Files: runtime/syntax/cterm.vim

Patch 6.1.019 (extra)
Problem: Win32: File name is messed up when editing just a drive name.

(Walter Briscoe)
Solution: Append a NUL after the drive name. (Vince Negri)
Files: src/os_win32.c

Patch 6.1.020
Problem: col("'>") returns a huge number after using Visual line mode.
Solution: Return the length of the line instead.
Files: src/eval.c

Patch 6.1.021 (depends on patch 6.1.009)
Problem: Vim crashes when using a huge number for the minwid value in a

statusline. (Robert M. Nowotniak)
Solution: Check for an overflow that makes minwid negative.
Files: src/buffer.c

Patch 6.1.022
Problem: Grabbing the status line above the command-line window works like

the bottom status line was grabbed. (Jim Battle)
Solution: Make it possible to grab the status line above the command-line

window, so that it can be resized.
Files: src/ui.c

Patch 6.1.023 (extra)
Problem: VMS: running tests doesn't work properly.
Solution: Adjust the makefile. (Zoltan Arpadffy)
Files: src/testdir/Make_vms.mms

version6.txt — 2350

Patch 6.1.024
Problem: When header files use a new syntax for declaring functions, Vim

can't figure out missing prototypes properly.
Solution: Accept braces around a function name. (M. Warner Losh)
Files: src/osdef.sh

Patch 6.1.025
Problem: Five messages for "vim --help" don't start with a capital. (Vlad

Sandrini)
Solution: Make the messages consistent.
Files: src/main.c

Patch 6.1.026
Problem: *.patch files are not recognized as diff files. In a script a

"VAR=val" argument after "env" isn't ignored. PHP scripts are not
recognized.

Solution: Add *.patch for diff filetypes. Ignore "VAR=val". Recognize PHP
scripts. (Roman Neuhauser)

Files: runtime/filetype.vim, runtime/scripts.vim

Patch 6.1.027
Problem: When 'foldcolumn' is non-zero, a special character that wraps to

the next line disturbs the foldcolumn highlighting. (Yasuhiro
Matsumoto)

Solution: Only use the special highlighting when drawing text characters.
Files: src/screen.c

Patch 6.1.028
Problem: Client-server: When a --remote-expr fails, Vim still exits with

status zero.
Solution: Exit Vim with a non-zero status to indicate the --remote-expr

failed. (Thomas Scott Urban)
Files: src/main.c

Patch 6.1.029
Problem: When 'encoding' is an 8-bit encoding other than "latin1", editing

a utf-8 or other Unicode file uses the wrong conversion. (Jan
Fedak)

Solution: Don't use Unicode to latin1 conversion for 8-bit encodings other
than "latin1".

Files: src/fileio.c

Patch 6.1.030
Problem: When CTRL-N is mapped in Insert mode, it is also mapped after

CTRL-X CTRL-N, while it is not mapped after CTRL-X CTRL-F.
(Kontra Gergely)

Solution: Don't map CTRL-N after CTRL-X CTRL-N. Same for CTRL-P.
Files: src/getchar.c

Patch 6.1.031
Problem: Cygwin: Xxd could read a file in text mode instead of binary mode.
Solution: Use "rb" or "rt" when needed. (Pavol Juhas)
Files: src/xxd/xxd.c

Patch 6.1.032
Problem: Can't specify a quickfix file without jumping to the first error.
Solution: Add the ":cgetfile" command. (Yegappan Lakshmanan)
Files: runtime/doc/index.txt, runtime/doc/quickfix.txt, src/ex_cmds.h,

src/quickfix.c

version6.txt — 2351

Patch 6.1.033
Problem: GUI: When the selection is lost and the Visual highlighting is

changed to underlining, the cursor is left in a different
position. (Christian Michon)

Solution: Update the cursor position after redrawing the selection.
Files: src/ui.c

Patch 6.1.034
Problem: A CVS diff file isn't recognized as diff filetype.
Solution: Skip lines starting with "? " before checking for an "Index:" line.
Files: runtime/scripts.vim

Patch 6.1.035 (extra, depends on 6.1.016)
Problem: Win32: Outputting Hebrew or Arabic text might have a problem with

reversing on MS-Windows 95/98/ME.
Solution: Restore the RevOut() function and use it in specific situations

only. (Ron Aaron)
Files: src/gui_w32.c

Patch 6.1.036
Problem: This command may cause a crash: ":v/./,//-j". (Ralf Arens)
Solution: Compute the right length of the regexp when it's empty.
Files: src/search.c

Patch 6.1.037
Problem: When 'lazyredraw' is set, pressing "q" at the hit-enter prompt

causes an incomplete redraw and the cursor isn't positioned.
(Lubomir Host)

Solution: Overrule 'lazyredraw' when do_redraw is set.
Files: src/main.c, src/screen.c

Patch 6.1.038
Problem: Multi-byte: When a ":s" command contains a multibyte character

where the trail byte is '~' the text is messed up.
Solution: Properly skip multibyte characters in regtilde() (Muraoka Taro)
Files: src/regexp.c

Patch 6.1.039
Problem: When folds are defined and the file is changed outside of Vim,

reloading the file doesn't update the folds. (Anders
Schack-Nielsen)

Solution: Recompute the folds after reloading the file.
Files: src/fileio.c

Patch 6.1.040
Problem: When changing directory for expanding a file name fails there is

no error message.
Solution: Give an error message for this situation. Don't change directory

if we can't return to the original directory.
Files: src/diff.c, src/ex_docmd.c, src/globals.h, src/misc1.c,

src/os_unix.c

Patch 6.1.041
Problem: ":mkvimrc" doesn't handle a mapping that has a leading space in

the rhs. (Davyd Ondrejko)
Solution: Insert a CTRL-V before the leading space. Also display leading

and trailing white space in <> form.
Files: src/getchar.c, src/message.c

Patch 6.1.042

version6.txt — 2352

Problem: "vim -r" doesn't show all matches when 'wildignore' removes swap
files. (Steve Talley)

Solution: Keep all matching swap file names.
Files: src/memline.c

Patch 6.1.043
Problem: After patch 6.1.040 a few warnings are produced.
Solution: Add a type cast to "char *" for mch_chdir(). (Axel Kielhorn)
Files: src/diff.c, src/ex_docmd.c.c, src/misc1.c, src/os_unix.c

Patch 6.1.044 (extra)
Problem: GUI: When using the find/replace dialog with text that contains a

slash, an invalid substitute command is generated.
On Win32 a find doesn't work when 'insertmode' is set.

Solution: Escape slashes with a backslash.
Make the Win32, Motif and GTK gui use common code for the
find/replace dialog.
Add the "match case" option for Motif and GTK.

Files: src/feature.h, src/proto/gui.pro, src/gui.c, src/gui.h,
src/gui_motif.c, src/gui_gtk.c, src/gui_w48.c

Patch 6.1.045
Problem: In Visual mode, with lots of folds and 'scrolloff' set to 999,

moving the cursor down near the end of the file causes the text to
jump up and down. (Lubomir Host)

Solution: Take into account that the cursor may be on the last line of a
closed fold.

Files: src/move.c

Patch 6.1.046
Problem: X11 GUI: ":set lsp=2 gcr=n-v-i:hor1-blinkon0" draws a black

rectangle. ":set lsp=2 gcr=n-v-i:hor10-blinkon0" makes the cursor
disappear. (Nam SungHyun)

Solution: Correctly compute the height of the horizontal cursor.
Files: src/gui_gtk_x11.c, src/gui_x11.c

Patch 6.1.047
Problem: When skipping commands after an error was encountered, expressions

for ":if", ";elseif" and ":while" are still evaluated.
Solution: Skip the expression after an error. (Servatius Brandt)
Files: src/ex_docmd.c

Patch 6.1.048
Problem: Unicode 3.2 changes were missing a few Hangul Jamo characters.
Solution: Recognize more characters as composing characters. (Jungshik Shin)
Files: src/mbyte.c

Patch 6.1.049 (extra)
Problem: On a 32 bit display a valid color may cause an error message,

because its pixel value is negative. (Chris Paulson-Ellis)
Solution: Check for -11111 instead of the color being negative.

Don't add one to the pixel value, -1 may be used for white.
Files: src/globals.h, src/gui.c, src/gui.h, src/gui_amiga.c,

src/gui_athena.c, src/gui_beos.cc, src/gui_gtk_x11.c,
src/gui_mac.c, src/gui_motif.c, src/gui_photon.c,
src/gui_riscos.c, src/gui_w16.c, src/gui_w32.c, src/gui_w48.c,
src/gui_x11.c, src/mbyte.c, src/syntax.c

Patch 6.1.050 (depends on 6.1.049)
Problem: After patch 6.1.049 the non-GUI version doesn't compile.

version6.txt — 2353

Solution: Add an #ifdef FEAT_GUI. (Robert Stanton)
Files: src/syntax.c

Patch 6.1.051 (depends on 6.1.044)
Problem: Doesn't compile with GUI and small features.
Solution: Adjust the #if for ga_append().
Files: src/misc2.c

Patch 6.1.052
Problem: Unix: The executable() function doesn't work when the "which"

command isn't available.
Solution: Go through $PATH manually. Also makes it work for VMS.
Files: src/os_unix.c

Patch 6.1.053
Problem: When 'sessionoptions' contains "globals", or "localoptions" and an

option value contains a line break, the resulting script is wrong.
Solution: Use "\n" and "\r" for a line break. (Srinath Avadhanula)
Files: src/eval.c

Patch 6.1.054
Problem: GUI: A mouse click is not recognized at the more prompt, even when

'mouse' includes 'r'.
Solution: Recognize a mouse click at the more prompt.

Also accept a mouse click in the last line in the GUI.
Add "ml" entry in 'mouseshape'.

Files: src/gui.c, src/message.c, src/misc1.c, src/misc2.c, src/option.c,
src/structs.h

Patch 6.1.055
Problem: When editing a compressed file, Vim will inspect the contents to

guess the filetype.
Solution: Don't source scripts.vim for .Z, .gz, .bz2, .zip and .tgz files.
Files: runtime/filetype.vim, runtime/plugin/gzip.vim

Patch 6.1.056
Problem: Loading the Syntax menu can take quite a bit of time.
Solution: Add the "skip_syntax_sel_menu" variable. When it's defined the

available syntax files are not in the Syntax menu.
Files: runtime/doc/gui.txt, runtime/menu.vim

Patch 6.1.057
Problem: An ESC inside a mapping doesn't work as documented when

'insertmode' is set, it does go from Visual or Normal mode to
Insert mode. (Benji Fisher)

Solution: Make it work as documented.
Files: src/normal.c

Patch 6.1.058
Problem: When there is a closed fold just above the first line in the

window, using CTRL-X CTRL-Y in Insert mode will show only one line
of the fold. (Alexey Marinichev)

Solution: Correct the topline by putting it at the start of the fold.
Files: src/move.c

Patch 6.1.059
Problem: ":redir > ~/file" doesn't work. (Stephen Rasku)
Solution: Expand environment variables in the ":redir >" argument.
Files: src/ex_docmd.c

version6.txt — 2354

Patch 6.1.060
Problem: When 'virtualedit' is set and 'selection' is "exclusive", deleting

a character just before a tab changes the tab into spaces. Undo
doesn't restore the tab. (Helmut Stiegler)

Solution: Don't replace the tab by spaces when it's not needed. Correctly
save the line before it's changed.

Files: src/ops.c

Patch 6.1.061
Problem: When 'virtualedit' is set and 'selection' is "exclusive", a Visual

selection that ends just after a tab doesn't include that tab in
the highlighting. (Helmut Stiegler)

Solution: Use a different way to exclude the character under the cursor.
Files: src/screen.c

Patch 6.1.062
Problem: The "man" filetype plugin doesn't work properly on Solaris 5.
Solution: Use a different way to detect that "man -s" should be used. (Hugh

Sasse)
Files: runtime/ftplugin/man.vim

Patch 6.1.063
Problem: Java indenting doesn't work properly.
Solution: Ignore comments when checking if the indent doesn't increase after

a "}".
Files: runtime/indent/java.vim

Patch 6.1.064
Problem: The URLs that the netrw plugin recognized for ftp and rcp did not

conform to the standard method://[user@]host[:port]/path.
Solution: Use ftp://[user@]host[[:#]port]/path, which supports both the new

and the previous style. Also added a bit of dav/cadaver support.
(Charles Campbell)

Files: runtime/plugin/netrw.vim

Patch 6.1.065
Problem: VMS: The colorscheme, keymap and compiler menus are not filled in.
Solution: Ignore case when looking for ".vim" files. (Coen Engelbarts)
Files: runtime/menu.vim

Patch 6.1.066 (extra)
Problem: When calling system() in a plugin reading stdin hangs.
Solution: Don't set the terminal to RAW mode when it wasn't in RAW mode

before the system() call.
Files: src/os_amiga.c, src/os_msdos.c, src/os_riscos.c, src/os_unix.c,

src/os_win16.c, src/os_win32.c

Patch 6.1.067
Problem: ":set viminfo+=f0" is not working. (Benji Fisher)
Solution: Check the "f" flag instead of "'" in 'viminfo'.
Files: src/mark.c

Patch 6.1.068
Problem: When a file is reloaded after it was changed outside of Vim, diff

mode isn't updated. (Michael Naumann)
Solution: Invalidate the diff info so that it's updated when needed.
Files: src/fileio.c

Patch 6.1.069
Problem: When 'showmatch' is set and "$" is in 'cpoptions', using

version6.txt — 2355

ftp://[user@]host[[:#]port]/path

"C}<Esc>" may forget to remove the "$". (Preben Guldberg)
Solution: Restore dollar_vcol after displaying the matching cursor position.
Files: src/search.c

Patch 6.1.070 (depends on 6.1.060)
Problem: Compiler warning for signed/unsigned mismatch. (Mike Williams)
Solution: Add a typecast to int.
Files: src/ops.c

Patch 6.1.071
Problem: When 'selection' is exclusive, g CTRL-G in Visual mode counts one

character too much. (David Necas)
Solution: Subtract one from the end position.
Files: src/ops.c

Patch 6.1.072
Problem: When a file name in a tags file starts with http:// or something

else for which there is a BufReadCmd autocommand, the file isn't
opened anyway.

Solution: Check if there is a matching BufReadCmd autocommand and try to
open the file.

Files: src/fileio.c, src/proto/fileio.pro, src/tag.c

Patch 6.1.073 (extra)
Problem: BC5: Can't easily specify a tiny, small, normal, big or huge

version.
Solution: Allow selecting the version with the FEATURES variable. (Ajit

Thakkar)
Files: src/Make_bc5.mak

Patch 6.1.074
Problem: When 'cdpath' includes "../..", changing to a directory in which

we currently already are doesn't work. ff_check_visited() adds
the directory both when using it as the root for searching and for
the actual matches. (Stephen Rasku)

Solution: Use a separate list for the already searched directories.
Files: src/misc2.c

Patch 6.1.075 (depends on 6.1.072)
Problem: Can't compile fileio.c on MS-Windows.
Solution: Add a declaration for the "p" pointer. (Madoka Machitani)
Files: src/fileio.c

Patch 6.1.076 (extra)
Problem: Macintosh: explorer plugin doesn't work on Mac Classic.

IME doesn't work. Dialog boxes don't work on Mac OS X
Solution: Fix explorer plugin and key modifiers. (Axel Kielhorn)

Fix IME support. (Muraoka Taro)
Disable dialog boxes. (Benji Fisher)

Files: src/edit.c, src/feature.h, src/gui_mac.c, src/os_mac.c

Patch 6.1.077
Problem: On a Debian system with ACL linking fails. (Lubomir Host)
Solution: When the "acl" library is used, check if the "attr" library is

present and use it.
Files: src/auto/configure, src/configure.in, src/link.sh

Patch 6.1.078
Problem: When using 'foldmethod' "marker" and the end marker appears before

the start marker in the file, no fold is found. (Nazri Ramliy)

version6.txt — 2356

Solution: Don't let the fold depth go negative.
Files: src/fold.c

Patch 6.1.079
Problem: When using "s" in Visual block mode with 'virtualedit' set, when

the selected block is after the end of some lines the wrong text
is inserted and some lines are skipped. (Servatius Brandt)

Solution: Insert the right text and extend short lines.
Files: src/ops.c

Patch 6.1.080
Problem: When using gcc with /usr/local already in the search path, adding

it again causes problems.
Solution: Adjust configure.in to avoid adding /usr/local/include and

/usr/local/lib when using GCC and they are already used. (Johannes
Zellner)

Files: src/auto/configure, src/configure.in

Patch 6.1.081
Problem: ":help CTRL-_CTRL-N" doesn't work. (Christian J. Robinson)
Solution: Double the backslash to avoid the special meaning of "_".
Files: src/ex_cmds.c

Patch 6.1.082
Problem: On MS-Windows the vimrc_example.vim script is sourced and then

mswin.vim. This enables using select mode, but since "p" is
mapped it doesn't replace the selection.

Solution: Remove the mapping of "p" from vimrc_example.vim, it's obsolete.
(Vlad Sandrini)

Files: runtime/vimrc_example.vim

Patch 6.1.083
Problem: When $LANG is "sk" or "sk_sk", the Slovak menu file isn't found.

(Martin Lacko)
Solution: Guess the right menu file based on the system.
Files: runtime/lang/menu_sk_sk.vim

Patch 6.1.084 (depends on 6.1.080)
Problem: "include" and "lib" are mixed up when checking the directories gcc

already searches.
Solution: Swap the variable names. (SunHo Kim)
Files: src/auto/configure, src/configure.in

Patch 6.1.085
Problem: When using CTRL-O CTRL-\ CTRL-N from Insert mode, the displayed

mode "(insert)" isn't removed. (Benji Fisher)
Solution: Clear the command line.
Files: src/normal.c

Patch 6.1.086 (depends on 6.1.049)
Problem: The guifg color for CursorIM doesn't take effect.
Solution: Use the foreground color when it's defined. (Muraoka Taro)
Files: src/gui.c

Patch 6.1.087
Problem: A thesaurus with Japanese characters has problems with characters

in different word classes.
Solution: Only separate words with single-byte non-word characters.

(Muraoka Taro)
Files: src/edit.c

version6.txt — 2357

Patch 6.1.088 (extra)
Problem: Win32: no debugging info is generated. Tags file excludes .cpp

files.
Solution: Add "/map" to compiler flags. Add "*.cpp" to ctags command.

(Muraoka Taro)
Files: src/Make_mvc.mak

Patch 6.1.089
Problem: On BSDI systems there is no ss_sp field in stack_t. (Robert Jan)
Solution: Use ss_base instead.
Files: src/auto/configure, src/configure.in, src/config.h.in,

src/os_unix.c

Patch 6.1.090
Problem: CTRL-F gets stuck when 'scrolloff' is non-zero and there is a mix

of long wrapping lines and a non-wrapping line.
Solution: Check that CTRL-F scrolls at least one line.
Files: src/move.c

Patch 6.1.091
Problem: GTK: Can't change preeditstate without setting 'imactivatekey'.
Solution: Add some code to change preeditstate for OnTheSpot. (Yasuhiro

Matsumoto)
Files: src/mbyte.c

Patch 6.1.092
Problem: ":mapclear <buffer>" doesn't work. (Srikanth Adayapalam)
Solution: Allow an argument for ":mapclear".
Files: src/ex_cmds.h

Patch 6.1.093 (extra)
Problem: Mac and MS-Windows GUI: when scrolling while ":s" is working the

results can be messed up, because the cursor is moved.
Solution: Disallow direct scrolling when not waiting for a character.
Files: src/gui_mac.c, src/gui_w16.c, src/gui_w32.c, src/gui_w48.c

Patch 6.1.094
Problem: Cygwin: Passing a file name that has backslashes isn't handled

very well.
Solution: Convert file name arguments to Posix. (Chris Metcalf)
Files: src/main.c

Patch 6.1.095
Problem: When using signs can free an item on the stack.

Overruling sign colors doesn't work. (Srikanth Sankaran)
Solution: Don't free the item on the stack. Use NULL instead of "none" for

the value of the color.
Files: src/gui_x11.c

Patch 6.1.096
Problem: When erasing the right half of a double-byte character, it may

cause further characters to be erased. (Yasuhiro Matsumoto)
Solution: Make sure only one character is erased.
Files: src/screen.c

Patch 6.1.097 (depends on 6.1.090)
Problem: When 'scrolloff' is set to a huge value, CTRL-F at the end of the

file scrolls one line. (Lubomir Host)
Solution: Don't scroll when CTRL-F detects the end-of-file.

version6.txt — 2358

Files: src/move.c

Patch 6.1.098
Problem: MS-Windows: When the xxd program is under "c:\program files" the

"Convert to Hex" menu doesn't work. (Brian Mathis)
Solution: Put the path to xxd in double quotes.
Files: runtime/menu.vim

Patch 6.1.099
Problem: Memory corrupted when closing a fold with more than 99999 lines.
Solution: Allocate more space for the fold text. (Walter Briscoe)
Files: src/eval.c

Patch 6.1.100 (extra, depends on 6.1.088)
Problem: Win32: VC5 and earlier don't support the /mapinfo option.
Solution: Add "/mapinfo" only when "MAP=lines" is specified. (Muraoka Taro)
Files: src/Make_mvc.mak

Patch 6.1.101
Problem: After using ":options" the tabstop of a new window is 15. Entry

in ":options" window for 'autowriteall' is wrong. (Antoine J
Mechelynck) Can't insert a space in an option value.

Solution: Use ":setlocal" instead of ":set". Change "aw" to "awa".
Don't map space in Insert mode.

Files: runtime/optwin.vim

Patch 6.1.102
Problem: Unprintable and multibyte characters in a statusline item are not

truncated correctly. (Yasuhiro Matsumoto)
Solution: Count the width of characters instead of the number of bytes.
Files: src/buffer.c

Patch 6.1.103
Problem: A function returning from a while loop, with 'verbose' set to 12

or higher, doesn't mention the return value. A function with the
'abort' attribute may return -1 while the verbose message says
something else.

Solution: Move the verbose message about returning from a function to
call_func(). (Servatius Brandt)

Files: src/eval.c

Patch 6.1.104
Problem: GCC 3.1 appears to have an optimizer problem that makes test 3

crash.
Solution: For GCC 3.1 add -fno-strength-reduce to avoid the optimizer bug.

Filter out extra info from "gcc --version".
Files: src/auto/configure, src/configure.in

Patch 6.1.105
Problem: Win32: The default for 'shellpipe' doesn't redirect stderr. (Dion

Nicolaas)
Solution: Redirect stderr, depending on the shell (like for 'shellredir').
Files: src/option.c

Patch 6.1.106
Problem: The maze program crashes.
Solution: Change "11" to "27" and it works. (Greg Roelofs)
Files: runtime/macros/maze/mazeansi.c

Patch 6.1.107

version6.txt — 2359

Problem: When 'list' is set the current line in the error window may be
displayed wrong. (Muraoka Taro)

Solution: Don't continue the line after the $ has been displayed and the
rightmost column is reached.

Files: src/screen.c

Patch 6.1.108
Problem: When interrupting a filter command such as "!!sleep 20" the file

becomes read-only. (Mark Brader)
Solution: Only set the read-only flag when opening a buffer is interrupted.

When the shell command was interrupted, read the output that was
produced so far.

Files: src/ex_cmds.c, src/fileio.c

Patch 6.1.109
Problem: When 'eadirection' is "hor", using CTRL-W = doesn't equalize the

window heights. (Roman Neuhauser)
Solution: Ignore 'eadirection' for CTRL-W =
Files: src/window.c

Patch 6.1.110
Problem: When using ":badd file" when "file" is already present but not

listed, it stays unlisted. (David Frey)
Solution: Set 'buflisted'.
Files: src/buffer.c

Patch 6.1.111
Problem: It's not possible to detect using the Unix sources on Win32 or Mac.
Solution: Add has("macunix") and has("win32unix").
Files: runtime/doc/eval.txt, src/eval.c

Patch 6.1.112
Problem: When using ":argdo", ":bufdo" or ":windo", CTRL-O doesn't go to

the cursor position from before this command but every position
where the argument was executed.

Solution: Only remember the cursor position from before the ":argdo",
":bufdo" and ":windo".

Files: src/ex_cmds2.c, src/mark.c

Patch 6.1.113
Problem: ":bufdo bwipe" only wipes out half the buffers. (Roman Neuhauser)
Solution: Decide what buffer to go to next before executing the command.
Files: src/ex_cmds2.c

Patch 6.1.114
Problem: ":python import vim", ":python vim.current.buffer[0:0] = []" gives

a lalloc(0) error. (Chris Southern)
Solution: Don't allocate an array when it's size is zero.
Files: src/if_python.c

Patch 6.1.115
Problem: "das" on the white space at the end of a paragraph does not delete

the "." the sentence ends with.
Solution: Don't exclude the last character when it is not white space.
Files: src/search.c

Patch 6.1.116
Problem: When 'endofline' is changed while 'binary' is set a file should be

considered modified. (Olaf Buddenhagen)
Solution: Remember the 'eol' value when editing started and consider the

version6.txt — 2360

file changed when the current value is different and 'binary' is
set. Also fix that the window title isn't updated when 'ff' or
'bin' changes.

Files: src/option.c, src/structs.h

Patch 6.1.117
Problem: Small problem with editing a file over ftp: and with Cygwin.
Solution: Remove a dot from a ":normal" command. Use "cygdrive" where

appropriate. (Charles Campbell)
Files: runtime/plugin/netrw.vim

Patch 6.1.118
Problem: When a file in diff mode is reloaded because it changed outside

of Vim, other windows in diff mode are not always updated.
(Michael Naumann)

Solution: After reloading a file in diff mode mark all windows in diff mode
for redraw.

Files: src/diff.c

Patch 6.1.119 (extra)
Problem: With the Sniff interface, using Sniff 4.0.X on HP-UX, there may be

a crash when connecting to Sniff.
Solution: Initialize sniff_rq_sep such that its value can be changed.

(Martin Egloff)
Files: src/if_sniff.c

Patch 6.1.120 (depends on 6.1.097)
Problem: When 'scrolloff' is non-zero and there are folds, CTRL-F at the

end of the file scrolls part of a closed fold. (Lubomir Host)
Solution: Adjust the first line to the start of a fold.
Files: src/move.c

Patch 6.1.121 (depends on 6.1.098)
Problem: When starting Select mode from Insert mode, then using the Paste

menu entry, the cursor is left before the last pasted character.
(Mario Schweigler)

Solution: Set the cursor for Insert mode one character to the right.
Files: runtime/menu.vim

Patch 6.1.122
Problem: ":file name" creates a new buffer to hold the old buffer name,

which becomes the alternate file. This buffer is unexpectedly
listed.

Solution: Create the buffer for the alternate name unlisted.
Files: src/ex_cmds.c

Patch 6.1.123
Problem: A ":match" command with more than one argument doesn't report an

error.
Solution: Check for extra characters. (Servatius Brandt)
Files: src/ex_docmd.c

Patch 6.1.124
Problem: When trying to exit and there is a hidden buffer that had 'eol'

off and 'bin' set exiting isn't possible. (John McGowan)
Solution: Set b_start_eol when clearing the buffer.
Files: src/buffer.c

Patch 6.1.125
Problem: Explorer plugin asks for saving a modified buffer even when it's

version6.txt — 2361

open in another window as well.
Solution: Count the number of windows using the buffer.
Files: runtime/plugin/explorer.vim

Patch 6.1.126
Problem: Adding the choices in the syntax menu is consuming much of the

startup time of the GUI while it's not often used.
Solution: Only add the choices when the user wants to use them.
Files: Makefile, runtime/makemenu.vim, runtime/menu.vim,

runtime/synmenu.vim, src/Makefile

Patch 6.1.127
Problem: When using "--remote file" and the server has 'insertmode' set,

commands are inserted instead of being executed. (Niklas Volbers)
Solution: Go to Normal mode again after the ":drop" command.
Files: src/main.c

Patch 6.1.128
Problem: The expression "input('very long prompt')" puts the cursor in the

wrong line (column is OK).
Solution: Add the wrapped lines to the indent. (Yasuhiro Matsumoto)
Files: src/ex_getln.c

Patch 6.1.129
Problem: On Solaris editing "file/" and then "file" results in using the

same buffer. (Jim Battle)
Solution: Before using stat(), check that there is no illegal trailing

slash.
Files: src/auto/configure, src/config.h.in, src/configure.in,

src/macros.h src/misc2.c, src/proto/misc2.pro

Patch 6.1.130
Problem: The documentation for some of the 'errorformat' items is unclear.
Solution: Add more examples and explain hard to understand items. (Stefan

Roemer)
Files: runtime/doc/quickfix.txt

Patch 6.1.131
Problem: X11 GUI: when expanding a CSI byte in the input stream to K_CSI,

the CSI byte itself isn't copied.
Solution: Copy the CSI byte.
Files: src/gui_x11.c

Patch 6.1.132
Problem: Executing a register in Ex mode may cause commands to be skipped.

(John McGowan)
Solution: In Ex mode use an extra check if the register contents was

consumed, to avoid input goes into the typeahead buffer.
Files: src/ex_docmd.c

Patch 6.1.133
Problem: When drawing double-wide characters in the statusline, may clear

half of a character. (Yasuhiro Matsumoto)
Solution: Force redraw of the next character by setting the attributes

instead of putting a NUL in ScreenLines[]. Do put a NUL in
ScreenLines[] when overwriting half of a double-wide character.

Files: src/screen.c

Patch 6.1.134
Problem: An error for a trailing argument of ":match" should not be given

version6.txt — 2362

after ":if 0". (Servatius Brandt)
Solution: Only do the check when executing commands.
Files: src/ex_docmd.c

Patch 6.1.135
Problem: Passing a command to the shell that includes a newline always has

a backslash before the newline.
Solution: Remove one backslash before the newline. (Servatius Brandt)
Files: src/ex_docmd.c

Patch 6.1.136
Problem: When $TERM is "linux" the default for 'background' is "dark", even

though the GUI uses a light background. (Hugh Allen)
Solution: Don't mark the option as set when defaulting to "dark" for the

linux console. Also reset 'background' to "light" when the GUI
has a light background.

Files: src/option.c

Patch 6.1.137
Problem: Converting to HTML has a clumsy way of dealing with tabs which may

change the highlighting.
Solution: Replace tabs with spaces after converting a line to HTML. (Preben

Guldberg)
Files: runtime/syntax/2html.vim

Patch 6.1.138 (depends on 6.1.126)
Problem: Adding extra items to the Syntax menu can't be done when the "Show

individual choices" menu is used.
Solution: Use ":runtime!" instead of ":source", so that all synmenu.vim

files in the runtime path are loaded. (Servatius Brandt)
Also fix that a translated menu can't be removed.

Files: runtime/menu.vim

Patch 6.1.139
Problem: Cygwin: PATH_MAX is not defined.
Solution: Include limits.h. (Dan Sharp)
Files: src/main.c

Patch 6.1.140
Problem: Cygwin: ":args `ls *.c`" does not work if the shell command

produces CR NL line separators.
Solution: Remove the CR characters ourselves. (Pavol Juhas)
Files: src/os_unix.c

Patch 6.1.141
Problem: ":wincmd gx" may cause problems when mixed with other commands.

":wincmd c" doesn't close the window immediately. (Benji Fisher)
Solution: Pass the extra command character directly instead of using the

stuff buffer and call ex_close() directly.
Files: src/ex_docmd.c, src/normal.c, src/proto/normal.pro,

src/proto/window.pro, src/window.c

Patch 6.1.142
Problem: Defining paragraphs without a separating blank line isn't

possible. Paragraphs can't be formatted automatically.
Solution: Allow defining paragraphs with lines that end in white space.

Added the 'w' and 'a' flags in 'formatoptions'.
Files: runtime/doc/change.txt, src/edit.c, src/misc1.c, src/normal.c,

src/option.h, src/ops.c, src/proto/edit.pro, src/proto/ops.pro,
src/vim.h

version6.txt — 2363

Patch 6.1.143 (depends on 6.1.142)
Problem: Auto formatting near the end of the file moves the cursor to a

wrong position. In Insert mode some lines are made one char too
narrow. When deleting a line undo might not always work properly.

Solution: Don't always move to the end of the line in the last line. Don't
position the cursor past the end of the line in Insert mode.
After deleting a line save the cursor line for undo.

Files: src/edit.c, src/ops.c, src/normal.c

Patch 6.1.144
Problem: Obtaining the size of a line in screen characters can be wrong.

A pointer may wrap around zero.
Solution: In win_linetabsize() check for a MAXCOL length argument. (Jim

Dunleavy)
Files: src/charset.c

Patch 6.1.145
Problem: GTK: Drag&drop with more than 3 files may cause a crash. (Mickael

Marchand)
Solution: Rewrite the code that parses the received list of files to be more

robust.
Files: src/charset.c, src/gui_gtk_x11.c

Patch 6.1.146
Problem: MS-Windows: When $HOME is constructed from $HOMEDRIVE and

$HOMEPATH, it is not used for storing the _viminfo file. (Normal
Diamond)

Solution: Set $HOME with the value obtained from $HOMEDRIVE and $HOMEPATH.
Files: src/misc1.c

Patch 6.1.147 (extra)
Problem: MS-Windows: When a dialog has no default button, pressing Enter

ends it anyway and all buttons are selected.
Solution: Don't end a dialog when there is no default button. Don't select

all button when there is no default. (Vince Negri)
Files: src/gui_w32.c

Patch 6.1.148 (extra)
Problem: MS-Windows: ACL is not properly supported.
Solution: Add an access() replacement that also works for ACL. (Mike

Williams)
Files: runtime/doc/editing.txt, src/os_win32.c

Patch 6.1.149 (extra)
Problem: MS-Windows: Can't use diff mode from the file explorer.
Solution: Add a "diff with Vim" context menu entry. (Dan Sharp)
Files: GvimExt/gvimext.cpp, GvimExt/gvimext.h

Patch 6.1.150
Problem: OS/2, MS-Windows and MS-DOS: When 'shellslash' is set getcwd()

still uses backslash. (Yegappan Lakshmanan)
Solution: Adjust slashes in getcwd().
Files: src/eval.c

Patch 6.1.151 (extra)
Problem: Win32: The NTFS substream isn't copied.
Solution: Copy the substream when making a backup copy. (Muraoka Taro)
Files: src/fileio.c, src/os_win32.c, src/proto/os_win32.pro

version6.txt — 2364

Patch 6.1.152
Problem: When $LANG is iso8859-1 translated menus are not used.
Solution: Change iso8859 to iso_8859.
Files: runtime/menu.vim

Patch 6.1.153
Problem: Searching in included files may search recursively when the path

starts with "../". (Sven Berkvens-Matthijsse)
Solution: Compare full file names, use inode/device when possible.
Files: src/search.c

Patch 6.1.154 (extra)
Problem: DJGPP: "vim -h" leaves the cursor in a wrong position.
Solution: Don't position the cursor using uninitialized variables. (Jim

Dunleavy)
Files: src/os_msdos.c

Patch 6.1.155
Problem: Win32: Cursor may sometimes disappear in Insert mode.
Solution: Change "hor10" in 'guicursor' to "hor15". (Walter Briscoe)
Files: src/option.c

Patch 6.1.156
Problem: Conversion between DBCS and UCS-2 isn't implemented cleanly.
Solution: Clean up a few things.
Files: src/mbyte.c, src/structs.h

Patch 6.1.157
Problem: 'hlsearch' highlights only the second comma in ",,,,," with

"/,\@<=[^,]*". (Preben Guldberg)
Solution: Also check for an empty match to start just after a previous

match.
Files: src/screen.c

Patch 6.1.158
Problem: "zs" and "ze" don't work correctly with ":set nowrap siso=1".

(Preben Guldberg)
Solution: Take 'siso' into account when computing the horizontal scroll

position for "zs" and "ze".
Files: src/normal.c

Patch 6.1.159
Problem: When expanding an abbreviation that includes a multibyte

character too many characters are deleted. (Andrey Urazov)
Solution: Delete the abbreviation counting characters instead of bytes.
Files: src/getchar.c

Patch 6.1.160
Problem: ":$read file.gz" doesn't work. (Preben Guldberg)
Solution: Don't use the '[mark after it has become invalid.
Files: runtime/plugin/gzip.vim

Patch 6.1.161 (depends on 6.1.158)
Problem: Warning for signed/unsigned compare. Can set 'siso' to a negative

value. (Mike Williams)
Solution: Add a typecast. Add a check for 'siso' being negative.
Files: src/normal.c, src/option.c

Patch 6.1.162
Problem: Python interface: Didn't initialize threads properly.

version6.txt — 2365

Solution: Call PyEval_InitThreads() when starting up.
Files: src/if_python.c

Patch 6.1.163
Problem: Win32: Can't compile with Python after 6.1.162.
Solution: Dynamically load PyEval_InitThreads(). (Dan Sharp)
Files: src/if_python.c

Patch 6.1.164
Problem: If 'modifiable' is off, converting to xxd fails and 'filetype' is

changed to "xxd" anyway.
Solution: Don't change 'filetype' when conversion failed.
Files: runtime/menu.vim

Patch 6.1.165
Problem: Making changes in several lines and then a change in one of these

lines that splits it in two or more lines, undo information was
corrupted. May cause a crash. (Dave Fishburn)

Solution: When skipping to save a line for undo because it was already
saved, move it to become the last saved line, so that when the
command changes the line count other saved lines are not involved.

Files: src/undo.c

Patch 6.1.166
Problem: When 'autoindent' is set and mswin.vim has been sourced, pasting

with CTRL-V just after auto-indenting removes the indent. (Shlomi
Fish)

Solution: First insert an "x" and delete it again, so that the auto-indent
remains.

Files: runtime/mswin.vim

Patch 6.1.167
Problem: When giving a negative argument to ":retab" strange things start

happening. (Hans Ginzel)
Solution: Check for a negative value.
Files: src/ex_cmds.c

Patch 6.1.168
Problem: Pressing CTRL-C at the hit-enter prompt doesn't end the prompt.
Solution: Make CTRL-C stop the hit-enter prompt.
Files: src/message.c

Patch 6.1.169
Problem: bufexists() finds a buffer by using the name of a symbolic link to

it, but bufnr() doesn't. (Yegappan Lakshmanan)
Solution: When bufnr() can't find a buffer, try using the same method as

bufexists().
Files: src/eval.c

Patch 6.1.170
Problem: Using ":mksession" uses the default session file name, but "vim

-S" doesn't. (Hans Ginzel)
Solution: Use the default session file name if "-S" is the last command

line argument or another option follows.
Files: runtime/doc/starting.txt, src/main.c

Patch 6.1.171
Problem: When opening a line just above a closed fold with "O" and the

comment leader is automatically inserted, the cursor is displayed
in the first column. (Sung-Hyun Nam)

version6.txt — 2366

Solution: Update the flag that indicates the cursor is in a closed fold.
Files: src/misc1.c

Patch 6.1.172
Problem: Command line completion of ":tag /pat" does not show the same

results as the tags the command actually finds. (Gilles Roy)
Solution: Don't modify the pattern to make it a regexp.
Files: src/ex_getln.c, src/tag.c

Patch 6.1.173
Problem: When using remote control to edit a position in a file and this

file is the current buffer and it's modified, the window is split
and the ":drop" command fails.

Solution: Don't split the window, keep editing the same buffer.
Use the ":drop" command in VisVim to avoid the problem there.

Files: src/ex_cmds.c, src/ex_cmds2.c, src/proto/ex_cmds2.pro,
VisVim/Commands.cpp

Patch 6.1.174
Problem: It is difficult to know in a script whether an option not only

exists but really works.
Solution: Add "exists('+option')".
Files: runtime/doc/eval.txt, src/eval.c

Patch 6.1.175
Problem: When reading commands from a pipe and a CTRL-C is pressed, Vim

will hang. (Piet Delport)
Solution: Don't keep reading characters to clear typeahead when an interrupt

was detected, stop when a single CTRL-C is read.
Files: src/getchar.c, src/ui.c

Patch 6.1.176
Problem: When the stack limit is very big a false out-of-stack error may

be detected.
Solution: Add a check for overflow of the stack limit computation. (Jim

Dunleavy)
Files: src/os_unix.c

Patch 6.1.177 (depends on 6.1.141)
Problem: ":wincmd" does not allow a following command. (Gary Johnson)
Solution: Check for a following " | cmd". Also give an error for trailing

characters.
Files: src/ex_docmd.c

Patch 6.1.178
Problem: When 'expandtab' is set "r<C-V><Tab>" still expands the Tab.

(Bruce deVisser)
Solution: Replace with a literal Tab.
Files: src/normal.c

Patch 6.1.179 (depends on 6.1.091)
Problem: When using X11R5 XIMPreserveState is undefined. (Albert Chin)
Solution: Include the missing definitions.
Files: src/mbyte.c

Patch 6.1.180
Problem: Use of the GUI code for forking is inconsistent.
Solution: Define MAY_FORK and use it for later #ifdefs. (Ben Fowlwer)
Files: src/gui.c

version6.txt — 2367

Patch 6.1.181
Problem: If the terminal doesn't wrap from the last char in a line to the

next line, the last column is blanked out. (Peter Karp)
Solution: Don't output a space to mark the wrap, but the same character

again.
Files: src/screen.c

Patch 6.1.182 (depends on 6.1.142)
Problem: It is not possible to auto-format comments only. (Moshe Kaminsky)
Solution: When the 'a' and 'c' flags are in 'formatoptions' only auto-format

comments.
Files: runtime/doc/change.txt, src/edit.c

Patch 6.1.183
Problem: When 'fencs' is empty and 'enc' is utf-8, reading a file with

illegal bytes gives "CONVERSION ERROR" even though no conversion
is done. 'readonly' is set, even though writing the file results
in an unmodified file.

Solution: For this specific error use "ILLEGAL BYTE" and don't set
'readonly'.

Files: src/fileio.c

Patch 6.1.184 (extra)
Problem: The extra mouse buttons found on some mice don't work.
Solution: Support two extra buttons for MS-Windows. (Michael Geddes)
Files: runtime/doc/term.txt, src/edit.c, src/ex_getln.c, src/gui.c,

src/gui_w32.c, src/gui_w48.c, src/keymap.h, src/message.c,
src/misc1.c, src/misc2.c, src/normal.c, src/vim.h

Patch 6.1.185 (depends on 6.1.182)
Problem: Can't compile without +comments feature.
Solution: Add #ifdef FEAT_COMMENTS. (Christian J. Robinson)
Files: src/edit.c

Patch 6.1.186 (depends on 6.1.177)
Problem: ":wincmd" does not allow a following comment. (Aric Blumer)
Solution: Check for a following double quote.
Files: src/ex_docmd.c

Patch 6.1.187
Problem: Using ":doarg" with 'hidden' set and the current file is the only

argument and was modified gives an error message. (Preben
Guldberg)

Solution: Don't try re-editing the same file.
Files: src/ex_cmds2.c

Patch 6.1.188 (depends on 6.1.173)
Problem: Unused variable in the small version.
Solution: Move the declaration for "p" inside #ifdef FEAT_LISTCMDS.
Files: src/ex_cmds2.c

Patch 6.1.189
Problem: inputdialog() doesn't work when 'c' is in 'guioptions'. (Aric

Blumer)
Solution: Fall back to the input() function in this situation.
Files: src/eval.c

Patch 6.1.190 (extra)
Problem: VMS: doesn't build with GTK GUI. Various other problems.
Solution: Fix building for GTK. Improved Perl, Python and TCL support.

version6.txt — 2368

Improved VMS documentation. (Zoltan Arpadffy)
Added Vimtutor for VMS (T. R. Wyant)

Files: runtime/doc/os_vms.txt, src/INSTALLvms.txt, src/gui_gtk_f.h,
src/if_tcl.c, src/main.c, src/gui_gtk_vms.h, src/Make_vms.mms,
src/os_vms.opt, src/proto/if_tcl.pro, vimtutor.com,
src/testdir/Make_vms.mms

Patch 6.1.191
Problem: When using "vim -s script" and redirecting the output, the delay

for the "Output is not to a terminal" warning slows Vim down too
much.

Solution: Don't delay when reading commands from a script.
Files: src/main.c

Patch 6.1.192
Problem: ":diffsplit" doesn't add "hor" to 'scrollopt'. (Gary Johnson)
Solution: Add "hor" to 'scrollopt' each time ":diffsplit" is used.
Files: src/diff.c, src/main.c

Patch 6.1.193
Problem: Crash in in_id_list() for an item with a "containedin" list. (Dave

Fishburn)
Solution: Check for a negative syntax id, used for keywords.
Files: src/syntax.c

Patch 6.1.194
Problem: When "t_ti" is set but it doesn't cause swapping terminal pages,

"ZZ" may cause the shell prompt to appear on top of the file-write
message.

Solution: Scroll the text up in the Vim page before swapping to the terminal
page. (Michael Schroeder)

Files: src/os_unix.c

Patch 6.1.195
Problem: The quickfix and preview windows always keep their height, while

other windows can't fix their height.
Solution: Add the 'winfixheight' option, so that a fixed height can be

specified for any window. Also fix that the wildmenu may resize a
one-line window to a two-line window if 'ls' is zero.

Files: runtime/doc/options.txt, runtime/optwin.vim, src/ex_cmds.c,
src/ex_getln.c, src/globals.h, src/option.c, src/quickfix.c,
src/screen.c, src/structs.h, src/window.c

Patch 6.1.196 (depends on 6.1.084)
Problem: On Mac OS X 10.2 generating osdef.h fails.
Solution: Add -no-cpp-precomp to avoid using precompiled header files, which

disables printing the search path. (Ben Fowler)
Files: src/auto/configure, src/configure.in

Patch 6.1.197
Problem: ":help <C-V><C-\><C-V><C-N>" (resulting in <1c><0e>) gives an

error message. (Servatius Brandt)
Solution: Double the backslash in "CTRL-\".
Files: src/ex_cmds.c

Patch 6.1.198 (extra) (depends on 6.1.076)
Problem: Mac OS X: Dialogues don't work.
Solution: Fix a crashing problem for some GUI dialogues. Fix a problem when

saving to a new file from the GUI. (Peter Cucka)
Files: src/feature.h, src/gui_mac.c

version6.txt — 2369

Patch 6.1.199
Problem: 'guifontwide' doesn't work on Win32.
Solution: Output each wide character separately. (Michael Geddes)
Files: src/gui.c

Patch 6.1.200
Problem: ":syn sync fromstart" is not skipped after ":if 0". This can make

syntax highlighting very slow.
Solution: Check "eap->skip" appropriately. (Rob West)
Files: src/syntax.c

Patch 6.1.201 (depends on 6.1.192)
Problem: Warning for illegal pointer combination. (Zoltan Arpadffy)
Solution: Add a typecast.
Files: src/diff.c

Patch 6.1.202 (extra)(depends on 6.1.148)
Problem: Win32: filewritable() doesn't work properly on directories.
Solution: fix filewritable(). (Mike Williams)
Files: src/os_win32.c

Patch 6.1.203
Problem: ":%s/~//" causes a crash after ":%s/x//". (Gary Holloway)
Solution: Avoid reading past the end of a line when "~" is empty.
Files: src/regexp.c

Patch 6.1.204 (depends on 6.1.129)
Problem: Warning for an illegal pointer on Solaris.
Solution: Add a typecast. (Derek Wyatt)
Files: src/misc2.c

Patch 6.1.205
Problem: The gzip plugin changes the alternate file when editing a

compressed file. (Oliver Fuchs)
Solution: Temporarily remove the 'a' and 'A' flags from 'cpo'.
Files: runtime/plugin/gzip.vim

Patch 6.1.206
Problem: The script generated with ":mksession" doesn't work properly when

some commands are mapped.
Solution: Use ":normal!" instead of ":normal". And use ":wincmd" where

possible. (Muraoka Taro)
Files: src/ex_docmd.c, src/fold.c

Patch 6.1.207
Problem: Indenting a Java file hangs below a line with a comment after a

command.
Solution: Break out of a loop. (Andre Pang)

Also line up } with matching {.
Files: runtime/indent/java.vim

Patch 6.1.208
Problem: Can't use the buffer number from the Python interface.
Solution: Add buffer.number. (Michal Vitecek)
Files: src/if_python.c

Patch 6.1.209
Problem: Printing doesn't work on Mac OS classic.
Solution: Use a ":" for path separator when opening the resource file. (Axel

version6.txt — 2370

Kielhorn)
Files: src/ex_cmds2.c

Patch 6.1.210
Problem: When there is an iconv() conversion error when reading a file

there can be an error the next time iconv() is used.
Solution: Reset the state of the iconv() descriptor. (Yasuhiro Matsumoto)
Files: src/fileio.c

Patch 6.1.211
Problem: The message "use ! to override" is confusing.
Solution: Make it "add ! to override".
Files: src/buffer.c, src/eval.c, src/ex_docmd.c, src/fileio.c,

src/globals.h

Patch 6.1.212
Problem: When Vim was started with "-R" ":new" creates a buffer

'noreadonly' while ":enew" has 'readonly' set. (Preben Guldberg)
Solution: Don't set 'readonly' in a new empty buffer for ":enew".
Files: src/ex_docmd.c

Patch 6.1.213
Problem: Using CTRL-W H may cause a big gap to appear below the last

window. (Aric Blumer)
Solution: Don't set the window height when there is a vertical split.

(Yasuhiro Matsumoto)
Files: src/window.c

Patch 6.1.214
Problem: When installing Vim and the runtime files were checked out from

CVS the CVS directories will also be installed.
Solution: Avoid installing the CVS dirs and their contents.
Files: src/Makefile

Patch 6.1.215
Problem: Win32: ":pwd" uses backslashes even when 'shellslash' is set.

(Xiangjiang Ma)
Solution: Adjust backslashes before printing the message.
Files: src/ex_docmd.c

Patch 6.1.216
Problem: When dynamically loading the iconv library, the error codes may be

confused.
Solution: Use specific error codes for iconv and redefine them for dynamic

loading. (Yasuhiro Matsumoto)
Files: src/fileio.c, src/mbyte.c, src/vim.h

Patch 6.1.217
Problem: When sourcing the same Vim script using a different name (symbolic

link or MS-Windows 8.3 name) it is listed twice with
":scriptnames". (Tony Mechelynck)

Solution: Turn the script name into a full path before using it. On Unix
compare inode/device numbers.

Files: src/ex_cmds2.c

Patch 6.1.218
Problem: No error message for using the function argument "5+". (Servatius

Brandt)
Solution: Give an error message if a function or variable is expected but is

not found.

version6.txt — 2371

Files: src/eval.c

Patch 6.1.219
Problem: When using ":amenu :b 1<CR>" with a Visual selection and

'insertmode' is set, Vim does not return to Insert mode. (Mickael
Marchand)

Solution: Add the command CTRL-\ CTRL-G that goes to Insert mode if
'insertmode' is set and to Normal mode otherwise. Append this to
menus defined with ":amenu".

Files: src/edit.c, src/ex_getln.c, src/normal.c

Patch 6.1.220
Problem: When using a BufReadPost autocommand that changes the line count,

e.g., "$-1join", reloading a file that was changed outside Vim
does not work properly. (Alan G Isaac)

Solution: Make the buffer empty before reading the new version of the file.
Save the lines in a dummy buffer, so that they can be put back
when reading the file fails.

Files: src/buffer.c, src/ex_cmds.c, src/fileio.c, src/globals.h,
src/proto/buffer.pro

Patch 6.1.221
Problem: Changing case may not work properly, depending on the current

locale.
Solution: Add the 'casemap' option to let the user choose how changing case

is to be done.
Also fix lowering case when an UTF-8 character doesn't keep the
same byte length.

Files: runtime/doc/options.txt, src/ascii.h, src/auto/configure,
src/buffer.c, src/charset.c, src/config.h.in, src/configure.in,
src/diff.c, src/edit.c, src/eval.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/gui_amiga.c
src/gui_mac.c, src/gui_photon.c, src/gui_w48.c, src/gui_beos.cc,
src/macros.h, src/main.c, src/mbyte.c, src/menu.c, src/message.c,
src/misc1.c, src/misc2.c, src/option.c, src/os_msdos.c,
src/os_mswin.c, src/proto/charset.pro, src/regexp.c, src/option.h,
src/syntax.c

Patch 6.1.222 (depends on 6.1.219)
Problem: Patch 6.1.219 was incomplete.
Solution: Add the changes for ":amenu".
Files: src/menu.c

Patch 6.1.223 (extra)
Problem: Win32: When IME is activated 'iminsert' is set, but it might never

be reset when IME is disabled. (Muraoka Taro)
All systems: 'iminsert' is set to 2 when leaving Insert mode, even
when langmap is being used. (Peter Valach)

Solution: Don't set "b_p_iminsert" in _OnImeNotify(). (Muraoka Taro)
Don't store the status of the input method in 'iminsert' when
'iminsert' is one. Also for editing the command line and for
arguments to Normal mode commands.

Files: src/edit.c, src/ex_getln.c, src/gui_w32.c, src/normal.c

Patch 6.1.224
Problem: "expand('$VAR')" returns an empty string when the expanded $VAR

is not an existing file. (Aric Blumer)
Solution: Included non-existing files, as documented.
Files: src/eval.c

version6.txt — 2372

Patch 6.1.225
Problem: Using <C-O><C-^> in Insert mode has a delay when starting "vim -u

NONE" and ":set nocp hidden". (Emmanuel) do_ecmd() uses
fileinfo(), the redraw is done after a delay to give the user time
to read the message.

Solution: Put the message from fileio() in "keep_msg", so that the redraw is
done before the delay (still needed to avoid the mode message
overwrites the fileinfo() message).

Files: src/buffer.c

Patch 6.1.226
Problem: Using ":debug" with a ":normal" command may cause a hang. (Colin

Keith)
Solution: Save the typeahead buffer when obtaining a debug command.
Files: src/ex_cmds2.c, src/getchar.c, src/proto/getchar.pro

Patch 6.1.227
Problem: It is possible to use a variable name "asdf:asdf" and ":let j:asdf

= 5" does not give an error message. (Mikolaj Machowski)
Solution: Check for a ":" inside the variable name.
Files: src/eval.c

Patch 6.1.228 (extra)
Problem: Win32: The special output function for Hangul is used too often,

causing special handling for other situations to be skipped.
bInComposition is always FALSE, causing ImeGetTempComposition()
always to return NULL.

Solution: Remove HanExtTextOut(). Delete the dead code around
bInComposition and ImeGetTempComposition().

Files: src/gui_w16.c, src/gui_w32.c, src/gui_w48.c

Patch 6.1.229
Problem: Win32: Conversion to/from often used codepages requires the iconv

library, which is not always available.
Solution: Use standard MS-Windows functions for the conversion when

possible. (mostly by Glenn Maynard)
Also fixes missing declaration for patch 6.1.220.

Files: src/fileio.c

Patch 6.1.230 (extra)
Problem: Win16: building doesn't work.
Solution: Exclude the XBUTTON handling. (Vince Negri)
Files: src/gui_w48.c

Patch 6.1.231
Problem: Double clicking with the mouse to select a word does not work for

multibyte characters.
Solution: Use vim_iswordc() instead of vim_isIDc(). This means 'iskeyword'

is used instead of 'isident'. Also fix that mixing ASCII with
multibyte word characters doesn't work, the mouse class for
punctuation and word characters was mixed up.

Files: src/normal.c

Patch 6.1.232 (depends on 6.1.226)
Problem: Using ex_normal_busy while it might not be available. (Axel

Kielhorn)
Solution: Only use ex_normal_busy when FEAT_EX_EXTRA is defined.
Files: src/ex_cmds2.c

Patch 6.1.233

version6.txt — 2373

Problem: ":help expr-||" does not work.
Solution: Don't use the '|' as a command separator
Files: src/ex_cmds.c

Patch 6.1.234 (depends on 6.1.217)
Problem: Get a warning for using a negative value for st_dev.
Solution: Don't assign a negative value to st_dev.
Files: src/ex_cmds2.c

Patch 6.1.235 (depends on 6.1.223)
Problem: 'iminsert' is changed from 1 to 2 when leaving Insert mode. (Peter

Valach)
Solution: Check "State" before resetting it to NORMAL.
Files: src/edit.c

Patch 6.1.236
Problem: Memory leaks when appending lines for ":diffget" or ":diffput" and

when reloading a changed buffer.
Solution: Free a line after calling ml_append().
Files: src/diff.c, src/fileio.c

Patch 6.1.237
Problem: Putting in Visual block mode does not work correctly when "$" was

used or when the first line is short. (Christian Michon)
Solution: First delete the selected text and then put the new text. Save

and restore registers as necessary.
Files: src/globals.h, src/normal.c, src/ops.c, src/proto/ops.pro,

src/vim.h

Patch 6.1.238 (extra)
Problem: Win32: The "icon=" argument for the ":menu" command does not

search for the bitmap file.
Solution: Expand environment variables and search for the bitmap file.

(Vince Negri)
Make it consistent, use the same mechanism for X11 and GTK.

Files: src/gui.c src/gui_gtk.c, src/gui_w32.c, src/gui_x11.c,
src/proto/gui.pro

Patch 6.1.239
Problem: Giving an error for missing :endif or :endwhile when being

interrupted.
Solution: Don't give these messages when interrupted.
Files: src/ex_docmd.c, src/os_unix.c

Patch 6.1.240 (extra)
Problem: Win32 with BCC 5: CPU may be defined in the environment, which

causes a wrong argument for the compiler. (Walter Briscoe)
Solution: Use CPUNR instead of CPU.
Files: src/Make_bc5.mak

Patch 6.1.241
Problem: Something goes wrong when drawing or undrawing the cursor.
Solution: Remember when the cursor invalid in a better way.
Files: src/gui.c

Patch 6.1.242
Problem: When pasting a large number of lines on the command line it is not

possible to interrupt. (Jean Jordaan)
Solution: Check for an interrupt after each pasted line.
Files: src/ops.c

version6.txt — 2374

Patch 6.1.243 (extra)
Problem: Win32: When the OLE version is started and wasn't registered, a

message pops up to suggest registering, even when this isn't
possible (when the registry is not writable).

Solution: Check if registering is possible before asking whether it should
be done. (Walter Briscoe)
Also avoid restarting Vim after registering.

Files: src/if_ole.cpp

Patch 6.1.244
Problem: Patch 6.1.237 was missing the diff for vim.h. (Igor Goldenberg)
Solution: Include it here.
Files: src/vim.h

Patch 6.1.245
Problem: Comparing with ignored case does not work properly for Unicode

with a locale where case folding an ASCII character results in a
multibyte character. (Glenn Maynard)

Solution: Handle ignore-case compare for Unicode differently.
Files: src/mbyte.c

Patch 6.1.246
Problem: ":blast" goes to the first buffer if the last one is unlisted.

(Andrew Stryker)
Solution: From the last buffer search backwards for the first listed buffer

instead of forwards.
Files: src/ex_docmd.c

Patch 6.1.247
Problem: ACL support doesn't always work properly.
Solution: Add a configure argument to disable ACL "--disable-acl". (Thierry

Vignaud)
Files: src/auto/configure, src/configure.in

Patch 6.1.248
Problem: Typing 'q' at the more-prompt for ":let" does not quit the

listing. (Hari Krishna Dara)
Solution: Quit the listing when got_int is set.
Files: src/eval.c

Patch 6.1.249
Problem: Can't expand a path on the command line if it includes a "|" as a

trail byte of a multibyte character.
Solution: Check for multibyte characters. (Yasuhiro Matsumoto)
Files: src/ex_docmd.c

Patch 6.1.250
Problem: When changing the value of 'lines' inside the expression set with

'diffexpr' Vim might crash. (Dave Fishburn)
Solution: Don't allow changing the screen size while updating the screen.
Files: src/globals.h, src/option.c, src/screen.c

Patch 6.1.251
Problem: Can't use completion for ":lcd" and ":lchdir" like ":cd".
Solution: Expand directory names for these commands. (Servatius Brandt)
Files: src/ex_docmd.c

Patch 6.1.252
Problem: "vi}" does not include a line break when the "}" is at the start

version6.txt — 2375

of a following line. (Kamil Burzynski)
Solution: Include the line break.
Files: src/search.c

Patch 6.1.253 (extra)
Problem: Win32 with Cygwin: Changes the path of arguments in a wrong way.

(Xiangjiang Ma)
Solution: Don't use cygwin_conv_to_posix_path() for the Win32 version.

Update the Cygwin makefile to support more features. (Dan Sharp)
Files: src/Make_cyg.mak, src/if_ole.cpp, src/main.c

Patch 6.1.254
Problem: exists("foo{bar}") does not work. ':unlet v{"a"}r' does not work.

":let v{a}r1 v{a}r2" does not work. ":func F{(1)}" does not work.
":delfunc F{" does not give an error message. ':delfunc F{"F"}'
does not work.

Solution: Support magic braces for the exists() argument. (Vince Negri)
Check for trailing comments explicitly for ":unlet". Add support
for magic braces in further arguments of ":let". Look for a
parenthesis only after the function name. (Servatius Brandt)
Also expand magic braces for "exists('*expr')". Give an error
message for an invalid ":delfunc" argument. Allow quotes in the
":delfunc" argument.

Files: src/eval.c, src/ex_cmds.h, src/ex_docmd.c

Patch 6.1.255 (depends on 6.1.254)
Problem: Crash when loading menu.vim a second time. (Christian Robinson)

":unlet garbage foo" tries unletting "foo" after an error message.
(Servatius Brandt)
Very long function arguments cause very long messages when
'verbose' is 14 or higher.

Solution: Avoid reading from uninitialized memory.
Break out of a loop after an invalid argument for ":unlet".
Truncate long function arguments to 80 characters.

Files: src/eval.c

Patch 6.1.256 (depends on 6.1.255)
Problem: Defining a function after ":if 0" could still cause an error

message for an existing function.
Leaking memory when there are trailing characters for ":delfunc".

Solution: Check the "skip" flag. Free the memory. (Servatius Brandt)
Files: src/eval.c

Patch 6.1.257
Problem: ":cwindow" always sets the previous window to the last but one

window. (Benji Fisher)
Solution: Set the previous window properly.
Files: src/globals.c, src/quickfix.c, src/window.c

Patch 6.1.258
Problem: Buffers menu doesn't work properly for multibyte buffer names.
Solution: Use a pattern to get the left and right part of the name.

(Yasuhiro Matsumoto)
Files: runtime/menu.vim

Patch 6.1.259 (extra)
Problem: Mac: with 'patchmode' is used filenames are truncated.
Solution: Increase the BASENAMELEN for Mac OS X. (Ed Ralston)
Files: src/os_mac.h

version6.txt — 2376

Patch 6.1.260 (depends on 6.1.104)
Problem: GCC 3.2 still seems to have an optimizer problem. (Zvi Har'El)
Solution: Use the same configure check as used for GCC 3.1.
Files: src/auto/configure, src/configure.in

Patch 6.1.261
Problem: When deleting a line in a buffer which is not the current buffer,

using the Perl interface Delete(), the cursor in the current
window may move. (Chris Houser)

Solution: Don't adjust the cursor position when changing another buffer.
Files: src/if_perl.xs

Patch 6.1.262
Problem: When jumping over folds with "z[", "zj" and "zk" the previous

position is not remembered. (Hari Krishna Dara)
Solution: Set the previous context mark before jumping.
Files: src/fold.c

Patch 6.1.263
Problem: When typing a multibyte character that triggers an abbreviation

it is not inserted properly.
Solution: Handle adding the typed multibyte character. (Yasuhiro Matsumoto)
Files: src/getchar.c

Patch 6.1.264 (depends on patch 6.1.254)
Problem: exists() does not work for built-in functions. (Steve Wall)
Solution: Don't check for the function name to start with a capital.
Files: src/eval.c

Patch 6.1.265
Problem: libcall() can be used in 'foldexpr' to call any system function.

rename(), delete() and remote_send() can also be used in
'foldexpr'. These are security problems. (Georgi Guninski)

Solution: Don't allow using libcall(), rename(), delete(), remote_send() and
similar functions in the sandbox.

Files: src/eval.c

Patch 6.1.266 (depends on 6.1.265)
Problem: Win32: compile error in eval.c. (Bill McCarthy)
Solution: Move a variable declaration.
Files: src/eval.c

Patch 6.1.267
Problem: Using "p" to paste into a Visual selected area may cause a crash.
Solution: Allocate enough memory for saving the register contents. (Muraoka

Taro)
Files: src/ops.c

Patch 6.1.268
Problem: When triggering an abbreviation with a multibyte character, this

character is not correctly inserted after expanding the
abbreviation. (Taro Muraoka)

Solution: Add ABBR_OFF to all characters above 0xff.
Files: src/edit.c, src/ex_getln.c, src/getchar.c

Patch 6.1.269
Problem: After using input() text written with ":redir" gets extra indent.

(David Fishburn)
Solution: Restore msg_col after using input().
Files: src/ex_getln.c

version6.txt — 2377

Patch 6.1.270 (depends on 6.1.260)
Problem: GCC 3.2.1 still seems to have an optimizer problem.
Solution: Use the same configure check as used for GCC 3.1.
Files: src/auto/configure, src/configure.in

Patch 6.1.271
Problem: When compiling without the +syntax feature there are errors.
Solution: Don't use some code for syntax highlighting. (Roger Cornelius)

Make test 45 work without syntax highlighting.
Also fix an error in a pattern matching: "\%(" was not supported.

Files: src/ex_cmds2.c, src/regexp.c, src/testdir/test45.in

Patch 6.1.272
Problem: After using ":set define<" a crash may happen. (Christian Robinson)
Solution: Make a copy of the option value in allocated memory.
Files: src/option.c

Patch 6.1.273
Problem: When the cursor doesn't blink, redrawing an exposed area may hide

the cursor.
Solution: Always draw the cursor, also when it didn't move. (Muraoka Taro)
Files: src/gui.c

Patch 6.1.274 (depends on 6.1.210)
Problem: Resetting the iconv() state after each error is wrong for an

incomplete sequence.
Solution: Don't reset the iconv() state.
Files: src/fileio.c

Patch 6.1.275
Problem: When using "v" in a startup script, get warning message that

terminal cannot highlight. (Charles Campbell)
Solution: Only give the message after the terminal has been initialized.
Files: src/normal.c

Patch 6.1.276
Problem: "gvim --remote file" doesn't prompt for an encryption key.
Solution: The further characters the client sends to the server are used.

Added inputsave() and inputrestore() to allow prompting the
user directly and not using typeahead.
Also fix possible memory leak for ":normal".

Files: src/eval.c, src/ex_cmds2.c, src/ex_docmd.c, src/getchar.c,
src/main.c, src/proto/getchar.pro, src/proto/ui.pro,
src/runtime/doc/eval.txt, src/structs.h, src/ui.c, src/vim.h

Patch 6.1.277 (depends on 6.1.276)
Problem: Compilation error when building with small features.
Solution: Define trash_input_buf() when needed. (Kelvin Lee)
Files: src/ui.c

Patch 6.1.278
Problem: When using signs the line number of a closed fold doesn't line up

with the other line numbers. (Kamil Burzynski)
Solution: Insert two spaces for the sign column.
Files: src/screen.c

Patch 6.1.279
Problem: The prototype for smsg() and smsg_attr() do not match the function

definition. This may cause trouble for some compilers. (Nix)

version6.txt — 2378

Solution: Use va_list for systems that have stdarg.h. Use "int" instead of
"void" for the return type.

Files: src/auto/configure, src/config.h.in, src/configure.in,
src/proto.h, src/message.c

Patch 6.1.280
Problem: It's possible to use an argument "firstline" or "lastline" for a

function but using "a:firstline" or "a:lastline" in the function
won't work. (Benji Fisher)

Solution: Give an error message for these arguments.
Also avoid that the following function body causes a whole row of
errors, skip over it after an error in the first line.

Files: src/eval.c

Patch 6.1.281
Problem: In Insert mode CTRL-X CTRL-G leaves the cursor after the ruler.
Solution: Set the cursor position before waiting for the argument of CTRL-G.

(Yasuhiro Matsumoto)
Files: src/edit.c

Patch 6.1.282
Problem: Elvis uses "se" in a modeline, Vim doesn't recognize this.
Solution: Also accept "se " where "set " is accepted in a modeline.

(Yasuhiro Matsumoto)
Files: src/buffer.c

Patch 6.1.283
Problem: For ":sign" the icon file name cannot contain a space.
Solution: Handle backslashes in the file name. (Yasuhiro Matsumoto)
Files: src/ex_cmds.c

Patch 6.1.284
Problem: On Solaris there is a warning for "struct utimbuf".
Solution: Move including "utime.h" to outside the function. (Derek Wyatt)
Files: src/fileio.c

Patch 6.1.285
Problem: Can't wipe out a buffer with 'bufhide' option.
Solution: Add "wipe" value to 'bufhide'. (Yegappan Lakshmanan)
Files: runtime/doc/options.txt, src/buffer.c, src/option.c,

src/quickfix.c

Patch 6.1.286
Problem: 'showbreak' cannot contain multibyte characters.
Solution: Allow using all printable characters for 'showbreak'.
Files: src/charset.c, src/move.c, src/option.c

Patch 6.1.287 (depends on 6.1.285)
Problem: Effect of "delete" and "wipe" in 'bufhide' were mixed up.
Solution: Wipe out when wiping out is asked for.
Files: src/buffer.c

Patch 6.1.288
Problem: ":silent function F" hangs. (Hari Krishna Dara)
Solution: Don't use msg_col, it is not incremented when using ":silent".

Also made the function output look a bit better. Don't translate
"function".

Files: src/eval.c

Patch 6.1.289 (depends on 6.1.278)

version6.txt — 2379

Problem: Compiler warning for pointer. (Axel Kielhorn)
Solution: Add a typecast for " ".
Files: src/screen.c

Patch 6.1.290 (extra)
Problem: Truncating long text for message box may break multibyte

character.
Solution: Adjust to start of multibyte character. (Yasuhiro Matsumoto)
Files: src/os_mswin.c

Patch 6.1.291 (extra)
Problem: Win32: CTRL-@ doesn't work. Don't even get a message for it.
Solution: Recognize the keycode for CTRL-@. (Yasuhiro Matsumoto)
Files: src/gui_w48.c

Patch 6.1.292 (extra, depends on 6.1.253)
Problem: Win32: Can't compile with new MingW compiler.

Borland 5 makefile doesn't generate pathdef.c.
Solution: Remove -wwide-multiply argument. (Rene de Zwart)

Various fixes for other problems in Win32 makefiles. (Dan Sharp)
Files: src/Make_bc5.mak, src/Make_cyg.mak, src/Make_ming.mak,

src/Make_mvc.mak

Patch 6.1.293
Problem: byte2line() returns a wrong result for some values.
Solution: Change ">=" to ">" in ml_find_line_or_offset(). (Bradford C Smith)

Add one to the line number when at the end of a block.
Files: src/memline.c

Patch 6.1.294
Problem: Can't include a multibyte character in a string by its hex value.

(Benji Fisher)
Solution: Add "\u....": a character specified with up to four hex numbers

and stored according to the value of 'encoding'.
Files: src/eval.c

Patch 6.1.295 (extra)
Problem: Processing the cs.po file generates an error. (Rahul Agrawal)
Solution: Fix the printf format characters in the translation.
Files: src/po/cs.po

Patch 6.1.296
Problem: Win32: When cancelling the font dialog 'guifont' remains set to

"*".
Solution: Restore the old value of 'guifont' (Yasuhiro Matsumoto)
Files: src/option.c

Patch 6.1.297
Problem: "make test" fails in test6 in an UTF-8 environment. (Benji Fisher)
Solution: Before executing the BufReadPost autocommands save the current

fileencoding, so that the file isn't marked changed.
Files: src/fileio.c

Patch 6.1.298
Problem: When using signs and the first line of a closed fold has a sign

it can be redrawn as if the fold was open. (Kamil Burzynski)
Solution: Don't redraw a sign inside a closed fold.
Files: src/screen.c

Patch 6.1.299

version6.txt — 2380

Problem: ":edit +set\ ro file" doesn't work.
Solution: Halve the number of backslashes in the "+cmd" argument.
Files: src/ex_docmd.c

Patch 6.1.300 (extra)
Problem: Handling of ETO_IGNORELANGUAGE is confusing.
Solution: Clean up the handling of ETO_IGNORELANGUAGE. (Glenn Maynard)
Files: src/gui_w32.c

Patch 6.1.301 (extra)
Problem: French translation of file-save dialog doesn't show file name.
Solution: Insert a star in the printf string. (Francois Terrot)
Files: src/po/fr.po

Patch 6.1.302
Problem: Counting lines of the Visual area is incorrect for closed folds.

(Mikolaj Machowski)
Solution: Correct the start and end for the closed fold.
Files: src/normal.c

Patch 6.1.303 (extra)
Problem: The Top/Bottom/All text does not always fit in the ruler when

translated to Japanese. Problem with a character being wider when
in a bold font.

Solution: Use ETO_PDY to specify the width of each character. (Yasuhiro
Matsumoto)

Files: src/gui_w32.c

Patch 6.1.304 (extra, depends on 6.1.292)
Problem: Win32: Postscript is always enabled in the MingW Makefile.

Pathdef.c isn't generated properly with Make_bc5.mak. (Yasuhiro
Matsumoto)

Solution: Change an ifdef to an ifeq. (Madoka Machitani)
Use the Borland make redirection to generate pathdef.c. (Maurice
Barnum)

Files: src/Make_bc5.mak, src/Make_ming.mak

Patch 6.1.305
Problem: When 'verbose' is 14 or higher, a function call may cause reading

uninitialized data. (Walter Briscoe)
Solution: Check for end-of-string in trunc_string().
Files: src/message.c

Patch 6.1.306
Problem: The AIX VisualAge cc compiler doesn't define __STDC__.
Solution: Use __EXTENDED__ like __STDC__. (Jess Thrysoee)
Files: src/os_unix.h

Patch 6.1.307
Problem: When a double-byte character has an illegal tail byte the display

is messed up. (Yasuhiro Matsumoto)
Solution: Draw "XX" instead of the wrong character.
Files: src/screen.c

Patch 6.1.308
Problem: Can't reset the Visual mode returned by visualmode().
Solution: Use an optional argument to visualmode(). (Charles Campbell)
Files: runtime/doc/eval.txt, src/eval.c, src/normal.c,

src/structs.h

version6.txt — 2381

Patch 6.1.309
Problem: The tutor doesn't select German if the locale name is

"German_Germany.1252". (Joachim Hofmann)
Solution: Check for "German" in the locale name. Also check for

".ge". And include the German and Greek tutors.
Files: runtime/tutor/tutor.de, runtime/tutor/tutor.vim,

runtime/tutor/tutor.gr, runtime/tutor/tutor.gr.cp737

Patch 6.1.310 (depends on 6.1.307)
Problem: All double-byte characters are displayed as "XX".
Solution: Use ">= 32" instead of "< 32". (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 6.1.311 (extra)
Problem: VMS: path in window title doesn't include necessary separator.

file version doesn't always work properly with Unix.
Crashes because of memory overwrite in GUI.
Didn't always handle files with lowercase and correct path.

Solution: Fix the problems. Remove unnecessary file name translations.
(Zoltan Arpadffy)

Files: src/buffer.c, src/ex_cmds2.c, src/fileio.c, src/memline.c,
src/misc1.c, src/misc2.c, src/os_unix.c, src/os_vms.c, src/tag.c

Patch 6.1.312
Problem: When using ":silent" debugging is also done silently.
Solution: Disable silence while at the debug prompt.
Files: src/ex_cmds2.c

Patch 6.1.313
Problem: When a ":drop fname" command is used and "fname" is open in

another window, it is also opened in the current window.
Solution: Change to the window with "fname" instead.

Don't redefine the argument list when dropping only one file.
Files: runtime/doc/windows.txt, src/ex_cmds2.c, src/ex_cmds.c,

src/ex_docmd.c, src/proto/ex_cmds2.pro, src/proto/ex_docmd.pro

Patch 6.1.314 (depends on 6.1.126)
Problem: Missing backslash in "Generic Config file" syntax menu.
Solution: Insert the backslash. (Zak Beck)
Files: runtime/makemenu.vim, runtime/synmenu.vim

Patch 6.1.315 (extra)
Problem: A very long hostname may lead to an unterminated string. Failing

to obtain a hostname may result in garbage. (Walter Briscoe)
Solution: Add a NUL at the end of the hostname buffer.
Files: src/os_mac.c, src/os_msdos.c, src/os_unix.c, src/os_win16.c,

src/os_win32.c

Patch 6.1.316
Problem: When exiting with "wq" and there is a hidden buffer, after the

"file changed" dialog there is a warning for a changed buffer.
(Ajit Thakkar)

Solution: Do update the buffer timestamps when exiting.
Files: src/fileio.c

Patch 6.1.317
Problem: Closing a window may cause some of the remaining windows to be

positioned wrong if there is a mix of horizontal and vertical
splits. (Stefan Ingi Valdimarsson)

Solution: Update the frame sizes before updating the window positions.

version6.txt — 2382

Files: src/window.c

Patch 6.1.318
Problem: auto/pathdef.c can include wrong quotes when a compiler flag

includes quotes.
Solution: Put a backslash before the quotes in compiler flags. (Shinra Aida)
Files: src/Makefile

Patch 6.1.319 (depends on 6.1.276)
Problem: Using "--remote +cmd file" does not execute "cmd".
Solution: Call inputrestore() in the same command line as inputsave(),

otherwise it will never get executed.
Files: src/main.c

Patch 6.1.320 (depends on 6.1.313)
Problem: When a ":drop one\ file" command is used the file "one\ file" is

opened, the backslash is not removed. (Taro Muraoka)
Solution: Handle backslashes correctly. Always set the argument list to

keep it simple.
Files: runtime/doc/windows.txt, src/ex_cmds.c

Patch 6.1.321
Problem: When 'mouse' includes 'n' but not 'v', don't allow starting Visual

mode with the mouse.
Solution: Don't use MOUSE_MAY_VIS when there is no 'v' in 'mouse'. (Flemming

Madsen)
Files: src/normal.c

Patch 6.1.322 (extra, depends on 6.1.315)
Problem: Win32: The host name is always "PC " plus the real host name.
Solution: Don't insert "PC " before the host name.
Files: src/os_win32.c

Patch 6.1.323
Problem: ":registers" doesn't stop listing for a "q" at the more prompt.

(Hari Krishna Dara)
Solution: Check for interrupt and got_int.
Files: src/ops.c, src/proto/ops.pro

Patch 6.1.324
Problem: Crash when dragging a vertical separator when <LeftMouse> is

remapped to jump to another window.
Solution: Pass the window pointer to the function doing the dragging instead

of always using the current window. (Daniel Elstner)
Also fix that starting a drag changes window focus.

Files: src/normal.c, src/proto/window.pro, src/ui.c, src/vim.h,
src/window.c

Patch 6.1.325
Problem: Shift-Tab is not automatically recognized in an xterm.
Solution: Add <Esc>[Z as the termcap code. (Andrew Pimlott)
Files: src/term.c

Patch 6.1.326
Problem: Using a search pattern may read from uninitialized data (Yasuhiro

Matsumoto)
Solution: Initialize pointers to NULL.
Files: src/regexp.c

Patch 6.1.327

version6.txt — 2383

Problem: When opening the "mbyte.txt" help file the utf-8 characters are
unreadable, because the fileencoding is forced to be latin1.

Solution: Check for utf-8 encoding first in help files. (Daniel Elstner)
Files: runtime/doc/mbyte.txt, src/fileio.c

Patch 6.1.328
Problem: Prototype for enc_canon_search() is missing.
Solution: Add the prototype. (Walter Briscoe)
Files: src/mbyte.c

Patch 6.1.329
Problem: When editing a file "a b c" replacing "%" in ":Cmd %" or ":next %"

does not work properly. (Hari Krishna Dara)
Solution: Always escape spaces when expanding "%". Don't split argument for

<f-args> in a user command when only one argument is used.
Files: src/ex_docmd.c

Patch 6.1.330
Problem: GTK, Motif and Athena: Keypad keys produce the same code as

non-keypad keys, making it impossible to map them separately.
Solution: Use different termcap codes for the keypad keys. (Neil Bird)
Files: src/gui_gtk_x11.c, src/gui_x11.c

Patch 6.1.331
Problem: When translating the help files, "LOCAL ADDITIONS" no longer marks

the spot where help files from plugins are to be listed.
Solution: Add a "local-additions" tag and use that to find the right spot.
Files: runtime/doc/help.txt, src/ex_cmds.c

Patch 6.1.332 (extra)
Problem: Win32: Loading Perl dynamically doesn't work with Perl 5.8.

Perl 5.8 also does not work with Cygwin and Ming.
Solution: Adjust the function calls. (Taro Muraoka)

Adjust the cyg and ming makefiles. (Dan Sharp)
Files: src/Make_cyg.mak, src/Make_ming.mak, src/Make_mvc.mak,

src/if_perl.xs

Patch 6.1.333 (extra)
Problem: Win32: Can't handle Unicode text on the clipboard.

Can't pass NUL byte, it becomes a line break. (Bruce DeVisser)
Solution: Support Unicode for the clipboard (Ron Aaron and Glenn Maynard)

Also support copy/paste of NUL bytes.
Files: src/os_mswin.c, src/os_win16.c src/os_win32.c

Patch 6.1.334 (extra, depends on 6.1.303)
Problem: Problem with drawing Hebrew characters.
Solution: Only use ETO_PDY for Windows NT and the like. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 6.1.335 (extra)
Problem: Failure of obtaining the cursor position and window size is

ignored.
Solution: Remove a semicolon after an "if". (Walter Briscoe)
Files: src/gui_w32.c

Patch 6.1.336 (extra)
Problem: Warning for use of function prototypes of smsg().
Solution: Define HAVE_STDARG_H. (Walter Briscoe)
Files: src/os_win32.h

version6.txt — 2384

Patch 6.1.337
Problem: When using "finish" in debug mode in function B() for ":call

A(B())" does not stop after B() is finished.
Solution: Increase debug_level while evaluating a function.
Files: src/ex_docmd.c

Patch 6.1.338
Problem: When using a menu that checks out the current file from Insert

mode, there is no warning for the changed file until exiting
Insert mode. (Srikanth Sankaran)

Solution: Add a check for need_check_timestamps in the Insert mode loop.
Files: src/edit.c

Patch 6.1.339
Problem: Completion doesn't allow "g:" in ":let g:did_<Tab>". (Benji

Fisher)
Solution: Return "g:var" for global variables when that is what is being

expanded. (Flemming Madsen)
Files: src/eval.c

Patch 6.1.340 (extra, depends on 6.1.332)
Problem: Win32: Can't compile the Perl interface with nmake.
Solution: Don't compare the version number as a string but as a number.

(Juergen Kraemer)
Files: src/Make_mvc.mak

Patch 6.1.341
Problem: In Insert mode with 'rightleft' set the cursor is drawn halfway a

double-wide character. For CTRL-R and CTRL-K in Insert mode the "
or ? is not displayed.

Solution: Draw the cursor in the next character cell. Display the " or ?
over the right half of the double-wide character. (Yasuhiro
Matsumoto) Also fix that cancelling a digraph doesn't redraw
a double-byte character correctly.

Files: src/edit.c, src/gui.c, src/mbyte.c

Patch 6.1.342 (depends on 6.1.341)
Problem: With 'rightleft' set typing "c" on a double-wide character causes

the cursor to be displayed one cell to the left.
Solution: Draw the cursor in the next character cell. (Yasuhiro Matsumoto)
Files: src/gui.c

Patch 6.1.343 (depends on 6.1.342)
Problem: Cannot compile with the +multi_byte feature but without +rightleft.

Cannot compile without the GUI.
Solution: Fix the #ifdefs. (partly by Nam SungHyun)
Files: src/gui.c, src/mbyte.c, src/ui.c

Patch 6.1.344
Problem: When using ":silent filetype" the output is still put in the

message history. (Hari Krishna Dara)
Solution: Don't add messages in the history when ":silent" is used.
Files: src/message.c

Patch 6.1.345 (extra)
Problem: Win32: 'imdisable' doesn't work.
Solution: Make 'imdisable' work. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 6.1.346

version6.txt — 2385

Problem: The scroll wheel can only scroll the current window.
Solution: Make the scroll wheel scroll the window that the mouse points to.

(Daniel Elstner)
Files: src/edit.c, src/gui.c, src/normal.c, src/term.c

Patch 6.1.347
Problem: When using cscope to list matching tags, the listed number is

sometimes not equal to what cscope uses. (Vihren Milev)
Solution: For cscope tags use only one table, don't give tags in the current

file a higher priority.
Files: src/tag.c

Patch 6.1.348
Problem: Wildmode with wildmenu: ":set wildmode=list,full", ":colorscheme

<tab>" results in "zellner" instead of the first entry. (Anand
Hariharan)

Solution: Don't call ExpandOne() from globpath(). (Flemming Madsen)
Files: src/ex_getln.c

Patch 6.1.349
Problem: "vim --serverlist" when no server was ever started gives an error

message without "\n".
"vim --serverlist" doesn't exit when the X server can't be
contacted, it starts Vim unexpectedly. (Ricardo Signes)

Solution: Don't give an error when no Vim server was ever started.
Treat failing of opening the display equal to errors inside the
remote*() functions. (Flemming Madsen)

Files: src/if_xcmdsrv.c, src/main.c

Patch 6.1.350
Problem: When entering a buffer with ":bnext" for the first time, using an

autocommand to restore the last used cursor position doesn't work.
(Paolo Giarusso)

Solution: Don't use the last known cursor position of the current Vim
invocation if an autocommand changed the position.

Files: src/buffer.c

Patch 6.1.351 (depends on 6.1.349)
Problem: Crash when starting Vim the first time in an X server. (John

McGowan)
Solution: Don't call xFree() with a fixed string.
Files: src/if_xcmdsrv.c

Patch 6.1.352 (extra, depends on 6.1.345)
Problem: Win32: Crash when setting "imdisable" in _vimrc.
Solution: Don't call IME functions when imm32.dll was not loaded (yet).

Also add typecasts to avoid Compiler warnings for
ImmAssociateContext() argument.

Files: src/gui_w32.c

Patch 6.1.353 (extra, depends on 6.1.334)
Problem: Problem with drawing Arabic characters.
Solution: Don't use ETO_PDY, do use padding.
Files: src/gui_w32.c

Patch 6.1.354 (extra, depends on 6.1.333)
Problem: MS-Windows 98: Notepad can't paste text copied from Vim when

'encoding' is "utf-8".
Solution: Also make CF_TEXT available on the clipboard. (Ron Aaron)
Files: src/os_mswin.c

version6.txt — 2386

Patch 6.1.355
Problem: In a regexp '\n' will never match anything in a string.
Solution: Make '\n' match a newline character.
Files: src/buffer.c, src/edit.c, src/eval.c, src/ex_cmds2.c,

src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/misc1.c,
src/option.c, src/os_mac.c, src/os_unix.c, src/quickfix.c,
src/regexp.c, src/search.c, src/syntax.c, src/tag.c, src/vim.h

Patch 6.1.356 (extra, depends on, well, eh, several others)
Problem: Compiler warnings for using convert_setup() and a few other

things.
Solution: Add typecasts.
Files: src/mbyte.c, src/os_mswin.c, src/proto/os_win32.pro, src/os_win32.c

Patch 6.1.357
Problem: CR in the quickfix window jumps to the error under the cursor, but

this doesn't work in Insert mode. (Srikanth Sankaran)
Solution: Handle CR in Insert mode in the quickfix window.
Files: src/edit.c

Patch 6.1.358
Problem: The tutor doesn't select another locale version properly.
Solution: Insert the "let" command. (Yasuhiro Matsumoto)
Files: runtime/tutor/tutor.vim

Patch 6.1.359 (extra)
Problem: Mac Carbon: Vim doesn't get focus when started from the command

line. Crash when using horizontal scroll bar.
Solution: Set Vim as the frontprocess. Fix scrolling. (Peter Cucka)
Files: src/gui_mac.c

Patch 6.1.360 (depends on 6.1.341)
Problem: In Insert mode CTRL-K ESC messes up a multibyte character.

(Anders Helmersson)
Solution: Save all bytes of a character when displaying a character

temporarily.
Files: src/edit.c, src/proto/screen.pro, src/screen.c

Patch 6.1.361
Problem: Cannot jump to a file mark with ":'M".
Solution: Allow jumping to another file for a mark in an Ex address when it

is the only thing in the command line.
Files: src/ex_docmd.c

Patch 6.1.362
Problem: tgetent() may return zero for success. tgetflag() may return -1

for an error.
Solution: Check tgetflag() for returning a positive value. Add an autoconf

check for the value that tgetent() returns.
Files: src/auto/configure, src/config.h.in, src/configure.in, src/term.c

Patch 6.1.363
Problem: byte2line() can return one more than the number of lines.
Solution: Return -1 if the offset is one byte past the end.
Files: src/memline.c

Patch 6.1.364
Problem: That the FileChangedShell autocommand event never nests makes it

difficult to reload a file in a normal way.

version6.txt — 2387

Solution: Allow nesting for the FileChangedShell event but do not allow
triggering itself again.
Also avoid autocommands for the cmdline window in rare cases.

Files: src/ex_getln.c, src/fileio.c, src/window.c

Patch 6.1.365 (depends on 6.1.217)
Problem: Setting a breakpoint in a sourced file with a relative path name

doesn't work. (Servatius Brandt)
Solution: Expand the file name to a full path.
Files: src/ex_cmds2.c

Patch 6.1.366
Problem: Can't use Vim with Netbeans.
Solution: Add the Netbeans interface. Includes support for sign icons and

"-fg" and "-bg" arguments for GTK. Add the 'autochdir'
option. (Gordon Prieur, George Hernandez, Dave Weatherford)
Make it possible to display both a sign with a text and one with
line highlighting in the same line.
Add support for Agide, interface version 2.1.
Also fix that when 'iskeyword' includes '?' the "*" command
doesn't work properly on a word that includes "?" (Bill McCarthy):
Don't escape "?" to "\?" when searching forward.

Files: runtime/doc/Makefile, runtime/doc/netbeans.txt,
runtime/doc/options.txt, runtime/doc/various.txt,
src/Makefile, src/auto/configure, src/buffer.c, src/config.h.in,
src/config.mk.in, src/configure.in, src/edit.c, src/ex_cmds.c,
src/ex_docmd.c, src/feature.h, src/fileio.c, src/globals.h,
src/gui.c, src/gui_beval.c, src/gui_gtk_x11.c, src/gui_x11.c,
src/main.c, src/memline.c, src/misc1.c, src/misc2.c, src/move.c,
src/nbdebug.c, src/nbdebug.h, src/netbeans.c, src/normal.c,
src/ops.c, src/option.c, src/option.h, src/proto/buffer.pro,
src/proto/gui_beval.pro, src/proto/gui_gtk_x11.pro,
src/proto/gui_x11.pro, src/proto/misc2.pro,
src/proto/netbeans.pro, src/proto/normal.pro, src/proto/ui.pro,
src/proto.h, src/screen.c, src/structs.h, src/ui.c, src/undo.c,
src/vim.h, src/window.c, src/workshop.c

Patch 6.1.367 (depends on 6.1.365)
Problem: Setting a breakpoint in a function doesn't work. For a sourced

file it doesn't work when symbolic links are involved. (Servatius
Brandt)

Solution: Expand the file name in the same way as do_source() does. Don't
prepend the path to a function name.

Files: src/ex_cmds2.c

Patch 6.1.368
Problem: Completion for ":map" does not include <silent> and <script>.

":mkexrc" do not save the <silent> attribute of mappings.
Solution: Add "<silent>" to the generated map commands when appropriate.

(David Elstner)
Add <silent> and <script> to command line completion.

Files: src/getchar.c

Patch 6.1.369 (extra)
Problem: VMS: Vim hangs when attempting to edit a read-only file in the

terminal. Problem with VMS filenames for quickfix.
Solution: Rewrite low level input. Remove version number from file name in

a couple more places. Fix crash after patch 6.1.362. Correct
return code for system(). (Zoltan Arpadffy, Tomas Stehlik)

Files: src/misc1.c, src/os_unix.c, src/os_vms.c, src/proto/os_vms.pro,

version6.txt — 2388

src/os_vms_conf.h, src/quickfix.c, src/ui.c

Patch 6.1.370
Problem: #ifdef nesting is unclear.
Solution: Insert spaces to indicate the nesting.
Files: src/os_unix.c

Patch 6.1.371
Problem: "%V" in 'statusline' doesn't show "0-1" in an empty line.
Solution: Add one to the column when comparing with virtual column (Andrew

Pimlott)
Files: src/buffer.c

Patch 6.1.372
Problem: With 16 bit ints there are compiler warnings. (Walter Briscoe)
Solution: Change int into long.
Files: src/structs.h, src/syntax.c

Patch 6.1.373
Problem: The default page header for printing is not translated.
Solution: Add _() around the two places where "Page" is used. (Mike

Williams) Translate the default value of the 'titleold' and
'printheader' options.

Files: src/ex_cmds2.c, src/option.c

Patch 6.1.374 (extra)
Problem: MS-Windows: Cannot build GvimExt with MingW or Cygwin.
Solution: Add makefile and modified resource files. (Rene de Zwart)

Also support Cygwin. (Alejandro Lopez_Valencia)
Files: GvimExt/Make_cyg.mak, GvimExt/Make_ming.mak, GvimExt/Makefile,

GvimExt/gvimext_ming.def, GvimExt/gvimext_ming.rc

Patch 6.1.375
Problem: MS-Windows: ':!dir "%"' does not work for a file name with spaces.

(Xiangjiang Ma)
Solution: Don't insert backslashes for spaces in a shell command.
Files: src/ex_docmd.c

Patch 6.1.376
Problem: "vim --version" and "vim --help" have a non-zero exit code.

That is unusual. (Petesea)
Solution: Use a zero exit code.
Files: src/main.c

Patch 6.1.377
Problem: Can't add words to 'lispwords' option.
Solution: Add P_COMMA and P_NODUP flags. (Haakon Riiser)
Files: src/option.c

Patch 6.1.378
Problem: When two buffer-local user commands are ambiguous, a full match

with a global user command isn't found. (Hari Krishna Dara)
Solution: Detect this situation and accept the global command.
Files: src/ex_docmd.c

Patch 6.1.379
Problem: Linux with kernel 2.2 can't use the alternate stack in combination

with threading, causes an infinite loop.
Solution: Don't use the alternate stack in this situation.
Files: src/os_unix.c

version6.txt — 2389

Patch 6.1.380
Problem: When 'winminheight' is zero and the quickfix window is zero lines,

entering the window doesn't make it higher. (Christian J.
Robinson)

Solution: Make sure the current window is at least one line high.
Files: src/window.c

Patch 6.1.381
Problem: When a BufWriteCmd is used and it leaves the buffer modified, the

window may still be closed. (Hari Krishna Dara)
Solution: Return FAIL from buf_write() when the buffer is still modified

after a BufWriteCmd autocommand was used.
Files: src/fileio.c

Patch 6.1.382 (extra)
Problem: Win32 GUI: When using two monitors, the code that checks/fixes the

window size and position (e.g. when a font changes) doesn't work
properly. (George Reilly)

Solution: Handle a double monitor situation. (Helmut Stiegler)
Files: src/gui_w32.c

Patch 6.1.383
Problem: The filling of the status line doesn't work properly for

multibyte characters. (Nam SungHyun)
There is no check for going past the end of the buffer.

Solution: Properly distinguish characters and bytes. Properly check for
running out of buffer space.

Files: src/buffer.c, src/ex_cmds2.c, src/proto/buffer.pro, src/screen.c

Patch 6.1.384
Problem: It is not possible to find if a certain patch has been included.

(Lubomir Host)
Solution: Support using has() to check if a patch was included.
Files: runtime/doc/eval.txt, src/eval.c, src/proto/version.pro,

src/version.c

Patch 6.1.385 (depends on 6.1.383)
Problem: Can't compile without the multibyte feature.
Solution: Move an #ifdef. (Christian J. Robinson)
Files: src/buffer.c

Patch 6.1.386
Problem: Get duplicate tags when running ":helptags".
Solution: Do the other half of moving a section to another help file.
Files: runtime/tagsrch.txt

Patch 6.1.387 (depends on 6.1.373)
Problem: Compiler warning for pointer cast.
Solution: Add (char_u *).
Files: src/option.c

Patch 6.1.388 (depends on 6.1.384)
Problem: Compiler warning for pointer cast.
Solution: Add (char *). Only include has_patch() when used.
Files: src/eval.c, src/version.c

Patch 6.1.389 (depends on 6.1.366)
Problem: Balloon evaluation doesn't work for GTK.

has("balloon_eval") doesn't work.

version6.txt — 2390

Solution: Add balloon evaluation for GTK. Also improve displaying of signs.
(Daniel Elstner)
Also make ":gui" start the netbeans connection and avoid using
netbeans functions when the connection is not open.

Files: src/Makefile, src/feature.h, src/gui.c, src/gui.h,
src/gui_beval.c, src/gui_beval.h, src/gui_gtk.c,
src/gui_gtk_x11.c, src/eval.c, src/memline.c, src/menu.c,
src/netbeans.c, src/proto/gui_beval.pro, src/proto/gui_gtk.pro,
src/structs.h, src/syntax.c, src/ui.c, src/workshop.c

Patch 6.1.390 (depends on 6.1.389)
Problem: It's not possible to tell Vim to save and exit through the

Netbeans interface. Would still try to send balloon eval text
after the connection is closed.
Can't use Unicode characters for sign text.

Solution: Add functions "saveAndExit" and "getModified". Check for a
working connection before sending a balloonText event.
various other cleanups.
Support any character for sign text. (Daniel Elstner)

Files: runtime/doc/netbeans.txt, runtime/doc/sign.txt, src/ex_cmds.c,
src/netbeans.c, src/screen.c

Patch 6.1.391
Problem: ml_get() error when using virtualedit. (Charles Campbell)
Solution: Get a line from a specific window, not the current one.
Files: src/charset.c

Patch 6.1.392 (depends on 6.1.383)
Problem: Highlighting in the 'statusline' is in the wrong position when an

item is truncated. (Zak Beck)
Solution: Correct the start of 'statusline' items properly for a truncated

item.
Files: src/buffer.c

Patch 6.1.393
Problem: When compiled with Python and threads, detaching the terminal may

cause Vim to loop forever.
Solution: Add -pthread to $CFLAGS when using Python and gcc. (Daniel

Elstner)
Files: src/auto/configure,, src/configure.in

Patch 6.1.394 (depends on 6.1.390)
Problem: The netbeans interface doesn't recognize multibyte glyph names.
Solution: Check the number of cells rather than bytes to decide

whether a glyph name is not a filename. (Daniel Elstner)
Files: src/netbeans.c

Patch 6.1.395 (extra, depends on 6.1.369)
Problem: VMS: OLD_VMS is never defined. Missing function prototype.
Solution: Define OLD_VMS in Make_vms.mms. Add vms_sys_status() to

os_vms.pro. (Zoltan Arpadffy)
Files: src/Make_vms.mms, src/proto/os_vms.pro

Patch 6.1.396 (depends on 6.1.330)
Problem: Compiler warnings for using enum.
Solution: Add typecast to char_u.
Files: src/gui_gtk_x11.c, src/gui_x11.c

Patch 6.1.397 (extra)
Problem: The install program may use a wrong path for the diff command if

version6.txt — 2391

there is a space in the install directory path.
Solution: Use double quotes around the path if necessary. (Alejandro

Lopez-Valencia) Also use double quotes around the file name
arguments.

Files: src/dosinst.c

Patch 6.1.398
Problem: Saving the typeahead for debug mode causes trouble for a test

script. (Servatius Brandt)
Solution: Add the ":debuggreedy" command to avoid saving the typeahead.
Files: runtime/doc/repeat.txt, src/ex_cmds.h, src/ex_cmds2.c,

src/ex_docmd.c, src/proto/ex_cmds2.pro

Patch 6.1.399
Problem: Warning for unused variable.
Solution: Remove the variable two_or_more.
Files: src/ex_cmds.c

Patch 6.1.400 (depends on 6.1.381)
Problem: When a BufWriteCmd wipes out the buffer it may still be accessed.
Solution: Don't try accessing a buffer that has been wiped out.
Files: src/fileio.c

Patch 6.1.401 (extra)
Problem: Building the Win16 version with Borland 5.01 doesn't work.

"make test" doesn't work with Make_dos.mak. (Walter Briscoe)
Solution: Various fixes to the w16 makefile. (Walter Briscoe)

Don't use deltree. Use "mkdir \tmp" instead of "mkdir /tmp".
Files: src/Make_w16.mak, src/testdir/Make_dos.mak

Patch 6.1.402
Problem: When evaluating a function name with curly braces, an error

is not handled consistently.
Solution: Accept the result of a curly braces expression when an

error was encountered. Skip evaluating an expression in curly
braces when skipping. (Servatius Brandt)

Files: src/eval.c

Patch 6.1.403 (extra)
Problem: MS-Windows 16 bit: compiler warnings.
Solution: Add typecasts. (Walter Briscoe)
Files: src/ex_cmds2.c, src/gui_w48.c, src/os_mswin.c, src/os_win16.c,

src/syntax.c

Patch 6.1.404 (extra)
Problem: Various small problems.
Solution: Fix comments. Various small additions, changes in indent, removal

of unused items and fixes.
Files: Makefile, README.txt, runtime/menu.vim, runtime/vimrc_example.vim,

src/INSTALL, src/INSTALLole.txt, src/Make_bc5.mak,
src/Make_cyg.mak, src/Make_ming.mak, src/Makefile,
src/config.h.in, src/edit.c, src/eval.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/getchar.c,
src/gui.c, src/gui_gtk.c, src/gui_photon.c, src/if_cscope.c,
src/if_python.c, src/keymap.h, src/mark.c, src/mbyte.c,
src/message.c, src/misc1.c, src/misc2.c, src/normal.c,
src/option.c, src/os_os2_cfg.h, src/os_win32.c,
src/proto/getchar.pro, src/proto/message.pro,
src/proto/regexp.pro, src/screen.c, src/structs.h, src/syntax.c,
src/term.c, src/testdir/test15.in, src/testdir/test15.ok,

version6.txt — 2392

src/vim.rc, src/xxd/Make_cyg.mak, src/xxd/Makefile

Patch 6.1.405
Problem: A few files are missing from the toplevel Makefile.
Solution: Add the missing files.
Files: Makefile

Patch 6.1.406 (depends on 6.1.392)
Problem: When a statusline item doesn't fit arbitrary text appears.

(Christian J. Robinson)
Solution: When there is just enough room but not for the "<" truncate the

statusline item like there is no room.
Files: src/buffer.c

Patch 6.1.407
Problem: ":set scrollbind | help" scrollbinds the help window. (Andrew

Pimlott)
Solution: Reset 'scrollbind' when opening a help window.
Files: src/ex_cmds.c

Patch 6.1.408
Problem: When 'rightleft' is set unprintable character 0x0c is displayed as

">c0<".
Solution: Reverse the text of the hex character.
Files: src/screen.c

Patch 6.1.409
Problem: Generating tags for the help doesn't work for some locales.
Solution: Set LANG=C LC_ALL=C in the environment for "sort". (Daniel

Elstner)
Files: runtime/doc/Makefile

Patch 6.1.410 (depends on 6.1.390)
Problem: Linking error when compiling with Netbeans but without sign icons.

(Malte Neumann)
Solution: Don't define buf_signcount() when sign icons are unavailable.
Files: src/buffer.c

Patch 6.1.411
Problem: When 'virtualedit' is set, highlighting a Visual block beyond the

end of a line may be wrong.
Solution: Correct the virtual column when the end of the line is before the

displayed part of the line. (Muraoka Taro)
Files: src/screen.c

Patch 6.1.412
Problem: When swapping terminal screens and using ":gui" to start the GUI,

the shell prompt may be after a hit-enter prompt.
Solution: Output a newline in the terminal when starting the GUI and there

was a hit-enter prompt..
Files: src/gui.c

Patch 6.1.413
Problem: When 'clipboard' contains "unnamed", "p" in Visual mode doesn't

work correctly.
Solution: Save the register before overwriting it and put the resulting text

on the clipboard afterwards. (Muraoka Taro)
Files: src/normal.c, src/ops.c

Patch 6.1.414 (extra, depends on 6.1.369)

version6.txt — 2393

Problem: VMS: Vim busy waits when waiting for input.
Solution: Delay for a short while before getting another character. (Zoltan

Arpadffy)
Files: src/os_vms.c

Patch 6.1.415
Problem: When there is a vertical split and a quickfix window, reducing the

size of the Vim window may result in a wrong window layout and a
crash.

Solution: When reducing the window size and there is not enough space for
'winfixheight' set the frame height to the larger height, so that
there is a retry while ignoring 'winfixheight'. (Yasuhiro
Matsumoto)

Files: src/window.c

Patch 6.1.416 (depends on 6.1.366)
Problem: When using the Netbeans interface, a line with a sign cannot be

changed.
Solution: Respect the GUARDEDOFFSET for sign IDs when checking for a guarded

area.
Files: src/netbeans.c

Patch 6.1.417
Problem: Unprintable multibyte characters are not handled correctly.

Multi-byte characters above 0xffff are displayed as another
character.

Solution: Handle unprintable multibyte characters. Display multibyte
characters above 0xffff with a marker. Recognize UTF-16 words and
BOM words as unprintable. (Daniel Elstner)

Files: src/charset.c, src/mbyte.c, src/screen.c

Patch 6.1.418
Problem: The result of strftime() is in the current locals. Need to

convert it to 'encoding'.
Solution: Obtain the current locale and convert the argument for strftime()

to it and the result back to 'encoding'. (Daniel Elstner)
Files: src/eval.c, src/ex_cmds.c, src/ex_cmds2.c, src/mbyte.c,

src/proto/mbyte.pro, src/option.c, src/os_mswin.c

Patch 6.1.419
Problem: Vim doesn't compile on AIX 5.1.
Solution: Don't define _NO_PROTO on this system. (Uribarri)
Files: src/auto/configure, src/configure.in

Patch 6.1.420 (extra)
Problem: convert_input() has an unnecessary STRLEN().

Conversion from UCS-2 to a codepage uses word count instead of
byte count.

Solution: Remove the STRLEN() call. (Daniel Elstner)
Always use byte count for string_convert().

Files: src/gui_w32.c, src/mbyte.c

Patch 6.1.421 (extra, depends on 6.1.354)
Problem: MS-Windows 9x: When putting text on the clipboard it can be in

the wrong encoding.
Solution: Convert text to the active codepage for CF_TEXT. (Glenn Maynard)
Files: src/os_mswin.c

Patch 6.1.422
Problem: Error in .vimrc doesn't cause hit-enter prompt when swapping

version6.txt — 2394

screens. (Neil Bird)
Solution: Set msg_didany also when sending a message to the terminal

directly.
Files: src/message.c

Patch 6.1.423
Problem: Can't find arbitrary text in help files.
Solution: Added the ":helpgrep" command.
Files: runtime/doc/various.txt, src/ex_cmds.h, src/ex_docmd.c,

src/proto/quickfix.pro, src/quickfix.c

Patch 6.1.424 (extra)
Problem: Win32: gvim compiled with VC++ 7.0 run on Windows 95 does not show

menu items.
Solution: Define $WINVER to avoid an extra item is added to MENUITEMINFO.

(Muraoka Taro)
Files: src/Make_mvc.mak

Patch 6.1.425
Problem: ":helptags $VIMRUNTIME/doc" does not add the "help-tags" tag.
Solution: Do add the "help-tags" tag for that specific directory.
Files: src/ex_cmds.c

Patch 6.1.426
Problem: "--remote-wait +cmd file" waits forever. (Valery Kondakoff)
Solution: Don't wait for the "+cmd" argument to have been edited.
Files: src/main.c

Patch 6.1.427
Problem: Several error messages for regexp patterns are not translated.
Solution: Use _() properly. (Muraoka Taro)
Files: src/regexp.c

Patch 6.1.428
Problem: FreeBSD: wait() may hang when compiled with Python support and

doing a system() call in a startup script.
Solution: Use waitpid() instead of wait() and poll every 10 msec, just like

what is done in the GUI.
Files: src/os_unix.c

Patch 6.1.429 (depends on 6.1.390)
Problem: Crash when using showmarks.vim plugin. (Charles Campbell)
Solution: Check for sign_get_text() returning a NULL pointer.
Files: src/screen.c

Patch 6.1.430
Problem: In Lisp code backslashed parens should be ignored for "%". (Dorai)
Solution: Skip over backslashed parens.
Files: src/search.c

Patch 6.1.431
Problem: Debug commands end up in redirected text.
Solution: Disable redirection while handling debug commands.
Files: src/ex_cmds2.c

Patch 6.1.432 (depends on 6.1.375)
Problem: MS-Windows: ":make %:p" inserts extra backslashes. (David Rennalls)
Solution: Don't add backslashes, handle it like ":!cmd".
Files: src/ex_docmd.c

version6.txt — 2395

Patch 6.1.433
Problem: ":popup" only works for Win32.
Solution: Add ":popup" support for GTK. (Daniel Elstner)
Files: runtime/doc/gui.txt, src/ex_docmd.c, src/gui_gtk.c, src/menu.c,

src/proto/gui_gtk.pro

Patch 6.1.434 (extra)
Problem: Win32: When there are more than 32767 lines, the scrollbar has a

roundoff error.
Solution: Make a click on an arrow move one line. Also move the code to

gui_w48.c, there is hardly any difference between the 16 bit and
32 bit versions. (Walter Briscoe)

Files: src/gui_w16.c, src/gui_w32.c, src/gui_w48.c

Patch 6.1.435
Problem: ":winsize x" resizes the Vim window to the minimal size. (Andrew

Pimlott)
Solution: Give an error message for wrong arguments of ":winsize" and

":winpos".
Files: src/ex_docmd.c

Patch 6.1.436
Problem: When a long UTF-8 file contains an illegal byte it's hard to find

out where it is. (Ron Aaron)
Solution: Add the line number to the error message.
Files: src/fileio.c

Patch 6.1.437 (extra, depends on 6.1.421)
Problem: Using multibyte functions when they are not available.
Solution: Put the clipboard conversion inside an #ifdef. (Vince Negri)

Also fix a pointer type mistake. (Walter Briscoe)
Files: src/os_mswin.c

Patch 6.1.438
Problem: When Perl has thread support Vim cannot use the Perl interface.
Solution: Add a configure check and disable Perl when it will not work.

(Aron Griffis)
Files: src/auto/configure, src/configure.in

Patch 6.1.439
Problem: Netbeans: A "create" function doesn't actually create a buffer,

following functions may fail.
Solution: Create a Vim buffer without a name when "create" is called.

(Gordon Prieur)
Files: runtime/doc/netbeans.txt, src/netbeans.c

Patch 6.1.440
Problem: The "@*" command doesn't obtain the actual contents of the

clipboard. (Hari Krishna Dara)
Solution: Obtain the clipboard text before executing the command.
Files: src/ops.c

Patch 6.1.441
Problem: "zj" and "zk" cannot be used as a motion command after an

operator. (Ralf Hetzel)
Solution: Accept these commands as motion commands.
Files: src/normal.c

Patch 6.1.442
Problem: Unicode 3.2 defines more space and punctuation characters.

version6.txt — 2396

Solution: Add the new characters to the Unicode tables. (Raphael Finkel)
Files: src/mbyte.c

Patch 6.1.443 (extra)
Problem: Win32: The gvimext.dll build with Borland 5.5 requires another

DLL.
Solution: Build a statically linked version by default. (Dan Sharp)
Files: GvimExt/Make_bc5.mak

Patch 6.1.444 (extra)
Problem: Win32: Enabling a build with gettext support is not consistent.
Solution: Use "GETTEXT" for Borland and msvc makefiles. (Dan Sharp)
Files: src/Make_bc5.mak, src/Make_mvc.mak

Patch 6.1.445 (extra)
Problem: DJGPP: get warning for argument of putenv()
Solution: Define HAVE_PUTENV to use DJGPP's putenv(). (Walter Briscoe)
Files: src/os_msdos.h

Patch 6.1.446 (extra)
Problem: Win32: The MingW makefile uses a different style of arguments than

other makefiles.
Dynamic IME is not supported for Cygwin.

Solution: Use "no" and "yes" style arguments. Remove the use of the
dyn-ming.h include file. (Dan Sharp)
Do not include the ime.h file and adjust the makefile. (Alejandro
Lopez-Valencia)

Files: src/Make_cyg.mak, src/Make_ming.mak, src/gui_w32.c,
src/if_perl.xs, src/if_python.c, src/if_ruby.c, src/os_win32.c

Patch 6.1.447
Problem: "make install" uses "make" directly for generating help tags.
Solution: Use $(MAKE) instead of "make". (Tim Mooney)
Files: src/Makefile

Patch 6.1.448
Problem: 'titlestring' has a default maximum width of 50 chars per item.
Solution: Remove the default maximum (also for 'statusline').
Files: src/buffer.c

Patch 6.1.449
Problem: When "1" and "a" are in 'formatoptions', auto-formatting always

moves a newly added character to the next line. (Servatius Brandt)
Solution: Don't move a single character to the next line when it was just

typed.
Files: src/edit.c

Patch 6.1.450
Problem: Termcap entry "kB" for back-tab is not recognized.
Solution: Use back-tab as the shift-tab code.
Files: src/keymap.h, src/misc2.c, src/term.c

Patch 6.1.451
Problem: GUI: When text in the find dialog contains a slash, a backslash is

inserted the next time it is opened. (Mezz)
Solution: Remove escaped backslashes and question marks. (Daniel Elstner)
Files: src/gui.c

Patch 6.1.452 (extra, after 6.1.446)
Problem: Win32: IME support doesn't work for MSVC.

version6.txt — 2397

Solution: Use _MSC_VER instead of __MSVC. (Alejandro Lopez-Valencia)
Files: src/gui_w32.c

Patch 6.1.453 (after 6.1.429)
Problem: When compiled without sign icons but with sign support, adding a

sign may cause a crash.
Solution: Check for the text sign to exist before using it. (Kamil

Burzynski)
Files: src/screen.c

Patch 6.1.454 (extra)
Problem: Win32: pasting Russian text in Vim with 'enc' set to cp1251

results in utf-8 bytes. (Perelyubskiy)
Conversion from DBCS to UCS2 does not work when 'encoding' is not
the active codepage.

Solution: Introduce enc_codepage and use it for conversion to 'encoding'
(Glenn Maynard)
Use MultiByteToWideChar() and WideCharToMultiByte() instead of
iconv(). Should do most needed conversions without iconv.dll.

Files: src/globals.h, src/gui_w32.c, src/mbyte.c, src/os_mswin.c,
src/proto/mbyte.pro, src/proto/os_mswin.pro, src/structs.h

Patch 6.1.455
Problem: Some Unicode characters can be one or two character cells wide.
Solution: Add the 'ambiwidth' option to tell Vim how to display these

characters. (Jungshik Shin)
Also reset the script ID when setting an option to its default
value, so that ":verbose set" won't give wrong info.

Files: runtime/doc/options.txt, src/mbyte.c, src/option.c, src/option.h

Patch 6.1.456 (extra, after 6.1.454)
Problem: Win32: IME doesn't work.
Solution: ImmGetCompositionStringW() returns the size in bytes, not words.

(Yasuhiro Matsumoto) Also fix typecast problem.
Files: src/gui_w32.c, src/os_mswin.c

Patch 6.1.457
Problem: An empty register in viminfo causes conversion to fail.
Solution: Don't convert an empty string. (Yasuhiro Matsumoto)
Files: src/ex_cmds.c, src/mbyte.c

Patch 6.1.458
Problem: Compiler warning for pointer.
Solution: Add a typecast.
Files: src/ex_cmds.c

Patch 6.1.459 (extra)
Problem: Win32: libcall() may return an invalid pointer and cause Vim to

crash.
Solution: Add a strict check for the returned pointer. (Bruce Mellows)
Files: src/os_mswin.c

Patch 6.1.460
Problem: GTK: after scrolling the text one line with a key, clicking the

arrow of the scrollbar does not always work. (Nam SungHyun)
Solution: Always update the scrollbar thumb when the value changed, even

when it would not move, like for RISCOS. (Daniel Elstner)
Files: src/gui.c, src/gui.h

Patch 6.1.461

version6.txt — 2398

Problem: When a keymap is active, typing a character in Select mode does
not use it. (Benji Fisher)

Solution: Apply Insert mode mapping to the character typed in Select mode.
Files: src/normal.c

Patch 6.1.462
Problem: When autocommands wipe out a buffer, a crash may happen. (Hari

Krishna Dara)
Solution: Don't decrement the window count of a buffer before calling the

autocommands for it. When re-using the current buffer, watch out
for autocommands changing the current buffer.

Files: src/buffer.c, src/ex_cmds.c, src/proto/buffer.pro

Patch 6.1.463
Problem: When writing a compressed file, the file name that gzip stores in

the file is the weird temporary file name. (David Rennalls)
Solution: Use the real file name when possible.
Files: runtime/plugin/gzip.vim

Patch 6.1.464
Problem: Crash when using C++ syntax highlighting. (Gerhard Hochholzer)
Solution: Check for a negative index.
Files: src/syntax.c

Patch 6.1.465 (after 6.1.454)
Problem: Compile error when using cygwin.
Solution: Change #ifdef WIN32 to #ifdef WIN3264. (Alejandro Lopez-Valencia)

Undefine WIN32 after including windows.h
Files: src/mbyte.c

Patch 6.1.466
Problem: The "-f" argument is a bit obscure.
Solution: Add the "--nofork" argument. Improve the help text a bit.
Files: runtime/doc/starting.txt, src/main.c

Patch 6.1.467
Problem: Setting the window title doesn't work for Chinese.
Solution: Use an X11 function to convert text to a text property. (Kentaro

Nakazawa)
Files: src/os_unix.c

Patch 6.1.468
Problem: ":mksession" also stores folds for buffers which will not be

restored.
Solution: Only store folds for a buffer with 'buftype' empty and help files.
Files: src/ex_docmd.c

Patch 6.1.469
Problem: 'listchars' cannot contain multibyte characters.
Solution: Handle multibyte UTF-8 list characters. (Matthew Samsonoff)
Files: src/message.c, src/option.c, src/screen.c

Patch 6.1.470 (lang)
Problem: Polish messages don't show up correctly on MS-Windows.
Solution: Convert messages to cp1250. (Mikolaj Machowski)

Also add English message translations, because it got in the way
of the patch.

Files: Makefile, src/po/Makefile, src/po/en_gb.po, src/po/pl.po

Patch 6.1.471

version6.txt — 2399

Problem: ":jumps" output continues after pressing "q" at the more-prompt.
(Hari Krishna Dara)

Solution: Check for "got_int" being set.
Files: src/mark.c

Patch 6.1.472
Problem: When there is an authentication error when connecting to the X

server Vim exits.
Solution: Use XSetIOErrorHandler() to catch the error and longjmp() to avoid

the exit. Also do this in the main loop, so that when the X
server exits a Vim running in a console isn't killed.

Files: src/globals.h, src/main.c, src/os_unix.c

Patch 6.1.473
Problem: Referring to $curwin or $curbuf in Perl 5.6 causes a crash.
Solution: Add "pTHX_" to cur_val(). (Yasuhiro Matsumoto)
Files: src/if_perl.xs

Patch 6.1.474
Problem: When opening the command-line window in Ex mode it's impossible to

go back. (Pavol Juhas)
Solution: Reset "exmode_active" and restore it when the command-line window

is closed.
Files: src/ex_getln.c

Patch 6.2f.001
Problem: The configure check for Ruby didn't work properly for Ruby 1.8.0.
Solution: Change the way the Ruby check is done. (Aron Griffis)
Files: src/auto/configure, src/configure.in

Patch 6.2f.002
Problem: The output of ":ls" doesn't show whether a buffer had read errors.
Solution: Add the "x" flag in the ":ls" output.
Files: runtime/doc/windows.txt, src/buffer.c

Patch 6.2f.003
Problem: Test49 doesn't properly test the behavior of ":catch" without an

argument.
Solution: Update test49. (Servatius Brandt)
Files: src/testdir/test49.ok, src/testdir/test49.vim

Patch 6.2f.004
Problem: "vim --version" always uses CR/LF in the output.
Solution: Omit the CR.
Files: src/message.c, src/os_unix.c

Patch 6.2f.005
Problem: Two error messages without a colon after the number.
Solution: Add the colon. (Taro Muraoka)
Files: src/if_cscope.c

Patch 6.2f.006
Problem: When saving a file takes a while and Vim regains focus this can

result in a "file changed outside of Vim" warning and ml_get()
errors. (Mike Williams)

Solution: Add the "b_saving" flag to avoid checking the timestamp while the
buffer is being saved. (Michael Schaap)

Files: src/fileio.c, src/structs.h

version6.txt — 2400

Patch 6.2f.007
Problem: Irix compiler complains about multiple defined symbols.

vsnprintf() is not available. (Charles Campbell)
Solution: Insert EXTERN for variables in globals.h. Change the configure

check for vsnprintf() from compiling to linking.
Files: src/auto/configure, src/configure.in, src/globals.h

Patch 6.2f.008
Problem: The Aap recipe doesn't work with Aap 0.149.
Solution: Change targetarg to TARGETARG. Update the mysign file.
Files: src/main.aap, src/mysign

Patch 6.2f.009 (extra)
Problem: Small problem when building with Borland 5.01.
Solution: Use mkdir() instead of _mkdir(). (Walter Briscoe)
Files: src/dosinst.h

Patch 6.2f.010
Problem: Warning for missing prototypes.
Solution: Add missing prototypes. (Walter Briscoe)
Files: src/if_cscope.c

Patch 6.2f.011
Problem: The configure script doesn't work with autoconf 2.5x.
Solution: Add square brackets around a header check. (Aron Griffis)

Note: touch src/auto/configure after applying this patch.
Files: src/configure.in

Patch 6.2f.012
Problem: ":echoerr" doesn't work correctly inside try/endtry.
Solution: Don't reset did_emsg inside a try/endtry. (Servatius Brandt)
Files: src/eval.c

Patch 6.2f.013 (extra)
Problem: Macintosh: Compiler warning for a trigraph.
Solution: Insert a backslash before each question mark. (Peter Cucka)
Files: src/os_mac.h

Patch 6.2f.014 (extra)
Problem: Macintosh: ex_eval is not included in the project file.
Solution: Add ex_eval. (Dany St-Amant)
Files: src/os_mac.pbproj/project.pbxproj

Patch 6.2f.015 (extra)
Problem: Win32: When changing header files not all source files involved

are recompiled.
Solution: Improve the dependency rules. (Dan Sharp)
Files: src/Make_cyg.mak, src/Make_ming.mak

Patch 6.2f.016
Problem: "vim --version > ff" on non-Unix systems results in a file with a

missing line break at the end. (Bill McCarthy)
Solution: Add a line break.
Files: src/main.c

Patch 6.2f.017
Problem: Unix: starting Vim in the background and then bringing it to the

foreground may cause the terminal settings to be wrong.
Solution: Check for tcsetattr() to return an error, retry when it does.

(Paul Tapper)

version6.txt — 2401

Files: src/os_unix.c

Patch 6.2f.018
Problem: Mac OS X 10.2: OK is defined to zero in curses.h while Vim uses

one. Redefining it causes a warning message.
Solution: Undefine OK before defining it to one. (Taro Muraoka)
Files: src/vim.h

Patch 6.2f.019
Problem: Mac OS X 10.2: COLOR_BLACK and COLOR_WHITE are defined in

curses.h.
Solution: Rename them to PRCOLOR_BLACK and PRCOLOR_WHITE.
Files: src/ex_cmds2.c

Patch 6.2f.020
Problem: Win32: test50 produces beeps and fails with some versions of diff.
Solution: Remove empty lines and convert the output to dos fileformat.
Files: src/testdir/test50.in

Patch 6.2f.021
Problem: Running configure with "--enable-netbeans" disables Netbeans.

(Gordon Prieur)
Solution: Fix the tests in configure.in where the default is to enable a

feature. Fix that "--enable-acl" reported "yes" confusingly.
Files: src/auto/configure, src/configure.in, src/mysign

Patch 6.2f.022
Problem: A bogus value for 'foldmarker' is not rejected, possibly causing a

hang. (Derek Wyatt)
Solution: Check for a non-empty string before and after the comma.
Files: src/option.c

Patch 6.2f.023
Problem: When the help files are not in $VIMRUNTIME but 'helpfile' is

correct Vim still can't find the help files.
Solution: Also look for a tags file in the directory of 'helpfile'.
Files: src/tag.c

Patch 6.2f.024
Problem: When 'delcombine' is set and a character has more than two

composing characters "x" deletes them all.
Solution: Always delete only the last composing character.
Files: src/misc1.c

Patch 6.2f.025
Problem: When reading a file from stdin that has DOS line endings but a

missing end-of-line for the last line 'fileformat' becomes "unix".
(Bill McCarthy)

Solution: Don't add the missing line break when re-reading the text from the
buffer.

Files: src/fileio.c

Patch 6.2f.026
Problem: When typing new text at the command line, old composing characters

may be displayed.
Solution: Don't read composing characters from after the end of the

text to be displayed.
Files: src/ex_getln.c, src/mbyte.c, src/message.c, src/proto/mbyte.pro,

src/screen.c

version6.txt — 2402

Patch 6.2f.027
Problem: Compiler warnings for unsigned char pointers. (Tony Leneis)
Solution: Add typecasts to char pointer.
Files: src/quickfix.c

Patch 6.2f.028
Problem: GTK: When 'imactivatekey' is empty and XIM is inactive it can't be

made active again. Cursor isn't updated immediately when changing
XIM activation. Japanese XIM may hang when using 'imactivatekey'.
Can't activate XIM after typing fFtT command or ":sh".

Solution: Properly set the flag that indicates the IM is active. Update the
cursor right away. Do not send a key-release event. Handle
Normal mode and running an external command differently.
(Yasuhiro Matsumoto)

Files: src/mbyte.c

Patch 6.2f.029
Problem: Mixing use of int and enum.
Solution: Adjust argument type of cs_usage_msg(). Fix wrong typedef.
Files: src/if_cscope.c, src/if_cscope.h

Patch 6.2f.030 (after 6.2f.028)
Problem: Cursor moves up when using XIM.
Solution: Reset im_preedit_cursor. (Yasuhiro Matsumoto)
Files: src/mbyte.c

Patch 6.2f.031
Problem: Crash when listing a function argument in the debugger. (Ron Aaron)
Solution: Init the name field of an argument to NULL.
Files: src/eval.c

Patch 6.2f.032
Problem: When a write fails for a ":silent!" while inside try/endtry the

BufWritePost autocommands are not triggered.
Solution: Check the emsg_silent flag in should_abort(). (Servatius Brandt)
Files: src/ex_eval.c, src/testdir/test49.ok, src/testdir/test49.vim

Patch 6.2f.033
Problem: Cscope: re-entrance problem for ":cscope" command. Checking for

duplicate database didn't work well for Win95. Didn't check for
duplicate databases after an empty entry.

Solution: Don't set postponed_split too early. Remember first empty
database entry. (Sergey Khorev)

Files: src/if_cscope.c

Patch 6.2f.034
Problem: The netbeans interface cannot be used on systems without

vsnprintf(). (Tony Leneis)
Solution: Use EMSG(), EMSGN() and EMSG2() instead.
Files: src/auto/configure, src/configure.in, src/netbeans.c

Patch 6.2f.035
Problem: The configure check for the netbeans interface doesn't work if the

socket and nsl libraries are required.
Solution: Check for the socket and nsl libraries before the netbeans check.
Files: src/auto/configure, src/configure.in

Patch 6.2f.036
Problem: Moving leftwards over text with an illegal UTF-8 byte moves one

byte instead of one character.

version6.txt — 2403

Solution: Ignore an illegal byte after the cursor position.
Files: src/mbyte.c

Patch 6.2f.037
Problem: When receiving a Netbeans command at the hit-enter or more prompt

the screen is redrawn but Vim is still waiting at the prompt.
Solution: Quit the prompt like a CTRL-C was typed.
Files: src/netbeans.c

Patch 6.2f.038
Problem: The dependency to run autoconf causes a patch for configure.in

to run autoconf, even though the configure script was updated as
well.

Solution: Only run autoconf with "make autoconf".
Files: src/Makefile

Patch 6.2f.039
Problem: CTRL-W K makes the new top window very high.
Solution: When 'equalalways' is set equalize the window heights.
Files: src/window.c

==
VERSION 6.3 version-6.3

This section is about improvements made between version 6.2 and 6.3.

This is mainly a bug-fix release. There are also a few new features.
The major number of new items is in the runtime files and translations.

Changed changed-6.3

The intro message also displays a note about sponsoring Vim, mixed randomly
with the message about helping children in Uganda.

Included the translated menus, keymaps and tutors with the normal runtime
files. The separate "lang" archive now only contains translated messages.

Made the translated menu file names a bit more consistent. Use "latin1" for
"iso_8859-1" and "iso_8859-15".

Removed the "file_select.vim" script from the distribution. It's not more
useful than other scripts that can be downloaded from www.vim.org.

The "runtime/doc/tags" file is now always in unix fileformat. On MS-Windows
it used to be dos fileformat, but ":helptags" generates a unix format file.

Added added-6.3

New commands:
:cNfile go to last error in previous file
:cpfile idem
:changes print the change list
:keepmarks following command keeps marks where they are
:keepjumps following command keeps jumplist and marks
:lockmarks following command keeps marks where they are

version6.txt — 2404

:redrawstatus force a redraw of the status line(s)

New options:
'antialias' Mac OS X: use smooth, antialiased fonts
'helplang' preferred help languages

Syntax files:
Arch inventory (Nikolai Weibull)
Calendar (Nikolai Weibull)
Ch (Wayne Cheng)
Controllable Regex Mutilator (Nikolai Weibull)
D (Jason Mills)
Desktop (Mikolaj Machowski)
Dircolors (Nikolai Weibull)
Elinks configuration (Nikolai Weibull)
FASM (Ron Aaron)
GrADS scripts (Stefan Fronzek)
Icewm menu (James Mahler)
LDIF (Zak Johnson)
Locale input, fdcc. (Dwayne Bailey)
Pinfo config (Nikolai Weibull)
Pyrex (Marco Barisione)
Relax NG Compact (Nikolai Weibull)
Slice (Morel Bodin)
VAX Macro Assembly (Tom Uijldert)
grads (Stefan Fronzek)
libao (Nikolai Weibull)
mplayer (Nikolai Weibull)
rst (Nikolai Weibull)
tcsh (Gautam Iyer)
yaml (Nikolai Weibull)

Compiler plugins:
ATT dot (Marcos Macedo)
Apple Project Builder (Alexander von Below)
Intel (David Harrison)
bdf (Nikolai Weibull)
icc (Peter Puck)
javac (Doug Kearns)
neato (Marcos Macedo)
onsgmls (Robert B. Rowsome)
perl (Christian J. Robinson)
rst (Nikolai Weibull)
se (SmartEiffel) (Doug Kearns)
tcl (Doug Kearns)
xmlwf (Robert B. Rowsome)

Filetype plugins:
Aap (Bram Moolenaar)
Ch (Wayne Cheng)
Css (Nikolai Weibull)
Pyrex (Marco Barisione)
Rst (Nikolai Weibull)

Indent scripts:
Aap (Bram Moolenaar)
Ch (Wayne Cheng)
DocBook (Nikolai Weibull)
MetaPost (Eugene Minkovskii)
Objective-C (Kazunobu Kuriyama)

version6.txt — 2405

Pyrex (Marco Barisione)
Rst (Nikolai Weibull)
Tcsh (Gautam Iyer)
XFree86 configuration file (Nikolai Weibull)
Zsh (Nikolai Weibull)

Keymaps:
Greek for cp1253 (Panagiotis Louridas)
Hungarian (Magyar) (Laszlo Zavaleta)
Persian-Iranian (Behnam Esfahbod)

Message translations:
Catalan (Ernest Adrogue)
Russian (Vassily Ragosin)
Swedish (Johan Svedberg)

Menu translations:
Catalan (Ernest Adrogue)
Russian (Tim Alexeevsky)
Swedish (Johan Svedberg)

Tutor translations:
Catalan (Ernest Adrogue)
Russian in cp1251 (Alexey Froloff)
Slovak in cp1250 and iso8859-2 (Lubos Celko)
Swedish (Johan Svedberg)
Korean (Kee-Won Seo)
UTF-8 version of the Japanese tutor (Yasuhiro Matsumoto) Use this as

the original, create the other Japanese tutor by conversion.

Included "russian.txt" help file. (Vassily Ragosin)

Include Encapsulated PostScript and PDF versions of the Vim logo in the extra
archive.

The help highlighting finds the highlight groups and shows them in the color
that is actually being used. (idea from Yakov Lerner)

The big Win32 version is now compiled with Ruby interface, version 1.8. For
Python version 2.3 is used. For Perl version 5.8 is used.

The "ftdetect" directory is mentioned in the documentation. The DOS install
program creates it.

Fixed fixed-6.3

Test 42 failed on MS-Windows. Set and reset 'fileformat' and 'binary' options
here and there. (Walter Briscoe)

The explorer plugin didn't work for double-byte 'encoding's.

Use "copy /y" in Make_bc5.mak to avoid a prompt for overwriting.

Patch 6.2.001
Problem: The ":stopinsert" command doesn't have a help tag.
Solution: Add the tag. (Antoine J. Mechelynck)
Files: runtime/doc/insert.txt, runtime/doc/tags

version6.txt — 2406

Patch 6.2.002
Problem: When compiled with the +multi_byte feature but without +eval,

displaying UTF-8 characters may cause a crash. (Karsten Hopp)
Solution: Also set the default for 'ambiwidth' when compiled without the

+eval feature.
Files: src/option.c

Patch 6.2.003
Problem: GTK 2: double-wide characters below 256 are not displayed

correctly.
Solution: Check the cell width for characters above 127. (Yasuhiro

Matsumoto)
Files: src/gui_gtk_x11.c

Patch 6.2.004
Problem: With a line-Visual selection at the end of the file a "p" command

puts the text one line upwards.
Solution: Detect that the last line was deleted and put forward. (Taro

Muraoka)
Files: src/normal.c

Patch 6.2.005
Problem: GTK: the "Find" and "Find and Replace" tools don't work. (Aschwin

Marsman)
Solution: Show the dialog after creating it. (David Necas)
Files: src/gui_gtk.c

Patch 6.2.006
Problem: The Netbeans code contains an obsolete function that uses "vim61"

and sets the fall-back value for $VIMRUNTIME.
Solution: Delete the obsolete function.
Files: src/main.c, src/netbeans.c, src/proto/netbeans.pro

Patch 6.2.007
Problem: Listing tags for Cscope doesn't always work.
Solution: Avoid using smgs_attr(). (Sergey Khorev)
Files: src/if_cscope.c

Patch 6.2.008
Problem: XIM with GTK 2: After backspacing preedit characters are wrong.
Solution: Reset the cursor position. (Yasuhiro Matsumoto)
Files: src/mbyte.c

Patch 6.2.009
Problem: Win32: The self-installing executable "Full" selection only

selects some of the items to install. (Salman Mohsin)
Solution: Change commas to spaces in between section numbers.
Files: nsis/gvim.nsi

Patch 6.2.010
Problem: When 'virtualedit' is effective and a line starts with a

multibyte character, moving the cursor right doesn't work.
Solution: Obtain the right character to compute the column offset. (Taro

Muraoka)
Files: src/charset.c

Patch 6.2.011
Problem: Alpha OSF1: stat() is a macro and doesn't allow an #ifdef halfway.

(Moshe Kaminsky)
Solution: Move the #ifdef outside of stat().

version6.txt — 2407

Files: src/os_unix.c

Patch 6.2.012
Problem: May hang when polling for a character.
Solution: Break the wait loop when not waiting for a character.
Files: src/os_unix.c

Patch 6.2.013 (extra)
Problem: Win32: The registry key for uninstalling GvimExt still uses "6.1".
Solution: Change the version number to "6.2". (Ajit Thakkar)
Files: src/GvimExt/GvimExt.reg

Patch 6.2.014 (after 6.2.012)
Problem: XSMP doesn't work when using poll().
Solution: Use xsmp_idx instead of gpm_idx. (Neil Bird)
Files: src/os_unix.c

Patch 6.2.015
Problem: The +xsmp feature is never enabled.
Solution: Move the #define for USE_XSMP to below where WANT_X11 is defined.

(Alexey Froloff)
Files: src/feature.h

Patch 6.2.016
Problem: Using ":scscope find" with 'cscopequickfix' does not always split

the window. (Gary Johnson)
Win32: ":cscope add" could make the script that contains it
read-only until the corresponding ":cscope kill".
Errors during ":cscope add" may not be handled properly.

Solution: When using the quickfix window may need to split the window.
Avoid file handle inheritance for the script.
Check for a failed connection and/or process. (Sergey Khorev)

Files: src/ex_cmds2.c, src/if_cscope.c

Patch 6.2.017
Problem: Test11 sometimes prompts the user, because a file would have been

changed outside of Vim. (Antonio Colombo)
Solution: Add a FileChangedShell autocommand to avoid the prompt.
Files: src/testdir/test11.in

Patch 6.2.018
Problem: When using the XSMP protocol and reading from stdin Vim may wait

for a key to be pressed.
Solution: Avoid that RealWaitForChar() is used recursively.
Files: src/os_unix.c

Patch 6.2.019 (lang)
Problem: Loading the Portuguese menu causes an error message.
Solution: Join two lines. (Jose Pedro Oliveira, José de Paula)
Files: runtime/lang/menu_pt_br.vim

Patch 6.2.020
Problem: The "Syntax/Set syntax only" menu item causes an error message.

(Oyvind Holm)
Solution: Set the script-local variable in a function. (Benji Fisher)
Files: runtime/synmenu.vim

Patch 6.2.021
Problem: The user manual section on exceptions contains small mistakes.
Solution: Give a good example of an error that could be missed and other

version6.txt — 2408

improvements. (Servatius Brandt)
Files: runtime/doc/usr_41.txt

Patch 6.2.022 (extra)
Problem: Win32: After deleting a menu item it still appears in a tear-off

window.
Solution: Set the mode to zero for the deleted item. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 6.2.023 (extra)
Problem: Win32: Make_ivc.mak does not clean everything.
Solution: Delete more files in the clean rule. (Walter Briscoe)
Files: src/Make_ivc.mak

Patch 6.2.024 (extra)
Problem: Win32: Compiler warnings for typecasts.
Solution: Use DWORD instead of WORD. (Walter Briscoe)
Files: src/gui_w32.c

Patch 6.2.025
Problem: Missing prototype for sigaltstack().
Solution: Add the prototype when it is not found in a header file.
Files: src/os_unix.c

Patch 6.2.026
Problem: Warning for utimes() argument.
Solution: Add a typecast.
Files: src/fileio.c

Patch 6.2.027
Problem: Warning for uninitialized variable.
Solution: Set mb_l to one when not using multibyte characters.
Files: src/message.c

Patch 6.2.028
Problem: Cscope connection may kill Vim process and others.
Solution: Check for pid being larger than one. (Khorev Sergey)
Files: src/if_cscope.c

Patch 6.2.029
Problem: When using the remote server functionality Vim may leak memory.

(Srikanth Sankaran)
Solution: Free the result of XListProperties().
Files: src/if_xcmdsrv.c

Patch 6.2.030
Problem: Mac: Warning for not being able to use precompiled header files.
Solution: Don't redefine select. Use -no-cpp-precomp for compiling, so that

function prototypes are still found.
Files: src/os_unix.c, src/osdef.sh

Patch 6.2.031
Problem: The langmenu entry in the options window doesn't work. (Rodolfo

Lima)
With GTK 1 the ":options" command causes an error message.
(Michael Naumann)

Solution: Change "lmenu" to "langmenu". Only display the 'tbis' option for
GTK 2.

Files: runtime/optwin.vim

version6.txt — 2409

Patch 6.2.032
Problem: The lpc filetype is never recognized. (Shizhu Pan)
Solution: Check for g:lpc_syntax_for_c instead of the local variable

lpc_syntax_for_c. (Benji Fisher)
Files: runtime/filetype.vim

Patch 6.2.033 (extra)
Problem: Mac: Various compiler warnings.
Solution: Don't include Classic-only headers in Unix version.

Remove references to several unused variables. (Ben Fowler)
Fix double definition of DEFAULT_TERM.
Use int instead of unsigned short for pixel values, so that the
negative error values are recognized.

Files: src/gui_mac.c, src/term.c

Patch 6.2.034
Problem: Mac: Compiler warning for redefining DEFAULT_TERM.
Solution: Fix double definition of DEFAULT_TERM.
Files: src/term.c

Patch 6.2.035
Problem: Mac: Compiler warnings in Python interface.
Solution: Make a difference between pure Mac and Unix-Mac. (Peter Cucka)
Files: src/if_python.c

Patch 6.2.036 (extra)
Problem: Mac Unix version: If foo is a directory, then ":e f<Tab>" should

expand to ":e foo/" instead of ":e foo" . (Vadim Zeitlin)
Solution: Define DONT_ADD_PATHSEP_TO_DIR only for pure Mac. (Benji Fisher)
Files: src/os_mac.h

Patch 6.2.037
Problem: Win32: converting an encoding name to a codepage could result in

an arbitrary number.
Solution: make encname2codepage() return zero if the encoding name doesn't

contain a codepage number.
Files: src/mbyte.c

Patch 6.2.038 (extra)
Problem: Warning messages when using the MingW compiler. (Bill McCarthy)

Can't compile console version without +mouse feature.
Solution: Initialize variables, add parenthesis.

Add an #ifdef around g_nMouseClick. (Ajit Thakkar)
Files: src/eval.c, src/os_win32.c, src/gui_w32.c, src/dosinst.c

Patch 6.2.039 (extra)
Problem: More warning messages when using the MingW compiler.
Solution: Initialize variables. (Bill McCarthy)
Files: src/os_mswin.c

Patch 6.2.040
Problem: FreeBSD: Crash while starting up when compiled with +xsmp feature.
Solution: Pass a non-NULL argument to IceAddConnectionWatch().
Files: src/os_unix.c

Patch 6.2.041 (extra, after 6.2.033)
Problem: Mac: Compiler warnings for conversion types, missing prototype,

missing return type.
Solution: Change sscanf "%hd" to "%d", the argument is an int now. Add

gui_mch_init_check() prototype. Add "int" to termlib functions.

version6.txt — 2410

Files: src/gui_mac.c, src/proto/gui_mac.pro, src/termlib.c.

Patch 6.2.042 (extra)
Problem: Cygwin: gcc 3.2 has an optimizer problem, sometimes causing a

crash.
Solution: Add -fno-strength-reduce to the compiler arguments. (Dan Sharp)
Files: src/Make_cyg.mak

Patch 6.2.043
Problem: Compiling with both netbeans and workshop doesn't work.
Solution: Move the shellRectangle() function to gui_x11.c. (Gordon Prieur)
Files: src/gui_x11.c, src/integration.c, src/netbeans.c,

src/proto/netbeans.pro

Patch 6.2.044
Problem: ":au filetypedetect" gives an error for a non-existing event name,

but it's actually a non-existing group name. (Antoine Mechelynck)
Solution: Make the error message clearer.
Files: src/fileio.c

Patch 6.2.045
Problem: Obtaining the '(mark changes the '' mark. (Gary Holloway)
Solution: Don't set the '' mark when searching for the start/end of the

current sentence/paragraph.
Files: src/mark.c

Patch 6.2.046
Problem: When evaluating an argument of a function throws an exception the

function is still called. (Hari Krishna Dara)
Solution: Don't call the function when an exception was thrown.
Files: src/eval.c

Patch 6.2.047 (extra)
Problem: Compiler warnings when using MingW. (Bill McCarthy)
Solution: Give the s_dwLastClickTime variable a type. Initialize dwEndTime.
Files: src/os_win32.c

Patch 6.2.048
Problem: The Python interface doesn't compile with Python 2.3 when

dynamically loaded.
Solution: Use dll_PyObject_Malloc and dll_PyObject_Free. (Paul Moore)
Files: src/if_python.c

Patch 6.2.049
Problem: Using a "-range=" argument with ":command" doesn't work and

doesn't generate an error message.
Solution: Generate an error message.
Files: src/ex_docmd.c

Patch 6.2.050
Problem: Test 32 didn't work on MS-Windows.
Solution: Write the temp file in Unix fileformat. (Walter Briscoe)
Files: src/testdir/test32.in

Patch 6.2.051
Problem: When using "\=submatch(0)" in a ":s" command, line breaks become

NUL characters.
Solution: Change NL to CR characters, so that they become line breaks.
Files: src/regexp.c

version6.txt — 2411

Patch 6.2.052
Problem: A few messages are not translated.
Solution: Add _() to the messages. (Muraoka Taro)
Files: src/ex_cmds.c

Patch 6.2.053
Problem: Prototype for bzero() doesn't match most systems.
Solution: Use "void *" instead of "char *" and "size_t" instead of "int".
Files: src/osdef1.h.in

Patch 6.2.054
Problem: A double-byte character with a second byte that is a backslash

causes problems inside a string.
Solution: Skip over multibyte characters in a string properly. (Yasuhiro

Matsumoto)
Files: src/eval.c

Patch 6.2.055
Problem: Using col('.') from CTRL-O in Insert mode does not return the

correct value for multibyte characters.
Solution: Correct the cursor position when it is necessary, move to the

first byte of a multibyte character. (Yasuhiro Matsumoto)
Files: src/edit.c

Patch 6.2.056 (extra)
Problem: Building with Sniff++ doesn't work.
Solution: Use the multi-threaded libc when needed. (Holger Ditting)
Files: src/Make_mvc.mak

Patch 6.2.057 (extra)
Problem: Mac: With -DMACOS_X putenv() is defined twice, it is in a system

library. Get a warning for redefining OK. Unused variables in
os_mac.c

Solution: Define HAVE_PUTENV. Undefine OK after including curses.h.
Remove declarations for unused variables.

Files: src/os_mac.c, src/os_mac.h, src/vim.h

Patch 6.2.058
Problem: When 'autochdir' is set ":bnext" to a buffer without a name causes

a crash.
Solution: Don't call vim_chdirfile() when the file name is NULL. (Taro

Muraoka)
Files: src/buffer.c

Patch 6.2.059
Problem: When 'scrolloff' is a large number and listing completion results

on the command line, then executing a command that jumps close to
where the cursor was before, part of the screen is not updated.
(Yakov Lerner)

Solution: Don't skip redrawing part of the window when it was scrolled.
Files: src/screen.c

Patch 6.2.060 (extra)
Problem: Win32: When 'encoding' is set to "iso-8859-7" copy/paste to/from

the clipboard gives a lalloc(0) error. (Kriton Kyrimis)
Solution: When the string length is zero allocate one byte. Also fix that

when the length of the Unicode text is zero (conversion from
'encoding' to UCS-2 was not possible) the normal text is used.

Files: src/os_mswin.c

version6.txt — 2412

Patch 6.2.061
Problem: GUI: Using the left mouse button with the shift key should work

like "*" but it scrolls instead. (Martin Beller)
Solution: Don't recognize an rxvt scroll wheel event when using the GUI.
Files: src/term.c

Patch 6.2.062
Problem: When one buffer uses a syntax with "containedin" and another

buffer does not, redrawing depends on what the current buffer is.
(Brett Pershing Stahlman)

Solution: Use "syn_buf" instead of "curbuf" to get the b_syn_containedin
flag.

Files: src/syntax.c

Patch 6.2.063
Problem: When using custom completion end up with no matches.
Solution: Make cmd_numfiles and cmd_files local to completion to avoid that

they are overwritten when ExpandOne() is called recursively by
f_glob().

Files: src/eval.c, src/ex_docmd.c, src/ex_getln.c, src/proto/ex_getln.pro,
src/misc1.c, src/structs.h, src/tag.c

Patch 6.2.064
Problem: resolve() only handles one symbolic link, need to repeat it to

resolve all of them. Then need to simplify the file name.
Solution: Make resolve() resolve all symbolic links and simplify the result.

Add simplify() to just simplify a file name. Fix that test49
doesn't work if /tmp is a symbolic link. (Servatius Brandt)

Files: runtime/doc/eval.txt, src/eval.c, src/tag.c,
src/testdir/test49.vim

Patch 6.2.065
Problem: ":windo 123" only updates other windows when entering them.

(Walter Briscoe)
Solution: Update the topline before going to the next window.
Files: src/ex_cmds2.c

Patch 6.2.066 (extra)
Problem: Ruby interface doesn't work with Ruby 1.8.0.
Solution: Change "defout" to "stdout". (Aron Griffis)

Change dynamic loading. (Taro Muraoka)
Files: src/if_ruby.c, src/Make_mvc.mak

Patch 6.2.067
Problem: When searching for a string that starts with a composing character

the command line isn't drawn properly.
Solution: Don't count the space to draw the composing character on and

adjust the cursor column after drawing the string.
Files: src/message.c

Patch 6.2.068
Problem: Events for the netbeans interface that include a file name with

special characters don't work properly.
Solution: Use nb_quote() on the file name. (Sergey Khorev)
Files: src/netbeans.c

Patch 6.2.069 (after 6.2.064)
Problem: Unused variables "limit" and "new_st" and unused label "fail" in

some situation. (Bill McCarthy)
Solution: Put the declarations inside an #ifdef. (Servatius Brandt)

version6.txt — 2413

Files: src/eval.c, src/tag.c

Patch 6.2.070 (after 6.2.069)
Problem: Still unused variable "new_st". (Bill McCarthy)
Solution: Move the declaration to the right block this time.
Files: src/tag.c

Patch 6.2.071
Problem: 'statusline' can only contain 50 % items. (Antony Scriven)
Solution: Allow 80 items and mention it in the docs.
Files: runtime/doc/option.txt, src/vim.h

Patch 6.2.072
Problem: When using expression folding, foldexpr() mostly returns -1 for

the previous line, which makes it difficult to write a fold
expression.

Solution: Make the level of the previous line available while still looking
for the end of a fold.

Files: src/fold.c

Patch 6.2.073
Problem: When adding detection of a specific filetype for a plugin you need

to edit "filetype.vim".
Solution: Source files from the "ftdetect" directory, so that a filetype

detection plugin only needs to be dropped in a directory.
Files: runtime/doc/filetype.txt, runtime/doc/usr_05.txt,

runtime/doc/usr_41.txt, runtime/filetype.vim

Patch 6.2.074
Problem: Warnings when compiling the Python interface. (Ajit Thakkar)
Solution: Use ANSI function declarations.
Files: src/if_python.c

Patch 6.2.075
Problem: When the temp file for writing viminfo can't be used "NULL"

appears in the error message. (Ben Lavender)
Solution: Print the original file name when there is no temp file name.
Files: src/ex_cmds.c

Patch 6.2.076
Problem: The tags listed for cscope are in the wrong order. (Johannes

Stezenbach)
Solution: Remove the reordering of tags for the current file. (Sergey

Khorev)
Files: src/if_cscope.c

Patch 6.2.077
Problem: When a user function specifies custom completion, the function

gets a zero argument instead of an empty string when there is no
word before the cursor. (Preben Guldberg)

Solution: Don't convert an empty string to a zero.
Files: src/eval.c

Patch 6.2.078
Problem: "make test" doesn't work if Vim wasn't compiled yet. (Ed Avis)
Solution: Build Vim before running the tests.
Files: src/Makefile

Patch 6.2.079
Problem: ":w ++enc=utf-8 !cmd" doesn't work.

version6.txt — 2414

Solution: Check for the "++" argument before the "!".
Files: src/ex_docmd.c

Patch 6.2.080
Problem: When 't_ti' is not empty but doesn't swap screens, using "ZZ" in

an unmodified file doesn't clear the last line.
Solution: Call msg_clr_eos() when needed. (Michael Schroeder)
Files: src/os_unix.c

Patch 6.2.081
Problem: Problem when using a long multibyte string for the statusline.
Solution: Use the right pointer to get the cell size. (Taro Muraoka)
Files: src/buffer.c

Patch 6.2.082
Problem: Can't compile with Perl 5.8.1.
Solution: Rename "e_number" to "e_number_exp". (Sascha Blank)
Files: src/digraph.c, src/globals.h

Patch 6.2.083
Problem: When a compiler uses ^^^^ to mark a word the information is not

visible in the quickfix window. (Srikanth Sankaran)
Solution: Don't remove the indent for a line that is not recognized as an

error message.
Files: src/quickfix.c

Patch 6.2.084
Problem: "g_" in Visual mode always goes to the character after the line.

(Jean-Rene David)
Solution: Ignore the NUL at the end of the line.
Files: src/normal.c

Patch 6.2.085
Problem: ":verbose set ts" doesn't say an option was set with a "-c" or

"--cmd" argument.
Solution: Remember the option was set from a Vim argument.
Files: src/main.c, src/ex_cmds2.c, src/vim.h

Patch 6.2.086
Problem: "{" and "}" stop inside a closed fold.
Solution: Only stop once inside a closed fold. (Stephen Riehm)
Files: src/search.c

Patch 6.2.087
Problem: CTRL-^ doesn't use the 'confirm' option. Same problem with

":bnext". (Yakov Lerner)
Solution: Put up a dialog for a changed file when 'confirm' is set in more

situations.
Files: src/buffer.c, src/ex_cmds.c

Patch 6.2.088
Problem: When 'sidescrolloff' is set 'showmatch' doesn't work correctly if

the match is less than 'sidescrolloff' off from the side of the
window. (Roland Stahn)

Solution: Set 'sidescrolloff' to zero while displaying the match.
Files: src/search.c

Patch 6.2.089
Problem: ":set isk+=" adds a comma. (Mark Waggoner)
Solution: Don't add a comma when the added value is empty.

version6.txt — 2415

Files: src/option.c

Patch 6.2.090 (extra)
Problem: Win32: MingW compiler complains about #pragmas. (Bill McCarthy)
Solution: Put an #ifdef around the #pragmas.
Files: src/os_win32.c

Patch 6.2.091
Problem: When an autocommand is triggered when a file is dropped on Vim and

it produces output, messages from a following command may be
scrolled unexpectedly. (David Rennalls)

Solution: Save and restore msg_scroll in handle_drop().
Files: src/ex_docmd.c

Patch 6.2.092
Problem: Invalid items appear in the help file tags. (Antonio Colombo)
Solution: Only accept tags with white space before the first "*".
Files: runtime/doc/doctags.c, src/ex_cmds.c

Patch 6.2.093
Problem: ":nnoremenu" also defines menu for Visual mode. (Klaus Bosau)
Solution: Check the second command character for an "o", not the third.
Files: src/menu.c

Patch 6.2.094
Problem: Can't compile with GTK and tiny features.
Solution: Include handle_drop() and vim_chdirfile() when FEAT_DND is defined.

Do not try to split the window.
Files: src/ex_docmd.c, src/misc2.c

Patch 6.2.095
Problem: The message "Cannot go to buffer x" is confusing for ":buf 6".

(Frans Englich)
Solution: Make it "Buffer x does not exist".
Files: src/buffer.c

Patch 6.2.096
Problem: Win32: ":let @* = ''" put a newline on the clipboard. (Klaus

Bosau)
Solution: Put zero bytes on the clipboard for an empty string.
Files: src/ops.c

Patch 6.2.097
Problem: Setting or resetting 'insertmode' in a BufEnter autocommand

doesn't always have immediate effect. (Nagger)
Solution: When 'insertmode' is set, set need_start_insertmode, when it's

reset set stop_insert_mode.
Files: src/option.c

Patch 6.2.098 (after 6.2.097)
Problem: Can't build Vim with tiny features. (Christian J. Robinson)
Solution: Declare stop_insert_mode always.
Files: src/edit.c, src/globals.h

Patch 6.2.099 (extra)
Problem: Test 49 fails. (Mikolaj Machowski)
Solution: The Polish translation must not change "E116" to "R116".
Files: src/po/pl.po

Patch 6.2.100

version6.txt — 2416

Problem: "make proto" fails when compiled with the Perl interface.
Solution: Remove "-fno.*" from PERL_CFLAGS, cproto sees it as its option.
Files: src/auto/configure, src/configure.in

Patch 6.2.101
Problem: When using syntax folding, opening a file slows down a lot when

it's size increases by only 20%. (Gary Johnson)
Solution: The array with cached syntax states is leaking entries. After

cleaning up the list obtain the current entry again.
Files: src/syntax.c

Patch 6.2.102
Problem: The macros equal() and CR conflict with a Carbon header file.
Solution: Rename equal() to equalpos(). Rename CR to CAR.

Do this in the non-extra files only.
Files: src/ascii.h, src/buffer.c, src/charset.c, src/edit.c, src/eval.c,

src/ex_cmds.c, src/ex_cmds2.c, src/ex_getln.c, src/fileio.c,
src/getchar.c, src/gui.c, src/gui_athena.c, src/gui_gtk_x11.c,
src/gui_motif.c, src/macros.h, src/mark.c, src/message.c,
src/misc1.c, src/misc2.c, src/normal.c, src/ops.c, src/os_unix.c,
src/regexp.c, src/search.c, src/ui.c, src/workshop.c

Patch 6.2.103 (extra)
Problem: The macros equal() and CR conflict with a Carbon header file.
Solution: Rename equal() to equalpos(). Rename CR to CAR.

Do this in the extra files only.
Files: src/gui_photon.c, src/gui_w48.c

Patch 6.2.104
Problem: Unmatched braces in the table with options.
Solution: Move the "}," outside of the #ifdef. (Yakov Lerner)
Files: src/option.c

Patch 6.2.105
Problem: When the cursor is past the end of the line when calling

get_c_indent() a crash might occur.
Solution: Don't look past the end of the line. (NJ Verenini)
Files: src/misc1.c

Patch 6.2.106
Problem: Tag searching gets stuck on a very long line in the tags file.
Solution: When skipping back to search the first matching tag remember the

offset where searching started looking for a line break.
Files: src/tag.c

Patch 6.2.107 (extra)
Problem: The NetBeans interface cannot be used on Win32.
Solution: Add support for the NetBeans for Win32. Add support for reading

XPM files on Win32. Also fixes that a sign icon with a space in
the file name did not work through the NetBeans interface.
(Sergey Khorev)
Also: avoid repeating error messages when the connection is lost.

Files: Makefile, runtime/doc/netbeans.txt, src/Make_bc5.mak,
src/Make_cyg.mak, src/Make_ming.mak, src/Make_mvc.mak,
src/bigvim.bat, src/feature.h, src/gui_beval.c, src/gui_beval.h,
src/gui_w32.c, src/gui_w48.c, src/menu.c, src/nbdebug.c,
src/nbdebug.h, src/netbeans.c, src/os_mswin.c, src/os_win32.h,
src/proto/gui_beval.pro, src/proto/gui_w32.pro,
src/proto/netbeans.pro, src/proto.h, src/version.c, src/vim.h,
src/xpm_w32.c, src/xpm_w32.h

version6.txt — 2417

Patch 6.2.108
Problem: Crash when giving a message about ignoring case in a tag. (Manfred

Kuehn)
Solution: Use a longer buffer for the message.
Files: src/tag.c

Patch 6.2.109
Problem: Compiler warnings with various Amiga compilers.
Solution: Add typecast, prototypes, et al. that are also useful for other

systems. (Flavio Stanchina)
Files: src/eval.c, src/ops.c

Patch 6.2.110
Problem: When $LANG includes the encoding, a menu without an encoding name

is not found.
Solution: Also look for a menu file without any encoding.
Files: runtime/menu.vim

Patch 6.2.111
Problem: Encoding "cp1251" is not recognized.
Solution: Add "cp1251" to the table of encodings. (Alexey Froloff)
Files: src/mbyte.c

Patch 6.2.112
Problem: After applying patches test32 fails. (Antonio Colombo)
Solution: Have "make clean" in the testdir delete *.rej and *.orig files.

Use this when doing "make clean" in the src directory.
Files: src/Makefile, src/testdir/Makefile

Patch 6.2.113
Problem: Using ":startinsert" after "$" works like "a" instead of "i".

(Ajit Thakkar)
Solution: Reset "w_curswant" for ":startinsert" and reset o_eol in edit().
Files: src/edit.c, src/ex_docmd.c

Patch 6.2.114
Problem: When stdout is piped through "tee", the size of the screen may not

be correct.
Solution: Use stdin instead of stdout for ioctl() when stdin is a tty and

stdout isn't.
Files: src/os_unix.c

Patch 6.2.115 (extra)
Problem: Compiler warnings with various Amiga compilers.
Solution: Add typecast, prototypes, et al. Those changes that are

Amiga-specific. (Flavio Stanchina)
Files: src/fileio.c, src/memfile.c, src/os_amiga.c, src/os_amiga.h,

src/vim.h

Patch 6.2.116 (extra)
Problem: German keyboard with Numlock set different from system startup

causes problems.
Solution: Ignore keys with code 0xff. (Helmut Stiegler)
Files: src/gui_w48.c

Patch 6.2.117
Problem: Breakpoints in loops of sourced files and functions are not

detected. (Hari Krishna Dara)
Solution: Check for breakpoints when using lines that were previously read.

version6.txt — 2418

(Servatius Brandt)
Files: src/eval.c, src/ex_cmds2.c, src/ex_docmd.c, src/proto/eval.pro,

src/proto/ex_cmds2.pro

Patch 6.2.118 (extra)
Problem: Mac: Compiling is done in a non-standard way.
Solution: Use the Unix method for Mac OS X, with autoconf. Add "CARBONGUI"

to Makefile and configure. (Eric Kow)
Move a few prototypes from os_mac.pro to gui_mac.pro.

Files: src/Makefile, src/auto/configure, src/configure.in,
src/config.mk.in, src/gui_mac.c, src/os_mac.h, src/os_macosx.c,
src/proto/gui_mac.pro, src/proto/os_mac.pro,
src/infplist.xml, src/vim.h

Patch 6.2.119 (after 6.2.107)
Problem: When packing the MS-Windows archives a few files are missing.

(Guopeng Wen)
Solution: Add gui_beval.* to the list of generic source files.
Files: Makefile

Patch 6.2.120
Problem: Win32 GUI: The console dialogs are not supported on MS-Windows,

disabling the 'c' flag of 'guioptions'. (Servatius Brandt)
Solution: Define FEAT_CON_DIALOG also for GUI-only builds.
Files: src/feature.h

Patch 6.2.121 (after 6.2.118)
Problem: Not all make programs support "+=". (Charles Campbell)
Solution: Use a normal assignment.
Files: src/Makefile

Patch 6.2.122 (after 6.2.119)
Problem: Not all shells can expand [^~]. File missing. (Guopeng Wen)
Solution: Use a simpler pattern. Add the Aap recipe for the maze program

and a clean version of the source code.
Files: Makefile, runtime/macros/maze/Makefile,

runtime/macros/maze/README.txt, runtime/macros/maze/main.aap,
runtime/macros/maze/mazeclean.c

Patch 6.2.123 (after 6.2.118)
Problem: Running configure fails. (Tony Leneis)
Solution: Change "==" to "=" for a test.
Files: src/auto/configure, src/configure.in

Patch 6.2.124 (after 6.2.121)(extra)
Problem: Mac: Recursive use of M4FLAGS causes problems. When running Vim

directly it can't find the runtime files. (Emily Jackson)
Using GNU constructs causes warnings with other make programs.
(Ronald Schild)

Solution: Use another name for the M4FLAGS variable.
Don't remove "Vim.app" from the path.
Update the explanation for compiling on the Mac. (Eric Kow)
Don't use $(shell) and $(addprefix).

Files: src/INSTALLmac.txt, src/Makefile, src/misc1.c

Patch 6.2.125 (after 6.2.107)
Problem: The "winsock2.h" file isn't always available.
Solution: Don't include this header file.
Files: src/netbeans.c

version6.txt — 2419

Patch 6.2.126
Problem: Typing CTRL-C at a confirm() prompt doesn't throw an exception.
Solution: Reset "mapped_ctrl_c" in get_keystroke(), so that "got_int" is set

in _OnChar().
Files: src/misc1.c

Patch 6.2.127 (extra)
Problem: Win32 console: Typing CTRL-C doesn't throw an exception.
Solution: Set got_int immediately when CTRL-C is typed, don't wait for

mch_breakcheck() being called.
Files: src/os_win32.c

Patch 6.2.128 (after 6.2.118)
Problem: src/auto/configure is not consistent with src/configure.in.
Solution: Use the newly generated configure script.
Files: src/auto/configure

Patch 6.2.129
Problem: When 'number' is set 'wrapmargin' does not work Vi-compatible.

(Yasuhiro Matsumoto)
Solution: Reduce the textwidth when 'number' is set. Also for 'foldcolumn'

and similar things.
Files: src/edit.c

Patch 6.2.130 (extra)
Problem: Win32 console: When 'restorescreen' is not set exiting Vim causes

the screen to be cleared. (Michael A. Mangino)
Solution: Don't clear the screen when exiting and 'restorescreen' isn't set.
Files: src/os_win32.c

Patch 6.2.131 (extra)
Problem: Win32: Font handles are leaked.
Solution: Free italic, bold and bold-italic handles before overwriting them.

(Michael Wookey)
Files: src/gui_w48.c

Patch 6.2.132 (extra)
Problem: Win32: console version doesn't work on latest Windows Server 2003.
Solution: Copy 12000 instead of 15000 cells at a time to avoid running out

of memory.
Files: src/os_win32.c

Patch 6.2.133
Problem: When starting the GUI a bogus error message about 'imactivatekey'

may be given.
Solution: Only check the value of 'imactivatekey' when the GUI is running.
Files: src/gui.c, src/option.c

Patch 6.2.134 (extra)
Problem: Win32: When scrolling parts of the window are redrawn when this

isn't necessary.
Solution: Only invalidate parts of the window when they are obscured by

other windows. (Michael Wookey)
Files: src/gui_w48.c

Patch 6.2.135
Problem: An item <> in the ":command" argument is interpreted as <args>.
Solution: Avoid that <> is recognized as <args>.
Files: src/ex_docmd.c

version6.txt — 2420

Patch 6.2.136
Problem: ":e ++enc=latin1 newfile" doesn't set 'fenc' when the file doesn't

exist. (Miroslaw Dobrzanski-Neumann)
Solution: Set 'fileencoding' to the specified encoding when editing a file

that does not exist.
Files: src/fileio.c

Patch 6.2.137
Problem: "d:cmd<CR>" cannot be repeated with ".". Breaks repeating "d%"

when using the matchit plugin.
Solution: Store the command to be repeated. This is restricted to

single-line commands.
Files: src/ex_docmd.c, src/globals.h, src/normal.c, src/vim.h

Patch 6.2.138 (extra)
Problem: Compilation problem on VMS with dynamic buffer on the stack.
Solution: Read one byte less than the size of the buffer, so that we can

check for the string length without an extra buffer.
Files: src/os_vms.c

Patch 6.2.139
Problem: Code is repeated in the two Perl files.
Solution: Move common code from if_perl.xs and if_perlsfio.c to vim.h.

Also fix a problem with generating prototypes.
Files: src/if_perl.xs, src/if_perlsfio.c, src/vim.h

Patch 6.2.140 (after 6.2.121)
Problem: Mac: Compiling with Python and Perl doesn't work.
Solution: Adjust the configure check for Python to use "-framework Python"

for Python 2.3 on Mac OS/X.
Move "-ldl" after "DynaLoader.a" in the link command.
Change "perllibs" to "PERL_LIBS".

Files: src/auto/configure, src/configure.in, src/config.mk.in

Patch 6.2.141 (extra)
Problem: Mac: The b_FSSpec field is sometimes unused.
Solution: Change the #ifdef to FEAT_CW_EDITOR and defined it in feature.h
Files: src/fileio.c, src/gui_mac.c, src/structs.h, src/feature.h

Patch 6.2.142 (after 6.2.124)
Problem: Mac: building without GUI through configure doesn't work.

When the system is slow, unpacking the resource file takes too
long.

Solution: Don't always define FEAT_GUI_MAC when MACOS is defined, define it
in the Makefile.
Add a configure option to skip Darwin detection.
Use a Python script to unpack the resources to avoid a race
condition. (Taro Muraoka)

Files: Makefile, src/Makefile, src/auto/configure, src/configure.in,
src/dehqx.py, src/vim.h

Patch 6.2.143
Problem: Using "K" on Visually selected text doesn't work if it ends in

a multibyte character.
Solution: Include all the bytes of the last character. (Taro Muraoka)
Files: src/normal.c

Patch 6.2.144
Problem: When "g:html_use_css" is set the HTML header generated by the

2html script is wrong.

version6.txt — 2421

Solution: Add the header after adding HREF for links.
Also use ":normal!" instead of ":normal" to avoid mappings
getting in the way.

Files: runtime/syntax/2html.vim

Patch 6.2.145 (after 6.2.139)
Problem: Undefining "bool" doesn't work for older systems. (Wojtek Pilorz)
Solution: Only undefine "bool" on Mac OS.
Files: src/vim.h

Patch 6.2.146
Problem: On some systems the prototype for iconv() is wrong, causing a

warning message.
Solution: Use a cast (void *) to avoid the warning. (Charles Campbell)
Files: src/fileio.c, src/mbyte.c

Patch 6.2.147
Problem: ":s/pat/\=col('.')" always replaces with "1".
Solution: Set the cursor to the start of the match before substituting.

(Helmut Stiegler)
Files: src/ex_cmds.c

Patch 6.2.148
Problem: Can't break an Insert into several undoable parts.
Solution: Add the CTRL-G u command.
Files: runtime/doc/insert.txt, src/edit.c

Patch 6.2.149
Problem: When the cursor is on a line past 21,474,748 the indicated

percentage of the position is invalid. With that many lines
"100%" causes a negative cursor line number, resulting in a crash.
(Daniel Goujot)

Solution: Divide by 100 instead of multiplying. Avoid overflow when
computing the line number for "100%".

Files: src/buffer.c, src/ex_cmds2.c, src/normal.c

Patch 6.2.150
Problem: When doing "vim - < file" lines are broken at NUL chars.

(Daniel Goujot)
Solution: Change NL characters back to NUL when reading from the temp

buffer.
Files: src/fileio.c

Patch 6.2.151
Problem: When doing "vim --remote +startinsert file" some commands are

inserted as text. (Klaus Bosau)
Solution: Put all the init commands in one Ex line, not using a <CR>, so

that Insert mode isn't started too early.
Files: src/main.c

Patch 6.2.152
Problem: The cursor() function doesn't reset the column offset for

'virtualedit'.
Solution: Reset the offset to zero. (Helmut Stiegler)
Files: src/eval.c

Patch 6.2.153
Problem: Win32: ":lang german" doesn't use German messages.
Solution: Add a table to translate the Win32 language names to two-letter

language codes.

version6.txt — 2422

Files: src/ex_cmds2.c

Patch 6.2.154
Problem: Python bails out when giving a warning message. (Eugene

Minkovskii)
Solution: Set sys.argv[] to an empty string.
Files: src/if_python.c

Patch 6.2.155
Problem: Win32: Using ":tjump www" in a help file gives two results.

(Dave Roberts)
Solution: Ignore differences between slashes and backslashes when checking

for identical tag matches.
Files: src/tag.c

Patch 6.2.156 (after 6.2.125)
Problem: Win32: Netbeans fails to build, EINTR is not defined.
Solution: Redefine EINTR to WSAEINTR. (Mike Williams)
Files: src/netbeans.c

Patch 6.2.157
Problem: Using "%p" in 'errorformat' gives a column number that is too

high.
Solution: Set the flag to use the number as a virtual column. (Lefteris

Koutsoloukas)
Files: src/quickfix.c

Patch 6.2.158
Problem: The sed command on Solaris and HPUX doesn't work for a line that

doesn't end in a newline.
Solution: Add a newline when feeding text to sed. (Mark Waggoner)
Files: src/configure.in, src/auto/configure

Patch 6.2.159
Problem: When using expression folding and 'foldopen' is "undo" an undo

command doesn't always open the fold.
Solution: Save and restore the KeyTyped variable when evaluating 'foldexpr'.

(Taro Muraoka)
Files: src/fold.c

Patch 6.2.160
Problem: When 'virtualedit' is "all" and 'selection' is "exclusive",

selecting a double-width character below a single-width character
may cause a crash.

Solution: Avoid overflow on unsigned integer decrement. (Taro Muraoka)
Files: src/normal.c

Patch 6.2.161 (extra)
Problem: VMS: Missing header file. Reading input busy loops.
Solution: Include termdef.h. Avoid the use of a wait function in

vms_read(). (Frank Ries)
Files: src/os_unix.h, src/os_vms.c

Patch 6.2.162
Problem: ":redraw" doesn't always display the text that includes the cursor

position, e.g. after ":call cursor(1, 0)". (Eugene Minkovskii)
Solution: Call update_topline() before redrawing.
Files: src/ex_docmd.c

Patch 6.2.163

version6.txt — 2423

Problem: "make install" may also copy AAPDIR directories.
Solution: Delete AAPDIR directories, just like CVS directories.
Files: src/Makefile

Patch 6.2.164 (after 6.2.144)
Problem: When "g:html_use_css" is set the HTML header generated by the

2html script is still wrong.
Solution: Search for a string instead of jumping to a fixed line number.

Go to the start of the line before inserting the header.
(Jess Thrysoee)

Files: runtime/syntax/2html.vim

Patch 6.2.165
Problem: The configure checks hang when using autoconf 2.57.
Solution: Invoke AC_PROGRAM_EGREP to set $EGREP. (Aron Griffis)
Files: src/auto/configure, src/configure.in

Patch 6.2.166
Problem: When $GZIP contains "-N" editing compressed files doesn't work

properly.
Solution: Add "-n" to "gzip -d" to avoid restoring the file name. (Oyvind

Holm)
Files: runtime/plugin/gzip.vim

Patch 6.2.167
Problem: The Python interface leaks memory when assigning lines to a

buffer. (Sergey Khorev)
Solution: Do not copy the line when calling ml_replace().
Files: src/if_python.c

Patch 6.2.168
Problem: Python interface: There is no way to get the indices from a range

object.
Solution: Add the "start" and "end" attributes. (Maurice S. Barnum)
Files: src/if_python.c, runtime/doc/if_pyth.txt

Patch 6.2.169
Problem: The prototype for _Xmblen() appears in a recent XFree86 header

file, causing a warning for our prototype. (Hisashi T Fujinaka)
Solution: Move the prototype to an osdef file, so that it's filtered out.
Files: src/mbyte.c, src/osdef2.h.in

Patch 6.2.170
Problem: When using Sun WorkShop the current directory isn't changed to

where the file is.
Solution: Set the 'autochdir' option when using WorkShop. And avoid using

the basename when 'autochdir' is not set.
Files: src/gui_x11.c, src/ex_cmds.c

Patch 6.2.171 (after 6.2.163)
Problem: The "-or" argument of "find" doesn't work for SysV systems.
Solution: Use "-o" instead. (Gordon Prieur)
Files: src/Makefile

Patch 6.2.172 (after 6.2.169)
Problem: The prototype for _Xmblen() still causes trouble.
Solution: Include the X11 header file that defines the prototype.
Files: src/osdef2.h.in, src/osdef.sh

Patch 6.2.173 (extra)

version6.txt — 2424

Problem: Win32: Ruby interface doesn't work with Ruby 1.8.0 for other
compilers than MSVC.

Solution: Fix the BC5, Cygwin and Mingw makefiles. (Dan Sharp)
Files: src/Make_bc5.mak, src/Make_cyg.mak, src/Make_ming.mak

Patch 6.2.174
Problem: After the ":intro" message only a mouse click in the last line

gets past the hit-return prompt.
Solution: Accept a click at or below the hit-return prompt.
Files: src/gui.c, src/message.c

Patch 6.2.175
Problem: Changing 'backupext' in a *WritePre autocommand doesn't work.

(William Natter)
Solution: Move the use of p_bex to after executing the *WritePre

autocommands. Also avoids reading allocated memory after freeing.
Files: src/fileio.c

Patch 6.2.176
Problem: Accented characters in translated help files are not handled

correctly. (Fabien Vayssiere)
Solution: Include "192-255" in 'iskeyword' for the help window.
Files: src/ex_cmds.c

Patch 6.2.177 (extra)
Problem: VisVim: Opening a file with a space in the name doesn't work. (Rob

Retter) Arbitrary commands are being executed. (Neil Bird)
Solution: Put a backslash in front of every space in the file name.

(Gerard Blais) Terminate the CTRL-\ CTRL-N command with a NUL.
Files: src/VisVim/Commands.cpp, src/VisVim/VisVim.rc

Patch 6.2.178
Problem: People who don't know how to exit Vim try pressing CTRL-C.
Solution: Give a message how to exit Vim when CTRL-C is pressed and it

doesn't cancel anything.
Files: src/normal.c

Patch 6.2.179 (extra)
Problem: The en_gb messages file isn't found on case sensitive systems.
Solution: Rename en_gb to en_GB. (Mike Williams)
Files: src/po/en_gb.po, src/po/en_GB.po, src/po/Make_ming.mak,

src/po/Make_mvc.mak, src/po/Makefile, src/po/README_mvc.txt

Patch 6.2.180
Problem: Compiling with GTK2 on Win32 doesn't work.
Solution: Include gdkwin32.h instead of gdkx.h. (Srinath Avadhanula)
Files: src/gui_gtk.c, src/gui_gtk_f.c, src/gui_gtk_x11.c, src/mbyte.c

Patch 6.2.181 (after 6.2.171)
Problem: The "-o" argument of "find" has lower priority than the implied

"and" with "-print".
Solution: Add parenthesis around the "-o" expression. (Gordon Prieur)
Files: src/Makefile

Patch 6.2.182 (after 6.2.094)
Problem: Compilation with tiny features fails because of missing

get_past_head() function.
Solution: Adjust the #ifdef for get_past_head().
Files: src/misc1.c

version6.txt — 2425

Patch 6.2.183 (after 6.2.178)
Problem: Warning for char/unsigned char mixup.
Solution: Use MSG() instead of msg(). (Tony Leneis)
Files: src/normal.c

Patch 6.2.184
Problem: With 'formatoptions' set to "1aw" inserting text may cause the

paragraph to be ended. (Alan Schmitt)
Solution: Temporarily add an extra space to make the paragraph continue

after moving the word after the cursor to the next line.
Also format when pressing Esc.

Files: src/edit.c, src/normal.c, src/proto/edit.pro

Patch 6.2.185
Problem: Restoring a session with zero-height windows does not work

properly. (Charles Campbell)
Solution: Accept a zero argument to ":resize" as intended. Add a window

number argument to ":resize" to be able to set the size of other
windows, because the current window cannot be zero-height.
Fix the explorer plugin to avoid changing the window sizes. Add
the winrestcmd() function for this.

Files: runtime/doc/eval.txt, runtime/plugin/explorer.vim, src/eval.c,
src/ex_cmds.h, src/ex_docmd.c, src/proto/window.pro, src/window.c

Patch 6.2.186 (after 6.2.185)
Problem: Documentation file eval.txt contains examples without indent.
Solution: Insert the indent. Also fix other mistakes.
Files: runtime/doc/eval.txt

Patch 6.2.187
Problem: Using Insure++ reveals a number of bugs. (Dominique Pelle)
Solution: Initialize variables where needed. Free allocated memory to avoid

leaks. Fix comparing tags to avoid reading past allocated memory.
Files: src/buffer.c, src/diff.c, src/fileio.c, src/mark.c, src/misc1.c,

src/misc2.c, src/ops.c, src/option.c, src/tag.c, src/ui.c

Patch 6.2.188 (extra)
Problem: MS-Windows: Multi-byte characters in a filename cause trouble for

the window title.
Solution: Return when the wide function for setting the title did its work.
Files: src/gui_w48.c

Patch 6.2.189
Problem: When setting 'viminfo' after editing a new buffer its marks are

not stored. (Keith Roberts)
Solution: Set the "b_marks_read" flag when skipping to read marks from the

viminfo file.
Files: src/fileio.c

Patch 6.2.190
Problem: When editing a compressed files, marks are lost.
Solution: Add the ":lockmarks" modifier and use it in the gzip plugin.

Make exists() also check for command modifiers, so that the
existence of ":lockmarks" can be checked for.
Also add ":keepmarks" to avoid that marks are deleted when
filtering text.
When deleting lines put marks 'A - 'Z and '0 - '9 at the first
deleted line instead of clearing the mark. They were kept in the
viminfo file anyway.
Avoid that the gzip plugin puts deleted text in registers.

version6.txt — 2426

Files: runtime/doc/motion.txt, runtime/plugin/gzip.vim, src/ex_cmds.c,
src/ex_docmd.c, src/mark.c, src/structs.h

Patch 6.2.191
Problem: The intro message is outdated. Information about sponsoring and

registering is missing.
Solution: Show info about sponsoring and registering Vim in the intro

message now and then. Add help file about sponsoring.
Files: runtime/doc/help.txt, runtime/doc/sponsor.txt, runtime/doc/tags,

runtime/menu.vim, src/version.c

Patch 6.2.192
Problem: Using CTRL-T and CTRL-D with "gR" messes up the text. (Jonathan

Hankins)
Solution: Avoid calling change_indent() recursively.
Files: src/edit.c

Patch 6.2.193
Problem: When recalling a search pattern from the history from a ":s,a/c,"

command the '/' ends the search string. (JC van Winkel)
Solution: Store the separator character with the history entries. Escape

characters when needed, replace the old separator with the new one.
Also fixes that recalling a "/" search for a "?" command messes up
trailing flags.

Files: src/eval.c, src/ex_getln.c, src/normal.c, src/proto/ex_getln.pro,
src/search.c, src/tag.c

Patch 6.2.194 (after 6.2.068)
Problem: For NetBeans, instead of writing the file and sending an event

about it, tell NetBeans to write the file.
Solution: Add the "save" command, "netbeansBuffer" command and

"buttonRelease" event to the netbeans protocol. Updated the
interface to version 2.2. (Gordon Prieur)
Also: open a fold when the cursor has been positioned.
Also: fix memory leak, free result of nb_quote().

Files: runtime/doc/netbeans.txt, src/fileio.c, src/netbeans.c,
src/normal.c, src/proto/netbeans.pro, src/structs.h

Patch 6.2.195 (after 6.2.190)
Problem: Compiling fails for missing CPO_REMMARK symbol.
Solution: Add the patch I forgot to include...
Files: src/option.h

Patch 6.2.196 (after 6.2.191)
Problem: Rebuilding the documentation doesn't use the sponsor.txt file.
Solution: Add sponsor.txt to the Makefile. (Christian J. Robinson)
Files: runtime/doc/Makefile

Patch 6.2.197
Problem: It is not possible to force a redraw of status lines. (Gary

Johnson)
Solution: Add the ":redrawstatus" command.
Files: runtime/doc/various.txt, src/ex_cmds.h, src/ex_docmd.c,

src/screen.c

Patch 6.2.198
Problem: A few messages are not translated. (Ernest Adrogue)
Solution: Mark the messages to be translated.
Files: src/ex_cmds.c

version6.txt — 2427

Patch 6.2.199 (after 6.2.194)
Problem: Vim doesn't work perfectly well with NetBeans.
Solution: When NetBeans saves the file, reset the timestamp to avoid "file

changed" warnings. Close a buffer in a proper way. Don't try
giving a debug message with an invalid pointer. Send a
newDotAndMark message when needed. Report a change by the "r"
command to NetBeans. (Gordon Prieur)

Files: src/netbeans.c, src/normal.c

Patch 6.2.200
Problem: When recovering a file, 'fileformat' is always the default, thus

writing the file may result in differences. (Penelope Fudd)
Solution: Before recovering the file try reading the original file to obtain

the values of 'fileformat', 'fileencoding', etc.
Files: src/memline.c

Patch 6.2.201
Problem: When 'autowriteall' is set ":qall" still refuses to exit if there

is a modified buffer. (Antoine Mechelynck)
Solution: Attempt writing modified buffers as intended.
Files: src/ex_cmds2.c

Patch 6.2.202
Problem: Filetype names of CHILL and ch script are confusing.
Solution: Rename "ch" to "chill" and "chscript" to "ch".
Files: runtime/filetype.vim, runtime/makemenu.vim, runtime/synmenu.vim

runtime/syntax/ch.vim, runtime/syntax/chill.vim

Patch 6.2.203
Problem: With characterwise text that has more than one line, "3P" works

wrong. "3p" has the same problem. There also is a display
problem. (Daniel Goujot)

Solution: Perform characterwise puts with a count in the right position.
Files: src/ops.c

Patch 6.2.204 (after 6.2.086)
Problem: "]]" in a file with closed folds moves to the end of the file.

(Nam SungHyun)
Solution: Find one position in each closed fold, then move to after the fold.
Files: src/search.c

Patch 6.2.205 (extra)
Problem: MS-Windows: When the taskbar is at the left or top of the screen,

the Vim window placement is wrong.
Solution: Compute the size and position of the window correctly. (Taro

Muraoka)
Files: src/gui_w32.c, src/gui_w48.c

Patch 6.2.206
Problem: Multi-byte characters cannot be used as hotkeys in a console

dialog. (Mattias Erkisson)
Solution: Handle multibyte characters properly. Also put () or [] around

default hotkeys.
Files: src/message.c, src/macros.h

Patch 6.2.207
Problem: When 'encoding' is a multibyte encoding, expanding an

abbreviation that starts where insertion started results in
characters before the insertion to be deleted. (Xiangjiang Ma)

Solution: Stop searching leftwards for the start of the word at the position

version6.txt — 2428

where insertion started.
Files: src/getchar.c

Patch 6.2.208
Problem: When using fold markers, three lines in a row have the start

marker and deleting the first one with "dd", a nested fold is not
deleted. (Kamil Burzynski)
Using marker folding, a level 1 fold doesn't stop when it is
followed by "{{{2", starting a level 2 fold.

Solution: Don't stop updating folds at the end of a change when the nesting
level of folds is larger than the fold level.
Correctly compute the number of folds that start at "{{{2".
Also avoid a crash for a NULL pointer.

Files: src/fold.c

Patch 6.2.209
Problem: A bogus fold is created when using "P" while the cursor is in the

middle of a closed fold. (Kamil Burzynski)
Solution: Correct the line number where marks are modified for closed folds.
Files: src/ops.c

Patch 6.2.210 (extra)
Problem: Mac OSX: antialiased fonts are not supported.
Solution: Add the 'antialias' option to switch on antialiasing on Mac OSX

10.2 and later. (Peter Cucka)
Files: runtime/doc/options.txt, src/gui_mac.c, src/option.h, src/option.c

Patch 6.2.211 (extra)
Problem: Code for handling file dropped on Vim is duplicated.
Solution: Move the common code to gui_handle_drop().

Add code to drop the files in the window under the cursor.
Support drag&drop on the Macintosh. (Taro Muraoka)
When dropping a directory name edit that directory (using the
explorer plugin)
Fix that changing directory with Shift pressed didn't work for
relative path names.

Files: src/fileio.c, src/gui.c, src/gui_gtk_x11.c, src/gui_mac.c,
src/gui_w48.c, src/proto/fileio.pro, src/proto/gui.pro

Patch 6.2.212 (after 6.2.199)
Problem: NetBeans: Replacing with a count is not handled correctly.
Solution: Move reporting the change outside of the loop for the count.

(Gordon Prieur)
Files: src/normal.c

Patch 6.2.213 (after 6.2.208)
Problem: Using marker folding, "{{{1" doesn't start a new fold when already

at fold level 1. (Servatius Brandt)
Solution: Correctly compute the number of folds that start at "{{{1".
Files: src/fold.c

Patch 6.2.214 (after 6.2.211) (extra)
Problem: Warning for an unused variable.
Solution: Delete the declaration. (Bill McCarthy)
Files: src/gui_w48.c

Patch 6.2.215
Problem: NetBeans: problems saving an unmodified file.
Solution: Add isNetbeansModified() function. Disable netbeans_unmodified().

(Gordon Prieur)

version6.txt — 2429

Files: src/fileio.c, src/netbeans.c, src/proto/netbeans.pro,
runtime/doc/netbeans.txt, runtime/doc/tags

Patch 6.2.216 (after 6.2.206)
Problem: Multi-byte characters still cannot be used as hotkeys in a console

dialog. (Mattias Erkisson)
Solution: Make get_keystroke() handle multibyte characters.
Files: src/misc1.c

Patch 6.2.217
Problem: GTK: setting the title doesn't always work correctly.
Solution: Invoke gui_mch_settitle(). (Tomas Stehlik)
Files: src/os_unix.c

Patch 6.2.218
Problem: Warning for function without prototype.
Solution: Add argument types to the msgCB field of the BalloonEval struct.
Files: src/gui_beval.h

Patch 6.2.219
Problem: Syntax highlighting hangs on an empty match of an item with a

nextgroup. (Charles Campbell)
Solution: Remember that the item has already matched and don't match it

again at the same position.
Files: src/syntax.c

Patch 6.2.220
Problem: When a Vim server runs in a console a remote command isn't handled

before a key is typed. (Joshua Neuheisel)
Solution: Don't try reading more input when a client-server command has been

received.
Files: src/os_unix.c

Patch 6.2.221
Problem: No file name completion for ":cscope add".
Solution: Add the XFILE flag to ":cscope". (Gary Johnson)
Files: src/ex_cmds.h

Patch 6.2.222
Problem: Using "--remote" several times on a row only opens some of the

files. (Dany St-Amant)
Solution: Don't delete all typeahead when the server receives a command from

a client, only delete typed characters.
Files: src/main.c

Patch 6.2.223
Problem: Cscope: Avoid a hang when cscope waits for a response while Vim

waits for a prompt.
Error messages from Cscope mess up the display.

Solution: Detect the hit-enter message and respond by sending a return
character to cscope. (Gary Johnson)
Use EMSG() and strerror() when possible. Replace perror() with
PERROR() everywhere, add emsg3().

Files: src/diff.c, src/if_cscope.c, src/integration.c, src/message.c,
src/proto/message.pro, src/misc2.c, src/netbeans.c, src/vim.h

Patch 6.2.224
Problem: Mac: Can't compile with small features. (Axel Kielhorn)
Solution: Also include vim_chdirfile() when compiling for the Mac.
Files: src/misc2.c

version6.txt — 2430

Patch 6.2.225
Problem: NetBeans: Reported modified state isn't exactly right.
Solution: Report a file being modified in the NetBeans way.
Files: src/netbeans.c

Patch 6.2.226 (after 6.2.107) (extra)
Problem: The "ws2-32.lib" file isn't always available.
Solution: Use "WSock32.lib" instead. (Taro Muraoka, Dan Sharp)
Files: src/Make_cyg.mak, src/Make_ming.mak, src/Make_mvc.mak

Patch 6.2.227 (extra)
Problem: The "PC" symbol is defined but not used anywhere.
Solution: Remove "-DPC" from the makefiles.
Files: src/Make_bc3.mak, src/Make_bc5.mak, src/Make_cyg.mak,

src/Make_ming.mak

Patch 6.2.228
Problem: Receiving CTRL-\ CTRL-N after typing "f" or "m" doesn't switch Vim

back to Normal mode. Same for CTRL-\ CTRL-G.
Solution: Check if the character typed after a command is CTRL-\ and obtain

another character to check for CTRL-N or CTRL-G, waiting up to
'ttimeoutlen' msec.

Files: src/normal.c

Patch 6.2.229
Problem: ":function" with a name that uses magic curlies does not work

inside a function. (Servatius Brandt)
Solution: Skip over the function name properly.
Files: src/eval.c

Patch 6.2.230 (extra)
Problem: Win32: a complex pattern may cause a crash.
Solution: Use __try and __except to catch the exception and handle it

gracefully, when possible. Add myresetstkoflw() to reset the
stack overflow. (Benjamin Peterson)

Files: src/Make_bc5.mak, src/os_mswin.c src/os_win32.c, src/os_win32.h,
src/proto/os_win32.pro, src/regexp.c

Patch 6.2.231 (after 6.2.046)
Problem: Various problems when an error exception is raised from within a

builtin function. When it is invoked while evaluating arguments
to a function following arguments are still evaluated. When
invoked with a line range it will be called for remaining lines.

Solution: Update "force_abort" also after calling a builtin function, so
that aborting() always returns the correct value. (Servatius
Brandt)

Files: src/eval.c, src/ex_eval.c, src/proto/ex_eval.pro,
src/testdir/test49.ok, src/testdir/test49.vim

Patch 6.2.232
Problem: ":python vim.command('python print 2*2')" crashes Vim. (Eugene

Minkovskii)
Solution: Disallow executing a Python command recursively and give an error

message.
Files: src/if_python.c

Patch 6.2.233
Problem: On Mac OSX adding -pthread for Python only generates a warning.

The test for Perl threads rejects Perl while it's OK.

version6.txt — 2431

Tcl doesn't work at all.
The test for Ruby fails if ruby exists but there are no header
files. The Ruby library isn't detected properly

Solution: Avoid adding -pthread on Mac OSX. Accept Perl threads when it's
not the 5.5 threads.
Use the Tcl framework for header files. For Ruby rename cWindow
to cVimWindow to avoid a name clash. (Ken Scott)
Only enable Ruby when the header files can be found. Use "-lruby"
instead of "libruby.a" when it can't be found.

Files: src/auto/configure, src/configure.in, src/if_ruby.c

Patch 6.2.234
Problem: GTK 2 GUI: ":sp" and the ":q" leaves the cursor on the command

line.
Solution: Flush output before removing scrollbars. Also do this in other

places where gui_mch_*() functions are invoked.
Files: src/ex_cmds.c, src/option.c, src/window.c

Patch 6.2.235 (extra)
Problem: Win32: Cursor isn't removed with a 25x80 window and doing:

"1830ia<Esc>400a-<Esc>0w0". (Yasuhiro Matsumoto)
Solution: Remove the call to gui_undraw_cursor() from gui_mch_insert_lines().
Files: src/gui_w48.c

Patch 6.2.236
Problem: Using gvim with Agide gives "connection lost" error messages.
Solution: Only give the "connection lost" message when the buffer was once

owned by NetBeans.
Files: src/netbeans.c, src/structs.h

Patch 6.2.237
Problem: GTK 2: Thai text is drawn wrong. It changes when moving the

cursor over it.
Solution: Disable the shaping engine, it moves combining characters to a

wrong position and combines characters, while drawing the cursor
doesn't combine characters.

Files: src/gui_gtk_x11.c

Patch 6.2.238 (after 6.2.231)
Problem: ":function" does not work inside a while loop. (Servatius Brandt)
Solution: Add get_while_line() and pass it to do_one_cmd() when in a while

loop, so that all lines are stored and can be used again when
repeating the loop.
Adjust test 49 so that it checks for the fixed problems.
(Servatius Brandt)

Files: src/digraph.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,
src/proto/ex_cmds2.pro, src/proto/ex_docmd.pro,
src/testdir/test49.in, src/testdir/test49.ok,
src/testdir/test49.vim

Patch 6.2.239
Problem: GTK 2: With closed folds the arrow buttons of a vertical scrollbar

often doesn't scroll. (Moshe Kaminsky)
Solution: Hackish solution: Detect that the button was pressed from the

mouse pointer position.
Files: src/gui_gtk.c, src/gui.c

Patch 6.2.240
Problem: GTK 2: Searching for bitmaps for the toolbar doesn't work as with

other systems. Need to explicitly use "icon=name". (Ned Konz,

version6.txt — 2432

Christian J. Robinson)
Solution: Search for icons like done for Motif.
Files: src/gui_gtk.c

Patch 6.2.241
Problem: GTK 2: Search and Search/Replace dialogs are synced, that makes no

sense. Buttons are sometimes greyed-out. (Jeremy Messenger)
Solution: Remove the code to sync the two dialogs. Adjust the code to react

to an empty search string to also work for GTK2. (David Necas)
Files: src/gui_gtk.c

Patch 6.2.242
Problem: Gnome: "vim --help" only shows the Gnome arguments, not the Vim

arguments.
Solution: Don't let the Gnome code remove the "--help" argument and don't

exit at the end of usage().
Files: src/gui_gtk_x11.c, src/main.c

Patch 6.2.243 (extra)
Problem: Mac: Dropping a file on a Vim icon causes a hit-enter prompt.
Solution: Move the dropped files to the global argument list, instead of the

usual drop handling. (Eckehard Berns)
Files: src/main.c, src/gui_mac.c

Patch 6.2.244
Problem: ':echo "\xf7"' displays the illegal byte as if it was a character

and leaves "cho" after it.
Solution: When checking the length of a UTF-8 byte sequence and it's shorter

than the number of bytes available, assume it's an illegal byte.
Files: src/mbyte.c

Patch 6.2.245
Problem: Completion doesn't work for ":keepmarks" and ":lockmarks".
Solution: Add the command modifiers to the table of commands. (Madoka

Machitani)
Files: src/ex_cmds.h, src/ex_docmd.c

Patch 6.2.246
Problem: Mac: Starting Vim from Finder doesn't show error messages.
Solution: Recognize that output is being displayed by stderr being

"/dev/console". (Eckehard Berns)
Files: src/main.c, src/message.c

Patch 6.2.247 (after 6.2.193)
Problem: When using a search pattern from the viminfo file the last

character is replaced with a '/'.
Solution: Store the separator character in the right place. (Kelvin Lee)
Files: src/ex_getln.c

Patch 6.2.248
Problem: GTK: When XIM is enabled normal "2" and keypad "2" cannot be

distinguished.
Solution: Detect that XIM changes the keypad key to the expected ASCII

character and fall back to the non-XIM code. (Neil Bird)
Files: src/gui_gtk_x11.c, src/mbyte.c, src/proto/mbyte.pro

Patch 6.2.249
Problem: ":cnext" moves to the error in the next file, but there is no

method to go back.
Solution: Add ":cpfile" and ":cNfile".

version6.txt — 2433

Files: src/ex_cmds.h, src/quickfix.c, src/vim.h, runtime/doc/quickfix.txt

Patch 6.2.250
Problem: Memory leaks when using signs. (Xavier de Gaye)
Solution: Delete the list of signs when unloading a buffer.
Files: src/buffer.c

Patch 6.2.251
Problem: GTK: The 'v' flag in 'guioptions' doesn't work. (Steve Hall)

Order of buttons is reversed for GTK 2.2.4. Don't always get
focus back after handling a dialog.

Solution: Make buttons appear vertically when desired. Reverse the order in
which buttons are added to a dialog. Move mouse pointer around
when the dialog is done and we don't have focus.

Files: src/gui_gtk.c

Patch 6.2.252 (extra, after 6.2.243)
Problem: Mac: Dropping a file on a Vim icon causes a hit-enter prompt for

Mac OS classic.
Solution: Remove the #ifdef from the code that fixes it for Mac OSX.
Files: src/gui_mac.c

Patch 6.2.253
Problem: When 'tagstack' is not set a ":tag id" command does not work after

a ":tjump" command.
Solution: Set "new_tag" when 'tagstack' isn't set. (G. Narendran)
Files: src/tag.c

Patch 6.2.254
Problem: May run out of space for error messages.
Solution: Keep room for two more bytes.
Files: src/quickfix.c

Patch 6.2.255
Problem: GTK: A new item in the popup menu is put just after instead of

just before the right item. (Gabriel Zachmann)
Solution: Don't increment the menu item index.
Files: src/gui_gtk.c

Patch 6.2.256
Problem: Mac: "macroman" encoding isn't recognized, need to use

"8bit-macroman".
Solution: Recognize "macroman" with an alias "mac". (Eckehard Berns)
Files: src/mbyte.c

Patch 6.2.257 (after 6.2.250)
Problem: Signs are deleted for ":bdel", but they could still be useful.
Solution: Delete signs only for ":bwipe".
Files: src/buffer.c

Patch 6.2.258
Problem: GUI: can't disable (grey-out) a popup menu item. (Ajit Thakkar)
Solution: Loop over the popup menus for all modes.
Files: src/menu.c

Patch 6.2.259
Problem: If there are messages when exiting, on the console there is a

hit-enter prompt while the message can be read; in the GUI the
message may not be visible.

Solution: Use the hit-enter prompt when there is an error message from

version6.txt — 2434

writing the viminfo file or autocommands, or when there is any
output in the GUI and 'verbose' is set. Don't use a hit-enter
prompt for the non-GUI version unless there is an error message.

Files: src/main.c

Patch 6.2.260
Problem: GTK 2: Can't quit a dialog with <Esc>.

GTK 1 and 2: <Enter> always gives a result, even when the default
button has been disabled.

Solution: Handle these keys explicitly. When no default button is specified
use the first one (works mostly like it was before).

Files: src/gui_gtk.c

Patch 6.2.261
Problem: When 'autoindent' and 'cindent' are set and a line is recognized

as a comment, starting a new line won't do 'cindent' formatting.
Solution: Also use 'cindent' formatting for lines that are used as a

comment. (Servatius Brandt)
Files: src/misc1.c

Patch 6.2.262
Problem: 1 CTRL-W w beeps, even though going to the first window is

possible. (Charles Campbell)
Solution: Don't beep.
Files: src/window.c

Patch 6.2.263
Problem: Lint warnings: Duplicate function prototypes, duplicate macros,

use of a zero character instead of a zero pointer, unused
variable. Clearing allocated memory in a complicated way.

Solution: Remove the function prototypes from farsi.h. Remove the
duplicated lines in keymap.h. Change getvcol() argument from NUL
to NULL. Remove the "col" variable in regmatch(). Use
lalloc_clear() instead of lalloc(). (Walter Briscoe)

Files: src/farsi.h, src/keymap.h, src/ops.c, src/regexp.c, src/search.c

Patch 6.2.264 (after 6.2.247)
Problem: Writing past allocated memory when using a command line from the

viminfo file.
Solution: Store the NUL in the right place.
Files: src/ex_getln.c

Patch 6.2.265
Problem: Although ":set" is not allowed in the sandbox, ":let &opt = val"

works.
Solution: Do allow changing options in the sandbox, but not the ones that

can't be changed from a modeline.
Files: src/ex_cmds.h, src/options.c

Patch 6.2.266
Problem: When redirecting output and using ":silent", line breaks are

missing from output of ":map" and ":tselect". Alignment of
columns is wrong.

Solution: Insert a line break where "msg_didout" was tested. Update msg_col
when redirecting and using ":silent".

Files: src/getchar.c, src/message.c

Patch 6.2.267 (extra)
Problem: Win32: "&&" in a tearoff menu is not shown. (Luc Hermitte)
Solution: Use the "name" item from the menu instead of the "dname" item.

version6.txt — 2435

Files: src/gui_w32.c, src/menu.c

Patch 6.2.268
Problem: GUI: When changing 'guioptions' part of the window may be off

screen. (Randall Morris)
Solution: Adjust the size of the window when changing 'guioptions', but only

when adding something.
Files: src/gui.c

Patch 6.2.269
Problem: Diff mode does not highlight a change in a combining character.

(Raphael Finkel)
Solution: Make diff_find_change() multibyte aware: find the start byte of

a character that contains a change.
Files: src/diff.c

Patch 6.2.270
Problem: Completion in Insert mode, then repeating with ".", doesn't handle

composing characters in the completed text. (Raphael Finkel)
Solution: Don't skip over composing chars when adding completed text to the

redo buffer.
Files: src/getchar.c

Patch 6.2.271
Problem: NetBeans: Can't do "tail -f" on the log. Passing socket info with

an argument or environment variable is not secure.
Solution: Wait after initializing the log. Allow passing the socket info

through a file. (Gordon Prieur)
Files: runtime/doc/netbeans.txt, src/main.c, src/netbeans.c

Patch 6.2.272
Problem: When the "po" directory exists, but "po/Makefile" doesn't,

building fails. Make loops when the "po" directory has been
deleted after running configure.

Solution: Check for the "po/Makefile" instead of just the "po" directory.
Check this again before trying to run make with that Makefile.

Files: src/auto/configure, src/configure.in, src/Makefile

Patch 6.2.273
Problem: Changing the sort order in an explorer window for an empty

directory produces error messages. (Doug Kearns)
Solution: When an invalid range is used for a function that is not going to

be executed, skip over the arguments anyway.
Files: src/eval.c

Patch 6.2.274
Problem: ":print" skips empty lines when 'list' is set and there is no

"eol" in 'listchars'. (Yakov Lerner)
Solution: Skip outputting a space for an empty line only when 'list' is set

and the end-of-line character is not empty.
Files: src/message.c

Patch 6.2.275 (extra, after 6.2.267)
Problem: Warning for uninitialized variable when using gcc.
Solution: Initialize "acLen" to zero. (Bill McCarthy)
Files: src/gui_w32.c

Patch 6.2.276
Problem: ":echo X()" does not put a line break between the message that X()

displays and the text that X() returns. (Yakov Lerner)

version6.txt — 2436

Solution: Invoke msg_start() after evaluating the argument.
Files: src/eval.c

Patch 6.2.277
Problem: Vim crashes when a ":runtime ftplugin/ada.vim" causes a recursive

loop. (Robert Nowotniak)
Solution: Restore "msg_list" before returning from do_cmdline().
Files: src/ex_docmd.c

Patch 6.2.278
Problem: Using "much" instead of "many".
Solution: Correct the error message.
Files: src/eval.c

Patch 6.2.279
Problem: There is no default choice for a confirm() dialog, now that it is

possible not to have a default choice.
Solution: Make the first choice the default choice.
Files: runtime/doc/eval.txt, src/eval.c

Patch 6.2.280
Problem: "do" and ":diffget" don't work in the first line and the last line

of a buffer. (Aron Griffis)
Solution: Find a difference above the first line and below the last line.

Also fix a few display updating bugs.
Files: src/diff.c, src/fold.c, src/move.c

Patch 6.2.281
Problem: PostScript printing doesn't work on Mac OS X 10.3.2.
Solution: Adjust the header file. (Mike Williams)
Files: runtime/print/prolog.ps

Patch 6.2.282
Problem: When using CTRL-O to go back to a help file, it becomes listed.

(Andrew Nesbit)
Using ":tag" or ":tjump" in a help file doesn't keep the help file
settings (e.g. for 'iskeyword').

Solution: Don't mark a buffer as listed when its help flag is set. Put all
the option settings for a help buffer together in do_ecmd().

Files: src/ex_cmds.c

Patch 6.2.283
Problem: The "local additions" in help.txt are used without conversion,

causing latin1 characters showing up wrong when 'enc' is utf-8.
(Antoine J. Mechelynck)

Solution: Convert the text to 'encoding'.
Files: src/ex_cmds.c

Patch 6.2.284
Problem: Listing a function puts "endfunction" in the message history.

Typing "q" at the more prompt isn't handled correctly when listing
variables and functions. (Hara Krishna Dara)

Solution: Don't use msg() for "endfunction". Check "got_int" regularly.
Files: src/eval.c

Patch 6.2.285
Problem: GUI: In a single wrapped line that fills the window, "gj" in the

last screen line leaves the cursor behind. (Ivan Tarasov)
Solution: Undraw the cursor before scrolling the text up.
Files: src/gui.c

version6.txt — 2437

Patch 6.2.286
Problem: When trying to rename a file and it doesn't exist, the destination

file is deleted anyway. (Luc Deux)
Solution: Don't delete the destination when the source doesn't exist. (Taro

Muraoka)
Files: src/fileio.c

Patch 6.2.287 (after 6.2.264)
Problem: Duplicate lines are added to the viminfo file.
Solution: Compare with existing entries without an offset. Also fixes

reading very long history lines from viminfo.
Files: src/ex_getln.c

Patch 6.2.288 (extra)
Problem: Mac: An external program can't be interrupted.
Solution: Don't use the 'c' key for backspace. (Eckehard Berns)
Files: src/gui_mac.c

Patch 6.2.289
Problem: Compiling the Tcl interface with thread support causes ":make" to

fail. (Juergen Salk)
Solution: Use $TCL_DEFS from the Tcl config script to obtain the required

compile flags for using the thread library.
Files: src/auto/configure, src/configure.in

Patch 6.2.290 (extra)
Problem: Mac: The mousewheel doesn't work.
Solution: Add mousewheel support. Also fix updating the thumb after a drag

and then using another way to scroll. (Eckehard Berns)
Files: src/gui_mac.c

Patch 6.2.291 (extra)
Problem: Mac: the plus button and close button don't do anything.
Solution: Make the plus button maximize the window and the close button

close Vim. (Eckehard Berns)
Files: src/gui.c, src/gui_mac.c

Patch 6.2.292
Problem: Motif: When removing GUI arguments from argv[] a "ps -ef" shows

the last argument repeated.
Solution: Set argv[argc] to NULL. (Michael Jarvis)
Files: src/gui_x11.c

Patch 6.2.293 (after 6.2.255)
Problem: GTK: A new item in a menu is put before the tearoff item.
Solution: Do increment the menu item index for non-popup menu items.
Files: src/gui_gtk.c

Patch 6.2.294 (extra)
Problem: Mac: Cannot use modifiers with Space, Tab, Enter and Escape.
Solution: Handle all modifiers for these keys. (Eckehard Berns)
Files: src/gui_mac.c

Patch 6.2.295
Problem: When in debug mode, receiving a message from a remote client

causes a crash. Evaluating an expression causes Vim to wait for
"cont" to be typed, without a prompt. (Hari Krishna Dara)

Solution: Disable debugging when evaluating an expression for a client.
(Michael Geddes) Don't try reading into the typeahead buffer when

version6.txt — 2438

it may have been filled in another way.
Files: src/ex_getln.c, src/getchar.c, src/if_xcmdsrv.c, src/main.c,

src/misc1.c, src/proto/getchar.pro, src/proto/main.pro,
src/proto/os_unix.pro, src/proto/ui.pro, src/structs.h,
src/os_unix.c, src/ui.c

Patch 6.2.296 (extra)
Problem: Same as 6.2.295.
Solution: Extra files for patch 6.2.295.
Files: src/os_amiga.c, src/os_msdos.c, src/os_riscos.c, src/os_win32.c,

src/proto/os_amiga.pro, src/proto/os_msdos.pro,
src/proto/os_riscos.pro, src/proto/os_win32.pro

Patch 6.2.297 (after 6.2.232)
Problem: Cannot invoke Python commands recursively.
Solution: With Python 2.3 and later use the available mechanisms to invoke

Python recursively. (Matthew Mueller)
Files: src/if_python.c

Patch 6.2.298
Problem: A change always sets the '. mark and an insert always sets the '^

mark, even when this is not wanted.
Cannot go back to the position of older changes without undoing
those changes.

Solution: Add the ":keepjumps" command modifier.
Add the "g," and "g;" commands.

Files: runtime/doc/motion.txt, src/ex_cmds.h, src/ex_docmd.c, src/edit.c,
src/mark.c, src/misc1.c, src/normal.c, src/proto/mark.pro,
src/structs.h, src/undo.c

Patch 6.2.299
Problem: Can only use one language for help files.
Solution: Add the 'helplang' option to select the preferred language(s).

Make ":helptags" generate tags files for all languages.
Files: runtime/doc/options.txt, runtime/doc/various.txt, src/Makefile,

src/ex_cmds.c, src/ex_cmds2.c, src/ex_cmds.h, src/ex_getln.c,
src/normal.c, src/option.c, src/option.h, src/proto/ex_cmds.pro,
src/proto/ex_cmds2.pro, src/proto/option.pro, src/structs.h,
src/tag.c, src/vim.h

Patch 6.2.300 (after 6.2.297)
Problem: Cannot build Python interface with Python 2.2 or earlier.
Solution: Add a semicolon.
Files: src/if_python.c

Patch 6.2.301
Problem: The "select all" item from the popup menu doesn't work for Select

mode.
Solution: Use the same commands as for the "Edit.select all" menu.

(Benji Fisher)
Files: runtime/menu.vim

Patch 6.2.302
Problem: Using "CTRL-O ." in Insert mode doesn't work properly. (Benji

Fisher)
Solution: Restore "restart_edit" after an insert command that was not typed.

Avoid waiting with displaying the mode when there is no text to be
overwritten.
Fix that "CTRL-O ." sometimes doesn't put the cursor back after
the end-of-line. Only reset the flag that CTRL-O was used past

version6.txt — 2439

the end of the line when restarting editing. Update "o_lnum"
number when inserting text and "o_eol" is set.

Files: src/edit.c, src/normal.c

Patch 6.2.303
Problem: Cannot use Unicode digraphs while 'encoding' is not Unicode.
Solution: Convert the character from Unicode to 'encoding' when needed.

Use the Unicode digraphs for the Macintosh. (Eckehard Berns)
Files: src/digraph.c

Patch 6.2.304 (extra, after 6.2.256)
Problem: Mac: No proper support for 'encoding'. Conversion without iconv()

is not possible.
Solution: Convert input from 'termencoding' to 'encoding'. Add

mac_string_convert(). Convert text for the clipboard when needed.
(Eckehard Berns)

Files: src/gui_mac.c, src/mbyte.c, src/structs.h, src/vim.h

Patch 6.2.305 (after 6.2.300)
Problem: Win32: Cannot build Python interface with Python 2.3. (Ajit

Thakkar)
Solution: Add two functions to the dynamic loading feature.
Files: src/if_python.c

Patch 6.2.306 (extra)
Problem: Win32: Building console version with BCC 5.5 gives a warning for

get_cmd_args() prototype missing. (Ajit Thakkar)
Solution: Don't build os_w32exe.c for the console version.
Files: src/Make_bc5.mak

Patch 6.2.307 (after 6.2.299)
Problem: Installing help files fails.
Solution: Expand wildcards for translated help files separately.
Files: src/Makefile

Patch 6.2.308
Problem: Not all systems have "whoami", resulting in an empty user name.
Solution: Use "logname" when possible, "whoami" otherwise. (David Boyce)
Files: src/Makefile

Patch 6.2.309
Problem: "3grx" waits for two ESC to be typed. (Jens Paulus)
Solution: Append the ESC to the stuff buffer when redoing the "gr" insert.
Files: src/edit.c

Patch 6.2.310
Problem: When setting 'undolevels' to -1, making a change and setting

'undolevels' to a positive value an "undo list corrupt" error
occurs. (Madoka Machitani)

Solution: Sync undo before changing 'undolevels'.
Files: src/option.c

Patch 6.2.311 (after 6.2.298)
Problem: When making several changes in one line the changelist grows

quickly. There is no error message for reaching the end of the
changelist. Reading changelist marks from viminfo doesn't work
properly.

Solution: Only make a new entry in the changelist when making a change in
another line or 'textwidth' columns away. Add E662, E663 and E664
error messages. Put a changelist mark from viminfo one position

version6.txt — 2440

before the end.
Files: runtime/doc/motion.txt, src/mark.c, src/misc1.c, src/normal.c

Patch 6.2.312 (after 6.2.299)
Problem: "make install" clears the screen when installing the docs.
Solution: Execute ":helptags" in silent mode.
Files: runtime/doc/Makefile

Patch 6.2.313
Problem: When opening folds in a diff window, other diff windows no longer

show the same text.
Solution: Sync the folds in diff windows.
Files: src/diff.c, src/fold.c, src/move.c, src/proto/diff.pro,

src/proto/move.pro

Patch 6.2.314
Problem: When 'virtualedit' is set "rx" may cause a crash with a blockwise

selection and using "$". (Moritz Orbach)
Solution: Don't try replacing chars in a line that has no characters in the

block.
Files: src/ops.c

Patch 6.2.315
Problem: Using CTRL-C in a Visual mode mapping while 'insertmode' is set

stops Vim from returning to Insert mode.
Solution: Don't reset "restart_edit" when a CTRL-C is found and 'insertmode'

is set.
Files: src/normal.c

Patch 6.2.316 (after 6.2.312)
Problem: "make install" tries connecting to the X server when installing

the docs. (Stephen Thomas)
Solution: Add the "-X" argument.
Files: runtime/doc/Makefile

Patch 6.2.317 (after 6.2.313)
Problem: When using "zi" in a diff window, other diff windows are not

adjusted. (Richard Curnow)
Solution: Distribute a change in 'foldenable' to other diff windows.
Files: src/normal.c

Patch 6.2.318
Problem: When compiling with _THREAD_SAFE external commands don't echo

typed characters.
Solution: Don't set the terminal mode to TMODE_SLEEP when it's already at

TMODE_COOK.
Files: src/os_unix.c

Patch 6.2.319 (extra)
Problem: Building gvimext.dll with Mingw doesn't work properly.
Solution: Use gcc instead of dllwrap. Use long option names. (Alejandro

Lopez-Valencia)
Files: src/GvimExt/Make_ming.mak

Patch 6.2.320
Problem: Win32: Adding and removing the menubar resizes the Vim window.

(Jonathon Merz)
Solution: Don't let a resize event change 'lines' unexpectedly.
Files: src/gui.c

version6.txt — 2441

Patch 6.2.321
Problem: When using modeless selection, wrapping lines are not recognized,

a line break is always inserted.
Solution: Add LineWraps[] to remember whether a line wrapped or not.
Files: src/globals.h, src/screen.c, src/ui.c

Patch 6.2.322
Problem: With 'showcmd' set, after typing "dd" the next "d" may not be

displayed. (Jens Paulus)
Solution: Redraw the command line after updating the screen, scrolling may

have set "clear_cmdline".
Files: src/screen.c

Patch 6.2.323
Problem: Win32: expanding "~/file" in an autocommand pattern results in

backslashes, while this pattern should only have forward slashes.
Solution: Make expanding environment variables respect 'shellslash' and set

p_ssl when expanding the autocommand pattern.
Files: src/fileio.c, src/misc1.c, src/proto/fileio.pro

Patch 6.2.324 (extra)
Problem: Win32: when "vimrun.exe" has a path with white space, such as

"Program Files", executing external commands may fail.
Solution: Put double quotes around the path to "vimrun".
Files: src/os_win32.c

Patch 6.2.325
Problem: When $HOME includes a space, doing ":set tags=~/tags" doesn't

work, the space is used to separate file names. (Brett Stahlman)
Solution: Escape the space with a backslash.
Files: src/option.c

Patch 6.2.326
Problem: ":windo set syntax=foo" doesn't work. (Tim Chase)
Solution: Don't change 'eventignore' for ":windo".
Files: src/ex_cmds2.c

Patch 6.2.327
Problem: When formatting text all marks in the formatted lines are lost.

A word is not joined to a previous line when this would be
possible. (Mikolaj Machowski)

Solution: Try to keep marks in the same position as much as possible.
Also keep mark positions when joining lines.
Start auto-formatting in the previous line when appropriate.
Add the "gw" operator: Like "gq" but keep the cursor where it is.

Files: runtime/doc/change.txt, src/edit.c, src/globals.h, src/mark.c,
src/misc1.c, src/normal.c, src/ops.c, src/proto/edit.pro,
src/proto/mark.pro, src/proto/ops.pro, src/structs.h, src/vim.h

Patch 6.2.328
Problem: XIM with GTK: It is hard to understand what XIM is doing.
Solution: Add xim_log() to log XIM events and help with debugging.
Files: src/mbyte.c

Patch 6.2.329
Problem: ":=" does not work Vi compatible. (Antony Scriven)
Solution: Print the last line number instead of the current line. Don't

print "line".
Files: src/ex_cmds.h, src/ex_docmd.c

version6.txt — 2442

Patch 6.2.330 (extra, after 6.2.267)
Problem: Win32: Crash when tearing off a menu.
Solution: Terminate a string with a NUL. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 6.2.331 (after 6.2.327)
Problem: "gwap" leaves cursor in the wrong line.
Solution: Remember the cursor position before finding the ends of the

paragraph.
Files: src/normal.c, src/ops.c, src/structs.h

Patch 6.2.332 (extra)
Problem: Amiga: Compile error for string array. Compiling the Amiga GUI

doesn't work.
Solution: Use a char pointer instead. Move including "gui_amiga.h" to after

including "vim.h". Add a semicolon. (Ali Akcaagac)
Files: src/gui_amiga.c, src/os_amiga.c

Patch 6.2.333 (extra)
Problem: Win32: printing doesn't work with specified font charset.
Solution: Use the specified font charset. (Mike Williams)
Files: src/os_mswin.c

Patch 6.2.334 (extra, after 6.2.296)
Problem: Win32: evaluating client expression in debug mode requires typing

"cont".
Solution: Use eval_client_expr_to_string().
Files: src/os_mswin.c

Patch 6.2.335
Problem: The ":sign" command cannot be followed by another command.
Solution: Add TRLBAR to the command flags.
Files: src/ex_cmds.h

Patch 6.2.336 (after 6.2.327)
Problem: Mixup of items in an expression.
Solution: Move "== NUL" to the right spot.
Files: src/edit.c

Patch 6.2.337 (extra, after 6.2.319)
Problem: Building gvimext.dll with Mingw doesn't work properly.
Solution: Fix white space and other details. (Alejandro Lopez-Valencia)
Files: src/GvimExt/Make_ming.mak

Patch 6.2.338 (after 6.2.331)
Problem: When undoing "gwap" the cursor is always put at the start of the

paragraph. When undoing auto-formatting the cursor may be above
the change.

Solution: Try to move the cursor back to where it was or to the first line
that actually changed.

Files: src/normal.c, src/ops.c, src/undo.c

Patch 6.2.339
Problem: Crash when using many different highlight groups and a User

highlight group. (Juergen Kraemer)
Solution: Do not use the sg_name_u pointer when it is NULL. Also simplify

use of the highlight group table.
Files: src/syntax.c

Patch 6.2.340

version6.txt — 2443

Problem: ":reg" doesn't show the actual contents of the clipboard if it was
filled outside of Vim. (Stuart MacDonald)

Solution: Obtain the clipboard contents before displaying it.
Files: src/ops.c

Patch 6.2.341 (extra)
Problem: Win32: When the path to diff.exe contains a space and using the

vimrc generated by the install program, diff mode does not work.
Solution: Put the first double quote just before the space instead of before

the path.
Files: src/dosinst.c

Patch 6.2.342 (extra)
Problem: Win32: macros are not always used as expected.
Solution: Define WINVER to 0x0400 instead of 0x400. (Alejandro

Lopez-Valencia)
Files: src/Make_bc5.mak, src/Make_cyg.mak, src/Make_mvc.mak

Patch 6.2.343
Problem: Title doesn't work with some window managers. X11: Setting the

text property for the window title is hard coded.
Solution: Use STRING format when possible. Use the UTF-8 function when

it's available and 'encoding' is utf-8. Use
XStringListToTextProperty(). Do the same for the icon name.
(David Harrison)

Files: src/os_unix.c

Patch 6.2.344 (extra, after 6.2.337)
Problem: Cannot build gvimext.dll with MingW on Linux.
Solution: Add support for cross compiling. (Ronald Hoellwarth)
Files: src/GvimExt/Make_ming.mak

Patch 6.2.345 (extra)
Problem: Win32: Copy/paste between two Vims fails if 'encoding' is not set

properly or there are illegal bytes.
Solution: Use a raw byte format. Always set it when copying. When pasting

use the raw format if 'encoding' is the same.
Files: src/os_mswin.c, src/os_win16.c, src/os_win32.c, src/vim.h

Patch 6.2.346
Problem: Win32 console: After using "chcp" Vim does not detect the

different codepage.
Solution: Use GetConsoleCP() and when it is different from GetACP() set

'termencoding'.
Files: src/option.c

Patch 6.2.347 (extra)
Problem: Win32: XP theme support is missing.
Solution: Add a manifest and refer to it from the resource file. (Michael

Wookey)
Files: Makefile, src/gvim.exe.mnf, src/vim.rc

Patch 6.2.348
Problem: Win32: "vim c:\dir\(test)" doesn't work, because the 'isfname'

default value doesn't contain parentheses.
Solution: Temporarily add '(' and ')' to 'isfname' when expanding file name

arguments.
Files: src/main.c

Patch 6.2.349

version6.txt — 2444

Problem: Finding a match using 'matchpairs' may cause a crash.
'matchpairs' is not used for 'showmatch'.

Solution: Don't look past the NUL in 'matchpairs'. Use 'matchpairs' for
'showmatch'. (Dave Olszewkski)

Files: src/misc1.c, src/normal.c, src/proto/search.pro, src/search.c

Patch 6.2.350
Problem: Not enough info about startup timing.
Solution: Add a few more TIME_MSG() calls.
Files: src/main.c

Patch 6.2.351
Problem: Win32: $HOME may be set to %USERPROFILE%.
Solution: Expand %VAR% at the start of $HOME.
Files: src/misc1.c

Patch 6.2.352 (after 6.2.335)
Problem: ":sign texthl=||" does not work.
Solution: Remove the check for a following command. Give an error for extra

arguments after "buff=1".
Files: src/ex_cmds.c, src/ex_cmds.h

Patch 6.2.353 (extra)
Problem: Win32: Supported server name length is limited. (Paul Bossi)
Solution: Use MAX_PATH instead of 25.
Files: src/os_mswin.c

Patch 6.2.354 (extra)
Problem: Win32: When the mouse pointer is on a tear-off menu it is hidden

when typing but is not redisplayed when moved. (Markx Hackmann)
Solution: Handle the pointer move event for the tear-off menu window.
Files: src/gui_w32.c

Patch 6.2.355 (after 6.2.303)
Problem: When 'encoding' is a double-byte encoding different from the

current locale, the width of characters is not correct.
Possible failure and memory leak when using iconv, Unicode
digraphs and 'encoding' is not "utf-8".

Solution: Use iconv() to discover the actual width of characters.
Add the "vc_fail" field to vimconv_T.
When converting a digraph, init the conversion type to NONE and
cleanup afterwards.

Files: src/digraph.c, src/mbyte.c, src/structs.h

Patch 6.2.356
Problem: When using a double-byte 'encoding' and 'selection' is

"exclusive", "vy" only yanks the first byte of a double-byte
character. (Xiangjiang Ma)

Solution: Correct the column in unadjust_for_sel() to position on the first
byte, always include the trailing byte of the selected text.

Files: src/normal.c

Patch 6.2.357 (after 6.2.321)
Problem: Memory leak when resizing the Vim window.
Solution: Free the LineWraps array.
Files: src/screen.c

Patch 6.2.358 (after 6.2.299)
Problem: Memory leak when using ":help" and the language doesn't match.
Solution: Free the array with matching tags.

version6.txt — 2445

Files: src/ex_cmds.c

Patch 6.2.359 (after 6.2.352)
Problem: Compiler warning for long to int type cast.
Solution: Add explicit type cast.
Files: src/ex_cmds.c

Patch 6.2.360
Problem: "100|" in an empty line results in a ruler "1,0-100". (Pavol

Juhas)
Solution: Recompute w_virtcol if the target column was not reached.
Files: src/misc2.c

Patch 6.2.361 (extra)
Problem: Win32: Run gvim, ":set go-=m", use Alt-Tab, keep Alt pressed while

pressing Esc, then release Alt: Cursor disappears and typing a key
causes a beep. (Hari Krishna Dara)

Solution: Don't ignore the WM_SYSKEYUP event when the menu is disabled.
Files: src/gui_w32.c

Patch 6.2.362 (extra, after 6.2.347)
Problem: Win32: The manifest causes gvim not to work. (Dave Roberts)
Solution: Change "x86" to "X86". (Serge Pirotte)
Files: src/gvim.exe.mnf

Patch 6.2.363
Problem: In an empty file with 'showmode' off, "i" doesn't change the ruler

from "0-1" to "1". Typing "x<BS>" does show "1", but then <Esc>
doesn't make it "0-1" again. Same problem for ruler in
statusline. (Andrew Pimlott)

Solution: Remember the "empty line" flag with Insert mode and'ed to it.
Files: src/screen.c

Patch 6.2.364
Problem: HTML version of the documentation doesn't mention the encoding,

which is a problem for mbyte.txt.
Solution: Adjust the awk script. (Ilya Sher)
Files: runtime/doc/makehtml.awk

Patch 6.2.365
Problem: The configure checks for Perl and Python may add compile and link

arguments that break building Vim.
Solution: Do a sanity check: try building with the arguments.
Files: src/auto/configure, src/configure.in

Patch 6.2.366
Problem: When the GUI can't start because no valid font is found, there is

no error message. (Ugen)
Solution: Add an error message.
Files: src/gui.c

Patch 6.2.367
Problem: Building the help tags file while installing may fail if there is

another Vim in $PATH.
Solution: Specify the just installed Vim executable. (Gordon Prieur)
Files: src/Makefile

Patch 6.2.368
Problem: When 'autochdir' is set, closing a window doesn't change to the

directory of the new current window. (Salman Halim)

version6.txt — 2446

Solution: Handle 'autochdir' always when a window becomes the current one.
Files: src/window.c

Patch 6.2.369
Problem: Various memory leaks: when using globpath(), when searching for

help tags files, when defining a function inside a function, when
giving an error message through an exception, for the final "."
line in ":append", in expression "cond ? a : b" that fails and for
missing ")" in an expression. Using NULL pointer when adding
first user command and for pointer computations with regexp.
(tests by Dominique Pelle)

Solution: Fix the leaks by freeing the allocated memory. Don't use the
array of user commands when there are no entries. Use a macro
instead of a function call for saving and restoring regexp states.

Files: src/eval.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c,
src/misc2.c, src/regexp.c, src/screen.c, src/tag.c

Patch 6.2.370 (extra, after6.2.341)
Problem: Win32: When the path to diff.exe contains a space and using the

vimrc generated by the install program, diff mode may not work.
(Alejandro Lopez-Valencia)

Solution: Do not use double quotes for arguments that do not have a space.
Files: src/dosinst.c

Patch 6.2.371
Problem: When 'virtualedit' is set and there is a Tab before the next "x",

"dtx" does not delete the whole Tab. (Ken Hashishi)
Solution: Move the cursor to the last position of the Tab. Also for

"df<Tab>".
Files: src/normal.c

Patch 6.2.372
Problem: When using balloon evaluation, no value is displayed for members

of structures and items of an array.
Solution: Include "->", "." and "[*]" in the expression.
Files: src/gui_beval.c, src/normal.c, src/vim.h

Patch 6.2.373
Problem: When 'winminheight' is zero and a window is reduced to zero

height, the ruler always says "Top" instead of the cursor
position. (Antoine J. Mechelynck)

Solution: Don't recompute w_topline for a zero-height window.
Files: src/window.c

Patch 6.2.374
Problem: ":echo "hello" | silent normal n" removes the "hello" message.

(Servatius Brandt)
Solution: Don't echo the search string when ":silent" was used. Also don't

show the mode. In general: don't clear to the end of the screen.
Files: src/gui.c, src/message.c, src/os_unix.c, src/proto/message.pro,

src/screen.c, src/search.c, src/window.c

Patch 6.2.375
Problem: When changing 'guioptions' the hit-enter prompt may be below the

end of the Vim window.
Solution: Call screen_alloc() before showing the prompt.
Files: src/message.c

Patch 6.2.376
Problem: Win32: Ruby interface cannot be dynamically linked with Ruby 1.6.

version6.txt — 2447

Solution: Add #ifdefs around use of rb_w32_snprintf(). (Benoît Cerrina)
Files: src/if_ruby.c

Patch 6.2.377 (after 6.2.372)
Problem: Compiler warnings for signed/unsigned compare. (Michael Wookey)
Solution: Add type cast.
Files: src/normal.c

Patch 6.2.378 (extra, after 6.2.118)
Problem: Mac: cannot build with Project Builder.
Solution: Add remove_tail_with_ext() to locate and remove the "build"

directory from the runtime path. Include os_unix.c when needed.
(Dany St Amant)

Files: src/misc1.c, src/os_macosx.c, src/vim.h

Patch 6.2.379
Problem: Using ":mkvimrc" in the ":options" window sets 'bufhidden' to

"delete". (Michael Naumann)
Solution: Do not add buffer-specific option values to a global vimrc file.
Files: src/option.c

Patch 6.2.380 (extra)
Problem: DOS: "make test" fails when running it again. Can't "make test"

with Borland C.
Solution: Make sure ".out" files are deleted when they get in the way. Add

a "test" target to the Borland C Makefile.
Files: src/Make_bc5.mak, src/testdir/Make_dos.mak

Patch 6.2.381
Problem: Setting 'fileencoding' to a comma-separated list (confusing it

with 'fileencodings') does not result in an error message.
Setting 'fileencoding' in an empty file marks it as modified.
There is no "+" in the title after setting 'fileencoding'.

Solution: Check for a comma in 'fileencoding'. Only consider a non-empty
file modified by changing 'fileencoding'. Update the title after
changing 'fileencoding'.

Files: src/option.c

Patch 6.2.382
Problem: Running "make test" puts marks from test files in viminfo.
Solution: Specify a different viminfo file to use.
Files: src/testdir/test15.in, src/testdir/test49.in

Patch 6.2.383
Problem: ":hi foo term='bla" crashes Vim. (Antony Scriven)
Solution: Check that the closing ' is there.
Files: src/syntax.c

Patch 6.2.384
Problem: ":menu a.&b" ":unmenu a.b" only works if "&b" isn't translated.
Solution: Also compare the names without '&' characters.
Files: src/menu.c

Patch 6.2.385 (extra)
Problem: Win32: forward_slash() and trash_input_buf() are undefined when

compiling with small features. (Ajit Thakkar)
Solution: Change the #ifdefs for forward_slash(). Don't call

trash_input_buf() if the input buffer isn't used.
Files: src/fileio.c, src/os_win32.c

version6.txt — 2448

Patch 6.2.386
Problem: Wasting time trying to read marks from the viminfo file for a

buffer without a name.
Solution: Skip reading marks when the buffer has no name.
Files: src/fileio.c

Patch 6.2.387
Problem: There is no highlighting of translated items in help files.
Solution: Search for a "help_ab.vim" syntax file when the help file is

called "*.abx". Also improve the help highlighting a bit.
Files: runtime/syntax/help.vim

Patch 6.2.388
Problem: GTK: When displaying some double-width characters they are drawn

as single-width, because of conversion to UTF-8.
Solution: Check the width that GTK uses and add a space if it's one instead

of two.
Files: src/gui_gtk_x11.c

Patch 6.2.389
Problem: When working over a slow connection, it's very annoying that the

last line is partly drawn and then cleared for every change.
Solution: Don't redraw the bottom line if no rows were inserted or deleted.

Don't draw the line if we know "@" lines will be used.
Files: src/screen.c

Patch 6.2.390
Problem: Using "r*" in Visual mode on multibyte characters only replaces

every other character. (Tyson Roberts)
Solution: Correct the cursor position after replacing each character.
Files: src/ops.c

Patch 6.2.391 (extra)
Problem: The ":highlight" command is not tested.
Solution: Add a test script for ":highlight".
Files: src/testdir/Makefile, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/test51.in,
src/testdir/test51.ok

Patch 6.2.392 (after 6.2.384)
Problem: Unused variable.
Solution: Remove "dlen".
Files: src/menu.c

Patch 6.2.393
Problem: When using very long lines the viminfo file can become very big.
Solution: Add the "s" flag to 'viminfo': skip registers with more than the

specified Kbyte of text.
Files: runtime/doc/options.txt, src/ops.c, src/option.c

Patch 6.2.394 (after 6.2.391)
Problem: Test 51 fails on a terminal with 8 colors. (Tony Leneis)
Solution: Use "DarkBlue" instead of "Blue" to avoid the "bold" attribute.
Files: src/testdir/test51.in

Patch 6.2.395
Problem: When using ":tag" or ":pop" the previous matching tag is used.

But since the current file is different, the ordering of the tags
may change.

version6.txt — 2449

Solution: Remember what the current buffer was for when re-using cur_match.
Files: src/edit.c, src/ex_cmds.c, src/proto/tag.pro, src/structs.h,

src/tag.c

Patch 6.2.396
Problem: When CTRL-T jumps to another file and an autocommand moves the

cursor to the '" mark, don't end up on the right line. (Michal
Malecki)

Solution: Set the line number after loading the file.
Files: src/tag.c

Patch 6.2.397
Problem: When using a double-byte 'encoding' mapping <M-x> doesn't work.

(Yasuhiro Matsumoto)
Solution: Do not set the 8th bit of the character but use a modifier.
Files: src/gui_gtk_x11.c, src/gui_x11.c, src/misc2.c

Patch 6.2.398 (extra)
Problem: Win32 console: no extra key modifiers are supported.
Solution: Encode the modifiers into the input stream. Also fix that special

keys are converted and stop working when 'tenc' is set. Also fix
that when 'tenc' is initialized the input and output conversion is
not setup properly until 'enc' or 'tenc' is set.

Files: src/getchar.c, src/option.c, src/os_win32.c

Patch 6.2.399
Problem: A ":set" command that fails still writes a message when it is

inside a try/catch block.
Solution: Include all the text of the message in the error message.
Files: src/charset.c, src/option.c

Patch 6.2.400
Problem: Can't compile if_xcmdsrv.c on HP-UX 11.0.
Solution: Include header file poll.h. (Malte Neumann)
Files: src/if_xcmdsrv.c

Patch 6.2.401
Problem: When opening a buffer that was previously opened, Vim does not

restore the cursor position if the first line starts with white
space. (Gregory Margo)

Solution: Don't skip restoring the cursor position if it is past the blanks
in the first line.

Files: src/buffer.c

Patch 6.2.402
Problem: Mac: "make install" doesn't generate help tags. (Benji Fisher)
Solution: Generate help tags before copying the runtime files.
Files: src/Makefile

Patch 6.2.403
Problem: ":@y" checks stdin if there are more commands to execute. This

fails if stdin is not connected, e.g., when starting the GUI from
KDE. (Ned Konz)

Solution: Only check for a next command if there still is typeahead.
Files: src/ex_docmd.c

Patch 6.2.404
Problem: Our own function to determine width of Unicode characters may get

outdated. (Markus Kuhn)
Solution: Use wcwidth() when it is available. Also use iswprint().

version6.txt — 2450

Files: src/auto/configure, src/configure.in, src/config.h.in, src/mbyte.c

Patch 6.2.405
Problem: Cannot map zero without breaking the count before a command.

(Benji Fisher)
Solution: Disable mapping zero when entering a count.
Files: src/getchar.c, src/globals.h, src/normal.c

Patch 6.2.406
Problem: ":help \zs", ":help \@=" and similar don't find useful help.
Solution: Prepend "/\" to the arguments to find the desired help tag.
Files: src/ex_cmds.c

Patch 6.2.407 (after 6.2.299)
Problem: ":help \@<=" doesn't find help.
Solution: Avoid that ":help \@<=" searches for the "<=" language.
Files: src/tag.c

Patch 6.2.408
Problem: ":compiler" is not consistent: Sets local options and a global

variable. (Douglas Potts) There is no error message when a
compiler is not supported.

Solution: Use ":compiler!" to set a compiler globally, otherwise it's local
to the buffer and "b:current_compiler" is used. Give an error
when no compiler script could be found.
Note: updated compiler plugins can be found at
ftp://ftp.vim.org/pub/vim/runtime/compiler/

Files: runtime/compiler/msvc.vim, runtime/doc/quickfix.txt, src/eval.c,
src/ex_cmds2.c

Patch 6.2.409
Problem: The cursor ends up in the last column instead of after the line

when doing "i//<Esc>o" with 'indentexpr' set to "cindent(v:lnum)".
(Toby Allsopp)

Solution: Adjust the cursor as if in Insert mode.
Files: src/misc1.c

Patch 6.2.410 (after 6.2.389)
Problem: In diff mode, when there are more filler lines than fit in the

window, they are not drawn.
Solution: Check for filler lines when skipping to draw a line that doesn't

fit.
Files: src/screen.c

Patch 6.2.411
Problem: A "\n" inside a string is not seen as a line break by the regular

expression matching. (Hari Krishna Dara)
Solution: Add the vim_regexec_nl() function for strings where "\n" is to be

matched with a line break.
Files: src/eval.c, src/ex_eval.c, src/proto/regexp.c, src/regexp.c

Patch 6.2.412
Problem: Ruby: "ruby << EOF" inside a function doesn't always work. Also

for ":python", ":tcl" and ":perl".
Solution: Check for "<< marker" and skip until "marker" before checking for

"endfunction".
Files: src/eval.c

Patch 6.2.413 (after 6.2.411)
Problem: Missing prototype for vim_regexec_nl(). (Marcel Svitalsky)

version6.txt — 2451

ftp://ftp.vim.org/pub/vim/runtime/compiler/

Solution: Now really include the prototype.
Files: src/proto/regexp.pro

Patch 6.2.414
Problem: The function used for custom completion of user commands cannot

have <SID> to make it local. (Hari Krishna Dara)
Solution: Pass the SID of the script where the user command was defined on

to the completion. Also clean up #ifdefs.
Files: src/ex_docmd.c, src/eval.c, src/ex_getln.c, src/structs.h

Patch 6.2.415
Problem: Vim may crash after a sequence of events that change the window

size. The window layout assumes a larger window than is actually
available. (Servatius Brandt)

Solution: Invoke win_new_shellsize() from screenalloc() instead of from
set_shellsize().

Files: src/screen.c, src/term.c

Patch 6.2.416
Problem: Compiler warning for incompatible pointer.
Solution: Remove the "&" in the call to poll(). (Xavier de Gaye)
Files: src/os_unix.c

Patch 6.2.417 (after 6.2.393)
Problem: Many people forget that the '"' item in 'viminfo' needs to be

preceded with a backslash,
Solution: Add '<' as an alias for the '"' item.
Files: runtime/doc/options.txt, src/ops.c, src/option.c

Patch 6.2.418
Problem: Using ":nnoremap <F12> :echo "cheese" and ":cabbr cheese xxx":

when pressing <F12> still uses the abbreviation. (Hari Krishna)
Solution: Also apply "noremap" to abbreviations.
Files: src/getchar.c

Patch 6.2.419 (extra)
Problem: Win32: Cannot open the Vim window inside another application.
Solution: Add the "-P" argument to specify the window title of the

application to run inside. (Zibo Zhao)
Files: runtime/doc/starting.txt, src/main.c, src/gui_w32.c,

src/gui_w48.c, src/if_ole.cpp, src/os_mswin.c,
src/proto/gui_w32.pro

Patch 6.2.420
Problem: Cannot specify a file to be edited in binary mode without setting

the global value of the 'binary' option.
Solution: Support ":edit ++bin file".
Files: runtime/doc/editing.txt, src/buffer.c, src/eval.c, src/ex_cmds.h,

src/ex_docmd.c, src/fileio.c, src/misc2.c

Patch 6.2.421
Problem: Cannot set the '[and '] mark, which may be necessary when an

autocommand simulates reading a file.
Solution: Allow using "m[" and "m]".
Files: runtime/doc/motion.txt, src/mark.c

Patch 6.2.422
Problem: In CTRL-X completion messages the "/" makes them less readable.
Solution: Remove the slashes. (Antony Scriven)
Files: src/edit.c

version6.txt — 2452

Patch 6.2.423
Problem: ":vertical wincmd]" does not split vertically.
Solution: Add "postponed_split_flags".
Files: src/ex_docmd.c, src/globals.h, src/if_cscope.c, src/tag.c

Patch 6.2.424
Problem: A BufEnter autocommand that sets an option stops 'mousefocus' from

working in Insert mode (Normal mode is OK). (Gregory Seidman)
Solution: In the Insert mode loop invoke gui_mouse_correct() when needed.
Files: src/edit.c

Patch 6.2.425
Problem: Vertical split and command line window: can only drag status line

above the cmdline window on the righthand side, not lefthand side.
Solution: Check the status line row instead of the window pointer.
Files: src/ui.c

Patch 6.2.426
Problem: A syntax region end match with a matchgroup that includes a line

break only highlights the last line with matchgroup. (Gary
Holloway)

Solution: Also use the line number of the position where the region
highlighting ends.

Files: src/syntax.c

Patch 6.2.427 (extra)
Problem: When pasting a lot of text in a multibyte encoding, conversion

from 'termencoding' to 'encoding' may fail for some characters.
(Kuang-che Wu)

Solution: When there is an incomplete byte sequence at the end of the read
text keep it for the next time.

Files: src/mbyte.c, src/os_amiga.c, src/os_mswin.c, src/proto/mbyte.pro,
src/proto/os_mswin.pro, src/ui.c

Patch 6.2.428
Problem: The X11 clipboard supports the Vim selection for char/line/block

mode, but since the encoding is not included can't copy/paste
between two Vims with a different 'encoding'.

Solution: Add a new selection format that includes the 'encoding'. Perform
conversion when necessary.

Files: src/gui_gtk_x11.c, src/ui.c, src/vim.h

Patch 6.2.429
Problem: Unix: glob() doesn't work for a directory with a single quote in

the name. (Nazri Ramliy)
Solution: When using the shell to expand, only put double quotes around

spaces and single quotes, not the whole thing.
Files: src/os_unix.c

Patch 6.2.430
Problem: BOM at start of a vim script file is not recognized and causes an

error message.
Solution: Detect the BOM and skip over it. Also fix that after using

":scriptencoding" the iconv() file descriptor was not closed
(memory leak).

Files: src/ex_cmds2.c

Patch 6.2.431
Problem: When using the horizontal scrollbar, the scrolling is limited to

version6.txt — 2453

the length of the cursor line.
Solution: Make the scroll limit depend on the longest visible line. The

cursor is moved when necessary. Including the 'h' flag in
'guioptions' disables this.

Files: runtime/doc/gui.txt, runtime/doc/options.txt, src/gui.c,
src/misc2.c, src/option.h

Patch 6.2.432 (after 6.2.430 and 6.2.431)
Problem: Lint warnings.
Solution: Add type casts.
Files: src/ex_cmds2.c, src/gui.c

Patch 6.2.433
Problem: Translating "VISUAL" and "BLOCK" separately doesn't give a good

result. (Alejandro Lopez Valencia)
Solution: Use a string for each combination.
Files: src/screen.c

Patch 6.2.434 (after 6.2.431)
Problem: Compiler warning. (Salman Halim)
Solution: Add type casts.
Files: src/gui.c

Patch 6.2.435
Problem: When there are vertically split windows the minimal Vim window

height is computed wrong.
Solution: Use frame_minheight() to correctly compute the minimal height.
Files: src/window.c

Patch 6.2.436
Problem: Running the tests changes the user's viminfo file.
Solution: In test 49 tell the extra Vim to use the test viminfo file.
Files: src/testdir/test49.vim

Patch 6.2.437
Problem: ":mksession" always puts "set nocompatible" in the session file.

This changes option settings. (Ron Aaron)
Solution: Add an "if" to only change 'compatible' when needed.
Files: src/ex_docmd.c

Patch 6.2.438
Problem: When the 'v' flag is present in 'cpoptions', backspacing and then

typing text again: one character too much is overtyped before
inserting is done again.

Solution: Set "dollar_vcol" to the right column.
Files: src/edit.c

Patch 6.2.439
Problem: GTK 2: Changing 'lines' may cause a mismatch between the window

layout and the size of the window.
Solution: Disable the hack with force_shell_resize_idle().
Files: src/gui_gtk_x11.c

Patch 6.2.440
Problem: When 'lazyredraw' is set the window title is still updated.

The size of the Visual area and the ruler are displayed too often.
Solution: Postpone redrawing the window title. Only show the Visual area

size when waiting for a character. Don't draw the ruler
unnecessary.

Files: src/buffer.c, src/normal.c, src/screen.c

version6.txt — 2454

Patch 6.2.441
Problem: ":unabbreviate foo " doesn't work, because of the trailing space,

while an abbreviation with a trailing space is not possible. (Paul
Jolly)

Solution: Accept a match with the lhs of an abbreviation without the
trailing space.

Files: src/getchar.c

Patch 6.2.442
Problem: Cannot manipulate the command line from a function.
Solution: Add getcmdline(), getcmdpos() and setcmdpos() functions and the

CTRL-\ e command.
Files: runtime/doc/cmdline.txt, runtime/doc/eval.txt, src/eval.c

src/ex_getln.c, src/ops.c, src/proto/ex_getln.pro,
src/proto/ops.pro

Patch 6.2.443
Problem: With ":silent! echoerr something" you don't get the position of

the error. emsg() only writes the message itself and returns.
Solution: Also redirect the position of the error.
Files: src/message.c

Patch 6.2.444
Problem: When adding the 'c' flag to a ":substitute" command it may replace

more times than without the 'c' flag. Happens for a match that
starts with "\ze" (Marcel Svitalsky) and when using "\@<=" (Klaus
Bosau).

Solution: Correct "prev_matchcol" when replacing the line. Don't replace
the line when the pattern uses look-behind matching.

Files: src/ex_cmds.c, src/proto/regexp.pro, src/regexp.c

Patch 6.2.445
Problem: Copying vimtutor to /tmp/something is not secure, a symlink may

cause trouble.
Solution: Create a directory and create the file in it. Use "umask" to

create the directory with mode 700. (Stefan Nordhausen)
Files: src/vimtutor

Patch 6.2.446 (after 6.2.404)
Problem: Using library functions wcwidth() and iswprint() results in

display problems for Hebrew characters. (Ron Aaron)
Solution: Disable the code to use the library functions, use our own.
Files: src/mbyte.c

Patch 6.2.447 (after 6.2.440)
Problem: Now that the title is only updated when redrawing, it is no longer

possible to show it while executing a function. (Madoka Machitani)
Solution: Make ":redraw" also update the title.
Files: src/ex_docmd.c

Patch 6.2.448 (after 6.2.427)
Problem: Mac: conversion done when 'termencoding' differs from 'encoding'

fails when pasting a longer text.
Solution: Check for an incomplete sequence at the end of the chunk to be

converted. (Eckehard Berns)
Files: src/mbyte.c

Patch 6.2.449 (after 6.2.431)
Problem: Get error messages when switching files.

version6.txt — 2455

Solution: Check for a valid line number when calculating the width of the
horizontal scrollbar. (Helmut Stiegler)

Files: src/gui.c

Patch 6.2.450
Problem: " #include" and " #define" are not recognized with the default

option values for 'include' and 'defined'. (RG Kiran)
Solution: Adjust the default values to allow white space before the #.
Files: runtime/doc/options.txt, src/option.c

Patch 6.2.451
Problem: GTK: when using XIM there are various problems, including setting

'modified' and breaking undo at the wrong moment.
Solution: Add "xim_changed_while_preediting", "preedit_end_col" and

im_is_preediting(). (Yasuhiro Matsumoto)
Files: src/ex_getln.c, src/globals.h, src/gui_gtk.c, src/gui_gtk_x11.c,

src/mbyte.c, src/misc1.c, src/proto/mbyte.pro, src/screen.c,
src/undo.c

Patch 6.2.452
Problem: In diff mode, when DiffAdd and DiffText highlight settings are

equal, an added line is highlighted with DiffChange. (Tom Schumm)
Solution: Remember the diff highlight type instead of the attributes.
Files: src/screen.c

Patch 6.2.453
Problem: ":s/foo\|\nbar/x/g" does not replace two times in "foo\nbar".

(Pavel Papushev)
Solution: When the pattern can match a line break also try matching at the

NUL at the end of a line.
Files: src/ex_cmds.c, src/regexp.c

Patch 6.2.454
Problem: ":let b:changedtick" doesn't work. (Alan Schmitt) ":let

b:changedtick = 99" does not give an error message.
Solution: Add code to recognize ":let b:changedtick".
Files: src/eval.c

Patch 6.2.455 (after 6.2.297)
Problem: In Python commands the current locale changes how certain Python

functions work. (Eugene M. Minkovskii)
Solution: Set the LC_NUMERIC locale to "C" while executing a Python command.
Files: src/if_python.c

Patch 6.2.456 (extra)
Problem: Win32: Editing a file by its Unicode name (dropping it on Vim or

using the file selection dialog) doesn't work. (Yakov Lerner, Alex
Jakushev)

Solution: Use wide character functions when file names are involved and
convert from/to 'encoding' where needed.

Files: src/gui_w48.c, src/macros.h, src/memfile.c, src/memline.c,
src/os_mswin.c, src/os_win32.c

Patch 6.2.457 (after 6.2.244)
Problem: When 'encoding' is "utf-8" and writing text with chars above 0x80

in latin1, conversion is wrong every 8200 bytes. (Oyvind Holm)
Solution: Correct the utf_ptr2len_check_len() function and fix the problem

of displaying 0xf7 in utfc_ptr2len_check_len().
Files: src/mbyte.c

version6.txt — 2456

Patch 6.2.458
Problem: When 'virtualedit' is set "$" doesn't move to the end of an

unprintable character, causing "y$" not to include that character.
(Fred Ma)

Solution: Set "coladd" to move the cursor to the end of the character.
Files: src/misc2.c

Patch 6.2.459 (after 6.2.454)
Problem: Variable "b" cannot be written. (Salman Halim)
Solution: Compare strings properly.
Files: src/eval.c

Patch 6.2.460 (extra, after 6.2.456)
Problem: Compiler warnings for missing prototypes.
Solution: Include the missing prototypes.
Files: src/proto/os_win32.pro

Patch 6.2.461
Problem: After using a search command "x" starts putting single characters

in the numbered registers.
Solution: Reset "use_reg_one" at the right moment.
Files: src/normal.c

Patch 6.2.462
Problem: Finding a matching parenthesis does not correctly handle a

backslash in a trailing byte.
Solution: Handle multibyte characters correctly. (Taro Muraoka)
Files: src/search.c

Patch 6.2.463 (extra)
Problem: Win32: An NTFS file system may contain files with extra info

streams. The current method to copy them creates one and then
deletes it again. (Peter Toennies) Also, only three streams with
hard coded names are copied.

Solution: Use BackupRead() to check which info streams the original file
contains and only copy these streams.

Files: src/os_win32.c

Patch 6.2.464 (extra, after 6.2.427)
Problem: Amiga: Compilation error with gcc. (Ali Akcaagac)
Solution: Move the #ifdef outside of Read().
Files: src/os_amiga.c

Patch 6.2.465
Problem: When resizing the GUI window the window manager sometimes moves it

left of or above the screen. (Michael McCarty)
Solution: Check the window position after resizing it and move it onto the

screen when it isn't.
Files: src/gui.c

Patch 6.2.466 (extra, after 6.2.456)
Problem: Win32: Compiling with Borland C fails, and an un/signed warning.
Solution: Redefine wcsicmp() to wcscmpi() and add type casts. (Yasuhiro

Matsumoto)
Files: src/os_win32.c

Patch 6.2.467 (extra, after 6.2.463)
Problem: Win32: can't compile without multibyte feature. (Ajit Thakkar)
Solution: Add #ifdefs around the info stream code.
Files: src/os_win32.c

version6.txt — 2457

Patch 6.2.468
Problem: Compiler warnings for shadowed variables. (Matthias Mohr)
Solution: Delete superfluous variables and rename others.
Files: src/eval.c, src/ex_docmd.c, src/ex_eval.c, src/if_cscope.c,

src/fold.c, src/option.c, src/os_unix.c, src/quickfix.c,
src/regexp.c

Patch 6.2.469 (extra, after 6.2.456)
Problem: Win32: Can't create swap file when 'encoding' differs from the

active code page. (Kriton Kyrimis)
Solution: In enc_to_ucs2() terminate the converted string with a NUL
Files: src/os_mswin.c

Patch 6.2.470
Problem: The name returned by tempname() may be equal to the file used for

shell output when ignoring case.
Solution: Skip 'O' and 'I' in tempname().
Files: src/eval.c

Patch 6.2.471
Problem: "-L/usr/lib" is used in the link command, even though it's

supposed to be filtered out. "-lw" and "-ldl" are not
automatically added when needed for "-lXmu". (Antonio Colombo)

Solution: Check for a space after the argument instead of before. Also
remove "-R/usr/lib" if it's there. Check for "-lw" and "-ldl"
before trying "-lXmu".

Files: src/auto/configure, src/configure.in, src/link.sh

Patch 6.2.472
Problem: When using a FileChangedShell autocommand that changes the current

buffer, a buffer exists that can't be wiped out.
Also, Vim sometimes crashes when executing an external command
that changes the buffer and a FileChangedShell autocommand is
used. (Hari Krishna Dara)
Users are confused by the warning for a file being changed outside
of Vim.

Solution: Avoid that the window counter for a buffer is incremented twice.
Avoid that buf_check_timestamp() is used recursively.
Add a hint to look in the help for more info.

Files: src/ex_cmds.c, src/fileio.c

Patch 6.2.473
Problem: Using CTRL-] in a help buffer without a name causes a crash.
Solution: Check for name to be present before using it. (Taro Muraoka)
Files: src/tag.c

Patch 6.2.474 (extra, after 6.2.456)
Problem: When Vim is starting up conversion is done unnecessarily. Failure

to find the runtime files on Windows 98. (Randall W. Morris)
Solution: Init enc_codepage negative, only use it when not negative.

Don't use GetFileAttributesW() on Windows 98 or earlier.
Files: src/globals.h, src/gui_w32.c, src/gui_w48.c, src/os_mswin.c,

src/os_win32.c

Patch 6.2.475
Problem: Commands after "perl <<EOF" are parsed as Vim commands when they

are not executed.
Solution: Properly skip over the perl commands.
Files: src/ex_docmd.c, src/ex_getln.c, src/if_perl.xs, src/if_python.c,

version6.txt — 2458

src/if_ruby.c, src/if_tcl.c, src/misc2.c

Patch 6.2.476
Problem: When reloading a hidden buffer changed outside of Vim and the

current buffer is read-only, the reloaded buffer becomes
read-only. (Hari Krishna Dara)

Solution: Save the 'readonly' flag of the reloaded buffer instead of the
current buffer.

Files: src/fileio.c

Patch 6.2.477
Problem: Using remote_send(v:servername, "\<C-V>") causes Vim to hang.

(Yakov Lerner)
Solution: When the resulting string is empty don't set received_from_client.
Files: src/main.c

Patch 6.2.478
Problem: Win32: "--remote file" fails changing directory if the current

directory name starts with a single quote. (Iestyn Walters)
Solution: Add a backslash where it will be removed later.
Files: src/main.c, src/misc2.c, src/proto/misc2.pro

Patch 6.2.479
Problem: The error message for errors during recovery goes unnoticed.
Solution: Avoid that the hit-enter prompt overwrites the message. Add a few

lines to make the error stand out.
Files: src/main.c, src/message.c, src/memline.c

Patch 6.2.480
Problem: NetBeans: Using negative index in array. backslash at end of

message may cause Vim to crash. (Xavier de Gaye)
Solution: Initialize buf_list_used to zero. Check for trailing backslash.
Files: src/netbeans.c

Patch 6.2.481
Problem: When writing a file it is not possible to specify that hard and/or

symlinks are to be broken instead of preserved.
Solution: Add the "breaksymlink" and "breakhardlink" values to 'backupcopy'.

(Simon Ekstrand)
Files: runtime/doc/options.txt, src/fileio.c, src/option.c, src/option.h

Patch 6.2.482
Problem: Repeating insert of CTRL-K 1 S doesn't work. The superscript 1 is

considered to be a digit. (Juergen Kraemer)
Solution: In vim_isdigit() only accept '0' to '9'. Use VIM_ISDIGIT() for

speed where possible. Also add vim_isxdigit().
Files: src/buffer.c, src/charset.c, src/diff.c, src/digraph.c,

src/edit.c, src/eval.c,, src/ex_cmds.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c,
src/if_xcmdsrv.c, src/farsi.c, src/fileio.c, src/fold.c,
src/getchar.c, src/gui.c, src/if_cscope.c, src/macros.h,
src/main.c, src/mark.c, src/mbyte.c, src/menu.c, src/misc1.c,
src/misc2.c, src/normal.c, src/ops.c, src/option.c,
src/proto/charset.pro, src/regexp.c, src/screen.c, src/search.c,
src/syntax.c, src/tag.c, src/term.c, src/termlib.c

Patch 6.2.483 (extra, after 6.2.482)
Problem: See 6.2.482.
Solution: Extra part of patch 6.2.482.
Files: src/gui_photon.c, src/gui_w48.c, src/os_msdos.c, src/os_mswin.c

version6.txt — 2459

Patch 6.2.484
Problem: MS-Windows: With the included diff.exe, differences after a CTRL-Z

are not recognized. (Peter Keresztes)
Solution: Write the files with unix fileformat and invoke diff with --binary

if possible.
Files: src/diff.c

Patch 6.2.485
Problem: A BufWriteCmd autocommand cannot know if "!" was used or not.

(Hari Krishna Dara)
Solution: Add the v:cmdbang variable.
Files: runtime/doc/eval.txt, src/eval.c, src/proto/eval.pro,

src/fileio.c, src/vim.h

Patch 6.2.486 (6.2.482)
Problem: Diff for eval.c is missing.
Solution: Addition to patch 6.2.482.
Files: src/eval.c

Patch 6.2.487 (extra, after 6.2.456)
Problem: Compiler warnings for wrong prototype. (Alejandro Lopez Valencia)
Solution: Delete the prototype for Handle_WM_Notify().
Files: src/proto/gui_w32.pro

Patch 6.2.488
Problem: Missing ")" in *.ch filetype detection.
Solution: Add the ")". (Ciaran McCreesh)
Files: runtime/filetype.vim

Patch 6.2.489
Problem: When accidentally opening a session in Vim which has already been

opened in another Vim there is a long row of ATTENTION prompts.
Need to quit each of them to get out. (Robert Webb)

Solution: Add the "Abort" alternative to the dialog.
Files: src/memline.c

Patch 6.2.490
Problem: With 'paragraph' it is not possible to use a single dot as a

paragraph boundary. (Dorai Sitaram)
Solution: Allow using " " (two spaces) in 'paragraph' to match ".$" or

". $"
Files: src/search.c

Patch 6.2.491
Problem: Decrementing a position doesn't take care of multibyte chars.
Solution: Adjust the column for multibyte characters. Remove mb_dec().

(Yasuhiro Matsumoto)
Files: src/mbyte.c, src/misc2.c, src/proto/mbyte.pro

Patch 6.2.492
Problem: When using ":redraw" while there is a message, the next ":echo"

still causes text to scroll. (Yasuhiro Matsumoto)
Solution: Reset msg_didout and msg_col, so that after ":redraw" the next

message overwrites an existing one.
Files: src/ex_docmd.c

Patch 6.2.493
Problem: "@x" doesn't work when 'insertmode' is set. (Benji Fisher)
Solution: Put "restart_edit" in the typeahead buffer, so that it's used

version6.txt — 2460

after executing the register contents.
Files: src/ops.c

Patch 6.2.494
Problem: Using diff mode with two windows, when moving horizontally in

inserted lines, a fold in the other window may open.
Solution: Compute the line number in the other window correctly.
Files: src/diff.c

Patch 6.2.495 (extra, after 6.2.456)
Problem: Win32: The file dialog doesn't work on Windows 95.
Solution: Put the wide code of gui_mch_browse() in gui_mch_browseW() and use

it only on Windows NT/2000/XP.
Files: src/gui_w32.c, src/gui_w48.c

Patch 6.2.496
Problem: FreeBSD 4.x: When compiled with the pthread library (Python) a

complicated pattern may cause Vim to crash. Catching the signal
doesn't work.

Solution: When compiled with threads, instead of using the normal stacksize
limit, use the size of the initial stack.

Files: src/auto/configure, src/config.h.in, src/configure.in,
src/os_unix.c

Patch 6.2.497 (extra)
Problem: Russian messages are only available in one encoding.
Solution: Convert the messages to MS-Windows codepages. (Vassily Ragosin)
Files: src/po/Makefile

Patch 6.2.498
Problem: Non-latin1 help files are not properly supported.
Solution: Support utf-8 help files and convert them to 'encoding' when

needed.
Files: src/fileio.c

Patch 6.2.499
Problem: When writing a file and halting the system, the file might be lost

when using a journaling file system.
Solution: Use fsync() to flush the file data to disk after writing a file.

(Radim Kolar)
Files: src/fileio.c

Patch 6.2.500 (extra)
Problem: The DOS/MS-Windows the installer doesn't use the --binary flag for

diff.
Solution: Add --binary to the diff argument in MyDiff(). (Alejandro Lopez-

Valencia)
Files: src/dosinst.c

Patch 6.2.501
Problem: Vim does not compile with MorphOS.
Solution: Add a Makefile and a few changes to make Vim work with MorphOS.

(Ali Akcaagac)
Files: runtime/doc/os_amiga.txt, src/INSTALLami.txt,

src/Make_morphos.mak, src/memfile.c, src/term.c

Patch 6.2.502
Problem: Building fails for generating message files.
Solution: Add dummy message files.
Files: src/po/ca.po, src/po/ru.po, src/po/sv.po

version6.txt — 2461

Patch 6.2.503
Problem: Mac: Can't compile MacRoman conversions without the GUI.
Solution: Also link with the Carbon framework for the terminal version, for

the MacRoman conversion functions. (Eckehard Berns)
Remove -ltermcap from the GUI link command, it is not needed.

Files: src/auto/configure, src/Makefile, src/configure.in

Patch 6.2.504
Problem: Various problems with 'cindent', among which that a

list of variable declarations is not indented properly.
Solution: Fix the wrong indenting. Improve indenting of C++ methods.

Add the 'i', 'b' and 'W' options to 'cinoptions'. (mostly by
Helmut Stiegler)
Improve indenting of preprocessor-continuation lines.

Files: runtime/doc/indent.txt, src/misc1.c, src/testdir/test3.in,
src/testdir/test3.ok

Patch 6.2.505
Problem: Help for -P argument is missing. (Ronald Hoellwarth)
Solution: Add the patch that was missing in 6.2.419.
Files: runtime/doc/starting.txt

Patch 6.2.506 (extra)
Problem: Win32: When 'encoding' is a codepage then reading a utf-8 file

only works when iconv is available. Writing a file in another
codepage uses the wrong kind of conversion.

Solution: Use internal conversion functions. Enable reading and writing
files with 'fileencoding' different from 'encoding' for all valid
codepages and utf-8 without the need for iconv.

Files: src/fileio.c, src/testdir/Make_dos.mak, src/testdir/test52.in,
src/testdir/test52.ok

Patch 6.2.507
Problem: The ownership of the file with the password for the NetBeans

connection is not checked. "-nb={file}" doesn't work for GTK.
Solution: Only accept the file when owned by the user and not accessible by

others. Detect "-nb=" for GTK.
Files: src/netbeans.c, src/gui_gtk_x11.c

Patch 6.2.508
Problem: Win32: "v:lang" does not show the current language for messages if

it differs from the other locale settings.
Solution: Use the value of the $LC_MESSAGES environment variable.
Files: src/ex_cmds2.c

Patch 6.2.509 (after 6.2.508)
Problem: Crash when $LANG is not set.
Solution: Add check for NULL pointer. (Ron Aaron)
Files: src/ex_cmds2.c

Patch 6.2.510 (after 6.2.507)
Problem: Warning for pointer conversion.
Solution: Add a type cast.
Files: src/gui_gtk_x11.c

Patch 6.2.511
Problem: Tags in Russian help files are in utf-8 encoding, which may be

different from 'encoding'.
Solution: Use the "TAG_FILE_ENCODING" field in the tags file to specify the

version6.txt — 2462

encoding of the tags. Convert help tags from 'encoding' to the
tag file encoding when searching for matches, do the reverse when
listing help tags.

Files: runtime/doc/tagsrch.txt, src/ex_cmds.c, src/tag.c

Patch 6.2.512
Problem: Translating "\"\n" is useless. (Gerfried Fuchs)
Solution: Remove the _() around it.
Files: src/main.c, src/memline.c

Patch 6.2.513 (after 6.2.507)
Problem: NetBeans: the check for owning the connection info file can be

simplified. (Nikolay Molchanov)
Solution: Only check if the access mode is right.
Files: src/netbeans.c

Patch 6.2.514
Problem: When a highlight/syntax group name contains invalid characters

there is no warning.
Solution: Add an error for unprintable characters and a warning for other

invalid characters.
Files: src/syntax.c

Patch 6.2.515
Problem: When using the options window 'swapfile' is reset.
Solution: Use ":setlocal" instead of ":set".
Files: runtime/optwin.vim

Patch 6.2.516
Problem: The sign column cannot be seen, looks like there are two spaces

before the text. (Rob Retter)
Solution: Add the SignColumn highlight group.
Files: runtime/doc/options.txt, runtime/doc/sign.txt, src/option.c,

src/screen.c, src/syntax.c, src/vim.h

Patch 6.2.517
Problem: Using "r*" in Visual mode on multibyte characters replaces

too many characters. In Visual Block mode replacing with a
multibyte character doesn't work.

Solution: Adjust the operator end for the difference in byte length of the
original and the replaced character. Insert all bytes of a
multibyte character, take care of double-wide characters.

Files: src/ops.c

Patch 6.2.518
Problem: Last line of a window is not updated after using "J" and then "D".

(Adri Verhoef)
Solution: When no line is found below a change that doesn't need updating,

update all lines below the change.
Files: src/screen.c

Patch 6.2.519
Problem: Mac: cannot read/write files in MacRoman format.
Solution: Do internal conversion from/to MacRoman to/from utf-8 and latin1.

(Eckehard Berns)
Files: src/fileio.c

Patch 6.2.520 (extra)
Problem: The NSIS installer is outdated.
Solution: Make it work with NSIS 2.0. Also include console executables for

version6.txt — 2463

Win 95/98/ME and Win NT/2000/XP. Use LZWA compression. Use
"/oname" to avoid having to rename files before running NSIS.

Files: Makefile, nsis/gvim.nsi

Patch 6.2.521
Problem: When using silent Ex mode the "changing a readonly file" warning

is omitted but the one second wait isn't. (Yakov Lerner)
Solution: Skip the delay when "silent_mode" is set.
Files: src/misc1.c

Patch 6.2.522
Problem: GUI: when changing 'cmdheight' in the gvimrc file the window

layout is messed up. (Keith Dart)
Solution: Skip updating the window layout when changing 'cmdheight' while

still starting up.
Files: src/option.c

Patch 6.2.523
Problem: When loading a session and aborting when a swap file already

exists, the user is left with useless windows. (Robert Webb)
Solution: Load one file before creating the windows.
Files: src/ex_docmd.c

Patch 6.2.524 (extra, after 6.2.520)
Problem: Win32: (un)installing gvimext.dll may fail if it was used.

The desktop and start menu links are created for the current user
instead of all users.
Using the home directory as working directory for the links is a
bad idea for multi-user systems.
Cannot use Vim from the "Open With..." menu.

Solution: Force a reboot if necessary. (Alejandro Lopez-Valencia) Also use
macros for the directory of the source and runtime files. Use
"CSIDL_COMMON_*" instead of "CSIDL_*" when possible.
Do not specify a working directory in the links.
Add Vim to the "Open With..." menu. (Giuseppe Bilotta)

Files: nsis/gvim.nsi, src/dosinst.c, src/dosinst.h, src/uninstal.c

Patch 6.2.525
Problem: When the history contains a very long line ":history" causes a

crash. (Volker Kiefel)
Solution: Shorten the history entry to fit it in one line.
Files: src/ex_getln.c

Patch 6.2.526
Problem: When s:lang is "ja" the Japanese menus are not used.
Solution: Add 'encoding' to the language when there is no charset.
Files: runtime/menu.vim

Patch 6.2.527
Problem: The 2html script uses ":wincmd p", which breaks when using some

autocommands.
Solution: Remember the window numbers and jump to them with ":wincmd w".

Also add XHTML support. (Panagiotis Issaris)
Files: runtime/syntax/2html.vim

Patch 6.2.528
Problem: NetBeans: Changes of the "~" command are not reported.
Solution: Call netbeans_inserted() after performing "~". (Gordon Prieur)

Also change NetBeans debugging to append to the log file.
Also fix that "~" in Visual block mode changes too much if there

version6.txt — 2464

are multibyte characters.
Files: src/nbdebug.c, src/normal.c, src/ops.c

Patch 6.2.529 (extra)
Problem: VisVim only works for Admin. Doing it for one user doesn't work.

(Alexandre Gouraud)
Solution: When registering the module fails, simply continue.
Files: src/VisVim/VisVim.cpp

Patch 6.2.530
Problem: Warning for missing prototype on the Amiga.
Solution: Include time.h
Files: src/version.c

Patch 6.2.531
Problem: In silent ex mode no messages are given, which makes debugging

very difficult.
Solution: Do output messages when 'verbose' is set.
Files: src/message.c, src/ui.c

Patch 6.2.532 (extra)
Problem: Compiling for Win32s with VC 4.1 doesn't work.
Solution: Don't use CP_UTF8 if it's not defined. Don't use CSIDL_COMMON*

when not defined.
Files: src/dosinst.h, src/fileio.c

Win32 console: After patch 6.2.398 Ex mode did not work. (Yasuhiro Matsumoto)

Patch 6.3a.001
Problem: Win32: if testing for the "--binary" option fails, diff isn't used

at all.
Solution: Handle the "ok" flag properly. (Yasuhiro Matsumoto)
Files: src/diff.c

Patch 6.3a.002
Problem: NetBeans: An insert command from NetBeans beyond the end of a

buffer crashes Vim. (Xavier de Gaye)
Solution: Use a local pos_T structure for the position.
Files: src/netbeans.c

Patch 6.3a.003
Problem: E315 error with auto-formatting comments. (Henry Van Roessel)
Solution: Pass the line number to same_leader().
Files: src/ops.c

Patch 6.3a.004
Problem: Test32 fails on Windows XP for the DJGPP version. Renaming

test11.out fails.
Solution: Don't try renaming, create new files to use for the test.
Files: src/testdir/test32.in, src/testdir/test32.ok

Patch 6.3a.005
Problem: ":checkpath!" does not use 'includeexpr'.
Solution: Use a file name that was found directly. When a file was not

found and the located name is empty, use the rest of the line.
Files: src/search.c

Patch 6.3a.006
Problem: "yip" moves the cursor to the first yanked line, but not to the

first column. Looks like not all text was yanked. (Jens Paulus)

version6.txt — 2465

Solution: Move the cursor to the first column.
Files: src/search.c

Patch 6.3a.007
Problem: 'cindent' recognizes "enum" but not "typedef enum".
Solution: Skip over "typedef" before checking for "enum". (Helmut Stiegler)

Also avoid that searching for this item goes too far back.
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 6.3a.008 (extra)
Problem: Windows 98: Some of the wide functions are not implemented,

resulting in file I/O to fail. This depends on what Unicode
support is installed.

Solution: Handle the failure and fall back to non-wide functions.
Files: src/os_win32.c

Patch 6.3a.009
Problem: Win32: Completion of filenames does not work properly when

'encoding' differs from the active code page.
Solution: Use wide functions for expanding wildcards when appropriate.
Files: src/misc1.c

Patch 6.3a.010 (extra)
Problem: Win32: Characters in the window title that do not appear in the

active codepage are replaced by a question mark.
Solution: Use DefWindowProcW() instead of DefWindowProc() when possible.
Files: src/glbl_ime.cpp, src/globals.h, src/proto/gui_w16.pro,

src/proto/gui_w32.pro, src/gui_w16.c, src/gui_w32.c, src/gui_w48.c

Patch 6.3a.011
Problem: Using the explorer plugin changes a local directory to the global

directory.
Solution: Don't use ":chdir" to restore the current directory. Make

"expand('%:p')" remove "/../" and "/./" items from the path.
Files: runtime/plugin/explorer.vim, src/eval.c, src/os_unix.c

Patch 6.3a.012 (extra)
Problem: On Windows 98 the installer doesn't work, don't even get the "I

agree" button. The check for the path ending in "vim" makes the
browse dialog hard to use. The default path when no previous Vim
is installed is "c:\vim" instead of "c:\Program Files\Vim".

Solution: Remove the background gradient command. Change the
.onVerifyInstDir function to a leave function for the directory
page. Don't let the install program default to c:\vim when no
path could be found.

Files: nsis/gvim.nsi, src/dosinst.c

Patch 6.3a.013 (extra)
Problem: Win32: Characters in the menu that are not in the active codepage

are garbled.
Solution: Convert menu strings from 'encoding' to the active codepage.
Files: src/gui_w32.c, src/gui_w48.c

Patch 6.3a.014
Problem: Using multibyte text and highlighting in a statusline causes gaps

to appear. (Helmut Stiegler)
Solution: Advance the column by text width instead of number of bytes. Add

the vim_strnsize() function.
Files: src/charset.c, src/proto/charset.pro, src/screen.c

version6.txt — 2466

Patch 6.3a.015
Problem: Using the "select all" menu item when 'insertmode' is set and

clicking the mouse button doesn't return to Insert mode. The
Buffers/Delete menu doesn't offer a choice to abandon a changed
buffer. (Jens Paulus)

Solution: Don't use CTRL-\ CTRL-N. Add ":confirm" for the Buffers menu
items.

Files: runtime/menu.vim

Patch 6.3a.016
Problem: After cancelling the ":confirm" dialog the error message and

hit-enter prompt may not be displayed properly.
Solution: Flush output after showing the dialog.
Files: src/message.c

Patch 6.3a.017
Problem: servername() doesn't work when Vim was started with the "-X"

argument or when the "exclude" in 'clipboard' matches the terminal
name. (Robert Nowotniak)

Solution: Force connecting to the X server when using client-server
commands.

Files: src/eval.c, src/globals.h, src/os_unix.c

Patch 6.3a.018 (after 6.3a.017)
Problem: Compiler warning for return value of make_connection().
Solution: Use void return type.
Files: src/eval.c

Patch 6.3a.019 (extra)
Problem: Win32: typing non-latin1 characters doesn't work.
Solution: Invoke _OnChar() directly to avoid that the argument is truncated

to a byte. Convert the UTF-16 character to bytes according to
'encoding' and ignore 'termencoding'. Same for _OnSysChar().

Files: src/gui_w32.c, src/gui_w48.c

Patch 6.3a.020 (extra)
Problem: Missing support for AROS (AmigaOS reimplementation). Amiga GUI

doesn't work.
Solution: Add AROS support. (Adam Chodorowski)

Fix Amiga GUI problems. (Georg Steger, Ali Akcaagac)
Files: Makefile, src/Make_aros.mak, src/gui_amiga.c, src/gui_amiga.h,

src/memfile.c, src/os_amiga.c, src/term.c

Patch 6.3a.021 (after 6.3a.017)
Problem: Can't compile with X11 but without GUI.
Solution: Put use of "gui.in_use" inside an #ifdef.
Files: src/eval.c

Patch 6.3a.022
Problem: When typing Tabs when 'softtabstop' is used and 'list' is set a

tab is counted for two spaces.
Solution: Use the "L" flag in 'cpoptions' to tell whether a tab is counted

as two spaces or as 'tabstop'. (Antony Scriven)
Files: runtime/doc/options.txt, src/edit.c

Patch 6.3a.023
Problem: Completion on the command line doesn't handle backslashes

properly. Only the tail of matches is shown, even when not
completing filenames.

Solution: When turning the string into a pattern double backslashes. Don't

version6.txt — 2467

omit the path when not expanding files or directories.
Files: src/ex_getln.c

Patch 6.3a.024
Problem: The "save all" toolbar item fails for buffers that don't have a

name. When using ":wa" or closing the Vim window and there are
nameless buffers, browsing for a name may cause the name being
given to the wrong buffer or not stored properly. ":browse" only
worked for one file.

Solution: Use ":confirm browse" for "save all".
Pass buffer argument to setfname(). Restore "browse" flag and
"forceit" after doing the work for one file.

Files: runtime/menu.vim, src/buffer.c, src/ex_cmds.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/memline.c,
src/message.c, src/window.c, src/proto/buffer.pro,
src/proto/ex_cmds2.pro, src/proto/memline.pro

Patch 6.3a.025
Problem: Setting 'virtualedit' moves the cursor. (Benji Fisher)
Solution: Update the virtual column before using it.
Files: src/option.c

Patch 6.3a.026 (extra, after 6.3a.008)
Problem: Editing files on Windows 98 doesn't work when 'encoding' is

"utf-8" (Antoine Mechelynck)
Warning for missing function prototype.

Solution: For all wide functions check if it failed because it is not
implemented. Use ANSI function declaration for char_to_string().

Files: src/gui_w48.c, src/os_mswin.c, src/os_win32.c

Patch 6.3a.027 (extra, after 6.3a.026)
Problem: Compiler warning for function argument.
Solution: Declare both char and WCHAR arrays.
Files: src/gui_w48.c

Patch 6.3a.028
Problem: ":normal ." doesn't work inside a function, because redo is saved

and restored. (Benji Fisher)
Solution: Make a copy of the redo buffer when executing a function.
Files: src/getchar.c

Patch 6.3b.001 (extra)
Problem: Bcc 5: The generated auto/pathdef can't be compiled.
Solution: Fix the way quotes and backslashes are escaped.
Files: src/Make_bc5.mak

Patch 6.3b.002
Problem: Win32: conversion during file write fails when a double-byte

character is split over two writes.
Solution: Fix the conversion retry without a trailing byte. (Taro Muraoka)
Files: src/fileio.c

Patch 6.3b.003 (extra)
Problem: Win32: When compiling with Borland C 5.5 and 'encoding' is "utf-8"

then Vim can't open files under MS-Windows 98. (Antoine J.
Mechelynck)

Solution: Don't use _wstat(), _wopen() and _wfopen() in this situation.
Files: src/os_mswin.c, src/os_win32.c

Patch 6.3b.004

version6.txt — 2468

Problem: ":helpgrep" includes a trailing CR in the text line.
Solution: Remove the CR.
Files: src/quickfix.c

Patch 6.3b.005
Problem: ":echo &g:ai" results in the local option value. (Salman Halim)
Solution: Pass the flags from find_option_end() to get_option_value().
Files: src/eval.c

Patch 6.3b.006
Problem: When using "mswin.vim", CTRL-V in Insert mode leaves cursor before

last pasted character. (Mathew Davis)
Solution: Use the same Paste() function as in menu.vim.
Files: runtime/mswin.vim

Patch 6.3b.007
Problem: Session file doesn't restore view on windows properly. (Robert

Webb)
Solution: Restore window sizes both before and after restoring the view, so

that the view, cursor position and size are restored properly.
Files: src/ex_docmd.c

Patch 6.3b.008
Problem: Using ":finally" in a user command doesn't always work. (Hari

Krishna Dara)
Solution: Don't assume that using getexline() means the command was typed.
Files: src/ex_docmd.c

Patch 6.3b.009 (extra)
Problem: Win32: When the -P argument is not found in a window title, there

is no error message.
Solution: When the window can't be found give an error message and exit.

Also use try/except to catch failing to open the MDI window.
(Michael Wookey)

Files: src/gui_w32.c

Patch 6.3b.010
Problem: Win32: Using the "-D" argument and expanding arguments may cause a

hang, because the terminal isn't initialized yet. (Vince Negri)
Solution: Don't go into debug mode before the terminal is initialized.
Files: src/main.c

Patch 6.3b.011
Problem: Using CTRL-\ e while obtaining an expression aborts the command

line. (Hari Krishna Dara)
Solution: Insert the CTRL-\ e as typed.
Files: src/ex_getln.c

Patch 6.3b.012 (after 6.3b.010)
Problem: Can't compile with tiny features. (Norbert Tretkowski)
Solution: Add #ifdefs.
Files: src/main.c

Patch 6.3b.013
Problem: Loading a session file results in editing the wrong file in the

first window when this is not the file at the current position in
the argument list. (Robert Webb)

Solution: Check w_arg_idx_invalid to decide whether to edit a file.
Files: src/ex_docmd.c

version6.txt — 2469

Patch 6.3b.014
Problem: ":runtime! foo*.vim" may using freed memory when a sourced script

changes the value of 'runtimepath'.
Solution: Make a copy of 'runtimepath' when looping over the matches.
Files: src/ex_cmds2.c

Patch 6.3b.015
Problem: Get lalloc(0) error when using "p" in Visual mode while

'clipboard' contains "autoselect,unnamed". (Mark Wagonner)
Solution: Avoid allocating zero bytes. Obtain the clipboard when necessary.
Files: src/ops.c

Patch 6.3b.016
Problem: When 'virtualedit' is used "x" doesn't delete the last character

of a line that has as many characters as 'columns'. (Yakov Lerner)
Solution: When the cursor isn't moved let oneright() return FAIL.
Files: src/edit.c

Patch 6.3b.017
Problem: Win32: "vim --remote-wait" doesn't exit when the server finished

editing the file. (David Fishburn)
Solution: In the rrhelper plugin change backslashes to forward slashes and

escape special characters.
Files: runtime/plugin/rrhelper.vim

Patch 6.3b.018
Problem: The list of help files in the "local additions" table doesn't

recognize utf-8 encoding. (Yasuhiro Matsumoto)
Solution: Recognize utf-8 characters.
Files: src/ex_cmds.c

Patch 6.3b.019
Problem: When $VIMRUNTIME is not a full path name the "local additions"

table lists all the help files.
Solution: Use fullpathcmp() instead of fnamecmp() to compare the directory

names.
Files: src/ex_cmds.c

Patch 6.3b.020
Problem: When using CTRL-^ when entering a search string, the item in the

statusline that indicates the keymap is not updated. (Ilya
Dogolazky)

Solution: Mark the statuslines for updating.
Files: src/ex_getln.c

Patch 6.3b.021
Problem: The swapfile is not readable for others, the ATTENTION prompt does

not show all info when someone else is editing the same file.
(Marcel Svitalsky)

Solution: Use the protection of original file for the swapfile and set it
after creating the swapfile.

Files: src/fileio.c

Patch 6.3b.022
Problem: Using "4v" to select four times the old Visual area may put the

cursor beyond the end of the line. (Jens Paulus)
Solution: Correct the cursor column.
Files: src/normal.c

Patch 6.3b.023

version6.txt — 2470

Problem: When "3dip" starts in an empty line, white lines after the
non-white lines are not deleted. (Jens Paulus)

Solution: Include the white lines.
Files: src/search.c

Patch 6.3b.024
Problem: "2daw" does not delete leading white space like "daw" does. (Jens

Paulus)
Solution: Include the white space when a count is used.
Files: src/search.c

Patch 6.3b.025
Problem: Percentage in ruler isn't updated when a line is deleted. (Jens

Paulus)
Solution: Check for a change in line count when deciding to update the ruler.
Files: src/screen.c, src/structs.h

Patch 6.3b.026
Problem: When selecting "abort" at the ATTENTION prompt for a file that is

already being edited Vim crashes.
Solution: Don't abort creating a new buffer when we really need it.
Files: src/buffer.c, src/vim.h

Patch 6.3b.027
Problem: Win32: When enabling the menu in a maximized window, Vim uses more

lines than what is room for. (Shizhu Pan)
Solution: When deciding to call shell_resized(), also compare the text area

size with Rows and Columns, not just with screen_Rows and
screen_Columns.

Files: src/gui.c

Patch 6.3b.028
Problem: When in diff mode, setting 'rightleft' causes a crash. (Eddine)
Solution: Check for last column differently when 'rightleft' is set.
Files: src/screen.c

Patch 6.3b.029
Problem: Win32: warning for uninitialized variable.
Solution: Initialize to zero.
Files: src/misc1.c

Patch 6.3b.030
Problem: After Visually selecting four characters, changing it to other

text, Visually selecting and yanking two characters: "." changes
four characters, another "." changes two characters. (Robert Webb)

Solution: Don't store the size of the Visual area when redo is active.
Files: src/normal.c

==
VERSION 6.4 version-6.4

This section is about improvements made between version 6.3 and 6.4.

This is a bug-fix release. There are also a few new features. The major
number of new items is in the runtime files and translations.

The big MS-Windows version now uses:
Ruby version 1.8.3
Perl version 5.8.7
Python version 2.4.2

version6.txt — 2471

Changed changed-6.4

Removed runtime/tools/tcltags, Exuberant ctags does it better.

Added added-6.4

Alsaconf syntax file (Nikolai Weibull)
Eruby syntax, indent, compiler and ftplugin file (Doug Kearns)
Esterel syntax file (Maurizio Tranchero)
Mathematica indent file (Steve Layland)
Netrc syntax file (Nikolai Weibull)
PHP compiler file (Doug Kearns)
Pascal indent file (Neil Carter)
Prescribe syntax file (Klaus Muth)
Rubyunit compiler file (Doug Kearns)
SMTPrc syntax file (Kornel Kielczewski)
Sudoers syntax file (Nikolai Weibull)
TPP syntax file (Gerfried Fuchs)
VHDL ftplugin file (R. Shankar)
Verilog-AMS syntax file (S. Myles Prather)

Bulgarian keymap (Alberto Mardegan)
Canadian keymap (Eric Joanis)

Hungarian menu translations in UTF-8 (Kantra Gergely)
Ukrainian menu translations (Bohdan Vlasyuk)

Irish message translations (Kevin Patrick Scannell)

Configure also checks for tclsh8.4.

Fixed fixed-6.4

"dFxd;" deleted the character under the cursor, "d;" didn't remember the
exclusiveness of the motion.

When using "set laststatus=2 cmdheight=2" in the .gvimrc you may only get one
line for the cmdline. (Christian Robinson) Invoke command_height() after the
GUI has started up.

Gcc would warn "dereferencing type-punned pointer will break strict -aliasing
rules". Avoid using typecasts for variable pointers.

Gcc 3.x interprets the -MM argument differently. Change "-I /path" to
"-isystem /path" for "make depend".

Patch 6.3.001
Problem: ":browse split" gives the file selection dialog twice. (Gordon

Bazeley) Same problem for ":browse diffpatch".
Solution: Reset cmdmod.browse before calling do_ecmd().
Files: src/diff.c, src/ex_docmd.c

version6.txt — 2472

Patch 6.3.002
Problem: When using translated help files with non-ASCII latin1 characters

in the first line the utf-8 detection is wrong.
Solution: Properly detect utf-8 characters. When a mix of encodings is

detected continue with the next language and avoid a "no matches"
error because of "got_int" being set. Add the directory name to
the error message for a duplicate tag.

Files: src/ex_cmds.c

Patch 6.3.003
Problem: Crash when using a console dialog and the first choice does not

have a default button. (Darin Ohashi)
Solution: Allocate two more characters for the [] around the character for

the default choice.
Files: src/message.c

Patch 6.3.004
Problem: When searching for a long string (140 chars in a 80 column

terminal) get three hit-enter prompts. (Robert Webb)
Solution: Avoid the hit-enter prompt when giving the message for wrapping

around the end of the buffer. Don't give that message again when
the string was not found.

Files: src/message.c, src/search.c

Patch 6.3.005
Problem: Crash when searching for a pattern with a character offset and

starting in a closed fold. (Frank Butler)
Solution: Check for the column to be past the end of the line. Also fix

that a pattern with a character offset relative to the end isn't
read back from the viminfo properly.

Files: src/search.c

Patch 6.3.006
Problem: ":breakadd file *foo" prepends the current directory to the file

pattern. (Hari Krishna Dara)
Solution: Keep the pattern as-is.
Files: src/ex_cmds2.c

Patch 6.3.007
Problem: When there is a buffer with 'buftype' set to "nofile" and using a

":cd" command, the swap file is not deleted when exiting.
Solution: Use the full path of the swap file also for "nofile" buffers.
Files: src/fileio.c

Patch 6.3.008
Problem: Compiling fails under OS/2.
Solution: Include "e_screenmode" also for OS/2. (David Sanders)
Files: src/globals.h

Patch 6.3.009 (after 6.3.006)
Problem: ":breakadd file /path/foo.vim" does not match when a symbolic link

is involved. (Servatius Brandt)
Solution: Do expand the pattern when it does not start with "*".
Files: runtime/doc/repeat.txt, src/ex_cmds2.c

Patch 6.3.010
Problem: When writing to a named pipe there is an error for fsync()

failing.
Solution: Ignore the fsync() error for devices.
Files: src/fileio.c

version6.txt — 2473

Patch 6.3.011
Problem: Crash when the completion function of a user-command uses a

"normal :cmd" command. (Hari Krishna Dara)
Solution: Save the command line when invoking the completion function.
Files: src/ex_getln.c

Patch 6.3.012
Problem: Internal lalloc(0) error when using a complicated multi-line

pattern in a substitute command. (Luc Hermitte)
Solution: Avoid going past the end of a line.
Files: src/ex_cmds.c

Patch 6.3.013
Problem: Crash when editing a command line and typing CTRL-R = to evaluate

a function that uses "normal :cmd". (Hari Krishna Dara)
Solution: Save and restore the command line when evaluating an expression

for CTRL-R =.
Files: src/ex_getln.c, src/ops.c, src/proto/ex_getln.pro,

src/proto/ops.pro

Patch 6.3.014
Problem: When using Chinese or Taiwanese the default for 'helplang' is

wrong. (Simon Liang)
Solution: Use the part of the locale name after "zh_".
Files: src/option.c

Patch 6.3.015
Problem: The string that winrestcmd() returns may end in garbage.
Solution: NUL-terminate the string. (Walter Briscoe)
Files: src/eval.c

Patch 6.3.016
Problem: The default value for 'define' has "\s" before '#'.
Solution: Add a star after "\s". (Herculano de Lima Einloft Neto)
Files: src/option.c

Patch 6.3.017
Problem: "8zz" may leave the cursor beyond the end of the line. (Niko

Maatjes)
Solution: Correct the cursor column after moving to another line.
Files: src/normal.c

Patch 6.3.018
Problem: ":0argadd zero" added the argument after the first one, instead of

before it. (Adri Verhoef)
Solution: Accept a zero range for ":argadd".
Files: src/ex_cmds.h

Patch 6.3.019
Problem: Crash in startup for debug version. (David Rennals)
Solution: Move the call to nbdebug_wait() to after allocating NameBuff.
Files: src/main.c

Patch 6.3.020
Problem: When 'encoding' is "utf-8" and 'delcombine' is set, "dw" does not

delete a word but only a combining character of the first
character, if there is one. (Raphael Finkel)

Solution: Correctly check that one character is being deleted.
Files: src/misc1.c

version6.txt — 2474

Patch 6.3.021
Problem: When the last character of a file name is a multibyte character

and the last byte is a path separator, the file cannot be edited.
Solution: Check for the last byte to be part of a multibyte character.

(Taro Muraoka)
Files: src/fileio.c

Patch 6.3.022 (extra)
Problem: Win32: When the last character of a file name is a multibyte

character and the last byte is a path separator, the file cannot
be written. A trail byte that is a space makes that a file cannot
be opened from the command line.

Solution: Recognize double-byte characters when parsing the command line.
In mch_stat() check for the last byte to be part of a multibyte
character. (Taro Muraoka)

Files: src/gui_w48.c, src/os_mswin.c

Patch 6.3.023
Problem: When the "to" part of a mapping starts with its "from" part,

abbreviations for the same characters is not possible. For
example, when <Space> is mapped to something that starts with a
space, typing <Space> does not expand abbreviations.

Solution: Only disable expanding abbreviations when a mapping is not
remapped, don't disable it when the RHS of a mapping starts with
the LHS.

Files: src/getchar.c, src/vim.h

Patch 6.3.024
Problem: In a few places a string in allocated memory is not terminated

with a NUL.
Solution: Add ga_append(NUL) in script_get(), gui_do_findrepl() and

serverGetVimNames().
Files: src/ex_getln.c, src/gui.c, src/if_xcmdsrv.c, src/os_mswin.c

Patch 6.3.025 (extra)
Problem: Missing NUL for list of server names.
Solution: Add ga_append(NUL) in serverGetVimNames().
Files: src/os_mswin.c

Patch 6.3.026
Problem: When ~/.vim/after/syntax/syncolor.vim contains a command that

reloads the colors an endless loop and/or a crash may occur.
Solution: Only free the old value of an option when it was originally

allocated. Limit recursiveness of init_highlight() to 5 levels.
Files: src/option.c, src/syntax.c

Patch 6.3.027
Problem: VMS: Writing a file may insert extra CR characters. Not all

terminals are recognized correctly. Vt320 doesn't support colors.
Environment variables are not expanded correctly.

Solution: Use another method to write files. Add vt320 termcap codes for
colors. (Zoltan Arpadffy)

Files: src/fileio.c, src/misc1.c, src/os_unix.c, src/structs.h,
src/term.c

Patch 6.3.028
Problem: When appending to a file the BOM marker may be written. (Alex

Jakushev)
Solution: Do not write the BOM marker when appending.

version6.txt — 2475

Files: src/fileio.c

Patch 6.3.029
Problem: Crash when inserting a line break. (Walter Briscoe)
Solution: In the syntax highlighting code, don't use an old state after a

change was made, current_col may be past the end of the line.
Files: src/syntax.c

Patch 6.3.030
Problem: GTK 2: Crash when sourcing a script that deletes the menus, sets

'encoding' to "utf-8" and loads the menus again. GTK error
message when tooltip text is in a wrong encoding.

Solution: Don't copy characters from the old screen to the new screen when
switching 'encoding' to utf-8, they may be invalid. Only set the
tooltip when it is valid utf-8.

Files: src/gui_gtk.c, src/mbyte.c, src/proto/mbyte.pro, src/screen.c

Patch 6.3.031
Problem: When entering a mapping and pressing Tab halfway the command line

isn't redrawn properly. (Adri Verhoef)
Solution: Reposition the cursor after drawing over the "..." of the

completion attempt.
Files: src/ex_getln.c

Patch 6.3.032
Problem: Using Python 2.3 with threads doesn't work properly.
Solution: Release the lock after initialization.
Files: src/if_python.c

Patch 6.3.033
Problem: When a mapping ends in a Normal mode command of more than one

character Vim doesn't return to Insert mode.
Solution: Check that the mapping has ended after obtaining all characters of

the Normal mode command.
Files: src/normal.c

Patch 6.3.034
Problem: VMS: crash when using ":help".
Solution: Avoid using "tags-??", some Open VMS systems can't handle the "?"

wildcard. (Zoltan Arpadffy)
Files: src/tag.c

Patch 6.3.035 (extra)
Problem: RISC OS: Compile errors.
Solution: Change e_screnmode to e_screenmode. Change the way

__riscosify_control is set. Improve the makefile. (Andy Wingate)
Files: src/os_riscos.c, src/search.c, src/Make_ro.mak

Patch 6.3.036
Problem: ml_get errors when the whole file is a fold, switching

'foldmethod' and doing "zj". (Christian J. Robinson) Was not
deleting the fold but creating a fold with zero lines.

Solution: Delete the fold properly.
Files: src/fold.c

Patch 6.3.037 (after 6.3.032)
Problem: Warning for unused variable.
Solution: Change the #ifdefs for the saved thread stuff.
Files: src/if_python.c

version6.txt — 2476

Patch 6.3.038 (extra)
Problem: Win32: When the "file changed" dialog pops up after a click that

gives gvim focus and not moving the mouse after that, the effect
of the click may occur when moving the mouse later. (Ken Clark)
Happened because the release event was missed.

Solution: Clear the s_button_pending variable when any input is received.
Files: src/gui_w48.c

Patch 6.3.039
Problem: When 'number' is set and inserting lines just above the first

displayed line (in another window on the same buffer), the line
numbers are not updated. (Hitier Sylvain)

Solution: When 'number' is set and lines are inserted/deleted redraw all
lines below the change.

Files: src/screen.c

Patch 6.3.040
Problem: Error handling does not always work properly and may cause a

buffer to be marked as if it's viewed in a window while it isn't.
Also when selecting "Abort" at the attention prompt.

Solution: Add enter_cleanup() and leave_cleanup() functions to move
saving/restoring things for error handling to one place.
Clear a buffer read error when it's unloaded.

Files: src/buffer.c, src/ex_docmd.c, src/ex_eval.c,
src/proto/ex_eval.pro, src/structs.h, src/vim.h

Patch 6.3.041 (extra)
Problem: Win32: When the path to a file has Russian characters, ":cd %:p:h"

doesn't work. (Valery Kondakoff)
Solution: Use a wide function to change directory.
Files: src/os_mswin.c

Patch 6.3.042
Problem: When there is a closed fold at the top of the window, CTRL-X

CTRL-E in Insert mode reduces the size of the fold instead of
scrolling the text up. (Gautam)

Solution: Scroll over the closed fold.
Files: src/move.c

Patch 6.3.043
Problem: 'hlsearch' highlighting sometimes disappears when inserting text

in PHP code with syntax highlighting. (Marcel Svitalsky)
Solution: Don't use pointers to remember where a match was found, use an

index. The pointers may become invalid when searching in other
lines.

Files: src/screen.c

Patch 6.3.044 (extra)
Problem: Mac: When 'linespace' is non-zero the Insert mode cursor leaves

pixels behind. (Richard Sandilands)
Solution: Erase the character cell before drawing the text when needed.
Files: src/gui_mac.c

Patch 6.3.045
Problem: Unusual characters in an option value may cause unexpected

behavior, especially for a modeline. (Ciaran McCreesh)
Solution: Don't allow setting termcap options or 'printdevice' in a

modeline. Don't list options for "termcap" and "all" in a
modeline. Don't allow unusual characters in 'filetype', 'syntax',

version6.txt — 2477

'backupext', 'keymap', 'patchmode' and 'langmenu'.
Files: src/option.c, runtime/doc/options.txt

Patch 6.3.046
Problem: ":registers" doesn't show multibyte characters properly.

(Valery Kondakoff)
Solution: Get the length of each character before displaying it.
Files: src/ops.c

Patch 6.3.047 (extra)
Problem: Win32 with Borland C 5.5 on Windows XP: A new file is created with

read-only attributes. (Tony Mechelynck)
Solution: Don't use the _wopen() function for Borland.
Files: src/os_win32.c

Patch 6.3.048 (extra)
Problem: Build problems with VMS on IA64.
Solution: Add dependencies to the build file. (Zoltan Arpadffy)
Files: src/Make_vms.mms

Patch 6.3.049 (after 6.3.045)
Problem: Compiler warning for "char" vs "char_u" mixup. (Zoltan Arpadffy)
Solution: Add a typecast.
Files: src/option.c

Patch 6.3.050
Problem: When SIGHUP is received while busy exiting, non-reentrant

functions such as free() may cause a crash.
Solution: Ignore SIGHUP when exiting because of an error. (Scott Anderson)
Files: src/misc1.c, src/main.c

Patch 6.3.051
Problem: When 'wildmenu' is set and completed file names contain multibyte

characters Vim may crash.
Solution: Reserve room for multibyte characters. (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 6.3.052 (extra)
Problem: Windows 98: typed keys that are not ASCII may not work properly.

For example with a Russian input method. (Jiri Jezdinsky)
Solution: Assume that the characters arrive in the current codepage instead

of UCS-2. Perform conversion based on that.
Files: src/gui_w48.c

Patch 6.3.053
Problem: Win32: ":loadview" cannot find a file with non-ASCII characters.

(Valerie Kondakoff)
Solution: Use mch_open() instead of open() to open the file.
Files: src/ex_cmds2.c

Patch 6.3.054
Problem: When 'insertmode' is set <C-L>4ixxx<C-L> hangs Vim. (Jens Paulus)

Vim is actually still working but redraw is disabled.
Solution: When stopping Insert mode with CTRL-L don't put an Esc in the redo

buffer but a CTRL-L.
Files: src/edit.c

Patch 6.3.055 (after 6.3.013)
Problem: Can't use getcmdline(), getcmdpos() or setcmdpos() with <C-R>=

when editing a command line. Using <C-\>e may crash Vim. (Peter

version6.txt — 2478

Winters)
Solution: When moving ccline out of the way for recursive use, make it

available to the functions that need it. Also save and restore
ccline when calling get_expr_line(). Make ccline.cmdbuf NULL at
the end of getcmdline().

Files: src/ex_getln.c

Patch 6.3.056
Problem: The last characters of a multibyte file name may not be displayed

in the window title.
Solution: Avoid to remove a multibyte character where the last byte looks

like a path separator character. (Yasuhiro Matsumoto)
Files: src/buffer.c, src/ex_getln.c

Patch 6.3.057
Problem: When filtering lines folds are not updated. (Carl Osterwisch)
Solution: Update folds for filtered lines.
Files: src/ex_cmds.c

Patch 6.3.058
Problem: When 'foldcolumn' is equal to the window width and 'wrap' is on

Vim may crash. Disabling the vertical split feature breaks
compiling. (Peter Winters)

Solution: Check for zero room for wrapped text. Make compiling without
vertical splits possible.

Files: src/move.c, src/quickfix.c, src/screen.c, src/netbeans.c

Patch 6.3.059
Problem: Crash when expanding an ":edit" command containing several spaces

with the shell. (Brian Hirt)
Solution: Allocate enough space for the quotes.
Files: src/os_unix.c

Patch 6.3.060
Problem: Using CTRL-R CTRL-O in Insert mode with an invalid register name

still causes something to be inserted.
Solution: Check the register name for being valid.
Files: src/edit.c

Patch 6.3.061
Problem: When editing a utf-8 file in an utf-8 xterm and there is a

multibyte character in the last column, displaying is messed up.
(Joël Rio)

Solution: Check for a multibyte character, not a multi-column character.
Files: src/screen.c

Patch 6.3.062
Problem: ":normal! gQ" hangs.
Solution: Quit getcmdline() and do_exmode() when out of typeahead.
Files: src/ex_getln.c, src/ex_docmd.c

Patch 6.3.063
Problem: When a CursorHold autocommand changes to another window

(temporarily) 'mousefocus' stops working.
Solution: Call gui_mouse_correct() after triggering CursorHold.
Files: src/gui.c

Patch 6.3.064
Problem: line2byte(line("$") + 1) sometimes returns the wrong number.

(Charles Campbell)

version6.txt — 2479

Solution: Flush the cached line before counting the bytes.
Files: src/memline.c

Patch 6.3.065
Problem: The euro digraph doesn't always work.
Solution: Add an "e=" digraph for Unicode euro character and adjust the

help files.
Files: src/digraph.c, runtime/doc/digraph.txt

Patch 6.3.066
Problem: Backup file may get wrong permissions.
Solution: Use permissions of original file for backup file in more places.
Files: src/fileio.c

Patch 6.3.067 (after 6.3.066)
Problem: Newly created file gets execute permission.
Solution: Check for "perm" to be negative before using it.
Files: src/fileio.c

Patch 6.3.068
Problem: When editing a compressed file xxx.gz which is a symbolic link to

the actual file a ":write" renames the link.
Solution: Resolve the link, so that the actual file is renamed and

compressed.
Files: runtime/plugin/gzip.vim

Patch 6.3.069
Problem: When converting text with illegal characters Vim may crash.
Solution: Avoid that too much is subtracted from the length. (Da Woon Jung)
Files: src/mbyte.c

Patch 6.3.070
Problem: After ":set number linebreak wrap" and a vertical split, moving

the vertical separator far left will crash Vim. (Georg Dahn)
Solution: Avoid dividing by zero.
Files: src/charset.c

Patch 6.3.071
Problem: The message for CTRL-X mode is still displayed after an error for

'thesaurus' or 'dictionary' being empty.
Solution: Clear "edit_submode".
Files: src/edit.c

Patch 6.3.072
Problem: Crash in giving substitute message when language is Chinese and

encoding is utf-8. (Yongwei)
Solution: Make the msg_buf size larger when using multibyte.
Files: src/vim.h

Patch 6.3.073
Problem: Win32 GUI: When the Vim window is partly above or below the

screen, scrolling causes display errors when the taskbar is not on
that side.

Solution: Use the SW_INVALIDATE flag when the Vim window is partly below or
above the screen.

Files: src/gui_w48.c

Patch 6.3.074
Problem: When mswin.vim is used and 'insertmode' is set, typing text in

Select mode and then using CTRL-V results in <SNR>99_Pastegi.

version6.txt — 2480

(Georg Dahn)
Solution: When restart_edit is set use "d" instead of "c" to remove the

selected text to avoid calling edit() twice.
Files: src/normal.c

Patch 6.3.075
Problem: After unloading another buffer, syntax highlighting in the current

buffer may be wrong when it uses "containedin". (Eric Arnold)
Solution: Use "buf" instead of "curbuf" in syntax_clear().
Files: src/syntax.c

Patch 6.3.076
Problem: Crash when using cscope and there is a parse error (e.g., line too

long). (Alexey I. Froloff)
Solution: Pass the actual number of matches to cs_manage_matches() and

correctly handle the error situation.
Files: src/if_cscope.c

Patch 6.3.077 (extra)
Problem: VMS: First character input after ESC was not recognized.
Solution: Added TRM$M_TM_TIMED in vms_read(). (Zoltan Arpadffy)
Files: src/os_vms.c

Patch 6.3.078 (extra, after 6.3.077)
Problem: VMS: Performance issue after patch 6.3.077
Solution: Add a timeout in the itemlist. (Zoltan Arpadffy)
Files: src/os_vms.c

Patch 6.3.079
Problem: Crash when executing a command in the command line window while

syntax highlighting is enabled. (Pero Brbora)
Solution: Don't use a pointer to a buffer that has been deleted.
Files: src/syntax.c

Patch 6.3.080 (extra)
Problem: Win32: With 'encoding' set to utf-8 while the current codepage is

Chinese editing a file with some specific characters in the name
fails.

Solution: Use _wfullpath() instead of _fullpath() when necessary.
Files: src/os_mswin.c

Patch 6.3.081
Problem: Unix: glob() may execute a shell command when it's not wanted.

(Georgi Guninski)
Solution: Verify the sandbox flag is not set.
Files: src/os_unix.c

Patch 6.3.082 (after 6.3.081)
Problem: Unix: expand() may execute a shell command when it's not wanted.

(Georgi Guninski)
Solution: A more generic solution than 6.3.081.
Files: src/os_unix.c

Patch 6.3.083
Problem: VMS: The vt320 termcap entry is incomplete.
Solution: Add missing function keys. (Zoltan Arpadffy)
Files: src/term.c

Patch 6.3.084 (extra)
Problem: Cygwin: compiling with DEBUG doesn't work. Perl path was ignored.

version6.txt — 2481

Failure when $(OUTDIR) already exists. "po" makefile is missing.
Solution: Use changes tested in Vim 7. (Tony Mechelynck)
Files: src/Make_cyg.mak, src/po/Make_cyg.mak

Patch 6.3.085
Problem: Crash in syntax highlighting code. (Marc Espie)
Solution: Prevent current_col going past the end of the line.
Files: src/syntax.c

Patch 6.3.086 (extra)
Problem: Can't produce message translation file with msgfmt that checks

printf strings.
Solution: Fix the Russian translation.
Files: src/po/ru.po, src/po/ru.cp1251.po

Patch 6.3.087
Problem: MS-DOS: Crash. (Jason Hood)
Solution: Don't call fname_case() with a NULL pointer.
Files: src/ex_cmds.c

Patch 6.3.088
Problem: Editing ".in" causes error E218. (Stefan Karlsson)
Solution: Require some characters before ".in". Same for ".orig" and others.
Files: runtime/filetype.vim

Patch 6.3.089
Problem: A session file doesn't work when created while the current

directory contains a space or the directory of the session files
contains a space. (Paolo Giarrusso)

Solution: Escape spaces with a backslash.
Files: src/ex_docmd.c

Patch 6.3.090
Problem: A very big value for 'columns' or 'lines' may cause a crash.
Solution: Limit the values to 10000 and 1000.
Files: src/option.c

Patch 6.4a.001
Problem: The Unix Makefile contained too many dependencies and a few

uncommented lines.
Solution: Run "make depend" with manual changes to avoid a gcc

incompatibility. Comment a few lines.
Files: src/Makefile

Patch 6.4b.001
Problem: Vim reports "Vim 6.4a" in the ":version" output.
Solution: Change "a" to "b". (Tony Mechelynck)
Files: src/version.h

Patch 6.4b.002
Problem: In Insert mode, pasting a multibyte character after the end of

the line leaves the cursor just before that character.
Solution: Make sure "gP" leaves the cursor in the right place when

'virtualedit' is set.
Files: src/ops.c

Patch 6.4b.003 (after 6.4b.002)
Problem: The problem still exists when 'encoding' is set to "cp936".
Solution: Fix the problem in getvvcol(), compute the coladd field correctly.
Files: src/charset.c, src/ops.c

version6.txt — 2482

Patch 6.4b.004
Problem: Selecting a {} block with "viB" includes the '}' when there is an

empty line before it.
Solution: Don't advance the cursor to include a line break when it's already

at the line break.
Files: src/search.c

version6.txt — 2483

version6.txt — 2484

version7.txt For Vim version 9.1. Last change: 2021 May 17

VIM REFERENCE MANUAL by Bram Moolenaar

vim7 version-7.0 version7.0
Welcome to Vim 7! A large number of features has been added. This file
mentions all the new items, changes to existing features and bug fixes
since Vim 6.x. Use this command to see the version you are using:

:version

See vi_diff.txt for an overview of differences between Vi and Vim 7.0.
See version4.txt for differences between Vim 3.x and Vim 4.x.
See version5.txt for differences between Vim 4.x and Vim 5.x.
See version6.txt for differences between Vim 5.x and Vim 6.x.

INCOMPATIBLE CHANGES incompatible-7

NEW FEATURES new-7

Vim script enhancements new-vim-script
Spell checking new-spell
Omni completion new-omni-completion
MzScheme interface new-MzScheme
Printing multibyte text new-print-multibyte
Tab pages new-tab-pages
Undo branches new-undo-branches
Extended Unicode support new-more-unicode
More highlighting new-more-highlighting
Translated manual pages new-manpage-trans
Internal grep new-vimgrep
Scroll back in messages new-scroll-back
Cursor past end of the line new-onemore
POSIX compatibility new-posix
Debugger support new-debug-support
Remote file explorer new-netrw-explore
Define an operator new-define-operator
Mapping to an expression new-map-expression
Visual and Select mode mappings new-map-select
Location list new-location-list
Various new items new-items-7

IMPROVEMENTS improvements-7

COMPILE TIME CHANGES compile-changes-7

BUG FIXES bug-fixes-7

VERSION 7.1 version-7.1
Changed changed-7.1
Added added-7.1
Fixed fixed-7.1

VERSION 7.2 version-7.2
Changed changed-7.2
Added added-7.2
Fixed fixed-7.2

VERSION 7.3 version-7.3

version7.txt — 2485

Persistent undo new-persistent-undo
More encryption new-more-encryption
Conceal text new-conceal
Lua interface new-lua
Python3 interface new-python3

Changed changed-7.3
Added added-7.3
Fixed fixed-7.3

VERSION 7.4 version-7.4
New regexp engine new-regexp-engine
Better Python interface better-python-interface
Changed changed-7.4
Added added-7.4
Fixed fixed-7.4

==
INCOMPATIBLE CHANGES incompatible-7

These changes are incompatible with previous releases. Check this list if you
run into a problem when upgrading from Vim 6.x to 7.0.

A ":write file" command no longer resets the 'modified' flag of the buffer,
unless the '+' flag is in 'cpoptions' cpo-+ . This was illogical, since the
buffer is still modified compared to the original file. And when undoing
all changes the file would actually be marked modified. It does mean that
":quit" fails now.

":helpgrep" now uses a help window to display a match.

In an argument list double quotes could be used to include spaces in a file
name. This caused a difference between ":edit" and ":next" for escaping
double quotes and it is incompatible with some versions of Vi.

Command Vim 6.x file name Vim 7.x file name
:edit foo\"888 foo"888 foo"888
:next foo\"888 foo888 foo"888
:next a\"b c\"d ab cd a"b and c"d

In a literal-string a single quote can be doubled to get one.
":echo 'a''b'" would result in "a b", but now that two quotes stand for one it
results in "a'b".

When overwriting a file with ":w! fname" there was no warning for when "fname"
was being edited by another Vim. Vim now gives an error message E768 .

The support for Mac OS 9 has been removed.

Files ending in .tex now have 'filetype' set to "context", "plaintex", or
"tex". ft-tex-plugin

Minor incompatibilities:

For filetype detection: For many types, use */.dir/filename instead of
~/.dir/filename, so that it also works for other user's files.

For quite a few filetypes the indent settings have been moved from the
filetype plugin to the indent plugin. If you used:

version7.txt — 2486

:filetype plugin on
Then some indent settings may be missing. You need to use:

:filetype plugin indent on

":0verbose" now sets 'verbose' to zero instead of one.

Removed the old and incomplete "VimBuddy" code.

Buffers without a name report "No Name" instead of "No File". It was
confusing for buffers with a name and 'buftype' set to "nofile".

When ":file xxx" is used in a buffer without a name, the alternate file name
isn't set. This avoids creating buffers without a name, they are not useful.

The "2html.vim" script now converts closed folds to HTML. This means the HTML
looks like it's displayed, with the same folds open and closed. Use "zR", or
"let html_ignore_folding=1", if no folds should appear in the HTML. (partly by
Carl Osterwisch)
Diff mode is now also converted to HTML as it is displayed.

Win32: The effect of the <F10> key depended on 'winaltkeys'. Now it depends
on whether <F10> has been mapped or not. This allows mapping <F10> without
changing 'winaltkeys'.

When 'octal' is in 'nrformats' and using CTRL-A on "08" it became "018", which
is illogical. Now it becomes "9". The leading zero(s) is(are) removed to
avoid the number becoming octal after incrementing "009" to "010".

When 'encoding' is set to a Unicode encoding, the value for 'fileencodings'
now includes "default" before "latin1". This means that for files with 8-bit
encodings the default is to use the encoding specified by the environment, if
possible. Previously latin1 would always be used, which is wrong in a
non-latin1 environment, such as Russian.

Previously Vim would exit when there are two windows, both of them displaying
a help file, and using ":quit". Now only the window is closed.

"-w {scriptout}" only works when {scriptout} doesn't start with a digit.
Otherwise it's used to set the 'window' option.

Previously <Home> and <xHome> could be mapped separately. This had the
disadvantage that all mappings (with modifiers) had to be duplicated, since
you can't be sure what the keyboard generates. Now all <xHome> are internally
translated to <Home>, both for the keys and for mappings. Also for <xEnd>,
<xF1>, etc.

":put" now leaves the cursor on the last inserted line.

When a .gvimrc file exists then 'compatible' is off, just like when a ".vimrc"
file exists.

When making a string upper-case with "vlllU" or similar then the German sharp
s is replaced with "SS". This does not happen with "~" to avoid backwards
compatibility problems and because "SS" can't be changed back to a sharp s.

"gd" previously found the very first occurrence of a variable in a function,
that could be the function argument without type. Now it finds the position
where the type is given.

The line continuation in functions was not taken into account, line numbers in

version7.txt — 2487

errors were logical lines, not lines in the sourced file. That made it
difficult to locate errors. Now the line number in the sourced file is
reported, relative to the function start. This also means that line numbers
for ":breakadd func" are different.

When defining a user command with :command the special items could be
abbreviated. This caused unexpected behavior, such as being recognized
as <line1>. The items can no longer be abbreviated.

When executing a FileChangedRO autocommand it is no longer allowed to switch
to another buffer or edit another file. This is to prevent crashes (the event
is triggered deep down in the code where changing buffers is not anticipated).
It is still possible to reload the buffer.

At the more-prompt and the hit-enter-prompt , when the 'more' option is
set, the 'k', 'u', 'g' and 'b' keys are now used to scroll back to previous
messages. Thus they are no longer used as typeahead.

==
NEW FEATURES new-7

Vim script enhancements new-vim-script

In Vim scripts the following types have been added:

List ordered list of items
Dictionary associative array of items
Funcref reference to a function

Many functions and commands have been added to support the new types.

The string() function can be used to get a string representation of a
variable. Works for Numbers, Strings and composites of them. Then eval()
can be used to turn the string back into the variable value.

The :let command can now use "+=", "-=" and ".=":
:let var += expr " works like :let var = var + expr
:let var -= expr " works like :let var = var - expr
:let var .= string " works like :let var = var . string

With the :profile command you can find out where your function or script
is wasting time.

In the Python interface vim.eval() also handles Dictionaries and Lists.
python-eval (G. Sumner Hayes)

The getscript plugin was added as a convenient way to update scripts from
www.vim.org automatically. (Charles Campbell)

The vimball plugin was added as a convenient way to distribute a set of
files for a plugin (plugin file, autoload script, documentation). (Charles
Campbell)

Spell checking new-spell

Spell checking has been integrated in Vim. There were a few implementations
with scripts, but they were slow and/or required an external program.

version7.txt — 2488

The 'spell' option is used to switch spell checking on or off
The 'spelllang' option is used to specify the accepted language(s)
The 'spellfile' option specifies where new words are added
The 'spellsuggest' option specifies the methods used for making suggestions

The]s and [s commands can be used to move to the next or previous error
The zg and zw commands can be used to add good and wrong words
The z= command can be used to list suggestions and correct the word
The :mkspell command is used to generate a Vim spell file from word lists

The "undercurl" highlighting attribute was added to nicely point out spelling
mistakes in the GUI (based on patch from Marcin Dalecki).
The "guisp" color can be used to give it a color different from foreground and
background.
The number of possible different highlight attributes was raised from about
220 to over 30000. This allows for the attributes of spelling to be combined
with syntax highlighting attributes. This is also used for syntax
highlighting and marking the Visual area.

Much more info here: spell .

Omni completion new-omni-completion

This could also be called "intellisense", but that is a trademark. It is a
smart kind of completion. The text in front of the cursor is inspected to
figure out what could be following. This may suggest struct and class
members, system functions, etc.

Use CTRL-X CTRL-O in Insert mode to start the completion. i_CTRL-X_CTRL-O

The 'omnifunc' option is set by filetype plugins to define the function that
figures out the completion.

Currently supported languages:
C ft-c-omni
(X)HTML with CSS ft-html-omni
JavaScript ft-javascript-omni
PHP ft-php-omni
Python
Ruby ft-ruby-omni
SQL ft-sql-omni
XML ft-xml-omni
any language with syntax highlighting ft-syntax-omni

You can add your own omni completion scripts.

When the 'completeopt' option contains "menu" then matches for Insert mode
completion are displayed in a (rather primitive) popup menu.

MzScheme interface new-MzScheme

The MzScheme interpreter is supported. MzScheme

The :mzscheme command can be used to execute MzScheme commands
The :mzfile command can be used to execute an MzScheme script file

version7.txt — 2489

This depends on Vim being compiled with the +mzscheme feature.

Printing multibyte text new-print-multibyte

The :hardcopy command now supports printing multibyte characters when using
PostScript.

The 'printmbcharset' and 'printmbfont' options are used for this.
Also see postscript-cjk-printing . (Mike Williams)

Tab pages new-tab-pages

A tab page is a page with one or more windows with a label (aka tab) at the top.
By clicking on the label you can quickly switch between the tab pages. And
with the keyboard, using the gt (Goto Tab) command. This is a convenient
way to work with many windows.

To start Vim with each file argument in a separate tab page use the -p
argument. The maximum number of pages can be set with 'tabpagemax'.

The line with tab labels is either made with plain text and highlighting or
with a GUI mechanism. The GUI labels look better but are only available on a
few systems. The line can be customized with 'tabline', 'guitablabel' and
'guitabtooltip'. Whether it is displayed is set with 'showtabline'. Whether
to use the GUI labels is set with the "e" flag in 'guioptions'.

The :tab command modifier can be used to have most commands that open a new
window open a new tab page instead.

The --remote-tab argument can be used to edit a file in a new tab page in an
already running Vim server.

Variables starting with "t:" are local to a tab page.

More info here: tabpage
Most of the GUI stuff was implemented by Yegappan Lakshmanan.

Undo branches new-undo-branches

Previously there was only one line of undo-redo. If, after undoing a number
of changes, a new change was made all the undone changes were lost. This
could lead to accidentally losing work.

Vim now makes an undo branch in this situation. Thus you can go back to the
text after any change, even if they were undone. So long as you do not run
into 'undolevels', when undo information is freed up to limit the memory used.

To be able to navigate the undo branches each change is numbered sequentially.
The commands g- and :earlier go back in time, to older changes. The
commands g+ and :later go forward in time, to newer changes.

The changes are also timestamped. Use ":earlier 10m" to go to the text as it
was about ten minutes earlier.

version7.txt — 2490

The :undolist command can be used to get an idea of which undo branches
exist. The :undo command now takes an argument to directly jump to a
specific position in this list. The changenr() function can be used to
obtain the change number.

There is no graphical display of the tree with changes, navigation can be
quite confusing.

Extended Unicode support new-more-unicode

Previously only two combining characters were displayed. The limit is now
raised to 6. This can be set with the 'maxcombine' option. The default is
still 2.

ga now shows all combining characters, not just the first two.

Previously only 16 bit Unicode characters were supported for displaying. Now
the full 32 bit character set can be used. Unless manually disabled at
compile time to save a bit of memory.

For pattern matching it is now possible to search for individual composing
characters. patterns-composing

The 8g8 command searches for an illegal UTF-8 byte sequence.

More highlighting new-more-highlighting

Highlighting matching parens:

When moving the cursor through the text and it is on a paren, then the
matching paren can be highlighted. This uses the new CursorMoved
autocommand event.

This means some commands are executed every time you move the cursor. If this
slows you down too much switch it off with:

:NoMatchParen

See matchparen for more information.

The plugin uses the :match command. It now supports three match patterns.
The plugin uses the third one. The first one is for the user and the second
one can be used by another plugin.

Highlighting the cursor line and column:

The 'cursorline' and 'cursorcolumn' options have been added. These highlight
the screen line and screen column of the cursor. This makes the cursor
position easier to spot. 'cursorcolumn' is also useful to align text. This
may make screen updating quite slow. The CursorColumn and CursorLine
highlight groups allow changing the colors used. hl-CursorColumn
hl-CursorLine

The number of possible different highlight attributes was raised from about
220 to over 30000. This allows for the attributes of spelling to be combined
with syntax highlighting attributes. This is also used for syntax

version7.txt — 2491

highlighting, marking the Visual area, CursorColumn, etc.

Translated manual pages new-manpage-trans

The manual page of Vim and associated programs is now also available in
several other languages.

French - translated by David Blanchet
Italian - translated by Antonio Colombo
Russian - translated by Vassily Ragosin
Polish - translated by Mikolaj Machowski

The Unix Makefile installs the Italian manual pages in .../man/it/man1/,
.../man/it.ISO8859-1/man1/ and .../man/it.UTF-8/man1/. There appears to be no
standard for what encoding goes in the "it" directory, the 8-bit encoded file
is used there as a best guess.
Other languages are installed in similar places.
The translated pages are not automatically installed when Vim was configured
with "--disable-nls", but "make install-languages install-tool-languages" will
do it anyway.

Internal grep new-vimgrep

The ":vimgrep" command can be used to search for a pattern in a list of files.
This is like the ":grep" command, but no external program is used. Besides
better portability, handling of different file encodings and using multi-line
patterns, this also allows grepping in compressed and remote files.
:vimgrep .

If you want to use the search results in a script you can use the
getqflist() function.

To grep files in various directories the "**" pattern can be used. It expands
into an arbitrary depth of directories. "**" can be used in all places where
file names are expanded, thus also with :next and :args .

Scroll back in messages new-scroll-back

When displaying messages, at the more-prompt and the hit-enter-prompt , The
'k', 'u', 'g' and 'b' keys can be used to scroll back to previous messages.
This is especially useful for commands such as ":syntax", ":autocommand" and
":highlight". This is implemented in a generic way thus it works for all
commands and highlighting is kept. Only works when the 'more' option is set.
Previously it only partly worked for ":clist".

The g< command can be used to see the last page of messages after you have
hit <Enter> at the hit-enter-prompt . Then you can scroll further back.

Cursor past end of the line new-onemore

When the 'virtualedit' option contains "onemore" the cursor can move just past
the end of the line. As if it's on top of the line break.

version7.txt — 2492

This makes some commands more consistent. Previously the cursor was always
past the end of the line if the line was empty. But it is far from Vi
compatible. It may also break some plugins or Vim scripts. Use with care!

The patch was provided by Mattias Flodin.

POSIX compatibility new-posix

The POSIX test suite was used to verify POSIX compatibility. A number of
problems have been fixed to make Vim more POSIX compatible. Some of them
conflict with traditional Vi or expected behavior. The $VIM_POSIX environment
variable can be set to get POSIX compatibility. See posix .

Items that were fixed for both Vi and POSIX compatibility:
- repeating "R" with a count only overwrites text once; added the 'X' flag to

'cpoptions' cpo-X
- a vertical movement command that moves to a non-existing line fails; added

the '-' flag to 'cpoptions' cpo--
- when preserving a file and doing ":q!" the file can be recovered; added the

'&' flag to 'cpoptions' cpo-&
- The 'window' option is partly implemented. It specifies how much CTRL-F and

CTRL-B scroll when there is one window. The "-w {number}" argument is now
accepted. "-w {scriptout}" only works when {scriptout} doesn't start with a
digit.

- Allow "-c{command}" argument, no space between "-c" and {command}.
- When writing a file with ":w!" don't reset 'readonly' when 'Z' is present in

'cpoptions'.
- Allow 'l' and '#' flags for ":list", ":print" and ":number".
- Added the '.' flag to 'cpoptions': ":cd" fails when the buffer is modified.
- In Ex mode with an empty buffer ":read file" doesn't keep an empty line

above or below the new lines.
- Remove a backslash before a NL for the ":global" command.
- When ":append", ":insert" or ":change" is used with ":global", get the

inserted lines from the command. Can use backslash-NL to separate lines.
- Can use ":global /pat/ visual" to execute Normal mode commands at each

matched line. Use "Q" to continue and go to the next line.
- The :open command has been partially implemented. It stops Ex mode, but

redraws the whole screen, not just one line as open mode is supposed to do.
- Support using a pipe to read the output from and write input to an external

command. Added the 'shelltemp' option and has("filterpipe").
- In ex silent mode the ":set" command output is displayed.
- The ":@@" and ":**" give an error message when no register was used before.
- The search pattern "[]-`]" matches ']', '^', '_' and '`'.
- Autoindent for ":insert" is using the line below the insert.
- Autoindent for ":change" is using the first changed line.
- Editing Ex command lines is not done in cooked mode, because CTRL-D and

CTRL-T cannot be handled then.
- In Ex mode, "1,3" prints three lines. "%" prints all lines.
- In Ex mode "undo" would undo all changes since Ex mode was started.
- Implemented the 'prompt' option.

Debugger support new-debug-support

The 'balloonexpr' option has been added. This is a generic way to implement
balloon functionality. You can use it to show info for the word under the

version7.txt — 2493

mouse pointer.

Remote file explorer new-netrw-explore

The netrw plugin now also supports viewing a directory, when "scp://" is used.
Deleting and renaming files is possible.

To avoid duplicating a lot of code, the previous file explorer plugin has been
integrated in the netrw plugin. This means browsing local and remote files
works the same way.

":browse edit" and ":browse split" use the netrw plugin when it's available
and a GUI dialog is not possible.

The netrw plugin is maintained by Charles Campbell.

Define an operator new-define-operator

Previously it was not possible to define your own operator; a command that is
followed by a {motion}. Vim 7 introduces the 'operatorfunc' option and the
g@ operator. This makes it possible to define a mapping that works like an

operator. The actual work is then done by a function, which is invoked
through the g@ operator.

See :map-operator for the explanation and an example.

Mapping to an expression new-map-expression

The {rhs} argument of a mapping can be an expression. That means the
resulting characters can depend on the context. Example:

:inoremap <expr> . InsertDot()
Here the dot will be mapped to whatever InsertDot() returns.

This also works for abbreviations. See :map-<expr> for the details.

Visual and Select mode mappings new-map-select

Previously Visual mode mappings applied both to Visual and Select mode. With
a trick to have the mappings work in Select mode like they would in Visual
mode.

Commands have been added to define mappings for Visual and Select mode
separately: :xmap and :smap . With the associated "noremap" and "unmap"
commands.

The same is done for menus: :xmenu , :smenu , etc.

Location list new-location-list

The support for a per-window quickfix list (location list) is added. The

version7.txt — 2494

location list can be displayed in a location window (similar to the quickfix
window). You can open more than one location list window. A set of commands
similar to the quickfix commands are added to browse the location list.
(Yegappan Lakshmanan)

Various new items new-items-7

Normal mode commands:

a", a' and a` New text objects to select quoted strings. a'
i", i' and i` (Taro Muraoka)

CTRL-W <Enter> In the quickfix window: opens a new window to show the
location of the error under the cursor.

at and it text objects select a block of text between HTML or XML tags.

<A-LeftMouse> ('mousemodel' "popup" or "popup-setpos")
<A-RightMouse> ('mousemodel' "extend")

Make a blockwise selection. <A-LeftMouse>

gF Start editing the filename under the cursor and jump
to the line number following the file name.
(Yegappan Lakshmanan)

CTRL-W F Start editing the filename under the cursor in a new
window and jump to the line number following the file
name. (Yegappan Lakshmanan)

Insert mode commands:

CTRL-\ CTRL-O Execute a Normal mode command. Like CTRL-O but
without moving the cursor. i_CTRL-_CTRL-O

Options:

'balloonexpr' expression for text to show in evaluation balloon
'completefunc' The name of the function used for user-specified

Insert mode completion. CTRL-X CTRL-U can be used in
Insert mode to do any kind of completion. (Taro
Muraoka)

'completeopt' Enable popup menu and other settings for Insert mode
completion.

'cursorcolumn' highlight column of the cursor
'cursorline' highlight line of the cursor
'formatexpr' expression for formatting text with gq and when text

goes over 'textwidth' in Insert mode.
'formatlistpat' pattern to recognize a numbered list for formatting.

(idea by Hugo Haas)
'fsync' Whether fsync() is called after writing a file.

(Ciaran McCreesh)
'guitablabel' expression for text to display in GUI tab page label
'guitabtooltip' expression for text to display in GUI tab page tooltip
'macatsui' Mac: use ATSUI text display functions
'maxcombine' maximum number of combining characters displayed
'maxmempattern' maximum amount of memory to use for pattern matching
'mkspellmem' parameters for :mkspell memory use
'mzquantum' Time in msec to schedule MzScheme threads.

version7.txt — 2495

'numberwidth' Minimal width of the space used for the 'number' and
'relativenumber' option. (Emmanuel Renieris)

'omnifunc' The name of the function used for omni completion.
'operatorfunc' function to be called for g@ operator
'printmbcharset' CJK character set to be used for :hardcopy
'printmbfont' font names to be used for CJK output of :hardcopy
'pumheight' maximum number of items to show in the popup menu
'quoteescape' Characters used to escape quotes inside a string.

Used for the a", a' and a` text objects. a'
'shelltemp' whether to use a temp file or pipes for shell commands
'showtabline' whether to show the tab pages line
'spell' switch spell checking on/off
'spellcapcheck' pattern to locate the end of a sentence
'spellfile' file where good and wrong words are added
'spelllang' languages to check spelling for
'spellsuggest' methods for spell suggestions
'synmaxcol' maximum column to look for syntax items; avoids very

slow redrawing when there are very long lines
'tabline' expression for text to display in the tab pages line
'tabpagemax' maximum number of tab pages to open for -p
'verbosefile' Log messages in a file.
'wildoptions' "tagfile" value enables listing the file name of

matching tags for CTRL-D command line completion.
(based on an idea from Yegappan Lakshmanan)

'winfixwidth' window with fixed width, similar to 'winfixheight'

Ex commands:

Win32: The ":winpos" command now also works in the console. (Vipin Aravind)

:startreplace Start Replace mode. (Charles Campbell)
:startgreplace Start Virtual Replace mode.

:0file Removes the name of the buffer. (Charles Campbell)

:diffoff Switch off diff mode in the current window or in all
windows.

:delmarks Delete marks.

:exusage Help for Ex commands (Nvi command).
:viusage Help for Vi commands (Nvi command).

:sort Sort lines in the buffer without depending on an
external command. (partly by Bryce Wagner)

:vimgrep Internal grep command, search for a pattern in files.
:vimgrepadd Like :vimgrep but don't make a new list.

:caddfile Add error messages to an existing quickfix list
(Yegappan Lakshmanan).

:cbuffer Read error lines from a buffer. (partly by Yegappan
Lakshmanan)

:cgetbuffer Create a quickfix list from a buffer but don't jump to
the first error.

:caddbuffer Add errors from the current buffer to the quickfix
list.

:cexpr Read error messages from a Vim expression (Yegappan
Lakshmanan).

version7.txt — 2496

:caddexpr Add error messages from a Vim expression to an
existing quickfix list. (Yegappan Lakshmanan).

:cgetexpr Create a quickfix list from a Vim expression, but
don't jump to the first error. (Yegappan Lakshmanan).

:lfile Like :cfile but use the location list.
:lgetfile Like :cgetfile but use the location list.
:laddfile Like :caddfile but use the location list.
:lbuffer Like :cbuffer but use the location list.
:lgetbuffer Like :cgetbuffer but use the location list.
:laddbuffer Like :caddbuffer but use the location list.
:lexpr Like :cexpr but use the location list.
:lgetexpr Like :cgetexpr but use the location list.
:laddexpr Like :caddexpr but use the location list.
:ll Like :cc but use the location list.
:llist Like :clist but use the location list.
:lnext Like :cnext but use the location list.
:lprevious Like :cprevious but use the location list.
:lNext Like :cNext but use the location list.
:lfirst Like :cfirst but use the location list.
:lrewind Like :crewind but use the location list.
:llast Like :clast but use the location list.
:lnfile Like :cnfile but use the location list.
:lpfile Like :cpfile but use the location list.
:lNfile Like :cNfile but use the location list.
:lolder Like :colder but use the location list.
:lnewer Like :cnewer but use the location list.
:lwindow Like :cwindow but use the location list.
:lopen Like :copen but use the location list.
:lclose Like :cclose but use the location list.
:lmake Like :make but use the location list.
:lgrep Like :grep but use the location list.
:lgrepadd Like :grepadd but use the location list.
:lvimgrep Like :vimgrep but use the location list.
:lvimgrepadd Like :vimgrepadd but use the location list.
:lhelpgrep Like :helpgrep but use the location list.
:lcscope Like :cscope but use the location list.
:ltag Jump to a tag and add matching tags to a location list.

:undojoin Join a change with the previous undo block.
:undolist List the leafs of the undo tree.

:earlier Go back in time for changes in the text.
:later Go forward in time for changes in the text.

:for Loop over a List .
:endfor

:lockvar Lock a variable, prevents it from being changed.
:unlockvar Unlock a locked variable.

:mkspell Create a Vim spell file.
:spellgood Add a word to the list of good words.
:spellwrong Add a word to the list of bad words
:spelldump Dump list of good words.
:spellinfo Show information about the spell files used.
:spellrepall Repeat a spelling correction for the whole buffer.
:spellundo Remove a word from list of good and bad words.

:mzscheme Execute MzScheme commands.

version7.txt — 2497

:mzfile Execute an MzScheme script file.

:nbkey Pass a key to NetBeans for processing.

:profile Commands for Vim script profiling.
:profdel Stop profiling for specified items.

:smap Select mode mapping.
:smapclear
:snoremap
:sunmap

:xmap Visual mode mapping, not used for Select mode.
:xmapclear
:xnoremap
:xunmap

:smenu Select mode menu.
:snoremenu
:sunmenu

:xmenu Visual mode menu, not used for Select mode.
:xnoremenu
:xunmenu

:tabclose Close the current tab page.
:tabdo Perform a command in every tab page.
:tabedit Edit a file in a new tab page.
:tabnew Open a new tab page.
:tabfind Search for a file and open it in a new tab page.
:tabnext Go to the next tab page.
:tabprevious Go to the previous tab page.
:tabNext Go to the previous tab page.
:tabfirst Go to the first tab page.
:tabrewind Go to the first tab page.
:tablast Go to the last tab page.
:tabmove Move the current tab page elsewhere.
:tabonly Close all other tab pages.
:tabs List the tab pages and the windows they contain.

Ex command modifiers:

:keepalt Do not change the alternate file.

:noautocmd Do not trigger autocommand events.

:sandbox Execute a command in the sandbox.

:tab When opening a new window create a new tab page.

Ex command arguments:

++bad Specify what happens with characters that can't be
converted and illegal bytes. (code example by Yasuhiro
Matsumoto)
Also, when a conversion error occurs or illegal bytes
are found include the line number in the error
message.

version7.txt — 2498

New and extended functions:

add() append an item to a List
append() append List of lines to the buffer
argv() without an argument return the whole argument list
browsedir() dialog to select a directory
bufnr() takes an extra argument: create buffer
byteidx() index of a character (Ilya Sher)
call() call a function with List as arguments
changenr() number of current change
complete() set matches for Insert mode completion
complete_add() add match for 'completefunc'
complete_check() check for key pressed, for 'completefunc'
copy() make a shallow copy of a List or Dictionary
count() count nr of times a value is in a List or Dictionary
cursor() also accepts an offset for 'virtualedit', and

the first argument can be a list: [lnum, col, off]
deepcopy() make a full copy of a List or Dictionary
diff_filler() returns number of filler lines above line {lnum}.
diff_hlID() returns the highlight ID for diff mode
empty() check if List or Dictionary is empty
eval() evaluate {string} and return the result
extend() append one List to another or add items from one

Dictionary to another
feedkeys() put characters in the typeahead buffer
filter() remove selected items from a List or Dictionary
finddir() find a directory in 'path'
findfile() find a file in 'path' (Johannes Zellner)
foldtextresult() the text displayed for a closed fold at line "lnum"
function() make a Funcref out of a function name
garbagecollect() cleanup unused Lists and Dictionaries with circular

references
get() get an item from a List or Dictionary
getbufline() get a list of lines from a specified buffer

(Yegappan Lakshmanan)
getcmdtype() return the current command-line type

(Yegappan Lakshmanan)
getfontname() get actual font name being used
getfperm() get file permission string (Nikolai Weibull)
getftype() get type of file (Nikolai Weibull)
getline() with second argument: get List with buffer lines
getloclist() list of location list items (Yegappan Lakshmanan)
getpos() return a list with the position of cursor, mark, etc.
getqflist() list of quickfix errors (Yegappan Lakshmanan)
getreg() get contents of a register
gettabwinvar() get variable from window in specified tab page.
has_key() check whether a key appears in a Dictionary
haslocaldir() check if current window used :lcd
hasmapto() check for a mapping to a string
index() index of item in List
inputlist() prompt the user to make a selection from a list
insert() insert an item somewhere in a List
islocked() check if a variable is locked
items() get List of Dictionary key-value pairs
join() join List items into a String
keys() get List of Dictionary keys
len() number of items in a List or Dictionary
map() change each List or Dictionary item
maparg() extra argument: use abbreviation

version7.txt — 2499

mapcheck() extra argument: use abbreviation
match() extra argument: count
matcharg() return arguments of :match command
matchend() extra argument: count
matchlist() list with match and submatches of a pattern in a string
matchstr() extra argument: count
max() maximum value in a List or Dictionary
min() minimum value in a List or Dictionary
mkdir() create a directory
pathshorten() reduce directory names to a single character
printf() format text
pumvisible() check whether the popup menu is displayed
range() generate a List with numbers
readfile() read a file into a list of lines
reltime() get time value, possibly relative
reltimestr() turn a time value into a string
remove() remove one or more items from a List or Dictionary
repeat() repeat "expr" "count" times (Christophe Poucet)
reverse() reverse the order of a List
search() extra argument:
searchdecl() search for declaration of variable
searchpair() extra argument: line to stop searching
searchpairpos() return a List with the position of the match
searchpos() return a List with the position of the match
setloclist() modify a location list (Yegappan Lakshmanan)
setpos() set cursor or mark to a position
setqflist() modify a quickfix list (Yegappan Lakshmanan)
settabwinvar() set variable in window of specified tab page
sort() sort a List
soundfold() get the sound-a-like equivalent of a word
spellbadword() get a badly spelled word
spellsuggest() get suggestions for correct spelling
split() split a String into a List
str2nr() convert a string to a number, base 2, 8, 10 or 16
stridx() extra argument: start position
strridx() extra argument: start position
string() string representation of a List or Dictionary
system() extra argument: filters {input} through a shell command
tabpagebuflist() List of buffers in a tab page
tabpagenr() number of current or last tab page
tabpagewinnr() window number in a tab page
tagfiles() List with tags file names
taglist() get list of matching tags (Yegappan Lakshmanan)
tr() translate characters (Ron Aaron)
uniq() remove copies of repeated adjacent list items
values() get List of Dictionary values
winnr() takes an argument: what window to use
winrestview() restore the view of the current window
winsaveview() save the view of the current window
writefile() write a list of lines into a file

User defined functions can now be loaded automatically from the "autoload"
directory in 'runtimepath'. See autoload-functions .

New Vim variables:

v:insertmode used for InsertEnter and InsertChange autocommands
v:val item value in a map() or filter() function
v:key item key in a map() or filter() function

version7.txt — 2500

v:profiling non-zero after a ":profile start" command
v:fcs_reason the reason why FileChangedShell was triggered
v:fcs_choice what should happen after FileChangedShell
v:beval_bufnr buffer number for 'balloonexpr'
v:beval_winnr window number for 'balloonexpr'
v:beval_lnum line number for 'balloonexpr'
v:beval_col column number for 'balloonexpr'
v:beval_text text under the mouse pointer for 'balloonexpr'
v:scrollstart what caused the screen to be scrolled up
v:swapname name of the swap file for the SwapExists event
v:swapchoice what to do for an existing swap file
v:swapcommand command to be executed after handling SwapExists
v:char argument for evaluating 'formatexpr'

New autocommand events:

ColorScheme after loading a color scheme

CursorHoldI the user doesn't press a key for a while in Insert mode
CursorMoved the cursor was moved in Normal mode
CursorMovedI the cursor was moved in Insert mode

FileChangedShellPost after handling a file changed outside of Vim

InsertEnter starting Insert or Replace mode
InsertChange going from Insert to Replace mode or back
InsertLeave leaving Insert or Replace mode

MenuPopup just before showing popup menu

QuickFixCmdPre before :make, :grep et al. (Ciaran McCreesh)
QuickFixCmdPost after :make, :grep et al. (Ciaran McCreesh)

SessionLoadPost after loading a session file. (Yegappan Lakshmanan)

ShellCmdPost after executing a shell command
ShellFilterPost after filtering with a shell command

SourcePre before sourcing a Vim script

SpellFileMissing when a spell file can't be found

SwapExists found existing swap file when editing a file

TabEnter just after entering a tab page
TabLeave just before leaving a tab page

VimResized after the Vim window size changed (Yakov Lerner)

New highlight groups:

Pmenu Popup menu: normal item hl-Pmenu
PmenuSel Popup menu: selected item hl-PmenuSel
PmenuThumb Popup menu: scrollbar hl-PmenuThumb
PmenuSbar Popup menu: Thumb of the scrollbar hl-PmenuSbar

TabLine tab pages line, inactive label hl-TabLine
TabLineSel tab pages line, selected label hl-TabLineSel

version7.txt — 2501

TabLineFill tab pages line, filler hl-TabLineFill

SpellBad badly spelled word hl-SpellBad
SpellCap word with wrong caps hl-SpellCap
SpellRare rare word hl-SpellRare
SpellLocal word only exists in other region hl-SpellLocal

CursorColumn 'cursorcolumn' hl-CursorColumn
CursorLine 'cursorline' hl-CursorLine

MatchParen matching parens pi_paren.txt hl-MatchParen

New items in search patterns:
/\%d \%d123 search for character with decimal number
/\] [\d123] idem, in a collection
/\%o \%o103 search for character with octal number
/\] [\o1o3] idem, in a collection
/\%x \%x1a search for character with 2 pos. hex number
/\] [\x1a] idem, in a collection
/\%u \%u12ab search for character with 4 pos. hex number
/\] [\u12ab] idem, in a collection
/\%U \%U1234abcd search for character with 8 pos. hex number
/\] [\U1234abcd] idem, in a collection

(The above partly by Ciaran McCreesh)

/[[= [[=a=]] an equivalence class (only for latin1 characters)
/[[. [[.a.]] a collation element (only works with single char)

/\%'m \%'m match at mark m
/\%<'m \%<'m match before mark m
/\%>'m \%>'m match after mark m
/\%V \%V match in Visual area

Nesting /multi items no longer is an error when an empty match is possible.

It is now possible to use \{0}, it matches the preceding atom zero times. Not
useful, just for compatibility.

New Syntax/Indent/FTplugin files:

Moved all the indent settings from the filetype plugin to the indent file.
Implemented b:undo_indent to undo indent settings when setting 'filetype' to a
different value.

a2ps syntax and ftplugin file. (Nikolai Weibull)
ABAB/4 syntax file. (Marius van Wyk)
alsaconf ftplugin file. (Nikolai Weibull)
AppendMatchGroup ftplugin file. (Dave Silvia)
arch ftplugin file. (Nikolai Weibull)
asterisk and asteriskvm syntax file. (Tilghman Lesher)
BDF ftplugin file. (Nikolai Weibull)
BibTeX indent file. (Dorai Sitaram)
BibTeX Bibliography Style syntax file. (Tim Pope)
BTM ftplugin file. (Bram Moolenaar)
calendar ftplugin file. (Nikolai Weibull)
Changelog indent file. (Nikolai Weibull)
ChordPro syntax file. (Niels Bo Andersen)
Cmake indent and syntax file. (Andy Cedilnik)

version7.txt — 2502

conf ftplugin file. (Nikolai Weibull)
context syntax and ftplugin file. (Nikolai Weibull)
CRM114 ftplugin file. (Nikolai Weibull)
cvs RC ftplugin file. (Nikolai Weibull)
D indent file. (Jason Mills)
Debian Sources.list syntax file. (Matthijs Mohlmann)
dictconf and dictdconf syntax, indent and ftplugin files. (Nikolai Weibull)
diff ftplugin file. (Bram Moolenaar)
dircolors ftplugin file. (Nikolai Weibull)
django and htmldjango syntax file. (Dave Hodder)
doxygen syntax file. (Michael Geddes)
elinks ftplugin file. (Nikolai Weibull)
eterm ftplugin file. (Nikolai Weibull)
eviews syntax file. (Vaidotas Zemlys)
fetchmail RC ftplugin file. (Nikolai Weibull)
FlexWiki syntax and ftplugin file. (George Reilly)
Generic indent file. (Dave Silvia)
gpg ftplugin file. (Nikolai Weibull)
gretl syntax file. (Vaidotas Zemlys)
groovy syntax file. (Alessio Pace)
group syntax and ftplugin file. (Nikolai Weibull)
grub ftplugin file. (Nikolai Weibull)
Haskell ftplugin file. (Nikolai Weibull)
help ftplugin file. (Nikolai Weibull)
indent ftplugin file. (Nikolai Weibull)
Javascript ftplugin file. (Bram Moolenaar)
Kconfig ftplugin and syntax file. (Nikolai Weibull)
ld syntax, indent and ftplugin file. (Nikolai Weibull)
lftp ftplugin file. (Nikolai Weibull)
libao config ftplugin file. (Nikolai Weibull)
limits syntax and ftplugin file. (Nikolai Weibull)
Lisp indent file. (Sergey Khorev)
loginaccess and logindefs syntax and ftplugin file. (Nikolai Weibull)
m4 ftplugin file. (Nikolai Weibull)
mailaliases syntax file. (Nikolai Weibull)
mailcap ftplugin file. (Nikolai Weibull)
manconf syntax and ftplugin file. (Nikolai Weibull)
matlab ftplugin file. (Jake Wasserman)
Maxima syntax file. (Robert Dodier)
MGL syntax file. (Gero Kuhlmann)
modconf ftplugin file. (Nikolai Weibull)
mplayer config ftplugin file. (Nikolai Weibull)
Mrxvtrc syntax and ftplugin file. (Gautam Iyer)
MuPAD source syntax, indent and ftplugin. (Dave Silvia)
mutt RC ftplugin file. (Nikolai Weibull)
nanorc syntax and ftplugin file. (Nikolai Weibull)
netrc ftplugin file. (Nikolai Weibull)
pamconf syntax and ftplugin file. (Nikolai Weibull)
Pascal indent file. (Neil Carter)
passwd syntax and ftplugin file. (Nikolai Weibull)
PHP compiler plugin. (Doug Kearns)
pinfo ftplugin file. (Nikolai Weibull)
plaintex syntax and ftplugin files. (Nikolai Weibull, Benji Fisher)
procmail ftplugin file. (Nikolai Weibull)
prolog ftplugin file. (Nikolai Weibull)
protocols syntax and ftplugin file. (Nikolai Weibull)
quake ftplugin file. (Nikolai Weibull)
racc syntax and ftplugin file. (Nikolai Weibull)
readline ftplugin file. (Nikolai Weibull)
rhelp syntax file. (Johannes Ranke)

version7.txt — 2503

rnoweb syntax file. (Johannes Ranke)
Relax NG compact ftplugin file. (Nikolai Weibull)
Scheme indent file. (Sergey Khorev)
screen ftplugin file. (Nikolai Weibull)
sensors syntax and ftplugin file. (Nikolai Weibull)
services syntax and ftplugin file. (Nikolai Weibull)
setserial syntax and ftplugin file. (Nikolai Weibull)
sieve syntax and ftplugin file. (Nikolai Weibull)
SiSU syntax file (Ralph Amissah)
Sive syntax file. (Nikolai Weibull)
slp config, reg and spi syntax and ftplugin files. (Nikolai Weibull)
SML indent file. (Saikat Guha)
SQL anywhere syntax and indent file. (David Fishburn)
SQL indent file.
SQL-Informix syntax file. (Dean L Hill)
SQL: Handling of various variants. (David Fishburn)
sshconfig ftplugin file. (Nikolai Weibull)
Stata and SMCL syntax files. (Jeff Pitblado)
sudoers ftplugin file. (Nikolai Weibull)
sysctl syntax and ftplugin file. (Nikolai Weibull)
terminfo ftplugin file. (Nikolai Weibull)
trustees syntax file. (Nima Talebi)
Vera syntax file. (David Eggum)
udev config, permissions and rules syntax and ftplugin files. (Nikolai Weibull)
updatedb syntax and ftplugin file. (Nikolai Weibull)
VHDL indent file (Gerald Lai)
WSML syntax file. (Thomas Haselwanter)
Xdefaults ftplugin file. (Nikolai Weibull)
XFree86 config ftplugin file. (Nikolai Weibull)
xinetd syntax, indent and ftplugin file. (Nikolai Weibull)
xmodmap ftplugin file. (Nikolai Weibull)
Xquery syntax file. (Jean-Marc Vanel)
xsd (XML schema) indent file.
YAML ftplugin file. (Nikolai Weibull)
Zsh ftplugin file. (Nikolai Weibull)

New Keymaps:

Sinhala (Sri Lanka) (Harshula Jayasuriya)
Tamil in TSCII encoding (Yegappan Lakshmanan)
Greek in cp737 (Panagiotis Louridas)
Polish-slash (HS6_06)
Ukrainian-jcuken (Anatoli Sakhnik)
Kana (Edward L. Fox)

New message translations:

The Ukrainian messages are now also available in cp1251.
Vietnamese message translations and menu. (Phan Vinh Thinh)

Others:

The :read command has the ++edit argument. This means it will use the
detected 'fileformat', 'fileencoding' and other options for the buffer. This
also fixes the problem that editing a compressed file didn't set these
options.

version7.txt — 2504

The Netbeans interface was updated for Sun Studio 10. The protocol number
goes from 2.2 to 2.3. (Gordon Prieur)

Mac: When starting up Vim will load the $VIMRUNTIME/macmap.vim script to
define default command-key mappings. (mostly by Benji Fisher)

Mac: Add the selection type to the clipboard, so that Block, line and
character selections can be used between two Vims. (Eckehard Berns)
Also fixes the problem that setting 'clipboard' to "unnamed" breaks using
"yyp".

Mac: GUI font selector. (Peter Cucka)

Mac: support for multibyte characters. (Da Woon Jung)
This doesn't always work properly. If you see text drawing problems try
switching the 'macatsui' option off.

Mac: Support the xterm mouse in the non-GUI version.

Mac: better integration with Xcode. Post a fake mouse-up event after the odoc
event and the drag receive handler to work around a stall after Vim loads a
file. Fixed an off-by-one line number error. (Da Woon Jung)

Mac: When started from Finder change directory to the file being edited or the
user home directory.

Added the t_SI and t_EI escape sequences for starting and ending Insert mode.
To be used to set the cursor shape to a bar or a block. No default values,
they are not supported by termcap/terminfo.

GUI font selector for Motif. (Marcin Dalecki)

Nicer toolbar buttons for Motif. (Marcin Dalecki)

Mnemonics for the Motif find/replace dialog. (Marcin Dalecki)

Included a few improvements for Motif from Marcin Dalecki. Draw label
contents ourselves to make them handle fonts in a way configurable by Vim and
a bit less dependent on the X11 font management.

Autocommands can be defined local to a buffer. This means they will also work
when the buffer does not have a name or no specific name. See
autocmd-buflocal . (Yakov Lerner)

For xterm most combinations of modifiers with function keys are recognized.
xterm-modifier-keys

When 'verbose' is set the output of ":highlight" will show where a highlight
item was last set.
When 'verbose' is set the output of the ":map", ":abbreviate", ":command",
":function" and ":autocmd" commands will show where it was last defined.
(Yegappan Lakshmanan)

":function /pattern" lists functions matching the pattern.

"1gd" can be used like "gd" but ignores matches in a {} block that ends before
the cursor position. Likewise for "1gD" and "gD".

'scrolljump' can be set to a negative number to scroll a percentage of the
window height.

version7.txt — 2505

The v:scrollstart variable has been added to help find the location in
your script that causes the hit-enter prompt.

To make it possible to handle the situation that a file is being edited that
is already being edited by another Vim instance, the SwapExists event has
been added. The v:swapname , v:swapchoice and v:swapcommand variables
can be used, for example to use the client-server functionality to bring the
other Vim to the foreground.
When starting Vim with a "-t tag" argument, there is an existing swapfile and
the user selects "quit" or "abort" then exit Vim.

Undo now also restores the '< and '> marks. "gv" selects the same area as
before the change and undo.

When editing a search pattern for a "/" or "?" command and 'incsearch' is set
CTRL-L can be used to add a character from the current match. CTRL-R CTRL-W
will add a word, but exclude the part of the word that was already typed.

Ruby interface: add line number methods. (Ryan Paul)

The $MYVIMRC environment variable is set to the first found vimrc file.
The $MYGVIMRC environment variable is set to the first found gvimrc file.

==
IMPROVEMENTS improvements-7

":helpgrep" accepts a language specifier after the pattern: "pat@it".

Moved the help for printing to a separate help file. It's quite a lot now.

When doing completion for ":!cmd", ":r !cmd" or ":w !cmd" executable files are
found in $PATH instead of looking for ordinary files in the current directory.

When ":silent" is used and a backwards range is given for an Ex command the
range is swapped automatically instead of asking if that is OK.

The pattern matching code was changed from a recursive function to an
iterative mechanism. This avoids out-of-stack errors. State is stored in
allocated memory, running out of memory can always be detected. Allows
matching more complex things, but Vim may seem to hang while doing that.

Previously some options were always evaluated in the sandbox . Now that only
happens when the option was set from a modeline or in secure mode. Applies to
'balloonexpr', 'foldexpr', 'foldtext' and 'includeexpr'. (Sumner Hayes)

Some commands and expressions could have nasty side effects, such as using
CTRL-R = while editing a search pattern and the expression invokes a function
that jumps to another window. The textlock has been added to prevent this
from happening.

":breakadd here" and ":breakdel here" can be used to set or delete a
breakpoint at the cursor.

It is now possible to define a function with:
:exe "func Test()\n ...\n endfunc"

The tutor was updated to make it simpler to use and text was added to explain
a few more important commands. Used ideas from Gabriel Zachmann.

version7.txt — 2506

Unix: When libcall() fails obtain an error message with dlerror() and display
it. (Johannes Zellner)

Mac and Cygwin: When editing an existing file make the file name the same case
of the edited file. Thus when typing ":e os_UNIX.c" the file name becomes
"os_unix.c".

Added "nbsp" in 'listchars'. (David Blanchet)

Added the "acwrite" value for the 'buftype' option. This is for a buffer that
does not have a name that refers to a file and is written with BufWriteCmd
autocommands.

For lisp indenting and matching parenthesis: (Sergey Khorev)
- square brackets are recognized properly
- #\(, #\), #\[and #\] are recognized as character literals
- Lisp line comments (delimited by semicolon) are recognized

Added the "count" argument to match(), matchend() and matchstr(). (Ilya Sher)

winnr() takes an optional "$" or "#" argument. (Nikolai Weibull, Yegappan
Lakshmanan)

Added 's' flag to search(): set ' mark if cursor moved. (Yegappan Lakshmanan)
Added 'n' flag to search(): don't move the cursor. (Nikolai Weibull)
Added 'c' flag to search(): accept match at the cursor.
Added 'e' flag to search(): move to end of the match. (Benji Fisher)
Added 'p' flag to search(): return number of sub-pattern. (Benji Fisher)
These also apply to searchpos(), searchpair() and searchpairpos().

The search() and searchpair() functions have an extra argument to specify
where to stop searching. Speeds up searches that should not continue too far.

When uncompressing fails in the gzip plugin, give an error message but don't
delete the raw text. Helps if the file has a .gz extension but is not
actually compressed. (Andrew Pimlott)

When C, C++ or IDL syntax is used, may additionally load doxygen syntax.
(Michael Geddes)

Support setting 'filetype' and 'syntax' to "aaa.bbb" for "aaa" plus "bbb"
filetype or syntax.

The ":registers" command now displays multibyte characters properly.

VMS: In the usage message mention that a slash can be used to make a flag
upper case. Add color support to the builtin vt320 terminal codes.
(Zoltan Arpadffy)

For the '%' item in 'viminfo', allow a number to set a maximum for the number
of buffers.

For recognizing the file type: When a file looks like a shell script, check
for an "exec" command that starts the tcl interpreter. (suggested by Alexios
Zavras)

Support conversion between utf-8 and latin9 (iso-8859-15) internally, so that
digraphs still work when iconv is not available.

When a session file is loaded while editing an unnamed, empty buffer that

version7.txt — 2507

buffer is wiped out. Avoids that there is an unused buffer in the buffer
list.

Win32: When libintl.dll supports bind_textdomain_codeset(), use it.
(NAKADAIRA Yukihiro)

Win32: Vim was not aware of hard links on NTFS file systems. These are
detected now for when 'backupcopy' is "auto". Also fixed a bogus "file has
been changed since reading it" error for links.

When foldtext() finds no text after removing the comment leader, use the
second line of the fold. Helps for C-style /* */ comments where the first
line is just "/*".

When editing the same file from two systems (e.g., Unix and MS-Windows) there
mostly was no warning for an existing swap file, because the name of the
edited file differs (e.g., y:\dir\file vs /home/me/dir/file). Added a flag to
the swap file to indicate it is in the same directory as the edited file. The
used path then doesn't matter and the check for editing the same file is much
more reliable.

Unix: When editing a file through a symlink the swap file would use the name
of the symlink. Now use the name of the actual file, so that editing the same
file twice is detected. (suggestions by Stefano Zacchiroli and James Vega)

Client-server communication now supports 'encoding'. When setting 'encoding'
in a Vim server to "utf-8", and using "vim --remote fname" in a console,
"fname" is converted from the console encoding to utf-8. Also allows Vims
with different 'encoding' settings to exchange messages.

Internal: Changed ga_room into ga_maxlen, so that it doesn't need to be
incremented/decremented each time.

When a register is empty it is not stored in the viminfo file.

Removed the tcltags script, it's obsolete.

":redir @*>>" and ":redir @+>>" append to the clipboard. Better check for
invalid characters after the register name. :redir

":redir => variable" and ":redir =>> variable" write or append to a variable.
(Yegappan Lakshmanan) :redir

":redir @{a-z}>>" appends to register a to z. (Yegappan Lakshmanan)

The 'verbosefile' option can be used to log messages in a file. Verbose
messages are not displayed then. The "-V{filename}" argument can be used to
log startup messages.

":let g:" lists global variables.
":let b:" lists buffer-local variables.
":let w:" lists window-local variables.
":let v:" lists Vim variables.

The stridx() and strridx() functions take a third argument, where to start
searching. (Yegappan Lakshmanan)

The getreg() function takes an extra argument to be able to get the expression
for the '=' register instead of the result of evaluating it.

version7.txt — 2508

The setline() function can take a List argument to set multiple lines. When
the line number is just below the last line the line is appended.

g CTRL-G also shows the number of characters if it differs from the number of
bytes.

Completion for ":debug" and entering an expression for the '=' register. Skip
":" between range and command name. (Peter Winters)

CTRL-Q in Insert mode now works like CTRL-V by default. Previously it was
ignored.

When "beep" is included in 'debug' a function or script that causes a beep
will result in a message with the source of the error.

When completing buffer names, match with "\(^\|[\/]\)" instead of "^", so that
":buf stor<Tab>" finds both "include/storage.h" and "storage/main.c".

To count items (pattern matches) without changing the buffer the 'n' flag has
been added to :substitute . See count-items .

In a :substitute command the \u, \U, \l and \L items now also work for
multibyte characters.

The "screen.linux" $TERM name is recognized to set the default for
'background' to "dark". (Ciaran McCreesh) Also for "cygwin" and "putty".

The FileChangedShell autocommand event can now use the v:fcs_reason
variable that specifies what triggered the event. v:fcs_choice can be used
to reload the buffer or ask the user what to do.

Not all modifiers were recognized for xterm function keys. Added the
possibility in term codes to end in ";*X" or "O*X", where X is any character
and the * stands for the modifier code.
Added the <xUp>, <xDown>, <xLeft> and <xRight> keys, to be able to recognize
the two forms that xterm can send their codes in and still handle all possible
modifiers.

getwinvar() now also works to obtain a buffer-local option from the specified
window.

Added the "%s" item to 'errorformat'. (Yegappan Lakshmanan)
Added the "%>" item to 'errorformat'.

For 'errorformat' it was not possible to have a file name that contains the
character that follows after "%f". For example, in "%f:%l:%m" the file name
could not contain ":". Now include the first ":" where the rest of the
pattern matches. In the example a ":" not followed by a line number is
included in the file name. (suggested by Emanuele Giaquinta)

GTK GUI: use the GTK file dialog when it's available. Mix from patches by
Grahame Bowland and Evan Webb.

Added ":scriptnames" to bugreport.vim, so that we can see what plugins were
used.

Win32: If the user changes the setting for the number of lines a scroll wheel
click scrolls it is now used immediately. Previously Vim would need to be
restarted.

version7.txt — 2509

When using @= in an expression the value is expression @= contains. ":let @=
= value" can be used to set the register contents.

A ! can be added to ":popup" to have the popup menu appear at the mouse
pointer position instead of the text cursor.

The table with encodings has been expanded with many MS-Windows codepages,
such as cp1250 and cp737, so that these can also be used on Unix without
prepending "8bit-".
When an encoding name starts with "microsoft-cp" ignore the "microsoft-" part.

Added the "customlist" completion argument to a user-defined command. The
user-defined completion function should return the completion candidates as a
Vim List and the returned results are not filtered by Vim. (Yegappan
Lakshmanan)

Win32: Balloons can have multiple lines if common controls supports it.
(Sergey Khorev)

For command-line completion the matches for various types of arguments are now
sorted: user commands, variables, syntax names, etc.

When no locale is set, thus using the "C" locale, Vim will work with latin1
characters, using its own isupper()/toupper()/etc. functions.

When using an rxvt terminal emulator guess the value of 'background' using the
COLORFGBG environment variable. (Ciaran McCreesh)

Also support t_SI and t_EI on Unix with normal features. (Ciaran McCreesh)

When 'foldcolumn' is one then put as much info in it as possible. This allows
closing a fold with the mouse by clicking on the '-'.

input() takes an optional completion argument to specify the type of
completion supported for the input. (Yegappan Lakshmanan)

"dp" works with more than two buffers in diff mode if there is only one where
'modifiable' is set.

The 'diffopt' option has three new values: "horizontal", "vertical" and
"foldcolumn".

When the 'include' option contains \zs the file name found is what is being
matched from \zs to the end or \ze. Useful to pass more to 'includeexpr'.

Loading plugins on startup now supports subdirectories in the plugin
directory. load-plugins

In the foldcolumn always show the '+' for a closed fold, so that it can be
opened easily. It may overwrite another character, esp. if 'foldcolumn' is 1.

It is now possible to get the W10 message again by setting 'readonly'. Useful
in the FileChangedRO autocommand when checking out the file fails.

Unix: When open() returns EFBIG give an appropriate message.

":mksession" sets the SessionLoad variable to notify plugins. A modeline is
added to the session file to set 'filetype' to "vim".

In the ATTENTION prompt put the "Delete it" choice before "Quit" to make it

version7.txt — 2510

more logical. (Robert Webb)

When appending to a file while the buffer has no name the name of the appended
file would be used for the current buffer. But the buffer contents is
actually different from the file content. Don't set the file name, unless the
'P' flag is present in 'cpoptions'.

When starting to edit a new file and the directory for the file doesn't exist
then Vim will report "[New DIRECTORY]" instead of "[New File] to give the user
a hint that something might be wrong.

Win32: Preserve the hidden attribute of the viminfo file.

In Insert mode CTRL-A didn't keep the last inserted text when using CTRL-O and
then a cursor key. Now keep the previously inserted text if nothing is
inserted after the CTRL-O. Allows using CTRL-O commands to move the cursor
without losing the last inserted text.

The exists() function now supports checking for autocmd group definition
and for supported autocommand events. (Yegappan Lakshmanan)

Allow using ":global" in the sandbox, it doesn't do anything harmful by
itself.

":saveas asdf.c" will set 'filetype' to c when it's empty. Also for ":w
asdf.c" when it sets the filename for the buffer.

Insert mode completion for whole lines now also searches unloaded buffers.

The colortest.vim script can now be invoked directly with ":source" or
":runtime syntax/colortest.vim".

The 'statusline' option can be local to the window, so that each window can
have a different value. (partly by Yegappan Lakshmanan)

The 'statusline' option and other options that support the same format can now
use these new features:
- When it starts with "%!" the value is first evaluated as an expression

before parsing the value.
- "%#HLname#" can be used to start highlighting with HLname.

When 'statusline' is set to something that causes an error message then it is
made empty to avoid an endless redraw loop. Also for other options, such at
'tabline' and 'titlestring'. ":verbose set statusline" will mention that it
was set in an error handler.

When there are several matching tags, the ":tag <name>" and CTRL-] commands
jump to the [count] matching tag. (Yegappan Lakshmanan)

Win32: In the batch files generated by the install program, use $VIMRUNTIME or
$VIM if it's set. Example provided by Mathias Michaelis.
Also create a vimtutor.bat batch file.

The 'balloonexpr' option is now global-local .

The system() function now runs in cooked mode, thus can be interrupted by
CTRL-C.

==
COMPILE TIME CHANGES compile-changes-7

version7.txt — 2511

Dropped the support for the BeOS and Amiga GUI. They were not maintained and
probably didn't work. If you want to work on this: get the Vim 6.x version
and merge it back in.

When running the tests and one of them fails to produce "test.out" the
following tests are still executed. This helps when running out of memory.

When compiling with EXITFREE defined and the ccmalloc library, it is possible
to detect memory leaks. Some memory will always be reported as leaked, such
as allocated by X11 library functions and the memory allocated in
alloc_cmdbuff() to store the ":quit" command.

Moved the code for printing to src/hardcopy.c.

Moved some code from main() to separate functions to make it easier to see
what is being done. Using a structure to avoid a lot of arguments to the
functions.

Moved unix_expandpath() to misc1.c, so that it can also be used by os_mac.c
without copying the code.

--- Mac ---

"make" now creates the Vim.app directory and "make install" copies it to its
final destination. (Raf)

Put the runtime directory not directly in Vim.app but in
Vim.app/Contents/Resources/vim, so that it's according to Mac specs.

Made it possible to compile with Motif, Athena or GTK without tricks and still
being able to use the MacRoman conversion. Added the os_mac_conv.c file.

When running "make install" the runtime files are installed as for Unix.
Avoids that too many files are copied. When running "make" a link to the
runtime files is created to avoid a recursive copy that takes much time.

Configure will attempt to build Vim for both Intel and PowerPC. The
--with-mac-arch configure argument can change it.

--- Win32 ---

The Make_mvc.mak file was adjusted to work with the latest MS compilers,
including the free version of Visual Studio 2005. (George Reilly)

INSTALLpc.txt was updated for the recent changes. (George Reilly)

The distributed executable is now produced with the free Visual C++ Toolkit
2003 and other free SDK chunks. msvcsetup.bat was added to support this.

Also generate the .pdb file that can be used to generate a useful crash report
on MS-Windows. (George Reilly)

==
BUG FIXES bug-fixes-7

When using PostScript printing on MS-DOS the default 'printexpr' used "lpr"
instead of "copy". When 'printdevice' was empty the copy command did not
work. Use "LPT1" then.

version7.txt — 2512

The GTK font dialog uses a font size zero when the font name doesn't include a
size. Use a default size of 10.

This example in the documentation didn't work:
:e `=foo . ".c"`

Skip over the expression in `=expr` when looking for comments, |, % and #.

When ":helpgrep" doesn't find anything there is no error message.

"L" and "H" did not take closed folds into account.

Win32: The "-P title" argument stopped at the first title that matched, even
when it doesn't support MDI.

Mac GUI: CTRL-^ and CTRL-@ did not work.

"2daw" on "word." at the end of a line didn't include the preceding white
space.

Win32: Using FindExecutable() doesn't work to find a program. Use
SearchPath() instead. For executable() use $PATHEXT when the program searched
for doesn't have an extension.

When 'virtualedit' is set, moving the cursor up after appending a character
may move it to a different column. Was caused by auto-formatting moving the
cursor and not putting it back where it was.

When indent was added automatically and then moving the cursor, the indent was
not deleted (like when pressing ESC). The "I" flag in 'cpoptions' can be used
to make it work the old way.

When opening a command-line window, 'textwidth' gets set to 78 by the Vim
filetype plugin. Reset 'textwidth' to 0 to avoid lines are broken.

After using cursor(line, col) moving up/down doesn't keep the same column.

Win32: Borland C before 5.5 requires using ".u." for LowPart and HighPart
fields. (Walter Briscoe)

On Sinix SYS_NMLN isn't always defined. Define it ourselves. (Cristiano De
Michele)

Printing with PostScript may keep the printer waiting for more. Append a
CTRL-D to the printer output. (Mike Williams)

When converting a string with a hex or octal number the leading '-' was
ignored. ":echo '-05' + 0" resulted in 5 instead of -5.

Using "@:" to repeat a command line didn't work when it contains control
characters. Also remove "'<,'>" when in Visual mode to avoid that it appears
twice.

When using file completion for a user command, it would not expand environment
variables like for a regular command with a file argument.

'cindent': When the argument of a #define looks like a C++ class the next line
is indented too much.

When 'comments' includes multibyte characters inserting the middle part and
alignment may go wrong. 'cindent' also suffers from this for right-aligned

version7.txt — 2513

items.

Win32: when 'encoding' is set to "utf-8" getenv() still returns strings in the
active codepage. Convert to utf-8. Also for $HOME.

The default for 'helplang' was "zh" for both "zh_cn" and "zh_tw". Now use
"cn" or "tw" as intended.

When 'bin' is set and 'eol' is not set then line2byte() added the line break
after the last line while it's not there.

Using foldlevel() in a WinEnter autocommand may not work. Noticed when
resizing the GUI shell upon startup.

Python: Using buffer.append(f.readlines()) didn't work. Allow appending a
string with a trailing newline. The newline is ignored.

When using the ":saveas f2" command for buffer "f1", the Buffers menu would
contain "f2" twice, one of them leading to "f1". Also trigger the BufFilePre
and BufFilePost events for the alternate buffer that gets the old name.

strridx() did not work well when the needle is empty. (Ciaran McCreesh)

GTK: Avoid a potential hang in gui_mch_wait_for_chars() when input arrives
just before it is invoked

VMS: Occasionally CR characters were inserted in the file. Expansion of
environment variables was not correct. (Zoltan Arpadffy)

UTF-8: When 'delcombine' is set "dw" only deleted the last combining character
from the first character of the word.

When using ":sball" in an autocommand only the filetype in one buffer was
detected. Reset did_filetype in enter_buffer().

When using ":argdo" and the window already was at the first argument index,
but not actually editing it, the current buffer would be used instead.

When ":next dir/*" includes many matches, adding the names to the argument
list may take an awful lot of time and can't be interrupted. Allow
interrupting this.

When editing a file that was already loaded in a buffer, modelines were not
used. Now window-local options in the modeline are set. Buffer-local options
and global options remain unmodified.

Win32: When 'encoding' is set to "utf-8" in the vimrc file, files from the
command line with non-ASCII characters are not used correctly. Recode the
file names when 'encoding' is set, using the Unicode command line.

Win32 console: When the default for 'encoding' ends up to be "latin1", the
default value of 'isprint' was wrong.

When an error message is given while waiting for a character (e.g., when an
xterm reports the number of colors), the hit-enter prompt overwrote the last
line. Don't reset msg_didout in normal_cmd() for K_IGNORE.

Mac GUI: Shift-Tab didn't work.

When defining tooltip text, don't translate terminal codes, since it's not

version7.txt — 2514

going to be used like a command.

GTK 2: Check the tooltip text for valid utf-8 characters to avoid getting a
GTK error. Invalid characters may appear when 'encoding' is changed.

GTK 2: Add a safety check for invalid utf-8 sequences, they can crash pango.

Win32: When 'encoding' is changed while starting up, use the Unicode command
line to convert the file arguments to 'encoding'. Both for the GUI and the
console version.

Win32 GUI: latin9 text (iso-8859-15) was not displayed correctly, because
there is no codepage for latin9. Do our own conversion from latin9 to UCS2.

When two versions of GTK+ 2 are installed it was possible to use the header
files from one and the library from the other. Use GTK_LIBDIR to put the
directory for the library early in the link flags.

With the GUI find/replace dialog a replace only worked if the pattern was
literal text. Now it works for any pattern.

When 'equalalways' is set and 'eadirection' is "hor", ":quit" would still
cause equalizing window heights in the vertical direction.

When ":emenu" is used in a startup script the command was put in the typeahead
buffer, causing a prompt for the crypt key to be messed up.

Mac OS/X: The default for 'isprint' included characters 128-160, causes
problems for Terminal.app.

When a syntax item with "containedin" is used, it may match in the start or
end of a region with a matchgroup, while this doesn't happen for a "contains"
argument.

When a transparent syntax items matches in another item where the highlighting
has already stopped (because of a he= argument), the highlighting would come
back.

When cscope is used to set the quickfix error list, it didn't get set if there
was only one match. (Sergey Khorev)

When 'confirm' is set and using ":bdel" in a modified buffer, then selecting
"cancel", would still give an error message.

The PopUp menu items that started Visual mode didn't work when not in Normal
mode. Switching between selecting a word and a line was not possible.

Win32: The keypad decimal point always resulted in a '.', while on some
keyboards it's a ','. Use MapVirtualKey(VK_DECIMAL, 2).

Removed unused function DisplayCompStringOpaque() from gui_w32.c

In Visual mode there is not always an indication whether the line break is
selected or not. Highlight the character after the line when the line break
is included, e.g., after "v$o".

GTK: The <F10> key can't be mapped, it selects the menu. Disable that with a
GTK setting and do select the menu when <F10> isn't mapped. (David Necas)

After "Y" '[and '] were not at start/end of the yanked text.

version7.txt — 2515

When a telnet connection is dropped Vim preserves files and exits. While
doing that a SIGHUP may arrive and disturb us, thus ignore it. (Scott
Anderson) Also postpone SIGHUP, SIGQUIT and SIGTERM until it's safe to
handle. Added handle_signal().

When completing a file name on the command line backslashes are required for
white space. Was only done for a space, not for a Tab.

When configure could not find a terminal library, compiling continued for a
long time before reporting the problem. Added a configure check for tgetent()
being found in a library.

When the cursor is on the first char of the last line a ":g/pat/s///" command
may cause the cursor to be displayed below the text.

Win32: Editing a file with non-ASCII characters doesn't work when 'encoding'
is "utf-8". use _wfullpath() instead of _fullpath(). (Yu-sung Moon)

When recovering the 'fileformat' and 'fileencoding' were taken from the
original file instead of from the swapfile. When the file didn't exist, was
empty or the option was changed (e.g., with ":e ++fenc=cp123 file") it could
be wrong. Now store 'fileformat' and 'fileencoding' in the swapfile and use
the values when recovering.

":bufdo g/something/p" overwrites each last printed text line with the file
message for the next buffer. Temporarily clear 'shortmess' to avoid that.

Win32: Cannot edit a file starting with # with --remote. Do escape % and #
when building the ":drop" command.

A comment or | just after an expression-backtick argument was not recognized.
E.g. in :e `="foo"`"comment.

"(" does not stop at an empty sentence (single dot and white space) while ")"
does. Also breaks "das" on that dot.

When doing "yy" with the cursor on a TAB the ruler could be wrong and "k"
moved the cursor to another column.

When 'commentstring' is '"%s' and there is a double quote in the line a double
quote before the fold marker isn't removed in the text displayed for a closed
fold.

In Visual mode, when 'bin' and 'eol' set, g CTRL-G counted the last line
break, resulting in "selected 202 of 201 bytes".

Motif: fonts were not used for dialog components. (Marcin Dalecki)

Motif: After using a toolbar button the keyboard focus would be on the toolbar
(Lesstif problem). (Marcin Dalecki)

When using "y<C-V>`x" where mark x is in the first column, the last line was
not included.

Not all test scripts work properly on MS-Windows when checked out from CVS.
Use a Vim command to fix all fileformats to dos before executing the tests.

When using ":new" and the file fits in the window, lines could still be above
the window. Now remove empty lines instead of keeping the relative position.

version7.txt — 2516

Cmdline completion didn't work after ":let var1 var<Tab>".

When using ":startinsert" or ":startreplace" when already in Insert mode
(possible when using CTRL-R =), pressing Esc would directly restart Insert
mode. (Peter Winters)

"2daw" didn't work at end of file if the last word is a single character.

Completion for ":next a'<Tab>" put a backslash before single quote, but it was
not removed when editing a file. Now halve backslashes in save_patterns().
Also fix expanding a file name with the shell that contains "\'".

When doing "1,6d|put" only "fewer lines" was reported. Now a following "more
lines" overwrites the message.

Configure could not handle "-Dfoo=long\ long" in the TCL config output.

When searching backwards, using a pattern that matches a newline and uses \zs
after that, didn't find a match. Could also get a hang or end up in the right
column in the wrong line.

When $LANG is "sl" for slovenian, the slovak menu was used, since "slovak"
starts with "sl".

When 'paste' is set in the GUI the Paste toolbar button doesn't work. Clear
'paste' when starting the GUI.

A message about a wrong viminfo line included the trailing NL.

When 'paste' is set in the GUI the toolbar button doesn't work in Insert mode.
Use ":exe" in menu.vim to avoid duplicating the commands, instead of using a
mapping.

Treat "mlterm" as an xterm-like terminal. (Seiichi Sato)

":z.4" and ":z=4" didn't work Vi compatible.

When sourcing a file, editing it and sourcing it again, it could appear twice
in ":scriptnames" and get a new <SID>, because the inode has changed.

When $SHELL is set but empty the 'shell' option would be empty. Don't use an
empty $SHELL value.

A command "w! file" in .vimrc or $EXINIT didn't work. Now it writes an empty
file.

When a CTRL-F command at the end of the file failed, the cursor was still
moved to the start of the line. Now it remains where it is.

When using ":s" or "&" to repeat the last substitute and "$" was used to put
the cursor in the last column, put the cursor in the last column again. This
is Vi compatible.

Vim is not fully POSIX compliant but sticks with traditional Vi behavior.
Added a few flags in 'cpoptions' to behave the POSIX way when wanted. The
$VIM_POSIX environment variable is checked to set the default.

Appending to a register didn't insert a line break like Vi. Added the '>'
flag to 'cpoptions' for this.

version7.txt — 2517

Using "I" in a line with only blanks appended to the line. This is not Vi
compatible. Added the 'H' flag in 'cpoptions' for this.

When joining multiple lines the cursor would be at the last joint, but Vi
leaves it at the position where "J" would put it. Added the 'q' flag in
'cpoptions' for this.

Autoindent didn't work for ":insert" and ":append".

Using ":append" in an empty buffer kept the dummy line. Now it's deleted to
be Vi compatible.

When reading commands from a file and stdout goes to a terminal, would still
request the xterm version. Vim can't read it, thus the output went to the
shell and caused trouble there.

When redirecting to a register with an invalid name the redirection would
still be done (after an error message). Now reset "redir_reg". (Yegappan
Lakshmanan)

It was not possible to use a NL after a backslash in Ex mode. This is
sometimes used to feed multiple lines to a shell command.

When 'cmdheight' is set to 2 in .vimrc and the GUI uses the number of lines
from the terminal we actually get 3 lines for the cmdline in gvim.

When setting $HOME allocated memory would leak.

Win32: bold characters may sometimes write in another character cell. Use
unicodepdy[] as for UTF-8. (Taro Muraoka)

":w fname" didn't work for files with 'buftype' set to "nofile".

The method used to locate user commands for completion differed from when they
are executed. Ambiguous command names were not completed properly.

Incremental search may cause a crash when there is a custom statusline that
indirectly invokes ":normal".

Diff mode failed when $DIFF_OPTIONS was set in the environment. Unset it
before invoking "diff".

Completion didn't work after ":argdo", ":windo" and ":bufdo". Also for ":set
&l:opt" and ":set &g:opt". (Peter Winters)

When setting 'ttymouse' to "dec" in an xterm that supports the DEC mouse
locator it doesn't work. Now switch off the mouse before selecting another
mouse model.

When the CursorHold event is triggered and the commands peek for typed
characters the typeahead buffer may be messed up, e.g., when a mouse-up event
is received. Avoid invoking the autocommands from the function waiting for a
character, let it put K_CURSORHOLD in the input buffer.

Removed the "COUNT" flag from ":argadd", to avoid ":argadd 1*" to be used like
":1argadd *". Same for ":argdelete" and ":argedit".

Avoid that $LANG is used for the menus when LC_MESSAGES is "en_US".

version7.txt — 2518

Added backslashes before dashes in the vim.1 manual page to make them appear
as real dashes. (Pierre Habouzit)

Where "gq" left the cursor depended on the value of 'formatprg'. Now "gq"
always leaves the cursor at the last line of the formatted text.

When editing a compressed file, such as "changelog.Debian.gz" file, filetype
detection may try to check the contents of the file while it's still
compressed. Skip setting 'filetype' for compressed files until they have been
decompressed. Required for patterns that end in a "*".

Starting with an argument "+cmd" or "-S script" causes the cursor to be moved
to the first line. That breaks a BufReadPost autocommand that uses g`".
Don't move the cursor if it's somewhere past the first line.

"gg=G" while 'modifiable' is off was uninterruptible.

When 'encoding' is "sjis" inserting CTRL-V u d800 a few times causes a crash.
Don't insert a DBCS character with a NUL second byte.

In Insert mode CTRL-O <Home> didn't move the cursor. Made "ins_at_eol" global
and reset it in nv_home().

Wildcard expansion failed: ":w /tmp/$$.`echo test`". Don't put quotes around
spaces inside backticks.

After this sequence of commands: Y V p gv: the wrong line is selected. Now
let "gv" select the text that was put, since the original text is deleted.
This should be the most useful thing to do.

":sleep 100u" sleeps for 100 seconds, not 100 usec as one might expect. Give
an error message when the argument isn't recognized.

In gui_mch_draw_string() in gui_w32.c "unibuflen" wasn't static, resulting in
reallocating the buffer every time. (Alexei Alexandrov)

When using a Python "atexit" function it was not invoked when Vim exits. Now
call Py_Finalize() for that. (Ugo Di Girolamo)
This breaks the thread stuff though, fixed by Ugo.

GTK GUI: using a .vimrc with "set cmdheight=2 lines=43" and ":split" right
after startup, the window layout is messed up. (Michael Schaap) Added
win_new_shellsize() call in gui_init() to fix the topframe size.

Trick to get ...MOUSE_NM not used when there are vertical splits. Now pass
column -1 for the left most window and add MOUSE_COLOFF for others. Limits
mouse column to 10000.

searchpair() may hang when the end pattern has "\zs" at the end. Check that
we find the same position again and advance one character.

When in diff mode and making a change that causes the "changed" highlighting
to disappear or reappear, it was still highlighted in another window.

When a ":next" command fails because the user selects "Abort" at the ATTENTION
prompt the argument index was advanced anyway.

When "~" is in 'iskeyword' the "gd" doesn't work, it's used for the previous
substitute pattern. Put "\V" in the pattern to avoid that.

version7.txt — 2519

Use of sprintf() sometimes didn't check properly for buffer overflow. Also
when using smsg(). Included code for snprintf() to avoid having to do size
checks where invoking them

":help \=<Tab>" didn't find "sub-replace-\=". Wild menu for help tags didn't
show backslashes. ":he :s\=" didn't work.

When reading an errorfile "~/" in a file name was not expanded.

GTK GUI: When adding a scrollbar (e.g. when using ":vsplit") in a script or
removing it the window size may change. GTK sends us resize events when we
change the window size ourselves, but they may come at an unexpected moment.
Peek for a character to get any window resize events and fix 'columns' and
'lines' to undo this.

When using the GTK plug mechanism, resizing and focus was not working
properly. (Neil Bird)

After deleting files from the argument list a session file generated with
":mksession" may contain invalid ":next" commands.

When 'shortmess' is empty and 'keymap' set to accents, in Insert mode CTRL-N
may cause the hit-enter prompt. Typing 'a then didn't result in the accented
character. Put the character typed at the prompt back in the typeahead buffer
so that mapping is done in the right mode.

setbufvar() and setwinvar() did not give error messages.

It was possible to set a variable with an illegal name, e.g. with setbufvar().
It was possible to define a function with illegal name, e.t. ":func F{-1}()"

CTRL-W F and "gf" didn't use the same method to get the file name.

When reporting a conversion error the line number of the last error could be
given. Now report the first encountered error.

When using ":e ++enc=name file" and iconv() was used for conversion an error
caused a fall-back to no conversion. Now replace a character with '?' and
continue.

When opening a new buffer the local value of 'bomb' was not initialized from
the global value.

Win32: When using the "Edit with Vim" entry the file name was limited to about
200 characters.

When using command line completion for ":e *foo" and the file "+foo" exists
the resulting command ":e +foo" doesn't work. Now insert a backslash: ":e
\+foo".

When the translation of "-- More --" was not 10 characters long the following
message would be in the wrong position.

At the more-prompt the last character in the last line wasn't drawn.

When deleting non-existing text while 'virtualedit' is set the '[and '] marks
were not set.

Win32: Could not use "**/" in 'path', it had to be "**\".

version7.txt — 2520

The search pattern "\n" did not match at the end of the last line.

Searching for a pattern backwards, starting on the NUL at the end of the line
and 'encoding' is "utf-8" would match the pattern just before it incorrectly.
Affected searchpair('/*', '', '*/').

For the Find/Replace dialog it was possible that not finding the text resulted
in an error message while redrawing, which cleared the syntax highlighting
while it was being used, resulting in a crash. Now don't clear syntax
highlighting, disable it with b_syn_error.

Win32: Combining UTF-8 characters were drawn on the previous character.
Could be noticed with a Thai font.

Output of ":function" could leave some of the typed text behind. (Yegappan
Lakshmanan)

When the command line history has only a few lines the command line window
would be opened with these lines above the first window line.

When using a command line window for search strings ":qa" would result in
searching for "qa" instead of quitting all windows.

GUI: When scrolling with the scrollbar and there is a line that doesn't fit
redrawing may fail. Make sure w_skipcol is valid before redrawing.

Limit the values of 'columns' and 'lines' to avoid an overflow in Rows *
Columns. Fixed bad effects when running out of memory (command line would be
reversed, ":qa!" resulted in ":!aq").

Motif: "gvim -iconic" opened the window anyway. (David Harrison)

There is a tiny chance that a symlink gets created between checking for an
existing file and creating a file. Use the O_NOFOLLOW for open() if it's
available.

In an empty line "ix<CTRL-O>0" moved the cursor to after the line instead of
sticking to the first column.

When using ":wq" and a BufWriteCmd autocmd uses inputsecret() the text was
echoed anyway. Set terminal to raw mode in getcmdline().

Unix: ":w a;b~c" caused an error in expanding wildcards.

When appending to a file with ":w >>fname" in a buffer without a name, causing
the buffer to use "fname", the modified flag was reset.

When appending to the current file the "not edited" flag would be reset.
":w" would overwrite the file accidentally.

Unix: When filtering text with an external command Vim would still read input,
causing text typed for the command (e.g., a password) to be eaten and echoed.
Don't read input when the terminal is in cooked mode.

The Cygwin version of xxd used CR/LF line separators. (Corinna Vinschen)

Unix: When filtering text through a shell command some resulting text may be
dropped. Now after detecting that the child has exited try reading some more
of its output.

version7.txt — 2521

When inside input(), using "CTRL-R =" and the expression throws an exception
the command line was not abandoned but it wasn't used either. Now abandon
typing the command line.

'delcombine' was also used in Visual and Select mode and for commands like
"cl". That was illogical and has been disabled.

When recording while a CursorHold autocommand was defined special keys would
appear in the register. Now the CursorHold event is not triggered while
recording.

Unix: the src/configure script used ${srcdir-.}, not all shells understand
that. Use ${srcdir:-.} instead.

When editing file "a" which is a symlink to file "b" that doesn't exist,
writing file "a" to create "b" and then ":split b" resulted in two buffers on
the same file with two different swapfile names. Now set the inode in the
buffer when creating a new file.

When 'esckeys' is not set don't send the xterm code to request the version
string, because it may cause trouble in Insert mode.

When evaluating an expression for CTRL-R = on the command line it was possible
to call a function that opens a new window, resulting in errors for
incremental search, and many other nasty things were possible. Now use the
textlock to disallow changing the buffer or jumping to another window

to protect from unexpected behavior. Same for CTRL-\ e.

"d(" deleted the character under the cursor, while the documentation specified
an exclusive motion. Vi also doesn't delete the character under the cursor.

Shift-Insert in Insert mode could put the cursor before the last character
when it just fits in the window. In coladvance() don't stop at the window
edge when filling with spaces and when in Insert mode. In mswin.vim avoid
getting a beep from the "l" command.

Win32 GUI: When Alt-F4 is used to close the window and Cancel is selected in
the dialog then Vim would insert <M-F4> in the text. Now it's ignored.

When ":silent! {cmd}" caused the swap file dialog, which isn't displayed,
there would still be a hit-enter prompt.

Requesting the termresponse (t_RV) early may cause problems with "-c"
arguments that invoke an external command or even "-c quit". Postpone it
until after executing "-c" arguments.

When typing in Insert mode so that a new line is started, using CTRL-G u to
break undo and start a new change, then joining the lines with <BS> caused
undo info to be missing. Now reset the insertion start point.

Syntax HL: When a region start match has a matchgroup and an offset that
happens to be after the end of the line then it continued in the next line and
stopped at the region end match, making the region continue after that.
Now check for the column being past the end of the line in syn_add_end_off().

When changing a file, setting 'swapfile' off and then on again, making another
change and killing Vim, then some blocks may be missing from the swapfile.
When 'swapfile' is switched back on mark all blocks in the swapfile as dirty.
Added mf_set_dirty().

version7.txt — 2522

Expanding wildcards in a command like ":e aap;<>!" didn't work. Put
backslashes before characters that are special to the shell. (Adri Verhoef)

A CursorHold autocommand would cause a message to be cleared. Don't show the
special key for the event for 'showcmd'.

When expanding a file name for a shell command, as in "!cmd foo<Tab>" or ":r
!cmd foo<Tab>" also escape characters that are special for the shell:
"!;&()<>".

When the name of the buffer was set by a ":r fname" command cpo-f no
autocommands were triggered to notify about the change in the buffer list.

In the quickfix buffer 'bufhidden' was set to "delete", which caused closing
the quickfix window to leave an unlisted "No Name" buffer behind every time.

Win32: when using two screens of different size, setting 'lines' to a large
value didn't fill the whole screen. (SungHyun Nam)

Win32 installer: The generated _vimrc contained an absolute path to diff.exe.
After upgrading it becomes invalid. Now use $VIMRUNTIME instead.

The command line was cleared too often when 'showmode' was set and ":silent
normal vy" was used. Don't clear the command line unless the mode was
actually displayed. Added the "mode_displayed" variable.

The "load session" toolbar item could not handle a space or other special
characters in v:this_session.

":set sta ts=8 sw=4 sts=2" deleted 4 spaces halfway a line instead of 2.

In a multibyte file the foldmarker could be recognized in the trail byte.
(Taro Muraoka)

Pasting with CTRL-V and menu didn't work properly when some commands are
mapped. Use ":normal!" instead of ":normal". (Tony Apuzzo)

Crashed when expanding a file name argument in backticks.

In some situations the menu and scrollbar didn't work, when the value contains
a CSI byte. (Yukihiro Nakadaira)

GTK GUI: When drawing the balloon focus changes and we might get a key release
event that removed the balloon again. Ignore the key release event.

'titleold' was included in ":mkexrc" and ":mksession" files.

":set background&" didn't use the same logic as was used when starting up.

When "umask" is set such that nothing is writable then the viminfo file would
be written without write permission. (Julian Bridle)

Motif: In diff mode dragging one scrollbar didn't update the scrollbar of the
other diff'ed window.

When editing in an xterm with a different number of colors than expected the
screen would be cleared and redrawn, causing the message about the edited file
to be cleared. Now set "keep_msg" to redraw the last message.

For a color terminal: When the Normal HL uses bold, possibly to make the color

version7.txt — 2523

lighter, and another HL group specifies a color it might become light as well.
Now reset bold if a HL group doesn't specify bold itself.

When using 256 color xterm the color 255 would show up as color 0. Use a
short instead of a char to store the color number.

ml_get errors when searching for "\n\zs" in an empty file.

When selecting a block and using "$" to select until the end of every line and
not highlighting the character under the cursor the first character of the
block could be unhighlighted.

When counting words for the Visual block area and using "$" to select until
the end of every line only up to the length of the last line was counted.

"dip" in trailing empty lines left one empty line behind.

The script ID was only remembered globally for each option. When a buffer- or
window-local option was set the same "last set" location was changed for all
buffers and windows. Now remember the script ID for each local option
separately.

GUI: The "Replace All" button didn't handle backslashes in the replacement in
the same way as "Replace". Escape backslashes so that they are taken
literally.

When using Select mode from Insert mode and typing a key, causing lines to be
deleted and a message displayed, delayed the effect of inserting the key.
Now overwrite the message without delay.

When 'whichwrap' includes "l" then "dl" and "yl" on a single letter line
worked differently. Now recognize all operators when using "l" at the end of
a line.

GTK GUI: when the font selector returned a font name with a comma in it then
it would be handled like two font names. Now put a backslash before the
comma.

MS-DOS, Win32: When 'encoding' defaults to "latin1" then the value for
'iskeyword' was still for CPxxx. And when 'nocompatible' was set 'isprint'
would also be the wrong value.

When a command was defined not to take arguments and no '|' no warning message
would be given for using a '|'. Also with ":loadkeymap".

Motif: When using a fontset and 'encoding' is "utf-8" and sizeof(wchar_t) !=
sizeof(XChar2b) then display was wrong. (Yukihiro Nakadaira)

":all" always set the current window to the first window, even when it
contains a buffer that is not in the argument list (can't be closed because it
is modified). Now go to the window that has the first item of the argument
list.

GUI: To avoid left-over pixels from bold text all characters after a character
with special attributes were redrawn. Now only do this for characters that
actually are bold. Speeds up displaying considerably.

When only highlighting changes and the text is scrolled at the same time
everything is redrawn instead of using a scroll and updating the changed text.
E.g., when using ":match" to highlight a paren that the cursor landed on.

version7.txt — 2524

Added SOME_VALID: Redraw the whole window but also try to scroll to minimize
redrawing.

Win32: When using Korean IME making it active didn't work properly. (Moon,
Yu-sung, 2005 March 21)

Ruby interface: when inserting/deleting lines display wasn't updated. (Ryan
Paul)

--- fixes since Vim 7.0b ---

Getting the GCC version in configure didn't work with Solaris sed. First
strip any "darwin." and then get the version number.

The "autoload" directory was missing from the self-installing executable for
MS-Windows.

The MS-Windows install program would find "vimtutor.bat" in the install
directory. After changing to "c:" also change to "\" to avoid looking in the
install directory.

To make the 16 bit DOS version compile exclude not used highlight
initializations and build a tiny instead of small version.

finddir() and findfile() accept a negative count and return a List then.

The Python indent file contained a few debugging statements, removed.

Expanding {} for a function name, resulting in a name starting with "s:" was
not handled correctly.

Spelling: renamed COMPOUNDMAX to COMPOUNDWORDMAX. Added several items to be
able to handle the new Hungarian dictionary.

Mac: Default to building for the current platform only, that is much faster
than building a universal binary. Also, using Perl/Python/etc. only works for
the current platform.

The time on undo messages disappeared for someone. Using %T for strftime()
apparently doesn't work everywhere. Use %H:%M:%S instead.

Typing BS at the "z=" prompt removed the prompt.

--- fixes and changes since Vim 7.0c ---

When jumping to another tab page the Vim window size was always set, even when
nothing in the layout changed.

Win32 GUI tab pages line wasn't always enabled. Do a proper check for the
compiler version.

Win32: When switching between tab pages the Vim window was moved when part of
it was outside of the screen. Now only do that in the direction of a size
change.

Win32: added menu to GUI tab pages line. (Yegappan Lakshmanan)

Mac: Added document icons. (Benji Fisher)

Insert mode completion: Using Enter to accept the current match causes

version7.txt — 2525

confusion. Use CTRL-Y instead. Also, use CTRL-E to go back to the typed
text.

GUI: When there are left and right scrollbars, ":tabedit" kept them instead of
using the one that isn't needed.

Using "gP" to replace al the text could leave the cursor below the last line,
causing ml_get errors.

When 'cursorline' is set don't use the highlighting when Visual mode is
active, otherwise it's difficult to see the selected area.

The matchparen plugin restricts the search to 100 lines, to avoid a long delay
when there are closed folds.

Sometimes using CTRL-X s to list spelling suggestions used text from another
line.

Win32: Set the default for 'isprint' back to the wrong default "@,~-255",
because many people use Windows-1252 while 'encoding' is "latin1".

GTK: Added a workaround for gvim crashing when used over an untrusted ssh
link, caused by GTK doing something nasty. (Ed Catmur)

Win32: The font used for the tab page labels is too big. Use the system menu
font. (George Reilly)

Win32: Adjusting the window position and size to keep it on the screen didn't
work properly when the taskbar is on the left or top of the screen.

The installman.sh and installml.sh scripts use ${10}, that didn't work with
old shells. And use "test -f" instead of "test -e".

Win32: When 'encoding' was set in the vimrc then a directory argument for diff
mode didn't work.

GUI: at the inputlist() prompt the cursorshape was adjusted as if the windows
were still at their old position.

The parenmatch plugin didn't remember the highlighting per window.

Using ":bd" for a buffer that's the current window in another tab page caused
a crash.

For a new tab page the 'scroll' option wasn't set to a good default.

Using an end offset for a search "/pat/e" didn't work properly for multibyte
text. (Yukihiro Nakadaira)

":s/\n/,/" doubled the text when used on the last line.

When "search" is in 'foldopen' "[s" and "]s" now open folds.

When using a numbered function "dict" can be omitted, but "self" didn't work
then. Always add FC_DICT to the function flags when it's part of a
dictionary.

When "--remote-tab" executes locally it left an empty tab page.

"gvim -u NONE", ":set cursorcolumn", "C" in the second line didn't update

version7.txt — 2526

text. Do update further lines even though the "$" is displayed.

VMS: Support GTK better, also enable +clientserver. (Zoltan Arpadffy)

When highlighting of statusline or tabline is changed there was no redraw to
show the effect.

Mac: Added "CFBundleIdentifier" to infplist.xml.

Added tabpage-local variables t:var.

Win32: Added double-click in tab pages line creates new tab. (Yegappan
Lakshmanan)

Motif: Added GUI tab pages line. (Yegappan Lakshmanan)

Fixed crash when 'lines' was set to 1000 in a modeline.

When init_spellfile() finds a writable directory in 'runtimepath' but it
doesn't contain a "spell" directory, create one.

Win32: executable() also finds "xxd" in the directory where Vim was started,
but "!xxd" doesn't work. Append the Vim starting directory to $PATH.

The tab page labels are shortened, directory names are reduced to a single
letter by default. Added the pathshorten() function to allow a user to do the
same.

":saveas" now resets 'readonly' if the file was successfully written.

Set $MYVIMRC file to the first found .vimrc file.
Set $MYGVIMRC file to the first found .gvimrc file.
Added menu item "Startup Settings" that edits the $MYVIMRC file

Added matcharg().

Error message E745 appeared twice. Renamed one to E786.

Fixed crash when using "au BufRead * Sexplore" and doing ":help". Was wiping
out a buffer that's still in a window.

":hardcopy" resulted in an error message when 'encoding' is "utf-8" and
'printencoding' is empty. Now it assumes latin1. (Mike Williams)

The check for the toolbar feature for Motif, depending on certain included
files, wasn't detailed enough, causing building to fail in gui_xmebw.c.

Using CTRL-E in Insert mode completion after CTRL-P inserted the first match
instead of the original text.

When displaying a UTF-8 character with a zero lower byte Vim might think the
previous character is double-wide.

The "nbsp" item of 'listchars' didn't work when 'encoding' was utf-8.

Motif: when Xm/xpm.h is missing gui_xmebw.c would not compile.
HAVE_XM_UNHIGHLIGHTT_H was missing a T.

Mac: Moved the .icns files into src/os_mac_rsrc, so that they can all be
copied at once. Adjusted the Info.plist file for three icons.

version7.txt — 2527

When Visual mode is active while switching to another tabpage could get ml_get
errors.

When 'list' is set, 'nowrap' the $ in the first column caused 'cursorcolumn'
to move to the right.

When a line wraps, 'cursorcolumn' was never displayed past the end of the
line.

'autochdir' was only available when compiled with NetBeans and GUI. Now it's
a separate feature, also available in the "big" version.

Added CTRL-W gf: open file under cursor in new tab page.

When using the menu in the tab pages line, "New Tab" opens the new tab before
where the click was. Beyond the labels the new tab appears at the end instead
of after the current tab page.

Inside a mapping with an expression getchar() could not be used.

When vgetc is used recursively vgetc_busy protects it from being used
recursively. But after a ":normal" command the protection was reset.

":s/a/b/n" didn't work when 'modifiable' was off.

When $VIMRUNTIME includes a multibyte character then rgb.txt could not be
found. (Yukihiro Nakadaira)

":mkspell" didn't work correctly for non-ASCII affix flags when conversion is
needed on the spell file.

glob('/dir/\$ABC/*') didn't work.

When using several tab pages and changing 'cmdheight' the display could become
messed up. Now store the value of 'cmdheight' separately for each tab page.

The user of the Enter key while the popup menu is visible was still confusing.
Now use Enter to select the match after using a cursor key.

Added "usetab" to 'switchbuf'.

--- fixes and changes since Vim 7.0d ---

Added CTRL-W T: move a window to a new tab page.

Using CTRL-X s in Insert mode to complete spelling suggestions and using BS
deleted characters before the bad word.

A few small fixes for the VMS makefile. (Zoltan Arpadffy)

With a window of 91 lines 45 cols, ":vsp" scrolled the window. Copy w_wrow
when splitting a window and skip setting the height when it's already at the
right value.

Using <silent> in a mapping with a shell command and the GUI caused redraw
to use wrong attributes.

Win32: Using MSVC 4.1 for install.exe resulted in the start menu items to be

version7.txt — 2528

created in the administrator directory instead of "All Users". Define the
CSIDL_ items if they are missing.

Motif: The GUI tabline did not use the space above the right scrollbar. Work
around a bug in the Motif library. (Yegappan Lakshmanan)

The extra files for XML Omni completion are now also installed.
xml-omni-datafile

GTK GUI: when 'm' is missing from 'guioptions' during startup and pressing
<F10> GTK produced error messages. Now do create the menu but disable it just
after the first gui_mch_update().

":mkspell" doesn't work well with the Hungarian dictionary from the Hunspell
project. Back to the Myspell dictionary.

In help files hide the | used around tags.

Renamed pycomplete to pythoncomplete.

Added "tabpages" to 'sessionoptions'.

When 'guitablabel' is set the effect wasn't visible right away.

Fixed a few 'cindent' errors.

When completing menu names, e.g., after ":emenu", don't sort the entries but
keep them in the original order.

Fixed a crash when editing a directory in diff mode. Don't trigger
autocommands when executing the diff command.

Getting a keystroke could get stuck if 'encoding' is a multibyte encoding and
typing a special key.

When 'foldignore' is set the folds were not updated right away.

When a list is indexed with [a : b] and b was greater than the length an error
message was given. Now silently truncate the result.

When using BS during Insert mode completion go back to the original text, so
that CTRL-N selects the first matching entry.

Added the 'M' flag to 'cinoptions'.

Win32: Make the "gvim --help" window appear in the middle of the screen
instead of at an arbitrary position. (Randall W. Morris)

Added gettabwinvar() and settabwinvar().

Command line completion: pressing <Tab> after ":e /usr/*" expands the whole
tree, because it becomes ":e /usr/**". Don't add a star if there already is
one.

Added grey10 to grey90 to all GUIs, so that they can all be used for
initializing highlighting. Use grey40 for CursorColumn and CursorLine when
'background' is "dark".

When reading a file and using iconv for conversion, an incomplete byte
sequence at the end caused problems. (Yukihiro Nakadaira)

version7.txt — 2529

--- fixes and changes since Vim 7.0e ---

Default color for MatchParen when 'background' is "dark" is now DarkCyan.

":syn off" had to be used twice in a file that sets 'syntax' in a modeline.
(Michael Geddes)

When using ":vsp" or ":sp" the available space wasn't used equally between
windows. (Servatius Brandt)

Expanding <cWORD> on a trailing blank resulted in the first word in the line
if 'encoding' is a multibyte encoding.

Spell checking: spellbadword() didn't see a missing capital in the first word
of a line. Popup menu now only suggest the capitalized word when appropriate.

When using whole line completion CTRL-L moves through the matches but it
didn't work when at the original text.

When completion finds the longest match, don't go to the first match but stick
at the original text, so that CTRL-N selects the first one.

Recognize "zsh-beta" like "zsh" for setting the 'shellpipe' default. (James
Vega)

When using ":map <expr>" and the expression results in something with a
special byte (NUL or CSI) then it didn't work properly. Now escape special
bytes.

The default Visual highlighting for a color xterm with 8 colors was a magenta
background, which made magenta text disappear. Now use reverse in this
specific situation.

After completing the longest match "." didn't insert the same text. Repeating
also didn't work correctly for multibyte text.

When using Insert mode completion and BS the whole word that was completed
would result in all possible matches. Now stop completion. Also fixes that
for spell completion the previous word was deleted.

GTK: When 'encoding' is "latin1" and using non-ASCII characters in a file name
the tab page label was wrong and an error message would be given.

The taglist() function could hang on a tags line with a non-ASCII character.

Win32: When 'encoding' differs from the system encoding tab page labels with
non-ASCII characters looked wrong. (Yegappan Lakshmanan)

Motif: building failed when Xm/Notebook.h doesn't exist. Added a configure
check, disable GUI tabline when it's missing.

Mac: When compiled without multibyte feature the clipboard didn't work.

It was possible to switch to another tab page when the cmdline window is open.

Completion could hang when 'lines' is 6 and a preview window was opened.

Added CTRL-W gF: open file under cursor in new tab page and jump to the line

version7.txt — 2530

number following the file name.
Added 'guitabtooltip'. Implemented for Win32 (Yegappan Lakshmanan).

Added "throw" to 'debug' option: throw an exception for error messages even
when they would otherwise be ignored.

When 'keymap' is set and a line contains an invalid entry could get a "No
mapping found" warning instead of a proper error message.

Motif: default to using XpmAttributes instead of XpmAttributes_21.

A few more changes for 64 bit MS-Windows. (George Reilly)

Got ml_get errors when doing "o" and selecting in other window where there are
less lines shorter than the cursor position in the other window. ins_mouse()
was using position in wrong window.

Win32 GUI: Crash when giving a lot of messages during startup. Allocate twice
as much memory for the dialog template.

Fixed a few leaks and wrong pointer use reported by coverity.

When showing menus the mode character was sometimes wrong.

Added feedkeys(). (Yakov Lerner)

Made matchlist() always return all submatches.

Moved triggering QuickFixCmdPost to before jumping to the first location.

Mac: Added the 'macatsui' option as a temporary work around for text drawing
problems.

Line completion on "/**" gave error messages when scanning an unloaded buffer.

--- fixes and changes since Vim 7.0f ---

Win32: The height of the tab page labels is now adjusted to the font height.
(Yegappan Lakshmanan)

Win32: selecting the tab label was off by one. (Yegappan Lakshmanan)

Added tooltips for Motif and GTK tab page labels. (Yegappan Lakshmanan)

When 'encoding' is "utf-8" then ":help spell" would report an illegal byte and
the file was not converted from latin1 to utf-8. Now retry with latin1 if
reading the file as utf-8 results in illegal bytes.

Escape the argument of feedkeys() before putting it in the typeahead buffer.
(Yukihiro Nakadaira)

Added the v:char variable for evaluating 'formatexpr'. (Yukihiro Nakadaira)

With 8 colors Search highlighting combined with Statement highlighted text
made the text disappear.

VMS: avoid warnings for redefining MAX and MIN. (Zoltan Arpadffy)

When 'virtualedit' includes "onemore", stopping Visual selection would still
move the cursor left.

version7.txt — 2531

Prevent that using CTRL-R = in Insert mode can start Visual mode.

Fixed a crash that occurred when in Insert mode with completion active and a
mapping caused edit() to be called recursively.

When using CTRL-O in Insert mode just after the last character while
'virtualedit' is "all", then typing CR moved the last character to the next
line. Call coladvance() before starting the new line.

When using :shell ignore clicks on the tab page labels. Also when using the
command line window.

When 'eventignore' is "all" then adding more to ignoring some events, e.g.,
for ":vimgrep", would actually trigger more events.

Win32: When a running Vim uses server name GVIM1 then "gvim --remote fname"
didn't find it. When looking for a server name that doesn't end in a digit
and it is not found then use another server with that name and a number (just
like on Unix).

When using "double" in 'spellsuggest' when the language doesn't support sound
folding resulted in too many suggestions.

Win32: Dropping a shortcut on the Vim icon didn't edit the referred file like
editing it in another way would. Use fname_expand() in buf_set_name() instead
of simply make the file name a full path.

Using feedkeys() could cause Vim to hang.

When closing another tab page from the tabline menu in Insert mode the tabline
was not updated right away.

The syntax menu didn't work in compatible mode.

After using ":tag id" twice with the same "id", ":ts" and then ":pop" a ":ts"
reported no matching tag. Clear the cached tag name.

In Insert mode the matchparen plugin highlighted the wrong paren when there is
a string just next to a paren.

GTK: After opening a new tab page the text was sometimes not drawn correctly.
Flush output and catch up with events when updating the tab page labels.

In the GUI, using CTRL-W q to close the last window of a tab page could cause
a crash.

GTK: The tab pages line menu was not converted from 'encoding' to utf-8.

Typing a multibyte character or a special key at the hit-enter prompt did not
work.

When 'virtualedit' contains "onemore" CTRL-O in Insert mode still moved the
cursor left when it was after the end of the line, even though it's allowed to
be there.

Added test for using tab pages.

towupper() and towlower() were not used, because of checking for
__STDC__ISO_10646__ instead of __STDC_ISO_10646__. (sertacyildiz)

version7.txt — 2532

For ":map <expr>" forbid changing the text, jumping to another buffer and
using ":normal" to avoid nasty side effects.

--- fixes and changes since Vim 7.0g ---

Compilation error on HP-UX, use of "dlerr" must be inside a #ifdef.
(Gary Johnson)

Report +reltime feature in ":version" output.

The tar and zip plugins detect failure to get the contents of the archive and
edit the file as-is.

When the result of 'guitablabel' is empty fall back to the default label.

Fixed crash when using ":insert" in a while loop and missing "endwhile".

"gt" and other commands could move to another window when textlock active
and when the command line window was open.

Spell checking a file with syntax highlighting and a bad word at the end of
the line is ignored could make "]s" hang.

Mac: inputdialog() didn't work when compiled with big features.

Interrupting ":vimgrep" while it is busy loading a file left a modified and
hidden buffer behind. Use enter_cleanup() and leave_cleanup() around
wipe_buffer().

When making 'keymap' empty the b:keymap_name variable wasn't deleted.

Using CTRL-N that searches a long time, pressing space to interrupt the
searching and accept the first match, the popup menu was still displayed
briefly.

When setting the Vim window height with -geometry the 'window' option could be
at a value that makes CTRL-F behave differently.

When opening a quickfix window in two tabs they used different buffers,
causing redrawing problems later. Now use the same buffer for all quickfix
windows. (Yegappan Lakshmanan)

When 'mousefocus' is set moving the mouse to the text tab pages line would
move focus to the first window. Also, the mouse pointer would jump to the
active window.

In a session file, when an empty buffer is wiped out, do this silently.

When one window has the cursor on the last line and another window is resized
to make that window smaller, the cursor line could go below the displayed
lines. In win_new_height() subtract one from the available space.
Also avoid that using "~" lines makes the window scroll down.

Mac: When sourcing the "macmap.vim" script and then finding a .vimrc file the
'cpo' option isn't set properly, because it was already set and restored.
Added the <special> argument to ":map", so that 'cpo' doesn't need to be
changed to be able to use <> notation. Also do this for ":menu" for
consistency.

version7.txt — 2533

When using "/encoding=abc" in a spell word list, only "bc" was used.

When 'encoding' and 'printencoding' were both "utf-8" then ":hardcopy" didn't
work. (Mike Williams)

Mac: When building with "--disable-gui" the install directory would still be
"/Applications" and Vim.app would be installed. Now install in /usr/local as
usual for a console application.

GUI: when doing completion and there is one match and still searching for
another, the cursor was displayed at the end of the line instead of after the
match. Now show the cursor after the match while still searching for matches.

GUI: The mouse shape changed on the statusline even when 'mouse' was empty and
they can't be dragged.

GTK2: Selecting a button in the confirm() dialog with Tab or cursor keys and
hitting Enter didn't select that button. Removed GTK 1 specific code. (Neil
Bird)

When evaluating 'balloonexpr' takes a long time it could be called
recursively, which could cause a crash.

exists() could not be used to detect whether ":2match" is supported. Added a
check for it specifically.

GTK1: Tab page labels didn't work. (Yegappan Lakshmanan)

Insert mode completion: When finding matches use 'ignorecase', but when adding
matches to the list don't use it, so that all words with different case are
added, "word", "Word" and "WORD".

When 'cursorline' and 'hlsearch' are set and the search pattern is "x\n"
the rest of the line was highlighted as a match.

Cursor moved while evaluating 'balloonexpr' that invokes ":isearch" and
redirects the output. Don't move the cursor to the command line if msg_silent
is set.

exists() ignored text after a function name and option name, which could
result in false positives.

exists() ignored characters after the recognized word, which can be wrong when
using a name with non-keyword characters. Specifically, these calls no longer
allow characters after the name: exists('*funcname') exists('*funcname(...')
exists('&option') exists(':cmd') exists('g:name') exists('g:name[n]')
exists('g:name.n')

Trigger the TabEnter autocommand only after entering the current window of the
tab page, otherwise the commands are executed with an invalid current window.

Win32: When using two monitors and Vim is on the second monitor, changing the
width of the Vim window could make it jump to the first monitor.

When scrolling back at the more prompt and the quitting a line of text would
be left behind when 'cmdheight' is 2 or more.

Fixed a few things for Insert mode completion, especially when typing BS,
CTRL-N or a printable character while still searching for matches.

version7.txt — 2534

==
VERSION 7.1 version-7.1 version7.1

This section is about improvements made between version 7.0 and 7.1.

This is a bug-fix release, there are no fancy new features.

Changed changed-7.1

Added setting 'mouse' in vimrc_example.vim.

When building with MZscheme also look for include files in the "plt"
subdirectory. That's where they are for FreeBSD.

The Ruby interface module is now called "Vim" instead of "VIM". But "VIM" is
an alias, so it's backwards compatible. (Tim Pope)

Added added-7.1

New syntax files:
/var/log/messages (Yakov Lerner)
Autohotkey (Nikolai Weibull)
AutoIt v3 (Jared Breland)
Bazaar commit file "bzr". (Dmitry Vasiliev)
Cdrdao TOC (Nikolai Weibull)
Cmusrc (Nikolai Weibull)
Conary recipe (rPath Inc)
Framescript (Nikolai Weibull)
FreeBasic (Mark Manning)
Hamster (David Fishburn)
IBasic (Mark Manning)
Initng (Elan Ruusamae)
Ldapconf (Nikolai Weibull)
Litestep (Nikolai Weibull)
Privoxy actions file (Doug Kearns)
Streaming Descriptors "sd" (Puria Nafisi Azizi)

New tutor files:
Czech (Lubos Turek)
Hungarian (Arpad Horvath)
Turkish (Serkan kkk)
utf-8 version of Greek tutor.
utf-8 version of Russian tutor.
utf-8 version of Slowak tutor.

New filetype plugins:
Bst (Tim Pope)
Cobol (Tim Pope)
Fvwm (Gautam Iyer)
Hamster (David Fishburn)
Django HTML template (Dave Hodder)

New indent files:
Bst (Tim Pope)
Cobol (Tim Pope)

version7.txt — 2535

Hamster (David Fishburn)
Django HTML template (Dave Hodder)
Javascript
JSP (David Fishburn)

New keymap files:
Bulgarian (Boyko Bantchev)
Mongolian (Natsagdorj Shagdar)
Thaana (Ibrahim Fayaz)
Vietnamese (Samuel Thibault)

Other new runtime files:
Ada support files. (Neil Bird, Martin Krischik)
Slovenian menu translations (Mojca Miklavec)
Mono C# compiler plugin (Jarek Sobiecki)

Fixed fixed-7.1

Could not build the Win32s version. Added a few structure definitions in
src/gui_w32.c

Patch 7.0.001
Problem: ":set spellsuggest+=10" does not work. (Suresh Govindachar)
Solution: Add P_COMMA to the 'spellsuggest' flags.
Files: src/option.c

Patch 7.0.002
Problem: C omni completion has a problem with tags files with a path

containing "#" or "%".
Solution: Escape these characters. (Sebastian Baberowski)
Files: runtime/autoload/ccomplete.vim

Patch 7.0.003
Problem: GUI: clicking in the lower part of a label in the tab pages line

while 'mousefocus' is set may warp the mouse pointer. (Robert
Webb)

Solution: Check for a negative mouse position.
Files: src/gui.c

Patch 7.0.004
Problem: Compiler warning for debug_saved used before set. (Todd Blumer)
Solution: Remove the "else" for calling save_dbg_stuff().
Files: src/ex_docmd.c

Patch 7.0.005 (extra)
Problem: Win32: The installer doesn't remove the "autoload" and "spell"

directories. (David Fishburn)
Solution: Add the directories to the list to be removed.
Files: nsis/gvim.nsi

Patch 7.0.006
Problem: Mac: "make shadow" doesn't make a link for infplist.xml. (Axel

Kielhorn)
Solution: Make the link.
Files: src/Makefile

Patch 7.0.007

version7.txt — 2536

Problem: AIX: compiling fails for message.c. (Ruediger Hornig)
Solution: Move the #if outside of memchr().
Files: src/message.c

Patch 7.0.008
Problem: Can't call a function that uses both <SID> and {expr}. (Thomas)
Solution: Check both the expanded and unexpanded name for <SID>.
Files: src/eval.c

Patch 7.0.009
Problem: ml_get errors with both 'sidescroll' and 'spell' set.
Solution: Use ml_get_buf() instead of ml_get(), get the line from the right

buffer, not the current one.
Files: src/spell.c

Patch 7.0.010
Problem: The spellfile plugin required typing login name and password.
Solution: Use "anonymous" and "vim7user" by default. No need to setup a

.netrc file.
Files: runtime/autoload/spellfile.vim

Patch 7.0.011
Problem: Can't compile without the folding and with the eval feature.
Solution: Add an #ifdef. (Vallimar)
Files: src/option.c

Patch 7.0.012
Problem: Using the matchparen plugin, moving the cursor in Insert mode to a

shorter line that ends in a brace, changes the preferred column
Solution: Use winsaveview()/winrestview() instead of getpos()/setpos().
Files: runtime/plugin/matchparen.vim

Patch 7.0.013
Problem: Insert mode completion: using CTRL-L to add an extra character

also deselects the current match, making it impossible to use
CTRL-L a second time.

Solution: Keep the current match. Also make CTRL-L work at the original
text, using the first displayed match.

Files: src/edit.c

Patch 7.0.014
Problem: Compiling gui_xmebw.c fails on Dec Alpha Tru64. (Rolfe)
Solution: Disable some code for Motif 1.2 and older.
Files: src/gui_xmebw.c

Patch 7.0.015
Problem: Athena: compilation problems with modern compiler.
Solution: Avoid type casts for lvalue. (Alexey Froloff)
Files: src/gui_at_fs.c

Patch 7.0.016
Problem: Printing doesn't work for "dec-mcs" encoding.
Solution: Add "dec-mcs", "mac-roman" and "hp-roman8" to the list of

recognized 8-bit encodings. (Mike Williams)
Files: src/mbyte.c

Patch 7.0.017 (after 7.0.014)
Problem: Linking gui_xmebw.c fails on Dec Alpha Tru64. (Rolfe)
Solution: Adjust defines for Motif 1.2 and older.
Files: src/gui_xmebw.c

version7.txt — 2537

Patch 7.0.018
Problem: VMS: plugins are not loaded on startup.
Solution: Remove "**" from the path. (Zoltan Arpadffy)
Files: src/main.c

Patch 7.0.019
Problem: Repeating "VjA789" may cause a crash. (James Vega)
Solution: Check the cursor column after moving it to another line.
Files: src/ops.c

Patch 7.0.020
Problem: Crash when using 'mousefocus'. (William Fulton)
Solution: Make buffer for mouse coordinates 2 bytes longer. (Juergen Weigert)
Files: src/gui.c

Patch 7.0.021
Problem: Crash when using "\\[" and "\\]" in 'errorformat'. (Marc Weber)
Solution: Check for valid submatches after matching the pattern.
Files: src/quickfix.c

Patch 7.0.022
Problem: Using buffer.append() in Ruby may append the line to the wrong

buffer. (Alex Norman)
Solution: Properly switch to the buffer to do the appending. Also for

buffer.delete() and setting a buffer line.
Files: src/if_ruby.c

Patch 7.0.023
Problem: Crash when doing spell completion in an empty line and pressing

CTRL-E.
Solution: Check for a zero pointer. (James Vega)

Also handle a situation without a matching pattern better, report
"No matches" instead of remaining in undefined CTRL-X mode. And
get out of CTRL-X mode when typing a letter.

Files: src/edit.c

Patch 7.0.024
Problem: It is possible to set arbitrary "v:" variables.
Solution: Disallow setting "v:" variables that are not predefined.
Files: src/eval.c

Patch 7.0.025
Problem: Crash when removing an element of a:000. (Nikolai Weibull)
Solution: Mark the a:000 list with VAR_FIXED.
Files: src/eval.c

Patch 7.0.026
Problem: Using libcall() may show an old error.
Solution: Invoke dlerror() to clear a previous error. (Yukihiro Nakadaira)
Files: src/os_unix.c

Patch 7.0.027 (extra)
Problem: Win32: When compiled with SNIFF gvim may hang on exit.
Solution: Translate and dispatch the WM_USER message. (Mathias Michaelis)
Files: src/gui_w48.c

Patch 7.0.028 (extra)
Problem: OS/2: Vim doesn't compile with gcc 3.2.1.
Solution: Add argument to after_pathsep(), don't define vim_handle_signal(),

version7.txt — 2538

define HAVE_STDARG_H. (David Sanders)
Files: src/os_unix.c, src/vim.h, src/os_os2_cfg.h

Patch 7.0.029
Problem: getchar() may not position the cursor after a space.
Solution: Position the cursor explicitly.
Files: src/eval.c

Patch 7.0.030
Problem: The ":compiler" command can't be used in a FileChangedRO event.

(Hari Krishna Dara)
Solution: Add the CMDWIN flag to the ":compiler" command.
Files: src/ex_cmds.h

Patch 7.0.031
Problem: When deleting a buffer the buffer-local mappings for Select mode

remain.
Solution: Add the Select mode bit to MAP_ALL_MODES. (Edwin Steiner)
Files: src/vim.h

Patch 7.0.032 (extra, after 7.0.027)
Problem: Missing semicolon.
Solution: Add the semicolon.
Files: src/gui_w48.c

Patch 7.0.033
Problem: When pasting text, with the menu or CTRL-V, autoindent is removed.
Solution: Use "x<BS>" to avoid indent to be removed. (Benji Fisher)
Files: runtime/autoload/paste.vim

Patch 7.0.034
Problem: After doing completion and typing more characters or using BS

repeating with "." didn't work properly. (Martin Stubenschrott)
Solution: Don't put BS and other characters in the redo buffer right away,

do this when finishing completion.
Files: src/edit.c

Patch 7.0.035
Problem: Insert mode completion works when typed but not when replayed from

a register. (Hari Krishna Dara)
Also: Mappings for Insert mode completion don't always work.

Solution: When finding a non-completion key in the input don't interrupt
completion when it wasn't typed.
Do use mappings when checking for typeahead while still finding
completions. Avoids that completion is interrupted too soon.
Use "compl_pending" in a different way.

Files: src/edit.c

Patch 7.0.036
Problem: Can't compile with small features and syntax highlighting or the

diff feature.
Solution: Define LINE_ATTR whenever syntax highlighting or the diff feature

is enabled.
Files: src/screen.c

Patch 7.0.037
Problem: Crash when resizing the GUI window vertically when there is a line

that doesn't fit.
Solution: Don't redraw while the screen data is invalid.
Files: src/screen.c

version7.txt — 2539

Patch 7.0.038
Problem: When calling complete() from an Insert mode expression mapping

text could be inserted in an improper way.
Solution: Make undo_allowed() global and use it in complete().
Files: src/undo.c, src/proto/undo.pro, src/eval.c

Patch 7.0.039
Problem: Calling inputdialog() with a third argument in the console doesn't

work.
Solution: Make a separate function for input() and inputdialog(). (Yegappan

Lakshmanan)
Files: src/eval.c

Patch 7.0.040
Problem: When 'cmdheight' is larger than 1 using inputlist() or selecting

a spell suggestion with the mouse gets the wrong entry.
Solution: Start listing the first alternative on the last line of the screen.
Files: src/eval.c, src/spell.c

Patch 7.0.041
Problem: cursor([1, 1]) doesn't work. (Peter Hodge)
Solution: Allow leaving out the third item of the list and use zero for the

virtual column offset.
Files: src/eval.c

Patch 7.0.042
Problem: When pasting a block of text in Insert mode Vim hangs or crashes.

(Noam Halevy)
Solution: Avoid that the cursor is positioned past the NUL of a line.
Files: src/ops.c

Patch 7.0.043
Problem: Using "%!" at the start of 'statusline' doesn't work.
Solution: Recognize the special item when the option is being set.
Files: src/option.c

Patch 7.0.044
Problem: Perl: setting a buffer line in another buffer may result in

changing the current buffer.
Solution: Properly change to the buffer to be changed.
Files: src/if_perl.xs

Patch 7.0.045 (extra)
Problem: Win32: Warnings when compiling OLE version with MSVC 2005.
Solution: Move including vim.h to before windows.h. (Ilya Bobir)
Files: src/if_ole.cpp

Patch 7.0.046
Problem: The matchparen plugin ignores parens in strings, but not in single

quotes, often marked with "character".
Solution: Also ignore parens in syntax items matching "character".
Files: runtime/plugin/matchparen.vim

Patch 7.0.047
Problem: When running configure the exit status is wrong.
Solution: Handle the exit status properly. (Matthew Woehlke)
Files: configure, src/configure

Patch 7.0.048

version7.txt — 2540

Problem: Writing a compressed file fails when there are parens in the name.
(Wang Jian)

Solution: Put quotes around the temp file name.
Files: runtime/autoload/gzip.vim

Patch 7.0.049
Problem: Some TCL scripts are not recognized. (Steven Atkinson)
Solution: Check for "exec wish" in the file.
Files: runtime/scripts.vim

Patch 7.0.050
Problem: After using the netbeans interface close command a stale pointer

may be used.
Solution: Clear the pointer to the closed buffer. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.0.051 (after 7.0.44)
Problem: The Perl interface doesn't compile or doesn't work properly.
Solution: Remove the spaces before #ifdef and avoid an empty line above it.
Files: src/if_perl.xs

Patch 7.0.052
Problem: The user may not be aware that the Vim server allows others more

functionality than desired.
Solution: When running Vim as root don't become a Vim server without an

explicit --servername argument.
Files: src/main.c

Patch 7.0.053
Problem: Shortening a directory name may fail when there are multibyte

characters.
Solution: Copy the correct bytes. (Titov Anatoly)
Files: src/misc1.c

Patch 7.0.054
Problem: Mac: Using a menu name that only has a mnemonic or accelerator

causes a crash. (Elliot Shank)
Solution: Check for an empty menu name. Also delete empty submenus that

were created before detecting the error.
Files: src/menu.c

Patch 7.0.055
Problem: ":startinsert" in a CmdwinEnter autocommand doesn't take immediate

effect. (Bradley White)
Solution: Put a NOP key in the typeahead buffer. Also avoid that using

CTRL-C to go back to the command line moves the cursor left.
Files: src/edit.c, src/ex_getln.c

Patch 7.0.056
Problem: "#!something" gives an error message.
Solution: Ignore this line, so that it can be used in an executable Vim

script.
Files: src/ex_docmd.c

Patch 7.0.057 (extra, after 7.0.45)
Problem: Win32: Compilation problem with Borland C 5.5.
Solution: Include vim.h as before. (Mark S. Williams)
Files: src/if_ole.cpp

Patch 7.0.058

version7.txt — 2541

Problem: The gbk and gb18030 encodings are not recognized.
Solution: Add aliases to cp936. (Edward L. Fox)
Files: src/mbyte.c

Patch 7.0.059
Problem: The Perl interface doesn't compile with ActiveState Perl 5.8.8.
Solution: Remove the __attribute__() items. (Liu Yubao)
Files: src/if_perl.xs

Patch 7.0.060 (after 7.0.51)
Problem: Code for temporarily switching to another buffer is duplicated in

quite a few places.
Solution: Use aucmd_prepbuf() and aucmd_restbuf() also when FEAT_AUTOCMD is

not defined.
Files: src/buffer.c, src/eval.c, src/fileio.c, src/if_ruby.c,

src/if_perl.xs, src/quickfix.c, src/structs.h

Patch 7.0.061
Problem: Insert mode completion for Vim commands may crash if there is

nothing to complete.
Solution: Instead of freeing the pattern make it empty, so that a "not

found" error is given. (Yukihiro Nakadaira)
Files: src/edit.c

Patch 7.0.062
Problem: Mac: Crash when using the popup menu for spell correction. The

popup menu appears twice when letting go of the right mouse button
early.

Solution: Don't show the popup menu on the release of the right mouse
button. Also check that a menu pointer is actually valid.

Files: src/proto/menu.pro, src/menu.c, src/normal.c, src/term.c

Patch 7.0.063
Problem: Tiny chance for a memory leak. (coverity)
Solution: Free pointer when next memory allocation fails.
Files: src/eval.c

Patch 7.0.064
Problem: Using uninitialized variable. (Tony Mechelynck)
Solution: When not used set "temp" to zero. Also avoid a warning for

"files" in ins_compl_dictionaries().
Files: src/edit.c

Patch 7.0.065 (extra)
Problem: Mac: left-right movement of the scrollwheel causes up-down

scrolling.
Solution: Ignore mouse wheel events that are not up-down. (Nicolas Weber)
Files: src/gui_mac.c

Patch 7.0.066
Problem: After the popup menu for Insert mode completion overlaps the tab

pages line it is not completely removed.
Solution: Redraw the tab pages line after removing the popup menu. (Ori

Avtalion)
Files: src/popupmnu.c

Patch 7.0.067
Problem: Undo doesn't always work properly when using "scim" input method.

Undo is split up when using preediting.
Solution: Reset xim_has_preediting also when preedit_start_col is not

version7.txt — 2542

MAXCOL. Don't split undo when <Left> is used while preediting.
(Yukihiro Nakadaira)

Files: src/edit.c, src/mbyte.c

Patch 7.0.068
Problem: When 'ignorecase' is set and using Insert mode completion,

typing characters to change the list of matches, case is not
ignored. (Hugo Ahlenius)

Solution: Store the 'ignorecase' flag with the matches where needed.
Files: src/edit.c, src/search.c, src/spell.c

Patch 7.0.069
Problem: Setting 'guitablabel' to %!expand(\%) causes Vim to free an

invalid pointer. (Kim Schulz)
Solution: Don't try freeing a constant string pointer.
Files: src/buffer.c

Patch 7.0.070
Problem: Compiler warnings for shadowed variables and uninitialized

variables.
Solution: Rename variables such as "index", "msg" and "dup". Initialize

variables.
Files: src/edit.c, src/eval.c, src/ex_cmds.c, src/ex_cmds2.c,

src/ex_docmd.c, src/gui_beval.c, src/gui_gtk.c, src/gui_gtk_x11.c,
src/hardcopy.c, src/if_cscope.c, src/main.c, src/mbyte.c,
src/memline.c, src/netbeans.c, src/normal.c, src/option.c,
src/os_unix.c, src/quickfix.c, src/regexp.c, src/screen.c,
src/search.c, src/spell.c, src/ui.c, src/undo.c, src/window.c,
src/version.c

Patch 7.0.071
Problem: Using an empty search pattern may cause a crash.
Solution: Avoid using a NULL pointer.
Files: src/search.c

Patch 7.0.072
Problem: When starting the GUI fails there is no way to adjust settings or

do something else.
Solution: Add the GUIFailed autocommand event.
Files: src/fileio.c, src/gui.c, src/vim.h

Patch 7.0.073
Problem: Insert mode completion: Typing <CR> sometimes selects the original

text instead of keeping what was typed. (Justin Constantino)
Solution: Don't let <CR> select the original text if there is no popup menu.
Files: src/edit.c

Patch 7.0.074 (extra)
Problem: Win32: tooltips were not converted from 'encoding' to Unicode.
Solution: Set the tooltip to use Unicode and do the conversion. Also

cleanup the code for the tab pages tooltips. (Yukihiro Nakadaira)
Files: src/gui_w32.c, src/gui_w48.c

Patch 7.0.075
Problem: winsaveview() did not store the actual value of the desired cursor

column. This could move the cursor in the matchparen plugin.
Solution: Call update_curswant() before using the value w_curswant.
Files: src/eval.c

Patch 7.0.076 (after 7.0.010)

version7.txt — 2543

Problem: Automatic downloading of spell files only works for ftp.
Solution: Don't add login and password for non-ftp URLs. (Alexander Patrakov)
Files: runtime/autoload/spellfile.vim

Patch 7.0.077
Problem: ":unlet v:this_session" causes a crash. (Marius Roets)
Solution: When trying to unlet a fixed variable give an error message.
Files: src/eval.c

Patch 7.0.078
Problem: There are two error messages E46.
Solution: Change the number for the sandbox message to E794.
Files: src/globals.h

Patch 7.0.079
Problem: Russian tutor doesn't work when 'encoding' is "utf-8".
Solution: Use tutor.ru.utf-8 as the master, and generate the other encodings

from it. Select the right tutor depending on 'encoding'. (Alexey
Froloff)

Files: runtime/tutor/Makefile, runtime/tutor/tutor.vim,
runtime/tutor/tutor.ru.utf-8

Patch 7.0.080
Problem: Generating auto/pathdef.c fails for CFLAGS with a backslash.
Solution: Double backslashes in the string. (Alexey Froloff)
Files: src/Makefile

Patch 7.0.081
Problem: Command line completion doesn't work for a shell command with an

absolute path.
Solution: Don't use $PATH when there is an absolute path.
Files: src/ex_getln.c

Patch 7.0.082
Problem: Calling a function that waits for input may cause List and

Dictionary arguments to be freed by the garbage collector.
Solution: Keep a list of all arguments to internal functions.
Files: src/eval.c

Patch 7.0.083
Problem: Clicking with the mouse on an item for inputlist() doesn't work

when 'compatible' is set and/or when 'cmdheight' is more than one.
(Christian J. Robinson)

Solution: Also decrement "lines_left" when 'more' isn't set. Set
"cmdline_row" to zero to get all mouse events.

Files: src/message.c, src/misc1.c

Patch 7.0.084
Problem: The garbage collector may do its work while some Lists or

Dictionaries are used internally, e.g., by ":echo" that runs into
the more-prompt or ":echo [garbagecollect()]".

Solution: Only do garbage collection when waiting for a character at the
toplevel. Let garbagecollect() set a flag that is handled at the
toplevel before waiting for a character.

Files: src/eval.c, src/getchar.c, src/globals.h, src/main.c

Patch 7.0.085
Problem: When doing "make test" the viminfo file is modified.
Solution: Use another viminfo file after setting 'compatible'.
Files: src/testdir/test56.in

version7.txt — 2544

Patch 7.0.086
Problem: getqflist() returns entries for pattern and text with the number

zero. Passing these to setqflist() results in the string "0".
Solution: Use an empty string instead of the number zero.
Files: src/quickfix.c

Patch 7.0.087
Problem: After ":file fname" and ":saveas fname" the 'autochdir' option

does not take effect. (Yakov Lerner)
Commands for handling 'autochdir' are repeated many times.

Solution: Add the DO_AUTOCHDIR macro and do_autochdir(). Use it for
":file fname" and ":saveas fname".

Files: src/proto/buffer.pro, src/buffer.c, src/ex_cmds.c, src/macros.h,
src/netbeans.c, src/option.c, src/window.c

Patch 7.0.088
Problem: When compiled with Perl the generated prototypes have "extern"

unnecessarily added.
Solution: Remove the "-pipe" argument from PERL_CFLAGS.
Files: src/auto/configure, src/configure.in

Patch 7.0.089
Problem: "ga" does not work properly for a non-Unicode multibyte encoding.
Solution: Only check for composing chars for utf-8. (Taro Muraoka)
Files: src/ex_cmds.c

Patch 7.0.090
Problem: Cancelling the conform() dialog on the console with Esc requires

typing it twice. (Benji Fisher)
Solution: When the start of an escape sequence is found use 'timeoutlen' or

'ttimeoutlen'.
Files: src/misc1.c

Patch 7.0.091
Problem: Using winrestview() while 'showcmd' is set causes the cursor to be

displayed in the wrong position. (Yakov Lerner)
Solution: Set the window topline properly.
Files: src/eval.c

Patch 7.0.092 (after 7.0.082 and 7.0.084)
Problem: The list of internal function arguments is obsolete now that

garbage collection is only done at the toplevel.
Solution: Remove the list of all arguments to internal functions.
Files: src/eval.c

Patch 7.0.093
Problem: The matchparen plugin can't handle a 'matchpairs' value where a

colon is matched.
Solution: Change the split() that is used to change 'matchpairs' into a

List.
Files: runtime/plugin/matchparen.vim

Patch 7.0.094
Problem: When a hidden buffer is made the current buffer and another file

edited later, the file message will still be given. Using
":silent" also doesn't prevent the file message. (Marvin Renich)

Solution: Reset the need_fileinfo flag when reading a file. Don't set
need_fileinfo when msg_silent is set.

Files: src/buffer.c, src/fileio.c

version7.txt — 2545

Patch 7.0.095
Problem: The Greek tutor is not available in utf-8. "el" is used for the

language, only "gr" for the country is recognized.
Solution: Add the utf-8 Greek tutor. Use it for conversion to iso-8859-7

and cp737. (Lefteris Dimitroulakis)
Files: runtime/tutor/Makefile, runtime/tutor/tutor.gr.utf-8,

runtime/tutor/tutor.vim

Patch 7.0.096
Problem: taglist() returns the filename relative to the tags file, while

the directory of the tags file is unknown. (Hari Krishna Dara)
Solution: Expand the file name. (Yegappan Lakshmanan)
Files: src/tag.c

Patch 7.0.097
Problem: ":tabclose N" that closes another tab page does not remove the tab

pages line. Same problem when using the mouse.
Solution: Adjust the tab pages line when needed in tabpage_close_other().
Files: src/ex_docmd.c

Patch 7.0.098
Problem: Redirecting command output in a cmdline completion function

doesn't work. (Hari Krishna Dara)
Solution: Enable redirection when redirection is started.
Files: src/ex_docmd.c, src/ex_getln.c

Patch 7.0.099
Problem: GUI: When the popup menu is visible using the scrollbar messes up

the display.
Solution: Disallow scrolling the current window. Redraw the popup menu

after scrolling another window.
Files: src/gui.c

Patch 7.0.100
Problem: "zug" may report the wrong filename. (Lawrence Kesteloot)
Solution: Call home_replace() to fill NameBuff[].
Files: src/spell.c

Patch 7.0.101
Problem: When the "~/.vim/spell" directory does not exist "zg" may create

a wrong directory. "zw" doesn't work.
Solution: Use the directory of the file name instead of NameBuff. For "zw"

not only remove a good word but also add the word with "!".
Files: src/spell.c

Patch 7.0.102
Problem: Redrawing cmdline is not correct when using SCIM.
Solution: Don't call im_get_status(). (Yukihiro Nakadaira)
Files: src/ex_getln.c

Patch 7.0.103 (after 7.0.101)
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Init variable.
Files: src/spell.c

Patch 7.0.104
Problem: The CursorHoldI event only triggers once in Insert mode. It also

triggers after CTRL-V and other two-key commands.
Solution: Set "did_cursorhold" before getting a second key. Reset

version7.txt — 2546

"did_cursorhold" after handling a command.
Files: src/edit.c, src/fileio.c

Patch 7.0.105
Problem: When using incremental search the statusline ruler isn't updated.

(Christoph Koegl)
Solution: Update the statusline when it contains the ruler.
Files: src/ex_getln.c

Patch 7.0.106
Problem: The spell popup menu uses ":amenu", triggering mappings. Other

PopupMenu autocommands are removed. (John Little)
Solution: Use ":anoremenu" and use an autocmd group.
Files: runtime/menu.vim

Patch 7.0.107
Problem: Incremental search doesn't redraw the text tabline. (Ilya Bobir)

Also happens in other situations with one window in a tab page.
Solution: Redraw the tabline after clearing the screen.
Files: src/screen.c

Patch 7.0.108 (extra)
Problem: Amiga: Compilation problem.
Solution: Have mch_mkdir() return a failure flag. (Willy Catteau)
Files: src/os_amiga.c, src/proto/os_amiga.pro

Patch 7.0.109
Problem: Lisp indenting is confused by escaped quotes in strings. (Dorai

Sitaram)
Solution: Check for backslash inside strings. (Sergey Khorev)
Files: src/misc1.c

Patch 7.0.110
Problem: Amiga: Compilation problems when not using libnix.
Solution: Change a few #ifdefs. (Willy Catteau)
Files: src/memfile.c

Patch 7.0.111
Problem: The gzip plugin can't handle filenames with single quotes.
Solution: Add and use the shellescape() function. (partly by Alexey Froloff)
Files: runtime/autoload/gzip.vim, runtime/doc/eval.txt, src/eval.c,

src/mbyte.c, src/misc2.c, src/proto/misc2.pro

Patch 7.0.112
Problem: Python interface does not work with Python 2.5.
Solution: Change PyMem_DEL() to Py_DECREF(). (Sumner Hayes)
Files: src/if_python.c

Patch 7.0.113
Problem: Using CTRL-L in Insert completion when there is no current match

may cause a crash. (Yukihiro Nakadaira)
Solution: Check for compl_leader to be NULL
Files: src/edit.c

Patch 7.0.114
Problem: When aborting an insert with CTRL-C an extra undo point is

created in the GUI. (Yukihiro Nakadaira)
Solution: Call gotchars() only when advancing.
Files: src/getchar.c

version7.txt — 2547

Patch 7.0.115
Problem: When 'ignorecase' is set, Insert mode completion only adds "foo"

and not "Foo" when both are found.
A found match isn't displayed right away when 'completeopt' does
not have "menu" or "menuone".

Solution: Do not ignore case when checking if a completion match already
exists. call ins_compl_check_keys() also when not using a popup
menu. (Yukihiro Nakadaira)

Files: src/edit.c

Patch 7.0.116
Problem: 64 bit Windows version reports "32 bit" in the ":version" output.

(M. Veerman)
Solution: Change the text for Win64.
Files: src/version.c

Patch 7.0.117
Problem: Using "extend" on a syntax item inside a region with "keepend", an

intermediate item may be truncated.
When applying the "keepend" and there is an offset to the end
pattern the highlighting of a contained item isn't adjusted.

Solution: Use the seen_keepend flag to remember when to apply the "keepend"
flag. Adjust the keepend highlighting properly. (Ilya Bobir)

Files: src/syntax.c

Patch 7.0.118
Problem: printf() does not do zero padding for strings.
Solution: Do allow zero padding for strings.
Files: src/message.c

Patch 7.0.119
Problem: When going back from Insert to Normal mode the CursorHold event

doesn't trigger. (Yakov Lerner)
Solution: Reset "did_cursorhold" when leaving Insert mode.
Files: src/edit.c

Patch 7.0.120
Problem: Crash when using CTRL-R = at the command line and entering

"getreg('=')". (James Vega)
Solution: Avoid recursiveness of evaluating the = register.
Files: src/ops.c

Patch 7.0.121
Problem: GUI: Dragging the last status line doesn't work when there is a

text tabline. (Markus Wolf)
Solution: Take the text tabline into account when deciding to start modeless

selection.
Files: src/gui.c

Patch 7.0.122
Problem: GUI: When clearing after a bold, double-wide character half a

character may be drawn.
Solution: Check for double-wide character and redraw it. (Yukihiro Nakadaira)
Files: src/screen.c

Patch 7.0.123
Problem: On SCO Openserver configure selects the wrong terminal library.
Solution: Put terminfo before the other libraries. (Roger Cornelius)

Also fix a small problem compiling on Mac without Darwin.
Files: src/configure.in, src/auto/configure

version7.txt — 2548

Patch 7.0.124
Problem: getwinvar() obtains a dictionary with window-local variables, but

it's always for the current window.
Solution: Get the variables of the specified window. (Geoff Reedy)
Files: src/eval.c

Patch 7.0.125
Problem: When "autoselect" is in the 'clipboard' option then the '< and '>

marks are set while Visual mode is still active.
Solution: Don't set the '< and '> marks when yanking the selected area for

the clipboard.
Files: src/normal.c

Patch 7.0.126
Problem: When 'formatexpr' uses setline() and later internal formatting is

used undo information is not correct. (Jiri Cerny, Benji Fisher)
Solution: Set ins_need_undo after using 'formatexpr'.
Files: src/edit.c

Patch 7.0.127
Problem: Crash when swap file has invalid timestamp.
Solution: Check return value of ctime() for being NULL.
Files: src/memline.c

Patch 7.0.128
Problem: GUI: when closing gvim is cancelled because there is a changed

buffer the screen isn't updated to show the changed buffer in the
current window. (Krzysztof Kacprzak)

Solution: Redraw when closing gvim is cancelled.
Files: src/gui.c

Patch 7.0.129
Problem: GTK GUI: the GTK file dialog can't handle a relative path.
Solution: Make the initial directory a full path before passing it to GTK.

(James Vega) Also postpone adding the default file name until
after setting the directory.

Files: src/gui_gtk.c

Patch 7.0.130 (extra)
Problem: Win32: Trying to edit or write devices may cause Vim to get stuck.
Solution: Add the 'opendevice' option, default off. Disallow

reading/writing from/to devices when it's off.
Also detect more devices by the full name starting with "\\.\".

Files: runtime/doc/options.txt, src/fileio.c, src/option.c, src/option.h,
src/os_win32.c

Patch 7.0.131
Problem: Win32: "vim -r" does not list all the swap files.
Solution: Also check for swap files starting with a dot.
Files: src/memline.c

Patch 7.0.132 (after 7.0.130)
Problem: Win32: Crash when Vim reads from stdin.
Solution: Only use mch_nodetype() when there is a file name.
Files: src/fileio.c

Patch 7.0.133
Problem: When searching included files messages are added to the history.
Solution: Set msg_hist_off for messages about scanning included files.

version7.txt — 2549

Set msg_silent to avoid message about wrapping around.
Files: src/edit.c, src/globals.h, src/message.c, src/search.c

Patch 7.0.134
Problem: Crash when comparing a recursively looped List or Dictionary.
Solution: Limit recursiveness for comparing to 1000.
Files: src/eval.c

Patch 7.0.135
Problem: Crash when garbage collecting list or dict with loop.
Solution: Don't use DEL_REFCOUNT but don't recurse into Lists and

Dictionaries when freeing them in the garbage collector.
Also add allocated Dictionaries to the list of Dictionaries to
avoid leaking memory.

Files: src/eval.c, src/proto/eval.pro, src/tag.c

Patch 7.0.136
Problem: Using "O" while matching parens are highlighted may not remove the

highlighting. (Ilya Bobir)
Solution: Also trigger CursorMoved when a line is inserted under the cursor.
Files: src/misc1.c

Patch 7.0.137
Problem: Configure check for big features is wrong.
Solution: Change "==" to "=". (Martti Kuparinen)
Files: src/auto/configure, src/configure.in

Patch 7.0.138 (extra)
Problem: Mac: modifiers don't work with function keys.
Solution: Use GetEventParameter() to obtain modifiers. (Nicolas Weber)
Files: src/gui_mac.c

Patch 7.0.139
Problem: Using CTRL-PageUp or CTRL-PageDown in Insert mode to go to another

tab page does not prepare for undo properly. (Stefano Zacchiroli)
Solution: Call start_arrow() before switching tab page.
Files: src/edit.c

Patch 7.0.140 (after 7.0.134)
Problem: Comparing recursively looped List or Dictionary doesn't work well.
Solution: Detect comparing a List or Dictionary with itself.
Files: src/eval.c

Patch 7.0.141
Problem: When pasting a while line on the command line an extra CR is added

literally.
Solution: Don't add the trailing CR when pasting with the mouse.
Files: src/ex_getln.c, src/proto/ops.pro, src/ops.c

Patch 7.0.142
Problem: Using the middle mouse button in Select mode to paste text results

in an extra "y". (Kriton Kyrimis)
Solution: Let the middle mouse button replace the selected text with the

contents of the clipboard.
Files: src/normal.c

Patch 7.0.143
Problem: Setting 'scroll' to its default value was not handled correctly.
Solution: Compare the right field to PV_SCROLL.
Files: src/option.c

version7.txt — 2550

Patch 7.0.144
Problem: May compare two unrelated pointers when matching a pattern against

a string. (Dominique Pelle)
Solution: Avoid calling reg_getline() when REG_MULTI is false.
Files: src/regexp.c

Patch 7.0.145 (after 7.0.142)
Problem: Compiler warning.
Solution: Add type cast.
Files: src/normal.c

Patch 7.0.146
Problem: When 'switchbuf' is set to "usetab" and the current tab has only a

quickfix window, jumping to an error always opens a new window.
Also, when the buffer is open in another tab page it's not found.

Solution: Check for the "split" value of 'switchbuf' properly. Search in
other tab pages for the desired buffer. (Yegappan Lakshmanan)

Files: src/buffer.c, src/quickfix.c

Patch 7.0.147
Problem: When creating a session file and there are several tab pages and

some windows have a local directory a short file name may be used
when it's not valid. (Marius Roets)
A session with multiple tab pages may result in "No Name" buffers.
(Bill McCarthy)

Solution: Don't enter tab pages when going through the list, only use a
pointer to the first window in each tab page.
Use "tabedit" instead of "tabnew | edit" when possible.

Files: src/ex_docmd.c

Patch 7.0.148
Problem: When doing "call a.xyz()" and "xyz" does not exist in dictionary

"a" there is no error message. (Yegappan Lakshmanan)
Solution: Add the error message.
Files: src/eval.c

Patch 7.0.149
Problem: When resizing a window that shows "~" lines the text sometimes

jumps down.
Solution: Remove code that uses "~" lines in some situations. Fix the

computation of the screen line of the cursor. Also set w_skipcol
to handle very long lines.

Files: src/misc1.c, src/window.c

Patch 7.0.150
Problem: When resizing the Vim window scrollbinding doesn't work. (Yakov

Lerner)
Solution: Do scrollbinding in set_shellsize().
Files: src/term.c

Patch 7.0.151
Problem: Buttons in file dialog are not according to Gnome guidelines.
Solution: Swap Cancel and Open buttons. (Stefano Zacchiroli)
Files: src/gui_gtk.c

Patch 7.0.152
Problem: Crash when using lesstif 2.
Solution: Fill in the extension field. (Ben Hutchings)
Files: src/gui_xmebw.c

version7.txt — 2551

Patch 7.0.153
Problem: When using cscope and opening the temp file fails Vim crashes.

(Kaya Bekiroglu)
Solution: Check for NULL pointer returned from mch_open().
Files: src/if_cscope.c

Patch 7.0.154
Problem: When 'foldnestmax' is negative Vim can hang. (James Vega)
Solution: Avoid the fold level becoming negative.
Files: src/fold.c, src/syntax.c

Patch 7.0.155
Problem: When getchar() returns a mouse button click there is no way to get

the mouse coordinates.
Solution: Add v:mouse_win, v:mouse_lnum and v:mouse_col.
Files: runtime/doc/eval.txt, src/eval.c, src/vim.h

Patch 7.0.156 (extra)
Problem: Vim doesn't compile for Amiga OS 4.
Solution: Various changes for Amiga OS4. (Peter Bengtsson)
Files: src/feature.h, src/mbyte.c, src/memfile.c, src/memline.c,

src/os_amiga.c, src/os_amiga.h, src/pty.c

Patch 7.0.157
Problem: When a function is used recursively the profiling information is

invalid. (Mikolaj Machowski)
Solution: Put the start time on the stack instead of in the function.
Files: src/eval.c

Patch 7.0.158
Problem: In a C file with ":set foldmethod=syntax", typing {<CR> on the

last line results in the cursor being in a closed fold. (Gautam
Iyer)

Solution: Open fold after inserting a new line.
Files: src/edit.c

Patch 7.0.159
Problem: When there is an I/O error in the swap file the cause of the error

cannot be seen.
Solution: Use PERROR() instead of EMSG() where possible.
Files: src/memfile.c

Patch 7.0.160
Problem: ":@a" echoes the command, Vi doesn't do that.
Solution: Set the silent flag in the typeahead buffer to avoid echoing the

command.
Files: src/ex_docmd.c, src/normal.c, src/ops.c, src/proto/ops.pro

Patch 7.0.161
Problem: Win32: Tab pages line popup menu isn't using the right encoding.

(Yongwei Wu)
Solution: Convert the text when necessary. Also fixes the Find/Replace

dialog title. (Yegappan Lakshmanan)
Files: src/gui_w48.c

Patch 7.0.162
Problem: "vim -o a b" when file "a" triggers the ATTENTION dialog,

selecting "Quit" exits Vim instead of editing "b" only.
When file "b" triggers the ATTENTION dialog selecting "Quit" or

version7.txt — 2552

"Abort" results in editing file "a" in that window.
Solution: When selecting "Abort" exit Vim. When selecting "Quit" close the

window. Also avoid hit-enter prompt when selecting Abort.
Files: src/buffer.c, src/main.c

Patch 7.0.163
Problem: Can't retrieve the position of a sign after it was set.
Solution: Add the netbeans interface getAnno command. (Xavier de Gaye)
Files: runtime/doc/netbeans.txt, src/netbeans.c

Patch 7.0.164
Problem: ":redir @+" doesn't work.
Solution: Accept "@+" just like "@*". (Yegappan Lakshmanan)
Files: src/ex_docmd.c

Patch 7.0.165
Problem: Using CTRL-L at the search prompt adds a "/" and other characters

without escaping, causing the pattern not to match.
Solution: Escape special characters with a backslash.
Files: src/ex_getln.c

Patch 7.0.166
Problem: Crash in cscope code when connection could not be opened.

(Kaya Bekiroglu)
Solution: Check for the file descriptor to be NULL.
Files: src/if_cscope.c

Patch 7.0.167
Problem: ":function" redefining a dict function doesn't work properly.

(Richard Emberson)
Solution: Allow a function name to be a number when it's a function

reference.
Files: src/eval.c

Patch 7.0.168
Problem: Using uninitialized memory and memory leak. (Dominique Pelle)
Solution: Use alloc_clear() instead of alloc() for w_lines. Free

b_ml.ml_stack after recovery.
Files: src/memline.c, src/window.c

Patch 7.0.169
Problem: With a Visual block selection, with the cursor in the left upper

corner, pressing "I" doesn't remove the highlighting. (Guopeng
Wen)

Solution: When checking if redrawing is needed also check if Visual
selection is still active.

Files: src/screen.c

Patch 7.0.170 (extra)
Problem: Win32: Using "gvim --remote-tab foo" when gvim is minimized while

it previously was maximized, un-maximizing doesn't work properly.
And the labels are not displayed properly when 'encoding' is
utf-8.

Solution: When minimized check for SW_SHOWMINIMIZED. When updating the tab
pages line use TCM_SETITEMW instead of TCM_INSERTITEMW. (Liu
Yubao)

Files: src/gui_w48.c

Patch 7.0.171 (extra)
Problem: VMS: A file name with multiple paths is written in the wrong file.

version7.txt — 2553

Solution: Get the actually used file name. (Zoltan Arpadffy)
Also add info to the :version command about compilation.

Files: src/Make_vms.mms, src/buffer.c, src/os_unix.c, src/version.c

Patch 7.0.172
Problem: Crash when recovering and quitting at the "press-enter" prompt.
Solution: Check for "msg_list" to be NULL. (Liu Yubao)
Files: src/ex_eval.c

Patch 7.0.173
Problem: ":call f().TT()" doesn't work. (Richard Emberson)
Solution: When a function returns a Dictionary or another composite continue

evaluating what follows.
Files: src/eval.c

Patch 7.0.174
Problem: ":mksession" doesn't restore window layout correctly in tab pages

other than the current one. (Zhibin He)
Solution: Use the correct topframe for producing the window layout commands.
Files: src/ex_docmd.c

Patch 7.0.175
Problem: The result of tr() is missing the terminating NUL. (Ingo Karkat)
Solution: Add the NUL.
Files: src/eval.c

Patch 7.0.176
Problem: ":emenu" isn't executed directly, causing the encryption key

prompt to fail. (Life Jazzer)
Solution: Fix wrong #ifdef.
Files: src/menu.c

Patch 7.0.177
Problem: When the press-enter prompt gets a character from a non-remappable

mapping, it's put back in the typeahead buffer as remappable,
which may cause an endless loop.

Solution: Restore the non-remappable flag and the silent flag when putting a
char back in the typeahead buffer.

Files: src/getchar.c, src/message.c, src/normal.c

Patch 7.0.178
Problem: When 'enc' is "utf-8" and 'ignorecase' is set the result of ":echo

("\xe4" == "\xe4")" varies.
Solution: In mb_strnicmp() avoid looking past NUL bytes.
Files: src/mbyte.c

Patch 7.0.179
Problem: Using ":recover" or "vim -r" without a swapfile crashes Vim.
Solution: Check for "buf" to be unequal NULL. (Yukihiro Nakadaira)
Files: src/memline.c

Patch 7.0.180 (extra, after 7.0.171)
Problem: VMS: build failed. Problem with swapfiles.
Solution: Add "compiled_arch". Always expand path and pass it to

buf_modname(). (Zoltan Arpadffy)
Files: src/globals.h, src/memline.c, src/os_unix.c, runtime/menu.vim

Patch 7.0.181
Problem: When reloading a file that starts with an empty line, the reloaded

buffer has an extra empty line at the end. (Motty Lentzitzky)

version7.txt — 2554

Solution: Delete all lines, don't use bufempty().
Files: src/fileio.c

Patch 7.0.182
Problem: When using a mix of undo and "g-" it may no longer be possible to

go to every point in the undo tree. (Andy Wokula)
Solution: Correctly update pointers in the undo tree.
Files: src/undo.c

Patch 7.0.183
Problem: Crash in ":let" when redirecting to a variable that's being

displayed. (Thomas Link)
Solution: When redirecting to a variable only do the assignment when

stopping redirection to avoid that setting the variable causes a
freed string to be accessed.

Files: src/eval.c

Patch 7.0.184
Problem: When the cscope program is called "mlcscope" the Cscope interface

doesn't work.
Solution: Accept "\S*cscope:" instead of "cscope:". (Frodak D. Baksik)
Files: src/if_cscope.c

Patch 7.0.185
Problem: Multi-byte characters in a message are displayed with attributes

from what comes before it.
Solution: Don't use the attributes for a multibyte character. Do use

attributes for special characters. (Yukihiro Nakadaira)
Files: src/message.c

Patch 7.0.186
Problem: Get an ml_get error when 'encoding' is "utf-8" and searching for

"/_s*/e" in an empty buffer. (Andrew Maykov)
Solution: Don't try getting the line just below the last line.
Files: src/search.c

Patch 7.0.187
Problem: Can't source a remote script properly.
Solution: Add the SourceCmd event. (Charles Campbell)
Files: runtime/doc/autocmd.txt, src/ex_cmds2.c, src/fileio.c, src/vim.h

Patch 7.0.188 (after 7.0.186)
Problem: Warning for wrong pointer type.
Solution: Add a type cast.
Files: src/search.c

Patch 7.0.189
Problem: Translated message about finding matches is truncated. (Yukihiro

Nakadaira)
Solution: Enlarge the buffer. Also use vim_snprintf().
Files: src/edit.c

Patch 7.0.190
Problem: "syntax spell default" results in an error message.
Solution: Change 4 to 7 for STRNICMP(). (Raul Nunez de Arenas Coronado)
Files: src/syntax.c

Patch 7.0.191
Problem: The items used by getqflist() and setqflist() don't match.
Solution: Support the "bufnum" item for setqflist(). (Yegappan Lakshmanan)

version7.txt — 2555

Files: runtime/doc/eval.txt, src/quickfix.c

Patch 7.0.192
Problem: When 'swapfile' is switched off in an empty file it is possible

that not all blocks are loaded into memory, causing ml_get errors
later.

Solution: Rename "dont_release" to "mf_dont_release" and also use it to
avoid using the cached line and locked block.

Files: src/globals.h, src/memfile.c, src/memline.c

Patch 7.0.193
Problem: Using --remote or --remote-tab with an argument that matches

'wildignore' causes a crash.
Solution: Check the argument count before using ARGLIST[0].
Files: src/ex_cmds.c

Patch 7.0.194
Problem: Once an ml_get error is given redrawing part of the screen may

cause it again, resulting in an endless loop.
Solution: Don't give the error message for a recursive call.
Files: src/memline.c

Patch 7.0.195
Problem: When a buffer is modified and 'autowriteall' is set, ":quit"

results in an endless loop when there is a conversion error while
writing. (Nikolai Weibull)

Solution: Make autowrite() return FAIL if the buffer is still changed after
writing it.
/* put the cursor on the last char, for 'tw' formatting */

Files: src/ex_cmds2.c

Patch 7.0.196
Problem: When using ":vert ball" the computation of the mouse pointer

position may be off by one column. (Stefan Karlsson)
Solution: Recompute the frame width when moving the vertical separator from

one window to another.
Files: src/window.c

Patch 7.0.197 (extra)
Problem: Win32: Compiling with EXITFREE doesn't work.
Solution: Adjust a few #ifdefs. (Alexei Alexandrof)
Files: src/misc2.c, src/os_mswin.c

Patch 7.0.198 (extra)
Problem: Win32: Compiler warnings. No need to generate gvim.exe.mnf.
Solution: Add type casts. Use "*" for processorArchitecture. (George Reilly)
Files: src/Make_mvc.mak, src/eval.c, src/gvim.exe.mnf, src/misc2.c

Patch 7.0.199
Problem: When using multibyte characters the combination of completion and

formatting may result in a wrong cursor position.
Solution: Don't decrement the cursor column, use dec_cursor(). (Yukihiro

Nakadaira) Also check for the column to be zero.
Files: src/edit.c

Patch 7.0.200
Problem: Memory leaks when out of memory.
Solution: Free the memory.
Files: src/edit.c, src/diff.c

version7.txt — 2556

Patch 7.0.201
Problem: Message for ":diffput" about buffer not being in diff mode may be

wrong.
Solution: Check for buffer in diff mode but not modifiable.
Files: src/diff.c

Patch 7.0.202
Problem: Problems on Tandem systems while compiling and at runtime.
Solution: Recognize root uid is 65535. Check select() return value for it

not being supported. Avoid wrong function prototypes. Mention
use of -lfloss. (Matthew Woehlke)

Files: src/Makefile, src/ex_cmds.c, src/fileio.c, src/main.c,
src/osdef1.h.in, src/osdef2.h.in, src/os_unix.c, src/pty.c,
src/vim.h

Patch 7.0.203
Problem: 0x80 characters in a register are not handled correctly for the

"@" command.
Solution: Escape CSI and 0x80 characters. (Yukihiro Nakadaira)
Files: src/ops.c

Patch 7.0.204
Problem: Cscope: Parsing matches for listing isn't done properly.
Solution: Check for line number being found. (Yu Zhao)
Files: src/if_cscope.c

Patch 7.0.205 (after 7.0.203)
Problem: Can't compile.
Solution: Always include the vim_strsave_escape_csi function.
Files: src/getchar.c

Patch 7.0.206 (after 7.0.058)
Problem: Some characters of the "gb18030" encoding are not handled

properly.
Solution: Do not use "cp936" as an alias for "gb18030" encoding. Instead

initialize 'encoding' to "cp936".
Files: src/mbyte.c, src/option.c

Patch 7.0.207
Problem: After patch 2.0.203 CSI and K_SPECIAL characters are escaped when

recorded and then again when the register is executed.
Solution: Remove escaping before putting the recorded characters in a

register. (Yukihiro Nakadaira)
Files: src/getchar.c, src/ops.c, src/proto/getchar.pro

Patch 7.0.208 (after 7.0.171 and 7.0.180)
Problem: VMS: changes to path handling cause more trouble than they solve.
Solution: Revert changes.
Files: src/buffer.c, src/memline.c, src/os_unix.c

Patch 7.0.209
Problem: When replacing a line through Python the cursor may end up beyond

the end of the line.
Solution: Check the cursor column after replacing the line.
Files: src/if_python.c

Patch 7.0.210
Problem: ":cbuffer" and ":lbuffer" always fail when the buffer is modified.

(Gary Johnson)
Solution: Support adding a !. (Yegappan Lakshmanan)

version7.txt — 2557

Files: runtime/doc/quickfix.txt, src/ex_cmds.h

Patch 7.0.211
Problem: With ":set cindent noai bs=0" using CTRL-U in Insert mode will

delete auto-indent. After ":set ai" it doesn't.
Solution: Also check 'cindent' being set. (Ryan Lortie)
Files: src/edit.c

Patch 7.0.212
Problem: The GUI can't be terminated with SIGTERM. (Mark Logan)
Solution: Use the signal protection in the GUI as in the console, allow

signals when waiting for 100 msec or longer.
Files: src/ui.c

Patch 7.0.213
Problem: When 'spellfile' has two regions that use the same sound folding

using "z=" will cause memory to be freed twice. (Mark Woodward)
Solution: Clear the hashtable properly so that the items are only freed once.
Files: src/spell.c

Patch 7.0.214
Problem: When using <f-args> in a user command it's not possible to have an

argument end in '\ '.
Solution: Change the handling of backslashes. (Yakov Lerner)
Files: runtime/doc/map.txt, src/ex_docmd.c

Patch 7.0.215 (extra)
Problem: Mac: Scrollbar size isn't set. Context menu has disabled useless

Help entry. Call to MoreMasterPointers() is ignored.
Solution: Call SetControlViewSize() in gui_mch_set_scrollbar_thumb(). Use

kCMHelpItemRemoveHelp for ContextualMenuSelect(). Remove call to
MoreMasterPointers(). (Nicolas Weber)

Files: src/gui_mac.c

Patch 7.0.216
Problem: ":tab wincmd]" does not open a tab page. (Tony Mechelynck)
Solution: Copy the cmdmod.tab value to postponed_split_tab and use it.
Files: src/globals.h, src/ex_docmd.c, src/if_cscope.c, src/window.c

Patch 7.0.217
Problem: This hangs when pressing "n": ":%s/\n/,\r/gc". (Ori Avtalion)
Solution: Set "skip_match" to advance to the next line.
Files: src/ex_cmds.c

Patch 7.0.218
Problem: "%B" in 'statusline' always shows zero in Insert mode. (DervishD)
Solution: Remove the exception for Insert mode, check the column for being

valid instead.
Files: src/buffer.c

Patch 7.0.219
Problem: When using the 'editexisting.vim' script and a file is being

edited in another tab page the window is split. The "+123"
argument is not used.

Solution: Make the tab page with the file the current tab page. Set
v:swapcommand when starting up to the first "+123" or "-c" command
line argument.

Files: runtime/macros/editexisting.vim, src/main.c

Patch 7.0.220

version7.txt — 2558

Problem: Crash when using winnr('#') in a new tab page. (Andy Wokula)
Solution: Check for not finding the window.
Files: src/eval.c

Patch 7.0.221
Problem: finddir() uses 'path' by default, where "." means relative to the

current file. But it works relative to the current directory.
(Tye Zdrojewski)

Solution: Add the current buffer name to find_file_in_path_option() for the
relative file name.

Files: runtime/doc/eval.txt, src/eval.c

Patch 7.0.222
Problem: Perl indenting using 'cindent' works almost right.
Solution: Recognize '#' to start a comment. (Alex Manoussakis) Added '#'

flag in 'cinoptions'.
Files: runtime/doc/indent.txt, src/misc1.c

Patch 7.0.223
Problem: Unprintable characters in completion text mess up the popup menu.

(Gombault Damien)
Solution: Use strtrans() to make the text printable.
Files: src/charset.c, src/popupmnu.c

Patch 7.0.224
Problem: When expanding "##" spaces are escaped twice. (Pavol Juhas)
Solution: Don't escape the spaces that separate arguments.
Files: src/eval.c, src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 7.0.225
Problem: When using setline() in an InsertEnter autocommand and doing "A"

the cursor ends up on the last byte in the line. (Yukihiro
Nakadaira)

Solution: Only adjust the column when using setline() for the cursor line.
Move it back to the head byte if necessary.

Files: src/eval.c, src/misc2.c

Patch 7.0.226
Problem: Display flickering when updating signs through the netbeans

interface. (Xavier de Gaye)
Solution: Remove the redraw_later(CLEAR) call.
Files: src/netbeans.c

Patch 7.0.227
Problem: Crash when closing a window in the GUI. (Charles Campbell)
Solution: Don't call out_flush() from win_free().
Files: src/window.c

Patch 7.0.228
Problem: Cygwin: problem with symlink to DOS style path.
Solution: Invoke cygwin_conv_to_posix_path(). (Luca Masini)
Files: src/os_unix.c

Patch 7.0.229
Problem: When 'pastetoggle' starts with Esc then pressing Esc in Insert

mode will not time out. (Jeffery Small)
Solution: Use KL_PART_KEY instead of KL_PART_MAP, so that 'ttimeout' applies

to the 'pastetoggle' key.
Files: src/getchar.c

version7.txt — 2559

Patch 7.0.230
Problem: After using ":lcd" a script doesn't know how to restore the

current directory.
Solution: Add the haslocaldir() function. (Bob Hiestand)
Files: runtime/doc/usr_41.txt, runtime/doc/eval.txt, src/eval.c

Patch 7.0.231
Problem: When recovering from a swap file the page size is likely to be

different from the minimum. The block used for the first page
then has a buffer of the wrong size, causing a crash when it's
reused later. (Zephaniah Hull)

Solution: Reallocate the buffer when the page size changes. Also check that
the page size is at least the minimum value.

Files: src/memline.c

Patch 7.0.232 (extra)
Problem: Mac: doesn't support GUI tab page labels.
Solution: Add GUI tab page labels. (Nicolas Weber)
Files: src/feature.h, src/gui.c, src/gui.h, src/gui_mac.c,

src/proto/gui_mac.pro

Patch 7.0.233 (extra)
Problem: Mac: code formatted badly.
Solution: Fix code formatting
Files: src/gui_mac.c

Patch 7.0.234
Problem: It's possible to use feedkeys() from a modeline. That is a

security issue, can be used for a trojan horse.
Solution: Disallow using feedkeys() in the sandbox.
Files: src/eval.c

Patch 7.0.235
Problem: It is possible to use writefile() in the sandbox.
Solution: Add a few more checks for the sandbox.
Files: src/eval.c

Patch 7.0.236
Problem: Linux 2.4 uses sysinfo() with a mem_unit field, which is not

backwards compatible.
Solution: Add an autoconf check for sysinfo.mem_unit. Let mch_total_mem()

return Kbyte to avoid overflow.
Files: src/auto/configure, src/configure.in, src/config.h.in,

src/option.c, src/os_unix.c

Patch 7.0.237
Problem: For root it is recommended to not use 'modeline', but in

not-compatible mode the default is on.
Solution: Let 'modeline' default to off for root.
Files: runtime/doc/options.txt, src/option.c

Patch 7.0.238
Problem: Crash when ":match" pattern runs into 'maxmempattern'. (Yakov

Lerner)
Solution: Don't free the regexp program of match_hl.
Files: src/screen.c

Patch 7.0.239
Problem: When using local directories and tab pages ":mksession" uses a

short file name when it shouldn't. Window-local options from a

version7.txt — 2560

modeline may be applied to the wrong window. (Teemu Likonen)
Solution: Add the did_lcd flag, use the full path when it's set. Don't use

window-local options from the modeline when using the current
window for another buffer in ":doautoall".

Files: src/fileio.c, src/ex_docmd.c

Patch 7.0.240
Problem: Crash when splitting a window in the GUI. (opposite of 7.0.227)
Solution: Don't call out_flush() from win_alloc(). Also avoid this for

win_delete(). Also block autocommands while the window structure
is invalid.

Files: src/window.c

Patch 7.0.241
Problem: ":windo throw 'foo'" loops forever. (Andy Wokula)
Solution: Detect that win_goto() doesn't work.
Files: src/ex_cmds2.c

Patch 7.0.242 (extra)
Problem: Win32: Using "-register" in a Vim that does not support OLE causes

a crash.
Solution: Don't use EMSG() but mch_errmsg(). Check p_go for being NULL.

(partly by Michael Wookey)
Files: src/gui_w32.c

Patch 7.0.243 (extra)
Problem: Win32: When GvimExt is built with MSVC 2005 or later, the "Edit

with vim" context menu doesn't appear in the Windows Explorer.
Solution: Embed the linker manifest file into the resources of GvimExt.dll.

(Mathias Michaelis)
Files: src/GvimExt/Makefile

Fixes after Vim 7.1a BETA:

The extra archive had CVS directories included below "farsi" and
"runtime/icons". CVS was missing the farsi icon files.

Fix compiling with Gnome 2.18, undefine bind_textdomain_codeset. (Daniel
Drake)

Mac: "make install" didn't copy rgb.txt.

When editing a compressed file while there are folds caused "ml_get" errors
and some lines could be missing. When decompressing failed option values were
not restored.

Patch 7.1a.001
Problem: Crash when downloading a spell file. (Szabolcs Horvat)
Solution: Avoid that did_set_spelllang() is used recursively when a new

window is opened for the download.
Also avoid wiping out the wrong buffer.

Files: runtime/autoload/spellfile.vim, src/buffer.c, src/ex_cmds.c,
src/spell.c

Patch 7.1a.002 (extra)
Problem: Compilation error with MingW.
Solution: Check for LPTOOLTIPTEXT to be defined.
Files: src/gui_w32.c

version7.txt — 2561

Fixes after Vim 7.1b BETA:

Made the Mzscheme interface build both with old and new versions of Mzscheme,
using an #ifdef. (Sergey Khorev)
Mzscheme interface didn't link, missing function. Changed order of libraries
in the configure script.

Ruby interface didn't compile on Mac. Changed #ifdef. (Lily Ballard)

Patch 7.1b.001 (extra)
Problem: Random text in a source file. No idea how it got there.
Solution: Delete the text.
Files: src/gui_w32.c

Patch 7.1b.002
Problem: When 'maxmem' is large there can be an overflow in computations.

(Thomas Wiegner)
Solution: Use the same mechanism as in mch_total_mem(): first reduce the

multiplier as much as possible.
Files: src/memfile.c

==
VERSION 7.2 version-7.2 version7.2

This section is about improvements made between version 7.1 and 7.2.

This is mostly a bug-fix release. The main new feature is floating point
support. Float

Changed changed-7.2

Changed the command line buffer name from "command-line" to "[Command Line]".

Removed optional ! for ":caddexpr", ":cgetexpr", ":cgetfile", ":laddexpr",
":lgetexpr" and ":lgetfile". They are not needed. (Yegappan Lakshmanan)

An offset for syntax matches worked on bytes instead of characters. That is
inconsistent and can easily be done wrong. Use character offsets now.
(Yukihiro Nakadaira)

The FileChangedShellPost event was also given when a file didn't change.
(John Little)

When the current line is long (doesn't fit) the popup menu can't be seen.
Display it below the screen line instead of below the text line.
(Francois Ingelrest)

Switched to autoconf version 2.62.

Moved including fcntl.h to vim.h and removed it from all .c files.

Introduce macro STRMOVE(d, s), like STRCPY() for overlapping strings.
Use it instead of mch_memmove(p, p + x, STRLEN(p + x) + 1).

Removed the bulgarian.vim keymap file, two more standard ones replace it.
(Boyko Bantchev)

version7.txt — 2562

Increased the maximum number of tag matches for command line completion from
200 to 300.

Renamed help file sql.txt to ft_sql.txt and ada.txt to ft_ada.txt.

Added added-7.2

New syntax files:
CUDA (Timothy B. Terriberry)
Cdrdao config (Nikolai Weibull)
Coco/R (Ashish Shukla)
Denyhosts config (Nikolai Weibull)
Dtrace script (Nicolas Weber)
Git output, commit, config, rebase, send-email (Tim Pope)
HASTE and HastePreProc (M. Tranchero)
Haml (Tim Pope)
Host conf (Nikolai Weibull)
Linden script (Timo Frenay)
MS messages (Kevin Locke)
PDF (Tim Pope)
ProMeLa (Maurizio Tranchero)
Reva Foth (Ron Aaron)
Sass (Tim Pope)
Symbian meta-makefile, MMP (Ron Aaron)
VOS CM macro (Andrew McGill)
XBL (Doug Kearns)

New tutor files:
Made UTF-8 versions of all the tutor files.
Greek renamed from ".gr" to ".el" (Greek vs Greece).
Esperanto (Dominique Pelle)
Croatian (Paul B. Mahol)

New filetype plugins:
Cdrdao config (Nikolai Weibull)
Debian control files (Debian Vim maintainers)
Denyhosts (Nikolai Weibull)
Dos .ini file (Nikolai Weibull)
Dtrace script (Nicolas Weber)
FnameScript (Nikolai Weibull)
Git, Git config, Git commit, Git rebase, Git send-email (Tim Pope)
Haml (Tim Pope)
Host conf (Nikolai Weibull)
Host access (Nikolai Weibull)
Logtalk (Paulo Moura)
MS messages (Kevin Locke)
NSIS script (Nikolai Weibull)
PDF (Tim Pope)
Reva Forth (Ron Aaron)
Sass (Tim Pope)

New indent files:
DTD (Nikolai Weibull)
Dtrace script (Nicolas Weber)
Erlang (Csaba Hoch)
FrameScript (Nikolai Weibull)
Git config (Tim Pope)

version7.txt — 2563

Haml (Tim Pope)
Logtalk (Paulo Moura)
Sass (Tim Pope)
Tiny Fugue (Christian J. Robinson)

New compiler plugins:
RSpec (Tim Pope)

New keymap files:
Croatian (Paul B. Mahol)
Russian Dvorak (Serhiy Boiko)
Ukrainian Dvorak (Serhiy Boiko)
Removed plain Bulgarian, "bds" and phonetic are sufficient.

Other new runtime files:
Esperanto menu and message translations. (Dominique Pelle)
Finnish menu and message translations. (Flammie Pirinen)
Brazilian Portuguese message translations. (Eduardo Dobay)

Added floating point support. Float

Added argument to mode() to return a bit more detail about the current mode.
(Ben Schmidt)

Added support for BSD console mouse: sysmouse . (Paul B. Mahol)

Added the "newtab" value for the 'switchbuf' option. (partly by Yegappan
Lakshmanan)

Improved error messages for the netbeans interface. (Philippe Fremy)

Added support for using xterm mouse codes for screen. (Micah Cowan)

Added support for cross compiling:
Adjusted configure.in and added INSTALLcross.txt. (Marc Haisenko) Fixed
mistakes in configure.in after that.
Don't use /usr/local/include and /usr/local/lib in configure. (Philip
Prindeville)
For cross compiling the Cygwin version on Unix, change VIM.TLB to vim.tlb in
src/vim.rc. (Tsuneo Nakagawa)

Added v:searchforward variable: What direction we're searching in. (Yakov
Lerner)

Fixed fixed-7.2

Patch 7.1.001
Problem: Still can't build with Gnome libraries.
Solution: Fix typo in bind_textdomain_codeset. (Mike Kelly)
Files: src/gui_gtk.c, src/gui_gtk_x11.c

Patch 7.1.002
Problem: Oracle Pro*C/C++ files are not detected.
Solution: Add the missing star. (Micah J. Cowan)
Files: runtime/filetype.vim

Patch 7.1.003 (extra)
Problem: The "Tear off this menu" message appears in the message history

version7.txt — 2564

when using a menu. (Yongwei Wu)
Solution: Disable message history when displaying the menu tip.
Files: src/gui_w32.c

Patch 7.1.004
Problem: Crash when doing ":next directory". (Raphael Finkel)
Solution: Do not use "buf", it may be invalid after autocommands.
Files: src/ex_cmds.c

Patch 7.1.005
Problem: "cit" used on <foo></foo> deletes <foo>. Should not delete

anything and start insertion, like "ci'" does on "". (Michal
Bozon)

Solution: Handle an empty object specifically. Made it work consistent for
various text objects.

Files: src/search.c

Patch 7.1.006
Problem: Resetting 'modified' in a StdinReadPost autocommand doesn't work.
Solution: Set 'modified' before the autocommands instead of after it.
Files: src/buffer.c

Patch 7.1.007 (extra)
Problem: Mac: Context menu doesn't work on Intel Macs.

Scrollbars are not dimmed when Vim is not the active application.
Solution: Remove the test whether context menus are supported. They are

always there in OS/X. Handle the dimming. (Nicolas Weber)
Files: src/gui_mac.c, src/gui.h

Patch 7.1.008
Problem: getfsize() returns a negative number for very big files.
Solution: Check for overflow and return -2.
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.1.009
Problem: In diff mode, displaying the difference between a tab and spaces

is not highlighted correctly.
Solution: Only change highlighting at the end of displaying a tab.
Files: src/screen.c

Patch 7.1.010
Problem: The Gnome session file doesn't restore tab pages.
Solution: Add SSOP_TABPAGES to the session flags. (Matias D'Ambrosio)
Files: src/gui_gtk_x11.c

Patch 7.1.011
Problem: Possible buffer overflow when $VIMRUNTIME is very long. (Victor

Stinner)
Solution: Use vim_snprintf().
Files: src/main.c

Patch 7.1.012
Problem: ":let &shiftwidth = 'asdf'" doesn't produce an error message.
Solution: Check for a string argument. (Chris Lubinski)
Files: src/option.c

Patch 7.1.013
Problem: ":syn include" only loads the first file, while it is documented

as doing the equivalent of ":runtime!".
Solution: Change the argument to source_runtime(). (James Vega)

version7.txt — 2565

Files: src/syntax.c

Patch 7.1.014
Problem: Crash when doing C indenting. (Chris Monson)
Solution: Obtain the current line again after invoking cin_islabel().
Files: src/edit.c

Patch 7.1.015
Problem: MzScheme interface: current-library-collection-paths produces no

list. Interface doesn't build on a Mac.
Solution: Use a list instead of a pair. (Bernhard Fisseni) Use "-framework"

argument for MZSCHEME_LIBS in configure.
Files: src/configure.in, src/if_mzsch.c, src/auto/configure

Patch 7.1.016 (after patch 7.1.012)
Problem: Error message about setting 'diff' to a string.
Solution: Don't pass an empty string to set_option_value() when setting

'diff'.
Files: src/quickfix.c, src/popupmnu.c

Patch 7.1.017
Problem: ":confirm w" does give a prompt when 'readonly' is set, but not

when the file permissions are read-only. (Michael Schaap)
Solution: Provide a dialog in both situations. (Chris Lubinski)
Files: src/ex_cmds.c, src/fileio.c, src/proto/fileio.pro

Patch 7.1.018
Problem: When 'virtualedit' is set a "p" of a block just past the end of

the line inserts before the cursor. (Engelke)
Solution: Check for the cursor being just after the line (Chris Lubinski)
Files: src/ops.c

Patch 7.1.019
Problem: ":py" asks for an argument, ":py asd" then gives the error that

":py" isn't implemented. Should already happen for ":py".
Solution: Compare with ex_script_ni. (Chris Lubinski)
Files: src/ex_docmd.c

Patch 7.1.020
Problem: Reading from uninitialized memory when using a dialog. (Dominique

Pelle)
Solution: In msg_show_console_dialog() append a NUL after every appended

character.
Files: src/message.c

Patch 7.1.021 (after 7.1.015)
Problem: Mzscheme interface doesn't compile on Win32.
Solution: Fix the problem that 7.1.015 fixed in a better way. (Sergey Khorev)
Files: src/if_mzsch.c

Patch 7.1.022
Problem: When setting 'keymap' twice the b:keymap_name variable isn't set.

(Milan Berta)
Solution: Don't unlet b:keymap_name for ":loadkeymap". (Martin Toft)
Files: src/digraph.c

Patch 7.1.023
Problem: "dw" in a line with one character deletes the line. Vi and nvi

don't do this. (Kjell Arne Rekaa)
Solution: Check for one-character words especially.

version7.txt — 2566

Files: src/search.c

Patch 7.1.024
Problem: Using a pointer that has become invalid. (Chris Monson)
Solution: Obtain the line pointer again after we looked at another line.
Files: src/search.c

Patch 7.1.025
Problem: search() and searchpos() don't use match under cursor at start of

line when using 'bc' flags. (Viktor Kojouharov)
Solution: Don't go to the previous line when the 'c' flag is present.

Also fix that "j" doesn't move the cursor to the right column.
Files: src/eval.c, src/search.c

Patch 7.1.026
Problem: "[p" doesn't work in Visual mode. (David Brown)
Solution: Use checkclearop() instead of checkclearopq().
Files: src/normal.c

Patch 7.1.027
Problem: On Sun systems opening /dev/fd/N doesn't work, and they are used

by process substitutions.
Solution: Allow opening specific character special files for Sun systems.

(Gary Johnson)
Files: src/fileio.c, src/os_unix.h

Patch 7.1.028
Problem: Can't use last search pattern for ":sort". (Brian McKee)
Solution: When the pattern is empty use the last search pattern. (Martin

Toft)
Files: runtime/doc/change.txt, src/ex_cmds.c

Patch 7.1.029 (after 7.1.019)
Problem: Can't compile when all interfaces are used. (Taylor Venable)
Solution: Only check for ex_script_ni when it's defined.
Files: src/ex_docmd.c

Patch 7.1.030
Problem: The "vimtutor" shell script checks for "vim6" but not for "vim7".

(Christian Robinson)
Solution: Check for more versions, but prefer using "vim".
Files: src/vimtutor

Patch 7.1.031
Problem: virtcol([123, '$']) doesn't work. (Michael Schaap)
Solution: When '$' is used for the column number get the last column.
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.1.032
Problem: Potential crash when editing a command line. (Chris Monson)
Solution: Check the position to avoid access before the start of an array.
Files: src/ex_getln.c

Patch 7.1.033
Problem: A buffer is marked modified when it was first deleted and then

added again using a ":next" command. (John Mullin)
Solution: When checking if a buffer is modified use the BF_NEVERLOADED flag.
Files: src/option.c

Patch 7.1.034

version7.txt — 2567

Problem: Win64: A few compiler warnings. Problems with optimizer.
Solution: Use int instead of size_t. Disable the optimizer in one function.

(George V. Reilly)
Files: src/eval.c, src/spell.c

Patch 7.1.035
Problem: After ":s/./&/#" all listed lines have a line number. (Yakov

Lerner)
Solution: Reset the line number flag when not using the "&" flag.
Files: src/ex_cmds.c

Patch 7.1.036
Problem: Completing ":echohl" argument should include "None". (Ori

Avtalion) ":match" should have "none" too.
Solution: Add flags to use expand_highlight(). Also fix that when disabling

FEAT_CMDL_COMPL compilation fails. (Chris Lubinski)
Files: src/eval.c, src/ex_docmd.c, src/ex_getln.c, src/proto/syntax.pro

src/syntax.c

Patch 7.1.037
Problem: strcpy() used for overlapping strings. (Chris Monson)
Solution: Use mch_memmove() instead.
Files: src/option.c

Patch 7.1.038
Problem: When 'expandtab' is set then a Tab copied for 'copyindent' is

expanded to spaces, even when 'preserveindent' is set. (Alexei
Alexandrov)

Solution: Remove the check for 'expandtab'. Also fix that ">>" doesn't obey
'preserveindent'. (Chris Lubinski)

Files: src/misc1.c

Patch 7.1.039
Problem: A tag in a help file that starts with "help-tags" and contains a

percent sign may make Vim crash. (Ulf Harnhammar)
Solution: Use puts() instead of fprintf().
Files: src/ex_cmds.c

Patch 7.1.040
Problem: ":match" only supports three matches.
Solution: Add functions clearmatches(), getmatches(), matchadd(),

matchdelete() and setmatches(). Changed the data structures for
this. A small bug in syntax.c is fixed, so newly created
highlight groups can have their name resolved correctly from their
ID. (Martin Toft)

Files: runtime/doc/eval.txt, runtime/doc/pattern.txt,
runtime/doc/usr_41.txt, src/eval.c, src/ex_docmd.c,
src/proto/window.pro, src/screen.c, src/structs.h, src/syntax.c,
src/testdir/Makefile, src/testdir/test63.in,
src/testdir/test63.ok, src/window.c

Patch 7.1.041 (extra, after 7.1.040)
Problem: Some changes for patch 7.1.040 are in extra files.
Solution: Update the extra files.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.1.042 (after 7.1.040)
Problem: Internal error when using matchadd(). (David Larson)
Solution: Check the third argument to be present before using the fourth

version7.txt — 2568

argument. (Martin Toft)
Files: src/eval.c

Patch 7.1.043
Problem: In Ex mode using CTRL-D twice may cause a crash. Cursor isn't

positioned properly after CTRL-D.
Solution: Set prev_char properly. Position the cursor correctly. (Antony

Scriven)
Files: src/ex_getln.c

Patch 7.1.044
Problem: In Insert mode 0 CTRL-T deletes all indent, it should add indent.

(Gautam Iyer)
Solution: Check for CTRL-D typed.
Files: src/edit.c

Patch 7.1.045
Problem: Unnecessary screen redrawing. (Jjgod Jiang)
Solution: Reset "must_redraw" after clearing the screen.
Files: src/screen.c

Patch 7.1.046
Problem: ":s" command removes combining characters. (Ron Aaron)
Solution: Copy composing characters individually. (Chris Lubinski)
Files: src/regexp.c

Patch 7.1.047
Problem: vim_regcomp() called with invalid argument. (Xiaozhou Liu)
Solution: Change TRUE to RE_MAGIC + RE_STRING.
Files: src/ex_eval.c

Patch 7.1.048
Problem: The matchparen plugin doesn't update the match when scrolling with

the mouse wheel. (Ilya Bobir)
Solution: Set the match highlighting for text that can be scrolled into the

viewable area without moving the cursor. (Chris Lubinski)
Files: runtime/plugin/matchparen.vim

Patch 7.1.049
Problem: Cannot compile GTK2 version with Hangul input feature.
Solution: Don't define FEAT_XFONTSET when using GTK2.
Files: src/feature.h

Patch 7.1.050
Problem: Possible crash when using C++ indenting. (Chris Monson)
Solution: Keep the line pointer to the line to compare with. Avoid going

past the end of line.
Files: src/misc1.c

Patch 7.1.051
Problem: Accessing uninitialized memory when finding spell suggestions.
Solution: Don't try swapping characters at the end of a word.
Files: src/spell.c

Patch 7.1.052
Problem: When creating a new match not all fields are initialized, which

may lead to unpredictable results.
Solution: Initialise rmm_ic and rmm_maxcol.
Files: src/window.c

version7.txt — 2569

Patch 7.1.053
Problem: Accessing uninitialized memory when giving a message.
Solution: Check going the length before checking for a NUL byte.
Files: src/message.c

Patch 7.1.054
Problem: Accessing uninitialized memory when displaying the fold column.
Solution: Add a NUL to the extra array. (Dominique Pelle). Also do this in

a couple of other situations.
Files: src/screen.c

Patch 7.1.055
Problem: Using strcpy() with arguments that overlap.
Solution: Use mch_memmove() instead.
Files: src/buffer.c, src/charset.c, src/eval.c, src/ex_getln.c,

src/misc1.c, src/regexp.c, src/termlib.c

Patch 7.1.056
Problem: More prompt does not behave correctly after scrolling back.

(Randall W. Morris)
Solution: Avoid lines_left becomes negative. (Chris Lubinski) Don't check

mp_last when deciding to show the more prompt. (Martin Toft)
Files: src/message.c

Patch 7.1.057
Problem: Problem with CursorHoldI when using "r" in Visual mode (Max

Dyckhoff)
Solution: Ignore CursorHold(I) when getting a second character for a Normal

mode command. Also abort the "r" command in Visual when a special
key is typed.

Files: src/normal.c

Patch 7.1.058
Problem: When 'rightleft' is set the completion menu is positioned wrong.

(Baha-Eddine MOKADEM)
Solution: Fix the completion menu. (Martin Toft)
Files: src/popupmnu.c, src/proto/search.pro, src/search.c

Patch 7.1.059
Problem: When in Ex mode and doing "g/^/vi" and then pressing CTRL-C Vim

hangs and beeps. (Antony Scriven)
Solution: Clear "got_int" in the main loop to avoid the hang. When typing

CTRL-C twice in a row abort the ":g" command. This is Vi
compatible.

Files: src/main.c

Patch 7.1.060
Problem: Splitting quickfix window messes up window layout. (Marius

Gedminas)
Solution: Compute the window size in a smarter way. (Martin Toft)
Files: src/window.c

Patch 7.1.061
Problem: Win32: When 'encoding' is "latin1" 'ignorecase' doesn't work for

characters with umlaut. (Joachim Hofmann)
Solution: Do not use islower()/isupper()/tolower()/toupper() but our own

functions. (Chris Lubinski)
Files: src/mbyte.c, src/regexp.c, src/vim.h

Patch 7.1.062 (after 7.1.038)

version7.txt — 2570

Problem: Indents of C comments can be wrong. (John Mullin)
Solution: Adjust ind_len. (Chris Lubinski)
Files: src/misc1.c

Patch 7.1.063 (after 7.1.040)
Problem: Warning for uninitialized variable.
Solution: Initialise it to NULL.
Files: src/ex_docmd.c

Patch 7.1.064
Problem: On Interix some files appear not to exist.
Solution: Remove the top bit from st_mode. (Ligesh)
Files: src/os_unix.c

Patch 7.1.065 (extra)
Problem: Win32: Compilation problem for newer version of w32api.
Solution: Only define __IID_DEFINED__ when needed. (Chris Sutcliffe)
Files: src/Make_ming.mak, src/iid_ole.c

Patch 7.1.066
Problem: When 'bomb' is set or reset the file should be considered

modified. (Tony Mechelynck)
Solution: Handle like 'endofline'. (Martin Toft)
Files: src/buffer.c, src/fileio.c, src/option.c, src/structs.h

Patch 7.1.067
Problem: 'thesaurus' doesn't work when 'infercase' is set. (Mohsin)
Solution: Don't copy the characters being completed but check the case and

apply it to the suggested word. Also fix that the first word in
the thesaurus line is not used. (Martin Toft)

Files: src/edit.c

Patch 7.1.068
Problem: When 'equalalways' is set and splitting a window, it's possible

that another small window gets bigger.
Solution: Only equalize window sizes when after a split the windows are

smaller than another window. (Martin Toft)
Files: runtime/doc/options.txt, runtime/doc/windows.txt, src/window.c

Patch 7.1.069
Problem: GTK GUI: When using confirm() without a default button there still

is a default choice.
Solution: Ignore Enter and Space when there is no default button. (Chris

Lubinski)
Files: src/gui_gtk.c

Patch 7.1.070 (extra)
Problem: Win32 GUI: When using confirm() without a default button there

still is a default choice.
Solution: Set focus on something else than a button. (Chris Lubinski)
Files: src/gui_w32.c

Patch 7.1.071 (after 7.1.040)
Problem: Regexp patterns are not tested.
Solution: Add a basic test, to be expanded later.

Also add (commented-out) support for valgrind.
Files: src/testdir/Makefile, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.1.072 (extra, after 7.1.041 and 7.1.071)
Problem: Some changes for patch 7.1.071 are in extra files.

version7.txt — 2571

Solution: Update the extra files. Also fix a few warnings from the DOS test
makefile.

Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.1.073 (after 7.1.062)
Problem: Wrong cursor position and crash when 'preserveindent' is set.

(Charles Campbell)
Solution: Handle the situation that we start without indent. (Chris

Lubinski)
Files: src/misc1.c

Patch 7.1.074
Problem: Crash when calling string() on a recursively nested List.
Solution: Check result value for being NULL. (Yukihiro Nakadaira)
Files: src/eval.c

Patch 7.1.075
Problem: ":let v:statusmsg" reads memory already freed.
Solution: Don't set v:statusmsg when listing it.
Files: src/eval.c

Patch 7.1.076
Problem: Another strcpy() with overlapping arguments.
Solution: Use mch_memmove(). (Dominique Pelle) And another one.
Files: src/ex_docmd.c, src/normal.c

Patch 7.1.077
Problem: Using "can_spell" without initializing it. (Dominique Pelle)
Solution: Set a default for get_syntax_attr().
Files: src/syntax.c

Patch 7.1.078
Problem: Dropping a file name on gvim that contains a CSI byte doesn't work

when editing the command line.
Solution: Escape the CSI byte when inserting in the input buffer. (Yukihiro

Nakadaira)
Files: src/gui.c, src/ui.c

Patch 7.1.079
Problem: When the locale is "C" and 'encoding' is "latin1" then the "@"

character in 'isfname', 'isprint', etc. doesn't pick up accented
characters.

Solution: Instead of isalpha() use MB_ISLOWER() and MB_ISUPPER().
Files: src/charset.c, src/macros.h

Patch 7.1.080 (extra)
Problem: Compiler warnings for using "const char *" for "char *".
Solution: Add type casts. (Chris Sutcliffe)
Files: src/GvimExt/gvimext.cpp

Patch 7.1.081
Problem: Command line completion for a shell command: "cat </tmp/file<Tab>"

doesn't work.
Solution: Start the file name at any character that can't be in a file name.

(Martin Toft)
Files: src/ex_docmd.c

Patch 7.1.082
Problem: After a ":split" the matchparen highlighting isn't there.

version7.txt — 2572

Solution: Install a WinEnter autocommand. Also fixes that after
":NoMatchParen" only the current window is updated. (Martin Toft)

Files: runtime/doc/pi_paren.txt, runtime/plugin/matchparen.vim

Patch 7.1.083 (after 7.1.081)
Problem: Command line completion doesn't work with wildcards.
Solution: Add vim_isfilec_or_wc() and use it. (Martin Toft)
Files: src/charset.c, src/proto/charset.pro, src/ex_docmd.c

Patch 7.1.084
Problem: Using the "-nb" argument twice causes netbeans not to get

fileOpened events.
Solution: Change "&" to "&&". (Xavier de Gaye)
Files: src/ex_cmds.c

Patch 7.1.085
Problem: ":e fold.c" then ":sp fold.c" results in folds of original window

to disappear. (Akita Noek)
Solution: Invoke foldUpdateAll() for all windows of the changed buffer.

(Martin Toft)
Files: src/ex_cmds.c

Patch 7.1.086
Problem: Crash when using specific Python syntax highlighting. (Quirk)
Solution: Check for a negative index, coming from a keyword match at the

start of a line from a saved state.
Files: src/syntax.c

Patch 7.1.087
Problem: Reading past ":cscope find" command. Writing past end of a buffer.
Solution: Check length of the argument before using the pattern. Use

vim_strncpy(). (Dominique Pelle)
Files: if_cscope.c

Patch 7.1.088 (extra)
Problem: The coordinates used by ":winpos" differ from what getwinposx()

and getwinposy() return.
Solution: Use MoveWindowStructure() instead of MoveWindow(). (Michael Henry)
Files: src/gui_mac.c

Patch 7.1.089
Problem: ":let loaded_getscriptPlugin" doesn't clear to eol, result is

"#1in".
Solution: Clear to the end of the screen after displaying the first variable

value.
Files: src/eval.c

Patch 7.1.090
Problem: Compiler warning on Mac OS X 10.5.
Solution: Don't redeclare sigaltstack(). (Hisashi T Fujinaka)
Files: src/os_unix.c

Patch 7.1.091 (extra)
Problem: Win32: Can't embed Vim inside another application.
Solution: Add the --windowid argument. (Nageshwar)
Files: runtime/doc/gui_w32.txt, runtime/doc/starting.txt,

runtime/doc/vi_diff.txt, src/globals.h, src/gui_w32.c, src/main.c

Patch 7.1.092 (extra, after 7.1.088)
Problem: Wrong arguments for MoveWindowStructure().

version7.txt — 2573

Solution: Remove "TRUE". (Michael Henry)
Files: src/gui_mac.c

Patch 7.1.093
Problem: Reading past end of a screen line when determining cell width.

(Dominique Pelle)
Solution: Add an argument to mb_off2cells() for the maximum offset.
Files: src/globals.h, src/gui.c, src/mbyte.c, src/proto/mbyte.pro,

src/screen.c

Patch 7.1.094
Problem: When checking if syntax highlighting is present, looking in the

current buffer instead of the specified one.
Solution: Use "buf" instead of "curbuf".
Files: src/syntax.c

Patch 7.1.095
Problem: The FocusLost and FocusGained autocommands are triggered

asynchronously in the GUI. This may cause arbitrary problems.
Solution: Put the focus event in the input buffer and handle it when ready

for it.
Files: src/eval.c, src/getchar.c, src/gui.c, src/gui_gtk_x11.c,

src/keymap.h

Patch 7.1.096
Problem: Reading past end of a string when resizing Vim. (Dominique Pelle)
Solution: Check the string pointer before getting the char it points to.
Files: src/message.c

Patch 7.1.097
Problem: ":setlocal stl=%!1+1" does not work.
Solution: Adjust check for pointer. (Politz)
Files: src/option.c

Patch 7.1.098
Problem: ":call s:var()" doesn't work if "s:var" is a Funcref. (Andy Wokula)
Solution: Before converting "s:" into a script ID, check if it is a Funcref.
Files: src/eval.c

Patch 7.1.099
Problem: When the 'keymap' and 'paste' options have a non-default value,

":mkexrc" and ":mksession" do not correctly set the options.
Solution: Set the options with side effects before other options.
Files: src/option.c

Patch 7.1.100
Problem: Win32: Executing cscope doesn't always work properly.
Solution: Use another way to invoke cscope. (Mike Williams)
Files: src/if_cscope.c, src/if_cscope.h, src/main.c,

src/proto/if_cscope.pro

Patch 7.1.101
Problem: Ruby: The Buffer.line= method does not work.
Solution: Add the "self" argument to set_current_line(). (Jonathan Hankins)
Files: src/if_ruby.c

Patch 7.1.102
Problem: Perl interface doesn't compile with new version of Perl.
Solution: Add two variables to the dynamic library loading. (Suresh

Govindachar)

version7.txt — 2574

Files: src/if_perl.xs

Patch 7.1.103
Problem: Using "dw" with the cursor past the end of the last line (using

CTRL-\ CTRL-O from Insert mode) deletes a character. (Tim Chase)
Solution: Don't move the cursor back when the movement failed.
Files: src/normal.c

Patch 7.1.104 (after 7.1.095)
Problem: When 'lazyredraw' is set a focus event causes redraw to be

postponed until a key is pressed.
Solution: Instead of not returning from vgetc() when a focus event is

encountered return K_IGNORE. Add plain_vgetc() for when the
caller doesn't want to get K_IGNORE.

Files: src/digraph.c, src/edit.c, src/ex_cmds.c, src/ex_getln.c,
src/getchar.c, src/normal.c, src/proto/getchar.pro, src/window.c

Patch 7.1.105
Problem: Internal error when using "0 ? {'a': 1} : {}". (A.Politz)
Solution: When parsing a dictionary value without using the value, don't try

obtaining the key name.
Files: src/eval.c

Patch 7.1.106
Problem: ":messages" doesn't quit listing on ":".
Solution: Break the loop when "got_int" is set.
Files: src/message.c

Patch 7.1.107
Problem: When doing a block selection and using "s" to change the text,

while triggering auto-indenting, causes the wrong text to be
repeated in other lines. (Adri Verhoef)

Solution: Compute the change of indent and compensate for that.
Files: src/ops.c

Patch 7.1.108 (after 7.1.100)
Problem: Win32: Compilation problems in Cscope code. (Jeff Lanzarotta)
Solution: Use (long) instead of (intptr_t) when it's not defined.
Files: src/if_cscope.c

Patch 7.1.109
Problem: GTK: when there are many tab pages, clicking on the arrow left of

the labels moves to the next tab page on the right. (Simeon Bird)
Solution: Check the X coordinate of the click and pass -1 as value for the

left arrow.
Files: src/gui_gtk_x11.c, src/term.c

Patch 7.1.110 (after 7.1.102)
Problem: Win32: Still compilation problems with Perl.
Solution: Change the #ifdefs. (Suresh Govindachar)
Files: src/if_perl.xs

Patch 7.1.111
Problem: When using ":vimgrep" with the "j" flag folds from another buffer

may be displayed. (A.Politz)
Solution: When not jumping to another buffer update the folds.
Files: src/quickfix.c

Patch 7.1.112
Problem: Using input() with a wrong argument may crash Vim. (A.Politz)

version7.txt — 2575

Solution: Init the input() return value to NULL.
Files: src/eval.c

Patch 7.1.113
Problem: Using map() to go over an empty list causes memory to be freed

twice. (A.Politz)
Solution: Don't clear the typeval in restore_vimvar().
Files: src/eval.c

Patch 7.1.114
Problem: Memory leak in getmatches().
Solution: Don't increment the refcount twice.
Files: src/eval.c

Patch 7.1.115 (after 7.1.105)
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Init variable to NULL.
Files: src/eval.c

Patch 7.1.116
Problem: Cannot display Unicode characters above 0x10000.
Solution: Remove the replacement with a question mark when UNICODE16 is not

defined. (partly by Nicolas Weber)
Files: src/screen.c

Patch 7.1.117
Problem: Can't check whether Vim was compiled with Gnome. (Tony Mechelynck)
Solution: Add gui_gnome to the has() list.
Files: src/eval.c

Patch 7.1.118 (after 7.1.107)
Problem: Compiler warning for Visual C compiler.
Solution: Add typecast. (Mike Williams)
Files: src/ops.c

Patch 7.1.119
Problem: Crash when 'cmdheight' set to very large value. (A.Politz)
Solution: Limit 'cmdheight' to 'lines' minus one. Store right value of

'cmdheight' when running out of room.
Files: src/option.c, src/window.c

Patch 7.1.120
Problem: Can't properly check memory leaks while running tests.
Solution: Add an argument to garbagecollect(). Delete functions and

variables in the test scripts.
Files: runtime/doc/eval.txt src/eval.c, src/globals.h, src/main.c,

src/testdir/Makefile, src/testdir/test14.in,
src/testdir/test26.in, src/testdir/test34.in,
src/testdir/test45.in, src/testdir/test47.in,
src/testdir/test49.in, src/testdir/test55.in,
src/testdir/test56.in, src/testdir/test58.in,
src/testdir/test59.in, src/testdir/test60.in,
src/testdir/test60.vim, src/testdir/test62.in,
src/testdir/test63.in, src/testdir/test64.in,

Patch 7.1.121
Problem: Using ":cd %:h" when editing a file in the current directory

results in an error message for using an empty string.
Solution: When "%:h" results in an empty string use ".".
Files: src/eval.c

version7.txt — 2576

Patch 7.1.122
Problem: Mac: building Vim.app fails. Using wrong architecture.
Solution: Use line continuation for the gui_bundle dependency. Detect the

system architecture with "uname -a".
Files: src/main.aap

Patch 7.1.123
Problem: Win32: ":edit foo ~ foo" expands "~".
Solution: Change the call to expand_env().
Files: src/ex_docmd.c, src/misc1.c, src/proto/misc1.pro, src/option.c

Patch 7.1.124 (extra)
Problem: Mac: When dropping a file on Vim.app that is already in the buffer

list (from .viminfo) results in editing an empty, unnamed buffer.
(Axel Kielhorn) Also: warning for unused variable.

Solution: Move to the buffer of the first argument. Delete unused variable.
Files: src/gui_mac.c

Patch 7.1.125
Problem: The TermResponse autocommand event is not always triggered. (Aron

Griffis)
Solution: When unblocking autocommands check if v:termresponse changed and

trigger the event then.
Files: src/buffer.c, src/diff.c, src/ex_getln.c, src/fileio.c,

src/globals.h, src/misc2.c, src/proto/fileio.pro, src/window.c

Patch 7.1.126 (extra)
Problem: ":vimgrep */*" fails when a BufRead autocommand changes directory.

(Bernhard Kuhn)
Solution: Change back to the original directory after loading a file.

Also: use shorten_fname1() to avoid duplicating code.
Files: src/buffer.c, src/ex_docmd.c, src/fileio.c, src/gui_gtk.c,

src/gui_w48.c, src/proto/ex_docmd.pro, src/proto/fileio.pro,
src/quickfix.c

Patch 7.1.127
Problem: Memory leak when doing cmdline completion. (Dominique Pelle)
Solution: Free "orig" argument of ExpandOne() when it's not used.
Files: src/ex_getln.c

Patch 7.1.128 (extra)
Problem: Build problems with new version of Cygwin.
Solution: Remove -D__IID_DEFINED__, like with MingW. (Guopeng Wen)
Files: src/Make_cyg.mak

Patch 7.1.129 (extra)
Problem: Win32: Can't get the user name when it is longer than 15

characters.
Solution: Use UNLEN instead of MAX_COMPUTERNAME_LENGTH. (Alexei Alexandrov)
Files: src/os_win32.c

Patch 7.1.130
Problem: Crash with specific order of undo and redo. (A.Politz)
Solution: Clear and adjust pointers properly. Add u_check() for debugging.
Files: src/undo.c, src/structs.h

Patch 7.1.131
Problem: ":mksession" always adds ":setlocal autoread". (Christian J.

Robinson)

version7.txt — 2577

Solution: Skip boolean global/local option using global value.
Files: src/option.c

Patch 7.1.132
Problem: getpos("'>") may return a negative column number for a Linewise

selection. (A.Politz)
Solution: Don't add one to MAXCOL.
Files: src/eval.c

Patch 7.1.133 (after 7.1.126)
Problem: shorten_fname1() linked when it's not needed.
Solution: Add #ifdef.
Files: src/fileio.c

Patch 7.1.134 (extra)
Problem: Win32: Can't build with VC8
Solution: Detect the MSVC version instead of using NMAKE_VER.

(Mike Williams)
Files: src/Make_mvc.mak

Patch 7.1.135
Problem: Win32: When editing a file c:\tmp\foo and c:\tmp\\foo we have two

buffers for the same file. (Suresh Govindachar)
Solution: Invoke FullName_save() when a path contains "//" or "\\".
Files: src/buffer.c

Patch 7.1.136
Problem: Memory leak when using Ruby syntax highlighting. (Dominique Pelle)
Solution: Free the contained-in list.
Files: src/syntax.c

Patch 7.1.137
Problem: Build failure when using EXITFREE. (Dominique Pelle)
Solution: Add an #ifdef around using clip_exclude_prog.
Files: src/misc2.c

Patch 7.1.138
Problem: The Perl Msg() function doesn't stop when "q" is typed at the more

prompt. (Hari Krishna Dara)
Solution: Check got_int.
Files: src/if_perl.xs

Patch 7.1.139
Problem: When using marker folding and ending Insert mode with CTRL-C the

current fold is truncated. (Fred Kater)
Solution: Ignore got_int while updating folds.
Files: src/fold.c

Patch 7.1.140
Problem: v:count is set only after typing a non-digit, that makes it

difficult to make a nice mapping.
Solution: Set v:count while still typing the count.
Files: src/normal.c

Patch 7.1.141
Problem: GTK: -geom argument doesn't support a negative offset.
Solution: Compute position from the right/lower corner.
Files: src/gui_gtk_x11.c

Patch 7.1.142

version7.txt — 2578

Problem: ":redir @A>" doesn't work.
Solution: Ignore the extra ">" also when appending. (James Vega)
Files: src/ex_docmd.c

Patch 7.1.143
Problem: Uninitialized memory read when diffing three files. (Dominique

Pelle)
Solution: Remove "+ !notset" so that we don't use fields that were not

computed.
Files: src/diff.c

Patch 7.1.144
Problem: After ":diffup" cursor can be in the wrong position.
Solution: Force recomputing the cursor position.
Files: src/diff.c

Patch 7.1.145
Problem: Insert mode completion: When using the popup menu, after

completing a word and typing a non-word character Vim is still
completing the same word, following CTRL-N doesn't work.
Insert mode Completion: When using CTRL-X O and there is only
"struct." before the cursor, typing one char to reduce the
matches, then BS completion stops.

Solution: When typing a character that is not part of the item being
completed, stop complete mode. For whole line completion also
accept a space. For file name completion stop at a path
separator.
For omni completion stay in completion mode even if completing
with empty string.

Files: src/edit.c

Patch 7.1.146 (extra)
Problem: VMS: Files with a very rare record organization (VFC) cannot be

properly written by Vim.
On older VAX systems mms runs into a syntax error.

Solution: Check for this special situation. Do not wrap a comment, make it
one long line. (Zoltan Arpadffy)

Files: src/fileio.c, src/Make_vms.mms

Patch 7.1.147 (after 7.1.127)
Problem: Freeing memory already freed when completing user name. (Meino

Cramer)
Solution: Use a flag to remember if "orig" needs to be freed.
Files: src/ex_getln.c

Patch 7.1.148
Problem: Some types are not found by configure.
Solution: Test for the sys/types.h header file. (Sean Boudreau)
Files: src/configure.in, src/auto/configure

Patch 7.1.149
Problem: GTK GUI: When the completion popup menu is used scrolling another

window by the scrollbar is OK, but using the scroll wheel it
behaves line <Enter>.

Solution: Ignore K_MOUSEDOWN and K_MOUSEUP. Fix redrawing the popup menu.
Files: src/edit.c, src/gui.c

Patch 7.1.150
Problem: When 'clipboard' has "unnamed" using "p" in Visual mode doesn't

work correctly. (Jianrong Yu)

version7.txt — 2579

Solution: When 'clipboard' has "unnamed" also obtain the selection when
getting the default register.

Files: src/ops.c

Patch 7.1.151
Problem: Using whole line completion with 'ignorecase' and 'infercase' set

and the line is empty get an lalloc(0) error.
Solution: Don't try changing case for an empty match. (Matthew Wozniski)
Files: src/edit.c

Patch 7.1.152
Problem: Display problem when 'hls' and 'cursorcolumn' are set and

searching for "$". (John Mullin) Also when scrolling
horizontally when 'wrap' is off.

Solution: Keep track of the column where highlighting was set. Check the
column offset when skipping characters.

Files: src/screen.c

Patch 7.1.153
Problem: Compiler warnings on SGI. Undefined XpmAllocColor (Charles

Campbell)
Solution: Add type casts. Init st_dev and st_ino separately. Don't use

type casts for vim_snprintf() when HAVE_STDARG_H is defined.
Define XpmAllocColor when needed.

Files: src/eval.c, src/ex_cmds.c, src/fileio.c, src/misc2.c,
src/gui_xmebw.c

Patch 7.1.154
Problem: Compiler warning for signed/unsigned compare.
Solution: Add type cast.
Files: src/screen.c

Patch 7.1.155
Problem: Crash when 'undolevels' is 0 and repeating "udd". (James Vega)
Solution: When there is only one branch use u_freeheader() to delete it.
Files: src/undo.c

Patch 7.1.156
Problem: Overlapping arguments for strcpy() when expanding command line

variables.
Solution: Use mch_memmove() instead of STRCPY(). Also fix a few typos.

(Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.1.157
Problem: In Ex mode, :" gives an error at end-of-file. (Michael Hordijk)
Solution: Only give an error for an empty line, not for a comment.
Files: src/ex_docmd.c

Patch 7.1.158 (extra)
Problem: Win32 console: When 'encoding' is "utf-8" and typing Alt-y the

result is wrong. Win32 GUI: Alt-y results in "u" when 'encoding'
is "cp1250" (Lukas Cerman)

Solution: For utf-8 don't set the 7th bit in a byte, convert to the correct
byte sequence. For cp1250, when conversion to 'encoding' results
in the 7th bit not set, set the 7th bit after conversion.

Files: src/os_win32.c, src/gui_w48.c

Patch 7.1.159
Problem: strcpy() has overlapping arguments.

version7.txt — 2580

Solution: Use mch_memmove() instead. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.1.160
Problem: When a focus autocommand is defined, getting or losing focus

causes the hit-enter prompt to be redrawn. (Bjorn Winckler)
Solution: Overwrite the last line.
Files: src/message.c

Patch 7.1.161
Problem: Compilation errors with tiny features and EXITFREE.
Solution: Add #ifdefs. (Dominique Pelle)
Files: src/edit.c, src/misc2.c

Patch 7.1.162
Problem: Crash when using a modifier before "while" or "for". (A.Politz)
Solution: Skip modifiers when checking for a loop command.
Files: src/proto/ex_docmd.pro, src/ex_docmd.c, src/ex_eval.c

Patch 7.1.163
Problem: Warning for the unknown option 'bufsecret'.
Solution: Remove the lines .vim that use this option. (Andy Wokula)
Files: runtime/menu.vim

Patch 7.1.164
Problem: Reading past end of regexp pattern. (Dominique Pelle)
Solution: Use utf_ptr2len().
Files: src/regexp.c

Patch 7.1.165
Problem: Crash related to getting X window ID. (Dominique Pelle)
Solution: Don't trust the window ID that we got in the past, check it every

time.
Files: src/os_unix.c

Patch 7.1.166
Problem: Memory leak for using "gp" in Visual mode.
Solution: Free memory in put_register(). (Dominique Pelle)
Files: src/ops.c

Patch 7.1.167
Problem: Xxd crashes when using "xxd -b -c 110". (Debian bug 452789)
Solution: Allocate more memory. Fix check for maximum number of columns.
Files: src/xxd/xxd.c

Patch 7.1.168 (extra)
Problem: Win32 GUI: Since patch 7.1.095, when the Vim window does not have

focus, clicking in it doesn't position the cursor. (Juergen
Kraemer)

Solution: Don't reset s_button_pending just after receiving focus.
Files: src/gui_w48.c

Patch 7.1.169
Problem: Using uninitialized variable when system() fails. (Dominique

Pelle)
Solution: Let system() return an empty string when it fails.
Files: src/eval.c

Patch 7.1.170
Problem: Valgrind warning for overlapping arguments for strcpy().

version7.txt — 2581

Solution: Use mch_memmove() instead. (Dominique Pelle)
Files: src/getchar.c

Patch 7.1.171
Problem: Reading one byte before allocated memory.
Solution: Check index not to become negative. (Dominique Pelle)
Files: src/ex_getln.c

Patch 7.1.172
Problem: When 'buftype' is "acwrite" Vim still checks if the file or

directory exists before overwriting.
Solution: Don't check for overwriting when the buffer name is not a file

name.
Files: src/ex_cmds.c

Patch 7.1.173
Problem: Accessing freed memory. (Dominique Pelle)
Solution: Don't call reg_getline() to check if a line is the first in the

file.
Files: src/regexp.c

Patch 7.1.174
Problem: Writing NUL past end of a buffer.
Solution: Copy one byte less when using strncat(). (Dominique Pelle)
Files: src/ex_cmds.c, src/ex_docmd.c,

Patch 7.1.175
Problem: <BS> doesn't work with some combination of 'sts', 'linebreak' and

'backspace'. (Francois Ingelrest)
Solution: When adding white space results in not moving back delete one

character.
Files: src/edit.c

Patch 7.1.176
Problem: Building with Aap fails when the "compiledby" argument contains

'<' or '>' characters. (Alex Yeh)
Solution: Change how quoting is done in the Aap recipe.
Files: src/main.aap

Patch 7.1.177
Problem: Freeing memory twice when in debug mode while reading a script.
Solution: Ignore script input while in debug mode.
Files: src/ex_cmds2.c, src/getchar.c, src/globals.h

Patch 7.1.178
Problem: "%" doesn't work on "/* comment // comment */".
Solution: Don't handle the "//" in "*//*" as a C++ comment. (Markus

Heidelberg)
Files: src/search.c

Patch 7.1.179
Problem: Need to check for TCL 8.5.
Solution: Adjust configure script. (Alexey Froloff)
Files: src/configure.in, src/auto/configure

Patch 7.1.180
Problem: Regexp patterns not tested sufficiently.
Solution: Add more checks to the regexp test.
Files: src/testdir/test64.in, src/testdir/test64.ok

version7.txt — 2582

Patch 7.1.181
Problem: Accessing uninitialized memory in Farsi mode. (Dominique Pelle)
Solution: Only invoke lrF_sub() when there is something to do.
Files: src/ex_cmds.c

Patch 7.1.182
Problem: When using tab pages and an argument list the session file may

contain wrong "next" commands. (Alexander Bluem)
Solution: Use "argu" commands and only when needed.
Files: src/ex_docmd.c

Patch 7.1.183
Problem: "Internal error" for ":echo matchstr('a', 'a\%[\&]')" (Mitanu

Paul)
Solution: Inside "\%[]" detect \&, \| and \) as an error.
Files: src/regexp.c

Patch 7.1.184
Problem: Crash when deleting backwards over a line break in Insert mode.
Solution: Don't advance the cursor when it's already on the NUL after a

line. (Matthew Wozniski)
Files: src/normal.c

Patch 7.1.185
Problem: Using "gR" with a multibyte encoding and typing a CR pushes

characters onto the replace stack incorrectly, resulting in BS
putting back the wrong characters. (Paul B. Mahol)

Solution: Push multibyte characters onto the replace stack in reverse byte
order. Add replace_push_mb().

Files: src/edit.c, src/misc1.c, src/proto/edit.pro

Patch 7.1.186
Problem: "expand('<afile>')" returns a bogus value after changing

directory. (Dave Fishburn)
Solution: Copy "autocmd_fname" to allocated memory and expand to full

filename. Shorten the path when expanding <afile>.
Files: src/ex_docmd.c, src/fileio.c

Patch 7.1.187
Problem: Win32 GUI: Custom completion using system() no longer works

after patch 7.1.104. (Erik Falor)
Solution: Loop when safe_vgetc() returns K_IGNORE.
Files: src/ex_getln.c

Patch 7.1.188
Problem: When 'showmode' is off the message for changing a readonly file is

given in the second column instead of the first. (Payl B. Mahol)
Solution: Put the W10 message in the first column.
Files: src/edit.c

Patch 7.1.189 (after 7.1.104)
Problem: Patch 7.1.104 was incomplete.
Solution: Also call plain_vgetc() in ask_yesno().
Files: src/misc1.c

Patch 7.1.190
Problem: Cursor after end-of-line: "iA sentence.<Esc>)"
Solution: Move cursor back and make motion inclusive.
Files: src/normal.c

version7.txt — 2583

Patch 7.1.191
Problem: Win32 GUI: after patch 7.1.168 there is still a problem when

clicking in a scrollbar. (Juergen Jottkaerr)
Solution: Don't check the input buffer when dragging the scrollbar.
Files: src/gui.c

Patch 7.1.192
Problem: With Visual block selection, "s" and typing something, CTRL-C

doesn't stop Vim from repeating the replacement in other lines,
like happens for "I".

Solution: Check for "got_int" to be set.
Files: src/ops.c

Patch 7.1.193
Problem: Some Vim 5.x digraphs are missing in Vim 7, even though the

character pairs are not used. (Philippe de Muyter)
Solution: Add those Vim 5.x digraphs that don't conflict with others.
Files: src/digraph.c

Patch 7.1.194
Problem: ":echo glob('~/{}')" results in /home/user//.
Solution: Don't add a slash if there already is one.
Files: src/os_unix.c

Patch 7.1.195
Problem: '0 mark doesn't work for "~/foo ~ foo".
Solution: Don't expand the whole file name, only "~/".
Files: src/mark.c

Patch 7.1.196 (extra)
Problem: Win32 GUI: "\n" in a tooltip doesn't cause a line break. (Erik

Falor)
Solution: Use the TTM_SETMAXTIPWIDTH message.
Files: src/gui_w32.c

Patch 7.1.197
Problem: Mac: "make install" doesn't work when prefix defined.
Solution: Pass different arguments to "make installruntime". (Jjgod Jiang)
Files: src/Makefile

Patch 7.1.198
Problem: Hang when using ":s/\n//gn". (Burak Gorkemli)
Solution: Set "skip_match".
Files: src/ex_cmds.c

Patch 7.1.199
Problem: Can't do command line completion for a specific file name

extension.
Solution: When the pattern ends in "$" don't add a star for completion and

remove the "$" before matching with file names.
Files: runtime/doc/cmdline.txt, src/ex_getln.c

Patch 7.1.200 (after 7.1.177 and 7.1.182)
Problem: Compiler warnings for uninitialized variables.
Solution: Init variables.
Files: src/ex_cmds2.c, src/ex_docmd.c

Patch 7.1.201
Problem: When reading stdin 'fenc' and 'ff' are not set.
Solution: Set the options after reading stdin. (Ben Schmidt)

version7.txt — 2584

Files: src/fileio.c

Patch 7.1.202
Problem: Incomplete utf-8 byte sequence is not checked for validity.
Solution: Check the bytes that are present for being valid. (Ben Schmidt)
Files: src/mbyte.c

Patch 7.1.203
Problem: When 'virtualedit' is "onemore" then "99|" works but ":normal 99|"

doesn't. (Andy Wokula)
Solution: Check for "onemore" flag in check_cursor_col().
Files: src/misc2.c

Patch 7.1.204 (extra)
Problem: Win32: Using the example at 'balloonexpr' the balloon disappears

after four seconds and then comes back again. Also moves the
mouse pointer a little bit. (Yongwei Wu)

Solution: Set the autopop time to 30 seconds (the max value). (Sergey
Khorev) Move the mouse two pixels forward and one back to end up
in the same position (really!).

Files: src/gui_w32.c

Patch 7.1.205
Problem: Can't get the operator in an ":omap".
Solution: Add the "v:operator" variable. (Ben Schmidt)
Files: runtime/doc/eval.txt, src/eval.c, src/normal.c, src/vim.h

Patch 7.1.206
Problem: Compiler warnings when using MODIFIED_BY.
Solution: Add type casts. (Ben Schmidt)
Files: src/version.c

Patch 7.1.207
Problem: Netbeans: "remove" cannot delete one line.
Solution: Remove partial lines and whole lines properly. Avoid a memory

leak. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.1.208
Problem: On Alpha get an unaligned access error.
Solution: Store the dictitem pointer before using it. (Matthew Luckie)
Files: src/eval.c

Patch 7.1.209
Problem: GTK: When using the netrw plugin and doing ":gui" Vim hangs.
Solution: Stop getting a selection after three seconds. This is a hack.
Files: src/gui_gtk_x11.c

Patch 7.1.210
Problem: Listing mapping for 0xdb fails when 'encoding' is utf-8. (Tony

Mechelynck)
Solution: Recognize K_SPECIAL KS_EXTRA KE_CSI as a CSI byte.
Files: src/mbyte.c

Patch 7.1.211
Problem: The matchparen plugin may take an unexpected amount of time, so

that it looks like Vim hangs.
Solution: Add a timeout to searchpair(), searchpairpos(), search() and

searchpos(). Use half a second timeout in the plugin.
Files: runtime/doc/eval.txt, runtime/plugin/matchparen.vim, src/edit.c,

version7.txt — 2585

src/eval.c, src/ex_cmds2.c, src/ex_docmd.c, src/normal.c,
src/proto/eval.pro, src/proto/ex_cmds2.pro, src/proto/search.pro,
src/search.c

Patch 7.1.212
Problem: Accessing a byte before a line.
Solution: Check that the column is 1 or more. (Dominique Pelle)
Files: src/edit.c

Patch 7.1.213
Problem: A ":tabedit" command that results in the "swap file exists" dialog

and selecting "abort" doesn't close the new tab. (Al Budden)
Solution: Pass "old_curwin" to do_exedit().
Files: src/ex_docmd.c

Patch 7.1.214
Problem: ":1s/g\n\zs1//" deletes characters from the first line. (A Politz)
Solution: Start replacing in the line where the match starts.
Files: src/ex_cmds.c

Patch 7.1.215
Problem: It is difficult to figure out what syntax items are nested at a

certain position.
Solution: Add the synstack() function.
Files: runtime/doc/eval.txt, src/eval.c, src/proto/syntax.pro,

src/syntax.c

Patch 7.1.216
Problem: Variants of --remote-tab are not mentioned for "vim --help".
Solution: Display optional -wait and -silent.
Files: src/main.c

Patch 7.1.217
Problem: The "help-tags" tag may be missing from runtime/doc/tags when it

was generated during "make install".
Solution: Add the "++t" argument to ":helptags" to force adding the tag.
Files: runtime/doc/Makefile, runtime/doc/various.txt, src/ex_cmds.c,

src/ex_cmds.h

Patch 7.1.218
Problem: A syntax region without a "keepend", containing a region with

"extend" could be truncated at the end of the containing region.
Solution: Do not call syn_update_ends() when there are no keepend items.
Files: src/syntax.c

Patch 7.1.219 (after 7.1.215)
Problem: synstack() returns situation after the current character, can't

see the state for a one-character region.
Solution: Don't update ending states in the requested column.
Files: runtime/doc/eval.txt, src/eval.c, src/hardcopy.c,

src/proto/syntax.pro, src/screen.c, src/spell.c, src/syntax.c

Patch 7.1.220
Problem: When a ")" or word movement command moves the cursor back from the

end of the line it may end up on the trail byte of a multibyte
character. It's also moved back when it isn't needed.

Solution: Add the adjust_cursor() function.
Files: src/normal.c

Patch 7.1.221

version7.txt — 2586

Problem: When inserting a "(", triggering the matchparen plugin, the
following highlighting may be messed up.

Solution: Before triggering the CursorMovedI autocommands update the display
to update the stored syntax stacks for the change.

Files: src/edit.c

Patch 7.1.222 (after 7.1.217)
Problem: Wildcards in argument of ":helptags" are not expanded. (Marcel

Svitalsky)
Solution: Expand wildcards in the directory name.
Files: src/ex_cmds.c

Patch 7.1.223
Problem: glob() doesn't work properly when 'shell' is "sh" or "bash" and

the expanded name contains spaces, '~', single quotes and other
special characters. (Adri Verhoef, Charles Campbell)

Solution: For Posix shells define a vimglob() function to list the matches
instead of using "echo" directly.

Files: src/os_unix.c

Patch 7.1.224
Problem: When using "vim -F -o file1 file2" only one window is

right-to-left. Same for "-H". (Ben Schmidt)
Solution: use set_option_value() to set 'rightleft'.
Files: src/main.c

Patch 7.1.225
Problem: Using uninitialized value when XGetWMNormalHints() fails.
Solution: Check the return value. (Dominique Pelle)
Files: src/os_unix.c

Patch 7.1.226
Problem: Command line completion doesn't work when a file name contains a

'&' character.
Solution: Accept all characters in a file name, except ones that end a

command or white space.
Files: src/ex_docmd.c

Patch 7.1.227
Problem: Hang in syntax HL when moving over a ")". (Dominique Pelle)
Solution: Avoid storing a syntax state in the wrong position in the list of

remembered states.
Files: src/syntax.c

Patch 7.1.228
Problem: When 'foldmethod' is "indent" and a fold is created with ">>" it

can't be closed with "zc". (Daniel Shahaf)
Solution: Reset the "small" flag of a fold when adding a line to it.
Files: src/fold.c

Patch 7.1.229
Problem: A fold is closed when it shouldn't when 'foldmethod' is "indent"

and backspacing a non-white character so that the indent increases.
Solution: Keep the fold open after backspacing a character.
Files: src/edit.c

Patch 7.1.230
Problem: Memory leak when executing SourceCmd autocommands.
Solution: Free the memory. (Dominique Pelle)
Files: src/ex_cmds2.c

version7.txt — 2587

Patch 7.1.231
Problem: When shifting lines the change is acted upon multiple times.
Solution: Don't have shift_line() call changed_bytes.
Files: src/edit.c, src/ops.c, src/proto/edit.pro, src/proto/ops.pro

Patch 7.1.232 (after 7.1.207 and 7.1.211)
Problem: Compiler warnings with MSVC.
Solution: Add type casts. (Mike Williams)
Files: src/ex_cmds2.c, src/netbeans.c

Patch 7.1.233
Problem: Crash when doing Insert mode completion for a user defined

command. (Yegappan Lakshmanan)
Solution: Don't use the non-existing command line.
Files: src/ex_getln.c

Patch 7.1.234
Problem: When diff'ing three files the third one isn't displayed correctly.

(Gary Johnson)
Solution: Compute the size of diff blocks correctly when merging blocks.

Compute filler lines correctly when scrolling.
Files: src/diff.c

Patch 7.1.235
Problem: Pattern matching is slow when using a lot of simple patterns.
Solution: Avoid allocating memory by not freeing it when it's not so much.

(Alexei Alexandrov)
Files: src/regexp.c

Patch 7.1.236
Problem: When using 'incsearch' and 'hlsearch' a complicated pattern may

make Vim hang until CTRL-C is pressed.
Solution: Add the 'redrawtime' option.
Files: runtime/doc/options.txt, src/ex_cmds.c, src/ex_docmd.c,

src/ex_getln.c, src/gui.c, src/misc1.c, src/normal.c,
src/option.c, src/quickfix.c, src/regexp.c, src/proto/regexp.pro,
src/proto/search.pro, src/search.c, src/screen.c,
src/option.h, src/spell.c, src/structs.h, src/syntax.c, src/tag.c,
src/vim.h

Patch 7.1.237
Problem: Compiler warning on an Alpha processor in Motif code.
Solution: Change a typecast. (Adri Verhoef)
Files: src/gui_motif.c

Patch 7.1.238
Problem: Using the 'c' flag with searchpair() may cause it to fail. Using

the 'r' flag doesn't work when 'wrapscan' is set. (A.Politz)
Solution: Only use the 'c' flag for the first search, not for repeating.

When using 'r' imply 'W'. (Antony Scriven)
Files: src/eval.c

Patch 7.1.239 (after 7.1.233)
Problem: Compiler warning for sprintf() argument.
Solution: Add a typecast. (Nico Weber)
Files: src/ex_getln.c

Patch 7.1.240
Problem: When "gUe" turns a German sharp s into SS the operation stops

version7.txt — 2588

before the end of the word. Latin2 has the same sharp s but it's
not changed to SS there.

Solution: Make sure all the characters are operated upon. Detect the sharp
s in latin2. Also fixes that changing case of a multibyte
character that changes the byte count doesn't always work.

Files: src/ops.c

Patch 7.1.241
Problem: Focus change events not always ignored. (Erik Falor)
Solution: Ignore K_IGNORE in Insert mode in a few more places.
Files: src/edit.c

Patch 7.1.242 (after 7.1.005)
Problem: "cib" doesn't work properly on "(x)". (Tim Pope)
Solution: Use ltoreq() instead of lt(). Also fix "ciT" on "<a>x".
Files: src/search.c

Patch 7.1.243 (after 7.1.240)
Problem: "U" doesn't work on all text in Visual mode. (Adri Verhoef)
Solution: Loop over all the lines to be changed. Add tests for this.
Files: src/ops.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.1.244
Problem: GUI may have part of the command line cut off.
Solution: Don't round the number of lines up, always round down.

(Tony Houghton, Scott Dillard)
Files: src/gui.c

Patch 7.1.245
Problem: Pressing CTRL-\ three times causes Vim to quit. (Ranganath Rao).

Also for f CTRL-\ CTRL-\.
Solution: When going to cooked mode in mch_delay() set a flag to ignore

SIGQUIT.
Files: src/os_unix.c

Patch 7.1.246
Problem: Configure hangs when the man pager is something strange. (lorien)
Solution: Set MANPAGER and PAGER to "cat". (Micah Cowan)
Files: src/auto/configure, src/configure.in

Patch 7.1.247
Problem: When using Netbeans backspacing in Insert mode skips a character

now and then. (Ankit Jain)
Solution: Avoid calling netbeans_removed(), it frees the line pointer.

(partly by Dominique Pelle).
Files: src/misc1.c

Patch 7.1.248
Problem: Can't set the '" mark. Can't know if setpos() was successful.
Solution: Allow setting the '" mark with setpos(). Have setpos() return a

value indicating success/failure.
Files: runtime/doc/eval.txt, src/eval.c, src/mark.c

Patch 7.1.249
Problem: After "U" the cursor can be past end of line. (Adri Verhoef)
Solution: Adjust the cursor position in u_undoline().
Files: src/undo.c

Patch 7.1.250
Problem: ":setglobal fenc=anything" gives an error message in a buffer

version7.txt — 2589

where 'modifiable' is off. (Ben Schmidt)
Solution: Don't give an error if 'modifiable' doesn't matter.
Files: src/option.c

Patch 7.1.251
Problem: Using freed memory when spell checking enabled.
Solution: Obtain the current line again after calling spell_move_to().

(Dominique Pelle)
Files: src/screen.c

Patch 7.1.252 (after 7.1.243)
Problem: Test 39 fails when the environment has a utf-8 locale. (Dominique

Pelle)
Solution: Force 'encoding' to be latin1.
Files: src/testdir/test39.in

Patch 7.1.253
Problem: ":sort" doesn't work in a one line file. (Patrick Texier)
Solution: Don't sort if there is only one line. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.1.254
Problem: Tests 49 and 55 fail when the locale is French.
Solution: Using C messages for test 49. Filter the error message in test 55

such that it works when the number is halfway the message.
Files: src/testdir/test49.in, src/testdir/test55.in

Patch 7.1.255
Problem: Vim doesn't support utf-32. (Yongwei Wu)
Solution: Add aliases for utf-32, it's the same as ucs-4.
Files: src/mbyte.c

Patch 7.1.256
Problem: findfile() also returns directories.
Solution: Cleanup the code for finding files and directories in a list of

directories. Remove the ugly global ff_search_ctx.
Files: src/eval.c, src/misc2.c, src/vim.h, src/tag.c

Patch 7.1.257
Problem: Configure can't always find the Tcl header files.
Solution: Also look in /usr/local/include/tcl$tclver and

/usr/include/tcl$tclver (James Vega)
Files: src/auto/configure, src/configure.in

Patch 7.1.258
Problem: Crash when doing "d/\n/e" and 'virtualedit' is "all". (Andy Wokula)
Solution: Avoid that the column becomes negative. Also fixes other problems

with the end of a pattern match is in column zero. (A.Politz)
Files: src/search.c

Patch 7.1.259
Problem: Cursor is in the wrong position when 'rightleft' is set,

'encoding' is "utf-8" and on an illegal byte. (Dominique Pelle)
Solution: Only put the cursor in the first column when actually on a

double-wide character. (Yukihiro Nakadaira)
Files: src/screen.c

Patch 7.1.260
Problem: Cursor positioning problem after ^@ wrapping halfway when

'encoding' is utf-8.

version7.txt — 2590

Solution: Only count a position for printable characters. (partly by
Yukihiro Nakadaira)

Files: src/charset.c

Patch 7.1.261
Problem: When a 2 byte BOM is detected Vim uses UCS-2, which doesn't work

for UTF-16 text. (Tony Mechelynck)
Solution: Default to UTF-16.
Files: src/fileio.c, src/testdir/test42.ok

Patch 7.1.262
Problem: Can't get the process ID of Vim.
Solution: Implement getpid().
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.1.263
Problem: The filetype can consist of two dot separated names. This works

for syntax and ftplugin, but not for indent. (Brett Stahlman)
Solution: Use split() and loop over each dot separated name.
Files: runtime/indent.vim

Patch 7.1.264
Problem: Crash when indenting lines. (Dominique Pelle)
Solution: Set the cursor column when changing the cursor line.
Files: src/ops.c, src/misc1.c

Patch 7.1.265
Problem: When 'isfname' contains a space, cmdline completion can hang.

(James Vega)
Solution: Reset the "len" variable.
Files: src/ex_docmd.c

Patch 7.1.266
Problem: When the version string returned by the terminal contains

unexpected characters, it is used as typed input. (James Vega)
Solution: Assume the escape sequence ends in a letter.
Files: src/term.c

Patch 7.1.267
Problem: When changing folds cursor may be positioned in the wrong place.
Solution: Call changed_window_setting_win() instead of

changed_window_setting().
Files: src/fold.c

Patch 7.1.268
Problem: Always shows "+" at end of screen line with: ":set

listchars=eol:$,extends:+ nowrap list cursorline" (Gary Johnson)
Solution: Check for lcs_eol_one instead of lcs_eol.
Files: src/screen.c

Patch 7.1.269
Problem: The matchparen plugin has an arbitrary limit for the number of

lines to look for a match.
Solution: Rely on the searchpair() timeout.
Files: runtime/plugin/matchparen.vim

Patch 7.1.270
Problem: ":?foo?" matches in current line since patch 7.1.025. (A.Politz)
Solution: Remove the SEARCH_START flag.
Files: src/ex_docmd.c, src/search.c

version7.txt — 2591

Patch 7.1.271
Problem: In a Vim build without autocommands, checking a file that was

changed externally causes the current buffer to be changed
unexpectedly. (Karsten Hopp)

Solution: Store "curbuf" instead of "buf".
Files: src/fileio.c

Patch 7.1.272
Problem: The special buffer name [Location List] is not used for a buffer

displayed in another tab page.
Solution: Use FOR_ALL_TAB_WINDOWS instead of FOR_ALL_WINDOWS. (Hiroaki

Nishihara)
Files: src/buffer.c

Patch 7.1.273
Problem: When profiling on Linux Vim exits early. (Liu Yubao)
Solution: When profiling don't exit on SIGPROF.
Files: src/Makefile, src/os_unix.c

Patch 7.1.274 (after 7.1.272)
Problem: Compiler warning for optimized build.
Solution: Init win to NULL.
Files: src/buffer.c

Patch 7.1.275 (extra)
Problem: Mac: ATSUI and 'antialias' don't work properly together.
Solution: Fix this and the input method. (Jjgod Jiang)
Files: src/vim.h, src/gui_mac.c

Patch 7.1.276
Problem: "gw" uses 'formatexpr', even though the docs say it doesn't.
Solution: Don't use 'formatexpr' for "gw".
Files: src/vim.h, src/edit.c, src/ops.c, src/proto/ops.pro

Patch 7.1.277
Problem: Default for 'paragraphs' misses some items (Colin Watson)
Solution: Add TP, HP, Pp, Lp and It to 'paragraphs'. (James Vega)
Files: runtime/doc/options.txt, src/option.c

Patch 7.1.278 (extra, after 7.1.275)
Problem: Build failure when USE_CARBONKEYHANDLER is not defined.
Solution: Remove #ifdef.
Files: src/gui_mac.c

Patch 7.1.279
Problem: When using cscope temporary files are left behind.
Solution: Send the quit command to cscope and give it two seconds to exit

nicely before killing it. (partly by Dominique Pelle)
Files: src/if_cscope.c

Patch 7.1.280 (after 7.1.275)
Problem: Mac: build problems when not using multibyte feature. (Nicholas

Stallard)
Solution: Don't define USE_IM_CONTROL when not using multibyte.
Files: src/vim.h

Patch 7.1.281 (after 7.1.279)
Problem: sa.sa_mask is not initialized. Cscope may not exit.
Solution: Use sigemptyset(). Use SIGKILL instead of SIGTERM. (Dominique

version7.txt — 2592

Pelle)
Files: src/if_cscope.c

Patch 7.1.282 (extra)
Problem: Win64: Edit with Vim context menu isn't installed correctly.

Compiler warnings and a few other things.
Solution: Add [and] to entry of class name. Use UINT_PTR instead of UINT.

And fixes for other things. (George V. Reilly)
Files: src/GvimExt/Makefile, src/dosinst.c, src/if_ole.cpp, src/if_ole.h,

src/if_ole.idl, src/INSTALLpc.txt, src/Make_mvc.mak,
src/os_win32.c,

Patch 7.1.283
Problem: Non-extra part for 7.1.282.
Solution: Various changes.
Files: src/ex_docmd.c, src/globals.h, src/if_cscope.c, src/main.c,

src/mark.c, src/netbeans.c, src/popupmnu.c, src/vim.h,
src/window.c

Patch 7.1.284
Problem: Compiler warnings for functions without prototype.
Solution: Add the function prototypes. (Patrick Texier)
Files: src/eval.c, src/quickfix.c

Patch 7.1.285 (extra)
Problem: Mac: dialog hotkeys don't work.
Solution: Add hotkey support. (Dan Sandler)
Files: src/gui_mac.c

Patch 7.1.286 (after 7.1.103)
Problem: "w" at the end of the buffer moves the cursor past the end of the

line. (Markus Heidelberg)
Solution: Move the cursor back from the NUL when it was moved forward.
Files: src/normal.c

Patch 7.1.287
Problem: Crash when reversing a list after using it. (Andy Wokula)
Solution: Update the pointer to the last used element. (Dominique Pelle)
Files: src/eval.c

Patch 7.1.288 (after 7.1.281)
Problem: Cscope still leaves behind temp files when using gvim.
Solution: When getting the ECHILD error loop for a while until cscope exits.

(Dominique Pelle)
Files: if_cscope.c

Patch 7.1.289
Problem: When EXITFREE is defined and 'acd' is set freed memory is used.

(Dominique Pelle)
Solution: Reset p_acd before freeing all buffers.
Files: src/misc2.c

Patch 7.1.290
Problem: Reading bytes that were not written when spell checking and a line

has a very large indent.
Solution: Don't copy the start of the next line when it only contains

spaces. (Dominique Pelle)
Files: src/spell.c

Patch 7.1.291 (after 7.1.288)

version7.txt — 2593

Problem: Compiler warning.
Solution: Change 50 to 50L.
Files: src/if_cscope.c

Patch 7.1.292
Problem: When using a pattern with "\@<=" the submatches can be wrong.

(Brett Stahlman)
Solution: Save the submatches when attempting a look-behind match.
Files: src/regexp.c

Patch 7.1.293
Problem: Spell checking considers super- and subscript characters as word

characters.
Solution: Recognize the Unicode super and subscript characters.
Files: src/spell.c

Patch 7.1.294
Problem: Leaking memory when executing a shell command.
Solution: Free memory when not able to save for undo. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.1.295
Problem: Vimtutor only works with vim, not gvim.
Solution: Add the -g flag to vimtutor. (Dominique Pelle) Add gvimtutor.
Files: src/Makefile, src/gvimtutor, src/vimtutor, runtime/doc/vimtutor.1

Patch 7.1.296
Problem: SELinux is not supported.
Solution: Detect the selinux library and use mch_copy_sec(). (James Vega)
Files: src/auto/configure, src/config.h.in, src/configure.in,

src/fileio.c, src/memfile.c, src/os_unix.c, src/proto/os_unix.pro

Patch 7.1.297
Problem: When using the search/replace dialog the parenmatch highlighting

can be wrong. (Tim Duncan)
Solution: In the GUI redraw function invoke the CursorMoved autocmd.
Files: src/gui.c

Patch 7.1.298 (after 7.1.295)
Problem: src/gvimtutor is not distributed.
Solution: Add it to the list of distributed files.
Files: Filelist

Patch 7.1.299
Problem: Filetype detection doesn't work properly for file names ending in

a part that is ignored and contain a space or other special
characters.

Solution: Escape the special characters using the new fnameescape function.
Files: runtime/doc/eval.txt, runtime/filetype.vim, src/eval.c,

src/ex_getln.c, src/proto/ex_getln.pro, src/vim.h

Patch 7.1.300
Problem: Value of asmsyntax argument isn't checked for valid characters.
Solution: Only accepts letters and digits.
Files: runtime/filetype.vim

Patch 7.1.301
Problem: When the "File/Save" menu is used in Insert mode, a tab page label

is not updated to remove the "+".
Solution: Call draw_tabline() from showruler(). (Bjorn Winckler)

version7.txt — 2594

Files: src/screen.c

Patch 7.1.302 (after 7.1.299)
Problem: Compilation error on MS-Windows.
Solution: Don't use xp_shell when it's not defined.
Files: src/ex_getln.c

Patch 7.1.303 (after 7.1.302)
Problem: Compilation error on MS-Windows, again.
Solution: Declare p.
Files: src/ex_getln.c

Patch 7.1.304
Problem: Shortpath_for_invalid_fname() does not work correctly and is

unnecessary complex.
Solution: Clean up shortpath_for_invalid_fname(). (mostly by Yegappan

Lakshmanan)
Files: src/eval.c

Patch 7.1.305
Problem: Editing a compressed file with special characters in the name

doesn't work properly.
Solution: Escape special characters.
Files: runtime/autoload/gzip.vim

Patch 7.1.306
Problem: Some Unicode characters are handled like word characters while

they are symbols.
Solution: Adjust the table for Unicode classification.
Files: src/mbyte.c

Patch 7.1.307
Problem: Many warnings when compiling with Python 2.5.
Solution: Use ssize_t instead of int for some types. (James Vega)
Files: src/if_python.c

Patch 7.1.308
Problem: When in readonly mode ":options" produces an error.
Solution: Reset 'readonly'. (Gary Johnson)
Files: runtime/optwin.vim

Patch 7.1.309
Problem: Installing and testing with a shadow directory doesn't work.

(James Vega)
Solution: Add "po" to the list of directories to link. Also link the Vim

scripts in testdir. And a few more small fixes.
Files: src/Makefile

Patch 7.1.310
Problem: Incomplete utf-8 byte sequence at end of the file is not detected.

Accessing memory that wasn't written.
Solution: Check the last bytes in the buffer for being a valid utf-8

character. (mostly by Ben Schmidt)
Also fix that the reported line number of the error was wrong.

Files: src/fileio.c

Patch 7.1.311
Problem: Compiler warning for missing sentinel in X code.
Solution: Change 0 to NULL. (Markus Heidelberg)
Files: src/mbyte.c

version7.txt — 2595

Patch 7.1.312
Problem: The .po files have mistakes in error numbers.
Solution: Search for these mistakes in the check script. (Dominique Pelle)
Files: src/po/check.vim

Patch 7.1.313
Problem: When the netbeans interface setModified call is used the status

lines and window title are not updated.
Solution: Redraw the status lines and title. (Philippe Fremy)
Files: src/netbeans.c

Patch 7.1.314
Problem: The value of 'pastetoggle' is written to the session file without

any escaping. (Randall Hansen)
Solution: Use put_escstr(). (Ben Schmidt)
Files: src/option.c

Patch 7.1.315
Problem: Crash with specific search pattern using look-behind match.

(Andreas Politz)
Solution: Also save the value of "need_clear_subexpr".
Files: src/regexp.c

Patch 7.1.316
Problem: When 'cscopetag' is set ":tag" gives an error message instead of

going to the next tag in the tag stack.
Solution: Don't call do_cstag() when there is no argument. (Mark Goldman)
Files: src/ex_docmd.c

Patch 7.1.317
Problem: Compiler warnings in Motif calls.
Solution: Change zero to NULL. (Dominique Pelle)
Files: src/gui_motif.c

Patch 7.1.318
Problem: Memory leak when closing xsmp connection. Crash on exit when

using Lesstif.
Solution: Don't close the X display to work around a Lesstif bug. Free

clientid. Also fix a leak for Motif and Athena. (Dominique Pelle)
Files: src/gui_x11.c, src/os_unix.c

Patch 7.1.319
Problem: When a register has an illegal utf-8 sequence, pasting it on the

command line causes an illegal memory access.
Solution: Use mb_cptr2char_adv(). (Dominique Pelle)
Files: src/ex_getln.c

Patch 7.1.320 (extra)
Problem: Win64: Warnings while compiling Python interface.
Solution: Use PyInt in more places. Also update version message for the

console. (George Reilly)
Files: src/if_python.c, src/version.c

Patch 7.1.321 (extra)
Problem: Win32 / Win64: Install file is outdated.
Solution: Update the text for recent compiler. (George Reilly)
Files: src/INSTALLpc.txt

Patch 7.1.322

version7.txt — 2596

Problem: Can't get start of Visual area in an <expr> mapping.
Solution: Add the 'v' argument to getpos().
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.1.323
Problem: Test 19 fails with some termcaps. (Dominique Pelle)
Solution: Set the t_kb and t_kD termcap values.
Files: src/testdir/test19.in, src/testdir/test38.in

Patch 7.1.324
Problem: File name path length on Unix is limited to 1024.
Solution: Use PATH_MAX when it's more than 1000.
Files: src/os_unix.h

Patch 7.1.325
Problem: When editing a command line that's longer than available space in

the window, the characters at the end are in reverse order.
Solution: Increment the insert position even when the command line doesn't

fit. (Ingo Karkat)
Files: src/ex_getln.c

Patch 7.1.326
Problem: ":s!from!to!" works, but ":smagic!from!to!" doesn't. It sees the

"!" as a flag to the command. Same for ":snomagic". (Johan Spetz)
Solution: When checking for a forced command also ignore ":smagic" and

":snomagic". (Ian Kelling)
Files: src/ex_docmd.c

Patch 7.1.327
Problem: The GUI tutor is installed when there is no GUI version.
Solution: Only install gvimtutor when building a GUI version.
Files: src/Makefile

Patch 7.1.328
Problem: Crash when using Cygwin and non-posix path name in tags file.
Solution: Use separate buffer for posix path. (Ben Schmidt)
Files: src/os_unix.c

Patch 7.1.329
Problem: When the popup menu is removed a column of cells, the right half

of double-wide characters, may not be redrawn.
Solution: Check if the right half of a character needs to be redrawn.

(Yukihiro Nakadaira)
Files: src/screen.c

Patch 7.1.330
Problem: Reading uninitialized memory when using Del in replace mode.
Solution: Use utfc_ptr2len_len() instead of mb_ptr2len(). (Dominique Pelle)
Files: src/misc1.c

Warning for missing sentinel in gui_xmldlg.c. (Dominique Pelle)

A search offset from the end of a match didn't work properly for multibyte
characters. (Yukihiro Nakadaira)

When displaying the value of 'key' don't show "*****" when the value is empty.
(Ben Schmidt)

Internal error when compiled with EXITFREE and using the nerd_tree plugin.

version7.txt — 2597

Set last_msg_hist to NULL when history becomes empty. Call
free_all_functions() after garbage collection. (Dominique Pelle)

GTK with XIM: <S-Space> does not work. (Yukihiro Nakadaira)

Some shells do not support "echo -n", which breaks glob(). Use "echo" instead
of "echo -n $1; echo". (Gary Johnson)

"echo 22,44" printed "22" on top of the command, the error messages caused
the rest not to be cleared. Added the need_clr_eos flag.

Netbeans events are handled while updating the screen, causing a crash.
Change the moment when events are handled. Rename nb_parse_messages() to
netbeans_parse_messages(). (Xavier de Gaye)

Test 11 was broken after patch 7.1.186 on Win32 console. (Daniel Shahaf)
Use shellescape() on the file name.

IM was turned off in im_preedit_end_cb() for no good reason. (Takuhiro
Nishioka)

A corrupted spell file could cause Vim to use lots of memory. Better
detection for running into the end of the file. (idea from James Vega)

Mac: Included a patch to make it build with GTK. Moved language init to
mac_lang_init() function. (Ben Schmidt)

Problem with 'wildmenu' after ":lcd", up/down arrows don't work. (Erik Falor)

Fix configure.in to avoid "implicitly declared" warnings when running
configure.

Fixed a memory leak when redefining a keymap. (Dominique Pelle)

Setting 'pastetoggle' to "jj" didn't work.

'ic' and 'smartcase' don't work properly when using \%V in a search pattern.
(Kana Natsuno)

Patch 7.2a.001
Problem: On some systems X11/Xlib.h exists (from X11-dev package) but

X11/Intrinsic.h does not (in Xt-dev package). This breaks the
build. Also, on Solaris 9 sys/ptem.h isn't found.

Solution: Have configure only accept X11 when X11/Intrinsic.h exists.
Check for sys/ptem.h while including sys/stream.h. (Vladimir
Marek)

Files: src/auto/configure, src/configure.in

Patch 7.2a.002
Problem: getbufvar(N, "") gets the dictionary of the current buffer instead

of buffer N.
Solution: Set curbuf before calling find_var_in_ht(). (Kana Natsuno)
Files: src/eval.c

Patch 7.2a.003
Problem: Leaking memory when using ":file name" and using access control

lists.
Solution: Invoke mch_free_acl() in vim_rename(). (Dominique Pelle)
Files: src/fileio.c

version7.txt — 2598

Patch 7.2a.004
Problem: Some systems can't get spell files by ftp.
Solution: Use http when it looks like it's possible. (James Vega)
Files: runtime/autoload/spellfile.vim

Patch 7.2a.005
Problem: A few error messages use confusing names. Misspelling.
Solution: Change "dissallows" to "disallows". (Dominique Pelle) Change

"number" to "Number".
Files: src/eval.c, src/fileio.c

Patch 7.2a.006
Problem: Reading past NUL in a string.
Solution: Check for invalid utf-8 byte sequence. (Dominique Pelle)
Files: src/charset.c

Patch 7.2a.007
Problem: ":let v = 1.2.3" was OK in Vim 7.1, now it gives an error.
Solution: Don't look for a floating point number after the "." operator.
Files: src/eval.c

Patch 7.2a.008
Problem: printf("%g", 1) doesn't work.
Solution: Convert Number to Float when needed.
Files: src/message.c

Patch 7.2a.009
Problem: cygwin_conv_to_posix_path() does not specify buffer size.
Solution: Use new Cygwin function: cygwin_conv_path(). (Corinna Vinschen)
Files: src/main.c, src/os_unix.c

Patch 7.2a.010
Problem: When a file name has an illegal byte sequence Vim may read

uninitialised memory.
Solution: Don't use UTF_COMPOSINGLIKE() on an illegal byte. In

msg_outtrans_len_attr() use char2cells() instead of ptr2cells().
In utf_ptr2char() don't check second byte when first byte is
illegal. (Dominique Pelle)

Files: src/mbyte.c, src/message.c

Patch 7.2a.011
Problem: The Edit/Startup Settings menu doesn't work.
Solution: Expand environment variables. (Ben Schmidt)
Files: runtime/menu.vim

Patch 7.2a.012
Problem: Compiler warnings for casting int to pointer.
Solution: Add cast to long in between. (Martin Toft)
Files: src/gui_gtk_x11.c

Patch 7.2a.013
Problem: shellescape() does not escape "%" and "#" characters.
Solution: Add find_cmdline_var() and use it when the second argument to

shellescape() is non-zero.
Files: runtime/doc/eval.txt, src/eval.c, src/ex_docmd.c,

src/proto/ex_docmd.pro, src/proto/misc2.pro, src/misc2.c

Patch 7.2a.014
Problem: Problem with % in message.
Solution: Put % in single quotes.

version7.txt — 2599

Files: src/eval.c

Patch 7.2a.015 (after 7.2a.010)
Problem: Misaligned messages.
Solution: Compute length of unprintable chars correctly.
Files: src/message.c

Patch 7.2a.016
Problem: Using CTRL-W v in the quickfix window results in two quickfix

windows, which is not allowed. ":tab split" should be allowed to
open a new quickfix window in another tab.

Solution: For CTRL-W v instead of splitting the window open a new one.
When using ":tab" do allow splitting the quickfix window (was
already included in patch 7.2a.013).

Files: src/window.c

Patch 7.2a.017
Problem: ":doautoall" executes autocommands for all buffers instead of just

for loaded buffers.
Solution: Change "curbuf" to "buf".
Files: src/fileio.c

Patch 7.2a.018
Problem: Compiler warnings when compiling with Gnome. (Tony Mechelynck)
Solution: Add type casts.
Files: src/gui_gtk_x11.c

Patch 7.2a.019
Problem: ":let &g:tw = 44" sets the local option value. (Cyril Slobin)
Solution: Use get_varp_scope() instead of get_varp(). (Ian Kelling)
Files: src/option.c

There is no way to avoid adding /usr/local/{include|lib} to the build
commands. Add the --with-local-dir argument to configure. (Michael
Haubenwallner)

When using CTRL-D after ":help", the number of matches could be thousands.
Restrict to TAG_MANY to avoid this taking too long. (Ian Kelling)

The popup menu could be placed at a weird location. Caused by w_wcol computed
by curs_columns(). (Dominique Pelle)

Overlapping STRCPY() arguments when using %r item in 'errorformat'. Use
STRMOVE() instead. (Ralf Wildenhues)

Mac: On Leopard gvim, when using the mouse wheel nothing would happen until
another event occurs, such as moving the mouse. Then the recorded scrolling
would take place all at once. (Eckehard Berns)

Solution for cursor color not reflecting IM status for GTK 2. Add
preedit_is_active flag. (SungHyun Nam)

filereadable() can hang on a FIFO on Linux. Use open() instead of fopen(),
with O_NONBLOCK. (suggested by Lars Kotthoff)

Included patch to support Perl 5.10. (Yasuhiro Matsumoto)

When files are dropped on gvim while the screen is being updated, ignore the
drop command to avoid freeing memory that is being used.

version7.txt — 2600

In a terminal, when drawing the popup menu over double-wide characters, half
characters may not be cleared properly. (Yukihiro Nakadaira)

The #ifdef for including "vimio.h" was inconsistent. In a few files it
depended on MSWIN, which isn't defined until later.

Patch 7.2b.001
Problem: Compilation problem: mb_fix_col() missing with multibyte feature

but without GUI or clipboard.
Solution: Remove #ifdef.
Files: src/mbyte.c

Patch 7.2b.002
Problem: Compiler warnings for signed/unsigned mismatch.
Solution: Add type casts.
Files: src/screen.c

Patch 7.2b.003
Problem: Still a compilation problem, check_col() and check_row() missing.
Solution: Add FEAT_MBYTE to the #if.
Files: src/ui.c

Patch 7.2b.004
Problem: Trying to free memory for a static string when using ":helpgrep".

(George Reilly)
Solution: Set 'cpo' to empty_option instead of an empty string. Also for

searchpair() and substitute().
Files: src/quickfix.c, src/eval.c

Patch 7.2b.005
Problem: The special character "!" isn't handled properly in shellescape().

(Jan Minar)
Solution: Escape "!" when using a "csh" like shell and with

shellescape(s, 1). Twice for both. Also escape <NL>.
Files: src/misc2.c

Patch 7.2b.006
Problem: Reading past end of string when reading info from tags line.
Solution: Break the loop when encountering a NUL. (Dominique Pelle)
Files: src/tag.c

Patch 7.2b.007
Problem: Part of a message cannot be translated.
Solution: Put _() around the message.
Files: src/search.c

Patch 7.2b.008
Problem: A few filetypes are not detected or not detected properly.
Solution: Add filetype detection patterns. (Nikolai Weibull)
Files: runtime/filetype.vim

Patch 7.2b.009
Problem: Reading past end of screen line. (Epicurus)
Solution: Avoid going past the value of Columns.
Files: src/screen.c

Patch 7.2b.010
Problem: ":mksession" doesn't work for ":map , foo", ":sunmap ,". (Ethan

Mallove)
Solution: Check for "nxo", "nso" and other strange mapping combinations.

version7.txt — 2601

Files: src/getchar.c

Patch 7.2b.011
Problem: Configure for TCL ends up with include file in compiler command.

(Richard Hogg)
Solution: Delete items from $TCL_DEFS that do not start with a dash.
Files: src/auto/configure, src/configure.in

Patch 7.2b.012
Problem: Build failure with +multi_byte but without +diff.
Solution: Add #ifdef. (Patrick Texier)
Files: src/main.c

Patch 7.2b.013
Problem: Build fails with tiny features and Perl. (Dominique Pelle)
Solution: Define missing functions. Also when compiling Python.
Files: src/if_perl.xs, src/if_python.c

Patch 7.2b.014
Problem: Configure uses an unsafe temp file to store commands.
Solution: Create the temp file in local directory.
Files: src/auto/configure, src/configure.in

Patch 7.2b.015
Problem: Build fails on Mac when using Aap.
Solution: Fix typo in configure script.
Files: src/auto/configure, src/configure.in

Patch 7.2b.016
Problem: Build fails with normal features but without +autocmd.
Solution: Fix #ifdefs. (Ian Kelling)
Files: src/eval.c, src/ex_cmds.c, src/quickfix.c, src/option.c,

src/ex_docmd.c

Patch 7.2b.017
Problem: "vim -O foo foo" results in only one window. (Zdenek Sekera)
Solution: Handle result of ATTENTION prompt properly. (Ian Kelling)
Files: src/main.c

Patch 7.2b.018
Problem: When doing command line completion on a file name for a csh-like

shell argument a '!' character isn't escaped properly.
Solution: Add another backslash.
Files: src/ex_getln.c, src/misc2.c, src/proto/misc2.pro, src/screen.c

Patch 7.2b.019 (extra)
Problem: Win32: Various compiler warnings.
Solution: Use __w64 attribute. Comment-out unused parameters. Adjust a few

#ifdefs. (George Reilly)
Files: src/gui_w48.c, src/GvimExt/gvimext.cpp, src/Make_mvc.mak,

src/os_mswin.c, src/os_win32.c, src/vim.h

Patch 7.2b.020
Problem: ":sort n" doesn't handle negative numbers. (James Vega)
Solution: Include '-' in the number.
Files: src/charset.c, src/ex_cmds.c

Patch 7.2b.021
Problem: Reloading doesn't read the BOM correctly. (Steve Gardner)
Solution: Accept utf-8 BOM when specified file encoding is utf-8.

version7.txt — 2602

Files: src/fileio.c

Patch 7.2b.022
Problem: When using ":normal" while updating the status line the count of

an operator is lost. (Dominique Pelle)
Solution: Save and restore "opcount".
Files: src/ex_docmd.c, src/globals.h, src/normal.c

Patch 7.2b.023
Problem: Crash when using the result of synstack(0,0). (Matt Wozniski)
Solution: Check for v_list to be NULL in a few more places.
Files: src/eval.c

Patch 7.2b.024
Problem: Using ":gui" while the netrw plugin is active causes a delay in

updating the display.
Solution: Don't check for terminal codes when starting the GUI.
Files: src/term.c

Patch 7.2b.025
Problem: When the CursorHold event triggers a pending count is lost.

(Juergen Kraemer)
Solution: Save the counts and restore them.
Files: src/normal.c, src/structs.h

Patch 7.2b.026
Problem: The GTK 2 file chooser causes the ~/.recently-used.xbel file to be

written over and over again. This may cause a significant
slowdown. (Guido Berhoerster)

Solution: Don't use the GTK 2 file chooser.
Files: src/gui_gtk.c

Patch 7.2b.027
Problem: Memory leak for Python, Perl, etc. script command with end marker.
Solution: Free the memory of the end marker. (Andy Kittner)
Files: src/ex_getln.c

Patch 7.2b.028
Problem: Reading uninitialized memory when doing ":gui -f". (Dominique

Pelle)
Solution: Don't position the cursor when the screen size is invalid.
Files: src/gui.c

Patch 7.2b.029
Problem: ":help a" doesn't jump to "a" tag in docs. (Tony Mechelynck)
Solution: Get all tags and throw away more than TAG_MANY after sorting.

When there is no argument find matches for "help" to avoid a long
delay.

Files: src/ex_cmds.c, src/ex_getln.c

Patch 7.2b.030
Problem: When changing the value of t_Co from 8 to 16 the Visual

highlighting keeps both reverse and a background color.
Solution: Remove the attribute when setting the default highlight color.

(Markus Heidelberg)
Files: src/syntax.c

Error when cancelling completion menu and auto-formatting. (fixed by Ian
Kelling)

version7.txt — 2603

Patch 7.2c.001
Problem: ":let x=[''] | let x += x" causes hang. (Matt Wozniski)
Solution: Only insert elements up to the original length of the List.
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.2c.002
Problem: fnameescape() doesn't handle a leading '+' or '>'. (Jan Minar)
Solution: Escape a leading '+' and '>'. And a single '-'.
Files: runtime/doc/eval.txt, src/ex_getln.c

Patch 7.2c.003
Problem: Searching for "foo\%[bar]\+" gives a "Corrupted regexp program"

error. (Joachim Hofmann)
Solution: Mark the \%[] item as not being simple.
Files: src/regexp.c

On Vista access to system directories is virtualized. (Michael Mutschler)
Adjusted the manifest file to avoid this. (George Reilly)

Memory leak when using CTRL-C to cancel listing the jump list. (Dominique
Pelle)

Mac: Could not build with Perl interface.

==
VERSION 7.3 version-7.3 version7.3

This section is about improvements made between version 7.2 and 7.3.

This release has hundreds of bug fixes and there are a few new features. The
most notable new features are:

Persistent undo new-persistent-undo

Store undo information in a file. Can undo to before when the file was read,
also for unloaded buffers. See undo-persistence (partly by Jordan Lewis)

Added the ":earlier 1f" and ":later 1f" commands.
Added file save counter to undo information.
Added the undotree() and undofile() functions.

Also added the 'undoreload' option. This makes it possible to save the
current text when reloading the buffer, so that the reload can be undone.

More encryption new-more-encryption

Support for Blowfish encryption. Added the 'cryptmethod' option.
Mostly by Mohsin Ahmed.

Also encrypt the text in the swap file and the undo file.

Conceal text new-conceal

Added the +conceal feature. (Vince Negri)

version7.txt — 2604

This allows hiding stretches of text, based on syntax highlighting.
It also allows replacing a stretch of text by a character :syn-cchar .
The 'conceallevel' option specifies what happens with text matching a syntax
item that has the conceal attribute.
The 'concealcursor' option specifies what happens in the cursor line.

The help files conceal characters used to mark tags and examples.

Added the synconcealed() function and use it for :TOhtml. (Benjamin Fritz)

Added the 'cursorbind' option, keeps the cursor in two windows with the same
text in sync.

Lua interface new-lua

Added the Lua interface. (Luis Carvalho)

Python3 interface new-python3

Added the Python3 interface. It exists next to Python 2.x, both can be used
at the same time. See python3 (Roland Puntaier)

Changed changed-7.3

The MS-Windows installer no longer requires the user to type anything in the
console windows. The installer now also works on 64 bit systems, including
the "Edit with Vim" context menu.
The gvim executable is 32 bits, the installed gvimext.dll is either a 32 or 64
bit version. (mostly by George Reilly)
Made the DOS installer work with more compilers.
The MS-Windows big gvim is now built with Python 2.7 and 3.1.2, Perl 5.12 and
Ruby 1.9.1. You need the matching .dll files to use them.

The extra and language files are no longer distributed separately.
The source files for all systems are included in one distribution.

After using ":recover" or recovering a file in another way, ":x" and "ZZ"
didn't save what you see. This could result in work being lost. Now the text
after recovery is compared to the original file contents. When they differ
the buffer is marked as modified.

When Vim is exiting because of a deadly signal, when v:dying is 2 or more,
VimLeavePre, VimLeave, BufWinLeave and BufUnload autocommands are not
executed.

Removed support for GTK 1. It was no longer maintained and required a lot of
#ifdefs in the source code. GTK 2 should be available for every system.
(James Vega)

It is no longer allowed to set the 'encoding' option from a modeline. It
would corrupt the text. (Patrick Texier)

Renamed runtime/spell/fixdup to runtime/spell/fixdup.vim.

version7.txt — 2605

Removed obsolete Mac code.

Updated spell files for Ubuntu locale names.

Switched from autoconf 2.63 to 2.65.

Removed Mupad indent and ftplugin files, they are not useful.

The maximum number of messages remembered in the history is now 200 (was 100).

Added added-7.3

Added the 'relativenumber' option. (Markus Heidelberg)

Added the 'colorcolumn' option: highlight one or more columns in a window.
E.g. to highlight the column after 'textwidth'. (partly by Gregor Uhlenheuer)

Added support for NetBeans in a terminal. Added :nbstart and :nbclose .
(Xavier de Gaye)

More floating point functions: acos() , asin() , atan2() , cosh() ,
exp() , fmod() , log() , sinh() , tan() , tanh() . (Bill McCarthy)

Added the gettabvar() and settabvar() functions. (Yegappan Lakshmanan)

Added the strchars() , strwidth() and strdisplaywidth() functions.

Support GDK_SUPER_MASK for GTK on Mac. (Stephan Schulz)

Made CTRL and ALT modifier work for mouse wheel. (Benjamin Haskell)

Added support for horizontal scroll wheel. (Bjorn Winckler)

When the buffer is in diff mode, have :TOhtml create HTML to show the diff
side-by-side. (Christian Brabandt)

Various improvements to ":TOhtml" and the 2html.vim script. (Benjamin Fritz)

Add the 'L' item to 'cinoptions'. (Manuel Konig)

Improve Javascript indenting. Add "J" flag to 'cinoptions'. (Hari Kumar G)

Mac: Support disabling antialias. (LC Mi)

Mac: Add clipboard support in the Mac console. (Bjorn Winckler)

Make it possible to drag a tab page label to another position. (Paul B. Mahol)

Better implementation of creating the Color Scheme menu. (Juergen Kraemer)

In Visual mode with 'showcmd' display the number of bytes and characters.

Allow synIDattr() getting GUI attributes when built without GUI. (Matt
Wozniski)

Support completion for ":find". Added test 73. (Nazri Ramliy)

Command line completion for :ownsyntax and :setfiletype. (Dominique Pelle)

version7.txt — 2606

Command line completion for :lmap and :lunmap.

Support syntax and filetype completion for user commands. (Christian Brabandt)

Avoid use of the GTK main_loop() so that the GtkFileChooser can be used.
(James Vega)

When 'formatexpr' evaluates to non-zero fall back to internal formatting, also
for "gq". (James Vega)

Support :browse for commands that use an error file argument. (Lech Lorens)

Support wide file names in gvimext. (Szabolcs Horvat)

Improve test for joining lines. (Milan Vancura)
Make joining a range of lines much faster. (Milan Vancura)

Add patch to improve support of z/OS (OS/390). (Ralf Schandl)

Added the helphelp.txt file. Moved text from various.txt to it.

Added "q" item for 'statusline'. Added w:quickfix_title . (Lech Lorens)

Various improvements for VMS. (Zoltan Arpadffy)

New syntax files:
Haskell Cabal build file (Vincent Berthoux)
ChaiScript (Jason Turner)
Cucumber (Tim Pope)
Datascript (Dominique Pelle)
Fantom (Kamil Toman)
Liquid (Tim Pope)
Markdown (Tim Pope)
wavefront's obj file (Vincent Berthoux)
Perl 6 (Andy Lester)
SDC - Synopsys Design Constraints (Maurizio Tranchero)
SVG - Scalable Vector Graphics (Vincent Berthoux)
task data (John Florian)
task 42 edit (John Florian)

New filetype plugins:
Cucumber (Tim Pope)
Liquid (Tim Pope)
Logcheck (Debian)
Markdown (Tim Pope)
Perl 6 (Andy Lester)
Quickfix window (Lech Lorens)
Tcl (Robert L Hicks)

New indent plugins:
CUDA (Bram Moolenaar)
ChaiScript (Jason Turner)
Cucumber (Tim Pope)
LifeLines (Patrick Texier)
Liquid (Tim Pope)
Mail (Bram Moolenaar)
Perl 6 (Andy Lester)

version7.txt — 2607

Other new runtime files:
Breton spell file (Dominique Pelle)
Dvorak keymap (Ashish Shukla)
Korean translations. (SungHyun Nam)
Python 3 completion (Aaron Griffin)
Serbian menu translations (Aleksandar Jelenak)
Tetum spell files
Tutor Bairish (Sepp Hell)
Tutor in Esperanto. (Dominique Pellé)
Tutor in Portuguese.
Norwegian Tutor now also available as tutor.nb

Removed the Mupad runtime files, they were not maintained.

Fixed fixed-7.3

Patch 7.2.001
Problem: Mac: pseudo-ttys don't work properly on Leopard, resulting in the

shell not to have a prompt, CTRL-C not working, etc.
Solution: Don't use SVR4 compatible ptys, even though they are detected.

(Ben Schmidt)
Files: src/pty.c

Patch 7.2.002
Problem: Leaking memory when displaying menus.
Solution: Free allocated memory. (Dominique Pelle)
Files: src/menu.c

Patch 7.2.003
Problem: Typo in translated message. Message not translated.
Solution: Correct spelling. Add _(). (Dominique Pelle)
Files: src/spell.c, src/version.c

Patch 7.2.004
Problem: Cscope help message is not translated.
Solution: Put it in _(). (Dominique Pelle)
Files: src/if_cscope.c, src/if_cscope.h

Patch 7.2.005
Problem: A few problems when profiling. Using flag pointer instead of flag

value. Allocating zero bytes. Not freeing used memory.
Solution: Remove wrong '&' characters. Skip dumping when there is nothing

to dump. Free used memory. (Dominique Pelle)
Files: src/eval.c

Patch 7.2.006
Problem: HTML files are not recognized by contents.
Solution: Add a rule to the scripts file. (Nico Weber)
Files: runtime/scripts.vim

Patch 7.2.007 (extra)
Problem: Minor issues for VMS.
Solution: Minor fixes for VMS. Add float support. (Zoltan Arpadffy)
Files: runtime/doc/os_vms.txt, src/os_vms_conf.h, src/Make_vms.mms,

src/testdir/Make_vms.mms, src/testdir/test30.in,
src/testdir/test54.in

Patch 7.2.008

version7.txt — 2608

Problem: With a BufHidden autocommand that invokes ":bunload" the window
count for a buffer can be wrong. (Bob Hiestand)

Solution: Don't call enter_buffer() when already in that buffer.
Files: src/buffer.c

Patch 7.2.009
Problem: Can't compile with Perl 5.10 on MS-Windows. (Cesar Romani)
Solution: Add the Perl_sv_free2 function for dynamic loading. (Dan Sharp)
Files: src/if_perl.xs

Patch 7.2.010
Problem: When using "K" in Visual mode not all characters are properly

escaped. (Ben Schmidt)
Solution: Use a function with the functionality of shellescape(). (Jan

Minar)
Files: src/mbyte.c, src/misc2.c, src/normal.c

Patch 7.2.011
Problem: Get an error when inserting a float value from the expression

register.
Solution: Convert the Float to a String automatically in the same place

where a List would be converted to a String.
Files: src/eval.c

Patch 7.2.012
Problem: Compiler warnings when building with startup timing.
Solution: Add type casts.
Files: src/ex_cmds2.c

Patch 7.2.013
Problem: While waiting for the X selection Vim consumes a lot of CPU time

and hangs until a response is received.
Solution: Sleep a bit when the selection event hasn't been received yet.

Time out after a couple of seconds to avoid a hang when the
selection owner isn't responding.

Files: src/ui.c

Patch 7.2.014
Problem: synstack() doesn't work in an empty line.
Solution: Accept column zero as a valid position.
Files: src/eval.c

Patch 7.2.015
Problem: "make all test install" doesn't stop when the test fails. (Daniel

Shahaf)
Solution: When test.log contains failures exit with non-zero status.
Files: src/testdir/Makefile

Patch 7.2.016
Problem: The pattern being completed may be in freed memory when the

command line is being reallocated. (Dominique Pelle)
Solution: Keep a pointer to the expand_T in the command line structure.

Don't use <S-Tab> as CTRL-P when there are no results. Clear the
completion when using a command line from the history.

Files: src/ex_getln.c

Patch 7.2.017
Problem: strlen() used on text that may not end in a NUL. (Dominique Pelle)

Pasting a very big selection doesn't work.
Solution: Use the length passed to the XtSelectionCallbackProc() function.

version7.txt — 2609

After getting the SelectionNotify event continue dispatching
events until the callback is actually called. Also dispatch the
PropertyNotify event.

Files: src/ui.c

Patch 7.2.018
Problem: Memory leak when substitute is aborted.
Solution: Free the buffer allocated for the new text. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.2.019
Problem: Completion of ":noautocmd" doesn't work and exists(":noautocmd")

returns zero. (Ben Fritz)
Solution: Add "noautocmd" to the list of modifiers and commands.
Files: src/ex_cmds.h, src/ex_docmd.c

Patch 7.2.020
Problem: Starting the GUI when the executable starts with 'k', but the KDE

version no longer exists.
Solution: Don't have "kvim" start the GUI.
Files: src/main.c

Patch 7.2.021
Problem: When executing autocommands getting the full file name may be

slow. (David Kotchan)
Solution: Postpone calling FullName_save() until autocmd_fname is used.
Files: src/ex_docmd.c, src/fileio.c, src/globals.h

Patch 7.2.022 (extra)
Problem: Testing is not possible when compiling with MingW.
Solution: Add a MingW specific test Makefile. (Bill McCarthy)
Files: Filelist, src/testdir/Make_ming.mak

Patch 7.2.023
Problem: 'cursorcolumn' is in the wrong place in a closed fold when the

display is shifted left. (Gary Johnson)
Solution: Subtract w_skipcol or w_leftcol when needed.
Files: src/screen.c

Patch 7.2.024
Problem: It's possible to set 'history' to a negative value and that causes

an out-of-memory error.
Solution: Check that 'history' has a positive value. (Doug Kearns)
Files: src/option.c

Patch 7.2.025
Problem: When a CursorHold event invokes system() it is retriggered over

and over again.
Solution: Don't reset did_cursorhold when getting K_IGNORE.
Files: src/normal.c

Patch 7.2.026 (after 7.2.010)
Problem: "K" doesn't use the length of the identifier but uses the rest of

the line.
Solution: Copy the desired number of characters first.
Files: src/normal.c

Patch 7.2.027
Problem: Can use cscope commands in the sandbox.
Solution: Disallow them, they might not be safe.

version7.txt — 2610

Files: src/ex_cmds.h

Patch 7.2.028
Problem: Confusing error message for missing ().
Solution: Change "braces" to "parentheses". (Gary Johnson)
Files: src/eval.c

Patch 7.2.029
Problem: No completion for ":doautoall".
Solution: Complete ":doautoall" like ":doautocmd". (Doug Kearns)
Files: src/ex_docmd.c

Patch 7.2.030 (after 7.2.027)
Problem: Can't compile.
Solution: Remove prematurely added ex_oldfiles.
Files: src/ex_cmds.h

Patch 7.2.031
Problem: Information in the viminfo file about previously edited files is

not available to the user. There is no way to get a complete list
of files edited in previous Vim sessions.

Solution: Add v:oldfiles and fill it with the list of old file names when
first reading the viminfo file. Add the ":oldfiles" command,
":browse oldfiles" and the "#<123" special file name. Increase
the default value for 'viminfo' from '20 to '100.

Files: runtime/doc/cmdline.txt, runtime/doc/eval.txt,
runtime/doc/starting.txt, runtime/doc/usr_21.txt, src/eval.c,
src/ex_cmds.c, src/ex_cmds.h, src/ex_docmd.c, src/feature.h,
src/fileio.c, src/main.c, src/mark.c, src/misc1.c,
src/proto/eval.pro, src/proto/ex_cmds.pro, src/proto/mark.pro,
src/option.c, src/structs.h, src/vim.h

Patch 7.2.032 (after 7.2.031)
Problem: Can't build with EXITFREE defined. (Dominique Pelle)
Solution: Change vv_string to vv_str.
Files: src/eval.c

Patch 7.2.033
Problem: When detecting a little endian BOM "ucs-2le" is used, but the text

might be "utf-16le".
Solution: Default to "utf-16le", it also works for "ucs-2le". (Jia Yanwei)
Files: src/fileio.c, src/testdir/test42.ok

Patch 7.2.034
Problem: Memory leak in spell info when deleting buffer.
Solution: Free the memory. (Dominique Pelle)
Files: src/buffer.c

Patch 7.2.035
Problem: Mismatches between alloc/malloc, free/vim_free,

realloc/vim_realloc.
Solution: Use the right function. (Dominique Pelle)
Files: src/gui_x11.c, src/mbyte.c, src/misc2.c, src/os_unix.c

Patch 7.2.036 (extra)
Problem: Mismatches between alloc/malloc, free/vim_free,

realloc/vim_realloc.
Solution: Use the right function. (Dominique Pelle)
Files: src/gui_riscos.c, src/gui_w48.c, src/mbyte.c, src/os_vms.c,

src/os_w32exe.c, src/os_win16.c

version7.txt — 2611

Patch 7.2.037
Problem: Double free with GTK 1 and compiled with EXITFREE.
Solution: Don't close display. (Dominique Pelle)
Files: src/os_unix.c

Patch 7.2.038
Problem: Overlapping arguments to memcpy().
Solution: Use mch_memmove(). (Dominique Pelle)
Files: src/if_xcmdsrv.c

Patch 7.2.039
Problem: Accessing freed memory on exit when EXITFREE is defined.
Solution: Call hash_init() on the v: hash table.
Files: src/eval.c

Patch 7.2.040
Problem: When using ":e ++ff=dos fname" and the file contains a NL without

a CR before it and 'ffs' contains "unix" then the fileformat
becomes unix.

Solution: Ignore 'ffs' when using the ++ff argument. (Ben Schmidt)
Also remove unreachable code.

Files: src/fileio.c

Patch 7.2.041
Problem: In diff mode, when using two tabs, each with two diffed buffers,

editing a buffer of the other tab messes up the diff. (Matt
Mzyzik)

Solution: Only copy options from a window where the buffer was edited that
doesn't have 'diff' set or is for the current tab page.
Also fix that window options for a buffer are stored with the
wrong window.

Files: src/buffer.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/ex_getln.c, src/if_sniff.c, src/main.c, src/netbeans.c,
src/normal.c, src/popupmnu.c, src/proto/buffer.pro,
src/proto/ex_cmds.pro src/quickfix.c, src/window.c

Patch 7.2.042
Problem: When using winrestview() in a BufWinEnter autocommand the window

is scrolled anyway. (Matt Zyzik)
Solution: Don't recompute topline when above 'scrolloff' from the bottom.

Don't always put the cursor halfway when entering a buffer. Add
"w_topline_was_set".

Files: src/buffer.c, src/move.c, src/structs.h

Patch 7.2.043
Problem: VMS: Too many characters are escaped in filename and shell

commands.
Solution: Escape fewer characters. (Zoltan Arpadffy)
Files: src/vim.h

Patch 7.2.044
Problem: Crash because of STRCPY() being over protective of the destination

size. (Dominique Pelle)
Solution: Add -D_FORTIFY_SOURCE=1 to CFLAGS. Use an intermediate variable

for the pointer to avoid a warning.
Files: src/auto/configure, src/configure.in, src/eval.c

Patch 7.2.045
Problem: The Python interface has an empty entry in sys.path.

version7.txt — 2612

Solution: Filter out the empty entry. (idea from James Vega)
Files: src/if_python.c

Patch 7.2.046
Problem: Wrong check for filling buffer with encoding. (Danek Duvall)
Solution: Remove pointers. (Dominique Pelle)
Files: src/mbyte.c

Patch 7.2.047
Problem: Starting Vim with the -nb argument while it's not supported causes

the other side to hang.
Solution: When -nb is used while it's not supported exit Vim. (Xavier de

Gaye)
Files: src/main.c, src/vim.h

Patch 7.2.048
Problem: v:prevcount is changed too often. Counts are not multiplied when

setting v:count.
Solution: Set v:prevcount properly. Multiply counts. (idea by Ben Schmidt)
Files: src/eval.c, src/normal.c, src/proto/eval.pro

Patch 7.2.049 (extra)
Problem: Win32: the clipboard doesn't support UTF-16.
Solution: Change UCS-2 support to UTF-16 support. (Jia Yanwei)
Files: src/gui_w32.c, src/gui_w48.c, src/mbyte.c, src/misc1.c,

src/os_mswin.c, src/os_win32.c, src/proto/os_mswin.pro

Patch 7.2.050
Problem: Warnings for not checking return value of fwrite(). (Chip Campbell)
Solution: Use the return value.
Files: src/spell.c

Patch 7.2.051
Problem: Can't avoid 'wildignore' and 'suffixes' for glob() and globpath().
Solution: Add an extra argument to these functions. (Ingo Karkat)
Files: src/eval.c, src/ex_getln.c, src/proto/ex_getln.pro,

runtime/doc/eval.txt, runtime/doc/options.txt

Patch 7.2.052
Problem: synIDattr() doesn't support "sp" for special color.
Solution: Recognize "sp" and "sp#". (Matt Wozniski)
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.2.053
Problem: Crash when using WorkShop command ":ws foo". (Dominique Pelle)
Solution: Avoid using a NULL pointer.
Files: src/workshop.c

Patch 7.2.054
Problem: Compilation warnings for format in getchar.c.
Solution: Use fputs() instead of fprintf(). (Dominique Pelle)
Files: src/getchar.c

Patch 7.2.055
Problem: Various compiler warnings with strict checking.
Solution: Avoid the warnings by using return values and renaming.
Files: src/diff.c, src/eval.c, src/ex_cmds.c, src/ex_docmd.c,

src/fileio.c, src/fold.c, src/globals.h, src/gui.c,
src/gui_at_sb.c, src/gui_gtk_x11.c, src/gui_xmdlg.c,
src/gui_xmebw.c, src/main.c, src/mbyte.c, src/message.c,

version7.txt — 2613

src/netbeans.c, src/option.c, src/os_unix.c, src/spell.c,
src/ui.c, src/window.c

Patch 7.2.056 (after 7.2.050)
Problem: Tests 58 and 59 fail.
Solution: Don't invoke fwrite() with a zero length. (Dominique Pelle)
Files: src/spell.c

Patch 7.2.057 (after 7.2.056)
Problem: Combination of int and size_t may not work.
Solution: Use size_t for variable.
Files: src/spell.c

Patch 7.2.058
Problem: Can't add a patch name to the ":version" output.
Solution: Add the extra_patches array.
Files: src/version.c

Patch 7.2.059
Problem: Diff display is not always updated.
Solution: Update the display more often.
Files: src/diff.c

Patch 7.2.060
Problem: When a spell files has many compound rules it may take a very long

time making the list of suggestions. Displaying also can be slow
when there are misspelled words.
Can't parse some Hunspell .aff files.

Solution: Check if a compounding can possibly work before trying a
combination, if the compound rules don't contain wildcards.
Implement using CHECKCOMPOUNDPATTERN.
Ignore COMPOUNDRULES. Ignore a comment after most items.
Accept ONLYINCOMPOUND as an alias for NEEDCOMPOUND.
Accept FORBIDDENWORD as an alias for BAD.

Files: runtime/doc/spell.txt, src/spell.c

Patch 7.2.061
Problem: Can't create a funcref for an autoload function without loading

the script first. (Marc Weber)
Solution: Accept autoload functions that don't exist yet in function().
Files: src/eval.c

Patch 7.2.062
Problem: "[Scratch]" is not translated.
Solution: Mark the string for translation. (Dominique Pelle)
Files: src/buffer.c

Patch 7.2.063
Problem: Warning for NULL argument of Perl_sys_init3().
Solution: Use Perl_sys_init() instead. (partly by Dominique Pelle)
Files: src/if_perl.xs

Patch 7.2.064
Problem: Screen update bug when repeating "~" on a Visual block and the

last line doesn't change.
Solution: Keep track of changes for all lines. (Moritz Orbach)
Files: src/ops.c

Patch 7.2.065
Problem: GTK GUI: the cursor disappears when doing ":vsp" and the Vim

version7.txt — 2614

window is maximized. (Dominique Pelle, Denis Smolyar)
Solution: Don't change "Columns" back to an old value at a wrong moment.

Do change "Rows" when it should not be a problem.
Files: src/gui.c

Patch 7.2.066
Problem: It's not easy to see whether 'encoding' is a multibyte encoding.
Solution: Add has('multi_byte_encoding').
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.2.067
Problem: Session file can't load extra file when the path contains special

characters.
Solution: Escape the file name. (Lech Lorens)
Files: src/ex_docmd.c

Patch 7.2.068
Problem: Emacs tags file lines can be too long, resulting in an error

message. (James Vega)
Solution: Ignore lines with errors if they are too long.
Files: src/tag.c

Patch 7.2.069 (after 7.2.060)
Problem: Compiler warning for storing size_t in int.
Solution: Add type cast.
Files: src/spell.c

Patch 7.2.070
Problem: Crash when a function returns a:000. (Matt Wozniski)
Solution: Don't put the function struct on the stack, allocate it. Free it

only when nothing in it is used.
Files: src/eval.c

Patch 7.2.071 (extra)
Problem: Win32: Handling netbeans events while Vim is busy updating the

screen may cause a crash.
Solution: Like with GTK, only handle netbeans messages in the main loop.

(Xavier de Gaye)
Files: src/gui_w48.c, src/netbeans.c

Patch 7.2.072 (extra)
Problem: Compiler warning in Sniff code.
Solution: Use return value of pipe(). (Dominique Pelle)
Files: src/if_sniff.c

Patch 7.2.073
Problem: ":set <xHome>" has the same output as ":set <Home>". (Matt

Wozniski)
Solution: Don't translate "x" keys to its alternative for ":set".
Files: src/gui_mac.c, src/misc2.c, src/option.c, src/proto/misc2.pro

Patch 7.2.074 (extra, after 7.2.073)
Problem: ":set <xHome>" has the same output as ":set <Home>". (Matt

Wozniski)
Solution: Don't translate "x" keys to its alternative for ":set".
Files: src/gui_mac.c

Patch 7.2.075 (after 7.2.058)
Problem: Explanation about making a diff for extra_patches is unclear.
Solution: Adjust comment.

version7.txt — 2615

Files: src/version.c

Patch 7.2.076
Problem: rename(from, to) deletes the file if "from" and "to" are not equal

but still refer to the same file. E.g., on a FAT32 filesystem
under Unix.

Solution: Go through another file name.
Files: src/fileio.c

Patch 7.2.077 (after 7.2.076)
Problem: rename(from, to) doesn't work if "from" and "to" differ only in

case on a system that ignores case in file names.
Solution: Go through another file name.
Files: src/fileio.c

Patch 7.2.078
Problem: When deleting a fold that is specified with markers the cursor

position may be wrong. Folds may not be displayed properly after
a delete. Wrong fold may be deleted.

Solution: Fix the problems. (mostly by Lech Lorens)
Files: src/fold.c

Patch 7.2.079
Problem: "killed" netbeans events are not handled correctly.
Solution: A "killed" netbeans event is sent when the buffer is deleted or

wiped out (in this case, the netbeans annotations in this buffer
have been removed). A user can still remove a sign with the
command ":sign unplace" and this does not trigger a "killed"
event. (Xavier de Gaye)

Files: runtime/doc/netbeans.txt, src/buffer.c, src/globals.h,
src/netbeans.c, src/proto/netbeans.pro

Patch 7.2.080
Problem: When typing a composing character just after starting completion

may access memory before its allocation point. (Dominique Pelle)
Solution: Don't delete before the completion start column. Add extra checks

for the offset not being negative.
Files: src/edit.c

Patch 7.2.081
Problem: Compiler warning for floating point overflow on VAX.
Solution: For VAX use a smaller number. (Zoltan Arpadffy)
Files: src/message.c

Patch 7.2.082
Problem: When 'ff' is "mac" then "ga" on a ^J shows 0x0d instead of 0x0a.

(Andy Wokula)
Solution: Use NL for this situation. (Lech Lorens)
Files: src/ex_cmds.c

Patch 7.2.083
Problem: ":tag" does not return to the right tag entry from the tag stack.
Solution: Don't change the current match when there is no argument.

(Erik Falor)
Files: src/tag.c

Patch 7.2.084
Problem: Recursive structures are not handled properly in Python

vim.eval().
Solution: Keep track of references in a better way. (Yukihiro Nakadaira)

version7.txt — 2616

Files: src/if_python.c

Patch 7.2.085
Problem: ":set <M-b>=<Esc>b" does not work when 'encoding' is utf-8.
Solution: Put the <M-b> character in the input buffer as valid utf-8.

(partly by Matt Wozniski)
Files: src/term.c

Patch 7.2.086
Problem: Using ":diffget 1" in buffer 1 corrupts the text.
Solution: Don't do anything when source and destination of ":diffget" or

":diffput" is the same buffer. (Dominique Pelle)
Files: src/diff.c

Patch 7.2.087
Problem: Adding URL to 'path' doesn't work to edit a file.
Solution: Skip simplify_filename() for URLs. (Matt Wozniski)
Files: src/misc2.c

Patch 7.2.088 (extra)
Problem: OpenClipboard() may fail when another application is using the

clipboard.
Solution: Retry OpenClipboard() a few times. (Jianrong Yu)
Files: src/os_mswin.c

Patch 7.2.089 (extra)
Problem: Win32: crash when using Ultramon buttons.
Solution: Don't use a WM_OLE message of zero size. (Ray Megal)
Files: src/if_ole.cpp, src/gui_w48.c

Patch 7.2.090
Problem: User command containing 0x80 in multibyte character does not work

properly. (Yasuhiro Matsumoto)
Solution: Undo replacement of K_SPECIAL and CSI characters when executing

the command.
Files: src/ex_docmd.c

Patch 7.2.091
Problem: ":cs help" output is not aligned for some languages.
Solution: Compute character size instead of byte size. (Dominique Pelle)
Files: src/if_cscope.c

Patch 7.2.092
Problem: Some error messages are not translated.
Solution: Add _() around the messages. (Dominique Pelle)
Files: src/eval.c

Patch 7.2.093 (extra)
Problem: Win32: inputdialog() and find/replace dialogs can't handle

multibyte text.
Solution: Use the wide version of dialog functions when available. (Yanwei

Jia)
Files: src/gui_w32.c, src/gui_w48.c

Patch 7.2.094
Problem: Compiler warning for signed/unsigned compare.
Solution: Add type cast. Also fix a few typos.
Files: src/edit.c

Patch 7.2.095

version7.txt — 2617

Problem: With Visual selection, "r" and then CTRL-C Visual mode is stopped
but the highlighting is not removed.

Solution: Call reset_VIsual().
Files: src/normal.c

Patch 7.2.096
Problem: After ":number" the "Press Enter" message may be on the wrong

screen, if switching screens for shell commands.
Solution: Reset info_message. (James Vega)
Files: src/ex_cmds.c

Patch 7.2.097
Problem: "!xterm&" doesn't work when 'shell' is "bash".
Solution: Ignore SIGHUP after calling setsid(). (Simon Schubert)
Files: src/os_unix.c

Patch 7.2.098
Problem: Warning for signed/unsigned pointer.
Solution: Add type cast.
Files: src/eval.c

Patch 7.2.099
Problem: Changing GUI options causes an unnecessary redraw when the GUI

isn't active.
Solution: Avoid the redraw. (Lech Lorens)
Files: src/option.c

Patch 7.2.100
Problem: When using ":source" on a FIFO or something else that can't rewind

the first three bytes are skipped.
Solution: Instead of rewinding read the first line and detect a BOM in that.

(mostly by James Vega)
Files: src/ex_cmds2.c

Patch 7.2.101 (extra)
Problem: MSVC version not recognized.
Solution: Add the version number to the list. (Zhong Zhang)
Files: src/Make_mvc.mak

Patch 7.2.102 (after 7.2.100)
Problem: When 'encoding' is "utf-8" a BOM at the start of a Vim script is

not removed. (Tony Mechelynck)
Solution: When no conversion is taking place make a copy of the line without

the BOM.
Files: src/ex_cmds2.c

Patch 7.2.103
Problem: When 'bomb' is changed the window title is updated to show/hide a

"+", but the tab page label isn't. (Patrick Texier)
Solution: Set "redraw_tabline" in most places where "need_maketitle" is set.

(partly by Lech Lorens)
Files: src/option.c

Patch 7.2.104
Problem: When using ":saveas bar.c" the tab label isn't updated right away.
Solution: Set redraw_tabline. (Francois Ingelrest)
Files: src/ex_cmds.c

Patch 7.2.105
Problem: Modeline setting for 'foldmethod' overrules diff options. (Ingo

version7.txt — 2618

Karkat)
Solution: Don't set 'foldmethod' and 'wrap' from a modeline when 'diff' is

on.
Files: src/option.c

Patch 7.2.106
Problem: Endless loop when using "]s" in HTML when there are no

misspellings. (Ingo Karkat)
Solution: Break the search loop. Also fix pointer alignment for systems

with pointers larger than int.
Files: src/spell.c

Patch 7.2.107
Problem: When using a GUI dialog and ":echo" commands the messages are

deleted after the dialog. (Vincent Birebent)
Solution: Don't call msg_end_prompt() since there was no prompt.
Files: src/message.c

Patch 7.2.108 (after 7.2.105)
Problem: Can't build without the diff feature.
Solution: Add #ifdef.
Files: src/option.c

Patch 7.2.109
Problem: 'langmap' does not work for multibyte characters.
Solution: Add a list of mapped multibyte characters. (based on work by

Konstantin Korikov, Agathoklis Hatzimanikas)
Files: runtime/doc/options.txt, src/edit.c, src/getchar.c, src/macros.h,

src/normal.c, src/option.c, src/proto/option.pro, src/window.c

Patch 7.2.110
Problem: Compiler warning for unused variable.
Solution: Init the variable.
Files: src/ex_docmd.c

Patch 7.2.111
Problem: When using Visual block mode with 'cursorcolumn' it's unclear what

is selected.
Solution: Don't use 'cursorcolumn' highlighting inside the Visual selection.

(idea by Dominique Pelle)
Files: src/screen.c

Patch 7.2.112
Problem: Cursor invisible in Visual mode when 'number' is set and cursor in

first column. (Matti Niemenmaa, Renato Alves)
Solution: Check that vcol_prev is smaller than vcol.
Files: src/screen.c

Patch 7.2.113
Problem: Crash for substitute() call using submatch(1) while there is no

such submatch. (Yukihiro Nakadaira)
Solution: Also check the start of the submatch is set, it can be NULL when

an attempted match didn't work out.
Files: src/regexp.c

Patch 7.2.114
Problem: Using wrong printf format.
Solution: Use "%ld" instead of "%d". (Dominique Pelle)
Files: src/netbeans.c

version7.txt — 2619

Patch 7.2.115
Problem: Some debugging code is never used.
Solution: Remove nbtrace() and nbprt(). (Dominique Pelle)
Files: src/nbdebug.c, src/nbdebug.h

Patch 7.2.116
Problem: Not all memory is freed when EXITFREE is defined.
Solution: Free allocated memory on exit. (Dominique Pelle)
Files: src/ex_docmd.c, src/gui_gtk_x11.c, src/misc2.c, src/search.c,

src/tag.c

Patch 7.2.117
Problem: Location list incorrectly labelled "Quickfix List".
Solution: Break out of both loops for finding window for location list

buffer. (Lech Lorens)
Files: src/buffer.c, src/quickfix.c, src/screen.c

Patch 7.2.118
Problem: <PageUp> at the more prompt only does half a page.
Solution: Make <PageUp> go up a whole page. Also make 'f' go a page

forward, but not quit the more prompt. (Markus Heidelberg)
Files: src/message.c

Patch 7.2.119
Problem: Status line is redrawn too often.
Solution: Check ScreenLinesUC[] properly. (Yukihiro Nakadaira)
Files: src/screen.c

Patch 7.2.120
Problem: When opening the quickfix window or splitting the window and

setting the location list, the location list is copied and then
deleted, which is inefficient.

Solution: Don't copy the location list when not needed. (Lech Lorens)
Files: src/quickfix.c, src/vim.h, src/window.c

Patch 7.2.121
Problem: In gvim "!grep a *.c" spews out a lot of text that can't be

stopped with CTRL-C.
Solution: When looping to read and show text, do check for typed characters

every two seconds.
Files: src/os_unix.c

Patch 7.2.122
Problem: Invalid memory access when the VimResized autocommand changes

'columns' and/or 'lines'.
Solution: After VimResized check for changed values. (Dominique Pelle)
Files: src/screen.c

Patch 7.2.123
Problem: Typing 'q' at more prompt for ":map" output still displays another

line, causing another more prompt. (Markus Heidelberg)
Solution: Quit listing maps when 'q' typed.
Files: src/getchar.c

Patch 7.2.124
Problem: Typing 'q' at more prompt for ":tselect" output still displays

more lines, causing another more prompt. (Markus Heidelberg)
Solution: Quit listing tags when 'q' typed.
Files: src/tag.c

version7.txt — 2620

Patch 7.2.125
Problem: Leaking memory when reading XPM bitmap for a sign.
Solution: Don't allocate the memory twice. (Dominique Pelle)
Files: src/gui_x11.c

Patch 7.2.126
Problem: When EXITFREE is defined signs are not freed.
Solution: Free all signs on exit. Also free keymaps. (Dominique Pelle)
Files: src/misc2.c, src/ex_cmds.c, src/proto/ex_cmds.pro

Patch 7.2.127
Problem: When listing mappings and a wrapping line causes the more prompt,

after typing 'q' there can be another more prompt. (Markus
Heidelberg)

Solution: Set "lines_left" to allow more lines to be displayed.
Files: src/message.c

Patch 7.2.128 (after 7.2.055)
Problem: Using ":lcd" makes session files not work.
Solution: Compare return value of mch_chdir() properly. (Andreas Bernauer)
Files: src/ex_docmd.c

Patch 7.2.129
Problem: When opening a command window from input() it uses the search

history.
Solution: Use get_cmdline_type(). (James Vega)
Files: src/ex_getln.c

Patch 7.2.130
Problem: Vim may hang until CTRL-C is typed when using CTRL-Z.
Solution: Avoid using pause(). Also use "volatile" for variables used in

signal functions. (Dominique Pelle)
Files: src/auto/configure, src/configure.in, src/config.h.in,

src/globals.h, src/os_unix.c

Patch 7.2.131
Problem: When 'keymap' is cleared may still use the cursor highlighting for

when it's enabled.
Solution: Reset 'iminsert' and 'imsearch'. (partly by Dominique Pelle)

Also avoid ":setlocal" for these options have a global effect.
Files: src/option.c

Patch 7.2.132
Problem: When changing directory during a SwapExists autocmd freed memory

may be accessed. (Dominique Pelle)
Solution: Add the allbuf_lock flag.
Files: src/ex_getln.c, src/globals.h, src/fileio.c,

src/proto/ex_getln.pro

Patch 7.2.133
Problem: ":diffoff!" changes settings in windows not in diff mode.
Solution: Only change settings in other windows when 'diff' is set, always

do it for the current window. (Lech Lorens)
Files: src/diff.c

Patch 7.2.134
Problem: Warning for discarding "const" from pointer.
Solution: Don't pass const pointer to mch_memmove().
Files: src/fileio.c

version7.txt — 2621

Patch 7.2.135
Problem: Memory leak when redefining user command with complete argument.
Solution: Free the old complete argument. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.2.136 (after 7.2.132)
Problem: ":cd" is still possible in a SwapExists autocmd.
Solution: Check the allbuf_lock flag in ex_cd().
Files: src/ex_docmd.c

Patch 7.2.137
Problem: When 'virtualedit' is set, a left shift of a blockwise selection

that starts and ends inside a tab shifts too much. (Helmut
Stiegler)

Solution: Redo the block left shift code. (Lech Lorens)
Files: src/ops.c, src/testdir/Makefile, src/testdir/test66.in,

src/testdir/test66.ok

Patch 7.2.138 (extra part of 7.2.137)
Problem: See 7.2.137.
Solution: See 7.2.137.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms

Patch 7.2.139
Problem: Crash when 'virtualedit' is "all". (James Vega)
Solution: Avoid overflow when column is MAXCOL. (Dominique Pelle)
Files: src/misc2.c

Patch 7.2.140
Problem: Diff highlighting isn't displayed before the Visual area if it

starts at the cursor position. (Markus Heidelberg)
Solution: Also check fromcol_prev.
Files: src/screen.c

Patch 7.2.141
Problem: When redrawing a character for bold spill this causes the next

character to be redrawn as well.
Solution: Only redraw one extra character. (Yukihiro Nakadaira)
Files: src/screen.c

Patch 7.2.142
Problem: Motif and Athena balloons don't use tooltip colors.
Solution: Set the colors. (Matt Wozniski)
Files: src/gui_beval.c

Patch 7.2.143
Problem: No command line completion for ":cscope" command.
Solution: Add the completion for ":cscope". (Dominique Pelle)
Files: src/ex_docmd.c, src/ex_getln.c, src/if_cscope.c,

src/proto/if_cscope.pro, src/vim.h

Patch 7.2.144
Problem: When 't_Co' is set to the value it already had the color scheme is

reloaded anyway.
Solution: Only load the colorscheme when the t_Co value changes. (Dominique

Pelle)
Files: src/option.c

version7.txt — 2622

Patch 7.2.145
Problem: White space in ":cscope find" is not ignored.
Solution: Ignore the white space, but not when the leading white space is

useful for the argument.
Files: runtime/doc/if_scop.txt, src/if_cscope.c

Patch 7.2.146
Problem: v:warningmsg isn't used for all warnings.
Solution: Set v:warningmsg for relevant warnings. (Ingo Karkat)
Files: src/fileio.c, src/misc1.c, src/option.c

Patch 7.2.147
Problem: When compiled as small version and 'number' is on the cursor is

displayed in the wrong position after a tab. (James Vega)
Solution: Don't increment vcol when still displaying the line number.
Files: src/screen.c

Patch 7.2.148
Problem: When searching for "$" while 'hlsearch' is set, highlighting the

character after the line does not work in the cursor column.
Also highlighting for Visual mode after the line end when this
isn't needed. (Markus Heidelberg)

Solution: Only compare the cursor column in the cursor line. Only highlight
for Visual selection after the last character when it's needed to
see where the Visual selection ends.

Files: src/screen.c

Patch 7.2.149
Problem: Using return value of function that doesn't return a value results

in reading uninitialized memory.
Solution: Set the default to return zero. Make cursor() return -1 on

failure. Let complete() return an empty string in case of an
error. (partly by Dominique Pelle)

Files: runtime/doc/eval.txt, src/eval.c

Patch 7.2.150 (extra)
Problem: Can't use tab pages from VisVim.
Solution: Add tab page support to VisVim. (Adam Slater)
Files: src/VisVim/Commands.cpp, src/VisVim/Resource.h,

src/VisVim/VisVim.rc

Patch 7.2.151
Problem: ":hist a" doesn't work like ":hist all" as the docs suggest.
Solution: Make ":hist a" and ":hist al" work. (Dominique Pelle)
Files: src/ex_getln.c

Patch 7.2.152
Problem: When using "silent echo x" inside ":redir" a next echo may start

halfway the line. (Tony Mechelynck, Dennis Benzinger)
Solution: Reset msg_col after redirecting silently.
Files: src/ex_docmd.c, src/message.c, src/proto/message.pro

Patch 7.2.153
Problem: Memory leak for ":recover empty_dir/".
Solution: Free files[] when it becomes empty. (Dominique Pelle)
Files: src/memline.c

Patch 7.2.154 (after 7.2.132)
Problem: ":cd" is still possible in a SwapExists autocmd.
Solution: Set allbuf_lock in do_swapexists().

version7.txt — 2623

Files: src/memline.c

Patch 7.2.155
Problem: Memory leak in ":function /pat".
Solution: Free the memory. (Dominique Pelle)
Files: src/eval.c

Patch 7.2.156 (after 7.2.143)
Problem: No completion for :scscope and :lcscope commands.
Solution: Implement the completion. (Dominique Pelle)
Files: src/if_cscope.c, src/ex_docmd.c, src/proto/if_cscope.pro

Patch 7.2.157
Problem: Illegal memory access when searching in path.
Solution: Avoid looking at a byte after end of a string. (Dominique Pelle)
Files: src/search.c

Patch 7.2.158
Problem: Warnings from VisualC compiler.
Solution: Add type casts. (George Reilly)
Files: src/ops.c

Patch 7.2.159
Problem: When $x_includes ends up being "NONE" configure fails.
Solution: Check for $x_includes not to be "NONE" (Rainer)
Files: src/auto/configure, src/configure.in

Patch 7.2.160
Problem: Search pattern not freed on exit when 'rightleft' set.
Solution: Free mr_pattern_alloced.
Files: src/search.c

Patch 7.2.161
Problem: Folds messed up in other tab page. (Vlad Irnov)
Solution: Instead of going over all windows in current tab page go over all

windows in all tab pages. Also free memory for location lists in
other tab pages when exiting. (Lech Lorens)

Files: src/fileio.c, src/mark.c, src/misc1.c, src/misc2.c

Patch 7.2.162
Problem: The quickfix window may get wrong filetype.
Solution: Do not detect the filetype for the quickfix window. (Lech Lorens)
Files: src/quickfix.c

Patch 7.2.163
Problem: The command line window may get folding.
Solution: Default to no/manual folding. (Lech Lorens)
Files: src/ex_getln.c

Patch 7.2.164
Problem: When 'showbreak' is set the size of the Visual block may be

reported wrong. (Eduardo Daudt Flach)
Solution: Temporarily make 'sbr' empty.
Files: src/normal.c, src/ops.c

Patch 7.2.165
Problem: The argument for the FuncUndefined autocmd event is expanded like

a file name.
Solution: Don't try expanding it. (Wang Xu)
Files: src/fileio.c

version7.txt — 2624

Patch 7.2.166
Problem: No completion for ":sign" command.
Solution: Add ":sign" completion. (Dominique Pelle)
Files: src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c, src/vim.h,

src/proto/ex_cmds.pro

Patch 7.2.167
Problem: Splint doesn't work well for checking the code.
Solution: Add splint arguments in the Makefile. Exclude some code from

splint that it can't handle. Tune splint arguments to give
reasonable errors. Add a filter for removing false warnings from
splint output. Many small changes to avoid warnings. More to
follow...

Files: Filelist, src/Makefile, src/buffer.c, src/charset.c,
src/cleanlint.vim, src/digraph.c, src/edit.c, src/ex_cmds.c,
src/globals.h, src/ops.c, src/os_unix.c, src/os_unix.h,
src/proto/buffer.pro, src/proto/edit.pro, src/screen.c,
src/structs.h

Patch 7.2.168
Problem: When no ctags program can be found, "make tags" attempts to

execute the first C file.
Solution: Default to "ctags" when no ctags program can be found.
Files: src/configure.in, src/auto/configure

Patch 7.2.169
Problem: Splint complains about a lot of things.
Solution: Add type casts, #ifdefs and other changes to avoid warnings.

Change colnr_T from unsigned to int. Avoids mistakes with
subtracting columns.

Files: src/cleanlint.vim, src/diff.c, src/edit.c, src/ex_cmds.c,
src/ex_cmds2.c, src/ex_docmd.c, src/proto/ex_cmds.pro,
src/proto/spell.pro, src/quickfix.c, src/spell.c, src/structs.h,
src/term.h, src/vim.h

Patch 7.2.170
Problem: Using b_dev while it was not set. (Dominique Pelle)
Solution: Add the b_dev_valid flag.
Files: src/buffer.c, src/fileio.c, src/structs.h

Patch 7.2.171 (after 7.2.169)
Problem: Compiler warnings. (Tony Mechelynck)
Solution: Add function prototype. (Patrick Texier) Init variable.
Files: src/ex_cmds.c

Patch 7.2.172 (extra)
Problem: Compiler warning.
Solution: Adjust function prototype. (Patrick Texier)
Files: src/os_mswin.c

Patch 7.2.173
Problem: Without lint there is no check for unused function arguments.
Solution: Use gcc -Wunused-parameter instead of lint. For a few files add

attributes to arguments that are known not to be used.
Files: src/auto/configure, src/buffer.c, src/charset.c, src/diff.c,

src/configure.in, src/config.h.in, src/edit.c, src/ex_cmds.c,
src/ex_cmds2.c, src/version.c, src/vim.h

Patch 7.2.174

version7.txt — 2625

Problem: Too many warnings from gcc -Wextra.
Solution: Change initializer. Add UNUSED. Add type casts.
Files: src/edit.c, src/eval.c, src/ex_cmds.c, src/ex_docmd.c,

src/ex_getln.c, src/fileio.c, getchar.c, globals.h, main.c,
memline.c, message.c, src/misc1.c, src/move.c, src/normal.c,
src/option.c, src/os_unix.c, src/os_unix.h, src/regexp.c,
src/search.c, src/tag.c

Patch 7.2.175
Problem: Compiler warning in OpenBSD.
Solution: Add type cast for NULL. (Dasn)
Files: src/if_cscope.c

Patch 7.2.176
Problem: Exceptions for splint are not useful.
Solution: Remove the S_SPLINT_S ifdefs.
Files: src/edit.c, src/ex_cmds.c, src/ex_docmd.c, src/os_unix.c,

src/os_unix.h, src/os_unixx.h, src/structs.h, src/term.h

Patch 7.2.177
Problem: Compiler warnings when using -Wextra
Solution: Add UNUSED and type casts.
Files: src/eval.c, src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c,

src/fileio.c, src/hardcopy.c, src/if_cscope.c, src/if_xcmdsrv.c,
src/farsi.c, src/mark.c, src/menu.c

Patch 7.2.178
Problem: Using negative value for device number might not work.
Solution: Use a separate flag for whether ffv_dev was set.
Files: src/misc2.c

Patch 7.2.179
Problem: Using negative value for device number might not work.
Solution: Use a separate flag for whether sn_dev was set.
Files: src/ex_cmds2.c

Patch 7.2.180
Problem: Some more compiler warnings when using gcc -Wextra.
Solution: Add UNUSED and type casts.
Files: src/buffer.c, src/ex_cmds.c, src/macros.h, src/main.c,

src/menu.c, src/message.c, src/misc1.c, src/mbyte.c,
src/normal.c, src/option.c, src/os_unix.c, src/quickfix.c,
src/screen.c, src/search.c, src/spell.c, src/syntax.c, src/tag.c,
src/term.c, src/ui.c

Patch 7.2.181
Problem: Some more compiler warnings when using gcc -Wextra.
Solution: Add UNUSED and type casts.
Files: src/if_mzsch.c, src/gui.c, src/gui_gtk.c, src/gui_gtk_x11.c,

src/gui_gtk_f.c, src/gui_beval.c, src/netbeans.c

Patch 7.2.182 (after 7.2.181)
Problem: Compilation problems after previous patch for Motif. Gvim with

GTK crashes on startup.
Solution: Add comma. Init form structure to zeroes.
Files: src/netbeans.c, src/gui_gtk_f.c

Patch 7.2.183
Problem: Configure problem for sys/sysctl.h on OpenBSD. (Dasn)
Solution: Add separate check for this header file. Also switch to newer

version7.txt — 2626

version of autoconf.
Files: src/auto/configure, src/configure.in

Patch 7.2.184
Problem: Some more compiler warnings when using gcc -Wextra.
Solution: Add UNUSED and type casts. Autoconf check for wchar_t.
Files: src/auto/configure, src/config.h.in, src/configure.in,

src/gui_athena.c, src/gui_x11.c, src/gui.c, src/gui_beval.c,
src/gui_at_sb.c, src/gui_at_fs.c, src/gui_motif.c,
src/gui_xmdlg.c, src/gui_xmebw.c, src/if_python.c, src/window.c,
src/workshop.c

Patch 7.2.185
Problem: Some more compiler warnings when using gcc -Wextra.
Solution: Add UNUSED and type casts.
Files: src/Makefile, src/if_tlc.c, src/if_ruby.c

Patch 7.2.186
Problem: Some more compiler warnings when using gcc -Wextra.
Solution: Now with the intended if_tcl.c changes.
Files: src/if_tcl.c

Patch 7.2.187 (after 7.2.186)
Problem: Doesn't build with older versions of TCL. (Yongwei Wu)
Solution: Add #ifdefs. (Dominique Pelle)
Files: src/if_tcl.c

Patch 7.2.188
Problem: Crash with specific use of function calls. (Meikel Brandmeyer)
Solution: Make sure the items referenced by a function call are not freed

twice. (based on patch from Nico Weber)
Files: src/eval.c

Patch 7.2.189
Problem: Possible hang for deleting auto-indent. (Dominique Pelle)
Solution: Make sure the position is not beyond the end of the line.
Files: src/edit.c

Patch 7.2.190
Problem: The register executed by @@ isn't restored.
Solution: Mark the executable register in the viminfo file.
Files: src/ops.c

Patch 7.2.191
Problem: Mzscheme interface doesn't work on Ubuntu.
Solution: Change autoconf rules. Define missing macro. Some changes to

avoid gcc warnings. Remove per-buffer namespace. (Sergey Khorev)
Files: runtime/doc/if_mzsch.txt, src/Makefile, src/Make_ming.mak,

src/Make_mvc.mak, src/auto/configure, src/configure.in,
src/config.mk.in, src/eval.c, src/if_mzsch.c, src/if_mzsch.h,
src/main.c, src/proto/if_mzsch.pro

Patch 7.2.192 (after 7.2.188)
Problem: Still a crash in the garbage collector for a very rare situation.
Solution: Make sure current_copyID is always incremented correctly. (Kent

Sibilev)
Files: src/eval.c

Patch 7.2.193
Problem: Warning for uninitialized values.

version7.txt — 2627

Solution: Initialize all the struct items.
Files: src/eval.c

Patch 7.2.194 (extra)
Problem: MSVC: rem commands are echoed.
Solution: Add commands to switch off echo. (Wang Xu)
Files: src/msvc2008.bat

Patch 7.2.195
Problem: Leaking memory for the command Vim was started with.
Solution: Remember the pointer and free it.
Files: src/gui_gtk_x11.c

Patch 7.2.196 (after 7.2.167)
Problem: Turns out splint doesn't work well enough to be usable.
Solution: Remove splint support.
Files: Filelist, src/cleanlint.vim

Patch 7.2.197
Problem: Warning for uninitialized values.
Solution: Initialize all the struct items of typebuf.
Files: src/globals.h

Patch 7.2.198
Problem: Size of buffer used for tgetent() may be too small.
Solution: Use the largest known size everywhere.
Files: src/vim.h

Patch 7.2.199
Problem: Strange character in comment.
Solution: Change to "message". (Yongwei Wu)
Files: src/term.c

Patch 7.2.200
Problem: Reading past end of string when navigating the menu bar or

resizing the window.
Solution: Add and use mb_ptr2len_len(). (partly by Dominique Pelle)

Also add mb_ptr2cells_len() to prevent more trouble.
Files: src/gui_gtk_x11.c, src/os_unix.c, src/globals.h, src/mbyte.c,

src/proto/mbyte.pro

Patch 7.2.201
Problem: Cannot copy/paste HTML to/from Firefox via the clipboard.
Solution: Implement this for GTK. Add the "html" value to 'clipboard'.
Files: runtime/doc/options.txt, src/globals.h, src/gui_gtk_x11.c,

src/mbyte.c, src/proto/mbyte.pro, src/option.c

Patch 7.2.202
Problem: BufWipeout autocommand that edits another buffer causes problems.
Solution: Check for the situation, give an error and quit the operation.
Files: src/fileio.c

Patch 7.2.203
Problem: When reloading a buffer or doing anything else with a buffer that

is not displayed in a visible window, autocommands may be applied
to the current window, folds messed up, etc.

Solution: Instead of using the current window for the hidden buffer use a
special window, splitting the current one temporarily.

Files: src/fileio.c, src/globals.h, src/gui.c, src/if_perl.xs,
src/progo/gui.pro, src/proto/window.pro, src/screen.c,

version7.txt — 2628

src/structs.h, src/window.c

Patch 7.2.204 (extra)
Problem: Win32: Can't build with Visual Studio 2010 beta 1.
Solution: Fix the makefile. (George Reilly)
Files: src/Make_mvc.mak

Patch 7.2.205 (extra)
Problem: Win32: No support for High DPI awareness.
Solution: Fix the manifest file. (George Reilly)
Files: src/Make_mvc.mak, src/gvim.exe.mnf

Patch 7.2.206
Problem: Win32: Can't build netbeans interface with Visual Studio 2010.
Solution: Undefine ECONNREFUSED. (George Reilly)
Files: src/netbeans.c

Patch 7.2.207
Problem: Using freed memory with ":redrawstatus" when it works recursively.
Solution: Prevent recursively updating the status line. (partly by Dominique

Pelle)
Files: src/screen.c

Patch 7.2.208
Problem: "set novice" gives an error message, it should be ignored.
Solution: Don't see "no" in "novice" as unsetting an option. (Patrick

Texier)
Files: src/option.c

Patch 7.2.209
Problem: For xxd setmode() is undefined on Cygwin.
Solution: Include io.h. (Dominique Pelle)
Files: src/xxd/xxd.c

Patch 7.2.210
Problem: When a file that is being edited has its timestamp updated outside

of Vim and ":checktime" is used still get a warning when writing
the file. (Matt Mueller)

Solution: Store the timestamp in b_mtime_read when the timestamp is the only
thing that changed.

Files: src/fileio.c

Patch 7.2.211
Problem: Memory leak when expanding a series of file names.
Solution: Use ga_clear_strings() instead of ga_clear().
Files: src/misc1.c

Patch 7.2.212 (extra)
Problem: Warnings for redefining SIG macros.
Solution: Don't define them if already defined. (Bjorn Winckler)
Files: src/os_mac.h

Patch 7.2.213
Problem: Warning for using vsprintf().
Solution: Use vim_vsnprintf().
Files: src/netbeans.c

Patch 7.2.214
Problem: Crash with complete function for user command. (Andy Wokula)
Solution: Avoid using a NULL pointer (Dominique Pelle)

version7.txt — 2629

Files: src/ex_getln.c

Patch 7.2.215
Problem: ml_get error when using ":vimgrep".
Solution: Load the memfile for the hidden buffer before putting it in a

window. Correct the order of splitting the window and filling
the window and buffer with data.

Files: src/fileio.c, src/proto/window.pro, src/quickfix.c, src/window.c

Patch 7.2.216
Problem: Two error messages have the same number E812.
Solution: Give one message a different number.
Files: runtime/doc/autocmd.txt, runtime/doc/if_mzsch.txt, src/if_mzsch.c

Patch 7.2.217
Problem: Running tests with valgrind doesn't work as advertised.
Solution: Fix the line in the Makefile.
Files: src/testdir/Makefile

Patch 7.2.218
Problem: Cannot build GTK with hangul_input feature. (Dominique Pelle)
Solution: Adjust #ifdef. (SungHyun Nam)
Files: src/gui.c

Patch 7.2.219 (extra)
Problem: Photon GUI is outdated.
Solution: Updates for QNX 6.4.0. (Sean Boudreau)
Files: src/gui_photon.c

Patch 7.2.220 (after 7.2.215)
Problem: a BufEnter autocommand that changes directory causes problems.

(Ajit Thakkar)
Solution: Disable autocommands when opening a hidden buffer in a window.
Files: src/fileio.c

Patch 7.2.221
Problem: X cut_buffer0 text is used as-is, it may be in the wrong encoding.
Solution: Convert between 'enc' and latin1. (James Vega)
Files: src/gui_gtk_x11.c, src/message.c, src/ops.c, src/proto/ui.pro,

src/ui.c

Patch 7.2.222
Problem: ":mksession" doesn't work properly with 'acd' set.
Solution: Make it work. (Yakov Lerner)
Files: src/ex_docmd.c

Patch 7.2.223
Problem: When a script is run with ":silent" it is not able to give warning

messages.
Solution: Add the ":unsilent" command.
Files: runtime/doc/various.txt, src/ex_cmds.h, src/ex_docmd.c

Patch 7.2.224
Problem: Crash when using 'completefunc'. (Ingo Karkat)
Solution: Disallow entering edit() recursively when doing completion.
Files: src/edit.c

Patch 7.2.225
Problem: When using ":normal" a saved character may be executed.
Solution: Also store old_char when saving typeahead.

version7.txt — 2630

Files: src/getchar.c, src/structs.h

Patch 7.2.226
Problem: ml_get error after deleting the last line. (Xavier de Gaye)
Solution: When adjusting marks a callback may be invoked. Adjust the cursor

position before invoking deleted_lines_mark().
Files: src/ex_cmds.c, src/ex_docmd.c, src/if_mzsch.c, src/if_python.c,

src/if_perl.xs, src/misc1.c

Patch 7.2.227
Problem: When using ":cd" in a script there is no way to track this.
Solution: Display the directory when 'verbose' is 5 or higher.
Files: src/ex_docmd.c

Patch 7.2.228
Problem: Cscope is limited to 8 connections.
Solution: Allocated the connection array to handle any number of

connections. (Dominique Pelle)
Files: runtime/doc/if_cscop.txt, src/if_cscope.h, src/if_cscope.c

Patch 7.2.229
Problem: Warning for shadowed variable.
Solution: Rename "wait" to "wait_time".
Files: src/os_unix.c

Patch 7.2.230
Problem: A few old lint-style ARGUSED comments.
Solution: Change to the new UNUSED style.
Files: src/getchar.c

Patch 7.2.231
Problem: Warning for unreachable code.
Solution: Add #ifdef.
Files: src/if_perl.xs

Patch 7.2.232
Problem: Cannot debug problems with being in a wrong directory.
Solution: When 'verbose' is 5 or higher report directory changes.
Files: src/os_unix.c, src/os_unix.h, src/proto/os_unix.pro

Patch 7.2.233 (extra part of 7.2.232)
Problem: Cannot debug problems with being in a wrong directory.
Solution: When 'verbose' is 5 or higher report directory changes.
Files: src/os_msdos.c, src/os_mswin.c, src/os_riscos.c, src/os_mac.h

Patch 7.2.234
Problem: It is not possible to ignore file names without a suffix.
Solution: Use an empty entry in 'suffixes' for file names without a dot.
Files: runtime/doc/cmdline.txt, src/misc1.c

Patch 7.2.235
Problem: Using CTRL-O z= in Insert mode has a delay before redrawing.
Solution: Reset msg_didout and msg_scroll.
Files: src/misc1.c, src/spell.c

Patch 7.2.236
Problem: Mac: Compiling with Ruby doesn't always work.
Solution: In configure filter out the --arch argument (Bjorn Winckler)
Files: src/configure.in, src/auto/configure

version7.txt — 2631

Patch 7.2.237
Problem: Crash on exit when window icon not set.
Solution: Copy terminal name when using it for the icon name.
Files: src/os_unix.c

Patch 7.2.238
Problem: Leaking memory when setting term to "builtin_dumb".
Solution: Free memory when resetting term option t_Co.
Files: src/option.c, src/proto/option.pro, src/term.c

Patch 7.2.239
Problem: Using :diffpatch twice or when patching fails causes memory

corruption and/or a crash. (Bryan Venteicher)
Solution: Detect missing output file. Avoid using non-existing buffer.
Files: src/diff.c

Patch 7.2.240
Problem: Crash when using find/replace dialog repeatedly. (Michiel

Hartsuiker)
Solution: Avoid doing the operation while busy or recursively. Also refuse

replace when text is locked.
Files: src/gui.c

Patch 7.2.241
Problem: When using a combination of ":bufdo" and "doautoall" we may end up

in the wrong directory. (Ajit Thakkar)
Crash when triggering an autocommand in ":vimgrep". (Yukihiro
Nakadaira)

Solution: Clear w_localdir and globaldir when using the aucmd_win.
Use a separate flag to decide aucmd_win needs to be restored.

Files: src/fileio.c, src/globals.h, src/structs.h

Patch 7.2.242
Problem: Setting 'lazyredraw' causes the cursor column to be recomputed.

(Tom Link)
Solution: Only recompute the cursor column for a boolean option if changes

the cursor position.
Files: src/option.c

Patch 7.2.243
Problem: Memory leak when using :vimgrep and resizing. (Dominique Pelle)
Solution: Free memory for aucmd_win when resizing and don't allocate it

twice.
Files: src/screen.c

Patch 7.2.244
Problem: When 'enc' is utf-8 and 'fenc' is latin1, writing a non-latin1

character gives a conversion error without any hint what is wrong.
Solution: When known add the line number to the error message.
Files: src/fileio.c

Patch 7.2.245
Problem: When 'enc' is "utf-16" and 'fenc' is "utf-8" writing a file does

conversion while none should be done. (Yukihiro Nakadaira) When
'fenc' is empty the file is written as utf-8 instead of utf-16.

Solution: Do proper comparison of encodings, taking into account that all
Unicode values for 'enc' use utf-8 internally.

Files: src/fileio.c

Patch 7.2.246

version7.txt — 2632

Problem: Cscope home page link is wrong.
Solution: Update the URL. (Sergey Khorev)
Files: runtime/doc/if_cscop.txt

Patch 7.2.247
Problem: Mzscheme interface minor problem.
Solution: Better error message when build fails. (Sergey Khorev)
Files: src/if_mzsch.c

Patch 7.2.248 (extra)
Problem: Mzscheme interface building minor problems.
Solution: Update Win32 makefiles. (Sergey Khorev)
Files: src/Make_cyg.mak, src/Make_ming.mak, src/Make_mvc.mak

Patch 7.2.249
Problem: The script to check .po files can't handle '%' in plural forms.
Solution: Remove "Plural-Forms:" from the checked string.
Files: src/po/check.vim

Patch 7.2.250 (extra)
Problem: Possible buffer overflow.
Solution: Compute the remaining space. (Dominique Pelle)
Files: src/GvimExt/gvimext.cpp

Patch 7.2.251 (after 7.2.044)
Problem: Compiler adds invalid memory bounds check.
Solution: Remove _FORTIFY_SOURCE=2 from CFLAGS. (Dominique Pelle)
Files: src/auto/configure, src/configure.in

Patch 7.2.252
Problem: When using a multibyte 'enc' the 'iskeyword' option cannot

contain characters above 128.
Solution: Use mb_ptr2char_adv().
Files: src/charset.c

Patch 7.2.253
Problem: Netbeans interface: getLength always uses current buffer.
Solution: Use ml_get_buf() instead of ml_get(). (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.2.254
Problem: Compiler warning for assigning size_t to int.
Solution: Use size_t for the variable. (George Reilly)
Files: src/fileio.c

Patch 7.2.255 (after 7.2.242)
Problem: Setting 'rightleft', 'linebreak' and 'wrap' may cause cursor to be

in wrong place.
Solution: Recompute the cursor column for these options.
Files: src/option.c

Patch 7.2.256
Problem: When 'guifont' was not set GTK font dialog doesn't have a default.

(Andreas Metzler)
Solution: Set default to DEFAULT_FONT. (James Vega)
Files: src/gui_gtk_x11.c

Patch 7.2.257
Problem: With GTK 2.17 lots of assertion error messages.
Solution: Remove check for static gravity. (Sebastian Droege)

version7.txt — 2633

Files: src/gui_gtk_f.c

Patch 7.2.258
Problem: v:beval_col and b:beval_text are wrong in UTF-8 text. (Tony

Mechelynck)
Solution: Use byte number instead of character number for the column.
Files: src/ui.c

Patch 7.2.259
Problem: exists() doesn't work properly for an empty aucmd group.
Solution: Change how au_exists() handles a missing pattern. Also add a

test for this. (Bob Hiestand)
Files: src/fileio.c, src/testdir/Makefile, src/testdir/test67.in,

src/testdir/test67.ok

Patch 7.2.260 (extra part of 7.2.259)
Problem: exists() doesn't work properly for empty aucmd group.
Solution: Change how au_exists() handles a missing pattern. Also add a

test for this. (Bob Hiestand)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms

Patch 7.2.261
Problem: When deleting lines with a specific folding configuration E38 may

appear. (Shahaf)
Solution: When adjusting nested folds for deleted lines take into account

that they don't start at the top of the enclosing fold.
Files: src/fold.c

Patch 7.2.262
Problem: When using custom completion for a user command the pattern string

goes beyond the cursor position. (Hari Krishna Dara)
Solution: Truncate the string at the cursor position.
Files: src/ex_getln.c, src/structs.h

Patch 7.2.263
Problem: GTK2: when using the -geom argument with an offset from the right

edge and the size is smaller than the default, the Vim window is
not positioned properly.

Solution: Use another function to set the size. (Vitaly Minko)
Files: src/gui_gtk_x11.c

Patch 7.2.264
Problem: GTK2: When the Vim window is maximized setting 'columns' or

'lines' doesn't work.
Solution: Unmaximize the window before setting the size. (Vitaly Minko)
Files: src/gui.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro

Patch 7.2.265
Problem: When using ":silent broken" inside try/catch silency may persist.

(dr-dr xp)
Solution: Set msg_silent when there is an error and it's bigger than the

saved value.
Files: src/ex_docmd.c

Patch 7.2.266
Problem: When an expression abbreviation is triggered, the typed character

is unknown.
Solution: Make the typed character available in v:char.

version7.txt — 2634

Files: runtime/doc/map.txt, src/eval.c, src/getchar.c, src/ops.c,
src/proto/eval.pro

Patch 7.2.267
Problem: Crash for narrow window and double-width character.
Solution: Check for zero width. (Taro Muraoka)
Files: src/charset.c

Patch 7.2.268
Problem: Crash when using Python to set cursor beyond end of line.

(winterTTr)
Solution: Check the column to be valid.
Files: src/if_python.c

Patch 7.2.269
Problem: Many people struggle to find out why Vim startup is slow.
Solution: Add the --startuptime command line flag.
Files: runtime/doc/starting.txt, src/globals.h, src/feature.h,

src/main.c, src/macros.h

Patch 7.2.270
Problem: Using ":@c" when the c register contains a CR causes the rest to

be executed later. (Dexter Douglas)
Solution: Don't check for typeahead to start with ':', keep executing

commands until all added typeahead has been used.
Files: src/ex_docmd.c

Patch 7.2.271
Problem: Using freed memory in Motif GUI version when making a choice.
Solution: Free memory only after using it. (Dominique Pelle)
Files: src/gui_xmdlg.c

Patch 7.2.272
Problem: "_.svz" is not recognized as a swap file. (David M. Besonen)
Solution: Accept .s[uvw][a-z] as a swap file name extension.
Files: src/memline.c

Patch 7.2.273
Problem: Crash with redir to unknown array. (Christian Brabandt)
Solution: Don't assign the redir result when there was an error.
Files: src/eval.c

Patch 7.2.274
Problem: Syntax folding doesn't work properly when adding a comment.
Solution: Fix it and add a test. (Lech Lorens)
Files: src/fold.c, src/testdir/test45.in, src/testdir/test45.ok

Patch 7.2.275
Problem: Warning for unused argument and comparing signed and unsigned.
Solution: Add type cast.
Files: src/memline.c

Patch 7.2.276
Problem: Crash when setting 'isprint' to a small bullet. (Raul Coronado)
Solution: Check for the character to be < 256. Also make it possible to

specify a range of multibyte characters. (Lech Lorens)
Files: src/charset.c

Patch 7.2.277
Problem: CTRL-Y in a diff'ed window may move the cursor outside of the

version7.txt — 2635

window. (Lech Lorens)
Solution: Limit the number of filler lines to the height of the window.

Don't reset filler lines to zero for an empty buffer.
Files: src/move.c

Patch 7.2.278
Problem: Using magic number in the folding code.
Solution: Use the defined MAX_LEVEL.
Files: src/fold.c

Patch 7.2.279
Problem: Invalid memory read with visual mode "r". (Dominique Pelle)
Solution: Make sure the cursor position is valid. Don't check the cursor

position but the position being used. And make sure we get the
right line.

Files: src/misc2.c, src/ops.c

Patch 7.2.280
Problem: A redraw in a custom statusline with %! may cause a crash.

(Yukihiro Nakadaira)
Solution: Make a copy of 'statusline'. Also fix typo in function name

redraw_custom_statusline. (partly by Dominique Pelle)
Files: src/screen.c

Patch 7.2.281
Problem: 'cursorcolumn' highlighting is wrong in diff mode.
Solution: Adjust the column computation. (Lech Lorens)
Files: src/screen.c

Patch 7.2.282
Problem: A fold can't be closed.
Solution: Initialize fd_small to MAYBE. (Lech Lorens)
Files: src/fold.c

Patch 7.2.283
Problem: Changing font while the window is maximized doesn't keep the

window maximized.
Solution: Recompute number of lines and columns after changing font. (James

Vega)
Files: src/gui_gtk_x11.c

Patch 7.2.284
Problem: When editing the same buffer in two windows, one with folding,

display may be wrong after changes.
Solution: Call set_topline() to take care of side effects. (Lech Lorens)
Files: src/misc1.c

Patch 7.2.285 (after 7.2.169)
Problem: CTRL-U in Insert mode also deletes indent. (Andrey Voropaev)
Solution: Fix mistake made in patch 7.2.169.
Files: src/edit.c

Patch 7.2.286 (after 7.2.269)
Problem: The "--startuptime=<file>" argument is not consistent with other

arguments.
Solution: Use "--startuptime <file>". Added the +startuptime feature.
Files: runtime/doc/eval.txt, runtime/doc/starting.txt,

runtime/doc/various.txt, src/eval.c, src/main.c, src/version.c

Patch 7.2.287

version7.txt — 2636

Problem: Warning from gcc 3.4 about uninitialized variable.
Solution: Move assignment outside of #ifdef.
Files: src/if_perl.xs

Patch 7.2.288
Problem: Python 2.6 pyconfig.h redefines macros.
Solution: Undefine the macros before including pyconfig.h.
Files: src/if_python.c

Patch 7.2.289
Problem: Checking wrong struct member.
Solution: Change tb_buf to tb_noremap. (Dominique Pelle)
Files: src/getchar.c

Patch 7.2.290
Problem: Not freeing memory from ":lmap", ":xmap" and ":menutranslate".
Solution: Free the memory when exiting. (Dominique Pelle)
Files: src/misc2.c

Patch 7.2.291
Problem: Reading uninitialised memory in arabic mode.
Solution: Use utfc_ptr2char_len() rather than utfc_ptr2char(). (Dominique

Pelle)
Files: src/screen.c

Patch 7.2.292
Problem: Block right-shift doesn't work properly with multibyte encoding

and 'list' set.
Solution: Add the missing "else". (Lech Lorens)
Files: src/ops.c

Patch 7.2.293
Problem: When setting 'comments' option it may be used in a wrong way.
Solution: Don't increment after skipping over digits. (Yukihiro Nakadaira)
Files: src/misc1.c

Patch 7.2.294
Problem: When using TEMPDIRS dir name could get too long.
Solution: Overwrite tail instead of appending each time. Use mkdtemp() when

available. (James Vega)
Files: src/auto/configure, src/config.h.in, src/configure.in, src/fileio.c

Patch 7.2.295
Problem: When using map() on a List the index is not known.
Solution: Set v:key to the index. (Hari Krishna Dara)
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.2.296
Problem: Help message about startuptime is wrong. (Dominique Pelle)
Solution: Remove the equal sign.
Files: src/main.c

Patch 7.2.297
Problem: Reading freed memory when writing ":reg" output to a register.

(Dominique Pelle)
Solution: Skip the register being written to.
Files: src/ops.c

Patch 7.2.298
Problem: ":vimgrep" crashes when there is an autocommand that sets a

version7.txt — 2637

window-local variable.
Solution: Initialize the w: hashtab for re-use. (Yukihiro Nakadaira)
Files: src/fileio.c

Patch 7.2.299
Problem: Crash when comment middle is longer than start.
Solution: Fix size computation. (Lech Lorens)
Files: src/misc1.c

Patch 7.2.300
Problem: Vim doesn't close file descriptors when forking and executing

another command, e.g., ":shell".
Solution: Use FD_CLOEXEC when available. (James Vega)
Files: auto/configure, src/config.h.in, src/configure.in,

src/ex_cmdds2.c, src/fileio.c, src/memfile.c, src/memline.c

Patch 7.2.301
Problem: Formatting is wrong when 'tw' is set to a small value.
Solution: Fix it and add tests. Also fix behavior of "1" in 'fo'. (Yukihiro

Nakadaira)
Files: src/edit.c, src/testdir/Makefile, src/testdir/test68.in,

src/testdir/test68.ok, src/testdir/test69.in,
src/testdir/test69,ok

Patch 7.2.302 (extra part of 7.2.301)
Problem: Formatting wrong with small 'tw' value.
Solution: Add build rules for tests.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms

Patch 7.2.303 (after 7.2.294)
Problem: Can't build on MS-Windows.
Solution: Add #ifdef around vim_settempdir(). (James Vega)
Files: src/fileio.c

Patch 7.2.304
Problem: Compiler warning for bad pointer cast.
Solution: Use another variable for int pointer.
Files: src/ops.c

Patch 7.2.305
Problem: Recursively redrawing causes a memory leak. (Dominique Pelle)
Solution: Disallow recursive screen updating.
Files: src/screen.c

Patch 7.2.306
Problem: shellescape("10%%", 1) only escapes first %. (Christian Brabandt)
Solution: Don't copy the character after the escaped one.
Files: src/misc2.c

Patch 7.2.307
Problem: Crash with a very long syntax match statement. (Guy Gur Ari)
Solution: When the offset does not fit in the two bytes available give an

error instead of continuing with invalid pointers.
Files: src/regexp.c

Patch 7.2.308
Problem: When using a regexp in the "\=" expression of a substitute

command, submatch() returns empty strings for further lines.

version7.txt — 2638

(Clockwork Jam)
Solution: Save and restore the line number and line count when calling

reg_getline().
Files: src/regexp.c

Patch 7.2.309 (after 7.2.308)
Problem: Warning for missing function prototype. (Patrick Texier)
Solution: Add the prototype.
Files: src/regexp.c

Patch 7.2.310
Problem: When a filetype plugin in ~/.vim/ftdetect uses ":setfiletype" and

the file starts with a "# comment" it gets "conf" filetype.
Solution: Check for "conf" filetype after using ftdetect plugins.
Files: runtime/filetype.vim

Patch 7.2.311
Problem: Can't compile with FreeMiNT.
Solution: Change #ifdef for limits.h. (Alan Hourihane)
Files: src/fileio.c

Patch 7.2.312
Problem: iconv() returns an invalid character sequence when conversion

fails. It should return an empty string. (Yongwei Wu)
Solution: Be more strict about invalid characters in the input.
Files: src/mbyte.c

Patch 7.2.313
Problem: Command line completion doesn't work after "%:h" and similar.
Solution: Expand these items before doing the completion.
Files: src/ex_getln.c, src/misc1.c, src/proto/misc1.pro

Patch 7.2.314
Problem: Missing function in small build.
Solution: Always include concat_str.
Files: src/misc1.c

Patch 7.2.315
Problem: Python libs can't be found on 64 bit system.
Solution: Add lib64 to the list of directories. (Michael Henry)
Files: src/auto/configure, src/configure.in

Patch 7.2.316
Problem: May get multiple _FORTIFY_SOURCE arguments. (Tony Mechelynck)
Solution: First remove all these arguments and then add the one we want.

(Dominique Pelle)
Files: src/auto/configure, src/configure.in

Patch 7.2.317
Problem: Memory leak when adding a highlight group with unprintable

characters, resulting in E669.
Solution: Free the memory. And fix a few typos. (Dominique Pelle)
Files: src/syntax.c

Patch 7.2.318
Problem: Wrong locale value breaks floating point numbers for gvim.
Solution: Set the locale again after doing GUI inits. (Dominique Pelle)
Files: src/main.c

Patch 7.2.319

version7.txt — 2639

Problem: Motif: accessing freed memory when cancelling font dialog.
Solution: Destroy the widget only after accessing it. (Dominique Pelle)
Files: src/gui_xmdlg.c

Patch 7.2.320
Problem: Unused function in Mzscheme interface.
Solution: Remove the function and what depends on it. (Dominique Pelle)
Files: src/if_mzsch.c, src/proto/if_mzsch.pro

Patch 7.2.321
Problem: histadd() and searching with "*" fails to add entry to history

when it is empty.
Solution: Initialize the history. (Lech Lorens)
Files: src/eval.c, src/normal.c

Patch 7.2.322
Problem: Wrong indenting in virtual replace mode with CTRL-Y below a short

line.
Solution: Check for character to be NUL. (suggested by Lech Lorens)
Files: src/edit.c

Patch 7.2.323 (extra)
Problem: Balloon evaluation crashes on Win64.
Solution: Change pointer types. (Sergey Khorev)
Files: src/gui_w32.c

Patch 7.2.324
Problem: A negative column argument in setpos() may cause a crash.
Solution: Check for invalid column number. (James Vega)
Files: src/eval.c, src/misc2.c

Patch 7.2.325
Problem: A stray "w" in the startup vimrc file causes the edited file to be

replaced with an empty file. (Stone Kang).
Solution: Do not write a buffer when it has never been loaded.
Files: src/fileio.c

Patch 7.2.326
Problem: Win32: $HOME doesn't work when %HOMEPATH% is not defined.
Solution: Use "\" for %HOMEPATH% when it is not defined.
Files: src/misc1.c

Patch 7.2.327
Problem: Unused functions in Workshop.
Solution: Add "#if 0" and minor cleanup. (Dominique Pelle)
Files: src/workshop.c, src/integration.c, src/integration.h

Patch 7.2.328
Problem: has("win64") does not return 1 on 64 bit MS-Windows version.
Solution: Also check for _WIN64 besides WIN64.
Files: src/eval.c

Patch 7.2.329
Problem: "g_" doesn't position cursor correctly when in Visual mode and

'selection' is "exclusive". (Ben Fritz)
Solution: Call adjust_for_sel().
Files: src/normal.c

Patch 7.2.330
Problem: Tables for Unicode case operators are outdated.

version7.txt — 2640

Solution: Add a Vim script for generating the tables. Include tables for
Unicode 5.2.

Files: runtime/tools/README.txt, runtime/tools/unicode.vim, src/mbyte.c

Patch 7.2.331
Problem: Can't interrupt "echo list" for a very long list.
Solution: Call line_breakcheck() in list_join().
Files: src/eval.c

Patch 7.2.332
Problem: Crash when spell correcting triggers an autocommand that reloads

the buffer.
Solution: Make a copy of the line to be modified. (Dominique Pelle)
Files: src/spell.c

Patch 7.2.333
Problem: Warnings from static code analysis.
Solution: Small changes to various lines. (Dominique Pelle)
Files: src/buffer.c, src/edit.c, src/ex_getln.c, src/fileio.c,

src/if_cscope.c, src/netbeans.c, src/ops.c, src/quickfix.c,
src/syntax.c, src/ui.c

Patch 7.2.334
Problem: Postponing keys in Netbeans interface does not work properly.
Solution: Store the key string instead of the number. Avoid an infinite

loop. (Mostly by Xavier de Gaye)
Files: src/netbeans.c, src/proto/netbeans.pro

Patch 7.2.335
Problem: The CTRL-] command escapes too many characters.
Solution: Use a different list of characters to be escaped. (Sergey Khorev)
Files: src/normal.c

Patch 7.2.336
Problem: MzScheme interface can't evaluate an expression.
Solution: Add mzeval(). (Sergey Khorev)
Files: runtime/doc/eval.txt, runtime/doc/if_mzsch.txt,

runtime/doc/usr_41.txt, src/eval.c, src/if_mzsch.c,
src/proto/eval.pro, src/proto/if_mzsch.pro,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Makefile, src/testdir/main.aap, src/testdir/test1.in,
src/testdir/test70.in, src/testdir/test70.ok

Patch 7.2.337
Problem: The :compiler command doesn't function properly when invoked in a

function.
Solution: Add "g:" before "current_compiler". (Yukihiro Nakadaira)
Files: src/ex_cmds2.c

Patch 7.2.338 (after 7.2.300)
Problem: Part of FD_CLOEXEC change is missing.
Solution: Include source file skipped because of typo.
Files: src/ex_cmds2.c

Patch 7.2.339 (after 7.2.269)
Problem: Part of --startuptime patch is missing.
Solution: Add check for time_fd.
Files: src/ex_cmds2.c

Patch 7.2.340

version7.txt — 2641

Problem: Gcc warning for condition that can never be true. (James Vega)
Solution: Use start_lvl instead flp->lvl.
Files: src/fold.c

Patch 7.2.341
Problem: Popup menu wraps to next line when double-wide character doesn't

fit. (Jiang Ma)
Solution: Display a ">" instead. (Dominique Pelle)
Files: src/screen.c

Patch 7.2.342
Problem: Popup menu displayed wrong in 'rightleft' mode when there are

multibyte characters.
Solution: Adjust the column computations. (Dominique Pelle)
Files: src/popupmnu.c

Patch 7.2.343 (after 7.2.338)
Problem: Can't compile on Win32.
Solution: Insert the missing '|'.
Files: src/ex_cmds2.c

Patch 7.2.344 (after 7.2.343)
Problem: Can't compile on some systems
Solution: Move the #ifdef outside of the mch_open macro. (Patrick Texier)
Files: src/ex_cmds2.c

Patch 7.2.345
Problem: Tab line is not updated when the value of 'bt' is changed.
Solution: Call redraw_titles(). (Lech Lorens)
Files: src/option.c

Patch 7.2.346
Problem: Repeating a command with @: causes a mapping to be applied twice.
Solution: Do not remap characters inserted in the typeahead buffer. (Kana

Natsuno)
Files: src/ops.c

Patch 7.2.347
Problem: Crash when executing <expr> mapping redefines that same mapping.
Solution: Save the values used before evaluating the expression.
Files: src/getchar.c

Patch 7.2.348 (after 7.2.330)
Problem: Unicode double-width characters are not up-to date.
Solution: Produce the double-width table like the others.
Files: runtime/tools/unicode.vim, src/mbyte.c

Patch 7.2.349
Problem: CTRL-W gf doesn't put the new tab in the same place as "tab split"

and "gf". (Tony Mechelynck)
Solution: Store the tab number in cmdmod.tab.
Files: src/window.c

Patch 7.2.350
Problem: Win32: When changing font the window may jump from the secondary

to the primary screen. (Michael Wookey)
Solution: When the screen position was negative don't correct it to zero.
Files: src/gui.c

Patch 7.2.351 (after 7.2.347)

version7.txt — 2642

Problem: Can't build with some compilers.
Solution: Move the #ifdef outside of a macro. Cleanup the code.
Files: src/getchar.c

Patch 7.2.352 (extra)
Problem: Win64: Vim doesn't work when cross-compiled with MingW libraries.
Solution: Always return TRUE for the WM_NCCREATE message. (Andy Kittner)
Files: src/gui_w48.c

Patch 7.2.353
Problem: No command line completion for ":profile".
Solution: Complete the subcommand and file name.
Files: src/ex_docmd.c, src/ex_cmds2.c, src/ex_getln.c,

src/proto/ex_cmds2.pro, src/vim.h

Patch 7.2.354
Problem: Japanese single-width double-byte characters not handled correctly.
Solution: Put 0x8e in ScreenLines[] and the second byte in ScreenLines2[].

(partly by Kikuchan)
Files: src/screen.c

Patch 7.2.355
Problem: Computing the cursor column in validate_cursor_col() is wrong when

line numbers are used and 'n' is not in 'cpoptions', causing the
popup menu to be positioned wrong.

Solution: Correctly use the offset. (partly by Dominique Pelle)
Files: src/move.c

Patch 7.2.356
Problem: When 'foldmethod' is changed not all folds are closed as expected.
Solution: In foldUpdate() correct the start position and reset fd_flags when

w_foldinvalid is set. (Lech Lorens)
Files: src/fold.c

Patch 7.2.357
Problem: When changing 'fileformat' from/to "mac" and there is a CR in the

text the display is wrong.
Solution: Redraw the text when 'fileformat' is changed. (Ben Schmidt)
Files: src/option.c

Patch 7.2.358
Problem: Compiler warnings on VMS. (Zoltan Arpadffy)
Solution: Pass array itself instead its address. Return a value.
Files: src/gui_gtk_x11.c, src/os_unix.c

Patch 7.2.359
Problem: Crash when using the Netbeans join command.
Solution: Make sure the ml_flush_line() function is not used recursively.

(Xavier de Gaye)
Files: src/memline.c

Patch 7.2.360
Problem: Ruby on MS-Windows: can't use sockets.
Solution: Call NtInitialize() during initialization. (Ariya Mizutani)
Files: src/if_ruby.c

Patch 7.2.361
Problem: Ruby 1.9 is not supported.
Solution: Add Ruby 1.9 support. (Masaki Suketa)
Files: src/Makefile, src/auto/configure, src/configure.in, src/if_ruby.c

version7.txt — 2643

Patch 7.2.362 (extra, after 7.2.352)
Problem: Win64: Vim doesn't work when cross-compiled with MingW libraries.
Solution: Instead of handling WM_NCCREATE, create wide text area window

class if the parent window iw side. (Sergey Khorev)
Files: src/gui_w32.c, src/gui_w48.c

Patch 7.2.363
Problem: Can't dynamically load Perl 5.10.
Solution: Add the function Perl_croak_xs_usage. (Sergey Khorev)
Files: src/if_perl.xs

Patch 7.2.364 (extra)
Problem: Can't build gvimext.dll on Win 7 x64 using MinGW (John Marriott)
Solution: Check if _MSC_VER is defined. (Andy Kittner)
Files: src/GvimExt/gvimext.h

Patch 7.2.365 (extra)
Problem: MS-Windows with MingW: "File->Save As" does not work. (John

Marriott)
Solution: Correctly fill in structure size. (Andy Kittner)
Files: src/gui_w48.c

Patch 7.2.366
Problem: CTRL-B doesn't go back to the first line of the buffer.
Solution: Avoid an overflow when adding MAXCOL.
Files: src/move.c

Patch 7.2.367
Problem: "xxd -r -p" doesn't work as documented.
Solution: Skip white space. (James Vega)
Files: src/xxd/xxd.c

Patch 7.2.368 (after 7.2.361)
Problem: Ruby interface: Appending line doesn't work. (Michael Henry)
Solution: Reverse check for NULL line. (James Vega)
Files: src/if_ruby.c

Patch 7.2.369
Problem: Error message is not easy to understand.
Solution: Add quotes. (SungHyun Nam)
Files: src/ex_cmds2.c

Patch 7.2.370 (after 7.2.356)
Problem: A redraw may cause folds to be closed.
Solution: Revert part of the previous patch. Add a test. (Lech Lorens)
Files: src/diff.c, src/fold.c, src/option.c, src/testdir/test45.in,

src/testdir/test45.ok

Patch 7.2.371
Problem: Build problems on Tandem NonStop.
Solution: A few changes to #ifdefs (Joachim Schmitz)
Files: src/auto/configure, src/configure.in, src/config.h.in, src/vim.h,

src/if_cscope.c, src/osdef1.h.in, src/tag.c

Patch 7.2.372 (extra)
Problem: Cross-compiling GvimExt and xxd doesn't work.
Solution: Change the build files. (Markus Heidelberg)
Files: src/INSTALLpc.txt, src/GvimExt/Make_ming.mak, src/Make_cyg.mak,

src/Make_ming.mak, src/xxd/Make_cyg.mak

version7.txt — 2644

Patch 7.2.373
Problem: Gcc 4.5 adds more error messages. (Chris Indy)
Solution: Update default 'errorformat'.
Files: src/option.h

Patch 7.2.374
Problem: Ruby eval() doesn't understand Vim types.
Solution: Add the vim_to_ruby() function. (George Gensure)
Files: src/eval.c, src/if_ruby.c

Patch 7.2.375
Problem: ml_get errors when using ":bprevious" in a BufEnter autocmd.

(Dominique Pelle)
Solution: Clear w_valid when entering another buffer.
Files: src/buffer.c

Patch 7.2.376
Problem: ml_get error when using SiSU syntax. (Nathan Thomas)
Solution: If the match ends below the last line move it to the end of the

last line.
Files: src/syntax.c

Patch 7.2.377 (extra, after 7.2.372)
Problem: Misplaced assignment. Duplicate build line for gvimext.dll.
Solution: Move setting CROSS_COMPILE to before ifneq. Remove the wrong

build line. (Markus Heidelberg)
Files: src/Make_ming.mak

Patch 7.2.378
Problem: C function declaration indented too much. (Rui)
Solution: Don't see a line containing { or } as a type. (Matt Wozniski)
Files: src/misc1.c

Patch 7.2.379
Problem: 'eventignore' is set to an invalid value inside ":doau". (Antony

Scriven)
Solution: Don't include the leading comma when the option was empty.
Files: src/fileio.c

Patch 7.2.380 (after 7.2.363)
Problem: Perl interface builds with 5.10.1 but not with 5.10.0.
Solution: Change the #ifdefs. (Sergey Khorev)
Files: src/if_perl.xs

Patch 7.2.381
Problem: No completion for :behave.
Solution: Add :behave completion. Minor related fixes. (Dominique Pelle)
Files: src/ex_docmd.c, src/ex_getln.c, src/proto/ex_docmd.pro, src/vim.h

Patch 7.2.382
Problem: Accessing freed memory when closing the cmdline window when

'bufhide' is set to "wipe".
Solution: Check if the buffer still exists before invoking close_buffer()

(Dominique Pelle)
Files: src/ex_getln.c

Patch 7.2.383
Problem: Vim doesn't build cleanly with MSVC 2010.
Solution: Change a few types. (George Reilly)

version7.txt — 2645

Files: src/ex_cmds2.c, src/if_python.c, src/syntax.c

Patch 7.2.384 (extra)
Problem: Vim doesn't build properly with MSVC 2010.
Solution: Add the nmake version to the build file. (George Reilly)
Files: src/Make_mvc.mak, src/testdir/Make_dos.mak

Patch 7.2.385
Problem: When in the command line window dragging status line only works

for last-but-one window. (Jean Johner)
Solution: Remove the code that disallows this.
Files: src/ui.c

Patch 7.2.386
Problem: Focus hack for KDE 3.1 causes problems for other window managers.
Solution: Remove the hack. (forwarded by Joel Bradshaw)
Files: src/gui_gtk.c

Patch 7.2.387
Problem: Ruby with MingW still doesn't build all versions.
Solution: More #ifdefs for the Ruby code. (Sergey Khorev)
Files: src/if_ruby.c

Patch 7.2.388 (extra part of 7.2.387)
Problem: Ruby with MingW still doesn't build all versions.
Solution: Different approach to build file. (Sergey Khorev)
Files: src/Make_ming.mak

Patch 7.2.389
Problem: synIDattr() cannot return the font.
Solution: Support the "font" argument. (Christian Brabandt)
Files: runtime/doc/eval.txt, src/eval.c, src/syntax.c

Patch 7.2.390
Problem: In some situations the popup menu can be displayed wrong.
Solution: Remove the popup menu if the cursor moved. (Lech Lorens)
Files: src/edit.c

Patch 7.2.391
Problem: Internal alloc(0) error when doing "CTRL-V $ c". (Martti Kuparinen)
Solution: Fix computations in getvcol(). (partly by Lech Lorens)
Files: src/charset.c, src/memline.c

Patch 7.2.392
Problem: Netbeans hangs reading from a socket at the maximum block size.
Solution: Use select() or poll(). (Xavier de Gaye)
Files: src/vim.h, src/os_unixx.h, src/if_xcmdsrv.c, src/netbeans.c

Patch 7.2.393
Problem: Mac: Can't build with different Xcode developer tools directory.
Solution: make "Developer" directory name configurable. (Rainer Muller)
Files: src/configure.in, src/auto/configure

Patch 7.2.394
Problem: .lzma and .xz files are not supported.
Solution: Recognize .lzma and .xz files so that they can be edited.
Files: runtime/plugin/gzip.vim

Patch 7.2.395
Problem: In help CTRL=] on g?g? escapes the ?, causing it to fail. (Tony

version7.txt — 2646

Mechelynck)
Solution: Don't escape ? for a help command. (Sergey Khorev)
Files: src/normal.c

Patch 7.2.396
Problem: Get E38 errors. (Dasn)
Solution: Set cursor to line 1 instead of 0. (Dominique Pelle)
Files: src/popupmnu.c

Patch 7.2.397
Problem: Redundant check for w_lines_valid.
Solution: Remove the if. (Lech Lorens)
Files: src/fold.c

Patch 7.2.398
Problem: When moving windows the cursor ends up in the wrong line.
Solution: Set the window width and height properly. (Lech Lorens)
Files: src/window.c

Patch 7.2.399 (extra, after 7.2.388)
Problem: Cannot compile on MingW.
Solution: Move ifneq to separate line. (Vlad Sandrini, Dominique Pelle)
Files: src/Make_ming.mak

Patch 7.2.400 (after 7.2.387)
Problem: Dynamic Ruby is not initialised properly for version 1.9.1.

Ruby cannot create strings from NULL.
Solution: Cleanup #ifdefs. Handle NULL like an empty string. Add

ruby_init_stack. (Sergey Khorev)
Files: src/if_ruby.c

Patch 7.2.401
Problem: ":e dir<Tab>" with 'wildmode' set to "list" doesn't highlight

directory names with a space. (Alexandre Provencio)
Solution: Remove the backslash before checking if the name is a directory.

(Dominique Pelle)
Files: src/ex_getln.c

Patch 7.2.402
Problem: This gives a #705 error: let X = function('haslocaldir')

let X = function('getcwd')
Solution: Don't give E705 when the name is found in the hashtab. (Sergey

Khorev)
Files: src/eval.c

Patch 7.2.403 (after 7.2.400)
Problem: Compiler warning for pointer type. (Tony Mechelynck)
Solution: Move type cast to the right place.
Files: src/if_ruby.c

Patch 7.2.404
Problem: Pointers for composing characters are not properly initialized.
Solution: Compute the size of the pointer, not what it points to. (Yukihiro

Nakadaira)
Files: src/screen.c

Patch 7.2.405
Problem: When built with small features the matching text is not

highlighted for ":s/pat/repl/c".
Solution: Remove the #ifdef for IncSearch. (James Vega)

version7.txt — 2647

Files: src/syntax.c

Patch 7.2.406
Problem: Patch 7.2.119 introduces uninit mem read. (Dominique Pelle)
Solution: Only used ScreenLinesC when ScreenLinesUC is not zero. (Yukihiro

Nakadaira) Also clear ScreenLinesC when allocating.
Files: src/screen.c

Patch 7.2.407
Problem: When using an expression in ":s" backslashes in the result are

dropped. (Sergey Goldgaber, Christian Brabandt)
Solution: Double backslashes.
Files: src/regexp.c

Patch 7.2.408
Problem: With ":g/the/s/foo/bar/" the '[and '] marks can be set to a line

that was not changed.
Solution: Only set '[and '] marks when a substitution was done.
Files: src/ex_cmds.c

Patch 7.2.409
Problem: Summary of number of substitutes is incorrect for ":folddo". (Jean

Johner)
Solution: Reset sub_nsubs and sub_nlines in global_exe().
Files: src/ex_cmds.c

Patch 7.2.410
Problem: Highlighting directories for completion doesn't work properly.
Solution: Don't halve backslashes when not needed, expanded "~/".

(Dominique Pelle)
Files: src/ex_getln.c

Patch 7.2.411
Problem: When parsing 'cino' a comma isn't skipped properly.
Solution: Skip the comma. (Lech Lorens)
Files: src/misc1.c

Patch 7.2.412
Problem: [or] followed by mouse click doesn't work.
Solution: Reverse check for key being a mouse event. (Dominique Pelle)
Files: src/normal.c

Patch 7.2.413
Problem: Large file support is incorrect.
Solution: Add AC_SYS_LARGEFILE to configure. (James Vega)
Files: src/configure.in, src/config.h.in, src/auto/configure

Patch 7.2.414
Problem: CTRL-K <space> <space> does not produce 0xa0 as expected. (Tony

Mechelynck)
Solution: Remove the Unicode range 0xe000 - 0xefff from digraphs, these are

not valid characters.
Files: src/digraph.c

Patch 7.2.415
Problem: Win32: Can't open a remote file when starting Vim.
Solution: Don't invoke cygwin_conv_path() for URLs. (Tomoya Adachi)
Files: src/main.c

Patch 7.2.416

version7.txt — 2648

Problem: Logtalk.dict is not installed.
Solution: Add it to the install target. (Markus Heidelberg)
Files: src/Makefile

Patch 7.2.417
Problem: When 'shell' has an argument with a slash then 'shellpipe' is not

set properly. (Britton Kerin)
Solution: Assume there are no spaces in the path, arguments follow.
Files: src/option.c

Patch 7.2.418
Problem: Vim tries to set the background or foreground color in a terminal

to -1. (Graywh) Happens with ":hi Normal ctermbg=NONE".
Solution: When resetting the foreground or background color don't set the

color, let the clear screen code do that.
Files: src/syntax.c

Patch 7.2.419
Problem: Memory leak in Motif when clicking on "Search Vim Help".
Solution: Free string returned by XmTextGetString(). (Dominique Pelle)
Files: src/gui_motif.c

Patch 7.2.420
Problem: ":argedit" does not accept "++enc=utf8" as documented. (Dominique

Pelle)
Solution: Add the ARGOPT flag to ":argedit".
Files: src/ex_cmds.h

Patch 7.2.421
Problem: Folds are sometimes not updated properly and there is no way to

force an update.
Solution: Make "zx" and "zX" recompute folds (suggested by Christian

Brabandt)
Files: src/normal.c

Patch 7.2.422
Problem: May get E763 when using spell dictionaries.
Solution: Avoid utf-8 case folded character to be truncated to 8 bits and

differ from latin1. (Dominique Pelle)
Files: src/spell.c

Patch 7.2.423
Problem: Crash when assigning s: to variable. (Yukihiro Nakadaira)
Solution: Make ga_scripts contain pointer to scriptvar_T instead of

scriptvar_T itself. (Dominique Pelle)
Files: src/eval.c

Patch 7.2.424
Problem: ":colorscheme" without an argument doesn't do anything.
Solution: Make it echo the current color scheme name. (partly by Christian

Brabandt)
Files: runtime/doc/syntax.txt, src/ex_cmds.h, src/ex_docmd.c

Patch 7.2.425
Problem: Some compilers complain about fourth EX() argument.
Solution: Add cast to long_u.
Files: src/ex_cmds.h

Patch 7.2.426
Problem: Commas in 'langmap' are not always handled correctly.

version7.txt — 2649

Solution: Require commas to be backslash escaped. (James Vega)
Files: src/option.c

Patch 7.2.427
Problem: The swapfile is created using the destination of a symlink, but

recovery doesn't follow symlinks.
Solution: When recovering, resolve symlinks. (James Vega)
Files: src/memline.c

Patch 7.2.428
Problem: Using setqflist([]) to clear the error list doesn't work properly.
Solution: Set qf_nonevalid to TRUE when appropriate. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.2.429
Problem: A file that exists but access is denied may result in a "new file"

message. E.g. when its directory is unreadable.
Solution: Specifically check for ENOENT to decide a file doesn't exist.

(partly by James Vega)
Files: src/fileio.c

Patch 7.2.430
Problem: The ++bad argument is handled wrong, resulting in an invalid

memory access.
Solution: Use the bad_char field only for the replacement character, add

bad_char_idx to store the position. (Dominique Pelle)
Files: src/eval.c, src/ex_cmds.h, src/ex_docmd.c

Patch 7.2.431
Problem: ":amenu" moves the cursor when in Insert mode.
Solution: Use CTRL-\ CTRL-O instead of CTRL-O. (Christian Brabandt)
Files: src/menu.c

Patch 7.2.432
Problem: When menus are translated they can only be found by the translated

name. That makes ":emenu" difficult to use.
Solution: Store the untranslated name and use it for completion and :emenu.

(Liang Peng (Bezetek James), Edward L. Fox)
Files: src/menu.c, src/structs.h

Patch 7.2.433
Problem: Can't use cscope with QuickFixCmdPre and QuickFixCmdPost.
Solution: Add cscope support for these autocmd events. (Bryan Venteicher)
Files: runtime/doc/autocmd.txt, src/if_cscope.c

Patch 7.2.434 (after 7.2.432)
Problem: Compilation fails without the multi-lang feature.
Solution: Add #ifdefs. (John Marriott)
Files: src/menu.c

Patch 7.2.435 (after 7.2.430)
Problem: Crash when using bad_char_idx uninitialized. (Patrick Texier)
Solution: Don't use bad_char_idx, reproduce the ++bad argument from bad_char.
Files: src/eval.c, src/ex_cmds.h, src/ex_docmd.c

Patch 7.2.436
Problem: Reproducible crash in syntax HL. (George Reilly, Dominique Pelle)
Solution: Make sst_stacksize an int instead of short. (Dominique Pelle)
Files: src/structs.h

version7.txt — 2650

Patch 7.2.437 (after 7.2.407)
Problem: When "\\\n" appears in the expression result the \n doesn't result

in a line break. (Andy Wokula)
Solution: Also replace a \n after a backslash into \r.
Files: src/regexp.c

Patch 7.2.438 (after 7.2.427)
Problem: "vim -r" crashes.
Solution: Don't use NULL pointer argument.
Files: src/memline.c

Patch 7.2.439
Problem: Invalid memory access when doing thesaurus completion and

'infercase' is set.
Solution: Use the minimal length of completed word and replacement.

(Dominique Pelle)
Files: src/edit.c

Patch 7.2.440
Problem: Calling a function through a funcref, where the function deletes

the funcref, leads to an invalid memory access.
Solution: Make a copy of the function name. (Lech Lorens)
Files: src/eval.c, src/testdir/test34.in, src/testdir/test34.ok

Patch 7.2.441
Problem: When using ":earlier" undo information may be wrong.
Solution: When changing alternate branches also adjust b_u_oldhead.
Files: src/undo.c

Patch 7.2.442 (after 7.2.201)
Problem: Copy/paste with OpenOffice doesn't work.
Solution: Do not offer the HTML target when it is not supported. (James

Vega)
Files: src/gui_gtk_x11.c, src/option.c, src/proto/gui_gtk_x11.pro

Patch 7.2.443
Problem: Using taglist() on a tag file with duplicate fields generates an

internal error. (Peter Odding)
Solution: Check for duplicate field names.
Files: src/eval.c, src/proto/eval.pro, src/tag.c

Patch 7.2.444 (after 7.2.442)
Problem: Can't build with GTK 1, gtk_selection_clear_targets() is not

available. (Patrick Texier)
Solution: Don't change the targets for GTK 1, set them once.
Files: src/gui_gtk_x11.c, src/option.c

Patch 7.2.445
Problem: Crash when using undo/redo and a FileChangedRO autocmd event that

reloads the buffer. (Dominique Pelle)
Solution: Do not allow autocommands while performing and undo or redo.
Files: src/misc1.c, src/undo.c

Patch 7.2.446
Problem: Crash in GUI when closing the last window in a tabpage. (ryo7000)
Solution: Remove the tabpage from the list before freeing the window.
Files: src/window.c

When writing a file, switching tab pages and selecting a word the file write
message would be displayed again. This happened in Insert mode and with

version7.txt — 2651

'cmdheight' set to 2.

When using ":lang" to set a locale that uses a comma for decimal separator and
using GTK floating point numbers stop working. Use gtk_disable_setlocale().
(James Vega)

"g8" didn't produce the right value on a NUL. (Dominique Pelle)

Use BASEMODLIBS instead of MODLIBS for Python configuration to pick up the
right compiler flags. (Michael Bienia)

Window title was not updated after dropping a file on Vim. (Hari G)

synstack() did not return anything when just past the end of the line. Useful
when using the cursor position in Insert mode.

When entering a digraph or special character after a line that fits the window
the '?' or '^' on the next line is not redrawn. (Ian Kelling)

Composing characters in :s substitute text were dropped.

exists() was causing an autoload script to be loaded.

Filter out -pthread for cproto.

Make CTRL-L in command line mode respect 'ignorecase' and 'smartcase'. (Martin
Toft)

Spell menu moved the cursor, causing Copy not to work. Spell replacement
didn't work in 'compatible' mode.

Various small fixes from Dominique Pelle.

Fix that :mksession may generate "2argu" even though there is no such
argument. (Peter Odding)

Fixes for time in clipboard request. Also fix ownership. (David Fries)

Fixed completion of file names with '%' and '*'.

Fixed MSVC makefile use of /Wp64 flag.

Correct use of long instead of off_t for file size. (James Vega)

Add a few #ifdefs to exclude functions that are not used. (Dominique Pelle)

Remove old and unused method to allocate memory for undo.

Fix definition of UINT_PTR for 64 bit systems.

Some versions of Ruby redefine rb_str_new2 to rb_str_new_cstr.

Window title not updated after file dropped.

Fixed crash for ":find" completion, might also happen in other path expansion
usage.

When 'searchhl' causes a hang make CTRL-C disable 'searchhl'.

When resetting both 'title' and 'icon' the title would be set after a shell

version7.txt — 2652

command.

Reset 'title' and 'icon' in test47 to avoid the xterm title getting messed up.

Fix for compiler warning about function prototype in pty.c.

Added 'window' to the options window.

Fixed: errors for allocating zero bytes when profiling an empty function.

Remove -arch flag from build flags for Perl. (Bjorn Wickler)

Fix 'autochdir' not showing up in :options window. (Dominique Pelle)

Fix: test 69 didn't work on MS-Windows. Test 72 beeped too often.

Avoid illegal memory access in spell suggestion. (Dominique Pelle)
Fix: crash in spell checking with a 0x300 character.

Avoid that running tests changes viminfo.

Fix: changing case of a character removed combining characters.
Fixed: CTRL-R in Insert mode doesn't insert composing characters.

Added the WOW64 flag to OLE registration, for 64 bit Windows systems.

Various fixes for coverity warnings.

Fix compile warnings, esp. for 64-bit systems. (Mike Williams)

Fix: :redir to a dictionary that is changed before ":redir END" causes a
memory access error.

Fix: terminal title not properly restored when there are multibyte
characters. (partly by James Vega)

Set 'wrapscan' when checking the .po files. (Mike Williams)

Win32: Put quotes around the gvim.exe path for the "Open with" menu entry.

On MS-Windows sometimes files with number 4913 or higher are left behind.

'suffixesadd' was used for finding tags file.

Removed unused code.

Improved positioning of combining characters in GTK.

Made test 11 pass when there is no gzip program. (John Beckett)

Changed readfile() to ignore byte order marks, unless in binary mode.

On MS-Windows completion of shell commands didn't work.

An unprintable multibyte character at the start of the screen line caused the
following text to be drawn at the wrong position.

Got ml_get errors when using undo with 'virtualedit'.

Call gui_mch_update() before triggering GuiEnter autocmd. (Ron Aaron)

version7.txt — 2653

Unix "make install" installed a few Amiga .info files.

Disallow setting 'ambiwidth' to "double" when 'listchars' or 'fillchars'
contains a character that would become double width.

Set 'wrapscan' when checking the .po files. (Mike Williams)

Fixed: using expression in command line may cause a crash.

Avoid warnings from the clang compiler. (Dominique Pelle)

Fix: Include wchar.h in charset.c for towupper().

Fixed: Using ":read file" in an empty buffer when 'compatible' is set caused
an error. Was caused by patch 7.2.132.

Make the references to features in the help more consistent. (Sylvain Hitier)

==
VERSION 7.4 version-7.4 version7.4 vim-7.4

This section is about improvements made between version 7.3 and 7.4.

This release has hundreds of bug fixes and there are a few new features. The
most notable new features are:

- New regexp engine new-regexp-engine
- A more pythonic Python interface better-python-interface

New regexp engine new-regexp-engine

What is now called the "old" regexp engine uses a backtracking algorithm. It
tries to match the pattern with the text in one way, and when that fails it
goes back and tries another way. This works fine for simple patterns, but
complex patterns can be very slow on longer text.

The new engine uses a state machine. It tries all possible alternatives at
the current character and stores the possible states of the pattern. This is
a bit slower for simple patterns, but much faster for complex patterns and
long text.

Most notably, syntax highlighting for Javascript and XML files with long lines
is now working fine. Previously Vim could get stuck.

More information here: two-engines

Better Python interface better-python-interface

Added python-bindeval function. Unlike python-eval this one returns
python-Dictionary , python-List and python-Function objects for

dictionaries lists and functions respectively in place of their Python
built-in equivalents (or None if we are talking about function references).

For simple types this function returns Python built-in types and not only
Python `str()` like python-eval does. On Python 3 it will return `bytes()`
objects in place of `str()` ones avoiding possibility of UnicodeDecodeError.

version7.txt — 2654

Interface of new objects mimics standard Python `dict()` and `list()`
interfaces to some extent. Extent will be improved in the future.

Added special python-vars objects also available for python-buffer and
python-window . They ease access to Vim script variables from Python.

Now you no longer need to alter `sys.path` to import your module: special
hooks are responsible for importing from {rtp}/python2, {rtp}/python3 and
{rtp}/pythonx directories (for Python 2, Python 3 and both respectively).
See python-special-path .

Added possibility to work with tabpage s through python-tabpage object.

Added automatic conversion of Vim errors and exceptions to Python
exceptions.

Changed the behavior of the python-buffers object: it now uses buffer numbers
as keys in place of the index of the buffer in the internal buffer list.
This should not break anything as the only way to get this index was
iterating over python-buffers .

Added :pydo and :py3do commands.

Added the pyeval() and py3eval() functions.

Now in all places which previously accepted `str()` objects, `str()` and
`unicode()` (Python 2) or `bytes()` and `str()` (Python 3) are accepted.

python-window has gained `.col` and `.row` attributes that are currently
the only way to get internal window positions.

Added or fixed support for `dir()` in Vim Python objects.

Changed changed-7.4

Old Python versions (≤2.2) are no longer supported. Building with them did
not work anyway.

Options:
Added ability to automatically save the selection into the system
clipboard when using non-GUI version of Vim (autoselectplus in
'clipboard'). Also added ability to use the system clipboard as
default register (previously only primary selection could be used).
(Ivan Krasilnikov, Christian Brabandt, Bram Moolenaar)

Added a special 'shiftwidth' value that makes 'sw' follow 'tabstop'.
As indenting via 'indentexpr' became tricky shiftwidth() function
was added. Also added equivalent special value to 'softtabstop'
option. (Christian Brabandt, so8res)

Show absolute number in number column when 'relativenumber' option is
on. Now there are four combinations with 'number' and
'relativenumber'. (Christian Brabandt)

Commands:
:diffoff now saves the local values of some settings and restores

them in place of blindly resetting them to the defaults. (Christian
Brabandt)

version7.txt — 2655

Other:
Lua interface now also uses userdata bound to Vim structures. (Taro
Muraoka, Luis Carvalho)

glob() and autocommand patterns used to work with the undocumented
"\{n,m\}" item from a regexp. "\{" is now used for a literal "{", as
this is normal in shell file patterns. Now used "\\\{n,m\}" to get
"\{n,m}" in the regexp pattern.

Added added-7.4

Various syntax, indent and other plugins were added.

Added support for Lists and Dictionaries in viminfo . (Christian
Brabandt)

Functions:
Bitwise functions: and() , or() , invert() , xor() .

Added luaeval() function. (Taro Muraoka, Luis Carvalho)

Added sha256() function. (Tyru, Hirohito Higashi)

Added wildmenumode() function. (Christian Brabandt)

Debugging functions: screenattr() , screenchar() , screencol() ,
screenrow() . (Simon Ruderich, Bram Moolenaar)

Added ability to use Dictionary-function s for sort() ing, via
optional third argument. (Nikolay Pavlov)

Added special expand() argument that expands to the current line
number.

Made it possible to force char2nr() to always give unicode codepoints
regardless of current encoding. (Yasuhiro Matsumoto)

Made it possible for functions generating file list generate List
and not NL-separated string. (e.g. glob() , expand()) (Christian
Brabandt)

Functions that obtain variables from the specific window, tabpage or
buffer scope dictionary can now return specified default value in
place of empty string in case variable is not found. (gettabvar() ,
getwinvar() , getbufvar()) (Shougo Matsushita, Hirohito Higashi)

Autocommands:
Added InsertCharPre event launched before inserting character.
(Jakson A. Aquino)

Added CompleteDone event launched after finishing completion in
insert mode. (idea by Florian Klein)

Added QuitPre event launched when commands that can either close Vim
or only some window(s) are launched.

Added TextChanged and TextChangedI events launched when text is
changed.

version7.txt — 2656

Commands:
:syntime command useful for debugging.

Made it possible to remove all signs from the current buffer using
:sign-unplace . (Christian Brabandt)

Added :language autocompletion. (Dominique Pelle)

Added more :command-complete completion types: :behave suboptions,
color schemes, compilers, :cscope suboptions, files from 'path',
:history suboptions, locale names, :syntime suboptions, user

names. (Dominique Pelle)

Added :map-nowait creating mapping which when having lhs that is the
prefix of another mapping’s lhs will not allow Vim to wait for user to
type more characters to resolve ambiguity, forcing Vim to take the
shorter alternative: one with <nowait>.

Options:
Made it possible to ignore case when completing: 'wildignorecase'.

Added ability to delete comment leader when using J by `j` flag in
'formatoptions' (fo-table). (Lech Lorens)

Added ability to control indentation inside namespaces: cino-N .
(Konstantin Lepa)

Added ability to control alignment inside `if` condition separately
from alignment inside function arguments: cino-k . (Lech Lorens)

Other:
Improved support for cmd.exe. (Ben Fritz, Bram Moolenaar)

Added v:windowid variable containing current window number in GUI
Vim. (Christian J. Robinson, Lech Lorens)

Added rxvt-unicode and SGR mouse support. (Yiding Jia, Hayaki Saito)

All changes in 7.4 fixed-7.4

Patch 7.3.001
Problem: When editing "src/main.c" and 'path' set to "./proto",

":find e<C-D" shows ./proto/eval.pro instead of eval.pro.
Solution: Check for path separator when comparing names. (Nazri Ramliy)
Files: src/misc1.c

Patch 7.3.002
Problem: ":find" completion doesn't work when halfway an environment

variable. (Dominique Pelle)
Solution: Only use in-path completion when expanding file names. (Nazri

Ramliy)
Files: src/ex_docmd.c

Patch 7.3.003
Problem: Crash with specific BufWritePost autocmd. (Peter Odding)
Solution: Don't free the quickfix title twice. (Lech Lorens)
Files: src/quickfix.c

version7.txt — 2657

Patch 7.3.004
Problem: Crash when using very long regexp. (Peter Odding)
Solution: Reset reg_toolong. (Carlo Teubner)
Files: src/regexp.c

Patch 7.3.005
Problem: Crash when using undotree(). (Christian Brabandt)
Solution: Increase the list reference count. Add a test for undotree()

(Lech Lorens)
Files: src/eval.c, src/testdir/Makefile, src/testdir/test61.in

Patch 7.3.006
Problem: Can't build some multibyte code with C89.
Solution: Move code to after declarations. (Joachim Schmitz)
Files: src/mbyte.c, src/spell.c

Patch 7.3.007
Problem: Python code defines global "buffer". Re-implements a grow-array.
Solution: Use a grow-array instead of coding the same functionality. Handle

out-of-memory situation properly.
Files: src/if_py_both.h

Patch 7.3.008
Problem: 'cursorbind' is kept in places where 'scrollbind' is reset.
Solution: Reset 'cursorbind'.
Files: src/buffer.c, src/diff.c, src/ex_cmds.c, src/ex_cmds2.c,

src/ex_docmd.c, src/ex_getln.c, src/if_cscope.c, src/macros.h,
src/quickfix.c, src/search.c, src/tag.c, src/window.c

Patch 7.3.009
Problem: Win32: Crash on Windows when using a bad argument for strftime().

(Christian Brabandt)
Solution: Use the bad_param_handler(). (Mike Williams)
Files: src/os_win32.c

Patch 7.3.010
Problem: Mac GUI: Missing break statements.
Solution: Add the break statements. (Dominique Pelle)
Files: src/gui_mac.c

Patch 7.3.011
Problem: X11 clipboard doesn't work in Athena/Motif GUI. First selection

after a shell command doesn't work.
Solution: When using the GUI use XtLastTimestampProcessed() instead of

changing a property. (partly by Toni Ronkko)
When executing a shell command disown the selection.

Files: src/ui.c, src/os_unix.c

Patch 7.3.012
Problem: Problems building with MingW.
Solution: Adjust the MingW makefiles. (Jon Maken)
Files: src/Make_ming.mak, src/GvimExt/Make_ming.mak

Patch 7.3.013
Problem: Dynamic loading with Ruby doesn't work for 1.9.2.
Solution: Handle rb_str2cstr differently. Also support dynamic loading on

Unix. (Jon Maken)
Files: src/if_ruby.c

version7.txt — 2658

Patch 7.3.014
Problem: Ending a line in a backslash inside an ":append" or ":insert"

command in Ex mode doesn't work properly. (Ray Frush)
Solution: Halve the number of backslashes, only insert a NUL after an odd

number of backslashes.
Files: src/ex_getln.c

Patch 7.3.015
Problem: Test is using error message that no longer exists.
Solution: Change E106 to E121. (Dominique Pelle)
Files: src/testdir/test49.vim

Patch 7.3.016
Problem: Netbeans doesn't work under Athena.
Solution: Support Athena, just like Motif. (Xavier de Gaye)
Files: runtime/doc/netbeans.txt, src/gui.c, src/main.c, src/netbeans.c

Patch 7.3.017
Problem: smatch reports errors.
Solution: Fix the reported errors. (Dominique Pelle)
Files: src/spell.c, src/syntax.c

Patch 7.3.018 (after 7.3.012)
Problem: Missing argument to windres in MingW makefiles.
Solution: Add the argument that was wrapped in the patch. (Jon Maken)
Files: src/Make_ming.mak, src/GvimExt/Make_ming.mak

Patch 7.3.019
Problem: ":nbstart" can fail silently.
Solution: Give an error when netbeans is not supported by the GUI. (Xavier

de Gaye)
Files: src/netbeans.c

Patch 7.3.020
Problem: Cursor position wrong when joining multiple lines and

'formatoptions' contains "a". (Moshe Kamensky)
Solution: Adjust cursor position for skipped indent. (Carlo Teubner)
Files: src/ops.c, src/testdir/test68.in, src/testdir/test68.ok

Patch 7.3.021
Problem: Conflict for defining Boolean in Mac header files.
Solution: Define NO_X11_INCLUDES. (Rainer Muller)
Files: src/os_macosx.m, src/vim.h

Patch 7.3.022
Problem: When opening a new window the 'spellcapcheck' option is cleared.
Solution: Copy the correct option value. (Christian Brabandt)
Files: src/option.c

Patch 7.3.023
Problem: External program may hang when it tries to write to the tty.
Solution: Don't close the slave tty until after the child exits. (Nikola

Knezevic)
Files: src/os_unix.c

Patch 7.3.024
Problem: Named signs do not use a negative number as intended.
Solution: Fix the numbering of named signs. (Xavier de Gaye)
Files: src/ex_cmds.c

version7.txt — 2659

Patch 7.3.025
Problem: ":mksession" does not square brackets escape file name properly.
Solution: Improve escaping of file names. (partly by Peter Odding)
Files: src/ex_docmd.c

Patch 7.3.026
Problem: CTRL-] in a help file doesn't always work. (Tony Mechelynck)
Solution: Don't escape special characters. (Carlo Teubner)
Files: src/normal.c

Patch 7.3.027
Problem: Opening a file on a network share is very slow.
Solution: When fixing file name case append "*" to directory, server and

network share names. (David Anderson, John Beckett)
Files: src/os_win32.c

Patch 7.3.028 (after 7.3.024)
Problem: Signs don't show up. (Charles Campbell)
Solution: Don't use negative numbers. Also assign a number to signs that

have a name of all digits to avoid using a sign number twice.
Files: src/ex_cmds.c

Patch 7.3.029
Problem: ":sort n" sorts lines without a number as number zero. (Beeyawned)
Solution: Make lines without a number sort before lines with a number. Also

fix sorting negative numbers.
Files: src/ex_cmds.c, src/testdir/test57.in, src/testdir/test57.ok

Patch 7.3.030
Problem: Cannot store Dict and List in viminfo file.
Solution: Add support for this. (Christian Brabandt)
Files: runtime/doc/options.txt, src/eval.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/main.aap, src/testdir/test74.in,
src/testdir/test74.ok

Patch 7.3.031
Problem: Can't pass the X window ID to another application.
Solution: Add v:windowid. (Christian J. Robinson, Lech Lorens)
Files: runtime/doc/eval.txt, src/eval.c, src/gui.c, src/vim.h,

src/os_unix.c

Patch 7.3.032
Problem: maparg() doesn't return the flags, such as <buffer>, <script>,

<silent>. These are needed to save and restore a mapping.
Solution: Improve maparg(). (also by Christian Brabandt)
Files: runtime/doc/eval.txt, src/eval.c, src/getchar.c, src/gui_w48.c,

src/message.c, src/proto/getchar.pro, src/proto/message.pro,
src/structs.h src/testdir/test75.in, src/testdir/test75.ok

Patch 7.3.033 (after 7.3.032)
Problem: Can't build without FEAT_LOCALMAP.
Solution: Add an #ifdef. (John Marriott)
Files: src/getchar.c

Patch 7.3.034
Problem: Win32: may be loading .dll from the wrong directory.
Solution: Go to the Vim executable directory when opening a library.
Files: src/gui_w32.c, src/if_lua.c, src/if_mzsch.c, src/if_perl.xs,

version7.txt — 2660

src/if_python.c, src/if_python3.c, src/if_ruby.c, src/mbyte.c,
src/os_mswin.c, src/os_win32.c, src/proto/os_win32.pro

Patch 7.3.035 (after 7.3.034)
Problem: Stray semicolon after if statement. (Hari G)
Solution: Remove the semicolon.
Files: src/os_win32.c

Patch 7.3.036
Problem: Win32 GUI: When building without menus, the font for dialogs and

tab page headers also changes.
Solution: Define USE_SYSMENU_FONT always. (Harig G.)
Files: src/gui_w32.c

Patch 7.3.037
Problem: Compiler warnings for loss of data. (Mike Williams)
Solution: Add type casts.
Files: src/if_py_both.h, src/getchar.c, src/os_win32.c

Patch 7.3.038
Problem: v:windowid isn't set on MS-Windows.
Solution: Set it to the window handle. (Chris Sutcliffe)
Files: runtime/doc/eval.txt, src/gui_w32.c

Patch 7.3.039
Problem: Crash when using skk.vim plugin.
Solution: Get length of expression evaluation result only after checking for

NULL. (Noriaki Yagi, Dominique Pelle)
Files: src/ex_getln.c

Patch 7.3.040
Problem: Comparing strings while ignoring case goes beyond end of the

string when there are illegal bytes. (Dominique Pelle)
Solution: Explicitly check for illegal bytes.
Files: src/mbyte.c

Patch 7.3.041
Problem: Compiler warning for accessing mediumVersion. (Tony Mechelynck)
Solution: Use the pointer instead of the array itself. (Dominique Pelle)
Files: src/version.c

Patch 7.3.042
Problem: No spell highlighting when re-using an empty buffer.
Solution: Clear the spell checking info only when clearing the options for a

buffer. (James Vega)
Files: src/buffer.c

Patch 7.3.043
Problem: Can't load Ruby dynamically on Unix.
Solution: Adjust the configure script. (James Vega)
Files: src/Makefile, src/config.h.in, src/configure.in,

src/auto/configure, src/if_ruby.c

Patch 7.3.044
Problem: The preview window opened by the popup menu is larger than

specified with 'previewheight'. (Benjamin Haskell)
Solution: Use 'previewheight' if it's set and smaller.
Files: src/popupmnu.c

Patch 7.3.045

version7.txt — 2661

Problem: Compiler warning for uninitialized variable.
Solution: Initialize the variable always.
Files: src/getchar.c

Patch 7.3.046 (after 7.3.043)
Problem: Can't build Ruby on MS-Windows.
Solution: Add #ifdef, don't use WIN3264 before including vim.h.
Files: src/if_ruby.c

Patch 7.3.047 (after 7.3.032)
Problem: Missing makefile updates for test 75.
Solution: Update the makefiles.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Makefile, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.3.048
Problem: ":earlier 1f" doesn't work after loading undo file.
Solution: Set b_u_save_nr_cur when loading an undo file. (Christian

Brabandt)
Fix only showing time in ":undolist"

Files: src/undo.c

Patch 7.3.049
Problem: PLT has rebranded their Scheme to Racket.
Solution: Add support for Racket 5.x. (Sergey Khorev)
Files: src/Make_cyg.mak, src/Make_ming.mak, src/Make_mvc.mak,

src/auto/configure, src/configure.in, src/if_mzsch.c

Patch 7.3.050
Problem: The link script is clumsy.
Solution: Use the --as-needed linker option if available. (Kirill A.

Shutemov)
Files: src/Makefile, src/auto/configure, src/config.mk.in,

src/configure.in, src/link.sh

Patch 7.3.051
Problem: Crash when $PATH is empty.
Solution: Check for vim_getenv() returning NULL. (Yasuhiro Matsumoto)
Files: src/ex_getln.c, src/os_win32.c

Patch 7.3.052
Problem: When 'completefunc' opens a new window all kinds of errors follow.

(Xavier Deguillard)
Solution: When 'completefunc' goes to another window or buffer and when it

deletes text abort completion. Add a test for 'completefunc'.
Files: src/edit.c, src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test76.in, src/testdir/test76.ok

Patch 7.3.053
Problem: complete() function doesn't reset complete direction. Can't use

an empty string in the list of matches.
Solution: Set compl_direction to FORWARD. Add "empty" key to allow empty

words. (Kikuchan)
Files: src/edit.c

Patch 7.3.054
Problem: Can define a user command for :Print, but it doesn't work. (Aaron

version7.txt — 2662

Thoma)
Solution: Let user command :Print overrule the builtin command (Christian

Brabandt) Disallow :X and :Next as a user defined command.
Files: src/ex_docmd.c

Patch 7.3.055
Problem: Recursively nested lists and dictionaries cause a near-endless

loop when comparing them with a copy. (ZyX)
Solution: Limit recursiveness in a way that non-recursive structures can

still be nested very deep.
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok

Patch 7.3.056
Problem: "getline" argument in do_cmdline() shadows global.
Solution: Rename the argument.
Files: src/ex_docmd.c

Patch 7.3.057
Problem: Segfault with command line abbreviation. (Randy Morris)
Solution: Don't retrigger the abbreviation when abandoning the command line.

Continue editing the command line after the error.
Files: src/ex_getln.c

Patch 7.3.058
Problem: Error "code converter not found" when loading Ruby script.
Solution: Load Gem module. (Yasuhiro Matsumoto)
Files: src/if_ruby.c

Patch 7.3.059
Problem: Netbeans: Problem with recursively handling messages for Athena

and Motif.
Solution: Call netbeans_parse_messages() in the main loop, like it's done

for GTK. (Xavier de Gaye)
Files: src/gui_x11.c, src/netbeans.c

Patch 7.3.060
Problem: Netbeans: crash when socket is disconnected unexpectedly.
Solution: Don't cleanup when a read fails, put a message in the queue and

disconnect later. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.3.061
Problem: Remote ":drop" does not respect 'autochdir'. (Peter Odding)
Solution: Don't restore the directory when 'autochdir' is set. (Benjamin

Fritz)
Files: src/main.c

Patch 7.3.062
Problem: Python doesn't work properly when installed in another directory

than expected.
Solution: Figure out home directory in configure and use Py_SetPythonHome()

at runtime. (Roland Puntaier)
Files: src/configure.in, src/auto/configure, src/if_python.c,

src/if_python3.c

Patch 7.3.063
Problem: Win32: Running a filter command makes Vim lose focus.
Solution: Use SW_SHOWMINNOACTIVE instead of SW_SHOWMINIMIZED. (Hong Xu)
Files: src/os_win32.c

version7.txt — 2663

Patch 7.3.064
Problem: Win32: ":dis +" shows nothing, but "+p does insert text.
Solution: Display the * register, since that's what will be inserted.

(Christian Brabandt)
Files: src/globals.h, src/ops.c

Patch 7.3.065
Problem: Can't get current line number in a source file.
Solution: Add the <slnum> item, similar to <sfile>.
Files: src/ex_docmd.c

Patch 7.3.066
Problem: Crash when changing to another window while in a :vimgrep command.

(Christian Brabandt)
Solution: When wiping out the dummy before, remove it from aucmd_win.
Files: src/quickfix.c

Patch 7.3.067 (after 7.3.058)
Problem: Ruby: Init_prelude is not always available.
Solution: Remove use of Init_prelude. (Yasuhiro Matsumoto)
Files: src/if_ruby.c

Patch 7.3.068
Problem: Using freed memory when doing ":saveas" and an autocommand sets

'autochdir'. (Kevin Klement)
Solution: Get the value of fname again after executing autocommands.
Files: src/ex_cmds.c

Patch 7.3.069
Problem: GTK: pressing Enter in inputdialog() doesn't work like clicking OK

as documented.
Solution: call gtk_entry_set_activates_default(). (Britton Kerin)
Files: src/gui_gtk.c

Patch 7.3.070
Problem: Can set environment variables in the sandbox, could be abused.
Solution: Disallow it.
Files: src/eval.c

Patch 7.3.071
Problem: Editing a file in a window that's in diff mode resets 'diff'

but not cursor binding.
Solution: Reset cursor binding in two more places.
Files: src/quickfix.c, src/option.c

Patch 7.3.072
Problem: Can't complete file names while ignoring case.
Solution: Add 'wildignorecase'.
Files: src/ex_docmd.c, src/ex_getln.c, src/misc1.c, src/option.c,

src/option.h, src/vim.h, src/runtime/options.txt

Patch 7.3.073
Problem: Double free memory when netbeans command follows DETACH.
Solution: Only free the node when owned. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.3.074
Problem: Can't use the "+ register like "* for yank and put.
Solution: Add "unnamedplus" to the 'clipboard' option. (Ivan Krasilnikov)
Files: runtime/doc/options.txt, src/eval.c, src/globals.h, src/ops.c,

version7.txt — 2664

src/option.c

Patch 7.3.075 (after 7.3.072)
Problem: Missing part of 'wildignorecase'
Solution: Also adjust expand()
Files: src/eval.c

Patch 7.3.076
Problem: Clang warnings for dead code.
Solution: Remove it. (Carlo Teubner)
Files: src/gui_gtk.c, src/if_ruby.c, src/misc2.c, src/netbeans.c,

src/spell.c

Patch 7.3.077
Problem: When updating crypt of swapfile fails there is no error message.

(Carlo Teubner)
Solution: Add the error message.
Files: src/memline.c

Patch 7.3.078
Problem: Warning for unused variable.
Solution: Adjust #ifdefs.
Files: src/ops.c

Patch 7.3.079
Problem: Duplicate lines in makefile.
Solution: Remove the lines. (Hong Xu)
Files: src/Make_mvc.mak

Patch 7.3.080
Problem: Spell doesn't work on VMS.
Solution: Use different file names. (Zoltan Bartos, Zoltan Arpadffy)
Files: src/spell.c

Patch 7.3.081
Problem: Non-printable characters in 'statusline' cause trouble. (ZyX)
Solution: Use transstr(). (partly by Caio Ariede)
Files: src/screen.c

Patch 7.3.082
Problem: Leaking file descriptor when hostname doesn't exist.
Solution: Remove old debugging lines.
Files: src/netbeans.c

Patch 7.3.083
Problem: When a read() or write() is interrupted by a signal it fails.
Solution: Add read_eintr() and write_eintr().
Files: src/fileio.c, src/proto/fileio.pro, src/memfile.c, src/memline.c,

src/os_unix.c, src/undo.c, src/vim.h

Patch 7.3.084
Problem: When splitting the window, the new one scrolls with the cursor at

the top.
Solution: Compute w_fraction before setting the new height.
Files: src/window.c

Patch 7.3.085 (after 7.3.083)
Problem: Inconsistency with preproc symbols. void * computation.
Solution: Include vimio.h from vim.h. Add type cast.
Files: src/eval.c, src/ex_cmds.c, src/ex_cmds2.c, src/fileio.c,

version7.txt — 2665

src/if_cscope.c, src/if_sniff.c, src/main.c, src/memfile.c,
src/memline.c, src/netbeans.c, src/os_msdos.c, src/os_mswin.c,
src/os_win16.c, src/os_win32.c, src/spell.c, src/tag.c,
src/undo.c, src/vim.h

Patch 7.3.086
Problem: When using a mapping with an expression and there was no count,

v:count has the value of the previous command. (ZyX)
Solution: Also set v:count and v:count1 before getting the character that

could be a command or a count.
Files: src/normal.c

Patch 7.3.087
Problem: EINTR is not always defined.
Solution: Include errno.h in vim.h.
Files: src/if_cscope.c, src/if_tcl.c, src/integration.c, src/memline.c,

src/os_mswin.c, src/os_win16.c, src/os_win32.c, src/vim.h,
src/workshop.c

Patch 7.3.088
Problem: Ruby can't load Gems sometimes, may cause a crash.
Solution: Undefine off_t. Use ruby_process_options(). (Yasuhiro Matsumoto)
Files: src/if_ruby.c

Patch 7.3.089
Problem: Compiler warning on 64 bit MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/netbeans.c

Patch 7.3.090
Problem: Wrong help text for Cscope.
Solution: Adjust the help text for "t". (Dominique Pelle)
Files: src/if_cscope.c

Patch 7.3.091
Problem: "vim -w foo" writes special key codes for removed escape

sequences. (Josh Triplett)
Solution: Don't write K_IGNORE codes.
Files: src/getchar.c, src/misc1.c, src/term.c, src/vim.h

Patch 7.3.092
Problem: Resizing the window when exiting.
Solution: Don't resize when exiting.
Files: src/term.c

Patch 7.3.093
Problem: New DLL dependencies in MingW with gcc 4.5.0.
Solution: Add STATIC_STDCPLUS, LDFLAGS and split up WINDRES. (Guopeng Wen)
Files: src/GvimExt/Make_ming.mak, src/Make_ming.mak

Patch 7.3.094
Problem: Using abs() requires type cast to int.
Solution: Use labs() so that the value remains long. (Hong Xu)
Files: src/screen.c

Patch 7.3.095
Problem: Win32: In Chinese tear-off menu doesn't work. (Weasley)
Solution: Use menu_name_equal(). (Alex Jakushev)
Files: src/menu.c

version7.txt — 2666

Patch 7.3.096
Problem: "gvim -nb" is not interruptible. Leaking file descriptor on

netbeans connection error.
Solution: Check for CTRL-C typed. Free file descriptor. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.3.097
Problem: Using ":call" inside "if 0" does not see that a function returns a

Dict and gives error for "." as string concatenation.
Solution: Use eval0() to skip over the expression. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.3.098
Problem: Function that ignores error still causes called_emsg to be set.

E.g. when expand() fails the status line is disabled.
Solution: Move check for emsg_not_now() up. (James Vega)
Files: src/message.c

Patch 7.3.099
Problem: Crash when splitting a window with zero height. (Yukihiro

Nakadaira)
Solution: Don't set the fraction in a window with zero height.
Files: src/window.c

Patch 7.3.100
Problem: When using :normal v:count isn't set.
Solution: Call normal_cmd() with toplevel set to TRUE.
Files: src/ex_docmd.c

Patch 7.3.101
Problem: ino_t defined with wrong size.
Solution: Move including auto/config.h before other includes. (Marius

Geminas)
Files: src/if_ruby.c, src/if_lua.c

Patch 7.3.102
Problem: When using ":make", typing the next command and then getting the

"reload" prompt the next command is (partly) eaten by the reload
prompt.

Solution: Accept ':' as a special character at the reload prompt to accept
the default choice and execute the command.

Files: src/eval.c, src/fileio.c, src/gui.c, src/gui_xmdlg.c,
src/memline.c, src/message.c, src/proto/message.pro,
src/gui_athena.c, src/gui_gtk.c, src/gui_mac.c, src/gui_motif.c,
src/gui_photon.c, src/gui_w16.c, src/gui_w32.c, src/os_mswin.c
src/proto/gui_athena.pro, src/proto/gui_gtk.pro,
src/proto/gui_mac.pro, src/proto/gui_motif.pro,
src/proto/gui_photon.pro, src/proto/gui_w16.pro,
src/proto/gui_w32.pro

Patch 7.3.103
Problem: Changing 'fileformat' and then using ":w" in an empty file sets

the 'modified' option.
Solution: In unchanged() don't ignore 'ff' for an empty file.
Files: src/misc1.c, src/option.c, src/proto/option.pro, src/undo.c

Patch 7.3.104
Problem: Conceal: using Tab for cchar causes problems. (ZyX)
Solution: Do not accept a control character for cchar.
Files: src/syntax.c

version7.txt — 2667

Patch 7.3.105
Problem: Can't get the value of "b:changedtick" with getbufvar().
Solution: Make it work. (Christian Brabandt)
Files: src/eval.c

Patch 7.3.106
Problem: When 'cursorbind' is set another window may scroll unexpectedly

when 'scrollbind' is also set. (Xavier Wang)
Solution: Don't call update_topline() if 'scrollbind' is set.
Files: src/move.c

Patch 7.3.107
Problem: Year number for :undolist can be confused with month or day.
Solution: Change "%y" to "%Y".
Files: src/undo.c

Patch 7.3.108
Problem: Useless check for NULL when calling vim_free().
Solution: Remove the check. (Dominique Pelle)
Files: src/eval.c, src/ex_cmds.c, src/os_win32.c

Patch 7.3.109
Problem: Processing new Esperanto spell file fails and crashes Vim.

(Dominique Pelle)
Solution: When running out of memory give an error. Handle '?' in

COMPOUNDRULE properly.
Files: src/spell.c

Patch 7.3.110
Problem: The "nbsp" item in 'listchars' isn't used for ":list".
Solution: Make it work. (Christian Brabandt)
Files: src/message.c

Patch 7.3.111 (after 7.3.100)
Problem: Executing a :normal command in 'statusline' evaluation causes the

cursor to move. (Dominique Pelle)
Solution: When updating the cursor for 'cursorbind' allow the cursor beyond

the end of the line. When evaluating 'statusline' temporarily
reset 'cursorbind'.

Files: src/move.c, src/screen.c

Patch 7.3.112
Problem: Setting 'statusline' to "%!'asdf%' reads uninitialized memory.
Solution: Check for NUL after %.
Files: src/buffer.c

Patch 7.3.113
Problem: Windows: Fall back directory for creating temp file is wrong.
Solution: Use "." instead of empty string. (Hong Xu)
Files: src/fileio.c

Patch 7.3.114
Problem: Potential problem in initialization when giving an error message

early.
Solution: Initialize 'verbosefile' empty. (Ben Schmidt)
Files: src/option.h

Patch 7.3.115
Problem: Vim can crash when tmpnam() returns NULL.

version7.txt — 2668

Solution: Check for NULL. (Hong Xu)
Files: src/fileio.c

Patch 7.3.116
Problem: 'cursorline' is displayed too short when there are concealed

characters and 'list' is set. (Dennis Preiser)
Solution: Check for 'cursorline' when 'list' is set. (Christian Brabandt)
Files: src/screen.c

Patch 7.3.117
Problem: On some systems --as-needed does not work, because the "tinfo"

library is included indirectly from "ncurses". (Charles Campbell)
Solution: In configure prefer using "tinfo" instead of "ncurses".
Files: src/configure.in, src/auto/configure

Patch 7.3.118
Problem: Ruby uses SIGVTALARM which makes Vim exit. (Alec Tica)
Solution: Ignore SIGVTALARM. (Dominique Pelle)
Files: src/os_unix.c

Patch 7.3.119
Problem: Build problem on Mac. (Nicholas Stallard)
Solution: Use "extern" instead of "EXTERN" for p_vfile.
Files: src/option.h

Patch 7.3.120
Problem: The message for an existing swap file is too long to fit in a 25

line terminal.
Solution: Make the message shorter. (Chad Miller)
Files: src/memline.c

Patch 7.3.121
Problem: Complicated 'statusline' causes a crash. (Christian Brabandt)
Solution: Check that the number of items is not too big.
Files: src/buffer.c

Patch 7.3.122
Problem: Having auto/config.mk in the repository causes problems.
Solution: Remove auto/config.mk from the distribution. In the toplevel

Makefile copy it from the "dist" file.
Files: Makefile, src/Makefile, src/auto/config.mk

Patch 7.3.123
Problem: ml_get error when executing register being recorded into, deleting

lines and 'conceallevel' is set. (ZyX)
Solution: Don't redraw a line for concealing when it doesn't exist.
Files: src/main.c

Patch 7.3.124
Problem: When writing a file in binary mode it may be missing the final EOL

if a file previously read was missing the EOL. (Kevin Goodsell)
Solution: Move the write_no_eol_lnum into the buffer struct.
Files: src/structs.h, src/fileio.c, src/globals.h, src/os_unix.c

Patch 7.3.125
Problem: MSVC: Problem with quotes in link argument.
Solution: Escape backslashes and quotes. (Weasley)
Files: src/Make_mvc.mak

Patch 7.3.126

version7.txt — 2669

Problem: Compiler warning for signed pointer.
Solution: Use unsigned int argument for sscanf().
Files: src/blowfish.c

Patch 7.3.127
Problem: Compiler complains about comma.
Solution: Remove comma after last enum element.
Files: src/ex_cmds2.c

Patch 7.3.128
Problem: Another compiler warning for signed pointer.
Solution: Use unsigned int argument for sscanf().
Files: src/mark.c

Patch 7.3.129
Problem: Using integer like a boolean.
Solution: Nicer check for integer being non-zero.
Files: src/tag.c

Patch 7.3.130
Problem: Variable misplaced in #ifdef.
Solution: Move clipboard_event_time outside of #ifdef.
Files: src/gui_gtk_x11.c

Patch 7.3.131
Problem: Including errno.h too often.
Solution: Don't include errno.h in Unix header file.
Files: src/os_unix.h

Patch 7.3.132
Problem: C++ style comments.
Solution: Change to C comments.
Files: src/if_python3.c

Patch 7.3.133
Problem: When using encryption it's not clear what method was used.
Solution: In the file message show "blowfish" when using blowfish.
Files: src/fileio.c

Patch 7.3.134
Problem: Drag-n-drop doesn't work in KDE Dolphin.
Solution: Add GDK_ACTION_MOVE flag. (Florian Degner)
Files: src/gui_gtk_x11.c

Patch 7.3.135
Problem: When there is no previous substitute pattern, the previous search

pattern is used. The other way around doesn't work.
Solution: When there is no previous search pattern, use the previous

substitute pattern if possible. (Christian Brabandt)
Files: src/search.c

Patch 7.3.136
Problem: Duplicate include of assert.h.
Solution: Remove it.
Files: src/if_cscope.c

Patch 7.3.137 (after 7.3.091)
Problem: When 'lazyredraw' is set the screen may not be updated. (Ivan

Krasilnikov)
Solution: Call update_screen() before waiting for input.

version7.txt — 2670

Files: src/misc1.c, src/getchar.c

Patch 7.3.138
Problem: ":com" changes the multibyte text of :echo. (Dimitar Dimitrov)
Solution: Search for K_SPECIAL as a byte, not a character. (Ben Schmidt)
Files: src/ex_docmd.c

Patch 7.3.139 (after 7.3.137)
Problem: When 'lazyredraw' is set ":ver" output can't be read.
Solution: Don't redraw the screen when at a prompt or command line.
Files: src/getchar.c, src/message.c, src/misc1.c

Patch 7.3.140
Problem: Crash when drawing the "$" at end-of-line for list mode just after

the window border and 'cursorline' is set.
Solution: Don't check for 'cursorline'. (Quentin Carbonneaux)
Files: src/screen.c

Patch 7.3.141
Problem: When a key code is not set get a confusing error message.
Solution: Change the error message to say the key code is not set.
Files: src/option.c, runtime/doc/options.txt

Patch 7.3.142
Problem: Python stdout doesn't have a flush() method, causing an import to

fail.
Solution: Add a dummy flush() method. (Tobias Columbus)
Files: src/if_py_both.h

Patch 7.3.143
Problem: Memfile is not tested sufficiently. Looking up blocks in a

memfile is slow when there are many blocks.
Solution: Add high level test and unittest. Adjust the number of hash

buckets to the number of blocks. (Ivan Krasilnikov)
Files: Filelist, src/Makefile, src/main.c, src/memfile.c,

src/memfile_test.c src/structs.h src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mak,
src/testdir/Makefile, src/testdir/test77.in, src/testdir/test77.ok

Patch 7.3.144
Problem: Crash with ":python help(dir)". (Kearn Holliday)
Solution: Fix the way the type is set on objects. (Tobias Columbus)
Files: src/if_python.c

Patch 7.3.145 (after 7.3.144)
Problem: Can't build with Python dynamically loading.
Solution: Add dll_PyType_Ready.
Files: src/if_python.c

Patch 7.3.146
Problem: It's possible to assign to a read-only member of a dict.

It's possible to create a global variable "0". (ZyX)
It's possible to add a v: variable with ":let v:.name = 1".

Solution: Add check for dict item being read-only.
Check the name of g: variables.
Disallow adding v: variables.

Files: src/eval.c

Patch 7.3.147 (after 7.3.143)

version7.txt — 2671

Problem: Can't build on HP-UX.
Solution: Remove an unnecessary backslash. (John Marriott)
Files: src/Makefile

Patch 7.3.148
Problem: A syntax file with a huge number of items or clusters causes weird

behavior, a hang or a crash. (Yukihiro Nakadaira)
Solution: Check running out of IDs. (partly by Ben Schmidt)
Files: src/syntax.c

Patch 7.3.149
Problem: The cursor disappears after the processing of the 'setDot'

netbeans command when vim runs in a terminal.
Solution: Show the cursor after a screen update. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.3.150
Problem: readline() does not return the last line when the NL is missing.

(Hong Xu)
Solution: When at the end of the file Also check for a previous line.
Files: src/eval.c

Patch 7.3.151 (after 7.3.074)
Problem: When "unnamedplus" is in 'clipboard' the selection is sometimes

also copied to the star register.
Solution: Avoid copy to the star register when undesired. (James Vega)
Files: src/ops.c

Patch 7.3.152
Problem: Xxd does not check for errors from library functions.
Solution: Add error checks. (Florian Zumbiehl)
Files: src/xxd/xxd.c

Patch 7.3.153 (after 7.3.152)
Problem: Compiler warning for ambiguous else, missing prototype.
Solution: Add braces. (Dominique Pelle) Add prototype for die().
Files: src/xxd/xxd.c

Patch 7.3.154 (after 7.3.148)
Problem: Can't compile with tiny features. (Tony Mechelynck)
Solution: Move #define outside of #ifdef.
Files: src/syntax.c

Patch 7.3.155
Problem: Crash when using map(), filter() and remove() on v:. (ZyX)

Also for extend(). (Yukihiro Nakadaira)
Solution: Mark v: as locked. Also correct locking error messages.
Files: src/eval.c

Patch 7.3.156
Problem: Tty names possibly left unterminated.
Solution: Use vim_strncpy() instead of strncpy().
Files: src/pty.c

Patch 7.3.157
Problem: Superfluous assignment.
Solution: Remove assignment.
Files: src/misc1.c

Patch 7.3.158

version7.txt — 2672

Problem: Might use uninitialized memory in C indenting.
Solution: Init arrays to empty.
Files: src/misc1.c

Patch 7.3.159
Problem: Using uninitialized pointer when out of memory.
Solution: Check for NULL return value.
Files: src/mbyte.c

Patch 7.3.160
Problem: Unsafe string copying.
Solution: Use vim_strncpy() instead of strcpy(). Use vim_strcat() instead

of strcat().
Files: src/buffer.c, src/ex_docmd.c, src/hardcopy.c, src/menu.c,

src/misc1.c, src/misc2.c, src/proto/misc2.pro, src/netbeans.c,
src/os_unix.c, src/spell.c, src/syntax.c, src/tag.c

Patch 7.3.161
Problem: Items on the stack may be too big.
Solution: Make items static or allocate them.
Files: src/eval.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,

src/fileio.c, src/hardcopy.c, src/quickfix.c, src/main.c,
src/netbeans.c, src/spell.c, src/tag.c, src/vim.h, src/xxd/xxd.c

Patch 7.3.162
Problem: No error message when assigning to a list with an index out of

range. (Yukihiro Nakadaira)
Solution: Add the error message.
Files: src/eval.c

Patch 7.3.163
Problem: For the default of 'shellpipe' "mksh" and "pdksh" are not

recognized.
Solution: Recognize these shell names.
Files: src/option.c

Patch 7.3.164
Problem: C-indenting: a preprocessor statement confuses detection of a

function declaration.
Solution: Ignore preprocessor lines. (Lech Lorens) Also recognize the style

to put a comma before the argument name.
Files: src/misc1.c, testdir/test3.in, testdir/test3.ok

Patch 7.3.165
Problem: ":find" completion does not escape spaces in a directory name.

(Isz)
Solution: Add backslashes for EXPAND_FILES_IN_PATH. (Carlo Teubner)
Files: src/ex_getln.c

Patch 7.3.166
Problem: Buffer on the stack may be too big
Solution: Allocate the space.
Files: src/option.c

Patch 7.3.167
Problem: When using the internal grep QuickFixCmdPost is not triggered.

(Yukihiro Nakadaira)
Solution: Change the place where autocommands are triggered.
Files: src/quickfix.c

version7.txt — 2673

Patch 7.3.168
Problem: When the second argument of input() contains a CR the text up to

that is used without asking the user. (Yasuhiro Matsumoto)
Solution: Change CR, NL and ESC in the text to a space.
Files: src/getchar.c

Patch 7.3.169
Problem: Freeing memory already freed, warning from static code analyzer.
Solution: Initialize pointers to NULL, correct use of "mustfree". (partly by

Dominique Pelle)
Files: src/mis1.c

Patch 7.3.170
Problem: VMS Makefile for testing was not updated for test77.
Solution: Add test77 to the Makefile.
Files: src/testdir/Make_vms.mms

Patch 7.3.171
Problem: When the clipboard isn't supported: ":yank*" gives a confusing

error message.
Solution: Specifically mention that the register name is invalid.

(Jean-Rene David)
Files: runtime/doc/change.txt, src/ex_docmd.c, src/globals.h

Patch 7.3.172
Problem: MS-Windows: rename() might delete the file if the name differs but

it's actually the same file.
Solution: Use the file handle to check if it's the same file. (Yukihiro

Nakadaira)
Files: src/if_cscope.c, src/fileio.c, src/os_win32.c,

src/proto/os_win32.pro, src/vim.h

Patch 7.3.173
Problem: After using setqflist() to make the quickfix list empty ":cwindow"

may open the window anyway. Also after ":vimgrep".
Solution: Correctly check whether the list is empty. (Ingo Karkat)
Files: src/quickfix.c

Patch 7.3.174
Problem: When Exuberant ctags binary is exctags it's not found.
Solution: Add configure check for exctags. (Hong Xu)
Files: src/configure.in, src/auto/configure

Patch 7.3.175
Problem: When 'colorcolumn' is set locally to a window, ":new" opens a

window with the same highlighting but 'colorcolumn' is empty.
(Tyru)

Solution: Call check_colorcolumn() after clearing and copying options.
(Christian Brabandt)

Files: src/buffer.c

Patch 7.3.176
Problem: Ruby linking doesn't work properly on Mac OS X.
Solution: Fix the configure check for Ruby. (Bjorn Winckler)
Files: src/configure.in, src/auto/configure

Patch 7.3.177
Problem: MS-Windows: mkdir() doesn't work properly when 'encoding' is

"utf-8".
Solution: Convert to utf-16. (Yukihiro Nakadaira)

version7.txt — 2674

Files: src/os_win32.c, src/os_win32.h, src/proto/os_win32.pro

Patch 7.3.178
Problem: C-indent doesn't handle code right after { correctly.
Solution: Fix detecting unterminated line. (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.179
Problem: C-indent doesn't handle colon in string correctly.
Solution: Skip the string. (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.180
Problem: When both a middle part of 'comments' matches and an end part, the

middle part was used erroneously.
Solution: After finding the middle part match continue looking for a better

end part match. (partly by Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.181
Problem: When repeating the insert of CTRL-V or a digraph the display may

not be updated correctly.
Solution: Only call edit_unputchar() after edit_putchar(). (Lech Lorens)
Files: src/edit.c

Patch 7.3.182 (after 7.3.180)
Problem: Compiler warning for uninitialized variable.
Solution: Add dummy initializer.
Files: src/misc1.c

Patch 7.3.183 (after 7.3.174)
Problem: When Exuberant ctags binary is exuberant-ctags it's not found.
Solution: Add configure check for exuberant-ctags.
Files: src/configure.in, src/auto/configure

Patch 7.3.184
Problem: Static code analysis errors in riscOS.
Solution: Make buffer size bigger. (Dominique Pelle)
Files: src/gui_riscos.c

Patch 7.3.185
Problem: ":windo g/pattern/q" closes windows and reports "N more lines".

(Tim Chase)
Solution: Remember what buffer ":global" started in. (Jean-Rene David)
Files: src/ex_cmds.c

Patch 7.3.186
Problem: When 'clipboard' contains "unnamed" or "unnamedplus" the value of

v:register is wrong for operators without a specific register.
Solution: Adjust the register according to 'clipboard'. (Ingo Karkat)
Files: src/normal.c

Patch 7.3.187
Problem: The RISC OS port has obvious errors and is not being maintained.
Solution: Remove the RISC OS files and code.
Files: src/ascii.h, src/eval.c, src/ex_cmds.c, src/ex_cmds2.c,

src/ex_docmd.c, src/fileio.c, src/globals.h, src/gui.c, src/gui.h,
src/main.c, src/memfile.c, src/memline.c, src/misc1.c,
src/proto.h, src/quickfix.c, src/search.c, src/structs.h,
src/term.c, src/termlib.c, src/version.c, src/vim.h,

version7.txt — 2675

src/gui_riscos.h, src/os_riscos.h, src/gui_riscos.c,
src/os_riscos.c, runtime/doc/os_risc.txt

Patch 7.3.188
Problem: More RISC OS files to remove.
Solution: Remove them. Update the file list.
Files: src/proto/gui_riscos.pro, src/proto/os_riscos.pro, Filelist

Patch 7.3.189 (after 7.3.186)
Problem: Can't build without +clipboard feature. (Christian Ebert)
Solution: Add the missing #ifdef.
Files: src/normal.c

Patch 7.3.190
Problem: When there is a "containedin" syntax argument highlighting may be

wrong. (Radek)
Solution: Reset current_next_list. (Ben Schmidt)
Files: src/syntax.c

Patch 7.3.191
Problem: Still some RISC OS stuff to remove.
Solution: Remove files and lines. (Hong Xu)

Remove the 'osfiletype' option code.
Files: README_extra.txt, src/Make_ro.mak, src/INSTALL, src/Makefile,

src/buffer.c, src/eval.c, src/feature.h, src/option.c,
src/option.h, src/structs.h, src/version.c, src/pty.c, Filelist

Patch 7.3.192
Problem: Ex command ":s/ \?/ /g" splits multibyte characters into bytes.

(Dominique Pelle)
Solution: Advance over whole character instead of one byte.
Files: src/ex_cmds.c

Patch 7.3.193
Problem: In the command line window ":close" doesn't work properly. (Tony

Mechelynck)
Solution: Use Ctrl_C instead of K_IGNORE for cmdwin_result. (Jean-Rene

David)
Files: src/ex_docmd.c, src/ex_getln.c

Patch 7.3.194
Problem: When "b" is a symlink to directory "a", resolve("b/") doesn't

result in "a/". (ZyX)
Solution: Remove the trailing slash. (Jean-Rene David)
Files: src/eval.c

Patch 7.3.195
Problem: "} else" causes following lines to be indented too much. (Rouben

Rostamian)
Solution: Better detection for the "else". (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.196
Problem: Can't intercept a character that is going to be inserted.
Solution: Add the InsertCharPre autocommand event. (Jakson A. Aquino)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt,

runtime/doc/map.txt, src/edit.c, src/eval.c, src/fileio.c,
src/vim.h

Patch 7.3.197

version7.txt — 2676

Problem: When a QuickfixCmdPost event removes all errors, Vim still tries
to jump to the first error, resulting in E42.

Solution: Get the number of error after the autocmd event. (Mike Lundy)
Files: src/quickfix.c

Patch 7.3.198
Problem: No completion for ":lang".
Solution: Get locales to complete from. (Dominique Pelle)
Files: src/eval.c, src/ex_cmds2.c, src/ex_getln.c,

src/proto/ex_cmds2.pro, src/proto/ex_getln.pro, src/vim.h

Patch 7.3.199
Problem: MS-Windows: Compilation problem of OLE with MingW compiler.
Solution: Put #ifdef around declarations. (Guopeng Wen)
Files: src/if_ole.h

Patch 7.3.200 (after 7.3.198)
Problem: CTRL-D doesn't complete :lang.
Solution: Add the missing part of the change. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.3.201 (after 7.3.195)
Problem: "} else" still causes following lines to be indented too much.
Solution: Better detection for the "else" block. (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.202
Problem: Cannot influence the indent inside a namespace.
Solution: Add the "N" 'cino' parameter. (Konstantin Lepa)
Files: runtime/doc/indent.txt, src/misc1.c, src/testdir/test3.in,

src/testdir/test3.ok

Patch 7.3.203
Problem: MS-Windows: Can't run an external command without a console window.
Solution: Support ":!start /b cmd". (Xaizek)
Files: runtime/doc/os_win32.txt, src/os_win32.c

Patch 7.3.204 (after 7.3.201)
Problem: Compiler warning.
Solution: Add type cast. (Mike Williams)
Files: src/misc1.c

Patch 7.3.205
Problem: Syntax "extend" doesn't work correctly.
Solution: Avoid calling check_state_ends() recursively (Ben Schmidt)
Files: src/syntax.c

Patch 7.3.206
Problem: 64bit MS-Windows compiler warning.
Solution: Use HandleToLong() instead of type cast. (Mike Williams)
Files: src/gui_w32.c

Patch 7.3.207
Problem: Can't compile with MSVC with pentium4 and 64 bit.
Solution: Only use SSE2 for 32 bit. (Mike Williams)
Files: src/Make_mvc.mak

Patch 7.3.208
Problem: Early terminated if statement.
Solution: Remove the semicolon. (Lech Lorens)

version7.txt — 2677

Files: src/gui_mac.c

Patch 7.3.209
Problem: MSVC Install instructions point to wrong batch file.
Solution: Add a batch file for use with MSVC 10.
Files: src/msvc2010.bat, src/INSTALLpc.txt, Filelist

Patch 7.3.210
Problem: Can't always find the file when using cscope.
Solution: Add the 'cscoperelative' option. (Raghavendra D Prabhu)
Files: runtime/doc/if_cscop.txt, runtime/doc/options.txt,

src/if_cscope.c

Patch 7.3.211 (after 7.3.210)
Problem: Compiler warning.
Solution: Add type cast.
Files: src/if_cscope.c

Patch 7.3.212
Problem: With Python 3.2 ":py3" fails.
Solution: Move PyEval_InitThreads() to after Py_Initialize(). (Roland

Puntaier) Check abiflags in configure. (Andreas Behr)
Files: src/if_python3.c, src/auto/configure, src/configure.in

Patch 7.3.213
Problem: Javascript object literal is not indented correctly.
Solution: Make a special case for when "J1" is in 'cino'. (Luc Deschenaux)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.214
Problem: The text displayed by ":z-" isn't exactly like old Vi.
Solution: Add one to the start line number. (ChangZhuo Chen)
Files: src/ex_cmds.c

Patch 7.3.215 (after 7.3.210)
Problem: Wrong file names in previous patch. (Toothpik)
Solution: Include the option changes.
Files: src/option.c, src/option.h

Patch 7.3.216
Problem: When recovering a file a range of lines is missing. (Charles Jie)
Solution: Reset the index when advancing to the next pointer block. Add a

test to verify recovery works.
Files: src/memline.c, src/testdir/test78.in, src/testdir/test78.ok,

src/testdir/Makefile, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.3.217
Problem: Inside an "if" a ":wincmd" causes problems.
Solution: When skipping commands let ":wincmd" skip over its argument.
Files: src/ex_docmd.c

Patch 7.3.218 (after 7.3.212)
Problem: Tiny configuration problem with Python 3.
Solution: Add abiflags in one more place. (Andreas Behr)
Files: src/auto/configure, src/configure.in

Patch 7.3.219
Problem: Can't compile with GTK on Mac.

version7.txt — 2678

Solution: Add some #ifdef trickery. (Ben Schmidt)
Files: src/os_mac_conv.c, src/os_macosx.m, src/vim.h

Patch 7.3.220
Problem: Python 3: vim.error is a 'str' instead of an 'Exception' object,

so 'except' or 'raise' it causes a 'SystemError' exception.
Buffer objects do not support slice assignment.
When exchanging text between Vim and Python, multibyte texts become
garbage or cause Unicode Exceptions, etc.
'py3file' tries to read in the file as Unicode, sometimes causes
UnicodeDecodeException

Solution: Fix the problems. (lilydjwg)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.3.221
Problem: Text from the clipboard is sometimes handled as linewise, but not

consistently.
Solution: Assume the text is linewise when it ends in a CR or NL.
Files: src/gui_gtk_x11.c, src/gui_mac.c, src/ops.c, src/os_msdos.c,

src/os_mswin.c, src/os_qnx.c, src/ui.c

Patch 7.3.222
Problem: Warning for building GvimExt.
Solution: Comment-out the DESCRIPTION line. (Mike Williams)
Files: src/GvimExt/gvimext.def, src/GvimExt/gvimext_ming.def

Patch 7.3.223
Problem: MingW cross compilation doesn't work with tiny features.
Solution: Move acp_to_enc(), enc_to_utf16() and utf16_to_enc() outside of

"#ifdef CLIPBOARD". Fix typo in makefile.
Files: src/Make_ming.mak, src/os_mswin.c

Patch 7.3.224
Problem: Can't pass dict to sort function.
Solution: Add the optional {dict} argument to sort(). (ZyX)
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.3.225
Problem: Using "\n" in a substitute inside ":s" does not result in a line

break.
Solution: Change behavior inside vim_regexec_nl(). Add tests. (Motoya

Kurotsu)
Files: src/regexp.c, src/testdir/test79.in, src/testdir/test79.ok,

src/testdir/test80.in, src/testdir/test80.ok,
src/testdir/Makefile, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.3.226
Problem: On a 64 bit system "syn sync fromstart" is very slow. (Bjorn

Steinbrink)
Solution: Store the state when starting to parse from the first line.
Files: src/syntax.c

Patch 7.3.227 (after 7.3.221)
Problem: Mac OS doesn't have the linewise clipboard fix.
Solution: Also change the Mac OS file. (Bjorn Winckler)
Files: src/os_macosx.m

Patch 7.3.228

version7.txt — 2679

Problem: "2gj" does not always move to the correct position.
Solution: Get length of line after moving to a next line. (James Vega)
Files: src/normal.c

Patch 7.3.229
Problem: Using fork() makes gvim crash on Mac when build with

CoreFoundation.
Solution: Disallow fork() when __APPLE__ is defined. (Hisashi T Fujinaka)
Files: src/gui.c

Patch 7.3.230
Problem: ":wundo" and ":rundo" don't unescape their argument. (Aaron

Thoma)
Solution: Use FILE1 instead of XFILE.
Files: src/ex_cmds.h

Patch 7.3.231
Problem: Runtime file patches failed.
Solution: Redo the patches made against the patched files instead of the

files in the mercurial repository.
Files: runtime/doc/indent.txt, runtime/doc/os_win32.txt

Patch 7.3.232
Problem: Python doesn't compile without +multi_byte
Solution: Use "latin1" when MULTI_BYTE is not defined.
Files: src/if_py_both.h

Patch 7.3.233
Problem: ":scriptnames" and ":breaklist" show long file names.
Solution: Shorten to use "~/" when possible. (Jean-Rene David)
Files: src/ex_cmds2.c

Patch 7.3.234
Problem: With GTK menu may be popping down.
Solution: Use event time instead of GDK_CURRENT_TIME. (Hong Xu)
Files: src/gui.c, src/gui.h, src/gui_gtk.c, src/gui_gtk_x11.c

Patch 7.3.235
Problem: ";" gets stuck on a "t" command, it's not useful.
Solution: Add the ';' flag in 'cpo'. (Christian Brabandt)
Files: runtime/doc/motion.txt, runtime/doc/options.txt, src/option.h,

src/search.c src/testdir/test81.in, src/testdir/test81.ok,
src/testdir/Makefile, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.3.236 (after 7.3.232)
Problem: Python 3 doesn't compile without +multi_byte
Solution: Use "latin1" when MULTI_BYTE is not defined. (lilydjwg)
Files: src/if_python3.c

Patch 7.3.237
Problem: "filetype" completion doesn't work on Windows. (Yue Wu)
Solution: Don't use a glob pattern for the directories, use a list of

directories. (Dominique Pelle)
Files: src/ex_getln.c

Patch 7.3.238
Problem: Compiler warning for conversion.
Solution: Add type cast. (Mike Williams)

version7.txt — 2680

Files: src/ex_getln.c

Patch 7.3.239
Problem: Python corrects the cursor column without taking 'virtualedit'

into account. (lilydjwg)
Solution: Call check_cursor_col_win().
Files: src/if_py_both.h, src/mbyte.c, src/misc2.c, src/normal.c,

src/proto/mbyte.pro, src/proto/misc2.pro

Patch 7.3.240
Problem: External commands can't use pipes on MS-Windows.
Solution: Implement pipes and use them when 'shelltemp' isn't set. (Vincent

Berthoux)
Files: src/eval.c, src/ex_cmds.c, src/misc2.c, src/os_unix.c,

src/os_win32.c, src/proto/misc2.pro, src/ui.c

Patch 7.3.241
Problem: Using CTRL-R CTRL-W on the command line may insert only part of

the word.
Solution: Use the cursor position instead of assuming it is at the end of

the command. (Tyru)
Files: src/ex_getln.c

Patch 7.3.242
Problem: Illegal memory access in after_pathsep().
Solution: Check that the pointer is not at the start of the file name.

(Dominique Pelle)
Files: src/misc2.c

Patch 7.3.243
Problem: Illegal memory access in readline().
Solution: Swap the conditions. (Dominique Pelle)
Files: src/eval.c

Patch 7.3.244
Problem: MS-Windows: Build problem with old compiler. (John Beckett)
Solution: Only use HandleToLong() when available. (Mike Williams)
Files: src/gui_w32.c

Patch 7.3.245
Problem: Python 3.2 libraries not correctly detected.
Solution: Add the suffix to the library name. (Niclas Zeising)
Files: src/auto/configure, src/configure.in

Patch 7.3.246 (after 7.3.235)
Problem: Repeating "f4" in "4444" skips one 4.
Solution: Check the t_cmd flag. (Christian Brabandt)
Files: src/search.c

Patch 7.3.247
Problem: Running tests changes the users viminfo file. Test for patch

7.3.246 missing.
Solution: Add "nviminfo" to the 'viminfo' option. Include the test.
Files: src/testdir/test78.in, src/testdir/test81.in

Patch 7.3.248
Problem: PC Install instructions missing install instructions.
Solution: Step-by-step explanation. (Michael Soyka)
Files: src/INSTALLpc.txt

version7.txt — 2681

Patch 7.3.249
Problem: Wrong indenting for array initializer.
Solution: Detect '}' in a better way. (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.250
Problem: Python: Errors in Unicode characters not handled nicely.
Solution: Add the surrogateescape error handler. (lilydjwg)
Files: src/if_python3.c

Patch 7.3.251
Problem: "gH" deletes the current line, except when it's the last

line.
Solution: Set the "include" flag to indicate the last line is to be deleted.
Files: src/normal.c, src/ops.c

Patch 7.3.252 (after 7.3.247)
Problem: Tests fail. (David Northfield)
Solution: Add missing update for .ok file.
Files: src/testdir/test81.ok

Patch 7.3.253
Problem: "echo 'abc' > ''" returns 0 or 1, depending on 'ignorecase'.

Checks in mb_strnicmp() for illegal and truncated bytes are
wrong. Should not assume that byte length is equal before case
folding.

Solution: Add utf_safe_read_char_adv() and utf_strnicmp(). Add a test for
this. (Ivan Krasilnikov)

Files: src/mbyte.c src/testdir/test82.in, src/testdir/test82.ok,
src/testdir/Makefile, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.3.254
Problem: The coladd field is not reset when setting the line number for a

":call" command.
Solution: Reset it.
Files: src/eval.c

Patch 7.3.255
Problem: When editing a file such as "File[2010-08-15].vim" an E16 error is

given. (Manuel Stol)
Solution: Don't give an error for failing to compile the regexp.
Files: src/ex_docmd.c, src/misc1.c, src/vim.h

Patch 7.3.256
Problem: Javascript indenting not sufficiently tested.
Solution: Add more tests. (Luc Deschenaux) Mark the lines that are indented

wrong.
Files: src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.257
Problem: Not all completions are available to user commands.
Solution: Add "color", "compiler", "file_in_path" and "locale". (Dominique

Pelle)
Files: src/ex_docmd.c, runtime/doc/map.txt

Patch 7.3.258
Problem: MS-Windows: The edit with existing vim context menu entries can be

unwanted.

version7.txt — 2682

Solution: Let a registry entry disable them. (Jerome Vuarand)
Files: src/GvimExt/gvimext.cpp

Patch 7.3.259
Problem: Equivalence classes only work for latin characters.
Solution: Add the Unicode equivalence characters. (Dominique Pelle)
Files: runtime/doc/pattern.txt, src/regexp.c, src/testdir/test44.in,

src/testdir/test44.ok

Patch 7.3.260
Problem: CursorHold triggers on an incomplete mapping. (Will Gray)
Solution: Don't trigger CursorHold when there is typeahead.
Files: src/fileio.c

Patch 7.3.261
Problem: G++ error message erroneously recognized as error.
Solution: Ignore "In file included from" line also when it ends in a colon.

(Fernando Castillo)
Files: src/option.h

Patch 7.3.262
Problem: Photon code style doesn't match Vim style.
Solution: Clean up some of it. (Elias Diem)
Files: src/gui_photon.c

Patch 7.3.263
Problem: Perl and Tcl have a few code style problems.
Solution: Clean it up. (Elias Diem)
Files: src/if_perl.xs, src/if_tcl.c

Patch 7.3.264
Problem: When the current directory name contains wildcard characters, such

as "foo[with]bar", the tags file can't be found. (Jeremy
Erickson)

Solution: When searching for matching files also match without expanding
wildcards. This is a bit of a hack.

Files: src/vim.h, src/misc1.c, src/misc2.c

Patch 7.3.265
Problem: When storing a pattern in search history there is no proper check

for the separator character.
Solution: Pass the separator character to in_history(). (Taro Muraoka)
Files: src/ex_getln.c

Patch 7.3.266
Problem: In gvim with iBus typing space in Insert mode doesn't work.
Solution: Clear xim_expected_char after checking it.
Files: src/mbyte.c

Patch 7.3.267
Problem: Ruby on Mac OS X 10.7 may crash.
Solution: Avoid alloc(0). (Bjorn Winckler)
Files: src/if_ruby.c

Patch 7.3.268
Problem: Vim freezes when executing an external command with zsh.
Solution: Use O_NOCTTY both in the master and slave. (Bjorn Winckler)
Files: src/os_unix.c

Patch 7.3.269

version7.txt — 2683

Problem: 'shellcmdflag' only works with one flag.
Solution: Split into multiple arguments. (Gary Johnson)
Files: src/os_unix.c

Patch 7.3.270
Problem: Illegal memory access.
Solution: Swap conditions. (Dominique Pelle)
Files: src/ops.c

Patch 7.3.271
Problem: Code not following Vim coding style.
Solution: Fix the style. (Elias Diem)
Files: src/gui_photon.c

Patch 7.3.272
Problem: ":put =list" does not add an empty line for a trailing empty

item.
Solution: Add a trailing NL when turning a list into a string.
Files: src/eval.c

Patch 7.3.273
Problem: A BOM in an error file is seen as text. (Aleksey Baibarin)
Solution: Remove the BOM from the text before evaluating. (idea by Christian

Brabandt)
Files: src/quickfix.c, src/mbyte.c, src/proto/mbyte.pro,

src/testdir/test10.in

Patch 7.3.274
Problem: With concealed characters tabs do not have the right size.
Solution: Use VCOL_HLC instead of vcol. (Eiichi Sato)
Files: src/screen.c

Patch 7.3.275
Problem: MS-Windows: When using a black background some screen updates

cause the window to flicker.
Solution: Add WS_CLIPCHILDREN to CreateWindow(). (René Aguirre)
Files: src/gui_w32.c

Patch 7.3.276
Problem: GvimExt sets $LANG in the wrong way.
Solution: Save the environment and use it for gvim. (Yasuhiro Matsumoto)
Files: src/GvimExt/gvimext.cpp

Patch 7.3.277
Problem: MS-Windows: some characters do not show in dialogs.
Solution: Use the wide methods when available. (Yanwei Jia)
Files: src/gui_w32.c, src/gui_w48.c, src/os_mswin.c, src/os_win32.c,

src/os_win32.h

Patch 7.3.278
Problem: Passing the file name to open in VisVim doesn't work.
Solution: Adjust the index and check for end of buffer. (Jiri Sedlak)
Files: src/VisVim/Commands.cpp

Patch 7.3.279
Problem: With GTK, when gvim is full-screen and a tab is opened and using a

specific monitor configuration the window is too big.
Solution: Adjust the window size like on MS-Windows. (Yukihiro Nakadaira)
Files: src/gui.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro

version7.txt — 2684

Patch 7.3.280
Problem: ":lmake" does not update the quickfix window title.
Solution: Update the title. (Lech Lorens)
Files: src/quickfix.c, src/testdir/test10.in, src/testdir/test10.ok

Patch 7.3.281
Problem: After using "expand('%:8')" the buffer name is changed.
Solution: Make a copy of the file name before shortening it.
Files: src/eval.c

Patch 7.3.282
Problem: When using input() and :echo in a loop the displayed text is

incorrect. (Benjamin Fritz)
Solution: Only restore the cursor position when there is a command line.

(Ben Schmidt)
Files: src/ex_getln.c

Patch 7.3.283
Problem: An expression mapping with a multibyte character containing a

0x80 byte gets messed up. (ZyX)
Solution: Unescape the expression before evaluating it (Yukihiro Nakadaira)
Files: src/getchar.c

Patch 7.3.284
Problem: The str2special() function doesn't handle multibyte characters

properly.
Solution: Recognize multibyte characters. (partly by Vladimir Vichniakov)
Files: src/getchar.c, src/message.c, src/misc2.c

Patch 7.3.285 (after 7.3.284)
Problem: Mapping <Char-123> no longer works.
Solution: Properly check for "char-". Add a test for it.
Files: src/misc2.c, src/testdir/test75.in, src/testdir/test75.ok

Patch 7.3.286
Problem: Crash when using "zd" on a large number of folds. (Sam King)
Solution: Recompute pointer after reallocating array. Move fewer entries

when making room.
Files: src/fold.c

Patch 7.3.287
Problem: Can't compile with MSVC and tiny options.
Solution: Move variables and #ifdefs. (Sergey Khorev)
Files: src/os_win32.c

Patch 7.3.288
Problem: has('python') may give an error message for not being able to load

the library after using python3.
Solution: Only give the error when the verbose argument is true.
Files: src/if_python.c, src/if_python3.c

Patch 7.3.289
Problem: Complete function isn't called when the leader changed.
Solution: Call ins_compl_restart() when the leader changed. (Taro Muraoka)
Files: src/edit.c

Patch 7.3.290
Problem: When a BufWriteCmd autocommand resets 'modified' this doesn't

change older buffer states to be marked as 'modified' like
":write" does. (Yukihiro Nakadaira)

version7.txt — 2685

Solution: When the BufWriteCmd resets 'modified' then adjust the undo
information like ":write" does.

Files: src/fileio.c

Patch 7.3.291
Problem: Configure doesn't work properly with Python3.
Solution: Put -ldl before $LDFLAGS. Add PY3_NO_RTLD_GLOBAL. (Roland

Puntaier)
Files: src/config.h.in, src/auto/configure, src/configure.in

Patch 7.3.292
Problem: Crash when using fold markers and selecting a visual block that

includes a folded line and goes to end of line. (Sam Lidder)
Solution: Check for the column to be MAXCOL. (James Vega)
Files: src/screen.c

Patch 7.3.293
Problem: MSVC compiler has a problem with non-ASCII characters.
Solution: Avoid non-ASCII characters. (Hong Xu)
Files: src/ascii.h, src/spell.c

Patch 7.3.294 (after 7.3.289)
Problem: Patch 289 causes more problems than it solves.
Solution: Revert the patch until a better solution is found.
Files: src/edit.c

Patch 7.3.295
Problem: When filtering text with an external command Vim may not read all

the output.
Solution: When select() is interrupted loop and try again. (James Vega)
Files: src/os_unix.c

Patch 7.3.296
Problem: When writing to an external command a zombie process may be left

behind.
Solution: Wait on the process. (James Vega)
Files: src/os_unix.c

Patch 7.3.297
Problem: Can't load Perl 5.14 dynamically.
Solution: Add code in #ifdefs. (Charles Cooper)
Files: if_perl.xs

Patch 7.3.298
Problem: Built-in colors are different from rgb.txt.
Solution: Adjust the color values. (Benjamin Haskell)
Files: src/gui_photon.c, src/gui_w48.c

Patch 7.3.299
Problem: Source code not in Vim style.
Solution: Adjust the style. (Elias Diem)
Files: src/gui_photon.c

Patch 7.3.300
Problem: Python doesn't parse multibyte argument correctly.
Solution: Use "t" instead of "s". (lilydjwg)
Files: src/if_py_both.h

Patch 7.3.301
Problem: When 'smartindent' and 'copyindent' are set a Tab is used even

version7.txt — 2686

though 'expandtab' is set.
Solution: Do not insert Tabs. Add a test. (Christian Brabandt)
Files: src/misc1.c, src/testdir/test19.in, src/testdir/test19.ok

Patch 7.3.302 (after 7.3.301)
Problem: Test 19 fails without 'smartindent' and +eval.
Solution: Don't use ":exe". Source small.vim.
Files: src/testdir/test19.in

Patch 7.3.303 (after 7.3.296)
Problem: Compilation error.
Solution: Correct return type from int to pid_t. (Danek Duvall)
Files: src/os_unix.c

Patch 7.3.304
Problem: Strawberry Perl doesn't work on MS-Windows.
Solution: Use xsubpp if needed. (Yasuhiro Matsumoto)
Files: src/Make_ming.mak, src/Make_mvc.mak

Patch 7.3.305
Problem: Auto-loading a function while editing the command line causes

scrolling up the display.
Solution: Don't set msg_scroll when defining a function and the user is not

typing. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.3.306
Problem: When closing a window there is a chance that deleting a scrollbar

triggers a GUI resize, which uses the window while it is not in a
valid state.

Solution: Set the buffer pointer to NULL to be able to detect the invalid
situation. Fix a few places that used the buffer pointer
incorrectly.

Files: src/buffer.c, src/ex_cmds.c, src/term.c, src/window.c

Patch 7.3.307
Problem: Python 3 doesn't support slice assignment.
Solution: Implement slices. (Brett Overesch, Roland Puntaier)
Files: src/if_python3.c

Patch 7.3.308
Problem: Writing to 'verbosefile' has problems, e.g. for :highlight.
Solution: Do not use a separate verbose_write() function but write with the

same code that does redirecting. (Yasuhiro Matsumoto)
Files: src/message.c

Patch 7.3.309 (after 7.3.307)
Problem: Warnings for pointer types.
Solution: Change PySliceObject to PyObject.
Files: src/if_python3.c

Patch 7.3.310
Problem: Code not following Vim style.
Solution: Fix the style. (Elias Diem)
Files: src/gui_photon.c

Patch 7.3.311 (replaces 7.3.289)
Problem: Complete function isn't called when the leader changed.
Solution: Allow the complete function to return a dictionary with a flag

that indicates ins_compl_restart() is to be called when the leader

version7.txt — 2687

changes. (Taro Muraoka)
Files: runtime/insert.txt, src/edit.c, src/eval.c, src/proto/eval.pro

Patch 7.3.312 (after 7.3.306)
Problem: Can't compile with tiny features.
Solution: Add #ifdef around win_valid().
Files: src/buffer.c

Patch 7.3.313 (after 7.3.307)
Problem: One more warning when compiling with dynamic Python 3.
Solution: Change PySliceObject to PyObject.
Files: src/if_python3.c

Patch 7.3.314 (after 7.3.304)
Problem: Missing parenthesis.
Solution: Add it. (Benjamin R. Haskell)
Files: src/Make_mvc.mak

Patch 7.3.315
Problem: Opening a window before forking causes problems for GTK.
Solution: Fork first, create the window in the child and report back to the

parent process whether it worked. If successful the parent exits,
if unsuccessful the child exits and the parent continues in the
terminal. (Tim Starling)

Files: src/gui.c

Patch 7.3.316 (after 7.3.306)
Problem: Crash when 'colorcolumn' is set and closing buffer.
Solution: Check for w_buffer to be NULL. (Yasuhiro Matsumoto)
Files: src/option.c

Patch 7.3.317
Problem: Calling debug.debug() in Lua may cause Vim to hang.
Solution: Add a better debug method. (Rob Hoelz, Luis Carvalho)
Files: src/if_lua.c

Patch 7.3.318
Problem: "C" on the last line deletes that line if it's blank.
Solution: Only delete the last line for a delete operation. (James Vega)
Files: src/ops.c

Patch 7.3.319 (after 7.3.311)
Problem: Redobuff doesn't always include changes of the completion leader.
Solution: Insert backspaces as needed. (idea by Taro Muraoka)
Files: src/edit.c

Patch 7.3.320
Problem: When a 0xa0 character is in a sourced file the error message for

unrecognized command does not show the problem.
Solution: Display 0xa0 as <a0>.
Files: src/ex_docmd.c

Patch 7.3.321
Problem: Code not following Vim style.
Solution: Fix the style. (Elias Diem)
Files: src/os_qnx.c

Patch 7.3.322
Problem: #ifdef for PDP_RETVAL doesn't work, INT_PTR can be a typedef.
Solution: Check the MSC version and 64 bit flags. (Sergiu Dotenco)

version7.txt — 2688

Files: src/os_mswin.c

Patch 7.3.323
Problem: The default 'errorformat' does not ignore some "included from"

lines.
Solution: Add a few more patterns. (Ben Boeckel)
Files: src/option.h

Patch 7.3.324 (after 7.3.237)
Problem: Completion for ":compiler" shows color scheme names.
Solution: Fix the directory name. (James Vega)
Files: src/ex_getln.c

Patch 7.3.325
Problem: A duplicated function argument gives an internal error.
Solution: Give a proper error message. (based on patch by Tyru)
Files: src/eval.c

Patch 7.3.326
Problem: MingW 4.6 no longer supports the -mno-cygwin option.
Solution: Split the Cygwin and MingW makefiles. (Matsushita Shougo)
Files: src/GvimExt/Make_cyg.mak, src/GvimExt/Make_ming.mak,

src/Make_cyg.mak, src/Make_ming.mak, src/xxd/Make_ming.mak,
Filelist

Patch 7.3.327
Problem: When jumping to a help tag a closed fold doesn't open.
Solution: Save and restore KeyTyped. (Yasuhiro Matsumoto)
Files: src/ex_cmds.c

Patch 7.3.328
Problem: When command line wraps the cursor may be displayed wrong when

there are multibyte characters.
Solution: Position the cursor before drawing the text. (Yasuhiro Matsumoto)
Files: src/ex_getln.c

Patch 7.3.329
Problem: When skipping over code from ":for" to ":endfor" get an error for

calling a dict function. (Yasuhiro Matsumoto)
Solution: Ignore errors when skipping over :call command.
Files: src/ex_docmd.c, src/eval.c

Patch 7.3.330
Problem: When longjmp() is invoked if the X server gives an error the state

is not properly restored.
Solution: Reset vgetc_busy. (Yukihiro Nakadaira)
Files: src/main.c

Patch 7.3.331
Problem: "vit" selects wrong text when a tag name starts with the same text

as an outer tag name. (Ben Fritz)
Solution: Add "\>" to the pattern to check for word boundary.
Files: src/search.c

Patch 7.3.332 (after 7.3.202)
Problem: Indent after "public:" is not increased in C++ code. (Lech Lorens)
Solution: Check for namespace after the regular checks. (partly by Martin

Gieseking)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

version7.txt — 2689

Patch 7.3.333
Problem: Using "." to repeat a Visual delete counts the size in bytes, not

characters. (Connor Lane Smith)
Solution: Store the virtual column numbers instead of byte positions.
Files: src/normal.c

Patch 7.3.334
Problem: Latest MingW about XSUBPP referencing itself. (Gongqian Li)
Solution: Rename the first use to XSUBPPTRY.
Files: src/Make_ming.mak

Patch 7.3.335
Problem: When 'imdisable' is reset from an autocommand in Insert mode it

doesn't take effect.
Solution: Call im_set_active() in Insert mode. (Taro Muraoka)
Files: src/option.c

Patch 7.3.336
Problem: When a tags file specifies an encoding different from 'enc' it

may hang and using a pattern doesn't work.
Solution: Convert the whole line. Continue reading the header after the

SORT tag. Add test83. (Yukihiro Nakadaira)
Files: src/tag.c, src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test83-tags2, src/testdir/test83-tags3,
src/testdir/test83.in, src/testdir/test83.ok

Patch 7.3.337 (after 7.3.295)
Problem: Screen doesn't update after resizing the xterm until a character

is typed.
Solution: When the select call is interrupted check do_resize. (Taylor

Hedberg)
Files: src/os_unix.c

Patch 7.3.338
Problem: Using getchar() in an expression mapping doesn't work well.
Solution: Don't save and restore the typeahead. (James Vega)
Files: src/getchar.c, src/testdir/test34.ok

Patch 7.3.339
Problem: "make shadow" doesn't link all test files.
Solution: Add a line in Makefile and Filelist.
Files: src/Makefile, Filelist

Patch 7.3.340
Problem: When 'verbosefile' is set ftplugof.vim can give an error.
Solution: Only remove filetypeplugin autocommands when they exist. (Yasuhiro

Matsumoto)
Files: runtime/ftplugof.vim

Patch 7.3.341
Problem: Local help files are only listed in help.txt, not in translated

help files.
Solution: Also find translated help files. (Yasuhiro Matsumoto)
Files: src/ex_cmds.c

Patch 7.3.342
Problem: Code not in Vim style.
Solution: Fix the style. (Elias Diem)

version7.txt — 2690

Files: src/os_amiga.c, src/os_mac_conv.c, src/os_win16.c

Patch 7.3.343
Problem: No mouse support for urxvt.
Solution: Implement urxvt mouse support, also for > 252 columns. (Yiding

Jia)
Files: src/feature.h, src/keymap.h, src/option.h, src/os_unix.c,

src/term.c, src/version.c

Patch 7.3.344
Problem: Problem with GUI startup related to XInitThreads.
Solution: Use read() and write() instead of fputs() and fread(). (James

Vega)
Files: src/gui.c

Patch 7.3.345
Problem: When switching language with ":lang" the window title doesn't

change until later.
Solution: Update the window title right away. (Dominique Pelle)
Files: src/ex_cmds2.c

Patch 7.3.346
Problem: It's hard to test netbeans commands.
Solution: Process netbeans commands after :sleep. (Xavier de Gaye)
Files: runtime/doc/netbeans.txt, src/ex_docmd.c, src/netbeans.c

Patch 7.3.347
Problem: When dropping text from a browser on Vim it receives HTML even

though "html" is excluded from 'clipboard'. (Andrei Avk)
Solution: Fix the condition for TARGET_HTML.
Files: src/gui_gtk_x11.c

Patch 7.3.348
Problem: "call range(1, 947948399)" causes a crash. (ZyX)
Solution: Avoid a loop in the out of memory message.
Files: src/misc2.c

Patch 7.3.349
Problem: When running out of memory during startup trying to open a

swapfile will loop forever.
Solution: Let findswapname() set dirp to NULL if out of memory.
Files: src/memline.c

Patch 7.3.350
Problem: Block of code after ":lua << EOF" may not work. (Paul Isambert)
Solution: Recognize the ":lua" command, skip to EOF.
Files: src/eval.c

Patch 7.3.351
Problem: Text formatting uses start of insert position when it should not.

(Peter Wagenaar)
Solution: Do not use Insstart when intentionally formatting.
Files: src/edit.c

Patch 7.3.352
Problem: When completing methods dict functions and script-local functions

get in the way.
Solution: Sort function names starting with "<" to the end. (Yasuhiro

Matsumoto)
Files: src/ex_getln.c

version7.txt — 2691

Patch 7.3.353 (after 7.3.343)
Problem: Missing part of the urxvt patch.
Solution: Add the change in term.c
Files: src/term.c

Patch 7.3.354
Problem: ":set backspace+=eol" doesn't work when 'backspace' has a

backwards compatible value of 2.
Solution: Convert the number to a string. (Hirohito Higashi)
Files: src/option.c

Patch 7.3.355
Problem: GTK warnings when using netrw.vim. (Ivan Krasilnikov)
Solution: Do not remove the beval event handler twice.
Files: src/option.c

Patch 7.3.356
Problem: Using "o" with 'cindent' set may freeze Vim. (lolilolicon)
Solution: Skip over {} correctly. (Hari G)
Files: src/misc1.c

Patch 7.3.357
Problem: Compiler warning in MS-Windows console build.
Solution: Adjust return type of PrintHookProc(). (Mike Williams)
Files: src/os_mswin.c

Patch 7.3.358 (after 7.3.353)
Problem: Mouse support doesn't work properly.
Solution: Add HMT_URXVT. (lilydjwg, James McCoy)
Files: src/term.c

Patch 7.3.359
Problem: Command line completion shows dict functions.
Solution: Skip dict functions for completion. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.3.360
Problem: Interrupting the load of an autoload function may cause a crash.
Solution: Do not use the hashitem when not valid. (Yukihiro Nakadaira)
Files: src/eval.c

Patch 7.3.361
Problem: Accessing memory after it is freed when EXITFREE is defined.
Solution: Don't access curwin when firstwin is NULL. (Dominique Pelle)
Files: src/buffer.c

Patch 7.3.362
Problem: ml_get error when using ":g" with folded lines.
Solution: Adjust the line number for changed_lines(). (Christian Brabandt)
Files: src/ex_cmds.c

Patch 7.3.363
Problem: C indenting is wrong after #endif followed by a semicolon.
Solution: Add special handling for a semicolon in a line by itself. (Lech

Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.364 (after 7.3.353)
Problem: Can't compile on HP-UX. (John Marriott)

version7.txt — 2692

Solution: Only use TTYM_URXVT when it is defined.
Files: src/term.c

Patch 7.3.365
Problem: Crash when using a large Unicode character in a file that has

syntax highlighting. (ngollan)
Solution: Check for going past the end of the utf tables. (Dominique Pelle)
Files: src/mbyte.c

Patch 7.3.366
Problem: A tags file with an extremely long name causes errors.
Solution: Ignore tags that are too long. (Arno Renevier)
Files: src/tag.c

Patch 7.3.367
Problem: :wundo and :rundo use a wrong checksum.
Solution: Include the last line when computing the hash. (Christian Brabandt)
Files: src/undo.c

Patch 7.3.368
Problem: Gcc complains about redefining _FORTIFY_SOURCE.
Solution: Undefine it before redefining it.
Files: src/Makefile, src/configure.in, src/auto/configure

Patch 7.3.369
Problem: When compiled with Gnome get an error message when using --help.
Solution: Don't fork. (Ivan Krasilnikov)
Files: src/main.c

Patch 7.3.370
Problem: Compiler warns for unused variable in Lua interface.
Solution: Remove the variable.
Files: src/if_lua.c

Patch 7.3.371
Problem: Crash in autocomplete. (Greg Weber)
Solution: Check not going over allocated buffer size.
Files: src/misc2.c

Patch 7.3.372
Problem: When using a command line mapping to <Up> with file name

completion to go one directory up, 'wildchar' is inserted.
(Yasuhiro Matsumoto)

Solution: Set the KeyTyped flag.
Files: src/ex_getln.c

Patch 7.3.373 (after 7.3.366)
Problem: A tags file with an extremely long name may cause an infinite loop.
Solution: When encountering a long name switch to linear search.
Files: src/tag.c

Patch 7.3.374
Problem: ++encoding does not work properly.
Solution: Recognize ++encoding before ++enc. (Charles Cooper)
Files: src/ex_docmd.c

Patch 7.3.375
Problem: Duplicate return statement.
Solution: Remove the superfluous one. (Dominique Pelle)
Files: src/gui_mac.c

version7.txt — 2693

Patch 7.3.376
Problem: Win32: Toolbar repainting does not work when the mouse pointer

hovers over a button.
Solution: Call DefWindowProc() when not handling an event. (Sergiu Dotenco)
Files: src/gui_w32.c

Patch 7.3.377
Problem: No support for bitwise AND, OR, XOR and invert.
Solution: Add and(), or(), invert() and xor() functions.
Files: src/eval.c, src/testdir/test49.in, src/testdir/test65.in,

src/testdir/test65.ok, runtime/doc/eval.txt

Patch 7.3.378
Problem: When cross-compiling the check for uint32_t fails.
Solution: Only give a warning message. (Maksim Melnikau)
Files: src/configure.in, src/auto/configure

Patch 7.3.379
Problem: C-indenting wrong for static enum.
Solution: Skip over "static". (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.380
Problem: C-indenting wrong for a function header.
Solution: Skip to the start paren. (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.381
Problem: Configure silently skips interfaces that won't work.
Solution: Add the --enable-fail_if_missing argument. (Shlomi Fish)
Files: src/Makefile, src/configure.in, src/auto/configure

Patch 7.3.382 (after 7.3.376)
Problem: IME characters are inserted twice.
Solution: Do not call DefWindowProc() if the event was handled. (Yasuhiro

Matsumoto)
Files: src/gui_w32.c

Patch 7.3.383
Problem: For EBCDIC pound sign is defined as 't'.
Solution: Correctly define POUND.
Files: src/ascii.h

Patch 7.3.384
Problem: Mapping CTRL-K in Insert mode breaks CTRL-X CTRL-K for dictionary

completion.
Solution: Add CTRL-K to the list of recognized keys. (James McCoy)
Files: src/edit.c

Patch 7.3.385
Problem: When using an expression mapping on the command line the cursor

ends up in the wrong place. (Yasuhiro Matsumoto)
Solution: Save and restore msg_col and msg_row when evaluating the

expression.
Files: src/getchar.

Patch 7.3.386
Problem: Test 83 fails when iconv does not support cp932. (raf)
Solution: Test if conversion works. (Yukihiro Nakadaira)

version7.txt — 2694

Files: src/testdir/test83.in

Patch 7.3.387 (after 7.3.386)
Problem: Test 83 may fail for some encodings.
Solution: Set 'encoding' to utf-8 earlier.
Files: src/testdir/test83.in

Patch 7.3.388
Problem: Crash on exit when EXITFREE is defined and using tiny features.
Solution: Check for NULL window pointer. (Dominique Pelle)
Files: src/buffer.c

Patch 7.3.389
Problem: After typing at a prompt the "MORE" message appears too soon.
Solution: reset lines_left in msg_end_prompt(). (Eswald)
Files: src/message.c

Patch 7.3.390
Problem: Using NULL buffer pointer in a window.
Solution: Check for w_buffer being NULL in more places. (Bjorn Winckler)
Files: src/ex_cmds.c, src/quickfix.c, src/window.c

Patch 7.3.391
Problem: Can't check if the XPM_W32 feature is enabled.
Solution: Add xpm_w32 to the list of features. (kat)
Files: src/eval.c

Patch 7.3.392
Problem: When setting 'undofile' while the file is already loaded but

unchanged, try reading the undo file. (Andy Wokula)
Solution: Compute a checksum of the text when 'undofile' is set. (Christian

Brabandt)
Files: src/option.c, src/testdir/test72.in, src/testdir/test72.ok

Patch 7.3.393
Problem: Win32: When resizing Vim it is always moved to the primary monitor

if the secondary monitor is on the left.
Solution: Use the nearest monitor. (Yukihiro Nakadaira)
Files: src/gui_w32.c

Patch 7.3.394
Problem: When placing a mark while starting up a screen redraw messes up

the screen. (lith)
Solution: Don't redraw while still starting up. (Christian Brabandt)
Files: src/screen.c

Patch 7.3.395 (after 7.3.251)
Problem: "dv?bar" in the last line deletes too much and breaks undo.
Solution: Only adjust the cursor position when it's after the last line of

the buffer. Add a test. (Christian Brabandt)
Files: src/ops.c, src/testdir/test43.in, src/testdir/test43.ok

Patch 7.3.396
Problem: After forcing an operator to be characterwise it can still become

linewise when spanning whole lines.
Solution: Don't make the operator linewise when motion_force was set.

(Christian Brabandt)
Files: src/ops.c

Patch 7.3.397

version7.txt — 2695

Problem: ":helpgrep" does not work properly when 'encoding' is not utf-8 or
latin1.

Solution: Convert non-ascii lines to 'encoding'. (Yasuhiro Matsumoto)
Files: src/quickfix.c, src/spell.c, src/misc2.c, src/proto/misc2.pro

Patch 7.3.398
Problem: When creating more than 10 location lists and adding items one by

one a previous location may be used. (Audrius Kažukauskas)
Solution: Clear the location list completely when adding the tenth one.
Files: src/quickfix.c

Patch 7.3.399
Problem: ":cd" doesn't work when the path contains wildcards. (Yukihiro

Nakadaira)
Solution: Ignore wildcard errors when the EW_NOTWILD flag is used.
Files: src/misc1.c

Patch 7.3.400
Problem: Compiler warnings for shadowed variables.
Solution: Remove or rename the variables.
Files: src/charset.c, src/digraph.c, src/edit.c, src/eval.c, src/fold.c,

src/getchar.c, src/message.c, src/misc2.c, src/move.c,
src/netbeans.c, src/option.c, src/os_unix.c, src/screen.c,
src/search.c, src/spell.c, src/syntax.c, src/tag.c, src/window.c

Patch 7.3.401
Problem: A couple more shadowed variables.
Solution: Rename the variables.
Files: src/netbeans.c

Patch 7.3.402
Problem: When jumping to the first error a line of the buffer is sometimes

redrawn on top of the list of errors.
Solution: Do not call update_topline_redraw() if the display was scrolled

up.
Files: src/quickfix.c

Patch 7.3.403
Problem: ":helpgrep" does not trigger QuickFixCmd* autocommands.
Solution: Trigger the autocommands. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.404
Problem: When a complete function uses refresh "always" redo will not work

properly.
Solution: Do not reset compl_leader when compl_opt_refresh_always is set.

(Yasuhiro Matsumoto)
Files: src/edit.c

Patch 7.3.405
Problem: When xterm gets back the function keys it may delete the urxvt

mouse termcap code.
Solution: Check for the whole code, not just the start. (Egmont Koblinger)
Files: src/keymap.h, src/misc2.c, src/term.c

Patch 7.3.406
Problem: Multi-byte characters in b:browsefilter are not handled correctly.
Solution: First use convert_filter() normally and then convert to wide

characters. (Taro Muraoka)
Files: src/gui_w48.c

version7.txt — 2696

Patch 7.3.407
Problem: ":12verbose call F()" may duplicate text while trying to truncate.

(Thinca)
Solution: Only truncate when there is not enough room. Also check the byte

length of the buffer.
Files: src/buffer.c, src/eval.c, src/ex_getln.c, src/message.c,

src/proto/message.pro

Patch 7.3.408 (after 7.3.406)
Problem: Missing declaration.
Solution: Add the declaration. (John Marriott)
Files: src/gui_w48.c

Patch 7.3.409
Problem: The license in pty.c is unclear.
Solution: Add a comment about the license.
Files: src/pty.c

Patch 7.3.410
Problem: Compiler error for // comment. (Joachim Schmitz)
Solution: Turn into /* comment */.
Files: src/message.c

Patch 7.3.411
Problem: Pasting in Visual mode using the "" register does not work. (John

Beckett)
Solution: Detect that the write is overwriting the pasted register.

(Christian Brabandt)
Files: src/normal.c

Patch 7.3.412
Problem: Storing a float in a session file has an additional '&'.
Solution: Remove the '&'. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.3.413
Problem: Build warnings on MS-Windows.
Solution: Add type casts. (Mike Williams)
Files: src/ex_getln.c, src/message.c, src/term.c

Patch 7.3.414
Problem: Using CTRL-A on "000" drops the leading zero, while on "001" it

doesn't.
Solution: Detect "000" as an octal number. (James McCoy)
Files: src/charset.c

Patch 7.3.415 (after 7.3.359)
Problem: Completion of functions stops once a dictionary is encountered.

(James McCoy)
Solution: Return an empty string instead of NULL.
Files: src/eval.c

Patch 7.3.416 (after 7.3.415)
Problem: Compiler warning for wrong pointer.
Solution: Add type cast.
Files: src/eval.c

Patch 7.3.417 (after 7.3.395)
Problem: Test 43 fails with a tiny build.

version7.txt — 2697

Solution: Only run test 43 with at least a small build.
Files: src/testdir/test43.in

Patch 7.3.418
Problem: When a user complete function returns -1 an error message is

given.
Solution: When -2 is returned stop completion silently. (Yasuhiro Matsumoto)
Files: src/edit.

Patch 7.3.419
Problem: DBCS encoding in a user command does not always work.
Solution: Skip over DBCS characters. (Yasuhiro Matsumoto)
Files: src/ex_docmd.c

Patch 7.3.420
Problem: "it" and "at" don't work properly with a dash in the tag name.
Solution: Require a space to match the tag name. (Christian Brabandt)
Files: src/search.c

Patch 7.3.421
Problem: Get E832 when setting 'undofile' in vimrc and there is a file to

be edited on the command line. (Toothpik)
Solution: Do not try reading the undo file for a file that wasn't loaded.
Files: src/option.c

Patch 7.3.422
Problem: Python 3 does not have __members__.
Solution: Add "name" and "number" in another way. (lilydjwg)
Files: src/if_py_both.h, src/if_python3.c

Patch 7.3.423
Problem: Small mistakes in comments, proto and indent.
Solution: Fix the mistakes.
Files: src/ex_cmds2.c, src/structs.h, src/ui.c, src/proto/ex_docmd.pro

Patch 7.3.424
Problem: Win16 version missing some functions.
Solution: Add #defines for the functions.
Files: src/gui_w16.c

Patch 7.3.425 (after 7.3.265)
Problem: Search history lines are duplicated. (Edwin Steiner)
Solution: Convert separator character from space to NUL.
Files: src/ex_getln.c

Patch 7.3.426
Problem: With '$' in 'cpoptions' the $ is not displayed in the first

column.
Solution: Use -1 instead of 0 as a special value. (Hideki Eiraku and

Hirohito Higashi)
Files: src/edit.c, src/globals.h, src/move.c, src/screen.c, src/search.c

Patch 7.3.427
Problem: readfile() can be slow with long lines.
Solution: Use realloc() instead of alloc(). (John Little)
Files: src/eval.c

Patch 7.3.428
Problem: Win32: an xpm file without a mask crashes Vim.
Solution: Fail when the mask is missing. (Dave Bodenstab)

version7.txt — 2698

Files: src/xpm_w32.c

Patch 7.3.429
Problem: When 'cpoptions' includes "E" "c0" in the first column is an

error. The redo register is then set to the erroneous command.
Solution: Do not set the redo register if the command fails because of an

empty region. (Hideki Eiraku)
Files: src/getchar.c, src/normal.c, src/proto/getchar.pro

Patch 7.3.430
Problem: When a custom filetype detection uses "augroup END" the conf

filetype detection does not have the filetypedetect group.
Solution: Always end the group and include filetypedetect in the conf

autocommand. (Lech Lorens)
Files: runtime/filetype.vim

Patch 7.3.431
Problem: Fetching a key at a prompt may be confused by escape sequences.

Especially when getting a prompt at a VimEnter autocommand.
(Alex Efros)

Solution: Properly handle escape sequences deleted by check_termcode().
Files: src/getchar.c, src/misc1.c, src/term.c, src/proto/term.pro

Patch 7.3.432
Problem: ACLs are not supported for ZFS or NFSv4 on Solaris.
Solution: Add configure check and code. (Danek Duvall)
Files: src/configure.in, src/auto/configure, src/config.h.in,

src/os_unix.c

Patch 7.3.433
Problem: Using continued lines in a Vim script can be slow.
Solution: Instead of reallocating for every line use a growarray. (Yasuhiro

Matsumoto)
Files: src/ex_cmds2.c

Patch 7.3.434
Problem: Using join() can be slow.
Solution: Compute the size of the result before allocation to avoid a lot of

allocations and copies. (Taro Muraoka)
Files: src/eval.c

Patch 7.3.435
Problem: Compiler warning for unused variable.
Solution: Move the variable inside #ifdef.
Files: src/ex_cmds2.c

Patch 7.3.436
Problem: Compiler warnings for types on Windows.
Solution: Add type casts. (Mike Williams)
Files: src/eval.c

Patch 7.3.437
Problem: Continue looping inside FOR_ALL_TAB_WINDOWS even when already done.
Solution: Use goto instead of break. (Hirohito Higashi)
Files: src/fileio.c, src/globals.h

Patch 7.3.438
Problem: There is no way to avoid ":doautoall" reading modelines.
Solution: Add the <nomodeline> argument. Adjust documentation.
Files: src/fileio.c, runtime/doc/autocmd.txt

version7.txt — 2699

Patch 7.3.439
Problem: Compiler warnings to size casts in Perl interface.
Solution: Use XS macros. (James McCoy)
Files: src/if_perl.xs, src/typemap

Patch 7.3.440
Problem: Vim does not support UTF8_STRING for the X selection.
Solution: Add UTF8_STRING atom support. (Alex Efros) Use it only when

'encoding' is set to Unicode.
Files: src/ui.c

Patch 7.3.441
Problem: Newer versions of MzScheme (Racket) require earlier (trampolined)

initialisation.
Solution: Call mzscheme_main() early in main(). (Sergey Khorev)
Files: src/Make_mvc.mak, src/if_mzsch.c, src/main.c,

src/proto/if_mzsch.pro

Patch 7.3.442 (after 7.3.438)
Problem: Still read modelines for ":doautocmd".
Solution: Move check for <nomodeline> to separate function.
Files: src/fileio.c, src/ex_docmd.c, src/proto/fileio.pro,

runtime/doc/autocmd.txt

Patch 7.3.443
Problem: MS-Windows: 'shcf' and 'shellxquote' defaults are not very good.
Solution: Make a better guess when 'shell' is set to "cmd.exe". (Ben Fritz)
Files: src/option.c, runtime/doc/options.txt

Patch 7.3.444
Problem: ":all!" and ":sall!" give error E477, even though the

documentation says these are valid commands.
Solution: Support the exclamation mark. (Hirohito Higashi)
Files: src/ex_cmds.h, src/testdir/test31.in, src/testdir/test31.ok

Patch 7.3.445 (after 7.3.443)
Problem: Can't properly escape commands for cmd.exe.
Solution: Default 'shellxquote' to '('. Append ')' to make '(command)'.

No need to use "/s" for 'shellcmdflag'.
Files: src/misc2.c, src/option.c, src/os_win32.c

Patch 7.3.446 (after 7.3.445)
Problem: Win32: External commands with special characters don't work.
Solution: Add the 'shellxescape' option.
Files: src/misc2.c, src/option.c, src/option.h, runtime/doc/options.txt

Patch 7.3.447 (after 7.3.446)
Problem: Win32: External commands with "start" do not work.
Solution: Unescape part of the command. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.3.448 (after 7.3.447)
Problem: Win32: Still a problem with "!start /b".
Solution: Escape only '|'. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.3.449
Problem: Crash when a BufWinLeave autocommand closes the only other window.

(Daniel Hunt)

version7.txt — 2700

Solution: Abort closing a buffer when it becomes the only one.
Files: src/buffer.c, src/proto/buffer.pro, src/ex_cmds.c, src/ex_getln.c,

src/misc2.c, src/quickfix.c, src/window.c, src/proto/window.pro

Patch 7.3.450 (after 7.3.448)
Problem: Win32: Still a problem with "!start /b".
Solution: Fix pointer use. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.3.451
Problem: Tcl doesn't work on 64 MS-Windows.
Solution: Make it work. (Dave Bodenstab)
Files: src/Make_mvc.mak, src/if_tcl.c

Patch 7.3.452
Problem: Undo broken when pasting close to the last line. (Andrey Radev)
Solution: Use a flag to remember if the deleted included the last line.

(Christian Brabandt)
Files: src/ops.c

Patch 7.3.453
Problem: Pasting in the command line is slow.
Solution: Don't redraw if there is another character to read. (Dominique

Pelle)
Files: src/ex_getln.c

Patch 7.3.454
Problem: Re-allocating memory slows Vim down.
Solution: Use realloc() in ga_grow(). (Dominique Pelle)
Files: src/misc2.c

Patch 7.3.455
Problem: Using many continuation lines can be slow.
Solution: Adjust the reallocation size to the current length.
Files: src/ex_cmds2.c

Patch 7.3.456
Problem: ":tab drop file" has several problems, including moving the

current window and opening a new tab for a file that already has a
window.

Solution: Refactor ":tab drop" handling. (Hirohito Higashi)
Files: src/buffer.c, src/testdir/test62.in, src/testdir/test62.ok

Patch 7.3.457
Problem: When setting $VIMRUNTIME later the directory for fetching

translated messages is not adjusted.
Solution: Put bindtextdomain() in vim_setenv().
Files: src/misc1.c

Patch 7.3.458
Problem: Crash when calling smsg() during startup.
Solution: Don't use 'shortmess' when it is not set yet.
Files: src/option.c

Patch 7.3.459
Problem: Win32: Warnings for type conversion.
Solution: Add type casts. (Mike Williams)
Files: src/misc2.c, src/os_win32.c

Patch 7.3.460

version7.txt — 2701

Problem: Win32: UPX does not compress 64 bit binaries.
Solution: Mention and add the alternative: mpress. (Dave Bodenstab)
Files: src/INSTALLpc.txt, src/Make_ming.mak

Patch 7.3.461
Problem: The InsertCharPre autocommand event is not triggered during

completion and when typing several characters quickly.
Solution: Also trigger InsertCharPre during completion. Do not read ahead

when an InsertCharPre autocommand is defined. (Yasuhiro Matsumoto)
Files: src/edit.c, src/fileio.c, src/proto/fileio.pro

Patch 7.3.462
Problem: When using ":loadview" folds may be closed unexpectedly.
Solution: Take into account foldlevel. (Xavier de Gaye)
Files: src/fold.c

Patch 7.3.463
Problem: When using ":s///c" the cursor is moved away from the match.

(Lawman)
Solution: Don't move the cursor when do_ask is set. (Christian Brabandt)
Files: src/ex_cmds.c

Patch 7.3.464
Problem: Compiler warning for sprintf.
Solution: Put the length in a variable. (Dominique Pelle)
Files: src/version.c

Patch 7.3.465
Problem: Cannot get file name with newline from glob().
Solution: Add argument to glob() and expand() to indicate they must return a

list. (Christian Brabandt)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_getln.c, src/vim.h

Patch 7.3.466
Problem: Get ml_get error hen ":behave mswin" was used and selecting

several lines. (A. Sinan Unur)
Solution: Adjust the end of the operation. (Christian Brabandt)
Files: src/ops.c

Patch 7.3.467
Problem: Cursor positioned wrong at the command line when regaining focus

and using some input method.
Solution: Do not position the cursor in command line mode.
Files: src/mbyte.c

Patch 7.3.468
Problem: For some compilers the error file is not easily readable.
Solution: Use QuickFixCmdPre for more commands. (Marcin Szamotulski)
Files: runtime/doc/autocmd.txt, src/quickfix.c

Patch 7.3.469
Problem: Compiler warning for unused argument without some features.
Solution: Add UNUSED.
Files: src/buffer.c

Patch 7.3.470
Problem: Test 62 fails when compiled without GUI and X11.
Solution: Don't test :drop when it is not supported.
Files: src/testdir/test62.in

version7.txt — 2702

Patch 7.3.471
Problem: Can't abort listing placed signs.
Solution: Check "got_int". (Christian Brabandt)
Files: src/buffer.c, src/ex_cmds.c

Patch 7.3.472
Problem: Crash when using ":redraw" in a BufEnter autocommand and

switching to another tab. (��)
Solution: Move triggering the autocommands to after correcting the

option values. Also check the row value to be out of bounds.
(Christian Brabandt, Sergey Khorev)

Files: src/screen.c, src/window.c

Patch 7.3.473
Problem: 'cursorbind' does not work correctly in combination with

'virtualedit' set to "all".
Solution: Copy coladd. (Gary Johnson)
Files: src/move.c

Patch 7.3.474
Problem: Perl build with gcc 4 fails.
Solution: Remove XS() statements. (Yasuhiro Matsumoto)
Files: src/if_perl.xs

Patch 7.3.475
Problem: In a terminal with few colors the omnicomplete menu may be hard to

see when using the default colors.
Solution: Use more explicit colors. (suggested by Alex Henrie)
Files: src/syntax.c

Patch 7.3.476
Problem: When selecting a block, using "$" to include the end of each line

and using "A" and typing a backspace strange things happen.
(Yuangchen Xie)

Solution: Avoid using a negative length. (Christian Brabandt)
Files: src/ops.c

Patch 7.3.477
Problem: Using ":echo" to output enough lines to scroll, then using "j" and

"k" at the more prompt, displays the command on top of the output.
(Marcin Szamotulski)

Solution: Put the output below the command. (Christian Brabandt)
Files: src/eval.c

Patch 7.3.478
Problem: Memory leak using the ':rv!' command when reading dictionary or

list global variables i.e. with 'viminfo' containing !.
Solution: Free the typeval. (Dominique Pelle)
Files: src/eval.c

Patch 7.3.479
Problem: When 'cursorline' is set the line number highlighting can't be set

separately.
Solution: Add "CursorLineNr". (Howard Buchholz)
Files: src/option.c, src/screen.c, src/syntax.c, src/vim.h

Patch 7.3.480
Problem: When using ":qa" and there is a changed buffer picking the buffer

to jump to is not very good.
Solution: Consider current and other tab pages. (Hirohito Higashi)

version7.txt — 2703

Files: src/ex_cmds2.c

Patch 7.3.481
Problem: Changing 'virtualedit' in an operator function to "all" does not

have the desired effect. (Aaron Bohannon)
Solution: Save, reset and restore virtual_op when executing an operator

function.
Files: src/normal.c

Patch 7.3.482
Problem: With 'cursorbind' set moving up/down does not always keep the same

column.
Solution: Set curswant appropriately. (Gary Johnson)
Files: src/move.c

Patch 7.3.483 (after 7.3.477)
Problem: More prompt shows up too often.
Solution: Instead of adding a line break, only start a new line in the

message history. (Christian Brabandt)
Files: src/eval.c, src/message.c, src/proto/message.pro

Patch 7.3.484
Problem: The -E and --echo-wid command line arguments are not mentioned in

"vim --help".
Solution: Add the help lines. (Dominique Pelle)
Files: src/main.c

Patch 7.3.485
Problem: When building Vim LDFLAGS isn't passed on to building xxd.
Solution: Pass the LDFLAGS value. (James McCoy)
Files: src/Makefile

Patch 7.3.486
Problem: Build error with mingw64 on Windows 7.
Solution: Avoid the step of going through vimres.res. (Guopeng Wen)
Files: src/Make_ming.mak

Patch 7.3.487
Problem: When setting 'timeoutlen' or 'ttimeoutlen' the column for vertical

movement is reset unnecessarily.
Solution: Do not set w_set_curswant for every option. Add a test for this.

(Kana Natsuno) Add the P_CURSWANT flag for options.
Files: src/option.c, src/testdir/test84.in, src/testdir/test84.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.3.488
Problem: ":help!" in a help file does not work as documented.
Solution: When in a help file don't give an error message. (thinca)
Files: src/ex_cmds.c

Patch 7.3.489
Problem: CTRL-] in Insert mode does not expand abbreviation when used in a

mapping. (Yichao Zhou)
Solution: Special case using CTRL-]. (Christian Brabandt)
Files: src/getchar.c, src/edit.c

Patch 7.3.490
Problem: Member confusion in Lua interface.

version7.txt — 2704

Solution: Fix it. Add luaeval(). (Taro Muraoka, Luis Carvalho)
Files: runtime/doc/if_lua.txt, src/eval.c, src/if_lua.c,

src/proto/if_lua.pro

Patch 7.3.491
Problem: No tests for Lua.
Solution: Add some simple tests for Lua. (Luis Carvalho)
Files: src/testdir/test1.in, src/testdir/test85.in, src/testdir/test85.ok

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.3.492
Problem: Can't indent conditions separately from function arguments.
Solution: Add the 'k' flag in 'cino'. (Lech Lorens)
Files: runtime/doc/indent.txt, src/misc1.c, src/testdir/test3.in,

src/testdir/test3.ok

Patch 7.3.493 (after 7.3.492)
Problem: Two unused variables.
Solution: Remove them. (Hong Xu)
Files: src/misc1.c

Patch 7.3.494 (after 7.3.491)
Problem: Can't compile with Lua 5.1 or dynamic Lua.
Solution: Fix dll_ methods. Fix luado(). (Muraoka Taro, Luis Carvalho)
Files: src/if_lua.c

Patch 7.3.495 (after 7.3.492)
Problem: Compiler warnings.
Solution: Add function declaration. Remove "offset" argument.
Files: src/misc1.c

Patch 7.3.496
Problem: MS-DOS: When "diff" trips over difference in line separators some

tests fail.
Solution: Make some .ok files use unix line separators. (David Pope)
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak

Patch 7.3.497
Problem: Crash when doing ":python print" and compiled with gcc and

the optimizer enabled.
Solution: Avoid the crash, doesn't really fix the problem. (Christian

Brabandt)
Files: src/if_py_both.h

Patch 7.3.498
Problem: The behavior of the "- register changes depending on value of

the 'clipboard' option. (Szamotulski)
Solution: Also set the "- register when the register is "*" or "+".

(Christian Brabandt)
Files: src/ops.c

Patch 7.3.499
Problem: When using any interface language when Vim is waiting for a child

process it gets confused by a child process started through the
interface.

Solution: Always used waitpid() instead of wait(). (Yasuhiro Matsumoto)
Files: src/os_unix.c

version7.txt — 2705

Patch 7.3.500
Problem: Ming makefile unconditionally sets WINVER.
Solution: Only defined when not already defined. (Yasuhiro Matsumoto)
Files: src/Make_ming.mak

Patch 7.3.501
Problem: Error for "flush" not being defined when using Ruby command.
Solution: Defined "flush" as a no-op method. (Kent Sibilev)
Files: src/if_ruby.c

Patch 7.3.502
Problem: Netbeans insert halfway a line actually appends to the line.
Solution: Insert halfway the line. (Brian Victor)
Files: src/netbeans.c

Patch 7.3.503 (after 7.3.501)
Problem: Warning for unused argument.
Solution: Add UNUSED.
Files: src/if_ruby.c

Patch 7.3.504
Problem: Commands in help files are not highlighted.
Solution: Allow for commands in backticks. Adjust CTRL-] to remove the

backticks.
Files: src/ex_cmds.c

Patch 7.3.505
Problem: Test 11 fails on MS-Windows in some versions.
Solution: Fix #ifdefs for whether filtering through a pipe is possible. Move

setting b_no_eol_lnum back to where it was before patch 7.3.124.
(David Pope)

Files: src/feature.h, src/eval.c, src/ex_cmds.c, src/fileio.c

Patch 7.3.506
Problem: GTK gives an error when selecting a non-existent file.
Solution: Add a handler to avoid the error. (Christian Brabandt)
Files: src/gui_gtk.c

Patch 7.3.507
Problem: When exiting with unsaved changes, selecting an existing file in

the file dialog, there is no dialog to ask whether the existing
file should be overwritten. (Felipe G. Nievinski)

Solution: Call check_overwrite() before writing. (Christian Brabandt)
Files: src/ex_cmds.c, src/ex_cmds2.c, src/proto/ex_cmds.pro

Patch 7.3.508
Problem: Default for v:register is not set.
Solution: Init v:register in eval_init(). Correct for 'clipboard' before the

main loop. (Ingo Karkat)
Files: src/eval.c, src/main.c

Patch 7.3.509
Problem: ":vimgrep" fails when 'autochdir' is set.
Solution: A more generic solution for changing directory. (Ben Fritz)
Files: src/quickfix.c

Patch 7.3.510
Problem: Test 77 fails on Solaris 7. (Michael Soyka)
Solution: Replace any tabs with spaces.
Files: src/testdir/test77.in

version7.txt — 2706

Patch 7.3.511
Problem: Using a FileReadCmd autocommand that does ":e! {file}" may cause a

crash. (Christian Brabandt)
Solution: Properly restore curwin->w_s.
Files: src/fileio.c

Patch 7.3.512
Problem: undofile() returns a useless name when passed an empty string.
Solution: Return an empty string. (Christian Brabandt)
Files: src/eval.c

Patch 7.3.513
Problem: Cannot use CTRL-E and CTRL-Y with "r".
Solution: Make CTRL-E and CTRL-Y work like in Insert mode. (Christian

Brabandt)
Files: src/edit.c, src/normal.c, src/proto/edit.pro

Patch 7.3.514
Problem: No completion for :history command.
Solution: Add the completion and update the docs. Also fix ":behave"

completion. (Dominique Pelle)
Files: runtime/doc/cmdline.txt, runtime/doc/map.txt, src/ex_docmd.c,

src/ex_getln.c, src/vim.h

Patch 7.3.515
Problem: 'wildignorecase' only applies to the last part of the path.
Solution: Also ignore case for letters earlier in the path.
Files: src/misc1.c

Patch 7.3.516
Problem: extend(o, o) may crash Vim.
Solution: Fix crash and add test. (Thinca and Hirohito Higashi)
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok

Patch 7.3.517
Problem: Crash when using "vipvv". (Alexandre Provencio)
Solution: Don't let the text length become negative.
Files: src/ops.c

Patch 7.3.518
Problem: When 'encoding' is a double-byte encoding ":helptags" may not find

tags correctly.
Solution: Use vim_strbyte() instead of vim_strchr(). (Yasuhiro Matsumoto)
Files: src/ex_cmds.c

Patch 7.3.519
Problem: When completefunction returns it cannot indicate end of completion

mode.
Solution: Recognize completefunction returning -3. (Matsushita Shougo)
Files: src/edit.c

Patch 7.3.520
Problem: gvim starts up slow on Ubuntu 12.04.
Solution: Move the call to gui_mch_init_check() to after fork(). (Yasuhiro

Matsumoto) Do check $DISPLAY being set.
Files: src/gui.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro

Patch 7.3.521
Problem: Using "z=" on a multibyte character may cause a crash.

version7.txt — 2707

Solution: Don't use strlen() on an int pointer.
Files: src/spell.c

Patch 7.3.522
Problem: Crash in vim_realloc() when using MEM_PROFILE.
Solution: Avoid using a NULL argument. (Dominique Pelle)
Files: src/eval.c

Patch 7.3.523
Problem: ":diffupdate" doesn't check for files changed elsewhere.
Solution: Add the ! flag. (Christian Brabandt)
Files: runtime/doc/diff.txt, src/diff.c, src/ex_cmds.h

Patch 7.3.524 (after 7.3.523)
Problem: Missing comma.
Solution: Add the comma.
Files: src/version.c

Patch 7.3.525
Problem: Compiler warning on 64 bit MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/ex_getln.c

Patch 7.3.526
Problem: Confusing indenting for #ifdef.
Solution: Remove and add indent. (Elias Diem)
Files: src/normal.c

Patch 7.3.527
Problem: Clang complains about non-ASCII characters in a string.
Solution: Change to \x88 form. (Dominique Pelle)
Files: src/charset.c

Patch 7.3.528
Problem: Crash when closing last window in a tab. (Alex Efros)
Solution: Use common code in close_last_window_tabpage(). (Christian

Brabandt)
Files: src/window.c

Patch 7.3.529
Problem: Using a count before "v" and "V" does not work (Kikyous)
Solution: Make the count select that many characters or lines. (Christian

Brabandt)
Files: src/normal.c

Patch 7.3.530 (after 7.3.520)
Problem: gvim does not work when 'guioptions' includes "f". (Davido)
Solution: Call gui_mch_init_check() when running GUI in the foreground.

(Yasuhiro Matsumoto)
Files: src/gui.c

Patch 7.3.531 (after 7.3.530)
Problem: GUI does not work on MS-Windows.
Solution: Add the missing #ifdef. (Patrick Avery)
Files: src/gui.c

Patch 7.3.532
Problem: Compiler warning from Clang.
Solution: Use a different way to point inside a string. (Dominique Pelle)
Files: src/syntax.c

version7.txt — 2708

Patch 7.3.533
Problem: Memory leak when writing undo file.
Solution: Free the ACL. (Dominique Pelle)
Files: src/undo.c

Patch 7.3.534 (after 7.3.461)
Problem: When using an InsertCharPre autocommand autoindent fails.
Solution: Proper handling of v:char. (Alexey Radkov)
Files: src/edit.c

Patch 7.3.535
Problem: Many #ifdefs for MB_MAXBYTES.
Solution: Also define MB_MAXBYTES without the +multi_byte feature. Fix

places where the buffer didn't include space for a NUL byte.
Files: src/arabic.c, src/edit.c, src/eval.c, src/getchar.c, src/mbyte.c,

src/misc1.c, src/screen.c, src/spell.c, src/vim.h

Patch 7.3.536
Problem: When spell checking the German sharp s is not seen as a word

character. (Aexl Bender)
Solution: In utf_islower() return true for the sharp s. Note: also need

updated spell file for this to take effect.
Files: src/mbyte.c

Patch 7.3.537
Problem: Unnecessary call to init_spell_chartab().
Solution: Delete the call.
Files: src/spell.c

Patch 7.3.538
Problem: 'efm' does not handle Tabs in pointer lines.
Solution: Add Tab support. Improve tests. (Lech Lorens)
Files: src/quickfix.c, src/testdir/test10.in, src/testdir/test10.ok

Patch 7.3.539
Problem: Redrawing a character on the command line does not work properly

for multibyte characters.
Solution: Count the number of bytes in a character. (Yukihiro Nakadaira)
Files: src/ex_getln.c

Patch 7.3.540
Problem: Cursor is left on the text instead of the command line.
Solution: Don't call setcursor() in command line mode.
Files: src/getchar.c

Patch 7.3.541
Problem: When joining lines comment leaders need to be removed manually.
Solution: Add the 'j' flag to 'formatoptions'. (Lech Lorens)
Files: runtime/doc/change.txt, src/edit.c, src/ex_docmd.c, src/misc1.c,

src/normal.c, src/ops.c, src/option.h, src/proto/misc1.pro,
src/proto/ops.pro, src/search.c, src/testdir/test29.in,
src/testdir/test29.ok

Patch 7.3.542 (after 7.3.506)
Problem: Function is sometimes unused.
Solution: Add #ifdef.
Files: src/gui_gtk.c

Patch 7.3.543

version7.txt — 2709

Problem: The cursor is in the wrong line after using ":copen". (John
Beckett)

Solution: Invoke more drastic redraw method.
Files: src/eval.c

Patch 7.3.544
Problem: There is no good way to close a quickfix window when closing the

last ordinary window.
Solution: Add the QuitPre autocommand.
Files: src/ex_docmd.c, src/fileio.c, src/vim.h

Patch 7.3.545
Problem: When closing a window or buffer autocommands may close it too,

causing problems for where the autocommand was invoked from.
Solution: Add the w_closing and b_closing flags. When set disallow ":q" and

":close" to prevent recursive closing.
Files: src/structs.h, src/buffer.c, src/ex_docmd.c, src/window.c

Patch 7.3.546
Problem: Bogus line break.
Solution: Remove the line break.
Files: src/screen.c

Patch 7.3.547 (after 7.3.541)
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it.
Files: src/ops.c

Patch 7.3.548
Problem: Compiler warning on 64 bit Windows.
Solution: Add type cast. (Mike Williams)
Files: src/ops.c

Patch 7.3.549
Problem: In 'cinoptions' "0s" is interpreted as one shiftwidth. (David

Pineau)
Solution: Use the zero as zero. (Lech Lorens)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.550 (after 7.3.541)
Problem: With "j" in 'formatoptions' a list leader is not removed. (Gary

Johnson)
Solution: Don't ignore the start of a three part comment. (Lech Lorens)
Files: src/ops.c, src/testdir/test29.in, src/testdir/test29.ok

Patch 7.3.551
Problem: When using :tablose a TabEnter autocommand is triggered too early.

(Karthick)
Solution: Don't trigger *Enter autocommands before closing the tab.

(Christian Brabandt)
Files: src/buffer.c, src/eval.c, src/ex_cmds2.c, src/fileio.c,

src/proto/window.pro, src/window.c

Patch 7.3.552
Problem: Formatting inside comments does not use the "2" flag in

'formatoptions'.
Solution: Support the "2" flag. (Tor Perkins)
Files: src/vim.h, src/ops.c, src/edit.c, src/misc1.c,

src/testdir/test68.in, src/testdir/test68.ok

version7.txt — 2710

Patch 7.3.553
Problem: With double-width characters and 'listchars' containing "precedes"

the text is displayed one cell off.
Solution: Check for double-width character being overwritten by the

"precedes" character. (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 7.3.554 (after 7.3.551)
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/window.c

Patch 7.3.555
Problem: Building on IBM z/OS fails.
Solution: Adjust configure. Use the QUOTESED value from config.mk instead of

the hard coded one in Makefile. (Stephen Bovy)
Files: src/configure.in, src/auto/configure, src/Makefile

Patch 7.3.556
Problem: Compiler warnings on 64 bit Windows.
Solution: Add type casts. (Mike Williams)
Files: src/misc1.c

Patch 7.3.557
Problem: Crash when an autocommand wipes out a buffer when it is hidden.
Solution: Restore the current window when needed. (Christian Brabandt)
Files: src/buffer.c

Patch 7.3.558
Problem: Memory access error. (Gary Johnson)
Solution: Allocate one more byte. (Dominique Pelle)
Files: src/misc1.c

Patch 7.3.559
Problem: home_replace() does not work with 8.3 filename.
Solution: Make ":p" expand 8.3 name to full path. (Yasuhiro Matsumoto)
Files: src/eval.c, src/misc1.c

Patch 7.3.560
Problem: Get an error for a locked argument in extend().
Solution: Initialize the lock flag for a dictionary. (Yukihiro Nakadaira)
Files: src/eval.c

Patch 7.3.561
Problem: Using refresh: always in a complete function breaks the "."

command. (Val Markovic)
Solution: Add match leader to the redo buffer. (Yasuhiro Matsumoto)
Files: src/edit.c

Patch 7.3.562
Problem: ":profdel" should not work when the +profile feature is disabled.
Solution: Call ex_ni(). (Yasuhiro Matsumoto)
Files: src/ex_cmds2.c

Patch 7.3.563 (after 7.3.557)
Problem: Can't build with tiny features.
Solution: Add #ifdef.
Files: src/buffer.c

Patch 7.3.564 (after 7.3.559)

version7.txt — 2711

Problem: Warning for pointer conversion.
Solution: Add type cast.
Files: src/misc1.c

Patch 7.3.565
Problem: Can't generate proto file for Python 3.
Solution: Add PYTHON3_CFLAGS to LINT_CFLAGS.
Files: src/Makefile

Patch 7.3.566 (after 7.3.561)
Problem: Redo after completion does not work correctly when refresh: always

is not used. (Raymond Ko)
Solution: Check the compl_opt_refresh_always flag. (Christian Brabandt)
Files: src/edit.c

Patch 7.3.567
Problem: Missing copyright notice.
Solution: Add Vim copyright notice. (Taro Muraoka)
Files: src/dehqx.py

Patch 7.3.568
Problem: Bad indents for #ifdefs.
Solution: Add and remove spaces. (Elias Diem)
Files: src/globals.h

Patch 7.3.569
Problem: Evaluating Vim expression in Python is insufficient.
Solution: Add vim.bindeval(). Also add pyeval() and py3eval(). (ZyX)
Files: runtime/doc/eval.txt, runtime/doc/if_pyth.txt, src/eval.c,

src/if_lua.c, src/if_py_both.h, src/if_python.c, src/if_python3.c,
src/proto/eval.pro, src/proto/if_python.pro,
src/proto/if_python3.pro, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Makefile,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.570
Problem: ":vimgrep" does not obey 'wildignore'.
Solution: Apply 'wildignore' and 'suffixes' to ":vimgrep". (Ingo Karkat)
Files: src/ex_cmds2.c, src/proto/ex_cmds2.pro, src/quickfix.c, src/spell.c

Patch 7.3.571
Problem: Duplicated condition.
Solution: Remove one. (Dominique Pelle)
Files: src/os_win32.c

Patch 7.3.572
Problem: Duplicate statement in if and else. (Dominique Pelle)
Solution: Remove the condition and add a TODO.
Files: src/gui_xmebw.c

Patch 7.3.573
Problem: Using array index before bounds checking.
Solution: Swap the parts of the condition. (Dominique Pelle)
Files: src/ops.c

Patch 7.3.574
Problem: When pasting a register in the search command line a CTRL-L

character is not pasted. (Dominique Pelle)

version7.txt — 2712

Solution: Escape the CTRL-L. (Christian Brabandt)
Files: src/ex_getln.c

Patch 7.3.575
Problem: "ygt" tries to yank instead of giving an error. (Daniel Mueller)
Solution: Check for a pending operator.
Files: src/normal.c

Patch 7.3.576
Problem: Formatting of lists inside comments is not right yet.
Solution: Use another solution and add a test. (Tor Perkins)
Files: src/edit.c, src/misc1.c, src/testdir/test68.in,

src/testdir/test69.ok

Patch 7.3.577
Problem: Size of memory does not fit in 32 bit unsigned.
Solution: Use Kbyte instead of byte. Call GlobalMemoryStatusEx() instead of

GlobalMemoryStatus() when available.
Files: src/misc2.c, src/option.c, src/os_amiga.c, src/os_msdos.c,

src/os_win16.c, src/os_win32.c

Patch 7.3.578
Problem: Misplaced declaration.
Solution: Move declaration to start of block.
Files: src/if_py_both.h

Patch 7.3.579 (after 7.3.569)
Problem: Can't compile with Python 2.5.
Solution: Use PyCObject when Capsules are not available.
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.3.580
Problem: Warning on 64 bit MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/if_py_both.h

Patch 7.3.581
Problem: Problems compiling with Python.
Solution: Pick UCS2 or UCS4 function at runtime. (lilydjwg)
Files: src/if_python.c

Patch 7.3.582 (after 7.3.576)
Problem: Missing parts of the test OK file.
Solution: Add the missing parts.
Files: src/testdir/test68.ok

Patch 7.3.583
Problem: PyObject_NextNotImplemented is not defined before Python 2.7.

(Danek Duvall)
Solution: Add #ifdefs.
Files: src/if_python.c

Patch 7.3.584
Problem: PyCObject is not always defined.
Solution: Use PyObject instead.
Files: src/if_py_both.h, src/if_python.c

Patch 7.3.585
Problem: Calling changed_bytes() too often.
Solution: Move changed_bytes() out of a loop. (Tor Perkins)

version7.txt — 2713

Files: src/edit.c

Patch 7.3.586
Problem: When compiling with Cygwin or MingW MEMORYSTATUSEX is not defined.
Solution: Set the default for WINVER to 0x0500.
Files: src/Make_ming.mak, src/Make_cyg.mak

Patch 7.3.587
Problem: Compiler warning for local var shadowing global var.
Solution: Rename the var and move it to an inner block. (Christian Brabandt)
Files: src/buffer.c

Patch 7.3.588
Problem: Crash on NULL pointer.
Solution: Fix the immediate problem by checking for NULL. (Lech Lorens)
Files: src/window.c

Patch 7.3.589
Problem: Crash when $HOME is not set.
Solution: Check for a NULL pointer. (Chris Webb)
Files: src/misc1.c

Patch 7.3.590
Problem: The '< and '> marks cannot be set directly.
Solution: Allow setting '< and '>. (Christian Brabandt)
Files: src/mark.c

Patch 7.3.591
Problem: Can only move to a tab by absolute number.
Solution: Move a number of tabs to the left or the right. (Lech Lorens)
Files: runtime/doc/tabpage.txt, src/ex_cmds.h, src/ex_docmd.c,

src/testdir/test62.in, src/testdir/test62.ok, src/window.c

Patch 7.3.592
Problem: Vim on GTK does not support g:browsefilter.
Solution: Add a GtkFileFilter to the file chooser. (Christian Brabandt)
Files: src/gui_gtk.c

Patch 7.3.593
Problem: No easy way to decide if b:browsefilter will work.
Solution: Add the browsefilter feature.
Files: src/gui_gtk.c, src/eval.c, src/vim.h

Patch 7.3.594
Problem: The X command server doesn't work perfectly. It sends an empty

reply for as-keys requests.
Solution: Remove duplicate ga_init2(). Do not send a reply for as-keys

requests. (Brian Burns)
Files: src/if_xcmdsrv.c

Patch 7.3.595
Problem: The X command server responds slowly
Solution: Change the loop that waits for replies. (Brian Burns)
Files: src/if_xcmdsrv.c

Patch 7.3.596
Problem: Can't remove all signs for a file or buffer.
Solution: Support "*" for the sign id. (Christian Brabandt)
Files: runtime/doc/sign.txt, src/buffer.c, src/ex_cmds.c,

src/proto/buffer.pro

version7.txt — 2714

Patch 7.3.597
Problem: 'clipboard' "autoselect" only applies to the * register. (Sergey

Vakulenko)
Solution: Make 'autoselect' work for the + register. (Christian Brabandt)

Add the "autoselectplus" option in 'clipboard' and the "P" flag in
'guioptions'.

Files: runtime/doc/options.txt, src/normal.c, src/ops.c, src/screen.c,
src/ui.c, src/globals.h, src/proto/ui.pro, src/option.h, src/gui.c

Patch 7.3.598
Problem: Cannot act upon end of completion. (Taro Muraoka)
Solution: Add an autocommand event that is triggered when completion has

finished. (Idea by Florian Klein)
Files: src/edit.c, src/fileio.c, src/vim.h

Patch 7.3.599 (after 7.3.597)
Problem: Missing change in one file.
Solution: Patch for changed clip_autoselect().
Files: src/option.c

Patch 7.3.600
Problem: <f-args> is not expanded properly with DBCS encoding.
Solution: Skip over character instead of byte. (Yukihiro Nakadaira)
Files: src/ex_docmd.c

Patch 7.3.601
Problem: Bad code style.
Solution: Insert space, remove parens.
Files: src/farsi.c

Patch 7.3.602
Problem: Missing files in distribution.
Solution: Update the list of files.
Files: Filelist

Patch 7.3.603
Problem: It is possible to add replace builtin functions by calling

extend() on g:.
Solution: Add a flag to a dict to indicate it is a scope. Check for

existing functions. (ZyX)
Files: src/buffer.c, src/eval.c, src/proto/eval.pro, src/structs.h,

src/testdir/test34.in, src/testdir/test34.ok, src/window.c

Patch 7.3.604
Problem: inputdialog() doesn't use the cancel argument in the console.

(David Fishburn)
Solution: Use the third argument. (Christian Brabandt)
Files: src/eval.c

Patch 7.3.605 (after 7.3.577)
Problem: MS-Windows: Can't compile with older compilers. (Titov Anatoly)
Solution: Add #ifdef for MEMORYSTATUSEX.
Files: src/os_win32.c

Patch 7.3.606
Problem: CTRL-P completion has a problem with multibyte characters.
Solution: Check for next character being NUL properly. (Yasuhiro Matsumoto)
Files: src/search.c, src/macros.h

version7.txt — 2715

Patch 7.3.607
Problem: With an 8 color terminal the selected menu item is black on black,

because darkGrey as bg is the same as black.
Solution: Swap fg and bg colors. (James McCoy)
Files: src/syntax.c

Patch 7.3.608
Problem: winrestview() does not always restore the view correctly.
Solution: Call win_new_height() and win_new_width(). (Lech Lorens)
Files: src/eval.c, src/proto/window.pro, src/window.c

Patch 7.3.609
Problem: File names in :checkpath! output are garbled.
Solution: Check for \zs in the pattern. (Lech Lorens)
Files: src/search.c, src/testdir/test17.in, src/testdir/test17.ok

Patch 7.3.610
Problem: Cannot operate on the text that a search pattern matches.
Solution: Add the "gn" and "gN" commands. (Christian Brabandt)
Files: runtime/doc/index.txt, runtime/doc/visual.txt, src/normal.c,

src/proto/search.pro, src/search.c, src/testdir/test53.in,
src/testdir/test53.ok

Patch 7.3.611
Problem: Can't use Vim dictionary as self argument in Python.
Solution: Fix the check for the "self" argument. (ZyX)
Files: src/if_py_both.h

Patch 7.3.612
Problem: Auto formatting messes up text when 'fo' contains "2". (ZyX)
Solution: Decrement "less_cols". (Tor Perkins)
Files: src/misc1.c, src/testdir/test68.in, src/testdir/test68.ok

Patch 7.3.613
Problem: Including Python's config.c in the build causes trouble. It is

not clear why it was there.
Solution: Omit the config file. (James McCoy)
Files: src/Makefile, src/auto/configure, src/configure.in

Patch 7.3.614
Problem: Number argument gets turned into a number while it should be a

string.
Solution: Add flag to the call_vim_function() call. (Yasuhiro Matsumoto)
Files: src/edit.c, src/eval.c, src/proto/eval.pro

Patch 7.3.615
Problem: Completion for a user command does not recognize backslash before

a space.
Solution: Recognize escaped characters. (Yasuhiro Matsumoto)
Files: src/ex_docmd.c

Patch 7.3.616 (after 7.3.610)
Problem: Can't compile without +visual.
Solution: Add #ifdef.
Files: src/normal.c

Patch 7.3.617 (after 7.3.615)
Problem: Hang on completion.
Solution: Skip over the space. (Yasuhiro Matsumoto)
Files: src/ex_docmd.c

version7.txt — 2716

Patch 7.3.618 (after 7.3.616)
Problem: Still doesn't compile with small features.
Solution: Move current_search() out of #ifdef. (Dominique Pelle)
Files: src/normal.c, src/search.c

Patch 7.3.619
Problem: When executing a shell command Vim may become slow to respond.
Solution: Don't wait after every processed message. (idea by Yasuhiro

Matsumoto)
Files: src/os_win32.c

Patch 7.3.620
Problem: Building with recent Ruby on Win32 doesn't work.
Solution: Add a separate argument for the API version. (Yasuhiro Matsumoto)
Files: src/Make_ming.mak, src/Make_mvc.mak

Patch 7.3.621
Problem: Compiler warnings on 64 bit windows.
Solution: Add type casts. (Mike Williams)
Files: src/ex_docmd.c, src/search.c

Patch 7.3.622
Problem: XPM library for Win32 can't be found.
Solution: Suggest using the one from the Vim ftp site.
Files: src/Make_mvc.mak

Patch 7.3.623
Problem: Perl 5.14 commands crash Vim on MS-Windows.
Solution: Use perl_get_sv() instead of GvSV(). (Raymond Ko)
Files: src/if_perl.xs

Patch 7.3.624
Problem: When cancelling input() it returns the third argument. That should

only happen for inputdialog().
Solution: Check if inputdialog() was used. (Hirohito Higashi)
Files: src/eval.c

Patch 7.3.625
Problem: "gn" does not handle zero-width matches correctly.
Solution: Handle zero-width patterns specially. (Christian Brabandt)
Files: src/search.c

Patch 7.3.626
Problem: Python interface doesn't build with Python 2.4 or older.
Solution: Define Py_ssize_t. (Benjamin Bannier)
Files: src/if_py_both.h

Patch 7.3.627
Problem: When using the "n" flag with the ":s" command a \= substitution

will not be evaluated.
Solution: Do perform the evaluation, so that a function can be invoked at

every matching position without changing the text. (Christian
Brabandt)

Files: src/ex_cmds.c

Patch 7.3.628
Problem: ":open" does not allow for a !, which results in a confusing error

message. (Shawn Wilson)
Solution: Allow ! on ":open". (Christian Brabandt)

version7.txt — 2717

Files: src/ex_cmds.h

Patch 7.3.629
Problem: There is no way to make 'shiftwidth' follow 'tabstop'.
Solution: When 'shiftwidth' is zero use the value of 'tabstop'. (Christian

Brabandt)
Files: src/edit.c, src/ex_getln.c, src/fold.c, src/misc1.c, src/ops.c,

src/option.c, src/proto/option.pro

Patch 7.3.630
Problem: "|" does not behave correctly when 'virtualedit' is set.
Solution: Call validate_virtcol(). (David Bürgin)
Files: src/normal.c

Patch 7.3.631
Problem: Cannot complete user names.
Solution: Add user name completion. (Dominique Pelle)
Files: runtime/doc/map.txt, src/auto/configure, src/config.h.in,

src/configure.in, src/ex_docmd.c, src/ex_getln.c, src/misc1.c,
src/misc2.c, src/proto/misc1.pro, src/vim.h

Patch 7.3.632
Problem: Cannot select beyond 222 columns with the mouse in xterm.
Solution: Add support for SGR mouse tracking. (Hayaki Saito)
Files: runtime/doc/options.txt, src/feature.h, src/keymap.h, src/misc2.c,

src/option.h, src/os_unix.c, src/term.c, src/version.c

Patch 7.3.633
Problem: Selection remains displayed as selected after selecting another

text.
Solution: Call xterm_update() before select(). (Andrew Pimlott)
Files: src/os_unix.c

Patch 7.3.634
Problem: Month/Day format for undo is confusing. (Marcin Szamotulski)
Solution: Always use Year/Month/Day, should work for everybody.
Files: src/undo.c

Patch 7.3.635
Problem: Issue 21: System call during startup sets 'lines' to a wrong

value. (Karl Yngve)
Solution: Don't set the shell size while the GUI is still starting up.

(Christian Brabandt)
Files: src/ui.c

Patch 7.3.636 (after 7.3.625)
Problem: Not all zero-width matches handled correctly for "gn".
Solution: Move zero-width detection to a separate function. (Christian

Brabandt)
Files: src/search.c

Patch 7.3.637
Problem: Cannot catch the error caused by a foldopen when there is no fold.

(ZyX, Issue 48)
Solution: Do not break out of the loop early when inside try/catch.

(Christian Brabandt) Except when there is a syntax error.
Files: src/ex_docmd.c, src/globals.h

Patch 7.3.638
Problem: Unnecessary redraw of the previous character.

version7.txt — 2718

Solution: Check if the character is double-width. (Jon Long)
Files: src/screen.c

Patch 7.3.639
Problem: It's not easy to build Vim on Windows with XPM support.
Solution: Include the required files, they are quite small. Update the

MSVC makefile to use them. Binary files are in the next patch.
(Sergey Khorev)

Files: src/xpm/COPYRIGHT, src/xpm/README.txt, src/xpm/include/simx.h,
src/xpm/include/xpm.h, src/Make_mvc.mak, src/bigvim.bat,
src/bigvim64.bat, Filelist

Patch 7.3.640
Problem: It's not easy to build Vim on Windows with XPM support.
Solution: Binary files for 7.3.639. (Sergey Khorev)
Files: src/xpm/x64/lib/libXpm.lib, src/xpm/x86/lib/libXpm.a,

src/xpm/x86/lib/libXpm.lib

Patch 7.3.641
Problem: ":mkview" uses ":normal" instead of ":normal!" for folds. (Dan)
Solution: Add the bang. (Christian Brabandt)
Files: src/fold.c

Patch 7.3.642
Problem: Segfault with specific autocommands. Was OK after 7.3.449 and

before 7.3.545. (Richard Brown)
Solution: Pass TRUE for abort_if_last in the call to close_buffer().

(Christian Brabandt)
Files: src/window.c

Patch 7.3.643 (after 7.3.635)
Problem: MS-Windows: When starting gvim maximized 'lines' and 'columns' are

wrong. (Christian Robinson)
Solution: Move the check for gui.starting from ui_get_shellsize() to

check_shellsize().
Files: src/ui.c, src/term.c

Patch 7.3.644
Problem: Dead code for BeOS GUI.
Solution: Remove unused __BEOS__ stuff.
Files: src/gui.c

Patch 7.3.645
Problem: No tests for patch 7.3.625 and 7.3.637.
Solution: Add more tests for the "gn" command and try/catch. (Christian

Brabandt)
Files: src/testdir/test53.in, src/testdir/test53.ok,

src/testdir/test55.in, src/testdir/test55.ok

Patch 7.3.646
Problem: When reloading a buffer the undo file becomes unusable unless ":w"

is executed. (Dmitri Frank)
Solution: After reloading the buffer write the undo file. (Christian

Brabandt)
Files: src/fileio.c

Patch 7.3.647
Problem: "gnd" doesn't work correctly in Visual mode.
Solution: Handle Visual mode differently in "gn". (Christian Brabandt)
Files: src/search.c, src/testdir/test53.in, src/testdir/test53.ok

version7.txt — 2719

Patch 7.3.648
Problem: Crash when using a very long file name. (ZyX)
Solution: Properly check length of buffer space.
Files: src/buffer.c

Patch 7.3.649
Problem: When 'clipboard' is set to "unnamed" small deletes end up in the

numbered registers. (Ingo Karkat)
Solution: Use the original register name to decide whether to put a delete

in a numbered register. (Christian Brabandt)
Files: src/ops.c

Patch 7.3.650
Problem: Completion after ":help \{-" gives an error message and messes up

the command line.
Solution: Cancel the tag search if the pattern can't be compiled. (Yasuhiro

Matsumoto)
Files: src/tag.c

Patch 7.3.651
Problem: Completion after ":help \{-" gives an error message.
Solution: Prepend a backslash.
Files: src/ex_cmds.c

Patch 7.3.652
Problem: Workaround for Python crash isn't perfect.
Solution: Change the type of the length argument. (Sean Estabrooks)
Files: src/if_py_both.h

Patch 7.3.653
Problem: MingW needs build rule for included XPM files. Object directory

for 32 and 64 builds is the same, also for MSVC.
Solution: Add MingW build rule to use included XPM files. Add the CPU or

architecture to the object directory name. (Sergey Khorev)
Files: src/Make_ming.mak, src/Make_mvc.mak, src/xpm/README.txt

Patch 7.3.654
Problem: When creating a Vim dictionary from Python objects an empty key

might be used.
Solution: Do not use empty keys, throw an IndexError. (ZyX)
Files: src/if_py_both.h

Patch 7.3.655
Problem: 64 bit MingW xpm .a file is missing.
Solution: Add the file. (Sergey Khorev)
Files: src/xpm/x64/lib/libXpm.a

Patch 7.3.656
Problem: Internal error in :pyeval.
Solution: Handle failed object conversion. (ZyX)
Files: src/if_python.c, src/if_python3.c

Patch 7.3.657
Problem: Python bindings silently truncate string values containing NUL.
Solution: Fail when a string contains NUL. (ZyX)
Files: src/if_python.c, src/if_python3.c

Patch 7.3.658
Problem: NUL bytes truncate strings when converted from Python.

version7.txt — 2720

Solution: Handle truncation as an error. (ZyX)
Files: src/if_py_both.h, src/if_python3.c

Patch 7.3.659
Problem: Recent Python changes are not tested.
Solution: Add tests for Python bindings. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.660
Problem: ":help !" jumps to help for ":!".
Solution: Adjust check for tag header line. (Andy Wokula)
Files: src/tag.c

Patch 7.3.661 (after 7.3.652)
Problem: SEGV in Python code.
Solution: Initialize len to zero. Use the right function depending on

version. (Maxim Philippov)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.3.662
Problem: Can't build Ruby interface with Ruby 1.9.3.
Solution: Add missing functions. (V. Ondruch)
Files: src/if_ruby.c

Patch 7.3.663
Problem: End of color scheme name not clear in E185. (Aaron Lewis)
Solution: Put the name in single quotes.
Files: src/ex_docmd.c

Patch 7.3.664
Problem: Buffer overflow in unescaping text. (Raymond Ko)
Solution: Limit check for multibyte character to 4 bytes.
Files: src/mbyte.c

Patch 7.3.665
Problem: MSVC 11 is not supported. (Raymond Ko)
Solution: Recognize MSVC 11. (Gary Willoughby)
Files: src/Make_mvc.mak

Patch 7.3.666
Problem: With MSVC 11 Win32.mak is not found.
Solution: Add the SDK_INCLUDE_DIR variable. (Raymond Ko)
Files: src/Make_mvc.mak

Patch 7.3.667
Problem: Unused variables in Perl interface.
Solution: Adjust #ifdefs.
Files: src/if_perl.xs

Patch 7.3.668
Problem: Building with Perl loaded dynamically still uses static library.
Solution: Adjust use of PL_thr_key. (Ken Takata)
Files: src/if_perl.xs

Patch 7.3.669
Problem: When building with Cygwin loading Python dynamically fails.
Solution: Use DLLLIBRARY instead of INSTSONAME. (Ken Takata)
Files: src/configure.in, src/auto/configure

version7.txt — 2721

Patch 7.3.670
Problem: Python: memory leaks when there are exceptions.
Solution: Add DICTKEY_UNREF in the right places. (ZyX)
Files: src/if_py_both.h

Patch 7.3.671
Problem: More Python code can be shared between Python 2 and 3.
Solution: Move code to if_py_both.h. (ZyX)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.3.672
Problem: Not possible to lock/unlock lists in Python interface.
Solution: Add .locked and .scope attributes. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python.c,

src/if_python3.c, src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.673
Problem: Using "gN" while 'selection' is "exclusive" misses one character.

(Ben Fritz)
Solution: Check the direction when compensating for exclusive selection.

(Christian Brabandt)
Files: src/search.c

Patch 7.3.674
Problem: Can't compile with Lua/dyn on Cygwin.
Solution: Adjust configure to use the right library name. (Ken Takata)
Files: src/configure.in, src/auto/configure

Patch 7.3.675
Problem: Using uninitialized memory with very long file name.
Solution: Put NUL after text when it is truncated. (ZyX)
Files: src/buffer.c

Patch 7.3.676
Problem: Ruby compilation on Windows 32 bit doesn't work.
Solution: Only use some functions for 64 bit. (Ken Takata)
Files: src/if_ruby.c

Patch 7.3.677
Problem: buf_spname() is used inconsistently.
Solution: Make the return type a char_u pointer. Check the size of the

returned string.
Files: src/buffer.c, src/proto/buffer.pro, src/ex_cmds2.c,

src/ex_docmd.c, src/memline.c, src/screen.c

Patch 7.3.678
Problem: Ruby .so name may not be correct.
Solution: Use the LIBRUBY_SO entry from the config. (Vit Ondruch)
Files: src/configure.in, src/auto/configure

Patch 7.3.679
Problem: Ruby detection uses Config, newer Ruby versions use RbConfig.
Solution: Detect the need to use RbConfig. (Vit Ondruch)
Files: src/configure.in, src/auto/configure

Patch 7.3.680
Problem: Some files missing in the list of distributed files.
Solution: Add lines for new files.
Files: Filelist

version7.txt — 2722

Patch 7.3.681 (after 7.3.680)
Problem: List of distributed files picks up backup files.
Solution: Make tutor patterns more specific.
Files: Filelist

Patch 7.3.682 (after 7.3.677)
Problem: Compiler complains about incompatible types.
Solution: Remove type casts. (hint by Danek Duvall)
Files: src/edit.c

Patch 7.3.683
Problem: ":python" may crash when vimbindeval() returns None.
Solution: Check for v_string to be NULL. (Yukihiro Nakadaira)
Files: src/if_py_both.h

Patch 7.3.684
Problem: "make test" does not delete lua.vim.
Solution: Add lua.vim to the clean target. (Simon Ruderich)
Files: src/testdir/Makefile, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_vms.mms

Patch 7.3.685
Problem: No test for what patch 7.3.673 fixes.
Solution: Add a test. (Christian Brabandt)
Files: src/testdir/test53.in, src/testdir/test53.ok

Patch 7.3.686
Problem: Using CTRL-\ e mappings is useful also when entering an

expression, but it doesn't work. (Marcin Szamotulski)
Solution: Allow using CTRL-\ e when entering an expression if it was not

typed.
Files: src/ex_getln.c

Patch 7.3.687
Problem: Test 16 fails when $DISPLAY is not set.
Solution: Skip the test when $DISPLAY is not set.
Files: src/testdir/test16.in

Patch 7.3.688
Problem: Python 3.3 is not supported.
Solution: Add Python 3.3 support (Ken Takata)
Files: src/if_python3.c

Patch 7.3.689
Problem: MzScheme and Lua may use a NULL string.
Solution: Use an empty string instead of NULL. (Yukihiro Nakadaira)
Files: src/if_lua.c, src/if_mzsch.c

Patch 7.3.690
Problem: When the current directory name is exactly the maximum path length

Vim may crash.
Solution: Only add "/" when there is room. (Danek Duvall)
Files: src/os_unix.c

Patch 7.3.691
Problem: State specific to the Python thread is discarded.
Solution: Keep state between threads. (Paul)
Files: src/if_python.c

version7.txt — 2723

Patch 7.3.692
Problem: Can't build GTK version with GTK 2.0.
Solution: Put GtkFileFilter declaration in the right place. (Yegappan

Lakshmanan)
Files: src/gui_gtk.c

Patch 7.3.693
Problem: Can't make 'softtabstop' follow 'shiftwidth'.
Solution: When 'softtabstop' is negative use the value of 'shiftwidth'.

(so8res)
Files: src/edit.c, src/option.c, src/proto/option.pro

Patch 7.3.694
Problem: Now that 'shiftwidth' may use the value of 'tabstop' it is not so

easy to use in indent files.
Solution: Add the shiftwidth() function. (so8res)
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.3.695
Problem: Balloon cannot show multibyte text.
Solution: Properly deal with multibyte characters. (Dominique Pelle)
Files: src/gui_beval.c, src/ui.c

Patch 7.3.696
Problem: Message about added spell language can be wrong.
Solution: Give correct message. Add g:menutrans_set_lang_to to allow for

translation. (Jiri Sedlak)
Files: runtime/menu.vim

Patch 7.3.697
Problem: Leaking resources when setting GUI font.
Solution: Free the font. (Ken Takata)
Files: src/syntax.c

Patch 7.3.698
Problem: Python 3 does not preserve state between commands.
Solution: Preserve the state. (Paul Ollis)
Files: src/if_python.c, src/if_python3.c

Patch 7.3.699
Problem: When 'ttymouse' is set to "sgr" manually, it is overruled by

automatic detection.
Solution: Do not use automatic detection when 'ttymouse' was set manually.

(Hayaki Saito)
Files: src/term.c

Patch 7.3.700
Problem: Cannot detect URXVT and SGR mouse support.
Solution: add +mouse_urxvt and +mouse_sgr. (Hayaki Saito)
Files: src/feature.h, src/eval.c

Patch 7.3.701
Problem: MS-Windows: Crash with stack overflow when setting 'encoding'.
Solution: Handle that loading the iconv library may be called recursively.

(Jiri Sedlak)
Files: src/os_win32.c

Patch 7.3.702
Problem: Nmake from VS6 service pack 6 is not recognized.
Solution: Detect the version number. (Jiri Sedlak)

version7.txt — 2724

Files: src/Make_mvc.mak

Patch 7.3.703
Problem: When 'undofile' is reset the hash is computed unnecessarily.
Solution: Only compute the hash when the option was set. (Christian Brabandt)
Files: src/option.c

Patch 7.3.704
Problem: Repeating "cgn" does not always work correctly.
Solution: Also fetch the operator character. (Christian Brabandt)
Files: src/normal.c

Patch 7.3.705
Problem: Mouse features are not sorted properly. (Tony Mechelynck)
Solution: Put the mouse features in alphabetical order.
Files: src/version.c

Patch 7.3.706 (after 7.3.697)
Problem: Can't build Motif version.
Solution: Fix wrongly named variable. (Ike Devolder)
Files: src/syntax.c

Patch 7.3.707 (after 7.3.701)
Problem: Problems loading a library for a file name with non-latin

characters.
Solution: Use wide system functions when possible. (Ken Takata)
Files: src/os_win32.c, src/os_win32.h

Patch 7.3.708
Problem: Filler lines above the first line may be hidden when opening Vim.
Solution: Change how topfill is computed. (Christian Brabandt)
Files: src/diff.c, src/testdir/test47.in, src/testdir/test47.ok

Patch 7.3.709
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/eval.c

Patch 7.3.710 (after 7.3.704)
Problem: Patch 7.3.704 breaks "fn".
Solution: Add check for ca.cmdchar. (Christian Brabandt)
Files: src/normal.c

Patch 7.3.711 (after 7.3.688)
Problem: vim.current.buffer is not available. (lilydjwg)
Solution: Use py3_PyUnicode_AsUTF8 instead of py3_PyUnicode_AsUTF8String.

(Ken Takata)
Files: src/if_python3.c

Patch 7.3.712
Problem: Nmake from VS2010 SP1 is not recognized.
Solution: Add the version number. (Ken Takata)
Files: src/Make_mvc.mak

Patch 7.3.713
Problem: printf() can only align to bytes, not characters.
Solution: Add the "S" item. (Christian Brabandt)
Files: runtime/doc/eval.txt, src/message.c

Patch 7.3.714

version7.txt — 2725

Problem: Inconsistency: :set can be used in the sandbox, but :setlocal and
:setglobal cannot. (Michael Henry)

Solution: Fix the flags for :setlocal and :setglobal. (Christian Brabandt)
Files: src/ex_cmds.h

Patch 7.3.715
Problem: Crash when calling setloclist() in BufUnload autocmd. (Marcin

Szamotulski)
Solution: Set w_llist to NULL when it was freed. Also add a test.

(Christian Brabandt)
Files: src/quickfix.c, src/testdir/test49.ok, src/testdir/test49.vim

Patch 7.3.716
Problem: Error on exit when using Python 3.
Solution: Remove PythonIO_Fini(). (Roland Puntaier)
Files: src/if_python3.c

Patch 7.3.717
Problem: When changing the font size, only MS-Windows limits the window

size.
Solution: Also limit the window size on other systems. (Roland Puntaier)
Files: src/gui.c

Patch 7.3.718
Problem: When re-using the current buffer the buffer-local options stay.
Solution: Re-initialize the buffer-local options. (Christian Brabandt)
Files: src/buffer.c

Patch 7.3.719
Problem: Cannot run new version of cproto, it fails on missing include

files.
Solution: Add lots of #ifndef PROTO
Files: src/os_amiga.c, src/os_amiga.h, src/gui_w16.c, src/gui_w48.c,

src/gui_w32.c, src/vimio.h, src/os_msdos.c, src/os_msdos.h,
src/os_win16.h, src/os_win16.c, src/os_win32.h, src/os_win32.c,
src/os_mswin.c, src/gui_photon.c, src/os_unix.h, src/os_beos.c,
src/os_beos.h

Patch 7.3.720
Problem: Proto files are outdated.
Solution: Update the newly generated proto files.
Files: src/proto/digraph.pro, src/proto/fold.pro, src/proto/misc1.pro,

src/proto/move.pro, src/proto/screen.pro, src/proto/search.pro,
src/proto/os_win32.pro, src/proto/os_mswin.pro,
src/proto/os_beos.pro

Patch 7.3.721
Problem: Ruby interface defines local functions globally.
Solution: Make the functions static.
Files: src/if_ruby.c

Patch 7.3.722
Problem: Perl flags may contain "-g", which breaks "make proto".
Solution: Filter out the "-g" flag for cproto. (Ken Takata)
Files: src/Makefile

Patch 7.3.723
Problem: Various tiny problems.
Solution: Various tiny fixes.
Files: src/gui_mac.c, src/xpm_w32.c, src/netbeans.c, src/sha256.c,

version7.txt — 2726

src/if_sniff.c, README.txt

Patch 7.3.724
Problem: Building with Ruby and Tcl on MS-Windows 64 bit does not work.
Solution: Remove Ruby and Tcl from the big MS-Windows build.
Files: src/bigvim64.bat

Patch 7.3.725
Problem: :aboveleft and :belowright have no effect on :copen.
Solution: Check for cmdmod.split. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.726
Problem: Typos and duplicate info in README.
Solution: Fix the text.
Files: README.txt

Patch 7.3.727
Problem: Can't always find Win32.mak when building GvimExt.
Solution: Use same mechanism as in Make_mvc.mak. (Cade Foster)
Files: src/GvimExt/Makefile

Patch 7.3.728
Problem: Cannot compile with MzScheme interface on Ubuntu 12.10.
Solution: Find the collects directory under /usr/share.
Files: src/configure.in, src/auto/configure

Patch 7.3.729
Problem: Building with Ruby fails on some systems.
Solution: Remove "static" and add #ifndef PROTO. (Ken Takata)
Files: src/if_ruby.c

Patch 7.3.730
Problem: Crash in PHP file when using syntastic. (Ike Devolder)
Solution: Avoid using NULL pointer. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.731
Problem: Py3Init_vim() is exported unnecessarily.
Solution: Make it static. (Ken Takata)
Files: src/if_python3.c

Patch 7.3.732
Problem: Compiler warnings for function arguments.
Solution: Use inteptr_t instead of long.
Files: src/if_mzsch.c, src/main.c

Patch 7.3.733
Problem: Tests fail when including MzScheme.
Solution: Change #ifdefs for vim_main2().
Files: src/main.c

Patch 7.3.734
Problem: Cannot put help files in a sub-directory.
Solution: Make :helptags work for sub-directories. (Charles Campbell)
Files: src/ex_cmds.c

Patch 7.3.735
Problem: Cannot build Ruby 1.9 with MingW or Cygwin.
Solution: Add another include directory. (Ken Takata)

version7.txt — 2727

Files: src/Make_cyg.mak, src/Make_ming.mak

Patch 7.3.736
Problem: File name completion in input() escapes white space. (Frederic

Hardy)
Solution: Do not escape white space. (Christian Brabandt)
Files: src/ex_getln.c

Patch 7.3.737
Problem: When using do_cmdline() recursively did_endif is not reset,

causing messages to be overwritten.
Solution: Reset did_endif. (Christian Brabandt)
Files: src/ex_docmd.c

Patch 7.3.738 (after 7.3.730)
Problem: Unused function argument.
Solution: Remove it. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.739
Problem: Computing number of lines may have an integer overflow.
Solution: Check for MAXCOL explicitly. (Dominique Pelle)
Files: src/move.c

Patch 7.3.740
Problem: IOC tool complains about undefined behavior for int.
Solution: Change to unsigned int. (Dominique Pelle)
Files: src/hashtab.c, src/misc2.c

Patch 7.3.741 (after 7.3.737)
Problem: Tiny build fails.
Solution: Move #ifdef. (Ike Devolder)
Files: src/ex_docmd.c

Patch 7.3.742
Problem: Leaking memory when :vimgrep restores the directory.
Solution: Free the allocated memory. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.743 (after 7.3.741)
Problem: Tiny build still fails.
Solution: Add #else in the right place.
Files: src/ex_docmd.c

Patch 7.3.744
Problem: 64 bit compiler warning.
Solution: Add type cast. (Mike Williams)
Files: src/ex_cmds.c

Patch 7.3.745
Problem: Automatically setting 'ttymouse' doesn't work.
Solution: Reset the "option was set" flag when using the default.
Files: src/option.c, src/proto/option.pro, src/term.c

Patch 7.3.746
Problem: Memory leaks when using location lists.
Solution: Set qf_title to something. (Christian Brabandt)
Files: src/eval.c, src/quickfix.c

Patch 7.3.747

version7.txt — 2728

Problem: When characters are concealed text aligned with tabs are no longer
aligned, e.g. at ":help :index".

Solution: Compensate space for tabs for concealed characters. (Dominique
Pelle)

Files: src/screen.c

Patch 7.3.748
Problem: Cannot properly test conceal mode.
Solution: Add the screencol() and screenrow() functions. Use them in

test88. (Simon Ruderich)
Files: runtime/doc/eval.txt, src/eval.c, src/proto/screen.pro,

src/screen.c, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms
src/testdir/Makefile, src/testdir/test88.in,
src/testdir/test88.ok,

Patch 7.3.749
Problem: Python interface doesn't build without the multibyte feature.
Solution: Add #ifdef. (Ken Takata)
Files: src/if_py_both.h

Patch 7.3.750
Problem: The justify macro does not always work correctly.
Solution: Fix off-by-one error (James McCoy)
Files: runtime/macros/justify.vim

Patch 7.3.751
Problem: Test 61 is flaky, it fails once in a while.
Solution: When it fails retry once.
Files: src/testdir/Makefile

Patch 7.3.752
Problem: Test 49 script file doesn't fold properly.
Solution: Add a colon.
Files: src/testdir/test49.vim

Patch 7.3.753
Problem: When there is a QuitPre autocommand using ":q" twice does not work

for exiting when there are more files to edit.
Solution: Do not decrement quitmore in an autocommand. (Techlive Zheng)
Files: src/ex_docmd.c, src/fileio.c, src/proto/fileio.pro

Patch 7.3.754
Problem: Latest nmake is not recognized.
Solution: Add nmake version 11.00.51106.1. (Raymond Ko)
Files: src/Make_mvc.mak

Patch 7.3.755
Problem: Autoconf doesn't find Python 3 if it's called "python".
Solution: Search for "python2" and "python3" first, then "python".
Files: src/configure.in, src/auto/configure

Patch 7.3.756
Problem: A location list can get a wrong count in :lvimgrep.
Solution: Check if the list was changed by autocommands. (mostly by

Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.757

version7.txt — 2729

Problem: Issue 96: May access freed memory when a put command triggers
autocommands. (Dominique Pelle)

Solution: Call u_save() before getting y_array.
Files: src/ops.c

Patch 7.3.758
Problem: Matchit plugin does not handle space in #ifdef.
Solution: Change matching pattern to allow spaces. (Mike Morearty)
Files: runtime/macros/matchit.vim

Patch 7.3.759
Problem: MS-Windows: Updating the tabline is slow when there are many tabs.
Solution: Disable redrawing while performing the update. (Arseny Kapoulkine)
Files: src/gui_w48.c

Patch 7.3.760
Problem: dv_ deletes the white space before the line.
Solution: Move the cursor to the first non-white. (Christian Brabandt)
Files: src/normal.c, src/testdir/test19.in, src/testdir/test19.ok

Patch 7.3.761
Problem: In Visual mode a "-p does not work. (Marcin Szamotulski)
Solution: Avoid writing to "- before putting it. (Christian Brabandt)
Files: src/normal.c, src/testdir/test48.in, src/testdir/test48.ok

Patch 7.3.762 (after 7.3.759)
Problem: On some systems the tabline is not redrawn.
Solution: Call RedrawWindow(). (Charles Peacech)
Files: src/gui_w48.c

Patch 7.3.763
Problem: Jumping to a mark does not open a fold if it is in the same line.

(Wiktor Ruben)
Solution: Also compare the column after the jump. (Christian Brabandt)
Files: src/normal.c

Patch 7.3.764
Problem: Not all message translation files are installed.
Solution: Also install the converted files.
Files: src/po/Makefile

Patch 7.3.765
Problem: Segfault when doing "cclose" on BufUnload in a python function.

(Sean Reifschneider)
Solution: Skip window with NULL buffer. (Christian Brabandt)
Files: src/main.c, src/window.c

Patch 7.3.766
Problem: ":help cpo-*" jumps to the wrong place.
Solution: Make it equivalent to ":help cpo-star".
Files: src/ex_cmds.c

Patch 7.3.767
Problem: (Win32) The _errno used for iconv may be the wrong one.
Solution: Use the _errno from iconv.dll. (Ken Takata)
Files: src/mbyte.c

Patch 7.3.768
Problem: settabvar() and setwinvar() may move the cursor.
Solution: Save and restore the cursor position when appropriate. (idea by

version7.txt — 2730

Yasuhiro Matsumoto)
Files: src/edit.c

Patch 7.3.769
Problem: 'matchpairs' does not work with multibyte characters.
Solution: Make it work. (Christian Brabandt)
Files: src/misc1.c, src/option.c, src/proto/option.pro, src/search.c,

src/testdir/test69.in, src/testdir/test69.ok

Patch 7.3.770
Problem: Vim.h indentation is inconsistent.
Solution: Adjust the indentation. (Elias Diem)
Files: src/vim.h

Patch 7.3.771 (after 7.3.769)
Problem: Uninitialized variable. (Yasuhiro Matsumoto)
Solution: Set x2 to -1.
Files: src/option.c

Patch 7.3.772
Problem: Cursor is at the wrong location and below the end of the file

after doing substitutions with confirm flag: %s/x/y/c
(Dominique Pelle)

Solution: Update the cursor position. (Christian Brabandt & Dominique)
Files: src/ex_cmds.c

Patch 7.3.773 (after 7.3.767)
Problem: Crash when OriginalFirstThunk is zero.
Solution: Skip items with OriginalFirstThunk not set. (Ken Takata)
Files: src/mbyte.c

Patch 7.3.774
Problem: Tiny GUI version misses console dialog feature.
Solution: Define FEAT_CON_DIALOG when appropriate. (Christian Brabandt)
Files: src/feature.h, src/gui.h

Patch 7.3.775
Problem: Cygwin and Mingw builds miss dependency on gui_w48.c.
Solution: Add a build rule. (Ken Takata)
Files: src/Make_cyg.mak, src/Make_ming.mak

Patch 7.3.776
Problem: ml_get error when searching, caused by curwin not matching curbuf.
Solution: Avoid changing curbuf. (Lech Lorens)
Files: src/charset.c, src/eval.c, src/mark.c, src/proto/charset.pro,

src/proto/mark.pro, src/regexp.c, src/syntax.c,

Patch 7.3.777
Problem: When building with Gnome locale gets reset.
Solution: Set locale after gnome_program_init(). (Christian Brabandt)
Files: src/gui_gtk_x11.c

Patch 7.3.778
Problem: Compiler error for adding up two pointers. (Titov Anatoly)
Solution: Add a type cast. (Ken Takata)
Files: src/mbyte.c

Patch 7.3.779
Problem: Backwards search lands in wrong place when started on a multibyte

character.

version7.txt — 2731

Solution: Do not set extra_col for a backwards search. (Sung Pae)
Files: src/search.c, src/testdir/test44.in, src/testdir/test44.ok

Patch 7.3.780
Problem: char2nr() and nr2char() always use 'encoding'.
Solution: Add argument to use utf-8 characters. (Yasuhiro Matsumoto)
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.3.781
Problem: Drawing with 'guifontwide' can be slow.
Solution: Draw multiple characters at a time. (Taro Muraoka)
Files: src/gui.c

Patch 7.3.782
Problem: Windows: IME composition may use a wrong font.
Solution: Use 'guifontwide' for IME when it is set. (Taro Muraoka)
Files: runtime/doc/options.txt, src/gui.c, src/gui_w48.c,

src/proto/gui_w16.pro, src/proto/gui_w32.pro

Patch 7.3.783
Problem: Crash when mark is not set. (Dominique Pelle)
Solution: Check for NULL.
Files: src/normal.c

Patch 7.3.784 (after 7.3.781)
Problem: Error when 'guifontwide' has a comma.
Solution: Use gui.wide_font. (Taro Muraoka)
Files: src/gui_w48.c

Patch 7.3.785 (after 7.3.776)
Problem: Crash with specific use of search pattern.
Solution: Initialize reg_buf to curbuf.
Files: src/regexp.c

Patch 7.3.786
Problem: Python threads don't run in the background (issue 103).
Solution: Move the statements to manipulate thread state.
Files: src/if_python.c

Patch 7.3.787
Problem: With 'relativenumber' set it is not possible to see the absolute

line number.
Solution: For the cursor line show the absolute line number instead of a

zero. (Nazri Ramliy)
Files: src/screen.c

Patch 7.3.788
Problem: When only using patches build fails on missing nl.po.
Solution: Create an empty nl.po file.
Files: src/po/Makefile

Patch 7.3.789 (after 7.3.776)
Problem: "\k" in regexp does not work in other window.
Solution: Use the right buffer. (Yukihiro Nakadaira)
Files: src/mbyte.c, src/proto/mbyte.pro, src/regexp.c

Patch 7.3.790
Problem: After reloading a buffer the modelines are not processed.
Solution: call do_modelines(). (Ken Takata)
Files: src/fileio.c

version7.txt — 2732

Patch 7.3.791
Problem: MzScheme interface doesn't work properly.
Solution: Make it work better. (Sergey Khorev)
Files: runtime/doc/if_mzsch.txt, src/configure.in, src/auto/configure,

src/eval.c, src/if_mzsch.c, src/if_mzsch.h, src/Make_ming.mak,
src/Make_mvc.mak, src/os_unix.c, src/proto/eval.pro,
src/testdir/test70.in, src/testdir/test70.ok

Patch 7.3.792
Problem: ":substitute" works differently without confirmation.
Solution: Do not change the text when asking for confirmation, only display

it.
Files: src/ex_cmds.c

Patch 7.3.793 (after 7.3.792)
Problem: New interactive :substitute behavior is not tested.
Solution: Add tests. (Christian Brabandt)
Files: src/testdir/test80.in, src/testdir/test80.ok

Patch 7.3.794
Problem: Tiny build fails. (Tony Mechelynck)
Solution: Adjust #ifdefs.
Files: src/charset.c

Patch 7.3.795
Problem: MzScheme does not build with tiny features.
Solution: Add #ifdefs. Also add UNUSED to avoid warnings. And change

library ordering.
Files: src/if_mzsch.c, src/Makefile

Patch 7.3.796
Problem: "/[^\n]" does match at a line break.
Solution: Make it do the same as "/.". (Christian Brabandt)
Files: src/regexp.c, src/testdir/test79.in, src/testdir/test79.ok

Patch 7.3.797 (after 7.3.792)
Problem: Compiler warning for size_t to int conversion. (Skeept)
Solution: Add type casts.
Files: src/ex_cmds.c

Patch 7.3.798 (after 7.3.791)
Problem: MzScheme: circular list does not work correctly.
Solution: Separate Mac-specific code from generic code. (Sergey Khorev)
Files: src/if_mzsch.c, src/testdir/test70.in

Patch 7.3.799
Problem: The color column is not correct when entering a buffer. (Ben

Fritz)
Solution: Call check_colorcolumn() if 'textwidth' changed. (Christian

Brabandt)
Files: src/buffer.c

Patch 7.3.800
Problem: The " mark is not adjusted when inserting lines. (Roland Eggner)
Solution: Adjust the line number. (Christian Brabandt)
Files: src/mark.c

Patch 7.3.801
Problem: ":window set nu?" displays the cursor line. (Nazri Ramliy)

version7.txt — 2733

Solution: Do not update the cursor line when conceallevel is zero or the
screen has scrolled. (partly by Christian Brabandt)

Files: src/window.c

Patch 7.3.802
Problem: After setting 'isk' to a value ending in a comma appending to the

option fails.
Solution: Disallow a trailing comma for 'isk' and similar options.
Files: src/charset.c

Patch 7.3.803 (after 7.3.792)
Problem: Substitute with confirmation and then "q" does not replace

anything. (John McGowan)
Solution: Do not break the loop, skip to the end.
Files: src/ex_cmds.c, src/testdir/test80.in, src/testdir/test80.ok

Patch 7.3.804 (after 7.3.799)
Problem: Compiler warning for tiny build. (Tony Mechelynck)
Solution: Add #ifdefs around variable.
Files: src/buffer.c

Patch 7.3.805
Problem: Lua version 5.2 is not detected properly on Arch Linux.
Solution: Adjust autoconf. (lilydjwg)
Files: src/configure.in, src/auto/configure

Patch 7.3.806
Problem: Compiler warnings in Perl code when building with Visual Studio

2012. (skeept)
Solution: Add type casts. (Christian Brabandt, 2013 Jan 30)
Files: src/if_perl.xs

Patch 7.3.807
Problem: Popup menu does not work properly with the preview window, folds

and 'cursorcolumn'.
Solution: Redraw the popup menu after redrawing windows. (Christian

Brabandt)
Files: src/screen.c

Patch 7.3.808
Problem: Python threads still do not work properly.
Solution: Fix both Python 2 and 3. Add tests. (Ken Takata)
Files: src/if_python.c, src/if_python3.c, src/testdir/test86.in,

src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok

Patch 7.3.809
Problem: The dosinst.c program has a buffer overflow. (Thomas Gwae)
Solution: Ignore $VIMRUNTIME if it is too long.
Files: src/dosinst.c

Patch 7.3.810
Problem: 'relativenumber' is reset unexpectedly. (François Ingelrest)
Solution: After an option was reset also reset the global value. Add a test.

(Christian Brabandt)
Files: src/option.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test89.in,
src/testdir/test89.ok

version7.txt — 2734

Patch 7.3.811
Problem: Useless termresponse parsing for SGR mouse.
Solution: Skip the parsing. (Hayaki Saito)
Files: src/term.c

Patch 7.3.812
Problem: When 'indentexpr' moves the cursor "curswant" not restored.
Solution: Restore "curswant". (Sung Pae)
Files: src/misc1.c

Patch 7.3.813
Problem: The CompleteDone event is not triggered when there are no pattern

matches. (Jianjun Mao)
Solution: Trigger the event. (Christian Brabandt)
Files: src/edit.c

Patch 7.3.814
Problem: Can't input multibyte characters on Win32 console if 'encoding' is

different from current codepage.
Solution: Use convert_input_safe() instead of convert_input(). Make

string_convert_ext() return an error for incomplete input. (Ken
Takata)

Files: src/mbyte.c, src/os_win32.c

Patch 7.3.815
Problem: Building with Cygwin and Ruby doesn't work.
Solution: Copy some things from the MingW build file. (Ken Takata)
Files: src/Make_cyg.mak

Patch 7.3.816
Problem: Can't compute a hash.
Solution: Add the sha256() function. (Tyru, Hirohito Higashi)
Files: runtime/doc/eval.txt, src/eval.c, src/proto/sha256.pro,

src/sha256.c, src/testdir/test90.in, src/testdir/test90.ok,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.3.817
Problem: Test 89 fails with tiny and small features.
Solution: Add sourcing small.vim.
Files: src/testdir/test89.in

Patch 7.3.818
Problem: When test 40 fails because of a bad build it may leave files

behind that cause it to fail later.
Solution: Let the file names start with "X".
Files: src/testdir/test40.in

Patch 7.3.819
Problem: Compiling without +eval and with Python isn't working.
Solution: Add the eval feature when building with Python.
Files: src/if_py_both.h, src/feature.h, src/eval.c, src/ex_docmd.c,

src/normal.c, src/ex_docmd.c, src/gui_gtk_x11.c

Patch 7.3.820
Problem: Build errors and warnings when building with small features and

Lua, Perl or Ruby.
Solution: Add #ifdefs and UNUSED.

version7.txt — 2735

Files: src/if_perl.xs, src/if_lua.c, src/if_ruby.c

Patch 7.3.821
Problem: Build with OLE and Cygwin is broken. (Steve Hall)
Solution: Select static or shared stdc library. (Ken Takata)
Files: src/Make_cyg.mak

Patch 7.3.822 (after 7.3.799)
Problem: Crash when accessing freed buffer.
Solution: Get 'textwidth' in caller of enter_buffer(). (Christian Brabandt)
Files: src/buffer.c

Patch 7.3.823 (after 7.3.821)
Problem: Building with Cygwin: '-lsupc++' is not needed.
Solution: Remove it. (Ken Takata)
Files: src/Make_cyg.mak

Patch 7.3.824
Problem: Can redefine builtin functions. (ZyX)
Solution: Disallow adding a function to g:.
Files: src/eval.c

Patch 7.3.825
Problem: With Python errors are not always clear.
Solution: Print the stack trace, unless :silent is used. (ZyX)
Files: src/if_python3.c, src/if_python.c

Patch 7.3.826
Problem: List of features in :version output is hard to read.
Solution: Make columns. (Nazri Ramliy)
Files: src/version.c

Patch 7.3.827 (after 7.3.825)
Problem: Python tests fail.
Solution: Adjust the output for the stack trace.
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.ok

Patch 7.3.828
Problem: Mappings are not aware of wildmenu mode.
Solution: Add wildmenumode(). (Christian Brabandt)
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.3.829
Problem: When compiled with the +rightleft feature 'showmatch' also shows a

match for the opening paren. When 'revins' is set the screen may
scroll.

Solution: Only check the opening paren when the +rightleft feature was
enabled. Do not show a match that is not visible. (partly by
Christian Brabandt)

Files: src/search.c

Patch 7.3.830
Problem: :mksession confuses bytes, columns and characters when positioning

the cursor.
Solution: Use w_virtcol with "|" instead of w_cursor.col with "l".
Files: src/ex_docmd.c

Patch 7.3.831
Problem: Clumsy to handle the situation that a variable does not exist.

version7.txt — 2736

Solution: Add default value to getbufvar() et al. (Shougo Matsushita,
Hirohito Higashi)

Files: runtime/doc/eval.txt, src/eval.c src/testdir/test91.in,
src/testdir/test91.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile

Patch 7.3.832
Problem: Compiler warning.
Solution: Add type cast. (Mike Williams)
Files: src/version.c

Patch 7.3.833
Problem: In the terminal the scroll wheel always scrolls the active window.
Solution: Scroll the window under the mouse pointer, like in the GUI.

(Bradie Rao)
Files: src/edit.c, src/normal.c

Patch 7.3.834
Problem: Ruby 2.0 has a few API changes.
Solution: Add handling of Ruby 2.0. (Yasuhiro Matsumoto)
Files: src/if_ruby.c

Patch 7.3.835
Problem: "xxd -i" fails on an empty file.
Solution: Do output the closing } for an empty file. (partly by Lawrence

Woodman)
Files: src/xxd/xxd.c

Patch 7.3.836
Problem: Clipboard does not work on Win32 when compiled with Cygwin.
Solution: Move the Win32 clipboard code to a separate file and use it when

building with os_unix.c. (Frodak Baksik, Ken Takata)
Files: src/Make_bc5.mak, src/Make_cyg.mak, src/Make_ivc.mak,

src/Make_ming.mak, src/Make_mvc.mak, src/Make_w16.mak,
src/Makefile, src/config.h.in, src/configure.in,
src/auto/configure, src/feature.h, src/globals.h, src/mbyte.c,
src/os_mswin.c, src/os_unix.c, src/os_win32.c, src/proto.h,
src/proto/os_mswin.pro, src/proto/winclip.pro, src/term.c,
src/vim.h, src/winclip.c

Patch 7.3.837 (after 7.3.826)
Problem: Empty lines in :version output when 'columns' is 320.
Solution: Simplify the logic of making columns. (Nazri Ramliy, Roland

Eggner)
Files: src/version.c

Patch 7.3.838 (after 7.3.830)
Problem: Insufficient testing for mksession.
Solution: Add tests. (mostly by Roland Eggner)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test92.in, src/testdir/test92.ok,
src/testdir/test93.in, src/testdir/test93.ok,
src/ex_docmd.c

Patch 7.3.839
Problem: Some files missing in the list of distributed files.

version7.txt — 2737

Solution: Add lines for new files.
Files: Filelist

Patch 7.3.840
Problem: "\@<!" in regexp does not work correctly with multibyte

characters, especially cp932.
Solution: Move column to start of multibyte character. (Yasuhiro Matsumoto)
Files: src/regexp.c

Patch 7.3.841
Problem: When a "cond ? one : two" expression has a subscript it is not

parsed correctly. (Andy Wokula)
Solution: Handle a subscript also when the type is unknown. (Christian

Brabandt)
Files: src/eval.c

Patch 7.3.842
Problem: Compiler warning for signed/unsigned pointer.
Solution: Add type cast. (Christian Brabandt)
Files: src/eval.c

Patch 7.3.843 (after 7.3.841)
Problem: Missing test file changes.
Solution: Change the tests.
Files: src/testdir/test49.vim, src/testdir/test49.ok

Patch 7.3.844
Problem: Enum is not indented correctly with "public" etc.
Solution: Skip "public", "private" and "protected". (Hong Xu)
Files: src/misc1.c

Patch 7.3.845 (after 7.3.844)
Problem: Enum indenting is not tested.
Solution: Add tests. (Hong Xu)
Files: src/testdir/test3.in, src/testdir/test3.ok

Patch 7.3.846
Problem: Missing proto files.
Solution: Add the files.
Files: Filelist, src/proto/os_beos.pro

Patch 7.3.847
Problem: Test 55 fails when messages are translated.
Solution: Set language to C. (Ken Takata)
Files: src/testdir/test55.in

Patch 7.3.848
Problem: Can't build with Ruby 2.0 when using MinGW x64 or MSVC10.
Solution: Fix it. Also detect RUBY_PLATFORM and RUBY_INSTALL_NAME for x64.

(Ken Takata)
Files: src/Make_cyg.mak, src/Make_ming.mak, src/if_ruby.c

Patch 7.3.849
Problem: ":g//" gives "Pattern not found error" with E486. Should not use

the error number, it's not a regular error message.
Solution: Use a normal message. (David Bürgin)
Files: src/ex_cmds.c

Patch 7.3.850
Problem: ":vimgrep //" matches everywhere.

version7.txt — 2738

Solution: Make it use the previous search pattern. (David Bürgin)
Files: runtime/doc/quickfix.txt, src/quickfix.c

Patch 7.3.851
Problem: Using an empty pattern with :sort silently continues when there is

no previous search pattern.
Solution: Give an error message. (David Bürgin)
Files: src/ex_cmds.c

Patch 7.3.852
Problem: system() breaks clipboard text. (Yukihiro Nakadaira)
Solution: Use Xutf8TextPropertyToTextList(). (Christian Brabandt)

Also do not put the text in the clip buffer if conversion fails.
Files: src/ui.c, src/ops.c

Patch 7.3.853
Problem: Using "ra" in multiple lines on multibyte characters leaves a few

characters not replaced.
Solution: Adjust the end column only in the last line. (Yasuhiro Matsumoto)
Files: src/testdir/test69.in, src/testdir/test69.ok, src/ops.c

Patch 7.3.854
Problem: After using backspace in insert mode completion, CTRL-N and CTRL-P

do not highlight the right entry. (Olivier Teuliere)
Solution: Set the current item to the shown item after using backspace.
Files: src/edit.c

Patch 7.3.855
Problem: Compiler warnings.
Solution: Add type casts. (Mike Williams)
Files: src/misc1.c

Patch 7.3.856
Problem: When calling system() multibyte clipboard contents is garbled.
Solution: Save and restore the clipboard contents. (Yukihiro Nakadaira)
Files: src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro, src/ops.c,

src/proto/ops.pro, src/os_unix.c, src/proto/ui.pro, src/ui.c

Patch 7.3.857
Problem: The QuitPre autocommand event does not trigger for :qa and :wq.
Solution: Trigger the event. (Tatsuro Fujii)
Files: src/ex_docmd.c

Patch 7.3.858
Problem: "gv" selects the wrong area after some operators.
Solution: Save and restore the type of selection. (Christian Brabandt)
Files: src/testdir/test66.in, src/testdir/test66.ok, src/normal.c

Patch 7.3.859
Problem: 'ambiwidth' must be set by the user.
Solution: Detects East Asian ambiguous width (UAX #11) state of the terminal

at the start-up time and 'ambiwidth' accordingly. (Hayaki Saito)
Files: src/main.c, src/option.c, src/term.c, src/term.h,

src/proto/term.pro

Patch 7.3.860
Problem: When using --remote-expr try/catch does not work. (Andrey Radev)
Solution: Set emsg_silent instead of emsg_skip.
Files: src/main.c

version7.txt — 2739

Patch 7.3.861
Problem: ":setlocal number" clears global value of 'relativenumber'.
Solution: Do it properly. (Markus Heidelberg)
Files: src/testdir/test89.in, src/testdir/test89.ok, src/option.c

Patch 7.3.862
Problem: Dragging the status line can be slow.
Solution: Look ahead and drop the drag event if there is a next one.
Files: src/eval.c, src/misc1.c, src/proto/misc1.pro, src/normal.c

Patch 7.3.863 (after 7.3.859)
Problem: Problem with 'ambiwidth' detection for ANSI terminal.
Solution: Work around not recognizing a term response. (Hayaki Saito)
Files: src/term.c

Patch 7.3.864 (after 7.3.862)
Problem: Can't build without the mouse feature.
Solution: Add an #ifdef. (Ike Devolder)
Files: src/misc1.c

Patch 7.3.865 (after 7.3.862)
Problem: Mouse position may be wrong.
Solution: Let vungetc() restore the mouse position.
Files: src/getchar.c

Patch 7.3.866
Problem: Not serving the X selection during system() isn't nice.
Solution: When using fork() do not loose the selection, keep serving it.

Add a loop similar to handling I/O. (Yukihiro Nakadaira)
Files: src/os_unix.c

Patch 7.3.867
Problem: Matchparen does not update match when using auto-indenting.

(Marc Aldorasi)
Solution: Add the TextChanged and TextChangedI autocommand events.
Files: runtime/plugin/matchparen.vim, src/main.c, src/edit.c,

src/globals.h, src/vim.h, src/fileio.c, src/proto/fileio.pro,
runtime/doc/autocmd.txt

Patch 7.3.868
Problem: When at the hit-return prompt and using "k" while no text has

scrolled off screen, then using "j", an empty line is displayed.
Solution: Only act on "k" when text scrolled off screen. Also accept

page-up and page-down. (cptstubing)
Files: src/message.c

Patch 7.3.869
Problem: bufwinnr() matches buffers in other tabs.
Solution: For bufwinnr() and ? only match buffers in the current tab.

(Alexey Radkov)
Files: src/buffer.c, src/diff.c, src/eval.c, src/ex_docmd.c,

src/if_perl.xs, src/proto/buffer.pro

Patch 7.3.870
Problem: Compiler warnings when using MingW 4.5.3.
Solution: Do not use MAKEINTRESOURCE. Adjust #if. (Ken Takata)
Files: src/gui_w32.c, src/gui_w48.c, src/os_mswin.c, src/os_win32.c,

src/os_win32.h

Patch 7.3.871

version7.txt — 2740

Problem: search('^$', 'c') does not use the empty match under the cursor.
Solution: Special handling of the 'c' flag. (Christian Brabandt)

Add tests.
Files: src/search.c, src/testdir/test14.in, src/testdir/test14.ok

Patch 7.3.872
Problem: On some systems case of file names is always ignored, on others

never.
Solution: Add the 'fileignorecase' option to control this at runtime.

Implies 'wildignorecase'.
Files: src/buffer.c, src/edit.c, src/ex_cmds2.c, src/ex_getln.c,

src/fileio.c, src/misc1.c, src/misc2.c, src/option.c,
src/option.h, src/vim.h, runtime/doc/options.txt

Patch 7.3.873
Problem: Cannot easily use :s to make title case.
Solution: Have "\L\u" result in title case. (James McCoy)
Files: src/regexp.c, src/testdir/test79.in, src/testdir/test79.ok,

src/testdir/test80.in, src/testdir/test80.ok

Patch 7.3.874
Problem: Comparing file names does not handle multibyte characters

properly.
Solution: Implement multibyte handling.
Files: src/misc1.c, src/misc2.c

Patch 7.3.875 (after 7.3.866)
Problem: Build problem with some combination of features.
Solution: Use FEAT_XCLIPBOARD instead of FEAT_CLIPBOARD.
Files: src/os_unix.c

Patch 7.3.876
Problem: #if indents are off.
Solution: Insert a space where appropriate. (Taro Muraoka)
Files: src/gui.c

Patch 7.3.877 (after 7.3.871)
Problem: Forward searching with search() is broken.
Solution: Fix it and add tests. (Sung Pae)
Files: src/search.c, src/testdir/test14.in, src/testdir/test14.ok

Patch 7.3.878
Problem: 'fileignorecase' is missing in options window and quickref.
Solution: Add the option.
Files: runtime/optwin.vim, runtime/doc/quickref.txt

Patch 7.3.879
Problem: When using an ex command in operator pending mode, using Esc to

abort the command still executes the operator. (David Bürgin)
Solution: Clear the operator when the ex command fails. (Christian Brabandt)
Files: src/normal.c

Patch 7.3.880
Problem: When writing viminfo, old history lines may replace lines written

more recently by another Vim instance.
Solution: Mark history entries that were read from viminfo and overwrite

them when merging with the current viminfo.
Files: src/ex_getln.c

Patch 7.3.881

version7.txt — 2741

Problem: Python list does not work correctly.
Solution: Fix it and add a test. (Yukihiro Nakadaira)
Files: src/testdir/test86.in, src/testdir/test86.ok, src/if_py_both.h

Patch 7.3.882
Problem: CursorHold may trigger after receiving the termresponse.
Solution: Set the did_cursorhold flag. (Hayaki Saito)
Files: src/term.c

Patch 7.3.883 (after 7.3.880)
Problem: Can't build with some combination of features.
Solution: Adjust #ifdefs.
Files: src/ex_getln.c

Patch 7.3.884
Problem: Compiler warning for variable shadowing another. (John Little)
Solution: Rename the variable. (Christian Brabandt)
Files: src/term.c

Patch 7.3.885
Problem: Double free for list and dict in Lua. (Shougo Matsu)
Solution: Do not unref list and dict. (Yasuhiro Matsumoto)
Files: src/if_lua.c

Patch 7.3.886
Problem: Can't build with multibyte on Solaris 10.
Solution: Add #ifdef X_HAVE_UTF8_STRING. (Laurent Blume)
Files: src/ui.c

Patch 7.3.887
Problem: No tests for Visual mode operators, what 7.3.879 fixes.
Solution: Add a new test file. (David Bürgin)
Files: src/testdir/test94.in, src/testdir/test94.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.3.888
Problem: Filename completion with 'fileignorecase' does not work for

multibyte characters.
Solution: Make 'fileignorecase' work properly. (Hirohito Higashi)
Files: src/misc2.c

Patch 7.3.889
Problem: Can't build with Ruby 2.0 on a 64 bit system.
Solution: Define rb_fix2int and rb_num2int. (Kohei Suzuki)
Files: src/if_ruby.c

Patch 7.3.890
Problem: Test 79 fails on Windows. (Michael Soyka)
Solution: Add comment below line causing an error.
Files: src/testdir/test79.in

Patch 7.3.891
Problem: Merging viminfo history doesn't work well.
Solution: Don't stop when one type of history is empty. Don't merge history

when writing viminfo.
Files: src/ex_getln.c

Patch 7.3.892 (after 7.3.891)

version7.txt — 2742

Problem: Still merging problems for viminfo history.
Solution: Do not merge lines when writing, don't write old viminfo lines.
Files: src/ex_getln.c, src/ex_cmds.c, src/proto/ex_getln.pro

Patch 7.3.893
Problem: Crash when using b:, w: or t: after closing the buffer, window or

tabpage.
Solution: Allocate the dictionary instead of having it part of the

buffer/window/tabpage struct. (Yukihiro Nakadaira)
Files: src/buffer.c, src/eval.c, src/fileio.c, src/structs.h,

src/window.c, src/proto/eval.pro

Patch 7.3.894
Problem: Using wrong RUBY_VER causing Ruby build to break.
Solution: Correct the RUBY_VER value. (Yongwei Wu)
Files: src/bigvim.bat

Patch 7.3.895
Problem: Valgrind error in test 91. (Issue 128)
Solution: Pass scope name to find_var_in_ht().
Files: src/eval.c

Patch 7.3.896
Problem: Memory leaks in Lua interface.
Solution: Fix the leaks, add tests. (Yukihiro Nakadaira)
Files: src/testdir/test85.in, src/testdir/test85.ok, src/if_lua.c

Patch 7.3.897
Problem: Configure doesn't always find the shared library.
Solution: Change the configure script. (Ken Takata)
Files: src/configure.in, src/auto/configure

Patch 7.3.898
Problem: Memory leak reported by valgrind in test 91.
Solution: Only use default argument when needed.
Files: src/eval.c, src/testdir/test91.in, src/testdir/test91.ok

Patch 7.3.899
Problem: #if indents are off.
Solution: Fix the indents.
Files: src/os_unix.c

Patch 7.3.900
Problem: Not obvious that some mouse features are mutual-exclusive.
Solution: Add a comment.
Files: src/feature.h

Patch 7.3.901
Problem: Outdated comment, ugly condition.
Solution: Update a few comments, break line.
Files: src/getchar.c, src/misc1.c, src/undo.c

Patch 7.3.902
Problem: When deleting last buffer in other tab the tabline is not updated.
Solution: Set the redraw_tabline flag. (Yukihiro Nakadaira)
Files: src/window.c

Patch 7.3.903 (after 7.3.892)
Problem: Crash on exit writing viminfo. (Ron Aaron)
Solution: Check for the history to be empty.

version7.txt — 2743

Files: src/ex_getln.c

Patch 7.3.904 (after 7.3.893)
Problem: Using memory freed by the garbage collector.
Solution: Mark items in aucmd_win as used.
Files: src/eval.c

Patch 7.3.905 (after 7.3.903)
Problem: Crash when writing viminfo. (Ron Aaron)
Solution: Prevent freed history info to be used.
Files: src/ex_getln.c

Patch 7.3.906
Problem: The "sleep .2" for running tests does not work on Solaris.
Solution: Fall back to using "sleep 1". (Laurent Blume)
Files: src/testdir/Makefile

Patch 7.3.907
Problem: Python uses IndexError when a dict key is not found.
Solution: Use KeyError instead. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.908
Problem: Possible crash when using a list in Python.
Solution: Return early if the list is NULL. (ZyX)
Files: src/if_py_both.h

Patch 7.3.909
Problem: Duplicate Python code.
Solution: Move more items to if_py_both.h. (ZyX) Also avoid compiler

warnings for missing initializers.
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.910
Problem: Python code in #ifdef branches with only minor differences.
Solution: Merge the #ifdef branches. (ZyX)
Files: src/if_py_both.h, src/if_python.c

Patch 7.3.911
Problem: Python: Access to Vim variables is not so easy.
Solution: Define vim.vars and vim.vvars. (ZyX)
Files: runtime/doc/if_pyth.txt, src/eval.c, src/globals.h,

src/if_py_both.h, src/if_python3.c, src/if_python.c,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.912
Problem: Typing a ":" command at the hit-enter dialog does not work if the

"file changed" dialog happens next.
Solution: Check for changed files before giving the hit-enter dialog.
Files: src/message.c

Patch 7.3.913 (after 7.3.905)
Problem: Still a crash when writing viminfo.
Solution: Add checks for NULL pointers. (Ron Aaron)
Files: src/ex_getln.c

Patch 7.3.914
Problem: ~/.viminfo is messed up when running tests.

version7.txt — 2744

Solution: Set the viminfo filename.
Files: src/testdir/test89.in, src/testdir/test94.in

Patch 7.3.915
Problem: When reading a file with encoding conversion fails at the end the

next encoding in 'fencs' is not used.
Solution: Retry with another encoding when possible. (Taro Muraoka)
Files: src/fileio.c

Patch 7.3.916
Problem: Using freed memory when pasting with the mouse (Issue 130).
Solution: Get the byte value early. (hint by Dominique Pelle)
Files: src/buffer.c

Patch 7.3.917
Problem: When a path ends in a backslash appending a comma has the wrong

effect.
Solution: Replace a trailing backslash with a slash. (Nazri Ramliy)
Files: src/misc1.c, src/testdir/test73.in, src/testdir/test73.ok

Patch 7.3.918
Problem: Repeating an Ex command after using a Visual motion does not work.
Solution: Check for an Ex command being used. (David Bürgin)
Files: src/normal.c

Patch 7.3.919 (after 7.3.788)
Problem: An empty nl.po file does not work with an old msgfmt.
Solution: Put a single # in the file. (Laurent Blume)
Files: src/po/Makefile

Patch 7.3.920
Problem: Compiler warning for size_t to int.
Solution: Add a type cast. (Mike Williams)
Files: src/misc1.c

Patch 7.3.921 (after 7.3.697)
Problem: Trying to create a fontset handle when 'guifontset' is not set.
Solution: Add curly braces around the code block. (Max Kirillov)
Files: src/syntax.c

Patch 7.3.922
Problem: No test for what 7.3.918 fixes.
Solution: Add a test. (David Bürgin)
Files: src/testdir/test94.in, src/testdir/test94.ok

Patch 7.3.923
Problem: Check for X11 header files fails on Solaris.
Solution: Only use -Werror for gcc. (Laurent Blume)
Files: src/configure.in, src/auto/configure

Patch 7.3.924
Problem: Python interface can't easily access options.
Solution: Add vim.options, vim.window.options and vim.buffer.options. (ZyX)
Files: runtime/doc/if_pyth.txt, src/eval.c, src/if_py_both.h,

src/if_python.c, src/if_python3.c, src/option.c,
src/proto/eval.pro, src/proto/option.pro, src/testdir/test86.in,
src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok, src/vim.h

Patch 7.3.925

version7.txt — 2745

Problem: Typos in source files.
Solution: Fix the typos. (Ken Takata)
Files: runtime/plugin/matchparen.vim, runtime/tools/vim_vs_net.cmd,

src/GvimExt/gvimext.cpp, src/INSTALLvms.txt, src/Make_cyg.mak,
src/Make_mvc.mak, src/Make_sas.mak, src/Make_vms.mms,
src/Make_w16.mak, src/Makefile, src/VisVim/OleAut.cpp,
src/VisVim/README_VisVim.txt, src/auto/configure, src/buffer.c,
src/configure.in, src/diff.c, src/dosinst.c, src/edit.c,
src/eval.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,
src/farsi.c, src/feature.h, src/fileio.c, src/glbl_ime.cpp,
src/gui.c, src/gui_athena.c, src/gui_beval.c, src/gui_gtk_x11.c,
src/gui_mac.c, src/gui_motif.c, src/gui_photon.c, src/gui_w16.c,
src/gui_w32.c, src/gui_w48.c, src/gui_xmebw.c, src/gui_xmebwp.h,
src/hardcopy.c, src/if_cscope.c, src/if_mzsch.c, src/if_ole.cpp,
src/if_perl.xs, src/if_py_both.h, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/main.aap, src/mbyte.c,
src/memfile.c, src/memline.c, src/misc1.c, src/misc2.c,
src/nbdebug.c, src/normal.c, src/ops.c, src/os_amiga.c,
src/os_mac.h, src/os_msdos.c, src/os_mswin.c, src/os_win16.h,
src/os_win32.c, src/os_win32.h, src/quickfix.c, src/screen.c,
src/search.c, src/spell.c, src/structs.h, src/syntax.c,
src/window.c, vimtutor.com

Patch 7.3.926
Problem: Autocommands are triggered by setwinvar() et al. Missing BufEnter

on :tabclose. Duplicate WinEnter on :tabclose. Wrong order of
events for :tablose and :tabnew.

Solution: Fix these autocommand events. (ZyX)
Files: runtime/doc/eval.txt, src/buffer.c, src/eval.c, src/ex_cmds2.c,

src/fileio.c, src/proto/window.pro, src/testdir/test62.in,
src/testdir/test62.ok, src/window.c

Patch 7.3.927
Problem: Missing combining characters when putting text in a register.
Solution: Include combining characters. (David Bürgin)
Files: src/getchar.c, src/testdir/test44.in, src/testdir/test44.ok

Patch 7.3.928 (after 7.3.924)
Problem: Can't build with strict C compiler.
Solution: Move declaration to start of block. (Taro Muraoka)
Files: src/if_py_both.h

Patch 7.3.929 (after 7.3.924)
Problem: Compiler warning for unused variable. Not freeing unused string.
Solution: Remove the variable. Clear the options.
Files: src/option.c

Patch 7.3.930
Problem: MSVC 2012 update is not recognized.
Solution: Update the version in the makefile. (Raymond Ko)
Files: src/Make_mvc.mak

Patch 7.3.931
Problem: No completion for :xmap and :smap. (Yukihiro Nakadaira)
Solution: Add the case statements. (Christian Brabandt)
Files: src/ex_docmd.c

Patch 7.3.932
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)

version7.txt — 2746

Solution: Initialize the variable.
Files: src/option.c

Patch 7.3.933
Problem: Ruby on Mac crashes due to GC failure.
Solution: Init the stack from main(). (Hiroshi Shirosaki)
Files: src/main.c, src/if_ruby.c, src/proto/if_ruby.pro

Patch 7.3.934
Problem: E381 and E380 make the user think nothing happened.
Solution: Display the message indicating what error list is now active.

(Christian Brabandt)
Files: src/quickfix.c

Patch 7.3.935 (after 7.3.933)
Problem: Ruby: Init stack works differently on 64 bit systems.
Solution: Handle 64 bit systems and also static library. (Yukihiro

Nakadaira)
Files: src/if_ruby.c

Patch 7.3.936 (after 7.3.935)
Problem: Ruby 1.8: Missing piece for static linking on 64 bit systems.
Solution: Define ruby_init_stack() (Hiroshi Shirosaki)

Also fix preprocessor indents.
Files: src/if_ruby.c

Patch 7.3.937
Problem: More can be shared between Python 2 and 3.
Solution: Move code to if_py_both.h. (ZyX)
Files: src/if_python.c, src/if_python3.c, src/if_py_both.h

Patch 7.3.938
Problem: Python: not easy to get to window number.
Solution: Add vim.window.number. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/proto/window.pro,

src/window.c

Patch 7.3.939
Problem: Using Py_BuildValue is inefficient sometimes.
Solution: Use PyLong_FromLong(). (ZyX)
Files: src/if_py_both.h

Patch 7.3.940
Problem: Python: Can't get position of window.
Solution: Add window.row and window.col. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h

Patch 7.3.941
Problem: Stuff in if_py_both.h is ordered badly.
Solution: Reorder by type. (ZyX)
Files: src/if_py_both.h, src/if_python.c

Patch 7.3.942
Problem: Python: SEGV in Buffer functions.
Solution: Call CheckBuffer() at the right time. (ZyX)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.3.943
Problem: Python: Negative indices were failing.
Solution: Fix negative indices. Add tests. (ZyX)

version7.txt — 2747

Files: src/if_py_both.h, src/if_python3.c, src/testdir/test86.in,
src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok

Patch 7.3.944
Problem: External program receives the termresponse.
Solution: Insert a delay and discard input. (Hayaki Saito)
Files: src/term.c

Patch 7.3.945
Problem: Python: List of buffers is not very useful.
Solution: Make vim.buffers a map. No iterator yet. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python3.c,

src/if_python.c, src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.946
Problem: Sometimes get stuck in waiting for cursor position report,

resulting in keys starting with <Esc>[not working.
Solution: Only wait for more characters after <Esc>[if followed by '?', '>'

or a digit.
Files: src/term.c

Patch 7.3.947
Problem: Python: No iterator for vim.list and vim.bufferlist.
Solution: Add the iterators. Also fix name of FunctionType. Add tests for

vim.buffers. (ZyX)
Files: runtime/doc/if_pyth.txt, src/eval.c, src/if_py_both.h,

src/if_python3.c, src/if_python.c, src/proto/eval.pro,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.948
Problem: Cannot build with Python 2.2
Solution: Make Python interface work with Python 2.2

Make 2.2 the first supported version. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.ok, src/configure.in, src/auto/configure

Patch 7.3.949
Problem: Python: no easy access to tabpages.
Solution: Add vim.tabpages and vim.current.tabpage. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python3.c,

src/if_python.c, src/proto/if_python3.pro,
src/proto/if_python.pro, src/proto/window.pro, src/structs.h,
src/window.c

Patch 7.3.950
Problem: Python: Stack trace printer can't handle messages.
Solution: Make KeyErrors use PyErr_SetObject. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.951
Problem: Python exceptions have problems.
Solution: Change some IndexErrors to TypeErrors. Make “line number out of

range” an IndexError. Make “unable to get option value” a
RuntimeError. Make all PyErr_SetString messages start with
lowercase letter and use _(). (ZyX)

Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,
src/testdir/test86.ok, src/testdir/test87.ok

version7.txt — 2748

Patch 7.3.952
Problem: Python: It's not easy to change window/buffer/tabpage.
Solution: Add ability to assign to vim.current.{tabpage,buffer,window}.

(ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h

Patch 7.3.953
Problem: Python: string exceptions are deprecated.
Solution: Make vim.error an Exception subclass. (ZyX)
Files: src/if_python.c, src/if_python3.c

Patch 7.3.954
Problem: No check if PyObject_IsTrue fails.
Solution: Add a check for -1 value. (ZyX)
Files: src/if_py_both.h

Patch 7.3.955
Problem: Python: Not enough tests.
Solution: Add tests for vim.{current,window*,tabpage*}. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.956
Problem: Python vim.bindeval() causes SIGABRT.
Solution: Make pygilstate a local variable. (Yukihiro Nakadaira)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.3.957
Problem: Python does not have a "do" command like Perl or Lua.
Solution: Add the ":py3do" command. (Lilydjwg)
Files: runtime/doc/if_pyth.txt, src/ex_cmds.h, src/ex_docmd.c,

src/if_python3.c, src/proto/if_python3.pro

Patch 7.3.958
Problem: Python: Iteration destructor not set.
Solution: Put IterDestructor to use. (ZyX)
Files: src/if_py_both.c

Patch 7.3.959 (after 7.3.957)
Problem: Missing error number.
Solution: Assign an error number.
Files: src/if_python3.c

Patch 7.3.960
Problem: Compiler warning for unused variable.
Solution: Put declaration in #ifdef.
Files: src/window.c

Patch 7.3.961
Problem: Tests 86 and 87 fail when using another language than English.
Solution: Set the language to C in the test. (Dominique Pelle)
Files: src/testdir/test86.in, src/testdir/test87.in,

src/testdir/test87.ok

Patch 7.3.962
Problem: Python tests are not portable.
Solution: Use shiftwidth instead of iminsert. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

version7.txt — 2749

Patch 7.3.963
Problem: Setting curbuf without curwin causes trouble.
Solution: Add switch_buffer() and restore_buffer(). Block autocommands to

avoid trouble.
Files: src/eval.c, src/proto/eval.pro, src/proto/window.pro,

src/if_py_both.h, src/window.c, src/testdir/test86.ok

Patch 7.3.964
Problem: Python: not so easy to access tab pages.
Solution: Add window.tabpage, make window.number work with non-current tab

pages. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python3.c,

src/if_python.c, src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.965
Problem: Python garbage collection not working properly.
Solution: Add support for garbage collection. (ZyX)
Files: src/if_py_both.h

Patch 7.3.966
Problem: There is ":py3do" but no ":pydo".
Solution: Add the ":pydo" command. (Lilydjwg)
Files: runtime/doc/if_pyth.txt, src/ex_cmds.h, src/ex_docmd.c,

src/if_py_both.h, src/if_python.c, src/if_python3.c,
src/proto/if_python.pro

Patch 7.3.967 (after 7.3.965)
Problem: Build fails on Mac OSX. (Greg Novack)
Solution: Undefine clear().
Files: src/if_py_both.h

Patch 7.3.968
Problem: Multi-byte support is only available when compiled with "big"

features.
Solution: Include multibyte by default, with "normal" features.
Files: src/feature.h

Patch 7.3.969
Problem: Can't build with Python 3 and without Python 2.
Solution: Adjust #ifdef. (Xavier de Gaye)
Files: src/window.c

Patch 7.3.970
Problem: Syntax highlighting can be slow.
Solution: Include the NFA regexp engine. Add the 'regexpengine' option to

select which one is used. (various authors, including Ken Takata,
Andrei Aiordachioaie, Russ Cox, Xiaozhou Liua, Ian Young)

Files: src/Make_cyg.mak, src/Make_ming.mak, src/Make_mvc.mak,
src/Makefile, src/regexp.c, src/regexp.h, src/regexp_nfa.c,
src/structs.h, src/testdir/Makefile, src/testdir/test64.in,
src/testdir/test64.ok, Filelist, runtime/doc/pattern.txt,
runtime/doc/option.txt, src/option.c, src/option.h,
src/testdir/test95.in, src/testdir/test95.ok,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.3.971
Problem: No support for VS2012 static code analysis.

version7.txt — 2750

Solution: Add the ANALYZE option. (Mike Williams)
Files: src/Make_mvc.mak

Patch 7.3.972
Problem: Cursor not restored after InsertEnter autocommand if it moved to

another line.
Solution: Also restore if the saved line number is still valid. Allow

setting v:char to skip restoring.
Files: src/edit.c, runtime/doc/autocmd.txt

Patch 7.3.973
Problem: Compiler warnings. Crash on startup. (Tony Mechelynck)
Solution: Change EMSG2 to EMSGN. Make array one character longer.
Files: src/regexp_nfa.c

Patch 7.3.974
Problem: Can't build with ruby 1.8.5.
Solution: Only use ruby_init_stack() when RUBY_INIT_STACK is defined.

(Yukihiro Nakadaira)
Files: src/if_ruby.c

Patch 7.3.975
Problem: Crash in regexp parsing.
Solution: Correctly compute the end of allocated memory.
Files: src/regexp_nfa.c

Patch 7.3.976
Problem: Can't build on HP-UX.
Solution: Remove modern initialization. (John Marriott)
Files: src/regexp_nfa.c

Patch 7.3.977
Problem: Compiler warnings on 64 bit Windows.
Solution: Add type casts. (Mike Williams) Also fix some white space and

uncomment what was commented-out for testing.
Files: src/regexp_nfa.c

Patch 7.3.978
Problem: Regexp debug logs don't have a good name.
Solution: Use clear names and make it possible to write logs for the old and

new engines separately. (Taro Muraoka)
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.979
Problem: Complex NFA regexp doesn't work.
Solution: Set actual state stack end instead of using an arbitrary number.

(Yasuhiro Matsumoto)
Files: src/regexp_nfa.c

Patch 7.3.980
Problem: Regexp logs may contain garbage. Character classes don't work

correctly for multibyte characters.
Solution: Check for end of post list. Only use "is" functions for

characters up to 255. (Ken Takata)
Files: src/regexp_nfa.c

Patch 7.3.981
Problem: In the old regexp engine \i, \I, \f and \F don't work on

multibyte characters.
Solution: Dereference pointer properly.

version7.txt — 2751

Files: src/regexp.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.982
Problem: In the new regexp engine \p does not work on multibyte

characters.
Solution: Don't point to an integer but the characters.
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.983
Problem: Unnecessary temp variable.
Solution: Remove the variable.
Files: src/regexp_nfa.c

Patch 7.3.984
Problem: A Visual mapping that uses CTRL-G works differently when started

from Insert mode. (Ein Brown)
Solution: Reset old_mapped_len when handling typed text in Select mode.
Files: src/normal.c

Patch 7.3.985
Problem: GTK vim not started as gvim doesn't set WM_CLASS property to a

useful value.
Solution: Call g_set_prgname() on startup. (James McCoy)
Files: src/gui_gtk_x11.c

Patch 7.3.986
Problem: Test 95 doesn't pass when 'encoding' isn't utf-8. (Yasuhiro

Matsumoto)
Solution: Force 'encoding' to be utf-8.
Files: src/testdir/test95.in

Patch 7.3.987
Problem: No easy to run an individual test. Tests 64 fails when

'encoding' is not utf-8.
Solution: Add individual test targets to the Makefile. Move some lines from

test 64 to 95.
Files: src/Makefile, src/testdir/test64.in, src/testdir/test64.ok,

src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.988
Problem: New regexp engine is slow.
Solution: Break out of the loop when the state list is empty.
Files: src/regexp_nfa.c

Patch 7.3.989
Problem: New regexp engine compares negative numbers to character.
Solution: Add missing case statements.
Files: src/regexp_nfa.c

Patch 7.3.990
Problem: Memory leak in new regexp engine.
Solution: Jump to end of function to free memory. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 7.3.991
Problem: More can be shared by Python 2 and 3.
Solution: Move more stuff to if_py_both. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test87.ok

version7.txt — 2752

Patch 7.3.992
Problem: Python: Too many type casts.
Solution: Change argument types. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.993
Problem: Python: Later patch does things slightly differently.
Solution: Adjusted argument type changes. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.994
Problem: Python: using magic constants.
Solution: Use descriptive values for ml_flags. (ZyX)
Files: src/if_py_both.h, src/if_python3.c

Patch 7.3.995
Problem: Python: Module initialization is duplicated.
Solution: Move to shared file. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.996
Problem: Python: Can't check types of what is returned by bindeval().
Solution: Add vim.List, vim.Dictionary and vim.Function types. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/testdir/test86.in,

src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok

Patch 7.3.997
Problem: Vim and Python exceptions are different.
Solution: Make Vim exceptions be Python exceptions. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.998
Problem: Python: garbage collection issues.
Solution: Fix the GC issues: Use proper DESTRUCTOR_FINISH: avoids negative

refcounts, use PyObject_GC_* for objects with tp_traverse and
tp_clear, add RangeTraverse and RangeClear, use Py_XDECREF in some
places. (ZyX)

Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.999
Problem: New regexp engine sets curbuf temporarily.
Solution: Use reg_buf instead, like the old engine.
Files: src/regexp_nfa.c

Patch 7.3.1000 (whoa!)
Problem: Typo in char value causes out of bounds access.
Solution: Fix character value. (Klemens Baum)
Files: src/regexp.c

Patch 7.3.1001
Problem: Duplicate condition in if.
Solution: Remove one condition.
Files: src/regexp_nfa.c

Patch 7.3.1002
Problem: Valgrind errors for Python interface.
Solution: Fix memory leaks when running tests. (ZyX)
Files: src/if_py_both.h

version7.txt — 2753

Patch 7.3.1003
Problem: Python interface does not compile with Python 2.2
Solution: Fix thread issues and True/False. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1004
Problem: No error when option could not be set.
Solution: Report an error. (ZyX)
Files: src/if_py_both.h, src/option.c, src/proto/option.pro,

src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1005
Problem: Get stuck on regexp "\n*" and on "%s/^\n\+/\r".
Solution: Fix handling of matching a line break. (idea by Hirohito Higashi)
Files: src/regexp_nfa.c

Patch 7.3.1006
Problem: NFA engine not used for "_[0-9]".
Solution: Enable this, fixed in patch 1005.
Files: src/regexp_nfa.c

Patch 7.3.1007
Problem: Can't build on Minix 3.2.1.
Solution: Add a condition to an #ifdef. (Gautam Tirumala)
Files: src/memfile.c

Patch 7.3.1008
Problem: Test 95 fails on MS-Windows.
Solution: Set 'nomore'. Change \i to \f. Change multibyte character to

something that is not matching \i. (Ken Takata)
Files: src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1009
Problem: Compiler warning for ambiguous else.
Solution: Add curly braces.
Files: src/if_py_both.h

Patch 7.3.1010
Problem: New regexp: adding \Z makes every character match.
Solution: Only apply ireg_icombine for composing characters.

Also add missing change from patch 1008. (Ken Takata)
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1011
Problem: New regexp engine is inefficient with multibyte characters.
Solution: Handle a character at a time instead of a byte at a time. Also

make \Z partly work.
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1012
Problem: \Z does not work properly with the new regexp engine.
Solution: Make \Z work. Add tests.
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1013
Problem: New regexp logging is a bit messy.
Solution: Consistently use #defines, add explanatory comment. (Taro Muraoka)

version7.txt — 2754

Files: src/regexp_nfa.c

Patch 7.3.1014
Problem: New regexp state dump is hard to read.
Solution: Make the state dump more pretty. (Taro Muraoka)
Files: src/regexp_nfa.c

Patch 7.3.1015
Problem: New regexp engine: Matching composing characters is wrong.
Solution: Fix matching composing characters.
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1016
Problem: Unused field in nfa_state.
Solution: Remove lastthread.
Files: src/regexp.h, src/regexp_nfa.c

Patch 7.3.1017
Problem: Zero width match changes length of match.
Solution: For a zero width match put new states in the current position in

the state list.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok,

src/regexp.h

Patch 7.3.1018
Problem: New regexp engine wastes memory.
Solution: Allocate prog with actual number of states, not estimated maximum

number of states.
Files: src/regexp_nfa.c

Patch 7.3.1019
Problem: These do not work with the new regexp engine: \%o123, \%x123,

\%d123, \%u123 and \%U123.
Solution: Implement these items.
Files: src/regexp_nfa.c

Patch 7.3.1020
Problem: Not all patterns are tested with auto / old / new engine.
Solution: Test patterns with three values of 'regexpengine'.
Files: src/testdir/test64.in, src/testdir/test64.ok,

src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1021
Problem: New regexp engine does not ignore order of composing chars.
Solution: Ignore composing chars order.
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1022
Problem: Compiler warning for shadowed variable. (John Little)
Solution: Move declaration, rename variables.
Files: src/regexp_nfa.c

Patch 7.3.1023
Problem: Searching for composing char only and using \Z has different

results.
Solution: Make it match the composing char, matching everything is not

useful.
Files: src/regexp_nfa.c, src/testdir/test95.in, src/testdir/test95.ok

Patch 7.3.1024

version7.txt — 2755

Problem: New regexp: End of matching pattern not set correctly. (Cesar
Romani)

Solution: Quit the loop after finding the match. Store nfa_has_zend in the
program.

Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok,
src/regexp.h

Patch 7.3.1025
Problem: New regexp: not matching newline in string. (Marc Weber)
Solution: Check for "\n" character.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1026
Problem: New regexp: pattern that includes a new-line matches too early.

(John McGowan)
Solution: Do not start searching in the second line.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1027
Problem: New regexp performance: Calling no_Magic() very often.
Solution: Remove magicness inline.
Files: src/regexp_nfa.c

Patch 7.3.1028
Problem: New regexp performance: Copying a lot of position state.
Solution: Only copy the sub-expressions that are being used.
Files: src/regexp_nfa.c, src/regexp.h

Patch 7.3.1029
Problem: New regexp performance: Unused position state being copied.
Solution: Keep track of which positions are actually valid.
Files: src/regexp_nfa.c

Patch 7.3.1030 (after 7.3.1028)
Problem: Can't build for debugging.
Solution: Fix struct member names.
Files: src/regexp_nfa.c

Patch 7.3.1031
Problem: Compiler warnings for shadowed variable. (John Little)
Solution: Move the variable declarations to the scope where they are used.
Files: src/regexp_nfa.c

Patch 7.3.1032
Problem: "\ze" is not supported by the new regexp engine.
Solution: Make "\ze" work.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1033
Problem: "\1" .. "\9" are not supported in the new regexp engine.
Solution: Implement them. Add a few more tests.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok,

src/regexp.h

Patch 7.3.1034
Problem: New regexp code using strange multibyte code.
Solution: Use the normal code to advance and backup pointers.
Files: src/regexp_nfa.c

Patch 7.3.1035

version7.txt — 2756

Problem: Compiler warning on 64 bit windows.
Solution: Add type cast. (Mike Williams)
Files: src/if_py_both.h

Patch 7.3.1036
Problem: Can't build on HP-UX.
Solution: Give the union a name. (John Marriott)
Files: src/regexp_nfa.c

Patch 7.3.1037
Problem: Look-behind matching is very slow on long lines.
Solution: Add a byte limit to how far back an attempt is made.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1038
Problem: Crash when using Cscope.
Solution: Avoid negative argument to vim_strncpy(). (Narendran

Gopalakrishnan)
Files: src/if_cscope.c

Patch 7.3.1039
Problem: New regexp engine does not support \%23c, \%<23c and the like.
Solution: Implement them. (partly by Yasuhiro Matsumoto)
Files: src/regexp.h, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1040
Problem: Python: Problems with debugging dynamic build.
Solution: Python patch 1. (ZyX)
Files: src/if_python.c, src/if_python3.c

Patch 7.3.1041
Problem: Python: Invalid read valgrind errors.
Solution: Python patch 2: defer DICTKEY_UNREF until key is no longer needed.

(ZyX)
Files: src/if_py_both.h

Patch 7.3.1042
Problem: Python: can't assign to vim.Buffer.name.
Solution: Python patch 3. (ZyX)
Files: runtime/doc/if_pyth.txt, src/ex_cmds.c, src/if_py_both.h,

src/if_python3.c, src/if_python.c, src/proto/ex_cmds.pro,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1043
Problem: Python: Dynamic compilation with 2.3 fails.
Solution: Python patch 4. (ZyX)
Files: src/if_python.c

Patch 7.3.1044
Problem: Python: No {Buffer,TabPage,Window}.valid attributes.
Solution: Python patch 5: add .valid (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1045
Problem: Python: No error handling for VimToPython function.

version7.txt — 2757

Solution: Python patch 6. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1046
Problem: Python: Using Py_BuildValue for building strings.
Solution: Python patch 7 and 7.5: Replace Py_BuildValue with

PyString_FromString. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1047
Problem: Python: dir() does not work properly.
Solution: Python patch 8. Add __dir__ method to all objects with custom

tp_getattr supplemented by __members__ attribute for at least
python-2* versions. __members__ is not mentioned in python-3*
dir() output even if it is accessible. (ZyX)

Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1048
Problem: Python: no consistent naming.
Solution: Python patch 9: Rename d to dict and lookupDict to lookup_dict.

(ZyX)
Files: src/if_py_both.h

Patch 7.3.1049
Problem: Python: no consistent naming
Solution: Python patch 10: Rename DICTKEY_GET_NOTEMPTY to DICTKEY_GET. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1050
Problem: Python: Typo in pyiter_to_tv.
Solution: Python patch 11. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1051
Problem: Python: possible memory leaks.
Solution: Python patch 12: fix the leaks (ZyX)
Files: src/if_py_both.h

Patch 7.3.1052
Problem: Python: possible SEGV and negative refcount.
Solution: Python patch 13: Fix IterIter function. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1053
Problem: Python: no flag for types with tp_traverse+tp_clear.
Solution: Python patch 14: Add Py_TPFLAGS_HAVE_GC. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1054 (after 7.3.1042)
Problem: Can't build without the +autocmd feature. (Elimar Riesebieter)
Solution: Fix use of buf and curbuf.
Files: src/ex_cmds.c, src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1055
Problem: Negated collection does not match newline.
Solution: Handle newline differently. (Hiroshi Shirosaki)
Files: src/regexp_nfa.c, src/testdir/test64.ok, src/testdir/test64.in

version7.txt — 2758

Patch 7.3.1056
Problem: Python: possible memory leaks.
Solution: Python patch 15. (ZyX) Fix will follow later.
Files: src/eval.c, src/if_py_both.h, src/proto/eval.pro

Patch 7.3.1057
Problem: Python: not enough compatibility.
Solution: Python patch 16: Make OutputWritelines support any sequence object

(ZyX) Note: tests fail
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1058
Problem: Call of funcref does not succeed in other script.
Solution: Python patch 17: add get_expanded_name(). (ZyX)
Files: src/eval.c, src/proto/eval.pro

Patch 7.3.1059
Problem: Python: Using fixed size buffers.
Solution: Python patch 18: Use python's own formatter. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.1060
Problem: Python: can't repr() a function.
Solution: Python patch 19: add FunctionRepr(). (ZyX)
Files: src/if_py_both.h

Patch 7.3.1061
Problem: Python: Dictionary is not standard.
Solution: Python patch 20: Add standard methods and fields. (ZyX)
Files: runtime/doc/if_pyth.txt, src/eval.c, src/if_py_both.h,

src/if_python3.c, src/if_python.c, src/proto/eval.pro,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1062
Problem: Python: List is not standard.
Solution: Python patch 21: Add standard methods and fields. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1063
Problem: Python: Function is not standard.
Solution: Python patch 22: make Function subclassable. (ZyX)
Files: src/eval.c, src/if_py_both.h, src/proto/eval.pro,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1064
Problem: Python: insufficient error checking.
Solution: Python patch 23. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1065
Problem: Python: key mapping is not standard.
Solution: Python patch 24: use PyMapping_Keys. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.1066
Problem: Python: Insufficient exception and error testing.

version7.txt — 2759

Solution: Python patch 25. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1067
Problem: Python: documentation lags behind.
Solution: Python patch 26. (ZyX)
Files: runtime/doc/if_pyth.txt

Patch 7.3.1068
Problem: Python: Script is auto-loaded on function creation.
Solution: Python patch 27. (ZyX)
Files: src/eval.c, src/if_py_both.h, src/proto/eval.pro,

src/testdir/test86.ok, src/testdir/test87.ok, src/vim.h

Patch 7.3.1069
Problem: Python: memory leaks.
Solution: Python patch 28: Purge out DICTKEY_CHECK_EMPTY macros. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1070
Problem: Vim crashes in Python tests. Compiler warning for unused function.
Solution: Disable the tests for now. Move the function.
Files: src/if_py_both.h, src/if_python.c, src/testdir/test86.in,

src/testdir/test87.in

Patch 7.3.1071
Problem: New regexp engine: backreferences don't work correctly.
Solution: Add every possible start/end position on the state stack.
Files: src/regexp_nfa.c, src/regexp.h, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1072
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it.
Files: src/regexp_nfa.c

Patch 7.3.1073
Problem: New regexp engine may run out of states.
Solution: Allocate states dynamically. Also make the test report errors.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok,

src/testdir/test95.in

Patch 7.3.1074
Problem: Compiler warning for printf format. (Manuel Ortega)
Solution: Add type casts.
Files: src/if_py_both.h

Patch 7.3.1075
Problem: Compiler warning for storing a long_u in an int.
Solution: Declare the number as an int. (Mike Williams)
Files: src/regexp_nfa.c

Patch 7.3.1076
Problem: New regexp engine: \@= and \& don't work.
Solution: Make these items work. Add column info to logging.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1077
Problem: Python: Allocating dict the wrong way, causing a crash.

version7.txt — 2760

Solution: Use py_dict_alloc(). Fix some exception problems. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1078
Problem: New regexp engine: \@! doesn't work.
Solution: Implement the negated version of \@=.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1079
Problem: Test 87 fails.
Solution: Fix the test for Python 3.3. (ZyX) Make it pass on 32 bit systems.
Files: src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1080
Problem: Test 86 fails.
Solution: Comment out the parts that don't work. Make it pass on 32 bit

systems.
Files: src/testdir/test86.in, src/testdir/test86.ok

Patch 7.3.1081
Problem: Compiler warnings on 64-bit Windows.
Solution: Change variable types. (Mike Williams)
Files: src/if_py_both.h, src/regexp_nfa.c

Patch 7.3.1082
Problem: New regexp engine: Problem with \@= matching.
Solution: Save and restore nfa_match.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1083
Problem: New regexp engine: Does not support \%^ and \%$.
Solution: Support matching start and end of file.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1084
Problem: New regexp engine: only accepts up to \{,10}.
Solution: Remove upper limit. Remove dead code with NFA_PLUS.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1085
Problem: New regexp engine: Non-greedy multi doesn't work.
Solution: Implement \{-}.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1086
Problem: Old regexp engine accepts illegal range, new one doesn't.
Solution: Also accept the illegal range with the new engine.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1087
Problem: A leading star is not seen as a normal char when \{} follows.
Solution: Save and restore the parse state properly.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1088
Problem: New regexp engine: \@<= and \@<! are not implemented.
Solution: Implement look-behind matching. Fix off-by-one error in old

regexp engine.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

version7.txt — 2761

src/testdir/test64.ok

Patch 7.3.1089
Problem: Tests 86 and 87 fail on MS-Windows. (Ken Takata)
Solution: Fix platform-specific stuff. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1090
Problem: New regexp engine does not support \z1 .. \z9 and \z(.
Solution: Implement the syntax submatches.
Files: src/regexp.h, src/regexp_nfa.c

Patch 7.3.1091
Problem: New regexp engine: no error when using \z1 or \z(where it does

not work.
Solution: Give an error message.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.1092
Problem: Can't build with regexp debugging. NFA debug output shows wrong

pattern.
Solution: Fix debugging code for recent changes. Add the pattern to the

program.
Files: src/regexp_nfa.c, src/regexp.h

Patch 7.3.1093
Problem: New regexp engine: When a sub expression is empty \1 skips a

character.
Solution: Make \1 try the current position when the match is empty.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1094
Problem: New regexp engine: Attempts to match "^" at every character.
Solution: Only try "^" at the start of a line.
Files: src/regexp_nfa.c

Patch 7.3.1095
Problem: Compiler warnings for shadowed variables. (Christian Brabandt)
Solution: Rename new_state() to alloc_state(). Remove unnecessary

declaration.
Files: src/regexp_nfa.c

Patch 7.3.1096
Problem: Python: popitem() was not defined in a standard way.
Solution: Remove the argument from popitem(). (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/testdir/test86.in,

src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok

Patch 7.3.1097
Problem: Python: a few recently added items are not documented.
Solution: Update the documentation. (ZyX)
Files: runtime/doc/if_pyth.txt

Patch 7.3.1098
Problem: Python: Possible memory leaks
Solution: Add Py_XDECREF() calls. (ZyX)
Files: src/if_py_both.h

version7.txt — 2762

Patch 7.3.1099
Problem: Python: Changing directory with os.chdir() causes problems for

Vim's notion of directories.
Solution: Add vim.chdir() and vim.fchdir(). (ZyX)
Files: runtime/doc/if_pyth.txt, src/ex_docmd.c, src/if_py_both.h,

src/if_python3.c, src/if_python.c, src/proto/ex_docmd.pro,
src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1100
Problem: Python: a few more memory problems.
Solution: Add and remove Py_XDECREF(). (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1101
Problem: Configure doesn't find Python 3 on Ubuntu 13.04.
Solution: First try distutils.sysconfig. Also fix some indents. (Ken

Takata)
Files: src/configure.in, src/auto/configure

Patch 7.3.1102
Problem: Completion of ":py3do" and ":py3file" does not work after ":py3".
Solution: Make completion work. (Taro Muraoka)
Files: src/ex_docmd.c

Patch 7.3.1103
Problem: New regexp engine: overhead in saving and restoring.
Solution: Make saving and restoring list IDs faster. Don't copy or check \z

subexpressions when they are not used.
Files: src/regexp_nfa.c

Patch 7.3.1104
Problem: New regexp engine does not handle "~".
Solution: Add support for "~".
Files: src/regexp_nfa.c, src/testdir/test24.in, src/testdir/test24.ok

Patch 7.3.1105
Problem: New regexp engine: too much code in one function. Dead code.
Solution: Move the recursive nfa_regmatch call to a separate function.

Remove the dead code.
Files: src/regexp_nfa.c

Patch 7.3.1106
Problem: New regexp engine: saving and restoring lastlist in the states

takes a lot of time.
Solution: Use a second lastlist value for the first recursive call.
Files: src/regexp.h, src/regexp_nfa.c

Patch 7.3.1107
Problem: Compiler warnings for unused variables.
Solution: Put the variables inside #ifdef.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.1108
Problem: Error message for os.fchdir() (Charles Peacech)
Solution: Clear the error. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1109

version7.txt — 2763

Problem: Building on MS-Windows doesn't see changes in if_py_both.h.
Solution: Add a dependency. (Ken Takata)
Files: src/Make_bc5.mak, src/Make_cyg.mak, src/Make_ming.mak,

src/Make_mvc.mak

Patch 7.3.1110
Problem: New regexp matching: Using \@= and the like can be slow.
Solution: Decide whether to first try matching the zero-width part or what

follows, whatever is more likely to fail.
Files: src/regexp_nfa.c

Patch 7.3.1111
Problem: nfa_recognize_char_class() implementation is inefficient.
Solution: Use bits in an int instead of chars in a string. (Dominique Pelle)
Files: src/regexp_nfa.c, src/testdir/test36.in, src/testdir/test36.ok

Patch 7.3.1112
Problem: New regexp engine: \%V not supported.
Solution: Implement \%V. Add tests.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1113
Problem: New regexp engine: \%'m not supported.
Solution: Implement \%'m. Add tests.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1114 (after 7.3.1110)
Problem: Can't build without the syntax feature.
Solution: Add #ifdefs. (Erik Falor)
Files: src/regexp_nfa.c

Patch 7.3.1115
Problem: Many users don't like the cursor line number when 'relativenumber'

is set.
Solution: Have four combinations with 'number' and 'relativenumber'.

(Christian Brabandt)
Files: runtime/doc/options.txt, src/option.c, src/screen.c,

src/testdir/test89.in, src/testdir/test89.ok

Patch 7.3.1116
Problem: Can't build without Visual mode.
Solution: Add #ifdefs.
Files: src/regexp_nfa.c

Patch 7.3.1117
Problem: New regexp engine: \%[abc] not supported.
Solution: Implement \%[abc]. Add tests.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1118
Problem: Match failure rate is not very specific.
Solution: Tune the failure rate for match items.
Files: src/regexp_nfa.c

Patch 7.3.1119
Problem: Flags in 'cpo' are search for several times.
Solution: Store the result and re-use the flags.
Files: src/regexp.c, src/regexp_nfa.c

version7.txt — 2764

Patch 7.3.1120
Problem: Crash when regexp logging is enabled.
Solution: Avoid using NULL pointers. Advance over count argument.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.1121
Problem: New regexp engine: adding states that are not used.
Solution: Don't add the states.
Files: src/regexp_nfa.c

Patch 7.3.1122
Problem: New regexp engine: \@> not supported.
Solution: Implement \%>.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1123
Problem: Can't build tiny Vim on MS-Windows.
Solution: Adjust #ifdef around using modif_fname(). (Mike Williams)
Files: src/misc1.c

Patch 7.3.1124
Problem: Python: Crash on MS-Windows when os.fchdir() is not available.
Solution: Check for _chdir to be NULL. (Ken Takata)
Files: src/if_py_both.h

Patch 7.3.1125
Problem: Error for using \%V in a pattern in tiny Vim.
Solution: Allow using \%V but never match. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 7.3.1126
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Assign something to the variable.
Files: src/regexp_nfa.c

Patch 7.3.1127
Problem: No error for using empty \%[].
Solution: Give error message.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.1128
Problem: Now that the NFA engine handles everything every failure is a

syntax error.
Solution: Remove the syntax_error flag.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.1129
Problem: Can't see what pattern in syntax highlighting is slow.
Solution: Add the ":syntime" command.
Files: src/structs.h, src/syntax.c, src/ex_cmds.h, src/ex_docmd.c,

src/proto/syntax.pro, src/ex_cmds2.c, src/proto/ex_cmds2.pro,
runtime/doc/syntax.txt

Patch 7.3.1130 (after 7.3.1129)
Problem: Can't build with anything but huge features.
Solution: Check for FEAT_PROFILE. (Yasuhiro Matsumoto)
Files: src/ex_docmd.c, src/structs.h, src/syntax.c

Patch 7.3.1131

version7.txt — 2765

Problem: New regexp engine is a bit slow.
Solution: Do not clear the state list. Don't copy syntax submatches when

not used.
Files: src/regexp_nfa.c

Patch 7.3.1132
Problem: Crash when debugging regexp.
Solution: Do not try to dump subexpr that were not set. Skip over count of

\% items.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.3.1133
Problem: New regexp engine is a bit slow.
Solution: Skip ahead to a character that must match. Don't try matching a

"^" patter past the start of line.
Files: src/regexp_nfa.c, src/regexp.h

Patch 7.3.1134
Problem: Running test 49 takes a long time.
Solution: Don't have it grep all files.
Files: src/testdir/test49.vim

Patch 7.3.1135
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/syntax.c

Patch 7.3.1136
Problem: ":func Foo" does not show attributes.
Solution: Add "abort", "dict" and "range". (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.3.1137
Problem: New regexp engine: collections are slow.
Solution: Handle all characters in one go.
Files: src/regexp_nfa.c

Patch 7.3.1138
Problem: New regexp engine: neglist no longer used.
Solution: Remove the now unused neglist.
Files: src/regexp_nfa.c

Patch 7.3.1139
Problem: New regexp engine: negated flag is hardly used.
Solution: Add separate _NEG states, remove negated flag.
Files: src/regexp_nfa.c, src/regexp.h

Patch 7.3.1140
Problem: New regexp engine: trying expensive match while the result is not

going to be used.
Solution: Check for output state already being in the state list.
Files: src/regexp_nfa.c

Patch 7.3.1141
Problem: Win32: Check for available memory is not reliable and adds

overhead.
Solution: Remove mch_avail_mem(). (Mike Williams)
Files: src/os_win32.c, src/os_win32.h

Patch 7.3.1142

version7.txt — 2766

Problem: Memory leak in ":syntime report".
Solution: Clear the grow array. (Dominique Pelle)
Files: src/syntax.c

Patch 7.3.1143
Problem: When mapping NUL it is displayed as an X.
Solution: Check for KS_ZERO instead of K_ZERO. (Yasuhiro Matsumoto)
Files: src/message.c

Patch 7.3.1144
Problem: "RO" is not translated everywhere.
Solution: Put inside _(). (Sergey Alyoshin)
Files: src/buffer.c, src/screen.c

Patch 7.3.1145
Problem: New regexp engine: addstate() is called very often.
Solution: Optimize adding the start state.
Files: src/regexp_nfa.c

Patch 7.3.1146
Problem: New regexp engine: look-behind match not checked when followed by

zero-width match.
Solution: Do the look-behind match before adding the zero-width state.
Files: src/regexp_nfa.c

Patch 7.3.1147
Problem: New regexp engine: regstart is only used to find the first match.
Solution: Use regstart whenever adding the start state.
Files: src/regexp_nfa.c

Patch 7.3.1148
Problem: No command line completion for ":syntime".
Solution: Implement the completion. (Dominique Pelle)
Files: runtime/doc/map.txt, src/ex_cmds.h, src/ex_docmd.c,

src/ex_getln.c, src/proto/syntax.pro, src/syntax.c, src/vim.h

Patch 7.3.1149
Problem: New regexp engine: Matching plain text could be faster.
Solution: Detect a plain text match and handle it specifically. Add

vim_regfree().
Files: src/regexp.c, src/regexp.h, src/regexp_nfa.c,

src/proto/regexp.pro, src/buffer.c, src/edit.c, src/eval.c,
src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,
src/ex_getln.c, src/fileio.c, src/gui.c, src/misc1.c, src/misc2.c,
src/option.c, src/syntax.c, src/quickfix.c, src/search.c,
src/spell.c, src/tag.c, src/window.c, src/screen.c, src/macros.h,
src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1150
Problem: New regexp engine: Slow when a look-behind match does not have a

width specified.
Solution: Try to compute the maximum width.
Files: src/regexp_nfa.c

Patch 7.3.1151
Problem: New regexp engine: Slow when a look-behind match is followed by a

zero-width match.
Solution: Postpone the look-behind match more often.
Files: src/regexp_nfa.c

version7.txt — 2767

Patch 7.3.1152
Problem: In tiny build ireg_icombine is undefined. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/regexp_nfa.c

Patch 7.3.1153
Problem: New regexp engine: Some look-behind matches are very expensive.
Solution: Postpone invisible matches further, until a match is almost found.
Files: src/regexp_nfa.c

Patch 7.3.1154
Problem: New regexp_nfa engine: Unnecessary code.
Solution: Remove unnecessary code.
Files: src/regexp_nfa.c

Patch 7.3.1155
Problem: MS-DOS: "make test" uses external rmdir command.
Solution: Rename "rmdir" to "rd". (Taro Muraoka)
Files: src/testdir/Make_dos.mak

Patch 7.3.1156
Problem: Compiler warnings. (dv1445)
Solution: Initialize variables, even when the value isn't really used.
Files: src/regexp_nfa.c, src/eval.c

Patch 7.3.1157
Problem: New regexp engine fails on "\(\<command\)\@<=.*"
Solution: Fix rule for postponing match. Further tune estimating whether

postponing works better. Add test.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1158
Problem: Crash when running test 86. (Jun Takimoto)
Solution: Define PY_SSIZE_T_CLEAN early. (Elimar Riesebieter)
Files: src/if_python.c, src/if_python3.c

Patch 7.3.1159
Problem: The round() function is not always available. (Christ van

Willegen)
Solution: Use the solution from f_round().
Files: src/ex_cmds2.c, src/eval.c, src/proto/eval.pro

Patch 7.3.1160
Problem: Mixing long and pointer doesn't always work.
Solution: Avoid cast to pointer.
Files: src/undo.c

Patch 7.3.1161
Problem: Python: PyList_SetItem() is inefficient.
Solution: Use PyList_SET_ITEM() (ZyX)
Files: src/if_py_both.h

Patch 7.3.1162
Problem: Python: Memory leaks
Solution: Add more Py_DECREF(). (ZyX)
Files: src/if_py_both.h, src/if_python.c

Patch 7.3.1163
Problem: Not easy to load Python modules.
Solution: Search "python2", "python3" and "pythonx" directories in

version7.txt — 2768

'runtimepath' for Python modules. (ZyX)
Files: runtime/doc/if_pyth.txt, src/configure.in, src/ex_cmds2.c,

src/if_py_both.h, src/if_python.c, src/if_python3.c,
src/testdir/test86.in, src/testdir/test87.in, src/auto/configure

Patch 7.3.1164
Problem: Can't test what is actually displayed on screen.
Solution: Add the screenchar() and screenattr() functions.
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.3.1165
Problem: HP-UX compiler can't handle zero size array. (Charles Cooper)
Solution: Make the array one item big.
Files: src/regexp.h, src/regexp_nfa.c

Patch 7.3.1166
Problem: Loading Python modules is not tested.
Solution: Enable commented-out tests, add missing files. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok,
src/testdir/python2/module.py, src/testdir/python3/module.py,
src/testdir/pythonx/module.py, src/testdir/pythonx/modulex.py,
Filelist

Patch 7.3.1167
Problem: Python configure check doesn't reject Python 2 when requesting

Python 3. Some systems need -pthreads instead of -pthread.
Solution: Adjust configure accordingly. (Andrei Olsen)
Files: src/configure.in, src/auto/configure

Patch 7.3.1168
Problem: Python "sane" configure checks give a warning message.
Solution: Use single quotes instead of escaped double quotes. (Ben Fritz)
Files: src/configure.in, src/auto/configure

Patch 7.3.1169
Problem: New regexp engine: some work is done while executing a pattern,

even though the result is predictable.
Solution: Do the work while compiling the pattern.
Files: src/regexp_nfa.c

Patch 7.3.1170
Problem: Patch 7.3.1058 breaks backwards compatibility, not possible to use

a function reference as a string. (lilydjwg)
Solution: Instead of translating the function name only translate "s:".
Files: src/eval.c

Patch 7.3.1171
Problem: Check for digits and ascii letters can be faster.
Solution: Use a trick with one comparison. (Dominique Pelle)
Files: src/macros.h

Patch 7.3.1172
Problem: Python 2: loading modules doesn't work well.
Solution: Fix the code. Add more tests. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python.c,

src/testdir/python2/module.py, src/testdir/python3/module.py,
src/testdir/python_after/after.py,
src/testdir/python_before/before.py, src/testdir/test86.in,
src/testdir/test86.ok, src/testdir/test87.in,

version7.txt — 2769

src/testdir/test87.ok, Filelist

Patch 7.3.1173
Problem: Python 2 tests don't have the same output everywhere.
Solution: Make the Python 2 tests more portable. (ZyX)
Files: src/testdir/test86.in, src/testdir/test86.ok

Patch 7.3.1174
Problem: Python 2 and 3 use different ways to load modules.
Solution: Use the same method. (ZyX)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python3.c,

src/if_python.c

Patch 7.3.1175
Problem: Using isalpha() and isalnum() can be slow.
Solution: Use range checks. (Mike Williams)
Files: src/ex_docmd.c, src/macros.h

Patch 7.3.1176
Problem: Compiler warnings on 64 bit system.
Solution: Add type casts. (Mike Williams)
Files: src/eval.c, src/if_py_both.h

Patch 7.3.1177
Problem: Wasting memory on padding.
Solution: Reorder struct fields. (Dominique Pelle)
Files: src/structs.h, src/fileio.c

Patch 7.3.1178
Problem: Can't put all Vim config files together in one directory.
Solution: Load ~/.vim/vimrc if ~/.vimrc does not exist. (Lech Lorens)
Files: runtime/doc/gui.txt, runtime/doc/starting.txt, src/gui.c,

src/main.c, src/os_amiga.h, src/os_dos.h, src/os_unix.h

Patch 7.3.1179
Problem: When a global mapping starts with the same characters as a

buffer-local mapping Vim waits for a character to be typed to find
out whether the global mapping is to be used. (Andy Wokula)

Solution: Use the local mapping without waiting. (Michael Henry)
Files: runtime/doc/map.txt, src/getchar.c

Patch 7.3.1180
Problem: When current directory changes, path from cscope may no longer be

valid. (AS Budden)
Solution: Always store the absolute path. (Christian Brabandt)
Files: src/if_cscope.c

Patch 7.3.1181
Problem: Wrong error message for 1.0[0].
Solution: Check for funcref and float separately. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.3.1182
Problem: 'backupcopy' default on MS-Windows does not work for hard and soft

links.
Solution: Check for links. (David Pope, Ken Takata)
Files: src/fileio.c, src/os_win32.c, src/proto/os_win32.pro

Patch 7.3.1183
Problem: Python tests 86 and 87 fail.

version7.txt — 2770

Solution: Add "empty" files. (ZyX)
Files: src/testdir/python_before/before_1.py,

src/testdir/python_before/before_2.py

Patch 7.3.1184
Problem: Highlighting is sometimes wrong. (Axel Bender)
Solution: Fetch regline again when returning from recursive regmatch.
Files: src/regexp_nfa.c

Patch 7.3.1185
Problem: New regexp engine: no match with ^ after \n. (SungHyun Nam)
Solution: Fix it, add a test.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1186
Problem: Python 3: test 87 may crash.
Solution: Use _PyArg_Parse_SizeT instead of PyArg_Parse. (Jun Takimoto)
Files: src/if_python3.c

Patch 7.3.1187 (after 7.3.1170)
Problem: "s:" is recognized but "<SID>" is not. (ZyX)
Solution: Translate "<SID>" like "s:".
Files: src/eval.c

Patch 7.3.1188
Problem: Newline characters messing up error message.
Solution: Remove the newlines. (Kazunobu Kuriyama)
Files: src/gui_x11.c

Patch 7.3.1189 (after 7.3.1185)
Problem: Highlighting is still wrong sometimes. (Dominique Pelle)
Solution: Also restore reginput properly.
Files: src/regexp_nfa.c

Patch 7.3.1190
Problem: Compiler warning for parentheses. (Christian Wellenbrock)
Solution: Change #ifdef.
Files: src/ex_docmd.c

Patch 7.3.1191
Problem: Backreference to previous line doesn't work. (Lech Lorens)
Solution: Implement looking in another line.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok

Patch 7.3.1192
Problem: Valgrind reports errors when using backreferences. (Dominique

Pelle)
Solution: Do not check the end of submatches.
Files: src/regexp_nfa.c

Patch 7.3.1193
Problem: fail_if_missing not used for Python 3.
Solution: Give an error when Python 3 can't be configured. (Andrei Olsen)
Files: src/configure.in, src/auto/configure

Patch 7.3.1194
Problem: Yaml highlighting is slow.
Solution: Tune the estimation of pattern failure chance.
Files: src/regexp_nfa.c

version7.txt — 2771

Patch 7.3.1195
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Set the length to the matching backref.
Files: src/regexp.c

Patch 7.3.1196
Problem: Old regexp engine does not match pattern with backref correctly.

(Dominique Pelle)
Solution: Fix setting status. Test multi-line patterns better.
Files: src/regexp.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1197
Problem: ":wviminfo!" does not write history previously read from a viminfo

file. (Roland Eggner)
Solution: When not merging history write all entries.
Files: src/ex_cmds.c, src/ex_getln.c, src/proto/ex_getln.pro

Patch 7.3.1198
Problem: Build error when using Perl 5.18.0 and dynamic loading.
Solution: Change #ifdefs for Perl_croak_xs_usage. (Ike Devolder)
Files: src/if_perl.xs

Patch 7.3.1199
Problem: When evaluating 'foldexpr' causes an error this is silently

ignored and evaluation is retried every time.
Solution: Set emsg_silent instead of emsg_off. Stop evaluating 'foldexpr' is

it is causing errors. (Christian Brabandt)
Files: src/fold.c

Patch 7.3.1200
Problem: When calling setline() from Insert mode, using CTRL-R =, undo does

not work properly. (Israel Chauca)
Solution: Sync undo after evaluating the expression. (Christian Brabandt)
Files: src/edit.c, src/testdir/test61.in, src/testdir/test61.ok

Patch 7.3.1201
Problem: When a startup script creates a preview window, it probably

becomes the current window.
Solution: Make another window the current one. (Christian Brabandt)
Files: src/main.c

Patch 7.3.1202 (after 7.3.660)
Problem: Tags are not found in case-folded tags file. (Darren cole, Issue

90)
Solution: Take into account that when case folding was used for the tags

file "!rm" sorts before the "!_TAG" header lines.
Files: src/tag.c

Patch 7.3.1203
Problem: Matches from matchadd() might be highlighted incorrectly when they

are at a fixed position and inserting lines. (John Szakmeister)
Solution: Redraw all lines below a change if there are highlighted matches.

(idea by Christian Brabandt)
Files: src/screen.c

Patch 7.3.1204
Problem: Calling gettabwinvar() in 'tabline' cancels Visual mode. (Hirohito

Higashi)
Solution: Don't always use goto_tabpage_tp().

version7.txt — 2772

Files: src/window.c, src/proto/window.pro, src/eval.c, src/if_py_both.h

Patch 7.3.1205
Problem: logtalk.dict is not removed on uninstall.
Solution: Remove the file. (Kazunobu Kuriyama)
Files: src/Makefile

Patch 7.3.1206
Problem: Inconsistent function argument declarations.
Solution: Use ANSI style.
Files: src/if_py_both.h

Patch 7.3.1207
Problem: New regexp engine: no match found on "#if FOO". (Lech Lorens)
Solution: When adding a state gets skipped don't adjust the index.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1208
Problem: Compiler warnings on MS-Windows.
Solution: Add type cast. Move variable declaration. (Mike Williams)
Files: src/option.c, src/os_mswin.c

Patch 7.3.1209
Problem: No completion for ":tabdo".
Solution: Add tabdo to the list of modifiers. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.3.1210 (after 7.3.1182)
Problem: 'backupcopy' default on MS-Windows is wrong when 'encoding' equals

the current codepage.
Solution: Change the #else block. (Ken Takata)
Files: src/os_win32.c

Patch 7.3.1211
Problem: MS-Windows: When 'encoding' differs from the current codepage

":hardcopy" does not work properly.
Solution: Use TextOutW() and SetDlgItemTextW(). (Ken Takata)
Files: src/os_mswin.c, src/vim.rc

Patch 7.3.1212
Problem: "make test" on MS-Windows does not report failure like Unix does.
Solution: Make it work like on Unix. (Taro Muraoka)
Files: src/testdir/Make_dos.mak

Patch 7.3.1213
Problem: Can't build with small features and Python.
Solution: Adjust #ifdefs.
Files: src/eval.c, src/buffer.c, src/eval.c, src/window.c

Patch 7.3.1214
Problem: Missing declaration for init_users() and realloc_post_list().

(Salman Halim)
Solution: Add the declarations.
Files: src/misc1.c, src/regexp_nfa.c

Patch 7.3.1215
Problem: Compiler warning for function not defined.
Solution: Add #ifdef.
Files: src/misc1.c

version7.txt — 2773

Patch 7.3.1216
Problem: Configure can't find Motif on Ubuntu.
Solution: Search for libXm in /usr/lib/*-linux-gnu.
Files: src/configure.in, src/auto/configure

Patch 7.3.1217
Problem: New regexp engine: Can't handle \%[[ao]]. (Yukihiro Nakadaira)
Solution: Support nested atoms inside \%[].
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1218
Problem: "make test" on MS-Windows does not clean all temporary files and

gives some unnecessary message.
Solution: Clean the right files. Create .failed files. (Ken Takata)
Files: src/testdir/Make_dos.mak

Patch 7.3.1219
Problem: No test for using []] inside \%[].
Solution: Add a test.
Files: src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1220
Problem: MS-Windows: When using wide font italic and bold are not included.
Solution: Support wide-bold, wide-italic and wide-bold-italic. (Ken Takata,

Taro Muraoka)
Files: src/gui.c, src/gui.h, src/gui_w48.c

Patch 7.3.1221
Problem: When build flags change "make distclean" run into a configure

error.
Solution: When CFLAGS changes delete auto/config.cache. Also avoid adding

duplicate text to flags. (Ken Takata)
Files: src/Makefile, src/configure.in, src/auto/configure

Patch 7.3.1222
Problem: Cannot execute some tests from the src directly.
Solution: Add missing targets.
Files: src/Makefile

Patch 7.3.1223
Problem: Tests fail on MS-Windows.
Solution: Avoid depending on OS version. Use DOS commands instead of Unix

commands. (Taro Muraoka, Ken Takata)
Files: src/testdir/test17.in, src/testdir/test50.in,

src/testdir/test71.in, src/testdir/test77.in

Patch 7.3.1224
Problem: Clang gives warnings on xxd.
Solution: Change how to use part of a string. (Dominique Pelle) Also avoid

warning for return not reached.
Files: src/xxd/xxd.c, src/regexp_nfa.c

Patch 7.3.1225
Problem: Compiler warnings when building with Motif.
Solution: Change set_label() argument. (Kazunobu Kuriyama)
Files: src/gui_motif.c

Patch 7.3.1226
Problem: Python: duplicate code.
Solution: Share code between OutputWrite() and OutputWritelines(). (ZyX)

version7.txt — 2774

Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1227
Problem: Inconsistent string conversion.
Solution: Use 'encoding' instead of utf-8. Use METH_O in place of

METH_VARARGS where appropriate. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1228
Problem: Python: various inconsistencies and problems.
Solution: StringToLine now supports both bytes() and unicode() objects.

Make function names consistent. Fix memory leak fixed in
StringToLine. (ZyX)

Files: src/if_py_both.h, src/if_python3.c, src/if_python.c

Patch 7.3.1229
Problem: Python: not so easy to delete/restore translating.
Solution: Make macros do translation of exception messages. (ZyX)

Note: this breaks translations!
Files: src/if_py_both.h, src/if_python3.c

Patch 7.3.1230
Problem: Python: Exception messages are not clear.
Solution: Make exception messages more verbose. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1231
Problem: Python: use of numbers not consistent.
Solution: Add support for Number protocol. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1232
Problem: Python: inconsistencies in variable names.
Solution: Rename variables. (ZyX)
Files: src/eval.c, src/if_py_both.h

Patch 7.3.1233
Problem: Various Python problems.
Solution: Fix VimTryEnd. Crash with debug build and PYTHONDUMPREFS=1. Memory

leaks in StringToLine(), BufferMark() and convert_dl. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.3.1234 (after 7.3.1229)
Problem: Python: Strings are not marked for translation.
Solution: Add N_() where appropriate. (ZyX)
Files: src/if_py_both.h

Patch 7.3.1235
Problem: In insert mode CTRL-] is not inserted, on the command-line it is.
Solution: Don't insert CTRL-] on the command line. (Yukihiro Nakadaira)
Files: src/ex_getln.c

Patch 7.3.1236
Problem: Python: WindowSetattr() missing support for NUMBER_UNSIGNED.
Solution: Add NUMBER_UNSIGNED, add more tests. Various fixes. (ZyX)
Files: src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/testdir/pythonx/failing.py,

version7.txt — 2775

src/testdir/pythonx/failing_import.py, src/testdir/test86.in,
src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok, src/testdir/pythonx/topmodule/__init__.py,
src/testdir/pythonx/topmodule/submodule/__init__.py,
src/testdir/pythonx/topmodule/submodule/subsubmodule/__init__.py,
src/testdir/pythonx/topmodule/submodule/subsubmodule/subsubsubmodule.py

Patch 7.3.1237
Problem: Python: non-import errors not handled correctly.
Solution: Let non-ImportError exceptions pass the finder. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok

Patch 7.3.1238
Problem: Crash in Python interface on 64 bit machines.
Solution: Change argument type of PyString_AsStringAndSize. (Taro Muraoka,

Jun Takimoto)
Files: src/if_python.c

Patch 7.3.1239
Problem: Can't build with Python and MSVC10.
Solution: Move #if outside of macro. (Taro Muraoka)
Files: src/if_py_both.h

Patch 7.3.1240
Problem: Memory leak in findfile().
Solution: Free the memory. (Christian Brabandt)
Files: src/eval.c

Patch 7.3.1241 (after 7.3.1236)
Problem: Some test files missing from the distribution.
Solution: Update the list of files.
Files: Filelist

Patch 7.3.1242
Problem: No failure when trying to use a number as a string.
Solution: Give an error when StringToLine() is called with an instance of

the wrong type. (Jun Takimoto)
Files: src/if_py_both.h

Patch 7.3.1243
Problem: New regexp engine: back references in look-behind match don't

work. (Lech Lorens)
Solution: Copy the submatches before a recursive match. Also fix function

prototypes.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1244
Problem: MS-Windows: confirm() dialog text may not fit.
Solution: Use GetTextWidthEnc() instead of GetTextWidth(). (Yasuhiro

Matsumoto)
Files: src/gui_w32.c

Patch 7.3.1245
Problem: MS-Windows: confirm() dialog text may still not fit.
Solution: Use GetTextWidthEnc() instead of GetTextWidth() in two more

places. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 7.3.1246
Problem: When setting 'winfixheight' and resizing the window causes the

version7.txt — 2776

window layout to be wrong.
Solution: Add frame_check_height() and frame_check_width() (Yukihiro

Nakadaira)
Files: src/window.c

Patch 7.3.1247
Problem: New regexp engine: '[]\@!\p\%([]\@!\p\)*:' does not always match.
Solution: When there is a PIM add a duplicate state that starts at another

position.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1248
Problem: Still have old hacking code for Input Method.
Solution: Add 'imactivatefunc' and 'imstatusfunc' as a generic solution to

Input Method activation. (Yukihiro Nakadaira)
Files: runtime/doc/options.txt, src/fileio.c, src/mbyte.c, src/option.c,

src/option.h, src/proto/fileio.pro

Patch 7.3.1249
Problem: Modeline not recognized when using "Vim" instead of "vim".
Solution: Also accept "Vim".
Files: src/buffer.c

Patch 7.3.1250
Problem: Python tests fail on MS-Windows.
Solution: Change backslashes to slashes. (Taro Muraoka)
Files: src/testdir/test86.in, src/testdir/test87.in

Patch 7.3.1251
Problem: Test 61 messes up viminfo.
Solution: Specify a separate viminfo file.
Files: src/testdir/test61.in

Patch 7.3.1252
Problem: gvim does not find the toolbar bitmap files in ~/vimfiles/bitmaps

if the corresponding menu command contains additional characters
like the shortcut marker '&' or if you use a non-english locale.

Solution: Use menu->en_dname or menu->dname. (Martin Gieseking)
Files: src/gui_w32.c

Patch 7.3.1253 (after 7.3.1200)
Problem: Still undo problem after using CTRL-R = setline(). (Hirohito

Higashi)
Solution: Set the ins_need_undo flag.
Files: src/edit.c

Patch 7.3.1254 (after 7.3.1252)
Problem: Can't build without the multi-lang feature. (John Marriott)
Solution: Add #ifdef.
Files: src/gui_w32.c

Patch 7.3.1255
Problem: Clang warnings when building with Athena.
Solution: Add type casts. (Dominique Pelle)
Files: src/gui_at_fs.c

Patch 7.3.1256
Problem: Can't build without eval or autocmd feature.
Solution: Add #ifdefs.
Files: src/mbyte.c, src/window.c

version7.txt — 2777

Patch 7.3.1257
Problem: With GNU gettext() ":lang de_DE.utf8" does not always result in

German messages.
Solution: Clear the $LANGUAGE environment variable.
Files: src/ex_cmds2.c

Patch 7.3.1258
Problem: Using submatch() may crash Vim. (Ingo Karkat)
Solution: Restore the number of subexpressions used.
Files: src/regexp_nfa.c

Patch 7.3.1259
Problem: No test for patch 7.3.1258
Solution: Add a test entry.
Files: src/testdir/test64.in, src/testdir/test64.ok

Patch 7.3.1260
Problem: User completion does not get the whole command line in the command

line window.
Solution: Pass on the whole command line. (Daniel Thau)
Files: src/ex_getln.c, src/structs.h

Patch 7.3.1261 (after patch 7.3.1179)
Problem: A buffer-local language mapping from a keymap stops a global

insert mode mapping from working. (Ron Aaron)
Solution: Do not wait for more characters to be typed only when the mapping

was defined with <nowait>.
Files: runtime/doc/map.txt, src/eval.c, src/getchar.c,

src/testdir/test75.in, src/testdir/test75.ok

Patch 7.3.1262
Problem: Crash and compilation warnings with Cygwin.
Solution: Check return value of XmbTextListToTextProperty(). Add type casts.

Adjust #ifdefs. (Lech Lorens)
Files: src/main.c, src/os_unix.c, src/ui.c

Patch 7.3.1263
Problem: Typo in short option name.
Solution: Change "imse" to "imsf".
Files: src/option.c

Patch 7.3.1264 (after 7.3.1261)
Problem: Missing m_nowait.
Solution: Include missing part of the patch.
Files: src/structs.h

Patch 7.3.1265 (after 7.3.1249)
Problem: Accepting "Vim:" for a modeline causes errors too often.
Solution: Require "Vim:" to be followed by "set".
Files: src/buffer.c

Patch 7.3.1266
Problem: QNX: GUI fails to start.
Solution: Remove the QNX-specific #ifdef. (Sean Boudreau)
Files: src/gui.c

Patch 7.3.1267
Problem: MS-Windows ACL support doesn't work well.
Solution: Implement more ACL support. (Ken Takata)

version7.txt — 2778

Files: src/os_win32.c

Patch 7.3.1268
Problem: ACL support doesn't work when compiled with MingW.
Solution: Support ACL on MingW. (Ken Takata)
Files: src/os_win32.c, src/os_win32.h

Patch 7.3.1269
Problem: Insert completion keeps entry selected even though the list has

changed. (Olivier Teuliere)
Solution: Reset compl_shown_match and compl_curr_match. (Christian Brabandt)
Files: src/edit.c

Patch 7.3.1270
Problem: Using "Vp" in an empty buffer can't be undone. (Hauke Petersen)
Solution: Save one line in an empty buffer. (Christian Brabandt)
Files: src/ops.c

Patch 7.3.1271 (after 7.3.1260)
Problem: Command line completion does not work.
Solution: Move setting xp_line down. (Daniel Thau)
Files: src/ex_getln.c

Patch 7.3.1272
Problem: Crash when editing Ruby file. (Aliaksandr Rahalevich)
Solution: Reallocate the state list when necessary.
Files: src/regexp_nfa.c

Patch 7.3.1273
Problem: When copying a location list the index might be wrong.
Solution: Set the index to one when using the first entry. (Lech Lorens)
Files: src/quickfix.c

Patch 7.3.1274
Problem: When selecting an entry from a location list it may pick an

arbitrary window or open a new one.
Solution: Prefer using a window related to the location list. (Lech Lorens)
Files: src/quickfix.c

Patch 7.3.1275
Problem: "gn" does not work when the match is a single character.
Solution: Fix it, add a test. (Christian Brabandt)
Files: src/search.c, src/testdir/test53.in, src/testdir/test53.ok

Patch 7.3.1276
Problem: When using a cscope connection resizing the window may send

SIGWINCH to cscope and it quits.
Solution: Call setpgid(0, 0) in the child process. (Narendran Gopalakrishnan)
Files: src/if_cscope.c

Patch 7.3.1277
Problem: In diff mode 'cursorline' also draws in the non-active window.

When 'nu' and 'sbr' are set the 'sbr' string is not underlined.
Solution: Only draw the cursor line in the current window. Combine the

'cursorline' and other highlighting attributes. (Christian
Brabandt)

Files: src/screen.c

Patch 7.3.1278
Problem: When someone sets the screen size to a huge value with "stty" Vim

version7.txt — 2779

runs out of memory before reducing the size.
Solution: Limit Rows and Columns in more places.
Files: src/gui.c, src/gui_gtk_x11.c, src/option.c, src/os_unix.c,

src/proto/term.pro, src/term.c

Patch 7.3.1279
Problem: Compiler warning for variable uninitialized. (Tony Mechelynck)
Solution: Add an init.
Files: src/ex_getln.c

Patch 7.3.1280
Problem: Reading memory already freed since patch 7.3.1247. (Simon

Ruderich, Dominique Pelle)
Solution: Copy submatches before reallocating the state list.
Files: src/regexp_nfa.c

Patch 7.3.1281
Problem: When 'ttymouse' is set to "xterm2" clicking in column 123 moves

the cursor to column 96. (Kevin Goodsell)
Solution: Decode KE_CSI.
Files: src/term.c

Patch 7.3.1282 (after 7.3.1277)
Problem: 'cursorline' not drawn in any other window. (Charles Campbell)
Solution: Do draw the cursor line in other windows.
Files: src/screen.c

Patch 7.3.1283
Problem: Test 71 fails on MS-Windows.
Solution: Put the binary data in a separate file. (Ken Takata)
Files: src/testdir/test71.in, src/testdir/test71a.in

Patch 7.3.1284
Problem: Compiler warnings in MS-Windows clipboard handling.
Solution: Add type casts. (Ken Takata)
Files: src/winclip.c

Patch 7.3.1285
Problem: No tests for picking a window when selecting an entry in a

location list. Not picking the right window sometimes.
Solution: Add test 96. Set usable_win appropriately. (Lech Lorens)
Files: src/quickfix.c, src/testdir/Makefile, src/testdir/test96.in,

src/testdir/test96.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.3.1286
Problem: Check for screen size missing for Athena and Motif.
Solution: Add call to limit_screen_size().
Files: src/gui_x11.c

Patch 7.3.1287
Problem: Python SystemExit exception is not handled properly.
Solution: Catch the exception and give an error. (Yasuhiro Matsumoto, Ken

Takata)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/if_python.c,

src/if_python3.c

Patch 7.3.1288
Problem: The first ":echo 'hello'" command output doesn't show. Mapping

version7.txt — 2780

for <S-F3> gets triggered during startup.
Solution: Add debugging code for the termresponse. When receiving the "Co"

entry and when setting 'ambiwidth' redraw right away if possible.
Add redraw_asap(). Don't set 'ambiwidth' if it already had the
right value. Do the 'ambiwidth' check in the second row to avoid
confusion with <S-F3>.

Files: src/term.c, src/screen.c, src/proto/screen.pro

Patch 7.3.1289
Problem: Get GLIB warning when removing a menu item.
Solution: Reference menu-id and also call gtk_container_remove(). (Ivan

Krasilnikov)
Files: src/gui_gtk.c

Patch 7.3.1290 (after 7.3.1253)
Problem: CTRL-R = in Insert mode changes the start of the insert position.

(Ingo Karkat)
Solution: Only break undo, don't start a new insert.
Files: src/edit.c

Patch 7.3.1291 (after 7.3.1288)
Problem: Compiler warnings for uninitialized variables. (Tony Mechelynck)
Solution: Initialize the variables.
Files: src/screen.c

Patch 7.3.1292
Problem: Possibly using invalid pointer when searching for window. (Raichoo)
Solution: Use "firstwin" instead of "tp_firstwin" for current tab.
Files: src/window.c

Patch 7.3.1293
Problem: Put in empty buffer cannot be undone.
Solution: Save one more line for undo. (Ozaki)
Files: src/ops.c

Patch 7.3.1294
Problem: ":diffoff" resets options.
Solution: Save and restore option values. (Christian Brabandt)
Files: src/diff.c, src/structs.h, src/option.c

Patch 7.3.1295
Problem: glob() and globpath() do not handle escaped special characters

properly.
Solution: Handle escaped characters differently. (Adnan Zafar)
Files: src/testdir/Makefile, src/testdir/test97.in,

src/testdir/test97.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms, src/fileio.c,
src/misc1.c

Patch 7.3.1296
Problem: Only MS-Windows limits the GUI window size to what fits on the

monitor.
Solution: Limit the size for all systems. (Daniel Harding)
Files: src/ui.c

Patch 7.3.1297
Problem: findfile() directory matching does not work when a star follows

text. (Markus Braun)
Solution: Make a wildcard work properly. (Christian Brabandt)

version7.txt — 2781

Files: src/misc2.c, src/testdir/test89.in, src/testdir/test89.ok

Patch 7.3.1298 (after 7.3.1297)
Problem: Crash.
Solution: Use STRCPY() instead of STRCAT() and allocate one more byte.
Files: src/misc2.c

Patch 7.3.1299
Problem: Errors when doing "make proto". Didn't do "make depend" for a

while.
Solution: Add #ifdefs. Update dependencies. Update proto files.
Files: src/if_python3.c, src/os_win32.c, src/Makefile,

src/proto/ex_docmd.pro, src/proto/if_python.pro,
src/proto/if_python3.pro, src/proto/gui_w16.pro,
src/proto/gui_w32.pro, src/proto/os_win32.pro

Patch 7.3.1300
Problem: Mac: tiny and small build fails.
Solution: Don't include os_macosx.m in tiny build. Include mouse support in

small build. (Kazunobu Kuriyama)
Files: src/configure.in, src/auto/configure, src/vim.h

Patch 7.3.1301
Problem: Some tests fail on MS-Windows.
Solution: Fix path separators in test 89 and 96. Omit test 97, escaping

works differently. Make findfile() work on MS-Windows.
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,

src/testdir/Make_os2.mak, src/testdir/test89.in,
src/testdir/test96.in, src/misc2.c

Patch 7.3.1302
Problem: Test 17 fails on MS-Windows. Includes line break in file name

everywhere.
Solution: Fix 'fileformat'. Omit CR-LF from a line read from an included

file.
Files: src/search.c, src/testdir/test17.in, src/testdir/test17.ok

Patch 7.3.1303 (after 7.3.1290)
Problem: Undo is synced whenever CTRL-R = is called, breaking some plugins.
Solution: Only break undo when calling setline() or append().
Files: src/globals.h, src/eval.c, src/edit.c, src/testdir/test61.in,

src/testdir/test61.ok

Patch 7.3.1304
Problem: Test 89 still fails on MS-Windows.
Solution: Set 'shellslash'. (Taro Muraoka)
Files: src/testdir/test89.in

Patch 7.3.1305
Problem: Warnings from 64 bit compiler.
Solution: Add type casts.
Files: src/misc2.c

Patch 7.3.1306
Problem: When redrawing the screen during startup the intro message may be

cleared.
Solution: Redisplay the intro message when appropriate.
Files: src/screen.c, src/version.c, src/proto/version.pro

Patch 7.3.1307

version7.txt — 2782

Problem: MS-Windows build instructions are outdated.
Solution: Adjust for building on Windows 7. Drop Windows 95/98/ME support.
Files: Makefile, nsis/gvim.nsi

Patch 7.3.1308
Problem: Typos in MS-Windows build settings and README.
Solution: Minor changes to MS-Windows files.
Files: src/msvc2008.bat, src/msvc2010.bat, src/VisVim/README_VisVim.txt

Patch 7.3.1309
Problem: When a script defines a function the flag to wait for the user to

hit enter is reset.
Solution: Restore the flag. (Yasuhiro Matsumoto) Except when the user was

typing the function.
Files: src/eval.c

Patch 7.3.1310
Problem: Typos in nsis script. Can use better compression.
Solution: Fix typos. Use lzma compression. (Ken Takata)
Files: nsis/gvim.nsi

Patch 7.3.1311
Problem: Compiler warnings on Cygwin.
Solution: Add type casts. Add windows include files. (Ken Takata)
Files: src/mbyte.c, src/ui.c

Patch 7.3.1312 (after 7.3.1287)
Problem: Not giving correct error messages for SystemExit().
Solution: Move E858 into an else. (Ken Takata)
Files: src/if_py_both.h

Patch 7.3.1313
Problem: :py and :py3 don't work when compiled with Cygwin or MingW with 64

bit.
Solution: Add -DMS_WIN64 to the build command. (Ken Takata)
Files: src/Make_cyg.mak, src/Make_ming.mak

Patch 7.3.1314
Problem: Test 87 fails with Python 3.3.
Solution: Filter the error messages. (Taro Muraoka)
Files: src/testdir/test87.in

Patch 7.4a.001
Problem: Script to update syntax menu is outdated.
Solution: Add the missing items.
Files: runtime/makemenu.vim

Patch 7.4a.002
Problem: Valgrind errors in test 89. (Simon Ruderich)
Solution: Allocate one more byte. (Dominique Pelle)
Files: src/misc2.c

Patch 7.4a.003
Problem: Copyright year is outdated.
Solution: Only use the first year.
Files: src/vim.rc, src/vim16.rc

Patch 7.4a.004
Problem: MSVC 2012 Update 3 is not recognized.
Solution: Add the version number. (Raymond Ko)

version7.txt — 2783

Files: src/Make_mvc.mak

Patch 7.4a.005
Problem: Scroll binding causes unexpected scroll.
Solution: Store the topline after updating scroll binding. Add a test.

(Lech Lorens)
Files: src/testdir/test98.in, src/testdir/test98a.in,

src/testdir/test98.ok, src/option.c, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile

Patch 7.4a.006
Problem: Failure in po file check goes unnoticed.
Solution: Fail "make test" if the po file check fails.
Files: src/Makefile

Patch 7.4a.007
Problem: After "g$" with 'virtualedit' set, "k" moves to a different

column. (Dimitar Dimitrov)
Solution: Set w_curswant. (Christian Brabandt)
Files: src/normal.c

Patch 7.4a.008
Problem: Python 3 doesn't handle multibyte characters properly when

'encoding' is not utf-8.
Solution: Use PyUnicode_Decode() instead of PyUnicode_FromString(). (Ken

Takata)
Files: src/if_python3.c

Patch 7.4a.009
Problem: Compiler warnings for function prototypes.
Solution: Add "void". Move list_features() prototype. (Ken Takata)
Files: src/gui_w48.c, src/if_py_both.h, src/version.c

Patch 7.4a.010
Problem: Test 86 and 87 fail when building with Python or Python 3 and

using a static library.
Solution: Add configure check to add -fPIE compiler flag.
Files: src/configure.in, src/auto/configure

Patch 7.4a.011
Problem: Configure check for Python 3 config name isn't right.
Solution: Always include vi_cv_var_python3_version. (Tim Harder)
Files: src/configure.in, src/auto/configure

Patch 7.4a.012
Problem: "make test" fails when using a shadow directory.
Solution: Create links for files in src/po. (James McCoy)
Files: src/Makefile

Patch 7.4a.013
Problem: Setting/resetting 'lbr' in the main help file changes alignment

after a Tab. (Dimitar Dimitrov)
Solution: Also use the code for conceal mode where n_extra is computed for

'lbr'.
Files: src/screen.c, src/testdir/test88.in, src/testdir/test88.ok

Patch 7.4a.014
Problem: Test 86 and 89 have a problem with using a shadow dir.

version7.txt — 2784

Solution: Adjust for the different directory structure. (James McCoy)
Files: src/testdir/test89.in, src/testdir/test86.in, src/Makefile

Patch 7.4a.015
Problem: No Japanese man pages.
Solution: Add Japanese translations of man pages. (Ken Takata, Yukihiro

Nakadaira, et al.)
Files: Filelist, src/Makefile, runtime/doc/evim-ja.UTF-8.1,

runtime/doc/vim-ja.UTF-8.1, runtime/doc/vimdiff-ja.UTF-8.1,
runtime/doc/vimtutor-ja.UTF-8.1, runtime/doc/xxd-ja.UTF-8.1

Patch 7.4a.016 (after 7.4a.014)
Problem: Features enabled in Makefile.
Solution: Undo accidental changes.
Files: src/Makefile

Patch 7.4a.017
Problem: When 'foldmethod' is "indent", using ">>" on a line just above a

fold makes the cursor line folded. (Evan Laforge)
Solution: Call foldOpenCursor(). (Christian Brabandt)
Files: src/ops.c

Patch 7.4a.018
Problem: Compiler warning for code unreachable. (Charles Campbell)
Solution: Use "while" instead of endless loop. Change break to continue.
Files: src/regexp_nfa.c, src/ui.c

Patch 7.4a.019
Problem: Invalid closing parenthesis in test 62. Command truncated at

double quote.
Solution: Remove the parenthesis. Change double quote to ''. (ZyX)
Files: src/testdir/test62.in, src/testdir/test62.ok

Patch 7.4a.020
Problem: Superfluous mb_ptr_adv().
Solution: Remove the call. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 7.4a.021
Problem: Using feedkeys() doesn't always work.
Solution: Omit feedkeys(). (Ken Takata)
Files: src/testdir/test98a.in

Patch 7.4a.022
Problem: Using "d2g$" does not delete the last character. (ZyX)
Solution: Set the "inclusive" flag properly.
Files: src/normal.c

Patch 7.4a.023 (after 7.4a.019)
Problem: Still another superfluous parenthesis. (ZyX)
Solution: Remove it.
Files: src/testdir/test62.in

Patch 7.4a.024
Problem: X11 GUI: Checking icon height twice.
Solution: Check height and width. (Dominique Pelle)
Files: src/gui_x11.c

Patch 7.4a.025
Problem: Get the press-Enter prompt even after using :redraw.

version7.txt — 2785

Solution: Clear need_wait_return when executing :redraw.
Files: src/ex_docmd.c

Patch 7.4a.026
Problem: ":diffoff" does not remove folds. (Ramel)
Solution: Do not restore 'foldenable' when 'foldmethod' is "manual".
Files: src/diff.c

Patch 7.4a.027
Problem: When Python adds lines to another buffer the cursor position is

wrong, it might be below the last line causing ml_get errors.
(Vlad Irnov)

Solution: Temporarily change the current window, so that marks are corrected
properly.

Files: src/if_py_both.h, src/window.c, src/proto/buffer.pro

Patch 7.4a.028
Problem: Crash when spell checking in new buffer.
Solution: Set the b_p_key field. (Mike Williams)
Files: src/spell.c, src/testdir/test58.in

Patch 7.4a.029
Problem: Can't build with MzScheme on Ubuntu 13.04.
Solution: Add configure check for the "ffi" library.
Files: src/configure.in, src/auto/configure

Patch 7.4a.030 (after 7.4.027)
Problem: Missing find_win_for_buf(). (toothpik)
Solution: Add missing changes.
Files: src/buffer.c

Patch 7.4a.031
Problem: Compiler warnings. (Charles Campbell)
Solution: Initialize variables even when not needed.
Files: src/regexp_nfa.c, src/search.c

Patch 7.4a.032
Problem: New regexp engine: Does not match shorter alternative. (Ingo

Karkat)
Solution: Do not drop a new state when the PIM info is different.
Files: src/regexp_nfa.c

Patch 7.4a.033
Problem: Test 98 always passes.
Solution: Include test98a.in in test98.in, execute the crucial command in

one line. (Yukihiro Nakadaira)
Files: src/testdir/test98.in, src/testdir/test98a.in

Patch 7.4a.034
Problem: The tabline may flicker when opening a new tab after 7.3.759 on

Win32.
Solution: Move call to TabCtrl_SetCurSel(). (Ken Takata)
Files: src/gui_w48.c

Patch 7.4a.035
Problem: Fix in patch 7.4a.032 is not tested.
Solution: Add test.
Files: src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4a.036

version7.txt — 2786

Problem: "\p" in a regexp does not match double-width characters.
(Yukihiro Nakadaira)

Solution: Don't count display cells, use vim_isprintc().
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test64.in,

src/testdir/test64.ok, src/testdir/test95.in,
src/testdir/test95.ok

Patch 7.4a.037
Problem: Win32: When mouse is hidden and in the toolbar, moving it won't

make it appear. (Sami Salonen)
Solution: Add tabline_wndproc() and toolbar_wndproc(). (Ken Takata)
Files: src/gui_w32.c, src/gui_w48.c

Patch 7.4a.038
Problem: When using MSVC 2012 there are various issues, including GUI size

computations.
Solution: Use SM_CXPADDEDBORDER. (Mike Williams)
Files: src/gui_w32.c, src/gui_w48.c, src/os_win32.h

Patch 7.4a.039
Problem: New regexp engine doesn't match pattern. (Ingo Karkat)
Solution: When adding a state also check for different PIM if the list of

states has any state with a PIM.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4a.040
Problem: Win32: using uninitialized variable.
Solution: (Yukihiro Nakadaira)
Files: src/os_win32.c

Patch 7.4a.041
Problem: When using ":new ++ff=unix" and "dos" is first in 'fileformats'

then 'ff' is set to "dos" instead of "unix". (Ingo Karkat)
Solution: Create set_file_options() and invoke it from do_ecmd().
Files: src/fileio.c, src/proto/fileio.pro, src/ex_cmds.c,

src/testdir/test91.in, src/testdir/test91.ok

Patch 7.4a.042
Problem: Crash when BufUnload autocommands close all buffers. (Andrew

Pimlott)
Solution: Set curwin->w_buffer to curbuf to avoid NULL.
Files: src/window.c, src/testdir/test8.in, src/testdir/test8.ok

Patch 7.4a.043
Problem: More ml_get errors when adding or deleting lines from Python.

(Vlad Irnov)
Solution: Switch to a window with the buffer when possible.
Files: src/if_py_both.h

Patch 7.4a.044
Problem: Test 96 sometimes fails.
Solution: Clear window from b_wininfo in win_free(). (Suggestion by

Yukihiro Nakadaira)
Files: src/window.c

Patch 7.4a.045
Problem: Configure does not always find the right library for Lua. Missing

support for LuaJit.
Solution: Improve the configure detection of Lua. (Hiroshi Shirosaki)
Files: src/Makefile, src/configure.in, src/auto/configure

version7.txt — 2787

Patch 7.4a.046
Problem: Can't build without mbyte feature.
Solution: Add #ifdefs.
Files: src/ex_cmds.c

Patch 7.4a.047
Problem: Some comments are not so nice.
Solution: Change the comments.
Files: src/ex_docmd.c, src/message.c, src/ops.c, src/option.c

Patch 7.4b.001
Problem: Win32: dialog may extend off-screen.
Solution: Reduce the size, use correct borders. (Andrei Olsen)
Files: src/gui_w32.c

Patch 7.4b.002
Problem: Crash searching for \%(\%(\|\d\|-\|\.\)*\|*\). (Marcin

Szamotulski) Also for \(\)*.
Solution: Do add a state for opening parenthesis, so that we can check if it

was added before at the same position.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4b.003
Problem: Regexp code is not nicely aligned.
Solution: Adjust white space. (Ken Takata)
Files: src/regexp_nfa.c

Patch 7.4b.004
Problem: Regexp crash on pattern "@\%[\w\-]*". (Axel Kielhorn)
Solution: Add \%(\) around \%[] internally.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4b.005
Problem: Finding %s in shellpipe and shellredir does not ignore %%s.
Solution: Skip over %%. (lcd 47)
Files: src/ex_cmds.c

Patch 7.4b.006 (after 7.3.1295)
Problem: Using \{n,m} in an autocommand pattern no longer works.

Specifically, mutt temp files are not recognized. (Gary Johnson)
Solution: Make \\\{n,m\} work.
Files: runtime/doc/autocmd.txt, src/fileio.c

Patch 7.4b.007
Problem: On 32 bit MS-Windows :perldo does not work.
Solution: Make sure time_t uses 32 bits. (Ken Takata)
Files: src/if_perl.xs, src/vim.h

Patch 7.4b.008
Problem: 'autochdir' causes setbufvar() to change the current directory.

(Ben Fritz)
Solution: When disabling autocommands also reset 'acd' temporarily.

(Christian Brabandt)
Files: src/fileio.c

Patch 7.4b.009
Problem: When setting the Visual area manually and 'selection' is

exclusive, a yank includes one character too much. (Ingo Karkat)
Solution: Default the Visual operation to "v". (Christian Brabandt)

version7.txt — 2788

Files: src/mark.c

Patch 7.4b.010
Problem: Win32: Tcl library load does not use standard mechanism.
Solution: Call vimLoadLib() instead of LoadLibraryEx(). (Ken Takata)
Files: src/if_perl.xs, src/if_tcl.c

Patch 7.4b.011
Problem: ":he \%(\)" does not work. (ZyX)
Solution: Add an exception to the list.
Files: src/ex_cmds.c

Patch 7.4b.012
Problem: Output from a shell command is truncated at a NUL. (lcd 47)
Solution: Change every NUL into an SOH.
Files: src/misc1.c

Patch 7.4b.013
Problem: Install dir for JP man pages is wrong.
Solution: Remove ".UTF-8" from the directory name. (Ken Takata)
Files: src/Makefile

Patch 7.4b.014 (after 7.4b.012)
Problem: Stupid mistake.
Solution: Changle "len" to "i".
Files: src/misc1.c

Patch 7.4b.015 (after 7.4b.008)
Problem: Can't compile without the 'acd' feature.
Solution: Add #ifdefs. (Kazunobu Kuriyama)
Files: src/fileio.c

Patch 7.4b.016
Problem: Ruby detection fails on Fedora 19.
Solution: Use one way to get the Ruby version. (Michael Henry)
Files: src/configure.in, src/auto/configure

Patch 7.4b.017
Problem: ":he \^x" gives a strange error message. (glts)
Solution: Do not translate \^x to _CTRL-x.
Files: src/ex_cmds.c

Patch 7.4b.018 (after 7.4b.001)
Problem: Win32: Dialog can still be too big.
Solution: Move the check for height further down. (Andrei Olsen)
Files: src/gui_w32.c

Patch 7.4b.019 (after 7.4a.034)
Problem: Tabline is not updated properly when closing a tab on Win32.
Solution: Only reduce flickering when adding a tab. (Ken Takata)
Files: src/gui_w48.c

Patch 7.4b.020
Problem: "g~ap" changes first character of next paragraph. (Manuel Ortega)
Solution: Avoid subtracting (0 - 1) from todo. (Mike Williams)
Files: src/ops.c, src/testdir/test82.in, src/testdir/test82.ok

Patch 7.4b.021
Problem: Pressing "u" after an external command results in multiple

press-enter messages. (glts)

version7.txt — 2789

Solution: Don't call hit_return_msg() when we have K_IGNORE. (Christian
Brabandt)

Files: src/message.c

Patch 7.4b.022
Problem: Not waiting for a character when the tick count overflows.
Solution: Subtract the unsigned numbers and cast to int. (Ken Takata)
Files: src/os_win32.c

version7.txt — 2790

version8.txt For Vim version 9.1. Last change: 2022 Feb 26

VIM REFERENCE MANUAL by Bram Moolenaar

vim8 vim-8 version-8.0 version8.0
Welcome to Vim 8! A large number of bugs have been fixed and several nice
features have been added. This file mentions all the new items and changes to
existing features since Vim 7.4. The patches up to Vim 7.4 can be found here:
vim-7.4 .

Use this command to see the full version and features information of the Vim
program you are using:

:version

NEW FEATURES new-8
Vim script enhancements new-vim-script-8
Various new items new-items-8

INCOMPATIBLE CHANGES incompatible-8

IMPROVEMENTS improvements-8

COMPILE TIME CHANGES compile-changes-8

PATCHES patches-8

VERSION 8.1 version-8.1
Changed changed-8.1
Added added-8.1
Patches patches-8.1

VERSION 8.2 version-8.2
Changed changed-8.2
Added added-8.2
Patches patches-8.2

See vi_diff.txt for an overview of differences between Vi and Vim 8.0.
See version4.txt , version5.txt , version6.txt and version7.txt for
differences between other versions.

vim-changelog
You can find an overview of the most important changes (according to Martin
Tournoij) on this site: https://www.arp242.net/vimlog/

==
NEW FEATURES new-8

First an overview of the more interesting new features. A comprehensive list
is below.

Asynchronous I/O support, channels

Vim can now exchange messages with other processes in the background. This
makes it possible to have servers do work and send back the results to Vim.
See channel-demo for an example, this shows communicating with a Python
server.

version8.txt — 2791

https://www.arp242.net/vimlog/

Closely related to channels is JSON support. JSON is widely supported and can
easily be used for inter-process communication, allowing for writing a server
in any language. The functions to use are json_encode() and json_decode() .

This makes it possible to build very complex plugins, written in any language
and running in a separate process.

Jobs

Vim can now start a job, communicate with it and stop it. This is very useful
to run a process for completion, syntax checking, etc. Channels are used to
communicate with the job. Jobs can also read from or write to a buffer or a
file. See job_start() .

Timers

Also asynchronous are timers. They can fire once or repeatedly and invoke a
function to do any work. For example:

let tempTimer = timer_start(4000, 'CheckTemp')
This will call the CheckTemp() function four seconds (4000 milliseconds)
later. See timer_start() .

Partials

Vim already had a Funcref, a reference to a function. A partial also refers
to a function, and additionally binds arguments and/or a dictionary. This is
especially useful for callbacks on channels and timers. E.g., for the timer
example above, to pass an argument to the function:

let tempTimer = timer_start(4000, function('CheckTemp', ['out']))
This will call CheckTemp('out') four seconds later.

Lambda and Closure

A short way to create a function has been added: {args -> expr}. See lambda .
This is useful for functions such as `filter()` and `map()`, which now also
accept a function argument. Example:

:call filter(mylist, {idx, val -> val > 20})

A lambda can use variables defined in the scope where the lambda is defined.
This is usually called a closure .

User defined functions can also be a closure by adding the "closure" argument
:func-closure .

Packages

Plugins keep growing and more of them are available than ever before. To keep
the collection of plugins manageable package support has been added. This is
a convenient way to get one or more plugins, drop them in a directory and
possibly keep them updated. Vim will load them automatically, or only when
desired. See packages .

New style tests

version8.txt — 2792

This is for Vim developers. So far writing tests for Vim has not been easy.
Vim 8 adds assert functions and a framework to run tests. This makes it a lot
simpler to write tests and keep them updated. Also new are several functions
that are added specifically for testing. See test-functions .

Window IDs

Previously windows could only be accessed by their number. And every time a
window would open, close or move that number changes. Each window now has a
unique ID, so that they are easy to find. See win_getid() and win_id2win() .

Viminfo uses timestamps

Previously the information stored in viminfo was whatever the last Vim wrote
there. Now timestamps are used to always keep the most recent items.
See viminfo-timestamp .

Wrapping lines with indent

The 'breakindent' option has been added to be able to wrap lines without
changing the amount of indent.

Windows: DirectX support

This adds the 'renderoptions' option to allow for switching on DirectX
(DirectWrite) support on MS-Windows.

GTK+ 3 support

The GTK+ 3 GUI works just like GTK+ 2 except for hardly noticeable technical
differences between them. Configure still chooses GTK+ 2 if both 2 and 3 are
available. See src/Makefile for how to use GTK+ 3 instead. See
gui-x11-compiling for other details.

Vim script enhancements new-vim-script-8

In Vim script the following types have been added:

Special v:false , v:true , v:none and v:null
Channel connection to another process for asynchronous I/O
Job process control

Many functions and commands have been added to support the new types.

On some systems the numbers used in Vim script are now 64 bit. This can be
checked with the +num64 feature.

Many items were added to support new-style-testing .

printf() now accepts any type of argument for %s. It is converted to a string
like with string().

version8.txt — 2793

Various new items new-items-8

Visual mode commands:

v_CTRL-A CTRL-A add N to number in highlighted text
v_CTRL-X CTRL-X subtract N from number in highlighted text
v_g_CTRL-A g CTRL-A add N to number in highlighted text
v_g_CTRL-X g CTRL-X subtract N from number in highlighted text

Insert mode commands:

i_CTRL-G_U CTRL-G U don't break undo with next cursor movement

Cmdline mode commands:

/_CTRL-G CTRL-G move to the next match in 'incsearch' mode
/_CTRL-T CTRL-T move to the previous match in 'incsearch' mode

Options:

'belloff' do not ring the bell for these reasons
'breakindent' wrapped line repeats indent
'breakindentopt' settings for 'breakindent'.
'emoji' emoji characters are considered full width
'fixendofline' make sure last line in file has <EOL>
'langremap' do apply 'langmap' to mapped characters
'luadll' name of the Lua dynamic library
'packpath' list of directories used for packages
'perldll' name of the Perl dynamic library
'pythondll' name of the Python 2 dynamic library
'pythonthreedll' name of the Python 3 dynamic library
'renderoptions' options for text rendering on Windows
'rubydll' name of the Ruby dynamic library
'signcolumn' when to display the sign column
'tagcase' how to handle case when searching in tags files
'tcldll' name of the Tcl dynamic library
'termguicolors' use GUI colors for the terminal

Ex commands:

:cbottom scroll to the bottom of the quickfix window
:cdo execute command in each valid error list entry
:cfdo execute command in each file in error list
:chistory display quickfix list stack
:clearjumps clear the jump list
:filter only output lines that (do not) match a pattern
:helpclose close one help window
:lbottom scroll to the bottom of the location window
:ldo execute command in valid location list entries
:lfdo execute command in each file in location list
:lhistory display location list stack
:noswapfile following commands don't create a swap file
:packadd add a plugin from 'packpath'
:packloadall load all packages under 'packpath'

version8.txt — 2794

:smile make the user happy

Ex command modifiers:

:keeppatterns following command keeps search pattern history
<mods> supply command modifiers to user defined commands

New and extended functions:

arglistid() get id of the argument list
assert_equal() assert that two expressions values are equal
assert_exception() assert that a command throws an exception
assert_fails() assert that a function call fails
assert_false() assert that an expression is false
assert_inrange() assert that an expression is inside a range
assert_match() assert that a pattern matches the value
assert_notequal() assert that two expressions values are not equal
assert_notmatch() assert that a pattern does not match the value
assert_true() assert that an expression is true
bufwinid() get the window ID of a specific buffer
byteidxcomp() like byteidx() but count composing characters
ch_close() close a channel
ch_close_in() close the in part of a channel
ch_evalexpr() evaluates an expression over channel
ch_evalraw() evaluates a raw string over channel
ch_getbufnr() get the buffer number of a channel
ch_getjob() get the job associated with a channel
ch_info() get channel information
ch_log() write a message in the channel log file
ch_logfile() set the channel log file
ch_open() open a channel
ch_read() read a message from a channel
ch_readraw() read a raw message from a channel
ch_sendexpr() send a JSON message over a channel
ch_sendraw() send a raw message over a channel
ch_setoptions() set the options for a channel
ch_status() get status of a channel
execute() execute an Ex command and get the output
exepath() full path of an executable program
funcref() return a reference to function {name}
getbufinfo() get a list with buffer information
getcharsearch() return character search information
getcmdwintype() return the current command-line window type
getcompletion() return a list of command-line completion matches
getcurpos() get position of the cursor
gettabinfo() get a list with tab page information
getwininfo() get a list with window information
glob2regpat() convert a glob pattern into a search pattern
isnan() check for not a number
job_getchannel() get the channel used by a job
job_info() get information about a job
job_setoptions() set options for a job
job_start() start a job
job_status() get the status of a job
job_stop() stop a job
js_decode() decode a JSON string to Vim types
js_encode() encode an expression to a JSON string
json_decode() decode a JSON string to Vim types

version8.txt — 2795

json_encode() encode an expression to a JSON string
matchaddpos() define a list of positions to highlight
matchstrpos() match and positions of a pattern in a string
perleval() evaluate Perl expression
reltimefloat() convert reltime() result to a Float
setcharsearch() set character search information
setfperm() set the permissions of a file
strcharpart() get part of a string using char index
strgetchar() get character from a string using char index
systemlist() get the result of a shell command as a list
test_alloc_fail() make memory allocation fail
test_autochdir() test 'autochdir' functionality
test_garbagecollect_now() free memory right now
test_null_channel() return a null Channel
test_null_dict() return a null Dict
test_null_job() return a null Job
test_null_list() return a null List
test_null_partial() return a null Partial function
test_null_string() return a null String
test_settime() set the time Vim uses internally
timer_info() get information about timers
timer_pause() pause or unpause a timer
timer_start() create a timer
timer_stop() stop a timer
timer_stopall() stop all timers
uniq() remove copies of repeated adjacent items
win_findbuf() find windows containing a buffer
win_getid() get window ID of a window
win_gotoid() go to window with ID
win_id2tabwin() get tab and window nr from window ID
win_id2win() get window nr from window ID
wordcount() get byte/word/char count of buffer

New Vim variables:

v:beval_winid Window ID of the window where the mouse pointer is
v:completed_item complete items for the most recently completed word
v:errors errors found by assert functions
v:false a Number with value zero
v:hlsearch indicates whether search highlighting is on
v:mouse_winid Window ID for a mouse click obtained with getchar()
v:none an empty String, used for JSON
v:null an empty String, used for JSON
v:option_new new value of the option, used by OptionSet
v:option_old old value of the option, used by OptionSet
v:option_oldlocal old local value of the option, used by OptionSet
v:option_oldglobal old global value of the option, used by OptionSet
v:option_type scope of the set command, used by OptionSet
v:option_command command used to set the option, used by OptionSet
v:progpath the command with which Vim was invoked
v:t_bool value of Boolean type
v:t_channel value of Channel type
v:t_dict value of Dictionary type
v:t_float value of Float type
v:t_func value of Funcref type
v:t_job value of Job type
v:t_list value of List type
v:t_none value of None type
v:t_number value of Number type

version8.txt — 2796

v:t_string value of String type
v:testing must be set before using `test_garbagecollect_now()`
v:true a Number with value one
v:vim_did_enter set just before VimEnter autocommands are triggered

New autocommand events:

CmdUndefined a user command is used but it isn't defined
OptionSet after setting any option
TabClosed after closing a tab page
TabNew after creating a new tab page
TextChanged after a change was made to the text in Normal mode
TextChangedI after a change was made to the text in Insert mode
WinNew after creating a new window

New highlight groups:

EndOfBuffer filler lines (~) after the last line in the buffer.
hl-EndOfBuffer

New items in search patterns:

/\%C \%C match any composing characters

New Syntax/Indent/FTplugin files:

AVR Assembler (Avra) syntax
Arduino syntax
Bazel syntax and indent and ftplugin
Dockerfile syntax and ftplugin
Eiffel ftplugin
Euphoria 3 and 4 syntax
Go syntax and indent and ftplugin
Godoc syntax
Groovy ftplugin
HGcommit ftplugin
Hog indent and ftplugin
Innovation Data Processing upstream.pt syntax
J syntax and indent and ftplugin
Jproperties ftplugin
Json syntax and indent and ftplugin
Kivy syntax
Less syntax and indent
Mix syntax
Motorola S-Record syntax
R ftplugin
ReStructuredText syntax and indent and ftplugin
Registry ftplugin
Rhelp indent and ftplugin
Rmd (markdown with R code chunks) syntax and indent
Rmd ftplugin
Rnoweb ftplugin
Rnoweb indent
Scala syntax and indent and ftplugin
SystemVerilog syntax and indent and ftplugin
Systemd syntax and indent and ftplugin

version8.txt — 2797

Teraterm (TTL) syntax and indent
Text ftplugin
Vroom syntax and indent and ftplugin

New Keymaps:

Armenian eastern and western
Russian jcukenwintype
Vietnamese telex and vni

==
INCOMPATIBLE CHANGES incompatible-8

These changes are incompatible with previous releases. Check this list if you
run into a problem when upgrading from Vim 7.4 to 8.0.

Better defaults without a vimrc

When no vimrc file is found, the defaults.vim script is loaded to set more
useful default values for new users. That includes setting 'nocompatible'.
Thus Vim no longer starts up in Vi compatible mode. If you do want that,
either create a .vimrc file that does "set compatible" or start Vim with
"vim -C".

Support removed

The support for MS-DOS has been removed. It hasn't been working for a while
(Vim doesn't fit in memory) and removing it cleans up the code quite a bit.

The support for Windows 16 bit (Windows 95 and older) has been removed.

The support for OS/2 has been removed. It probably hasn't been working for a
while since nobody uses it.

The SNiFF+ support has been removed.

Minor incompatibilities:

Probably...

==
IMPROVEMENTS improvements-8

The existing blowfish encryption turned out to be much weaker than it was
supposed to be. The blowfish2 method has been added to fix that. Note that
this still isn't a state-of-the-art encryption, but good enough for most
usage. See 'cryptmethod'.

==
COMPILE TIME CHANGES compile-changes-8

The Vim repository was moved from Google code to github, since Google code
was shut down. It can now be found at https://github.com/vim/vim.

Functions now use ANSI-C declarations. At least a C-89 compatible compiler is

version8.txt — 2798

https://github.com/vim/vim

required.

The +visual feature is now always included.

==
PATCHES patches-8 bug-fixes-8

The list of patches that got included since 7.4.0. This includes all the new
features, but does not include runtime file changes (syntax, indent, help,
etc.)

Patch 7.4.001
Problem: Character classes such as [a-z] do not react to 'ignorecase'.

Breaks man page highlighting. (Mario Grgic)
Solution: Add separate items for classes that react to 'ignorecase'. Clean

up logic handling character classes. Add more tests.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.002
Problem: Pattern with two alternative look-behind matches does not match.

(Amadeus Demarzi)
Solution: When comparing PIMs also compare their state ID to see if they are

different.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.003
Problem: Memory access error in Ruby syntax highlighting. (Christopher Chow)
Solution: Refresh stale pointer. (James McCoy)
Files: src/regexp_nfa.c

Patch 7.4.004
Problem: When closing a window fails ":bwipe" may hang.
Solution: Let win_close() return FAIL and break out of the loop.
Files: src/window.c, src/proto/window.pro, src/buffer.c

Patch 7.4.005
Problem: Using "vaB" while 'virtualedit' is set selects the wrong area.

(Dimitar Dimitrov)
Solution: Reset coladd when finding a match.
Files: src/search.c

Patch 7.4.006
Problem: mkdir("foo/bar/", "p") gives an error message. (David Barnett)
Solution: Remove the trailing slash. (lcd)
Files: src/eval.c

Patch 7.4.007
Problem: Creating a preview window on startup leaves the screen layout in a

messed up state. (Marius Gedminas)
Solution: Don't change firstwin. (Christian Brabandt)
Files: src/main.c

Patch 7.4.008
Problem: New regexp engine can't be interrupted.
Solution: Check for CTRL-C pressed. (Yasuhiro Matsumoto)
Files: src/regexp_nfa.c, src/regexp.c

Patch 7.4.009
Problem: When a file was not decrypted (yet), writing it may destroy the

contents.

version8.txt — 2799

Solution: Mark the file as readonly until decryption was done. (Christian
Brabandt)

Files: src/fileio.c

Patch 7.4.010 (after 7.4.006)
Problem: Crash with invalid argument to mkdir().
Solution: Check for empty string. (lcd47)
Files: src/eval.c

Patch 7.4.011
Problem: Cannot find out if "acl" and "xpm" features are supported.
Solution: Add "acl" and "xpm" to the list of features. (Ken Takata)
Files: src/eval.c, src/version.c

Patch 7.4.012
Problem: MS-Windows: resolving shortcut does not work properly with

multibyte characters.
Solution: Use wide system functions. (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.013
Problem: MS-Windows: File name buffer too small for utf-8.
Solution: Use character count instead of byte count. (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.014
Problem: MS-Windows: check for writing to device does not work.
Solution: Fix #ifdefs. (Ken Takata)
Files: src/fileio.c

Patch 7.4.015
Problem: MS-Windows: Detecting node type does not work for multibyte

characters.
Solution: Use wide character function when needed. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.016
Problem: MS-Windows: File name case can be wrong.
Solution: Add fname_casew(). (Ken Takata)
Files: src/os_win32.c

Patch 7.4.017
Problem: ":help !!" does not find the "!!" tag in the help file. (Ben

Fritz)
Solution: When reading the start of the tags file do parse lines that are

not header lines.
Files: src/tag.c

Patch 7.4.018
Problem: When completing item becomes unselected. (Shougo Matsu)
Solution: Revert patch 7.3.1269.
Files: src/edit.c

Patch 7.4.019
Problem: MS-Windows: File name completion doesn't work properly with

Chinese characters. (Yue Wu)
Solution: Take care of multibyte characters when looking for the start of

the file name. (Ken Takata)
Files: src/edit.c

version8.txt — 2800

Patch 7.4.020
Problem: NFA engine matches too much with \@>. (John McGowan)
Solution: When a whole pattern match is found stop searching.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.021
Problem: NFA regexp: Using \ze in one branch which doesn't match may cause

end of another branch to be wrong. (William Fugh)
Solution: Set end position if it wasn't set yet.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.022
Problem: Deadlock while exiting, because of allocating memory.
Solution: Do not use gettext() in deathtrap(). (James McCoy)
Files: src/os_unix.c, src/misc1.c

Patch 7.4.023
Problem: Compiler warning on 64 bit windows.
Solution: Add type cast. (Mike Williams)
Files: src/edit.c

Patch 7.4.024
Problem: When root edits a file the undo file is owned by root while the

edited file may be owned by another user, which is not allowed.
(cac2s)

Solution: Accept an undo file owned by the current user.
Files: src/undo.c

Patch 7.4.025 (after 7.4.019)
Problem: Reading before start of a string.
Solution: Do not call mb_ptr_back() at start of a string. (Dominique Pelle)
Files: src/edit.c

Patch 7.4.026
Problem: Clang warning for int shift overflow.
Solution: Use unsigned and cast back to int. (Dominique Pelle)
Files: src/misc2.c

Patch 7.4.027 (after 7.4.025)
Problem: Another valgrind error when using CTRL-X CTRL-F at the start of

the line. (Dominique Pelle)
Solution: Don't call mb_ptr_back() at the start of the line. Add a test.
Files: src/edit.c, src/testdir/test32.in

Patch 7.4.028
Problem: Equivalence classes are not working for multibyte characters.
Solution: Copy the rules from the old to the new regexp engine. Add a test

to check both engines.
Files: src/regexp_nfa.c, src/testdir/test44.in, src/testdir/test99.in,

src/testdir/test99.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile

Patch 7.4.029
Problem: An error in a pattern is reported twice.
Solution: Remove the retry with the backtracking engine, it won't work.
Files: src/regexp.c

Patch 7.4.030

version8.txt — 2801

Problem: The -mno-cygwin argument is no longer supported by Cygwin.
Solution: Remove the arguments. (Steve Hall)
Files: src/GvimExt/Make_cyg.mak, src/Make_cyg.mak, src/xxd/Make_cyg.mak

Patch 7.4.031
Problem: ":diffoff!" resets options even when 'diff' is not set. (Charles

Cooper)
Solution: Only resets related options in a window where 'diff' is set.
Files: src/diff.c

Patch 7.4.032
Problem: NFA engine does not match the NUL character. (Jonathon Merz)
Solution: Use 0x0a instead of NUL. (Christian Brabandt)
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.033
Problem: When the terminal has only 20 lines test 92 and 93 overwrite the

input file.
Solution: Explicitly write test.out. Check that the terminal is large enough

to run the tests. (Hirohito Higashi)
Files: src/testdir/test92.in, src/testdir/test93.in,

src/testdir/test1.in, src/testdir/Makefile

Patch 7.4.034
Problem: Using "p" in Visual block mode only changes the first line.
Solution: Repeat the put in all text in the block. (Christian Brabandt)
Files: runtime/doc/change.txt, src/ops.c, src/normal.c,

src/testdir/test20.in, src/testdir/test20.ok

Patch 7.4.035
Problem: MS-Windows: The mouse pointer flickers when going from command

line mode to Normal mode.
Solution: Check for WM_NCMOUSEMOVE. (Ken Takata)
Files: src/gui_w48.c

Patch 7.4.036
Problem: NFA engine does not capture group correctly when using \@>. (ZyX)
Solution: Copy submatches before doing the recursive match.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.037
Problem: Using "\ze" in a sub-pattern does not result in the end of the

match to be set. (Axel Bender)
Solution: Copy the end of match position when a recursive match was

successful.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.038
Problem: Using "zw" and "zg" when 'spell' is off give a confusing error

message. (Gary Johnson)
Solution: Ignore the error when locating the word. Explicitly mention what

word was added. (Christian Brabandt)
Files: src/normal.c, src/spell.c

Patch 7.4.039
Problem: MS-Windows: MSVC10 and earlier can't handle symlinks to a

directory properly.
Solution: Add stat_symlink_aware() and wstat_symlink_aware(). (Ken Takata)
Files: src/os_mswin.c, src/os_win32.c, src/os_win32.h

version8.txt — 2802

Patch 7.4.040
Problem: Valgrind error on exit when a script-local variable holds a

reference to the scope of another script.
Solution: First clear all variables, then free the scopes. (ZyX)
Files: src/eval.c

Patch 7.4.041 (after 7.4.034)
Problem: Visual selection does not remain after being copied over. (Axel

Bender)
Solution: Move when VIsual_active is reset. (Christian Brabandt)
Files: src/ops.c

Patch 7.4.042
Problem: When using ":setlocal" for 'spell' and 'spelllang' then :spelldump

doesn't work. (Dimitar Dimitrov)
Solution: Copy the option variables to the new window used to show the dump.

(Christian Brabandt)
Files: src/spell.c

Patch 7.4.043
Problem: VMS can't handle long function names.
Solution: Shorten may_req_ambiguous_character_width. (Samuel Ferencik)
Files: src/main.c, src/term.c, src/proto/term.pro

Patch 7.4.044 (after 7.4.039)
Problem: Can't build with old MSVC. (Wang Shoulin)
Solution: Define OPEN_OH_ARGTYPE instead of using intptr_t directly.
Files: src/os_mswin.c

Patch 7.4.045
Problem: substitute() does not work properly when the pattern starts with

"\ze".
Solution: Detect an empty match. (Christian Brabandt)
Files: src/eval.c, src/testdir/test80.in, src/testdir/test80.ok

Patch 7.4.046
Problem: Can't use Tcl 8.6.
Solution: Change how Tcl_FindExecutable is called. (Jan Nijtmans)
Files: src/if_tcl.c

Patch 7.4.047
Problem: When using input() in a function invoked by a mapping it doesn't

work.
Solution: Temporarily reset ex_normal_busy. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.048
Problem: Recent clang version complains about -fno-strength-reduce.
Solution: Add a configure check for the clang version. (Kazunobu Kuriyama)
Files: src/configure.in, src/auto/configure

Patch 7.4.049
Problem: In Ex mode, when line numbers are enabled the substitute prompt is

wrong.
Solution: Adjust for the line number size. (Benoit Pierre)
Files: src/ex_cmds.c

Patch 7.4.050
Problem: "gn" selects too much for the pattern "\d" when there are two

version8.txt — 2803

lines with a single digit. (Ryan Carney)
Solution: Adjust the logic of is_one_char(). (Christian Brabandt)
Files: src/search.c, src/testdir/test53.in, src/testdir/test53.ok

Patch 7.4.051
Problem: Syntax highlighting a Yaml file causes a crash. (Blake Preston)
Solution: Copy the pim structure before calling addstate() to avoid it

becoming invalid when the state list is reallocated.
Files: src/regexp_nfa.c

Patch 7.4.052
Problem: With 'fo' set to "a2" inserting a space in the first column may

cause the cursor to jump to the previous line.
Solution: Handle the case when there is no comment leader properly. (Tor

Perkins) Also fix that cursor is in the wrong place when spaces
get replaced with a Tab.

Files: src/misc1.c, src/ops.c, src/testdir/test68.in,
src/testdir/test68.ok

Patch 7.4.053
Problem: Test75 has a wrong header. (ZyX)
Solution: Fix the text and remove leading ".
Files: src/testdir/test75.in

Patch 7.4.054
Problem: Reading past end of the 'stl' string.
Solution: Don't increment pointer when already at the NUL. (Christian

Brabandt)
Files: src/buffer.c

Patch 7.4.055
Problem: Mac: Where availability macros are defined depends on the system.
Solution: Add a configure check. (Felix Bünemann)
Files: src/config.h.in, src/configure.in, src/auto/configure,

src/os_mac.h

Patch 7.4.056
Problem: Mac: Compilation problem with OS X 10.9 Mavericks.
Solution: Include AvailabilityMacros.h when available. (Kazunobu Kuriyama)
Files: src/os_unix.c

Patch 7.4.057
Problem: byteidx() does not work for composing characters.
Solution: Add byteidxcomp().
Files: src/eval.c, src/testdir/test69.in, src/testdir/test69.ok,

runtime/doc/eval.txt

Patch 7.4.058
Problem: Warnings on 64 bit Windows.
Solution: Add type casts. (Mike Williams)
Files: src/ops.c

Patch 7.4.059
Problem: set_last_cursor() may encounter w_buffer being NULL. (Matt

Mkaniaris)
Solution: Check for NULL.
Files: src/mark.c

Patch 7.4.060
Problem: Declaration has wrong return type for PyObject_SetAttrString().

version8.txt — 2804

Solution: Use int instead of PyObject. (Andreas Schwab)
Files: src/if_python.c, src/if_python3.c

Patch 7.4.061 (after 7.4.055 and 7.4.056)
Problem: Availability macros configure check in wrong place.
Solution: Also check when not using Darwin. Remove version check.
Files: src/configure.in, src/auto/configure, src/os_unix.c

Patch 7.4.062 (after 7.4.061)
Problem: Configure check for AvailabilityMacros.h is wrong.
Solution: Use AC_CHECK_HEADERS().
Files: src/configure.in, src/auto/configure

Patch 7.4.063
Problem: Crash when using invalid key in Python dictionary.
Solution: Check for object to be NULL. Add tests. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.064
Problem: When replacing a character in Visual block mode, entering a CR

does not cause a repeated line break.
Solution: Recognize the situation and repeat the line break. (Christian

Brabandt)
Files: src/normal.c, src/ops.c, src/testdir/test39.in,

src/testdir/test39.ok

Patch 7.4.065
Problem: When recording, the character typed at the hit-enter prompt is

recorded twice. (Urtica Dioica)
Solution: Avoid recording the character twice. (Christian Brabandt)
Files: src/message.c

Patch 7.4.066
Problem: MS-Windows: When there is a colon in the file name (sub-stream

feature) the swap file name is wrong.
Solution: Change the colon to "%". (Yasuhiro Matsumoto)
Files: src/fileio.c, src/memline.c, src/misc1.c, src/proto/misc1.pro

Patch 7.4.067
Problem: After inserting comment leader, CTRL-\ CTRL-O does move the

cursor. (Wiktor Ruben)
Solution: Avoid moving the cursor. (Christian Brabandt)
Files: src/edit.c

Patch 7.4.068
Problem: Cannot build Vim on Mac with non-Apple compilers.
Solution: Remove the -no-cpp-precomp flag. (Misty De Meo)
Files: src/configure.in, src/auto/configure, src/osdef.sh

Patch 7.4.069
Problem: Cannot right shift lines starting with #.
Solution: Allow the right shift when 'cino' contains #N with N > 0.

(Christian Brabandt)
Refactor parsing 'cino', store the values in the buffer.

Files: runtime/doc/indent.txt, src/buffer.c, src/edit.c, src/eval.c,
src/ex_getln.c, src/fold.c, src/misc1.c, src/ops.c,
src/proto/misc1.pro, src/proto/option.pro, src/structs.h,
src/option.c

version8.txt — 2805

Patch 7.4.070 (after 7.4.069)
Problem: Can't compile with tiny features. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/buffer.c

Patch 7.4.071 (after 7.4.069)
Problem: Passing limits around too often.
Solution: Use limits from buffer.
Files: src/edit.c, src/misc1.c, src/proto/misc1.pro

Patch 7.4.072
Problem: Crash when using Insert mode completion.
Solution: Avoid going past the end of pum_array. (idea by Francisco Lopes)
Files: src/popupmnu.c

Patch 7.4.073
Problem: Setting undolevels for one buffer changes undo in another.
Solution: Make 'undolevels' a global-local option. (Christian Brabandt)
Files: runtime/doc/options.txt, src/buffer.c, src/option.c, src/option.h

src/structs.h, src/undo.c

Patch 7.4.074
Problem: When undo'ing all changes and creating a new change the undo

structure is incorrect. (Christian Brabandt)
Solution: When deleting the branch starting at the old header, delete the

whole branch, not just the first entry.
Files: src/undo.c

Patch 7.4.075
Problem: Locally setting 'undolevels' is not tested.
Solution: Add a test. (Christian Brabandt)
Files: src/testdir/test100.in, src/testdir/test100.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile, src/Makefile

Patch 7.4.076
Problem: "cgn" does not wrap around the end of the file. (Dimitar Dimitrov)
Solution: Restore 'wrapscan' earlier. (Christian Brabandt)
Files: src/search.c

Patch 7.4.077
Problem: DOS installer creates shortcut without a path, resulting in the

current directory to be C:\Windows\system32.
Solution: Use environment variables.
Files: src/dosinst.c

Patch 7.4.078
Problem: MSVC 2013 is not supported.
Solution: Recognize and support MSVC 2013. (Ed Brown)
Files: src/Make_mvc.mak

Patch 7.4.079
Problem: A script cannot detect whether 'hlsearch' highlighting is actually

displayed.
Solution: Add the "v:hlsearch" variable. (ZyX)
Files: src/eval.c, src/ex_docmd.c,

src/option.c, src/screen.c, src/search.c, src/tag.c, src/vim.h,
src/testdir/test101.in, src/testdir/test101.ok,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

version8.txt — 2806

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.080 (after 7.4.079)
Problem: Missing documentation for v:hlsearch.
Solution: Include the right file in the patch.
Files: runtime/doc/eval.txt

Patch 7.4.081 (after 7.4.078)
Problem: Wrong logic when ANALYZE is "yes".
Solution: Use or instead of and. (KF Leong)
Files: src/Make_mvc.mak

Patch 7.4.082
Problem: Using "gf" in a changed buffer suggests adding "!", which is not

possible. (Tim Chase)
Solution: Pass a flag to check_changed() whether adding ! make sense.
Files: src/vim.h, src/ex_cmds2.c, src/proto/ex_cmds2.pro, src/globals.h,

src/ex_cmds.c, src/ex_docmd.c

Patch 7.4.083
Problem: It's hard to avoid adding a used pattern to the search history.
Solution: Add the ":keeppatterns" modifier. (Christian Brabandt)
Files: runtime/doc/cmdline.txt, src/ex_cmds.h, src/ex_docmd.c,

src/ex_getln.c, src/structs.h

Patch 7.4.084
Problem: Python: interrupt not being properly discarded. (Yggdroot Chen)
Solution: Discard interrupt in VimTryEnd. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.085
Problem: When inserting text in Visual block mode and moving the cursor the

wrong text gets repeated in other lines.
Solution: Use the '[mark to find the start of the actually inserted text.

(Christian Brabandt)
Files: src/ops.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.086
Problem: Skipping over an expression when not evaluating it does not work

properly for dict members.
Solution: Skip over unrecognized expression. (ZyX)
Files: src/eval.c, src/testdir/test34.in, src/testdir/test34.ok

Patch 7.4.087
Problem: Compiler warning on 64 bit Windows systems.
Solution: Fix type cast. (Mike Williams)
Files: src/ops.c

Patch 7.4.088
Problem: When spell checking is enabled Asian characters are always marked

as error.
Solution: When 'spelllang' contains "cjk" do not mark Asian characters as

error. (Ken Takata)
Files: runtime/doc/options.txt, runtime/doc/spell.txt, src/mbyte.c,

src/option.c, src/spell.c, src/structs.h

Patch 7.4.089
Problem: When editing a file in a directory mounted through sshfs Vim

version8.txt — 2807

doesn't set the security context on a renamed file.
Solution: Add mch_copy_sec() to vim_rename(). (Peter Backes)
Files: src/fileio.c

Patch 7.4.090
Problem: Win32: When a directory name contains an exclamation mark,

completion doesn't complete the contents of the directory.
Solution: Escape the exclamation mark. (Jan Stocker)
Files: src/ex_getln.c, src/testdir/test102.in, src/testdir/test102.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.091 (after 7.4.089)
Problem: Missing semicolon.
Solution: Add the semicolon.
Files: src/fileio.c

Patch 7.4.092 (after 7.4.088)
Problem: Can't build small version.
Solution: Add #ifdef where the b_cjk flag is used. (Ken Takata)
Files: src/spell.c

Patch 7.4.093
Problem: Configure can't use LuaJIT on ubuntu 12.04.
Solution: Adjust the configure regexp that locates the version number.

(Charles Strahan)
Files: src/configure.in, src/auto/configure

Patch 7.4.094
Problem: Configure may not find that -lint is needed for gettext().
Solution: Check for gettext() with empty $LIBS. (Thomas De Schampheleire)
Files: src/configure.in, src/auto/configure

Patch 7.4.095 (after 7.4.093)
Problem: Regexp for LuaJIT version doesn't work on BSD.
Solution: Use "*" instead of "\+" and "\?". (Ozaki Kiichi)
Files: src/configure.in, src/auto/configure

Patch 7.4.096
Problem: Can't change directory to an UNC path.
Solution: Use win32_getattrs() in mch_getperm(). (Christian Brabandt)
Files: src/os_win32.c

Patch 7.4.097 (after 7.4.034)
Problem: Unexpected behavior change related to 'virtualedit'. (Ingo Karkat)
Solution: Update the valid cursor position. (Christian Brabandt)
Files: src/ops.c

Patch 7.4.098
Problem: When using ":'<,'>del" errors may be given for the visual line

numbers being out of range.
Solution: Reset Visual mode in ":del". (Lech Lorens)
Files: src/ex_docmd.c, src/testdir/test103.in, src/testdir/test103.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.099
Problem: Append in blockwise Visual mode with "$" is wrong.

version8.txt — 2808

Solution: After "$" don't use the code that checks if the cursor was moved.
(Hirohito Higashi, Ken Takata)

Files: src/ops.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.100
Problem: NFA regexp doesn't handle backreference correctly. (Ryuichi

Hayashida, Urtica Dioica)
Solution: Always add NFA_SKIP, also when it already exists at the start

position.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.101
Problem: Using \1 in pattern goes one line too far. (Bohr Shaw, John Little)
Solution: Only advance the match end for the matched characters in the last

line.
Files: src/regexp.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.102
Problem: Crash when interrupting "z=".
Solution: Add safety check for word length. (Christian Brabandt, Dominique

Pelle)
Files: src/spell.c

Patch 7.4.103
Problem: Dos installer uses an old way to escape spaces in the diff

command.
Solution: Adjust the quoting to the new default shellxquote. (Ben Fritz)
Files: src/dosinst.c

Patch 7.4.104
Problem: ":help s/_" reports an internal error. (John Beckett)
Solution: Check for NUL and invalid character classes.
Files: src/regexp_nfa.c

Patch 7.4.105
Problem: Completing a tag pattern may give an error for invalid pattern.
Solution: Suppress the error, just return no matches.
Files: src/tag.c

Patch 7.4.106
Problem: Can't build with Ruby using Cygwin.
Solution: Fix library name in makefile. (Steve Hall)
Files: src/Make_cyg.mak

Patch 7.4.107
Problem: Python: When vim.eval() encounters a Vim error, a try/catch in the

Python code doesn't catch it. (Yggdroot Chen)
Solution: Throw exceptions on errors in vim.eval(). (ZyX)
Files: src/ex_eval.c, src/if_py_both.h, src/proto/ex_eval.pro,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.108
Problem: "zG" and "zW" leave temp files around on MS-Windows.
Solution: Delete the temp files when exiting. (Ken Takata)
Files: src/memline.c, src/proto/spell.pro, src/spell.c

Patch 7.4.109
Problem: ColorScheme autocommand matches with the current buffer name.
Solution: Match with the colorscheme name. (Christian Brabandt)

version8.txt — 2809

Files: runtime/doc/autocmd.txt, src/fileio.c, src/syntax.c

Patch 7.4.110
Problem: "gUgn" cannot be repeated. (Dimitar Dimitrov)
Solution: Don't put "gn" in a different order in the redo buffer. Restore

'wrapscan' when the pattern isn't found. (Christian Wellenbrock)
Files: src/normal.c, src/search.c, src/test53.in, src/test53.ok

Patch 7.4.111
Problem: Memory leak in Python OptionsAssItem. (Ken Takata)
Solution: Call Py_XDECREF() where needed. (ZyX)
Files: src/if_py_both.h

Patch 7.4.112
Problem: The defaults for 'directory' and 'backupdir' on MS-Windows do not

include a directory that exists.
Solution: Use $TEMP.
Files: src/os_dos.h

Patch 7.4.113
Problem: MSVC static analysis gives warnings.
Solution: Avoid the warnings and avoid possible bugs. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.114
Problem: New GNU make outputs messages about changing directory in another

format.
Solution: Recognize the new format.
Files: src/option.h

Patch 7.4.115
Problem: When using Zsh expanding ~abc doesn't work when the result

contains a space.
Solution: Off-by-one error in detecting the NUL. (Pavol Juhas)
Files: src/os_unix.c

Patch 7.4.116
Problem: When a mapping starts with a space, the typed space does not show

up for 'showcmd'.
Solution: Show "<20>". (Brook Hong)
Files: src/normal.c

Patch 7.4.117
Problem: Can't build with Cygwin/MingW and Perl 5.18.
Solution: Add a linker argument for the Perl library. (Cesar Romani)

Adjust CFLAGS and LIB. (Cesar Romani)
Move including inline.h further down. (Ken Takata)

Files: src/Make_cyg.mak, src/Make_ming.mak, src/if_perl.xs

Patch 7.4.118
Problem: It's possible that redrawing the status lines causes

win_redr_custom() to be called recursively.
Solution: Protect against recursiveness. (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 7.4.119
Problem: Vim doesn't work well on OpenVMS.
Solution: Fix various problems. (Samuel Ferencik)
Files: src/os_unix.c, src/os_unix.h, src/os_vms.c

version8.txt — 2810

Patch 7.4.120 (after 7.4.117)
Problem: Can't build with Perl 5.18 on Linux. (Lcd 47)
Solution: Add #ifdef. (Ken Takata)
Files: src/if_perl.xs

Patch 7.4.121
Problem: Completion doesn't work for ":py3d" and ":py3f". (Bohr Shaw)
Solution: Skip over letters after ":py3".
Files: src/ex_docmd.c

Patch 7.4.122
Problem: Win32: When 'encoding' is set to "utf-8" and the active codepage

is cp932 then ":grep" and other commands don't work for multibyte
characters.

Solution: (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.4.123
Problem: Win32: Getting user name does not use wide function.
Solution: Use GetUserNameW() if possible. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.124
Problem: Win32: Getting host name does not use wide function.
Solution: Use GetComputerNameW() if possible. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.125
Problem: Win32: Dealing with messages may not work for multibyte chars.
Solution: Use pDispatchMessage(). (Ken Takata)
Files: src/os_win32.c

Patch 7.4.126
Problem: Compiler warnings for "const" and incompatible types.
Solution: Remove "const", add type cast. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.127
Problem: Perl 5.18 on Unix doesn't work.
Solution: Move workaround to after including vim.h. (Ken Takata)
Files: src/if_perl.xs

Patch 7.4.128
Problem: Perl 5.18 for MSVC doesn't work.
Solution: Add check in makefile and define __inline. (Ken Takata)
Files: src/Make_mvc.mak, src/if_perl.xs

Patch 7.4.129
Problem: getline(-1) returns zero. (mvxxc)
Solution: Return an empty string.
Files: src/eval.c

Patch 7.4.130
Problem: Relative line numbers mix up windows when using folds.
Solution: Use hasFoldingWin() instead of hasFolding(). (Lech Lorens)
Files: src/misc2.c

Patch 7.4.131
Problem: Syncbind causes E315 errors in some situations. (Liang Li)
Solution: Set and restore curbuf in ex_syncbind(). (Christian Brabandt)

version8.txt — 2811

Files: src/ex_docmd.c, src/testdir/test37.ok

Patch 7.4.132 (after 7.4.122)
Problem: Win32: flags and inherit_handles arguments mixed up.
Solution: Swap the argument. (cs86661)
Files: src/os_win32.c

Patch 7.4.133
Problem: Clang warns for using NUL.
Solution: Change NUL to NULL. (Dominique Pelle)
Files: src/eval.c, src/misc2.c

Patch 7.4.134
Problem: Spurious space in MingW Makefile.
Solution: Remove the space. (Michael Soyka)
Files: src/Make_ming.mak

Patch 7.4.135
Problem: Missing dot in MingW test Makefile.
Solution: Add the dot. (Michael Soyka)
Files: src/testdir/Make_ming.mak

Patch 7.4.136 (after 7.4.096)
Problem: MS-Windows: When saving a file with a UNC path the file becomes

read-only.
Solution: Don't mix up Win32 attributes and Unix attributes. (Ken Takata)
Files: src/os_mswin.c, src/os_win32.c

Patch 7.4.137
Problem: Cannot use IME with Windows 8 console.
Solution: Change the user of ReadConsoleInput() and PeekConsoleInput().

(Nobuhiro Takasaki)
Files: src/os_win32.c

Patch 7.4.138 (after 7.4.114)
Problem: Directory change messages are not recognized.
Solution: Fix using a character range literally. (Lech Lorens)
Files: src/option.h

Patch 7.4.139
Problem: Crash when using :cd in autocommand. (François Ingelrest)
Solution: Set w_localdir to NULL after freeing it. (Dominique Pelle)
Files: src/ex_docmd.c, src/window.c

Patch 7.4.140
Problem: Crash when wiping out buffer triggers autocommand that wipes out

only other buffer.
Solution: Do not delete the last buffer, make it empty. (Hirohito Higashi)
Files: src/buffer.c

Patch 7.4.141
Problem: Problems when building with Borland: st_mode is signed short;

can't build with Python; temp files not ignored by Mercurial;
building with DEBUG doesn't define _DEBUG.

Solution: Fix the problems. (Ken Takata)
Files: src/Make_bc5.mak, src/if_py_both.h, src/os_win32.c

Patch 7.4.142 (after 7.4.137)
Problem: On MS-Windows 8 IME input doesn't work correctly.
Solution: Work around the problem. (Nobuhiro Takasaki)

version8.txt — 2812

Files: src/os_win32.c

Patch 7.4.143
Problem: TextChangedI is not triggered.
Solution: Reverse check for "ready". (lilydjwg)
Files: src/edit.c

Patch 7.4.144
Problem: MingW also supports intptr_t for OPEN_OH_ARGTYPE.
Solution: Adjust #ifdef. (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.145
Problem: getregtype() does not return zero for unknown register.
Solution: Adjust documentation: return empty string for unknown register.

Check the register name to be valid. (Yukihiro Nakadaira)
Files: runtime/doc/eval.txt, src/ops.c

Patch 7.4.146
Problem: When starting Vim with "-u NONE" v:oldfiles is NULL.
Solution: Set v:oldfiles to an empty list. (Yasuhiro Matsumoto)
Files: src/main.c

Patch 7.4.147
Problem: Cursor moves to wrong position when using "gj" after "$" and

virtual editing is active.
Solution: Make "gj" behave differently when virtual editing is active.

(Hirohito Higashi)
Files: src/normal.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.148
Problem: Cannot build with Cygwin and X11.
Solution: Include Xwindows.h instead of windows.h. (Lech Lorens)
Files: src/mbyte.c

Patch 7.4.149
Problem: Get E685 error when assigning a function to an autoload variable.

(Yukihiro Nakadaira)
Solution: Instead of having a global no_autoload variable, pass an autoload

flag down to where it is used. (ZyX)
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok,

src/testdir/test60.in, src/testdir/test60.ok,
src/testdir/sautest/autoload/footest.vim

Patch 7.4.150
Problem: :keeppatterns is not respected for :s.
Solution: Check the keeppatterns flag. (Yasuhiro Matsumoto)
Files: src/search.c, src/testdir/test14.in, src/testdir/test14.ok

Patch 7.4.151
Problem: Python: slices with steps are not supported.
Solution: Support slices in Python vim.List. (ZyX)
Files: src/eval.c, src/if_py_both.h, src/if_python3.c, src/if_python.c,

src/proto/eval.pro, src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.152
Problem: Python: Cannot iterate over options.
Solution: Add options iterator. (ZyX)
Files: src/if_py_both.h, src/option.c, src/proto/option.pro,

version8.txt — 2813

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok, src/vim.h

Patch 7.4.153
Problem: Compiler warning for pointer type.
Solution: Add type cast.
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.4.154 (after 7.4.149)
Problem: Still a problem with auto-loading.
Solution: Pass no_autoload to deref_func_name(). (Yukihiro Nakadaira)
Files: src/eval.c

Patch 7.4.155
Problem: ":keeppatterns /pat" does not keep search pattern offset.
Solution: Restore the offset after doing the search.
Files: src/search.c, src/testdir/test14.in, src/testdir/test14.ok

Patch 7.4.156
Problem: Test file missing from distribution.
Solution: Add new directory to file list.
Files: Filelist

Patch 7.4.157
Problem: Error number used twice. (Yukihiro Nakadaira)
Solution: Change the one not referred in the docs.
Files: src/undo.c

Patch 7.4.158 (after 7.4.045)
Problem: Pattern containing \zs is not handled correctly by substitute().
Solution: Change how an empty match is skipped. (Yukihiro Nakadaira)
Files: src/eval.c, src/testdir/test80.in, src/testdir/test80.ok

Patch 7.4.159
Problem: Completion hangs when scanning the current buffer after doing

keywords. (Christian Brabandt)
Solution: Set the first match position when starting to scan the current

buffer.
Files: src/edit.c

Patch 7.4.160
Problem: Win32: Crash when executing external command.
Solution: Only close the handle when it was created. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.4.161
Problem: Crash in Python exception handling.
Solution: Only use exception variables if did_throw is set. (ZyX)
Files: src/if_py_both.h

Patch 7.4.162
Problem: Running tests in shadow dir doesn't work.
Solution: Add testdir/sautest to the shadow target. (James McCoy)
Files: src/Makefile

Patch 7.4.163 (after 7.4.142)
Problem: MS-Windows input doesn't work properly on Windows 7 and earlier.
Solution: Add a check for Windows 8. (Yasuhiro Matsumoto)
Files: src/os_win32.c

version8.txt — 2814

Patch 7.4.164 (after 7.4.163)
Problem: Problem with event handling on Windows 8.
Solution: Ignore duplicate WINDOW_BUFFER_SIZE_EVENTs. (Nobuhiro Takasaki)
Files: src/os_win32.c

Patch 7.4.165
Problem: By default, after closing a buffer changes can't be undone.
Solution: In the example vimrc file set 'undofile'.
Files: runtime/vimrc_example.vim

Patch 7.4.166
Problem: Auto-loading a function for code that won't be executed.
Solution: Do not auto-load when evaluation is off. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.167 (after 7.4.149)
Problem: Fixes are not tested.
Solution: Add a test for not autoloading on assignment. (Yukihiro Nakadaira)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/sautest/autoload/Test104.vim, src/testdir/test104.in,
src/testdir/test104.ok

Patch 7.4.168
Problem: Can't compile with Ruby 2.1.0.
Solution: Add support for new GC. (Kohei Suzuki)
Files: src/if_ruby.c

Patch 7.4.169
Problem: ":sleep" puts cursor in the wrong column. (Liang Li)
Solution: Add the window offset. (Christian Brabandt)
Files: src/ex_docmd.c

Patch 7.4.170
Problem: Some help tags don't work with ":help". (Tim Chase)
Solution: Add exceptions.
Files: src/ex_cmds.c

Patch 7.4.171
Problem: Redo does not set v:count and v:count1.
Solution: Use a separate buffer for redo, so that we can set the counts when

performing redo.
Files: src/getchar.c, src/globals.h, src/normal.c, src/proto/getchar.pro,

src/structs.h

Patch 7.4.172
Problem: The blowfish code mentions output feedback, but the code is

actually doing cipher feedback.
Solution: Adjust names and comments.
Files: src/blowfish.c, src/fileio.c, src/proto/blowfish.pro,

src/memline.c

Patch 7.4.173
Problem: When using scrollbind the cursor can end up below the last line.

(mvxxc)
Solution: Reset w_botfill when scrolling up. (Christian Brabandt)
Files: src/move.c

Patch 7.4.174

version8.txt — 2815

Problem: Compiler warnings for Python interface. (Tony Mechelynck)
Solution: Add type casts, initialize variable.
Files: src/if_py_both.h

Patch 7.4.175
Problem: When a wide library function fails, falling back to the non-wide

function may do the wrong thing.
Solution: Check the platform, when the wide function is supported don't fall

back to the non-wide function. (Ken Takata)
Files: src/os_mswin.c, src/os_win32.c

Patch 7.4.176
Problem: Dictionary.update() throws an error when used without arguments.

Python programmers don't expect that.
Solution: Make Dictionary.update() without arguments do nothing. (ZyX)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test87.in

Patch 7.4.177
Problem: Compiler warning for unused variable. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/move.c

Patch 7.4.178
Problem: The J command does not update '[and '] marks. (William Gardner)
Solution: Set the marks. (Christian Brabandt)
Files: src/ops.c

Patch 7.4.179
Problem: Warning for type-punned pointer. (Tony Mechelynck)
Solution: Use intermediate variable.
Files: src/if_py_both.h

Patch 7.4.180 (after 7.4.174)
Problem: Older Python versions don't support %ld.
Solution: Use %d instead. (ZyX)
Files: src/if_py_both.h

Patch 7.4.181
Problem: When using 'pastetoggle' the status lines are not updated. (Samuel

Ferencik, Jan Christoph Ebersbach)
Solution: Update the status lines. (Nobuhiro Takasaki)
Files: src/getchar.c

Patch 7.4.182
Problem: Building with mzscheme and racket does not work. (David Chimay)
Solution: Adjust autoconf. (Sergey Khorev)
Files: src/configure.in, src/auto/configure

Patch 7.4.183
Problem: MSVC Visual Studio update not supported.
Solution: Add version number. (Mike Williams)
Files: src/Make_mvc.mak

Patch 7.4.184
Problem: match() does not work properly with a {count} argument.
Solution: Compute the length once and update it. Quit the loop when at the

end. (Hirohito Higashi)
Files: src/eval.c, src/testdir/test53.in, src/testdir/test53.ok

Patch 7.4.185

version8.txt — 2816

Problem: Clang gives warnings.
Solution: Adjust how bigness is set. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.4.186 (after 7.4.085)
Problem: Insert in Visual mode sometimes gives incorrect results.

(Dominique Pelle)
Solution: Remember the original insert start position. (Christian Brabandt,

Dominique Pelle)
Files: src/edit.c, src/globals.h, src/ops.c, src/structs.h

Patch 7.4.187
Problem: Delete that crosses line break splits multibyte character.
Solution: Advance a character instead of a byte. (Cade Foster)
Files: src/normal.c, src/testdir/test69.in, src/testdir/test69.ok

Patch 7.4.188
Problem: SIZEOF_LONG clashes with similar defines in header files.
Solution: Rename to a name starting with VIM_. Also for SIZEOF_INT.
Files: src/if_ruby.c, src/vim.h, src/configure.in, src/auto/configure,

src/config.h.in, src/fileio.c, src/if_python.c, src/message.c,
src/spell.c, src/feature.h, src/os_os2_cfg.h, src/os_vms_conf.h,
src/os_win16.h, src/structs.h

Patch 7.4.189
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/eval.c

Patch 7.4.190
Problem: Compiler warning for using %lld for off_t.
Solution: Add type cast.
Files: src/fileio.c

Patch 7.4.191
Problem: Escaping a file name for shell commands can't be done without a

function.
Solution: Add the :S file name modifier.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test105.in, src/testdir/test105.ok,
runtime/doc/cmdline.txt, runtime/doc/eval.txt,
runtime/doc/map.txt, runtime/doc/options.txt,
runtime/doc/quickfix.txt, runtime/doc/usr_30.txt,
runtime/doc/usr_40.txt, runtime/doc/usr_42.txt,
runtime/doc/vi_diff.txt, src/eval.c, src/misc2.c, src/normal.c,
src/proto/misc2.pro

Patch 7.4.192
Problem: Memory leak when giving E853.
Solution: Free the argument. (Dominique Pelle)
Files: src/eval.c

Patch 7.4.193
Problem: Typos in messages.
Solution: "then" -> "than". (Dominique Pelle)
Files: src/if_py_both.h, src/spell.c

Patch 7.4.194

version8.txt — 2817

Problem: Can't build for Android.
Solution: Add #if condition. (Fredrik Fornwall)
Files: src/mbyte.c

Patch 7.4.195 (after 7.4.193)
Problem: Python tests fail.
Solution: Change "then" to "than" in more places. (Dominique Pelle, Taro

Muraoka)
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.196
Problem: Tests fail on Solaris 9 and 10.
Solution: Use "test -f" instead of "test -e". (Laurent Blume)
Files: src/testdir/Makefile

Patch 7.4.197
Problem: Various problems on VMS.
Solution: Fix several VMS problems. (Zoltan Arpadffy)
Files: runtime/doc/os_vms.txt, src/Make_vms.mms, src/fileio.c,

src/os_unix.c, src/os_unix.h, src/os_vms.c, src/os_vms_conf.h,
src/proto/os_vms.pro, src/testdir/Make_vms.mms,
src/testdir/test72.in, src/testdir/test77a.com,
src/testdir/test77a.in, src/testdir/test77a.ok src/undo.c

Patch 7.4.198
Problem: Can't build Vim with Perl when -Dusethreads is not specified for

building Perl, and building Vim with --enable-perlinterp=dynamic.
Solution: Adjust #ifdefs. (Yasuhiro Matsumoto)
Files: src/if_perl.xs

Patch 7.4.199
Problem: (issue 197)]P doesn't paste over Visual selection.
Solution: Handle Visual mode specifically. (Christian Brabandt)
Files: src/normal.c

Patch 7.4.200
Problem: Too many #ifdefs in the code.
Solution: Enable FEAT_VISUAL always, await any complaints
Files: src/feature.h

Patch 7.4.201
Problem: 'lispwords' is a global option.
Solution: Make 'lispwords' global-local. (Sung Pae)
Files: runtime/doc/options.txt, runtime/optwin.vim, src/buffer.c,

src/misc1.c, src/option.c, src/option.h, src/structs.h,
src/testdir/test100.in, src/testdir/test100.ok

Patch 7.4.202
Problem: MS-Windows: non-ASCII font names don't work.
Solution: Convert between the current code page and 'encoding'. (Ken Takata)
Files: src/gui_w48.c, src/os_mswin.c, src/proto/winclip.pro,

src/winclip.c

Patch 7.4.203
Problem: Parsing 'errorformat' is not correct.
Solution: Reset "multiignore" at the start of a multi-line message. (Lcd)
Files: src/quickfix.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,

version8.txt — 2818

src/testdir/Makefile, src/testdir/test106.in,
src/testdir/test106.ok

Patch 7.4.204
Problem: A mapping where the second byte is 0x80 doesn't work.
Solution: Unescape before checking for incomplete multibyte char. (Nobuhiro

Takasaki)
Files: src/getchar.c, src/testdir/test75.in, src/testdir/test75.ok

Patch 7.4.205
Problem: ":mksession" writes command to move to second argument while it

does not exist. When it does exist the order might be wrong.
Solution: Use ":argadd" for each argument instead of using ":args" with a

list of names. (Nobuhiro Takasaki)
Files: src/ex_docmd.c

Patch 7.4.206
Problem: Compiler warnings on 64 bit Windows.
Solution: Add type casts. (Mike Williams)
Files: src/gui_w48.c, src/os_mswin.c

Patch 7.4.207
Problem: The cursor report sequence is sometimes not recognized and results

in entering replace mode.
Solution: Also check for the cursor report when not asked for.
Files: src/term.c

Patch 7.4.208
Problem: Mercurial picks up some files that are not distributed.
Solution: Add patterns to the ignore list. (Cade Forester)
Files: .hgignore

Patch 7.4.209
Problem: When repeating a filter command "%" and "#" are expanded.
Solution: Escape the command when storing for redo. (Christian Brabandt)
Files: src/ex_cmds.c

Patch 7.4.210
Problem: Visual block mode plus virtual edit doesn't work well with tabs.

(Liang Li)
Solution: Take coladd into account. (Christian Brabandt)
Files: src/ops.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.211
Problem: ":lu" is an abbreviation for ":lua", but it should be ":lunmap".

(ZyX)
Solution: Move "lunmap" to above "lua".
Files: src/ex_cmds.h

Patch 7.4.212 (after 7.4.200)
Problem: Now that the +visual feature is always enabled the #ifdefs for it

are not useful.
Solution: Remove the checks for FEAT_VISUAL.
Files: src/buffer.c, src/charset.c, src/edit.c, src/eval.c,

src/ex_cmds.c, src/ex_docmd.c, src/fold.c, src/getchar.c,
src/gui.c, src/gui_mac.c, src/gui_w48.c, src/main.c, src/mark.c,
src/menu.c, src/misc2.c, src/move.c, src/netbeans.c, src/normal.c,
src/ops.c, src/option.c, src/os_msdos.c, src/os_qnx.c,
src/quickfix.c, src/regexp.c, src/regexp_nfa.c, src/screen.c,
src/search.c, src/spell.c, src/syntax.c, src/term.c, src/ui.c,

version8.txt — 2819

src/undo.c, src/version.c, src/window.c, src/feature.h,
src/globals.h, src/option.h, src/os_win32.h, src/structs.h

Patch 7.4.213
Problem: It's not possible to open a new buffer without creating a swap

file.
Solution: Add the ":noswapfile" modifier. (Christian Brabandt)
Files: runtime/doc/recover.txt, src/ex_cmds.h, src/ex_docmd.c,

src/memline.c, src/structs.h

Patch 7.4.214
Problem: Compilation problems on HP_nonStop (Tandem).
Solution: Add #defines. (Joachim Schmitz)
Files: src/vim.h

Patch 7.4.215
Problem: Inconsistency: ":sp foo" does not reload "foo", unless "foo" is

the current buffer. (Liang Li)
Solution: Do not reload the current buffer on a split command.
Files: runtime/doc/windows.txt, src/ex_docmd.c

Patch 7.4.216
Problem: Compiler warnings. (Tony Mechelynck)
Solution: Initialize variables, add #ifdef.
Files: src/term.c, src/os_unix.h

Patch 7.4.217
Problem: When src/auto/configure was updated, "make clean" would run

configure pointlessly.
Solution: Do not run configure for "make clean" and "make distclean" when

the make program supports $MAKECMDGOALS. (Ken Takata)
Files: src/Makefile

Patch 7.4.218
Problem: It's not easy to remove duplicates from a list.
Solution: Add the uniq() function. (Lcd)
Files: runtime/doc/change.txt, runtime/doc/eval.txt,

runtime/doc/usr_41.txt, runtime/doc/version7.txt, src/eval.c,
src/testdir/test55.in, src/testdir/test55.ok

Patch 7.4.219
Problem: When 'relativenumber' or 'cursorline' are set the window is

redrawn much too often. (Patrick Hemmer, Dominique Pelle)
Solution: Check the VALID_CROW flag instead of VALID_WROW.
Files: src/move.c

Patch 7.4.220
Problem: Test 105 does not work in a shadow dir. (James McCoy)
Solution: Omit "src/" from the checked path.
Files: src/testdir/test105.in, src/testdir/test105.ok

Patch 7.4.221
Problem: Quickfix doesn't resize on ":copen 20". (issue 199)
Solution: Resize the window when requested. (Christian Brabandt)
Files: src/quickfix.c

Patch 7.4.222
Problem: The Ruby directory is constructed from parts.
Solution: Use 'rubyarchhdrdir' if it exists. (James McCoy)
Files: src/configure.in, src/auto/configure

version8.txt — 2820

Patch 7.4.223
Problem: Still using an older autoconf version.
Solution: Switch to autoconf 2.69.
Files: src/Makefile, src/configure.in, src/auto/configure

Patch 7.4.224
Problem: /usr/bin/grep on Solaris does not support -F.
Solution: Add configure check to find a good grep. (Danek Duvall)
Files: src/configure.in, src/auto/configure

Patch 7.4.225
Problem: Dynamic Ruby doesn't work on Solaris.
Solution: Always use the stubs. (Danek Duvall, Yukihiro Nakadaira)
Files: src/if_ruby.c

Patch 7.4.226 (after 7.4.219)
Problem: Cursorline highlighting not redrawn when scrolling. (John

Marriott)
Solution: Check for required redraw in two places.
Files: src/move.c

Patch 7.4.227 (after 7.4.225)
Problem: Can't build with Ruby 1.8.
Solution: Do include a check for the Ruby version. (Ken Takata)
Files: src/if_ruby.c

Patch 7.4.228
Problem: Compiler warnings when building with Python 3.2.
Solution: Make type cast depend on Python version. (Ken Takata)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.4.229
Problem: Using ":let" for listing variables and the second one is a curly

braces expression may fail.
Solution: Check for an "=" in a better way. (ZyX)
Files: src/eval.c, src/testdir/test104.in, src/testdir/test104.ok

Patch 7.4.230
Problem: Error when using ":options".
Solution: Fix the entry for 'lispwords'. (Kenichi Ito)
Files: runtime/optwin.vim

Patch 7.4.231
Problem: An error in ":options" is not caught by the tests.
Solution: Add a test for ":options". Set $VIMRUNTIME for the tests so that

it uses the current runtime files instead of the installed ones.
Files: src/Makefile, src/testdir/Makefile, src/testdir/test_options.in,

src/testdir/test_options.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.4.232
Problem: ":%s/\n//" uses a lot of memory. (Aidan Marlin)
Solution: Turn this into a join command. (Christian Brabandt)
Files: src/ex_cmds.c, src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 7.4.233
Problem: Escaping special characters for using "%" with a shell command is

inconsistent, parentheses are escaped but spaces are not.

version8.txt — 2821

Solution: Only escape "!". (Gary Johnson)
Files: src/ex_docmd.c

Patch 7.4.234
Problem: Can't get the command that was used to start Vim.
Solution: Add v:progpath. (Viktor Kojouharov)
Files: runtime/doc/eval.txt, src/eval.c, src/main.c, src/vim.h

Patch 7.4.235
Problem: It is not easy to get the full path of a command.
Solution: Add the exepath() function.
Files: src/eval.c, src/misc1.c, src/os_amiga.c, src/os_msdos.c,

src/os_unix.c, src/os_vms.c, src/os_win32.c,
src/proto/os_amiga.pro, src/proto/os_msdos.pro,
src/proto/os_unix.pro, src/proto/os_win32.pro,
runtime/doc/eval.txt

Patch 7.4.236
Problem: It's not that easy to check the Vim patch version.
Solution: Make has("patch-7.4.123") work. (partly by Marc Weber)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test60.in,

src/testdir/test60.ok

Patch 7.4.237 (after 7.4.236)
Problem: When some patches were not included has("patch-7.4.123") may return

true falsely.
Solution: Check for the specific patch number.
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.4.238
Problem: Vim does not support the smack library.
Solution: Add smack support (Jose Bollo)
Files: src/config.h.in, src/configure.in, src/fileio.c, src/memfile.c,

src/os_unix.c, src/undo.c, src/auto/configure

Patch 7.4.239
Problem: ":e +" does not position cursor at end of the file.
Solution: Check for "+" being the last character (ZyX)
Files: src/ex_docmd.c

Patch 7.4.240
Problem: ":tjump" shows "\n" as "\\n".
Solution: Skip over "\" that escapes a backslash. (Gary Johnson)
Files: src/tag.c

Patch 7.4.241
Problem: The string returned by submatch() does not distinguish between a

NL from a line break and a NL that stands for a NUL character.
Solution: Add a second argument to return a list. (ZyX)
Files: runtime/doc/eval.txt, src/eval.c, src/proto/regexp.pro,

src/regexp.c, src/testdir/test79.in, src/testdir/test79.ok,
src/testdir/test80.in, src/testdir/test80.ok

Patch 7.4.242
Problem: getreg() does not distinguish between a NL used for a line break

and a NL used for a NUL character.
Solution: Add another argument to return a list. (ZyX)
Files: runtime/doc/eval.txt, src/eval.c src/ops.c, src/proto/ops.pro,

src/vim.h, src/Makefile, src/testdir/test_eval.in,
src/testdir/test_eval.ok, src/testdir/Make_amiga.mak,

version8.txt — 2822

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms

Patch 7.4.243
Problem: Cannot use setreg() to add text that includes a NUL.
Solution: Make setreg() accept a list.
Files: runtime/doc/eval.txt, src/eval.c, src/ops.c, src/proto/ops.pro,

src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.244 (after 7.4.238)
Problem: The smack feature causes stray error messages.
Solution: Remove the error messages.
Files: src/os_unix.c

Patch 7.4.245
Problem: Crash for "vim -u NONE -N -c '&&'".
Solution: Check for the pattern to be NULL. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.4.246
Problem: Configure message for detecting smack are out of sequence.
Solution: Put the messages in the right place. (Kazunobu Kuriyama)
Files: src/configure.in, src/auto/configure

Patch 7.4.247
Problem: When passing input to system() there is no way to keep NUL and

NL characters separate.
Solution: Optionally use a list for the system() input. (ZyX)
Files: runtime/doc/eval.txt, src/eval.c

Patch 7.4.248
Problem: Cannot distinguish between NL and NUL in output of system().
Solution: Add systemlist(). (ZyX)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_cmds2.c, src/misc1.c,

src/proto/misc1.pro

Patch 7.4.249
Problem: Using setreg() with a list of numbers does not work.
Solution: Use a separate buffer for numbers. (ZyX)
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.250
Problem: Some test files missing from distribution.
Solution: Add pattern for newly added tests.
Files: Filelist

Patch 7.4.251
Problem: Crash when BufAdd autocommand wipes out the buffer.
Solution: Check for buffer to still be valid. Postpone freeing the buffer

structure. (Hirohito Higashi)
Files: src/buffer.c, src/ex_cmds.c, src/fileio.c, src/globals.h

Patch 7.4.252
Problem: Critical error in GTK, removing timer twice.
Solution: Clear the timer after removing it. (James McCoy)
Files: src/gui_gtk_x11.c

Patch 7.4.253
Problem: Crash when using cpp syntax file with pattern using external

match. (Havard Garnes)

version8.txt — 2823

Solution: Discard match when end column is before start column.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.4.254
Problem: Smack support detection is incomplete.
Solution: Check for attr/xattr.h and specific macro.
Files: src/configure.in, src/auto/configure

Patch 7.4.255
Problem: Configure check for smack doesn't work with all shells. (David

Larson)
Solution: Remove spaces in set command.
Files: src/configure.in, src/auto/configure

Patch 7.4.256 (after 7.4.248)
Problem: Using systemlist() may cause a crash and does not handle NUL

characters properly.
Solution: Increase the reference count, allocate memory by length. (Yasuhiro

Matsumoto)
Files: src/eval.c

Patch 7.4.257
Problem: Compiler warning, possibly for mismatch in parameter name.
Solution: Rename the parameter in the declaration.
Files: src/ops.c

Patch 7.4.258
Problem: Configure fails if $CC contains options.
Solution: Remove quotes around $CC. (Paul Barker)
Files: src/configure.in, src/auto/configure

Patch 7.4.259
Problem: Warning for misplaced "const".
Solution: Move the "const". (Yukihiro Nakadaira)
Files: src/os_unix.c

Patch 7.4.260
Problem: It is possible to define a function with a colon in the name. It

is possible to define a function with a lower case character if a
"#" appears after the name.

Solution: Disallow using a colon other than with "s:". Ignore "#" after the
name.

Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_eval.in,
src/testdir/test_eval.ok

Patch 7.4.261
Problem: When updating the window involves a regexp pattern, an interactive

substitute to replace a "\n" with a line break fails. (Ingo
Karkat)

Solution: Set reg_line_lbr in vim_regsub() and vim_regsub_multi().
Files: src/regexp.c, src/testdir/test79.in, src/testdir/test79.ok

Patch 7.4.262
Problem: Duplicate code in regexec().
Solution: Add line_lbr flag to regexec_nl().
Files: src/regexp.c, src/regexp_nfa.c, src/regexp.h

Patch 7.4.263
Problem: GCC 4.8 compiler warning for hiding a declaration (François Gannaz)
Solution: Remove the second declaration.

version8.txt — 2824

Files: src/eval.c

Patch 7.4.264 (after 7.4.260)
Problem: Can't define a function starting with "g:". Can't assign a

funcref to a buffer-local variable.
Solution: Skip "g:" at the start of a function name. Don't check for colons

when assigning to a variable.
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.265 (after 7.4.260)
Problem: Can't call a global function with "g:" in an expression.
Solution: Skip the "g:" when looking up the function.
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.266
Problem: Test 62 fails.
Solution: Set the language to C. (Christian Brabandt)
Files: src/testdir/test62.in

Patch 7.4.267 (after 7.4.178)
Problem: The '[mark is in the wrong position after "gq". (Ingo Karkat)
Solution: Add the setmark argument to do_join(). (Christian Brabandt)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_autoformat_join.in,
src/testdir/test_autoformat_join.ok, src/Makefile, src/edit.c,
src/ex_cmds.c, src/ex_docmd.c, src/normal.c, src/ops.c,
src/proto/ops.pro

Patch 7.4.268
Problem: Using exists() on a funcref for a script-local function does not

work.
Solution: Translate <SNR> to the special byte sequence. Add a test.
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok,

src/testdir/test_eval_func.vim, Filelist

Patch 7.4.269
Problem: CTRL-U in Insert mode does not work after using a cursor key.

(Pine Wu)
Solution: Use the original insert start position. (Christian Brabandt)
Files: src/edit.c, src/testdir/test29.in, src/testdir/test29.ok

Patch 7.4.270
Problem: Comparing pointers instead of the string they point to.
Solution: Use strcmp(). (Ken Takata)
Files: src/gui_gtk_x11.c

Patch 7.4.271
Problem: Compiler warning on 64 bit windows.
Solution: Add type cast. (Mike Williams)
Files: src/ops.c

Patch 7.4.272
Problem: Using just "$" does not cause an error message.
Solution: Check for empty environment variable name. (Christian Brabandt)
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.273
Problem: "make autoconf" and "make reconfig" may first run configure and

version8.txt — 2825

then remove the output.
Solution: Add these targets to the exceptions. (Ken Takata)
Files: src/Makefile

Patch 7.4.274
Problem: When doing ":update" just before running an external command that

changes the file, the timestamp may be unchanged and the file
is not reloaded.

Solution: Also check the file size.
Files: src/fileio.c

Patch 7.4.275
Problem: When changing the type of a sign that hasn't been placed there is

no error message.
Solution: Add an error message. (Christian Brabandt)
Files: src/ex_cmds.c

Patch 7.4.276
Problem: The fish shell is not supported.
Solution: Use begin/end instead of () for fish. (Andy Russell)
Files: src/ex_cmds.c, src/misc1.c, src/option.c, src/proto/misc1.pro

Patch 7.4.277
Problem: Using ":sign unplace *" may leave the cursor in the wrong position

(Christian Brabandt)
Solution: Update the cursor position when removing all signs.
Files: src/buffer.c

Patch 7.4.278
Problem: list_remove() conflicts with function defined in Sun header file.
Solution: Rename the function. (Richard Palo)
Files: src/eval.c, src/if_lua.c, src/if_py_both.h, src/proto/eval.pro

Patch 7.4.279
Problem: globpath() returns a string, making it difficult to get a list of

matches. (Greg Novack)
Solution: Add an optional argument like with glob(). (Adnan Zafar)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_getln.c, src/misc1.c,

src/misc2.c, src/proto/ex_getln.pro, src/proto/misc2.pro,
src/testdir/test97.in, src/testdir/test97.ok

Patch 7.4.280
Problem: When using a session file the relative position of the cursor is

not restored if there is another tab. (Nobuhiro Takasaki)
Solution: Update w_wrow before calculating the fraction.
Files: src/window.c

Patch 7.4.281
Problem: When a session file has more than one tabpage and 'showtabline' is

one the positions may be slightly off.
Solution: Set 'showtabline' to two while positioning windows.
Files: src/ex_docmd.c

Patch 7.4.282 (after 7.4.279)
Problem: Test 97 fails on Mac.
Solution: Do not ignore case in file names. (Jun Takimoto)
Files: src/testdir/test97.in

Patch 7.4.283 (after 7.4.276)
Problem: Compiler warning about unused variable. (Charles Cooper)

version8.txt — 2826

Solution: Move the variable inside the #if block.
Files: src/ex_cmds.c

Patch 7.4.284
Problem: Setting 'langmap' in the modeline can cause trouble. E.g. mapping

":" breaks many commands. (Jens-Wolfhard Schicke-Uffmann)
Solution: Disallow setting 'langmap' from the modeline.
Files: src/option.c

Patch 7.4.285
Problem: When 'relativenumber' is set and deleting lines or undoing that,

line numbers are not always updated. (Robert Arkwright)
Solution: (Christian Brabandt)
Files: src/misc1.c

Patch 7.4.286
Problem: Error messages are inconsistent. (ZyX)
Solution: Change "Lists" to "list".
Files: src/eval.c

Patch 7.4.287
Problem: Patches for .hgignore don't work, since the file is not in the

distribution.
Solution: Add .hgignore to the distribution. Will be effective with the

next version.
Files: Filelist

Patch 7.4.288
Problem: When 'spellfile' is set the screen is not redrawn.
Solution: Redraw when updating the spelling info. (Christian Brabandt)
Files: src/spell.c

Patch 7.4.289
Problem: Pattern with repeated backreference does not match with new regexp

engine. (Urtica Dioica)
Solution: Also check the end of a submatch when deciding to put a state in

the state list.
Files: src/testdir/test64.in, src/testdir/test64.ok, src/regexp_nfa.c

Patch 7.4.290
Problem: A non-greedy match followed by a branch is too greedy. (Ingo

Karkat)
Solution: Add NFA_MATCH when it is already in the state list if the position

differs.
Files: src/testdir/test64.in, src/testdir/test64.ok, src/regexp_nfa.c

Patch 7.4.291
Problem: Compiler warning for int to pointer of different size when DEBUG

is defined.
Solution: use smsg() instead of EMSG3().
Files: src/regexp.c

Patch 7.4.292
Problem: Searching for "a" does not match accented "a" with new regexp

engine, does match with old engine. (David Bürgin)
"ca" does not match "ca" with accented "a" with either engine.

Solution: Change the old engine, check for following composing character
also for single-byte patterns.

Files: src/regexp.c, src/testdir/test95.in, src/testdir/test95.ok

version8.txt — 2827

Patch 7.4.293
Problem: It is not possible to ignore composing characters at a specific

point in a pattern.
Solution: Add the %C item.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test95.in,

src/testdir/test95.ok, runtime/doc/pattern.txt

Patch 7.4.294 (7.4.293)
Problem: Test files missing from patch.
Solution: Patch the test files.
Files: src/testdir/test95.in, src/testdir/test95.ok

Patch 7.4.295
Problem: Various typos, bad white space and unclear comments.
Solution: Fix typos. Improve white space. Update comments.
Files: src/testdir/test49.in, src/macros.h, src/screen.c, src/structs.h,

src/gui_gtk_x11.c, src/os_unix.c

Patch 7.4.296
Problem: Can't run tests on Solaris.
Solution: Change the way VIMRUNTIME is set. (Laurent Blume)
Files: src/testdir/Makefile

Patch 7.4.297
Problem: Memory leak from result of get_isolated_shell_name().
Solution: Free the memory. (Dominique Pelle)
Files: src/ex_cmds.c, src/misc1.c

Patch 7.4.298
Problem: Can't have a funcref start with "t:".
Solution: Add "t" to the list of accepted names. (Yukihiro Nakadaira)
Files: src/eval.c

Patch 7.4.299
Problem: When running configure twice DYNAMIC_PYTHON_DLL may become empty.
Solution: Use AC_CACHE_VAL. (Ken Takata)
Files: src/configure.in, src/auto/configure

Patch 7.4.300
Problem: The way config.cache is removed doesn't always work.
Solution: Always remove config.cache. (Ken Takata)
Files: src/Makefile

Patch 7.4.301 (after 7.4.280)
Problem: Still a scrolling problem when loading a session file.
Solution: Fix off-by-one mistake. (Nobuhiro Takasaki)
Files: src/window.c

Patch 7.4.302
Problem: Signs placed with 'foldcolumn' set don't show up after filler

lines.
Solution: Take filler lines into account. (Olaf Dabrunz)
Files: src/screen.c

Patch 7.4.303
Problem: When using double-width characters the text displayed on the

command line is sometimes truncated.
Solution: Reset the string length. (Nobuhiro Takasaki)
Files: src/screen.c

version8.txt — 2828

Patch 7.4.304
Problem: Cannot always use Python with Vim.
Solution: Add the manifest to the executable. (Jacques Germishuys)
Files: src/Make_mvc.mak

Patch 7.4.305
Problem: Making 'ttymouse' empty after the xterm version was requested

causes problems. (Elijah Griffin)
Solution: Do not check for DEC mouse sequences when the xterm version was

requested. Also don't request the xterm version when DEC mouse
was enabled.

Files: src/term.c, src/os_unix.c, src/proto/term.pro, src/globals.h

Patch 7.4.306
Problem: getchar(0) does not return Esc.
Solution: Do not wait for an Esc sequence to be complete. (Yasuhiro

Matsumoto)
Files: src/eval.c, src/getchar.c

Patch 7.4.307 (after 7.4.305)
Problem: Can't build without the +termresponse feature.
Solution: Add proper #ifdefs.
Files: src/os_unix.c, src/term.c

Patch 7.4.308
Problem: When using ":diffsplit" on an empty file the cursor is displayed

on the command line.
Solution: Limit the value of w_topfill.
Files: src/diff.c

Patch 7.4.309
Problem: When increasing the size of the lower window, the upper window

jumps back to the top. (Ron Aaron)
Solution: Change setting the topline. (Nobuhiro Takasaki)
Files: src/window.c

Patch 7.4.310
Problem: getpos()/setpos() don't include curswant.
Solution: Add a fifth number when getting/setting the cursor.
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok,

runtime/doc/eval.txt

Patch 7.4.311
Problem: Can't use winrestview to only restore part of the view.
Solution: Handle missing items in the dict. (Christian Brabandt)
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.4.312
Problem: Cannot figure out what argument list is being used for a window.
Solution: Add the arglistid() function. (Marcin Szamotulski)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/eval.c,

src/ex_docmd.c, src/globals.h, src/structs.h, src/main.c

Patch 7.4.313 (after 7.4.310)
Problem: Changing the return value of getpos() causes an error. (Jie Zhu)
Solution: Revert getpos() and add getcurpos().
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok,

runtime/doc/eval.txt

Patch 7.4.314

version8.txt — 2829

Problem: Completion messages can get in the way of a plugin.
Solution: Add 'c' flag to 'shortmess' option. (Shougo Matsu)
Files: runtime/doc/options.txt, src/edit.c, src/option.h, src/screen.c

Patch 7.4.315 (after 7.4.309)
Problem: Fixes for computation of topline not tested.
Solution: Add test. (Hirohito Higashi)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test107.in, src/testdir/test107.ok

Patch 7.4.316
Problem: Warning from 64-bit compiler.
Solution: Add type cast. (Mike Williams)
Files: src/ex_getln.c

Patch 7.4.317
Problem: Crash when starting gvim. Issue 230.
Solution: Check for a pointer to be NULL. (Christian Brabandt)
Files: src/window.c

Patch 7.4.318
Problem: Check for whether a highlight group has settings ignores fg and bg

color settings.
Solution: Also check cterm and GUI color settings. (Christian Brabandt)
Files: src/syntax.c

Patch 7.4.319
Problem: Crash when putting zero bytes on the clipboard.
Solution: Do not support the utf8_atom target when not using a Unicode

encoding. (Naofumi Honda)
Files: src/ui.c

Patch 7.4.320
Problem: Possible crash when an BufLeave autocommand deletes the buffer.
Solution: Check for the window pointer being valid. Postpone freeing the

window until autocommands are done. (Yasuhiro Matsumoto)
Files: src/buffer.c, src/fileio.c, src/globals.h, src/window.c

Patch 7.4.321
Problem: Can't build with strawberry perl 5.20 + mingw-w64-4.9.0.
Solution: Define save_strlen. (Ken Takata)
Files: src/if_perl.xs

Patch 7.4.322
Problem: Using "msgfmt" is hard coded, cannot use "gmsgfmt".
Solution: Use the msgfmt command found by configure. (Danek Duvall)
Files: src/config.mk.in, src/po/Makefile

Patch 7.4.323
Problem: substitute() with zero width pattern breaks multibyte character.
Solution: Take multibyte character size into account. (Yukihiro Nakadaira)
Files: src/eval.c src/testdir/test69.in, src/testdir/test69.ok

Patch 7.4.324
Problem: In Ex mode, cyrillic characters are not handled. (Stas Malavin)
Solution: Support multibyte characters in Ex mode. (Yukihiro Nakadaira)
Files: src/ex_getln.c

version8.txt — 2830

Patch 7.4.325
Problem: When starting the gui and changing the window size the status line

may not be drawn correctly.
Solution: Catch new_win_height() being called recursively. (Christian

Brabandt)
Files: src/window.c

Patch 7.4.326
Problem: Can't build Tiny version. (Elimar Riesebieter)
Solution: Add #ifdef.
Files: src/window.c

Patch 7.4.327
Problem: When 'verbose' is set to display the return value of a function,

may get E724 repeatedly.
Solution: Do not give an error for verbose messages. Abort conversion to

string after an error.
Files: src/eval.c

Patch 7.4.328
Problem: Selection of inner block is inconsistent.
Solution: Skip indent not only for '}' but all parens. (Tom McDonald)
Files: src/search.c

Patch 7.4.329
Problem: When moving the cursor and then switching to another window the

previous window isn't scrolled. (Yukihiro Nakadaira)
Solution: Call update_topline() before leaving the window. (Christian

Brabandt)
Files: src/window.c

Patch 7.4.330
Problem: Using a regexp pattern to highlight a specific position can be

slow.
Solution: Add matchaddpos() to highlight specific positions efficiently.

(Alexey Radkov)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt,

runtime/plugin/matchparen.vim, src/eval.c, src/ex_docmd.c,
src/proto/window.pro, src/screen.c, src/structs.h,
src/testdir/test63.in, src/testdir/test63.ok, src/window.c

Patch 7.4.331
Problem: Relative numbering not updated after a linewise yank. Issue 235.
Solution: Redraw after the yank. (Christian Brabandt)
Files: src/ops.c

Patch 7.4.332
Problem: GTK: When a sign icon doesn't fit exactly there can be ugly gaps.
Solution: Scale the sign to fit when the aspect ratio is not too far off.

(Christian Brabandt)
Files: src/gui_gtk_x11.c

Patch 7.4.333
Problem: Compiler warning for unused function.
Solution: Put the function inside the #ifdef.
Files: src/screen.c

Patch 7.4.334 (after 7.4.330)
Problem: Uninitialized variables, causing some problems.
Solution: Initialize the variables. (Dominique Pelle)

version8.txt — 2831

Files: src/screen.c, src/window.c

Patch 7.4.335
Problem: No digraph for the new rouble sign.
Solution: Add the digraphs =R and =P.
Files: src/digraph.c, runtime/doc/digraph.txt

Patch 7.4.336
Problem: Setting 'history' to a big value causes out-of-memory errors.
Solution: Limit the value to 10000. (Hirohito Higashi)
Files: runtime/doc/options.txt, src/option.c

Patch 7.4.337
Problem: When there is an error preparing to edit the command line, the

command won't be executed. (Hirohito Higashi)
Solution: Reset did_emsg before editing.
Files: src/ex_getln.c

Patch 7.4.338
Problem: Cannot wrap lines taking indent into account.
Solution: Add the 'breakindent' option. (many authors, final improvements by

Christian Brabandt)
Files: runtime/doc/eval.txt, runtime/doc/options.txt, runtime/optwin.vim,

src/buffer.c, src/charset.c, src/edit.c, src/ex_getln.c,
src/getchar.c, src/misc1.c, src/misc2.c, src/ops.c, src/option.c,
src/option.h, src/proto/charset.pro, src/proto/misc1.pro,
src/proto/option.pro, src/screen.c, src/structs.h,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_breakindent.in, src/testdir/test_breakindent.ok,
src/ui.c, src/version.c

Patch 7.4.339
Problem: Local function is available globally.
Solution: Add "static".
Files: src/option.c, src/proto/option.pro

Patch 7.4.340
Problem: Error from sed about illegal bytes when installing Vim.
Solution: Prepend LC_ALL=C. (Itchyny)
Files: src/installman.sh

Patch 7.4.341
Problem: sort() doesn't handle numbers well.
Solution: Add an argument to specify sorting on numbers. (Christian Brabandt)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test55.in,

src/testdir/test55.ok

Patch 7.4.342
Problem: Clang gives warnings.
Solution: Add an else block. (Dominique Pelle)
Files: src/gui_beval.c

Patch 7.4.343
Problem: matchdelete() does not always update the right lines.
Solution: Fix off-by-one error. (Ozaki Kiichi)
Files: src/window.c

Patch 7.4.344

version8.txt — 2832

Problem: Unnecessary initializations and other things related to
matchaddpos().

Solution: Code cleanup. (Alexey Radkov)
Files: runtime/doc/eval.txt, src/screen.c, src/window.c

Patch 7.4.345 (after 7.4.338)
Problem: Indent is not updated when deleting indent.
Solution: Remember changedtick.
Files: src/misc1.c

Patch 7.4.346 (after 7.4.338)
Problem: Indent is not updated when changing 'breakindentopt'. (itchyny)
Solution: Do not cache "brishift". (Christian Brabandt)
Files: src/misc1.c

Patch 7.4.347
Problem: test55 fails on some systems.
Solution: Remove the elements that all result in zero and can end up in an

arbitrary position.
Files: src/testdir/test55.in, src/testdir/test55.ok

Patch 7.4.348
Problem: When using "J1" in 'cinoptions' a line below a continuation line

gets too much indent.
Solution: Fix parentheses in condition.
Files: src/misc1.c

Patch 7.4.349
Problem: When there are matches to highlight the whole window is redrawn,

which is slow.
Solution: Only redraw everything when lines were inserted or deleted.

Reset b_mod_xlines when needed. (Alexey Radkov)
Files: src/screen.c, src/window.c

Patch 7.4.350
Problem: Using C indenting for Javascript does not work well for a {} block

inside parentheses.
Solution: When looking for a matching paren ignore one that is before the

start of a {} block.
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.351
Problem: sort() is not stable.
Solution: When the items are identical, compare the pointers.
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok

Patch 7.4.352
Problem: With 'linebreak' a tab causes a missing line break.
Solution: Count a tab for what it's worth also for shorter lines.

(Christian Brabandt)
Files: src/charset.c

Patch 7.4.353
Problem: 'linebreak' doesn't work with the 'list' option.
Solution: Make it work. (Christian Brabandt)
Files: runtime/doc/options.txt, src/charset.c, src/screen.c,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_listlbr.in, src/testdir/test_listlbr.ok

version8.txt — 2833

Patch 7.4.354
Problem: Compiler warning.
Solution: Change NUL to NULL. (Ken Takata)
Files: src/screen.c

Patch 7.4.355
Problem: Several problems with Javascript indenting.
Solution: Improve Javascript indenting.
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.356
Problem: Mercurial does not ignore memfile_test. (Daniel Hahler)
Solution: Add memfile_test to ignored files, remove trailing spaces.
Files: .hgignore

Patch 7.4.357
Problem: After completion some characters are not redrawn.
Solution: Clear the command line unconditionally. (Jacob Niehus)
Files: src/edit.c

Patch 7.4.358 (after 7.4.351)
Problem: Sort is not always stable.
Solution: Add an index instead of relying on the pointer to remain the same.

Idea by Jun Takimoto.
Files: src/eval.c

Patch 7.4.359
Problem: When 'ttymouse' is set to 'uxterm' the xterm version is not

requested. (Tomas Janousek)
Solution: Do not mark uxterm as a conflict mouse and add

resume_get_esc_sequence().
Files: src/term.c, src/os_unix.c, src/proto/term.pro

Patch 7.4.360
Problem: In a regexp pattern a "$" followed by \v or \V is not seen as the

end-of-line.
Solution: Handle the situation. (Ozaki Kiichi)
Files: src/regexp.c

Patch 7.4.361
Problem: Lots of flickering when filling the preview window for 'omnifunc'.
Solution: Disable redrawing. (Hirohito Higashi)
Files: src/popupmnu.c

Patch 7.4.362
Problem: When matchaddpos() uses a length smaller than the number of bytes

in the (last) character the highlight continues until the end of
the line.

Solution: Change condition from equal to larger-or-equal.
Files: src/screen.c

Patch 7.4.363
Problem: In Windows console typing 0xCE does not work.
Solution: Convert 0xCE to K_NUL 3. (Nobuhiro Takasaki et al.)
Files: src/os_win32.c, src/term.c

Patch 7.4.364
Problem: When the viminfo file can't be renamed there is no error message.

(Vladimir Berezhnoy)

version8.txt — 2834

Solution: Check for the rename to fail.
Files: src/ex_cmds.c

Patch 7.4.365
Problem: Crash when using ":botright split" when there isn't much space.
Solution: Add a check for the minimum width/height. (Yukihiro Nakadaira)
Files: src/window.c

Patch 7.4.366
Problem: Can't run the linebreak test on MS-Windows.
Solution: Fix the output file name. (Taro Muraoka)
Files: src/testdir/Make_dos.mak

Patch 7.4.367 (after 7.4.357)
Problem: Other solution for redrawing after completion.
Solution: Schedule a window redraw instead of just clearing the command

line. (Jacob Niehus)
Files: src/edit.c

Patch 7.4.368
Problem: Restoring the window sizes after closing the command line window

doesn't work properly if there are nested splits.
Solution: Restore the sizes twice. (Hirohito Higashi)
Files: src/window.c

Patch 7.4.369
Problem: Using freed memory when exiting while compiled with EXITFREE.
Solution: Set curwin to NULL and check for that. (Dominique Pelle)
Files: src/buffer.c, src/window.c

Patch 7.4.370
Problem: Linebreak test fails when encoding is not utf-8. (Danek Duvall)
Solution: Split the test in a single byte one and a utf-8 one. (Christian

Brabandt)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_listlbr.in, src/testdir/test_listlbr.ok,
src/testdir/test_listlbr_utf8.in, src/testdir/test_listlbr_utf8.ok

Patch 7.4.371
Problem: When 'linebreak' is set control characters are not correctly

displayed. (Kimmy Lindvall)
Solution: Set n_extra. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.372
Problem: When 'winminheight' is zero there might not be one line for the

current window.
Solution: Change the size computations. (Yukihiro Nakadaira)
Files: src/window.c

Patch 7.4.373
Problem: Compiler warning for unused argument and unused variable.
Solution: Add UNUSED. Move variable inside #ifdef.
Files: src/charset.c, src/window.c

Patch 7.4.374
Problem: Character after "fb" command not mapped if it might be a composing

character.

version8.txt — 2835

Solution: Don't disable mapping when looking for a composing character.
(Jacob Niehus)

Files: src/normal.c

Patch 7.4.375
Problem: Test 63 fails when run with GUI-only Vim.
Solution: Add guibg attributes. (suggested by Mike Soyka)
Files: src/testdir/test63.in

Patch 7.4.376 (after 7.4.367)
Problem: Popup menu flickers too much.
Solution: Remove the forced redraw. (Hirohito Higashi)
Files: src/edit.c

Patch 7.4.377
Problem: When 'equalalways' is set a split may report "no room" even though

there is plenty of room.
Solution: Compute the available room properly. (Yukihiro Nakadaira)
Files: src/window.c

Patch 7.4.378
Problem: Title of quickfix list is not kept for setqflist(list, 'r').
Solution: Keep the title. Add a test. (Lcd)
Files: src/quickfix.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_qf_title.in,
src/testdir/test_qf_title.ok

Patch 7.4.379
Problem: Accessing freed memory after using setqflist(list, 'r'). (Lcd)
Solution: Reset qf_index.
Files: src/quickfix.c

Patch 7.4.380
Problem: Loading python may cause Vim to exit.
Solution: Avoid loading the "site" module. (Taro Muraoka)
Files: src/if_python.c

Patch 7.4.381
Problem: Get u_undo error when backspacing in Insert mode deletes more than

one line break. (Ayberk Ozgur)
Solution: Also decrement Insstart.lnum.
Files: src/edit.c

Patch 7.4.382
Problem: Mapping characters may not work after typing Esc in Insert mode.
Solution: Fix the noremap flags for inserted characters. (Jacob Niehus)
Files: src/getchar.c

Patch 7.4.383
Problem: Bad interaction between preview window and omnifunc.
Solution: Avoid redrawing the status line. (Hirohito Higashi)
Files: src/popupmnu.c

Patch 7.4.384
Problem: Test 102 fails when compiled with small features.
Solution: Source small.vim. (Jacob Niehus)
Files: src/testdir/test102.in

version8.txt — 2836

Patch 7.4.385
Problem: When building with tiny or small features building the .mo files

fails.
Solution: In autoconf do not setup for building the .mo files when it would

fail.
Files: src/configure.in, src/auto/configure

Patch 7.4.386
Problem: When splitting a window the changelist position is wrong.
Solution: Copy the changelist position. (Jacob Niehus)
Files: src/window.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_changelist.in,
src/testdir/test_changelist.ok

Patch 7.4.387
Problem: "4gro" replaces one character then executes "ooo". (Urtica Dioica)
Solution: Write the ESC in the second stuff buffer.
Files: src/getchar.c, src/proto/getchar.pro, src/edit.c,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_insertcount.in, src/testdir/test_insertcount.ok

Patch 7.4.388
Problem: With 'linebreak' set and 'list' unset a Tab is not counted

properly. (Kent Sibilev)
Solution: Check the 'list' option. (Christian Brabandt)
Files: src/screen.c, src/testdir/test_listlbr_utf8.in,

src/testdir/test_listlbr_utf8.ok

Patch 7.4.389
Problem: Still sometimes Vim enters Replace mode when starting up.
Solution: Use a different solution in detecting the termresponse and

location response. (Hayaki Saito)
Files: src/globals.h, src/os_unix.c, src/term.c, src/proto/term.pro

Patch 7.4.390
Problem: Advancing pointer over end of a string.
Solution: Init quote character to -1 instead of zero. (Dominique Pelle)
Files: src/misc1.c

Patch 7.4.391
Problem: No 'cursorline' highlighting when the cursor is on a line with

diff highlighting. (Benjamin Fritz)
Solution: Combine the highlight attributes. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.392
Problem: Not easy to detect type of command line window.
Solution: Add the getcmdwintype() function. (Jacob Niehus)
Files: src/eval.c

Patch 7.4.393
Problem: Text drawing on newer MS-Windows systems is suboptimal. Some

multibyte characters are not displayed, even though the same font
in Notepad can display them. (Srinath Avadhanula)

Solution: Add the 'renderoptions' option to enable DirectX drawing. (Taro
Muraoka)

version8.txt — 2837

Files: runtime/doc/eval.txt, runtime/doc/options.txt,
runtime/doc/various.txt, src/Make_cyg.mak, src/Make_ming.mak,
src/Make_mvc.mak, src/eval.c, src/gui_dwrite.cpp,
src/gui_dwrite.h, src/gui_w32.c, src/gui_w48.c, src/option.c,
src/option.h, src/version.c, src/vim.h, src/proto/gui_w32.pro

Patch 7.4.394 (after 7.4.393)
Problem: When using DirectX last italic character is incomplete.
Solution: Add one to the number of cells. (Ken Takata)
Files: src/gui_w32.c

Patch 7.4.395 (after 7.4.355)
Problem: C indent is wrong below an if with wrapped condition followed by

curly braces. (Trevor Powell)
Solution: Make a copy of tryposBrace.
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.396
Problem: When 'clipboard' is "unnamed", :g/pat/d is very slow. (Praful)
Solution: Only set the clipboard after the last delete. (Christian Brabandt)
Files: src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/globals.h,

src/ops.c, src/proto/ui.pro, src/ui.c

Patch 7.4.397
Problem: Matchparen only uses the topmost syntax item.
Solution: Go through the syntax stack to find items. (James McCoy)

Also use getcurpos() when possible.
Files: runtime/plugin/matchparen.vim

Patch 7.4.398 (after 7.4.393)
Problem: Gcc error for the argument of InterlockedIncrement() and

InterlockedDecrement(). (Axel Bender)
Solution: Remove "unsigned" from the cRefCount_ declaration.
Files: src/gui_dwrite.cpp

Patch 7.4.399
Problem: Encryption implementation is messy. Blowfish encryption has a

weakness.
Solution: Refactor the encryption, store the state in an allocated struct

instead of using a save/restore mechanism. Introduce the
"blowfish2" method, which does not have the weakness and encrypts
the whole undo file. (largely by David Leadbeater)

Files: runtime/doc/editing.txt, runtime/doc/options.txt, src/Makefile,
src/blowfish.c, src/crypt.c, src/crypt_zip.c, src/ex_docmd.c,
src/fileio.c, src/globals.h, src/main.c, src/memline.c,
src/misc2.c, src/option.c, src/proto.h, src/proto/blowfish.pro,
src/proto/crypt.pro, src/proto/crypt_zip.pro,
src/proto/fileio.pro, src/proto/misc2.pro, src/structs.h,
src/undo.c, src/testdir/test71.in, src/testdir/test71.ok,
src/testdir/test71a.in, src/testdir/test72.in,
src/testdir/test72.ok

Patch 7.4.400
Problem: List of distributed files is incomplete.
Solution: Add recently added files.
Files: Filelist

Patch 7.4.401 (after 7.4.399)
Problem: Can't build on MS-Windows.
Solution: Include the new files in all the Makefiles.

version8.txt — 2838

Files: src/Make_bc3.mak, src/Make_bc5.mak, src/Make_cyg.mak,
src/Make_dice.mak, src/Make_djg.mak, src/Make_ivc.mak,
src/Make_manx.mak, src/Make_ming.mak, src/Make_morph.mak,
src/Make_mvc.mak, src/Make_os2.mak, src/Make_sas.mak,
Make_vms.mms

Patch 7.4.402
Problem: Test 72 crashes under certain conditions. (Kazunobu Kuriyama)
Solution: Clear the whole bufinfo_T early.
Files: src/undo.c

Patch 7.4.403
Problem: Valgrind reports errors when running test 72. (Dominique Pelle)
Solution: Reset the local 'cryptmethod' option before storing the seed.

Set the seed in the memfile even when there is no block0 yet.
Files: src/fileio.c, src/option.c, src/memline.c

Patch 7.4.404
Problem: Windows 64 bit compiler warnings.
Solution: Add type casts. (Mike Williams)
Files: src/crypt.c, src/undo.c

Patch 7.4.405
Problem: Screen updating is slow when using matches.
Solution: Do not use the ">=" as in patch 7.4.362, check the lnum.
Files: src/screen.c, src/testdir/test63.in, src/testdir/test63.ok

Patch 7.4.406
Problem: Test 72 and 100 fail on MS-Windows.
Solution: Set fileformat to unix in the tests. (Taro Muraoka)
Files: src/testdir/test72.in, src/testdir/test100.in

Patch 7.4.407
Problem: Inserting text for Visual block mode, with cursor movement,

repeats the wrong text. (Aleksandar Ivanov)
Solution: Reset the update_Insstart_orig flag. (Christian Brabandt)
Files: src/edit.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.408
Problem: Visual block insert breaks a multibyte character.
Solution: Calculate the position properly. (Yasuhiro Matsumoto)
Files: src/ops.c, src/testdir/test_utf8.in, src/testdir/test_utf8.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.409
Problem: Can't build with Perl on Fedora 20.
Solution: Find xsubpp in another directory. (Michael Henry)
Files: src/Makefile, src/config.mk.in, src/configure.in,

src/auto/configure

Patch 7.4.410
Problem: Fold does not open after search when there is a CmdwinLeave

autocommand.
Solution: Restore KeyTyped. (Jacob Niehus)
Files: src/ex_getln.c

Patch 7.4.411
Problem: "foo bar" sorts before "foo" with sort(). (John Little)

version8.txt — 2839

Solution: Avoid putting quotes around strings before comparing them.
Files: src/eval.c

Patch 7.4.412
Problem: Can't build on Windows XP with MSVC.
Solution: Add SUBSYSTEM_VER to the Makefile. (Yongwei Wu)
Files: src/Make_mvc.mak, src/INSTALLpc.txt

Patch 7.4.413
Problem: MS-Windows: Using US international keyboard layout, inserting dead

key by pressing space does not always work. Issue 250.
Solution: Let MS-Windows translate the message. (John Wellesz)
Files: src/gui_w48.c

Patch 7.4.414
Problem: Cannot define a command only when it's used.
Solution: Add the CmdUndefined autocommand event. (partly by Yasuhiro

Matsumoto)
Files: runtime/doc/autocmd.txt, src/ex_docmd.c, src/fileio.c,

src/proto/fileio.pro

Patch 7.4.415 (after 7.4.414)
Problem: Cannot build. Warning for shadowed variable. (John Little)
Solution: Add missing change. Remove declaration.
Files: src/vim.h, src/ex_docmd.c

Patch 7.4.416
Problem: Problem with breakindent/showbreak and tabs.
Solution: Handle tabs differently. (Christian Brabandt)
Files: src/testdir/test_breakindent.in, src/testdir/test_breakindent.ok,

src/charset.c

Patch 7.4.417
Problem: After splitting a window and setting 'breakindent' the default

minimum with is not respected.
Solution: Call briopt_check() when copying options to a new window.
Files: src/option.c, src/proto/option.pro,

src/testdir/test_breakindent.in

Patch 7.4.418
Problem: When leaving ":append" the cursor shape is like in Insert mode.

(Jacob Niehus)
Solution: Do not have State set to INSERT when calling getline().
Files: src/ex_cmds.c

Patch 7.4.419
Problem: When part of a list is locked it's possible to make changes.
Solution: Check if any of the list items is locked before make a change.

(ZyX)
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok

Patch 7.4.420
Problem: It's not obvious how to add a new test.
Solution: Add a README file. (Christian Brabandt)
Files: src/testdir/README.txt

Patch 7.4.421
Problem: Crash when searching for "\ze*". (Urtica Dioica)
Solution: Disallow a multi after \ze and \zs.
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

version8.txt — 2840

Patch 7.4.422
Problem: When using conceal with linebreak some text is not displayed

correctly. (Grüner Gimpel)
Solution: Check for conceal mode when using linebreak. (Christian Brabandt)
Files: src/screen.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok

Patch 7.4.423
Problem: expand("$shell") does not work as documented.
Solution: Do not escape the $ when expanding environment variables.
Files: src/os_unix.c, src/misc1.c, src/vim.h

Patch 7.4.424
Problem: Get ml_get error when using Python to delete lines in a buffer

that is not in a window. issue 248.
Solution: Do not try adjusting the cursor for a different buffer.
Files: src/if_py_both.h

Patch 7.4.425
Problem: When 'showbreak' is used "gj" may move to the wrong position.

(Nazri Ramliy)
Solution: Adjust virtcol when 'showbreak' is set. (Christian Brabandt)
Files: src/normal.c

Patch 7.4.426
Problem: README File missing from list of files.
Solution: Update the list of files.
Files: Filelist

Patch 7.4.427
Problem: When an InsertCharPre autocommand executes system() typeahead may

be echoed and messes up the display. (Jacob Niehus)
Solution: Do not set cooked mode when invoked from ":silent".
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.4.428
Problem: executable() may return a wrong result on MS-Windows.
Solution: Change the way SearchPath() is called. (Yasuhiro Matsumoto, Ken

Takata)
Files: src/os_win32.c

Patch 7.4.429
Problem: Build fails with fewer features. (Elimar Riesebieter)
Solution: Add #ifdef.
Files: src/normal.c

Patch 7.4.430
Problem: test_listlbr fails when compiled with normal features.
Solution: Check for the +conceal feature.
Files: src/testdir/test_listlbr.in

Patch 7.4.431
Problem: Compiler warning.
Solution: Add type cast. (Mike Williams)
Files: src/ex_docmd.c

Patch 7.4.432
Problem: When the startup code expands command line arguments, setting

'encoding' will not properly convert the arguments.

version8.txt — 2841

Solution: Call get_cmd_argsW() early in main(). (Yasuhiro Matsumoto)
Files: src/os_win32.c, src/main.c, src/os_mswin.c

Patch 7.4.433
Problem: Test 75 fails on MS-Windows.
Solution: Use ":normal" instead of feedkeys(). (Michael Soyka)
Files: src/testdir/test75.in

Patch 7.4.434
Problem: gettabvar() is not consistent with getwinvar() and getbufvar().
Solution: Return a dict with all variables when the varname is empty.

(Yasuhiro Matsumoto)
Files: src/eval.c, runtime/doc/eval.txt, src/testdir/test91.in,

src/testdir/test91.ok

Patch 7.4.435
Problem: Line formatting behaves differently when 'linebreak' is set.

(mvxxc)
Solution: Disable 'linebreak' temporarily. (Christian Brabandt)
Files: src/edit.c

Patch 7.4.436
Problem: ml_get error for autocommand that moves the cursor of the current

window.
Solution: Check the cursor position after switching back to the current

buffer. (Christian Brabandt)
Files: src/fileio.c

Patch 7.4.437
Problem: New and old regexp engine are not consistent.
Solution: Also give an error for "\ze*" for the old regexp engine.
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.4.438
Problem: Cached values for 'cino' not reset for ":set all&".
Solution: Call parse_cino(). (Yukihiro Nakadaira)
Files: src/option.c

Patch 7.4.439
Problem: Duplicate message in message history. Some quickfix messages

appear twice. (Gary Johnson)
Solution: Do not reset keep_msg too early. (Hirohito Higashi)
Files: src/main.c

Patch 7.4.440
Problem: Omni complete popup drawn incorrectly.
Solution: Call validate_cursor() instead of check_cursor(). (Hirohito

Higashi)
Files: src/edit.c

Patch 7.4.441
Problem: Endless loop and other problems when 'cedit' is set to CTRL-C.
Solution: Do not call ex_window() when ex_normal_busy or got_int was set.

(Yasuhiro Matsumoto)
Files: src/ex_getln.c

Patch 7.4.442 (after 7.4.434)
Problem: Using uninitialized variable.
Solution: Pass the first window of the tabpage.
Files: src/eval.c

version8.txt — 2842

Patch 7.4.443
Problem: Error reported by ubsan when running test 72.
Solution: Add type cast to unsigned. (Dominique Pelle)
Files: src/undo.c

Patch 7.4.444
Problem: Reversed question mark not recognized as punctuation. (Issue 258)
Solution: Add the Supplemental Punctuation range.
Files: src/mbyte.c

Patch 7.4.445
Problem: Clipboard may be cleared on startup.
Solution: Set clip_did_set_selection to -1 during startup. (Christian

Brabandt)
Files: src/main.c, src/ui.c

Patch 7.4.446
Problem: In some situations, when setting up an environment to trigger an

autocommand, the environment is not properly restored.
Solution: Check the return value of switch_win() and call restore_win()

always. (Daniel Hahler)
Files: src/eval.c, src/misc2.c, src/window.c

Patch 7.4.447
Problem: Spell files from Hunspell may generate a lot of errors.
Solution: Add the IGNOREEXTRA flag.
Files: src/spell.c, runtime/doc/spell.txt

Patch 7.4.448
Problem: Using ETO_IGNORELANGUAGE causes problems.
Solution: Remove this flag. (Paul Moore)
Files: src/gui_w32.c

Patch 7.4.449
Problem: Can't easily close the help window. (Chris Gaal)
Solution: Add ":helpclose". (Christian Brabandt)
Files: runtime/doc/helphelp.txt, runtime/doc/index.txt, src/ex_cmds.c,

src/ex_cmds.h, src/proto/ex_cmds.pro

Patch 7.4.450
Problem: Not all commands that edit another buffer support the +cmd

argument.
Solution: Add the +cmd argument to relevant commands. (Marcin Szamotulski)
Files: runtime/doc/windows.txt, src/ex_cmds.h, src/ex_docmd.c

Patch 7.4.451
Problem: Calling system() with empty input gives an error for writing the

temp file.
Solution: Do not try writing if the string length is zero. (Olaf Dabrunz)
Files: src/eval.c

Patch 7.4.452
Problem: Can't build with tiny features. (Tony Mechelynck)
Solution: Use "return" instead of "break".
Files: src/ex_cmds.c

Patch 7.4.453
Problem: Still can't build with tiny features.
Solution: Add #ifdef.

version8.txt — 2843

Files: src/ex_cmds.c

Patch 7.4.454
Problem: When using a Visual selection of multiple words and doing CTRL-W_]

it jumps to the tag matching the word under the cursor, not the
selected text. (Patrick hemmer)

Solution: Do not reset Visual mode. (idea by Christian Brabandt)
Files: src/window.c

Patch 7.4.455
Problem: Completion for :buf does not use 'wildignorecase'. (Akshay H)
Solution: Pass the 'wildignorecase' flag around.
Files: src/buffer.c

Patch 7.4.456
Problem: 'backupcopy' is global, cannot write only some files in a

different way.
Solution: Make 'backupcopy' global-local. (Christian Brabandt)
Files: runtime/doc/options.txt, src/buffer.c, src/fileio.c, src/option.c,

src/option.h, src/proto/option.pro, src/structs.h

Patch 7.4.457
Problem: Using getchar() in an expression mapping may result in

K_CURSORHOLD, which can't be recognized.
Solution: Add the <CursorHold> key. (Hirohito Higashi)
Files: src/misc2.c

Patch 7.4.458
Problem: Issue 252: Cursor moves in a zero-height window.
Solution: Check for zero height. (idea by Christian Brabandt)
Files: src/move.c

Patch 7.4.459
Problem: Can't change the icon after building Vim.
Solution: Load the icon from a file on startup. (Yasuhiro Matsumoto)
Files: src/gui_w32.c, src/os_mswin.c, src/os_win32.c,

src/proto/os_mswin.pro

Patch 7.4.460 (after 7.4.454)
Problem: Can't build without the quickfix feature. (Erik Falor)
Solution: Add a #ifdef.
Files: src/window.c

Patch 7.4.461
Problem: MS-Windows: When collate is on the number of copies is too high.
Solution: Only set the collated/uncollated count when collate is on.

(Yasuhiro Matsumoto)
Files: src/os_mswin.c

Patch 7.4.462
Problem: Setting the local value of 'backupcopy' empty gives an error.

(Peter Mattern)
Solution: When using an empty value set the flags to zero. (Hirohito

Higashi)
Files: src/option.c

Patch 7.4.463
Problem: Test 86 and 87 may hang on MS-Windows.
Solution: Call inputrestore() after inputsave(). (Ken Takata)
Files: src/testdir/test86.in, src/testdir/test87.in

version8.txt — 2844

Patch 7.4.464 (after 7.4.459)
Problem: Compiler warning.
Solution: Add type cast. (Ken Takata)
Files: src/gui_w32.c

Patch 7.4.465 (after 7.4.016)
Problem: Crash when expanding a very long string.
Solution: Use wcsncpy() instead of wcscpy(). (Ken Takata)
Files: src/os_win32.c

Patch 7.4.466 (after 7.4.460)
Problem: CTRL-W } does not open preview window. (Erik Falor)
Solution: Don't set g_do_tagpreview for CTRL-W }.
Files: src/window.c

Patch 7.4.467
Problem: 'linebreak' does not work well together with Visual mode.
Solution: Disable 'linebreak' while applying an operator. Fix the test.

(Christian Brabandt)
Files: src/normal.c, src/screen.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok

Patch 7.4.468
Problem: Issue 26: CTRL-C does not interrupt after it was mapped and then

unmapped.
Solution: Reset mapped_ctrl_c. (Christian Brabandt)
Files: src/getchar.c

Patch 7.4.469 (after 7.4.467)
Problem: Can't build with MSVC. (Ken Takata)
Solution: Move the assignment after the declarations.
Files: src/normal.c

Patch 7.4.470
Problem: Test 11 and 100 do not work properly on Windows.
Solution: Avoid using feedkeys(). (Ken Takata)
Files: src/testdir/Make_dos.mak, src/testdir/test11.in,

src/testdir/test100.in

Patch 7.4.471
Problem: MS-Windows: When printer name contains multibyte, the name is

displayed as ???.
Solution: Convert the printer name from the active codepage to 'encoding'.

(Yasuhiro Matsumoto)
Files: src/os_mswin.c

Patch 7.4.472
Problem: The "precedes" entry in 'listchars' will be drawn when 'showbreak'

is set and 'list' is not.
Solution: Only draw this character when 'list' is on. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.473
Problem: Cursor movement is incorrect when there is a number/sign/fold

column and 'sbr' is displayed.
Solution: Adjust the column for 'sbr'. (Christian Brabandt)
Files: src/charset.c

Patch 7.4.474

version8.txt — 2845

Problem: AIX compiler can't handle // comment. Issue 265.
Solution: Remove that line.
Files: src/regexp_nfa.c

Patch 7.4.475
Problem: Can't compile on a system where Xutf8SetWMProperties() is not in

the X11 library. Issue 265.
Solution: Add a configure check.
Files: src/configure.in, src/auto/configure, src/config.h.in,

src/os_unix.c

Patch 7.4.476
Problem: MingW: compiling with "XPM=no" doesn't work.
Solution: Check for the "no" value. (KF Leong) Also for Cygwin. (Ken

Takata)
Files: src/Make_ming.mak, src/Make_cyg.mak

Patch 7.4.477
Problem: When using ":%diffput" and the other file is empty an extra empty

line remains.
Solution: Set the buf_empty flag.
Files: src/diff.c

Patch 7.4.478
Problem: Using byte length instead of character length for 'showbreak'.
Solution: Compute the character length. (Marco Hinz)
Files: src/charset.c

Patch 7.4.479
Problem: MS-Windows: The console title can be wrong.
Solution: Take the encoding into account. When restoring the title use the

right function. (Yasuhiro Matsumoto)
Files: src/os_mswin.c, src/os_win32.c

Patch 7.4.480 (after 7.4.479)
Problem: MS-Windows: Can't build.
Solution: Remove goto, use a flag instead.
Files: src/os_win32.c

Patch 7.4.481 (after 7.4.471)
Problem: Compiler warning on MS-Windows.
Solution: Add type casts. (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.482
Problem: When 'balloonexpr' results in a list, the text has a trailing

newline. (Lcd)
Solution: Remove one trailing newline.
Files: src/gui_beval.c

Patch 7.4.483
Problem: A 0x80 byte is not handled correctly in abbreviations.
Solution: Unescape special characters. Add a test. (Christian Brabandt)
Files: src/getchar.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_mapping.in,
src/testdir/test_mapping.ok

Patch 7.4.484 (after 7.4.483)

version8.txt — 2846

Problem: Compiler warning on MS-Windows. (Ken Takata)
Solution: Add type cast.
Files: src/getchar.c

Patch 7.4.485 (after 7.4.484)
Problem: Abbreviations don't work. (Toothpik)
Solution: Move the length computation inside the for loop. Compare against

the unescaped key.
Files: src/getchar.c

Patch 7.4.486
Problem: Check for writing to a yank register is wrong.
Solution: Negate the check. (Zyx). Also clean up the #ifdefs.
Files: src/ex_docmd.c, src/ex_cmds.h

Patch 7.4.487
Problem: ":sign jump" may use another window even though the file is

already edited in the current window.
Solution: First check if the file is in the current window. (James McCoy)
Files: src/window.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_signs.in,
src/testdir/test_signs.ok

Patch 7.4.488
Problem: test_mapping fails for some people.
Solution: Set the 'encoding' option. (Ken Takata)
Files: src/testdir/test_mapping.in

Patch 7.4.489
Problem: Cursor movement still wrong when 'lbr' is set and there is a

number column. (Hirohito Higashi)
Solution: Add correction for number column. (Hiroyuki Takagi)
Files: src/charset.c

Patch 7.4.490
Problem: Cannot specify the buffer to use for "do" and "dp", making them

useless for three-way diff.
Solution: Use the count as the buffer number. (James McCoy)
Files: runtime/doc/diff.txt, src/diff.c, src/normal.c, src/proto/diff.pro

Patch 7.4.491
Problem: When winrestview() has a negative "topline" value there are

display errors.
Solution: Correct a negative value to 1. (Hirohito Higashi)
Files: src/eval.c

Patch 7.4.492
Problem: In Insert mode, after inserting a newline that inserts a comment

leader, CTRL-O moves to the right. (ZyX) Issue 57.
Solution: Correct the condition for moving the cursor back to the NUL.

(Christian Brabandt)
Files: src/edit.c, src/testdir/test4.in, src/testdir/test4.ok

Patch 7.4.493
Problem: A TextChanged autocommand is triggered when saving a file.

(William Gardner)
Solution: Update last_changedtick after calling unchanged(). (Christian

Brabandt)

version8.txt — 2847

Files: src/fileio.c

Patch 7.4.494
Problem: Cursor shape is wrong after a CompleteDone autocommand.
Solution: Update the cursor and mouse shape after ":normal" restores the

state. (Jacob Niehus)
Files: src/ex_docmd.c

Patch 7.4.495
Problem: XPM isn't used correctly in the Cygwin Makefile.
Solution: Include the rules like in Make_ming.mak. (Ken Takata)
Files: src/Make_cyg.mak

Patch 7.4.496
Problem: Many lines are both in Make_cyg.mak and Make_ming.mak
Solution: Move the common parts to one file. (Ken Takata)
Files: src/INSTALLpc.txt, src/Make_cyg.mak, src/Make_cyg_ming.mak,

src/Make_ming.mak, src/Make_mvc.mak, Filelist

Patch 7.4.497
Problem: With some regexp patterns the NFA engine uses many states and

becomes very slow. To the user it looks like Vim freezes.
Solution: When the number of states reaches a limit fall back to the old

engine. (Christian Brabandt)
Files: runtime/doc/options.txt, src/Makefile, src/regexp.c, src/regexp.h,

src/regexp_nfa.c, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Makefile, src/testdir/samples/re.freeze.txt,
src/testdir/bench_re_freeze.in, src/testdir/bench_re_freeze.vim,
Filelist

Patch 7.4.498 (after 7.4.497)
Problem: Typo in DOS makefile.
Solution: Change exists to exist. (Ken Takata)
Files: src/testdir/Make_dos.mak

Patch 7.4.499
Problem: substitute() can be slow with long strings.
Solution: Store a pointer to the end, instead of calling strlen() every

time. (Ozaki Kiichi)
Files: src/eval.c

Patch 7.4.500
Problem: Test 72 still fails once in a while.
Solution: Don't set 'fileformat' to unix, reset it. (Ken Takata)
Files: src/testdir/test72.in

Patch 7.4.501 (after 7.4.497)
Problem: Typo in file pattern.
Solution: Insert a slash and remove a dot.
Files: Filelist

Patch 7.4.502
Problem: Language mapping also applies to mapped characters.
Solution: Add the 'langnoremap' option, when on 'langmap' does not apply to

mapped characters. (Christian Brabandt)
Files: runtime/doc/options.txt, runtime/vimrc_example.vim, src/macros.h,

src/option.c, src/option.h

Patch 7.4.503

version8.txt — 2848

Problem: Cannot append a list of lines to a file.
Solution: Add the append option to writefile(). (Yasuhiro Matsumoto)
Files: runtime/doc/eval.txt, src/Makefile, src/eval.c,

src/testdir/test_writefile.in, src/testdir/test_writefile.ok

Patch 7.4.504
Problem: Restriction of the MS-Windows installer that the path must end in

"Vim" prevents installing more than one version.
Solution: Remove the restriction. (Tim Lebedkov)
Files: nsis/gvim.nsi

Patch 7.4.505
Problem: On MS-Windows when 'encoding' is a double-byte encoding a file

name longer than MAX_PATH bytes but shorter than that in
characters causes problems.

Solution: Fail on file names longer than MAX_PATH bytes. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.506
Problem: MS-Windows: Cannot open a file with 259 characters.
Solution: Fix off-by-one error. (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.507 (after 7.4.496)
Problem: Building with MingW and Perl.
Solution: Remove quotes. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.508
Problem: When generating ja.sjis.po the header is not correctly adjusted.
Solution: Check for the right header string. (Ken Takata)
Files: src/po/sjiscorr.c

Patch 7.4.509
Problem: Users are not aware their encryption is weak.
Solution: Give a warning when prompting for the key.
Files: src/crypt.c, src/ex_docmd.c, src/fileio.c, src/main.c,

src/proto/crypt.pro

Patch 7.4.510
Problem: "-fwrapv" argument breaks use of cproto.
Solution: Remove the alphabetic arguments in a drastic way.
Files: src/Makefile

Patch 7.4.511
Problem: Generating proto for if_ruby.c uses type not defined elsewhere.
Solution: Do not generate a prototype for

rb_gc_writebarrier_unprotect_promoted()
Files: src/if_ruby.c

Patch 7.4.512
Problem: Cannot generate prototypes for Win32 files and VMS.
Solution: Add typedefs and #ifdef
Files: src/os_win32.c, src/gui_w32.c, src/os_vms.c

Patch 7.4.513
Problem: Crash because reference count is wrong for list returned by

getreg().
Solution: Increment the reference count. (Kimmy Lindvall)
Files: src/eval.c

version8.txt — 2849

Patch 7.4.514 (after 7.4.492)
Problem: Memory access error. (Dominique Pelle)
Solution: Update tpos. (Christian Brabandt)
Files: src/edit.c

Patch 7.4.515
Problem: In a help buffer the global 'foldmethod' is used. (Paul Marshall)
Solution: Reset 'foldmethod' when starting to edit a help file. Move the

code to a separate function.
Files: src/ex_cmds.c

Patch 7.4.516
Problem: Completing a function name containing a # does not work. Issue

253.
Solution: Recognize the # character. (Christian Brabandt)
Files: src/eval.c

Patch 7.4.517
Problem: With a wrapping line the cursor may not end up in the right place.

(Nazri Ramliy)
Solution: Adjust n_extra for a Tab that wraps. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.518
Problem: Using status line height in width computations.
Solution: Use one instead. (Hirohito Higashi)
Files: src/window.c

Patch 7.4.519 (after 7.4.497)
Problem: Crash when using syntax highlighting.
Solution: When regprog is freed and replaced, store the result.
Files: src/buffer.c, src/regexp.c, src/syntax.c, src/spell.c,

src/ex_cmds2.c, src/fileio.c, src/proto/fileio.pro,
src/proto/regexp.pro, src/os_unix.c

Patch 7.4.520
Problem: Sun PCK locale is not recognized.
Solution: Add PCK in the table. (Keiichi Oono)
Files: src/mbyte.c

Patch 7.4.521
Problem: When using "vep" a mark is moved to the next line. (Maxi Padulo,

Issue 283)
Solution: Decrement the line number. (Christian Brabandt)
Files: src/ops.c

Patch 7.4.522
Problem: Specifying wrong buffer size for GetLongPathName().
Solution: Use the actual size. (Ken Takata)
Files: src/eval.c

Patch 7.4.523
Problem: When the X11 server is stopped and restarted, while Vim is kept in

the background, copy/paste no longer works. (Issue 203)
Solution: Setup the clipboard again. (Christian Brabandt)
Files: src/os_unix.c

Patch 7.4.524
Problem: When using ":ownsyntax" spell checking is messed up. (Issue 78)

version8.txt — 2850

Solution: Use the window-local option values. (Christian Brabandt)
Files: src/option.c, src/syntax.c

Patch 7.4.525
Problem: map() leaks memory when there is an error in the expression.
Solution: Call clear_tv(). (Christian Brabandt)
Files: src/eval.c

Patch 7.4.526
Problem: matchstr() fails on long text. (Daniel Hahler)
Solution: Return NFA_TOO_EXPENSIVE from regexec_nl(). (Christian Brabandt)
Files: src/regexp.c

Patch 7.4.527
Problem: Still confusing regexp failure and NFA_TOO_EXPENSIVE.
Solution: NFA changes equivalent of 7.4.526.
Files: src/regexp_nfa.c

Patch 7.4.528
Problem: Crash when using matchadd() (Yasuhiro Matsumoto)
Solution: Copy the match regprog.
Files: src/screen.c

Patch 7.4.529
Problem: No test for what 7.4.517 fixes.
Solution: Adjust the tests for breakindent. (Christian Brabandt)
Files: src/testdir/test_breakindent.in, src/testdir/test_breakindent.ok

Patch 7.4.530
Problem: Many commands take a count or range that is not using line

numbers.
Solution: For each command specify what kind of count it uses. For windows,

buffers and arguments have "$" and "." have a relevant meaning.
(Marcin Szamotulski)

Files: runtime/doc/editing.txt, runtime/doc/tabpage.txt,
runtime/doc/windows.txt, src/Makefile, src/ex_cmds.h,
src/ex_docmd.c, src/testdir/Make_amiga.mak
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_argument_count.in,
src/testdir/test_argument_count.ok,
src/testdir/test_close_count.in, src/testdir/test_close_count.ok,
src/window.c

Patch 7.4.531
Problem: Comments about parsing an Ex command are wrong.
Solution: Correct the step numbers.
Files: src/ex_docmd.c

Patch 7.4.532
Problem: When using 'incsearch' "2/pattern/e" highlights the first match.
Solution: Move the code to set extra_col inside the loop for count. (Ozaki

Kiichi)
Files: src/search.c

Patch 7.4.533
Problem: ":hardcopy" leaks memory in case of errors.
Solution: Free memory in all code paths. (Christian Brabandt)
Files: src/hardcopy.c

version8.txt — 2851

Patch 7.4.534
Problem: Warnings when compiling if_ruby.c.
Solution: Avoid the warnings. (Ken Takata)
Files: src/if_ruby.c

Patch 7.4.535 (after 7.4.530)
Problem: Can't build with tiny features.
Solution: Add #ifdefs and skip a test.
Files: src/ex_docmd.c, src/testdir/test_argument_count.in

Patch 7.4.536
Problem: Test 63 fails when using a black&white terminal.
Solution: Add attributes for a non-color terminal. (Christian Brabandt)
Files: src/testdir/test63.in

Patch 7.4.537
Problem: Value of v:hlsearch reflects an internal variable.
Solution: Make the value reflect whether search highlighting is actually

displayed. (Christian Brabandt)
Files: runtime/doc/eval.txt, src/testdir/test101.in,

src/testdir/test101.ok, src/vim.h

Patch 7.4.538
Problem: Tests fail with small features plus Python.
Solution: Disallow weird combination of options. Do not set "fdm" when

folding is disabled.
Files: src/option.c, src/ex_cmds.c, src/configure.in, src/auto/configure,

src/feature.h

Patch 7.4.539 (after 7.4.530)
Problem: Crash when computing buffer count. Problem with range for user

commands. Line range wrong in Visual area.
Solution: Avoid segfault in compute_buffer_local_count(). Check for

CMD_USER when checking type of range. (Marcin Szamotulski)
Files: runtime/doc/windows.txt, src/ex_docmd.c

Patch 7.4.540 (after 7.4.539)
Problem: Cannot build with tiny and small features. (Taro Muraoka)
Solution: Add #ifdef around CMD_USER.
Files: src/ex_docmd.c

Patch 7.4.541
Problem: Crash when doing a range assign.
Solution: Check for NULL pointer. (Yukihiro Nakadaira)
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok

Patch 7.4.542
Problem: Using a range for window and buffer commands has a few problems.

Cannot specify the type of range for a user command.
Solution: Add the -addr argument for user commands. Fix problems. (Marcin

Szamotulski)
Files: src/testdir/test_command_count.in,

src/testdir/test_command_count.ok src/testdir/Make_amiga.mak
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, runtime/doc/map.txt, src/Makefile,
src/ex_cmds.h, src/ex_docmd.c, src/ex_getln.c,
src/proto/ex_docmd.pro, src/vim.h,

Patch 7.4.543

version8.txt — 2852

Problem: Since patch 7.4.232 "1,3s/\n//" joins two lines instead of three.
(Eliseo Martínez) Issue 287

Solution: Correct the line count. (Christian Brabandt)
Also set the last used search pattern.

Files: src/ex_cmds.c, src/search.c, src/proto/search.pro

Patch 7.4.544
Problem: Warnings for unused arguments when compiling with a combination of

features.
Solution: Add "UNUSED".
Files: src/if_cscope.c

Patch 7.4.545
Problem: Highlighting for multi-line matches is not correct.
Solution: Stop highlight at the end of the match. (Hirohito Higashi)
Files: src/screen.c

Patch 7.4.546
Problem: Repeated use of vim_snprintf() with a number.
Solution: Move these vim_snprintf() calls into a function.
Files: src/window.c

Patch 7.4.547
Problem: Using "vit" does not select a multibyte character at the end

correctly.
Solution: Advance the cursor over the multibyte character. (Christian

Brabandt)
Files: src/search.c

Patch 7.4.548
Problem: Compilation fails with native version of MinGW-w64, because

it doesn't have x86_64-w64-mingw32-windres.exe.
Solution: Use windres instead. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.549
Problem: Function name not recognized correctly when inside a function.
Solution: Don't check for an alpha character. (Ozaki Kiichi)
Files: src/eval.c, src/testdir/test_nested_function.in,

src/testdir/test_nested_function.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile

Patch 7.4.550
Problem: curs_rows() function is always called with the second argument

false.
Solution: Remove the argument. (Christian Brabandt)

validate_botline_win() can then also be removed.
Files: src/move.c

Patch 7.4.551
Problem: "ygn" may yank too much. (Fritzophrenic) Issue 295.
Solution: Check the width of the next match. (Christian Brabandt)
Files: src/search.c, src/testdir/test53.in, src/testdir/test53.ok

Patch 7.4.552
Problem: Langmap applies to Insert mode expression mappings.
Solution: Check for Insert mode. (Daniel Hahler)
Files: src/getchar.c, src/testdir/test_mapping.in,

version8.txt — 2853

src/testdir/test_mapping.ok

Patch 7.4.553
Problem: Various small issues.
Solution: Fix those issues.
Files: src/ex_cmds.h, src/gui.h, src/message.c, src/testdir/test39.in,

src/proto/eval.pro, src/proto/misc1.pro, src/proto/ops.pro,
src/proto/screen.pro, src/proto/window.pro. src/os_unix.c,
src/Make_vms.mms, src/proto/os_vms.pro, src/INSTALL

Patch 7.4.554
Problem: Missing part of patch 7.4.519.
Solution: Copy back regprog after calling vim_regexec.
Files: src/quickfix.c

Patch 7.4.555
Problem: test_close_count may fail for some combination of features.
Solution: Require normal features.
Files: src/testdir/test_close_count.in

Patch 7.4.556
Problem: Failed commands in Python interface not handled correctly.
Solution: Restore window and buffer on failure.
Files: src/if_py_both.h

Patch 7.4.557
Problem: One more small issue.
Solution: Update function proto.
Files: src/proto/window.pro

Patch 7.4.558
Problem: When the X server restarts Vim may get stuck.
Solution: Destroy the application context and create it again. (Issue 203)
Files: src/os_unix.c

Patch 7.4.559
Problem: Appending a block in the middle of a tab does not work correctly

when virtualedit is set.
Solution: Decrement spaces and count, don't reset them. (James McCoy)
Files: src/ops.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.560
Problem: Memory leak using :wviminfo. Issue 296.
Solution: Free memory when needed. (idea by Christian Brabandt)
Files: src/ops.c

Patch 7.4.561
Problem: Ex range handling is wrong for buffer-local user commands.
Solution: Check for CMD_USER_BUF. (Marcin Szamotulski)
Files: src/ex_docmd.c, src/testdir/test_command_count.in,

src/testdir/test_command_count.ok

Patch 7.4.562
Problem: Segfault with wide screen and error in 'rulerformat'. (Ingo Karkat)
Solution: Check there is enough space. (Christian Brabandt)
Files: src/buffer.c, src/screen.c

Patch 7.4.563
Problem: No test for replacing on a tab in Virtual replace mode.
Solution: Add a test. (Elias Diem)

version8.txt — 2854

Files: src/testdir/test48.in, src/testdir/test48.ok

Patch 7.4.564
Problem: FEAT_OSFILETYPE is used even though it's never defined.
Solution: Remove the code. (Christian Brabandt)
Files: src/fileio.c

Patch 7.4.565
Problem: Ranges for arguments, buffers, tabs, etc. are not checked to be

valid but limited to the maximum. This can cause the wrong thing
to happen.

Solution: Give an error for an invalid value. (Marcin Szamotulski)
Use windows range for ":wincmd".

Files: src/ex_docmd.c, src/ex_cmds.h, src/testdir/test62.in,
src/testdir/test_argument_count.in,
src/testdir/test_argument_count.ok,
src/testdir/test_close_count.in,
src/testdir/test_command_count.in,
src/testdir/test_command_count.ok

Patch 7.4.566
Problem: :argdo, :bufdo, :windo and :tabdo don't take a range.
Solution: Support the range. (Marcin Szamotulski)
Files: runtime/doc/editing.txt, runtime/doc/tabpage.txt,

runtime/doc/windows.txt, src/ex_cmds.h, src/ex_cmds2.c,
src/testdir/test_command_count.in,
src/testdir/test_command_count.ok

Patch 7.4.567
Problem: Non-ascii vertical separator characters are always redrawn.
Solution: Compare only the one byte that's stored. (Thiago Padilha)
Files: src/screen.c

Patch 7.4.568
Problem: Giving an error for ":0wincmd w" is a problem for some plugins.
Solution: Allow the zero in the range. (Marcin Szamotulski)
Files: src/ex_docmd.c, src/testdir/test_command_count.ok

Patch 7.4.569 (after 7.4.468)
Problem: Having CTRL-C interrupt or not does not check the mode of the

mapping. (Ingo Karkat)
Solution: Use a bitmask with the map mode. (Christian Brabandt)
Files: src/getchar.c, src/structs.h, src/testdir/test_mapping.in,

src/testdir/test_mapping.ok, src/ui.c, src/globals.h

Patch 7.4.570
Problem: Building with dynamic library does not work for Ruby 2.2.0
Solution: Change #ifdefs and #defines. (Ken Takata)
Files: src/if_ruby.c

Patch 7.4.571 (after 7.4.569)
Problem: Can't build with tiny features. (Ike Devolder)
Solution: Add #ifdef.
Files: src/getchar.c

Patch 7.4.572
Problem: Address type of :wincmd depends on the argument.
Solution: Check the argument.
Files: src/ex_docmd.c, src/window.c, src/proto/window.pro

version8.txt — 2855

Patch 7.4.573 (after 7.4.569)
Problem: Mapping CTRL-C in Visual mode doesn't work. (Ingo Karkat)
Solution: Call get_real_state() instead of using State directly.
Files: src/ui.c, src/testdir/test_mapping.in, src/testdir/test_mapping.ok

Patch 7.4.574
Problem: No error for eval('$').
Solution: Check for empty name. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.575
Problem: Unicode character properties are outdated.
Solution: Update the tables with the latest version.
Files: src/mbyte.c

Patch 7.4.576
Problem: Redrawing problem with 'relativenumber' and 'linebreak'.
Solution: Temporarily reset 'linebreak' and restore it in more places.

(Christian Brabandt)
Files: src/normal.c

Patch 7.4.577
Problem: Matching with a virtual column has a lot of overhead on very long

lines. (Issue 310)
Solution: Bail out early if there can't be a match. (Christian Brabandt)

Also check for CTRL-C at every position.
Files: src/regexp_nfa.c

Patch 7.4.578
Problem: Using getcurpos() after "$" in an empty line returns a negative

number.
Solution: Don't add one when this would overflow. (Hirohito Higashi)
Files: src/eval.c

Patch 7.4.579
Problem: Wrong cursor positioning when 'linebreak' is set and lines wrap.
Solution: Fix it. (Christian Brabandt)
Files: src/charset.c, src/screen.c

Patch 7.4.580
Problem: ":52wincmd v" still gives an invalid range error. (Charles

Campbell)
Solution: Skip over white space.
Files: src/ex_docmd.c

Patch 7.4.581
Problem: Compiler warnings for uninitialized variables. (John Little)
Solution: Initialize the variables.
Files: src/ops.c

Patch 7.4.582 (after 7.4.577)
Problem: Can't match "%>80v" properly. (Axel Bender)
Solution: Correctly handle ">". (Christian Brabandt)
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.583
Problem: With tiny features test 16 may fail.
Solution: Source small.vim. (Christian Brabandt)
Files: src/testdir/test16.in

version8.txt — 2856

Patch 7.4.584
Problem: With tiny features test_command_count may fail.
Solution: Source small.vim. (Christian Brabandt)
Files: src/testdir/test_command_count.in

Patch 7.4.585
Problem: Range for :bdelete does not work. (Ronald Schild)
Solution: Also allow unloaded buffers.
Files: src/ex_cmds.h, src/testdir/test_command_count.in,

src/testdir/test_command_count.ok

Patch 7.4.586
Problem: Parallel building of the documentation html files is not reliable.
Solution: Remove a cyclic dependency. (Reiner Herrmann)
Files: runtime/doc/Makefile

Patch 7.4.587
Problem: Conceal does not work properly with 'linebreak'. (cs86661)
Solution: Save and restore boguscols. (Christian Brabandt)
Files: src/screen.c, src/testdir/test_listlbr_utf8.in,

src/testdir/test_listlbr_utf8.ok

Patch 7.4.588
Problem: ":0argedit foo" puts the new argument in the second place instead

of the first.
Solution: Adjust the range type. (Ingo Karkat)
Files: src/ex_cmds.h, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_argument_0count.in,
src/testdir/test_argument_0count.ok

Patch 7.4.589
Problem: In the MS-Windows console Vim can't handle greek characters when

encoding is utf-8.
Solution: Escape K_NUL. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.4.590
Problem: Using ctrl_x_mode as if it contains flags.
Solution: Don't use AND with CTRL_X_OMNI. (Hirohito Higashi)
Files: src/edit.c

Patch 7.4.591 (after 7.4.587)
Problem: test_listlbr_utf8 fails when the conceal feature is not available.
Solution: Check for the conceal feature. (Kazunobu Kuriyama)
Files: src/testdir/test_listlbr_utf8.in

Patch 7.4.592
Problem: When doing ":e foobar" when already editing "foobar" and 'buftype'

is "nofile" the buffer is cleared. (Xavier de Gaye)
Solution: Do no clear the buffer.
Files: src/ex_cmds.c

Patch 7.4.593
Problem: Crash when searching for "x\{0,90000}". (Dominique Pelle)
Solution: Bail out from the NFA engine when the max limit is much higher

than the min limit.
Files: src/regexp_nfa.c, src/regexp.c, src/vim.h

version8.txt — 2857

Patch 7.4.594
Problem: Using a block delete while 'breakindent' is set does not work

properly.
Solution: Use "line" instead of "prev_pend" as the first argument to

lbr_chartabsize_adv(). (Hirohito Higashi)
Files: src/ops.c, src/testdir/test_breakindent.in,

src/testdir/test_breakindent.ok

Patch 7.4.595
Problem: The test_command_count test fails when using Japanese.
Solution: Force the language to C. (Hirohito Higashi)
Files: src/testdir/test_command_count.in

Patch 7.4.596 (after 7.4.592)
Problem: Tiny build doesn't compile. (Ike Devolder)
Solution: Add #ifdef.
Files: src/ex_cmds.c

Patch 7.4.597
Problem: Cannot change the result of systemlist().
Solution: Initialize v_lock. (Yukihiro Nakadaira)
Files: src/eval.c

Patch 7.4.598
Problem: ":tabdo windo echo 'hi'" causes "* register not to be changed.

(Salman Halim)
Solution: Change how clip_did_set_selection is used and add

clipboard_needs_update and global_change_count. (Christian
Brabandt)

Files: src/main.c, src/ui.c, src/testdir/test_eval.in,
src/testdir/test_eval.ok

Patch 7.4.599
Problem: Out-of-memory error.
Solution: Avoid trying to allocate a negative amount of memory, use size_t

instead of int. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 7.4.600
Problem: Memory wasted in struct because of aligning.
Solution: Split pos in lnum and col. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 7.4.601
Problem: It is not possible to have feedkeys() insert characters.
Solution: Add the 'i' flag.
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.4.602
Problem: ":set" does not accept hex numbers as documented.
Solution: Use vim_str2nr(). (ZyX)
Files: src/option.c, runtime/doc/options.txt

Patch 7.4.603
Problem: 'foldcolumn' may be set such that it fills the whole window, not

leaving space for text.
Solution: Reduce the foldcolumn width when there is not sufficient room.

(idea by Christian Brabandt)
Files: src/screen.c

version8.txt — 2858

Patch 7.4.604
Problem: Running tests changes viminfo.
Solution: Disable viminfo.
Files: src/testdir/test_breakindent.in

Patch 7.4.605
Problem: The # register is not writable, it cannot be restored after

jumping around.
Solution: Make the # register writable. (Marcin Szamotulski)
Files: runtime/doc/change.txt, src/ops.c, src/buffer.c, src/globals.h

Patch 7.4.606
Problem: May crash when using a small window.
Solution: Avoid dividing by zero. (Christian Brabandt)
Files: src/normal.c

Patch 7.4.607 (after 7.4.598)
Problem: Compiler warnings for unused variables.
Solution: Move them inside #ifdef. (Kazunobu Kuriyama)
Files: src/ui.c

Patch 7.4.608 (after 7.4.598)
Problem: test_eval fails when the clipboard feature is missing.
Solution: Skip part of the test. Reduce the text used.
Files: src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.609
Problem: For complicated list and dict use the garbage collector can run

out of stack space.
Solution: Use a stack of dicts and lists to be marked, thus making it

iterative instead of recursive. (Ben Fritz)
Files: src/eval.c, src/if_lua.c, src/if_py_both.h, src/if_python.c,

src/if_python3.c, src/proto/eval.pro, src/proto/if_lua.pro,
src/proto/if_python.pro, src/proto/if_python3.pro, src/structs.h

Patch 7.4.610
Problem: Some function headers may be missing from generated .pro files.
Solution: Add PROTO to the #ifdef.
Files: src/option.c, src/syntax.c

Patch 7.4.611 (after 7.4.609)
Problem: Syntax error.
Solution: Change statement to return.
Files: src/if_python3.c

Patch 7.4.612
Problem: test_eval fails on Mac.
Solution: Use the * register instead of the + register. (Jun Takimoto)
Files: src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.613
Problem: The NFA engine does not implement the 'redrawtime' time limit.
Solution: Implement the time limit.
Files: src/regexp_nfa.c

Patch 7.4.614
Problem: There is no test for what patch 7.4.601 fixes.
Solution: Add a test. (Christian Brabandt)
Files: src/testdir/test_mapping.in, src/testdir/test_mapping.ok

version8.txt — 2859

Patch 7.4.615
Problem: Vim hangs when freeing a lot of objects.
Solution: Do not go back to the start of the list every time. (Yasuhiro

Matsumoto and Ariya Mizutani)
Files: src/eval.c

Patch 7.4.616
Problem: Cannot insert a tab in front of a block.
Solution: Correctly compute aop->start. (Christian Brabandt)
Files: src/ops.c, src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.617
Problem: Wrong ":argdo" range does not cause an error.
Solution: Reset "cmd" to NULL. (Marcin Szamotulski, Ingo Karkat)
Files: src/ex_docmd.c

Patch 7.4.618 (after 7.4.609)
Problem: luaV_setref() is missing a return statement. (Ozaki Kiichi)
Solution: Put the return statement back.
Files: src/if_lua.c

Patch 7.4.619 (after 7.4.618)
Problem: luaV_setref() not returning the correct value.
Solution: Return one.
Files: src/if_lua.c

Patch 7.4.620
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize "did_free". (Ben Fritz)
Files: src/eval.c

Patch 7.4.621 (after 7.4.619)
Problem: Returning 1 in the wrong function. (Raymond Ko)
Solution: Return 1 in the right function (hopefully).
Files: src/if_lua.c

Patch 7.4.622
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/regexp_nfa.c

Patch 7.4.623
Problem: Crash with pattern: \(\)\{80000} (Dominique Pelle)
Solution: When the max limit is large fall back to the old engine.
Files: src/regexp_nfa.c

Patch 7.4.624
Problem: May leak memory or crash when vim_realloc() returns NULL.
Solution: Handle a NULL value properly. (Mike Williams)
Files: src/if_cscope.c, src/memline.c, src/misc1.c, src/netbeans.c

Patch 7.4.625
Problem: Possible NULL pointer dereference.
Solution: Check for NULL before using it. (Mike Williams)
Files: src/if_py_both.h

Patch 7.4.626
Problem: MSVC with W4 gives useless warnings.
Solution: Disable more warnings. (Mike Williams)
Files: src/vim.h

version8.txt — 2860

Patch 7.4.627
Problem: The last screen cell is not updated.
Solution: Respect the "tn" termcap feature. (Hayaki Saito)
Files: runtime/doc/term.txt, src/option.c, src/screen.c, src/term.c,

src/term.h

Patch 7.4.628
Problem: Compiler warning for variable might be clobbered by longjmp.
Solution: Add volatile. (Michael Jarvis)
Files: src/main.c

Patch 7.4.629
Problem: Coverity warning for Out-of-bounds read.
Solution: Increase MAXWLEN to 254. (Eliseo Martínez)
Files: src/spell.c

Patch 7.4.630
Problem: When using Insert mode completion combined with autocommands the

redo command may not work.
Solution: Do not save the redo buffer when executing autocommands. (Yasuhiro

Matsumoto)
Files: src/fileio.c

Patch 7.4.631
Problem: The default conceal character is documented to be a space but it's

initially a dash. (Christian Brabandt)
Solution: Make the initial value a space.
Files: src/globals.h

Patch 7.4.632 (after 7.4.592)
Problem: 7.4.592 breaks the netrw plugin, because the autocommands are

skipped.
Solution: Roll back the change.
Files: src/ex_cmds.c

Patch 7.4.633
Problem: After 7.4.630 the problem persists.
Solution: Also skip redo when calling a user function.
Files: src/eval.c

Patch 7.4.634
Problem: Marks are not restored after redo + undo.
Solution: Fix the way marks are restored. (Olaf Dabrunz)
Files: src/undo.c, src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_marks.in, src/testdir/test_marks.ok

Patch 7.4.635
Problem: If no NL or CR is found in the first block of a file then the

'fileformat' may be set to "mac". (Issue 77)
Solution: Check if a CR was found. (eswald)
Files: src/fileio.c

Patch 7.4.636
Problem: A search with end offset gets stuck at end of file. (Gary Johnson)
Solution: When a search doesn't move the cursor repeat it with a higher

count. (Christian Brabandt)
Files: src/normal.c, src/testdir/test44.in, src/testdir/test44.ok

version8.txt — 2861

Patch 7.4.637
Problem: Incorrectly read the number of buffer for which an autocommand

should be registered.
Solution: Reverse check for "<buffer=abuf>". (Lech Lorens)
Files: src/fileio.c

Patch 7.4.638
Problem: Can't build with Lua 5.3 on Windows.
Solution: use luaL_optinteger() instead of LuaL_optlong(). (Ken Takata)
Files: src/if_lua.c

Patch 7.4.639
Problem: Combination of linebreak and conceal doesn't work well.
Solution: Fix the display problems. (Christian Brabandt)
Files: src/screen.c, src/testdir/test88.in, src/testdir/test88.ok,

src/testdir/test_listlbr_utf8.in, src/testdir/test_listlbr_utf8.ok

Patch 7.4.640
Problem: After deleting characters in Insert mode such that lines are

joined undo does not work properly. (issue 324)
Solution: Use Insstart instead of Insstart_orig. (Christian Brabandt)
Files: src/edit.c

Patch 7.4.641
Problem: The tabline menu was using ":999tabnew" which is now invalid.
Solution: Use ":$tabnew" instead. (Florian Degner)
Files: src/normal.c

Patch 7.4.642
Problem: When using "gf" escaped spaces are not handled.
Solution: Recognize escaped spaces.
Files: src/vim.h, src/window.c, src/misc2.c

Patch 7.4.643
Problem: Using the default file format for Mac files. (Issue 77)
Solution: Reset the try_mac counter in the right place. (Oswald)
Files: src/fileio.c, src/testdir/test30.in, src/testdir/test30.ok

Patch 7.4.644
Problem: Stratus VOS doesn't have sync().
Solution: Use fflush(). (Karli Aurelia)
Files: src/memfile.c

Patch 7.4.645
Problem: When splitting the window in a BufAdd autocommand while still in

the first, empty buffer the window count is wrong.
Solution: Do not reset b_nwindows to zero and don't increment it.
Files: src/buffer.c, src/ex_cmds.c

Patch 7.4.646
Problem: ":bufdo" may start at a deleted buffer.
Solution: Find the first not deleted buffer. (Shane Harper)
Files: src/ex_cmds2.c, src/testdir/test_command_count.in,

src/testdir/test_command_count.ok

Patch 7.4.647
Problem: After running the tests on MS-Windows many files differ from their

originals as they were checked out.
Solution: Use a temp directory for executing the tests. (Ken Takata, Taro

version8.txt — 2862

Muraoka)
Files: src/testdir/Make_dos.mak

Patch 7.4.648 (after 7.4.647)
Problem: Tests broken on MS-Windows.
Solution: Delete wrong copy line. (Ken Takata)
Files: src/testdir/Make_dos.mak

Patch 7.4.649
Problem: Compiler complains about ignoring return value of fwrite().

(Michael Jarvis)
Solution: Add (void).
Files: src/misc2.c

Patch 7.4.650
Problem: Configure check may fail because the dl library is not used.
Solution: Put "-ldl" in LIBS rather than LDFLAGS. (Ozaki Kiichi)
Files: src/configure.in, src/auto/configure

Patch 7.4.651 (after 7.4.582)
Problem: Can't match "%>80v" properly for multibyte characters.
Solution: Multiply the character number by the maximum number of bytes in a

character. (Yasuhiro Matsumoto)
Files: src/regexp_nfa.c

Patch 7.4.652
Problem: Xxd lacks a few features.
Solution: Use 8 characters for the file position. Add the -e and -o

arguments. (Vadim Vygonets)
Files: src/xxd/xxd.c, runtime/doc/xxd.1

Patch 7.4.653
Problem: Insert mode completion with complete() may have CTRL-L work like

CTRL-P.
Solution: Handle completion with complete() differently. (Yasuhiro

Matsumoto, Christian Brabandt, Hirohito Higashi)
Files: src/edit.c

Patch 7.4.654
Problem: glob() and globpath() cannot include links to non-existing files.

(Charles Campbell)
Solution: Add an argument to include all links with glob(). (James McCoy)

Also for globpath().
Files: src/vim.h, src/eval.c, src/ex_getln.c

Patch 7.4.655
Problem: Text deleted by "dit" depends on indent of closing tag.

(Jan Parthey)
Solution: Do not adjust oap->end in do_pending_operator(). (Christian

Brabandt)
Files: src/normal.c, src/search.c, src/testdir/test53.in,

src/testdir/test53.ok

Patch 7.4.656 (after 7.4.654)
Problem: Missing changes for glob() in one file.
Solution: Add the missing changes.
Files: src/misc1.c

Patch 7.4.657 (after 7.4.656)
Problem: Compiler warnings for pointer mismatch.

version8.txt — 2863

Solution: Add a typecast. (John Marriott)
Files: src/misc1.c

Patch 7.4.658
Problem: 'formatexpr' is evaluated too often.
Solution: Only invoke it when beyond the 'textwidth' column, as it is

documented. (James McCoy)
Files: src/edit.c

Patch 7.4.659
Problem: When 'ruler' is set the preferred column is reset. (Issue 339)
Solution: Don't set curswant when redrawing the status lines.
Files: src/option.c

Patch 7.4.660
Problem: Using freed memory when g:colors_name is changed in the colors

script. (oni-link)
Solution: Make a copy of the variable value.
Files: src/syntax.c

Patch 7.4.661
Problem: Using "0 CTRL-D" in Insert mode may have CursorHoldI interfere.

(Gary Johnson)
Solution: Don't store K_CURSORHOLD as the last character. (Christian

Brabandt)
Files: src/edit.c

Patch 7.4.662
Problem: When 'M' is in the 'cpo' option then selecting a text object in

parentheses does not work correctly.
Solution: Keep 'M' in 'cpo' when finding a match. (Hirohito Higashi)
Files: src/search.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_textobjects.in,
src/testdir/test_textobjects.ok

Patch 7.4.663
Problem: When using netbeans a buffer is not found in another tab.
Solution: When 'switchbuf' is set to "usetab" then switch to another tab

when possible. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.4.664
Problem: When 'compatible' is reset 'numberwidth' is set to 4, but the

effect doesn't show until a change is made.
Solution: Check if 'numberwidth' changed. (Christian Brabandt)
Files: src/screen.c, src/structs.h

Patch 7.4.665
Problem: 'linebreak' does not work properly with multibyte characters.
Solution: Compute the pointer offset with mb_head_off(). (Yasuhiro

Matsumoto)
Files: src/screen.c

Patch 7.4.666
Problem: There is a chance that Vim may lock up.
Solution: Handle timer events differently. (Aaron Burrow)
Files: src/os_unix.c

version8.txt — 2864

Patch 7.4.667
Problem: 'colorcolumn' isn't drawn in a closed fold while 'cursorcolumn'

is. (Carlos Pita)
Solution: Make it consistent. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.668
Problem: Can't use a glob pattern as a regexp pattern.
Solution: Add glob2regpat(). (Christian Brabandt)
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.4.669
Problem: When netbeans is active the sign column always shows up.
Solution: Only show the sign column once a sign has been added. (Xavier de

Gaye)
Files: src/buffer.c, src/edit.c, src/move.c, src/netbeans.c,

src/screen.c, src/structs.h

Patch 7.4.670
Problem: Using 'cindent' for Javascript is less than perfect.
Solution: Improve indenting of continuation lines. (Hirohito Higashi)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.671 (after 7.4.665)
Problem: Warning for shadowing a variable.
Solution: Rename off to mb_off. (Kazunobu Kuriyama)
Files: src/screen.c

Patch 7.4.672
Problem: When completing a shell command, directories in the current

directory are not listed.
Solution: When "." is not in $PATH also look in the current directory for

directories.
Files: src/ex_getln.c, src/vim.h, src/misc1.c, src/eval.c,

src/os_amiga.c, src/os_msdos.c, src/os_unix.c, src/os_vms.c,
src/proto/os_amiga.pro, src/proto/os_msdos.pro,
src/proto/os_unix.pro, src/proto/os_win32.pro

Patch 7.4.673
Problem: The first syntax entry gets sequence number zero, which doesn't

work. (Clinton McKay)
Solution: Start at number one. (Bjorn Linse)
Files: src/syntax.c

Patch 7.4.674 (after 7.4.672)
Problem: Missing changes in one file.
Solution: Also change the win32 file.
Files: src/os_win32.c

Patch 7.4.675
Problem: When a FileReadPost autocommand moves the cursor inside a line it

gets moved back.
Solution: When checking whether an autocommand moved the cursor store the

column as well. (Christian Brabandt)
Files: src/ex_cmds.c

Patch 7.4.676
Problem: On Mac, when not using the default Python framework configure

doesn't do the right thing.
Solution: Use a linker search path. (Kazunobu Kuriyama)

version8.txt — 2865

Files: src/configure.in, src/auto/configure

Patch 7.4.677 (after 7.4.676)
Problem: Configure fails when specifying a python-config-dir. (Lcd)
Solution: Check if PYTHONFRAMEWORKPREFIX is set.
Files: src/configure.in, src/auto/configure

Patch 7.4.678
Problem: When using --remote the directory may end up being wrong.
Solution: Use localdir() to find out what to do. (Xaizek)
Files: src/main.c

Patch 7.4.679
Problem: Color values greater than 255 cause problems on MS-Windows.
Solution: Truncate to 255 colors. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.4.680
Problem: CTRL-W in Insert mode does not work well for multibyte

characters.
Solution: Use mb_get_class(). (Yasuhiro Matsumoto)
Files: src/edit.c, src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_erasebackword.in,
src/testdir/test_erasebackword.ok,

Patch 7.4.681
Problem: MS-Windows: When Vim is minimized the window height is computed

incorrectly.
Solution: When minimized use the previously computed size. (Ingo Karkat)
Files: src/gui_w32.c

Patch 7.4.682
Problem: The search highlighting and match highlighting replaces the

cursorline highlighting, this doesn't look good.
Solution: Combine the highlighting. (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 7.4.683
Problem: Typo in the vimtutor command.
Solution: Fix the typo. (Corey Farwell, github pull 349)
Files: vimtutor.com

Patch 7.4.684
Problem: When starting several Vim instances in diff mode, the temp files

used may not be unique. (Issue 353)
Solution: Add an argument to vim_tempname() to keep the file.
Files: src/diff.c, src/eval.c, src/ex_cmds.c, src/fileio.c,

src/hardcopy.c, src/proto/fileio.pro, src/if_cscope.c,
src/memline.c, src/misc1.c, src/os_unix.c, src/quickfix.c,
src/spell.c

Patch 7.4.685
Problem: When there are illegal utf-8 characters the old regexp engine may

go past the end of a string.
Solution: Only advance to the end of the string. (Dominique Pelle)
Files: src/regexp.c

Patch 7.4.686

version8.txt — 2866

Problem: "zr" and "zm" do not take a count.
Solution: Implement the count, restrict the fold level to the maximum

nesting depth. (Marcin Szamotulski)
Files: runtime/doc/fold.txt, src/normal.c

Patch 7.4.687
Problem: There is no way to use a different in Replace mode for a terminal.
Solution: Add t_SR. (Omar Sandoval)
Files: runtime/doc/options.txt, runtime/doc/term.txt,

runtime/syntax/vim.vim, src/option.c, src/term.c, src/term.h

Patch 7.4.688
Problem: When "$" is in 'cpo' the popup menu isn't undrawn correctly.

(Issue 166)
Solution: When using the popup menu remove the "$".
Files: src/edit.c

Patch 7.4.689
Problem: On MS-Windows, when 'autochdir' is set, diff mode with files in

different directories does not work. (Axel Bender)
Solution: Remember the current directory and use it where needed. (Christian

Brabandt)
Files: src/main.c

Patch 7.4.690
Problem: Memory access errors when changing indent in Ex mode. Also missing

redraw when using CTRL-U. (Knil Ino)
Solution: Update pointers after calling ga_grow().
Files: src/ex_getln.c

Patch 7.4.691 (after 7.4.689)
Problem: Can't build with MzScheme.
Solution: Change "cwd" into the global variable "start_dir".
Files: src/main.c

Patch 7.4.692
Problem: Defining SOLARIS for no good reason. (Danek Duvall)
Solution: Remove it.
Files: src/os_unix.h

Patch 7.4.693
Problem: Session file is not correct when there are multiple tab pages.
Solution: Reset the current window number for each tab page. (Jacob Niehus)
Files: src/ex_docmd.c

Patch 7.4.694
Problem: Running tests changes the .viminfo file.
Solution: Disable viminfo in the text objects test.
Files: src/testdir/test_textobjects.in

Patch 7.4.695
Problem: Out-of-bounds read, detected by Coverity.
Solution: Remember the value of cmap for the first matching encoding. Reset

cmap to that value if first matching encoding is going to be used.
(Eliseo Martínez)

Files: src/hardcopy.c

Patch 7.4.696
Problem: Not freeing memory when encountering an error.
Solution: Free the stack before returning. (Eliseo Martínez)

version8.txt — 2867

Files: src/regexp_nfa.c

Patch 7.4.697
Problem: The filename used for ":profile" must be given literally.
Solution: Expand "~" and environment variables. (Marco Hinz)
Files: src/ex_cmds2.c

Patch 7.4.698
Problem: Various problems with locked and fixed lists and dictionaries.
Solution: Disallow changing locked items, fix a crash, add tests. (Olaf

Dabrunz)
Files: src/structs.h, src/eval.c, src/testdir/test55.in,

src/testdir/test55.ok

Patch 7.4.699
Problem: E315 when trying to delete a fold. (Yutao Yuan)
Solution: Make sure the fold doesn't go beyond the last buffer line.

(Christian Brabandt)
Files: src/fold.c

Patch 7.4.700
Problem: Fold can't be opened after ":move". (Ein Brown)
Solution: Delete the folding information and update it afterwards.

(Christian Brabandt)
Files: src/ex_cmds.c, src/fold.c, src/testdir/test45.in,

src/testdir/test45.ok

Patch 7.4.701
Problem: Compiler warning for using uninitialized variable. (Yasuhiro

Matsumoto)
Solution: Initialize it.
Files: src/hardcopy.c

Patch 7.4.702
Problem: Joining an empty list does unnecessary work.
Solution: Let join() return early. (Marco Hinz)
Files: src/eval.c

Patch 7.4.703
Problem: Compiler warning for start_dir unused when building unittests.
Solution: Move start_dir inside the #ifdef.
Files: src/main.c

Patch 7.4.704
Problem: Searching for a character matches an illegal byte and causes

invalid memory access. (Dominique Pelle)
Solution: Do not match an invalid byte when search for a character in a

string. Fix equivalence classes using negative numbers, which
result in illegal bytes.

Files: src/misc2.c, src/regexp.c, src/testdir/test44.in

Patch 7.4.705
Problem: Can't build with Ruby 2.2.
Solution: Add #ifdefs to handle the incompatible change. (Andrei Olsen)
Files: src/if_ruby.c

Patch 7.4.706
Problem: Window drawn wrong when 'laststatus' is zero and there is a

command-line window. (Yclept Nemo)
Solution: Set the status height a bit later. (Christian Brabandt)

version8.txt — 2868

Files: src/window.c

Patch 7.4.707
Problem: Undo files can have their executable bit set.
Solution: Strip of the executable bit. (Mikael Berthe)
Files: src/undo.c

Patch 7.4.708
Problem: gettext() is called too often.
Solution: Do not call gettext() for messages until they are actually used.

(idea by Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.709
Problem: ":tabmove" does not work as documented.
Solution: Make it work consistently. Update documentation and add tests.

(Hirohito Higashi)
Files: src/window.c, runtime/doc/tabpage.txt, src/ex_docmd.c,

src/testdir/test62.in, src/testdir/test62.ok

Patch 7.4.710
Problem: It is not possible to make spaces visible in list mode.
Solution: Add the "space" item to 'listchars'. (David Bürgin, issue 350)
Files: runtime/doc/options.txt, src/globals.h, src/message.h,

src/screen.c, src/testdir/test_listchars.in,
src/testdir/test_listchars.ok, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile

Patch 7.4.711 (after 7.4.710)
Problem: Missing change in one file.
Solution: Also change option.c
Files: src/option.c

Patch 7.4.712 (after 7.4.710)
Problem: Missing change in another file.
Solution: Also change message.c
Files: src/message.c

Patch 7.4.713
Problem: Wrong condition for #ifdef.
Solution: Change USR_EXRC_FILE2 to USR_VIMRC_FILE2. (Mikael Fourrier)
Files: src/os_unix.h

Patch 7.4.714
Problem: Illegal memory access when there are illegal bytes.
Solution: Check the byte length of the character. (Dominique Pelle)
Files: src/regexp.c

Patch 7.4.715
Problem: Invalid memory access when there are illegal bytes.
Solution: Get the length from the text, not from the character. (Dominique

Pelle)
Files: src/regexp_nfa.c

Patch 7.4.716
Problem: When using the 'c' flag of ":substitute" and selecting "a" or "l"

at the prompt the flags are not remembered for ":&&". (Ingo
Karkat)

version8.txt — 2869

Solution: Save the flag values and restore them. (Hirohito Higashi)
Files: src/ex_cmds.c

Patch 7.4.717
Problem: ":let list += list" can change a locked list.
Solution: Check for the lock earlier. (Olaf Dabrunz)
Files: src/eval.c, src/testdir/test55.in, src/testdir/test55.ok

Patch 7.4.718
Problem: Autocommands triggered by quickfix cannot get the current title

value.
Solution: Set w:quickfix_title earlier. (Yannick)

Also move the check for a title into the function.
Files: src/quickfix.c

Patch 7.4.719
Problem: Overflow when adding MAXCOL to a pointer.
Solution: Subtract pointers instead. (James McCoy)
Files: src/screen.c

Patch 7.4.720
Problem: Can't build with Visual Studio 2015.
Solution: Recognize the "version 14" numbers and omit /nodefaultlib when

appropriate. (Paul Moore)
Files: src/Make_mvc.mak

Patch 7.4.721
Problem: When 'list' is set Visual mode does not highlight anything in

empty lines. (mgaleski)
Solution: Check the value of lcs_eol in another place. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.722
Problem: 0x202f is not recognized as a non-breaking space character.
Solution: Add 0x202f to the list. (Christian Brabandt)
Files: runtime/doc/options.txt, src/message.c, src/screen.c

Patch 7.4.723
Problem: For indenting, finding the C++ baseclass can be slow.
Solution: Cache the result. (Hirohito Higashi)
Files: src/misc1.c

Patch 7.4.724
Problem: Vim icon does not show in Windows context menu. (issue 249)
Solution: Load the icon in GvimExt.
Files: src/GvimExt/gvimext.cpp, src/GvimExt/gvimext.h

Patch 7.4.725
Problem: ":call setreg('"', [])" reports an internal error.
Solution: Make the register empty. (Yasuhiro Matsumoto)
Files: src/ops.c

Patch 7.4.726 (after 7.4.724)
Problem: Cannot build GvimExt.
Solution: Set APPVER to 5.0. (KF Leong)
Files: src/GvimExt/Makefile

Patch 7.4.727 (after 7.4.724)
Problem: Cannot build GvimExt with MingW.
Solution: Add -lgdi32. (KF Leong)

version8.txt — 2870

Files: src/GvimExt/Make_ming.mak

Patch 7.4.728
Problem: Can't build with some version of Visual Studio 2015.
Solution: Recognize another version 14 number. (Sinan)
Files: src/Make_mvc.mak

Patch 7.4.729 (after 7.4.721)
Problem: Occasional crash with 'list' set.
Solution: Fix off-by-one error. (Christian Brabandt)
Files: src/screen.c

Patch 7.4.730
Problem: When setting the crypt key and using a swap file, text may be

encrypted twice or unencrypted text remains in the swap file.
(Issue 369)

Solution: Call ml_preserve() before re-encrypting. Set correct index for
next pointer block.

Files: src/memfile.c, src/memline.c, src/proto/memline.pro, src/option.c

Patch 7.4.731
Problem: The tab menu shows "Close tab" even when it doesn't work.
Solution: Don't show "Close tab" for the last tab. (John Marriott)
Files: src/gui_w48.c, src/gui_gtk_x11.c, src/gui_mac.c, src/gui_motif.c

Patch 7.4.732
Problem: The cursor line is not always updated for the "O" command.
Solution: Reset the VALID_CROW flag. (Christian Brabandt)
Files: src/normal.c

Patch 7.4.733
Problem: test_listchars breaks on MS-Windows. (Kenichi Ito)
Solution: Set fileformat to "unix". (Christian Brabandt)
Files: src/testdir/test_listchars.in

Patch 7.4.734
Problem: ml_get error when using "p" in a Visual selection in the last

line.
Solution: Change the behavior at the last line. (Yukihiro Nakadaira)
Files: src/normal.c, src/ops.c, src/testdir/test94.in,

src/testdir/test94.ok

Patch 7.4.735
Problem: Wrong argument for sizeof().
Solution: Use a pointer argument. (Chris Hall)
Files: src/eval.c

Patch 7.4.736
Problem: Invalid memory access.
Solution: Avoid going over the end of a NUL terminated string. (Dominique

Pelle)
Files: src/regexp.c

Patch 7.4.737
Problem: On MS-Windows vimgrep over arglist doesn't work (Issue 361)
Solution: Only escape backslashes in ## expansion when it is not used as the

path separator. (James McCoy)
Files: src/ex_docmd.c

Patch 7.4.738 (after 7.4.732)

version8.txt — 2871

Problem: Can't compile without the syntax highlighting feature.
Solution: Add #ifdef around use of w_p_cul. (Hirohito Higashi)
Files: src/normal.c, src/screen.c

Patch 7.4.739
Problem: In a string "\U" only takes 4 digits, while after CTRL-V U eight

digits can be used.
Solution: Make "\U" also take eight digits. (Christian Brabandt)
Files: src/eval.c

Patch 7.4.740
Problem: ":1quit" works like ":.quit". (Bohr Shaw)
Solution: Don't exit Vim when a range is specified. (Christian Brabandt)
Files: src/ex_docmd.c, src/testdir/test13.in, src/testdir/test13.ok

Patch 7.4.741
Problem: When using += with ":set" a trailing comma is not recognized.

(Issue 365)
Solution: Don't add a second comma. Add a test. (partly by Christian

Brabandt)
Files: src/option.c, src/testdir/test_set.in, src/testdir/test_set.ok,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.742
Problem: Cannot specify a vertical split when loading a buffer for a

quickfix command.
Solution: Add the "vsplit" value to 'switchbuf'. (Brook Hong)
Files: runtime/doc/options.txt, src/buffer.c, src/option.h

Patch 7.4.743
Problem: "p" in Visual mode causes an unexpected line split.
Solution: Advance the cursor first. (Yukihiro Nakadaira)
Files: src/ops.c, src/testdir/test94.in, src/testdir/test94.ok

Patch 7.4.744
Problem: No tests for Ruby and Perl.
Solution: Add minimal tests. (Ken Takata)
Files: src/testdir/test_perl.in, src/testdir/test_perl.ok,

src/testdir/test_ruby.in, src/testdir/test_ruby.ok,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.745
Problem: The entries added by matchaddpos() are returned by getmatches()

but can't be set with setmatches(). (Lcd)
Solution: Fix setmatches(). (Christian Brabandt)
Files: src/eval.c, src/testdir/test63.in, src/testdir/test63.ok

Patch 7.4.746
Problem: ":[count]tag" is not always working. (cs86661)
Solution: Set cur_match a bit later. (Hirohito Higashi)
Files: src/tag.c,

Patch 7.4.747
Problem: ":cnext" may jump to the wrong column when setting

'virtualedit=all' (cs86661)
Solution: Reset the coladd field. (Hirohito Higashi)

version8.txt — 2872

Files: src/quickfix.c

Patch 7.4.748 (after 7.4.745)
Problem: Buffer overflow.
Solution: Make the buffer larger. (Kazunobu Kuriyama)
Files: src/eval.c

Patch 7.4.749 (after 7.4.741)
Problem: For some options two consecutive commas are OK. (Nikolai Pavlov)
Solution: Add the P_ONECOMMA flag.
Files: src/option.c

Patch 7.4.750
Problem: Cannot build with clang 3.5 on Cygwin with perl enabled.
Solution: Strip "-fdebug-prefix-map" in configure. (Ken Takata)
Files: src/configure.in, src/auto/configure

Patch 7.4.751
Problem: It is not obvious how to enable the address sanitizer.
Solution: Add commented-out flags in the Makefile. (Dominique Pelle)

Also add missing test targets.
Files: src/Makefile

Patch 7.4.752
Problem: Unicode 8.0 not supported.
Solution: Update tables for Unicode 8.0. Avoid E36 when running the script.

(James McCoy)
Files: runtime/tools/unicode.vim, src/mbyte.c

Patch 7.4.753
Problem: Appending in Visual mode with 'linebreak' set does not work

properly. Also when 'selection' is "exclusive". (Ingo Karkat)
Solution: Recalculate virtual columns. (Christian Brabandt)
Files: src/normal.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok, src/testdir/test_listlbr_utf8.in,
src/testdir/test_listlbr_utf8.ok

Patch 7.4.754
Problem: Using CTRL-A in Visual mode does not work well. (Gary Johnson)
Solution: Make it increment all numbers in the Visual area. (Christian

Brabandt)
Files: runtime/doc/change.txt, src/normal.c, src/ops.c,

src/proto/ops.pro, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_increment.in,
src/testdir/test_increment.ok

Patch 7.4.755
Problem: It is not easy to count the number of characters.
Solution: Add the skipcc argument to strchars(). (Hirohito Higashi, Ken

Takata)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_utf8.in,

src/testdir/test_utf8.ok

Patch 7.4.756
Problem: Can't use strawberry Perl 5.22 x64 on MS-Windows.
Solution: Add new defines and #if. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/if_perl.xs

version8.txt — 2873

Patch 7.4.757
Problem: Cannot detect the background color of a terminal.
Solution: Add T_RBG to request the background color if possible. (Lubomir

Rintel)
Files: src/main.c, src/term.c, src/term.h, src/proto/term.pro

Patch 7.4.758
Problem: When 'conceallevel' is 1 and quitting the command-line window with

CTRL-C the first character ':' is erased.
Solution: Reset 'conceallevel' in the command-line window. (Hirohito

Higashi)
Files: src/ex_getln.c

Patch 7.4.759
Problem: Building with Lua 5.3 doesn't work, symbols have changed.
Solution: Use the new names for the new version. (Felix Schnizlein)
Files: src/if_lua.c

Patch 7.4.760
Problem: Spelling mistakes are not displayed after ":syn spell".
Solution: Force a redraw after ":syn spell" command. (Christian Brabandt)
Files: src/syntax.c

Patch 7.4.761 (after 7.4.757)
Problem: The request-background termcode implementation is incomplete.
Solution: Add the missing pieces.
Files: src/option.c, src/term.c

Patch 7.4.762 (after 7.4.757)
Problem: Comment for may_req_bg_color() is wrong. (Christ van Willegen)
Solution: Rewrite the comment.
Files: src/term.c

Patch 7.4.763 (after 7.4.759)
Problem: Building with Lua 5.1 doesn't work.
Solution: Define lua_replace and lua_remove. (KF Leong)
Files: src/if_lua.c

Patch 7.4.764 (after 7.4.754)
Problem: test_increment fails on MS-Windows. (Ken Takata)
Solution: Clear Visual mappings. (Taro Muraoka)
Files: src/testdir/test_increment.in

Patch 7.4.765 (after 7.4.754)
Problem: CTRL-A and CTRL-X in Visual mode do not always work well.
Solution: Improvements for increment and decrement. (Christian Brabandt)
Files: src/normal.c, src/ops.c, src/testdir/test_increment.in,

src/testdir/test_increment.ok

Patch 7.4.766 (after 7.4.757)
Problem: Background color check does not work on Tera Term.
Solution: Also recognize ST as a termination character. (Hirohito Higashi)
Files: src/term.c

Patch 7.4.767
Problem: --remote-tab-silent can fail on MS-Windows.
Solution: Use single quotes to avoid problems with backslashes. (Idea by

Weiyong Mao)
Files: src/main.c

version8.txt — 2874

Patch 7.4.768
Problem: :diffoff only works properly once.
Solution: Also make :diffoff work when used a second time. (Olaf Dabrunz)
Files: src/diff.c

Patch 7.4.769 (after 7.4 768)
Problem: Behavior of :diffoff is not tested.
Solution: Add a bit of testing. (Olaf Dabrunz)
Files: src/testdir/test47.in, src/testdir/test47.ok

Patch 7.4.770 (after 7.4.766)
Problem: Background color response with transparency is not ignored.
Solution: Change the way escape sequences are recognized. (partly by

Hirohito Higashi)
Files: src/ascii.h, src/term.c

Patch 7.4.771
Problem: Search does not handle multibyte character at the start position

correctly.
Solution: Take byte size of character into account. (Yukihiro Nakadaira)
Files: src/search.c, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_search_mbyte.in,
src/testdir/test_search_mbyte.ok

Patch 7.4.772
Problem: Racket 6.2 is not supported on MS-Windows.
Solution: Check for the "racket" subdirectory. (Weiyong Mao)
Files: src/Make_mvc.mak, src/if_mzsch.c

Patch 7.4.773
Problem: 'langmap' is used in command-line mode when checking for mappings.

Issue 376.
Solution: Do not use 'langmap' in command-line mode. (Larry Velazquez)
Files: src/getchar.c, src/testdir/test_mapping.in,

src/testdir/test_mapping.ok

Patch 7.4.774
Problem: When using the CompleteDone autocommand event it's difficult to

get to the completed items.
Solution: Add the v:completed_items variable. (Shougo Matsu)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt, src/edit.c,

src/eval.c, src/macros.h, src/proto/eval.pro, src/vim.h

Patch 7.4.775
Problem: It is not possible to avoid using the first item of completion.
Solution: Add the "noinsert" and "noselect" values to 'completeopt'. (Shougo

Matsu)
Files: runtime/doc/options.txt, src/edit.c, src/option.c

Patch 7.4.776
Problem: Equivalence class for 'd' does not work correctly.
Solution: Fix 0x1e0f and 0x1d0b. (Dominique Pelle)
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.4.777
Problem: The README file doesn't look nice on github.
Solution: Add a markdown version of the README file.
Files: Filelist, README.md

version8.txt — 2875

Patch 7.4.778
Problem: Coverity warns for uninitialized variable.
Solution: Change condition of assignment.
Files: src/ops.c

Patch 7.4.779
Problem: Using CTRL-A in a line without a number moves the cursor. May

cause a crash when at the start of the line. (Urtica Dioica)
Solution: Do not move the cursor if no number was changed.
Files: src/ops.c

Patch 7.4.780
Problem: Compiler complains about uninitialized variable and clobbered

variables.
Solution: Add Initialization. Make variables static.
Files: src/ops.c, src/main.c

Patch 7.4.781
Problem: line2byte() returns one less when 'bin' and 'noeol' are set.
Solution: Only adjust the size for the last line. (Rob Wu)
Files: src/memline.c

Patch 7.4.782
Problem: Still a few problems with CTRL-A and CTRL-X in Visual mode.
Solution: Fix the reported problems. (Christian Brabandt)
Files: src/charset.c, src/eval.c, src/ex_cmds.c, src/ex_getln.c,

src/misc2.c, src/normal.c, src/ops.c, src/option.c,
src/proto/charset.pro, src/testdir/test_increment.in,
src/testdir/test_increment.ok

Patch 7.4.783
Problem: copy_chars() and copy_spaces() are inefficient.
Solution: Use memset() instead. (Dominique Pelle)
Files: src/ex_getln.c, src/misc2.c, src/ops.c, src/proto/misc2.pro,

src/screen.c

Patch 7.4.784
Problem: Using both "noinsert" and "noselect" in 'completeopt' does not

work properly.
Solution: Change the ins_complete() calls. (Ozaki Kiichi)
Files: src/edit.c

Patch 7.4.785
Problem: On some systems automatically adding the missing EOL causes

problems. Setting 'binary' has too many side effects.
Solution: Add the 'fixeol' option, default on. (Pavel Samarkin)
Files: src/buffer.c, src/fileio.c, src/memline.c, src/netbeans.c,

src/ops.c, src/option.c, src/option.h, src/os_unix.c,
src/os_win32.c, src/structs.h, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_fixeol.in,
src/testdir/test_fixeol.ok, runtime/doc/options.txt,
runtime/optwin.vim

Patch 7.4.786
Problem: It is not possible for a plugin to adjust to a changed setting.
Solution: Add the OptionSet autocommand event. (Christian Brabandt)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt, src/eval.c,

version8.txt — 2876

src/fileio.c, src/option.c, src/proto/eval.pro,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_autocmd_option.in,
src/testdir/test_autocmd_option.ok, src/vim.h

Patch 7.4.787 (after 7.4.786)
Problem: snprintf() isn't available everywhere.
Solution: Use vim_snprintf(). (Ken Takata)
Files: src/option.c

Patch 7.4.788 (after 7.4.787)
Problem: Can't build without the crypt feature. (John Marriott)
Solution: Add #ifdef's.
Files: src/option.c

Patch 7.4.789 (after 7.4.788)
Problem: Using freed memory and crash. (Dominique Pelle)
Solution: Correct use of pointers. (Hirohito Higashi)
Files: src/option.c

Patch 7.4.790 (after 7.4.786)
Problem: Test fails when the autochdir feature is not available. Test

output contains the test script.
Solution: Check for the autochdir feature. (Kazunobu Kuriyama) Only write

the relevant test output.
Files: src/testdir/test_autocmd_option.in,

src/testdir/test_autocmd_option.ok

Patch 7.4.791
Problem: The buffer list can be very long.
Solution: Add an argument to ":ls" to specify the type of buffer to list.

(Marcin Szamotulski)
Files: runtime/doc/windows.txt, src/buffer.c, src/ex_cmds.h

Patch 7.4.792
Problem: Can only conceal text by defining syntax items.
Solution: Use matchadd() to define concealing. (Christian Brabandt)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_docmd.c,

src/proto/window.pro, src/screen.c, src/structs.h,
src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_match_conceal.in,
src/testdir/test_match_conceal.ok, src/window.c

Patch 7.4.793
Problem: Can't specify when not to ring the bell.
Solution: Add the 'belloff' option. (Christian Brabandt)
Files: runtime/doc/options.txt, src/edit.c, src/ex_getln.c,

src/hangulin.c, src/if_lua.c, src/if_mzsch.c, src/if_tcl.c,
src/message.c, src/misc1.c, src/normal.c, src/option.c,
src/option.h, src/proto/misc1.pro, src/search.c, src/spell.c

Patch 7.4.794
Problem: Visual Studio 2015 is not recognized.
Solution: Add the version numbers to the makefile. (Taro Muraoka)
Files: src/Make_mvc.mak

version8.txt — 2877

Patch 7.4.795
Problem: The 'fixeol' option is not copied to a new window.
Solution: Copy the option value. (Yasuhiro Matsumoto)
Files: src/option.c

Patch 7.4.796
Problem: Warning from 64 bit compiler.
Solution: Add type cast. (Mike Williams)
Files: src/ops.c

Patch 7.4.797
Problem: Crash when using more lines for the command line than

'maxcombine'.
Solution: Use the correct array index. Also, do not try redrawing when

exiting. And use screen_Columns instead of Columns.
Files: src/screen.c

Patch 7.4.798 (after 7.4.753)
Problem: Repeating a change in Visual mode does not work as expected.

(Urtica Dioica)
Solution: Make redo in Visual mode work better. (Christian Brabandt)
Files: src/normal.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok

Patch 7.4.799
Problem: Accessing memory before an allocated block.
Solution: Check for not going before the start of a pattern. (Dominique

Pelle)
Files: src/fileio.c

Patch 7.4.800
Problem: Using freed memory when triggering CmdUndefined autocommands.
Solution: Set pointer to NULL. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.4.801 (after 7.4.769)
Problem: Test for ":diffoff" doesn't catch all potential problems.
Solution: Add a :diffthis and a :diffoff command. (Olaf Dabrunz)
Files: src/testdir/test47.in

Patch 7.4.802
Problem: Using "A" in Visual mode while 'linebreak' is set is not tested.
Solution: Add a test for this, verifies the problem is fixed. (Ingo Karkat)
Files: src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.803
Problem: C indent does not support C11 raw strings. (Mark Lodato)
Solution: Do not change indent inside the raw string.
Files: src/search.c, src/misc1.c, src/edit.c, src/ops.c,

src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.804
Problem: Xxd doesn't have a license notice.
Solution: Add license as indicated by Juergen.
Files: src/xxd/xxd.c

Patch 7.4.805
Problem: The ruler shows "Bot" even when there are only filler lines

missing. (Gary Johnson)
Solution: Use "All" when the first line and one filler line are visible.

version8.txt — 2878

Files: src/buffer.c

Patch 7.4.806
Problem: CTRL-A in Visual mode doesn't work properly with "alpha" in

'nrformats'.
Solution: Make it work. (Christian Brabandt)
Files: src/ops.c, src/testdir/test_increment.in,

src/testdir/test_increment.ok

Patch 7.4.807 (after 7.4.798)
Problem: After CTRL-V CTRL-A mode isn't updated. (Hirohito Higashi)
Solution: Clear the command line or update the displayed command.
Files: src/normal.c

Patch 7.4.808
Problem: On MS-Windows 8 IME input doesn't work correctly.
Solution: Read console input before calling MsgWaitForMultipleObjects().

(vim-jp, Nobuhiro Takasaki)
Files: src/os_win32.c

Patch 7.4.809 (after 7.4.802)
Problem: Test is duplicated.
Solution: Roll back 7.4.802.
Files: src/testdir/test39.in, src/testdir/test39.ok

Patch 7.4.810
Problem: With a sequence of commands using buffers in diff mode E749 is

given. (itchyny)
Solution: Skip unloaded buffer. (Hirohito Higashi)
Files: src/diff.c

Patch 7.4.811
Problem: Invalid memory access when using "exe 'sc'".
Solution: Avoid going over the end of the string. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.4.812
Problem: Gcc sanitizer complains about using a NULL pointer to memmove().
Solution: Only call memmove when there is something to move. (Vittorio

Zecca)
Files: src/memline.c

Patch 7.4.813
Problem: It is not possible to save and restore character search state.
Solution: Add getcharsearch() and setcharsearch(). (James McCoy)
Files: runtime/doc/eval.txt, src/eval.c, src/proto/search.pro,

src/search.c, src/testdir/test_charsearch.in,
src/testdir/test_charsearch.ok, src/testdir/Makefile,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms

Patch 7.4.814
Problem: Illegal memory access with "sy match a fold".
Solution: Check for empty string. (Dominique Pelle)
Files: src/syntax.c

Patch 7.4.815
Problem: Invalid memory access when doing ":call g:".
Solution: Check for an empty name. (Dominique Pelle)

version8.txt — 2879

Files: src/eval.c

Patch 7.4.816
Problem: Invalid memory access when doing ":fun X(".
Solution: Check for missing ')'. (Dominique Pelle)
Files: src/eval.c

Patch 7.4.817
Problem: Invalid memory access in file_pat_to_reg_pat().
Solution: Use vim_isspace() instead of checking for a space only. (Dominique

Pelle)
Files: src/fileio.c

Patch 7.4.818
Problem: 'linebreak' breaks c% if the last Visual selection was block.

(Chris Morganiser, Issue 389)
Solution: Handle Visual block mode differently. (Christian Brabandt)
Files: src/normal.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok

Patch 7.4.819
Problem: Beeping when running the tests.
Solution: Fix 41 beeps. (Roland Eggner)
Files: src/testdir/test17.in, src/testdir/test29.in,

src/testdir/test4.in, src/testdir/test61.in,
src/testdir/test82.in, src/testdir/test83.in,
src/testdir/test90.in, src/testdir/test95.in,
src/testdir/test_autoformat_join.in

Patch 7.4.820
Problem: Invalid memory access in file_pat_to_reg_pat.
Solution: Avoid looking before the start of a string. (Dominique Pelle)
Files: src/fileio.c

Patch 7.4.821
Problem: Coverity reports a few problems.
Solution: Avoid the warnings. (Christian Brabandt)
Files: src/ex_docmd.c, src/option.c, src/screen.c

Patch 7.4.822
Problem: More problems reported by coverity.
Solution: Avoid the warnings. (Christian Brabandt)
Files: src/os_unix.c, src/eval.c, src/ex_cmds.c, src/ex_cmds2.c,

src/ex_getln.c, src/fold.c, src/gui.c, src/gui_w16.c,
src/gui_w32.c, src/if_cscope.c, src/if_xcmdsrv.c, src/move.c,
src/normal.c, src/regexp.c, src/syntax.c, src/ui.c, src/window.c

Patch 7.4.823
Problem: Cursor moves after CTRL-A on alphabetic character.
Solution: (Hirohito Higashi, test by Christian Brabandt)
Files: src/testdir/test_increment.in, src/testdir/test_increment.ok,

src/ops.c

Patch 7.4.824 (after 7.4.813)
Problem: Can't compile without the multibyte feature. (John Marriott)
Solution: Add #ifdef.
Files: src/eval.c

Patch 7.4.825
Problem: Invalid memory access for ":syn keyword x a[".

version8.txt — 2880

Solution: Do not skip over the NUL. (Dominique Pelle)
Files: src/syntax.c

Patch 7.4.826
Problem: Compiler warnings and errors.
Solution: Make it build properly without the multibyte feature.
Files: src/eval.c, src/search.c

Patch 7.4.827
Problem: Not all test targets are in the Makefile.
Solution: Add the missing targets.
Files: src/Makefile

Patch 7.4.828
Problem: Crash when using "syn keyword x c". (Dominique Pelle)
Solution: Initialize the keyword table. (Raymond Ko, PR 397)
Files: src/syntax.c

Patch 7.4.829
Problem: Crash when clicking in beval balloon. (Travis Lebsock)
Solution: Use PostMessage() instead of DestroyWindow(). (Raymond Ko, PR 298)
Files: src/gui_w32.c

Patch 7.4.830
Problem: Resetting 'encoding' when doing ":set all&" causes problems.

(Bjorn Linse) Display is not updated.
Solution: Do not reset 'encoding'. Do a full redraw.
Files: src/option.c

Patch 7.4.831
Problem: When expanding `=expr` on the command line and encountering an

error, the command is executed anyway.
Solution: Bail out when an error is detected.
Files: src/misc1.c

Patch 7.4.832
Problem: $HOME in `=$HOME . '/.vimrc'` is expanded too early.
Solution: Skip over `=expr` when expanding environment names.
Files: src/misc1.c

Patch 7.4.833
Problem: More side effects of ":set all&" are missing. (Björn Linse)
Solution: Call didset_options() and add didset_options2() to collect more

side effects to take care of. Still not everything...
Files: src/option.c

Patch 7.4.834
Problem: gettabvar() doesn't work after Vim start. (Szymon Wrozynski)
Solution: Handle first window in tab still being NULL. (Christian Brabandt)
Files: src/eval.c, src/testdir/test91.in, src/testdir/test91.ok

Patch 7.4.835
Problem: Comparing utf-8 sequences does not handle different byte sizes

correctly.
Solution: Get the byte size of each character. (Dominique Pelle)
Files: src/misc2.c

Patch 7.4.836
Problem: Accessing uninitialized memory.
Solution: Add missing calls to init_tv(). (Dominique Pelle)

version8.txt — 2881

Files: src/eval.c

Patch 7.4.837
Problem: Compiler warning with MSVC compiler when using +sniff.
Solution: Use Sleep() instead of _sleep(). (Tux)
Files: src/if_sniff.c

Patch 7.4.838 (after 7.4.833)
Problem: Can't compile without the crypt feature. (John Marriott)
Solution: Add #ifdef.
Files: src/option.c

Patch 7.4.839
Problem: Compiler warning on 64-bit system.
Solution: Add cast to int. (Mike Williams)
Files: src/search.c

Patch 7.4.840 (after 7.4.829)
Problem: Tooltip window stays open.
Solution: Send a WM_CLOSE message. (Jurgen Kramer)
Files: src/gui_w32.c

Patch 7.4.841
Problem: Can't compile without the multibyte feature. (John Marriott)
Solution: Add more #ifdef's.
Files: src/option.c

Patch 7.4.842 (after 7.4.840)
Problem: Sending too many messages to close the balloon.
Solution: Only send a WM_CLOSE message. (Jurgen Kramer)
Files: src/gui_w32.c

Patch 7.4.843 (after 7.4.835)
Problem: Still possible to go beyond the end of a string.
Solution: Check for NUL also in second string. (Dominique Pelle)
Files: src/misc2.c

Patch 7.4.844
Problem: When '#' is in 'isident' the is# comparator doesn't work.
Solution: Don't use vim_isIDc(). (Yasuhiro Matsumoto)
Files: src/eval.c, src/testdir/test_comparators.in,

src/testdir/test_comparators.ok, src/testdir/Makefile,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms

Patch 7.4.845
Problem: Compiler warning for possible loss of data.
Solution: Add a type cast. (Erich Ritz)
Files: src/misc1.c

Patch 7.4.846
Problem: Some GitHub users don't know how to use issues.
Solution: Add a file that explains the basics of contributing.
Files: Filelist, CONTRIBUTING.md

Patch 7.4.847
Problem: "vi)d" may leave a character behind.
Solution: Skip over multibyte character. (Christian Brabandt)
Files: src/search.c

version8.txt — 2882

Patch 7.4.848
Problem: CTRL-A on hex number in Visual block mode is incorrect.
Solution: Account for the "0x". (Hirohito Higashi)
Files: src/charset.c, src/testdir/test_increment.in,

src/testdir/test_increment.ok

Patch 7.4.849
Problem: Moving the cursor in Insert mode starts new undo sequence.
Solution: Add CTRL-G U to keep the undo sequence for the following cursor

movement command. (Christian Brabandt)
Files: runtime/doc/insert.txt, src/edit.c, src/testdir/test_mapping.in,

src/testdir/test_mapping.ok

Patch 7.4.850 (after 7.4.846)
Problem: <Esc> does not show up.
Solution: Use > and <. (Kazunobu Kuriyama)
Files: CONTRIBUTING.md

Patch 7.4.851
Problem: Saving and restoring the console buffer does not work properly.
Solution: Instead of ReadConsoleOutputA/WriteConsoleOutputA use

CreateConsoleScreenBuffer and SetConsoleActiveScreenBuffer.
(Ken Takata)

Files: src/os_win32.c

Patch 7.4.852
Problem: On MS-Windows console Vim uses ANSI APIs for keyboard input and

console output, it cannot input/output Unicode characters.
Solution: Use Unicode APIs for console I/O. (Ken Takata, Yasuhiro Matsumoto)
Files: src/os_win32.c, src/ui.c, runtime/doc/options.txt

Patch 7.4.853
Problem: "zt" in diff mode does not always work properly. (Gary Johnson)
Solution: Don't count filler lines twice. (Christian Brabandt)
Files: src/move.c

Patch 7.4.854 (after 7.4.850)
Problem: Missing information about runtime files.
Solution: Add section about runtime files. (Christian Brabandt)
Files: CONTRIBUTING.md

Patch 7.4.855
Problem: GTK: font glitches for combining characters
Solution: Use pango_shape_full() instead of pango_shape(). (luchr, PR #393)
Files: src/gui_gtk_x11.c

Patch 7.4.856
Problem: "zt" still doesn't work well with filler lines. (Gary Johnson)
Solution: Check for filler lines above the cursor. (Christian Brabandt)
Files: src/move.c

Patch 7.4.857
Problem: Dragging the current tab with the mouse doesn't work properly.
Solution: Take the current tabpage index into account. (Hirohito Higashi)
Files: src/normal.c

Patch 7.4.858
Problem: It's a bit clumsy to execute a command on a list of matches.
Solution: Add the ":ldo", ":lfdo", ":cdo" and ":cfdo" commands. (Yegappan

version8.txt — 2883

Lakshmanan)
Files: runtime/doc/cmdline.txt, runtime/doc/editing.txt,

runtime/doc/index.txt, runtime/doc/quickfix.txt,
runtime/doc/tabpage.txt, runtime/doc/windows.txt, src/ex_cmds.h,
src/ex_cmds2.c, src/ex_docmd.c, src/proto/quickfix.pro,
src/quickfix.c, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_os2.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/test_cdo.in,
src/testdir/test_cdo.ok

Patch 7.4.859
Problem: Vim doesn't recognize all htmldjango files.
Solution: Recognize a comment. (Daniel Hahler, PR #410)
Files: runtime/filetype.vim

Patch 7.4.860
Problem: Filetype detection is outdated.
Solution: Include all recent and not-so-recent changes.
Files: runtime/filetype.vim

Patch 7.4.861 (after 7.4.855)
Problem: pango_shape_full() is not always available.
Solution: Add a configure check.
Files: src/configure.in, src/auto/configure, src/config.h.in,

src/gui_gtk_x11.c

Patch 7.4.862 (after 7.4.861)
Problem: Still problems with pango_shape_full() not available.
Solution: Change AC_TRY_COMPILE to AC_TRY_LINK.
Files: src/configure.in, src/auto/configure

Patch 7.4.863 (after 7.4.856)
Problem: plines_nofill() used without the diff feature.
Solution: Define PLINES_NOFILL().
Files: src/macros.h, src/move.c

Patch 7.4.864 (after 7.4.858)
Problem: Tiny build fails.
Solution: Put qf_ items inside #ifdef.
Files: src/ex_docmd.c

Patch 7.4.865
Problem: Compiler warning for uninitialized variable.
Solution: Initialize.
Files: src/ex_cmds2.c

Patch 7.4.866
Problem: Crash when changing the 'tags' option from a remote command.

(Benjamin Fritz)
Solution: Instead of executing messages immediately, use a queue, like for

netbeans. (James Kolb)
Files: src/ex_docmd.c, src/getchar.c, src/gui_gtk_x11.c, src/gui_w48.c,

src/gui_x11.c, src/if_xcmdsrv.c, src/misc2.c, src/os_unix.c,
src/proto/if_xcmdsrv.pro, src/proto/misc2.pro, src/macros.h

Patch 7.4.867 (after 7.4.866)
Problem: Can't build on MS-Windows. (Taro Muraoka)
Solution: Adjust #ifdef.
Files: src/misc2.c

version8.txt — 2884

Patch 7.4.868
Problem: 'smarttab' is also effective when 'paste' is enabled. (Alexander

Monakov)
Solution: Disable 'smarttab' when 'paste' is set. (Christian Brabandt)

Do the same for 'expandtab'.
Files: src/option.c, src/structs.h

Patch 7.4.869
Problem: MS-Windows: scrolling may cause text to disappear when using an

Intel GPU.
Solution: Call GetPixel(). (Yohei Endo)
Files: src/gui_w48.c

Patch 7.4.870
Problem: May get into an invalid state when using getchar() in an

expression mapping.
Solution: Anticipate mod_mask to change. (idea by Yukihiro Nakadaira)
Files: src/getchar.c

Patch 7.4.871
Problem: Vim leaks memory, when 'wildignore' filters out all matches.
Solution: Free the files array when it becomes empty.
Files: src/misc1.c

Patch 7.4.872
Problem: Not using CI services available.
Solution: Add configuration files for travis and appveyor. (Ken Takata,

vim-jp, PR #401)
Files: .travis.yml, appveyor.yml, Filelist

Patch 7.4.873 (after 7.4.866)
Problem: Compiler warning for unused variable. (Tony Mechelynck)
Solution: Remove the variable. Also fix int vs long_u mixup.
Files: src/if_xcmdsrv.c

Patch 7.4.874
Problem: MS-Windows: When Vim runs inside another application, the size

isn't right.
Solution: When in child mode compute the size differently. (Agorgianitis

Loukas)
Files: src/gui_w48.c

Patch 7.4.875
Problem: Not obvious how to contribute.
Solution: Add a remark about CONTRIBUTING.md to README.md
Files: README.md

Patch 7.4.876
Problem: Windows7: when using vim.exe with msys or msys2, conhost.exe

(console window provider on Windows7) will freeze or crash.
Solution: Make original screen buffer active, before executing external

program. And when the program is finished, revert to vim's one.
(Taro Muraoka)

Files: src/os_win32.c

Patch 7.4.877 (after 7.4.843)
Problem: ":find" sometimes fails. (Excanoe)
Solution: Compare current characters instead of previous ones.
Files: src/misc2.c

version8.txt — 2885

Patch 7.4.878
Problem: Coverity error for clearing only one byte of struct.
Solution: Clear the whole struct. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.4.879
Problem: Can't see line numbers in nested function calls.
Solution: Add line number to the file name. (Alberto Fanjul)
Files: src/eval.c

Patch 7.4.880
Problem: No build and coverage status.
Solution: Add links to the README file. (Christian Brabandt)
Files: README.md

Patch 7.4.881 (after 7.4.879)
Problem: Test 49 fails.
Solution: Add line number to check of call stack.
Files: src/testdir/test49.vim

Patch 7.4.882
Problem: When leaving the command line window with CTRL-C while a

completion menu is displayed the menu isn't removed.
Solution: Force a screen update. (Hirohito Higashi)
Files: src/edit.c

Patch 7.4.883 (after 7.4.818)
Problem: Block-mode replace works characterwise instead of blockwise after

column 147. (Issue #422)
Solution: Set Visual mode. (Christian Brabandt)
Files: src/normal.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok

Patch 7.4.884
Problem: Travis also builds on a tag push.
Solution: Filter out tag pushes. (Kenichi Ito)
Files: .travis.yml

Patch 7.4.885
Problem: When doing an upwards search without wildcards the search fails if

the initial directory doesn't exist.
Solution: Fix the non-wildcard case. (Stefan Kempf)
Files: src/misc2.c

Patch 7.4.886 (after 7.4.876)
Problem: Windows7: Switching screen buffer causes flicker when using

system().
Solution: Instead of actually switching screen buffer, duplicate the handle.

(Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.4.887
Problem: Using uninitialized memory for regexp with back reference.

(Dominique Pelle)
Solution: Initialize end_lnum.
Files: src/regexp_nfa.c

Patch 7.4.888
Problem: The OptionSet autocommands are not triggered from setwinvar().

version8.txt — 2886

Solution: Do not use switch_win() when not needed. (Hirohito Higashi)
Files: src/eval.c

Patch 7.4.889
Problem: Triggering OptionSet from setwinvar() isn't tested.
Solution: Add a test. (Christian Brabandt)
Files: src/testdir/test_autocmd_option.in,

src/testdir/test_autocmd_option.ok

Patch 7.4.890
Problem: Build failure when using dynamic python but not python3.
Solution: Adjust the #if to also include DYNAMIC_PYTHON3 and UNIX.
Files: src/if_python3.c

Patch 7.4.891
Problem: Indentation of array initializer is wrong.
Solution: Avoid that calling find_start_rawstring() changes the position

returned by find_start_comment(), add a test. (Hirohito Higashi)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.892
Problem: On MS-Windows the iconv DLL may have a different name.
Solution: Also try libiconv2.dll and libiconv-2.dll. (Yasuhiro Matsumoto)
Files: src/mbyte.c

Patch 7.4.893
Problem: C indenting is wrong below a "case (foo):" because it is

recognized as a C++ base class construct. Issue #38.
Solution: Check for the case keyword.
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.894
Problem: vimrun.exe is picky about the number of spaces before -s.
Solution: Skip all spaces. (Cam Sinclair)
Files: src/vimrun.c

Patch 7.4.895
Problem: Custom command line completion does not work for a command

containing digits.
Solution: Skip over the digits. (suggested by Yasuhiro Matsumoto)
Files: src/ex_docmd.c

Patch 7.4.896
Problem: Editing a URL, which netrw should handle, doesn't work.
Solution: Avoid changing slashes to backslashes. (Yasuhiro Matsumoto)
Files: src/fileio.c, src/os_mswin.c

Patch 7.4.897
Problem: Freeze and crash when there is a sleep in a remote command.

(Karl Yngve Lervåg)
Solution: Remove a message from the queue before dealing with it. (James

Kolb)
Files: src/if_xcmdsrv.c

Patch 7.4.898
Problem: The 'fixendofline' option is set on with ":edit".
Solution: Don't set the option when clearing a buffer. (Yasuhiro Matsumoto)
Files: src/buffer.c

Patch 7.4.899

version8.txt — 2887

Problem: README file is not optimal.
Solution: Move buttons, update some text. (closes #460)
Files: README.txt, README.md

Patch 7.4.900 (after 7.4.899)
Problem: README file can still be improved
Solution: Add a couple of links. (Christian Brabandt)
Files: README.md

Patch 7.4.901
Problem: When a BufLeave autocommand changes folding in a way it syncs

undo, undo can be corrupted.
Solution: Prevent undo sync. (Jacob Niehus)
Files: src/popupmnu.c

Patch 7.4.902
Problem: Problems with using the MS-Windows console.
Solution: Revert patches 7.4.851, 7.4.876 and 7.4.886 until we find a better

solution. (suggested by Ken Takata)
Files: src/os_win32.c

Patch 7.4.903
Problem: MS-Windows: When 'encoding' differs from the current code page,

expanding wildcards may cause illegal memory access.
Solution: Allocate a longer buffer. (Ken Takata)
Files: src/misc1.c

Patch 7.4.904
Problem: Vim does not provide .desktop files.
Solution: Include and install .desktop files. (James McCoy, closes #455)
Files: Filelist, runtime/vim.desktop, runtime/gvim.desktop, src/Makefile

Patch 7.4.905
Problem: Python interface can produce error "vim.message' object has no

attribute 'isatty'".
Solution: Add dummy isatty(), readable(), etc. (closes #464)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.906
Problem: On MS-Windows the viminfo file is (always) given the hidden

attribute. (raulnac)
Solution: Check the hidden attribute in a different way. (Ken Takata)
Files: src/ex_cmds.c, src/os_win32.c, src/os_win32.pro

Patch 7.4.907
Problem: Libraries for dynamically loading interfaces can only be defined

at compile time.
Solution: Add options to specify the dll names. (Kazuki Sakamoto,

closes #452)
Files: runtime/doc/if_lua.txt, runtime/doc/if_perl.txt,

runtime/doc/if_pyth.txt, runtime/doc/if_ruby.txt,
runtime/doc/options.txt, src/if_lua.c, src/if_perl.xs,
src/if_python.c, src/if_python3.c, src/if_ruby.c, src/option.c,
src/option.h

Patch 7.4.908 (after 7.4.907)
Problem: Build error with MingW compiler. (Cesar Romani)
Solution: Change #if into #ifdef.
Files: src/if_perl.xs

version8.txt — 2888

Patch 7.4.909 (after 7.4.905)
Problem: "make install" fails.
Solution: Only try installing desktop files if the destination directory

exists.
Files: src/Makefile

Patch 7.4.910 (after 7.4.905)
Problem: Compiler complains about type punned pointer.
Solution: Use another way to increment the ref count.
Files: src/if_py_both.h

Patch 7.4.911
Problem: t_Ce and t_Cs are documented but not supported. (Hirohito Higashi)
Solution: Define the options.
Files: src/option.c

Patch 7.4.912
Problem: Wrong indenting for C++ constructor.
Solution: Recognize ::. (Anhong)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 7.4.913
Problem: No utf-8 support for the hangul input feature.
Solution: Add utf-8 support. (Namsh)
Files: src/gui.c, src/hangulin.c, src/proto/hangulin.pro, src/screen.c,

src/ui.c, runtime/doc/hangulin.txt, src/feature.h

Patch 7.4.914
Problem: New compiler warning: logical-not-parentheses
Solution: Silence the warning.
Files: src/term.c

Patch 7.4.915
Problem: When removing from 'path' and then adding, a comma may go missing.

(Malcolm Rowe)
Solution: Fix the check for P_ONECOMMA. (closes #471)
Files: src/option.c, src/testdir/test_options.in,

src/testdir/test_options.ok

Patch 7.4.916
Problem: When running out of memory while copying a dict memory may be

freed twice. (ZyX)
Solution: Do not call the garbage collector when running out of memory.
Files: src/misc2.c

Patch 7.4.917
Problem: Compiler warning for comparing signed and unsigned.
Solution: Add a type cast.
Files: src/hangulin.c

Patch 7.4.918
Problem: A digit in an option name has problems.
Solution: Rename 'python3dll' to 'pythonthreedll'.
Files: src/option.c, src/option.h, runtime/doc/options.txt

Patch 7.4.919
Problem: The dll options are not in the options window.
Solution: Add the dll options. And other fixes.
Files: runtime/optwin.vim

version8.txt — 2889

Patch 7.4.920
Problem: The rubydll option is not in the options window.
Solution: Add the rubydll option.
Files: runtime/optwin.vim

Patch 7.4.921 (after 7.4.906)
Problem: Missing proto file update. (Randall W. Morris)
Solution: Add the missing line for mch_ishidden.
Files: src/proto/os_win32.pro

Patch 7.4.922
Problem: Leaking memory with ":helpt {dir-not-exists}".
Solution: Free dirname. (Dominique Pelle)
Files: src/ex_cmds.c

Patch 7.4.923
Problem: Prototypes not always generated.
Solution: Change #if to OR with PROTO.
Files: src/window.c

Patch 7.4.924
Problem: DEVELOPER_DIR gets reset by configure.
Solution: Do not reset DEVELOPER_DIR when there is no --with-developer-dir

argument. (Kazuki Sakamoto, closes #482)
Files: src/configure.in, src/auto/configure

Patch 7.4.925
Problem: User may yank or put using the register being recorded in.
Solution: Add the recording register in the message. (Christian Brabandt,

closes #470)
Files: runtime/doc/options.txt, runtime/doc/repeat.txt, src/ops.c,

src/option.h, src/screen.c

Patch 7.4.926
Problem: Completing the longest match doesn't work properly with multibyte

characters.
Solution: When using multibyte characters use another way to find the

longest match. (Hirohito Higashi)
Files: src/ex_getln.c, src/testdir/test_utf8.in, src/testdir/test_utf8.ok

Patch 7.4.927
Problem: Ruby crashes when there is a runtime error.
Solution: Use ruby_options() instead of ruby_process_options(). (Damien)
Files: src/if_ruby.c

Patch 7.4.928
Problem: A clientserver message interrupts handling keys of a mapping.
Solution: Have mch_inchar() send control back to WaitForChar when it is

interrupted by server message. (James Kolb)
Files: src/os_unix.c

Patch 7.4.929
Problem: "gv" after paste selects one character less if 'selection' is

"exclusive".
Solution: Increment the end position. (Christian Brabandt)
Files: src/normal.c, src/testdir/test94.in, src/testdir/test94.ok

Patch 7.4.930
Problem: MS-Windows: Most users appear not to like the window border.

version8.txt — 2890

Solution: Remove WS_EX_CLIENTEDGE. (Ian Halliday)
Files: src/gui_w32.c

Patch 7.4.931 (after 7.4.929)
Problem: Test 94 fails on some systems.
Solution: Set 'encoding' to utf-8.
Files: src/testdir/test94.in

Patch 7.4.932 (after 7.4.926)
Problem: test_utf8 has confusing dummy command.
Solution: Use a real command instead of a colon.
Files: src/testdir/test_utf8.in

Patch 7.4.933 (after 7.4.926)
Problem: Crash when using longest completion match.
Solution: Fix array index.
Files: src/ex_getln.c

Patch 7.4.934
Problem: Appveyor also builds on a tag push.
Solution: Add a skip_tags line. (Kenichi Ito, closes #489)
Files: appveyor.yml

Patch 7.4.935 (after 7.4.932)
Problem: test_utf8 fails on MS-Windows when executed with gvim.
Solution: Use the insert flag on feedkeys() to put the string before the

":" that was already read when checking for available chars.
Files: src/testdir/test_utf8.in

Patch 7.4.936
Problem: Crash when dragging with the mouse.
Solution: Add safety check for NULL pointer. Check mouse position for valid

value. (Hirohito Higashi)
Files: src/window.c, src/term.c

Patch 7.4.937
Problem: Segfault reading uninitialized memory.
Solution: Do not read match \z0, it does not exist. (Marius Gedminas, closes

#497)
Files: src/regexp_nfa.c

Patch 7.4.938
Problem: X11 and GTK have more mouse buttons than Vim supports.
Solution: Recognize more mouse buttons. (Benoit Pierre, closes #498)
Files: src/gui_gtk_x11.c, src/gui_x11.c

Patch 7.4.939
Problem: Memory leak when encountering a syntax error.
Solution: Free the memory. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.4.940
Problem: vt52 terminal codes are not correct.
Solution: Move entries outside of #if. (Random) Adjustments based on

documented codes.
Files: src/term.c

Patch 7.4.941
Problem: There is no way to ignore case only for tag searches.
Solution: Add the 'tagcase' option. (Gary Johnson)

version8.txt — 2891

Files: runtime/doc/options.txt, runtime/doc/quickref.txt,
runtime/doc/tagsrch.txt, runtime/doc/usr_29.txt,
runtime/optwin.vim, src/Makefile, src/buffer.c, src/option.c,
src/option.h, src/structs.h, src/tag.c,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_tagcase.in, src/testdir/test_tagcase.ok

Patch 7.4.942 (after 7.4.941)
Problem: test_tagcase breaks for small builds.
Solution: Bail out of the test early. (Hirohito Higashi)
Files: src/testdir/test_tagcase.in

Patch 7.4.943
Problem: Tests are not run.
Solution: Add test_writefile to makefiles. (Ken Takata)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.944
Problem: Writing tests for Vim script is hard.
Solution: Add assertEqual(), assertFalse() and assertTrue() functions. Add

the v:errors variable. Add the runtest script. Add a first new
style test script.

Files: src/eval.c, src/vim.h, src/misc2.c, src/testdir/Makefile,
src/testdir/runtest.vim, src/testdir/test_assert.vim,
runtime/doc/eval.txt

Patch 7.4.945 (after 7.4.944)
Problem: New style testing is incomplete.
Solution: Add the runtest script to the list of distributed files.

Add the new functions to the function overview.
Rename the functions to match Vim function style.
Move undolevels testing into a new style test script.

Files: Filelist, runtime/doc/usr_41.txt, runtime/doc/eval.txt,
src/testdir/test_assert.vim, src/testdir/Makefile,
src/testdir/test_undolevels.vim, src/testdir/test100.in,
src/testdir/test100.ok

Patch 7.4.946 (after 7.4.945)
Problem: Missing changes in source file.
Solution: Include changes to the eval.c file.
Files: src/eval.c

Patch 7.4.947
Problem: Test_listchars fails with MingW. (Michael Soyka)
Solution: Add the test to the ones that need the fileformat fixed.

(Christian Brabandt)
Files: src/testdir/Make_ming.mak

Patch 7.4.948
Problem: Can't build when the insert_expand feature is disabled.
Solution: Add #ifdefs. (Dan Pasanen, closes #499)
Files: src/eval.c, src/fileio.c

Patch 7.4.949
Problem: When using 'colorcolumn' and there is a sign with a fullwidth

character the highlighting is wrong. (Andrew Stewart)

version8.txt — 2892

Solution: Only increment vcol when in the right state. (Christian Brabandt)
Files: src/screen.c, src/testdir/test_listlbr_utf8.in,

src/testdir/test_listlbr_utf8.ok

Patch 7.4.950
Problem: v:errors is not initialized.
Solution: Initialize it to an empty list. (Thinca)
Files: src/eval.c

Patch 7.4.951
Problem: Sorting number strings does not work as expected. (Luc Hermitte)
Solution: Add the "N" argument to sort()
Files: src/eval.c, runtime/doc/eval.txt, src/testdir/test_alot.vim,

src/testdir/test_sort.vim, src/testdir/Makefile

Patch 7.4.952
Problem: 'lispwords' is tested in the old way.
Solution: Make a new style test for 'lispwords'.
Files: src/testdir/test_alot.vim, src/testdir/test_lispwords.vim,

src/testdir/test100.in, src/testdir/test100.ok,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.953
Problem: When a test script navigates to another buffer the .res file is

created with the wrong name.
Solution: Use the "testname" for the .res file. (Damien)
Files: src/testdir/runtest.vim

Patch 7.4.954
Problem: When using Lua there may be a crash. (issue #468)
Solution: Avoid using an uninitialized tv. (Yukihiro Nakadaira)
Files: src/if_lua.c

Patch 7.4.955
Problem: Vim doesn't recognize .pl6 and .pod6 files.
Solution: Recognize them as perl6 and pod6. (Mike Eve, closes #511)
Files: runtime/filetype.vim

Patch 7.4.956
Problem: A few more file name extensions not recognized.
Solution: Add .asciidoc, .bzl, .gradle, etc.
Files: runtime/filetype.vim

Patch 7.4.957
Problem: Test_tagcase fails when using another language than English.
Solution: Set the messages language to C. (Kenichi Ito)
Files: src/testdir/test_tagcase.in

Patch 7.4.958
Problem: Vim checks if the directory "$TMPDIR" exists.
Solution: Do not check if the name starts with "$".
Files: src/fileio.c

Patch 7.4.959
Problem: When setting 'term' the clipboard ownership is lost.
Solution: Do not call clip_init(). (James McCoy)
Files: src/term.c

version8.txt — 2893

Patch 7.4.960
Problem: Detecting every version of nmake is clumsy.
Solution: Use a tiny C program to get the version of _MSC_VER. (Ken Takata)
Files: src/Make_mvc.mak

Patch 7.4.961
Problem: Test107 fails in some circumstances.
Solution: When using "zt", "zb" and "z=" recompute the fraction.
Files: src/normal.c, src/window.c, src/proto/window.pro

Patch 7.4.962
Problem: Cannot run the tests with gvim. Cannot run individual new tests.
Solution: Add the -f flag. Add new test targets in Makefile.
Files: src/Makefile, src/testdir/Makefile

Patch 7.4.963
Problem: test_listlbr_utf8 sometimes fails.
Solution: Don't use a literal multibyte character but <C-V>uXXXX. Do not

dump the screen highlighting. (Christian Brabandt, closes #518)
Files: src/testdir/test_listlbr_utf8.in, src/testdir/test_listlbr_utf8.ok

Patch 7.4.964
Problem: Test 87 doesn't work in a shadow directory.
Solution: Handle the extra subdirectory. (James McCoy, closes #515)
Files: src/testdir/test87.in

Patch 7.4.965
Problem: On FreeBSD /dev/fd/ files are special.
Solution: Use is_dev_fd_file() also for FreeBSD. (Derek Schrock, closes #521)
Files: src/fileio.c

Patch 7.4.966
Problem: Configure doesn't work with a space in a path.
Solution: Put paths in quotes. (James McCoy, closes #525)
Files: src/configure.in, src/auto/configure

Patch 7.4.967
Problem: Cross compilation on MS-windows doesn't work well.
Solution: Tidy up cross compilation across architectures with Visual Studio.

(Mike Williams)
Files: src/Make_mvc.mak

Patch 7.4.968
Problem: test86 and test87 are flaky in Appveyor.
Solution: Reduce the count from 8 to 7. (suggested by ZyX)
Files: src/testdir/test86.in, src/testdir/test87.in

Patch 7.4.969
Problem: Compiler warnings on Windows x64 build.
Solution: Add type casts. (Mike Williams)
Files: src/option.c

Patch 7.4.970
Problem: Rare crash in getvcol(). (Timo Mihaljov)
Solution: Check for the buffer being NULL in init_preedit_start_col.

(Hirohito Higashi, Christian Brabandt)
Files: src/mbyte.c

Patch 7.4.971
Problem: The asin() function can't be used.

version8.txt — 2894

Solution: Sort the function table properly. (Watiko)
Files: src/eval.c

Patch 7.4.972
Problem: Memory leak when there is an error in setting an option.
Solution: Free the saved value (Christian Brabandt)
Files: src/option.c

Patch 7.4.973
Problem: When pasting on the command line line breaks result in literal

<CR> characters. This makes pasting a long file name difficult.
Solution: Skip the characters.
Files: src/ex_getln.c, src/ops.c

Patch 7.4.974
Problem: When using :diffsplit the cursor jumps to the first line.
Solution: Put the cursor on the line related to where the cursor was before

the split.
Files: src/diff.c

Patch 7.4.975
Problem: Using ":sort" on a very big file sometimes causes text to be

corrupted. (John Beckett)
Solution: Copy the line into a buffer before calling ml_append().
Files: src/ex_cmds.c

Patch 7.4.976
Problem: When compiling Vim for MSYS2 (linked with msys-2.0.dll), the Win32

clipboard is not enabled.
Solution: Recognize MSYS like CYGWIN. (Ken Takata)
Files: src/configure.in, src/auto/configure

Patch 7.4.977
Problem: 'linebreak' does not work properly when using "space" in

'listchars'.
Solution: (Hirohito Higashi, Christian Brabandt)
Files: src/screen.c, src/testdir/test_listlbr.in,

src/testdir/test_listlbr.ok

Patch 7.4.978
Problem: test_cdo fails when using another language than English.
Solution: Set the language to C. (Dominique Pelle, Kenichi Ito)
Files: src/testdir/test_cdo.in

Patch 7.4.979
Problem: When changing the crypt key the blocks read from disk are not

decrypted.
Solution: Also call ml_decrypt_data() when mf_old_key is set. (Ken Takata)
Files: src/memfile.c

Patch 7.4.980
Problem: Tests for :cdo, :ldo, etc. are outdated.
Solution: Add new style tests for these commands. (Yegappan Lakshmanan)
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/test_cdo.in, src/testdir/test_cdo.ok,
src/testdir/test_cdo.vim

Patch 7.4.981

version8.txt — 2895

Problem: An error in a test script goes unnoticed.
Solution: Source the test script inside try/catch. (Hirohito Higashi)
Files: src/testdir/runtest.vim

Patch 7.4.982
Problem: Keeping the list of tests updated is a hassle.
Solution: Move the list to a separate file, so that it only needs to be

updated in one place.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/Make_all.mak

Patch 7.4.983
Problem: Executing one test after "make testclean" doesn't work.
Solution: Add a dependency on test1.out.
Files: src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/Make_all.mak

Patch 7.4.984
Problem: searchpos() always starts searching in the first column, which is

not what some people expect. (Brett Stahlman)
Solution: Add the 'z' flag: start at the specified column.
Files: src/vim.h, src/eval.c, src/search.c,

src/testdir/test_searchpos.vim, src/testdir/test_alot.vim,
runtime/doc/eval.txt

Patch 7.4.985
Problem: Can't build with Ruby 2.3.0.
Solution: Use the new TypedData_XXX macro family instead of Data_XXX. Use

TypedData. (Ken Takata)
Files: src/if_ruby.c

Patch 7.4.986
Problem: Test49 doesn't work on MS-Windows. test70 is listed twice.
Solution: Move test49 to the group not used on Amiga and MS-Windows.

Remove test70 from SCRIPTS_WIN32.
Files: src/testdir/Make_all.mak, src/testdir/Make_dos.mak

Patch 7.4.987 (after 7.4.985)
Problem: Can't build with Ruby 1.9.2.
Solution: Require Rub 2.0 for defining USE_TYPEDDATA.
Files: src/if_ruby.c

Patch 7.4.988 (after 7.4.982)
Problem: Default test target is test49.out.
Solution: Add a build rule before including Make_all.mak.
Files: src/testdir/Make_dos.mak, src/testdir/Make_amiga.mak,

src/testdir/Make_ming.mak, src/testdir/Make_os2.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.989
Problem: Leaking memory when hash_add() fails. Coverity error 99126.
Solution: When hash_add() fails free the memory.
Files: src/eval.c

Patch 7.4.990
Problem: Test 86 fails on AppVeyor.

version8.txt — 2896

Solution: Do some registry magic. (Ken Takata)
Files: appveyor.yml

Patch 7.4.991
Problem: When running new style tests the output is not visible.
Solution: Add the testdir/messages file and show it. Update the list of

test names.
Files: src/Makefile, src/testdir/Makefile, src/testdir/runtest.vim

Patch 7.4.992
Problem: Makefiles for MS-Windows in src/po are outdated.
Solution: Make them work. (Ken Takata, Taro Muraoka)
Files: src/po/Make_cyg.mak, src/po/Make_ming.mak, src/po/Make_mvc.mak,

src/po/README_mingw.txt, src/po/README_mvc.txt

Patch 7.4.993
Problem: Test 87 is flaky on AppVeyor.
Solution: Reduce the minimum background thread count.
Files: src/testdir/test86.in, src/testdir/test87.in

Patch 7.4.994
Problem: New style tests are not run on MS-Windows.
Solution: Add the new style tests.
Files: src/testdir/Make_dos.mak

Patch 7.4.995
Problem: gdk_pixbuf_new_from_inline() is deprecated.
Solution: Generate auto/gui_gtk_gresources.c. (Kazunobu Kuriyama,

closes #507)
Files: src/Makefile, src/auto/configure, src/config.h.in,

src/config.mk.in, src/configure.in, src/gui_gtk.c,
src/gui_gtk_gresources.xml, src/gui_gtk_x11.c,
src/proto/gui_gtk_gresources.pro,
pixmaps/stock_vim_build_tags.png, pixmaps/stock_vim_find_help.png,
pixmaps/stock_vim_save_all.png,
pixmaps/stock_vim_session_load.png,
pixmaps/stock_vim_session_new.png,
pixmaps/stock_vim_session_save.png, pixmaps/stock_vim_shell.png,
pixmaps/stock_vim_window_maximize.png,
pixmaps/stock_vim_window_maximize_width.png,
pixmaps/stock_vim_window_minimize.png,
pixmaps/stock_vim_window_minimize_width.png,
pixmaps/stock_vim_window_split.png,
pixmaps/stock_vim_window_split_vertical.png

Patch 7.4.996
Problem: New GDK files and testdir/Make_all.mak missing from distribution.

PC build instructions are outdated.
Solution: Add the file to the list. Update PC build instructions.
Files: Filelist, Makefile

Patch 7.4.997
Problem: "make shadow" was sometimes broken.
Solution: Add a test for it. (James McCoy, closes #520)
Files: .travis.yml

Patch 7.4.998
Problem: Running tests in shadow directory fails. Test 49 fails.
Solution: Link more files for the shadow directory. Make test 49 ends up in

the right buffer.

version8.txt — 2897

Files: src/Makefile, src/testdir/test49.in

Patch 7.4.999
Problem: "make shadow" creates a broken link. (Tony Mechelynck)
Solution: Remove vimrc.unix from the list.
Files: src/Makefile

Patch 7.4.1000
Problem: Test 49 is slow and doesn't work on MS-Windows.
Solution: Start moving parts of test 49 to test_viml.
Files: src/Makefile, src/testdir/runtest.vim, src/testdir/test_viml.vim,

src/testdir/test49.vim, src/testdir/test49.ok

Patch 7.4.1001 (after 7.4.1000)
Problem: test_viml isn't run.
Solution: Include change in makefile.
Files: src/testdir/Make_all.mak

Patch 7.4.1002
Problem: Cannot run an individual test on MS-Windows.
Solution: Move the rule to run test1 downwards. (Ken Takata)
Files: src/testdir/Make_dos.mak

Patch 7.4.1003
Problem: Travis could check a few more things.
Solution: Run autoconf on one of the builds. (James McCoy, closes #510)

Also build with normal features.
Files: .travis.yml

Patch 7.4.1004
Problem: Using Makefile when auto/config.mk does not exist results in

warnings.
Solution: Use default values for essential variables.
Files: src/Makefile

Patch 7.4.1005
Problem: Vim users are not always happy.
Solution: Make them happy.
Files: src/ex_cmds.h, src/ex_cmds.c, src/proto/ex_cmds.pro

Patch 7.4.1006
Problem: The fix in patch 7.3.192 is not tested.
Solution: Add a test, one for each regexp engine. (Elias Diem)
Files: src/testdir/test44.in, src/testdir/test44.ok,

src/testdir/test99.in, src/testdir/test99.ok

Patch 7.4.1007
Problem: When a symbolic link points to a file in the root directory, the

swapfile is not correct.
Solution: Do not try getting the full name of a file in the root directory.

(Milly, closes #501)
Files: src/os_unix.c

Patch 7.4.1008
Problem: The OS/2 code pollutes the source while nobody uses it these days.
Solution: Drop the support for OS/2.
Files: src/feature.h, src/globals.h, src/macros.h, src/option.h,

src/os_unix.c, src/os_unix.h, src/proto/os_unix.pro, src/vim.h,
src/digraph.c, src/eval.c, src/ex_cmds.c, src/ex_docmd.c,
src/ex_getln.c, src/fileio.c, src/getchar.c, src/memline.c,

version8.txt — 2898

src/misc1.c, src/misc2.c, src/netbeans.c, src/option.c,
src/term.c, src/ui.c, src/window.c, src/os_os2_cfg.h,
src/Make_os2.mak, src/testdir/Make_os2.mak, src/testdir/os2.vim,
src/INSTALL, runtime/doc/os_os2.txt

Patch 7.4.1009
Problem: There are still #ifdefs for ARCHIE.
Solution: Remove references to ARCHIE, the code was removed in Vim 5.
Files: src/ex_cmds.c, src/ex_docmd.c, src/fileio.c, src/main.c,

src/memline.c, src/option.c, src/term.c

Patch 7.4.1010
Problem: Some developers are unhappy while running tests.
Solution: Add a test and some color.
Files: src/ex_cmds.c, src/testdir/test_assert.vim

Patch 7.4.1011
Problem: Can't build with Strawberry Perl.
Solution: Include stdbool.h. (Ken Takata, closes #328)
Files: Filelist, src/Make_mvc.mak, src/if_perl_msvc/stdbool.h

Patch 7.4.1012
Problem: Vim overwrites the value of $PYTHONHOME.
Solution: Do not set $PYTHONHOME if it is already set. (Kazuki Sakamoto,

closes #500)
Files: src/if_python.c, src/if_python3.c

Patch 7.4.1013
Problem: The local value of 'errorformat' is not used for ":lexpr" and

":cexpr".
Solution: Use the local value if it exists. (Christian Brabandt) Adjust the

help for this.
Files: runtime/doc/quickfix.txt, src/quickfix.c

Patch 7.4.1014
Problem: `fnamemodify('.', ':.')` returns an empty string in Cygwin.
Solution: Use CCP_RELATIVE in the call to cygwin_conv_path. (Jacob Niehus,

closes #505)
Files: src/os_unix.c

Patch 7.4.1015
Problem: The column is not restored properly when the matchparen plugin is

used in Insert mode and the cursor is after the end of the line.
Solution: Set the curswant flag. (Christian Brabandt). Also fix

highlighting the match of the character before the cursor.
Files: src/eval.c, runtime/plugin/matchparen.vim

Patch 7.4.1016
Problem: Still a few OS/2 pieces remain.
Solution: Delete more.
Files: Filelist, README_os2.txt, testdir/todos.vim, src/xxd/Make_os2.mak

Patch 7.4.1017
Problem: When there is a backslash in an option ":set -=" doesn't work.
Solution: Handle a backslash better. (Jacob Niehus) Add a new test, merge

in old test.
Files: src/testdir/test_cdo.vim, src/testdir/test_set.vim,

src/testdir/test_alot.vim, src/option.c, src/testdir/test_set.in,
src/testdir/test_set.ok, src/Makefile

version8.txt — 2899

Patch 7.4.1018 (after 7.4.1017)
Problem: Failure running tests.
Solution: Add missing change to list of old style tests.
Files: src/testdir/Make_all.mak

Patch 7.4.1019
Problem: Directory listing of "src" is too long.
Solution: Rename the resources file to make it shorter.
Files: src/gui_gtk_gresources.xml, src/gui_gtk_res.xml, src/Makefile,

Filelist

Patch 7.4.1020
Problem: On MS-Windows there is no target to run tests with gvim.
Solution: Add the testgvim target.
Files: src/Make_mvc.mak

Patch 7.4.1021
Problem: Some makefiles are outdated.
Solution: Add a note to warn developers.
Files: src/Make_manx.mak, src/Make_bc3.mak, src/Make_bc5.mak,

src/Make_djg.mak, src/Make_w16.mak

Patch 7.4.1022
Problem: The README file contains some outdated information.
Solution: Update the information about supported systems.
Files: README.txt, README.md

Patch 7.4.1023
Problem: The distribution files for MS-Windows use CR-LF, which is

inconsistent with what one gets from github.
Solution: Use LF in the distribution files.
Files: Makefile

Patch 7.4.1024
Problem: Interfaces for MS-Windows are outdated.
Solution: Use Python 2.7.10, Python 3.4.4, Perl 5.22, TCL 8.6.
Files: src/bigvim.bat

Patch 7.4.1025
Problem: Version in installer needs to be updated manually.
Solution: Generate a file with the version number. (Guopeng Wen)
Files: Makefile, nsis/gvim.nsi, nsis/gvim_version.nsh

Patch 7.4.1026
Problem: When using MingW the tests do not clean up all files. E.g. test

17 leaves Xdir1 behind. (Michael Soyka)
Solution: Also delete directories, like Make_dos.mak. Delete files after

directories to reduce warnings.
Files: src/testdir/Make_ming.mak, src/testdir/Make_dos.mak

Patch 7.4.1027
Problem: No support for binary numbers.
Solution: Add "bin" to 'nrformats'. (Jason Schulz)
Files: runtime/doc/change.txt, runtime/doc/eval.txt,

runtime/doc/version7.txt, src/charset.c, src/eval.c,
src/ex_cmds.c, src/ex_getln.c, src/misc2.c, src/ops.c,
src/option.c, src/proto/charset.pro, src/spell.c,
src/testdir/test57.in, src/testdir/test57.ok,
src/testdir/test58.in, src/testdir/test58.ok,
src/testdir/test_increment.in, src/testdir/test_increment.ok,

version8.txt — 2900

src/vim.h

Patch 7.4.1028
Problem: Nsis version file missing from the distribution.
Solution: Add the file to the list.
Files: Filelist

Patch 7.4.1029 (after 7.4.1027)
Problem: test_increment fails on systems with 32 bit long.
Solution: Only test with 32 bits.
Files: src/testdir/test_increment.in, src/testdir/test_increment.ok

Patch 7.4.1030
Problem: test49 is still slow.
Solution: Move more tests from old to new style.
Files: src/testdir/test_viml.vim, src/testdir/test49.vim,

src/testdir/test49.ok, src/testdir/runtest.vim

Patch 7.4.1031
Problem: Can't build with Python interface using MingW.
Solution: Update the Makefile. (Yasuhiro Matsumoto)
Files: src/INSTALLpc.txt, src/Make_cyg_ming.mak

Patch 7.4.1032
Problem: message from assert_false() does not look nice.
Solution: Handle missing sourcing_name. Use right number of spaces. (Watiko)

Don't use line number if it's zero.
Files: src/eval.c

Patch 7.4.1033
Problem: Memory use on MS-Windows is very conservative.
Solution: Use the global memory status to estimate amount of memory.

(Mike Williams)
Files: src/os_win32.c, src/os_win32.h, src/proto/os_win32.pro

Patch 7.4.1034
Problem: There is no test for the 'backspace' option behavior.
Solution: Add a test. (Hirohito Higashi)
Files: src/testdir/test_alot.vim, src/testdir/test_backspace_opt.vim

Patch 7.4.1035
Problem: An Ex range gets adjusted for folded lines even when the range is

not using line numbers.
Solution: Only adjust line numbers for folding. (Christian Brabandt)
Files: runtime/doc/fold.txt, src/ex_docmd.c

Patch 7.4.1036
Problem: Only terminals with up to 256 colors work properly.
Solution: Use the 256 color behavior for all terminals with 256 or more

colors. (Robert de Bath, closes #504)
Files: src/syntax.c

Patch 7.4.1037
Problem: Using "q!" when there is a modified hidden buffer does not unload

the current buffer, resulting in the need to abandon it again.
Solution: When using "q!" unload the current buffer when needed. (Yasuhiro

Matsumoto, Hirohito Higashi)
Files: src/testdir/test31.in, src/testdir/test31.ok,

runtime/doc/editing.txt, src/ex_cmds2.c, src/ex_docmd.c,
src/gui.c, src/gui_gtk_x11.c, src/os_unix.c,

version8.txt — 2901

src/proto/ex_cmds2.pro

Patch 7.4.1038
Problem: Still get a warning for a deprecated function with gdk-pixbuf

2.31.
Solution: Change minimum minor version from 32 to 31.
Files: src/configure.in, src/auto/configure

Patch 7.4.1039 (after 7.4.1037)
Problem: Test 31 fails with small build.
Solution: Bail out for small build. (Hirohito Higashi)
Files: src/testdir/test31.in

Patch 7.4.1040
Problem: The tee command is not available on MS-Windows.
Solution: Adjust tee.c for MSVC and add a makefile. (Yasuhiro Matsumoto)
Files: src/tee/tee.c, src/tee/Make_mvc.mak, src/Make_mvc.mak

Patch 7.4.1041
Problem: Various small things.
Solution: Add file to list of distributed files. Adjust README. Fix typo.
Files: Filelist, src/testdir/README.txt, src/testdir/test_charsearch.in,

src/INSTALLmac.txt

Patch 7.4.1042
Problem: g-CTRL-G shows the word count, but there is no way to get the word

count in a script.
Solution: Add the wordcount() function. (Christian Brabandt)
Files: runtime/doc/editing.txt, runtime/doc/eval.txt,

runtime/doc/usr_41.txt, src/eval.c, src/normal.c, src/ops.c,
src/proto/ops.pro, src/testdir/test_wordcount.in,
src/testdir/test_wordcount.ok, src/testdir/Make_all.mak

Patch 7.4.1043
Problem: Another small thing.
Solution: Now really update the Mac install text.
Files: src/INSTALLmac.txt

Patch 7.4.1044 (after 7.4.1042)
Problem: Can't build without the +eval feature.
Solution: Add #ifdef.
Files: src/ops.c

Patch 7.4.1045
Problem: Having shadow and coverage on the same build results in the source

files not being available in the coverage view.
Solution: Move using shadow to the normal build.
Files: .travis.yml

Patch 7.4.1046
Problem: No test coverage for menus.
Solution: Load the standard menus and check there is no error.
Files: src/testdir/test_menu.vim, src/testdir/test_alot.vim

Patch 7.4.1047 (after patch 7.4.1042)
Problem: Tests fail on MS-Windows.
Solution: Set 'selection' to inclusive.
Files: src/testdir/test_wordcount.in

Patch 7.4.1048 (after patch 7.4.1047)

version8.txt — 2902

Problem: Wordcount test still fail on MS-Windows.
Solution: Set 'fileformat' to "unix".
Files: src/testdir/test_wordcount.in

Patch 7.4.1049 (after patch 7.4.1048)
Problem: Wordcount test still fails on MS-Windows.
Solution: Set 'fileformats' to "unix".
Files: src/testdir/test_wordcount.in

Patch 7.4.1050
Problem: Warning for unused var with tiny features. (Tony Mechelynck)
Solution: Add #ifdef. Use vim_snprintf(). Reduce number of statements.
Files: src/ops.c

Patch 7.4.1051
Problem: Segfault when unletting "count".
Solution: Check for readonly and locked first. (Dominique Pelle)

Add a test.
Files: src/eval.c, src/testdir/test_alot.vim, src/testdir/test_unlet.vim

Patch 7.4.1052
Problem: Illegal memory access with weird syntax command. (Dominique Pelle)
Solution: Check for column past end of line.
Files: src/syntax.c

Patch 7.4.1053
Problem: Insufficient testing for quickfix commands.
Solution: Add a new style quickfix test. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/test_quickfix.vim

Patch 7.4.1054
Problem: Illegal memory access.
Solution: Check for missing pattern. (Dominique Pelle)
Files: src/syntax.c

Patch 7.4.1055
Problem: Running "make newtests" in src/testdir has no output.
Solution: List the messages file when a test fails. (Christian Brabandt)

Update the list of tests.
Files: src/Makefile, src/testdir/Makefile

Patch 7.4.1056
Problem: Don't know why finding spell suggestions is slow.
Solution: Add some code to gather profiling information.
Files: src/spell.c

Patch 7.4.1057
Problem: Typos in the :options window.
Solution: Fix the typos. (Dominique Pelle)
Files: runtime/optwin.vim

Patch 7.4.1058
Problem: It is not possible to test code that is only reached when memory

allocation fails.
Solution: Add the alloc_fail() function. Try it out with :vimgrep.
Files: runtime/doc/eval.txt, src/globals.h, src/eval.c, src/quickfix.c,

src/misc2.c, src/proto/misc2.pro, src/testdir/test_quickfix.vim

Patch 7.4.1059
Problem: Code will never be executed.

version8.txt — 2903

Solution: Remove the code.
Files: src/quickfix.c

Patch 7.4.1060
Problem: Instructions for writing tests are outdated.
Solution: Mention Make_all.mak. Add steps for new style tests.
Files: src/testdir/README.txt

Patch 7.4.1061
Problem: Compiler warning for ignoring return value of fwrite().
Solution: Do use the return value. (idea: Charles Campbell)
Files: src/misc2.c, src/proto/misc2.pro

Patch 7.4.1062
Problem: Building with Ruby on MS-Windows requires a lot of arguments.
Solution: Make it simpler. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 7.4.1063
Problem: TCL_VER_LONG and DYNAMIC_TCL_VER are not set when building with

Cygwin and MingW.
Solution: Add TCL_VER_LONG and DYNAMIC_TCL_VER to the makefile. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.1064
Problem: When a spell file has single letter compounding creating

suggestions takes an awful long time.
Solution: Add the NOCOMPOUNDSUGS flag.
Files: runtime/doc/spell.txt, src/spell.c

Patch 7.4.1065
Problem: Cannot use the "dll" options on MS-Windows.
Solution: Support the options on all platforms. Use the built-in name as

the default, so that it's clear what Vim is looking for.
Files: src/if_python.c, src/if_python3.c, src/if_lua.c, src/if_perl.xs,

src/if_ruby.c, src/option.c, runtime/doc/options.txt, src/Makefile

Patch 7.4.1066 (after 7.4.1065)
Problem: Build fails on MS-Windows.
Solution: Adjust the #ifdefs for "dll" options.
Files: src/option.h

Patch 7.4.1067 (after 7.4.1065)
Problem: Can't build with MingW and Python on MS-Windows.
Solution: Move the build flags to CFLAGS.
Files: src/Make_cyg_ming.mak

Patch 7.4.1068
Problem: Wrong way to check for unletting internal variables.
Solution: Use a better way. (Olaf Dabrunz)
Files: src/testdir/test_unlet.c, src/eval.c

Patch 7.4.1069
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/misc2.c

Patch 7.4.1070
Problem: The Tcl interface can't be loaded dynamically on Unix.
Solution: Make it possible to load it dynamically. (Ken Takata)

version8.txt — 2904

Files: runtime/doc/if_tcl.txt, runtime/doc/options.txt,
runtime/doc/quickref.txt, runtime/optwin.vim, src/Makefile,
src/config.h.in, src/configure.in, src/auto/configure,
src/if_tcl.c, src/option.c, src/option.h

Patch 7.4.1071
Problem: New style tests are executed in arbitrary order.
Solution: Sort the test function names. (Hirohito Higashi)

Fix the quickfix test that depended on the order.
Files: src/testdir/runtest.vim, src/testdir/test_quickfix.vim

Patch 7.4.1072
Problem: Increment test is old style.
Solution: Make the increment test a new style test. (Hirohito Higashi)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_increment.in, src/testdir/test_increment.ok,
src/testdir/test_increment.vim

Patch 7.4.1073
Problem: Alloc_id depends on numbers, may use the same one twice. It's not

clear from the number what it's for.
Solution: Use an enum. Add a function to lookup the enum value from the

name.
Files: src/misc2.c, src/vim.h, src/alloc.h, src/globals.h,

src/testdir/runtest.vim, src/proto/misc2.pro,
src/testdir/test_quickfix.vim

Patch 7.4.1074
Problem: Warning from VC2015 compiler.
Solution: Add a type cast. (Mike Williams)
Files: src/gui_dwrite.cpp

Patch 7.4.1075
Problem: Crash when using an invalid command.
Solution: Fix generating the error message. (Dominique Pelle)
Files: src/ex_docmd.c

Patch 7.4.1076
Problem: CTRL-A does not work well in right-left mode.
Solution: Remove reversing the line, add a test. (Hirohito Higashi)
Files: src/ops.c, src/testdir/test_increment.vim

Patch 7.4.1077
Problem: The build instructions for MS-Windows are incomplete.
Solution: Add explanations for how to build with various interfaces. (Ken

Takata)
Files: src/INSTALLpc.txt

Patch 7.4.1078
Problem: MSVC: "make clean" doesn't cleanup in the tee directory.
Solution: Add the commands to cleanup tee. (Erich Ritz)
Files: src/Make_mvc.mak

Patch 7.4.1079 (after 7.4.1073)
Problem: New include file missing from distribution. Missing changes to

quickfix code.
Solution: Add alloc.h to the list of distributed files. Use the enum in

quickfix code.
Files: Filelist, src/quickfix.c

version8.txt — 2905

Patch 7.4.1080
Problem: VS2015 has a function HandleToLong() that is shadowed by the macro

that Vim defines.
Solution: Do not define HandleToLong() for MSVC version 1400 and later.

(Mike Williams)
Files: src/gui_w32.c

Patch 7.4.1081
Problem: No test for what previously caused a crash.
Solution: Add test for unletting errmsg.
Files: src/testdir/test_unlet.vim

Patch 7.4.1082
Problem: The Tcl interface is always skipping memory free on exit.
Solution: Only skip for dynamically loaded Tcl.
Files: src/if_tcl.c

Patch 7.4.1083
Problem: Building GvimExt with VS2015 may fail.
Solution: Adjust the makefile. (Mike Williams)
Files: src/GvimExt/Makefile

Patch 7.4.1084
Problem: Using "." to repeat CTRL-A in Visual mode increments the wrong

numbers.
Solution: Append right size to the redo buffer. (Ozaki Kiichi)
Files: src/normal.c, src/testdir/test_increment.vim

Patch 7.4.1085
Problem: The CTRL-A and CTRL-X commands do not update the '[and '] marks.
Solution: (Yukihiro Nakadaira)
Files: src/ops.c, src/testdir/test_marks.in, src/testdir/test_marks.ok

Patch 7.4.1086
Problem: Crash with an extremely long buffer name.
Solution: Limit the return value of vim_snprintf(). (Dominique Pelle)
Files: src/buffer.c

Patch 7.4.1087
Problem: CTRL-A and CTRL-X do not work properly with blockwise visual

selection if there is a mix of Tab and spaces.
Solution: Add OP_NR_ADD and OP_NR_SUB. (Hirohito Higashi)
Files: src/testdir/test_increment.vim, src/normal.c, src/ops.c,

src/proto/ops.pro, src/vim.h

Patch 7.4.1088
Problem: Coverity warns for uninitialized variables. Only one is an actual

problem.
Solution: Move the conditions. Don't use endpos if handling an error.
Files: src/ops.c

Patch 7.4.1089
Problem: Repeating CTRL-A doesn't work.
Solution: Call prep_redo_cmd(). (Hirohito Higashi)
Files: src/normal.c, src/testdir/test_increment.vim

Patch 7.4.1090
Problem: No tests for :hardcopy and related options.
Solution: Add test_hardcopy.
Files: src/testdir/test_hardcopy.vim, src/Makefile,

version8.txt — 2906

src/testdir/Make_all.mak

Patch 7.4.1091
Problem: When making a change while need_wait_return is set there is a two

second delay.
Solution: Do not assume the ATTENTION prompt was given when need_wait_return

was set already.
Files: src/misc1.c

Patch 7.4.1092
Problem: It is not simple to test for an exception and give a proper error

message.
Solution: Add assert_exception().
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.4.1093
Problem: Typo in test goes unnoticed.
Solution: Fix the typo. Give error for wrong arguments to cursor().

(partly by Hirohito Higashi) Add a test for cursor().
Files: src/testdir/test_searchpos.vim, src/testdir/test_cursor_func.vim,

src/eval.c, src/testdir/test_alot.vim

Patch 7.4.1094
Problem: Test for :hardcopy fails on MS-Windows.
Solution: Check for the +postscript feature.
Files: src/testdir/test_hardcopy.vim

Patch 7.4.1095
Problem: Can't build GvimExt with SDK 7.1.
Solution: Support using setenv.bat instead of vcvars32.bat. (Ken Takata)
Files: src/Make_mvc.mak, src/GvimExt/Makefile

Patch 7.4.1096
Problem: Need several lines to verify a command produces an error.
Solution: Add assert_fails(). (suggested by Nikolai Pavlov)

Make the quickfix alloc test actually work.
Files: src/testdir/test_quickfix.vim, src/eval.c, runtime/doc/eval.txt,

src/misc2.c, src/alloc.h

Patch 7.4.1097
Problem: Looking up the alloc ID for tests fails.
Solution: Fix the line computation. Use assert_fails() for unlet test.
Files: src/testdir/runtest.vim, src/testdir/test_unlet.vim

Patch 7.4.1098
Problem: Still using old style C function declarations.
Solution: Always define __ARGS() to include types. Turn a few functions

into ANSI style to find out if this causes problems for anyone.
Files: src/vim.h, src/os_unix.h, src/eval.c, src/main.c

Patch 7.4.1099
Problem: It's not easy to know if Vim supports blowfish. (Smu Johnson)
Solution: Add has('crypt-blowfish') and has('crypt-blowfish2').
Files: src/eval.c

Patch 7.4.1100
Problem: Cygwin makefiles are unused.
Solution: Remove them.
Files: src/GvimExt/Make_ming.mak, src/GvimExt/Make_cyg.mak,

src/xxd/Make_ming.mak, src/xxd/Make_cyg.mak

version8.txt — 2907

Patch 7.4.1101
Problem: With 'rightleft' and concealing the cursor may move to the wrong

position.
Solution: Compute the column differently when 'rightleft' is set. (Hirohito

Higashi)
Files: src/screen.c

Patch 7.4.1102
Problem: Debugger has no stack backtrace support.
Solution: Add "backtrace", "frame", "up" and "down" commands. (Alberto

Fanjul, closes #433)
Files: runtime/doc/repeat.txt, src/eval.c, src/ex_cmds2.c, src/globals.h,

src/testdir/Make_all.mak, src/testdir/test108.in,
src/testdir/test108.ok

Patch 7.4.1103 (after 7.4.1100)
Problem: Removed file still in distribution.
Solution: Remove Make_cyg.mak from the list of files.
Files: Filelist

Patch 7.4.1104
Problem: Various problems building with MzScheme/Racket.
Solution: Make it work with new versions of Racket. (Yukihiro Nakadaira, Ken

Takata)
Files: runtime/doc/if_mzsch.txt, src/INSTALLpc.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/auto/configure,
src/configure.in, src/if_mzsch.c

Patch 7.4.1105
Problem: When using slices there is a mixup of variable name and namespace.
Solution: Recognize variables that can't be a namespace. (Hirohito Higashi)
Files: src/eval.c, src/testdir/test_eval.in, src/testdir/test_eval.ok

Patch 7.4.1106
Problem: The nsis script can't be used from the appveyor build.
Solution: Add "ifndef" to allow for variables to be set from the command

line. Remove duplicate SetCompressor command. Support using other
gettext binaries. (Ken Takata) Update build instructions to use
libintl-8.dll.

Files: Makefile, nsis/gvim.nsi, src/os_win32.c, src/proto/os_win32.pro,
src/main.c, os_w32exe.c

Patch 7.4.1107
Problem: Vim can create a directory but not delete it.
Solution: Add an argument to delete() to make it possible to delete a

directory, also recursively.
Files: src/fileio.c, src/eval.c, src/proto/fileio.pro,

src/testdir/test_delete.vim, src/testdir/test_alot.vim,
runtime/doc/eval.txt

Patch 7.4.1108
Problem: Expanding "~" halfway a file name.
Solution: Handle the file name as one name. (Marco Hinz) Add a test.

Closes #564.
Files: src/testdir/test27.in, src/testdir/test27.ok,

src/testdir/test_expand.vim, src/testdir/test_alot.vim,
src/Makefile, src/misc2.c

Patch 7.4.1109 (after 7.4.1107)

version8.txt — 2908

Problem: MS-Windows doesn't have rmdir().
Solution: Add mch_rmdir().
Files: src/os_win32.c, src/proto/os_win32.pro

Patch 7.4.1110
Problem: Test 108 fails when language is French.
Solution: Force English messages. (Dominique Pelle)
Files: src/testdir/test108.in

Patch 7.4.1111
Problem: test_expand fails on MS-Windows.
Solution: Always use forward slashes. Remove references to test27.
Files: src/testdir/runtest.vim, src/testdir/test_expand.vim,

src/testdir/Make_dos.mak, src/testdir/Make_all.mak,
src/testdir/Make_amiga.mak, src/testdir/Make_ming.mak

Patch 7.4.1112
Problem: When using ":next" with an illegal file name no error is reported.
Solution: Give an error message.
Files: src/ex_cmds2.c

Patch 7.4.1113 (after 7.4.1105)
Problem: Using {ns} in variable name does not work. (lilydjwg)
Solution: Fix recognizing colon. Add a test.
Files: src/eval.c, src/testdir/test_viml.vim

Patch 7.4.1114 (after 7.4.1107)
Problem: delete() does not work well with symbolic links.
Solution: Recognize symbolic links.
Files: src/eval.c, src/fileio.c, src/os_unix.c, src/proto/os_unix.pro,

src/testdir/test_delete.vim, runtime/doc/eval.txt

Patch 7.4.1115
Problem: MS-Windows: make clean in testdir doesn't clean everything.
Solution: Add command to delete X* directories. (Ken Takata)
Files: src/testdir/Make_dos.mak

Patch 7.4.1116
Problem: delete(x, 'rf') does not delete files starting with a dot.
Solution: Also delete files starting with a dot.
Files: src/misc1.c, src/fileio.c, src/vim.h

Patch 7.4.1117 (after 7.4.1116)
Problem: No longer get "." and ".." in directory list.
Solution: Do not skip "." and ".." unless EW_DODOT is set.
Files: src/misc1.c

Patch 7.4.1118
Problem: Tests hang in 24 line terminal.
Solution: Set the 'more' option off.
Files: src/testdir/runtest.vim

Patch 7.4.1119
Problem: argidx() has a wrong value after ":%argdelete". (Yegappan

Lakshmanan)
Solution: Correct the value of w_arg_idx. Add a test.
Files: src/ex_cmds2.c, src/testdir/test_arglist.vim,

src/testdir/Make_all.mak

Patch 7.4.1120

version8.txt — 2909

Problem: delete(x, 'rf') fails if a directory is empty. (Lcd)
Solution: Ignore not finding matches in an empty directory.
Files: src/fileio.c, src/misc1.c, src/vim.h, src/testdir/test_delete.vim

Patch 7.4.1121
Problem: test_expand leaves files behind.
Solution: Edit another file before deleting, otherwise the swap file

remains.
Files: src/testdir/test_expand.vim

Patch 7.4.1122
Problem: Test 92 and 93 fail when using gvim on a system with a non utf-8

locale.
Solution: Avoid using .gvimrc by adding -U NONE. (Yukihiro Nakadaira)
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,

src/testdir/Make_vms.mms, src/testdir/Makefile

Patch 7.4.1123
Problem: Using ":argadd" when there are no arguments results in the second

argument to be the current one. (Yegappan Lakshmanan)
Solution: Correct the w_arg_idx value.
Files: src/ex_cmds2.c, src/testdir/test_arglist.vim

Patch 7.4.1124
Problem: MS-Windows: dead key behavior is not ideal.
Solution: Handle dead keys differently when not in Insert or Select mode.

(John Wellesz, closes #399)
Files: src/gui_w48.c

Patch 7.4.1125
Problem: There is no perleval().
Solution: Add perleval(). (Damien)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/eval.c,

src/if_perl.xs, src/proto/if_perl.pro, src/testdir/Make_all.mak,
src/testdir/test_perl.vim

Patch 7.4.1126
Problem: Can only get the directory of the current window.
Solution: Add window and tab arguments to getcwd() and haslocaldir().

(Thinca, Hirohito Higashi)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_getcwd.in, src/testdir/test_getcwd.ok,
runtime/doc/eval.txt, patching file src/eval.c

Patch 7.4.1127
Problem: Both old and new style tests for Perl.
Solution: Merge the old tests with the new style tests.
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test_perl.in,

src/testdir/test_perl.ok, src/testdir/test_perl.vim

Patch 7.4.1128
Problem: MS-Windows: delete() does not recognize junctions.
Solution: Add mch_isrealdir() for MS-Windows. Update mch_is_symbolic_link().

(Ken Takata)
Files: src/fileio.c, src/os_win32.c, src/proto/os_win32.pro

Patch 7.4.1129
Problem: Python None value can't be converted to a Vim value.
Solution: Just use zero. (Damien)
Files: src/if_py_both.h, src/testdir/test86.in, src/testdir/test86.ok,

version8.txt — 2910

src/testdir/test87.in, src/testdir/test87.ok,

Patch 7.4.1130
Problem: Memory leak in :vimgrep.
Solution: Call FreeWild(). (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 7.4.1131
Problem: New lines in the viminfo file are dropped.
Solution: Copy lines starting with "|". Fix that when using :rviminfo in a

function global variables were restored as function-local
variables.

Files: src/eval.c, src/structs.h, src/ex_cmds.c, src/misc2.c,
src/proto/misc2.pro, src/testdir/test_viminfo.vim,
src/testdir/Make_all.mak, src/testdir/test74.in,
src/testdir/test74.ok

Patch 7.4.1132
Problem: Old style tests for the argument list.
Solution: Add more new style tests. (Yegappan Lakshmanan)
Files: src/testdir/test_arglist.vim, src/testdir/test_argument_0count.in,

src/testdir/test_argument_0count.ok,
src/testdir/test_argument_count.in, src/Makefile,
src/testdir/test_argument_count.ok, src/testdir/Make_all.mak

Patch 7.4.1133
Problem: Generated function prototypes still have __ARGS().
Solution: Generate function prototypes without __ARGS().
Files: src/Makefile, src/if_ruby.c, src/os_win32.c,

src/proto/blowfish.pro, src/proto/buffer.pro,
src/proto/charset.pro, src/proto/crypt.pro,
src/proto/crypt_zip.pro, src/proto/diff.pro,
src/proto/digraph.pro, src/proto/edit.pro, src/proto/eval.pro,
src/proto/ex_cmds2.pro, src/proto/ex_cmds.pro,
src/proto/ex_docmd.pro, src/proto/ex_eval.pro,
src/proto/ex_getln.pro, src/proto/fileio.pro, src/proto/fold.pro,
src/proto/getchar.pro, src/proto/gui_athena.pro,
src/proto/gui_beval.pro, src/proto/gui_gtk_gresources.pro,
src/proto/gui_gtk.pro, src/proto/gui_gtk_x11.pro,
src/proto/gui_mac.pro, src/proto/gui_motif.pro,
src/proto/gui_photon.pro, src/proto/gui.pro,
src/proto/gui_w16.pro, src/proto/gui_w32.pro,
src/proto/gui_x11.pro, src/proto/gui_xmdlg.pro,
src/proto/hangulin.pro, src/proto/hardcopy.pro,
src/proto/hashtab.pro, src/proto/if_cscope.pro,
src/proto/if_lua.pro, src/proto/if_mzsch.pro,
src/proto/if_ole.pro, src/proto/if_perl.pro,
src/proto/if_perlsfio.pro, src/proto/if_python3.pro,
src/proto/if_python.pro, src/proto/if_ruby.pro,
src/proto/if_tcl.pro, src/proto/if_xcmdsrv.pro,
src/proto/main.pro, src/proto/mark.pro, src/proto/mbyte.pro,
src/proto/memfile.pro, src/proto/memline.pro, src/proto/menu.pro,
src/proto/message.pro, src/proto/misc1.pro, src/proto/misc2.pro,
src/proto/move.pro, src/proto/netbeans.pro, src/proto/normal.pro,
src/proto/ops.pro, src/proto/option.pro, src/proto/os_amiga.pro,
src/proto/os_beos.pro, src/proto/os_mac_conv.pro,
src/proto/os_msdos.pro, src/proto/os_mswin.pro,
src/proto/os_qnx.pro, src/proto/os_unix.pro, src/proto/os_vms.pro,
src/proto/os_win16.pro, src/proto/os_win32.pro,
src/proto/popupmnu.pro, src/proto/pty.pro, src/proto/quickfix.pro,

version8.txt — 2911

src/proto/regexp.pro, src/proto/screen.pro, src/proto/search.pro,
src/proto/sha256.pro, src/proto/spell.pro, src/proto/syntax.pro,
src/proto/tag.pro, src/proto/termlib.pro, src/proto/term.pro,
src/proto/ui.pro, src/proto/undo.pro, src/proto/version.pro,
src/proto/winclip.pro, src/proto/window.pro,
src/proto/workshop.pro

Patch 7.4.1134
Problem: The arglist test fails on MS-Windows.
Solution: Only check for failure of argedit on Unix.
Files: src/testdir/test_arglist.vim

Patch 7.4.1135
Problem: One more arglist test fails on MS-Windows.
Solution: Don't edit "Y" after editing "y".
Files: src/testdir/test_arglist.vim

Patch 7.4.1136
Problem: Wrong argument to assert_exception() causes a crash. (reported by

Coverity)
Solution: Check for NULL pointer. Add a test.
Files: src/eval.c, src/testdir/test_assert.vim

Patch 7.4.1137
Problem: Illegal memory access when using :copen and :cclose.
Solution: Avoid that curbuf is invalid. (suggestion by Justin M. Keyes)

Add a test.
Files: src/window.c, src/testdir/test_quickfix.vim

Patch 7.4.1138
Problem: When running gvim in the foreground some icons are missing.

(Taylor Venable)
Solution: Move the call to gui_gtk_register_resource(). (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 7.4.1139
Problem: MS-Windows: getftype() returns "file" for symlink to directory.
Solution: Make it return "dir". (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.1140
Problem: Recognizing <sid> does not work when the language is Turkish.

(Christian Brabandt)
Solution: Use MB_STNICMP() instead of STNICMP().
Files: src/eval.c

Patch 7.4.1141
Problem: Using searchpair() with a skip expression that uses syntax

highlighting sometimes doesn't work. (David Fishburn)
Solution: Reset next_match_idx. (Christian Brabandt)
Files: src/syntax.c

Patch 7.4.1142
Problem: Cannot define keyword characters for a syntax file.
Solution: Add the ":syn iskeyword" command. (Christian Brabandt)
Files: runtime/doc/options.txt, runtime/doc/syntax.txt, src/buffer.c,

src/option.c, src/structs.h, src/syntax.c,
src/testdir/Make_all.mak, src/testdir/test_syntax.vim

Patch 7.4.1143

version8.txt — 2912

Problem: Can't sort on floating point numbers.
Solution: Add the "f" flag to ":sort". (Alex Jakushev) Also add the "f"

flag to sort().
Files: runtime/doc/change.txt, src/ex_cmds.c, src/testdir/test_sort.vim,

src/testdir/test57.in, src/testdir/test57.ok, src/eval.c

Patch 7.4.1144 (after 7.4.1143)
Problem: Can't build on several systems.
Solution: Include float.h. (Christian Robinson, closes #570 #571)
Files: src/ex_cmds.c

Patch 7.4.1145
Problem: Default features are conservative.
Solution: Make the default feature set for most of today's systems "huge".
Files: src/feature.h, src/configure.in, src/auto/configure

Patch 7.4.1146
Problem: Can't build with Python 3 interface using MingW.
Solution: Update the Makefile. (Yasuhiro Matsumoto, Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.1147
Problem: Conflict for "chartab". (Kazunobu Kuriyama)
Solution: Rename the global one to something less obvious. Move it into

src/chartab.c.
Files: src/macros.h, src/globals.h, src/charset.c, src/main.c,

src/option.c, src/screen.c, src/vim.h

Patch 7.4.1148
Problem: Default for MingW and Cygwin is still "normal".
Solution: Use "huge" as default. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 7.4.1149 (after 7.4.1013)
Problem: Using the local value of 'errorformat' causes more problems than

it solves.
Solution: Revert 7.4.1013.
Files: runtime/doc/quickfix.txt, src/quickfix.c

Patch 7.4.1150
Problem: 'langmap' applies to the first character typed in Select mode.

(David Watson)
Solution: Check for SELECTMODE. (Christian Brabandt, closes #572)

Add the 'x' flag to feedkeys().
Files: src/getchar.c, src/normal.c, src/testdir/test_langmap.vim,

src/ex_docmd.c, src/proto/ex_docmd.pro, src/testdir/Make_all.mak,
runtime/doc/eval.txt

Patch 7.4.1151 (after 7.4.1150)
Problem: Missing change to eval.c
Solution: Also change feedkeys().
Files: src/eval.c

Patch 7.4.1152
Problem: Langmap test fails with normal build.
Solution: Check for +langmap feature.
Files: src/testdir/test_langmap.vim

Patch 7.4.1153
Problem: Autocommands triggered by quickfix cannot always get the current

version8.txt — 2913

title value.
Solution: Call qf_fill_buffer() later. (Christian Brabandt)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1154
Problem: No support for JSON.
Solution: Add jsonencode() and jsondecode(). Also add v:false, v:true,

v:null and v:none.
Files: src/json.c, src/eval.c, src/proto.h, src/structs.h, src/vim.h,

src/if_lua.c, src/if_mzsch.c, src/if_ruby.c, src/if_py_both.h,
src/globals.h, src/Makefile, src/Make_bc3.mak, src/Make_bc5.mak,
src/Make_cyg_ming.mak, src/Make_dice.mak, src/Make_ivc.mak,
src/Make_manx.mak, src/Make_morph.mak, src/Make_mvc.mak,
src/Make_sas.mak, src/Make_vms.mms, src/proto/json.pro,
src/proto/eval.pro, src/testdir/test_json.vim,
src/testdir/test_alot.vim, Filelist, runtime/doc/eval.txt

Patch 7.4.1155
Problem: Build with normal features fails.
Solution: Always define dict_lookup().
Files: src/eval.c

Patch 7.4.1156
Problem: Coverity warns for NULL pointer and ignoring return value.
Solution: Check for NULL pointer. When dict_add() returns FAIL free the item.
Files: src/json.c

Patch 7.4.1157
Problem: type() does not work for v:true, v:none, etc.
Solution: Add new type numbers.
Files: src/eval.c, src/testdir/test_json.vim, src/testdir/test_viml.vim

Patch 7.4.1158
Problem: Still using __ARGS().
Solution: Remove __ARGS() from eval.c
Files: src/eval.c

Patch 7.4.1159
Problem: Automatically generated function prototypes use __ARGS.
Solution: Remove __ARGS from osdef.sh.
Files: src/osdef.sh, src/osdef1.h.in, src/osdef2.h.in

Patch 7.4.1160
Problem: No error for jsondecode('"').
Solution: Give an error message for missing double quote.
Files: src/json.c

Patch 7.4.1161
Problem: ":argadd" without argument is supposed to add the current buffer

name to the arglist.
Solution: Make it work as documented. (Coot, closes #577)
Files: src/ex_cmds.h, src/ex_cmds2.c, src/testdir/test_arglist.vim

Patch 7.4.1162
Problem: Missing error number in MzScheme. (Dominique Pelle)
Solution: Add a proper error number.
Files: src/if_mzsch.c

Patch 7.4.1163
Problem: Expressions "0 + v:true" and "'' . v:true" cause an error.

version8.txt — 2914

Solution: Return something sensible when using a special variable as a
number or as a string. (suggested by Damien)

Files: src/eval.c, src/testdir/test_viml.vim

Patch 7.4.1164
Problem: No tests for comparing special variables. Error in jsondecode()

not reported. test_json does not work with Japanese system.
Solution: Set scriptencoding. (Ken Takata) Add a few more tests. Add error.
Files: src/json.c, src/testdir/test_viml.vim, src/testdir/test_json.vim

Patch 7.4.1165
Problem: When defining DYNAMIC_ICONV_DLL in the makefile, the build fails.
Solution: Add #ifdef's. (Taro Muraoka) Try the newer version first.
Files: src/mbyte.c, src/os_win32.c

Patch 7.4.1166
Problem: Can't encode a Funcref into JSON. jsonencode() doesn't handle the

same list or dict twice properly. (Nikolai Pavlov)
Solution: Give an error. Reset copyID when the list or dict is finished.
Files: src/json.c, src/proto/json.pro, src/testdir/test_json.vim

Patch 7.4.1167
Problem: No tests for "is" and "isnot" with the new variables.
Solution: Add tests.
Files: src/testdir/test_viml.vim

Patch 7.4.1168
Problem: This doesn't give the right result: eval(string(v:true)). (Nikolai

Pavlov)
Solution: Make the string "v:true" instead of "true".
Files: src/eval.c, src/testdir/test_viml.vim

Patch 7.4.1169
Problem: The socket I/O is intertwined with the netbeans code.
Solution: Start refactoring the netbeans communication to split off the

socket I/O. Add the +channel feature.
Files: src/channel.c, src/netbeans.c, src/proto/channel.pro,

src/proto/netbeans.pro, src/proto/gui_w32.pro, src/gui_w32.c,
src/eval.c, src/os_mswin.c, src/ui.c, src/macros.h, Makefile,
src/proto.h, src/feature.h, src/os_unix.c, src/vim.h,
src/configure.in, src/auto/configure, src/config.mk.in,
src/config.aap.in, src/config.h.in, src/Make_bc5.mak,
src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 7.4.1170 (after 7.4.1169)
Problem: Missing changes in src/Makefile, Filelist.
Solution: Add the missing changes.
Files: Filelist, src/Makefile

Patch 7.4.1171
Problem: Makefile dependencies are outdated.
Solution: Run "make depend". Add GTK resource dependencies.
Files: src/Makefile

Patch 7.4.1172 (after 7.4.1169)
Problem: Configure is overly positive.
Solution: Insert "test".
Files: src/configure.in, src/auto/configure

Patch 7.4.1173 (after 7.4.1168)

version8.txt — 2915

Problem: No test for new behavior of v:true et al.
Solution: Add a test.
Files: src/testdir/test_viml.vim

Patch 7.4.1174
Problem: Netbeans contains dead code inside #ifndef INIT_SOCKETS.
Solution: Remove the dead code.
Files: src/netbeans.c

Patch 7.4.1175 (after 7.4.1169)
Problem: Can't build with Mingw and Cygwin.
Solution: Remove extra "endif". (Christian J. Robinson)
Files: src/Make_cyg_ming.mak

Patch 7.4.1176
Problem: Missing change to proto file.
Solution: Update the proto file. (Charles Cooper)
Files: src/proto/gui_w32.pro

Patch 7.4.1177
Problem: The +channel feature is not in :version output. (Tony Mechelynck)
Solution: Add the feature string.
Files: src/version.c

Patch 7.4.1178
Problem: empty() doesn't work for the new special variables.
Solution: Make empty() work. (Damien)
Files: src/eval.c, src/testdir/test_viml.vim

Patch 7.4.1179
Problem: test_writefile and test_viml do not delete the tempfile.
Solution: Delete the tempfile. (Charles Cooper) Add DeleteTheScript().
Files: src/testdir/test_writefile.in, src/testdir/test_viml.vim

Patch 7.4.1180
Problem: Crash with invalid argument to glob2regpat().
Solution: Check for NULL. (Justin M. Keyes, closes #596) Add a test.
Files: src/eval.c, src/testdir/test_glob2regpat.vim,

src/testdir/test_alot.vim

Patch 7.4.1181
Problem: free_tv() can't handle special variables. (Damien)
Solution: Add the variable type.
Files: src/eval.c, src/testdir/test_viml.vim

Patch 7.4.1182
Problem: Still socket code intertwined with netbeans.
Solution: Move code from netbeans.c to channel.c
Files: src/channel.c, src/netbeans.c, src/proto/channel.pro,

src/proto/netbeans.pro, src/gui.c, src/gui_w48.c

Patch 7.4.1183 (after 7.4.1182)
Problem: MS-Windows build is broken.
Solution: Remove init in wrong place.
Files: src/channel.c

Patch 7.4.1184 (after 7.4.1182)
Problem: MS-Windows build is still broken.
Solution: Change nbsock to ch_fd.
Files: src/channel.c

version8.txt — 2916

Patch 7.4.1185
Problem: Can't build with TCL on some systems.
Solution: Rename the channel_ functions.
Files: src/if_tcl.c

Patch 7.4.1186
Problem: Error messages for security context are hard to translate.
Solution: Use one string with %s. (Ken Takata)
Files: src/os_unix.c

Patch 7.4.1187
Problem: MS-Windows channel code only supports one channel. Doesn't build

without netbeans support.
Solution: Get the channel index from the socket in the message. Closes #600.
Files: src/channel.c, src/netbeans.c, src/gui_w48.c,

src/proto/channel.pro, src/proto/netbeans.pro

Patch 7.4.1188
Problem: Using older JSON standard.
Solution: Update the link. Adjust the text a bit.
Files: src/json.c, runtime/doc/eval.txt

Patch 7.4.1189 (after 7.4.1165)
Problem: Using another language on MS-Windows does not work. (Yongwei Wu)
Solution: Undo the change to try loading libintl-8.dll first.
Files: src/os_win32.c

Patch 7.4.1190
Problem: On OSX the default flag for dlopen() is different.
Solution: Add RTLD_LOCAL in the configure check. (sv99, closes #604)
Files: src/configure.in, src/auto/configure

Patch 7.4.1191
Problem: The channel feature isn't working yet.
Solution: Add the connect(), disconnect(), sendexpr() and sendraw()

functions. Add initial documentation. Add a demo server.
Files: src/channel.c, src/eval.c, src/proto/channel.pro,

src/proto/eval.pro, runtime/doc/channel.txt, runtime/doc/eval.txt,
runtime/doc/Makefile, runtime/tools/demoserver.py

Patch 7.4.1192
Problem: Can't build with FEAT_EVAL but without FEAT_MBYTE. (John

Marriott)
Solution: Add #ifdef for FEAT_MBYTE.
Files: src/json.c

Patch 7.4.1193
Problem: Can't build the channel feature on MS-Windows.
Solution: Add #ifdef HAVE_POLL.
Files: src/channel.c

Patch 7.4.1194
Problem: Compiler warning for not using return value of fwrite().
Solution: Return OK/FAIL. (Charles Campbell)
Files: src/channel.c, src/proto/channel.pro

Patch 7.4.1195
Problem: The channel feature does not work in the MS-Windows console.
Solution: Add win32 console support. (Yasuhiro Matsumoto)

version8.txt — 2917

Files: src/channel.c, src/gui_w32.c, src/os_mswin.c, src/os_win32.c,
src/proto/gui_w32.pro, src/proto/os_mswin.pro, src/vim.h

Patch 7.4.1196
Problem: Still using __ARGS.
Solution: Remove __ARGS in several files. (script by Hirohito Higashi)
Files: src/arabic.c, src/buffer.c, src/charset.c, src/crypt_zip.c,

src/diff.c, src/digraph.c, src/edit.c, src/ex_cmds.c,
src/ex_cmds2.c, src/ex_docmd.c

Patch 7.4.1197
Problem: Still using __ARGS.
Solution: Remove __ARGS in several files. (script by Hirohito Higashi)
Files: src/ex_eval.c, src/ex_getln.c, src/farsi.c, src/fileio.c,

src/fold.c, src/getchar.c, src/gui.c, src/gui_at_fs.c,
src/gui_at_sb.c, src/gui_athena.c, src/gui_beval.c,
src/gui_motif.c, src/gui_w32.c, src/gui_w48.c

Patch 7.4.1198
Problem: Still using __ARGS.
Solution: Remove __ARGS in several files. (script by Hirohito Higashi)

Also remove use of HAVE_STDARG_H.
Files: src/gui_x11.c, src/hangulin.c, src/hardcopy.c, src/hashtab.c,

src/if_cscope.c, src/if_python3.c, src/if_sniff.c,
src/if_xcmdsrv.c, src/main.c, src/mark.c, src/mbyte.c,
src/memfile.c, src/memfile_test.c, src/memline.c, src/menu.c,
src/message.c, src/misc1.c, src/misc2.c, src/move.c,
src/netbeans.c, src/normal.c

Patch 7.4.1199
Problem: Still using __ARGS.
Solution: Remove __ARGS in several files. (script by Hirohito Higashi)
Files: src/ops.c, src/option.c, src/os_amiga.c, src/os_mac_conv.c,

src/os_unix.c, src/os_vms.c, src/os_w32exe.c, src/popupmnu.c,
src/pty.c, src/quickfix.c, src/regexp.c, src/regexp_nfa.c,
src/screen.c, src/search.c, src/sha256.c, src/spell.c,
src/syntax.c, src/tag.c, src/term.c, src/termlib.c, src/ui.c,
src/undo.c, src/version.c, src/window.c

Patch 7.4.1200
Problem: Still using __ARGS.
Solution: Remove __ARGS in several files. (script by Hirohito Higashi)
Files: src/blowfish.c, src/ex_cmds2.c, src/ex_getln.c, src/fold.c,

src/gui_beval.c, src/gui_w32.c, src/os_unix.c, src/os_win16.c,
src/pty.c, src/regexp.c, src/syntax.c, src/xpm_w32.c,
src/ex_cmds.h, src/globals.h, src/gui_at_sb.h, src/gui_beval.h,
src/if_cscope.h, src/if_sniff.h, src/nbdebug.h, src/os_unix.h,
src/proto.h, src/structs.h, src/vim.h, src/xpm_w32.h,
src/if_perl.xs, src/proto/if_lua.pro, src/proto/pty.pro,
runtime/tools/xcmdsrv_client.c,
src/Makefile

Patch 7.4.1201
Problem: One more file still using __ARGS.
Solution: Remove __ARGS in the last file. (script by Hirohito Higashi)
Files: src/gui_at_sb.c

Patch 7.4.1202
Problem: Still one more file still using __ARGS.
Solution: Remove __ARGS in the last file. (script by Hirohito Higashi)

version8.txt — 2918

(closes #612)
Files: src/proto/os_mac_conv.pro, src/os_mac_conv.c, src/Makefile

Patch 7.4.1203
Problem: Still more files still using __ARGS.
Solution: Remove __ARGS in really the last files.
Files: src/proto/if_mzsch.pro, src/if_mzsch.c, src/vim.h,

src/proto/gui_gtk_gresources.pro, src/proto/gui_mac.pro,
src/proto/if_ole.pro, src/proto/os_qnx.pro, src/Makefile

Patch 7.4.1204
Problem: Latin1 characters cause encoding conversion.
Solution: Remove the characters.
Files: src/gui_motif.c

Patch 7.4.1205
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/arabic.c, src/blowfish.c, src/buffer.c, src/channel.c,

src/charset.c, src/crypt.c, src/crypt_zip.c, src/diff.c,
src/digraph.c, src/edit.c, src/eval.c

Patch 7.4.1206
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,

src/ex_getln.c, src/farsi.c, src/fileio.c

Patch 7.4.1207
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/fold.c, src/getchar.c, src/gui_at_fs.c, src/gui_athena.c,

src/gui_at_sb.c, src/gui_beval.c, src/gui.c, src/gui_gtk.c,
src/gui_gtk_x11.c, src/gui_mac.c, src/gui_motif.c

Patch 7.4.1208
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/gui_photon.c, src/gui_w32.c, src/gui_w48.c, src/gui_x11.c,

src/hangulin.c, src/hardcopy.c, src/hashtab.c, src/if_cscope.c,
src/if_mzsch.c, src/if_perlsfio.c, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/if_sniff.c, src/if_tcl.c,
src/if_xcmdsrv.c, src/integration.c

Patch 7.4.1209 (after 7.4.1207)
Problem: Can't build with Athena. (Elimar Riesebieter)
Solution: Fix function declarations.
Files: src/gui_athena.c, src/gui_x11.c, src/gui_at_sb.c, src/gui_at_fs.c

Patch 7.4.1210
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/main.c, src/mark.c, src/mbyte.c, src/memfile.c,

src/memfile_test.c, src/memline.c, src/menu.c, src/message.c

version8.txt — 2919

Patch 7.4.1211
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/misc1.c, src/misc2.c, src/move.c, src/netbeans.c,

src/normal.c, src/ops.c, src/option.c

Patch 7.4.1212 (after 7.4.1207)
Problem: Can't build with Motif.
Solution: Fix function declaration.(Dominique Pelle)
Files: src/gui_motif.c

Patch 7.4.1213
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/os_amiga.c, src/os_mac_conv.c, src/os_msdos.d, src/os_mswin.c,

src/os_qnx.c, src/os_unix.c, src/os_vms.c, src/os_win16.c,
src/os_win32.c, src/popupmnu.c, src/pty.c, src/quickfix.c,
src/regexp.c, src/regexp_nfa.c, src/screen.c

Patch 7.4.1214
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/search.c, src/sha256.c, src/spell.c, src/syntax.c, src/tag.c,

src/term.c, src/termlib.c, src/ui.c, src/undo.c

Patch 7.4.1215
Problem: Using old style function declarations.
Solution: Change to new style function declarations. (script by Hirohito

Higashi)
Files: src/version.c, src/winclip.c, src/window.c, src/workshop.c,

src/xpm_w32.c, runtime/doc/doctags.c,
runtime/tools/xcmdsrv_client.c, src/po/sjiscorr.c, src/xxd/xxd.c

Patch 7.4.1216
Problem: Still using HAVE_STDARG_H.
Solution: Assume it's always defined.
Files: src/eval.c, src/misc2.c, src/vim.h, src/proto.h, src/configure.in,

src/auto/configure, config.h.in, src/os_amiga.h, src/os_msdos.h,
src/os_vms_conf.h, src/os_win32.h

Patch 7.4.1217
Problem: Execution of command on channel doesn't work yet.
Solution: Implement the "ex" and "normal" commands.
Files: src/channel.c, src/proto/channel.pro, src/misc2.c, src/eval.c,

src/ex_docmd.c, src/proto/ex_docmd.pro, src/feature.h

Patch 7.4.1218
Problem: Missing change in configure. More changes for function style.
Solution: Avoid the typos.
Files: src/configure.in, src/config.h.in, runtime/tools/ccfilter.c,

src/os_msdos.c

Patch 7.4.1219
Problem: Build fails with +channel but without +float.
Solution: Add #ifdef.
Files: src/ex_cmds.c

version8.txt — 2920

Patch 7.4.1220
Problem: Warnings for unused variables in tiny build. (Tony Mechelynck)
Solution: Move declarations inside #ifdef. (Hirohito Higashi)
Files: src/ex_cmds.c

Patch 7.4.1221
Problem: Including netbeans and channel support in small and tiny builds.

Build fails with some interfaces.
Solution: Only include these features in small build and above. Let

configure fail if trying to enable an interface that won't build.
Files: src/configure.in, src/auto/configure

Patch 7.4.1222
Problem: ":normal" command and others missing in tiny build.
Solution: Graduate FEAT_EX_EXTRA.
Files: src/feature.h, src/charset.c, src/eval.c, src/ex_cmds.c,

src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/getchar.c,
src/normal.c, src/ui.c, src/version.c, src/globals.h

Patch 7.4.1223
Problem: Crash when setting v:errors to a number.
Solution: Free the typval without assuming its type. (Yasuhiro Matsumoto)
Files: src/eval.c, src/testdir/test_assert.vim

Patch 7.4.1224
Problem: Build problems with GTK on BSD. (Mike Williams)
Solution: Don't use "$<". Skip building gui_gtk_gresources.h when it doesn't

work. (Kazunobu Kuriyama)
Files: src/Makefile

Patch 7.4.1225
Problem: Still a few old style function declarations.
Solution: Make them new style. (Hirohito Higashi)
Files: runtime/tools/blink.c, src/eval.c, src/ex_cmds2.c, src/ex_getln.c,

src/fileio.c, src/gui_w32.c, src/gui_x11.c, src/if_perl.xs,
src/os_unix.c, src/po/sjiscorr.c, src/pty.c

Patch 7.4.1226
Problem: GRESOURCE_HDR is unused.
Solution: Remove it. (Kazunobu Kuriyama)
Files: src/configure.in, src/auto/configure, src/config.mk.in

Patch 7.4.1227
Problem: Compiler warnings.
Solution: Add UNUSED. Add type cast. (Yegappan Lakshmanan)
Files: src/getchar.c, src/os_macosx.m

Patch 7.4.1228
Problem: copy() and deepcopy() fail with special variables. (Nikolai

Pavlov)
Solution: Make it work. Add a test. Closes #614.
Files: src/eval.c, src/testdir/test_viml.vim

Patch 7.4.1229
Problem: "eval" and "expr" channel commands don't work yet.
Solution: Implement them. Update the error numbers. Also add "redraw".
Files: src/channel.c, src/eval.c, src/json.c, src/ex_docmd.c,

src/proto/channel.pro, src/proto/json.pro, src/proto/ex_docmd.pro,
runtime/doc/channel.txt

version8.txt — 2921

Patch 7.4.1230
Problem: Win32: opening a channel may hang. Not checking for messages

while waiting for characters.
Solution: Add a zero timeout. Call parse_queued_messages(). (Yasuhiro

Matsumoto)
Files: src/os_win32.c

Patch 7.4.1231
Problem: JSON messages are not parsed properly.
Solution: Queue received messages.
Files: src/eval.c src/channel.c, src/json.c, src/proto/eval.pro,

src/proto/channel.pro, src/proto/json.pro, src/structs.h

Patch 7.4.1232
Problem: Compiler warnings when the Sniff feature is enabled.
Solution: Add UNUSED.
Files: src/gui_gtk_x11.c

Patch 7.4.1233
Problem: Channel command may cause a crash.
Solution: Check for NULL argument. (Damien)
Files: src/channel.c

Patch 7.4.1234
Problem: Demo server only runs with Python 2.
Solution: Make it run with Python 3 as well. (Ken Takata)
Files: runtime/tools/demoserver.py

Patch 7.4.1235 (after 7.4.1231)
Problem: Missing change to eval.c.
Solution: Include that change.
Files: src/eval.c

Patch 7.4.1236
Problem: When "syntax manual" was used switching between buffers removes

the highlighting.
Solution: Set the syntax option without changing the value. (Anton

Lindqvist)
Files: runtime/syntax/manual.vim

Patch 7.4.1237
Problem: Can't translate message without adding a line break.
Solution: Join the two parts of the message.
Files: src/memline.c

Patch 7.4.1238
Problem: Can't handle two messages right after each other.
Solution: Find the end of the JSON. Read more when incomplete. Add a C

test for the JSON decoding.
Files: src/channel.c, src/json.c, src/proto/json.pro, src/eval.c,

src/Makefile, src/json_test.c, src/memfile_test.c, src/structs.h

Patch 7.4.1239
Problem: JSON message after the first one is dropped.
Solution: Put remainder of message back in the queue.
Files: src/channel.c

Patch 7.4.1240
Problem: Visual Studio tools are noisy.
Solution: Suppress startup info. (Mike Williams)

version8.txt — 2922

Files: src/GvimExt/Makefile, src/Make_mvc.mak, src/tee/Make_mvc.mak

Patch 7.4.1241 (after 7.4.1238)
Problem: Missing change in Makefile due to diff mismatch
Solution: Update the list of object files.
Files: src/Makefile

Patch 7.4.1242 (after 7.4.1238)
Problem: json_test fails without the eval feature.
Solution: Add #ifdef.
Files: src/json_test.c

Patch 7.4.1243
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it. (Elias Diem)
Files: src/json.c

Patch 7.4.1244
Problem: The channel functions don't sort together.
Solution: Use a common "ch_" prefix.
Files: src/eval.c, runtime/doc/eval.txt, runtime/tools/demoserver.py

Patch 7.4.1245
Problem: File missing from distribution.
Solution: Add json_test.c.
Files: Filelist

Patch 7.4.1246
Problem: The channel functionality isn't tested.
Solution: Add a test using a Python test server.
Files: src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, src/testdir/test_channel.py,
src/testdir/Make_all.mak

Patch 7.4.1247
Problem: The channel test doesn't run on MS-Windows.
Solution: Make it work on the MS-Windows console. (Ken Takata)
Files: src/testdir/test_channel.py, src/testdir/test_channel.vim

Patch 7.4.1248
Problem: Can't reliably stop the channel test server. Can't start the

server if the python file is not executable.
Solution: Use "pkill" instead of "killall". Run the python file as an

argument instead of as an executable.
Files: src/testdir/test_channel.vim

Patch 7.4.1249
Problem: Crash when the process a channel is connected to exits.
Solution: Use the file descriptor properly. Add a test. (Damien)

Also add a test for eval().
Files: src/channel.c, src/testdir/test_channel.py,

src/testdir/test_channel.vim

Patch 7.4.1250
Problem: Running tests in shadow directory fails.
Solution: Also link testdir/*.py
Files: src/Makefile

Patch 7.4.1251
Problem: New test file missing from distribution.

version8.txt — 2923

Solution: Add src/testdir/*.py.
Files: Filelist

Patch 7.4.1252
Problem: The channel test server may receive two messages concatenated.
Solution: Split the messages.
Files: src/testdir/test_channel.py

Patch 7.4.1253
Problem: Python test server not displaying second of two commands.

Solaris doesn't have "pkill --full".
Solution: Also echo the second command. Use "pkill -f".
Files: src/testdir/test_channel.py, src/testdir/test_channel.vim

Patch 7.4.1254
Problem: Opening a second channel causes a crash. (Ken Takata)
Solution: Don't re-allocate the array with channels.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel.py

Patch 7.4.1255
Problem: Crash for channel "eval" command without third argument.
Solution: Check for missing argument.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel.py

Patch 7.4.1256
Problem: On Mac sys.exit(0) doesn't kill the test server.
Solution: Use self.server.shutdown(). (Jun Takimoto)
Files: src/testdir/test_channel.py

Patch 7.4.1257
Problem: Channel test fails in some configurations.
Solution: Add check for the +channel feature.
Files: src/testdir/test_channel.vim

Patch 7.4.1258
Problem: The channel test can fail if messages arrive later.
Solution: Add a short sleep. (Jun Takimoto)
Files: src/testdir/test_channel.vim

Patch 7.4.1259
Problem: No test for what patch 7.3.414 fixed.
Solution: Add a test. (Elias Diem)
Files: src/testdir/test_increment.vim

Patch 7.4.1260
Problem: The channel feature doesn't work on Win32 GUI.
Solution: Use WSAGetLastError(). (Ken Takata)
Files: src/channel.c, src/testdir/test_channel.vim, src/vim.h

Patch 7.4.1261
Problem: Pending channel messages are garbage collected. Leaking memory in

ch_sendexpr(). Leaking memory for a decoded JSON string.
Solution: Mark the message list as used. Free the encoded JSON. Don't save

the JSON string.
Files: src/eval.c, src/channel.c, src/json.c, src/proto/channel.pro

Patch 7.4.1262
Problem: The channel callback is not invoked.

version8.txt — 2924

Solution: Make a list of pending callbacks.
Files: src/eval.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim

Patch 7.4.1263
Problem: ch_open() hangs when the server isn't running.
Solution: Add a timeout. Use a dict to pass arguments. (Yasuhiro Matsumoto)
Files: runtime/doc/eval.txt, runtime/doc/channel.txt, src/channel.c,

src/eval.c, src/netbeans.c, src/os_win32.c, src/proto/channel.pro,
src/testdir/test_channel.vim

Patch 7.4.1264
Problem: Crash when receiving an empty array.
Solution: Check for array with wrong number of arguments. (Damien)
Files: src/channel.c, src/eval.c, src/testdir/test_channel.py,

src/testdir/test_channel.vim

Patch 7.4.1265
Problem: Not all channel commands are tested.
Solution: Add a test for "normal", "expr" and "redraw".
Files: src/testdir/test_channel.py, src/testdir/test_channel.vim

Patch 7.4.1266
Problem: A BufAdd autocommand may cause an ml_get error (Christian

Brabandt)
Solution: Increment RedrawingDisabled earlier.
Files: src/ex_cmds.c

Patch 7.4.1267
Problem: Easy to miss handling all types of variables.
Solution: Change the variable type into an enum.
Files: src/structs.h, src/eval.c

Patch 7.4.1268
Problem: Waittime is used as seconds instead of milliseconds. (Hirohito

Higashi)
Solution: Divide by 1000.
Files: src/channel.c

Patch 7.4.1269
Problem: Encoding {'key':v:none} to JSON doesn't give an error (Tyru)
Solution: Give an error.
Files: src/json.c, src/testdir/test_json.vim

Patch 7.4.1270
Problem: Warnings for missing values in switch.
Solution: Change switch to if-else or add values.
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 7.4.1271
Problem: assert_false(v:false) reports an error. (Nikolai Pavlov)
Solution: Recognize v:true and v:false. (Closes #625)
Files: src/eval.c, src/testdir/test_assert.vim

Patch 7.4.1272 (after 7.4.1270)
Problem: Using future enum value.
Solution: Remove it.
Files: src/if_python.c, src/if_python3.c

Patch 7.4.1273 (after 7.4.1271)

version8.txt — 2925

Problem: assert_false(v:false) still fails.
Solution: Fix the typo.
Files: src/eval.c

Patch 7.4.1274
Problem: Cannot run a job.
Solution: Add job_start(), job_status() and job_stop(). Currently only works

for Unix.
Files: src/eval.c, src/structs.h, runtime/doc/eval.txt, src/os_unix.c,

src/proto/os_unix.pro, src/feature.h, src/version.c,
src/testdir/test_channel.vim

Patch 7.4.1275 (after 7.4.1274)
Problem: Build fails on MS-Windows.
Solution: Fix wrong #ifdef.
Files: src/eval.c

Patch 7.4.1276
Problem: Warning for not using return value of fcntl().
Solution: Explicitly ignore the return value.
Files: src/fileio.c, src/channel.c, src/memfile.c, src/memline.c

Patch 7.4.1277
Problem: Compiler can complain about missing enum value in switch with some

combination of features.
Solution: Remove #ifdefs around case statements.
Files: src/eval.c

Patch 7.4.1278
Problem: When jsonencode() fails it still returns something.
Solution: Return an empty string on failure.
Files: src/json.c, src/channel.c, src/testdir/test_json.vim,

src/testdir/test_channel.vim, src/testdir/test_channel.py

Patch 7.4.1279
Problem: jsonencode() is not producing strict JSON.
Solution: Add jsencode() and jsdecode(). Make jsonencode() and jsondecode()

strict.
Files: src/json.c, src/json_test.c, src/proto/json.pro, src/channel.c,

src/proto/channel.pro, src/eval.c, src/vim.h, src/structs.h,
runtime/doc/eval.txt, runtime/doc/channel.txt,
src/testdir/test_json.vim

Patch 7.4.1280
Problem: Missing case value.
Solution: Add VAR_JOB.
Files: src/if_python.c, src/if_python3.c

Patch 7.4.1281
Problem: No test for skipping over code that isn't evaluated.
Solution: Add a test with code that would fail when not skipped.
Files: src/testdir/test_viml.vim

Patch 7.4.1282
Problem: Crash when evaluating the pattern of ":catch" causes an error.

(Dominique Pelle)
Solution: Block error messages at this point.
Files: src/ex_eval.c

Patch 7.4.1283

version8.txt — 2926

Problem: The job feature isn't available on MS-Windows.
Solution: Add the job feature. Fix argument of job_stop(). (Yasuhiro

Matsumoto)
Files: src/eval.c, src/feature.h, src/os_win32.c, src/proto/os_win32.pro

Patch 7.4.1284 (after 7.4.1282)
Problem: Test 49 fails.
Solution: Check for a different error message.
Files: src/testdir/test49.vim

Patch 7.4.1285
Problem: Cannot measure elapsed time.
Solution: Add reltimefloat().
Files: src/ex_cmds2.c, src/eval.c, src/proto/ex_cmds2.pro,

src/testdir/test_reltime.vim, src/testdir/test_alot.vim

Patch 7.4.1286
Problem: ch_open() with a timeout doesn't work correctly.
Solution: Change how select() is used. Don't give an error on timeout.

Add a test for ch_open() failing.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1287 (after 7.4.1286)
Problem: Channel test fails.
Solution: Use reltimefloat().
Files: src/testdir/test_channel.vim

Patch 7.4.1288
Problem: ch_sendexpr() does not use JS encoding.
Solution: Use the encoding that fits the channel mode. Refuse using

ch_sendexpr() on a raw channel.
Files: src/channel.c, src/proto/channel.pro, src/eval.c

Patch 7.4.1289
Problem: Channel test fails on MS-Windows, connect() takes too long.
Solution: Adjust the test for MS-Windows using "waittime".
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1290
Problem: Coverity complains about unnecessary check for NULL.
Solution: Remove the check.
Files: src/eval.c

Patch 7.4.1291
Problem: On MS-Windows the channel test server doesn't quit.
Solution: Use return instead of break. (Ken Takata)
Files: src/testdir/test_channel.py

Patch 7.4.1292
Problem: Some compilers complain about uninitialized variable, even though

all possible cases are handled. (Dominique Pelle)
Solution: Add a default initialization.
Files: src/eval.c

Patch 7.4.1293
Problem: Sometimes a channel may hang waiting for a message that was

already discarded. (Ken Takata)
Solution: Store the ID of the message blocking on in the channel.
Files: src/channel.c

version8.txt — 2927

Patch 7.4.1294
Problem: job_stop() only kills the started process.
Solution: Send the signal to the process group. (Olaf Dabrunz)
Files: src/os_unix.c

Patch 7.4.1295
Problem: string(job) doesn't work well on MS-Windows.
Solution: Use the process ID. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.1296
Problem: Cursor changes column with up motion when the matchparen plugin

saves and restores the cursor position. (Martin Kunev)
Solution: Make sure curswant is updated before invoking the autocommand.
Files: src/edit.c

Patch 7.4.1297
Problem: On Mac test_channel leaves python instances running.
Solution: Use a small waittime to make ch_open() work. (Ozaki Kiichi)
Files: src/testdir/test_channel.vim

Patch 7.4.1298
Problem: When the channel test fails in an unexpected way the server keeps

running.
Solution: Use try/catch. (Ozaki Kiichi)
Files: src/testdir/test_channel.vim

Patch 7.4.1299
Problem: When the server sends a message with ID zero the channel handler

is not invoked. (Christian J. Robinson)
Solution: Recognize zero value for the request ID. Add a test for invoking

the channel handler.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel.py

Patch 7.4.1300
Problem: Cannot test CursorMovedI because there is typeahead.
Solution: Add disable_char_avail_for_testing().
Files: src/eval.c, src/getchar.c, src/globals.h,

src/testdir/test_cursor_func.vim, src/testdir/README.txt

Patch 7.4.1301
Problem: Missing options in ch_open().
Solution: Add s:chopt like in the other calls. (Ozaki Kiichi)
Files: src/testdir/test_channel.vim

Patch 7.4.1302
Problem: Typo in struct field name. (Ken Takata)
Solution: Rename jf_pi to jv_pi.
Files: src/eval.c, src/os_win32.c, src/structs.h

Patch 7.4.1303
Problem: A Funcref is not accepted as a callback.
Solution: Make a Funcref work. (Damien)
Files: src/eval.c, src/testdir/test_channel.vim

Patch 7.4.1304
Problem: Function names are difficult to read.
Solution: Rename jsonencode to json_encode, jsondecode to json_decode,

jsencode to js_encode and jsdecode to js_decode.

version8.txt — 2928

Files: src/eval.c, runtime/doc/eval.txt, src/testdir/test_json.vim

Patch 7.4.1305
Problem: "\%1l^#.*" does not match on a line starting with "#".
Solution: Do not clear the start-of-line flag. (Christian Brabandt)
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test36.in,

src/testdir/test36.ok

Patch 7.4.1306
Problem: Job control doesn't work well on MS-Windows.
Solution: Various fixes. (Ken Takata, Ozaki Kiichi, Yukihiro Nakadaira,

Yasuhiro Matsumoto)
Files: src/Make_mvc.mak, src/eval.c, src/os_unix.c, src/os_win32.c,

src/proto/os_unix.pro, src/proto/os_win32.pro, src/structs.h

Patch 7.4.1307
Problem: Some channel tests fail on MS-Windows.
Solution: Disable the failing tests temporarily.
Files: src/testdir/test_channel.vim

Patch 7.4.1308 (after 7.4.1307)
Problem: Typo in test.
Solution: Change endf to endif.
Files: src/testdir/test_channel.vim

Patch 7.4.1309
Problem: When a test fails not all relevant info is listed.
Solution: Add the errors to the messages.
Files: src/testdir/runtest.vim

Patch 7.4.1310
Problem: Jobs don't open a channel.
Solution: Create pipes and add them to the channel. Add ch_logfile().

Only Unix for now.
Files: src/channel.c, src/eval.c, src/os_unix.c, src/structs.h,

src/gui_w48.c, src/proto/channel.pro, src/testdir/test_channel.vim,
src/testdir/test_channel_pipe.py, runtime/doc/eval.txt

Patch 7.4.1311 (after 7.4.1310)
Problem: sock_T is defined too late.
Solution: Move it up.
Files: src/vim.h

Patch 7.4.1312 (after 7.4.1311)
Problem: sock_T is not defined without the +channel feature.
Solution: Always define it.
Files: src/vim.h

Patch 7.4.1313
Problem: MS-Windows: Using socket after it was closed causes an exception.
Solution: Don't give an error when handling WM_NETBEANS. Re-enable tests

for MS-Windows.
Files: src/gui_w48.c, src/testdir/test_channel.vim

Patch 7.4.1314
Problem: Warning for uninitialized variable.
Solution: Initialize it. (Dominique Pelle)
Files: src/channel.c

Patch 7.4.1315

version8.txt — 2929

Problem: Using a channel handle does not allow for freeing it when unused.
Solution: Add the Channel variable type.
Files: src/structs.h, src/channel.c, src/misc2.c, src/eval.c,

src/if_python.c, src/if_python3.c, src/json.c, src/gui_w48.c,
src/netbeans.c, src/proto/channel.pro, src/os_unix.c,
src/testdir/test_channel.py, src/testdir/test_channel.vim

Patch 7.4.1316
Problem: Can't build MS-Windows console version. (Tux)
Solution: Add #ifdefs.
Files: src/eval.c

Patch 7.4.1317
Problem: MS-Windows: channel test fails.
Solution: Temporarily disable Test_connect_waittime().
Files: src/testdir/test_channel.vim

Patch 7.4.1318
Problem: Channel with pipes doesn't work in GUI.
Solution: Register input handlers for pipes.
Files: src/structs.h, src/feature.h, src/channel.c, src/eval.c,

src/os_unix.c, src/os_win32.c, src/gui_w48.c, src/proto/channel.pro

Patch 7.4.1319 (after 7.4.1318)
Problem: Tests fail on MS-Windows and on Unix with GUI.
Solution: Fix unregistering.
Files: src/structs.h, src/channel.c, src/os_unix.c, src/os_win32.c,

src/proto/channel.pro

Patch 7.4.1320
Problem: Building with Cygwin or MingW with channel but without Netbeans

doesn't work.
Solution: Set NETBEANS to "no" when not used.
Files: src/Make_cyg_ming.mak

Patch 7.4.1321
Problem: Compiler complains about missing statement.
Solution: Add an empty statement. (Andrei Olsen)
Files: src/os_win32.c

Patch 7.4.1322
Problem: Crash when unletting the variable that holds the channel in a

callback function. (Christian Robinson)
Solution: Increase the reference count while invoking the callback.
Files: src/eval.c, src/channel.c, src/proto/eval.pro,

src/testdir/test_channel.vim

Patch 7.4.1323
Problem: Do not get warnings when building with MingW.
Solution: Remove the -w flag. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.1324
Problem: Channels with pipes don't work on MS-Windows.
Solution: Add pipe I/O support. (Yasuhiro Matsumoto)
Files: src/channel.c, src/os_win32.c, src/proto/channel.pro,

src/structs.h, src/vim.h, src/testdir/test_channel.vim

Patch 7.4.1325
Problem: Channel test fails on difference between Unix and DOS line endings.

version8.txt — 2930

Solution: Strip off CR. Make assert show difference better.
Files: src/eval.c, src/channel.c

Patch 7.4.1326
Problem: Build rules are bit too complicated.
Solution: Remove -lwsock32 from Netbeans, it's already added for the channel

feature that it depends on. (Tony Mechelynck)
Files: src/Make_cyg_ming.mak

Patch 7.4.1327
Problem: Channel test doesn't work if Python executable is python.exe.
Solution: Find py.exe or python.exe. (Ken Takata)
Files: src/testdir/test_channel.vim

Patch 7.4.1328
Problem: Can't compile with +job but without +channel. (John Marriott)
Solution: Add more #ifdefs.
Files: src/os_unix.c

Patch 7.4.1329
Problem: Crash when using channel that failed to open.
Solution: Check for NULL. Update messages. (Yukihiro Nakadaira)
Files: src/channel.c, src/eval.c, src/testdir/test_channel.vim

Patch 7.4.1330
Problem: fd_read() has an unused argument.
Solution: Remove the timeout. (Yasuhiro Matsumoto)
Files: src/channel.c

Patch 7.4.1331
Problem: Crash when closing the channel in a callback. (Christian J.

Robinson)
Solution: Take the callback out of the list before invoking it.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1332
Problem: Problem using Python3 when compiled with MingW.
Solution: Define PYTHON3_HOME as a wide character string. (Yasuhiro

Matsumoto)
Files: src/Make_cyg_ming.mak

Patch 7.4.1333
Problem: Channel test fails on non-darwin builds.
Solution: Add the "osx" feature and test for that. (Kazunobu Kuriyama)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_channel.vim

Patch 7.4.1334
Problem: Many compiler warnings with MingW.
Solution: Add type casts. (Yasuhiro Matsumoto)
Files: src/channel.c, src/dosinst.h, src/eval.c, src/ex_cmds2.c,

src/ex_getln.c, src/fileio.c, src/if_cscope.c, src/if_perl.xs,
src/if_python.c, src/if_python3.c, src/if_ruby.c, src/main.c,
src/mbyte.c, src/misc1.c, src/option.c, src/os_mswin.c,
src/os_win32.c

Patch 7.4.1335
Problem: Can't build on MS-Windows with +job but without +channel. (Cesar

Romani)
Solution: Add #ifdefs. (Yasuhiro Matsumoto)
Files: src/os_win32.c

version8.txt — 2931

Patch 7.4.1336
Problem: Channel NL mode is not supported yet.
Solution: Add NL mode support to channels.
Files: src/channel.c, src/netbeans.c, src/structs.h, src/os_win32.c,

src/proto/channel.pro, src/proto/os_unix.pro,
src/proto/os_win32.pro, src/testdir/test_channel.vim,
src/testdir/test_channel_pipe.py

Patch 7.4.1337 (after 7.4.1336)
Problem: Part of the change is missing.
Solution: Add changes to eval.c
Files: src/eval.c

Patch 7.4.1338 (after 7.4.1336)
Problem: Another part of the change is missing.
Solution: Type os_unix.c right this time.
Files: src/os_unix.c

Patch 7.4.1339
Problem: Warnings when building the GUI with MingW. (Cesar Romani)
Solution: Add type casts. (Yasuhiro Matsumoto)
Files: src/edit.c, src/gui_w32.c, src/gui_w48.c, src/os_mswin.c,

src/os_win32.c

Patch 7.4.1340 (after 7.4.1339)
Problem: Merge left extra #endif behind.
Solution: Remove the #endif
Files: src/os_win32.c

Patch 7.4.1341
Problem: It's difficult to add more arguments to ch_sendraw() and

ch_sendexpr().
Solution: Make the third option a dictionary.
Files: src/eval.c, src/structs.h, src/channel.c, src/os_unix.c,

src/os_win32.c, src/proto/channel.pro,
src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 7.4.1342
Problem: On Mac OS/X the waittime must be > 0 for connect to work.
Solution: Use select() in a different way. (partly by Kazunobu Kuriyama)

Always use a waittime of 1 or more.
Files: src/eval.c, src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1343
Problem: Can't compile with +job but without +channel. (Andrei Olsen)
Solution: Move get_job_options up and adjust #ifdef.
Files: src/eval.c

Patch 7.4.1344
Problem: Can't compile Win32 GUI with tiny features.
Solution: Add #ifdef. (Christian Brabandt)
Files: src/gui_w32.c

Patch 7.4.1345
Problem: A few more compiler warnings. (Axel Bender)
Solution: Add type casts.
Files: src/gui_w32.c, src/gui_w48.c

version8.txt — 2932

Patch 7.4.1346
Problem: Compiler warnings in build with -O2.
Solution: Add initializations.
Files: src/eval.c

Patch 7.4.1347
Problem: When there is any error Vim will use a non-zero exit code.
Solution: When using ":silent!" do not set the exit code. (Yasuhiro

Matsumoto)
Files: src/message.c

Patch 7.4.1348
Problem: More compiler warnings. (John Marriott)
Solution: Add type casts, remove unused variable.
Files: src/gui_w32.c

Patch 7.4.1349
Problem: And some more MingW compiler warnings. (Cesar Romani)
Solution: Add type casts.
Files: src/if_mzsch.c

Patch 7.4.1350
Problem: When the test server fails to start Vim hangs.
Solution: Check that there is actually something to read from the tty fd.
Files: src/os_unix.c

Patch 7.4.1351
Problem: When the port isn't opened yet when ch_open() is called it may

fail instead of waiting for the specified time.
Solution: Loop when select() succeeds but when connect() failed. Also use

channel logging for jobs. Add ch_log().
Files: src/channel.c, src/eval.c, src/netbeans.c, src/proto/channel.pro,

src/testdir/test_channel.vim, src/testdir/test_channel.py

Patch 7.4.1352
Problem: The test script lists all functions before executing them.
Solution: Only list the function currently being executed.
Files: src/testdir/runtest.vim

Patch 7.4.1353
Problem: Test_connect_waittime is skipped for MS-Windows.
Solution: Add the test back, it works now.
Files: src/testdir/test_channel.vim

Patch 7.4.1354
Problem: MS-Windows: Mismatch between default compile options and what the

code expects.
Solution: Change the default WINVER from 0x0500 to 0x0501. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 7.4.1355
Problem: Win32 console and GUI handle channels differently.
Solution: Consolidate code between Win32 console and GUI.
Files: src/channel.c, src/eval.c, src/gui_w48.c, src/os_win32.c,

src/proto/channel.pro

Patch 7.4.1356
Problem: Job and channel options parsing is scattered.
Solution: Move all option value parsing to get_job_options();
Files: src/channel.c, src/eval.c, src/structs.h, src/proto/channel.pro,

version8.txt — 2933

src/testdir/test_channel.vim

Patch 7.4.1357 (after 7.4.1356)
Problem: Error for returning value from void function.
Solution: Don't do that.
Files: src/eval.c

Patch 7.4.1358
Problem: Compiler warning when not building with +crypt.
Solution: Add #ifdef. (John Marriott)
Files: src/undo.c

Patch 7.4.1359 (after 7.4.1356)
Problem: Channel test ch_sendexpr() times out.
Solution: Increase the timeout
Files: src/testdir/test_channel.vim

Patch 7.4.1360
Problem: Can't remove a callback with ch_setoptions().
Solution: When passing zero or an empty string remove the callback.
Files: src/channel.c, src/proto/channel.pro, src/testdir/test_channel.vim

Patch 7.4.1361
Problem: Channel test fails on Solaris.
Solution: Use the 1 msec waittime for all systems.
Files: src/channel.c

Patch 7.4.1362 (after 7.4.1356)
Problem: Using uninitialized value.
Solution: Initialize jo_set.
Files: src/eval.c

Patch 7.4.1363
Problem: Compiler warnings with tiny build.
Solution: Add #ifdefs.
Files: src/gui_w48.c, src/gui_w32.c

Patch 7.4.1364
Problem: The Win 16 code is not maintained and unused.
Solution: Remove the Win 16 support.
Files: src/gui_w16.c, src/gui_w32.c, src/gui_w48.c, src/Make_w16.mak,

src/Makefile, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/proto/gui_w16.pro, src/proto/os_win16.pro, src/guiw16rc.h,
src/vim16.rc, src/vim16.def, src/tools16.bmp, src/eval.c,
src/gui.c, src/misc2.c, src/option.c, src/os_msdos.c,
src/os_mswin.c, src/os_win16.c, src/os_win16.h, src/version.c,
src/winclip.c, src/feature.h, src/proto.h, src/vim.h, Filelist

Patch 7.4.1365
Problem: Cannot execute a single test function.
Solution: Add an argument to filter the functions with. (Yasuhiro Matsumoto)
Files: src/testdir/runtest.vim

Patch 7.4.1366
Problem: Typo in test and resulting error in test result.
Solution: Fix the typo and correct the result. (James McCoy, closes #650)
Files: src/testdir/test_charsearch.in, src/testdir/test_charsearch.ok

Patch 7.4.1367
Problem: Compiler warning for unreachable code.

version8.txt — 2934

Solution: Remove a "break". (Danek Duvall)
Files: src/json.c

Patch 7.4.1368
Problem: One more Win16 file remains.
Solution: Delete it.
Files: src/proto/os_win16.pro

Patch 7.4.1369
Problem: Channels don't have a queue for stderr.
Solution: Have a queue for each part of the channel.
Files: src/channel.c, src/eval.c, src/structs.h, src/netbeans.c,

src/gui_w32.c, src/proto/channel.pro

Patch 7.4.1370
Problem: The Python test script may keep on running.
Solution: Join the threads. (Yasuhiro Matsumoto)
Files: src/testdir/test_channel.py

Patch 7.4.1371
Problem: X11 GUI callbacks don't specify the part of the channel.
Solution: Pass the fd instead of the channel ID.
Files: src/channel.c

Patch 7.4.1372
Problem: channel read implementation is incomplete.
Solution: Add ch_read() and options for ch_readraw().
Files: src/channel.c, src/eval.c, src/structs.h, src/proto/channel.pro,

src/testdir/test_channel.vim

Patch 7.4.1373
Problem: Calling a Vim function over a channel requires turning the

arguments into a string.
Solution: Add the "call" command. (Damien) Also merge "expr" and "eval"

into one.
Files: src/channel.c, src/testdir/test_channel.py,

src/testdir/test_channel.vim

Patch 7.4.1374
Problem: Channel test hangs on MS-Windows.
Solution: Disable the ch_read() that is supposed to time out.
Files: src/testdir/test_channel.vim

Patch 7.4.1375
Problem: Still some Win16 code.
Solution: Remove FEAT_GUI_W16.(Hirohito Higashi)
Files: src/eval.c, src/ex_cmds.h, src/feature.h, src/gui.h, src/menu.c,

src/misc1.c, src/option.c, src/proto.h, src/structs.h, src/term.c,
src/vim.h, runtime/doc/gui_w16.txt

Patch 7.4.1376
Problem: ch_setoptions() cannot set all options.
Solution: Support more options.
Files: src/channel.c, src/eval.c, src/structs.h, runtime/doc/channel.txt,

src/testdir/test_channel.vim

Patch 7.4.1377
Problem: Test_connect_waittime() is flaky.
Solution: Ignore the "Connection reset by peer" error.
Files: src/testdir/test_channel.vim

version8.txt — 2935

Patch 7.4.1378
Problem: Can't change job settings after it started.
Solution: Add job_setoptions() with the "stoponexit" flag.
Files: src/eval.c, src/main.c, src/structs.h, src/proto/eval.pro,

src/testdir/test_channel.vim

Patch 7.4.1379
Problem: Channel test fails on Win32 console.
Solution: Don't sleep when timeout is zero. Call channel_wait() before

channel_read(). Channels are not polled during ":sleep". (Yukihiro
Nakadaira)

Files: src/channel.c, src/misc2.c, src/gui_w32.c, src/os_win32.c

Patch 7.4.1380
Problem: The job exit callback is not implemented.
Solution: Add the "exit-cb" option.
Files: src/structs.h, src/eval.c, src/channel.c, src/proto/eval.pro,

src/misc2.c, src/macros.h, src/testdir/test_channel.vim

Patch 7.4.1381 (after 7.4.1380)
Problem: Exit value not available on MS-Windows.
Solution: Set the exit value.
Files: src/structs.h, src/os_win32.c

Patch 7.4.1382
Problem: Can't get the job of a channel.
Solution: Add ch_getjob().
Files: src/eval.c, runtime/doc/channel.txt, runtime/doc/eval.txt

Patch 7.4.1383
Problem: GvimExt only loads the old libintl.dll.
Solution: Also try loading libint-8.dll. (Ken Takata, closes #608)
Files: src/GvimExt/gvimext.cpp, src/GvimExt/gvimext.h

Patch 7.4.1384
Problem: It is not easy to use a set of plugins and their dependencies.
Solution: Add packages, ":loadplugin", 'packpath'.
Files: src/main.c, src/ex_cmds2.c, src/option.c, src/option.h,

src/ex_cmds.h, src/eval.c, src/version.c, src/proto/ex_cmds2.pro,
runtime/doc/repeat.txt, runtime/doc/options.txt,
runtime/optwin.vim

Patch 7.4.1385
Problem: Compiler warning for using array.
Solution: Use the right member name. (Yegappan Lakshmanan)
Files: src/eval.c

Patch 7.4.1386
Problem: When the Job exit callback is invoked, the job may be freed too

soon. (Yasuhiro Matsumoto)
Solution: Increase refcount.
Files: src/eval.c

Patch 7.4.1387
Problem: Win16 docs still referenced.
Solution: Remove Win16 files from the docs Makefile. (Kenichi Ito)
Files: runtime/doc/Makefile

Patch 7.4.1388

version8.txt — 2936

Problem: Compiler warning. (Cesar Romani)
Solution: Initialize variable.
Files: src/ex_cmds2.c

Patch 7.4.1389
Problem: Incomplete function declaration.
Solution: Add "void". (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.1390
Problem: When building with GTK and glib-compile-resources cannot be found

building Vim fails. (Michael Gehring)
Solution: Make GLIB_COMPILE_RESOURCES empty instead of leaving it at "no".

(nuko8, closes #655)
Files: src/configure.in, src/auto/configure

Patch 7.4.1391
Problem: Warning for uninitialized variable.
Solution: Set it to zero. (Christian Brabandt)
Files: src/eval.c

Patch 7.4.1392
Problem: Some tests fail for Win32 console version.
Solution: Move the tests to SCRIPTS_MORE2. Pass VIMRUNTIME. (Christian

Brabandt)
Files: src/testdir/Make_all.mak

Patch 7.4.1393
Problem: Starting a job hangs in the GUI. (Takuya Fujiwara)
Solution: Don't check if ch_job is NULL when checking for an error.

(Yasuhiro Matsumoto)
Files: src/channel.c

Patch 7.4.1394
Problem: Can't sort inside a sort function.
Solution: Use a struct to store the sort parameters. (Jacob Niehus)
Files: src/eval.c, src/testdir/test_sort.vim

Patch 7.4.1395
Problem: Using DETACH in quotes is not compatible with the Netbeans

interface. (Xavier de Gaye)
Solution: Remove the quotes, only use them for JSON and JS mode.
Files: src/netbeans.c, src/channel.c

Patch 7.4.1396
Problem: Compiler warnings for conversions.
Solution: Add type cast.
Files: src/ex_cmds2.c

Patch 7.4.1397
Problem: Sort test fails on MS-Windows.
Solution: Correct the compare function.
Files: src/testdir/test_sort.vim

Patch 7.4.1398
Problem: The close-cb option is not implemented yet.
Solution: Implement close-cb. (Yasuhiro Matsumoto)
Files: src/channel.c, src/eval.c, src/structs.h, src/proto/channel.pro,

src/testdir/test_channel.py, src/testdir/test_channel.vim

version8.txt — 2937

Patch 7.4.1399
Problem: The MS-DOS code does not build.
Solution: Remove the old MS-DOS code.
Files: Filelist, src/Make_bc3.mak, src/Make_bc5.mak, src/Make_djg.mak,

src/Makefile, src/blowfish.c, src/buffer.c, src/diff.c,
src/digraph.c, src/dosinst.h, src/eval.c, src/ex_cmds.c,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/feature.h,
src/fileio.c, src/getchar.c, src/globals.h, src/macros.h,
src/main.c, src/mbyte.c, src/memfile.c, src/memline.c,
src/misc1.c, src/misc2.c, src/netbeans.c, src/option.c,
src/option.h, src/os_msdos.c, src/os_msdos.h, src/proto.h,
src/proto/os_msdos.pro, src/regexp.c, src/screen.c, src/structs.h,
src/syntax.c, src/term.c, src/undo.c, src/uninstal.c,
src/version.c, src/vim.h, src/window.c, src/xxd/Make_bc3.mak,
src/xxd/Make_djg.mak

Patch 7.4.1400
Problem: Perl eval doesn't work properly on 64-bit big-endian machine.
Solution: Use 32 bit type for the key. (Danek Duvall)
Files: src/if_perl.xs

Patch 7.4.1401
Problem: Having 'autochdir' set during startup and using diff mode doesn't

work. (Axel Bender)
Solution: Don't use 'autochdir' while still starting up. (Christian

Brabandt)
Files: src/buffer.c

Patch 7.4.1402
Problem: GTK 3 is not supported.
Solution: Add GTK 3 support. (Kazunobu Kuriyama)
Files: runtime/doc/eval.txt, runtime/doc/gui.txt,

runtime/doc/gui_x11.txt, src/auto/configure, src/channel.c,
src/config.h.in, src/configure.in, src/eval.c, src/gui.h,
src/gui_beval.c, src/gui_beval.h, src/gui_gtk.c, src/gui_gtk_f.c,
src/gui_gtk_f.h, src/gui_gtk_x11.c, src/if_mzsch.c, src/mbyte.c,
src/netbeans.c, src/structs.h, src/version.c

Patch 7.4.1403
Problem: Can't build without the quickfix feature.
Solution: Add #ifdefs. Call ex_ni() for unimplemented commands. (Yegappan

Lakshmanan)
Files: src/ex_cmds2.c, src/popupmnu.c

Patch 7.4.1404
Problem: ch_read() doesn't time out on MS-Windows.
Solution: Instead of WM_NETBEANS use select(). (Yukihiro Nakadaira)
Files: src/channel.c, src/gui_w32.c, src/os_win32.c, src/structs.h,

src/testdir/test_channel.vim, src/vim.h

Patch 7.4.1405
Problem: Completion menu flickers.
Solution: Delay showing the popup menu. (Shougo Matsu, Justin M. Keyes,

closes #656)
Files: src/edit.c

Patch 7.4.1406
Problem: Leaking memory in cs_print_tags_priv().
Solution: Free tbuf. (idea by Forrest Fleming)

version8.txt — 2938

Files: src/if_cscope.c

Patch 7.4.1407
Problem: json_encode() does not handle NaN and inf properly. (David

Barnett)
Solution: For JSON turn them into "null". For JS use "NaN" and "Infinity".

Add isnan().
Files: src/eval.c, src/json.c, src/testdir/test_json.vim

Patch 7.4.1408
Problem: MS-Windows doesn't have isnan() and isinf().
Solution: Use _isnan() and _isinf().
Files: src/eval.c, src/json.c

Patch 7.4.1409 (after 7.4.1402)
Problem: Configure includes GUI despite --disable-gui flag.
Solution: Add SKIP_GTK3. (Kazunobu Kuriyama)
Files: src/configure.in, src/auto/configure

Patch 7.4.1410
Problem: Leaking memory in cscope interface.
Solution: Free memory when no tab is found. (Christian Brabandt)
Files: src/if_cscope.c

Patch 7.4.1411
Problem: Compiler warning for indent. (Ajit Thakkar)
Solution: Indent normally.
Files: src/ui.c

Patch 7.4.1412
Problem: Compiler warning for indent. (Dominique Pelle)
Solution: Fix the indent.
Files: src/farsi.c

Patch 7.4.1413
Problem: When calling ch_close() the close callback is invoked, even though

the docs say it isn't. (Christian J. Robinson)
Solution: Don't call the close callback.
Files: src/eval.c, src/channel.c, src/netbeans.c, src/proto/channel.pro

Patch 7.4.1414
Problem: Appveyor only builds one feature set.
Solution: Build a combination of features and GUI/console. (Christian

Brabandt)
Files: appveyor.yml, src/appveyor.bat

Patch 7.4.1415 (after 7.4.1414)
Problem: Dropped the skip-tags setting.
Solution: Put it back.
Files: appveyor.yml

Patch 7.4.1416
Problem: Using "u_char" instead of "char_u", which doesn't work everywhere.

(Jörg Plate)
Solution: Use "char_u" always.
Files: src/integration.c, src/macros.h

Patch 7.4.1417 (after 7.4.1414)
Problem: Missing appveyor.bat from the distribution.
Solution: Add it to the list of files.

version8.txt — 2939

Files: Filelist

Patch 7.4.1418
Problem: job_stop() on MS-Windows does not really stop the job.
Solution: Make the default to stop the job forcefully. (Ken Takata)

Make MS-Windows and Unix more similar.
Files: src/os_win32.c, src/os_unix.c, runtime/doc/eval.txt

Patch 7.4.1419
Problem: Tests slowed down because of the "not a terminal" warning.
Solution: Add the --not-a-term command line argument.
Files: src/main.c, src/testdir/Makefile, src/Make_all.mak,

src/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_vms.mms,
runtime/doc/starting.txt

Patch 7.4.1420 (after 7.4.1419)
Problem: Missing makefile.
Solution: Type the path correctly.
Files: src/testdir/Make_all.mak

Patch 7.4.1421
Problem: May free a channel when a callback may need to be invoked.
Solution: Keep the channel when refcount is zero.
Files: src/eval.c, src/channel.c, src/proto/channel.pro

Patch 7.4.1422
Problem: Error when reading fails uses wrong errno. Keeping channel open

after job stops results in test failing.
Solution: Move the error up. Add ch_job_killed.
Files: src/channel.c, src/eval.c, src/structs.h

Patch 7.4.1423
Problem: Channel test fails on MS-Windows.
Solution: Do not give an error message when reading fails, assume the other

end exited.
Files: src/channel.c

Patch 7.4.1424
Problem: Not using --not-a-term when running tests on MS-Windows.
Solution: Use NO_PLUGIN. (Christian Brabandt)
Files: src/testdir/Make_dos.mak

Patch 7.4.1425
Problem: There are still references to MS-DOS support.
Solution: Remove most of the help txt and install instructions. (Ken Takata)
Files: src/INSTALLpc.txt, runtime/doc/os_msdos.txt, csdpmi4b.zip,

Filelist

Patch 7.4.1426
Problem: The "out-io" option for jobs is not implemented yet.
Solution: Implement the "buffer" value: append job output to a buffer.
Files: src/eval.c, src/channel.c, src/structs.h, src/netbeans.c,

runtime/doc/channel.txt

Patch 7.4.1427
Problem: Trailing comma in enums is not ANSI C.
Solution: Remove the trailing commas.
Files: src/alloc.h, src/gui_mac.c

version8.txt — 2940

Patch 7.4.1428
Problem: Compiler warning for non-virtual destructor.
Solution: Make it virtual. (Yasuhiro Matsumoto)
Files: src/gui_dwrite.cpp

Patch 7.4.1429
Problem: On MS-Windows, when not use renderoptions=type:directx, drawing

emoji will be broken.
Solution: Fix usage of unicodepdy. (Yasuhiro Matsumoto)
Files: src/gui_w32.c

Patch 7.4.1430
Problem: When encoding JSON, turning NaN and Infinity into null without

giving an error is not useful.
Solution: Pass NaN and Infinity on. If the receiver can't handle them it

will generate the error.
Files: src/json.c, src/testdir/test_json.vim, runtime/doc/eval.txt

Patch 7.4.1431
Problem: Including header files twice.
Solution: Remove the extra includes.
Files: src/if_cscope.h

Patch 7.4.1432
Problem: Typo in button text.
Solution: Fix the typo. (Dominique Pelle)
Files: src/gui_gtk.c

Patch 7.4.1433
Problem: The Sniff interface is no longer useful, the tool has not been

available for may years.
Solution: Delete the Sniff interface and related code.
Files: src/if_sniff.c, src/if_sniff.h, src/charset.c, src/edit.c,

src/eval.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c,
src/gui_gtk_x11.c, src/gui_w32.c, src/gui_x11.c, src/normal.c,
src/os_unix.c, src/os_win32.c, src/term.c, src/ui.c,
src/version.c, src/ex_cmds.h, src/feature.h, src/keymap.h,
src/structs.h, src/vim.h, src/Make_mvc.mak, src/Make_vms.mms,
src/Makefile, src/configure.in, src/auto/configure,
src/config.h.in, src/config.mk.in, runtime/doc/if_sniff.txt,
src/config.aap.in, src/main.aap

Patch 7.4.1434
Problem: JSON encoding doesn't handle surrogate pair.
Solution: Improve multibyte handling of JSON. (Yasuhiro Matsumoto)
Files: src/json.c, src/testdir/test_json.vim

Patch 7.4.1435
Problem: It is confusing that ch_sendexpr() and ch_sendraw() wait for a

response.
Solution: Add ch_evalexpr() and ch_evalraw().
Files: src/eval.c, runtime/doc/channel.txt, runtime/doc/eval.txt,

src/testdir/test_channel.vim

Patch 7.4.1436 (after 7.4.1433)
Problem: Sniff files still referenced in distribution.
Solution: Remove sniff files from distribution.
Files: Filelist

Patch 7.4.1437

version8.txt — 2941

Problem: Old system doesn't have isinf() and NAN. (Ben Fritz)
Solution: Adjust #ifdefs. Detect isnan() and isinf() functions with

configure. Use a replacement when missing. (Kazunobu Kuriyama)
Files: src/eval.c, src/json.c, src/macros.h, src/message.c,

src/config.h.in, src/configure.in, src/auto/configure

Patch 7.4.1438
Problem: Can't get buffer number of a channel.
Solution: Add ch_getbufnr().
Files: src/eval.c, src/channel.c, src/testdir/test_channel.vim,

runtime/doc/channel.txt, runtime/doc/eval.txt

Patch 7.4.1439 (after 7.4.1434)
Problem: Using uninitialized variable.
Solution: Initialize vc_type.
Files: src/json.c

Patch 7.4.1440 (after 7.4.1437)
Problem: Can't build on Windows.
Solution: Change #ifdefs. Only define isnan when used.
Files: src/macros.h, src/eval.c, src/json.c

Patch 7.4.1441
Problem: Using empty name instead of no name for channel buffer.
Solution: Remove the empty name.
Files: src/channel.c

Patch 7.4.1442
Problem: MS-Windows: more compilation warnings for destructor.
Solution: Add "virtual". (Ken Takata)
Files: src/if_ole.cpp

Patch 7.4.1443
Problem: Can't build GTK3 with small features.
Solution: Use gtk_widget_get_window(). Fix typos. (Dominique Pelle)
Files: src/gui_gtk_x11.c

Patch 7.4.1444
Problem: Can't build with JSON but without multibyte.
Solution: Fix pointer name.
Files: src/json.c

Patch 7.4.1445
Problem: Memory corruption when 'encoding' is not utf-8.
Solution: Convert decoded string later.
Files: src/json.c

Patch 7.4.1446
Problem: Crash when using json_decode().
Solution: Terminate string with a NUL byte.
Files: src/json.c

Patch 7.4.1447
Problem: Memory leak when using ch_read(). (Dominique Pelle)

No log message when stopping a job and a few other situations.
Too many "Nothing to read" messages. Channels are not freed.

Solution: Free the listtv. Add more log messages. Remove "Nothing to read"
message. Remove the channel from the job when its refcount
becomes zero.

Files: src/eval.c, src/channel.c

version8.txt — 2942

Patch 7.4.1448
Problem: JSON tests fail if 'encoding' is not utf-8.
Solution: Force encoding to utf-8.
Files: src/testdir/test_json.vim

Patch 7.4.1449
Problem: Build fails with job feature but without channel feature.
Solution: Add #ifdef.
Files: src/eval.c

Patch 7.4.1450
Problem: Json encoding still fails when encoding is not utf-8.
Solution: Set 'encoding' before :scriptencoding. Run the json test

separately to avoid affecting other tests.
Files: src/testdir/test_json.vim, src/testdir/Make_all.mak,

src/testdir/test_alot.vim

Patch 7.4.1451
Problem: Vim hangs when a channel has a callback but isn't referenced.
Solution: Have channel_unref() only return TRUE when the channel was

actually freed.
Files: src/eval.c, src/channel.c, src/proto/channel.pro

Patch 7.4.1452
Problem: When a callback adds a syntax item either the redraw doesn't

happen right away or in the GUI the cursor is in the wrong
position for a moment. (Jakson Alves de Aquino)

Solution: Redraw after the callback was invoked.
Files: src/channel.c

Patch 7.4.1453
Problem: Missing --not-a-term.
Solution: Add the argument.
Files: src/testdir/Make_amiga.mak

Patch 7.4.1454
Problem: The exit callback test is flaky.
Solution: Loop to wait for a short time up to a second.
Files: src/testdir/test_channel.vim

Patch 7.4.1455
Problem: JSON decoding test for surrogate pairs is in the wrong place.
Solution: Move the test lines. (Ken Takata)
Files: src/testdir/test_json.vim

Patch 7.4.1456
Problem: Test 87 fails with Python 3.5.
Solution: Work around difference. (Taro Muraoka)
Files: src/testdir/test87.in

Patch 7.4.1457
Problem: Opening a channel with select() is not done properly.
Solution: Also used read-fds. Use getsockopt() to check for errors. (Ozaki

Kiichi)
Files: src/channel.c

Patch 7.4.1458
Problem: When a JSON channel has a callback it may never be cleared.
Solution: Do not write "DETACH" into a JS or JSON channel.

version8.txt — 2943

Files: src/channel.c

Patch 7.4.1459 (after 7.4.1457)
Problem: MS-Windows doesn't know socklen_t.
Solution: Use previous method for WIN32.
Files: src/channel.c

Patch 7.4.1460
Problem: Syntax error in rarely used code.
Solution: Fix the mch_rename() declaration. (Ken Takata)
Files: src/os_unix.c, src/proto/os_unix.pro

Patch 7.4.1461
Problem: When starting job on MS-Windows all parts of the command are put

in quotes.
Solution: Only use quotes when needed. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.1462
Problem: Two more rarely used functions with errors.
Solution: Add proper argument types. (Dominique Pelle)
Files: src/misc2.c, src/termlib.c

Patch 7.4.1463
Problem: Configure doesn't find isinf() and isnan() on some systems.
Solution: Use a configure check that includes math.h.
Files: src/configure.in, src/auto/configure

Patch 7.4.1464
Problem: When the argument of sort() is zero or empty it fails.
Solution: Make zero work as documented. (suggested by Yasuhiro Matsumoto)
Files: src/eval.c, src/testdir/test_sort.vim

Patch 7.4.1465
Problem: Coverity reported possible use of NULL pointer when using buffer

output with JSON mode.
Solution: Make it actually possible to use JSON mode with a buffer.

Re-encode the JSON to append it to the buffer.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1466
Problem: Coverity reports dead code.
Solution: Remove the two lines.
Files: src/channel.c

Patch 7.4.1467
Problem: Can't build without the float feature.
Solution: Add #ifdefs. (Nick Owens, closes #667)
Files: src/eval.c, src/json.c

Patch 7.4.1468
Problem: Sort test doesn't test with "1" argument.
Solution: Also test ignore-case sorting. (Yasuhiro Matsumoto)
Files: src/testdir/test_sort.vim

Patch 7.4.1469
Problem: Channel test sometimes fails, especially on OS/X. (Kazunobu

Kuriyama)
Solution: Change the && into ||, call getsockopt() in more situations.

(Ozaki Kiichi)

version8.txt — 2944

Files: src/channel.c

Patch 7.4.1470
Problem: Coverity reports missing restore.
Solution: Move json_encode() call up.
Files: src/channel.c

Patch 7.4.1471
Problem: Missing out-of-memory check. And Coverity warning.
Solution: Bail out when msg is NULL.
Files: src/channel.c

Patch 7.4.1472
Problem: Coverity warning for not using return value.
Solution: Add "(void)".
Files: src/os_unix.c

Patch 7.4.1473
Problem: Can't build without the autocommand feature.
Solution: Add #ifdefs. (Yegappan Lakshmanan)
Files: src/edit.c, src/main.c, src/syntax.c

Patch 7.4.1474
Problem: Compiler warnings without the float feature.
Solution: Move #ifdefs. (John Marriott)
Files: src/eval.c

Patch 7.4.1475
Problem: When using hangulinput with utf-8 a CSI character is

misinterpreted.
Solution: Convert CSI to K_CSI. (SungHyun Nam)
Files: src/ui.c

Patch 7.4.1476
Problem: Function arguments marked as unused while they are not.
Solution: Remove UNUSED. (Yegappan Lakshmanan)
Files: src/diff.c, src/eval.c, src/ex_cmds2.c, src/ex_docmd.c,

src/window.c

Patch 7.4.1477
Problem: Test_reltime is flaky, it depends on timing.
Solution: When it fails run it a second time.
Files: src/testdir/runtest.vim

Patch 7.4.1478
Problem: ":loadplugin" doesn't take care of ftdetect files.
Solution: Also load ftdetect scripts when appropriate.
Files: src/ex_cmds2.c

Patch 7.4.1479
Problem: No testfor ":loadplugin".
Solution: Add a test. Fix how option is being set.
Files: src/ex_cmds2.c, src/testdir/test_loadplugin.vim,

src/testdir/Make_all.mak

Patch 7.4.1480
Problem: Cannot add a pack directory without loading a plugin.
Solution: Add the :packadd command.
Files: src/ex_cmds.h, src/ex_cmds2.c, src/proto/ex_cmds2.pro,

src/testdir/test_loadplugin.vim, runtime/doc/repeat.txt

version8.txt — 2945

Patch 7.4.1481
Problem: Can't build with small features.
Solution: Add #ifdef.
Files: src/ex_cmds2.c

Patch 7.4.1482
Problem: "timeout" option not supported on ch_eval*().
Solution: Get and use the timeout option from the argument.
Files: src/eval.c, src/testdir/test_channel.vim

Patch 7.4.1483
Problem: A one-time callback is not used for a raw channel.
Solution: Use a one-time callback when it exists.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel.py

Patch 7.4.1484
Problem: Channel "err-io" value "out" is not supported.
Solution: Connect stderr to stdout if wanted.
Files: src/os_unix.c, src/os_win32.c, src/testdir/test_channel.vim,

src/testdir/test_channel_pipe.py

Patch 7.4.1485
Problem: Job input from buffer is not implemented.
Solution: Implement it. Add "in-top" and "in-bot" options.
Files: src/structs.h, src/eval.c, src/channel.c, src/proto/channel.pro,

src/os_unix.c, src/os_win32.c, src/testdir/test_channel.vim

Patch 7.4.1486
Problem: ":loadplugin" is not optimal, some people find it confusing.
Solution: Only use ":packadd" with an optional "!".
Files: src/ex_cmds.h, src/ex_cmds2.c, src/testdir/test_loadplugin.vim,

src/testdir/test_packadd.vim, src/testdir/Make_all.mak,
runtime/doc/repeat.txt

Patch 7.4.1487
Problem: For WIN32 isinf() is defined as a macro.
Solution: Define it as an inline function. (ZyX)
Files: src/macros.h

Patch 7.4.1488 (after 7.4.1475)
Problem: Not using key when result from hangul_string_convert() is NULL.
Solution: Fall back to not converted string.
Files: src/ui.c

Patch 7.4.1489 (after 7.4.1487)
Problem: "inline" is not supported by old MSVC.
Solution: use "__inline". (Ken Takata)
Files: src/macros.h

Patch 7.4.1490
Problem: Compiler warning for unused function.
Solution: Add #ifdef. (Dominique Pelle)
Files: src/gui_gtk_x11.c

Patch 7.4.1491
Problem: Visual-block shift breaks multibyte characters.
Solution: Compute column differently. (Yasuhiro Matsumoto) Add a test.
Files: src/ops.c, src/testdir/test_visual.vim, src/testdir/Make_all.mak

version8.txt — 2946

Patch 7.4.1492
Problem: No command line completion for ":packadd".
Solution: Implement completion. (Hirohito Higashi)
Files: src/ex_docmd.c, src/ex_getln.c, src/testdir/test_packadd.vim,

src/vim.h

Patch 7.4.1493
Problem: Wrong callback invoked for zero-id messages.
Solution: Don't use the first one-time callback when the sequence number

doesn't match.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel.py

Patch 7.4.1494
Problem: clr_history() does not work properly.
Solution: Increment hisptr. Add a test. (Yegappan Lakshmanan)
Files: src/ex_getln.c, src/testdir/test_history.vim,

src/testdir/Make_all.mak

Patch 7.4.1495
Problem: Compiler warnings when building on Unix with the job feature but

without the channel feature.
Solution: Move #ifdefs. (Dominique Pelle)
Files: src/os_unix.c

Patch 7.4.1496
Problem: Crash when built with GUI but it's not active. (Dominique Pelle)
Solution: Check gui.in_use.
Files: src/channel.c

Patch 7.4.1497
Problem: Cursor drawing problem with GTK 3.
Solution: Handle blinking differently. (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 7.4.1498
Problem: Error for locked item when using json_decode(). (Shougo Matsu)
Solution: Initialize v_lock.
Files: src/json.c

Patch 7.4.1499
Problem: No error message when :packadd does not find anything.
Solution: Add an error message. (Hirohito Higashi)
Files: runtime/doc/repeat.txt, src/ex_cmds.h, src/ex_cmds2.c,

src/globals.h, src/testdir/test_packadd.vim

Patch 7.4.1500
Problem: Should_free flag set to FALSE.
Solution: Set it to TRUE. (Neovim 4415)
Files: src/ex_eval.c

Patch 7.4.1501
Problem: Garbage collection with an open channel is not tested.
Solution: Call garbagecollect() in the test.
Files: src/testdir/test_channel.vim

Patch 7.4.1502
Problem: Writing last-but-one line of buffer to a channel isn't implemented

yet.

version8.txt — 2947

Solution: Implement it. Fix leaving a swap file behind.
Files: src/channel.c, src/structs.h, src/memline.c, src/proto/channel.pro

Patch 7.4.1503
Problem: Crash when using ch_getjob(). (Damien)
Solution: Check for a NULL job.
Files: src/eval.c, src/testdir/test_channel.vim

Patch 7.4.1504 (after 7.4.1502)
Problem: No test for reading last-but-one line.
Solution: Add a test.
Files: src/testdir/test_channel.vim

Patch 7.4.1505
Problem: When channel log is enabled get too many "looking for messages"

log entries.
Solution: Only give the message after another message.
Files: src/channel.c

Patch 7.4.1506
Problem: Job cannot read from a file.
Solution: Implement reading from a file for Unix.
Files: src/eval.c, src/os_unix.c, src/os_win32.c,

src/testdir/test_channel.vim

Patch 7.4.1507
Problem: Crash when starting a job fails.
Solution: Check for the channel to be NULL. (idea by Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.1508
Problem: Can't build GvimExt with MingW.
Solution: Adjust the makefile. (Ben Fritz)
Files: src/GvimExt/Make_ming.mak

Patch 7.4.1509
Problem: Keeping both a variable for a job and the channel it refers to is

a hassle.
Solution: Allow passing the job where a channel is expected. (Damien)
Files: src/eval.c, src/testdir/test_channel.vim

Patch 7.4.1510
Problem: Channel test fails on AppVeyor.
Solution: Wait longer than 10 msec if needed.
Files: src/testdir/test_channel.vim

Patch 7.4.1511
Problem: Statusline highlighting is sometimes wrong.
Solution: Check for Highlight type. (Christian Brabandt)
Files: src/buffer.c

Patch 7.4.1512
Problem: Channel input from file not supported on MS-Windows.
Solution: Implement it. (Yasuhiro Matsumoto)
Files: src/os_win32.c, src/testdir/test_channel.vim

Patch 7.4.1513
Problem: "J" fails if there are not enough lines. (Christian Neukirchen)
Solution: Reduce the count, only fail on the last line.
Files: src/normal.c, src/testdir/test_join.vim, src/testdir/test_alot.vim

version8.txt — 2948

Patch 7.4.1514
Problem: Channel output to file not implemented yet.
Solution: Implement it for Unix.
Files: src/os_unix.c, src/testdir/test_channel.vim,

src/testdir/test_channel_pipe.py

Patch 7.4.1515
Problem: Channel test is a bit flaky.
Solution: Instead of a fixed sleep time wait until an expression evaluates

to true.
Files: src/testdir/test_channel.vim

Patch 7.4.1516
Problem: Cannot change file permissions.
Solution: Add setfperm().
Files: src/eval.c, runtime/doc/eval.txt, src/testdir/test_alot.vim,

src/testdir/test_file_perm.vim

Patch 7.4.1517
Problem: Compiler warning with 64bit compiler.
Solution: Add typecast. (Mike Williams)
Files: src/channel.c

Patch 7.4.1518
Problem: Channel with disconnected in/out/err is not supported.
Solution: Implement it for Unix.
Files: src/eval.c, src/os_unix.c, src/structs.h,

src/testdir/test_channel.vim, src/testdir/test_channel_pipe.py

Patch 7.4.1519 (after 7.4.1514)
Problem: Channel output to file not implemented for MS-Windows.
Solution: Implement it. (Yasuhiro Matsumoto)
Files: src/os_win32.c, src/testdir/test_channel.vim

Patch 7.4.1520
Problem: Channel test: Waiting for a file to appear doesn't work.
Solution: In waitFor() ignore errors.
Files: src/testdir/test_channel.vim

Patch 7.4.1521 (after 7.4.1516)
Problem: File permission test fails on MS-Windows.
Solution: Expect a different permission.
Files: src/testdir/test_file_perm.vim

Patch 7.4.1522
Problem: Cannot write channel err to a buffer.
Solution: Implement it.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1523
Problem: Writing channel to a file fails on MS-Windows.
Solution: Disable it for now.
Files: src/testdir/test_channel.vim

Patch 7.4.1524
Problem: Channel test fails on BSD.
Solution: Break out of the loop when connect() succeeds. (Ozaki Kiichi)
Files: src/channel.c

version8.txt — 2949

Patch 7.4.1525
Problem: On a high resolution screen the toolbar icons are too small.
Solution: Add "huge" and "giant" to 'toolbariconsize'. (Brian Gix)
Files: src/gui_gtk_x11.c, src/option.h

Patch 7.4.1526
Problem: Writing to file and not connecting a channel doesn't work for

MS-Windows.
Solution: Make it work. (Yasuhiro Matsumoto)
Files: src/os_win32.c, src/testdir/test_channel.vim

Patch 7.4.1527
Problem: Channel test is flaky on MS-Windows.
Solution: Limit the select() timeout to 50 msec and try with a new socket if

it fails.
Files: src/channel.c

Patch 7.4.1528
Problem: Using "ever" for packages is confusing.
Solution: Use "start", as it's related to startup.
Files: src/ex_cmds2.c, runtime/doc/repeat.txt

Patch 7.4.1529
Problem: Specifying buffer number for channel not implemented yet.
Solution: Implement passing a buffer number.
Files: src/structs.h, src/channel.c, src/eval.c,

src/testdir/test_channel.vim

Patch 7.4.1530
Problem: MS-Windows job_start() closes wrong handle.
Solution: Close hThread on the process info. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.1531
Problem: Compiler warning for uninitialized variable. (Dominique Pelle)
Solution: Always give the variable a value.
Files: src/channel.c

Patch 7.4.1532
Problem: MS-Windows channel leaks file descriptor.
Solution: Use CreateFile with the right options. (Yasuhiro Matsumoto)
Files: src/os_win32.c

Patch 7.4.1533
Problem: Using feedkeys() with an empty string disregards 'x' option.
Solution: Make 'x' work with an empty string. (Thinca)
Files: src/eval.c, src/testdir/test_alot.vim,

src/testdir/test_feedkeys.vim

Patch 7.4.1534
Problem: Compiler warning for shadowed variable. (Kazunobu Kuriyama)
Solution: Rename it.
Files: src/eval.c

Patch 7.4.1535
Problem: The feedkeys test has a one second delay.
Solution: Avoid need_wait_return() to delay. (Hirohito Higashi)
Files: src/eval.c

Patch 7.4.1536

version8.txt — 2950

Problem: Cannot re-use a channel for another job.
Solution: Add the "channel" option to job_start().
Files: src/channel.c, src/eval.c, src/structs.h, src/os_unix.c,

src/os_win32.c, src/proto/channel.pro,
src/testdir/test_channel.vim

Patch 7.4.1537
Problem: Too many feature flags for pipes, jobs and channels.
Solution: Only use FEAT_JOB_CHANNEL.
Files: src/structs.h, src/feature.h, src/configure.in,

src/auto/configure, src/config.h.in, src/channel.c, src/eval.c,
src/gui.c, src/main.c, src/memline.c, src/misc2.c, src/os_mswin.c,
src/os_unix.c, src/os_win32.c, src/ui.c, src/version.c,
src/macros.h, src/proto.h, src/vim.h, src/Make_cyg_ming.mak,
src/Make_bc5.mak, src/Make_mvc.mak

Patch 7.4.1538
Problem: Selection with the mouse does not work in command line mode.
Solution: Use cairo functions. (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 7.4.1539
Problem: Too much code in eval.c.
Solution: Move job and channel code to channel.c.
Files: src/eval.c, src/channel.c, src/proto/channel.pro,

src/proto/eval.pro

Patch 7.4.1540
Problem: Channel test is a bit flaky.
Solution: Increase expected wait time.
Files: src/testdir/test_channel.vim

Patch 7.4.1541
Problem: Missing job_info().
Solution: Implement it.
Files: src/eval.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 7.4.1542
Problem: job_start() with a list is not tested.
Solution: Call job_start() with a list.
Files: src/testdir/test_channel.vim

Patch 7.4.1543
Problem: Channel log methods are not tested.
Solution: Log job activity and check it.
Files: src/testdir/test_channel.vim

Patch 7.4.1544
Problem: On Win32 escaping the command does not work properly.
Solution: Reset 'ssl' when escaping the command. (Yasuhiro Matsumoto)
Files: src/channel.c

Patch 7.4.1545
Problem: GTK3: horizontal cursor movement in Visual selection not good.
Solution: Make it work better. (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 7.4.1546
Problem: Sticky type checking is more annoying than useful.

version8.txt — 2951

Solution: Remove the error for changing a variable type.
Files: src/eval.c, src/testdir/test_assign.vim,

src/testdir/test_alot.vim, runtime/doc/eval.txt

Patch 7.4.1547
Problem: Getting a cterm highlight attribute that is not set results in the

string "-1".
Solution: Return an empty string. (Taro Muraoka)
Files: src/syntax.c, src/testdir/test_alot.vim,

src/testdir/test_syn_attr.vim

Patch 7.4.1548 (after 7.4.1546)
Problem: Two tests fail.
Solution: Adjust the expected error number. Remove check for type.
Files: src/testdir/test101.ok, src/testdir/test55.in,

src/testdir/test55.ok

Patch 7.4.1549 (after 7.4.1547)
Problem: Test for syntax attributes fails in Win32 GUI.
Solution: Use an existing font name.
Files: src/testdir/test_syn_attr.vim

Patch 7.4.1550
Problem: Cannot load packages early.
Solution: Add the ":packloadall" command.
Files: src/ex_cmds.h, src/ex_cmds2.c, src/main.c,

src/proto/ex_cmds2.pro, src/testdir/test_packadd.vim

Patch 7.4.1551
Problem: Cannot generate help tags in all doc directories.
Solution: Make ":helptags ALL" work.
Files: src/ex_cmds2.c, src/proto/ex_cmds2.pro, src/ex_cmds.c, src/vim.h

src/testdir/test_packadd.vim

Patch 7.4.1552
Problem: ":colorscheme" does not use 'packpath'.
Solution: Also use in "start" and "opt" directories in 'packpath'.
Files: src/ex_cmds2.c, src/gui.c, src/hardcopy.c, src/os_mswin.c,

src/spell.c, src/tag.c, src/if_py_both.h, src/vim.h,
src/digraph.c, src/eval.c, src/ex_docmd.c, src/main.c,
src/option.c, src/syntax.c, src/testdir/test_packadd.vim

Patch 7.4.1553
Problem: ":runtime" does not use 'packpath'.
Solution: Add "what" argument.
Files: src/ex_cmds2.c, src/vim.h, runtime/doc/repeat.txt,

src/testdir/test_packadd.vim

Patch 7.4.1554
Problem: Completion for :colorscheme does not use 'packpath'.
Solution: Make it work, add a test. (Hirohito Higashi)
Files: src/ex_getln.c, src/testdir/test_packadd.vim

Patch 7.4.1555
Problem: List of test targets incomplete.
Solution: Add newly added tests.
Files: src/Makefile

Patch 7.4.1556
Problem: "make install" changes the help tags file, causing it to differ

version8.txt — 2952

from the repository.
Solution: Move it aside and restore it.
Files: src/Makefile

Patch 7.4.1557
Problem: Windows cannot be identified.
Solution: Add a unique window number to each window and functions to use it.
Files: src/structs.h, src/window.c, src/eval.c, src/proto/eval.pro,

src/proto/window.pro, src/testdir/test_window_id.vim,
src/testdir/Make_all.mak, runtime/doc/eval.txt

Patch 7.4.1558
Problem: It is not easy to find out what windows display a buffer.
Solution: Add win_findbuf().
Files: src/eval.c, src/window.c, src/proto/window.pro,

src/testdir/test_window_id.vim, runtime/doc/eval.txt

Patch 7.4.1559
Problem: Passing cookie to a callback is clumsy.
Solution: Change function() to take arguments and return a partial.
Files: src/structs.h, src/channel.c, src/eval.c, src/if_python.c,

src/if_python3.c, src/if_py_both.h, src/json.c,
src/proto/eval.pro, src/testdir/test_partial.vim,
src/testdir/test_alot.vim, runtime/doc/eval.txt

Patch 7.4.1560
Problem: Dict options with a dash are more difficult to use.
Solution: Use an underscore, so that dict.err_io can be used.
Files: src/channel.c, src/structs.h, src/testdir/test_channel.vim,

runtime/doc/channel.txt

Patch 7.4.1561 (after 7.4.1559)
Problem: Missing update to proto file.
Solution: Change the proto file.
Files: src/proto/channel.pro

Patch 7.4.1562
Problem: ":helptags ALL" crashes. (Lcd)
Solution: Don't free twice.
Files: src/ex_cmds.c

Patch 7.4.1563
Problem: Partial test fails on windows.
Solution: Return 1 or -1 from compare function.
Files: src/testdir/test_partial.vim

Patch 7.4.1564
Problem: An empty list in function() causes an error.
Solution: Handle an empty list like there is no list of arguments.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1565
Problem: Crash when assert_equal() runs into a NULL string.
Solution: Check for NULL. (Dominique) Add a test.
Files: src/eval.c, src/testdir/test_assert.vim

Patch 7.4.1566
Problem: Compiler warning for shadowed variable. (Kazunobu Kuriyama)
Solution: Remove the inner one.
Files: src/eval.c

version8.txt — 2953

Patch 7.4.1567
Problem: Crash in assert_fails().
Solution: Check for NULL. (Dominique Pelle) Add a test.
Files: src/eval.c, src/testdir/test_assert.vim

Patch 7.4.1568
Problem: Using CTRL-] in help on option in parentheses doesn't work.
Solution: Skip the "(" in "('". (Hirohito Higashi)
Files: src/ex_cmds.c

Patch 7.4.1569
Problem: Using old style tests for quickfix.
Solution: Change them to new style tests. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/test106.in,

src/testdir/test106.ok, src/testdir/test_qf_title.in,
src/testdir/test_qf_title.ok, src/testdir/test_quickfix.vim

Patch 7.4.1570
Problem: There is no way to avoid the message when editing a file.
Solution: Add the "F" flag to 'shortmess'. (Shougo Matsu, closes #686)
Files: runtime/doc/options.txt, src/buffer.c, src/ex_cmds.c,

src/option.h

Patch 7.4.1571
Problem: No test for ":help".
Solution: Add a test for what 7.4.1568 fixed. (Hirohito Higashi)
Files: src/testdir/test_alot.vim, src/testdir/test_help_tagjump.vim

Patch 7.4.1572
Problem: Setting 'compatible' in test influences following tests.
Solution: Turn 'compatible' off again.
Files: src/testdir/test_backspace_opt.vim

Patch 7.4.1573
Problem: Tests get stuck at the more prompt.
Solution: Move the backspace test out of test_alot.
Files: src/testdir/test_alot.vim, src/testdir/Make_all.mak

Patch 7.4.1574
Problem: ":undo 0" does not work. (Florent Fayolle)
Solution: Make it undo all the way. (closes #688)
Files: src/undo.c, src/testdir/test_undolevels.vim,

src/testdir/test_ex_undo.vim, src/testdir/test_alot.vim

Patch 7.4.1575
Problem: Using wrong size for struct.
Solution: Use the size for wide API. (Ken Takata)
Files: src/gui_w32.c

Patch 7.4.1576
Problem: Write error of viminfo file is not handled properly. (Christian

Neukirchen)
Solution: Check the return value of fclose(). (closes #682)
Files: src/ex_cmds.c

Patch 7.4.1577
Problem: Cannot pass "dict.Myfunc" around as a partial.
Solution: Create a partial when expected.
Files: src/eval.c, src/testdir/test_partial.vim

version8.txt — 2954

Patch 7.4.1578
Problem: There is no way to invoke a function later or periodically.
Solution: Add timer support.
Files: src/eval.c, src/ex_cmds2.c, src/screen.c, src/ex_docmd.c,

src/feature.h, src/gui.c, src/proto/eval.pro,
src/proto/ex_cmds2.pro, src/proto/screen.pro, src/structs.h,
src/version.c, src/testdir/test_alot.vim,
src/testdir/test_timers.vim, runtime/doc/eval.txt

Patch 7.4.1579 (after 7.4.1578)
Problem: Missing changes in channel.c
Solution: Include the changes.
Files: src/channel.c

Patch 7.4.1580
Problem: Crash when using function reference. (Luchr)
Solution: Set initial refcount. (Ken Takata, closes #690)
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1581
Problem: Using ":call dict.func()" where the function is a partial does

not work. Using "dict.func()" where the function does not take a
Dictionary does not work.

Solution: Handle partial properly in ":call". (Yasuhiro Matsumoto)
Files: src/eval.c, src/testdir/test_partial.vim, src/testdir/test55.ok

Patch 7.4.1582
Problem: Get E923 when using function(dict.func, [], dict). (Kent Sibilev)

Storing a function with a dict in a variable drops the dict if the
function is script-local.

Solution: Translate the function name. Use dict arg if present.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1583
Problem: Warning for uninitialized variable.
Solution: Initialize it. (Dominique)
Files: src/ex_cmds2.c

Patch 7.4.1584
Problem: Timers don't work for Win32 console.
Solution: Add check_due_timer() in WaitForChar().
Files: src/os_win32.c

Patch 7.4.1585
Problem: Partial is not recognized everywhere.
Solution: Check for partial in trans_function_name(). (Yasuhiro Matsumoto)

Add a test.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1586
Problem: Nesting partials doesn't work.
Solution: Append arguments. (Ken Takata)
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1587
Problem: Compiler warnings with 64 bit compiler.
Solution: Add type casts. (Mike Williams)
Files: src/ex_cmds2.c

version8.txt — 2955

Patch 7.4.1588
Problem: Old style test for quickfix.
Solution: Turn test 96 into a new style test.
Files: src/testdir/Make_all.mak, src/testdir/test96.in,

src/testdir/test96.ok, src/testdir/test_quickfix.vim

Patch 7.4.1589
Problem: Combining dict and args with partial doesn't always work.
Solution: Use the arguments from the partial.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1590
Problem: Warning for shadowed variable. (Christian Brabandt)
Solution: Move the variable into a local block.
Files: src/eval.c

Patch 7.4.1591
Problem: The quickfix title is truncated.
Solution: Save the command before it is truncated. (Anton Lindqvist)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1592
Problem: Quickfix code using memory after being freed. (Dominique Pelle)
Solution: Detect that the window was closed. (Hirohito Higashi)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1593
Problem: Using channel timeout instead of request timeout. (Coverity)
Solution: Remove the extra assignment.
Files: src/channel.c

Patch 7.4.1594
Problem: Timers don't work on Unix.
Solution: Add missing code.
Files: src/os_unix.c

Patch 7.4.1595
Problem: Not checking for failed open(). (Coverity)
Solution: Check file descriptor not being negative.
Files: src/os_unix.c

Patch 7.4.1596
Problem: Memory leak. (Coverity)
Solution: Free the pattern.
Files: src/ex_cmds2.c

Patch 7.4.1597
Problem: Memory leak when out of memory. (Coverity)
Solution: Free the name.
Files: src/eval.c

Patch 7.4.1598
Problem: When starting the GUI fails a swap file is left behind. (Joerg

Plate)
Solution: Preserve files before exiting. (closes #692)
Files: src/main.c, src/gui.c

Patch 7.4.1599
Problem: No link to Coverity.
Solution: Add Coverity badge in README.

version8.txt — 2956

Files: README.md

Patch 7.4.1600
Problem: libs directory is not useful.
Solution: Remove arp.library, it was only for very old Amiga versions.
Files: libs/arp.library, Filelist

Patch 7.4.1601
Problem: README files take a lot of space in the top directory.
Solution: Move most of them to "READMEdir".
Files: Filelist, Makefile, README.txt.info, README_ami.txt,

README_ami.txt.info, README_amibin.txt, README_amibin.txt.info,
README_amisrc.txt, README_amisrc.txt.info, README_bindos.txt,
README_dos.txt, README_extra.txt, README_mac.txt, README_ole.txt,
README_os2.txt, README_os390.txt, README_src.txt,
README_srcdos.txt, README_unix.txt, README_vms.txt,
README_w32s.txt, READMEdir/README.txt.info,
READMEdir/README_ami.txt, READMEdir/README_ami.txt.info,
READMEdir/README_amibin.txt, READMEdir/README_amibin.txt.info,
READMEdir/README_amisrc.txt, READMEdir/README_amisrc.txt.info,
READMEdir/README_bindos.txt, READMEdir/README_dos.txt,
READMEdir/README_extra.txt, READMEdir/README_mac.txt,
READMEdir/README_ole.txt, READMEdir/README_os2.txt,
READMEdir/README_os390.txt, READMEdir/README_src.txt,
READMEdir/README_srcdos.txt, READMEdir/README_unix.txt,
READMEdir/README_vms.txt, READMEdir/README_w32s.txt,

Patch 7.4.1602
Problem: Info files take space in the top directory.
Solution: Move them to "READMEdir".
Files: Filelist, src.info, Contents.info, runtime.info, vimdir.info,

Vim.info, Xxd.info, READMEdir/src.info, READMEdir/Contents.info,
READMEdir/runtime.info, READMEdir/vimdir.info, READMEdir/Vim.info,
READMEdir/Xxd.info

Patch 7.4.1603
Problem: Timer with an ":echo" command messes up display.
Solution: Redraw depending on the mode. (Hirohito Higashi) Avoid the more

prompt being used recursively.
Files: src/screen.c, src/message.c

Patch 7.4.1604
Problem: Although emoji characters are ambiguous width, best is to treat

them as full width.
Solution: Update the Unicode character tables. Add the 'emoji' options.

(Yasuhiro Matsumoto)
Files: runtime/doc/options.txt, runtime/optwin.vim,

runtime/tools/unicode.vim, src/mbyte.c, src/option.c, src/option.h

Patch 7.4.1605
Problem: Catching exception that won't be thrown.
Solution: Remove try/catch.
Files: src/testdir/test55.in

Patch 7.4.1606
Problem: Having type() handle a Funcref that is or isn't a partial

differently causes problems for existing scripts.
Solution: Make type() return the same value. (Thinca)
Files: src/eval.c, src/testdir/test_viml.vim

version8.txt — 2957

Patch 7.4.1607
Problem: Comparing a function that exists on two dicts is not backwards

compatible. (Thinca)
Solution: Only compare the function, not what the partial adds.
Files: src/eval.c, src/testdir/test_alot.vim, src/testdir/test_expr.vim

Patch 7.4.1608
Problem: string() doesn't handle a partial.
Solution: Make a string from a partial.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1609
Problem: Contents file is only for Amiga distro.
Solution: Move it to "READMEdir". Update some info.
Files: Filelist, Contents, READMEdir/Contents

Patch 7.4.1610
Problem: Compiler warnings for non-virtual destructor.
Solution: Mark the classes final. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/gui_dwrite.cpp, src/if_ole.cpp

Patch 7.4.1611
Problem: The versplit feature makes the code unnecessary complicated.
Solution: Remove FEAT_VERTSPLIT, always support vertical splits when

FEAT_WINDOWS is defined.
Files: src/buffer.c, src/charset.c, src/eval.c, src/ex_cmds.c,

src/ex_docmd.c, src/ex_getln.c, src/gui.c, src/if_lua.c,
src/if_mzsch.c, src/if_ruby.c, src/main.c, src/misc1.c,
src/misc2.c, src/move.c, src/normal.c, src/option.c,
src/quickfix.c, src/screen.c, src/syntax.c, src/term.c, src/ui.c,
src/window.c, src/globals.h, src/gui.h, src/if_py_both.h,
src/option.h, src/structs.h, src/term.h
src/feature.h, src/vim.h, src/version.c

Patch 7.4.1612 (after 7.4.1611)
Problem: Can't build with small features.
Solution: Move code and #ifdefs.
Files: src/ex_getln.c

Patch 7.4.1613 (after 7.4.1612)
Problem: Still can't build with small features.
Solution: Adjust #ifdefs.
Files: src/ex_getln.c

Patch 7.4.1614
Problem: Still quickfix test in old style.
Solution: Turn test 10 into a new style test.
Files: src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/main.aap, src/testdir/test10.in,
src/testdir/test10.ok, src/testdir/test_quickfix.vim,
src/testdir/test10a.in, src/testdir/test10a.ok

Patch 7.4.1615
Problem: Build fails with tiny features.
Solution: Adjust #ifdefs.
Files: src/normal.c, src/window.c

Patch 7.4.1616
Problem: Malformed channel request causes a hang.
Solution: Drop malformed message. (Damien)

version8.txt — 2958

Files: src/channel.c, src/testdir/test_channel.vim,
src/testdir/test_channel.py

Patch 7.4.1617
Problem: When a JSON message is split it isn't decoded.
Solution: Wait a short time for the rest of the message to arrive.
Files: src/channel.c, src/json.c, src/structs.h,

src/testdir/test_channel.vim, src/testdir/test_channel.py

Patch 7.4.1618
Problem: Starting job with output to buffer changes options in the current

buffer.
Solution: Set "curbuf" earlier. (Yasuhiro Matsumoto)
Files: src/channel.c

Patch 7.4.1619
Problem: When 'fileformats' is set in the vimrc it applies to new buffers

but not the initial buffer.
Solution: Set 'fileformat' when starting up. (Mike Williams)
Files: src/option.c

Patch 7.4.1620
Problem: Emoji characters are not considered as a kind of word character.
Solution: Give emoji characters a word class number. (Yasuhiro Matsumoto)
Files: src/mbyte.c

Patch 7.4.1621
Problem: Channel test doesn't work with Python 2.6.
Solution: Add number in formatting placeholder. (Wiredool)
Files: src/testdir/test_channel.py

Patch 7.4.1622
Problem: Channel demo doesn't work with Python 2.6.
Solution: Add number in formatting placeholder
Files: runtime/tools/demoserver.py

Patch 7.4.1623
Problem: All Channels share the message ID, it keeps getting bigger.
Solution: Use a message ID per channel.
Files: src/channel.c, src/proto/channel.pro, src/structs.h

Patch 7.4.1624
Problem: Can't get info about a channel.
Solution: Add ch_info().
Files: src/eval.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 7.4.1625
Problem: Trying to close file descriptor that isn't open.
Solution: Check for negative number.
Files: src/os_unix.c

Patch 7.4.1626 (after 7.4.1624)
Problem: Missing changes to structs.
Solution: Include the changes.
Files: src/structs.h

Patch 7.4.1627
Problem: Channel out_cb and err_cb are not tested.
Solution: Add a test.

version8.txt — 2959

Files: src/testdir/test_channel.vim

Patch 7.4.1628
Problem: 64-bit Compiler warning.
Solution: Change type of variable. (Mike Williams)
Files: src/channel.c

Patch 7.4.1629
Problem: Handling emoji characters as full width has problems with

backwards compatibility.
Solution: Remove ambiguous and double width characters from the emoji table.

Use a separate table for the character class.
(partly by Yasuhiro Matsumoto)

Files: runtime/tools/unicode.vim, src/mbyte.c

Patch 7.4.1630
Problem: Unicode table for double width is outdated.
Solution: Update to the latest Unicode standard.
Files: src/mbyte.c

Patch 7.4.1631
Problem: Compiler doesn't understand switch on all enum values. (Tony

Mechelynck)
Solution: Initialize variable.
Files: src/channel.c

Patch 7.4.1632
Problem: List of test targets is outdated.
Solution: Update to current list of test targets.
Files: src/Makefile

Patch 7.4.1633
Problem: If the help tags file was removed "make install" fails. (Tony

Mechelynck)
Solution: Only try moving the file if it exists.
Files: src/Makefile

Patch 7.4.1634
Problem: Vertical movement after CTRL-A ends up in the wrong column.

(Urtica Dioica)
Solution: Set curswant when appropriate. (Hirohito Higashi)
Files: src/ops.c, src/testdir/test_increment.vim

Patch 7.4.1635
Problem: Channel test is a bit flaky.
Solution: Remove 'DETACH' if it's there.
Files: src/testdir/test_channel.vim

Patch 7.4.1636
Problem: When 'F' is in 'shortmess' the prompt for the encryption key isn't

displayed. (Toothpik)
Solution: Reset msg_silent.
Files: src/ex_getln.c

Patch 7.4.1637
Problem: Can't build with older MinGW compiler.
Solution: Change option from c++11 to gnu++11. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.1638

version8.txt — 2960

Problem: When binding a function to a dict the reference count is wrong.
Solution: Decrement dict reference count, only reference the function when

actually making a copy. (Ken Takata)
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1639
Problem: Invoking garbage collection may cause a double free.
Solution: Don't free the dict in a partial when recursive is FALSE.
Files: src/eval.c

Patch 7.4.1640
Problem: Crash when an autocommand changes a quickfix list. (Dominique)
Solution: Check whether an entry is still valid. (Yegappan Lakshmanan,

Hirohito Higashi)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1641
Problem: Using unterminated string.
Solution: Add NUL before calling vim_strsave_shellescape(). (James McCoy)
Files: src/eval.c, src/testdir/test105.in, src/testdir/test105.ok

Patch 7.4.1642
Problem: Handling emoji characters as full width has problems with

backwards compatibility.
Solution: Only put characters in the 1f000 range in the emoji table.
Files: runtime/tools/unicode.vim, src/mbyte.c

Patch 7.4.1643 (after 7.4.1641)
Problem: Terminating file name has side effects.
Solution: Restore the character. (mostly by James McCoy, closes #713)
Files: src/eval.c, src/testdir/test105.in, src/testdir/test105.ok

Patch 7.4.1644
Problem: Using string() on a partial that exists in the dictionary it binds

results in an error. (Nikolai Pavlov)
Solution: Make string() not fail on a recursively nested structure. (Ken

Takata)
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1645
Problem: When a dict contains a partial it can't be redefined as a

function. (Nikolai Pavlov)
Solution: Remove the partial when overwriting with a function.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1646
Problem: Using Python vim.bindeval() on a partial doesn't work. (Nikolai

Pavlov)
Solution: Add VAR_PARTIAL support in Python.
Files: src/if_py_both.h, src/testdir/test_partial.vim

Patch 7.4.1647
Problem: Using freed memory after setqflist() and ":caddbuffer". (Dominique)
Solution: Set qf_ptr when adding the first item to the quickfix list.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1648
Problem: Compiler has a problem copying a string into di_key[]. (Yegappan

Lakshmanan)
Solution: Add dictitem16_T.

version8.txt — 2961

Files: src/structs.h, src/eval.c

Patch 7.4.1649
Problem: The matchit plugin needs to be copied to be used.
Solution: Put the matchit plugin in an optional package.
Files: Filelist, runtime/macros/matchit.vim, runtime/macros/matchit.txt,

runtime/macros/README.txt, src/Makefile,
runtime/pack/dist/opt/matchit/plugin/matchit.vim,
runtime/pack/dist/opt/matchit/doc/matchit.txt,
runtime/pack/dist/opt/matchit/doc/tags,
runtime/doc/usr_05.txt, runtime/doc/usr_toc.txt

Patch 7.4.1650
Problem: Quickfix test fails.
Solution: Accept any number of matches.
Files: src/testdir/test_quickfix.vim

Patch 7.4.1651
Problem: Some dead (MSDOS) code remains.
Solution: Remove the unused lines. (Ken Takata)
Files: src/misc1.c

Patch 7.4.1652
Problem: Old style test for fnamemodify().
Solution: Turn it into a new style test.
Files: src/testdir/test105.in, src/testdir/test105.ok,

src/testdir/test_fnamemodify.vim, src/testdir/test_alot.vim,
src/testdir/Make_all.mak

Patch 7.4.1653 (after 7.4.1649)
Problem: Users who loaded matchit.vim manually have to change their

startup. (Gary Johnson)
Solution: Add a file in the old location that loads the package.
Files: runtime/macros/matchit.vim, Filelist

Patch 7.4.1654
Problem: Crash when using expand('%:S') in a buffer without a name.
Solution: Don't set a NUL. (James McCoy, closes #714)
Files: src/eval.c, src/testdir/test_fnamemodify.vim

Patch 7.4.1655
Problem: remote_expr() hangs. (Ramel)
Solution: Check for messages in the waiting loop.
Files: src/if_xcmdsrv.c

Patch 7.4.1656
Problem: Crash when using partial with a timer.
Solution: Increment partial reference count. (Hirohito Higashi)
Files: src/eval.c, src/testdir/test_timers.vim

Patch 7.4.1657
Problem: On Unix in a terminal: channel messages are not handled right away.

(Jackson Alves de Aquino)
Solution: Break the loop for timers when something was received.
Files: src/os_unix.c

Patch 7.4.1658
Problem: A plugin does not know when VimEnter autocommands were already

triggered.
Solution: Add the v:vim_did_enter variable.

version8.txt — 2962

Files: src/eval.c, src/main.c, src/vim.h, src/testdir/test_autocmd.vim,
src/testdir/test_alot.vim, runtime/doc/autocmd.txt,
runtime/doc/eval.txt

Patch 7.4.1659 (after 7.4.1657)
Problem: Compiler warning for argument type. (Manuel Ortega)
Solution: Remove "&".
Files: src/os_unix.c

Patch 7.4.1660
Problem: has('patch-7.4.1') doesn't work.
Solution: Fix off-by-one error. (Thinca)
Files: src/eval.c, src/testdir/test_expr.vim, src/testdir/test60.in,

src/testdir/test60.ok

Patch 7.4.1661
Problem: No test for special characters in channel eval command.
Solution: Testing sending and receiving text with special characters.
Files: src/testdir/test_channel.vim, src/testdir/test_channel.py

Patch 7.4.1662
Problem: No test for an invalid Ex command on a channel.
Solution: Test handling an invalid command gracefully. Avoid getting an

error message, do write it to the channel log.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel.py

Patch 7.4.1663
Problem: In tests it's often useful to check if a pattern matches.
Solution: Add assert_match().
Files: src/eval.c, src/testdir/test_assert.vim,

src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 7.4.1664
Problem: Crash in :cgetexpr.
Solution: Check for NULL pointer. (Dominique) Add a test.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1665
Problem: Crash when calling job_start() with a NULL string. (Dominique)
Solution: Check for an invalid argument.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1666
Problem: When reading JSON from a channel all readahead is used.
Solution: Use the fill function to reduce overhead.
Files: src/channel.c, src/json.c, src/structs.h

Patch 7.4.1667
Problem: Win32: waiting on a pipe with fixed sleep time.
Solution: Start with a short delay and increase it when looping.
Files: src/channel.c

Patch 7.4.1668
Problem: channel_get_all() does multiple allocations.
Solution: Compute the size and allocate once.
Files: src/channel.c

Patch 7.4.1669
Problem: When writing buffer lines to a pipe Vim may block.

version8.txt — 2963

Solution: Avoid blocking, write more lines later.
Files: src/channel.c, src/misc2.c, src/os_unix.c, src/structs.h,

src/vim.h, src/proto/channel.pro, src/testdir/test_channel.vim

Patch 7.4.1670
Problem: Completion doesn't work well for a variable containing "#".
Solution: Recognize the "#". (Watiko)
Files: src/eval.c

Patch 7.4.1671
Problem: When help exists in multiple languages, adding @ab while "ab" is

the default help language is unnecessary.
Solution: Leave out "@ab" when not needed. (Ken Takata)
Files: src/ex_getln.c

Patch 7.4.1672
Problem: The Dvorak support is a bit difficult to install.
Solution: Turn it into an optional package.
Files: runtime/macros/dvorak, runtime/macros/README.txt,

runtime/pack/dist/opt/dvorak/plugin/dvorak.vim,
runtime/pack/dist/opt/dvorak/dvorak/enable.vim,
runtime/pack/dist/opt/dvorak/dvorak/disable.vim

Patch 7.4.1673
Problem: The justify plugin has to be copied or sourced to be used.
Solution: Turn it into a package.
Files: runtime/macros/justify.vim, runtime/macros/README.txt,

runtime/pack/dist/opt/justify/plugin/justify.vim, Filelist

Patch 7.4.1674
Problem: The editexisting plugin has to be copied or sourced to be used.
Solution: Turn it into a package.
Files: runtime/macros/editexisting.vim, runtime/macros/README.txt,

runtime/pack/dist/opt/editexisting/plugin/editexisting.vim,
Filelist

Patch 7.4.1675
Problem: The swapmous plugin has to be copied or sourced to be used.
Solution: Turn it into the swapmouse package.
Files: runtime/macros/swapmous.vim, runtime/macros/README.txt,

runtime/pack/dist/opt/swapmouse/plugin/swapmouse.vim, Filelist

Patch 7.4.1676
Problem: The shellmenu plugin has to be copied or sourced to be used.
Solution: Turn it into a package.
Files: runtime/macros/shellmenu.vim, runtime/macros/README.txt,

runtime/pack/dist/opt/shellmenu/plugin/shellmenu.vim, Filelist

Patch 7.4.1677
Problem: A reference to the removed file_select plugin remains.
Solution: Remove it.
Files: runtime/macros/README.txt

Patch 7.4.1678
Problem: Warning for unused argument.
Solution: Add UNUSED. (Dominique Pelle)
Files: src/if_mzsch.c

Patch 7.4.1679
Problem: Coverity: copying value of v_lock without initializing it.

version8.txt — 2964

Solution: Init v_lock in rettv_list_alloc() and rettv_dict_alloc().
Files: src/eval.c

Patch 7.4.1680
Problem: Coverity warns for not checking name length (false positive).
Solution: Only copy the characters we know are there.
Files: src/channel.c

Patch 7.4.1681
Problem: Coverity warns for fixed size buffer length (false positive).
Solution: Add a check for the name length.
Files: src/eval.c

Patch 7.4.1682
Problem: Coverity: no check for NULL.
Solution: Add check for invalid argument to assert_match().
Files: src/eval.c

Patch 7.4.1683
Problem: Generated .bat files do not support --nofork.
Solution: Add check for --nofork. Also add "setlocal". (Kevin Cantú,

closes #659)
Files: src/dosinst.c

Patch 7.4.1684
Problem: README text is slightly outdated.
Solution: Mention the READMEdir directory.
Files: README.md, README.txt

Patch 7.4.1685
Problem: There is no easy way to get all the information about a match.
Solution: Add matchstrpos(). (Ozaki Kiichi)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/eval.c,

src/testdir/test_alot.vim, src/testdir/test_matchstrpos.vim

Patch 7.4.1686
Problem: When running tests $HOME/.viminfo is written. (James McCoy)
Solution: Add 'nviminfo' to the 'viminfo' option. (closes #722)
Files: src/testdir/test_backspace_opt.vim, src/testdir/test_viminfo.vim,

src/testdir/runtest.vim.

Patch 7.4.1687
Problem: The channel close_cb option does not work.
Solution: Use jo_close_partial instead of jo_err_partial. (Damien)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1688
Problem: MzScheme does not support partial.
Solution: Add minimal partial support. (Ken Takata)
Files: src/if_mzsch.c

Patch 7.4.1689
Problem: Ruby interface has inconsistent coding style.
Solution: Fix the coding style. (Ken Takata)
Files: src/if_ruby.c

Patch 7.4.1690
Problem: Can't compile with the conceal feature but without multibyte.
Solution: Adjust #ifdef. (Owen Leibman)
Files: src/eval.c, src/window.c

version8.txt — 2965

Patch 7.4.1691
Problem: When switching to a new buffer and an autocommand applies syntax

highlighting an ml_get error may occur.
Solution: Check "syn_buf" against the buffer in the window. (Alexander von

Buddenbrock, closes #676)
Files: src/syntax.c

Patch 7.4.1692
Problem: feedkeys('i', 'x') gets stuck, waits for a character to be typed.
Solution: Behave like ":normal". (Yasuhiro Matsumoto)
Files: src/eval.c, src/testdir/test_feedkeys.vim

Patch 7.4.1693
Problem: Building the Perl interface gives compiler warnings.
Solution: Remove a pragma. Add noreturn attributes. (Damien)
Files: src/if_perl.xs

Patch 7.4.1694
Problem: Win32 gvim doesn't work with "dvorakj" input method.
Solution: Wait for QS_ALLINPUT instead of QS_ALLEVENTS. (Yukihiro Nakadaira)
Files: src/gui_w32.c

Patch 7.4.1695
Problem: ":syn reset" clears the effect ":syn iskeyword". (James McCoy)
Solution: Remove clearing the syntax keywords.
Files: src/syntax.c

Patch 7.4.1696
Problem: When using :stopinsert in a silent mapping the "INSERT" message

isn't cleared. (Coacher)
Solution: Always clear the message. (Christian Brabandt, closes #718)
Files: src/ex_docmd.c, src/proto/screen.pro, src/screen.c

Patch 7.4.1697
Problem: Display problems when the 'ambiwidth' and 'emoji' options are not

set properly or the terminal doesn't behave as expected.
Solution: After drawing an ambiguous width character always position the

cursor.
Files: src/mbyte.c, src/screen.c, src/proto/mbyte.pro

Patch 7.4.1698
Problem: Two tests fail when running tests with MinGW. (Michael Soyka)
Solution: Convert test_getcwd.ok test_wordcount.ok to unix fileformat.
Files: src/testdir/Make_ming.mak

Patch 7.4.1699
Problem: :packadd does not work the same when used early or late.
Solution: Always load plugins matching "plugin/**/*.vim".
Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

Patch 7.4.1700
Problem: Equivalence classes are not properly tested.
Solution: Add tests for multibyte and latin1. Fix an error. (Owen Leibman)
Files: src/regexp.c, src/testdir/Make_all.mak,

src/testdir/test_alot_latin.vim, src/testdir/test_alot_utf8.vim,
src/testdir/test_regexp_latin.vim,
src/testdir/test_regexp_utf8.vim

Patch 7.4.1701

version8.txt — 2966

Problem: Equivalence classes still tested in old style tests.
Solution: Remove the duplicate.
Files: src/testdir/test44.in, src/testdir/test44.ok,

src/testdir/test99.in, src/testdir/test99.ok

Patch 7.4.1702
Problem: Using freed memory when parsing 'printoptions' fails.
Solution: Save the old options and restore them in case of an error.

(Dominique)
Files: src/hardcopy.c, src/testdir/test_hardcopy.vim

Patch 7.4.1703
Problem: Can't assert for not equal and not matching.
Solution: Add assert_notmatch() and assert_notequal().
Files: src/eval.c, runtime/doc/eval.txt, src/testdir/test_assert.vim

Patch 7.4.1704
Problem: Using freed memory with "wincmd p". (Dominique Pelle)
Solution: Also clear "prevwin" in other tab pages.
Files: src/window.c

Patch 7.4.1705
Problem: The 'guifont' option does not allow for a quality setting.
Solution: Add the "q" item, supported on MS-Windows. (Yasuhiro Matsumoto)
Files: runtime/doc/options.txt, src/gui_w32.c, src/os_mswin.c,

src/proto/os_mswin.pro

Patch 7.4.1706
Problem: Old style function declaration breaks build.
Solution: Remove __ARGS().
Files: src/proto/os_mswin.pro

Patch 7.4.1707
Problem: Cannot use empty dictionary key, even though it can be useful.
Solution: Allow using an empty dictionary key.
Files: src/hashtab.c, src/eval.c, src/testdir/test_expr.vim

Patch 7.4.1708
Problem: New regexp engine does not work properly with EBCDIC.
Solution: Define equivalence class characters. (Owen Leibman)
Files: src/regexp_nfa.c

Patch 7.4.1709
Problem: Mistake in #ifdef.
Solution: Change PROOF_QUALITY to DRAFT_QUALITY. (Ken Takata)
Files: src/os_mswin.c

Patch 7.4.1710
Problem: Not all output of an external command is read.
Solution: Avoid timing out when the process has exited. (closes #681)
Files: src/os_unix.c

Patch 7.4.1711
Problem: When using try/catch in 'statusline' it is still considered an

error and the status line will be disabled.
Solution: Check did_emsg instead of called_emsg. (haya14busa, closes #729)
Files: src/screen.c, src/testdir/test_statusline.vim,

src/testdir/test_alot.vim

Patch 7.4.1712

version8.txt — 2967

Problem: For plugins in packages, plugin authors need to take care of all
dependencies.

Solution: When loading "start" packages and for :packloadall, first add all
directories to 'runtimepath' before sourcing plugins.

Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

Patch 7.4.1713
Problem: GTK GUI doesn't work on Wayland.
Solution: Specify that only the X11 backend is allowed. (Simon McVittie)
Files: src/gui_gtk_x11.c

Patch 7.4.1714
Problem: Non-GUI specific settings in the gvimrc_example file.
Solution: Move some settings to the vimrc_example file. Remove setting

'hlsearch' again. (suggested by Hirohito Higashi)
Files: runtime/vimrc_example.vim, runtime/gvimrc_example.vim

Patch 7.4.1715
Problem: Double free when a partial is in a cycle with a list or dict.

(Nikolai Pavlov)
Solution: Do not free a nested list or dict used by the partial.
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1716
Problem: 'autochdir' doesn't work for the first file. (Rob Hoelz)
Solution: Call DO_AUTOCHDIR after startup. (Christian Brabandt, closes #704)
Files: src/main.c

Patch 7.4.1717
Problem: Leaking memory when opening a channel fails.
Solution: Unreference partials in job options.
Files: src/eval.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim

Patch 7.4.1718
Problem: Coverity: not using return value of set_ref_in_item().
Solution: Use the return value.
Files: src/eval.c

Patch 7.4.1719
Problem: Leaking memory when there is a cycle involving a job and a

partial.
Solution: Add a copyID to job and channel. Set references in items referred

by them. Go through all jobs and channels to find unreferenced
items. Also, decrement reference counts when garbage collecting.

Files: src/eval.c, src/channel.c, src/netbeans.c, src/globals.h,
src/ops.c, src/regexp.c, src/tag.c, src/proto/channel.pro,
src/proto/eval.pro, src/testdir/test_partial.vim, src/structs.h

Patch 7.4.1720
Problem: Tests fail without the job feature.
Solution: Skip tests when the job feature is not present.
Files: src/testdir/test_partial.vim

Patch 7.4.1721
Problem: The vimtbar files are unused.
Solution: Remove them. (Ken Takata)
Files: src/vimtbar.dll, src/vimtbar.h, src/vimtbar.lib, Filelist

Patch 7.4.1722

version8.txt — 2968

Problem: Crash when calling garbagecollect() after starting a job.
Solution: Set the copyID on job and channel. (Hirohito Higashi, Ozaki

Kiichi)
Files: src/eval.c

Patch 7.4.1723
Problem: When using try/catch in 'tabline' it is still considered an

error and the tabline will be disabled.
Solution: Check did_emsg instead of called_emsg. (haya14busa, closes #746)
Files: src/screen.c, src/testdir/test_tabline.vim,

src/testdir/test_alot.vim

Patch 7.4.1724 (after 7.4.1723)
Problem: Tabline test fails in GUI.
Solution: Remove 'e' from 'guioptions'.
Files: src/testdir/test_tabline.vim

Patch 7.4.1725
Problem: Compiler errors for non-ANSI compilers.
Solution: Remove // comment. Remove comma at end of enum. (Michael Jarvis)
Files: src/eval.c

Patch 7.4.1726
Problem: ANSI compiler complains about string length.
Solution: Split long string in two parts. (Michael Jarvis)
Files: src/ex_cmds.c

Patch 7.4.1727
Problem: Cannot detect a crash in tests when caused by garbagecollect().
Solution: Add garbagecollect_for_testing(). Do not free a job if is still

useful.
Files: src/channel.c, src/eval.c, src/getchar.c, src/main.c, src/vim.h,

src/proto/eval.pro, src/testdir/runtest.vim,
src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 7.4.1728
Problem: The help for functions require a space after the "(".
Solution: Make CTRL-] on a function name ignore the arguments. (Hirohito

Higashi)
Files: src/ex_cmds.c, src/testdir/test_help_tagjump.vim,

runtime/doc/eval.txt

Patch 7.4.1729
Problem: The Perl interface cannot use 'print' operator for writing

directly in standard IO.
Solution: Add a minimal implementation of PerlIO Layer feature and try to

use it for STDOUT/STDERR. (Damien)
Files: src/if_perl.xs, src/testdir/test_perl.vim

Patch 7.4.1730
Problem: It is not easy to get a character out of a string.
Solution: Add strgetchar() and strcharpart().
Files: src/eval.c, src/testdir/test_expr.vim

Patch 7.4.1731
Problem: Python: turns partial into simple funcref.
Solution: Use partials like partials. (Nikolai Pavlov, closes #734)
Files: runtime/doc/if_pyth.txt, src/eval.c, src/if_py_both.h,

src/if_python.c, src/if_python3.c, src/proto/eval.pro,
src/testdir/test86.in, src/testdir/test86.ok,

version8.txt — 2969

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.1732
Problem: Folds may close when using autocomplete. (Anmol Sethi)
Solution: Increment/decrement disable_fold. (Christian Brabandt, closes

#643)
Files: src/edit.c, src/fold.c, src/globals.h

Patch 7.4.1733
Problem: "make install" doesn't know about cross-compiling. (Christian

Neukirchen)
Solution: Add CROSS_COMPILING. (closes #740)
Files: src/configure.in, src/auto/configure, src/config.mk.in,

src/Makefile

Patch 7.4.1734 (after 7.4.1730)
Problem: Test fails when not using utf-8.
Solution: Split test in regular and utf-8 part.
Files: src/testdir/test_expr.vim, src/testdir/test_expr_utf8.vim,

src/testdir/test_alot_utf8.vim

Patch 7.4.1735
Problem: It is not possible to only see part of the message history. It is

not possible to clear messages.
Solution: Add a count to ":messages" and a clear argument. (Yasuhiro

Matsumoto)
Files: runtime/doc/message.txt, src/ex_cmds.h, src/message.c,

src/testdir/test_messages.vim, src/testdir/test_alot.vim

Patch 7.4.1736 (after 7.4.1731)
Problem: Unused variable.
Solution: Remove it. (Yasuhiro Matsumoto)
Files: src/if_py_both.h

Patch 7.4.1737
Problem: Argument marked as unused is used.
Solution: Remove UNUSED.
Files: src/message.c

Patch 7.4.1738
Problem: Count for ":messages" depends on number of lines.
Solution: Add ADDR_OTHER address type.
Files: src/ex_cmds.h

Patch 7.4.1739
Problem: Messages test fails on MS-Windows.
Solution: Adjust the asserts. Skip the "messages maintainer" line if not

showing all messages.
Files: src/message.c, src/testdir/test_messages.vim

Patch 7.4.1740
Problem: syn-cchar defined with matchadd() does not appear if there are no

other syntax definitions which matches buffer text.
Solution: Check for startcol. (Ozaki Kiichi, haya14busa, closes #757)
Files: src/screen.c, src/testdir/Make_all.mak,

src/testdir/test_alot_utf8.vim, src/testdir/test_match_conceal.in,
src/testdir/test_match_conceal.ok,
src/testdir/test_matchadd_conceal.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_undolevels.vim

version8.txt — 2970

Patch 7.4.1741
Problem: Not testing utf-8 characters.
Solution: Move the right asserts to the test_expr_utf8 test.
Files: src/testdir/test_expr.vim, src/testdir/test_expr_utf8.vim

Patch 7.4.1742
Problem: strgetchar() does not work correctly.
Solution: use mb_cptr2len(). Add a test. (Naruhiko Nishino)
Files: src/eval.c, src/testdir/test_expr_utf8.vim

Patch 7.4.1743
Problem: Clang warns for uninitialized variable. (Michael Jarvis)
Solution: Initialize it.
Files: src/if_py_both.h

Patch 7.4.1744
Problem: Python: Converting a sequence may leak memory.
Solution: Decrement a reference. (Nikolai Pavlov)
Files: src/if_py_both.h

Patch 7.4.1745
Problem: README file is not clear about where to get Vim.
Solution: Add links to github, releases and the Windows installer.

(Suggested by Christian Brabandt)
Files: README.md, README.txt

Patch 7.4.1746
Problem: Memory leak in Perl.
Solution: Decrement the reference count. Add a test. (Damien)
Files: src/if_perl.xs, src/testdir/test_perl.vim

Patch 7.4.1747
Problem: Coverity: missing check for NULL pointer.
Solution: Check for out of memory.
Files: src/if_py_both.h

Patch 7.4.1748
Problem: "gD" does not find match in first column of first line. (Gary

Johnson)
Solution: Accept match at the cursor.
Files: src/normal.c, src/testdir/test_goto.vim, src/testdir/test_alot.vim

Patch 7.4.1749
Problem: When using GTK 3.20 there are a few warnings.
Solution: Use new functions when available. (Kazunobu Kuriyama)
Files: src/gui_beval.c src/gui_gtk_x11.c

Patch 7.4.1750
Problem: When a buffer gets updated while in command line mode, the screen

may be messed up.
Solution: Postpone the redraw when the screen is scrolled.
Files: src/channel.c

Patch 7.4.1751
Problem: Crash when 'tagstack' is off. (Dominique Pelle)
Solution: Fix it. (Hirohito Higashi)
Files: src/tag.c, src/testdir/test_alot.vim, src/testdir/test_tagjump.vim

Patch 7.4.1752

version8.txt — 2971

Problem: When adding to the quickfix list the current position is reset.
Solution: Do not reset the position when not needed. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1753
Problem: "noinsert" in 'completeopt' is sometimes ignored.
Solution: Set the variables when the 'completeopt' was set. (Ozaki Kiichi)
Files: src/edit.c, src/option.c, src/proto/edit.pro

Patch 7.4.1754
Problem: When 'filetype' was set and reloading a buffer which does not

cause it to be set, the syntax isn't loaded. (KillTheMule)
Solution: Remember whether the FileType event was fired and fire it if not.

(Anton Lindqvist, closes #747)
Files: src/fileio.c, src/testdir/test_syntax.vim

Patch 7.4.1755
Problem: When using getreg() on a non-existing register a NULL list is

returned. (Bjorn Linse)
Solution: Allocate an empty list. Add a test.
Files: src/eval.c, src/testdir/test_expr.vim

Patch 7.4.1756
Problem: "dll" options are not expanded.
Solution: Expand environment variables. (Ozaki Kiichi)
Files: src/option.c, src/testdir/test_alot.vim,

src/testdir/test_expand_dllpath.vim

Patch 7.4.1757
Problem: When using complete() it may set 'modified' even though nothing

was inserted.
Solution: Use Down/Up instead of Next/Previous match. (Shougo Matsu, closes

#745)
Files: src/edit.c

Patch 7.4.1758
Problem: Triggering CursorHoldI when in CTRL-X mode causes problems.
Solution: Do not trigger CursorHoldI in CTRL-X mode. Add "!" flag to

feedkeys() (test with that didn't work though).
Files: src/edit.c, src/eval.c

Patch 7.4.1759
Problem: When using feedkeys() in a timer the inserted characters are not

used right away.
Solution: Break the wait loop when characters have been added to typebuf.

use this for testing CursorHoldI.
Files: src/gui.c, src/os_win32.c, src/os_unix.c,

src/testdir/test_autocmd.vim

Patch 7.4.1760 (after 7.4.1759)
Problem: Compiler warning for unused variable.
Solution: Add #ifdef. (John Marriott)
Files: src/os_win32.c

Patch 7.4.1761
Problem: Coverity complains about ignoring return value.
Solution: Add "(void)" to get rid of the warning.
Files: src/eval.c

Patch 7.4.1762

version8.txt — 2972

Problem: Coverity: useless assignments.
Solution: Remove them.
Files: src/search.c

Patch 7.4.1763
Problem: Coverity: useless assignment.
Solution: Add #if 0.
Files: src/spell.c

Patch 7.4.1764
Problem: C++ style comment. (Ken Takata)
Solution: Finish the work started here: don't call perror() when stderr

isn't working.
Files: src/os_unix.c

Patch 7.4.1765
Problem: Undo options are not together in the options window.
Solution: Put them together. (Gary Johnson)
Files: runtime/optwin.vim

Patch 7.4.1766
Problem: Building instructions for MS-Windows are outdated.
Solution: Mention setting SDK_INCLUDE_DIR. (Ben Franklin, closes #771) Move

outdated instructions further down.
Files: src/INSTALLpc.txt

Patch 7.4.1767
Problem: When installing Vim on a GTK system the icon cache is not updated.
Solution: Update the GTK icon cache when possible. (Kazunobu Kuriyama)
Files: src/Makefile, src/configure.in, src/config.mk.in,

src/auto/configure

Patch 7.4.1768
Problem: Arguments of setqflist() are not checked properly.
Solution: Add better checks, add a test. (Nikolai Pavlov, Hirohito Higashi,

closes #661)
Files: src/eval.c, src/testdir/test_quickfix.vim

Patch 7.4.1769
Problem: No "closed", "errors" and "encoding" attribute on Python output.
Solution: Add attributes and more tests. (Roland Puntaier, closes #622)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.1770
Problem: Cannot use true color in the terminal.
Solution: Add the 'guicolors' option. (Nikolai Pavlov)
Files: runtime/doc/options.txt, runtime/doc/term.txt,

runtime/doc/various.txt, src/auto/configure, src/config.h.in,
src/configure.in, src/eval.c, src/globals.h, src/hardcopy.c,
src/option.c, src/option.h, src/proto/term.pro, src/screen.c,
src/structs.h, src/syntax.c, src/term.c, src/term.h,
src/version.c, src/vim.h

Patch 7.4.1771 (after 7.4.1768)
Problem: Warning for unused variable.
Solution: Add #ifdef. (John Marriott)
Files: src/eval.c

version8.txt — 2973

Patch 7.4.1772 (after 7.4.1767)
Problem: Installation fails when $GTK_UPDATE_ICON_CACHE is empty.
Solution: Add quotes. (Kazunobu Kuriyama)
Files: src/Makefile

Patch 7.4.1773 (after 7.4.1770)
Problem: Compiler warnings. (Dominique Pelle)
Solution: Add UNUSED. Add type cast. Avoid a buffer overflow.
Files: src/syntax.c, src/term.c

Patch 7.4.1774 (after 7.4.1770)
Problem: Cterm true color feature has warnings.
Solution: Add type casts.
Files: src/screen.c, src/syntax.c, src/term.c

Patch 7.4.1775
Problem: The rgb.txt file is not installed.
Solution: Install the file. (Christian Brabandt)
Files: src/Makefile

Patch 7.4.1776
Problem: Using wrong buffer length.
Solution: use the right name. (Kazunobu Kuriyama)
Files: src/term.c

Patch 7.4.1777
Problem: Newly added features can escape the sandbox.
Solution: Add checks for restricted and secure. (Yasuhiro Matsumoto)
Files: src/eval.c

Patch 7.4.1778
Problem: When using the term truecolor feature, the t_8f and t_8b termcap

options are not set by default.
Solution: Move the values to before BT_EXTRA_KEYS. (Christian Brabandt)
Files: src/term.c

Patch 7.4.1779
Problem: Using negative index in strcharpart(). (Yegappan Lakshmanan)
Solution: Assume single byte when using a negative index.
Files: src/eval.c

Patch 7.4.1780
Problem: Warnings reported by cppcheck.
Solution: Fix the warnings. (Dominique Pelle)
Files: src/ex_cmds2.c, src/json.c, src/misc1.c, src/ops.c,

src/regexp_nfa.c

Patch 7.4.1781
Problem: synIDattr() does not respect 'guicolors'.
Solution: Change the condition for the mode. (Christian Brabandt)
Files: src/eval.c

Patch 7.4.1782
Problem: strcharpart() does not work properly with some multibyte

characters.
Solution: Use mb_cptr2len() instead of mb_char2len(). (Hirohito Higashi)
Files: src/eval.c, src/testdir/test_expr_utf8.vim

Patch 7.4.1783
Problem: The old regexp engine doesn't handle character classes correctly.

version8.txt — 2974

(Manuel Ortega)
Solution: Use regmbc() instead of regc(). Add a test.
Files: src/regexp.c, src/testdir/test_regexp_utf8.vim

Patch 7.4.1784
Problem: The termtruecolor feature is enabled differently from many other

features.
Solution: Enable the termtruecolor feature for the big build, not through

configure.
Files: src/configure.in, src/config.h.in, src/auto/configure,

src/feature.h

Patch 7.4.1785 (after 7.4.1783)
Problem: Regexp test fails on windows.
Solution: set 'isprint' to the right value for testing.
Files: src/testdir/test_regexp_utf8.vim

Patch 7.4.1786
Problem: Compiled-in colors do not match rgb.txt.
Solution: Use the rgb.txt colors. (Kazunobu Kuriyama)
Files: src/term.c

Patch 7.4.1787
Problem: When a job ends the close callback is invoked before other

callbacks. On Windows the close callback is not called.
Solution: First invoke out/err callbacks before the close callback.

Make the close callback work on Windows.
Files: src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, src/testdir/test_channel_pipe.py

Patch 7.4.1788
Problem: NSIS script is missing packages.
Solution: Add the missing directories. (Ken Takata)
Files: nsis/gvim.nsi

Patch 7.4.1789
Problem: Cannot use ch_read() in the close callback.
Solution: Do not discard the channel if there is readahead. Do not discard

readahead if there is a close callback.
Files: src/eval.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim

Patch 7.4.1790
Problem: Leading white space in a job command matters. (Andrew Stewart)
Solution: Skip leading white space.
Files: src/os_unix.c

Patch 7.4.1791
Problem: Channel could be garbage collected too early.
Solution: Don't free a channel or remove it from a job when it is still

useful.
Files: src/channel.c

Patch 7.4.1792
Problem: Color name decoding is implemented several times.
Solution: Move it to term.c. (Christian Brabandt)
Files: src/gui_mac.c, src/gui_photon.c, src/gui_w32.c,

src/proto/term.pro, src/term.c

Patch 7.4.1793

version8.txt — 2975

Problem: Some character classes may differ between systems. On OS/X the
regexp test fails.

Solution: Make this less dependent on the system. (idea by Kazunobu Kuriyama)
Files: src/regexp.c, src/regexp_nfa.c

Patch 7.4.1794 (after 7.4.1792)
Problem: Can't build on MS-Windows.
Solution: Add missing declaration.
Files: src/gui_w32.c

Patch 7.4.1795
Problem: Compiler warning for redefining RGB. (John Marriott)
Solution: Rename it to TORGB.
Files: src/term.c

Patch 7.4.1796 (after 7.4.1795)
Problem: Colors are wrong on MS-Windows. (Christian Robinson)
Solution: Use existing RGB macro if it exists. (Ken Takata)
Files: src/term.c

Patch 7.4.1797
Problem: Warning from Windows 64 bit compiler.
Solution: Change int to size_t. (Mike Williams)
Files: src/term.c

Patch 7.4.1798
Problem: Still compiler warning for unused return value. (Charles Campbell)
Solution: Assign to ignoredp.
Files: src/term.c

Patch 7.4.1799
Problem: 'guicolors' is a confusing option name.
Solution: Use 'termguicolors' instead. (Hirohito Higashi, Ken Takata)
Files: runtime/doc/options.txt, runtime/doc/term.txt,

runtime/doc/various.txt, runtime/syntax/dircolors.vim, src/eval.c,
src/feature.h, src/globals.h, src/hardcopy.c, src/option.c,
src/option.h, src/proto/term.pro, src/screen.c, src/structs.h,
src/syntax.c, src/term.c, src/version.c, src/vim.h

Patch 7.4.1800 (after 7.4.1799)
Problem: Unnecessary #ifdef.
Solution: Just use USE_24BIT. (Ken Takata)
Files: src/syntax.c

Patch 7.4.1801
Problem: Make uninstall leaves file behind.
Solution: Delete rgb.txt. (Kazunobu Kuriyama)
Files: src/Makefile

Patch 7.4.1802
Problem: Quickfix doesn't handle long lines well, they are split.
Solution: Drop characters after a limit. (Anton Lindqvist)
Files: src/quickfix.c, src/testdir/test_quickfix.vim,

src/testdir/samples/quickfix.txt

Patch 7.4.1803
Problem: GTK3 doesn't handle menu separators properly.
Solution: Use gtk_separator_menu_item_new(). (Kazunobu Kuriyama)
Files: src/gui_gtk.c

version8.txt — 2976

Patch 7.4.1804
Problem: Can't use Vim as MANPAGER.
Solution: Add manpager.vim. (Enno Nagel, closes #491)
Files: runtime/doc/filetype.txt, runtime/plugin/manpager.vim

Patch 7.4.1805
Problem: Running tests in shadow dir fails.
Solution: Link the samples directory
Files: src/Makefile

Patch 7.4.1806
Problem: 'termguicolors' option missing from the options window.
Solution: Add the entry.
Files: runtime/optwin.vim

Patch 7.4.1807
Problem: Test_out_close_cb sometimes fails.
Solution: Always write DETACH to out, not err.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1808 (after 7.4.1806)
Problem: Using wrong feature name to check for 'termguicolors'.
Solution: Use the right feature name. (Ken Takata)
Files: runtime/optwin.vim

Patch 7.4.1809 (after 7.4.1808)
Problem: Using wrong short option name for 'termguicolors'.
Solution: Use the option name.
Files: runtime/optwin.vim

Patch 7.4.1810
Problem: Sending DETACH after a channel was closed isn't useful.
Solution: Only add DETACH for a netbeans channel.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1811
Problem: Netbeans channel gets garbage collected.
Solution: Set reference in nb_channel.
Files: src/eval.c, src/netbeans.c, src/proto/netbeans.pro

Patch 7.4.1812
Problem: Failure on startup with Athena and Motif.
Solution: Check for INVALCOLOR. (Kazunobu Kuriyama)
Files: src/syntax.c, src/vim.h

Patch 7.4.1813
Problem: Memory access error when running test_quickfix.
Solution: Allocate one more byte. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 7.4.1814
Problem: A channel may be garbage collected while it's still being used by

a job. (James McCoy)
Solution: Mark the channel as used if the job is still used. Do the same

for channels that are still used.
Files: src/eval.c, src/channel.c, src/proto/channel.pro

Patch 7.4.1815
Problem: Compiler warnings for unused variables. (Ajit Thakkar)
Solution: Add a dummy initialization. (Yasuhiro Matsumoto)

version8.txt — 2977

Files: src/quickfix.c

Patch 7.4.1816
Problem: Looping over a null list throws an error.
Solution: Skip over the for loop.
Files: src/eval.c, src/testdir/test_expr.vim

Patch 7.4.1817
Problem: The screen is not updated if a callback is invoked when closing a

channel.
Solution: Invoke redraw_after_callback().
Files: src/channel.c

Patch 7.4.1818
Problem: Help completion adds @en to all matches except the first one.
Solution: Remove "break", go over all items.
Files: src/ex_getln.c

Patch 7.4.1819
Problem: Compiler warnings when sprintf() is a macro.
Solution: Don't interrupt sprintf() with an #ifdef. (Michael Jarvis,

closes #788)
Files: src/fileio.c, src/tag.c, src/term.c

Patch 7.4.1820
Problem: Removing language from help tags too often.
Solution: Only remove @en when not needed. (Hirohito Higashi)
Files: src/ex_getln.c, src/testdir/test_help_tagjump.vim

Patch 7.4.1821 (after 7.4.1820)
Problem: Test fails on MS-Windows.
Solution: Sort the completion results.
Files: src/testdir/test_help_tagjump.vim

Patch 7.4.1822
Problem: Redirecting stdout of a channel to "null" doesn't work. (Nicola)
Solution: Correct the file descriptor number.
Files: src/os_unix.c

Patch 7.4.1823
Problem: Warning from 64 bit compiler.
Solution: Add type cast. (Mike Williams)
Files: src/quickfix.c

Patch 7.4.1824
Problem: When a job is no longer referenced and does not have an exit

callback the process may hang around in defunct state. (Nicola)
Solution: Call job_status() if the job is running and won't get freed

because it might still be useful.
Files: src/channel.c

Patch 7.4.1825
Problem: When job writes to buffer nothing is written. (Nicola)
Solution: Do not discard a channel before writing is done.
Files: src/channel.c

Patch 7.4.1826
Problem: Callbacks are invoked when it's not safe. (Andrew Stewart)
Solution: When a channel is to be closed don't invoke callbacks right away,

wait for a safe moment.

version8.txt — 2978

Files: src/structs.h, src/channel.c

Patch 7.4.1827
Problem: No error when invoking a callback when it's not safe.
Solution: Add an error message. Avoid the error when freeing a channel.
Files: src/structs.h, src/channel.c

Patch 7.4.1828
Problem: May try to access buffer that's already freed.
Solution: When freeing a buffer remove it from any channel.
Files: src/buffer.c, src/channel.c, src/proto/channel.pro

Patch 7.4.1829 (after 7.4.1828)
Problem: No message on channel log when buffer was freed.
Solution: Log a message.
Files: src/channel.c

Patch 7.4.1830
Problem: non-antialiased misnamed.
Solution: Use NONANTIALIASED and NONANTIALIASED_QUALITY. (Kim Brouer,

closes #793)
Files: src/os_mswin.c, runtime/doc/options.txt

Patch 7.4.1831
Problem: When timer_stop() is called with a string there is no proper error

message.
Solution: Require getting a number. (Bjorn Linse)
Files: src/eval.c

Patch 7.4.1832
Problem: Memory leak in debug commands.
Solution: Free memory before overwriting the pointer. (hint by Justin Keyes)
Files: src/ex_cmds2.c

Patch 7.4.1833
Problem: Cannot use an Ex command for 'keywordprg'.
Solution: Accept an Ex command. (Nelo-Thara Wallus)
Files: src/normal.c, runtime/doc/options.txt

Patch 7.4.1834
Problem: Possible crash when conceal is active.
Solution: Check for the screen to be valid when redrawing a line.
Files: src/screen.c

Patch 7.4.1835
Problem: When splitting and closing a window the status height changes.
Solution: Compute the frame height correctly. (Hirohito Higashi)
Files: src/window.c, src/testdir/test_alot.vim,

src/testdir/test_window_cmd.vim

Patch 7.4.1836
Problem: When using a partial on a dictionary it always gets bound to that

dictionary.
Solution: Make a difference between binding a function to a dictionary

explicitly or automatically.
Files: src/structs.h, src/eval.c, src/testdir/test_partial.vim,

runtime/doc/eval.txt

Patch 7.4.1837
Problem: The BufUnload event is triggered twice, when :bunload is used with

version8.txt — 2979

`bufhidden` set to `unload` or `delete`.
Solution: Do not trigger the event when ml_mfp is NULL. (Hirohito Higashi)
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 7.4.1838
Problem: Functions specifically for testing do not sort together.
Solution: Rename garbagecollect_for_testing() to test_garbagecollect_now().

Add test_null_list(), test_null_dict(), etc.
Files: src/eval.c, src/testdir/test_expr.vim,

src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 7.4.1839
Problem: Cannot get the items stored in a partial.
Solution: Support using get() on a partial.
Files: src/eval.c, src/testdir/test_partial.vim, runtime/doc/eval.txt

Patch 7.4.1840
Problem: When using packages an "after" directory cannot be used.
Solution: Add the "after" directory of the package to 'runtimepath' if it

exists.
Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

Patch 7.4.1841
Problem: The code to reallocate the buffer used for quickfix is repeated.
Solution: Move the code to a function. (Yegappan Lakshmanan, closes #831)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1842 (after 7.4.1839)
Problem: get() works for Partial but not for Funcref.
Solution: Accept Funcref. Also return the function itself. (Nikolai Pavlov)
Files: src/eval.c, src/testdir/test_partial.vim, runtime/doc/eval.txt

Patch 7.4.1843
Problem: Tests involving Python are flaky.
Solution: Set the pt_auto field. Add tests. (Nikolai Pavlov)
Files: runtime/doc/if_pyth.txt, src/if_py_both.h, src/testdir/test86.in,

src/testdir/test86.ok, src/testdir/test87.in,
src/testdir/test87.ok

Patch 7.4.1844
Problem: Using old function name in comment. More functions should start

with test_.
Solution: Rename function in comment. (Hirohito Higashi) Rename

disable_char_avail_for_testing() to test_disable_char_avail().
And alloc_fail() to test_alloc_fail().

Files: src/eval.c, src/getchar.c, src/testdir/runtest.vim,
src/testdir/test_cursor_func.vim, src/testdir/test_quickfix.vim,
runtime/doc/eval.txt

Patch 7.4.1845
Problem: Mentioning NetBeans when reading from channel. (Ramel Eshed)
Solution: Make the text more generic.
Files: src/channel.c

Patch 7.4.1846
Problem: Ubsan detects a multiplication overflow.
Solution: Don't use orig_mouse_time when it's zero. (Dominique Pelle)
Files: src/term.c

Patch 7.4.1847

version8.txt — 2980

Problem: Getting an item from a NULL dict crashes. Setting a register to a
NULL list crashes. (Nikolai Pavlov, issue #768) Comparing a NULL
dict with a NULL dict fails.

Solution: Properly check for NULL.
Files: src/eval.c, src/testdir/test_expr.vim

Patch 7.4.1848
Problem: Can't build with Strawberry Perl 5.24.
Solution: Define S_SvREFCNT_dec() if needed. (Damien, Ken Takata)
Files: src/if_perl.xs

Patch 7.4.1849
Problem: Still trying to read from channel that is going to be closed.

(Ramel Eshed)
Solution: Check if ch_to_be_closed is set.
Files: src/channel.c

Patch 7.4.1850
Problem: GUI freezes when using a job. (Shougo Matsu)
Solution: Unregister the channel when there is an input error.
Files: src/channel.c

Patch 7.4.1851
Problem: test_syn_attr fails when using the GUI. (Dominique Pelle)
Solution: Escape the font name properly.
Files: src/testdir/test_syn_attr.vim

Patch 7.4.1852
Problem: Unix: Cannot run all tests with the GUI.
Solution: Add the "testgui" target.
Files: src/Makefile, src/testdir/Makefile

Patch 7.4.1853
Problem: Crash when job and channel are in the same dict while using

partials. (Luc Hermitte)
Solution: Do not decrement the channel reference count too early.
Files: src/channel.c

Patch 7.4.1854
Problem: When setting 'termguicolors' the Ignore highlighting doesn't work.

(Charles Campbell)
Solution: Handle the color names "fg" and "bg" when the GUI isn't running

and no colors are specified, fall back to black and white.
Files: src/syntax.c

Patch 7.4.1855
Problem: Valgrind reports memory leak for job that is not freed.
Solution: Free all jobs on exit. Add test for failing job.
Files: src/channel.c, src/misc2.c, src/proto/channel.pro,

src/testdir/test_partial.vim

Patch 7.4.1856 (after 7.4.1855)
Problem: failing job test fails on MS-Windows.
Solution: Expect "fail" status instead of "dead".
Files: src/testdir/test_partial.vim

Patch 7.4.1857
Problem: When a channel appends to a buffer that is 'nomodifiable' there is

an error but appending is done anyway.
Solution: Add the 'modifiable' option. Refuse to write to a 'nomodifiable'

version8.txt — 2981

when the value is 1.
Files: src/structs.h, src/channel.c, src/testdir/test_channel.vim,

runtime/doc/channel.txt

Patch 7.4.1858
Problem: When a channel writes to a buffer it doesn't find a buffer by the

short name but re-uses it anyway.
Solution: Find buffer also by the short name.
Files: src/channel.c, src/buffer.c, src/vim.h

Patch 7.4.1859
Problem: Cannot use a function reference for "exit_cb".
Solution: Use get_callback(). (Yegappan Lakshmanan)
Files: src/channel.c, src/structs.h

Patch 7.4.1860
Problem: Using a partial for timer_start() may cause a crash.
Solution: Set the copyID in timer objects. (Ozaki Kiichi)
Files: src/testdir/test_timers.vim, src/eval.c, src/ex_cmds2.c,

src/proto/ex_cmds2.pro

Patch 7.4.1861
Problem: Compiler warnings with 64 bit compiler.
Solution: Change int to size_t. (Mike Williams)
Files: src/ex_cmds2.c

Patch 7.4.1862
Problem: string() with repeated argument does not give a result usable by

eval().
Solution: Refactor echo_string and tv2string(), moving the common part to

echo_string_core(). (Ken Takata)
Files: src/eval.c, src/testdir/test_viml.vim, src/testdir/test86.ok,

src/testdir/test87.ok

Patch 7.4.1863
Problem: Compiler warnings on Win64.
Solution: Adjust types, add type casts. (Ken Takata)
Files: src/if_mzsch.c, src/if_perl.xs, src/if_ruby.c, src/version.c

Patch 7.4.1864
Problem: Python: encoding error with Python 2.
Solution: Use "getcwdu" instead of "getcwd". (Ken Takata)
Files: src/if_py_both.h

Patch 7.4.1865
Problem: Memory leaks in test49. (Dominique Pelle)
Solution: Use NULL instead of an empty string.
Files: src/eval.c

Patch 7.4.1866
Problem: Invalid memory access when exiting with EXITFREE defined.

(Dominique Pelle)
Solution: Set "really_exiting" and skip error messages.
Files: src/misc2.c, src/eval.c

Patch 7.4.1867
Problem: Memory leak in test_matchstrpos.
Solution: Free the string before overwriting. (Yegappan Lakshmanan)
Files: src/eval.c

version8.txt — 2982

Patch 7.4.1868
Problem: Setting really_exiting causes memory leaks to be reported.
Solution: Add the in_free_all_mem flag.
Files: src/globals.h, src/misc2.c, src/eval.c

Patch 7.4.1869
Problem: Can't build with old version of Perl.
Solution: Define PERLIO_FUNCS_DECL. (Tom G. Christensen)
Files: src/if_perl.xs

Patch 7.4.1870 (after 7.4.1863)
Problem: One more Win64 compiler warning.
Solution: Change declared argument type. (Ken Takata)
Files: src/if_mzsch.c

Patch 7.4.1871
Problem: Appending to the quickfix list while the quickfix window is open

is very slow.
Solution: Do not delete all the lines, only append the new ones. Avoid

using a window while updating the list. (closes #841)
Files: src/quickfix.c

Patch 7.4.1872
Problem: Still build problem with old version of Perl.
Solution: Also define SvREFCNT_inc_void_NN if needed. (Tom G. Christensen)
Files: src/if_perl.xs

Patch 7.4.1873
Problem: When a callback adds a timer the GUI doesn't use it until later.

(Ramel Eshed)
Solution: Return early if a callback adds a timer.
Files: src/ex_cmds2.c, src/gui_gtk_x11.c, src/gui_w32.c, src/gui_x11.c,

src/globals.h

Patch 7.4.1874
Problem: Unused variable in Win32 code.
Solution: Remove it. (Mike Williams)
Files: src/gui_w32.c

Patch 7.4.1875
Problem: Comparing functions and partials doesn't work well.
Solution: Add tests. (Nikolai Pavlov) Compare the dict and arguments in the

partial. (closes #813)
Files: src/eval.c, src/testdir/test_partial.vim

Patch 7.4.1876
Problem: Typing "k" at the hit-enter prompt has no effect.
Solution: Don't assume recursive use of the prompt if a character was typed.

(Hirohito Higashi)
Files: src/message.c

Patch 7.4.1877
Problem: No test for invoking "close_cb" when writing to a buffer.
Solution: Add using close_cb to a test case.
Files: src/testdir/test_channel.vim

Patch 7.4.1878
Problem: Whether a job has exited isn't detected until a character is

typed. After calling exit_cb the cursor is in the wrong place.
Solution: Don't wait forever for a character to be typed when there is a

version8.txt — 2983

pending job. Update the screen if needed after calling exit_cb.
Files: src/os_unix.c, src/channel.c, src/proto/channel.pro

Patch 7.4.1879 (after 7.4.1877)
Problem: Channel test is flaky.
Solution: Wait for close_cb to be invoked.
Files: src/testdir/test_channel.vim

Patch 7.4.1880
Problem: MS-Windows console build defaults to not having +channel.
Solution: Include the channel feature if building with huge features.
Files: src/Make_mvc.mak

Patch 7.4.1881
Problem: Appending to a long quickfix list is slow.
Solution: Add qf_last.
Files: src/quickfix.c

Patch 7.4.1882
Problem: Check for line break at end of line wrong. (Dominique Pelle)
Solution: Correct the logic.
Files: src/quickfix.c

Patch 7.4.1883
Problem: Cppcheck found 2 incorrect printf formats.
Solution: Use %ld and %lx. (Dominique Pelle)
Files: src/VisVim/Commands.cpp, src/gui_mac.c

Patch 7.4.1884
Problem: Updating marks in a quickfix list is very slow when the list is

long.
Solution: Only update marks if the buffer has a quickfix entry.
Files: src/structs.h, src/quickfix.c

Patch 7.4.1885
Problem: MinGW console build defaults to not having +channel.
Solution: Include the channel feature if building with huge features. (Ken

Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.1886
Problem: When waiting for a character is interrupted by receiving channel

data and the first character of a mapping was typed, the mapping
times out. (Ramel Eshed)

Solution: When dealing with channel data don't return from mch_inchar().
Files: src/getchar.c, src/proto/getchar.pro, src/os_unix.c

Patch 7.4.1887
Problem: When receiving channel data 'updatetime' is not respected.
Solution: Recompute the waiting time after being interrupted.
Files: src/os_unix.c

Patch 7.4.1888
Problem: Wrong computation of remaining wait time in RealWaitForChar()
Solution: Remember the original waiting time.
Files: src/os_unix.c

Patch 7.4.1889
Problem: When umask is set to 0177 Vim can't create temp files. (Lcd)
Solution: Also correct umask when using mkdtemp().

version8.txt — 2984

Files: src/fileio.c

Patch 7.4.1890
Problem: GUI: When channel data is received the cursor blinking is

interrupted. (Ramel Eshed)
Solution: Don't update the cursor when it is blinking.
Files: src/screen.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro,

src/gui_mac.c, src/proto/gui_mac.pro, src/gui_photon.c,
src/proto/gui_photon.pro, src/gui_w32.c, src/proto/gui_w32.pro,
src/gui_x11.c, src/proto/gui_x11.pro

Patch 7.4.1891
Problem: Channel reading very long lines is slow.
Solution: Collapse multiple buffers until a NL is found.
Files: src/channel.c, src/netbeans.c, src/proto/channel.pro,

src/structs.h

Patch 7.4.1892
Problem: balloon eval only gets the window number, not the ID.
Solution: Add v:beval_winid.
Files: src/eval.c, src/gui_beval.c, src/vim.h

Patch 7.4.1893
Problem: Cannot easily get the window ID for a buffer.
Solution: Add bufwinid().
Files: src/eval.c, runtime/doc/eval.txt

Patch 7.4.1894
Problem: Cannot get the window ID for a mouse click.
Solution: Add v:mouse_winid.
Files: src/eval.c, src/vim.h, runtime/doc/eval.txt

Patch 7.4.1895
Problem: Cannot use a window ID where a window number is expected.
Solution: Add LOWEST_WIN_ID, so that the window ID can be used where a

number is expected.
Files: src/window.c, src/eval.c, src/vim.h, runtime/doc/eval.txt,

src/testdir/test_window_id.vim

Patch 7.4.1896
Problem: Invoking mark_adjust() when adding a new line below the last line

is pointless.
Solution: Skip calling mark_adjust() when appending below the last line.
Files: src/misc1.c, src/ops.c

Patch 7.4.1897
Problem: Various typos, long lines and style mistakes.
Solution: Fix the typos, wrap lines, improve style.
Files: src/buffer.c, src/ex_docmd.c, src/getchar.c, src/option.c,

src/main.aap, src/testdir/README.txt,
src/testdir/test_reltime.vim, src/testdir/test_tagjump.vim,
src/INSTALL, src/config.aap.in, src/if_mzsch.c

Patch 7.4.1898
Problem: User commands don't support modifiers.
Solution: Add the <mods> item. (Yegappan Lakshmanan, closes #829)
Files: runtime/doc/map.txt, src/ex_docmd.c, src/testdir/Make_all.mak,

src/testdir/test_usercommands.vim

Patch 7.4.1899

version8.txt — 2985

Problem: GTK 3: cursor blinking doesn't work well.
Solution: Instead of gui_gtk_window_clear() use gui_mch_clear_block().

(Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 7.4.1900
Problem: Using CTRL-] in the help on "{address}." doesn't work.
Solution: Recognize an item in {}. (Hirohito Higashi, closes #814)
Files: src/ex_cmds.c, src/testdir/test_help_tagjump.vim

Patch 7.4.1901
Problem: Win32: the "Disabled" menu items would appear enabled.
Solution: Use submenu_id if there is a parent. (Shane Harper, closes #834)
Files: src/gui_w32.c

Patch 7.4.1902
Problem: No test for collapsing buffers for a channel. Some text is lost.
Solution: Add a simple test. Set rq_buflen correctly.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel_pipe.py

Patch 7.4.1903
Problem: When writing viminfo merging current history with history in

viminfo may drop recent history entries.
Solution: Add new format for viminfo lines, use it for history entries. Use

a timestamp for ordering the entries. Add test_settime().
Add the viminfo version. Does not do merging on timestamp yet.

Files: src/eval.c, src/ex_getln.c, src/ex_cmds.c, src/structs.h,
src/globals.h, src/proto/ex_cmds.pro, src/proto/ex_getln.pro,
src/testdir/test_viminfo.vim

Patch 7.4.1904 (after 7.4.1903)
Problem: Build fails.
Solution: Add missing changes.
Files: src/vim.h

Patch 7.4.1905 (after 7.4.1903)
Problem: Some compilers can't handle a double semicolon.
Solution: Remove one semicolon.
Files: src/ex_cmds.c

Patch 7.4.1906
Problem: Collapsing channel buffers and searching for NL does not work

properly. (Xavier de Gaye, Ramel Eshed)
Solution: Do not assume the buffer contains a NUL or not. Change NUL bytes

to NL to avoid the string is truncated.
Files: src/channel.c, src/netbeans.c, src/proto/channel.pro

Patch 7.4.1907
Problem: Warnings from 64 bit compiler.
Solution: Change type to size_t. (Mike Williams)
Files: src/ex_cmds.c

Patch 7.4.1908
Problem: Netbeans uses uninitialized pointer and freed memory.
Solution: Set "buffer" at the right place (hint by Ken Takata)
Files: src/netbeans.c

Patch 7.4.1909
Problem: Doubled semicolons.

version8.txt — 2986

Solution: Reduce to one. (Dominique Pelle)
Files: src/dosinst.c, src/fold.c, src/gui_gtk_x11.c, src/gui_w32.c,

src/main.c, src/misc2.c

Patch 7.4.1910
Problem: Tests using external command to delete directory.
Solution: Use delete().
Files: src/testdir/test17.in, src/testdir/test73.in,

src/testdir/test_getcwd.in

Patch 7.4.1911
Problem: Recent history lines may be lost when exiting Vim.
Solution: Merge history using the timestamp.
Files: src/ex_getln.c, src/ex_cmds.c, src/vim.h, src/proto/ex_getln.pro,

src/testdir/test_viminfo.vim

Patch 7.4.1912
Problem: No test for using setqflist() on an older quickfix list.
Solution: Add a couple of tests.
Files: src/testdir/test_quickfix.vim

Patch 7.4.1913
Problem: When ":doautocmd" is used modelines are used even when no

autocommands were executed. (Daniel Hahler)
Solution: Skip processing modelines. (closes #854)
Files: src/fileio.c, src/ex_cmds.c, src/ex_docmd.c, src/proto/fileio.pro

Patch 7.4.1914
Problem: Executing autocommands while using the signal stack has a high

chance of crashing Vim.
Solution: Don't invoke autocommands when on the signal stack.
Files: src/os_unix.c

Patch 7.4.1915
Problem: The effect of the PopupMenu autocommand isn't directly visible.
Solution: Call gui_update_menus() before displaying the popup menu. (Shane

Harper, closes #855)
Files: src/menu.c

Patch 7.4.1916 (after 7.4.1906)
Problem: No proper test for what 7.4.1906 fixes.
Solution: Add a test for reading many lines.
Files: src/testdir/test_channel.vim

Patch 7.4.1917
Problem: History lines read from viminfo in different encoding than when

writing are not converted.
Solution: Convert the history lines.
Files: src/ex_cmds.c, src/testdir/test_viminfo.vim

Patch 7.4.1918
Problem: Not enough testing for parsing viminfo lines.
Solution: Add test with viminfo lines in bad syntax. Fix memory leak.
Files: src/ex_cmds.c, src/ex_getln.c, src/testdir/test_viminfo.vim

Patch 7.4.1919
Problem: Register contents is not merged when writing viminfo.
Solution: Use timestamps for register contents.
Files: src/ops.c, src/ex_getln.c, src/ex_cmds.c, src/proto/ex_cmds.pro,

src/proto/ex_getln.pro, src/proto/ops.pro, src/vim.h

version8.txt — 2987

Patch 7.4.1920 (after 7.4.1919)
Problem: Missing test changes.
Solution: Update viminfo test.
Files: src/testdir/test_viminfo.vim

Patch 7.4.1921 (after 7.4.1919)
Problem: vim_time() not included when needed.
Solution: Adjust #ifdef.
Files: src/ex_cmds.c

Patch 7.4.1922
Problem: Ruby 2.4.0 unifies Fixnum and Bignum into Integer.
Solution: Use rb_cInteger. (Weiyong Mao)
Files: src/if_ruby.c

Patch 7.4.1923
Problem: Command line editing is not tested much.
Solution: Add tests for expanding the file name and 'wildmenu'.
Files: src/testdir/test_cmdline.vim, src/testdir/Make_all.mak

Patch 7.4.1924
Problem: Missing "void" for functions without argument.
Solution: Add "void". (Hirohito Higashi)
Files: src/channel.c, src/edit.c, src/ex_cmds2.c, src/ops.c, src/screen.c

Patch 7.4.1925
Problem: Viminfo does not merge file marks properly.
Solution: Use a timestamp. Add the :clearjumps command.
Files: src/mark.c, src/ex_cmds.c, src/ex_docmd.c, src/proto/mark.pro,

src/structs.h, src/vim.h, src/ex_cmds.h,
src/testdir/test_viminfo.vim

Patch 7.4.1926
Problem: Possible crash with many history items.
Solution: Avoid the index going past the last item.
Files: src/ex_getln.c

Patch 7.4.1927
Problem: Compiler warning for signed/unsigned.
Solution: Add type cast.
Files: src/if_mzsch.c

Patch 7.4.1928
Problem: Overwriting pointer argument.
Solution: Assign to what it points to. (Dominique Pelle)
Files: src/fileio.c

Patch 7.4.1929
Problem: Inconsistent indenting and weird name.
Solution: Fix indent, make name all upper case. (Ken Takata)
Files: src/if_ruby.c

Patch 7.4.1930
Problem: Can't build without +spell but with +quickfix. (Charles)
Solution: Add better #ifdef around ml_append_buf(). (closes #864)
Files: src/memline.c

Patch 7.4.1931
Problem: Using both old and new style file mark lines from viminfo.

version8.txt — 2988

Solution: Skip the old style lines if the viminfo file was written with a
Vim version that supports the new style.

Files: src/ex_cmds.c

Patch 7.4.1932
Problem: When writing viminfo the jumplist is not merged with the one in

the viminfo file.
Solution: Merge based on timestamp.
Files: src/mark.c, src/testdir/test_viminfo.vim

Patch 7.4.1933
Problem: Compiler warning about uninitialized variable. (Yegappan)
Solution: Give it a dummy value.
Files: src/ex_getln.c

Patch 7.4.1934
Problem: New style tests not executed with MinGW compiler.
Solution: Add new style test support. (Yegappan Lakshmanan)
Files: src/testdir/Make_ming.mak

Patch 7.4.1935
Problem: When using the GUI search/replace a second match right after the

replacement is skipped.
Solution: Add the SEARCH_START flag. (Mleddy)
Files: src/gui.c

Patch 7.4.1936
Problem: Off-by-one error in bounds check. (Coverity)
Solution: Check register number properly.
Files: src/ops.c

Patch 7.4.1937
Problem: No test for directory stack in quickfix.
Solution: Add a test. (Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim

Patch 7.4.1938
Problem: When writing viminfo numbered marks were duplicated.
Solution: Check for duplicates between current numbered marks and the ones

read from viminfo.
Files: src/mark.c

Patch 7.4.1939
Problem: Memory access error when reading viminfo. (Dominique Pelle)
Solution: Correct index in jumplist when at the end.
Files: src/mark.c, src/testdir/test_viminfo.vim

Patch 7.4.1940
Problem: "gd" hangs in some situations. (Eric Biggers)
Solution: Remove the SEARCH_START flag when looping. Add a test.
Files: src/normal.c, src/testdir/test_goto.vim

Patch 7.4.1941
Problem: Not all quickfix tests are also done with the location lists.
Solution: Test more quickfix code. Use user commands instead of "exe".

(Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim

Patch 7.4.1942
Problem: Background is not drawn properly when 'termguicolors' is set.

version8.txt — 2989

Solution: Check cterm_normal_bg_color. (Jacob Niehus, closes #805)
Files: src/screen.c

Patch 7.4.1943
Problem: Coverity warns for unreachable code.
Solution: Remove the code that won't do anything.
Files: src/mark.c

Patch 7.4.1944
Problem: Win32: Cannot compile with XPM feature using VC2015
Solution: Add XPM libraries compiled with VC2015, and enable to build

gvim.exe which supports XPM using VC2015. (Ken Takata)
Files: src/Make_mvc.mak, src/xpm/x64/lib-vc14/libXpm.lib,

src/xpm/x86/lib-vc14/libXpm.lib

Patch 7.4.1945
Problem: The Man plugin doesn't work that well.
Solution: Use "g:ft_man_open_mode" to be able open man pages in vert split

or separate tab. Set nomodifiable for buffer with man content. Add
a test. (Andrey Starodubtsev, closes #873)

Files: runtime/ftplugin/man.vim, src/testdir/test_man.vim,
src/testdir/Make_all.mak

Patch 7.4.1946 (after 7.4.1944)
Problem: File list does not include new XPM libraries.
Solution: Add the file list entries.
Files: Filelist

Patch 7.4.1947
Problem: Viminfo continuation line with wrong length isn't skipped. (Marius

Gedminas)
Solution: Skip a line when encountering an error, but not two lines.
Files: src/ex_cmds.c

Patch 7.4.1948
Problem: Using Ctrl-A with double-byte encoding may result in garbled text.
Solution: Skip to the start of a character. (Hirohito Higashi)
Files: src/ops.c

Patch 7.4.1949
Problem: Minor problems with the quickfix code.
Solution: Fix the problems. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1950
Problem: Quickfix long lines test not executed for buffer.
Solution: Call the function to test long lines. (Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim

Patch 7.4.1951
Problem: Ruby test is old style.
Solution: Convert to a new style test. (Ken Takata)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test_ruby.in,

src/testdir/test_ruby.ok, src/testdir/test_ruby.vim

Patch 7.4.1952
Problem: Cscope interface does not support finding assignments.
Solution: Add the "a" command. (ppettina, closes #882)
Files: runtime/doc/if_cscop.txt, src/if_cscope.c

version8.txt — 2990

Patch 7.4.1953
Problem: Not all parts of the quickfix code are tested.
Solution: Add more tests. (Yegappan Lakshmanan)
Files: src/testdir/samples/quickfix.txt,

src/testdir/test_quickfix.vim

Patch 7.4.1954 (after 7.4.1948)
Problem: No test for what 7.4.1948 fixes.
Solution: Add a test. (Hirohito Higashi, closes #880)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_increment_dbcs.vim

Patch 7.4.1955
Problem: Using 32-bit Perl with 64-bit time_t causes memory corruption.

(Christian Brabandt)
Solution: Use time_T instead of time_t for global variables. (Ken Takata)
Files: src/ex_cmds.c, src/globals.h, src/misc2.c, src/proto/ex_cmds.pro,

src/proto/misc2.pro, src/structs.h, src/vim.h

Patch 7.4.1956
Problem: When using CTRL-W f and pressing "q" at the ATTENTION dialog the

newly opened window is not closed.
Solution: Close the window and go back to the original one. (Norio Takagi,

Hirohito Higashi)
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 7.4.1957
Problem: Perl interface has obsolete workaround.
Solution: Remove the workaround added by 7.3.623. (Ken Takata)
Files: src/if_perl.xs

Patch 7.4.1958
Problem: Perl interface preprocessor statements not nicely indented.
Solution: Improve the indenting. (Ken Takata)
Files: src/if_perl.xs

Patch 7.4.1959
Problem: Crash when running test_channel.vim on Windows.
Solution: Check for NULL pointer result from FormatMessage(). (Christian

Brabandt)
Files: src/channel.c

Patch 7.4.1960
Problem: Unicode standard 9 was released.
Solution: Update the character property tables. (Christian Brabandt)
Files: src/mbyte.c

Patch 7.4.1961
Problem: When 'insertmode' is reset while doing completion the popup menu

remains even though Vim is in Normal mode.
Solution: Ignore stop_insert_mode when the popup menu is visible. Don't set

stop_insert_mode when 'insertmode' was already off. (Christian
Brabandt)

Files: src/edit.c, src/option.c, src/Makefile, src/testdir/test_alot.vim,
src/testdir/test_popup.vim

Patch 7.4.1962
Problem: Two test files for increment/decrement.
Solution: Move the old style test into the new style test. (Hirohito

Higashi, closes #881)

version8.txt — 2991

Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/main.aap,
src/testdir/test35.in, src/testdir/test35.ok,
src/testdir/test_increment.vim

Patch 7.4.1963
Problem: Running Win32 Vim in mintty does not work.
Solution: Detect mintty and give a helpful error message. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/iscygpty.c,

src/iscygpty.h, src/main.c, Filelist

Patch 7.4.1964
Problem: The quickfix init function is too big.
Solution: Factor out parsing 'errorformat' to a separate function. (Yegappan

Lakshmanan)
Files: src/quickfix.c

Patch 7.4.1965
Problem: When using a job in raw mode to append to a buffer garbage

characters are added.
Solution: Do not replace the trailing NUL with a NL. (Ozaki Kiichi)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.1966
Problem: Coverity reports a resource leak.
Solution: Close "fd" also when bailing out.
Files: src/quickfix.c

Patch 7.4.1967
Problem: Falling back from NFA to old regexp engine does not work properly.

(fritzophrenic)
Solution: Do not restore nfa_match. (Christian Brabandt, closes #867)
Files: src/regexp_nfa.c, src/testdir/test64.in, src/testdir/test64.ok

Patch 7.4.1968
Problem: Invalid memory access with "\<C-">.
Solution: Do not recognize this as a special character. (Dominique Pelle)
Files: src/misc2.c, src/testdir/test_expr.vim

Patch 7.4.1969
Problem: When the netbeans channel is closed consuming the buffer may cause

a crash.
Solution: Check for nb_channel not to be NULL. (Xavier de Gaye)
Files: src/netbeans.c

Patch 7.4.1970
Problem: Using ":insert" in an empty buffer sets the jump mark. (Ingo

Karkat)
Solution: Don't adjust marks when replacing the empty line in an empty

buffer. (closes #892)
Files: src/ex_cmds.c, src/testdir/test_jumps.vim,

src/testdir/test_alot.vim

Patch 7.4.1971
Problem: It is not easy to see unrecognized error lines below the current

error position.
Solution: Add ":clist +count".
Files: src/quickfix.c, runtime/doc/quickfix.txt

Patch 7.4.1972
Problem: On Solaris select() does not work as expected when there is

version8.txt — 2992

typeahead.
Solution: Add ICANON when sleeping. (Ozaki Kiichi)
Files: src/os_unix.c

Patch 7.4.1973
Problem: On MS-Windows the package directory may be added at the end

because of forward/backward slash differences. (Matthew
Desjardins)

Solution: Ignore slash differences.
Files: src/ex_cmds2.c

Patch 7.4.1974
Problem: GUI has a problem with some termcodes.
Solution: Handle negative numbers. (Kazunobu Kuriyama)
Files: src/gui.c

Patch 7.4.1975
Problem: On MS-Windows large files (> 2Gbyte) cause problems.
Solution: Use "off_T" instead of "off_t". Use "stat_T" instead of "struct

stat". Use 64 bit system functions if available. (Ken Takata)
Files: src/Makefile, src/buffer.c, src/diff.c, src/eval.c, src/ex_cmds.c,

src/ex_cmds2.c, src/fileio.c, src/gui.c, src/gui_at_fs.c,
src/if_cscope.c, src/main.c, src/memfile.c, src/memline.c,
src/misc1.c, src/misc2.c, src/netbeans.c, src/os_mswin.c,
src/os_win32.c, src/proto/fileio.pro, src/proto/memline.pro,
src/proto/os_mswin.pro, src/pty.c, src/quickfix.c, src/spell.c,
src/structs.h, src/tag.c, src/testdir/Make_all.mak,
src/testdir/test_largefile.vim, src/testdir/test_stat.vim,
src/undo.c, src/vim.h

Patch 7.4.1976
Problem: Number variables are not 64 bits while they could be.
Solution: Add the num64 feature. (Ken Takata, Yasuhiro Matsumoto)
Files: runtime/doc/eval.txt, runtime/doc/various.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/charset.c,
src/eval.c, src/ex_cmds.c, src/ex_getln.c, src/feature.h,
src/fileio.c, src/fold.c, src/json.c, src/message.c, src/misc1.c,
src/misc2.c, src/ops.c, src/option.c, src/proto/charset.pro,
src/proto/eval.pro, src/quickfix.c, src/structs.h,
src/testdir/test_viml.vim, src/version.c

Patch 7.4.1977
Problem: With 64 bit changes don't need three calls to sprintf().
Solution: Simplify the code, use vim_snprintf(). (Ken Takata)
Files: src/fileio.c

Patch 7.4.1978 (after 7.4.1975)
Problem: Large file test does not delete its output.
Solution: Delete the output. Check size properly when possible. (Ken Takata)
Files: src/testdir/test_largefile.vim

Patch 7.4.1979 (after 7.4.1976)
Problem: Getting value of binary option is wrong. (Kent Sibilev)
Solution: Fix type cast. Add a test.
Files: src/option.c, src/testdir/test_expr.vim

Patch 7.4.1980
Problem: 'errorformat' is parsed for every call to ":caddexpr". Can't add

to two location lists asynchronously.
Solution: Keep the previously parsed data when appropriate. (mostly by

version8.txt — 2993

Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.1981
Problem: No testing for Farsi code.
Solution: Add a minimal test. Clean up Farsi code.
Files: src/farsi.c, src/Makefile, src/charset.c, src/normal.c,

src/proto/main.pro, src/testdir/Make_all.mak,
src/testdir/test_farsi.vim

Patch 7.4.1982
Problem: Viminfo file contains duplicate change marks.
Solution: Drop duplicate marks.
Files: src/mark.c

Patch 7.4.1983
Problem: farsi.c and arabic.c are included in a strange way.
Solution: Build them like other files.
Files: src/main.c, src/farsi.c, src/arabic.c, src/proto.h,

src/proto/main.pro, src/proto/farsi.pro, src/proto/arabic.pro,
src/Makefile, src/Make_bc5.mak, src/Make_cyg_ming.mak,
src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
Filelist

Patch 7.4.1984
Problem: Not all quickfix features are tested.
Solution: Add a few more tests. (Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim

Patch 7.4.1985 (after 7.4.1983)
Problem: Missing changes in VMS build file.
Solution: Use the right file name.
Files: src/Make_vms.mms

Patch 7.4.1986
Problem: Compiler warns for loss of data.
Solution: Use size_t instead of int. (Christian Brabandt)
Files: src/ex_cmds2.c

Patch 7.4.1987
Problem: When copying unrecognized lines for viminfo, end up with useless

continuation lines.
Solution: Skip continuation lines.
Files: src/ex_cmds.c

Patch 7.4.1988
Problem: When updating viminfo with file marks there is no time order.
Solution: Remember the time when a buffer was last used, store marks for

the most recently used buffers.
Files: src/buffer.c, src/structs.h, src/mark.c, src/main.c,

src/ex_cmds.c, src/proto/mark.pro, src/testdir/test_viminfo.vim

Patch 7.4.1989
Problem: filter() and map() only accept a string argument.
Solution: Implement using a Funcref argument (Yasuhiro Matsumoto, Ken

Takata)
Files: runtime/doc/eval.txt, src/Makefile, src/eval.c,

src/testdir/test_alot.vim, src/testdir/test_filter_map.vim,
src/testdir/test_partial.vim

version8.txt — 2994

Patch 7.4.1990 (after 7.4.1952)
Problem: Cscope items are not sorted.
Solution: Put the new "a" command first. (Ken Takata)
Files: src/if_cscope.c

Patch 7.4.1991
Problem: glob() does not add a symbolic link when there are no wildcards.
Solution: Remove the call to mch_getperm().
Files: src/misc1.c

Patch 7.4.1992
Problem: Values for true and false can be confusing.
Solution: Update the documentation. Add a test. Make v:true evaluate to

TRUE for a non-zero-arg.
Files: runtime/doc/eval.txt, src/eval.c, src/Makefile,

src/testdir/test_true_false.vim, src/testdir/test_alot.vim

Patch 7.4.1993
Problem: Not all TRUE and FALSE arguments are tested.
Solution: Add a few more tests.
Files: src/testdir/test_true_false.vim

Patch 7.4.1994 (after 7.4.1993)
Problem: True-false test fails.
Solution: Filter the dict to only keep the value that matters.
Files: src/testdir/test_true_false.vim

Patch 7.4.1995
Problem: GUI: cursor drawn in wrong place if a timer callback causes a

screen update. (David Samvelyan)
Solution: Also redraw the cursor when it's blinking and on.
Files: src/gui_gtk_x11.c, src/gui_mac.c, src/gui_photon.c, src/gui_w32.c,

src/gui_x11.c, src/screen.c, src/proto/gui_gtk_x11.pro,
src/proto/gui_mac.pro, src/proto/gui_photon.pro,
src/proto/gui_w32.pro, src/proto/gui_x11.pro

Patch 7.4.1996
Problem: Capturing the output of a command takes a few commands.
Solution: Add evalcmd().
Files: src/eval.c, runtime/doc/eval.txt, src/testdir/test_alot.vim,

src/Makefile, src/testdir/test_evalcmd.vim

Patch 7.4.1997
Problem: Cannot easily scroll the quickfix window.
Solution: Add ":cbottom".
Files: src/ex_cmds.h, src/quickfix.c, src/proto/quickfix.pro,

src/ex_docmd.c, src/testdir/test_quickfix.vim,
runtime/doc/quickfix.txt

Patch 7.4.1998
Problem: When writing buffer lines to a job there is no NL to NUL

conversion.
Solution: Make it work symmetrical with writing lines from a job into a

buffer.
Files: src/channel.c, src/proto/channel.pro, src/netbeans.c

Patch 7.4.1999
Problem: evalcmd() doesn't work recursively.
Solution: Use redir_evalcmd instead of redir_vname.

version8.txt — 2995

Files: src/message.c, src/eval.c, src/globals.h, src/proto/eval.pro,
src/testdir/test_evalcmd.vim

Patch 7.4.2000 (after 7.4.1999)
Problem: Evalcmd test fails.
Solution: Add missing piece.
Files: src/ex_docmd.c

Patch 7.4.2001 (after 7.4.2000)
Problem: Tiny build fails. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 7.4.2002
Problem: Crash when passing number to filter() or map().
Solution: Convert to a string. (Ozaki Kiichi)
Files: src/eval.c, src/testdir/test_filter_map.vim

Patch 7.4.2003
Problem: Still cursor flickering when a callback updates the screen. (David

Samvelyan)
Solution: Put the cursor in the right position after updating the screen.
Files: src/screen.c

Patch 7.4.2004
Problem: GUI: cursor displayed in the wrong position.
Solution: Correct screen_cur_col and screen_cur_row.
Files: src/screen.c

Patch 7.4.2005
Problem: After using evalcmd() message output is in the wrong position.

(Christian Brabandt)
Solution: Reset msg_col.
Files: src/eval.c

Patch 7.4.2006
Problem: Crash when using tabnext in BufUnload autocmd. (Norio Takagi)
Solution: First check that the current buffer is the right one. (Hirohito

Higashi)
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 7.4.2007
Problem: Running the tests leaves a viminfo file behind.
Solution: Make the viminfo option empty.
Files: src/testdir/runtest.vim

Patch 7.4.2008
Problem: evalcmd() has a confusing name.
Solution: Rename to execute(). Make silent optional. Support a list of

commands.
Files: src/eval.c, src/ex_docmd.c, src/message.c, src/globals.h,

src/proto/eval.pro, src/Makefile, src/testdir/test_evalcmd.vim,
src/testdir/test_execute_func.vim, src/testdir/test_alot.vim,
runtime/doc/eval.txt

Patch 7.4.2009 (after 7.4.2008)
Problem: Messages test fails.
Solution: Don't set redir_execute before returning. Add missing version

number.
Files: src/eval.c

version8.txt — 2996

Patch 7.4.2010
Problem: There is a :cbottom command but no :lbottom command.
Solution: Add :lbottom. (Yegappan Lakshmanan)
Files: runtime/doc/index.txt, runtime/doc/quickfix.txt, src/ex_cmds.h,

src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.2011
Problem: It is not easy to get a list of command arguments.
Solution: Add getcompletion(). (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_docmd.c,

src/proto/ex_docmd.pro, src/testdir/test_cmdline.vim

Patch 7.4.2012 (after 7.4.2011)
Problem: Test for getcompletion() does not pass on all systems.
Solution: Only test what is supported.
Files: src/testdir/test_cmdline.vim

Patch 7.4.2013
Problem: Using "noinsert" in 'completeopt' breaks redo.
Solution: Set compl_curr_match. (Shougo Matsu, closes #874)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 7.4.2014
Problem: Using "noinsert" in 'completeopt' does not insert match.
Solution: Set compl_enter_selects. (Shougo Matsu, closes #875)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 7.4.2015
Problem: When a file gets a name when writing it 'acd' is not effective.

(Dan Church)
Solution: Invoke DO_AUTOCHDIR after writing the file. (Allen Haim, closes

#777, closes #803) Add test_autochdir() to enable 'acd' before
"starting" is reset.

Files: src/ex_cmds.c, src/buffer.c, src/eval.c, src/globals.h,
src/Makefile, src/testdir/test_autochdir.vim,
src/testdir/Make_all.mak

Patch 7.4.2016
Problem: Warning from MinGW about _WIN32_WINNT redefined. (John Marriott)
Solution: First undefine it. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.2017
Problem: When there are many errors adding them to the quickfix list takes

a long time.
Solution: Add BLN_NOOPT. Don't call buf_valid() in buf_copy_options().

Remember the last file name used. When going through the buffer
list start from the end of the list. Only call buf_valid() when
autocommands were executed.

Files: src/buffer.c, src/option.c, src/quickfix.c, src/vim.h

Patch 7.4.2018
Problem: buf_valid() can be slow when there are many buffers.
Solution: Add bufref_valid(), only go through the buffer list when a buffer

was freed.
Files: src/structs.h, src/buffer.c, src/quickfix.c, src/proto/buffer.pro

Patch 7.4.2019
Problem: When ignoring case utf_fold() may consume a lot of time.

version8.txt — 2997

Solution: Optimize for ASCII.
Files: src/mbyte.c

Patch 7.4.2020
Problem: Can't build without +autocmd feature.
Solution: Adjust #ifdefs.
Files: src/buffer.c

Patch 7.4.2021
Problem: Still too many buf_valid() calls.
Solution: Make au_new_curbuf a bufref. Use bufref_valid() in more places.
Files: src/ex_cmds.c, src/buffer.c, src/globals.h

Patch 7.4.2022
Problem: Warnings from 64 bit compiler.
Solution: Add type casts. (Mike Williams)
Files: src/eval.c

Patch 7.4.2023
Problem: buflist_findname_stat() may find a dummy buffer.
Solution: Set the BF_DUMMY flag after loading a dummy buffer. Start

finding buffers from the end of the list.
Files: src/quickfix.c, src/buffer.c

Patch 7.4.2024
Problem: More buf_valid() calls can be optimized.
Solution: Use bufref_valid() instead.
Files: src/buffer.c, src/ex_cmds.c, src/structs.h, src/channel.c,

src/diff.c, src/eval.c, src/ex_cmds2.c, src/ex_docmd.c,
src/ex_getln.c, src/fileio.c, src/main.c, src/misc2.c,
src/netbeans.c, src/quickfix.c, src/spell.c, src/term.c,
src/if_py_both.h, src/window.c, src/proto/buffer.pro,
src/proto/window.pro

Patch 7.4.2025
Problem: The cursor blinking stops or is irregular when receiving date over

a channel and writing it in a buffer, and when updating the status
line. (Ramel Eshed)

Solution: Make it a bit better by flushing GUI output. Don't redraw the
cursor after updating the screen if the blink state is off.

Files: src/gui_gtk_x11.c, src/screen.c

Patch 7.4.2026
Problem: Reference counting for callbacks isn't right.
Solution: Add free_callback(). (Ken Takata) Fix reference count.
Files: src/channel.c, src/eval.c, src/ex_cmds2.c, src/proto/eval.pro

Patch 7.4.2027
Problem: Can't build with +eval but without +menu.
Solution: Add #ifdef. (John Marriott)
Files: src/eval.c

Patch 7.4.2028
Problem: cppcheck warns for using index before limits check.
Solution: Swap the expressions. (Dominique Pelle)
Files: src/mbyte.c

Patch 7.4.2029
Problem: printf() does not work with 64 bit numbers.
Solution: use the "L" length modifier. (Ken Takata)

version8.txt — 2998

Files: src/message.c, src/testdir/test_expr.vim

Patch 7.4.2030
Problem: ARCH must be set properly when using MinGW.
Solution: Detect the default value of ARCH from the current compiler. (Ken

Takata)
Files: src/Make_cyg_ming.mak

Patch 7.4.2031
Problem: The list_lbr_utf8 test fails if ~/.vim/syntax/c.vim sets

'textwidth' to a non-zero value. (Oyvind A. Holm)
Solution: Add a setup.vim file that sets 'runtimepath' and $HOME to a safe

value. (partly by Christian Brabandt, closes #912)
Files: src/testdir/setup.vim, src/testdir/amiga.vim, src/testdir/dos.vim,

src/testdir/unix.vim, src/testdir/vms.vim, src/testdir/runtest.vim

Patch 7.4.2032 (after 7.4.2030)
Problem: Build fails with 64 bit MinGW. (Axel Bender)
Solution: Handle dash vs. underscore. (Ken Takata, Hirohito Higashi)
Files: src/Make_cyg_ming.mak

Patch 7.4.2033
Problem: 'cscopequickfix' option does not accept new value "a".
Solution: Adjust list of command characters. (Ken Takata)
Files: src/option.h, src/Makefile, src/testdir/test_cscope.vim,

src/testdir/Make_all.mak

Patch 7.4.2034 (after 7.4.2032)
Problem: Build fails with some version of MinGW. (illusorypan)
Solution: Recognize mingw32. (Ken Takata, closes #921)
Files: src/Make_cyg_ming.mak

Patch 7.4.2035
Problem: On Solaris with ZFS the ACL may get removed.
Solution: Always restore the ACL for Solaris ZFS. (Danek Duvall)
Files: src/fileio.c

Patch 7.4.2036
Problem: Looking up a buffer by number is slow if there are many.
Solution: Use a hashtab.
Files: src/structs.h, src/buffer.c

Patch 7.4.2037 (after 7.4.2036)
Problem: Small build fails.
Solution: Adjust #ifdefs.
Files: src/hashtab.c

Patch 7.4.2038 (after 7.4.2036)
Problem: Small build still fails.
Solution: Adjust more #ifdefs.
Files: src/globals.h, src/buffer.c

Patch 7.4.2039
Problem: The Netbeans integration is not tested.
Solution: Add a first Netbeans test.
Files: src/testdir/test_netbeans.vim, src/testdir/test_netbeans.py,

src/testdir/Make_all.mak, src/Makefile,
src/testdir/test_channel.vim, src/testdir/shared.vim

Patch 7.4.2040

version8.txt — 2999

Problem: New files missing from distribution.
Solution: Add new test scripts.
Files: Filelist

Patch 7.4.2041
Problem: Netbeans file authentication not tested.
Solution: Add a test.
Files: src/testdir/test_netbeans.vim

Patch 7.4.2042
Problem: GTK: display updating is not done properly and can be slow.
Solution: Use gdk_display_flush() instead of gdk_display_sync(). Don't call

gdk_window_process_updates(). (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 7.4.2043
Problem: setbuvfar() causes a screen redraw.
Solution: Only use aucmd_prepbuf() for options.
Files: src/eval.c

Patch 7.4.2044
Problem: filter() and map() either require a string or defining a function.
Solution: Support lambda, a short way to define a function that evaluates an

expression. (Yasuhiro Matsumoto, Ken Takata)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_alot.vim,

src/Makefile, src/testdir/test_channel.vim,
src/testdir/test_lambda.vim

Patch 7.4.2045
Problem: Memory leak when using a function callback.
Solution: Don't save the function name when it's in the partial.
Files: src/channel.c

Patch 7.4.2046
Problem: The qf_init_ext() function is too big.
Solution: Refactor it. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 7.4.2047
Problem: Compiler warning for initializing a struct.
Solution: Initialize in another way. (Anton Lindqvist)
Files: src/quickfix.c

Patch 7.4.2048
Problem: There is still code and help for unsupported systems.
Solution: Remove the code and text. (Hirohito Higashi)
Files: runtime/doc/eval.txt, runtime/lang/menu_sk_sk.vim,

runtime/menu.vim, runtime/optwin.vim, src/Make_bc5.mak,
src/ex_docmd.c, src/feature.h, src/fileio.c, src/globals.h,
src/main.c, src/memfile.c, src/memline.c, src/misc1.c,
src/misc2.c, src/option.c, src/option.h, src/os_unix.c,
src/os_unix.h, src/proto.h, src/term.c, src/undo.c, src/version.c,
src/vim.h, src/xxd/xxd.c

Patch 7.4.2049
Problem: There is no way to get a list of the error lists.
Solution: Add ":chistory" and ":lhistory".
Files: src/ex_cmds.h, src/quickfix.c, src/ex_docmd.c, src/message.c,

src/proto/quickfix.pro, src/testdir/test_quickfix.vim

version8.txt — 3000

Patch 7.4.2050
Problem: When using ":vimgrep" may end up with duplicate buffers.
Solution: When adding an error list entry pass the buffer number if possible.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.2051
Problem: No proper testing of trunc_string().
Solution: Add a unittest for message.c.
Files: src/Makefile, src/message.c, src/message_test.c, src/main.c,

src/proto/main.pro, src/structs.h

Patch 7.4.2052
Problem: Coverage report is messed up by the unittests.
Solution: Add a separate test target for script tests. Use that when

collecting coverage information.
Files: src/Makefile

Patch 7.4.2053
Problem: Can't run scripttests in the top directory.
Solution: Add targets to the top Makefile.
Files: Makefile

Patch 7.4.2054 (after 7.4.2048)
Problem: Wrong part of #ifdef removed.
Solution: Use the right part. (Hirohito Higashi)
Files: src/os_unix.c

Patch 7.4.2055
Problem: eval.c is too big
Solution: Move Dictionary functions to dict.c
Files: src/eval.c, src/dict.c, src/vim.h, src/globals.h,

src/proto/eval.pro, src/proto/dict.pro, src/Makefile, Filelist

Patch 7.4.2056 (after 7.4.2055)
Problem: Build fails.
Solution: Add missing changes.
Files: src/proto.h

Patch 7.4.2057
Problem: eval.c is too big.
Solution: Move List functions to list.c
Files: src/eval.c, src/dict.c, src/list.c, src/proto.h, src/Makefile,

src/globals.h, src/proto/eval.pro, src/proto/list.pro, Filelist

Patch 7.4.2058
Problem: eval.c is too big.
Solution: Move user functions to userfunc.c
Files: src/userfunc.c, src/eval.c, src/vim.h, src/globals.h,

src/structs.h, src/proto.h, src/Makefile, src/proto/eval.pro,
src/proto/userfunc.pro, Filelist

Patch 7.4.2059
Problem: Non-Unix builds fail.
Solution: Update Makefiles for new files.
Files: src/Make_bc5.mak, src/Make_cyg_ming.mak, src/Make_dice.mak,

src/Make_ivc.mak, src/Make_manx.mak, src/Make_morph.mak,
src/Make_mvc.mak, src/Make_sas.mak

Patch 7.4.2060 (after 7.4.2059)
Problem: Wrong file name.

version8.txt — 3001

Solution: Fix typo.
Files: src/Make_mvc.mak

Patch 7.4.2061
Problem: qf_init_ext() is too big.
Solution: Move code to qf_parse_line() (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.2062
Problem: Using dummy variable to compute struct member offset.
Solution: Use offsetof().
Files: src/globals.h, src/macros.h, src/vim.h, src/spell.c

Patch 7.4.2063
Problem: eval.c is still too big.
Solution: Split off internal functions to evalfunc.c.
Files: src/eval.c, src/evalfunc.c, src/list.c, src/proto.h,

src/globals.h, src/vim.h, src/proto/eval.pro,
src/proto/evalfunc.pro, src/proto/list.pro, src/Makefile, Filelist,
src/Make_bc5.mak, src/Make_cyg_ming.mak, src/Make_dice.mak,
src/Make_ivc.mak, src/Make_manx.mak, src/Make_morph.mak,
src/Make_mvc.mak, src/Make_sas.mak

Patch 7.4.2064
Problem: Coverity warns for possible buffer overflow.
Solution: Use vim_strcat() instead of strcat().
Files: src/quickfix.c

Patch 7.4.2065
Problem: Compiler warns for uninitialized variable. (John Marriott)
Solution: Set lnum to the right value.
Files: src/evalfunc.c

Patch 7.4.2066
Problem: getcompletion() not well tested.
Solution: Add more testing.
Files: src/testdir/test_cmdline.vim

Patch 7.4.2067
Problem: Compiler warning for char/char_u conversion. (Tony Mechelynck)

Inefficient code.
Solution: Use more lines to fill with spaces. (Nikolai Pavlov) Add type cast.
Files: src/quickfix.c

Patch 7.4.2068
Problem: Not all arguments of trunc_string() are tested. Memory access

error when running the message tests.
Solution: Add another test case. (Yegappan Lakshmanan) Make it easy to run

unittests with valgrind. Fix the access error.
Files: src/message.c, src/message_test.c, src/Makefile

Patch 7.4.2069
Problem: spell.c is too big.
Solution: Split it in spell file handling and spell checking.
Files: src/spell.c, src/spellfile.c, src/spell.h, src/Makefile,

src/proto/spell.pro, src/proto/spellfile.pro, src/proto.h
Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,
src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak

version8.txt — 3002

Patch 7.4.2070 (after 7.4.2069)
Problem: Missing change to include file.
Solution: Include the spell header file.
Files: src/vim.h

Patch 7.4.2071
Problem: The return value of type() is difficult to use.
Solution: Define v:t_ constants. (Ken Takata)
Files: runtime/doc/eval.txt, src/eval.c, src/evalfunc.c,

src/testdir/test_channel.vim, src/testdir/test_viml.vim, src/vim.h

Patch 7.4.2072
Problem: substitute() does not support a Funcref argument.
Solution: Support a Funcref like it supports a string starting with "\=".
Files: src/evalfunc.c, src/regexp.c, src/eval.c, src/proto/eval.pro,

src/proto/regexp.pro, src/testdir/test_expr.vim

Patch 7.4.2073
Problem: rgb.txt is read for every color name.
Solution: Load rgb.txt once. (Christian Brabandt) Add a test.
Files: runtime/rgb.txt, src/term.c, src/testdir/test_syn_attr.vim

Patch 7.4.2074
Problem: One more place using a dummy variable.
Solution: Use offsetof(). (Ken Takata)
Files: src/userfunc.c

Patch 7.4.2075
Problem: No autocommand event to initialize a window or tab page.
Solution: Add WinNew and TabNew events. (partly by Felipe Morales)
Files: src/fileio.c, src/window.c, src/vim.h,

src/testdir/test_autocmd.vim, runtime/doc/autocmd.txt

Patch 7.4.2076
Problem: Syntax error when dict has '>' key.
Solution: Check for endchar. (Ken Takata)
Files: src/userfunc.c, src/testdir/test_lambda.vim

Patch 7.4.2077
Problem: Cannot update 'tabline' when a tab was closed.
Solution: Add the TabClosed autocmd event. (partly by Felipe Morales)
Files: src/fileio.c, src/window.c, src/vim.h,

src/testdir/test_autocmd.vim, runtime/doc/autocmd.txt

Patch 7.4.2078
Problem: Running checks in po directory fails.
Solution: Add colors used in syntax.c to the builtin color table.
Files: src/term.c

Patch 7.4.2079
Problem: Netbeans test fails on non-Unix systems.
Solution: Only do the permission check on Unix systems.
Files: src/testdir/test_netbeans.vim

Patch 7.4.2080
Problem: When using PERROR() on some systems assert_fails() does not see

the error.
Solution: Make PERROR() always report the error.
Files: src/vim.h, src/message.c, src/proto/message.pro

version8.txt — 3003

Patch 7.4.2081
Problem: Line numbers in the error list are not always adjusted.
Solution: Set b_has_qf_entry properly. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/structs.h, src/testdir/test_quickfix.vim

Patch 7.4.2082
Problem: Not much test coverage for digraphs.
Solution: Add a new style digraph test. (Christian Brabandt)
Files: src/Makefile, src/testdir/test_alot.vim,

src/testdir/test_digraph.vim

Patch 7.4.2083
Problem: Coverity complains about not restoring a value.
Solution: Restore the value, although it's not really needed. Change return

to jump to cleanup, might leak memory.
Files: src/userfunc.c

Patch 7.4.2084
Problem: New digraph test makes testing hang.
Solution: Don't set "nocp".
Files: src/testdir/test_digraph.vim

Patch 7.4.2085
Problem: Digraph tests fails on some systems.
Solution: Run it separately and set 'encoding' early.
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_digraph.vim

Patch 7.4.2086
Problem: Using the system default encoding makes tests unpredictable.
Solution: Always use utf-8 or latin1 in the new style tests. Remove setting

encoding and scriptencoding where it is not needed.
Files: src/testdir/runtest.vim, src/testdir/test_channel.vim,

src/testdir/test_digraph.vim, src/testdir/test_expand_dllpath.vim,
src/testdir/test_expr_utf8.vim, src/testdir/test_json.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_regexp_utf8.vim, src/testdir/test_visual.vim,
src/testdir/test_alot_utf8.vim,

Patch 7.4.2087
Problem: Digraph code test coverage is still low.
Solution: Add more tests. (Christian Brabandt)
Files: src/testdir/test_digraph.vim

Patch 7.4.2088 (after 7.4.2087)
Problem: Keymap test fails with normal features.
Solution: Bail out if the keymap feature is not supported.
Files: src/testdir/test_digraph.vim

Patch 7.4.2089
Problem: Color handling of X11 GUIs is too complicated.
Solution: Simplify the code. Use RGBA where appropriate. (Kazunobu

Kuriyama)
Files: src/gui.h, src/gui_beval.c, src/gui_gtk_x11.c, src/netbeans.c

Patch 7.4.2090
Problem: Using submatch() in a lambda passed to substitute() is verbose.
Solution: Use a static list and pass it as an optional argument to the

function. Fix memory leak.
Files: src/structs.h, src/list.c, src/userfunc.c, src/channel.c,

version8.txt — 3004

src/eval.c, src/evalfunc.c, src/ex_cmds2.c, src/regexp.c,
src/proto/list.pro, src/proto/userfunc.pro,
src/testdir/test_expr.vim, runtime/doc/eval.txt

Patch 7.4.2091
Problem: Coverity reports a resource leak when out of memory.
Solution: Close the file before returning.
Files: src/term.c

Patch 7.4.2092
Problem: GTK 3 build fails with older GTK version.
Solution: Check the pango version. (Kazunobu Kuriyama)
Files: src/gui_beval.c

Patch 7.4.2093
Problem: Netbeans test fails once in a while. Leaving log file behind.
Solution: Add it to the list of flaky tests. Disable logfile.
Files: src/testdir/runtest.vim, src/testdir/test_channel.vim

Patch 7.4.2094
Problem: The color allocation in X11 is overly complicated.
Solution: Remove find_closest_color(), XAllocColor() already does this.

(Kazunobu Kuriyama)
Files: src/gui_x11.c

Patch 7.4.2095
Problem: Man test fails when run with the GUI.
Solution: Adjust for different behavior of GUI. Add assert_inrange().
Files: src/eval.c, src/evalfunc.c, src/proto/eval.pro,

src/testdir/test_assert.vim, src/testdir/test_man.vim,
runtime/doc/eval.txt

Patch 7.4.2096
Problem: Lambda functions show up with completion.
Solution: Don't show lambda functions. (Ken Takata)
Files: src/userfunc.c, src/testdir/test_cmdline.vim

Patch 7.4.2097
Problem: Warning from 64 bit compiler.
Solution: use size_t instead of int. (Mike Williams)
Files: src/message.c

Patch 7.4.2098
Problem: Text object tests are old style.
Solution: Turn them into new style tests. (James McCoy, closes #941)
Files: src/testdir/Make_all.mak, src/testdir/test_textobjects.in,

src/testdir/test_textobjects.ok, src/testdir/test_textobjects.vim,
src/Makefile

Patch 7.4.2099
Problem: When a keymap is active only "(lang)" is displayed. (Ilya

Dogolazky)
Solution: Show the keymap name. (Dmitri Vereshchagin, closes #933)
Files: src/buffer.c, src/proto/screen.pro, src/screen.c

Patch 7.4.2100
Problem: "cgn" and "dgn" do not work correctly with a single character

match and the replacement includes the searched pattern. (John
Beckett)

Solution: If the match is found in the wrong column try in the next column.

version8.txt — 3005

Turn the test into new style. (Christian Brabandt)
Files: src/search.c, src/testdir/Make_all.mak, src/Makefile,

src/testdir/test53.in, src/testdir/test53.ok,
src/testdir/test_gn.vim

Patch 7.4.2101
Problem: Looping over windows, buffers and tab pages is inconsistent.
Solution: Use FOR_ALL_ macros everywhere. (Yegappan Lakshmanan)
Files: src/buffer.c, src/diff.c, src/edit.c, src/eval.c, src/evalfunc.c,

src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/fileio.c,
src/globals.h, src/gui.c, src/gui_mac.c, src/if_lua.c,
src/if_mzsch.c, src/if_perl.xs, src/if_ruby.c, src/if_tcl.c,
src/main.c, src/mark.c, src/memfile.c, src/memline.c, src/misc1.c,
src/move.c, src/netbeans.c, src/normal.c, src/option.c,
src/quickfix.c, src/screen.c, src/spell.c, src/term.c,
src/window.c, src/workshop.c

Patch 7.4.2102 (after 7.4.2101)
Problem: Tiny build with GUI fails.
Solution: Revert one FOR_ALL_ change.
Files: src/gui.c

Patch 7.4.2103
Problem: Can't have "augroup END" right after ":au!".
Solution: Check for the bar character before the command argument.
Files: src/fileio.c, src/testdir/test_autocmd.vim,

runtime/doc/autocmd.txt

Patch 7.4.2104
Problem: Code duplication when unreferencing a function.
Solution: De-duplicate.
Files: src/userfunc.c

Patch 7.4.2105
Problem: Configure reports default features to be "normal" while it is

"huge".
Solution: Change the default text. Build with newer autoconf.
Files: src/configure.in, src/auto/configure

Patch 7.4.2106
Problem: Clang warns about missing field in initializer.
Solution: Define COMMA and use it. (Kazunobu Kuriyama)
Files: src/ex_cmds.c, src/globals.h, src/vim.h

Patch 7.4.2107 (after 7.4.2106)
Problem: Misplaced equal sign.
Solution: Remove it.
Files: src/globals.h

Patch 7.4.2108
Problem: Netbeans test is flaky.
Solution: Wait for the cursor to be positioned.
Files: src/testdir/test_netbeans.vim

Patch 7.4.2109
Problem: Setting 'display' to "lastline" is a drastic change, while

omitting it results in lots of "@" lines.
Solution: Add "truncate" to show "@@@" for a truncated line.
Files: src/option.h, src/screen.c, runtime/doc/options.txt

version8.txt — 3006

Patch 7.4.2110
Problem: When there is an CmdUndefined autocmd then the error for a missing

command is E464 instead of E492. (Manuel Ortega)
Solution: Don't let the pointer be NULL.
Files: src/ex_docmd.c, src/testdir/test_usercommands.vim

Patch 7.4.2111
Problem: Defaults are very conservative.
Solution: Move settings from vimrc_example.vim to defaults.vim. Load

defaults.vim if no .vimrc was found.
Files: src/main.c, src/version.c, src/os_amiga.h, src/os_dos.h,

src/os_mac.h, src/os_unix.h, src/feature.h, src/Makefile,
runtime/vimrc_example.vim, runtime/defaults.vim,
runtime/evim.vim, Filelist, runtime/doc/starting.txt

Patch 7.4.2112
Problem: getcompletion(.., 'dir') returns a match with trailing "*" when

there are no matches. (Chdiza)
Solution: Return an empty list when there are no matches. Add a trailing

slash to directories. (Yegappan Lakshmanan) Add tests for no
matches. (closes #947)

Files: src/evalfunc.c, src/testdir/test_cmdline.vim

Patch 7.4.2113
Problem: Test for undo is flaky.
Solution: Turn it into a new style test. Use test_settime() to avoid

flakiness.
Files: src/Makefile, src/undo.c, src/testdir/test61.in,

src/testdir/test61.ok, src/testdir/test_undo.vim,
src/testdir/test_undolevels.vim, src/testdir/Make_all.mak,
src/testdir/test_alot.vim

Patch 7.4.2114
Problem: Tiny build fails.
Solution: Always include vim_time().
Files: src/ex_cmds.c

Patch 7.4.2115
Problem: Loading defaults.vim with -C argument.
Solution: Don't load the defaults script with -C argument. Test sourcing

the defaults script. Set 'display' to "truncate".
Files: src/main.c, src/Makefile, runtime/defaults.vim,

src/testdir/test_startup.vim, src/testdir/Make_all.mak

Patch 7.4.2116
Problem: The default vimrc for Windows is very conservative.
Solution: Use the defaults.vim in the Windows installer.
Files: src/dosinst.c

Patch 7.4.2117
Problem: Deleting an augroup that still has autocmds does not give a

warning. The next defined augroup takes its place.
Solution: Give a warning and prevent the index being used for another group

name.
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 7.4.2118
Problem: Mac: can't build with tiny features.
Solution: Don't define FEAT_CLIPBOARD unconditionally. (Kazunobu Kuriyama)
Files: src/vim.h

version8.txt — 3007

Patch 7.4.2119
Problem: Closures are not supported.
Solution: Capture variables in lambdas from the outer scope. (Yasuhiro

Matsumoto, Ken Takata)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_cmds2.c, src/globals.h,

src/proto/eval.pro, src/proto/userfunc.pro,
src/testdir/test_lambda.vim, src/userfunc.c

Patch 7.4.2120
Problem: User defined functions can't be a closure.
Solution: Add the "closure" argument. Allow using :unlet on a bound

variable. (Yasuhiro Matsumoto, Ken Takata)
Files: runtime/doc/eval.txt, src/testdir/test_lambda.vim, src/userfunc.c,

src/eval.c src/proto/userfunc.pro

Patch 7.4.2121
Problem: No easy way to check if lambda and closure are supported.
Solution: Add the +lambda feature.
Files: src/evalfunc.c, src/version.c, src/testdir/test_lambda.vim

Patch 7.4.2122 (after 7.4.2118)
Problem: Mac: don't get +clipboard in huge build.
Solution: Move #define down below including feature.h
Files: src/vim.h

Patch 7.4.2123
Problem: No new style test for diff mode.
Solution: Add a test. Check that folds are in sync.
Files: src/Makefile, src/testdir/test_diffmode.vim,

src/testdir/Make_all.mak, src/testdir/test47.in,
src/testdir/test47.ok

Patch 7.4.2124
Problem: diffmode test leaves files behind, breaking another test.
Solution: Delete the files.
Files: src/testdir/test_diffmode.vim

Patch 7.4.2125
Problem: Compiler warning for loss of data.
Solution: Add a type cast. (Christian Brabandt)
Files: src/message.c

Patch 7.4.2126
Problem: No tests for :diffget and :diffput
Solution: Add tests.
Files: src/testdir/test_diffmode.vim

Patch 7.4.2127
Problem: The short form of ":noswapfile" is ":noswap" instead of ":nos".

(Kent Sibilev)
Solution: Only require three characters. Add a test for the short forms.
Files: src/ex_docmd.c, src/testdir/test_usercommands.vim

Patch 7.4.2128
Problem: Memory leak when saving for undo fails.
Solution: Free allocated memory. (Hirohito Higashi)
Files: src/ex_cmds.c

Patch 7.4.2129

version8.txt — 3008

Problem: Memory leak when using timer_start(). (Dominique Pelle)
Solution: Don't copy the callback when using a partial.
Files: src/evalfunc.c

Patch 7.4.2130
Problem: Pending timers cause false memory leak reports.
Solution: Free all timers on exit.
Files: src/ex_cmds2.c, src/proto/ex_cmds2.pro, src/misc2.c

Patch 7.4.2131
Problem: More memory leaks when using partial, e.g. for "exit-cb".
Solution: Don't copy the callback when using a partial.
Files: src/channel.c

Patch 7.4.2132
Problem: test_partial has memory leaks reported.
Solution: Add a note about why this happens.
Files: src/testdir/test_partial.vim

Patch 7.4.2133 (after 7.4.2128)
Problem: Can't build with tiny features.
Solution: Add #ifdef.
Files: src/ex_cmds.c

Patch 7.4.2134
Problem: No error for using function() badly.
Solution: Check for passing wrong function name. (Ken Takata)
Files: src/eval.c, src/evalfunc.c, src/proto/userfunc.pro,

src/testdir/test_expr.vim, src/userfunc.c, src/vim.h

Patch 7.4.2135
Problem: Various tiny issues.
Solution: Update comments, white space, etc.
Files: src/diff.c, src/digraph.c, src/testdir/test80.in,

src/testdir/test_channel.vim, src/testdir/Makefile,
runtime/menu.vim, src/INSTALLpc.txt, src/xpm/README.txt

Patch 7.4.2136
Problem: Closure function fails.
Solution: Don't reset uf_scoped when it points to another funccal.
Files: src/userfunc.c, src/testdir/test_lambda.vim

Patch 7.4.2137
Problem: Using function() with a name will find another function when it is

redefined.
Solution: Add funcref(). Refer to lambda using a partial. Fix several

reference counting issues.
Files: src/vim.h, src/structs.h, src/userfunc.c, src/eval.c,

src/evalfunc.c, src/channel.c, src/proto/eval.pro,
src/proto/userfunc.pro, src/if_mzsch.c, src/regexp.c, src/misc2.c,
src/if_py_both.h, src/testdir/test_expr.vim, runtime/doc/eval.txt

Patch 7.4.2138
Problem: Test 86 and 87 fail.
Solution: Call func_ref() also for regular functions.
Files: src/if_py_both.h

Patch 7.4.2139
Problem: :delfunction causes illegal memory access.
Solution: Correct logic when deciding to free a function.

version8.txt — 3009

Files: src/userfunc.c, src/testdir/test_lambda.vim

Patch 7.4.2140
Problem: Tiny build fails.
Solution: Add dummy typedefs.
Files: src/structs.h

Patch 7.4.2141
Problem: Coverity reports bogus NULL check.
Solution: When checking for a variable in the funccal scope don't pass the

varname.
Files: src/userfunc.c, src/proto/userfunc.pro, src/eval.c

Patch 7.4.2142
Problem: Leaking memory when redefining a function.
Solution: Don't increment the function reference count when it's found by

name. Don't remove the wrong function from the hashtab. More
reference counting fixes.

Files: src/structs.h, src/userfunc.c

Patch 7.4.2143
Problem: A funccal is garbage collected while it can still be used.
Solution: Set copyID in all referenced functions. Do not list lambda

functions with ":function".
Files: src/userfunc.c, src/proto/userfunc.pro, src/eval.c,

src/testdir/test_lambda.vim

Patch 7.4.2144
Problem: On MS-Windows quickfix does not handle a line with 1023 bytes

ending in CR-LF properly.
Solution: Don't consider CR a line break. (Ken Takata)
Files: src/quickfix.c

Patch 7.4.2145
Problem: Win32: Using CreateThread/ExitThread is not safe.
Solution: Use _beginthreadex and return from the thread. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.2146
Problem: Not enough testing for popup menu. CTRL-E does not always work

properly.
Solution: Add more tests. When using CTRL-E check if the popup menu is

visible. (Christian Brabandt)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 7.4.2147 (after 7.4.2146)
Problem: test_alot fails.
Solution: Close window.
Files: src/testdir/test_popup.vim

Patch 7.4.2148
Problem: Not much testing for cscope.
Solution: Add a test that uses the cscope program. (Christian Brabandt)
Files: src/testdir/test_cscope.vim

Patch 7.4.2149
Problem: If a test leaves a window open a following test may fail.
Solution: Always close extra windows after running a test.
Files: src/testdir/runtest.vim, src/testdir/test_popup.vim

version8.txt — 3010

Patch 7.4.2150
Problem: Warning with MinGW 64. (John Marriott)
Solution: Change return type. (Ken Takata)
Files: src/os_win32.c

Patch 7.4.2151
Problem: Quickfix test fails on MS-Windows.
Solution: Close the help window. (Christian Brabandt)
Files: src/testdir/test_quickfix.vim

Patch 7.4.2152
Problem: No proper translation of messages with a count.
Solution: Use ngettext(). (Sergey Alyoshin)
Files: src/evalfunc.c, src/fold.c, src/os_win32.c, src/screen.c, src/vim.h

Patch 7.4.2153
Problem: GUI test isn't testing much.
Solution: Turn into a new style test. Execute a shell command.
Files: src/testdir/test_gui.vim, src/testdir/test16.in,

src/testdir/test16.ok, src/testdir/Make_all.mak, src/Makefile,
src/testdir/Make_vms.mms

Patch 7.4.2154
Problem: Test_communicate() fails sometimes.
Solution: Add it to the flaky tests.
Files: src/testdir/runtest.vim

Patch 7.4.2155
Problem: Quotes make GUI test fail on MS-Windows.
Solution: Remove quotes, strip white space.
Files: src/testdir/test_gui.vim

Patch 7.4.2156
Problem: Compiler warning.
Solution: Add type cast. (Ken Takata, Mike Williams)
Files: src/os_win32.c

Patch 7.4.2157
Problem: Test_job_start_fails() is expected to report memory leaks, making

it hard to see other leaks in test_partial.
Solution: Move Test_job_start_fails() to a separate test file.
Files: src/testdir/test_partial.vim, src/testdir/test_job_fails.vim,

src/Makefile, src/testdir/Make_all.mak

Patch 7.4.2158
Problem: Result of getcompletion('', 'cscope') depends on previous

completion. (Christian Brabandt)
Solution: Call set_context_in_cscope_cmd().
Files: src/evalfunc.c, src/testdir/test_cmdline.vim

Patch 7.4.2159
Problem: Insufficient testing for cscope.
Solution: Add more tests. (Dominique Pelle)
Files: src/testdir/test_cscope.vim

Patch 7.4.2160
Problem: setmatches() mixes up values. (Nikolai Pavlov)
Solution: Save the string instead of reusing a shared buffer.
Files: src/dict.c, src/evalfunc.c, src/testdir/test_expr.vim,

version8.txt — 3011

Patch 7.4.2161 (after 7.4.2160)
Problem: Expression test fails without conceal feature.
Solution: Only check "conceal" with the conceal feature.
Files: src/testdir/test_expr.vim

Patch 7.4.2162
Problem: Result of getcompletion('', 'sign') depends on previous

completion.
Solution: Call set_context_in_sign_cmd(). (Dominique Pelle)
Files: src/evalfunc.c, src/testdir/test_cmdline.vim

Patch 7.4.2163
Problem: match() and related functions tested with old style test.
Solution: Convert to new style test. (Hirohito Higashi)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test63.in,

src/testdir/test63.ok, src/testdir/test_alot.vim,
src/testdir/test_match.vim, src/testdir/test_matchstrpos.vim

Patch 7.4.2164
Problem: It is not possible to use plugins in an "after" directory to tune

the behavior of a package.
Solution: First load plugins from non-after directories, then packages and

finally plugins in after directories.
Reset 'loadplugins' before executing --cmd arguments.

Files: src/main.c, src/vim.h, src/ex_cmds2.c, src/testdir/Makefile,
src/testdir/shared.vim, src/testdir/test_startup.vim,
src/testdir/setup.vim, runtime/doc/starting.txt

Patch 7.4.2165 (after 7.4.2164)
Problem: Startup test fails on MS-Windows.
Solution: Don't check output if RunVim() returns zero.
Files: src/testdir/test_startup.vim

Patch 7.4.2166 (after 7.4.2164)
Problem: Small build can't run startup test.
Solution: Skip the test.
Files: src/testdir/test_startup.vim

Patch 7.4.2167 (after 7.4.2164)
Problem: Small build can't run tests.
Solution: Don't try setting 'packpath'.
Files: src/testdir/setup.vim

Patch 7.4.2168
Problem: Not running the startup test on MS-Windows.
Solution: Write vimcmd.
Files: src/testdir/Make_ming.mak, src/testdir/Make_dos.mak

Patch 7.4.2169 (after 7.4.2168)
Problem: Startup test gets stuck on MS-Windows.
Solution: Use double quotes.
Files: src/testdir/shared.vim, src/testdir/test_startup.vim

Patch 7.4.2170
Problem: Cannot get information about timers.
Solution: Add timer_info().
Files: src/evalfunc.c, src/ex_cmds2.c, src/proto/ex_cmds2.pro,

runtime/doc/eval.txt

Patch 7.4.2171 (after 7.4.2170)

version8.txt — 3012

Problem: MS-Windows build fails.
Solution: Add QueryPerformanceCounter().
Files: src/ex_cmds2.c

Patch 7.4.2172
Problem: No test for "vim --help".
Solution: Add a test.
Files: src/testdir/test_startup.vim, src/testdir/shared.vim

Patch 7.4.2173 (after 7.4.2172)
Problem: Can't test help on MS-Windows.
Solution: Skip the test.
Files: src/testdir/test_startup.vim

Patch 7.4.2174
Problem: Adding duplicate flags to 'whichwrap' leaves commas behind.
Solution: Also remove the commas. (Naruhiko Nishino)
Files: src/Makefile, src/option.c, src/testdir/Make_all.mak,

src/testdir/test_alot.vim, src/testdir/test_options.in,
src/testdir/test_options.ok, src/testdir/test_options.vim

Patch 7.4.2175
Problem: Insufficient testing of cscope.
Solution: Add more tests. (Dominique Pelle)
Files: src/testdir/test_cscope.vim

Patch 7.4.2176
Problem: #ifdefs in main() are complicated.
Solution: Always define vim_main2(). Move params to the file level.

(suggested by Ken Takata)
Files: src/main.c, src/structs.h, src/vim.h, src/if_mzsch.c,

src/proto/if_mzsch.pro

Patch 7.4.2177
Problem: No testing for -C and -N command line flags, file arguments,

startuptime.
Solution: Add tests.
Files: src/testdir/test_startup.vim, src/testdir/shared.vim

Patch 7.4.2178
Problem: No test for reading from stdin.
Solution: Add a test.
Files: src/testdir/test_startup.vim, src/testdir/shared.vim

Patch 7.4.2179 (after 7.4.2178)
Problem: Reading from stdin test fails on MS-Windows.
Solution: Strip the extra space.
Files: src/testdir/test_startup.vim

Patch 7.4.2180
Problem: There is no easy way to stop all timers. There is no way to

temporary pause a timer.
Solution: Add timer_stopall() and timer_pause().
Files: src/evalfunc.c, src/ex_cmds2.c, src/proto/ex_cmds2.pro,

src/structs.h, src/testdir/test_timers.vim,
src/testdir/shared.vim, runtime/doc/eval.txt

Patch 7.4.2181
Problem: Compiler warning for unused variable.
Solution: Remove it. (Dominique Pelle)

version8.txt — 3013

Files: src/ex_cmds2.c

Patch 7.4.2182
Problem: Color Grey40 used in startup but not in the short list.
Solution: Add Grey40 to the builtin colors.
Files: src/term.c

Patch 7.4.2183
Problem: Sign tests are old style.
Solution: Turn them into new style tests. (Dominique Pelle)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test_signs.in,

src/testdir/test_signs.ok, src/testdir/test_signs.vim,

Patch 7.4.2184
Problem: Tests that use RunVim() do not actually perform the test.
Solution: Use "return" instead of "call". (Ken Takata)
Files: src/testdir/shared.vim

Patch 7.4.2185
Problem: Test glob2regpat does not test much.
Solution: Add a few more test cases. (Dominique Pelle)
Files: src/testdir/test_glob2regpat.vim

Patch 7.4.2186
Problem: Timers test is flaky.
Solution: Relax the sleep time check.
Files: src/testdir/test_timers.vim

Patch 7.4.2187 (after 7.4.2185)
Problem: glob2regpat test fails on Windows.
Solution: Remove the checks that use backslashes.
Files: src/testdir/test_glob2regpat.vim

Patch 7.4.2188 (after 7.4.2146)
Problem: Completion does not work properly with some plugins.
Solution: Revert the part related to typing CTRL-E. (closes #972)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 7.4.2189
Problem: Cannot detect encoding in a fifo.
Solution: Extend the stdin way of detecting encoding to fifo. Add a test

for detecting encoding on stdin and fifo. (Ken Takata)
Files: src/buffer.c, src/fileio.c, src/Makefile,

src/testdir/Make_all.mak, src/testdir/test_startup_utf8.vim,
src/vim.h

Patch 7.4.2190
Problem: When startup test fails it's not easy to find out why.

GUI test fails with Gnome.
Solution: Add the help entry matches to a list an assert that.

Set $HOME for Gnome to create .gnome2 directory.
Files: src/testdir/test_startup.vim, src/testdir/test_gui.vim

Patch 7.4.2191
Problem: No automatic prototype for vim_main2().
Solution: Move the #endif. (Ken Takata)
Files: src/main.c, src/vim.h, src/proto/main.pro

Patch 7.4.2192
Problem: Generating prototypes with Cygwin doesn't work well.

version8.txt — 3014

Solution: Change #ifdefs. (Ken Takata)
Files: src/gui.h, src/gui_w32.c, src/ops.c, src/proto/fileio.pro,

src/proto/message.pro, src/proto/normal.pro, src/proto/ops.pro,
src/vim.h

Patch 7.4.2193
Problem: With Gnome when the GUI can't start test_startup hangs.
Solution: Call gui_mch_early_init_check(). (Hirohito Higashi)
Files: src/gui.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro

Patch 7.4.2194
Problem: Sign tests don't cover enough.
Solution: Add more test cases. (Dominique Pelle)
Files: src/testdir/test_signs.vim

Patch 7.4.2195
Problem: MS-Windows: The vimrun program does not support Unicode.
Solution: Use GetCommandLineW(). Cleanup old #ifdefs. (Ken Takata)
Files: src/vimrun.c

Patch 7.4.2196
Problem: glob2regpat test doesn't test everything on MS-Windows.
Solution: Add patterns with backslash handling.
Files: src/testdir/test_glob2regpat.vim

Patch 7.4.2197
Problem: All functions are freed on exit, which may hide leaks.
Solution: Only free named functions, not reference counted ones.
Files: src/userfunc.c

Patch 7.4.2198
Problem: Test alot sometimes fails under valgrind. (Dominique Pelle)
Solution: Avoid passing a callback with the wrong number of arguments.
Files: src/testdir/test_partial.vim

Patch 7.4.2199
Problem: In the GUI the cursor is hidden when redrawing any window,

causing flicker.
Solution: Only undraw the cursor when updating the window it's in.
Files: src/screen.c, src/gui.c, src/proto/gui.pro, src/gui_gtk_x11.c

Patch 7.4.2200
Problem: Cannot get all information about a quickfix list.
Solution: Add an optional argument to get/set loc/qf list(). (Yegappan

Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/proto/quickfix.pro,

src/quickfix.c, src/tag.c, src/testdir/test_quickfix.vim

Patch 7.4.2201
Problem: The sign column disappears when the last sign is deleted.
Solution: Add the 'signcolumn' option. (Christian Brabandt)
Files: runtime/doc/options.txt, runtime/optwin.vim, src/edit.c,

src/move.c, src/option.c, src/option.h, src/proto/option.pro,
src/screen.c, src/structs.h, src/testdir/test_options.vim

Patch 7.4.2202
Problem: Build fails with small features.
Solution: Correct option initialization.
Files: src/option.c

version8.txt — 3015

Patch 7.4.2203
Problem: Test fails with normal features.
Solution: Check is signs are supported.
Files: src/testdir/test_options.vim

Patch 7.4.2204
Problem: It is not easy to get information about buffers, windows and

tabpages.
Solution: Add getbufinfo(), getwininfo() and gettabinfo(). (Yegappan

Lakshmanan)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/dict.c,

src/evalfunc.c, src/option.c, src/proto/dict.pro,
src/proto/option.pro, src/proto/window.pro,
src/testdir/Make_all.mak, src/testdir/test_bufwintabinfo.vim,
src/window.c, src/Makefile

Patch 7.4.2205
Problem: 'wildignore' always applies to getcompletion().
Solution: Add an option to use 'wildignore' or not. (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_cmdline.vim

Patch 7.4.2206
Problem: Warning for unused function.
Solution: Put the function inside #ifdef. (John Marriott)
Files: src/evalfunc.c

Patch 7.4.2207
Problem: The +xpm feature is not sorted properly in :version output.
Solution: Move it up. (Tony Mechelynck)
Files: src/version.c

Patch 7.4.2208
Problem: Test for mappings is old style.
Solution: Convert the test to new style.
Files: src/testdir/test_mapping.vim, src/testdir/test_mapping.in,

src/testdir/test_mapping.ok, src/Makefile,
src/testdir/test_alot.vim, src/testdir/Make_all.mak

Patch 7.4.2209
Problem: Cannot map <M-">. (Stephen Riehm)
Solution: Solve the memory access problem in another way. (Dominique Pelle)

Allow for using <M-\"> in a string.
Files: src/eval.c, src/gui_mac.c, src/misc2.c, src/option.c,

src/proto/misc2.pro, src/syntax.c, src/term.c,
src/testdir/test_mapping.vim

Patch 7.4.2210
Problem: On OSX configure mixes up a Python framework and the Unix layout.
Solution: Make configure check properly. (Tim D. Smith, closes #980)
Files: src/configure.in, src/auto/configure

Patch 7.4.2211
Problem: Mouse support is not automatically enabled with simple term.
Solution: Recognize "st" and other names. (Manuel Schiller, closes #963)
Files: src/os_unix.c

Patch 7.4.2212
Problem: Mark " is not set when closing a window in another tab. (Guraga)
Solution: Check all tabs for the window to be valid. (based on patch by

Hirohito Higashi, closes #974)

version8.txt — 3016

Files: src/window.c, src/proto/window.pro, src/buffer.c,
src/testdir/test_viminfo.vim

Patch 7.4.2213
Problem: Cannot highlight the "~" lines at the end of a window differently.
Solution: Add the EndOfBuffer highlighting. (Marco Hinz, James McCoy)
Files: runtime/doc/options.txt, runtime/doc/syntax.txt, src/option.c,

src/screen.c, src/syntax.c, src/vim.h

Patch 7.4.2214
Problem: A font that uses ligatures messes up the screen display.
Solution: Put spaces between characters when building the glyph table.

(based on a patch from Manuel Schiller)
Files: src/gui_gtk_x11.c

Patch 7.4.2215
Problem: It's not easy to find out if a window is a quickfix or location

list window.
Solution: Add "loclist" and "quickfix" entries to the dict returned by

getwininfo(). (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufwintabinfo.vim

Patch 7.4.2216 (after 7.4.2215)
Problem: Test fails without the +sign feature.
Solution: Only check for signcolumn with the +sign feature.
Files: src/testdir/test_bufwintabinfo.vim

Patch 7.4.2217
Problem: When using matchaddpos() a character after the end of the line can

be highlighted.
Solution: Only highlight existing characters. (Hirohito Higashi)
Files: src/screen.c, src/structs.h, src/testdir/test_match.vim

Patch 7.4.2218
Problem: Can't build with +timers when +digraph is not included.
Solution: Change #ifdef for e_number_exp. (Damien)
Files: src/globals.h

Patch 7.4.2219
Problem: Recursive call to substitute gets stuck in sandbox. (Nikolai

Pavlov)
Solution: Handle the recursive call. (Christian Brabandt, closes #950)

Add a test.
Files: src/ex_cmds.c, src/testdir/test_regexp_latin.vim

Patch 7.4.2220
Problem: printf() gives an error when the argument for %s is not a string.

(Ozaki Kiichi)
Solution: Behave like invoking string() on the argument. (Ken Takata)
Files: runtime/doc/eval.txt, src/message.c, src/testdir/test_expr.vim

Patch 7.4.2221
Problem: printf() does not support binary format.
Solution: Add %b and %B. (Ozaki Kiichi)
Files: runtime/doc/eval.txt, src/message.c, src/testdir/test_expr.vim

Patch 7.4.2222
Problem: Sourcing a script where a character has 0x80 as a second byte does

not work. (Filipe L B Correia)

version8.txt — 3017

Solution: Turn 0x80 into K_SPECIAL KS_SPECIAL KE_FILLER. (Christian
Brabandt, closes #728) Add a test case.

Files: src/getchar.c, src/proto/getchar.pro, src/misc1.c,
src/testdir/test_regexp_utf8.vim

Patch 7.4.2223
Problem: Buffer overflow when using latin1 character with feedkeys().
Solution: Check for an illegal character. Add a test.
Files: src/testdir/test_regexp_utf8.vim, src/testdir/test_source_utf8.vim,

src/testdir/test_alot_utf8.vim, src/Makefile, src/getchar.c,
src/macros.h, src/evalfunc.c, src/os_unix.c, src/os_win32.c,
src/spell.c,

Patch 7.4.2224
Problem: Compiler warnings with older compiler and 64 bit numbers.
Solution: Add "LL" to large values. (Mike Williams)
Files: src/eval.c, src/evalfunc.c

Patch 7.4.2225
Problem: Crash when placing a sign in a deleted buffer.
Solution: Check for missing buffer name. (Dominique Pelle). Add a test.
Files: src/ex_cmds.c, src/testdir/test_signs.vim

Patch 7.4.2226
Problem: The field names used by getbufinfo(), gettabinfo() and

getwininfo() are not consistent.
Solution: Use bufnr, winnr and tabnr. (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufwintabinfo.vim

Patch 7.4.2227
Problem: Tab page tests are old style.
Solution: Change into new style tests. (Hirohito Higashi)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test62.in,

src/testdir/test62.ok, src/testdir/test_alot.vim,
src/testdir/test_tabpage.vim

Patch 7.4.2228
Problem: Test files have inconsistent modelines.
Solution: Don't set 'tabstop' to 2, use 'sts' and 'sw'.
Files: src/testdir/README.txt, src/testdir/test_backspace_opt.vim,

src/testdir/test_digraph.vim, src/testdir/test_gn.vim
src/testdir/test_help_tagjump.vim,
src/testdir/test_increment_dbcs.vim,
src/testdir/test_increment.vim, src/testdir/test_match.vim,
src/testdir/test_tagjump.vim, src/testdir/test_window_cmd.vim,
src/testdir/test_regexp_latin.vim, src/testdir/test_timers.vim

Patch 7.4.2229
Problem: Startup test fails on Solaris.
Solution: Recognize a character device. (Danek Duvall)
Files: src/buffer.c, src/fileio.c, src/proto/fileio.pro, src/vim.h

Patch 7.4.2230
Problem: There is no equivalent of 'smartcase' for a tag search.
Solution: Add value "followscs" and "smart" to 'tagcase'. (Christian

Brabandt, closes #712) Turn tagcase test into new style.
Files: runtime/doc/options.txt, runtime/doc/tagsrch.txt, src/option.h,

src/tag.c, src/search.c, src/proto/search.pro,
src/testdir/test_tagcase.in, src/testdir/test_tagcase.ok,

version8.txt — 3018

src/testdir/test_tagcase.vim, src/Makefile,
src/testdir/Make_all.mak, src/testdir/test_alot.vim

Patch 7.4.2231
Problem: ":oldfiles" output is a very long list.
Solution: Add a pattern argument. (Coot, closes #575)
Files: runtime/doc/starting.txt, src/ex_cmds.h, src/eval.c,

src/ex_cmds.c, src/proto/eval.pro, src/proto/ex_cmds.pro,
src/testdir/test_viminfo.vim

Patch 7.4.2232
Problem: The default ttimeoutlen is very long.
Solution: Use "100". (Hirohito Higashi)
Files: runtime/defaults.vim

Patch 7.4.2233
Problem: Crash when using funcref() with invalid name. (Dominique Pelle)
Solution: Check for NULL translated name.
Files: src/evalfunc.c, src/testdir/test_expr.vim

Patch 7.4.2234
Problem: Can't build with +eval but without +quickfix. (John Marriott)
Solution: Move skip_vimgrep_pat() to separate #ifdef block.
Files: src/quickfix.c

Patch 7.4.2235
Problem: submatch() does not check for a valid argument.
Solution: Give an error if the argument is out of range. (Dominique Pelle)
Files: src/evalfunc.c, src/testdir/test_expr.vim

Patch 7.4.2236
Problem: The 'langnoremap' option leads to double negatives. And it does

not work for the last character of a mapping.
Solution: Add 'langremap' with the opposite value. Keep 'langnoremap' for

backwards compatibility. Make it work for the last character of a
mapping. Make the test work.

Files: runtime/doc/options.txt, runtime/defaults.vim, src/option.c,
src/option.h, src/macros.h, src/testdir/test_mapping.vim

Patch 7.4.2237
Problem: Can't use "." and "$" with ":tab".
Solution: Support a range for ":tab". (Hirohito Higashi)
Files: runtime/doc/tabpage.txt, src/ex_docmd.c,

src/testdir/test_tabpage.vim

Patch 7.4.2238
Problem: With SGR mouse reporting (suckless terminal) the mouse release and

scroll up/down is confused.
Solution: Don't see a release as a scroll up/down. (Ralph Eastwood)
Files: src/term.c

Patch 7.4.2239
Problem: Warning for missing declaration of skip_vimgrep_pat(). (John

Marriott)
Solution: Move it to another file.
Files: src/quickfix.c, src/proto/quickfix.pro, src/ex_cmds.c,

src/proto/ex_cmds.pro

Patch 7.4.2240
Problem: Tests using the sleep time can be flaky.

version8.txt — 3019

Solution: Use reltime() if available. (Partly by Shane Harper)
Files: src/testdir/shared.vim, src/testdir/test_timers.vim

Patch 7.4.2241 (after 7.4.2240)
Problem: Timer test sometimes fails.
Solution: Increase the maximum time for repeating timer.
Files: src/testdir/test_timers.vim

Patch 7.4.2242 (after 7.4.2240)
Problem: Timer test sometimes fails.
Solution: Increase the maximum time for callback timer test.
Files: src/testdir/test_timers.vim

Patch 7.4.2243
Problem: Warning for assigning negative value to unsigned. (Danek Duvall)
Solution: Make cterm_normal_fg_gui_color and _bg_ guicolor_T, cast to long_u

only when an unsigned is needed.
Files: src/structs.h, src/globals.h, src/screen.c, src/term.c,

src/syntax.c, src/gui_gtk_x11.c, src/gui.c, src/gui_mac.c,
src/gui_photon.c, src/gui_w32.c, src/gui_x11.c,
src/proto/term.pro, src/proto/gui_gtk_x11.pro,
src/proto/gui_mac.pro, src/proto/gui_photon.pro,
src/proto/gui_w32.pro, src/proto/gui_x11.pro

Patch 7.4.2244
Problem: Adding pattern to ":oldfiles" is not a generic solution.
Solution: Add the ":filter /pat/ cmd" command modifier. Only works for some

commands right now.
Files: src/structs.h, src/ex_docmd.c, src/ex_cmds.h, src/message.c,

src/proto/message.pro, runtime/doc/starting.txt,
runtime/doc/various.txt, src/testdir/test_viminfo.vim,
src/testdir/test_alot.vim, src/testdir/test_filter_cmd.vim,
src/Makefile

Patch 7.4.2245 (after 7.4.2244)
Problem: Filter test fails.
Solution: Include missing changes.
Files: src/buffer.c

Patch 7.4.2246 (after 7.4.2244)
Problem: Oldfiles test fails.
Solution: Include missing changes.
Files: src/ex_cmds.c

Patch 7.4.2247 (after 7.4.2244)
Problem: Tiny build fails. (Tony Mechelynck)
Solution: Remove #ifdef.
Files: src/ex_cmds.c

Patch 7.4.2248
Problem: When cancelling the :ptjump prompt a preview window is opened for

a following command.
Solution: Reset g_do_tagpreview. (Hirohito Higashi) Add a test. Avoid that

the test runner gets stuck in trying to close a window.
Files: src/tag.c, src/testdir/test_tagjump.vim, src/testdir/runtest.vim

Patch 7.4.2249
Problem: Missing colon in error message.
Solution: Add the colon. (Dominique Pelle)
Files: src/userfunc.c

version8.txt — 3020

Patch 7.4.2250
Problem: Some error messages cannot be translated.
Solution: Enclose them in _() and N_(). (Dominique Pelle)
Files: src/channel.c, src/evalfunc.c, src/ex_cmds.c, src/spell.c,

src/window.c

Patch 7.4.2251
Problem: In rare cases diffing 4 buffers is not enough.
Solution: Raise the limit to 8. (closes #1000)
Files: src/structs.h, runtime/doc/diff.txt

Patch 7.4.2252
Problem: Compiler warnings for signed/unsigned in expression.
Solution: Remove type cast. (Dominique Pelle)
Files: src/vim.h

Patch 7.4.2253
Problem: Check for Windows 3.1 will always return false. (Christian

Brabandt)
Solution: Remove the dead code.
Files: src/gui_w32.c, src/evalfunc.c, src/ex_cmds.c, src/option.c,

src/os_win32.c, src/version.c, src/proto/gui_w32.pro

Patch 7.4.2254
Problem: Compiler warnings in MzScheme code.
Solution: Add UNUSED. Remove unreachable code.
Files: src/if_mzsch.c

Patch 7.4.2255
Problem: The script that checks translations can't handle plurals.
Solution: Check for plural msgid and msgstr entries. Leave the cursor on

the first error.
Files: src/po/check.vim

Patch 7.4.2256
Problem: Coverity complains about null pointer check.
Solution: Remove wrong and superfluous error check.
Files: src/eval.c

Patch 7.4.2257
Problem: Coverity complains about not checking for NULL.
Solution: Check for out of memory.
Files: src/if_py_both.h

Patch 7.4.2258
Problem: Two JSON messages are sent without a separator.
Solution: Separate messages with a NL. (closes #1001)
Files: src/json.c, src/channel.c, src/vim.h, src/testdir/test_channel.py,

src/testdir/test_channel.vim, runtime/doc/channel.txt

Patch 7.4.2259
Problem: With 'incsearch' can only see the next match.
Solution: Make CTRL-N/CTRL-P move to the previous/next match. (Christian

Brabandt)
Files: runtime/doc/cmdline.txt, src/ex_getln.c, src/testdir/Make_all.mak,

src/testdir/test_search.vim, src/Makefile

Patch 7.4.2260 (after 7.4.2258)
Problem: Channel test is flaky.

version8.txt — 3021

Solution: Add a newline to separate JSON messages.
Files: src/testdir/test_channel.vim

Patch 7.4.2261 (after 7.4.2259)
Problem: Build fails with small features.
Solution: Move "else" inside the #ifdef.
Files: src/ex_getln.c

Patch 7.4.2262
Problem: Fail to read register content from viminfo if it is 438 characters

long. (John Chen)
Solution: Adjust the check for line wrapping. (closes #1010)
Files: src/testdir/test_viminfo.vim, src/ex_cmds.c

Patch 7.4.2263
Problem: :filter does not work for many commands. Can only get matching

messages.
Solution: Make :filter work for :command, :map, :list, :number and :print.

Make ":filter!" show non-matching lines.
Files: src/getchar.c, src/ex_cmds.c, src/ex_cmds.h, src/ex_docmd.c,

src/message.c, src/structs.h, src/testdir/test_filter_cmd.vim

Patch 7.4.2264
Problem: When adding entries to an empty quickfix list the title is reset.
Solution: Improve handling of the title. (Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim, src/quickfix.c

Patch 7.4.2265
Problem: printf() isn't tested much.
Solution: Add more tests for printf(). (Dominique Pelle)
Files: src/testdir/test_expr.vim

Patch 7.4.2266 (after 7.4.2265)
Problem: printf() test fails on Windows. "-inf" is not used.
Solution: Check for Windows-specific values for "nan". Add sign to "inf"

when appropriate.
Files: src/message.c, src/testdir/test_expr.vim

Patch 7.4.2267 (after 7.4.2266)
Problem: Build fails on MS-Windows.
Solution: Add define to get isinf().
Files: src/message.c

Patch 7.4.2268 (after 7.4.2259)
Problem: Using CTRL-N and CTRL-P for incsearch shadows completion keys.
Solution: Use CTRL-T and CTRL-G instead.
Files: runtime/doc/cmdline.txt, src/ex_getln.c,

src/testdir/test_search.vim

Patch 7.4.2269
Problem: Using 'hlsearch' highlighting instead of matchpos if there is no

search match.
Solution: Pass NULL as last item to next_search_hl() when searching for

'hlsearch' match. (Shane Harper, closes #1013)
Files: src/screen.c, src/testdir/test_match.vim

Patch 7.4.2270
Problem: Insufficient testing for NUL bytes on a raw channel.
Solution: Add a test for writing and reading.
Files: src/testdir/test_channel.vim

version8.txt — 3022

Patch 7.4.2271
Problem: Netbeans test doesn't read settings from file.
Solution: Use "-Xnbauth".
Files: src/testdir/test_netbeans.vim

Patch 7.4.2272
Problem: getbufinfo(), getwininfo() and gettabinfo() are inefficient.
Solution: Instead of making a copy of the variables dictionary, use a

reference.
Files: src/evalfunc.c

Patch 7.4.2273
Problem: getwininfo() and getbufinfo() are inefficient.
Solution: Do not make a copy of all window/buffer-local options. Make it

possible to get them with gettabwinvar() or getbufvar().
Files: src/evalfunc.c, src/eval.c, src/testdir/test_bufwintabinfo.vim,

runtime/doc/eval.txt

Patch 7.4.2274
Problem: Command line completion on "find **/filename" drops sub-directory.
Solution: Handle this case separately. (Harm te Hennepe, closes #932, closes

#939)
Files: src/misc1.c, src/testdir/test_cmdline.vim

Patch 7.4.2275
Problem: ":diffoff!" does not remove filler lines.
Solution: Force a redraw and invalidate the cursor. (closes #1014)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 7.4.2276
Problem: Command line test fails on Windows when run twice.
Solution: Wipe the buffer so that the directory can be deleted.
Files: src/testdir/test_cmdline.vim

Patch 7.4.2277
Problem: Memory leak in getbufinfo() when there is a sign. (Dominique

Pelle)
Solution: Remove extra vim_strsave().
Files: src/evalfunc.c

Patch 7.4.2278
Problem: New users have no idea of the 'scrolloff' option.
Solution: Set 'scrolloff' in defaults.vim.
Files: runtime/defaults.vim

Patch 7.4.2279
Problem: Starting diff mode with the cursor in the last line might end up

only showing one closed fold. (John Beckett)
Solution: Scroll the window to show the same relative cursor position.
Files: src/diff.c, src/window.c, src/proto/window.pro

Patch 7.4.2280
Problem: printf() doesn't handle infinity float values correctly.
Solution: Add a table with possible infinity values. (Dominique Pelle)
Files: src/message.c, src/testdir/test_expr.vim

Patch 7.4.2281
Problem: Timer test fails sometimes.
Solution: Reduce minimum time by 1 msec.

version8.txt — 3023

Files: src/testdir/test_timers.vim

Patch 7.4.2282
Problem: When a child process is very fast waiting 10 msec for it is

noticeable. (Ramel Eshed)
Solution: Start waiting for 1 msec and gradually increase.
Files: src/os_unix.c

Patch 7.4.2283
Problem: Part of ":oldfiles" command isn't cleared. (Lifepillar)
Solution: Clear the rest of the line. (closes 1018)
Files: src/ex_cmds.c

Patch 7.4.2284
Problem: Comment in scope header file is outdated. (KillTheMule)
Solution: Point to the help instead. (closes #1017)
Files: src/if_cscope.h

Patch 7.4.2285
Problem: Generated files are outdated.
Solution: Generate the files. Avoid errors when generating prototypes.
Files: src/if_mzsch.h, src/Makefile, src/option.h, src/os_mac_conv.c,

src/os_amiga.c, src/vim.h, src/structs.h, src/os_win32.c,
src/if_lua.c, src/proto/mbyte.pro

Patch 7.4.2286
Problem: The tee program isn't included. Makefile contains build

instructions that don't work.
Solution: Update the Filelist and build instructions. Remove build

instructions for DOS and old Windows. Add the tee program.
Files: Filelist, Makefile, nsis/gvim.nsi

Patch 7.4.2287
Problem: The callback passed to ch_sendraw() is not used.
Solution: Pass the read part, not the send part. (haya14busa, closes #1019)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.2288
Problem: MS-Windows build instructions are clumsy. "dosbin" doesn't build.
Solution: Add rename.bat. Fix building "dosbin".
Files: Makefile, Filelist, rename.bat

Patch 7.4.2289
Problem: When installing and $DESTDIR is set the icons probably won't be

installed.
Solution: Create the icon directories if $DESTDIR is not empty. (Danek

Duvall)
Files: src/Makefile

Patch 7.4.2290
Problem: Compiler warning in tiny build. (Tony Mechelynck)
Solution: Add #ifdef around infinity_str().
Files: src/message.c

Patch 7.4.2291
Problem: printf() handles floats wrong when there is a sign.
Solution: Fix placing the sign. Add tests. (Dominique Pelle)
Files: src/testdir/test_expr.vim, runtime/doc/eval.txt, src/message.c

Patch 7.4.2292 (after 7.4.2291)

version8.txt — 3024

Problem: Not all systems understand %F in printf().
Solution: Use %f.
Files: src/message.c

Patch 7.4.2293
Problem: Modelines in source code are inconsistent.
Solution: Use the same line in most files. Add 'noet'. (Naruhiko Nishino)
Files: src/alloc.h, src/arabic.c, src/arabic.h, src/ascii.h,

src/blowfish.c, src/buffer.c, src/channel.c, src/charset.c,
src/crypt.c, src/crypt_zip.c, src/dict.c, src/diff.c,
src/digraph.c, src/dosinst.c, src/dosinst.h, src/edit.c,
src/eval.c, src/evalfunc.c, src/ex_cmds.c, src/ex_cmds.h,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c,
src/farsi.c, src/farsi.h, src/feature.h, src/fileio.c, src/fold.c,
src/getchar.c, src/glbl_ime.cpp, src/glbl_ime.h, src/globals.h,
src/gui.c, src/gui.h, src/gui_at_fs.c, src/gui_at_sb.c,
src/gui_at_sb.h, src/gui_athena.c, src/gui_beval.c,
src/gui_beval.h, src/gui_gtk.c, src/gui_gtk_f.c, src/gui_gtk_f.h,
src/gui_gtk_vms.h, src/gui_gtk_x11.c, src/gui_mac.c,
src/gui_motif.c, src/gui_photon.c, src/gui_w32.c, src/gui_x11.c,
src/gui_x11_pm.h, src/gui_xmdlg.c, src/gui_xmebw.c,
src/gui_xmebw.h, src/gui_xmebwp.h, src/hangulin.c, src/hardcopy.c,
src/hashtab.c, src/if_cscope.c, src/if_cscope.h, src/if_mzsch.c,
src/if_mzsch.h, src/if_ole.cpp, src/if_perl.xs, src/if_perlsfio.c,
src/if_python3.c, src/if_ruby.c, src/if_tcl.c, src/if_xcmdsrv.c,
src/integration.c, src/integration.h, src/iscygpty.c, src/json.c,
src/json_test.c, src/keymap.h, src/list.c, src/macros.h,
src/main.c, src/mark.c, src/mbyte.c, src/memfile.c,
src/memfile_test.c, src/memline.c, src/menu.c, src/message.c,
src/message_test.c, src/misc1.c, src/misc2.c, src/move.c,
src/nbdebug.c, src/nbdebug.h, src/netbeans.c, src/normal.c,
src/ops.c, src/option.c, src/option.h, src/os_amiga.c,
src/os_amiga.h, src/os_beos.c, src/os_beos.h, src/os_dos.h,
src/os_mac.h, src/os_mac_conv.c, src/os_macosx.m, src/os_mint.h,
src/os_mswin.c, src/os_qnx.c, src/os_qnx.h, src/os_unix.c,
src/os_unix.h, src/os_unixx.h, src/os_vms.c, src/os_w32dll.c,
src/os_w32exe.c, src/os_win32.c, src/os_win32.h, src/popupmnu.c,
src/proto.h, src/pty.c, src/quickfix.c, src/regexp.c,
src/regexp.h, src/regexp_nfa.c, src/screen.c, src/search.c,
src/sha256.c, src/spell.c, src/spell.h, src/spellfile.c,
src/structs.h, src/syntax.c, src/tag.c, src/term.c, src/term.h,
src/termlib.c, src/ui.c, src/undo.c, src/uninstal.c,
src/userfunc.c, src/version.c, src/version.h, src/vim.h,
src/vim.rc, src/vimio.h, src/vimrun.c, src/winclip.c,
src/window.c, src/workshop.c, src/workshop.h, src/wsdebug.c,
src/wsdebug.h, src/xpm_w32.c

Patch 7.4.2294
Problem: Sign test fails on MS-Windows when using the distributed zip

archives.
Solution: Create dummy files instead of relying on files in the pixmaps

directory.
Files: src/testdir/test_signs.vim

Patch 7.4.2295 (after 7.4.2293)
Problem: Cscope test fails.
Solution: Avoid checking for specific line and column numbers.
Files: src/testdir/test_cscope.vim

Patch 7.4.2296

version8.txt — 3025

Problem: No tests for :undolist and "U" command.
Solution: Add tests. (Dominique Pelle)
Files: src/testdir/test_undo.vim

Patch 7.4.2297
Problem: When starting a job that reads from a buffer and reaching the end,

the job hangs.
Solution: Close the pipe or socket when all lines were read.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 7.4.2298
Problem: It is not possible to close the "in" part of a channel.
Solution: Add ch_close_in().
Files: src/evalfunc.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, runtime/doc/eval.txt,
runtime/doc/channel.txt

Patch 7.4.2299
Problem: QuickFixCmdPre and QuickFixCmdPost autocommands are not always

triggered.
Solution: Also trigger on ":cexpr", ":cbuffer", etc. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 7.4.2300
Problem: Get warning for deleting autocommand group when the autocommand

using the group is scheduled for deletion. (Pavol Juhas)
Solution: Check for deleted autocommand.
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 7.4.2301
Problem: MS-Windows: some files remain after testing.
Solution: Close the channel output file. Wait for the file handle to be

closed before deleting the file.
Files: src/os_win32.c, src/testdir/test_channel.vim

Patch 7.4.2302
Problem: Default interface versions for MS-Windows are outdated.
Solution: Use Active Perl 5.24, Python 3.5.2. Could only make it work with

Ruby 1.9.2.
Files: src/bigvim.bat, src/bigvim64.bat, src/Make_mvc.mak

Patch 7.4.2303
Problem: When using "is" the mode isn't always updated.
Solution: Redraw the command line. (Christian Brabandt)
Files: src/search.c

Patch 7.4.2304
Problem: In a timer callback the timer itself can't be found or stopped.

(Thinca)
Solution: Do not remove the timer from the list, remember whether it was

freed.
Files: src/ex_cmds2.c, src/testdir/test_timers.vim

Patch 7.4.2305
Problem: Marks, writefile and nested function tests are old style.
Solution: Turn them into new style tests. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/test_marks.in,

src/testdir/test_marks.ok, src/testdir/test_marks.vim,
src/testdir/test_nested_function.in,
src/testdir/test_nested_function.ok,

version8.txt — 3026

src/testdir/test_nested_function.vim,
src/testdir/test_writefile.in, src/testdir/test_writefile.ok,
src/testdir/test_writefile.vim, src/Makefile

Patch 7.4.2306
Problem: Default value for 'langremap' is wrong.
Solution: Set the right value. (Jürgen Krämer) Add a test.
Files: src/option.c, src/testdir/test_mapping.vim

Patch 7.4.2307
Problem: Several tests are old style.
Solution: Turn them into new style tests. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/test102.in,

src/testdir/test102.ok, src/testdir/test46.in,
src/testdir/test46.ok, src/testdir/test81.in,
src/testdir/test81.ok, src/testdir/test_charsearch.in,
src/testdir/test_charsearch.ok, src/testdir/test_charsearch.vim,
src/testdir/test_fnameescape.vim, src/testdir/test_substitute.vim,
src/Makefile

Patch 7.4.2308 (after 7.4.2307)
Problem: Old charsearch test still listed in Makefile.
Solution: Remove the line.
Files: src/testdir/Make_all.mak

Patch 7.4.2309
Problem: Crash when doing tabnext in a BufUnload autocmd. (Dominique Pelle)
Solution: When detecting that the tab page changed, don't just abort but

delete the window where w_buffer is NULL.
Files: src/window.c, src/testdir/test_tabpage.vim

Patch 7.4.2310 (after 7.4.2304)
Problem: Accessing freed memory when a timer does not repeat.
Solution: Free after removing it. (Dominique Pelle)
Files: src/ex_cmds2.c

Patch 7.4.2311
Problem: Appveyor 64 bit build still using Python 3.4
Solution: Switch to Python 3.5. (Ken Takata, closes #1032)
Files: appveyor.yml, src/appveyor.bat

Patch 7.4.2312
Problem: Crash when autocommand moves to another tab. (Dominique Pelle)
Solution: When navigating to another window halfway the :edit command go

back to the right window.
Files: src/buffer.c, src/ex_cmds.c, src/ex_getln.c, src/ex_docmd.c,

src/window.c, src/proto/ex_getln.pro, src/testdir/test_tabpage.vim

Patch 7.4.2313
Problem: Crash when deleting an augroup and listing an autocommand.

(Dominique Pelle)
Solution: Make sure deleted_augroup is valid.
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 7.4.2314
Problem: No error when deleting an augroup while it's the current one.
Solution: Disallow deleting an augroup when it's the current one.
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 7.4.2315

version8.txt — 3027

Problem: Insufficient testing for Normal mode commands.
Solution: Add a big test. (Christian Brabandt, closes #1029)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_normal.vim

Patch 7.4.2316
Problem: Channel sort test is flaky.
Solution: Add a check the output has been read.
Files: src/testdir/test_channel.vim

Patch 7.4.2317 (after 7.4.2315)
Problem: Normal mode tests fail on MS-Windows.
Solution: Do some tests only on Unix. Set 'fileformat' to "unix".
Files: src/testdir/test_normal.vim

Patch 7.4.2318
Problem: When 'incsearch' is not set CTRL-T and CTRL-G are not inserted as

before.
Solution: Move #ifdef and don't use goto.
Files: src/ex_getln.c

Patch 7.4.2319
Problem: No way for a system wide vimrc to stop loading defaults.vim.

(Christian Hesse)
Solution: Bail out of defaults.vim if skip_defaults_vim was set.
Files: runtime/defaults.vim

Patch 7.4.2320
Problem: Redraw problem when using 'incsearch'.
Solution: Save the current view when deleting characters. (Christian

Brabandt) Fix that the '" mark is set in the wrong position. Don't
change the search start when using BS.

Files: src/ex_getln.c, src/normal.c, src/testdir/test_search.vim

Patch 7.4.2321
Problem: When a test is commented out we forget about it.
Solution: Let a test throw an exception with "Skipped" and list skipped test

functions. (Christian Brabandt)
Files: src/testdir/Makefile, src/testdir/runtest.vim,

src/testdir/test_popup.vim, src/testdir/README.txt

Patch 7.4.2322
Problem: Access memory beyond the end of the line. (Dominique Pelle)
Solution: Adjust the cursor column.
Files: src/move.c, src/testdir/test_normal.vim

Patch 7.4.2323
Problem: Using freed memory when using 'formatexpr'. (Dominique Pelle)
Solution: Make a copy of 'formatexpr' before evaluating it.
Files: src/ops.c, src/testdir/test_normal.vim

Patch 7.4.2324
Problem: Crash when editing a new buffer and BufUnload autocommand wipes

out the new buffer. (Norio Takagi)
Solution: Don't allow wiping out this buffer. (partly by Hirohito Higashi)

Move old style test13 into test_autocmd. Avoid ml_get error when
editing a file.

Files: src/structs.h, src/buffer.c, src/ex_cmds.c, src/ex_docmd.c,
src/window.c, src/testdir/test13.in, src/testdir/test13.ok,
src/testdir/test_autocmd.vim, src/testdir/Make_all.mak,

version8.txt — 3028

src/Makefile

Patch 7.4.2325 (after 7.4.2324)
Problem: Tiny build fails.
Solution: Add #ifdef.
Files: src/buffer.c

Patch 7.4.2326
Problem: Illegal memory access when Visual selection starts in invalid

position. (Dominique Pelle)
Solution: Correct position when needed.
Files: src/normal.c, src/misc2.c, src/proto/misc2.pro

Patch 7.4.2327
Problem: Freeing a variable that is on the stack.
Solution: Don't free res_tv or err_tv. (Ozaki Kiichi)
Files: src/channel.c

Patch 7.4.2328
Problem: Crash when BufWinLeave autocmd goes to another tab page. (Hirohito

Higashi)
Solution: Make close_buffer() go back to the right window.
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 7.4.2329
Problem: Error for min() and max() contains %s. (Nikolai Pavlov)
Solution: Pass the function name. (closes #1040)
Files: src/evalfunc.c, src/testdir/test_expr.vim

Patch 7.4.2330
Problem: Coverity complains about not checking curwin to be NULL.
Solution: Use firstwin to avoid the warning.
Files: src/buffer.c

Patch 7.4.2331
Problem: Using CTRL-X CTRL-V to complete a command line from Insert mode

does not work after entering an expression on the command line.
Solution: Don't use "ccline" when not actually using a command line. (test

by Hirohito Higashi)
Files: src/edit.c, src/ex_getln.c, src/proto/ex_getln.pro,

src/testdir/test_popup.vim

Patch 7.4.2332
Problem: Crash when stop_timer() is called in a callback of a callback.

Vim hangs when the timer callback uses too much time.
Solution: Set tr_id to -1 when a timer is to be deleted. Don't keep calling

callbacks forever. (Ozaki Kiichi)
Files: src/evalfunc.c, src/ex_cmds2.c, src/structs.h,

src/proto/ex_cmds2.pro, src/testdir/test_timers.vim

Patch 7.4.2333
Problem: Outdated comments in test.
Solution: Cleanup normal mode test. (Christian Brabandt)
Files: src/testdir/test_normal.vim

Patch 7.4.2334
Problem: On MS-Windows test_getcwd leaves Xtopdir behind.
Solution: Set 'noswapfile'. (Michael Soyka)
Files: src/testdir/test_getcwd.in

version8.txt — 3029

Patch 7.4.2335
Problem: taglist() is slow. (Luc Hermitte)
Solution: Check for CTRL-C less often when doing a linear search. (closes

#1044)
Files: src/tag.c

Patch 7.4.2336
Problem: Running normal mode tests leave a couple of files behind.

(Yegappan Lakshmanan)
Solution: Delete the files. (Christian Brabandt)
Files: src/testdir/test_normal.vim

Patch 7.4.2337
Problem: taglist() is still slow. (Luc Hermitte)
Solution: Check for CTRL-C less often when finding duplicates.
Files: src/tag.c

Patch 7.4.2338
Problem: Can't build with small features. (John Marriott)
Solution: Nearly always define FEAT_TAG_BINS.
Files: src/feature.h, src/tag.c

Patch 7.4.2339
Problem: Tab page test fails when run as fake root.
Solution: Check 'buftype' instead of 'filetype'. (James McCoy, closes #1042)
Files: src/testdir/test_tabpage.vim

Patch 7.4.2340
Problem: MS-Windows: Building with Ruby uses old version.
Solution: Update to 2.2.X. Use clearer name for the API version. (Ken

Takata)
Files: Makefile, src/INSTALLpc.txt, src/Make_cyg_ming.mak,

src/Make_mvc.mak, src/bigvim.bat

Patch 7.4.2341
Problem: Tiny things. Test doesn't clean up properly.
Solution: Adjust comment and white space. Restore option value.
Files: src/ex_cmds.c, src/message.c, src/testdir/test_autocmd.vim

Patch 7.4.2342
Problem: Typo in MS-Windows build script.
Solution: change "w2" to "22".
Files: src/bigvim.bat

Patch 7.4.2343
Problem: Too many old style tests.
Solution: Turn several into new style tests. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/test101.in,

src/testdir/test101.ok, src/testdir/test18.in,
src/testdir/test18.ok, src/testdir/test2.in, src/testdir/test2.ok,
src/testdir/test21.in, src/testdir/test21.ok,
src/testdir/test6.in, src/testdir/test6.ok,
src/testdir/test_arglist.vim, src/testdir/test_charsearch.vim,
src/testdir/test_fnameescape.vim, src/testdir/test_gf.vim,
src/testdir/test_hlsearch.vim, src/testdir/test_smartindent.vim,
src/testdir/test_tagjump.vim, src/Makefile

Patch 7.4.2344
Problem: The "Reading from channel output..." message can be unwanted.

Appending to a buffer leaves an empty first line behind.

version8.txt — 3030

Solution: Add the "out_msg" and "err_msg" options. Writing the first line
overwrites the first, empty line.

Files: src/structs.h, src/channel.c, src/testdir/test_channel.vim,
runtime/doc/channel.txt

Patch 7.4.2345 (after 7.4.2340)
Problem: For MinGW RUBY_API_VER_LONG isn't set correctly. Many default

version numbers are outdated.
Solution: Set RUBY_API_VER_LONG to RUBY_VER_LONG. Use latest stable releases

for defaults. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 7.4.2346
Problem: Autocommand test fails when run directly, passes when run as part

of test_alot.
Solution: Add command to make the cursor move. Close a tab page.
Files: src/testdir/test_autocmd.vim

Patch 7.4.2347
Problem: Crash when closing a buffer while Visual mode is active.

(Dominique Pelle)
Solution: Adjust the position before computing the number of lines.

When closing the current buffer stop Visual mode.
Files: src/buffer.c, src/normal.c, src/testdir/test_normal.vim

Patch 7.4.2348
Problem: Crash on exit when EXITFREE is defined. (Dominique Pelle)
Solution: Don't access curwin when exiting.
Files: src/buffer.c

Patch 7.4.2349
Problem: Valgrind reports using uninitialized memory. (Dominique Pelle)
Solution: Check the length before checking for a NUL.
Files: src/message.c

Patch 7.4.2350
Problem: Test 86 and 87 fail with some version of Python.
Solution: Unify "can't" and "cannot". Unify quotes.
Files: src/testdir/test86.in, src/testdir/test86.ok,

src/testdir/test87.in, src/testdir/test87.ok

Patch 7.4.2351
Problem: Netbeans test fails when run from unpacked MS-Windows sources.
Solution: Open README.txt instead of Makefile.
Files: src/testdir/test_netbeans.py, src/testdir/test_netbeans.vim

Patch 7.4.2352
Problem: Netbeans test fails in shadow directory.
Solution: Also copy README.txt to the shadow directory.
Files: src/Makefile

Patch 7.4.2353
Problem: Not enough test coverage for Normal mode commands.
Solution: Add more tests. (Christian Brabandt)
Files: src/testdir/test_normal.vim

Patch 7.4.2354
Problem: The example that explains nested backreferences does not work

properly with the new regexp engine. (Harm te Hennepe)
Solution: Also save the end position when adding a state. (closes #990)

version8.txt — 3031

Files: src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 7.4.2355
Problem: Regexp fails to match when using "\>\)\?". (Ramel)
Solution: When a state is already in the list, but addstate_here() is used

and the existing state comes later, add the new state anyway.
Files: src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 7.4.2356
Problem: Reading past end of line when using previous substitute pattern.

(Dominique Pelle)
Solution: Don't set "pat" only set "searchstr".
Files: src/search.c, src/testdir/test_search.vim

Patch 7.4.2357
Problem: Attempt to read history entry while not initialized.
Solution: Skip when the index is negative.
Files: src/ex_getln.c

Patch 7.4.2358
Problem: Compiler warnings with Solaris Studio when using GTK3. (Danek

Duvall)
Solution: Define FUNC2GENERIC depending on the system. (Kazunobu Kuriyama)
Files: src/gui.h, src/gui_beval.c, src/gui_gtk_f.c

Patch 7.4.2359
Problem: Memory leak in timer_start().
Solution: Check the right field to be NULL.
Files: src/evalfunc.c, src/testdir/test_timers.vim

Patch 7.4.2360
Problem: Invalid memory access when formatting. (Dominique Pelle)
Solution: Make sure cursor line and column are associated.
Files: src/misc1.c

Patch 7.4.2361
Problem: Checking for last_timer_id to overflow is not reliable. (Ozaki

Kiichi)
Solution: Check for the number not going up.
Files: src/ex_cmds2.c

Patch 7.4.2362
Problem: Illegal memory access with ":1@". (Dominique Pelle)
Solution: Correct cursor column after setting the line number. Also avoid

calling end_visual_mode() when not in Visual mode.
Files: src/ex_docmd.c, src/buffer.c

Patch 7.4.2363
Problem: Superfluous function prototypes.
Solution: Remove them.
Files: src/regexp.c

Patch 7.4.2364
Problem: Sort test sometimes fails.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 7.4.2365
Problem: Needless line break. Confusing directory name.
Solution: Remove line break. Prepend "../" to "tools".

version8.txt — 3032

Files: Makefile, src/normal.c

Patch 7.4.2366
Problem: MS-Windows gvim.exe does not have DirectX support.
Solution: Add the DIRECTX to the script.
Files: src/bigvim.bat

Patch 7.4.2367 (after 7.4.2364)
Problem: Test runner misses a comma.
Solution: Add the comma.
Files: src/testdir/runtest.vim

==
VERSION 8.1 version-8.1 version8.1 vim-8.1

This section is about improvements made between version 8.0 and 8.1.

This release has hundreds of bug fixes, there is a new feature and there are
many minor improvements.

The terminal window new-terminal-window

You can now open a window which functions as a terminal. You can use it for:
- Running a command, such as "make", while editing in other windows
- Running a shell and execute several commands
- Use the terminal debugger plugin, see terminal-debugger

All of this is especially useful when running Vim on a remote (ssh)
connection, when you can't easily open more terminals.

For more information see terminal-window .

Changed changed-8.1

Internal: A few C99 features are now allowed such as // comments and a
comma after the last enum entry. See style-compiler .

Since patch 8.0.0029 removed support for older MS-Windows systems, only
MS-Windows XP and later are supported.

Added added-8.1

Various syntax, indent and other plugins were added.

Quickfix improvements (by Yegappan Lakshmanan):
Added support for modifying any quickfix/location list in the quickfix
stack.
Added a unique identifier for every quickfix/location list.
Added support for associating any Vim type as a context information to
a quickfix/location list.
Enhanced the getqflist(), getloclist(), setqflist() and setloclist()
functions to get and set the various quickfix/location list attributes.
Added the QuickFixLine highlight group to highlight the current line

version8.txt — 3033

in the quickfix window.
The quickfix buffer b:changedtick variable is incremented for every
change to the contained quickfix list.
Added a changedtick variable to a quickfix/location list which is
incremented when the list is modified.
Added support for parsing text using 'errorformat' without creating a
new quickfix list.
Added support for the "module" item to a quickfix entry which can be
used for display purposes instead of a long file name.
Added support for freeing all the lists in the quickfix/location stack.
When opening a quickfix window using the :copen/:cwindow commands, the
supplied split modifiers are used.

Functions:
All the term_ functions.

assert_beeps()
assert_equalfile()
assert_report()
balloon_show()
balloon_split()
ch_canread()
getchangelist()
getjumplist()
getwinpos()
pyxeval()
remote_startserver()
setbufline()
test_ignore_error()
test_override()
trim()
win_screenpos()

Autocommands:
CmdlineChanged
CmdlineEnter
CmdlineLeave
ColorSchemePre
DirChanged
ExitPre
TerminalOpen
TextChangedP
TextYankPost

Commands:
:pyx
:pythonx
:pyxdo
:pyxfile
:terminal
:tmapclear
:tmap
:tnoremap
:tunmap

Options:
'balloonevalterm'
'imstyle'
'mzschemedll'
'mzschemegcdll'

version8.txt — 3034

'makeencoding'
'pumwidth'
'pythonhome'
'pythonthreehome'
'pyxversion'
'termwinkey'
'termwinscroll'
'termwinsize'
'viminfofile'
'winptydll'

Patches patches-8.1

Patch 8.0.0001
Problem: Intro screen still mentions version7. (Paul)
Solution: Change it to version8.
Files: src/version.c

Patch 8.0.0002
Problem: The netrw plugin does not work.
Solution: Make it accept version 8.0.
Files: runtime/autoload/netrw.vim

Patch 8.0.0003
Problem: getwinvar() returns wrong Value of boolean and number options,

especially non big endian systems. (James McCoy)
Solution: Cast the pointer to long or int. (closes #1060)
Files: src/option.c, src/testdir/test_bufwintabinfo.vim

Patch 8.0.0004
Problem: A string argument for function() that is not a function name

results in an error message with NULL. (Christian Brabandt)
Solution: Use the argument for the error message.
Files: src/evalfunc.c, src/testdir/test_expr.vim

Patch 8.0.0005
Problem: Netbeans test fails with Python 3. (Jonathonf)
Solution: Encode the string before sending it. (closes #1070)
Files: src/testdir/test_netbeans.py

Patch 8.0.0006
Problem: ":lb" is interpreted as ":lbottom" while the documentation says it

means ":lbuffer".
Solution: Adjust the order of the commands. (haya14busa, closes #1093)
Files: src/ex_cmds.h

Patch 8.0.0007
Problem: Vim 7.4 is still mentioned in a few places.
Solution: Update to Vim 8. (Uncle Bill, closes #1094)
Files: src/INSTALLpc.txt, src/vimtutor, uninstal.txt

Patch 8.0.0008
Problem: Popup complete test is disabled.
Solution: Enable the test and change the assert. (Hirohito Higashi)
Files: src/testdir/test_popup.vim

Patch 8.0.0009
Problem: Unnecessary workaround for AppVeyor.

version8.txt — 3035

Solution: Revert patch 7.4.990. (Christian Brabandt)
Files: appveyor.yml

Patch 8.0.0010
Problem: Crash when editing file that starts with crypt header. (igor2x)
Solution: Check for length of text. (Christian Brabandt) Add a test.
Files: src/fileio.c, src/testdir/test_crypt.vim, src/Makefile,

src/testdir/Make_all.mak

Patch 8.0.0011
Problem: On OSX Test_pipe_through_sort_all() sometimes fails.
Solution: Add the test to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.0012
Problem: Typos in comments.
Solution: Change "its" to "it's". (Matthew Brener, closes #1088)
Files: src/evalfunc.c, src/main.aap, src/nbdebug.c, src/netbeans.c,

src/quickfix.c, src/workshop.c, src/wsdebug.c

Patch 8.0.0013 (after 8.0.0011)
Problem: Missing comma in list.
Solution: Add the comma.
Files: src/testdir/runtest.vim

Patch 8.0.0014
Problem: Crypt tests are old style.
Solution: Convert to new style.
Files: src/testdir/test71.in, src/testdir/test71.ok,

src/testdir/test71a.in, src/testdir/test_crypt.vim, src/Makefile,
src/testdir/Make_all.mak

Patch 8.0.0015
Problem: Can't tell which part of a channel has "buffered" status.
Solution: Add an optional argument to ch_status(). Let ch_info() also

return "buffered" for out_status and err_status.
Files: src/evalfunc.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, runtime/doc/eval.txt

Patch 8.0.0016 (after 8.0.0015)
Problem: Build fails.
Solution: Include missing change.
Files: src/eval.c

Patch 8.0.0017
Problem: Cannot get the number of the current quickfix or location list.
Solution: Use the current list if "nr" in "what" is zero. (Yegappan

Lakshmanan) Remove debug command from test.
Files: src/quickfix.c, src/testdir/test_quickfix.vim,

runtime/doc/eval.txt

Patch 8.0.0018
Problem: When using ":sleep" channel input is not handled.
Solution: When there is a channel check for input also when not in raw mode.

Check every 100 msec.
Files: src/channel.c, src/proto/channel.pro, src/ui.c, src/proto/ui.pro,

src/ex_docmd.c, src/os_amiga.c, src/proto/os_amiga.pro,
src/os_unix.c, src/proto/os_unix.pro, src/os_win32.c,
src/proto/os_win32.pro

version8.txt — 3036

Patch 8.0.0019
Problem: Test_command_count is old style.
Solution: Turn it into a new style test. (Naruhiko Nishino)

Use more assert functions.
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_autocmd.vim, src/testdir/test_command_count.in,
src/testdir/test_command_count.ok,
src/testdir/test_command_count.vim

Patch 8.0.0020
Problem: The regexp engines are not reentrant.
Solution: Add regexec_T and save/restore the state when needed.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test_expr.vim,

runtime/doc/eval.txt, runtime/doc/change.txt

Patch 8.0.0021
Problem: In the GUI when redrawing the cursor it may be on the second half

of a double byte character.
Solution: Correct the cursor column. (Yasuhiro Matsumoto)
Files: src/screen.c

Patch 8.0.0022
Problem: If a channel in NL mode is missing the NL at the end the remaining

characters are dropped.
Solution: When the channel is closed use the remaining text. (Ozaki Kiichi)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.0.0023
Problem: "gd" and "gD" may find a match in a comment or string.
Solution: Ignore matches in comments and strings. (Anton Lindqvist)
Files: src/normal.c, src/testdir/test_goto.vim

Patch 8.0.0024
Problem: When the netbeans channel closes, "DETACH" is put in the output

part. (Ozaki Kiichi)
Solution: Write "DETACH" in the socket part.
Files: src/channel.c, src/testdir/test_netbeans.vim

Patch 8.0.0025
Problem: Inconsistent use of spaces vs tabs in gd test.
Solution: Use tabs. (Anton Lindqvist)
Files: src/testdir/test_goto.vim

Patch 8.0.0026
Problem: Error format with %W, %C and %Z does not work. (Gerd Wachsmuth)
Solution: Skip code when qf_multiignore is set. (Lcd)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0027
Problem: A channel is closed when reading on stderr or stdout fails, but

there may still be something to read on another part.
Solution: Turn ch_to_be_closed into a bitfield. (Ozaki Kiichi)
Files: src/channel.c, src/eval.c, src/structs.h, src/proto/channel.pro,

src/testdir/test_channel.vim

Patch 8.0.0028
Problem: Superfluous semicolons.
Solution: Remove them. (Ozaki Kiichi)
Files: src/ex_cmds2.c

version8.txt — 3037

Patch 8.0.0029
Problem: Code for MS-Windows is complicated because of the exceptions for

old systems.
Solution: Drop support for MS-Windows older than Windows XP. (Ken Takata)
Files: runtime/doc/gui_w32.txt, runtime/doc/os_win32.txt,

runtime/doc/todo.txt, src/GvimExt/Makefile, src/Make_mvc.mak,
src/evalfunc.c, src/ex_cmds.c, src/ex_docmd.c, src/gui_w32.c,
src/if_cscope.c, src/misc1.c, src/misc2.c, src/option.c,
src/os_mswin.c, src/os_win32.c, src/os_win32.h,
src/proto/os_mswin.pro, src/proto/os_win32.pro, src/version.c

Patch 8.0.0030
Problem: Mouse mode is not automatically detected for tmux.
Solution: Check for 'term' to be "tmux". (Michael Henry)
Files: src/os_unix.c

Patch 8.0.0031
Problem: After ":bwipeout" 'fileformat' is not set to the right default.
Solution: Get the default from 'fileformats'. (Mike Williams)
Files: src/option.c, src/Makefile, src/testdir/test_fileformat.vim,

src/testdir/test_alot.vim

Patch 8.0.0032
Problem: Tests may change the input file when something goes wrong.
Solution: Avoid writing the input file.
Files: src/testdir/test51.in, src/testdir/test67.in,

src/testdir/test97.in, src/testdir/test_tabpage.vim

Patch 8.0.0033
Problem: Cannot use overlapping positions with matchaddpos().
Solution: Check end of match. (Ozaki Kiichi) Add a test (Hirohito Higashi)
Files: src/screen.c, src/testdir/test_match.vim

Patch 8.0.0034
Problem: No completion for ":messages".
Solution: Complete "clear" argument. (Hirohito Higashi)
Files: src/ex_docmd.c, src/ex_getln.c, src/proto/ex_docmd.pro,

src/testdir/test_cmdline.vim, src/vim.h,
runtime/doc/eval.txt, runtime/doc/map.txt

Patch 8.0.0035 (after 7.4.2013)
Problem: Order of matches for 'omnifunc' is messed up. (Danny Su)
Solution: Do not set compl_curr_match when called from complete_check().

(closes #1168)
Files: src/edit.c, src/evalfunc.c, src/proto/edit.pro, src/search.c,

src/spell.c, src/tag.c, src/testdir/test76.in,
src/testdir/test76.ok, src/testdir/test_popup.vim, src/Makefile,
src/testdir/Make_all.mak

Patch 8.0.0036
Problem: Detecting that a job has finished may take a while.
Solution: Check for a finished job more often (Ozaki Kiichi)
Files: src/channel.c, src/os_unix.c, src/os_win32.c,

src/proto/os_unix.pro, src/proto/os_win32.pro,
src/testdir/test_channel.vim

Patch 8.0.0037
Problem: Get E924 when switching tabs. ()
Solution: Use win_valid_any_tab() instead of win_valid(). (Martin Vuille,

closes #1167, closes #1171)

version8.txt — 3038

Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0038
Problem: OPEN_CHR_FILES not defined for FreeBSD using Debian userland

files.
Solution: Check for __FreeBSD_kernel__. (James McCoy, closes #1166)
Files: src/vim.h

Patch 8.0.0039
Problem: When Vim 8 reads an old viminfo and exits, the next time marks are

not read from viminfo. (Ned Batchelder)
Solution: Set a mark when it wasn't set before, even when the timestamp is

zero. (closes #1170)
Files: src/mark.c, src/testdir/test_viminfo.vim

Patch 8.0.0040 (after 8.0.0033)
Problem: Whole line highlighting with matchaddpos() does not work.
Solution: Check for zero length. (Hirohito Higashi)
Files: src/screen.c, src/testdir/test_match.vim

Patch 8.0.0041
Problem: When using Insert mode completion but not actually inserting

anything an undo item is still created. (Tommy Allen)
Solution: Do not call stop_arrow() when not inserting anything.
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0042 (after 8.0.0041)
Problem: When using Insert mode completion with 'completeopt' containing

"noinsert" change is not saved for undo. (Tommy Allen)
Solution: Call stop_arrow() before inserting for pressing Enter.
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0043 (after 8.0.0041)
Problem: When using Insert mode completion with 'completeopt' containing

"noinsert" with CTRL-N the change is not saved for undo. (Tommy
Allen)

Solution: Call stop_arrow() before inserting for any key.
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0044
Problem: In diff mode the cursor may end up below the last line, resulting

in an ml_get error.
Solution: Check the line to be valid.
Files: src/move.c, src/diff.c, src/proto/diff.pro,

src/testdir/test_diffmode.vim

Patch 8.0.0045
Problem: Calling job_stop() right after job_start() does not work.
Solution: Block signals while fork is still busy. (Ozaki Kiichi, closes

#1155)
Files: src/auto/configure, src/config.h.in, src/configure.in,

src/os_unix.c, src/testdir/test_channel.vim

Patch 8.0.0046
Problem: Using NUL instead of NULL.
Solution: Change to NULL. (Dominique Pelle)
Files: src/ex_cmds.c, src/json.c

Patch 8.0.0047
Problem: Crash when using the preview window from an unnamed buffer.

version8.txt — 3039

(lifepillar)
Solution: Do not clear the wrong buffer. (closes #1200)
Files: src/popupmnu.c

Patch 8.0.0048
Problem: On Windows job_stop() stops cmd.exe, not the processes it runs.

(Linwei)
Solution: Iterate over all processes and terminate the one where the parent

is the job process. (Yasuhiro Matsumoto, closes #1184)
Files: src/os_win32.c, src/structs.h

Patch 8.0.0049
Problem: When a match ends in part of concealed text highlighting, it might

mess up concealing by resetting prev_syntax_id.
Solution: Do not reset prev_syntax_id and add a test to verify. (Christian

Brabandt, closes #1092)
Files: src/screen.c, src/testdir/test_matchadd_conceal.vim

Patch 8.0.0050
Problem: An exiting job is detected with a large latency.
Solution: Check for pending job more often. (Ozaki Kiichi) Change the

double loop in mch_inchar() into one.
Files: src/channel.c, src/os_unix.c, src/testdir/shared.vim,

src/testdir/test_channel.vim

Patch 8.0.0051 (after 8.0.0048)
Problem: New code for job_stop() breaks channel test on AppVeyor.
Solution: Revert the change.
Files: src/os_win32.c, src/structs.h

Patch 8.0.0052 (after 8.0.0049)
Problem: Conceal test passes even without the bug fix.
Solution: Add a redraw command. (Christian Brabandt)
Files: src/testdir/test_matchadd_conceal.vim

Patch 8.0.0053 (after 8.0.0047)
Problem: No test for what 8.0.0047 fixes.
Solution: Add a test. (Hirohito Higashi)
Files: src/testdir/test_popup.vim

Patch 8.0.0054 (after 8.0.0051)
Problem: On Windows job_stop() stops cmd.exe, not the processes it runs.

(Linwei)
Solution: Iterate over all processes and terminate the one where the parent

is the job process. Now only when there is no job object.
(Yasuhiro Matsumoto, closes #1203)

Files: src/os_win32.c

Patch 8.0.0055
Problem: Minor comment and style deficiencies.
Solution: Update comments and fix style.
Files: src/buffer.c, src/misc2.c, src/os_unix.c

Patch 8.0.0056
Problem: When setting 'filetype' there is no check for a valid name.
Solution: Only allow valid characters in 'filetype', 'syntax' and 'keymap'.
Files: src/option.c, src/testdir/test_options.vim

Patch 8.0.0057 (after 8.0.0056)
Problem: Tests fail without the 'keymap' features.

version8.txt — 3040

Solution: Check for feature in test.
Files: src/testdir/test_options.vim

Patch 8.0.0058
Problem: Positioning of the popup menu is not good.
Solution: Position it better. (Hirohito Higashi)
Files: src/popupmnu.c

Patch 8.0.0059
Problem: Vim does not build on VMS systems.
Solution: Various changes for VMS. (Zoltan Arpadffy)
Files: src/json.c, src/macros.h, src/Make_vms.mms, src/os_unix.c,

src/os_unix.h, src/os_vms.c, src/os_vms_conf.h,
src/proto/os_vms.pro, src/testdir/Make_vms.mms

Patch 8.0.0060
Problem: When using an Ex command for 'keywordprg' it is escaped as with a

shell command. (Romain Lafourcade)
Solution: Escape for an Ex command. (closes #1175)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.0.0061 (after 8.0.0058)
Problem: Compiler warning for unused variable.
Solution: Add #ifdef. (John Marriott)
Files: src/popupmnu.c

Patch 8.0.0062
Problem: No digraph for HORIZONTAL ELLIPSIS.
Solution: Use ",.". (Hans Ginzel, closes #1226)
Files: src/digraph.c, runtime/doc/digraph.txt

Patch 8.0.0063
Problem: Compiler warning for comparing with unsigned. (Zoltan Arpadffy)
Solution: Change <= to ==.
Files: src/undo.c

Patch 8.0.0064 (after 8.0.0060)
Problem: Normal test fails on MS-Windows.
Solution: Don't try using an illegal file name.
Files: src/testdir/test_normal.vim

Patch 8.0.0065 (after 8.0.0056)
Problem: Compiler warning for unused function in tiny build. (Tony

Mechelynck)
Solution: Add #ifdef.
Files: src/option.c

Patch 8.0.0066
Problem: when calling an operator function when 'linebreak' is set, it is

internally reset before calling the operator function.
Solution: Restore 'linebreak' before calling op_function(). (Christian

Brabandt)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.0.0067
Problem: VMS has a problem with infinity.
Solution: Avoid an overflow. (Zoltan Arpadffy)
Files: src/json.c, src/macros.h

Patch 8.0.0068

version8.txt — 3041

Problem: Checking did_throw after executing autocommands is wrong. (Daniel
Hahler)

Solution: Call aborting() instead, and only when autocommands were executed.
Files: src/quickfix.c, src/if_cscope.c, src/testdir/test_quickfix.vim

Patch 8.0.0069
Problem: Compiler warning for self-comparison.
Solution: Define ONE_WINDOW and add #ifdef.
Files: src/globals.h, src/buffer.c, src/ex_docmd.c, src/move.c,

src/screen.c, src/quickfix.c, src/window.c

Patch 8.0.0070
Problem: Tests referred in Makefile that no longer exist.
Solution: Remove test71 and test74 entries. (Michael Soyka)
Files: src/testdir/Mak_ming.mak

Patch 8.0.0071
Problem: Exit value from a shell command is wrong. (Hexchain Tong)
Solution: Do not check for ended jobs while waiting for a shell command.

(ichizok, closes #1196)
Files: src/os_unix.c

Patch 8.0.0072
Problem: MS-Windows: Crash with long font name. (Henry Hu)
Solution: Fix comparing with LF_FACESIZE. (Ken Takata, closes #1243)
Files: src/os_mswin.c

Patch 8.0.0073 (after 8.0.0069)
Problem: More comparisons between firstwin and lastwin.
Solution: Use ONE_WINDOW for consistency. (Hirohito Higashi)
Files: src/buffer.c, src/ex_cmds.c, src/ex_docmd.c, src/option.c,

src/window.c

Patch 8.0.0074
Problem: Cannot make Vim fail on an internal error.
Solution: Add IEMSG() and IEMSG2(). (Dominique Pelle) Avoid reporting an

internal error without mentioning where.
Files: src/globals.h, src/blowfish.c, src/dict.c, src/edit.c, src/eval.c,

src/evalfunc.c, src/ex_eval.c, src/getchar.c, src/gui_beval.c,
src/gui_w32.c, src/hangulin.c, src/hashtab.c, src/if_cscope.c,
src/json.c, src/memfile.c, src/memline.c, src/message.c,
src/misc2.c, src/option.c, src/quickfix.c, src/regexp.c,
src/spell.c, src/undo.c, src/userfunc.c, src/vim.h, src/window.c,
src/proto/misc2.pro, src/proto/message.pro, src/Makefile

Patch 8.0.0075
Problem: Using number for exception type lacks type checking.
Solution: Use an enum.
Files: src/structs.h, src/ex_docmd.c, src/ex_eval.c,

src/proto/ex_eval.pro

Patch 8.0.0076
Problem: Channel log has double parens ()().
Solution: Remove () for write_buf_line. (Yasuhiro Matsumoto)
Files: src/channel.c

Patch 8.0.0077
Problem: The GUI code is not tested by Travis.
Solution: Install the virtual framebuffer.
Files: .travis.yml

version8.txt — 3042

Patch 8.0.0078
Problem: Accessing freed memory in quickfix.
Solution: Reset pointer when freeing 'errorformat'. (Dominique Pelle)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0079
Problem: Accessing freed memory in quickfix. (Dominique Pelle)
Solution: Do not free the current list when adding to it.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0080
Problem: The OS X build fails on Travis.
Solution: Skip the virtual framebuffer on OS X.
Files: .travis.yml

Patch 8.0.0081
Problem: Inconsistent function names.
Solution: Rename do_cscope to ex_cscope. Clean up comments.
Files: src/ex_cmds.h, src/if_cscope.c, src/ex_docmd.c,

src/proto/if_cscope.pro

Patch 8.0.0082
Problem: Extension for configure should be ".ac".
Solution: Rename configure.in to configure.ac. (James McCoy, closes #1173)
Files: src/configure.in, src/configure.ac, Filelist, src/Makefile,

src/blowfish.c, src/channel.c, src/config.h.in, src/main.aap,
src/os_unix.c, src/INSTALL, src/mysign

Patch 8.0.0083
Problem: Using freed memory with win_getid(). (Dominique Pelle)
Solution: For the current tab use curwin.
Files: src/window.c, src/testdir/test_window_id.vim

Patch 8.0.0084
Problem: Using freed memory when adding to a quickfix list. (Dominique

Pelle)
Solution: Clear the directory name.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0085
Problem: Using freed memory with recursive function call. (Dominique Pelle)
Solution: Make a copy of the function name.
Files: src/eval.c, src/testdir/test_nested_function.vim

Patch 8.0.0086
Problem: Cannot add a comment after ":hide". (Norio Takagi)
Solution: Make it work, add a test. (Hirohito Higashi)
Files: src/Makefile, src/ex_cmds.h, src/ex_docmd.c,

src/testdir/Make_all.mak, src/testdir/test_hide.vim

Patch 8.0.0087
Problem: When the channel callback gets job info the job may already have

been deleted. (lifepillar)
Solution: Do not delete the job when the channel is still useful. (ichizok,

closes #1242, closes #1245)
Files: src/channel.c, src/eval.c, src/os_unix.c, src/os_win32.c,

src/structs.h, src/testdir/test_channel.vim

Patch 8.0.0088

version8.txt — 3043

Problem: When a test fails in Setup or Teardown the problem is not reported.
Solution: Add a try/catch. (Hirohito Higashi)
Files: src/testdir/runtest.vim

Patch 8.0.0089
Problem: Various problems with GTK 3.22.2.
Solution: Fix the problems, add #ifdefs. (Kazunobu Kuriyama)
Files: src/gui_beval.c, src/gui_gtk.c, src/gui_gtk_x11.c

Patch 8.0.0090
Problem: Cursor moved after last character when using 'breakindent'.
Solution: Fix the cursor positioning. Turn the breakindent test into new

style. (Christian Brabandt)
Files: src/screen.c, src/testdir/Make_all.mak,

src/testdir/test_breakindent.in, src/testdir/test_breakindent.ok,
src/testdir/test_breakindent.vim, src/Makefile

Patch 8.0.0091
Problem: Test_help_complete sometimes fails in MS-Windows console.
Solution: Use getcompletion() instead of feedkeys() and command line

completion. (Hirohito Higashi)
Files: src/testdir/test_help_tagjump.vim

Patch 8.0.0092
Problem: C indenting does not support nested namespaces that C++ 17 has.
Solution: Add check that passes double colon inside a name. (Pauli, closes

#1214)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 8.0.0093
Problem: Not using multiprocess build feature.
Solution: Enable multiprocess build with MSVC 10. (Ken Takata)
Files: src/Make_mvc.mak

Patch 8.0.0094
Problem: When vimrun.exe is not found the error message is not properly

encoded.
Solution: Use utf-16 and MessageBoxW(). (Ken Takata)
Files: src/os_win32.c

Patch 8.0.0095
Problem: Problems with GTK 3.22.2 fixed in 3.22.4.
Solution: Adjust the #ifdefs. (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 8.0.0096
Problem: When the input or output is not a tty Vim appears to hang.
Solution: Add the --ttyfail argument. Also add the "ttyin" and "ttyout"

features to be able to check in Vim script.
Files: src/globals.h, src/structs.h, src/main.c, src/evalfunc.c,

runtime/doc/starting.txt, runtime/doc/eval.txt

Patch 8.0.0097
Problem: When a channel callback consumes a lot of time Vim becomes

unresponsive. (skywind)
Solution: Bail out of checking channel readahead after 100 msec.
Files: src/os_unix.c, src/misc2.c, src/vim.h, src/os_win32.c,

src/channel.c

Patch 8.0.0098 (after 8.0.0097)

version8.txt — 3044

Problem: Can't build on MS-Windows.
Solution: Add missing parenthesis.
Files: src/vim.h

Patch 8.0.0099
Problem: Popup menu always appears above the cursor when it is in the lower

half of the screen. (Matt Gardner)
Solution: Compute the available space better. (Hirohito Higashi,

closes #1241)
Files: src/popupmnu.c

Patch 8.0.0100
Problem: Options that are a file name may contain non-filename characters.
Solution: Check for more invalid characters.
Files: src/option.c

Patch 8.0.0101
Problem: Some options are not strictly checked.
Solution: Add flags for stricter checks.
Files: src/option.c

Patch 8.0.0102 (after 8.0.0101)
Problem: Cannot set 'dictionary' to a path.
Solution: Allow for slash and backslash. Add a test (partly by Daisuke

Suzuki, closes #1279, closes #1284)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.0.0103
Problem: May not process channel readahead. (skywind)
Solution: If there is readahead don't block on input.
Files: src/channel.c, src/proto/channel.pro, src/os_unix.c,

src/os_win32.c, src/misc2.c

Patch 8.0.0104
Problem: Value of 'thesaurus' option not checked properly.
Solution: Add P_NDNAME flag. (Daisuke Suzuki)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.0.0105
Problem: When using ch_read() with zero timeout, can't tell the difference

between reading an empty line and nothing available.
Solution: Add ch_canread().
Files: src/evalfunc.c, src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, src/testdir/shared.vim,
runtime/doc/eval.txt, runtime/doc/channel.txt

Patch 8.0.0106 (after 8.0.0100)
Problem: Cannot use a semicolon in 'backupext'. (Jeff)
Solution: Allow for a few more characters when "secure" isn't set.
Files: src/option.c

Patch 8.0.0107
Problem: When reading channel output in a timer, messages may go missing.

(Skywind)
Solution: Add the "drop" option. Write error messages in the channel log.

Don't have ch_canread() check for the channel being open.
Files: src/structs.h, src/channel.c, src/message.c, src/evalfunc.c,

src/proto/channel.pro, runtime/doc/channel.txt

Patch 8.0.0108 (after 8.0.0107)

version8.txt — 3045

Problem: The channel "drop" option is not tested.
Solution: Add a test.
Files: src/testdir/test_channel.vim

Patch 8.0.0109
Problem: Still checking if memcmp() exists while every system should have

it now.
Solution: Remove vim_memcmp(). (James McCoy, closes #1295)
Files: src/config.h.in, src/configure.ac, src/misc2.c, src/os_vms_conf.h,

src/osdef1.h.in, src/search.c, src/tag.c, src/vim.h

Patch 8.0.0110
Problem: Drop command doesn't use existing window.
Solution: Check the window width properly. (Hirohito Higashi)
Files: src/buffer.c, src/testdir/test_tabpage.vim

Patch 8.0.0111
Problem: The :history command is not tested.
Solution: Add tests. (Dominique Pelle)
Files: runtime/doc/cmdline.txt, src/testdir/test_history.vim

Patch 8.0.0112
Problem: Tests 92 and 93 are old style.
Solution: Make test92 and test93 new style. (Hirohito Higashi, closes #1289)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test92.in, src/testdir/test92.ok,
src/testdir/test93.in, src/testdir/test93.ok,
src/testdir/test_mksession.vim,
src/testdir/test_mksession_utf8.vim

Patch 8.0.0113
Problem: MS-Windows: message box to prompt for saving changes may appear on

the wrong monitor.
Solution: Adjust the CenterWindow function. (Ken Takata)
Files: src/gui_w32.c

Patch 8.0.0114
Problem: Coding style not optimal.
Solution: Add spaces. (Ken Takata)
Files: src/gui_w32.c, src/os_mswin.c

Patch 8.0.0115
Problem: When building with Cygwin libwinpthread isn't found.
Solution: Link winpthread statically. (jmmerz, closes #1255, closes #1256)
Files: src/Make_cyg_ming.mak

Patch 8.0.0116
Problem: When reading English help and using CTRL-] the language from

'helplang' is used.
Solution: Make help tag jumps keep the language. (Tatsuki, test by Hirohito

Higashi, closes #1249)
Files: src/tag.c, src/testdir/test_help_tagjump.vim

Patch 8.0.0117
Problem: Parallel make fails. (J. Lewis Muir)
Solution: Make sure the objects directory exists. (closes #1259)
Files: src/Makefile

Patch 8.0.0118
Problem: "make proto" adds extra function prototype.

version8.txt — 3046

Solution: Add #ifdef.
Files: src/misc2.c

Patch 8.0.0119
Problem: No test for using CTRL-R on the command line.
Solution: Add a test. (Dominique Pelle) And some more.
Files: src/testdir/test_cmdline.vim

Patch 8.0.0120
Problem: Channel test is still flaky on OS X.
Solution: Set the drop argument to "never".
Files: src/testdir/test_channel.vim

Patch 8.0.0121
Problem: Setting 'cursorline' changes the curswant column. (Daniel Hahler)
Solution: Add the P_RWINONLY flag. (closes #1297)
Files: src/option.c, src/testdir/test_goto.vim

Patch 8.0.0122
Problem: Channel test is still flaky on OS X.
Solution: Add a short sleep.
Files: src/testdir/test_channel.py

Patch 8.0.0123
Problem: Modern Sun compilers define "__sun" instead of "sun".
Solution: Use __sun. (closes #1296)
Files: src/mbyte.c, src/pty.c, src/os_unixx.h, src/vim.h

Patch 8.0.0124
Problem: Internal error for assert_inrange(1, 1).
Solution: Adjust number of allowed arguments. (Dominique Pelle)
Files: src/evalfunc.c, src/testdir/test_assert.vim

Patch 8.0.0125
Problem: Not enough testing for entering Ex commands.
Solution: Add test for CTRL-\ e {expr}. (Dominique Pelle)
Files: src/testdir/test_cmdline.vim

Patch 8.0.0126
Problem: Display problem with 'foldcolumn' and a wide character.

(esiegerman)
Solution: Don't use "extra" but an allocated buffer. (Christian Brabandt,

closes #1310)
Files: src/screen.c, src/testdir/Make_all.mak, src/Makefile,

src/testdir/test_display.vim

Patch 8.0.0127
Problem: Cancelling completion still inserts text when formatting is done

for 'textwidth'. (lacygoill)
Solution: Don't format when CTRL-E was typed. (Hirohito Higashi,

closes #1312)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0128 (after 8.0.0126)
Problem: Display test fails on MS-Windows.
Solution: Set 'isprint' to "@".
Files: src/testdir/test_display.vim

Patch 8.0.0129
Problem: Parallel make still doesn't work. (Lewis Muir)

version8.txt — 3047

Solution: Define OBJ_MAIN.
Files: src/Makefile

Patch 8.0.0130
Problem: Configure uses "ushort" while the Vim code doesn't.
Solution: Use "unsigned short" instead. (Fredrik Fornwall, closes #1314)
Files: src/configure.ac, src/auto/configure

Patch 8.0.0131
Problem: Not enough test coverage for syntax commands.
Solution: Add more tests. (Dominique Pelle)
Files: src/testdir/test_syntax.vim

Patch 8.0.0132 (after 8.0.0131)
Problem: Test fails because of using :finish.
Solution: Change to return.
Files: src/testdir/test_syntax.vim

Patch 8.0.0133
Problem: "2;'(" causes ml_get errors in an empty buffer. (Dominique Pelle)
Solution: Check the cursor line earlier.
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.0.0134
Problem: Null pointer access reported by UBsan.
Solution: Check curwin->w_buffer is not NULL. (Yegappan Lakshmanan)
Files: src/ex_cmds.c

Patch 8.0.0135
Problem: An address relative to the current line, ":.,+3y", does not work

properly on a closed fold. (Efraim Yawitz)
Solution: Correct for including the closed fold. (Christian Brabandt)
Files: src/ex_docmd.c, src/testdir/test_fold.vim,

src/testdir/Make_all.mak, src/Makefile

Patch 8.0.0136
Problem: When using indent folding and changing indent the wrong fold is

opened. (Jonathan Fudger)
Solution: Open the fold under the cursor a bit later. (Christian Brabandt)
Files: src/ops.c, src/testdir/test_fold.vim

Patch 8.0.0137
Problem: When 'maxfuncdepth' is set above 200 the nesting is limited to

200. (Brett Stahlman)
Solution: Allow for Ex command recursion depending on 'maxfuncdepth'.
Files: src/ex_docmd.c, src/testdir/test_nested_function.vim

Patch 8.0.0138 (after 8.0.0137)
Problem: Small build fails.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.0.0139 (after 8.0.0135)
Problem: Warning for unused argument.
Solution: Add UNUSED.
Files: src/ex_docmd.c

Patch 8.0.0140
Problem: Pasting inserted text in Visual mode does not work properly.

(Matthew Malcomson)

version8.txt — 3048

Solution: Stop Visual mode before stuffing the inserted text. (Christian
Brabandt, from neovim #5709)

Files: src/ops.c, src/testdir/test_visual.vim

Patch 8.0.0141 (after 8.0.0137)
Problem: Nested function test fails on AppVeyor.
Solution: Disable the test on Windows for now.
Files: src/testdir/test_nested_function.vim

Patch 8.0.0142
Problem: Normal colors are wrong with 'termguicolors'.
Solution: Initialize to INVALCOLOR instead of zero. (Ben Jackson, closes

#1344)
Files: src/syntax.c

Patch 8.0.0143
Problem: Line number of current buffer in getbufinfo() is wrong.
Solution: For the current buffer use the current line number. (Ken Takata)
Files: src/evalfunc.c

Patch 8.0.0144
Problem: When using MSVC the GvimExt directory is cleaned twice.
Solution: Remove the lines. (Ken Takata)
Files: src/Make_mvc.mak

Patch 8.0.0145
Problem: Running tests on MS-Windows is a little bit noisy.
Solution: Redirect some output to "nul". (Ken Takata)
Files: src/testdir/Make_dos.mak

Patch 8.0.0146
Problem: When using 'termguicolors' on MS-Windows the RGB definition causes

the colors to be wrong.
Solution: Undefined RGB and use our own. (Gabriel Barta)
Files: src/term.c

Patch 8.0.0147
Problem: searchpair() does not work when 'magic' is off. (Chris Paul)
Solution: Add \m in the pattern. (Christian Brabandt, closes #1341)
Files: src/evalfunc.c, src/testdir/test_search.vim

Patch 8.0.0148
Problem: When a C preprocessor statement has two line continuations the

following line does not have the right indent. (Ken Takata)
Solution: Add the indent of the previous continuation line. (Hirohito

Higashi)
Files: src/misc1.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 8.0.0149
Problem: ":earlier" and ":later" do not work after startup or reading the

undo file.
Solution: Use absolute time stamps instead of relative to the Vim start

time. (Christian Brabandt, Pavel Juhas, closes #1300, closes
#1254)

Files: src/testdir/test_undo.vim, src/undo.c

Patch 8.0.0150
Problem: When the pattern of :filter does not have a separator then

completion of the command fails.
Solution: Skip over the pattern. (Ozaki Kiichi, closes #1299)

version8.txt — 3049

Files: src/ex_docmd.c, src/testdir/test_filter_cmd.vim

Patch 8.0.0151
Problem: To pass buffer content to system() and systemlist() one has to

first create a string or list.
Solution: Allow passing a buffer number. (LemonBoy, closes #1240)
Files: runtime/doc/eval.txt, src/Makefile, src/evalfunc.c,

src/testdir/Make_all.mak, src/testdir/test_system.vim

Patch 8.0.0152
Problem: Running the channel test creates channellog.
Solution: Delete the debug line.
Files: src/testdir/test_channel.vim

Patch 8.0.0153 (after 8.0.0151)
Problem: system() test fails on MS-Windows.
Solution: Deal with extra space and CR.
Files: src/testdir/test_system.vim

Patch 8.0.0154 (after 8.0.0151)
Problem: system() test fails on OS/X.
Solution: Deal with leading spaces.
Files: src/testdir/test_system.vim

Patch 8.0.0155
Problem: When sorting zero elements a NULL pointer is passed to qsort(),

which ubsan warns for.
Solution: Don't call qsort() if there are no elements. (Dominique Pelle)
Files: src/syntax.c

Patch 8.0.0156
Problem: Several float functions are not covered by tests.
Solution: Add float tests. (Dominique Pelle)
Files: src/Makefile, src/testdir/test_alot.vim,

src/testdir/test_float_func.vim

Patch 8.0.0157
Problem: No command line completion for ":syntax spell" and ":syntax sync".
Solution: Implement the completion. (Dominique Pelle)
Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.0.0158 (after 8.0.0156)
Problem: On MS-Windows some float functions return a different value when

passed unusual values. strtod() doesn't work for "inf" and "nan".
Solution: Accept both results. Fix str2float() for MS-Windows. Also

reorder assert function arguments.
Files: src/testdir/test_float_func.vim, src/eval.c

Patch 8.0.0159
Problem: Using a NULL pointer when using feedkeys() to trigger drawing a

tabline.
Solution: Skip drawing a tabline if TabPageIdxs is NULL. (Dominique Pelle)

Also fix recursing into getcmdline() from the cmd window.
Files: src/screen.c, src/ex_getln.c

Patch 8.0.0160
Problem: EMSG() is sometimes used for internal errors.
Solution: Change them to IEMSG(). (Dominique Pelle) And a few more.
Files: src/regexp_nfa.c, src/channel.c, src/eval.c

version8.txt — 3050

Patch 8.0.0161 (after 8.0.0159)
Problem: Build fails when using small features.
Solution: Update #ifdef for using save_ccline. (Hirohito Higashi)
Files: src/ex_getln.c

Patch 8.0.0162
Problem: Build error on Fedora 23 with small features and gnome2.
Solution: Undefine ngettext(). (Hirohito Higashi)
Files: src/gui_gtk.c, src/gui_gtk_x11.c

Patch 8.0.0163
Problem: Ruby 2.4 no longer supports rb_cFixnum.
Solution: move rb_cFixnum into an #ifdef. (Kazuki Sakamoto, closes #1365)
Files: src/if_ruby.c

Patch 8.0.0164
Problem: Outdated and misplaced comments.
Solution: Fix the comments.
Files: src/charset.c, src/getchar.c, src/list.c, src/misc2.c,

src/testdir/README.txt

Patch 8.0.0165
Problem: Ubsan warns for integer overflow.
Solution: Swap two conditions. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 8.0.0166
Problem: JSON with a duplicate key gives an internal error. (Lcd)
Solution: Give a normal error. Avoid an error when parsing JSON from a

remote client fails.
Files: src/evalfunc.c, src/json.c, src/channel.c,

src/testdir/test_json.vim

Patch 8.0.0167
Problem: str2nr() and str2float() do not always work with negative values.
Solution: Be more flexible about handling signs. (LemonBoy, closes #1332)

Add more tests.
Files: src/evalfunc.c, src/testdir/test_float_func.vim,

src/testdir/test_functions.vim, src/testdir/test_alot.vim,
src/Makefile

Patch 8.0.0168
Problem: Still some float functionality is not covered by tests.
Solution: Add more tests. (Dominique Pelle, closes #1364)
Files: src/testdir/test_float_func.vim

Patch 8.0.0169
Problem: For complicated string json_decode() may run out of stack space.
Solution: Change the recursive solution into an iterative solution.
Files: src/json.c

Patch 8.0.0170 (after 8.0.0169)
Problem: Channel test fails for using freed memory.
Solution: Fix memory use in json_decode().
Files: src/json.c

Patch 8.0.0171
Problem: JS style JSON does not support single quotes.
Solution: Allow for single quotes. (Yasuhiro Matsumoto, closes #1371)
Files: src/json.c, src/testdir/test_json.vim, src/json_test.c,

version8.txt — 3051

runtime/doc/eval.txt

Patch 8.0.0172 (after 8.0.0159)
Problem: The command selected in the command line window is not executed.

(Andrey Starodubtsev)
Solution: Save and restore the command line at a lower level. (closes #1370)
Files: src/ex_getln.c, src/testdir/test_history.vim

Patch 8.0.0173
Problem: When compiling with EBCDIC defined the build fails. (Yaroslav

Kuzmin)
Solution: Move sortFunctions() to the right file. Avoid warning for

redefining __SUSV3.
Files: src/eval.c, src/evalfunc.c, src/os_unixx.h

Patch 8.0.0174
Problem: For completion "locale -a" is executed on MS-Windows, even though

it most likely won't work.
Solution: Skip executing "locale -a" on MS-Windows. (Ken Takata)
Files: src/ex_cmds2.c

Patch 8.0.0175
Problem: Setting language in gvim on MS-Windows does not work when

libintl.dll is dynamically linked with msvcrt.dll.
Solution: Use putenv() from libintl as well. (Ken Takata, closes #1082)
Files: src/mbyte.c, src/misc1.c, src/os_win32.c, src/proto/os_win32.pro,

src/vim.h

Patch 8.0.0176
Problem: Using :change in between :function and :endfunction fails.
Solution: Recognize :change inside a function. (ichizok, closes #1374)
Files: src/userfunc.c, src/testdir/test_viml.vim

Patch 8.0.0177
Problem: When opening a buffer on a directory and inside a try/catch then

the BufEnter event is not triggered.
Solution: Return NOTDONE from readfile() for a directory and deal with the

three possible return values. (Justin M. Keyes, closes #1375,
closes #1353)

Files: src/buffer.c, src/ex_cmds.c, src/ex_docmd.c, src/fileio.c,
src/memline.c

Patch 8.0.0178
Problem: test_command_count may fail when a previous test interferes, seen

on MS-Windows.
Solution: Run it separately.
Files: src/testdir/test_alot.vim, src/testdir/Make_all.mak

Patch 8.0.0179
Problem: 'formatprg' is a global option but the value may depend on the

type of buffer. (Sung Pae)
Solution: Make 'formatprg' global-local. (closes #1380)
Files: src/structs.h, src/option.h, src/option.c, src/normal.c,

runtime/doc/options.txt, src/testdir/test_normal.vim

Patch 8.0.0180
Problem: Error E937 is used both for duplicate key in JSON and for trying

to delete a buffer that is in use.
Solution: Rename the JSON error to E938. (Norio Takagi, closes #1376)
Files: src/json.c, src/testdir/test_json.vim

version8.txt — 3052

Patch 8.0.0181
Problem: When 'cursorbind' and 'cursorcolumn' are both on, the column

highlight in non-current windows is wrong.
Solution: Add validate_cursor(). (Masanori Misono, closes #1372)
Files: src/move.c

Patch 8.0.0182
Problem: When 'cursorbind' and 'cursorline' are set, but 'cursorcolumn' is

not, then the cursor line highlighting is not updated. (Hirohito
Higashi)

Solution: Call redraw_later() with NOT_VALID.
Files: src/move.c

Patch 8.0.0183
Problem: Ubsan warns for using a pointer that is not aligned.
Solution: First copy the address. (Yegappan Lakshmanan)
Files: src/channel.c

Patch 8.0.0184
Problem: When in Ex mode and an error is caught by try-catch, Vim still

exits with a non-zero exit code.
Solution: Don't set ex_exitval when inside a try-catch. (partly by Christian

Brabandt)
Files: src/message.c, src/testdir/test_system.vim

Patch 8.0.0185 (after 8.0.0184)
Problem: The system() test fails on MS-Windows.
Solution: Skip the test on MS-Windows.
Files: src/testdir/test_system.vim

Patch 8.0.0186
Problem: The error message from assert_notequal() is confusing.
Solution: Only mention the expected value.
Files: src/eval.c, src/testdir/test_assert.vim

Patch 8.0.0187
Problem: Building with a new Ruby version fails.
Solution: Use ruby_sysinit() instead of NtInitialize(). (Tomas Volf,

closes #1382)
Files: src/if_ruby.c

Patch 8.0.0188 (after 8.0.0182)
Problem: Using NOT_VALID for redraw_later() to update the cursor

line/column highlighting is not efficient.
Solution: Call validate_cursor() when 'cul' or 'cuc' is set.
Files: src/move.c

Patch 8.0.0189
Problem: There are no tests for the :profile command.
Solution: Add tests. (Dominique Pelle, closes #1383)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_profile.vim

Patch 8.0.0190
Problem: Detecting duplicate tags uses a slow linear search.
Solution: Use a much faster hash table solution. (James McCoy, closes #1046)

But don't add hi_keylen, it makes hash tables 50% bigger.
Files: src/tag.c

version8.txt — 3053

Patch 8.0.0191 (after 8.0.0187)
Problem: Some systems do not have ruby_sysinit(), causing the build to

fail.
Solution: Clean up how ruby_sysinit() and NtInitialize() are used. (Taro

Muraoka)
Files: src/if_ruby.c

Patch 8.0.0192 (after 8.0.0190)
Problem: Build fails with tiny features.
Solution: Change #ifdef for hash_clear(). Avoid warning for unused

argument.
Files: src/hashtab.c, src/if_cscope.c

Patch 8.0.0193 (after 8.0.0188)
Problem: Accidentally removed #ifdef.
Solution: Put it back. (Masanori Misono)
Files: src/move.c

Patch 8.0.0194 (after 8.0.0189)
Problem: Profile tests fails if total and self time are equal.
Solution: Make one time optional.
Files: src/testdir/test_profile.vim

Patch 8.0.0195 (after 8.0.0190)
Problem: Jumping to a tag that is a static item in the current file fails.

(Kazunobu Kuriyama)
Solution: Make sure the first byte of the tag key is not NUL. (Suggested by

James McCoy, closes #1387)
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.0.0196 (after 8.0.0194)
Problem: The test for :profile is slow and does not work on MS-Windows.
Solution: Use the "-es" argument. (Dominique Pelle) Swap single and double

quotes for system()
Files: src/testdir/test_profile.vim

Patch 8.0.0197
Problem: On MS-Windows the system() test skips a few parts.
Solution: Swap single and double quotes for the command.
Files: src/testdir/test_system.vim

Patch 8.0.0198
Problem: Some syntax arguments take effect even after "if 0". (Taylor

Venable)
Solution: Properly skip the syntax statements. Make "syn case" and "syn

conceal" report the current state. Fix that "syn clear" didn't
reset the conceal flag. Add tests for :syntax skipping properly.

Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.0.0199
Problem: Warning for an unused parameter when the libcall feature is

disabled. Warning for a function type cast when compiling with
-pedantic.

Solution: Add UNUSED. Use a different type cast. (Damien Molinier)
Files: src/evalfunc.c, src/os_unix.c

Patch 8.0.0200
Problem: Some syntax arguments are not tested.
Solution: Add more syntax command tests.
Files: src/testdir/test_syntax.vim

version8.txt — 3054

Patch 8.0.0201
Problem: When completing a group name for a highlight or syntax command

cleared groups are included.
Solution: Skip groups that have been cleared.
Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.0.0202
Problem: No test for invalid syntax group name.
Solution: Add a test for group name error and warning.
Files: src/testdir/test_syntax.vim

Patch 8.0.0203
Problem: Order of complication flags is sometimes wrong.
Solution: Put interface-specific flags before ALL_CFLAGS. (idea by Yousong

Zhou, closes #1100)
Files: src/Makefile

Patch 8.0.0204
Problem: Compiler warns for uninitialized variable. (Tony Mechelynck)
Solution: When skipping set "id" to -1.
Files: src/syntax.c

Patch 8.0.0205
Problem: After :undojoin some commands don't work properly, such as :redo.

(Matthew Malcomson)
Solution: Don't set curbuf->b_u_curhead. (closes #1390)
Files: src/undo.c, src/testdir/test_undo.vim

Patch 8.0.0206
Problem: Test coverage for :retab insufficient.
Solution: Add test for :retab. (Dominique Pelle, closes #1391)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/test_retab.vim

Patch 8.0.0207
Problem: Leaking file descriptor when system() cannot find the buffer.

(Coverity)
Solution: Close the file descriptor. (Dominique Pelle, closes #1398)
Files: src/evalfunc.c

Patch 8.0.0208
Problem: Internally used commands for CTRL-Z and mouse click end up in

history. (Matthew Malcomson)
Solution: Use do_cmdline_cmd() instead of stuffing them in the readahead

buffer. (James McCoy, closes #1395)
Files: src/edit.c, src/normal.c

Patch 8.0.0209
Problem: When using :substitute with the "c" flag and 'cursorbind' is set

the cursor is not updated in other windows.
Solution: Call do_check_cursorbind(). (Masanori Misono)
Files: src/ex_cmds.c

Patch 8.0.0210
Problem: Vim does not support bracketed paste, as implemented by xterm and

other terminals.
Solution: Add t_BE, t_BD, t_PS and t_PE.
Files: src/term.c, src/term.h, src/option.c, src/misc2.c, src/keymap.h,

src/edit.c, src/normal.c, src/evalfunc.c, src/getchar.c,
src/vim.h, src/proto/edit.pro, runtime/doc/term.txt

version8.txt — 3055

Patch 8.0.0211 (after 8.0.0210)
Problem: Build fails if the multibyte feature is disabled.
Solution: Change #ifdef around ins_char_bytes.
Files: src/misc1.c

Patch 8.0.0212
Problem: The buffer used to store a key name theoretically could be too

small. (Coverity)
Solution: Count all possible modifier characters. Add a check for the

length just in case.
Files: src/keymap.h, src/misc2.c

Patch 8.0.0213
Problem: The Netbeans "specialKeys" command does not check if the argument

fits in the buffer. (Coverity)
Solution: Add a length check.
Files: src/netbeans.c

Patch 8.0.0214
Problem: Leaking memory when syntax cluster id is unknown. (Coverity)
Solution: Free the memory.
Files: src/syntax.c

Patch 8.0.0215
Problem: When a Cscope line contains CTRL-L a NULL pointer may be used.

(Coverity)
Solution: Don't check for an emacs tag in a cscope line.
Files: src/tag.c

Patch 8.0.0216
Problem: When decoding JSON with a JS style object the JSON test may use a

NULL pointer. (Coverity)
Solution: Check for a NULL pointer.
Files: src/json.c, src/json_test.c

Patch 8.0.0217 (after 8.0.0215)
Problem: Build fails without the cscope feature.
Solution: Add #ifdef.
Files: src/tag.c

Patch 8.0.0218
Problem: No command line completion for :cexpr, :cgetexpr, :caddexpr, etc.
Solution: Make completion work. (Yegappan Lakshmanan) Add a test.
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.0.0219
Problem: Ubsan reports errors for integer overflow.
Solution: Define macros for minimum and maximum values. Select an

expression based on the value. (Mike Williams)
Files: src/charset.c, src/eval.c, src/evalfunc.c, src/structs.h,

src/testdir/test_viml.vim

Patch 8.0.0220
Problem: Completion for :match does not show "none" and other missing

highlight names.
Solution: Skip over cleared entries before checking the index to be at the

end.
Files: src/syntax.c, src/testdir/test_cmdline.vim

version8.txt — 3056

Patch 8.0.0221
Problem: Checking if PROTO is defined inside a function has no effect.
Solution: Remove the check for PROTO. (Hirohito Higashi)
Files: src/misc1.c

Patch 8.0.0222
Problem: When a multibyte character ends in a zero byte, putting blockwise

text puts it before the character instead of after it.
Solution: Use int instead of char for the character under the cursor.

(Luchr, closes #1403) Add a test.
Files: src/ops.c, src/testdir/test_put.vim, src/Makefile,

src/testdir/test_alot.vim

Patch 8.0.0223
Problem: Coverity gets confused by the flags passed to find_tags() and

warns about uninitialized variable.
Solution: Disallow using cscope and help tags at the same time.
Files: src/tag.c

Patch 8.0.0224
Problem: When 'fileformats' is changed in a BufReadPre auto command, it

does not take effect in readfile(). (Gary Johnson)
Solution: Check the value of 'fileformats' after executing auto commands.

(Christian Brabandt)
Files: src/fileio.c, src/testdir/test_fileformat.vim

Patch 8.0.0225
Problem: When a block is visually selected and put is used on the end of

the selection only one line is changed.
Solution: Check for the end properly. (Christian Brabandt, neovim issue

5781)
Files: src/ops.c, src/testdir/test_put.vim

Patch 8.0.0226
Problem: The test for patch 8.0.0224 misses the CR characters and passes

even without the fix. (Christian Brabandt)
Solution: Use double quotes and \<CR>.
Files: src/testdir/test_fileformat.vim

Patch 8.0.0227
Problem: Crash when 'fileformat' is forced to "dos" and the first line in

the file is empty and does not have a CR character.
Solution: Don't check for CR before the start of the buffer.
Files: src/fileio.c, src/testdir/test_fileformat.vim

Patch 8.0.0228 (after 8.0.0210)
Problem: When pasting test in an xterm on the command line it is surrounded

by <PasteStart> and <PasteEnd>. (Johannes Kaltenbach)
Solution: Add missing changes.
Files: src/ex_getln.c, src/term.c

Patch 8.0.0229 (after 8.0.0179)
Problem: When freeing a buffer the local value of the 'formatprg' option is

not cleared.
Solution: Add missing change.
Files: src/buffer.c

Patch 8.0.0230 (after 8.0.0210)
Problem: When using bracketed paste line breaks are not respected.
Solution: Turn CR characters into a line break if the text is being

version8.txt — 3057

inserted. (closes #1404)
Files: src/edit.c

Patch 8.0.0231
Problem: There are no tests for bracketed paste mode.
Solution: Add a test. Fix repeating with "normal .".
Files: src/edit.c, src/testdir/test_paste.vim, src/Makefile,

src/testdir/Make_all.mak

Patch 8.0.0232
Problem: Pasting in Insert mode does not work when bracketed paste is used

and 'esckeys' is off.
Solution: When 'esckeys' is off disable bracketed paste in Insert mode.
Files: src/edit.c

Patch 8.0.0233 (after 8.0.0231)
Problem: The paste test fails if the GUI is being used.
Solution: Skip the test in the GUI.
Files: src/testdir/test_paste.vim

Patch 8.0.0234 (after 8.0.0225)
Problem: When several lines are visually selected and one of them is short,

using put may cause a crash. (Axel Bender)
Solution: Check for a short line. (Christian Brabandt)
Files: src/ops.c, src/testdir/test_put.vim

Patch 8.0.0235
Problem: Memory leak detected when running tests for diff mode.
Solution: Free p_extra_free.
Files: src/screen.c

Patch 8.0.0236 (after 8.0.0234)
Problem: Gcc complains that a variable may be used uninitialized. Confusion

between variable and label name. (John Marriott)
Solution: Initialize it. Rename end to end_lnum.
Files: src/ops.c

Patch 8.0.0237
Problem: When setting wildoptions=tagfile the completion context is not set

correctly. (desjardins)
Solution: Check for EXPAND_TAGS_LISTFILES. (Christian Brabandt, closes #1399)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.0.0238
Problem: When using bracketed paste autoindent causes indent to be

increased.
Solution: Disable 'ai' and set 'paste' temporarily. (Ken Takata)
Files: src/edit.c, src/testdir/test_paste.vim

Patch 8.0.0239
Problem: The address sanitizer sometimes finds errors, but it needs to be

run manually.
Solution: Add an environment to Travis with clang and the address sanitizer.

(Christian Brabandt) Also include changes only on github.
Files: .travis.yml

Patch 8.0.0240 (after 8.0.0239)
Problem: The clang build on CI fails with one configuration.
Solution: Redo a previous patch that was accidentally reverted.
Files: .travis.yml

version8.txt — 3058

Patch 8.0.0241
Problem: Vim defines a mch_memmove() function but it doesn't work, thus is

always unused.
Solution: Remove the mch_memmove implementation. (suggested by Dominique

Pelle)
Files: src/os_unix.h, src/misc2.c, src/vim.h

Patch 8.0.0242
Problem: Completion of user defined functions is not covered by tests.
Solution: Add tests. Also test various errors of user-defined commands.

(Dominique Pelle, closes #1413)
Files: src/testdir/test_usercommands.vim

Patch 8.0.0243
Problem: When making a character lower case with tolower() changes the byte

count, it is not made lower case.
Solution: Add strlow_save(). (Dominique Pelle, closes #1406)
Files: src/evalfunc.c, src/misc2.c, src/proto/misc2.pro,

src/testdir/test_functions.vim

Patch 8.0.0244
Problem: When the user sets t_BE empty after startup to disable bracketed

paste, this has no direct effect.
Solution: When t_BE is made empty write t_BD. When t_BE is made non-empty

write the new value.
Files: src/option.c

Patch 8.0.0245
Problem: The generated zh_CN.cp936.po message file is not encoded properly.
Solution: Instead of using zh_CN.po as input, use zh_CN.UTF-8.po.
Files: src/po/Makefile

Patch 8.0.0246
Problem: Compiler warnings for int to pointer conversion.
Solution: Fix macro for mch_memmove(). (John Marriott)
Files: src/vim.h

Patch 8.0.0247
Problem: Under some circumstances, one needs to type Ctrl-N or Ctrl-P twice

to have a menu entry selected. (Lifepillar)
Solution: call ins_compl_free(). (Christian Brabandt, closes #1411)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0248
Problem: vim_strcat() cannot handle overlapping arguments.
Solution: Use mch_memmove() instead of strcpy(). (Justin M. Keyes,

closes #1415)
Files: src/misc2.c

Patch 8.0.0249
Problem: When two submits happen quick after each other, the tests for the

first one may error out.
Solution: Use a git depth of 10 instead of 1. (Christian Brabandt)
Files: .travis.yml

Patch 8.0.0250
Problem: When virtcol() gets a column that is not the first byte of a

multibyte character the result is unpredictable. (Christian
Ludwig)

version8.txt — 3059

Solution: Correct the column to the first byte of a multibyte character.
Change the utf-8 test to new style.

Files: src/charset.c, src/testdir/test_utf8.in, src/testdir/test_utf8.ok,
src/testdir/test_utf8.vim, src/Makefile, src/testdir/Make_all.mak,
src/testdir/test_alot_utf8.vim

Patch 8.0.0251
Problem: It is not so easy to write a script that works with both Python 2

and Python 3, even when the Python code works with both.
Solution: Add 'pyxversion', :pyx, etc. (Marc Weber, Ken Takata)
Files: Filelist, runtime/doc/eval.txt, runtime/doc/if_pyth.txt,

runtime/doc/index.txt, runtime/doc/options.txt,
runtime/optwin.vim, runtime/doc/quickref.txt,
runtime/doc/usr_41.txt, src/Makefile, src/evalfunc.c,
src/ex_cmds.h, src/ex_cmds2.c, src/ex_docmd.c, src/if_python.c,
src/if_python3.c, src/option.c, src/option.h,
src/proto/ex_cmds2.pro, src/testdir/Make_all.mak,
src/testdir/pyxfile/py2_magic.py,
src/testdir/pyxfile/py2_shebang.py,
src/testdir/pyxfile/py3_magic.py,
src/testdir/pyxfile/py3_shebang.py, src/testdir/pyxfile/pyx.py,
src/testdir/test_pyx2.vim, src/testdir/test_pyx3.vim
src/userfunc.c

Patch 8.0.0252
Problem: Characters below 256 that are not one byte are not always

recognized as word characters.
Solution: Make vim_iswordc() and vim_iswordp() work the same way. Add a test

for this. (Ozaki Kiichi)
Files: src/Makefile, src/charset.c, src/kword_test.c, src/mbyte.c,

src/proto/mbyte.pro

Patch 8.0.0253
Problem: When creating a session when 'winminheight' is 2 or larger and

loading that session gives an error.
Solution: Also set 'winminheight' before setting 'winheight' to 1. (Rafael

Bodill, neovim #5717)
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.0.0254
Problem: When using an assert function one can either specify a message or

get a message about what failed, not both.
Solution: Concatenate the error with the message.
Files: src/eval.c, src/testdir/test_assert.vim

Patch 8.0.0255
Problem: When calling setpos() with a buffer argument it often is ignored.

(Matthew Malcomson)
Solution: Make the buffer argument work for all marks local to a buffer.

(neovim #5713) Add more tests.
Files: src/mark.c, src/testdir/test_marks.vim, runtime/doc/eval.txt

Patch 8.0.0256 (after 8.0.0255)
Problem: Tests fail because some changes were not included.
Solution: Add changes to evalfunc.c
Files: src/evalfunc.c

Patch 8.0.0257 (after 8.0.0252)
Problem: The keyword test file is not included in the archive.
Solution: Update the list of files.

version8.txt — 3060

Files: Filelist

Patch 8.0.0258 (after 8.0.0253)
Problem: mksession test leaves file behind.
Solution: Delete the file. Rename files to start with "X".
Files: src/testdir/test_mksession.vim

Patch 8.0.0259
Problem: Tab commands do not handle count correctly. (Ken Hamada)
Solution: Add ADDR_TABS_RELATIVE. (Hirohito Higashi)
Files: runtime/doc/tabpage.txt, src/ex_cmds.h, src/ex_docmd.c,

src/testdir/test_tabpage.vim

Patch 8.0.0260
Problem: Build fails with tiny features.
Solution: Move get_tabpage_arg() inside #ifdef.
Files: src/ex_docmd.c

Patch 8.0.0261
Problem: Not enough test coverage for eval functions.
Solution: Add more tests. (Dominique Pelle, closes #1420)
Files: src/testdir/test_functions.vim

Patch 8.0.0262
Problem: Farsi support is barely tested.
Solution: Add more tests for Farsi. Clean up the code.
Files: src/edit.c, src/farsi.c, src/testdir/test_farsi.vim

Patch 8.0.0263
Problem: Farsi support is not tested enough.
Solution: Add more tests for Farsi. Clean up the code.
Files: src/farsi.c, src/testdir/test_farsi.vim

Patch 8.0.0264
Problem: Memory error reported by ubsan, probably for using the string

returned by execute().
Solution: NUL terminate the result of execute().
Files: src/evalfunc.c

Patch 8.0.0265
Problem: May get ml_get error when :pydo deletes lines or switches to

another buffer. (Nikolai Pavlov, issue #1421)
Solution: Check the buffer and line every time.
Files: src/if_py_both.h, src/testdir/test_python2.vim,

src/testdir/test_python3.vim, src/Makefile,
src/testdir/Make_all.mak

Patch 8.0.0266
Problem: Compiler warning for using uninitialized variable.
Solution: Set tab_number also when there is an error.
Files: src/ex_docmd.c

Patch 8.0.0267
Problem: A channel test sometimes fails on Mac.
Solution: Add the test to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.0268
Problem: May get ml_get error when :luado deletes lines or switches to

another buffer. (Nikolai Pavlov, issue #1421)

version8.txt — 3061

Solution: Check the buffer and line every time.
Files: src/if_lua.c, src/testdir/test_lua.vim, src/Makefile,

src/testdir/Make_all.mak

Patch 8.0.0269
Problem: May get ml_get error when :perldo deletes lines or switches to

another buffer. (Nikolai Pavlov, issue #1421)
Solution: Check the buffer and line every time.
Files: src/if_perl.xs, src/testdir/test_perl.vim

Patch 8.0.0270
Problem: May get ml_get error when :rubydo deletes lines or switches to

another buffer. (Nikolai Pavlov, issue #1421)
Solution: Check the buffer and line every time.
Files: src/if_ruby.c, src/testdir/test_ruby.vim

Patch 8.0.0271
Problem: May get ml_get error when :tcldo deletes lines or switches to

another buffer. (Nikolai Pavlov, closes #1421)
Solution: Check the buffer and line every time.
Files: src/if_tcl.c, src/testdir/test_tcl.vim, src/Makefile,

src/testdir/Make_all.mak

Patch 8.0.0272
Problem: Crash on exit is not detected when running tests.
Solution: Remove the dash before the command. (Dominique Pelle, closes

#1425)
Files: src/testdir/Makefile

Patch 8.0.0273
Problem: Dead code detected by Coverity when not using gnome.
Solution: Rearrange the #ifdefs to avoid dead code.
Files: src/gui_gtk_x11.c

Patch 8.0.0274
Problem: When update_single_line() is called recursively, or another screen

update happens while it is busy, errors may occur.
Solution: Check and update updating_screen. (Christian Brabandt)
Files: src/screen.c

Patch 8.0.0275
Problem: When checking for CTRL-C typed the GUI may detect a screen resize

and redraw the screen, causing trouble.
Solution: Set updating_screen in ui_breakcheck().
Files: src/ui.c

Patch 8.0.0276
Problem: Checking for FEAT_GUI_GNOME inside GTK 3 code is unnecessary.
Solution: Remove the #ifdef. (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 8.0.0277
Problem: The GUI test may trigger fontconfig and take a long time.
Solution: Set $XDG_CACHE_HOME. (Kazunobu Kuriyama)
Files: src/testdir/unix.vim, src/testdir/test_gui.vim

Patch 8.0.0278 (after 8.0.0277)
Problem: GUI test fails on MS-Windows.
Solution: Check that tester_HOME exists.
Files: src/testdir/test_gui.vim

version8.txt — 3062

Patch 8.0.0279
Problem: With MSVC 2015 the dll name is vcruntime140.dll.
Solution: Check the MSVC version and use the right dll name. (Ken Takata)
Files: src/Make_mvc.mak

Patch 8.0.0280
Problem: On MS-Windows setting an environment variable with multibyte

strings does not work well.
Solution: Use wputenv when possible. (Taro Muraoka, Ken Takata)
Files: src/misc1.c, src/os_win32.c, src/os_win32.h,

src/proto/os_win32.pro, src/vim.h

Patch 8.0.0281
Problem: MS-Windows files are still using ARGSUSED while most other files

have UNUSED.
Solution: Change ARGSUSED to UNUSED or delete it.
Files: src/os_win32.c, src/gui_w32.c, src/os_mswin.c, src/os_w32exe.c,

src/winclip.c

Patch 8.0.0282
Problem: When doing a Visual selection and using "I" to go to insert mode,

CTRL-O needs to be used twice to go to Normal mode. (Coacher)
Solution: Check for the return value of edit(). (Christian Brabandt,

closes #1290)
Files: src/normal.c, src/ops.c

Patch 8.0.0283
Problem: The return value of mode() does not indicate that completion is

active in Replace and Insert mode. (Zhen-Huan (Kenny) Hu)
Solution: Add "c" or "x" for two kinds of completion. (Yegappan Lakshmanan,

closes #1397) Test some more modes.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim, src/testdir/test_mapping.vim

Patch 8.0.0284
Problem: The Test_collapse_buffers() test failed once, looks like it is

flaky.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.0285 (after 8.0.0277)
Problem: Tests fail with tiny build on Unix.
Solution: Only set g:tester_HOME when build with the +eval feature.
Files: src/testdir/unix.vim

Patch 8.0.0286
Problem: When concealing is active and the screen is resized in the GUI it

is not immediately redrawn.
Solution: Use update_prepare() and update_finish() from

update_single_line().
Files: src/screen.c

Patch 8.0.0287
Problem: Cannot access the arguments of the current function in debug mode.

(Luc Hermitte)
Solution: use get_funccal(). (LemonBoy, closes #1432, closes #1352)
Files: src/userfunc.c

Patch 8.0.0288 (after 8.0.0284)

version8.txt — 3063

Problem: Errors reported while running tests.
Solution: Put comma in the right place.
Files: src/testdir/runtest.vim

Patch 8.0.0289
Problem: No test for "ga" and :ascii.
Solution: Add a test. (Dominique Pelle, closes #1429)
Files: src/Makefile, src/testdir/test_alot.vim, src/testdir/test_ga.vim

Patch 8.0.0290
Problem: If a wide character doesn't fit at the end of the screen line, and

the line doesn't fit on the screen, then the cursor position may
be wrong. (anliting)

Solution: Don't skip over wide character. (Christian Brabandt, closes #1408)
Files: src/screen.c

Patch 8.0.0291 (after 8.0.0282)
Problem: Visual block insertion does not insert in all lines.
Solution: Don't bail out of insert too early. Add a test. (Christian

Brabandt, closes #1290)
Files: src/ops.c, src/testdir/test_visual.vim

Patch 8.0.0292
Problem: The stat test is a bit slow.
Solution: Remove a couple of sleep comments and reduce another.
Files: src/testdir/test_stat.vim

Patch 8.0.0293
Problem: Some tests have a one or three second wait.
Solution: Reset the 'showmode' option. Use a test time of one to disable

sleep after an error or warning message.
Files: src/misc1.c, src/testdir/runtest.vim, src/testdir/test_normal.vim

Patch 8.0.0294
Problem: Argument list is not stored correctly in a session file.

(lgpasquale)
Solution: Use "$argadd" instead of "argadd". (closes #1434)
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.0.0295 (after 8.0.0293)
Problem: test_viml hangs.
Solution: Put resetting 'more' before sourcing the script.
Files: src/testdir/runtest.vim

Patch 8.0.0296
Problem: Bracketed paste can only append, not insert.
Solution: When the cursor is in the first column insert the text.
Files: src/normal.c, src/testdir/test_paste.vim, runtime/doc/term.txt

Patch 8.0.0297
Problem: Double free on exit when using a closure. (James McCoy)
Solution: Split free_al_functions in two parts. (closes #1428)
Files: src/userfunc.c, src/structs.h

Patch 8.0.0298
Problem: Ex command range with repeated search does not work. (Bruce

DeVisser)
Solution: Skip over \/, \? and \&.
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

version8.txt — 3064

Patch 8.0.0299
Problem: When the GUI window is resized Vim does not always take over the

new size. (Luchr)
Solution: Reset new_p_guifont in gui_resize_shell(). Call

gui_may_resize_shell() in the main loop.
Files: src/main.c, src/gui.c

Patch 8.0.0300
Problem: Cannot stop diffing hidden buffers. (Daniel Hahler)
Solution: When using :diffoff! make the whole list if diffed buffers empty.

(closes #736)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.0.0301
Problem: No tests for ":set completion" and various errors of the :set

command.
Solution: Add more :set tests. (Dominique Pelle, closes #1440)
Files: src/testdir/test_options.vim

Patch 8.0.0302
Problem: Cannot set terminal key codes with :let.
Solution: Make it work.
Files: src/option.c, src/testdir/test_assign.vim

Patch 8.0.0303
Problem: Bracketed paste does not work in Visual mode.
Solution: Delete the text before pasting
Files: src/normal.c, src/ops.c, src/proto/ops.pro,

src/testdir/test_paste.vim

Patch 8.0.0304 (after 8.0.0302)
Problem: Assign test fails in the GUI.
Solution: Skip the test for setting t_k1.
Files: src/testdir/test_assign.vim

Patch 8.0.0305
Problem: Invalid memory access when option has duplicate flag.
Solution: Correct pointer computation. (Dominique Pelle, closes #1442)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.0.0306
Problem: mode() not sufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan)
Files: src/testdir/test_functions.vim

Patch 8.0.0307
Problem: Asan detects a memory error when EXITFREE is defined. (Dominique

Pelle)
Solution: In getvcol() check for ml_get_buf() returning an empty string.

Also skip adjusting the scroll position. Set "exiting" in
mch_exit() for all systems.

Files: src/charset.c, src/window.c, src/os_mswin.c, src/os_win32.c,
src/os_amiga.c

Patch 8.0.0308
Problem: When using a symbolic link, the package path will not be inserted

at the right position in 'runtimepath'. (Dugan Chen, Norio Takagi)
Solution: Resolve symbolic links when finding the right position in

'runtimepath'. (Hirohito Higashi)
Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

version8.txt — 3065

Patch 8.0.0309
Problem: Cannot use an empty key in json.
Solution: Allow for using an empty key.
Files: src/json.c, src/testdir/test_json.vim

Patch 8.0.0310
Problem: Not enough testing for GUI functionality.
Solution: Add tests for v:windowid and getwinpos[xy](). (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

Patch 8.0.0311
Problem: Linebreak tests are old style.
Solution: Turn the tests into new style. Share utility functions. (Ozaki

Kiichi, closes #1444)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_breakindent.vim, src/testdir/test_listlbr.in,
src/testdir/test_listlbr.ok, src/testdir/test_listlbr.vim,
src/testdir/test_listlbr_utf8.in,
src/testdir/test_listlbr_utf8.ok,
src/testdir/test_listlbr_utf8.vim, src/testdir/view_util.vim

Patch 8.0.0312
Problem: When a json message arrives in pieces, the start is dropped and

the decoding fails.
Solution: Do not drop the start when it is still needed. (Kay Zheng) Add a

test. Reset the timeout when something is received.
Files: src/channel.c, src/testdir/test_channel.vim, src/structs.h,

src/testdir/test_channel_pipe.py

Patch 8.0.0313 (after 8.0.0310)
Problem: Not enough testing for GUI functionality.
Solution: Add tests for the GUI font. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

Patch 8.0.0314
Problem: getcmdtype(), getcmdpos() and getcmdline() are not tested.
Solution: Add tests. (Yegappan Lakshmanan)
Files: src/testdir/test_cmdline.vim

Patch 8.0.0315
Problem: ":help :[range]" does not work. (Tony Mechelynck)
Solution: Translate to insert a backslash.
Files: src/ex_cmds.c

Patch 8.0.0316
Problem: ":help z?" does not work. (Pavol Juhas)
Solution: Remove exception for z?.
Files: src/ex_cmds.c

Patch 8.0.0317
Problem: No test for setting 'guifont'.
Solution: Add a test for X11 GUIs. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

Patch 8.0.0318
Problem: Small mistake in 7x13 font name.
Solution: Use ISO 8859-1 name instead of 10646-1. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

version8.txt — 3066

Patch 8.0.0319
Problem: Insert mode completion does not respect "start" in 'backspace'.
Solution: Check whether backspace can go before where insert started.

(Hirohito Higashi)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0320
Problem: Warning for unused variable with small build.
Solution: Change #ifdef to exclude FEAT_CMDWIN. (Kazunobu Kuriyama)
Files: src/ex_getln.c

Patch 8.0.0321
Problem: When using the tiny version trying to load the matchit plugin

gives an error. On MS-Windows some default mappings fail.
Solution: Add a check if the command used is available. (Christian Brabandt)
Files: runtime/mswin.vim, runtime/macros/matchit.vim

Patch 8.0.0322
Problem: Possible overflow with spell file where the tree length is

corrupted.
Solution: Check for an invalid length (suggested by shqking)
Files: src/spellfile.c

Patch 8.0.0323
Problem: When running the command line tests there is a one second wait.
Solution: Change an Esc to Ctrl-C. (Yegappan Lakshmanan)
Files: src/testdir/test_cmdline.vim

Patch 8.0.0324
Problem: Illegal memory access with "1;y".
Solution: Call check_cursor() instead of check_cursor_lnum(). (Dominique

Pelle, closes #1455)
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.0.0325
Problem: Packadd test does not clean up symlink.
Solution: Delete the link. (Hirohito Higashi)
Files: src/testdir/test_packadd.vim

Patch 8.0.0326 (after 8.0.0325)
Problem: Packadd test uses wrong directory name.
Solution: Use the variable name value. (Hirohito Higashi)
Files: src/testdir/test_packadd.vim

Patch 8.0.0327
Problem: The E11 error message in the command line window is not

translated.
Solution: use _(). (Hirohito Higashi)
Files: src/ex_docmd.c

Patch 8.0.0328
Problem: The "zero count" error doesn't have a number. (Hirohito Higashi)
Solution: Give it a number and be more specific about the error.
Files: src/globals.h

Patch 8.0.0329
Problem: Xfontset and guifontwide are not tested.
Solution: Add tests. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

version8.txt — 3067

Patch 8.0.0330
Problem: Illegal memory access after "vapo". (Dominique Pelle)
Solution: Fix the cursor column.
Files: src/search.c, src/testdir/test_visual.vim

Patch 8.0.0331
Problem: Restoring help snapshot accesses freed memory. (Dominique Pelle)
Solution: Don't restore a snapshot when the window closes.
Files: src/window.c, src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_help.vim

Patch 8.0.0332
Problem: GUI test fails on some systems.
Solution: Try different language settings. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

Patch 8.0.0333
Problem: Illegal memory access when 'complete' ends in a backslash.
Solution: Check for trailing backslash. (Dominique Pelle, closes #1478)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.0.0334
Problem: Can't access b:changedtick from a dict reference.
Solution: Make changedtick a member of the b: dict. (inspired by neovim

#6112)
Files: src/structs.h, src/buffer.c, src/edit.c, src/eval.c,

src/evalfunc.c, src/ex_docmd.c, src/main.c, src/globals.h,
src/fileio.c, src/memline.c, src/misc1.c, src/syntax.c,
src/proto/eval.pro, src/testdir/test_changedtick.vim,
src/Makefile, src/testdir/test_alot.vim, src/testdir/test91.in,
src/testdir/test91.ok, src/testdir/test_functions.vim

Patch 8.0.0335 (after 8.0.0335)
Problem: Functions test fails.
Solution: Use the right buffer number.
Files: src/testdir/test_functions.vim

Patch 8.0.0336
Problem: Flags of :substitute not sufficiently tested.
Solution: Test up to two letter flag combinations. (James McCoy, closes

#1479)
Files: src/testdir/test_substitute.vim

Patch 8.0.0337
Problem: Invalid memory access in :recover command.
Solution: Avoid access before directory name. (Dominique Pelle,

closes #1488)
Files: src/Makefile, src/memline.c, src/testdir/test_alot.vim,

src/testdir/test_recover.vim

Patch 8.0.0338 (after 8.0.0337)
Problem: :recover test fails on MS-Windows.
Solution: Use non-existing directory on MS-Windows.
Files: src/testdir/test_recover.vim

Patch 8.0.0339
Problem: Illegal memory access with vi'
Solution: For quoted text objects bail out if the Visual area spans more

than one line.
Files: src/search.c, src/testdir/test_visual.vim

version8.txt — 3068

Patch 8.0.0340
Problem: Not checking return value of dict_add(). (Coverity)
Solution: Handle a failure.
Files: src/buffer.c

Patch 8.0.0341
Problem: When using complete() and typing a character undo is saved after

the character was inserted. (Shougo)
Solution: Save for undo before inserting the character.
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0342
Problem: Double free when compiled with EXITFREE and setting 'ttytype'.
Solution: Avoid setting P_ALLOCED on 'ttytype'. (Dominique Pelle,

closes #1461)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.0.0343
Problem: b:changedtick can be unlocked, even though it has no effect.

(Nikolai Pavlov)
Solution: Add a check and error E940. (closes #1496)
Files: src/eval.c, src/testdir/test_changedtick.vim, runtime/doc/eval.txt

Patch 8.0.0344
Problem: Unlet command leaks memory. (Nikolai Pavlov)
Solution: Free the memory on error. (closes #1497)
Files: src/eval.c, src/testdir/test_unlet.vim

Patch 8.0.0345
Problem: islocked('d.changedtick') does not work.
Solution: Make it work.
Files: src/buffer.c, src/eval.c, src/evalfunc.c, src/vim.h,

src/testdir/test_changedtick.vim,

Patch 8.0.0346
Problem: Vim relies on limits.h to be included indirectly, but on Solaris 9

it may not be. (Ben Fritz)
Solution: Always include limits.h.
Files: src/os_unixx.h, src/vim.h

Patch 8.0.0347
Problem: When using CTRL-X CTRL-U inside a comment, the use of the comment

leader may not work. (Klement)
Solution: Save and restore did_ai. (Christian Brabandt, closes #1494)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0348
Problem: When building with a shadow directory on macOS lacks the

+clipboard feature.
Solution: Link *.m files, specifically os_macosx.m. (Kazunobu Kuriyama)
Files: src/Makefile

Patch 8.0.0349
Problem: Redrawing errors with GTK 3.
Solution: When updating, first clear all rectangles and then draw them.

(Kazunobu Kuriyama, Christian Ludwig, closes #848)
Files: src/gui_gtk_x11.c

Patch 8.0.0350

version8.txt — 3069

Problem: Not enough test coverage for Perl.
Solution: Add more Perl tests. (Dominique Pelle, closes #1500)
Files: src/testdir/test_perl.vim

Patch 8.0.0351
Problem: No test for concatenating an empty string that results from out of

bounds indexing.
Solution: Add a simple test.
Files: src/testdir/test_expr.vim

Patch 8.0.0352
Problem: The condition for when a typval needs to be cleared is too

complicated.
Solution: Init the type to VAR_UNKNOWN and always clear it.
Files: src/eval.c

Patch 8.0.0353
Problem: If [RO] in the status line is translated to a longer string, it is

truncated to 4 bytes.
Solution: Skip over the resulting string. (Jente Hidskes, closes #1499)
Files: src/screen.c

Patch 8.0.0354
Problem: Test to check that setting termcap key fails sometimes.
Solution: Check for "t_k1" to exist. (Christian Brabandt, closes #1459)
Files: src/testdir/test_assign.vim

Patch 8.0.0355
Problem: Using uninitialized memory when 'isfname' is empty.
Solution: Don't call getpwnam() without an argument. (Dominique Pelle,

closes #1464)
Files: src/misc1.c, src/testdir/test_options.vim

Patch 8.0.0356 (after 8.0.0342)
Problem: Leaking memory when setting 'ttytype'.
Solution: Get free_oldval from the right option entry.
Files: src/option.c

Patch 8.0.0357
Problem: Crash when setting 'guicursor' to weird value.
Solution: Avoid negative size. (Dominique Pelle, closes #1465)
Files: src/misc2.c, src/testdir/test_options.vim

Patch 8.0.0358
Problem: Invalid memory access in C-indent code.
Solution: Don't go over end of empty line. (Dominique Pelle, closes #1492)
Files: src/edit.c, src/testdir/test_options.vim

Patch 8.0.0359
Problem: 'number' and 'relativenumber' are not properly tested.
Solution: Add tests, change old style to new style tests. (Ozaki Kiichi,

closes #1447)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test89.in, src/testdir/test89.ok,
src/testdir/test_alot.vim, src/testdir/test_findfile.vim,
src/testdir/test_number.vim

Patch 8.0.0360
Problem: Sometimes VimL is used, which is confusing.
Solution: Consistently use "Vim script". (Hirohito Higashi)

version8.txt — 3070

Files: runtime/doc/if_mzsch.txt, runtime/doc/if_pyth.txt,
runtime/doc/syntax.txt, runtime/doc/usr_02.txt,
runtime/doc/version7.txt, src/Makefile, src/eval.c,
src/ex_getln.c, src/if_py_both.h, src/if_xcmdsrv.c,
src/testdir/Make_all.mak, src/testdir/runtest.vim,
src/testdir/test49.vim, src/testdir/test_vimscript.vim,
src/testdir/test_viml.vim

Patch 8.0.0361
Problem: GUI initialisation is not sufficiently tested.
Solution: Add the gui_init test. (Kazunobu Kuriyama)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Makefile,
src/testdir/gui_init.vim, src/testdir/setup_gui.vim,
src/testdir/test_gui.vim, src/testdir/test_gui_init.vim, Filelist

Patch 8.0.0362 (after 8.0.0361)
Problem: Tests fail on MS-Windows.
Solution: Use $*.vim instead of $<.
Files: src/testdir/Make_dos.mak

Patch 8.0.0363
Problem: Travis is too slow to keep up with patches.
Solution: Increase git depth to 20
Files: .travis.yml

Patch 8.0.0364
Problem:]s does not move cursor with two spell errors in one line. (Manuel

Ortega)
Solution: Don't stop search immediately when wrapped, search the line first.

(Ken Takata) Add a test.
Files: src/spell.c, src/Makefile, src/testdir/test_spell.vim,

src/testdir/Make_all.mak

Patch 8.0.0365
Problem: Might free a dict item that wasn't allocated.
Solution: Call dictitem_free(). (Nikolai Pavlov) Use this for

b:changedtick.
Files: src/dict.c, src/structs.h, src/buffer.c, src/edit.c,

src/evalfunc.c, src/ex_docmd.c, src/fileio.c, src/main.c,
src/memline.c, src/misc1.c, src/syntax.c

Patch 8.0.0366 (after 8.0.0365)
Problem: Build fails with tiny features.
Solution: Add #ifdef.
Files: src/buffer.c

Patch 8.0.0367
Problem: If configure defines _LARGE_FILES some include files are included

before it is defined.
Solution: Include vim.h first. (Sam Thursfield, closes #1508)
Files: src/gui_at_sb.c, src/gui_athena.c, src/gui_motif.c, src/gui_x11.c,

src/gui_xmdlg.c

Patch 8.0.0368
Problem: Not all options are tested with a range of values.
Solution: Generate a test script from the source code.
Files: Filelist, src/gen_opt_test.vim, src/testdir/test_options.vim,

src/Makefile

version8.txt — 3071

Patch 8.0.0369 (after 8.0.0368)
Problem: The 'balloondelay', 'ballooneval' and 'balloonexpr' options are

not defined without the +balloon_eval feature. Testing that an
option value fails does not work for unsupported options.

Solution: Make the options defined but not supported. Don't test if
setting unsupported options fails.

Files: src/option.c, src/gen_opt_test.vim

Patch 8.0.0370
Problem: Invalid memory access when setting wildchar empty.
Solution: Avoid going over the end of the option value. (Dominique Pelle,

closes #1509) Make option test check all number options with
empty value.

Files: src/gen_opt_test.vim, src/option.c, src/testdir/test_options.vim

Patch 8.0.0371 (after 8.0.0365)
Problem: Leaking memory when setting v:completed_item.
Solution: Or the flags instead of setting them.
Files: src/eval.c

Patch 8.0.0372
Problem: More options are not always defined.
Solution: Consistently define all possible options.
Files: src/option.c, src/testdir/test_expand_dllpath.vim

Patch 8.0.0373
Problem: Build fails without +folding.
Solution: Move misplaced #ifdef.
Files: src/option.c

Patch 8.0.0374
Problem: Invalid memory access when using :sc in Ex mode. (Dominique Pelle)
Solution: Avoid the column being negative. Also fix a hang in Ex mode.
Files: src/ex_getln.c, src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.0.0375
Problem: The "+ register is not tested.
Solution: Add a test using another Vim instance to change the "+ register.

(Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

Patch 8.0.0376
Problem: Size computations in spell file reading are not exactly right.
Solution: Make "len" a "long" and check with LONG_MAX.
Files: src/spellfile.c

Patch 8.0.0377
Problem: Possible overflow when reading corrupted undo file.
Solution: Check if allocated size is not too big. (King)
Files: src/undo.c

Patch 8.0.0378
Problem: Another possible overflow when reading corrupted undo file.
Solution: Check if allocated size is not too big. (King)
Files: src/undo.c

Patch 8.0.0379
Problem: CTRL-Z and mouse click use CTRL-O unnecessary.
Solution: Remove stuffing CTRL-O. (James McCoy, closes #1453)
Files: src/edit.c, src/normal.c

version8.txt — 3072

Patch 8.0.0380
Problem: With 'linebreak' set and 'breakat' includes ">" a double-wide

character results in "<<" displayed.
Solution: Check for the character not to be replaced. (Ozaki Kiichi,

closes #1456)
Files: src/screen.c, src/testdir/test_listlbr_utf8.vim

Patch 8.0.0381
Problem: Diff mode is not sufficiently tested.
Solution: Add more diff mode tests. (Dominique Pelle, closes #1515)
Files: src/testdir/test_diffmode.vim

Patch 8.0.0382 (after 8.0.0380)
Problem: Warning in tiny build for unused variable. (Tony Mechelynck)
Solution: Add #ifdefs.
Files: src/screen.c

Patch 8.0.0383 (after 8.0.0382)
Problem: Misplaced #ifdef. (Christ van Willegen)
Solution: Split assignment.
Files: src/screen.c

Patch 8.0.0384
Problem: Timer test failed for no apparent reason.
Solution: Mark the test as flaky.
Files: src/testdir/runtest.vim

Patch 8.0.0385
Problem: No tests for arabic.
Solution: Add a first test for arabic. (Dominique Pelle, closes #1518)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_arabic.vim

Patch 8.0.0386
Problem: Tiny build has a problem with generating the options test.
Solution: Change the "if" to skip over statements.
Files: src/gen_opt_test.vim

Patch 8.0.0387
Problem: compiler warnings
Solution: Add type casts. (Christian Brabandt)
Files: src/channel.c, src/memline.c

Patch 8.0.0388
Problem: filtering lines through "cat", without changing the line count,

changes manual folds.
Solution: Change how marks and folds are adjusted. (Matthew Malcomson, from

neovim #6194).
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.0.0389
Problem: Test for arabic does not check what is displayed.
Solution: Improve what is asserted. (Dominique Pelle, closes #1523)

Add a first shaping test.
Files: src/testdir/test_arabic.vim

Patch 8.0.0390
Problem: When the window scrolls horizontally when the popup menu is

displayed part of it may not be cleared. (Neovim issue #6184)

version8.txt — 3073

Solution: Remove the menu when the windows scrolled. (closes #1524)
Files: src/edit.c

Patch 8.0.0391
Problem: Arabic support is verbose and not well tested.
Solution: Simplify the code. Add more tests.
Files: src/arabic.c, src/testdir/test_arabic.vim

Patch 8.0.0392
Problem: GUI test fails with Athena and Motif.
Solution: Add test_ignore_error(). Use it to ignore the "failed to create

input context" error.
Files: src/message.c, src/proto/message.pro, src/evalfunc.c,

src/testdir/test_gui.vim, runtime/doc/eval.txt

Patch 8.0.0393 (after 8.0.0190)
Problem: When the same tag appears more than once, the order is

unpredictable. (Charles Campbell)
Solution: Besides using a dict for finding duplicates, use a grow array for

keeping the tags in sequence.
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.0.0394
Problem: Tabs are not aligned when scrolling horizontally and a Tab doesn't

fit. (Axel Bender)
Solution: Handle a Tab as a not fitting character. (Christian Brabandt)

Also fix that ":redraw" does not scroll horizontally to show the
cursor. And fix the test that depended on the old behavior.

Files: src/screen.c, src/ex_docmd.c, src/testdir/test_listlbr.vim,
src/testdir/test_listlbr_utf8.vim,
src/testdir/test_breakindent.vim

Patch 8.0.0395 (after 8.0.0392)
Problem: Testing the + register fails with Motif.
Solution: Also ignore the "failed to create input context" error in the

second gvim. Don't use msg() when it would result in a dialog.
Files: src/message.c, src/testdir/test_gui.vim, src/testdir/setup_gui.vim

Patch 8.0.0396
Problem: 'balloonexpr' only works synchronously.
Solution: Add balloon_show(). (Jusufadis Bakamovic, closes #1449)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/os_unix.c,

src/os_win32.c

Patch 8.0.0397 (after 8.0.0392)
Problem: Cannot build with the viminfo feature but without the eval

feature.
Solution: Adjust #ifdef. (John Marriott)
Files: src/message.c, src/misc2.c

Patch 8.0.0398
Problem: Illegal memory access with "t".
Solution: Use strncmp() instead of memcmp(). (Dominique Pelle, closes #1528)
Files: src/search.c, src/testdir/test_search.vim

Patch 8.0.0399
Problem: Crash when using balloon_show() when not supported. (Hirohito

Higashi)
Solution: Check for balloonEval not to be NULL. (Ken Takata)
Files: src/evalfunc.c, src/testdir/test_functions.vim

version8.txt — 3074

Patch 8.0.0400
Problem: Some tests have a one second delay.
Solution: Add --not-a-term in RunVim().
Files: src/testdir/shared.vim

Patch 8.0.0401
Problem: Test fails with missing balloon feature.
Solution: Add check for balloon feature.
Files: src/testdir/test_functions.vim

Patch 8.0.0402
Problem: :map completion does not have <special>. (Dominique Pelle)
Solution: Recognize <special> in completion. Add a test.
Files: src/getchar.c, src/testdir/test_cmdline.vim

Patch 8.0.0403
Problem: GUI tests may fail.
Solution: Ignore the E285 error better. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim, src/testdir/test_gui_init.vim

Patch 8.0.0404
Problem: Not enough testing for quickfix.
Solution: Add some more tests. (Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim

Patch 8.0.0405
Problem: v:progpath may become invalid after ":cd".
Solution: Turn v:progpath into a full path if needed.
Files: src/main.c, src/testdir/test_startup.vim, runtime/doc/eval.txt

Patch 8.0.0406
Problem: The arabic shaping code is verbose.
Solution: Shorten the code without changing the functionality.
Files: src/arabic.c

Patch 8.0.0407 (after 8.0.0388)
Problem: Filtering folds with marker method not tested.
Solution: Also set 'foldmethod' to "marker".
Files: src/testdir/test_fold.vim

Patch 8.0.0408
Problem: Updating folds does not work properly when inserting a file and a

few other situations.
Solution: Adjust the way folds are updated. (Matthew Malcomson)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.0.0409
Problem: set_progpath is defined but not always used
Solution: Adjust #ifdef.
Files: src/main.c

Patch 8.0.0410
Problem: Newer gettext/iconv library has extra dll file.
Solution: Add the file to the Makefile and nsis script. (Christian Brabandt)
Files: Makefile, nsis/gvim.nsi

Patch 8.0.0411
Problem: We can't change the case in menu entries, it breaks translations.
Solution: Ignore case when looking up a menu translation.

version8.txt — 3075

Files: src/menu.c, src/testdir/test_menu.vim

Patch 8.0.0412 (after 8.0.0411)
Problem: Menu test fails on MS-Windows.
Solution: Use a menu entry with only ASCII characters.
Files: src/testdir/test_menu.vim

Patch 8.0.0413 (after 8.0.0412)
Problem: Menu test fails on MS-Windows using gvim.
Solution: First delete the English menus.
Files: src/testdir/test_menu.vim

Patch 8.0.0414
Problem: Balloon eval is not tested.
Solution: Add a few balloon tests. (Kazunobu Kuriyama)
Files: src/testdir/test_gui.vim

Patch 8.0.0415 (after 8.0.0414)
Problem: Balloon test fails on MS-Windows.
Solution: Test with 0x7fffffff instead of 0xffffffff.
Files: src/testdir/test_gui.vim

Patch 8.0.0416
Problem: Setting v:progpath is not quite right.
Solution: On MS-Windows add the extension. On Unix use the full path for a

relative directory. (partly by James McCoy, closes #1531)
Files: src/main.c, src/os_win32.c, src/os_unix.c

Patch 8.0.0417
Problem: Test for the clipboard fails sometimes.
Solution: Add it to the flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.0418
Problem: ASAN logs are disabled and don't cause a failure.
Solution: Enable ASAN logs and fail if not empty. (James McCoy,

closes #1425)
Files: .travis.yml

Patch 8.0.0419
Problem: Test for v:progpath fails on MS-Windows.
Solution: Expand to full path. Also add ".exe" when the path is an absolute

path.
Files: src/os_win32.c, src/main.c

Patch 8.0.0420
Problem: When running :make the output may be in the system encoding,

different from 'encoding'.
Solution: Add the 'makeencoding' option. (Ken Takata)
Files: runtime/doc/options.txt, runtime/doc/quickfix.txt,

runtime/doc/quickref.txt, src/Makefile, src/buffer.c,
src/if_cscope.c, src/main.c, src/option.c, src/option.h,
src/proto/quickfix.pro, src/quickfix.c, src/structs.h,
src/testdir/Make_all.mak, src/testdir/test_makeencoding.py,
src/testdir/test_makeencoding.vim

Patch 8.0.0421
Problem: Diff mode is displayed wrong when adding a line at the end of a

buffer.
Solution: Adjust marks in diff mode. (James McCoy, closes #1329)

version8.txt — 3076

Files: src/misc1.c, src/ops.c, src/testdir/test_diffmode.vim

Patch 8.0.0422
Problem: Python test fails with Python 3.6.
Solution: Convert new exception messages to old ones. (closes #1359)
Files: src/testdir/test87.in

Patch 8.0.0423
Problem: The effect of adding "#" to 'cinoptions' is not always removed.

(David Briscoe)
Solution: Reset b_ind_hash_comment. (Christian Brabandt, closes #1475)
Files: src/misc1.c, src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_cindent.vim, src/testdir/test3.in

Patch 8.0.0424
Problem: Compiler warnings on MS-Windows. (Ajit Thakkar)
Solution: Add type casts.
Files: src/os_win32.c

Patch 8.0.0425
Problem: Build errors when building without folding.
Solution: Add #ifdefs. (John Marriott)
Files: src/diff.c, src/edit.c, src/option.c, src/syntax.c

Patch 8.0.0426
Problem: Insufficient testing for statusline.
Solution: Add several tests. (Dominique Pelle, closes #1534)
Files: src/testdir/test_statusline.vim

Patch 8.0.0427
Problem: 'makeencoding' missing from the options window.
Solution: Add the entry.
Files: runtime/optwin.vim

Patch 8.0.0428
Problem: Git and hg see new files after running tests. (Manuel Ortega)
Solution: Add the generated file to .hgignore (or .gitignore). Delete the

resulting verbose file. (Christian Brabandt) Improve dependency
on opt_test.vim. Reset the 'more' option.

Files: .hgignore, src/gen_opt_test.vim, src/testdir/gen_opt_test.vim,
src/Makefile, src/testdir/Make_all.mak, src/testdir/Makefile,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
Filelist

Patch 8.0.0429
Problem: Options test does not always test everything.
Solution: Fix dependency for opt_test.vim. Give a message when opt_test.vim

was not found.
Files: src/testdir/test_options.vim, src/testdir/gen_opt_test.vim,

src/testdir/Makefile, src/testdir/Make_all.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak

Patch 8.0.0430
Problem: Options test fails or hangs on MS-Windows.
Solution: Run it separately instead of part of test_alot. Use "-S" instead

of "-u" to run the script. Fix failures.
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/Makefile, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/gen_opt_test.vim

version8.txt — 3077

Patch 8.0.0431
Problem: 'cinoptions' cannot set indent for extern block.
Solution: Add the "E" flag in 'cinoptions'. (Hirohito Higashi)
Files: runtime/doc/indent.txt, src/misc1.c, src/structs.h,

src/testdir/test_cindent.vim

Patch 8.0.0432
Problem: "make shadow" creates an invalid link.
Solution: Don't link "*.vim". (Kazunobu Kuriyama)
Files: src/Makefile

Patch 8.0.0433
Problem: Quite a few beeps when running tests.
Solution: Set 'belloff' for these tests. (Christian Brabandt)
Files: src/testdir/test103.in, src/testdir/test14.in,

src/testdir/test29.in, src/testdir/test30.in,
src/testdir/test32.in, src/testdir/test45.in,
src/testdir/test72.in, src/testdir/test73.in,
src/testdir/test77.in, src/testdir/test78.in,
src/testdir/test85.in, src/testdir/test94.in,
src/testdir/test_alot.vim, src/testdir/test_alot_utf8.vim,
src/testdir/test_close_count.in, src/testdir/test_cmdline.vim,
src/testdir/test_diffmode.vim, src/testdir/test_digraph.vim,
src/testdir/test_erasebackword.in, src/testdir/test_normal.vim,
src/testdir/test_packadd.vim, src/testdir/test_search.vim,
src/testdir/test_textobjects.vim, src/testdir/test_undo.vim,
src/testdir/test_usercommands.vim, src/testdir/test_visual.vim

Patch 8.0.0434
Problem: Clang version not correctly detected.
Solution: Adjust the configure script. (Kazunobu Kuriyama)
Files: src/configure.ac, src/auto/configure

Patch 8.0.0435
Problem: Some functions are not tested.
Solution: Add more tests for functions. (Dominique Pelle, closes #1541)
Files: src/testdir/test_functions.vim

Patch 8.0.0436
Problem: Running the options test sometimes resizes the terminal.
Solution: Clear out t_WS.
Files: src/testdir/gen_opt_test.vim

Patch 8.0.0437
Problem: The packadd test does not create the symlink correctly and does

not test the right thing.
Solution: Create the directory and symlink correctly.
Files: src/testdir/test_packadd.vim

Patch 8.0.0438
Problem: The fnamemodify test changes 'shell' in a way later tests may not

be able to use system().
Solution: Save and restore 'shell'.
Files: src/testdir/test_fnamemodify.vim

Patch 8.0.0439
Problem: Using ":%argdel" while the argument list is already empty gives an

error. (Pavol Juhas)
Solution: Don't give an error. (closes #1546)
Files: src/ex_cmds2.c, src/testdir/test_arglist.vim

version8.txt — 3078

Patch 8.0.0440
Problem: Not enough test coverage in Insert mode.
Solution: Add lots of tests. Add test_override(). (Christian Brabandt,

closes #1521)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/edit.c,

src/evalfunc.c, src/globals.h, src/screen.c,
src/testdir/Make_all.mak, src/testdir/test_cursor_func.vim,
src/testdir/test_edit.vim, src/testdir/test_search.vim,
src/testdir/test_assert.vim, src/Makefile, src/testdir/runtest.vim

Patch 8.0.0441
Problem: Dead code in #ifdef.
Solution: Remove the #ifdef and #else part.
Files: src/option.c

Patch 8.0.0442
Problem: Patch shell command uses double quotes around the argument, which

allows for $HOME to be expanded. (Etienne)
Solution: Use single quotes on Unix. (closes #1543)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.0.0443
Problem: Terminal width is set to 80 in test3.
Solution: Instead of setting 'columns' set 'wrapmargin' depending on

'columns.
Files: src/testdir/test3.in

Patch 8.0.0444 (after 8.0.0442)
Problem: Diffpatch fails when the file name has a quote.
Solution: Escape the name properly. (zetzei)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.0.0445
Problem: Getpgid is not supported on all systems.
Solution: Add a configure check.
Files: src/configure.ac, src/auto/configure, src/config.h.in,

src/os_unix.c

Patch 8.0.0446
Problem: The ";" command does not work after characters with a lower byte

that is NUL.
Solution: Properly check for not having a previous character. (Hirohito

Higashi)
Files: src/Makefile, src/search.c, src/testdir/test_alot_utf8.vim,

src/testdir/test_charsearch_utf8.vim

Patch 8.0.0447
Problem: Getting font name does not work on X11.
Solution: Implement gui_mch_get_fontname() for X11. Add more GUI tests.

(Kazunobu Kuriyama)
Files: src/gui_x11.c, src/syntax.c, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Makefile,
src/testdir/gui_init.vim, src/testdir/gui_preinit.vim,
src/testdir/test_gui.vim, src/testdir/test_gui_init.vim,
Filelist

Patch 8.0.0448
Problem: Some macros are in lower case, which can be confusing.
Solution: Make a few lower case macros upper case.

version8.txt — 3079

Files: src/macros.h, src/buffer.c, src/charset.c, src/ops.c, src/diff.c,
src/edit.c, src/evalfunc.c, src/ex_cmds.c, src/ex_getln.c,
src/fileio.c, src/fold.c, src/gui.c, src/gui_beval.c, src/main.c,
src/mark.c, src/misc1.c, src/move.c, src/normal.c,
src/option.c, src/popupmnu.c, src/regexp.c, src/screen.c,
src/search.c, src/spell.c, src/tag.c, src/ui.c, src/undo.c,
src/version.c, src/workshop.c, src/if_perl.xs

Patch 8.0.0449 (after 8.0.0448)
Problem: Part of fold patch accidentally included.
Solution: Revert that part of the patch.
Files: src/ex_cmds.c

Patch 8.0.0450
Problem: v:progpath is not reliably set.
Solution: Read /proc/self/exe if possible. (idea by Michal Grochmal)

Also fixes missing #if.
Files: src/main.c, src/config.h.in

Patch 8.0.0451
Problem: Some macros are in lower case.
Solution: Make a few more macros upper case. Avoid lower case macros use an

argument twice.
Files: src/macros.h, src/charset.c, src/misc2.c, src/proto/misc2.pro,

src/edit.c, src/eval.c, src/ex_cmds.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/fold.c,
src/gui.c, src/gui_gtk.c, src/mark.c, src/memline.c, src/mbyte.c,
src/menu.c, src/message.c, src/misc1.c, src/ops.c, src/option.c,
src/os_amiga.c, src/os_mswin.c, src/os_unix.c, src/os_win32.c,
src/popupmnu.c, src/regexp.c, src/regexp_nfa.c, src/screen.c,
src/search.c, src/spell.c, src/spellfile.c, src/syntax.c,
src/tag.c, src/ui.c, src/undo.c, src/window.c

Patch 8.0.0452
Problem: Some macros are in lower case.
Solution: Make a few more macros upper case.
Files: src/vim.h, src/macros.h, src/evalfunc.c, src/fold.c,

src/gui_gtk.c, src/gui_gtk_x11.c, src/charset.c, src/diff.c,
src/edit.c, src/eval.c, src/ex_cmds.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/getchar.c,
src/gui.c, src/gui_w32.c, src/if_cscope.c, src/mbyte.c,
src/menu.c, src/message.c, src/misc1.c, src/misc2.c, src/normal.c,
src/ops.c, src/option.c, src/os_unix.c, src/os_win32.c,
src/quickfix.c, src/regexp.c, src/regexp_nfa.c, src/screen.c,
src/search.c, src/spell.c, src/syntax.c, src/tag.c, src/userfunc.c

Patch 8.0.0453
Problem: Adding fold marker creates new comment.
Solution: Use an existing comment if possible. (LemonBoy, closes #1549)
Files: src/ops.c, src/proto/ops.pro, src/fold.c,

src/testdir/test_fold.vim

Patch 8.0.0454
Problem: Compiler warnings for comparing unsigned char with 256 always

being true. (Manuel Ortega)
Solution: Add type cast.
Files: src/screen.c, src/charset.c

Patch 8.0.0455
Problem: The mode test may hang in Test_mode(). (Michael Soyka)

version8.txt — 3080

Solution: Set 'complete' to only search the current buffer (as suggested by
Michael)

Files: src/testdir/test_functions.vim

Patch 8.0.0456
Problem: Typo in MinGW test makefile.
Solution: Change an underscore to a dot. (Michael Soyka)
Files: src/testdir/Make_ming.mak

Patch 8.0.0457
Problem: Using :move messes up manual folds.
Solution: Split adjusting marks and folds. Add foldMoveRange(). (neovim

patch #6221)
Files: src/ex_cmds.c, src/fold.c, src/mark.c, src/proto/fold.pro,

src/proto/mark.pro src/testdir/test_fold.vim

Patch 8.0.0458
Problem: Potential crash if adding list or dict to dict fails.
Solution: Make sure the reference count is correct. (Nikolai Pavlov, closes

#1555)
Files: src/dict.c

Patch 8.0.0459 (after 8.0.0457)
Problem: Old fix for :move messing up folding no longer needed, now that we

have a proper solution.
Solution: Revert patch 7.4.700. (Christian Brabandt)
Files: src/ex_cmds.c

Patch 8.0.0460 (after 8.0.0452)
Problem: Can't build on HPUX.
Solution: Fix argument names in vim_stat(). (John Marriott)
Files: src/misc2.c

Patch 8.0.0461 (after 8.0.0457)
Problem: Test 45 hangs on MS-Windows.
Solution: Reset 'shiftwidth'. Also remove redundant function.
Files: src/fold.c, src/testdir/test45.in

Patch 8.0.0462
Problem: If an MS-Windows tests succeeds at first and then fails in a way

it does not produce a test.out file it looks like the test
succeeded.

Solution: Delete the previous output file.
Files: src/testdir/Make_dos.mak

Patch 8.0.0463
Problem: Resetting 'compatible' in defaults.vim has unexpected side

effects. (David Fishburn)
Solution: Only reset 'compatible' if it was set.
Files: runtime/defaults.vim

Patch 8.0.0464
Problem: Can't find executable name on Solaris and FreeBSD.
Solution: Check for "/proc/self/path/a.out". (Danek Duvall) And for

"/proc/curproc/file".
Files: src/config.h.in, src/configure.ac, src/main.c,

src/auto/configure

Patch 8.0.0465
Problem: Off-by-one error in using :move with folding.

version8.txt — 3081

Solution: Correct off-by-one mistakes and add more tests. (Matthew
Malcomson)

Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.0.0466
Problem: There are still a few macros that should be all-caps.
Solution: Make a few more macros all-caps.
Files: src/buffer.c, src/edit.c, src/ex_cmds.c, src/ex_cmds2.c,

src/ex_docmd.c, src/ex_getln.c, src/farsi.c, src/fileio.c,
src/getchar.c, src/gui_beval.c, src/hardcopy.c, src/if_cscope.c,
src/if_xcmdsrv.c, src/mark.c, src/memline.c, src/menu.c,
src/message.c, src/misc1.c, src/normal.c, src/ops.c, src/option.c,
src/quickfix.c, src/screen.c, src/search.c, src/syntax.c,
src/tag.c, src/term.c, src/term.h, src/ui.c, src/undo.c,
src/userfunc.c, src/version.c, src/vim.h

Patch 8.0.0467
Problem: Using g< after :for does not show the right output. (Marcin

Szamotulski)
Solution: Call msg_sb_eol() in :echomsg.
Files: src/eval.c

Patch 8.0.0468
Problem: After aborting an Ex command g< does not work. (Marcin

Szamotulski)
Solution: Postpone clearing scrollback messages to until the command line

has been entered. Also fix that the screen isn't redrawn if after
g< the command line is cancelled.

Files: src/message.c, src/proto/message.pro, src/ex_getln.c, src/misc2.c,
src/gui.c

Patch 8.0.0469
Problem: Compiler warnings on MS-Windows.
Solution: Add type casts. (Christian Brabandt)
Files: src/fold.c

Patch 8.0.0470
Problem: Not enough testing for help commands.
Solution: Add a few more help tests. (Dominique Pelle, closes #1565)
Files: src/testdir/test_help.vim, src/testdir/test_help_tagjump.vim

Patch 8.0.0471
Problem: Exit callback test sometimes fails.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.0472
Problem: When a test fails and test.log is created, Test_edit_CTRL_I

matches it instead of test1.in.
Solution: Match with runtest.vim instead.
Files: src/testdir/test_edit.vim

Patch 8.0.0473
Problem: No test covering arg_all().
Solution: Add a test expanding ##.
Files: src/testdir/test_arglist.vim

Patch 8.0.0474
Problem: The client-server feature is not tested.
Solution: Add a test.

version8.txt — 3082

Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/shared.vim,
src/testdir/test_clientserver.vim, src/os_mswin.c

Patch 8.0.0475
Problem: Not enough testing for the client-server feature.
Solution: Add more tests. Add the remote_startserver() function. Fix that

a locally evaluated expression uses function-local variables.
Files: src/if_xcmdsrv.c, src/evalfunc.c, src/os_mswin.c,

src/proto/main.pro, src/testdir/test_clientserver.vim,
runtime/doc/eval.txt

Patch 8.0.0476 (after 8.0.0475)
Problem: Missing change to main.c.
Solution: Add new function.
Files: src/main.c

Patch 8.0.0477
Problem: The client-server test may hang when failing.
Solution: Set a timer. Add assert_report()
Files: src/testdir/test_clientserver.vim, src/testdir/runtest.vim,

src/eval.c, src/evalfunc.c, src/proto/eval.pro, src/if_xcmdsrv.c,
src/os_mswin.c, runtime/doc/eval.txt

Patch 8.0.0478
Problem: Tests use assert_true(0) and assert_false(1) to report errors.
Solution: Use assert_report().
Files: src/testdir/test_cscope.vim, src/testdir/test_expr.vim,

src/testdir/test_perl.vim, src/testdir/test_channel.vim,
src/testdir/test_cursor_func.vim, src/testdir/test_gui.vim,
src/testdir/test_menu.vim, src/testdir/test_popup.vim,
src/testdir/test_viminfo.vim, src/testdir/test_vimscript.vim,
src/testdir/test_assert.vim

Patch 8.0.0479
Problem: remote_peek() is not tested.
Solution: Add a test.
Files: src/testdir/test_clientserver.vim, src/testdir/runtest.vim

Patch 8.0.0480
Problem: The remote_peek() test fails on MS-Windows.
Solution: Check for pending messages. Also report errors in the first run if

a flaky test fails twice.
Files: src/os_mswin.c, src/testdir/runtest.vim

Patch 8.0.0481
Problem: Unnecessary if statement.
Solution: Remove the statement. Fix "it's" vs "its" mistakes. (Dominique

Pelle, closes #1568)
Files: src/syntax.c

Patch 8.0.0482
Problem: The setbufvar() function may mess up the window layout. (Kay Z.)
Solution: Do not check the window to be valid if it is NULL.
Files: src/window.c, src/testdir/test_functions.vim

Patch 8.0.0483
Problem: Illegal memory access when using :all. (Dominique Pelle)
Solution: Adjust the cursor position right after setting "curwin".
Files: src/window.c, src/testdir/test_window_cmd.vim

version8.txt — 3083

Patch 8.0.0484
Problem: Using :lhelpgrep with an argument that should fail does not

produce an error if the previous :helpgrep worked.
Solution: Use another way to detect that autocommands made the quickfix info

invalid. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0485
Problem: Not all windows commands are tested.
Solution: Add more tests for windows commands. (Dominique Pelle,

closes #1575) Run test_autocmd separately, it interferes with
other tests. Fix tests that depended on side effects.

Files: src/testdir/test_window_cmd.vim, src/testdir/test_alot.vim,
src/testdir/test_autocmd.vim, src/testdir/test_fnamemodify.vim,
src/testdir/test_functions.vim, src/testdir/test_delete.vim,
src/testdir/Make_all.mak

Patch 8.0.0486
Problem: Crash and endless loop when closing windows in a SessionLoadPost

autocommand.
Solution: Check for valid tabpage. (partly neovim #6308)
Files: src/testdir/test_autocmd.vim, src/fileio.c, src/proto/window.pro,

src/window.c

Patch 8.0.0487
Problem: The autocmd test hangs on MS-Windows.
Solution: Skip the hanging tests for now.
Files: src/testdir/test_autocmd.vim

Patch 8.0.0488
Problem: Running tests leaves an "xxx" file behind.
Solution: Delete the 'verbosefile' after resetting the option.
Files: src/testdir/gen_opt_test.vim

Patch 8.0.0489
Problem: Clipboard and "* register is not tested.
Solution: Add a test for Mac and X11. (Kazunobu Kuriyama)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/test_quotestar.vim, src/testdir/runtest.vim

Patch 8.0.0490
Problem: Splitting a 'winfixwidth' window vertically makes it one column

smaller. (Dominique Pelle)
Solution: Add one to the width for the separator.
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.0.0491
Problem: The quotestar test fails when a required feature is missing.
Solution: Prepend "Skipped" to the thrown exception.
Files: src/testdir/test_quotestar.vim

Patch 8.0.0492
Problem: A failing client-server request can make Vim hang.
Solution: Add a timeout argument to functions that wait.
Files: src/evalfunc.c, src/if_xcmdsrv.c, src/proto/if_xcmdsrv.pro,

src/main.c, src/os_mswin.c, src/proto/os_mswin.pro,
src/vim.h, runtime/doc/eval.txt, src/testdir/test_clientserver.vim

Patch 8.0.0493
Problem: Crash with cd command with very long argument.

version8.txt — 3084

Solution: Check for running out of space. (Dominique Pelle, closes #1576)
Files: src/testdir/test_alot.vim, src/testdir/test_cd.vim, src/Makefile,

src/misc2.c

Patch 8.0.0494
Problem: Build failure with older compiler on MS-Windows.
Solution: Move declaration to start of block.
Files: src/evalfunc.c, src/main.c, src/os_mswin.c

Patch 8.0.0495
Problem: The quotestar test uses a timer instead of a timeout, thus it

cannot be rerun like a flaky test.
Solution: Remove the timer and add a timeout. (Kazunobu Kuriyama)
Files: src/testdir/test_quotestar.vim

Patch 8.0.0496
Problem: Insufficient testing for folding.
Solution: Add a couple more fold tests. (Dominique Pelle, closes #1579)
Files: src/testdir/test_fold.vim

Patch 8.0.0497
Problem: Arabic support is not fully tested.
Solution: Add more tests for the untested functions. Comment out

unreachable code.
Files: src/arabic.c, src/testdir/test_arabic.vim

Patch 8.0.0498
Problem: Two autocmd tests are skipped on MS-Windows.
Solution: Make the test pass on MS-Windows. Write the messages in a file

instead of getting the output of system().
Files: src/testdir/test_autocmd.vim

Patch 8.0.0499
Problem: taglist() does not prioritize tags for a buffer.
Solution: Add an optional buffer argument. (Duncan McDougall, closes #1194)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/proto/tag.pro,

src/Makefile, src/tag.c, src/testdir/test_alot.vim,
src/testdir/test_taglist.vim

Patch 8.0.0500
Problem: Quotestar test is still a bit flaky.
Solution: Add a slower check for v:version.
Files: src/testdir/test_quotestar.vim

Patch 8.0.0501
Problem: On MS-Windows ":!start" does not work as expected.
Solution: When creating a process fails try passing the argument to

ShellExecute(). (Katsuya Hino, closes #1570)
Files: runtime/doc/os_win32.txt, src/os_win32.c

Patch 8.0.0502
Problem: Coverity complains about possible NULL pointer.
Solution: Add an assert(), let's see if this works on all systems.
Files: src/window.c

Patch 8.0.0503
Problem: Endless loop in updating folds with 32 bit ints.
Solution: Subtract from LHS instead of add to the RHS. (Matthew Malcomson)
Files: src/fold.c

version8.txt — 3085

Patch 8.0.0504
Problem: Looking up an Ex command is a bit slow.
Solution: Instead of just using the first letter, also use the second letter

to skip ahead in the list of commands. Generate the table with a
Perl script. (Dominique Pelle, closes #1589)

Files: src/Makefile, src/create_cmdidxs.pl, src/ex_docmd.c, Filelist

Patch 8.0.0505
Problem: Failed window split for :stag not handled. (Coverity CID 99204)
Solution: If the split fails skip to the end. (bstaletic, closes #1577)
Files: src/tag.c

Patch 8.0.0506 (after 8.0.0504)
Problem: Can't build with ANSI C.
Solution: Move declarations to start of block.
Files: src/ex_docmd.c

Patch 8.0.0507
Problem: Client-server tests fail when $DISPLAY is not set.
Solution: Check for E240 before running the test.
Files: src/testdir/test_quotestar.vim, src/testdir/test_clientserver.vim

Patch 8.0.0508
Problem: Coveralls no longer shows per-file coverage.
Solution: Add coverage from codecov.io. (Christian Brabandt)
Files: .travis.yml

Patch 8.0.0509
Problem: No link to codecov.io results.
Solution: Add a badge to the readme file.
Files: README.md

Patch 8.0.0510 (after 8.0.0509)
Problem: Typo in link to codecov.io results.
Solution: Remove duplicate https:.
Files: README.md

Patch 8.0.0511
Problem: Message for skipping client-server tests is unclear.
Solution: Be more specific about what's missing (Hirohito Higashi, Kazunobu

Kuriyama)
Files: src/testdir/test_quotestar.vim, src/testdir/test_clientserver.vim

Patch 8.0.0512
Problem: Check for available characters takes too long.
Solution: Only check did_start_blocking if wtime is negative. (Daisuke

Suzuki, closes #1591)
Files: src/os_unix.c

Patch 8.0.0513 (after 8.0.0201)
Problem: Getting name of cleared highlight group is wrong. (Matt Wozniski)
Solution: Only skip over cleared names for completion. (closes #1592)

Also fix that a cleared group causes duplicate completions.
Files: src/syntax.c, src/proto/syntax.pro, src/evalfunc.c,

src/ex_cmds.c, src/testdir/test_syntax.vim,
src/testdir/test_cmdline.vim

Patch 8.0.0514
Problem: Script for creating cmdidxs can be improved.
Solution: Count skipped lines instead of collecting the lines. Add "const".

version8.txt — 3086

(Dominique Pelle, closes #1594)
Files: src/create_cmdidxs.pl, src/ex_docmd.c

Patch 8.0.0515
Problem: ml_get errors in silent Ex mode. (Dominique Pelle)
Solution: Clear valid flags when setting the cursor. Set the topline when

not in full screen mode.
Files: src/ex_docmd.c, src/move.c, src/testdir/test_startup.vim

Patch 8.0.0516
Problem: A large count on a normal command causes trouble. (Dominique

Pelle)
Solution: Make "opcount" long.
Files: src/globals.h, src/testdir/test_normal.vim

Patch 8.0.0517
Problem: There is no way to remove quickfix lists (for testing).
Solution: Add the 'f' action to setqflist(). Add tests. (Yegappan

Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0518
Problem: Storing a zero byte from a multibyte character causes fold text

to show up wrong.
Solution: Avoid putting zero in ScreenLines. (Christian Brabandt,

closes #1567)
Files: src/screen.c, src/testdir/test_display.vim

Patch 8.0.0519
Problem: Character classes are not well tested. They can differ between

platforms.
Solution: Add tests. In the documentation make clear which classes depend

on what library function. Only use :cntrl: and :graph: for ASCII.
(Kazunobu Kuriyama, Dominique Pelle, closes #1560)
Update the documentation.

Files: src/regexp.c, src/regexp_nfa.c, runtime/doc/pattern.txt,
src/testdir/test_regexp_utf8.vim

Patch 8.0.0520
Problem: Using a function pointer instead of the actual function, which we

know.
Solution: Change mb_ functions to utf_ functions when already checked for

Unicode. (Dominique Pelle, closes #1582)
Files: src/message.c, src/misc2.c, src/regexp.c, src/regexp_nfa.c,

src/screen.c, src/spell.c

Patch 8.0.0521
Problem: GtkForm handling is outdated.
Solution: Get rid of event filter functions. Get rid of GtkForm.width and

.height. Eliminate gtk_widget_size_request() calls. (Kazunobu
Kuriyama)

Files: src/gui_gtk_f.c, src/gui_gtk_f.h

Patch 8.0.0522
Problem: MS-Windows: when 'clipboard' is "unnamed" yyp does not work in a

:global command.
Solution: When setting the clipboard was postponed, do not clear the

register.
Files: src/ops.c, src/proto/ui.pro, src/ui.c, src/globals.h,

version8.txt — 3087

src/testdir/test_global.vim, src/Makefile,
src/testdir/test_alot.vim

Patch 8.0.0523
Problem: dv} deletes part of a multibyte character. (Urtica Dioica)
Solution: Include the whole character.
Files: src/search.c, src/testdir/test_normal.vim

Patch 8.0.0524 (after 8.0.0518)
Problem: Folds are messed up when 'encoding' is "utf-8".
Solution: Also set the fold character when it's not multibyte.
Files: src/screen.c, src/testdir/test_display.vim

Patch 8.0.0525
Solution: Completion for user command argument not tested.
Problem: Add a test.
Files: src/testdir/test_cmdline.vim

Patch 8.0.0526
Problem: Coverity complains about possible negative value.
Solution: Check return value of ftell() not to be negative.
Files: src/os_unix.c

Patch 8.0.0527
Problem: RISC OS support was removed long ago, but one file is still

included.
Solution: Delete the file. (Thomas Dziedzic, closes #1603)
Files: Filelist, src/swis.s

Patch 8.0.0528
Problem: When 'wildmenu' is set and 'wildmode' has "longest" then the first

file name is highlighted, even though the text shows the longest
match.

Solution: Do not highlight the first match. (LemonBoy, closes #1602)
Files: src/ex_getln.c

Patch 8.0.0529
Problem: Line in test commented out.
Solution: Uncomment the lines for character classes that were failing before

8.0.0519. (Dominique Pelle, closes #1599)
Files: src/testdir/test_regexp_utf8.vim

Patch 8.0.0530
Problem: Buffer overflow when 'columns' is very big. (Nikolai Pavlov)
Solution: Correctly compute where to truncate. Fix translation.

(closes #1600)
Files: src/edit.c, src/testdir/test_edit.vim

Patch 8.0.0531 (after 8.0.0530)
Problem: Test with long directory name fails on non-unix systems.
Solution: Skip the test on non-unix systems.
Files: src/testdir/test_edit.vim

Patch 8.0.0532 (after 8.0.0531)
Problem: Test with long directory name fails on Mac.
Solution: Skip the test on Mac systems.
Files: src/testdir/test_edit.vim

Patch 8.0.0533
Problem: Abbreviation doesn't work after backspacing newline. (Hkonrk)

version8.txt — 3088

Solution: Set the insert start column. (closes #1609)
Files: src/testdir/test_mapping.vim, src/edit.c

Patch 8.0.0534
Problem: Defaults.vim does not work well with tiny features. (crd477)
Solution: When the +eval feature is not available always reset 'compatible'.
Files: runtime/defaults.vim

Patch 8.0.0535
Problem: Memory leak when exiting from within a user function.
Solution: Clear the function call stack on exit.
Files: src/userfunc.c

Patch 8.0.0536
Problem: Quickfix window not updated when freeing quickfix stack.
Solution: Update the quickfix window. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0537
Problem: Illegal memory access with :z and large count.
Solution: Check for number overflow, using long instead of int. (Dominique

Pelle, closes #1612)
Files: src/Makefile, src/ex_cmds.c, src/testdir/test_alot.vim,

src/testdir/test_ex_z.vim

Patch 8.0.0538
Problem: No test for falling back to default term value.
Solution: Add a test.
Files: src/testdir/test_startup.vim

Patch 8.0.0539 (after 8.0.0538)
Problem: Startup test fails on Mac.
Solution: Use another term name, "unknown" is known. Avoid a 2 second delay.
Files: src/testdir/test_startup.vim, src/main.c, src/proto/main.pro,

src/term.c

Patch 8.0.0540 (after 8.0.0540)
Problem: Building unit tests fails.
Solution: Move params outside of #ifdef.
Files: src/main.c, src/message_test.c

Patch 8.0.0541
Problem: Compiler warning on MS-Windows.
Solution: Add a type cast. (Mike Williams)
Files: src/edit.c

Patch 8.0.0542
Problem: getpos() can return a negative line number. (haya14busa)
Solution: Handle a zero topline and botline. (closes #1613)
Files: src/eval.c, runtime/doc/eval.txt

Patch 8.0.0543
Problem: Test_edit causes older xfce4-terminal to close. (Dominique Pelle)
Solution: Reduce number of columns to 2000. Try to restore the window

position.
Files: src/testdir/test_edit.vim, src/evalfunc.c, src/term.c,

src/proto/term.pro, src/term.h

Patch 8.0.0544
Problem: Cppcheck warnings.

version8.txt — 3089

Solution: Use temp variable. Change NUL to NULL. Swap conditions. (Dominique
Pelle)

Files: src/channel.c, src/edit.c, src/farsi.c

Patch 8.0.0545
Problem: Edit test may fail on some systems.
Solution: If creating a directory with a very long path fails, bail out.
Files: src/testdir/test_edit.vim

Patch 8.0.0546
Problem: Swap file exists briefly when opening the command window.
Solution: Set the noswapfile command modifier before splitting the window.

(James McCoy, closes #1620)
Files: src/ex_getln.c, src/option.c

Patch 8.0.0547
Problem: Extra line break in verbosefile when using ":echomsg". (Ingo

Karkat)
Solution: Don't call msg_start(). (closes #1618)
Files: src/eval.c, src/testdir/test_cmdline.vim

Patch 8.0.0548
Problem: Saving the redo buffer only works one time, resulting in the "."

command not working well for a function call inside another
function call. (Ingo Karkat)

Solution: Save the redo buffer at every user function call. (closes #1619)
Files: src/getchar.c, src/proto/getchar.pro, src/structs.h,

src/fileio.c, src/userfunc.c, src/testdir/test_functions.vim

Patch 8.0.0549
Problem: No test for the 8g8 command.
Solution: Add a test. (Dominique Pelle, closes #1615)
Files: src/testdir/test_normal.vim

Patch 8.0.0550
Problem: Some etags format tags file use 0x01, breaking the parsing.
Solution: Use 0x02 for TAG_SEP. (James McCoy, closes #1614)
Files: src/tag.c, src/testdir/test_taglist.vim

Patch 8.0.0551
Problem: The typeahead buffer is reallocated too often.
Solution: Re-use the existing buffer if possible.
Files: src/getchar.c

Patch 8.0.0552
Problem: Toupper and tolower don't work properly for Turkish when 'casemap'

is empty. (Bjorn Linse)
Solution: Check the 'casemap' options when deciding how to upper/lower case.
Files: src/charset.c, src/testdir/test_normal.vim

Patch 8.0.0553 (after 8.0.0552)
Problem: Toupper/tolower test with Turkish locale fails on Mac.
Solution: Skip the test on Mac.
Files: src/testdir/test_normal.vim

Patch 8.0.0554 (after 8.0.0552)
Problem: Toupper and tolower don't work properly for Turkish when 'casemap'

contains "keepascii". (Bjorn Linse)
Solution: When 'casemap' contains "keepascii" use ASCII toupper/tolower.
Files: src/charset.c, src/testdir/test_normal.vim

version8.txt — 3090

Patch 8.0.0555 (after 8.0.0552)
Problem: Toupper/tolower test fails on OSX without Darwin.
Solution: Skip that part of the test also for OSX. (Kazunobu Kuriyama)
Files: src/testdir/test_normal.vim

Patch 8.0.0556
Problem: Getting the window position fails if both the GUI and term

code is built in.
Solution: Return after getting the GUI window position. (Kazunobu Kuriyama)
Files: src/evalfunc.c

Patch 8.0.0557
Problem: GTK: using static gravities is not useful.
Solution: Remove setting static gravities. (Kazunobu Kuriyama)
Files: src/gui_gtk_f.c

Patch 8.0.0558
Problem: The :ownsyntax command is not tested.
Solution: Add a test. (Dominique Pelle, closes #1622)
Files: src/testdir/test_syntax.vim

Patch 8.0.0559
Problem: Setting 'ttytype' to xxx does not always fail as expected. (Marvin

Schmidt)
Solution: Catch both possible errors. (closes #1601)
Files: src/testdir/test_options.vim

Patch 8.0.0560
Problem: :windo allows for ! but it's not supported.
Solution: Disallow passing !. (Hirohito Higashi)
Files: src/ex_cmds.h

Patch 8.0.0561
Problem: Undefined behavior when using backslash after empty line.
Solution: Check for an empty line. (Dominique Pelle, closes #1631)
Files: src/misc2.c, src/testdir/test_vimscript.vim

Patch 8.0.0562
Problem: Not enough test coverage for syntax commands.
Solution: Add a few more tests. (Dominique Pelle, closes #1624)
Files: src/testdir/test_cmdline.vim, src/testdir/test_syntax.vim

Patch 8.0.0563
Problem: Crash when getting the window position in tmux. (Marvin Schmidt)
Solution: Add t_GP to the list of terminal options. (closes #1627)
Files: src/option.c

Patch 8.0.0564
Problem: Cannot detect Bazel BUILD files on some systems.
Solution: Check for BUILD after script checks. (Issue #1340)
Files: runtime/filetype.vim

Patch 8.0.0565
Problem: Using freed memory in :caddbuf after clearing quickfix list.

(Dominique Pelle)
Solution: Set qf_last to NULL.
Files: src/quickfix.c

Patch 8.0.0566

version8.txt — 3091

Problem: Setting 'nocompatible' for the tiny version moves the cursor.
Solution: Use another trick to skip commands when the +eval feature is

present. (Christian Brabandt, closes #1630)
Files: runtime/defaults.vim

Patch 8.0.0567
Problem: Call for requesting color and ambiwidth is too early. (Hirohito

Higashi)
Solution: Move the call down to below resetting "starting".
Files: src/main.c

Patch 8.0.0568
Problem: "1gd" may hang.
Solution: Don't get stuck in one position. (Christian Brabandt, closes #1643)
Files: src/testdir/test_goto.vim, src/normal.c

Patch 8.0.0569
Problem: Bracketed paste is still enabled when executing a shell command.

(Michael Smith)
Solution: Disable bracketed paste when going into cooked mode. (closes #1638)
Files: src/term.c

Patch 8.0.0570
Problem: Can't run make with several jobs, creating directories has a race

condition.
Solution: Use the MKDIR_P autoconf mechanism. (Eric N. Vander Weele,

closes #1639)
Files: src/configure.ac, src/auto/configure, src/Makefile,

src/config.mk.in, src/install-sh, src/mkinstalldirs, Filelist

Patch 8.0.0571
Problem: The cursor line number becomes negative when using :z^ in an empty

buffer. (neovim #6557)
Solution: Correct the line number. Also reset the column.
Files: src/testdir/test_ex_z.vim, src/ex_cmds.c

Patch 8.0.0572
Problem: Building the command table requires Perl.
Solution: Use a Vim script solution. (Dominique Pelle, closes #1641)
Files: src/Makefile, src/create_cmdidxs.pl, src/create_cmdidxs.vim,

src/ex_cmdidxs.h, src/ex_docmd.c, Filelist

Patch 8.0.0573
Problem: Running parallel make after distclean fails. (Manuel Ortega)
Solution: Instead of using targets "scratch config myself" use "reconfig".
Files: src/Makefile, src/config.mk.dist

Patch 8.0.0574
Problem: Get only one quickfix list after :caddbuf.
Solution: Reset qf_multiline. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0575
Problem: Using freed memory when resetting 'indentexpr' while evaluating

it. (Dominique Pelle)
Solution: Make a copy of 'indentexpr'.
Files: src/misc1.c, src/testdir/test_options.vim

Patch 8.0.0576 (after 8.0.0570 and 8.0.0573)
Problem: Can't build when configure chooses "install-sh". (Daniel Hahler)

version8.txt — 3092

Solution: Always use install-sh. Fix remaining use of mkinstalldirs.
(closes #1647)

Files: src/installman.sh, src/installml.sh, src/config.mk.in,
src/configure.ac, src/auto/configure, src/Makefile

Patch 8.0.0577 (after 8.0.0575)
Problem: Warning for uninitialized variable. (John Marriott)
Solution: Initialize "indent".
Files: src/misc1.c

Patch 8.0.0578
Problem: :simalt on MS-Windows does not work properly.
Solution: Put something in the typeahead buffer. (Christian Brabandt)
Files: src/gui_w32.c

Patch 8.0.0579
Problem: Duplicate test case for quickfix.
Solution: Remove the function. (Yegappan Lakshmanan)
Files: src/testdir/test_quickfix.vim

Patch 8.0.0580
Problem: Cannot set the valid flag with setqflist().
Solution: Add the "valid" argument. (Yegappan Lakshmanan, closes #1642)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0581
Problem: Moving folded text is sometimes not correct.
Solution: Bail out when "move_end" is zero. (Matthew Malcomson)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.0.0582
Problem: Illegal memory access with z= command. (Dominique Pelle)
Solution: Avoid case folded text to be longer than the original text. Use

MB_PTR2LEN() instead of MB_BYTE2LEN().
Files: src/spell.c, src/testdir/test_spell.vim

Patch 8.0.0583
Problem: Fold test hangs on MS-Windows.
Solution: Avoid overflow in compare.
Files: src/fold.c

Patch 8.0.0584
Problem: Memory leak when executing quickfix tests.
Solution: Free the list reference. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.0585
Problem: Test_options fails when run in the GUI.
Solution: Also check the 'imactivatekey' value when the GUI is not running.

Specify test values that work and that fail.
Files: src/option.c, src/testdir/gen_opt_test.vim

Patch 8.0.0586
Problem: No test for mapping timing out.
Solution: Add a test.
Files: src/testdir/test_mapping.vim

Patch 8.0.0587
Problem: Configure check for return value of tgetent is skipped.

version8.txt — 3093

Solution: Always perform the check. (Marvin Schmidt, closes #1664)
Files: src/configure.ac, src/auto/configure

Patch 8.0.0588
Problem: job_stop() often assumes the channel will be closed, while the job

may not actually be stopped. (Martin Gammelsæter)
Solution: Only assume the job stops on "kill". Don't send a signal if the

job has already ended. (closes #1632)
Files: src/channel.c

Patch 8.0.0589 (after 8.0.0578)
Problem: :simalt still does not work.
Solution: Use K_NOP instead of K_IGNORE. (Christian Brabandt)
Files: src/gui_w32.c

Patch 8.0.0590
Problem: Cannot add a context to locations.
Solution: Add the "context" entry in location entries. (Yegappan Lakshmanan,

closes #1012)
Files: src/eval.c, src/proto/quickfix.pro, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0591
Problem: Changes to eval functionality not documented.
Solution: Include all the changes.
Files: runtime/doc/eval.txt

Patch 8.0.0592
Problem: If a job writes to a buffer and the user is typing a command, the

screen isn't updated. When a message is displayed the changed
buffer may cause it to be cleared. (Ramel Eshed)

Solution: Update the screen and then the command line if the screen didn't
scroll. Avoid inserting screen lines, as it clears any message.
Update the status line when the buffer changed.

Files: src/channel.c, src/screen.c, src/ex_getln.c, src/globals.h,
src/vim.h, src/proto/ex_getln.pro, src/proto/screen.pro

Patch 8.0.0593
Problem: Duplication of code for adding a list or dict return value.
Solution: Add rettv_dict_set() and rettv_list_set(). (Yegappan Lakshmanan)
Files: src/dict.c, src/eval.c, src/evalfunc.c, src/if_perl.xs, src/list.c,

src/proto/dict.pro, src/proto/list.pro

Patch 8.0.0594 (after 8.0.0592)
Problem: Build failure when windows feature is missing.
Solution: Add #ifdef.
Files: src/screen.c

Patch 8.0.0595 (after 8.0.0590)
Problem: Coverity warning for not checking return value of dict_add().
Solution: Check the return value for FAIL.
Files: src/quickfix.c

Patch 8.0.0596
Problem: Crash when complete() is called after complete_add() in

'completefunc'. (Lifepillar)
Solution: Bail out if compl_pattern is NULL. (closes #1668)

Also avoid using freed memory.
Files: src/edit.c, src/testdir/test_popup.vim

version8.txt — 3094

Patch 8.0.0597
Problem: Off-by-one error in buffer size computation.
Solution: Use ">=" instead of ">". (LemonBoy, closes #1694)
Files: src/quickfix.c

Patch 8.0.0598
Problem: Building with gcc 7.1 yields new warnings.
Solution: Initialize result. (John Marriott)
Files: src/ex_docmd.c

Patch 8.0.0599
Problem: diff mode is insufficiently tested
Solution: Add more test cases. (Dominique Pelle, closes #1685)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.0.0600
Problem: test_recover fails on some systems.
Solution: Explicitly check if "/" is writable. (Ken Takata)
Files: src/testdir/test_recover.vim

Patch 8.0.0601
Problem: No test coverage for :spellrepall.
Solution: Add a test. (Dominique Pelle, closes #1717)
Files: src/testdir/test_spell.vim

Patch 8.0.0602
Problem: When gF fails to edit the file the cursor still moves to the found

line number.
Solution: Check the return value of do_ecmd(). (Michael Hwang)
Files: src/normal.c, src/testdir/test_gf.vim

Patch 8.0.0603 (after 8.0.0602)
Problem: gF test fails on MS-Windows.
Solution: Use @ instead of : before the line number
Files: src/testdir/test_gf.vim

Patch 8.0.0604 (after 8.0.0603)
Problem: gF test still fails on MS-Windows.
Solution: Use : before the line number and remove it from 'isfname'.
Files: src/testdir/test_gf.vim

Patch 8.0.0605
Problem: The buffer that quickfix caches for performance may become

invalid. (Daniel Hahler)
Solution: Reset qf_last_bufref in qf_init_ext(). (Daniel Hahler,

closes #1728, closes #1676)
Files: src/quickfix.c

Patch 8.0.0606
Problem: Cannot set the context for a specified quickfix list.
Solution: Use the list index instead of the current list. (Yegappan

Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.0607
Problem: When creating a bufref, then using :bwipe and :new it might get

the same memory and bufref_valid() returns true.
Solution: Add br_fnum to check the buffer number didn't change.
Files: src/structs.h, src/buffer.c, src/globals.h, src/if_py_both.h,

src/quickfix.c

version8.txt — 3095

Patch 8.0.0608
Problem: Cannot manipulate other than the current quickfix list.
Solution: Pass the list index to quickfix functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.0609
Problem: For some people the hint about quitting is not sufficient.
Solution: Put <Enter> separately. Also use ":qa!" to get out even when

there are changes.
Files: src/normal.c

Patch 8.0.0610
Problem: The screen is redrawn when t_BG is set and used to detect the

value for 'background'.
Solution: Don't redraw when the value of 'background' didn't change.
Files: src/term.c

Patch 8.0.0611
Problem: When t_u7 is sent a few characters in the second screen line are

overwritten and not redrawn later. (Rastislav Barlik)
Solution: Move redrawing the screen to after overwriting the characters.
Files: src/main.c, src/term.c

Patch 8.0.0612
Problem: Package directories are added to 'runtimepath' only after loading

non-package plugins.
Solution: Split off the code to add package directories to 'runtimepath'.

(Ingo Karkat, closes #1680)
Files: src/ex_cmds2.c, src/globals.h, src/main.c, src/proto/ex_cmds2.pro,

src/testdir/test_startup.vim

Patch 8.0.0613
Problem: The conf filetype detection is done before ftdetect scripts from

packages that are added later.
Solution: Add the FALLBACK argument to :setfiletype. (closes #1679,

closes #1693)
Files: src/ex_docmd.c, runtime/filetype.vim, src/Makefile,

src/testdir/test_filetype.vim, src/testdir/test_alot.vim

Patch 8.0.0614
Problem: float2nr() is not exactly right.
Solution: Make float2nr() more accurate. Turn test65 into a new style test.

(Hirohito Higashi, closes #1688)
Files: src/Makefile, src/evalfunc.c, src/testdir/Make_all.mak,

src/testdir/Make_vms.mms, src/testdir/test65.in,
src/testdir/test65.ok, src/testdir/test_float_func.vim,
src/testdir/test_vimscript.vim, src/macros.h

Patch 8.0.0615
Problem: Using % with :hardcopy wrongly escapes spaces. (Alexey Muranov)
Solution: Expand % differently. (Christian Brabandt, closes #1682)
Files: src/ex_docmd.c, src/testdir/test_hardcopy.vim

Patch 8.0.0616
Problem: When setting the cterm background with ":hi Normal" the value of

'background' may be set wrongly.
Solution: Check that the color is less than 16. Don't set 'background' when

it was set explicitly. (LemonBoy, closes #1710)

version8.txt — 3096

Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.0.0617 (after 8.0.0615)
Problem: Hardcopy test hangs on MS-Windows.
Solution: Check the postscript feature is supported.
Files: src/testdir/test_hardcopy.vim

Patch 8.0.0618
Problem: NFA regex engine handles [0-z] incorrectly.
Solution: Return at the right point. (James McCoy, closes #1703)
Files: src/regexp_nfa.c, src/testdir/test36.in, src/testdir/test36.ok

Patch 8.0.0619
Problem: In the GUI, when a timer uses feedkeys(), it still waits for an

event. (Raymond Ko)
Solution: Check tb_change_cnt in one more place.
Files: src/gui.c

Patch 8.0.0620
Problem: Since we only support GTK versions that have it, the check for

HAVE_GTK_MULTIHEAD is no longer needed.
Solution: Remove HAVE_GTK_MULTIHEAD. (Kazunobu Kuriyama)
Files: src/config.h.in, src/configure.ac, src/auto/configure,

src/gui_beval.c, src/gui_gtk_x11.c, src/mbyte.c

Patch 8.0.0621
Problem: The ":stag" command does not respect 'switchbuf'.
Solution: Check 'switchbuf' for tag commands that may open a new window.

(Ingo Karkat, closes #1681) Define macros for the return values
of getfile().

Files: src/tag.c, src/testdir/test_tagjump.vim, src/vim.h, src/buffer.c,
src/ex_cmds.c, src/search.c,

Patch 8.0.0622
Problem: Using a text object to select quoted text fails when 'selection'

is set to "exclusive". (Guraga)
Solution: Swap cursor and visual start position. (Christian Brabandt,

closes #1687)
Files: src/search.c, src/testdir/test_textobjects.vim

Patch 8.0.0623
Problem: The message "Invalid range" is used for multiple errors.
Solution: Add two more specific error messages. (Itchyny, Ken Hamada)
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test_regexp_utf8.vim

Patch 8.0.0624 (after 8.0.0623)
Problem: Warning for unused variable in tiny build. (Tony Mechelynck)
Solution: Add an #ifdef.
Files: src/regexp.c

Patch 8.0.0625
Problem: shellescape() always escapes a newline, which does not work with

some shells. (Harm te Hennepe)
Solution: Only escape a newline when the "special" argument is non-zero.

(Christian Brabandt, closes #1590)
Files: src/evalfunc.c, src/testdir/test_functions.vim

Patch 8.0.0626
Problem: In the GUI the cursor may flicker.
Solution: Check the cmd_silent flag before updating the cursor shape.

version8.txt — 3097

(Hirohito Higashi, closes #1637)
Files: src/getchar.c

Patch 8.0.0627
Problem: When 'wrapscan' is off "gn" does not select the whole pattern when

it's the last one in the text. (KeyboardFire)
Solution: Check if the search fails. (Christian Brabandt, closes #1683)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.0.0628 (after 8.0.0626)
Problem: Cursor disappears after silent mapping. (Ramel Eshed)
Solution: Do restore the cursor when it was changed, but don't change it in

the first place for a silent mapping.
Files: src/getchar.c

Patch 8.0.0629 (after 8.0.0611)
Problem: Checking for ambiguous width is not working. (Hirohito Higashi)
Solution: Reset "starting" earlier.
Files: src/main.c

Patch 8.0.0630
Problem: The :global command does not work recursively, which makes it

difficult to execute a command on a line where one pattern matches
and another does not match. (Miles Cranmer)

Solution: Allow for recursion if it is for only one line. (closes #1760)
Files: src/ex_cmds.c, src/testdir/test_global.vim, runtime/doc/repeat.txt

Patch 8.0.0631
Problem: Perl 5.26 also needs S_TOPMARK and S_POPMARK defined.
Solution: Define the functions when needed. (Jesin, closes #1748)
Files: src/if_perl.xs

Patch 8.0.0632
Problem: The quotestar test is still a bit flaky.
Solution: Kill any existing server to make the retry work. Wait for the

register to be filled.
Files: src/testdir/test_quotestar.vim

Patch 8.0.0633
Problem: The client-server test is still a bit flaky.
Solution: Wait a bit for the GUI to start. Check that the version number

can be obtained.
Files: src/testdir/test_clientserver.vim

Patch 8.0.0634
Problem: Cannot easily get to the last quickfix list.
Solution: Add "$" as a value for the "nr" argument of getqflist() and

setqflist(). (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0635
Problem: When 'ignorecase' is set script detection is inaccurate.
Solution: Enforce matching case for text. (closes #1753)
Files: runtime/scripts.vim

Patch 8.0.0636
Problem: When reading the undo file fails may use uninitialized data.
Solution: Always clear the buffer on failure.

version8.txt — 3098

Files: src/undo.c

Patch 8.0.0637
Problem: Crash when using some version of GTK 3.
Solution: Add #ifdefs around incrementing the menu index. (Kazunobu

Kuriyama)
Files: src/gui_gtk.c

Patch 8.0.0638
Problem: Cannot build with new MSVC version VS2017.
Solution: Change the compiler arguments. (Leonardo Valeri Manera,

closes #1731, closes #1747)
Files: src/GvimExt/Makefile, src/Make_mvc.mak

Patch 8.0.0639
Problem: The cursor position is set to the last position in a new commit

message.
Solution: Don't set the position if the filetype matches "commit".

(Christian Brabandt)
Files: runtime/defaults.vim

Patch 8.0.0640
Problem: Mismatch between help and actual message for ":syn conceal".
Solution: Change the message to match the help. (Ken Takata)
Files: src/syntax.c

Patch 8.0.0641
Problem: Cannot set a separate highlighting for the current line in the

quickfix window.
Solution: Add QuickFixLine. (anishsane, closes #1755)
Files: src/option.c, src/quickfix.c, src/screen.c, src/syntax.c,

src/vim.h, runtime/doc/options.txt, runtime/doc/quickfix.txt

Patch 8.0.0642
Problem: writefile() continues after detecting an error.
Solution: Bail out as soon as an error is detected. (suggestions by Nikolai

Pavlov, closes #1476)
Files: src/evalfunc.c, src/testdir/test_writefile.vim

Patch 8.0.0643
Problem: When 'hlsearch' is set and matching with the last search pattern

is very slow, Vim becomes unusable. Cannot quit search by
pressing CTRL-C.

Solution: When the search times out set a flag and don't try again. Check
for timeout and CTRL-C in NFA loop that adds states.

Files: src/screen.c, src/ex_cmds.c, src/quickfix.c, src/regexp.c,
src/proto/regexp.pro, src/regexp.h, src/search.c,
src/proto/search.pro, src/syntax.c, src/regexp_nfa.c, src/spell.c,
src/tag.c, src/gui.c, src/edit.c, src/evalfunc.c, src/ex_docmd.c,
src/ex_getln.c, src/normal.c

Patch 8.0.0644
Problem: There is no test for 'hlsearch' timing out.
Solution: Add a test.
Files: src/testdir/test_hlsearch.vim

Patch 8.0.0645
Problem: The new regexp engine does not give an error for using a back

reference where it is not allowed. (Dominique Pelle)
Solution: Check the back reference like the old engine. (closes #1774)

version8.txt — 3099

Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test_hlsearch.vim,
src/testdir/test_statusline.vim,
src/testdir/test_regexp_latin1.vim

Patch 8.0.0646
Problem: The hlsearch test fails on fast systems.
Solution: Make the search pattern slower. Fix that the old regexp engine

doesn't timeout properly.
Files: src/regexp.c, src/testdir/test_hlsearch.vim

Patch 8.0.0647
Problem: Syntax highlighting can cause a freeze.
Solution: Apply 'redrawtime' to syntax highlighting, per window.
Files: src/structs.h, src/screen.c, src/syntax.c, src/normal.c,

src/regexp.c, src/proto/syntax.pro, src/testdir/test_syntax.vim,
runtime/doc/options.txt

Patch 8.0.0648
Problem: Possible use of NULL pointer if buflist_new() returns NULL.

(Coverity)
Solution: Check for NULL pointer in set_bufref().
Files: src/buffer.c

Patch 8.0.0649
Problem: When opening a help file the filetype is set several times.
Solution: When setting the filetype to the same value from a modeline, don't

trigger FileType autocommands. Don't set the filetype to "help"
when it's already set correctly.

Files: src/ex_cmds.c, src/option.c, runtime/filetype.vim

Patch 8.0.0650
Problem: For extra help files the filetype is set more than once.
Solution: In *.txt files check that there is no help file modline.
Files: runtime/filetype.vim

Patch 8.0.0651 (after 8.0.0649)
Problem: Build failure without the auto command feature.
Solution: Add #ifdef. (closes #1782)
Files: src/ex_cmds.c

Patch 8.0.0652
Problem: Unicode information is outdated.
Solution: Update to Unicode 10. (Christian Brabandt)
Files: runtime/tools/unicode.vim, src/mbyte.c

Patch 8.0.0653
Problem: The default highlight for QuickFixLine does not work for several

color schemes. (Manas Thakur)
Solution: Make the default use the old color. (closes #1780)
Files: src/syntax.c

Patch 8.0.0654
Problem: Text found after :endfunction is silently ignored.
Solution: Give a warning if 'verbose' is set. When | or \n are used,

execute the text as a command.
Files: src/testdir/test_vimscript.vim, src/userfunc.c,

runtime/doc/eval.txt

Patch 8.0.0655
Problem: Not easy to make sure a function does not exist.

version8.txt — 3100

Solution: Add ! as an optional argument to :delfunc.
Files: src/userfunc.c, src/ex_cmds.h, src/testdir/test_vimscript.vim

Patch 8.0.0656
Problem: Cannot use ! after some user commands.
Solution: Properly check for existing command. (Hirohito Higashi)
Files: src/ex_docmd.c, src/testdir/test_vimscript.vim

Patch 8.0.0657
Problem: Cannot get and set quickfix list items.
Solution: Add the "items" argument to getqflist() and setqflist(). (Yegappan

Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0658
Problem: Spell test is old style.
Solution: Turn the spell test into a new style test (pschuh, closes #1778)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test58.in, src/testdir/test58.ok,
src/testdir/test_spell.vim

Patch 8.0.0659
Problem: No test for conceal mode.
Solution: Add a conceal mode test. (Dominique Pelle, closes #1783)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_syntax.vim

Patch 8.0.0660
Problem: Silent install on MS-Windows does show a dialog.
Solution: Add /SD to the default choice. (allburov, closes #1772)
Files: nsis/gvim.nsi

Patch 8.0.0661
Problem: Recognizing urxvt mouse codes does not work well.
Solution: Recognize "Esc[*M" and "Esc[*m". (Maurice Bos, closes #1486)
Files: src/keymap.h, src/misc2.c, src/os_unix.c, src/term.c

Patch 8.0.0662 (after 8.0.0659)
Problem: Stray FIXME for fixed problem.
Solution: Remove the comment. (Dominique Pelle)
Files: src/testdir/test_syntax.vim

Patch 8.0.0663
Problem: Giving an error message only when 'verbose' set is unexpected.
Solution: Give a warning message instead.
Files: src/message.c, src/proto/message.pro, src/userfunc.c,

src/testdir/test_vimscript.vim, runtime/doc/eval.txt

Patch 8.0.0664 (after 8.0.0661)
Problem: Mouse does not work in tmux. (lilydjwg)
Solution: Add flag for SGR release being present.
Files: src/term.c

Patch 8.0.0665 (after 8.0.0661)
Problem: Warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize it.
Files: src/term.c

Patch 8.0.0666
Problem: Dead for loop. (Coverity)

version8.txt — 3101

Solution: Remove the for loop.
Files: src/term.c

Patch 8.0.0667
Problem: Memory access error when command follows :endfunction. (Nikolai

Pavlov)
Solution: Make memory handling in :function straightforward. (closes #1793)
Files: src/userfunc.c, src/testdir/test_vimscript.vim

Patch 8.0.0668 (after 8.0.0660)
Problem: Nsis installer script does not work. (Christian Brabandt)
Solution: Fix the syntax of /SD.
Files: nsis/gvim.nsi

Patch 8.0.0669
Problem: In Insert mode, CTRL-N at start of the buffer does not work

correctly. (zuloloxi)
Solution: Wrap around the start of the buffer. (Christian Brabandt)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.0670
Problem: Can't use input() in a timer callback. (Cosmin Popescu)
Solution: Reset vgetc_busy and set timer_busy. (Ozaki Kiichi, closes #1790,

closes #1129)
Files: src/evalfunc.c, src/ex_cmds2.c, src/globals.h,

src/testdir/test_timers.vim

Patch 8.0.0671
Problem: When a function invoked from a timer calls confirm() and the user

types CTRL-C then Vim hangs.
Solution: Reset typebuf_was_filled. (Ozaki Kiichi, closes #1791)
Files: src/getchar.c

Patch 8.0.0672
Problem: Third item of synconcealed() changes too often. (Dominique Pelle)
Solution: Reset the sequence number at the start of each line.
Files: src/syntax.c, src/testdir/test_syntax.vim, runtime/doc/eval.txt

Patch 8.0.0673 (after 8.0.0673)
Problem: Build failure without conceal feature.
Solution: Add #ifdef.
Files: src/syntax.c

Patch 8.0.0674 (after 8.0.0670)
Problem: Cannot build with eval but without timers.
Solution: Add #ifdef (John Marriott)
Files: src/evalfunc.c

Patch 8.0.0675
Problem: 'colorcolumn' has a higher priority than 'hlsearch', it should be

the other way around. (Nazri Ramliy)
Solution: Change the priorities. (LemonBoy, closes #1794)
Files: src/screen.c, src/testdir/test_listlbr_utf8.vim

Patch 8.0.0676
Problem: Crash when closing the quickfix window in a FileType autocommand

that triggers when the quickfix window is opened.
Solution: Save the new value before triggering the OptionSet autocommand.

Add the "starting" flag to test_override() to make the text work.
Files: src/evalfunc.c, src/option.c, runtime/doc/eval.txt

version8.txt — 3102

Patch 8.0.0677
Problem: Setting 'filetype' internally may cause the current buffer and

window to change unexpectedly.
Solution: Set curbuf_lock. (closes #1734)
Files: src/quickfix.c, src/ex_cmds.c, src/ex_getln.c,

src/testdir/test_quickfix.vim

Patch 8.0.0678
Problem: When 'equalalways' is set and closing a window in a separate

frame, not all window sizes are adjusted. (Glacambre)
Solution: Resize all windows if the new current window is not in the same

frame as the closed window. (closes #1707)
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.0.0679 (after 8.0.0678)
Problem: Using freed memory.
Solution: Get the parent frame pointer earlier.
Files: src/window.c

Patch 8.0.0680 (after 8.0.0612)
Problem: Plugins in start packages are sourced twice. (mseplowitz)
Solution: Use the unmodified runtime path when loading plugins (test by Ingo

Karkat, closes #1801)
Files: src/testdir/test_startup.vim, src/main.c, src/ex_cmds2.c,

src/proto/ex_cmds2.pro

Patch 8.0.0681
Problem: Unnamed register only contains the last deleted text when

appending deleted text to a register. (Wolfgang Jeltsch)
Solution: Only set y_previous when not using y_append. (Christian Brabandt)
Files: src/ops.c, src/testdir/test_put.vim

Patch 8.0.0682
Problem: No test for synIDtrans().
Solution: Add a test. (Dominique Pelle, closes #1796)
Files: src/testdir/test_syntax.vim

Patch 8.0.0683
Problem: When using a visual bell there is no delay, causing the flash to

be very short, possibly unnoticeable. Also, the flash and the
beep can lockup the UI when repeated often.

Solution: Do the delay in Vim or flush the output before the delay. Limit the
bell to once per half a second. (Ozaki Kiichi, closes #1789)

Files: src/misc1.c, src/proto/term.pro, src/term.c

Patch 8.0.0684
Problem: Old style tests are not nice.
Solution: Turn two tests into new style. (pschuh, closes #1797)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test82.in, src/testdir/test82.ok,
src/testdir/test90.in, src/testdir/test90.ok,
src/testdir/test_sha256.vim, src/testdir/test_utf8_comparisons.vim

Patch 8.0.0685
Problem: When making backups is disabled and conversion with iconv fails

the written file is truncated. (Luo Chen)
Solution: First try converting the file and write the file only when it did

not fail. (partly by Christian Brabandt)
Files: src/fileio.c, src/testdir/test_writefile.vim

version8.txt — 3103

Patch 8.0.0686
Problem: When typing CTRL-L in a window that's not the first one, another

redraw will happen later. (Christian Brabandt)
Solution: Reset must_redraw after calling screenclear().
Files: src/screen.c

Patch 8.0.0687
Problem: Minor issues related to quickfix.
Solution: Set the proper return status for all cases in setqflist() and at

test cases for this. Move the "adding" flag outside of
FEAT_WINDOWS. Minor update to the setqflist() help text. (Yegappan
Lakshmanan)

Files: runtime/doc/eval.txt, src/quickfix.c,
src/testdir/test_quickfix.vim

Patch 8.0.0688
Problem: Cannot resize the window in a FileType autocommand. (Ingo Karkat)
Solution: Add the CMDWIN flag to :resize. (test by Ingo Karkat,

closes #1804)
Files: src/ex_cmds.h, src/testdir/test_quickfix.vim

Patch 8.0.0689
Problem: The ~ character is not escaped when adding to the search pattern

with CTRL-L. (Ramel Eshed)
Solution: Escape the character. (Christian Brabandt)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.0.0690
Problem: Compiler warning on non-Unix system.
Solution: Add #ifdef. (John Marriott)
Files: src/term.c

Patch 8.0.0691
Problem: Compiler warning without the linebreak feature.
Solution: Add #ifdef. (John Marriott)
Files: src/edit.c

Patch 8.0.0692
Problem: Using CTRL-G with 'incsearch' and ? goes in the wrong direction.

(Ramel Eshed)
Solution: Adjust search_start. (Christian Brabandt)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.0.0693
Problem: No terminal emulator support. Cannot properly run commands in the

GUI. Cannot run a job interactively with an ssh connection.
Solution: Very early implementation of the :terminal command. Includes

libvterm converted to ANSI C. Many parts still missing.
Files: src/feature.h, src/Makefile, src/configure.ac, src/auto/configure,

src/config.mk.in, src/config.h.in, src/terminal.c, src/structs.h,
src/ex_cmdidxs.h, src/ex_docmd.c, src/option.c, src/option.h,
src/evalfunc.c, src/proto/terminal.pro, src/proto.h,
runtime/doc/terminal.txt, runtime/doc/Makefile, Filelist,
src/libvterm/.bzrignore, src/libvterm/.gitignore,
src/libvterm/LICENSE, src/libvterm/README, src/libvterm/Makefile,
src/libvterm/tbl2inc_c.pl, src/libvterm/vterm.pc.in,
src/libvterm/bin/unterm.c, src/libvterm/bin/vterm-ctrl.c,
src/libvterm/bin/vterm-dump.c, src/libvterm/doc/URLs,
src/libvterm/doc/seqs.txt, src/libvterm/include/vterm.h,

version8.txt — 3104

src/libvterm/include/vterm_keycodes.h,
src/libvterm/src/encoding.c,
src/libvterm/src/encoding/DECdrawing.inc,
src/libvterm/src/encoding/DECdrawing.tbl,
src/libvterm/src/encoding/uk.inc,
src/libvterm/src/encoding/uk.tbl, src/libvterm/src/keyboard.c,
src/libvterm/src/mouse.c, src/libvterm/src/parser.c,
src/libvterm/src/pen.c, src/libvterm/src/rect.h,
src/libvterm/src/screen.c, src/libvterm/src/state.c,
src/libvterm/src/unicode.c, src/libvterm/src/utf8.h,
src/libvterm/src/vterm.c, src/libvterm/src/vterm_internal.h,
src/libvterm/t/02parser.test, src/libvterm/t/03encoding_utf8.test,
src/libvterm/t/10state_putglyph.test,
src/libvterm/t/11state_movecursor.test,
src/libvterm/t/12state_scroll.test,
src/libvterm/t/13state_edit.test,
src/libvterm/t/14state_encoding.test,
src/libvterm/t/15state_mode.test,
src/libvterm/t/16state_resize.test,
src/libvterm/t/17state_mouse.test,
src/libvterm/t/18state_termprops.test,
src/libvterm/t/20state_wrapping.test,
src/libvterm/t/21state_tabstops.test,
src/libvterm/t/22state_save.test,
src/libvterm/t/25state_input.test,
src/libvterm/t/26state_query.test,
src/libvterm/t/27state_reset.test,
src/libvterm/t/28state_dbl_wh.test,
src/libvterm/t/29state_fallback.test, src/libvterm/t/30pen.test,
src/libvterm/t/40screen_ascii.test,
src/libvterm/t/41screen_unicode.test,
src/libvterm/t/42screen_damage.test,
src/libvterm/t/43screen_resize.test,
src/libvterm/t/44screen_pen.test,
src/libvterm/t/45screen_protect.test,
src/libvterm/t/46screen_extent.test,
src/libvterm/t/47screen_dbl_wh.test,
src/libvterm/t/48screen_termprops.test,
src/libvterm/t/90vttest_01-movement-1.test,
src/libvterm/t/90vttest_01-movement-2.test,
src/libvterm/t/90vttest_01-movement-3.test,
src/libvterm/t/90vttest_01-movement-4.test,
src/libvterm/t/90vttest_02-screen-1.test,
src/libvterm/t/90vttest_02-screen-2.test,
src/libvterm/t/90vttest_02-screen-3.test,
src/libvterm/t/90vttest_02-screen-4.test,
src/libvterm/t/92lp1640917.test, src/libvterm/t/harness.c,
src/libvterm/t/run-test.pl

Patch 8.0.0694
Problem: Building in shadow directory does not work. Running Vim fails.
Solution: Add the new libvterm directory. Add missing change in command

list.
Files: src/Makefile, src/ex_cmds.h

Patch 8.0.0695
Problem: Missing dependencies breaks parallel make.
Solution: Add dependencies for terminal.o.
Files: src/Makefile

version8.txt — 3105

Patch 8.0.0696
Problem: The .inc files are missing in git. (Nazri Ramliy)
Solution: Remove the .inc line from .gitignore.
Files: src/libvterm/.gitignore

Patch 8.0.0697
Problem: Recorded key sequences may become invalid.
Solution: Add back KE_SNIFF removed in 7.4.1433. Use fixed numbers for the

key_extra enum.
Files: src/keymap.h

Patch 8.0.0698
Problem: When a timer uses ":pyeval" or another Python command and it

happens to be triggered while exiting a Crash may happen.
(Ricky Zhou)

Solution: Avoid running a Python command after python_end() was called.
Do not trigger timers while exiting. (closes #1824)

Files: src/if_python.c, src/if_python3.c, src/ex_cmds2.c

Patch 8.0.0699
Problem: Checksum tests are not actually run.
Solution: Add the tests to the list. (Dominique Pelle, closes #1819)
Files: src/testdir/test_alot.vim, src/testdir/test_alot_utf8.vim

Patch 8.0.0700
Problem: Segfault with QuitPre autocommand closes the window. (Marek)
Solution: Check that the window pointer is still valid. (Christian Brabandt,

closes #1817)
Files: src/testdir/test_tabpage.vim, src/ex_docmd.c

Patch 8.0.0701
Problem: System test failing when using X11 forwarding.
Solution: Set $XAUTHORITY before changing $HOME. (closes #1812)

Also use a better check for the exit value.
Files: src/testdir/setup.vim, src/testdir/test_system.vim

Patch 8.0.0702
Problem: An error in a timer can make Vim unusable.
Solution: Don't set the error flag or exception from a timer. Stop a timer

if it causes an error 3 out of 3 times. Discard an exception
caused inside a timer.

Files: src/ex_cmds2.c, src/structs.h, src/testdir/test_timers.vim,
runtime/doc/eval.txt

Patch 8.0.0703
Problem: Illegal memory access with empty :doau command.
Solution: Check the event for being out of range. (James McCoy)
Files: src/testdir/test_autocmd.vim, src/fileio.c

Patch 8.0.0704
Problem: Problems with autocommands when opening help.
Solution: Avoid using invalid "varp" value. Allow using :wincmd if buffer

is locked. (closes #1806, closes #1804)
Files: src/option.c, src/ex_cmds.h

Patch 8.0.0705 (after 8.0.0702)
Problem: Crash when there is an error in a timer callback. (Aron Griffis,

Ozaki Kiichi)
Solution: Check did_throw before discarding an exception. NULLify

current_exception when no longer valid.

version8.txt — 3106

Files: src/ex_eval.c, src/ex_cmds2.c

Patch 8.0.0706
Problem: Crash when cancelling the cmdline window in Ex mode. (James McCoy)
Solution: Do not set cmdbuff to NULL, make it empty.
Files: src/ex_getln.c

Patch 8.0.0707
Problem: Freeing wrong memory when manipulating buffers in autocommands.

(James McCoy)
Solution: Also set the w_s pointer if w_buffer was NULL.
Files: src/ex_cmds.c

Patch 8.0.0708
Problem: Some tests are old style.
Solution: Change a few tests from old style to new style. (pschuh,

closes #1813)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_ming.mak,

src/testdir/Make_vms.mms, src/testdir/main.aap,
src/testdir/test23.in, src/testdir/test23.ok,
src/testdir/test24.in, src/testdir/test24.ok,
src/testdir/test26.in, src/testdir/test26.ok,
src/testdir/test67.in, src/testdir/test67.ok,
src/testdir/test75.in, src/testdir/test75.ok,
src/testdir/test97.in, src/testdir/test97.ok,
src/testdir/test_comparators.in, src/testdir/test_comparators.ok,
src/testdir/test_comparators.vim,
src/testdir/test_escaped_glob.vim,
src/testdir/test_exec_while_if.vim,
src/testdir/test_exists_autocmd.vim, src/testdir/test_getcwd.in,
src/testdir/test_getcwd.ok, src/testdir/test_getcwd.vim,
src/testdir/test_maparg.vim, src/testdir/test_plus_arg_edit.vim,
src/testdir/test_regex_char_classes.vim

Patch 8.0.0709
Problem: Libvterm cannot use vsnprintf(), it does not exist in C90.
Solution: Use vim_vsnprintf() instead.
Files: src/message.c, src/Makefile, src/proto.h, src/evalfunc.c,

src/netbeans.c, src/libvterm/src/vterm.c

Patch 8.0.0710
Problem: A job that writes to a buffer clears command line completion.

(Ramel Eshed)
Solution: Do not redraw while showing the completion menu.
Files: src/screen.c

Patch 8.0.0711 (after 8.0.0710)
Problem: Cannot build without the wildmenu feature.
Solution: Add #ifdef
Files: src/screen.c

Patch 8.0.0712
Problem: The terminal implementation is incomplete.
Solution: Add the 'termkey' option.
Files: src/option.c, src/option.h, src/structs.h

Patch 8.0.0713 (after 8.0.0712)
Problem: 'termkey' option not fully implemented.
Solution: Add initialisation.
Files: src/option.c

version8.txt — 3107

Patch 8.0.0714
Problem: When a timer causes a command line redraw the " that is displayed

for CTRL-R goes missing.
Solution: Remember an extra character to display.
Files: src/ex_getln.c

Patch 8.0.0715
Problem: Writing to the wrong buffer if the buffer that a channel writes to

was closed.
Solution: Do not write to a buffer that was unloaded.
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel_write.py

Patch 8.0.0716
Problem: Not easy to start Vim cleanly without changing the viminfo file.

Not possible to know whether the -i command line flag was used.
Solution: Add the --clean command line argument. Add the 'viminfofile'

option. Add "-u DEFAULTS".
Files: src/main.c, runtime/doc/starting.txt, src/option.c, src/option.h,

src/ex_cmds.c, src/globals.h, runtime/doc/options.txt

Patch 8.0.0717
Problem: Terminal feature not included in :version output.
Solution: Add +terminal or -terminal.
Files: src/version.c, src/terminal.c

Patch 8.0.0718
Problem: Output of job in terminal is not displayed.
Solution: Connect the job output to the terminal.
Files: src/channel.c, src/proto/channel.pro, src/terminal.c,

src/proto/terminal.pro, src/channel.c, src/proto/channel.pro,
src/evalfunc.c, src/screen.c, src/proto/screen.pro

Patch 8.0.0719
Problem: Build failure without +terminal feature.
Solution: Add #ifdefs.
Files: src/screen.c, src/channel.c

Patch 8.0.0720
Problem: Unfinished mapping not displayed when running timer.
Solution: Also use the extra_char while waiting for a mapping and digraph.

(closes #1844)
Files: src/ex_getln.c

Patch 8.0.0721
Problem: :argedit can only have one argument.
Solution: Allow for multiple arguments. (Christian Brabandt)
Files: runtime/doc/editing.txt, src/ex_cmds.h, src/ex_cmds2.c,

src/testdir/test_arglist.vim

Patch 8.0.0722
Problem: Screen is messed by timer up at inputlist() prompt.
Solution: Set state to ASKMORE. (closes #1843)
Files: src/misc1.c

Patch 8.0.0723 (after 8.0.0721)
Problem: Arglist test fails if file name case is ignored.
Solution: Wipe existing buffers, check for fname_case property.
Files: src/testdir/test_arglist.vim

version8.txt — 3108

Patch 8.0.0724
Problem: The message for yanking doesn't indicate the register.
Solution: Show the register name in the "N lines yanked" message. (LemonBoy,

closes #1803, closes #1809)
Files: src/ops.c, src/Makefile, src/testdir/test_registers.vim,

src/testdir/Make_all.mak

Patch 8.0.0725
Problem: A terminal window does not handle keyboard input.
Solution: Add terminal_loop(). ":term bash -i" sort of works now.
Files: src/main.c, src/terminal.c, src/proto/terminal.pro, src/normal.c

Patch 8.0.0726
Problem: Translations cleanup script is too conservative.
Solution: Also delete untranslated messages.
Files: src/po/cleanup.vim

Patch 8.0.0727
Problem: Message about what register to yank into is not translated.

(LemonBoy)
Solution: Add _().
Files: src/ops.c

Patch 8.0.0728
Problem: The terminal structure is never freed.
Solution: Free the structure and unreference what it contains.
Files: src/terminal.c, src/buffer.c, src/proto/terminal.pro,

src/channel.c, src/proto/channel.pro, src/evalfunc.c

Patch 8.0.0729
Problem: The help for the terminal configure option is wrong.
Solution: Change "Disable" to "Enable". (E Kawashima, closes #1849)

Improve alignment.
Files: src/configure.ac, src/auto/configure

Patch 8.0.0730
Problem: Terminal feature only supports Unix-like systems.
Solution: Prepare for adding an MS-Windows implementation.
Files: src/terminal.c

Patch 8.0.0731
Problem: Cannot build the terminal feature on MS-Windows.
Solution: Add the Makefile changes. (Yasuhiro Matsumoto, closes #1851)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.0.0732
Problem: When updating a buffer for a callback the modeless selection is

lost.
Solution: Do not insert or delete screen lines when redrawing for a callback

and there is a modeless selection.
Files: src/screen.c

Patch 8.0.0733
Problem: Can only add entries to one list in the quickfix stack.
Solution: Move state variables from qf_list_T to qf_list_T. (Yegappan

Lakshmanan)
Files: src/quickfix.c

Patch 8.0.0734

version8.txt — 3109

Problem: The script to check translations can be improved.
Solution: Restore the view when no errors are found. Check for matching

line break at the end of the message. (Christian Brabandt)
Files: src/po/check.vim

Patch 8.0.0735
Problem: There is no way to notice that the quickfix window contents has

changed.
Solution: Increment b:changedtick when updating the quickfix window.

(Yegappan Lakshmanan)
Files: runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0736
Problem: The OptionSet autocommand event is not triggered when entering

diff mode.
Solution: use set_option_value() instead of setting the option directly.

Change the tests from old to new style. (Christian Brabandt)
Files: src/diff.c, src/testdir/Make_all.mak, src/Makefile,

src/testdir/test_autocmd.vim, src/testdir/test_autocmd_option.in,
src/testdir/test_autocmd_option.ok

Patch 8.0.0737
Problem: Crash when X11 selection is very big.
Solution: Use static items instead of allocating them. Add callbacks.

(Ozaki Kiichi)
Files: src/testdir/shared.vim, src/testdir/test_quotestar.vim,

src/ui.c

Patch 8.0.0738
Problem: Cannot use the mouse to resize window while the focus is in a

terminal window.
Solution: Recognize nice mouse events in the terminal window. A few more

fixes for the terminal window.
Files: src/terminal.c

Patch 8.0.0739
Problem: Terminal resizing doesn't work well.
Solution: Resize the terminal to the Vim window and the other way around.

Avoid mapping typed keys. Set the environment properly.
Files: src/terminal.c, src/os_unix.c, src/structs.h

Patch 8.0.0740
Problem: Cannot resize a terminal window by the command running in it.
Solution: Add support for the window size escape sequence. Make BS work.
Files: src/terminal.c, src/libvterm/src/state.c

Patch 8.0.0741
Problem: Cannot build with HPUX.
Solution: Rename envbuf_TERM to envbuf_Term. (John Marriott)
Files: src/os_unix.c

Patch 8.0.0742
Problem: Terminal feature does not work on MS-Windows.
Solution: Use libvterm and libwinpty on MS-Windows. (Yasuhiro Matsumoto)
Files: src/INSTALLpc.txt, src/Make_cyg_ming.mak, src/channel.c,

src/proto/channel.pro, src/terminal.c

Patch 8.0.0743
Problem: The 'termsize' option can be set to an invalid value.

version8.txt — 3110

Solution: Check the 'termsize' option to be valid.
Files: src/option.c, src/testdir/gen_opt_test.vim

Patch 8.0.0744
Problem: A terminal window uses pipes instead of a pty.
Solution: Add pty support.
Files: src/structs.h, src/os_unix.c, src/terminal.c, src/channel.c,

src/proto/os_unix.pro, src/os_win32.c, src/proto/os_win32.pro

Patch 8.0.0745
Problem: multibyte characters in a terminal window are not displayed

properly.
Solution: Set the unused screen characters. (Yasuhiro Matsumoto, closes

#1857)
Files: src/terminal.c

Patch 8.0.0746
Problem: When :term fails the job is not properly cleaned up.
Solution: Free the terminal. Handle a job that failed to start. (closes

#1858)
Files: src/os_unix.c, src/channel.c, src/terminal.c

Patch 8.0.0747
Problem: :terminal without an argument doesn't work.
Solution: Use the 'shell' option. (Yasuhiro Matsumoto, closes #1860)
Files: src/terminal.c

Patch 8.0.0748
Problem: When running Vim in a terminal window it does not detect the right

number of colors available.
Solution: Detect the version string that libvterm returns. Pass the number

of colors in $COLORS.
Files: src/term.c, src/os_unix.c

Patch 8.0.0749
Problem: Some unicode digraphs are hard to remember.
Solution: Add alternatives with a backtick. (Chris Harding, closes #1861)
Files: src/digraph.c

Patch 8.0.0750
Problem: OpenPTY missing in non-GUI build.
Solution: Always include pty.c, add an #ifdef to skip over the contents.
Files: src/pty.c, src/Makefile

Patch 8.0.0751 (after 8.0.0750)
Problem: OpenPTY missing with some combination of features. (Kazunobu

Kuriyama)
Solution: Adjust #ifdef. Also include pty.pro when needed.
Files: src/pty.c, src/misc2.c, src/proto.h

Patch 8.0.0752
Problem: Build fails on MS-Windows.
Solution: Change #ifdef for set_color_count().
Files: src/term.c

Patch 8.0.0753
Problem: A job running in a terminal does not get notified of changes in

the terminal size.
Solution: Use ioctl() and SIGWINCH to report the terminal size.
Files: src/terminal.c, src/os_unix.c, src/proto/os_unix.pro

version8.txt — 3111

Patch 8.0.0754
Problem: Terminal window does not support colors.
Solution: Lookup the color attribute.
Files: src/terminal.c, src/syntax.c, src/proto/syntax.pro

Patch 8.0.0755
Problem: Terminal window does not have colors in the GUI.
Solution: Lookup the GUI color.
Files: src/terminal.c, src/syntax.c, src/proto/syntax.pro, src/term.c,

src/proto/term.pro, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro,
src/gui_x11.c, src/proto/gui_x11.pro, src/gui_mac.c,
src/proto/gui_mac.pro, src/gui_photon.c, src/proto/gui_photon.pro,
src/gui_w32.c, src/proto/gui_w32.pro,

Patch 8.0.0756
Problem: Cannot build libvterm with MSVC.
Solution: Add an MSVC Makefile to libvterm. (Yasuhiro Matsumoto, closes

#1865)
Files: src/INSTALLpc.txt, src/Make_mvc.mak, src/libvterm/Makefile.msc

Patch 8.0.0757
Problem: Libvterm MSVC Makefile not included in the distribution.
Solution: Add the file to the list.
Files: Filelist

Patch 8.0.0758
Problem: Possible crash when using a terminal window.
Solution: Check for NULL pointers. (Yasuhiro Matsumoto, closes #1864)
Files: src/terminal.c

Patch 8.0.0759
Problem: MS-Windows: terminal does not adjust size to the Vim window size.
Solution: Add a call to winpty_set_size(). (Yasuhiro Matsumoto, closes #1863)
Files: src/terminal.c

Patch 8.0.0760
Problem: Terminal window colors wrong with 'termguicolors'.
Solution: Add 'termguicolors' support.
Files: src/terminal.c, src/syntax.c, src/proto/syntax.pro

Patch 8.0.0761
Problem: Options of a buffer for a terminal window are not set properly.
Solution: Add "terminal" value for 'buftype'. Make 'buftype' and

'bufhidden' not depend on the quickfix feature.
Also set the buffer name and show "running" or "finished" in the
window title.

Files: src/option.c, src/terminal.c, src/proto/terminal.pro,
runtime/doc/options.txt, src/quickfix.c, src/proto/quickfix.pro,
src/structs.h, src/buffer.c, src/ex_docmd.c, src/fileio.c,
src/channel.c

Patch 8.0.0762
Problem: ml_get error with :psearch in buffer without a name. (Dominique

Pelle)
Solution: Use the buffer number instead of the file name. Check the cursor

position.
Files: src/search.c, src/testdir/test_preview.vim, src/Makefile,

src/testdir/Make_all.mak

version8.txt — 3112

Patch 8.0.0763
Problem: Libvterm can be improved.
Solution: Various small improvements, more comments.
Files: src/libvterm/README, src/libvterm/include/vterm.h,

src/libvterm/include/vterm_keycodes.h,
src/libvterm/src/keyboard.c, src/libvterm/src/parser.c,
src/libvterm/src/screen.c, src/libvterm/src/state.c

Patch 8.0.0764
Problem: 'termkey' does not work yet.
Solution: Implement 'termkey'.
Files: src/terminal.c, src/option.c, src/proto/option.pro

Patch 8.0.0765
Problem: Build fails with tiny features.
Solution: Adjust #ifdef. (John Marriott)
Files: src/option.c, src/option.h

Patch 8.0.0766
Problem: Option test fails with +terminal feature.
Solution: Fix using the right option when checking the value.
Files: src/option.c

Patch 8.0.0767
Problem: Build failure with Athena and Motif.
Solution: Move local variable declarations. (Kazunobu Kuriyama)
Files: src/gui_x11.c

Patch 8.0.0768
Problem: Terminal window status shows "[Scratch]".
Solution: Show "[Terminal]" when no title was set. (Yasuhiro Matsumoto)

Store the terminal title that vterm sends and use it. Update the
special buffer name. (closes #1869)

Files: src/terminal.c, src/proto/terminal.pro, src/buffer.c

Patch 8.0.0769
Problem: Build problems with terminal on MS-Windows using MSVC.
Solution: Remove stdbool.h dependency. Only use ScreenLinesUC when it was

allocated. Fix typos. (Ken Takata)
Files: src/libvterm/bin/vterm-ctrl.c, runtime/doc/terminal.txt,

src/INSTALLpc.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/libvterm/Makefile.msc, src/terminal.c

Patch 8.0.0770
Problem: Compiler warning for missing field initializer.
Solution: Add two more values. (Yegappan Lakshmanan)
Files: src/libvterm/src/encoding.c

Patch 8.0.0771
Problem: Cursor in a terminal window not always updated in the GUI.
Solution: Call gui_update_cursor(). (Yasuhiro Matsumoto, closes #1868)
Files: src/terminal.c

Patch 8.0.0772
Problem: Other stdbool.h dependencies in libvterm.
Solution: Remove the dependency and use TRUE/FALSE/int. (Ken Takata)
Files: src/libvterm/include/vterm.h, src/libvterm/src/mouse.c,

src/libvterm/src/pen.c, src/libvterm/t/harness.c,
src/libvterm/bin/unterm.c

version8.txt — 3113

Patch 8.0.0773
Problem: Mixing 32 and 64 bit libvterm builds fails.
Solution: Use OUTDIR. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/libvterm/Makefile.msc

Patch 8.0.0774
Problem: Build failure without the multibyte feature on HPUX.
Solution: Move #ifdefs. (John Marriott)
Files: src/term.c

Patch 8.0.0775
Problem: In a terminal the cursor is updated too often.
Solution: Only flush when needed. (Yasuhiro Matsumoto). Remember whether the

cursor is visible. (closes #1873)
Files: src/terminal.c

Patch 8.0.0776
Problem: Function prototypes missing without the quickfix feature. (Tony

Mechelynck)
Solution: Move non-quickfix functions to buffer.c.
Files: src/buffer.c, src/proto/buffer.pro, src/quickfix.c,

src/proto/quickfix.pro

Patch 8.0.0777
Problem: Compiler warnings with 64 bit compiler.
Solution: Add type casts. (Mike Williams)
Files: src/libvterm/src/pen.c, src/libvterm/src/state.c, src/terminal.c

Patch 8.0.0778
Problem: In a terminal the cursor may be hidden and screen updating lags

behind. (Nazri Ramliy)
Solution: Switch the cursor on and flush output when needed. (Ozaki Kiichi)
Files: src/terminal.c

Patch 8.0.0779
Problem: :term without an argument uses empty buffer name but runs the

shell.
Solution: Change the command to the shell earlier.
Files: src/terminal.c

Patch 8.0.0780
Problem: Build failure on Travis.
Solution: Set distribution explicitly. Use Lua and Ruby dev. (Ken Takata,

closes #1884)
Files: .travis.yml

Patch 8.0.0781
Problem: MS-Windows: Memory leak when using :terminal.
Solution: Handle failures properly. (Ken Takata)
Files: src/terminal.c

Patch 8.0.0782
Problem: Using freed memory in quickfix code. (Dominique Pelle)
Solution: Handle a help window differently. (Yegappan Lakshmanan)
Files: src/buffer.c, src/proto/buffer.pro, src/quickfix.c,

src/testdir/test_quickfix.vim, src/ex_cmds.c, src/window.c

Patch 8.0.0783
Problem: Job of terminal may be freed too early.
Solution: Increment job refcount. (Yasuhiro Matsumoto)

version8.txt — 3114

Files: src/terminal.c

Patch 8.0.0784
Problem: Job of terminal may be garbage collected.
Solution: Set copyID on job in terminal. (Ozaki Kiichi)
Files: src/terminal.c, src/eval.c, src/proto/terminal.pro

Patch 8.0.0785
Problem: Wildcards are not expanded for :terminal.
Solution: Add FILES to the command flags. (Yasuhiro Matsumoto, closes #1883)

Also complete commands.
Files: src/ex_cmds.h, src/ex_docmd.c

Patch 8.0.0786
Problem: Build failures on Travis.
Solution: Go back to precise temporarily. Disable coverage with clang.
Files: .travis.yml

Patch 8.0.0787
Problem: Cannot send CTRL-W command to terminal job.
Solution: Make CTRL-W . a prefix for sending a key to the job.
Files: src/terminal.c, runtime/doc/terminal.txt, src/option.c

Patch 8.0.0788
Problem: MS-Windows: cannot build with terminal feature.
Solution: Move set_ref_in_term(). (Ozaki Kiichi)
Files: src/terminal.c

Patch 8.0.0789
Problem: When splitting a terminal window where the terminal follows the

size of the window doesn't work.
Solution: Use the size of the smallest window. (Yasuhiro Matsumoto, closes

#1885)
Files: src/terminal.c

Patch 8.0.0790
Problem: MSVC compiler warning for strncpy in libvterm.
Solution: Add a define to stop the warnings. (Mike Williams)
Files: src/Make_mvc.mak

Patch 8.0.0791
Problem: Terminal colors depend on the system.
Solution: Use the highlight color lookup tables.
Files: src/syntax.c, src/proto/syntax.pro, src/terminal.c

Patch 8.0.0792
Problem: Spell test leaves files behind.
Solution: Delete the files.
Files: src/testdir/test_spell.vim

Patch 8.0.0793
Problem: Using wrong terminal name for terminal window.
Solution: When 'term' starts with "xterm" use it for $TERM in a terminal

window.
Files: src/os_unix.c

Patch 8.0.0794
Problem: The script to check translations fails if there is more than one

NL in one line.
Solution: Count the number of NL characters. Make count() accept a string.

version8.txt — 3115

Files: src/po/check.vim, src/evalfunc.c, runtime/doc/eval.txt,
src/testdir/test_functions.vim

Patch 8.0.0795
Problem: Terminal feature does not build with older MSVC.
Solution: Do not use stdint.h.
Files: src/libvterm/include/vterm.h

Patch 8.0.0796
Problem: No coverage on Travis with clang.
Solution: Use a specific coveralls version. (Ozaki Kiichi, closes #1888)
Files: .travis.yml

Patch 8.0.0797
Problem: Finished job in terminal window is not handled.
Solution: Add the scrollback buffer. Use it to fill the buffer when the job

has ended.
Files: src/terminal.c, src/screen.c, src/proto/terminal.pro,

src/channel.c, src/os_unix.c, src/buffer.c

Patch 8.0.0798
Problem: No highlighting in a terminal window with a finished job.
Solution: Highlight the text.
Files: src/terminal.c, src/proto/terminal.pro, src/screen.c, src/undo.c

Patch 8.0.0799
Problem: Missing semicolon.
Solution: Add it.
Files: src/terminal.c

Patch 8.0.0800
Problem: Terminal window scrollback contents is wrong.
Solution: Fix handling of multibyte characters (Yasuhiro Matsumoto) Handle

empty lines correctly. (closes #1891)
Files: src/terminal.c

Patch 8.0.0801
Problem: The terminal window title sometimes still says "running" even

though the job has finished.
Solution: Also consider the job finished when the channel has been closed.
Files: src/terminal.c

Patch 8.0.0802
Problem: After a job exits the last line in the terminal window does not

get color attributes.
Solution: Fix off-by-one error.
Files: src/terminal.c

Patch 8.0.0803
Problem: Terminal window functions not yet implemented.
Solution: Implement several functions. Add a first test. (Yasuhiro

Matsumoto, closes #1871)
Files: runtime/doc/eval.txt, src/Makefile, src/evalfunc.c,

src/proto/evalfunc.pro, src/proto/terminal.pro, src/terminal.c,
src/testdir/Make_all.mak, src/testdir/test_terminal.vim

Patch 8.0.0804
Problem: Running tests fails when stdin is /dev/null. (James McCoy)
Solution: Do not bail out from getting input if the --not-a-term argument

was given. (closes #1460)

version8.txt — 3116

Files: src/eval.c, src/evalfunc.c

Patch 8.0.0805
Problem: GUI test fails with gnome2.
Solution: Set $HOME to an existing directory.
Files: src/testdir/setup.vim, src/testdir/runtest.vim

Patch 8.0.0806
Problem: Tests may try to create XfakeHOME twice.
Solution: Avoid loading setup.vim twice.
Files: src/testdir/setup.vim

Patch 8.0.0807
Problem: Terminal window can't handle mouse buttons. (Hirohito Higashi)
Solution: Implement mouse buttons and many other keys. Ignore the ones that

are not implemented.
Files: src/terminal.c

Patch 8.0.0808
Problem: Cannot build with terminal feature and DEBUG defined. (Christian

Brabandt)
Solution: Use DEBUG_LOG3().
Files: src/libvterm/src/pen.c

Patch 8.0.0809
Problem: MS-Windows: tests hang.
Solution: Delete the XfakeHOME directory.
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak

Patch 8.0.0810
Problem: MS-Windows: tests still hang.
Solution: Only create the XfakeHOME directory if it does not exist yet.
Files: src/testdir/setup.vim

Patch 8.0.0811
Problem: MS-Windows: test_expand_dllpath fails.
Solution: Change backslashes to forward slashes
Files: src/testdir/test_expand_dllpath.vim

Patch 8.0.0812
Problem: Terminal window colors shift when 'number' is set. (Nazri Ramliy)
Solution: Use vcol instead of col.
Files: src/screen.c

Patch 8.0.0813
Problem: Cannot use Vim commands in a terminal window while the job is

running.
Solution: Implement Terminal Normal mode.
Files: src/terminal.c, src/proto/terminal.pro, src/main.c, src/screen.c,

src/normal.c, src/option.c, runtime/doc/terminal.txt

Patch 8.0.0814 (after 8.0.0757)
Problem: File in Filelist does not exist.
Solution: Remove the line.
Files: Filelist

Patch 8.0.0815
Problem: Terminal window not correctly updated when 'statusline' invokes

":sleep". (Nikolay Pavlov)
Solution: Clear got_int. Repeat redrawing when needed.

version8.txt — 3117

Files: src/terminal.c

Patch 8.0.0816
Problem: Crash when using invalid buffer number.
Solution: Check for NULL buffer. (Yasuhiro Matsumoto, closes #1899)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0817
Problem: Cannot get the line of a terminal window at the cursor.
Solution: Make the row argument optional. (Yasuhiro Matsumoto, closes #1898)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/terminal.c

Patch 8.0.0818
Problem: Cannot get the cursor position of a terminal.
Solution: Add term_getcursor().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/terminal.c,

src/proto/terminal.pro

Patch 8.0.0819
Problem: After changing current window the cursor position in the terminal

window is not updated.
Solution: Set w_wrow, w_wcol and w_valid.
Files: src/terminal.c

Patch 8.0.0820
Problem: GUI: cursor in terminal window lags behind.
Solution: call gui_update_cursor() under different conditions. (Ozaki

Kiichi, closes #1893)
Files: src/terminal.c

Patch 8.0.0821
Problem: Cannot get the title and status of a terminal window.
Solution: Implement term_gettitle() and term_getstatus().
Files: src/evalfunc.c, src/terminal.c, src/proto/terminal.pro,

runtime/doc/eval.txt

Patch 8.0.0822
Problem: Test_with_partial_callback is a tiny bit flaky.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.0823
Problem: Cannot paste text into a terminal window.
Solution: Make CTRL-W " work.
Files: src/terminal.c

Patch 8.0.0824
Problem: In Terminal mode the cursor and screen gets redrawn when the job

produces output.
Solution: Check for tl_terminal_mode. (partly by Yasuhiro Matsumoto, closes

#1904)
Files: src/terminal.c

Patch 8.0.0825
Problem: Not easy to see that a window is a terminal window.
Solution: Add StatusLineTerm highlighting.
Files: src/option.c, src/vim.h, src/screen.c, src/syntax.c

Patch 8.0.0826
Problem: Cannot use text objects in Terminal mode.

version8.txt — 3118

Solution: Check for pending operator and Visual mode first. (Yasuhiro
Matsumoto, closes #1906)

Files: src/normal.c

Patch 8.0.0827
Problem: Coverity: could leak pty file descriptor, theoretically.
Solution: If channel is NULL, free the file descriptors.
Files: src/os_unix.c

Patch 8.0.0828
Problem: Coverity: may dereference NULL pointer.
Solution: Bail out if calloc_state() returns NULL.
Files: src/regexp_nfa.c

Patch 8.0.0829
Problem: A job running in a terminal window cannot easily communicate with

the Vim it is running in.
Solution: Pass v:servername in an environment variable. (closes #1908)
Files: src/os_unix.c

Patch 8.0.0830
Problem: Translating messages is not ideal.
Solution: Add a remark about obsolete messages. Use msgfmt in the check

script. (Christian Brabandt)
Files: src/po/README.txt, src/po/check.vim

Patch 8.0.0831 (after 8.0.0791)
Problem: With 8 colors the bold attribute is not set properly.
Solution: Move setting HL_TABLE() out of lookup_color. (closes #1901)
Files: src/syntax.c, src/proto/syntax.pro, src/terminal.c

Patch 8.0.0832
Problem: Terminal function arguments are not consistent.
Solution: Use one-based instead of zero-based rows and cols. Use "." for

the current row.
Files: src/terminal.c, runtime/doc/eval.txt

Patch 8.0.0833
Problem: Terminal test fails.
Solution: Update the row argument to one based.
Files: src/testdir/test_terminal.vim

Patch 8.0.0834
Problem: Can't build without the client-server feature.
Solution: Add #ifdef.
Files: src/os_unix.c

Patch 8.0.0835
Problem: Translations check with msgfmt does not work.
Solution: Add a space before the file name.
Files: src/po/check.vim

Patch 8.0.0836
Problem: When a terminal buffer is changed it can still be accidentally

abandoned.
Solution: When making a change reset the 'buftype' option.
Files: src/terminal.c, src/testdir/test_terminal.vim, src/option.c

Patch 8.0.0837
Problem: Signs can be drawn on top of console messages.

version8.txt — 3119

Solution: don't redraw at a prompt or when scrolled up. (Christian Brabandt,
closes #1907)

Files: src/screen.c

Patch 8.0.0838
Problem: Buffer hangs around when terminal window is closed.
Solution: When the job has ended wipe out a terminal buffer when the window

is closed.
Files: src/buffer.c, src/terminal.c, src/proto/terminal.pro,

src/testdir/test_terminal.vim

Patch 8.0.0839
Problem: Cannot kill a job in a terminal with CTRL-C.
Solution: Set the controlling tty and send SIGINT. (closes #1910)
Files: src/os_unix.c, src/terminal.c, src/proto/os_unix.pro

Patch 8.0.0840
Problem: MS-Windows: fopen() and open() prototypes do not match the ones in

the system header file. Can't build without FEAT_MBYTE.
Solution: Add "const". Move macro to after including protoo.h.
Files: src/os_win32.c, src/proto/os_win32.pro, src/macros.h, src/vim.h

Patch 8.0.0841
Problem: term_getline() may cause a crash.
Solution: Check that the row is valid. (Hirohito Higashi)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0842
Problem: Using slave pty after closing it.
Solution: Do the ioctl() before dup'ing it.
Files: src/os_unix.c

Patch 8.0.0843
Problem: MS-Windows: compiler warning for signed/unsigned.
Solution: Add type cast. (Yasuhiro Matsumoto, closes #1912)
Files: src/terminal.c

Patch 8.0.0844
Problem: Wrong function prototype because of missing static.
Solution: Add "static".
Files: src/os_win32.c, src/proto/os_win32.pro

Patch 8.0.0845
Problem: MS-Windows: missing semicolon in terminal code.
Solution: Add it. (Naruhiko Nishino, closes #1923)
Files: src/terminal.c

Patch 8.0.0846
Problem: Cannot get the name of the pty of a job.
Solution: Add the "tty" entry to the job info. (Ozaki Kiichi, closes #1920)

Add the term_gettty() function.
Files: runtime/doc/eval.txt, src/channel.c, src/os_unix.c, src/structs.h,

src/terminal.c, src/proto/terminal.pro, src/evalfunc.c,
src/testdir/test_terminal.vim

Patch 8.0.0847
Problem: :argadd without argument can't handle space in file name. (Harm te

Hennepe)
Solution: Escape the space. (Yasuhiro Matsumoto, closes #1917)
Files: src/ex_cmds2.c, src/proto/ex_cmds2.pro,

version8.txt — 3120

src/testdir/test_arglist.vim

Patch 8.0.0848
Problem: Using multiple ch_log functions is clumsy.
Solution: Use variable arguments. (Ozaki Kiichi, closes #1919)
Files: src/channel.c, src/message.c, src/proto/channel.pro,

src/terminal.c

Patch 8.0.0849
Problem: Crash when job exit callback wipes the terminal.
Solution: Check for b_term to be NULL. (Yasuhiro Matsumoto, closes #1922)

Implement options for term_start() to be able to test.
Make term_wait() more reliable.

Files: src/terminal.c, src/testdir/test_terminal.vim, src/channel.c

Patch 8.0.0850
Problem: MS-Windows: Depending on the console encoding, an error message

that is given during startup may be broken.
Solution: Convert the message to the console codepage. (Yasuhiro Matsumoto,

closes #1927)
Files: src/message.c

Patch 8.0.0851
Problem: 'smartindent' is used even when 'indentexpr' is set.
Solution: Ignore 'smartindent' when 'indentexpr' is set. (Hirohito Higashi)
Files: src/misc1.c, src/testdir/test_smartindent.vim

Patch 8.0.0852 (after 8.0.0850)
Problem: MS-Windows: possible crash when giving a message on startup.
Solution: Initialize length. (Yasuhiro Matsumoto, closes #1931)
Files: src/message.c

Patch 8.0.0853
Problem: Crash when running terminal with unknown command.
Solution: Check "term" not to be NULL. (Yasuhiro Matsumoto, closes #1932)
Files: src/terminal.c

Patch 8.0.0854
Problem: No redraw after terminal was closed.
Solution: Set typebuf_was_filled. (Yasuhiro Matsumoto, closes #1925, closes

#1924) Add function to check for messages even when input is
available.

Files: src/terminal.c, src/os_unix.c, src/proto/os_unix.pro,
src/os_win32.c, src/proto/os_win32.pro, src/os_mswin.c

Patch 8.0.0855
Problem: MS-Windows: can't get tty name of terminal.
Solution: Use the winpty process number. (Yasuhiro Matsumoto, closes #1929)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0856
Problem: MS-Windows: terminal job doesn't take options.
Solution: Call job_set_options(). (Yasuhiro Matsumoto)
Files: src/terminal.c

Patch 8.0.0857
Problem: Terminal test fails on MS-Windows.
Solution: Sleep a fraction of a second.
Files: src/testdir/test_terminal.vim

version8.txt — 3121

Patch 8.0.0858
Problem: Can exit while a terminal is still running a job.
Solution: Consider a buffer with a running job like a changed file.
Files: src/undo.c, src/terminal.c, src/option.h, src/buffer.c,

src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/normal.c,
src/window.c, src/testdir/test_terminal.vim

Patch 8.0.0859
Problem: NULL pointer access when term_free_vterm called twice.
Solution: Return when tl_vterm is NULL. (Yasuhiro Matsumoto, closes #1934)
Files: src/terminal.c

Patch 8.0.0860
Problem: There may be side effects when a channel appends to a buffer that

is not the current buffer.
Solution: Properly switch to another buffer before appending. (Yasuhiro

Matsumoto, closes #1926, closes #1937)
Files: src/channel.c, src/buffer.c, src/proto/buffer.pro,

src/if_py_both.h

Patch 8.0.0861
Problem: Still many old style tests.
Solution: Convert several tests to new style. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/main.aap, src/testdir/test104.in,
src/testdir/test104.ok, src/testdir/test22.in,
src/testdir/test22.ok, src/testdir/test77.in,
src/testdir/test77.ok, src/testdir/test84.in,
src/testdir/test84.ok, src/testdir/test9.in, src/testdir/test9.ok,
src/testdir/test98.in, src/testdir/test98.ok,
src/testdir/test_autocmd.vim, src/testdir/test_curswant.vim,
src/testdir/test_file_size.vim, src/testdir/test_let.vim,
src/testdir/test_lineending.vim, src/testdir/test_scrollbind.vim,
src/Makefile

Patch 8.0.0862 (after 8.0.0862)
Problem: File size test fails on MS-Windows.
Solution: Set fileformat after opening new buffer. Strip CR.
Files: src/testdir/test_file_size.vim

Patch 8.0.0863
Problem: A remote command starting with CTRL-\ CTRL-N does not work in the

terminal window. (Christian J. Robinson)
Solution: Use CTRL-\ CTRL-N as a prefix or a Normal mode command.
Files: src/terminal.c, runtime/doc/terminal.txt

Patch 8.0.0864
Problem: Cannot specify the name of a terminal.
Solution: Add the "term_name" option. (Yasuhiro Matsumoto, closes #1936)
Files: src/channel.c, src/structs.h, src/terminal.c, runtime/doc/eval.txt

Patch 8.0.0865
Problem: Cannot build with channel but without terminal feature.
Solution: Add #ifdef
Files: src/channel.c

Patch 8.0.0866
Problem: Solaris also doesn't have MIN and MAX.
Solution: Define MIN and MAX whenever they are not defined. (Ozaki Kiichi,

closes #1939)

version8.txt — 3122

Files: src/terminal.c

Patch 8.0.0867
Problem: When using a job or channel value as a dict value, when turning it

into a string the quotes are missing.
Solution: Add quotes to the job and channel values. (Yasuhiro Matsumoto,

closes #1930)
Files: src/list.c, src/eval.c, src/testdir/test_terminal.vim

Patch 8.0.0868
Problem: Cannot specify the terminal size on the command line.
Solution: Use the address range for the terminal size. (Yasuhiro Matsumoto,

closes #1941)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0869
Problem: Job output is sometimes not displayed in a terminal.
Solution: Flush output before closing the channel.
Files: src/channel.c, src/terminal.c

Patch 8.0.0870
Problem: Mouse escape codes sent to terminal unintentionally.
Solution: Fix libvterm to send mouse codes only when enabled.
Files: src/terminal.c, src/libvterm/src/mouse.c

Patch 8.0.0871
Problem: The status line for a terminal window always has "[+]".
Solution: Do make the status line include "[+]" for a terminal window.
Files: src/screen.c

Patch 8.0.0872
Problem: Using mouse scroll while a terminal window has focus and the mouse

pointer is on another window does not work. Same for focus in a
non-terminal window and the mouse pointer is over a terminal
window.

Solution: Send the scroll action to the right window.
Files: src/terminal.c, src/normal.c, src/proto/terminal.pro

Patch 8.0.0873
Problem: In a terminal window cannot use CTRL-\ CTRL-N to start Visual

mode.
Solution: After CTRL-\ CTRL-N enter Terminal-Normal mode for one command.
Files: src/main.c, src/terminal.c, src/proto/terminal.pro

Patch 8.0.0874 (after 8.0.0873)
Problem: Can't build with terminal feature.
Solution: Include change to term_use_loop(). (Dominique Pelle)
Files: src/normal.c

Patch 8.0.0875
Problem: Crash with weird command sequence. (Dominique Pelle)
Solution: Use vim_snprintf() instead of STRCPY().
Files: src/misc1.c

Patch 8.0.0876
Problem: MS-Windows: Backslashes and wildcards in backticks don't work.
Solution: Do not handle backslashes inside backticks in the wrong place.

(Yasuhiro Matsumoto, closes #1942)
Files: src/os_mswin.c, src/os_win32.c

version8.txt — 3123

Patch 8.0.0877
Problem: Using CTRL-\ CTRL-N in terminal is inconsistent.
Solution: Stay in Normal mode.
Files: src/terminal.c, src/proto/terminal.pro, src/main.c, src/normal.c,

src/option.c

Patch 8.0.0878
Problem: No completion for :mapclear.
Solution: Add completion (Nobuhiro Takasaki et al. closes #1943)
Files: runtime/doc/eval.txt, runtime/doc/map.txt, src/ex_docmd.c,

src/ex_getln.c, src/proto/ex_docmd.pro,
src/testdir/test_cmdline.vim, src/vim.h

Patch 8.0.0879
Problem: Crash when shifting with huge number.
Solution: Check for overflow. (Dominique Pelle, closes #1945)
Files: src/ops.c, src/testdir/test_visual.vim

Patch 8.0.0880
Problem: Travis uses an old Ubuntu version.
Solution: Switch from precise to trusty. (Ken Takata, closes #1897)
Files: .travis.yml, Filelist, src/testdir/if_ver-1.vim,

src/testdir/if_ver-2.vim, src/testdir/lsan-suppress.txt

Patch 8.0.0881
Problem: win32.mak no longer included in Windows SDK.
Solution: Do not include win32.mak. (Ken Takata)
Files: src/GvimExt/Makefile, src/Make_mvc.mak

Patch 8.0.0882
Problem: term_scrape() and term_getline() require two arguments but it is

not enforced.
Solution: Correct minimal number of arguments. (Hirohito Higashi) Update

documentation. (Ken Takata)
Files: src/evalfunc.c, runtime/doc/eval.txt

Patch 8.0.0883
Problem: Invalid memory access with nonsensical script.
Solution: Check "dstlen" being positive. (Dominique Pelle)
Files: src/misc1.c

Patch 8.0.0884
Problem: Can't specify the wait time for term_wait().
Solution: Add an optional second argument.
Files: src/evalfunc.c, src/terminal.c, runtime/doc/eval.txt

Patch 8.0.0885
Problem: Terminal window scrollback is stored inefficiently.
Solution: Store the text in the Vim buffer.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0886
Problem: Crash when using ":term ls".
Solution: Fix line number computation. Add a test for this.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0887
Problem: Can create a logfile in the sandbox.
Solution: Disable ch_logfile() in the sandbox. (Yasuhiro Matsumoto)
Files: src/evalfunc.c

version8.txt — 3124

Patch 8.0.0888
Problem: Compiler warnings with 64 bit build.
Solution: Add type cast of change the type. (Mike Williams)
Files: src/message.c, src/os_mswin.c, src/os_win32.c

Patch 8.0.0889
Problem: Gcc gives warnings for uninitialized variables. (Tony Mechelynck)
Solution: Initialize variables even though they are not used.
Files: src/terminal.c

Patch 8.0.0890
Problem: Still many old style tests.
Solution: Convert several tests to new style. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test103.in, src/testdir/test103.ok,
src/testdir/test107.in, src/testdir/test107.ok,
src/testdir/test51.in, src/testdir/test51.ok,
src/testdir/test91.in, src/testdir/test91.ok,
src/testdir/test_getvar.vim, src/testdir/test_highlight.vim,
src/testdir/test_visual.vim, src/testdir/test_window_cmd.vim,
src/Makefile

Patch 8.0.0891
Problem: Uninitialized memory use with empty line in terminal.
Solution: Initialize growarray earlier. (Yasuhiro Matsumoto, closes #1949)
Files: src/terminal.c

Patch 8.0.0892
Problem: When opening a terminal the pty size doesn't always match.
Solution: Update the pty size after opening the terminal. (Ken Takata)
Files: src/terminal.c

Patch 8.0.0893
Problem: Cannot get the scroll count of a terminal window.
Solution: Add term_getscrolled().
Files: src/terminal.c, src/proto/terminal.pro, src/evalfunc.c,

runtime/doc/eval.txt, src/testdir/test_terminal.vim

Patch 8.0.0894
Problem: There is no test for runtime filetype detection.
Solution: Test a list of filetypes from patterns.
Files: src/testdir/test_filetype.vim, runtime/filetype.vim

Patch 8.0.0895 (after 8.0.0894)
Problem: Filetype test fails on MS-Windows.
Solution: Fix file names.
Files: src/testdir/test_filetype.vim

Patch 8.0.0896
Problem: Cannot automatically close a terminal window when the job ends.
Solution: Add the ++close argument to :term. Add the term_finish option to

term_start(). (Yasuhiro Matsumoto, closes #1950) Also add
++open.

Files: runtime/doc/eval.txt, runtime/doc/terminal.txt, src/channel.c,
src/structs.h, src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0897 (after 8.0.0896)
Problem: Wrong error message for invalid term_finish value
Solution: Pass the right argument to emsg().

version8.txt — 3125

Files: src/channel.c

Patch 8.0.0898
Problem: Can't use the alternate screen in a terminal window.
Solution: Initialize the alternate screen. (Yasuhiro Matsumoto, closes

#1957) Add term_getaltscreen().
Files: src/libvterm/include/vterm.h, src/terminal.c,

src/proto/terminal.pro, src/evalfunc.c, runtime/doc/eval.txt

Patch 8.0.0899
Problem: Function name mch_stop_job() is confusing.
Solution: Rename to mch_signal_job().
Files: src/channel.c, src/os_unix.c, src/proto/os_unix.pro,

src/os_win32.c, src/proto/os_win32.pro, src/terminal.c

Patch 8.0.0900
Problem: :tab options doesn't open a new tab page. (Aviany)
Solution: Support the :tab modifier. (closes #1960)
Files: src/ex_cmds2.c, runtime/optwin.vim

Patch 8.0.0901
Problem: Asan suppress file missing from distribution.
Solution: Add the file.
Files: Filelist

Patch 8.0.0902
Problem: Cannot specify directory or environment for a job.
Solution: Add the "cwd" and "env" arguments to job options. (Yasuhiro

Matsumoto, closes #1160)
Files: runtime/doc/channel.txt, src/channel.c, src/terminal.c,

src/os_unix.c, src/os_win32.c, src/structs.h,
src/testdir/test_channel.vim, src/testdir/test_terminal.vim

Patch 8.0.0903 (after 8.0.0902)
Problem: Early return from test function.
Solution: Remove the return.
Files: src/testdir/test_terminal.vim

Patch 8.0.0904
Problem: Cannot set a location list from text.
Solution: Add the "text" argument to setqflist(). (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0905
Problem: MS-Windows: broken multibyte characters in the console.
Solution: Restore all regions of the console buffer. (Ken Takata)
Files: src/os_win32.c

Patch 8.0.0906
Problem: Don't recognize Couchbase files.
Solution: Add filetype detection. (Eugene Ciurana, closes #1951)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.0.0907
Problem: With cp932 font names might be misinterpreted.
Solution: Do not see "_" as a space when it is the second byte of a double

byte character. (Ken Takata)
Files: src/os_win32.c

version8.txt — 3126

Patch 8.0.0908
Problem: Cannot set terminal size with options.
Solution: Add "term_rows", "term_cols" and "vertical".
Files: src/terminal.c, runtime/doc/eval.txt, src/channel.c,

src/proto/channel.pro, src/structs.h, src/evalfunc.c,
src/testdir/test_terminal.vim

Patch 8.0.0909
Problem: Channel test fails.
Solution: Allow for "cwd" and "env" arguments.
Files: src/channel.c

Patch 8.0.0910
Problem: Cannot create a terminal in the current window.
Solution: Add option "curwin" and ++curwin.
Files: src/terminal.c, runtime/doc/eval.txt, src/channel.c,

src/structs.h, src/ex_cmds.h, src/testdir/test_terminal.vim

Patch 8.0.0911
Problem: Terminal test takes too long.
Solution: Instead of "sleep 1" use a Python program to briefly sleep.
Files: src/testdir/test_terminal.vim, src/testdir/test_short_sleep.py

Patch 8.0.0912
Problem: Cannot run a job in a hidden terminal.
Solution: Add option "hidden" and ++hidden.
Files: src/terminal.c, src/structs.h, src/channel.c, src/fileio.c,

runtime/doc/terminal.txt, src/testdir/test_terminal.vim

Patch 8.0.0913
Problem: MS-Windows: CTRL-C kills shell in terminal window instead of the

command running in the shell.
Solution: Make CTRL-C only send a CTRL_C_EVENT and have CTRL-BREAK kill the

job. (partly by Yasuhiro Matsumoto, closes #1962)
Files: src/os_win32.c, src/gui_w32.c, src/terminal.c, src/globals.h

Patch 8.0.0914
Problem: Highlight attributes are always combined.
Solution: Add the 'nocombine' value to replace attributes instead of

combining them. (scauligi, closes #1963)
Files: runtime/doc/syntax.txt, src/syntax.c, src/vim.h

Patch 8.0.0915
Problem: Wrong initialisation of global.
Solution: Use INIT().
Files: src/globals.h

Patch 8.0.0916
Problem: Cannot specify properties of window for when opening a window for

a finished terminal job.
Solution: Add "term_opencmd".
Files: src/channel.c, src/structs.h, src/terminal.c,

runtime/doc/eval.txt, src/testdir/test_terminal.vim

Patch 8.0.0917
Problem: MS-Windows:CTRL-C handling in terminal window is wrong
Solution: Pass CTRL-C as a key. Turn CTRL-BREAK into a key stroke. (Yasuhiro

Matsumoto, closes #1965)
Files: src/os_win32.c, src/terminal.c

version8.txt — 3127

Patch 8.0.0918
Problem: Cannot get terminal window cursor shape or attributes.
Solution: Support cursor shape, attributes and color.
Files: src/terminal.c, runtime/doc/eval.txt,

src/libvterm/include/vterm.h, src/libvterm/src/state.c,
src/libvterm/src/vterm.c, src/feature.h, src/ui.c,
src/proto/ui.pro, src/term.c, src/proto/term.pro,
src/option.c, src/term.h

Patch 8.0.0919
Problem: Cursor color isn't set on startup.
Solution: Initialize showing_mode to invalid value.
Files: src/term.c

Patch 8.0.0920
Problem: The cursor shape is wrong after switch back from an alternate

screen in a terminal window. (Marius Gedminas)
Solution: Change bitfield to unsigned. Set flag that cursor shape was set.
Files: src/terminal.c, src/libvterm/src/vterm_internal.h

Patch 8.0.0921
Problem: Terminal window cursor shape not supported in the GUI.
Solution: Use the terminal window cursor shape in the GUI.
Files: src/terminal.c, src/proto/terminal.pro, src/gui.c, src/syntax.c,

src/proto/syntax.pro

Patch 8.0.0922
Problem: Quickfix list always added after current one.
Solution: Make it possible to add a quickfix list after the last one.

(Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.0923
Problem: Crash in GUI when terminal job exits. (Kazunobu Kuriyama)
Solution: reset in_terminal_loop when a terminal is freed.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.0924
Problem: Terminal window not updated after using term_sendkeys().
Solution: Call redraw_after_callback().
Files: src/terminal.c

Patch 8.0.0925
Problem: MS-Windows GUI: channel I/O not handled right away.
Solution: Don't call process_message() unless a message is available.

(Yasuhiro Matsumoto, closes #1969)
Files: src/gui_w32.c

Patch 8.0.0926
Problem: When job in terminal window ends topline may be wrong.
Solution: When the job ends adjust topline so that the active part of the

terminal is displayed.
Files: src/terminal.c

Patch 8.0.0927
Problem: If a terminal job sends a blank title "running" is not shown.
Solution: When the title is blank make it empty.
Files: src/terminal.c

version8.txt — 3128

Patch 8.0.0928
Problem: MS-Windows: passing arglist to job has escaping problems.
Solution: Improve escaping. (Yasuhiro Matsumoto, closes #1954)
Files: src/testdir/test_channel.vim, src/testdir/test_terminal.vim,

src/channel.c, src/proto/channel.pro, src/terminal.c

Patch 8.0.0929
Problem: :term without argument does not work.
Solution: Use shell for empty command. (Yasuhiro Matsumoto, closes #1970)
Files: src/terminal.c

Patch 8.0.0930
Problem: Terminal buffers are stored in the viminfo file while they can't

be useful.
Solution: Skip terminal buffers for file marks and buffer list
Files: src/buffer.c, src/mark.c

Patch 8.0.0931
Problem: getwininfo() does not indicate a terminal window.
Solution: Add "terminal" to the dictionary.
Files: runtime/doc/eval.txt, src/evalfunc.c

Patch 8.0.0932
Problem: Terminal may not use right characters for BS and Enter.
Solution: Get the characters from the tty.
Files: src/os_unix.c, src/proto/os_unix.pro, src/terminal.c

Patch 8.0.0933
Problem: Terminal test tries to start GUI when it's not possible.
Solution: Check if the GUI can run. (James McCoy, closes #1971)
Files: src/testdir/shared.vim, src/testdir/test_terminal.vim,

src/testdir/test_gui.vim, src/testdir/test_gui_init.vim

Patch 8.0.0934 (after 8.0.0932)
Problem: Change to struts.h missing in patch.
Solution: Include adding ttyinfo_T.
Files: src/structs.h

Patch 8.0.0935
Problem: Cannot recognize a terminal buffer in :ls output.
Solution: Use R for a running job and F for a finished job.
Files: src/buffer.c

Patch 8.0.0936
Problem: mode() returns wrong value for a terminal window.
Solution: Return 't' when typed keys go to a job.
Files: src/evalfunc.c, src/testdir/test_terminal.vim

Patch 8.0.0937
Problem: User highlight groups are not adjusted for StatusLineTerm.
Solution: Combine attributes like for StatusLineNC.
Files: src/syntax.c, src/globals.h, src/screen.c

Patch 8.0.0938
Problem: Scrolling in terminal window is inefficient.
Solution: Use win_del_lines().
Files: src/terminal.c

Patch 8.0.0939
Problem: Test_terminal_env is flaky. (James McCoy)

version8.txt — 3129

Solution: Use WaitFor() instead of term_wait().
Files: src/testdir/test_terminal.vim

Patch 8.0.0940
Problem: Test_terminal_scrape_multibyte is flaky. (James McCoy)
Solution: Use WaitFor() instead of term_wait().
Files: src/testdir/test_terminal.vim

Patch 8.0.0941
Problem: Existing color schemes don't work well with StatusLineTerm.
Solution: Don't use "reverse", use fg and bg colors. Also add

StatusLineTermNC.
Files: src/syntax.c, src/vim.h, src/screen.c, src/globals.h, src/option.c

Patch 8.0.0942
Problem: Using freed memory with ":terminal" if an autocommand changes

'shell' when splitting the window. (Marius Gedminas)
Solution: Make a copy of 'shell'. (closes #1974)
Files: src/terminal.c

Patch 8.0.0943
Problem: Test_terminal_scrape_multibyte fails if the codepage is not utf-8.
Solution: Start "cmd" with the utf-8 codepage. (micbou, closes #1975)
Files: src/testdir/test_terminal.vim

Patch 8.0.0944
Problem: Test_profile is a little bit flaky.
Solution: Accept a match when self and total time are the same. (James

McCoy, closes #1972)
Files: src/testdir/test_profile.vim

Patch 8.0.0945
Problem: 64-bit compiler warnings.
Solution: Use "size_t" instead of "int". (Mike Williams)
Files: src/os_win32.c

Patch 8.0.0946
Problem: Using PATH_MAX does not work well on some systems.
Solution: use MAXPATHL instead. (James McCoy, closes #1973)
Files: src/main.c

Patch 8.0.0947
Problem: When in Insert mode and using CTRL-O CTRL-W CTRL-W to move to a

terminal window, get in a weird Insert mode.
Solution: Don't go to Insert mode in a terminal window. (closes #1977)
Files: src/normal.c

Patch 8.0.0948
Problem: Crash if timer closes window while dragging status line.
Solution: Check if the window still exists. (Yasuhiro Matsumoto, closes

#1979)
Files: src/edit.c, src/evalfunc.c, src/gui.c, src/normal.c, src/ui.c

Patch 8.0.0949
Problem: winpty.dll name is fixed.
Solution: Add the 'winptydll' option. Make the default name depend on

whether it is a 32-bit or 64-bit build. (idea by Yasuhiro
Matsumoto, closes #1978)

Files: src/option.c, src/option.h, src/terminal.c,
runtime/doc/options.txt

version8.txt — 3130

Patch 8.0.0950
Problem: MS-Windows: wrong #ifdef, compiler warnings for signed/unsigned.
Solution: Change variable type. Change TERMINAL to FEAT_TERMINAL.
Files: src/os_win32.c, src/option.h

Patch 8.0.0951
Problem: Another wrong #ifdef.
Solution: Change TERMINAL to FEAT_TERMINAL. (closes #1981)
Files: src/option.c

Patch 8.0.0952
Problem: MS-Windows: has('terminal') does not check existence of dll file.
Solution: Check if the winpty dll file can be loaded. (Ken Takata)
Files: src/evalfunc.c, src/proto/terminal.pro, src/terminal.c

Patch 8.0.0953
Problem: Get "no write since last change" error in terminal window.
Solution: Use another message when closing a terminal window. Make ":quit!"

also end the job.
Files: src/globals.h, src/buffer.c, src/proto/buffer.pro, src/ex_cmds.c,

src/ex_cmds2.c, src/ex_docmd.c, src/quickfix.c, src/terminal.c

Patch 8.0.0954
Problem: /proc/self/exe might be a relative path.
Solution: Make the path a full path. (James McCoy, closes #1983)
Files: src/main.c

Patch 8.0.0955
Problem: Test_existent_file() fails on some file systems.
Solution: Run the test again with a sleep when the test fails without a

sleep. (James McCoy, closes #1984)
Files: src/testdir/test_stat.vim

Patch 8.0.0956
Problem: Scrolling in a terminal hwindow as flicker when the Normal

background differs from the terminal window background.
Solution: Set the attribute to clear with.
Files: src/terminal.c, src/screen.c, src/proto/screen.pro, src/message.c,

src/move.c

Patch 8.0.0957
Problem: When term_sendkeys() sends many keys it may get stuck in writing

to the job.
Solution: Make the write non-blocking, buffer keys to be sent.
Files: src/terminal.c, src/channel.c, src/proto/channel.pro,

src/structs.h src/testdir/test_terminal.vim

Patch 8.0.0958
Problem: The terminal test fails on MS-Windows when compiled with the

terminal feature but the winpty DLL is missing.
Solution: Check if the terminal feature works. (Ken Takata)
Files: src/testdir/test_terminal.vim

Patch 8.0.0959
Problem: Build failure on MS-Windows.
Solution: Use ioctlsocket() instead of fcntl().
Files: src/channel.c

Patch 8.0.0960

version8.txt — 3131

Problem: Job in terminal does not get CTRL-C, we send a SIGINT instead.
Solution: Don't call may_send_sigint() on CTRL-C. Make CTRL-W CTRL-C end

the job.
Files: src/terminal.c, runtime/doc/terminal.txt

Patch 8.0.0961
Problem: The script to build the installer does not include winpty.
Solution: Add winpty32.dll and winpty-agent.exe like diff.exe
Files: nsis/gvim.nsi

Patch 8.0.0962
Problem: Crash with virtualedit and joining lines. (Joshua T Corbin, Neovim

#6726)
Solution: When using a mark check that coladd is valid.
Files: src/normal.c, src/misc2.c, src/Makefile,

src/testdir/test_virtualedit.vim, src/testdir/test_alot.vim

Patch 8.0.0963
Problem: Terminal test fails on macOS. (chdiza)
Solution: Wait for the shell to echo the characters. (closes #1991)
Files: src/testdir/test_terminal.vim

Patch 8.0.0964
Problem: Channel write buffer does not work with poll().
Solution: Use the same mechanism as with select().
Files: src/channel.c

Patch 8.0.0965
Problem: The cursor shape is not reset after it was changed in a terminal.
Solution: Request the original cursor shape and restore it. Add t_RS.

Do not add t_SH for now, it does not work properly.
Files: src/term.c, src/term.h, src/option.c, src/terminal.c

Patch 8.0.0966 (after 8.0.0965)
Problem: Build failure without terminal feature.
Solution: Move #endif.
Files: src/term.c

Patch 8.0.0967
Problem: Using a terminal may cause the cursor to blink.
Solution: Do not set t_vs, since we cannot restore the old blink state.
Files: src/term.c

Patch 8.0.0968
Problem: Crash when switching terminal modes. (Nikolai Pavlov)
Solution: Check that there are scrollback lines.
Files: src/terminal.c

Patch 8.0.0969
Problem: Coverity warning for unused return value.
Solution: Add (void) to avoid the warning.
Files: src/channel.c

Patch 8.0.0970
Problem: if there is no StatusLine highlighting and there is StatusLineNC

or StatusLineTermNC highlighting then an invalid highlight id is
passed to combine_stl_hlt(). (Coverity)

Solution: Check id_S to be -1 instead of zero.
Files: src/syntax.c

version8.txt — 3132

Patch 8.0.0971
Problem: 'winptydll' missing from :options.
Solution: Add the entry.
Files: runtime/optwin.vim

Patch 8.0.0972
Problem: Compiler warnings for unused variables. (Tony Mechelynck)
Solution: Add #ifdefs.
Files: src/term.c

Patch 8.0.0973
Problem: initial info about blinking cursor is wrong
Solution: Invert the blink flag. Add t_VS to stop a blinking cursor.
Files: src/term.c, src/proto/term.pro, src/term.h, src/option.c,

src/terminal.c

Patch 8.0.0974
Problem: Resetting a string option does not trigger OptionSet. (Rick Howe)
Solution: Set the origval.
Files: src/option.c, src/testdir/test_autocmd.vim

Patch 8.0.0975
Problem: Using freed memory when setting 'backspace'.
Solution: When changing oldval also change origval.
Files: src/option.c

Patch 8.0.0976
Problem: Cannot send lines to a terminal job.
Solution: Make [range]terminal send selected lines to the job.

Use ++rows and ++cols for the terminal size.
Files: src/ex_cmds.h, src/terminal.c, src/os_unix.c,

src/testdir/test_terminal.vim

Patch 8.0.0977
Problem: Cannot send lines to a terminal job on MS-Windows.
Solution: Set jv_in_buf. Command doesn't get EOF yet though.
Files: src/terminal.c

Patch 8.0.0978
Problem: Writing to terminal job is not tested.
Solution: Add a test.
Files: src/testdir/test_terminal.vim

Patch 8.0.0979
Problem: Terminal noblock test fails on MS-Windows. (Christian Brabandt)
Solution: Ignore empty line below "done".
Files: src/testdir/test_terminal.vim

Patch 8.0.0980
Problem: Coverity warning for failing to open /dev/null.
Solution: When /dev/null can't be opened exit the child.
Files: src/os_unix.c

Patch 8.0.0981
Problem: Cursor in terminal window blinks by default, while in a real xterm

it does not blink, unless the -bc argument is used.
Solution: Do not use a blinking cursor by default.
Files: src/terminal.c

Patch 8.0.0982

version8.txt — 3133

Problem: When 'encoding' is set to a multibyte encoding other than utf-8
the characters from their terminal are messed up.

Solution: Convert displayed text from utf-8 to 'encoding' for MS-Windows.
(Yasuhiro Matsumoto, close #2000)

Files: src/terminal.c

Patch 8.0.0983
Problem: Unnecessary check for NULL pointer.
Solution: Remove the NULL check in dialog_changed(), it already happens in

dialog_msg(). (Ken Takata)
Files: src/ex_cmds2.c

Patch 8.0.0984
Problem: Terminal blinking cursor not correct in the GUI.
Solution: Set blinkoff correctly. Also make the cursor blink on MS-Windows

by default. (Ken Takata)
Files: src/terminal.c

Patch 8.0.0985
Problem: Libvterm has its own idea of character width.
Solution: Use the Vim functions for character width and composing to avoid a

mismatch. (idea by Yasuhiro Matsumoto)
Files: src/Makefile, src/libvterm/src/unicode.c, src/mbyte.c,

src/proto/mbyte.pro, src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.0.0986
Problem: Terminal feature always requires multibyte feature.
Solution: Remove #ifdef FEAT_MBYTE, disable terminal without multibyte.
Files: src/terminal.c, src/feature.h

Patch 8.0.0987
Problem: terminal: second byte of double-byte char wrong
Solution: Set the second byte to NUL only for utf-8 and non-multibyte.
Files: src/terminal.c

Patch 8.0.0988
Problem: Warning from Covscan about using NULL pointer.
Solution: Add extra check for NULL. (zdohnal)
Files: src/fileio.c, src/undo.c

Patch 8.0.0989
Problem: ActiveTcl dll name has changed in 8.6.6.
Solution: Adjust the makefile. (Ken Takata)
Files: src/INSTALLpc.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.0.0990
Problem: When 'encoding' is a double-byte encoding, pasting a register into

a terminal ends up with the wrong characters.
Solution: Convert from 'encoding' to utf-8. (Yasuhiro Matsumoto, closes

#2007)
Files: src/terminal.c

Patch 8.0.0991
Problem: Using wrong character conversion for DBCS.
Solution: Use utf_char2bytes instead of mb_char2bytes. (Yasuhiro Matsumoto,

closes #2012)
Files: src/terminal.c

Patch 8.0.0992
Problem: Terminal title is wrong when 'encoding' is DBCS.

version8.txt — 3134

Solution: Convert the title from DBCS to utf-8. (Yasuhiro Matsumoto, closes
#2009)

Files: src/terminal.c

Patch 8.0.0993
Problem: Sometimes an xterm sends an extra CTRL-X after the response for

the background color. Related to t_RS.
Solution: Check for the CTRL-X after the terminating 0x7.
Files: src/term.c

Patch 8.0.0994
Problem: MS-Windows: cursor in terminal blinks even though the blinking

cursor was disabled on the system.
Solution: Use GetCaretBlinkTime(). (Ken Takata)
Files: src/terminal.c

Patch 8.0.0995
Problem: Terminal tests fail on Mac.
Solution: Add workaround: sleep a moment in between sending keys.
Files: src/testdir/test_terminal.vim

Patch 8.0.0996
Problem: Mac: t_RS is echoed on the screen in Terminal.app. Even though

$TERM is set to "xterm-256colors" it cannot handle this xterm
escape sequence.

Solution: Recognize Terminal.app from the termresponse and skip sending t_RS
if it looks like Terminal.app.

Files: src/term.c

Patch 8.0.0997 (after 8.0.0996)
Problem: Libvterm and Terminal.app not recognized from termresponse.
Solution: Adjust string compare.
Files: src/term.c

Patch 8.0.0998
Problem: Strange error when using K while only spaces are selected.

(Christian J. Robinson)
Solution: Check for blank argument.
Files: src/normal.c, src/testdir/test_help.vim

Patch 8.0.0999
Problem: Indenting raw C++ strings is wrong.
Solution: Add special handling of raw strings. (Christian Brabandt)
Files: src/misc1.c, src/testdir/test_cindent.vim

Patch 8.0.1000
Problem: Cannot open a terminal without running a job in it.
Solution: Make ":terminal NONE" open a terminal with a pty.
Files: src/terminal.c, src/os_unix.c, src/proto/os_unix.pro,

src/channel.c, src/proto/channel.pro, src/structs.h,
src/testdir/test_terminal.c, src/misc2.c, src/gui_gtk_x11.c

Patch 8.0.1001
Problem: Setting 'encoding' makes 'printheader' invalid.
Solution: Do not translate the default value of 'printheader'. (Yasuhiro

Matsumoto, closes #2026)
Files: src/option.c

Patch 8.0.1002
Problem: Unnecessarily updating screen after timer callback.

version8.txt — 3135

Solution: Check if calling the timer sets must_redraw.
Files: src/ex_cmds2.c, src/channel.c, src/screen.c, src/proto/screen.pro,

src/terminal.c

Patch 8.0.1003
Problem: 64 bit compiler warning
Solution: Add type cast. (Mike Williams)
Files: src/channel.c

Patch 8.0.1004
Problem: matchstrpos() without a match returns too many items.
Solution: Also remove the second item when the position is beyond the end of

the string. (Hirohito Higashi) Use an enum for the type.
Files: src/evalfunc.c, src/testdir/test_match.vim

Patch 8.0.1005
Problem: Terminal without job updates slowly in GUI.
Solution: Poll for input when a channel has the keep_open flag.
Files: src/channel.c, src/proto/channel.pro, src/gui_gtk_x11.c

Patch 8.0.1006
Problem: Cannot parse text with 'errorformat' without changing a quickfix

list.
Solution: Add the "text" argument to getqflist(). (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/proto/quickfix.pro,

src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1007
Problem: No test for filetype detection for scripts.
Solution: Add a first test file script filetype detection.
Files: src/testdir/test_filetype.vim, runtime/scripts.vim

Patch 8.0.1008
Problem: Slow updating of terminal window in Motif.
Solution: Add a timeout to the wait-for-character loop.
Files: src/gui_x11.c

Patch 8.0.1009
Problem: Xterm cursor blinking status may be inverted.
Solution: Use another request to get the blink status and compare with the

cursor style report
Files: src/term.c, src/proto/term.pro, src/term.h, src/option.c,

src/terminal.c

Patch 8.0.1010 (after 8.0.1009)
Problem: Build failure without termresponse feature.
Solution: Add #ifdef.
Files: src/term.c

Patch 8.0.1011
Problem: Terminal test fails with Athena and Motif.
Solution: Ignore the error for the input context. (Kazunobu Kuriyama)
Files: src/testdir/test_terminal.vim

Patch 8.0.1012
Problem: MS-Windows: Problem with $HOME when it was set internally.
Solution: Only use the $HOME default internally. (Yasuhiro Matsumoto, closes

#2013)
Files: src/misc1.c, src/testdir/Make_all.mak, src/Makefile,

src/testdir/test_windows_home.vim

version8.txt — 3136

Patch 8.0.1013
Problem: A terminal window with a running job behaves different from a

window containing a changed buffer.
Solution: Do not set 'bufhidden' to "hide". Fix that a buffer where a

terminal used to run is listed as "[Scratch]".
Files: src/terminal.c, runtime/doc/terminal.txt, src/buffer.c

Patch 8.0.1014
Problem: Old compiler doesn't know uint32_t. Warning for using NULL instead

of NUL.
Solution: Use UINT32_T. Use NUL instead of NULL.
Files: src/mbyte.c, src/proto/mbyte.pro, src/misc1.c

Patch 8.0.1015 (after 8.0.1013)
Problem: Missing update to terminal test.
Solution: Add the changes to the test.
Files: src/testdir/test_terminal.vim

Patch 8.0.1016
Problem: Gnome terminal echoes t_RC.
Solution: Detect Gnome terminal by the version string. Add v: variables for

all the term responses.
Files: src/term.c, src/eval.c, src/vim.h, runtime/doc/eval.txt

Patch 8.0.1017
Problem: Test for MS-Windows $HOME always passes.
Solution: Rename the test function. Make the test pass.
Files: src/testdir/test_windows_home.vim

Patch 8.0.1018
Problem: Warnings from 64-bit compiler. (Christian Brabandt)
Solution: Add type casts.
Files: src/terminal.c

Patch 8.0.1019
Problem: Pasting in virtual edit happens in the wrong place.
Solution: Do not adjust coladd when after the end of the line (closes #2015)
Files: src/testdir/test_virtualedit.vim, src/misc2.c

Patch 8.0.1020
Problem: When a timer calls getchar(1) input is overwritten.
Solution: Increment tb_change_cnt in inchar(). (closes #1940)
Files: src/getchar.c

Patch 8.0.1021
Problem: Older Gnome terminal still echoes t_RC. (François Ingelrest)
Solution: Check for version > 3000 instead of 4000.
Files: src/term.c

Patch 8.0.1022
Problem: Test 80 is old style.
Solution: Turn it into a new style test. (Yegappan Lakshmanan)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test80.in, src/testdir/test80.ok,
src/testdir/test_substitute.vim

Patch 8.0.1023
Problem: It is not easy to identify a quickfix list.
Solution: Add the "id" field. (Yegappan Lakshmanan)

version8.txt — 3137

Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/quickfix.c,
src/testdir/test_quickfix.vim

Patch 8.0.1024
Problem: Manual folds are lost when a session file has the same buffer in

two windows. (Jeansen)
Solution: Use ":edit" only once. (Christian Brabandt, closes #1958)
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.0.1025
Problem: Stray copy command in test.
Solution: Remove the copy command.
Files: src/testdir/test_mksession.vim

Patch 8.0.1026
Problem: GTK on-the-spot input has problems. (Gerd Wachsmuth)
Solution: Support over-the-spot. (Yukihiro Nakadaira, Ken Takata, closes

#1215)
Files: runtime/doc/mbyte.txt, runtime/doc/options.txt, src/edit.c,

src/ex_getln.c, src/mbyte.c, src/misc1.c, src/option.c,
src/option.h, src/screen.c, src/undo.c,
src/testdir/gen_opt_test.vim

Patch 8.0.1027
Problem: More terminals can't handle requesting cursor mode.
Solution: Recognize Putty. (Hirohito Higashi) Also include Xfce in the

version check. (Dominique Pelle) Recognize Konsole.
Files: src/term.c

Patch 8.0.1028
Problem: MS-Windows: viminfo uses $VIM/_viminfo if $HOME not set. (Yongwei

Wu)
Solution: Use vim_getenv() but check it's returning the default "C:/".
Files: src/ex_cmds.c

Patch 8.0.1029
Problem: Return value of getqflist() is inconsistent. (Lcd47)
Solution: Always return an "items" entry.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1030
Problem: MS-Windows: wrong size computation in is_cygpty().
Solution: Compute the size properly. (Ken Takata)
Files: src/iscygpty.c, src/iscygpty.h

Patch 8.0.1031
Problem: "text" argument for getqflist() is confusing. (Lcd47)
Solution: Use "lines" instead. (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.1032
Problem: "make tags" doesn't work well on MS-Windows.
Solution: Add or fix tags target. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.0.1033
Problem: Detecting background color does not work in screen, even when it

is working like an xterm.
Solution: Make "screen.xterm" use termcap entries like an xterm. (Lubomir

version8.txt — 3138

Rintel, closes #2048) When termresponse version is huge also
recognize as not being an xterm.

Files: src/os_unix.c, src/term.c

Patch 8.0.1034
Problem: Sending buffer lines to terminal doesn't work on MS-Windows.
Solution: Send CTRL-D to mark the end of the text. (Yasuhiro Matsumoto,

closes #2043) Add the "eof_chars" option.
Files: src/channel.c, src/proto/terminal.pro, src/terminal.c,

src/testdir/test_terminal.vim, src/structs.h

Patch 8.0.1035
Problem: Sending buffer lines to terminal doesn't work on MS-Windows.
Solution: Use CR instead of NL after every line. Make the EOF text work

properly. Add the ++eof argument to :terminal.
Files: src/structs.h, src/channel.c, src/terminal.c,

runtime/doc/terminal.txt, runtime/doc/eval.txt

Patch 8.0.1036
Problem: ++eof argument for terminal only available on MS-Windows.
Solution: Also support ++eof on Unix. Add a test.
Files: src/channel.c, src/terminal.c, src/structs.h,

src/testdir/test_terminal.vim

Patch 8.0.1037
Problem: "icase" of 'diffopt' is not used for highlighting differences.
Solution: Also use "icase". (Rick Howe)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.0.1038
Problem: Strike-through text not supported.
Solution: Add support for the "strikethrough" attribute. (Christian

Brabandt, Ken Takata)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/syntax.txt, runtime/doc/term.txt, src/evalfunc.c,
src/gui.c, src/gui.h, src/gui_gtk_x11.c, src/gui_mac.c,
src/gui_w32.c, src/gui_x11.c, src/option.c, src/screen.c,
src/syntax.c, src/term.c, src/term.h, src/terminal.c, src/vim.h

Patch 8.0.1039
Problem: Cannot change a line in a buffer other than the current one.
Solution: Add setbufline(). (Yasuhiro Matsumoto, Ozaki Kiichi, closes #1953)
Files: src/evalfunc.c, runtime/doc/eval.txt, src/Makefile,

src/testdir/test_bufline.vim, src/testdir/test_alot.vim

Patch 8.0.1040
Problem: Cannot use another error format in getqflist().
Solution: Add the "efm" argument to getqflist(). (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.1041
Problem: Bogus characters appear when indenting kicks in while doing a

visual-block append.
Solution: Recompute when indenting is done. (Christian Brabandt)
Files: runtime/doc/visual.txt, src/charset.c, src/edit.c, src/misc1.c,

src/ops.c, src/proto/charset.pro, src/proto/misc1.pro,
src/screen.c, src/spell.c, src/testdir/test_cindent.vim

version8.txt — 3139

Patch 8.0.1042 (after 8.0.1038)
Problem: Without the syntax feature highlighting doesn't work.
Solution: Always use unsigned short to store attributes.
Files: src/vim.h

Patch 8.0.1043
Problem: Warning for uninitialized variable. (John Marriott)
Solution: Move code to check indent inside "if".
Files: src/ops.c

Patch 8.0.1044
Problem: Warning for uninitialized variable. (John Marriott)
Solution: Initialize ind_pre.
Files: src/ops.c

Patch 8.0.1045
Problem: Running tests may pollute shell history. (Manuel Ortega)
Solution: Make $HISTFILE empty.
Files: src/testdir/setup.vim

Patch 8.0.1046
Problem: Code duplication in diff mode.
Solution: Use diff_equal_char() also in diff_cmp(). (Rick Howe)
Files: src/diff.c

Patch 8.0.1047
Problem: Buffer overflow in Ruby.
Solution: Allocate one more byte. (Dominique Pelle)
Files: src/if_ruby.c

Patch 8.0.1048
Problem: No test for what 8.0.1020 fixes.
Solution: Add test_feedinput(). Add a test. (Ozaki Kiichi, closes #2046)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_timers.vim,

src/ui.c

Patch 8.0.1049
Problem: Shell on Mac can't handle long text, making terminal test fail.
Solution: Only write 1000 characters instead of 5000.
Files: src/testdir/test_terminal.vim

Patch 8.0.1050
Problem: Terminal window feature not included by default.
Solution: Include the terminal feature for the "huge" build.
Files: src/configure.ac, src/auto/configure

Patch 8.0.1051
Problem: Cannot run terminal with spaces in argument.
Solution: Accept backslash to escape space and other characters. (closes

#1999)
Files: src/os_unix.c, src/testdir/test_terminal.vim

Patch 8.0.1052
Problem: term_start() does not allow in_io, out_io and err_io options.
Solution: Add JO_OUT_IO to get_job_options().
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1053
Problem: setline() does not work on startup. (Manuel Ortega)
Solution: Do not check for ml_mfp to be set for the current buffer.

version8.txt — 3140

(Christian Brabandt)
Files: src/testdir/shared.vim, src/testdir/test_alot.vim,

src/testdir/test_bufline.vim, src/testdir/test_timers.vim,
src/evalfunc.c

Patch 8.0.1054
Problem: Terminal test fails on MS-Windows.
Solution: Disable the redirection test for now. Improve scrape test to make

it less flaky.
Files: src/testdir/test_terminal.vim

Patch 8.0.1055
Problem: Bufline test hangs on MS-Windows.
Solution: Avoid message for writing file. Source shared.vim when running

test individually.
Files: src/testdir/test_bufline.vim, src/testdir/test_timers.vim

Patch 8.0.1056
Problem: Cannot build with the diff feature but without the multibyte

feature.
Solution: Remove #ifdefs. (John Marriott)
Files: src/diff.c

Patch 8.0.1057
Problem: Terminal scrape test waits too long, it checks for one instead of

three.
Solution: Check there are three characters. (micbou)
Files: src/testdir/test_terminal.vim

Patch 8.0.1058
Problem: Terminal redirection test is flaky.
Solution: Wait for job to finish.
Files: src/testdir/test_terminal.vim

Patch 8.0.1059
Problem: older Gnome terminal returns smaller version number. (antarestrue)
Solution: Lower version limit from 2800 to 2500. (#2032)
Files: src/term.c

Patch 8.0.1060
Problem: When imstyle is zero, mapping <Left> breaks preediting.
Solution: Pass though preediting key-events. (Yasuhiro Matsumoto, closes

#2064, closes #2063)
Files: src/getchar.c, src/mbyte.c

Patch 8.0.1061
Problem: Coverity: no check for NULL command.
Solution: Check for NULL list item.
Files: src/terminal.c

Patch 8.0.1062
Problem: Coverity warnings in libvterm.
Solution: Add (void) to avoid warning for not checking return value.

Add "break" before "case".
Files: src/libvterm/src/screen.c, src/libvterm/src/state.c

Patch 8.0.1063
Problem: Coverity warns for NULL check and using variable pointer as an

array.
Solution: Remove the NULL check. Make "argvar" an array.

version8.txt — 3141

Files: src/terminal.c

Patch 8.0.1064
Problem: Coverity warns for leaking resource.
Solution: Free pty_master_fd on failure.
Files: src/os_unix.c

Patch 8.0.1065
Problem: Not all macro examples are included in the self-installing

executable. (lkintact)
Solution: Add the directories to the NSIS script. (closes #2065)
Files: nsis/gvim.nsi

Patch 8.0.1066
Problem: Some terminals can't handle requesting cursor mode. (Steven

Hartland)
Solution: Recognize vandyke SecureCRT. (closes #2008)
Files: src/term.c

Patch 8.0.1067
Problem: Using try/catch in timer does not prevent it from being stopped.
Solution: Reset the exception context and use did_emsg instead of

called_emsg.
Files: src/ex_cmds2.c, src/testdir/test_timers.vim, src/globals.h,

src/message.c

Patch 8.0.1068 (after 8.0.1066)
Problem: Vandyke SecureCRT terminal can't handle cursor mode request.

(Steven Hartland)
Solution: Fix pointer computation. (closes #2008)
Files: src/term.c

Patch 8.0.1069
Problem: Still get CTRL-X sometimes for t_RS request.
Solution: Also skip 0x18 after a key code response.
Files: src/term.c

Patch 8.0.1070
Problem: Terminal test is flaky on Mac.
Solution: Add Test_terminal_noblock() to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.1071
Problem: $TERM names starting with "putty" and "cygwin" are likely to have

a dark background, but are not recognized.
Solution: Only check the first few characters of $TERM to match "putty" or

"cygwin". (Christian Brabandt)
Files: src/option.c

Patch 8.0.1072
Problem: The :highlight command causes a redraw even when nothing changed.
Solution: Only set "need_highlight_changed" when an attribute changed.
Files: src/syntax.c

Patch 8.0.1073
Problem: May get an endless loop if 'statusline' changes a highlight.
Solution: Do not let evaluating 'statusline' trigger a redraw.
Files: src/buffer.c

Patch 8.0.1074

version8.txt — 3142

Problem: ":term NONE" does not work on MS-Windows.
Solution: Make it work. Split "pty" into "pty_in" and "pty_out". (Yasuhiro

Matsumoto, closes #2058, closes #2045)
Files: runtime/doc/eval.txt,

runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,
src/channel.c, src/evalfunc.c, src/os_unix.c, src/structs.h,
src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1075
Problem: MS-Windows: mouse does not work in terminal.
Solution: Force the winpty mouse on. (Yasuhiro Matsumoto, closes #2072)
Files: src/terminal.c

Patch 8.0.1076
Problem: term_start() does not take callbacks. When using two terminals

without a job only one is read from. A terminal without a window
returns the wrong pty.

Solution: Support "callback", "out_cb" and "err_cb". Fix terminal without a
window. Fix reading from multiple channels.

Files: src/terminal.c, src/proto/terminal.pro, src/channel.c

Patch 8.0.1077
Problem: No debugger making use of the terminal window.
Solution: Add the term debugger plugin. So far only displays the current

line when stopped.
Files: Filelist, runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.0.1078
Problem: Using freed memory with ":hi Normal".
Solution: Get "item" again after updating the table.
Files: src/syntax.c

Patch 8.0.1079
Problem: Memory leak when remote_foreground() fails.
Solution: Free the error message.
Files: src/evalfunc.c, src/if_xcmdsrv.c

Patch 8.0.1080
Problem: Memory leak for eof_chars terminal option and buffer name.
Solution: Free job options. Free the buffer name
Files: src/terminal.c

Patch 8.0.1081
Problem: Memory leak for the channel write queue.
Solution: Free the write queue when clearing a channel.
Files: src/channel.c

Patch 8.0.1082
Problem: Tests fail when run under valgrind.
Solution: Increase waiting times.
Files: src/testdir/test_clientserver.vim, src/testdir/test_terminal.vim

Patch 8.0.1083
Problem: Leaking memory in input part of channel.
Solution: Clear the input part of channel. Free the entry. Move failing

command test to a separate file to avoid bogus leak reports
clouding tests that should not leak.

Files: src/channel.c, src/testdir/test_terminal.vim, src/Makefile,
src/testdir/test_terminal_fail.vim, src/testdir/Make_all.mak

version8.txt — 3143

Patch 8.0.1084
Problem: GTK build has compiler warnings. (Christian Brabandt)
Solution: Get screen size with a different function. (Ken Takata, Yasuhiro

Matsumoto)
Files: src/mbyte.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro,

src/gui_beval.c

Patch 8.0.1085
Problem: The terminal debugger can't set breakpoints.
Solution: Add :Break and :Delete commands. Also commands for stepping

through code.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1086 (after 8.0.1084)
Problem: Can't build with GTK 3.
Solution: Rename function argument. (Kazunobu Kuriyama)
Files: src/gui_gtk_x11.c

Patch 8.0.1087
Problem: Test_terminal_cwd is flaky. MS-Windows: term_start() "cwd"

argument does not work.
Solution: Wait for the condition to be true instead of using a sleep.

Pass the directory to winpty.
Files: src/testdir/test_terminal.vim, src/terminal.c

Patch 8.0.1088
Problem: Occasional memory use after free.
Solution: Use the highlight table directly, don't keep a pointer.
Files: src/syntax.c

Patch 8.0.1089
Problem: Cannot get range count in user command.
Solution: Add <range> argument.
Files: src/ex_docmd.c, runtime/doc/map.txt

Patch 8.0.1090
Problem: cannot get the text under the cursor like v:beval_text
Solution: Add <cexpr>.
Files: src/ex_docmd.c, src/testdir/test_normal.vim,

runtime/doc/cmdline.txt

Patch 8.0.1091 (after 8.0.1090)
Problem: Test for <cexpr> fails without +balloon_eval feature.
Solution: Remove #ifdefs.
Files: src/normal.c

Patch 8.0.1092
Problem: Terminal debugger can't evaluate expressions.
Solution: Add :Evaluate and K. Various other improvements.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1093
Problem: Various small quickfix issues.
Solution: Remove ":" prefix from title set by a user. Add the qf_id2nr().

function. Add a couple more tests. Update documentation.
(Yegappan Lakshmanan)

Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/evalfunc.c,
src/proto/quickfix.pro, src/quickfix.c,

version8.txt — 3144

src/testdir/test_quickfix.vim

Patch 8.0.1094
Problem: Using ssh from Terminal.app runs into xterm incompatibility.
Solution: Also detect Terminal.app on non-Mac systems.
Files: src/term.c

Patch 8.0.1095
Problem: Terminal multibyte scrape test is flaky.
Solution: Add another condition to wait for.
Files: src/testdir/test_terminal.vim

Patch 8.0.1096
Problem: Terminal window in Normal mode has wrong background.
Solution: Store the default background and use it for clearing until the

end of the line. Not for below the last line, since there is no
text there.

Files: src/screen.c, src/terminal.c

Patch 8.0.1097 (after 8.0.1096)
Problem: Background color wrong if job changes background color.
Solution: Get the background color from vterm.
Files: src/terminal.c, src/screen.c

Patch 8.0.1098
Problem: Build failure if libvterm installed on the system. (Oleh

Hushchenkov)
Solution: Change the CCCTERM argument order. (Ken Takata, closes #2080)
Files: src/Makefile

Patch 8.0.1099
Problem: Warnings for GDK calls.
Solution: Use other calls for GTK 3 and fix a few problems. (Kazunobu

Kuriyama)
Files: src/mbyte.c

Patch 8.0.1100
Problem: Stuck in redraw loop when 'lazyredraw' is set.
Solution: Don't loop on update_screen() when not redrawing. (Yasuhiro

Matsumoto, closes #2082)
Files: src/terminal.c, src/screen.c, src/proto/screen.pro

Patch 8.0.1101
Problem: Channel write fails if writing to log fails.
Solution: Ignore return value of fwrite(). (Ozaki Kiichi, closes #2081)
Files: src/channel.c

Patch 8.0.1102
Problem: Terminal window does not use Normal colors.
Solution: For the GUI and when 'termguicolors' is enabled, use the actual

foreground and background colors for the terminal. (Yasuhiro
Matsumoto, closes #2067)
Use the "Terminal" highlight group if defined.

Files: src/terminal.c, src/syntax.c, src/proto/syntax.pro

Patch 8.0.1103 (after 8.0.1102)
Problem: Converting cterm color fails for grey ramp.
Solution: Use index instead of number.
Files: src/terminal.c

version8.txt — 3145

Patch 8.0.1104
Problem: The qf_jump() function is too long.
Solution: Split of parts to separate functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.1105
Problem: match() and matchend() are not tested.
Solution: Add tests. (Ozaki Kiichi, closes #2088)
Files: src/testdir/test_functions.vim, src/testdir/test_match.vim

Patch 8.0.1106
Problem: Terminal colors on an MS-Windows console are not matching the

normal colors.
Solution: Use the normal colors for the terminal. (Yasuhiro Matsumoto,

closes #2087)
Files: src/terminal.c

Patch 8.0.1107
Problem: Terminal debugger jumps to non-existing file.
Solution: Check that the file exists. Add an option to make the Vim width

wide. Fix removing highlight groups.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1108
Problem: Cannot specify mappings for the terminal window.
Solution: Add the :tmap command and associated code. (Jacob Askeland,

closes #2073)
Files: runtime/doc/map.txt, runtime/doc/terminal.txt, src/ex_cmdidxs.h,

src/ex_cmds.h, src/ex_docmd.c, src/getchar.c, src/gui.c,
src/terminal.c, src/testdir/test_terminal.vim, src/vim.h,
src/proto/terminal.pro, src/main.c, src/evalfunc.c

Patch 8.0.1109
Problem: Timer causes error on exit from Ex mode. (xtal8)
Solution: save and restore the ex_pressedreturn flag. (Christian Brabandt,

closes #2079)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/ex_cmds2.c,

src/testdir/test_timers.vim

Patch 8.0.1110
Problem: FORTIFY_SOURCE from Perl causes problems. (Scott Baker)
Solution: Filter out the flag. (Christian Brabandt, closes #2068)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1111
Problem: Syntax error in configure when using Perl.
Solution: Add missing quote
Files: src/configure.ac, src/auto/configure

Patch 8.0.1112
Problem: Can't get size or current index from quickfix list.
Solution: Add "idx" and "size" options. (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.1113
Problem: Can go to Insert mode from Terminal-Normal mode.
Solution: Prevent :startinsert and "VA" to enter Insert mode. (Yasuhiro

Matsumoto, closes #2092)

version8.txt — 3146

Files: src/normal.c

Patch 8.0.1114
Problem: Default for 'iminsert' is annoying.
Solution: Make the default always zero. (Yasuhiro Matsumoto, closes #2071)
Files: src/option.c, runtime/doc/options.txt

Patch 8.0.1115
Problem: Crash when using foldtextresult() recursively.
Solution: Avoid recursive calls. (Yasuhiro Matsumoto, closes #2098)
Files: src/evalfunc.c, src/testdir/test_fold.vim

Patch 8.0.1116
Problem: Terminal test fails on MS-Windows.
Solution: Wait for the text to appear. (micbou, closes #2097)
Files: src/testdir/test_terminal.vim

Patch 8.0.1117
Problem: Test_terminal_no_cmd hangs on MS-Windows with GUI. (Christian

Brabandt)
Solution: Run the command with "start" and wait for the text to appear.

(micbou, closes #2096)
Files: src/testdir/test_terminal.vim

Patch 8.0.1118
Problem: FEAT_WINDOWS adds a lot of #ifdefs while it is nearly always

enabled and only adds 7% to the binary size of the tiny build.
Solution: Graduate FEAT_WINDOWS.
Files: src/feature.h, src/window.c, src/vim.h, src/structs.h,

src/globals.h, src/gui.h, src/if_py_both.h, src/option.h,
src/term.h, src/buffer.c, src/charset.c, src/digraph.c,
src/edit.c, src/eval.c, src/evalfunc.c, src/ex_cmds.c,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/fileio.c,
src/fold.c, src/getchar.c, src/gui.c, src/gui_athena.c,
src/gui_beval.c, src/gui_gtk.c, src/gui_motif.c, src/gui_w32.c,
src/if_cscope.c, src/if_lua.c, src/if_mzsch.c, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/if_tcl.c, src/main.c,
src/mark.c, src/memline.c, src/misc1.c, src/misc2.c, src/move.c,
src/netbeans.c, src/normal.c, src/option.c, src/popupmnu.c,
src/quickfix.c, src/screen.c, src/search.c, src/spell.c,
src/syntax.c, src/tag.c, src/term.c, src/ui.c, src/version.c,
src/workshop.c, src/if_perl.xs, src/testdir/test_normal.vim

Patch 8.0.1119
Problem: Quitting a split terminal window kills the job. (Yasuhiro

Matsumoto)
Solution: Only stop terminal job if it is the last window.
Files: src/buffer.c, src/testdir/test_terminal.vim

Patch 8.0.1120 (after 8.0.1108)
Problem: :tm means :tmap instead of :tmenu. (Taro Muraoka)
Solution: Move the new entry below the old entry. (closes #2102)
Files: src/ex_cmds.h, runtime/doc/map.txt

Patch 8.0.1121
Problem: Can uncheck executables in MS-Windows installer.
Solution: Make the choice read-only. (Ken Takata, closes #2106)
Files: nsis/gvim.nsi

Patch 8.0.1122

version8.txt — 3147

Problem: vimtutor.bat doesn't work well with vim.bat.
Solution: Use "call vim". (Ken Takata, closes #2105)
Files: vimtutor.bat

Patch 8.0.1123
Problem: Cannot define a toolbar for a window.
Solution: Add a window-local toolbar.
Files: src/syntax.c, src/proto/syntax.pro, src/structs.h, src/menu.c,

src/proto/menu.pro, src/testdir/test_winbar.vim, src/Makefile,
src/normal.c, src/testdir/Make_all.mak, src/if_perl.xs,
src/eval.c, src/evalfunc.c, src/window.c, src/ui.c,
src/terminal.c, src/screen.c,
runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,
runtime/doc/gui.txt, runtime/doc/terminal.txt

Patch 8.0.1124
Problem: Use of MZSCHEME_VER is unclear.
Solution: Add a comment. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.0.1125
Problem: Wrong window height when splitting window with window toolbar.
Solution: Add or subtract the window toolbar height.
Files: src/window.c

Patch 8.0.1126
Problem: Endless resize when terminal showing in two buffers. (Hirohito

Higashi)
Solution: Set a flag to prevent resizing the window.
Files: src/terminal.c

Patch 8.0.1127
Problem: Test_peek_and_get_char fails on 32 bit system. (Elimar

Riesebieter)
Solution: Avoid an integer overflow. (James McCoy, closes #2116)
Files: src/ex_cmds2.c

Patch 8.0.1128
Problem: Old xterm sends CTRL-X in response to t_RS.
Solution: Only send t_RS for xterm 279 and later. Remove the workaround to

ignore CTRL-X.
Files: src/term.c

Patch 8.0.1129
Problem: Window toolbar missing a part of the patch.
Solution: Add change in vim.h.
Files: src/vim.h

Patch 8.0.1130
Problem: The qf_jump() function is still too long.
Solution: Split of parts to separate functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.1131
Problem: It is not easy to trigger an autocommand for new terminal window.

(Marco Restelli)
Solution: Trigger BufWinEnter after setting 'buftype'.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1132

version8.txt — 3148

Problem: #if condition is not portable.
Solution: Add defined(). (Zuloloxi, closes #2136)
Files: src/libvterm/src/vterm.c

Patch 8.0.1133
Problem: Syntax timeout not used correctly.
Solution: Do not pass the timeout to syntax_start() but set it explicitly.

(Yasuhiro Matsumoto, closes #2139)
Files: src/proto/syntax.pro, src/screen.c, src/syntax.c

Patch 8.0.1134
Problem: Superfluous call to syn_get_final_id().
Solution: Remove it. (Ken Takata)
Files: src/syntax.c

Patch 8.0.1135
Problem: W_WINCOL() is always the same.
Solution: Expand the macro.
Files: src/edit.c, src/ex_docmd.c, src/gui_gtk.c, src/gui_w32.c,

src/netbeans.c, src/popupmnu.c, src/screen.c, src/term.c,
src/terminal.c, src/ui.c, src/window.c, src/if_py_both.h,
src/structs.h, src/vim.h

Patch 8.0.1136
Problem: W_WIDTH() is always the same.
Solution: Expand the macro.
Files: src/charset.c, src/edit.c, src/evalfunc.c, src/ex_cmds.c,

src/ex_docmd.c, src/getchar.c, src/gui.c, src/gui_beval.c,
src/gui_mac.c, src/if_lua.c, src/if_mzsch.c, src/if_py_both.h,
src/if_ruby.c, src/misc1.c, src/misc2.c, src/move.c, src/normal.c,
src/popupmnu.c, src/quickfix.c, src/screen.c, src/search.c,
src/structs.h, src/ui.c, src/vim.h, src/window.c

Patch 8.0.1137 (after 8.0.1136)
Problem: Cannot build with Ruby.
Solution: Fix misplaced brace.
Files: src/if_ruby.c

Patch 8.0.1138
Problem: Click in window toolbar starts Visual mode.
Solution: Add the MOUSE_WINBAR flag.
Files: src/ui.c, src/vim.h, src/normal.c

Patch 8.0.1139
Problem: Using window toolbar changes state.
Solution: Always execute window toolbar actions in Normal mode.
Files: runtime/doc/gui.txt, src/structs.h, src/ex_docmd.c,

src/proto/ex_docmd.pro, src/menu.c

Patch 8.0.1140
Problem: Still old style tests.
Solution: Convert two tests to new style. (Yegappan Lakshmanan)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test56.in, src/testdir/test56.ok,
src/testdir/test57.in, src/testdir/test57.ok,
src/testdir/test_sort.vim, src/testdir/test_vimscript.vim

Patch 8.0.1141
Problem: MS-Windows build dependencies are incomplete.
Solution: Fix the dependencies. (Ken Takata)

version8.txt — 3149

Files: src/Make_cyg.mak, src/Make_cyg_ming.mak, src/Make_ming.mak,
src/Make_mvc.mak

Patch 8.0.1142
Problem: Window toolbar menu gets a tear-off item.
Solution: Recognize the window toolbar.
Files: src/menu.c

Patch 8.0.1143
Problem: Macros always expand to the same thing.
Solution: Remove W_VSEP_WIDTH() and W_STATUS_HEIGHT().
Files: src/vim.h, src/structs.h, src/gui.c, src/ex_getln.c, src/screen.c

Patch 8.0.1144
Problem: Using wrong #ifdef for computing length.
Solution: use BACKSLASH_IN_FILENAME instead of COLON_IN_FILENAME. (Yasuhiro

Matsumoto, closes #2153)
Files: src/quickfix.c

Patch 8.0.1145
Problem: Warning when compiling with Perl.
Solution: Remove unused variable. (Ken Takata)
Files: src/if_perl.xs

Patch 8.0.1146
Problem: Redraw when highlight is set with same names. (Ozaki Kiichi)
Solution: Only free and save a name when it changed. (closes #2120)
Files: src/syntax.c

Patch 8.0.1147
Problem: Fail to build with tiny features. (Tony Mechelynck)
Solution: Move #ifdefs.
Files: src/syntax.c

Patch 8.0.1148
Problem: "gN" doesn't work on last match with 'wrapscan' off. (fcpg)
Solution: Adjust for searching backward. (Christian Brabandt)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.0.1149
Problem: libvterm colors differ from xterm.
Solution: Use the xterm colors for libvterm.
Files: src/terminal.c, src/libvterm/src/pen.c,

src/testdir/xterm_ramp.vim, Filelist

Patch 8.0.1150
Problem: MS-Windows GUI: dialog font size is incorrect.
Solution: Pass flag to indicate 'encoding' or active codepage. (Yasuhiro

Matsumoto, closes #2160)
Files: src/gui_w32.c

Patch 8.0.1151
Problem: "vim -c startinsert!" doesn't append.
Solution: Correct line number on startup. (Christian Brabandt, closes #2117)
Files: src/ex_docmd.c, src/testdir/test_startup.vim

Patch 8.0.1152
Problem: Encoding of error message wrong in Cygwin terminal.
Solution: Get locale from environment variables. (Ken Takata)
Files: src/main.c, src/mbyte.c, src/proto/mbyte.pro

version8.txt — 3150

Patch 8.0.1153
Problem: No tests for diff_hlID() and diff_filler().
Solution: Add tests. (Dominique Pelle, closes #2156)
Files: src/testdir/test_diffmode.vim

Patch 8.0.1154
Problem: 'indentkeys' does not work properly. (Gary Johnson)
Solution: Get the cursor line again. (Christian Brabandt, closes #2151)
Files: src/edit.c, src/testdir/test_edit.vim

Patch 8.0.1155
Problem: Ruby command triggers a warning when RUBYOPT is set to "-w".
Solution: use "-e_=0" instead of "-e0". (Masataka Pocke Kuwabara, closes

#2143)
Files: src/if_ruby.c

Patch 8.0.1156
Problem: Removing one -W argument from Perl CFLAGS may cause trouble.
Solution: Remove all -W flags. (Christian Brabandt)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1157
Problem: Compiler warning on MS-Windows.
Solution: Add type cast. (Yasuhiro Matsumoto)
Files: src/main.c

Patch 8.0.1158
Problem: Still old style tests.
Solution: Convert several tests to new style. (Yegappan Lakshmanan)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/main.aap, src/testdir/test33.in,
src/testdir/test33.ok, src/testdir/test41.in,
src/testdir/test41.ok, src/testdir/test43.in,
src/testdir/test43.ok, src/testdir/test53.in,
src/testdir/test53.ok, src/testdir/test_file_size.vim,
src/testdir/test_lispwords.vim, src/testdir/test_search.vim,
src/testdir/test_textobjects.vim

Patch 8.0.1159
Problem: Typo in #ifdef.
Solution: Change "PROT" to "PROTO". (Nobuhiro Takasaki, closes #2165)
Files: src/syntax.c

Patch 8.0.1160
Problem: Getting tab-local variable fails after closing window.
Solution: set tp_firstwin and tp_lastwin. (Jason Franklin, closes #2170)
Files: src/window.c, src/evalfunc.c, src/testdir/test_getvar.vim

Patch 8.0.1161
Problem: Popup menu drawing problem when resizing terminal.
Solution: Redraw after resizing also when a popup menu is visible. (Ozaki

Kiichi, closes #2110)
Files: src/popupmnu.c, src/term.c, src/testdir/shared.vim,

src/testdir/test_popup.vim

Patch 8.0.1162
Problem: Shared script for tests cannot be included twice.
Solution: Include it where needed, it will "finish" if loaded again.
Files: src/testdir/test_alot.vim, src/testdir/test_bufline.vim,

version8.txt — 3151

src/testdir/test_timers.vim

Patch 8.0.1163
Problem: Popup test is flaky.
Solution: Add a WaitFor() and fix another.
Files: src/testdir/test_popup.vim

Patch 8.0.1164
Problem: Changing StatusLine highlight while evaluating 'statusline' may

not change the status line color.
Solution: When changing highlighting while redrawing don't cause another

redraw. (suggested by Ozaki Kiichi, closes #2171, closes #2120)
Files: src/buffer.c, src/syntax.c

Patch 8.0.1165
Problem: Popup test is still flaky.
Solution: Add a term_wait() call. (Ozaki Kiichi)
Files: src/testdir/test_popup.vim

Patch 8.0.1166
Problem: :terminal doesn't work on Mac High Sierra.
Solution: Change #ifdef for OpenPTY(). (Ozaki Kiichi, Kazunobu Kuriyama,

closes #2162)
Files: src/pty.c

Patch 8.0.1167
Problem: Motif: typing in terminal window is slow.
Solution: Do not redraw the whole terminal window but only what was changed.
Files: src/terminal.c

Patch 8.0.1168
Problem: wrong highlighting with combination of match and 'cursorline'.
Solution: Use "line_attr" when appropriate. (Ozaki Kiichi, closes #2111)

But don't highlight more than one character.
Files: src/screen.c, src/testdir/test_highlight.vim,

src/testdir/view_util.vim

Patch 8.0.1169
Problem: Highlighting one char too many with 'list' and 'cul'.
Solution: Check for 'list' being active. (Ozaki Kiichi, closes #2177)
Files: src/screen.c, src/testdir/test_highlight.vim

Patch 8.0.1170
Problem: Using termdebug results in 100% CPU time. (tomleb)
Solution: Use polling instead of select().
Files: src/os_unix.c, src/channel.c, src/proto/channel.pro

Patch 8.0.1171
Problem: Popup test is still a bit flaky.
Solution: Change term_wait() calls. (Ozaki Kiichi)
Files: src/testdir/test_popup.vim

Patch 8.0.1172
Problem: When E734 is given option is still set.
Solution: Assign NULL to "s". (Christian Brabandt)
Files: src/eval.c, src/testdir/test_assign.vim

Patch 8.0.1173
Problem: Terminal window is not redrawn after CTRL-L. (Marcin Szamotulski)
Solution: Redraw the whole terminal when w_redr_type is NOT_VALID.

version8.txt — 3152

Files: src/terminal.c

Patch 8.0.1174
Problem: Mac Terminal.app has wrong color for white.
Solution: Use white from the color cube.
Files: src/globals.h, src/term.c, src/syntax.c

Patch 8.0.1175 (after 8.0.1174)
Problem: Build failure without +termresponse.
Solution: Add #ifdef.
Files: src/syntax.c

Patch 8.0.1176
Problem: Job_start() does not handle quote and backslash correctly.
Solution: Remove quotes, recognize and remove backslashes.
Files: src/testdir/test_channel.vim, src/os_unix.c

Patch 8.0.1177
Problem: In a terminal window the popup menu is not cleared. (Gerry

Agbobada)
Solution: Redraw when SOME_VALID is used instead of NOT_VALID. (closes

#2194)
Files: src/terminal.c

Patch 8.0.1178
Problem: Using old compiler on MS-Windows.
Solution: Switch default build on MS-Windows to use MSVC 2015. (Ken Takata)
Files: src/msvc2015.bat, src/INSTALLpc.txt, src/GvimExt/Makefile,

src/Make_mvc.mak, src/tee/Make_mvc.mak, src/xxd/Make_mvc.mak

Patch 8.0.1179
Problem: Test_popup_and_window_resize() does not always pass.
Solution: Do not use $VIMPROG, pass the Vim executable in the vimcmd file.

(Ozaki Kiichi, closes #2186)
Files: src/testdir/Makefile, src/testdir/shared.vim,

src/testdir/test_popup.vim

Patch 8.0.1180
Problem: MS-Windows testclean target deletes the color script.
Solution: Rename the script file.
Files: src/testdir/xterm_ramp.vim, src/testdir/color_ramp.vim

Patch 8.0.1181
Problem: Tests using Vim command fail on MS-Windows.
Solution: Do not add quotes around the Vim command.
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak

Patch 8.0.1182
Problem: Cannot see or change mzscheme dll name.
Solution: Add 'mzschemedll' and 'mzschemegcdll'.
Files: src/if_mzsch.c, src/option.h, src/option.c,

runtime/doc/if_mzsch.txt

Patch 8.0.1183
Problem: MS-Windows build instructions are outdated.
Solution: Update instructions for MSVC 2015. Update the build script.
Files: Filelist, Makefile, src/INSTALLpc.txt, src/bigvim.bat

Patch 8.0.1184
Problem: The :marks command is not tested.

version8.txt — 3153

Solution: Add a test. (Dominique Pelle, closes #2197)
Files: src/testdir/test_marks.vim

Patch 8.0.1185
Problem: Ruby library includes minor version number.
Solution: Only use the API version number. (Ben Boeckel, closes #2199)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1186
Problem: Still quite a few old style tests.
Solution: Convert old to new style tests. (Yegappan Lakshmanan)

Avoid ringing the bell while running tests.
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_ming.mak,

src/testdir/Make_vms.mms, src/testdir/main.aap,
src/testdir/test31.in, src/testdir/test31.ok,
src/testdir/test4.in, src/testdir/test4.ok, src/testdir/test5.in,
src/testdir/test5.ok, src/testdir/test60.in,
src/testdir/test60.ok, src/testdir/test60.vim,
src/testdir/test7.in, src/testdir/test7.ok, src/testdir/test78.in,
src/testdir/test78.ok, src/testdir/test_autocmd.vim,
src/testdir/test_exists.vim, src/testdir/test_recover.vim,
src/testdir/test_winbuf_close.vim, src/testdir/runtest.vim

Patch 8.0.1187
Problem: Building with lua fails for OSX on Travis.
Solution: Separate brew-update and brew-install. (Ozaki Kiichi, closes #2203)
Files: .travis.yml

Patch 8.0.1188
Problem: Autocmd test fails on MS-Windows.
Solution: Give the buffer a name and find the buffer to be wiped out by

name.
Files: src/testdir/test_autocmd.vim

Patch 8.0.1189
Problem: E172 is not actually useful, it's only on Unix anyway.
Solution: Remove the check and the error.
Files: src/ex_docmd.c, runtime/doc/message.txt

Patch 8.0.1190
Problem: Vim becomes unusable after opening new window in BufWritePre

event.
Solution: Call not_exiting(). (Martin Tournoij, closes #2205)

Also for "2q" when a help window is open. Add a test.
Files: src/ex_docmd.c, src/testdir/test_writefile.vim

Patch 8.0.1191
Problem: MS-Windows: missing 32 and 64 bit files in installer.
Solution: Include both 32 and 64 bit GvimExt and related dll files. Remove

old Windows code from the installer. (Ken Takata, closes #2144)
Files: nsis/README.txt, nsis/gvim.nsi, src/GvimExt/gvimext.cpp,

src/dosinst.c, src/dosinst.h, src/uninstal.c, Makefile

Patch 8.0.1192
Problem: MS-Windows: terminal feature not enabled by default.
Solution: Enable it. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.0.1193
Problem: Crash when wiping out a buffer after using getbufinfo().

version8.txt — 3154

(Yegappan Lakshmanan)
Solution: Remove b:changedtick from the buffer variables.
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 8.0.1194
Problem: Actual fg and bg colors of terminal are unknown.
Solution: Add t_RF. Store response to t_RB and t_RF, use for terminal.
Files: src/term.c, src/term.h, src/proto/term.pro, src/terminal.c,

src/vim.h, src/eval.c, runtime/doc/eval.txt

Patch 8.0.1195 (after 8.0.1194)
Problem: Can't build on MS-Windows.
Solution: Adjust #ifdef and add #ifdefs.
Files: src/term.c, src/terminal.c

Patch 8.0.1196 (after 8.0.1194)
Problem: Crash when t_RF is not set. (Brian Pina)
Solution: Add t_RF to the list of terminal options. (Hirohito Higashi)
Files: src/option.c

Patch 8.0.1197
Problem: MS-Windows build instructions are not up to date.
Solution: Adjust the instructions. Fix the nsis script.
Files: Makefile, nsis/gvim.nsi

Patch 8.0.1198
Problem: Older compilers don't know uint8_t.
Solution: Use char_u instead.
Files: src/term.c, src/proto/term.pro

Patch 8.0.1199
Problem: When 'clipboard' is "autoselectplus" the star register is also

set. (Gilles Moris)
Solution: Don't set the star register in this situation.
Files: src/ops.c

Patch 8.0.1200
Problem: Tests switch the bell off twice.
Solution: Don't set 'belloff' in individual tests. (Christian Brabandt)
Files: src/testdir/test_alot.vim, src/testdir/test_alot_utf8.vim,

src/testdir/test_autocmd.vim, src/testdir/test_cmdline.vim,
src/testdir/test_diffmode.vim, src/testdir/test_digraph.vim,
src/testdir/test_edit.vim, src/testdir/test_file_size.vim,
src/testdir/test_gn.vim, src/testdir/test_normal.vim,
src/testdir/test_packadd.vim, src/testdir/test_popup.vim,
src/testdir/test_recover.vim, src/testdir/test_search.vim,
src/testdir/test_textobjects.vim, src/testdir/test_undo.vim,
src/testdir/test_usercommands.vim, src/testdir/test_visual.vim

Patch 8.0.1201
Problem: "yL" is affected by 'scrolloff'. (Eli the Bearded)
Solution: Don't use 'scrolloff' when an operator is pending.
Files: src/normal.c, runtime/doc/motion.txt

Patch 8.0.1202
Problem: :wall gives an error for a terminal window. (Marius Gedminas)
Solution: Don't try writing a buffer that can't be written. (Yasuhiro

Matsumoto, closes #2190)
Files: src/ex_cmds.c, src/testdir/test_terminal.vim

version8.txt — 3155

Patch 8.0.1203
Problem: Terminal window mistreats composing characters.
Solution: Count composing characters with the base character. (Ozaki Kiichi,

closes #2195)
Files: src/mbyte.c, src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1204
Problem: A QuitPre autocommand may get the wrong file name.
Solution: Pass the buffer being closed to apply_autocmds(). (Rich Howe)
Files: src/ex_docmd.c, src/testdir/test_autocmd.vim

Patch 8.0.1205
Problem: Using "1q" it is possible to unload a changed buffer. (Rick Howe)
Solution: Check the right window for changes.
Files: src/testdir/test_edit.vim, src/ex_docmd.c

Patch 8.0.1206
Problem: No autocmd for entering or leaving the command line.
Solution: Add CmdlineEnter and CmdlineLeave.
Files: runtime/doc/autocmd.txt, src/ex_getln.c, src/fileio.c, src/vim.h,

src/testdir/test_autocmd.vim

Patch 8.0.1207
Problem: Profiling skips the first and last script line.
Solution: Check for BOM after setting script ID. (LemonBoy, closes #2103,

closes #2112) Add a test. List the trailing script lines.
Files: src/testdir/test_profile.vim, src/ex_cmds2.c

Patch 8.0.1208
Problem: 'statusline' drops empty group with highlight change.
Solution: Do not drop an empty group if it changes highlighting. (Marius

Gedminas, closes #2228)
Files: src/buffer.c, src/testdir/test_statusline.vim

Patch 8.0.1209
Problem: Still too many old style tests.
Solution: Convert a few more tests to new style. (Yegappan Lakshmanan,

closes #2230)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_ming.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Makefile, src/testdir/Make_vms.mms,
src/testdir/main.aap, src/testdir/test34.in,
src/testdir/test34.ok, src/testdir/test54.in,
src/testdir/test54.ok, src/testdir/test8.in, src/testdir/test8.ok,
src/testdir/test_autocmd.vim, src/testdir/test_autoformat_join.in,
src/testdir/test_autoformat_join.ok, src/testdir/test_join.vim,
src/testdir/test_user_func.vim

Patch 8.0.1210
Problem: When typing a search pattern CTRL-G and CTRL-T are ignored when

there is typeahead.
Solution: Don't pass SEARCH_PEEK and don't call char_avail(). (haya14busa,

closes #2233)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.0.1211
Problem: Cannot reorder tab pages with drag & drop.
Solution: Support drag & drop for GTK and MS-Windows. (Ken Takata, Masamichi

Abe)
Files: src/gui_gtk_x11.c, src/gui_w32.c

version8.txt — 3156

Patch 8.0.1212
Problem: MS-Windows: tear-off menu does not work on 64 bit. (shaggyaxe)
Solution: Change how the menu handle is looked up. (Ken Takata, closes

#1205)
Files: src/gui_w32.c

Patch 8.0.1213
Problem: Setting 'mzschemedll' has no effect.
Solution: Move loading .vimrc to before call to mzscheme_main().
Files: src/main.c

Patch 8.0.1214
Problem: Accessing freed memory when EXITFREE is set and there is more than

one tab and window. (Dominique Pelle)
Solution: Free options later. Skip redraw when exiting.
Files: src/screen.c, src/misc2.c

Patch 8.0.1215
Problem: Newer gcc warns for implicit fallthrough.
Solution: Consistently use a FALLTHROUGH comment. (Christian Brabandt)
Files: src/buffer.c, src/edit.c, src/eval.c, src/ex_docmd.c,

src/ex_getln.c, src/main.c, src/message.c, src/normal.c,
src/regexp.c, src/regexp_nfa.c, src/spell.c, src/window.c,
src/if_perl.xs

Patch 8.0.1216
Problem: Tabline is not always updated for :file command. (Norio Takagi)
Solution: Set redraw_tabline. (Hirohito Higashi)
Files: src/ex_cmds.c

Patch 8.0.1217
Problem: Can't use remote eval to inspect vars in debug mode.
Solution: Don't discard the call stack in debug mode. (closes #2237, #2247)
Files: src/globals.h, src/ex_cmds2.c, src/main.c

Patch 8.0.1218
Problem: Writing to freed memory in autocmd.
Solution: Make a copy of the tag line. (Dominique Pelle, closes #2245)
Files: src/tag.c, src/testdir/test_autocmd.vim

Patch 8.0.1219
Problem: Terminal test is flaky.
Solution: Add test function to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.1220
Problem: Skipping empty statusline groups is not correct.
Solution: Also set group_end_userhl. (itchyny)
Files: src/buffer.c, src/testdir/test_statusline.vim

Patch 8.0.1221
Problem: Still too many old style tests.
Solution: Convert a few more tests to new style. (Yegappan Lakshmanan,

closes #2256)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_vms.mms,
src/testdir/main.aap, src/testdir/test19.in,
src/testdir/test19.ok, src/testdir/test20.in,

version8.txt — 3157

src/testdir/test20.ok, src/testdir/test25.in,
src/testdir/test25.ok, src/testdir/test28.in,
src/testdir/test28.ok, src/testdir/test32.in,
src/testdir/test32.ok, src/testdir/test38.in,
src/testdir/test38.ok, src/testdir/test66.in,
src/testdir/test66.ok, src/testdir/test79.in,
src/testdir/test79.ok, src/testdir/test_ins_complete.vim,
src/testdir/test_source_utf8.vim, src/testdir/test_substitute.vim,
src/testdir/test_tab.vim, src/testdir/test_tagjump.vim,
src/testdir/test_undo.vim, src/testdir/test_visual.vim,
src/testdir/test79.ok, src/testdir/test79.in,
src/testdir/test28.in

Patch 8.0.1222
Problem: Test functions interfere with each other.
Solution: Cleanup tab pages, windows and buffers. Reset option.
Files: src/testdir/runtest.vim, src/testdir/test_filetype.vim,

src/testdir/test_tabpage.vim, src/testdir/test_lispwords.vim

Patch 8.0.1223
Problem: Crash when using autocomplete and tab pages.
Solution: Check if the current tab changed. (Christian Brabandt, closes

#2239)
Files: src/popupmnu.c, src/testdir/test_popup.vim, src/misc1.c,

Patch 8.0.1224
Problem: Still interference between test functions.
Solution: Clear autocommands. Wipe all buffers. Fix tests that depend on a

specific start context.
Files: src/testdir/runtest.vim, src/testdir/test_autocmd.vim,

src/testdir/test_arglist.vim, src/testdir/test_bufwintabinfo.vim,
src/testdir/test_command_count.vim, src/testdir/test_quickfix.vim,
src/testdir/test_hardcopy.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_packadd.vim, src/testdir/test_signs.vim,
src/testdir/test_autochdir.vim

Patch 8.0.1225
Problem: No check for spell region being zero. (geeknik)
Solution: Check for zero. (closes #2252)
Files: src/spellfile.c, src/testdir/test_spell.vim

Patch 8.0.1226
Problem: Edit and popup tests failing.
Solution: Make the tests pass.
Files: src/testdir/test_edit.vim, src/testdir/test_popup.vim

Patch 8.0.1227
Problem: Undefined left shift in readfile(). (Brian 'geeknik' Carpenter)
Solution: Add cast to unsigned. (Dominique Pelle, closes #2253)
Files: src/fileio.c

Patch 8.0.1228
Problem: Invalid memory access in GUI test.
Solution: Check that the row is not outside of the screen.
Files: src/screen.c

Patch 8.0.1229
Problem: Condition in vim_str2nr() is always true. (Nikolai Pavlov)
Solution: Remove the condition. (Closes #2259)
Files: src/charset.c

version8.txt — 3158

Patch 8.0.1230
Problem: CTRL-A in Visual mode uses character after selection. (Nikolai

Pavlov)
Solution: Check the length before using a character.
Files: src/charset.c

Patch 8.0.1231
Problem: Expanding file name drops dash. (stucki)
Solution: Use the right position. (Christian Brabandt, closes #2184)
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.0.1232
Problem: MS-Windows users are confused about default mappings.
Solution: Don't map keys in the console where they don't work. Add a choice

in the installer to use MS-Windows key bindings or not. (Christian
Brabandt, Ken Takata, closes #2093)

Files: Filelist, nsis/gvim.nsi, nsis/vimrc.ini, src/dosinst.c,
runtime/mswin.vim

Patch 8.0.1233
Problem: Typo in dos installer.
Solution: Remove comma.
Files: src/dosinst.c

Patch 8.0.1234
Problem: MS-Windows: composing characters are not shown properly.
Solution: Pass base character and composing characters to the renderer at

once. (Ken Takata, closes #2206)
Files: src/gui.c, src/gui_w32.c

Patch 8.0.1235
Problem: Cannot disable the terminal feature in a huge build. (lindhobe)
Solution: Adjust the autoconf check. (Kazunobu Kuriyama, closes #2242)
Files: src/configure.ac, src/auto/configure, src/Makefile

Patch 8.0.1236
Problem: Mac features are confusing.
Solution: Make feature names more consistent, add "osxdarwin". Rename

feature flags, cleanup Mac code. (Kazunobu Kuriyama, closes #2178)
Also includes a fix for when Ruby throws an exception inside
:rubyfile. (ujihisa)

Files: runtime/doc/eval.txt, runtime/doc/os_mac.txt, src/auto/configure,
src/config.h.in, src/configure.ac, src/digraph.c, src/edit.c,
src/evalfunc.c, src/feature.h, src/fileio.c, src/getchar.c,
src/globals.h, src/gui.c, src/gui_mac.c, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/keymap.h, src/macros.h,
src/main.c, src/mbyte.c, src/message.c, src/misc1.c, src/misc2.c,
src/option.c, src/os_mac.h, src/os_macosx.m, src/os_unix.c,
src/proto.h, src/pty.c, src/structs.h, src/term.c, src/termlib.c,
src/ui.c, src/undo.c, src/version.c, src/vim.h, src/window.c

Patch 8.0.1237
Problem: ":set scroll&" often gives an error.
Solution: Don't use a fixed default value, use half the window height. Add a

test. (Ozaki Kiichi, closes #2104)
Files: src/Makefile, src/option.c, src/testdir/test_alot.vim,

src/testdir/test_scroll_opt.vim

Patch 8.0.1238

version8.txt — 3159

Problem: Incremental search only shows one match.
Solution: When 'incsearch' and 'hlsearch' are both set highlight all

matches. (haya14busa, itchyny, closes #2198)
Files: runtime/doc/options.txt, src/ex_getln.c, src/proto/search.pro,

src/search.c, src/testdir/test_search.vim

Patch 8.0.1239
Problem: Cannot use a lambda for the skip argument to searchpair().
Solution: Evaluate a partial, funcref and lambda. (LemonBoy, closes #1454,

closes #2265)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/proto/evalfunc.pro,

src/eval.c, src/proto/eval.pro, src/search.c,
src/testdir/test_search.vim

Patch 8.0.1240
Problem: MS-Windows: term_start() does not support environment.
Solution: Implement the environment argument. (Yasuhiro Matsumoto, closes

#2264)
Files: src/os_win32.c, src/proto/os_win32.pro, src/terminal.c,

src/testdir/test_terminal.vim

Patch 8.0.1241
Problem: Popup test is flaky. (James McCoy)
Solution: Increase the wait time. (Dominique Pelle)
Files: src/testdir/test_popup.vim

Patch 8.0.1242
Problem: Function argument with only dash is seen as number zero. (Wang

Shidong)
Solution: See a dash as a string. (Christian Brabandt)
Files: src/testdir/test_ins_complete.vim, src/Makefile, src/eval.c

Patch 8.0.1243
Problem: No test for what 8.0.1227 fixes.
Solution: Add a test that triggers the problem. (Christian Brabandt)
Files: src/testdir/test_normal.vim, src/testdir/test_search.vim

Patch 8.0.1244
Problem: Search test does not work correctly on MS-Windows.
Solution: Put text in a file instead of sending it to the terminal.

(Christian Brabandt)
Files: src/testdir/test_search.vim

Patch 8.0.1245
Problem: When WaitFor() has a wrong expression it just waits a second,

which goes unnoticed. (James McCoy)
Solution: When WaitFor() times out throw an exception. Fix places where the

expression was wrong.
Files: src/testdir/shared.vim, src/testdir/test_channel.vim,

src/testdir/test_netbeans.vim, src/testdir/test_terminal.vim

Patch 8.0.1246
Problem: Popup test has an arbitrary delay.
Solution: Wait for the ruler to show. (James McCoy)
Files: src/testdir/test_popup.vim

Patch 8.0.1247
Problem: Not easy to find Debian build info.
Solution: Add a badge in the README file. (Dominique Pelle)
Files: README.md

version8.txt — 3160

Patch 8.0.1248 (after 8.0.1247)
Problem: Stray + in README file.
Solution: Remove the +. Add a line break.
Files: README.md

Patch 8.0.1249
Problem: No error when WaitFor() gets an invalid wrong expression.
Solution: Do not ignore errors in evaluation of the expression. Fix places

where the expression was wrong.
Files: src/testdir/shared.vim, src/testdir/test_netbeans.vim

Patch 8.0.1250
Problem: 'hlsearch' highlighting not removed after incsearch (lacygoill)
Solution: Redraw all windows. Start search at the end of the match. Improve

how CTRL-G works with incremental search. Add tests. (Christian
Brabandt, Hirohito Higashi, haya14busa, closes #2267)

Files: runtime/doc/options.txt, src/ex_getln.c,
src/testdir/test_search.vim

Patch 8.0.1251 (after 8.0.1249)
Problem: Invalid expression passed to WaitFor().
Solution: Check if the variable exists.
Files: src/testdir/test_clientserver.vim

Patch 8.0.1252
Problem: Incomplete translations makefile for MinGW/Cygwin.
Solution: Add missing source files. Make it work with msys2's bash. (Ken

Takata)
Files: src/po/Make_cyg.mak, src/po/Make_ming.mak, src/po/Make_mvc.mak

Patch 8.0.1253
Problem: Still too many old style tests.
Solution: Convert a few more tests to new style. (Yegappan Lakshmanan,

closes #2272)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Make_vms.mms,
src/testdir/main.aap, src/testdir/test12.in,
src/testdir/test12.ok, src/testdir/test40.in,
src/testdir/test40.ok, src/testdir/test45.in,
src/testdir/test45.ok, src/testdir/test83.in,
src/testdir/test83.ok, src/testdir/test_autocmd.vim,
src/testdir/test_fold.vim, src/testdir/test_swap.vim,
src/testdir/test_tagjump.vim

Patch 8.0.1254
Problem: Undefined left shift in gethexchrs(). (geeknik)
Solution: Use unsigned long. (idea by Christian Brabandt, closes #2255)
Files: src/regexp.c, src/regexp_nfa.c

Patch 8.0.1255 (after 8.0.1248)
Problem: duplicate badge README file.
Solution: Remove one. (Dominique Pelle)
Files: README.md

Patch 8.0.1256
Problem: Typo in configure variable vim_cv_tgent. (Matthieu Guillard)
Solution: Rename the variable. (closes #2281)

version8.txt — 3161

Files: src/configure.ac, src/auto/configure

Patch 8.0.1257 (after 8.0.1254)
Problem: No test for fix of undefined behavior.
Solution: Add a test. (closes #2255)
Files: src/testdir/test_search.vim

Patch 8.0.1258
Problem: 'ttymouse' is set to "sgr" even though it's not supported. (Gary

Johnson)
Solution: Adjust #ifdef
Files: src/term.c

Patch 8.0.1259
Problem: Search test can be flaky.
Solution: Use WaitFor() instead of a delay. Make it possible to pass a

funcref to WaitFor() to avoid the need for global variables.
(James McCoy, closes #2282)

Files: src/testdir/shared.vim, src/testdir/test_search.vim

Patch 8.0.1260 (after 8.0.1259)
Problem: Using global variables for WaitFor().
Solution: Use a lambda function instead. Don't check a condition if

WaitFor() already checked it.
Files: src/testdir/test_popup.vim, src/testdir/test_terminal.vim,

src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_job_fails.vim, src/testdir/test_quotestar.vim

Patch 8.0.1261
Problem: Program in terminal window gets NL instead of CR. (Lifepillar)
Solution: Check the tty setup more often. (closes #1998)
Files: src/terminal.c

Patch 8.0.1262
Problem: Terminal redir test is flaky.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.1263
Problem: Others can read the swap file if a user is careless with his

primary group.
Solution: If the group permission allows for reading but the world

permissions doesn't, make sure the group is right.
Files: src/fileio.c, src/testdir/test_swap.vim, src/Makefile

Patch 8.0.1264
Problem: Terminal debugger gets stuck in small window.
Solution: Add "-quiet" to the gdb command. (Christian Brabandt, closes #2154)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.0.1265 (after 8.0.1263)
Problem: Swap test not skipped when there is one group.
Solution: Convert list to string for the message.
Files: src/testdir/test_swap.vim

Patch 8.0.1266 (after 8.0.1263)
Problem: Test_swap_directory was accidentally commented out.
Solution: Uncomment the test.
Files: src/testdir/test_swap.vim

version8.txt — 3162

Patch 8.0.1267 (after 8.0.1263)
Problem: Test_swap_group may leave file behind.
Solution: Add a try/finally.
Files: src/testdir/test_swap.vim, src/testdir/test_undo.vim

Patch 8.0.1268
Problem: PC install instructions are incomplete.
Solution: Update the instructions. (Ken Takata)
Files: src/INSTALLpc.txt

Patch 8.0.1269
Problem: Effect of autocommands on marks is not tested.
Solution: Add a couple of tests. (James McCoy, closes #2271)
Files: src/testdir/test_autocmd.vim

Patch 8.0.1270
Problem: Mismatching file name with Filelist.
Solution: Rename color_ramp.vim to xterm_ramp.vim
Files: src/testdir/color_ramp.vim, src/testdir/xterm_ramp.vim

Patch 8.0.1271
Problem: Still too many old style tests.
Solution: Convert a few more tests to new style. (Yegappan Lakshmanan,

closes #2290)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/sautest/autoload/footest.vim, src/testdir/test55.in,
src/testdir/test55.ok, src/testdir/test_changelist.in,
src/testdir/test_changelist.ok, src/testdir/test_fold.vim,
src/testdir/test_ins_complete.vim,
src/testdir/test_insertcount.in, src/testdir/test_insertcount.ok,
src/testdir/test_listdict.vim, src/testdir/test_normal.vim,
src/testdir/test_search.vim, src/testdir/test_search_mbyte.in

Patch 8.0.1272
Problem: Warnings for unused variables in tiny build.
Solution: Add #ifdef. (Dominique Pelle, closes #2288)
Files: src/term.c

Patch 8.0.1273 (after 8.0.1271)
Problem: Old test file remaining.
Solution: Delete it.
Files: src/testdir/test_search_mbyte.ok

Patch 8.0.1274
Problem: setbufline() fails when using folding.
Solution: Set "curwin" if needed. (Ozaki Kiichi, closes #2293)
Files: src/evalfunc.c, src/testdir/test_bufline.vim

Patch 8.0.1275
Problem: CmdlineLeave autocmd prevents fold from opening. (Waivek)
Solution: Save and restore KeyTyped. (closes #2305)
Files: src/fileio.c

Patch 8.0.1276
Problem: Typed key is lost when the terminal window is closed in exit

callback. (Gabriel Barta)
Solution: When the current window changes bail out of the wait loop. (closes

#2302)
Files: src/misc2.c, src/terminal.c

version8.txt — 3163

Patch 8.0.1277
Problem: Terminal window CR-NL conversions may cause problems.
Solution: Avoid most conversions, only fetch the current backspace key value

from the tty. (mostly by Ozaki Kiichi, closes #2278)
Files: src/terminal.c

Patch 8.0.1278
Problem: GUI window always resizes when adding/removing a scrollbar,

toolbar, etc.
Solution: Add the 'k' flag in 'guioptions' to keep the GUI window size and

change the number of lines/columns instead. (Ychin, closes #703)
Files: runtime/doc/options.txt, src/gui.c, src/gui_gtk_x11.c,

src/gui_w32.c, src/option.h

Patch 8.0.1279
Problem: Initializing menus can be slow, especially when there are many

keymaps, color schemes, etc.
Solution: Do the globbing for runtime files lazily. (Ken Takata)
Files: runtime/doc/gui.txt, runtime/menu.vim

Patch 8.0.1280
Problem: Python None cannot be converted to a Vim type.
Solution: Convert it to v:none. (Ken Takata)
Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok,

runtime/doc/if_pyth.txt

Patch 8.0.1281
Problem: Loading file type detection slows down startup.
Solution: Move functions to an autoload script.
Files: runtime/filetype.vim, runtime/autoload/filetype.vim,

runtime/scripts.vim

Patch 8.0.1282 (after 8.0.1281)
Problem: script-local variable defined in the wrong script
Solution: Move variable to autoload/filetype.vim.
Files: runtime/filetype.vim, runtime/autoload/filetype.vim

Patch 8.0.1283
Problem: Test 86 fails under ASAN.
Solution: Fix that an item was added to a dictionary twice.
Files: src/if_py_both.h

Patch 8.0.1284
Problem: Loading file type detection slows down startup.
Solution: Store the last pattern of an autocommand event to make appending

quicker.
Files: src/fileio.c

Patch 8.0.1285
Problem: Distributed autoload files may clash with user files. (Andy

Wokula)
Solution: Use the "autoload/dist" directory.
Files: runtime/filetype.vim, runtime/autoload/filetype.vim,

runtime/autoload/dist/ft.vim, runtime/scripts.vim, Filelist,
src/Makefile, nsis/gvim.nsi

Patch 8.0.1286
Problem: Occasional crash when using a channel. (Marek)
Solution: Decrement reference count later. (closes #2315)
Files: src/channel.c

version8.txt — 3164

Patch 8.0.1287
Problem: The temp file used when updating the viminfo file may have the

wrong permissions if setting the group fails.
Solution: Check if the group matches and reduce permissions if not.
Files: src/ex_cmds.c

Patch 8.0.1288
Problem: GUI: cannot drag the statusline of a terminal window.
Solution: Handle the TERMINAL state. (Hirohito Higashi)
Files: src/gui.c

Patch 8.0.1289
Problem: Mkview always includes the local directory.
Solution: Add the "curdir" value in 'viewoptions'. (Eric Roberts, closes

#2316)
Files: runtime/doc/options.txt, runtime/doc/starting.txt, src/ex_docmd.c,

src/option.c

Patch 8.0.1290
Problem: seq_cur of undotree() wrong after undo.
Solution: Get the actual sequence number instead of decrementing the current

one. (Ozaki Kiichi, closes #2319)
Files: src/undo.c, src/testdir/test_undo.vim

Patch 8.0.1291
Problem: C indent wrong when * immediately follows comment. (John Bowler)
Solution: Do not see "/*" after "*" as a comment start. (closes #2321)
Files: src/search.c, src/testdir/test3.in, src/testdir/test3.ok

Patch 8.0.1292
Problem: Quick clicks in the WinBar start Visual mode.
Solution: Use a double click in the WinBar like a normal click.
Files: src/ui.c

Patch 8.0.1293
Problem: Setting a breakpoint in the terminal debugger sometimes fails.
Solution: Interrupt the program if needed. Set the interface to async.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1294
Problem: GUI: get stuck when splitting a terminal window.
Solution: Stop blinking when values become zero. (Hirohito Higashi)
Files: src/gui.c

Patch 8.0.1295
Problem: Cannot automatically get a server name in a terminal.
Solution: Add the --enable-autoservername flag to configure. (Cimbali,

closes #2317)
Files: runtime/doc/eval.txt, runtime/doc/various.txt, src/config.h.in,

src/configure.ac, src/auto/configure, src/evalfunc.c,
src/feature.h, src/main.c, src/version.c, src/Makefile

Patch 8.0.1296 (after 8.0.1294)
Problem: Checking the same condition twice. (John Marriott)
Solution: Check blinkwait.
Files: src/gui.c

Patch 8.0.1297

version8.txt — 3165

Problem: +autoservername does not show enabled on MS-Windows.
Solution: Always define the flag on MS-Windows. (Ken Takata)
Files: src/feature.h

Patch 8.0.1298
Problem: Missing test file.
Solution: Add samples/test000. (Christian Brabandt)
Files: src/testdir/samples/test000, Filelist

Patch 8.0.1299
Problem: Bracketed paste does not work well in terminal window.
Solution: Send translated string to job right away. (Ozaki Kiichi, closes

#2341)
Files: src/terminal.c

Patch 8.0.1300
Problem: File permissions may end up wrong when writing.
Solution: Use fchmod() instead of chmod() when possible. Don't truncate

until we know we can change the file.
Files: src/os_unix.c, src/proto/os_unix.pro, src/configure.ac,

src/auto/configure, src/config.h.in, src/fileio.c

Patch 8.0.1301
Problem: Generated license file for NSIS has a modeline.
Solution: Adjust the pattern for sed. (Ken Takata)
Files: runtime/doc/Makefile

Patch 8.0.1302
Problem: Still too many old style tests.
Solution: Convert a few more tests to new style. (Yegappan Lakshmanan,

closes #2326)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_ming.mak,

src/testdir/Make_vms.mms, src/testdir/runtest.vim,
src/testdir/test68.in, src/testdir/test68.ok,
src/testdir/test73.in, src/testdir/test73.ok,
src/testdir/test_close_count.in, src/testdir/test_close_count.ok,
src/testdir/test_close_count.vim,
src/testdir/test_erasebackword.in,
src/testdir/test_erasebackword.ok,
src/testdir/test_erasebackword.vim,
src/testdir/test_find_complete.vim, src/testdir/test_fixeol.in,
src/testdir/test_fixeol.ok, src/testdir/test_fixeol.vim,
src/testdir/test_listchars.in, src/testdir/test_listchars.ok,
src/testdir/test_listchars.vim, src/testdir/test_textformat.vim

Patch 8.0.1303
Problem: 'ttymouse' is not set to "sgr" for Terminal.app and Iterm2.
Solution: Recognize Iterm2 by the termresponse.
Files: src/term.c

Patch 8.0.1304
Problem: CTRL-G/CTRL-T don't work with incsearch and empty pattern.
Solution: Use the last search pattern. (Christian Brabandt, closes #2292)
Files: src/ex_getln.c, src/proto/search.pro, src/search.c,

src/testdir/test_search.vim

Patch 8.0.1305
Problem: writefile() never calls fsync().
Solution: Follow the 'fsync' option with override to enable or disable.
Files: src/fileio.c, src/evalfunc.c, runtime/doc/eval.txt, src/globals.h,

version8.txt — 3166

src/testdir/test_writefile.vim

Patch 8.0.1306
Problem: ASAN error stack trace is not useful.
Solution: Add "asan_symbolize". (James McCoy, closes #2344)
Files: .travis.yml

Patch 8.0.1307 (after 8.0.1300)
Problem: Compiler warning for ignoring return value of ftruncate(). (Tony

Mechelynck)
Solution: Assign returned value to "ignore".
Files: src/fileio.c

Patch 8.0.1308
Problem: The "Reading from stdin" message may be undesired and there is no

easy way to skip it.
Solution: Don't show the message with --not-a-term was used.
Files: src/fileio.c

Patch 8.0.1309
Problem: Cannot use 'balloonexpr' in a terminal.
Solution: Add 'balloonevalterm' and add code to handle mouse movements in a

terminal. Initial implementation for Unix with GUI.
Files: src/option.c, src/option.h, src/os_unix.c, src/proto/os_unix.pro,

src/feature.h, src/misc2.c, src/keymap.h, src/edit.c,
src/ex_getln.c, src/message.c, src/misc1.c, src/normal.c,
src/terminal.c, src/getchar.c, src/ex_cmds2.c, src/gui_beval.c,
src/proto/gui_beval.pro, src/evalfunc.c, src/popupmnu.c,
src/proto/popupmnu.pro, src/version.c, src/globals.h, src/gui.c,
runtime/doc/options.txt, src/term.c,
runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.0.1310
Problem: Cproto generates errors because of missing type.
Solution: Define _Float128 when generating prototypes.
Files: src/vim.h

Patch 8.0.1311
Problem: No test for strpart().
Solution: Add a test. (Dominique Pelle, closes #2347)
Files: src/testdir/test_functions.vim

Patch 8.0.1312 (after 8.0.1309)
Problem: balloon_show() only works in terminal when compiled with the GUI.
Solution: Add FEAT_BEVAL_GUI and refactor to move common code out of the GUI

specific file.
Files: src/feature.h, src/evalfunc.c, src/gui.c, src/gui_athena.c,

src/gui_beval.c, src/proto/gui_beval.pro, src/beval.c,
src/proto/beval.pro, src/gui_motif.c, src/gui_w32.c,
src/gui_x11.c, src/integration.c, src/workshop.c, src/menu.c,
src/netbeans.c, src/option.c, src/os_unix.c, src/os_win32.c,
src/syntax.c, src/version.c, src/gui.h, src/gui_beval.h,
src/vim.h, src/beval.h, src/option.h, src/ex_cmds2.c, src/ui.c,
src/getchar.c, src/normal.c, src/popupmnu.c, src/globals.h,
src/Makefile, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/Make_vms.mms, Filelist

Patch 8.0.1313 (after 8.0.1312)
Problem: Missing dependencies cause parallel make to fail.
Solution: Update dependencies.

version8.txt — 3167

Files: src/Makefile

Patch 8.0.1314 (after 8.0.1312)
Problem: Build fails on Mac. (chdiza)
Solution: Add #ifdef around GUI fields.
Files: src/beval.h

Patch 8.0.1315 (after 8.0.1312)
Problem: Build still fails on Mac. (chdiza)
Solution: Remove bogus typedef.
Files: src/os_macosx.m

Patch 8.0.1316 (after 8.0.1312)
Problem: Build still still fails on Mac. (chdiza)
Solution: Remove another bogus typedef.
Files: src/os_mac_conv.c

Patch 8.0.1317
Problem: Accessing freed memory in term_wait(). (Dominique Pelle)
Solution: Check that the buffer still exists.
Files: src/terminal.c

Patch 8.0.1318
Problem: Terminal balloon only shows one line.
Solution: Split into several lines in a clever way. Add balloon_split().

Make balloon_show() accept a list in the terminal.
Files: src/popupmnu.c, src/proto/popupmnu.pro, src/evalfunc.c,

src/beval.c, src/proto/beval.pro, src/testdir/test_popup.vim,
runtime/doc/eval.txt,
runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.0.1319
Problem: Can't build GUI on MS-Windows.
Solution: Don't define the balloon_split() function in a GUI-only build.
Files: src/evalfunc.c, runtime/doc/eval.txt

Patch 8.0.1320
Problem: Popup test fails on GUI-only build.
Solution: Don't test balloon_split() when it's not available.
Files: src/testdir/test_popup.vim

Patch 8.0.1321
Problem: Can't build huge version with Athena. (Mark Kelly)
Solution: Move including beval.h to before structs.h. Include beval.pro like

other proto files.
Files: src/vim.h, src/beval.h, src/proto.h

Patch 8.0.1322
Problem: Textformat test isn't run. (Yegappan Lakshmanan)
Solution: Add target to the list of tests.
Files: src/testdir/Make_all.mak

Patch 8.0.1323
Problem: Mouse events in a terminal window may cause endless loop.
Solution: Adjust position computation. Don't stuff a mouse event when

coming from normal_cmd().
Files: src/normal.c, src/terminal.c

Patch 8.0.1324
Problem: Some xterm sends different mouse move codes.

version8.txt — 3168

Solution: Also accept 0x80 as a move event.
Files: src/term.c

Patch 8.0.1325
Problem: More tests are not run.
Solution: Add targets to the list of tests. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak

Patch 8.0.1326
Problem: Largefile test fails on CI, glob test on MS-Windows.
Solution: Remove largefile test from list of all tests. Don't run

Test_glob() on non-unix systems. More cleanup. (Yegappan
Lakshmanan, closes #2354)

Files: src/testdir/Make_all.mak, src/testdir/test_escaped_glob.vim,
src/testdir/test_plus_arg_edit.vim

Patch 8.0.1327
Problem: New proto file missing from distribution.
Solution: Add it. (closes #2355)
Files: Filelist

Patch 8.0.1328
Problem: Trouble when using ":term ++close" with autocmd. (Gabriel Barta)
Solution: Use aucmd_prepbuf() and aucmd_restbuf() instead of setting curbuf.

(closes #2339)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1329
Problem: When a flaky test fails it also often fails the second time.
Solution: Sleep a couple of seconds before the second try.
Files: src/testdir/runtest.vim

Patch 8.0.1330
Problem: MS-Windows: job in terminal can't get back to Vim.
Solution: set VIM_SERVERNAME in the environment. (Yasuhiro Matsumoto, closes

#2360)
Files: runtime/doc/terminal.txt, src/os_win32.c, src/proto/os_win32.pro,

src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1331
Problem: Possible crash when window can be zero lines high. (Joseph

Dornisch)
Solution: Only set w_fraction if the window is at least two lines high.
Files: src/window.c

Patch 8.0.1332
Problem: Highlighting in quickfix window could be better. (Axel Bender)
Solution: Use the qfSeparator highlight item. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.1333
Problem: Some tests are run twice.
Solution: Invoked most utf8 tests only from test_alot_utf8. (Yegappan

Lakshmanan, closes #2369)
Files: src/testdir/Make_all.mak, src/testdir/test_alot_utf8.vim,

src/testdir/test_mksession_utf8.vim

Patch 8.0.1334
Problem: Splitting a window with a WinBar damages window layout.

(Lifepillar)

version8.txt — 3169

Solution: Take the winbar into account when computing the new window
position. Add WINBAR_HEIGHT().

Files: src/vim.h, src/window.c

Patch 8.0.1335
Problem: writefile() using fsync() may give an error for a device.

(Yasuhiro Matsumoto)
Solution: Ignore fsync() failing. (closes #2373)
Files: src/evalfunc.c

Patch 8.0.1336
Problem: Cannot use imactivatefunc() unless compiled with +xim.
Solution: Allow using imactivatefunc() when not compiled with +xim.

(Yasuhiro Matsumoto, closes #2349)
Files: runtime/doc/options.txt, runtime/doc/mbyte.txt, src/mbyte.c,

src/option.c, src/option.h, src/structs.h,
src/testdir/test_iminsert.vim, src/Makefile,
src/testdir/Make_all.mak, src/vim.h

Patch 8.0.1337 (after 8.0.1336)
Problem: Typo in #ifdef.
Solution: Fix the #if line.
Files: src/mbyte.c

Patch 8.0.1338 (after 8.0.1337)
Problem: USE_IM_CONTROL is confusing and incomplete.
Solution: Just use FEAT_MBYTE. Call 'imactivatefunc' also without GUI.
Files: src/vim.h, src/edit.c, src/ex_getln.c, src/getchar.c, src/gui.c,

src/gui_mac.c, src/gui_w32.c, src/mbyte.c, src/normal.c,
src/option.c, src/ui.c, src/globals.h, src/option.h

Patch 8.0.1339
Problem: No test for what 8.0.1335 fixes.
Solution: Add a test. (Yasuhiro Matsumoto, closes #2373)
Files: src/testdir/test_writefile.vim

Patch 8.0.1340
Problem: MS-Windows: cannot build GUI without IME.
Solution: Define im_get_status() and im_set_active() when IME is not used.
Files: src/mbyte.c

Patch 8.0.1341
Problem: 'imactivatefunc' test fails on MS-Windows.
Solution: Skip the text.
Files: src/testdir/test_iminsert.vim, runtime/doc/options.txt

Patch 8.0.1342
Problem: Cannot build with Motif and multibyte. (Mohamed Boughaba)
Solution: Use the right input method status flag. (closes #2374)
Files: src/mbyte.c

Patch 8.0.1343
Problem: MS-Windows: does not show colored emojis.
Solution: Implement colored emojis. Improve drawing speed. Make 'taamode'

work. (Taro Muraoka, Yasuhiro Matsumoto, Ken Takata, close #2375)
Files: appveyor.yml, runtime/doc/options.txt, src/gui_dwrite.cpp,

src/gui_dwrite.h, src/gui_w32.c, src/proto/gui_w32.pro

Patch 8.0.1344
Problem: Using 'imactivatefunc' in the GUI does not work.

version8.txt — 3170

Solution: Do not use 'imactivatefunc' and 'imstatusfunc' in the GUI.
Files: runtime/doc/options.txt, src/mbyte.c,

src/testdir/test_iminsert.vim

Patch 8.0.1345
Problem: Race condition between stat() and open() for the viminfo temp

file. (Simon Ruderich)
Solution: use open() with O_EXCL to atomically check if the file exists.

Don't try using a temp file, renaming it will fail anyway.
Files: src/ex_cmds.c

Patch 8.0.1346
Problem: Crash when passing 50 char string to balloon_split().
Solution: Fix off-by-one error.
Files: src/testdir/test_popup.vim, src/popupmnu.c

Patch 8.0.1347
Problem: MS-Windows: build broken by misplaced curly.
Solution: Move curly after #endif.
Files: src/ex_cmds.c

Patch 8.0.1348
Problem: Make testclean deletes script file on MS-Windows.
Solution: Rename file to avoid it starting with an "x".
Files: src/testdir/xterm_ramp.vim, src/testdir/color_ramp.vim, Filelist

Patch 8.0.1349
Problem: Options test fails when using Motif or GTK GUI.
Solution: Use "fixed" instead of "fixedsys" for Unix. Don't try "xxx" for

guifonteset. Don't set 'termencoding' to anything but "utf-8" for
GTK. Give an error if 'termencoding' can't be converted.

Files: src/testdir/gen_opt_test.vim, src/option.c

Patch 8.0.1350
Problem: Cannot build with +eval and -multi_byte.
Solution: Adjust #ifdefs. (John Marriott) Always include the multi_byte

feature when an input method feature is enabled.
Files: src/mbyte.c, src/feature.h

Patch 8.0.1351
Problem: Warning for unused variables building with MinGW.
Solution: Change a few #ifdefs (suggested by John Marriott). Remove

superfluous checks of FEAT_MBYTE.
Files: src/gui_w32.c

Patch 8.0.1352
Problem: Dead URLs in the help go unnoticed.
Solution: Add a script to check URLs in the help files. (Christian Brabandt)
Files: runtime/doc/Makefile, runtime/doc/test_urls.vim, Filelist

Patch 8.0.1353
Problem: QuickFixCmdPost is not used consistently.
Solution: Invoke QuickFixCmdPost consistently after QuickFixCmdPre.

(Yegappan Lakshmanan, closes #2377)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1354
Problem: Shift-Insert doesn't always work in MS-Windows console.
Solution: Handle K_NUL differently. (Yasuhiro Matsumoto, closes #2381)
Files: src/os_win32.c

version8.txt — 3171

Patch 8.0.1355 (after 8.0.1354)
Problem: Cursor keys don't work in MS-Windows console.
Solution: Revert the previous patch. Also delete dead code.
Files: src/os_win32.c

Patch 8.0.1356
Problem: Using simalt in a GUIEnter autocommand inserts strange characters.

(Chih-Long Chang)
Solution: Ignore K_NOP in Insert mode. (closes #2379)
Files: src/edit.c, src/ex_getln.c

Patch 8.0.1357
Problem: Startup test fails on OpenBSD. (Edd Barrett)
Solution: Check for "BSD" instead of "FreeBSD" being defined. (James McCoy,

closes #2376, closes #2378)
Files: src/vim.h

Patch 8.0.1358
Problem: Undercurl is not used in the terminal. (Kovid Goyal)
Solution: Only fall back to underline when undercurl highlighting is not

defined. (closes #1306)
Files: src/screen.c

Patch 8.0.1359
Problem: Libvterm ANSI colors can not always be recognized from the RGB

values. The default color is wrong when t_RB is empty.
Solution: Add the ANSI color index to VTermColor.
Files: src/libvterm/include/vterm.h, src/libvterm/src/pen.c,

src/terminal.c

Patch 8.0.1360
Problem: The Terminal highlighting doesn't work in a terminal. (Ozaki

Kiichi)
Solution: Use the Terminal highlighting when the cterm index is zero.
Files: src/terminal.c

Patch 8.0.1361
Problem: Some users don't want to diff with hidden buffers.
Solution: Add the "hiddenoff" item to 'diffopt'. (Alisue, closes #2394)
Files: runtime/doc/options.txt, src/buffer.c, src/diff.c,

src/proto/diff.pro, src/testdir/test_diffmode.vim

Patch 8.0.1362
Problem: Terminal window colors wrong when using Terminal highlighting.
Solution: Set ansi_index when setting the default color. Also cache the

color index for Terminal. (Ozaki Kiichi, closes #2393)
Files: src/libvterm/src/pen.c, src/proto/terminal.pro, src/syntax.c,

src/terminal.c

Patch 8.0.1363
Problem: Recovering does not work when swap file ends in .stz.
Solution: Check for all possible swap file names. (Elfling, closes #2395,

closes #2396)
Files: src/memline.c

Patch 8.0.1364
Problem: There is no easy way to get the window position.
Solution: Add win_screenpos().
Files: src/evalfunc.c, src/testdir/test_window_cmd.vim,

version8.txt — 3172

runtime/doc/eval.txt

Patch 8.0.1365
Problem: When one channel test fails others fail as well.
Solution: Stop the job after a failure. Also add a couple of tests to the

list of flaky tests.
Files: src/testdir/test_channel.vim, src/testdir/runtest.vim

Patch 8.0.1366
Problem: Balloon shows when cursor is in WinBar.
Solution: Don't show the balloon when row is negative.
Files: src/beval.c

Patch 8.0.1367
Problem: terminal test hangs, executing abcde. (Stucki)
Solution: Rename abcde to abxde.
Files: src/testdir/test_terminal.vim

Patch 8.0.1368
Problem: Cannot drag status line or vertical separator of new terminal

window. (UncleBill)
Solution: Adjust mouse row and column computation. (Yasuhiro Matsumoto,

closes #2410)
Files: src/terminal.c

Patch 8.0.1369
Problem: MS-Windows: drawing underline, curl and strikethrough is slow,

mFallbackDC not properly updated.
Solution: Several performance improvements. (Ken Takata, Taro Muraoka,

Yasuhiro Matsumoto, closes #2401)
Files: runtime/doc/options.txt, src/gui_dwrite.cpp, src/gui_dwrite.h,

src/gui_w32.c

Patch 8.0.1370
Problem: Channel test for callback is flaky.
Solution: Add the test to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.1371
Problem: Shift-Insert doesn't always work in MS-Windows console.
Solution: Handle K_NUL differently if the second character is more than one

byte. (Yasuhiro Matsumoto, closes #2381)
Files: src/os_win32.c

Patch 8.0.1372
Problem: Profile log may be truncated halfway a character.
Solution: Find the start of the character. (Ozaki Kiichi, closes #2385)
Files: src/ex_cmds2.c, src/testdir/test_profile.vim

Patch 8.0.1373
Problem: No error when setting 'renderoptions' to an invalid value before

starting the GUI.
Solution: Always check the value. (Ken Takata, closes #2413)
Files: src/gui_w32.c, src/option.c

Patch 8.0.1374
Problem: CTRL-A does not work with an empty line. (Alex)
Solution: Decrement the end only once. (Hirohito Higashi, closes #2387)
Files: src/ops.c, src/testdir/test_increment.vim

version8.txt — 3173

Patch 8.0.1375
Problem: Window size wrong after maximizing with WinBar. (Lifepillar)
Solution: Fix height computations. Redraw window when it is zero height but

has a WinBar. (closes #2356)
Files: src/window.c, src/screen.c, src/vim.h

Patch 8.0.1376
Problem: Cursor in terminal not always updated.
Solution: Call gui_mch_flush(). (Ken Takata)
Files: src/terminal.c

Patch 8.0.1377
Problem: Cannot call a dict function in autoloaded dict.
Solution: Call get_lval() passing the read-only flag.
Files: src/userfunc.c, src/eval.c, src/testdir/sautest/autoload/foo.vim,

src/testdir/sautest/autoload/globone.vim,
src/testdir/sautest/autoload/globtwo.vim,
src/testdir/test_escaped_glob.vim, src/Makefile,
src/testdir/test_autoload.vim, src/Makefile,
src/testdir/Make_all.mak

Patch 8.0.1378
Problem: Autoload script sources itself when defining function.
Solution: Pass TFN_NO_AUTOLOAD to trans_function_name(). (Yasuhiro

Matsumoto, closes #2423)
Files: src/userfunc.c, src/testdir/test_autoload.vim,

src/testdir/sautest/autoload/sourced.vim

Patch 8.0.1379
Problem: Configure check for selinux does not check for header file.
Solution: Add an AC_CHECK_HEADER(). (Benny Siegert)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1380
Problem: When recovering a file with "vim -r swapfile" the hit-enter prompt

is at the top of the window.
Solution: Invalidate the cursor position.
Files: src/term.c

Patch 8.0.1381
Problem: ch_readraw() waits for NL if channel mode is NL.
Solution: Pass a "raw" flag to channel_read_block(). (Yasuhiro Matsumoto)
Files: src/channel.c, src/proto/channel.pro,

src/testdir/test_channel.vim, src/testdir/test_channel_pipe.py

Patch 8.0.1382
Problem: Get "no write since last change" message if a terminal is open.

(Fritz mehner)
Solution: Don't consider a buffer changed if it's a terminal window.
Files: src/ex_cmds.c, src/undo.c, src/proto/undo.pro

Patch 8.0.1383
Problem: Local additions in help skips some files. (joshklod)
Solution: Check the base file name length equals.
Files: src/ex_cmds.c, src/testdir/test_help.vim

Patch 8.0.1384
Problem: Not enough quickfix help; confusing winid.
Solution: Add more examples in the help. When the quickfix window is not

present, return zero for getqflist() with 'winid'. Add more tests

version8.txt — 3174

for jumping to quickfix list entries. (Yegappan Lakshmanan, closes
#2427)

Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/quickfix.c,
src/testdir/test_quickfix.vim

Patch 8.0.1385
Problem: Python 3.5 is getting old.
Solution: Make Python 3.6 the default. (Ken Takata, closes #2429)
Files: runtime/doc/if_pyth.txt, src/INSTALLpc.txt, src/Make_cyg_ming.mak,

src/Make_mvc.mak, src/bigvim.bat

Patch 8.0.1386
Problem: Cannot select modified buffers with getbufinfo().
Solution: Add the "bufmodified" flag. (Yegappan Lakshmanan, closes #2431)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufwintabinfo.vim

Patch 8.0.1387
Problem: Wordcount test is old style.
Solution: Change into a new style test. (Yegappan Lakshmanan, closes #2434)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_ming.mak,

src/testdir/Make_vms.mms, src/testdir/test_wordcount.in,
src/testdir/test_wordcount.ok, src/testdir/test_wordcount.vim

Patch 8.0.1388
Problem: Char not overwritten with ambiguous width char, if the ambiguous

char is single width but we reserve double-width space.
Solution: First clear the screen cells. (Ozaki Kiichi, closes #2436)
Files: src/screen.c

Patch 8.0.1389
Problem: getqflist() items are missing if not set, that makes it more

difficult to handle the values.
Solution: When a value is not available return zero or another invalid

value. (Yegappan Lakshmanan, closes #2430)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.1390
Problem: DirectX scrolling can be slow, vertical positioning is off.
Solution: Make scroll slightly faster when using "scrlines:1". Fix y

position of displayed text. Fix DirectX with non-utf8 encoding.
(Ken Takata, closes #2440)

Files: src/INSTALLpc.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/gui_dwrite.cpp, src/gui_w32.c

Patch 8.0.1391
Problem: Encoding empty string to JSON sometimes gives "null".
Solution: Handle NULL string as empty string. (closes #2446)
Files: src/testdir/test_json.vim, src/json.c

Patch 8.0.1392
Problem: Build fails with --with-features=huge --disable-channel.
Solution: Don't enable the terminal feature when the channel feature is

missing. (Dominique Pelle, closes #2453)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1393
Problem: Too much highlighting with 'hlsearch' and 'incsearch' set.
Solution: Do not highlight matches when the pattern matches everything.

version8.txt — 3175

Files: src/ex_getln.c

Patch 8.0.1394
Problem: Cannot intercept a yank command.
Solution: Add the TextYankPost autocommand event. (Philippe Vaucher et al.,

closes #2333)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt, src/dict.c,

src/eval.c, src/fileio.c, src/ops.c, src/proto/dict.pro,
src/proto/eval.pro, src/proto/fileio.pro,
src/testdir/test_autocmd.vim, src/vim.h

Patch 8.0.1395
Problem: It is not easy to see if a colorscheme is well written.
Solution: Add a script that checks for common mistakes. (Christian Brabandt)
Files: runtime/colors/check_colors.vim, runtime/colors/README.txt

Patch 8.0.1396
Problem: Memory leak when CTRL-G in search command line fails.
Solution: Move restore_last_search_pattern to after "if".
Files: src/ex_getln.c

Patch 8.0.1397
Problem: Pattern with \& following nothing gives an error.
Solution: Emit an empty node when needed.
Files: src/regexp_nfa.c, src/testdir/test_search.vim

Patch 8.0.1398
Problem: :packadd does not load packages from the "start" directory.

(Alejandro Hernandez)
Solution: Make :packadd look in the "start" directory if those packages were

not loaded on startup.
Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

Patch 8.0.1399
Problem: Warnings and errors when building tiny version. (Tony Mechelynck)
Solution: Add #ifdefs.
Files: src/ex_getln.c, src/ops.c

Patch 8.0.1400
Problem: Color scheme check script shows up as color scheme.
Solution: Move it to the "tools" subdirectory. (closes #2457)
Files: Filelist, runtime/colors/check_colors.vim,

runtime/colors/tools/check_colors.vim, runtime/colors/README.txt

Patch 8.0.1401
Problem: Cannot build with GTK but without XIM. (Guido)
Solution: Adjust #ifdef. (closes #2461)
Files: src/gui.c

Patch 8.0.1402
Problem: Crash with nasty autocommand. (gy741, Dominique Pelle)
Solution: Check that the new current buffer isn't wiped out. (closes #2447)
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 8.0.1403
Problem: Using freed buffer in grep command. (gy741, Dominique Pelle)
Solution: Lock the dummy buffer to avoid autocommands wiping it out.
Files: src/quickfix.c, src/testdir/test_autocmd.vim

Patch 8.0.1404

version8.txt — 3176

Problem: Invalid memory access on exit when autocommands wipe out a buffer.
(gy741, Dominique Pelle)

Solution: Check if the buffer is still valid. (closes #2449)
Files: src/main.c

Patch 8.0.1405
Problem: Duplicated code for getting a typed character. CursorHold is

called too often in the GUI. (lilydjwg)
Solution: Refactor code to move code up from mch_inchar(). Don't fire

CursorHold if feedkeys() was used. (closes #2451)
Files: src/gui.c, src/proto/gui.pro, src/main.c, src/ui.c,

src/proto/ui.pro, src/os_unix.c

Patch 8.0.1406
Problem: Difficult to track changes to a quickfix list.
Solution: Add a "changedtick" value. (Yegappan Lakshmanan, closes #2460)
Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.1407
Problem: GUI: CursorHold may trigger before 'updatetime' when using timers.
Solution: Check that 'updatetime' has passed.
Files: src/gui.c

Patch 8.0.1408
Problem: Crash in setqflist().
Solution: Check for string to be NULL. (Dominique Pelle, closes #2464)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1409
Problem: Buffer overflow in :tags command.
Solution: Use vim_snprintf(). (Dominique Pelle, closes #2471, closes #2475)

Add a test.
Files: src/testdir/test_taglist.vim, src/tag.c

Patch 8.0.1410
Problem: Hang when using count() with an empty string.
Solution: Return zero for an empty string. (Dominique Pelle, closes #2465)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim

Patch 8.0.1411
Problem: Reading invalid memory with CTRL-W :.
Solution: Correct the command characters. (closes #2469)
Files: src/normal.c, src/testdir/test_window_cmd.vim, src/ops.c

Patch 8.0.1412
Problem: Using free memory using setloclist(). (Dominique Pelle)
Solution: Mark location list context as still in use when needed. (Yegappan

Lakshmanan, closes #2462)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1413
Problem: Accessing freed memory in :cbuffer.
Solution: Get quickfix list after executing autocmds. (closes #2470)
Files: src/quickfix.c, src/testdir/test_autocmd.vim

Patch 8.0.1414
Problem: Accessing freed memory in :lfile.
Solution: Get the current window after executing autocommands. (Yegappan

version8.txt — 3177

Lakshmanan, closes #2473)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1415
Problem: Warning for unused function without timers feature.
Solution: Add #ifdef. (John Marriott)
Files: src/gui.c

Patch 8.0.1416
Problem: Crash when searching for a sentence.
Solution: Return NUL when getting character at MAXCOL. (closes #2468)
Files: src/misc1.c, src/misc2.c, src/testdir/test_search.vim,

src/ex_docmd.c

Patch 8.0.1417
Problem: Test doesn't search for a sentence. Still fails when searching for

start of sentence. (Dominique Pelle)
Solution: Add paren. Check for MAXCOL in dec().
Files: src/testdir/test_search.vim, src/misc2.c

Patch 8.0.1418
Problem: No test for expanding backticks.
Solution: Add a test. (Dominique Pelle, closes #2479)
Files: src/testdir/test_normal.vim

Patch 8.0.1419
Problem: Cursor column is not updated after]s. (Gary Johnson)
Solution: Set the curswant flag.
Files: src/testdir/test_spell.vim, src/normal.c, src/evalfunc.c

Patch 8.0.1420
Problem: Accessing freed memory in vimgrep.
Solution: Check that the quickfix list is still valid. (Yegappan Lakshmanan,

closes #2474)
Files: src/quickfix.c, src/testdir/test_autocmd.vim,

src/testdir/test_quickfix.vim

Patch 8.0.1421
Problem: Accessing invalid memory with overlong byte sequence.
Solution: Check for NUL character. (test by Dominique Pelle, closes #2485)
Files: src/misc2.c, src/testdir/test_functions.vim

Patch 8.0.1422
Problem: No fallback to underline when undercurl is not set. (Ben Jackson)
Solution: Check for the value to be empty instead of NULL. (closes #2424)
Files: src/screen.c

Patch 8.0.1423
Problem: Error in return not caught by try/catch.
Solution: Call update_force_abort(). (Yasuhiro Matsumoto, closes #2483)
Files: src/testdir/test_eval.in, src/testdir/test_eval_stuff.vim,

src/Makefile, src/testdir/Make_all.mak, src/userfunc.c

Patch 8.0.1424
Problem: The timer_pause test is flaky on Travis.
Solution: Accept a longer sleep time on Mac.
Files: src/testdir/test_timers.vim

Patch 8.0.1425
Problem: execute() does not work in completion of user command. (thinca)

version8.txt — 3178

Solution: Switch off redir_off and restore it. (Ozaki Kiichi, closes #2492)
Files: src/evalfunc.c, src/testdir/test_usercommands.vim

Patch 8.0.1426
Problem: "gf" and <cfile> don't accept ? and & in URL. (Dmitrii Tcyganok)
Solution: Check for a URL and allow for extra characters. (closes #2493)
Files: src/window.c, src/testdir/test_gf.vim

Patch 8.0.1427
Problem: The :leftabove modifier doesn't work for :copen.
Solution: Respect the split modifier. (Yegappan Lakshmanan, closes #2496)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1428
Problem: Compiler warning on 64 bit MS-Windows system.
Solution: Change type from "int" to "size_t". (Mike Williams)
Files: src/ex_getln.c

Patch 8.0.1429
Problem: Crash when calling term_start() with empty argument.
Solution: Check for invalid argument. (Yasuhiro Matsumoto, closes #2503)

Fix memory leak.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1430 (after 8.0.1429)
Problem: Crash when term_start() fails.
Solution: Initialize winpty_err.
Files: src/terminal.c

Patch 8.0.1431
Problem: MS-Windows: vimtutor fails if %TMP% has special chars.
Solution: Add quotes. (Tamce, closes #2561)
Files: vimtutor.bat

Patch 8.0.1432
Problem: After ":copen" can't get the window-ID of the quickfix window.

(FalacerSelene)
Solution: Make it work without a quickfix list. Add a test. (Yegappan

Lakshmanan, closes #2541)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1433
Problem: Illegal memory access after undo. (Dominique Pelle)
Solution: Avoid the column becomes negative. (Christian Brabandt,

closes #2533)
Files: src/mbyte.c, src/testdir/test_undo.vim

Patch 8.0.1434
Problem: GTK: :promtfind does not put focus on text input. (Adam Novak)
Solution: When re-opening the dialog put focus on the text input. (Kazunobu

Kuriyama, closes #2563)
Files: src/gui_gtk.c

Patch 8.0.1435
Problem: Memory leak in test_arabic.
Solution: Free the from and to parts. (Christian Brabandt, closes #2569)
Files: src/buffer.c, src/digraph.c, src/proto/digraph.pro

Patch 8.0.1436
Problem: Not enough information about what Python version may work.

version8.txt — 3179

Solution: Add "python_compiled", "python3_compiled", "python_dynamic" and
"python3_dynamic" values for has().

Files: src/evalfunc.c, runtime/doc/eval.txt

Patch 8.0.1437
Problem: Pkg-config doesn't work with cross compiling.
Solution: Use AC_PATH_TOOL() instead of AC_PATH_PROG(). (James McCoy,

closes #2513)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1438
Problem: Filetype detection test not updated for change.
Solution: Update the test.
Files: src/testdir/test_filetype.vim

Patch 8.0.1439
Problem: If cscope fails a search Vim may hang.
Solution: Bail out when a search error is encountered. (Safouane Baroudi,

closes #2598)
Files: src/if_cscope.c

Patch 8.0.1440
Problem: Terminal window: some vterm responses are delayed.
Solution: After writing input. check if there is output to read. (Ozaki

Kiichi, closes #2594)
Files: src/terminal.c, src/testdir/test_search.vim,

src/testdir/test_terminal.vim

Patch 8.0.1441
Problem: Using ":undo 0" leaves undo in wrong state.
Solution: Instead of searching for state 1 and go above, just use the start.

(Ozaki Kiichi, closes #2595)
Files: src/undo.c, src/testdir/test_undo.vim

Patch 8.0.1442 (after 8.0.1439)
Problem: Using pointer before it is set.
Solution: Search in whole buffer instead of next token.
Files: src/if_cscope.c

Patch 8.0.1443 (after 8.0.1441)
Problem: Compiler complains about uninitialized variable. (Tony Mechelynck)
Solution: Assign a value to the variable.
Files: src/undo.c

Patch 8.0.1444
Problem: Missing -D_FILE_OFFSET_BITS=64 may cause problems if a library is

compiled with it.
Solution: Include -D_FILE_OFFSET_BITS if some CFLAGS has it. (James McCoy,

closes #2600)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1445
Problem: Cannot act on edits in the command line.
Solution: Add the CmdlineChanged autocommand event. (xtal8, closes #2603,

closes #2524)
Files: runtime/doc/autocmd.txt, src/ex_getln.c, src/fileio.c,

src/testdir/test_autocmd.vim, src/vim.h

Patch 8.0.1446
Problem: Accessing freed memory after window command in auto command.

version8.txt — 3180

(gy741)
Solution: Adjust the pointer in the parent frame. (Christian Brabandt,

closes #2467)
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.0.1447
Problem: Still too many old style tests.
Solution: Turn a few tests into new style. (Yegappan Lakshmanan,

closes #2509)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/main.aap, src/testdir/test15.in,
src/testdir/test15.ok, src/testdir/test36.in,
src/testdir/test36.ok, src/testdir/test50.in,
src/testdir/test50.ok, src/testdir/test_regex_char_classes.vim,
src/testdir/test_shortpathname.vim,
src/testdir/test_textformat.vim

Patch 8.0.1448
Problem: Segmentation fault when Ruby throws an exception inside :rubyfile

command.
Solution: Use rb_protect() instead of rb_load_protect(). (ujihisa,

closes #2147, greywolf, closes #2512, #2511)
Files: src/if_ruby.c, src/testdir/test_ruby.vim

Patch 8.0.1449
Problem: Slow redrawing with DirectX.
Solution: Avoid calling gui_mch_flush() unnecessarily, especially when

updating the cursor. (Ken Takata, closes #2560)
Files: runtime/doc/options.txt, src/channel.c, src/edit.c, src/getchar.c,

src/gui.c, src/gui_dwrite.cpp, src/gui_dwrite.h, src/gui_w32.c,
src/macros.h, src/main.c, src/message.c, src/netbeans.c,
src/proto/gui.pro, src/proto/term.pro, src/screen.c, src/search.c,
src/term.c, src/ui.c

Patch 8.0.1450
Problem: Endless loop when gui_mch_stop_blink() is called while blink_state

is BLINK_OFF. (zdohnal)
Solution: Avoid calling gui_update_cursor() recursively.
Files: src/gui.c, src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro,

src/gui_mac.c, src/proto/gui_mac.pro, src/gui_photon.c,
src/proto/gui_photon.pro, src/gui_w32.c, src/proto/gui_w32.pro,
src/gui_x11.c, src/proto/gui_x11.pro

Patch 8.0.1451
Problem: It is difficult to set the python home directory properly for

Python 2.7 and 3.5 since both use $PYTHONHOME.
Solution: Add the 'pythonhome' and 'pythonthreehome' options. (Kazuki

Sakamoto, closes #1266)
Files: runtime/doc/options.txt, runtime/doc/quickref.txt,

runtime/optwin.vim, src/if_python.c, src/if_python3.c,
src/option.c, src/option.h

Patch 8.0.1452
Problem: Terminal test fails on some systems. (jonathonf)
Solution: Use "cat" instead of Python to produce the input. Add a delay.

(closes #2607)
Files: src/testdir/test_terminal.vim

Patch 8.0.1453
Problem: Terminal test fails on some slow terminals.

version8.txt — 3181

Solution: Increase timeout to 10 seconds.
Files: src/testdir/test_terminal.vim

Patch 8.0.1454
Problem: When in silent mode too much output is buffered.
Solution: Use line buffering instead of fully buffered. (Brian M. Carlson,

closes #2537)
Files: src/main.c

Patch 8.0.1455
Problem: If $SHELL contains a space then the default value of 'shell' is

incorrect. (Matthew Horan)
Solution: Escape spaces in $SHELL. (Christian Brabandt, closes #459)
Files: src/option.c, runtime/doc/options.txt,

src/testdir/test_startup.vim

Patch 8.0.1456
Problem: Timer test on travis Mac is still flaky.
Solution: Increase time range a bit more.
Files: src/testdir/test_timers.vim

Patch 8.0.1457
Problem: Clojure now supports a shebang line.
Solution: Detect clojure script from the shebang line. (David Burgin,

closes #2570)
Files: runtime/scripts.vim

Patch 8.0.1458
Problem: Filetype detection test does not check all scripts.
Solution: Add most scripts to the test
Files: src/testdir/test_filetype.vim

Patch 8.0.1459
Problem: Cannot handle change of directory.
Solution: Add the DirChanged autocommand event. (Andy Massimino,

closes #888) Avoid changing directory for 'autochdir' too often.
Files: runtime/doc/autocmd.txt, src/buffer.c, src/ex_docmd.c,

src/fileio.c, src/main.c, src/vim.h, src/proto/misc2.pro,
src/gui_mac.c, src/netbeans.c, src/os_win32.c,
src/testdir/test_autocmd.vim

Patch 8.0.1460 (after 8.0.1459)
Problem: Missing file in patch.
Solution: Add changes to missing file.
Files: src/misc2.c

Patch 8.0.1461 (after 8.0.1459)
Problem: Missing another file in patch.
Solution: Add changes to missing file.
Files: src/ex_cmds.c

Patch 8.0.1462 (after 8.0.1459)
Problem: Missing yet another file in patch.
Solution: Add changes to missing file.
Files: src/gui.c

Patch 8.0.1463
Problem: Test fails without 'autochdir' option.
Solution: Skip test if 'autochdir' is not supported.
Files: src/testdir/test_autocmd.vim

version8.txt — 3182

Patch 8.0.1464
Problem: Completing directory after :find does not add slash.
Solution: Adjust the flags for globpath(). (Genki Sky)
Files: src/misc1.c, src/testdir/test_find_complete.vim

Patch 8.0.1465
Problem: Python2 and python3 detection not tested. (Matej Cepl)
Solution: Add test for detecting python2 and python3. Also detect a script

using "js" as javascript.
Files: runtime/scripts.vim, src/testdir/test_filetype.vim

Patch 8.0.1466
Problem: Older GTK versions don't have gtk_entry_get_text_length().
Solution: Add a function with #ifdefs to take care of GTK version

differences. (Kazunobu Kuriyama, closes #2605)
Files: src/gui_gtk.c

Patch 8.0.1467
Problem: Libvterm doesn't handle illegal byte sequence correctly.
Solution: After the invalid code check if there is space to store another

character. Allocate one more character. (zhykzhykzhyk, closes
#2614, closes #2613)

Files: src/libvterm/src/encoding.c, src/libvterm/src/state.c

Patch 8.0.1468
Problem: Illegal memory access in del_bytes().
Solution: Check for negative byte count. (Christian Brabandt, closes #2466)
Files: src/message.c, src/misc1.c

Patch 8.0.1469
Problem: When package path is a symlink adding it to 'runtimepath' happens

at the end.
Solution: Do not resolve symlinks before locating the position in

'runtimepath'. (Ozaki Kiichi, closes #2604)
Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

Patch 8.0.1470
Problem: Integer overflow when using regexp pattern. (geeknik)
Solution: Use a long instead of int. (Christian Brabandt, closes #2251)
Files: src/regexp_nfa.c

Patch 8.0.1471 (after 8.0.1401)
Problem: On MS-Windows CursorIM highlighting no longer works.
Solution: Adjust #if statements. (Ken Takata)
Files: src/gui.c

Patch 8.0.1472
Problem: MS-Windows: nsis installer is a bit slow.
Solution: Use ReserveFile for vimrc.ini. (Ken Takata, closes #2522)
Files: nsis/gvim.nsi

Patch 8.0.1473
Problem: MS-Windows: D&D fails between 32 and 64 bit apps.
Solution: Add the /HIGHENTROPYVA:NO linker option. (Ken Takata, closes #2504)
Files: src/Make_mvc.mak

Patch 8.0.1474
Problem: Visual C 2017 has multiple MSVCVER numbers.
Solution: Assume the 2017 version if MSVCVER >= 1910. (Leonardo Valeri

version8.txt — 3183

Manera, closes #2619)
Files: src/Make_mvc.mak

Patch 8.0.1475
Problem: Invalid memory access in read_redo(). (gy741)
Solution: Convert the replacement character back from a negative number to

CR or NL. (hint by Dominique Pelle, closes #2616)
Files: src/testdir/test_undo.vim, src/normal.c, src/vim.h, src/ops.c

Patch 8.0.1476
Problem: Screen isn't always updated right away.
Solution: Adjust #ifdef: Call out_flush() when not running the GUI.
Files: src/screen.c

Patch 8.0.1477
Problem: Redraw flicker when moving the mouse outside of terminal window.
Solution: Instead of updating the cursor color and shape every time leaving

and entering a terminal window, only update when different from
the previously used cursor.

Files: src/terminal.c

Patch 8.0.1478
Problem: Unnecessary condition for "len" being zero.
Solution: Remove the condition. (Dominique Pelle)
Files: src/regexp_nfa.c

Patch 8.0.1479
Problem: Insert mode completion state is confusing.
Solution: Move ctrl_x_mode into edit.c. Add CTRL_X_NORMAL for zero.
Files: src/edit.c, src/globals.h, src/proto/edit.pro, src/search.c,

src/getchar.c

Patch 8.0.1480 (after 8.0.1479)
Problem: Patch missing change.
Solution: Add missing change.
Files: src/evalfunc.c

Patch 8.0.1481
Problem: Clearing a pointer takes two lines.
Solution: Add vim_clear() to free and clear the pointer.
Files: src/misc2.c, src/proto/misc2.pro, src/edit.c

Patch 8.0.1482
Problem: Using feedkeys() does not work to test Insert mode completion.

(Lifepillar)
Solution: Do not check for typed keys when executing :normal or feedkeys().

Fix thesaurus completion not working when 'complete' is empty.
Files: src/edit.c, src/testdir/test_ins_complete.vim,

src/testdir/test_popup.vim, src/testdir/test_edit.vim

Patch 8.0.1483
Problem: searchpair() might return an invalid value on timeout.
Solution: When the second search times out, do not accept a match from the

first search. (Daniel Hahler, closes #2552)
Files: src/search.c

Patch 8.0.1484
Problem: Redundant conditions.
Solution: Remove them. (Dominique Pelle)
Files: src/terminal.c

version8.txt — 3184

Patch 8.0.1485
Problem: Weird autocmd may cause arglist to be changed recursively.
Solution: Prevent recursively changing the argument list. (Christian

Brabandt, closes #2472)
Files: src/ex_docmd.c, src/globals.h

Patch 8.0.1486
Problem: Accessing invalid memory with "it". (Dominique Pelle)
Solution: Avoid going over the end of the line. (Christian Brabandt,

closes #2532)
Files: src/search.c, src/testdir/test_textobjects.vim

Patch 8.0.1487 (after 8.0.1486)
Problem: Test 14 fails.
Solution: Fix of-by-one error.
Files: src/search.c

Patch 8.0.1488 (after 8.0.1218)
Problem: Emacs tags no longer work. (zdohnal)
Solution: Do not skip over end of line.
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.0.1489
Problem: There is no easy way to get the global directory, esp. if some

windows have a local directory.
Solution: Make getcwd(-1) return the global directory. (Andy Massimino,

closes #2606)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_getcwd.vim

Patch 8.0.1490
Problem: Number of spell regions is spread out through the code.
Solution: Define MAXREGIONS.
Files: src/spell.h, src/spellfile.c

Patch 8.0.1491
Problem: The minimum width of the popup menu is hard coded.
Solution: Add the 'pumwidth' option. (Christian Brabandt, James McCoy,

closes #2314)
Files: runtime/doc/options.txt, src/option.c, src/option.h,

src/popupmnu.c

Patch 8.0.1492
Problem: Memory leak in balloon_split().
Solution: Free the balloon lines. Free the balloon when exiting.
Files: src/misc2.c, src/evalfunc.c

Patch 8.0.1493
Problem: Completion items cannot be annotated.
Solution: Add a "user_data" entry to the completion item. (Ben Jackson,

closes #2608, closes #2508)
Files: runtime/doc/insert.txt, src/edit.c, src/structs.h,

src/testdir/test_ins_complete.vim

Patch 8.0.1494
Problem: No autocmd triggered in Insert mode with visible popup menu.
Solution: Add TextChangedP. (Prabir Shrestha, Christian Brabandt,

closes #2372, closes #1691)
Fix that the TextChanged autocommands are not always triggered
when sourcing a script.

version8.txt — 3185

Files: runtime/doc/autocmd.txt, src/edit.c, src/globals.h, src/structs.h,
src/fileio.c, src/proto/fileio.pro, src/vim.h, src/main.c,
src/testdir/test_autocmd.vim

Patch 8.0.1495
Problem: Having 'pumwidth' default to zero has no merit.
Solution: Make the default 15, as the actual default value.
Files: src/popupmnu.c, src/option.c

Patch 8.0.1496
Problem: Clearing a pointer takes two lines.
Solution: Add VIM_CLEAR() and replace vim_clear(). (Hirohito Higashi,

closes #2629)
Files: src/buffer.c, src/channel.c, src/crypt.c, src/edit.c, src/eval.c,

src/evalfunc.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/ex_getln.c, src/fileio.c, src/gui_gtk_x11.c, src/gui_photon.c,
src/gui_w32.c, src/gui_x11.c, src/hardcopy.c, src/if_cscope.c,
src/macros.h, src/main.c, src/mark.c, src/mbyte.c, src/memfile.c,
src/memline.c, src/menu.c, src/message.c, src/misc1.c,
src/misc2.c, src/netbeans.c, src/normal.c, src/ops.c,
src/option.c, src/os_amiga.c, src/os_mac_conv.c, src/os_mswin.c,
src/os_unix.c, src/os_win32.c, src/popupmnu.c,
src/proto/misc2.pro, src/quickfix.c, src/regexp.c,
src/regexp_nfa.c, src/screen.c, src/search.c, src/spell.c,
src/spellfile.c, src/syntax.c, src/tag.c, src/term.c,
src/terminal.c, src/ui.c, src/undo.c, src/userfunc.c, src/window.c

Patch 8.0.1497
Problem: Getting the jump list requires parsing the output of :jumps.
Solution: Add getjumplist(). (Yegappan Lakshmanan, closes #2609)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/Makefile,

src/evalfunc.c, src/list.c, src/proto/list.pro,
src/testdir/Make_all.mak, src/testdir/test_jumplist.vim

Patch 8.0.1498 (after 8.0.1497)
Problem: getjumplist() returns duplicate entries. (lacygoill)
Solution: Call cleanup_jumplist(). (Yegappan Lakshmanan)
Files: src/evalfunc.c, src/mark.c, src/proto/mark.pro,

src/testdir/test_jumplist.vim

Patch 8.0.1499
Problem: Out-of-memory situation not correctly handled. (Coverity)
Solution: Check for NULL value.
Files: src/terminal.c

Patch 8.0.1500
Problem: Possible NULL pointer dereference. (Coverity)
Solution: Check for the pointer not being NULL.
Files: src/quickfix.c

Patch 8.0.1501
Problem: Out-of-memory situation not correctly handled. (Coverity)
Solution: Check for NULL value.
Files: src/ops.c

Patch 8.0.1502
Problem: In out-of-memory situation character is not restored. (Coverity)
Solution: Restore the character in all situations.
Files: src/ex_getln.c

version8.txt — 3186

Patch 8.0.1503
Problem: Access memory beyond end of string. (Coverity)
Solution: Keep allocated memory in separate pointer. Avoid outputting the

NUL character.
Files: src/hardcopy.c

Patch 8.0.1504
Problem: Win32: the screen may be cleared on startup.
Solution: Only call shell_resized() when the size actually changed. (Ken

Takata, closes #2527)
Files: src/os_win32.c

Patch 8.0.1505
Problem: Debugger can't break on a condition. (Charles Campbell)
Solution: Add ":breakadd expr". (Christian Brabandt, closes #859)
Files: runtime/doc/repeat.txt, src/eval.c, src/evalfunc.c,

src/userfunc.c, src/ex_cmds2.c, src/ex_docmd.c,
src/proto/eval.pro, src/proto/ex_cmds2.pro, src/structs.h

Patch 8.0.1506
Problem: New version of HP NonStop (Tandem) doesn't like the default header

for setenv().
Solution: Put a #ifdef around the setenv() entry. (Joachim Schmitz)
Files: src/osdef2.h.in

Patch 8.0.1507
Problem: Timer test is a bit flaky.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.1508
Problem: The :drop command is not always available.
Solution: Include :drop in all builds. (Yasuhiro Matsumoto, closes #2639)
Files: runtime/doc/windows.txt, src/ex_cmds.c, src/ex_cmds2.c,

src/ex_docmd.c, src/testdir/test_normal.vim,
src/testdir/test_tabpage.vim

Patch 8.0.1509 (after 8.0.1508)
Problem: Test for failing drag-n-drop command no longer fails.
Solution: Check for the "dnd" feature.
Files: src/testdir/test_normal.vim

Patch 8.0.1510
Problem: Cannot test if a command causes a beep.
Solution: Add assert_beeps().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/eval.c,

src/proto/eval.pro, src/misc1.c, src/globals.h,
src/testdir/test_normal.vim, src/testdir/test_assert.vim

Patch 8.0.1511 (after 8.0.1505)
Problem: Some code for the debugger watch expression is clumsy.
Solution: Clean up the code.
Files: src/ex_cmds2.c, src/eval.c, src/proto/eval.pro

Patch 8.0.1512
Problem: Warning for possibly using NULL pointer. (Coverity)
Solution: Skip using the pointer if it's NULL.
Files: src/ex_cmds.c

Patch 8.0.1513

version8.txt — 3187

Problem: The jumplist is not always properly cleaned up.
Solution: Call fname2fnum() before cleanup_jumplist(). (Yegappan Lakshmanan)
Files: src/evalfunc.c, src/mark.c, src/proto/mark.pro

Patch 8.0.1514
Problem: Getting the list of changes is not easy.
Solution: Add the getchangelist() function. (Yegappan Lakshmanan,

closes #2634)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/Make_all.mak, src/testdir/test_changelist.vim,
src/Makefile

Patch 8.0.1515
Problem: BufWinEnter event fired when opening hidden terminal.
Solution: Do not fire BufWinEnter when the terminal is hidden and does not

open a window. (Kenta Sato, closes #2636)
Files: src/terminal.c

Patch 8.0.1516
Problem: Errors for job options are not very specific.
Solution: Add more specific error messages.
Files: src/channel.c, src/globals.h

Patch 8.0.1517
Problem: Invalid memory access with pattern using look-behind match.

(Dominique Pelle)
Solution: Get a pointer to the right line.
Files: src/regexp.c

Patch 8.0.1518
Problem: Error messages suppressed after ":silent! try". (Ben Reilly)
Solution: Restore emsg_silent before executing :try. (closes #2531)
Files: src/ex_docmd.c, src/testdir/test_eval_stuff.vim

Patch 8.0.1519
Problem: getchangelist() does not use argument as bufname().
Solution: Use get_buf_tv(). (Yegappan Lakshmanan, closes #2641)
Files: src/evalfunc.c, src/testdir/test_changelist.vim

Patch 8.0.1520
Problem: Cursor is in the wrong line when using a WinBar in a Terminal

window.
Solution: Adjust the row number. (Christian Brabandt, closes #2362)
Files: src/screen.c, src/terminal.c

Patch 8.0.1521
Problem: Shift-Tab does not work in a terminal window.
Solution: Recognize Shift-Tab key press. (Jsees Luehrs, closes #2644)
Files: src/terminal.c

Patch 8.0.1522 (after 8.0.1491)
Problem: Popup menu is positioned in the wrong place. (Davit Samvelyan,

Boris Staletic)
Solution: Correct computation of the column and the conditions for that.

(Hirohito Higashi, closes #2640)
Files: src/popupmnu.c

Patch 8.0.1523
Problem: Cannot write and read terminal screendumps.
Solution: Add term_dumpwrite(), term_dumpread() and term_dumpdiff().

version8.txt — 3188

Also add assert_equalfile().
Files: src/terminal.c, src/proto/terminal.pro, src/evalfunc.c,

src/normal.c, src/eval.c, src/proto/eval.pro,
runtime/doc/eval.txt, src/testdir/test_assert.vim

Patch 8.0.1524 (after 8.0.1523)
Problem: Compiler warnings for uninitialized variables. (Tony Mechelynck)
Solution: Initialize variables.
Files: src/terminal.c

Patch 8.0.1525
Problem: Using :wqa exits even if a job runs in a terminal window. (Jason

Felice)
Solution: Check if a terminal has a running job. (closes #2654)
Files: src/ex_cmds2.c, src/buffer.c, src/proto/buffer.pro, src/ex_cmds.c,

src/testdir/test_terminal.vim

Patch 8.0.1526
Problem: No test using a screen dump yet.
Solution: Add a test for C syntax highlighting. Add helper functions.
Files: src/terminal.c, src/testdir/test_syntax.vim,

src/testdir/shared.vim, src/testdir/screendump.vim,
src/testdir/dumps/Test_syntax_c_01.dump, runtime/doc/terminal.txt,
src/testdir/README.txt

Patch 8.0.1527 (after 8.0.1526)
Problem: Screen dump test fails on MS-Windows.
Solution: Skip dump test on MS-Windows for now.
Files: src/testdir/test_syntax.vim

Patch 8.0.1528
Problem: Dead code found.
Solution: Remove the useless lines. (CodeAi, closes #2656)
Files: src/screen.c, src/spell.c, src/syntax.c, src/window.c

Patch 8.0.1529
Problem: Assert_equalfile() does not close file descriptors. (Coverity)
Solution: Close the file descriptors.
Files: src/eval.c

Patch 8.0.1530
Problem: Dump test fails when using a shadow directory.
Solution: Add the directory to the list of symlinks to make (Elimar

Riesebieter)
Files: src/Makefile

Patch 8.0.1531
Problem: Cannot use 24 bit colors in MS-Windows console.
Solution: Add support for vcon. (Nobuhiro Takasaki, Ken Takata,

fixes #1270, fixes #2060)
Files: runtime/doc/options.txt, src/misc1.c, src/option.c,

src/evalfunc.c, src/os_win32.c, src/proto/os_win32.pro,
src/feature.h, src/proto/term.pro, src/screen.c, src/syntax.c,
src/term.c, src/testdir/gen_opt_test.vim, src/version.c

Patch 8.0.1532
Problem: Compiler warnings without termguicolors feature.
Solution: Add #ifdef. (John Marriott) Cleanup the code a bit.
Files: src/term.c

version8.txt — 3189

Patch 8.0.1533
Problem: Libterm doesn't support requesting fg and bg color.
Solution: Implement t_RF and t_RB.
Files: src/libvterm/src/vterm_internal.h, src/libvterm/src/state.c,

src/libvterm/src/vterm.c

Patch 8.0.1534
Problem: C syntax test fails when using gvim
Solution: Force running in a terminal. Check that 'background' is correct

even when $COLORFGBG is set.
Files: src/testdir/test_syntax.vim, src/testdir/screendump.vim

Patch 8.0.1535 (after 8.0.1534)
Problem: C syntax test still fails when using gvim.
Solution: Clear Normal cterm highlighting instead of setting it.
Files: src/testdir/test_syntax.vim, src/testdir/screendump.vim,

src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.0.1536
Problem: Quotestar test is flaky when using the GUI.
Solution: Add check that the star register arrived at the server. Increase

timeouts.
Files: src/testdir/test_quotestar.vim

Patch 8.0.1537
Problem: Xxd does not skip NUL lines when using ebcdic.
Solution: Check for a NUL before converting a character for ebcdic. (Tim

Sell, closes #2668)
Files: src/xxd/xxd.c

Patch 8.0.1538
Problem: Popupmenu is too far left when completion is long. (Linwei)
Solution: Adjust column computations. (Hirohito Higashi, closes #2661)
Files: src/popupmnu.c

Patch 8.0.1539
Problem: No test for the popup menu positioning.
Solution: Add a screendump test for the popup menu.
Files: src/terminal.c, src/testdir/test_syntax.vim,

src/testdir/screendump.vim,
src/testdir/test_popup.vim,
src/testdir/dumps/Test_popup_position_01.dump,
src/testdir/dumps/Test_popup_position_02.dump,
src/testdir/dumps/Test_popup_position_03.dump,
runtime/doc/eval.txt

Patch 8.0.1540
Problem: Popup menu positioning fails with longer string.
Solution: Only align with right side of window when width is less than

'pumwidth' (closes #2661)
Files: src/popupmnu.c, src/testdir/screendump.vim,

src/testdir/test_popup.vim,
src/testdir/dumps/Test_popup_position_04.dump

Patch 8.0.1541
Problem: synpat_T is taking too much memory.
Solution: Reorder members to reduce padding. (Dominique Pelle, closes #2671)
Files: src/syntax.c

Patch 8.0.1542

version8.txt — 3190

Problem: Terminal screen dump does not include cursor position.
Solution: Mark the cursor position in the dump.
Files: src/terminal.c,

src/testdir/dumps/Test_popup_position_01.dump,
src/testdir/dumps/Test_popup_position_02.dump,
src/testdir/dumps/Test_popup_position_03.dump,
src/testdir/dumps/Test_popup_position_04.dump,
src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.0.1543
Problem: With 'termguicolors' Normal color doesn't work correctly.
Solution: Set cterm_normal_bg_gui_color and cterm_normal_fg_color always.

(Kazunobu Kuriyama, closes #981, closes #2332)
Files: src/syntax.c

Patch 8.0.1544
Problem: When using 'termguicolors' SpellBad doesn't show.
Solution: When the GUI colors are not set fall back to the cterm colors.
Files: src/syntax.c, src/screen.c, src/gui.h, src/structs.h

Patch 8.0.1545
Problem: Screen dumps not included in distribution.
Solution: Add dumps to the list of distributed files.
Files: Filelist

Patch 8.0.1546
Problem: Using feedkeys() in a terminal window may trigger mappings.

(Charles Sheridan)
Solution: Avoid triggering a mapping when peeking for a key.
Files: src/getchar.c, src/terminal.c

Patch 8.0.1547
Problem: Undo in the options window makes it empty.
Solution: Set 'undolevels' while filling the buffer. (Yasuhiro Matsumoto,

closes #2645)
Files: runtime/optwin.vim

Patch 8.0.1548
Problem: Screen dump test script not included in distribution.
Solution: Add the script to the list of distributed files.
Files: Filelist

Patch 8.0.1549
Problem: Various small problems in test files.
Solution: Include small changes.
Files: src/testdir/test_channel.py, src/testdir/shared.vim,

src/testdir/test_gui.vim, src/testdir/test_gui_init.vim

Patch 8.0.1550
Problem: Various small problems in source files.
Solution: Fix the problems.
Files: src/README.txt, src/beval.c, src/json_test.c, src/mbyte.c,

src/libvterm/include/vterm_keycodes.h, src/Makefile,
src/gui_gtk.c, src/if_xcmdsrv.c, src/pty.c, src/if_python.c,
src/if_py_both.h, uninstal.txt, src/dosinst.c, src/iscygpty.c,
src/vimrun.c, src/os_vms.c

Patch 8.0.1551
Problem: On Mac 'maxmemtot' is set to a weird value.
Solution: For Mac use total memory and subtract system memory. For other

version8.txt — 3191

systems accept both a 32 bit and 64 bit result. (Ozaki Kiichi,
closes #2646)

Files: src/os_unix.c

Patch 8.0.1552
Problem: May leak file descriptors when executing job.
Solution: Close more file descriptors. (Ozaki Kiichi, closes #2651)
Files: src/os_unix.c, src/testdir/test_channel.vim

Patch 8.0.1553
Problem: Cannot see what digraph is used to insert a character.
Solution: Show the digraph with the "ga" command. (Christian Brabandt)
Files: runtime/doc/various.txt, src/digraph.c, src/ex_cmds.c,

src/proto/digraph.pro, src/testdir/shared.vim,
src/testdir/test_matchadd_conceal.vim,
src/testdir/test_digraph.vim, src/testdir/test_ga.vim,
src/testdir/test_arabic.vim

Patch 8.0.1554
Problem: Custom plugins loaded with --clean.
Solution: Do not include the home directory in 'runtimepath'.
Files: src/option.c, src/main.c, src/proto/option.pro, src/structs.h,

src/os_unix.h, src/os_amiga.h, src/os_dos.h, src/os_mac.h,
runtime/doc/starting.txt

Patch 8.0.1555
Problem: Build error for some combination of features.
Solution: Declare variable in more situations.
Files: src/main.c

Patch 8.0.1556
Problem: May not parse the t_RS response correctly, resulting in wrong

characters in the input stream.
Solution: When the t_RS response is partly received wait for more

characters.
Files: src/term.c

Patch 8.0.1557
Problem: printf() does not work with only one argument. (Daniel Hahler)
Solution: Allow using just the format. (Ken Takata, closes #2687)
Files: src/evalfunc.c, src/testdir/test_expr.vim

Patch 8.0.1558
Problem: No right-click menu in a terminal.
Solution: Implement the right click menu for the terminal.
Files: src/popupmnu.c, src/proto/popupmnu.pro, src/normal.c, src/menu.c,

src/proto/menu.pro, src/feature.h

Patch 8.0.1559
Problem: Build failure without GUI.
Solution: Adjust #ifdef for get_fpos_of_mouse().
Files: src/ui.c

Patch 8.0.1560
Problem: Build failure without GUI on MS-Windows.
Solution: Adjust #ifdef for vcol2col().
Files: src/ui.c

Patch 8.0.1561
Problem: Crash with rust syntax highlighting. (Edd Barrett)

version8.txt — 3192

Solution: Avoid going past the end of an empty line.
Files: src/syntax.c

Patch 8.0.1562
Problem: The terminal debugger can't set a breakpoint with the mouse.
Solution: Add popup menu entries.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1563
Problem: Timeout of getwinposx() can be too short. (lilydjwg)
Solution: Add getwinpos(). (closes #2689)
Files: src/evalfunc.c, src/term.c, src/proto/term.pro, runtime/doc/eval.txt

Patch 8.0.1564
Problem: Too many #ifdefs.
Solution: Graduate the +autocmd feature. Takes away 450 #ifdefs and

increases code size of tiny Vim by only 40 Kbyte.
Files: src/buffer.c, src/diff.c, src/edit.c, src/eval.c, src/evalfunc.c,

src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c,
src/fileio.c, src/getchar.c, src/globals.h, src/gui.c,
src/if_cscope.c, src/if_xcmdsrv.c, src/main.c, src/mbyte.c,
src/memline.c, src/menu.c, src/misc1.c, src/gui_mac.c,
src/misc2.c, src/move.c, src/netbeans.c, src/normal.c, src/ops.c,
src/option.c, src/option.h, src/feature.h, src/vim.h,
src/os_amiga.c, src/os_mswin.c, src/os_unix.c, src/os_win32.c,
src/quickfix.c, src/screen.c, src/search.c, src/spell.c,
src/structs.h, src/syntax.c, src/tag.c, src/term.c,
src/terminal.c, src/ui.c, src/undo.c, src/userfunc.c,
src/version.c, src/window.c

Patch 8.0.1565
Problem: Can't build Mac version without GUI.
Solution: Adjust when IME_WITHOUT_XIM is defined.
Files: src/vim.h

Patch 8.0.1566
Problem: Too many #ifdefs.
Solution: Graduate FEAT_SCROLLBIND and FEAT_CURSORBIND.
Files: src/buffer.c, src/diff.c, src/edit.c, src/evalfunc.c,

src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/gui.c,
src/main.c, src/move.c, src/normal.c, src/option.c, src/term.c,
src/version.c, src/window.c, src/globals.h, src/macros.h,
src/option.h, src/structs.h

Patch 8.0.1567
Problem: Cannot build Win32 GUI without IME. (John Marriott)
Solution: Adjust when IME_WITHOUT_XIM and HAVE_INPUT_METHOD are defined and

use it in a few more places.
Files: src/vim.h, src/gui.c

Patch 8.0.1568
Problem: Can't build on older Mac, header file is missing.
Solution: Remove the header file. (Ozaki Kiichi, closes #2691)
Files: src/os_unix.c

Patch 8.0.1569
Problem: Warning for uninitialized variable from gcc.
Solution: Initialize the variable.
Files: src/quickfix.c

version8.txt — 3193

Patch 8.0.1570
Problem: Can't use :popup for a menu in the terminal. (Wei Zhang)
Solution: Make :popup work in the terminal. Also fix that entries were

included that don't work in the current state.
Files: src/ex_docmd.c, src/popupmnu.c, src/proto/popupmnu.pro,

src/menu.c, src/proto/menu.pro

Patch 8.0.1571 (after 8.0.1571)
Problem: Can't build without GUI.
Solution: Adjust #ifdef for gui_find_menu().
Files: src/menu.c

Patch 8.0.1572
Problem: Mac: getting memory size doesn't work everywhere.
Solution: Use MACOS_X instead of MACOS_X_DARWIN. (Kazunobu Kuriyama)
Files: src/os_unix.c

Patch 8.0.1573
Problem: getwinpos(1) may cause response to be handled as command.
Solution: Handle any cursor position report once one was requested. (partly

by Hirohito Higashi)
Files: src/term.c

Patch 8.0.1574
Problem: Show cursor in wrong place when using popup menu. (Wei Zhang)
Solution: Force updating the cursor position. Fix skipping over unused

entries.
Files: src/screen.c, src/proto/screen.pro, src/popupmnu.c

Patch 8.0.1575
Problem: Crash when using virtual replace.
Solution: Adjust orig_line_count. Add more tests. (Christian Brabandt)
Files: src/edit.c, src/testdir/test_visual.vim

Patch 8.0.1576
Problem: Perl VIM::Buffers() does not find every buffer.
Solution: Also find unlisted buffer by number or name. (Chris Weyl,

closes #2692)
Files: src/if_perl.xs

Patch 8.0.1577
Problem: Virtual replace test fails on MS-Windows.
Solution: Make adding a termcap entry work for a builtin terminal.

Restore terminal keys in a better way.
Files: src/term.c, src/testdir/test_visual.vim

Patch 8.0.1578
Problem: No test for :popup in terminal.
Solution: Add a screen dump test.
Files: src/testdir/test_popup.vim,

src/testdir/dumps/Test_popup_command_01.dump,
src/testdir/dumps/Test_popup_command_02.dump,
src/testdir/dumps/Test_popup_command_03.dump

Patch 8.0.1579
Problem: Virtual replace test fails in GUI.
Solution: Don't save key options if they were not set.
Files: src/testdir/test_visual.vim

version8.txt — 3194

Patch 8.0.1580
Problem: FEAT_CURSORBIND and FEAT_SCROLLBIND are unused.
Solution: Delete them.
Files: src/feature.h

Patch 8.0.1581
Problem: Cannot build Win32 GUI without +eval.
Solution: Define HAVE_INPUT_METHOD without +eval. (Ken Takata)
Files: src/vim.h

Patch 8.0.1582
Problem: In the MS-Windows console mouse movement is not used.
Solution: Pass mouse movement events when useful.
Files: src/os_win32.c, src/proto/os_win32.pro, src/feature.h

Patch 8.0.1583
Problem: Using C99 comment.
Solution: Use old style comment. (Kazunobu Kuriyama)
Files: src/quickfix.c

Patch 8.0.1584
Problem: Using C99 in Mac file gives compiler warning messages.
Solution: Add #pragmas to avoid the warnings. (Kazunobu Kuriyama)
Files: src/os_macosx.m

Patch 8.0.1585
Problem: Enabling beval_term feature in Win32 GUI.
Solution: Only enable beval_term in Win32 console.
Files: src/feature.h

Patch 8.0.1586
Problem: Imactivatefunc does not work on non-GUI Mac.
Solution: Fix logic in #ifdef.
Files: src/vim.h

Patch 8.0.1587
Problem: inserting from the clipboard doesn't work literally
Solution: When pasting from the * or + register always assume literally.
Files: src/ops.c, src/proto/ops.pro, src/testdir/test_paste.vim

Patch 8.0.1588
Problem: Popup menu hangs after typing CTRL-C.
Solution: Make CTRL-C exit the loop. (Ozaki Kiichi, closes #2697)
Files: src/popupmnu.c

Patch 8.0.1589
Problem: Error for setting 'modifiable' when resetting it.
Solution: Check if 'modifiable' was actually set.
Files: src/option.c

Patch 8.0.1590
Problem: Padding in list type wastes memory.
Solution: Reorder struct members to optimize padding. (Dominique Pelle,

closes #2704)
Files: src/structs.h

Patch 8.0.1591
Problem: MS-Windows: when reparsing the arguments 'wildignore' matters.
Solution: Save and reset 'wildignore'. (Yasuhiro Matsumoto, closes #2702)
Files: src/os_win32.c

version8.txt — 3195

Patch 8.0.1592
Problem: Terminal windows in a session are not properly restored.
Solution: Add "terminal" in 'sessionoptions'. When possible restore the

command running in a terminal.
Files: src/option.c, src/option.h, src/ex_docmd.c, src/terminal.c,

src/proto/terminal.pro, src/evalfunc.c, src/structs.h,
src/channel.c, src/testdir/test_terminal.vim,
src/testdir/shared.vim, src/testdir/test_mksession.vim

Patch 8.0.1593
Problem: :qall never exits with an active terminal window.
Solution: Add a way to kill a job in a terminal window.
Files: src/ex_cmds2.c, src/terminal.c, src/proto/terminal.pro,

src/structs.h, src/channel.c, src/evalfunc.c,
src/testdir/test_terminal.vim, runtime/doc/terminal.txt,
runtime/doc/eval.txt

Patch 8.0.1594
Problem: :confirm qall not tested with active terminal window.
Solution: Add a test.
Files: src/testdir/test_terminal.vim

Patch 8.0.1595
Problem: No autocommand triggered before exiting.
Solution: Add the ExitPre autocommand event.
Files: src/ex_docmd.c, src/fileio.c, src/vim.h,

src/testdir/test_exit.vim, src/Makefile, src/testdir/Make_all.mak,
runtime/doc/autocmd.txt

Patch 8.0.1596
Problem: No autocommand specifically for opening a terminal window.
Solution: Add TerminalOpen. (Yasuhiro Matsumoto, closes #2484)
Files: runtime/doc/autocmd.txt, src/fileio.c, src/terminal.c,

src/testdir/test_terminal.vim, src/vim.h

Patch 8.0.1597
Problem: Autocommand events are not sorted.
Solution: Sort the autocommand events.
Files: src/vim.h

Patch 8.0.1598
Problem: Cannot select text in a terminal with the mouse.
Solution: When a job in a terminal is not consuming mouse events, use them

for modeless selection. Also stop Insert mode when clicking in a
terminal window.

Files: src/libvterm/include/vterm.h, src/libvterm/src/state.c,
src/libvterm/src/vterm_internal.h, src/terminal.c,
src/proto/terminal.pro, src/ui.c

Patch 8.0.1599
Problem: No error message when gdb does not support the terminal debugger.
Solution: Check for the response to open the Machine Interface.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.0.1600
Problem: Crash when setting t_Co to zero when 'termguicolors' is set.
Solution: Use IS_CTERM instead of checking the number of colors.

(closes #2710)
Files: src/screen.c, src/testdir/test_highlight.vim

version8.txt — 3196

Patch 8.0.1601
Problem: Highlight test fails on Win32.
Solution: Check for vtp and vcon support.
Files: src/evalfunc.c, src/testdir/test_highlight.vim

Patch 8.0.1602
Problem: Crash in parsing JSON.
Solution: Fail when using array or dict as dict key. (Damien)
Files: src/json.c, src/testdir/test_json.vim

Patch 8.0.1603
Problem: Cannot build with +terminal but without +menu.
Solution: Add #ifdef. (Damien)
Files: src/terminal.c

Patch 8.0.1604
Problem: Paste test may fail if $DISPLAY is not set.
Solution: Add WorkingClipboard() and use it in the paste test.
Files: src/testdir/shared.vim, src/testdir/test_paste.vim

Patch 8.0.1605
Problem: Terminal test is a bit flaky.
Solution: Check for the shell prompt. Use more lambda functions.
Files: src/testdir/test_terminal.vim

Patch 8.0.1606
Problem: Singular/plural variants not translated.
Solution: Add NGETTEXT argument to xgettext. (Sergey Alyoshin)
Files: src/po/Make_cyg.mak, src/po/Make_ming.mak, src/po/Make_mvc.mak,

src/po/Makefile

Patch 8.0.1607
Problem: --clean loads user settings from .gvimrc.
Solution: Behave like "-U NONE" was used. (Ken Takata)
Files: src/main.c, runtime/doc/starting.txt

Patch 8.0.1608
Problem: Win32: directx not enabled by default.
Solution: Change Makefile to enable directx by default. (Ken Takata)
Files: runtime/doc/various.txt, src/Make_cyg_ming.mak,

src/Make_mvc.mak

Patch 8.0.1609
Problem: Shell commands in the GUI use a dumb terminal.
Solution: Add the "!" flag to 'guioptions' to execute system commands in a

special terminal window. Only for Unix now.
Files: src/os_unix.c, src/option.h, src/evalfunc.c, src/terminal.c,

src/proto/terminal.pro, src/channel.c, src/proto/channel.pro,
src/vim.h, runtime/doc/options.txt

Patch 8.0.1610 (after 8.0.1609)
Problem: Cannot build without GUI.
Solution: Add #ifdef.
Files: src/terminal.c

Patch 8.0.1611
Problem: CTRL-W in system terminal does not go to job.
Solution: Do not use CTRL-W as a terminal command in a system terminal.
Files: src/terminal.c

version8.txt — 3197

Patch 8.0.1612
Problem: Need to close terminal after shell stopped.
Solution: Make :terminal without argument close the window by default.
Files: src/terminal.c, src/testdir/test_terminal.vim,

runtime/doc/terminal.txt

Patch 8.0.1613
Problem: Warning for unused variable in tiny build. (Tony Mechelynck)
Solution: Move declaration to inner block.
Files: src/os_unix.c

Patch 8.0.1614
Problem: "make tags" doesn't include libvterm.
Solution: Add the libvterm sources to the tags command.
Files: src/Makefile

Patch 8.0.1615
Problem: term_dumpload() does not use the right colors.
Solution: Initialize colors when not using create_vterm().
Files: src/terminal.c

Patch 8.0.1616
Problem: Win32: shell commands in the GUI open a new console.
Solution: Use a terminal window for interactive use when 'guioptions'

contains "!".
Files: src/os_win32.c

Patch 8.0.1617 (after 8.0.1616)
Problem: Win32: :shell command in the GUI crashes.
Solution: Handle the situation that "cmd" is NULL. (Yasuhiro Matsumoto,

closes #2721)
Files: src/os_win32.c

Patch 8.0.1618
Problem: Color Grey50, used for ToolbarLine, is missing in the compiled-in

table.
Solution: Add the color to the list. (Kazunobu Kuriyama)
Files: src/term.c

Patch 8.0.1619
Problem: Win32 GUI: crash when winpty is not installed and trying to use

:shell in a terminal window.
Solution: Check for NULL return form term_start(). (Yasuhiro Matsumoto,

closes #2727)
Files: src/os_win32.c

Patch 8.0.1620
Problem: Reading spell file has no good EOF detection.
Solution: Check for EOF at every character read for a length field.
Files: src/misc2.c

Patch 8.0.1621
Problem: Using invalid default value for highlight attribute.
Solution: Use zero instead of -1.
Files: src/syntax.c

Patch 8.0.1622
Problem: Possible NULL pointer dereference. (Coverity)
Solution: Reverse the check for a NULL pointer.

version8.txt — 3198

Files: src/quickfix.c

Patch 8.0.1623
Problem: Terminal kill tests are flaky.
Solution: Instead of running Vim in a terminal, run it as a normal command.
Files: src/testdir/test_terminal.vim

Patch 8.0.1624
Problem: Options for term_dumpdiff() and term_dumpload() not implemented

yet.
Solution: Implement the relevant options.
Files: src/terminal.c, runtime/doc/eval.txt

Patch 8.0.1625
Problem: Test_quotestar is flaky when run in GTK GUI.
Solution: Do not call lose_selection when invoked from

selection_clear_event().
Files: src/gui_gtk_x11.c

Patch 8.0.1626
Problem: Compiler warning for possible loss of data.
Solution: Use size_t instead of int. (Christian Brabandt)
Files: src/terminal.c

Patch 8.0.1627
Problem: Compiler warning for visibility attribute not supported on MinGW

builds.
Solution: Don't add the attribute when we don't expect it to work.

(Christian Brabandt)
Files: src/libvterm/src/vterm_internal.h

Patch 8.0.1628
Problem: Channel log doesn't mention exiting.
Solution: Add a ch_log() call in getout().
Files: src/main.c

Patch 8.0.1629
Problem: Mac: getpagesize() is deprecated.
Solution: Use sysconf() instead. (Ozaki Kiichi, closes #2741)
Files: src/os_unix.c

Patch 8.0.1630
Problem: Trimming white space is not that easy.
Solution: Add the trim() function. (Bukn, Yasuhiro Matsumoto, closes #1280)
Files: src/evalfunc.c, runtime/doc/eval.txt,

src/testdir/test_functions.vim

Patch 8.0.1631
Problem: Testing with Vim running in terminal is a bit flaky.
Solution: Delete any .swp file so that later tests don't fail.
Files: src/testdir/screendump.vim

Patch 8.0.1632
Problem: In a terminal dump NUL and space considered are different,

although they are displayed the same.
Solution: When encountering NUL handle it like space.
Files: src/terminal.c

Patch 8.0.1633
Problem: A TextChanged autocmd triggers when it is defined after creating a

version8.txt — 3199

buffer.
Solution: Set b_last_changedtick when opening a buffer. (Hirohito Higashi,

closes #2742)
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 8.0.1634
Problem: The ex_vimgrep() function is too long.
Solution: Split it in smaller functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.1635
Problem: Undefining _POSIX_THREADS causes problems with Python 3. (Micah

Bucy, closes #2748)
Solution: Remove the lines.
Files: src/if_python3.c

Patch 8.0.1636
Problem: No test for term_dumpload() and term_dumpdiff().
Solution: Add tests.
Files: src/testdir/test_terminal.vim

Patch 8.0.1637
Problem: No test for term_dumpdiff() options argument.
Solution: Add a test.
Files: src/testdir/test_terminal.vim

Patch 8.0.1638
Problem: Popup test fails depending on environment variable.
Solution: Reset $COLORFGBG when running Vim in a terminal. (closes #2693)
Files: src/testdir/screendump.vim

Patch 8.0.1639
Problem: Libvterm code lags behind master.
Solution: Sync to head, solve merge problems.
Files: src/libvterm/README, src/libvterm/bin/unterm.c,

src/libvterm/bin/vterm-ctrl.c, src/libvterm/bin/vterm-dump.c,
src/libvterm/doc/URLs, src/libvterm/doc/seqs.txt,
src/libvterm/include/vterm.h,
src/libvterm/include/vterm_keycodes.h, src/libvterm/src/mouse.c,
src/libvterm/src/parser.c, src/libvterm/src/pen.c,
src/libvterm/src/screen.c, src/libvterm/src/state.c,
src/libvterm/src/vterm.c, src/libvterm/src/vterm_internal.h,
src/libvterm/t/10state_putglyph.test,
src/libvterm/t/25state_input.test, src/libvterm/t/harness.c,
src/libvterm/t/26state_query.test

Patch 8.0.1640
Problem: Test_cwd() is flaky.
Solution: Add to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.0.1641
Problem: Job in terminal can't communicate with Vim.
Solution: Add the terminal API.
Files: src/terminal.c, src/buffer.c, src/testdir/test_terminal.vim,

src/testdir/screendump.vim, runtime/doc/terminal.txt

Patch 8.0.1642
Problem: Running Vim in terminal fails with two windows.
Solution: Pass the number of rows to RunVimInTerminal().

version8.txt — 3200

Files: src/testdir/screendump.vim, src/testdir/test_terminal.vim

Patch 8.0.1643
Problem: Terminal API tests fail.
Solution: Explicitly set 'title'.
Files: src/testdir/test_terminal.vim

Patch 8.0.1644
Problem: Terminal API tests still fail.
Solution: Explicitly set 'title' in the terminal job. (Ozaki Kiichi,

closes #2750)
Files: src/testdir/test_terminal.vim, src/testdir/screendump.vim

Patch 8.0.1645
Problem: Test for terminal response to escape sequence fails for some

people. (toothpik)
Solution: Run "cat" and let it echo the characters.
Files: src/testdir/test_terminal.vim

Patch 8.0.1646
Problem: MS-Windows: executable contains unreferenced functions and data.
Solution: Add /opt:ref to the compiler command. (Ken Takata)
Files: src/Make_mvc.mak

Patch 8.0.1647
Problem: Terminal API may call a function not meant to be called by this

API.
Solution: Require the function to start with Tapi_.
Files: runtime/doc/terminal.txt, src/terminal.c,

src/testdir/test_terminal.vim

Patch 8.0.1648
Problem: Resource fork tool doesn't work on Python 3.
Solution: Use "print()" instead of "print". (Marius Gedminas)
Files: src/dehqx.py

Patch 8.0.1649
Problem: No completion for argument list commands.
Solution: Add arglist completion. (Yegappan Lakshmanan, closes #2706)
Files: runtime/doc/eval.txt, runtime/doc/map.txt, src/ex_cmds2.c,

src/ex_docmd.c, src/ex_getln.c, src/proto/ex_cmds2.pro,
src/testdir/test_cmdline.vim, src/vim.h

Patch 8.0.1650
Problem: Too many #ifdefs.
Solution: Graduate FEAT_LISTCMDS, no reason to leave out buffer commands.
Files: runtime/doc/various.txt, src/buffer.c, src/charset.c,

src/evalfunc.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/version.c, src/feature.h

Patch 8.0.1651
Problem: Cannot filter :ls output for terminal buffers.
Solution: Add flags for terminal buffers. (Marcin Szamotulski, closes #2751)
Files: runtime/doc/windows.txt, src/buffer.c,

src/testdir/test_terminal.vim

Patch 8.0.1652
Problem: term_dumpwrite() does not output composing characters.
Solution: Use the cell index.
Files: src/terminal.c, src/testdir/test_terminal.vim

version8.txt — 3201

Patch 8.0.1653
Problem: Screen dump is made too soon.
Solution: Wait until the ruler is displayed. (Ozaki Kiichi, closes #2755)
Files: src/testdir/dumps/Test_popup_command_01.dump,

src/testdir/dumps/Test_popup_command_02.dump,
src/testdir/screendump.vim, src/testdir/test_autocmd.vim,
src/testdir/test_terminal.vim

Patch 8.0.1654
Problem: Warnings for conversion of void to function pointer.
Solution: Use a temp variable that is a function pointer.
Files: src/if_python.c, src/if_python3.c

Patch 8.0.1655
Problem: Outdated gdb message in terminal debugger unclear.
Solution: Specifically mention the required gdb version. Avoid getting

stuck on pagination.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.0.1656
Problem: No option to have xxd produce upper case variable names.
Solution: Add the -C argument. (Matt Panaro, closes #2772)
Files: src/xxd/xxd.c

Patch 8.0.1657
Problem: Crash when reading a channel.
Solution: Clear the write flag before writing. (idea by Shinya Ohyanagi,

closes #2769).
Files: src/channel.c

Patch 8.0.1658
Problem: Capitalize argument not available in long form.
Solution: Recognize -capitalize. Update man page.
Files: src/xxd/xxd.c, runtime/doc/xxd.1, runtime/doc/xxd.man

Patch 8.0.1659
Problem: Scroll events not recognized for some xterm emulators.
Solution: Recognize mouse codes 0x40 and 0x41 as scroll events.
Files: src/term.c

Patch 8.0.1660
Problem: The terminal API "drop" command doesn't support options.
Solution: Implement the options.
Files: src/terminal.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/ex_cmds.h, src/eval.c, src/misc2.c, src/fileio.c,
src/testdir/test_terminal.vim, runtime/doc/terminal.txt

Patch 8.0.1661
Problem: Warnings from 64 bit compiler.
Solution: Add type casts. (Mike Williams)
Files: src/terminal.c

Patch 8.0.1662
Problem: Showing dump diff doesn't mention both file names.
Solution: Add the file name in the separator line.
Files: src/terminal.c

Patch 8.0.1663 (after 8.0.1660)
Problem: Cannot build without multibyte feature.

version8.txt — 3202

Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.0.1664
Problem: Test failure because of not allocating enough space.
Solution: Allocate more bytes.
Files: src/terminal.c

Patch 8.0.1665
Problem: When running a terminal from the GUI 'term' is not useful.
Solution: Use $TERM in the GUI if it starts with "xterm". (closes #2776)
Files: src/os_unix.c, runtime/doc/terminal.txt

Patch 8.0.1666
Problem: % argument in ch_log() causes trouble.
Solution: Use string as third argument in internal ch_log(). (Dominique

Pelle, closes #2784)
Files: src/evalfunc.c, src/testdir/test_channel.vim

Patch 8.0.1667
Problem: Terminal window tests are flaky.
Solution: Increase the waiting time for Vim to start.
Files: src/testdir/screendump.vim

Patch 8.0.1668
Problem: Terminal debugger: can't re-open source code window.
Solution: Add the :Source command. Also create the window if needed when

gdb stops at a source line.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1669
Problem: :vimgrep may add entries to the wrong quickfix list.
Solution: Use the list identifier. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1670
Problem: Terminal window tests are still a bit flaky.
Solution: Increase the waiting time for the buffer to be created.
Files: src/testdir/test_terminal.vim

Patch 8.0.1671
Problem: Crash when passing non-dict argument as env to job_start().
Solution: Check for valid argument. (Ozaki Kiichi, closes #2765)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.0.1672
Problem: Error during completion causes command to be cancelled.
Solution: Reset did_emsg before waiting for another character. (Tom M.)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.0.1673
Problem: Terminal window tests are still a bit flaky.
Solution: Increase the waiting time even more. (Elimar Riesebieter)
Files: src/testdir/test_terminal.vim

Patch 8.0.1674
Problem: Libvterm can't handle a long OSC string that is split.
Solution: When an incomplete OSC string is received copy it to the parser

buffer. Increase the size of the parser buffer to be able to

version8.txt — 3203

handle longer strings.
Files: src/libvterm/src/parser.c, src/libvterm/src/vterm.c

Patch 8.0.1675
Problem: Unused macro argument in libvterm. (Randall W. Morris)
Solution: Remove the argument.
Files: src/libvterm/src/parser.c

Patch 8.0.1676
Problem: No compiler warning for wrong printf format.
Solution: Add a printf attribute for gcc. Fix reported problems. (Dominique

Pelle, closes #2789)
Files: src/channel.c, src/vim.h, src/proto/channel.pro

Patch 8.0.1677
Problem: No compiler warning for wrong format in vim_snprintf().
Solution: Add printf attribute for gcc. Fix reported problems.
Files: src/vim.h, src/proto.h, src/eval.c, src/fileio.c, src/mbyte.c,

src/ops.c, src/spellfile.c, src/undo.c, src/json.c

Patch 8.0.1678
Problem: Errorformat "%r" implies "%>". (Jan Gosmann)
Solution: Jump to before setting fmt_ptr. (Yegappan Lakshmanan,

closes #2785)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1679
Problem: Compiler warning for printf format. (Chdiza)
Solution: Change type to "long long". (closes #2791)
Files: src/ops.c

Patch 8.0.1680
Problem: Memory allocated by libvterm does not show up in profile.
Solution: Pass allocator functions to vterm_new().
Files: src/terminal.c

Patch 8.0.1681
Problem: The format attribute fails with MinGW. (John Marriott)
Solution: Don't use the format attribute with MinGW.
Files: src/vim.h, src/proto.h, src/channel.c

Patch 8.0.1682
Problem: Auto indenting breaks inserting a block.
Solution: Do not check for cursor movement if indent was changed. (Christian

Brabandt, closes #2778)
Files: src/testdir/test_blockedit.vim, src/testdir/Make_all.mak,

src/Makefile, src/ops.c

Patch 8.0.1683
Problem: Python upgrade breaks Vim when defining PYTHON_HOME.
Solution: Do not define PYTHON_HOME and PYTHON3_HOME in configure. (Naoki

Inada, closes #2787)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1684
Problem: ml_get errors when using terminal window for shell command.

(Blay263)
Solution: Do not change the size of the current window.
Files: src/terminal.c

version8.txt — 3204

Patch 8.0.1685
Problem: Can't set ANSI colors of a terminal window.
Solution: Add term_setansicolors(), term_getansicolors() and

g:term_ansi_colors. (Andy Massimino, closes #2747)
Files: runtime/doc/eval.txt, runtime/doc/terminal.txt, src/channel.c,

src/evalfunc.c, src/proto/terminal.pro, src/structs.h,
src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1686 (after 8.0.1683)
Problem: Python does not work when configuring with specific dir. (Rajdeep)
Solution: Do define PYTHON_HOME and PYTHON3_HOME in configure if the Python

config dir was specified.
Files: src/configure.ac, src/auto/configure

Patch 8.0.1687
Problem: 64 bit compiler warnings.
Solution: change type, add type cast. (Mike Williams)
Files: src/terminal.c

Patch 8.0.1688
Problem: Some macros are used without a semicolon, causing auto-indent to be

wrong.
Solution: Use the do-while(0) trick. (Ozaki Kiichi, closes #2729)
Files: src/buffer.c, src/dosinst.c, src/ex_cmds.c, src/gui_at_sb.c,

src/macros.h, src/main.c, src/memline.c, src/option.c,
src/os_vms.c, src/screen.c, src/window.c

Patch 8.0.1689
Problem: No tests for xxd.
Solution: Add a test. (Christian Brabandt)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Makefile,

src/testdir/test_xxd.vim, src/testdir/runtest.vim

Patch 8.0.1690
Problem: Not easy to run one test with gvim instead of vim.
Solution: Add VIMTESTTARGET in Makefile.
Files: src/Makefile

Patch 8.0.1691
Problem: Xxd test sometimes fails.
Solution: Wipe out the XXDfile buffer.
Files: src/testdir/test_xxd.vim

Patch 8.0.1692 (after 8.0.1686)
Problem: Python may not work when using statically linked library.
Solution: Do not define PYTHON_HOME and PYTHON3_HOME in configure if the

Python library is linked statically.
Files: src/configure.ac, src/auto/configure

Patch 8.0.1693
Problem: Xxd is excluded from coverage statistics.
Solution: Don't skip the xxd directory. (Christian Brabandt)
Files: .travis.yml

Patch 8.0.1694
Problem: Terminal API test is a bit flaky.
Solution: Wait longer for Vim to stop.
Files: src/testdir/screendump.vim

Patch 8.0.1695

version8.txt — 3205

Problem: Xxd test not run on MS-Windows.
Solution: Use xxd.exe if it exists.
Files: src/testdir/test_xxd.vim

Patch 8.0.1696
Problem: Coverage statistics don't work.
Solution: Include the xxd directory. (Christian Brabandt)
Files: .travis.yml

Patch 8.0.1697
Problem: Various tests are still a bit flaky.
Solution: Increase the default wait time to five seconds.
Files: src/testdir/shared.vim, src/testdir/screendump.vim,

src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_quotestar.vim, src/testdir/test_terminal.vim

Patch 8.0.1698
Problem: Coverage statistics don't work on coveralls.
Solution: Use curly braces for $SRCDIR.
Files: .travis.yml

Patch 8.0.1699
Problem: Leftover stuff for Python 1.4.
Solution: Remove outdated Python 1.4 stuff. (Naoki Inada, closes #2794)
Files: src/Makefile, src/config.aap.in, src/config.mk.in,

src/configure.ac, src/auto/configure

Patch 8.0.1700
Problem: Coverage statistics still don't work on coveralls.
Solution: Exclude the xxd directory again.
Files: .travis.yml

Patch 8.0.1701
Problem: Can disable COLOR_EMOJI with MSVC but not MinGW.
Solution: Add COLOR_EMOJI flag. Also add some empty lines for readability.
Files: src/Make_cyg_ming.mak

Patch 8.0.1702
Problem: Leaking memory when autocommands make a quickfix list invalid.
Solution: Call FreeWild(). (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.1703
Problem: In the tutor 'showcmd' is not set.
Solution: Set 'showcmd' in the vimtutor script. (Ken Takata, closes #2792)
Files: src/vimtutor

Patch 8.0.1704
Problem: 'backupskip' default doesn't work for Mac.
Solution: Use "/private/tmp". (Rainer Müller, closes #2793)
Files: src/option.c, src/testdir/test_options.vim,

runtime/doc/options.txt

Patch 8.0.1705
Problem: When making a vertical split the mode message isn't always

updated, "VISUAL" remains. (Alexei Averchenko)
Solution: Only reset clear_cmdline when filling all columns of the last

screen line. (Tom M. closes #2611)
Files: src/screen.c, src/testdir/test_window_cmd.vim

version8.txt — 3206

Patch 8.0.1706
Problem: Cannot send CTRL-\ to a terminal window.
Solution: Make CTRL-W CTRL-\ send CTRL-\ to a terminal window.
Files: src/terminal.c, runtime/doc/terminal.txt

Patch 8.0.1707
Problem: When 'wfh' is set ":bel 10new" scrolls window. (Andrew Pyatkov)
Solution: Set the fraction before changing the window height. (closes #2798)
Files: src/window.c

Patch 8.0.1708
Problem: Mkdir with 'p' flag fails on existing directory, which is

different from the mkdir shell command.
Solution: Don't fail if the directory already exists. (James McCoy,

closes #2775)
Files: src/evalfunc.c, src/testdir/test_eval_stuff.vim,

runtime/doc/eval.txt

Patch 8.0.1709
Problem: Some non-C89 code may slip through.
Solution: Enforce C89 in configure. Fix detected problems. (James McCoy,

closes #2735)
Files: src/channel.c, src/configure.ac, src/auto/configure,

src/gui_gtk_x11.c, src/if_python3.c

Patch 8.0.1710
Problem: Building with Ruby fails.
Solution: Don't add -ansi when building with Ruby.
Files: src/configure.ac, src/auto/configure

Patch 8.0.1711
Problem: Term_setsize() is not implemented yet.
Solution: Implement it.
Files: src/evalfunc.c, src/terminal.c, src/proto/terminal.pro,

src/testdir/test_terminal.vim, runtime/doc/eval.txt

Patch 8.0.1712
Problem: Terminal scrollback is not limited.
Solution: Add the 'terminalscroll' option.
Files: src/terminal.c, src/option.h, src/option.c,

runtime/doc/options.txt, runtime/doc/terminal.txt

Patch 8.0.1713
Problem: Terminal debugger doesn't handle arguments.
Solution: Use <f-args> and pass all the arguments to gdb, e.g. the core file

or process number. (suggested by Christian Brabandt) Disallow
starting the debugger twice.

Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,
runtime/doc/terminal.txt

Patch 8.0.1714
Problem: Term_setsize() does not give an error in a normal buffer.
Solution: Add an error message.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1715
Problem: Terminal buffer can be 1 more than 'terminalscroll' lines.
Solution: Change > to >=.
Files: src/terminal.c

version8.txt — 3207

Patch 8.0.1716
Problem: Test for term_setsize() does not give a good error message.
Solution: use assert_inrange().
Files: src/testdir/test_terminal.vim

Patch 8.0.1717
Problem: C89 check causes too much trouble.
Solution: Remove enforcing C89 for now.
Files: src/configure.ac, src/auto/configure

Patch 8.0.1718
Problem: Terminal scrollback test fails on MS-Windows.
Solution: Check for the last line of output anticipating there might be an

empty line below it.
Files: src/testdir/test_terminal.vim

Patch 8.0.1719
Problem: Cannot specify which Python executable configure should use.
Solution: Add --with-python-command and --with-python3-command.
Files: src/configure.ac, src/auto/configure

Patch 8.0.1720
Problem: When a timer is running a terminal window may not close after a

shell has exited.
Solution: Call job_status() more often.
Files: src/terminal.c

Patch 8.0.1721
Problem: No test for using the 'termsize' option.
Solution: Add a test.
Files: src/testdir/screendump.vim, src/testdir/test_terminal.vim

Patch 8.0.1722
Problem: Cannot specify a minimal size for a terminal window.
Solution: Support the "rows*cols" format for 'winsize'.
Files: src/terminal.c, src/testdir/test_terminal.vim, src/option.c,

runtime/doc/options.txt

Patch 8.0.1723
Problem: Using one item array size declaration is misleading.
Solution: Instead of using "[1]" and actually using a larger array, use

"[]". This is to verify that this C99 feature works for all
compilers.

Files: src/structs.h, src/getchar.c

Patch 8.0.1724
Problem: Declarations cannot be halfway a block.
Solution: Move one declaration to check if this works for all compilers.
Files: src/main.c

Patch 8.0.1725
Problem: Terminal debugger doesn't handle command arguments.
Solution: Add the :TermdebugCommand command. Use a ! to execute right away.

(Christian Brabandt)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,

runtime/doc/terminal.txt

Patch 8.0.1726 (after 8.0.1724)
Problem: Older MSVC doesn't support declarations halfway a block.
Solution: Move the declaration back to the start of the block.

version8.txt — 3208

Files: src/main.c

Patch 8.0.1727
Problem: qf_get_properties() function is too long.
Solution: Refactor the code. (Yegappan Lakshmanan, closes #2807)
Files: src/quickfix.c

Patch 8.0.1728
Problem: Condition always false, useless code.
Solution: Remove the code. (Nikolai Pavlov, closes #2808)
Files: src/message.c

Patch 8.0.1729
Problem: No comma after last enum item.
Solution: Add a few commas to check if this works for all compilers. Also

add a few // comments.
Files: src/structs.h

Patch 8.0.1730
Problem: No configure check for the used C99 features.
Solution: Add a compilation check. Tentatively document C99 features.
Files: src/configure.ac, src/auto/configure, runtime/doc/develop.txt

Patch 8.0.1731
Problem: Characters deleted on completion. (Adrià Farrés)
Solution: Also check the last item for the ORIGINAL_TEXT flag. (Christian

Brabandt, closes #1645)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.1732
Problem: Crash when terminal API call deletes the buffer.
Solution: Lock the buffer while calling a function. (closes #2813)
Files: src/buffer.c, src/terminal.c, src/testdir/test_terminal.vim,

src/testdir/test_autocmd.vim

Patch 8.0.1733
Problem: Incomplete testing for completion fix. (Lifepillar)
Solution: Add a test with CTRL-P.
Files: src/testdir/test_popup.vim

Patch 8.0.1734
Problem: Package directory not added to 'rtp' if prefix matches.
Solution: Check the match is a full match. (Ozaki Kiichi, closes #2817)

Also handle different ways of spelling a path.
Files: src/testdir/test_packadd.vim, src/ex_cmds2.c

Patch 8.0.1735 (after 8.0.1723 and 8.0.1730)
Problem: Flexible array member feature not supported by HP-UX. (John

Marriott)
Solution: Do not use the flexible array member feature of C99.
Files: src/configure.ac, src/auto/configure, src/structs.h,

src/getchar.c, runtime/doc/develop.txt

Patch 8.0.1736
Problem: Check for C99 features is incomplete.
Solution: Use AC_PROG_CC_C99 and when C99 isn't fully supported check the

features we need. (James McCoy, closes #2820)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1737

version8.txt — 3209

Problem: fchown() used when it is not supported.
Solution: Add #ifdef.
Files: src/fileio.c

Patch 8.0.1738
Problem: ":args" output is hard to read.
Solution: Make columns with the names if the output is more than one line.
Files: src/ex_cmds2.c, src/version.c, src/proto/version.pro,

src/testdir/test_arglist.vim

Patch 8.0.1739
Problem: MS-Windows with msys2 cannot build Ruby statically.
Solution: Define RUBY_VERSION. (Gray Wolf, closes #2826)
Files: src/Make_cyg_ming.mak

Patch 8.0.1740
Problem: Warning for signed-unsigned incompatibility.
Solution: Change type from "char *" to "char_u *". (John Marriott)
Files: src/ex_cmds2.c

Patch 8.0.1741
Problem: MS-Windows with msys2 cannot build Ruby statically.
Solution: Add RUBY_VERSION to CFLAGS later. (Gray Wolf, closes #2833)
Files: src/Make_cyg_ming.mak

Patch 8.0.1742
Problem: Cannot get a list of all the jobs. Cannot get the command of

the job.
Solution: When job_info() is called without an argument return a list of

jobs. Otherwise, include the command that the job is running.
(Yegappan Lakshmanan)

Files: runtime/doc/eval.txt, src/channel.c, src/evalfunc.c,
src/proto/channel.pro, src/structs.h, src/testdir/test_channel.vim

Patch 8.0.1743
Problem: Terminal window options are named inconsistently.
Solution: prefix terminal window options with "termwin". Keep the old names

for now as an alias.
Files: src/option.c, src/option.h, src/structs.h, src/terminal.c,

src/testdir/test_terminal.vim, src/testdir/gen_opt_test.vim,
runtime/doc/options.txt, runtime/doc/quickref.txt,
runtime/doc/terminal.txt, runtime/optwin.vim

Patch 8.0.1744
Problem: On some systems /dev/stdout isn't writable.
Solution: Skip test if writing is not possible. (James McCoy, closes #2830)
Files: src/testdir/test_writefile.vim

Patch 8.0.1745
Problem: Build failure on MS-Windows.
Solution: Build job arguments for MS-Windows. Fix allocating job twice.
Files: src/structs.h, src/channel.c, src/os_unix.c, src/misc2.c,

src/terminal.c, src/proto/misc2.pro

Patch 8.0.1746
Problem: MS-Windows: channel tests fail.
Solution: Make a copy of the command before splitting it.
Files: src/channel.c

Patch 8.0.1747

version8.txt — 3210

Problem: MS-Windows: term_start() does not set job_info() cmd.
Solution: Share the code from job_start() to set jv_argv.
Files: src/testdir/test_terminal.vim, src/channel.c, src/misc2.c,

src/proto/misc2.pro, src/terminal.c

Patch 8.0.1748
Problem: CmdlineEnter command uses backslash instead of slash.
Solution: Don't treat the character as a file name. (closes #2837)
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 8.0.1749
Problem: VMS: 100% CPU use, redefining mch_open() and mch_fopen() fails.
Solution: Do not wait indefinitely in RealWaitForChar(). (Neil Rieck)

Do not redefine mch_open() and mch_fopen() on VMS. (Zoltan
Arpadffy)

Files: src/os_vms.c, src/vim.h

Patch 8.0.1750
Problem: Crash when clearing location list in autocommand.
Solution: Check if "qi" equals "ql_info". (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1751
Problem: #ifdef causes bad highlighting.
Solution: Move code around. (Ozaki Kiichi, closes #2731)
Files: src/ui.c

Patch 8.0.1752
Problem: qf_set_properties() is to long.
Solution: Refactor the function. Define INVALID_QFIDX. (Yegappan

Lakshmanan, closes #2812)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1753
Problem: Various warnings from a static analyser
Solution: Add type casts, remove unneeded conditions. (Christian Brabandt,

closes #2770)
Files: src/evalfunc.c, src/ex_cmds2.c, src/fileio.c, src/getchar.c,

src/normal.c, src/os_unix.c, src/search.c, src/term.c

Patch 8.0.1754
Problem: ex_helpgrep() is too long.
Solution: Refactor the function. (Yegappan Lakshmanan, closes #2766)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1755
Problem: MS-Windows GUI: high unicode char received as two utf-16 words.
Solution: Keep the first word until the second word is received. (Chris

Morgan, closes #2800)
Files: src/gui_w32.c

Patch 8.0.1756
Problem: GUI: after prompting for a number the mouse shape is sometimes

wrong.
Solution: Call setmouse() after setting "State". (Hirohito Higashi,

closes #2709)
Files: src/misc1.c

Patch 8.0.1757
Problem: Unnecessary changes in libvterm.

version8.txt — 3211

Solution: Bring back // comments and trailing comma in enums.
Files: src/libvterm/bin/unterm.c, src/libvterm/bin/vterm-ctrl.c,

src/libvterm/bin/vterm-dump.c, src/libvterm/include/vterm.h,
src/libvterm/include/vterm_keycodes.h,
src/libvterm/src/encoding.c, src/libvterm/src/keyboard.c,
src/libvterm/src/parser.c, src/libvterm/src/pen.c,
src/libvterm/src/screen.c, src/libvterm/src/state.c,
src/libvterm/src/unicode.c, src/libvterm/src/utf8.h,
src/libvterm/src/vterm.c, src/libvterm/src/vterm_internal.h

Patch 8.0.1758
Problem: open_line() returns TRUE/FALSE for success/failure.
Solution: Return OK or FAIL.
Files: src/misc1.c, src/normal.c, src/edit.c

Patch 8.0.1759
Problem: Memory leak from duplicate options. (Yegappan Lakshmanan)
Solution: Don't set the default value twice.
Files: src/option.c

Patch 8.0.1760
Problem: Wrong number of arguments to vms_read().
Solution: Drop the first argument. (Ozaki Kiichi)
Files: src/ui.c

Patch 8.0.1761
Problem: Job in terminal window with no output channel is killed.
Solution: Keep the job running when the input is a tty. (Ozaki Kiichi,

closes #2734)
Files: src/channel.c, src/os_unix.c, src/testdir/test_channel.vim

Patch 8.0.1762
Problem: Terminal debug logging is a bit complicated.
Solution: Make log_tr() use variable arguments (Ozaki Kiichi, closes #2730)
Files: src/term.c

Patch 8.0.1763
Problem: :argedit does not reuse an empty unnamed buffer.
Solution: Add the BLN_CURBUF flag and fix all the side effects. (Christian

Brabandt, closes #2713)
Files: src/buffer.c, src/ex_cmds2.c, src/proto/buffer.pro,

src/testdir/test_arglist.vim, src/testdir/test_command_count.vim

Patch 8.0.1764
Problem: Lgtm considers tutor.es to be EcmaScript.
Solution: Add a config file for lgtm. (Bas van Schaik, closes #2844)
Files: .lgtm.yml, Filelist

Patch 8.0.1765
Problem: CTRL-G j in Insert mode is incorrect when 'virtualedit' is set.
Solution: Take coladd into account. (Christian Brabandt, closes #2743)
Files: src/charset.c, src/testdir/test_virtualedit.vim

Patch 8.0.1766 (after 8.0.1758)
Problem: Expanding abbreviation doesn't work. (Tooth Pik)
Solution: Return OK instead of FALSE and FAIL instead of TRUE. (Christian

Brabandt)
Files: src/edit.c, src/testdir/test_mapping.vim

Patch 8.0.1767

version8.txt — 3212

Problem: With 'incsearch' text may jump up and down. ()
Solution: Besides w_botline also save and restore w_empty_rows.

(closes #2530)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_scrolling_01.dump

Patch 8.0.1768
Problem: SET_NO_HLSEARCH() used in a wrong way.
Solution: Make it a function. (suggested by Dominique Pelle,

closes #2850)
Files: src/vim.h, src/ex_docmd.c, src/proto/ex_docmd.pro, src/search.c,

src/ex_getln.c, src/option.c, src/screen.c, src/tag.c

Patch 8.0.1769
Problem: Repeated saving and restoring viewstate for 'incsearch'.
Solution: Use a structure.
Files: src/ex_getln.c

Patch 8.0.1770
Problem: Assert functions don't return anything.
Solution: Return non-zero when the assertion fails.
Files: src/evalfunc.c, src/eval.c, src/proto/eval.pro,

src/testdir/test_assert.vim, runtime/doc/eval.txt

Patch 8.0.1771
Problem: In tests, when WaitFor() fails it doesn't say why. (James McCoy)
Solution: Add WaitForAssert(), which produces an assert error when it fails.
Files: src/testdir/shared.vim, src/testdir/test_terminal.vim,

src/testdir/screendump.vim, src/testdir/test_autocmd.vim,
src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_job_fails.vim

Patch 8.0.1772
Problem: Quickfix: mixup of FALSE and FAIL, returning -1.
Solution: Use FAIL and INVALID_QFIDX. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.0.1773
Problem: Dialog messages are not translated.
Solution: Add N_() and _() where needed. (Sergey Alyoshin)
Files: src/diff.c, src/ex_cmds2.c, src/ex_docmd.c, src/message.c,

src/po/Make_cyg.mak, src/po/Make_ming.mak, src/po/Make_mvc.mak,
src/po/Makefile, src/quickfix.c, src/vim.h

Patch 8.0.1774
Problem: Reading very long lines can be slow.
Solution: Read up to 1 Mbyte at a time to avoid a lot of copying. Add a

check for going over the column limit.
Files: src/fileio.c

Patch 8.0.1775
Problem: MS-Windows: warning for unused variable.
Solution: Move declaration inside #ifdef. (Mike Williams)
Files: src/channel.c

Patch 8.0.1776
Problem: In tests, when WaitFor() fails it doesn't say why.
Solution: Turn a few more WaitFor() into WaitForAssert().
Files: src/testdir/test_popup.vim, src/testdir/test_quotestar.vim,

src/testdir/test_search.vim, src/testdir/test_terminal.vim,

version8.txt — 3213

src/testdir/test_timers.vim

Patch 8.0.1777
Problem: Cannot cleanup before loading another colorscheme.
Solution: Add the ColorSchemePre autocommand event.
Files: src/fileio.c, src/syntax.c, src/vim.h, src/testdir/test_gui.vim,

runtime/colors/README.txt

Patch 8.0.1778
Problem: Script to check translations does not always work.
Solution: Go to first line before searching for MIME.
Files: src/po/check.vim

Patch 8.0.1779
Problem: Deleting in a block selection causes problems.
Solution: Check the length of the line before adding bd.textcol and

bd.textlen. (Christian Brabandt, closes #2825)
Files: src/ops.c, src/testdir/test_blockedit.vim

Patch 8.0.1780
Problem: Test fails because Vim in a terminal uses wrong 'encoding'.
Solution: Set encoding in the test where it matters. (James McCoy,

closes #2847)
Files: src/testdir/test_terminal.vim

Patch 8.0.1781
Problem: File names in quickfix window are not always shortened.
Solution: Shorten the file name when opening the quickfix window. (Yegappan

Lakshmanan, closes #2851, closes #2846)
Files: src/testdir/test_quickfix.vim, src/fileio.c, src/proto/fileio.pro,

src/quickfix.c

Patch 8.0.1782
Problem: No simple way to label quickfix entries.
Solution: Add the "module" item, to be used instead of the file name for

display purposes. (Marcin Szamotulski, closes #1757)
Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/alloc.h,

src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1783
Problem: Cannot use 256 colors in a MS-Windows console.
Solution: Add 256 color support. (Nobuhiro Takasaki, closes #2821)
Files: src/misc1.c, src/option.c, src/os_win32.c, src/proto/os_win32.pro,

src/term.c, src/proto/term.pro, src/terminal.c

Patch 8.0.1784 (after 8.0.1782)
Problem: Gvim test gets stuck in dialog.
Solution: Rename the file used.
Files: src/testdir/test_quickfix.vim

Patch 8.0.1785 (after 8.0.1783)
Problem: Missing symbol in Win32 small build.
Solution: Define VTERM_ANSI_INDEX_NONE without the terminal feature. Also

fix unused function with #ifdef.
Files: src/term.c, src/os_win32.c

Patch 8.0.1786
Problem: No test for 'termwinkey'.
Solution: Add a test. Make feedkeys() handle terminal_loop() returning

before characters are consumed.

version8.txt — 3214

Files: src/testdir/test_terminal.vim, src/terminal.c, src/evalfunc.c,
src/ex_docmd.c, src/getchar.c, src/keymap.h

Patch 8.0.1787
Problem: Cannot insert the whole cursor line.
Solution: Make CTRL-R CTRL-L work. (Andy Massimino, closes #2857)
Files: runtime/doc/cmdline.txt, src/ex_getln.c, src/ops.c,

src/testdir/test_cmdline.vim

Patch 8.0.1788
Problem: Tool to check a color scheme is not installed.
Solution: Update the install rule. (Christian Brabandt)
Files: src/Makefile

Patch 8.0.1789
Problem: BufWinEnter does not work well for a terminal window.
Solution: Do not trigger BufWinEnter when opening a terminal window.
Files: src/terminal.c, runtime/doc/autocmd.txt,

src/testdir/test_terminal.vim

Patch 8.0.1790
Problem: 'winfixwidth' is not always respected by :close.
Solution: Prefer a frame without 'winfixwidth' or 'winfixheight'. (Jason

Franklin)
Files: src/window.c, src/testdir/test_winbuf_close.vim

Patch 8.0.1791
Problem: Using uint8_t does not work everywhere.
Solution: Use char_u instead.
Files: src/term.c, src/proto/term.pro, src/os_win32.c

Patch 8.0.1792
Problem: MS-Windows users expect -? to work like --help.
Solution: Add -?. (Christian Brabandt, closes #2867)
Files: src/main.c

Patch 8.0.1793
Problem: No test for "vim -g".
Solution: Add a test for "-g" and "-y".
Files: src/testdir/shared.vim, src/testdir/test_gui.vim

Patch 8.0.1794
Problem: Duplicate term options after renaming.
Solution: Remove the old names 'termkey', 'termsize' and 'terminalscroll'.
Files: src/option.c, src/terminal.c, src/option.h,

src/testdir/gen_opt_test.vim, src/testdir/screendump.vim

Patch 8.0.1795
Problem: Lose contact with jobs when :gui forks.
Solution: Don't fork when there is a running job. Make log message for a

died job clearer. Also close the terminal when stderr and stdout
are the same FD.

Files: src/gui.h, src/gui.c, src/channel.c, src/proto/channel.pro,
src/os_unix.c, src/terminal.c

Patch 8.0.1796
Problem: GUI: click on tab fails when the focus is in a terminal window.
Solution: Handle K_TABLINE.
Files: src/terminal.c

version8.txt — 3215

Patch 8.0.1797
Problem: Terminal window is redrawn too often and scrolling is repeated.
Solution: Don't scroll immediately but only when redrawing. Avoid redrawing

the whole terminal window on every change.
Files: src/terminal.c, src/screen.c, src/proto/terminal.pro

Patch 8.0.1798
Problem: MS-Windows: file considered read-only when another program has

opened it.
Solution: Pass file sharing flag to CreateFile(). (Linwei, closes #2860)
Files: src/os_win32.c

Patch 8.0.1799
Problem: No test for :registers command.
Solution: Add a test. (Dominique Pelle, closes #2880)
Files: src/testdir/test_registers.vim

Patch 8.0.1800
Problem: X11: getting color is slow.
Solution: Avoid using sprintf() and XParseColor(), put the RGB values in

XColor directly.
Files: src/gui_x11.c

Patch 8.0.1801
Problem: MS-Windows: redirecting terminal output does not work.
Solution: Intercept the text written to the terminal and write it to the

file.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1802 (after 8.0.1802)
Problem: MS-Windows: terminal test fails.
Solution: Close redirected output file earlier.
Files: src/terminal.c

Patch 8.0.1803
Problem: Warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize it.
Files: src/terminal.c

Patch 8.0.1804
Problem: Using :normal in terminal window causes problems. (Dominique

Pelle)
Solution: Don't call terminal_loop() for :normal. (closes #2886)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/evalfunc.c

Patch 8.0.1805
Problem: qf_parse_line() is too long.
Solution: Split it in parts. Properly handle vim_realloc() failing.

(Yegappan Lakshmanan, closes #2881)
Files: src/quickfix.c

Patch 8.0.1806
Problem: InsertCharPre causes problems for autocomplete. (Lifepillar)
Solution: Check for InsertCharPre before calling vpeekc(). (Christian

Brabandt, closes #2876)
Files: src/edit.c, src/testdir/test_popup.vim

Patch 8.0.1807
Problem: Function to set terminal name is too long.
Solution: Refactor the function. Fix typo in test.

version8.txt — 3216

Files: src/term.c, src/testdir/test_options.vim

Patch 8.0.1808 (after 8.0.1807)
Problem: Can't build without TGETENT.
Solution: Add #ifdef
Files: src/term.c

Patch 8.0.1809
Problem: Various typos.
Solution: Correct the mistakes, change "cursur" to "cursor". (closes #2887)
Files: src/edit.c, src/normal.c, src/screen.c, src/proto/screen.pro,

src/ui.c

Patch 8.0.1810
Problem: Buffer of a terminal only updated in Terminal-Normal mode.
Solution: Copy the terminal window content to the buffer when in

Terminal-Job mode.
Files: src/terminal.c, src/proto/terminal.pro, src/ex_cmds2.c,

src/proto/ex_cmds2.pro

Patch 8.0.1811
Problem: No test for winrestcmd().
Solution: Add a test. (Dominique Pelle, closes #2894)
Files: src/testdir/test_window_cmd.vim

Patch 8.0.1812
Problem: The qf_jump_to_usable_window() function is too long.
Solution: Split it in parts. (Yegappan Lakshmanan, closes #2891)
Files: src/quickfix.c

Patch 8.0.1813
Problem: Windows installer doesn't install terminal debugger.
Solution: Add the package to the list of files to install.
Files: nsis/gvim.nsi

Patch 8.0.1814
Problem: Crash with terminal window and with 'lazyredraw' set. (Antoine)
Solution: Check the terminal still exists after update_screen().
Files: src/terminal.c

Patch 8.0.1815 (after 8.0.1814)
Problem: Still a crash with terminal window and with 'lazyredraw' set.

(Antoine)
Solution: Do not wipe out the buffer when updating the screen.
Files: src/terminal.c, src/proto/terminal.pro, src/screen.c,

src/proto/screen.pro, src/ui.c

Patch 8.0.1816
Problem: No test for setcmdpos().
Solution: Add a test. (Dominique Pelle, closes #2901)
Files: src/testdir/test_cmdline.vim

Patch 8.0.1817
Problem: A timer may change v:count unexpectedly.
Solution: Save and restore v:count and similar variables when a timer

callback is invoked. (closes #2897)
Files: src/eval.c, src/proto/eval.pro, src/ex_cmds2.c, src/structs.h,

src/testdir/test_timers.vim

Patch 8.0.1818 (after 8.0.1810)

version8.txt — 3217

Problem: Lines remove from wrong buffer when using terminal window.
Solution: Make sure to use tl_buffer.
Files: src/terminal.c

Patch 8.0.1819
Problem: Swap file warning for a file in a non-existing directory, if there

is another with the same file name. (Juergen Weigert)
Solution: When expanding the file name fails compare the file names.
Files: src/testdir/test_swap.vim, src/memline.c

Patch 8.0.1820
Problem: Terminal window redirecting stdout does not show stderr. (Matéo

Zanibelli)
Solution: When stdout is not connected to pty_master_fd then use it for

stderr. (closes #2903)
Files: src/os_unix.c, src/testdir/test_terminal.vim

Patch 8.0.1821
Problem: Cursor in terminal window moves when pressing CTRL-W. (Dominique

Pelle)
Solution: Do not more the cursor or redraw when not in Terminal-Normal mode.

(closes #2904)
Files: src/terminal.c

Patch 8.0.1822
Problem: Make uninstall does not remove colors/tools.
Solution: Add a line to delete the tools directory. (Kazunobu Kuriyama)
Files: src/Makefile

Patch 8.0.1823
Problem: Test for terminal stdout redirection is flaky.
Solution: Wait for the job to finish.
Files: src/testdir/test_terminal.vim

Patch 8.0.1824
Problem: Coverity warns for variable that may be uninitialized.
Solution: Initialize the variable.
Files: src/terminal.c

Patch 8.0.1825
Problem: Might use NULL pointer when out of memory. (Coverity)
Solution: Handle NULL pointer better.
Files: src/getchar.c

Patch 8.0.1826
Problem: Configure uses old compiler flag.
Solution: Remove _DARWIN_C_SOURCE. (Kazunobu Kuriyama)
Files: src/configure.ac, src/auto/configure

Patch 8.0.1827
Problem: Compiler warning for signed/unsigned char pointers. (Cesar Romani)
Solution: Change the type of jv_argv.
Files: src/channel.c, src/structs.h

Patch 8.0.1828
Problem: Get no clue why :gui does not fork.
Solution: Add a channel log message.
Files: src/channel.c

Patch 8.0.1829

version8.txt — 3218

Problem: MS-Windows: script for vimdiff can't handle ! chars.
Solution: Escape the ! chars. (Hans Ginzel, closes #2896)
Files: src/dosinst.c

Patch 8.0.1830
Problem: Switching to Terminal-Normal mode does not redraw. (Dominique

Pelle)
Solution: Also redraw when not updating the snapshot. (closes #2904)
Files: src/terminal.c

Patch 8.0.1831
Problem: Sometimes the quickfix title is incorrectly prefixed with ':'.
Solution: Prepend the colon in another way. (Yegappan Lakshmanan, closes

#2905)
Files: src/evalfunc.c, src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.0.1832
Problem: Cannot use :unlet for an environment variable.
Solution: Make it work. Use unsetenv() if available. (Yasuhiro Matsumoto,

closes #2855)
Files: runtime/doc/eval.txt, src/config.h.in, src/configure.ac,

src/auto/configure, src/eval.c, src/misc1.c, src/proto/misc1.pro,
src/testdir/test_unlet.vim

Patch 8.0.1833
Problem: X11: ":echo 3.14" gives E806.
Solution: set LC_NUMERIC to "C". (Dominique Pelle, closes #2368)
Files: src/gui_x11.c

Patch 8.0.1834
Problem: GUI: find/replace dialog does not handle some chars properly.
Solution: Escape '?' when needed. Always escape backslash. (closes #2418,

closes #2435)
Files: src/gui.c

Patch 8.0.1835
Problem: Print document name does not support multibyte.
Solution: Use StartDocW() if needed. (Yasuhiro Matsumoto, closes #2478)
Files: src/os_mswin.c

Patch 8.0.1836
Problem: Buffer-local window options may not be recent if the buffer is

still open in another window.
Solution: Copy the options from the window instead of the outdated window

options. (Bjorn Linse, closes #2336)
Files: src/buffer.c, src/testdir/test_options.vim

Patch 8.0.1837
Problem: One character cmdline abbreviation not triggered after '<,'>.
Solution: Skip over the special range. (Christian Brabandt, closes #2320)
Files: src/ex_getln.c, src/testdir/test_mapping.vim

Patch 8.0.1838
Problem: Cursor in wrong position when switching to Terminal-Normal mode.

(Dominique Pelle)
Solution: Move to the end of the line if coladvance() fails. Do not take a

snapshot a second time.
Files: src/terminal.c

Patch 8.0.1839

version8.txt — 3219

Problem: Script to check .po file doesn't check for plural header.
Solution: Add a check that the plural header is present when needed.
Files: src/po/check.vim

Patch 8.0.1840
Problem: getwinpos() is not tested.
Solution: Add a test. (Dominique Pelle, closes #2911)
Files: src/testdir/test_gui.vim

Patch 8.0.1841
Problem: HP-UX does not have setenv().
Solution: Use vim_setenv(). (John Marriott)
Files: src/misc1.c

Patch 8.0.1842
Problem: Popup menu inside terminal window isn't cleared.
Solution: Use NOT_VALID in pum_undisplay(). (suggested by Christian

Brabandt, closes #2908)
Files: src/popupmnu.c

Patch 8.0.1843
Problem: Entry for 'wrap' in options window is wrong. (John Little)
Solution: Make the change apply locally.
Files: runtime/optwin.vim

Patch 8.0.1844
Problem: Superfluous quickfix code, missing examples.
Solution: Remove unneeded code. Add a few examples. Add a bit more

testing. (Yegappan Lakshmanan, closes #2916)
Files: runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.0.1845
Problem: Various comment updates needed, missing white space.
Solution: Update comments, add white space.
Files: src/getchar.c, src/testdir/test_cscope.vim, src/gui_mac.c

Patch 8.0.1846
Problem: Python interface is incompatible with lldb.
Solution: For OutputType set the base to be PyFile_Type. (Boxu Zhang)

Partly disabled to avoid a crash.
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 8.0.1847
Problem: Some build options don't have an example.
Solution: Add a couple more examples and compiler flags.
Files: src/Makefile

Patch 8.0.1848
Problem: 'termwinscroll' does not work properly. (Dominique Pelle)
Solution: Subtract removed scrollback from the scrollback count. Add a test

for 'termwinscroll'. (closes #2909)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.0.1849
Problem: Compiler warning for unused arguments and missing prototype.
Solution: Add UNUSED. Add static.
Files: src/mbyte.c, src/if_ruby.c

Patch 8.0.1850

version8.txt — 3220

Problem: Todo items in source code not visible for users.
Solution: Move the todo items to the help file.
Files: src/terminal.c

==
VERSION 8.2 version-8.2 version8.2 vim-8.2

This section is about improvements made between version 8.1 and 8.2.

This release has hundreds of bug fixes, there are several new features and
there are many minor improvements.

Popup windows new-popup-window

Popup windows can be used to display text on top of other windows. This can
be for a simple message such as "Build finished successfully", showing a
function prototype while editing a function call, a flexible popup menu and
many other purposes. See popup-window .

Popup windows are very flexible: they can be positioned relative to text, an
absolute position or just in the middle of the screen. The size can be fixed
or adjusts to fit the text. A "zindex" value specifies what popup window goes
on top of others.

The new 'wincolor' option allows for setting the color for the whole popup
window. This also works for normal windows.

Text properties new-text-properties

Text properties give a plugin author flexibility about what to highlight.
This can be used with an external asynchronous parser to do syntax
highlighting. Or to highlight text in a popup window. The text properties
stick with the text when characters are deleted or inserted, which makes them
also useful as text markers. See text-properties .

The listener functions have been added to report text changes to a server so
that it can dynamically update highlighting, mark syntax errors and the like.
See listener_add() .

Vim script improvements new-vimscript-8.2

Functions can now be called in a chain, using "->":
mylist->filter(filterexpr)->map(mapexpr)->sort()->join()

The new `:eval` command can be used if the chain has no result.

Function arguments can be made optional by giving them a default value
optional-function-argument :

function Something(key, value = 10)

The `:scriptversion` command was added to allow for changes that are not
backwards compatible. E.g. to only use ".." for string concatenation, so that
"." can be used to access a dictionary member consistently.

version8.txt — 3221

`:const` was added to allow for declaring a variable that cannot change:
const TIMER_DELAY = 400

A heredoc-style assignment was added to easily assign a list of lines to a
variable without quoting or line continuation:

let lines =<< trim END
line one
line two

END

The Blob type was added. This makes it easy to deal with binary data.

The /= and %= assignment operators were added.

A Dictionary can be defined with literal keys using #{}. This avoids having
to use a lot of quotes:

let options = #{width: 30, height: 24}

Other improvements new-other-8.2

- When 'incsearch' is set it also applies to `:substitute`.
- modifyOtherKeys was added to allow mapping more key combinations.
- ConPTY support was added for Windows 10, supports full color in the terminal.
- The MS-Windows installer supports translations, silent install and looks

much better.

Changed changed-8.2

The xdiff library was included to avoid the need for an external diff program
and to make updating diffs much faster.

The code is using a few more modern C features, such as // comments.

Support for old compilers has been dropped: Borland C++, MSVC 2008.

Hangul input support was removed, it actually didn't work anymore.

Makefiles for old Amiga compilers were removed: Dice, Manx and SAS.

If a swap file is found without any changes it is automatically deleted.

The FEAT_TAG_OLDSTATIC code was removed, it slowed down tag searches.
The FEAT_TAG_ANYWHITE code was removed, it was not enabled in any build.
The UNICODE16 code was removed, it was not useful.
Workshop support was removed, nobody was using it.
The Aap build files were removed, they were outdated.
Farsi support was removed, it was outdated and unused.

VIMDLL was re-implemented, this shares the common parts between vim and gvim
to reduce the total install size.

The following features are now included in all versions: +multi_byte ,
+virtualedit , +vreplace , +localmap , +cmdline_hist , +cmdline_compl ,
+insert_expand , +modify_fname , +comments

version8.txt — 3222

Added added-8.2

Added functions:
All the popup_ functions.
All the prop_ functions.
All the sign_ functions.
All the sound_ functions.

appendbufline()
balloon_gettext()
bufadd()
bufload()
ch_readblob()
chdir()
debugbreak()
deletebufline()
environ()
expandcmd()
getenv()
getimstatus()
getmousepos()
gettagstack()
interrupt()
isinf()
list2str()
listener_add()
listener_flush()
listener_remove()
prompt_setcallback()
prompt_setinterrupt()
prompt_setprompt()
pum_getpos()
rand()
readdir()
reg_executing()
reg_recording()
rubyeval()
screenchars()
screenpos()
screenstring()
setenv()
settagstack()
srand()
state()
str2list()
strptime()
swapinfo()
swapname()
term_setapi()
test_getvalue()
test_null_blob()
test_refcount()

test_scrollbar() (later replaced with test_gui_event())
test_setmouse()
win_execute()
win_splitmove()
winlayout()

Added autocommands:

version8.txt — 3223

CompleteChanged
DiffUpdated
SafeState
SafeStateAgain
SourcePost
TerminalWinOpen

Added commands:
Jumping to errors relative to the cursor position:

`:cabove`
`:cafter`
`:cbefore`
`:cbelow`
`:labove`
`:lbefore`
`:lbelow`
`:lafter`

Tab-local directory:
`:tcd`
`:tchdir`

Others:
`:const`
`:eval`
`:redrawtabline`
`:scriptversion`
`:spellrare`
`:tlmenu`
`:tlnoremenu`
`:tlunmenu`
`:xrestore`

Added options:
'completepopup'
'completeslash'
'cursorlineopt'
'modelineexpr'
'previewpopup'
'scrollfocus'
'tagfunc'
'termwintype'
'varsofttabstop'
'vartabstop'
'wincolor'

Patches patches-8.2

These patches were applied after the 8.1 release and are included in the 8.2
release.

Patch 8.1.0001
Problem: The netrw plugin does not work.
Solution: Make it accept version 8.x.
Files: runtime/autoload/netrw.vim

Patch 8.1.0002
Problem: :stopinsert changes the message position.
Solution: Save and restore msg_col and msg_row in clearmode(). (Jason

Franklin)

version8.txt — 3224

Files: src/screen.c, src/testdir/test_messages.vim

Patch 8.1.0003
Problem: The :compiler command is not tested.
Solution: Add a test. (Dominique Pelle, closes #2930)
Files: src/Makefile, src/testdir/test_alot.vim,

src/testdir/test_compiler.vim

Patch 8.1.0004
Problem: Test for :compiler command sometimes fails.
Solution: Be less strict about the error message. (Dominique Pelle)
Files: src/testdir/test_compiler.vim

Patch 8.1.0005
Problem: Test for :compiler command fails on MS-Windows.
Solution: Ignore difference in path.
Files: src/testdir/test_compiler.vim

Patch 8.1.0006
Problem: syn_id2cterm_bg() may be undefined. (Axel Bender)
Solution: Adjust #ifdef.
Files: src/syntax.c

Patch 8.1.0007
Problem: No test for "o" and "O" in Visual block mode.
Solution: Add a test. (Dominique Pelle, closes #2932)
Files: src/testdir/test_visual.vim

Patch 8.1.0008
Problem: No test for strwidth().
Solution: Add a test. (Dominique Pelle, closes #2931)
Files: src/testdir/test_functions.vim

Patch 8.1.0009
Problem: Tabpages insufficiently tested.
Solution: Add more test coverage. (Dominique Pelle, closes #2934)
Files: src/testdir/test_tabpage.vim

Patch 8.1.0010
Problem: efm_to_regpat() is too long.
Solution: Split off three functions. (Yegappan Lakshmanan, closes #2924)
Files: src/quickfix.c

Patch 8.1.0011
Problem: maparg() and mapcheck() confuse empty and non-existing.
Solution: Return <Nop> for an existing non-empty mapping. (closes #2940)
Files: src/evalfunc.c, src/testdir/test_maparg.vim

Patch 8.1.0012
Problem: Misplaced #endif.
Solution: Move the #endif to after the expression. (David Binderman)
Files: src/fileio.c

Patch 8.1.0013
Problem: Using freed memory when changing terminal cursor color.
Solution: Make a copy of the color. (Dominique Pelle, closes #2938,

closes #2941)
Files: src/terminal.c

Patch 8.1.0014

version8.txt — 3225

Problem: qf_init_ext() is too long.
Solution: Split it into multiple functions. (Yegappan Lakshmanan,

closes #2939)
Files: src/quickfix.c

Patch 8.1.0015
Problem: Cursor color wrong when closing a terminal window, ending up in

another terminal window. (Dominique Pelle)
Solution: Bail out of terminal_loop() when the buffer changes.

(closes #2942)
Files: src/terminal.c

Patch 8.1.0016
Problem: Possible crash in term_wait(). (Dominique Pelle)
Solution: Check for a valid buffer after ui_delay(). (closes #2944)
Files: src/terminal.c

Patch 8.1.0017
Problem: Shell command completion has duplicates. (Yegappan Lakshmanan)
Solution: Use a hash table to avoid duplicates. (Ozaki Kiichi, closes #539,

closes #2733)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.1.0018
Problem: Using "gn" may select wrong text when wrapping.
Solution: Avoid wrapping when searching forward. (Christian Brabandt)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.1.0019
Problem: Error when defining a Lambda with index of a function result.
Solution: When not evaluating an expression and skipping a function call,

set the return value to VAR_UNKNOWN.
Files: src/userfunc.c, src/testdir/test_lambda.vim

Patch 8.1.0020
Problem: Cannot tell whether a register is being used for executing or

recording.
Solution: Add reg_executing() and reg_recording(). (Hirohito Higashi,

closes #2745) Rename the global variables for consistency. Store
the register name in reg_executing.

Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,
src/testdir/test_functions.vim, src/getchar.c, src/normal.c,
src/ops.c, src/globals.h, src/edit.c, src/fileio.c, src/message.c,
src/screen.c

Patch 8.1.0021
Problem: Clang warns for undefined behavior.
Solution: Move #ifdef outside of sprintf() call. (suggestion by Michael

Jarvis, closes #2946)
Files: src/term.c

Patch 8.1.0022
Problem: Repeating put from expression register fails.
Solution: Re-evaluate the expression register. (Andy Massimino,

closes #2945)
Files: src/getchar.c, src/testdir/test_put.vim

Patch 8.1.0023
Problem: gcc 8.1 warns for use of strncpy(). (John Marriott)
Solution: Use mch_memmove() instead of STRNCPY().

version8.txt — 3226

Files: src/memline.c

Patch 8.1.0024
Problem: % command not tested on #ifdef and comment.
Solution: Add tests. (Dominique Pelle, closes #2956)
Files: src/testdir/test_goto.vim

Patch 8.1.0025
Problem: No test for the undofile() function.
Solution: Add test. (Dominique Pelle, closes #2958)
Files: src/testdir/test_undo.vim

Patch 8.1.0026
Problem: Terminal test fails with very tall terminal. (Tom)
Solution: Fix the terminal window size in the test.
Files: src/testdir/test_terminal.vim

Patch 8.1.0027
Problem: Difficult to make a plugin that feeds a line to a job.
Solution: Add the initial code for the "prompt" buftype.
Files: runtime/doc/channel.txt, runtime/doc/eval.txt,

runtime/doc/options.txt, runtime/doc/tags, runtime/doc/todo.txt,
src/Makefile, src/buffer.c, src/channel.c, src/diff.c, src/edit.c,
src/evalfunc.c, src/normal.c, src/ops.c, src/option.c,
src/proto/buffer.pro, src/proto/channel.pro, src/proto/edit.pro,
src/proto/ops.pro, src/structs.h, src/testdir/Make_all.mak,
src/testdir/screendump.vim, src/testdir/test_prompt_buffer.vim

Patch 8.1.0028 (after 8.1.0027)
Problem: Prompt buffer test fails on MS-Windows.
Solution: Disable the test for now. Remove stray assert.
Files: src/testdir/test_prompt_buffer.vim

Patch 8.1.0029
Problem: Terminal test fails on MS-Windows when "wc" exists.
Solution: Skip test with redirection on MS-Windows.
Files: src/testdir/test_terminal.vim

Patch 8.1.0030
Problem: Stopping Vim running in a terminal may not work.
Solution: Instead of sending <Esc> send CTRL-O.
Files: src/testdir/screendump.vim, src/testdir/test_prompt_buffer.vim

Patch 8.1.0031
Problem: Terminal test aucmd_on_close is flaky.
Solution: Wait a bit longer.
Files: src/testdir/test_terminal.vim

Patch 8.1.0032
Problem: BS in prompt buffer starts new line.
Solution: Do not allow BS over the prompt. Make term_sendkeys() handle

special keys. Add a test.
Files: src/option.c, src/terminal.c, src/testdir/test_prompt_buffer.vim

Patch 8.1.0033
Problem: Keys to stop Vim in terminal are wrong. (Marius Gedminas)
Solution: Move ":" to before CTRL-U.
Files: src/testdir/screendump.vim

Patch 8.1.0034

version8.txt — 3227

Problem: Cursor not restored with ":edit #".
Solution: Don't assume autocommands moved the cursor when it was moved to

the first non-blank.
Files: src/ex_cmds.c, src/testdir/test_edit.vim

Patch 8.1.0035
Problem: Not easy to switch between prompt buffer and other windows.
Solution: Accept CTRL-W commands in Insert mode. Start and stop Insert mode

as one would expect.
Files: src/edit.c, src/ex_docmd.c, src/structs.h, src/window.c

Patch 8.1.0036
Problem: Not restoring Insert mode if leaving a prompt buffer by using a

mouse click.
Solution: Set b_prompt_insert appropriately. Also correct cursor position

when moving cursor to last line.
Files: src/buffer.c, src/edit.c, src/window.c

Patch 8.1.0037
Problem: Cannot easily append lines to another buffer.
Solution: Add appendbufline().
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufline.vim, src/testdir/test_edit.vim

Patch 8.1.0038
Problem: Popup test causes Vim to exit.
Solution: Disable the broken part of the test for now.
Files: src/testdir/test_popup.vim

Patch 8.1.0039
Problem: Cannot easily delete lines in another buffer.
Solution: Add deletebufline().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_bufline.vim

Patch 8.1.0040
Problem: Warnings from 64-bit compiler.
Solution: Add type casts. (Mike Williams)
Files: src/edit.c

Patch 8.1.0041
Problem: Attribute "width" missing from python window attribute list.
Solution: Add the item. (Ken Takata) Order the list like the items are used

in the WindowAttr() function.
Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok

Patch 8.1.0042
Problem: If omni completion opens a window Insert mode is stopped.

(Hirohito Higashi)
Solution: Only set stop_insert_mode in a prompt buffer window.
Files: src/window.c

Patch 8.1.0043
Problem: ++bad argument of :edit does not work properly.
Solution: Return FAIL from get_bad_opt() only when there is no valid

argument. (Dominique Pelle, Christian Brabandt, closes #2966,
closes #2947)

Files: src/ex_docmd.c, src/testdir/test_plus_arg_edit.vim

Patch 8.1.0044
Problem: If a test function exits Vim this may go unnoticed.

version8.txt — 3228

Solution: Check for a test function quitting Vim. Fix tests that did exit
Vim.

Files: src/testdir/runtest.vim, src/testdir/test_assert.vim

Patch 8.1.0045 (after 8.1.0038)
Problem: Popup test isn't run completely.
Solution: Remove "finish". Clean up function definitions.
Files: src/testdir/test_popup.vim

Patch 8.1.0046
Problem: Loading a session file fails if 'winheight' is a big number.
Solution: Set 'minwinheight' to zero at first. Don't give an error when

setting 'minwinheight' while 'winheight' is a big number.
Fix using vertical splits. Fix setting 'minwinwidth'.
(closes #2970)

Files: src/testdir/test_mksession.vim, src/option.c, src/window.c,
src/proto/window.pro

Patch 8.1.0047
Problem: No completion for :unlet $VAR.
Solution: Add completion. (Jason Franklin)
Files: src/ex_docmd.c, src/testdir/test_unlet.vim

Patch 8.1.0048
Problem: vim_str2nr() does not handle numbers close to the maximum.
Solution: Check for overflow more precisely. (Ken Takata, closes #2746)
Files: src/charset.c

Patch 8.1.0049
Problem: Shell cannot tell running in a terminal window.
Solution: Add the VIM_TERMINAL environment variable. (Christian Brabandt)
Files: runtime/doc/terminal.txt, src/os_unix.c, src/os_win32.c,

src/testdir/test_terminal.vim

Patch 8.1.0050 (after 8.1.0049)
Problem: $VIM_TERMINAL is also set when not in a terminal window.
Solution: Pass a flag to indicate whether the job runs in a terminal.
Files: src/channel.c, src/proto/channel.pro, src/evalfunc.c,

src/terminal.c, src/os_unix.c, src/proto/os_unix.pro,
src/os_win32.c

Patch 8.1.0051 (after 8.1.0050)
Problem: MS-Windows: missing #endif.
Solution: Add the #endif.
Files: src/os_win32.c

Patch 8.1.0052
Problem: When a mapping to <Nop> times out the next mapping is skipped.
Solution: Reset "timedout" when waiting for a character. (Christian

Brabandt, closes #2921)
Files: src/getchar.c

Patch 8.1.0053
Problem: The first argument given to 'completefunc' can be Number or

String, depending on the value.
Solution: Avoid guessing the type of an argument, use typval_T in the

callers of call_vim_function(). (Ozaki Kiichi, closes #2993)
Files: src/edit.c, src/eval.c, src/ex_getln.c, src/mbyte.c, src/normal.c,

src/proto/eval.pro, src/testdir/test_ins_complete.vim

version8.txt — 3229

Patch 8.1.0054
Problem: Compiler warning for using %ld for "long long".
Solution: Add a type cast. (closes #3002)
Files: src/os_unix.c

Patch 8.1.0055 (after 8.1.0053)
Problem: Complete test has wrong order of arguments. Wrong type for

sentinel variable.
Solution: Swap arguments, use VAR_UNKNOWN. (Ozaki Kiichi)
Files: src/mbyte.c, src/testdir/test_ins_complete.vim

Patch 8.1.0056
Problem: Crash when using :hardcopy with illegal byte.
Solution: Check for string_convert() returning NULL. (Dominique Pelle)
Files: src/hardcopy.c, src/testdir/test_hardcopy.vim

Patch 8.1.0057
Problem: Popup menu displayed wrong when using autocmd.
Solution: Use aucmd_prepbuf(). Force updating status line if the popup menu

is going to be redrawn anyway. (Christian Brabandt, closes #3009)
Files: src/edit.c, src/screen.c, src/proto/screen.pro

Patch 8.1.0058
Problem: Display problem with margins and scrolling.
Solution: Place the cursor in the right column. (Kouichi Iwamoto,

closes #3016)
Files: src/screen.c

Patch 8.1.0059
Problem: Displayed digraph for "ga" wrong with 'encoding' "cp1251".
Solution: Convert from 'encoding' to "utf-8" if needed. (closes #3015)
Files: src/digraph.c, src/testdir/test_digraph.vim

Patch 8.1.0060
Problem: Crash when autocommands delete the current buffer. (Dominique

Pelle)
Solution: Check that autocommands don't change the buffer.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0061
Problem: Window title is wrong after resetting and setting 'title'.
Solution: Move resetting the title into maketitle(). (Jason Franklin)
Files: src/option.c, src/buffer.c

Patch 8.1.0062
Problem: Popup menu broken if a callback changes the window layout. (Qiming

Zhao)
Solution: Recompute the popup menu position if needed. Redraw the ruler

even when the popup menu is displayed.
Files: src/popupmnu.c, src/proto/popupmnu.pro, src/screen.c

Patch 8.1.0063
Problem: Mac: NSStringPboardType is deprecated.
Solution: Use NSPasteboardTypeString. (Akshay Hegde, closes #3022)
Files: src/os_macosx.m

Patch 8.1.0064
Problem: Typing CTRL-W in a prompt buffer shows mode "-- --".
Solution: Set restart_edit to 'A' and check for it.
Files: src/edit.c, src/window.c, src/screen.c

version8.txt — 3230

Patch 8.1.0065 (after 8.1.0062)
Problem: Balloon displayed at the wrong position.
Solution: Do not reposition the popup menu at the cursor position.
Files: src/popupmnu.c

Patch 8.1.0066
Problem: Nasty autocommand causes using freed memory. (Dominique Pelle)
Solution: Do not force executing autocommands if the value of 'syntax' or

'filetype' did not change.
Files: src/option.c

Patch 8.1.0067
Problem: Syntax highlighting not working when re-entering a buffer.
Solution: Do force executing autocommands when not called recursively.
Files: src/option.c

Patch 8.1.0068
Problem: Nasty autocommands can still cause using freed memory.
Solution: Disallow using setloclist() and setqflist() recursively.
Files: src/evalfunc.c

Patch 8.1.0069
Problem: Cannot handle pressing CTRL-C in a prompt buffer.
Solution: Add prompt_setinterrupt().
Files: runtime/doc/eval.txt, src/edit.c, src/evalfunc.c, src/channel.c,

src/proto/channel.pro

Patch 8.1.0070
Problem: Missing part of the changes for prompt_setinterrupt().
Solution: Add the missing changes.
Files: src/structs.h

Patch 8.1.0071
Problem: Terminal debugger only works with the terminal feature.
Solution: Make it also work with a prompt buffer. Makes it possible to use

on MS-Windows. Various other improvements. (closes #3012)
Files: runtime/doc/terminal.txt,

runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0072
Problem: Use of 'termwinkey' is inconsistent.
Solution: Change the documentation and the behavior. (Ken Takata)
Files: src/terminal.c, runtime/doc/terminal.txt

Patch 8.1.0073
Problem: Crash when autocommands call setloclist(). (Dominique Pelle)
Solution: If the quickfix list changes then don't jump to the error.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0074 (after 8.1.0073)
Problem: Crash when running quickfix tests.
Solution: Do not alloc a new location list when checking for the reference

to be still valid.
Files: src/quickfix.c

Patch 8.1.0075
Problem: No Vim logo in README file.
Solution: Add one. (Árni Dagur, closes #3024)
Files: README.md

version8.txt — 3231

Patch 8.1.0076
Problem: Command getting cleared with CTRL-W : in a terminal window. (Jason

Franklin)
Solution: Call redraw_after_callback() when editing the command line.
Files: src/terminal.c

Patch 8.1.0077
Problem: Header of README file is not nice.
Solution: Move text to the bottom.
Files: README.md

Patch 8.1.0078
Problem: "..." used inconsistently in messages.
Solution: Drop the space before " ...".
Files: src/spellfile.c, src/regexp_nfa.c

Patch 8.1.0079
Problem: Superfluous space in messages.
Solution: Remove the spaces. (closes #3030)
Files: src/gui_w32.c

Patch 8.1.0080
Problem: Can't see the breakpoint number in the terminal debugger.
Solution: Use the breakpoint number for the sign. (Christian Brabandt)
Files: runtime/doc/terminal.txt,

runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0081
Problem: The terminal debugger doesn't adjust to changed 'background'.
Solution: Add an OptionSet autocommand. (Christian Brabandt)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0082
Problem: In terminal window, typing : at more prompt, inserts ':' instead

of starting another Ex command.
Solution: Add skip_term_loop and set it when putting ':' in the typeahead

buffer.
Files: src/globals.h, src/main.c, src/message.c

Patch 8.1.0083
Problem: "is" and "as" have trouble with quoted punctuation.
Solution: Check for punctuation before a quote. (Jason Franklin)
Files: src/search.c, src/testdir/test_textobjects.vim

Patch 8.1.0084
Problem: User name completion does not work on MS-Windows.
Solution: Use NetUserEnum() to get user names. (Yasuhiro Matsumoto)
Files: src/Make_ivc.mak, src/Make_cyg_ming.mak, src/Make_mvc.mak,

src/misc1.c

Patch 8.1.0085
Problem: No test for completing user name and language.
Solution: Add tests. (Dominique Pelle, closes #2978)
Files: src/testdir/test_cmdline.vim

Patch 8.1.0086
Problem: No tests for libcall() and libcallnr().
Solution: Add tests. (Dominique Pelle, closes #2982)
Files: src/testdir/test_functions.vim

version8.txt — 3232

Patch 8.1.0087
Problem: v:shell_error is always zero when using terminal for "!cmd".
Solution: Use "exitval" of terminal-job. (Ozaki Kiichi, closes #2994)
Files: src/os_unix.c, src/os_win32.c, src/proto/terminal.pro,

src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0088
Problem: Terminal test for stdout and stderr is a bit flaky.
Solution: Wait for both stdout and stderr to have been processed. (Ozaki

Kiichi, closes #2991)
Files: src/testdir/test_terminal.vim

Patch 8.1.0089
Problem: error when ending the terminal debugger
Solution: Fix deleting defined signs for breakpoints. Make the debugger

work better on MS-Windows.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0090
Problem: "..." used inconsistently in a message.
Solution: Define the message with " ..." once. (hint by Ken Takata)
Files: src/regexp_nfa.c

Patch 8.1.0091
Problem: MS-Windows: Cannot interrupt gdb when program is running.
Solution: Add debugbreak() and use it in the terminal debugger.

Respect 'modified' in a prompt buffer.
Files: src/evalfunc.c, runtime/doc/eval.txt, src/undo.c,

runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0092 (after 8.1.0091)
Problem: Prompt buffer test fails.
Solution: Set 'nomodified' before closing the window. (Ozaki Kiichi,

closes #3051)
Files: src/testdir/test_prompt_buffer.vim

Patch 8.1.0093
Problem: non-MS-Windows: Cannot interrupt gdb when program is running.
Solution: Only use debugbreak() on MS-Windows.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0094
Problem: Help text "usage:" is not capitalized.
Solution: Make it "Usage:". (closes #3044)
Files: src/main.c

Patch 8.1.0095
Problem: Dialog for ":browse tabnew" says "new window".
Solution: Use "new tab page". (closes #3053)
Files: src/ex_docmd.c

Patch 8.1.0096
Problem: Inconsistent use of the word autocommands.
Solution: Don't use auto-commands or "auto commands".
Files: src/fileio.c

Patch 8.1.0097
Problem: Superfluous space before exclamation mark.
Solution: Remove the space. Don't translate debug message.

version8.txt — 3233

Files: src/regexp_nfa.c

Patch 8.1.0098
Problem: Segfault when pattern with \z() is very slow.
Solution: Check for NULL regprog. Add "nfa_fail" to test_override() to be

able to test this. Fix that 'searchhl' resets called_emsg.
Files: src/syntax.c, runtime/doc/eval.txt, src/evalfunc.c, src/vim.h,

src/testdir/test_syntax.vim, src/globals.h, src/screen.c,
src/regexp.c, src/regexp_nfa.c

Patch 8.1.0099
Problem: Exclamation mark in error message not needed.
Solution: Remove the exclamation mark.
Files: src/regexp_nfa.c

Patch 8.1.0100
Problem: Terminal debugger: error when setting a watch point.
Solution: Don't try defining a sign for a watch point.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0101
Problem: No test for getcmdwintype().
Solution: Add a test. (Dominique Pelle, closes #3068)
Files: src/testdir/test_cmdline.vim

Patch 8.1.0102
Problem: Cannot build without syntax highlighting.
Solution: Add #ifdef around using reg_do_extmatch.
Files: src/regexp.c

Patch 8.1.0103
Problem: Long version string cannot be translated.
Solution: Build the string in init_longVersion().
Files: src/globals.h, src/version.h, src/version.c,

src/proto/version.pro, src/main.c

Patch 8.1.0104
Problem: Can't build without the +eval feature.
Solution: Add #ifdef.
Files: src/regexp_nfa.c

Patch 8.1.0105
Problem: All tab stops are the same.
Solution: Add the variable tabstop feature. (Christian Brabandt,

closes #2711)
Files: runtime/doc/change.txt, runtime/doc/options.txt,

runtime/doc/various.txt, runtime/optwin.vim, src/beval.c,
src/beval.h, src/buffer.c, src/charset.c, src/edit.c,
src/evalfunc.c, src/ex_cmds.c, src/feature.h, src/gui_beval.c,
src/gui_w32.c, src/hardcopy.c, src/message.c, src/misc1.c,
src/ops.c, src/option.c, src/option.h, src/proto/misc1.pro,
src/proto/option.pro, src/screen.c, src/structs.h,
src/testdir/Make_all.mak, src/testdir/gen_opt_test.vim,
src/testdir/test_breakindent.vim, src/testdir/test_vartabs.vim,
src/version.c, src/workshop.c, src/Makefile

Patch 8.1.0106 (after 8.1.0103)
Problem: Build fails when HAVE_DATE_TIME is undefined.
Solution: Always define init_longVersion(). (Christian Brabandt,

closes #3075)

version8.txt — 3234

Files: src/version.c

Patch 8.1.0107
Problem: Python: getting buffer option clears message. (Jacob Niehus)
Solution: Don't use aucmd_prepbuf(). (closes #3079)
Files: src/option.c

Patch 8.1.0108
Problem: No Danish translations.
Solution: Add Danish message translations. (closes #3073) Move list of

languages to a common makefile.
Files: src/po/Makefile, src/po/Make_cyg.mak, src/po/Make_mvc.mak,

src/po/Make_ming.mak, src/po/Make_all.mak, src/po/da.po

Patch 8.1.0109
Problem: New po makefile missing from distribution.
Solution: Add it to the file list.
Files: Filelist

Patch 8.1.0110
Problem: File name not displayed with ":file" when 'F' is in 'shortmess'.
Solution: Always display the file name when there is no argument (Christian

Brabandt, closes #3070)
Files: src/ex_cmds.c, src/testdir/test_options.vim

Patch 8.1.0111
Problem: .po files do not use recommended names.
Solution: Give a warning if the recommended name is not used. Accept the

recommended name for conversion. (Christian Brabandt, Ken Takata)
Files: src/po/Makefile, src/po/sjiscorr.c, src/po/check.vim

Patch 8.1.0112
Problem: No error when using bad arguments with searchpair().
Solution: Add error messages.
Files: src/evalfunc.c, src/testdir/test_search.vim

Patch 8.1.0113
Problem: Compiler warning for unused variable. (Yegappan Lakshmanan)
Solution: Add UNUSED. (Christian Brabandt)
Files: src/screen.c

Patch 8.1.0114
Problem: Confusing variable name.
Solution: Rename new_ts to new_vts_array. Change zero to NULL.
Files: src/ex_cmds.c, src/option.c

Patch 8.1.0115
Problem: The matchparen plugin may throw an error.
Solution: Change the skip argument from zero to "0".
Files: runtime/plugin/matchparen.vim

Patch 8.1.0116
Problem: Display problem with 'vartabstop' and 'linebreak'. (Chauca

Fuentes)
Solution: Call tabstop_padding(). (Christian Brabandt, closes #3076)
Files: src/screen.c, src/testdir/test_vartabs.vim

Patch 8.1.0117
Problem: URL in install program still points to SourceForge.
Solution: Change it to www.vim.org. (closes #3100)

version8.txt — 3235

Files: src/dosinst.c

Patch 8.1.0118
Problem: Duplicate error message for put command.
Solution: Check return value of u_save(). (Jason Franklin)
Files: src/ops.c, src/testdir/test_messages.vim src/testdir/test_put.vim

Patch 8.1.0119
Problem: Failing test goes unnoticed because testdir/messages is not

written.
Solution: Set 'nomodifiable' only local to the buffer.
Files: src/testdir/test_put.vim

Patch 8.1.0120
Problem: Buffer 'modified' set even when :sort has no changes.
Solution: Only set 'modified' when lines are moved. (Jason Franklin)
Files: src/ex_cmds.c, src/testdir/test_sort.vim

Patch 8.1.0121
Problem: Crash when using ballooneval related to 'vartabstop'.
Solution: Initialize balloonEval->vts to NULL. (Markus Braun)
Files: src/ex_cmds2.c, src/gui_beval.c, src/gui_w32.c, src/gui.c

Patch 8.1.0122
Problem: Translators don't always understand the maintainer message.
Solution: Add a comment that ends up in the generated po file. (Christian

Brabandt, closes #3037)
Files: src/message.c

Patch 8.1.0123
Problem: MS-Windows: colors are wrong after setting 'notgc'.
Solution: Only call control_console_color_rgb() for the win32 terminal.

(Nobuhiro Takasaki, closes #3107)
Files: src/option.c

Patch 8.1.0124
Problem: has('vcon') returns true even for non-win32 terminal.
Solution: Check the terminal type. (Nobuhiro Takasaki, closes #3106)
Files: src/evalfunc.c

Patch 8.1.0125
Problem: Virtual edit replace with multibyte fails at end of line. (Lukas

Werling)
Solution: use ins_char() to add the character. (Christian Brabandt,

closes #3114) Rename PCHAR() to PBYTE() to avoid mistakes like
this.

Files: src/ops.c, src/testdir/test_virtualedit.vim, src/macros.h

Patch 8.1.0126
Problem: Various problems with 'vartabstop'.
Solution: Fix memory leak. Fix crash. Add a few more tests. (Christian

Brabandt, closes #3076)
Files: src/ex_cmds.c, src/option.c, src/screen.c,

src/testdir/test_vartabs.vim

Patch 8.1.0127
Problem: Build failure when disabling the session feature. (Pawel Slowik)
Solution: Adjust #ifdef for vim_chdirfile().
Files: src/misc2.c

version8.txt — 3236

Patch 8.1.0128
Problem: Building with MinGW does not work out-of-the-box.
Solution: Add instructions for MSYS2. Set default WINVER. Add batch files

to set $PATH for MSYS2.
Files: src/Make_cyg_ming.mak, src/INSTALLpc.txt, src/msys32.bat,

src/msys64.bat, Filelist

Patch 8.1.0129
Problem: Still some xterm-like terminals get a stray "p" on startup.
Solution: Consider all terminals that reply with a version smaller than 95

as not an xterm. (James McCoy)
Files: src/term.c

Patch 8.1.0130
Problem: ":profdel func" does not work if func was called already.

(Dominique Pelle)
Solution: Reset uf_profiling and add a flag to indicate initialization was

done.
Files: src/structs.h, src/userfunc.c

Patch 8.1.0131
Problem: :profdel is not tested.
Solution: Add a test. (Dominique Pelle, closes #3123)
Files: src/testdir/test_profile.vim

Patch 8.1.0132
Problem: Lua tests are old style.
Solution: Convert to new style tests. Improve coverage. (Dominique Pelle,

closes #3091)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_vms.mms,
src/testdir/test85.in, src/testdir/test_lua.vim

Patch 8.1.0133
Problem: tagfiles() can have duplicate entries.
Solution: Simplify the filename to make checking for duplicates work better.

Add a test. (Dominique Pelle, closes #2979)
Files: src/tag.c, src/testdir/test_taglist.vim

Patch 8.1.0134
Problem: Lua interface does not support funcref.
Solution: Add funcref support. (Luis Carvalho)
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.1.0135
Problem: Undo message delays screen update for CTRL-O u.
Solution: Add smsg_attr_keep(). (closes #3125)
Files: src/message.c, src/proto.h, src/undo.c

Patch 8.1.0136
Problem: Lua tests don't cover new features.
Solution: Add more tests. (Dominique Pelle, closes #3130)
Files: runtime/doc/if_lua.txt, src/testdir/test_lua.vim

Patch 8.1.0137
Problem: CI does not run with TCL.
Solution: Add TCL to the travis config. (Dominique Pelle, closes #3133)
Files: .travis.yml

Patch 8.1.0138

version8.txt — 3237

Problem: Negative value of 'softtabstop' not used correctly.
Solution: Use get_sts_value(). (Tom Ryder)
Files: src/edit.c, src/option.c, src/Makefile, src/testdir/test_tab.vim

Patch 8.1.0139
Problem: Lua tests fail on some platforms.
Solution: Accept a hex number with and without "0x". (Ken Takata,

closes #3137)
Files: src/testdir/test_lua.vim

Patch 8.1.0140
Problem: Recording into a register has focus events. (Michael Naumann)
Solution: Don't record K_FOCUSGAINED and K_FOCUSLOST. (closes #3143)
Files: src/getchar.c

Patch 8.1.0141
Problem: :cexpr no longer jumps to the first error.
Solution: Use the quickfix list identifier. (Yegappan Lakshmanan,

closes #3092)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0142
Problem: Xterm and vt320 builtin termcap missing keypad keys.
Solution: Add the escape sequences. (Kouichi Iwamoto, closes #2973)
Files: src/term.c

Patch 8.1.0143
Problem: Matchit and matchparen don't handle E363.
Solution: Catch the E363 error. (Christian Brabandt)
Files: runtime/pack/dist/opt/matchit/plugin/matchit.vim,

runtime/plugin/matchparen.vim

Patch 8.1.0144
Problem: The :cd command does not have good test coverage.
Solution: Add more tests. (Dominique Pelle, closes #2972)
Files: src/testdir/test_cd.vim

Patch 8.1.0145
Problem: Test with grep is failing on MS-Windows.
Solution: Skip the test.
Files: src/testdir/test_quickfix.vim

Patch 8.1.0146
Problem: When $LANG is set the compiler test may fail.
Solution: Unset $LANG.
Files: src/testdir/test_compiler.vim

Patch 8.1.0147
Problem: Compiler warning when building with Python 3.7.
Solution: #undef PySlice_GetIndicesEx before redefining it. (Ozaki Kiichi,

closes #3153)
Files: src/if_python3.c

Patch 8.1.0148
Problem: Memory leak when using :tcl expr command.
Solution: Free the result of expression evaluation. (Dominique Pelle,

closes #3150)
Files: src/if_tcl.c

Patch 8.1.0149

version8.txt — 3238

Problem: The generated sessions file does not restore tabs properly if :lcd
was used in one of them.

Solution: Create the tab pages before setting the directory. (Yee Cheng
Chin, closes #3152)

Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.1.0150
Problem: Insufficient test coverage for Tcl.
Solution: Add more tests. (Dominique Pelle, closes #3140)
Files: src/testdir/test_tcl.vim

Patch 8.1.0151
Problem: Mksession test fails on MS-Windows.
Solution: Always use an argument for :lcd.
Files: src/testdir/test_mksession.vim

Patch 8.1.0152
Problem: Cannot easily run individual tests on MS-Windows.
Solution: Move the list of tests to a separate file. Add a build rule in

the MSVC makefile.
Files: Filelist, src/Makefile, src/Make_all.mak, src/Make_mvc.mak

Patch 8.1.0153 (after 8.1.0152)
Problem: Build with SHADOWDIR fails. (Elimar Riesebieter)
Solution: Create a link for Make_all.mak. (Tony Mechelynck)
Files: src/Makefile

Patch 8.1.0154
Problem: Crash with "set smarttab shiftwidth=0 softtabstop=-1".
Solution: Fall back to using 'tabstop'. (closes #3155)
Files: src/edit.c, src/testdir/test_tab.vim

Patch 8.1.0155
Problem: Evim.man missing from the distribution.
Solution: Add it to the list.
Files: Filelist

Patch 8.1.0156
Problem: MS-Windows compiler warning.
Solution: Add a type cast. (Mike Williams)
Files: src/version.c

Patch 8.1.0157
Problem: Old iTerm2 is not recognized, resulting in stray output.
Solution: Recognize the termresponse.
Files: src/term.c

Patch 8.1.0158
Problem: GUI: input() fails if CTRL-C was pressed before. (Michael Naumann)
Solution: call vpeekc() to drop the CTRL-C from the input stream.
Files: src/ex_docmd.c

Patch 8.1.0159
Problem: Completion for user names does not work if a prefix is also a full

matching name. (Nazri Ramliy)
Solution: Accept both full and partial matches. (Dominique Pelle)
Files: src/misc1.c, src/ex_docmd.c

Patch 8.1.0160
Problem: No Danish manual translations.

version8.txt — 3239

Solution: Add the Danish manual translations to the file list.
Files: Filelist

Patch 8.1.0161
Problem: Buffer not updated with 'autoread' set if file was deleted.

(Michael Naumann)
Solution: Don't set the timestamp to zero. (closes #3165)
Files: src/fileio.c, src/testdir/test_stat.vim

Patch 8.1.0162
Problem: Danish and German man pages are not installed. (Tony Mechelynck)
Solution: Adjust the makefile
Files: src/Makefile

Patch 8.1.0163
Problem: Insufficient testing for Tcl.
Solution: Add a few more tests. (Dominique Pelle, closes #3166)
Files: src/testdir/test_tcl.vim

Patch 8.1.0164
Problem: luaeval('vim.buffer().name') returns an error.
Solution: Return an empty string. (Dominique Pelle, closes #3167)
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.1.0165
Problem: :clist output can be very long.
Solution: Support filtering :clist entries. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0166
Problem: Using dict_add_nr_str() is clumsy.
Solution: Split into two functions. (Ozaki Kiichi, closes #3154)
Files: src/channel.c, src/dict.c, src/edit.c, src/evalfunc.c,

src/ex_cmds2.c, src/ops.c, src/option.c, src/proto/dict.pro,
src/quickfix.c, src/tag.c, src/terminal.c, src/undo.c

Patch 8.1.0167
Problem: Lock flag in new dictitem is reset in many places.
Solution: Always reset the lock flag.
Files: src/dict.c, src/channel.c, src/ex_cmds2.c, src/userfunc.c,

src/if_perl.xs, src/if_py_both.h

Patch 8.1.0168
Problem: Output of :marks is too short with multibyte chars. (Tony

Mechelynck)
Solution: Get more bytes from the text line.
Files: src/mark.c, src/testdir/test_marks.vim

Patch 8.1.0169 (after 8.1.0165)
Problem: Calling message_filtered() a bit too often.
Solution: Only call message_filtered() when filtering is already false.
Files: src/quickfix.c, runtime/doc/quickfix.txt

Patch 8.1.0170
Problem: Invalid memory use with complicated pattern. (Andy Massimino)
Solution: Reallocate the list of listids when needed. (closes #3175)

Remove unnecessary function prototypes.
Files: src/regexp_nfa.c

Patch 8.1.0171

version8.txt — 3240

Problem: Typing CTRL-W n in a terminal window causes ml_get error.
Solution: When resizing the terminal outside of terminal_loop() make sure

the snapshot is complete.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0172
Problem: 'viminfofile' option does not behave like a file name.
Solution: Add the P_EXPAND flag. (closes #3178)
Files: src/option.c

Patch 8.1.0173
Problem: Compiler warning on MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/libvterm/src/state.c

Patch 8.1.0174
Problem: After paging up and down fold line is wrong.
Solution: Correct the computation of w_topline and w_botline. (Hirohito

Higashi)
Files: src/move.c, src/testdir/test_fold.vim

Patch 8.1.0175
Problem: Marks test fails in very wide window. (Vladimir Lomov)
Solution: Extend the text to match 'columns'. (closes #3180, closes #3181)
Files: src/testdir/test_marks.vim

Patch 8.1.0176
Problem: Overlapping string argument for strcpy(). (Coverity)
Solution: Use STRMOVE() instead of STRCPY(). (Dominique Pelle, closes #3187)
Files: src/term.c

Patch 8.1.0177
Problem: Defining function in sandbox is inconsistent, cannot use :function

but can define a lambda.
Solution: Allow defining a function in the sandbox, but also use the sandbox

when executing it. (closes #3182)
Files: src/userfunc.c, src/ex_cmds.h

Patch 8.1.0178
Problem: Warning for passing pointer to non-pointer argument.
Solution: Use zero instead of NULL.
Files: src/if_ole.cpp

Patch 8.1.0179
Problem: Redundant condition for boundary check.
Solution: Remove the condition. (Dominique Pelle). Change FALSE to FAIL.
Files: src/undo.c

Patch 8.1.0180
Problem: Static analysis errors in Lua interface. (Coverity)
Solution: Check for NULL pointers.
Files: src/if_lua.c

Patch 8.1.0181
Problem: Memory leak with trailing characters in skip expression.
Solution: Free the return value.
Files: src/eval.c, src/testdir/test_search.vim

Patch 8.1.0182
Problem: Unicode standard was updated.

version8.txt — 3241

Solution: Include the changes. (Christian Brabandt)
Files: src/mbyte.c

Patch 8.1.0183
Problem: Lua API changed, breaking the build.
Solution: Adjust prototype of lua_rawgeti(). (Ken Takata,

closes #3157, closes #3144)
Files: src/if_lua.c

Patch 8.1.0184
Problem: Not easy to figure out the window layout.
Solution: Add "wincol" and "winrow" to what getwininfo() returns.
Files: src/evalfunc.c, src/testdir/test_bufwintabinfo.vim,

runtime/doc/eval.txt

Patch 8.1.0185
Problem: Running tests writes lua.vim even though it is not used.
Solution: Stop writing lua.vim.
Files: src/testdir/test1.in, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile

Patch 8.1.0186
Problem: Test for getwininfo() fails in GUI.
Solution: Account for missing tabline.
Files: src/testdir/test_bufwintabinfo.vim

Patch 8.1.0187 (after 8.1.0184)
Problem: getwininfo() and win_screenpos() return different numbers.
Solution: Add one to "wincol" and "winrow" from getwininfo().
Files: src/evalfunc.c, src/testdir/test_bufwintabinfo.vim,

runtime/doc/eval.txt

Patch 8.1.0188
Problem: No test for ":cscope add".
Solution: Add a test. (Dominique Pelle, closes #3212)
Files: src/testdir/test_cscope.vim

Patch 8.1.0189
Problem: Function defined in sandbox not tested.
Solution: Add a text.
Files: src/testdir/test_functions.vim

Patch 8.1.0190
Problem: Perl refcounts are wrong.
Solution: Improve refcounting. Add a test. (Damien)
Files: src/if_perl.xs, src/testdir/test_perl.vim

Patch 8.1.0191 (after 8.1.0190)
Problem: Perl test fails in 24 line terminal.
Solution: Create fewer windows.
Files: src/testdir/test_perl.vim

Patch 8.1.0192
Problem: Executing regexp recursively fails with a crash.
Solution: Move global variables into "rex".
Files: src/regexp.c, src/regexp.h, src/regexp_nfa.c

Patch 8.1.0193
Problem: Terminal debugger buttons don't always work. (Dominique Pelle)

version8.txt — 3242

Solution: Set 'cpo' to its default value.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0194
Problem: Possibly use of NULL pointer. (Coverity)
Solution: Reset the re_in_use flag earlier.
Files: src/regexp.c

Patch 8.1.0195
Problem: Terminal debugger commands don't always work. (Dominique Pelle)
Solution: Set 'cpo' to its default value when defining commands. (Christian

Brabandt)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0196
Problem: Terminal debugger error with .gdbinit file.
Solution: Check two lines for the "new ui" response. (hint from Hirohito

Higashi)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0197
Problem: Windows GUI: title for search/replace is wrong.
Solution: Remove remark about doubling backslash. (closes #3230)
Files: src/gui_win32.c

Patch 8.1.0198
Problem: There is no hint that syntax is disabled for 'redrawtime'.
Solution: Add a message.
Files: src/syntax.c

Patch 8.1.0199
Problem: spellbadword() does not check for caps error. (Dominique Pelle)
Solution: Adjust capcol when advancing.
Files: src/userfunc.c

Patch 8.1.0200
Problem: spellbadword() not tested.
Solution: Add a test. (Dominique Pelle, closes #3235)
Files: src/testdir/test_spell.vim

Patch 8.1.0201
Problem: Newer Python uses "importlib" instead of "imp".
Solution: Use "importlib" for newer Python versions. (Ozaki Kiichi,

closes #3163)
Files: src/if_py_both.h, src/testdir/test87.in

Patch 8.1.0202
Problem: :version always shows +packages. (Takuya Fujiwara)
Solution: Add #ifdef (closes #3198) Also for has().
Files: src/version.c, src/evalfunc.c

Patch 8.1.0203
Problem: Building with Perl 5.28 fails on Windows.
Solution: Define Perl_mg_get. (closes #3196)
Files: src/if_perl.xs

Patch 8.1.0204
Problem: inputlist() is not tested.
Solution: Add a test. (Dominique Pelle, closes #3240)
Files: src/testdir/test_functions.vim

version8.txt — 3243

Patch 8.1.0205
Problem: Invalid memory access with invalid modeline.
Solution: Pass pointer limit. Add a test. (closes #3241)
Files: src/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_modeline.vim, src/option.c

Patch 8.1.0206 (after 8.1.0205)
Problem: Duplicate test function name.
Solution: Rename both functions.
Files: src/testdir/test_modeline.vim, src/testdir/test_glob2regpat.vim

Patch 8.1.0207
Problem: Need many menu translation files to cover regions.
Solution: When there is no region match, try without. (Christian Brabandt)
Files: runtime/menu.vim

Patch 8.1.0208 (after 8.1.0205)
Problem: File left behind after running individual test.
Solution: Delete the file.
Files: src/testdir/test_modeline.vim

Patch 8.1.0209
Problem: Stderr output from Ruby messes up display.
Solution: Turn the stderr output into a Vim message. (Masataka Pocke

Kuwabara, closes #3238)
Files: src/if_ruby.c

Patch 8.1.0210
Problem: Still a few K&R function declarations.
Solution: Use ANSI function declarations (Hirohito Higashi)
Files: src/eval.c, src/evalfunc.c, src/list.c

Patch 8.1.0211
Problem: Expanding a file name "~" results in $HOME. (Aidan Shafran)
Solution: Change "~" to "./~" before expanding. (closes #3072)
Files: src/testdir/test_expand.vim, src/ex_docmd.c, src/eval.c,

src/proto/eval.pro, src/evalfunc.c, src/if_cscope.c, src/misc1.c

Patch 8.1.0212
Problem: Preferred cursor column not set in interfaces.
Solution: Set w_set_curswant when setting the cursor. (David Hotham,

closes #3060)
Files: src/if_lua.c, src/if_mzsch.c, src/if_perl.xs, src/if_py_both.h,

src/if_ruby.c, src/if_tcl.c, src/testdir/test_lua.vim,
src/testdir/test_perl.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_ruby.vim,
src/testdir/test_tcl.vim

Patch 8.1.0213
Problem: CTRL-W CR does not work properly in a quickfix window.
Solution: Split the window if needed. (Jason Franklin)
Files: src/normal.c, src/proto/quickfix.pro, src/quickfix.c,

src/testdir/test_quickfix.vim, src/window.c

Patch 8.1.0214
Problem: +autochdir feature not reported by has() or :version.
Solution: Add the feature in the list.
Files: src/evalfunc.c, src/version.c

version8.txt — 3244

Patch 8.1.0215
Problem: No error if configure --with-x cannot configure X.
Solution: Check that when --with-x is used X can be configured.
Files: src/configure.ac, src/auto/configure

Patch 8.1.0216
Problem: Part of file not indented properly.
Solution: Adjust the indent. (Ken Takata)
Files: src/getchar.c

Patch 8.1.0217
Problem: Compiler warning for variable set but not used.
Solution: Move tilde_file inside #ifdef. (Hirohito Higashi, closes #3255)
Files: src/ex_docmd.c

Patch 8.1.0218
Problem: Cannot add matches to another window. (Qiming Zhao)
Solution: Add the "window" argument to matchadd() and matchaddpos().

(closes #3260)
Files: src/evalfunc.c, runtime/doc/eval.txt, src/testdir/test_match.vim

Patch 8.1.0219
Problem: Expanding ## fails to escape backtick.
Solution: Escape a backtick in a file name. (closes #3257)
Files: src/ex_docmd.c, src/testdir/test_edit.vim

Patch 8.1.0220
Problem: Ruby converts v:true and v:false to a number.
Solution: Use Qtrue and Qfalse instead. (Masataka Pocke Kuwabara,

closes #3259)
Files: src/if_ruby.c, src/testdir/test_ruby.vim

Patch 8.1.0221
Problem: Not enough testing for the Ruby interface.
Solution: Add more tests. (Dominique Pelle, closes #3252)
Files: runtime/doc/if_ruby.txt, src/testdir/test_ruby.vim

Patch 8.1.0222
Problem: Errors are reported for "make install".
Solution: Skip missing language files. (Christian Brabandt, closes #3254)
Files: src/installman.sh

Patch 8.1.0223
Problem: Completing shell command finds sub-directories in $PATH.
Solution: Remove EW_DIR when completing an item in $PATH. (Jason Franklin)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.1.0224
Problem: Hang in bracketed paste mode when t_PE not encountered.
Solution: Break out of the loop when got_int is set. (suggested by Christian

Brabandt, closes #3146)
Files: src/edit.c

Patch 8.1.0225
Problem: Mode() does not indicate using CTRL-O from Insert mode.
Solution: Add "niI", "niR" and "niV" to mode() result. (closes #3000)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim

Patch 8.1.0226

version8.txt — 3245

Problem: Too many #ifdefs.
Solution: Graduate the +vreplace feature, it's not much code and quite a few

#ifdefs.
Files: runtime/doc/change.txt, runtime/doc/various.txt, src/edit.c,

src/evalfunc.c, src/gui.c, src/misc1.c, src/misc2.c, src/normal.c,
src/ops.c, src/screen.c, src/version.c, src/feature.h,
src/globals.h, src/macros.h, src/vim.h

Patch 8.1.0227
Problem: Spaces instead of tabs in makefile.
Solution: Use tabs and fix sorting. (Ken Takata)
Files: src/po/Make_all.mak

Patch 8.1.0228
Problem: Dropping files is ignored while Vim is busy.
Solution: Postpone the effect of dropping files until it's safe.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/gui.c, src/gui.h,

src/screen.c, src/main.c, src/gui_mac.c

Patch 8.1.0229
Problem: Crash when dumping profiling data.
Solution: Reset flag indicating that initialization was done.
Files: src/userfunc.c

Patch 8.1.0230
Problem: Directly checking 'buftype' value.
Solution: Add the bt_normal() function. (Yegappan Lakshmanan)
Files: src/buffer.c, src/ex_docmd.c, src/fileio.c, src/proto/buffer.pro,

src/quickfix.c

Patch 8.1.0231
Problem: :help -? goes to help for -+.
Solution: Add -? to list of special cases. (Hirohito Higashi)
Files: src/ex_cmds.c, src/testdir/test_help_tagjump.vim

Patch 8.1.0232
Problem: Ruby error does not include backtrace.
Solution: Add an error backtrace. (Masataka Pocke Kuwabara, closes #3267)
Files: src/if_ruby.c

Patch 8.1.0233
Problem: "safe" argument of call_vim_function() is always FALSE.
Solution: Remove the argument.
Files: src/eval.c, src/proto/eval.pro, src/edit.c, src/mbyte.c,

src/normal.c, src/ex_getln.c

Patch 8.1.0234
Problem: Incorrect reference counting in Perl interface.
Solution: Call SvREFCNT_inc more often, add a test. (Damien)
Files: src/if_perl.xs, src/testdir/test_perl.vim

Patch 8.1.0235 (after 8.1.0231)
Problem: More help tags that jump to the wrong location.
Solution: Add more exceptions and a table for "expr-" tags. (Hirohito

Higashi)
Files: src/ex_cmds.c, src/testdir/test_help_tagjump.vim

Patch 8.1.0236 (after 8.1.0232)
Problem: Ruby build fails when ruby_intern is missing.
Solution: Do not use ruby_intern2. (Ken Takata)

version8.txt — 3246

Files: src/if_ruby.c

Patch 8.1.0237
Problem: Ruby on Cygwin doesn't always work.
Solution: Use LIBRUBY_SO if LIBRUBY_ALIASES isn't set. (Ken Takata)
Files: src/configure.ac, src/auto/configure

Patch 8.1.0238
Problem: 'buftype' is cleared when using ":term ++hidden cat". (Marcin

Szamotulski)
Solution: Set the "options initialized" flag earlier. (closes #3278)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0239 (after 8.1.0236)
Problem: Now Ruby build fails on other systems.
Solution: Always define rb_intern. (Ken Takata, closes #3275)
Files: src/if_ruby.c

Patch 8.1.0240
Problem: g:actual_curbuf set in wrong scope. (Daniel Hahler)
Solution: Prepend the "g:" name space. (closes #3279)
Files: src/buffer.c

Patch 8.1.0241
Problem: Effect of ":tabmove N" is not clear.
Solution: Add a test that shows the behavior. (Christian Brabandt,

closes #3288)
Files: src/testdir/test_tabpage.vim

Patch 8.1.0242
Problem: Insert mode completion may use an invalid buffer pointer. (Akib

Nizam)
Solution: Check for ins_buf to be valid. (closes #3290)
Files: src/edit.c

Patch 8.1.0243
Problem: Using :term ++close ++hidden closes a window. (Marcin Szamotulski)
Solution: Don't close the window if only using it temporarily for unloading

the terminal buffer. (closes #3287)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0244
Problem: No redraw when using a STOP signal on Vim and then a CONT signal.
Solution: Catch the CONT signal and force a redraw. (closes #3285)
Files: src/os_unix.c, src/term.c, src/proto/term.pro

Patch 8.1.0245
Problem: Calling setline() in TextChangedI autocmd breaks undo. (Jason

Felice)
Solution: Don't save lines for undo when already saved. (closes #3291)
Files: src/edit.c, src/testdir/test_autocmd.vim

Patch 8.1.0246 (after 8.1.0245)
Problem: Build failure without the +eval feature.
Solution: Add #ifdef
Files: src/edit.c

Patch 8.1.0247
Problem: Python: error message for failing import is incorrect.
Solution: Adjust how modules are loaded. (Ozaki Kiichi, closes #3162)

version8.txt — 3247

Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok

Patch 8.1.0248
Problem: duplicated quickfix code.
Solution: Move the code to a function.
Files: src/quickfix.c

Patch 8.1.0249
Problem: GTK: when screen DPI changes Vim does not handle it.
Solution: Handle the gtk-xft-dpi signal. (Roel van de Kraats,

closes #2357)
Files: src/gui_gtk_x11.c

Patch 8.1.0250
Problem: MS-Windows using VTP: windows size change incorrect.
Solution: Call SetConsoleScreenBufferSize() first. (Nobuhiro Takasaki,

closes #3164)
Files: src/os_win32.c

Patch 8.1.0251
Problem: Using a full path is supported for 'directory' but not for

'backupdir'. (Mikolaj Machowski)
Solution: Support 'backupdir' as well. (Christian Brabandt, closes #179)
Files: runtime/doc/options.txt, src/fileio.c, src/memline.c,

src/proto/memline.pro, src/testdir/test_alot.vim,
src/testdir/test_backup.vim, src/Make_all.mak

Patch 8.1.0252
Problem: Quickfix functions are too long.
Solution: Refactor. (Yegappan Lakshmanan, closes #2950)
Files: src/quickfix.c

Patch 8.1.0253
Problem: Saving and restoring window title does not always work.
Solution: Use the stack push and pop commands. (Kouichi Iwamoto,

closes #3059)
Files: runtime/doc/term.txt, src/main.c, src/option.c, src/os_unix.c,

src/proto/term.pro, src/term.c, src/term.h, src/vim.h,
src/buffer.c, src/ex_docmd.c, src/option.c, src/os_amiga.c,
src/os_mswin.c, src/os_win32.c

Patch 8.1.0254 (after 8.1.0253)
Problem: Cannot build on MS-Windows; Unused macro HAVE_HANDLE_DROP.
Solution: Adjust #ifdef. Delete the macro.
Files: src/main.c, src/vim.h

Patch 8.1.0255 (after 8.1.0251)
Problem: Backup test fails when using shadow directory.
Solution: Remove check for "src".
Files: src/testdir/test_backup.vim

Patch 8.1.0256 (after 8.1.0245)
Problem: Using setline() in TextChangedI splits undo.
Solution: Use another solution for undo not working properly.
Files: src/edit.c, src/testdir/test_autocmd.vim

Patch 8.1.0257
Problem: No test for pathshorten().
Solution: Add a test. (Dominique Pelle, closes #3295)
Files: src/testdir/test_functions.vim

version8.txt — 3248

Patch 8.1.0258
Problem: Not enough testing for the CompleteDone event.
Solution: Add a test. (closes #3297)
Files: src/testdir/test_ins_complete.vim

Patch 8.1.0259
Problem: No test for fixed quickfix issue.
Solution: Add a test. Clean up the code a bit. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0260
Problem: No LGTM logo in README file.
Solution: Add one. (Bas van Schaik, closes #3305)
Files: README.md

Patch 8.1.0261
Problem: Coverity complains about a negative array index.
Solution: When qf_id2nr() cannot find the list then don't set qf_curlist.
Files: src/quickfix.c

Patch 8.1.0262
Problem: Not enough testing for getftype().
Solution: Add a test. (Dominique Pelle, closes #3300)
Files: src/evalfunc.c, src/testdir/test_stat.vim

Patch 8.1.0263
Problem: Channel log doesn't show part of channel.
Solution: Add "sock", "out", "err" or "in". (Ozaki Kiichi, closes #3303)
Files: src/channel.c

Patch 8.1.0264
Problem: Backup tests fail when CWD is in /tmp.
Solution: Make 'backupskip' empty. (Christian Brabandt, closes #3301)
Files: src/testdir/test_backup.vim

Patch 8.1.0265
Problem: The getcmdline() function is way too big.
Solution: Factor out the incremental search highlighting.
Files: src/ex_getln.c

Patch 8.1.0266
Problem: Parsing Ex address range is not a separate function.
Solution: Refactor do_one_cmd() to separate address parsing.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 8.1.0267
Problem: No good check if restoring quickfix list worked.
Solution: Let qf_restore_list() return OK/FAIL. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0268
Problem: File type checking has too many #ifdef.
Solution: Always define the S_IF macros. (Ken Takata, closes #3306)
Files: src/buffer.c, src/evalfunc.c, src/fileio.c, src/if_cscope.c,

src/os_unix.c, src/os_unix.h, src/vim.h

Patch 8.1.0269
Problem: Ruby Kernel.#p method always returns nil.
Solution: Copy p method implementation from Ruby code. (Masataka Pocke

version8.txt — 3249

Kuwabara, closes #3315)
Files: src/if_ruby.c, src/testdir/test_ruby.vim

Patch 8.1.0270
Problem: Checking for a Tab in a line could be faster.
Solution: Use strchr() instead of strrchr(). (closes #3312)
Files: src/ex_cmds.c

Patch 8.1.0271
Problem: 'incsearch' doesn't work for :s, :g or :v.
Solution: Also use 'incsearch' for other commands that use a pattern.
Files: src/ex_getln.c, src/globals.h, src/screen.c,

src/testdir/test_search.vim

Patch 8.1.0272
Problem: Options test fails if temp var ends in slash. (Tom Briden)
Solution: Check for optional slash. (closes #3308)
Files: src/testdir/test_options.vim

Patch 8.1.0273
Problem: Invalid memory access when using 'incsearch'.
Solution: Reset "patlen" when using previous search pattern.
Files: src/ex_getln.c

Patch 8.1.0274
Problem: 'incsearch' triggers on ":source".
Solution: Check for the whole command name.
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.0275
Problem: 'incsearch' with :s doesn't start at cursor line.
Solution: Set cursor before parsing address. (closes #3318)

Also accept a match at the start of the first line.
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.0276
Problem: No test for 'incsearch' highlighting with :s.
Solution: Add a screendump test.
Files: src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_01.dump

Patch 8.1.0277
Problem: 'incsearch' highlighting wrong in a few cases.
Solution: Fix using last search pattern. Restore highlighting when changing

command. (issue #3321)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_02.dump,
src/testdir/dumps/Test_incsearch_substitute_03.dump

Patch 8.1.0278
Problem: 'incsearch' highlighting does not accept reverse range.
Solution: Swap the range when needed. (issue #3321)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_04.dump

Patch 8.1.0279
Problem: 'incsearch' highlighting does not skip white space.
Solution: Skip white space after the command. (issue #3321)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_05.dump

version8.txt — 3250

Patch 8.1.0280
Problem: 'incsearch' highlighting does not work for ":g!/".
Solution: Skip the exclamation mark. (Hirohito Higashi)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.0281
Problem: Parsing command modifiers is not separated.
Solution: Move command modifier parsing to a separate function.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/ex_cmds.h,

src/globals.h, src/feature.h

Patch 8.1.0282
Problem: 'incsearch' does not work with command modifiers.
Solution: Skip command modifiers.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/ex_getln.c,

src/testdir/test_search.vim

Patch 8.1.0283 (after 8.1.0282)
Problem: Missing test dump.
Solution: Add the dump file
Files: src/testdir/dumps/Test_incsearch_substitute_06.dump

Patch 8.1.0284
Problem: 'cursorline' highlighting wrong with 'incsearch'.
Solution: Move the cursor back if the match is outside the range.
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_07.dump
src/testdir/dumps/Test_incsearch_substitute_08.dump

Patch 8.1.0285
Problem: Compiler warning for conversion.
Solution: Add a type cast. (Mike Williams)
Files: src/ex_getln.c

Patch 8.1.0286
Problem: 'incsearch' does not apply to :smagic and :snomagic.
Solution: Add support. (Hirohito Higashi)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.0287
Problem: MAX is not defined everywhere.
Solution: Define MAX where needed.
Files: src/ex_getln.c

Patch 8.1.0288
Problem: Quickfix code uses cmdidx too often.
Solution: Add is_loclist_cmd(). (Yegappan Lakshmanan)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/quickfix.c

Patch 8.1.0289
Problem: Cursor moves to wrong column after quickfix jump.
Solution: Set the curswant flag. (Andy Massimino, closes #3331)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0290
Problem: "cit" on an empty HTML tag changes the whole tag.
Solution: Only adjust the area in Visual mode. (Andy Massimino,

closes #3332)
Files: src/search.c, src/testdir/test_textobjects.vim

version8.txt — 3251

Patch 8.1.0291
Problem: 'incsearch' highlighting not used for :sort.
Solution: Handle pattern in :sort command.
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_sort_01.dump

Patch 8.1.0292
Problem: MS-Windows: the text "self-installing" confuses some users.
Solution: Remove the text from the uninstall entry. (closes #3337)
Files: src/dosinst.c

Patch 8.1.0293
Problem: Checks for type of stack is cryptic.
Solution: Define IS_QF_STACK() and IS_LL_STACK(). (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0294
Problem: MS-Windows: sometimes uses short directory name.
Solution: Expand to long file name with correct caps. (Nobuhiro Takasaki,

closes #3334)
Files: src/os_win32.c

Patch 8.1.0295
Problem: No 'incsearch' highlighting for :vimgrep and similar commands.
Solution: Parse the :vimgrep command and similar ones to locate the search

pattern. (Hirohito Higashi, closes #3344)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_vimgrep_01.dump,
src/testdir/dumps/Test_incsearch_vimgrep_02.dump,
src/testdir/dumps/Test_incsearch_vimgrep_03.dump,
src/testdir/dumps/Test_incsearch_vimgrep_04.dump,
src/testdir/dumps/Test_incsearch_vimgrep_05.dump

Patch 8.1.0296
Problem: Command parsing for 'incsearch' is a bit ugly.
Solution: Return when there is no pattern. Put common checks together.
Files: src/ex_getln.c

Patch 8.1.0297 (after 8.1.0294)
Problem: MS-Windows: tests fail, Vim crashes.
Solution: Fix long file name handling.
Files: src/os_win32.c

Patch 8.1.0298
Problem: Window resize test sometimes fails on Mac.
Solution: Add Test_popup_and_window_resize() to flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0299 (after 8.1.0298)
Problem: misplaced comment
Solution: Remove comment
Files: src/testdir/runtest.vim

Patch 8.1.0300
Problem: The old window title might be freed twice. (Dominique Pelle)
Solution: Do not free "oldtitle" in a signal handler but set a flag to have

it freed later.
Files: src/os_unix.c

version8.txt — 3252

Patch 8.1.0301
Problem: GTK: Input method popup displayed on wrong screen.
Solution: Add the screen position offset. (Ken Takata, closes #3268)
Files: src/gui_beval.c, src/gui_gtk_x11.c, src/mbyte.c,

src/proto/gui_gtk_x11.pro

Patch 8.1.0302
Problem: Crash when using :suspend and "fg".
Solution: Undo patch 8.1.0244.
Files: src/os_unix.c, src/term.c, src/proto/term.pro

Patch 8.1.0303
Problem: line2byte() is wrong for last line with 'noeol' and 'nofixeol'.
Solution: Fix off-by-one error. (Shane Harper, closes #3351)
Files: src/memline.c, src/testdir/test_functions.vim

Patch 8.1.0304
Problem: No redraw when using a STOP signal on Vim and then a CONT signal.
Solution: Catch the CONT signal and set the terminal to raw mode. This is

like 8.1.0244 but without the screen redraw and a fix for
multi-threading suggested by Dominique Pelle.

Files: src/os_unix.c, src/term.c, src/proto/term.pro

Patch 8.1.0305
Problem: Missing support for Lua 5.4 32 bits on Unix.
Solution: Define lua_newuserdatauv. (Kazunobu Kuriyama)
Files: src/if_lua.c

Patch 8.1.0306
Problem: Plural messages are not translated properly.
Solution: Add more usage of NGETTEXT(). (Sergey Alyoshin)
Files: src/vim.h, src/buffer.c, src/ex_cmds.c, src/ex_docmd.c,

src/fileio.c, src/misc1.c, src/ops.c

Patch 8.1.0307
Problem: There is no good way to get the window layout.
Solution: Add the winlayout() function. (Yegappan Lakshmanan)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/proto/window.pro,

src/window.c, src/testdir/test_window_id.vim

Patch 8.1.0308
Problem: A quick undo shows "1 seconds ago". (Tony Mechelynck)
Solution: Add singular/plural message.
Files: src/undo.c

Patch 8.1.0309
Problem: Profiling does not show a count for condition lines. (Daniel

Hahler)
Solution: Count lines when not skipping. (Ozaki Kiichi, closes #2499)
Files: src/ex_docmd.c, src/testdir/test_profile.vim

Patch 8.1.0310
Problem: File info message not always suppressed with 'F' in 'shortmess'.

(Asheq Imran)
Solution: Save and restore msg_silent. (Christian Brabandt, closes #3221)
Files: src/buffer.c, src/memline.c, src/testdir/test_options.vim

Patch 8.1.0311
Problem: Filtering entries in a quickfix list is not easy.
Solution: Add the cfilter plugin. (Yegappan Lakshmanan)

version8.txt — 3253

Files: runtime/pack/dist/opt/cfilter/plugin/cfilter.vim,
runtime/doc/quickfix.txt

Patch 8.1.0312
Problem: Wrong type for flags used in signal handlers.
Solution: Use sig_atomic_t. (Dominique Pelle, closes #3356)
Files: src/globals.h, src/os_unix.c, src/os_win32.h

Patch 8.1.0313
Problem: Information about a swap file is unavailable.
Solution: Add swapinfo(). (Enzo Ferber)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/memline.c,

src/proto/memline.pro, src/testdir/test_swap.vim

Patch 8.1.0314 (after 8.1.0313)
Problem: Build failure without the +eval feature. (Brenton Horne)
Solution: Add #ifdef. Also add the "dirty" item.
Files: src/memline.c, runtime/doc/eval.txt, src/testdir/test_swap.vim

Patch 8.1.0315
Problem: Helpgrep with language doesn't work properly. (Takuya Fujiwara)
Solution: Check for the language earlier. (Hirohito Higashi)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0316
Problem: swapinfo() test fails on Travis.
Solution: Handle a long host name. (Ozaki Kiichi, closes #3361)

Also make the version check flexible. (James McCoy)
Files: src/testdir/test_swap.vim

Patch 8.1.0317
Problem: Cscope test fails when using shadow directory.
Solution: Resolve symlink in Vim. (James McCoy, closes #3364)
Files: src/testdir/test_cscope.vim

Patch 8.1.0318
Problem: The getftype() test may fail for char devices if the file

disappeared in between the listing and the getftype() call.
Solution: Ignore empty result. (Ozaki Kiichi, closes #3360)
Files: src/testdir/test_stat.vim

Patch 8.1.0319
Problem: bzero() function prototype doesn't work for Android.
Solution: Add an #ifdef. (Elliott Hughes, closes #3365)
Files: src/osdef1.h.in

Patch 8.1.0320
Problem: Too much 'incsearch' highlight for pattern matching everything.
Solution: Add the skiplen to the command and remove the line range.

(Christian Brabandt) Check for empty pattern earlier.
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_09.dump

Patch 8.1.0321 (after 8.1.0320)
Problem: 'incsearch' regression: /\v highlights everything.
Solution: Put back the empty_pattern() check.
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_search_01.dump,
src/testdir/dumps/Test_incsearch_search_02.dump

version8.txt — 3254

Patch 8.1.0322
Problem: Test_copy_winopt() does not restore 'hidden'.
Solution: Restore the option, fix indent. (Ozaki Kiichi, closes #3367)
Files: src/testdir/test_options.vim

Patch 8.1.0323
Problem: Reverse order of VTP calls only needed the first time.
Solution: Add a flag to remember the state. (Nobuhiro Takasaki, closes #3366)
Files: src/os_win32.c

Patch 8.1.0324
Problem: Off-by-one error in cmdidx check. (Coverity)
Solution: Use ">=" instead of ">".
Files: src/ex_docmd.c

Patch 8.1.0325
Problem: Strings in swap file may not be NUL terminated. (Coverity)
Solution: Limit the length of the used string.
Files: src/memline.c

Patch 8.1.0326
Problem: Screen dump does not consider NUL and space equal.
Solution: Use temp variables instead of character from cell.
Files: src/terminal.c, src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.1.0327
Problem: The "g CTRL-G" command isn't tested much.
Solution: Add more tests. (Dominique Pelle, closes #3369)
Files: src/testdir/test_normal.vim

Patch 8.1.0328
Problem: inputlist() doesn't work with a timer. (Dominique Pelle)
Solution: Don't redraw when cmdline_row is zero. (Hirohito Higashi,

closes #3239)
Files: src/misc1.c, src/screen.c

Patch 8.1.0329
Problem: Using inputlist() during startup results in garbage. (Dominique

Pelle)
Solution: Make sure the xterm tracing is stopped when disabling the mouse.
Files: src/os_unix.c

Patch 8.1.0330
Problem: The qf_add_entries() function is too long.
Solution: Split in two parts. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0331
Problem: Insufficient test coverage for :mkview and :loadview.
Solution: Add tests. (Dominique Pelle, closes #3385)
Files: src/testdir/test_mksession.vim

Patch 8.1.0332
Problem: Get Gdk-Critical error on first balloon show.
Solution: Get screen geometry using the draw area widget. (Davit Samvelyan,

closes #3386)
Files: src/gui_beval.c

Patch 8.1.0333
Problem: :mkview does not restore cursor properly after "$". (Dominique

version8.txt — 3255

Pelle)
Solution: Position the cursor with "normal! $".
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.1.0334
Problem: 'autowrite' takes effect when buffer is not to be written.
Solution: Don't write buffers that are not supposed to be written. (Even Q

Jones, closes #3391) Add tests for 'autowrite'.
Files: src/ex_cmds2.c, src/testdir/test_writefile.vim

Patch 8.1.0335
Problem: mkview test fails on CI.
Solution: Attempt to force recomputing curswant after folding.
Files: src/testdir/test_mksession.vim

Patch 8.1.0336
Problem: mkview test still fails on CI.
Solution: Ignore curswant, don't see another solution.
Files: src/testdir/test_mksession.vim

Patch 8.1.0337
Problem: :file fails in quickfix command.
Solution: Allow :file without argument when curbuf_lock is set. (Jason

Franklin)
Files: src/ex_docmd.c, src/testdir/test_quickfix.vim

Patch 8.1.0338
Problem: MS-Windows: VTP doesn't work properly with PowerShell.
Solution: Adjust the color index. (Nobuhiro Takasaki, closes #3347)
Files: src/os_win32.c

Patch 8.1.0339
Problem: Wrong highlight when 'incsearch' set and cancelling :s.
Solution: Reset search line range. (Hirohito Higashi, Masamichi Abe)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_10.dump

Patch 8.1.0340
Problem: No test for :spellinfo.
Solution: Add a test. (Dominique Pelle, closes #3394)
Files: src/testdir/test_spell.vim

Patch 8.1.0341
Problem: :argadd in empty buffer changes the buffer name. (Pavol Juhas)
Solution: Don't re-use the current buffer when not going to edit the file.

(closes #3397) Do re-use the current buffer for :next.
Files: src/ex_cmds2.c, src/testdir/test_arglist.vim,

src/testdir/test_command_count.vim

Patch 8.1.0342
Problem: Crash when a callback deletes a window that is being used. (Ozaki

Kiichi)
Solution: Do not unload a buffer that is being displayed while redrawing the

screen. Also avoid invoking callbacks while redrawing.
(closes #2107)

Files: src/buffer.c, src/misc2.c

Patch 8.1.0343
Problem: 'shellslash' is not used for getcwd() with local directory.

(Daniel Hahler)

version8.txt — 3256

Solution: Call slash_adjust() later. (closes #3399)
Files: src/evalfunc.c

Patch 8.1.0344
Problem: 'hlsearch' highlighting has a gap after /$.
Solution: Remove suspicious code. (Ricky Zhou, closes #3400)
Files: src/screen.c, src/testdir/test_hlsearch.vim

Patch 8.1.0345
Problem: Cannot get the window id associated with the location list.
Solution: Add the "filewinid" argument to getloclist(). (Yegappan

Lakshmanan, closes #3202)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.1.0346
Problem: Building with Aap is outdated and unused.
Solution: Remove the Aap build files.
Files: Filelist, src/main.aap, src/testdir/main.aap, src/config.aap.in,

runtime/macros/maze/main.aap

Patch 8.1.0347
Problem: Some tests fail on Solaris.
Solution: Skip writefile test. Fix path to libc.so. Improve test for Turkish

case change. (Libor Bukata, Bjorn Linse, closes #3403)
Files: src/testdir/test_functions.vim, src/testdir/test_normal.vim,

src/testdir/test_writefile.vim

Patch 8.1.0348
Problem: On Travis the slowest build is run last. (Dominique Pelle)
Solution: Reorder the build entries.
Files: .travis.yml

Patch 8.1.0349
Problem: Crash when wiping buffer in a callback.
Solution: Do not handle messages when only peeking for a character.

(closes #2107) Add "redraw_flag" to test_override().
Files: src/os_unix.c, src/os_win32.c, src/screen.c, src/evalfunc.c,

src/globals.h, runtime/doc/eval.txt

Patch 8.1.0350
Problem: Vim may block on ch_sendraw() when the job is sending data back to

Vim, which isn't read yet. (Nate Bosch)
Solution: Add the "noblock" option to job_start(). (closes #2548)
Files: src/channel.c, src/structs.h, src/testdir/test_channel.vim,

runtime/doc/channel.txt

Patch 8.1.0351
Problem: 'incsearch' for :/foo/s//<Esc> changes last search pattern.
Solution: Save the last search pattern earlier.
Files: src/ex_docmd.c, src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.0352
Problem: Browsing compressed tar files does not always work.
Solution: Use the "file" command to get the compression type.
Files: runtime/autoload/tar.vim

Patch 8.1.0353
Problem: An "after" directory of a package is appended to 'rtp', which

will be after the user's "after" directory. ()

version8.txt — 3257

Solution: Insert the package "after" directory before any other "after"
directory in 'rtp'. (closes #3409)

Files: src/ex_cmds2.c, src/testdir/test_packadd.vim

Patch 8.1.0354 (after 8.1.0353)
Problem: Packadd test fails on MS-Windows.
Solution: Ignore difference between forward and backward slashes.
Files: src/testdir/test_packadd.vim

Patch 8.1.0355
Problem: Incorrect adjusting the popup menu for the preview window.
Solution: Compute position and height properly. (Ronan Pigott) Also show at

least ten items. (closes #3414)
Files: src/popupmnu.c

Patch 8.1.0356
Problem: Using :s with 'incsearch' prevents CTRL-R CTRL-W. (Boris Staletic)
Solution: When past the pattern put cursor back in the start position.

(closes #3413)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.0357
Problem: Instructions for tests are outdated. (Jason Franklin)
Solution: Update the text.
Files: src/testdir/README.txt

Patch 8.1.0358
Problem: Crash when using term_dumpwrite() after the job finished.
Solution: Check for a finished job and give an error message.
Files: src/terminal.c

Patch 8.1.0359
Problem: No clue what test failed when using a screendump twice.
Solution: Add an extra argument to VerifyScreenDump().
Files: src/testdir/screendump.vim

Patch 8.1.0360
Problem: Using an external diff program is slow and inflexible.
Solution: Include the xdiff library. (Christian Brabandt, closes #2732)

Use it by default.
Files: Filelist, runtime/doc/diff.txt, runtime/doc/options.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Makefile, src/diff.c,
src/structs.h, src/testdir/dumps/Test_diff_01.dump,
src/testdir/dumps/Test_diff_02.dump,
src/testdir/dumps/Test_diff_03.dump,
src/testdir/dumps/Test_diff_04.dump,
src/testdir/dumps/Test_diff_05.dump,
src/testdir/dumps/Test_diff_06.dump,
src/testdir/dumps/Test_diff_07.dump,
src/testdir/dumps/Test_diff_08.dump,
src/testdir/dumps/Test_diff_09.dump,
src/testdir/dumps/Test_diff_10.dump,
src/testdir/dumps/Test_diff_11.dump,
src/testdir/dumps/Test_diff_12.dump,
src/testdir/dumps/Test_diff_13.dump,
src/testdir/dumps/Test_diff_14.dump,
src/testdir/dumps/Test_diff_15.dump,
src/testdir/dumps/Test_diff_16.dump,
src/testdir/test_diffmode.vim, src/xdiff/COPYING,
src/xdiff/xdiff.h, src/xdiff/xdiffi.c, src/xdiff/xdiffi.h,

version8.txt — 3258

src/xdiff/xemit.c, src/xdiff/xemit.h, src/xdiff/xhistogram.c,
src/xdiff/xinclude.h, src/xdiff/xmacros.h, src/xdiff/xpatience.c,
src/xdiff/xprepare.c, src/xdiff/xprepare.h, src/xdiff/xtypes.h,
src/xdiff/xutils.c, src/xdiff/xutils.h, src/xdiff/README.txt

Patch 8.1.0361
Problem: Remote user not used for completion. (Stucki)
Solution: Use $USER too. (Dominique Pelle, closes #3407)
Files: src/misc1.c

Patch 8.1.0362
Problem: Cannot get the script line number when executing a function.
Solution: Store the line number besides the script ID. (Ozaki Kiichi,

closes #3362) Also display the line number with ":verbose set".
Files: runtime/doc/cmdline.txt, runtime/doc/eval.txt, src/Make_all.mak,

src/buffer.c, src/eval.c, src/evalfunc.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/fileio.c, src/getchar.c,
src/globals.h, src/main.c, src/menu.c, src/option.c,
src/proto/eval.pro, src/structs.h, src/syntax.c,
src/testdir/test_alot.vim, src/testdir/test_expand_func.vim,
src/testdir/test_maparg.vim, src/term.c src/userfunc.c

Patch 8.1.0363
Problem: Internal diff isn't used by default as advertised.
Solution: Add "internal" to the default value of 'diffopt'.

Also add couple of files missing from the distribution.
Files: src/option.c, runtime/doc/options.txt, Filelist

Patch 8.1.0364
Problem: Compiler warning in xdiff code. (Yegappan Lakshmanan)
Solution: Initialize directly.
Files: src/xdiff/xemit.c, src/xdiff/README.txt

Patch 8.1.0365
Problem: Function profile doesn't specify where it was defined.
Solution: Show the script name and line number.
Files: src/userfunc.c, src/testdir/test_profile.vim

Patch 8.1.0366
Problem: Pieces of the xdiff code are not used.
Solution: Add "#if 0" to omit unused code.
Files: src/xdiff/xemit.c

Patch 8.1.0367
Problem: getchar(1) no longer processes pending messages. (Yasuhiro

Matsumoto)
Solution: Call parse_queued_messages().
Files: src/evalfunc.c

Patch 8.1.0368
Problem: GTK code has too many #ifdefs and building fails with GTK 2.10.
Solution: Always use gtk_widget_get_window() and define it for older GTK

versions. (Ken Takata, closes #3421)
Files: src/gui_beval.c, src/gui_gtk.c, src/gui_gtk_f.c,

src/gui_gtk_x11.c, src/mbyte.c, src/vim.h

Patch 8.1.0369
Problem: Continuation lines cannot contain comments.
Solution: Support using "\ .
Files: src/ex_cmds2.c, src/testdir/test_eval_stuff.vim,

version8.txt — 3259

runtime/indent/vim.vim, runtime/doc/repeat.txt

Patch 8.1.0370
Problem: Not using internal diff if 'diffopt' is not changed.
Solution: Correct initialization of diff_flags. (Christian Brabandt)
Files: src/diff.c

Patch 8.1.0371
Problem: Argument types for select() may be wrong.
Solution: Use a configure macro. (Tobias Ulmer)
Files: src/config.h.in, src/configure.ac, src/auto/configure,

src/os_unix.c

Patch 8.1.0372
Problem: Screen updating slow when 'cursorline' is set.
Solution: Only redraw the old and new cursor line, not all lines.
Files: src/edit.c, src/move.c, src/screen.c, src/proto/screen.pro

Patch 8.1.0373 (after 8.1.0372)
Problem: Screen updating still slow when 'cursorline' is set.
Solution: Fix setting last_cursorline.
Files: src/move.c

Patch 8.1.0374
Problem: Moving the cursor is slow when 'relativenumber' is set.
Solution: Only redraw the number column, not all lines.
Files: src/screen.c, src/move.c

Patch 8.1.0375
Problem: Cannot use diff mode with Cygwin diff.exe. (Igor Forca)
Solution: Skip over unrecognized lines in the diff output.
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.1.0376
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize the variable.
Files: src/screen.c

Patch 8.1.0377
Problem: Xdiff doesn't use the Vim memory allocation functions.
Solution: Change the xdl_ defines. Check for out-of-memory. Rename

"ignored" to "vim_ignored".
Files: src/xdiff/xdiff.h, src/xdiff/xpatience.c, src/xdiff/xdiffi.c,

src/channel.c, src/diff.c, src/evalfunc.c, src/ex_cmds.c,
src/fileio.c, src/main.c, src/mbyte.c, src/netbeans.c,
src/os_unix.c, src/os_win32.c, src/ui.c, src/window.c,
src/globals.h, src/term.c

Patch 8.1.0378
Problem: CI build failure.
Solution: Include vim.h as ../vim.h. Fix compiler warning.
Files: src/xdiff/xdiff.h, src/xdiff/xpatience.c

Patch 8.1.0379
Problem: Build dependencies are incomplete.
Solution: Update the build dependencies, mainly for xdiff. Adjust object

directory for libvterm and xdiff.
Files: src/Makefile, src/configure.ac, src/auto/configure,

src/libvterm/src/screen.c, src/libvterm/src/termscreen.c,
src/Make_cyg_ming.mak, src/Make_mvc.mak

version8.txt — 3260

Patch 8.1.0380
Problem: "make proto" doesn't work well.
Solution: Define a few more types for cproto. Update proto files. Fix that

workshop didn't build.
Files: src/vim.h, src/protodef.h, src/if_ruby.c, src/workshop.c,

src/proto/digraph.pro, src/hardcopy.pro, src/proto/option.pro,
src/proto/window.pro

Patch 8.1.0381
Problem: Variable declaration not at start of block.
Solution: Fix line ordering.
Files: src/xdiff/xpatience.c

Patch 8.1.0382
Problem: Some make programs can't handle dependency on "xdiff/../".
Solution: Strip it out.
Files: src/Makefile

Patch 8.1.0383
Problem: Missing source file rename.
Solution: Update the dependency.
Files: src/Make_mvc.mak

Patch 8.1.0384
Problem: Sign ordering depends on +netbeans feature.
Solution: Also order signs without +netbeans. (Christian Brabandt,

closes #3224)
Files: src/structs.h, src/buffer.c

Patch 8.1.0385
Problem: Coveralls badge doesn't update.
Solution: Update the URL
Files: README.md

Patch 8.1.0386
Problem: Cannot test with non-default option value.
Solution: Add test_option_not_set().
Files: runtime/doc/eval.txt, src/option.c, src/proto/option.pro,

src/evalfunc.c

Patch 8.1.0387
Problem: No test for 'ambiwidth' detection.
Solution: Add a test.
Files: src/testdir/test_startup_utf8.vim

Patch 8.1.0388
Problem: Coverity complains about possible NULL pointer use.
Solution: Use get_tv_string() instead of get_tv_string_chk().
Files: src/evalfunc.c

Patch 8.1.0389
Problem: :behave command is not tested.
Solution: Add a test. (Dominique Pelle, closes #3429)
Files: src/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_behave.vim

Patch 8.1.0390
Problem: Scrollbars are not tested.
Solution: Add test_scrollbar() and a test.

version8.txt — 3261

Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_gui.vim

Patch 8.1.0391
Problem: Building in a shadow directory fails.
Solution: Don't link the xdiff directory but what's in it. (closes #3428)
Files: src/Makefile

Patch 8.1.0392
Problem: Error while typing :/foo/s// with 'incsearch' enabled.
Solution: Do not give search errors when highlighting matches.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/ex_getln.c,

src/testdir/test_search.vim

Patch 8.1.0393
Problem: Not all white space difference options available.
Solution: Add "iblank", "iwhiteall" and "iwhiteeol" to 'diffopt'.
Files: src/diff.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_17.dump,
src/testdir/dumps/Test_diff_18.dump,
src/testdir/dumps/Test_diff_19.dump,
src/testdir/dumps/Test_diff_20.dump

Patch 8.1.0394
Problem: Diffs are not always updated correctly.
Solution: When using internal diff update for any changes properly.
Files: src/structs.h, src/diff.c, src/proto/diff.pro, src/misc1.c,

src/main.c

Patch 8.1.0395
Problem: Compiler warning on 64-bit MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/diff.c

Patch 8.1.0396
Problem: Another compiler warning on 64-bit MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/xdiff/xutils.c

Patch 8.1.0397
Problem: No event triggered after updating diffs.
Solution: Add the DiffUpdated event.
Files: src/vim.h, src/diff.c, src/fileio.c,

src/testdir/test_diffmode.vim, runtime/doc/autocmd.txt

Patch 8.1.0398
Problem: No test for -o and -O command line arguments.
Solution: Add a test. (Dominique Pelle, closes #3438)
Files: src/testdir/test_startup.vim

Patch 8.1.0399
Problem: 'hlsearch' highlight remains in other window after cancelling

command.
Solution: Redraw all windows. Also remove unnecessary delays. (closes #3437)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_11.dump,
src/testdir/dumps/Test_incsearch_substitute_12.dump,
src/testdir/dumps/Test_incsearch_substitute_13.dump

Patch 8.1.0400
Problem: Using freed memory with :diffget.

version8.txt — 3262

Solution: Skip ex_diffupdate() while updating diffs. (closes #3442)
Files: src/diff.c

Patch 8.1.0401
Problem: Can't get swap name of another buffer.
Solution: Add swapname(). (Ozaki Kiichi, closes #3441)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_swap.vim

Patch 8.1.0402
Problem: The DiffUpdate event isn't triggered for :diffput.
Solution: Also trigger DiffUpdate for :diffget and :diffput.
Files: src/diff.c

Patch 8.1.0403
Problem: Header file missing from distribution.
Solution: Add src/protodef.h.
Files: Filelist

Patch 8.1.0404
Problem: Accessing invalid memory with long argument name.
Solution: Use item_count instead of checking for a terminating NULL.

(Dominique Pelle, closes #3444)
Files: src/testdir/test_arglist.vim, src/version.c

Patch 8.1.0405
Problem: Too many #ifdefs for GTK.
Solution: Define macros instead of using #ifdef. (Ken Takata, closes #3436)
Files: src/gui_beval.c, src/gui_gtk.c, src/gui_gtk_f.c,

src/gui_gtk_x11.c, src/vim.h

Patch 8.1.0406
Problem: Several command line arguments are not tested.
Solution: Add tests for -A, -F, -H, -p and -V. (Dominique Pelle,

closes #3446)
Files: src/testdir/test_startup.vim

Patch 8.1.0407
Problem: Quickfix code mixes using the stack and a list pointer.
Solution: Use a list pointer in more places. (Yegappan Lakshmanan,

closes #3443)
Files: src/quickfix.c

Patch 8.1.0408
Problem: MSVC: cannot use the "x64" native compiler option.
Solution: Ignore case for %Platform%. Improve documentation. (Ken Takata)
Files: src/INSTALLpc.txt, src/msvc2015.bat

Patch 8.1.0409 (after 8.1.0406)
Problem: Startup test fails on MS-Windows.
Solution: Do the Arabic test in silent Ex mode. Loosen the check for -V2.
Files: src/testdir/test_startup.vim

Patch 8.1.0410
Problem: The ex_copen() function is too long.
Solution: Refactor to split off two functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0411
Problem: Renamed file missing from distribution.
Solution: Rename screen.c to termscreen.c (Zdenek Dohnal, closes #3449)

version8.txt — 3263

Files: Filelist

Patch 8.1.0412
Problem: Cannot build with GTK 2.4.
Solution: Add back a few #ifdefs. (Ken Takata, closes #3447)

Also support older GTK. (Tom Christensen)
Files: src/gui_gtk_x11.c

Patch 8.1.0413
Problem: Test output is duplicated or missing.
Solution: Adjust the MS-Windows and Unix test makefiles. (Ken Takata,

closes #3452)
Files: src/testdir/Make_dos.mak, src/testdir/Makefile

Patch 8.1.0414
Problem: v:option_old and v:option_new are cleared when using :set in

OptionSet autocmd. (Gary Johnson)
Solution: Don't trigger OptionSet recursively.
Files: src/option.c

Patch 8.1.0415
Problem: Not actually using 16 colors with vtp.
Solution: Always use 256 colors when vtp is used. (Nobuhiro Takasaki,

closes #3432)
Files: src/option.c, src/term.c

Patch 8.1.0416
Problem: Sort doesn't report deleted lines.
Solution: Call msgmore(). (Christian Brabandt, closes #3454)
Files: src/ex_cmds.c, src/testdir/test_sort.vim

Patch 8.1.0417
Problem: Several command line arguments are not tested.
Solution: Add tests for -m, -M, -R and -Vfile. (Dominique Pelle,

closes #3458)
Files: src/testdir/test_startup.vim

Patch 8.1.0418
Problem: MS-Windows: cannot separate Lua include and library directories.
Solution: Add LUA_LIBDIR and LUA_INCDIR. (Ken Takata, closes #3464)
Files: src/Make_cyg_ming.mak

Patch 8.1.0419
Problem: Cygwin: running cproto fails with -O2.
Solution: Strip -O2 for cproto. (Ken Takata, closes #3465)
Files: src/Makefile

Patch 8.1.0420
Problem: Generating vim.lib when using ActivePerl 5.20.3 or later.
Solution: Redefine XS_EXTERNAL(). (Ken Takata, closes #3462)
Files: src/if_perl.xs

Patch 8.1.0421
Problem: MS-Windows: Ruby path is wrong for Ruby 1.9 and later.
Solution: Let -I argument depend on Ruby version. (Ken Takata, closes #3461)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.1.0422
Problem: Cannot create map file with MinGW.
Solution: Add support for $MAP. (Ken Takata, closes #3460)

version8.txt — 3264

Files: src/Make_cyg_ming.mak

Patch 8.1.0423
Problem: MS-Windows: using dup-close for flushing a file.
Solution: Use _commit(). (Ken Takata, closes #3463)
Files: src/memfile.c, src/os_mac.h, src/os_win32.h

Patch 8.1.0424
Problem: Test output is very verbose, loading CI log is slow.
Solution: Redirect output to /dev/null. (Ken Takata, closes #3456)
Files: src/testdir/Makefile

Patch 8.1.0425
Problem: ml_get error and crash with appendbufline(). (Masashi Iizuka)
Solution: Set per-window buffer info. (Hirohito Higashi, closes #3455)
Files: src/buffer.c, src/testdir/test_bufline.vim

Patch 8.1.0426
Problem: Accessing invalid memory in SmcOpenConnection().
Solution: Reduce size of errorstring by one. (Dominique Pelle, closes #3469)
Files: src/os_unix.c, src/testdir/test_startup.vim

Patch 8.1.0427
Problem: MS-Windows GUI: using invalid encoded file name.
Solution: Drop the file name and return NULL. (Ken Takata, closes #3467)
Files: src/gui_w32.c

Patch 8.1.0428
Problem: The :suspend command is not tested.
Solution: Add a test. (Dominique Pelle, closes #3472)
Files: src/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_suspend.vim

Patch 8.1.0429 (after 8.1.0343)
Problem: No test for :lcd with 'shellslash'.
Solution: Add a test. (Daniel Hahler, closes #3475)
Files: src/testdir/test_getcwd.vim

Patch 8.1.0430
Problem: Xargadd file left behind after running test.
Solution: Delete the file. (Dominique Pelle)
Files: src/testdir/test_arglist.vim

Patch 8.1.0431
Problem: The qf_jump() function is too long.
Solution: Refactor to split it into several functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0432
Problem: Compiler warning for signed/unsigned.
Solution: Add type cast. (Mike Williams)
Files: src/xdiff/xemit.c

Patch 8.1.0433
Problem: Mapping can obtain text from inputsecret(). (Tommy Allen)
Solution: Disallow CTRL-R = and CTRL-\ e when using inputsecret().
Files: src/ex_getln.c

Patch 8.1.0434
Problem: copy_loclist() is too long.

version8.txt — 3265

Solution: Split in multiple functions. (Yegappan Lakshmanan)
Files: src/proto/quickfix.pro, src/quickfix.c, src/window.c

Patch 8.1.0435
Problem: Cursorline highlight not removed in some situation. (Vitaly

Yashin)
Solution: Reset last_cursorline when resetting 'cursorline'. (Christian

Brabandt, closes #3481)
Files: src/move.c, src/proto/move.pro, src/option.c

Patch 8.1.0436
Problem: Can get the text of inputsecret() with getcmdline(). (Tommy Allen)
Solution: Don't return the text.
Files: src/ex_getln.c

Patch 8.1.0437
Problem: May access freed memory when syntax HL times out. (Philipp Gesang)
Solution: Clear b_sst_first when clearing b_sst_array.
Files: src/syntax.c

Patch 8.1.0438
Problem: The ex_make() function is too long.
Solution: Split it into several functions. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0439
Problem: Recursive use of getcmdline() still not protected.
Solution: Instead of saving the command buffer when making a call which may

cause recursiveness, save the buffer when actually being called
recursively.

Files: src/ex_getln.c, src/proto/ex_getln.pro, src/getchar.c, src/main.c

Patch 8.1.0440
Problem: remove() with a range not sufficiently tested.
Solution: Add a test. (Dominique Pelle, closes #3497)
Files: src/testdir/test_listdict.vim

Patch 8.1.0441
Problem: Build failure without command line history.
Solution: Move cmdline_init() outside of #ifdef.
Files: src/ex_getln.c

Patch 8.1.0442
Problem: GUI: Cursor not drawn after ":redraw | sleep".
Solution: Flush the output. (closes #3496)
Files: src/ex_docmd.c

Patch 8.1.0443
Problem: Unnecessary static function prototypes.
Solution: Remove unnecessary prototypes.
Files: src/arabic.c, src/blowfish.c, src/buffer.c, src/charset.c,

src/crypt_zip.c, src/digraph.c, src/edit.c, src/eval.c,
src/evalfunc.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/ex_eval.c, src/ex_getln.c, src/fileio.c, src/getchar.c,
src/gui.c, src/gui_at_fs.c, src/gui_athena.c, src/gui_gtk_x11.c,
src/gui_mac.c, src/gui_motif.c, src/gui_photon.c, src/gui_w32.c,
src/gui_x11.c, src/hangulin.c, src/hardcopy.c, src/if_cscope.c,
src/if_mzsch.c, src/if_python3.c, src/if_xcmdsrv.c,
src/integration.c, src/json.c, src/main.c, src/mbyte.c,
src/memline.c, src/message.c, src/misc1.c, src/misc2.c,

version8.txt — 3266

src/move.c, src/netbeans.c, src/normal.c, src/ops.c, src/option.c,
src/os_unix.c, src/os_win32.c, src/pty.c, src/regexp.c,
src/screen.c, src/search.c, src/sha256.c, src/spell.c,
src/spellfile.c, src/syntax.c, src/tag.c, src/term.c, src/ui.c,
src/undo.c, src/version.c, src/window.c, src/workshop.c

Patch 8.1.0444
Problem: Unnecessary check for NULL pointer.
Solution: Remove check and call vim_free() directly.
Files: src/beval.c

Patch 8.1.0445
Problem: Setting 'term' does not store location for termcap options.
Solution: Set the script context for termcap options that are changed when

'term' is set.
Files: src/option.c, src/proto/option.pro, src/term.c,

src/testdir/test_options.vim

Patch 8.1.0446
Problem: Options test fails in the GUI.
Solution: Don't try changing 'term' in the GUI.
Files: src/testdir/test_options.vim

Patch 8.1.0447
Problem: GUI scrollbar test fails with Athena and Motif.
Solution: When not using on-the-fly scrolling call normal_cmd().
Files: src/evalfunc.c, src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 8.1.0448
Problem: Cursorline not removed when using 'cursorbind'. (Justin Keyes)
Solution: Store the last cursor line per window. (closes #3488)
Files: src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_with_cursorline_01.dump,
src/testdir/dumps/Test_diff_with_cursorline_02.dump,
src/testdir/dumps/Test_diff_with_cursorline_03.dump,
src/structs.h, src/move.c

Patch 8.1.0449
Problem: When 'rnu' is set folded lines are not displayed correctly.

(Vitaly Yashin)
Solution: When only redrawing line numbers do draw folded lines.

(closes #3484)
Files: src/screen.c, src/testdir/test_fold.vim,

src/testdir/dumps/Test_folds_with_rnu_01.dump,
src/testdir/dumps/Test_folds_with_rnu_02.dump

Patch 8.1.0450 (after patch 8.1.0449)
Problem: Build failure without the +fold feature.
Solution: Add #ifdef.
Files: src/screen.c

Patch 8.1.0451
Problem: Win32 console: keypad keys don't work.
Solution: Use numbers instead of characters to avoid the value becoming

negative. (Mike Williams)
Files: src/os_win32.c

Patch 8.1.0452
Problem: MS-Windows: not finding intl.dll.
Solution: Also find intl.dll next to libintl.dll. (Ken Takata)

version8.txt — 3267

Files: src/os_win32.c, runtime/doc/mlang.txt

Patch 8.1.0453
Problem: MS-Windows: executable() is not reliable.
Solution: Use $PATHEXT properly. (Yasuhiro Matsumoto, closes #3512)
Files: src/os_win32.c, src/testdir/test_functions.vim

Patch 8.1.0454
Problem: resolve() was not tested with a symlink cycle.
Solution: Add a test. (Dominique Pelle, closes #3513)
Files: src/testdir/test_functions.vim

Patch 8.1.0455
Problem: Checking for empty quickfix stack is not consistent.
Solution: Use qf_stack_empty(). (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0456
Problem: Running test hangs when the input file is being edited.
Solution: Use a SwapExists autocommand to ignore editing the test script.
Files: src/testdir/Makefile, src/testdir/runtest.vim

Patch 8.1.0457 (after 8.1.0451)
Problem: Win32 console: key mappings don't work.
Solution: Use another solution for the keypad keys that doesn't break

mappings. Some values will be negative. (Mike Williams)
Files: src/os_win32.c

Patch 8.1.0458
Problem: Ml_get error and crash when using "do".
Solution: Adjust cursor position also when diffupdate is not needed.

(Hirohito Higashi)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.1.0459
Problem: Test_executable fails when there is a dog in the system.
Solution: Rename the dog. (Hirohito Higashi)
Files: src/testdir/test_functions.vim

Patch 8.1.0460
Problem: assert_fails() does not take a message argument
Solution: Add the argument.
Files: src/evalfunc.c, src/eval.c, src/testdir/test_assert.vim

Patch 8.1.0461
Problem: Quickfix code uses too many /* */ comments.
Solution: Change to // comments. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0462
Problem: When using ConPTY Vim can be a child process.
Solution: To find a Vim window use both EnumWindows() and

EnumChildWindows(). (Nobuhiro Takasaki, closes #3521)
Files: src/os_mswin.c

Patch 8.1.0463
Problem: "simalt ~x" in .vimrc blocks swap file prompt.
Solution: Flush buffers before prompting. (Yasuhiro Matsumoto,

closes #3518, closes #2192)
Files: src/memline.c

version8.txt — 3268

Patch 8.1.0464
Problem: MS-Windows: job_info() has cmd without backslashes. (Daniel

Hahler)
Solution: Use rem_backslash(). (closes #3517, closes #3404) Add a test.

(Yasuhiro Matsumoto)
Files: src/misc2.c, src/testdir/test_channel.vim

Patch 8.1.0465 (after 8.1.0452)
Problem: Client-server test fails.
Solution: Change logic in EnumWindows().
Files: src/os_mswin.c

Patch 8.1.0466 (after 8.1.0463)
Problem: Autocmd test fails.
Solution: Do call inchar() when flushing typeahead.
Files: src/vim.h, src/getchar.c, src/proto/getchar.pro, src/memline.c,

src/message.c, src/misc1.c

Patch 8.1.0467 (after 8.1.0063)
Problem: Cannot build with Mac OS X 10.5.
Solution: Change #ifdef into #if. (Akshay Hegde, closes #3022)
Files: src/os_macosx.m

Patch 8.1.0468
Problem: MS-Windows: Filter command with pipe character fails. (Johannes

Riecken)
Solution: Find the pipe character outside of quotes. (Yasuhiro Matsumoto,

closes #1743, closes #3523)
Files: src/ex_cmds.c, src/testdir/test_filter_cmd.vim

Patch 8.1.0469
Problem: Too often indexing in qf_lists[].
Solution: Use a qf_list_T pointer. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0470
Problem: Pointer ownership around fname_expand() is unclear.
Solution: Allow b_ffname and b_sfname to point to the same allocated memory,

only free one. Update comments.
Files: src/buffer.c, src/structs.h, src/fileio.c, src/ex_cmds.c

Patch 8.1.0471
Problem: Some tests are flaky or fail on some systems.
Solution: Increase waiting time for port number. Use "cmd /c" to execute

"echo" on win32. (Ken Takata, closes #3534)
Files: src/testdir/shared.vim, src/testdir/test_channel.vim

Patch 8.1.0472
Problem: Dosinst command has a few flaws.
Solution: Register DisplayIcon, DisplayVersion and Publisher for the

uninstaller. (closes #3485) Don't set 'diffexpr' if internal diff
is supported. Allow for using Vi compatible from the command line.
Remove needless sleeps. Add comments in the generated _vimrc.
(Ken Takata, closes #3525)

Files: src/dosinst.c

Patch 8.1.0473
Problem: User doesn't notice file does not exist when swap file does.
Solution: Add a note that the file cannot be found. Make the "still

version8.txt — 3269

running" notice stand out.
Files: src/memline.c

Patch 8.1.0474
Problem: Directory where if_perl.c is written is inconsistent.
Solution: use auto/if_perl.c for MS-Windows. (Ken Takata, closes #3540)
Files: src/Make_bc5.mak, src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.1.0475
Problem: Memory not freed on exit when quit in autocmd.
Solution: Remember funccal stack when executing autocmd.
Files: src/structs.h, src/userfunc.c, src/proto/userfunc.pro,

src/fileio.c, src/eval.c, src/ex_cmds2.c, src/main.c

Patch 8.1.0476
Problem: Memory leaks in test_escaped_glob.
Solution: Avoid failure when running the shell, use the sandbox.
Files: src/testdir/test_escaped_glob.vim

Patch 8.1.0477 (after 8.1.0475)
Problem: Tiny build fails.
Solution: Add a dummy declaration for funccal_entry_T.
Files: src/structs.h

Patch 8.1.0478
Problem: Cannot build with perl using MinGW.
Solution: Add -I. (Ken Takata, Cesar Romani)
Files: src/Make_cyg_ming.mak

Patch 8.1.0479
Problem: Failure when setting 'varsofttabstop' to end in a comma. (Ralf

Schandl)
Solution: Reject value with trailing comma. Add test for invalid values

(closes #3544)
Files: src/testdir/test_vartabs.vim, src/option.c

Patch 8.1.0480
Problem: MinGW build file uses different -I flags than MVC.
Solution: Add -I to $CFLAGS. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 8.1.0481
Problem: When "Terminal" highlight is reverted cursor doesn't show.
Solution: Get the colors of the "Terminal" group. (closes #3546)
Files: src/terminal.c

Patch 8.1.0482
Problem: MinGW "make clean" deletes all .exe files.
Solution: Only delete .exe files that it builds. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 8.1.0483
Problem: MinGW does not build tee.exe.
Solution: Add build instructions. (Yasuhiro Matsumoto, closes #3548)
Files: src/Make_cyg_ming.mak, src/tee/Makefile

Patch 8.1.0484
Problem: Some file types are not recognized.
Solution: Update the file type detection.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version8.txt — 3270

Patch 8.1.0485
Problem: term_start() does not check if directory is accessible.
Solution: Add mch_access() call. (Jason Franklin)
Files: src/channel.c, src/testdir/test_terminal.vim

Patch 8.1.0486 (after 8.1.0485)
Problem: Can't build in MS-Windows.
Solution: Put mch_access() call inside #ifdef
Files: src/channel.c

Patch 8.1.0487
Problem: No menus specifically for the terminal window.
Solution: Add :tlmenu. (Yee Cheng Chin, closes #3439) Add a menu test.
Files: runtime/delmenu.vim, runtime/doc/autocmd.txt, runtime/doc/gui.txt,

runtime/doc/index.txt, runtime/doc/terminal.txt,
runtime/doc/usr_42.txt, runtime/menu.vim, src/ex_cmdidxs.h,
src/ex_cmds.h, src/ex_docmd.c, src/menu.c, src/proto/menu.pro,
src/popupmnu.c, src/structs.h, src/testdir/test_menu.vim

Patch 8.1.0488
Problem: Using freed memory in quickfix code. (Dominique Pelle)
Solution: Add the quickfix_busy() flag to postpone deleting quickfix lists

until it is safe. (Yegappan Lakshmanan, closes #3538)
Files: src/quickfix.c, src/proto/quickfix.pro, src/misc2.c,

src/testdir/test_quickfix.vim

Patch 8.1.0489
Problem: Crash when autocmd clears vimpgrep location list.
Solution: Return from qf_jump_edit_buffer() early. (Yegappan Lakshmanan)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0490
Problem: MS-Windows: doesn't handle missing libwinpthread-1.dll.
Solution: Adjust Cygwin/MinGW build file. (Ken Takata, closes #2827)
Files: src/Make_cyg_ming.mak

Patch 8.1.0491
Problem: If a terminal dump has CR it is considered corrupt.
Solution: Ignore CR characters. (Nobuhiro Takasaki, closes #3558)
Files: src/terminal.c

Patch 8.1.0492
Problem: "Edit with existing Vim" list can get long.
Solution: Move the list to a submenu. (Ken Takata, closes #3561)
Files: src/GvimExt/gvimext.cpp

Patch 8.1.0493
Problem: argv() and argc() only work on the current argument list.
Solution: Add a window ID argument. (Yegappan Lakshmanan, closes #832)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_arglist.vim,

src/eval.c, src/proto/eval.pro

Patch 8.1.0494
Problem: Functions do not check for a window ID in other tabs.
Solution: Also find the window ID in other than the current tab.
Files: src/evalfunc.c

Patch 8.1.0495
Problem: :filter only supports some commands.

version8.txt — 3271

Solution: Add :filter support for more commands. (Marcin Szamotulski,
closes #2856)

Files: runtime/doc/various.txt, src/eval.c, src/mark.c, src/option.c,
src/syntax.c, src/testdir/test_filter_cmd.vim, src/userfunc.c

Patch 8.1.0496
Problem: No tests for indent files.
Solution: Add a mechanism for running indent file tests. Add a first test

for Vim indenting.
Files: runtime/indent/Makefile, runtime/indent/testdir/runtest.vim,

runtime/indent/testdir/cleantest.vim, runtime/indent/README.txt,
runtime/indent/testdir/README.txt, runtime/indent/testdir/vim.in,
runtime/indent/testdir/vim.ok, Filelist

Patch 8.1.0497
Problem: :%diffput changes order of lines. (Markus Braun)
Solution: Do adjust marks when using internal diff.
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.1.0498
Problem: /etc/gitconfig not recognized at a gitconfig file.
Solution: Add pattern to filetype detection. (closes #3568)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.0499
Problem: :2vimgrep causes an ml_get error
Solution: Pass tomatch pointer instead of value. (Yegappan Lakshmanan)
Files: src/ex_getln.c, src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0500
Problem: Cleaning up in src/tee may not always work.
Solution: Use "rm" when appropriate. (Michael Soyka, closes #3571)
Files: src/tee/Makefile

Patch 8.1.0501
Problem: Cppcheck warns for using array index before bounds check.
Solution: Swap the conditions. (Dominique Pelle)
Files: src/memline.c

Patch 8.1.0502
Problem: Internal diff fails when diffing a context diff. (Hirohito Higashi)
Solution: Only use callback calls with one line. (closes #3581)
Files: src/diff.c, src/testdir/dumps/test_diff_of_diff_01.dump

Patch 8.1.0503
Problem: Missing change to diff test. (Hirohito Higashi)
Solution: Add the missing test function.
Files: src/testdir/test_diffmode.vim

Patch 8.1.0504
Problem: When CTRL-C is mapped it triggers InsertLeave.
Solution: Make CTRL-C behave the same way when typed or used in a mapping.
Files: src/edit.c, src/testdir/test_edit.vim

Patch 8.1.0505
Problem: Filter command test may fail if helplang is not set.
Solution: Set 'helplang' for the test. (James McCoy, closes #3591)
Files: src/testdir/test_filter_cmd.vim

Patch 8.1.0506

version8.txt — 3272

Problem: Modeline test fails when run by root.
Solution: Set 'modeline' for the test. (James McCoy, closes #3592)
Files: src/testdir/test_modeline.vim

Patch 8.1.0507
Problem: .raml files not properly detected.
Solution: Recognize .raml as raml instead of yaml. (closes #3594)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.0508
Problem: Suspend test fails when run by root.
Solution: Accept both '$' and '#' for the prompt. (James McCoy, closes #3590)
Files: src/testdir/test_suspend.vim

Patch 8.1.0509
Problem: Checking cwd not accessible fails for root. (James McCoy)
Solution: Skip this part of the test for root. (closes #3595)
Files: src/testdir/test_terminal.vim

Patch 8.1.0510
Problem: Filter test fails when $LANG is C.UTF-8.
Solution: Set 'helplang' to "en" for any C language. (Christian Brabandt,

closes #3577)
Files: src/option.c

Patch 8.1.0511
Problem: ml_get error when calling a function with a range.
Solution: Don't position the cursor after the last line.
Files: src/userfunc.c, src/testdir/test_functions.vim

Patch 8.1.0512
Problem: 'helplang' default is inconsistent for C and C.UTF-8.
Solution: Don't accept a value unless it starts with two letters.
Files: src/ex_cmds2.c

Patch 8.1.0513
Problem: No error for set diffopt+=algorithm:.
Solution: Check for missing argument. (Hirohito Higashi, closes #3598)
Files: src/diff.c, src/testdir/gen_opt_test.vim

Patch 8.1.0514
Problem: CTRL-W ^ does not work when alternate buffer has no name.
Solution: Use another method to split and edit the alternate buffer. (Jason

Franklin)
Files: src/testdir/test_normal.vim, src/testdir/test_window_cmd.vim,

src/normal.c, src/window.c, runtime/doc/windows.txt

Patch 8.1.0515
Problem: Reloading a script gives errors for existing functions.
Solution: Allow redefining a function once when reloading a script.
Files: src/testdir/test_functions.vim, src/userfunc.c, src/structs.h,

src/globals.h, src/buffer.c, src/ex_cmds2.c, src/main.c,
src/option.c, runtime/doc/eval.txt

Patch 8.1.0516
Problem: :move command marks buffer modified when nothing changed.
Solution: Do not set 'modified'. Add a test. (Jason Franklin)
Files: src/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_move.vim, src/ex_cmds.c

version8.txt — 3273

Patch 8.1.0517
Problem: Test_window_split_edit_alternate() fails on AppVeyor.
Solution: Disable the failing part for now.
Files: src/testdir/test_window_cmd.vim

Patch 8.1.0518
Problem: Test_window_split_edit_bufnr() fails on AppVeyor.
Solution: Disable the failing part for now.
Files: src/testdir/test_window_cmd.vim

Patch 8.1.0519
Problem: Cannot save and restore the tag stack.
Solution: Add gettagstack() and settagstack(). (Yegappan Lakshmanan,

closes #3604)
Files: runtime/doc/eval.txt, runtime/doc/tagsrch.txt,

runtime/doc/usr_41.txt, src/alloc.h, src/dict.c, src/evalfunc.c,
src/list.c, src/misc2.c, src/proto/dict.pro, src/proto/list.pro,
src/proto/misc2.pro, src/proto/tag.pro, src/tag.c,
src/testdir/test_tagjump.vim

Patch 8.1.0520
Problem: Screen diff test sometimes fails.
Solution: Add to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0521
Problem: Cannot build with +eval but without +quickfix.
Solution: Remove #ifdef for e_stringreq. (John Marriott)
Files: src/evalfunc.c

Patch 8.1.0522
Problem: :terminal does not show trailing empty lines.
Solution: Add empty lines. (Hirohito Higashi, closes #3605)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0523
Problem: Opening window from quickfix leaves empty buffer behind.
Solution: Add qf_jump_newwin(). (Yegappan Lakshmanan, closes #2574)
Files: src/proto/quickfix.pro, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.1.0524 (after 8.1.0522)
Problem: Terminal test fails on Windows.
Solution: Skip Test_terminal_does_not_truncate_last_newlines() for now.
Files: src/testdir/test_terminal.vim

Patch 8.1.0525 (after 8.1.0524)
Problem: Terminal test skips part on Windows.
Solution: Fix Test_terminal_does_not_truncate_last_newlines(). (Hirohito

Higashi, closes #3606)
Files: src/Make_mvc.mak, src/testdir/test_terminal.vim

Patch 8.1.0526
Problem: Running out of signal stack in RealWaitForChar. (Vladimir Marek)
Solution: Make the fd_set variables static.
Files: src/os_unix.c

Patch 8.1.0527
Problem: Using 'shiftwidth' from wrong buffer for folding.
Solution: Use "buf" instead of "curbuf". (Christian Brabandt)

version8.txt — 3274

Files: src/fold.c

Patch 8.1.0528
Problem: Various typos in comments.
Solution: Fix the typos.
Files: src/fileio.c, src/gui.c, src/macros.h, src/screen.c, src/search.c,

src/spell.c, src/spellfile.c, src/vim.h, src/testdir/README.txt,
src/INSTALL, src/gui_athena.c, src/gui_gtk.c, src/gui_gtk_x11.c,
src/gui_motif.c, src/gui_xmebw.c, src/if_tcl.c, src/os_amiga.c,
src/gui_w32.c, src/os_win32.c, src/gui_mac.c, src/os_vms_fix.com

Patch 8.1.0529
Problem: Flaky test sometimes fails in different ways.
Solution: When the second run gives a different error, try running the test

again, up to five times.
Files: src/testdir/runtest.vim

Patch 8.1.0530
Problem: Channel and terminal tests that start a server can be flaky.
Solution: Add all channel and terminal tests that start a server to the list

of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0531
Problem: Flaky tests often fail with a common error message.
Solution: Add a pattern to match an error message indicating a flaky test.
Files: src/testdir/runtest.vim

Patch 8.1.0532
Problem: Cannot distinguish between quickfix and location list.
Solution: Add an explicit type variable. (Yegappan Lakshmanan)
Files: src/quickfix.c

Patch 8.1.0533
Problem: Screendump tests can be flaky.
Solution: Add VerifyScreenDump to the pattern of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0534
Problem: MS-Windows installer uses different $HOME than Vim.
Solution: Use the Vim logic also in the MS-Windows installer. (Ken Takata,

closes #3564)
Files: src/dosinst.c, src/misc1.c

Patch 8.1.0535
Problem: Increment/decrement might get interrupted by updating folds.
Solution: Disable fold updating for a moment. (Christian Brabandt,

closes #3599)
Files: src/ops.c

Patch 8.1.0536
Problem: File time test fails when using NFS.
Solution: Use three file times instead of localtim(). (James McCoy,

closes #3618)
Files: src/testdir/test_stat.vim

Patch 8.1.0537
Problem: ui_breakcheck() may be called recursively, which doesn't work.
Solution: When called recursively, just return. (James McCoy, closes #3617)
Files: src/ui.c

version8.txt — 3275

Patch 8.1.0538
Problem: Evaluating a modeline might invoke using a shell command. (Paul

Huber)
Solution: Set the sandbox flag when setting options from a modeline.
Files: src/buffer.c

Patch 8.1.0539
Problem: Cannot build without the sandbox.
Solution: Set the secure option instead of using the sandbox. Also restrict

the characters from 'spelllang' that are used for LANG.vim.
(suggested by Yasuhiro Matsumoto)

Files: runtime/doc/options.txt, src/buffer.c, src/option.c

Patch 8.1.0540
Problem: May evaluate insecure value when appending to option.
Solution: Set the secure flag when changing an option that was previously

set insecurely. Also allow numbers for the characters from
'spelllang' that are used for LANG.vim. (closes #3623)

Files: src/option.c

Patch 8.1.0541
Problem: Help message in dosinst.c is outdated.
Solution: Update the comment. (Ken Takata, closes #3626)
Files: src/dosinst.c

Patch 8.1.0542
Problem: shiftwidth() does not take 'vartabstop' into account.
Solution: Use the cursor position or a position explicitly passed.

Also make >> and << work better with 'vartabstop'. (Christian
Brabandt)

Files: runtime/doc/change.txt, runtime/doc/eval.txt, src/edit.c,
src/evalfunc.c, src/normal.c, src/ops.c, src/option.c,
src/proto/edit.pro, src/proto/option.pro,
src/testdir/test_vartabs.vim

Patch 8.1.0543
Problem: Coverity warns for leaking memory and using wrong struct.
Solution: Free pointer when allocation fails. Change "boff" to "loff".

(closes #3634)
Files: src/ex_getln.c, src/move.c

Patch 8.1.0544 (after 8.1.0540)
Problem: Setting 'filetype' in a modeline causes an error (Hirohito

Higashi).
Solution: Don't add the P_INSECURE flag when setting 'filetype' from a

modeline. Also for 'syntax'.
Files: src/option.c, src/testdir/test_modeline.vim

Patch 8.1.0545
Problem: When executing indent tests user preferences interfere.
Solution: Add "--clean".
Files: runtime/indent/Makefile, runtime/indent/testdir/runtest.vim

Patch 8.1.0546
Problem: Modeline test with keymap fails.
Solution: Check that the keymap feature is available.
Files: src/testdir/test_modeline.vim

Patch 8.1.0547

version8.txt — 3276

Problem: Modeline test with keymap still fails.
Solution: Check that the keymap feature is available for the failure assert.
Files: src/testdir/test_modeline.vim

Patch 8.1.0548
Problem: Crash when job callback unloads a buffer. (James McCoy)
Solution: Don't round up the wait time to 10 msec in ui_inchar().
Files: src/ui.c

Patch 8.1.0549
Problem: Netbeans test depends on README.txt contents.
Solution: Use a generated file instead.
Files: src/testdir/test_netbeans.vim, src/testdir/test_netbeans.py

Patch 8.1.0550
Problem: Expression evaluation may repeat an error message. (Jason

Franklin)
Solution: Increment did_emsg and check for the value when giving an error

for the echo command.
Files: src/message.c, src/eval.c, src/testdir/test108.ok

Patch 8.1.0551 (after 8.1.0550)
Problem: Expression evaluation may repeat an error message. (Jason

Franklin)
Solution: Check for the value of did_emsg when giving an error

for the :execute command.
Files: src/eval.c

Patch 8.1.0552
Problem: Saved last search pattern may not be restored.
Solution: Call restore_last_search_pattern(). Add a check for balancing

saving and restoring the last search pattern.
Files: src/ex_getln.c, src/search.c

Patch 8.1.0553
Problem: It is not easy to edit a script that was sourced.
Solution: Add a count to ":scriptnames", so that ":script 40" edits the

script with script ID 40.
Files: src/ex_cmds.h, src/ex_cmds2.c, src/testdir/test_scriptnames.vim,

src/Make_all.mak, src/testdir/Make_all.mak, runtime/doc/repeat.txt

Patch 8.1.0554
Problem: Popup menu overlaps with preview window.
Solution: Adjust the height computation. (Hirohito Higashi, closes #3414)
Files: src/popupmnu.c, src/testdir/test_popup.vim,

src/testdir/dumps/Test_popup_and_previewwindow_01.dump

Patch 8.1.0555
Problem: Crash when last search pat is set but not last substitute pat.
Solution: Do not mix up last search pattern and last substitute pattern.

(closes #3647)
Files: src/search.c, src/testdir/test_search.vim

Patch 8.1.0556
Problem: Saving/restoring search patterns share saved last_idx.
Solution: Use a separate saved last_idx for saving search patterns for

functions and incremental search.
Files: src/search.c

Patch 8.1.0557

version8.txt — 3277

Problem: Termdebug: gdb may use X.Y for breakpoint number. (Ryou Ezoe)
Solution: Handle X.Y breakpoint numbers. (Yasuhiro Matsumoto, close #3641)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0558
Problem: Some MS-Windows instructions are outdated.
Solution: Update the uninstall instructions and the NSIS README. (Ken

Takata, closes #3614) Also update remark about diff.exe.
Files: nsis/README.txt, uninstal.txt

Patch 8.1.0559
Problem: Command line completion not sufficiently tested.
Solution: Add more tests. (Dominique Pelle, closes #3622)
Files: src/testdir/test_arglist.vim, src/testdir/test_filetype.vim,

src/testdir/test_history.vim, src/testdir/test_messages.vim,
src/testdir/test_syntax.vim

Patch 8.1.0560
Problem: Cannot use address type "other" with user command.
Solution: Add "other" to the list. (Daniel Hahler, closes #3655) Also

reject "%" for commands with "other". Add some more tests.
Files: src/ex_docmd.c, src/testdir/test_usercommands.vim

Patch 8.1.0561
Problem: MSVC error format has changed.
Solution: Make the space between the line number and colon optional.
Files: src/option.h

Patch 8.1.0562
Problem: Parsing of 'diffopt' is slightly wrong.
Solution: Fix the parsing and add a test. (Jason Franklin, Christian

Brabandt)
Files: src/diff.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_09.dump,
src/testdir/dumps/Test_diff_11.dump, src/testdir/screendump.vim

Patch 8.1.0563
Problem: Setting v:errors to a string give confusing error. (Christian

Brabandt)
Solution: Change internal error into normal error message.
Files: src/eval.c

Patch 8.1.0564
Problem: Setting v:errors to wrong type still possible.
Solution: Return after giving an error message. (Christian Brabandt)
Files: src/eval.c, src/testdir/test_eval_stuff.vim

Patch 8.1.0565
Problem: Asan complains about reading before allocated block.
Solution: Workaround: Avoid offset from becoming negative.
Files: src/gui.c

Patch 8.1.0566
Problem: SGR not enabled for mintty because $TERM is "xterm".
Solution: Detect mintty by the termresponse. (Ken Takata, closes #3667)
Files: src/term.c

Patch 8.1.0567 (after 8.1.0565)
Problem: Error for NUL byte in ScreenLines goes unnoticed.
Solution: Add an internal error message.

version8.txt — 3278

Files: src/gui.c

Patch 8.1.0568 (after 8.1.0567)
Problem: Error message for NUL byte in ScreenLines breaks Travis CI.
Solution: Use a normal message fornow.
Files: src/gui.c

Patch 8.1.0569
Problem: Execute() always resets display column to zero. (Sha Liu)
Solution: Don't reset it to zero, restore the previous value. (closes #3669)
Files: src/evalfunc.c, src/testdir/test_execute_func.vim

Patch 8.1.0570
Problem: 'commentstring' not used when adding fold marker. (Maxim Kim)
Solution: Only use empty 'comments' middle when leader is empty. (Christian

Brabandt, closes #3670)
Files: src/misc1.c, src/testdir/test_fold.vim

Patch 8.1.0571 (after 8.1.0569)
Problem: Non-silent execute() resets display column to zero.
Solution: Keep the display column as-is.
Files: src/evalfunc.c, src/testdir/test_execute_func.vim

Patch 8.1.0572
Problem: Stopping a job does not work properly on OpenBSD.
Solution: Do not use getpgid() to check the process group of the job

process ID, always pass the negative process ID to kill().
(George Koehler, closes #3656)

Files: src/os_unix.c

Patch 8.1.0573
Problem: Cannot redefine user command without ! in same script
Solution: Allow redefining user command without ! in same script, like with

functions.
Files: src/ex_docmd.c, src/testdir/test_usercommands.vim,

runtime/doc/map.txt

Patch 8.1.0574
Problem: 'commentstring' not used when adding fold marker in C.
Solution: Require white space before middle comment part. (mostly by

Hirohito Higashi)
Files: src/misc1.c, src/testdir/test_fold.vim

Patch 8.1.0575
Problem: Termdebug: clearing multi-breakpoint does not work.
Solution: Delete all X.Y breakpoints. Keep more information about placed

breakpoints. (Ozaki Kiichi, closes #3641)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0576
Problem: Indent script tests pick up installed scripts.
Solution: Use current runtime indent scripts.
Files: runtime/indent/Makefile

Patch 8.1.0577
Problem: Tabpage right-click menu never shows "Close tab".
Solution: Always create the "Close tab" item but ignore the event if there

is only one tab.
Files: src/gui_gtk_x11.c, src/gui_mac.c, src/gui_motif.c, src/gui.c

version8.txt — 3279

Patch 8.1.0578
Problem: Cannot disable arabic, rightleft and farsi in configure.
Solution: Add configure flags. (Diego Fernando Carrión, closes #1867)
Files: src/configure.ac, src/auto/configure, src/config.h.in,

src/feature.h, src/Makefile

Patch 8.1.0579
Problem: Cannot attach properties to text.
Solution: First part of adding text properties.
Files: Filelist, runtime/doc/Makefile, runtime/doc/eval.txt,

runtime/doc/textprop.txt, src/Make_all.mak, src/Make_cyg_ming.mak,
src/Make_mvc.mak, src/Makefile, src/buffer.c, src/edit.c,
src/evalfunc.c, src/feature.h, src/memline.c, src/misc1.c,
src/misc2.c, src/proto.h, src/proto/memline.pro,
src/proto/textprop.pro, src/screen.c, src/structs.h,
src/testdir/Make_all.mak, src/testdir/test_textprop.vim,
src/textprop.c, src/userfunc.c, src/version.c

Patch 8.1.0580
Problem: Invalid memory access when using text properties.
Solution: Disable text properties for now.
Files: src/feature.h

Patch 8.1.0581
Problem: Double free without the text properties feature.
Solution: Reset the dirty flag.
Files: src/memline.c

Patch 8.1.0582
Problem: Text properties are not enabled.
Solution: Fix sizeof argument and re-enable the text properties feature.

Fix memory leak.
Files: src/feature.h, src/textprop.c

Patch 8.1.0583
Problem: Using illogical name for get_dict_number()/get_dict_string().
Solution: Rename to start with dict_.
Files: src/dict.c, src/proto/dict.pro, src/edit.c, src/eval.c,

src/evalfunc.c, src/quickfix.c, src/tag.c, src/terminal.c,
src/textprop.c

Patch 8.1.0584
Problem: With search CTRL-L does not pick up composing characters.
Solution: Check for composing characters. (Christian Brabandt, closes #3682)

[code change was accidentally included in 8.1.0579]
Files: src/testdir/test_search.vim

Patch 8.1.0585
Problem: Undo test may fail on MS-Windows.
Solution: Also handle lower case drive letters.
Files: src/testdir/test_undo.vim

Patch 8.1.0586
Problem: :digraph output is not easy to read.
Solution: Add highlighting for :digraphs. (Marcin Szamotulski, closes #3572)

Also add section headers for :digraphs!.
Files: src/ex_docmd.c, src/digraph.c, src/proto/digraph.pro,

src/ex_cmds.h, runtime/doc/digraph.txt

Patch 8.1.0587

version8.txt — 3280

Problem: GvimExt: realloc() failing is not handled properly.
Solution: Check for NULL return. (Jan-Jaap Korpershoek, closes #3689)
Files: src/GvimExt/gvimext.cpp

Patch 8.1.0588
Problem: Cannot define a sign with space in the text.
Solution: Allow for escaping characters. (Ben Jackson, closes #2967)
Files: src/ex_cmds.c, src/testdir/test_signs.vim

Patch 8.1.0589
Problem: Compilation error in gvimext.cpp.
Solution: Return a value. Also fix using uninitialized variable.
Files: src/GvimExt/gvimext.cpp, src/dosinst.c

Patch 8.1.0590
Problem: When a job ends the closed channels are not handled.
Solution: When a job is detected to have ended, check the channels again.

(closes #3530)
Files: src/channel.c, src/proto/channel.pro, src/misc2.c

Patch 8.1.0591
Problem: Channel sort test is flaky.
Solution: Do not check if the job is running, it may have be done very fast.
Files: src/testdir/test_channel.vim

Patch 8.1.0592
Problem: The libvterm tests are not run as part of Vim tests.
Solution: Add testing libvterm.
Files: src/Makefile, src/libvterm/Makefile

Patch 8.1.0593
Problem: Illegal memory access in libvterm test.
Solution: Fix off-by-one error.
Files: src/libvterm/src/vterm.c, src/libvterm/Makefile,

src/libvterm/t/run-test.pl

Patch 8.1.0594
Problem: Libvterm tests fail to run on Mac.
Solution: Only run libvterm tests on Linux.
Files: src/Makefile

Patch 8.1.0595
Problem: Libvterm tests are not run with coverage.
Solution: Adjust the Travis config. Show the actually run commands.
Files: .travis.yml, src/libvterm/Makefile

Patch 8.1.0596
Problem: Not all parts of printf() are tested.
Solution: Add a few more test cases. (Dominique Pelle, closes #3691)
Files: src/testdir/test_expr.vim

Patch 8.1.0597
Problem: Cannot run test_libvterm from the top directory.
Solution: Add test target in toplevel Makefile.
Files: Makefile

Patch 8.1.0598
Problem: Indent tests may use the wrong Vim binary.
Solution: Pass in the just built Vim binary.
Files: Makefile

version8.txt — 3281

Patch 8.1.0599
Problem: Without the +eval feature the indent tests don't work.
Solution: Skip the body of the tests.
Files: runtime/indent/testdir/cleantest.vim,

runtime/indent/testdir/runtest.vim

Patch 8.1.0600
Problem: Channel test is flaky.
Solution: Add test to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0601
Problem: A few compiler warnings.
Solution: Add type casts. (Mike Williams)
Files: src/GvimExt/gvimext.cpp, src/memline.c, src/textprop.c

Patch 8.1.0602
Problem: DirChanged is also triggered when the directory didn't change.

(Daniel Hahler)
Solution: Compare the current with the new directory. (closes #3697)
Files: src/ex_docmd.c, src/testdir/test_autocmd.vim, src/misc2.c,

src/testdir/test_autochdir.vim

Patch 8.1.0603
Problem: The :stop command is not tested.
Solution: Test :stop using a terminal window.
Files: src/testdir/test_terminal.vim, src/testdir/shared.vim

Patch 8.1.0604
Problem: Autocommand test fails on MS-Windows.
Solution: Use pathcmp() instead of strcmp() to check if a directory differs.
Files: src/ex_docmd.c, src/misc2.c

Patch 8.1.0605
Problem: Running make in the top directory echoes a comment.
Solution: Prefix with @. (closes #3698)
Files: Makefile

Patch 8.1.0606
Problem: 'cryptmethod' defaults to a very old method.
Solution: Default to "blowfish2", it is now widely available.
Files: src/option.c, runtime/doc/options.txt

Patch 8.1.0607
Problem: Proto files are not in sync with the source code.
Solution: Update the proto files.
Files: src/os_mswin.c, src/proto/buffer.pro, src/proto/ex_cmds.pro,

src/proto/ex_getln.pro, src/proto/misc2.pro,
src/proto/userfunc.pro

Patch 8.1.0608
Problem: Coveralls is not updating.
Solution: Adjust path in Travis config.
Files: .travis.yml

Patch 8.1.0609
Problem: MS-Windows: unused variable, depending on the Ruby version.
Solution: Put ruby_sysinit and NtInitialize inside #ifdef and make them

consistent. (Ken Takata)

version8.txt — 3282

Files: src/if_ruby.c

Patch 8.1.0610
Problem: MS-Windows ctags file list differs from Unix.
Solution: Define TAGS_FILES in the common makefile. (partly by Ken Takata)
Files: src/Make_all.mak, src/Makefile, src/Make_mvc.mak,

src/Make_cyg_ming.mak

Patch 8.1.0611
Problem: Crash when using terminal with long composing characters.
Solution: Make space for all characters. (Yasuhiro Matsumoto, closes #3619,

closes #3703)
Files: src/terminal.c

Patch 8.1.0612
Problem: Cannot use two global runtime dirs with configure.
Solution: Support a comma in --with-global-runtime. (James McCoy,

closes #3704)
Files: src/config.h.in, src/configure.ac, src/feature.h, src/os_unix.h,

src/auto/configure, src/Makefile

Patch 8.1.0613
Problem: When executing an insecure function the secure flag is stuck.

(Gabriel Barta)
Solution: Restore "secure" instead of decrementing it. (closes #3705)
Files: src/testdir/test_autocmd.vim, src/option.c, src/buffer.c

Patch 8.1.0614
Problem: Placing signs can be complicated.
Solution: Add functions for defining and placing signs. Introduce a group

name to avoid different plugins using the same signs. (Yegappan
Lakshmanan, closes #3652)

Files: runtime/doc/eval.txt, runtime/doc/sign.txt,
runtime/doc/usr_41.txt, src/alloc.h, src/buffer.c, src/evalfunc.c,
src/ex_cmds.c, src/globals.h, src/list.c, src/misc2.c,
src/netbeans.c, src/proto/buffer.pro, src/proto/ex_cmds.pro,
src/proto/list.pro, src/proto/misc2.pro, src/structs.h,
src/testdir/test_signs.vim, src/workshop.c

Patch 8.1.0615
Problem: Get_tv function names are not consistent.
Solution: Rename to tv_get.
Files: src/eval.c, src/proto/eval.pro, src/channel.c, src/dict.c,

src/evalfunc.c, src/list.c, src/message.c, src/tag.c,
src/terminal.c, src/textprop.c, src/window.c, src/ex_cmds.c,
src/os_unix.c, src/os_win32.c, src/json.c, src/regexp.c,
src/edit.c, src/misc2.c, src/popupmnu.c

Patch 8.1.0616
Problem: NSIS installer is outdated.
Solution: Use modern syntax, MUI2 and make it work better. Add translations.

(Guopeng Wen, Ken Takata, closes #3501)
Files: Filelist, nsis/gvim.nsi, nsis/icons/header.svg,

nsis/icons/welcome.svg, nsis/icons/header.bmp,
nsis/icons/un_header.bmp, nsis/icons/uninstall.bmp,
nsis/icons/welcome.bmp, nsis/lang/danish.nsi, nsis/lang/dutch.nsi,
nsis/lang/english.nsi, nsis/lang/german.nsi,
nsis/lang/italian.nsi, nsis/lang/japanese.nsi,
nsis/lang/simpchinese.nsi, nsis/lang/tradchinese.nsi,
src/dosinst.c

version8.txt — 3283

Patch 8.1.0617 (after 8.1.0616)
Problem: NSIS installer gets two files from the wrong directory.
Solution: Change ${VIMRT} to "..\".
Files: nsis/gvim.nsi

Patch 8.1.0618
Problem: term_getjob() does not return v:null as documented.
Solution: Do return v:null. (Damien) Add a test.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0619
Problem: :echomsg and :echoerr do not handle List and Dict like :echo does.

(Daniel Hahler)
Solution: Be more tolerant about the expression result type.
Files: src/eval.c, src/proto/eval.pro, src/evalfunc.c,

src/proto/evalfunc.pro, runtime/doc/eval.txt,
src/testdir/test_messages.vim, src/message.c

Patch 8.1.0620
Problem: Overruling CONF_ARGS from the environment no longer works. (Tony

Mechelynck)
Solution: Do not define any CONF_ARGS by default.
Files: src/Makefile

Patch 8.1.0621
Problem: Terminal debugger does not handle unexpected debugger exit.
Solution: Check for debugger job ended and close unused buffers. (Damien)
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.0622
Problem: Adding quickfix items marks items as valid errors. (Daniel Hahler)
Solution: Check when items are valid. (Yegappan Lakshmanan, closes #3683,

closes #3633)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0623
Problem: Iterating through window frames is repeated.
Solution: Define FOR_ALL_FRAMES. (Yegappan Lakshmanan)
Files: src/ex_docmd.c, src/globals.h, src/screen.c, src/window.c

Patch 8.1.0624 (after 8.1.0620)
Problem: Overruling CONF_ARGS from the environment still does not work.

(Tony Mechelynck)
Solution: Add back CONF_ARGS next to the new numbered ones.
Files: src/Makefile

Patch 8.1.0625
Problem: MS-Windows: terminal test fails in white console.
Solution: Accept both white and black background colors.
Files: src/testdir/test_terminal.vim

Patch 8.1.0626
Problem: MS-Windows: no resize to fit parent when using --windowid.
Solution: Pass FALSE for "mustset" in gui_set_shellsize(). (Agorgianitis

Loukas, closes #3616)
Files: src/gui.c

Patch 8.1.0627
Problem: Python cannot handle function name of script-local function.

version8.txt — 3284

Solution: Use <SNR> instead of the special byte code. (Ozaki Kiichi, closes
#3681)

Files: src/if_py_both.h, src/testdir/test_python2.vim,
src/testdir/test_python3.vim

Patch 8.1.0628
Problem: Compiler warning on MS-Windows.
Solution: Add type cast. (Mike Williams)
Files: src/if_py_both.h

Patch 8.1.0629
Problem: "gn" selects the wrong text with a multi-line match.
Solution: Get the end position from searchit() directly. (closes #3695)
Files: src/testdir/test_gn.vim, src/search.c, src/proto/search.pro,

src/edit.c, src/evalfunc.c, src/ex_docmd.c, src/ex_getln.c,
src/normal.c

Patch 8.1.0630
Problem: "wincmd p" does not work after using an autocmd window.
Solution: Store "prevwin" in aco_save_T. (Christian Brabandt, closes #3690)
Files: src/fileio.c, src/structs.h, src/testdir/test_window_cmd.vim

Patch 8.1.0631
Problem: Test for :stop fails on Arch.
Solution: Check five lines for the expected output. (closes #3714)
Files: src/testdir/test_terminal.vim

Patch 8.1.0632
Problem: Using sign group names is inefficient.
Solution: Store group names in a hash table and use a reference to them.

Also remove unnecessary use of ":exe" from the tests. (Yegappan
Lakshmanan, closes #3715)

Files: src/buffer.c, src/ex_cmds.c, src/structs.h,
src/testdir/test_signs.vim

Patch 8.1.0633
Problem: Crash when out of memory while opening a terminal window.
Solution: Handle out-of-memory more gracefully.
Files: src/terminal.c, src/libvterm/src/vterm.c,

src/libvterm/src/state.c, src/libvterm/src/termscreen.c

Patch 8.1.0634
Problem: Text properties cannot cross line boundaries.
Solution: Support multi-line text properties.
Files: src/textprop.c, src/testdir/test_textprop.vim,

runtime/doc/eval.txt

Patch 8.1.0635
Problem: Coverity complains about null pointer use.
Solution: Avoid using a null pointer.
Files: src/evalfunc.c

Patch 8.1.0636
Problem: line2byte() gives wrong values with text properties. (Bjorn Linse)
Solution: Compute byte offsets differently when text properties were added.

(closes #3718)
Files: src/structs.h, src/textprop.c, src/proto/textprop.pro,

src/memline.c, src/testdir/test_textprop.vim

Patch 8.1.0637

version8.txt — 3285

Problem: Nsis file no longer used.
Solution: Remove the file. (Ken Takata)
Files: nsis/vimrc.ini, Filelist

Patch 8.1.0638
Problem: Text property highlighting is off by one column. (Bjorn Linse)
Solution: Update text property highlighting earlier. Let it overrule syntax

highlighting.
Files: src/structs.h, src/screen.c

Patch 8.1.0639
Problem: text properties test fails on MS-Windows
Solution: Set fileformat to "unix".
Files: src/testdir/test_textprop.vim

Patch 8.1.0640
Problem: Get E14 while typing command :tab with 'incsearch' set.
Solution: Do not give an error when looking for the command. (Hirohito

Higashi)
Files: src/testdir/test_search.vim, src/ex_docmd.c

Patch 8.1.0641
Problem: No check for out-of-memory when converting regexp.
Solution: Bail out when lalloc() returns NULL. (John Marriott)
Files: src/regexp_nfa.c

Patch 8.1.0642
Problem: swapinfo() leaks memory. (Christian Brabandt)
Solution: Avoid allocating the strings twice.
Files: src/memline.c, src/dict.c, src/proto/dict.pro

Patch 8.1.0643
Problem: Computing byte offset wrong. (Bjorn Linse)
Solution: Use the right variable for array index.
Files: src/memline.c, src/testdir/test_textprop.vim

Patch 8.1.0644
Problem: Finding next sign ID is inefficient.
Solution: Add next_sign_id. (Yegappan Lakshmanan, closes #3717)
Files: runtime/doc/eval.txt, src/buffer.c, src/evalfunc.c, src/ex_cmds.c,

src/globals.h, src/main.c, src/proto/buffer.pro, src/structs.h,
src/testdir/test_signs.vim

Patch 8.1.0645
Problem: Coverity warns for possible use of NULL pointer.
Solution: Check return value of vterm_obtain_screen().
Files: src/terminal.c

Patch 8.1.0646
Problem: Cannot build with Ruby 2.6.0.
Solution: Add rb_ary_detransient(). (Ozaki Kiichi, closes #3724)
Files: src/if_ruby.c

Patch 8.1.0647
Problem: MS-Windows: balloon_show() does not handle wide characters.
Solution: Use CreateWindowExW(). (Yasuhiro Matsumoto, closes #3708)
Files: src/gui_w32.c

Patch 8.1.0648
Problem: Custom operators can't act upon a forced motion. (Christian

version8.txt — 3286

Wellenbrock)
Solution: Add the forced motion to the mode() result. (Christian Brabandt,

closes #3490)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/globals.h, src/normal.c,

src/testdir/test_mapping.vim

Patch 8.1.0649
Problem: setjmp() variables defined globally are used in one file.
Solution: Move the declarations to that file.
Files: src/globals.h, src/os_unix.c

Patch 8.1.0650
Problem: Command line argument -q [errorfile] is not tested.
Solution: Add a test. (Dominique Pelle, closes #3730)
Files: src/testdir/test_startup.vim

Patch 8.1.0651
Problem: :args \"foo works like :args without argument.
Solution: Fix check for empty argument. (closes #3728)
Files: src/ex_cmds2.c, src/testdir/test_arglist.vim

Patch 8.1.0652
Problem: Freeing memory for balloon eval too early.
Solution: Store the pointer in BalloonEval and free it later. (Yasuhiro

Matsumoto, closes #3725)
Files: src/beval.h, src/gui_w32.c

Patch 8.1.0653 (after 8.1.0651)
Problem: Arglist test fails on MS-windows.
Solution: Only use a file name with a double quote on Unix.
Files: src/testdir/test_arglist.vim

Patch 8.1.0654
Problem: When deleting a line text property flags are not adjusted.
Solution: Adjust text property flags in preceding and following lines.
Files: src/memline.c, src/misc2.c, src/proto/misc2.pro,

src/testdir/test_textprop.vim

Patch 8.1.0655
Problem: When appending a line text property flags are not added.
Solution: Add text properties to a newly added line.
Files: src/memline.c, src/testdir/test_textprop.vim, src/textprop.c

Patch 8.1.0656
Problem: Trying to reconnect to X server may cause problems.
Solution: Do no try reconnecting when exiting. (James McCoy)
Files: src/os_unix.c

Patch 8.1.0657 (after 8.1.0656)
Problem: Get error for using regexp recursively. (Dominique Pelle)
Solution: Do no check if connection is desired.
Files: src/os_unix.c

Patch 8.1.0658
Problem: Deleting signs and completion for :sign is insufficient.
Solution: Add deleting signs in a specified or any group from the current

cursor location. Add group and priority to sign command
completion. Add tests for different sign unplace commands. Update
help text. Add tests for sign jump with group. Update help for
sign jump. (Yegappan Lakshmanan, closes #3731)

version8.txt — 3287

Files: runtime/doc/sign.txt, src/buffer.c, src/evalfunc.c, src/ex_cmds.c,
src/netbeans.c, src/proto/buffer.pro, src/proto/ex_cmds.pro,
src/testdir/test_signs.vim

Patch 8.1.0659 (after 8.1.0658)
Problem: Build failure without the sign feature.
Solution: Put the sign struct declarations outside of the #ifdef.
Files: src/structs.h

Patch 8.1.0660
Problem: sign_unplace() may leak memory.
Solution: Free the group name before returning. Add a few more tests.

(Yegappan Lakshmanan)
Files: src/evalfunc.c, src/testdir/test_signs.vim

Patch 8.1.0661
Problem: Clipboard regexp might be used recursively.
Solution: Check for recursive use and bail out.
Files: src/regexp.c, src/proto/regexp.pro, src/os_unix.c

Patch 8.1.0662
Problem: Needlessly searching for tilde in string.
Solution: Only check the first character. (James McCoy, closes #3734)
Files: src/misc1.c

Patch 8.1.0663
Problem: Text property display wrong when 'number' is set. (Dominique

Pelle)
Solution: Compare with "vcol" instead of "col".
Files: src/screen.c

Patch 8.1.0664
Problem: Configure "fail-if-missing" does not apply to the enable-gui

argument. (Rhialto)
Solution: Make configure fail if a GUI was specified and "fail-if-missing"

is enabled and the GUI test fails.
Files: src/configure.ac, src/auto/configure

Patch 8.1.0665
Problem: Text property display wrong when 'spell' is set. (Dominique Pelle)
Solution: Remove unnecessary assignment to char_attr. Combine attributes if

needed. Add a screenshot test.
Files: src/screen.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.0666 (after 8.1.0665)
Problem: Text property test fails.
Solution: Update screenshot.
Files: src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.0667 (after 8.1.0665)
Problem: Textprop test leaves file behind.
Solution: Delete the file. (Dominique Pelle, closes #3743)
Files: src/testdir/test_textprop.vim

Patch 8.1.0668
Problem: No test for overstrike mode in the command line.
Solution: Add a test. (Dominique Pelle, closes #3742)
Files: src/testdir/test_cmdline.vim

version8.txt — 3288

Patch 8.1.0669
Problem: The ex_sign() function is too long.
Solution: Refactor the function. Add a bit more testing. (Yegappan

Lakshmanan, closes #3745)
Files: src/testdir/test_signs.vim, src/ex_cmds.c

Patch 8.1.0670
Problem: Macro for popup menu width is unused.
Solution: Remove it. (Hirohito Higashi)
Files: src/popupmnu.c

Patch 8.1.0671
Problem: Cursor in the wrong column after auto-formatting.
Solution: Check for deleting more spaces than adding. (closes #3748)
Files: src/ops.c, src/testdir/test_textformat.vim, src/mark.c,

src/proto/mark.pro, src/misc1.c

Patch 8.1.0672
Problem: The Lua interface doesn't know about v:null.
Solution: Add Lua support for v:null. (Uji, closes #3744)
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.1.0673
Problem: Functionality for signs is spread out over several files.
Solution: Move most of the sign functionality into sign.c. (Yegappan

Lakshmanan, closes #3751)
Files: Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/README.txt, src/buffer.c,
src/evalfunc.c, src/ex_cmds.c, src/proto.h, src/proto/buffer.pro,
src/proto/ex_cmds.pro, src/proto/sign.pro, src/sign.c

Patch 8.1.0674
Problem: Leaking memory when updating a single line.
Solution: Do not call start_search_hl() twice.
Files: src/screen.c

Patch 8.1.0675
Problem: Text property column is screen columns is not practical.
Solution: Use byte values for the column.
Files: src/structs.h, src/textprop.c, src/proto/textprop.pro,

runtime/doc/eval.txt, runtime/doc/textprop.txt,
src/testdir/test_textprop.vim,
src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.0676
Problem: Textprop screendump test fails.
Solution: Add missing changes.
Files: src/screen.c

Patch 8.1.0677
Problem: Look-behind match may use the wrong line number. (Dominique Pelle)
Solution: Use the line number in regsave instead of the one in behind_pos,

we may be looking at the previous line. (closes #3749)
Files: src/regexp.c

Patch 8.1.0678
Problem: Text properties as not adjusted for inserted text.
Solution: Adjust text properties when inserting text.

version8.txt — 3289

Files: src/misc1.c, src/proto/misc1.pro, src/textprop.c,
src/testdir/test_textprop.vim,
src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.0679
Problem: Sign functions do not take buffer argument as documented.
Solution: Use get_buf_tv(). (Yegappan Lakshmanan, closes #3755)
Files: src/evalfunc.c, src/testdir/test_signs.vim

Patch 8.1.0680
Problem: Not easy to see what features are unavailable.
Solution: Highlight disabled features in the :version output. (Nazri Ramliy,

closes #3756)
Files: src/version.c

Patch 8.1.0681
Problem: Text properties as not adjusted for deleted text.
Solution: Adjust text properties when backspacing to delete text.
Files: src/edit.c, src/misc1.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.0682
Problem: Text properties are not adjusted when backspacing replaced text.
Solution: Keep text properties on text restored in replace mode.
Files: src/edit.c, src/textprop.c, src/globals.h,

src/testdir/test_textprop.vim

Patch 8.1.0683
Problem: Spell highlighting does not always end. (Gary Johnson)
Solution: Also reset char_attr when spell errors are highlighted.
Files: src/screen.c

Patch 8.1.0684
Problem: Warnings from 64-bit compiler.
Solution: Add type casts. (Mike Williams)
Files: src/memline.c, src/textprop.c

Patch 8.1.0685
Problem: get_buf_tv() is named inconsistently.
Solution: Rename it to tv_get_buf(). (Yegappan Lakshmanan, closes #3759)
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/terminal.c,

src/textprop.c

Patch 8.1.0686
Problem: When 'y' is in 'cpoptions' yanking for the clipboard changes redo.
Solution: Do not use the 'y' flag when "gui_yank" is TRUE. (Andy Massimino,

closes #3760)
Files: src/normal.c

Patch 8.1.0687
Problem: Sentence text object in Visual mode is not tested.
Solution: Add a test. (Dominique Pelle, closes #3758)
Files: src/testdir/test_visual.vim

Patch 8.1.0688
Problem: Text properties are not restored by undo.
Solution: Also save text properties for undo.
Files: src/structs.h, src/undo.c, src/memline.c, src/proto/memline.pro

Patch 8.1.0689 (after 8.1.0688)

version8.txt — 3290

Problem: Undo with text properties not tested.
Solution: Add a test function.
Files: src/testdir/test_textprop.vim

Patch 8.1.0690
Problem: setline() and setbufline() do not clear text properties.
Solution: Clear text properties when setting the text.
Files: src/evalfunc.c, src/testdir/test_textprop.vim

Patch 8.1.0691
Problem: Text properties are not adjusted for :substitute.
Solution: Adjust text properties as well as possible.
Files: src/ex_cmds.c, src/textprop.c, src/proto/textprop.pro,

src/testdir/test_textprop.vim

Patch 8.1.0692
Problem: If a buffer was deleted a channel can't write to it.
Solution: When the buffer exists but was unloaded, prepare it for writing.

(closes #3764)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.1.0693 (after 8.1.0692)
Problem: Channel test fails sometimes.
Solution: Avoid race condition.
Files: src/testdir/test_channel.vim

Patch 8.1.0694
Problem: When using text props may free memory that is not allocated.

(Andy Massimino)
Solution: Allocate the line when adjusting text props. (closes #3766)
Files: src/textprop.c

Patch 8.1.0695
Problem: Internal error when using :popup.
Solution: When a menu only exists in Terminal mode give an error. (Naruhiko

Nishino, closes #3765)
Files: runtime/doc/gui.txt, src/globals.h, src/menu.c, src/popupmnu.c,

src/testdir/test_popup.vim

Patch 8.1.0696
Problem: When test_edit fails 'insertmode' may not be reset and the next

test may get stuck. (James McCoy)
Solution: Always reset 'insertmode' after executing a test. Avoid that an

InsertCharPre autocommand or a 'complete' function can change the
state. (closes #3768)

Files: src/testdir/runtest.vim, src/edit.c

Patch 8.1.0697
Problem: ":sign place" requires the buffer argument.
Solution: Make the argument optional. Also update the help and clean up the

sign test. (Yegappan Lakshmanan, closes #3767)
Files: runtime/doc/eval.txt, runtime/doc/sign.txt, src/sign.c,

src/testdir/test_signs.vim

Patch 8.1.0698
Problem: Clearing the window is used too often, causing the command line

to be cleared when opening a tab. (Miroslav Koškár)
Solution: Use NOT_VALID instead of CLEAR. (suggested by Jason Franklin,

closes #630) Also do this for a few other places where clearing
the screen isn't really needed.

version8.txt — 3291

Files: src/window.c

Patch 8.1.0699
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Add a dummy init.
Files: src/edit.c

Patch 8.1.0700 (after 8.1.0698)
Problem: Using "gt" sometimes does not redraw a tab. (Jason Franklin)
Solution: Always set must_redraw in redraw_all_later().
Files: src/screen.c

Patch 8.1.0701
Problem: Sign message not translated and inconsistent spacing.
Solution: Add _() for translation. Add a space. (Ken Takata) Also use

MSG_BUF_LEN instead of BUFSIZ.
Files: src/sign.c, src/testdir/test_signs.vim

Patch 8.1.0702
Problem: ":sign place" only uses the current buffer.
Solution: List signs for all buffers when there is no buffer argument.

Fix error message for invalid buffer name in sign_place().
(Yegappan Lakshmanan, closes #3774)

Files: runtime/doc/eval.txt, src/evalfunc.c, src/sign.c,
src/testdir/test_signs.vim

Patch 8.1.0703
Problem: Compiler warnings with 64-bit compiler.
Solution: Change types, add type casts. (Mike Williams)
Files: src/textprop.c, src/undo.c

Patch 8.1.0704
Problem: Building with Ruby 2.6 gives compiler warnings.
Solution: Define a stub for rb_ary_detransient. (Ozaki Kiichi, closes #3779)
Files: src/if_ruby.c

Patch 8.1.0705
Problem: :colorscheme isn't tested enough
Solution: Improve test coverage of :colorscheme. (Dominique Pelle, closes

#3777) Remove unnecessary sleep.
Files: src/testdir/test_gui.vim

Patch 8.1.0706
Problem: Tabline is not always redrawn when something that is used in

'tabline' changes.
Solution: Add ":redrawtabline" so that a plugin can at least cause the

redraw when needed.
Files: runtime/doc/various.txt, runtime/doc/options.txt, src/ex_docmd.c,

src/ex_cmds.h, src/screen.c, src/proto/screen.pro,
src/ex_cmdidxs.h, src/testdir/test_tabline.vim

Patch 8.1.0707
Problem: Text property columns are not adjusted for changed indent.
Solution: Adjust text properties.
Files: src/misc1.c, src/testdir/test_textprop.vim

Patch 8.1.0708
Problem: Third argument for redrawWinline() is always FALSE.
Solution: Drop the argument. (neovim #9479)
Files: src/edit.c, src/move.c, src/screen.c, src/proto/screen.pro

version8.txt — 3292

Patch 8.1.0709
Problem: Windows are updated for every added/deleted sign.
Solution: Do not call update_debug_sign(). Only redraw when the line with

the sign is visible. (idea from neovim #9479)
Files: src/sign.c, src/screen.c, src/proto/screen.pro

Patch 8.1.0710
Problem: When using timers may wait for job exit quite long.
Solution: Return from ui_wait_for_chars_or_timer() when a job or channel

needs to be handled. (Ozaki Kiichi, closes #3783)
Files: src/ui.c, src/testdir/test_channel.vim

Patch 8.1.0711
Problem: Test files still use function!.
Solution: Remove the exclamation mark. Fix overwriting a function.
Files: src/testdir/test49.vim, src/testdir/test_autocmd.vim,

src/testdir/test_charsearch.vim,
src/testdir/test_charsearch_utf8.vim,
src/testdir/test_display.vim, src/testdir/test_edit.vim,
src/testdir/test_eval_func.vim, src/testdir/test_fnameescape.vim,
src/testdir/test_getcwd.vim, src/testdir/test_highlight.vim,
src/testdir/test_hlsearch.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_lambda.vim, src/testdir/test_listdict.vim,
src/testdir/test_listlbr.vim, src/testdir/test_listlbr_utf8.vim,
src/testdir/test_marks.vim, src/testdir/test_matchadd_conceal.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_messages.vim, src/testdir/test_number.vim,
src/testdir/test_options.vim, src/testdir/test_partial.vim,
src/testdir/test_smartindent.vim, src/testdir/test_substitute.vim,
src/testdir/test_system.vim, src/testdir/test_terminal.vim,
src/testdir/test_textobjects.vim, src/testdir/test_utf8.vim,
src/testdir/test_utf8_comparisons.vim,
src/testdir/test_vartabs.vim, src/testdir/test_vimscript.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_xxd.vim

Patch 8.1.0712
Problem: MS-Windows build instructions are a bit outdated.
Solution: Update the instructions. (Ken Takata)
Files: src/INSTALLpc.txt

Patch 8.1.0713
Problem: Images for NSIS take up too much space.
Solution: Put the images in a zip file.
Files: nsis/icons.zip, nsis/icons/disabled.bmp, nsis/icons/enabled.bmp,

nsis/icons/header.bmp, nsis/icons/header.svg,
nsis/icons/un_header.bmp, nsis/icons/uninstall.bmp,
nsis/icons/vim_16c.ico, nsis/icons/vim_uninst_16c.ico,
nsis/icons/welcome.bmp, nsis/icons/welcome.svg,
nsis/README.txt, Filelist, Makefile

Patch 8.1.0714
Problem: Unnecessary #if lines in GTK code.
Solution: Remove the #if. (Ken Takata, closes #3785)
Files: src/gui_beval.c, src/if_mzsch.c

Patch 8.1.0715
Problem: Superfluous call to redraw_win_later().
Solution: Remove the call.
Files: src/move.c

version8.txt — 3293

Patch 8.1.0716
Problem: Get warning message when 'completefunc' returns nothing.
Solution: Allow for returning v:none to suppress the warning message.

(Yasuhiro Matsumoto, closes #3789)
Files: runtime/doc/insert.txt, src/edit.c,

src/testdir/test_ins_complete.vim

Patch 8.1.0717
Problem: There is no function for the ":sign jump" command.
Solution: Add the sign_jump() function. (Yegappan Lakshmanan, closes #3780)
Files: runtime/doc/eval.txt, runtime/doc/sign.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/proto/sign.pro,
src/sign.c, src/testdir/test_signs.vim

Patch 8.1.0718
Problem: A couple compiler warnings.
Solution: Rename shadowed variables. Add UNUSED.
Files: src/misc1.c

Patch 8.1.0719
Problem: Too many #ifdefs.
Solution: Always build with the +visualextra feature.
Files: src/evalfunc.c, src/version.c, src/normal.c, src/ops.c,

src/feature.h, runtime/doc/various.txt

Patch 8.1.0720
Problem: Cannot easily change the current quickfix list index.
Solution: Add the "idx" argument to setqflist(). (Yegappan Lakshmanan,

closes #3701)
Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.1.0721
Problem: Conceal mode is not sufficiently tested.
Solution: Add screendump tests. Check all 'concealcursor' values.
Files: src/testdir/test_conceal.vim, src/Make_all.mak,

src/testdir/Make_all.mak
src/testdir/dumps/Test_conceal_two_windows_01.dump,
src/testdir/dumps/Test_conceal_two_windows_02.dump,
src/testdir/dumps/Test_conceal_two_windows_03.dump,
src/testdir/dumps/Test_conceal_two_windows_04.dump,
src/testdir/dumps/Test_conceal_two_windows_05.dump,
src/testdir/dumps/Test_conceal_two_windows_06i.dump,
src/testdir/dumps/Test_conceal_two_windows_06v.dump,
src/testdir/dumps/Test_conceal_two_windows_06c.dump,
src/testdir/dumps/Test_conceal_two_windows_06n.dump,
src/testdir/dumps/Test_conceal_two_windows_07i.dump,
src/testdir/dumps/Test_conceal_two_windows_07v.dump,
src/testdir/dumps/Test_conceal_two_windows_07c.dump,
src/testdir/dumps/Test_conceal_two_windows_07n.dump,
src/testdir/dumps/Test_conceal_two_windows_08i.dump,
src/testdir/dumps/Test_conceal_two_windows_08v.dump,
src/testdir/dumps/Test_conceal_two_windows_08c.dump,
src/testdir/dumps/Test_conceal_two_windows_08n.dump,
src/testdir/dumps/Test_conceal_two_windows_09i.dump,
src/testdir/dumps/Test_conceal_two_windows_09v.dump,
src/testdir/dumps/Test_conceal_two_windows_09c.dump,
src/testdir/dumps/Test_conceal_two_windows_09n.dump

version8.txt — 3294

Patch 8.1.0722
Problem: Cannot build without the virtualedit feature.
Solution: Make getviscol2() always available.
Files: src/misc2.c, src/proto/misc2.pro, src/ops.c

Patch 8.1.0723
Problem: Cannot run specific test when in src/testdir the same was as in

the src directory.
Solution: Move build rule to src/testdir/Makefile.
Files: src/testdir/Make_all.mak, src/testdir/Make_amiga.mak,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/Makefile, src/Make_all.mak, src/testdir/Makefile,
src/testdir/README.txt, src/Make_mvc.mak

Patch 8.1.0724
Problem: Build for MinGW fails.
Solution: Avoid specifying dependencies in included makefile.
Files: src/testdir/Make_all.mak, src/testdir/Makefile,

src/testdir/Make_dos.mak, src/testdir/Make_ming.mak

Patch 8.1.0725
Problem: Conceal mode is not completely tested.
Solution: Add tests for moving the cursor in Insert mode.
Files: src/testdir/test_conceal.vim,

src/testdir/dumps/Test_conceal_two_windows_10.dump,
src/testdir/dumps/Test_conceal_two_windows_11.dump,
src/testdir/dumps/Test_conceal_two_windows_12.dump,
src/testdir/dumps/Test_conceal_two_windows_13.dump

Patch 8.1.0726
Problem: Redrawing specifically for conceal feature.
Solution: Use generic redrawing methods.
Files: src/edit.c, src/gui.c, src/main.c, src/normal.c, src/screen.c,

src/proto/screen.pro, src/window.c

Patch 8.1.0727
Problem: Compiler warning for sprintf() argument.
Solution: Add type cast.
Files: src/dosinst.c

Patch 8.1.0728
Problem: Cannot avoid breaking after a single space.
Solution: Add the 'p' flag to 'formatoptions'. (Tom Ryder)
Files: runtime/doc/change.txt, src/edit.c, src/option.h,

src/testdir/test_textformat.vim

Patch 8.1.0729
Problem: There is a SourcePre autocommand event but not a SourcePost.
Solution: Add the SourcePost autocommand event. (closes #3739)
Files: src/vim.h, src/fileio.c, src/ex_cmds2.c, runtime/doc/autocmd.txt,

src/testdir/test_source.vim, src/testdir/Make_all.mak

Patch 8.1.0730
Problem: Compiler warning for get_buf_arg() unused.
Solution: Add #ifdef. (John Marriott)
Files: src/evalfunc.c

Patch 8.1.0731
Problem: JS encoding does not handle negative infinity.
Solution: Add support for negative infinity for JS encoding. (Dominique

version8.txt — 3295

Pelle, closes #3792)
Files: runtime/doc/eval.txt, src/json.c, src/testdir/test_json.vim

Patch 8.1.0732
Problem: Cannot build without the eval feature.
Solution: Make a copy of the sourced file name.
Files: src/ex_cmds2.c

Patch 8.1.0733
Problem: Too many #ifdefs for the multibyte feature.
Solution: Tentatively always enable the multibyte feature. If you have a

problem with this, please discuss on the Vim maillist.
Files: src/configure.ac, src/auto/configure, src/feature.h, src/Makefile,

src/Make_bc5.mak, src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.1.0734
Problem: The hlsearch state is not stored in a session file.
Solution: Add "nohlsearch" if appropriate. (Jason Franklin)
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.1.0735
Problem: Cannot handle binary data.
Solution: Add the Blob type. (Yasuhiro Matsumoto, closes #3638)
Files: runtime/doc/eval.txt, runtime/doc/if_perl.txt,

runtime/doc/if_ruby.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/Makefile, src/blob.c, src/channel.c, src/eval.c,
src/evalfunc.c, src/if_perl.xs, src/if_py_both.h, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/json.c, src/netbeans.c,
src/proto.h, src/proto/blob.pro, src/proto/channel.pro,
src/structs.h, src/testdir/Make_all.mak, src/vim.h, src/globals.h,
src/testdir/test_blob.vim, src/testdir/test_channel.vim

Patch 8.1.0736
Problem: Code for Blob not sufficiently tested.
Solution: Add more tests. Fix uncovered crash. Add test_null_blob().
Files: src/testdir/test_blob.vim, src/testdir/test_assign.vim, src/eval.c,

src/testdir/test_eval_stuff.vim, src/testdir/test_lambda.vim,
runtime/doc/eval.txt, src/evalfunc.c, src/blob.c,
src/testdir/test49.vim

Patch 8.1.0737
Problem: Compiler warning for uninitialized variable.
Solution: Add initialization. (John Marriott)
Files: src/eval.c

Patch 8.1.0738
Problem: Using freed memory, for loop over blob leaks memory.
Solution: Clear pointer after freeing memory. Decrement reference count

after for loop over blob.
Files: src/eval.c

Patch 8.1.0739
Problem: Text objects in not sufficiently tested.
Solution: Add a few more test cases. (Dominique Pelle, closes #3795)
Files: src/testdir/test_visual.vim

Patch 8.1.0740
Problem: Tcl test fails.
Solution: When the argument is empty don't give an error, instead rely on

the error reporting higher up.

version8.txt — 3296

Files: src/eval.c

Patch 8.1.0741
Problem: Viminfo with Blob is not tested.
Solution: Extend the viminfo test. Fix reading a blob. Fixed storing a

special variable value.
Files: src/testdir/test_viminfo.vim, src/eval.c, src/blob.c,

src/proto/blob.pro

Patch 8.1.0742
Problem: Not all Blob operations are tested.
Solution: Add more testing for Blob.
Files: src/testdir/test_blob.vim, src/evalfunc.c,

src/testdir/test_eval_stuff.vim

Patch 8.1.0743
Problem: Giving error messages is not flexible.
Solution: Add semsg(). Change argument from "char_u *" to "char *", also

for msg() and get rid of most MSG macros. (Ozaki Kiichi, closes
#3302) Also make emsg() accept a "char *" argument. Get rid of
an enormous number of type casts.

Files: src/blob.c, src/blowfish.c, src/buffer.c, src/channel.c,
src/crypt.c, src/dict.c, src/diff.c, src/digraph.c, src/edit.c,
src/eval.c, src/evalfunc.c, src/ex_cmds.c, src/ex_cmds.h,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c,
src/farsi.h, src/fileio.c, src/fold.c, src/getchar.c,
src/globals.h, src/gui.c, src/gui_at_fs.c, src/gui_at_sb.c,
src/gui_beval.c, src/gui_gtk_x11.c, src/gui_mac.c,
src/gui_photon.c, src/gui_w32.c, src/gui_x11.c, src/hangulin.c,
src/hardcopy.c, src/hashtab.c, src/if_cscope.c, src/if_lua.c,
src/if_mzsch.c, src/if_perl.xs, src/if_py_both.h, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/if_tcl.c, src/if_xcmdsrv.c,
src/json.c, src/list.c, src/main.c, src/mark.c, src/mbyte.c,
src/memfile.c, src/memline.c, src/menu.c, src/message.c,
src/misc1.c, src/misc2.c, src/netbeans.c, src/normal.c, src/ops.c,
src/option.c, src/os_amiga.c, src/os_mswin.c, src/os_unix.c,
src/os_win32.c, src/popupmnu.c, src/proto.h, src/proto/buffer.pro,
src/proto/digraph.pro, src/proto/ex_docmd.pro,
src/proto/ex_eval.pro, src/proto/ex_getln.pro,
src/proto/hardcopy.pro, src/proto/mbyte.pro,
src/proto/message.pro, src/proto/misc2.pro, src/proto/option.pro,
src/proto/spell.pro, src/quickfix.c, src/regexp.c,
src/regexp_nfa.c, src/search.c, src/sign.c, src/spell.c,
src/spellfile.c, src/structs.h, src/syntax.c, src/tag.c,
src/term.c, src/terminal.c, src/textprop.c, src/ui.c, src/undo.c,
src/userfunc.c, src/version.c, src/vim.h, src/window.c,

Patch 8.1.0744 (after 8.1.0743)
Problem: Compiler warnings for signed/unsigned strings.
Solution: A few more type cast fixes.
Files: src/option.c, src/if_perl.xs, src/if_py_both.h, src/integration.c

Patch 8.1.0745
Problem: Compiler warnings for signed/unsigned string.
Solution: Remove type casts. (John Marriott)
Files: src/ex_docmd.c, src/mbyte.c

Patch 8.1.0746
Problem: Highlighting not updated with conceal and 'cursorline'. (Jason

Franklin)

version8.txt — 3297

Solution: Do not use a zero line number. Check if 'conceallevel' is set for
the current window.

Files: src/main.c, src/testdir/test_conceal.vim,
src/testdir/dumps/Test_conceal_cul_01.dump,
src/testdir/dumps/Test_conceal_cul_02.dump,
src/testdir/dumps/Test_conceal_cul_03.dump

Patch 8.1.0747
Problem: map() with a bad expression doesn't give an error. (Ingo Karkat)
Solution: Check for giving an error message. (closes #3800)
Files: src/eval.c, src/testdir/test_filter_map.vim

Patch 8.1.0748
Problem: Using sprintf() instead of semsg().
Solution: Use semsg(). Fix bug with E888. (Ozaki Kiichi, closes #3801)
Files: src/regexp.c

Patch 8.1.0749 (after 8.1.0747)
Problem: Error message contains garbage. (Dominique Pelle)
Solution: Use correct pointer to failed expression.
Files: src/eval.c

Patch 8.1.0750
Problem: When the last sign is deleted the signcolumn may not be removed

even though 'signcolumn' is "auto".
Solution: When deleting the last sign redraw the buffer. (Dominique Pelle,

closes #3803, closes #3804)
Files: src/sign.c

Patch 8.1.0751
Problem: Some regexp errors are not tested.
Solution: Add a test function.
Files: src/testdir/test_regexp_latin.vim

Patch 8.1.0752
Problem: One more compiler warning for signed/unsigned string. (Tony

Mechelynck)
Solution: Remove type cast.
Files: src/ex_docmd.c

Patch 8.1.0753
Problem: printf format not checked for semsg().
Solution: Add GNUC attribute and fix reported problems. (Dominique Pelle,

closes #3805)
Files: src/buffer.c, src/diff.c, src/eval.c, src/evalfunc.c,

src/ex_docmd.c, src/if_cscope.c, src/netbeans.c, src/proto.h,
src/proto/message.pro, src/quickfix.c, src/regexp_nfa.c,
src/sign.c, src/spellfile.c, src/window.c, src/gui_x11.c

Patch 8.1.0754
Problem: Preferred column is lost when setting 'cursorcolumn'.
Solution: Change option flag to P_RWINONLY. (Takayuki Kurosawa,

closes #3806)
Files: src/option.c, src/testdir/test_cursor_func.vim

Patch 8.1.0755
Problem: Error message for get() on a Blob with invalid index.
Solution: Return an empty Blob, like get() on a List does.
Files: src/evalfunc.c, src/testdir/test_blob.vim

version8.txt — 3298

Patch 8.1.0756
Problem: copy() does not make a copy of a Blob.
Solution: Make a copy.
Files: src/eval.c, src/testdir/test_blob.vim

Patch 8.1.0757
Problem: Not enough documentation for Blobs.
Solution: Add a section about Blobs.
Files: runtime/doc/eval.txt

Patch 8.1.0758
Problem: Font number is always one instead of the actual.
Solution: Use "%d" instead of "1". (Ken Takata)
Files: src/gui_x11.c

Patch 8.1.0759
Problem: Showing two characters for tab is limited.
Solution: Allow for a third character for "tab:" in 'listchars'. (Nathaniel

Braun, Ken Takata, closes #3810)
Files: runtime/doc/options.txt, src/globals.h, src/message.c,

src/option.c, src/screen.c, src/testdir/test_listchars.vim

Patch 8.1.0760
Problem: No proper test for using 'termencoding'.
Solution: Add a screendump test. Fix using double width characters in a

screendump.
Files: src/terminal.c, src/testdir/test_termencoding.vim,

src/testdir/Make_all.mak,
src/testdir/dumps/Test_tenc_euc_jp_01.dump

Patch 8.1.0761
Problem: Default value for brief_wait is wrong.
Solution: Make the default FALSE. (Ozaki Kiichi, closes #3812, closes #3799)
Files: src/ui.c

Patch 8.1.0762
Problem: Compiler warning.
Solution: Add type cast. (Mike Williams)
Files: src/channel.c

Patch 8.1.0763
Problem: Nobody is using the Sun Workshop support.
Solution: Remove the Workshop support.
Files: runtime/doc/workshop.txt, runtime/doc/help.txt,

runtime/doc/netbeans.txt, src/Makefile, src/auto/configure,
src/beval.c, src/buffer.c, src/config.h.in, src/config.mk.in,
src/configure.ac, src/evalfunc.c, src/ex_cmds.c, src/ex_cmds.h,
src/ex_docmd.c, src/feature.h, src/fileio.c, src/globals.h,
src/gui.c, src/gui_beval.c, src/gui_motif.c, src/gui_x11.c,
src/integration.c, src/integration.h, src/main.c, src/misc2.c,
src/nbdebug.c, src/netbeans.c, src/proto.h,
src/proto/workshop.pro, src/ui.c, src/version.c, src/vim.h,
src/workshop.c, src/workshop.h, src/wsdebug.c, src/wsdebug.h,
src/ex_cmdidxs.h

Patch 8.1.0764
Problem: List of distributed files is outdated.
Solution: Remove workshop files. Add blob files.
Files: Filelist

version8.txt — 3299

Patch 8.1.0765
Problem: String format of a Blob can't be parsed back.
Solution: Use 0z format.
Files: src/blob.c, src/eval.c, src/testdir/test_blob.vim

Patch 8.1.0766
Problem: Various problems when using Vim on VMS.
Solution: Various fixes. Define long_long_T. (Zoltan Arpadffy)
Files: src/eval.c, src/feature.h, src/fileio.c, src/gui_motif.c,

src/gui_x11.c, src/gui_xmebw.c, src/json.c, src/Make_vms.mms,
src/ops.c, src/os_vms_conf.h, src/vim.h, src/xdiff/xdiff.h,
src/xdiff/xinclude.h

Patch 8.1.0767
Problem: When deleting lines at the bottom signs are misplaced.
Solution: Properly update the line number of signs at the end of a buffer

after a delete/undo operation. (Yegappan Lakshmanan, closes #3798)
Files: src/sign.c, src/testdir/test_signs.vim

Patch 8.1.0768
Problem: Updating completions may cause the popup menu to flicker.
Solution: Avoid updating the text below the popup menu before drawing the

popup menu.
Files: src/popupmnu.c, src/proto/popupmnu.pro, src/edit.c, src/screen.c

Patch 8.1.0769
Problem: :stop is covered in two tests.
Solution: Remove Test_stop_in_terminal(). Make other test exit Vim cleanly.

(Ozaki Kiichi, closes #3814)
Files: src/testdir/test_terminal.vim, src/testdir/test_suspend.vim

Patch 8.1.0770
Problem: Inconsistent use of ELAPSED_FUNC.
Solution: Consistently use ELAPSED_FUNC. Also turn ELAPSED_TYPE into a

typedef. (Ozaki Kiichi, closes #3815)
Files: src/channel.c, src/gui.c, src/misc1.c, src/os_unix.c, src/vim.h

Patch 8.1.0771
Problem: Some shell filetype patterns end in a star.
Solution: Make sure that patterns not ending in a star are preferred.
Files: runtime/filetype.vim, runtime/autoload/dist/ft.vim

Patch 8.1.0772
Problem: The sign_define_by_name() function is too long.
Solution: Split it into smaller functions. (Yegappan Lakshmanan,

closes #3819)
Files: src/sign.c

Patch 8.1.0773
Problem: Not all crypt code is tested.
Solution: Disable unused crypt code. Add more test coverage.
Files: src/structs.h, src/crypt.c, src/testdir/test_crypt.vim,

src/proto/crypt.pro, src/fileio.c

Patch 8.1.0774
Problem: VMS build is missing the blob file.
Solution: Add the blob file to the build rules. (Zoltan Arpadffy)
Files: src/Make_vms.mms, runtime/doc/os_vms.txt

Patch 8.1.0775

version8.txt — 3300

Problem: Matching too many files as zsh. (Danek Duvall)
Solution: Be more specific with zsh filetype patterns.
Files: runtime/filetype.vim

Patch 8.1.0776
Problem: Travis does not build a version without GUI on Linux.
Solution: Add an environment for tiny features without GUI.
Files: .travis.yml

Patch 8.1.0777
Problem: Win32: using pipes for channel does not work well.
Solution: Use a larger buffer and handle overlaps. (Yasuhiro Matsumoto,

closes #3782)
Files: src/channel.c, src/os_win32.c

Patch 8.1.0778
Problem: Terminal test fails on MS-Windows.
Solution: Temporarily skip the test on MS-Windows. Do run it both in

terminal and GUI on other systems.
Files: src/testdir/test_terminal.vim

Patch 8.1.0779
Problem: Argument for message functions is inconsistent.
Solution: Make first argument to msg() "char *".
Files: src/buffer.c, src/crypt.c, src/edit.c, src/ex_cmds.c, src/eval.c,

src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/farsi.c,
src/if_cscope.c, src/fileio.c, src/getchar.c, src/globals.h,
src/gui.c, src/if_perl.xs, src/netbeans.c, src/gui_w32.c,
src/hardcopy.c, src/if_mzsch.c, src/if_py_both.h, src/if_ruby.c,
src/if_tcl.c, src/mark.c, src/mbyte.c, src/menu.c, src/memline.c,
src/message.c, src/misc1.c, src/misc2.c, src/normal.c, src/ops.c,
src/option.c, src/os_amiga.c, src/os_unix.c, src/os_win32.c,
src/proto/message.pro, src/quickfix.c, src/sign.c, src/regexp.c,
src/ui.c, src/screen.c, src/search.c, src/spell.c,
src/spellfile.c, src/syntax.c, src/tag.c, src/term.c, src/undo.c,
src/userfunc.c, src/version.c, src/vim.h, src/window.c,
src/proto/eval.pro, src/evalfunc.c, src/ex_eval.c, src/farsi.h

Patch 8.1.0780
Problem: Terminal test fails on Mac.
Solution: Skip the test on Mac.
Files: src/testdir/test_terminal.vim

Patch 8.1.0781
Problem: Build error when using if_xcmdsrv.c.
Solution: Add missing part of 8.1.0779.
Files: src/if_xcmdsrv.c

Patch 8.1.0782
Problem: Win32: cursor blinks when Vim is not active.
Solution: Remove call to setActiveWindow(). (Yasuhiro Matsumoto,

closes #3778)
Files: src/gui_w32.c, src/proto/gui_w32.pro, src/menu.c

Patch 8.1.0783
Problem: Compiler warning for signed/unsigned.
Solution: Add type cast. Change type of buffer. (Ozaki Kiichi, closes #3827)
Files: src/main.c, src/message.c

Patch 8.1.0784

version8.txt — 3301

Problem: Messy indent in if statement.
Solution: Improve structure of if statement. (Ozaki Kiichi, closes #3826)
Files: src/os_win32.c

Patch 8.1.0785
Problem: Depending on the configuration some functions are unused.
Solution: Add more #ifdefs, remove unused functions. (Dominique Pelle,

closes #3822)
Files: src/buffer.c, src/channel.c, src/ex_cmds2.c, src/ex_docmd.c,

src/fileio.c, src/getchar.c, src/gui_gtk_x11.c, src/hashtab.c,
src/json.c, src/mbyte.c, src/message.c, src/misc1.c, src/misc2.c,
src/ops.c, src/option.c, src/os_unix.c, src/proto/os_unix.pro,
src/proto/regexp.pro, src/proto/terminal.pro, src/regexp.c,
src/screen.c, src/search.c, src/syntax.c, src/term.c,
src/terminal.c, src/ui.c, src/userfunc.c

Patch 8.1.0786
Problem: ml_get error when updating the status line and a terminal had its

scrollback cleared. (Chris Patuzzo)
Solution: Check the cursor position when drawing the status line.

(closes #3830)
Files: src/buffer.c, src/testdir/test_terminal.vim

Patch 8.1.0787
Problem: Compiler warning for unused function. (Tony Mechelynck)
Solution: Tune #ifdef around setjmp functions.
Files: src/os_unix.c

Patch 8.1.0788
Problem: Cannot build with tiny features.
Solution: Adjust #ifdefs.
Files: src/os_unix.c

Patch 8.1.0789
Problem: Sourcing a session sets v:errmsg.
Solution: Use "%argdel" instead of "argdel *". (Jason Franklin)
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.1.0790
Problem: Code for creating tabpages in session is too complex.
Solution: Simplify the code. (Jason Franklin)
Files: src/ex_docmd.c

Patch 8.1.0791
Problem: A few compiler warnings on VMS.
Solution: Remove type cast. Adjust #ifdef. (Zoltan Arpadffy)
Files: src/os_unix.c, src/proto.h

Patch 8.1.0792
Problem: Popup menu is displayed on top of the cmdline window if it is

opened from Insert completion. (Bjorn Linse)
Solution: Remove the popup menu. Restore the cursor position.

(closes #3838)
Files: src/edit.c, src/ex_getln.c

Patch 8.1.0793
Problem: Incorrect error messages for functions that now take a Blob

argument.
Solution: Adjust the error messages. (Dominique Pelle, closes #3846)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/globals.h,

version8.txt — 3302

src/testdir/test_blob.vim, src/testdir/test_listdict.vim

Patch 8.1.0794
Problem: White space before " -Ntabmove" causes problems.
Solution: Skip whitespace. (Ozaki Kiichi, closes #3841)
Files: src/ex_docmd.c, src/testdir/test_tabpage.vim

Patch 8.1.0795 (after 8.1.0792)
Problem: Cannot build without popup menu.
Solution: Add #ifdef
Files: src/ex_getln.c

Patch 8.1.0796
Problem: MS-Windows 7: problem with named pipe on channel.
Solution: Put back the disconnect/connect calls. (Yasuhiro Matsumoto,

closes #3833)
Files: src/channel.c, src/testdir/test_terminal.vim

Patch 8.1.0797
Problem: Error E898 is used twice.
Solution: Rename the Blob error to E899. (closes #3853)
Files: src/evalfunc.c, runtime/doc/eval.txt,

src/testdir/test_listdict.vim

Patch 8.1.0798
Problem: Changing a blob while iterating over it works strangely.
Solution: Make a copy of the Blob before iterating.
Files: src/blob.c, src/proto/blob.pro, src/eval.c,

src/testdir/test_blob.vim

Patch 8.1.0799
Problem: Calling deleted function; test doesn't work on Mac.
Solution: Wait for the function to be called before deleting it. Use a job

to write to the pty, unless in the GUI. (Ozaki Kiichi,
closes #3854)

Files: src/testdir/test_channel.vim, src/testdir/test_terminal.vim

Patch 8.1.0800
Problem: May use a lot of memory when a function creates a cyclic

reference.
Solution: After saving a funccal many times, invoke the garbage collector.

(closes #3835)
Files: src/userfunc.c

Patch 8.1.0801
Problem: MinGW: no hint that tests fail because of small terminal.
Solution: Add a rule for test1 that checks for "wrongtermsize".

(msoyka-of-wharton)
Files: src/testdir/Make_ming.mak

Patch 8.1.0802
Problem: Negative index doesn't work for Blob.
Solution: Make it work, add a test. (closes #3856)
Files: src/blob.c, src/proto/blob.pro, src/eval.c,

src/testdir/test_blob.vim

Patch 8.1.0803
Problem: Session file has problem with single quote in file name. (Jon

Crowe)
Solution: Use a double quoted string. Add a test.

version8.txt — 3303

Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.1.0804
Problem: Crash when setting v:errmsg to empty list. (Jason Franklin)
Solution: Separate getting value and assigning result.
Files: src/eval.c, src/testdir/test_eval_stuff.vim

Patch 8.1.0805
Problem: Too many #ifdefs.
Solution: Graduate FEAT_MBYTE, part 1.
Files: src/buffer.c, src/charset.c, src/diff.c, src/digraph.c,

src/edit.c, src/eval.c, src/evalfunc.c, src/ex_cmds.c,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/fileio.c,
src/fold.c, src/gui.c, src/gui_mac.c, src/gui_photon.c,
src/gui_w32.c

Patch 8.1.0806
Problem: Too many #ifdefs.
Solution: Graduate FEAT_MBYTE, part 2.
Files: src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/gui_w32.c,

src/gui_x11.c, src/hardcopy.c, src/if_xcmdsrv.c, src/json.c,
src/kword_test.c, src/main.c, src/mbyte.c, src/memline.c,
src/message.c, src/misc1.c, src/misc2.c, src/move.c, src/normal.c,
src/ops.c, src/option.c, src/charset.c

Patch 8.1.0807
Problem: Session test fails on MS-Windows.
Solution: Don't try creating file with illegal name.
Files: src/testdir/test_mksession.vim

Patch 8.1.0808
Problem: MS-Windows: build error with GUI.
Solution: Remove "static".
Files: src/gui_w32.c

Patch 8.1.0809
Problem: Too many #ifdefs.
Solution: Graduate FEAT_MBYTE, part 3.
Files: src/os_amiga.c, src/os_mswin.c, src/os_unix.c, src/os_w32exe.c,

src/os_win32.c, src/quickfix.c, src/regexp.c, src/regexp_nfa.c,
src/screen.c

Patch 8.1.0810
Problem: Too many #ifdefs.
Solution: Graduate FEAT_MBYTE, part 4.
Files: src/getchar.c, src/search.c, src/sign.c, src/spell.c,

src/spellfile.c, src/syntax.c, src/tag.c, src/term.c, src/ui.c,
src/version.c, src/winclip.c, src/window.c, src/glbl_ime.cpp,
src/ex_cmds.h, src/globals.h, src/gui.h, src/if_py_both.h,
src/macros.h, src/option.h, src/os_mac.h, src/os_win32.h,
src/proto.h, src/spell.h, src/structs.h, src/vim.h

Patch 8.1.0811
Problem: Too many #ifdefs.
Solution: Graduate FEAT_MBYTE, the final chapter.
Files: src/feature.h, src/vim.h, src/crypt_zip.c, src/fileio.c,

src/message.c, src/spell.h, src/structs.h, src/config.h.in,
src/configure.ac, src/auto/configure, src/testdir/runtest.vim,
src/testdir/test_alot_utf8.vim, src/testdir/test_arabic.vim,
src/testdir/test_charsearch_utf8.vim,

version8.txt — 3304

src/testdir/test_cmdline.vim, src/testdir/test_digraph.vim,
src/testdir/test_display.vim, src/testdir/test_edit.vim,
src/testdir/test_erasebackword.vim,
src/testdir/test_expr_utf8.vim, src/testdir/test_functions.vim,
src/testdir/test_ga.vim, src/testdir/test_iminsert.vim,
src/testdir/test_increment_dbcs.vim, src/testdir/test_json.vim,
src/testdir/test_makeencoding.vim, src/testdir/test_maparg.vim,
src/testdir/test_mapping.vim, src/testdir/test_marks.vim,
src/testdir/test_match.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_mksession_utf8.vim, src/testdir/test_normal.vim,
src/testdir/test_plus_arg_edit.vim, src/testdir/test_profile.vim,
src/testdir/test_put.vim, src/testdir/test_regex_char_classes.vim,
src/testdir/test_regexp_utf8.vim, src/testdir/test_search.vim,
src/testdir/test_source_utf8.vim, src/testdir/test_spell.vim,
src/testdir/test_startup_utf8.vim,
src/testdir/test_termencoding.vim, src/testdir/test_terminal.vim,
src/testdir/test_utf8.vim, src/testdir/test_utf8_comparisons.vim,
src/testdir/test_viminfo.vim, src/testdir/test_virtualedit.vim,
src/testdir/test_visual.vim, src/testdir/test_wordcount.vim,
src/testdir/test_writefile.vim, src/appveyor.bat, src/os_macosx.m

Patch 8.1.0812
Problem: Unicode 16 feature is not useful and cannot be detected.
Solution: Remove UNICODE16.
Files: src/screen.c, src/vim.h, src/feature.h

Patch 8.1.0813
Problem: FileChangedShell not sufficiently tested.
Solution: Add a more comprehensive test case.
Files: src/testdir/test_autocmd.vim

Patch 8.1.0814
Problem: :mksession cannot handle a very long 'runtimepath'. (Timothy

Madden)
Solution: Expand each part separately, instead of the whole option at once.

(Christian Brabandt, closes #3466)
Files: src/option.c, src/testdir/test_mksession.vim

Patch 8.1.0815
Problem: Dialog for file changed outside of Vim not tested.
Solution: Add a test. Move FileChangedShell test. Add 'L' flag to

feedkeys().
Files: src/testdir/test_autocmd.vim, src/testdir/test_filechanged.vim,

src/testdir/Make_all.mak, src/evalfunc.c, runtime/doc/eval.txt

Patch 8.1.0816
Problem: Test for 'runtimepath' in session fails on MS-Windows.
Solution: Skip the test for now.
Files: src/testdir/test_mksession.vim

Patch 8.1.0817
Problem: ":=" command is not tested.
Solution: Add a test. (Dominique Pelle, closes #3859)
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_ex_equal.vim

Patch 8.1.0818
Problem: MS-Windows: cannot send large data with ch_sendraw().
Solution: Split write into several WriteFile() calls. (Yasuhiro Matsumoto,

version8.txt — 3305

closes #3823)
Files: src/channel.c, src/os_win32.c, src/testdir/test_channel.vim,

src/testdir/test_channel_pipe.py, src/vim.h

Patch 8.1.0819
Problem: A failed assert with a long string is hard to read.
Solution: Shorten the assert message.
Files: src/eval.c, src/testdir/test_assert.vim

Patch 8.1.0820
Problem: Test for sending large data over channel sometimes fails.
Solution: Handle that the job may have finished early. Also fix that file

changed test doesn't work in the GUI and reduce flakiness. (Ozaki
Kiichi, closes #3861)

Files: src/testdir/test_channel.vim, src/testdir/test_filechanged.vim

Patch 8.1.0821
Problem: Xxd "usage" output and other arguments not tested.
Solution: Add a test to trigger the usage output in various ways. Fix

uncovered problem.
Files: src/testdir/test_xxd.vim, src/xxd/xxd.c

Patch 8.1.0822
Problem: Peeking and flushing output slows down execution.
Solution: Do not update the mode message when global_busy is set. Do not

flush when only peeking for a character. (Ken Takata)
Files: src/getchar.c, src/screen.c, src/proto/screen.pro, src/edit.c

Patch 8.1.0823
Problem: Not sufficient testing of xxd.
Solution: Add some more test coverage.
Files: src/testdir/test_xxd.vim

Patch 8.1.0824
Problem: SunOS/Solaris has a problem with ttys.
Solution: Add mch_isatty() with extra handling for SunOS. (Ozaki Kiichi,

closes #3865)
Files: src/auto/configure, src/channel.c, src/config.h.in,

src/configure.ac, src/os_unix.c, src/proto/pty.pro, src/pty.c,
src/terminal.c

Patch 8.1.0825
Problem: Code for autocommands is mixed with file I/O code.
Solution: Move autocommand code to a separate file. (Yegappan Lakshmanan,

closes #3863)
Files: Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/README.txt, src/autocmd.c,
src/fileio.c, src/globals.h, src/proto.h, src/proto/autocmd.pro,
src/proto/fileio.pro

Patch 8.1.0826
Problem: Too many #ifdefs.
Solution: Graduate FEAT_VIRTUALEDIT. Adds about 10Kbyte to the code.
Files: src/buffer.c, src/charset.c, src/edit.c, src/eval.c,

src/evalfunc.c, src/ex_cmds.c, src/ex_docmd.c, src/feature.h,
src/globals.h, src/gui.c, src/if_py_both.h, src/macros.h,
src/mark.c, src/mbyte.c, src/memline.c, src/menu.c, src/misc1.c,
src/misc2.c, src/move.c, src/netbeans.c, src/normal.c, src/ops.c,

version8.txt — 3306

src/option.c, src/option.h, src/screen.c, src/search.c,
src/spell.c, src/structs.h, src/tag.c, src/ui.c, src/undo.c,
src/userfunc.c, src/version.c, src/vim.h, src/window.c

Patch 8.1.0827 (after 8.1.0825)
Problem: Missing dependency in Makefile.
Solution: Add dependency from autocmd.o on auto/osdef.h
Files: src/Makefile

Patch 8.1.0828
Problem: Still using FEAT_VIRTUALEDIT.
Solution: Remove last use of FEAT_VIRTUALEDIT.
Files: src/quickfix.c

Patch 8.1.0829
Problem: When 'hidden' is set session creates extra buffers.
Solution: Move :badd commands to the end. (Jason Franklin)
Files: src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.1.0830
Problem: Test leaves directory behind on MS-Windows.
Solution: Close buffer before deleting directory.
Files: src/testdir/test_swap.vim

Patch 8.1.0831
Problem: Xxd test fails if man page has dos fileformat.
Solution: Make a copy with unix fileformat.
Files: src/testdir/test_xxd.vim

Patch 8.1.0832
Problem: confirm() is not tested.
Solution: Add a test. (Dominique Pelle, closes #3868)
Files: src/testdir/test_functions.vim

Patch 8.1.0833
Problem: Memory leak when jumps output is filtered.
Solution: Free the filtered name. (Dominique Pelle, closes #3869)
Files: src/mark.c

Patch 8.1.0834
Problem: GUI may wait too long before dealing with messages. Returning

early may cause a mapping to time out.
Solution: Use the waiting loop from Unix also for the GUI.

(closes #3817, closes #3824)
Files: src/ui.c, src/proto/ui.pro, src/os_unix.c, src/gui.c,

src/testdir/screendump.vim

Patch 8.1.0835
Problem: GUI build fails on MS-Windows.
Solution: Adjust #ifdef.
Files: src/ui.c

Patch 8.1.0836
Problem: User completion test can fail on MS-Windows.
Solution: Allow for other names before "Administrator".
Files: src/testdir/test_cmdline.vim

Patch 8.1.0837
Problem: Timer interrupting cursorhold and mapping not tested.
Solution: Add tests with timers. (Ozaki Kiichi, closes #3871)

version8.txt — 3307

Files: src/testdir/test_autocmd.vim, src/testdir/test_mapping.vim

Patch 8.1.0838
Problem: Compiler warning for type conversion.
Solution: Add a type cast. (Mike Williams)
Files: src/channel.c

Patch 8.1.0839
Problem: When using VTP wrong colors after a color scheme change.
Solution: When VTP is active always clear after a color scheme change.

(Nobuhiro Takasaki, closes #3872)
Files: src/ex_docmd.c

Patch 8.1.0840
Problem: getchar(0) never returns a character in the terminal.
Solution: Call wait_func() at least once.
Files: src/ui.c, src/testdir/test_timers.vim, src/gui_gtk_x11.c,

src/gui_w32.c, src/gui_photon.c, src/gui_x11.c

Patch 8.1.0841
Problem: Travis config to get Lua on macOS is too complicated.
Solution: Use an addons entry. (Ozaki Kiichi, closes #3876)
Files: .travis.yml

Patch 8.1.0842
Problem: getchar_zero test fails on MS-Windows.
Solution: Disable the test for now.
Files: src/testdir/test_timers.vim

Patch 8.1.0843
Problem: Memory leak when running "make test_cd".
Solution: Free the stack element when failing. (Dominique Pelle,

closes #3877)
Files: src/misc2.c

Patch 8.1.0844
Problem: When timer fails test will hang forever.
Solution: Use reltime() to limit waiting time. (Ozaki Kiichi, closes #3878)
Files: src/testdir/test_timers.vim

Patch 8.1.0845
Problem: Having job_status() free the job causes problems.
Solution: Do not actually free the job or terminal yet, put it in a list and

free it a bit later. Do not use a terminal after checking the job
status. (closes #3873)

Files: src/channel.c, src/terminal.c, src/proto/terminal.pro, src/misc2.c

Patch 8.1.0846
Problem: Not easy to recognize the system Vim runs on.
Solution: Add more items to the features list. (Ozaki Kiichi, closes #3855)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_channel.vim, src/testdir/test_functions.vim,
src/testdir/test_terminal.vim, src/testdir/test_writefile.vim

Patch 8.1.0847
Problem: May use terminal after it was cleaned up.
Solution: Use the job pointer.
Files: src/terminal.c

Patch 8.1.0848

version8.txt — 3308

Problem: Cannot build with Ruby 1.8. (Tom G. Christensen)
Solution: Use rb-str_new2(). (Yasuhiro Matsumoto, closes #3883,

closes #3884)
Files: src/if_ruby.c

Patch 8.1.0849
Problem: Cursorline highlight is not always updated.
Solution: Set w_last_cursorline when redrawing. Fix resetting cursor flags

when using the popup menu.
Files: src/screen.c, src/popupmnu.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_cursorline_yank_01.dump

Patch 8.1.0850
Problem: Test for 'backupskip' is not correct.
Solution: Split the option in parts and use expand(). (Michael Soyka)
Files: src/testdir/test_options.vim

Patch 8.1.0851
Problem: feedkeys() with "L" does not work properly.
Solution: Do not set typebuf_was_filled when using "L". (Ozaki Kiichi,

closes #3885)
Files: src/evalfunc.c, src/testdir/test_autocmd.vim,

src/testdir/test_mapping.vim, src/testdir/test_timers.vim

Patch 8.1.0852
Problem: findfile() and finddir() are not properly tested.
Solution: Extend the test and add more. (Dominique Pelle, closes #3880)
Files: src/testdir/test_findfile.vim

Patch 8.1.0853 (after 8.1.0850)
Problem: Options test fails on Mac.
Solution: Remove a trailing slash from $TMPDIR.
Files: src/testdir/test_options.vim

Patch 8.1.0854
Problem: xxd does not work with more than 32 bit addresses.
Solution: Add support for 64 bit addresses. (Christer Jensen, closes #3791)
Files: src/xxd/xxd.c

Patch 8.1.0855
Problem: Cannot build xxd with MSVC 10.
Solution: Move declaration to start of block.
Files: src/xxd/xxd.c

Patch 8.1.0856
Problem: When scrolling a window other than the current one the cursorline

highlighting is not always updated. (Jason Franklin)
Solution: Call redraw_for_cursorline() after scrolling. Only set

w_last_cursorline when drawing the cursor line. Reset the lines
to be redrawn also when redrawing the whole window.

Files: src/move.c, src/proto/move.pro, src/normal.c

Patch 8.1.0857
Problem: Indent functionality is not separated.
Solution: Move indent functionality into a new file. (Yegappan Lakshmanan,

closes #3886)
Files: Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/edit.c, src/indent.c,

version8.txt — 3309

src/misc1.c, src/proto.h, src/proto/edit.pro,
src/proto/indent.pro, src/proto/misc1.pro

Patch 8.1.0858
Problem: 'indentkeys' and 'cinkeys' defaults are different.
Solution: Make them the same, update docs. (close #3882)
Files: src/option.c, runtime/doc/options.txt, runtime/doc/indent.txt

Patch 8.1.0859
Problem: "%v" in 'errorformat' does not handle multibyte characters.
Solution: Handle multibyte characters. (Yegappan Lakshmanan, closes #3700)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0860
Problem: Debug lines left in the code.
Solution: Delete the lines.
Files: src/edit.c

Patch 8.1.0861
Problem: Building with MinGW and static libc doesn't work.
Solution: Change the LIB argument. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 8.1.0862
Problem: No verbose version of character classes.
Solution: Add [:ident:], [:keyword:] and [:fname:]. (Ozaki Kiichi,

closes #1373)
Files: runtime/doc/pattern.txt, src/regexp.c, src/regexp_nfa.c,

src/testdir/test_regexp_utf8.vim

Patch 8.1.0863
Problem: Cannot see what signal caused a job to end.
Solution: Add "termsig" to job_info(). (Ozaki Kiichi, closes #3786)
Files: runtime/doc/eval.txt, src/channel.c, src/os_unix.c, src/structs.h,

src/testdir/test_channel.vim

Patch 8.1.0864
Problem: Cannot have a local value for 'scrolloff' and 'sidescrolloff'.

(Gary Holloway)
Solution: Make 'scrolloff' and 'sidescrolloff' global-local. (mostly by

Aron Widforss, closes #3539)
Files: runtime/doc/options.txt, src/edit.c, src/ex_cmds.c,

src/ex_docmd.c, src/gui.c, src/misc2.c, src/move.c, src/normal.c,
src/option.c, src/proto/option.pro, src/option.h, src/search.c,
src/structs.h, src/window.c, src/testdir/test_options.vim

Patch 8.1.0865
Problem: When 'listchars' only contains "nbsp:X" it does not work.
Solution: Set extra_check when lcs_nbsp is set. (Ralf Schandl, closes #3889)
Files: src/screen.c, src/testdir/test_listchars.vim

Patch 8.1.0866
Problem: Build file dependencies are outdated. (John Little)
Solution: Run "make proto" and "make depend".
Files: src/vim.h, src/Makefile, src/proto/sign.pro, src/proto/gui_w32.pro

Patch 8.1.0867
Problem: Cannot build Python interface with Python 2.4. (Tom G. Christensen)
Solution: Define PyBytes_FromStringAndSize. (Ken Takata, closes #3888)
Files: src/if_python.c

version8.txt — 3310

Patch 8.1.0868
Problem: Crash if triggering garbage collector after a function call.

(Michael Henry)
Solution: Don't call the garbage collector right away, do it later.

(closes #3894)
Files: src/userfunc.c

Patch 8.1.0869
Problem: Travis CI script is too complicated.
Solution: Add names to environments. Move appveyor script outside of src

directory. (Ozaki Kiichi, closes #3890)
Files: .travis.yml, appveyor.yml, ci/appveyor.bat, src/appveyor.bat,

Filelist

Patch 8.1.0870
Problem: Vim doesn't use the new ConPTY support in Windows 10.
Solution: Use ConPTY support, if available. (Nobuhiro Takasaki, closes #3794)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/terminal.txt, src/channel.c, src/evalfunc.c,
src/globals.h, src/option.c, src/option.h, src/os_win32.c,
src/proto/terminal.pro, src/structs.h, src/terminal.c,
src/testdir/gen_opt_test.vim, src/testdir/test_autocmd.vim,
src/testdir/test_mksession.vim, src/testdir/test_terminal.vim

Patch 8.1.0871
Problem: Build error when building with Ruby 2.6.0.
Solution: Change argument of rb_int2big_stub(). (Android Baumann,

closes #3899)
Files: src/if_ruby.c

Patch 8.1.0872
Problem: Confusing condition.
Solution: Use "==" instead of "<=".
Files: src/gui_gtk_x11.c

Patch 8.1.0873
Problem: List if distributed files does not include the matchit autoload

directory.
Solution: Add the directory.
Files: src/Filelist

Patch 8.1.0874
Problem: Using old style comments in new file.
Solution: Convert to // comments in new file. (Yegappan Lakshmanan)
Files: src/indent.c

Patch 8.1.0875
Problem: Not all errors of marks and findfile()/finddir() are tested.
Solution: Add more test coverage. (Dominique Pelle)
Files: src/testdir/test_findfile.vim, src/testdir/test_marks.vim

Patch 8.1.0876
Problem: Completion match not displayed when popup menu is not shown.
Solution: Call update_screen() when not displaying the popup menu to show

the inserted match. (Ken Takata, Hirohito Higashi)
Files: src/edit.c

Patch 8.1.0877
Problem: New buffer used every time the quickfix window is opened.

version8.txt — 3311

Solution: Reuse the buffer. (Yegappan Lakshmanan, closes #3902)
Files: src/buffer.c, src/proto/quickfix.pro, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.1.0878
Problem: Test for has('bsd') fails on some BSD systems.
Solution: Adjust the uname match. (James McCoy, closes #3909)
Files: src/testdir/test_functions.vim

Patch 8.1.0879
Problem: MS-Windows: temp name encoding can be wrong.
Solution: Convert from active code page to 'encoding'. (Yasuhiro Matsumoto,

closes #3520, closes #1698)
Files: src/fileio.c

Patch 8.1.0880
Problem: MS-Windows: inconsistent selection of winpty/conpty.
Solution: Name option 'termwintype', use ++type argument and "term_pty" for

term_start(). (Hirohito Higashi, closes #3915)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/terminal.txt, src/channel.c, src/option.c,
src/option.h, src/structs.h, src/terminal.c,
src/testdir/gen_opt_test.vim, runtime/optwin.vim,
runtime/doc/quickref.txt

Patch 8.1.0881
Problem: Can execute shell commands in rvim through interfaces.
Solution: Disable using interfaces in restricted mode. Allow for writing

file with writefile(), histadd() and a few others.
Files: runtime/doc/starting.txt, src/if_perl.xs, src/if_cmds.h,

src/ex_cmds.c, src/ex_docmd.c, src/evalfunc.c,
src/testdir/test_restricted.vim, src/testdir/Make_all.mak

Patch 8.1.0882 (after 8.1.0879)
Problem: Checking for FEAT_MBYTE which doesn't exist anymore. (Christ van

Willegen)
Solution: Remove it.
Files: src/fileio.c

Patch 8.1.0883
Problem: Missing some changes for Ex commands.
Solution: Add missing changes in header file.
Files: src/ex_cmds.h

Patch 8.1.0884
Problem: Double check for bsd systems.
Solution: Delete the old line.
Files: src/testdir/test_functions.vim

Patch 8.1.0885
Problem: Test for restricted hangs on MS-Windows GUI.
Solution: Skip the test.
Files: src/testdir/test_restricted.vim

Patch 8.1.0886
Problem: Compiler warning for adding to NULL pointer and a condition that

is always true.
Solution: Check for NULL pointer before adding. Remove useless "if".

(Friedirch, closes #3913)
Files: src/dosinst.c, src/search.c

version8.txt — 3312

Patch 8.1.0887
Problem: The 'l' flag in :substitute is sticky.
Solution: Reset the flag. (Dominique Pelle, closes #3925)
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.1.0888
Problem: The a: dict is not immutable as documented.
Solution: Make the a:dict immutable, add a test. (Ozaki Kiichi, Yasuhiro

Matsumoto, closes #3929)
Files: src/eval.c, src/userfunc.c, src/testdir/test_let.vim,

src/testdir/test_listdict.vim

Patch 8.1.0889
Problem: MS-Windows: a channel write may hang.
Solution: Check for WriteFile() not writing anything. (Yasuhiro Matsumoto,

closes #3920)
Files: src/channel.c, src/testdir/test_channel.vim,

src/testdir/test_channel_pipe.py

Patch 8.1.0890
Problem: Pty allocation wrong if using file for out channel and using null

for in channel and null for error channel.
Solution: Correct using use_file_for_out in condition. (Ozaki Kiichi, closes

#3917)
Files: src/os_unix.c, src/testdir/test_channel.vim

Patch 8.1.0891
Problem: Substitute command insufficiently tested.
Solution: Add more test coverage. (Dominique Pelle)
Files: src/testdir/test_substitute.vim

Patch 8.1.0892
Problem: Failure when closing a window when location list is in use.
Solution: Handle the situation gracefully. Make sure memory for 'switchbuf'

is not freed at the wrong time. (Yegappan Lakshmanan,
closes #3928)

Files: src/eval.c, src/evalfunc.c, src/proto/window.pro, src/quickfix.c,
src/testdir/test_quickfix.vim, src/window.c

Patch 8.1.0893
Problem: Terminal test is a bit flaky.
Solution: Add test_terminal_no_cmd() to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0894
Problem: MS-Windows: resolve() does not return a reparse point.
Solution: Improve resolve(). (Yasuhiro Matsumoto, closes #3896)
Files: runtime/doc/eval.txt, src/buffer.c, src/evalfunc.c,

src/os_mswin.c, src/proto/os_mswin.pro,
src/testdir/test_functions.vim

Patch 8.1.0895 (after 8.1.0879)
Problem: MS-Windows: dealing with temp name encoding not quite right.
Solution: Use more wide functions. (Ken Takata, closes #3921)
Files: src/fileio.c

Patch 8.1.0896
Problem: Tests for restricted mode not run for MS-Windows GUI.
Solution: Make tests also work in MS-Windows GUI.

version8.txt — 3313

Files: src/testdir/test_restricted.vim

Patch 8.1.0897
Problem: Can modify a:000 when using a reference.
Solution: Make check for locked variable stricter. (Ozaki Kiichi,

closes #3930)
Files: src/dict.c, src/eval.c, src/evalfunc.c, src/proto/eval.pro,

src/testdir/test_channel.vim, src/testdir/test_let.vim,
src/userfunc.c

Patch 8.1.0898
Problem: A messed up rgb.txt can crash Vim. (Pavel Cheremushkin)
Solution: Limit to 10000 entries. Also don't retry many times when the file

cannot be read.
Files: src/term.c

Patch 8.1.0899
Problem: No need to check restricted mode for setwinvar().
Solution: Remove check_restricted().
Files: src/eval.c

Patch 8.1.0900
Problem: ConPTY may crash with 32-bit build.
Solution: Fix function declarations. (Ken Takata, closes #3943)
Files: src/terminal.c

Patch 8.1.0901
Problem: Index in getjumplist() may be wrong. (Epheien)
Solution: Call cleanup_jumplist() earlier. (Yegappan Lakshmanan,

closes #3942)
Files: src/evalfunc.c, src/testdir/test_jumplist.vim

Patch 8.1.0902
Problem: Incomplete set of assignment operators.
Solution: Add /=, *= and %=. (Ozaki Kiichi, closes #3931)
Files: runtime/doc/eval.txt src/eval.c src/testdir/test_vimscript.vim

Patch 8.1.0903
Problem: Struct uses more bytes than needed.
Solution: Reorder members of regitem_S. (Dominique Pelle, closes #3936)
Files: src/regexp.c

Patch 8.1.0904
Problem: USE_LONG_FNAME never defined.
Solution: Remove using USE_LONG_FNAME. (Ken Takata, closes #3938)
Files: src/buffer.c, src/ex_cmds.c, src/fileio.c

Patch 8.1.0905
Problem: Complicated regexp causes a crash. (Kuang-che Wu)
Solution: Limit the recursiveness of addstate(). (closes #3941)
Files: src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 8.1.0906
Problem: Using clumsy way to get console window handle.
Solution: Use GetConsoleWindow(). (Ken Takata, closes #3940)
Files: src/os_mswin.c

Patch 8.1.0907
Problem: CI tests on AppVeyor are failing.
Solution: Reduce the recursiveness limit for regexp.

version8.txt — 3314

Files: src/regexp_nfa.c

Patch 8.1.0908
Problem: Can't handle large value for %{nr}v in regexp. (Kuang-che Wu)
Solution: Give an error if the value is too large. (closes #3948)
Files: src/regexp_nfa.c

Patch 8.1.0909
Problem: MS-Windows: using ConPTY even though it is not stable.
Solution: When ConPTY version is unstable, prefer using winpty. (Ken Takata,

closes #3949)
Files: runtime/doc/options.txt, src/os_win32.c, src/proto/os_win32.pro,

src/terminal.c

Patch 8.1.0910
Problem: Crash with tricky search pattern. (Kuang-che Wu)
Solution: Check for running out of memory. (closes #3950)
Files: src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 8.1.0911
Problem: Tag line with Ex command cannot have extra fields.
Solution: Recognize |;" as the end of the command. (closes #2402)
Files: runtime/doc/tagsrch.txt, src/tag.c, src/testdir/test_taglist.vim

Patch 8.1.0912
Problem: MS-Windows: warning for signed/unsigned.
Solution: Add type cast. (Nobuhiro Takasaki, closes #3945)
Files: src/terminal.c

Patch 8.1.0913
Problem: CI crashes when running out of memory.
Solution: Apply 'maxmempattern' also to new regexp engine.
Files: src/regexp_nfa.c

Patch 8.1.0914
Problem: Code related to findfile() is spread out.
Solution: Put findfile() related code into a new source file. (Yegappan

Lakshmanan, closes #3934)
Files: Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/README.txt, src/findfile.c,
src/misc1.c, src/misc2.c, src/proto.h, src/proto/findfile.pro,
src/proto/misc1.pro, src/proto/misc2.pro, src/proto/window.pro,
src/window.c

Patch 8.1.0915
Problem: fsync() may not work properly on Mac.
Solution: Use fcntl() with F_FULLFSYNC. (suggested by Justin M. Keyes)
Files: src/fileio.c, src/proto/fileio.pro, src/evalfunc.c, src/memfile.c

Patch 8.1.0916
Problem: With Python 3.7 "find_module" is not made available.
Solution: Also add "find_module" with Python 3.7. (Joel Frederico,

closes #3954)
Files: src/if_py_both.h

Patch 8.1.0917
Problem: Double free when running out of memory.
Solution: Remove one free. (Ken Takata, closes #3955)

version8.txt — 3315

Files: src/userfunc.c

Patch 8.1.0918
Problem: MS-Windows: startup messages are not converted.
Solution: Convert messages when the current codepage differs from

'encoding'. (Yasuhiro Matsumoto, closes #3914)
Files: src/message.c, src/os_mswin.c, src/vim.h

Patch 8.1.0919
Problem: Compiler warnings.
Solution: Add type casts. (Mike Williams)
Files: src/message.c, src/regexp_nfa.c

Patch 8.1.0920
Problem: In Terminal-Normal mode job output messes up the window.
Solution: Postpone scrolling and updating the buffer when in Terminal-Normal

mode.
Files: src/terminal.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_01.dump,
src/testdir/dumps/Test_terminal_02.dump,
src/testdir/dumps/Test_terminal_03.dump

Patch 8.1.0921
Problem: Terminal test sometimes fails; using memory after free.
Solution: Fee memory a bit later. Add test to cover this. Disable flaky

screenshot test. (closes #3956)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0922
Problem: Terminal scrollback test is flaky.
Solution: Wait a bit before running the tail command.
Files: src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_01.dump,
src/testdir/dumps/Test_terminal_02.dump,
src/testdir/dumps/Test_terminal_03.dump

Patch 8.1.0923
Problem: Terminal dump diff swap does not update file names.
Solution: Also swap the file name. Add a test.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.0924
Problem: Terminal scrollback test still flaky.
Solution: Wait a bit longer before running the tail command.
Files: src/testdir/test_terminal.vim

Patch 8.1.0925
Problem: Terminal scrollback test still still flaky.
Solution: Explicitly set the shell. Disable ruler. (Ozaki Kiichi,

closes #3966)
Files: src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_01.dump,
src/testdir/dumps/Test_terminal_02.dump,
src/testdir/dumps/Test_terminal_03.dump

Patch 8.1.0926
Problem: No test for :wnext, :wNext and :wprevious.
Solution: Add a test. (Dominique Pelle, closes #3963)
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_wnext.vim

version8.txt — 3316

Patch 8.1.0927
Problem: USE_CR is never defined.
Solution: Remove usage of USE_CR. (Ken Takata, closes #3958)
Files: runtime/doc/options.txt, src/diff.c, src/evalfunc.c,

src/ex_cmds2.c, src/fileio.c, src/message.c, src/ops.c,
src/option.h, src/proto/ex_cmds2.pro, src/proto/fileio.pro,
src/tag.c

Patch 8.1.0928 (after 8.1.0927)
Problem: Stray log function call.
Solution: Remove the log function call.
Files: src/ex_cmds2.c

Patch 8.1.0929
Problem: No error when requesting ConPTY but it's not available.
Solution: Add an error message. (Hirohito Higashi, closes #3967)
Files: runtime/doc/terminal.txt, src/terminal.c

Patch 8.1.0930
Problem: Typo in Makefile.
Solution: Change ABORT_CLFAGS to ABORT_CFLAGS. (Kuang-che Wu, closes #3977)
Files: src/Makefile

Patch 8.1.0931
Problem: vtp_working included in GUI build but unused.
Solution: Adjust #ifdefs. (Ken Takata, closes #3971)
Files: src/os_win32.c

Patch 8.1.0932
Problem: Farsi support is outdated and unused.
Solution: Delete the Farsi support.
Files: Filelist, src/farsi.c, src/proto/farsi.pro, src/farsi.h, src/edit.c,

src/main.c, src/normal.c, src/option.c, src/getchar.c,
src/ex_cmds.c, src/search.c, src/ex_getln.c, src/charset.c,
src/evalfunc.c, src/screen.c, src/window.c, src/globals.h,
src/proto.h, farsi/README.txt, src/structs.h,
farsi/fonts/DOS/far-a01.com, farsi/fonts/SunOs/far-a01.fb,
farsi/fonts/UNIXs/far-a01.f16, farsi/fonts/UNIXs/far-a01.pcf.gz,
farsi/fonts/UNIXs/far-a01.pcf.Z, farsi/fonts/WINDOWS/far-a01.fon,
src/Makefile, src/Make_bc5.mak, src/Make_cyg_ming.mak,
src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/configure.ac, src/auto/configure,
src/config.h.in, src/testdir/test_farsi.vim, src/version.c,
src/testdir/Make_all.mak, runtime/doc/options.txt,
runtime/doc/starting.txt, runtime/doc/quickref.txt,
runtime/doc/farsi.txt

Patch 8.1.0933
Problem: When using VTP scroll region isn't used properly.
Solution: Make better use of the scroll region. (Nobuhiro Takasaki,

closes #3974)
Files: src/os_win32.c, src/term.c

Patch 8.1.0934
Problem: Invalid memory access in search pattern. (Kuang-che Wu)
Solution: Check for incomplete equivalence class. (closes #3970)
Files: src/regexp.c, src/testdir/test_regexp_latin.vim

version8.txt — 3317

Patch 8.1.0935
Problem: Old regexp engine may use invalid buffer for 'iskeyword' or

uninitialized buffer pointer. (Kuang-che Wu)
Solution: Set rex.reg_buf when compiling the pattern. (closes #3972)
Files: src/regexp.c, src/testdir/test_regexp_latin.vim

Patch 8.1.0936
Problem: May leak memory when using 'vartabstop'. (Kuang-che Wu)
Solution: Fix handling allocated memory for 'vartabstop'. (closes #3976)
Files: src/option.c, src/buffer.c

Patch 8.1.0937
Problem: Invalid memory access in search pattern. (Kuang-che Wu)
Solution: Check for incomplete collation element. (Dominique Pelle,

closes #3985)
Files: src/regexp.c, src/testdir/test_regexp_latin.vim

Patch 8.1.0938
Problem: Background color is wrong in MS-Windows console when not using VTP.
Solution: Use g_attrCurrent. (Nobuhiro Takasaki, closes #3987)
Files: src/os_win32.c

Patch 8.1.0939
Problem: No completion for sign group names.
Solution: Add completion for sign group names and buffer names. (Yegappan

Lakshmanan, closes #3980)
Files: src/sign.c, src/testdir/test_signs.vim

Patch 8.1.0940
Problem: MS-Windows console resizing not handled properly.
Solution: Handle resizing the console better. (Nobuhiro Takasaki, Ken

Takata, closes #3968, closes #3611)
Files: src/ex_docmd.c, src/normal.c, src/os_win32.c,

src/proto/os_win32.pro

Patch 8.1.0941
Problem: Macros for MS-Windows are inconsistent, using "32", "3264" and

others.
Solution: Use MSWIN for all MS-Windows builds. Use FEAT_GUI_MSWIN for the

GUI build. (Hirohito Higashi, closes #3932)
Files: src/GvimExt/gvimext.h, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_ivc.mak, src/Make_mvc.mak, src/beval.h, src/blowfish.c,
src/channel.c, src/edit.c, src/eval.c, src/evalfunc.c,
src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c,
src/feature.h, src/fileio.c, src/getchar.c, src/glbl_ime.cpp,
src/globals.h, src/gui.c, src/gui.h, src/gui_beval.c,
src/gui_gtk.c, src/gui_gtk_f.c, src/gui_gtk_x11.c,
src/if_cscope.c, src/if_cscope.h, src/if_lua.c, src/if_mzsch.c,
src/if_ole.cpp, src/if_perl.xs, src/if_python.c, src/if_python3.c,
src/if_ruby.c, src/if_tcl.c, src/macros.h, src/main.c,
src/mbyte.c, src/memfile.c, src/memline.c, src/menu.c,
src/message.c, src/misc1.c, src/misc2.c, src/nbdebug.c,
src/netbeans.c, src/normal.c, src/option.c, src/option.h,
src/os_mswin.c, src/os_unix.c, src/os_w32exe.c, src/os_win32.c,
src/os_win32.h, src/proto.h, src/screen.c, src/search.c,
src/structs.h, src/syntax.c, src/term.c, src/terminal.c, src/ui.c,
src/undo.c, src/version.c, src/vim.h, src/vim.rc, src/winclip.c

Patch 8.1.0942
Problem: Options window still checks for the multi_byte feature.

version8.txt — 3318

Solution: Remove the unnecessary check. (Dominique Pelle, closes #3990)
Files: runtime/optwin.vim

Patch 8.1.0943
Problem: Still a trace of Farsi support.
Solution: Remove defining macros.
Files: src/feature.h

Patch 8.1.0944
Problem: Format of nbdbg() arguments is not checked.
Solution: Add format attribute. Fix reported problems. (Dominique Pelle,

closes #3992)
Files: src/nbdebug.h, src/netbeans.c

Patch 8.1.0945
Problem: Internal error when using pattern with NL in the range.
Solution: Use an actual newline for the range. (closes #3989) Also fix

error message. (Dominique Pelle)
Files: src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 8.1.0946
Problem: Coveralls is not very useful.
Solution: Remove Coveralls badge, add badge for packages.
Files: README.md

Patch 8.1.0947
Problem: Using MSWIN before it is defined. (Cesar Romani)
Solution: Move the block that uses MSWIN to below including vim.h. (Ken

Takata)
Files: src/if_ruby.c

Patch 8.1.0948
Problem: When built without +eval "Vim --clean" produces errors. (James

McCoy)
Solution: Do not enable filetype detection.
Files: runtime/defaults.vim

Patch 8.1.0949
Problem: MS-Windows defines GUI macros different than other systems.
Solution: Swap FEAT_GUI and FEAT_GUI_MSWIN. (Hirohito Higashi, closes #3996)
Files: src/Make_bc5.mak, src/Make_cyg_ming.mak, src/Make_ivc.mak,

src/Make_mvc.mak, src/if_ole.cpp, src/vim.h, src/vim.rc

Patch 8.1.0950
Problem: Using :python sets 'pyxversion' even when not executed.
Solution: Check the "skip" flag. (Shane Harper, closes #3995)
Files: src/if_python.c, src/if_python3.c, src/testdir/test_python2.vim,

src/testdir/test_python3.vim

Patch 8.1.0951
Problem: Using WIN64 even though it is never defined.
Solution: Only use _WIN64. (Ken Takata, closes #3997)
Files: src/evalfunc.c

Patch 8.1.0952
Problem: Compilation warnings when building the MS-Windows installer.
Solution: Fix buffer sizes. (Yasuhiro Matsumoto, closes #3999)
Files: src/dosinst.c, src/dosinst.h, src/uninstal.c

Patch 8.1.0953

version8.txt — 3319

Problem: A very long file is truncated at 2^31 lines.
Solution: Use LONG_MAX for MAXLNUM. (Dominique Pelle, closes #4011)
Files: src/vim.h

Patch 8.1.0954
Problem: Arguments of semsg() and siemsg() are not checked.
Solution: Add function prototype with __attribute__.
Files: src/message.c, src/proto/message.pro, src/proto.h

Patch 8.1.0955
Problem: Matchit autoload directory not in installer. (Chris Morgan)
Solution: Adjust the NSIS script. (Christian Brabandt, closes #4006)
Files: nsis/gvim.nsi

Patch 8.1.0956
Problem: Using context:0 in 'diffopt' does not work well.
Solution: Make zero context do the same as one line context. (closes #4005)
Files: src/diff.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_06.0.dump,
src/testdir/dumps/Test_diff_06.1.dump,
src/testdir/dumps/Test_diff_06.2.dump

Patch 8.1.0957 (after 8.1.0915)
Problem: Mac: fsync fails on network share.
Solution: Check for ENOTSUP. (Yee Cheng Chin, closes #4016)
Files: src/fileio.c

Patch 8.1.0958
Problem: Compiling weird regexp pattern is very slow.
Solution: When reallocating post list increase size by 50%. (Kuang-che Wu,

closes #4012) Make assert_inrange() accept float values.
Files: src/regexp_nfa.c, src/eval.c, src/testdir/test_regexp_latin.vim,

src/testdir/test_assert.vim

Patch 8.1.0959
Problem: Sorting large numbers is not tested and does not work properly.
Solution: Add test. Fix comparing lines with and without a number.

(Dominique Pelle, closes #4017)
Files: src/ex_cmds.c, src/testdir/test_sort.vim

Patch 8.1.0960
Problem: When using ConPTY garbage collection has undefined behavior.
Solution: Free the channel in a better way. (Nobuhiro Takasaki, closes #4020)
Files: src/channel.c

Patch 8.1.0961 (after 8.1.0957)
Problem: Mac: fsync may fail sometimes.
Solution: Do not check errno. (Yee Cheng Chin, closes #4025)
Files: src/fileio.c

Patch 8.1.0962
Problem: Building with MinGW and static libs doesn't work. (Salman Halim)
Solution: Add -lgcc. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 8.1.0963
Problem: Illegal memory access when using 'incsearch'.
Solution: Reset highlight_match when changing text. (closes #4022)
Files: src/testdir/test_search.vim, src/misc1.c,

src/testdir/dumps/Test_incsearch_change_01.dump

version8.txt — 3320

Patch 8.1.0964
Problem: Cannot see in CI why a screenshot test failed.
Solution: Add info about the failure.
Files: src/testdir/screendump.vim

Patch 8.1.0965
Problem: Search test fails.
Solution: Wait a bit longer for the 'ambiwidth' redraw.
Files: src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_change_01.dump

Patch 8.1.0966
Problem: One terminal test is flaky.
Solution: Add to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.0967
Problem: Stray dependency in test Makefile.
Solution: Remove it. (Masato Nishihata, closes #4018)
Files: src/testdir/Makefile

Patch 8.1.0968
Problem: Crash when using search pattern \%Ufffffc23.
Solution: Limit character to INT_MAX. (closes #4009)
Files: src/regexp_nfa.c, src/testdir/test_search.vim

Patch 8.1.0969
Problem: Message written during startup is truncated.
Solution: Restore message after truncating. (closes #3969) Add a test.

(Yasuhiro Matsumoto)
Files: src/message.c, src/testdir/test_startup.vim

Patch 8.1.0970
Problem: Text properties test fails when 'encoding' is not utf-8.
Solution: Compare with original value of 'encoding'. (Christian Brabandt,

closes #3986)
Files: src/testdir/runtest.vim, src/testdir/test_textprop.vim

Patch 8.1.0971
Problem: Failure for selecting quoted text object moves cursor.
Solution: Restore the Visual selection on failure. (Christian Brabandt,

closes #4024)
Files: src/search.c, src/testdir/test_textobjects.vim

Patch 8.1.0972
Problem: Cannot switch from terminal window to next tabpage.
Solution: Make CTRL-W gt move to next tabpage.
Files: src/window.c, src/testdir/test_terminal.vim,

runtime/doc/terminal.txt

Patch 8.1.0973
Problem: Pattern with syntax error gives three error messages. (Kuang-che

Wu)
Solution: Remove outdated internal error. Don't fall back to other engine

after an error.(closes #4035)
Files: src/regexp_nfa.c, src/testdir/test_search.vim, src/regexp.c

Patch 8.1.0974
Problem: Cannot switch from terminal window to previous tabpage.

version8.txt — 3321

Solution: Make CTRL-W gT move to previous tabpage.
Files: src/window.c, src/testdir/test_terminal.vim,

runtime/doc/terminal.txt

Patch 8.1.0975
Problem: Using STRNCPY() wrongly. Warning for uninitialized variable.
Solution: Use mch_memmove(). Initialize variable. (Yasuhiro Matsumoto,

closes #3979)
Files: src/screen.c, src/textprop.c

Patch 8.1.0976
Problem: Dosinstall still has buffer overflow problems.
Solution: Adjust buffer sizes. (Yasuhiro Matsumoto, closes #4002)
Files: src/dosinst.c, src/dosinst.h, src/uninstal.c

Patch 8.1.0977
Problem: Blob not tested with Ruby.
Solution: Add more test coverage. Fixes a crash. (Dominique Pelle,

closes #4036)
Files: src/if_ruby.c, src/testdir/test_ruby.vim

Patch 8.1.0978
Problem: Blob not tested with Perl.
Solution: Add more test coverage. Fixes a crash. (Dominique Pelle,

closes #4037)
Files: src/if_perl.c, src/testdir/test_ruby.vim

Patch 8.1.0979
Problem: Compiler warning for unused functions. (Yasuhiro Matsumoto)
Solution: Adjust #ifdef.
Files: src/screen.c

Patch 8.1.0980
Problem: extend() insufficiently tested.
Solution: Add more tests. (Dominique Pelle, closes #4040)
Files: src/testdir/test_listdict.vim

Patch 8.1.0981
Problem: Pasting in terminal insufficiently tested.
Solution: Add more tests. (Dominique Pelle, closes #4040)
Files: src/testdir/test_terminal.vim

Patch 8.1.0982
Problem: update_cursor() called twice in :shell.
Solution: Remove one of the calls. (Yasuhiro Matsumoto, closes #4039)
Files: src/terminal.c

Patch 8.1.0983
Problem: Checking __CYGWIN32__ unnecessarily.
Solution: Remove the checks. (Ken Takata)
Files: src/evalfunc.c, src/os_unix.c, src/os_win32.c

Patch 8.1.0984
Problem: Unnecessary #ifdefs.
Solution: Remove the #ifdefs. (Ken Takata)
Files: src/winclip.c

Patch 8.1.0985
Problem: Crash with large number in regexp. (Kuang-che Wu)
Solution: Check for long becoming negative int. (closes #4042)

version8.txt — 3322

Files: src/regexp.c, src/testdir/test_search.vim

Patch 8.1.0986
Problem: rename() is not properly tested.
Solution: Add tests. (Dominique Pelle, closes #4061)
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_rename.vim

Patch 8.1.0987
Problem: Unnecessary condition in #ifdef.
Solution: Remove using CYGWIN32. (Ken Takata)
Files: src/os_unix.h, src/xxd/xxd.c

Patch 8.1.0988
Problem: Deleting a location list buffer breaks location list window

functionality.
Solution: (Yegappan Lakshmanan, closes #4056)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.0989
Problem: Various small code ugliness.
Solution: Remove pointless NULL checks. Fix function calls. Fix typos.

(Dominique Pelle, closes #4060)
Files: src/buffer.c, src/crypt.c, src/evalfunc.c, src/ex_cmds2.c,

src/globals.h, src/gui_gtk_f.c, src/gui_gtk_x11.c, src/gui_mac.c,
src/ops.c, src/option.h, src/os_unix.c, src/os_win32.c,
src/popupmnu.c, src/regexp.c, src/ui.c, src/version.c

Patch 8.1.0990
Problem: Floating point exception with "%= 0" and "/= 0".
Solution: Avoid dividing by zero. (Dominique Pelle, closes #4058)
Files: src/eval.c, src/testdir/test_vimscript.vim

Patch 8.1.0991
Problem: Cannot build with FEAT_EVAL defined and FEAT_SEARCH_EXTRA

undefined, and with FEAT_DIFF defined and FEAT_EVAL undefined.
Solution: Add a couple of #ifdefs. (closes #4067)
Files: src/diff.c, src/search.c

Patch 8.1.0992
Problem: A :normal command while executing a register resets the

reg_executing() result.
Solution: Save and restore reg_executing. (closes #4066)
Files: src/ex_docmd.c, src/structs.h, src/testdir/test_functions.vim

Patch 8.1.0993
Problem: ch_read() may return garbage if terminating NL is missing.
Solution: Add terminating NUL. (Ozaki Kiichi, closes #4065)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.1.0994
Problem: Relative cursor position is not calculated correctly.
Solution: Always set topline, also when window is one line only.

(Robert Webb) Add more info to getwininfo() for testing.
Files: src/window.c, src/evalfunc.c, runtime/doc/eval.txt,

src/testdir/test_window_cmd.vim

Patch 8.1.0995
Problem: A getchar() call while executing a register resets the

reg_executing() result.

version8.txt — 3323

Solution: Save and restore reg_executing. (closes #4066)
Files: src/evalfunc.c, src/testdir/test_functions.vim

Patch 8.1.0996 (after 8.1.0994)
Problem: A few screendump tests fail because of scrolling.
Solution: Update the screendumps.
Files: src/testdir/dumps/Test_incsearch_substitute_11.dump,

src/testdir/dumps/Test_incsearch_substitute_12.dump,
src/testdir/dumps/Test_incsearch_substitute_13.dump

Patch 8.1.0997
Problem: Using GUI colors in vim.exe when 'termguicolors' is off.
Solution: Add condition for 'termguicolors' set. (Ken Takata, closes #4078)
Files: src/os_win32.c

Patch 8.1.0998
Problem: getcurpos() unexpectedly changes "curswant".
Solution: Save and restore "curswant". (closes #4069)
Files: src/evalfunc.c, src/testdir/test_visual.vim

Patch 8.1.0999
Problem: Use register one too often and not properly tested.
Solution: Do not always use register one when specifying a register.

(closes #4085) Add more tests.
Files: src/ops.c, src/testdir/test_registers.vim

Patch 8.1.1000
Problem: Indenting is off.
Solution: Make indenting consistent and update comments. (Ozaki Kiichi,

closes #4079)
Files: src/getchar.c, src/ops.c

Patch 8.1.1001
Problem: Visual area not correct when using 'cursorline'.
Solution: Update w_last_cursorline also in Visual mode. (Hirohito Higashi,

closes #4086)
Files: src/screen.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_cursorline_with_visualmode_01.dump

Patch 8.1.1002
Problem: "gf" does not always work when URL has a port number. (Jakob

Schöttl)
Solution: When a URL is recognized also accept ":". (closes #4082)
Files: src/findfile.c, src/testdir/test_gf.vim

Patch 8.1.1003
Problem: Playing back recorded key sequence mistakes key code.
Solution: Insert a <Nop> after the <Esc>. (closes #4068)
Files: src/getchar.c, src/testdir/test_registers.vim

Patch 8.1.1004
Problem: Function "luaV_setref()" not covered with tests.
Solution: Add a test. (Dominique Pelle, closes #4089)
Files: src/testdir/test_lua.vim

Patch 8.1.1005 (after 8.1.1003)
Problem: Test fails because t_F2 is not set.
Solution: Add try-catch.
Files: src/testdir/test_registers.vim

version8.txt — 3324

Patch 8.1.1006
Problem: Repeated code in quickfix support.
Solution: Move code to functions. (Yegappan Lakshmanan, closes #4091)
Files: src/quickfix.c

Patch 8.1.1007
Problem: Using closure may consume a lot of memory.
Solution: unreference items that are no longer needed. Add a test. (Ozaki

Kiichi, closes #3961)
Files: src/testdir/Make_all.mak, src/testdir/test_memory_usage.vim,

src/userfunc.c

Patch 8.1.1008
Problem: MS-Windows: HAVE_STDINT_H only defined for non-debug version.
Solution: Move definition of HAVE_STDINT_H up. (Taro Muraoka, closes #4109)
Files: src/Make_mvc.mak

Patch 8.1.1009
Problem: MS-Windows: some text is not baseline aligned.
Solution: Use bottom alignment. (Taro Muraoka, closes #4116, closes #1520)
Files: src/gui_dwrite.cpp

Patch 8.1.1010
Problem: Lua interface leaks memory.
Solution: Clear typeval after copying it.
Files: src/if_lua.c

Patch 8.1.1011
Problem: Indent from autoindent not removed from blank line. (Daniel Hahler)
Solution: Do not reset did_ai when text follows. (closes #4119)
Files: src/misc1.c, src/testdir/test_edit.vim

Patch 8.1.1012
Problem: Memory leak with E461.
Solution: Clear the typeval. (Dominique Pelle, closes #4111)
Files: src/eval.c

Patch 8.1.1013
Problem: MS-Windows: Scrolling fails when dividing the screen.
Solution: Position the cursor before calling ScrollConsoleScreenBuffer().

(Nobuhiro Takasaki, closes #4115)
Files: src/os_win32.c

Patch 8.1.1014
Problem: MS-Windows: /analyze only defined for non-debug version.
Solution: Move adding of /analyze up. (Ken Takata, closes #4114)
Files: src/Make_mvc.mak

Patch 8.1.1015
Problem: Quickfix buffer shows up in list, can't get buffer number.
Solution: Make the quickfix buffer unlisted when the quickfix window is

closed. get the quickfix buffer number with getqflist().
(Yegappan Lakshmanan, closes #4113)

Files: runtime/doc/eval.txt, runtime/doc/quickfix.txt, src/quickfix.c,
src/testdir/test_quickfix.vim, src/window.c

Patch 8.1.1016
Problem: MS-Windows: No color in shell when using "!" in 'guioptions'.
Solution: Don't stop termcap when using a terminal window for the shell.

(Nobuhiro Takasaki, vim-jp, closes #4117)

version8.txt — 3325

Files: src/ex_cmds.c

Patch 8.1.1017
Problem: Off-by-one error in filetype detection.
Solution: Also check the last line of the file.
Files: runtime/autoload/dist/ft.vim

Patch 8.1.1018
Problem: Window cleared when entering Terminal-Normal twice. (Epheien)
Solution: Don't cleanup scrollback when there is no postponed scrollback.

(Christian Brabandt, closes #4126)
Files: src/terminal.c

Patch 8.1.1019
Problem: Lua: may garbage collect function reference in use.
Solution: Keep the function name instead of the typeval. Make luaV_setref()

handle funcref objects. (Ozaki Kiichi, closes #4127)
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.1.1020
Problem: Compiler warning for Python3 interface.
Solution: Add type cast. (Ozaki Kiichi, closes #4128, closes #4103)
Files: src/if_python3.c

Patch 8.1.1021
Problem: pyeval() and py3eval() leak memory.
Solution: Do not increase the reference count twice. (Ozaki Kiichi,

closes #4129)
Files: src/if_python.c, src/if_python3.c

Patch 8.1.1022
Problem: May use NULL pointer when out of memory. (Coverity)
Solution: Check for blob_alloc() returning NULL.
Files: src/blob.c

Patch 8.1.1023
Problem: May use NULL pointer when indexing a blob. (Coverity)
Solution: Break out of loop after using index on blob
Files: src/eval.c

Patch 8.1.1024
Problem: Stray log calls in terminal code. (Christian Brabandt)
Solution: Remove the calls.
Files: src/terminal.c

Patch 8.1.1025
Problem: Checking NULL pointer after addition. (Coverity)
Solution: First check for NULL, then add the column.
Files: src/regexp.c

Patch 8.1.1026
Problem: Unused condition. (Coverity)
Solution: Remove the condition. Also remove unused #define.
Files: src/move.c

Patch 8.1.1027
Problem: Memory usage test sometimes fails.
Solution: Use 80% of before.last as the lower limit. (Christian Brabandt)
Files: src/testdir/test_memory_usage.vim

version8.txt — 3326

Patch 8.1.1028
Problem: MS-Windows: memory leak when creating terminal fails.
Solution: Free the command. (Ken Takata, closes #4138)
Files: src/os_win32.c

Patch 8.1.1029
Problem: DirectWrite doesn't take 'linespace' into account.
Solution: Include 'linespace' in the position. (Ken Takata, closes #4137)
Files: src/gui_dwrite.cpp, src/gui_w32.c

Patch 8.1.1030
Problem: Quickfix function arguments are inconsistent.
Solution: Pass a list pointer instead of info and index. (Yegappan

Lakshmanan, closes #4135)
Files: src/quickfix.c

Patch 8.1.1031
Problem: Memory usage test may still fail.
Solution: Drop the unused min value. (Christian Brabandt)
Files: src/testdir/test_memory_usage.vim

Patch 8.1.1032
Problem: Warnings from clang static analyzer. (Yegappan Lakshmanan)
Solution: Fix relevant warnings.
Files: src/arabic.c, src/edit.c, src/eval.c, src/fileio.c, src/normal.c,

src/option.c, src/os_unix.c, src/regexp.c, src/screen.c,
src/channel.c, src/charset.c, src/message.c

Patch 8.1.1033
Problem: Memory usage test may still fail on some systems. (Elimar

Riesebieter)
Solution: Increase tolerance from 1% to 3%.
Files: src/testdir/test_memory_usage.vim

Patch 8.1.1034
Problem: Too many #ifdefs.
Solution: Merge FEAT_MOUSE_SGR into FEAT_MOUSE_XTERM / FEAT_MOUSE_TTY.
Files: src/evalfunc.c, src/misc2.c, src/os_unix.c, src/term.c,

src/version.c, src/feature.h

Patch 8.1.1035
Problem: prop_remove() second argument is not optional.
Solution: Fix argument count. Use "buf" instead of "curbuf". (closes #4147)
Files: src/evalfunc.c, src/testdir/test_textprop.vim, src/textprop.c

Patch 8.1.1036
Problem: Quickfix function arguments are inconsistent.
Solution: Pass a list pointer to more functions. (Yegappan Lakshmanan,

closes #4149)
Files: src/quickfix.c

Patch 8.1.1037
Problem: Memory usage test may still fail on some systems.
Solution: Increase tolerance from 3% to 20%.
Files: src/testdir/test_memory_usage.vim

Patch 8.1.1038
Problem: Arabic support excludes Farsi.
Solution: Add Farsi support to the Arabic support. (Ali Gholami Rudi,

Ameretat Reith)

version8.txt — 3327

Files: Filelist, src/arabic.c, src/arabic.h, src/globals.h, src/macros.h,
src/mbyte.c, src/proto/arabic.pro, src/proto/mbyte.pro,
src/Makefile, src/testdir/test_arabic.vim

Patch 8.1.1039
Problem: MS-Windows build fails.
Solution: Remove dependency on arabic.h
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms

Patch 8.1.1040
Problem: FEAT_TAG_ANYWHITE is not enabled in any build.
Solution: Remove the feature.
Files: src/feature.h, src/tag.c, src/evalfunc.c, src/version.c,

src/Make_vms.mms

Patch 8.1.1041
Problem: Test for Arabic no longer needed.
Solution: Remove the test for something that was intentionally left out.
Files: src/testdir/test_arabic.vim

Patch 8.1.1042
Problem: The paste test doesn't work properly in the Windows console.
Solution: Disable the test.
Files: src/testdir/test_paste.vim

Patch 8.1.1043
Problem: Lua interface does not support Blob.
Solution: Add support to Blob. (Ozaki Kiichi, closes #4151)
Files: runtime/doc/if_lua.txt, src/if_lua.c, src/testdir/test_lua.vim

Patch 8.1.1044
Problem: No way to check the reference count of objects.
Solution: Add test_refcount(). (Ozaki Kiichi, closes #4124)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_vimscript.vim

Patch 8.1.1045
Problem: E315 ml_get error when using Python and hidden buffer.
Solution: Make sure the cursor position is valid. (Ben Jackson,

closes #4153, closes #4154)
Files: src/if_py_both.h, src/testdir/test_python2.vim,

src/testdir/test_python3.vim

Patch 8.1.1046
Problem: the "secure" variable is used inconsistently. (Justin M. Keyes)
Solution: Set it to one instead of incrementing.
Files: src/buffer.c, src/option.c

Patch 8.1.1047
Problem: WINCH signal is not tested.
Solution: Add a test. (Dominique Pelle, closes #4158)
Files: src/testdir/Make_all.mak, src/testdir/test_signals.vim

Patch 8.1.1048
Problem: Minor issues with tests.
Solution: Delete unused test OK file. Add missing entries in list of tests.

Fix readme file. (Masato Nishihata, closes #4160)
Files: src/testdir/test85.ok, src/testdir/Make_all.mak,

src/testdir/README.txt

version8.txt — 3328

Patch 8.1.1049
Problem: When user tries to exit with CTRL-C message is confusing.
Solution: Only mention ":qa!" when there is a changed buffer. (closes #4163)
Files: src/undo.c, src/proto/undo.pro, src/normal.c,

src/testdir/test_normal.vim

Patch 8.1.1050
Problem: Blank screen when DirectWrite failed.
Solution: Call redraw_later_clear() after recreating the Direct2D render

target. (Ken Takata, closes #4172)
Files: src/gui_dwrite.cpp

Patch 8.1.1051
Problem: Not all ways to switch terminal mode are tested.
Solution: Add more test cases.
Files: src/testdir/test_terminal.vim

Patch 8.1.1052
Problem: test for CTRL-C message sometimes fails
Solution: Make sure there are no changed buffers.
Files: src/testdir/test_normal.vim

Patch 8.1.1053
Problem: Warning for missing return statement. (Dominique Pelle)
Solution: Add return statement.
Files: src/undo.c

Patch 8.1.1054
Problem: Not checking return value of ga_grow(). (Coverity)
Solution: Only append when ga_grow() returns OK.
Files: src/if_lua.c

Patch 8.1.1055
Problem: CTRL-G U in Insert mode doesn't work to avoid splitting the undo

sequence for shift-left and shift-right.
Solution: Also check dont_sync_undo for shifted cursor keys. (Christian

Brabandt)
Files: src/edit.c, src/testdir/test_mapping.vim

Patch 8.1.1056
Problem: No eval function for Ruby.
Solution: Add rubyeval(). (Ozaki Kiichi, closes #4152)
Files: runtime/doc/eval.txt, runtime/doc/if_ruby.txt, src/evalfunc.c,

src/if_ruby.c, src/proto/if_ruby.pro, src/testdir/test_ruby.vim

Patch 8.1.1057
Problem: Nsis config is too complicated.
Solution: Use "File /r" for the macros and pack directories. (Ken Takata,

closes #4169)
Files: nsis/gvim.nsi

Patch 8.1.1058
Problem: Memory usage test may still fail on some systems.
Solution: Use 98% of the lower limit. (Christian Brabandt)
Files: src/testdir/test_memory_usage.vim

Patch 8.1.1059
Problem: MS-Windows: PlatformId() is called unnecessarily.
Solution: Remove calls to PlatformId(). (Ken Takata, closes #4170)
Files: src/os_win32.c

version8.txt — 3329

Patch 8.1.1060
Problem: MS-Windows: get_cmd_args() is no longer needed, get_cmd_argsW() is

always used.
Solution: Remove get_cmd_args(). (Ken Takata, closes #4171)
Files: src/gui_w32.c, src/os_w32exe.c

Patch 8.1.1061
Problem: When substitute string throws error, substitute happens anyway.
Solution: Skip substitution when aborting. (closes #4161)
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.1.1062
Problem: Quickfix code is repeated.
Solution: Define FOR_ALL_QFL_ITEMS(). Move some code to separate functions.

(Yegappan Lakshmanan, closes #4166)
Files: src/quickfix.c

Patch 8.1.1063
Problem: Insufficient testing for wildmenu completion.
Solution: Extend the test case. (Dominique Pelle, closes #4182)
Files: src/testdir/test_cmdline.vim

Patch 8.1.1064
Problem: No test for output conversion in the GTK GUI.
Solution: Add a simplistic test.
Files: src/testdir/test_gui.vim

Patch 8.1.1065
Problem: No test for using and deleting menu in the GUI.
Solution: Add a test.
Files: src/testdir/test_gui.vim

Patch 8.1.1066
Problem: VIMDLL isn't actually used.
Solution: Remove VIMDLL support.
Files: src/gui_w32.c, src/main.c, src/os_w32exe.c, src/Make_bc5.mak,

src/os_w32dll.c

Patch 8.1.1067
Problem: Issues added on github are unstructured.
Solution: Add a bug and feature request template. (Ken Takata, closes #4183)
Files: .github/ISSUE_TEMPLATE/feature_request.md,

.github/ISSUE_TEMPLATE/bug_report.md

Patch 8.1.1068
Problem: Cannot get all the information about current completion.
Solution: Add complete_info(). (Shougo, Hirohito Higashi, closes #4106)
Files: runtime/doc/eval.txt, runtime/doc/insert.txt,

runtime/doc/usr_41.txt, src/edit.c, src/evalfunc.c,
src/proto/edit.pro, src/testdir/test_popup.vim

Patch 8.1.1069
Problem: Source README file doesn't look nice on github.
Solution: Turn it into markdown, still readable as plain text.

(WenxuanHuang, closes #4141)
Files: src/README.txt, src/README.md, Filelist

Patch 8.1.1070
Problem: Issue templates are not good enough.

version8.txt — 3330

Solution: Rephrase to anticipate unexperienced users.
Files: .github/ISSUE_TEMPLATE/feature_request.md,

.github/ISSUE_TEMPLATE/bug_report.md

Patch 8.1.1071
Problem: Cannot get composing characters from the screen.
Solution: Add screenchars() and screenstring(). (partly by Ozaki Kiichi,

closes #4059)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/test_utf8.vim, src/testdir/view_util.vim

Patch 8.1.1072
Problem: Extending sign and foldcolumn below the text is confusing.
Solution: Let the sign and foldcolumn stop at the last text line, just like

the line number column. Also stop the command line window leader.
(Christian Brabandt, closes #3964)

Files: src/screen.c, src/testdir/test_diffmode.vim,
src/testdir/dumps/Test_diff_of_diff_01.dump,
src/testdir/dumps/Test_diff_01.dump,
src/testdir/dumps/Test_diff_02.dump,
src/testdir/dumps/Test_diff_03.dump,
src/testdir/dumps/Test_diff_04.dump,
src/testdir/dumps/Test_diff_05.dump,
src/testdir/dumps/Test_diff_06.dump,
src/testdir/dumps/Test_diff_06.0.dump,
src/testdir/dumps/Test_diff_06.1.dump,
src/testdir/dumps/Test_diff_06.2.dump,
src/testdir/dumps/Test_diff_10.dump,
src/testdir/dumps/Test_diff_11.dump,
src/testdir/dumps/Test_diff_12.dump,
src/testdir/dumps/Test_diff_13.dump,
src/testdir/dumps/Test_diff_14.dump,
src/testdir/dumps/Test_diff_15.dump,
src/testdir/dumps/Test_diff_16.dump,
src/testdir/dumps/Test_diff_17.dump,
src/testdir/dumps/Test_diff_18.dump,
src/testdir/dumps/Test_diff_19.dump,
src/testdir/dumps/Test_diff_20.dump,
src/testdir/dumps/Test_diff_with_cursorline_01.dump,
src/testdir/dumps/Test_diff_with_cursorline_02.dump,
src/testdir/dumps/Test_diff_with_cursorline_03.dump,
src/testdir/dumps/Test_folds_with_rnu_01.dump,
src/testdir/dumps/Test_folds_with_rnu_02.dump

Patch 8.1.1073
Problem: Space in number column is on wrong side with 'rightleft' set.
Solution: Move the space to the text side. Add a test.
Files: src/screen.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_of_diff_02.dump

Patch 8.1.1074
Problem: Python test doesn't wipe out hidden buffer.
Solution: Wipe out the buffer. (Ben Jackson, closes #4189)
Files: src/testdir/test_python2.vim, src/testdir/test_python3.vim

Patch 8.1.1075
Problem: Function reference count wrong in Python code.
Solution: Use "O" instead of "N" for the arguments. (Ben Jackson,

closes #4188)
Files: src/if_py_both.h

version8.txt — 3331

Patch 8.1.1076
Problem: File for Insert mode is much too big.
Solution: Split off the code for Insert completion. (Yegappan Lakshmanan,

closes #4044)
Files: Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/edit.c, src/evalfunc.c,
src/globals.h, src/insexpand.c, src/misc2.c, src/proto.h,
src/proto/edit.pro, src/proto/insexpand.pro, src/search.c,
src/spell.c, src/structs.h, src/tag.c, src/vim.h

Patch 8.1.1077
Problem: reg_executing() is reset by calling input().
Solution: Implement a more generic way to save and restore reg_executing.

(Ozaki Kiichi, closes #4192)
Files: src/evalfunc.c, src/ex_docmd.c, src/testdir/test_functions.vim

Patch 8.1.1078
Problem: When 'listchars' is set a composing char on a space is wrong.
Solution: Separate handling a non-breaking space and a space. (Yasuhiro

Matsumoto, closes #4046)
Files: src/screen.c, src/testdir/test_listchars.vim

Patch 8.1.1079
Problem: No need for a separate ScreenLinesUtf8() test function.
Solution: Get the composing characters with ScreenLines().
Files: src/testdir/view_util.vim, src/testdir/test_listchars.vim,

src/testdir/test_utf8.vim

Patch 8.1.1080
Problem: When a screendump test fails, moving the file is a hassle.
Solution: Instead of appending ".failed" to the file name, keep the same

file name but put the screendump in the "failed" directory.
Then the file name only needs to be typed once when moving a
screendump.

Files: src/testdir/screendump.vim

Patch 8.1.1081
Problem: MS-Windows: cannot use fonts whose name cannot be represented in

the current code page.
Solution: Use wide font functions. (Ken Takata, closes #4000)
Files: src/gui_w32.c, src/os_mswin.c, src/proto/gui_w32.pro,

src/proto/os_mswin.pro

Patch 8.1.1082
Problem: "Conceal" match is mixed up with 'hlsearch' match.
Solution: Check that a match is found, not a 'hlsearch' item. (Andy

Massimino, closes #4073)
Files: src/screen.c

Patch 8.1.1083
Problem: MS-Windows: hang when opening a file on network share.
Solution: Avoid using FindFirstFile(), use GetLongPathNameW(). (Ken Takata,

closes #3923)
Files: src/os_win32.c

Patch 8.1.1084
Problem: Cannot delete a match from another window. (Paul Jolly)

version8.txt — 3332

Solution: Add window ID argument to matchdelete(), clearmatches(),
getmatches() and setmatches(). (Andy Massimino, closes #4178)

Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_match.vim

Patch 8.1.1085
Problem: Compiler warning for possibly uninitialized variable. (Tony

Mechelynck)
Solution: Make conditions more logical.
Files: src/arabic.c

Patch 8.1.1086
Problem: Too many curly braces.
Solution: Remove curly braces where they are not needed. (Hirohito Higashi,

closes #3982)
Files: src/autocmd.c, src/buffer.c, src/crypt_zip.c, src/dosinst.c,

src/edit.c, src/insexpand.c, src/evalfunc.c, src/ex_cmds.c,
src/ex_docmd.c, src/ex_getln.c, src/getchar.c, src/gui.c,
src/gui_gtk.c, src/gui_mac.c, src/gui_motif.c, src/gui_photon.c,
src/gui_w32.c, src/gui_x11.c, src/if_mzsch.c, src/if_python3.c,
src/if_ruby.c, src/if_tcl.c, src/indent.c, src/libvterm/src/pen.c,
src/macros.h, src/memline.c, src/menu.c, src/misc1.c, src/move.c,
src/netbeans.c, src/normal.c, src/ops.c, src/option.c,
src/os_mswin.c, src/os_qnx.c, src/os_unix.c, src/os_win32.c,
src/regexp_nfa.c, src/screen.c, src/spell.c, src/terminal.c

Patch 8.1.1087
Problem: tag stack is incorrect after CTRL-T and then :tag
Solution: Handle DT_TAG differently. (test by Andy Massimino, closes #3944,

closes #4177)
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.1.1088
Problem: Height of quickfix window not retained with vertical split.
Solution: Use frame_fixed_height() and frame_fixed_width(). (Hongbo Liu,

closes #4013, closes #2998)
Files: src/testdir/test_winbuf_close.vim, src/window.c

Patch 8.1.1089
Problem: Tutor does not check $LC_MESSAGES.
Solution: Let $LC_MESSAGES overrule $LANG. (Miklos Vajna, closes #4112)
Files: runtime/tutor/tutor.vim

Patch 8.1.1090
Problem: MS-Windows: modify_fname() has problems with some 'encoding'.
Solution: Use GetLongPathNameW() instead of GetLongPathName(). (Ken Takata,

closes #4007)
Files: src/eval.c

Patch 8.1.1091
Problem: MS-Windows: cannot use multibyte chars in environment var.
Solution: Use the wide API. (Ken Takata, closes #4008)
Files: src/misc1.c, src/testdir/test_let.vim

Patch 8.1.1092
Problem: Setting 'guifont' when maximized resizes the Vim window. When

'guioptions' contains "k" gvim may open with a tiny window.
Solution: Avoid un-maximizing when setting 'guifont'. (Yee Cheng Chin,

closes #3808)
Files: src/gui.c

version8.txt — 3333

Patch 8.1.1093
Problem: Support for outdated tags format slows down tag parsing.
Solution: Remove FEAT_TAG_OLDSTATIC.
Files: runtime/doc/tagsrch.txt, src/feature.h, src/tag.c, src/version.c

Patch 8.1.1094
Problem: Long line in tags file causes error.
Solution: Check for overlong line earlier. (Andy Massimino, closes #4051,

closes #4084)
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.1.1095
Problem: MS-Windows: executable() fails on very long filename.
Solution: Use much bigger buffer. (Ken Takata, closes #4015)
Files: src/os_win32.c, src/testdir/test_functions.vim

Patch 8.1.1096
Problem: MS-Windows: cannot distinguish BS and CTRL-H.
Solution: Add code for VK_BACK. (Linwei, closes #1833)
Files: src/term.c, src/os_win32.c

Patch 8.1.1097 (after 8.1.1092)
Problem: Motif build fails. (Paul Jolly)
Solution: Only use gui_mch_maximized() for MS-Windows. (closes #4194)
Files: src/gui.c

Patch 8.1.1098
Problem: Quickfix code duplication.
Solution: Refactor the qf_init_ext() function. (Yegappan Lakshmanan,

closes #4193)
Files: src/README.md, src/quickfix.c

Patch 8.1.1099
Problem: The do_tag() function is too long.
Solution: Factor parts out to separate functions. Move simplify_filename()

to a file where it fits better. (Andy Massimino, closes #4195)
Files: src/tag.c, src/proto/tag.pro, src/findfile.c,

src/proto/findfile.pro

Patch 8.1.1100
Problem: Tag file without trailing newline no longer works. (Marco Hinz)
Solution: Don't expect a newline at the end of the file. (closes #4200)
Files: src/tag.c, src/testdir/test_taglist.vim

Patch 8.1.1101
Problem: Signals test may fail in the GUI.
Solution: Skip the test for the GUI. (Yee Checng Chin, closes #4202)
Files: src/testdir/test_signals.vim

Patch 8.1.1102
Problem: Win32 exe file contains unused code.
Solution: Remove unused #ifdefs and code. (Ken Takata, closes #4198)
Files: src/os_w32exe.c

Patch 8.1.1103
Problem: MS-Windows: old API calls are no longer needed.
Solution: Always use the wide functions. (Ken Takata, closes #4199)
Files: src/glbl_ime.cpp, src/globals.h, src/gui_w32.c, src/misc1.c,

src/os_mswin.c, src/os_win32.c, src/vim.h,

version8.txt — 3334

Patch 8.1.1104
Problem: MS-Windows: not all environment variables can be used.
Solution: Use the wide version of WinMain() and main(). (Ken Takata,

closes #4206)
Files: src/Make_cyg.mak, src/Make_cyg_ming.mak, src/Make_mvc.mak,

src/main.c, src/os_w32exe.c

Patch 8.1.1105
Problem: Long escape sequences may be split up.
Solution: Assume escape sequences can be up to 80 bytes long. (Nobuhiro

Takasaki, closes #4196)
Files: src/term.c

Patch 8.1.1106
Problem: No test for 'writedelay'.
Solution: Add a test.
Files: src/testdir/test_options.vim

Patch 8.1.1107
Problem: No test for 'visualbell'.
Solution: Add a test.
Files: src/testdir/test_options.vim

Patch 8.1.1108
Problem: Test for 'visualbell' doesn't work.
Solution: Make 'belloff' empty.
Files: src/testdir/test_options.vim

Patch 8.1.1109
Problem: Deleted file still in list of distributed files.
Solution: Remove the src/os_w32dll.c entry.
Files: Filelist

Patch 8.1.1110
Problem: Composing chars on space wrong when 'listchars' is set.
Solution: Do not use "space" and "nbsp" entries of 'listchars' when there is

a composing character. (Yee Cheng Chin, closes #4197)
Files: src/screen.c, src/testdir/test_listchars.vim

Patch 8.1.1111
Problem: It is not easy to check for infinity.
Solution: Add isinf(). (Ozaki Kiichi, closes #3787)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_float_func.vim

Patch 8.1.1112
Problem: Duplicate code in quickfix file.
Solution: Move code into functions. (Yegappan Lakshmanan, closes #4207)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.1113
Problem: Making an autocommand trigger once is not so easy.
Solution: Add the ++once argument. Also add ++nested as an alias for

"nested". (Justin M. Keyes, closes #4100)
Files: runtime/doc/autocmd.txt, src/autocmd.c,

src/testdir/test_autocmd.vim, src/globals.h

Patch 8.1.1114
Problem: Confusing overloaded operator "." for string concatenation.
Solution: Add ".." for string concatenation. Also "let a ..= b".

version8.txt — 3335

Files: src/eval.c, src/testdir/test_eval_stuff.vim, runtime/doc/eval.txt

Patch 8.1.1115
Problem: Cannot build with older C compiler.
Solution: Move variable declaration to start of block.
Files: src/autocmd.c

Patch 8.1.1116
Problem: Cannot enforce a Vim script style.
Solution: Add the :scriptversion command. (idea by Yasuhiro Matsumoto,

closes #3857)
Files: runtime/doc/repeat.txt, runtime/doc/eval.txt, src/eval.c,

src/ex_cmds.h, src/evalfunc.c, src/ex_cmds2.c,
src/proto/ex_cmds2.pro, src/structs.h, src/buffer.c, src/main.c,
src/option.c, src/ex_cmdidxs.h, src/testdir/test_eval_stuff.vim

Patch 8.1.1117
Problem: Build failure without the +eval feature.
Solution: Add #ifdef.
Files: src/ex_cmds2.c

Patch 8.1.1118
Problem: A couple of conditions are hard to understand.
Solution: Split the conditions into pieces. (Ozaki Kiichi, closes #3879)
Files: src/getchar.c, src/os_unix.c

Patch 8.1.1119
Problem: No support for Windows on ARM64.
Solution: Add ARM64 support (Leendert van Doorn)
Files: src/GvimExt/Makefile, src/Make_mvc.mak, src/dosinst.c,

src/xpm/arm64/lib-vc14/libXpm.lib, Filelist, src/INSTALLpc.txt

Patch 8.1.1120
Problem: Cannot easily get directory entry matches.
Solution: Add the readdir() function. (Yasuhiro Matsumoto, closes #2439)
Files: runtime/doc/eval.txt, src/eval.c, src/evalfunc.c, src/misc1.c,

src/proto/eval.pro, src/testdir/test_functions.vim

Patch 8.1.1121
Problem: Test for term_gettitle() was disabled.
Solution: Enable the test and bail out only when it doesn't work. (Dominique

Pelle, closes #3776)
Files: src/testdir/test_terminal.vim

Patch 8.1.1122
Problem: char2nr() does not handle composing characters.
Solution: Add str2list() and list2str(). (Ozaki Kiichi, closes #4190)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/test_utf8.vim

Patch 8.1.1123
Problem: No way to avoid filtering for autocomplete function, causing

flickering of the popup menu.
Solution: Add the "equal" field to complete items. (closes #3887)
Files: runtime/doc/insert.txt, src/insexpand.c,

src/testdir/test_popup.vim

Patch 8.1.1124
Problem: Insert completion flags are mixed up.
Solution: Clean up flags use of ins_compl_add() and cp_flags.

version8.txt — 3336

Files: src/insexpand.c, src/proto/insexpand.pro, src/search.c, src/spell.c

Patch 8.1.1125
Problem: Libvterm does not handle the window position report.
Solution: Let libvterm call the fallback CSI handler when not handling CSI

sequence. Handle the window position report in Vim.
Files: src/libvterm/src/state.c, src/terminal.c, src/ui.c,

src/proto/ui.pro, src/evalfunc.c, src/testdir/test_terminal.vim

Patch 8.1.1126
Problem: Build failure with +terminal but without tgetent.
Solution: Adjust #ifdef.
Files: src/ui.c

Patch 8.1.1127
Problem: getwinpos() doesn't work in terminal on MS-Windows console.
Solution: Adjust #ifdefs. Disable test for MS-Windows console.
Files: src/ui.c, src/term.c, src/terminal.c,

src/testdir/test_terminal.vim

Patch 8.1.1128
Problem: getwinpos() test does not work on MS-Windows.
Solution: Skip the test.
Files: src/testdir/test_terminal.vim

Patch 8.1.1129
Problem: When making a new screendump test have to create the file.
Solution: Continue creating the failed screendump, so it can be moved once

it is correct.
Files: src/testdir/screendump.vim

Patch 8.1.1130
Problem: MS-Windows: warning for unused variable.
Solution: Remove the variable.
Files: src/evalfunc.c

Patch 8.1.1131
Problem: getwinpos() does not work in the MS-Windows console.
Solution: Implement getwinpos().
Files: src/ui.c, src/evalfunc.c, src/terminal.c,

src/testdir/test_terminal.vim

Patch 8.1.1132
Problem: getwinpos() test fails on MS-Windows.
Solution: Don't try running this test.
Files: src/testdir/test_terminal.vim

Patch 8.1.1133
Problem: Compiler warning for uninitialized struct member. (Yegappan

Lakshmanan)
Solution: Add initializer field.
Files: src/globals.h

Patch 8.1.1134
Problem: Buffer for quickfix window is reused for another file.
Solution: Don't reuse the quickfix buffer. (Yegappan Lakshmanan)
Files: src/buffer.c, src/testdir/test_quickfix.vim

Patch 8.1.1135 (after 8.1.1134)
Problem: Build failure for small version. (Tony Mechelynck)

version8.txt — 3337

Solution: Add #ifdef.
Files: src/buffer.c

Patch 8.1.1136
Problem: Decoding of mouse click escape sequence is not tested.
Solution: Add a test for xterm and SGR using low-level input. Make

low-level input execution with feedkeys() work.
Files: src/testdir/test_termcodes.vim, src/testdir/Make_all.mak,

src/evalfunc.c, src/ex_docmd.c

Patch 8.1.1137
Problem: Xterm mouse wheel escape sequence is not tested.
Solution: Add a test using low-level input. (Dominique Pelle, closes #4221)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1138
Problem: Plugins don't get notified when the popup menu changes.
Solution: Add the CompleteChanged event. (Qiming Zhao, Andy Massimino,

closes #4176)
Files: runtime/doc/autocmd.txt, src/autocmd.c, src/dict.c,

src/insexpand.c, src/popupmnu.c, src/proto/autocmd.pro,
src/proto/dict.pro, src/proto/popupmnu.pro,
src/testdir/test_popup.vim, src/vim.h

Patch 8.1.1139
Problem: No test for what is fixed in patch 8.1.0716.
Solution: Add a test. (Yasuhiro Matsumoto, closes #3797)
Files: src/testdir/test_ins_complete.vim

Patch 8.1.1140
Problem: Not easy to find out what neighbors a window has.
Solution: Add more arguments to winnr(). (Yegappan Lakshmanan, closes #3993)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/proto/window.pro,

src/testdir/test_window_cmd.vim, src/window.c

Patch 8.1.1141
Problem: Terminal winpos test fails with very large terminal. (Dominique

Pelle)
Solution: Compute the expected size more accurately. (closes #4228)
Files: src/testdir/test_terminal.vim

Patch 8.1.1142
Problem: No test for dragging the window separators with the mouse.
Solution: Add a test. (Dominique Pelle, closes #4226)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1143
Problem: May pass weird strings to file name expansion.
Solution: Check for matching characters. Disallow control characters.
Files: src/misc1.c, src/testdir/test_spell.vim, src/option.c,

src/proto/option.pro, src/spell.c,
src/testdir/test_escaped_glob.vim

Patch 8.1.1144 (after 8.1.1143)
Problem: Too strict checking of the 'spellfile' option.
Solution: Allow for a path.
Files: src/option.c, src/testdir/test_spell.vim

Patch 8.1.1145
Problem: Compiler warning for unused function. (Tony Mechelynck)

version8.txt — 3338

Solution: Add #ifdef.
Files: src/option.c

Patch 8.1.1146
Problem: In MS-Windows console colors in a terminal window are wrong.
Solution: Use the ansi index also for 16 colors. (Ken Takata)
Files: src/terminal.c

Patch 8.1.1147
Problem: Desktop file translations are requiring manual updates.
Solution: Use the .po files for desktop file translations. (Christian

Brabandt)
Files: src/po/Makefile, src/po/gvim.desktop.in, src/po/vim.desktop.in,

CONTRIBUTING.md, Filelist, runtime/vim.desktop,
runtime/gvim.desktop

Patch 8.1.1148
Problem: CTRL-L with 'incsearch' does not pick up char under cursor.

(Smylers)
Solution: Do not compare the position with the cursor position. (Hirohito

Higashi, closes #3620)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.1149
Problem: Building desktop files fails with older msgfmt.
Solution: Add autoconf check. Avoid always building the desktop files.
Files: src/configure.ac, src/auto/configure, src/po/Makefile,

src/po/Make_all.mak, src/config.mk.in

Patch 8.1.1150
Problem: Generating desktop files not tested on Travis.
Solution: Install a newer msgfmt package. (Christian Brabandt)
Files: .travis.yml

Patch 8.1.1151
Problem: Build fails when using shadow directory.
Solution: Link the desktop.in files.
Files: src/Makefile

Patch 8.1.1152
Problem: Compiler warning with VS2019.
Solution: Specify different offset for "AMD64". (Ken Takata, closes #4235)
Files: src/GvimExt/Makefile

Patch 8.1.1153
Problem: Msgfmt complains about missing LINGUAS file. (Tony Mechelynck)
Solution: Add command to generate LINGUAS.
Files: src/po/Makefile

Patch 8.1.1154
Problem: Getting a newer msgfmt on Travis is too complicated.
Solution: Use a "sourceline" entry. (Ozaki Kiichi, closes #4236)
Files: .travis.yml

Patch 8.1.1155
Problem: Termcodes tests can be improved.
Solution: Add helper functions to simplify tests. Dragging statusline for

xterm and sgr. (Dominique Pelle, closes #4237)
Files: src/testdir/test_termcodes.vim

version8.txt — 3339

Patch 8.1.1156
Problem: Unicode emoji and other image characters not recognized.
Solution: Add ranges for musical notation, game pieces, etc. (Martin

Tournoij, closes #4238)
Files: src/mbyte.c

Patch 8.1.1157
Problem: Unicode tables are out of date.
Solution: Update to Unicode 12. (Christian Brabandt, closes #4240)
Files: src/mbyte.c

Patch 8.1.1158
Problem: Json encoded string is sometimes missing the final NUL.
Solution: Add the NUL. Also for log messages.
Files: src/json.c, src/channel.c, src/testdir/test_json.vim

Patch 8.1.1159
Problem: MS-Windows: with a silent (un)install $VIM/_vimrc is removed.
Solution: Don't delete _vimrc in silent mode. (Ken Takata, closes #4242)
Files: nsis/gvim.nsi

Patch 8.1.1160
Problem: Termcodes test would fail in a very big terminal.
Solution: Bail out when the row is larger than what will work. (Dominique

Pelle, closes #4246)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1161
Problem: Unreachable code.
Solution: Remove condition that will never be true. Add tests for all ANSI

colors.
Files: src/terminal.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_all_ansi_colors.dump

Patch 8.1.1162
Problem: Incorrect coverage information; typo in color name.
Solution: Fix the typo. Set environment variables to have a nested Vim

write the coverage info in another directory.
Files: src/testdir/test_terminal.vim, src/testdir/screendump.vim,

src/testdir/dumps/Test_terminal_all_ansi_colors.dump

Patch 8.1.1163
Problem: Codecov does not report all the coverage information.
Solution: Make a second run with the nested execution output, expect that

Codecov will merge the results.
Files: .travis.yml

Patch 8.1.1164
Problem: Gettitle test is failing when server name differs. (Kenta Sato)
Solution: Accept "VIM1" when 'autoservername' is used. (Dominique Pelle,

closes #4250, closes #4249)
Files: src/testdir/test_terminal.vim

Patch 8.1.1165
Problem: No test for mouse clicks in the terminal tabpage line.
Solution: Add a test. (Dominique Pelle, closes #4247). Also init

TabPageIdxs[], in case it's used before a redraw.
Files: src/screen.c, src/testdir/test_termcodes.vim

Patch 8.1.1166 (after 8.1.1164)

version8.txt — 3340

Problem: Gettitle test can still fail when another Vim is running.
Solution: Accept any server name number. (Dominique Pelle, closes #4252)
Files: src/testdir/test_terminal.vim

Patch 8.1.1167
Problem: No test for closing tab by click in tabline.
Solution: Add a test. Also fix that dragging window separator could fail in

a large terminal. (Dominique Pelle, closes #4253)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1168
Problem: Not all screen update code of the terminal window is executed in

tests.
Solution: Redraw before taking a screenshot.
Files: src/testdir/screendump.vim

Patch 8.1.1169
Problem: Writing coverage info in a separate dir is not needed.
Solution: Revert the changes to use a separate directory.
Files: .travis.yml, src/testdir/screendump.vim

Patch 8.1.1170
Problem: Terminal ANSI color test does not cover all colors.
Solution: Use the color number, the name is not always resulting in an ANSI

color when t_Co is 256.
Files: src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_all_ansi_colors.dump

Patch 8.1.1171
Problem: Statusline test could fail in large terminal.
Solution: Make the test work on a huge terminal. (Dominique Pelle,

closes #4255)
Files: src/testdir/test_statusline.vim

Patch 8.1.1172
Problem: Cursor properties were not fully tested.
Solution: Add a test. (Dominique Pelle, closes #4256)
Files: src/testdir/test_terminal.vim

Patch 8.1.1173
Problem: Suspend test has duplicated lines.
Solution: Use a function.
Files: src/testdir/test_suspend.vim

Patch 8.1.1174
Problem: Cannot build with Ruby 1.8. (Tom G. Christensen)
Solution: Include ruby/st.h. (Ozaki Kiichi, closes #4257)
Files: src/if_ruby.c

Patch 8.1.1175
Problem: No test for dragging a tab with the mouse and for creating a new

tab by double clicking in the tabline.
Solution: Add two tests. (Dominique Pelle, closes #4258)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1176 (after 8.1.1175)
Problem: Test for dragging a tab is flaky.
Solution: Add a brief sleep.
Files: src/testdir/test_termcodes.vim

version8.txt — 3341

Patch 8.1.1177
Problem: .ts files are recognized as xml, while typescript is more common.
Solution: Recognize .ts files as typescript. (closes #4264)
Files: runtime/filetype.vim src/testdir/test_filetype.vim

Patch 8.1.1178
Problem: When mouse click tests fails value of 'ttymouse' is unknown.
Solution: Add a message to the assert.
Files: src/testdir/test_termcodes.vim

Patch 8.1.1179
Problem: No test for mouse clicks in the fold column.
Solution: Add a test. (Dominique Pelle, closes #4261)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1180
Problem: Vim script debugger tests are old style.
Solution: Turn into new style tests. (Yegappan Lakshmanan, closes #4259)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test108.in, src/testdir/test108.ok,
src/testdir/test_debugger.vim

Patch 8.1.1181
Problem: Tests for mouse clicks are a bit flaky when run in an interactive

terminal.
Solution: Use "xterm2" instead of "xterm" for 'ttymouse' to avoid spurious

drag events.
Files: src/testdir/test_termcodes.vim

Patch 8.1.1182
Problem: Some function prototypes are outdated.
Solution: Update function prototypes. (Ken Takata, closes #4267)
Files: src/os_mswin.c, src/proto/ex_getln.pro, src/proto/gui_w32.pro,

src/terminal.c, src/proto/terminal.pro, src/proto/window.pro,
src/window.c

Patch 8.1.1183
Problem: Typos in VisVim comments.
Solution: Correct the typos. (Christ van Willegen)
Files: src/VisVim/Commands.cpp, src/VisVim/OleAut.cpp,

src/VisVim/README_VisVim.txt

Patch 8.1.1184
Problem: Undo file left behind after running test.
Solution: Delete the undo file. (Dominique Pelle, closes #4279)
Files: src/testdir/test_filechanged.vim

Patch 8.1.1185
Problem: Mapping for CTRL-X is inconsistent.
Solution: Map CTRL-X to "*d also for the MS-Windows console. (Ken Takata,

closes #4265)
Files: src/getchar.c

Patch 8.1.1186
Problem: readdir() allocates list twice.
Solution: Remove second allocation. Also check for zero length.
Files: src/evalfunc.c

Patch 8.1.1187
Problem: Cannot recognize Pipfile.

version8.txt — 3342

Solution: Use existing filetypes. (Charles Ross, closes #4280)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.1188
Problem: Not all Vim variables require the v: prefix.
Solution: When scriptversion is 3 all Vim variables can only be used with

the v: prefix. (Ken Takata, closes #4274)
Files: src/eval.c, src/ex_cmds2.c, src/testdir/test_eval_stuff.vim,

runtime/doc/eval.txt

Patch 8.1.1189
Problem: Mode is not cleared when leaving Insert mode.
Solution: Clear the mode when got_int is set. (Ozaki Kiichi, closes #4270)
Files: src/edit.c, src/testdir/test_bufline.vim,

src/testdir/test_messages.vim

Patch 8.1.1190
Problem: has('vimscript-3') does not work.
Solution: Add "vimscript-3" to the list of features. (partly by Ken Takata)
Files: src/evalfunc.c, src/testdir/test_eval_stuff.vim

Patch 8.1.1191
Problem: Not all debug commands are covered by a test.
Solution: Add more tests. (Yegappan Lakshmanan, closes #4282)
Files: src/testdir/test_debugger.vim

Patch 8.1.1192
Problem: Mode is not cleared when leaving Insert mode with mapped Esc.
Solution: Clear the mode when redraw_cmdline is set. (closes #4269)
Files: src/globals.h, src/screen.c, src/testdir/test_messages.vim

Patch 8.1.1193
Problem: Typos and small problems in test files.
Solution: Small improvements.
Files: src/testdir/test_gn.vim, src/testdir/test_quotestar.vim,

src/testdir/test_registers.vim, src/testdir/test_syntax.vim,
src/testdir/test_tabpage.vim, src/testdir/test_vartabs.vim

Patch 8.1.1194
Problem: Typos and small problems in source files.
Solution: Small fixes.
Files: src/channel.c, src/crypt.c, src/edit.c, src/regexp.h, src/tag.c,

src/term.c, src/terminal.c, src/userfunc.c, src/installman.sh

Patch 8.1.1195
Problem: Vim script debugger functionality needs cleanup.
Solution: Move debugger code to a separate file. Add more tests. (Yegappan

Lakshmanan, closes #4285)
Files: Filelist, src/Make_bc5.mak, src/Make_cyg_ming.mak,

src/Make_dice.mak, src/Make_ivc.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/debugger.c, src/ex_cmds2.c,
src/proto.h, src/proto/debugger.pro, src/proto/ex_cmds2.pro

Patch 8.1.1196
Problem: Parallel build may fail.
Solution: Update dependencies.
Files: src/Makefile

Patch 8.1.1197

version8.txt — 3343

Problem: When starting with multiple tabs file messages is confusing.
Solution: Set 'shortmess' when loading the other tabs. (Christian Brabandt)
Files: src/main.c, src/testdir/test_startup.vim,

src/testdir/dumps/Test_start_with_tabs.dump

Patch 8.1.1198
Problem: Bracketed paste may remain active after Vim exists, because the

terminal emulator restores the setting.
Solution: Set/reset bracketed paste mode before setting the terminal mode.

(closes #3579)
Files: src/term.c

Patch 8.1.1199
Problem: No test for :abclear.
Solution: Add a test. (Dominique Pelle, closes #4292)
Files: src/testdir/test_mapping.vim

Patch 8.1.1200
Problem: Old style comments in debugger source.
Solution: Use new style comments. (Yegappan Lakshmanan, closes #4286)
Files: src/README.md, src/debugger.c

Patch 8.1.1201
Problem: Output of :command is hard to read.
Solution: Make some columns wider, some narrower. Truncate the command when

listing all.
Files: src/ex_docmd.c, src/message.c, src/proto/message.pro,

src/getchar.c, src/menu.c

Patch 8.1.1202
Problem: Always get regexp debugging logs when building with -DDEBUG.
Solution: By default do not create regexp debugging logs. (Ken Takata)
Files: src/regexp.c

Patch 8.1.1203
Problem: Some autocmd tests are old style.
Solution: Turn the tests into new style. (Yegappan Lakshmanan, closes #4295)
Files: src/Makefile, src/testdir/Make_all.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_vms.mms,
src/testdir/test11.in, src/testdir/test11.ok,
src/testdir/test_autocmd.vim

Patch 8.1.1204
Problem: Output of :command with address completion is not nice.
Solution: Shorten the address completion names.
Files: src/ex_docmd.c, runtime/doc/map.txt

Patch 8.1.1205
Problem: A BufReadPre autocommand may cause the cursor to move.
Solution: Restore the cursor position after executing the autocommand,

unless the autocommand moved it. (Christian Brabandt,
closes #4302, closes #4294)

Files: src/autocmd.c, src/proto/window.pro, src/structs.h,
src/testdir/test_autocmd.vim, src/window.c

Patch 8.1.1206
Problem: User command parsing and listing not properly tested.
Solution: Add more tests. (Dominique Pelle, closes #4296)
Files: src/testdir/test_usercommands.vim

version8.txt — 3344

Patch 8.1.1207
Problem: Some compilers give warning messages.
Solution: Initialize variables, change printf() argument. (Christian

Brabandt, closes #4305)
Files: src/eval.c, src/screen.c, src/undo.c, src/window.c

Patch 8.1.1208
Problem: Links to repository use wrong file name.
Solution: Swap the file names. (Nahuel Ourthe, closes #4304)
Files: src/README.md

Patch 8.1.1209
Problem: Clever compiler warns for buffer being too small.
Solution: Make the buffer bigger (even though it's not really needed).
Files: src/evalfunc.c, src/syntax.c

Patch 8.1.1210
Problem: Support for user commands is spread out. No good reason to make

user commands optional.
Solution: Move user command support to usercmd.c. Always enable the

user_commands feature.
Files: src/usercmd.c, src/proto/usercmd.pro, Filelist, src/Make_bc5.mak,

src/Make_cyg_ming.mak, src/Make_dice.mak, src/Make_ivc.mak,
src/Make_manx.mak, src/Make_morph.mak, src/Make_mvc.mak,
src/Make_sas.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/buffer.c, src/eval.c, src/evalfunc.c, src/ex_cmds.h,
src/ex_docmd.c, src/proto/ex_docmd.pro, src/ex_getln.c,
src/feature.h, src/macros.h, src/misc2.c, src/proto.h,
src/structs.h, src/version.c, runtime/doc/eval.txt,
runtime/doc/various.txt

Patch 8.1.1211
Problem: Not all user command code is tested.
Solution: Add more tests.
Files: src/testdir/test_usercommands.vim

Patch 8.1.1212
Problem: Signal PWR is not tested.
Solution: Test that PWR updates the swap file. (Dominique Pelle,

closes #4312)
Files: src/testdir/test_signals.vim

Patch 8.1.1213
Problem: "make clean" in top dir does not cleanup indent test output.
Solution: Clean the indent test output. Do not rely on the vim executable

for that. (closes #4307)
Files: Makefile, runtime/indent/Makefile,

runtime/indent/testdir/cleantest.vim

Patch 8.1.1214
Problem: Old style tests.
Solution: Move tests from test14 to new style test files. (Yegappan

Lakshmanan, closes #4308)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test14.in, src/testdir/test14.ok,
src/testdir/test_edit.vim, src/testdir/test_normal.vim,
src/testdir/test_search.vim, src/testdir/test_substitute.vim,
src/testdir/test_visual.vim

version8.txt — 3345

Patch 8.1.1215
Problem: "make clean" does not remove generated src/po files.
Solution: Remove the files for "make clean". (Christian Brabandt)
Files: src/po/Makefile

Patch 8.1.1216
Problem: Mouse middle click is not tested.
Solution: Add a test. (Dominique Pelle, closes #4310)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1217
Problem: MS-Windows: no space reserved for font quality name.
Solution: Add quality_name length if present. (Ken Takata, closes #4311)
Files: src/gui_w32.c

Patch 8.1.1218
Problem: Cannot set a directory for a tab page.
Solution: Add the tab-local directory. (Yegappan Lakshmanan, closes #4212)
Files: runtime/doc/autocmd.txt, runtime/doc/editing.txt,

runtime/doc/eval.txt, runtime/doc/index.txt,
runtime/doc/options.txt, runtime/doc/usr_22.txt,
runtime/doc/usr_41.txt, src/eval.c, src/evalfunc.c,
src/ex_cmdidxs.h, src/ex_cmds.h, src/ex_docmd.c, src/if_py_both.h,
src/proto/eval.pro, src/proto/ex_docmd.pro, src/structs.h,
src/testdir/test_getcwd.vim, src/testdir/test_mksession.vim,
src/window.c

Patch 8.1.1219
Problem: Not checking for NULL return from alloc().
Solution: Add checks. (Martin Kunev, closes #4303, closes #4174)
Files: src/beval.c, src/blowfish.c, src/crypt.c, src/crypt_zip.c,

src/ops.c, src/option.c, src/popupmnu.c, src/proto/blowfish.pro,
src/proto/crypt_zip.pro, src/gui_gtk_f.c, src/gui_gtk_x11.c,
src/libvterm/src/state.c, src/libvterm/src/termscreen.c

Patch 8.1.1220 (after 8.1.1219)
Problem: Build fails on MS-Windows.
Solution: Move declaration to start of block.
Files: src/libvterm/src/state.c

Patch 8.1.1221
Problem: Filtering does not work when listing marks.
Solution: Implement filtering marks. (Marcin Szamotulski, closes #3895)
Files: runtime/doc/various.txt, src/mark.c,

src/testdir/test_filter_cmd.vim

Patch 8.1.1222 (after 8.1.1219)
Problem: Build still fails on MS-Windows.
Solution: Move another declaration to start of block.
Files: src/libvterm/src/state.c

Patch 8.1.1223
Problem: Middle mouse click test fails without a clipboard.
Solution: Check if the clipboard can be used. (Dominique Pelle, Christian

Brabandt) Also use WorkingClipboard() instead of checking for the
"clipboard" feature.

Files: src/testdir/test_termcodes.vim, src/testdir/test_quotestar.vim

Patch 8.1.1224
Problem: MS-Windows: cannot specify font weight.

version8.txt — 3346

Solution: Add the "W" option to 'guifont'. (closes #4309) Move GUI font
explanation out of options.txt.

Files: runtime/doc/options.txt, runtime/doc/gui.txt,
runtime/doc/mbyte.txt, src/gui_w32.c, src/os_mswin.c

Patch 8.1.1225
Problem: Cannot create a pty to use with :terminal on FreeBSD.
Solution: Add support for posix_openpt(). (Ozaki Kiichi, closes #4306,

closes #4289)
Files: src/configure.ac, src/config.h.in, src/auto/configure, src/pty.c

Patch 8.1.1226
Problem: {not in Vi} remarks get in the way of useful help text.
Solution: Make a list of all Vi options, instead of mentioning what Vi does

not have. Update the help text for options.
Files: runtime/doc/vi_diff.txt, runtime/doc/options.txt

Patch 8.1.1227
Problem: Duplicate entries in the generated .desktop files. (Ralf Schandl)
Solution: Remove translated entries from the .in files. (closes #4313)
Files: src/po/gvim.desktop.in, src/po/vim.desktop.in

Patch 8.1.1228
Problem: Not possible to process tags with a function.
Solution: Add tagfunc() (Christian Brabandt, Andy Massimino, closes #4010)
Files: runtime/doc/options.txt, runtime/doc/tagsrch.txt,

runtime/optwin.vim, src/buffer.c, src/dict.c, src/ex_cmds.c,
src/globals.h, src/insexpand.c, src/normal.c, src/option.c,
src/option.h, src/proto/dict.pro, src/structs.h, src/tag.c,
src/testdir/Make_all.mak, src/testdir/test_alot.vim,
src/testdir/test_tagfunc.vim, src/vim.h, src/window.c

Patch 8.1.1229
Problem: Warning for posix_openpt() not declared. (Tony Mechelynck)
Solution: Add declaration.
Files: src/pty.c

Patch 8.1.1230
Problem: A lot of code is shared between vim.exe and gvim.exe.
Solution: Optionally put the shared code in vim.dll. (Ken Takata,

closes #4287)
Files: Filelist, nsis/gvim.nsi, runtime/doc/gui_w32.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/channel.c,
src/evalfunc.c, src/ex_cmds.c, src/ex_docmd.c, src/feature.h,
src/fileio.c, src/getchar.c, src/globals.h, src/gui.c, src/gui.h,
src/gui_gtk_x11.c, src/gui_w32.c, src/if_mzsch.c, src/main.c,
src/mbyte.c, src/memline.c, src/message.c, src/misc2.c,
src/normal.c, src/option.c, src/os_mswin.c, src/os_w32dll.c,
src/os_w32exe.c, src/os_win32.c, src/os_win32.h,
src/proto/gui.pro, src/proto/gui_w32.pro, src/proto/misc2.pro,
src/proto/os_mswin.pro, src/proto/os_win32.pro, src/syntax.c,
src/term.c, src/terminal.c, src/ui.c, src/version.c, src/vim.rc

Patch 8.1.1231
Problem: Asking about existing swap file unnecessarily.
Solution: When it is safe, delete the swap file. Remove

HAS_SWAP_EXISTS_ACTION, it is always defined. (closes #1237)
Files: src/memline.c, src/globals.h, src/buffer.c, src/ex_cmds.c,

src/fileio.c, src/main.c, src/testdir/test_swap.vim,
runtime/doc/usr_11.txt, src/os_win32.c, src/proto/os_win32.pro,

version8.txt — 3347

src/os_unix.c, src/proto/os_unix.pro

Patch 8.1.1232
Problem: Can't build on MS-Windows.
Solution: Define process_still_running.
Files: src/memline.c, src/os_win32.c, src/proto/os_win32.pro,

src/os_unix.c, src/proto/os_unix.pro

Patch 8.1.1233
Problem: Cannot build tiny version.
Solution: Remove #ifdef for verb_msg().
Files: src/message.c

Patch 8.1.1234
Problem: Swap file test fails on MS-Windows.
Solution: Only compare the tail of the file names.
Files: src/testdir/test_swap.vim

Patch 8.1.1235
Problem: Compiler warnings for using STRLEN() value.
Solution: Cast to int. (Christian Brabandt, Mike Williams)
Files: src/tag.c

Patch 8.1.1236
Problem: sjiscorr.c not found in shadow directory. (Tony Mechelynck)
Solution: Link po/*.c files with "make shadow".
Files: src/Makefile

Patch 8.1.1237
Problem: Error for using "compl", reserved word in C++.
Solution: Rename to "complp". (suggestion by Ken Takata)
Files: src/usercmd.c, src/proto/usercmd.pro

Patch 8.1.1238
Problem: MS-Windows: compiler warning for sprintf() format.
Solution: Change %d to %ld. (Ken Takata)
Files: src/gui_w32.c

Patch 8.1.1239
Problem: Key with byte sequence containing CSI does not work.
Solution: Do not recognize CSI as special unless the GUI is active. (Ken

Takata, closes #4318)
Files: src/getchar.c

Patch 8.1.1240
Problem: Runtime desktop files are overwritten by build. (Tony Mechelynck)
Solution: Instead of copying the files find them with "make install".
Files: src/Makefile, src/po/Makefile

Patch 8.1.1241
Problem: Ex command info contains confusing information.
Solution: When using the NOTADR flag use ADDR_OTHER for the address type.

Cleanup code using NOTADR. Check for errors in
create_cmdidxs.vim. Adjust Makefile to see the errors.

Files: src/ex_cmds.h, src/ex_docmd.c, src/Makefile,
src/create_cmdidxs.vim, src/usercmd.c, src/ex_cmds.c,
src/window.c, src/testdir/test_usercommands.vim

Patch 8.1.1242
Problem: No cmdline redraw when tabpages have different 'cmdheight'.

version8.txt — 3348

Solution: redraw the command line when 'cmdheight' changes when switching
tabpages. (closes #4321)

Files: src/testdir/test_tabpage.vim, src/window.c,
src/testdir/dumps/Test_tabpage_cmdheight.dump,
src/testdir/screendump.vim

Patch 8.1.1243 (after 8.1.1241)
Problem: Compiler warnings for incomplete switch statement. (Tony

Mechelynck)
Solution: Add ADDR_QUICKFIX to the list.
Files: src/ex_docmd.c

Patch 8.1.1244
Problem: No tests for CTRL-mouse-click.
Solution: Add a few tests. (Dominique Pelle, closes #4323)
Files: src/testdir/test_termcodes.vim

Patch 8.1.1245
Problem: ":copen 10" sets height in full-height window. (Daniel Hahler)
Solution: Don't set the height if the quickfix window is full height.

(closes #4325)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.1246
Problem: Cannot handle negative mouse coordinate from urxvt.
Solution: Accept '-' where a digit is expected. (Vincent Vinel,

closes #4326)
Files: src/term.c

Patch 8.1.1247
Problem: Urxvt mouse codes are not tested.
Solution: Also set 'ttymouse' to "urxvt" in the termcodes test.
Files: src/testdir/test_termcodes.vim

Patch 8.1.1248
Problem: No test for dec mouse.
Solution: Add some tests for dec mouse. Add "no_query_mouse".
Files: src/evalfunc.c, src/globals.h, src/os_unix.c,

src/testdir/test_termcodes.vim, runtime/doc/eval.txt

Patch 8.1.1249
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it. (Christian Brabandt)
Files: src/regexp_nfa.c

Patch 8.1.1250
Problem: No test for netterm mouse.
Solution: Add some tests for netterm mouse.
Files: src/testdir/test_termcodes.vim

Patch 8.1.1251
Problem: No test for completion of mapping keys.
Solution: Add a test. Also clean up the code.
Files: src/getchar.c, src/term.c, src/proto/term.pro,

src/testdir/test_cmdline.vim

Patch 8.1.1252
Problem: Not all mapping completion is tested.
Solution: Add a few more mapping completion tests.
Files: src/testdir/test_cmdline.vim

version8.txt — 3349

Patch 8.1.1253 (after 8.1.1252)
Problem: Mapping completion test fails.
Solution: Fix expected output.
Files: src/testdir/test_cmdline.vim

Patch 8.1.1254
Problem: Mapping completion contains dead code.
Solution: Remove the code.
Files: src/term.c, src/testdir/test_cmdline.vim

Patch 8.1.1255
Problem: Building desktop files fails on FreeBSD. (Adam Weinberger)
Solution: Avoid using non-portable construct in Makefile. (closes #4332)
Files: src/po/Makefile

Patch 8.1.1256
Problem: Cannot navigate through errors relative to the cursor.
Solution: Add :cabove, :cbelow, :labove and :lbelow. (Yegappan Lakshmanan,

closes #4316)
Files: runtime/doc/index.txt, runtime/doc/quickfix.txt, src/ex_cmdidxs.h,

src/ex_cmds.h, src/ex_docmd.c, src/proto/quickfix.pro,
src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.1257
Problem: MSVC: name of object directory not always right.
Solution: Adjust comment. Don't use different directory for DIRECTX. Do

use different directory for USE_MSVCRT. (Ken Takata, closes #4333)
Files: src/Make_mvc.mak

Patch 8.1.1258
Problem: The "N files to edit" message can not be suppressed.
Solution: Suppress the message with --not-a-term. (closes #4320)
Files: src/main.c

Patch 8.1.1259
Problem: Crash when exiting early. (Ralf Schandl)
Solution: Only pop/push the title when it was set. (closes #4334)
Files: src/os_unix.c, src/misc2.c, src/usercmd.c, src/tag.c

Patch 8.1.1260
Problem: Comparing with pointer instead of value.
Solution: Add a "*". (Ken Takata, closes #4336)
Files: src/usercmd.c

Patch 8.1.1261
Problem: No error for quickfix commands with negative range.
Solution: Add ADDR_UNSIGNED and use it for quickfix commands. Make

assert_fails() show the command if the error doesn't match.
Files: src/ex_cmds.h, src/ex_docmd.c, src/testdir/test_quickfix.vim,

runtime/doc/quickfix.txt, src/eval.c, src/quickfix.c,
src/proto/quickfix.pro, src/ex_cmds2.c

Patch 8.1.1262
Problem: Cannot simulate a mouse click in a test.
Solution: Add test_setmouse().
Files: src/evalfunc.c, runtime/doc/eval.txt, runtime/doc/usr_41.txt

Patch 8.1.1263
Problem: Mouse clicks in WinBar not tested.

version8.txt — 3350

Solution: Add a test for clicking on the WinBar entries.
Files: src/testdir/test_winbar.vim

Patch 8.1.1264
Problem: Crash when closing window from WinBar click. (Ben Jackson)
Solution: Check that window pointer is still valid. (closes #4337)
Files: src/menu.c

Patch 8.1.1265
Problem: When GPM mouse support is enabled double clicks in xterm do not

work.
Solution: Use KS_GPM_MOUSE for GPM mouse events.
Files: src/term.c, src/os_unix.c, src/keymap.h

Patch 8.1.1266
Problem: Winbar test doesn't test enough.
Solution: Check that the WinBar actually shows up. Correct check for clicks

with no effect. (Ben Jackson, closes #4338)
Files: src/testdir/test_winbar.vim

Patch 8.1.1267
Problem: Cannot check if GPM mouse support is working.
Solution: Add the "mouse_gpm_enable" feature.
Files: src/evalfunc.c, src/os_unix.c, src/proto/os_unix.pro,

runtime/doc/eval.txt

Patch 8.1.1268
Problem: Map completion test fails in GUI.
Solution: Skip the test that fails.
Files: src/testdir/test_cmdline.vim

Patch 8.1.1269
Problem: MS-Windows GUI: multibyte chars with a 0x80 byte do not work when

compiled with VIMDLL.
Solution: Adjust the condition for fixing the input buffer. (Ken Takata,

closes #4330)
Files: src/getchar.c

Patch 8.1.1270
Problem: Cannot see current match position.
Solution: Show "3/44" when using the "n" command and "S" is not in

'shortmess'. (Christian Brabandt, closes #4317)
Files: runtime/doc/options.txt, runtime/doc/pattern.txt, src/option.c,

src/option.h, src/search.c, src/testdir/Make_all.mak,
src/testdir/test_search_stat.vim

Patch 8.1.1271 (after 8.1.1270)
Problem: Compiler warnings for use of STRNCPY(). (John Marriott)
Solution: Use mch_memmove() instead of STRNCPY().
Files: src/search.c

Patch 8.1.1272
Problem: Click on WinBar of other window not tested.
Solution: Add a test case.
Files: src/testdir/test_winbar.vim

Patch 8.1.1273
Problem: Compiler warning in direct write code.
Solution: Add a type cast.
Files: src/gui_dwrite.cpp

version8.txt — 3351

Patch 8.1.1274
Problem: After :unmenu can still execute the menu with :emenu.
Solution: Do not execute a menu that was disabled for the specified mode.
Files: src/menu.c, src/testdir/test_menu.vim

Patch 8.1.1275
Problem: Cannot navigate to errors before/after the cursor.
Solution: Add the :cbefore and :cafter commands. (Yegappan Lakshmanan,

closes #4340)
Files: runtime/doc/index.txt, runtime/doc/quickfix.txt, src/ex_cmdidxs.h,

src/ex_cmds.h, src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.1276
Problem: Cannot combine text properties with syntax highlighting.
Solution: Add the "combine" field to prop_type_add(). (closes #4343)
Files: runtime/doc/eval.txt, runtime/doc/textprop.txt, src/screen.c,

src/structs.h, src/testdir/test_textprop.vim

Patch 8.1.1277 (after 8.1.1276)
Problem: Missing screenshot update.
Solution: Update the screenshot.
Files: src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.1278 (after 8.1.1276)
Problem: Missing change for "combine" field.
Solution: Also change the textprop implementation.
Files: src/textprop.c

Patch 8.1.1279
Problem: Cannot set 'spelllang' to "sr@latin". (Bojan Stipic)
Solution: Allow using '@' in 'spelllang'. (closes #4342)
Files: src/option.c, src/testdir/gen_opt_test.vim

Patch 8.1.1280
Problem: Remarks about functionality not in Vi clutters the help.
Solution: Move all info about what is new in Vim or already existed in Vi to

vi_diff.txt. Remove {not in Vi} remarks. (closes #4268) Add
"noet" to the help files modeline. Also include many other help
file improvements.

Files: runtime/doc/vi_diff.txt, runtime/doc/arabic.txt,
runtime/doc/autocmd.txt, runtime/doc/change.txt,
runtime/doc/channel.txt, runtime/doc/cmdline.txt,
runtime/doc/debugger.txt, runtime/doc/debug.txt,
runtime/doc/develop.txt, runtime/doc/diff.txt,
runtime/doc/digraph.txt, runtime/doc/editing.txt,
runtime/doc/eval.txt, runtime/doc/farsi.txt,
runtime/doc/filetype.txt, runtime/doc/fold.txt,
runtime/doc/ft_ada.txt, runtime/doc/ft_rust.txt,
runtime/doc/ft_sql.txt, runtime/doc/gui.txt,
runtime/doc/gui_w32.txt, runtime/doc/gui_x11.txt,
runtime/doc/hangulin.txt, runtime/doc/hebrew.txt,
runtime/doc/helphelp.txt, runtime/doc/help.txt,
runtime/doc/howto.txt, runtime/doc/if_cscop.txt,
runtime/doc/if_lua.txt, runtime/doc/if_mzsch.txt,
runtime/doc/if_ole.txt, runtime/doc/if_perl.txt,
runtime/doc/if_pyth.txt, runtime/doc/if_ruby.txt,
runtime/doc/if_sniff.txt, runtime/doc/if_tcl.txt,
runtime/doc/indent.txt, runtime/doc/index.txt,
runtime/doc/insert.txt, runtime/doc/intro.txt,

version8.txt — 3352

runtime/doc/map.txt, runtime/doc/mbyte.txt,
runtime/doc/message.txt, runtime/doc/mlang.txt,
runtime/doc/motion.txt, runtime/doc/netbeans.txt,
runtime/doc/options.txt, runtime/doc/os_390.txt,
runtime/doc/os_amiga.txt, runtime/doc/os_beos.txt,
runtime/doc/os_dos.txt, runtime/doc/os_mac.txt,
runtime/doc/os_mint.txt, runtime/doc/os_msdos.txt,
runtime/doc/os_os2.txt, runtime/doc/os_qnx.txt,
runtime/doc/os_risc.txt, runtime/doc/os_unix.txt,
runtime/doc/os_vms.txt, runtime/doc/os_win32.txt,
runtime/doc/pattern.txt, runtime/doc/pi_getscript.txt,
runtime/doc/pi_gzip.txt, runtime/doc/pi_logipat.txt,
runtime/doc/pi_netrw.txt, runtime/doc/pi_paren.txt,
runtime/doc/pi_spec.txt, runtime/doc/pi_tar.txt,
runtime/doc/pi_vimball.txt, runtime/doc/pi_zip.txt,
runtime/doc/print.txt, runtime/doc/quickfix.txt,
runtime/doc/quickref.txt, runtime/doc/quotes.txt,
runtime/doc/recover.txt, runtime/doc/remote.txt,
runtime/doc/repeat.txt, runtime/doc/rileft.txt,
runtime/doc/russian.txt, runtime/doc/scroll.txt,
runtime/doc/sign.txt, runtime/doc/spell.txt,
runtime/doc/sponsor.txt, runtime/doc/starting.txt,
runtime/doc/syntax.txt, runtime/doc/tabpage.txt,
runtime/doc/tagsrch.txt, runtime/doc/terminal.txt,
runtime/doc/term.txt, runtime/doc/textprop.txt,
runtime/doc/tips.txt, runtime/doc/todo.txt,
runtime/doc/uganda.txt, runtime/doc/undo.txt,
runtime/doc/usr_01.txt, runtime/doc/usr_02.txt,
runtime/doc/usr_03.txt, runtime/doc/usr_04.txt,
runtime/doc/usr_05.txt, runtime/doc/usr_06.txt,
runtime/doc/usr_07.txt, runtime/doc/usr_08.txt,
runtime/doc/usr_09.txt, runtime/doc/usr_10.txt,
runtime/doc/usr_11.txt, runtime/doc/usr_12.txt,
runtime/doc/usr_20.txt, runtime/doc/usr_21.txt,
runtime/doc/usr_22.txt, runtime/doc/usr_23.txt,
runtime/doc/usr_24.txt, runtime/doc/usr_25.txt,
runtime/doc/usr_26.txt, runtime/doc/usr_27.txt,
runtime/doc/usr_28.txt, runtime/doc/usr_29.txt,
runtime/doc/usr_30.txt, runtime/doc/usr_31.txt,
runtime/doc/usr_32.txt, runtime/doc/usr_40.txt,
runtime/doc/usr_41.txt, runtime/doc/usr_43.txt,
runtime/doc/usr_44.txt, runtime/doc/usr_45.txt,
runtime/doc/usr_90.txt, runtime/doc/usr_toc.txt,
runtime/doc/various.txt, runtime/doc/version4.txt,
runtime/doc/version5.txt, runtime/doc/version6.txt,
runtime/doc/version7.txt, runtime/doc/version8.txt,
runtime/doc/visual.txt, runtime/doc/windows.txt, runtime/doc/tags

Patch 8.1.1281
Problem: Cannot specify a count with :chistory.
Solution: Add a count to :chistory and :lhistory. (Yegappan Lakshmanan,

closes #4344)
Files: runtime/doc/quickfix.txt, src/ex_cmds.h, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.1.1282
Problem: Running make in src/po leaves LINGUAS file behind. (Ken Takata)
Solution: Delete LINGUAS after running msgfmt.
Files: src/po/Makefile

version8.txt — 3353

Patch 8.1.1283
Problem: Delaying half a second after the top-bot message.
Solution: Instead of the delay add "W" to the search count.
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.1.1284
Problem: Detecting *.tmpl as htmlcheetah is outdated.
Solution: Use the generic name "template". (closes #4348)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.1285
Problem: Test17 is old style.
Solution: Turn into new style test. (Yegappan Lakshmanan, closes #4347)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test17.in, src/testdir/test17.ok,
src/testdir/test17a.in, src/testdir/test_checkpath.vim,
src/testdir/test_gf.vim

Patch 8.1.1286
Problem: Running tests leaves XTest_tabpage_cmdheight file behind.
Solution: Delete the right file. (closes #4350)
Files: src/testdir/test_tabpage.vim

Patch 8.1.1287
Problem: Cannot build with +eval but without +mouse.
Solution: Add #ifdefs around f_test_setmouse(). (John Marriott)
Files: src/evalfunc.c

Patch 8.1.1288
Problem: Search stats don't show for mapped command.
Solution: Remove SEARCH_PEEK from searchit flags. Add a test. (Christian

Brabandt)
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.1.1289
Problem: May not have enough space to add "W" to search stats.
Solution: Reserve a bit more space. (Christian Brabandt)
Files: src/search.c

Patch 8.1.1290
Problem: .hgignore and .gitignore are either distributed or in git, not

both.
Solution: Add .gitignore to the distribution and .hgignore to git. Update

the entries. (Christian Brabandt, Ken Takata)
Files: .gitignore, .hgignore, Filelist

Patch 8.1.1291
Problem: Not easy to change directory and restore.
Solution: Add the chdir() function. (Yegappan Lakshmanan, closes #4358)
Files: runtime/doc/eval.txt, runtime/doc/todo.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/ex_docmd.c,
src/if_py_both.h, src/proto/ex_docmd.pro, src/structs.h,
src/testdir/test_cd.vim

Patch 8.1.1292
Problem: Invalid command line arguments not tested.
Solution: Add a test. (Dominique Pelle, closes #4346)
Files: src/testdir/test_startup.vim

Patch 8.1.1293

version8.txt — 3354

Problem: MSVC files are no longer useful for debugging. Newer Visual
Studio versions cannot read them.

Solution: Delete the files. (Ken Takata, closes #4357)
Files: Filelist, src/Make_dvc.mak, src/Make_ivc.mak,

runtime/doc/debug.txt, src/INSTALLpc.txt, src/Make_mvc.mak

Patch 8.1.1294
Problem: MS-Windows: Some fonts return wrong average char width.
Solution: Compute the average ourselves. (Ken Takata, closes #4356)
Files: src/gui_w32.c

Patch 8.1.1295
Problem: When vimrun.exe does not exist external command may fail.
Solution: Use "cmd /c" twice to get the same behavior. (Ken Takata,

closes #4355)
Files: src/os_win32.c

Patch 8.1.1296
Problem: Crash when using invalid command line argument.
Solution: Check for options not being initialized.
Files: src/term.c, src/testdir/test_startup.vim

Patch 8.1.1297
Problem: Invalid argument test fails without GTK.
Solution: Test -display and --display separately.
Files: src/testdir/test_startup.vim

Patch 8.1.1298
Problem: Invalid argument test fails without X clipboard.
Solution: Test -display only with the +xterm_clipboard feature.
Files: src/testdir/test_startup.vim

Patch 8.1.1299
Problem: "extends" from 'listchars' is used when 'list' is off. (Hiroyuki

Yoshinaga)
Solution: Only use the "extends" character when 'list' is on. (Hirohito

Higashi, closes #4360)
Files: src/screen.c, src/testdir/test_listchars.vim

Patch 8.1.1300
Problem: In a terminal 'ballooneval' does not work right away.
Solution: Flush output after drawing the balloon. Add the <Ignore> key

code. Add a test.
Files: src/ex_cmds2.c, src/testdir/test_balloon.vim, src/misc2.c,

src/testdir/Make_all.mak,
src/testdir/dumps/Test_balloon_eval_term_01.dump

Patch 8.1.1301
Problem: When compiled with VIMDLL some messages are not shown.
Solution: Set/reset gui.in_use and gui.starting as needed. (Ken Takata,

closes #4361)
Files: src/gui_w32.c, src/main.c, src/message.c

Patch 8.1.1302
Problem: v:beval_text is not tested in Visual mode.
Solution: Add a screenshot of the balloon in Visual mode.
Files: src/testdir/test_balloon.vim, src/normal.c,

src/testdir/dumps/Test_balloon_eval_term_01.dump,
src/testdir/dumps/Test_balloon_eval_term_02.dump

version8.txt — 3355

Patch 8.1.1303
Problem: Not possible to hide a balloon.
Solution: Hide the balloon when balloon_show() is called with an empty

string or list. Add balloon_gettext().
Files: src/evalfunc.c, src/popupmnu.c, src/gui_beval.c, src/gui_w32.c,

src/beval.h, src/testdir/test_balloon.vim, runtime/doc/eval.txt

Patch 8.1.1304
Problem: MS-Windows: compiler warning for unused value.
Solution: Adjust #ifdefs. (Ken Takata, closes #4363)
Files: src/gui.c

Patch 8.1.1305
Problem: There is no easy way to manipulate environment variables.
Solution: Add environ(), getenv() and setenv(). (Yasuhiro Matsumoto,

closes #2875)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/Make_all.mak, src/testdir/test_environ.vim

Patch 8.1.1306
Problem: Borland support is outdated and doesn't work.
Solution: Remove Borland support, there are other (free) compilers

available. (Thomas Dziedzic, Ken Takata, closes #4364)
Files: .gitignore, .hgignore, Filelist, runtime/doc/debug.txt,

runtime/doc/develop.txt, runtime/doc/usr_90.txt,
src/GvimExt/Make_bc5.mak, src/GvimExt/gvimext.cpp,
src/GvimExt/gvimext.rc, src/INSTALLpc.txt, src/Make_bc5.mak,
src/dosinst.c, src/dosinst.h, src/evalfunc.c, src/ex_cmds.c,
src/ex_getln.c, src/gui_w32.c, src/if_ole.cpp, src/if_py_both.h,
src/main.c, src/mark.c, src/message.c, src/misc1.c, src/misc2.c,
src/normal.c, src/option.c, src/os_mswin.c, src/os_w32exe.c,
src/os_win32.c, src/os_win32.h, src/proto.h, src/screen.c,
src/spell.c, src/spellfile.c, src/syntax.c, src/userfunc.c,
src/vim.h, src/vim.rc, src/vimrun.c, src/xxd/Make_bc5.mak,
src/xxd/xxd.c

Patch 8.1.1307
Problem: Cannot reconnect to the X server after it restarted.
Solution: Add the :xrestore command. (Adrian Kocis, closes #844)
Files: runtime/doc/index.txt, runtime/doc/various.txt, src/os_unix.c,

src/proto/os_unix.pro, src/globals.h, src/ex_cmds.h,
src/ex_cmdidxs.h, src/ex_docmd.c, src/testdir/test_paste.vim

Patch 8.1.1308
Problem: The Normal highlight is not defined when compiled with GUI.
Solution: Always define Normal. (Christian Brabandt, closes #4072)
Files: runtime/doc/syntax.txt, src/syntax.c,

src/testdir/test_highlight.vim

Patch 8.1.1309 (after 8.1.1308)
Problem: Test for Normal highlight fails on MS-Windows GUI.
Solution: Skip the test for MS-Windows GUI.
Files: src/testdir/test_highlight.vim

Patch 8.1.1310
Problem: Named function arguments are never optional.
Solution: Support optional function arguments with a default value. (Andy

Massimino, closes #3952)
Files: runtime/doc/eval.txt, src/structs.h,

src/testdir/test_user_func.vim, src/userfunc.c

version8.txt — 3356

Patch 8.1.1311
Problem: Aborting an autocmd with an exception is not tested.
Solution: Add a test. Also shows how to abort a command by throwing an

exception.
Files: src/testdir/test_autocmd.vim

Patch 8.1.1312
Problem: Coverity warning for using uninitialized variable.
Solution: Clear exarg_T.
Files: src/quickfix.c, src/channel.c, src/ex_cmds2.c

Patch 8.1.1313
Problem: Warnings for using localtime() and ctime().
Solution: Use localtime_r() if available. Avoid using ctime().
Files: src/configure.ac, src/auto/configure, src/config.h.in,

src/evalfunc.c, src/nbdebug.c, src/undo.c, src/memline.c,
src/proto/memline.pro, src/hardcopy.c

Patch 8.1.1314
Problem: MSVC makefile is not nicely indented.
Solution: Adjust spaces in preprocessor directives. (Ken Takata)
Files: src/Make_mvc.mak

Patch 8.1.1315
Problem: There is always a delay if a termrequest is never answered.
Solution: When the response is not received within two seconds consider the

request to have failed.
Files: src/term.c

Patch 8.1.1316
Problem: Duplicated localtime() call.
Solution: Delete one.
Files: src/undo.c

Patch 8.1.1317
Problem: Output from Travis can be improved.
Solution: Add section headers. Handle errors better. (Ozaki Kiichi,

closes #4098)
Files: .travis.yml, configure

Patch 8.1.1318
Problem: Code for text changes is in a "misc" file.
Solution: Move the code to change.c.
Files: src/misc1.c, src/proto/misc1.pro, src/change.c,

src/proto/change.pro, src/proto.h, src/memline.c, Filelist,
src/Make_cyg_ming.mak, src/Make_dice.mak, src/Make_manx.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_sas.mak,
src/Make_vms.mms, src/Makefile, src/README.md

Patch 8.1.1319
Problem: Computing function length name in many places.
Solution: compute name length in call_func().
Files: src/eval.c, src/userfunc.c, src/channel.c, src/evalfunc.c,

src/ex_cmds2.c, src/regexp.c, src/terminal.c

Patch 8.1.1320
Problem: It is not possible to track changes to a buffer.
Solution: Add listener_add() and listener_remove(). No docs or tests yet.
Files: src/structs.h, src/change.c, src/proto/change.pro

version8.txt — 3357

Patch 8.1.1321
Problem: No docs or tests for listener functions.
Solution: Add help and tests for listener_add() and listener_remove().

Invoke the callbacks before redrawing.
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt,

src/testdir/test_listener.vim, src/testdir/Make_all.mak,
src/change.c, src/screen.c, src/evalfunc.c, src/proto/evalfunc.pro

Patch 8.1.1322
Problem: Cygwin makefile is not nicely indented.
Solution: Adjust spaces in preprocessor directives. (Ken Takata)
Files: src/Make_cyg_ming.mak

Patch 8.1.1323
Problem: 'mouse' option is reset when using GPM mouse.
Solution: Add flag for GPM mouse.
Files: src/term.c

Patch 8.1.1324
Problem: Stray comma in VMS makefile.
Solution: Remove the comma. (Naruhiko Nishino, closes #4368)
Files: src/Make_vms.mms

Patch 8.1.1325
Problem: Cannot build with +eval but without +channel and +timers. (John

Marriott)
Solution: Adjust #ifdef for get_callback().
Files: src/evalfunc.c, src/testdir/test_autocmd.vim

Patch 8.1.1326
Problem: No test for listener with partial.
Solution: Add a test. Add example to help.
Files: src/testdir/test_listener.vim, runtime/doc/eval.txt

Patch 8.1.1327
Problem: Unnecessary scroll after horizontal split.
Solution: Don't adjust to fraction if all the text fits in the window.

(Martin Kunev, closes #4367)
Files: src/testdir/test_window_cmd.vim, src/window.c

Patch 8.1.1328
Problem: No test for listener with undo operation.
Solution: Add a test.
Files: src/testdir/test_listener.vim

Patch 8.1.1329
Problem: Plans for popup window support are spread out.
Solution: Add a first version of the popup window help.
Files: runtime/doc/popup.txt, runtime/doc/Makefile, runtime/doc/help.txt

Patch 8.1.1330
Problem: Using bold attribute in terminal changes the color. (Jason

Franklin)
Solution: Don't set the "bold-highbright" flag in vterm unless the terminal

supports less than 16 colors.
Files: src/terminal.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_all_ansi_colors.dump

Patch 8.1.1331

version8.txt — 3358

Problem: Test 29 is old style.
Solution: Turn it into a new style test. (Yegappan Lakshmanan, closes #4370)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test29.in, src/testdir/test29.ok,
src/testdir/test_backspace_opt.vim, src/testdir/test_join.vim

Patch 8.1.1332
Problem: Cannot flush change listeners without also redrawing. The line

numbers in the list of changes may become invalid.
Solution: Add listener_flush(). Invoke listeners before adding a change

that makes line numbers invalid.
Files: src/evalfunc.c, src/change.c, src/proto/change.pro,

src/screen.c, runtime/doc/eval.txt, src/testdir/test_listener.vim

Patch 8.1.1333
Problem: Text properties don't always move after changes.
Solution: Update properties before reporting changes to listeners. Move text

property when splitting a line.
Files: src/change.c, src/ex_cmds.c, src/textprop.c,

src/proto/textprop.pro, src/testdir/test_textprop.vim

Patch 8.1.1334
Problem: When buffer is hidden "F" in 'shortmess' is not used.
Solution: Check the "F" flag in 'shortmess' when the buffer is already

loaded. (Jason Franklin) Add test_getvalue() to be able to test
this.

Files: src/buffer.c, src/evalfunc.c, src/testdir/test_options.vim,
runtime/doc/eval.txt

Patch 8.1.1335
Problem: Listener callback is called after inserting text.
Solution: Flush the changes before inserting or deleting a line. Store

changes per buffer.
Files: src/change.c, src/proto/change.pro, src/memline.c,

src/structs.h, src/testdir/test_listener.vim

Patch 8.1.1336
Problem: Some eval functionality is not covered by tests.
Solution: Add a few more test cases. (Masato Nishihata, closes #4374)
Files: src/testdir/test_bufline.vim, src/testdir/test_cindent.vim,

src/testdir/test_cursor_func.vim, src/testdir/test_delete.vim,
src/testdir/test_expand_func.vim, src/testdir/test_float_func.vim,
src/testdir/test_fnamemodify.vim, src/testdir/test_functions.vim

Patch 8.1.1337
Problem: Get empty text prop when splitting line just after text prop.
Solution: Do not create an empty text prop at the start of the line.
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.1.1338
Problem: Hang when concealing the '>' shown for a wide char that doesn't

fit in the last cell.
Solution: Put back the pointer when the '>' is not going to be displayed.

(closes #4377)
Files: src/screen.c

Patch 8.1.1339
Problem: Installer needs to product name et al.
Solution: Add a few lines to the NSIS installer script. (Ken Takata)
Files: nsis/gvim.nsi

version8.txt — 3359

Patch 8.1.1340
Problem: Attributes from 'cursorline' overwrite textprop.
Solution: Combine the attributes. (closes #3912)
Files: src/screen.c, src/textprop.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.1341
Problem: Text properties are lost when joining lines.
Solution: Move the text properties to the joined line.
Files: src/ops.c, src/textprop.c, src/proto/textprop.pro,

src/testdir/test_textprop.vim,
src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.1342
Problem: Using freed memory when joining line with text property.
Solution: Use already computed length.
Files: src/ops.c

Patch 8.1.1343
Problem: Text properties not adjusted for Visual block mode delete.
Solution: Call adjust_prop_columns(). (closes #4384)
Files: src/ops.c, src/textprop.c, src/testdir/test_textprop.vim,

src/misc1.c, src/testdir/dumps/Test_textprop_vis_01.dump,
src/testdir/dumps/Test_textprop_vis_02.dump

Patch 8.1.1344
Problem: Coverity complains about possibly using a NULL pointer and copying

a string into a fixed size buffer.
Solution: Check for NULL, even though it should not happen. Use

vim_strncpy() instead of strcpy().
Files: src/change.c, src/memline.c

Patch 8.1.1345
Problem: Stuck in sandbox with ":s/../\=Function/gn".
Solution: Don't skip over code to restore sandbox. (Christian Brabandt)
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.1.1346
Problem: Error for Python exception does not show useful info.
Solution: Show the last line instead of the first one. (Ben Jackson,

closes #4381)
Files: src/if_py_both.h, src/testdir/test86.ok, src/testdir/test87.ok,

src/testdir/test_python2.vim, src/testdir/test_python3.vim,
src/testdir/test_pyx2.vim, src/testdir/test_pyx3.vim

Patch 8.1.1347 (after 8.1.1327)
Problem: Fractional scroll position not restored after closing window.
Solution: Do restore fraction if topline is not one.
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.1.1348
Problem: Running tests may cause the window to move.
Solution: Correct the reported window position for the offset with the

position after ":winpos". Works around an xterm bug.
Files: src/testdir/test_edit.vim

Patch 8.1.1349
Problem: If writing runs into a conversion error the backup file is

deleted. (Arseny Nasokin)

version8.txt — 3360

Solution: Don't delete the backup file is the file was overwritten and a
conversion error occurred. (Christian Brabandt, closes #4387)

Files: src/fileio.c, src/testdir/test_writefile.vim

Patch 8.1.1350
Problem: "W" for wrapping not shown when more than 99 matches.
Solution: Adjust check for length. (Masato Nishihata, closes #4388)
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.1.1351
Problem: Text property wrong after :substitute.
Solution: Save for undo before changing any text properties.
Files: src/testdir/test_textprop.vim, src/ex_cmds.c, src/textprop.c,

src/proto/textprop.pro, src/change.c, src/edit.c, src/misc1.c,
src/ops.c

Patch 8.1.1352
Problem: Undofile() reports wrong name. (Francisco Giordano)
Solution: Clean up the name before changing path separators. (closes #4392,

closes #4394)
Files: src/evalfunc.c, src/testdir/test_undo.vim

Patch 8.1.1353 (after 8.1.1352)
Problem: Undo test fails on Mac.
Solution: Expect "private" on the Mac.
Files: src/testdir/test_undo.vim

Patch 8.1.1354
Problem: Getting a list of text lines is clumsy.
Solution: Add the =<< assignment. (Yegappan Lakshmanan, closes #4386)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_let.vim

Patch 8.1.1355
Problem: Obvious mistakes are accepted as valid expressions.
Solution: Be more strict about parsing numbers. (Yasuhiro Matsumoto,

closes #3981)
Files: src/charset.c, src/eval.c, src/evalfunc.c, src/ex_cmds.c,

src/ex_getln.c, src/json.c, src/misc2.c, src/ops.c, src/option.c,
src/proto/charset.pro, src/testdir/test_expr.vim,
src/testdir/test_json.vim

Patch 8.1.1356
Problem: Some text in heredoc assignment ends the text. (Ozaki Kiichi)
Solution: Recognize "let v =<<" and skip until the end.
Files: src/userfunc.c, src/testdir/test_let.vim

Patch 8.1.1357
Problem: Test 37 is old style.
Solution: Turn it into a new style test. (Yegappan Lakshmanan, closes #4398)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test37.in, src/testdir/test37.ok,
src/testdir/test_scrollbind.vim

Patch 8.1.1358
Problem: Cannot enter character with a CSI byte.
Solution: Only check "gui.in_use" when VIMDLL is defined. (Ken Takata,

closes #4396)
Files: src/getchar.c

Patch 8.1.1359

version8.txt — 3361

Problem: Text property wrong after :substitute with backslash.
Solution: Adjust text property columns when removing backslashes.

(closes #4397)
Files: src/ex_cmds.c, src/testdir/test_textprop.vim, src/vim.h,

src/textprop.c, src/proto/textprop.pro, src/change.c, src/edit.c,
src/misc1.c, src/ops.c

Patch 8.1.1360 (after Patch 8.1.1345)
Problem: Buffer left 'nomodifiable' after :substitute. (Ingo Karkat)
Solution: Save the value of 'modifiable' earlier. (Christian Brabandt,

closes #4403)
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.1.1361
Problem: Python setuptools don't work with Python 3.
Solution: Add dummy implementation for find_module. (Joel Frederico,

closes #4402, closes #3984)
Files: src/if_py_both.h

Patch 8.1.1362
Problem: Code and data in tests can be hard to read.
Solution: Use the new heredoc style. (Yegappan Lakshmanan, closes #4400)
Files: src/testdir/test_autocmd.vim, src/testdir/test_balloon.vim,

src/testdir/test_bufline.vim, src/testdir/test_cindent.vim,
src/testdir/test_conceal.vim, src/testdir/test_exit.vim,
src/testdir/test_fold.vim, src/testdir/test_goto.vim,
src/testdir/test_join.vim, src/testdir/test_mksession_utf8.vim,
src/testdir/test_normal.vim, src/testdir/test_profile.vim,
src/testdir/test_quickfix.vim, src/testdir/test_startup.vim,
src/testdir/test_terminal.vim, src/testdir/test_xxd.vim

Patch 8.1.1363
Problem: ":vert options" does not make a vertical split.
Solution: Pass the right modifiers in $OPTWIN_CMD. (Ken Takata,

closes #4401)
Files: src/ex_cmds2.c, src/testdir/test_options.vim

Patch 8.1.1364
Problem: Design for popup window support needs more details.
Solution: Add details about using a window and buffer. Rename popup_show()

to popup_create() and add popup_show() and popup_hide().
Files: runtime/doc/popup.txt

Patch 8.1.1365
Problem: Source command doesn't check for the sandbox. (Armin Razmjou)
Solution: Check for the sandbox when sourcing a file.
Files: src/getchar.c, src/testdir/test_source.vim

Patch 8.1.1366
Problem: Using expressions in a modeline is unsafe.
Solution: Disallow using expressions in a modeline, unless the

'modelineexpr' option is set. Update help, add more tests.
Files: runtime/doc/options.txt, src/option.c, src/option.h,

src/testdir/test_modeline.vim, src/testdir/test49.in

Patch 8.1.1367 (after 8.1.1366)
Problem: can set 'modelineexpr' in modeline.
Solution: Add P_SECURE flag.
Files: src/option.c, src/testdir/test_modeline.vim

version8.txt — 3362

Patch 8.1.1368 (after 8.1.1366)
Problem: Modeline test fails with python but without pythonhome.
Solution: Correct test argument.
Files: src/testdir/test_modeline.vim

Patch 8.1.1369
Problem: Get E484 when using system() during GUI startup.
Solution: Check "gui.starting". (Ken Takata)
Files: src/os_win32.c

Patch 8.1.1370
Problem: Not using the new github feature for donations.
Solution: Add a Sponsor button. (closes #4417)
Files: .github/FUNDING.yml

Patch 8.1.1371
Problem: Cannot recover from a swap file.
Solution: Do not expand environment variables in the swap file name.

Do not check the extension when we already know a file is a swap
file. (Ken Takata, closes #4415, closes #4369)

Files: src/buffer.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/gui.c, src/if_cscope.c, src/main.c, src/memline.c,
src/misc1.c, src/proto/memline.pro, src/proto/misc1.pro,
src/search.c, src/spell.c, src/spellfile.c, src/tag.c,
src/testdir/test_swap.vim, src/vim.h

Patch 8.1.1372
Problem: When evaluating 'statusline' the current window is unknown.

(Daniel Hahler)
Solution: Set "g:actual_curwin" for %{} items. Set "g:statusline_winid"

when evaluating %!. (closes #4406, closes #3299)
Files: src/buffer.c, runtime/doc/options.txt,

src/testdir/test_statusline.vim

Patch 8.1.1373
Problem: "[p" in Visual mode puts in wrong line.
Solution: Call nv_put() instead of duplicating the functionality.

(closes #4408)
Files: src/normal.c, src/testdir/test_put.vim

Patch 8.1.1374
Problem: Check for file changed triggers too often.
Solution: Don't use "b_p_ar" when it is negative.
Files: src/fileio.c

Patch 8.1.1375
Problem: Without "TS" in 'shortmess' get a hit-enter prompt often.
Solution: Always truncate the search message. Also avoid putting it in the

message history. (closes #4413)
Files: src/search.c, src/main.c, src/testdir/test_search_stat.vim

Patch 8.1.1376
Problem: Warnings for size_t/int mixups.
Solution: Change types, add type casts. (Mike Williams)
Files: src/search.c, src/textprop.c

Patch 8.1.1377
Problem: MS-Windows GUI uses wrong shell command for bash. (Robert Bogomip)
Solution: Check that 'shellcmdflag' is "/c". (Ken Takata, closes #4418)
Files: src/os_win32.c

version8.txt — 3363

Patch 8.1.1378
Problem: Delete() can not handle a file name that looks like a pattern.
Solution: Use readdir() instead of appending "/*" and expanding wildcards.

(Ken Takata, closes #4424, closes #696)
Files: src/testdir/test_functions.vim, src/evalfunc.c, src/fileio.c,

src/proto/fileio.pro

Patch 8.1.1379 (after 8.1.1374)
Problem: Filechanged test hangs.
Solution: Do not check 'autoread'.
Files: src/fileio.c, src/testdir/test_filechanged.vim

Patch 8.1.1380
Problem: MS-Windows building VIMDLL with MSVC: SUBSYSTEM is not set.
Solution: Invert condition. (Ken Takata, closes #4422)
Files: src/Make_mvc.mak

Patch 8.1.1381
Problem: MS-Windows: missing build dependency.
Solution: Make gui_dwrite.cpp depend on gui_dwrite.h. (Ken Takata,

closes #4423)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.1.1382
Problem: Error when editing test file.
Solution: Remove part of modeline.
Files: src/testdir/test_vimscript.vim, src/testdir/test49.vim,

src/testdir/test49.in

Patch 8.1.1383
Problem: Warning for size_t/int mixup.
Solution: Change type. (Mike Williams)
Files: src/search.c

Patch 8.1.1384
Problem: Using "int" for alloc() often results in compiler warnings.
Solution: Use "size_t" and remove type casts. Remove alloc_check(), Vim

only works with 32 bit ints anyway.
Files: src/misc2.c, src/proto/misc2.pro, src/change.c, src/ex_cmds.c,

src/netbeans.c, src/autocmd.c, src/buffer.c, src/change.c,
src/channel.c, src/charset.c, src/debugger.c, src/dict.c,
src/diff.c, src/digraph.c, src/edit.c, src/eval.c, src/evalfunc.c,
src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,
src/ex_getln.c, src/fileio.c, src/findfile.c, src/fold.c,
src/getchar.c, src/gui.c, src/gui_at_fs.c, src/gui_gtk.c,
src/gui_gtk_x11.c, src/gui_motif.c, src/gui_w32.c, src/hashtab.c,
src/if_cscope.c, src/if_perlsfio.c, src/if_python3.c,
src/if_xcmdsrv.c, src/indent.c, src/insexpand.c, src/main.c,
src/mbyte.c, src/memfile.c, src/memline.c, src/menu.c,
src/message.c, src/misc1.c, src/misc2.c, src/netbeans.c,
src/ops.c, src/option.c, src/os_amiga.c, src/os_mswin.c,
src/os_unix.c, src/os_vms.c, src/os_win32.c, src/quickfix.c,
src/regexp.c, src/screen.c, src/spell.c, src/spellfile.c,
src/syntax.c, src/term.c, src/undo.c, src/usercmd.c,
src/userfunc.c, src/version.c, src/winclip.c

Patch 8.1.1385
Problem: Signed/unsigned compiler warning.
Solution: Use STRLEN() instead of strlen().

version8.txt — 3364

Files: src/fileio.c

Patch 8.1.1386
Problem: Unnecessary type casts for lalloc().
Solution: Remove type casts. Change lalloc(size, TRUE) to alloc(size).
Files: src/buffer.c, src/change.c, src/channel.c, src/diff.c, src/edit.c,

src/eval.c, src/ex_cmds.c, src/ex_getln.c, src/fileio.c,
src/getchar.c, src/gui_mac.c, src/insexpand.c, src/gui_w32.c,
src/gui_x11.c, src/menu.c, src/netbeans.c, src/ops.c,
src/os_mswin.c, src/os_amiga.c, src/os_qnx.c, src/os_unix.c,
src/os_win32.c, src/popupmnu.c, src/quickfix.c, src/regexp.c,
src/regexp_nfa.c, src/screen.c, src/search.c, src/sign.c,
src/spell.c, src/spellfile.c, src/syntax.c, src/tag.c,
src/terminal.c, src/textprop.c, src/ui.c, src/undo.c,
src/userfunc.c, src/winclip.c, src/window.c

Patch 8.1.1387
Problem: Calling prop_add() in an empty buffer doesn't work. (Dominique

Pelle)
Solution: Open the memline before adding a text property. (closes #4412)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.1.1388
Problem: Errors when calling prop_remove() for an unloaded buffer.
Solution: Bail out when the buffer is not loaded. Add a few more tests for

failing when the buffer number is invalid.
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.1.1389
Problem: Changes are not flushed when end and start overlap. (Paul Jolly)
Solution: When end of a previous changes overlaps with start of a new

change, first flush listeners.
Files: src/change.c, src/testdir/test_listener.vim

Patch 8.1.1390
Problem: Search stats are off when using count or offset.
Solution: Recompute the stats when needed. (Masato Nishihata, closes #4410)
Files: src/testdir/test_search_stat.vim, src/search.c

Patch 8.1.1391
Problem: No popup window support.
Solution: Add initial code for popup windows. Add the 'wincolor' option.
Files: Filelist, runtime/doc/popup.txt, runtime/doc/options.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms,
src/Makefile, src/autocmd.c, src/buffer.c, src/ex_cmds.h,
src/ex_cmdidxs.h, src/proto/buffer.pro, src/eval.c src/evalfunc.c
src/feature.h, src/globals.h, src/option.c, src/option.h,
src/popupwin.c, src/proto.h, src/proto/popupwin.pro,
src/proto/window.pro, src/screen.c, src/structs.h, src/terminal.c,
src/testdir/Make_all.mak, src/testdir/dumps/Test_popupwin_01.dump,
src/testdir/test_popupwin.vim, src/vim.h, src/window.c

Patch 8.1.1392 (after 8.1.1391)
Problem: Build failure in tiny version.
Solution: Define ex_popupclear to ex_ni if not implemented. Add UNUSED.
Files: src/ex_docmd.c, src/window.c

Patch 8.1.1393
Problem: Unnecessary type casts.
Solution: Remove type casts from alloc() and lalloc() calls. (Mike Williams)

version8.txt — 3365

Files: src/channel.c, src/crypt.c, src/dict.c, src/dosinst.c,
src/evalfunc.c, src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c,
src/ex_getln.c, src/fileio.c, src/findfile.c, src/if_ole.cpp,
src/if_py_both.h, src/list.c, src/message.c, src/misc1.c,
src/misc2.c, src/ops.c, src/os_vms.c, src/os_win32.c,
src/quickfix.c, src/regexp_nfa.c, src/screen.c, src/search.c,
src/sign.c, src/syntax.c, src/tag.c, src/term.c, src/terminal.c,
src/textprop.c

Patch 8.1.1394
Problem: Not restoring t_F2 in registers test.
Solution: Assign to &t_F2 instead of t_F2. (Andy Massimino, closes #4434)
Files: src/testdir/test_registers.vim

Patch 8.1.1395
Problem: Saving for undo may access invalid memory. (Dominique Pelle)
Solution: Set ml_line_len also when returning a constant string.
Files: src/memline.c, src/testdir/test_textprop.vim

Patch 8.1.1396
Problem: 'wincolor' does not apply to lines below the buffer.
Solution: Also apply 'wincolor' to the "~" lines and the number column.
Files: src/screen.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_wincolor_01.dump

Patch 8.1.1397
Problem: Build fails in tiny version.
Solution: Always define hl_combine_attr().
Files: src/syntax.c

Patch 8.1.1398
Problem: Duplicate line in MSVC build file.
Solution: Remove the line. (Ken Takata, closes #4436)
Files: src/Make_mvc.mak

Patch 8.1.1399
Problem: Popup windows not adjusted when switching tabs.
Solution: Save and restore first_tab_popupwin. Fix closing a tabpage.
Files: src/window.c, src/popupwin.c, src/proto/popupwin.pro,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_02.dump,
src/testdir/dumps/Test_popupwin_03.dump,
src/testdir/dumps/Test_popupwin_04.dump

Patch 8.1.1400
Problem: Using global pointer for tab-local popups is clumsy.
Solution: Use the pointer in tabpage_T.
Files: src/popupwin.c, src/globals.h, src/eval.c, src/screen.c,

src/window.c

Patch 8.1.1401
Problem: Misspelled mkspellmem as makespellmem.
Solution: Drop duplicate help entry, fix test. (Naruhiko Nishino, Yasuhiro

Matsumoto, closes #4437)
Files: runtime/doc/options.txt, src/testdir/test_modeline.vim

Patch 8.1.1402
Problem: "timer" option of popup windows not supported.
Solution: Implement the "timer" option. (Yasuhiro Matsumoto, closes #4439)
Files: src/structs.h, src/testdir/test_popupwin.vim, src/popupwin.c,

version8.txt — 3366

src/window.c, runtime/doc/popup.txt

Patch 8.1.1403
Problem: Cannot build without the timer feature.
Solution: Add #ifdef.
Files: src/structs.h, src/window.c, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.1.1404
Problem: Cannot change the patch level when building with NSIS.
Solution: Use $PATCHLEVEL if defined. (Christian Brabandt)
Files: nsis/gvim.nsi

Patch 8.1.1405
Problem: "highlight" option of popup windows not supported.
Solution: Implement the "highlight" option.
Files: src/option.c, src/proto/option.pro, src/diff.c src/popupwin.c,

runtime/doc/popup.txt, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_01.dump,
src/testdir/dumps/Test_popupwin_03.dump

Patch 8.1.1406
Problem: popup_hide() and popup_show() not implemented yet.
Solution: Implement the functions.
Files: src/popupwin.c, src/proto/popupwin.pro, src/evalfunc.c,

src/structs.h, runtime/doc/popup.txt, src/screen.c, src/vim.h,
src/testdir/test_popupwin.vim

Patch 8.1.1407
Problem: Popup_create() does not support text properties.
Solution: Support the third form of the text argument.
Files: src/textprop.c, src/proto/textprop.pro, src/popupwin.c,

src/testdir/test_popupwin.vim, src/screen.c,
src/testdir/dumps/Test_popupwin_02.dump,
src/testdir/dumps/Test_popupwin_03.dump,
src/testdir/dumps/Test_popupwin_04.dump,
runtime/doc/popup.txt

Patch 8.1.1408
Problem: PFL_HIDDEN conflicts with system header file. (Ken Takata)
Solution: Rename to POPF_HIDDEN.
Files: src/popupwin.c, src/screen.c, src/vim.h

Patch 8.1.1409
Problem: Coverity warns for using uninitialized memory.
Solution: Add a condition to clearing the growarray.
Files: src/json.c

Patch 8.1.1410
Problem: Popup_move() is not implemented yet.
Solution: Implement it. (Yasuhiro Matsumoto, closes #4441) Improve the

positioning and resizing.
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/screen.c, src/structs.h, src/proto/popupwin.pro,
src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_05.dump

Patch 8.1.1411
Problem: Coverity warns for divide by zero.
Solution: Make sure width is larger than zero.

version8.txt — 3367

Files: src/charset.c

Patch 8.1.1412
Problem: Test 30 is old style.
Solution: Turn it into a new style test. (Yegappan Lakshmanan, closes #4440)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test30.in, src/testdir/test30.ok,
src/testdir/test_fileformat.vim

Patch 8.1.1413
Problem: Error when the drive of the swap file was disconnected.
Solution: Try closing and re-opening the swap file. (partly by Joe Orost,

closes #4378)
Files: src/memfile.c, src/structs.h, src/testdir/test_startup.vim

Patch 8.1.1414
Problem: Alloc() returning "char_u *" causes a lot of type casts.
Solution: Have it return "void *". (Mike Williams) Define ALLOC_ONE() to

check the simple allocations.
Files: src/autocmd.c, src/blob.c, src/blowfish.c, src/buffer.c,

src/change.c, src/channel.c, src/crypt.c, src/crypt_zip.c,
src/dict.c, src/diff.c, src/eval.c, src/evalfunc.c, src/ex_cmds.c,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c,
src/fileio.c, src/findfile.c, src/getchar.c, src/gui_gtk.c,
src/gui_gtk_x11.c, src/gui_mac.c, src/gui_motif.c,
src/gui_photon.c, src/gui_w32.c, src/gui_x11.c, src/hardcopy.c,
src/hashtab.c, src/if_cscope.c, src/if_mzsch.c, src/if_perlsfio.c,
src/if_py_both.h, src/if_python3.c, src/if_xcmdsrv.c,
src/insexpand.c, src/list.c, src/mark.c, src/mbyte.c,
src/memfile.c, src/memfile_test.c, src/memline.c, src/message.c,
src/misc2.c, src/netbeans.c, src/normal.c, src/ops.c,
src/option.c, src/os_amiga.c, src/os_mac_conv.c, src/os_mswin.c,
src/os_unix.c, src/os_vms.c, src/os_win32.c, src/popupmnu.c,
src/proto/misc2.pro, src/quickfix.c, src/regexp.c,
src/regexp_nfa.c, src/screen.c, src/search.c, src/sign.c,
src/spell.c, src/spellfile.c, src/syntax.c, src/tag.c, src/term.c,
src/terminal.c, src/textprop.c, src/ui.c, src/undo.c,
src/userfunc.c, src/version.c, src/winclip.c, src/window.c,
src/vim.h, src/testdir/test_cscope.vim

Patch 8.1.1415 (after 8.1.1414)
Problem: Build error in MS-Windows GUI.
Solution: Fix the LALLOC_MULT() argument.
Files: src/gui_w32.c

Patch 8.1.1416
Problem: Popup_getposition() not implemented yet.
Solution: Implement it. (Yasuhiro Matsumoto, closes #4449)
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim

Patch 8.1.1417
Problem: MS-Windows: resolve() does not resolve all components of the path.

(David Briscoe)
Solution: Do not bail out for a reparse point. (Yasuhiro Matsumoto,

closes #4211, closes #4447)
Files: src/os_mswin.c, src/testdir/test_functions.vim

Patch 8.1.1418
Problem: Win_execute() is not implemented yet.

version8.txt — 3368

Solution: Implement it.
Files: src/evalfunc.c, src/popupwin.c, src/testdir/test_execute_func.vim,

runtime/doc/popup.txt, runtime/doc/eval.txt

Patch 8.1.1419
Problem: Listener callbacks may be called recursively.
Solution: Set "updating_screen" while listener callbacks are invoked.
Files: src/change.c, src/screen.c, src/proto/screen.pro, src/ui.c

Patch 8.1.1420
Problem: Popup window size only uses first line length.
Solution: Use the longest line. (Ben Jackson, closes #4451) Also deal with

wrapping lines.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1421
Problem: Drawing "~" line in popup window.
Solution: Just draw text in the last line of the popup window.
Files: src/screen.c, src/structs.h, src/popupwin.c,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_05.dump,
src/testdir/dumps/Test_popupwin_06.dump

Patch 8.1.1422
Problem: Popup_getoptions() not implemented yet.
Solution: Implement it. (closes #4452)
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim

Patch 8.1.1423
Problem: Popup windows use options from current window and buffer.
Solution: Clear all local options when creating a popup window.
Files: src/popupwin.c, src/option.c, src/proto/option.pro,

src/testdir/test_popupwin.vim

Patch 8.1.1424
Problem: Crash when popup menu is deleted while waiting for char.
Solution: Bail out when pum_array was cleared.
Files: src/popupmnu.c

Patch 8.1.1425
Problem: Win_execute() does not set window pointers properly.
Solution: Use switch_win_noblock(). Also execute autocommands in a popup

window.
Files: src/window.c, src/proto/window.pro, src/evalfunc.c, src/autocmd.c

Patch 8.1.1426
Problem: No test for syntax highlight in popup window.
Solution: Add a screenshot test. Update associated documentation. Avoid

'buftype' being reset by setbufvar().
Files: runtime/doc/eval.txt, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_10.dump,
src/testdir/dumps/Test_popupwin_11.dump

Patch 8.1.1427 (after 8.1.1426)
Problem: Popup window screenshot test fails.
Solution: Add missing change to popup window code.
Files: src/popupwin.c

Patch 8.1.1428

version8.txt — 3369

Problem: Popup_atcursor() not implemented yet.
Solution: Implement it. (Yasuhiro Matsumoto, closes #4456)
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim

Patch 8.1.1429
Problem: "pos" option of popup window not supported yet.
Solution: Implement the option. Rename popup_getposition() to

popup_getpos().
Files: src/structs.h, src/popupwin.c, src/proto/popupwin.pro,

runtime/doc/popup.txt

Patch 8.1.1430
Problem: Popup window option "wrap" not supported.
Solution: Implement it.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_wrap.dump,
src/testdir/dumps/Test_popupwin_nowrap.dump

Patch 8.1.1431
Problem: Popup window listed as "Scratch".
Solution: List them as "Popup".
Files: src/buffer.c, src/popupwin.c, src/testdir/test_popupwin.vim,

runtime/doc/popup.txt, runtime/doc/windows.txt

Patch 8.1.1432 (after 8.1.1429)
Problem: Can't build with eval feature.
Solution: Add missing rename.
Files: src/evalfunc.c

Patch 8.1.1433
Problem: Win_execute() may leave popup window focused, eventually leading

to a crash. (Bjorn Linse)
Solution: When previous window was closed, go to the first window.
Files: src/window.c, src/testdir/test_popupwin.vim

Patch 8.1.1434
Problem: Test 3 is old style.
Solution: Turn into a new style test. (Yegappan Lakshmanan, closes #4460)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test3.in, src/testdir/test3.ok,
src/testdir/test_cindent.vim

Patch 8.1.1435
Problem: Memory usage test is a bit too flaky.
Solution: Adjust the tolerances a bit. (Christian Brabandt)
Files: src/testdir/test_memory_usage.vim

Patch 8.1.1436
Problem: Writefile test fails when run under /tmp.
Solution: Adjust 'backupskip'. (Kenta Sato, closes #4462)
Files: src/testdir/test_writefile.vim

Patch 8.1.1437
Problem: Code to handle callbacks is duplicated.
Solution: Add callback_T and functions to deal with it.
Files: src/structs.h, src/evalfunc.c, src/proto/evalfunc.pro,

src/change.c, src/channel.c, src/proto/channel.pro, src/buffer.c,
src/userfunc.c, src/proto/userfunc.pro, src/eval.c,
src/ex_cmds2.c, src/popupwin.c

version8.txt — 3370

Patch 8.1.1438
Problem: Some commands cause trouble in a popup window.
Solution: Add NOT_IN_POPUP_WINDOW.
Files: src/macros.h, src/popupwin.c, src/proto/popupwin.pro,

src/ex_docmd.c, src/ex_cmds2.c, src/window.c,
src/testdir/test_popupwin.vim

Patch 8.1.1439
Problem: Json_encode() is very slow for large results.
Solution: In the growarray use a growth of at least 50%. (Ken Takata,

closes #4461)
Files: src/misc2.c

Patch 8.1.1440
Problem: Win_execute() test fails.
Solution: Adjust the expected error number. Move to popup test.
Files: src/testdir/test_execute_func.vim, src/testdir/test_popupwin.vim

Patch 8.1.1441
Problem: Popup window filter not yet implemented.
Solution: Implement the popup filter.
Files: src/structs.h, runtime/doc/popup.txt, src/popupwin.c,

src/proto/popupwin.pro, src/window.c, src/getchar.c, src/screen.c,
src/misc2.c, src/proto/misc2.pro, src/vim.h,
src/testdir/test_popupwin.vim

Patch 8.1.1442
Problem: Popup windows not considered when the Vim window is resized.

(Ben Jackson)
Solution: Reallocate the w_lines structure. (closes #4467)
Files: src/screen.c

Patch 8.1.1443
Problem: Popup window padding and border not implemented yet.
Solution: Implement padding and border. Add core position and size to

popup_getpos().
Files: src/structs.h, src/popupwin.c, src/screen.c,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_20.dump, runtime/doc/popup.txt

Patch 8.1.1444
Problem: Not using double line characters for popup border.
Solution: Use double line characters if using utf-8.
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_21.dump

Patch 8.1.1445
Problem: Popup window border highlight not implemented yet.
Solution: Implement the "borderhighlight" option.
Files: src/structs.h, src/popupwin.c, src/window.c, src/screen.c,

src/testdir/test_popupwin.vim, runtime/doc/popup.txt,
src/testdir/dumps/Test_popupwin_22.dump

Patch 8.1.1446
Problem: Popup window callback not implemented yet.
Solution: Implement the callback.
Files: runtime/doc/popup.txt, src/popupwin.c, src/structs.h,

src/evalfunc.c, src/window.c, src/testdir/test_popupwin.vim

version8.txt — 3371

Patch 8.1.1447
Problem: Not allowed to create an empty popup.
Solution: Remove restriction that there is some text. (closes #4470)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1448
Problem: Statusline is sometimes drawn on top of popup.
Solution: Redraw popups after the statusline. (Naruhiko Nishino,

closes #4468)
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_behind.dump

Patch 8.1.1449
Problem: Popup text truncated at end of screen.
Solution: Move popup left if needed. Add the "fixed" property to disable

that. (Ben Jackson, closes #4466)
Files: runtime/doc/popup.txt, src/popupwin.c, src/structs.h,

src/testdir/test_popupwin.vim

Patch 8.1.1450
Problem: Popup window positioning wrong when using padding or borders.
Solution: Fix computing the position.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_corners.dump

Patch 8.1.1451
Problem: CTRL-L does not clear screen with a popup window.
Solution: Do not change the type to NOT_VALID. Redraw all windows.

(closes #4471)
Files: src/screen.c

Patch 8.1.1452
Problem: Line and col property of popup windows not properly checked.
Solution: Check for "+" or "-" sign.
Files: src/popupwin.c, src/dict.c, src/proto/dict.pro,

src/window.c, src/testdir/test_popupwin.vim

Patch 8.1.1453
Problem: Popup window "moved" property not implemented yet.
Solution: Implement it.
Files: src/main.c, src/edit.c, src/gui.c, src/globals.h, src/structs.h,

src/screen.c, src/popupwin.c, src/proto/popupwin.pro,
src/testdir/test_popupwin.vim, runtime/doc/popup.txt

Patch 8.1.1454
Problem: Build failure without the conceal feature.
Solution: Remove #ifdef.
Files: src/autocmd.c

Patch 8.1.1455
Problem: Popup_atcursor() not completely implemented.
Solution: Add the default for the "moved" property.
Files: src/popupwin.c, src/normal.c, src/vim.h,

src/testdir/test_popupwin.vim

Patch 8.1.1456
Problem: WinBar not redrawn after scrolling one line.
Solution: Exclude the winbar height when deciding what to redraw.

(closes #4473)
Files: src/screen.c, src/testdir/test_winbar.vim

version8.txt — 3372

Patch 8.1.1457
Problem: Cannot reuse a buffer when loading a screen dump.
Solution: Add the "bufnr" option.
Files: runtime/doc/eval.txt, src/structs.h, src/channel.c,

src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.1458
Problem: Crash when using gtags. (issue #4102)
Solution: Check for negative row or col in screen_puts_len(). (Christian

Brabandt)
Files: src/screen.c

Patch 8.1.1459
Problem: Popup window border looks bad when 'ambiwidth' is "double".

(Yasuhiro Matsumoto)
Solution: Only use line drawing characters when 'ambiwidth' is "single".

(Ken Takata, closes #4477)
Files: src/screen.c

Patch 8.1.1460
Problem: Popup window border characters may be wrong.
Solution: Reset the border characters for each popup. Correct use of

'ambiwidth'.
Files: src/screen.c

Patch 8.1.1461
Problem: Tests do not run or are not reliable on some systems.
Solution: Use "findstr" instead of "grep" on MS-Windows. Clear

PROMPT_COMMAND in the terminal test. Delete temp file. Wait for
output after executing a debug command. (Yegappan Lakshmanan,
closes #4479)

Files: src/testdir/test_debugger.vim, src/testdir/test_environ.vim,
src/testdir/test_filetype.vim, src/testdir/test_source.vim,
src/testdir/test_terminal.vim

Patch 8.1.1462
Problem: MS-Windows: using special character requires quoting.
Solution: Add quotes. (Ken Takata)
Files: src/testdir/test_environ.vim

Patch 8.1.1463
Problem: Gcc warns for uninitialized variable.
Solution: Put usage inside "if". (Ken Takata)
Files: src/textprop.c

Patch 8.1.1464
Problem: Only 4-digit rgb termresponse is recognized.
Solution: Also recognize 2-digit rgb response. (closes #4486)
Files: src/term.c, src/test_termcodes.vim

Patch 8.1.1465
Problem: Allocating wrong amount of memory. (Yegappan Lakshmanan)
Solution: Use sizeof() for right type of struct.
Files: src/memfile_test.c

Patch 8.1.1466
Problem: Not updating priority on existing sign.
Solution: Set the sign priority. Add a test. (Yegappan Lakshmanan)
Files: src/sign.c, src/testdir/test_signs.vim, runtime/doc/eval.txt,

version8.txt — 3373

runtime/doc/sign.txt

Patch 8.1.1467 (after 8.1.1465)
Problem: Cscope test fails.
Solution: Update expected text.
Files: src/testdir/test_cscope.vim

Patch 8.1.1468
Problem: The generated desktop files may be invalid.
Solution: Check validity with desktop-file-validate. (Christian Brabandt,

Will Thompson, closes #4480)
Files: src/po/Makefile

Patch 8.1.1469
Problem: No test for checking the cursor style response.
Solution: Add a simple test. Also include the missing part of 8.1.1464.
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.1.1470
Problem: New Unicode character U+32FF missing from double-width table.
Solution: Add the character.
Files: src/mbyte.c

Patch 8.1.1471
Problem: 'background' not correctly set for 2-digit rgb termresponse.
Solution: Adjust what digit to use. (closes #4495)
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.1.1472
Problem: Add_termcap_entry() is not tested.
Solution: Add a simple test.
Files: src/testdir/test_termcodes.vim

Patch 8.1.1473
Problem: New resolve() implementation causes problem for plugins.
Solution: Only resolve a reparse point after checking it is needed. (Ken

Takata, closes #4492)
Files: src/os_mswin.c, src/testdir/test_functions.vim

Patch 8.1.1474
Problem: 'ttybuiltin' is not tested.
Solution: At least test that it doesn't break things.
Files: src/testdir/test_termcodes.vim

Patch 8.1.1475
Problem: Search string not displayed when 'rightleft' is set.
Solution: Clear the right part of the old text. (closes #4488, closes #4489)
Files: src/search.c, src/testdir/test_search.vim

Patch 8.1.1476
Problem: No statistics displayed after running tests.
Solution: Summarize the test results. (Christian Brabandt, closes #4391)

Also make it possible to report a skipped file.
Files: src/Makefile, src/testdir/Makefile, src/testdir/summarize.vim,

src/testdir/runtest.vim, src/testdir/test_arabic.vim,
src/testdir/test_autochdir.vim, src/testdir/test_balloon.vim

Patch 8.1.1477
Problem: Test summary fails in the tiny version.
Solution: set 'nocompatible'.

version8.txt — 3374

Files: Filelist, src/testdir/summarize.vim

Patch 8.1.1478
Problem: Still an error when running tests with the tiny version.
Solution: Do not try reading test.log
Files: src/testdir/Makefile, src/testdir/summarize.vim

Patch 8.1.1479
Problem: Change included for debugging only.
Solution: Restore the REDIR_TEST_TO_NULL line.
Files: src/testdir/Makefile

Patch 8.1.1480
Problem: Desktop file check doesn't run on CI.
Solution: Install the desktop-file-utils packages. (Christian Brabandt,

closes #4498)
Files: .travis.yml

Patch 8.1.1481
Problem: Length for two-digit rgb termresponse is off by one.
Solution: Adjust the length. (closes #4494)
Files: src/term.c

Patch 8.1.1482
Problem: No test for wincol() depending on the 'number' option.
Solution: Add a couple of tests. (Christian Brabandt, closes #4500)
Files: src/testdir/test_gui.vim

Patch 8.1.1483
Problem: Skipped tests are not properly listed.
Solution: Throw a "Skipped" exception instead of using ":finish" or ":return".
Files: src/testdir/test_breakindent.vim, src/testdir/test_cdo.vim,

src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_balloon.vim, src/testdir/test_conceal.vim,
src/testdir/test_debugger.vim, src/testdir/test_diffmode.vim,
src/testdir/test_fold.vim, src/testdir/test_highlight.vim,
src/testdir/test_popup.vim, src/testdir/test_popupwin.vim,
src/testdir/test_search.vim, src/testdir/test_startup.vim,
src/testdir/test_startup_utf8.vim, src/testdir/test_syntax.vim,
src/testdir/test_tabpage.vim, src/testdir/test_termencoding.vim,
src/testdir/test_terminal.vim, src/testdir/test_textprop.vim,
src/testdir/test_timers.vim

Patch 8.1.1484
Problem: Some tests are slow.
Solution: Add timing to the test messages. Fix double free when quitting in

VimLeavePre autocmd.
Files: src/testdir/runtest.vim, src/eval.c

Patch 8.1.1485
Problem: Double free when garbage_collect() is used in autocommand.
Solution: Have garbage collection also set the copyID in funccal_stack.
Files: src/eval.c, src/userfunc.c

Patch 8.1.1486
Problem: A listener change is merged even when it adds a line. (Paul Jolly)
Solution: Do not merge a change that adds or removes a line. (closes #4490)
Files: src/change.c, src/testdir/test_listener.vim

Patch 8.1.1487

version8.txt — 3375

Problem: Older msgfmt cannot generate proper .desktop file.
Solution: Add a configure check to not use this msgfmt version. (Ken Takata)
Files: src/configure.ac, src/auto/configure

Patch 8.1.1488
Problem: Summary of tests has incorrect failed count.
Solution: Add to the failed count instead of setting it. (Christian Brabandt)
Files: src/testdir/summarize.vim

Patch 8.1.1489
Problem: Sign order wrong when priority was changed.
Solution: Reorder signs when priority is changed. (Yegappan Lakshmanan,

closes #4502)
Files: src/quickfix.c, src/sign.c, src/testdir/test_signs.vim

Patch 8.1.1490
Problem: When a single test fails the exit code is not set. (Daniel Hahler)
Solution: Add an exit command. (closes #4506)
Files: src/testdir/Makefile

Patch 8.1.1491
Problem: When skipping over code after an exception was thrown expression

evaluation is aborted after a function call. (Ingo Karkat)
Solution: Do not fail if not executing the expression. (closes #4507)
Files: src/eval.c, src/testdir/test_eval_stuff.vim

Patch 8.1.1492
Problem: MS-Windows: when "!" is in 'guioptions' ":!start" fails.
Solution: Do not use a terminal window when the shell command begins with

"!start". (Yasuhiro Matsumoto, closes #4504)
Files: src/misc2.c, src/os_win32.c

Patch 8.1.1493
Problem: Redrawing with popups is slow and causes flicker.
Solution: Avoid clearing and redrawing using a zindex mask.
Files: src/globals.h, src/screen.c, src/proto/screen.pro, src/popupwin.c,

src/popupmnu.c

Patch 8.1.1494 (after 8.1.1493)
Problem: Build failure.
Solution: Add missing changes.
Files: src/structs.h

Patch 8.1.1495 (after 8.1.1494)
Problem: Memory access error.
Solution: Use the correct size for clearing the popup mask.
Files: src/screen.c

Patch 8.1.1496
Problem: Popup window height is not recomputed.
Solution: Recompute the height when needed.
Files: src/popupwin.c, src/testdir/dumps/Test_popupwin_06.dump

Patch 8.1.1497
Problem: Accessing memory beyond allocated space.
Solution: Check column before accessing popup mask.
Files: src/screen.c

Patch 8.1.1498
Problem: ":write" increments b:changedtick even though nothing changed.

version8.txt — 3376

(Daniel Hahler)
Solution: Only increment b:changedtick if the modified flag is reset.
Files: src/change.c, src/proto/change.pro, runtime/doc/eval.txt,

src/buffer.c, src/ex_cmds2.c, src/fileio.c, src/memline.c,
src/undo.c

Patch 8.1.1499
Problem: Ruler not updated after popup window was removed.
Solution: use popup_mask in screen_puts().
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_07.dump,
src/testdir/dumps/Test_popupwin_08.dump

Patch 8.1.1500
Problem: Wrong shell command when building with VIMDLL and "!" in

'guioptions'.
Solution: Add check for GUI in use. (Ken Takata)
Files: src/misc2.c

Patch 8.1.1501
Problem: New behavior of b:changedtick not tested.
Solution: Add a few test cases. (Daniel Hahler)
Files: src/testdir/test_changedtick.vim

Patch 8.1.1502
Problem: Cannot play any sound.
Solution: Use libcanberra if available. Add sound functions.
Files: src/configure.ac, src/auto/configure, src/config.h.in,

src/Makefile, src/sound.c, src/proto/sound.pro, src/proto.h,
src/evalfunc.c, src/feature.h, runtime/doc/eval.txt, Filelist,
src/version.c, src/testdir/test_sound.vim, src/testdir/silent.wav,
src/testdir/Make_all.mak, .travis.yml

Patch 8.1.1503
Problem: Sound test fails on Travis.
Solution: Set AUDIODEV to "null".
Files: .travis.yml

Patch 8.1.1504
Problem: Sound test still fails on Travis.
Solution: Add more lines to the install section.
Files: .travis.yml

Patch 8.1.1505
Problem: Running "make clean" twice gives errors.
Solution: Add "-f" to "rm". (closes #4516)
Files: src/testdir/Makefile

Patch 8.1.1506
Problem: Syntax error in Travis config.
Solution: Set AUDIODEV in another section.
Files: .travis.yml

Patch 8.1.1507
Problem: Sound test still fails on Travis.
Solution: Try another dummy sound approach.
Files: .travis.yml

Patch 8.1.1508
Problem: Sound keeps failing on Travis.

version8.txt — 3377

Solution: Throw a skipped exception in the test.
Files: src/testdir/test_sound.vim

Patch 8.1.1509
Problem: Cmdline_row can become negative, causing a crash.
Solution: Make sure cmdline_row does not become negative. (closes #4102)
Files: src/misc1.c

Patch 8.1.1510
Problem: A plugin cannot easily expand a command like done internally.
Solution: Add the expandcmd() function. (Yegappan Lakshmanan, closes #4514)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/test_expand.vim

Patch 8.1.1511
Problem: Matches in a popup window are not displayed properly.
Solution: Do display matches in a popup window. (closes #4517)
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_matches.dump

Patch 8.1.1512
Problem: ch_evalexpr() hangs when used recursively. (Paul Jolly)
Solution: Change ch_block_id from a single number to a list of IDs to wait

on.
Files: src/channel.c, src/structs.h

Patch 8.1.1513
Problem: All popup functionality is in functions, except :popupclear.
Solution: Add popup_clear() for consistency. Also rename sound_stopall() to

sound_clear().
Files: src/ex_cmds.h, src/ex_cmdidxs.h, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro, src/sound.c, src/proto/sound.pro,
src/testdir/test_popupwin.vim src/testdir/test_sound.vim,
runtime/doc/eval.txt runtime/doc/popup.txt

Patch 8.1.1514 (after 8.1.1492)
Problem: MS-Windows: wrong shell command with ! in 'guioptions'.
Solution: Do not check for ! in 'guioptions' when applying 'shellxquote'.

(Yasuhiro Matsumoto, closes #4519)
Files: src/misc2.c

Patch 8.1.1515
Problem: Memory leak reported for sound when build with EXITFREE.
Solution: Free sound stuff when exiting.
Files: src/misc2.c

Patch 8.1.1516
Problem: Time reported for a test measured wrong.
Solution: Move the computation to the end of RunTheTest(). (Ozaki Kiichi,

closes #4520)
Files: src/testdir/runtest.vim

Patch 8.1.1517
Problem: When a popup changes all windows are redrawn.
Solution: Only update the lines that were affected. Add a file for

profiling popup windows efficiency.
Files: src/screen.c, src/proto/screen.pro, src/ui.c, src/popupwin.c,

src/globals.h, src/testdir/popupbounce.vim, Filelist

Patch 8.1.1518

version8.txt — 3378

Problem: Crash when setting 'columns' while a popup is visible.
Solution: Recompute all positions when clearing the screen. (closes #4467)
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_04a.dump

Patch 8.1.1519
Problem: 'backupskip' may contain duplicates.
Solution: Add the P_NODUP flag. (Tom Ryder)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.1.1520
Problem: Popup windows are ignored when dealing with mouse position
Solution: Find the mouse position inside a popup window. Allow for modeless

selection.
Files: src/ui.c, src/proto/ui.pro, src/popupwin.c,

src/proto/popupwin.pro, src/screen.c, src/beval.c, src/edit.c,
src/evalfunc.c, src/gui.c, src/normal.c, src/structs.h

Patch 8.1.1521
Problem: When a popup window is closed the buffer remains.
Solution: Wipe out the buffer.
Files: src/window.c, src/testdir/test_popupwin.vim

Patch 8.1.1522
Problem: Popup_notification() not implemented yet.
Solution: Implement it.
Files: src/popupwin.c, src/proto/popupwin.pro, src/evalfunc.c,

src/structs.h, src/testdir/test_popupwin.vim,
runtime/doc/popup.txt
src/testdir/dumps/Test_popupwin_notify_01.dump,
src/testdir/dumps/Test_popupwin_notify_02.dump

Patch 8.1.1523
Problem: Cannot show range of buffer lines in popup window.
Solution: Add the "firstline" property. (closes #4523)
Files: src/popupwin.c, src/structs.h, runtime/doc/popup.txt,

src/testdir/test_popupwin.vim,
testdir/dumps/Test_popupwin_firstline.dump

Patch 8.1.1524
Problem: Tests are silently skipped.
Solution: Throw an exception for skipped tests in more places.
Files: src/testdir/test_assert.vim, src/testdir/test_paste.vim,

src/testdir/shared.vim, src/testdir/test_crypt.vim,
src/testdir/test_cscope.vim, src/testdir/test_digraph.vim,
src/testdir/test_float_func.vim, src/testdir/test_gui.vim,
src/testdir/test_gui_init.vim, src/testdir/test_history.vim,
src/testdir/test_langmap.vim, src/testdir/test_listlbr.vim,
src/testdir/test_listlbr_utf8.vim, src/testdir/test_lua.vim,
src/testdir/test_makeencoding.vim,
src/testdir/test_matchadd_conceal.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_memory_usage.vim, src/testdir/test_menu.vim,
src/testdir/test_mksession.vim,
src/testdir/test_mksession_utf8.vim,
src/testdir/test_netbeans.vim, src/testdir/test_paste.vim,
src/testdir/test_perl.vim, src/testdir/test_profile.vim,
src/testdir/test_prompt_buffer.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_pyx2.vim,
src/testdir/test_pyx3.vim, src/testdir/test_quickfix.vim,

version8.txt — 3379

src/testdir/test_quotestar.vim, src/testdir/test_reltime.vim,
src/testdir/test_ruby.vim, src/testdir/test_sha256.vim,
src/testdir/test_shortpathname.vim, src/testdir/test_signals.vim,
src/testdir/test_signs.vim, src/testdir/test_spell.vim,
src/testdir/test_syntax.vim, src/testdir/test_tcl.vim,
src/testdir/test_termcodes.vim, src/testdir/test_terminal.vim,
src/testdir/test_terminal_fail.vim,
src/testdir/test_textobjects.vim, src/testdir/test_textprop.vim,
src/testdir/test_timers.vim, src/testdir/test_vartabs.vim,
src/testdir/test_winbar.vim, src/testdir/test_windows_home.vim,
src/testdir/test_xxd.vim

Patch 8.1.1525
Problem: Cannot move a popup window with the mouse.
Solution: Add the "drag" property and make it possible to drag a popup

window by its border.
Files: src/popupwin.c, src/proto/popupwin.pro, src/structs.h, src/ui.c,

src/window.c, src/proto/window.pro, runtime/doc/popup.txt

Patch 8.1.1526
Problem: No numerical value for the patchlevel.
Solution: Add v:versionlong.
Files: src/version.c, src/eval.c, src/vim.h, runtime/doc/eval.txt,

src/testdir/test_eval_stuff.vim

Patch 8.1.1527
Problem: When moving a popup window over the command line it is not

redrawn.
Solution: Redraw the command line. Move popup redrawing code to the popupwin

file.
Files: src/screen.c, src/proto/screen.pro, src/popupwin.c,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_drag_01.dump,
src/testdir/dumps/Test_popupwin_drag_02.dump

Patch 8.1.1528
Problem: Popup_any_visible() is unused.
Solution: Remove it.
Files: src/popupwin.c, src/proto/popupwin.pro

Patch 8.1.1529
Problem: Libcanberra is linked with even when not used.
Solution: Have configure check for libcanberra only when wanted.

(suggestions by Libor Bukata)
Files: src/feature.h, src/configure.ac, src/auto/configure, src/Makefile

Patch 8.1.1530
Problem: Travis config is not optimal.
Solution: Remove system conditions. Do not use excluding matrix. Cache OSX

results. (Ozaki Kiichi, closes #4521)
Files: .travis.yml

Patch 8.1.1531
Problem: Clipboard type name is inconsistent.
Solution: Rename VimClipboard to Clipboard_T.
Files: src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro, src/gui_mac.c,

src/proto/gui_mac.pro, src/gui_x11.c, src/proto/gui_x11.pro,
src/ops.c, src/proto/ops.pro, src/os_qnx.c, src/proto/os_qnx.pro,
src/os_unix.c, src/proto/os_unix.pro, src/ui.c, src/proto/ui.pro,
src/winclip.c, src/proto/winclip.pro, src/globals.h, src/proto.h

version8.txt — 3380

Patch 8.1.1532 (after 8.1.1531)
Problem: Build fails.
Solution: Add missing changes.
Files: src/vim.h

Patch 8.1.1533
Problem: GUI build fails on Mac.
Solution: Change VimClipboard type in non-C file.
Files: src/os_macosx.m

Patch 8.1.1534
Problem: Modeless selection in popup window selects too much.
Solution: Restrict the selection to inside of the popup window.
Files: src/vim.h, src/ui.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_select_01.dump,
src/testdir/dumps/Test_popupwin_select_02.dump

Patch 8.1.1535 (after 8.1.1534)
Problem: Popup select test fails on Mac.
Solution: Skip test if clipboard feature not available.
Files: src/testdir/test_popupwin.vim

Patch 8.1.1536 (after 8.1.1534)
Problem: Popup select test still fails on Mac.
Solution: Set 'clipboard' to "autoselect"
Files: src/testdir/test_popupwin.vim

Patch 8.1.1537
Problem: Using "tab" for popup window can be confusing.
Solution: Use "tabpage". (Hirohito Higashi, closes #4532)
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.1.1538
Problem: Cannot specify highlighting for notifications.
Solution: Use the PopupNotification group if it exists. Add a minimal width

to notifications.
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_notify_01.dump,
src/testdir/dumps/Test_popupwin_notify_02.dump

Patch 8.1.1539
Problem: Not easy to define a variable and lock it.
Solution: Add ":const". (Ryuichi Hayashida, closes #4541)
Files: runtime/doc/eval.txt, src/eval.c, src/ex_cmdidxs.h, src/ex_cmds.h,

src/proto/eval.pro, src/testdir/Make_all.mak,
src/testdir/test_const.vim

Patch 8.1.1540 (after 8.1.1539)
Problem: Cannot build without the +eval feature.
Solution: Define ex_const if needed.
Files: src/ex_docmd.c

Patch 8.1.1541
Problem: Check for ASAN is not reliable.
Solution: Check the version output. (Dominique Pelle, closes #4543)
Files: src/testdir/test_memory_usage.vim

version8.txt — 3381

Patch 8.1.1542
Problem: An OptionSet autocommand does not get enough info.
Solution: Add v:option_command, v:option_oldlocal and v:option_oldglobal.

(Latrice Wilgus, closes #4118)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt,

runtime/doc/version8.txt, src/eval.c, src/option.c, src/structs.h,
src/testdir/test_autocmd.vim, src/vim.h

Patch 8.1.1543
Problem: Const test fails with small features.
Solution: Don't unlet non-existing variables.
Files: src/testdir/test_const.vim

Patch 8.1.1544
Problem: Some balloon tests don't run when they can.
Solution: Split GUI balloon tests off into a separate file. (Ozaki Kiichi,

closes #4538) Change the feature check into a command for
consistency.

Files: Filelist, src/testdir/Make_all.mak, src/testdir/check.vim,
src/testdir/test_arabic.vim, src/testdir/test_balloon.vim,
src/testdir/test_balloon_gui.vim, src/testdir/test_crypt.vim,
src/testdir/test_cscope.vim, src/testdir/test_digraph.vim,
src/testdir/test_float_func.vim, src/testdir/test_gui.vim,
src/testdir/test_gui_init.vim, src/testdir/test_history.vim,
src/testdir/test_langmap.vim, src/testdir/test_listlbr.vim,
src/testdir/test_listlbr_utf8.vim, src/testdir/test_lua.vim,
src/testdir/test_makeencoding.vim,
src/testdir/test_matchadd_conceal.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_memory_usage.vim, src/testdir/test_menu.vim,
src/testdir/test_mksession.vim,
src/testdir/test_mksession_utf8.vim,
src/testdir/test_netbeans.vim, src/testdir/test_paste.vim,
src/testdir/test_perl.vim, src/testdir/test_popupwin.vim,
src/testdir/test_profile.vim, src/testdir/test_prompt_buffer.vim,
src/testdir/test_python2.vim, src/testdir/test_python3.vim,
src/testdir/test_pyx2.vim, src/testdir/test_pyx3.vim,
src/testdir/test_quickfix.vim, src/testdir/test_quotestar.vim,
src/testdir/test_reltime.vim, src/testdir/test_ruby.vim,
src/testdir/test_sha256.vim, src/testdir/test_shortpathname.vim,
src/testdir/test_signals.vim, src/testdir/test_signs.vim,
src/testdir/test_spell.vim, src/testdir/test_syntax.vim,
src/testdir/test_tcl.vim, src/testdir/test_termcodes.vim,
src/testdir/test_terminal.vim, src/testdir/test_terminal_fail.vim,
src/testdir/test_textobjects.vim, src/testdir/test_textprop.vim,
src/testdir/test_timers.vim, src/testdir/test_vartabs.vim,
src/testdir/test_winbar.vim, src/testdir/test_windows_home.vim,
src/testdir/test_xxd.vim

Patch 8.1.1545
Problem: When the screen is too small there is no message about that.

(Daniel Hahler)
Solution: Do not use :cquit. (closes #4534)
Files: src/testdir/runtest.vim

Patch 8.1.1546
Problem: In some tests 'tags' is set but not restored. (Daniel Hahler)
Solution: Restore 'tags'. (closes #4535)
Files: src/testdir/test_autocmd.vim, src/testdir/test_cmdline.vim,

src/testdir/test_options.vim, src/testdir/test_tagcase.vim,

version8.txt — 3382

src/testdir/test_tagjump.vim, src/testdir/test_taglist.vim

Patch 8.1.1547
Problem: Functionality of bt_nofile() is confusing.
Solution: Split into bt_nofile() and bt_nofilename().
Files: src/buffer.c, src/proto/buffer.pro, src/evalfunc.c, src/ex_cmds.c,

src/ex_docmd.c, src/fileio.c, src/popupmnu.c, src/quickfix.c

Patch 8.1.1548
Problem: Popup_dialog() is not implemented.
Solution: Implement popup_dialog() and popup_filter_yesno().
Files: src/popupwin.c, src/proto/popupwin.pro, src/evalfunc.c,

src/structs.h, src/globals.h, src/testdir/test_popupwin.vim,
runtime/doc/popup.txt

Patch 8.1.1549 (after 8.1.1547)
Problem: Quickfix test fails.
Solution: Negate result of bt_quickfix().
Files: src/quickfix.c

Patch 8.1.1550
Problem: When a popup has left padding text may be cut off.
Solution: Add the border and padding when computing the size.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_20.dump,
src/testdir/dumps/Test_popupwin_21.dump

Patch 8.1.1551
Problem: Warning for shadowing popup_dragwin. (Dominique Pelle)
Solution: Add missing change.
Files: src/ui.c

Patch 8.1.1552
Problem: Cursor position is wrong after sign column appears or disappears.

(Yegappan Lakshmanan)
Solution: Call changed_line_abv_curs() instead of changed_cline_bef_curs().
Files: src/sign.c, src/testdir/test_signs.vim,

src/testdir/dumps/Test_sign_cursor_01.dump,
src/testdir/dumps/Test_sign_cursor_02.dump

Patch 8.1.1553
Problem: Not easy to change the text in a popup window.
Solution: Add popup_settext(). (Ben Jackson, closes #4549)

Also display a space for an empty popup.
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro,
src/testdir/dumps/Test_popup_settext_01.dump,
src/testdir/dumps/Test_popup_settext_02.dump,
src/testdir/dumps/Test_popup_settext_03.dump,
src/testdir/dumps/Test_popup_settext_04.dump,
src/testdir/dumps/Test_popup_settext_05.dump,
src/testdir/dumps/Test_popup_settext_06.dump,
src/testdir/test_popupwin.vim

Patch 8.1.1554 (after 8.1.1539)
Problem: Docs and tests for :const can be improved.
Solution: Improve documentation, add a few more tests. (Ryuichi Hayashida,

closes #4551)
Files: runtime/doc/eval.txt, src/testdir/test_const.vim

version8.txt — 3383

Patch 8.1.1555
Problem: NOT_IN_POPUP_WINDOW is confusing. (Andy Massimino)
Solution: Rename to ERROR_IF_POPUP_WINDOW().
Files: src/popupwin.c, src/proto/popupwin.pro, src/macros.h,

src/ex_cmds2.c, src/ex_docmd.c, src/window.c

Patch 8.1.1556
Problem: The command displayed to show a failing screenshot does not include

the "testdir" directory.
Solution: Prefix the directory name so that it can be copy-pasted.
Files: src/testdir/screendump.vim

Patch 8.1.1557
Problem: Compiler warning for unused variables in tiny version. (Tony

Mechelynck)
Solution: Add #ifdef.
Files: src/option.c

Patch 8.1.1558
Problem: Popup_menu() and popup_filter_menu() are not implemented yet.
Solution: Implement the functions. Fix that centering didn't take the border

and padding into account.
Files: runtime/doc/popup.txt, src/popupwin.c, src/proto/popupwin.pro,

src/evalfunc.c, src/screen.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_menu_01.dump,
src/testdir/dumps/Test_popupwin_menu_02.dump,
src/testdir/dumps/Test_popupwin_menu_03.dump,
src/testdir/dumps/Test_popupwin_drag_01.dump,
src/testdir/dumps/Test_popupwin_drag_02.dump

Patch 8.1.1559
Problem: Popup window title property not implemented yet.
Solution: Implement the title property.
Files: runtime/doc/popup.txt, src/popupwin.c, src/structs.h

src/window.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_menu_01.dump,
src/testdir/dumps/Test_popupwin_menu_02.dump,
src/testdir/dumps/Test_popupwin_title.dump

Patch 8.1.1560
Problem: Popup window hidden option not implemented yet.
Solution: Implement the hidden option.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1561
Problem: Popup_setoptions() is not implemented yet.
Solution: Implement popup_setoptions(). Also add more fields to

popup_getoptions().
Files: runtime/doc/popup.txt, src/popupwin.c, src/proto/popupwin.pro,

src/dict.c, src/proto/dict.pro, src/evalfunc.c,
src/testdir/test_popupwin.vim, src/testdir/runtest.vim

Patch 8.1.1562
Problem: Popup window not always redrawn after popup_setoptions().
Solution: Force a redraw.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_23.dump

Patch 8.1.1563
Problem: Crash when using closures.

version8.txt — 3384

Solution: Set reference in varlist of funccal when running the garbage
collector. (Ozaki Kiichi, closes #4554, closes #4547)

Files: src/testdir/test_vimscript.vim, src/userfunc.c

Patch 8.1.1564
Problem: Sign column takes up space. (Adam Stankiewicz)
Solution: Optionally put signs in the number column. (Yegappan Lakshmanan,

closes #4555, closes #4515)
Files: runtime/doc/options.txt, src/option.c, src/screen.c,

src/testdir/test_signs.vim

Patch 8.1.1565
Problem: MS-Windows: no sound support.
Solution: Add sound support for MS-Windows. (Yasuhiro Matsumoto, Ken Takata,

closes #4522)
Files: runtime/doc/eval.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,

src/sound.c, src/testdir/test_sound.vim

Patch 8.1.1566
Problem: Error message when terminal closes while it is not in the current

tab.
Solution: Also set "do_set_w_closing" when using the special autocommand

window. (closes #4552)
Files: src/terminal.c

Patch 8.1.1567
Problem: Localtime_r() does not respond to $TZ changes.
Solution: If $TZ changes then call tzset(). (Tom Ryder)
Files: src/auto/configure, src/config.h.in, src/configure.ac,

src/evalfunc.c, src/memline.c, src/proto/memline.pro,
src/testdir/test_functions.vim, src/undo.c

Patch 8.1.1568 (after 8.1.1567)
Problem: Strftime() test fails on MS-Windows.
Solution: Skip the check for using the $TZ environment variable.
Files: src/testdir/test_functions.vim

Patch 8.1.1569
Problem: Cannot build with signs but without diff feature.
Solution: Move #ifdef. (Tom Ryder)
Files: src/screen.c

Patch 8.1.1570
Problem: Icon signs not displayed properly in the number column.
Solution: Display them properly. (Yegappan Lakshmanan, closes #4559)
Files: src/gui.c, src/screen.c, src/testdir/test_signs.vim

Patch 8.1.1571
Problem: textprop highlight starts too early if just after a tab.
Solution: Check if still drawing a previous character. (closes #4558)
Files: src/screen.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_textprop_tab.dump

Patch 8.1.1572 (after 8.1.1569)
Problem: Compiler warnings with tiny build. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/screen.c

Patch 8.1.1573 (after 8.1.1571)
Problem: Textprop test fails if screenshots do not work.

version8.txt — 3385

Solution: Add check for screenshots working.
Files: src/testdir/test_textprop.vim

Patch 8.1.1574
Problem: Tabpage option not yet implemented for popup window.
Solution: Implement tabpage option, also for popup_getoptions().
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.1.1575
Problem: Callbacks may be garbage collected.
Solution: Set reference in callbacks. (Ozaki Kiichi, closes #4564)
Files: src/buffer.c, src/channel.c, src/eval.c, src/ex_cmds2.c,

src/popupwin.c, src/proto/buffer.pro, src/proto/popupwin.pro,
src/terminal.c, src/testdir/test_listener.vim,
src/testdir/test_popupwin.vim, src/testdir/test_prompt_buffer.vim,
src/userfunc.c

Patch 8.1.1576
Problem: Compiler warning for unused argument.
Solution: Add "UNUSED" annotation. (Dominique Pelle, closes #4570)
Files: src/ui.c

Patch 8.1.1577
Problem: Command line redrawn for +arabic without Arabic characters.

(Dominique Pelle)
Solution: Check if there actually are any Arabic characters. Do redraw

after displaying incsearch. (closes #4569)
Files: src/ex_getln.c

Patch 8.1.1578
Problem: MS-Windows: pathdef.c should depend on build options.
Solution: Generate pathdef.c in the object directory. Fix dependencies.

(Ken Takata, closes #4565)
Files: .gitignore, .hgignore, src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.1.1579
Problem: Dict and list could be GC'ed while displaying error in a timer.

(Yasuhiro Matsumoto)
Solution: Block garbage collection when executing a timer. Add

test_garbagecollect_soon(). Add "no_wait_return" to
test_override(). (closes #4571)

Files: src/dict.c, src/testdir/test_timers.vim, src/evalfunc.c,
runtime/doc/eval.txt

Patch 8.1.1580
Problem: Cannot make part of a popup transparent.
Solution: Add the "mask" option.
Files: runtime/doc/popup.txt, src/popupwin.c, src/screen.c,

src/structs.h, src/window.c, src/ui.c, src/vim.h, src/globals.h,
src/testdir/dumps/Test_popupwin_mask_1.dump,
src/testdir/dumps/Test_popupwin_mask_2.dump

Patch 8.1.1581
Problem: Shared functions for testing are disorganised.
Solution: Group functions in script files. (Ozaki Kiichi, closes #4573)
Files: Filelist, src/testdir/screendump.vim, src/testdir/shared.vim,

src/testdir/term_util.vim, src/testdir/test_mksession.vim,
src/testdir/test_suspend.vim, src/testdir/test_terminal.vim,
src/testdir/test_timers.vim, src/testdir/view_util.vim

version8.txt — 3386

Patch 8.1.1582
Problem: Cannot build with +textprop but without +timers.
Solution: Add #ifdef. (Ola Söder, closes #4574)
Files: src/popupwin.c

Patch 8.1.1583
Problem: Set_ref_in_list() only sets ref in items.
Solution: Rename to set_ref_in_list_items() to avoid confusion.
Files: src/eval.c, src/proto/eval.pro, src/if_lua.c, src/popupwin.c,

src/userfunc.c, src/if_py_both.h

Patch 8.1.1584
Problem: The evalfunc.c file is getting too big.
Solution: Move channel and job related functions to channel.c.
Files: src/channel.c, src/evalfunc.c, src/proto/channel.pro

Patch 8.1.1585
Problem: :let-heredoc does not trim enough.
Solution: Trim indent from the contents based on the indent of the first

line. Use let-heredoc in more tests.
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_balloon.vim,

src/testdir/test_cindent.vim, src/testdir/test_const.vim,
src/testdir/test_debugger.vim, src/testdir/test_functions.vim,
src/testdir/test_goto.vim, src/testdir/test_gui.vim,
src/testdir/test_highlight.vim, src/testdir/test_join.vim,
src/testdir/test_let.vim, src/testdir/test_memory_usage.vim,
src/testdir/test_messages.vim,
src/testdir/test_mksession_utf8.vim, src/testdir/test_normal.vim,
src/testdir/test_popup.vim, src/testdir/test_popupwin.vim,
src/testdir/test_profile.vim, src/testdir/test_quickfix.vim,
src/testdir/test_xxd.vim

Patch 8.1.1586
Problem: Error number used in two places.
Solution: Renumber one. (Ken Takata)
Files: runtime/doc/popup.txt, src/popupwin.c

Patch 8.1.1587
Problem: Redraw problem when sign icons in the number column.
Solution: Clear and redraw when changing related options. Right align the

sign icon in the GUI. (Yegappan Lakshmanan, closes #4578)
Files: src/gui.c, src/option.c

Patch 8.1.1588
Problem: In :let-heredoc line continuation is recognized.
Solution: Do not consume line continuation. (Ozaki Kiichi, closes #4580)
Files: src/autocmd.c, src/digraph.c, src/eval.c, src/evalfunc.c,

src/ex_cmds.c, src/ex_cmds.h, src/ex_cmds2.c, src/ex_docmd.c,
src/ex_getln.c, src/normal.c, src/ops.c, src/proto/autocmd.pro,
src/proto/ex_cmds2.pro, src/proto/ex_docmd.pro,
src/proto/ex_getln.pro, src/proto/userfunc.pro,
src/testdir/test_let.vim, src/testdir/test_startup.vim,
src/userfunc.c

Patch 8.1.1589
Problem: Popup window does not indicate scroll position.
Solution: Add a scrollbar.
Files: runtime/doc/popup.txt, src/popupwin.c, src/structs.h,

src/testdir/test_popupwin.vim,

version8.txt — 3387

src/testdir/dumps/Test_popupwin_firstline.dump,
src/testdir/dumps/Test_popupwin_scroll_1.dump,
src/testdir/dumps/Test_popupwin_scroll_2.dump,
src/testdir/dumps/Test_popupwin_scroll_3.dump,
src/testdir/dumps/Test_popupwin_scroll_4.dump

Patch 8.1.1590
Problem: Popup window test fails.
Solution: Add "scrollbar" to expected result.
Files: src/testdir/test_popupwin.vim

Patch 8.1.1591
Problem: On error garbage collection may free memory in use.
Solution: Reset may_garbage_collect when evaluating expression mapping.

Add tests. (Ozaki Kiichi, closes #4579)
Files: src/ex_cmds2.c, src/getchar.c, src/testdir/test_mapping.vim,

src/testdir/test_timers.vim, src/testdir/test_vimscript.vim

Patch 8.1.1592
Problem: May start file dialog while exiting.
Solution: Ignore the "browse" modifier when exiting. (Ozaki Kiichi,

closes #4582)
Files: src/ex_cmds.c, src/terminal.c

Patch 8.1.1593
Problem: Filetype not detected for C++ header files without extension.
Solution: Recognize the file by the Emacs file mode. (Dmitry Ilyin,

closes #4593)
Files: runtime/scripts.vim, src/testdir/test_filetype.vim

Patch 8.1.1594
Problem: May still start file dialog while exiting.
Solution: Ignore the "browse" modifier in another place when exiting.

(Ozaki Kiichi, closes #4582)
Files: src/ex_cmds.c

Patch 8.1.1595
Problem: MS-Windows with VIMDLL: colors wrong in the GUI.
Solution: Do not set the terminal colors when not using the GUI. (Ken

Takata, closes #4588)
Files: src/syntax.c

Patch 8.1.1596
Problem: When resizing the screen may draw popup in wrong position. (Masato

Nishihata)
Solution: Check the popup is not outside of the screen. (fixes #4592)
Files: src/popupwin.c

Patch 8.1.1597
Problem: Cannot scroll a popup window with the mouse.
Solution: If the popup window has a scrollbar let the mouse scroll wheel

scroll the window.
Files: runtime/doc/popup.txt, src/normal.c, src/popupwin.c, src/screen.c,

src/testdir/dumps/Test_popupwin_firstline.dump,
src/testdir/dumps/Test_popupwin_scroll_1.dump,
src/testdir/dumps/Test_popupwin_scroll_2.dump,
src/testdir/dumps/Test_popupwin_scroll_3.dump,
src/testdir/dumps/Test_popupwin_scroll_5.dump,
src/testdir/dumps/Test_popupwin_scroll_6.dump,
src/testdir/dumps/Test_popupwin_scroll_7.dump

version8.txt — 3388

Patch 8.1.1598
Problem: Update to test file missing.
Solution: Update the popup window test file.
Files: src/testdir/test_popupwin.vim

Patch 8.1.1599
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Add a dummy assignment.
Files: src/popupwin.c, src/normal.c

Patch 8.1.1600
Problem: Cannot specify highlighting for popup window scrollbar.
Solution: Add "scrollbarhighlight" and "thumbhighlight" options.
Files: src/popupwin.c, src/structs.h, src/window.c,

src/testdir/dumps/Test_popupwin_scroll_5.dump,
src/testdir/dumps/Test_popupwin_scroll_6.dump,
src/testdir/dumps/Test_popupwin_scroll_7.dump

Patch 8.1.1601
Problem: Missing changes to popup window test file.
Solution: Add those changes.
Files: src/testdir/test_popupwin.vim

Patch 8.1.1602
Problem: Popup window cannot overflow on the left or right.
Solution: Only set the "fixed" option when it is in the dict. Set w_leftcol

to allow for the popup overflowing on the left and use it when
applying the mask.

Files: src/popupwin.c

Patch 8.1.1603
Problem: Crash when using unknown highlighting in text property.
Solution: Check for zero highlight ID.
Files: src/screen.c, src/testdir/test_textprop.vim

Patch 8.1.1604
Problem: Popup window scroll test is flaky.
Solution: Add a delay between scroll events.
Files: src/testdir/test_popupwin.vim

Patch 8.1.1605
Problem: Vim may delay processing messages on a json channel. (Pontus

Leitzler)
Solution: Try parsing json when checking if there is readahead.
Files: src/channel.c

Patch 8.1.1606
Problem: On a narrow screen ":hi" output is confusing.
Solution: Insert a space between highlight group name and "xxx". (Masato

Nishihaga, closes #4599)
Files: src/syntax.c, src/testdir/test_highlight.vim

Patch 8.1.1607
Problem: Popup window scrollbar does not respond to click.
Solution: Mouse click in scrollbar scrolls by one line.
Files: src/popupwin.c, src/proto/popupwin.pro, src/structs.h, src/ui.c,

src/normal.c, runtime/doc/popup.txt,
src/testdir/dumps/Test_popupwin_scroll_8.dump,
src/testdir/dumps/Test_popupwin_scroll_9.dump

version8.txt — 3389

Patch 8.1.1608
Problem: The evalfunc.c file is too big.
Solution: Move sign functionality to sign.c.
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/sign.c,

src/proto/sign.pro

Patch 8.1.1609
Problem: The user cannot easily close a popup window.
Solution: Add the "close" property. (mostly by Masato Nishihata,

closes #4601)
Files: runtime/doc/popup.txt, src/popupwin.c, src/proto/popupwin.pro,

src/structs.h, src/testdir/dumps/Test_popupwin_close_01.dump,
src/testdir/dumps/Test_popupwin_close_02.dump,
src/testdir/dumps/Test_popupwin_close_03.dump,
src/testdir/test_popupwin.vim, src/ui.c

Patch 8.1.1610
Problem: There is no way to add or load a buffer without side effects.
Solution: Add the bufadd() and bufload() functions.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim

Patch 8.1.1611
Problem: Bufadd() reuses existing buffer without a name.
Solution: When the name is empty always create a new buffer.
Files: src/evalfunc.c, src/testdir/test_functions.vim

Patch 8.1.1612
Problem: Cannot show an existing buffer in a popup window.
Solution: Support buffer number argument in popup_create().
Files: src/buffer.c, src/proto/buffer.pro, src/evalfunc.c,

src/popupwin.c, src/vim.h, src/normal.c, src/screen.c, src/ui.c,
src/window.c, src/testdir/test_popupwin.vim, runtime/doc/popup.txt

Patch 8.1.1613
Problem: Popup window test fails with Athena and Motif.
Solution: Compute the highlight attribute when the GUI is not active.
Files: src/syntax.c

Patch 8.1.1614
Problem: 'numberwidth' can only go up to 10.
Solution: Allow up to 20. (Charlie Stanton, closes #4584)
Files: runtime/doc/options.txt, src/option.c, src/screen.c,

src/testdir/gen_opt_test.vim, src/testdir/test_options.vim

Patch 8.1.1615
Problem: Crash when passing buffer number to popup_create(). (Yasuhiro

Matsumoto)
Solution: Initialize the window properly.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1616
Problem: Build failure with gcc on Amiga.
Solution: Add missing header includes. (Ola Söder, closes #4603)
Files: src/os_amiga.h

Patch 8.1.1617
Problem: No test for popup window with mask and position fixed.
Solution: Add a couple of screenshots. Fix detected problems.

version8.txt — 3390

Files: src/popupwin.c, src/structs.h, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_mask_1.dump,
src/testdir/dumps/Test_popupwin_mask_2.dump,
src/testdir/dumps/Test_popupwin_mask_3.dump,
src/testdir/dumps/Test_popupwin_mask_4.dump

Patch 8.1.1618
Problem: Amiga-like systems quickly run out of stack.
Solution: Reserve a Megabyte stack. (Ola Söder, closes #4608)
Files: src/os_amiga.c

Patch 8.1.1619
Problem: Tests are not run with GUI on Travis.
Solution: Add a testgui job. (Ozaki Kiichi, closes #4609)
Files: .travis.yml, src/testdir/test_highlight.vim,

src/testdir/test_mapping.vim, src/testdir/test_timers.vim

Patch 8.1.1620
Problem: No test for popup window with border and mask.
Solution: Add this popup window, fix problems.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_mask_1.dump,
src/testdir/dumps/Test_popupwin_mask_2.dump,
src/testdir/dumps/Test_popupwin_mask_3.dump,
src/testdir/dumps/Test_popupwin_mask_4.dump

Patch 8.1.1621
Problem: Amiga: time.h included twice.
Solution: Remove include from evalfunc.c, move outside of #ifdef in

os_amiga.h. (Ola Söder, closes #4607)
Files: src/evalfunc.c, src/os_amiga.h

Patch 8.1.1622
Problem: Wrong width if displaying a lot of lines in a popup window.
Solution: Accurately compute the line overflow.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_firstline.dump

Patch 8.1.1623
Problem: Display wrong with signs in narrow number column.
Solution: Increase the numbercolumn width if needed. (Yegappan Lakshmanan,

closes #4606)
Files: src/option.c, src/screen.c, src/sign.c, src/testdir/test_signs.vim

Patch 8.1.1624
Problem: When testing in the GUI may try to run gvim in a terminal.
Solution: Add the -v argument. (Yee Cheng Chin, closes #4605) Don't skip

tests that work now.
Files: src/testdir/shared.vim, src/testdir/term_util.vim,

src/testdir/test_mapping.vim, src/testdir/test_timers.vim

Patch 8.1.1625
Problem: Script line numbers are not exactly right.
Solution: Handle heredoc and continuation lines better. (Ozaki Kiichi,

closes #4611, closes #4511)
Files: src/ex_cmds2.c, src/proto/ex_cmds2.pro,

src/testdir/test_vimscript.vim, src/userfunc.c

Patch 8.1.1626
Problem: No test for closing a popup window with a modified buffer.

version8.txt — 3391

Solution: Add a test. Add "popups" to getbufinfo().
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_popupwin.vim

Patch 8.1.1627
Problem: Header file contains mixed comment style.
Solution: Use // style comments.
Files: src/structs.h

Patch 8.1.1628
Problem: Popup window functions not in list of functions.
Solution: Add popup window functions to the list of functions. Reorganise

the popup window help.
Files: runtime/doc/eval.txt, runtime/doc/popup.txt,

runtime/doc/usr_41.txt

Patch 8.1.1629
Problem: Terminal function help is in the wrong file.
Solution: Move the function details to terminal.txt.
Files: runtime/doc/eval.txt, runtime/doc/terminal.txt

Patch 8.1.1630
Problem: Various small problems.
Solution: Various small improvements.
Files: src/gui_beval.c, src/list.c, src/menu.c, src/message.c,

src/misc2.c, src/testdir/test_terminal.vim, src/os_vms_conf.h,
src/testdir/Make_vms.mms

Patch 8.1.1631
Problem: Displaying signs is inefficient.
Solution: Avoid making multiple calls to get information about a placed

sign. (Yegappan Lakshmanan, closes #4586)
Files: src/proto/sign.pro, src/screen.c, src/sign.c, src/structs.h

Patch 8.1.1632
Problem: Build with EXITFREE but without +arabic fails.
Solution: Rename the function and adjust #ifdefs. (closes #4613)
Files: src/ex_getln.c, src/proto/ex_getln.pro, src/misc2.c

Patch 8.1.1633
Problem: Cannot generate prototypes with X11 but without GUI.
Solution: Include X11/Intrinsic.h.
Files: src/gui.h

Patch 8.1.1634
Problem: Terminal test fails when term_getansicolors() is missing.

Diff test fails without +rightleft. (Dominique Pelle)
Solution: Check if term_getansicolors() is supported. (closes #4597)
Files: src/testdir/test_terminal.vim, src/testdir/test_diffmode.vim

Patch 8.1.1635
Problem: Warnings for unused variables in small version. (John Marriott)
Solution: Adjust #ifdefs.
Files: src/screen.c

Patch 8.1.1636
Problem: Crash when popup has fitting scrollbar. (Trygve Aaberge)
Solution: Don't divide by zero if the scrollbar just fits. (closes #4615)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

version8.txt — 3392

Patch 8.1.1637
Problem: After running tests and clean the XfakeHOME directory remains.
Solution: Use "rm -rf". (Hirohito Higashi)
Files: src/testdir/Makefile, src/testdir/Make_amiga.mak

Patch 8.1.1638
Problem: Running tests leaves some files behind.
Solution: Delete the files. (Ozaki Kiichi, closes #4617)
Files: src/testdir/test_functions.vim, src/testdir/test_popupwin.vim

Patch 8.1.1639
Problem: Changing an autoload name into a script file name is inefficient.
Solution: Remember the last replaced #. (Ozaki Kiichi, closes #4618)
Files: src/eval.c

Patch 8.1.1640
Problem: The CursorHold autocommand takes down a balloon. (Paul Jolly)
Solution: Ignore the CursorHold pseudo-key.
Files: src/getchar.c, src/testdir/test_balloon.vim,

src/testdir/dumps/Test_balloon_eval_term_01.dump,
src/testdir/dumps/Test_balloon_eval_term_01a.dump

Patch 8.1.1641
Problem: Garbage collection may run at a wrong moment. (Trygve Aaberge)
Solution: Postpone garbage collection while parsing messages. (closes #4620)
Files: src/misc2.c

Patch 8.1.1642 (after 8.1.0374)
Problem: May use uninitialized variable. (Patrick Palka)
Solution: Initialize variables earlier. (closes #4623)
Files: src/screen.c, src/testdir/test_number.vim

Patch 8.1.1643
Problem: Sign placement is wrong when 'foldcolumn' is set.
Solution: Adjust the column computation. (Yee Cheng Chin, closes #4627)
Files: src/gui.c

Patch 8.1.1644
Problem: Sound test does not work on Travis.
Solution: Use "sg" command to enable audio. (Ozaki Kiichi, closes #4624)
Files: .travis.yml

Patch 8.1.1645
Problem: Cannot use a popup window for a balloon.
Solution: Add popup_beval(). Add the "mousemoved" property. Add the

screenpos() function.
Files: src/popupwin.c, src/proto/popupwin.pro, src/move.c,

src/proto/move.pro, src/beval.c, src/proto/beval.pro,
src/evalfunc.c, src/popupmnu.c, src/normal.c,
src/testdir/test_popupwin.vim, src/testdir/test_cursor_func.vim,
runtime/doc/popup.txt, runtime/doc/eval.txt,
runtime/doc/usr_41.txt,
src/testdir/dumps/Test_popupwin_beval_1.dump,
src/testdir/dumps/Test_popupwin_beval_2.dump,
src/testdir/dumps/Test_popupwin_beval_3.dump

Patch 8.1.1646 (after 8.1.1645)
Problem: build failure
Solution: Add changes to structure.
Files: src/structs.h

version8.txt — 3393

Patch 8.1.1647
Problem: Build error with GTK and hangulinput feature, im_get_status()

defined twice. (Dominique Pelle)
Solution: Adjust im_get_status(). (closes #4628)
Files: src/hangulin.c, src/mbyte.c

Patch 8.1.1648
Problem: MS-Windows: build error with normal features.
Solution: Adjust #ifdef for find_word_under_cursor().
Files: src/beval.c, src/proto/beval.pro

Patch 8.1.1649
Problem: Illegal memory access when closing popup window.
Solution: Get w_next before closing the window.
Files: src/popupwin.c

Patch 8.1.1650
Problem: Warning for using uninitialized variable. (Tony Mechelynck)
Solution: Simplify the code by always using the mouse coordinates.
Files: src/beval.c

Patch 8.1.1651
Problem: Suspend test is flaky on some systems.
Solution: Wait for the shell prompt to show. (Yee Cheng Chin, closes #4632)
Files: src/testdir/test_suspend.vim

Patch 8.1.1652
Problem: GUI: popup window doesn't close on mouse movement. (Paul Jolly)
Solution: Generate mouse-move events when a popup window is visible.
Files: src/gui.c, src/globals.h

Patch 8.1.1653
Problem: Ubsan warns for possibly passing NULL pointer.
Solution: Skip code when length is zero. (Dominique Pelle, closes #4631)
Files: src/channel.c

Patch 8.1.1654
Problem: GUI: screen updates from 'balloonexpr' are not displayed.
Solution: Update the screen if needed. Also avoid the cursor being

displayed in the wrong position.
Files: src/beval.c

Patch 8.1.1655
Problem: Popup window border drawn wrong with multibyte char. (Marcin

Szamotulski)
Solution: Correct check in mb_fix_col(). (closes #4635)
Files: src/mbyte.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_24.dump

Patch 8.1.1656
Problem: Popup window width is wrong when using Tabs. (Paul Jolly)
Solution: Count tabs correctly. (closes #4637)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_11.dump

Patch 8.1.1657
Problem: Terminal: screen updates from 'balloonexpr' are not displayed.
Solution: Update the screen if needed. Fix the word position for

"mousemoved".

version8.txt — 3394

Files: src/beval.c, src/proto/beval.pro, src/popupwin.c, src/normal.c,
src/proto/normal.pro

Patch 8.1.1658
Problem: Debug statements included in patch.
Solution: Remove the debug statements.
Files: src/normal.c, src/popupwin.c

Patch 8.1.1659
Problem: Popup window "mousemoved" values not correct.
Solution: Convert text column to mouse column.
Files: src/popupwin.c, runtime/doc/popup.txt

Patch 8.1.1660
Problem: Assert_fails() does not fail inside try/catch.
Solution: Set trylevel to zero. (Ozaki Kiichi, closes #4639)
Files: src/eval.c, src/testdir/test_assert.vim

Patch 8.1.1661
Problem: Cannot build with +textprop but without +balloon_eval.
Solution: Adjust #ifdefs. (closes #4645)
Files: src/proto.h

Patch 8.1.1662
Problem: Cannot build uninstal.exe with some version of MinGW.
Solution: Add -lole32. (Rene Nyffenegger, closes #4646)
Files: src/Make_cyg_ming.mak

Patch 8.1.1663
Problem: Compiler warning for using size_t.
Solution: Add type cast. (Mike Williams)
Files: src/popupwin.c

Patch 8.1.1664
Problem: GUI resize may cause changing Rows at a bad time. (Dominique

Pelle)
Solution: Postpone resizing while updating the screen.
Files: src/term.c

Patch 8.1.1665
Problem: Crash when popup window with mask is below the screen.
Solution: Correct boundary check.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_mask_5.dump

Patch 8.1.1666
Problem: Click in popup window scrollbar with border doesn't scroll.
Solution: Correct column for the border. (Naruhiko Nishino, closes #4650)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_9.dump

Patch 8.1.1667
Problem: Flags for Ex commands may clash with other symbols.
Solution: Prepend with EX_.
Files: src/ex_cmds.h, src/evalfunc.c, src/ex_docmd.c, src/ex_getln.c,

src/usercmd.c, src/syntax.c

Patch 8.1.1668
Problem: Popup window test is a bit flaky on some systems.
Solution: Clear the command line. (Naruhiko Nishino, closes #4656)

version8.txt — 3395

Files: src/testdir/test_popupwin.vim

Patch 8.1.1669
Problem: Travis: test results section is closed even when some tests

failed.
Solution: Only close the section on success. (Daniel Hahler, closes #4659)
Files: .travis.yml

Patch 8.1.1670
Problem: Sign column not always properly aligned.
Solution: Use "col" only after it was calculated. (Yee Cheng Chin,

closes #4649)
Files: src/gui.c

Patch 8.1.1671
Problem: Copying a blob may result in it being locked.
Solution: Reset v_lock. (Ken Takata, closes #4648)
Files: src/blob.c, src/testdir/test_blob.vim

Patch 8.1.1672 (after 8.1.1667)
Problem: "make cmdidxs" doesn't work.
Solution: Update macro names. (Naruhiko Nishino, closes #4660)
Files: src/create_cmdidxs.vim

Patch 8.1.1673
Problem: Cannot easily find the popup window at a certain position.
Solution: Add popup_locate().
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim

Patch 8.1.1674
Problem: Script to check a colorscheme can be improved.
Solution: Match the whole group name. Don't warn for what is usually omitted.
Files: runtime/colors/tools/check_colors.vim

Patch 8.1.1675
Problem: Listener list not correctly updated on listener_remove().
Solution: Only set "prev" when not removing a listener. Return one if the

listener was found and removed.
Files: src/change.c

Patch 8.1.1676
Problem: "maxwidth" of popup window does not always work properly.
Solution: Adjust the computation. (Naruhiko Nishino, closes #4653)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_menu_maxwidth_1.dump

Patch 8.1.1677
Problem: Tests get stuck when running into an existing swapfile.
Solution: Set v:swapchoice to "q" and report an error. (Daniel Hahler,

closes #4644)
Files: src/testdir/runtest.vim

Patch 8.1.1678
Problem: When using popup_menu() does not scroll to show the selected line.
Solution: Scroll the text. (Naruhiko Nishino, closes #4651)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_menu_scroll_1.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_2.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_3.dump,

version8.txt — 3396

src/testdir/dumps/Test_popupwin_menu_scroll_4.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_5.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_6.dump

Patch 8.1.1679
Problem: Test using SwapExists autocommand file may fail.
Solution: Remove the SwapExists autocommand.
Files: src/testdir/test_window_cmd.vim

Patch 8.1.1680
Problem: The command table is not well aligned.
Solution: Adjust indent.
Files: src/ex_cmds.h

Patch 8.1.1681
Problem: Insert stray "{" when listener gets buffer line. (Paul Jolly)
Solution: Flush the cached line after invoking listeners. (closes #4455)
Files: src/memline.c, src/testdir/test_listener.vim

Patch 8.1.1682
Problem: Placing a larger number of signs is slow.
Solution: Add functions for dealing with a list of signs. (Yegappan

Lakshmanan, closes #4636)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/proto/sign.pro, src/sign.c, src/testdir/test_signs.vim

Patch 8.1.1683
Problem: Dictionary with string keys is longer than needed.
Solution: Use *{key: val} for literal keys.
Files: runtime/doc/eval.txt, src/eval.c, src/dict.c, src/proto/dict.pro,

src/testdir/test_listdict.vim, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_07.dump,
src/testdir/dumps/Test_popupwin_mask_2.dump,
src/testdir/dumps/Test_popupwin_mask_3.dump,
src/testdir/dumps/Test_popupwin_mask_4.dump,
src/testdir/dumps/Test_popupwin_mask_5.dump,
src/testdir/dumps/Test_popupwin_scroll_2.dump,
src/testdir/dumps/Test_popupwin_scroll_3.dump,
src/testdir/dumps/Test_popupwin_scroll_4.dump

Patch 8.1.1684
Problem: Profiling functionality is spread out.
Solution: Put profiling functionality in profiler.c. (Yegappan Lakshmanan,

closes #4666)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_dice.mak,

src/Make_manx.mak, src/Make_morph.mak, src/Make_mvc.mak,
src/Make_sas.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/ex_cmds2.c, src/globals.h, src/profiler.c, src/proto.h,
src/proto/ex_cmds2.pro, src/proto/profiler.pro,
src/proto/userfunc.pro, src/structs.h, src/userfunc.c

Patch 8.1.1685
Problem: Missing file in distributed file list.
Solution: Add profiler.pro
Files: Filelist

Patch 8.1.1686
Problem: "*" of "*{" is recognized as multiply operator. (Yasuhiro

Matsumoto)
Solution: Check for the "{".

version8.txt — 3397

Files: src/eval.c, src/testdir/test_listdict.vim

Patch 8.1.1687
Problem: The evalfunc.c file is too big.
Solution: Move testing support to a separate file.
Files: Filelist, src/evalfunc.c, src/eval.c, src/proto/eval.pro,

src/testing.c, src/proto/testing.pro, src/Make_cyg_ming.mak,
src/Make_morph.mak, src/Make_mvc.mak, src/Make_vms.mms,
src/Makefile, src/README.md, src/proto.h

Patch 8.1.1688
Problem: Old makefiles are no longer useful.
Solution: Delete the makefiles, they most likely don't work anyway.
Files: Filelist, src/Make_dice.mak, src/Make_manx.mak, src/Make_sas.mak

Patch 8.1.1689
Problem: Profiling code is spread out.
Solution: Move more profiling code to profiler.c. (Yegappan Lakshmanan,

closes #4668)
Files: src/ex_cmds2.c, src/profiler.c, src/proto/ex_cmds2.pro,

src/proto/profiler.pro, src/proto/userfunc.pro, src/structs.h,
src/userfunc.c

Patch 8.1.1690
Problem: Default padding for popup window menu is too much.
Solution: Only add padding left and right.
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/dumps/Test_popupwin_menu_01.dump,
src/testdir/dumps/Test_popupwin_menu_02.dump,
src/testdir/dumps/Test_popupwin_menu_maxwidth_1.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_1.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_2.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_3.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_4.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_5.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_6.dump

Patch 8.1.1691
Problem: Diff test fails on some systems. (Elimar Riesebieter)
Solution: Add a term_wait() call.
Files: src/testdir/test_diffmode.vim

Patch 8.1.1692
Problem: Using *{} for literal dict is not backwards compatible. (Yasuhiro

Matsumoto)
Solution: Use ~{} instead.
Files: runtime/doc/eval.txt runtime/doc/popup.txt, src/eval.c,

src/testdir/test_listdict.vim src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_07.dump,
src/testdir/dumps/Test_popupwin_mask_2.dump,
src/testdir/dumps/Test_popupwin_mask_3.dump,
src/testdir/dumps/Test_popupwin_mask_4.dump,
src/testdir/dumps/Test_popupwin_mask_5.dump,
src/testdir/dumps/Test_popupwin_scroll_2.dump,
src/testdir/dumps/Test_popupwin_scroll_3.dump,
src/testdir/dumps/Test_popupwin_scroll_4.dump

Patch 8.1.1693
Problem: Syntax coloring and highlighting is in one big file.
Solution: Move the highlighting to a separate file. (Yegappan Lakshmanan,

version8.txt — 3398

closes #4674)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/globals.h, src/highlight.c, src/proto.h,
src/proto/highlight.pro, src/proto/syntax.pro, src/structs.h,
src/syntax.c

Patch 8.1.1694
Problem: The RUN_VIM variable is longer than needed.
Solution: Shorten RUN_VIM. (Daniel Hahler, closes #4643)
Files: src/testdir/Makefile, src/testdir/shared.vim

Patch 8.1.1695
Problem: Windows 10: crash when cursor is at bottom of terminal.
Solution: Position the cursor before resizing. (Yasuhiro Matsumoto,

closes #4679)
Files: src/os_win32.c

Patch 8.1.1696
Problem: MSVC: link command line is too long.
Solution: Use the @<< mechanism to pass the arguments via a file. (Christian

Brabandt)
Files: src/Make_mvc.mak

Patch 8.1.1697
Problem: Cannot build with MSVC.
Solution: Remove the backslashes after the @<< mechanism.
Files: src/Make_mvc.mak

Patch 8.1.1698
Problem: Appveyor build with MSVC fails.
Solution: Remove the sed command
Files: ci/appveyor.bat

Patch 8.1.1699
Problem: Highlight_ga can be local instead of global.
Solution: Move highlight_ga into highlight.c. (Yegappan Lakshmanan,

closes #4675)
Files: src/globals.h, src/highlight.c, src/proto/highlight.pro,

src/structs.h, src/syntax.c

Patch 8.1.1700
Problem: Listener callback called for the wrong buffer.
Solution: Invoke listeners before calling ml_append_int().
Files: src/memline.c

Patch 8.1.1701
Problem: Appveyor build with MSVC fails puts progress bar in log.
Solution: Adjust the sed command. (Ken Takata)
Files: ci/appveyor.bat

Patch 8.1.1702
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it. (Christian Brabandt)
Files: src/gui.c

Patch 8.1.1703
Problem: Breaking out of loop by checking window pointer is insufficient.
Solution: Check the window ID and the buffer number. (closes #4683)
Files: src/misc2.c

version8.txt — 3399

Patch 8.1.1704
Problem: C-R C-W does not work after C-G when using 'incsearch'.
Solution: Put cursor at end of the match. (Yasuhiro Matsumoto, closes #4664)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.1.1705
Problem: Using ~{} for a literal dict is not nice.
Solution: Use #{} instead.
Files: runtime/doc/eval.txt runtime/doc/popup.txt, src/eval.c,

src/testdir/test_listdict.vim src/testdir/test_popupwin.vim

Patch 8.1.1706
Problem: Typo in #ifdef.
Solution: Change PROT to PROTO.
Files: src/beval.c

Patch 8.1.1707
Problem: Coverity warns for possibly using a NULL pointer.
Solution: Change the logic to make sure no NULL pointer is used.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1708
Problem: Coverity warns for using uninitialized variable.
Solution: Set the start col when col is set.
Files: src/beval.c

Patch 8.1.1709
Problem: Coverity warns for possibly using a NULL pointer.
Solution: Make sure no NULL pointer is used.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1710
Problem: Coverity found dead code.
Solution: Remove merging of listener changes.
Files: src/change.c

Patch 8.1.1711
Problem: Listener callback called at the wrong moment
Solution: Invoke listeners before calling ml_delete_int(). (closes #4657)
Files: src/memline.c

Patch 8.1.1712
Problem: Signs in number column cause text to be misaligned.
Solution: Improve alignment. (Yasuhiro Matsumoto, closes #4694)
Files: src/screen.c, src/testdir/test_signs.vim

Patch 8.1.1713
Problem: Highlighting cursor line only works with popup_menu().
Solution: Add the "cursorline" property. (Naruhiko Nishino, closes #4671)
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/dumps/Test_popupwin_cursorline_1.dump,
src/testdir/dumps/Test_popupwin_cursorline_2.dump,
src/testdir/dumps/Test_popupwin_cursorline_3.dump,
src/testdir/dumps/Test_popupwin_cursorline_4.dump,
src/testdir/dumps/Test_popupwin_cursorline_5.dump,
src/testdir/dumps/Test_popupwin_cursorline_6.dump,
src/testdir/dumps/Test_popupwin_menu_filter_1.dump,
src/testdir/dumps/Test_popupwin_menu_filter_2.dump,
src/testdir/dumps/Test_popupwin_menu_filter_3.dump,

version8.txt — 3400

src/testdir/dumps/Test_popupwin_menu_filter_4.dump,
src/testdir/test_popupwin.vim, src/vim.h

Patch 8.1.1714
Problem: Cannot preview a file in a popup window.
Solution: Add the 'previewpopup' option.
Files: runtime/doc/windows.txt, runtime/doc/options.txt, src/popupwin.c,

src/proto/popupwin.pro, src/option.c, src/option.h, src/ex_cmds.c,
src/testdir/dumps/Test_popupwin_previewpopup_1.dump,
src/testdir/dumps/Test_popupwin_previewpopup_2.dump,
src/ex_docmd.c, src/testdir/gen_opt_test.vim

Patch 8.1.1715
Problem: Emoji characters are seen as word characters for spelling. (Gautam

Iyer)
Solution: Exclude class 3 from word characters.
Files: src/spell.c

Patch 8.1.1716
Problem: Old style comments are wasting space
Solution: Use new style comments in option header file. (closes #4702)
Files: src/option.h

Patch 8.1.1717
Problem: Last char in menu popup window highlighted.
Solution: Do not highlight an extra character twice.
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_menu_04.dump

Patch 8.1.1718
Problem: Popup menu highlighting does not look good.
Solution: Highlight the whole window line. Fix that sign line HL is not

displayed in a window with a background color.
Files: src/popupwin.c, src/sign.c, src/proto/sign.pro, src/screen.c,

src/testdir/dumps/Test_popupwin_menu_scroll_1.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_2.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_3.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_4.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_5.dump,
src/testdir/dumps/Test_popupwin_menu_scroll_6.dump,
src/testdir/dumps/Test_popupwin_menu_01.dump,
src/testdir/dumps/Test_popupwin_menu_02.dump,
src/testdir/dumps/Test_popupwin_menu_04.dump

Patch 8.1.1719
Problem: Popup too wide when 'showbreak' is set.
Solution: Set window width when computing line length. (closes #4701)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_showbreak.dump

Patch 8.1.1720
Problem: Crash with very long %[] pattern. (Reza Mirzazade farkhani)
Solution: Check for reg_toolong. (closes #4703)
Files: src/regexp.c, src/testdir/test_regexp_utf8.vim

Patch 8.1.1721
Problem: Build failure with normal features without netbeans interface.
Solution: Enable signs when using the text properties feature.
Files: src/feature.h

version8.txt — 3401

Patch 8.1.1722
Problem: Error when scriptversion is 2 a making a dictionary access.
Solution: Parse the subscript even when not evaluating the sub-expression.

(closes #4704)
Files: src/eval.c, src/testdir/test_eval_stuff.vim

Patch 8.1.1723
Problem: Heredoc assignment has no room for new features. (FUJIWARA Takuya)
Solution: Require the marker does not start with a lower case character.

(closes #4705)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_let.vim

Patch 8.1.1724
Problem: Too much overhead checking for CTRL-C while processing text.
Solution: Increase BREAKCHECK_SKIP. Remove the difference for when built

with the GUI. (suggested by Andy Massimino, closes #4708)
Files: src/misc1.c, src/screen.c, src/feature.h

Patch 8.1.1725
Problem: MS-Windows: E325 message may use incorrect date format.
Solution: Convert strftime() result to 'encoding'. Also make the message

translatable. (Ken Takata, closes #4685, closes #4681)
Files: src/memline.c

Patch 8.1.1726
Problem: The eval.txt help file is too big.
Solution: Split off testing support to testing.txt. Move function details

to where the functionality is explained.
Files: runtime/doc/Makefile, runtime/doc/eval.txt,

runtime/doc/testing.txt, runtime/doc/sign.txt,
runtime/doc/textprop.txt, runtime/doc/help.txt,
runtime/doc/channel.txt, runtime/doc/tags

Patch 8.1.1727
Problem: Code for viminfo support is spread out.
Solution: Move to code to viminfo.c. (Yegappan Lakshmanan, closes #4686)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/buffer.c,
src/eval.c, src/ex_cmds.c, src/ex_docmd.c, src/globals.h,
src/proto.h, src/proto/buffer.pro, src/proto/eval.pro,
src/proto/ex_cmds.pro, src/proto/viminfo.pro, src/structs.h,
src/viminfo.c

Patch 8.1.1728
Problem: Wrong place for command line history viminfo support.
Solution: Move it to viminfo.c.
Files: src/ex_getln.c, src/proto/ex_getln.pro, src/viminfo.c,

src/structs.h

Patch 8.1.1729
Problem: Heredoc with trim not properly handled in function.
Solution: Allow for missing indent. (FUJIWARA Takuya, closes #4713)
Files: src/userfunc.c, src/testdir/test_let.vim

Patch 8.1.1730
Problem: Wrong place for mark viminfo support.
Solution: Move it to viminfo.c. (Yegappan Lakshmanan, closes #4716)
Files: src/README.md, src/mark.c, src/proto/mark.pro,

src/proto/viminfo.pro, src/structs.h, src/viminfo.c

version8.txt — 3402

Patch 8.1.1731
Problem: Command line history not read from viminfo on startup.
Solution: Get history length after initializing it.
Files: src/viminfo.c, src/testdir/test_viminfo.vim

Patch 8.1.1732
Problem: Completion in cmdwin does not work for buffer-local commands.
Solution: Use the right buffer. (closes #4711)
Files: src/usercmd.c, src/testdir/test_ins_complete.vim

Patch 8.1.1733
Problem: The man ftplugin leaves an empty buffer behind.
Solution: Don't make new window and edit, use split. (Jason Franklin)
Files: runtime/ftplugin/man.vim, src/testdir/test_man.vim

Patch 8.1.1734
Problem: The evalfunc.c file is too big.
Solution: Move some functions to other files.
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/json.c,

src/proto/json.pro src/window.c, src/proto/window.pro,
src/highlight.c, src/proto/highlight.pro, src/globals.h

Patch 8.1.1735 (after 8.1.1734)
Problem: Can't build with tiny features.
Solution: Add missing #ifdefs.
Files: src/json.c, src/highlight.c

Patch 8.1.1736
Problem: Viminfo support is spread out.
Solution: Move more viminfo code to viminfo.c. (Yegappan Lakshmanan,

closes #4717) Reorder code to make most functions static.
Files: src/fileio.c, src/ops.c, src/option.c, src/proto/ops.pro,

src/proto/option.pro, src/proto/search.pro, src/proto/viminfo.pro,
src/search.c, src/structs.h, src/viminfo.c, src/ex_cmds.c,
src/proto/ex_cmds.pro

Patch 8.1.1737
Problem: :args command that outputs one line gives more prompt.
Solution: Only output line break if needed. (Daniel Hahler, closes #4715)
Files: src/version.c, src/testdir/test_arglist.vim

Patch 8.1.1738
Problem: Testing lambda with timer is slow.
Solution: Do not test timer accuracy, only that it works. (Daniel Hahler,

closes #4723)
Files: src/testdir/test_lambda.vim

Patch 8.1.1739
Problem: Deleted match highlighting not updated in other window.
Solution: Mark the window for refresh. (closes #4720) Also fix that

ambi-width check clears with wrong attributes.
Files: src/term.c, src/highlight.c, src/testdir/test_match.vim,

src/testdir/dumps/Test_matchdelete_1.dump

Patch 8.1.1740
Problem: Exepath() doesn't work for "bin/cat".
Solution: Check for any path separator. (Daniel Hahler, closes #4724,

closes #4710)
Files: src/evalfunc.c, src/os_unix.c, src/testdir/test_functions.vim

version8.txt — 3403

Patch 8.1.1741
Problem: Cleared/added match highlighting not updated in other window.

(Andy Massimino)
Solution: Mark the right window for refresh.
Files: src/highlight.c, src/testdir/test_match.vim,

src/testdir/dumps/Test_matchclear_1.dump,
src/testdir/dumps/Test_matchadd_1.dump

Patch 8.1.1742
Problem: Still some match functions in evalfunc.c.
Solution: Move them to highlight.c.
Files: src/evalfunc.c, src/highlight.c, src/proto/highlight.pro,

src/ex_docmd.c

Patch 8.1.1743
Problem: 'hlsearch' and match highlighting in the wrong place.
Solution: Move highlighting from inside screen functions to highlight.c.
Files: src/screen.c, src/highlight.c, src/proto/highlight.pro

Patch 8.1.1744
Problem: Build error without the conceal feature.
Solution: Define variables also without the conceal feature.
Files: src/screen.c

Patch 8.1.1745
Problem: Compiler warning for unused argument.
Solution: Add UNUSED. Change comments to new style.
Files: src/highlight.c

Patch 8.1.1746
Problem: ":dl" is seen as ":dlist" instead of ":delete".
Solution: Do not use cmdidxs2[] if the length is 1. (closes #4721)
Files: src/ex_docmd.c, src/testdir/test_excmd.vim,

src/testdir/Make_all.mak

Patch 8.1.1747
Problem: Compiler warning for unused variables. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/screen.c

Patch 8.1.1748 (after 8.1.1737)
Problem: :args output is not aligned.
Solution: Output a line break after the last item in a row.
Files: src/version.c

Patch 8.1.1749
Problem: Coverity warns for using negative index.
Solution: Move using index inside "if".
Files: src/viminfo.c

Patch 8.1.1750
Problem: Depending on the terminal width :version may miss a line break.
Solution: Add a line break when needed.
Files: src/version.c

Patch 8.1.1751
Problem: When redrawing popups plines_win() may be called often.
Solution: Pass a cache to mouse_comp_pos().
Files: src/ui.c, src/proto/ui.pro, src/beval.c, src/evalfunc.c,

src/popupwin.c

version8.txt — 3404

Patch 8.1.1752
Problem: Resizing hashtable is inefficient.
Solution: Avoid resizing when the final size is predictable.
Files: src/hashtab.c, src/proto/hashtab.pro, src/popupwin.c

Patch 8.1.1753
Problem: Use of popup window mask is inefficient.
Solution: Precompute and cache the mask.
Files: src/popupwin.c

Patch 8.1.1754 (after 8.1.1753)
Problem: Build failure.
Solution: Add missing change to window struct.
Files: src/structs.h

Patch 8.1.1755
Problem: Leaking memory when using a popup window mask.
Solution: Free the cached mask.
Files: src/window.c

Patch 8.1.1756
Problem: Autocommand that splits window messes up window layout.
Solution: Disallow splitting a window while closing one. In ":all" give an

error when moving a window will not work.
Files: src/buffer.c, src/window.c, src/testdir/test_window_cmd.vim

Patch 8.1.1757
Problem: Text added with appendbufline() to another buffer isn't displayed.
Solution: Update topline. (partly by Christian Brabandt, closes #4718)
Files: src/evalfunc.c, src/testdir/test_bufline.vim,

src/testdir/dumps/Test_appendbufline_1.dump

Patch 8.1.1758
Problem: Count of g$ not used correctly when text is not wrapped.
Solution: Do use the count. (Christian Brabandt, closes #4729, closes #4566)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.1.1759
Problem: No mode char for terminal mapping from maparg().
Solution: Check for TERMINAL mode. (closes #4735)
Files: src/getchar.c, src/testdir/test_maparg.vim

Patch 8.1.1760
Problem: Extra line break for wrapping output of :args.
Solution: Avoid the extra line break. (Daniel Hahler, closes #4737)
Files: src/version.c, src/testdir/test_arglist.vim

Patch 8.1.1761
Problem: Filetype "vuejs" causes problems for some users.
Solution: Rename to "vue".
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.1762
Problem: Some filetype rules are in the wrong place.
Solution: Move to the right place. Add a few more tests.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.1763
Problem: Evalfunc.c is still too big.

version8.txt — 3405

Solution: Move dict and list functions to a better place.
Files: src/evalfunc.c, src/dict.c, src/proto/dict.pro, src/list.c,

src/proto/list.pro, src/blob.c, src/proto/blob.pro

Patch 8.1.1764
Problem: ":browse oldfiles" is not tested.
Solution: Add a test.
Files: src/testdir/test_viminfo.vim

Patch 8.1.1765
Problem: get(func, dict, def) does not work properly.
Solution: Handle NULL dict better. (Takuya Fujiwara, closes #4734)
Files: src/evalfunc.c, src/testdir/test_getvar.vim,

src/testdir/test_partial.vim

Patch 8.1.1766
Problem: Code for writing session file is spread out.
Solution: Put it in one file. (Yegappan Lakshmanan, closes #4728)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/eval.c, src/ex_docmd.c, src/misc2.c, src/proto.h,
src/proto/eval.pro, src/proto/misc2.pro, src/proto/session.pro,
src/session.c

Patch 8.1.1767
Problem: FEAT_SESSION defined separately.
Solution: Make FEAT_SESSION depend on FEAT_EVAL.
Files: src/feature.h, src/session.c, src/evalfunc.c, src/ex_docmd.c,

src/gui_gtk_x11.c, src/proto.h

Patch 8.1.1768
Problem: Man plugin changes setting in current window.
Solution: Set options later. (Jason Franklin)
Files: runtime/ftplugin/man.vim, src/testdir/test_man.vim

Patch 8.1.1769
Problem: 'shellslash' is also used for completion.
Solution: Add the 'completeslash' option. (Yasuhiro Matsumoto, closes #3612)
Files: runtime/doc/options.txt, src/ex_getln.c, src/insexpand.c,

src/option.c, src/option.h, src/structs.h,
src/testdir/test_ins_complete.vim

Patch 8.1.1770
Problem: Cannot get the window ID of the popup preview window.
Solution: Add popup_getpreview().
Files: src/evalfunc.c, src/popupwin.c, src/proto/popupwin.pro,

runtime/doc/eval.txt, runtime/doc/popup.txt,
src/testdir/dumps/Test_popupwin_previewpopup_3.dump

Patch 8.1.1771
Problem: Options test fails on MS-Windows.
Solution: Add correct and incorrect values for 'completeslash'.
Files: src/testdir/gen_opt_test.vim

Patch 8.1.1772
Problem: Options test still fails on MS-Windows.
Solution: Check buffer-local value of 'completeslash'.
Files: src/option.c

Patch 8.1.1773

version8.txt — 3406

Problem: The preview popup window may be too far to the right.
Solution: Keep it inside the screen. Also keep the close button and

scrollbar visible if possible.
Files: src/popupwin.c, src/proto/popupwin.pro, src/ex_cmds.c,

src/screen.c, src/vim.h, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_previewpopup_1.dump,
src/testdir/dumps/Test_popupwin_previewpopup_2.dump,
src/testdir/dumps/Test_popupwin_previewpopup_3.dump,
src/testdir/dumps/Test_popupwin_previewpopup_4.dump

Patch 8.1.1774
Problem: Test is silently skipped.
Solution: Throw "Skipped".
Files: src/testdir/test_ins_complete.vim

Patch 8.1.1775
Problem: Error message may be empty in filetype test.
Solution: Use v:exception instead. (Daniel Hahler, closes #4744)
Files: src/testdir/test_filetype.vim

Patch 8.1.1776
Problem: Text added with a job to another buffer isn't displayed.
Solution: Update topline after adding a line. (closes #4745)
Files: src/channel.c, src/testdir/test_channel.vim, src/testdir/check.vim,

src/testdir/dumps/Test_job_buffer_scroll_1.dump

Patch 8.1.1777
Problem: Useless checks for job feature in channel test.
Solution: Remove the checks. Remove ch_log() calls.
Files: src/testdir/test_channel.vim

Patch 8.1.1778
Problem: Not showing the popup window right border is confusing.
Solution: Also show the border when there is no close button. (closes #4747)
Files: src/popupwin.c, src/testdir/dumps/Test_popupwin_20.dump,

src/testdir/dumps/Test_popupwin_21.dump

Patch 8.1.1779
Problem: Not showing the popup window right border is confusing.
Solution: Also show the border when 'wrap' is off. (closes #4747)
Files: src/popupwin.c, src/testdir/dumps/Test_popupwin_20.dump,

src/testdir/dumps/Test_popupwin_21.dump

Patch 8.1.1780
Problem: Warning for file no longer available is repeated every time Vim is

focused. (Brian Armstrong)
Solution: Only give the message once. (closes #4748)
Files: src/fileio.c

Patch 8.1.1781
Problem: Amiga: no builtin OS readable version info.
Solution: Add a "version" variable. (Ola Söder, closes #4753)
Files: src/os_amiga.c

Patch 8.1.1782
Problem: MS-Windows: system() has temp file error with 'noshelltemp'.
Solution: Check s_dont_use_vimrun. (Ken Takata, closes #4754)
Files: src/os_win32.c

Patch 8.1.1783

version8.txt — 3407

Problem: MS-Windows: compiler test may fail when using %:S.
Solution: Reset 'shellslash'.
Files: src/testdir/test_compiler.vim

Patch 8.1.1784
Problem: MS-Windows: resolve() does not work if serial nr duplicated.
Solution: Use another method to get the full path. (Ken Takata, closes #4661)
Files: src/os_mswin.c

Patch 8.1.1785
Problem: Map functionality mixed with character input.
Solution: Move the map functionality to a separate file. (Yegappan

Lakshmanan, closes #4740) Graduate the +localmap feature.
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/buffer.c, src/feature.h, src/evalfunc.c, src/ex_docmd.c,
src/getchar.c, src/map.c, src/proto.h, src/proto/getchar.pro,
src/proto/map.pro, src/version.c, src/structs.h

Patch 8.1.1786
Problem: Double click in popup scrollbar starts selection.
Solution: Ignore the double click.
Files: src/ui.c, src/popupwin.c, src/proto/popupwin.pro

Patch 8.1.1787
Problem: Cannot resize a popup window.
Solution: Allow for resizing by dragging the lower right corner.
Files: runtime/doc/popup.txt, src/popupwin.c, src/structs.h, src/vim.h,

src/ui.c src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_drag_01.dump,
src/testdir/dumps/Test_popupwin_drag_02.dump,
src/testdir/dumps/Test_popupwin_drag_03.dump,
src/testdir/dumps/Test_popupwin_previewpopup_1.dump,
src/testdir/dumps/Test_popupwin_previewpopup_2.dump,
src/testdir/dumps/Test_popupwin_previewpopup_3.dump,
src/testdir/dumps/Test_popupwin_previewpopup_4.dump

Patch 8.1.1788 (after 8.1.1787)
Problem: missing changes in proto file
Solution: Update proto file.
Files: src/proto/popupwin.pro

Patch 8.1.1789
Problem: Cannot see file name of preview popup window.
Solution: Add the file name as the title.
Files: src/ex_cmds.c, src/popupwin.c, src/proto/popupwin.pro,

src/fileio.c,
src/testdir/dumps/Test_popupwin_previewpopup_1.dump,
src/testdir/dumps/Test_popupwin_previewpopup_2.dump,
src/testdir/dumps/Test_popupwin_previewpopup_3.dump,
src/testdir/dumps/Test_popupwin_previewpopup_4.dump,
src/testdir/dumps/Test_popupwin_previewpopup_5.dump

Patch 8.1.1790
Problem: :mkvimrc is not tested.
Solution: Add a test.
Files: src/testdir/test_mksession.vim

Patch 8.1.1791
Problem: 'completeslash' also applies to globpath().

version8.txt — 3408

Solution: Add the WILD_IGNORE_COMPLETESLASH flag. (test by Yasuhiro
Matsumoto, closes #4760)

Files: src/testdir/test_ins_complete.vim, src/ex_getln.c, src/evalfunc.c,
src/vim.h

Patch 8.1.1792
Problem: The vgetorpeek() function is too long.
Solution: Split off the part that handles mappings.
Files: src/getchar.c

Patch 8.1.1793
Problem: Mixed comment style in globals.
Solution: Use // comments where appropriate.
Files: src/globals.h

Patch 8.1.1794 (after 8.1.1792)
Problem: Tests are flaky.
Solution: Undo the change to vgetorpeek().
Files: src/getchar.c

Patch 8.1.1795
Problem: No syntax HL after splitting windows with :bufdo. (Yasuhiro

Matsumoto)
Solution: Trigger Syntax autocommands in buffers that are active.

(closes #4761)
Files: src/vim.h, src/option.c, src/ex_cmds2.c,

src/testdir/test_syntax.vim

Patch 8.1.1796
Problem: :argdo is not tested
Solution: Add a test.
Files: src/testdir/test_arglist.vim

Patch 8.1.1797 (after 8.1.1794)
Problem: The vgetorpeek() function is too long.
Solution: Split off the part that handles mappings, with fix.
Files: src/getchar.c

Patch 8.1.1798
Problem: Warning for unused variable in tiny version. (Tony Mechelynck)
Solution: Move inside #ifdef. Reformat code.
Files: src/getchar.c

Patch 8.1.1799
Problem: Cannot avoid mapping for a popup window.
Solution: Add the "mapping" property, default TRUE.
Files: runtime/doc/popup.txt, src/getchar.c, src/popupwin.c, src/vim.h,

src/proto/popupwin.pro, src/testdir/test_popupwin.vim

Patch 8.1.1800
Problem: Function call functions have too many arguments.
Solution: Pass values in a funcexe_T struct.
Files: src/eval.c, src/structs.h, src/userfunc.c, src/proto/userfunc.pro,

src/list.c, src/regexp.c, src/terminal.c, src/change.c,
src/ex_cmds2.c, src/popupwin.c, src/channel.c

Patch 8.1.1801
Problem: Cannot build without the +eval feature.
Solution: Always define funcexe_T.
Files: src/structs.h

version8.txt — 3409

Patch 8.1.1802
Problem: Missing change to call_callback().
Solution: Add missing change.
Files: src/sound.c

Patch 8.1.1803
Problem: All builtin functions are global.
Solution: Add the method call operator ->. Implemented for a limited number

of functions.
Files: runtime/doc/eval.txt, src/eval.c, src/structs.h, src/userfunc.c,

src/globals.h, src/evalfunc.c, src/proto/evalfunc.pro,
src/testdir/test_method.vim, src/testdir/Make_all.mak

Patch 8.1.1804
Problem: No test for display updating without a scroll region.
Solution: Add a test.
Files: src/testdir/test_display.vim, src/testdir/check.vim,

src/testdir/test_diffmode.vim,
src/testdir/dumps/Test_scroll_no_region_1.dump,
src/testdir/dumps/Test_scroll_no_region_2.dump,
src/testdir/dumps/Test_scroll_no_region_3.dump

Patch 8.1.1805
Problem: Au_did_filetype is declared twice.
Solution: Remove it from autocmd.c. (closes #4767)
Files: src/globals.h, src/autocmd.c

Patch 8.1.1806
Problem: Test for display updating doesn't check without statusline.
Solution: Add screenshots without a status line.
Files: src/testdir/test_display.vim,

src/testdir/dumps/Test_scroll_no_region_4.dump,
src/testdir/dumps/Test_scroll_no_region_5.dump,
src/testdir/dumps/Test_scroll_no_region_6.dump

Patch 8.1.1807
Problem: More functions can be used as a method.
Solution: Add append(), appendbufline(), assert_equal(), etc.

Also add the :eval command.
Files: runtime/doc/eval.txt, runtime/doc/testing.txt, src/evalfunc.c,

src/testdir/test_method.vim, src/ex_cmds.h, src/ex_eval.c,
src/proto/ex_eval.pro, src/ex_cmdidxs.h

Patch 8.1.1808
Problem: Build failure for tiny version.
Solution: Define ex_eval to ex_ni. Clean up the ordering a bit.
Files: src/ex_docmd.c

Patch 8.1.1809
Problem: More functions can be used as a method.
Solution: Add has_key(), split(), str2list(), etc.
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_method.vim,

src/testdir/test_diffmode.vim, src/testdir/test_syntax.vim,
src/testdir/test_system.vim

Patch 8.1.1810
Problem: Popup_getoptions() is missing an entry for "mapping".
Solution: Add the entry.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

version8.txt — 3410

Patch 8.1.1811
Problem: Popup window color cannot be set to "Normal".
Solution: Check for non-empty 'wincolor' instead of zero attribute.

(closes #4772)
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_20.dump,
src/testdir/dumps/Test_popupwin_21.dump

Patch 8.1.1812
Problem: Reading a truncated undo file hangs Vim.
Solution: Check for reading EOF. (closes #4769)
Files: src/undo.c, src/testdir/test_undo.vim

Patch 8.1.1813
Problem: ATTENTION prompt for a preview popup window.
Solution: Close the popup window if aborting the buffer load. Avoid getting

the ATTENTION dialog.
Files: src/tag.c, src/ex_cmds.c, src/memline.c, src/vim.h,

runtime/doc/windows.txt

Patch 8.1.1814
Problem: A long title in a popup window overflows.
Solution: Truncate the title. (closes #4770)
Files: src/testdir/test_popupwin.vim, src/popupwin.c,

src/testdir/dumps/Test_popupwin_longtitle_1.dump,
src/testdir/dumps/Test_popupwin_longtitle_2.dump

Patch 8.1.1815
Problem: Duplicating info for internal functions.
Solution: Use one table to list internal functions.
Files: src/evalfunc.c

Patch 8.1.1816
Problem: Cannot use a user defined function as a method.
Solution: Pass the base as the first argument to the user defined function

after "->". (partly by FUJIWARA Takuya)
Files: src/eval.c, src/userfunc.c, src/testdir/test_user_func.vim,

src/testdir/test_autoload.vim,
src/testdir/sautest/autoload/foo.vim

Patch 8.1.1817
Problem: Github contribution text is incomplete.
Solution: Update the text.
Files: CONTRIBUTING.md

Patch 8.1.1818
Problem: Unused variable.
Solution: Remove the variable. (Mike Williams)
Files: src/sound.c

Patch 8.1.1819
Problem: :pedit does not work with a popup preview window.
Solution: Avoid aborting with an error. (fixes #4777) Also double check

that after prepare_tagpreview() the current window is not a
popup window.

Files: src/ex_docmd.c, src/popupmenu.c, src/search.c, src/tag.c,
src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_previewpopup_6.dump,
src/testdir/dumps/Test_popupwin_previewpopup_7.dump,

version8.txt — 3411

src/testdir/dumps/Test_popupwin_previewpopup_8.dump

Patch 8.1.1820
Problem: Using expr->FuncRef() does not work.
Solution: Make FuncRef work as a method.
Files: src/eval.c, src/userfunc.c, src/testdir/test_method.vim

Patch 8.1.1821
Problem: No test for wrong number of method arguments.
Solution: Add a test.
Files: src/testdir/test_method.vim

Patch 8.1.1822
Problem: Confusing error message when range is not allowed.
Solution: With ADDR_NONE give e_norange. Change e_invaddr to e_invrange for

consistency.
Files: src/ex_docmd.c, src/globals.h, src/testdir/test_excmd.vim

Patch 8.1.1823
Problem: Command line history code is spread out.
Solution: Put the code in a new file. (Yegappan Lakshmanan, closes #4779)

Also graduate the +cmdline_hist feature.
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/cmdhist.c, src/ex_getln.c, src/proto.h, src/proto/cmdhist.pro,
src/proto/ex_getln.pro, src/version.c, src/evalfunc.c,
src/ex_cmds.c, src/ex_docmd.c, src/misc2.c, src/normal.c,
src/ops.c, src/option.c, src/search.c, src/tag.c, src/usercmd.c,
src/viminfo.c, src/feature.h, src/globals.h

Patch 8.1.1824
Problem: Crash when correctly spelled word is very long. (Ben Kraft)
Solution: Check word length before copying. (closes #4778)
Files: src/spell.c, src/testdir/test_spell.vim

Patch 8.1.1825
Problem: Allocating more memory than needed for extended structs.
Solution: Use offsetof() instead of sizeof(). (Dominique Pelle,

closes #4785)
Files: src/dict.c

Patch 8.1.1826
Problem: Tests use hand coded feature and option checks.
Solution: Use the commands from check.vim in more tests.
Files: src/testdir/check.vim, src/testdir/shared.vim,

src/testdir/test_autochdir.vim, src/testdir/test_autocmd.vim,
src/testdir/test_balloon.vim, src/testdir/test_breakindent.vim,
src/testdir/test_bufline.vim, src/testdir/test_cdo.vim,
src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_conceal.vim, src/testdir/test_cscope.vim,
src/testdir/test_debugger.vim, src/testdir/test_filechanged.vim,
src/testdir/test_fold.vim, src/testdir/test_functions.vim,
src/testdir/test_gui.vim, src/testdir/test_gui_init.vim,
src/testdir/test_highlight.vim, src/testdir/test_mapping.vim,
src/testdir/test_match.vim, src/testdir/test_memory_usage.vim,
src/testdir/test_options.vim, src/testdir/test_paste.vim,
src/testdir/test_popup.vim, src/testdir/test_search.vim,
src/testdir/test_signals.vim, src/testdir/test_startup.vim,
src/testdir/test_syntax.vim, src/testdir/test_termcodes.vim,
src/testdir/test_terminal.vim, src/testdir/test_timers.vim,

version8.txt — 3412

src/testdir/test_vimscript.vim

Patch 8.1.1827
Problem: Allocating more memory than needed for extended structs.
Solution: Use offsetof() instead of sizeof(). (Dominique Pelle,

closes #4786)
Files: src/getchar.c, src/regexp.c, src/sign.c, src/structs.h,

src/syntax.c, src/textprop.c, src/userfunc.c

Patch 8.1.1828
Problem: Not strict enough checking syntax of method invocation.
Solution: Check there is no white space inside ->method(.
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_method.vim

Patch 8.1.1829
Problem: Difference in screenshots.
Solution: Update screenshots. Change checks in a few more tests.

(closes #4789)
Files: src/testdir/test_balloon_gui.vim,

src/testdir/test_shortpathname.vim,
src/testdir/test_windows_home.vim,
src/testdir/dumps/Test_popupwin_previewpopup_1.dump,
src/testdir/dumps/Test_popupwin_previewpopup_2.dump,
src/testdir/dumps/Test_popupwin_previewpopup_3.dump,
src/testdir/dumps/Test_popupwin_previewpopup_4.dump,
src/testdir/dumps/Test_popupwin_previewpopup_5.dump

Patch 8.1.1830
Problem: Travis does not report error when tests fail.
Solution: Explicitly do "exit 1".
Files: .travis.yml

Patch 8.1.1831
Problem: Confusing skipped message.
Solution: Drop "run" from "run start the GUI".
Files: src/testdir/check.vim

Patch 8.1.1832
Problem: Win_execute() does not work in other tab. (Rick Howe)
Solution: Take care of the tab. (closes #4792)
Files: src/testdir/test_execute_func.vim, src/evalfunc.c, src/window.c,

src/proto/window.pro

Patch 8.1.1833
Problem: Allocating a bit too much when spellbadword() does not find a bad

word.
Solution: Reset "len" when going to the next word. (Daniel Hahler,

closes #4788)
Files: src/evalfunc.c

Patch 8.1.1834
Problem: Cannot use a lambda as a method.
Solution: Implement ->{lambda}(). (closes #4768)
Files: runtime/doc/eval.txt, src/eval.c, src/testdir/test_method.vim

Patch 8.1.1835
Problem: Cannot use printf() as a method.
Solution: Pass the base as the second argument to printf().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_method.vim

version8.txt — 3413

Patch 8.1.1836
Problem: Inaccurate memory estimate for Amiga-like OS.
Solution: Adjust #ifdef for AvailMem(). (Ola Söder, closes #4797)
Files: src/os_amiga.c

Patch 8.1.1837
Problem: Popup test fails if clipboard is supported but not working.
Solution: Add the "clipboard_working" feature. Also use Check commands

instead of "if" and "throw". And remove stray ch_logfile().
Files: src/testdir/test_popupwin.vim, src/evalfunc.c,

runtime/doc/eval.txt

Patch 8.1.1838
Problem: There is :spellwrong and :spellgood but not :spellrare.
Solution: Add :spellrare. (Martin Tournoij, closes #4291)
Files: runtime/doc/spell.txt, src/ex_cmdidxs.h, src/ex_cmds.h,

src/normal.c, src/proto/spellfile.pro, src/spellfile.c,
src/spell.h, src/testdir/Make_all.mak,
src/testdir/test_normal.vim, src/testdir/test_spellfile.vim

Patch 8.1.1839
Problem: Insufficient info when test fails because of screen size.
Solution: Report the detected screen size.
Files: src/testdir/runtest.vim

Patch 8.1.1840
Problem: Testing: WorkingClipboard() is not accurate.
Solution: Check feature clipboard_working instead.
Files: src/testdir/shared.vim, src/testdir/test_paste.vim,

src/testdir/test_quotestar.vim, src/testdir/test_termcodes.vim

Patch 8.1.1841
Problem: No test for Ex shift commands.
Solution: Add a test. (Dominique Pelle, closes #4801)
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_shift.vim

Patch 8.1.1842
Problem: Test listed as flaky should no longer be flaky.
Solution: Remove Test_popup_and_window_resize from the list of flaky tests.

(Daniel Hahler, close #4807)
Files: src/testdir/runtest.vim

Patch 8.1.1843
Problem: Might be freeing memory that was not allocated.
Solution: Have next_fenc() set the fenc_alloced flag. (closes #4804)
Files: src/fileio.c

Patch 8.1.1844
Problem: Buffer no longer unloaded when adding text properties to it.
Solution: Do not create the memfile. (closes #4808)
Files: runtime/doc/textprop.txt, src/testdir/test_textprop.vim,

src/textprop.c

Patch 8.1.1845
Problem: May use NULL pointer when running out of memory.
Solution: Do not clear popup buffers when NULL. (closes #4802)
Files: src/screen.c

Patch 8.1.1846

version8.txt — 3414

Problem: Inconsistently using GetVimCommand() and v:progpath. (Daniel
Hahler)

Solution: Use GetVimCommand(). (closes #4806)
Files: src/testdir/test_autocmd.vim, src/testdir/test_gui.vim,

src/testdir/test_normal.vim, src/testdir/test_profile.vim,
src/testdir/test_suspend.vim, src/testdir/test_system.vim,
src/testdir/test_vimscript.vim

Patch 8.1.1847
Problem: Suspend test is failing.
Solution: Do not use GetVimCommandClean().
Files: src/testdir/test_suspend.vim

Patch 8.1.1848
Problem: 'langmap' is not used for CTRL-W command in terminal.
Solution: Push the command in the typeahead buffer instead of the stuff

buffer. (closes #4814)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.1849
problem: Some insert complete functions in the wrong file.
Solution: Move complete functions to insexpand.c. (Yegappan Lakshmanan,

closes #4815)
Files: src/evalfunc.c, src/insexpand.c, src/proto/insexpand.pro

Patch 8.1.1850
Problem: Focus may remain in popup window.
Solution: Change focus if needed.
Files: src/popupmnu.c

Patch 8.1.1851
Problem: Crash when sound_playfile() callback plays sound.
Solution: Invoke callback later from event loop.
Files: src/testdir/test_sound.vim, src/ui.c, src/sound.c,

src/proto/sound.pro, src/feature.h, src/os_unix.c, src/ex_docmd.c,
src/misc2.c

Patch 8.1.1852
Problem: Timers test is flaky.
Solution: Accept a larger count. Add test to list of flaky tests.
Files: src/testdir/test_timers.vim, src/testdir/runtest.vim

Patch 8.1.1853
Problem: Timers test is still flaky.
Solution: Compute the time to sleep more accurately.
Files: src/ex_docmd.c

Patch 8.1.1854
Problem: Now another timer test is flaky.
Solution: Add test to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.1855
Problem: Another failing timer test.
Solution: Assert that timers are finished by the end of the test. Rename

test functions to make them easier to find.
Files: src/testdir/test_timers.vim, src/testdir/runtest.vim

Patch 8.1.1856
Problem: popup preview test fails sometimes. (Christian Brabandt)

version8.txt — 3415

Solution: Clear the command line.
Files: src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_previewpopup_6.dump

Patch 8.1.1857
Problem: Cannot use modifier with multibyte character.
Solution: Allow using a multibyte character, although it doesn't work

everywhere.
Files: src/misc2.c, src/testdir/test_mapping.vim

Patch 8.1.1858
Problem: Test for multibyte mapping fails on some systems.
Solution: Test in another way.
Files: src/testdir/test_mapping.vim

Patch 8.1.1859
Problem: Timer test sometimes fails on Mac.
Solution: Show more info when it fails.
Files: src/testdir/test_timers.vim

Patch 8.1.1860
Problem: Map timeout test is flaky.
Solution: Add test to list of flaky tests. Increase timeout.
Files: src/testdir/runtest.vim, src/testdir/test_mapping.vim

Patch 8.1.1861
Problem: Only some assert functions can be used as a method.
Solution: Allow using most assert functions as a method.
Files: runtime/doc/testing.txt, src/evalfunc.c,

src/testdir/test_assert.vim

Patch 8.1.1862
Problem: Coverity warns for not using return value.
Solution: Add "(void)" to avoid the warning.
Files: src/normal.c

Patch 8.1.1863
Problem: Confusing error when using a builtin function as method while it

does not support that.
Solution: Add a specific error message.
Files: src/vim.h, src/evalfunc.c, src/userfunc.c,

src/testdir/test_method.vim

Patch 8.1.1864
Problem: Still a timer test that is flaky on Mac.
Solution: Adjust the sleep times.
Files: src/testdir/test_timers.vim

Patch 8.1.1865
Problem: Spellrare and spellrepall in the wrong order.
Solution: Put spellrare below spellrepall. (closes #4820)
Files: runtime/doc/spell.txt, src/ex_cmds.h

Patch 8.1.1866
Problem: Modeless selection in GUI does not work properly.
Solution: Avoid going beyond the end of the line. (closes #4783)
Files: src/ui.c

Patch 8.1.1867
Problem: Still a timer test that is flaky on Mac.

version8.txt — 3416

Solution: Loop with a sleep instead of one fixed sleep.
Files: src/testdir/test_timers.vim

Patch 8.1.1868
Problem: Multibyte characters in 'listchars' don't work correctly if

'linebreak' is also enabled. (Martin Tournoij)
Solution: Make it work correctly. (Christian Brabandt, closes #4822,

closes #4812)
Files: src/screen.c, src/testdir/test_listchars.vim

Patch 8.1.1869
Problem: Code for the argument list is spread out.
Solution: Put argument list code in arglist.c. (Yegappan Lakshmanan,

closes #4819)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/arglist.c, src/buffer.c, src/evalfunc.c, src/ex_cmds2.c,
src/ex_docmd.c, src/proto.h, src/proto/arglist.pro,
src/proto/buffer.pro, src/proto/ex_cmds2.pro,
src/proto/ex_docmd.pro

Patch 8.1.1870
Problem: Using :pedit from a help file sets the preview window to help

filetype. (Wang Shidong)
Solution: Do not set "keep_help_flag". (closes #3536)
Files: src/ex_docmd.c, src/testdir/test_window_cmd.vim

Patch 8.1.1871 (after 8.1.1866)
Problem: Modeless selection in GUI still not correct.
Solution: Fix max_col.
Files: src/ui.c

Patch 8.1.1872
Problem: When Vim exits because of a signal, VimLeave is not triggered.

(Daniel Hahler)
Solution: Unblock autocommands when triggering VimLeave. (closes #4818)
Files: src/main.c

Patch 8.1.1873 (after 8.1.1872)
Problem: Cannot build tiny version.
Solution: Remove #ifdef for is_autocmd_blocked().
Files: src/autocmd.c

Patch 8.1.1874
Problem: Modeless selection in popup window overlaps scrollbar.
Solution: Subtract scrollbar from max_col. (closes #4773)
Files: src/ui.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_select_01.dump

Patch 8.1.1875
Problem: Cannot get size and position of the popup menu.
Solution: Add pum_getpos(). (Ben Jackson, closes #4827)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_popup.vim

Patch 8.1.1876
Problem: proto file missing from distribution
Solution: Add the file.
Files: Filelist

version8.txt — 3417

Patch 8.1.1877
Problem: Graduated features scattered.
Solution: Put graduated and obsolete features together.
Files: src/feature.h

Patch 8.1.1878
Problem: Negative float before method not parsed correctly.
Solution: Apply "!" and "-" in front of expression before using ->.
Files: src/eval.c, src/proto/eval.pro, src/userfunc.c,

src/testdir/test_method.vim

Patch 8.1.1879
Problem: More functions can be used as methods.
Solution: Make float functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_float_func.vim

Patch 8.1.1880
Problem: Cannot show extra info for completion in a popup window.
Solution: Add the "popup" entry in 'completeopt'.
Files: runtime/doc/options.txt, src/popupmnu.c, src/ex_cmds.c,

src/proto/ex_cmds.pro, src/ex_docmd.c, src/search.c, src/tag.c,
src/popupwin.c, src/proto/popupwin.pro, src/option.c, src/vim.h,
src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_infopopup_1.dump,
src/testdir/dumps/Test_popupwin_infopopup_2.dump,
src/testdir/dumps/Test_popupwin_infopopup_3.dump,
src/testdir/dumps/Test_popupwin_infopopup_4.dump

Patch 8.1.1881
Problem: Popup window test fails in some configurations.
Solution: Check that screendumps can be made.
Files: src/testdir/test_popupwin.vim

Patch 8.1.1882
Problem: Cannot specify properties of the info popup window.
Solution: Add the 'completepopup' option. Default to PmenuSel highlight.
Files: runtime/doc/options.txt, runtime/doc/insert.txt, src/option.c,

src/popupwin.c, src/proto/popupwin.pro, src/option.h,
src/testdir/test_popupwin.vim, src/screen.c,
src/testdir/dumps/Test_popupwin_infopopup_1.dump,
src/testdir/dumps/Test_popupwin_infopopup_2.dump,
src/testdir/dumps/Test_popupwin_infopopup_3.dump

Patch 8.1.1883
Problem: Options test fails.
Solution: Add entry for 'completepopup'.
Files: src/testdir/gen_opt_test.vim

Patch 8.1.1884
Problem: Cannot use mouse scroll wheel in popup in Insert mode. Mouse

clicks in popup close the popup menu.
Solution: Check if the mouse is in a popup window. Do not let mouse events

close the popup menu. (closes #4544)
Files: src/edit.c, src/popupmnu.c, src/insexpand.c

Patch 8.1.1885
Problem: Comments in libvterm are inconsistent.
Solution: Use // comments. Also update the table of combining characters.
Files: src/libvterm/bin/unterm.c, src/libvterm/bin/vterm-ctrl.c,

version8.txt — 3418

src/libvterm/bin/vterm-dump.c, src/libvterm/include/vterm.h,
src/libvterm/include/vterm_keycodes.h,
src/libvterm/src/encoding.c, src/libvterm/src/keyboard.c,
src/libvterm/src/mouse.c, src/libvterm/src/parser.c,
src/libvterm/src/pen.c, src/libvterm/src/rect.h,
src/libvterm/src/state.c, src/libvterm/src/unicode.c,
src/libvterm/src/utf8.h, src/libvterm/src/vterm.c,
src/libvterm/src/vterm_internal.h, src/libvterm/src/termscreen.c

Patch 8.1.1886
Problem: Command line expansion code is spread out.
Solution: Move the code to cmdexpand.c. (Yegappan Lakshmanan, closes #4831)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/cmdexpand.c, src/evalfunc.c, src/ex_getln.c, src/proto.h,
src/proto/cmdexpand.pro, src/proto/ex_getln.pro, src/structs.h

Patch 8.1.1887
Problem: The +cmdline_compl feature is not in the tiny version.
Solution: Graduate the +cmdline_compl feature.
Files: src/cmdexpand.c, src/arglist.c, src/autocmd.c, src/buffer.c,

src/cmdhist.c, src/eval.c, src/evalfunc.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/feature.h, src/highlight.c,
src/if_cscope.c, src/map.c, src/menu.c, src/misc1.c, src/misc2.c,
src/option.c, src/sign.c, src/syntax.c, src/tag.c, src/term.c,
src/usercmd.c, src/userfunc.c, src/version.c, src/globals.h,
src/option.h, src/structs.h, runtime/doc/cmdline.txt

Patch 8.1.1888
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_vimscript.vim, src/testdir/test_balloon_gui.vim,
src/testdir/test_popup.vim, src/testdir/test_functions.vim,
src/testdir/test_hide.vim, src/testdir/test_arglist.vim

Patch 8.1.1889
Problem: Coverity warns for using a NULL pointer.
Solution: Use zero for column if pos is NULL.
Files: src/netbeans.c

Patch 8.1.1890
Problem: Ml_get error when deleting fold marker.
Solution: Check that the line number is not below the last line. Adjust the

fold when deleting the empty line. (Christian Brabandt,
closes #4834)

Files: src/fold.c, src/normal.c, src/testdir/test_fold.vim

Patch 8.1.1891
Problem: Functions used in one file are global.
Solution: Add "static". (Yegappan Lakshmanan, closes #4840)
Files: src/autocmd.c, src/buffer.c, src/change.c, src/channel.c,

src/charset.c, src/dict.c, src/digraph.c, src/eval.c,
src/ex_cmds.c, src/ex_eval.c, src/fileio.c, src/findfile.c,
src/getchar.c, src/gui.c, src/indent.c, src/json.c, src/list.c,
src/mark.c, src/menu.c, src/message.c, src/misc1.c, src/misc2.c,
src/ops.c, src/option.c, src/popupwin.c, src/profiler.c,
src/proto/autocmd.pro, src/proto/buffer.pro, src/proto/change.pro,
src/proto/channel.pro, src/proto/charset.pro, src/proto/dict.pro,
src/proto/eval.pro, src/proto/ex_cmds.pro, src/proto/ex_eval.pro,

version8.txt — 3419

src/proto/fileio.pro, src/proto/findfile.pro,
src/proto/getchar.pro, src/proto/gui.pro, src/proto/indent.pro,
src/proto/json.pro, src/proto/list.pro, src/proto/mark.pro,
src/proto/menu.pro, src/proto/message.pro, src/proto/misc1.pro,
src/proto/misc2.pro, src/proto/ops.pro, src/proto/option.pro,
src/proto/popupwin.pro, src/proto/profiler.pro,
src/proto/quickfix.pro, src/proto/spell.pro, src/proto/term.pro,
src/proto/textprop.pro, src/proto/ui.pro, src/proto/undo.pro,
src/proto/window.pro, src/quickfix.c, src/regexp.c, src/spell.c,
src/term.c, src/textprop.c, src/ui.c, src/undo.c, src/window.c

Patch 8.1.1892
Problem: Missing index entry and option menu for 'completepopup'.
Solution: Add the entries. Adjust #ifdefs to avoid dead code.
Files: runtime/doc/quickref.txt, runtime/optwin.vim, src/option.c,

src/option.h, src/popupwin.c

Patch 8.1.1893
Problem: Script to summarize test results can be improved.
Solution: Use "silent" for substitute to avoid reporting number of matches.

Remove duplicate "set nocp". (Daniel Hahler, closes #4845)
Files: src/testdir/summarize.vim

Patch 8.1.1894
Problem: Not checking for out-of-memory of autoload_name().
Solution: Check for NULL. (Dominique Pelle, closes #4846)
Files: src/eval.c

Patch 8.1.1895
Problem: Using NULL pointer when out of memory.
Solution: Bail out or skip the code using the pointer. (Zu-Ming Jiang,

closes #4805, closes #4843, closes #4939, closes #4844)
Files: src/message.c, src/highlight.c, src/buffer.c, src/ops.c

Patch 8.1.1896
Problem: Compiler warning for unused variable.
Solution: Add #ifdef. (John Marriott) Missing part of 8.1.1892.
Files: src/popupmnu.c

Patch 8.1.1897
Problem: May free memory twice when out of memory.
Solution: Check that backslash_halve_save() returns a different pointer.

(Dominique Pelle, closes #4847)
Files: src/cmdexpand.c, src/misc1.c

Patch 8.1.1898
Problem: Crash when out of memory during startup.
Solution: When out of memory message given during initialisation bail out.

(closes #4842)
Files: src/misc2.c

Patch 8.1.1899
Problem: sign_place() does not work as documented.
Solution: Make it accept line numbers like line(). (Yegappan Lakshmanan,

closes #4848)
Files: src/sign.c, src/testdir/test_signs.vim

Patch 8.1.1900
Problem: Sign test fails in the GUI.
Solution: Catch and ignore the exception.

version8.txt — 3420

Files: src/testdir/test_signs.vim

Patch 8.1.1901
Problem: The +insert_expand feature is not always available.
Solution: Graduate the +insert_expand feature.
Files: src/feature.h, src/autocmd.c, src/buffer.c, src/change.c,

src/charset.c, src/edit.c, src/evalfunc.c, src/ex_cmds.c,
src/ex_getln.c, src/getchar.c, src/gui.c, src/highlight.c,
src/indent.c, src/insexpand.c, src/misc2.c, src/move.c,
src/option.c, src/popupmnu.c, src/screen.c, src/search.c,
src/spell.c, src/tag.c, src/term.c, src/userfunc.c, src/version.c,
src/globals.h, src/option.h, src/proto.h, src/structs.h,
src/vim.h, runtime/doc/change.txt, runtime/doc/index.txt,
runtime/doc/insert.txt, runtime/doc/options.txt

Patch 8.1.1902
Problem: Cannot have an info popup without a border.
Solution: Add the "border" item to 'completepopup'.
Files: src/popupwin.c, src/proto/popupwin.pro, src/popupmnu.c,

src/testdir/test_popupwin.vim, src/testdir/gen_opt_test.vim,
src/testdir/dumps/Test_popupwin_infopopup_nb_1.dump

Patch 8.1.1903
Problem: Cannot build without the +eval feature.
Solution: Add missing #ifdefs
Files: src/insexpand.c, src/popupmnu.c

Patch 8.1.1904
Problem: Cannot have an info popup align with the popup menu.
Solution: Add the "align" item to 'completepopup'.
Files: src/popupwin.c, src/popupmnu.c, src/vim.h,

runtime/doc/insert.txt, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_infopopup_align_1.dump,
src/testdir/dumps/Test_popupwin_infopopup_align_2.dump,
src/testdir/dumps/Test_popupwin_infopopup_align_3.dump

Patch 8.1.1905
Problem: Cannot set all properties of the info popup.
Solution: Add popup_findinfo(). Rename popup_getpreview() to

popup_findpreview().
Files: src/popupwin.c, src/proto/popupwin.pro, src/ex_cmds.c,

src/ex_docmd.c, src/popupmnu.c, src/evalfunc.c,
runtime/doc/popup.txt, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_infopopup_align_3.dump

Patch 8.1.1906
Problem: Info popup size is sometimes incorrect.
Solution: Compute the position and size after setting the content.
Files: src/popupmnu.c

Patch 8.1.1907
Problem: Wrong position for info popup with scrollbar on the left.
Solution: Take the scrollbar into account.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_infopopup_5.dump,
src/testdir/dumps/Test_popupwin_cursorline_3.dump,
src/testdir/dumps/Test_popupwin_cursorline_4.dump,
src/testdir/dumps/Test_popupwin_cursorline_5.dump,
src/testdir/dumps/Test_popupwin_cursorline_6.dump,
src/testdir/dumps/Test_popupwin_menu_filter_1.dump,

version8.txt — 3421

src/testdir/dumps/Test_popupwin_menu_filter_2.dump,
src/testdir/dumps/Test_popupwin_menu_filter_3.dump,
src/testdir/dumps/Test_popupwin_menu_filter_4.dump

Patch 8.1.1908
Problem: Every popup window consumes a buffer number.
Solution: Recycle buffers only used for popup windows. Do not list popup

window buffers.
Files: src/popupwin.c, src/window.c, src/vim.h, src/buffer.c,

src/proto/buffer.pro, src/ex_docmd.c,
src/testdir/test_popupwin.vim

Patch 8.1.1909
Problem: More functions can be used as methods.
Solution: Make a few more functions usable as a method.
Files: runtime/doc/eval.txt, runtime/doc/testing.txt, src/evalfunc.c,

src/testdir/test_popupwin.vim, src/testdir/test_bufwintabinfo.vim,
src/testdir/test_bufline.vim, src/testdir/test_assert.vim

Patch 8.1.1910
Problem: Redrawing too much when toggling 'relativenumber'.
Solution: Only clear when 'signcolumn' is set to "number". (Yegappan

Lakshmanan, closes #4852)
Files: src/option.c

Patch 8.1.1911
Problem: More functions can be used as methods.
Solution: Make a few more functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test69.in,

src/testdir/test69.ok, src/testdir/test_functions.vim

Patch 8.1.1912
Problem: More functions can be used as methods.
Solution: Make channel and job functions usable as a method.
Files: runtime/doc/channel.txt, src/evalfunc.c,

src/testdir/test_channel.vim

Patch 8.1.1913
Problem: Not easy to compute the space on the command line.
Solution: Add v:echospace. (Daniel Hahler, closes #4732)
Files: src/vim.h, src/eval.c, src/option.c, runtime/doc/eval.txt,

src/testdir/test_messages.vim

Patch 8.1.1914
Problem: Command line expansion code is spread out.
Solution: Move set_one_cmd_context(). (Yegappan Lakshmanan, closes #4855)
Files: src/cmdexpand.c, src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 8.1.1915
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim, src/testdir/test_cd.vim,
src/testdir/test_cindent.vim, src/testdir/test_match.vim,
src/testdir/test_popup.vim, src/testdir/test_cursor_func.vim,
src/testdir/test_method.vim, src/testdir/test_bufline.vim,
src/testdir/test_diffmode.vim

Patch 8.1.1916
Problem: Trying to allocate negative amount of memory when closing a popup.

version8.txt — 3422

Solution: Check the rows are not out of bounds. Don't finish a selection if
it was never started.

Files: src/ui.c

Patch 8.1.1917
Problem: Non-current window is not redrawn when moving popup. (Ben Jackson)
Solution: Redraw all windows under a popup. (closes #4860)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_drag_01.dump,
src/testdir/dumps/Test_popupwin_drag_02.dump,
src/testdir/dumps/Test_popupwin_drag_03.dump

Patch 8.1.1918
Problem: Redrawing popups is inefficient.
Solution: Fix the logic to compute what window lines to redraw. Make it

work below the last line. Remove redrawing all windows.
Files: src/popupwin.c

Patch 8.1.1919
Problem: Using current window option values when passing a buffer to

popup_create().
Solution: Clear the window-local options. (closes #4857)
Files: src/option.c, src/proto/option.pro, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.1.1920
Problem: Cannot close a popup by the X when a filter consumes all events.
Solution: Check for a click on the close button before invoking filters.

(closes #4858)
Files: src/popupwin.c, src/proto/popupwin.pro, src/ui.c,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_close_04.dump,
src/testdir/dumps/Test_popupwin_close_05.dump

Patch 8.1.1921
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_expand.vim,

src/testdir/test_expand_func.vim, src/testdir/test_expr.vim,
src/testdir/test_findfile.vim, src/testdir/test_fnameescape.vim,
src/testdir/test_fnamemodify.vim, src/testdir/test_fold.vim,
src/testdir/test_functions.vim, src/testdir/test_search.vim,
src/testdir/test_vimscript.vim

Patch 8.1.1922
Problem: In diff mode global operations can be very slow.
Solution: Do not call diff_redraw() many times, call it once when redrawing.

And also don't update folds multiple times.
Files: src/globals.h, src/diff.c, src/proto/diff.pro, src/screen.c,

src/fold.c

Patch 8.1.1923
Problem: Some source files are not in a normal encoding.
Solution: Convert hangulin.c from euc-kr to utf-8 and digraph.c from latin1

to utf-8. (Daniel Hahler, closes #4731)
Files: src/hangulin.c, src/digraph.c, .travis.yml

Patch 8.1.1924
Problem: Using empty string for current buffer is unexpected.
Solution: Make the argument optional for bufname() and bufnr().

version8.txt — 3423

Files: src/evalfunc.c, src/testdir/test_arglist.vim, runtime/doc/eval.txt

Patch 8.1.1925
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufline.vim, src/testdir/test_bufwintabinfo.vim,
src/testdir/test_cd.vim, src/testdir/test_changelist.vim,
src/testdir/test_cmdline.vim, src/testdir/test_edit.vim,
src/testdir/test_environ.vim, src/testdir/test_file_perm.vim,
src/testdir/test_getvar.vim, src/testdir/test_jumplist.vim,
src/testdir/test_put.vim, src/testdir/test_stat.vim

Patch 8.1.1926
Problem: Cursorline not redrawn when putting a line above the cursor.
Solution: Redraw when the cursor line is below a change. (closes #4862)
Files: src/change.c

Patch 8.1.1927
Problem: Code for dealing with script files is spread out.
Solution: Move the code to scriptfile.c. (Yegappan Lakshmanan, closes #4861)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/cmdexpand.c, src/ex_cmds2.c, src/proto.h,
src/proto/ex_cmds2.pro, src/proto/scriptfile.pro, src/scriptfile.c

Patch 8.1.1928
Problem: Popup windows don't move with the text when making changes.
Solution: Add the 'textprop' property to the popup window options, position

the popup relative to a text property. (closes #4560)
No tests yet.

Files: runtime/doc/popup.txt, src/textprop.c, src/proto/textprop.pro,
src/structs.h, src/popupwin.c, src/proto/popupwin.pro, src/move.c,
src/proto/move.pro, src/window.c

Patch 8.1.1929
Problem: No tests for text property popup window.
Solution: Add a few tests.
Files: src/testdir/Make_all.mak, src/textprop.c,

src/testdir/test_popupwin_textprop.vim,
src/testdir/dumps/Test_popup_textprop_01.dump,
src/testdir/dumps/Test_popup_textprop_02.dump,
src/testdir/dumps/Test_popup_textprop_03.dump,
src/testdir/dumps/Test_popup_textprop_04.dump,
src/testdir/dumps/Test_popup_textprop_05.dump,
src/testdir/dumps/Test_popup_textprop_06.dump

Patch 8.1.1930
Problem: Cannot recognize .jsx and .tsx files.
Solution: Recognize them as javascriptreact and typescriptreact.

(closes #4830)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim,

runtime/syntax/javascriptreact.vim,
runtime/indent/javascriptreact.vim,
runtime/ftplugin/javascriptreact.vim

Patch 8.1.1931 (after 8.1.1930)
Problem: Syntax test fails.
Solution: Add new javascriptreact type to completions.
Files: src/testdir/test_syntax.vim

version8.txt — 3424

Patch 8.1.1932
Problem: Ml_get errors after using append(). (Alex Genco)
Solution: Do not update the cursor twice. (closes #1737)
Files: src/evalfunc.c, src/testdir/test_functions.vim

Patch 8.1.1933
Problem: The eval.c file is too big.
Solution: Move code related to variables to evalvars.c. (Yegappan

Lakshmanan, closes #4868)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/eval.c, src/evalfunc.c, src/evalvars.c, src/globals.h,
src/proto.h, src/proto/eval.pro, src/proto/evalvars.pro, src/vim.h

Patch 8.1.1934
Problem: Not enough tests for text property popup window.
Solution: Add a few more tests.
Files: src/popupwin.c, src/testdir/test_popupwin_textprop.vim,

src/testdir/dumps/Test_popup_textprop_corn_1.dump,
src/testdir/dumps/Test_popup_textprop_corn_2.dump,
src/testdir/dumps/Test_popup_textprop_corn_3.dump,
src/testdir/dumps/Test_popup_textprop_corn_4.dump

Patch 8.1.1935 (after 8.1.1934)
Problem: Test for text property popup window is flaky.
Solution: Remove the undo message
Files: src/testdir/test_popupwin_textprop.vim,

src/testdir/dumps/Test_popup_textprop_corn_4.dump

Patch 8.1.1936
Problem: Not enough tests for text property popup window.
Solution: Add a few more tests. Make negative offset work. Close all

popups when window closes.
Files: src/popupwin.c, src/testdir/test_popupwin_textprop.vim,

src/testdir/dumps/Test_popup_textprop_07.dump,
src/testdir/dumps/Test_popup_textprop_off_1.dump,
src/testdir/dumps/Test_popup_textprop_off_2.dump,
src/testdir/dumps/Test_popup_textprop_corn_5.dump,
src/testdir/dumps/Test_popup_textprop_corn_6.dump

Patch 8.1.1937 (after 8.1.1930)
Problem: Errors when using javascriptreact.
Solution: Use ":runtime" instead of ":source". (closes #4875)
Files: runtime/syntax/javascriptreact.vim,

runtime/indent/javascriptreact.vim,
runtime/ftplugin/javascriptreact.vim

Patch 8.1.1938
Problem: May crash when out of memory.
Solution: Initialize v_type to VAR_UNKNOWN. (Dominique Pelle, closes #4871)
Files: src/userfunc.c

Patch 8.1.1939
Problem: Code for handling v: variables in generic eval file.
Solution: Move v: variables to evalvars.c. (Yegappan Lakshmanan,

closes #4872)
Files: src/eval.c, src/evalvars.c, src/proto/eval.pro,

src/proto/evalvars.pro

version8.txt — 3425

Patch 8.1.1940 (after 8.1.1939)
Problem: Script tests fail.
Solution: Don't set vimvars type in set_vim_var_nr().
Files: src/eval.c, src/evalvars.c, src/proto/evalvars.pro

Patch 8.1.1941
Problem: getftype() test fails on Mac.
Solution: Skip /dev/fd/.
Files: src/testdir/test_stat.vim

Patch 8.1.1942
Problem: Shadow directory gets outdated when files are added.
Solution: Add the "shadowupdate" target and add a few comments.
Files: src/Makefile

Patch 8.1.1943
Problem: More code can be moved to evalvars.c.
Solution: Move it, clean up comments. Also move some window related

functions to window.c. (Yegappan Lakshmanan, closes #4874)
Files: src/eval.c, src/evalfunc.c, src/evalvars.c, src/proto/eval.pro,

src/proto/evalvars.pro, src/proto/window.pro, src/window.c

Patch 8.1.1944
Problem: Leaking memory when using sound callback.
Solution: Free the callback queue item.
Files: src/sound.c

Patch 8.1.1945
Problem: Popup window "firstline" cannot be reset.
Solution: Allow for setting "firstline" to zero. Fix that the text jumps to

the top when using win_execute(). (closes #4876)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_5.dump,
src/testdir/dumps/Test_popupwin_scroll_6.dump

Patch 8.1.1946
Problem: Memory error when profiling a function without a script ID.
Solution: Check for missing script ID. (closes #4877)
Files: src/testdir/test_profile.vim, src/profiler.c

Patch 8.1.1947
Problem: When executing one test the report doesn't show it.
Solution: Adjust the regexp. (Daniel Hahler, closes #4879)
Files: src/testdir/summarize.vim

Patch 8.1.1948
Problem: Mouse doesn't work in Linux console and causes 100% CPU. (James P.

Harvey)
Solution: Loop in WaitForCharOrMouse() when gpm_process_wanted is set.

(closes #4828)
Files: src/os_unix.c

Patch 8.1.1949
Problem: Cannot scroll a popup window to the very bottom.
Solution: Scroll to the bottom when the "firstline" property was set to -1.

(closes #4577) Allow resetting min/max width/height.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/dict.c, src/proto/dict.pro,
src/testdir/dumps/Test_popupwin_firstline.dump,
src/testdir/dumps/Test_popupwin_firstline_1.dump,

version8.txt — 3426

src/testdir/dumps/Test_popupwin_firstline_2.dump,
src/testdir/dumps/Test_popupwin_scroll_10.dump

Patch 8.1.1950
Problem: Using NULL pointer after an out-of-memory.
Solution: Check for NULL pointer. (Dominique Pelle, closes #4881)
Files: src/syntax.c

Patch 8.1.1951
Problem: Mouse double click test is a bit flaky.
Solution: Add to list of flaky tests. Update a couple of comments.
Files: src/testdir/runtest.vim, src/testdir/shared.vim,

src/testdir/test_substitute.vim

Patch 8.1.1952
Problem: More functions can be used as a method.
Solution: Allow more functions to be used as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_tagjump.vim, src/testdir/test_bufwintabinfo.vim,
src/testdir/test_terminal.vim, src/testdir/test_getvar.vim,
src/testdir/test_escaped_glob.vim,
src/testdir/test_glob2regpat.vim

Patch 8.1.1953
Problem: More functions can be used as a method.
Solution: Allow more functions to be used as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_blob.vim,

src/testdir/test_breakindent.vim, src/testdir/test_delete.vim,
src/testdir/test_functions.vim, src/testdir/test_getcwd.vim,
src/testdir/test_history.vim, src/testdir/test_listdict.vim,
src/testdir/test_syn_attr.vim, src/testdir/test_termcodes.vim,
src/testdir/test_true_false.vim

Patch 8.1.1954
Problem: More functions can be used as a method.
Solution: Allow more functions to be used as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_arglist.vim, src/testdir/test_functions.vim,
src/testdir/test_json.vim, src/testdir/test_lispwords.vim,
src/testdir/test_listener.vim, src/testdir/test_lua.vim,
src/testdir/test_utf8.vim

Patch 8.1.1955
Problem: Tests contain typos.
Solution: Correct the typos. (Dominique Pelle)
Files: src/testdir/popupbounce.vim, src/testdir/runtest.vim,

src/testdir/screendump.vim, src/testdir/test49.vim,
src/testdir/test_autocmd.vim, src/testdir/test_cindent.vim,
src/testdir/test_const.vim, src/testdir/test_popupwin.vim,
src/testdir/test_quickfix.vim, src/testdir/test_search.vim,
src/testdir/test_tabpage.vim, src/testdir/test_tcl.vim

Patch 8.1.1956
Problem: Screenshot tests may use a different encoding. (Dominique Pelle)
Solution: Always set 'encoding' to "utf-8" when running Vim in a terminal.

(closes #4884)
Files: src/testdir/shared.vim, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_behind.dump

Patch 8.1.1957

version8.txt — 3427

Problem: More code can be moved to evalvars.c.
Solution: Move code to where it fits better. (Yegappan Lakshmanan,

closes #4883)
Files: src/eval.c, src/evalvars.c, src/ex_getln.c, src/globals.h,

src/if_py_both.h, src/proto/eval.pro, src/proto/evalvars.pro,
src/proto/ex_getln.pro, src/proto/scriptfile.pro,
src/scriptfile.c, src/session.c, src/viminfo.c

Patch 8.1.1958
Problem: Old style comments taking up space.
Solution: Change to new style comments.
Files: src/vim.h

Patch 8.1.1959
Problem: When using "firstline" in popup window text may jump when

redrawing it. (Nick Jensen)
Solution: Set 'scrolloff' to zero in a popup window. (closes #4882)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_5.dump,
src/testdir/dumps/Test_popupwin_scroll_6.dump

Patch 8.1.1960
Problem: Fold code is spread out.
Solution: Move fold functions to fold.c.
Files: src/evalfunc.c, src/fold.c, src/proto/fold.pro

Patch 8.1.1961
Problem: More functions can be used as a method.
Solution: Allow more functions to be used as a method. Add a test for

mapcheck().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test70.in,

src/testdir/test_functions.vim, src/testdir/test_getcwd.vim,
src/testdir/test_maparg.vim, src/testdir/test_match.vim

Patch 8.1.1962
Problem: Leaking memory when using tagfunc().
Solution: Free the user_data. (Dominique Pelle, closes #4886)
Files: src/window.c

Patch 8.1.1963
Problem: Popup window filter may be called recursively when using a Normal

mode command. (Nick Jensen)
Solution: Prevent recursiveness. (closes #4887) Also restore KeyTyped.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.1964
Problem: Crash when using nested map() and filter().
Solution: Do not set the v:key type to string without clearing the pointer.

(closes #4888)
Files: src/eval.c, src/testdir/test_filter_map.vim

Patch 8.1.1965
Problem: The search count message is not displayed when using a mapping.

(Gary Johnson)
Solution: Ignore cmd_silent for showing the search count. (Christian

Brabandt)
Files: src/search.c

Patch 8.1.1966
Problem: Some code in options.c fits better elsewhere.

version8.txt — 3428

Solution: Move functions from options.c to other files. (Yegappan
Lakshmanan, closes #4889)

Files: src/evalfunc.c, src/globals.h, src/indent.c, src/map.c,
src/option.c, src/proto/map.pro, src/proto/option.pro,
src/proto/quickfix.pro, src/proto/screen.pro, src/proto/spell.pro,
src/proto/window.pro, src/quickfix.c, src/screen.c, src/spell.c,
src/window.c

Patch 8.1.1967
Problem: Line() only works for the current window.
Solution: Add an optional argument for the window to use.
Files: runtime/eval.txt, src/evalfunc.c, src/testdir/test_popupwin.vim

Patch 8.1.1968
Problem: Crash when using nested map().
Solution: Clear the pointer in prepare_vimvar(). (Ozaki Kiichi,

closes #4890, closes #4891)
Files: src/evalvars.c, src/testdir/test_filter_map.vim,

src/testdir/test_functions.vim

Patch 8.1.1969
Problem: Popup window filter is used in all modes.
Solution: Add the "filtermode" property.
Files: src/popupwin.c, src/vim.h, src/map.c, src/proto/map.pro,

src/structs.h, runtime/doc/popup.txt,
src/testdir/test_popupwin.vim

Patch 8.1.1970
Problem: Search stat space wrong, no test for 8.1.1965.
Solution: Fix check for cmd_silent. Add a test. (Christian Brabandt)
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.1.1971
Problem: Manually enabling features causes build errors. (John Marriott)
Solution: Adjust #ifdefs.
Files: src/proto.h, src/popupmnu.c, src/buffer.c, src/quickfix.c,

src/ui.c

Patch 8.1.1972
Problem: No proper test for getchar().
Solution: Add a test with special characters.
Files: src/testdir/test_functions.vim

Patch 8.1.1973
Problem: Cannot build without the quickfix feature.
Solution: Remove #ifdef for qf_info_T.
Files: src/structs.h

Patch 8.1.1974
Problem: Coverity warns for using pointer as array.
Solution: Call var2fpos() directly instead of using f_line().
Files: src/evalfunc.c

Patch 8.1.1975
Problem: MS-Windows GUI responds slowly to timer.
Solution: Break out of wait loop when timer was added or input is available.

(closes #4893)
Files: src/gui_w32.c

Patch 8.1.1976

version8.txt — 3429

Problem: Travis log always shows test output.
Solution: Change script to avoid if/else. (Ozaki Kiichi, closes #4892)
Files: .travis.yml

Patch 8.1.1977
Problem: Terminal debugger plugin may hang.
Solution: Wait longer when still reading symbols.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.1978
Problem: The eval.c file is too big.
Solution: Move filter() and map() to list.c.
Files: src/eval.c, src/proto/eval.pro, src/list.c, src/proto/list.pro,

src/evalfunc.c

Patch 8.1.1979
Problem: Code for handling file names is spread out.
Solution: Move code to new filepath.c file. Graduate FEAT_MODIFY_FNAME.
Files: src/filepath.c, Filelist, src/Make_cyg_ming.mak,

src/Make_morph.mak, src/Make_mvc.mak, src/Make_vms.mms,
src/Makefile, src/README.md, src/eval.c, src/evalfunc.c,
src/ex_docmd.c, src/feature.h, src/findfile.c, src/if_cscope.c,
src/message.c, src/misc1.c, src/proto.h, src/proto/eval.pro,
src/proto/evalvars.pro src/proto/filepath.pro,
src/proto/findfile.pro, src/proto/message.pro, src/regexp.c,
src/version.c

Patch 8.1.1980
Problem: Fix for search stat not tested.
Solution: Add a screenshot test. (Christian Brabandt)
Files: src/testdir/test_search_stat.vim,

src/testdir/dumps/Test_searchstat_1.dump,
src/testdir/dumps/Test_searchstat_2.dump

Patch 8.1.1981
Problem: The evalfunc.c file is too big.
Solution: Move undo functions to undo.c. Move cmdline functions to

ex_getln.c. Move some container functions to list.c.
Files: src/evalfunc.c, src/undo.c, src/proto/undo.pro, src/ex_getln.c,

src/proto/ex_getln.pro, src/list.c, src/proto/list.pro

Patch 8.1.1982
Problem: More functions can be used as methods.
Solution: Make popup functions usable as a method.
Files: runtime/doc/popup.txt, src/evalfunc.c,

src/testdir/test_popupwin.vim

Patch 8.1.1983
Problem: Compiler nags for uninitialized variable and unused function.
Solution: Add unnecessary initialization. Move function inside #ifdef.
Files: src/memline.c, src/channel.c

Patch 8.1.1984
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim, src/testdir/test_perl.vim,
src/testdir/test_prompt_buffer.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_pyx2.vim

version8.txt — 3430

Patch 8.1.1985
Problem: Code for dealing with paths is spread out.
Solution: Move path related functions from misc1.c to filepath.c.

Remove NO_EXPANDPATH.
Files: src/misc1.c, src/proto/misc1.pro, src/filepath.c,

src/evalfunc.c, src/globals.h, src/misc2.c, src/os_unix.c,
src/os_unix.h, src/proto/filepath.pro, src/scriptfile.c,
src/proto/misc2.pro, src/proto/scriptfile.pro, src/vim.h

Patch 8.1.1986
Problem: More functions can be used as methods.
Solution: Make textprop functions usable as a method.
Files: runtime/doc/textprop.txt, src/evalfunc.c,

src/testdir/test_textprop.vim

Patch 8.1.1987
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_clientserver.vim,
src/testdir/test_eval_stuff.vim, src/testdir/test_functions.vim,
src/testdir/test_reltime.vim, src/testdir/test_rename.vim

Patch 8.1.1988
Problem: :startinsert! does not work the same way as "A".
Solution: Use the same code to move the cursor. (closes #4896)
Files: src/ex_docmd.c, src/normal.c, src/proto/normal.pro,

src/testdir/test_edit.vim

Patch 8.1.1989
Problem: The evalfunc.c file is still too big.
Solution: Move f_pathshorten() to filepath.c. Move f_cscope_connection() to

if_cscope.c. Move diff_ functions to diff.c. Move timer_
functions to ex_cmds2.c. move callback functions to evalvars.c.

Files: src/evalfunc.c, src/proto/evalfunc.pro, src/filepath.c,
src/proto/filepath.pro, src/if_cscope.c, src/proto/if_cscope.pro,
src/diff.c, src/proto/diff.pro, src/ex_cmds2.c,
src/proto/ex_cmds2.pro, src/evalvars.c, src/proto/evalvars.pro

Patch 8.1.1990
Problem: Cannot build with eval but without cscope.
Solution: Always include if_cscope.pro.
Files: src/proto.h

Patch 8.1.1991
Problem: Still cannot build with eval but without cscope.
Solution: Move f_cscope_connection() outside of #ifdef.
Files: src/if_cscope.c

Patch 8.1.1992
Problem: The search stat moves when wrapping at the end of the buffer.
Solution: Put the "W" in front instead of at the end.
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.1.1993
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufline.vim, src/testdir/test_charsearch.vim,
src/testdir/test_clientserver.vim, src/testdir/test_cmdline.vim,

version8.txt — 3431

src/testdir/test_cursor_func.vim, src/testdir/test_diffmode.vim,
src/testdir/test_environ.vim, src/testdir/test_functions.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_popupwin.vim, src/testdir/test_search.vim,
src/testdir/test_searchpos.vim, src/testdir/test_utf8.vim

Patch 8.1.1994
Problem: MS-Windows: cannot build with eval but without cscope
Solution: Adjust the makefiles to always build if_cscope.obj.
Files: src/Make_mvc.mak, src/Make_cyg_ming.mak

Patch 8.1.1995
Problem: More functions can be used as methods.
Solution: Make sign functions usable as a method.
Files: runtime/doc/sign.txt, src/evalfunc.c, src/testdir/test_signs.vim

Patch 8.1.1996
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufwintabinfo.vim,
src/testdir/test_cursor_func.vim, src/testdir/test_expr.vim,
src/testdir/test_functions.vim, src/testdir/test_put.vim,
src/testdir/test_quickfix.vim, src/testdir/test_sha256.vim,
src/testdir/test_tabpage.vim, src/testdir/test_tagjump.vim,
src/testdir/test_vartabs.vim

Patch 8.1.1997
Problem: No redraw after a popup window filter is invoked.
Solution: Redraw if needed.
Files: src/popupwin.c, src/testdir/test_popupwin.vim

src/testdir/dumps/Test_popupwin_menu_filter_5.dump

Patch 8.1.1998
Problem: Redraw even when no popup window filter was invoked.
Solution: Only redraw when must_redraw was set to a larger value.
Files: src/popupwin.c

Patch 8.1.1999
Problem: Calling both PlaySoundW() and PlaySoundA().
Solution: Only use PlaySoundW(). (Dan Thompson, closes #4903)
Files: src/sound.c

Patch 8.1.2000
Problem: Plugin cannot get the current IME status.
Solution: Add the getimstatus() function. (closes #4904)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/mbyte.c,

src/proto/mbyte.pro, src/testdir/test_iminsert.vim

Patch 8.1.2001
Problem: Some source files are too big.
Solution: Move buffer and window related functions to evalbuffer.c and

evalwindow.c. (Yegappan Lakshmanan, closes #4898)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/buffer.c, src/channel.c, src/evalbuffer.c, src/evalfunc.c,
src/evalwindow.c, src/proto.h, src/proto/buffer.pro,
src/proto/evalbuffer.pro, src/proto/evalfunc.pro,
src/proto/evalwindow.pro, src/proto/window.pro, src/window.c

version8.txt — 3432

Patch 8.1.2002
Problem: Version number 2000 missing.
Solution: Add the number in the list of patches.
Files: src/version.c

Patch 8.1.2003
Problem: MS-Windows: code page 65001 is not recognized.
Solution: Use utf-8 for code page 65001. (Dan Thompson, closes #4902)
Files: src/mbyte.c

Patch 8.1.2004
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_breakindent.vim, src/testdir/test_expr.vim,
src/testdir/test_functions.vim, src/testdir/test_sound.vim,
src/testdir/test_spell.vim, src/testdir/test_substitute.vim,
src/testdir/test_swap.vim, src/testdir/test_utf8.vim

Patch 8.1.2005
Problem: The regexp.c file is too big.
Solution: Move the backtracking engine to a separate file. (Yegappan

Lakshmanan, closes #4905)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Makefile,

src/regexp.c, src/regexp_bt.c

Patch 8.1.2006
Problem: Build failure with huge features but without channel feature.
Solution: Add #ifdef. (Dominique Pelle, closes #4906)
Files: src/ui.c

Patch 8.1.2007
Problem: No test for what 8.1.1926 fixes.
Solution: Add a test case.
Files: src/testdir/test_highlight.vim

Patch 8.1.2008
Problem: Error for invalid range when using listener and undo. (Paul Jolly)
Solution: Do not change the cursor before the lines are restored.

(closes #4908)
Files: src/undo.c, src/testdir/test_listener.vim

Patch 8.1.2009
Problem: Cursorline highlighting not updated in popup window. (Marko

Mahnič)
Solution: Check if the cursor position changed. (closes #4912)
Files: src/popupwin.c, src/structs.h, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_cursorline_7.dump

Patch 8.1.2010
Problem: New file uses old style comments.
Solution: Change to new style comments. (Yegappan Lakshmanan, closes #4910)
Files: src/regexp_bt.c

Patch 8.1.2011
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method. Make the window

command test faster.
Files: runtime/doc/eval.txt, runtime/doc/testing.txt, src/evalfunc.c,

src/testdir/test_assert.vim, src/testdir/test_gui.vim,

version8.txt — 3433

src/testdir/test_messages.vim, src/testdir/test_options.vim,
src/testdir/test_quickfix.vim, src/testdir/test_taglist.vim,
src/testdir/test_termcodes.vim, src/testdir/test_timers.vim,
src/testdir/test_vimscript.vim, src/testdir/test_viminfo.vim,
src/testdir/test_window_cmd.vim

Patch 8.1.2012
Problem: More functions can be used as methods.
Solution: Make terminal functions usable as a method. Fix term_getattr().
Files: runtime/doc/terminal.txt, src/evalfunc.c, src/terminal.c

src/testdir/test_mksession.vim, src/testdir/test_terminal.vim

Patch 8.1.2013
Problem: More functions can be used as methods.
Solution: Make various functions usable as a method.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_cursor_func.vim,
src/testdir/test_execute_func.vim, src/testdir/test_functions.vim,
src/testdir/test_listchars.vim, src/testdir/test_timers.vim,
src/testdir/test_undo.vim, src/testdir/test_window_cmd.vim,
src/testdir/test_window_id.vim

Patch 8.1.2014
Problem: Terminal altscreen test fails sometimes.
Solution: Use WaitFor().
Files: src/testdir/test_terminal.vim

Patch 8.1.2015
Problem: Terminal altscreen test still fails sometimes.
Solution: Write the escape sequence in a file.
Files: src/testdir/test_terminal.vim

Patch 8.1.2016
Problem: Terminal altscreen test now fails on MS-Windows.
Solution: Skip the test on MS-Windows
Files: src/testdir/test_terminal.vim

Patch 8.1.2017
Problem: Cannot execute commands after closing the cmdline window.
Solution: Also trigger BufEnter and WinEnter. (closes #4762)
Files: runtime/doc/autocmd.txt, runtime/doc/cmdline.txt, src/ex_getln.c,

src/testdir/test_cmdline.vim

Patch 8.1.2018
Problem: Using freed memory when out of memory and displaying message.
Solution: Make a copy of the message first.
Files: src/main.c, src/message.c, src/normal.c

Patch 8.1.2019
Problem: 'cursorline' always highlights the whole line.
Solution: Add 'cursorlineopt' to specify what is highlighted.

(Ozaki Kiichi, closes #4693)
Files: runtime/doc/options.txt, runtime/doc/quickref.txt,

runtime/doc/syntax.txt, runtime/optwin.vim, src/option.c,
src/option.h, src/screen.c, src/structs.h,
src/testdir/Make_all.mak, src/testdir/gen_opt_test.vim,
src/testdir/test_alot.vim, src/testdir/test_cursorline.vim

Patch 8.1.2020
Problem: It is not easy to change the window layout.

version8.txt — 3434

Solution: Add win_splitmove(). (Andy Massimino, closes #4561)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/evalwindow.c,

src/proto/evalwindow.pro, src/testdir/test_window_cmd.vim

Patch 8.1.2021
Problem: Some global functions can be local to the file.
Solution: Add "static". (Yegappan Lakshmanan, closes #4917)
Files: src/ex_cmds2.c, src/filepath.c, src/hangulin.c, src/mbyte.c,

src/misc1.c, src/os_unix.c, src/proto/ex_cmds2.pro,
src/proto/filepath.pro, src/proto/hangulin.pro,
src/proto/mbyte.pro, src/proto/misc1.pro, src/proto/os_unix.pro,
src/proto/terminal.pro, src/proto/undo.pro, src/pty.c,
src/terminal.c, src/undo.c

Patch 8.1.2022
Problem: The option.c file is too big.
Solution: Move option definitions to a separate file. (Yegappan Lakshmanan,

closes #4918)
Files: Filelist, src/Make_mvc.mak, src/Make_vms.mms, src/Makefile,

src/option.c, src/optiondefs.h

Patch 8.1.2023
Problem: No test for synIDattr() returning "strikethrough".
Solution: Extend the synIDattr() test. (Jaskaran Singh, closes #4929)
Files: src/testdir/test_syn_attr.vim

Patch 8.1.2024
Problem: Delete call commented out for debugging.
Solution: Restore the delete call. (Christian Brabandt)
Files: src/testdir/test_undo.vim

Patch 8.1.2025
Problem: MS-Windows: Including shlguid.h causes problems for msys2.
Solution: Do not include shlguid.h. (closes #4913)
Files: src/GvimExt/gvimext.h

Patch 8.1.2026
Problem: Possibly using uninitialized memory.
Solution: Check if "dict" is NULL. (closes #4925)
Files: src/ops.c

Patch 8.1.2027
Problem: MS-Windows: problem with ambiwidth characters.
Solution: handle ambiguous width characters in ConPTY on Windows 10 (1903).

(Nobuhiro Takasaki, closes #4411)
Files: src/Make_mvc.mak, src/Make_cyg_ming.mak, src/libvterm/src/parser.c,

src/libvterm/src/state.c, src/libvterm/src/termscreen.c,
src/libvterm/src/unicode.c, src/libvterm/src/vterm_internal.h,
src/misc2.c, src/os_win32.c, src/proto/misc2.pro,
src/proto/os_win32.pro

Patch 8.1.2028
Problem: Options test script does not work.
Solution: Use optiondefs.h for input.
Files: src/testdir/Makefile, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak

Patch 8.1.2029
Problem: Cannot control 'cursorline' highlighting well.
Solution: Add "screenline". (Christian Brabandt, closes #4933)

version8.txt — 3435

Files: runtime/doc/options.txt, src/change.c, src/main.c, src/option.c,
src/option.h, src/optiondefs.h, src/screen.c, src/structs.h,
src/highlight.c, src/testdir/dumps/Test_Xcursorline_1.dump,
src/testdir/dumps/Test_Xcursorline_2.dump,
src/testdir/dumps/Test_Xcursorline_3.dump,
src/testdir/dumps/Test_Xcursorline_4.dump,
src/testdir/dumps/Test_Xcursorline_5.dump,
src/testdir/dumps/Test_Xcursorline_6.dump,
src/testdir/dumps/Test_Xcursorline_7.dump,
src/testdir/dumps/Test_Xcursorline_8.dump,
src/testdir/dumps/Test_Xcursorline_9.dump,
src/testdir/dumps/Test_Xcursorline_10.dump,
src/testdir/dumps/Test_Xcursorline_11.dump,
src/testdir/dumps/Test_Xcursorline_12.dump,
src/testdir/dumps/Test_Xcursorline_13.dump,
src/testdir/dumps/Test_Xcursorline_14.dump,
src/testdir/dumps/Test_Xcursorline_15.dump,
src/testdir/dumps/Test_Xcursorline_16.dump,
src/testdir/dumps/Test_Xcursorline_17.dump,
src/testdir/dumps/Test_Xcursorline_18.dump,
src/testdir/gen_opt_test.vim, src/testdir/test_cursorline.vim,
src/testdir/dumps/Test_cursorline_yank_01.dump,
src/testdir/dumps/Test_wincolor_01.dump,
src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.2030
Problem: Tests fail when build with normal features and terminal.

(Dominique Pelle)
Solution: Disable tests that won't work. (closes #4932)
Files: src/testdir/test_popupwin.vim, src/testdir/test_terminal.vim

Patch 8.1.2031
Problem: Cursor position wrong when resizing and using conceal.
Solution: Set the flags that the cursor position is valid when setting the

row and column during redrawing. (closes #4931)
Files: src/screen.c, src/testdir/test_conceal.vim,

src/testdir/dumps/Test_conceal_resize_01.dump,
src/testdir/dumps/Test_conceal_resize_02.dump

Patch 8.1.2032
Problem: Scrollbar thumb wrong in popup window.
Solution: Adjust thumb size and position when scrolled.
Files: src/popupwin.c, src/testdir/dumps/Test_popupwin_scroll_2.dump

Patch 8.1.2033
Problem: Cannot build with tiny features.
Solution: Add #ifdef.
Files: src/screen.c

Patch 8.1.2034
Problem: Dark theme of GTK 3 not supported.
Solution: Add the "d" flag in 'guioptions'. (Jonathan Conder, closes #4934)
Files: runtime/doc/options.txt, src/feature.h, src/gui.c,

src/gui_gtk_x11.c, src/option.h, src/proto/gui_gtk_x11.pro,
src/testdir/test_gui.vim

Patch 8.1.2035
Problem: Recognizing octal numbers is confusing.
Solution: Introduce scriptversion 4: do not use octal and allow for single

quote inside numbers.

version8.txt — 3436

Files: runtime/doc/eval.txt, src/vim.h, src/eval.c, src/scriptfile.c,
src/evalfunc.c, src/testdir/test_eval_stuff.vim,
src/testdir/test_functions.vim

Patch 8.1.2036 (after 8.1.2035)
Problem: The str2nr() tests fail.
Solution: Add missing part of patch.
Files: src/charset.c

Patch 8.1.2037
Problem: Can call win_gotoid() in cmdline window.
Solution: Disallow switching windows. (Yasuhiro Matsumoto, closes #4940)
Files: src/evalwindow.c, src/testdir/test_cmdline.vim

Patch 8.1.2038
Problem: has('vimscript-4') is always 0.
Solution: Add "vimscript-4" to the feature table. (Naruhiko Nishino,

closes #4941)
Files: src/evalfunc.c, src/testdir/test_eval_stuff.vim

Patch 8.1.2039
Problem: Character from 'showbreak' does not use 'wincolor'. (Nick Jensen)
Solution: Mix with 'wincolor'. (closes #4938)
Files: src/screen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_showbreak.dump

Patch 8.1.2040
Problem: No highlighting of current line in quickfix window.
Solution: Combine with line_attr.
Files: src/screen.c, src/testdir/test_quickfix.vim,

src/testdir/dumps/Test_quickfix_cwindow_1.dump,
src/testdir/dumps/Test_quickfix_cwindow_2.dump

Patch 8.1.2041 (after 8.1.2040)
Problem: No test for diff mode with syntax highlighting.
Solution: Add a test case.
Files: src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_syntax_1.dump

Patch 8.1.2042
Problem: The evalfunc.c file is too big.
Solution: Move getchar() and parse_queued_messages() to getchar.c.
Files: src/getchar.c, src/proto/getchar.pro, src/evalfunc.c, src/misc2.c,

src/proto/misc2.pro

Patch 8.1.2043
Problem: Not sufficient testing for quoted numbers.
Solution: Add a few more test cases.
Files: src/testdir/test_functions.vim, src/testdir/test_eval_stuff.vim

Patch 8.1.2044
Problem: No easy way to process postponed work. (Paul Jolly)
Solution: Add the SafeState autocommand event.
Files: runtime/doc/autocmd.txt, src/main.c, src/proto/main.pro,

src/vim.h, src/autocmd.c, src/channel.c, src/edit.c,
src/ex_getln.c

Patch 8.1.2045
Problem: The option.c file is too big.
Solution: Split off the code dealing with strings. (Yegappan Lakshmanan,

version8.txt — 3437

closes #4937)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/option.c, src/option.h, src/optiondefs.h, src/optionstr.c,
src/ops.c, src/os_unix.c, src/proto.h, src/proto/option.pro,
src/proto/optionstr.pro

Patch 8.1.2046
Problem: SafeState may be triggered at the wrong moment.
Solution: Move it up higher to after where messages are processed. Add a

SafeStateAgain event to trigger there.
Files: runtime/doc/autocmd.txt, src/main.c, src/proto/main.pro,

src/getchar.c, src/channel.c, src/autocmd.c, src/vim.h

Patch 8.1.2047
Problem: Cannot check the current state.
Solution: Add the state() function.
Files: runtime/doc/eval.txt, src/misc1.c, src/proto/misc1.pro,

src/evalfunc.c, src/proto/evalfunc.pro, src/main.c,
src/proto/main.pro, src/channel.c, src/proto/channel.pro,
src/userfunc.c, src/proto/userfunc.pro

Patch 8.1.2048
Problem: Not clear why SafeState and SafeStateAgain are not triggered.
Solution: Add log statements.
Files: src/getchar.c, src/main.c, src/proto/main.pro

Patch 8.1.2049 (after 8.1.2048)
Problem: Cannot build tiny version.
Solution: Add #ifdefs.
Files: src/main.c

Patch 8.1.2050
Problem: Popup window test fails in some configurations. (James McCoy)
Solution: Clear the command line.
Files: src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_10.dump

Patch 8.1.2051
Problem: Double-click test is a bit flaky.
Solution: Correct entry in list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.2052
Problem: Using "x" before a closed fold may delete that fold.
Solution: Do not translate 'x' do "dl". (Christian Brabandt, closes #4927)
Files: src/normal.c, src/testdir/test_fold.vim

Patch 8.1.2053
Problem: SafeStateAgain not triggered if callback uses feedkeys().
Solution: Check for safe state in the input loop. Make log messages easier

to find. Add 'S' flag to state().
Files: src/main.c, src/proto/main.pro, src/getchar.c,

runtime/doc/eval.txt

Patch 8.1.2054
Problem: Compiler test for Perl may fail.
Solution: Accept any error line number. (James McCoy, closes #4944)
Files: src/testdir/test_compiler.vim

version8.txt — 3438

Patch 8.1.2055
Problem: Not easy to jump to function line from profile.
Solution: Use "file:99" instead of "file line 99" so that "gf" works.

(Daniel Hahler, closes #4951)
Files: src/profiler.c, src/testdir/test_profile.vim

Patch 8.1.2056
Problem: "make test" for indent files doesn't cause make to fail.
Solution: Exit the script with ":cquit". (Daniel Hahler, closes #4949)
Files: runtime/indent/testdir/runtest.vim, .gitignore

Patch 8.1.2057
Problem: The screen.c file is much too big.
Solution: Split it in three parts. (Yegappan Lakshmanan, closes #4943)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/drawline.c, src/drawscreen.c, src/globals.h, src/proto.h,
src/proto/drawline.pro, src/proto/drawscreen.pro,
src/proto/screen.pro, src/screen.c, src/vim.h

Patch 8.1.2058
Problem: Function for ex command is named inconsistently.
Solution: Rename do_marks() to ex_marks().
Files: src/mark.c, src/proto/mark.pro, src/ex_cmds.h

Patch 8.1.2059
Problem: Fix for "x" deleting a fold has side effects.
Solution: Fix it where the fold is included.
Files: src/normal.c

Patch 8.1.2060
Problem: "precedes" in 'listchars' not used properly.
Solution: Correctly handle the "precedes" char in list mode for long lines.

(Zach Wegner, Christian Brabandt, closes #4953)
Files: runtime/doc/options.txt, src/drawline.c,

src/testdir/test_display.vim, src/testdir/view_util.vim

Patch 8.1.2061
Problem: MS-Windows GUI: ":sh" crashes when trying to use a terminal.
Solution: Check for a NULL command. (Yasuhiro Matsumoto, closes #4958)
Files: src/os_win32.c

Patch 8.1.2062
Problem: The mouse code is spread out.
Solution: Move all the mouse code to mouse.c. (Yegappan Lakshmanan,

closes #4959)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/auto/configure, src/configure.ac, src/edit.c, src/ex_cmds.c,
src/ex_docmd.c, src/ex_getln.c, src/insexpand.c,
src/libvterm/src/termmouse.c, src/libvterm/src/mouse.c,
src/main.c, src/message.c, src/misc1.c, src/misc2.c, src/mouse.c,
src/normal.c, src/proto.h, src/proto/edit.pro,
src/proto/misc1.pro, src/proto/misc2.pro, src/proto/mouse.pro,
src/proto/normal.pro, src/proto/term.pro, src/proto/ui.pro,
src/search.c, src/term.c, src/ui.c, src/vim.h, src/window.c

Patch 8.1.2063
Problem: Some tests fail when +balloon_eval_term is missing but

_balloon_eval is present. (Dominique Pelle)

version8.txt — 3439

Solution: Check the right feature in the test. (closes #4962)
Files: src/testdir/test_popupwin.vim, src/testdir/test_terminal.vim

Patch 8.1.2064
Problem: MS-Windows: compiler warnings for unused arguments.
Solution: Add UNUSED. (Yegappan Lakshmanan, closes #4963)
Files: src/channel.c, src/ex_docmd.c, src/ex_getln.c, src/fileio.c,

src/gui_w32.c, src/main.c, src/memline.c, src/os_mswin.c,
src/os_win32.c, src/terminal.c, src/ui.c, src/undo.c

Patch 8.1.2065
Problem: Compiler warning building non-GUI with MinGW.
Solution: Adjust #ifdefs. (Yegappan Lakshmanan, closes #4964)
Files: sre/mouse.c

Patch 8.1.2066
Problem: No tests for state().
Solution: Add tests. Clean up some feature checks. Make "a" flag work.
Files: src/testdir/test_functions.vim, src/testdir/test_terminal.vim,

src/misc1.c

Patch 8.1.2067
Problem: No tests for SafeState and SafeStateAgain.
Solution: Add tests.
Files: src/testdir/test_autocmd.vim

Patch 8.1.2068 (after 8.1.2067)
Problem: Test for SafeState and SafeStateAgain may fail.
Solution: Accept more possible responses
Files: src/testdir/test_autocmd.vim

Patch 8.1.2069 (after 8.1.2068)
Problem: Test for SafeStateAgain may still fail.
Solution: Send another message to trigger SafeStateAgain.
Files: src/testdir/test_autocmd.vim

Patch 8.1.2070
Problem: Mouse code is spread out.
Solution: Move mouse terminal code parsing to mouse.c. (Yegappan Lakshmanan,

closes #4966)
Files: src/mouse.c, src/proto/mouse.pro, src/proto/term.pro, src/term.c

Patch 8.1.2071
Problem: When 'wincolor' is set text property changes highlighting. (Andy

Stewart)
Solution: Fix combining colors. (closes #4968)
Files: src/drawline.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_wincolor_01.dump

Patch 8.1.2072
Problem: "gk" moves to start of line instead of upwards.
Solution: Fix off-by-one error. (Christian Brabandt, closes #4969)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.1.2073
Problem: When editing a buffer 'colorcolumn' may not work.
Solution: Set the buffer before copying option values. Call

check_colorcolumn() after copying window options.
Files: src/buffer.c, src/option.c, src/proto/option.pro,

src/proto/indent.pro, src/testdir/test_highlight.vim,

version8.txt — 3440

src/testdir/dumps/Test_colorcolumn_1.dump

Patch 8.1.2074
Problem: Test for SafeState autocommand is a bit flaky.
Solution: Add to list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.2075
Problem: Get many log messages when waiting for a typed character.
Solution: Do not repeat the repeated messages when nothing happens.
Files: src/globals.h, src/channel.c, src/main.c

Patch 8.1.2076
Problem: Crash when trying to put a terminal buffer in a popup window.
Solution: Check for NULL buffer. Do not allow putting a terminal in a popup

window.
Files: src/libvterm/src/termscreen.c, src/terminal.c, src/popupwin.c,

runtime/doc/popup.txt, src/testdir/test_popupwin.vim

Patch 8.1.2077
Problem: The ops.c file is too big.
Solution: Move code for dealing with registers to a new file. (Yegappan

Lakshmanan, closes #4982)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms src/Makefile, src/README.md,
src/ops.c, src/proto.h, src/proto/ops.pro, src/proto/register.pro,
src/register.c, src/structs.h

Patch 8.1.2078
Problem: Build error with +textprop but without +terminal. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/popupwin.c

Patch 8.1.2079
Problem: Popup window test fails without +terminal.
Solution: Check for the +terminal feature.
Files: src/testdir/test_popupwin.vim

Patch 8.1.2080
Problem: The terminal API is limited and can't be disabled.
Solution: Add term_setapi() to set the function prefix. (Ozaki Kiichi,

closes #2907)
Files: runtime/doc/eval.txt, runtime/doc/terminal.txt, src/channel.c,

src/evalfunc.c, src/proto/terminal.pro, src/structs.h,
src/terminal.c, src/testdir/term_util.vim,
src/testdir/test_terminal.vim

Patch 8.1.2081
Problem: The spell.c file is too big.
Solution: Move the code for spell suggestions to a separate file. (Yegappan

Lakshmanan, closes #4988)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/proto.h, src/proto/spell.pro, src/proto/spellsuggest.pro,
src/spell.c, src/spell.h, src/spellsuggest.c

Patch 8.1.2082
Problem: Some files have a weird name to fit in 8.3 characters.
Solution: Use a nicer names.
Files: Filelist, Makefile, src/popupmnu.c, src/popupmenu.c,

version8.txt — 3441

src/proto/popupmnu.pro, src/proto/popupmenu.pro,
src/Make_cyg_ming.mak, src/Make_morph.mak, src/Make_mvc.mak,
src/Make_vms.mms, src/Makefile, src/proto.h, src/README.md,
src/uninstal.c, src/uninstall.c, uninstal.txt, uninstall.txt,
nsis/gvim.nsi, src/INSTALLpc.txt, src/dosinst.c, src/dosinst.h

Patch 8.1.2083
Problem: Multi-byte chars do not work properly with "%.*S" in printf().
Solution: Use mb_ptr2cells(). Daniel Hahler, closes #4989)
Files: src/testdir/test_expr.vim, src/message.c

Patch 8.1.2084
Problem: Amiga: cannot get the user name.
Solution: Use getpwuid() if available. (Ola Söder, closes #4985)
Files: src/os_amiga.c, src/os_amiga.h

Patch 8.1.2085
Problem: MS-Windows: draw error moving cursor over double-cell character.
Solution: Move the cursor to the left edge if needed. (Nobuhiro Takasaki,

closes #4986)
Files: src/os_win32.c

Patch 8.1.2086 (after 8.1.2082)
Problem: Missing a few changes for the renamed files.
Solution: Rename in a few more places. (Ken Takata)
Files: nsis/README.txt, runtime/doc/gui_w32.txt, runtime/doc/usr_90.txt,

src/GvimExt/GvimExt.reg, src/GvimExt/README.txt,
src/proto/popupmenu.pro, src/proto/popupmnu.pro

Patch 8.1.2087
Problem: Cannot easily select one test function to execute.
Solution: Support the $TEST_FILTER environment variable. (Ozaki Kiichi,

closes #2695)
Files: src/Makefile, src/testdir/runtest.vim, src/testdir/summarize.vim

Patch 8.1.2088
Problem: Renamed libvterm mouse.c file not in distributed file list.
Solution: Rename the file in the file list.
Files: Filelist

Patch 8.1.2089 (after 8.1.2087)
Problem: Do not get a hint that $TEST_FILTER was active.
Solution: Mention $TEST_FILTER if no functions were executed.
Files: src/testdir/runtest.vim

Patch 8.1.2090
Problem: Not clear why channel log file ends.
Solution: Add a "closing" line.
Files: src/channel.c

Patch 8.1.2091
Problem: Double free when memory allocation fails. (Zu-Ming Jiang)
Solution: Use VIM_CLEAR() instead of vim_free(). (closes #4991)
Files: src/getchar.c

Patch 8.1.2092
Problem: MS-Windows: redirect in system() does not work.
Solution: Handle 'shellxescape' and 'shellxquote' better. (Yasuhiro

Matsumoto, closes #2054)
Files: src/ex_cmds.c, src/misc2.c, src/testdir/test_system.vim

version8.txt — 3442

Patch 8.1.2093
Problem: MS-Windows: system() test fails.
Solution: Expect CR when using systemlist().
Files: src/testdir/test_system.vim

Patch 8.1.2094
Problem: The fileio.c file is too big.
Solution: Move buf_write() to bufwrite.c. (Yegappan Lakshmanan,

closes #4990)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/bufwrite.c, src/fileio.c, src/option.c, src/proto.h,
src/proto/bufwrite.pro, src/proto/fileio.pro, src/structs.h

Patch 8.1.2095
Problem: Leaking memory when getting item from dict.
Solution: Also free the key when not evaluating.
Files: src/dict.c

Patch 8.1.2096
Problem: Too many #ifdefs.
Solution: Graduate FEAT_COMMENTS.
Files: src/feature.h, src/buffer.c, src/change.c, src/edit.c,

src/evalfunc.c, src/fold.c, src/insexpand.c, src/misc1.c,
src/normal.c, src/ops.c, src/option.c, src/optionstr.c,
src/search.c, src/version.c, src/globals.h, src/option.h,
src/optiondefs.h, src/structs.h, runtime/doc/change.txt,
runtime/doc/options.txt, runtime/doc/various.txt

Patch 8.1.2097
Problem: :mksession is not sufficiently tested.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #4992)
Files: src/testdir/test_mksession.vim

Patch 8.1.2098 (after 8.1.2097)
Problem: mksession test fails on MS-Windows.
Solution: Skip testing with backslashes on MS-Windows.
Files: src/testdir/test_mksession.vim

Patch 8.1.2099
Problem: state() test fails on some Mac systems.
Solution: Increase the wait time. (closes #4983)
Files: src/testdir/test_functions.vim

Patch 8.1.2100
Problem: :mksession is not sufficiently tested.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #4993)
Files: src/testdir/test_mksession.vim

Patch 8.1.2101
Problem: write_session_file() often defined but not used.
Solution: Adjust the #ifdef. (Yegappan Lakshmanan, closes #4998)
Files: src/session.c

Patch 8.1.2102
Problem: Can't build with GTK and FEAT_GUI_GNOME. (Tony Mechelynck)
Solution: Adjust the #ifdef. (Yegappan Lakshmanan)
Files: src/session.c

version8.txt — 3443

Patch 8.1.2103
Problem: wrong error message if "termdebugger" is not executable.
Solution: Check if "termdebugger" is executable and give a clear error

message. (Ozaki Kiichi, closes #5000) Fix indents.
Files: runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.1.2104
Problem: The normal.c file is too big.
Solution: Move do_pending_operator() to ops.c. (Yegappan Lakshmanan,

closes #4999).
Files: src/normal.c, src/ops.c, src/proto/normal.pro, src/proto/ops.pro,

src/globals.h

Patch 8.1.2105
Problem: MS-Windows: system() may crash.
Solution: Do not use "itmp" when it is NULL. (Yasuhiro Matsumoto,

closes #5005)
Files: src/ex_cmds.c

Patch 8.1.2106
Problem: No tests for dragging the mouse beyond the window.
Solution: Add a test. (Dominique Pelle, closes #5004)
Files: src/testdir/test_termcodes.vim

Patch 8.1.2107
Problem: Various memory leaks reported by asan.
Solution: Free the memory. (Ozaki Kiichi, closes #5003)
Files: src/buffer.c, src/change.c, src/eval.c, src/evalfunc.c,

src/option.c, src/popupwin.c, src/proto/change.pro,
src/scriptfile.c, src/terminal.c, src/testdir/test_method.vim

Patch 8.1.2108
Problem: Cannot close the cmdline window from CmdWinEnter. (George Brown)
Solution: Reset cmdwin_result earlier. (Christian Brabandt, closes #4980)
Files: src/ex_getln.c, src/testdir/test_autocmd.vim

Patch 8.1.2109
Problem: popup_getoptions() hangs with tab-local popup.
Solution: Correct pointer name. (Marko Mahnič, closes #5006)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.2110
Problem: CTRL-C closes two popups instead of one.
Solution: Reset got_int when the filter consumed the key.
Files: src/getchar.c, src/testdir/test_popupwin.vim

Patch 8.1.2111
Problem: Viminfo file not sufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5009)
Files: src/testdir/test_viminfo.vim

Patch 8.1.2112
Problem: Build number for ConPTY is outdated.
Solution: Update to new build number. (Nobuhiro Takasaki, closes #5014)
Files: src/os_win32.c

Patch 8.1.2113
Problem: ":help expr-!~?" only works after searching.
Solution: Escape "~" after "expr-". (closes #5015)
Files: src/ex_cmds.c, src/testdir/test_help.vim

version8.txt — 3444

Patch 8.1.2114
Problem: When a popup is closed with CTRL-C the callback aborts.
Solution: Reset got_int when invoking the callback. (closes #5008)
Files: src/popupwin.c

Patch 8.1.2115
Problem: MS-Windows: shell commands fail if &shell contains a space.
Solution: Use quotes instead of escaping. (closes #4920)
Files: src/option.c, src/os_win32.c, src/testdir/test_startup.vim,

src/testdir/test_system.vim, src/vimrun.c,

Patch 8.1.2116
Problem: No check for out of memory.
Solution: Check for NULL pointer.
Files: src/option.c

Patch 8.1.2117
Problem: CursorLine highlight used while 'cursorline' is off.
Solution: Check 'cursorline' is set. (closes #5017)
Files: src/drawline.c, src/testdir/test_cursorline.vim

Patch 8.1.2118
Problem: Termcodes test fails when $TERM is "dumb".
Solution: Skip the test. (James McCoy, closes #5019)
Files: src/testdir/test_termcodes.vim

Patch 8.1.2119
Problem: memory access error for empty string when 'encoding' is a single

byte encoding.
Solution: Check for empty string when getting the length. (Dominique Pelle,

closes #5021, closes #5007)
Files: src/macros.h

Patch 8.1.2120
Problem: Some MB_ macros are more complicated than necessary. (Dominique

Pelle)
Solution: Simplify the macros. Expand inline.
Files: src/macros.h, src/beval.c, src/diff.c src/eval.c src/evalfunc.c

src/ex_getln.c, src/filepath.c, src/findfile.c, src/getchar.c,
src/highlight.c, src/ops.c, src/os_mswin.c, src/popupmenu.c,
src/search.c, src/spell.c, src/spellsuggest.c, src/terminal.c

Patch 8.1.2121
Problem: Mode is not updated when switching to terminal in Insert mode.
Solution: Redraw the mode when entering a terminal window. (Jason Franklin)
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.1.2122 (after 8.1.2121)
Problem: Cannot build without terminal feature.
Solution: Add #ifdef.
Files: src/window.c

Patch 8.1.2123
Problem: Parsing CSI sequence is messy.
Solution: Generalize parsing a CSI sequence.
Files: src/term.c

Patch 8.1.2124
Problem: Ruler is not updated if win_execute() moves cursor.

version8.txt — 3445

Solution: Update the status line. (closes #5022)
Files: src/evalwindow.c, src/testdir/test_execute_func.vim

Patch 8.1.2125
Problem: Fnamemodify() fails when repeating :e.
Solution: Do not go before the tail. (Rob Pilling, closes #5024)
Files: src/filepath.c, src/testdir/test_fnamemodify.vim

Patch 8.1.2126
Problem: Viminfo not sufficiently tested.
Solution: Add more test cases. Clean up comments. (Yegappan Lakshmanan,

closes #5032)
Files: src/search.c, src/structs.h, src/testdir/test_viminfo.vim,

src/viminfo.c

Patch 8.1.2127
Problem: The indent.c file is a bit big.
Solution: Move C-indent code to a new cindent.c file. Move other

indent-related code to indent.c. (Yegappan Lakshmanan,
closes #5031)

Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,
src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/change.c, src/cindent.c, src/edit.c, src/evalfunc.c,
src/ex_cmds.c, src/globals.h, src/indent.c, src/misc1.c,
src/ops.c, src/proto.h, src/proto/cindent.pro, src/proto/edit.pro,
src/proto/ex_cmds.pro, src/proto/indent.pro, src/proto/misc1.pro,
src/proto/ops.pro, src/userfunc.c

Patch 8.1.2128
Problem: Renamed libvterm sources makes merging difficult.
Solution: Rename back to the original name and only rename the .o files.

Also clean the libvterm build artifacts. (James McCoy,
closes #5027)

Files: src/libvterm/src/termmouse.c, src/libvterm/src/mouse.c,
src/libvterm/src/termscreen.c, src/libvterm/src/screen.c,
src/Makefile, src/configure.ac, src/auto/configure,
src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.1.2129
Problem: Using hard coded executable path in test.
Solution: Use v:progpath. Use $VIMRUNTIME instead of "runtime". (James

McCoy, closes #5025)
Files: src/testdir/test49.vim, src/testdir/test_compiler.vim,

src/testdir/test_spell.vim

Patch 8.1.2130 (after 8.1.2128)
Problem: MSVC build fails.
Solution: Add the source file name explicitly.
Files: src/Make_mvc.mak

Patch 8.1.2131 (after 8.1.2129)
Problem: MSVC tests fail.
Solution: Replace backslashes with slashes.
Files: src/testdir/test_compiler.vim, src/testdir/test_spell.vim

Patch 8.1.2132
Problem: MS-Windows: screen mess when not recognizing insider build.
Solution: Always move the cursor to the first column first. (Nobuhiro

Takasaki, closes #5036)
Files: src/os_win32.c

version8.txt — 3446

Patch 8.1.2133
Problem: Some tests fail when run as root.
Solution: Add CheckNotRoot and use it. (James McCoy, closes #5020)
Files: src/testdir/check.vim, src/testdir/shared.vim,

src/testdir/test_rename.vim, src/testdir/test_swap.vim,
src/testdir/test_terminal.vim, src/testdir/test_viminfo.vim

Patch 8.1.2134
Problem: Modifier keys are not always recognized.
Solution: Handle key codes generated by xterm with modifyOtherKeys set.

Add this to libvterm so we can debug it.
Files: src/term.c, src/getchar.c, src/libvterm/src/vterm_internal.h,

src/libvterm/src/state.c, src/libvterm/src/keyboard.c,
src/libvterm/include/vterm.h, src/globals.h, src/terminal.c

Patch 8.1.2135
Problem: With modifyOtherKeys Alt-a does not work properly.
Solution: Remove the ALT modifier. Get multibyte after applying ALT.
Files: src/getchar.c

Patch 8.1.2136
Problem: using freed memory with autocmd from fuzzer. (Dhiraj Mishra,

Dominique Pelle)
Solution: Avoid using "wp" after autocommands. (closes #5041)
Files: src/window.c, src/testdir/test_autocmd.vim

Patch 8.1.2137
Problem: Parsing the termresponse is not tested.
Solution: Add a first test. (related to #5042)
Files: src/testdir/test_termcodes.vim

Patch 8.1.2138
Problem: Including the build number in the Win32 binary is confusing.
Solution: Only use the patchlevel.
Files: src/vim.rc

Patch 8.1.2139
Problem: The modifyOtherKeys codes are not tested.
Solution: Add a test case.
Files: src/testdir/test_termcodes.vim

Patch 8.1.2140
Problem: "gk" and "gj" do not work correctly in number column.
Solution: Allow for a negative "curswant". (Zach Wegner, closes #4969)
Files: src/testdir/test_normal.vim, src/misc2.c, src/normal.c

Patch 8.1.2141
Problem: :tselect has an extra hit-enter prompt.
Solution: Do not set need_wait_return when only moving the cursor.

(closes #5040)
Files: src/message.c, src/testdir/test_tagjump.vim,

src/testdir/dumps/Test_tselect_1.dump

Patch 8.1.2142
Problem: Some key mappings do not work with modifyOtherKeys.
Solution: Remove the Shift modifier if it is already included in the key.
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.1.2143

version8.txt — 3447

Problem: Cannot see each command even when 'verbose' is set.
Solution: List each command when 'verbose' is at least 16.
Files: src/ex_docmd.c src/testdir/test_tagjump.vim,

src/testdir/test_cmdline.vim,
src/testdir/dumps/Test_verbose_option_1.dump

Patch 8.1.2144
Problem: Side effects when using t_ti to enable modifyOtherKeys.
Solution: Add t_TI and t_TE.
Files: runtime/doc/term.txt, src/term.c, src/optiondefs.h, src/term.h,

Patch 8.1.2145
Problem: Cannot map <C-H> when modifyOtherKeys is enabled.
Solution: Add the <C-H> mapping twice, both with modifier and as 0x08. Use

only the first one when modifyOtherKeys has been detected.
Files: src/term.c, src/eval.c, src/getchar.c, src/globals.h,

src/gui_mac.c, src/gui_w32.c, src/highlight.c, src/if_ole.cpp,
src/main.c, src/map.c, src/menu.c, src/misc2.c, src/option.c,
src/proto/misc2.pro, src/proto/term.pro,
src/testdir/test_termcodes.vim, src/structs.h, src/terminal.c,
src/usercmd.c, src/vim.h

Patch 8.1.2146 (after 8.1.2145)
Problem: Build failure.
Solution: Include omitted changed file.
Files: src/optionstr.c

Patch 8.1.2147
Problem: Crash when allocating memory fails. (Zu-Ming Jiang)
Solution: Check that 'spellcapcheck' is not NULL. (closes #5048)
Files: src/spell.c

Patch 8.1.2148
Problem: No test for right click extending Visual area.
Solution: Add a test. (Dominique Pelle, closes #5018)
Files: src/testdir/test_termcodes.vim

Patch 8.1.2149
Problem: Crash when running out of memory very early.
Solution: Do not use IObuff when it's NULL. (closes #5052)
Files: src/message.c

Patch 8.1.2150
Problem: No test for 'ttymouse' set from xterm version response.
Solution: Test the three possible values.
Files: src/testdir/test_termcodes.vim

Patch 8.1.2151
Problem: State test is a bit flaky.
Solution: Add to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.2152
Problem: Problems navigating tags file on macOS Catalina.
Solution: Use fseek instead of lseek. (John Lamb, fixes #5061)
Files: src/tag.c

Patch 8.1.2153
Problem: Combining text property and syntax highlight is wrong. (Nick

Jensen)

version8.txt — 3448

Solution: Compute the syntax highlight attribute much earlier.
(closes #5057)

Files: src/drawline.c, src/testdir/test_textprop.vim,
src/testdir/dumps/Test_textprop_syn_1.dump

Patch 8.1.2154
Problem: Quickfix window height wrong when there is a tabline. (Daniel

Hahler)
Solution: Take the tabline height into account. (closes #5058)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.2155
Problem: In a terminal window 'cursorlineopt' does not work properly.
Solution: Check the 'cursorlineopt' value. (closes #5055)
Files: src/drawline.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_normal_1.dump,
src/testdir/dumps/Test_terminal_normal_2.dump,
src/testdir/dumps/Test_terminal_normal_3.dump

Patch 8.1.2156
Problem: First character after Tab is not highlighted.
Solution: Remember the syntax attribute for a column.
Files: src/drawline.c, src/testdir/test_syntax.vim,

src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.1.2157
Problem: Libvterm source files missing from distribution.
Solution: Rename source files. (closes #5065)
Files: Filelist

Patch 8.1.2158
Problem: Terminal attributes missing in Terminal-normal mode.
Solution: Use "syntax_attr".
Files: src/drawline.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_dumpload.dump

Patch 8.1.2159
Problem: Some mappings are listed twice.
Solution: Skip mappings duplicated for modifyOtherKeys. (closes #5064)
Files: src/map.c, src/testdir/test_mapping.vim

Patch 8.1.2160
Problem: Cannot build with +syntax but without +terminal.
Solution: Add #ifdef.
Files: src/drawline.c

Patch 8.1.2161
Problem: Mapping test fails.
Solution: Run the test separately.
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim

Patch 8.1.2162
Problem: Popup resize test is flaky. (Christian Brabandt)
Solution: Add the function to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.2163
Problem: Cannot build with +spell but without +syntax.
Solution: Add #ifdef. (John Marriott)
Files: src/drawline.c

version8.txt — 3449

Patch 8.1.2164
Problem: Stuck when using "j" in a popupwin with popup_filter_menu if a

line wraps.
Solution: Check the cursor line is visible. (closes #4577)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_wrap_1.dump,
src/testdir/dumps/Test_popupwin_wrap_2.dump

Patch 8.1.2165
Problem: Mapping test fails on Mac.
Solution: Remove the default Mac mapping.
Files: src/testdir/test_mapping.vim

Patch 8.1.2166
Problem: Rubyeval() not tested as a method.
Solution: Change a test case.
Files: src/testdir/test_ruby.vim

Patch 8.1.2167
Problem: Mapping test fails on MS-Windows.
Solution: Remove all the existing Insert-mode mappings.
Files: src/testdir/test_mapping.vim

Patch 8.1.2168
Problem: Heredoc assignment not skipped in if block.
Solution: Check if "skip" is set. (closes #5063)
Files: src/evalvars.c, src/testdir/test_let.vim

Patch 8.1.2169
Problem: Terminal flags are never reset.
Solution: Reset the flags when setting 'term'.
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.1.2170 (after 8.1.2169)
Problem: Cannot build without the +termresponse feature.
Solution: Add #ifdef.
Files: src/term.c

Patch 8.1.2171
Problem: Mouse support not always available.
Solution: Enable mouse support also in tiny version. Do not define

FEAT_MOUSE_XTERM on MS-Windows (didn't really work).
Files: src/feature.h, src/edit.c, src/evalfunc.c, src/ex_getln.c,

src/getchar.c, src/message.c, src/misc1.c, src/mouse.c,
src/move.c, src/normal.c, src/ops.c, src/option.c,
src/optionstr.c, src/os_unix.c, src/os_win32.c, src/register.c,
src/term.c, src/testing.c, src/window.c, src/globals.h,
src/option.h, src/optiondefs.h, src/os_win32.h, src/vim.h,
src/version.c

Patch 8.1.2172
Problem: Spell highlight is wrong at start of the line.
Solution: Fix setting the "v" variable. (closes #5078)
Files: src/drawline.c, src/testdir/test_spell.vim,

src/testdir/dumps/Test_spell_1.dump

Patch 8.1.2173
Problem: Searchit() has too many arguments.
Solution: Move optional arguments to a struct. Add the "wrapped" argument.

version8.txt — 3450

Files: src/search.c, src/proto/search.pro, src/structs.h, src/evalfunc.c,
src/ex_docmd.c, src/gui.c, src/quickfix.c, src/spell.c, src/tag.c,
src/ex_getln.c, src/insexpand.c, src/normal.c

Patch 8.1.2174
Problem: Screen not recognized as supporting "sgr" mouse codes.
Solution: Recognize screen 4.7. (Jordan Christiansen, closes #5042)
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.1.2175
Problem: Meson files are not recognized.
Solution: Add the meson filetype. (Liam Beguin, Nirbheek Chauhan,

closes #5056) Also recognize hollywood.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.2176
Problem: Syntax attributes not combined with Visual highlighting. (Arseny

Nasokin)
Solution: Combine the attributes. (closes #5083)
Files: src/drawline.c, src/testdir/test_syntax.vim,

src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.1.2177
Problem: Dart files are not recognized.
Solution: Add a filetype rule. (Eugene Ciurana, closes #5087)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.2178
Problem: Accessing uninitialized memory in test.
Solution: Check if there was a match before using the match position.

(Dominique Pelle, closes #5088)
Files: src/search.c

Patch 8.1.2179
Problem: Pressing "q" at the more prompt doesn't stop Python output. (Daniel

Hahler)
Solution: Check for got_int in writer(). (closes #5053)

Also do this for Lua.
Files: src/if_py_both.h, src/if_lua.c

Patch 8.1.2180
Problem: Error E303 is not useful when 'directory' is empty.
Solution: Skip the error message. (Daniel Hahler, #5067)
Files: src/memline.c, src/testdir/test_recover.vim,

runtime/doc/options.txt, runtime/doc/message.txt

Patch 8.1.2181
Problem: Highlighting wrong when item follows tab.
Solution: Don't use syntax attribute when n_extra is non-zero.

(Christian Brabandt, closes #5076)
Files: src/drawline.c, src/feature.h,

src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.1.2182
Problem: Test42 seen as binary by git diff.
Solution: Add .gitattributes file. Make explicit that 'cpo' does not

contain 'S'. (Daniel Hahler, closes #5072)
Files: .gitattributes, Filelist, src/testdir/test42.in

Patch 8.1.2183

version8.txt — 3451

Problem: Running a test is a bit verbose.
Solution: Silence some messages. (Daniel Hahler, closes #5070)
Files: src/testdir/Makefile

Patch 8.1.2184
Problem: Option context is not copied when splitting a window. (Daniel

Hahler)
Solution: Copy the option context, so that ":verbose set" works.

(closes #5066)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.1.2185 (after 8.1.2181)
Problem: Syntax test fails.
Solution: Add missing file patch.
Files: src/testdir/test_syntax.vim

Patch 8.1.2186 (after 8.1.2184)
Problem: Cannot build without the +eval feature.
Solution: Move line inside #ifdef.
Files: src/option.c

Patch 8.1.2187
Problem: Error for bad regexp even though regexp is not used when writing

a file. (Arseny Nasokin)
Solution: Ignore regexp errors. (closes #5059)
Files: src/cmdexpand.c, src/ex_docmd.c, src/testdir/test_writefile.vim

Patch 8.1.2188 (after 8.1.2187)
Problem: Build error for missing define.
Solution: Add missing change.
Files: src/vim.h

Patch 8.1.2189
Problem: Syntax highlighting wrong for tab.
Solution: Don't clear syntax attribute n_extra is non-zero.
Files: src/drawline.c, src/testdir/test_syntax.vim,

src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.1.2190
Problem: Syntax test fails on Mac.
Solution: Limit the window size to 20 rows.
Files: src/testdir/test_syntax.vim,

src/testdir/dumps/Test_syntax_c_01.dump

Patch 8.1.2191
Problem: When using modifyOtherKeys CTRL-X mode may not work.
Solution: Recognize a control character also in the form with a modifier.
Files: src/getchar.c

Patch 8.1.2192
Problem: Cannot easily fill the info popup asynchronously.
Solution: Add the "popuphidden" value to 'completeopt'. (closes #4924)
Files: src/popupmenu.c, src/proto/popupmenu.pro, src/popupwin.c,

src/proto/popupwin.pro, src/vim.h, runtime/doc/options.txt,
runtime/doc/insert.txt, src/ex_cmds.c, src/proto/ex_cmds.pro,
src/optionstr.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_infopopup_hidden_1.dump,
src/testdir/dumps/Test_popupwin_infopopup_hidden_2.dump,
src/testdir/dumps/Test_popupwin_infopopup_hidden_3.dump

version8.txt — 3452

Patch 8.1.2193
Problem: Popup_setoptions(popup_getoptions()) does not work.
Solution: Also accept a list with three entries for "moved" and

"mousemoved". (closes #5081)
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.1.2194
Problem: ModifyOtherKeys is not enabled by default.
Solution: Add t_TI and t_TE to the builtin xterm termcap.
Files: runtime/doc/map.txt, src/term.c

Patch 8.1.2195
Problem: Vim does not exit when closing a terminal window and it is the

last window.
Solution: Exit Vim if the closed terminal window is the last one.

(closes #4539)
Files: runtime/doc/terminal.txt, src/terminal.c, src/ex_docmd.c,

src/proto/ex_docmd.pro, src/testdir/test_terminal.vim

Patch 8.1.2196
Problem: MS-Windows: running tests with MSVC lacks updates.
Solution: Improve running individual tests on MS-Windows. (closes #4922)
Files: src/Make_mvc.mak, src/testdir/Make_dos.mak

Patch 8.1.2197
Problem: ExitPre autocommand may cause accessing freed memory.
Solution: Check the window pointer is still valid. (closes #5093)
Files: src/testdir/test_exit.vim, src/ex_docmd.c

Patch 8.1.2198
Problem: Crash when using :center in autocommand.
Solution: Bail out early for an empty line. (Dominique Pelle, closes #5095)
Files: src/ex_cmds.c, src/testdir/test_textformat.vim

Patch 8.1.2199
Problem: Build failure when using normal features without GUI and EXITFREE

defined.
Solution: Add #ifdef. (Dominique Pelle, closes #5106)
Files: src/scriptfile.c

Patch 8.1.2200
Problem: Crash when memory allocation fails.
Solution: Check for NULL curwin and curbuf. (Christian Brabandt,

closes #4839)
Files: src/getchar.c

Patch 8.1.2201
Problem: Cannot build with dynamically linked Python 3.8.
Solution: Implement py3__Py_DECREF() and py3__Py_XDECREF(). (Ken Takata,

closes #4080)
Files: src/if_python3.c

Patch 8.1.2202
Problem: MS-Windows: build failure with GUI and small features.
Solution: Add #ifdef. (Michael Soyka, closes #5097)
Files: src/gui_w32.c

Patch 8.1.2203
Problem: Running libvterm tests without the +terminal feature.

version8.txt — 3453

Solution: Only add the libvterm test target when building libvterm.
Files: src/configure.ac, src/auto/configure, src/config.mk.in,

src/Makefile

Patch 8.1.2204
Problem: Crash on exit when closing terminals. (Corey Hickey)
Solution: Actually wait for the job to stop. (closes #5100)
Files: src/terminal.c

Patch 8.1.2205
Problem: Sign entry structure has confusing name.
Solution: Rename signlist_T to sign_entry_T and prefix se_ to the fields.
Files: src/structs.h, src/netbeans.c, src/sign.c, src/globals.h,

src/drawline.c

Patch 8.1.2206
Problem: No test for fixed issue #3893.
Solution: Add a test. (Christian Brabandt, #3893)
Files: src/testdir/test_display.vim,

src/testdir/dumps/Test_winline_rnu.dump

Patch 8.1.2207
Problem: "gn" doesn't work quite right. (Jaehwang Jerry Jung)
Solution: Improve and simplify the search logic. (Christian Brabandt,

closes #5103, closes #5075)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.1.2208
Problem: Unix: Tabs in output might be expanded to spaces.
Solution: Reset the XTABS flag. (closes #5108)
Files: src/os_unix.c

Patch 8.1.2209
Problem: LF in escape codes may be expanded to CR-LF.
Solution: Do not expand LF in escape codes to CR-LF. (closes #5107)
Files: src/term.c

Patch 8.1.2210
Problem: Using negative offset for popup_create() does not work.
Solution: Use -1 instead of zero. (closes #5111)
Files: src/popupwin.c, src/popupwin.vim, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_corners.dump

Patch 8.1.2211
Problem: Listener callback "added" argument is not the total. (Andy

Massimino)
Solution: Compute the total. (closes #5105)
Files: src/change.c, src/testdir/test_listener.vim

Patch 8.1.2212
Problem: Cannot see the selection type in :reg output. (Ayberk Aydın)
Solution: Add c/l/b. (Christian Brabandt, closes #5110, closes #4546)
Files: runtime/doc/change.txt, src/register.c,

src/testdir/test_registers.vim

Patch 8.1.2213
Problem: Popup_textprop tests fail.
Solution: Adjust the column and line positioning.
Files: src/popupwin.c

version8.txt — 3454

Patch 8.1.2214
Problem: Too much is redrawn when 'cursorline' is set.
Solution: Don't do a complete redraw. (closes #5079)
Files: src/main.c, src/change.c, src/drawscreen.c,

src/testdir/dumps/Test_Xcursorline_13.dump,
src/testdir/dumps/Test_Xcursorline_14.dump,
src/testdir/dumps/Test_Xcursorline_15.dump,
src/testdir/dumps/Test_Xcursorline_16.dump,
src/testdir/dumps/Test_Xcursorline_17.dump,
src/testdir/dumps/Test_Xcursorline_18.dump

Patch 8.1.2215
Problem: Unreachable code in adjusting text prop columns.
Solution: Remove the code. (Christian Brabandt)
Files: src/textprop.c

Patch 8.1.2216
Problem: Text property in wrong place after :substitute.
Solution: Pass the new column instead of the old one. (Christian Brabandt,

closes #4427)
Files: src/ex_cmds.c, src/testdir/test_textprop.vim

Patch 8.1.2217
Problem: Compiler warning for unused variable.
Solution: Move variable inside #ifdef. (John Marriott)
Files: src/ex_cmds.c

Patch 8.1.2218
Problem: "gN" is off by one in Visual mode.
Solution: Check moving forward. (Christian Brabandt, #5075)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.1.2219
Problem: No autocommand for open window with terminal.
Solution: Add TerminalWinOpen. (Christian Brabandt)
Files: runtime/doc/autocmd.txt, src/autocmd.c, src/terminal.c,

src/testdir/test_terminal.vim, src/vim.h

Patch 8.1.2220
Problem: :cfile does not abort like other quickfix commands.
Solution: Abort when desired. Add tests for aborting. (Yegappan Lakshmanan,

closes #5121)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.2221
Problem: Cannot filter :disp output.
Solution: Support filtering :disp output. (Andy Massimino, closes #5117)
Files: runtime/doc/various.txt, src/register.c,

src/testdir/test_filter_cmd.vim

Patch 8.1.2222
Problem: Accessing invalid memory. (Dominique Pelle)
Solution: Reset highlight_match every time. (closes #5125)
Files: src/ex_getln.c

Patch 8.1.2223
Problem: Cannot see what buffer an ml_get error is for.
Solution: Add the buffer number and name in the message
Files: src/memline.c

version8.txt — 3455

Patch 8.1.2224
Problem: Cannot build Amiga version.
Solution: Add dummy mch_setmouse(). (Ola Söder, closes #5126)
Files: src/os_amiga.c, src/proto/os_amiga.pro

Patch 8.1.2225
Problem: The "last used" info of a buffer is under used.
Solution: Add "lastused" to getbufinfo(). List buffers sorted by last-used

field. (Andy Massimino, closes #4722)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/windows.txt, src/buffer.c, src/evalbuffer.c,
src/ex_getln.c, src/misc1.c, src/option.c, src/option.h,
src/proto/misc1.pro, src/proto/viminfo.pro,
src/testdir/test_bufwintabinfo.vim, src/testdir/test_cmdline.vim,
src/testdir/test_excmd.vim, src/undo.c, src/vim.h, src/viminfo.c

Patch 8.1.2226
Problem: Cannot use system copy/paste in non-xterm terminals.
Solution: Instead of setting 'mouse' to "a" set it to "nvi" in defaults.vim.
Files: runtime/defaults.vim, runtime/doc/term.txt,

runtime/doc/options.txt

Patch 8.1.2227
Problem: Layout wrong if 'lines' changes while cmdline window is open.
Solution: Do not restore the window layout if 'lines' changed.

(closes #5130)
Files: src/window.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_cmdwin_restore_1.dump,
src/testdir/dumps/Test_cmdwin_restore_2.dump,
src/testdir/dumps/Test_cmdwin_restore_3.dump

Patch 8.1.2228
Problem: screenpos() returns wrong values when 'number' is set. (Ben

Jackson)
Solution: Compare the column with the window width. (closes #5133)
Files: src/move.c, src/testdir/test_cursor_func.vim

Patch 8.1.2229
Problem: Cannot color number column above/below cursor differently.
Solution: Add LineNrAbove and LineNrBelow. (Shaun Brady, closes #624)
Files: runtime/doc/syntax.txt, runtime/doc/options.txt, src/optiondefs.h,

src/drawline.c, src/vim.h, src/testdir/test_number.vim,
src/testdir/dumps/Test_relnr_colors_1.dump,
src/testdir/dumps/Test_relnr_colors_2.dump,
src/testdir/dumps/Test_relnr_colors_3.dump,
src/testdir/dumps/Test_relnr_colors_4.dump

Patch 8.1.2230
Problem: MS-Windows: testing external commands can be improved.
Solution: Adjust tests, remove duplicate test. (closes #4928)
Files: src/testdir/test_normal.vim, src/testdir/test_system.vim,

src/testdir/test_terminal.vim, src/testdir/test_undo.vim

Patch 8.1.2231
Problem: Not easy to move to the middle of a text line.
Solution: Add the gM command. (Yasuhiro Matsumoto, closes #2070)
Files: runtime/doc/index.txt, runtime/doc/motion.txt,

runtime/doc/quickref.txt, runtime/doc/usr_25.txt, src/normal.c,
src/testdir/test_normal.vim

version8.txt — 3456

Patch 8.1.2232
Problem: MS-Windows: compiler warning for int size.
Solution: Add type cast. (Mike Williams)
Files: src/normal.c

Patch 8.1.2233
Problem: Cannot get the Vim command line arguments.
Solution: Add v:argv. (Dmitri Vereshchagin, closes #1322)
Files: runtime/doc/eval.txt, src/evalvars.c, src/vim.h,

src/proto/evalvars.pro, src/main.c, src/testdir/test_startup.vim

Patch 8.1.2234
Problem: get_short_pathname() fails depending on encoding.
Solution: Use the wide version of the library function. (closes #5129)
Files: src/filepath.c, src/testdir/test_shortpathname.vim

Patch 8.1.2235
Problem: "C" with 'virtualedit' set does not include multibyte char.
Solution: Include the whole multibyte char. (Nobuhiro Takasaki,

closes #5152)
Files: src/ops.c, src/testdir/test_virtualedit.vim

Patch 8.1.2236
Problem: Ml_get error if pattern matches beyond last line.
Solution: Adjust position if needed. (Christian Brabandt, closes #5139)
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.1.2237
Problem: Mode() result after using "r" depends on whether CURSOR_SHAPE is

defined. (Christian Brabandt)
Solution: Move the #ifdef to only skip ui_cursor_shape().
Files: src/normal.c

Patch 8.1.2238
Problem: Error in docs tags goes unnoticed.
Solution: Adjust tags build command. (Ken Takata, closes #5158)
Files: Filelist, .travis.yml, runtime/doc/Makefile,

runtime/doc/doctags.vim

Patch 8.1.2239
Problem: CI fails when running tests without building Vim.
Solution: Skip creating doc tags if the execute does not exist.
Files: runtime/doc/Makefile

Patch 8.1.2240
Problem: Popup window width changes when scrolling.
Solution: Also adjust maxwidth when applying minwidth and there is a

scrollbar. Fix off-by-one error. (closes #5162)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_11.dump,
src/testdir/dumps/Test_popupwin_scroll_12.dump,
src/testdir/dumps/Test_popupwin_previewpopup_4.dump,
src/testdir/dumps/Test_popupwin_previewpopup_5.dump,
src/testdir/dumps/Test_popupwin_previewpopup_7.dump,
src/testdir/dumps/Test_popupwin_previewpopup_8.dump,

Patch 8.1.2241
Problem: Match highlight does not combine with 'wincolor'.
Solution: Apply 'wincolor' last on top of any other attribute. (closes #5159)
Files: src/drawline.c, src/testdir/test_popupwin.vim,

version8.txt — 3457

src/testdir/dumps/Test_popupwin_matches.dump
src/testdir/dumps/Test_popupwin_menu_01.dump
src/testdir/dumps/Test_popupwin_menu_02.dump
src/testdir/dumps/Test_popupwin_menu_04.dump

Patch 8.1.2242
Problem: Creating docs tags uses user preferences. (Tony Mechelynck)
Solution: Add "--clean".
Files: runtime/doc/Makefile

Patch 8.1.2243
Problem: Typos in comments.
Solution: Fix the typos. (Dominique Pelle, closes #5160) Also adjust

formatting a bit.
Files: src/autocmd.c, src/buffer.c, src/cindent.c, src/crypt.c,

src/diff.c, src/getchar.c, src/globals.h, src/gui_gtk_x11.c,
src/highlight.c, src/insexpand.c, src/macros.h, src/map.c,
src/memline.c, src/message.c, src/option.c, src/os_unix.c,
src/pty.c, src/quickfix.c, src/regexp_nfa.c, src/register.c,
src/spellsuggest.c, src/structs.h, src/textprop.c, src/ui.c,
src/undo.c, src/vim.h, src/viminfo.c

Patch 8.1.2244
Problem: 'wrapscan' is not used for "gn".
Solution: Only reset 'wrapscan' for the first search round. (closes #5164)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.1.2245
Problem: Third character of 'listchars' tab shows in wrong place when

'breakindent' is set.
Solution: Set c_final to NUL. (Naruhiko Nishino, closes #5165)
Files: src/drawline.c, src/testdir/test_breakindent.vim

Patch 8.1.2246
Problem: Some tests are still in old style.
Solution: Change a few tests to new style. (Yegappan Lakshmanan)
Files: src/testdir/Make_all.mak, src/testdir/test49.ok,

src/testdir/test49.vim, src/testdir/test_trycatch.vim,
src/testdir/test_vimscript.vim

Patch 8.1.2247
Problem: "make vimtags" does not work in runtime/doc.
Solution: Test existence with "which" instead of "test -x". (Ken Takata)
Files: runtime/doc/Makefile

Patch 8.1.2248
Problem: CTRL-W dot does not work in a terminal when modifyOtherKeys is

enabled.
Solution: Use the modifier when needed. Pass the modifier along with the

key to avoid mistakes.
Files: src/terminal.c, src/proto/terminal.pro, src/mouse.c

Patch 8.1.2249
Problem: "make vimtags" does not print any message.
Solution: Add a message that the tags have been updated.
Files: runtime/doc/Makefile

Patch 8.1.2250
Problem: CTRL-U and CTRL-D don't work in popup window.
Solution: Initialize 'scroll'. Add "lastline" in popup_getpos().

version8.txt — 3458

(closes #5170)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

runtime/doc/popup.txt

Patch 8.1.2251
Problem: ":term command" may not work without a shell.
Solution: Add the ++shell option to :term. (closes #3340)
Files: runtime/doc/terminal.txt, src/terminal.c,

src/os_unix.c, src/proto/os_unix.pro,
src/testdir/test_terminal.vim

Patch 8.1.2252
Problem: Compiler warning for int size.
Solution: Add type cast. (Mike Williams)
Files: src/filepath.c

Patch 8.1.2253
Problem: Using "which" to check for an executable is not reliable.
Solution: Use "command -v" instead. Also exit with error code when

generating tags has an error. (closes #5174)
Files: runtime/doc/Makefile

Patch 8.1.2254
Problem: MS-Windows: mouse scroll wheel doesn't work in popup.
Solution: Handle mouse wheel events separately. (closes #5138)
Files: src/gui_w32.c, src/gui.c, src/proto/gui.pro

Patch 8.1.2255
Problem: ":term ++shell" does not work on MS-Windows.
Solution: Add MS-Windows support.
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.1.2256 (after 8.1.2255)
Problem: Test for ":term ++shell" fails on MS-Windows.
Solution: Accept failure of "dir" executable.
Files: src/testdir/test_terminal.vim

Patch 8.1.2257
Problem: MS-Windows GUI: scroll wheel always uses current window.
Solution: Add the 'scrollfocus' option for MS-Windows.
Files: runtime/doc/options.txt, src/gui_w32.c, src/optiondefs.h,

src/option.h

Patch 8.1.2258
Problem: May get hit-enter prompt after entering a number. (Malcolm Rowe)
Solution: Put back accidentally deleted lines. (closes #5176)
Files: src/misc1.c

Patch 8.1.2259
Problem: Running tests may leave XfakeHOME behind.
Solution: Source summarize.vim without using setup.vim. (closes #5177)

Also fix that on MS-Windows the test log isn't echoed.
Files: src/testdir/Makefile, src/testdir/Make_dos.mak

Patch 8.1.2260
Problem: Terminal test may fail on MS-Windows.
Solution: Catch the situation that "term dir" fails with a CreateProcess

error.
Files: src/testdir/test_terminal.vim

version8.txt — 3459

Patch 8.1.2261
Problem: With modifyOtherKeys set 'noesckeys' doesn't work. (James McCoy)
Solution: Disable modifyOtherKeys while in Insert mode when 'noesckeys' is

set. (closes #5180)
Files: src/edit.c, src/testdir/test_edit.vim

Patch 8.1.2262
Problem: Unpack assignment in function not recognized.
Solution: Skip over "[a, b]". (closes #5051)
Files: src/userfunc.c, src/testdir/test_let.vim

Patch 8.1.2263
Problem: 'noesckeys' test fails in GUI.
Solution: Skip the test in the GUI.
Files: src/testdir/test_edit.vim

Patch 8.1.2264
Problem: There are two test files for :let.
Solution: Merge the two files.
Files: src/testdir/test_assign.vim, src/testdir/test_let.vim,

src/testdir/Make_all.mak, src/testdir/test_alot.vim

Patch 8.1.2265
Problem: When popup with "botleft" does not fit it flips incorrectly.
Solution: Only flip when there is more space on the other side. Add the

"posinvert" option to disable flipping and do it in both
directions if enabled. (closes #5151)

Files: src/popupwin.c, src/testdir/test_popupwin.vim, src/vim.h,
src/testdir/dumps/Test_popupwin_nospace.dump

Patch 8.1.2266
Problem: Position unknown for a mouse click in a popup window.
Solution: Set v:mouse_col and v:mouse_lnum. (closes #5171)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.2267
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Rearrange the code.
Files: src/buffer.c

Patch 8.1.2268
Problem: Spell file flag zero is not recognized.
Solution: Use -1 as an error value, so that zero can be used as a valid flag

number.
Files: src/spellfile.c, src/testdir/test_spell.vim

Patch 8.1.2269
Problem: Tags file with very long line stops using binary search.
Solution: Reallocate the buffer if needed.
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.1.2270
Problem: "gf" is not tested in Visual mode.
Solution: Add Visual mode test and test errors. (Dominique Pelle,

closes #5197)
Files: src/testdir/test_gf.vim

Patch 8.1.2271
Problem: Build error if FEAT_TAG_BINS is not defined. (John Marriott)
Solution: Add #ifdef.

version8.txt — 3460

Files: src/tag.c

Patch 8.1.2272
Problem: Test may hang at more prompt.
Solution: Reset 'more' after resetting 'compatible'. (Michael Soyka)
Files: src/testdir/test_vimscript.vim

Patch 8.1.2273
Problem: Wrong default when "pos" is changed with popup_atcursor().
Solution: Adjust the default line and col when "pos" is not the default

value. (#5151)
Files: runtime/doc/popup.txt, src/structs.h, src/popupwin.c,

src/proto/popupwin.pro, src/ex_cmds.c,
src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_atcursor_pos.dump

Patch 8.1.2274
Problem: Newlines in 'balloonexpr' result only work in the GUI.
Solution: Also recognize newlines in the terminal. (closes #5193)
Files: src/popupmenu.c, src/testdir/test_balloon.vim,

src/testdir/dumps/Test_balloon_eval_term_01.dump,
src/testdir/dumps/Test_balloon_eval_term_01a.dump,
src/testdir/dumps/Test_balloon_eval_term_02.dump

Patch 8.1.2275
Problem: Using "seesion" looks like a mistake.
Solution: Use an underscore to make the function sort first.
Files: src/testdir/test_mksession.vim

Patch 8.1.2276
Problem: MS-Windows: session test leaves files behind.
Solution: Wipe out buffers before deleting the directory. (closes #5187)
Files: src/testdir/test_mksession.vim

Patch 8.1.2277
Problem: Terminal window is not updated when info popup changes.
Solution: Redraw windows when re-using an info popup. (closes #5192)
Files: src/ex_cmds.c

Patch 8.1.2278
Problem: Using "cd" with "exe" may fail.
Solution: Use chdir() instead.
Files: src/testdir/test_autochdir.vim, src/testdir/test_autocmd.vim,

src/testdir/test_cd.vim, src/testdir/test_expand.vim,
src/testdir/test_find_complete.vim, src/testdir/test_findfile.vim,
src/testdir/test_getcwd.vim, src/testdir/test_shortpathname.vim

Patch 8.1.2279
Problem: Computation of highlight attributes is too complicated.
Solution: Simplify the attribute computation and make it more consistent.

(closes #5190) Fix that 'combine' set to zero doesn't work.
Files: src/drawline.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_textprop_01.dump

Patch 8.1.2280
Problem: Crash when passing partial to substitute().
Solution: Take extra arguments into account. (closes #5186)
Files: src/userfunc.c, src/structs.h, src/regexp.c, src/proto/regexp.pro,

src/testdir/test_substitute.vim

version8.txt — 3461

Patch 8.1.2281
Problem: 'showbreak' cannot be set for one window.
Solution: Make 'showbreak' global-local.
Files: src/optiondefs.h, src/option.c, src/option.h,

src/proto/option.pro, src/structs.h, src/charset.c,
src/drawline.c, src/edit.c, src/move.c, src/normal.c, src/ops.c,
src/optionstr.c, src/testdir/test_highlight.vim,
src/testdir/test_breakindent.vim, runtime/doc/options.txt

Patch 8.1.2282
Problem: Crash when passing many arguments through a partial. (Andy

Massimino)
Solution: Check the number of arguments. (closes #5186)
Files: src/userfunc.c, src/proto/userfunc.pro, src/evalfunc.c,

src/regexp.c, src/testdir/test_expr.vim,
src/testdir/test_substitute.vim

Patch 8.1.2283
Problem: Missed one use of p_sbr.
Solution: Add missing p_sbr change.
Files: src/indent.c

Patch 8.1.2284
Problem: Compiler warning for unused variable. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/move.c

Patch 8.1.2285
Problem: Padding in structures wastes memory.
Solution: Move fields to avoid padding. (Dominique Pelle, closes #5202)
Files: src/structs.h

Patch 8.1.2286
Problem: Using border highlight in popup window leaks memory.
Solution: Free memory before overwriting. (Dominique Pelle, closes #5203)
Files: src/popupwin.c

Patch 8.1.2287
Problem: Using EndOfBuffer highlight in popup does not look good.
Solution: Do not EndOfBuffer highlight. (closes #5204)
Files: src/drawscreen.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_02.dump,
src/testdir/dumps/Test_popupwin_04.dump,
src/testdir/dumps/Test_popupwin_04a.dump,
src/testdir/dumps/Test_popupwin_05.dump,
src/testdir/dumps/Test_popupwin_06.dump,
src/testdir/dumps/Test_popupwin_07.dump,
src/testdir/dumps/Test_popupwin_08.dump

Patch 8.1.2288
Problem: Not using all space when popup with "topleft" flips to above.
Solution: Recompute the height when a popup flips from below to above.

(closes #5151)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_nospace.dump

Patch 8.1.2289
Problem: After :diffsplit closing the window does not disable diff.
Solution: Add "closeoff" to 'diffopt' and add it to the default.
Files: runtime/doc/options.txt, src/optiondefs.h, src/diff.c,

version8.txt — 3462

src/proto/diff.pro, src/window.c, src/testdir/test_diffmode.vim

Patch 8.1.2290
Problem: Autocommand test fails.
Solution: Remove 'closeoff' from 'diffopt'.
Files: src/testdir/test_autocmd.vim

Patch 8.1.2291
Problem: Memory leak when executing command in a terminal.
Solution: Free "argv". (Dominique Pelle, closes #5208)
Files: src/terminal.c

Patch 8.1.2292
Problem: v:mouse_winid not set on click in popup window.
Solution: Set v:mouse_winid. (closes #5171)
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.1.2293
Problem: Join adds trailing space when second line is empty. (Brennan

Vincent)
Solution: Do not add a trailing space.
Files: src/ops.c, src/testdir/test_join.vim

Patch 8.1.2294
Problem: Cursor position wrong when characters are concealed and a search

causes a scroll.
Solution: Fix the cursor column in a concealed line after window scroll.

(closes #5215, closes #5012)
Files: src/drawscreen.c, src/testdir/test_matchadd_conceal.vim

Patch 8.1.2295
Problem: If buffer of popup is in another window cursorline sign shows.
Solution: Check the group of the sign.
Files: src/option.c, src/proto/option.pro, src/sign.c,

src/proto/sign.pro, src/screen.c, src/drawline.c,
src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_cursorline_8.dump

Patch 8.1.2296
Problem: Text properties are not combined with syntax by default.
Solution: Make it work as documented. (closes #5190)
Files: src/testprop.c, src/testdir/test_textprop.vim

Patch 8.1.2297
Problem: The ex_vimgrep() function is too long.
Solution: Split it in three parts. (Yegappan Lakshmanan, closes #5211)
Files: src/quickfix.c

Patch 8.1.2298 (after 8.1.2296)
Problem: Missing part of 8.1.2296.
Solution: s/test/text/
Files: src/textprop.c

Patch 8.1.2299
Problem: ConPTY in MS-Windows 1909 is still wrong.
Solution: Use same solution as for 1903. (Nobuhiro Takasaki, closes #5217)
Files: src/misc2.c, src/os_win32.c

Patch 8.1.2300

version8.txt — 3463

Problem: Redraw breaks going through list of popup windows.
Solution: Use different flags for popup_reset_handled(). (closes #5216)
Files: src/popupwin.c, src/proto/popupwin.pro, src/structs.h, src/vim.h,

src/mouse.c, src/testdir/test_popupwin.vim

Patch 8.1.2301
Problem: MS-Windows GUI: drawing error when background color changes.
Solution: Implement gui_mch_new_colors(). (Simon Sadler)
Files: src/gui_w32.c

Patch 8.1.2302
Problem: :lockmarks does not work for '[and '].
Solution: save and restore '[and '] marks. (James McCoy, closes #5222)
Files: runtime/doc/motion.txt, src/bufwrite.c, src/diff.c, src/ex_cmds.c,

src/fileio.c, src/indent.c, src/ops.c, src/register.c,
src/testdir/test_autocmd.vim, src/testdir/test_diffmode.vim

Patch 8.1.2303
Problem: Cursor in wrong position after horizontal scroll.
Solution: Set w_valid_leftcol. (closes #5214, closes #5224)
Files: src/move.c, src/testdir/test_matchadd_conceal.vim

Patch 8.1.2304
Problem: Cannot get the mouse position when getting a mouse click.
Solution: Add getmousepos().
Files: runtime/doc/eval.txt, runtime/doc/popup.txt, src/mouse.c

src/proto/mouse.pro, src/evalfunc.c, src/popupwin.c,
src/popupwin.pro, src/testdir/test_popupwin.vim,
src/testdir/test_functions.vim

Patch 8.1.2305
Problem: No warning for wrong entry in translations.
Solution: Check semicolons in keywords entry of desktop file.
Files: src/po/check.vim

Patch 8.1.2306
Problem: Double and triple clicks are not tested.
Solution: Test mouse clicks to select text. (closes #5226)
Files: src/testdir/test_termcodes.vim

Patch 8.1.2307
Problem: Positioning popup doesn't work for buffer-local textprop.
Solution: Make it work. (closes #5225)
Files: src/popupwin.c, src/testdir/test_popupwin_textprop.vim

Patch 8.1.2308
Problem: Deleting text before zero-width textprop removes it.
Solution: Keep zero-width textprop when deleting text.
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.1.2309
Problem: Compiler warning for argument type.
Solution: Use linenr_T and cast to varnumber_T. (John Marriott)
Files: src/mouse.c

Patch 8.1.2310
Problem: No proper test for directory changes in quickfix.
Solution: Add a test that uses multiple directories. (Yegappan Lakshmanan,

closes #5230)
Files: src/testdir/test_quickfix.vim

version8.txt — 3464

Patch 8.1.2311
Problem: Warning for missing function prototype.
Solution: Add the proto. (Dominique Pelle, closes #5233)
Files: src/proto/popupwin.pro

Patch 8.1.2312
Problem: "line:" field in tags file not used.
Solution: Recognize the field and use the value. (Andy Massimino, Daniel

Hahler, closes #5232, closes #2546, closes #1057)
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.1.2313
Problem: Debugging where a delay comes from is not easy.
Solution: Use different values when calling ui_delay().
Files: src/buffer.c, src/change.c, src/fileio.c, src/gui.c,

src/if_xcmdsrv.c, src/insexpand.c, src/main.c, src/normal.c,
src/screen.c, src/search.c, src/tag.c, src/term.c, src/ui.c

Patch 8.1.2314
Problem: vi' sometimes does not select anything.
Solution: Recognize an empty selection. (Christian Brabandt, closes #5183)
Files: src/search.c, src/testdir/test_textobjects.vim

Patch 8.1.2315
Problem: Not always using the right window when jumping to an error.
Solution: Add the "uselast" flag in 'switchbuf'. (closes #1652)
Files: runtime/doc/options.txt, src/option.h, src/optionstr.c,

src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.2316
Problem: FORTIFY_SOURCE can also be present in CPPFLAGS.
Solution: Remove it in configure. (Benedikt Morbach, closes #2786)
Files: src/configure.ac, src/auto/configure

Patch 8.1.2317
Problem: No test for spell affix file with flag on suffix.
Solution: Add a test case.
Files: src/testdir/test_spell.vim

Patch 8.1.2318 (after 8.1.2301)
Problem: MS-Windows GUI: main background shows in toolbar.
Solution: Remove transparency from the toolbar. (Simon Sadler)
Files: src/gui_w32.c

Patch 8.1.2319
Problem: Compiler warning for int size.
Solution: Add typecast. (Mike Williams)
Files: src/mouse.c

Patch 8.1.2320
Problem: Insufficient test coverage for quickfix.
Solution: Add more tests. Fix uncovered problem. (Yegappan Lakshmanan,

closes #5238)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.2321
Problem: Cannot select all text with the mouse. (John Marriott)
Solution: Move limiting the mouse column to f_getmousepos(). (closes #5242)
Files: src/mouse.c

version8.txt — 3465

Patch 8.1.2322 (after 8.1.2320)
Problem: Quickfix test fails in very big terminal.
Solution: Adjust the expected result for the width. (Masato Nishihata,

closes #5244)
Files: src/testdir/test_quickfix.vim

Patch 8.1.2323
Problem: Old MSVC version no longer tested.
Solution: Drop support for MSVC 2008 and older. (Ken Takata, closes #5248)
Files: src/INSTALLpc.txt, src/Make_mvc.mak, src/gui_w32.c, src/os_win32.c

Patch 8.1.2324
Problem: Width of scrollbar in popup menu not taken into account.
Solution: Add the width of the scrollbar.
Files: src/popupmenu.c, src/testdir/dumps/Test_popupwin_infopopup_6.dump,

src/testdir/test_popupwin.vim

Patch 8.1.2325
Problem: Crash when using balloon with empty line.
Solution: Handle empty lines. (Markus Braun)
Files: src/popupmenu.c, src/testdir/test_popup.vim

Patch 8.1.2326
Problem: Cannot parse a date/time string.
Solution: Add strptime(). (Stephen Wall, closes #5250)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/auto/configure,

src/config.h.in, src/configure.ac, src/evalfunc.c, src/os_unix.h,
src/testdir/test_functions.vim

Patch 8.1.2327
Problem: Cannot build with Hangul input.
Solution: Remove Hangul input support.
Files: Filelist, src/Makefile, runtime/doc/hangulin.txt, src/feature.h,

src/gui_gtk_x11.c, src/gui_x11.c, src/gui.c, src/edit.c,
src/mbyte.c, src/screen.c, src/ui.c, src/hangulin.c,
src/globals.h, src/proto/hangulin.pro, src/proto.h,
src/evalfunc.c, src/version.c, src/configure.ac,
src/auto/configure, src/config.h.in, src/config.mk.in

Patch 8.1.2328
Problem: A few hangul input pieces remain.
Solution: Update VMS makefile.
Files: src/Make_vms.mms

Patch 8.1.2329
Problem: Mouse multiple click test is a bit flaky.
Solution: Add it to the list of flaky tests.
Files: src/testdir/runtest.vim

Patch 8.1.2330 (after 8.1.2314)
Problem: vi' does not always work when 'selection' is exclusive.
Solution: Adjust start position.
Files: src/search.c, src/testdir/test_textobjects.vim

Patch 8.1.2331
Problem: The option.c file is still very big.
Solution: Move a few functions to where they fit better. (Yegappan

Lakshmanan, closes #4895)
Files: src/option.c, src/proto/option.pro, src/change.c,

version8.txt — 3466

src/proto/change.pro, src/ex_getln.c, src/proto/ex_getln.pro,
src/globals.h, src/gui.c, src/proto/gui.pro, src/ui.c,
src/proto/ui.pro, src/term.c, src/proto/term.pro, src/indent.c,
src/proto/indent.pro

Patch 8.1.2332 (after 8.1.2331)
Problem: Missing file in refactoring.
Solution: Update missing file.
Files: src/search.c

Patch 8.1.2333
Problem: With modifyOtherKeys CTRL-^ doesn't work.
Solution: Handle the exception.
Files: src/getchar.c, src/testdir/test_termcodes.vim

Patch 8.1.2334
Problem: Possible NULL pointer dereference in popup_locate(). (Coverity)
Solution: Check for NULL pointer.
Files: src/popupwin.c

Patch 8.1.2335
Problem: Error message for function arguments may use NULL pointer.

(Coverity)
Solution: Use the original function name.
Files: src/evalfunc.c

Patch 8.1.2336
Problem: When an expr mapping moves the cursor it is not restored.
Solution: Position the cursor after an expr mapping. (closes #5256)
Files: src/getchar.c, src/testdir/test_mapping.vim,

src/testdir/dumps/Test_map_expr_1.dump

Patch 8.1.2337
Problem: Double-click time sometimes miscomputed.
Solution: Correct time computation. (Dominique Pelle, closes #5259)
Files: src/mouse.c, src/testdir/runtest.vim

Patch 8.1.2338
Problem: Using Visual mark with :s gives E20 if not set.
Solution: Ignore errors when handling 'incsearch'. (closes #3837)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_substitute_14.dump

Patch 8.1.2339
Problem: Insufficient testing for quickfix.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #5261)
Files: src/testdir/test_quickfix.vim

Patch 8.1.2340
Problem: Quickfix test fails under valgrind and asan.
Solution: Make sure long line does not overflow IObuff. (Dominique Pelle,

closes #5263) Put back fix for large terminals. (Yegappan
Lakshmanan, closes #5264)

Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.1.2341
Problem: Not so easy to interrupt a script programmatically.
Solution: Add the interrupt() function. (Yasuhiro Matsumoto, closes #2834)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/ex_eval.c,

src/testdir/Make_all.mak, src/testdir/test_interrupt.vim

version8.txt — 3467

Patch 8.1.2342
Problem: Random number generator in Vim script is slow.
Solution: Add rand() and srand(). (Yasuhiro Matsumoto, closes #1277)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/Make_all.mak,

src/testdir/test_random.vim

Patch 8.1.2343
Problem: Using time() for srand() is not very random.
Solution: use /dev/urandom if available
Files: src/evalfunc.c, src/testdir/test_random.vim

Patch 8.1.2344
Problem: Cygwin: warning for using strptime().
Solution: Move defining _XOPEN_SOURCE and __USE_XOPEN to vim.h. (Ken Takata,

closes #5265) Use 700 for _XOPEN_SOURCE for mkdtemp().
Files: src/os_unix.h, src/vim.h

Patch 8.1.2345
Problem: .cjs files are not recognized as Javascript.
Solution: Add the *.cjs pattern. (closes #5268)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.1.2346
Problem: CTRL-R CTRL-R doesn't work with modifyOtherKeys.
Solution: Allow key codes when fetching argument for CTRL-R. (closes #5266)

Also fix CTRL-G in Insert mode.
Files: src/edit.c, src/ex_getln.c, src/testdir/test_termcodes.vim

Patch 8.1.2347 (after 8.1.2344)
Problem: macOS: build fails.
Solution: Don't define _XOPEN_SOURCE for Mac.
Files: src/vim.h

Patch 8.1.2348
Problem: :const cannot be followed by "| endif".
Solution: Check following command for :const. (closes #5269)

Also fix completion after :const.
Files: src/testdir/test_let.vim, src/testdir/test_const.vim,

src/ex_docmd.c, src/cmdexpand.c, src/eval.c,
src/testdir/test_cmdline.vim

Patch 8.1.2349
Problem: :lockvar and :unlockvar cannot be followed by "| endif".
Solution: Check for following commands. (closes #5269)
Files: src/testdir/test_const.vim, src/ex_docmd.c

Patch 8.1.2350
Problem: Other text for CTRL-V in Insert mode with modifyOtherKeys.
Solution: Convert the Escape sequence back to key as if modifyOtherKeys is

not set, and use CTRL-SHIFT-V to get the Escape sequence itself.
(closes #5254)

Files: runtime/doc/insert.txt, runtime/doc/cmdline.txt, src/edit.c,
src/proto/edit.pro, src/term.c, src/proto/term.pro, src/getchar.c,
src/proto/getchar.pro, src/testdir/test_termcodes.vim,
src/ex_getln.c

Patch 8.1.2351
Problem: 'wincolor' not used for > for not fitting double width char.

Also: popup drawn on right half of double width character looks

version8.txt — 3468

wrong.
Solution: Adjust color for > character. Clear left half of double width

character if right half is being overwritten.
Files: src/drawline.c, src/screen.c,

src/testdir/dumps/Test_popupwin_doublewidth_1.dump

Patch 8.1.2352
Problem: CI doesn't cover FreeBSD.
Solution: Configure Cirrus-CI. (Christian Brabandt, closes #5273)
Files: .cirrus.yml, README.md

Patch 8.1.2353
Problem: Build failure on FreeBSD.
Solution: Change #ifdef to only check for Linux-like systems.
Files: src/vim.h

Patch 8.1.2354
Problem: Cirrus CI runs on another repository.
Solution: Run Cirrus CI on vim/vim.
Files: .cirrus.yml, README.md

Patch 8.1.2355
Problem: Test with "man" fails on FreeBSD.
Solution: Use "-P" instead of "--pager".
Files: src/testdir/test_normal.vim

Patch 8.1.2356
Problem: rand() does not use the best algorithm.
Solution: use xoshiro128** instead of xorshift. (Kaito Udagawa,

closes #5279)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_random.vim

Patch 8.1.2357
Problem: No test with wrong argument for rand().
Solution: Add a test case.
Files: src/testdir/test_random.vim

Patch 8.1.2358
Problem: Tests fail on Cirrus CI for FreeBSD.
Solution: Fix a test and skip some. (Christian Brabandt, closes #5281)
Files: Filelist, .cirrus.yml, src/testdir/check.vim,

src/testdir/test_normal.vim, src/testdir/test_quickfix.vim,
src/testdir/test_source_utf8.vim, src/testdir/test_terminal.vim,
src/testdir/test_utf8_comparisons.vim

Patch 8.1.2359
Problem: Cannot build without FEAT_FLOAT. (John Marriott)
Solution: Fix #ifdefs around f_srand().
Files: src/evalfunc.c

Patch 8.1.2360
Problem: Quickfix test coverage can still be improved.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #5276)
Files: src/testdir/test_quickfix.vim

Patch 8.1.2361
Problem: MS-Windows: test failures related to VIMDLL.
Solution: Adjust code and tests. (Ken Takata, closes #5283)
Files: src/evalfunc.c, src/ex_cmds.c, src/gui_w32.c, src/mbyte.c,

src/menu.c, src/proto.h, src/testdir/test_highlight.vim

version8.txt — 3469

Patch 8.1.2362
Problem: Cannot place signs in a popup window. (Maxim Kim)
Solution: Use the group prefix "PopUp" to specify which signs should show up

in a popup window. (closes #5277)
Files: runtime/doc/sign.txt, src/popupwin.c, src/sign.c,

src/testdir/dumps/Test_popupwin_sign_1.dump

Patch 8.1.2363
Problem: ml_get error when accessing Visual area in 'statusline'.
Solution: Disable Visual mode when using another window. (closes #5278)
Files: src/testdir/test_statusline.vim, src/buffer.c

Patch 8.1.2364
Problem: Termwinscroll test is flaky on FreeBSD.
Solution: Add to list of flaky tests. Rename function.
Files: src/testdir/runtest.vim, src/testdir/test_terminal.vim

Patch 8.1.2365
Problem: Missing tests for recent popupwin changes.
Solution: Add test cases.
Files: src/testdir/test_popupwin.vim

Patch 8.1.2366
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/ascii.h, src/beval.h, src/dosinst.h, src/feature.h,

src/glbl_ime.h, src/globals.h, src/gui_at_sb.h, src/gui_gtk_f.h,
src/gui_gtk_vms.h, src/gui.h, src/gui_x11_pm.h, src/gui_xmebwp.h,
src/if_cscope.h, src/if_mzsch.h, src/if_ole.h, src/if_py_both.h,
src/iscygpty.h, src/keymap.h, src/macros.h, src/nbdebug.h,
src/option.h, src/os_amiga.h, src/os_beos.h, src/os_dos.h,
src/os_mac.h, src/os_qnx.h, src/os_unix.h, src/os_unixx.h,
src/os_vms_conf.h, src/os_win32.h, src/proto.h, src/regexp.h,
src/spell.h, src/structs.h, src/term.h, src/version.h, src/vimio.h

Patch 8.1.2367
Problem: Registers are not sufficiently tested.
Solution: Add a few more test cases. (Yegappan Lakshmanan, closes #5288)
Files: src/testdir/test_registers.vim

Patch 8.1.2368
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/autocmd.c, src/beval.c, src/blob.c, src/blowfish.c,

src/buffer.c, src/change.c, src/channel.c, src/charset.c,
src/cindent.c, src/crypt.c, src/crypt_zip.c

Patch 8.1.2369
Problem: Cannot build with quickfix and without text properties.
Solution: Fix typo. (Naruhiko Nishino)
Files: src/popupmenu.c

Patch 8.1.2370
Problem: Build problems on VMS.
Solution: Adjust the build file. (Zoltan Arpadffy)
Files: src/Make_vms.mms, src/os_unix.c, src/os_vms.c

Patch 8.1.2371
Problem: FEAT_TEXT_PROP is a confusing name.

version8.txt — 3470

Solution: Use FEAT_PROP_POPUP. (Naruhiko Nishino, closes #5291)
Files: runtime/doc/popup.txt, src/beval.c, src/buffer.c, src/change.c,

src/drawline.c, src/drawscreen.c, src/edit.c, src/eval.c,
src/evalbuffer.c, src/evalfunc.c, src/evalwindow.c, src/ex_cmds.c,
src/ex_docmd.c, src/feature.h, src/fileio.c, src/getchar.c,
src/globals.h, src/gui.c, src/gui_w32.c, src/indent.c,
src/insexpand.c, src/macros.h, src/main.c, src/memline.c,
src/misc2.c, src/mouse.c, src/move.c, src/ops.c, src/option.h,
src/optiondefs.h, src/optionstr.c, src/popupmenu.c,
src/popupwin.c, src/proto.h, src/screen.c, src/search.c,
src/sign.c, src/structs.h, src/tag.c, src/testdir/runtest.vim,
src/testdir/test_execute_func.vim, src/testdir/test_popupwin.vim,
src/testdir/test_popupwin_textprop.vim, src/textprop.c, src/ui.c,
src/version.c, src/vim.h, src/window.c

Patch 8.1.2372
Problem: VMS: failing realloc leaks memory. (Chakshu Gupta)
Solution: Free the memory. (partly fixes #5292)
Files: src/os_vms.c

Patch 8.1.2373
Problem: Cannot build with +popupwin but without +quickfix. (John Marriott)
Solution: Adjust #ifdefs.
Files: src/ex_cmds.c, src/popupmenu.c, src/popupwin.c, src/fileio.c,

src/testdir/test_compiler.vim, src/testdir/test_tagjump.vim,
src/testdir/test86.in, src/testdir/test87.in,
src/testdir/test_autocmd.vim, src/testdir/test_bufwintabinfo.vim,
src/testdir/test_channel.vim, src/testdir/test_edit.vim,
src/testdir/test_execute_func.vim,
src/testdir/test_filter_cmd.vim, src/testdir/test_gui.vim,
src/testdir/test_makeencoding.vim, src/testdir/test_mksession.vim,
src/testdir/test_normal.vim, src/testdir/test_popup.vim,
src/testdir/test_popupwin.vim, src/testdir/test_preview.vim,
src/testdir/test_startup.vim, src/testdir/test_statusline.vim,
src/testdir/test_tabpage.vim, src/testdir/test_window_cmd.vim,
src/testdir/test_window_id.vim

Patch 8.1.2374
Problem: Unused parts of libvterm are included.
Solution: Delete the unused files.
Files: Filelist, src/libvterm/bin/vterm-ctrl.c,

src/libvterm/bin/unterm.c, src/libvterm/bin/vterm-dump.c

Patch 8.1.2375
Problem: No sufficient testing for registers.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #5296)

Fix that "p" on last virtual column of tab inserts spaces.
Files: src/register.c, src/testdir/test_registers.vim,

src/testdir/test_virtualedit.vim, src/testdir/test_visual.vim

Patch 8.1.2376
Problem: Preprocessor indents are incorrect.
Solution: Fix the indents. (Ken Takata, closes #5298)
Files: src/drawline.c, src/gui_w32.c, src/os_mswin.c, src/os_win32.c,

src/proto.h

Patch 8.1.2377
Problem: GUI: when losing focus a pending operator is executed.
Solution: Do not execute an operator when getting K_IGNORE. (closes #5300)
Files: src/normal.c

version8.txt — 3471

Patch 8.1.2378
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/dict.c, src/diff.c, src/digraph.c, src/dosinst.c, src/edit.c,

src/eval.c, src/evalbuffer.c, src/evalfunc.c

Patch 8.1.2379
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,

src/ex_getln.c, src/fileio.c, src/filepath.c, src/findfile.c,
src/fold.c

Patch 8.1.2380
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/getchar.c, src/gui.c, src/gui_at_fs.c, src/gui_at_sb.c,

src/gui_athena.c, src/gui_beval.c, src/gui_gtk.c, src/gui_gtk_f.c,
src/gui_gtk_x11.c

Patch 8.1.2381
Problem: Not all register related code is covered by tests.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #5301)
Files: src/testdir/test_marks.vim, src/testdir/test_registers.vim,

src/testdir/test_virtualedit.vim

Patch 8.1.2382
Problem: MS-Windows: When using VTP bold+inverse doesn't work.
Solution: Compare with the default colors. (Nobuhiro Takasaki, closes #5303)
Files: src/os_win32.c, src/proto/os_win32.pro, src/screen.c

Patch 8.1.2383
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/gui_mac.c, src/gui_motif.c, src/gui_photon.c, src/gui_w32.c,

src/gui_x11.c, src/gui_xmdlg.c, src/gui_xmebw.c

Patch 8.1.2384
Problem: Test 48 is old style.
Solution: Merge test cases into new style test. (Yegappan Lakshmanan,

closes #5307)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test48.in, src/testdir/test48.ok,
src/testdir/test_virtualedit.vim

Patch 8.1.2385
Problem: Opening cmdline window with feedkeys() does not work. (Yegappan

Lakshmanan)
Solution: Recognize K_CMDWIN also when ex_normal_busy is set.
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.1.2386
Problem: 'wincolor' is not used for 'listchars'.
Solution: Combine the colors. (closes #5308)
Files: src/drawline.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_wincolor_lcs.dump

Patch 8.1.2387
Problem: Using old C style comments.

version8.txt — 3472

Solution: Use // comments where appropriate.
Files: src/hardcopy.c, src/hashtab.c, src/if_cscope.c, src/if_lua.c,

src/if_mzsch.c, src/if_perlsfio.c, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/if_tcl.c, src/if_xcmdsrv.c

Patch 8.1.2388
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/json.c, src/json_test.c, src/kword_test.c, src/list.c,

src/main.c, src/mark.c, src/mbyte.c, src/memfile.c,
src/memfile_test.c, src/memline.c, src/menu.c

Patch 8.1.2389
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/libvterm/src/screen.c, src/libvterm/src/unicode.c,

src/libvterm/src/vterm.c, src/libvterm/t/harness.c,
src/libvterm/include/vterm.h, src/xdiff/xdiffi.c,
src/xdiff/xemit.c, src/xdiff/xhistogram.c, src/xdiff/xpatience.c,
src/xdiff/xutils.c, src/xdiff/xdiff.h, src/xdiff/xdiffi.h,
src/xdiff/xemit.h, src/xdiff/xinclude.h, src/xdiff/xmacros.h,
src/xdiff/xprepare.h, src/xdiff/xtypes.h, src/xdiff/xutils.h

Patch 8.1.2390
Problem: Test94 is old style, fix 7.4.441 not tested.
Solution: Turn test94 into a new style test. Add tests for the fix in patch

7.4.441. (Yegappan Lakshmanan, closes #5316)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test94.in, src/testdir/test94.ok,
src/testdir/test_cmdline.vim, src/testdir/test_visual.vim

Patch 8.1.2391
Problem: Cannot build when __QNXNTO__ is defined. (Ian Wayne Larson)
Solution: Move the check for "qansi". (Ken Takata, closes #5317)
Files: src/highlight.c

Patch 8.1.2392
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/nbdebug.c, src/netbeans.c, src/normal.c, src/ops.c,

src/option.c

Patch 8.1.2393
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/os_amiga.c, src/os_beos.c, src/os_mac_conv.c, src/os_mswin.c,

src/os_qnx.c, src/os_unix.c, src/os_vms.c, src/os_win32.c

Patch 8.1.2394
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/popupmenu.c, src/pty.c, src/quickfix.c, src/regexp.c,

src/regexp_nfa.c, src/screen.c, src/search.c, src/sha256.c,
src/sign.c

Patch 8.1.2395
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/spell.c, src/spellfile.c, src/syntax.c, src/tag.c, src/term.c,

src/terminal.c, src/termlib.c, src/testing.c

version8.txt — 3473

Patch 8.1.2396
Problem: Using old C style comments.
Solution: Use // comments where appropriate.
Files: src/ui.c, src/undo.c, src/uninstall.c, src/usercmd.c,

src/userfunc.c, src/winclip.c, src/window.c, src/xpm_w32.c

Patch 8.1.2397
Problem: Should not define __USE_XOPEN. _XOPEN_SOURCE is not needed for

Android.
Solution: Remove __USE_XOPEN and adjust #ifdefs. (Ozaki Kiichi,

closes #5322)
Files: src/vim.h

Patch 8.1.2398
Problem: strptime() test fails on Japanese Mac.
Solution: Use %T instead of %X.
Files: src/testdir/test_functions.vim

Patch 8.1.2399
Problem: Info popup on top of cursor if it doesn't fit.
Solution: Hide the popup if it doesn't fit.
Files: src/popupmenu.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_infopopup_wide_1.dump

Patch 8.1.2400
Problem: Test39 is old style.
Solution: Convert the test cases into new style. (Yegappan Lakshmanan,

closes #5324)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test39.in, src/testdir/test39.ok,
src/testdir/test_blockedit.vim, src/testdir/test_visual.vim

Patch 8.1.2401
Problem: :cexpr does not handle | in expression.
Solution: Remove EX_TRLBAR and set nextcmd pointer.
Files: src/testdir/test_quickfix.vim, src/ex_cmds.h, src/quickfix.c

Patch 8.1.2402
Problem: Typos and other small things.
Solution: Small fixes.
Files: .gitignore, src/testdir/shared.vim, src/testdir/test49.vim,

src/message.c, src/Makefile

Patch 8.1.2403
Problem: Autocmd test fails under valgrind.
Solution: Wait a bit longer.
Files: src/testdir/test_autocmd.vim

Patch 8.1.2404
Problem: Channel test fails under valgrind.
Solution: Sleep a bit longer.
Files: src/testdir/test_channel.vim

Patch 8.1.2405
Problem: matchadd_conceal test fails under valgrind.
Solution: Use WaitForAssert() and wait a bit longer.
Files: src/testdir/test_matchadd_conceal.vim

Patch 8.1.2406

version8.txt — 3474

Problem: Leaking memory in test_paste and test_registers.
Solution: Free the old title. Don't copy expr_line.
Files: src/term.c, src/os_unix.c, src/register.c

Patch 8.1.2407
Problem: proto file and dependencies outdated.
Solution: Update proto files and dependencies.
Files: src/Makefile, src/proto/bufwrite.pro, src/proto/cmdhist.pro,

src/proto/optionstr.pro, src/proto/popupwin.pro,
src/proto/viminfo.pro, src/proto/if_cscope.pro

Patch 8.1.2408
Problem: Syntax menu and build instructions outdated.
Solution: Update build instructions and syntax menu.
Files: Makefile, runtime/makemenu.vim, runtime/synmenu.vim

Patch 8.1.2409
Problem: Creating the distribution doesn't work as documented.
Solution: Adjust name of uninstall binary. Create src/auto directory if

needed.
Files: tools/rename.bat, src/Make_mvc.mak

Patch 8.1.2410
Problem: MS-Windows: test_iminsert fails without IME support.
Solution: Skip the test when imgetstatus() doesn't work.
Files: src/testdir/test_iminsert.vim

Patch 8.1.2411
Problem: Function argument copied unnecessarily.
Solution: Use the argument directly.
Files: src/ex_docmd.c

Patch 8.1.2412
Problem: Crash when evaluating expression with error. (Dhiraj Mishra)
Solution: Check parsing failed. (closes #5329)
Files: src/eval.c, src/testdir/test_lambda.vim

Patch 8.1.2413
Problem: Cannot update ex_cmdidxs.h on MS-Windows.
Solution: Add build rules and dependencies. (Ken Takata, closes #5337)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms

Patch 8.1.2414
Problem: MS-Windows: properties dialog box shows wrong character.
Solution: Explicitly specify encoding. (Ken Takata, closes #5338)
Files: src/vim.rc

Patch 8.1.2415
Problem: Popup menu flickers if an info popup is used. (Nick Jensen)
Solution: Set the pum_skip_redraw flag.
Files: src/popupmenu.c

Patch 8.1.2416
Problem: Loading menus sets v:errmsg.
Solution: Avoid setting v:errmsg and add a test for that. (Jason Franklin)
Files: runtime/delmenu.vim, runtime/menu.vim, src/testdir/test_menu.vim

Patch 8.1.2417
Problem: MinGW/Cygwin build does not clean up all files.
Solution: Delete *.map files. (Michael Soyka)

version8.txt — 3475

Files: src/Make_cyg_ming.mak

Patch 8.1.2418
Problem: bufnr('$') is wrong after recycling popup buffer.
Solution: Sort the buffer list by buffer number. (closes #5335)
Files: src/buffer.c, src/testdir/test_popupwin.vim

Patch 8.1.2419
Problem: With a long file name the hit-enter prompt appears. (J. Lewis

Muir)
Solution: When checking for text to wrap don't do this when outputting a CR.
Files: src/message.c, src/testdir/test_display.vim,

src/testdir/dumps/Test_long_file_name_1.dump

Patch 8.1.2420
Problem: Crash when calling popup_close() in win_execute().
Solution: Disallow popup_close() in popup window. (Yasuhiro Matsumoto,

closes #5345)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.1.2421
Problem: Test88 is old style.
Solution: Turn into a new style test. (Yegappan Lakshmanan, closes #5347)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test88.in, src/testdir/test88.ok,
src/testdir/test_conceal.vim, src/testdir/test_python2.vim
src/testdir/test_python3.vim

Patch 8.1.2422
Problem: "make depend" does not work correctly for libvterm.
Solution: Fix build dependencies. And a few minor improvements.
Files: src/Makefile, src/filepath.c, src/insexpand.c, src/main.c

Patch 8.1.2423
Problem: MS-Windows properties shows version as "8, 1, 0".
Solution: Use "8.1.0". (Ken Takata, closes #5342)
Files: src/vim.rc

Patch 8.1.2424
Problem: MS-Windows: console buffer is resized unnecessarily.
Solution: Only call ResizeConBuf() when the size differs. (Nobuhiro

Takasaki, closes #5343)
Files: src/os_win32.c

==

Patch 8.2.0001 and later can be found at patches-after-8.2 .

version8.txt — 3476

version9.txt For Vim version 9.1. Last change: 2024 Mar 03

VIM REFERENCE MANUAL by Bram Moolenaar

vim-9.0 vim-9 version-9.0 version9.0
Welcome to Vim 9! Several years have passed since the previous release.
A large number of bugs have been fixed, many nice features have been added
and the Vim9 script syntax is here! This file mentions all the new things and
changes to existing features since Vim 8.2.0. The patches up to Vim 8.2 can be
found here: vim-8.2 .

Use this command to see the full version and features information of the Vim
program you are using:

:version

NEW FEATURES new-9
Vim script enhancements new-vim-script-9
Command line completion in a popup menu new-popup-compl
Updated colorschemes new-colorschemes-9
Various new items new-items-9

INCOMPATIBLE CHANGES incompatible-9

IMPROVEMENTS improvements-9

COMPILE TIME CHANGES compile-changes-9

PATCHES patches-9

VERSION 9.1 version-9.1
Changed changed-9.1
Added added-9.1
Patches patches-9.1

See vi_diff.txt for an overview of differences between Vi and Vim 9.0.
See version4.txt , version5.txt , version6.txt , version7.txt and
version8.txt for differences between Vim versions.

You can find an overview of the most important changes (according to Martin
Tournoij) on this site: https://www.arp242.net/vimlog/

Sven-Guckes
Vim version 9.0 is dedicated to Sven Guckes, who passed away in February 2022
when the release was being prepared. Sven was a long time supporter of Vim.
He registered the vim.org domain and created the first Vim website. We will
remember him!

Bram Moolenaar Bram-Moolenaar
Vim version 9.1 is dedicated to Bram Moolenaar, who passed away on August 3rd
2023 while still working full-time on Vim. The Vim project would not exist
without his ongoing passion to lead and develop Vim and the community for more
than 30 years. Bram was also passionate about his ICCF foundation to help
children in Uganda. If you enjoy using Vim, please consider donating! We will
miss his guidance, passion and leadership.

Obituary Articles: https://github.com/vim/vim/discussions/12742
Say Farewell: https://github.com/vim/vim/discussions/12737

version9.txt — 3477

https://www.arp242.net/vimlog/
https://github.com/vim/vim/discussions/12742
https://github.com/vim/vim/discussions/12737

==
NEW FEATURES new-9

First an overview of the more interesting new features. A comprehensive list
is below.

Vim9 script
new-vim-script-9

The Vim script language has been changed step by step over many years,
preserving backwards compatibility. Several choices made in the early days
got in the way of making it work better. At the same time, Vim script is
being used much more often, since there are so many plugins being used.

Vim9 script provides a syntax that is much more similar to other languages.
In other words: "less weird". Compiled functions are introduced which allow
for a large speed improvement. You can expect around ten times faster
execution, or even more. The price to pay is that Vim9 script is not
backwards compatible. But don't worry, you can still use your old scripts,
the new script language is added, it does not replace the legacy script.

Information about Vim9 script can be found in the Vim9 help file.

Command line completion in a popup menu
new-popup-compl

Before there was the 'wildmenu' option, which uses the space of one line above
the statusline to show matches. Only a few matches fit there.

Now a popup menu can be used by setting 'wildoptions' to "pum". This allows
for showing many more matches. This requires redrawing more of the display,
but since computers are fast enough that is not a problem.

Updated colorschemes
new-colorschemes-9

Colorschemes from https://github.com/vim/colorschemes have been included.
They were made to work consistently across many types of terminals. Although
generally an improvement, a lot of personal preference is involved. You can
always get the old version if you prefer it, look here:
https://github.com/vim/colorschemes/blob/master/legacy_colors/

Various new items
new-items-9

Options:

'autoshelldir' change directory to the shell's current directory
'cdhome' change directory to the home directory by ":cd"
'cinscopedecls' words that are recognized by 'cino-g'
'guiligatures' GTK GUI: ASCII characters that can form shapes
'mousemoveevent' report mouse moves with <MouseMove>
'quickfixtextfunc' function for the text in the quickfix window
'spelloptions' options for spell checking
'thesaurusfunc' function to be used for thesaurus completion
'xtermcodes' request terminal codes from an xterm

Ex commands:

version9.txt — 3478

https://github.com/vim/colorschemes
https://github.com/vim/colorschemes/blob/master/legacy_colors/

:abstract (reserved for future use)
:argdedupe remove duplicates from the argument list
:balt like ":badd" but also set the alternate file
:class (reserved for future use)
:def define a Vim9 user function
:defcompile compile Vim9 user functions in current script
:disassemble disassemble Vim9 user function
:echoconsole like :echomsg but write to stdout
:endinterface (reserved for future use)
:endclass (reserved for future use)
:enddef end of a user function started with :def
:endenum (reserved for future use)
:enum (reserved for future use)
:eval evaluate an expression and discard the result
:export Vim9: export an item from a script
:final declare an immutable variable in Vim9
:import Vim9: import an item from another script
:interface (reserved for future use)
:static (reserved for future use)
:type (reserved for future use)
:var variable declaration in Vim9
:vim9script indicates Vim9 script file

Ex command modifiers:

:legacy make following command use legacy script syntax
:vim9cmd make following command use Vim9 script syntax

New and extended functions:

assert_nobeep() assert that a command does not cause a beep
autocmd_add() add a list of autocmds and groups
autocmd_delete() delete a list of autocmds and groups
autocmd_get() return a list of autocmds
blob2list() get a list of numbers from a blob
charclass() class of a character
charcol() character number of the cursor or a mark
charidx() character index of a byte in a string
digraph_get() get digraph
digraph_getlist() get all digraphs
digraph_set() register digraph
digraph_setlist() register multiple digraphs
echoraw() output characters as-is
exists_compiled() like exists() but check at compile time
extendnew() make a new Dictionary and append items
flatten() flatten a List
flattennew() flatten a copy of a List
fullcommand() get full command name
getcharpos() get character position of cursor, mark, etc.
getcharstr() get a character from the user as a string
getcmdcompltype() return current cmdline completion type
getcmdscreenpos() return the current cursor position in the cmdline
getcursorcharpos() get character position of the cursor
getmarklist() list of global/local marks
getreginfo() get information about a register
gettext() lookup message translation
hlget() get highlight group attributes

version9.txt — 3479

hlset() set highlight group attributes
isabsolutepath() check if a path is absolute
list2blob() get a blob from a list of numbers
maplist() list of all mappings, a dict for each
mapnew() make a new List with changed items
mapset() restore a mapping
matchfuzzy() fuzzy matches a string in a list of strings
matchfuzzypos() fuzzy matches a string in a list of strings
menu_info() get information about a menu item
popup_list() get list of all popup window IDs
prompt_getprompt() get the effective prompt text for a buffer
prop_add_list() attach a property at multiple positions
prop_find() search for a property
readblob() read a file into a Blob
readdirex() get a List of file information in a directory
reduce() reduce a List to a value
searchcount() get number of matches before/after the cursor
setcellwidths() set character cell width overrides
setcharpos() set character position of cursor, mark, etc.
setcursorcharpos() set character position of the cursor
slice() take a slice of a List
strcharlen() length of a string in characters
terminalprops() properties of the terminal
test_gui_event() generate a GUI event for testing
test_null_function() return a null Funcref
test_srand_seed() set the seed value for srand()
test_unknown() return a value with unknown type
test_void() return a value with void type
typename() type of a variable as text
virtcol2col() byte index of a character on screen
win_gettype() get type of window
win_move_separator() move window vertical separator
win_move_statusline() move window status line
windowsversion() get MS-Windows version

New Vim variables:

v:numbermax maximum value of a number
v:numbermin minimum value of a number (negative)
v:numbersize number of bits in a Number
v:collate current locale setting for collation order
v:exiting vim exit code
v:colornames dictionary that maps color names to hex color strings
v:sizeofint number of bytes in an int
v:sizeoflong number of bytes in a long
v:sizeofpointer number of bytes in a pointer
v:maxcol maximum line length

New autocommand events:

CompleteDonePre after Insert mode completion done, before clearing info
DirChangedPre before the working directory will change
InsertLeavePre just before leaving Insert mode
ModeChanged after changing the mode
SigUSR1 after the SIGUSR1 signal has been detected
WinClosed after closing a window
WinScrolled after scrolling or resizing a window
VimSuspend when suspending Vim

version9.txt — 3480

VimResume when Vim is resumed after being suspended

New operators:

>> bitwise right shift
<< bitwise left shift
?? falsy operator

New runtime files:

Too many to list here.

==
INCOMPATIBLE CHANGES incompatible-9

There is only one change that is incompatible with previous releases:

- Lua arrays are now one-based, they used to be zero-based.

Note that when using Vim9 script several things work differently, see
vim9-differences .

==
IMPROVEMENTS improvements-9

Various small and useful improvements have been made since Vim 8.2, here is a
summary.

Many memory leaks, invalid memory accesses and crashes have been fixed.
See the list of patches below: bug-fixes-9 .

Support for Vim expression evaluation in a string. interpolated-string
Support for evaluating Vim expressions in a heredoc. :let-heredoc

Support for fuzzy matching:
- a string in a List of strings. fuzzy-matching
- completion support for command line completion using 'wildoptions'.
- for :vimgrep .

Added support for the Haiku OS.

Support for "lsp" channel mode to simplify LSP server RPC communication
language-server-protocol . Support for using a Unix domain socket with a
channel . IPv6 support in channels channel-address .

Support for sourcing lines from the current buffer. :source-range

Terminal window improvements:
- Support for opening a terminal in a popup window. popup-terminal
- Allow setting underline color in terminal.
- Detect focus events in terminal (FocusGained and FocusLost).
- Add bell support for the terminal window. ('belloff')
- Support mouse left-right scrolling in a terminal window.

Support for stopping profiling a Vim script: `:profile stop` and dumping the
report to a file: `:profile dump` . :profile

Completion improvements:
- Argument completion support for the :breakadd , :breakdel , :diffget ,

version9.txt — 3481

:diffput , :profile , :profdel and :scriptnames commands.
- Support using any Vim type for user_data with the completion functions

(complete-items).
- Stop insert mode completion without changing text (i_CTRL-X_CTRL-Z).
- Add the "cmdline" option to getcompletion() to return the command line

arguments.

Support for setting the 'foldtext', 'completefunc', 'omnifunc',
'operatorfunc', 'thesaurusfunc', 'quickfixtextfunc', 'tagfunc',
'imactivatefunc' and 'imstatusfunc' options to a function reference or a
lambda function or a script-local function.

Support directly setting the 'balloonexpr', 'charconvert' 'foldexpr',
'formatexpr', 'includeexpr', 'printexpr', 'patchexpr', 'indentexpr',
'modelineexpr', 'diffexpr' and 'printexpr' options to a script-local function.

Improvements in 'fillchars':
- Support for configuring the character used to mark the beginning of a fold,

show a closed fold and show a fold separator using "foldopen", "foldclose"
and "foldsep" respectively in 'fillchars'.

- Support for configuring the character displayed in non existing lines using
"eob" in 'fillchars'.

- Support for using multibyte items with the "stl", "stlnc", "foldopen",
"foldclose" and "foldsep" items in the 'fillchars' option.

Support for the XChaCha20 encryption method. 'cryptmethod'

Spell checking:
- Spell check current word with z= even when 'spell' is off.
- Add "timeout" to 'spellsuggest' to limit the searching time for spell

suggestions.
- Add support for spell checking CamelCased words by adding "camel" to

'spelloptions'.

Support for executing Ex commands in a map without changing the current mode
<Cmd> and <ScriptCmd> .

Add optional error code to :cquit .

Recognize numbers as unsigned when "unsigned" is set in 'nrformats'.

Expand script ID using expand('<SID>') and script name using
expand('<script>'). expand()

Jump to the last accessed tab page using g<Tab> and support using the
last accessed tab page in :tabnext et al.

Locale aware sorting using :sort and sort() .

Hide cursor when sleeping using :sleep! .

Add "multispace" to 'listchars' to show two or more spaces no matter where
they appear. Add "leadmultispace" to 'listchars' to show two or more leading
spaces. Add "lead" to 'listchars' to set the character used to show leading
spaces. Support specifying a character using the hexadecimal notation in
'listchars' (\x, \u and \U).

Make 'listchars', 'virtualedit' and 'thesaurusfunc' global-local options.

Support for looping over a string using `:for`.

version9.txt — 3482

Don't reset 'wrap' for diff windows when "followwrap" is set in 'diffopt'.

Support for re-evaluating the 'statusline' expression as a statusline format
string (%{% expr %})

Add zp and zP to paste in block mode without adding trailing white space.
Add zy to yank without trailing white space in block mode.

Add the 'P' command in visual mode to paste text in Visual mode without
yanking the deleted text to the unnamed register. put-Visual-mode

Add \%.l, \%<.l and \%>.l atoms to match the line the cursor is currently on.
See /\%l for more information.

Add "list" to 'breakindentopt' to add additional indent for lines that match
a numbered or bulleted list. Add "column" to 'breakindentopt' to indent
soft-wrapped lines at a specific column.

Add the hl-CursorLineSign and hl-CursorLineFold default highlight groups to
adjust sign highlighting for 'cursorline'.

Add the hl-CurSearch default highlight group for the current search match.

Add support for logging on Vim startup (--log).

Add support for customizing the quickfix buffer contents using
'quickfixtextfunc'. Support for the "note" error type (%t) in errorformat .
Add support for parsing the end line number (%e) and end column number (%k)
using 'errorformat'.

Support truncating the tag stack using settagstack() .

Display every option in a separate line when "!" is used with :set .

Add "nostop" to 'backspace' to allow backspacing over the start of insert for
CTRL-W and CTRL-U also.

Sync the undo file if 'fsync' is set.

Support excluding the 'runtimepath' and 'packpath' options from a session file
using "skiprtp" in 'sessionoptions'.

Support for getting the number of lines (line count) in a buffer using
getbufinfo() .

Support filter() and map() for blob and string types.

Support for using a multi-byte character for the tag kind. tags-file-format

Add support for checking whether a function name is valid using exists() .

Update xdiff to version 2.33. Update libvterm to revision 789.

Support 'trim' for Python/Lua/Perl/Tcl/Ruby/MzScheme interface heredoc.

Add the t_AU and t_8u termcap codes for underline and undercurl. Add the
t_fd and t_fe termcap codes for detecting focus events.

Support for indenting C pragmas like normal code. (cino-P)

version9.txt — 3483

Add support for defining the syntax fold level. (:syn-foldlevel)

Add support for using \<*xxx> in a string to prepend a modifier to a
character. (expr-quote)

Add support trimming characters at the beginning or end of a string using
trim() .

Make ":verbose pwd" show the scope of the directory. :pwd-verbose

Add the "0o" notation for specifying octal numbers. scriptversion-4

Support for changing to the previous tab-local and window-local directories
using the "tcd -" and "lcd -" commands. (:tcd- and :lcd-)

Add support for skipping an expression using search() .

Add support for sorting the directory contents returned by the readdir()
and readdirex() functions by case.

Add support for executing (:@) a register containing line continuation.

Lua support:
- Call Vim functions from Lua (vim.call() and vim.fn()).
- Convert a Lua function and a closure to a Vim funcref so that it can be

accessed in a Vim script (lua-funcref).
- Not backwards compatible: Make Lua arrays one based.
- Add support for using table.insert() and table.remove() functions with Vim

lists.
- Support for running multiple Ex-mode commands using vim.command().
- Add vim.lua_version to get the Lua version.
- Add support for accessing Vim namespace dictionaries from Lua

(lua-vim-variables).

Support for new UTF-8 characters from Unicode release 13.

Support for using a command block (:command-repl) when defining a :command
or an :autocmd .

Support for using :z! to use the Vim display height instead of the current
window height.

Support for deleting a buffer-local command using ":delcommand -buffer {cmd}".

When formatting a // comment after a statement, find the start of the line
comment, insert the comment leader and indent the comment properly (fo-/).

Add the "numhl" argument to `:sign define` to use a separate highlight group
for the line number on a line where a sign is placed. :sign-define

When $SHELL ends in "nologin" or "false", start Vim in restricted mode.

TermDebug enhancements:
- Support for showing the disassembled code in a separate window.
- Support for the GDB until command.
- Use a separate group for the signs.

xxd: Support for showing offset as a decimal number (-d).

version9.txt — 3484

The C omni-complete plugin (ft-c-omni), the file type detection script
(ft.vim) and the syntax menu generation script (makemenu.vim) have been
rewritten using the Vim9 script syntax.

A large number of tests have been added to verify the Vim functionality. Most
of the old style tests have been converted to new style tests using the new
style assert_* functions.

Many Coverity static analysis warnings have been fixed.

==
COMPILE TIME CHANGES compile-changes-9

The following features are now enabled in all the builds:
+cindent
+jumplist
+lispindent
+num64
+smartindent
+tag_binary
+title

The following features have been removed. They are either obsolete or didn't
work properly:

- Athena and neXTaw GUI support (use Motif instead)
- EBCDIC support
- Atari MiNT and BeOS
- Mac Carbon GUI (use MacVim instead)

The rgb.txt file is no longer included, use colors/lists/default.vim instead.

Several large source files were split, mainly to make it easier to inspect
code coverage information. Source files have also been refactored for
maintainability.

Support for building Vim with Mingw64 clang compiler on MS-Windows.

Support for building Vim with Python 3.10, Lua 5.4.4, Perl 5.34 and
Ruby 3.1.0.

==
PATCHES patches-9 bug-fixes-9

patches-after-8.2

The list of patches that got included since 8.2.0. This includes all the new
features, but does not include runtime file changes (syntax, indent, help,
etc.)

Patch 8.2.0001
Problem: #endif comments do not reflect corresponding #ifdef.
Solution: Update the comments. (Rene Nyffenegger, closes #5351)
Files: src/ui.c

Patch 8.2.0002
Problem: "dj" only deletes first line of closed fold.
Solution: Adjust last line of operator for linewise motion. (closes #5354)
Files: src/ops.c, src/testdir/test_fold.vim

Patch 8.2.0003
Problem: Build file dependencies are incomplete.

version9.txt — 3485

Solution: Fix the dependencies. (Ken Takata, closes #5356)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms,

src/Makefile

Patch 8.2.0004
Problem: Get E685 and E931 if buffer reload is interrupted.
Solution: Do not abort deleting a dummy buffer. (closes #5361)
Files: src/buffer.c, src/proto/buffer.pro, src/testdir/test_trycatch.vim,

src/ex_cmds.c, src/ex_getln.c, src/misc2.c, src/quickfix.c,
src/window.c, src/vim.h

Patch 8.2.0005
Problem: Duplication in version info.
Solution: Use preprocessor string concatenation. (Ken Takata, closes #5357)
Files: src/version.h

Patch 8.2.0006
Problem: Test using long file name may fail. (Vladimir Lomov)
Solution: Limit the name length. (Christian Brabandt, closes #5358)
Files: src/testdir/test_display.vim

Patch 8.2.0007
Problem: Popup menu positioned wrong with folding in two tabs.
Solution: Update the cursor line height. (closes #5353)
Files: src/move.c, src/proto/move.pro, src/popupmenu.c,

src/testdir/test_ins_complete.vim,
src/testdir/dumps/Test_pum_with_folds_two_tabs.dump

Patch 8.2.0008
Problem: Test72 is old style.
Solution: Convert to new style test. (Yegappan Lakshmanan, closes #5362)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test72.in, src/testdir/test72.ok,
src/testdir/test_undo.vim

Patch 8.2.0009
Problem: VMS: terminal version doesn't build.
Solution: Move MIN definition. Adjust #ifdefs. (Zoltan Arpadffy)
Files: src/bufwrite.c, src/fileio.c, src/ui.c, src/xxd/Make_vms.mms

Patch 8.2.0010
Problem: Test64 is old style.
Solution: Convert to new style test. (Yegappan Lakshmanan, closes #5363)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test64.in, src/testdir/test64.ok,
src/testdir/test95.in, src/testdir/test_regexp_latin.vim

Patch 8.2.0011
Problem: Screen updating wrong when opening preview window.
Solution: Redraw the window when the preview window opens.
Files: src/popupmenu.c, src/testdir/test_ins_complete.vim,

src/testdir/dumps/Test_pum_with_preview_win.dump

Patch 8.2.0012
Problem: Some undo functionality is not tested.
Solution: Add a few more test cases. (Dominique Pellé, closes #5364)
Files: src/testdir/test_undo.vim

Patch 8.2.0013
Problem: Not using a typedef for condstack.

version9.txt — 3486

Solution: Add a typedef.
Files: src/structs.h, src/ex_docmd.c, src/ex_eval.c, src/userfunc.c,

src/ex_cmds.h, src/proto/ex_eval.pro

Patch 8.2.0014
Problem: Test69 and test95 are old style.
Solution: Convert to new style tests. (Yegappan Lakshmanan, closes #5365)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test69.in, src/testdir/test69.ok,
src/testdir/test95.in, src/testdir/test95.ok,
src/testdir/test_regexp_utf8.vim, src/testdir/test_textformat.vim

Patch 8.2.0015
Problem: Not all modeline variants are tested.
Solution: Add modeline tests. (Dominique Pellé, closes #5369)
Files: src/testdir/test_modeline.vim

Patch 8.2.0016
Problem: Test name used twice, option not restored properly.
Solution: Rename function, restore option with "&".
Files: src/testdir/test_textformat.vim

Patch 8.2.0017
Problem: OS/2 and MS-DOS are still mentioned, even though support was

removed long ago.
Solution: Update documentation. (Yegappan Lakshmanan, closes #5368)
Files: runtime/doc/autocmd.txt, runtime/doc/change.txt,

runtime/doc/cmdline.txt, runtime/doc/editing.txt,
runtime/doc/eval.txt, runtime/doc/gui.txt, runtime/doc/insert.txt,
runtime/doc/options.txt, runtime/doc/print.txt,
runtime/doc/quickfix.txt, runtime/doc/repeat.txt,
runtime/doc/starting.txt, runtime/doc/usr_01.txt,
runtime/doc/usr_05.txt, runtime/doc/usr_41.txt,
runtime/doc/vi_diff.txt, runtime/gvimrc_example.vim,
runtime/tools/README.txt, runtime/vimrc_example.vim, src/feature.h

Patch 8.2.0018
Problem: :join does not add white space where it should. (Zdenek Dohnal)
Solution: Handle joining multiple lines properly.
Files: src/ops.c, src/testdir/test_join.vim

Patch 8.2.0019
Problem: Cannot get number of lines of another buffer.
Solution: Add "linecount" to getbufinfo(). (Yasuhiro Matsumoto,

closes #5370)
Files: src/evalbuffer.c, src/testdir/test_bufwintabinfo.vim,

runtime/doc/eval.txt

Patch 8.2.0020
Problem: Mouse clicks in the command line not tested.
Solution: Add tests. (Dominique Pellé, closes #5366)
Files: src/testdir/test_termcodes.vim

Patch 8.2.0021
Problem: Timer test fails too often on Travis with macOS.
Solution: Be less strict with the time.
Files: src/testdir/test_timers.vim

Patch 8.2.0022
Problem: Click in popup window doesn't close it in the GUI. (Sergey Vlasov)

version9.txt — 3487

Solution: When processing the selection also send a button release event.
(closes #5367)

Files: src/gui.c

Patch 8.2.0023
Problem: Command line editing not sufficiently tested.
Solution: Add more tests. (Dominique Pellé, closes #5374)
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_cmdline.vim, src/testdir/test_ex_mode.vim

Patch 8.2.0024
Problem: Filetype Rego not recognized.
Solution: Add *.rego. (Matt Dunford, closes #5376)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0025
Problem: Repeated word in comment.
Solution: Remove one. (Rene Nyffenegger, closes #5384)
Files: src/structs.h

Patch 8.2.0026
Problem: Still some /* */ comments.
Solution: Convert to // comments.
Files: src/message.c, src/message_test.c, src/misc1.c, src/misc2.c,

src/move.c

Patch 8.2.0027
Problem: Still some /* */ comments.
Solution: Convert to // comments.
Files: src/iid_ole.c, src/indent.c, src/insexpand.c, src/iscygpty.c,

src/version.c

Patch 8.2.0028
Problem: Searchpairpos() is not tested.
Solution: Add tests. Also improve searchpair() testing. (Dominique Pellé,

closes #5388)
Files: src/testdir/test_search.vim

Patch 8.2.0029
Problem: MS-Windows: crash with empty job command.
Solution: Check for NULL result. (Yasuhiro Matsumoto, closes #5390)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.2.0030
Problem: "gF" does not work on output of "verbose command".
Solution: Recognize " line " and translations. (closes #5391)
Files: src/globals.h, src/eval.c, src/findfile.c, src/testdir/test_gf.vim

Patch 8.2.0031 (after 8.2.0029)
Problem: MS-Windows: test for empty job fails
Solution: Check for error message, make it also fail on Unix.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.2.0032 (after 8.2.0031)
Problem: MS-Windows: test for blank job fails
Solution: Check before escaping.
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.2.0033
Problem: Crash when make_extmatch() runs out of memory.

version9.txt — 3488

Solution: Check for NULL. (Dominique Pellé, closes #5392)
Files: src/regexp_bt.c, src/regexp_nfa.c

Patch 8.2.0034
Problem: Missing check for out of memory.
Solution: Check for NULL after vim_strsave(). (Dominique Pellé,

closes #5393)
Files: src/filepath.c

Patch 8.2.0035
Problem: Saving and restoring called_emsg is clumsy.
Solution: Count the number of error messages.
Files: src/message.c, src/buffer.c, src/channel.c, src/drawscreen.c,

src/ex_cmds2.c, src/gui.c, src/highlight.c, src/main.c,
src/regexp.c, src/search.c, src/testing.c, src/globals.h

Patch 8.2.0036
Problem: Not enough test coverage for match functions.
Solution: Add a few more test cases. (Dominique Pellé, closes #5394)

Add error number.
Files: src/testdir/test_match.vim

Patch 8.2.0037
Problem: Missing renamed message.
Solution: Now really add the error number.
Files: src/highlight.c

Patch 8.2.0038
Problem: Spell suggestions insufficiently tested.
Solution: Add spell suggestion tests. (Dominique Pellé, closes #5398)
Files: src/testdir/test_spell.vim

Patch 8.2.0039
Problem: Memory access error when "z=" has no suggestions.
Solution: Check for negative index.
Files: src/testdir/test_spell.vim, src/spellsuggest.c

Patch 8.2.0040
Problem: Timers test is still flaky on Travis for Mac.
Solution: Run separately instead of as part of test_alot.
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim

Patch 8.2.0041
Problem: Leaking memory when selecting spell suggestion.
Solution: Free previous value at the right time.
Files: src/spellsuggest.c

Patch 8.2.0042
Problem: Clearing funccal values twice.
Solution: Remove clearing individual fields.
Files: src/userfunc.c

Patch 8.2.0043
Problem: Timers test is still flaky on Travis for Mac.
Solution: Increase maximum expected time.
Files: src/testdir/test_timers.vim

Patch 8.2.0044
Problem: Expression type is used inconsistently.
Solution: Add "ETYPE_IS" and "ETYPE_ISNOT" as separate enum values. Rename

version9.txt — 3489

"TYPE_" to "ETYPE_" to avoid confusion.
Files: src/structs.h, src/eval.c, src/proto/eval.pro, src/debugger.c

Patch 8.2.0045 (after 8.2.0044)
Problem: Script test fails.
Solution: For numbers "is" and "isnot" work like "==" and "!=".
Files: src/eval.c

Patch 8.2.0046
Problem: Tests for spell suggestions are slow.
Solution: Use shorter words. Test with latin1 and utf-8 to cover more code.

(Dominique Pellé, closes #5399)
Files: src/testdir/test_spell.vim

Patch 8.2.0047
Problem: Cannot skip tests for specific MS-Windows platform.
Solution: Add windowsversion().
Files: src/os_win32.c, src/globals.h, src/evalfunc.c,

runtime/doc/eval.txt, src/testdir/gen_opt_test.vim,
src/testdir/test_options.vim

Patch 8.2.0048
Problem: Another timers test is flaky on Travis for Mac.
Solution: Increase maximum expected time.
Files: src/testdir/test_timers.vim

Patch 8.2.0049
Problem: Command line completion not fully tested.
Solution: Add more test cases. Make help sorting stable. (Dominique Pellé,

closes #5402)
Files: src/ex_cmds.c, src/testdir/test_cd.vim,

src/testdir/test_cmdline.vim, src/testdir/test_help.vim,
src/testdir/test_menu.vim, src/testdir/test_options.vim,
src/testdir/test_syntax.vim

Patch 8.2.0050
Problem: After deleting a file mark it is still in viminfo.
Solution: When a file mark was deleted more recently than the mark in the

merged viminfo file was updated, do not store the mark. (Pavol
Juhas, closes #5401, closes #1339)

Files: src/mark.c, src/testdir/test_marks.vim,
src/testdir/test_viminfo.vim, src/viminfo.c

Patch 8.2.0051 (after 8.2.0049)
Problem: Command line completion test skipped. (Christian Brabandt)
Solution: Invert condition.
Files: src/testdir/test_cmdline.vim

Patch 8.2.0052
Problem: More-prompt not properly tested.
Solution: Add a test case. (Dominique Pellé, closes #5404)
Files: src/testdir/test_messages.vim

Patch 8.2.0053
Problem: windowsversion() does not always return the right value.
Solution: Add a compatibility section in the manifest. (Ken Takata,

closes #5407)
Files: src/gvim.exe.mnf

Patch 8.2.0054

version9.txt — 3490

Problem: :diffget and :diffput don't have good completion.
Solution: Add proper completion. (Dominique Pellé, closes #5409)
Files: runtime/doc/eval.txt, src/buffer.c, src/cmdexpand.c,

src/testdir/test_diffmode.vim, src/usercmd.c, src/vim.h

Patch 8.2.0055
Problem: Cannot use ":gui" in vimrc with VIMDLL enabled.
Solution: Change the logic, check "gui.starting". (Ken Takata, closes #5408)
Files: src/gui.c

Patch 8.2.0056
Problem: Execution stack is incomplete and inefficient.
Solution: Introduce a proper execution stack and use it instead of

sourcing_name/sourcing_lnum. Create a string only when used.
Files: src/structs.h, src/globals.h, src/autocmd.c, src/buffer.c

src/debugger.c, src/ex_docmd.c, src/ex_eval.c, src/highlight.c,
src/main.c, src/map.c, src/message.c, src/proto/scriptfile.pro,
src/scriptfile.c, src/option.c, src/profiler.c, src/spellfile.c,
src/term.c, src/testing.c, src/usercmd.c, src/userfunc.c,
src/kword_test.c, src/testdir/test_debugger.vim

Patch 8.2.0057 (after 8.2.0056)
Problem: Cannot build with small features.
Solution: Add #ifdefs.
Files: src/scriptfile.c

Patch 8.2.0058
Problem: Running tests changes ~/.viminfo.
Solution: Make 'viminfo' empty when summarizing tests results. (closes #5414)
Files: src/testdir/summarize.vim

Patch 8.2.0059
Problem: Compiler warnings for unused variables in small build. (Tony

Mechelynck)
Solution: Add #ifdef.
Files: src/scriptfile.c

Patch 8.2.0060
Problem: Message test only runs with one encoding. (Dominique Pellé)
Solution: Run the test with "utf-8" and "latin1". Fix underflow. (related

to #5410)
Files: src/message_test.c, src/message.c

Patch 8.2.0061
Problem: The execute stack can grow big and never shrinks.
Solution: Reduce the size in garbage collect.
Files: src/eval.c

Patch 8.2.0062
Problem: Memory test is flaky on FreeBSD.
Solution: Add a short sleep before getting the first size.
Files: src/testdir/test_memory_usage.vim

Patch 8.2.0063
Problem: Wrong size argument to vim_snprintf(). (Dominique Pellé)
Solution: Reduce the size by the length. (related to #5410)
Files: src/ops.c

Patch 8.2.0064
Problem: Diffmode completion doesn't use per-window setting.

version9.txt — 3491

Solution: Check if a window is in diff mode. (Dominique Pellé, closes #5419)
Files: src/buffer.c, src/testdir/test_diffmode.vim

Patch 8.2.0065
Problem: Amiga and alikes: autoopen only used on Amiga OS4.
Solution: Adjust #ifdefs. (Ola Söder, closes #5413)
Files: src/os_amiga.c

Patch 8.2.0066
Problem: Some corners of vim_snprintf() are not tested.
Solution: Add a test in C. (Dominique Pellé, closes #5422)
Files: src/message_test.c

Patch 8.2.0067
Problem: ERROR_UNKNOWN clashes on some systems.
Solution: Rename ERROR_ to FCERR_. (Ola Söder, closes #5415)
Files: src/evalfunc.c, src/userfunc.c, src/vim.h

Patch 8.2.0068
Problem: Crash when using Python 3 with "utf32" encoding. (Dominique Pellé)
Solution: Use "utf-8" whenever enc_utf8 is set. (closes #5423)
Files: src/testdir/test_python3.vim, src/if_py_both.h

Patch 8.2.0069
Problem: ETYPE_ is used for two different enums.
Solution: Rename one to use EXPR_.
Files: src/structs.h, src/eval.c, src/debugger.c

Patch 8.2.0070
Problem: Crash when using Python 3 with "debug" encoding. (Dominique Pellé)
Solution: Use "euc-jp" whenever enc_dbcs is set.
Files: src/testdir/test_python3.vim, src/if_py_both.h

Patch 8.2.0071
Problem: Memory test often fails on Cirrus CI.
Solution: Allow for more tolerance in the upper limit. Remove sleep.
Files: src/testdir/test_memory_usage.vim

Patch 8.2.0072 (after 8.2.0071)
Problem: Memory test still fails on Cirrus CI.
Solution: Allow for a tiny bit more tolerance in the upper limit.
Files: src/testdir/test_memory_usage.vim

Patch 8.2.0073
Problem: Initializing globals with COMMA is clumsy.
Solution: Use INIT2(), INIT3(), etc.
Files: src/vim.h, src/globals.h

Patch 8.2.0074
Problem: Python 3 unicode test sometimes fails.
Solution: Make 'termencoding' empty. Correct number of error message.
Files: src/change.c, runtime/doc/options.txt, runtime/doc/message.txt,

src/testdir/test_python3.vim

Patch 8.2.0075
Problem: Python 3 unicode test still sometimes fails.
Solution: Skip the test when 'termencoding' is not empty.
Files: src/testdir/test_python3.vim

Patch 8.2.0076

version9.txt — 3492

Problem: Python 3 unicode test fails on MS-Windows.
Solution: Do not set 'encoding' to "debug" on MS-Windows.
Files: src/testdir/test_python3.vim

Patch 8.2.0077
Problem: settagstack() cannot truncate at current index.
Solution: Add the "t" action. (Yegappan Lakshmanan, closes #5417)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/tag.c,

src/testdir/test_tagjump.vim

Patch 8.2.0078
Problem: Expanding <sfile> works differently the second time.
Solution: Keep the expanded name when redefining a function. (closes #5425)
Files: src/testdir/test_vimscript.vim, src/userfunc.c

Patch 8.2.0079
Problem: Python 3 unicode test still fails on MS-Windows.
Solution: Do not set 'encoding' to "euc-tw" on MS-Windows.
Files: src/testdir/test_python3.vim

Patch 8.2.0080
Problem: Globals using INIT4() are not in the tags file.
Solution: Adjust the tags command.
Files: src/configure.ac, src/auto/configure

Patch 8.2.0081
Problem: MS-Windows also need the change to support INIT4().
Solution: Add the ctags arguments. (Ken Takata)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.2.0082
Problem: When reusing a buffer listeners are not cleared. (Axel Forsman)
Solution: Clear listeners when reusing a buffer. (closes #5431)
Files: src/testdir/test_listener.vim, src/buffer.c

Patch 8.2.0083
Problem: Text properties wrong when tabs and spaces are exchanged.
Solution: Take text properties into account. (Nobuhiro Takasaki,

closes #5427)
Files: src/edit.c, src/testdir/test_textprop.vim

Patch 8.2.0084
Problem: Complete item "user_data" can only be a string.
Solution: Accept any type of variable. (closes #5412)
Files: src/testdir/test_ins_complete.vim, src/insexpand.c, src/dict.c,

src/proto/dict.pro, src/eval.c, runtime/doc/insert.txt

Patch 8.2.0085
Problem: Dead code in builtin functions.
Solution: Clean up the code.
Files: src/evalvars.c, src/sound.c, src/textprop.c

Patch 8.2.0086 (after 8.2.0084)
Problem: Build error for small version. (Tony Mechelynck)
Solution: Only use "user_data" with the +eval feature. Remove unused

variable.
Files: src/insexpand.c, src/dict.c

Patch 8.2.0087
Problem: Crash in command line expansion when out of memory.

version9.txt — 3493

Solution: Check for NULL pointer. Also make ExpandGeneric() static.
(Dominique Pellé, closes #5437)

Files: src/cmdexpand.c, src/proto/cmdexpand.pro

Patch 8.2.0088
Problem: Insufficient tests for tags; bug in using extra tag field when

using an ex command to position the cursor.
Solution: Fix the bug, add more tests. (Yegappan Lakshmanan, closes #5439)
Files: runtime/doc/tagsrch.txt, src/tag.c,

src/testdir/test_ins_complete.vim, src/testdir/test_tagfunc.vim,
src/testdir/test_tagjump.vim, src/testdir/test_taglist.vim

Patch 8.2.0089
Problem: Crash when running out of memory in :setfiletype completion.
Solution: Do not allocate memory. (Dominique Pellé, closes #5438)
Files: src/cmdexpand.c

Patch 8.2.0090
Problem: Generated files show up in git status.
Solution: Ignore a few more files.
Files: .gitignore

Patch 8.2.0091
Problem: Compiler warnings for size_t / int types.
Solution: Change type to size_t. (Mike Williams)
Files: src/scriptfile.c

Patch 8.2.0092
Problem: Tags functionality insufficiently tested.
Solution: Add more tags tests. (Yegappan Lakshmanan, closes #5446)
Files: src/testdir/test_tagjump.vim

Patch 8.2.0093
Problem: win_splitmove() can make Vim hang.
Solution: Check windows exists in the current tab page. (closes #5444)
Files: src/testdir/test_window_cmd.vim, src/evalwindow.c

Patch 8.2.0094
Problem: MS-Windows: cannot build with Strawberry Perl 5.30.
Solution: Define __builtin_expect() as a workaround. (Ken Takata,

closes #5267)
Files: src/if_perl.xs

Patch 8.2.0095
Problem: Cannot specify exit code for :cquit.
Solution: Add optional argument. (Thinca, Yegappan Lakshmanan, closes #5442)
Files: runtime/doc/quickfix.txt, src/ex_cmds.h, src/ex_docmd.c,

src/testdir/test_quickfix.vim

Patch 8.2.0096
Problem: Cannot create tiny popup window in last column. (Daniel Steinberg)
Solution: Remove position limit. (closes #5447)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_20.dump,
src/testdir/dumps/Test_popupwin_21.dump

Patch 8.2.0097
Problem: Crash with autocommand and spellfile. (Tim Pope)
Solution: Do not pop exestack when not pushed. (closes #5450)
Files: src/testdir/test_autocmd.vim, src/spellfile.c

version9.txt — 3494

Patch 8.2.0098
Problem: Exe stack length can be wrong without being detected.
Solution: Add a check when ABORT_ON_INTERNAL_ERROR is defined.
Files: src/macros.h, src/autocmd.c, src/buffer.c, src/ex_docmd.c,

src/main.c, src/map.c, src/scriptfile.c, src/spellfile.c,
src/userfunc.c

Patch 8.2.0099
Problem: Use of NULL pointer when out of memory.
Solution: Check for NULL pointer. (Dominique Pellé, closes #5449)
Files: src/cmdexpand.c

Patch 8.2.0100
Problem: Macros for Ruby are too complicated.
Solution: Do not use DYNAMIC_RUBY_VER, use RUBY_VERSION. (Ken Takata,

closes #5452)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/auto/configure,

src/configure.ac, src/if_ruby.c

Patch 8.2.0101
Problem: Crash when passing null object to ":echomsg".
Solution: Check for NULL pointer. (Yasuhiro Matsumoto, closes #5460)
Files: src/eval.c, src/testdir/test_messages.vim

Patch 8.2.0102
Problem: Messages test fails in small version.
Solution: Only use test_null_job() when available.
Files: src/testdir/test_messages.vim

Patch 8.2.0103
Problem: Using null object with execute() has strange effects.
Solution: Give an error message for Job and Channel.
Files: src/testdir/test_execute_func.vim, src/globals.h, src/eval.c,

src/evalfunc.c

Patch 8.2.0104
Problem: Using channel or job with ":execute" has strange effects.
Solution: Give an error message for Job and Channel.
Files: src/testdir/test_eval_stuff.vim, src/eval.c

Patch 8.2.0105
Problem: Vim license not easy to find on github.
Solution: Add a separate LICENCE file. (closes #5458)
Files: LICENSE, Filelist

Patch 8.2.0106
Problem: Printf formats are not exactly right.
Solution: Adjust signed/unsigned conversions. (Frazer Clews, closes #5456)
Files: runtime/tools/ccfilter.c, src/libvterm/src/parser.c,

src/libvterm/src/pen.c, src/ui.c

Patch 8.2.0107
Problem: Hgignore is out of sync from gitignore.
Solution: Add lines to hgignore. (Ken Takata)
Files: .hgignore

Patch 8.2.0108
Problem: When sign text is changed a manual redraw is needed. (Pontus

Lietzler)

version9.txt — 3495

Solution: Redraw automatically. (closes #5455)
Files: src/testdir/test_signs.vim, src/sign.c,

src/testdir/dumps/Test_sign_cursor_1.dump,
src/testdir/dumps/Test_sign_cursor_2.dump,
src/testdir/dumps/Test_sign_cursor_3.dump,
src/testdir/dumps/Test_sign_cursor_01.dump,
src/testdir/dumps/Test_sign_cursor_02.dump

Patch 8.2.0109
Problem: Corrupted text properties when expanding spaces.
Solution: Reallocate the line. (Nobuhiro Takasaki, closes #5457)
Files: src/edit.c, src/testdir/test_textprop.vim

Patch 8.2.0110
Problem: prop_find() is not implemented.
Solution: Implement prop_find(). (Ryan Hackett, closes #5421, closes #4970)
Files: src/evalfunc.c, src/proto/textprop.pro,

src/testdir/test_textprop.vim, src/textprop.c,
runtime/doc/textprop.txt

Patch 8.2.0111
Problem: VAR_SPECIAL is also used for booleans.
Solution: Add VAR_BOOL for better type checking.
Files: src/structs.h, src/dict.c, src/eval.c, src/evalfunc.c,

src/evalvars.c, src/if_lua.c, src/if_mzsch.c, src/if_py_both.h,
src/if_ruby.c, src/json.c, src/popupmenu.c, src/proto/dict.pro,
src/testing.c, src/vim.h, src/viminfo.c

Patch 8.2.0112
Problem: Illegal memory access when using 'cindent'.
Solution: Check for NUL byte. (Dominique Pellé, closes #5470)
Files: src/cindent.c, src/testdir/test_cindent.vim

Patch 8.2.0113 (after 8.2.0095)
Problem: "make cmdidxs" fails.
Solution: Allow address for ":cquit". Add --not-a-term to avoid a delay.
Files: src/ex_cmds.h, src/Makefile, src/Make_cyg_ming.mak,

src/Make_mvc.mak

Patch 8.2.0114
Problem: Info about sourced scripts is scattered.
Solution: Use scriptitem_T for info about a script, including s: variables.

Drop ga_scripts.
Files: src/structs.h, src/evalvars.c, src/scriptfile.c, src/eval.c

Patch 8.2.0115
Problem: Byte2line() does not work correctly with text properties. (Billie

Cleek)
Solution: Take the bytes of the text properties into account.

(closes #5334)
Files: src/testdir/test_textprop.vim, src/memline.c

Patch 8.2.0116
Problem: BufEnter autocmd not triggered on ":tab drop". (Andy Stewart)
Solution: Decrement autocmd_no_enter for the last file. (closes #1660,

closes #5473)
Files: src/arglist.c, src/testdir/test_tabpage.vim

Patch 8.2.0117
Problem: Crash when using gettabwinvar() with invalid arguments. (Yilin

version9.txt — 3496

Yang)
Solution: Use "curtab" if "tp" is NULL. (closes #5475)
Files: src/evalwindow.c, src/testdir/test_getvar.vim

Patch 8.2.0118
Problem: Crash when cycling to buffers involving popup window.
Solution: Do not decrement buffer reference count.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_infopopup_7.dump

Patch 8.2.0119
Problem: Message test fails on some platforms. (Elimar Riesebieter)
Solution: Add type cast to vim_snprintf() argument. (Dominique Pellé)
Files: src/message_test.c

Patch 8.2.0120
Problem: virtcol() does not check arguments to be valid, which may lead to

a crash.
Solution: Check the column to be valid. Do not decrement MAXCOL.

(closes #5480)
Files: src/evalfunc.c, src/testdir/test_marks.vim

Patch 8.2.0121
Problem: filter() and map() on blob don't work.
Solution: Correct the code. (closes #5483)
Files: src/list.c, src/testdir/test_blob.vim

Patch 8.2.0122
Problem: Readme files still mention MS-DOS.
Solution: Update readme files. (Ken Takata, closes #5486)
Files: README.md, README.txt, READMEdir/README_dos.txt,

READMEdir/README_srcdos.txt, READMEdir/README_w32s.txt,
runtime/doc/os_win32.txt

Patch 8.2.0123
Problem: complete_info() does not work when CompleteDone is triggered.
Solution: Trigger CompleteDone before clearing the info.
Files: src/insexpand.c, runtime/doc/autocmd.txt,

src/testdir/test_ins_complete.vim

Patch 8.2.0124
Problem: Compiler warnings for variable types.
Solution: Change type, add type cast. (Mike Williams)
Files: src/memline.c

Patch 8.2.0125
Problem: :mode no longer works for any system.
Solution: Always give an error message.
Files: src/ex_docmd.c, runtime/doc/quickref.txt, src/os_amiga.c,

src/proto/os_amiga.pro, src/os_mswin.c, src/proto/os_mswin.pro,
src/os_unix.c, src/proto/os_unix.pro

Patch 8.2.0126 (after 8.2.0124)
Problem: Textprop test fails.
Solution: Fix sign in computation.
Files: src/memline.c

Patch 8.2.0127
Problem: Some buffer commands work in a popup window.
Solution: Disallow :bnext, :bprev, etc. (Naruhiko Nishino, closes #5494)

version9.txt — 3497

Files: src/ex_docmd.c, src/testdir/test_popupwin.vim

Patch 8.2.0128
Problem: Cannot list options one per line.
Solution: Use ":set!" to list one option per line.
Files: src/ex_docmd.c, src/option.c, src/proto/option.pro, src/vim.h,

src/ex_cmds.h, src/optiondefs.h, src/testdir/test_options.vim,
runtime/doc/options.txt

Patch 8.2.0129
Problem: MS-Windows installer doesn't use Turkish translations.
Solution: Enable the Turkish translations and fix a few. (Emir Sarı,

closes #5493)
Files: nsis/gvim.nsi, nsis/lang/turkish.nsi

Patch 8.2.0130
Problem: Python3 ranges are not tested.
Solution: Add test. (Dominique Pellé, closes #5498)
Files: src/testdir/test_python3.vim

Patch 8.2.0131
Problem: Command line is not cleared when switching tabs and the command

line height differs.
Solution: Set the "clear_cmdline" flag when needed. (Naruhiko Nishino,

closes #5495)
Files: src/testdir/dumps/Test_cmdlineclear_tabenter.dump,

src/testdir/test_cmdline.vim, src/window.c

Patch 8.2.0132
Problem: Script may be re-used when deleting and creating a new one.
Solution: When the inode matches, also check the file name.
Files: src/scriptfile.c, src/testdir/test_source.vim

Patch 8.2.0133
Problem: Invalid memory access with search command.
Solution: When :normal runs out of characters in bracketed paste mode break

out of the loop.(closes #5511)
Files: src/testdir/test_search.vim, src/edit.c

Patch 8.2.0134
Problem: Some map functionality not covered by tests.
Solution: Add tests. (Yegappan Lakshmanan, closes #5504)
Files: src/testdir/test_maparg.vim, src/testdir/test_mapping.vim

Patch 8.2.0135 (after 8.2.0133)
Problem: Bracketed paste can still cause invalid memory access. (Dominique

Pellé)
Solution: Check for NULL pointer.
Files: src/edit.c, src/testdir/test_search.vim

Patch 8.2.0136
Problem: Stray ch_logfile() call.
Solution: Remove it. (closes #5503)
Files: src/testdir/test_source.vim

Patch 8.2.0137
Problem: Crash when using win_execute() from a new tab.
Solution: Set the tp_*win pointers. (Ozaki Kiichi, closes #5512)
Files: src/testdir/test_winbuf_close.vim, src/window.c

version9.txt — 3498

Patch 8.2.0138
Problem: Memory leak when starting a job fails.
Solution: Free the list of arguments. (Ozaki Kiichi, closes #5510)
Files: src/channel.c, src/testdir/test_channel.vim

Patch 8.2.0139
Problem: MS-Windows: default for IME is inconsistent.
Solution: Also make IME default enabled with MVC. (Ken Takata, closes #5508)
Files: src/Make_mvc.mak

Patch 8.2.0140
Problem: CI does not test building doc tags.
Solution: Add the vimtags/gcc build. Cleanup showing version. (Ozaki Kiichi,

closes #5513)
Files: .travis.yml, Filelist, ci/if_ver-1.vim, ci/if_ver-2.vim,

ci/if_ver-cmd.vim, runtime/doc/Makefile, runtime/doc/doctags.vim,
src/testdir/if_ver-1.vim, src/testdir/if_ver-2.vim

Patch 8.2.0141
Problem: No swift filetype detection.
Solution: Add swift, swiftgyb and sil. (Emir Sarı, closes #5517)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0142
Problem: Possible to enter popup window with CTRL-W p. (John Devin)
Solution: Check entered window is not a popup window. (closes #5515)
Files: src/window.c, src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_previewpopup_9.dump,
src/testdir/dumps/Test_popupwin_previewpopup_10.dump

Patch 8.2.0143
Problem: Coverity warning for possible use of NULL pointer.
Solution: Check argv is not NULL.
Files: src/channel.c

Patch 8.2.0144
Problem: Some mapping code is not fully tested.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #5519)
Files: src/testdir/test_langmap.vim, src/testdir/test_maparg.vim,

src/testdir/test_mapping.vim

Patch 8.2.0145
Problem: Using #error for compilation errors should be OK now.
Solution: Use #error. (Ken Takata, closes #5299)
Files: src/blowfish.c, src/vim.h

Patch 8.2.0146
Problem: Wrong indent when 'showbreak' and 'breakindent' are set and

'briopt' includes "sbr".
Solution: Reset "need_showbreak" where needed. (Ken Takata, closes #5523)
Files: src/drawline.c, src/testdir/test_breakindent.vim

Patch 8.2.0147
Problem: Block Visual mode operators not correct when 'linebreak' set.
Solution: Set w_p_lbr to lbr_saved more often. (Ken Takata, closes #5524)
Files: src/ops.c, src/testdir/test_listlbr.vim

Patch 8.2.0148
Problem: Mapping related function in wrong source file.
Solution: Move the function. Add a few more test cases. (Yegappan

version9.txt — 3499

Lakshmanan, closes #5528)
Files: src/map.c, src/proto/term.pro, src/term.c,

src/testdir/test_mapping.vim

Patch 8.2.0149
Problem: Maintaining a Vim9 branch separately is more work.
Solution: Merge the Vim9 script changes.
Files: README.md, README_VIM9.md, runtime/doc/Makefile,

runtime/doc/eval.txt, runtime/doc/options.txt, runtime/doc/tags,
runtime/doc/vim9.txt, runtime/ftplugin/vim.vim,
runtime/indent/vim.vim, runtime/syntax/vim.vim,
src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Makefile, src/blob.c,
src/channel.c, src/dict.c, src/eval.c, src/evalbuffer.c,
src/evalfunc.c, src/evalvars.c, src/ex_cmdidxs.h, src/ex_cmds.h,
src/ex_docmd.c, src/ex_eval.c, src/filepath.c, src/globals.h,
src/gui.c, src/if_lua.c, src/if_py_both.h, src/insexpand.c,
src/json.c, src/list.c, src/macros.h, src/main.c, src/message.c,
src/misc1.c, src/proto.h, src/proto/blob.pro, src/proto/eval.pro,
src/proto/evalfunc.pro, src/proto/evalvars.pro,
src/proto/ex_docmd.pro, src/proto/ex_eval.pro, src/proto/list.pro,
src/proto/message.pro, src/proto/scriptfile.pro,
src/proto/userfunc.pro, src/proto/vim9compile.pro,
src/proto/vim9execute.pro, src/proto/vim9script.pro,
src/scriptfile.c, src/session.c, src/structs.h, src/syntax.c,
src/testdir/Make_all.mak, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim, src/testing.c, src/userfunc.c,
src/vim.h, src/vim9.h, src/vim9compile.c, src/vim9execute.c,
src/vim9script.c, src/viminfo.c

Patch 8.2.0150
Problem: Cannot define python function when using :execute. (Yasuhiro

Matsumoto)
Solution: Do not recognize "def" inside "function.
Files: src/testdir/test_vim9_script.vim, src/userfunc.c

Patch 8.2.0151
Problem: Detecting a script was already sourced is unreliable.
Solution: Do not use the inode number.
Files: src/scriptfile.c, src/structs.h, src/testdir/test_vim9_script.vim

Patch 8.2.0152
Problem: Restoring ctrl_x_mode is not needed.
Solution: Remove restoring the old value, it's changed again soon.
Files: src/insexpand.c

Patch 8.2.0153
Problem: Warning shows when listing version info.
Solution: Use "-u NONE". (Ozaki Kiichi, closes #5534)
Files: .travis.yml

Patch 8.2.0154
Problem: Reallocating the list of scripts is inefficient.
Solution: Instead of using a growarray of scriptitem_T, store pointers and

allocate each scriptitem_T separately. Also avoids that the
growarray pointers change when sourcing a new script.

Files: src/globals.h, src/eval.c, src/evalvars.c, src/ex_docmd.c,
src/profiler.c, src/scriptfile.c, src/vim9compile.c,
src/vim9execute.c, src/vim9script.c

Patch 8.2.0155

version9.txt — 3500

Problem: Warnings from MinGW compiler. (John Marriott) Json test fails when
building without +float feature.

Solution: Init variables. Fix Json parsing. Skip a few tests that require
the +float feature.

Files: src/vim9script.c, src/vim9compile.c, src/vim9execute.c,
src/if_py_both.h, src/json.c, src/testdir/test_method.vim

Patch 8.2.0156
Problem: Various typos in source files and tests.
Solution: Fix the typos. (Emir Sarı, closes #5532)
Files: Makefile, src/INSTALLvms.txt, src/Make_vms.mms, src/beval.h,

src/buffer.c, src/charset.c, src/evalvars.c, src/ex_cmds.c,
src/ex_docmd.c, src/getchar.c, src/gui.c, src/gui_mac.c,
src/gui_photon.c, src/if_perl.xs,
src/libvterm/t/11state_movecursor.test,
src/libvterm/t/41screen_unicode.test, src/mbyte.c, src/memline.c,
src/normal.c, src/ops.c, src/option.c, src/option.h,
src/os_unix.c, src/os_win32.c, src/quickfix.c, src/register.c,
src/spell.c, src/tag.c, src/term.c,
src/testdir/test_breakindent.vim, src/testdir/test_channel.vim,
src/testdir/test_cindent.vim, src/testdir/test_digraph.vim,
src/testdir/test_edit.vim, src/testdir/test_netbeans.vim,
src/testdir/test_quickfix.vim, src/testdir/test_registers.vim,
src/testdir/test_stat.vim, src/ui.c, src/xxd/xxd.c

Patch 8.2.0157
Problem: Vim9 script files not in list of distributed files.
Solution: Add the entries.
Files: Filelist

Patch 8.2.0158 (after 8.2.0123)
Problem: Triggering CompleteDone earlier is not backwards compatible.

(Daniel Hahler)
Solution: Add CompleteDonePre instead.
Files: src/insexpand.c, runtime/doc/autocmd.txt, src/autocmd.c,

src/vim.h, src/testdir/test_ins_complete.vim

Patch 8.2.0159
Problem: Non-materialized range() list causes problems. (Fujiwara Takuya)
Solution: Materialize the list where needed.
Files: src/testdir/test_functions.vim, src/testdir/test_python3.vim,

src/userfunc.c, src/evalfunc.c, src/highlight.c, src/evalvars.c,
src/popupmenu.c, src/insexpand.c, src/json.c, src/channel.c,
src/eval.c

Patch 8.2.0160 (after 8.2.0159)
Problem: Range test fails.
Solution: Include change in list code. (#5541)
Files: src/list.c

Patch 8.2.0161
Problem: Not recognizing .gv file as dot filetype.
Solution: Add *.gv to dot pattern. (closes #5544)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0162
Problem: Balloon test fails in the GUI.
Solution: Skip test in the GUI.
Files: src/testdir/test_functions.vim

version9.txt — 3501

Patch 8.2.0163
Problem: Test hangs on MS-Windows console.
Solution: use feedkeys() instead of test_feedinput(). (Ken Takata)
Files: src/testdir/test_functions.vim, src/testing.c

Patch 8.2.0164
Problem: Test_alot takes too long.
Solution: Run several tests individually.
Files: src/testdir/test_alot.vim, src/testdir/Make_all.mak

Patch 8.2.0165
Problem: Coverity warning for using NULL pointer.
Solution: Add missing "else".
Files: src/vim9compile.c

Patch 8.2.0166
Problem: Coverity warning for using uninitialized variable.
Solution: Check for failure.
Files: src/vim9execute.c

Patch 8.2.0167
Problem: Coverity warning for ignoring return value.
Solution: Check the return value and jump if failed.
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0168
Problem: Coverity warning for assigning NULL to an option.
Solution: Use empty string instead of NULL.
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0169
Problem: Coverity warning for dead code.
Solution: Check if inside try-finally.
Files: src/vim9execute.c

Patch 8.2.0170
Problem: Coverity warning for ignoring return value.
Solution: Check the return value and return if failed.
Files: src/vim9compile.c

Patch 8.2.0171
Problem: Coverity warning for using uninitialized buffer.
Solution: Check the skip flag.
Files: src/userfunc.c

Patch 8.2.0172
Problem: Coverity warning for not restoring character.
Solution: Restore the character also in case of failure.
Files: src/vim9script.c

Patch 8.2.0173
Problem: Build fails with old compiler.
Solution: Do not use anonymous unions. (John Marriott)
Files: src/vim9compile.c, src/evalvars.c, src/list.c, src/structs.h,

src/evalfunc.c, src/channel.c, src/if_mzsch.c, src/if_py_both.h

Patch 8.2.0174
Problem: Various commands not completely tested.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #5551)
Files: src/testdir/test_excmd.vim, src/testdir/test_fnameescape.vim,

version9.txt — 3502

src/testdir/test_ga.vim, src/testdir/test_global.vim,
src/testdir/test_move.vim, src/testdir/test_options.vim,
src/testdir/test_packadd.vim, src/testdir/test_sort.vim,
src/testdir/test_substitute.vim, src/testdir/test_textformat.vim,
src/testdir/test_writefile.vim

Patch 8.2.0175
Problem: Crash when removing list element in map().
Solution: Lock the list. (closes #2652)
Files: src/testdir/test_filter_map.vim, src/list.c

Patch 8.2.0176
Problem: Generating os headers does not work for Swedish.
Solution: Set the locale to C. (Christian Brabandt, closes #5258)
Files: src/osdef.sh

Patch 8.2.0177
Problem: Memory leak in get_tags().
Solution: Free matches when finding a pseudo-tag line. (Dominique Pellé,

closes #5553)
Files: src/tag.c

Patch 8.2.0178
Problem: With VTP the screen may not be restored properly.
Solution: Add another set of saved RGB values. (Nobuhiro Takasaki,

closes #5548)
Files: src/os_win32.c

Patch 8.2.0179
Problem: Still a few places where range() does not work.
Solution: Fix using range() causing problems.
Files: src/terminal.c, src/testdir/test_functions.vim,

src/testdir/test_popupwin.vim, src/popupwin.c, src/tag.c,
src/testdir/dumps/Test_popupwin_20.dump,
src/testdir/dumps/Test_popupwin_21.dump,
src/testdir/dumps/Test_popup_settext_07.dump, src/globals.h

Patch 8.2.0180
Problem: Test for wrapmargin fails if terminal is not 80 columns.
Solution: Vertical split the window. (Ken Takata, closes #5554)
Files: src/testdir/test_textformat.vim

Patch 8.2.0181
Problem: Problems parsing :term arguments.
Solution: Improve parsing, fix memory leak, add tests. (Ozaki Kiichi,

closes #5536)
Files: src/channel.c, src/proto/channel.pro, src/structs.h,

src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.0182
Problem: Min() and max() materialize a range() list.
Solution: Compute the result without materializing the list. (#5541)
Files: src/evalfunc.c

Patch 8.2.0183
Problem: Tests fail when the float feature is disabled.
Solution: Skip tests that don't work without float support.
Files: src/testdir/shared.vim, src/testdir/test_blob.vim,

src/testdir/test_channel.vim, src/testdir/test_cscope.vim,
src/testdir/test_execute_func.vim, src/testdir/test_expr.vim,

version9.txt — 3503

src/testdir/test_functions.vim, src/testdir/test_lambda.vim,
src/testdir/test_listdict.vim, src/testdir/test_lua.vim,
src/testdir/test_options.vim, src/testdir/test_partial.vim,
src/testdir/test_ruby.vim, src/testdir/test_sort.vim,
src/testdir/test_timers.vim, src/testdir/test_true_false.vim,
src/testdir/test_user_func.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vimscript.vim, src/testdir/test_regexp_latin.vim,
src/testdir/test_glob2regpat.vim

Patch 8.2.0184
Problem: Blob test fails.
Solution: Check for different error when float feature is missing.
Files: src/testdir/test_blob.vim

Patch 8.2.0185
Problem: Vim9 script: cannot use "if has()" to skip lines.
Solution: Evaluate constant expression at runtime.
Files: src/vim9compile.c, src/evalfunc.c, src/proto/evalfunc.pro,

src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.0186
Problem: A couple of tests may fail when features are missing.
Solution: Check for features. (Dominique Pellé, closes #5561)
Files: src/testdir/test_functions.vim, src/testdir/test_highlight.vim

Patch 8.2.0187
Problem: Redundant code.
Solution: Remove unused assignments. (Dominique Pellé, closes #5557)
Files: src/vim9compile.c

Patch 8.2.0188
Problem: Check commands don't work well with Vim9 script.
Solution: Improve constant expression handling.
Files: src/vim9compile.c, src/testdir/check.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.0189
Problem: cd() with NULL argument crashes.
Solution: Check for NULL. (Ken Takata, closes #5558)
Files: src/testdir/test_cd.vim, src/ex_docmd.c

Patch 8.2.0190
Problem: Kotlin files are not recognized.
Solution: Detect Kotlin files. (Alkeryn, closes #5560)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0191
Problem: Cannot put a terminal in a popup window.
Solution: Allow opening a terminal in a popup window. It will always have

keyboard focus until closed.
Files: src/popupwin.c, src/proto/popupwin.pro, src/terminal.c,

src/proto/terminal.pro, src/macros.h, src/mouse.c,
src/highlight.c, src/drawline.c, src/optionstr.c, src/window.c,
src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_popup_1.dump,
src/testdir/dumps/Test_terminal_popup_2.dump,
src/testdir/dumps/Test_terminal_popup_3.dump

Patch 8.2.0192 (after 8.2.0191)
Problem: Build failure without +terminal feature.

version9.txt — 3504

Solution: Add #ifdefs.
Files: src/popupwin.c

Patch 8.2.0193 (after 8.2.0191)
Problem: Still build failure without +terminal feature.
Solution: Add more #ifdefs.
Files: src/macros.h

Patch 8.2.0194 (after 8.2.0193)
Problem: Some commands can cause problems in terminal popup.
Solution: Disallow more commands.
Files: src/macros.h, src/popupwin.c, src/proto/popupwin.pro,

src/arglist.c, src/ex_docmd.c, src/window.c,
src/testdir/test_terminal.vim

Patch 8.2.0195
Problem: Some tests fail when run in the GUI.
Solution: Make sure the window width is enough. In the GUI run terminal Vim

in the terminal, if possible.
Files: src/testdir/test_highlight.vim, src/testdir/check.vim,

src/testdir/test_terminal.vim

Patch 8.2.0196
Problem: Blocking commands for a finished job in a popup window.
Solution: Do not block commands if the job has finished. Adjust test.
Files: src/popupwin.c, src/testdir/test_popupwin.vim, src/window.c,

src/terminal.c, src/proto/terminal.pro

Patch 8.2.0197
Problem: Some Ex commands not sufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5565)
Files: src/testdir/test_global.vim, src/testdir/test_help.vim,

src/testdir/test_help_tagjump.vim, src/testdir/test_options.vim,
src/testdir/test_substitute.vim, src/testdir/test_textformat.vim,
src/testdir/test_writefile.vim

Patch 8.2.0198
Problem: No tests for y/n prompt.
Solution: Add tests. (Dominique Pellé, closes #5564)
Files: src/testdir/test_messages.vim

Patch 8.2.0199
Problem: Vim9 script commands not sufficiently tested.
Solution: Add more tests. Fix script-local function use.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim,

src/userfunc.c

Patch 8.2.0200
Problem: Vim9 script commands not sufficiently tested.
Solution: Add more tests. Fix storing global variable. Make script

variables work.
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h, src/evalvars.c,

src/proto/evalvars.pro, src/testdir/test_vim9_script.vim,
src/misc1.c, src/proto/misc1.pro

Patch 8.2.0201
Problem: Cannot assign to an imported variable.
Solution: Make it work.
Files: src/evalvars.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/userfunc.c, src/testdir/test_vim9_script.vim

version9.txt — 3505

Patch 8.2.0202
Problem: When 'lazyredraw' is set the window title may not be updated.
Solution: Set "do_redraw" before entering the main loop. (Jason Franklin)
Files: src/main.c

Patch 8.2.0203
Problem: :helptags and some other functionality not tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5567)
Files: src/testdir/test_compiler.vim, src/testdir/test_ex_mode.vim,

src/testdir/test_excmd.vim, src/testdir/test_filechanged.vim,
src/testdir/test_help.vim, src/testdir/test_help_tagjump.vim,
src/testdir/test_timers.vim, src/testdir/test_window_cmd.vim

Patch 8.2.0204
Problem: Crash when using winnr('j') in a popup window.
Solution: Do not search for neighbors in a popup window. (closes #5568)
Files: src/window.c, src/testdir/test_popupwin.vim, src/evalwindow.c

Patch 8.2.0205
Problem: Error code E899 used twice.
Solution: Use E863 for the terminal in popup error.
Files: src/popupwin.c

Patch 8.2.0206
Problem: Calling Vim9 function using default argument fails.
Solution: Give an appropriate error. (closes #5572)
Files: src/testdir/test_vim9_script.vim, src/vim9compile.c,

src/vim9execute.c

Patch 8.2.0207
Problem: Crash when missing member type on list argument.
Solution: Check for invalid type. (closes #5572)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.0208
Problem: Fnamemodify() does not apply ":~" when followed by ":.".
Solution: Don't let a failing ":." cause the ":~" to be skipped. (Yasuhiro

Matsumoto, closes #5577)
Files: runtime/doc/cmdline.txt, src/filepath.c,

src/testdir/test_fnamemodify.vim

Patch 8.2.0209
Problem: Function a bit far away from where it's used.
Solution: Move function close to where it's used. (Ken Takata, closes #5569)
Files: src/fileio.c, src/filepath.c

Patch 8.2.0210
Problem: Coverity complains about uninitialized field.
Solution: Initialize the field.
Files: src/vim9compile.c

Patch 8.2.0211
Problem: Test for ANSI colors fails without an "ls" command.
Solution: Use "dir". (Ken Takata, closes #5582)
Files: src/testdir/test_functions.vim

Patch 8.2.0212
Problem: Missing search/substitute pattern hardly tested.
Solution: Add test_clear_search_pat() and tests. (Yegappan Lakshmanan,

version9.txt — 3506

closes #5579)
Files: runtime/doc/eval.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/proto/regexp.pro,
src/proto/search.pro, src/proto/testing.pro, src/regexp.c,
src/search.c, src/testdir/test_quickfix.vim,
src/testdir/test_search.vim, src/testdir/test_sort.vim,
src/testdir/test_substitute.vim, src/testing.c

Patch 8.2.0213
Problem: Configure does not recognize gcc 10.0 and later.
Solution: Adjust the pattern matching the version number. (Sergei

Trofimovich, closes #5580)
Files: src/configure.ac, src/auto/configure

Patch 8.2.0214
Problem: A popup window with a terminal can be made hidden.
Solution: Disallow hiding a terminal popup.
Files: src/testdir/test_terminal.vim, src/popupwin.c,

src/testdir/dumps/Test_terminal_popup_4.dump

Patch 8.2.0215 (after 8.2.0208)
Problem: Wrong file name shortening. (Ingo Karkat)
Solution: Better check for path separator. (Yasuhiro Matsumoto,

closes #5583, closes #5584)
Files: src/filepath.c, src/testdir/test_fnamemodify.vim

Patch 8.2.0216
Problem: Several Vim9 instructions are not tested.
Solution: Add more tests. Fix :disassemble output. Make catch with pattern

work.
Files: src/testdir/test_vim9_script.vim, src/vim9execute.c,

src/vim9compile.c

Patch 8.2.0217 (after 8.2.0214)
Problem: Terminal test fails on Mac.
Solution: Add a short wait.
Files: src/testdir/test_terminal.vim

Patch 8.2.0218
Problem: Several Vim9 instructions are not tested.
Solution: Add more tests.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0219 (after 8.2.0217)
Problem: Terminal test still fails on Mac.
Solution: Skip part of the test on Mac.
Files: src/testdir/test_terminal.vim

Patch 8.2.0220
Problem: Terminal test did pass on Mac.
Solution: Remove the skip again.
Files: src/testdir/test_terminal.vim

Patch 8.2.0221
Problem: No test for Vim9 += and ..=.
Solution: Add tests.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0222
Problem: Vim9: optional function arguments don't work yet.

version9.txt — 3507

Solution: Implement optional function arguments.
Files: src/userfunc.c, src/vim9compile.c, src/vim9execute.c,

src/structs.h, src/testdir/test_vim9_script.vim

Patch 8.2.0223
Problem: Some instructions not yet tested.
Solution: Disassemble more instructions. Move tests to a new file. Compile

call to s:function().
Files: src/testdir/test_vim9_script.vim, src/testdir/Make_all.mak,

src/testdir/test_vim9_disassemble.vim, src/vim9compile.c,
src/userfunc.c, src/proto/userfunc.pro, src/vim.h

Patch 8.2.0224
Problem: compiling :elseif not tested yet.
Solution: Add test for :elseif. Fix generating jumps.
Files: src/testdir/test_vim9_script.vim, src/vim9compile.c,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.0225
Problem: compiling lambda not tested yet.
Solution: Add test for lambda and funcref. Drop unused instruction arg.
Files: src/testdir/test_vim9_disassemble.vim, src/vim9.h,

src/vim9execute.c

Patch 8.2.0226
Problem: Compiling for loop not tested.
Solution: Add a test. Make variable initialization work for more types.
Files: src/testdir/test_vim9_disassemble.vim, src/vim9compile.c

Patch 8.2.0227
Problem: Compiling a few instructions not tested.
Solution: Add more test cases.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.0228
Problem: Configure does not recognize gcc version on BSD.
Solution: Do not use "\+" in the pattern matching the version number. (Ozaki

Kiichi, closes #5590)
Files: src/configure.ac, src/auto/configure

Patch 8.2.0229
Problem: Compare instructions not tested.
Solution: Add test cases. Fix disassemble with line continuation.
Files: src/testdir/test_vim9_disassemble.vim, src/vim9execute.c,

src/vim9compile.c

Patch 8.2.0230
Problem: Terminal popup test is flaky.
Solution: Increase wait time a bit.
Files: src/testdir/test_terminal.vim

Patch 8.2.0231
Problem: Silent system command may clear the screen.
Solution: Do not clear the screen in t_te.
Files: src/term.c

Patch 8.2.0232
Problem: The :compiler command causes a crash. (Daniel Steinberg)
Solution: Do not use the script index if it isn't set.
Files: src/ex_docmd.c, src/testdir/test_compiler.vim

version9.txt — 3508

Patch 8.2.0233
Problem: Crash when using garbagecollect() in between rand().
Solution: Redesign the rand() and srand() implementation. (Yasuhiro

Matsumoto, closes #5587, closes #5588)
Files: src/evalfunc.c, src/testdir/test_random.vim,

runtime/doc/testing.txt, runtime/doc/eval.txt

Patch 8.2.0234
Problem: Message test fails on SunOS.
Solution: Adjust expectation for printf "%p". (Ozaki Kiichi, closes #5595)
Files: src/message_test.c

Patch 8.2.0235
Problem: Draw error when an empty group is removed from 'statusline'.
Solution: Do not use highlighting from a removed group.
Files: src/buffer.c, src/testdir/test_statusline.vim,

src/testdir/dumps/Test_statusline_1.dump

Patch 8.2.0236
Problem: MS-Windows uninstall doesn't delete vimtutor.bat.
Solution: Change directory before deletion. (Ken Takata, closes #5603)
Files: src/uninstall.c

Patch 8.2.0237
Problem: Crash when setting 'wincolor' on finished terminal window.

(Bakudankun)
Solution: Check that the vterm is not NULL. (Yasuhiro Matsumoto, closes

#5607, closes #5610)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.0238
Problem: MS-Windows: job_stop() results in exit value zero.
Solution: Call TerminateJobObject() with -1 instead of 0. (Yasuhiro

Matsumoto, closes #5150, closes #5614)
Files: src/os_win32.c, src/testdir/test_channel.vim

Patch 8.2.0239
Problem: MS-Windows: 'env' job option does not override existing

environment variables. (Tim Pope)
Solution: Set the environment variables later. (Yasuhiro Matsumoto,

closes #5485, closes #5608)
Files: src/os_win32.c, src/testdir/test_channel.vim

Patch 8.2.0240
Problem: Using memory after it was freed. (Dominique Pellé)
Solution: Do not mix conversion buffer with other buffer.
Files: src/viminfo.c, src/vim.h

Patch 8.2.0241
Problem: Crash when setting 'buftype' to "quickfix".
Solution: Check that error list is not NULL. (closes #5613)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.0242
Problem: Preview popup window test fails with long directory name. (Jakub

Kądziołka)
Solution: Use "silent cd". (closes #5615)
Files: src/testdir/test_popupwin.vim

version9.txt — 3509

Patch 8.2.0243
Problem: Insufficient code coverage for ex_docmd.c functions.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5618)
Files: src/testdir/Make_all.mak, src/testdir/test_arglist.vim,

src/testdir/test_buffer.vim, src/testdir/test_cd.vim,
src/testdir/test_cmdline.vim, src/testdir/test_ex_mode.vim,
src/testdir/test_excmd.vim, src/testdir/test_mapping.vim,
src/testdir/test_quickfix.vim, src/testdir/test_search.vim,
src/testdir/test_sort.vim, src/testdir/test_source.vim,
src/testdir/test_substitute.vim, src/testdir/test_undo.vim,
src/testdir/test_vimscript.vim, src/testdir/test_window_cmd.vim,
src/testdir/test_writefile.vim

Patch 8.2.0244
Problem: Compiler warning in Lua interface.
Solution: Add type cast. (Ken Takata, closes #5621)
Files: src/if_lua.c

Patch 8.2.0245
Problem: MSVC: error message if the auto directory already exists.
Solution: Add "if not exists". (Ken Takata, closes #5620)
Files: src/Make_mvc.mak

Patch 8.2.0246
Problem: MSVC: deprecation warnings with Ruby.
Solution: Move _CRT_SECURE_NO_DEPRECATE to build file. (Ken Takata,

closes #5622)
Files: src/Make_mvc.mak, src/if_ruby.c, src/os_win32.h, src/vim.h,

src/vimio.h

Patch 8.2.0247
Problem: Misleading comment in NSIS installer script.
Solution: Negate the meaning of the comment. (Ken Takata, closes #5627)
Files: nsis/gvim.nsi

Patch 8.2.0248
Problem: MS-Windows: dealing with deprecation is too complicated.
Solution: Use io.h directly. Move _CRT_SECURE_NO_DEPRECATE to the build

file. Suppress C4091 warning by setting "_WIN32_WINNT". (Ken
Takata, closes #5626)

Files: src/Make_mvc.mak, src/dosinst.h, src/vim.h, src/vimio.h,
src/winclip.c, Filelist

Patch 8.2.0249
Problem: MS-Windows: various warnings.
Solution: Set the charset to utf-8. Add _WIN32_WINNT and _USING_V110_SDK71_.

(Ken Takata, closes #5625)
Files: src/GvimExt/Makefile, src/Make_mvc.mak

Patch 8.2.0250
Problem: test_clear_search_pat() is unused.
Solution: Remove the function. (Yegappan Lakshmanan, closes #5624)
Files: runtime/doc/eval.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/proto/regexp.pro,
src/proto/search.pro, src/proto/testing.pro, src/regexp.c,
src/search.c, src/testdir/test_writefile.vim, src/testing.c

Patch 8.2.0251
Problem: A couple of function return types can be more specific.
Solution: Use a better return type. (Ken Takata, closes #5629)

version9.txt — 3510

Files: src/evalfunc.c, src/globals.h

Patch 8.2.0252
Problem: Windows compiler warns for using size_t.
Solution: Change to int. (Mike Williams)
Files: src/vim9compile.c

Patch 8.2.0253
Problem: Crash when using :disassemble without argument. (Dhiraj Mishra)
Solution: Check for missing argument. (Dominique Pellé, closes #5635,

closes #5637)
Files: src/vim9execute.c, src/testdir/test_vim9_disassemble.vim,

src/ex_cmds.h

Patch 8.2.0254
Problem: Compiler warning for checking size_t to be negative.
Solution: Only check for zero. (Zoltan Arpadffy)
Files: src/vim9compile.c

Patch 8.2.0255
Problem: VMS: missing files in build.
Solution: Add the files. (Zoltan Arpadffy)
Files: src/Make_vms.mms

Patch 8.2.0256
Problem: Time and timer related code is spread out.
Solution: Move time and timer related code to a new file. (Yegappan

Lakshmanan, closes #5604)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/evalfunc.c, src/ex_cmds.c, src/ex_cmds2.c, src/main.c,
src/memline.c, src/misc1.c, src/misc2.c, src/proto.h,
src/proto/ex_cmds.pro, src/proto/ex_cmds2.pro, src/proto/main.pro,
src/proto/memline.pro, src/proto/misc1.pro, src/proto/misc2.pro,
src/proto/time.pro, src/time.c

Patch 8.2.0257
Problem: Cannot recognize a terminal in a popup window.
Solution: Add the win_gettype() function.
Files: runtime/doc/eval.txt, src/evalfunc.c, src/evalwindow.c,

src/proto/evalwindow.pro, src/testdir/test_cmdline.vim,
src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_popup_1.dump

Patch 8.2.0258
Problem: ModifyOtherKeys cannot be temporarily disabled.
Solution: Add echoraw() with an example for modifyOtherKeys.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim,
src/testdir/dumps/Test_functions_echoraw.dump

Patch 8.2.0259
Problem: Terminal in popup test sometimes fails.
Solution: Clear the command line.
Files: src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_popup_1.dump

Patch 8.2.0260
Problem: Several lines of code are duplicated.
Solution: Move duplicated code to a function. (Yegappan Lakshmanan,

version9.txt — 3511

closes #5330)
Files: src/option.c, src/os_unix.c, src/os_win32.c, src/proto/term.pro,

src/quickfix.c, src/regexp.c, src/regexp_bt.c, src/regexp_nfa.c,
src/term.c

Patch 8.2.0261
Problem: Some code not covered by tests.
Solution: Add test cases. (Yegappan Lakshmanan, closes #5645)
Files: src/testdir/test_buffer.vim, src/testdir/test_cmdline.vim,

src/testdir/test_exists.vim, src/testdir/test_filechanged.vim,
src/testdir/test_fileformat.vim, src/testdir/test_mapping.vim,
src/testdir/test_marks.vim, src/testdir/test_normal.vim,
src/testdir/test_plus_arg_edit.vim, src/testdir/test_quickfix.vim,
src/testdir/test_tabpage.vim, src/testdir/test_visual.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_writefile.vim

Patch 8.2.0262 (after 8.2.0261)
Problem: Fileformat test fails on MS-Windows.
Solution: Set fileformat of buffer.
Files: src/testdir/test_fileformat.vim

Patch 8.2.0263
Problem: A few new Vim9 messages are not localized.
Solution: Add the gettext wrapper. (Dominique Pellé, closes #5647)
Files: src/vim9compile.c, src/vim9execute.c

Patch 8.2.0264 (after 8.2.0262)
Problem: Fileformat test still fails on MS-Windows.
Solution: Set fileformat of buffer in the right place.
Files: src/testdir/test_fileformat.vim

Patch 8.2.0265
Problem: "eval" after "if 0" doesn't check for following command.
Solution: Add "eval" to list of commands that check for a following command.

(closes #5640)
Files: src/ex_docmd.c, src/testdir/test_expr.vim

Patch 8.2.0266
Problem: Terminal in popup test sometimes fails on Mac.
Solution: Add a short delay.
Files: src/testdir/test_terminal.vim

Patch 8.2.0267
Problem: No check for a following command when calling a function fails.
Solution: Also check for a following command when inside a try block.

(closes #5642)
Files: src/userfunc.c, src/testdir/test_user_func.vim

Patch 8.2.0268 (after 8.2.0267)
Problem: Trycatch test fails.
Solution: When calling function fails only check for following command, do

not give another error.
Files: src/userfunc.c

Patch 8.2.0269
Problem: Vim9: operator after list index does not work. (Yasuhiro

Matsumoto)
Solution: After indexing a list change the type to the list member type.

(closes #5651)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

version9.txt — 3512

Patch 8.2.0270
Problem: Some code not covered by tests.
Solution: Add test cases. (Yegappan Lakshmanan, closes #5649)
Files: src/testdir/test_autocmd.vim, src/testdir/test_buffer.vim,

src/testdir/test_edit.vim, src/testdir/test_ex_mode.vim,
src/testdir/test_excmd.vim, src/testdir/test_expand.vim,
src/testdir/test_filetype.vim, src/testdir/test_findfile.vim,
src/testdir/test_join.vim, src/testdir/test_move.vim,
src/testdir/test_normal.vim, src/testdir/test_registers.vim,
src/testdir/test_source.vim, src/testdir/test_tabpage.vim,
src/testdir/test_tagjump.vim, src/testdir/test_vimscript.vim,
src/testdir/test_visual.vim, src/testdir/test_window_cmd.vim,
src/testdir/test_writefile.vim

Patch 8.2.0271
Problem: The "num64" feature is available everywhere and building without

it causes problems.
Solution: Graduate the "num64" feature. (James McCoy, closes #5650)
Files: src/evalfunc.c, src/feature.h, src/message.c, src/structs.h,

src/testdir/test_expr.vim, src/testdir/test_largefile.vim,
src/testdir/test_sort.vim, src/testdir/test_vimscript.vim,
src/version.c

Patch 8.2.0272
Problem: ":helptags ALL" gives error for directories without write

permission. (Matěj Cepl)
Solution: Ignore errors for ":helptags ALL". (Ken Takata, closes #5026,

closes #5652)
Files: src/ex_cmds.c, src/testdir/test_help.vim

Patch 8.2.0273
Problem: MS-Windows uninstall may delete wrong batch file.
Solution: Add specific marker in the generated batch file. (Ken Takata,

closes #5654)
Files: src/Make_mvc.mak, src/dosinst.c, src/dosinst.h, src/uninstall.c

Patch 8.2.0274
Problem: Hang with combination of feedkeys(), Ex mode and :global.

(Yegappan Lakshmanan)
Solution: Add the pending_exmode_active flag.
Files: src/ex_docmd.c, src/globals.h, src/getchar.c,

src/testdir/test_ex_mode.vim

Patch 8.2.0275
Problem: Some Ex code not covered by tests.
Solution: Add test cases. (Yegappan Lakshmanan, closes #5659)
Files: src/testdir/test_arglist.vim, src/testdir/test_autocmd.vim,

src/testdir/test_excmd.vim, src/testdir/test_quickfix.vim,
src/testdir/test_search.vim, src/testdir/test_swap.vim,
src/testdir/test_window_cmd.vim

Patch 8.2.0276
Problem: Vim9: not allowing space before ")" in function call is too

restrictive. (Ben Jackson)
Solution: Skip space before the ")". Adjust other space checks.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0277
Problem: Vim9: not all instructions covered by tests.

version9.txt — 3513

Solution: Add more test cases.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.0278
Problem: Channel test is flaky on Mac.
Solution: Reset variable before sending message.
Files: src/testdir/test_channel.vim

Patch 8.2.0279
Problem: Vim9: no test for deleted :def function.
Solution: Add a test. Clear uf_cleared flag when redefining a function.
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.0280
Problem: Vim9: throw in :def function not caught higher up.
Solution: Set "need_rethrow".
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.0281
Problem: Two placed signs in the same line are not combined. E.g. in the

terminal debugger a breakpoint and the PC cannot be both be
displayed.

Solution: Combine the sign column and line highlight attributes.
Files: src/sign.c, src/testdir/test_signs.vim,

src/testdir/dumps/Test_sign_cursor_3.dump,
src/testdir/dumps/Test_sign_cursor_4.dump

Patch 8.2.0282
Problem: Vim9: setting number option not tested.
Solution: Add more tests. Fix assigning to global variable.
Files: src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim,

src/vim9execute.c

Patch 8.2.0283
Problem: Vim9: failing to load script var not tested.
Solution: Add more tests. Fix using s: in old script.
Files: src/testdir/test_vim9_expr.vim, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0284
Problem: Vim9: assignment test fails.
Solution: Avoid duplicating "s:".
Files: src/vim9compile.c

Patch 8.2.0285
Problem: Unused error message. Cannot create s:var.
Solution: Remove the error message. Make assignment to s:var work.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0286
Problem: Cannot use popup_close() for a terminal popup.
Solution: Allow using popup_close(). (closes #5666)
Files: src/popupwin.c, runtime/doc/popup.txt,

src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_popup_5.dump,
src/testdir/dumps/Test_terminal_popup_6.dump

Patch 8.2.0287
Problem: Vim9: return in try block not tested; catch with pattern not

version9.txt — 3514

tested.
Solution: Add tests. Make it work.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.0288
Problem: Vim9: some float and blob operators not tested.
Solution: Add float and blob tests. Fix addition.
Files: src/testdir/test_vim9_expr.vim, src/vim9compile.c

Patch 8.2.0289
Problem: Vim9: :echo did not clear the rest of the line.
Solution: Call msg_clr_eos(). (Ken Takata, closes #5668)
Files: src/vim9execute.c

Patch 8.2.0290
Problem: Running individual test differs from all tests.
Solution: Pass on environment variables. (Yee Cheng Chin, closes #5672)
Files: src/testdir/Makefile, src/testdir/README.txt

Patch 8.2.0291
Problem: Vim9: assigning [] to list<string> doesn't work.
Solution: Use void for empty list and dict. (Ken Takata, closes #5669)
Files: src/vim9compile.c, src/globals.h, src/testdir/test_vim9_script.vim

Patch 8.2.0292
Problem: Vim9: CHECKNR and CHECKTYPE instructions not tested.
Solution: Add tests.
Files: src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim

Patch 8.2.0293
Problem: Various Ex commands not sufficiently tested.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #5673)
Files: src/testdir/test_arglist.vim, src/testdir/test_cmdline.vim,

src/testdir/test_ex_mode.vim, src/testdir/test_excmd.vim,
src/testdir/test_expand.vim, src/testdir/test_filetype.vim,
src/testdir/test_filter_cmd.vim, src/testdir/test_global.vim,
src/testdir/test_normal.vim, src/testdir/test_plus_arg_edit.vim,
src/testdir/test_quickfix.vim, src/testdir/test_trycatch.vim,
src/testdir/test_vimscript.vim

Patch 8.2.0294
Problem: Cannot use Ex command that is also a function name.
Solution: Recognize an Ex command by a colon prefix.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

runtime/doc/vim9.txt

Patch 8.2.0295
Problem: Highlighting for :s wrong when using different separator.
Solution: Use separate argument for search direction and separator. (Rob

Pilling, closes #5665)
Files: src/ex_docmd.c, src/ex_getln.c, src/gui.c, src/normal.c,

src/proto/search.pro, src/quickfix.c, src/search.c, src/spell.c,
src/tag.c, src/testdir/dumps/Test_incsearch_substitute_15.dump,
src/testdir/test_search.vim

Patch 8.2.0296
Problem: Mixing up "long long" and __int64 may cause problems. (John

Marriott)
Solution: Pass varnumber_T to vim_snprintf(). Add v:numbersize.
Files: src/message.c, src/eval.c, src/fileio.c, src/json.c, src/ops.c,

version9.txt — 3515

src/vim.h, src/structs.h, src/evalvars.c, runtime/doc/eval.txt,
runtime/doc/various.txt, src/testdir/test_eval_stuff.vim

Patch 8.2.0297
Problem: Compiler warnings for the Ruby interface.
Solution: Undefine a few macros, fix initialization. (Ozaki Kiichi,

closes #5677)
Files: src/if_ruby.c

Patch 8.2.0298
Problem: Vim9 script: cannot start command with a string constant.
Solution: Recognize expression starting with '('.
Files: src/ex_docmd.c, src/vim9compile.c,

src/testdir/test_vim9_script.vim, runtime/doc/vim9.txt

Patch 8.2.0299
Problem: Vim9: ISN_STORE with argument not tested. Some cases in tv2bool()

not tested.
Solution: Add tests. Add test_unknown() and test_void().
Files: src/testing.c, src/proto/testing.pro, src/evalfunc.c,

src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, runtime/doc/eval.txt,
runtime/doc/testing.txt

Patch 8.2.0300
Problem: Vim9: expression test fails without channel support.
Solution: Add has('channel') check.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.0301
Problem: Insufficient testing for exception handling and the "attention"

prompt.
Solution: Add test cases. (Yegappan Lakshmanan, closes #5681)
Files: src/testdir/test_swap.vim, src/testdir/test_trycatch.vim

Patch 8.2.0302
Problem: Setting 'term' may cause error in TermChanged autocommand.
Solution: Use aucmd_prepbuf() to switch to the buffer where the autocommand

is to be executed. (closes #5682)
Files: src/term.c, src/testdir/test_autocmd.vim

Patch 8.2.0303
Problem: TermChanged test fails in the GUI.
Solution: Skip the test when running the GUI.
Files: src/testdir/test_autocmd.vim

Patch 8.2.0304
Problem: Terminal test if failing on some systems.
Solution: Wait for the job to finish. (James McCoy)
Files: src/testdir/test_terminal.vim

Patch 8.2.0305
Problem: Relativenumber test fails on some systems. (James McCoy)
Solution: Clear the command line.
Files: src/testdir/test_number.vim,

src/testdir/dumps/Test_relnr_colors_2.dump,
src/testdir/dumps/Test_relnr_colors_3.dump

Patch 8.2.0306
Problem: Vim9: :substitute(pat(repl does not work in Vim9 script.

version9.txt — 3516

Solution: Remember starting with a colon. (closes #5676)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.0307
Problem: Python 3 vim.eval not well tested.
Solution: Add a test. (Dominique Pellé, closes #5680)
Files: src/testdir/test_python3.vim

Patch 8.2.0308
Problem: 'showbreak' does not work for a very long line. (John Little)
Solution: Check whether 'briopt' contains "sbr". (Ken Takata, closes #5523,

closes #5684)
Files: src/drawline.c, src/testdir/test_breakindent.vim

Patch 8.2.0309
Problem: Window-local values have confusing name.
Solution: Rename w_p_bri* to w_briopt_*.
Files: src/structs.h, src/indent.c, src/drawline.c

Patch 8.2.0310
Problem: Autocmd test fails on a slow system.
Solution: Adjust the expectations. (James McCoy, closes #5685)
Files: src/testdir/test_autocmd.vim

Patch 8.2.0311
Problem: Vim9: insufficient script tests.
Solution: Add tests. Free imports when re-using a script.
Files: src/testdir/test_vim9_script.vim, src/scriptfile.c

Patch 8.2.0312
Problem: Vim9: insufficient script tests.
Solution: Add more tests. Make "import * as Name" work.
Files: src/testdir/test_vim9_script.vim, src/vim9script.c,

src/proto/vim9script.pro, src/vim9compile.c

Patch 8.2.0313
Problem: Vim9: insufficient script tests.
Solution: Add tests. Make import of alphanumeric name work.
Files: src/testdir/test_vim9_script.vim, src/vim9script.c

Patch 8.2.0314
Problem: Short name not set for terminal buffer.
Solution: Set the short name. (closes #5687)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.0315
Problem: Build failure on HP-UX system.
Solution: Use LONG_LONG_MIN instead of LLONG_MIN. Add type casts for switch

statement. (John Marriott)
Files: src/structs.h, src/json.c

Patch 8.2.0316
Problem: ex_getln.c code has insufficient test coverage.
Solution: Add more tests. Fix a problem. (Yegappan Lakshmanan, closes #5693)
Files: src/cmdhist.c, src/testdir/test_cmdline.vim,

src/testdir/test_functions.vim, src/testdir/test_history.vim,
src/testdir/test_menu.vim

Patch 8.2.0317
Problem: MSVC: _CRT_SECURE_NO_DEPRECATE not defined on DEBUG build.

version9.txt — 3517

Solution: Move where CFLAGS is updated. (Ken Takata, closes #5692)
Files: src/Make_mvc.mak

Patch 8.2.0318
Problem: Vim9: types not sufficiently tested.
Solution: Add tests with more types.
Files: src/globals.h, src/vim9compile.c,

src/testdir/test_vim9_script.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.0319
Problem: File missing in distribution, comments outdated.
Solution: Correct path of README file. Update comments.
Files: Filelist, src/evalvars.c, src/register.c, src/if_python3.c

Patch 8.2.0320
Problem: No Haiku support.
Solution: Add support for Haiku. (Emir Sarı, closes #5605)
Files: Filelist, runtime/doc/Makefile, runtime/doc/eval.txt,

runtime/doc/gui.txt, runtime/doc/help.txt,
runtime/doc/options.txt, runtime/doc/os_haiku.txt,
runtime/doc/starting.txt, runtime/doc/tags,
runtime/gvimrc_example.vim, runtime/vimrc_example.vim,
src/INSTALL, src/Makefile, src/auto/configure, src/configure.ac,
src/evalfunc.c, src/feature.h, src/fileio.c, src/globals.h,
src/gui.c, src/gui.h, src/gui_haiku.cc, src/gui_haiku.h,
src/mbyte.c, src/menu.c, src/misc1.c, src/mouse.c, src/option.h,
src/os_haiku.h, src/os_haiku.rdef, src/os_unix.c, src/os_unix.h,
src/osdef1.h.in, src/proto.h, src/proto/gui_haiku.pro, src/pty.c,
src/screen.c, src/structs.h, src/term.c, src/version.c, src/vim.h

Patch 8.2.0321
Problem: Vim9: ":execute" does not work yet.
Solution: Add ISN_EXECUTE. (closes #5699) Also make :echo work with more

than one argument.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.0322
Problem: Vim9: error checks not tested.
Solution: Add more test cases. Avoid error for function loaded later.
Files: src/vim9compile.c, src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.0323
Problem: Vim9: calling a function that is defined later is slow.
Solution: Once the function is found update the instruction so it can be

called directly.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.0324
Problem: Text property not updated correctly when inserting/deleting.
Solution: Use the right column when deleting. Make zero-width text

properties respect start_incl and end_incl. (Axel Forsman,
closes #5696, closes #5679)

Files: src/change.c, src/textprop.c, src/testdir/test_listener.vim,
src/testdir/test_textprop.vim

Patch 8.2.0325
Problem: Ex_getln.c code not covered by tests.

version9.txt — 3518

Solution: Add a few more tests. (Yegappan Lakshmanan, closes #5702)
Files: src/testdir/test_cmdline.vim, src/testdir/test_ex_mode.vim,

src/testdir/test_functions.vim, src/testdir/test_history.vim,
src/testdir/test_options.vim

Patch 8.2.0326
Problem: Compiler warning for using uninitialized variable. (Yegappan

Lakshmanan)
Solution: Do not jump to failed but return.
Files: src/vim9execute.c

Patch 8.2.0327
Problem: Crash when opening and closing two popup terminal windows.
Solution: Check that prevwin is valid. (closes #5707)
Files: src/popupwin.c, src/testdir/test_terminal.vim

Patch 8.2.0328
Problem: No redraw when leaving terminal-normal mode in a terminal popup

window.
Solution: Redraw the popup window. (closes #5708)
Files: src/macros.h, src/vim.h, src/terminal.c, src/drawscreen.c,

src/move.c, src/popupwin.c, src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_popup_7.dump,
src/testdir/dumps/Test_terminal_popup_8.dump

Patch 8.2.0329
Problem: Popup filter converts 0x80 bytes.
Solution: Keep 0x80 bytes as-is. (Ozaki Kiichi, closes #5706)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.0330
Problem: Build error with popup window but without terminal.
Solution: Add #ifdef.
Files: src/popupwin.c

Patch 8.2.0331
Problem: Internal error when using test_void() and test_unknown().

(Dominique Pellé)
Solution: Give a normal error.
Files: src/evalfunc.c, src/testdir/test_functions.vim,

src/testdir/test_vimscript.vim

Patch 8.2.0332
Problem: Some code in ex_getln.c not covered by tests.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #5710)
Files: src/testdir/test_arabic.vim, src/testdir/test_cmdline.vim

Patch 8.2.0333
Problem: Terminal in popup test is flaky.
Solution: Make sure redraw is done before opening the popup.
Files: src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_popup_1.dump

Patch 8.2.0334
Problem: Abort called when using test_void(). (Dominique Pellé)
Solution: Only give an error, don't abort.
Files: src/message.c, src/proto/message.pro, src/evalfunc.c,

src/eval.c, src/json.c, src/testdir/test_functions.vim

Patch 8.2.0335

version9.txt — 3519

Problem: No completion for :disassemble.
Solution: Make completion work. Also complete script-local functions if the

name starts with "s:".
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim,

runtime/doc/vim9.txt

Patch 8.2.0336
Problem: Vim9: insufficient test coverage for compiling.
Solution: Add more tests.
Files: src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim,

src/vim9.h, src/vim9compile.c, src/vim9execute.c

Patch 8.2.0337
Problem: Build fails on a few systems.
Solution: Use vim_snprintf() instead of snprintf().
Files: src/cmdexpand.c

Patch 8.2.0338
Problem: Build failure without the channel feature.
Solution: Add #ifdef
Files: src/vim9compile.c

Patch 8.2.0339
Problem: Vim9: function return type may depend on arguments.
Solution: Instead of a fixed return type use a function to figure out the

return type.
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/vim9compile.c,

src/evalbuffer.c, src/proto/evalbuffer.pro,
src/testdir/test_vim9_script.vim

Patch 8.2.0340
Problem: Vim9: function and partial types not tested.
Solution: Support more for partial, add tests.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0341
Problem: Using ":for" in Vim9 script gives an error.
Solution: Pass the LET_NO_COMMAND flag. (closes #5715)
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.0342
Problem: Some code in ex_getln.c not covered by tests.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5717)
Files: src/testdir/test_cmdline.vim, src/testdir/test_ex_mode.vim,

src/testdir/test_history.vim, src/testdir/test_iminsert.vim

Patch 8.2.0343
Problem: Vim9: using wrong instruction, limited test coverage.
Solution: Use ISN_PUSHJOB. Add a few more tests.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0344
Problem: ":def" not skipped properly.
Solution: Add CMD_def to list of commands the require evaluation even when

not being executed.
Files: src/ex_docmd.c

version9.txt — 3520

Patch 8.2.0345
Problem: Compiler warning when building without the float feature.
Solution: Add #ifdef. (John Marriott)
Files: src/evalfunc.c

Patch 8.2.0346
Problem: Vim9: finding common list type not tested.
Solution: Add more tests. Fix listing function. Fix overwriting type.
Files: src/vim9compile.c, src/userfunc.c,

src/testdir/test_vim9_script.vim, src/testdir/runtest.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0347
Problem: Various code not covered by tests.
Solution: Add more test coverage. (Yegappan Lakshmanan, closes #5720)
Files: src/testdir/gen_opt_test.vim, src/testdir/test86.in,

src/testdir/test_cmdline.vim, src/testdir/test_digraph.vim,
src/testdir/test_ex_mode.vim, src/testdir/test_history.vim

Patch 8.2.0348
Problem: Vim9: not all code tested.
Solution: Add a few more tests. fix using "b:" in literal dictionary.
Files: src/testdir/test_vim9_expr.vim, src/vim9compile.c,

src/proto/vim9compile.pro, src/testdir/test_vim9_script.vim

Patch 8.2.0349
Problem: Vim9: constant expression not well tested.
Solution: Add tests for "if" with constant expression.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0350
Problem: Vim9: expression tests don't use recognized constants.
Solution: Recognize "true" and "false" as constants. Make skipping work for

assignment and expression evaluation.
Files: src/vim9compile.c

Patch 8.2.0351
Problem: Terminal in popup test is still a bit flaky.
Solution: Clear and redraw before opening the popup.
Files: src/testdir/test_terminal.vim

Patch 8.2.0352
Problem: FreeBSD: test for sourcing utf-8 is skipped.
Solution: Run the matchadd_conceal test separately to avoid that setting

'term' to "ansi" causes problems for other tests. (Ozaki Kiichi,
closes #5721)

Files: src/testdir/Make_all.mak, src/testdir/test_alot_utf8.vim,
src/testdir/test_source_utf8.vim

Patch 8.2.0353
Problem: Vim9: while loop not tested.
Solution: Add test with "while", "break" and "continue"
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0354
Problem: Python 3.9 does not define _Py_DEC_REFTOTAL. (Zdenek Dohnal)
Solution: Remove it, it was only for debugging.
Files: src/if_python3.c

Patch 8.2.0355

version9.txt — 3521

Problem: Vim9: str_val is confusing, it's a number
Solution: Rename to stnr_val.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c

Patch 8.2.0356
Problem: MS-Windows: feedkeys() with VIMDLL cannot handle CSI correctly.
Solution: Modify mch_inchar() to encode CSI bytes. (Ozaki Kiichi, Ken

Takata, closes #5726)
Files: src/getchar.c, src/os_win32.c, src/testdir/test_popupwin.vim

Patch 8.2.0357
Problem: Cannot delete a text property matching both id and type. (Axel

Forsman)
Solution: Add the "both" argument.
Files: src/textprop.c, runtime/doc/textprop.txt,

src/testdir/test_textprop.vim

Patch 8.2.0358
Problem: Insufficient testing for indent.c.
Solution: Add indent tests. (Yegappan Lakshmanan, closes #5736)
Files: src/testdir/Make_all.mak, src/testdir/test_ex_mode.vim,

src/testdir/test_expand_func.vim, src/testdir/test_indent.vim,
src/testdir/test_lispwords.vim, src/testdir/test_smartindent.vim,
src/testdir/test_vartabs.vim

Patch 8.2.0359
Problem: popup_atcursor() may hang. (Yasuhiro Matsumoto)
Solution: Take the decoration into account. (closes #5728)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.0360
Problem: Yaml files are only recognized by the file extension.
Solution: Check for a line starting with "%YAML". (Jason Franklin)
Files: runtime/scripts.vim, src/testdir/test_filetype.vim

Patch 8.2.0361
Problem: Internal error when using "0" for a callback.
Solution: Give a normal error. (closes #5743)
Files: src/evalvars.c, src/testdir/test_timers.vim

Patch 8.2.0362
Problem: MS-Windows: channel test fails if grep is not available.
Solution: Use another command. (Ken Takata, closes #5739)
Files: src/testdir/test_channel.vim

Patch 8.2.0363
Problem: Some Normal mode commands not tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5746)
Files: src/testdir/test_cindent.vim, src/testdir/test_cmdline.vim,

src/testdir/test_edit.vim, src/testdir/test_indent.vim,
src/testdir/test_normal.vim, src/testdir/test_prompt_buffer.vim,
src/testdir/test_virtualedit.vim, src/testdir/test_visual.vim

Patch 8.2.0364
Problem: Printf test failing on Haiku.
Solution: Make a difference between int and short. (Dominique Pellé,

closes #5749)
Files: src/message.c

Patch 8.2.0365

version9.txt — 3522

Problem: Tag kind can't be a multibyte character. (Marcin Szamotulski)
Solution: Recognize multibyte character. (closes #5724)
Files: src/tag.c, src/testdir/test_taglist.vim

Patch 8.2.0366
Problem: Hardcopy command not tested enough.
Solution: Add tests for printing. (Dominique Pellé, closes #5748)
Files: src/testdir/test_hardcopy.vim

Patch 8.2.0367
Problem: Can use :pedit in a popup window.
Solution: Disallow it.
Files: src/ex_docmd.c, src/testdir/test_popupwin.vim

Patch 8.2.0368
Problem: Vim9: import that redefines local variable does not fail.
Solution: Check for already defined symbols.
Files: src/vim9script.c, src/proto/vim9script.pro, src/vim9compile.c,

src/proto/vim9compile.pro, src/testdir/test_vim9_script.vim

Patch 8.2.0369
Problem: Various Normal mode commands not fully tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5751)
Files: src/testdir/test_arglist.vim, src/testdir/test_changelist.vim,

src/testdir/test_charsearch.vim, src/testdir/test_cmdline.vim,
src/testdir/test_edit.vim, src/testdir/test_ex_mode.vim,
src/testdir/test_excmd.vim, src/testdir/test_gf.vim,
src/testdir/test_iminsert.vim, src/testdir/test_increment.vim,
src/testdir/test_marks.vim, src/testdir/test_normal.vim,
src/testdir/test_prompt_buffer.vim, src/testdir/test_put.vim,
src/testdir/test_registers.vim, src/testdir/test_tagjump.vim,
src/testdir/test_visual.vim

Patch 8.2.0370
Problem: The typebuf_was_filled flag is sometimes not reset, which may

cause a hang.
Solution: Make sure typebuf_was_filled is reset when the typeahead buffer is

empty.
Files: src/edit.c, src/getchar.c,

Patch 8.2.0371
Problem: Crash with combination of terminal popup and autocmd.
Solution: Disallow closing a popup that is the current window. Add a check

that the current buffer is valid. (closes #5754)
Files: src/macros.h, src/buffer.c, src/popupwin.c, src/terminal.c,

src/testdir/test_terminal.vim

Patch 8.2.0372
Problem: Prop_find() may not find text property at start of the line.
Solution: Adjust the loop to find properties. (Axel Forsman, closes #5761,

closes #5663)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.0373
Problem: Type of term_sendkeys() is unknown.
Solution: Just return zero. (closes #5762)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.0374
Problem: Using wrong printf directive for jump location.

version9.txt — 3523

Solution: Change "%lld" to "%d". (James McCoy, closes #5773)
Files: src/vim9execute.c

Patch 8.2.0375
Problem: Coverity warning for not using return value.
Solution: Move error message to separate function.
Files: src/popupwin.c

Patch 8.2.0376
Problem: Nasty callback test fails on some systems.
Solution: Increase the sleep time.
Files: src/testdir/test_terminal.vim

Patch 8.2.0377
Problem: No CI test for a big-endian system.
Solution: Test with s390x. (James McCoy, closes #5772)
Files: .travis.yml

Patch 8.2.0378
Problem: prop_find() does not find all props.
Solution: Check being in the start line. (Axel Forsman, closes #5776)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.0379
Problem: Gcc warns for ambiguous else.
Solution: Add braces. (Dominique Pellé, closes #5778)
Files: src/textprop.c

Patch 8.2.0380
Problem: Tiny popup when creating a terminal popup without minwidth.
Solution: Use a default minimum size of 5 lines of 20 characters.
Files: src/popupwin.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_popup_m1.dump

Patch 8.2.0381
Problem: Using freed memory with :lvimgrep and autocommand. (extracted from

POC by Dominique Pellé)
Solution: Avoid deleting a dummy buffer used in a window. (closes #5777)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.0382
Problem: Some tests fail when run under valgrind.
Solution: Increase timeouts.
Files: src/testdir/test_autocmd.vim, src/testdir/test_debugger.vim,

src/testdir/test_channel.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_popup_1.dump,
src/testdir/dumps/Test_terminal_popup_2.dump,
src/testdir/dumps/Test_terminal_popup_3.dump,
src/testdir/dumps/Test_terminal_popup_5.dump,
src/testdir/dumps/Test_terminal_popup_6.dump,
src/testdir/dumps/Test_terminal_popup_7.dump,
src/testdir/dumps/Test_terminal_popup_8.dump,
src/testdir/dumps/Test_terminal_popup_m1.dump

Patch 8.2.0383
Problem: Wrong feature check causes test not to be run.
Solution: Use CheckFunction instead of CheckFeature. (Ozaki Kiichi,

closes #5781)
Files: src/testdir/test_channel.vim

version9.txt — 3524

Patch 8.2.0384
Problem: Travis CI has warnings.
Solution: Avoid warnings, clean up the config. (Ozaki Kiichi, closes #5779)
Files: .travis.yml

Patch 8.2.0385
Problem: Menu functionality insufficiently tested.
Solution: Add tests. Add menu_info(). (Yegappan Lakshmanan, closes #5760)
Files: runtime/doc/eval.txt, runtime/doc/gui.txt, runtime/doc/usr_41.txt,

src/evalfunc.c, src/menu.c, src/proto/menu.pro,
src/testdir/test_menu.vim, src/testdir/test_popup.vim,
src/testdir/test_termcodes.vim

Patch 8.2.0386 (after 8.2.0385)
Problem: Part from unfinished patch got included.
Solution: Undo that part.
Files: src/evalfunc.c

Patch 8.2.0387
Problem: Error for possible NULL argument to qsort().
Solution: Don't call qsort() when there is nothing to sort. (Dominique

Pellé, closes #5780)
Files: src/spellsuggest.c

Patch 8.2.0388
Problem: Printmbcharset option not tested.
Solution: Add a test. Enable PostScript for AppVeyor build. (Dominique

Pellé, closes #5783)
Files: appveyor.yml, src/testdir/test_hardcopy.vim

Patch 8.2.0389
Problem: Delayed redraw when shifting text from Insert mode.
Solution: Use msg_attr_keep() instead of msg(). (closes #5782)
Files: src/ops.c

Patch 8.2.0390
Problem: Terminal postponed scrollback test is flaky.
Solution: Add delay in between sending keys. Rename dump files.
Files: src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_01.dump,
src/testdir/dumps/Test_terminal_02.dump,
src/testdir/dumps/Test_terminal_03.dump,
src/testdir/dumps/Test_terminal_scrollback_1.dump,
src/testdir/dumps/Test_terminal_scrollback_2.dump,
src/testdir/dumps/Test_terminal_scrollback_3.dump

Patch 8.2.0391 (after 8.2.0377)
Problem: CI test coverage dropped.
Solution: Set $DISPLAY also for non-GUI builds. (James McCoy, closes #5788)
Files: .travis.yml

Patch 8.2.0392
Problem: Coverity warns for using array index out of range.
Solution: Add extra "if" to avoid warning.
Files: src/menu.c

Patch 8.2.0393
Problem: Coverity warns for not using return value.
Solution: Add (void).

version9.txt — 3525

Files: src/popupmenu.c

Patch 8.2.0394
Problem: Coverity complains about using NULL pointer.
Solution: Use empty string when option value is NULL.
Files: src/optionstr.c

Patch 8.2.0395
Problem: Build fails with FEAT_EVAL but without FEAT_MENU.
Solution: Add #ifdef. (John Marriott)
Files: src/evalfunc.c

Patch 8.2.0396
Problem: Cmdexpand.c insufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5789)
Files: src/testdir/test_cmdline.vim, src/testdir/test_taglist.vim,

src/testdir/test_terminal.vim, src/testdir/test_usercommands.vim

Patch 8.2.0397
Problem: Delayed screen update when using undo from Insert mode.
Solution: Update w_topline and cursor shape before sleeping. (closes #5790)
Files: src/normal.c

Patch 8.2.0398
Problem: Profile test fails when two functions take same time.
Solution: Add a short sleep in once function. (closes #5797)
Files: src/testdir/test_profile.vim

Patch 8.2.0399
Problem: Various memory leaks.
Solution: Avoid the leaks. (Ozaki Kiichi, closes #5803)
Files: src/ex_docmd.c, src/ex_getln.c, src/menu.c, src/message.c,

src/scriptfile.c, src/userfunc.c

Patch 8.2.0400
Problem: Not all tests using a terminal are in the list of flaky tests.
Solution: Introduce the test_is_flaky flag.
Files: src/testdir/runtest.vim, src/testdir/term_util.vim,

src/testdir/screendump.vim, src/testdir/test_autocmd.vim

Patch 8.2.0401
Problem: Not enough test coverage for evalvars.c.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5804)
Files: src/testdir/test_cmdline.vim, src/testdir/test_const.vim,

src/testdir/test_diffmode.vim, src/testdir/test_excmd.vim,
src/testdir/test_functions.vim, src/testdir/test_let.vim,
src/testdir/test_listdict.vim, src/testdir/test_spell.vim,
src/testdir/test_unlet.vim, src/testdir/test_user_func.vim,
src/testdir/test_vimscript.vim

Patch 8.2.0402 (after 8.2.0401)
Problem: Setting local instead of global flag.
Solution: Prepend "g:" to "test_is_flaky".
Files: src/testdir/term_util.vim, src/testdir/screendump.vim,

src/testdir/test_autocmd.vim

Patch 8.2.0403
Problem: When 'buftype' is "nofile" there is no overwrite check.
Solution: Also check for existing file when 'buftype' is set.

(closes #5807)

version9.txt — 3526

Files: src/ex_cmds.c, src/testdir/test_options.vim

Patch 8.2.0404
Problem: Writefile() error does not give a hint.
Solution: Add remark about first argument.
Files: src/filepath.c, src/testdir/test_writefile.vim

Patch 8.2.0405
Problem: MSVC: build fails with some combination of features.
Solution: Enable CHANNEL if TERMINAL is enabled. (Mike Williams)
Files: src/Make_mvc.mak

Patch 8.2.0406
Problem: FileReadCmd event not well tested.
Solution: Add a test.
Files: src/testdir/test_autocmd.vim

Patch 8.2.0407
Problem: No early check if :find and :sfind have an argument.
Solution: Add EX_NEEDARG.
Files: src/ex_cmds.h, src/testdir/test_findfile.vim,

src/testdir/test_find_complete.vim

Patch 8.2.0408
Problem: Delete() commented out for testing.
Solution: Undo commenting-out.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.0409
Problem: Search test leaves file behind.
Solution: Delete the file. Also use Check commands.
Files: src/testdir/test_search.vim

Patch 8.2.0410
Problem: Channel test fails too often on slow Mac.
Solution: Increase waiting time to 10 seconds.
Files: src/testdir/test_channel.vim

Patch 8.2.0411
Problem: Mac: breakcheck is using a value from the stone ages.
Solution: Delete BREAKCHECK_SKIP from the Mac header file. (Ben Jackson)
Files: src/os_mac.h

Patch 8.2.0412
Problem: MS-Windows: cannot use vimtutor from the start menu.
Solution: Better check for writable directory. Use the right path for the

executable. (Wu Yongwei, closes #5774, closes #5756)
Files: vimtutor.bat

Patch 8.2.0413
Problem: Buffer menu does not handle special buffers properly.
Solution: Keep a dictionary with buffer names to reliably keep track of

entries.
Also trigger BufFilePre and BufFilePost for command-line and
terminal buffers when the name changes.

Files: src/testdir/test_alot.vim, src/testdir/Make_all.mak,
runtime/menu.vim, src/ex_getln.c, src/terminal.c,
src/testdir/test_menu.vim

Patch 8.2.0414

version9.txt — 3527

Problem: Channel connect_waittime() test is flaky.
Solution: Set the test_is_flaky flag. Use test_is_flaky for more tests.
Files: src/testdir/test_channel.vim, src/testdir/test_terminal.vim,

src/testdir/runtest.vim

Patch 8.2.0415
Problem: Bsdl filetype is not detected.
Solution: Add an entry in the filetype list. (Daniel Kho, closes #5810)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0416
Problem: Test leaves file behind.
Solution: Delete the file.
Files: src/testdir/test_indent.vim

Patch 8.2.0417
Problem: Travis CI config can be improved.
Solution: Remove COVERAGE variable. Add load-snd-dummy script. add "-i NONE"

to avoid messages about viminfo. (Ozaki Kiichi, closes #5813)
Files: .travis.yml, ci/load-snd-dummy.sh

Patch 8.2.0418
Problem: Code in eval.c not sufficiently covered by tests.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5815)
Files: src/testdir/test_blob.vim, src/testdir/test_channel.vim,

src/testdir/test_cmdline.vim, src/testdir/test_eval_stuff.vim,
src/testdir/test_expr.vim, src/testdir/test_functions.vim,
src/testdir/test_job_fails.vim, src/testdir/test_lambda.vim,
src/testdir/test_let.vim, src/testdir/test_listdict.vim,
src/testdir/test_marks.vim, src/testdir/test_method.vim,
src/testdir/test_normal.vim, src/testdir/test_unlet.vim,
src/testdir/test_usercommands.vim, src/testdir/test_vimscript.vim,
src/testdir/test_window_cmd.vim

Patch 8.2.0419
Problem: Various memory leaks in Vim9 script code.
Solution: Fix the leaks. (Ozaki Kiichi, closes #5814)
Files: src/proto/vim9compile.pro, src/scriptfile.c, src/structs.h,

src/testdir/test_vim9_script.vim, src/vim9.h, src/vim9compile.c,
src/vim9execute.c, src/vim9script.c

Patch 8.2.0420
Problem: Vim9: cannot interrupt a loop with CTRL-C.
Solution: Check for CTRL-C once in a while. Doesn't fully work yet.
Files: src/misc1.c, src/proto/misc1.pro,

src/testdir/test_vim9_script.vim

Patch 8.2.0421
Problem: Interrupting with CTRL-C does not always work.
Solution: Recognize CTRL-C while modifyOtherKeys is set.
Files: src/ui.c, src/testdir/test_vim9_script.vim, src/evalfunc.c

Patch 8.2.0422
Problem: Crash when passing popup window to win_splitmove(). (john Devin)
Solution: Disallow moving a popup window. (closes #5816)
Files: src/testdir/test_popupwin.vim, src/evalwindow.c

Patch 8.2.0423
Problem: In some environments a few tests are expected to fail.
Solution: Add $TEST_MAY_FAIL to list tests that should not cause make to

version9.txt — 3528

fail.
Files: src/testdir/runtest.vim

Patch 8.2.0424
Problem: Checking for wrong return value. (Tom)
Solution: Invert the check and fix the test.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.0425
Problem: Code for modeless selection not sufficiently tested.
Solution: Add tests. Move mouse code functionality to a common script file.

(Yegappan Lakshmanan, closes #5821)
Files: src/testdir/Make_all.mak, src/testdir/gen_opt_test.vim,

src/testdir/mouse.vim, src/testdir/test_edit.vim,
src/testdir/test_global.vim, src/testdir/test_modeless.vim,
src/testdir/test_normal.vim, src/testdir/test_selectmode.vim,
src/testdir/test_termcodes.vim, src/testdir/test_visual.vim,
src/ui.c

Patch 8.2.0426
Problem: Some errors were not tested for.
Solution: Add tests. (Dominique Pellé, closes #5824)
Files: src/testdir/test_buffer.vim, src/testdir/test_options.vim,

src/testdir/test_tcl.vim, src/testdir/test_terminal.vim,
src/testdir/test_window_cmd.vim

Patch 8.2.0427
Problem: It is not possible to check for a typo in a feature name.
Solution: Add an extra argument to has().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/check.vim,

src/testdir/test_functions.vim

Patch 8.2.0428
Problem: Buffer name may leak.
Solution: Free the buffer name before overwriting it.
Files: src/terminal.c

Patch 8.2.0429
Problem: No warning when test checks for option that never exists.
Solution: In tests check that the option can exist.
Files: src/testdir/check.vim

Patch 8.2.0430
Problem: Window creation failure not properly tested.
Solution: Improve the test. (Yegappan Lakshmanan, closes #5826)
Files: src/testdir/test_cmdline.vim, src/testdir/test_window_cmd.vim

Patch 8.2.0431
Problem: Some compilers don't support using \e for Esc. (Yegappan

Lakshmanan)
Solution: use \033 instead.
Files: src/ui.c

Patch 8.2.0432
Problem: A few tests fail in a huge terminal.
Solution: Make the tests pass. (Dominique Pellé, closes #5829)
Files: src/testdir/test_autocmd.vim, src/testdir/test_options.vim,

src/testdir/test_termcodes.vim, src/testdir/test_terminal.vim,
src/testdir/test_window_cmd.vim

version9.txt — 3529

Patch 8.2.0433
Problem: INT signal not properly tested.
Solution: Add a test. Also clean up some unnecessary lines. (Dominique

Pellé, closes #5828)
Files: src/testdir/test_display.vim, src/testdir/test_ex_mode.vim,

src/testdir/test_excmd.vim, src/testdir/test_messages.vim,
src/testdir/test_signals.vim

Patch 8.2.0434
Problem: MS-Windows with VTP: Normal color not working.
Solution: After changing the Normal color update the VTP console color.

(Nobuhiro Takasaki, closes #5836)
Files: src/highlight.c

Patch 8.2.0435
Problem: Channel contents might be freed twice.
Solution: Call either channel_free_channel() or channel_free(), not both.

(Nobuhiro Takasaki, closes #5835)
Files: src/channel.c

Patch 8.2.0436
Problem: No warnings for incorrect printf arguments.
Solution: Fix attribute in declaration. Fix uncovered mistakes. (Dominique

Pellé, closes #5834)
Files: src/proto.h, src/eval.c, src/ops.c, src/spellfile.c,

src/vim9compile.c, src/vim9execute.c, src/viminfo.c, src/gui.c

Patch 8.2.0437
Problem: MS-Windows installer contains old stuff.
Solution: Rely on Windows NT. (Ken Takata, closes #5832)
Files: src/dosinst.c

Patch 8.2.0438
Problem: Terminal noblock test is very flaky on BSD.
Solution: Change WaitFor() to WaitForAssert() to be able to see why it

failed. Add a short wait in between sending keys.
Files: src/testdir/test_terminal.vim

Patch 8.2.0439
Problem: :disassemble has minor flaws.
Solution: Format the code. Use (int) instead of (char) for %c.

(also by James McCoy, closes #5831)
Files: src/vim9execute.c

Patch 8.2.0440
Problem: Terminal noblock test is still very flaky on BSD.
Solution: Increase the waiting time.
Files: src/testdir/test_terminal.vim

Patch 8.2.0441
Problem: Terminal noblock test is still failing on BSD.
Solution: Reduce the amount of text.
Files: src/testdir/test_terminal.vim

Patch 8.2.0442
Problem: Channel contents might be used after being freed.
Solution: Reset the job channel before freeing the channel.
Files: src/channel.c

Patch 8.2.0443

version9.txt — 3530

Problem: Clipboard code is spread out.
Solution: Move clipboard code to its own file. (Yegappan Lakshmanan,

closes #5827)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/clipboard.c, src/ops.c, src/proto.h, src/proto/clipboard.pro,
src/proto/ops.pro, src/proto/register.pro, src/proto/ui.pro,
src/register.c, src/ui.c

Patch 8.2.0444
Problem: Swap file test fails on some systems.
Solution: Preserve the swap file. Send NL terminated keys.
Files: src/testdir/test_swap.vim

Patch 8.2.0445
Problem: Png and xpm files not in MS-Windows zip file.
Solution: Move files to shared between Unix and Windows target.
Files: Filelist

Patch 8.2.0446
Problem: Listener with undo of deleting all lines not tested.
Solution: Add a test.
Files: src/testdir/test_listener.vim

Patch 8.2.0447
Problem: Terminal scroll tests fails on some systems.
Solution: Remove the fixed 100msec wait for Win32. Add a loop to wait until

scrolling has finished. (James McCoy, closes #5842)
Files: src/testdir/test_terminal.vim

Patch 8.2.0448
Problem: Various functions not properly tested.
Solution: Add more tests, especially for failures. (Yegappan Lakshmanan,

closes #5843)
Files: runtime/doc/eval.txt, src/testdir/test_blob.vim,

src/testdir/test_breakindent.vim, src/testdir/test_charsearch.vim,
src/testdir/test_clientserver.vim, src/testdir/test_cmdline.vim,
src/testdir/test_exists.vim, src/testdir/test_expand_func.vim,
src/testdir/test_expr.vim, src/testdir/test_file_perm.vim,
src/testdir/test_functions.vim, src/testdir/test_gui.vim,
src/testdir/test_listdict.vim, src/testdir/test_marks.vim,
src/testdir/test_partial.vim, src/testdir/test_registers.vim,
src/testdir/test_search.vim, src/testdir/test_spell.vim,
src/testdir/test_substitute.vim, src/testdir/test_syn_attr.vim,
src/testdir/test_syntax.vim, src/testdir/test_taglist.vim,
src/testdir/test_utf8.vim, src/testdir/test_vartabs.vim,
src/testdir/test_window_cmd.vim

Patch 8.2.0449
Problem: Vim9: crash if return type is invalid. (Yegappan Lakshmanan)
Solution: Always return some type, not NULL.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0450
Problem: Not enough testing for restricted mode and function calls.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5847)
Files: src/testdir/test_method.vim, src/testdir/test_restricted.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.0451

version9.txt — 3531

Problem: Win32: double-width character displayed incorrectly.
Solution: First move the cursor to the first column. (Nobuhiro Takasaki,

closes #5848)
Files: src/os_win32.c

Patch 8.2.0452
Problem: channel_parse_messages() fails when called recursively.
Solution: Return for a recursive call. (closes #5835)
Files: src/channel.c

Patch 8.2.0453
Problem: Trailing space in job_start() command causes empty argument.
Solution: Ignore trailing space. (closes #5851)
Files: src/misc2.c, src/testdir/test_channel.vim

Patch 8.2.0454
Problem: Some tests fail when the system is slow.
Solution: Make the run number global, use in the test to increase the

waiting time. (closes #5841)
Files: src/testdir/runtest.vim, src/testdir/test_functions.vim

Patch 8.2.0455
Problem: Cannot set the highlight group for a specific terminal.
Solution: Add the "highlight" option to term_start(). (closes #5818)
Files: src/terminal.c, src/structs.h, src/channel.c,

src/testdir/test_terminal.vim, runtime/doc/terminal.txt,
src/testdir/dumps/Test_terminal_popup_Terminal.dump,
src/testdir/dumps/Test_terminal_popup_MyTermCol.dump

Patch 8.2.0456
Problem: Test_confirm_cmd is flaky.
Solution: Add a term_wait() call. (closes #5854)
Files: src/testdir/test_excmd.vim

Patch 8.2.0457
Problem: Test_quotestar() often fails when run under valgrind.
Solution: Wait longer for the GUI to start.
Files: src/testdir/test_quotestar.vim

Patch 8.2.0458
Problem: Missing feature check in test function.
Solution: Add check commands.
Files: src/testdir/test_excmd.vim

Patch 8.2.0459
Problem: Cannot check if a function name is correct.
Solution: Add "?funcname" to exists().
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_exists.vim,

src/testdir/check.vim

Patch 8.2.0460 (after 8.2.0459)
Problem: Build failure because of wrong feature name.
Solution: Correct feature name.
Files: src/evalfunc.c

Patch 8.2.0461
Problem: Confirm test fails on amd64 system. (Alimar Riesebieter)
Solution: Add an extra WaitForAssert(). (Dominique Pellé)
Files: src/testdir/test_excmd.vim

version9.txt — 3532

Patch 8.2.0462
Problem: Previewwindow test fails on some systems. (James McCoy)
Solution: Wait a bit after sending the "o". (closes #5849)
Files: src/testdir/test_popup.vim,

src/testdir/dumps/Test_popup_and_previewwindow_01.dump

Patch 8.2.0463
Problem: Build error without float and channel feature. (John Marriott)
Solution: Define return types always.
Files: src/globals.h, src/evalfunc.c

Patch 8.2.0464
Problem: Typos and other small problems.
Solution: Fix the typos. Add missing files to the distribution.
Files: Filelist, src/buffer.c, src/drawline.c, src/gui_gtk_x11.c,

src/os_unixx.h, src/proto/popupwin.pro

Patch 8.2.0465
Problem: Vim9: dead code and wrong return type.
Solution: Remove dead code. Fix return type. Add more tests.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0466 (after 8.2.0452)
Problem: Not parsing messages recursively breaks the govim plugin.
Solution: When called recursively do handle messages but do not close

channels.
Files: src/channel.c

Patch 8.2.0467
Problem: Vim9: some errors are not tested
Solution: Add more tests. Fix that Vim9 script flag is not reset.
Files: src/vim9compile.c, src/scriptfile.c, src/dict.c,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim

Patch 8.2.0468
Problem: GUI: pixel dust with some fonts and characters.
Solution: Always redraw the character before the cursor. (Nir Lichtman,

closes #5549, closes #5856)
Files: src/gui.c, src/proto/gui.pro, src/screen.c

Patch 8.2.0469
Problem: Vim9: no error for missing] after list.
Solution: Add error message. Add more tests.
Files: src/globals.h, src/list.c, src/userfunc.c,

src/testdir/test_vim9_expr.vim, src/testdir/test_lambda.vim

Patch 8.2.0470
Problem: Test_confirm_cmd_cancel() can fail on a slow system.
Solution: Use WaitForAssert(). (Ozaki Kiichi, closes #5861)
Files: src/testdir/test_excmd.vim

Patch 8.2.0471
Problem: Missing change to compile_list().
Solution: Add error message.
Files: src/vim9compile.c

Patch 8.2.0472
Problem: Terminal highlight name is set twice, leaking memory.
Solution: Delete one.
Files: src/terminal.c

version9.txt — 3533

Patch 8.2.0473
Problem: Variables declared in an outer scope.
Solution: Declare variables only in the scope where they are used.
Files: src/evalvars.c

Patch 8.2.0474 (after 8.2.0403)
Problem: Cannot use :write when using a plugin with BufWriteCmd.
Solution: Reset BF_NOTEDITED after BufWriteCmd. (closes #5807)
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 8.2.0475
Problem: Channel out_cb test still fails sometimes on Mac.
Solution: Use an even longer timeout.
Files: src/testdir/test_channel.vim

Patch 8.2.0476
Problem: Terminal nasty callback test fails sometimes.
Solution: use term_wait() instead of a sleep. (Yee Cheng Chin, closes #5865)
Files: src/testdir/test_terminal.vim

Patch 8.2.0477
Problem: Vim9: error messages not tested.
Solution: Add more tests.
Files: src/testdir/test_vim9_expr.vim, src/vim9execute.c

Patch 8.2.0478
Problem: New buffers are not added to the Buffers menu.
Solution: Turn number into string. (Yee Cheng Chin, closes #5864)
Files: runtime/menu.vim, src/testdir/test_menu.vim

Patch 8.2.0479
Problem: Unloading shared libraries on exit has no purpose.
Solution: Do not unload shared libraries on exit.
Files: src/if_lua.c, src/if_perl.xs, src/if_python.c, src/if_python3.c,

src/if_ruby.c, src/if_tcl.c

Patch 8.2.0480
Problem: Vim9: some code is not tested.
Solution: Add more tests.
Files: src/testdir/test_vim9_expr.vim, src/vim9compile.c

Patch 8.2.0481
Problem: Travis is still using trusty.
Solution: Adjust config to use bionic. (Ozaki Kiichi, closes #5868)
Files: .travis.yml, src/testdir/lsan-suppress.txt

Patch 8.2.0482
Problem: Channel and sandbox code not sufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5855)
Files: src/option.h, src/testdir/test_channel.vim,

src/testdir/test_clientserver.vim, src/testdir/test_cmdline.vim,
src/testdir/test_edit.vim, src/testdir/test_excmd.vim,
src/testdir/test_normal.vim, src/testdir/test_prompt_buffer.vim,
src/testdir/test_restricted.vim, src/testdir/test_smartindent.vim,
src/testdir/test_substitute.vim, src/testdir/test_terminal.vim,
src/testdir/test_textformat.vim, src/testdir/test_visual.vim

Patch 8.2.0483
Problem: Vim9: "let x = x + 1" does not give an error.

version9.txt — 3534

Solution: Hide the variable when compiling the expression.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0484
Problem: Vim9: some error messages not tested.
Solution: Add more tests.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.0485 (after 8.2.0483)
Problem: Vim9 script test fails.
Solution: Stricter condition for adding new local variable.
Files: Stricter condition for adding new local variable.

Patch 8.2.0486
Problem: Vim9: some code and error messages not tested.
Solution: Add more tests.
Files: src/vim9compile.c, src/evalvars.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.0487
Problem: Vim9: compiling not sufficiently tested.
Solution: Add more tests. Fix bug with PCALL.
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0488
Problem: Vim9: Compiling can break when using a lambda inside :def.
Solution: Do not keep a pointer to the dfunc_T for longer time.
Files: src/vim9compile.c, src/vim9.h

Patch 8.2.0489
Problem: Vim9: memory leaks.
Solution: Free memory in the right place. Add hints for using asan.
Files: src/vim9compile.c, src/testdir/lsan-suppress.txt, src/Makefile

Patch 8.2.0490
Problem: Win32: VTP doesn't respect 'restorescreen'.
Solution: Use escape codes to switch to alternate screen. (Nobuhiro

Takasaki, closes #5872)
Files: src/os_win32.c

Patch 8.2.0491
Problem: Cannot recognize a <script> mapping using maparg().
Solution: Add the "script" key. (closes #5873)
Files: src/map.c, runtime/doc/eval.txt, src/testdir/test_maparg.vim

Patch 8.2.0492
Problem: Vim9: some error messages not tested.
Solution: Add more tests. Remove dead code. Fix uncovered bugs.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim

Patch 8.2.0493
Problem: Vim9: some error messages not tested.
Solution: Add more tests. Fix uncovered bugs.
Files: src/vim9compile.c, src/vim9execute.c, src/testing.c, src/eval.c,

src/proto/testing.pro, src/evalfunc.c, runtime/doc/eval.txt,
runtime/doc/testing.txt, src/testdir/test_vim9_script.vim

version9.txt — 3535

Patch 8.2.0494
Problem: Vim9: asan error.
Solution: Only get the type when there is one.
Files: src/vim9compile.c

Patch 8.2.0495
Problem: Vim9: some code not tested.
Solution: Add more tests. Support more const expressions.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0496
Problem: Vim9: disassemble test fails.
Solution: Separate test cases with recognized constant expressions.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.0497
Problem: Too verbose output from the asan build in Travis.
Solution: Filter out suppression messages. (Ozaki Kiichi, closes #5874)
Files: .travis.yml

Patch 8.2.0498
Problem: Coverity complains about uninitialized field.
Solution: Initialize the whole typval_T.
Files: src/vim9compile.c

Patch 8.2.0499
Problem: Calling a lambda is slower than evaluating a string.
Solution: Make calling a lambda faster. (Ken Takata, closes #5727)
Files: src/userfunc.c

Patch 8.2.0500
Problem: Using the same loop in many places.
Solution: Define more FOR_ALL macros. (Yegappan Lakshmanan, closes #5339)
Files: src/arglist.c, src/autocmd.c, src/buffer.c, src/change.c,

src/channel.c, src/cmdexpand.c, src/diff.c, src/eval.c,
src/evalbuffer.c, src/evalfunc.c, src/evalvars.c,
src/evalwindow.c, src/ex_cmds2.c, src/filepath.c, src/globals.h,
src/gui.c, src/if_py_both.h, src/if_ruby.c, src/insexpand.c,
src/list.c, src/misc2.c, src/netbeans.c, src/popupwin.c,
src/quickfix.c, src/screen.c, src/sign.c, src/spell.c,
src/spellfile.c, src/spellsuggest.c, src/tag.c, src/terminal.c,
src/userfunc.c, src/window.c

Patch 8.2.0501
Problem: Vim9: script test fails when channel feature is missing.
Solution: Add a has() condition.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0502
Problem: Vim9: some code is not tested.
Solution: Add more tests. Fix uncovered problems.
Files: src/vim9compile.c, src/regexp.c, src/proto/regexp.pro,

src/cmdexpand.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_eval.c,
src/ex_getln.c, src/highlight.c, src/search.c, src/syntax.c,
src/tag.c, src/userfunc.c, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0503
Problem: Vim9: some code is not tested.
Solution: Add tests. Fix uncovered problems.

version9.txt — 3536

Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0504
Problem: Vim9: leaking scope memory when compilation fails.
Solution: Cleanup the scope list.
Files: src/vim9compile.c

Patch 8.2.0505
Problem: term_gettty() not sufficiently tested.
Solution: Add more asserts. (Dominique Pellé, closes #5877)
Files: src/testdir/test_terminal.vim

Patch 8.2.0506
Problem: Coverity complains about ignoring return value.
Solution: Add (void).
Files: src/userfunc.c

Patch 8.2.0507 (after 8.2.0472)
Problem: Getbufvar() may get the wrong dictionary. (David le Blanc)
Solution: Check for empty name. (closes #5878)
Files: src/evalvars.c, src/testdir/test_functions.vim

Patch 8.2.0508
Problem: Vim9: func and partial types not done yet
Solution: Fill in details about func declaration, drop a separate partial

declaration.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/globals.h,

src/structs.h, src/evalfunc.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0509
Problem: various code is not properly tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5871)
Files: src/main.c, src/testdir/check.vim, src/testdir/shared.vim,

src/testdir/term_util.vim, src/testdir/test_clientserver.vim,
src/testdir/test_ex_mode.vim, src/testdir/test_expand.vim,
src/testdir/test_functions.vim, src/testdir/test_options.vim,
src/testdir/test_startup.vim, src/testdir/test_textformat.vim,
src/testdir/test_trycatch.vim, src/testdir/test_viminfo.vim

Patch 8.2.0510
Problem: Coverity complains about using uninitialized variable.
Solution: Assign a value to "scol". Move code inside NULL check.
Files: src/beval.c, src/popupwin.c

Patch 8.2.0511
Problem: Cscope code not fully tested.
Solution: Add more test cases. (Dominique Pellé, closes #5886)
Files: src/testdir/test_cscope.vim

Patch 8.2.0512
Problem: Vim9: no optional arguments in func type.
Solution: Check for question mark after type. Find function reference

without function().
Files: src/vim9compile.c, src/vim9execute.c, src/structs.h,

src/globals.h, src/vim.h, src/vim9.h, src/userfunc.c,
src/testdir/Make_all.mak, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

version9.txt — 3537

Patch 8.2.0513
Problem: Reading past allocated memory when using varargs.
Solution: Fix copying function argument types.
Files: src/vim9compile.c

Patch 8.2.0514
Problem: Several global functions are used in only one file.
Solution: Make the functions static. (Yegappan Lakshmanan, closes #5884)
Files: src/drawscreen.c, src/evalvars.c, src/getchar.c, src/list.c,

src/proto/drawscreen.pro, src/proto/evalvars.pro,
src/proto/getchar.pro, src/proto/list.pro, src/proto/version.pro,
src/version.c

Patch 8.2.0515
Problem: Some compilers cannot add to "void *".
Solution: Cast to "char *".
Files: src/vim9compile.c

Patch 8.2.0516
Problem: Client-server code is spread out.
Solution: Move client-server code to a new file. (Yegappan Lakshmanan,

closes #5885)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/clientserver.c, src/evalfunc.c, src/main.c, src/proto.h,
src/proto/clientserver.pro, src/proto/main.pro

Patch 8.2.0517
Problem: Vim9: cannot separate "func" and "func(): void".
Solution: Use VAR_ANY for "any" and VAR_UNKNOWN for "no type".
Files: src/structs.h, src/globals.h, src/eval.c, src/evalfunc.c,

src/evalvars.c, src/testing.c, src/vim9compile.c,
src/vim9execute.c, src/viminfo.c, src/if_py_both.h, src/json.c,
src/testdir/test_vim9_func.vim

Patch 8.2.0518
Problem: A terminal falls back to setting $TERM to "xterm".
Solution: Use "xterm-color" if more than 16 colors are supported and

"xterm-256color" if at least 256 colors are supported.
(closes #5887)

Files: src/os_unix.c

Patch 8.2.0519
Problem: Vim9: return type not properly checked.
Solution: Check type properly, also at runtime.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0520
Problem: Tests are not listed in sorted order.
Solution: Move test_ex_mode. (Doug Richardson, closes #5889)
Files: src/testdir/Make_all.mak

Patch 8.2.0521
Problem: Crash when reading a blob fails.
Solution: Avoid keeping a pointer to a freed blob object. (Dominique Pellé,

closes #5890) Adjust error messages.
Files: src/filepath.c, src/testdir/test_blob.vim

Patch 8.2.0522

version9.txt — 3538

Problem: Several errors are not tested for.
Solution: Add tests. (Yegappan Lakshmanan, closes #5892)
Files: src/testdir/test_autocmd.vim, src/testdir/test_clientserver.vim,

src/testdir/test_digraph.vim, src/testdir/test_expand.vim,
src/testdir/test_expr.vim, src/testdir/test_functions.vim,
src/testdir/test_gui.vim, src/testdir/test_highlight.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_lambda.vim,
src/testdir/test_listdict.vim, src/testdir/test_normal.vim,
src/testdir/test_options.vim, src/testdir/test_preview.vim,
src/testdir/test_user_func.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_viminfo.vim,
src/testdir/test_vimscript.vim, src/testdir/test_window_cmd.vim

Patch 8.2.0523
Problem: Loops are repeated.
Solution: Use FOR_ALL_ macros. (Yegappan Lakshmanan, closes #5882)
Files: src/buffer.c, src/drawscreen.c, src/evalfunc.c, src/evalwindow.c,

src/globals.h, src/gui_athena.c, src/gui_gtk.c, src/gui_motif.c,
src/gui_w32.c, src/list.c, src/menu.c, src/popupmenu.c,
src/popupwin.c, src/quickfix.c, src/syntax.c, src/time.c,
src/userfunc.c, src/vim9compile.c

Patch 8.2.0524
Problem: Win32: searching for file matches is slow.
Solution: Instead of making another round to find any short filename, check

for the short name right away. Avoid using an ordinary file like a
directory. (Nir Lichtman, closes #5883)

Files: src/filepath.c

Patch 8.2.0525 (after 8.2.0524)
Problem: Win32: typo in assignment and misplaced paren.
Solution: Fix the syntax.
Files: src/filepath.c

Patch 8.2.0526
Problem: Gcc 9 complains about empty statement.
Solution: Add {}. (Dominique Pellé, closes #5894)
Files: src/evalfunc.c

Patch 8.2.0527
Problem: Vim9: function types insufficiently tested.
Solution: Add more tests. Fix white space check. Add "test_vim9" target.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim, src/Makefile,

src/testdir/Makefile, src/testdir/Make_all.mak

Patch 8.2.0528
Problem: Vim9: function arguments insufficiently tested.
Solution: Check types. Add more tests. Fix function with varargs only.
Files: src/vim9compile.c, src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.0529
Problem: Vim9: function argument with default not checked.
Solution: Check type of argument with default value.
Files: src/vim9compile.c, src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.0530
Problem: Test crashes on s390. (James McCoy)
Solution: Explicitly define an 8 big signed type. (closes #5897)
Files: src/structs.h

version9.txt — 3539

Patch 8.2.0531
Problem: Various errors not tested.
Solution: Add tests. (Yegappan Lakshmanan, closes #5895)
Files: src/testdir/test_search.vim, src/testdir/test_source.vim,

src/testdir/test_syntax.vim, src/testdir/test_user_func.vim,
src/testdir/test_vimscript.vim

Patch 8.2.0532
Problem: Cannot use simplify() as a method.
Solution: Add FEARG_1. (closes #5896)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim

Patch 8.2.0533
Problem: Tests using term_wait() can still be flaky.
Solution: Increase the wait time when rerunning a test. (James McCoy,

closes #5899) Halve the initial times to make tests run faster
when there is no rerun.

Files: src/testdir/term_util.vim, src/testdir/test_arglist.vim,
src/testdir/test_autocmd.vim, src/testdir/test_balloon.vim,
src/testdir/test_bufline.vim, src/testdir/test_channel.vim,
src/testdir/test_cmdline.vim, src/testdir/test_conceal.vim,
src/testdir/test_cursorline.vim, src/testdir/test_debugger.vim,
src/testdir/test_diffmode.vim, src/testdir/test_display.vim,
src/testdir/test_functions.vim, src/testdir/test_highlight.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_mapping.vim,
src/testdir/test_match.vim, src/testdir/test_matchadd_conceal.vim,
src/testdir/test_messages.vim, src/testdir/test_number.vim,
src/testdir/test_popup.vim, src/testdir/test_popupwin.vim,
src/testdir/test_profile.vim, src/testdir/test_search.vim,
src/testdir/test_search_stat.vim, src/testdir/test_startup.vim,
src/testdir/test_startup_utf8.vim,
src/testdir/test_statusline.vim, src/testdir/test_suspend.vim,
src/testdir/test_swap.vim, src/testdir/test_tagjump.vim,
src/testdir/test_terminal.vim, src/testdir/test_terminal_fail.vim,
src/testdir/test_timers.vim, src/testdir/test_vimscript.vim

Patch 8.2.0534
Problem: Client-server test fails under valgrind.
Solution: Use WaitForAssert().
Files: src/testdir/test_clientserver.vim

Patch 8.2.0535
Problem: Regexp patterns not fully tested.
Solution: Add more regexp tests and others. (Yegappan Lakshmanan,

closes #5901)
Files: src/testdir/test_marks.vim, src/testdir/test_options.vim,

src/testdir/test_regexp_latin.vim, src/testdir/test_search.vim

Patch 8.2.0536
Problem: Vim9: some compilation code not tested.
Solution: Add more test cases.
Files: src/evalvars.c, src/proto/evalvars.pro, src/vim9compile.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.0537
Problem: Vim9: no check for sandbox when setting v:var.
Solution: Check for sandbox.
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

version9.txt — 3540

Patch 8.2.0538
Problem: Vim9: VAR_PARTIAL is not used during compilation.
Solution: Remove VAR_PARTIAL.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c

Patch 8.2.0539
Problem: Comparing two NULL list fails.
Solution: Change the order of comparing two lists.
Files: src/list.c, src/testdir/test_assert.vim

Patch 8.2.0540
Problem: Regexp and other code not tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5904)
Files: src/testdir/test_backspace_opt.vim, src/testdir/test_expr.vim,

src/testdir/test_increment.vim, src/testdir/test_normal.vim,
src/testdir/test_options.vim, src/testdir/test_regexp_latin.vim,
src/testdir/test_search.vim, src/testdir/test_substitute.vim,
src/testdir/test_terminal.vim, src/testdir/test_virtualedit.vim

Patch 8.2.0541
Problem: Travis CI does not give compiler warnings.
Solution: Add flags for warnings. Fix uncovered problems. (Ozaki Kiichi,

closes #5898)
Files: .travis.yml, ci/config.mk.clang.sed, ci/config.mk.gcc.sed,

ci/config.mk.sed, src/if_perl.xs, src/if_ruby.c,
src/libvterm/t/harness.c

Patch 8.2.0542
Problem: No test for E386.
Solution: Add a test. (Dominique Pellé, closes #5911)
Files: src/testdir/test_search.vim

Patch 8.2.0543
Problem: Vim9: function with varargs does not work properly.
Solution: Improve function type spec and add tests. Fix bugs.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/vim9execute.c,

src/structs.h, src/testdir/test_vim9_func.vim

Patch 8.2.0544
Problem: Memory leak in search test.
Solution: Free msgbuf. (Dominique Pellé, closes #5912)
Files: src/search.c

Patch 8.2.0545
Problem: Unused arguments ignored in non-standard way.
Solution: Add UNUSED instead of (void).
Files: src/libvterm/t/harness.c

Patch 8.2.0546
Problem: Vim9: varargs implementation is inefficient.
Solution: Create list without moving the arguments.
Files: src/vim9compile.c, src/vim9execute.c

Patch 8.2.0547
Problem: Win32: restoring screen not always done right.
Solution: Use a more appropriate method. (Nobuhiro Takasaki, closes #5909)
Files: src/os_win32.c

Patch 8.2.0548
Problem: Vim9: not all possible func type errors tested.

version9.txt — 3541

Solution: Add more tests.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0549
Problem: User systemd files not recognized.
Solution: Add filetype patterns. (Kevin Locke, closes #5914)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0550
Problem: Some changes in the libvterm upstream code.
Solution: Include some changes.
Files: src/libvterm/t/harness.c

Patch 8.2.0551
Problem: Not all code for options is tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5913)
Files: src/testdir/test_options.vim, src/testdir/test_python3.vim,

src/testdir/test_undo.vim, src/testdir/test_vimscript.vim

Patch 8.2.0552
Problem: Vim9: some errors not covered by tests.
Solution: Add more tests. Check Funcref argument types.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0553 (after 8.2.0550)
Problem: Error for unused argument.
Solution: Add UNUSED.
Files: src/libvterm/t/harness.c

Patch 8.2.0554
Problem: The GUI doesn't set t_Co.
Solution: In the GUI set t_Co to 256 * 256 * 256. (closes #5903)
Files: src/term.c, src/proto/term.pro, src/gui.c,

src/testdir/test_gui.vim

Patch 8.2.0555
Problem: Vim9: line continuation is not always needed.
Solution: Recognize continuation lines automatically in list and dict.
Files: runtime/doc/vim9.txt, src/vim9compile.c,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim

Patch 8.2.0556
Problem: Vim9: memory leak when finding common type.
Solution: Store allocated memory in type growarray.
Files: src/vim9compile.c

Patch 8.2.0557
Problem: No IPv6 support for channels.
Solution: Add IPv6 support. (Ozaki Kiichi, closes #5893)
Files: .travis.yml, runtime/doc/channel.txt, runtime/doc/various.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/auto/configure,
src/channel.c, src/config.h.in, src/configure.ac, src/evalfunc.c,
src/proto/channel.pro, src/testdir/check.vim,
src/testdir/runtest.vim, src/testdir/test_cdo.vim,
src/testdir/test_channel.py, src/testdir/test_channel.vim,
src/testdir/test_channel_6.py, src/testdir/test_escaped_glob.vim,
src/testdir/test_getcwd.vim, src/testdir/test_hide.vim

Patch 8.2.0558
Problem: Vim9: dict code not covered by tests.

version9.txt — 3542

Solution: Remove dead code, adjust test case.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0559
Problem: Clearing a struct is verbose.
Solution: Define and use CLEAR_FIELD() and CLEAR_POINTER().
Files: src/vim.h, src/blowfish.c, src/channel.c, src/charset.c,

src/clipboard.c, src/diff.c, src/eval.c, src/evalfunc.c,
src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c, src/findfile.c,
src/gui_gtk_f.c, src/gui_mac.c, src/gui_motif.c, src/gui_w32.c,
src/gui_x11.c, src/hardcopy.c, src/hashtab.c, src/highlight.c,
src/if_mzsch.c, src/insexpand.c, src/kword_test.c, src/list.c,
src/main.c, src/map.c, src/memfile.c, src/message_test.c,
src/misc1.c, src/netbeans.c, src/normal.c, src/ops.c,
src/option.c, src/os_mswin.c, src/os_win32.c, src/popupmenu.c,
src/quickfix.c, src/regexp.c, src/regexp_bt.c, src/regexp_nfa.c,
src/search.c, src/sign.c, src/spell.c, src/spellfile.c,
src/spellsuggest.c, src/syntax.c, src/tag.c, src/terminal.c,
src/time.c, src/undo.c, src/userfunc.c, src/vim9compile.c,
src/vim9execute.c, src/if_py_both.h

Patch 8.2.0560
Problem: Compiler warning in tiny build.
Solution: Move declaration inside #ifdef. (Dominique Pellé, closes #5915)
Files: src/ex_docmd.c

Patch 8.2.0561
Problem: Vim9: cannot split function call in multiple lines.
Solution: Find more arguments in following lines.
Files: runtime/doc/vim9.txt, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0562
Problem: Vim9: cannot split an expression into multiple lines.
Solution: Continue in next line after an operator.
Files: runtime/doc/vim9.txt, src/macros.h, src/vim9compile.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.0563
Problem: Vim9: cannot split a function line.
Solution: Continue in next line so long as the function isn't done.
Files: runtime/doc/vim9.txt, src/userfunc.c, src/proto/userfunc.pro,

src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0564
Problem: Vim9: calling a def function from non-vim9 may fail.
Solution: Convert varargs to a list.
Files: src/testdir/test_vim9_func.vim, src/vim9execute.c

Patch 8.2.0565
Problem: Vim9: tests contain superfluous line continuation.
Solution: Remove line continuation no longer needed. Skip empty lines.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.0566
Problem: Vim9: variable can be used uninitialized.
Solution: Jump to after where variable is used.
Files: src/vim9execute.c

version9.txt — 3543

Patch 8.2.0567
Problem: Vim9: cannot put comments halfway expressions.
Solution: Support # comments in many places.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/userfunc.c,

src/ex_docmd.c, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.0568
Problem: The man filetype plugin overwrites the unnamed register.
Solution: Use the black hole register. (Jason Franklin)
Files: runtime/ftplugin/man.vim, src/testdir/test_man.vim

Patch 8.2.0569
Problem: Build failure with tiny version.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.0570
Problem: Vim9: no error when omitting type from argument.
Solution: Enforce specifying argument types.
Files: src/userfunc.c, src/ex_eval.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_func.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0571
Problem: Double free when passing invalid argument to job_start().
Solution: Clear the argument when freed. (Masato Nishihata, closes #5926)
Files: src/misc2.c, src/testdir/test_channel.vim

Patch 8.2.0572 (after 8.2.0571)
Problem: Using two lines for free and reset.
Solution: Use VIM_CLEAR() instead. (Yegappan Lakshmanan)
Files: src/misc2.c

Patch 8.2.0573
Problem: using :version twice leaks memory
Solution: Only initialize variables once. (Dominique Pellé, closes #5917)
Files: src/testdir/Make_all.mak, src/testdir/test_alot.vim,

src/testdir/test_version.vim, src/version.c, src/globals.h

Patch 8.2.0574
Problem: Ipv6 feature not shown in :version output.
Solution: Add ipv6 in :version output. (Ozaki Kiichi, closes #5924)
Files: runtime/doc/eval.txt, src/version.c

Patch 8.2.0575
Problem: :digraph! not tested.
Solution: Add a test. (Dominique Pellé, closes #5925)
Files: src/testdir/test_digraph.vim

Patch 8.2.0576
Problem: Some errors are not covered by tests.
Solution: Add a few more tests. (Dominique Pellé, closes #5920)
Files: src/testdir/test_buffer.vim, src/testdir/test_digraph.vim,

src/testdir/test_expr.vim, src/testdir/test_messages.vim

Patch 8.2.0577
Problem: Not all modifiers supported for :options.
Solution: Use all cmdmod.split flags. (closes #4401)
Files: src/usercmd.c, src/proto/usercmd.pro, src/scriptfile.c,

version9.txt — 3544

src/testdir/test_options.vim, src/testdir/test_usercommands.vim

Patch 8.2.0578
Problem: Heredoc for interfaces does not support "trim".
Solution: Update the script heredoc support to be same as the :let command.

(Yegappan Lakshmanan, closes #5916)
Files: runtime/doc/if_lua.txt, runtime/doc/if_mzsch.txt,

runtime/doc/if_perl.txt, runtime/doc/if_pyth.txt,
runtime/doc/if_ruby.txt, runtime/doc/if_tcl.txt, src/evalvars.c,
src/ex_getln.c, src/proto/evalvars.pro, src/testdir/test86.in,
src/testdir/test87.in, src/testdir/test_lua.vim,
src/testdir/test_perl.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_pyx2.vim,
src/testdir/test_pyx3.vim, src/testdir/test_ruby.vim,
src/testdir/test_tcl.vim, src/userfunc.c, src/vim9compile.c

Patch 8.2.0579
Problem: Coverity warns for unused value.
Solution: Change order and use "else if".
Files: src/os_unix.c

Patch 8.2.0580
Problem: Window size wrong if 'ea' is off and 'splitright' is on and

splitting then closing a window.
Solution: Put abandoned window space in the right place. (Mark Waggoner)
Files: src/testdir/test_winbuf_close.vim, src/window.c

Patch 8.2.0581 (after 8.2.0547)
Problem: Win32 console: the cursor position is always top-left.
Solution: Revert the patch for restoring screen.
Files: src/os_win32.c

Patch 8.2.0582
Problem: Color ramp test does not show text colors.
Solution: Add a row of 16 text colors and 16 bold text colors.
Files: src/testdir/color_ramp.vim

Patch 8.2.0583
Problem: Vim9: # comment not recognized in :def function.
Solution: Recognize and skip # comment.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0584
Problem: Viminfo file uses obsolete function file_readable().
Solution: Use filereadable(). (closes #5934)
Files: src/session.c

Patch 8.2.0585
Problem: Vim9: # comment not recognized after :vim9script.
Solution: Check script type. Make comment after ":echo" work. And in

several other places.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/eval.c,

src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0586
Problem: Vim9: # comment not sufficiently tested
Solution: Check for preceding white space.
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.0587

version9.txt — 3545

Problem: Compiler warning for unused variable.
Solution: Add UNUSED.
Files: src/ex_docmd.c

Patch 8.2.0588
Problem: Putty does not use "sgr" 'ttymouse' by default.
Solution: Make "sgr" the default for Putty. (Christian Brabandt,

closes #5942)
Files: src/term.c

Patch 8.2.0589
Problem: .bsd file type not recognized.
Solution: Recognize .bsd as BSDL. (Daniel Kho, closes #5945)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0590
Problem: No 'backspace' value allows ignoring the insertion point.
Solution: Add the "nostop" and 3 values. (Christian Brabandt, closes #5940)
Files: runtime/doc/options.txt, src/edit.c, src/option.c, src/option.h,

src/optionstr.c, src/testdir/gen_opt_test.vim,
src/testdir/test_backspace_opt.vim

Patch 8.2.0591
Problem: MS-Windows: should always support IPv6
Solution: Add build flag. (Ozaki Kiichi, closes #5944)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.2.0592
Problem: MS-Windows with VTP: cursor is not made invisible.
Solution: Output the code to make the cursor visible or invisible. (Nobuhiro

Takasaki, closes #5941)
Files: src/os_win32.c

Patch 8.2.0593
Problem: Finding a user command is not optimal.
Solution: Start further down in the list of commands.
Files: src/ex_cmds.h, src/ex_docmd.c

Patch 8.2.0594
Problem: MS-Windows: cannot build with WINVER set to 0x0501.
Solution: Only use inet_ntop() when available. (Ozaki Kiichi, closes #5946)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/auto/configure,

src/channel.c, src/config.h.in, src/configure.ac

Patch 8.2.0595
Problem: Vim9: not all commands using ends_excmd() tested.
Solution: Find # comment after regular commands. Add more tests. Report

error for where it was caused.
Files: src/ex_docmd.c, src/vim9compile.c, src/vim9execute.c, src/usercmd.c,

src/evalfunc.c, src/userfunc.c, src/proto/userfunc.pro,
src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0596
Problem: Crash in test49.
Solution: Check the right pointer.
Files: src/userfunc.c, src/testdir/test_eval.ok

Patch 8.2.0597
Problem: Test_eval is old style.

version9.txt — 3546

Solution: Change some tests to a new style test.
Files: src/testdir/test_eval.in, src/testdir/test_eval.ok,

src/testdir/test_eval_stuff.vim

Patch 8.2.0598
Problem: Test_eval_stuff fails in normal terminal.
Solution: Close the new window.
Files: src/testdir/test_eval_stuff.vim

Patch 8.2.0599
Problem: Netbeans interface insufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5921)
Files: runtime/doc/netbeans.txt, src/netbeans.c, src/os_win32.c,

src/testdir/runtest.vim, src/testdir/test_netbeans.py,
src/testdir/test_netbeans.vim

Patch 8.2.0600
Problem: Vim9: cannot read or write w:, t: and b: variables.
Solution: Implement load and store for w:, t: and b: variables.

(closes #5950)
Files: src/testdir/test_vim9_disassemble.vim,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim,
src/vim9.h, src/vim9compile.c, src/vim9execute.c

Patch 8.2.0601
Problem: Vim9: :unlet is not compiled.
Solution: Implement :unlet instruction and check for errors.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9.h,

src/vim9execute.c, src/evalvars.c, src/proto/evalvars.pro,
src/eval.c, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0602
Problem: :unlet $VAR does not work properly.
Solution: Make ":lockvar $VAR" fail. Check the "skip" flag.
Files: src/evalvars.c, src/globals.h, src/testdir/test_vimscript.vim

Patch 8.2.0603
Problem: Configure does not detect moonjit.
Solution: Add check for moonjit. (Shlomi Fish, closes #5947)
Files: src/configure.ac, src/auto/configure

Patch 8.2.0604
Problem: :startinsert in a terminal window used later.
Solution: Ignore :startinsert in a terminal window. (closes #5952)
Files: src/ex_docmd.c, src/testdir/test_terminal.vim

Patch 8.2.0605
Problem: Vim9: cannot unlet an environment variable.
Solution: Implement unlet for $VAR.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0606
Problem: Several syntax HL errors not checked.
Solution: Add tests. (Yegappan Lakshmanan, closes #5954)
Files: src/testdir/test_syntax.vim

Patch 8.2.0607

version9.txt — 3547

Problem: Gcc warns for using uninitialized variable. (John Marriott)
Solution: Set name_end also for environment variables.
Files: src/evalvars.c

Patch 8.2.0608
Problem: Warning from clang when building message test.
Solution: Use a void pointer. (Dominique Pellé, closes #5958)
Files: src/message_test.c

Patch 8.2.0609
Problem: Configure does not detect moonjit correctly.
Solution: Double the brackets. (Ozaki Kiichi)
Files: src/configure.ac, src/auto/configure

Patch 8.2.0610
Problem: Some tests are still old style.
Solution: Convert to new style tests. (Yegappan Lakshmanan, closes #5957)
Files: src/testdir/test_blob.vim, src/testdir/test_cursor_func.vim,

src/testdir/test_eval.in, src/testdir/test_eval.ok,
src/testdir/test_eval_func.vim, src/testdir/test_eval_stuff.vim,
src/testdir/test_expr.vim, src/testdir/test_filter_map.vim,
src/testdir/test_functions.vim, src/testdir/test_listdict.vim,
src/testdir/test_sort.vim, src/testdir/test_syntax.vim,
src/testdir/test_utf8.vim, src/testdir/test_vimscript.vim

Patch 8.2.0611
Problem: Vim9: no check for space before #comment.
Solution: Add space checks.
Files: src/eval.c, src/evalvars.c, src/ex_docmd.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0612
Problem: Vim9: no check for space before #comment.
Solution: Add space checks.
Files: src/ex_eval.c, src/ex_cmds.c, src/regexp.c, src/proto/regexp.pro,

src/gui.c, src/highlight.c, src/testdir/test_vim9_script.vim,
src/testdir/test_sort.vim

Patch 8.2.0613
Problem: Vim9: no check for space before #comment.
Solution: Add space checks.
Files: src/highlight.c, src/menu.c, src/syntax.c,

src/testdir/test_vim9_script.vim,
runtime/lang/menu_de_de.latin1.vim

Patch 8.2.0614
Problem: Get ml_get error when deleting a line in 'completefunc'. (Yegappan

Lakshmanan)
Solution: Lock the text while evaluating 'completefunc'.
Files: src/insexpand.c, src/globals.h, src/edit.c, src/ex_getln.c,

src/undo.c, src/testdir/test_edit.vim, src/testdir/test_excmd.vim,
src/testdir/test_gf.vim, src/testdir/test_popup.vim,
src/testdir/test_ex_mode.vim, runtime/doc/insert.txt

Patch 8.2.0615
Problem: Regexp benchmark test is old style.
Solution: Make it a new style test. Fix using a NULL list. Add more tests.

(Yegappan Lakshmanan, closes #5963)
Files: src/evalbuffer.c, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Makefile,

version9.txt — 3548

src/testdir/bench_re_freeze.in, src/testdir/bench_re_freeze.vim,
src/testdir/test_autocmd.vim, src/testdir/test_bench_regexp.vim,
src/testdir/test_blob.vim, src/testdir/test_bufline.vim,
src/testdir/test_channel.vim, src/testdir/test_cmdline.vim,
src/testdir/test_functions.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_popupwin.vim, src/testdir/test_prompt_buffer.vim,
src/testdir/test_tagjump.vim, src/testdir/test_window_cmd.vim

Patch 8.2.0616
Problem: Build error when disabling the diff feature.
Solution: Move parenthesis outside of #ifdef. (Tom Ryder)
Files: src/drawline.c

Patch 8.2.0617
Problem: New error check triggers in Swedish menu.
Solution: Insert backslash. (Mats Tegner, closes #5966)
Files: runtime/lang/menu_sv_se.latin1.vim

Patch 8.2.0618
Problem: Echoing a null list results in no output. (Yegappan Lakshmanan)
Solution: Return "[]" instead of NULL in echo_string_core().
Files: src/eval.c, src/testdir/test_messages.vim

Patch 8.2.0619
Problem: Null dict is not handled like an empty dict.
Solution: Fix the code and add tests. (Yegappan Lakshmanan, closes #5968)
Files: src/dict.c, src/eval.c, src/testdir/test_blob.vim,

src/testdir/test_expr.vim, src/testdir/test_filter_map.vim,
src/testdir/test_let.vim, src/testdir/test_listdict.vim,
src/testdir/test_search.vim, src/testdir/test_unlet.vim,
src/testdir/test_usercommands.vim, src/testdir/test_vimscript.vim

Patch 8.2.0620
Problem: Error in menu translations.
Solution: Insert a backslash before a space.
Files: runtime/lang/menu_it_it.latin1.vim,

runtime/lang/menu_chinese_gb.936.vim

Patch 8.2.0621
Problem: After running tests asan files may remain.
Solution: Clean up asan files with "make testclean".
Files: src/testdir/Makefile, src/Makefile

Patch 8.2.0622
Problem: Haiku: GUI does not compile.
Solution: Various fixes. (Emir Sarı, closes #5961)
Files: Filelist, README.md, READMEdir/README_haiku.txt,

runtime/doc/os_haiku.txt, src/Makefile, src/beval.h,
src/gui_haiku.cc, src/proto/gui_haiku.pro

Patch 8.2.0623
Problem: Typo in test comment. (Christ van Willegen)
Solution: Avoid mixing up a data structure with a body part.
Files: src/testdir/test_listdict.vim

Patch 8.2.0624
Problem: Vim9: no check for space before #comment.
Solution: Add space checks. Fix :throw with double quoted string.
Files: src/usercmd.c, src/userfunc.c, src/vim9compile.c,

src/testdir/test_vim9_script.vim

version9.txt — 3549

Patch 8.2.0625
Problem: Vim9: confusing error when calling unknown function.
Solution: Give error while compiling.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.0626
Problem: Vim9: wrong syntax of function in Vim9 script.
Solution: Give error for missing space. Implement :echomsg and :echoerr.

(closes #5670)
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h, src/userfunc.c,

src/eval.c, src/globals.h, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.0627
Problem: Vim9: error message does not work. (Yegappan Lakshmanan)
Solution: Swap lines.
Files: src/userfunc.c

Patch 8.2.0628
Problem: Error in menu translations.
Solution: Insert a backslash before a space in one more file. (Shun Bai,

Emir Sarı)
Files: runtime/lang/menu_zh_cn.utf-8.vim,

runtime/lang/menu_ca_es.latin1.vim,
runtime/lang/menu_cs_cz.iso_8859-2.vim,
runtime/lang/menu_cs_cz.utf-8.vim,
runtime/lang/menu_czech_czech_republic.1250.vim,
runtime/lang/menu_czech_czech_republic.ascii.vim,
runtime/lang/menu_da.utf-8.vim,
runtime/lang/menu_fi_fi.latin1.vim,
runtime/lang/menu_hu_hu.iso_8859-2.vim,
runtime/lang/menu_hu_hu.utf-8.vim,
runtime/lang/menu_is_is.latin1.vim,
runtime/lang/menu_no_no.latin1.vim, runtime/lang/menu_pt_br.vim,
runtime/lang/menu_pt_pt.vim,
runtime/lang/menu_sk_sk.iso_8859-2.vim,
runtime/lang/menu_sl_si.latin2.vim,
runtime/lang/menu_slovak_slovak_republic.1250.vim,
runtime/lang/menu_tr_tr.cp1254.vim,
runtime/lang/menu_tr_tr.iso_8859-9.vim,
runtime/lang/menu_tr_tr.utf-8.vim, runtime/lang/menu_vi_vn.vim

Patch 8.2.0629
Problem: Setting a boolean option to v:false does not work.
Solution: Do not use the string representation of the value. (Christian

Brabandt, closes #5974)
Files: src/evalvars.c, src/testdir/test_options.vim

Patch 8.2.0630
Problem: "make tags" does not cover Haiku GUI file.
Solution: Add *.cc files.
Files: src/Make_all.mak

Patch 8.2.0631
Problem: Haiku file formatted with wrong tabstop.
Solution: Use normal tabstop. Fix white space.
Files: src/gui_haiku.cc

version9.txt — 3550

Patch 8.2.0632
Problem: Crash when using Haiku.
Solution: Lock the screen. (closes #5975, closes #5973)
Files: src/screen.c

Patch 8.2.0633
Problem: Crash when using null partial in filter().
Solution: Fix crash. Add more tests. (Yegappan Lakshmanan, closes #5976)
Files: src/eval.c, src/testdir/test_blob.vim,

src/testdir/test_channel.vim, src/testdir/test_eval_stuff.vim,
src/testdir/test_execute_func.vim, src/testdir/test_expr.vim,
src/testdir/test_filter_map.vim, src/testdir/test_fold.vim,
src/testdir/test_functions.vim, src/testdir/test_let.vim,
src/testdir/test_listdict.vim, src/testdir/test_partial.vim,
src/testdir/test_usercommands.vim

Patch 8.2.0634
Problem: Crash with null partial and blob.
Solution: Check for NULL pointer. Add more tests. (Yegappan Lakshmanan,

closes #5984)
Files: src/eval.c, src/list.c, src/testdir/test_blob.vim,

src/testdir/test_bufwintabinfo.vim, src/testdir/test_cd.vim,
src/testdir/test_channel.vim, src/testdir/test_cursor_func.vim,
src/testdir/test_eval_stuff.vim, src/testdir/test_expr.vim,
src/testdir/test_filter_map.vim, src/testdir/test_fnamemodify.vim,
src/testdir/test_functions.vim, src/testdir/test_getvar.vim,
src/testdir/test_listdict.vim, src/testdir/test_messages.vim,
src/testdir/test_partial.vim, src/testdir/test_quickfix.vim,
src/testdir/test_tabpage.vim, src/testdir/test_vimscript.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_window_id.vim,
src/testdir/test_writefile.vim

Patch 8.2.0635
Problem: When using 256 colors DarkYellow does not show expected color.
Solution: Use color 3 instead of 130. (Romain Lafourcade, closes #5985)
Files: src/highlight.c

Patch 8.2.0636
Problem: :messages does not show the maintainer when $LANG is unset.
Solution: Call get_mess_lang() if available. (closes #5978)
Files: src/message.c

Patch 8.2.0637
Problem: Incsearch highlighting does not work for ":sort!".
Solution: Skip over the exclamation point. (closes #5983)
Files: src/ex_getln.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_sort_02.dump

Patch 8.2.0638
Problem: MS-Windows: messages test fails.
Solution: Clear environment variables.
Files: src/testdir/test_messages.vim

Patch 8.2.0639
Problem: MS-Windows: messages test still fails.
Solution: Filter out the maintainer message.
Files: src/testdir/test_messages.vim

Patch 8.2.0640

version9.txt — 3551

Problem: Vim9: expanding `=expr` does not work.
Solution: Find wildcards in not compiled commands. Reorganize test files.
Files: Filelist, src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/vim9.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim,
src/testdir/Make_all.mak

Patch 8.2.0641
Problem: Vim9: `=expr` not expanded in :hardcopy and "syntax include".
Solution: Add the EX_EXPAND flag. Expend "syntax include".
Files: src/ex_cmds.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.0642
Problem: Vim9: using invalid index.
Solution: Check index for being valid. Fix memory leak.
Files: src/vim9compile.c, src/clientserver.c

Patch 8.2.0643 (after 8.2.0635)
Problem: Terminal uses brown instead of dark yellow. (Romain Lafourcade)
Solution: Use color index 3 instead of 130. (closes #5993)
Files: src/terminal.c

Patch 8.2.0644
Problem: Insufficient testing for invalid function arguments.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5988)
Files: runtime/doc/eval.txt, src/testdir/test_bufline.vim,

src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_expr.vim, src/testdir/test_functions.vim,
src/testdir/test_listener.vim, src/testdir/test_match.vim,
src/testdir/test_menu.vim, src/testdir/test_quickfix.vim,
src/testdir/test_registers.vim, src/testdir/test_reltime.vim,
src/testdir/test_terminal.vim, src/testdir/test_textprop.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_window_id.vim,
src/testdir/test_writefile.vim

Patch 8.2.0645
Problem: MS-Windows terminal: CTRL-C does not get to child job.
Solution: Remove CREATE_NEW_PROCESS_GROUP from CreateProcessW(). (Nobuhiro

Takasaki, closes #5987)
Files: src/terminal.c

Patch 8.2.0646
Problem: t_Co uses the value of $COLORS in the GUI. (Masato Nishihata)
Solution: Ignore $COLORS for the GUI. (closes #5992)
Files: src/os_unix.c, src/term.c

Patch 8.2.0647
Problem: MS-Windows: repeat count for events was not used.
Solution: Check the repeat count. (Nobuhiro Takasaki, closes #5989)
Files: src/os_win32.c

Patch 8.2.0648
Problem: Semicolon search does not work in first line.
Solution: Allow the cursor to be in line zero. (Christian Brabandt,

closes #5996)
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.2.0649

version9.txt — 3552

Problem: Undo problem when an InsertLeave autocommand resets undo. (Kutsan
Kaplan)

Solution: Do not create a new undo block when leaving Insert mode.
Files: src/edit.c, src/testdir/test_edit.vim

Patch 8.2.0650
Problem: Vim9: script function can be deleted.
Solution: Disallow deleting script function. Delete functions when sourcing

a script again.
Files: src/userfunc.c, src/proto/userfunc.pro, src/evalfunc.c,

src/vim9compile.c, src/vim9execute.c, src/vim9script.c,
src/scriptfile.c, src/testing.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.0651
Problem: Old style benchmark test still in list of distributed files.
Solution: Remove the files from the list.
Files: Filelist

Patch 8.2.0652 (after 8.2.0650)
Problem: Compiler warning for char conversion.
Solution: Use unsigned char buffer.
Files: src/userfunc.c

Patch 8.2.0653 (after 8.2.0650)
Problem: using uninitialized pointer.
Solution: Move assignment up. (John Marriott)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.0654
Problem: Building with Python fails.
Solution: Add missing argument.
Files: src/if_py_both.h

Patch 8.2.0655
Problem: Search code not sufficiently tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #5999)
Files: src/testdir/test_charsearch.vim, src/testdir/test_gn.vim,

src/testdir/test_goto.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_normal.vim, src/testdir/test_search.vim,
src/testdir/test_textformat.vim, src/testdir/test_textobjects.vim,
src/testdir/test_visual.vim

Patch 8.2.0656
Problem: MS-Windows: redrawing right screen edge may not be needed.
Solution: Check the build version. (Nobuhiro Takasaki, closes #6002)
Files: src/drawscreen.c, src/os_win32.c, src/proto/os_win32.pro

Patch 8.2.0657
Problem: Vim9: no check if called variable is a FuncRef.
Solution: Add a type check.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.0658 (after 8.2.0646)
Problem: HP-UX build fails when setenv() is not defined.
Solution: Change "colors" to "t_colors". (John Marriott)
Files: src/os_unix.c

Patch 8.2.0659

version9.txt — 3553

Problem: Vim9: no test for equal func type.
Solution: Add a test. Improve type check.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0660
Problem: The search.c file is a bit big.
Solution: Split off the text object code to a separate file. (Yegappan

Lakshmanan, closes #6007)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/proto.h, src/proto/search.pro, src/proto/textobject.pro,
src/search.c, src/textobject.c

Patch 8.2.0661
Problem: Eval test is still old style.
Solution: Change into new style tests. (Yegappan Lakshmanan, closes #6009)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test_eval.in, src/testdir/test_eval.ok,
src/testdir/test_eval_stuff.vim

Patch 8.2.0662
Problem: Cannot use input() in a channel callback.
Solution: Reset vgetc_busy. (closes #6010)
Files: src/globals.h, src/ex_getln.c, src/evalfunc.c,

src/testdir/test_channel.vim

Patch 8.2.0663
Problem: Not all systemd temp files are recognized.
Solution: Add two more patterns. (Jamie Macdonald, closes #6003)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0664
Problem: Included undesired changes in Makefile.
Solution: Revert the changes.
Files: src/Makefile

Patch 8.2.0665
Problem: Wrongly assuming Python executable is called "python".
Solution: Use detected python command. (Ken Takata, closes #6016)

Also use CheckFunction if possible.
Files: src/testdir/test_terminal.vim, src/testdir/check.vim

Patch 8.2.0666
Problem: Ruby test fails on MS-Windows.
Solution: Remove the "maintainer" line. (Ken Takata, closes #6015)
Files: src/testdir/shared.vim, src/testdir/test_messages.vim,

src/testdir/test_ruby.vim

Patch 8.2.0667
Problem: Cannot install Haiku version from source.
Solution: Update Makefile and rdef file. (Emir Sarı, closes #6013)
Files: Filelist, READMEdir/README_haiku.txt, runtime/doc/os_haiku.txt,

src/Makefile, src/os_haiku.rdef.in, src/os_haiku.rdef

Patch 8.2.0668
Problem: Compiler warning for int/size_t usage.
Solution: Change "int" to "size_t". (Mike Williams)
Files: src/vim9execute.c

Patch 8.2.0669

version9.txt — 3554

Problem: MS-Windows: display in VTP is a bit slow.
Solution: Optimize the code. (Nobuhiro Takasaki, closes #6014)
Files: src/os_win32.c, src/screen.c

Patch 8.2.0670
Problem: Cannot change window when evaluating 'completefunc'.
Solution: Make a difference between not changing text or buffers and also

not changing window.
Files: src/ex_getln.c, src/beval.c, src/change.c, src/edit.c, src/eval.c,

src/ex_docmd.c, src/insexpand.c, src/globals.h, src/indent.c,
src/map.c, src/window.c, src/proto/ex_getln.pro, src/register.c,
src/undo.c, src/testdir/test_edit.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_popup.vim

Patch 8.2.0671
Problem: Haiku: compiler warnings.
Solution: Avoid the warnings. Drop display_errors() copy. (Emir Sarı,

closes #6018)
Files: .gitignore, src/gui.c, src/gui_haiku.cc

Patch 8.2.0672
Problem: Heredoc in scripts does not accept lower case marker.
Solution: Allow lower case only in non-Vim scripts. (Ken Takata,

closes #6019)
Files: src/evalvars.c, src/testdir/test_lua.vim,

src/testdir/test_perl.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_pyx2.vim,
src/testdir/test_pyx3.vim, src/testdir/test_ruby.vim

Patch 8.2.0673
Problem: Cannot build Haiku in shadow directory.
Solution: Add symlink. (Ozaki Kiichi, closes #6023)
Files: src/Makefile

Patch 8.2.0674
Problem: Some source files are too big.
Solution: Move text formatting functions to a new file. (Yegappan

Lakshmanan, closes #6021)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/edit.c, src/getchar.c, src/ops.c, src/option.c, src/proto.h,
src/proto/edit.pro, src/proto/getchar.pro, src/proto/ops.pro,
src/proto/option.pro, src/proto/textformat.pro, src/textformat.c

Patch 8.2.0675
Problem: Vim9: no support for closures.
Solution: Do not re-use stack entries.
Files: src/vim9compile.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/evalvars.c, src/proto/evalvars.pro

Patch 8.2.0676
Problem: Pattern in list of distributed files does not match.
Solution: Drop "testdir/test_[a-z]*.ok". Add CI sed files.
Files: Filelist

Patch 8.2.0677
Problem: Vim9: no support for closures.
Solution: Find variables in the outer function scope, so long as the scope

exists.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/userfunc.c,

version9.txt — 3555

src/vim9execute.c, src/structs.h, src/vim9.h,
src/testdir/test_vim9_func.vim

Patch 8.2.0678
Problem: Rare crash for popup menu.
Solution: Check for NULL pointer. (Nobuhiro Takasaki, closes #6027)
Files: src/popupmenu.c

Patch 8.2.0679
Problem: Vim9: incomplete support for closures.
Solution: At the end of a function copy arguments and local variables if

they are still used by a referenced closure.
Files: src/structs.h, src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.0680
Problem: PTYGROUP and PTYMODE are unused.
Solution: Remove from autoconf. (closes #6024)
Files: src/configure.ac, src/auto/configure, src/config.h.in

Patch 8.2.0681
Problem: Pattern for 'hlsearch' highlighting may leak. (Dominique Pellé)
Solution: Call end_search_hl() to make sure the previous pattern is freed.

(closes #6028)
Files: src/screen.c

Patch 8.2.0682
Problem: Vim9: parsing function argument type can get stuck.
Solution: Bail out when not making progress.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0683
Problem: Vim9: parsing type does not always work.
Solution: Handle func type without return value. Test more closures.

Fix type check offset. Fix garbage collection.
Files: src/vim9compile.c, src/vim9execute.c, src/proto/vim9execute.pro,

src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.0684
Problem: Vim9: memory leak when using lambda.
Solution: Move the funccal context to the partial. Free the function when

exiting.
Files: src/vim9.h, src/structs.h, src/vim9execute.c, src/userfunc.c,

src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.0685 (after 8.2.0684)
Problem: Build failure.
Solution: Include missing changes.
Files: src/vim9compile.c

Patch 8.2.0686
Problem: Formatoptions not sufficiently tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #6031)
Files: src/testdir/test_normal.vim, src/testdir/test_textformat.vim

Patch 8.2.0687
Problem: Some tests do not work on FreeBSD.
Solution: Enable modeline. Use WaitFor() in more cases. (Ozaki Kiichi,

closes #6036)
Files: src/testdir/test_quickfix.vim, src/testdir/test_terminal.vim

version9.txt — 3556

Patch 8.2.0688
Problem: Output clobbered if setting 'verbose' to see shell commands.
Solution: Only output "Searching for" when 'verbose' is 11 or higher.
Files: src/scriptfile.c, runtime/doc/options.txt

Patch 8.2.0689
Problem: When using getaddrinfo() the error message is unclear.
Solution: Use gai_strerror() to get the message. (Ozaki Kiichi,

closes #6034)
Files: src/channel.c

Patch 8.2.0690
Problem: Line number of option set by modeline is wrong.
Solution: Do not double the line number. (Ozaki Kiichi, closes #6035)
Files: src/option.c, src/testdir/test_modeline.vim

Patch 8.2.0691
Problem: Startup test fails.
Solution: Adjust expected output from -V2 argument.
Files: src/testdir/test_startup.vim

Patch 8.2.0692
Problem: Startup test fails on MS-Windows.
Solution: Allow for any path.
Files: src/testdir/test_startup.vim

Patch 8.2.0693
Problem: Closure using argument not tested.
Solution: Add a test, make it work.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0694
Problem: Haiku: channel and terminal do not work.
Solution: Close files when the job has finished. (Ozaki Kiichi,

closes #6039)
Files: src/channel.c, src/getchar.c, src/gui_haiku.cc, src/misc1.c

Patch 8.2.0695
Problem: Vim9: cannot define a function inside a function.
Solution: Initial support for :def inside :def.
Files: src/userfunc.c, src/proto/userfunc.pro, src/vim9compile.c,

src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.0696
Problem: Vim9: nested function does not work properly
Solution: Create a function reference. Check argument count.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.0697
Problem: Vim9: memory leak when using nested function.
Solution: Unreference function when deleting instructions. Adjust reference

count for local variables.
Files: src/vim9compile.c, src/vim9execute.c

Patch 8.2.0698
Problem: Insert mode completion not fully tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #6041)
Files: src/testdir/test_edit.vim, src/testdir/test_ins_complete.vim,

version9.txt — 3557

src/testdir/test_textformat.vim

Patch 8.2.0699
Problem: Vim9: not all errors tested.
Solution: Add test for deleted function. Bail out on first error.
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_expr.vim, src/testdir/vim9.vim

Patch 8.2.0700
Problem: Vim9: converting error message to exception not tested.
Solution: Test exception from error. Do not continue after :echoerr.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.0701
Problem: Vim9 test fails without job feature.
Solution: Add feature check.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0702
Problem: Running channel tests may leave running process behind.
Solution: Make Python client exit when running into EOF. (Kurtis Rader,

part of #6046)
Files: src/testdir/test_channel_pipe.py

Patch 8.2.0703
Problem: Vim9: closure cannot store value in outer context.
Solution: Make storing value in outer context work. Make :disassemble

accept a function reference.
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h, src/eval.c,

src/structs.h, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.0704
Problem: Vim9: memory leak in disassemble test.
Solution: Decrement refcount when creating funccal.
Files: src/vim9execute.c

Patch 8.2.0705
Problem: Indent tests don't run on CI for FreeBSD.
Solution: Set modeline. (Ozaki Kiichi, closes #6048)
Files: .cirrus.yml, runtime/indent/testdir/runtest.vim

Patch 8.2.0706
Problem: Vim9: using assert_fails() causes function to finish.
Solution: Check did_emsg instead of called_emsg.
Files: src/vim9execute.c, src/testdir/test_vim9_disassemble.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.0707
Problem: Vim9 function test fails.
Solution: Adjust expected error code.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.0708
Problem: Vim9: constant expressions are not simplified.
Solution: Simplify string concatenation.
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.0709

version9.txt — 3558

Problem: MS-Windows: compiler warning for int vs size_t.
Solution: Add type cast. (Mike Williams)
Files: src/channel.c

Patch 8.2.0710
Problem: Netbeans test sometimes fails.
Solution: Mark any test using an external command as flaky.
Files: src/testdir/shared.vim

Patch 8.2.0711
Problem: With a long running Vim the temp directory might be cleared on

some systems.
Solution: Lock the temp directory. (closes #6044)
Files: src/config.h.in, src/configure.ac, src/auto/configure,

src/fileio.c, src/globals.h, src/os_unix.h

Patch 8.2.0712
Problem: Various code not fully tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #6049)
Files: src/testdir/test_functions.vim, src/testdir/test_options.vim,

src/testdir/test_system.vim, src/testdir/test_termcodes.vim

Patch 8.2.0713
Problem: The pam_environment file is not recognized.
Solution: Add a filetype pattern for pamenv. (closes #6051)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0714
Problem: Vim9: handling constant expression does not scale.
Solution: Use another solution, passing typval_T.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0715
Problem: Vim9: leaking memory.
Solution: Free strings after concatenating them.
Files: src/vim9compile.c

Patch 8.2.0716
Problem: Vim9: another memory leak.
Solution: Clear typval when failing.
Files: src/vim9compile.c

Patch 8.2.0717
Problem: Vim9: postponed constant expressions does not scale.
Solution: Add a structure to pass around postponed constants.
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.0718
Problem: Gcc warning for returning pointer to local variable. (John

Marriott)
Solution: Return another pointer.
Files: src/evalvars.c

Patch 8.2.0719
Problem: Vim9: more expressions can be evaluated at compile time
Solution: Recognize has('name').
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.0720

version9.txt — 3559

Problem: Occasional exit when encountering an X error. (Manfred Lotz)
Solution: On an X error do not exit, do preserve files.
Files: src/os_unix.c

Patch 8.2.0721
Problem: Vim9: leaking memory when skipping.
Solution: Disable skipping in generate_ppconst().
Files: src/vim9compile.c

Patch 8.2.0722
Problem: Vim9: not handling constant expression for elseif.
Solution: Use postponed constants. Delete the code for evaluating a

constant expression.
Files: src/vim9compile.c

Patch 8.2.0723
Problem: Vim9: nested constant expression not evaluated compile time.
Solution: Use compile_expr1() for parenthesis.
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.0724
Problem: Vim9: appending to buffer/window/tab variable not tested
Solution: Add a test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0725
Problem: Vim9: cannot call a function declared later in Vim9 script.
Solution: Make two passes through the script file.
Files: src/scriptfile.c, src/proto/scriptfile.pro, src/vim9script.c,

src/vim9compile.c, src/vim9execute.c, src/proto/vim9compile.pro,
src/userfunc.c, src/proto/userfunc.pro, src/evalvars.c,
src/proto/evalvars.pro, src/vim.h,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0726
Problem: Vim9: leaking memory when calling not compiled :def function.
Solution: Check if function is compiled earlier.
Files: src/vim9execute.c

Patch 8.2.0727
Problem: MS-Windows: new gcc compiler does not support scanf format.
Solution: Use "%ll" instead of "%I". (Ken Takata)
Files: src/vim.h

Patch 8.2.0728
Problem: Messages about a deadly signal are not left aligned.
Solution: Output a CR before the NL. (Dominique Pellé, #6055)
Files: src/misc1.c, src/os_unix.c

Patch 8.2.0729
Problem: Vim9: When reloading a script variables are not cleared.
Solution: When sourcing a script again clear all script-local variables.
Files: src/dict.c, src/proto/dict.pro, src/scriptfile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0730
Problem: Vim9: Assignment to dict member does not work.
Solution: Parse dict assignment. Implement getting dict member.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/globals.h,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_cmd.vim,

version9.txt — 3560

src/testdir/test_vim9_script.vim

Patch 8.2.0731
Problem: Vim9: parsing declarations continues after :finish.
Solution: Bail out when encountering :finish.
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.0732
Problem: Vim9: storing value in dict messes up stack.
Solution: Correct item count of stack.
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.0733
Problem: Vim9: assigning to dict or list argument does not work.
Solution: Recognize an argument as assignment target.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.0734
Problem: Vim9: leaking memory when using :finish.
Solution: Do not check for next line in third pass.
Files: src/scriptfile.c

Patch 8.2.0735
Problem: Vim9: using uninitialized memory.
Solution: Clear the arg_lvar field.
Files: src/vim9compile.c

Patch 8.2.0736
Problem: Some files not recognized as pamenv.
Solution: Add pam_inv.conf. (closes #6065)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0737
Problem: When shell doesn't support CTRL-Z Vim still handles it.
Solution: Ignore the STOP signal if it was ignored on startup.

(Kurtis Rader, closes #5990, closes #6058)
Files: src/os_unix.c

Patch 8.2.0738
Problem: Mouse handling in a terminal window not well tested.
Solution: Add tests. (Yegappan Lakshmanan, closes #6052)
Files: src/testdir/term_util.vim, src/testdir/test_gui.vim,

src/testdir/test_modeless.vim, src/testdir/test_terminal.vim

Patch 8.2.0739
Problem: Incomplete profiling when exiting because of a deadly signal.
Solution: Call __gcov_flush() if available.
Files: src/os_unix.c, src/Makefile, .travis.yml

Patch 8.2.0740
Problem: Minor message mistakes.
Solution: Change vim to Vim and other fixes.
Files: src/if_py_both.h, src/if_tcl.c, src/main.c

Patch 8.2.0741
Problem: Python tests fail because of changed message.
Solution: Adjust the expected messages (Dominique Pellé, closes #6066)
Files: src/testdir/test86.ok, src/testdir/test87.ok

Patch 8.2.0742

version9.txt — 3561

Problem: Handling of a TERM signal not tested.
Solution: Add a test for SIGTERM. (Dominique Pellé, closes #6055)
Files: src/testdir/test_signals.vim

Patch 8.2.0743
Problem: Can move to another buffer from a terminal in popup window.
Solution: Do not allow "gf" or editing a file. (closes #6072)
Files: src/normal.c, src/ex_cmds.c, src/testdir/test_popupwin.vim

Patch 8.2.0744
Problem: The name vim is not capitalized in a message.
Solution: Use "Vim" instead of "vim".
Files: src/main.c

Patch 8.2.0745
Problem: Crash on exit when not all popups are closed.
Solution: Close popups when freeing all memory. Disable checking for popup

when editing a file for now.
Files: src/misc2.c, src/ex_cmds.c

Patch 8.2.0746
Problem: popup_clear() hangs when a popup can't be closed.
Solution: Bail out when a popup can't be closed.
Files: src/popupwin.c, src/proto/popupwin.pro

Patch 8.2.0747
Problem: Cannot forcefully close all popups.
Solution: Add the "force" argument to popup_clear(). Use it after running a

test. Put back the check for a popup when editing a file.
Files: runtime/doc/popup.txt, src/evalfunc.c, src/popupwin.c,

src/proto/popupwin.pro, src/tag.c, src/window.c, src/misc2.c,
src/ex_cmds.c, src/channel.c, src/testdir/runtest.vim,
src/testdir/test_terminal.vim

Patch 8.2.0748
Problem: Cannot get a list of all popups.
Solution: Add popup_list(). Use it in the test runner.
Files: runtime/doc/eval.txt, runtime/doc/popup.txt, src/popupwin.c,

src/proto/popupwin.pro, src/evalfunc.c,
src/testdir/test_popupwin.vim, src/testdir/runtest.vim

Patch 8.2.0749
Problem: TERM signal test fails on FreeBSD.
Solution: Do not check the messages, the may appear anywhere. (Dominique

Pellé, closes #6075)
Files: src/testdir/test_signals.vim

Patch 8.2.0750
Problem: Netbeans test is a bit flaky.
Solution: Allow for standard sign to be defined. Use WaitForAssert().
Files: src/testdir/test_netbeans.vim

Patch 8.2.0751
Problem: Vim9: performance can be improved.
Solution: Don't call break. Inline check for list materialize. Make an

inline version of ga_grow().
Files: src/macros.h, src/evalfunc.c, src/misc2.c,

src/proto/misc2.pro, src/channel.c, src/eval.c, src/evalbuffer.c,
src/evalvars.c, src/filepath.c, src/highlight.c, src/insexpand.c,
src/json.c, src/list.c, src/popupmenu.c, src/popupwin.c,

version9.txt — 3562

src/userfunc.c, src/if_py_both.h

Patch 8.2.0752
Problem: Terminal in popup window test is a bit flaky.
Solution: Wait for shell job status to be "run". Mark as flaky test.
Files: src/testdir/test_popupwin.vim

Patch 8.2.0753
Problem: Vim9: expressions are evaluated in the discovery phase.
Solution: Bail out if an expression is not a constant. Require a type for

declared constants.
Files: src/vim.h, src/evalvars.c, src/eval.c, src/ex_eval.c,

src/evalfunc.c, src/userfunc.c, src/dict.c, src/list.c,
src/vim9compile.c, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.0754
Problem: Vim9: No test for forward declaration.
Solution: Add a test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0755
Problem: Vim9: No error when variable initializer is not a constant.
Solution: Return FAIL when trying to get a variable value. Do not execute a

script when an error is detected in the first or second phase.
Files: src/eval.c, src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.0756 (after 8.2.0249)
Problem: MS-Windows: still a compiler warning.
Solution: Move flag to another place in the Makefile. (Ken Takata,

closes #6083)
Files: src/Make_mvc.mak

Patch 8.2.0757
Problem: Vim9: no test for MEMBER instruction.
Solution: Add a test. Make matches stricter.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.0758
Problem: Vim9: no test for STORELIST and STOREDICT.
Solution: Add a test. Make matches stricter.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.0759 (after 8.2.0751)
Problem: Vim9: missing changes for performance improvements
Solution: Use GA_GROW(). Don't call breakcheck so often.
Files: src/vim9execute.c

Patch 8.2.0760
Problem: Vim9: dict member errors not tested.
Solution: Delete unreachable error. Add tests.
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.0761
Problem: Vim9: instructions not tested
Solution: Use a variable instead of a constant.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.0762
Problem: Buffer is not considered modified after setting crypt key.

version9.txt — 3563

Solution: Set the modified flag. (Christian Brabandt, closes #6082)
Files: src/optionstr.c, src/testdir/test_crypt.vim

Patch 8.2.0763
Problem: GUI test fails without the terminal feature.
Solution: Check the terminal feature is supported. (Ken Takata,

closes #6084)
Files: src/testdir/test_gui.vim

Patch 8.2.0764
Problem: Vim9: assigning to option not fully tested.
Solution: Add more test cases. Allow using any type for assignment.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0765
Problem: In the GUI can't use all the modifiers. (Andri Möll)
Solution: Do not apply Alt/Meta early, do it later like with the terminal.

Avoid the Motif test from crashing.
Files: src/gui_gtk_x11.c, src/gui_x11.c, src/gui_mac.c, src/gui_w32.c,

src/gui_motif.c

Patch 8.2.0766
Problem: Display error when using 'number' and 'breakindent'.
Solution: Adjust extra spaces in the first row. (Ken Takata, closes #6089,

closes #5986)
Files: src/drawline.c, src/testdir/test_breakindent.vim

Patch 8.2.0767
Problem: ModifyOtherKeys active when using a shell command in autocmd.
Solution: Output T_CTE when going to cooked mode. (closes 5617)
Files: src/term.c

Patch 8.2.0768
Problem: Vim9: memory leak in script test.
Solution: Clear typval before giving an error message.
Files: src/vim9execute.c

Patch 8.2.0769
Problem: VimLeavePre not triggered when Vim is terminated.
Solution: Unblock autocommands.
Files: src/main.c, src/testdir/test_signals.vim

Patch 8.2.0770
Problem: Cannot map CTRL-B when using the GUI.
Solution: Reset the CTRL modifier when used. (closes #6092)
Files: src/gui_gtk_x11.c

Patch 8.2.0771
Problem: Vim9: cannot call a compiled closure from not compiled code.
Solution: Pass funcexe to call_user_func().
Files: src/userfunc.c, src/vim9execute.c, src/proto/vim9execute.pro,

src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.0772
Problem: Vim9: some variable initializations not tested.
Solution: Add a few more tests
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0773

version9.txt — 3564

Problem: Switching to raw mode every time ":" is used.
Solution: When executing a shell set cur_tmode to TMODE_UNKNOWN, so that the

next time TMODE_RAW is used it is set, but not every time.
Files: src/term.h, src/os_unix.c, src/term.c, src/os_amiga.c,

src/os_win32.c

Patch 8.2.0774
Problem: t_TI and t_TE are output when using 'visualbell'. (Dominique

Pellé)
Solution: Do not change the terminal mode for a short sleep. Do not output

t_TI and t_TE when switching to/from TMODE_SLEEP. Make tmode an
enum.

Files: src/os_unix.c, src/proto/os_unix.pro, src/os_amiga.c,
src/proto/os_amiga.pro, src/os_mswin.c, src/proto/os_mswin.pro,
src/os_vms.c, src/proto/os_vms.pro, src/os_win32.c,
src/proto/os_win32.pro, src/term.c, src/term.h, src/globals.h

Patch 8.2.0775
Problem: Not easy to call a Vim function from Lua.
Solution: Add vim.call() and vim.fn(). (Prabir Shrestha, closes #6063)
Files: runtime/doc/if_lua.txt, src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.0776
Problem: Libvterm code lags behind the upstream version.
Solution: Include revision 719.
Files: Filelist, src/libvterm/README, src/libvterm/Makefile,

src/libvterm/find-wide-chars.pl, src/libvterm/src/fullwidth.inc,
src/libvterm/src/unicode.c

Patch 8.2.0777 (after 8.2.0776)
Problem: Terminal test fails.
Solution: Adjust character position for double-wide characters.
Files: src/testdir/test_terminal.vim

Patch 8.2.0778
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 720 - 723.
Files: src/libvterm/t/10state_putglyph.test, src/libvterm/Makefile,

src/libvterm/t/run-test.pl, src/libvterm/src/state.c,
src/libvterm/t/92lp1805050.test

Patch 8.2.0779
Problem: Tmode_T not used everywhere.
Solution: Also use tmode_T for settmode().
Files: src/term.c, src/proto/term.pro

Patch 8.2.0780
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 724 - 726.
Files: Filelist, src/libvterm/t/40screen_ascii.test,

src/libvterm/t/60screen_ascii.test,
src/libvterm/t/41screen_unicode.test,
src/libvterm/t/61screen_unicode.test,
src/libvterm/t/42screen_damage.test,
src/libvterm/t/62screen_damage.test,
src/libvterm/t/43screen_resize.test,
src/libvterm/t/63screen_resize.test,
src/libvterm/t/44screen_pen.test,
src/libvterm/t/64screen_pen.test,
src/libvterm/t/45screen_protect.test,

version9.txt — 3565

src/libvterm/t/65screen_protect.test,
src/libvterm/t/46screen_extent.test,
src/libvterm/t/66screen_extent.test,
src/libvterm/t/47screen_dbl_wh.test,
src/libvterm/t/67screen_dbl_wh.test,
src/libvterm/t/48screen_termprops.test,
src/libvterm/t/68screen_termprops.test, src/libvterm/t/30pen.test,
src/libvterm/t/30state_pen.test, src/libvterm/t/92lp1805050.test,
src/libvterm/t/31state_rep.test, src/libvterm/doc/seqs.txt

Patch 8.2.0781 (after 8.2.0775)
Problem: Compiler warning for not using value in Lua.
Solution: Add "(void)".
Files: src/if_lua.c

Patch 8.2.0782
Problem: Cannot build with Lua on MS-Windows.
Solution: Add DLL symbol for luaL_Loadstring. (Ken Takata)
Files: src/if_lua.c

Patch 8.2.0783
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 728 - 729.
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Makefile,

src/libvterm/src/keyboard.c, src/libvterm/t/25state_input.test,
src/libvterm/t/harness.c, src/libvterm/src/vterm.c,
src/libvterm/src/vterm_internal.h,
src/libvterm/t/26state_query.test

Patch 8.2.0784
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 730 - 733.
Files: src/libvterm/src/vterm.c, src/libvterm/src/state.c,

src/libvterm/include/vterm.h, src/libvterm/src/vterm_internal.h,
src/libvterm/t/harness.c

Patch 8.2.0785
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 734 - 740.
Files: src/libvterm/include/vterm.h, src/libvterm/src/pen.c,

src/libvterm/src/vterm.c, src/libvterm/doc/seqs.txt,
src/libvterm/t/30state_pen.test, src/libvterm/t/run-test.pl,
src/libvterm/Makefile, src/libvterm/CONTRIBUTING

Patch 8.2.0786
Problem: Channel test is flaky on FreeBSD.
Solution: Set the socket TCP_NODELAY option. Adjust expected line count in

netbeans test. (Ozaki Kiichi, closes #6097)
Files: src/testdir/test_channel.py, src/testdir/test_netbeans.vim

Patch 8.2.0787
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 741 - 742.
Files: Filelist, src/libvterm/src/screen.c

Patch 8.2.0788
Problem: Memory leak in libvterm.
Solution: free tmpbuffer.
Files: src/libvterm/src/vterm.c

version9.txt — 3566

Patch 8.2.0789
Problem: Vim9: expression testing lost coverage using constants.
Solution: Use a few variables instead of constants.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.0790
Problem: Vim9: list index not well tested.
Solution: Add a few more tests.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0791
Problem: A second popup window with terminal causes trouble.
Solution: Disallow opening a second terminal-popup window. (closes #6101,

closes #6103) Avoid defaulting to an invalid line number.
Files: runtime/doc/popup.txt, src/popupwin.c, src/ex_docmd.c,

src/testdir/test_popupwin.vim, src/testdir/test_terminal.vim

Patch 8.2.0792
Problem: Build failure with small features.
Solution: Add #ifdef.
Files: src/popupwin.c

Patch 8.2.0793
Problem: MS-Windows: cannot build GUI with small features. (Michael Soyka)
Solution: Add #ifdef around use of windowsVersion. (Ken Takata)
Files: src/os_win32.c

Patch 8.2.0794
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 743 - 747.
Files: src/libvterm/src/state.c, src/libvterm/src/screen.c,

src/libvterm/src/vterm_internal.h, src/libvterm/include/vterm.h,
src/libvterm/t/67screen_dbl_wh.test, src/libvterm/t/run-test.pl

Patch 8.2.0795
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 748 - 754.
Files: src/libvterm/include/vterm.h, src/libvterm/src/screen.c,

src/libvterm/src/state.c, src/libvterm/t/32state_flow.test,
src/libvterm/t/60screen_ascii.test,
src/libvterm/t/62screen_damage.test,
src/libvterm/t/63screen_resize.test, src/libvterm/t/harness.c,
src/libvterm/t/run-test.pl

Patch 8.2.0796
Problem: MS-Windows: compiler can't handle C99 construct in libvterm.
Solution: Change to C90 construct.
Files: src/libvterm/src/state.c

Patch 8.2.0797
Problem: MS-Windows: compiler still can't handle C99 construct.
Solution: Change to C90 construct. (Dominique Pellé, closes #6106)
Files: src/libvterm/src/state.c

Patch 8.2.0798
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 755 - 758.
Files: src/libvterm/t/run-test.pl, src/libvterm/src/screen.c,

src/libvterm/t/harness.c, src/libvterm/include/vterm.h,
src/libvterm/src/parser.c, src/libvterm/src/state.c,

version9.txt — 3567

src/libvterm/src/vterm.c, src/libvterm/src/vterm_internal.h,
src/libvterm/t/02parser.test,
src/libvterm/t/18state_termprops.test,
src/libvterm/t/29state_fallback.test,
src/libvterm/t/68screen_termprops.test, src/terminal.c

Patch 8.2.0799
Problem: Build fails if snprintf is not available.
Solution: Use vim_snprintf().
Files: src/libvterm/src/state.c

Patch 8.2.0800
Problem: Errors from failing test are unclear.
Solution: Include text where parsing failed.
Files: src/json.c, src/testdir/test_json.vim

Patch 8.2.0801
Problem: Terminal test fails on Mac.
Solution: Concatenate OSC pieces.
Files: src/terminal.c

Patch 8.2.0802
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 759 - 762.
Files: src/terminal.c, src/libvterm/doc/seqs.txt,

src/libvterm/include/vterm.h, src/libvterm/src/pen.c,
src/libvterm/src/screen.c, src/libvterm/src/state.c,
src/libvterm/src/vterm.c, src/libvterm/src/vterm_internal.h,
src/libvterm/t/harness.c, src/libvterm/t/12state_scroll.test

Patch 8.2.0803
Problem: Libvterm code lags behind the upstream version.
Solution: Include revisions 764 - 767
Files: src/Makefile, src/libvterm/src/parser.c,

src/libvterm/src/vterm_internal.h, src/libvterm/t/02parser.test,
src/libvterm/t/run-test.pl, src/libvterm/find-wide-chars.pl,
src/libvterm/src/fullwidth.inc

Patch 8.2.0804
Problem: Libvterm code lags behind the upstream version.
Solution: Include revision 727, but add the index instead of switching

between RGB and indexed.
Files: src/terminal.c, src/term.c, src/libvterm/include/vterm.h,

src/libvterm/src/pen.c, src/libvterm/src/screen.c,
src/libvterm/src/vterm_internal.h,
src/libvterm/t/30state_pen.test,
src/libvterm/t/harness.c, src/libvterm/src/state.c,
src/libvterm/t/26state_query.test,
src/libvterm/t/64screen_pen.test

Patch 8.2.0805
Problem: Terminal key codes test fails on some systems.
Solution: Skip keypad 3 and 9. (Yegappan Lakshmanan, closes #6070)
Files: src/testdir/test_terminal.vim

Patch 8.2.0806
Problem: using "func!" after vim9script gives confusing error.
Solution: Give E477. (closes #6107)
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

version9.txt — 3568

Patch 8.2.0807
Problem: Cannot easily restore a mapping.
Solution: Add mapset().
Files: runtime/doc/eval.txt, src/map.c, src/proto/map.pro, src/evalfunc.c

src/testdir/test_maparg.vim

Patch 8.2.0808
Problem: Not enough testing for the terminal window.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6069) Fix memory

leak.
Files: src/testdir/test_gui.vim, src/testdir/test_terminal.vim,

src/terminal.c

Patch 8.2.0809
Problem: Build failure with small features. (Tony Mechelynck)
Solution: Move "expr" inside #ifdef.
Files: src/map.c

Patch 8.2.0810
Problem: Error when appending "tagfile" to 'wildoptions'.
Solution: use flags P_ONECOMMA and P_NODUP. (Dmitri Vereshchagin,

closes #6105)
Files: src/optiondefs.h, src/testdir/test_options.vim

Patch 8.2.0811
Problem: Terminal keycode test is flaky.
Solution: Use WaitForAssert()
Files: src/testdir/test_terminal.vim

Patch 8.2.0812
Problem: mapset() does not properly handle <> notation.
Solution: Convert <> codes. (closes #6116)
Files: src/map.c, src/testdir/test_maparg.vim

Patch 8.2.0813
Problem: libvterm code is slightly different from upstream.
Solution: Use upstream text to avoid future merge problems. Mainly comment

style changes.
Files: src/libvterm/include/vterm.h, src/libvterm/src/rect.h,

src/libvterm/src/utf8.h, src/libvterm/src/vterm_internal.h,
src/libvterm/src/encoding.c, src/libvterm/src/keyboard.c,
src/libvterm/src/mouse.c, src/libvterm/src/parser.c,
src/libvterm/src/pen.c, src/libvterm/src/screen.c,
src/libvterm/src/state.c, src/libvterm/src/unicode.c,
src/libvterm/src/vterm.c

Patch 8.2.0814
Problem: Clang warning for implicit conversion.
Solution: Add type cast. (Dominique Pellé, closes #6124)
Files: src/evalfunc.c

Patch 8.2.0815
Problem: maparg() does not provide enough information for mapset().
Solution: Add "lhsraw" and "lhsrawalt" items. Drop "simplified"
Files: src/map.c, runtime/doc/eval.txt, src/testdir/test_maparg.vim

Patch 8.2.0816
Problem: Terminal test fails when compiled with Athena.
Solution: Do give an error when the GUI is not running. (hint by Dominique

Pellé, closes #5928, closes #6132)

version9.txt — 3569

Files: src/globals.h, src/gui.c, src/term.c, src/channel.c,
src/testdir/test_terminal.vim

Patch 8.2.0817
Problem: Not enough memory allocated when converting string with special

character.
Solution: Reserve space for modifier code. (closes #6130)
Files: src/eval.c, src/testdir/test_functions.vim

Patch 8.2.0818
Problem: Vim9: using a discovery phase doesn't work well.
Solution: Remove the discovery phase, instead compile a function only when

it is used. Add :defcompile to compile def functions earlier.
Files: runtime/doc/vim9.txt, src/vim9script.c, src/structs.h,

src/userfunc.c, src/proto/userfunc.pro, src/eval.c,
src/evalvars.c, src/proto/evalvars.pro, src/vim9compile.c,
src/proto/vim9compile.pro, src/vim9execute.c, src/ex_cmds.h,
src/ex_docmd.c, src/ex_cmdidxs.h, src/vim.h, src/testdir/vim9.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.0819
Problem: Compiler warning for unused variable.
Solution: Remove the variable.
Files: src/evalvars.c

Patch 8.2.0820
Problem: Vim9: function type isn't set until compiled.
Solution: Set function type early.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/userfunc.c,

src/testdir/test_vim9_func.vim

Patch 8.2.0821
Problem: Vim9: memory leak in expr test.
Solution: Do not decrement the length of the list of functions if the

current function is not at the end.
Files: src/vim9compile.c

Patch 8.2.0822
Problem: Vim9: code left over from discovery phase.
Solution: Remove the dead code.
Files: src/scriptfile.c, src/proto/scriptfile.pro, src/ex_cmds.h,

src/evalvars.c, src/proto/evalvars.pro, src/ex_docmd.c

Patch 8.2.0823
Problem: Vim9: script reload test is disabled.
Solution: Compile a function in the context of the script where it was

defined. Set execution stack for compiled function. Add a test
that an error is reported for the right file/function.

Files: src/vim9compile.c, src/vim9execute.c, src/scriptfile.c,
src/proto/scriptfile.pro, src/userfunc.c, src/globals.h,
src/structs.h, src/ex_docmd.c, src/ex_eval.c,
src/testdir/test_vim9_script.vim

Patch 8.2.0824 (after 8.2.0817)
Problem: Still not enough memory allocated when converting string with

special character.
Solution: Reserve space for expanding K_SPECIAL. (closes #6130)
Files: src/eval.c, src/testdir/test_functions.vim

version9.txt — 3570

Patch 8.2.0825
Problem: def_function() may return pointer that was freed.
Solution: Set "fp" to NULL after freeing it.
Files: src/userfunc.c

Patch 8.2.0826
Problem: Vim9: crash in :defcompile.
Solution: Restart the loop after a call to compile_def_function() caused the

hash table to resize.
Files: src/userfunc.c

Patch 8.2.0827
Problem: Vim9: crash in :defcompile.
Solution: Fix off-by-one error.
Files: src/userfunc.c

Patch 8.2.0828
Problem: Travis: regexp pattern doesn't work everywhere.
Solution: Use [:blank:] instead of \b. (Ozaki Kiichi, closes #6146)
Files: .travis.yml, ci/config.mk.clang.sed, ci/config.mk.gcc.sed,

ci/config.mk.sed, src/if_ruby.c

Patch 8.2.0829
Problem: filter() may give misleading error message.
Solution: Also mention Blob as an allowed argument.
Files: src/list.c, src/testdir/test_filter_map.vim

Patch 8.2.0830
Problem: Motif: can't map "!". (Ben Jackson)
Solution: Remove the shift modifier if it's already included in the key.

(closes #6147)
Files: src/gui_x11.c

Patch 8.2.0831
Problem: Compiler warnings for integer sizes.
Solution: Add type casts. (Mike Williams)
Files: src/libvterm/src/pen.c, src/terminal.c

Patch 8.2.0832
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Add initial value.
Files: src/map.c

Patch 8.2.0833
Problem: Mapping <C-bslash> doesn't work in the GUI.
Solution: Reset seenModifyOtherKeys when starting the GUI. (closes #6150)
Files: src/gui.c

Patch 8.2.0834
Problem: :drop command in terminal popup causes problems.
Solution: Check for using a popup window. (closes #6151)
Files: src/ex_cmds.c, src/testdir/test_popupwin.vim

Patch 8.2.0835
Problem: Motif: mapping <C-bslash> still doesn't work.
Solution: Accept CSI for K_SPECIAL. Do not apply CTRL to the character

early. (closes #6150)
Files: src/getchar.c, src/gui_x11.c

Patch 8.2.0836

version9.txt — 3571

Problem: Not all :cdo output is visible.
Solution: Reset 'shortmess' temporarily. (Yegappan Lakshmanan, closes #6155)
Files: src/ex_cmds2.c, src/testdir/test_cdo.vim

Patch 8.2.0837
Problem: Compiler warning for value set but not used.
Solution: Move variable inside #ifdef.
Files: src/channel.c

Patch 8.2.0838
Problem: MS-Windows: compiler warning for uninitialized variables.
Solution: Initialize variables.
Files: src/screen.c

Patch 8.2.0839
Problem: Dropping modifier when putting a character back in typeahead.
Solution: Add modifier to ins_char_typebuf(). (closes #6158)
Files: src/getchar.c, src/proto/getchar.pro, src/message.c, src/normal.c,

src/terminal.c, src/globals.h, src/testdir/test_messages.vim

Patch 8.2.0840
Problem: Search match count wrong when only match is in fold.
Solution: Update search stats when in a closed fold. (Christian Brabandt,

closes #6160, closes #6152)
Files: src/search.c, src/testdir/dumps/Test_searchstat_3.dump,

src/testdir/test_search_stat.vim

Patch 8.2.0841
Problem: 'verbose' value 16 causes duplicate output.
Solution: Combine levels 15 and 16 into one message. (Christian Brabandt,

closes #6153)
Files: runtime/doc/options.txt, src/ex_docmd.c

Patch 8.2.0842 (after 8.2.0837)
Problem: MS-Windows: channel tests fail.
Solution: Adjust #ifdefs. (closes #6162)
Files: src/channel.c

Patch 8.2.0843
Problem: Filetype elm not detected.
Solution: Recognize *.elm files. (closes #6157)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0844
Problem: Text properties crossing lines not handled correctly.
Solution: When saving for undo include an extra line when needed and do not

adjust properties when undoing. (Axel Forsman, closes #5875)
Files: src/memline.c, src/proto/memline.pro, src/undo.c, src/structs.h

Patch 8.2.0845
Problem: Text properties crossing lines not handled correctly.
Solution: When joining lines merge text properties if possible.

(Axel Forsman, closes #5839, closes #5683)
Files: src/testdir/test_textprop.vim, src/memline.c, src/ops.c,

src/proto/textprop.pro, src/textprop.c,
src/testdir/dumps/Test_textprop_01.dump

Patch 8.2.0846
Problem: Build failure with small features.
Solution: Add #ifdef.

version9.txt — 3572

Files: src/undo.c

Patch 8.2.0847
Problem: Typval related code is spread out.
Solution: Move code to new typval.c file. (Yegappan Lakshmanan, closes #6093)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/eval.c, src/evalfunc.c, src/globals.h, src/proto.h,
src/proto/eval.pro, src/proto/evalfunc.pro, src/proto/typval.pro,
src/typval.c

Patch 8.2.0848
Problem: MS-Windows: the Windows terminal code has some flaws.
Solution: Do not redraw the right edge of the screen. Remove the background

color trick. Flush the screen output buffer often. (Nobuhiro
Takasaki, #5546)

Files: src/os_win32.c, src/proto/os_win32.pro, src/term.c

Patch 8.2.0849
Problem: BeOS code is not maintained and probably unused.
Solution: Remove the BeOS code. (Emir Sarı, closes #5817)
Files: Filelist, src/Makefile, src/configure.ac, src/auto/configure,

src/evalfunc.c, src/normal.c, src/os_beos.c, src/os_beos.h,
src/os_beos.rsrc, src/os_unix.c, src/proto.h,
src/proto/os_beos.pro, src/pty.c, src/screen.c, src/term.c,
src/testdir/test_functions.vim, src/ui.c, src/vim.h

Patch 8.2.0850
Problem: MS-Windows: exepath() works differently from cmd.exe.
Solution: Make exepath() work better on MS-Windows. (closes #6115)
Files: runtime/doc/eval.txt, src/os_win32.c,

src/testdir/test_functions.vim

Patch 8.2.0851 (after 8.2.0833)
Problem: Can't distinguish <M-a> from accented "a" in the GUI.
Solution: Use another way to make mapping <C-bslash> work. (closes #6163)
Files: src/gui.c, src/gui_gtk_x11.c, src/getchar.c

Patch 8.2.0852
Problem: Cannot map CTRL-S on some systems.
Solution: Do not use CTRL-S for flow control.
Files: src/os_unix.c

Patch 8.2.0853
Problem: ml_delete() often called with FALSE argument.
Solution: Use ml_delete_flags(x, ML_DEL_MESSAGE) when argument is TRUE.
Files: src/buffer.c, src/change.c, src/diff.c, src/evalbuffer.c,

src/ex_cmds.c, src/ex_docmd.c, src/fileio.c, src/if_lua.c,
src/if_mzsch.c, src/if_ruby.c, src/if_tcl.c, src/normal.c,
src/popupmenu.c, src/popupwin.c, src/quickfix.c, src/spell.c,
src/terminal.c, src/if_perl.xs, src/if_py_both.h, src/memline.c,
src/proto/memline.pro

Patch 8.2.0854
Problem: Xxd cannot show offset as a decimal number.
Solution: Add the "-d" flag. (Aapo Rantalainen, closes #5616)
Files: src/testdir/test_xxd.vim, src/xxd/xxd.c

Patch 8.2.0855
Problem: GUI tests fail because the test doesn't use a modifier.

version9.txt — 3573

Solution: Add "\{xxx}" to be able to encode a modifier.
Files: runtime/doc/eval.txt, src/typval.c, src/misc2.c, src/vim.h,

src/proto/misc2.pro, src/gui_mac.c, src/option.c, src/highlight.c,
src/term.c, src/testdir/test_backspace_opt.vim,
src/testdir/test_mapping.vim, src/testdir/test_messages.vim

Patch 8.2.0856 (after 8.2.0852)
Problem: CTRL-S stops output.
Solution: Invert the IXON flag. (closes #6166)
Files: src/os_unix.c

Patch 8.2.0857
Problem: GTK cell height can be a pixel too much.
Solution: Subtract 3 instead of 1 when rounding. (closes #6168)
Files: src/gui_gtk_x11.c

Patch 8.2.0858
Problem: Not easy to require Lua modules.
Solution: Improve use of Lua path. (Prabir Shrestha, closes #6098)
Files: Filelist, src/if_lua.c, src/optionstr.c, src/proto/if_lua.pro,

src/testdir/test_lua.vim,
src/testdir/testluaplugin/lua/testluaplugin/hello.lua,
src/testdir/testluaplugin/lua/testluaplugin/init.lua

Patch 8.2.0859
Problem: No Turkish translation of the manual.
Solution: Add Turkish translations. (Emir Sarı, closes #5641)
Files: Filelist, runtime/doc/Makefile, runtime/doc/evim-tr.1,

runtime/doc/evim-tr.UTF-8.1, runtime/doc/vim-tr.1,
runtime/doc/vim-tr.UTF-8.1, runtime/doc/vimdiff-tr.1,
runtime/doc/vimdiff-tr.UTF-8.1, runtime/doc/vimtutor-tr.1,
runtime/doc/vimtutor-tr.UTF-8.1, src/Makefile

Patch 8.2.0860
Problem: Cannot use CTRL-A and CTRL-X on unsigned numbers.
Solution: Add "unsigned" to 'nrformats'. (Naruhiko Nishino, closes #6144)
Files: runtime/doc/options.txt, src/ops.c, src/optionstr.c,

src/testdir/test_increment.vim

Patch 8.2.0861
Problem: Cannot easily get all the current marks.
Solution: Add getmarklist(). (Yegappan Lakshmanan, closes #6032)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/mark.c, src/proto/mark.pro, src/testdir/test_marks.vim

Patch 8.2.0862
Problem: ":term ++curwin" makes the current buffer hidden. (Harm te

Hennepe)
Solution: Do not hide the current buffer. (closes #6170)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.0863
Problem: Cannot set a separate color for underline/undercurl.
Solution: Add the t_AU and t_8u termcap codes. (Timur Celik, closes #6011)
Files: runtime/doc/syntax.txt, runtime/doc/term.txt, src/globals.h,

src/highlight.c, src/optiondefs.h, src/proto/term.pro,
src/screen.c, src/structs.h, src/term.c, src/term.h,
src/testdir/test_options.vim

Patch 8.2.0864

version9.txt — 3574

Problem: Pragmas are indented all the way to the left.
Solution: Add an option to indent pragmas like normal code. (Max Rumpf,

closes #5468)
Files: runtime/doc/indent.txt, src/cindent.c, src/structs.h,

src/testdir/test_cindent.vim

Patch 8.2.0865
Problem: Syntax foldlevel is taken from the start of the line.
Solution: Add ":syn foldlevel" to be able to use the minimal foldlevel in

the line. (Brad King, closes #6087)
Files: runtime/doc/syntax.txt, src/structs.h, src/syntax.c,

src/testdir/test_syntax.vim

Patch 8.2.0866
Problem: Not enough tests for buffer writing.
Solution: Add more tests. Use CheckRunVimInTerminal in more places.

(Yegappan Lakshmanan, closes #6167)
Files: src/testdir/test_arglist.vim, src/testdir/test_match.vim,

src/testdir/test_messages.vim, src/testdir/test_netbeans.py,
src/testdir/test_netbeans.vim, src/testdir/test_search.vim,
src/testdir/test_signals.vim, src/testdir/test_signs.vim,
src/testdir/test_startup.vim, src/testdir/test_startup_utf8.vim,
src/testdir/test_syntax.vim, src/testdir/test_tabpage.vim,
src/testdir/test_timers.vim, src/testdir/test_vimscript.vim,
src/testdir/test_writefile.vim

Patch 8.2.0867
Problem: Using \{xxx} for encoding a modifier is not nice.
Solution: Use \<*xxx> instead, since it's the same as \<xxx> but producing a

different code.
Files: runtime/doc/eval.txt, src/typval.c, src/misc2.c, src/vim.h,

src/testdir/test_backspace_opt.vim, src/testdir/test_mapping.vim,
src/testdir/test_messages.vim

Patch 8.2.0868
Problem: trim() always trims both ends.
Solution: Add an argument to only trim the beginning or end. (Yegappan

Lakshmanan, closes #6126)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim

Patch 8.2.0869
Problem: It is not possible to customize the quickfix window contents.
Solution: Add 'quickfixtextfunc'. (Yegappan Lakshmanan, closes #5465)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/quickfix.txt, src/option.h, src/optiondefs.h,
src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.0870
Problem: MS-Windows: Control keys don't work in the GUI.
Solution: Don't set seenModifyOtherKeys for now. (Yasuhiro Matsumoto,

closes #6175)
Files: src/gui.c

Patch 8.2.0871
Problem: Cannot use getmarklist() as a method.
Solution: Make getmarklist() work as a method. Add one to the column

number to match getpos(). (Yegappan Lakshmanan, closes #6176)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/mark.c,

src/testdir/test_marks.vim

version9.txt — 3575

Patch 8.2.0872
Problem: XIM code is mixed with multibyte code.
Solution: Move the XIM code to a separate file. (Yegappan Lakshmanan,

closes #6177)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/gui_xim.c,
src/mbyte.c, src/proto.h, src/proto/gui_xim.pro,
src/proto/mbyte.pro

Patch 8.2.0873
Problem: A .jl file can be sawfish (lisp) or Julia.
Solution: Do not recognize *.jl as lisp, since it might be Julia.

(closes #6178)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0874
Problem: Signals test is a bit flaky.
Solution: Flush the XautoOut file. Delete files that may be left behind

from a failure. (Dominique Pellé, closes #6179)
Files: src/testdir/test_signals.vim

Patch 8.2.0875
Problem: Getting attributes for directory entries is slow.
Solution: Add readdirex(). (Ken Takata, closes #5619)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/fileio.c, src/filepath.c, src/proto/fileio.pro,
src/proto/filepath.pro, src/testdir/test_functions.vim

Patch 8.2.0876
Problem: :pwd does not give a hint about the scope of the directory
Solution: Make ":verbose pwd" show the scope. (Takuya Fujiwara, closes #5469)
Files: runtime/doc/editing.txt, src/ex_docmd.c, src/testdir/test_cd.vim

Patch 8.2.0877
Problem: Cannot get the search statistics.
Solution: Add the searchcount() function. (Fujiwara Takuya, closes #4446)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/macros.h,

src/proto/search.pro, src/search.c,
src/testdir/test_search_stat.vim

Patch 8.2.0878
Problem: No reduce() function.
Solution: Add a reduce() function. (closes #5481)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/globals.h, src/list.c,

src/proto/list.pro, src/testdir/test_listdict.vim

Patch 8.2.0879
Problem: Compiler warning for unused function argument.
Solution: Add UNUSED.
Files: src/search.c

Patch 8.2.0880 (after 8.2.0877)
Problem: Leaking memory when using searchcount().
Solution: Free the last used search pattern.
Files: src/search.c

Patch 8.2.0881
Problem: Compiler warning for argument type.
Solution: Add type cast. (Mike Williams)

version9.txt — 3576

Files: src/ops.c

Patch 8.2.0882
Problem: Leaking memory when using reduce().
Solution: Free the intermediate value.
Files: src/list.c

Patch 8.2.0883
Problem: Memory leak in test 49.
Solution: Free "sfile" from the exception.
Files: src/ex_docmd.c

Patch 8.2.0884
Problem: Searchcount() test fails on slower systems.
Solution: Set a longer timeout.
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.2.0885
Problem: "make shadow" does not link new lua test dir.
Solution: Also link testdir/testluaplugin. (Elimar Riesebieter)
Files: src/Makefile

Patch 8.2.0886
Problem: Cannot use octal numbers in scriptversion 4.
Solution: Add the "0o" notation. (Ken Takata, closes #5304)
Files: runtime/doc/eval.txt, src/charset.c, src/evalfunc.c,

src/testdir/test_eval_stuff.vim, src/testdir/test_functions.vim,
src/vim.h

Patch 8.2.0887
Problem: Searchcount().exact_match is 1 right after a match.
Solution: Use LT_POS() instead of LTOREQ_POS(). (closes #6189)
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.2.0888
Problem: Readdirex() returns size -2 for a directory.
Solution: Add missing "else". (Ken Takata, closes #6185)
Files: src/fileio.c, src/testdir/test_functions.vim

Patch 8.2.0889
Problem: Using old style comments.
Solution: Use // comments. (Yegappan Lakshmanan, closes #6190)
Files: src/gui_xim.c

Patch 8.2.0890
Problem: No color in terminal window when 'termguicolors' is set.
Solution: Clear the underline color. (closes #6186)
Files: src/highlight.c

Patch 8.2.0891
Problem: Clang warns for invalid conversion.
Solution: Use zero instead of INVALCOLOR.
Files: src/highlight.c

Patch 8.2.0892
Problem: Ubsan warns for undefined behavior.
Solution: Use unsigned instead of signed variable. (Dominique Pellé,

closes #6193)
Files: src/regexp_nfa.c

version9.txt — 3577

Patch 8.2.0893
Problem: Assert_equalfile() does not take a third argument.
Solution: Implement the third argument. (Gary Johnson)
Files: runtime/doc/eval.txt, runtime/doc/testing.txt, src/evalfunc.c,

src/testdir/test_assert.vim, src/testing.c

Patch 8.2.0894
Problem: :mkspell can take very long if the word count is high.
Solution: Use long to avoid negative numbers. Increase the limits by 20% if

the compression did not have effect.
Files: src/spellfile.c

Patch 8.2.0895
Problem: :mkspell output does not mention the tree type.
Solution: Back out increasing the limits, it has no effect. Mention the

tree being compressed. Only give a message once per second.
Files: src/spellfile.c

Patch 8.2.0896
Problem: Crash when calling searchcount() with a string.
Solution: Check the argument is a dict. (closes #6192)
Files: src/search.c, src/testdir/test_search_stat.vim

Patch 8.2.0897
Problem: List of functions in patched version is outdated.
Solution: Update the function lists only.
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt

Patch 8.2.0898
Problem: Missing help for a function goes unnoticed.
Solution: Add a test. (Gary Johnson)
Files: src/testdir/test_function_lists.vim, src/testdir/Make_all.mak

Patch 8.2.0899
Problem: Assert_equalfile() does not give a hint about the difference.
Solution: Display the last seen text.
Files: src/testing.c, src/testdir/test_assert.vim

Patch 8.2.0900
Problem: Function list test fails on MS-Windows.
Solution: Make sure the fileformat is "unix"
Files: src/testdir/test_function_lists.vim

Patch 8.2.0901
Problem: Formatting CJK text isn't optimal.
Solution: Properly break CJK lines. (closes #3875)
Files: runtime/doc/change.txt, src/mbyte.c, src/ops.c, src/option.h,

src/proto/mbyte.pro, src/testdir/Make_all.mak, src/textformat.c,
src/testdir/test_cjk_linebreak.vim

Patch 8.2.0902
Problem: Using searchcount() in 'statusline' causes an error.
Solution: Avoid saving/restoring the search pattern recursively.

(closes #6194)
Files: src/search.c, src/testdir/test_search_stat.vim,

src/testdir/dumps/Test_searchstat_4.dump

Patch 8.2.0903
Problem: comparing WINVER does not work correctly.
Solution: Use arithmetic expansion. (Ozaki Kiichi, closes #6197)

version9.txt — 3578

Files: src/Make_cyg_ming.mak

Patch 8.2.0904
Problem: Assuming modifyOtherKeys for rhs of mapping.
Solution: Ignore seenModifyOtherKeys for mapped characters. (closes #6200)
Files: src/getchar.c, src/testdir/test_gui.vim

Patch 8.2.0905
Problem: Test coverage could be better.
Solution: Add a couple of tests. (Dominique Pellé, closes #6202)
Files: src/testdir/test_cmdline.vim, src/testdir/test_ga.vim

Patch 8.2.0906
Problem: When setting 'termguicolors' SpellBad is no longer red.
Solution: Only use the RGB guisp color for cterm when using the "underline"

or "undercurl" attributes to avoid the background color to be
cleared. Also make t_8u empty when the termresponse indicates a
real xterm. (closes #6207)

Files: src/highlight.c, src/term.c

Patch 8.2.0907
Problem: When using :global clipboard isn't set correctly.
Solution: Set "clip_unnamed_saved" instead of "clip_unnamed". (Christian

Brabandt, closes #6203, closes #6198)
Files: src/clipboard.c, src/testdir/test_global.vim

Patch 8.2.0908
Problem: Crash when changing the function table while listing it.
Solution: Bail out when the function table changes. (closes #6209)
Files: src/userfunc.c, src/testdir/test_timers.vim

Patch 8.2.0909
Problem: Cannot go back to the previous local directory.
Solution: Add "tcd -" and "lcd -". (Yegappan Lakshmanan, closes #4362)
Files: runtime/doc/editing.txt, src/filepath.c, src/ex_docmd.c,

src/structs.h, src/testdir/test_cd.vim, src/window.c

Patch 8.2.0910
Problem: Vim is not reproducibly buildable.
Solution: Use the $SOURCE_DATE_EPOCH environment variable in configure.

(James McCoy, closes #513) Give a warning about using it.
Files: src/config.h.in, src/config.mk.in, src/configure.ac,

src/auto/configure, src/version.c, src/Makefile

Patch 8.2.0911
Problem: Crash when opening a buffer for the cmdline window fails. (Chris

Barber)
Solution: Check do_ecmd() succeeds. Reset got_int if "q" was used at the

more prompt. (closes #6211)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_cmdwin_interrupted.dump

Patch 8.2.0912
Problem: A few test cases for CJK formatting are disabled.
Solution: Fix the tests and enable them. (closes #6212)
Files: src/testdir/test_cjk_linebreak.vim

Patch 8.2.0913
Problem: Code for resetting v:register is duplicated.
Solution: Add reset_reg_var().

version9.txt — 3579

Files: src/evalvars.c, src/proto/evalvars.pro, src/main.c, src/normal.c

Patch 8.2.0914
Problem: MS-Windows: cannot specify a "modified by" text.
Solution: Add MODIFIED_BY in the MSVC build file. (Chen Lei, closes #1275)
Files: src/Make_mvc.mak

Patch 8.2.0915
Problem: Search() cannot skip over matches like searchpair() can.
Solution: Add an optional "skip" argument. (Christian Brabandt, closes #861)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/testdir/test_syntax.vim,

src/structs.h, src/evalvars.c, src/proto/evalvars.pro

Patch 8.2.0916
Problem: Mapping with partly modifyOtherKeys code does not work.
Solution: If there is no mapping with a separate modifier include the

modifier in the key and then try mapping again. (closes #6200)
Files: src/getchar.c, src/proto/getchar.pro, src/edit.c, src/term.c,

src/proto/term.pro, src/testdir/test_termcodes.vim

Patch 8.2.0917
Problem: Quickfix entries do not support a "note" type.
Solution: Add support for "note". (partly by Yegappan Lakshmanan,

closes #5527, closes #6216)
Files: runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.2.0918
Problem: Duplicate code for evaluating expression argument.
Solution: Merge the code and make the use more flexible.
Files: src/evalfunc.c, src/eval.c, src/proto/eval.pro, src/evalvars.c,

src/proto/evalvars.pro, src/structs.h

Patch 8.2.0919
Problem: Merging modifier for modifyOtherKeys is done twice.
Solution: Remove the merging done in vgetc().
Files: src/getchar.c, src/ex_getln.c

Patch 8.2.0920
Problem: Writing viminfo fails with a circular reference.
Solution: Use copyID to detect the cycle. (closes #6217)
Files: src/testdir/test_viminfo.vim, src/viminfo.c

Patch 8.2.0921
Problem: CTRL-W T in cmdline window causes trouble.
Solution: Disallow CTRL-W T in the cmdline window. Add more tests.

(Naruhiko Nishino, closes #6219)
Files: src/testdir/test_cmdline.vim, src/window.c

Patch 8.2.0922
Problem: Search test fails.
Solution: Remove failure tests for calls that no longer fail.
Files: src/testdir/test_search.vim

Patch 8.2.0923
Problem: Cmdline test is slow.
Solution: Use WaitForAssert().
Files: src/testdir/test_cmdline.vim

Patch 8.2.0924

version9.txt — 3580

Problem: Cannot save and restore a register properly.
Solution: Add getreginfo() and make setreg() accept a dictionary. (Andy

Massimino, closes #3370)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/proto/register.pro, src/register.c,
src/testdir/test_eval_stuff.vim, src/testdir/test_registers.vim

Patch 8.2.0925
Problem: Getcompletion() does not return command line arguments.
Solution: Add the "cmdline" option. (Shougo, closes #1140)
Files: runtime/doc/eval.txt, src/cmdexpand.c,

src/testdir/test_cmdline.vim

Patch 8.2.0926
Problem: Cmdline test fails on Appveyor.
Solution: Add CR to the commands. (Naruhiko Nishino, closes #6220)
Files: src/testdir/test_cmdline.vim

Patch 8.2.0927
Problem: Some sshconfig and ssdhconfig files are not recognized.
Solution: Add filetype patterns.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0928
Problem: Many type casts are used for vim_strnsave().
Solution: Make the length argument size_t instead of int. (Ken Takata,

closes #5633) Remove some type casts.
Files: src/misc2.c, src/proto/misc2.pro, src/autocmd.c, src/channel.c,

src/cmdexpand.c, src/dict.c, src/diff.c, src/digraph.c,
src/eval.c, src/evalfunc.c, src/highlight.c, src/syntax.c

Patch 8.2.0929
Problem: v:register is not cleared after an operator was executed.
Solution: Clear v:register after finishing an operator (Andy Massimino,

closes #5305)
Files: src/normal.c, src/testdir/test_registers.vim

Patch 8.2.0930
Problem: Script filetype detection trips over env -S argument.
Solution: Remove "-S" and "--ignore-environment". (closes #5013)

Add tests.
Files: runtime/scripts.vim, src/testdir/test_filetype.vim

Patch 8.2.0931
Problem: Some remarks about BeOS remain.
Solution: Remove BeOS remarks from the help and other files. (Emir Sarı,

closes #6221)
Files: READMEdir/README_extra.txt, runtime/doc/options.txt,

runtime/doc/os_beos.txt, runtime/doc/os_vms.txt,
runtime/doc/vi_diff.txt, src/INSTALL

Patch 8.2.0932
Problem: Misspelling spelllang.
Solution: Add an "l". (Dominique Pellé)
Files: src/optionstr.c, src/proto/spell.pro, src/spell.c

Patch 8.2.0933
Problem: 'quickfixtextfunc' does not get window ID of location list.
Solution: Add "winid" to the dict argument. (Yegappan Lakshmanan,

closes #6222)

version9.txt — 3581

Files: runtime/doc/quickfix.txt, src/quickfix.c,
src/testdir/test_quickfix.vim

Patch 8.2.0934
Problem: Running lhelpgrep twice in a help window doesn't jump to the help

topic.
Solution: Check whether any window with the location list is present.

(Yegappan Lakshmanan, closes #6215)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.0935
Problem: Flattening a list with existing code is slow.
Solution: Add flatten(). (Mopp, closes #3676)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/list.c, src/proto/list.pro, src/testdir/Make_all.mak,
src/testdir/test_flatten.vim

Patch 8.2.0936
Problem: Some terminals misinterpret the code for getting cursor style.
Solution: Send a sequence to the terminal and check the result. (IWAMOTO

Kouichi, closes #2126) Merged with current code.
Files: src/main.c, src/term.c, src/proto/term.pro,

src/testdir/term_util.vim, src/testdir/test_quickfix.vim,
src/testdir/test_terminal.vim, src/testdir/test_startup_utf8.vim,
src/testdir/dumps/Test_balloon_eval_term_01.dump,
src/testdir/dumps/Test_balloon_eval_term_01a.dump,
src/testdir/dumps/Test_balloon_eval_term_02.dump,
src/testdir/dumps/Test_terminal_all_ansi_colors.dump

Patch 8.2.0937
Problem: Asan failure in the flatten() test.
Solution: Free the flattened list.
Files: src/list.c

Patch 8.2.0938
Problem: NFA regexp uses tolower() to compare ignore-case. (Thayne McCombs)
Solution: Use utf_fold() when possible. (ref. neovim #12456)
Files: src/macros.h, src/diff.c, src/regexp_nfa.c,

src/testdir/test_regexp_utf8.vim

Patch 8.2.0939
Problem: checking for term escape sequences is long and confusing
Solution: Refactor code into separate functions.
Files: src/term.c

Patch 8.2.0940 (after 8.2.0939)
Problem: Build failure with tiny features.
Solution: Add #ifdef. Add UNUSED. A bit more cleaning up.
Files: src/term.c

Patch 8.2.0941
Problem: Detecting terminal properties is unstructured.
Solution: Add a table with terminal properties. Set properties when a

terminal is detected.
Files: src/term.c

Patch 8.2.0942
Problem: Expanding to local dir after homedir keeps "~/".
Solution: Adjust modify_fname(). (Christian Brabandt, closes #6205,

closes #5979)

version9.txt — 3582

Files: src/filepath.c, src/testdir/test_fnamemodify.vim

Patch 8.2.0943
Problem: Displaying ^M or ^J depends on current buffer.
Solution: Pass the displayed buffer to transchar(). (closes #6225)
Files: src/drawline.c, src/charset.c, src/proto/charset.pro,

src/ex_cmds.c, src/gui_beval.c, src/message.c,
src/testdir/test_display.vim,
src/testdir/dumps/Test_display_unprintable_01.dump,
src/testdir/dumps/Test_display_unprintable_02.dump

Patch 8.2.0944
Problem: Xxd test leaves file behind.
Solution: Delete the file "XXDfile". (Christian Brabandt, closes #6228)
Files: src/testdir/test_xxd.vim

Patch 8.2.0945
Problem: Cannot use "z=" when 'spell' is off.
Solution: Make "z=" work even when 'spell' is off. (Christian Brabandt,

Gary Johnson, closes #6227)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/spell.c,

src/spellsuggest.c, src/testdir/test_spell.vim, src/globals.h

Patch 8.2.0946
Problem: Cannot use "q" to cancel a number prompt.
Solution: Recognize "q" instead of ignoring it.
Files: src/misc1.c, src/testdir/test_functions.vim

Patch 8.2.0947
Problem: Readdirex() doesn't handle broken link properly.
Solution: Small fixes to readdirex(). (Christian Brabandt, closes #6226,

closes #6213)
Files: src/fileio.c, src/testdir/test_functions.vim

Patch 8.2.0948
Problem: Spell test fails.
Solution: Adjust expected text of the prompt.
Files: src/testdir/test_spell.vim

Patch 8.2.0949
Problem: Strptime() does not use DST.
Solution: Set the tm_isdst field to -1. (Tomáš Janoušek, closes #6230)
Files: src/time.c, src/testdir/test_functions.vim

Patch 8.2.0950
Problem: Tagjump test fails.
Solution: Adjust expected text of the prompt.
Files: src/testdir/test_tagjump.vim

Patch 8.2.0951
Problem: Search stat test has leftover from debugging.
Solution: Remove line that writes a file. (Christian Brabandt, closes #6224)
Files: src/testdir/test_search_stat.vim

Patch 8.2.0952
Problem: No simple way to interrupt Vim.
Solution: Add the SigUSR1 autocommand, triggered by SIGUSR1. (Jacob Hayes,

closes #1718)
Files: runtime/doc/autocmd.txt, src/vim.h, src/autocmd.c, src/getchar.c,

src/globals.h, src/os_unix.c, src/testdir/test_autocmd.vim

version9.txt — 3583

Patch 8.2.0953
Problem: Spell checking doesn't work for CamelCased words.
Solution: Add the "camel" value in the new option 'spelloptions'.

(closes #1235)
Files: runtime/doc/options.txt, runtime/doc/spell.txt, src/optiondefs.h,

src/option.h, src/option.c, src/buffer.c, src/optionstr.c,
src/testdir/gen_opt_test.vim, src/testdir/test_spell.vim

Patch 8.2.0954
Problem: Not all desktop files are recognized.
Solution: Add the *.directory pattern. (Eisuke Kawashima, closes #3317)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0955 (after 8.2.0953)
Problem: Build fails.
Solution: Add missing struct change.
Files: src/structs.h

Patch 8.2.0956 (after 8.2.0953)
Problem: Spell test fails.
Solution: Add missing change the spell checking.
Files: src/spell.c

Patch 8.2.0957
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize one variable.
Files: src/spell.c

Patch 8.2.0958
Problem: Not sufficient testing for buffer writing.
Solution: Add a few tests. (Yegappan Lakshmanan, closes #6238)
Files: src/testdir/test_backup.vim, src/testdir/test_writefile.vim

Patch 8.2.0959
Problem: Using 'quickfixtextfunc' is a bit slow.
Solution: Process a list of entries. (Yegappan Lakshmanan, closes #6234)
Files: runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.2.0960
Problem: Cannot use :import in legacy Vim script.
Solution: Support :import in any Vim script.
Files: src/vim9script.c, src/evalvars.c, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.0961
Problem: MS-Windows: no completion for locales.
Solution: Use the directories in $VIMRUNTIME/lang to complete locales.

(Christian Brabandt, closes 36248)
Files: src/cmdexpand.c, src/ex_cmds2.c, src/testdir/test_cmdline.vim

Patch 8.2.0962
Problem: Terminal test sometimes hangs on Travis.
Solution: Do show output for this test temporarily.
Files: src/testdir/Makefile

Patch 8.2.0963
Problem: Number increment/decrement does not work with 'virtualedit'.
Solution: Handle coladd changing. (Christian Brabandt, closes #6240,

version9.txt — 3584

closes #923)
Files: runtime/doc/options.txt, runtime/doc/various.txt, src/ops.c,

src/testdir/test_increment.vim

Patch 8.2.0964
Problem: TextYankPost does not provide info about Visual selection.
Solution: Add the 'visual' key in v:event. (closes #6249)
Files: runtime/doc/autocmd.txt, src/register.c,

src/testdir/test_autocmd.vim

Patch 8.2.0965
Problem: Has_funcundefined() is not used.
Solution: Delete the function. (Dominique Pellé, closes #6242)
Files: src/autocmd.c, src/proto/autocmd.pro

Patch 8.2.0966
Problem: 'shortmess' flag "n" not used in two places.
Solution: Make use of the "n" flag consistent. (Nick Jensen, closes #6245,

closes #6244)
Files: src/bufwrite.c, src/proto/bufwrite.pro, src/buffer.c,

src/fileio.c, src/testdir/dumps/Test_popup_textprop_corn_5.dump,
src/testdir/dumps/Test_start_with_tabs.dump

Patch 8.2.0967
Problem: Unnecessary type casts for vim_strnsave().
Solution: Remove the type casts.
Files: src/evalvars.c, src/ex_cmds.c, src/ex_eval.c, src/fileio.c,

src/filepath.c, src/findfile.c, src/highlight.c, src/if_ruby.c,
src/insexpand.c, src/json.c, src/mark.c, src/memline.c,
src/menu.c, src/misc1.c, src/ops.c, src/os_win32.c, src/regexp.c,
src/regexp_bt.c, src/regexp_nfa.c, src/register.c, src/search.c,
src/sign.c, src/syntax.c, src/term.c, src/terminal.c, src/undo.c,
src/usercmd.c, src/userfunc.c, src/vim9compile.c, src/if_perl.xs

Patch 8.2.0968
Problem: No proper testing of the 'cpoptions' flags.
Solution: Add tests. (Yegappan Lakshmanan, closes #6251)
Files: src/testdir/Make_all.mak, src/testdir/test_cpoptions.vim,

src/testdir/test_edit.vim, src/testdir/test_normal.vim

Patch 8.2.0969
Problem: Assert_equal() output for dicts is hard to figure out.
Solution: Only show the different items.
Files: src/testing.c, src/testdir/test_assert.vim

Patch 8.2.0970
Problem: Terminal properties are not available in Vim script.
Solution: Add the terminalprops() function.
Files: src/term.c, src/proto/term.pro, src/evalfunc.c, src/main.c,

src/testing.c, src/globals.h, src/testdir/test_termcodes.vim,
runtime/doc/usr_41.txt, runtime/doc/eval.txt,
runtime/doc/testing.txt

Patch 8.2.0971
Problem: Build with tiny features fails.
Solution: Add #ifdef.
Files: src/term.c

Patch 8.2.0972
Problem: Vim9 script variable declarations need a type.

version9.txt — 3585

Solution: Make "let var: type" declare a script-local variable.
Files: src/evalvars.c, src/vim9script.c, src/proto/vim9script.pro,

src/globals.h, src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.0973
Problem: Vim9: type is not checked when assigning to a script variable.
Solution: Check the type.
Files: src/evalvars.c, src/vim9script.c, src/proto/vim9script.pro,

src/vim9compile.c, src/proto/vim9compile.pro,
src/testdir/test_vim9_script.vim

Patch 8.2.0974
Problem: Vim9: memory leak when script var has wrong type.
Solution: Free the variable name.
Files: src/vim9script.vim

Patch 8.2.0975
Problem: Vim9: script variable does not accept optional s: prefix.
Solution: Adjust the accepted syntax.
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.0976
Problem: Some 'cpoptions' not tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6253)
Files: src/testdir/test_cd.vim, src/testdir/test_charsearch.vim,

src/testdir/test_cpoptions.vim, src/testdir/test_normal.vim

Patch 8.2.0977
Problem: t_8u is made empty for the wrong terminals. (Dominique Pelle)
Solution: Invert the check for TPR_YES. (closes #6254)
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.2.0978
Problem: Leaking memory in termcodes test.
Solution: Set t_8u with set_option_value().
Files: src/term.c

Patch 8.2.0979
Problem: A couple of screendump tests fail.
Solution: Do not redraw when clearing t_8u.
Files: src/term.c

Patch 8.2.0980
Problem: Raku file extension not recognized. (Steven Penny)
Solution: Recognize .raku and .rakumod. (closes #6255)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0981
Problem: Vim9: cannot compile "[var, var] = list".
Solution: Implement list assignment.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/evalvars.c,

src/proto/evalvars.pro, src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.0982
Problem: Insufficient testing for reading/writing files.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6257)

Add "ui_delay" to test_override() and use it for the CTRL-O test.
Files: src/testing.c, src/globals.h, src/ui.c, runtime/doc/testing.txt,

src/testdir/test_autocmd.vim, src/testdir/test_edit.vim,
src/testdir/test_filechanged.vim, src/testdir/test_writefile.vim

version9.txt — 3586

Patch 8.2.0983
Problem: SConstruct file type not recognized.
Solution: Use python for SConstruct files. (Roland Hieber)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.0984
Problem: Not using previous window when closing a shell popup window.
Solution: Use "prevwin" if it was set. (closes #6267)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.0985
Problem: Simplify() does not remove slashes from "///path".
Solution: Reduce > 2 slashes to one. (closes #6263)
Files: src/findfile.c, src/testdir/test_functions.vim

Patch 8.2.0986 (after 8.2.0985)
Problem: MS-Windows: functions test fails.
Solution: Only simplify ///path on Unix.
Files: src/testdir/test_functions.vim

Patch 8.2.0987
Problem: Vim9: cannot assign to [var; var].
Solution: Assign rest of items to a list.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/list.c,

src/proto/list.pro, src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.0988
Problem: Getting directory contents is always case sorted.
Solution: Add sort options and v:collate. (Christian Brabandt, closes #6229)
Files: runtime/doc/eval.txt, runtime/doc/mlang.txt, src/auto/configure,

src/cmdexpand.c, src/config.h.in, src/configure.ac,
src/evalfunc.c, src/evalvars.c, src/ex_cmds2.c, src/fileio.c,
src/filepath.c, src/globals.h, src/proto/fileio.pro,
src/testdir/test_cmdline.vim, src/testdir/test_functions.vim,
src/vim.h

Patch 8.2.0989
Problem: Crash after resizing a terminal window. (August Masquelier)
Solution: Add check for valid row in libvterm. (closes #6273)
Files: src/libvterm/src/state.c, src/libvterm/src/screen.c

Patch 8.2.0990 (after 8.2.0988)
Problem: Using duplicate error number.
Solution: Use an unused error number. Add a test for it.
Files: src/globals.h, src/testdir/test_functions.vim

Patch 8.2.0991
Problem: Cannot get window type for autocmd and preview window.
Solution: Add types to win_gettype(). (Yegappan Lakshmanan, closes #6277)
Files: runtime/doc/eval.txt, src/evalwindow.c,

src/testdir/test_autocmd.vim, src/testdir/test_preview.vim

Patch 8.2.0992
Problem: Vim9: crash when using :import in the Vim command.
Solution: Give an error when using :import outside of a script.

(closes #6271)
Files: src/vim9script.c, src/testdir/test_vim9_script.vim,

src/testdir/term_util.vim

version9.txt — 3587

Patch 8.2.0993
Problem: Vim9 script test fails with normal features.
Solution: Use :func instead of :def for now.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0994
Problem: Vim9: missing function causes compilation error.
Solution: Call test function indirectly.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.0995
Problem: Insufficient testing for the readdir() sort option.
Solution: Add a few more tests. (Christian Brabandt, closes #6278)
Files: src/testdir/test_functions.vim

Patch 8.2.0996
Problem: Using "aucmdwin" in win_gettype() is not ideal.
Solution: Rename to "autocmd".
Files: runtime/doc/eval.txt, src/evalwindow.c,

src/testdir/test_autocmd.vim

Patch 8.2.0997
Problem: Cannot execute a register containing line continuation.
Solution: Concatenate lines where needed. (Yegappan Lakshmanan,

closes #6272)
Files: runtime/doc/repeat.txt, src/register.c,

src/testdir/test_registers.vim

Patch 8.2.0998
Problem: Not all tag code is tested.
Solution: Add a few more test cases. (Yegappan Lakshmanan, closes #6284)
Files: src/testdir/test_tagjump.vim

Patch 8.2.0999
Problem: Moving to next sentence gets stuck on quote.
Solution: When moving to the next sentence doesn't result in moving, advance

a character and try again. (closes #6291)
Files: src/textobject.c, src/testdir/test_textobjects.vim

Patch 8.2.1000
Problem: Get error when leaving Ex mode with :visual and a CmdLineEnter

autocommand was used.
Solution: Reset ex_pressedreturn. (closes #6293)
Files: src/ex_docmd.c, src/testdir/test_ex_mode.vim

Patch 8.2.1001
Problem: Vim9: crash with nested "if" and assignment.
Solution: Skip more of the assignment. Do not set ctx_skip when code is

reachable.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1002
Problem: Test may fail when run directly.
Solution: Check if g:run_nr exists. (Christian Brabandt, closes #6285)
Files: src/testdir/term_util.vim

Patch 8.2.1003
Problem: Vim9: return type of sort() is too generic.
Solution: Get type from the first argument. (closes #6292)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

version9.txt — 3588

Patch 8.2.1004
Problem: Line numbers below filler lines not always updated.
Solution: Don't break out of the win_line() loop too early. (Christian

Brabandt, closes #6294, closes #6138)
Files: src/drawline.c, src/testdir/dumps/Test_diff_rnu_01.dump,

src/testdir/dumps/Test_diff_rnu_02.dump,
src/testdir/dumps/Test_diff_rnu_03.dump,
src/testdir/test_diffmode.vim

Patch 8.2.1005
Problem: Vim9: using TRUE/FALSE/MAYBE for ctx_skip is confusing.
Solution: Use an enum value.
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.1006
Problem: Vim9: require unnecessary return statement.
Solution: Improve the use of the had_return flag. (closes #6270)
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.1007
Problem: Completion doesn't work after ":r ++arg !".
Solution: Skip over "++arg". (Christian Brabandt, closes #6275,

closes #6258)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.1008
Problem: Vim9: no test for disassembling newly added instructions.
Solution: Add a function and check disassembly.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.1009
Problem: Vim9: some failures not checked for.
Solution: Add test cases. Remove unused code.
Files: src/testdir/test_vim9_script.vim, src/vim9execute.c

Patch 8.2.1010
Problem: Build failure in libvterm with debug enabled. (John Little)
Solution: Use "->" instead of ".".
Files: src/libvterm/src/state.c

Patch 8.2.1011
Problem: Vim9: some code not tested.
Solution: Add a few more test cases. Reorder checks for clearer error.

Remove unreachable code.
Files: src/evalvars.c, src/vim9script.c, src/vim9execute.c,

src/proto/vim9script.pro, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1012
Problem: Vim9: cannot declare single character script variables.
Solution: Don't see "b:", "s:", etc. as namespace. Fix item size of

sn_var_vals.
Files: src/vim9script.c, src/scriptfile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1013
Problem: Channel tests can be a bit flaky.
Solution: Set the g:test_is_flaky flag in SetUp().

version9.txt — 3589

Files: src/testdir/test_channel.vim

Patch 8.2.1014
Problem: Using "name" for a string result is confusing.
Solution: Rename to "end".
Files: src/typval.c

Patch 8.2.1015
Problem: Popup filter gets key with modifier prepended when using

modifyOtherKeys.
Solution: Remove the shift modifier when it is included in the key, also

when the Alt or Meta modifier is used.
Files: src/term.c, src/misc2.c, src/testdir/test_popupwin.vim

Patch 8.2.1016
Problem: Vim9: test fails when channel feature is missing.
Solution: Process an :if command when skipping
Files: src/vim9compile.c

Patch 8.2.1017
Problem: Appveyor output doesn't show MinGW console features.
Solution: List the features of the console build.
Files: ci/appveyor.bat

Patch 8.2.1018
Problem: Typo in enum value. (James McCoy)
Solution: Fix the typo.
Files: src/vim9compile.c

Patch 8.2.1019
Problem: Mapping <M-S-a> does not work in the GUI.
Solution: Move the logic to remove the shift modifier to

may_remove_shift_modifier() and also use it in the GUI.
Files: src/gui_gtk_x11.c, src/misc2.c, src/proto/misc2.pro, src/term.c

Patch 8.2.1020
Problem: Popupwin test fails in the GUI.
Solution: Send GUI byte sequence for <C-S-a>.
Files: src/testdir/test_popupwin.vim

Patch 8.2.1021
Problem: Ruby interface not tested enough.
Solution: Add a couple more tests. (Dominique Pellé, closes #6301)
Files: src/testdir/test_ruby.vim

Patch 8.2.1022
Problem: Various parts of code not covered by tests.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6300)
Files: src/testdir/test_blob.vim, src/testdir/test_cpoptions.vim,

src/testdir/test_digraph.vim, src/testdir/test_edit.vim,
src/testdir/test_iminsert.vim, src/testdir/test_paste.vim,
src/testdir/test_prompt_buffer.vim,
src/testdir/test_selectmode.vim, src/testdir/test_tabpage.vim,
src/testdir/test_tagjump.vim, src/testdir/test_textformat.vim,
src/testdir/test_viminfo.vim, src/testdir/test_virtualedit.vim,
src/testdir/test_visual.vim

Patch 8.2.1023
Problem: Vim9: redefining a function uses a new index every time.
Solution: When redefining a function clear the contents and re-use the

version9.txt — 3590

index.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/userfunc.c,

src/structs.h, src/eval.c, src/evalvars.c, src/vim9execute.c

Patch 8.2.1024
Problem: Vim9: no error for using "let g:var = val".
Solution: Add an error.
Files: src/evalvars.c, src/globals.h, src/structs.h, src/vim9compile.c,

src/scriptfile.c, src/userfunc.c, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.1025
Problem: Tabpage menu and tabline not sufficiently tested.
Solution: Add tests. (Yegappan Lakshmanan, closes #6307)
Files: src/testdir/test_digraph.vim, src/testdir/test_tabpage.vim

Patch 8.2.1026
Problem: Vim9: cannot break the line after "->".
Solution: Check for a continuation line after "->", "[" and ".". Ignore

trailing white space.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1027
Problem: GUI: multibyte characters do not work in a terminal.
Solution: Do not assume a key is one byte. (closes #6304)
Files: src/gui_gtk_x11.c, src/gui_x11.c

Patch 8.2.1028
Problem: Vim9: no error for declaring buffer, window, etc. variable.
Solution: Give an error. Unify the error messages.
Files: src/evalvars.c, src/globals.h, src/vim9compile.c,

src/proto/vim9compile.pro, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.1029
Problem: Vim9: cannot chain function calls with -> at line start.
Solution: Peek ahead for a following line starting with "->". (closes #6306)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1030
Problem: Reducing size of a terminal window may cause a crash.
Solution: Make sure the row and column don't become negative. (closes #6273)
Files: src/libvterm/src/state.c, src/libvterm/src/screen.c

Patch 8.2.1031
Problem: Build failure with Perl5.32.
Solution: Define a few more functions. (Felix Yan, closes #6310)
Files: src/if_perl.xs

Patch 8.2.1032
Problem: Error message for declaring a variable cannot be translated.
Solution: Enclose in _(). Make environment variable a separate message.
Files: src/globals.h, src/vim9compile.c

Patch 8.2.1033
Problem: Not easy to read the test time in the test output.
Solution: Align the times. Make slow tests bold.
Files: src/testdir/runtest.vim

version9.txt — 3591

Patch 8.2.1034
Problem: Compiler warning for uninitialized variables.
Solution: Add initializations. (John Marriott)
Files: src/vim9compile.c

Patch 8.2.1035
Problem: setreg() does not always clear the register.
Solution: Clear the register if the dict argument is empty. (Andy Massimino,

closes #3370)
Files: src/evalfunc.c, src/testdir/test_registers.vim

Patch 8.2.1036
Problem: Popupwin test fails sometimes.
Solution: Use WaitForAssert() instead of a sleep.
Files: src/testdir/test_popupwin.vim

Patch 8.2.1037
Problem: Vim9: crash when using line continuation inside :def.
Solution: Check for no more lines available.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1038
Problem: Popupwin test fails.
Solution: Fix WaitForAssert() argument.
Files: src/testdir/test_popupwin.vim

Patch 8.2.1039
Problem: Cannot put NUL byte on clipboard.
Solution: Use the text length. (Christian Brabandt, closes #6312,

closes #6149)
Files: src/winclip.c, src/testdir/test_registers.vim

Patch 8.2.1040
Problem: Not enough testing for movement commands.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6313)
Files: src/testdir/test_cursor_func.vim, src/testdir/test_functions.vim,

src/testdir/test_gf.vim, src/testdir/test_normal.vim,
src/testdir/test_options.vim, src/testdir/test_quickfix.vim

Patch 8.2.1041
Problem: Test summary is missing executed count.
Solution: Adjust pattern used for counting.
Files: src/testdir/summarize.vim

Patch 8.2.1042
Problem: Vim9: cannot put an operator on the next line.
Solution: Require a colon before a range to see if that causes problems.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/ex_docmd.c,

src/globals.h, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1043
Problem: %a item in 'statusline' not tested.
Solution: Add a test. (Dominique Pellé, closes #6318)
Files: src/testdir/test_statusline.vim

Patch 8.2.1044
Problem: Not all systemd file types are recognized.
Solution: Match several more files. (Guido Cella, closes #6319)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3592

Patch 8.2.1045
Problem: Vim9: line break before operator does not work.
Solution: Peek the next line for an operator.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1046
Problem: Insufficient tests for src/buffer.c.
Solution: Add more tests. Move comments related tests to a separate file.

(Yegappan Lakshmanan, closes #6325)
Files: src/testdir/Make_all.mak, src/testdir/test_buffer.vim,

src/testdir/test_cmdline.vim, src/testdir/test_comments.vim,
src/testdir/test_normal.vim, src/testdir/test_textformat.vim

Patch 8.2.1047
Problem: Vim9: script cannot use line continuation like in a :def function.
Solution: Pass the getline function pointer to the eval() functions. Use it

for addition and multiplication operators.
Files: src/vim.h, src/structs.h, src/globals.h, src/ex_eval.c,

src/eval.c, src/proto/eval.pro, src/dict.c, src/evalfunc.c,
src/evalvars.c, src/list.c, src/userfunc.c, src/scriptfile.c,
src/proto/scriptfile.pro, src/testdir/test_vim9_expr.vim

Patch 8.2.1048 (after 8.2.1047)
Problem: Build failure without the eval feature.
Solution: Add dummy typedef.
Files: src/structs.h

Patch 8.2.1049 (after 8.2.1047)
Problem: Vim9: leaking memory when using continuation line.
Solution: Keep a pointer to the continuation line in evalarg_T. Centralize

checking for a next command.
Files: src/structs.h, src/eval.c, src/proto/eval.pro, src/beval.c,

src/buffer.c, src/clientserver.c, src/evalvars.c, src/ex_docmd.c,
src/ex_eval.c, src/filepath.c, src/findfile.c, src/fold.c,
src/globals.h, src/if_ole.cpp, src/if_perl.xs, src/if_tcl.c,
src/map.c, src/quickfix.c, src/regexp.c, src/register.c,
src/screen.c, src/userfunc.c

Patch 8.2.1050 (after 8.2.1049)
Problem: Missing change in struct.
Solution: Add missing change.
Files: src/ex_cmds.h

Patch 8.2.1051
Problem: Crash when changing a list while using reduce() on it.
Solution: Lock the list. (closes #6330)
Files: src/list.c, src/testdir/test_listdict.vim

Patch 8.2.1052
Problem: Build failure with older compilers.
Solution: Move declaration to start of block.
Files: src/eval.c

Patch 8.2.1053
Problem: Insufficient testing for 'statusline' and 'tabline'.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6333)
Files: src/testdir/test_autocmd.vim, src/testdir/test_statusline.vim,

src/testdir/test_tabline.vim

version9.txt — 3593

Patch 8.2.1054
Problem: Not so easy to pass a lua function to Vim.
Solution: Convert a Lua function and closure to a Vim funcref. (Prabir

Shrestha, closes #6246)
Files: runtime/doc/if_lua.txt, src/if_lua.c, src/proto/userfunc.pro,

src/structs.h, src/testdir/test_lua.vim, src/userfunc.c

Patch 8.2.1055
Problem: No filetype set for pacman config files.
Solution: Recognize pacman.conf and *.hook. (Guido Cella, closes #6335)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1056
Problem: Wrong display when mixing match conceal and syntax conceal.
Solution: Adjust how conceal flags are used. (closes #6327, closes #6303)
Files: src/drawline.c, src/highlight.c,

src/testdir/test_matchadd_conceal.vim

Patch 8.2.1057 (after 8.2.1054)
Problem: Cannot build with dynamic Lua.
Solution: Add dll variables.
Files: src/if_lua.c

Patch 8.2.1058
Problem: Multiline conceal causes display errors.
Solution: Do not allow conceal cross over EOL. (closes #6326, closes #4854,

closes #6302)
Files: src/drawline.c, src/testdir/test_conceal.vim,

src/testdir/test_diffmode.vim

Patch 8.2.1059
Problem: Crash when using :tabonly in an autocommand. (Yegappan Lakshmanan)
Solution: Do not allow the autocommand window to be closed.
Files: src/ex_docmd.c, src/window.c, src/globals.h,

src/testdir/test_autocmd.vim

Patch 8.2.1060
Problem: Not all elinks files are recognized.
Solution: Just check for "elinks.conf". (Guido Cella, closes #6337)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1061
Problem: Insufficient testing for src/window.c.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6345)
Files: src/testdir/test_excmd.vim, src/testdir/test_gf.vim,

src/testdir/test_options.vim, src/testdir/test_popupwin.vim,
src/testdir/test_quickfix.vim, src/testdir/test_tabpage.vim,
src/testdir/test_tagjump.vim, src/testdir/test_window_cmd.vim,
src/window.c

Patch 8.2.1062
Problem: Vim9: no line break allowed inside "cond ? val1 : val2".
Solution: Check for operator after line break.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1063
Problem: Vim9: no line break allowed before || or &&.
Solution: Check for operator after line break.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

version9.txt — 3594

Patch 8.2.1064
Problem: Vim9: no line break allowed before comparators.
Solution: Check for comparator after line break.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1065
Problem: Vim9: no line break allowed inside a list.
Solution: Handle line break inside a list in Vim9 script.
Files: src/eval.c, src/proto/eval.pro, src/list.c, src/proto/list.pro,

src/vim9compile.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_arglist.vim

Patch 8.2.1066
Problem: Lua arrays are zero based.
Solution: Make Lua arrays one based. (Prabir Shrestha, closes #6347)

Note: this is not backwards compatible.
Files: runtime/doc/if_lua.txt, src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.1067
Problem: Expression "!expr->func()" does not work.
Solution: Apply plus and minus earlier. (closes #6348)
Files: src/eval.c, src/proto/eval.pro, src/evalvars.c, src/userfunc.c,

src/testdir/test_expr.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.1068
Problem: Vim9: no line break allowed inside a dict.
Solution: Handle line break inside a dict in Vim9 script.
Files: src/eval.c, src/dict.c, src/proto/dict.pro,

src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1069
Problem: Vim9: fail to check for white space in list.
Solution: Add check for white space.
Files: src/list.c

Patch 8.2.1070
Problem: Vim9: leaking memory when lacking white space in dict.
Solution: Clear the typval.
Files: src/dict.c

Patch 8.2.1071
Problem: Vim9: no line break allowed inside a lambda.
Solution: Handle line break inside a lambda in Vim9 script.
Files: src/eval.c, src/proto/eval.pro, src/evalvars.c, src/userfunc.c,

src/proto/userfunc.pro, src/popupwin.c, src/vim9compile.c,
src/ex_eval.c, src/globals.h, src/structs.h,
src/testdir/test_vim9_expr.vim

Patch 8.2.1072
Problem: Missing libvterm test.
Solution: Sync with libvterm revision 768.
Files: src/libvterm/src/state.c, src/libvterm/t/63screen_resize.test

Patch 8.2.1073
Problem: Vim9: no line break allowed in () expression.
Solution: Skip a line break.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1074
Problem: Vim9: no line break allowed after some operators.

version9.txt — 3595

Solution: Skip a line break after the operator. Add
eval_may_get_next_line() to simplify checking for a line break.

Files: src/eval.c, src/proto/eval.pro, src/dict.c, src/list.c,
src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1075
Problem: Vim9: no line break allowed in :echo expression.
Solution: Skip linebreak.
Files: src/eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1076
Problem: Vim9: no line break allowed in :if expression.
Solution: Skip linebreak.
Files: src/eval.c, src/proto/eval.pro, src/evalvars.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.1077
Problem: No enough test coverage for highlighting.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6351)
Files: runtime/doc/syntax.txt, src/testdir/test_cmdline.vim,

src/testdir/test_highlight.vim, src/testdir/test_match.vim

Patch 8.2.1078
Problem: Highlight and match functionality together in one file.
Solution: Move match functionality to a separate file. (Yegappan Lakshmanan,

closes #6352)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/highlight.c, src/match.c, src/proto.h,
src/proto/highlight.pro, src/proto/match.pro

Patch 8.2.1079
Problem: Vim9: no line break allowed in a while loop.
Solution: Update stored loop lines when finding line breaks.
Files: src/structs.h, src/globals.h, src/eval.c, src/evalvars.c,

src/ex_docmd.c, src/proto/ex_docmd.pro,
src/testdir/test_vim9_cmd.vim

Patch 8.2.1080
Problem: Vim9: no line break allowed in a for loop.
Solution: Skip line breaks in for command.
Files: src/eval.c, src/ex_eval.c, src/proto/eval.pro, src/userfunc.c,

src/structs.h, src/globals.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.1081
Problem: Lua: cannot use table.insert() and table.remove().
Solution: Add the list functions. (Prabir Shrestha, closes #6353)
Files: runtime/doc/if_lua.txt, src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.1082
Problem: Coverity complains about ignoring dict_add() return value.
Solution: Add (void).
Files: src/evalfunc.c

Patch 8.2.1083
Problem: Crash when using reduce() on a NULL list.
Solution: Only access the list when not NULL.
Files: src/list.c, src/testdir/test_listdict.vim

Patch 8.2.1084

version9.txt — 3596

Problem: Lua: registering function has useless code.
Solution: Remove clearing grow arrays.
Files: src/userfunc.c

Patch 8.2.1085
Problem: Coverity complains about ignoring dict_add() return value.
Solution: Add (void).
Files: src/register.c

Patch 8.2.1086
Problem: Possibly using freed memory when text properties used when

changing indent of a line.
Solution: Compute the offset before calling ml_replace().
Files: src/indent.c

Patch 8.2.1087
Problem: Possible memory leak when file expansion fails.
Solution: Clear the grow array when returning FAIL. Use an error message

instead of an empty string.
Files: src/filepath.c

Patch 8.2.1088
Problem: A very long translation might cause a buffer overflow.
Solution: Truncate the message if needed.
Files: src/fileio.c

Patch 8.2.1089
Problem: Coverity warns for pointer computation.
Solution: Avoid computing a pointer to invalid memory.
Files: src/spellfile.c

Patch 8.2.1090
Problem: May use NULL pointer when skipping over name.
Solution: Always set ll_name_end.
Files: src/eval.c

Patch 8.2.1091
Problem: No check if opening a pty works.
Solution: Check for invalid file descriptor.
Files: src/os_unix.c

Patch 8.2.1092
Problem: Not checking if saving for undo succeeds.
Solution: Bail out if u_savesub() returns FAIL.
Files: src/textprop.c

Patch 8.2.1093
Problem: Python: double free when adding item to dict fails.
Solution: Remove vim_free() call.
Files: src/if_py_both.h

Patch 8.2.1094
Problem: Dead code in libvterm.
Solution: Remove condition that is always true.
Files: src/libvterm/src/pen.c

Patch 8.2.1095
Problem: May use pointer after freeing it when text properties are used.
Solution: Update redo buffer before calling ml_replace().
Files: src/spellsuggest.c

version9.txt — 3597

Patch 8.2.1096
Problem: Vim9: return type of getqflist() is wrong.
Solution: Let the return type depend on the arguments. Also for

getloclist(). (closes #6357)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1097
Problem: Highlight code not sufficiently tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #6359)
Files: src/testdir/test_filter_cmd.vim, src/testdir/test_highlight.vim

Patch 8.2.1098
Problem: Vim9: cannot use line break in :throw argument.
Solution: Check for line break.
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.1099
Problem: Vim9: cannot use line break in :cexpr argument.
Solution: Check for line break.
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.1100
Problem: Vim9: cannot use line break in :execute, :echomsg and :echoerr

argument.
Solution: Check for line break.
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.1101
Problem: No error when using wrong arguments for setqflist() or

setloclist().
Solution: Check for the error.
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1102
Problem: Coverity gets confused by an unnecessary NULL check.
Solution: Remove the check for NULL.
Files: src/quickfix.c

Patch 8.2.1103
Problem: Coverity reports an unnecessary NULL check.
Solution: Remove the check for NULL.
Files: src/eval.c

Patch 8.2.1104
Problem: Coverity warns for possible NULL pointer use.
Solution: Check "pbyts" is not NULL.
Files: src/spellsuggest.c

Patch 8.2.1105
Problem: Insufficient test coverage for Lua.
Solution: Add tests. (Yegappan Lakshmanan, closes #6368) Fix uncovered

memory leak. Avoid unnecessary copy/free.
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.1106
Problem: Crash when trying to use s: variable in typed command.
Solution: Don't use the script index when not set. (Ken Takata,

closes #6366)
Files: src/vim9compile.c, src/testdir/test_vimscript.vim

version9.txt — 3598

Patch 8.2.1107
Problem: 'imactivatefunc' and 'imstatusfunc' are not used in the GUI.
Solution: Adjust the #ifdefs. (closes #6367)
Files: runtime/doc/options.txt, src/gui_xim.c,

src/testdir/test_iminsert.vim

Patch 8.2.1108
Problem: Mouse left-right scroll is not supported in terminal window.
Solution: Implement mouse codes 6 and 7. (Trygve Aaberge, closes #6363)
Files: src/libvterm/src/mouse.c, src/mouse.c, src/terminal.c,

src/testdir/mouse.vim, src/testdir/test_termcodes.vim

Patch 8.2.1109 (after 8.2.1106)
Problem: Still crashing when using s:variable.
Solution: Remove assignment. (Ken Takata)
Files: src/vim9compile.c

Patch 8.2.1110
Problem: Vim9: line continuation does not work in function arguments.
Solution: Pass "evalarg" to get_func_tv(). Fix seeing double quoted string

as comment.
Files: src/userfunc.c, src/proto/userfunc.pro, src/eval.c, src/ex_eval.c,

src/list.c, src/dict.c, src/proto/eval.pro,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim

Patch 8.2.1111
Problem: Inconsistent naming of get_list_tv() and eval_dict().
Solution: Rename get_list_tv() to eval_list(). Similarly for eval_number(),

eval_string(), eval_lit_string() and a few others.
Files: src/eval.c, src/list.c, src/proto/list.pro, src/vim9compile.c,

src/typval.c, src/proto/typval.pro, src/vim9script.c,
src/evalfunc.c, src/evalvars.c, src/proto/evalvars.pro,
src/vim9execute.c

Patch 8.2.1112
Problem: Vim9: no line continuation allowed in method call.
Solution: Handle line continuation in expression before method call.
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1113
Problem: No test for verbose output of :call.
Solution: Add a test.
Files: src/testdir/test_user_func.vim

Patch 8.2.1114
Problem: Terminal test sometimes times out.
Solution: Split the test in two parts.
Files: src/testdir/Makefile, src/testdir/Make_all.mak,

src/testdir/term_util.vim, src/testdir/test_terminal.vim,
src/testdir/test_terminal2.vim

Patch 8.2.1115
Problem: Iminsert test fails when compiled with VIMDLL.
Solution: Change condition. (Ken Takata, closes #6376)
Files: src/testdir/test_iminsert.vim

Patch 8.2.1116

version9.txt — 3599

Problem: Vim9: parsing command checks for list twice.
Solution: Adjust how a command is parsed.
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1117
Problem: Coverity warns for using uninitialized field.
Solution: Initialize v_lock.
Files: src/if_lua.c

Patch 8.2.1118
Problem: Condition can never be true, dead code.
Solution: Remove the dead code.
Files: src/move.c

Patch 8.2.1119
Problem: Configure fails with Xcode 12 beta.
Solution: use "return" instead of "exit()". (Nico Weber, closes #6381)
Files: src/configure.ac, src/auto/configure

Patch 8.2.1120
Problem: Python code not tested properly.
Solution: Add more tests and convert old-style test into new-style test.

(Yegappan Lakshmanan, closes #6370)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test86.in, src/testdir/test86.ok,
src/testdir/test_python2.vim

Patch 8.2.1121
Problem: Command completion not working after ++arg.
Solution: Move skipping up. (Christian Brabandt, closes #6382)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.1122
Problem: Vim9: line continuation in dict member not recognized.
Solution: Check for line continuation.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1123
Problem: Python 3 test is old style.
Solution: Turn into new style test. (Yegappan Lakshmanan, closes #6385)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test87.in, src/testdir/test87.ok,
src/testdir/test_python2.vim, src/testdir/test_python3.vim

Patch 8.2.1124
Problem: Vim9: no line break allowed in :import command.
Solution: Skip over line breaks.
Files: src/vim9script.c, src/proto/vim9script.pro, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1125
Problem: Vim9: double quote can be a string or a comment.
Solution: Only support comments starting with # to avoid confusion.
Files: src/eval.c, src/proto/eval.pro, src/dict.c, src/list.c,

src/vim9script.c

Patch 8.2.1126
Problem: Vim9: using :copen causes an error.
Solution: Add flag LET_NO_COMMAND in set_var().
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

version9.txt — 3600

Patch 8.2.1127
Problem: Vim9: getting a dict member may not work.
Solution: Clear the dict only after copying the item. (closes #6390)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1128
Problem: The write message mentions characters, but it's actually bytes.
Solution: Change "C" to "B" and "characters" to "bytes".
Files: runtime/doc/options.txt, src/fileio.c,

src/testdir/test_cscope.vim, src/testdir/test_netbeans.vim,
src/testdir/dumps/Test_diff_syntax_1.dump,
src/testdir/dumps/Test_long_file_name_1.dump,
src/testdir/dumps/Test_display_unprintable_01.dump,
src/testdir/dumps/Test_tselect_1.dump

Patch 8.2.1129
Problem: Vim9: bar not recognized after not compiled command.
Solution: Check for bar for commands where this is possible. (closes #6391)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1130
Problem: Vim9: bar not recognized after function call
Solution: Skip whitespace. (closes #6391)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1131
Problem: Vim9: error message for returning a value in a function that does

not return anything is not clear.
Solution: Add a specific message.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1132
Problem: Vim9: return type of repeat() is not specific enough.
Solution: Return the type of the first argument. (closes #6395)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1133
Problem: Vim9: return type of add() is not specific enough.
Solution: Return the type of the first argument. (closes #6395)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1134
Problem: Vim9: getting a list member may not work.
Solution: Clear the list only after copying the item. (closes #6393)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1135
Problem: Vim9: getting a dict member may not work.
Solution: Clear the dict only after copying the item.
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1136
Problem: Vim9: return type of argv() is always any.
Solution: Use list<string> if there is no argument.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1137
Problem: Vim9: modifiers not cleared after compiling function.
Solution: Clear command modifiers. (closes #6396)

version9.txt — 3601

Files: src/vim9compile.c, src/ex_docmd.c, src/proto/ex_docmd.pro,
src/testdir/test_vim9_func.vim,
src/testdir/dumps/Test_vim9_silent_echo.dump

Patch 8.2.1138
Problem: Vim9: return type of copy() and deepcopy() is any.
Solution: Use type of the argument.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1139 (after 8.2.1137)
Problem: Vim9: test for silent echo fails in some environments.
Solution: Use :function instead of :def.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1140
Problem: Vim9: return type of extend() is any.
Solution: Use type of the argument.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1141
Problem: Vim9: return type of filter() is any.
Solution: Use type of the argument.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1142
Problem: Vim9: return type of insert() is any.
Solution: Use type of the first argument.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1143
Problem: Vim9: return type of remove() is any.
Solution: Use the member type of the first argument, if known.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1144
Problem: Vim9: return type of reverse() is any.
Solution: Use the type of the first argument.
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1145
Problem: Vim9: "for" only accepts a list at compile time.
Solution: Also accept a list at runtime.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.1146
Problem: Not enough testing for Python.
Solution: Add more tests. Fix uncovered problems. (Yegappan Lakshmanan,

closes #6392)
Files: src/if_py_both.h, src/if_python3.c, src/testdir/shared.vim,

src/testdir/test_python2.vim, src/testdir/test_python3.vim

Patch 8.2.1147
Problem: :confirm may happen in cooked mode. (Jason Franklin)
Solution: Switch to raw mode before prompting. (Brandon Pfeifer)
Files: src/message.c, src/testdir/test_excmd.vim

Patch 8.2.1148
Problem: Warning for using int instead of size_t.
Solution: Change "len" argument to size_t. (Mike Williams)

version9.txt — 3602

Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9script.c

Patch 8.2.1149
Problem: Vim9: :eval command not handled properly.
Solution: Compile the :eval command. (closes #6408)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1150
Problem: ml_get error when using Python. (Yegappan Lakshmanan)
Solution: Check the line number is not out of range. Call "Check" with

"fromObj" instead of "from".
Files: src/if_py_both.h, src/testdir/test_python2.vim,

src/testdir/test_python3.vim

Patch 8.2.1151
Problem: Insufficient test coverage for Python.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #6415)
Files: src/testdir/test_python2.vim, src/testdir/test_python3.vim

Patch 8.2.1152
Problem: Vim9: function reference is missing script prefix.
Solution: Use the actual function name instead of the name searched for in

the script context. (closes #6412)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1153
Problem: Vim9: script test fails on some systems.
Solution: Return proper value from Compare().
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1154
Problem: Vim9: crash when using imported function.
Solution: Check for a function type. Set the script context when calling a

function. (closes #6412)
Files: src/evalvars.c, src/scriptfile.c, src/proto/scriptfile.pro,

src/vim9execute.c, src/structs.h, src/testdir/test_vim9_script.vim

Patch 8.2.1155
Problem: Vim9: cannot handle line break inside lambda.
Solution: Pass the compilation context through. (closes #6407, closes #6409)
Files: src/structs.h, src/vim9compile.c, src/proto/vim9compile.pro,

src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.1156
Problem: Vim9: No error for invalid command in compiled function.
Solution: Handle CMD_SIZE.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1157
Problem: Vim9: dict.name is not recognized as an expression.
Solution: Recognize ".name". (closes #6418)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1158 (after 8.2.1155)
Problem: Build error.
Solution: Add missing change to globals.
Files: src/globals.h

Patch 8.2.1159
Problem: Vim9: no error for missing space after a comma.

version9.txt — 3603

Solution: Check for white space.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.1160
Problem: Vim9: memory leak in allocated types.
Solution: Free the type pointers.
Files: src/vim9script.c, src/userfunc.c, src/vim9compile.c,

src/proto/vim9compile.pro

Patch 8.2.1161
Problem: Vim9: using freed memory.
Solution: Put pointer back in evalarg instead of freeing it.
Files: src/userfunc.c, src/vim9compile.c, src/eval.c, src/proto/eval.pro,

src/structs.h

Patch 8.2.1162
Problem: Crash when using a lambda.
Solution: Check for evalarg to be NULL.
Files: src/userfunc.c

Patch 8.2.1163 (after 8.2.1161)
Problem: Build error.
Solution: Add missing change to globals.
Files: src/globals.h

Patch 8.2.1164
Problem: Text cleared by checking terminal properties not redrawn. (Alexey

Radkov)
Solution: Mark the screen characters as invalid. (closes #6422)
Files: src/screen.c, src/proto/screen.pro, src/term.c

Patch 8.2.1165
Problem: Insufficient testing for the Tcl interface.
Solution: Add more tests. (Yegappan Lakshmanan, closes #6423)
Files: src/testdir/test_tcl.vim

Patch 8.2.1166
Problem: Once mouse move events are enabled getchar() returns them.
Solution: Ignore K_MOUSEMOVE in getchar(). (closes #6424)
Files: runtime/doc/eval.txt, src/getchar.c

Patch 8.2.1167
Problem: Vim9: builtin function method call only supports first argument.
Solution: Shift arguments when needed. (closes #6305, closes #6419)
Files: src/evalfunc.c, src/vim9compile.c, src/vim9execute.c,

src/vim9.h, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1168
Problem: Wrong method argument for appendbufline().
Solution: Use FEARG_3.
Files: src/evalfunc.c

Patch 8.2.1169
Problem: Write NUL past allocated space using corrupted spell file.

(Markus Vervier)
Solution: Init "c" every time.
Files: src/spellfile.c

version9.txt — 3604

Patch 8.2.1170
Problem: Cursor off by one with block paste while 'virtualedit' is "all".
Solution: Adjust condition. (Hugo Gualandi, closes #6430)
Files: src/register.c, src/testdir/test_registers.vim

Patch 8.2.1171
Problem: Possible crash when out of memory.
Solution: Check for NULL pointer. (Dominique Pellé, closes #6432)
Files: src/syntax.c

Patch 8.2.1172
Problem: Error messages when doing "make clean" in the runtime/doc or

src/tee directories.
Solution: Use "rm -f".
Files: runtime/doc/Makefile, src/tee/Makefile

Patch 8.2.1173
Problem: Tee doesn't build on some systems.
Solution: Include header files. (Dominique Pelle, closes #6431)
Files: src/tee/tee.c

Patch 8.2.1174
Problem: No test for the "recording @x" message.
Solution: Add a test. (Dominique Pellé, closes #6427)
Files: src/testdir/test_registers.vim

Patch 8.2.1175
Problem: Vim9: Cannot split a line before ".member".
Solution: Check for ".member" after line break.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1176
Problem: Vim9: not enough type checking in Vim9 script.
Solution: Use same type checking as in a :def function.
Files: src/vim9compile.c, src/proto/vim9compile.pro,

src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1177
Problem: Terminal2 test sometimes hangs in the GUI.
Solution: Move some tests to other files to further locate the problem.

Set the GUI to a fixed screen size.
Files: src/testdir/test_terminal.vim, src/testdir/test_terminal2.vim,

src/testdir/test_terminal3.vim, src/testdir/Make_all.mak,
src/testdir/runtest.vim

Patch 8.2.1178
Problem: Vim9: filter function recognized as command modifier, leading to a

crash.
Solution: Clear cmdmod after freeing items. Do not recognize a command

modifier followed by non-white space. (closes #6434)
Files: src/ex_docmd.c, src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1179
Problem: Test_termwinscroll() sometimes hangs in the GUI.
Solution: Skip the test in the GUI.
Files: src/testdir/test_terminal2.vim

Patch 8.2.1180
Problem: Build failure in small version.
Solution: Add #ifdef.

version9.txt — 3605

Files: src/ex_docmd.c

Patch 8.2.1181
Problem: Json code not fully tested.
Solution: Add more test coverage. (Dominique Pellé, closes #6433)
Files: src/testdir/test_json.vim

Patch 8.2.1182
Problem: Vim9: no check for whitespace after comma in lambda.
Solution: Give error if white space is missing.
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.1183
Problem: assert_fails() checks the last error message.
Solution: Check the first error, it is more relevant. Fix all the tests

that rely on the old behavior.
Files: runtime/doc/testing.txt, src/message.c, src/globals.h,

src/testing.c, src/testdir/test_autocmd.vim,
src/testdir/test_buffer.vim, src/testdir/test_cd.vim,
src/testdir/test_channel.vim, src/testdir/test_clientserver.vim,
src/testdir/test_cmdline.vim, src/testdir/test_cpoptions.vim,
src/testdir/test_cscope.vim, src/if_cscope.c,
src/testdir/test_excmd.vim, src/evalvars.c,
src/testdir/test_expr.vim, src/testdir/test_functions.vim,
src/testdir/test_json.vim, src/testdir/test_let.vim,
src/testdir/test_listdict.vim, src/testdir/test_listener.vim,
src/testdir/test_match.vim, src/testdir/test_menu.vim,
src/testdir/test_method.vim, src/testdir/test_normal.vim,
src/testdir/test_popup.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_quickfix.vim,
src/testdir/test_random.vim, src/testdir/test_search.vim,
src/testdir/test_signs.vim, src/testdir/test_spell.vim,
src/testdir/test_substitute.vim, src/testdir/test_syntax.vim,
src/testdir/test_tagjump.vim, src/testdir/test_taglist.vim,
src/testdir/test_terminal.vim, src/testdir/test_textprop.vim,
src/testdir/test_trycatch.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim, src/vim9compile.c,
src/testdir/test_vim9_script.vim, src/testdir/test_viminfo.vim,
src/testdir/test_winbuf_close.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_writefile.vim,
src/testdir/test_regexp_latin.vim, src/testdir/test_utf8.vim,
src/testdir/test_global.vim, src/testdir/test_tagfunc.vim

Patch 8.2.1184 (after 8.2.1183)
Problem: Some tests fail.
Solution: Adjust tests for different assert_fails() behavior. Remove unused

variable.
Files: src/testdir/test_assert.vim, src/testdir/test_eval_stuff.vim,

src/evalvars.c

Patch 8.2.1185 (after 8.2.1183)
Problem: Some other tests fail.
Solution: Adjust tests for different assert_fails() behavior.
Files: src/testdir/test_lua.vim, src/testdir/test_tcl.vim

Patch 8.2.1186
Problem: With SGR mouse codes balloon doesn't show up after click.
Solution: Add the MOUSE_RELEASE bits to mouse_code.

version9.txt — 3606

Files: src/mouse.c

Patch 8.2.1187
Problem: Terminal2 test sometimes hangs in the GUI on Travis.
Solution: Disable Test_zz2_terminal_guioptions_bang() for now.
Files: src/testdir/test_terminal2.vim

Patch 8.2.1188
Problem: Memory leak with invalid json input.
Solution: Free all keys at the end. (Dominique Pellé, closes #6443,

closes #6442)
Files: src/json.c, src/testdir/test_json.vim

Patch 8.2.1189
Problem: Vim9: line continuation in lambda doesn't always work.
Solution: Do not use a local evalarg unless there isn't one. (closes #6439)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1190
Problem: Vim9: checking for Vim9 syntax is spread out.
Solution: Use in_vim9script().
Files: src/vim9script.c, src/dict.c, src/eval.c, src/evalvars.c,

src/ex_docmd.c, src/list.c, src/scriptfile.c, src/userfunc.c

Patch 8.2.1191
Problem: Vim9: crash when function calls itself.
Solution: Add status UF_COMPILING. (closes #6441)
Files: src/structs.h, src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1192
Problem: Lua test fails with older Lua version.
Solution: Adjust expected error messages. (closes #6444)
Files: src/testdir/test_lua.vim

Patch 8.2.1193
Problem: Terminal window not redrawn when dragging a popup window over it.
Solution: Redraw terminal window. (fixes #6438)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_term_01.dump,
src/testdir/dumps/Test_popupwin_term_02.dump

Patch 8.2.1194
Problem: Test failure because shell prompt differs.
Solution: Set the shell prompt.
Files: src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_term_01.dump,
src/testdir/dumps/Test_popupwin_term_02.dump

Patch 8.2.1195
Problem: Clientserver test fails on MS-Windows.
Solution: Expect a different error message.
Files: src/testdir/test_clientserver.vim

Patch 8.2.1196
Problem: Build failure with normal features.
Solution: Add #ifdef.
Files: src/popupwin.c

Patch 8.2.1197
Problem: Clientserver test still fails on MS-Windows.

version9.txt — 3607

Solution: Expect a different error message.
Files: src/testdir/test_clientserver.vim

Patch 8.2.1198
Problem: Terminal2 test sometimes hangs in the GUI on Travis.
Solution: Move test function to terminal3 to see if the problem moves too.
Files: src/testdir/test_terminal2.vim, src/testdir/test_terminal3.vim

Patch 8.2.1199
Problem: Not all assert functions are fully tested.
Solution: Test more assert functions.
Files: src/testing.c, src/testdir/test_assert.vim

Patch 8.2.1200
Problem: Vim9: cannot disassemble a lambda function.
Solution: Recognize "<lambda>123" as a function name.
Files: src/vim9execute.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.1201
Problem: Vim9: crash when passing number as dict key.
Solution: Check key type to be string. (closes #6449)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1202
Problem: Vim9: crash when calling a closure from a builtin function.
Solution: Use the current execution context. (closes #6441)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1203
Problem: Unused assignments in expression evaluation.
Solution: Move declarations and assignments to inner blocks where possible.
Files: src/eval.c

Patch 8.2.1204
Problem: Vim9: true and false not recognized in Vim9 script.
Solution: Recognize true and false.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1205
Problem: Vim9: && and || work differently when not compiled.
Solution: Keep the value.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1206
Problem: Vim9: crash in expr test when run in the GUI.
Solution: Temporarily comment out two test lines.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.1207
Problem: Vim9: crash in expr test when run in the GUI.
Solution: Break out of loop over hashtab also when function got removed and

added.
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1208
Problem: Build failure.
Solution: Add missing change.
Files: src/structs.h

Patch 8.2.1209

version9.txt — 3608

Problem: Vim9: test failure.
Solution: Add missing changes to hashtab.
Files: src/hashtab.c

Patch 8.2.1210
Problem: Using ht_used when looping through a hashtab is less reliable.
Solution: Use ht_changed in a few more places.
Files: src/userfunc.c, src/if_py_both.h

Patch 8.2.1211 (after 8.2.1118)
Problem: Removed more than dead code.
Solution: Put back the decrement.
Files: src/move.c, src/testdir/test_diffmode.vim

Patch 8.2.1212
Problem: Cannot build with Lua 5.4.
Solution: Use luaL_typeerror instead defining it. (closes #6454)
Files: src/if_lua.c

Patch 8.2.1213
Problem: Mouse codes not tested sufficiently.
Solution: Add more tests for mouse codes. (closes #6436)
Files: src/testdir/test_termcodes.vim

Patch 8.2.1214
Problem: MS-Windows: default _vimrc not correct in silent install mode.
Solution: Add the LoadDefaultVimrc macro. (Ken Takata, closes #6451)
Files: nsis/gvim.nsi

Patch 8.2.1215
Problem: Atari MiNT support is outdated.
Solution: Nobody responded this code is still useful, so let's delete it.
Files: Filelist, src/os_mint.h, src/vim.h, src/Make_mint.mak,

src/digraph.c, src/fileio.c, src/memfile.c, src/os_unix.c,
src/term.c, READMEdir/README_extra.txt, runtime/doc/os_mint.txt,
src/INSTALL

Patch 8.2.1216
Problem: Startup test fails.
Solution: Adjust expected values for deleted lines.
Files: src/testdir/test_startup.vim

Patch 8.2.1217
Problem: Startup test depends on random source file.
Solution: Write a test file to find quickfix errors in.
Files: src/testdir/test_startup.vim

Patch 8.2.1218
Problem: Vim9: cannot use 'text'->func().
Solution: Recognize string at start of command.
Files: src/vim9compile.c, src/ex_docmd.c, src/testdir/test_vim9_func.vim

Patch 8.2.1219
Problem: Symlink not followed if dirname ends in //.
Solution: Resolve symlink earlier. (Tomáš Janoušek, closes #6454)
Files: src/memline.c, src/testdir/test_swap.vim

Patch 8.2.1220
Problem: memory access error when dragging a popup window over a buffer

with folding.

version9.txt — 3609

Solution: Avoid going over the end of the cache. (closes #6438)
Files: src/mouse.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_term_01.dump,
src/testdir/dumps/Test_popupwin_term_02.dump,
src/testdir/dumps/Test_popupwin_term_03.dump,
src/testdir/dumps/Test_popupwin_term_04.dump

Patch 8.2.1221
Problem: Memory leak when updating popup window.
Solution: Clear search highlighting.
Files: src/popupwin.c

Patch 8.2.1222
Problem: When using valgrind a Vim command started by a test uses the same

log file name which gets overwritten.
Solution: Fix regexp to rename the log file.
Files: src/testdir/shared.vim

Patch 8.2.1223
Problem: Vim9: invalid type error for function default value.
Solution: Use right argument index. (closes #6458)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1224
Problem: Vim9: arguments from partial are not used.
Solution: Put the partial arguments on the stack. (closes #6460)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1225
Problem: Linker errors when building with dynamic Python 3.9.
Solution: Add #defined items. (closes #6461)
Files: src/if_python3.c

Patch 8.2.1226
Problem: MS-Windows: windows positioning wrong when the taskbar is placed

at the top or left of the screen.
Solution: Use GetWindowRect and MoveWindow APIs. (Yukihiro Nakadaira,

Ken Takata, closes #6455)
Files: src/gui_w32.c

Patch 8.2.1227
Problem: Vim9: allowing both quoted and # comments is confusing.
Solution: Only support # comments in Vim9 script.
Files: runtime/doc/vim9.txt, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/vim9compile.c, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.1228
Problem: Scrollbars not flush against the window edges when maximised.
Solution: Add padding. (Ken Takata, closes #5602, closes #6466)
Files: src/gui.c, src/gui_athena.c, src/gui_gtk.c, src/gui_haiku.cc,

src/gui_mac.c, src/gui_motif.c, src/gui_photon.c, src/gui_w32.c,
src/proto/gui_athena.pro, src/proto/gui_gtk.pro,
src/proto/gui_haiku.pro, src/proto/gui_mac.pro,
src/proto/gui_motif.pro, src/proto/gui_photon.pro,
src/proto/gui_w32.pro

Patch 8.2.1229
Problem: Build error without the eval feature.

version9.txt — 3610

Solution: Declare starts_with_colon. Make function local.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 8.2.1230
Problem: Vim9: list index error not caught by try/catch.
Solution: Do not bail out if an error is inside try/catch. (closes #6462)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1231
Problem: MS-Windows: GUI code can be cleaned up.
Solution: Do a bit of cleaning up. (Ken Takata, closes #6465)
Files: src/gui_w32.c, src/proto/gui_w32.pro

Patch 8.2.1232
Problem: MS-Windows GUI: Snap cancelled by split command.
Solution: Do not cancel Snap when splitting a window. (Ken Takata,

closes #6467)
Files: src/gui_w32.c

Patch 8.2.1233
Problem: Vim9: various errors not caught by try/catch.
Solution: Do not bail out if an error is inside try/catch.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1234
Problem: Lua build problem with old compiler.
Solution: Move declarations to start of the block. (Taro Muraoka,

closes #6477)
Files: src/if_lua.c

Patch 8.2.1235
Problem: Not all mouse codes covered by tests.
Solution: Add more tests for the mouse. (Yegappan Lakshmanan, closes #6472)
Files: src/testdir/mouse.vim, src/testdir/test_termcodes.vim

Patch 8.2.1236
Problem: Vim9: a few errors not caught by try/catch.
Solution: Do not bail out if an error is inside try/catch. Fix that a not

matching catch doesn't jump to :endtry.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1237
Problem: Changing 'completepopup' after opening a popup has no effect. (Jay

Sitter)
Solution: Close the popup when the options are changed. (closes #6471)
Files: runtime/doc/options.txt, src/popupwin.c, src/proto/popupwin.pro,

src/optionstr.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_infopopup_8.dump

Patch 8.2.1238
Problem: Vim9: a few remaining errors not caught by try/catch.
Solution: Do not bail out if an error is inside try/catch.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1239
Problem: "maxwidth" in 'completepopup' not obeyed. (Jay Sitter)
Solution: Add separate field for value from option. (closes #6470)
Files: src/structs.h, src/popupwin.c, src/popupmenu.c,

src/testdir/dumps/Test_popupwin_infopopup_9.dump

version9.txt — 3611

Patch 8.2.1240
Problem: GUI tests sometimes fail because of translations.
Solution: Reload the menus without translation. (Taro Muraoka, closes #6486)
Files: src/testdir/runtest.vim

Patch 8.2.1241
Problem: Cannot use getbufinfo() as a method.
Solution: Support using getbufinfo() as a method. (closes #6458)
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_bufwintabinfo.vim

Patch 8.2.1242
Problem: Vim9: no error if calling a function with wrong argument type.
Solution: Check types of arguments. (closes #6469)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.1243
Problem: Vim9: cannot have a comment or empty line halfway a list at script

level.
Solution: Skip more than one line if needed.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/eval.c,

src/scriptfile.c

Patch 8.2.1244
Problem: Vim9: in lambda index assumes a list.
Solution: Use the value type to decide about list or dict. (closes #6479)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1245
Problem: Build failure in tiny version.
Solution: Add #ifdef.
Files: src/scriptfile.c

Patch 8.2.1246
Problem: Vim9: comment after assignment doesn't work.
Solution: Skip over white space. (closes #6481)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1247
Problem: Vim9: cannot index a character in a string.
Solution: Add ISN_STRINDEX instruction. (closes #6478)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1248
Problem: Netbeans test is flaky in the GUI.
Solution: Filter out geometry messages. (Taro Muraoka, closes #6487)
Files: src/testdir/test_netbeans.vim

Patch 8.2.1249
Problem: Vim9: disassemble test fails.
Solution: Change INDEX to LISTINDEX. Add test for STRINDEX.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.1250
Problem: Vim9: cannot use the g:, b:, t: and w: namespaces.
Solution: Add instructions to push a dict for the namespaces. (closes #6480)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

version9.txt — 3612

src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1251
Problem: Vim9: warning for pointer usage, test failure undetected.
Solution: Fix pointer indirection. Give error when executing function

failed for any reason. Fix instruction names.
Files: src/vim9execute.c, src/userfunc.c, src/proto/userfunc.pro

Patch 8.2.1252
Problem: ":marks" may show '< and '> mixed up.
Solution: Show the mark position as where '< and '> would jump.
Files: src/mark.c, src/testdir/test_marks.vim

Patch 8.2.1253
Problem: CTRL-K in Insert mode gets <CursorHold> inserted. (Roland

Puntaier)
Solution: Do not reset did_cursorhold, restore it. (closes #6447)
Files: src/normal.c

Patch 8.2.1254
Problem: MS-Windows: regexp test may fail if 'iskeyword' set wrongly.
Solution: Override the 'iskeyword' value. (Taro Muraoka, closes #6502)
Files: src/testdir/test_regexp_utf8.vim

Patch 8.2.1255
Problem: Cannot use a lambda with quickfix functions.
Solution: Add support for lambda. (Yegappan Lakshmanan, closes #6499)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/quickfix.txt, src/channel.c, src/evalvars.c,
src/optionstr.c, src/proto/evalvars.pro, src/proto/quickfix.pro,
src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1256
Problem: Vim9: type wrong after getting dict item in lambda.
Solution: Set the type to "any" after enforcing dict type. (closes #6491)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1257
Problem: Vim9: list unpack doesn't work at the script level.
Solution: Detect unpack assignment better. (closes #6494)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1258 (after 8.2.1253)
Problem: CursorHold does not work well.a (Shane-XB-Qian)
Solution: Only restore did_cursorhold when using :normal.
Files: src/normal.c

Patch 8.2.1259
Problem: Empty group in 'tabline' may cause using an invalid pointer.
Solution: Set the group start position. (closes #6505)
Files: src/buffer.c, src/testdir/test_tabline.vim

Patch 8.2.1260
Problem: There is no good test for CursorHold.
Solution: Add a test. Remove duplicated test. (Yegappan Lakshmanan,

closes #6503)
Files: src/testdir/test_autocmd.vim, src/testdir/test_buffer.vim,

src/testdir/test_normal.vim

version9.txt — 3613

Patch 8.2.1261
Problem: Vim9: common type of function not tested.
Solution: Add a test. Fix uncovered problems.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1262
Problem: src/ex_cmds.c file is too big.
Solution: Move help related code to src/help.c. (Yegappan Lakshmanan,

closes #6506)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/cmdexpand.c, src/ex_cmds.c, src/help.c, src/proto.h,
src/proto/ex_cmds.pro, src/proto/help.pro

Patch 8.2.1263
Problem: Vim9: comparators use 'ignorecase' in Vim9 script.
Solution: Ignore 'ignorecase'. Use true and false instead of 1 and 0.

(closes #6497)
Files: src/eval.c, src/typval.c, src/vim9execute.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1264
Problem: Terminal getwinpos() test is a bit flaky.
Solution: Call getwinpos() a bit later.
Files: src/testdir/test_terminal3.vim

Patch 8.2.1265
Problem: Crash with EXITFREE when split() fails.
Solution: Restore 'cpoptions'.
Files: src/evalfunc.c

Patch 8.2.1266 (after 8.2.1262)
Problem: Makefile preference were accidentally included.
Solution: Revert the Makefile changes.
Files: src/Makefile

Patch 8.2.1267
Problem: MS-Windows: tests may fail due to $PROMPT value.
Solution: Set $PROMPT for testing. (Taro Muraoka, closes #6510)
Files: src/testdir/runtest/vim

Patch 8.2.1268
Problem: Vim9: no error for using double quote comment after :func or :def.
Solution: Only accept double quote when not in Vim9 script and not after

:def. (closes #6483)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.1269
Problem: Language and locale code spread out.
Solution: Move relevant code to src/locale.c. (Yegappan Lakshmanan,

closes #6509)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_morph.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/ex_cmds2.c, src/locale.c, src/main.c, src/proto.h,
src/proto/ex_cmds2.pro, src/proto/locale.pro

Patch 8.2.1270
Problem: Vim9: not skipping over function type declaration with only a

return type.

version9.txt — 3614

Solution: Skip over the return type. (issue #6507)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1271
Problem: Vim9: Error for Funcref function argument type.
Solution: Find the actual function type if possible. (issue #6507)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1272
Problem: Vim9: type not checked if declaration also assigns value.
Solution: Check the type. (issue #6507)
Files: src/eval.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/vim9script.c, src/vim9execute.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1273
Problem: MS-Windows: terminal test may leave file behind.
Solution: Wait a moment for process to end before deleting the file.

(Taro Muraoka, closes #6513)
Files: src/testdir/test_terminal.vim

Patch 8.2.1274
Problem: Vim9: no error for missing white space in assignment at script

level.
Solution: Check for white space. (closes #6495)
Files: src/eval.c, src/evalvars.c, src/testdir/test_vim9_script.vim,

src/testdir/test_let.vim

Patch 8.2.1275
Problem: Vim9: compiler warning for buffer size.
Solution: Change the offset from 10 to 15. (Dominique Pellé, closes #6518)
Files: src/vim9script.c

Patch 8.2.1276
Problem: MS-Windows: system test may fail if more.exe is installed.
Solution: Explicitly use more.com. (Taro Muraoka, Ken Takata, closes #6517)
Files: src/testdir/test_system.vim

Patch 8.2.1277
Problem: Tests on Travis do not run with EXITFREE.
Solution: Add EXITFREE to all builds to uncover any mistakes.
Files: .travis.yml

Patch 8.2.1278
Problem: Vim9: line break after "->" only allowed in :def function.
Solution: Only allow line break after "->". (closes #6492)
Files: src/vim9compile.c, src/globals.h, src/testdir/test_vim9_expr.vim

Patch 8.2.1279
Problem: Some tests on Travis have EXITFREE duplicated.
Solution: Remove EXITFREE from shadowopt. Add "shadow" to job name.
Files: .travis.yml

Patch 8.2.1280
Problem: Ex command error cannot contain an argument.
Solution: Add ex_errmsg() and translate earlier. Use e_trailing_arg where

possible.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/buffer.c,

src/ex_eval.c, src/match.c, src/testdir/test_tabpage.vim

version9.txt — 3615

Patch 8.2.1281
Problem: The "trailing characters" error can be hard to understand.
Solution: Add the trailing characters to the message.
Files: src/cmdhist.c, src/eval.c, src/evalfunc.c, src/evalvars.c,

src/ex_cmds.c, src/ex_docmd.c, src/ex_eval.c, src/json.c,
src/menu.c, src/quickfix.c, src/sign.c, src/userfunc.c

Patch 8.2.1282
Problem: Vim9: crash when using CheckScriptFailure() in

Test_vim9script_call_fail_decl().
Solution: Do not decrement the def_functions len unless the function was

newly added.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1283
Problem: Vim9: error for misplaced -> lacks argument.
Solution: Use the pointer before it was advanced.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1284
Problem: Vim9: skipping over type includes following white space, leading

to an error for missing white space.
Solution: Do not skip over white space after the type.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1285
Problem: Vim9: argument types are not checked on assignment.
Solution: Check function argument types. (issue #6507)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1286
Problem: Vim9: No error when using a type on a window variable
Solution: Recognize the syntax and give an error. (closes #6521)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1287
Problem: Vim9: crash when using an imported function.
Solution: Add the function type to the imported entry. (closes #6522)
Files: src/vim9script.c, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1288
Problem: Vim9: cannot use mark in range.
Solution: Use the flag that a colon was seen. (closes #6528)
Files: src/ex_docmd.c, src/testdir/test_vim9_func.vim

Patch 8.2.1289
Problem: Crash when using a custom completion function.
Solution: Initialize all of the expand_T. (closes #6532)
Files: src/cmdexpand.c

Patch 8.2.1290
Problem: Vim9: cannot replace a global function.
Solution: Allow for "!" on a global function. (closes #6524) Also fix that

:delfunc on a :def function only made it empty.
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.1291
Problem: Vim9: type of varargs items is not checked.
Solution: Check the list item types. (closes #6523)

version9.txt — 3616

Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1292
Problem: AIDL filetype not recognized.
Solution: Add filetype detection. (Dominique Pellé, closes #6533)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1293
Problem: Vim9: :execute mixes up () expression and function call.
Solution: Do not skip white space when looking for the "(". (closes #6531)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1294
Problem: Vim9: error when using vim9script in TextYankPost.
Solution: Use EX_LOCKOK instead of the EX_CMDWIN flag for command that can

be used when text is locked. (closes #6529)
Files: src/ex_cmds.h, src/ex_docmd.c

Patch 8.2.1295
Problem: Tests 44 and 99 are old style.
Solution: Convert to new style tests. (Yegappan Lakshmanan, closes #6536)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_vms.mms,

src/testdir/test44.in, src/testdir/test44.ok,
src/testdir/test99.in, src/testdir/test99.ok,
src/testdir/test_regexp_utf8.vim

Patch 8.2.1296
Problem: Some part of using 'smartcase' was not tested.
Solution: Add more tests. (Dominique Pellé, closes #6538)
Files: src/testdir/test_search.vim

Patch 8.2.1297
Problem: When a test fails it's often not easy to see what the call stack

is.
Solution: Add more entries from the call stack in the exception message.
Files: runtime/doc/cmdline.txt, src/scriptfile.c,

src/proto/scriptfile.pro, src/debugger.c, src/ex_docmd.c,
src/ex_eval.c, src/message.c, src/testing.c,
src/testdir/test_expand_func.vim

Patch 8.2.1298
Problem: Compiler warning for unused argument in small version.
Solution: Add UNUSED.
Files: src/scriptfile.c

Patch 8.2.1299
Problem: Compiler warning for using size_t for int and void pointer.
Solution: Add type casts.
Files: src/scriptfile.c

Patch 8.2.1300
Problem: Vim9: optional argument type not parsed properly.
Solution: Skip over the "?". (issue #6507)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/evalvars.c,

src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1301
Problem: Vim9: varargs argument type not parsed properly.
Solution: Skip over the "...". (issue #6507)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

version9.txt — 3617

Patch 8.2.1302
Problem: Vim9: varargs arg after optional arg does not work
Solution: Check for the "..." first. (issue #6507)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1303
Problem: Calling popup_setoptions() resets 'signcolumn'.
Solution: Only set 'signcolumn' when creating the popup. (closes #6542)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.1304
Problem: Debug backtrace isn't tested much.
Solution: Add more specific tests. (Ben Jackson, closes #6540)
Files: src/testdir/runtest.vim, src/testdir/test_debugger.vim

Patch 8.2.1305
Problem: Some tests are still old style.
Solution: Convert tests 52 and 70 to new style. (Yegappan Lakshmanan,

closes #6544) Fix error in FinishTesting().
Files: src/testdir/runtest.vim, src/Makefile, src/testdir/Make_all.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_vms.mms,
src/testdir/test52.in, src/testdir/test52.ok,
src/testdir/test70.in, src/testdir/test70.ok,
src/testdir/test_mzscheme.vim, src/testdir/test_writefile.vim

Patch 8.2.1306
Problem: Checking for first character of dict key is inconsistent.
Solution: Add eval_isdictc(). (closes #6546)
Files: src/eval.c, src/proto/eval.pro, src/vim9compile.c,

src/testdir/test_listdict.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_let.vim

Patch 8.2.1307
Problem: popup window width does not include number, fold of sign column

width.
Solution: Take number, fold and sign column with into account.
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_sign_2.dump

Patch 8.2.1308
Problem: Vim9: accidentally using "x" causes Vim to exit.
Solution: Disallow using ":x" or "xit" in Vim9 script. (closes #6399)
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/vim9script.c,

src/proto/vim9script.pro, src/ex_docmd.c, src/ex_cmds.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1309
Problem: Build failure with tiny version.
Solution: Add #ifdef.
Files: src/ex_cmds.c, src/ex_docmd.c

Patch 8.2.1310
Problem: Configure with Xcode 12 fails to check for tgetent.
Solution: Declare tgetent(). (Ozaki Kiichi, closes #6558)
Files: src/configure.ac, src/auto/configure

Patch 8.2.1311
Problem: Test failures with legacy Vim script.
Solution: Actually check for Vim9 script.

version9.txt — 3618

Files: src/vim9script.c

Patch 8.2.1312
Problem: MS-Windows: terminal test may fail if dir.exe exists.
Solution: Use dir.com. (Ken Takata, closes #6557)
Files: src/testdir/test_terminal3.vim

Patch 8.2.1313
Problem: Vim9 script: cannot assign to environment variable.
Solution: Recognize environment variable assignment. (closes #6548)

Also options and registers.
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1314
Problem: Vim9: rule for comment after :function is confusing.
Solution: Allow double quoted comment after :function in vim9script.

(closes #6556)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.1315
Problem: MS-Windows: test log contains escape sequences.
Solution: Do not use t_md and t_me but ANSI escape sequences. (Ken Takata,

closes #6559)
Files: src/testdir/runtest.vim

Patch 8.2.1316
Problem: Test 42 is still old style.
Solution: Turn it into a new style test. (Yegappan Lakshmanan, closes #6561)
Files: src/Makefile, src/testdir/Make_all.mak, src/testdir/Make_dos.mak,

src/testdir/Make_ming.mak, src/testdir/Make_vms.mms,
src/testdir/test42.in, src/testdir/test42.ok,
src/testdir/test_writefile.vim

Patch 8.2.1317
Problem: MS-Windows tests on AppVeyor are slow.
Solution: Use GitHub Actions. (Ken Takata, closes #6569)
Files: Filelist, .github/workflows/ci-windows.yaml, appveyor.yml,

ci/appveyor.bat

Patch 8.2.1318
Problem: No status badge for Github CI.
Solution: Add a badge.
Files: README.md

Patch 8.2.1319
Problem: Status badge for Github CI has wrong link.
Solution: Rename and use the right link
Files: README.md, .github/workflows/ci-windows.yaml

Patch 8.2.1320
Problem: Vim9: cannot declare some single letter variables.
Solution: Do not recognize a colon for a namespace for single letter

variables. (closes #6547)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1321
Problem: GitHub CI also runs on tag push.
Solution: Skip CI on push. (Ken Takata, closes #6571)
Files: .github/workflows/ci-windows.yaml

version9.txt — 3619

Patch 8.2.1322
Problem: Vim9: method on double quoted string doesn't work.
Solution: Recognize double quoted string. (closes #6562)
Files: src/ex_docmd.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.1323
Problem: Vim9: invalid operators only rejected in :def function.
Solution: Also reject them at script level. (closes #6564)
Files: src/eval.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/testdir/test_vim9_expr.vim

Patch 8.2.1324
Problem: Vim9: line break after "=" does not work.
Solution: Also allow for NUL after "=". (closes #6549)
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.1325
Problem: Vim9: using Vim9 script for autoload not tested.
Solution: Add a test. Update help.
Files: runtime/doc/vim9.txt, src/testdir/test_autoload.vim,

src/testdir/sautest/autoload/auto9.vim

Patch 8.2.1326
Problem: Vim9: skipping over white space after list.
Solution: Do not skip white space, a following [] would be misinterpreted.

(closes #6552) Fix a few side effects.
Files: src/list.c, src/dict.c, src/eval.c, src/userfunc.c,

src/testdir/test_functions.vim, src/testdir/test_gn.vim,
src/testdir/test_popupwin.vim, src/testdir/test_tabpage.vim,
src/testdir/test_textprop.vim, src/testdir/test_textobjects.vim

Patch 8.2.1327
Problem: Mac: configure can't find Tcl libraries.
Solution: Adjust configure check. (closes #6575)
Files: src/configure.ac, src/auto/configure

Patch 8.2.1328
Problem: No space allowed before comma in list.
Solution: Legacy Vim script allows it. (closes #6577)
Files: src/dict.c, src/list.c, src/testdir/test_listdict.vim

Patch 8.2.1329
Problem: Vim9: cannot define global function inside :def function.
Solution: Assign to global variable instead of local. (closes #6584)
Files: src/vim9compile.c, src/userfunc.c, src/proto/userfunc.pro,

src/vim9.h, src/vim9execute.c, src/structs.h,
src/misc2.c, src/proto/misc2.pro, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1330
Problem: Github workflow takes longer than needed.
Solution: Do two test runs in parallel instead of sequentially. (Ken Takata,

closes #6579)
Files: .github/workflows/ci-windows.yaml

Patch 8.2.1331
Problem: Vim9: :echo with two lists doesn't work.
Solution: Do not skip white space before []. (closes #6552)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

version9.txt — 3620

Patch 8.2.1332
Problem: Vim9: memory leak when using nested global function.
Solution: Delete the function when deleting the instruction. Disable test

that still causes a leak.
Files: src/vim9compile.c, src/userfunc.c, src/proto/userfunc.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.1333
Problem: Vim9: memory leak when using nested global function.
Solution: Swap from and to when copying the lines.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1334
Problem: Github workflow timeout needs tuning
Solution: Use a 10 minute timeout. Fail when timing out. (Ken Takata,

closes #6590)
Files: .github/workflows/ci-windows.yaml

Patch 8.2.1335
Problem: CTRL-C in the GUI doesn't interrupt. (Sergey Vlasov)
Solution: Recognize "C" with CTRL modifier as CTRL-C. (issue #6565)
Files: src/gui.c, src/proto/gui.pro, src/gui_gtk_x11.c, src/gui_x11.c,

src/gui_photon.c

Patch 8.2.1336 (after 8.2.1335)
Problem: Build failure on non-Unix systems.
Solution: Add #ifdef.
Files: src/gui.c

Patch 8.2.1337
Problem: Vim9: cannot use empty key in dict assignment.
Solution: Allow empty key. (closes #6591)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1338
Problem: Vim9: assigning to script-local variable doesn't check type.
Solution: Use the type. (issue #6591)
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1339
Problem: Vim9: assigning to global dict variable doesn't work.
Solution: Guess variable type based in index type. (issue #6591)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1340
Problem: Some tests fail on Cirrus CI and/or with FreeBSD.
Solution: Make 'backupskip' empty. Do not run tests as root. Check for

directory when using viminfo. (Ozaki Kiichi, closes #6596)
Files: .cirrus.yml, src/testdir/test_backup.vim,

src/testdir/test_edit.vim, src/testdir/test_viminfo.vim,
src/testdir/test_writefile.vim, src/viminfo.c

Patch 8.2.1341
Problem: Build failures.
Solution: Add missing error message.
Files: src/globals.h

Patch 8.2.1342

version9.txt — 3621

Problem: Vim9: accidentally using "x" gives a confusing error.
Solution: Disallow using ":t" in Vim9 script. (issue #6399)
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/vim9script.c,

src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1343
Problem: Vim9: cannot find global function when using g: when local

function with the same name exists.
Solution: Find global function when using g:.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1344
Problem: Vim9: No test for trying to redefine global function.
Solution: Add a test.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1345
Problem: Redraw error when using visual block and scroll.
Solution: Add check for w_topline. (closes #6597)
Files: src/drawscreen.c, src/testdir/test_display.vim,

src/testdir/dumps/Test_display_visual_block_scroll.dump

Patch 8.2.1346
Problem: Small build fails.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.1347
Problem: Cannot easily get the script ID.
Solution: Support expand('<SID>').
Files: runtime/doc/map.txt, src/ex_docmd.c,

src/testdir/test_expand_func.vim

Patch 8.2.1348
Problem: Build failure without the eval feature.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.1349
Problem: Vim9: can define a function with the name of an import.
Solution: Disallow using an existing name. (closes #6585)
Files: src/userfunc.c, src/vim9compile.c, src/globals.h,

src/testdir/test_vim9_script.vim

Patch 8.2.1350
Problem: Vim9: no test for error message when redefining function.
Solution: Add a test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1351
Problem: Vim9: no proper error if using namespace for nested function.
Solution: Specifically check for a namespace. (closes #6582)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1352
Problem: Vim9: no error for shadowing a script-local function by a nested

function.
Solution: Check for script-local function. (closes #6586)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

version9.txt — 3622

Patch 8.2.1353
Problem: Crash when drawing double-wide character in terminal window.

(Masato Nishihata)
Solution: Check getcell() returning NULL. (issue #6141)
Files: src/libvterm/src/screen.c, src/testdir/test_terminal.vim

Patch 8.2.1354
Problem: Test 59 is old style.
Solution: Convert into a new style test. (Yegappan Lakshmanan, closes #6604)
Files: runtime/doc/eval.txt, src/Makefile, src/testdir/Make_all.mak,

src/testdir/Make_vms.mms, src/testdir/test59.in,
src/testdir/test59.ok, src/testdir/test_spell_utf8.vim

Patch 8.2.1355
Problem: Vim9: no error using :let for options and registers.
Solution: Give an error. (closes #6568)
Files: src/evalvars.c, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1356
Problem: Vim9: cannot get the percent register.
Solution: Check for readable registers instead of writable. (closes #6566)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1357
Problem: Vim9: cannot assign to / register.
Solution: Adjust check for assignment. (issue #6566)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.1358
Problem: Vim9: test fails with +dnd is not available.
Solution: Add condition.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1359
Problem: Vim9: cannot assign to / register in Vim9 script.
Solution: Adjust check for assignment in Vim9 script. (closes #6567)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1360
Problem: Stray error for white space after expression.
Solution: Ignore trailing white space. (closes #6608)
Files: src/eval.c, src/testdir/test_filter_map.vim

Patch 8.2.1361
Problem: Error for white space after expression in assignment.
Solution: Skip over white space. (closes #6617)
Files: src/eval.c, src/testdir/test_expr.vim

Patch 8.2.1362
Problem: Last entry of ":set term=xxx" overwritten by error message when

'cmdheight' is two or more. (Tony Mechelynck)
Solution: Output extra line breaks.
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.2.1363
Problem: Test trying to run terminal when it is not supported.
Solution: Check if Vim can be run in a terminal.
Files: src/testdir/test_termcodes.vim

version9.txt — 3623

Patch 8.2.1364
Problem: Invalid memory access when searching for raw string.
Solution: Check for delimiter match before following quote. (closes #6578)
Files: src/search.c

Patch 8.2.1365
Problem: Vim9: no error for missing white space around operator.
Solution: Check for white space. (closes #6618)
Files: src/eval.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/evalvars.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.1366
Problem: Test 49 is old style.
Solution: Convert several tests to new style. (Yegappan Lakshmanan,

closes #6629)
Files: src/testdir/script_util.vim, src/testdir/test49.ok,

src/testdir/test49.vim, src/testdir/test_vimscript.vim

Patch 8.2.1367
Problem: Vim9: no error for missing white space around operator.
Solution: Check for white space around *, / and %.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1368
Problem: Vim9: no error for missing white space around operator.
Solution: Check for white space around <, !=, etc.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1369
Problem: MS-Windows: autocommand test sometimes fails.
Solution: Do not rely on the cat command.
Files: src/testdir/test_autocmd.vim

Patch 8.2.1370
Problem: MS-Windows: warning for using fstat() with stat_T.
Solution: use _fstat64() if available. (Naruhiko Nishino, closes #6625)
Files: src/macros.h

Patch 8.2.1371
Problem: Vim9: no error for missing white space around operator.
Solution: Check for white space around && and ||.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1372
Problem: Vim9: no error for missing white space around operator.
Solution: Check for white space around ? and :.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1373
Problem: Vim9: no error for assigning to non-existing script var.
Solution: Check that in Vim9 script the variable was defined. (closes #6630)
Files: src/vim9compile.c, src/userfunc.c, src/structs.h,

src/testdir/test_vim9_script.vim

Patch 8.2.1374
Problem: Vim9: error for assigning empty list to script variable.
Solution: Use t_unknown for empty list member. (closes #6595)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

version9.txt — 3624

Patch 8.2.1375
Problem: Vim9: method name with digit not accepted.
Solution: Use eval_isnamec() instead of eval_isnamec1(). (closes #6613)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1376
Problem: Vim9: expression mapping causes error for using :import.
Solution: Add EX_LOCK_OK to :import and :export. (closes #6606)
Files: src/ex_cmds.h, src/testdir/test_vim9_script.vim

Patch 8.2.1377
Problem: Triggering the ATTENTION prompt causes typeahead to be messed up.
Solution: Increment tb_change_cnt. (closes #6541)
Files: src/getchar.c

Patch 8.2.1378
Problem: Cannot put space between function name and paren.
Solution: Allow this for backwards compatibility.
Files: src/eval.c, src/testdir/test_expr.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.1379
Problem: Curly braces expression ending in " }" does not work.
Solution: Skip over white space when checking for "}". (closes #6634)
Files: src/dict.c, src/testdir/test_eval_stuff.vim

Patch 8.2.1380
Problem: Vim9: return type of getreg() is always a string.
Solution: Use list of strings when there are three arguments. (closes #6633)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1381
Problem: MS-Windows: crash with Python 3.5 when stdin is redirected.
Solution: Reconnect stdin. (Yasuhiro Matsumoto, Ken Takata, closes #6641)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/if_python3.c

Patch 8.2.1382
Problem: Vim9: using :import in filetype plugin gives an error.
Solution: Allow commands with the EX_LOCK_OK flag. (closes #6636)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1383
Problem: Test 49 is old style.
Solution: Convert test cases to new style. (Yegappan Lakshmanan,

closes #6638)
Files: src/testdir/test49.ok, src/testdir/test49.vim,

src/testdir/test_vimscript.vim

Patch 8.2.1384
Problem: No ATTENTION prompt for :vimgrep first match file.
Solution: When there is an existing swap file do not keep the dummy buffer.

(closes #6649)
Files: src/quickfix.c, src/testdir/runtest.vim,

src/testdir/test_quickfix.vim

Patch 8.2.1385
Problem: No testing on ARM.
Solution: Add a test on Travis for ARM. (Ozaki Kiichi, closes #6615)
Files: .travis.yml

version9.txt — 3625

Patch 8.2.1386
Problem: Backslash not removed after space in option with space in

'isfname'.
Solution: Do remove backslash before space, also when it is in 'isfname'.

(Yasuhiro Matsumoto, closes #6651)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.2.1387
Problem: Vim9: cannot assign to single letter variable with type.
Solution: Exclude the colon from the variable name. (closes #6647)
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.1388
Problem: Vim9: += only works for numbers.
Solution: Use += as concatenate for a list. (closes #6646)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1389
Problem: File missing from the distribution.
Solution: Add script_util.vim to the list of distributes files.
Files: Filelist

Patch 8.2.1390
Problem: Vim9: type error after storing an option value.
Solution: Drop the type after a STOREOPT instruction. (closes #6632)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1391
Problem: Vim9: no error for shadowing a script function.
Solution: Check for already defined items. (closes #6652)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1392
Problem: Vim9: error line number incorrect after skipping over comment

lines.
Solution: Insert empty lines for skipped lines.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1393
Problem: Insufficient testing for script debugging.
Solution: Add more tests. (Ben Jackson)
Files: src/testdir/test_debugger.vim

Patch 8.2.1394
Problem: Vim9: compiling a function interferes with command modifiers.
Solution: Save and restore command modifiers. (closes #6658)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.1395
Problem: Vim9: no error if declaring a funcref with a lower case letter.
Solution: Check the name after the type is inferred. Fix confusing name.
Files: src/vim9compile.c, src/dict.c, src/eval.c, src/evalvars.c,

src/proto/evalvars.pro, src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1396
Problem: Vim9: no error for unexpectedly returning a value.
Solution: Only set the return type for lambda's. Make using function type

version9.txt — 3626

in a function reference work.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1397
Problem: Vim9: return type of maparg() not adjusted for fourth argument.
Solution: Check if fourth argument is present. (closes #6645)
Files: src/evalfunc.c, src/testdir/test_maparg.vim

Patch 8.2.1398
Problem: Autoload script sourced twice if sourced directly.
Solution: Do not source an autoload script again. (issue #6644)
Files: src/scriptfile.c, src/testdir/sautest/autoload/sourced.vim

Patch 8.2.1399
Problem: Vim9: may find imported item in wrong script.
Solution: When looking up script-local function use the embedded script ID.

(issue #6644)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1400
Problem: Vim9: test does not delete written files.
Solution: Correct file names.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1401
Problem: Cannot jump to the last used tabpage.
Solution: Add g<Tab> and tabpagnr('#'). (Yegappan Lakshmanan, closes #6661,

neovim #11626)
Files: runtime/doc/eval.txt, runtime/doc/index.txt,

runtime/doc/tabpage.txt, src/evalwindow.c, src/globals.h,
src/normal.c, src/proto/window.pro, src/testdir/test_tabpage.vim,
src/window.c

Patch 8.2.1402
Problem: s390x tests always fail.
Solution: Temporarily disable s390x tests.
Files: .travis.yml

Patch 8.2.1403
Problem: Vim9: Vim highlighting fails in cmdline window if it uses Vim9

commands.
Solution: Allow using :vim9script, :import and :export while in the cmdline

window. (closes #6656)
Files: src/ex_cmds.h, src/testdir/test_vim9_script.vim

Patch 8.2.1404
Problem: Vim9: script test fails in the GUI.
Solution: Use another key to map. Improve cleanup.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1405
Problem: Vim9: vim9compile.c is getting too big.
Solution: Split off type code to vim9type.c.
Files: Filelist, src/vim9compile.c, src/proto/vim9compile.pro,

src/vim9type.c, src/proto/vim9type.pro, src/proto.h,
src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Makefile

Patch 8.2.1406
Problem: Popupwindow lacks scrollbar if no "maxheight" is used.

version9.txt — 3627

Solution: Compute the max height depending on the position. (closes #6664)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_toohigh_1.dump,
src/testdir/dumps/Test_popupwin_toohigh_2.dump

Patch 8.2.1407
Problem: Vim9: type of list and dict only depends on first item.
Solution: Use all items to decide about the type.
Files: src/vim9compile.c, src/vim9type.c, src/proto/vim9type.pro,

src/testdir/test_vim9_expr.vim, runtime/doc/vim9.txt

Patch 8.2.1408
Problem: Vim9: type casting not supported.
Solution: Introduce type casting.
Files: runtime/doc/vim9.txt, src/vim9compile.c,

src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1409
Problem: Npmrc and php.ini filetypes not recognized.
Solution: Add filetype detection. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1410
Problem: Adding compiler plugin requires test change.
Solution: Include compiler plugin and adjust test.
Files: src/testdir/test_compiler.vim, runtime/compiler/xo.vim

Patch 8.2.1411
Problem: when splitting a window localdir is copied but prevdir is not.
Solution: Also copy prevdir. (closes #6667)
Files: src/window.c, src/testdir/test_cd.vim

Patch 8.2.1412
Problem: Vim: not operator does not result in boolean.
Solution: Make type depend on operator. (issue 6678) Fix using "false" and

"true" in Vim9 script.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1413 (after 8.2.1401)
Problem: Previous tab page not usable from an Ex command.
Solution: Add the "#" argument for :tabnext et al. (Yegappan Lakshmanan,

closes #6677)
Files: runtime/doc/tabpage.txt, src/ex_docmd.c, src/window.c,

src/testdir/test_tabpage.vim

Patch 8.2.1414
Problem: Popupwindow missing last couple of lines when cursor is in the

first line.
Solution: Compute the max height also when top aligned. (closes #6664)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_toohigh_3.dump,
src/testdir/dumps/Test_popupwin_nospace.dump

Patch 8.2.1415
Problem: Closing a popup window with CTRL-C interrupts 'statusline' if it

calls a function.
Solution: Reset got_int while redrawing. (closes #6675)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_ctrl_c.dump

version9.txt — 3628

Patch 8.2.1416
Problem: Vim9: boolean evaluation does not work as intended.
Solution: Use tv2bool() in Vim9 script. (closes #6681)
Files: src/eval.c, src/testdir/test_vim9_expr.vim, src/testdir/vim9.vim

Patch 8.2.1417
Problem: Test 49 is old style.
Solution: Convert more parts to new style test. (Yegappan Lakshmanan,

closes #6682)
Files: src/testdir/test49.ok, src/testdir/test49.vim,

src/testdir/test_vimscript.vim

Patch 8.2.1418
Problem: Vim9: invalid error for missing white space after function.
Solution: Do not skip over white space. (closes #6679)
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1419
Problem: Vim9: not operator applied too early.
Solution: Implement the "numeric_only" argument. (closes #6680)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1420
Problem: Test 49 is old style.
Solution: Convert remaining parts to new style. Remove obsolete items.

(Yegappan Lakshmanan, closes #6683)
Files: Filelist, runtime/doc/testing.txt, src/Make_mvc.mak, src/Makefile,

src/testdir/Make_all.mak, src/testdir/Make_amiga.mak,
src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,
src/testdir/Make_vms.mms, src/testdir/Makefile,
src/testdir/README.txt, src/testdir/test49.in,
src/testdir/test49.ok, src/testdir/test49.vim,
src/testdir/test_quickfix.vim, src/testdir/test_vimscript.vim

Patch 8.2.1421
Problem: Vim9: handling "+" and "-" before number differs from Vim script.
Solution: Use the same sequence of commands.
Files: src/vim9compile.c

Patch 8.2.1422
Problem: The Mac GUI implementation is outdated and probably doesn't even

work.
Solution: Remove the Mac GUI code. The MacVim project provides the

supported Vim GUI version.
Files: Filelist, src/gui_mac.c, src/proto/gui_mac.pro, src/proto.h,

src/Makefile, src/configure.ac, src/auto/configure,
src/evalfunc.c, src/fileio.c, src/gui.c, src/if_mzsch.c,
src/main.c, src/misc2.c, src/mouse.c, src/os_mac_conv.c,
src/os_unix.c, src/feature.h, src/globals.h, src/gui.h,
src/option.h, src/optiondefs.h, src/os_mac.h, src/structs.h,
src/vim.h, src/INSTALLmac.txt

Patch 8.2.1423
Problem: Vim9: find global function when looking for script-local.
Solution: Don't strip prefix if name starts with "s:". (closes #6688)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1424 (after 8.2.1422)
Problem: Mac build fails.

version9.txt — 3629

Solution: Adjust configure to not fall back to Athena. Adjust some other
files.

Files: src/configure.ac, src/auto/configure, src/os_macosx.m,
src/version.c

Patch 8.2.1425
Problem: Vim9: cannot use call() without :call.
Solution: Do not skip over "call(". (closes #6689)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1426
Problem: Vim9: cannot call autoload function in :def function.
Solution: Load the autoload script. (closes #6690)
Files: src/vim9execute.c, src/vim9compile.c, src/scriptfile.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1427
Problem: Vim9: cannot use a range with marks in :def function.
Solution: Parse range after colon. (closes #6686)
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.1428
Problem: Vim9: :def function does not abort on nested function error.
Solution: Check whether an error message was given. (closes #6691)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1429
Problem: Vim9: no error for missing white after : in dict.
Solution: Check for white space. (closes #6671) Also check that there is no

white before the :.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.1430
Problem: Vim9: error for missing comma instead of extra white space.
Solution: Check if comma can be found after white space. (closes #6668)

Also check for extra white space in literal dict. (closes #6670)
Files: src/list.c, src/dict.c, src/vim9compile.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1431
Problem: Vim9: no error for white space before comma in dict.
Solution: Check for extra white space. (closes #6674)
Files: src/vim9compile.c, src/dict.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1432
Problem: Various inconsistencies in test files.
Solution: Add modelines where they were missing. Use Check commands instead

of silently skipping over tests. Adjust indents and comments.
(Ken Takata, closes #6695)

Files: src/testdir/test_arglist.vim, src/testdir/test_assert.vim,
src/testdir/test_autochdir.vim, src/testdir/test_autocmd.vim,
src/testdir/test_autoload.vim, src/testdir/test_balloon.vim,
src/testdir/test_balloon_gui.vim, src/testdir/test_behave.vim,
src/testdir/test_blockedit.vim, src/testdir/test_breakindent.vim,
src/testdir/test_bufline.vim, src/testdir/test_bufwintabinfo.vim,
src/testdir/test_cd.vim, src/testdir/test_changedtick.vim,
src/testdir/test_changelist.vim, src/testdir/test_channel.vim,
src/testdir/test_checkpath.vim, src/testdir/test_cindent.vim,
src/testdir/test_cjk_linebreak.vim,

version9.txt — 3630

src/testdir/test_clientserver.vim,
src/testdir/test_close_count.vim, src/testdir/test_cmdline.vim,
src/testdir/test_command_count.vim,
src/testdir/test_comparators.vim, src/testdir/test_compiler.vim,
src/testdir/test_crypt.vim, src/testdir/test_cursorline.vim,
src/testdir/test_curswant.vim, src/testdir/test_debugger.vim,
src/testdir/test_delete.vim, src/testdir/test_diffmode.vim,
src/testdir/test_digraph.vim, src/testdir/test_display.vim,
src/testdir/test_edit.vim, src/testdir/test_environ.vim,
src/testdir/test_erasebackword.vim,
src/testdir/test_escaped_glob.vim, src/testdir/test_ex_equal.vim,
src/testdir/test_ex_undo.vim, src/testdir/test_ex_z.vim,
src/testdir/test_exec_while_if.vim, src/testdir/test_exists.vim,
src/testdir/test_exists_autocmd.vim, src/testdir/test_exit.vim,
src/testdir/test_expand_dllpath.vim,
src/testdir/test_expr_utf8.vim, src/testdir/test_feedkeys.vim,
src/testdir/test_file_size.vim, src/testdir/test_fileformat.vim,
src/testdir/test_filter_cmd.vim,
src/testdir/test_find_complete.vim, src/testdir/test_findfile.vim,
src/testdir/test_fixeol.vim, src/testdir/test_flatten.vim,
src/testdir/test_fnameescape.vim, src/testdir/test_fold.vim,
src/testdir/test_functions.vim, src/testdir/test_ga.vim,
src/testdir/test_getcwd.vim, src/testdir/test_getvar.vim,
src/testdir/test_glob2regpat.vim, src/testdir/test_global.vim,
src/testdir/test_gui.vim, src/testdir/test_gui_init.vim,
src/testdir/test_highlight.vim, src/testdir/test_hlsearch.vim,
src/testdir/test_iminsert.vim,
src/testdir/test_increment_dbcs.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_interrupt.vim,
src/testdir/test_job_fails.vim, src/testdir/test_join.vim,
src/testdir/test_json.vim, src/testdir/test_jumplist.vim,
src/testdir/test_jumps.vim, src/testdir/test_lambda.vim,
src/testdir/test_langmap.vim, src/testdir/test_largefile.vim,
src/testdir/test_lineending.vim, src/testdir/test_listchars.vim,
src/testdir/test_listener.vim, src/testdir/test_listlbr.vim,
src/testdir/test_listlbr_utf8.vim,
src/testdir/test_makeencoding.vim, src/testdir/test_man.vim,
src/testdir/test_mapping.vim, src/testdir/test_marks.vim,
src/testdir/test_matchadd_conceal.vim,
src/testdir/test_matchadd_conceal_utf8.vim,
src/testdir/test_memory_usage.vim, src/testdir/test_menu.vim,
src/testdir/test_messages.vim, src/testdir/test_mksession.vim,
src/testdir/test_modeline.vim,
src/testdir/test_nested_function.vim, src/testdir/test_number.vim,
src/testdir/test_options.vim, src/testdir/test_packadd.vim,
src/testdir/test_partial.vim, src/testdir/test_paste.vim,
src/testdir/test_plus_arg_edit.vim, src/testdir/test_preview.vim,
src/testdir/test_profile.vim, src/testdir/test_prompt_buffer.vim,
src/testdir/test_quickfix.vim, src/testdir/test_quotestar.vim,
src/testdir/test_random.vim, src/testdir/test_recover.vim,
src/testdir/test_regex_char_classes.vim,
src/testdir/test_regexp_latin.vim, src/testdir/test_registers.vim,
src/testdir/test_rename.vim, src/testdir/test_retab.vim,
src/testdir/test_scriptnames.vim, src/testdir/test_scroll_opt.vim,
src/testdir/test_scrollbind.vim, src/testdir/test_search_stat.vim,
src/testdir/test_searchpos.vim, src/testdir/test_set.vim,
src/testdir/test_sha256.vim, src/testdir/test_shift.vim,
src/testdir/test_shortpathname.vim, src/testdir/test_signs.vim,
src/testdir/test_sort.vim, src/testdir/test_sound.vim,
src/testdir/test_source_utf8.vim, src/testdir/test_spellfile.vim,

version9.txt — 3631

src/testdir/test_startup.vim, src/testdir/test_startup_utf8.vim,
src/testdir/test_stat.vim, src/testdir/test_suspend.vim,
src/testdir/test_swap.vim, src/testdir/test_syntax.vim,
src/testdir/test_tab.vim, src/testdir/test_tabline.vim,
src/testdir/test_tagcase.vim, src/testdir/test_tagjump.vim,
src/testdir/test_taglist.vim, src/testdir/test_termcodes.vim,
src/testdir/test_termencoding.vim, src/testdir/test_terminal.vim,
src/testdir/test_terminal2.vim, src/testdir/test_terminal3.vim,
src/testdir/test_terminal_fail.vim,
src/testdir/test_true_false.vim,
src/testdir/test_utf8_comparisons.vim,
src/testdir/test_vartabs.vim, src/testdir/test_version.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_winbar.vim,
src/testdir/test_winbuf_close.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_window_id.vim,
src/testdir/test_windows_home.vim, src/testdir/test_wnext.vim,
src/testdir/test_wordcount.vim, src/testdir/test_writefile.vim,
src/testdir/test_xxd.vim

Patch 8.2.1433
Problem: Vim9: cannot mingle comments in multi-line lambda.
Solution: Skip over NULL lines. (closes #6694)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1434
Problem: Vim9: crash when lambda uses outer function argument.
Solution: Set the flag that the outer context is used.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1435
Problem: Vim9: always converting to string for ".." leads to mistakes.
Solution: Only automatically convert simple types.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/vim9.h,

src/vim9execute.c, src/proto/vim9execute.pro, src/eval.c,
src/evalfunc.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1436
Problem: Function implementing :substitute has unexpected name.
Solution: Rename from do_sub() to ex_substitute().
Files: src/ex_cmds.c, src/proto/ex_cmds.pro, src/ex_docmd.c,

src/ex_cmds.h

Patch 8.2.1437
Problem: Vim9: 'statusline' is evaluated using Vim9 script syntax.
Solution: Always use legacy script syntax.
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.1438
Problem: Missing tests for interrupting script execution from debugger.
Solution: Add tests. (Yegappan Lakshmanan, closes #6697)
Files: src/testdir/test_debugger.vim

Patch 8.2.1439
Problem: Tiny and small builds have no test coverage.
Solution: Restore tests that do not depend on the +eval feature.

(Ken Takata, closes #6696)
Files: .travis.yml, Filelist, Makefile, runtime/doc/testing.txt,

src/Make_mvc.mak, src/Makefile, src/testdir/Make_all.mak,
src/testdir/Make_amiga.mak, src/testdir/Make_dos.mak,

version9.txt — 3632

src/testdir/Make_ming.mak, src/testdir/Make_vms.mms,
src/testdir/Makefile, src/testdir/runtest.vim,
src/testdir/test1.in, src/testdir/test1.ok, src/testdir/test20.in,
src/testdir/test20.ok, src/testdir/test21.in,
src/testdir/test21.ok, src/testdir/test22.in,
src/testdir/test22.ok, src/testdir/test23.in,
src/testdir/test23.ok, src/testdir/test24.in,
src/testdir/test24.ok, src/testdir/test25.in,
src/testdir/test25.ok, src/testdir/test26.in,
src/testdir/test26.ok, src/testdir/test27.in,
src/testdir/test27.ok, src/testdir/test_options.vim

Patch 8.2.1440
Problem: Debugger code insufficiently tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #6700)
Files: src/testdir/test_debugger.vim, src/testdir/test_vimscript.vim

Patch 8.2.1441
Problem: Running tests in tiny version gives error for summarize.vim.
Solution: Set 'cpoptions' to allow for line continuation. Restore

redirecting test output to /dev/null.
Files: src/testdir/summarize.vim, src/testdir/Makefile

Patch 8.2.1442
Problem: Outdated references to the Mac Carbon GUI.
Solution: Remove or update references. (Yee Cheng Chin, closes #6703)
Files: READMEdir/README_extra.txt, src/Makefile, src/configure.ac,

src/auto/configure, src/gui_haiku.cc, src/os_macosx.m,
src/testdir/test_iminsert.vim, src/vim.h

Patch 8.2.1443
Problem: Vim9: crash when interrupting a nested :def function.
Solution: Push a dummy return value onto the stack. (closes #6701)
Files: src/vim9execute.c

Patch 8.2.1444
Problem: Error messages are spread out and names can be confusing.
Solution: Start moving error messages to a separate file and use clear

names.
Files: Filelist, src/vim.h, src/globals.h, src/errors.h, src/Makefile,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms,
src/dict.c, src/evalvars.c, src/ex_docmd.c, src/list.c,
src/userfunc.c, src/vim9compile.c, src/vim9execute.c,
src/vim9script.c, src/vim9type.c

Patch 8.2.1445
Problem: Vim9: function expanded name is cleared when sourcing a script

again.
Solution: Only clear the expanded name when deleting the function.

(closes #6707)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.1446
Problem: Vim9: line number in error message is not correct.
Solution: Set SOURCING_LNUM before calling emsg(). (closes #6708)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1447
Problem: Vim9: return type of keys() is list<any>.
Solution: Should be list<string>. (closes #6711)

version9.txt — 3633

Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1448
Problem: Test 77a for VMS depends on small.vim which does not exist.
Solution: Use the 'silent while 0" trick. (issue #6696)
Files: src/testdir/test77a.in

Patch 8.2.1449
Problem: Some test makefiles delete files that are not generated.
Solution: Remove the deletion commands.
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,

src/testdir/Make_amiga.mak, src/testdir/Make_vms.mms

Patch 8.2.1450
Problem: Vim9: no check that script-local items don't become global.
Solution: Add a test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1451
Problem: Vim9: list type at script level only uses first item.
Solution: Use all members, like in a compiled function. (closes #6712)

Also for dictionary.
Files: src/vim9type.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1452
Problem: Vim9: dead code in to_name_end().
Solution: Remove check for lambda and dict, it won't be used.
Files: src/vim9compile.c

Patch 8.2.1453
Problem: Vim9: failure to compile lambda not tested.
Solution: Add a test case.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.1454
Problem: Vim9: failure invoking lambda with wrong arguments.
Solution: Handle invalid arguments. Add a test.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1455
Problem: Vim9: crash when using typecast before constant.
Solution: Generate constant before checking type. Add tets.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1456
Problem: MS-Windows: test files are not deleted.
Solution: use "del" instead of $(DEL).
Files: src/testdir/Make_dos.mak

Patch 8.2.1457
Problem: Vim9: the output of :disassemble cannot be interrupted.
Solution: Check got_int. (closes #6715)
Files: src/vim9execute.c

Patch 8.2.1458
Problem: .gawk files not recognized.
Solution: Recognize .gawk files. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3634

Patch 8.2.1459
Problem: Vim9: declaring a script variable at the script level does not

infer the type.
Solution: Get the type from the value. (closes #6716)
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.1460
Problem: Error messages are spread out.
Solution: Move more messages into errors.h.
Files: src/errors.h, src/globals.h, src/vim9compile.c, src/vim9execute.c,

src/vim9script.c, src/vim9type.c, src/scriptfile.c, src/ex_cmds.c,
src/ex_docmd.c, src/match.c, src/eval.c, src/evalvars.c,
src/userfunc.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.1461
Problem: Vim9: string indexes are counted in bytes.
Solution: Use character indexes. (closes #6574)
Files: runtime/doc/eval.txt, src/eval.c, src/proto/eval.pro,

src/vim9execute.c, src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1462
Problem: Vim9: string slice not supported yet.
Solution: Add support for string slicing.
Files: src/errors.h, src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/eval.c, src/proto/eval.pro, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1463
Problem: Vim9: list slice not supported yet.
Solution: Add support for list slicing.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/eval.c,

src/list.c, src/proto/list.pro, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1464
Problem: Vim9: build warning for unused variable.
Solution: Delete the variable declaration.
Files: src/vim9execute.c

Patch 8.2.1465
Problem: Vim9: subscript not handled properly.
Solution: Adjust error message. Remove dead code. Disallow string to

number conversion in scripts.
Files: src/errors.h, src/vim9compile.c, src/vim9execute.c, src/eval.c,

src/typval.c, src/list.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.1466
Problem: Vim9: cannot index or slice a variable with type "any".
Solution: Add runtime index and slice.
Files: src/eval.c, src/proto/eval.pro, src/vim9compile.c,

src/vim9execute.c, src/vim9.h, src/errors.h, src/list.c,
src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.1467
Problem: Vim9: :echomsg doesn't like a dict argument.

version9.txt — 3635

Solution: Convert arguments like in legacy script. (closes #6717)
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1468
Problem: Vim9: invalid error for missing white space.
Solution: Don't skip over white space after index. (closes #6718)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1469
Problem: Vim9: cannot assign string to string option.
Solution: Change checks for option value. (closes #6720)
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.1470
Problem: Errors in spell file not tested.
Solution: Add test for spell file errors. (Yegappan Lakshmanan,

closes #6721)
Files: src/testdir/test_spellfile.vim

Patch 8.2.1471
Problem: :const only locks the variable, not the value.
Solution: Lock the value as ":lockvar 1 var" would do. (closes #6719)
Files: src/evalvars.c, src/testdir/test_const.vim

Patch 8.2.1472
Problem: ":argdel" does not work like ":.argdel" as documented. (Alexey

Demin)
Solution: Make ":argdel" work like ":.argdel". (closes #6727)

Also fix giving the error "0 more files to edit".
Files: src/arglist.c, src/ex_docmd.c, src/testdir/test_arglist.vim

Patch 8.2.1473
Problem: Items in a list given to :const can still be modified.
Solution: Work like ":lockvar! name" but don't lock referenced items.

Make locking a blob work.
Files: runtime/doc/eval.txt, src/evalvars.c, src/eval.c,

src/testdir/test_const.vim

Patch 8.2.1474
Problem: /usr/lib/udef/rules.d not recognized as udevrules.
Solution: Adjust match pattern. (Haochen Tong, closes 36722)
Files: runtime/autoload/dist/ft.vim, src/testdir/test_filetype.vim

Patch 8.2.1475
Problem: Vim9: can't use v:true for option flags.
Solution: Add tv_get_bool_chk(). (closes #6725)
Files: src/typval.c, src/proto/typval.pro, src/channel.c

Patch 8.2.1476 (after 8.2.1474)
Problem: Filetype test fails on MS-Windows.
Solution: Remove "^" from pattern.
Files: runtime/autoload/dist/ft.vim

Patch 8.2.1477
Problem: Vim9: error when using bufnr('%').
Solution: Don't give an error for using a string argument. (closes #6723)
Files: src/evalbuffer.c, src/testdir/test_vim9_func.vim

Patch 8.2.1478

version9.txt — 3636

Problem: Vim9: cannot use "true" for some popup options.
Solution: Add dict_get_bool(). (closes #6725)
Files: src/dict.c, src/proto/dict.pro, src/popupwin.c

Patch 8.2.1479
Problem: Vim9: error for list index uses wrong line number.
Solution: Set source line number. (closes #6724) Add a way to assert the

line number of the error with assert_fails().
Files: runtime/doc/testing.txt, src/vim9execute.c, src/testing.c,

src/evalfunc.c, src/message.c, src/globals.h, src/testdir/vim9.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1480
Problem: Vim9: skip expression in search() gives error.
Solution: use tv_get_bool() eval_expr_to_bool(). (closes #6729)
Files: src/eval.c, src/typval.c, src/proto/typval.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.1481
Problem: Vim9: line number reported with error may be wrong.
Solution: Check line number in tests.
Files: src/testdir/test_vim9_expr.vim, src/testdir/vim9.vim,

src/vim9execute.c

Patch 8.2.1482
Problem: Vim9: crash when using a nested lambda.
Solution: Do not clear the growarray when not evaluating. Correct pointer

when getting the next line. (closes #6731)
Files: src/eval.c, src/scriptfile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1483
Problem: Vim9: error for using special as number when returning "false"

from a popup filter.
Solution: Use tv_get_bool(). (closes #6733)
Files: src/popupwin.c

Patch 8.2.1484
Problem: Flaky failure in assert_fails().
Solution: Only used fourth argument if there is a third argument.
Files: src/testing.c

Patch 8.2.1485
Problem: Vim9: readdirex() expression doesn't accept bool.
Solution: Accept both -1 and bool. (closes #6737)
Files: src/filepath.c, src/testdir/test_vim9_func.vim

Patch 8.2.1486
Problem: Vim9: readdir() expression doesn't accept bool.
Solution: Merge with code for readdirex(). (closes #6737)
Files: src/filepath.c, src/testdir/test_vim9_func.vim

Patch 8.2.1487
Problem: Travis: installing snd-dummy is not always useful.
Solution: Only install snd-dummy on amd64. (Ozaki Kiichi, closes #6738)
Files: .travis.yml, ci/load-snd-dummy.sh

Patch 8.2.1488
Problem: Text does not scroll when inserting above first line.
Solution: Adjust off-by-one error. (Ken Takata, closes #6739)
Files: src/drawscreen.c, src/testdir/test_display.vim,

version9.txt — 3637

src/testdir/dumps/Test_display_scroll_at_topline.dump

Patch 8.2.1489
Problem: Vim9: error when setting an option with setbufvar().
Solution: Do not get a number from a string value. (closes #6740)
Files: src/evalvars.c, src/testdir/test_vim9_func.vim

Patch 8.2.1490
Problem: Vim9: using /= with float and number doesn't work.
Solution: Better support assignment with operator. (closes #6742)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1491
Problem: Vim9: crash when compiling heredoc lines start with comment.
Solution: Skip over NULL pointers. Do not remove comment and empty lines

when fetching function lines. (closes #6743)
Files: src/vim9compile.c, src/scriptfile.c, src/proto/scriptfile.pro,

src/structs.h, src/ex_docmd.c, src/proto/ex_docmd.pro,
src/ex_cmds.h, src/autocmd.c, src/proto/autocmd.pro,
src/ex_getln.c, src/proto/ex_getln.pro, src/userfunc.c,
src/proto/userfunc.pro, src/evalfunc.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1492
Problem: Build failures.
Solution: Move typedef out of #ifdef. Adjust argument types. Discover

America.
Files: src/structs.h, src/ex_docmd.c

Patch 8.2.1493
Problem: Not enough test coverage for the spell file handling.
Solution: Add spell file tests. (Yegappan Lakshmanan, closes #6728)
Files: src/spellfile.c, src/testdir/test_spellfile.vim

Patch 8.2.1494
Problem: Missing change to calling eval_getline().
Solution: Change last argument.
Files: src/eval.c

Patch 8.2.1495
Problem: "make clean" may delete too many files.
Solution: Do not delete $APPDIR. (closes #6751)
Files: src/Makefile

Patch 8.2.1496
Problem: Vim9: cannot use " #" in a mapping.
Solution: Do not remove a comment with the EX_NOTRLCOM flag. (closes #6746)
Files: src/ex_docmd.c, src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1497
Problem: CursorHold test is flaky. (Jakub Kądziołka)
Solution: Use WaitForAssert() (closes #6754)
Files: src/testdir/test_autocmd.vim

Patch 8.2.1498
Problem: On slow systems tests can be flaky.
Solution: Use TermWait() instead of term-wait(). (Yegappan Lakshmanan,

closes #6756)
Files: src/testdir/test_digraph.vim, src/testdir/test_display.vim,

src/testdir/test_popupwin.vim, src/testdir/test_termcodes.vim,

version9.txt — 3638

src/testdir/test_terminal.vim, src/testdir/test_terminal3.vim,
src/testdir/test_writefile.vim

Patch 8.2.1499
Problem: Vim9: error when using "$" with col().
Solution: Reorder getting the column value. (closes #6744)
Files: src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.1500
Problem: Vim9: error when using address without a command.
Solution: Execute the range itself. (closes #6747)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1501
Problem: Vim9: concatenating to constant reverses order.
Solution: Generate constant before option, register and environment

variable. (closes #6757)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1502
Problem: Vim9: can use += with a :let command at script level.
Solution: Give an error.
Files: src/evalvars.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.1503
Problem: Vim9: error for an autocmd defined in a :def function in legacy

Vim script.
Solution: Don't check the variable type. (closes #6758)
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.1504
Problem: Vim9: white space checks are only done for a :def function.
Solution: Also do checks at the script level. Adjust the name of a few

error messages.
Files: src/userfunc.c, src/errors.h, src/dict.c, src/list.c,

src/vim9compile.c, src/vim9script.c, src/vim9type.c,
src/evalvars.c, src/testdir/test_vim9_expr.vim,
src/testdir/vim9.vim

Patch 8.2.1505
Problem: Not all file read and writecode is tested.
Solution: Add a few tests. (Dominique Pellé, closes #6764)
Files: src/testdir/test_eval_stuff.vim, src/testdir/test_fnamemodify.vim,

src/testdir/test_functions.vim

Patch 8.2.1506
Problem: Vim9: no error when using a number other than 0 or 1 as bool.
Solution: Check the number is 0 or 1.
Files: src/errors.h, src/typval.c, src/testdir/test_vim9_func.vim

Patch 8.2.1507
Problem: Using malloc() directly.
Solution: Use ALLOC_ONE(). Remove superfluous typecast. (Hussam al-Homsi,

closes #6768)
Files: src/eval.c, src/memline.c, src/vimrun.c

Patch 8.2.1508
Problem: Not all debugger commands covered by tests.
Solution: Add tests for going up/down in the stack. (Ben Jackson,

version9.txt — 3639

closes #6765)
Files: src/testdir/test_debugger.vim

Patch 8.2.1509
Problem: Vertical separator is cleared when dragging a popup window using a

multi-byte character for the border.
Solution: Only clear the character before the window if it is using a

multi-byte character. (closes #6766)
Files: src/screen.c

Patch 8.2.1510
Problem: Using "var" in a :def function may refer to a legacy Vim script

variable.
Solution: Require using "s:" to refer to a legacy Vim script variable.

(closes #6771)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1511
Problem: Putting a string in Visual block mode ignores multi-byte

characters.
Solution: Adjust the column for Visual block mode. (closes #6767)
Files: src/register.c, src/testdir/test_visual.vim

Patch 8.2.1512
Problem: Failure after ternary expression fails.
Solution: Restore eval_flags. (Yasuhiro Matsumoto, closes #6776)
Files: src/eval.c, src/testdir/test_vimscript.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.1513
Problem: Cannot interrupt shell used for filename expansion. (Dominique

Pellé)
Solution: Do set tmode in mch_delay(). (closes #6770)
Files: src/vim.h, src/os_unix.c, src/proto/os_unix.pro, src/term.c,

src/channel.c, src/if_cscope.c, src/os_amiga.c, src/ui.c,
src/proto/os_amiga.pro, src/os_win32.c, src/proto/os_win32.pro

Patch 8.2.1514
Problem: Multibyte vertical separator is cleared when dragging a popup

window using a multi-byte character for the border.
Solution: Only clear the character before the window if it is double width.

(closes #6766)
Files: src/screen.c

Patch 8.2.1515
Problem: Vim9: can create s:var in legacy script but cannot unlet.
Solution: Allow :unlet for legacy script var.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1516
Problem: Vim9: error for :exe has wrong line number.
Solution: Set line number before calling do_cmdline_cmd(). (closes #6774)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1517
Problem: Cannot easily get the character under the cursor.
Solution: Add the {chars} argument to strpart().
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_functions.vim

version9.txt — 3640

Patch 8.2.1518
Problem: Vim9: cannot assign to local option.
Solution: Skip over "&l:" and "&g:". (closes #6749)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/testdir/vim9.vim,

src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1519
Problem: Vim9: Ex command default range is not set.
Solution: When range is not given use default. (closes #6779)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.1520
Problem: Vim9: CTRL-] used in :def function does not work.
Solution: Omit count or prepend colon. (closes #6769)
Files: src/normal.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1521
Problem: Reading past end of buffer when reading spellfile. (Yegappan

Lakshmanan)
Solution: Store the byte length and check for it.
Files: src/spellfile.c, src/spell.h

Patch 8.2.1522
Problem: Not enough test coverage for the spell file handling.
Solution: Add spell file tests. (Yegappan Lakshmanan, closes #6763)
Files: src/testdir/test_spellfile.vim

Patch 8.2.1523
Problem: Still not enough test coverage for the spell file handling.
Solution: Add spell file tests. (Yegappan Lakshmanan, closes #6790)
Files: src/testdir/test_spellfile.vim

Patch 8.2.1524
Problem: No longer get an error for string concatenation with float.

(Tsuyoshi Cho)
Solution: Only convert float for Vim9 script. (closes #6787)
Files: src/eval.c, src/testdir/test_eval_stuff.vim

Patch 8.2.1525
Problem: Messages from tests were not always displayed.
Solution: Always show messages, the timing is always useful. (Ken Takata,

closes #6792)
Files: src/testdir/Make_dos.mak, src/testdir/Make_ming.mak,

src/testdir/Makefile

Patch 8.2.1526
Problem: Line in testdir Makefile got commented out. (Christian Brabandt)
Solution: Revert.
Files: src/testdir/Makefile

Patch 8.2.1527
Problem: Vim9: cannot use a function name as a function reference at script

level.
Solution: Check if a name is a function name. (closes #6789)
Files: src/evalvars.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.1528
Problem: Vim9: :endif not found after "if false".
Solution: When skipping still check for a following command. (closes #6797)

version9.txt — 3641

Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1529
Problem: Vim9: :elseif may be compiled when not needed.
Solution: Do evaluate the :elseif expression.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1530
Problem: Vim9: test fails on MS-Windows.
Solution: Skip Ex command inside "if false".
Files: src/vim9compile.c

Patch 8.2.1531
Problem: Vim9: test still fails on MS-Windows.
Solution: When skipping expect function to be NULL.
Files: src/vim9compile.c

Patch 8.2.1532
Problem: Compiler warning for conversion of size_t to long.
Solution: Add type cast.
Files: src/eval.c

Patch 8.2.1533
Problem: Vim9: error when passing getreginfo() result to setreg().
Solution: Use dict_get_bool() for "isunnamed". (closes #6784)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1534
Problem: Vim9: type error for argument type is not at call position.
Solution: Set the context and stack after checking the arguments.

(issue #6785)
Files: src/userfunc.c, src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1535
Problem: It is not possible to specify cell widths of characters.
Solution: Add setcellwidths().
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/mbyte.c,
src/proto/mbyte.pro, src/errors.h, src/testdir/test_utf8.vim

Patch 8.2.1536
Problem: Cannot get the class of a character; emoji widths are wrong in

some environments.
Solution: Add charclass(). Update some emoji widths. Add script to check

emoji widths.
Files: Filelist, runtime/doc/eval.txt, runtime/doc/usr_41.txt,

src/evalfunc.c, src/mbyte.c, src/proto/mbyte.pro,
src/testdir/emoji_list.vim, src/testdir/test_functions.vim

Patch 8.2.1537
Problem: Memory access error when using setcellwidths().
Solution: Use array and pointers correctly.
Files: src/mbyte.c, src/errors.h, src/testdir/test_utf8.vim

Patch 8.2.1538
Problem: Python: iteration over vim objects fails to keep reference.
Solution: Keep a reference for the object. (Paul Ollis, closes #6803,

closes #6806)
Files: src/if_py_both.h, src/testdir/test_python3.vim

version9.txt — 3642

Patch 8.2.1539
Problem: Using invalid script ID causes a crash.
Solution: Check the script ID to be valid. (closes #6804)
Files: src/globals.h, src/evalvars.c, src/profiler.c, src/scriptfile.c,

src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1540
Problem: The user cannot try out emoji character widths.
Solution: Move the emoji script to the runtime/tools directory.
Files: Filelist, src/testdir/emoji_list.vim, runtime/tools/emoji_list.vim

Patch 8.2.1541
Problem: Vim9: cannot find function reference for s:Func.
Solution: Recognize <SNR> prefix. (closes #6805)
Files: src/userfunc.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.1542
Problem: Vim9: test with invalid SID does not work in the GUI.
Solution: Skip the test in the GUI.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1543
Problem: Vim9: test with invalid SID is skipped in the GUI.
Solution: Read the CTRL-C that feedkeys() put in typeahead.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1544
Problem: Cannot translate messages in a Vim script.
Solution: Add gettext(). Try it out for a few messages in the options

window.
Files: Filelist, src/po/Makefile, src/po/README.txt, runtime/optwin.vim,

src/evalfunc.c, src/po/tojavascript.vim, src/po/fixfilenames.vim,
runtime/doc/eval.txt, runtime/doc/usr_41.txt

Patch 8.2.1545
Problem: ch_logfile() is unclear about closing when forking.
Solution: Adjust the log messages.
Files: src/channel.c, src/os_unix.c

Patch 8.2.1546
Problem: Build rule for Vim.app is unused.
Solution: Delete the related build rules.
Files: src/Makefile

Patch 8.2.1547
Problem: Various comment problems.
Solution: Update comments.
Files: src/arglist.c, src/map.c, src/mbyte.c, src/tag.c, src/undo.c,

src/testdir/README.txt, src/testdir/test_put.vim,
src/libvterm/README

Patch 8.2.1548
Problem: Cannot move position of "%%" in message translations. (Emir Sarı)
Solution: Improve the check script.
Files: src/po/check.vim

Patch 8.2.1549
Problem: The "r" command fails for keys with modifiers if 'esckeys' is off

and modifyOtherKeys is used. (Lauri Tirkkonen)

version9.txt — 3643

Solution: Temporarily disable bracketed paste and modifyOtherKeys if
'esckeys' is off. (closes #6809)

Files: src/normal.c

Patch 8.2.1550
Problem: Vim9: bufname('%') gives an error.
Solution: Only give an error for wrong argument type. (closes #6807)
Files: src/evalbuffer.c, src/testdir/test_vim9_func.vim

Patch 8.2.1551
Problem: Vim9: error for argument type does not mention the number.
Solution: Pass the argument number to where the error is given.
Files: src/vim9type.c, src/proto/vim9type.pro, src/vim9compile.c,

src/vim9execute.c, src/vim9script.c, src/eval.c,
src/testdir/test_vim9_func.vim

Patch 8.2.1552
Problem: Warnings from asan with clang-11. (James McCoy)
Solution: Avoid using a NULL pointer. (issue #6811)
Files: src/fold.c

Patch 8.2.1553 (after 8.2.1552)
Problem: Crash in edit test.
Solution: Avoid using invalid pointer.
Files: src/fold.c

Patch 8.2.1554
Problem: Crash in normal test.
Solution: Skip adjusting marks if there are no folds.
Files: src/fold.c

Patch 8.2.1555
Problem: Not all tests are executed on Github Actions.
Solution: Copy "src" to "src2" earlier. Recognize "src2" in a couple more

places. Add two tests to the list of flaky tests. (Ken Takata,
closes #6798)

Files: .github/workflows/ci-windows.yaml, src/testdir/runtest.vim,
src/testdir/test_python2.vim, src/testdir/test_python3.vim

Patch 8.2.1556
Problem: Cursorline highlighting always overrules sign highlighting.
Solution: Combine the highlighting, use the priority to decide how.

(closes #6812)
Files: runtime/doc/sign.txt, src/structs.h, src/drawline.c,

runtime/pack/dist/opt/termdebug/plugin/termdebug.vim,
src/testdir/test_signs.vim,
src/testdir/dumps/Test_sign_cursor_5.dump,
src/testdir/dumps/Test_sign_cursor_6.dump

Patch 8.2.1557
Problem: Crash in :vimgrep when started as "vim -n". (Raul Segura)
Solution: Check mfp pointer. (Yegappan Lakshmanan, closes #6827)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1558
Problem: Signs test fails.
Solution: Add missing change to sign.c.
Files: src/sign.c

Patch 8.2.1559

version9.txt — 3644

Problem: s390x tests work again.
Solution: re-enable s390x tests. (James McCoy, closes #6829)
Files: .travis.yml

Patch 8.2.1560
Problem: Using NULL pointers in some code. (James McCoy)
Solution: Avoid adding to a NULL pointer. Use byte as unsigned.
Files: src/fold.c, src/eval.c, src/spellsuggest.c, src/spellfile.c,

src/vim9compile.c

Patch 8.2.1561
Problem: Using NULL pointers in fold code.
Solution: Avoid using a NULL pointer. (Dominique Pellé, closes #6831,

closes #6831)
Files: src/fold.c

Patch 8.2.1562
Problem: Vim9: error when using "%" where a buffer is expected.
Solution: Add tv_get_buf_from_arg(). (closes #6814)
Files: src/typval.c, src/proto/typval.pro, src/evalbuffer.c,

src/testdir/test_vim9_func.vim

Patch 8.2.1563
Problem: Vim9: error when using '%" with setbufvar() or getbufvar().
Solution: Use tv_get_buf_from_arg(). (closes #6816)
Files: src/evalvars.c, src/testdir/test_vim9_func.vim

Patch 8.2.1564
Problem: A few remaining errors from ubsan.
Solution: Avoid the warnings. (Dominique Pellé, closes #6837)
Files: src/spellfile.c, src/spellsuggest.c, src/viminfo.c

Patch 8.2.1565
Problem: Spellfile test sometimes fails.
Solution: Check running into the end of the file.
Files: src/spellfile.c

Patch 8.2.1566
Problem: Not all Bazel files are recognized.
Solution: Add *.bazel and *.BUILD. (closes #6836)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1567
Problem: No example to use ubsan with clang.
Solution: Add example commands. (Dominique Pellé, issue #6811)
Files: src/Makefile

Patch 8.2.1568
Problem: prop_find() skips properties in the same line if "skipstart" is

used.
Solution: Use "continue" instead of "break". (closes #6840)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.1569
Problem: Vim9: fixes for functions not tested; failure in getchangelist().
Solution: Add tests. (closes #6813, closes #6815, closes #6817)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1570
Problem: Configure check for dirfd() does not work on HPUX. (Michael Osipov)

version9.txt — 3645

Solution: Use AC_TRY_LINK instead of AC_TRY_COMPILE. (closes #6838)
Files: src/configure.ac, src/auto/configure, src/fileio.c, src/globals.h

Patch 8.2.1571
Problem: Vim9: count() third argument cannot be "true".
Solution: Use tv_get_bool_chk(). (closes #6818)
Files: src/typval.c, src/list.c, src/testdir/test_vim9_func.vim

Patch 8.2.1572
Problem: Vim9: expand() does not take "true" as argument.
Solution: Use tv_get_bool_chk(). (closes #6819)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1573
Problem: Vim9: getreg() does not take "true" as argument.
Solution: Use tv_get_bool_chk(). (closes #6820)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1574
Problem: Vim9: glob() does not take "true" as argument.
Solution: Use tv_get_bool_chk(). (closes #6821)
Files: src/filepath.c, src/testdir/test_vim9_func.vim

Patch 8.2.1575
Problem: Vim9: globpath() does not take "true" as argument.
Solution: Use tv_get_bool_chk(). (closes #6821)
Files: src/filepath.c, src/testdir/test_vim9_func.vim

Patch 8.2.1576
Problem: Vim9: index() does not take "true" as argument.
Solution: Use tv_get_bool_chk(). (closes #6823)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1577
Problem: Vim9: hasmapto(), mapcheck() and maparg() do not take "true" as

argument.
Solution: Use tv_get_bool(). (closes #6822, closes #6824)
Files: src/evalfunc.c, src/map.c, src/testdir/test_vim9_func.vim

Patch 8.2.1578
Problem: Vim9: popup_clear() does not take "true" as argument.
Solution: Use tv_get_bool(). (closes #6826)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.1579
Problem: Reports from asan are not optimal.
Solution: Use clang with ubsan. (James McCoy, closes #6811)
Files: .travis.yml

Patch 8.2.1580
Problem: Wildmenu does not work properly.
Solution: Do not call may_do_incsearch_highlighting() if completion is in

progress.
Files: src/ex_getln.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_1.dump,
src/testdir/dumps/Test_wildmenu_2.dump,
src/testdir/dumps/Test_wildmenu_3.dump,
src/testdir/dumps/Test_wildmenu_4.dump

Patch 8.2.1581

version9.txt — 3646

Problem: Using line() for global popup window doesn't work.
Solution: Set tabpage to "curtab". (closes #6847)
Files: src/evalwindow.c, src/testdir/test_popupwin.vim

Patch 8.2.1582
Problem: The channel log does not show typed text.
Solution: Add raw typed text to the log file.
Files: src/ui.c, src/os_win32.c

Patch 8.2.1583
Problem: MS-Windows: cannot easily measure code coverage.
Solution: Add the COVERAGE option. (Ken Takata, closes #6842)
Files: src/Make_cyg_ming.mak

Patch 8.2.1584
Problem: Vim9: cannot use "true" for "skipstart" in prop_find().
Solution: Use dict_get_bool() instead of tv_get_number(). (closes #6852)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.1585
Problem: Messages in errors.h not translated, xgettext on MS-Windows not

fully supported.
Solution: Add errors.h to list of input files. Update MS-Windows makefiles

to improve message translations. (Ken Takata, closes #6858)
Files: src/po/Make_cyg.mak, src/po/Make_ming.mak, src/po/Make_mvc.mak,

src/po/Makefile, src/po/README.txt, src/po/fixfilenames.vim

Patch 8.2.1586
Problem: :resize command not fully tested.
Solution: Add a couple of tests. (Dominique Pellé, closes #6857)
Files: src/testdir/test_window_cmd.vim

Patch 8.2.1587
Problem: Loop for handling keys for the command line is too long.
Solution: Move wild menu handling to separate functions. (Yegappan

Lakshmanan, closes #6856)
Files: src/cmdexpand.c, src/proto/cmdexpand.pro, src/ex_getln.c

Patch 8.2.1588
Problem: Cannot read back the prompt of a prompt buffer.
Solution: Add prompt_getprompt(). (Ben Jackson, closes #6851)
Files: runtime/doc/channel.txt, runtime/doc/eval.txt,

runtime/doc/usr_41.txt, src/channel.c, src/edit.c, src/evalfunc.c,
src/proto/channel.pro, src/proto/edit.pro,
src/testdir/test_prompt_buffer.vim

Patch 8.2.1589
Problem: Term_start() options for size are overruled by 'termwinsize'.

(Sergey Vlasov)
Solution: Set 'termwinsize' to the specified size.
Files: src/terminal.c, src/testdir/test_terminal2.vim,

src/testdir/term_util.vim

Patch 8.2.1590
Problem: Vim9: bufnr() doesn't take "true" argument.
Solution: use tv_get_bool_chk(). (closes #6863)
Files: src/evalbuffer.c, src/testdir/test_vim9_func.vim

Patch 8.2.1591
Problem: Using winheight('.') in tests works but is wrong.

version9.txt — 3647

Solution: Use winheight(0). (issue #6863)
Files: src/testdir/test_functions.vim, src/testdir/test_quickfix.vim

Patch 8.2.1592
Problem: Vim9: passing "true" to char2nr() fails.
Solution: Use tv_get_bool_chk(). (closes #6865)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1593
Problem: Tests do not check the error number properly.
Solution: Add a colon after the error number. (closes #6869)
Files: src/testdir/test_assert.vim, src/testdir/test_autocmd.vim,

src/testdir/test_backspace_opt.vim, src/testdir/test_channel.vim,
src/testdir/test_clientserver.vim, src/testdir/test_cmdline.vim,
src/testdir/test_const.vim, src/testdir/test_cscope.vim,
src/testdir/test_eval_stuff.vim, src/testdir/test_functions.vim,
src/testdir/test_global.vim, src/testdir/test_gui.vim,
src/testdir/test_hlsearch.vim, src/testdir/test_lambda.vim,
src/testdir/test_let.vim, src/testdir/test_listdict.vim,
src/testdir/test_move.vim, src/testdir/test_normal.vim,
src/testdir/test_popupwin.vim, src/testdir/test_put.vim,
src/testdir/test_quickfix.vim, src/testdir/test_rename.vim,
src/testdir/test_search.vim, src/testdir/test_signs.vim,
src/testdir/test_substitute.vim, src/testdir/test_syntax.vim,
src/testdir/test_tagfunc.vim, src/testdir/test_tagjump.vim,
src/testdir/test_taglist.vim, src/testdir/test_terminal.vim,
src/testdir/test_terminal2.vim, src/testdir/test_textprop.vim,
src/testdir/test_timers.vim, src/testdir/test_true_false.vim,
src/testdir/test_user_func.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_vimscript.vim,
src/testdir/test_winbar.vim, src/testdir/test_winbuf_close.vim,
src/testdir/test_window_cmd.vim, src/testdir/test_writefile.vim

Patch 8.2.1594
Problem: Pull requests on github do not notify a maintainer.
Solution: Add a CODEOWNERS file with a few initial entries.
Files: Filelist, .github/CODEOWNERS

Patch 8.2.1595
Problem: Cannot easily see what Vim sends to the terminal.
Solution: Write output to the channel log if it contains terminal control

sequences. Avoid warnings for tputs() argument.
Files: src/term.c, src/globals.h, src/edit.c, src/normal.c,

src/optionstr.c

Patch 8.2.1596
Problem: Using win_screenpos('.') in tests works but is wrong.
Solution: Use win_screenpos(0).
Files: src/testdir/test_terminal3.vim

Patch 8.2.1597
Problem: The channel source file is too big.
Solution: Move job related code to a new source file.
Files: Filelist, src/Makefile, src/Make_mvc.mak, src/Make_cyg_ming.mak,

src/channel.c, src/proto/channel.pro, src/job.c,
src/proto/job.pro, src/proto.h, src/edit.c, src/proto/edit.pro,
src/globals.h, src/configure.ac, src/auto/configure

Patch 8.2.1598
Problem: Starting a hidden terminal resizes the current window.

version9.txt — 3648

Solution: Do not resize the current window for a hidden terminal.
(closes #6872)

Files: src/terminal.c, src/testdir/test_terminal2.vim

Patch 8.2.1599
Problem: Missing line end when skipping a long line with :cgetfile.
Solution: Fix off-by-one error. (closes #6870)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1600
Problem: Vim9: cannot use "true" with deepcopy().
Solution: Use tv_get_bool_chk(). (closes #6867)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim,

src/testdir/test_listdict.vim

Patch 8.2.1601
Problem: Vim9: cannot use "true" with garbagecollect().
Solution: Use tv_get_bool(). (closes #6871)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1602
Problem: Vim9: cannot use "true" with getbufinfo().
Solution: Use dict_get_bool(). (closes #6873)
Files: src/evalbuffer.c, src/testdir/test_vim9_func.vim

Patch 8.2.1603
Problem: Vim9: cannot use "true" with getchar().
Solution: use tv_get_bool_chk(). (closes #6874)
Files: src/getchar.c, src/testdir/test_vim9_func.vim

Patch 8.2.1604
Problem: Vim9: cannot use "true" with getcompletion().
Solution: use tv_get_bool_chk(). (closes #6875)
Files: src/cmdexpand.c, src/testdir/test_vim9_func.vim

Patch 8.2.1605
Problem: Default maintainer on github is wrong.
Solution: Use Bram's account.
Files: .github/CODEOWNERS

Patch 8.2.1606
Problem: Vim9: cannot use "true" with has().
Solution: Use tv_get_bool(). (closes #6876)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1607
Problem: Vim9: getchar() test fails on MS-Windows.
Solution: First consume any available input.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1608
Problem: Vim9: getchar() test fails with GUI.
Solution: Avoid that getchar(0) gets stuck on K_IGNORE.
Files: src/getchar.c

Patch 8.2.1609
Problem: Vim9: test fails when build without +channel.
Solution: Add check for +channel. (closes #6879)
Files: src/testdir/test_vim9_expr.vim

version9.txt — 3649

Patch 8.2.1610
Problem: Vim9: cannot pass "true" to list2str() and str2list().
Solution: Use tv_get_bool_chk(). (closes #6877)
Files: src/evalfunc.c, src/list.c, src/testdir/test_vim9_func.vim

Patch 8.2.1611
Problem: Vim9: cannot pass "true" to nr2char().
Solution: use tv_get_bool_chk(). (closes #6878)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1612
Problem: Vim9: cannot pass "true" to prop_remove().
Solution: Use dict_get_bool(). (closes #6853)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.1613
Problem: Vim9: cannot pass "true" to prop_type_add().
Solution: Use tv_get_bool(). (closes #6850)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.1614
Problem: Vim9: cannot pass "true" to searchcount().
Solution: Use tv_get_bool_chk(). (closes #6854)
Files: src/search.c, src/testdir/test_vim9_func.vim

Patch 8.2.1615
Problem: Vim9: cannot pass "true" to searchdecl().
Solution: use tv_get_bool_chk(). (closes #6881)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1616
Problem: Vim9: cannot pass "true" to synID().
Solution: Use tv_get_bool_chk(). (closes #6860)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1617
Problem: Vim9: cannot pass "true" to win_splitmove().
Solution: Use dict_get_bool(). (closes #6862) Alphabetize test functions.
Files: src/evalwindow.c, src/testdir/test_vim9_func.vim

Patch 8.2.1618
Problem: Vim9: cannot pass "true" to setloclist().
Solution: Use dict_get_bool(). (closes #6882)
Files: src/quickfix.c, src/testdir/test_vim9_func.vim

Patch 8.2.1619
Problem: Vim9: cannot pass "true" to spellsuggest().
Solution: Use tv_get_bool_chk(). (closes #6883)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1620
Problem: searchcount() test fails.
Solution: Restore default flag value.
Files: src/search.c

Patch 8.2.1621
Problem: Crash when using submatch(0, 1) in substitute().
Solution: Increment reference count. (closes #6887)
Files: src/regexp.c, src/testdir/test_substitute.vim

version9.txt — 3650

Patch 8.2.1622
Problem: Loop to handle keys for the command line is too long.
Solution: Move code to functions. (Yegappan Lakshmanan, closes #6880)
Files: src/ex_getln.c

Patch 8.2.1623
Problem: Vim9: using :call where it is not needed.
Solution: Remove :call. (closes #6892)
Files: src/testdir/test_maparg.vim, src/testdir/test_textprop.vim,

src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.1624
Problem: Vim9: cannot pass "true" to split(), str2nr() and strchars().
Solution: Use tv_get_bool_chk(). (closes #6884, closes #6885, closes #6886)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1625
Problem: Compiler warning for use of fptr_T.
Solution: Make the type less strict.
Files: src/regexp.c

Patch 8.2.1626
Problem: Test for strchars() fails with different error number.
Solution: Adjust the error number.
Files: src/testdir/test_utf8.vim

Patch 8.2.1627
Problem: Vim9: cannot pass "true" to submatch(), term_gettty() and

term_start()
Solution: Use tv_get_bool_chk(). (closes #6888, closes #6890, closes #6889)
Files: src/evalfunc.c, src/terminal.c, src/job.c,

src/testdir/test_vim9_func.vim

Patch 8.2.1628
Problem: Vim9: cannot pass "true" to timer_paused().
Solution: Use tv_get_bool(). (closes #6891)
Files: src/time.c, src/testdir/test_vim9_func.vim

Patch 8.2.1629
Problem: Test fails without terminal feature.
Solution: Check for terminal feature.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1630
Problem: Terminal test fails.
Solution: Correct argument to term_start(). Correct error number.
Files: src/testdir/test_terminal.vim, src/testdir/test_terminal2.vim

Patch 8.2.1631
Problem: test_fails() does not check the context of the line number.
Solution: Use another argument to specify the context of the line number.
Files: runtime/doc/testing.txt, runtime/doc/eval.txt,

src/testdir/test_vim9_func.vim, src/testing.c, src/globals.h,
src/evalfunc.c, src/message.c

Patch 8.2.1632
Problem: Not checking the context of test_fails().
Solution: Add the line number and context arguments. Give error if

version9.txt — 3651

assert_fails() argument types are wrong.
Files: src/testing.c, src/errors.h, src/testdir/test_assert.vim,

src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.1633
Problem: Some error messages are internal but do not use iemsg().
Solution: Use iemsg(). (Dominique Pellé, closes #6894)
Files: src/regexp.c, src/regexp_bt.c, src/regexp_nfa.c

Patch 8.2.1634
Problem: Loop to handle keys for the command line is too long.
Solution: Move a few more parts to separate functions. (Yegappan Lakshmanan,

closes #6895)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.1635
Problem: No digraph for 0x2022 BULLET.
Solution: Use "oo". (Hans Ginzel, closes #6904)
Files: src/digraph.c, runtime/doc/digraph.txt

Patch 8.2.1636
Problem: Get stuck if a popup filter causes an error.
Solution: Check whether the function can be called and does not cause an

error. (closes #6902)
Files: src/structs.h, src/popupwin.c, src/testdir/test_popupwin.vim

src/testdir/dumps/Test_popupwin_wrong_name.dump,
src/testdir/dumps/Test_popupwin_three_errors_1.dump,
src/testdir/dumps/Test_popupwin_three_errors_2.dump

Patch 8.2.1637
Problem: Vim9: :put ={expr} does not work inside :def function.
Solution: Add ISN_PUT. (closes #6397)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/register.c,

src/proto/register.pro, src/edit.c, src/ex_docmd.c, src/mouse.c,
src/normal.c, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1638
Problem: Leaking memory when popup filter function can't be called.
Solution: Don't return too soon.
Files: src/popupwin.c

Patch 8.2.1639
Problem: Options window cannot be translated.
Solution: Get the translation for "local to" texts once and use them in many

places. Fix that 'whichwrap' is not a local option. (issue #6800)
Files: runtime/optwin.vim

Patch 8.2.1640
Problem: Amiga: missing header for getgrgid().
Solution: Add the grp.h header. (Ola Söder, closes #6906)
Files: src/os_amiga.h

Patch 8.2.1641
Problem: Vim9: cannot use 0 or 1 where a bool is expected.
Solution: Allow using 0 and 1 for a bool type. (closes #6903)
Files: src/vim9compile.c, src/vim9type.c, src/proto/vim9type.pro,

src/structs.h, src/testdir/test_vim9_script.vim

Patch 8.2.1642

version9.txt — 3652

Problem: Options test fails.
Solution: Correct call to OptionG().
Files: runtime/optwin.vim

Patch 8.2.1643
Problem: Vim9: :defcompile compiles dead functions.
Solution: Skip over dead functions.
Files: src/userfunc.c

Patch 8.2.1644
Problem: Vim9: cannot assign 1 and 0 to bool at script level.
Solution: Add the TTFLAG_BOOL_OK flag to the type. Fix name of test

function.
Files: src/vim9type.c, src/testdir/test_vim9_script.vim,

src/testdir/vim9.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.1645
Problem: GTK3: icons become broken images when resized.
Solution: Use gtk_image_new_from_icon_name(). (closes #6916)

Fix compiler warnings.
Files: src/gui_gtk_x11.c

Patch 8.2.1646
Problem: Amiga: Unnecessary #include.
Solution: Remove the #include. (Ola Söder, closes #6908)
Files: src/version.c

Patch 8.2.1647
Problem: Vim9: result of expression with && and || cannot be assigned to a

bool variable.
Solution: Add the TTFLAG_BOOL_OK flag and convert the value if needed.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.1648
Problem: Amiga: no common build file for Amiga (-like) systems.
Solution: Turn Make_morph.mak into Make_ami.mak. (Ola Söder, closes #6805)
Files: Filelist, src/Make_ami.mak, src/Make_morph.mak, src/INSTALLami.txt

Patch 8.2.1649
Problem: GTK3: using old file chooser.
Solution: Use native file chooser on GTK 3.20 and above. (Yogeshwar

Velingker, closes #6909)
Files: src/gui_gtk.c

Patch 8.2.1650
Problem: Vim9: result of && and || expression cannot be assigned to a bool

at the script level.
Solution: Add the VAR_BOOL_OK flag. Convert to bool when needed.
Files: src/structs.h, src/vim9type.c, src/proto/vim9type.pro,

src/vim9script.c, src/evalvars.c, src/eval.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1651
Problem: Spellfile code not completely tested.
Solution: Add a few more test cases. (Yegappan Lakshmanan, closes #6918)
Files: src/testdir/test_spellfile.vim

Patch 8.2.1652
Problem: Cannot translate lines in the options window.

version9.txt — 3653

Solution: Use the AddOption() function to split descriptions where indicated
by a line break. (issue #6800)

Files: runtime/optwin.vim

Patch 8.2.1653
Problem: Expand('<stack>') does not include the final line number.
Solution: Add the line number. (closes #6927)
Files: src/vim.h, src/scriptfile.c, src/proto/scriptfile.pro,

src/debugger.c, src/ex_docmd.c, src/ex_eval.c, src/message.c,
src/testing.c, src/testdir/test_expand_func.vim

Patch 8.2.1654
Problem: When job writes to hidden buffer current window has display

errors. (Johnny McArthur)
Solution: Use aucmd_prepbuf() instead of switch_to_win_for_buf().

(closes #6925)
Files: src/channel.c

Patch 8.2.1655
Problem: Cannot build with Strawberry Perl 5.32.0.
Solution: Use Perl_sv_2pvbyte_flags. (closes #6921)
Files: src/if_perl.xs

Patch 8.2.1656
Problem: Vim9: callstack wrong if :def function calls :def function.
Solution: Set the line number before calling. (closes #6914)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1657
Problem: Vim9: no proper error for nested ":def!".
Solution: Check for "!". (closes #6920)
Files: src/errors.h, src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1658
Problem: Expand('<stack>') has trailing "..".
Solution: Remove the "..". (closes #6927)
Files: src/scriptfile.c, src/testdir/test_expand_func.vim

Patch 8.2.1659
Problem: Spellfile code not completely tested.
Solution: Add a few more test cases. (Yegappan Lakshmanan, closes #6929)
Files: src/testdir/test_spell.vim, src/testdir/test_spellfile.vim

Patch 8.2.1660
Problem: Assert functions require passing expected result as the first

argument, which isn't obvious.
Solution: Use a method, as in "runtest()->assert_equal(expected)".
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1661
Problem: Cannot connect to 127.0.0.1 for host with only IPv6 addresses.
Solution: pass AI_V4MAPPED flag to getaddrinfo. (Filipe Brandenburger,

closes #6931)
Files: src/channel.c

Patch 8.2.1662
Problem: :mksession does not restore shared terminal buffer properly.
Solution: Keep a hashtab with terminal buffers. (Rob Pilling, closes #6930)
Files: src/hashtab.c, src/proto/terminal.pro, src/session.c,

src/terminal.c, src/testdir/test_mksession.vim

version9.txt — 3654

Patch 8.2.1663
Problem: Options window entries cannot be translated.
Solution: Use AddOption() for all explanations. (closes #6800)
Files: runtime/optwin.vim

Patch 8.2.1664
Problem: Memory leak when using :mkview with a terminal buffer.
Solution: Don't use a hastab for :mkview. (Rob Pilling, closes #6935)
Files: src/session.c, src/terminal.c, src/testdir/test_mksession.vim

Patch 8.2.1665
Problem: Cannot do fuzzy string matching.
Solution: Add matchfuzzy(). (Yegappan Lakshmanan, closes #6932)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/proto/search.pro, src/search.c, src/testdir/test_functions.vim

Patch 8.2.1666
Problem: The initial value of 'backupskip' can have duplicate items.
Solution: Remove duplicates, like when it is set later. (Tom Ryder,

closes #6940)
Files: src/option.c, src/testdir/test_options.vim

Patch 8.2.1667
Problem: Local function name cannot shadow a global function name.
Solution: Ignore global functions when checking a script-local or scoped

function name. (closes #6926)
Files: src/vim9compile.c, src/userfunc.c, src/proto/userfunc.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.1668
Problem: Vim9: not accepting 0 or 1 as bool when type is any.
Solution: Convert the type with the CHECKTYPE instruction. (closes #6913)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1669
Problem: Vim9: memory leak when storing a value fails.
Solution: Free the value when not storing it.
Files: src/evalvars.c

Patch 8.2.1670
Problem: A couple of gcc compiler warnings.
Solution: Initialize local variables. (Dominique Pellé, closes #6944)
Files: src/memline.c, src/option.c

Patch 8.2.1671
Problem: Vim9: stray error for missing white space.
Solution: Do not skip over white space after member. (closes #6917)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1672
Problem: v_lock is used when it is not initialized. (Yegappan Lakshmanan)
Solution: Initialize the typval in eval1().
Files: src/eval.c

Patch 8.2.1673
Problem: complete_info() selected index has an invalid value. (Ben Jackson)
Solution: Set the index when there is only one match. (closes #6945)

Add test for complete_info().
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

version9.txt — 3655

Patch 8.2.1674
Problem: Vim9: internal error when using variable that was not set.
Solution: Give a meaningful error. (closes #6937)
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.1675
Problem: MinGW: testdir makefile deletes non-existing file.
Solution: Use another way to delete the output file if it already exists.

(Michael Soyka)
Files: src/testdir/Make_ming.mak

Patch 8.2.1676
Problem: Compiler warnings for function typecast.
Solution: Add an intermediate cast to "void *".
Files: src/os_unix.c

Patch 8.2.1677
Problem: Memory access errors when calling setloclist() in an autocommand.
Solution: Give an error if the list was changed unexpectedly. (closes #6946)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1678
Problem: Crash when using ":set" after ":ownsyntax". (Dhiraj Mishra)
Solution: Make sure 'spelloptions' is not NULL. (closes #6950)
Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.2.1679
Problem: Vim9: ":*" is not recognized as a range.
Solution: Move recognizing "*" into skip_range(). (closes #6938)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/cmdexpand.c,

src/ex_getln.c, src/userfunc.c, src/vim9compile.c,
src/testdir/test_vim9_cmd.vim

Patch 8.2.1680
Problem: Vim9: line number for compare error is wrong.
Solution: Set SOURCING_LNUM. (closes #6936)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1681
Problem: Vim9: unnecessary :call commands in tests.
Solution: Remove the commands. (issue #6936)
Files: src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.1682
Problem: Vim9: const works in an unexpected way.
Solution: ":const" only disallows changing the variable, not the value.

Make "list[0] = 9" work at the script level.
Files: src/vim9compile.c, src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.1683
Problem: Vim9: assignment test fails.
Solution: Include changes to find Ex command.
Files: src/ex_docmd.c

Patch 8.2.1684
Problem: "gF" does not use line number after file in Visual mode.
Solution: Look for ":123" after the Visual area. (closes #6952)
Files: src/findfile.c, src/testdir/test_gf.vim

version9.txt — 3656

Patch 8.2.1685
Problem: Vim9: cannot declare a constant value.
Solution: Introduce ":const!".
Files: runtime/doc/vim9.txt, src/ex_cmds.h, src/vim9compile.c,

src/vim9.h, src/vim9execute.c, src/evalvars.c,
src/proto/evalvars.pro, src/errors.h, src/vim.h, src/eval.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1686
Problem: Vim9: "const!" not sufficiently tested.
Solution: Add a few more test cases. Fix type checking.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1687
Problem: Vim9: out of bounds error.
Solution: Check that cmdidx is not negative.
Files: src/vim9compile.c

Patch 8.2.1688
Problem: Increment/decrement removes text property.
Solution: Insert the new number before deleting the old one. (closes #6962)
Files: src/ops.c, src/testdir/test_textprop.vim

Patch 8.2.1689
Problem: 'colorcolumn' doesn't show in indent.
Solution: Also draw the column when draw_state is WL_BRI or WL_SBR.

(Alexey Demin, closes #6948, closes #6619)
Files: src/drawline.c, src/testdir/dumps/Test_colorcolumn_2.dump,

src/testdir/dumps/Test_colorcolumn_3.dump,
src/testdir/test_highlight.vim

Patch 8.2.1690
Problem: Text properties not adjusted for "I" in Visual block mode.
Solution: Call inserted_bytes(). (closes #6961)
Files: src/ops.c, src/change.c, src/proto/change.pro,

src/testdir/test_textprop.vim

Patch 8.2.1691
Problem: Vim9: list<any> is not accepted where list<number> is expected.
Solution: Add functions to allocate and free a type_T, use it in

ISN_CHECKTYPE. (closes #6959)
Files: src/vim9.h, src/globals.h, src/vim9compile.c, src/vim9execute.c,

src/vim9type.c, src/proto/vim9type.pro, src/errors.h,
src/evalfunc.c, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.1692
Problem: Build fails because TTFLAG_STATIC is missing.
Solution: Include missing change.
Files: src/structs.h

Patch 8.2.1693
Problem: "hi def" does not work for cleared highlight.
Solution: Check the "sg_cleared" flag. (Maxim Kim, closes #6956,

closes #4405)
Files: src/highlight.c, src/testdir/test_highlight.vim

Patch 8.2.1694
Problem: Compiler warning for loss if data.

version9.txt — 3657

Solution: Add typecast.
Files: src/ops.c

Patch 8.2.1695
Problem: Vim9: crash when using varargs type "any".
Solution: Check if uf_va_type is &t_any. (closes #6957)
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.1696
Problem: Unused (duplicate) macros.
Solution: Remove the macros.
Files: src/spell.c

Patch 8.2.1697
Problem: Inconsistent capitalization of error messages.
Solution: Always start with a capital.
Files: src/errors.h, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim,
src/testdir/test_assert.vim

Patch 8.2.1698
Problem: Cannot lock a variable in legacy Vim script like in Vim9.
Solution: Make ":lockvar 0" work.
Files: runtime/doc/eval.txt, src/evalvars.c, src/proto/evalvars.pro,

src/dict.c, src/eval.c, src/list.c, src/typval.c, src/userfunc.c,
src/testdir/test_const.vim, src/testdir/test_listdict.vim

Patch 8.2.1699
Problem: Build failure due to missing error message.
Solution: Add error message.
Files: src/errors.h

Patch 8.2.1700
Problem: Vim9: try/catch causes wrong value to be returned.
Solution: Reset tcd_return. (closes #6964)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.1701
Problem: Vim9: sort("i") does not work.
Solution: Don't try getting a number for a string argument. (closes #6958)
Files: src/list.c, src/testdir/test_vim9_func.vim

Patch 8.2.1702
Problem: Crash when using undo after deleting folded lines.
Solution: Check for NULL pointer. (closes #6968)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.1703
Problem: ":highlight clear" does not restore default link.
Solution: Remember the default link and restore it. (Antony Scriven,

closes #6970, closes #4405)
Files: runtime/doc/syntax.txt, src/highlight.c,

src/testdir/test_highlight.vim

Patch 8.2.1704
Problem: Vim9: crash in for loop when autoload script has an error.
Solution: Reset suppress_errthrow. Check for NULL list. (closes #6967)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

version9.txt — 3658

Patch 8.2.1705
Problem: "verbose hi Name" reports incorrect info after ":hi clear".
Solution: Store the script context. (Antony Scriven, closes #6975)
Files: src/highlight.c, src/testdir/test_highlight.vim

Patch 8.2.1706
Problem: Vim9: crash after running into the "Multiple closures" error.
Solution: When a function fails still update any closures. (closes #6973)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1707
Problem: Small inconsistency in highlight test.
Solution: Use one argument for :execute. (Antony Scriven, #6975)
Files: src/testdir/test_highlight.vim

Patch 8.2.1708
Problem: Vim9: error message for function has unprintable characters.
Solution: use printable_func_name(). (closes #6965)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1709
Problem: Vim9: memory leak when using multiple closures.
Solution: Free the partial.
Files: src/vim9execute.c

Patch 8.2.1710
Problem: Vim9: list of list type can be wrong.
Solution: Use VAR_UNKNOWN for empty list. Recognize VAR_UNKNOWN when

looking for a common type. (closes #6979)
Files: src/vim9type.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1711
Problem: Vim9: leaking memory when using partial.
Solution: Do delete the function even when it was compiled.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/userfunc.c,

src/vim9execute.c

Patch 8.2.1712
Problem: Vim9: leaking memory when calling a lambda.
Solution: Decrement function reference from ISN_DCALL.
Files: src/vim9compile.c, src/userfunc.c, src/proto/userfunc.pro

Patch 8.2.1713
Problem: Motif GUI: crash when setting menu colors. (Andrzej Bylicki)
Solution: Add {} to make "n" incremented correctly. (closes #6989,

closes #5948)
Files: src/gui_motif.c

Patch 8.2.1714
Problem: Text properties corrupted with substitute command. (Filipe

Brandenburger)
Solution: Get the changed line again after using u_savesub(). (closes #6984)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.1715
Problem: Motif GUI: commented out code missed {}.
Solution: Add {} and reenable the code. (similar to #6989)
Files: src/gui_motif.c

Patch 8.2.1716

version9.txt — 3659

Problem: Options window has duplicate translations.
Solution: Make one entry for "global or local to buffer". Fix wrong text.

(closes #6983)
Files: runtime/optwin.vim

Patch 8.2.1717
Problem: MS-Windows installer doesn't have Russian translations.
Solution: Add Russian translations. (closes #6985)
Files: nsis/gvim.nsi, nsis/lang/russian.nsi

Patch 8.2.1718
Problem: Vim9: :def function disallows "firstline" and "lastline" argument

names for no good reason.
Solution: Don't check the arguments for a :def function. (closes #6986)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1719
Problem: Vim9: no error if comma is missing in between arguments.
Solution: Give an error message.
Files: src/errors.h, src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1720
Problem: Vim9: memory leak with heredoc that isn't executed. (Dominique

Pellé)
Solution: Don't clear the list items. (closes #6991)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1721
Problem: MS-Windows installer doesn't work.
Solution: Write "Russian" in ASCII. (closes #6995, see #6985).
Files: nsis/lang/russian.nsi

Patch 8.2.1722
Problem: Vim9: cannot assign a lambda to a variable of type function.
Solution: Allow for assigning a partial to a variable of type function.

(Naruhiko Nishino, closes #6996)
Files: src/vim9type.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1723
Problem: Vim9: Variable argument name cannot start with underscore.
Solution: Use eval_isnamec1(). (closes #6988)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1724
Problem: Vim9: assignment tests spread out.
Solution: Create new test file for assignment tests.
Files: src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_cmd.vim,

src/testdir/test_vim9_script.vim, src/testdir/test_vim9_expr.vim,
src/testdir/Make_all.mak

Patch 8.2.1725
Problem: Not all Pascal files are recognized.
Solution: Add filetype patterns. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1726
Problem: Fuzzy matching only works on strings.
Solution: Support passing a dict. Add matchfuzzypos() to also get the match

positions. (Yegappan Lakshmanan, closes #6947)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

version9.txt — 3660

src/proto/search.pro, src/search.c, src/testdir/Make_all.mak,
src/testdir/test_functions.vim, src/testdir/test_matchfuzzy.vim

Patch 8.2.1727
Problem: A popup created with "cursorline" will ignore "firstline".
Solution: When both "cursorline" and "firstline" are present put the cursor

on "firstline". (closes #7000) Add the "winid" argument to
getcurpos().

Files: runtime/doc/eval.txt, src/evalfunc.c, src/popupwin.c,
src/evalwindow.c, src/testdir/test_popupwin.vim,
src/testdir/test_functions.vim

Patch 8.2.1728
Problem: Compiler warning for using uninitialized variable. (John Marriott)
Solution: Initialize "neighbor".
Files: src/search.c

Patch 8.2.1729
Problem: Endless loop when ":normal" feeds popup window filter.
Solution: Add the ex_normal_busy_done flag.
Files: src/globals.h, src/getchar.c, src/evalfunc.c, src/ex_docmd.c,

src/menu.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_normal_cmd.dump

Patch 8.2.1730
Problem: Vim9: cannot use member of unknown type.
Solution: When type is unknown use "any". (closes #6997)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1731
Problem: Vim9: cannot use += to append to empty NULL list.
Solution: Copy the list instead of extending it. (closes #6998)
Files: src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1732
Problem: Stuck when win_execute() for a popup causes an error.
Solution: Disable the filter callback on error. (issue #6999)
Files: src/popupwin.c, src/testdir/term_util.vim,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_win_execute.dump

Patch 8.2.1733
Problem: Vim9: memory leaks when using nested function.
Solution: Free function when compilation fails.
Files: src/vim9compile.c

Patch 8.2.1734
Problem: Vim9: cannot use a funcref for a closure twice.
Solution: Instead of putting the funcref on the stack use a growarray on the

execution context.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1735
Problem: Github actions appear to timeout too soon.
Solution: use "timeout" instead of "ping".
Files: .github/workflows/ci-windows.yaml

Patch 8.2.1736

version9.txt — 3661

Problem: Failure to compile a pattern not tested much.
Solution: Add tests where a pattern fails to compile. (Yegappan Lakshmanan,

closes #7004)
Files: src/testdir/gen_opt_test.vim, src/testdir/test_arglist.vim,

src/testdir/test_autocmd.vim, src/testdir/test_buffer.vim,
src/testdir/test_checkpath.vim, src/testdir/test_cmdline.vim,
src/testdir/test_debugger.vim, src/testdir/test_functions.vim,
src/testdir/test_history.vim, src/testdir/test_listdict.vim,
src/testdir/test_options.vim, src/testdir/test_search_stat.vim,
src/testdir/test_sort.vim, src/testdir/test_substitute.vim,
src/testdir/test_syntax.vim, src/testdir/test_tagjump.vim,
src/testdir/test_user_func.vim

Patch 8.2.1737
Problem: Cursor line highlight in popup window is not always updated.
Solution: Check if the cursor has moved. (closes #7010)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

src/testdir/dumps/Test_popupwin_win_execute_cursorline.dump

Patch 8.2.1738
Problem: Mac: str2float() recognizes comma instead of decimal point.
Solution: Set LC_NUMERIC to "C". (closes #7003)
Files: src/os_mac_conv.c

Patch 8.2.1739
Problem: Vim9: crash when compiling a manually defined function. (Antony

Scriven)
Solution: Check that the script ID is positive. (closes #7012)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.1740
Problem: Test fails without the terminal feature.
Solution: Skip test if the terminal feature is not available.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1741
Problem: pathshorten() only supports using one character.
Solution: Add an argument to control the length. (closes #7006)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/filepath.c,

src/proto/filepath.pro, src/testdir/test_functions.vim

Patch 8.2.1742
Problem: Test still fails without the terminal feature.
Solution: Put check for terminal feature in separate function.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.1743
Problem: Cannot build without the eval feature.
Solution: Move shorten_dir outside of #ifdef.
Files: src/filepath.c

Patch 8.2.1744
Problem: Vim9: using ":const!" is weird.
Solution: Use "var" - "final" - "const" like Dart. "let" still works for

now.
Files: runtime/doc/vim9.txt, src/ex_cmds.h, src/errors.h, src/evalvars.c,

src/proto/evalvars.pro, src/cmdexpand.c, src/eval.c,
src/ex_docmd.c, src/vim9compile.c, src/vim9execute.c,
src/vim9script.c, src/vim.h, src/ex_cmdidxs.h,
src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_script.vim

version9.txt — 3662

Patch 8.2.1745
Problem: Tiny version doesn't build.
Solution: Add dummy ex_var() function.
Files: src/ex_docmd.c

Patch 8.2.1746
Problem: Vim9: Cannot use "fina" for "finally". (Naruhiko Nishino)
Solution: Specifically check for "fina". (closes #7020)
Files: src/ex_docmd.c, src/testdir/test_trycatch.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.1747
Problem: Result of expand() unexpectedly depends on 'completeslash'.
Solution: Temporarily reset 'completeslash'. (Yasuhiro Matsumoto,

closes #7021)
Files: src/evalfunc.c, src/testdir/test_ins_complete.vim

Patch 8.2.1748
Problem: Closing split window in other tab may cause a crash.
Solution: Set tp_curwin properly. (Rob Pilling, closes #7018)
Files: src/window.c, src/testdir/test_winbuf_close.vim

Patch 8.2.1749
Problem: Vim9: crash when closure fails in nested function.
Solution: Handle function returns before dereferencing remaining closures.

(closes #7008)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1750
Problem: Setting firstline with popup_setoptions() fails if cursorline is

set.
Solution: Use apply_options(). Update the popup before applying "zz".

(closes #7010)
Files: src/popupwin.c, src/proto/popupwin.pro, src/move.c,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_win_execute_cursorline.dump,
src/testdir/dumps/Test_popupwin_set_firstline_1.dump,
src/testdir/dumps/Test_popupwin_set_firstline_2.dump

Patch 8.2.1751
Problem: Using 2 where bool is expected may throw an error.
Solution: Make this backwards compatible.
Files: src/typval.c, src/evalfunc.c, src/testdir/test_search.vim,

src/testdir/test_terminal2.vim

Patch 8.2.1752
Problem: GTK GUI: cannot map alt-? with <A-?>. (Ingo Karkat)
Solution: Adjust the characters for which the shift modifier is removed.

(closes #7016) Make Motif and Win32 use the same function as GTK.
Files: src/misc2.c, src/gui_x11.c, src/gui_w32.c,

src/testdir/test_termcodes.vim

Patch 8.2.1753
Problem: Vim9: crash when using import at script level.
Solution: Give a "not implemented yet" error. (closes #7026)
Files: src/evalvars.c

Patch 8.2.1754
Problem: Completion with spell checking not tested.

version9.txt — 3663

Solution: Add a test case. (Dominique Pellé, closes #7024)
Files: src/testdir/test_spell.vim

Patch 8.2.1755
Problem: Vim9: crash when using invalid heredoc marker. (Dhiraj Mishra)
Solution: Check for NULL list. (closes #7027) Fix comment character.
Files: src/vim9compile.c, src/evalvars.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.1756
Problem: Vim9: :let will soon be disallowed.
Solution: Add v:disallow_let temporarily. Fix tests.
Files: src/vim.h, src/errors.h, src/evalvars.c, src/vim9compile.c,

src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.1757
Problem: Mac: default locale is lacking the encoding.
Solution: Add ".UTF-8 to the locale. (Yee Cheng Chin, closes #7022)
Files: src/os_mac_conv.c, src/testdir/test_environ.vim

Patch 8.2.1758
Problem: Vim9: type of unmaterialized list is wrong.
Solution: Use list<number>.
Files: src/vim9type.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1759
Problem: Vim9: Some tests are still using :let.
Solution: Change more declarations to use :var.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.1760
Problem: Vim9: crash when end marker is missing. (Dhiraj Mishra)
Solution: Check for end of function lines. (closes #7031)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1761
Problem: Vim9: Some tests are still using :let.
Solution: Change more declarations to use :var.
Files: src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1762
Problem: When a timer uses :stopinsert Insert mode completion isn't

stopped. (Stanley Chan)
Solution: Call ins_compl_prep(ESC).
Files: src/edit.c, src/testdir/test_ins_complete.vim,

src/testdir/dumps/Test_pum_stopped_by_timer.dump

Patch 8.2.1763
Problem: Vim9: cannot use "true" for popup window scrollbar option.
Solution: use dict_get_bool(). (closes #7029)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.1764
Problem: Vim9: no error when assigning to script var with wrong type.
Solution: Fix off-by-one error. (closes #7028)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1765

version9.txt — 3664

Problem: Vim9: some tests use "var var".
Solution: Use "var name". (closes #7032)
Files: src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.1766
Problem: Vim9: Some tests are still using :let.
Solution: Change the last few declarations to use :var.
Files: src/testdir/runtest.vim, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_maparg.vim,
src/testdir/test_popupwin.vim, src/testdir/test_textprop.vim

Patch 8.2.1767
Problem: Vim9: test fails with python support.
Solution: Use "let" in legacy function.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1768
Problem: Cannot use the help menu from a terminal window.
Solution: Add ":tlnoremenu" commands. (Yee Cheng Chin, closes #7023)
Files: runtime/menu.vim, src/testdir/test_gui.vim

Patch 8.2.1769
Problem: A popup filter interferes with using :normal to move the cursor in

a popup.
Solution: Do not invoke the filter when ex_normal_busy is set.
Files: runtime/doc/popup.txt, src/getchar.c, src/evalfunc.c,

src/ex_docmd.c, src/menu.c, src/globals.h,
src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_normal_cmd.dump

Patch 8.2.1770
Problem: Invalid memory use when using SpellFileMissing autocmd.
Solution: Add test case. (Dominique Pellé, closes #7036) Fix using a window

that was closed.
Files: src/spell.c, src/testdir/test_spell.vim

Patch 8.2.1771
Problem: synIDattr() cannot get the value of ctermul.
Solution: Add the "ul" value for "what". (closes #7037)
Files: runtime/doc/eval.txt, src/highlight.c, src/evalfunc.c,

src/testdir/test_highlight.vim

Patch 8.2.1772
Problem: Cannot use CTRL-W <Down> to move out of a terminal window.
Solution: Use special_to_buf() instead of mb_char2bytes(). (closes #7045)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.1773
Problem: Crash when calling mapset() with a list as first argument.
Solution: Check for NULL. (closes #7040)
Files: src/map.c, src/testdir/test_maparg.vim

Patch 8.2.1774
Problem: GTK: hang when forced to exit.
Solution: Do not clean up "mainwin" when really_exiting is set.

(Zdenek Dohnal, closes #7042)
Files: src/gui_gtk_x11.c

version9.txt — 3665

Patch 8.2.1775
Problem: MS-Windows: adding a long quickfix list is slow.
Solution: Shorten the buffer name only for the first entry. (Yegappan

Lakshmanan, closes #7039, closes #7033)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1776
Problem: Filetype.vim may be loaded twice.
Solution: Do "syntax on" after "filetype on". (Adam Stankiewicz,

closes #7049)
Files: runtime/defaults.vim

Patch 8.2.1777
Problem: Vim9: some assignment tests in the wrong file.
Solution: Move assignment tests to test_vim9_assign.
Files: src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_script.vim

Patch 8.2.1778
Problem: Vim9: returning from a partial call clears outer context, causing

a crash.
Solution: Put the outer context in the stack frame. (closes #7044)
Files: src/vim9execute.c, src/vim9.h, src/testdir/test_vim9_func.vim

Patch 8.2.1779
Problem: Some debian changelog files are not recognized.
Solution: Add */debian/changelog. (Jason Franklin)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1780
Problem: Statusline not updated when splitting windows.
Solution: Call status_redraw_all(). (Jason Franklin, closes #5496)
Files: src/window.c, src/testdir/test_statusline.vim

Patch 8.2.1781
Problem: Writing to prompt buffer interferes with insert mode.
Solution: Use win_enter() instead of just setting "curwin". (Ben Jackson,

closes #7035)
Files: src/autocmd.c, src/testdir/test_prompt_buffer.vim

Patch 8.2.1782
Problem: Vim9: cannot pass boolean to mapset().
Solution: Use get_tv_bool(). (closes #7041)
Files: src/map.c, src/testdir/test_vim9_func.vim

Patch 8.2.1783 (after 8.2.1781)
Problem: Try-catch test fails.
Solution: Don't call win_enter(), only call entering_window().
Files: src/autocmd.c, src/window.c, src/proto/window.pro,

src/testdir/runtest.vim

Patch 8.2.1784
Problem: commits are not scanned for security problems
Solution: Enable Github code scanning. (Christian Brabandt, closes #7057)
Files: .github/workflows/codeql-analysis.yml

Patch 8.2.1785
Problem: Compiler warning for strcpy() out of bounds. (Christian Brabandt)
Solution: use memmove() instead.
Files: src/dict.c

version9.txt — 3666

Patch 8.2.1786
Problem: Various Normal mode commands not fully tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #7059)
Files: src/testdir/test_normal.vim, src/testdir/test_regexp_utf8.vim,

src/testdir/test_registers.vim, src/testdir/test_spellfile.vim,
src/testdir/test_tagjump.vim, src/testdir/test_visual.vim

Patch 8.2.1787
Problem: Crash with 'incsearch' and very long line.
Solution: Check whether regprog becomes NULL. (closes #7063)
Files: src/search.c, src/testdir/test_search.vim

Patch 8.2.1788
Problem: Vim9: still allows :let for declarations.
Solution: Make the default for v:disallow_let one. It can still be set to

zero to allow for using :let.
Files: src/evalvars.c, src/testdir/runtest.vim

Patch 8.2.1789
Problem: Vim9: crash with invalid list constant. (Dhiraj Mishra)
Solution: Return FAIL when compiling the list fails. (closes #7066)
Files: src/vim9compile.c, src/errors.h, src/testdir/test_vim9_expr.vim

Patch 8.2.1790
Problem: MS-Windows with Python: crash when executed from Vifm.
Solution: Use NUL instead of CONIN. (Ken Takata, closes #7061, closes #7053)
Files: src/if_python3.c

Patch 8.2.1791
Problem: Vim9: debugger test fails.
Solution: Use "var" instead of "let".
Files: src/testdir/test_debugger.vim

Patch 8.2.1792
Problem: Configure does not recognize Racket 6.1+.
Solution: Add a check for "rktio". (closes #7062)
Files: src/configure.ac, src/auto/configure

Patch 8.2.1793
Problem: Not consistently giving the "is a directory" warning.
Solution: Adjust check for illegal file name and directory. (Yasuhiro

Matsumoto, closes #7067)
Files: src/fileio.c, src/testdir/test_edit.vim

Patch 8.2.1794
Problem: No falsy Coalescing operator.
Solution: Add the "??" operator. Fix mistake with function argument count.
Files: runtime/doc/eval.txt, src/eval.c, src/vim9compile.c,

src/vim9type.c, src/testdir/test_expr.vim,
src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1795
Problem: Vim9: operators && and || have a confusing result.
Solution: Make the result a boolean.
Files: runtime/doc/vim9.txt, src/eval.c, src/vim9compile.c,

src/vim9execute.c, src/vim9type.c, src/structs.h, src/vim9.h,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_cmd.vim,

version9.txt — 3667

src/testdir/test_vim9_disassemble.vim

Patch 8.2.1796
Problem: Vim9: invalid memory access with weird function name. (Dhiraj

Mishra)
Solution: Check the name is valid. Add a test.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1797
Problem: Vim9: some parts of the code not tested.
Solution: Add a few tests.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1798
Problem: Vim9: ternary operator condition is too permissive.
Solution: Use tv_get_bool_chk().
Files: runtime/doc/vim9.txt, src/eval.c, src/vim9compile.c,

src/vim9execute.c, src/testdir/vim9.vim,
src/testdir/test_expr.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_cmd.vim, src/testdir/test_vim9_script.vim

Patch 8.2.1799
Problem: Some Normal mode commands not fully tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #7073)
Files: src/testdir/test_gf.vim, src/testdir/test_goto.vim,

src/testdir/test_normal.vim, src/testdir/test_registers.vim,
src/testdir/test_startup.vim, src/testdir/test_tabpage.vim,
src/testdir/test_visual.vim

Patch 8.2.1800
Problem: Vim9: memory leak if "if" condition is invalid.
Solution: Free ppconst earlier.
Files: src/vim9compile.c

Patch 8.2.1801
Problem: Undo file not found when using ":args" or ":next".
Solution: Handle like editing another file. (closes #7072)
Files: src/ex_cmds.c, src/testdir/test_undo.vim

Patch 8.2.1802
Problem: Vim9: crash with unterminated dict. (Dhiraj Mishra)
Solution: Return empty string instead of NULL. (closes #7084)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1803
Problem: A few failures are not tested.
Solution: Test a few failures. (Dominique Pellé, closes #7075)
Files: src/testdir/test_arglist.vim, src/testdir/test_cmdline.vim,

src/testdir/test_json.vim, src/testdir/test_listdict.vim

Patch 8.2.1804
Problem: resolve('/') returns an empty string.
Solution: Don't remove single slash. (closes #7074)
Files: src/filepath.c, src/testdir/test_functions.vim

Patch 8.2.1805
Problem: Unix: terminal mode changed when using ":shell".
Solution: Avoid calling settmode() when not needed. (issue #7079)
Files: src/os_unix.c

version9.txt — 3668

Patch 8.2.1806
Problem: MS-Windows with Python: Vim freezes after import command.
Solution: Use either "NUL" or "CONIN$" when reopening stdin. (Yasuhiro

Matsumoto, closes #7083)
Files: src/if_python3.c

Patch 8.2.1807
Problem: Can use :help in a terminal popup window.
Solution: Give an error. (closes #7088)
Files: src/help.c, src/testdir/test_popupwin.vim

Patch 8.2.1808
Problem: No test coverage for ":spelldump!".
Solution: Add a test. (Dominique Pellé, closes #7089)
Files: src/testdir/test_spell.vim

Patch 8.2.1809
Problem: Mapping some keys with Ctrl does not work properly.
Solution: For terminal, GTK and Motif handle "@", "^" and "_" codes.
Files: src/misc2.c, src/proto/misc2.pro, src/term.c, src/gui_gtk_x11.c,

src/gui_x11.c, src/testdir/test_termcodes.vim

Patch 8.2.1810
Problem: Some code in normal.c not covered by tests.
Solution: Add normal mode tests. (Yegappan Lakshmanan, closes #7086)
Files: src/testdir/test_charsearch.vim, src/testdir/test_normal.vim

Patch 8.2.1811
Problem: Mapping Ctrl-key does not work for '{', '}' and '|'.
Solution: Remove the shift modifier. (closes #6457)
Files: runtime/doc/map.txt, src/misc2.c, src/testdir/test_termcodes.vim

Patch 8.2.1812
Problem: Vim9: nested closure throws an internal error.
Solution: Do not skip a local variable with a partial. (closes #7065)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1813
Problem: Vim9: can assign wrong type to script dict. (Christian J. Robinson)
Solution: Check the type if known.
Files: src/structs.h, src/eval.c, src/vim9script.c,

src/proto/vim9script.pro, src/proto/evalvars.pro,
src/testdir/test_vim9_script.vim

Patch 8.2.1814 (after 8.2.1813)
Problem: Missing change to remove "static".
Solution: Add the change.
Files: src/evalvars.c

Patch 8.2.1815
Problem: Vim9: memory leak when using function reference.
Solution: Temporarily disable the test.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.1816
Problem: Vim9: another memory leak when using function reference.
Solution: Temporarily disable the tests.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1817

version9.txt — 3669

Problem: Vim9: wrong instruction when reusing a local variable spot.
Solution: Clear a newly allocated local variable. (closes #7080)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1818
Problem: SE Linux: deprecation warning for security_context_t.
Solution: Use "char *" instead. (James McCoy, closes #7093)
Files: src/os_unix.c

Patch 8.2.1819
Problem: Vim9: Memory leak when using a closure.
Solution: Compute the minimal refcount in the funcstack. Reenable disabled

tests.
Files: src/vim9execute.c, src/proto/vim9execute.pro, src/structs.h,

src/eval.c, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.1820
Problem: Vim9: crash when error happens in timer callback.
Solution: Check that current_exception is not NULL. (closes #7100)
Files: src/ex_docmd.c

Patch 8.2.1821
Problem: Vim9: concatenating to a NULL list doesn't work.
Solution: Handle a NULL list like an empty list. (closes #7064)
Files: src/list.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1822 (after 8.2.1821)
Problem: List test doesn't fail.
Solution: Adjust the test for NULL list handling.
Files: src/testdir/test_listdict.vim

Patch 8.2.1823
Problem: "gN" does not select the matched string.
Solution: Move the cursor to the start of the match.
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.2.1824
Problem: Vim9: variables at the script level escape their scope.
Solution: When leaving a scope remove variables declared in it.
Files: src/structs.h, src/ex_eval.c, src/evalvars.c,

src/proto/evalvars.pro, src/testdir/test_vim9_script.vim

Patch 8.2.1825
Problem: Vim9: accessing freed memory.
Solution: Clear sv_name when the variable is deleted.
Files: src/ex_eval.c

Patch 8.2.1826
Problem: Vim9: cannot use a {} block at script level.
Solution: Recognize a {} block.
Files: src/ex_docmd.c, src/ex_cmds.h, src/ex_cmdidxs.h, src/ex_eval.c,

src/structs.h, src/proto/ex_eval.pro, src/errors.h,
src/testdir/test_vim9_script.vim

Patch 8.2.1827
Problem: Filetype detection does not test enough file names.
Solution: Test more file names. (Adam Stankiewicz, closes #7099)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3670

Patch 8.2.1828
Problem: Build failure without the +eval feature.
Solution: Add dummies for ex_block and ex_endblock.
Files: src/ex_docmd.c

Patch 8.2.1829
Problem: Warnings when executing Github actions.
Solution: Use another method to set environment variables. (Ken Takata,

closes #7107)
Files: .github/workflows/ci-windows.yaml

Patch 8.2.1830
Problem: MS-Windows: Python3 issue with stdin.
Solution: Check if stdin is readable. (Ken Takata, closes #7106)
Files: src/if_python3.c

Patch 8.2.1831
Problem: File missing from distribution.
Solution: Add the github code analyses file.
Files: Filelist

Patch 8.2.1832
Problem: readdirex() error is displayed as a message. (Yegappan Lakshmanan)
Solution: Use semsg() instead of smsg().
Files: src/fileio.c, src/testdir/test_functions.vim

Patch 8.2.1833
Problem: When reading from stdin dup() is called twice.
Solution: Remove the dup() in main.c. (Ken Takata, closes #7110)
Files: src/main.c

Patch 8.2.1834
Problem: PyEval_InitThreads() is deprecated in Python 3.9.
Solution: Do not call PyEval_InitThreads in Python 3.9 and later. (Ken

Takata, closes #7113) Avoid warnings for functions.
Files: src/if_python3.c, src/if_py_both.h

Patch 8.2.1835
Problem: ":help ??" finds the "!!" tag.
Solution: Do not translate "?" into ".". (Naruhiko Nishino, closes #7114,

closes #7115)
Files: src/help.c, src/testdir/test_help_tagjump.vim

Patch 8.2.1836
Problem: Autocmd test fails on pacifist systems.
Solution: Check that /bin/kill exists. (James McCoy, closes #7117)

Tune the timing, make the autocmd test run faster.
Files: src/testdir/test_autocmd.vim

Patch 8.2.1837
Problem: Using "gn" after "gN" does not work.
Solution: Extend the other end of the Visual area. (closes #7109)
Files: src/search.c, src/testdir/test_gn.vim

Patch 8.2.1838
Problem: Vim9: cannot insert a comment line in an expression.
Solution: Skip comment lines at the script level. (closes #7111)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1839

version9.txt — 3671

Problem: Vim9: memory leaks reported in assign test.
Solution: Move the failing job_start() call to separate test files, it

causes false leak reports.
Files: src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_fails.vim,

src/testdir/Make_all.mak

Patch 8.2.1840
Problem: Vim9: error message is not clear about compilation error.
Solution: Say "compiling" instead of "processing".
Files: src/vim9compile.c, src/message.c, src/globals.h,

src/testdir/test_vim9_func.vim

Patch 8.2.1841
Problem: Vim9: test for compilation error fails in normal build.
Solution: Invoke CheckRunVimInTerminal in a separate function.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.1842
Problem: Crash when USE_FNAME_CASE is defined and using :browse.
Solution: Don't use read-only memory for ".". (Yegappan Lakshmanan,

closes #7123)
Files: src/ex_cmds.c, src/ex_docmd.c, src/testdir/test_edit.vim

Patch 8.2.1843
Problem: Netbeans: with huge buffer number memory allocation may fail.
Solution: Check for size overflow.
Files: src/netbeans.c

Patch 8.2.1844
Problem: Using "q" at the more prompt doesn't stop a long message.
Solution: Check for "got_int". (closes #7122)
Files: src/message.c, src/testdir/test_messages.vim,

src/testdir/dumps/Test_quit_long_message.dump

Patch 8.2.1845
Problem: Vim9: function defined in a block can't use variables defined in

that block.
Solution: First step: Make a second hashtab that holds all script variables,

also block-local ones, with more information.
Files: src/structs.h, src/evalvars.c, src/ex_eval.c, src/vim9script.c,

src/proto/vim9script.pro, src/scriptfile.c

Patch 8.2.1846
Problem: Vim9: variables declared in a local block are not found in

when a function is compiled.
Solution: Look for script variables in sn_all_vars.
Files: src/structs.h, src/vim9compile.c, src/proto/vim9compile.pro,

src/userfunc.c, src/proto/userfunc.pro, src/ex_eval.c,
src/vim9script.c, src/proto/vim9script.pro, src/vim9execute.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1847
Problem: Vim9: using negative value for unsigned type.
Solution: Use zero instead of -1.
Files: src/vim9compile.c

Patch 8.2.1848
Problem: Crash when passing a NULL string or list to popup_settext().
Solution: Check for NULL pointers. (closes #7132)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

version9.txt — 3672

Patch 8.2.1849
Problem: Vim9: garbage collection frees block-local variables.
Solution: Mark all script variables as used.
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.1850
Problem: "vat" does not select tags correctly over line break.
Solution: Adjust the search pattern. (Aufar Gilbran, closes #7136)
Files: src/textobject.c, src/testdir/test_textobjects.vim

Patch 8.2.1851
Problem: Vim9: "!" followed by space incorrectly used.
Solution: Skip over trailing spaces. (closes #7131)
Files: src/eval.c, src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1852
Problem: map() returning zero for NULL list is unexpected.
Solution: Return the empty list. (closes #7133)
Files: src/list.c, src/testdir/test_filter_map.vim,

src/testdir/test_blob.vim

Patch 8.2.1853
Problem: "to_f" is recognized at "topleft" modifier.
Solution: Do not recognize modifier when "_" follows. (closes #7019)
Files: src/ex_docmd.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1854
Problem: Vim9: crash when throwing exception for NULL string. (Dhiraj

Mishra)
Solution: Handle NULL string like empty string. (closes #7139)
Files: src/vim9execute.c, src/errors.h, src/testdir/test_vim9_script.vim

Patch 8.2.1855
Problem: Vim9: get error message when nothing is wrong.
Solution: Check called_emsg instead of did_emsg. (closes #7143)
Files: src/vim9compile.c, src/vim9execute.c, src/errors.h

Patch 8.2.1856
Problem: "2resize" uses size of current window. (Daniel Steinberg)
Solution: Use size of resized window. (Yasuhiro Matsumoto, closes #7152)
Files: src/ex_docmd.c, src/testdir/test_window_cmd.vim

Patch 8.2.1857
Problem: Vim9: using job_status() on an unused var gives an error.
Solution: Return "fail". (closes #7158)
Files: src/job.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1858
Problem: Vim9: filter functions return number instead of bool.
Solution: Return v:true instead of one. (closes #7144)
Files: src/popupwin.c, src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.1859
Problem: Vim9: crash in unpack assignment.
Solution: Make sure an error message is turned into an exception.

(closes #7159)
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_script.vim

version9.txt — 3673

Patch 8.2.1860
Problem: Vim9: memory leak when throwing empty string.
Solution: Free the empty string.
Files: src/vim9execute.c

Patch 8.2.1861
Problem: Vim9: no specific error when parsing lambda fails.
Solution: Also give syntax errors when not evaluating. (closes #7154)
Files: src/dict.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1862
Problem: vim9: memory leak when compiling lambda fails.
Solution: Call clear_evalarg().
Files: src/vim9compile.c

Patch 8.2.1863
Problem: Json code not sufficiently tested.
Solution: Add more test cases. (Dominique Pellé, closes #7166)
Files: src/testdir/test_json.vim

Patch 8.2.1864
Problem: Vim9: no error for wrong list type.
Solution: Add flag to indicate a constant. (closes #7160)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.1865
Problem: Vim9: add() does not check type of argument.
Solution: Inline the add() call. (closes #7160)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/errors.h,

src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1866
Problem: Vim9: appending to pushed blob gives wrong result.
Solution: Set ga_maxlen when copying a blob.
Files: src/blob.c, src/testdir/test_vim9_func.vim

Patch 8.2.1867
Problem: Vim9: argument to add() not checked for blob.
Solution: Add the BLOBAPPEND instruction.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/errors.h,

src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.1868
Problem: Vim9: no error for missing space after comma in dict.
Solution: Check for white space. (closes #6672)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1869
Problem: Vim9: memory leak when using add().
Solution: Free the added item.
Files: src/vim9execute.c

Patch 8.2.1870
Problem: Vim9: no need to keep all script variables.
Solution: Only keep script variables when a function was defined that could

use them. Fix freeing static string on exit.
Files: src/vim9script.c, src/proto/vim9script.pro, src/structs.h,

src/ex_eval.c, src/userfunc.c, src/testdir/test_vim9_script.vim

version9.txt — 3674

Patch 8.2.1871
Problem: Using %v in 'errorformat' may fail before %Z.
Solution: Set qf_viscol only when qf_col is set. (closes #7169)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1872
Problem: Matchfuzzy() does not prefer sequential matches.
Solution: Give sequential matches a higher bonus. (Christian Brabandt,

closes #7140)
Files: src/search.c, src/testdir/test_matchfuzzy.vim

Patch 8.2.1873
Problem: Vim9: missing white space when using <f-args>.
Solution: Add spaces. (Christian J. Robinson)
Files: src/usercmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1874
Problem: Can't do something just before leaving Insert mode.
Solution: Add the InsertLeavePre autocommand event. (closes #7177)
Files: runtime/doc/autocmd.txt, src/edit.c, src/vim.h,

src/autocmd.c, src/testdir/test_edit.vim

Patch 8.2.1875
Problem: Warning when building GTK gui.
Solution: Add missing function parameter.
Files: src/gui_gtk_f.c

Patch 8.2.1876
Problem: Vim9: argument types for builtin functions are not checked at

compile time.
Solution: Add an argument type checking mechanism. Implement type checks for

one function.
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/vim9compile.c,

src/testdir/test_vim9_func.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/Make_all.mak

Patch 8.2.1877 (after 8.2.1876)
Problem: Test for function list fails.
Solution: Move "obsolete" comments one line up.
Files: src/evalfunc.c

Patch 8.2.1878
Problem: GTK: error for redefining function. (Tony Mechelynck)
Solution: Remove "gtk_" prefix from local functions and prepend "gui_" to

global functions.
Files: src/gui_gtk_f.c, src/gui_gtk_f.h, src/gui_gtk.c, src/gui_gtk_x11.c

Patch 8.2.1879
Problem: Vim9: argument types of insert() not checked when compiling.
Solution: Add argument type checks for insert().
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/vim9compile.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.1880
Problem: Vim9: Asan complains about adding zero to NULL.
Solution: Check for argument count first.
Files: src/vim9compile.c

Patch 8.2.1881

version9.txt — 3675

Problem: Cannot build with GTK3.
Solution: Adjust form functions.
Files: src/gui_gtk_f.c

Patch 8.2.1882
Problem: Vim9: v:disallow_let is no longer needed.
Solution: Remove v:disallow_let.
Files: src/evalvars.c, src/vim.h, src/vim9compile.c

Patch 8.2.1883
Problem: Compiler warnings when using Python.
Solution: Adjust PyCFunction to also have the second argument. Use "int"

return type for some functions. Insert "(void *)" to get rid of
the remaining warnings.

Files: src/if_py_both.h, src/if_python.c, src/if_python3.c

Patch 8.2.1884
Problem: Compiler warning for uninitialized variable. (John Marriott)
Solution: Initialize with NULL.
Files: src/vim9compile.c, src/evalfunc.c

Patch 8.2.1885
Problem: Filetype tests unnecessarily creates swap files.
Solution: Disable 'swapfile'. (Ken Takata, closes #7183)
Files: src/testdir/test_filetype.vim

Patch 8.2.1886
Problem: Using ":silent!" in a popup filter has unexpected effect.
Solution: Use did_emsg instead of called_emsg. (closes #7178)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.1887
Problem: Github actions not optimally configured.
Solution: Run CI on any pushed branches. Set fail-fast. (Ozaki Kiichi,

closes #7184)
Files: .github/workflows/ci-windows.yaml

Patch 8.2.1888
Problem: Vim9: Getbufline(-1, 1, '$') gives an error.
Solution: Return an empty list. (closes #7180)
Files: src/evalbuffer.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.1889
Problem: Vim9: erroneous error for missing white space after {}.
Solution: Don't skip over white space after {}. (issue #7167)
Files: src/dict.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1890
Problem: Vim9: strange error for subtracting from a list.
Solution: Check getting a number, not a string. (closes #7167)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1891
Problem: Vim9: skipping over expression doesn't handle line breaks.
Solution: Pass evalarg to skip_expr(). (closes #7157)
Files: src/vim9compile.c, src/eval.c, src/proto/eval.pro, src/ex_docmd.c,

src/misc1.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1892
Problem: Valgrind warns for using uninitialized access in tests.

version9.txt — 3676

Solution: Fix condition for breaking out of loop. (Dominique Pellé,
closes #7187)

Files: src/terminal.c

Patch 8.2.1893
Problem: Fuzzy matching does not support multiple words.
Solution: Add support for matching white space separated words. (Yegappan

Lakshmanan, closes #7163)
Files: runtime/doc/eval.txt, src/search.c,

src/testdir/test_matchfuzzy.vim

Patch 8.2.1894
Problem: Vim9: command modifiers are not supported.
Solution: Support "silent" and "silent!".
Files: src/structs.h, src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/evalvars.c, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_cmd.vim

Patch 8.2.1895 (after 8.2.1894)
Problem: Vim9: silent command modifier test fails.
Solution: Add missing changes.
Files: src/ex_docmd.c

Patch 8.2.1896
Problem: Valgrind warns for using uninitialized memory.
Solution: NUL terminate the SmcOpenConnection() error message. (Dominique

Pellé, closes #7194)
Files: src/os_unix.c

Patch 8.2.1897
Problem: Command modifiers are saved and set inconsistently.
Solution: Separate parsing and applying command modifiers. Save values in

cmdmod_T.
Files: src/structs.h, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/ex_cmds.h, src/vim9compile.c

Patch 8.2.1898
Problem: Command modifier parsing always uses global cmdmod.
Solution: Pass in cmdmod_T to use. Rename struct fields consistently.
Files: src/structs.h, src/arglist.c, src/buffer.c, src/bufwrite.c,

src/diff.c, src/change.c, src/cmdhist.c, src/edit.c,
src/ex_cmds.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_getln.c,
src/fileio.c, src/filepath.c, src/gui.c, src/gui_gtk_x11.c,
src/help.c, src/if_cscope.c, src/indent.c, src/mark.c,
src/memline.c, src/message.c, src/option.c, src/ops.c,
src/os_unix.c, src/quickfix.c, src/register.c, src/scriptfile.c,
src/search.c, src/session.c, src/tag.c, src/terminal.c,
src/textformat.c, src/usercmd.c, src/vim9compile.c, src/window.c,
src/proto/ex_docmd.pro

Patch 8.2.1899
Problem: Crash in out-of-memory situation.
Solution: Bail out if shell_name is NULL. (Dominique Pellé, closes #7196)
Files: src/ex_cmds.c

Patch 8.2.1900
Problem: Vim9: command modifiers do not work.
Solution: Make most command modifiers work.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/usercmd.c, src/proto/usercmd.pro, src/scriptfile.c,

version9.txt — 3677

src/testdir/test_vim9_disassemble.vim

Patch 8.2.1901
Problem: Variable completion does not work in command line window.
Solution: Use the "prevwin". (closes #7198)
Files: src/evalvars.c, src/testdir/test_ins_complete.vim

Patch 8.2.1902
Problem: Default option values are changed when using :badd for an existing

buffer.
Solution: When calling buflist_new() pass a zero line number. (closes #7195)
Files: src/ex_cmds.c, src/testdir/test_buffer.vim

Patch 8.2.1903 (after 8.2.1902)
Problem: Buffer test fails with normal features.
Solution: Use 'numberwidth' instead of 'conceallevel' in the test.
Files: src/testdir/test_buffer.vim

Patch 8.2.1904
Problem: Still using default option values after using ":badd +1".
Solution: Find a window where options were set. Don't set the window when

using ":badd".
Files: src/buffer.c, src/ex_cmds.c, src/vim.h,

src/testdir/test_buffer.vim

Patch 8.2.1905
Problem: The wininfo list may contain stale entries.
Solution: When closing a window remove any other entry where the window

pointer is NULL.
Files: src/buffer.c, src/proto/buffer.pro, src/window.c

Patch 8.2.1906
Problem: Warning for signed/unsigned.
Solution: Use size_t instead of int. (Mike Williams)
Files: src/proto/usercmd.pro, src/usercmd.c, src/vim9execute.c

Patch 8.2.1907
Problem: Complete_info().selected may be wrong.
Solution: Update cp_number if it was never set. (issue #6945)
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

Patch 8.2.1908
Problem: Lua is initialized even when not used.
Solution: Put lua_init() after check for "eap->skip". (Christian Brabandt,

closes #7191). Avoid compiler warnings.
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.1909
Problem: Number of status line items is limited to 80.
Solution: Dynamically allocate the arrays. (Rom Grk, closes #7181)
Files: runtime/doc/options.txt, src/buffer.c, src/optionstr.c,

src/proto/buffer.pro, src/screen.c, src/structs.h,
src/testdir/test_options.vim, src/testdir/test_statusline.vim,
src/vim.h

Patch 8.2.1910
Problem: Reading past the end of the command line.
Solution: Check for NUL. (closes #7204)
Files: src/ex_docmd.c, src/testdir/test_edit.vim

version9.txt — 3678

Patch 8.2.1911
Problem: Tiny build fails.
Solution: Add #ifdef.
Files: src/insexpand.c

Patch 8.2.1912
Problem: With Python 3.9 some tests fail.
Solution: Take into account the different error message. (James McCoy,

closes #7210)
Files: src/testdir/test_python3.vim

Patch 8.2.1913
Problem: GTK GUI: rounding for the cell height is too strict.
Solution: Round up above 15/16 of a pixel. (closes #7203)
Files: src/gui_gtk_x11.c

Patch 8.2.1914
Problem: Vim9: cannot put line break in expression for '=' register.
Solution: Pass fgetline to set_expr_line(). (closes #7209)
Files: src/register.c, src/proto/register.pro, src/ex_docmd.c,

src/eval.c, src/proto/eval.pro, src/misc2.c,
src/testdir/test_vim9_script.vim

Patch 8.2.1915
Problem: Vim9: error for wrong number of arguments is not useful.
Solution: Mention whatever we have for the name. (closes #7208)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.1916
Problem: Vim9: function call is aborted even when "silent!" is used.
Solution: Use did_emsg instead of called_emsg. (closes #7213)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1917
Problem: No test for improved Man command.
Solution: Test that shell arguments are properly escaped.
Files: src/testdir/test_man.vim

Patch 8.2.1918
Problem: Vim9: E1100 mentions :let.
Solution: Mention "var". (closes #7207)
Files: src/vim9script.c, src/errors.h

Patch 8.2.1919
Problem: Assert_fails() setting emsg_silent changes normal execution.
Solution: Use a separate flag in_assert_fails.
Files: src/testing.c, src/globals.h, src/buffer.c, src/change.c,

src/fileio.c, src/insexpand.c, src/message.c, src/misc1.c,
src/normal.c, src/screen.c, src/term.c, src/vim9execute.c,
src/testdir/test_vim9_func.vim, src/testdir/gen_opt_test.vim,
src/testdir/test_autocmd.vim, src/testdir/test_mapping.vim,
src/testdir/test_popup.vim, src/testdir/test_terminal.vim

Patch 8.2.1920
Problem: Listlbr test fails when run after another test.
Solution: Add test separately to list of test targets.
Files: src/testdir/Make_all.mak, src/testdir/test_alot_utf8.vim

Patch 8.2.1921
Problem: Fuzzy matching does not recognize path separators.

version9.txt — 3679

Solution: Add a bonus for slash and backslash. (Yegappan Lakshmanan,
closes #7225)

Files: src/search.c, src/testdir/test_matchfuzzy.vim

Patch 8.2.1922
Problem: Win32: scrolling doesn't work properly when part of window is

off-screen.
Solution: Fall back to GDI scrolling if part of the window is off-screen.

Handle multi-monitor setup better. (Ken Takata, closes #7219)
Files: src/gui_w32.c

Patch 8.2.1923
Problem: Vim9: "filter" command modifier doesn't work.
Solution: Check for space on char before argument. (closes #7216,

closes #7222)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1924
Problem: Vim9: crash when indexing dict with NULL key.
Solution: Use empty string instead of NULL. (closes #7229) Make error

message more useful for empty string.
Files: src/vim9execute.c, src/globals.h, src/testdir/test_vim9_expr.vim

Patch 8.2.1925 (after 8.2.1924)
Problem: List/dict test fails.
Solution: Correct expected exception.
File: src/testdir/test_listdict.vim

Patch 8.2.1926
Problem: Cannot use a space in 'spellfile'. (Filipe Brandenburger)
Solution: Permit using a space. (closes #7230)
Files: src/spell.c, src/testdir/gen_opt_test.vim

Patch 8.2.1927
Problem: Vim9: get unknown error with an error in a timer function.
Solution: Use did_emsg instead of called_emsg. (closes #7231)
Files: src/vim9compile.c, src/vim9execute.c

Patch 8.2.1928
Problem: Vim9: "silent!" not effective when list index is wrong.
Solution: Ignore list index failure when emsg_silent is set. (closes #7232)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.1929
Problem: MS-Windows: problem loading Perl 5.32.
Solution: Define NO_THREAD_SAFE_LOCALE. (Ken Takata, closes #7234)
Files: src/if_perl.xs

Patch 8.2.1930
Problem: Wrong input if removing shift results in special key code.
Solution: Handle special key codes. (closes #7189)
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.2.1931
Problem: Vim9: arguments of extend() not checked at compile time.
Solution: Add argument type checking for extend().
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.1932
Problem: Compiler warnings when building with Athena GUI.

version9.txt — 3680

Solution: Fix function signatures.
Files: src/gui_at_fs.c

Patch 8.2.1933
Problem: Cannot sort using locale ordering.
Solution: Add a flag for :sort and sort() to use the locale. (Dominique

Pellé, closes #7237)
Files: runtime/doc/change.txt, runtime/doc/eval.txt, src/ex_cmds.c,

src/list.c, src/testdir/test_sort.vim

Patch 8.2.1934
Problem: Vim9: command modifiers in :def function not tested.
Solution: Add tests. Fix using modifier before filter command.
Files: src/ex_docmd.c, src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1935 (after 8.2.1933)
Problem: Sort test fails on Mac.
Solution: Disable the sort test with locale on Mac.
Files: src/testdir/test_sort.vim

Patch 8.2.1936
Problem: Session sets the local 'scrolloff' value to the global value.
Solution: Do not let restoring the global option value change the local

value.
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.1937
Problem: Vim9: test for confirm modifier fails in some situations.
Solution: Add a short wait. Handle failure better.
Files: src/testdir/term_util.vim, src/testdir/test_vim9_cmd.vim

Patch 8.2.1938
Problem: Wiping out a terminal buffer makes some tests fail.
Solution: Do not wipe out the terminal buffer unless wanted.
Files: src/testdir/term_util.vim, src/testdir/test_terminal.vim,

src/testdir/test_terminal3.vim

Patch 8.2.1939
Problem: Invalid memory access in Ex mode with global command.
Solution: Make sure the cursor is on a valid line. (closes #7238)
Files: src/move.c, src/testdir/test_ex_mode.vim

Patch 8.2.1940
Problem: Vim9: browse modifier test fails on Mac.
Solution: Only test when the +browse feature is available.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.1941
Problem: Ex mode test fails on MS-Windows with GUI.
Solution: Skip the test when using gvim.
Files: src/testdir/test_ex_mode.vim

Patch 8.2.1942
Problem: Insufficient test coverage for the Netbeans interface.
Solution: Add more tests. Fix an uncovered bug. (Yegappan Lakshmanan,

closes #7240)
Files: runtime/doc/netbeans.txt, src/mouse.c,

src/testdir/test_netbeans.py, src/testdir/test_netbeans.vim,
src/testdir/test_quickfix.vim

version9.txt — 3681

Patch 8.2.1943
Problem: Vim9: wrong error message when colon is missing.
Solution: Check for a missing colon. (issue #7239)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1944
Problem: Netbeans test is flaky.
Solution: Add a short delay. (Yegappan Lakshmanan, closes #7246)
Files: src/testdir/test_netbeans.vim

Patch 8.2.1945
Problem: Crash when passing NULL function to reduce().
Solution: Check for NULL pointer and give an error. (Dominique Pellé,

closes #7243)
Files: src/list.c, src/errors.h, src/testdir/test_listdict.vim

Patch 8.2.1946
Problem: sort() with NULL string not tested.
Solution: Add a test. use v:collate. (Dominique Pellé, closes #7247)
Files: src/testdir/test_sort.vim

Patch 8.2.1947
Problem: Crash when using "zj" without folds. (Sean Dewar)
Solution: Check for at least one fold. (closes #7245)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.1948
Problem: GUI: crash when handling message while closing a window. (Srinath

Avadhanula)
Solution: Don't handle message while closing a window. (closes #7250)
Files: src/window.c, src/globals.h, src/getchar.c

Patch 8.2.1949
Problem: Vim9: using extend() on null dict is silently ignored.
Solution: Give an error message. Initialize a dict variable with an empty

dictionary. (closes #7251)
Files: src/errors.h, src/list.c, src/evalvars.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.1950
Problem: Vim9: crash when compiling function fails when getting type.
Solution: Handle NULL type. (closes #7253)
Files: src/vim9type.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1951 (after 8.2.1949)
Problem: Test for list and dict fails.
Solution: Adjust for using an empty list/dict for a null one.
Files: src/testdir/test_listdict.vim, src/testdir/test_python2.vim,

src/testdir/test_python3.vim

Patch 8.2.1952
Problem: Vim9: crash when using a NULL dict key.
Solution: Use a NULL dict key like an empty string. (closes #7249)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.1953
Problem: Vim9: extra "unknown" error after other error.
Solution: Restore did_emsg count after EXEC instruction. (closes #7254)

Improve error message from assert_fails()
Files: src/vim9execute.c, src/testing.c,

version9.txt — 3682

src/testdir/test_vim9_script.vim, src/testdir/test_assert.vim

Patch 8.2.1954
Problem: Vim9: not all command modifiers are tested.
Solution: Add tests for "keep" modifiers. Fix that marks are lost even

though ":lockmarks" is used.
Files: src/ex_cmds.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.1955
Problem: Vim9: not all command modifiers are tested.
Solution: Add tests for remaining modifiers.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.1956
Problem: Vim9: cannot specify argument types for lambda.
Solution: Allow adding argument types. Check arguments when calling a

function reference.
Files: src/userfunc.c, src/proto/userfunc.pro, src/vim9compile.c,

src/eval.c, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.1957
Problem: Diff and cursorcolumn highlighting don't mix.
Solution: Fix condition for what attribute to use. (Christian Brabandt,

closes #7258, closes #7260)
Files: src/drawline.c, src/testdir/dumps/Test_diff_cuc_01.dump,

src/testdir/dumps/Test_diff_cuc_02.dump,
src/testdir/dumps/Test_diff_cuc_03.dump,
src/testdir/dumps/Test_diff_cuc_04.dump,
src/testdir/test_diffmode.vim

Patch 8.2.1958 (after 8.2.1956)
Problem: Build failure with timers.
Solution: Add missing change.
Files: src/popupwin.c

Patch 8.2.1959
Problem: Crash when terminal buffer name is made empty. (Dhiraj Mishra)
Solution: Fall back to "[No Name]". (closes #7262)
Files: src/buffer.c, src/proto/buffer.pro, src/terminal.c,

src/testdir/test_terminal.vim

Patch 8.2.1960
Problem: Warning for uninitialized variable.
Solution: Initialize the variable.
Files: src/evalfunc.c

Patch 8.2.1961
Problem: Various comments can be improved.
Solution: Various comment adjustments.
Files: src/dict.c, src/structs.h, src/time.c, src/testdir/shared.vim,

src/testdir/test_netbeans.vim, src/gui_motif.c

Patch 8.2.1962
Problem: Netbeans may access freed memory.
Solution: Check the buffer pointer is still valid. Add a test. (Yegappan

Lakshmanan, closes #7248)
Files: src/netbeans.c, src/testdir/test_netbeans.vim

Patch 8.2.1963

version9.txt — 3683

Problem: Crash when using a popup window with "latin1" encoding.
Solution: Don't use ScreenLinesUC when enc_utf8 is false. (closes #7241)
Files: src/screen.c, src/terminal.c, src/testdir/test_popupwin.vim

Patch 8.2.1964
Problem: Not all ConTeXt files are recognized.
Solution: Add two patterns. (closes #7263)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.1965
Problem: Vim9: tests fail without the channel feature.
Solution: Check if the channel feature is present. (Dominique Pellé,

closes #7270)
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.1966
Problem: Popup becomes current window after closing a terminal window.
Solution: When restoring the window after executing autocommands, check that

the window ID is still the same. (Naruhiko Nishino,
closes #7272)

Files: src/autocmd.c, src/window.c, src/proto/window.pro, src/structs.h,
src/testdir/test_popupwin.vim

Patch 8.2.1967
Problem: The session file does not restore the alternate file.
Solution: Add ":balt". Works like ":badd" and also sets the buffer as the

alternate file. Use it in the session file. (closes #7269,
closes #6714)

Files: runtime/doc/windows.txt, src/ex_cmds.h, src/ex_cmdidxs.h,
src/ex_docmd.c, src/vim.h, src/ex_cmds.c, src/session.c,
src/testdir/test_buffer.vim

Patch 8.2.1968
Problem: Vim9: has() assumes a feature does not change dynamically.
Solution: Check whether a feature may change dynamically. (closes #7265)
Files: src/vim9compile.c, src/evalfunc.c, src/proto/evalfunc.pro,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.1969
Problem: Vim9: map() may change the list or dict item type.
Solution: Add mapnew().
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/list.c, src/proto/list.pro, src/testdir/test_filter_map.vim

Patch 8.2.1970
Problem: It is easy to make mistakes when cleaning up swap files after the

system crashed.
Solution: Warn for the process still running after recovery. Do not

automatically delete a swap file created on another system.
(David Fries, closes #7273)

Files: src/memline.c, src/testdir/test_swap.vim

Patch 8.2.1971
Problem: Memory leak when map() fails.
Solution: Clear the typval.
Files: src/list.c

Patch 8.2.1972
Problem: Crash when recreating nested fold.
Solution: Check for empty growarray. (closes #7278)

version9.txt — 3684

Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.1973
Problem: Finding a patch number can be a bit slow.
Solution: Use binary search. (closes #7279)
Files: src/version.c

Patch 8.2.1974
Problem: Vim9: test for has('gui_running') fails with VIMDLL.
Solution: Adjust the #ifdef. (Ken Takata, closes #7276)
Files: src/evalfunc.c

Patch 8.2.1975
Problem: Win32: memory leak when encoding conversion fails.
Solution: Free the allocated memory. (Ken Takata, closes #7277)
Files: src/os_win32.c

Patch 8.2.1976
Problem: Cannot backspace in prompt buffer after using cursor-left. (Maxim

Kim)
Solution: Ignore "arrow_used" in a prompt buffer. (closes #7281)
Files: src/edit.c, src/testdir/test_prompt_buffer.vim

Patch 8.2.1977
Problem: Vim9: error for using a string in a condition is confusing.
Solution: Give a more specific error. Also adjust the compile time type

checking for || and &&.
Files: src/vim9compile.c, src/vim9execute.c, src/proto/vim9execute.pro,

src/typval.c, src/errors.h, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.1978
Problem: Making a mapping work in all modes is complicated.
Solution: Add the <Cmd> special key. (Yegappan Lakshmanan, closes #7282,

closes 4784, based on patch by Bjorn Linse)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt,

runtime/doc/map.txt, src/edit.c, src/errors.h, src/ex_docmd.c,
src/ex_getln.c, src/getchar.c, src/insexpand.c, src/keymap.h,
src/map.c, src/misc2.c, src/normal.c, src/ops.c,
src/proto/getchar.pro, src/screen.c, src/terminal.c,
src/testdir/test_mapping.vim

Patch 8.2.1979
Problem: "term_opencmd" option of term_start() is truncated. (Sergey

Vlasov)
Solution: Allocate the buffer to hold the command. (closes #7284)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.1980
Problem: Vim9: some tests are not done at the script level.
Solution: Use CheckDefAndScriptSuccess() in more places. Fix uncovered

problems.
Files: src/eval.c, src/list.c, src/scriptfile.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.1981
Problem: MinGW: parallel compilation might fail.
Solution: Add dependencies on $(OUTDIR). (Masamichi Abe, closes #7287)
Files: src/Make_cyg_ming.mak

version9.txt — 3685

Patch 8.2.1982
Problem: Quickfix window not updated when adding invalid entries.
Solution: Update the quickfix buffer properly. (Yegappan Lakshmanan, closes

#7291, closes #7271)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.1983
Problem: ml_get error when using <Cmd> to open a terminal.
Solution: If the window changed reset the incsearch state. (closes #7289)
Files: src/ex_getln.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_from_cmd.dump

Patch 8.2.1984
Problem: Cannot use :vimgrep in omni completion, causing C completion to

fail.
Solution: Add the EX_LOCK_OK flag to :vimgrep. (closes #7292)
Files: src/ex_cmds.h, src/testdir/test_quickfix.vim

Patch 8.2.1985
Problem: Crash when closing terminal popup with <Cmd> mapping.
Solution: Check b_term is not NULL. (closes #7294)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.1986
Problem: Expression test is flaky on Appveyor.
Solution: Temporarily disable the test in MS-Windows.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.1987
Problem: MS-Windows: Win32.mak is no longer needed.
Solution: Do not include Win32.mak. (Jason McHugh, closes #7290)
Files: src/Make_mvc.mak, src/INSTALLpc.txt

Patch 8.2.1988
Problem: Still in Insert mode when opening terminal popup with a <Cmd>

mapping in Insert mode.
Solution: Exit Insert mode. (closes #7295)
Files: src/edit.c, src/testdir/test_terminal.vim

Patch 8.2.1989
Problem: Info popup triggers WinEnter and WinLeave autocommands.
Solution: Suppress autocommands for the info popup. (closes #7296)
Files: src/popupmenu.c, src/testdir/test_popupwin.vim

Patch 8.2.1990
Problem: Cursor position wrong in terminal popup with finished job.
Solution: Only add the top and left offset when not done already.

(closes #7298)
Files: src/popupwin.c, src/structs.h, src/drawline.c, src/move.c,

src/terminal.c, src/testdir/dumps/Test_terminal_popup_m1.dump

Patch 8.2.1991
Problem: Coverity warns for not using the ga_grow() return value.
Solution: Bail out if ga_grow() fails. (Yegappan Lakshmanan, closes #7303)
Files: src/getchar.c

Patch 8.2.1992
Problem: Build fails with small features.
Solution: Add #ifdef.

version9.txt — 3686

Files: src/move.c

Patch 8.2.1993
Problem: Occasional failure of the netbeans test.
Solution: Add "silent!". (Yegappan Lakshmanan, closes #7304)
Files: src/testdir/test_netbeans.vim

Patch 8.2.1994 (after 8.2.1981)
Problem: MS-Windows: MinGW always does a full build.
Solution: Only check if $OUTDIR exists. (Masamichi Abe, closes #7311)
Files: src/Make_cyg_ming.mak

Patch 8.2.1995
Problem: The popup menu can cause too much redrawing.
Solution: Reduce the length of the displayed text. (Yasuhiro Matsumoto,

closes #7306)
Files: src/popupmenu.c

Patch 8.2.1996
Problem: Vim9: invalid error for argument of extend().
Solution: Check if the type could match. (closes #7299)
Files: src/evalfunc.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/vim9type.c, src/proto/vim9type.pro,
src/testdir/test_vim9_builtin.vim

Patch 8.2.1997
Problem: Window changes when using bufload() while in a terminal popup.
Solution: When searching for a window by ID also find a popup window.

(closes #7307)
Files: src/window.c, src/testdir/test_terminal.vim

Patch 8.2.1998
Problem: Terminal Cmd test sometimes fails to close popup.
Solution: Add "term_finish" option.
Files: src/testdir/test_terminal.vim

Patch 8.2.1999
Problem: Terminal popup test sometimes fails.
Solution: Wait for the popup to close.
Files: src/testdir/test_terminal.vim

Patch 8.2.2000
Problem: Vim9: dict.key assignment not implemented yet.
Solution: Implement dict.key assignment. (closes #7312)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2001
Problem: Vim9: :def function does not apply 'maxfuncdepth'.
Solution: Use 'maxfuncdepth'. (issue #7313)
Files: src/vim9execute.c, src/userfunc.c, src/proto/userfunc.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.2002
Problem: Vim9: lambda argument shadowed by function name.
Solution: Let function name be shadowed by lambda argument. (closes #7313)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2003
Problem: Build error with +conceal but without +popupwin.
Solution: Add #ifdef. (Tom Ryder, closes #7316)

version9.txt — 3687

Files: src/drawline.c

Patch 8.2.2004 (after 8.2.2002)
Problem: Compiler warning for uninitialized variable.
Solution: Initialize "ufunc". (John Marriott)
Files: src/vim9compile.c

Patch 8.2.2005
Problem: Redoing a mapping with <Cmd> doesn't work properly.
Solution: Fill the redo buffer. Use "<SNR>" instead of a key code.

(closes #7282)
Files: src/ops.c, src/getchar.c, src/testdir/test_mapping.vim

Patch 8.2.2006
Problem: .pbtxt files are not recognized.
Solution: Recognize .pbtxt as protobuf text buffers. (closes #7326)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2007
Problem: Test for insert mode in popup is not reliable.
Solution: Wait for the popup to disappear. (Ozaki Kiichi, closes #7321)
Files: src/testdir/test_terminal.vim

Patch 8.2.2008
Problem: MS-Windows GUI: handling channel messages lags.
Solution: Reduce the wait time from 100 to 10 msec. (closes #7097)
Files: src/gui_w32.c

Patch 8.2.2009
Problem: MS-Windows: setting $LANG in gvimext only causes problems.
Solution: Do not set $LANG. (Ken Takata, closes #7325)
Files: src/GvimExt/gvimext.cpp

Patch 8.2.2010
Problem: Vim9: compiling fails for unreachable return statement.
Solution: Fix it. (closes #7319)
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.2011
Problem: "syn sync" reports a very large number.
Solution: Use "at the first line".
Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.2.2012
Problem: Vim9: confusing error message when using bool wrongly.
Solution: Mention "Bool" instead of "Special". (closes #7323)
Files: src/typval.c, src/errors.h, src/testdir/test_vim9_expr.vim

Patch 8.2.2013
Problem: Vim9: not skipping white space after unary minus.
Solution: Skip whitespace. (closes #7324)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2014
Problem: Using CTRL-O in a prompt buffer moves cursor to start of the line.
Solution: Do not move the cursor when restarting edit. (closes #7330)
Files: src/job.c, src/testdir/test_prompt_buffer.vim

Patch 8.2.2015
Problem: Vim9: literal dict #{} is not like any other language.

version9.txt — 3688

Solution: Support the JavaScript syntax.
Files: runtime/doc/vim9.txt, src/vim9compile.c,

src/proto/vim9compile.pro, src/errors.h,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.2016
Problem: Swap file test is a little flaky.
Solution: Don't set a byte to a fixed value, increment it.
Files: src/testdir/test_swap.vim

Patch 8.2.2017 (after 8.2.2015)
Problem: Missing part of the dict change.
Solution: Also change the script level dict.
Files: src/dict.c

Patch 8.2.2018
Problem: Vim9: script variable not found from lambda.
Solution: In a lambda also check the script hashtab for a variable without a

scope. (closes #7329)
Files: src/evalvars.c, src/testdir/test_vim9_func.vim

Patch 8.2.2019 (after 8.2.2016)
Problem: Swap file test fails on MS-Windows.
Solution: Add four to the process ID. (Ken Takata, closes #7333)
Files: src/testdir/test_swap.vim

Patch 8.2.2020
Problem: Some compilers do not like the "namespace" argument.
Solution: Rename to "use_namespace". (closes #7332)
Files: src/vim9compile.c, src/proto/vim9compile.pro

Patch 8.2.2021
Problem: Vim9: get E1099 when autocommand resets did_emsg.
Solution: Add did_emsg_cumul. (closes #7336)
Files: src/globals.h, src/ex_docmd.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2022
Problem: Vim9: star command recognized erroneously.
Solution: Give an error for missing colon. (issue #7335)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2023
Problem: Vim: memory leak when :execute fails.
Solution: Clear the growarray.
Files: src/vim9execute.c

Patch 8.2.2024
Problem: Flicker when redrawing a popup with a title and border.
Solution: Do not redraw the border where the title is displayed. (Naruhiko

Nishino, closes #7334)
Files: src/popupwin.c

Patch 8.2.2025
Problem: Amiga: Not all colors are used on OS4.
Solution: Adjust the #ifdef to include __amigaos4__. (Ola Söder,

closes #7328)
Files: src/term.c

version9.txt — 3689

Patch 8.2.2026
Problem: Coverity warns for possibly using not NUL terminated string.
Solution: Put a NUL in b0_hname just in case.
Files: src/memline.c

Patch 8.2.2027
Problem: Coverity warns for uninitialized field.
Solution: Set "v_lock".
Files: src/list.c

Patch 8.2.2028
Problem: Coverity warns for using an uninitialized variable.
Solution: Initialize to NULL.
Files: src/eval.c

Patch 8.2.2029
Problem: Coverity warns for not checking return value.
Solution: Check that u_save_cursor() returns OK.
Files: src/ops.c

Patch 8.2.2030
Problem: Some tests fail on Mac.
Solution: Avoid Mac test failures. Add additional test for wildmenu.

(Yegappan Lakshmanan, closes #7341)
Files: src/testdir/runtest.vim, src/testdir/test_cmdline.vim,

src/testdir/test_options.vim, src/testdir/test_popupwin.vim

Patch 8.2.2031
Problem: Some tests fail when run under valgrind.
Solution: Avoid timing problems.
Files: src/testdir/test_vim9_func.vim, src/testdir/test_channel.vim,

src/testdir/test_clientserver.vim, src/testdir/test_debugger.vim,
src/testdir/test_quotestar.vim

Patch 8.2.2032
Problem: Cabalconfig and cabalproject filetypes not recognized.
Solution: Detect more cabal files. (Marcin Szamotulski, closes #7339)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2033
Problem: Vim9: :def without argument gives compilation error.
Solution: Add the DEF instruction. (closes #7344)
Files: src/ex_docmd.c, src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/userfunc.c, src/proto/userfunc.pro,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.2034
Problem: Vim9: list unpack in for statement not compiled yet.
Solution: Compile list unpack. (closes #7345)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/errors.h,

src/eval.c, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2035
Problem: MS-Windows: some tests may fail.
Solution: Avoid test failures. (Yegappan Lakshmanan, closes #7346)
Files: src/testdir/test_channel.vim, src/testdir/test_ex_mode.vim,

src/testdir/test_functions.vim

version9.txt — 3690

Patch 8.2.2036
Problem: Current buffer is messed up if creating a new buffer for the

quickfix window fails.
Solution: Check that creating the buffer succeeds. (closes #7352)
Files: src/quickfix.c, src/testdir/test_quickfix.vim,

src/testdir/dumps/Test_quickfix_window_fails.dump

Patch 8.2.2037
Problem: Compiler test depends on list of compiler plugins.
Solution: Compare with the actual list of compiler plugins.
Files: src/testdir/test_compiler.vim

Patch 8.2.2038
Problem: Compiler test fails on MS-Windows.
Solution: Sort the found compiler plugin names.
Files: src/testdir/test_compiler.vim

Patch 8.2.2039
Problem: Viminfo is not written when creating a new file.
Solution: Set "b_marks_read" in the new buffer. (Christian Brabandt,

closes #7350)
Files: src/bufwrite.c, src/testdir/test_viminfo.vim

Patch 8.2.2040
Problem: Terminal buffer disappears even when 'bufhidden' is "hide".

(Sergey Vlasov)
Solution: Check 'bufhidden' when a terminal buffer becomes hidden.

(closes #7358)
Files: src/buffer.c, src/testdir/test_terminal.vim

Patch 8.2.2041
Problem: Haskell filetype not optimally recognized.
Solution: Recognize all *.hsc files as Haskell. (Marcin Szamotulski,

closes #7354)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2042
Problem: Build failure with +profile but without +reltime.
Solution: Adjust #ifdef. (Christian Brabandt, closes #7361)
Files: src/syntax.c

Patch 8.2.2043
Problem: GTK3: white border around text stands out.
Solution: Use current theme color. (closes #7357, issue #349)
Files: src/gui_gtk_x11.c

Patch 8.2.2044
Problem: MS-Windows: swap file test sometimes fails.
Solution: Use a more reliable way to change the process ID. When "timeout"

fails use "ping" to wait up to ten minutes. (Ken Takata,
closes #7365)

Files: .github/workflows/ci-windows.yaml, src/testdir/test_swap.vim

Patch 8.2.2045
Problem: Highlighting a character too much with incsearch.
Solution: Check "search_match_endcol". (Christian Brabandt, closes #7360)
Files: src/drawline.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_incsearch_newline1.dump,
src/testdir/dumps/Test_incsearch_newline2.dump,
src/testdir/dumps/Test_incsearch_newline3.dump,

version9.txt — 3691

src/testdir/dumps/Test_incsearch_newline4.dump,
src/testdir/dumps/Test_incsearch_newline5.dump

Patch 8.2.2046
Problem: Some test failures don't give a clear error.
Solution: Use assert_match() and assert_fails() instead of assert_true().

(Ken Takata, closes #7368)
Files: src/testdir/test_autocmd.vim, src/testdir/test_backspace_opt.vim

Patch 8.2.2047
Problem: Amiga: FEAT_ARP defined when it should not.
Solution: Adjust #ifdef. (Ola Söder, closes #7370)
Files: src/feature.h

Patch 8.2.2048
Problem: Amiga: obsolete code.
Solution: Remove the unused lines. (Ola Söder, closes #7373)
Files: src/gui.c

Patch 8.2.2049
Problem: Amiga: obsolete function.
Solution: Remove the function. (Ola Söder, closes #7374)
Files: src/memfile.c

Patch 8.2.2050
Problem: Search test contains unneeded sleeps.
Solution: Rename the function, remove sleeps. (Christian Brabandt,

closes #7369)
Files: src/testdir/test_search.vim

Patch 8.2.2051
Problem: Vim9: crash when aborting a user function call.
Solution: Do not use the return value when aborting. (closes #7372)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.2052
Problem: Vim9: "edit +4 fname" gives an error. (Naruhiko Nishino)
Solution: Allow using a range in the +cmd argument. (closes #7364)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/vim.h, src/ex_cmds.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2053
Problem: Vim9: lambda doesn't accept argument types.
Solution: Optionally accept argument types at the script level.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2054
Problem: Amiga: FEAT_ARP defined when it should not.
Solution: Adjust "||" to "&&" in #ifdef. (Ola Söder, closes #7375)
Files: src/feature.h

Patch 8.2.2055
Problem: MS-Windows: two Vim instances may use the same temp file.
Solution: Use the process ID for the temp name. (Ken Takata, closes #7378)
Files: src/fileio.c

Patch 8.2.2056
Problem: Configure fails when building with the

"implicit-function-declaration" error enabled, specifically on Mac.
Solution: Declare the functions like in the source code. (suggestion by

version9.txt — 3692

Clemens Lang, closes #7380)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2057
Problem: Getting the selection may trigger TextYankPost autocmd.
Solution: Only trigger the autocommand when yanking in Vim, not for getting

the selection. (closes #7367)
Files: src/clipboard.c, src/normal.c, src/register.c,

src/testdir/test_autocmd.vim

Patch 8.2.2058
Problem: Using mkview/loadview changes the jumplist.
Solution: Use ":keepjumps". Don't let ":badd" or ":balt" change the

jumplist. (closes #7371)
Files: src/session.c, src/ex_docmd.c, src/testdir/test_mksession.vim

Patch 8.2.2059
Problem: Amiga: can't find plugins.
Solution: Do not use "**" in the pattern. (Ola Söder, closes #7384)
Files: src/main.c

Patch 8.2.2060
Problem: Check for features implemented with "if".
Solution: Use the Check commands. (Ken Takata, closes #7383)
Files: src/testdir/test_autocmd.vim, src/testdir/test_compiler.vim,

src/testdir/test_delete.vim, src/testdir/test_diffmode.vim,
src/testdir/test_expr.vim, src/testdir/test_fold.vim

Patch 8.2.2061
Problem: Vim9: E1030 error when using empty string for term_sendkeys().
Solution: Don't check for an invalid type unless the terminal can't be

found. (closes #7382)
Files: src/terminal.c, src/testdir/test_termcodes.vim

Patch 8.2.2062
Problem: <Cmd> does not handle CTRL-V.
Solution: Call get_literal() after encountering CTRL-V. (closes #7387)
Files: src/getchar.c, src/testdir/test_mapping.vim

Patch 8.2.2063
Problem: Vim9: only one level of indexing supported.
Solution: Handle more than one index in an assignment.
Files: src/vim9compile.c, src/errors.h, src/testdir/test_vim9_assign.vim

Patch 8.2.2064
Problem: terminal: cursor is on while redrawing, causing flicker.
Solution: Switch the cursor off while redrawing. Always add the top and

left offset to the cursor position when not done already.
(closes #5943)

Files: src/terminal.c, src/popupwin.c

Patch 8.2.2065
Problem: Using map() and filter() on a range() is inefficient.
Solution: Do not materialize the range. (closes #7388)
Files: src/list.c, src/testdir/test_functions.vim

Patch 8.2.2066
Problem: Vim9: assignment with += doesn't work.
Solution: Do not see the "+" as an addition operator.
Files: src/eval.c, src/ex_docmd.c, src/testdir/test_vim9_assign.vim

version9.txt — 3693

Patch 8.2.2067 (after 8.2.2064)
Problem: Cursor position in popup terminal is wrong.
Solution: Don't check the flags.
Files: src/terminal.c, src/testdir/test_popupwin.vim

Patch 8.2.2068
Problem: Transparent syntax item uses start/end of containing region.
Solution: Do not change the startpos and endpos of a transparent region to

that of its containing region. (Adrian Ghizaru, closes #7349,
closes #7391)

Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.2.2069
Problem: The quickfix window is not updated after setqflist().
Solution: Update the quickfix buffer. (Yegappan Lakshmanan, closes #7390,

closes #7385)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.2070
Problem: Can't get the exit value in VimLeave or VimLeavePre autocommands.
Solution: Add v:exiting like in Neovim. (Yegappan Lakshmanan, closes #7395)
Files: runtime/doc/autocmd.txt, runtime/doc/eval.txt, src/evalvars.c,

src/main.c, src/testdir/test_exit.vim, src/vim.h

Patch 8.2.2071
Problem: Vim9: list assign doesn't accept an empty remainder list.
Solution: Recognize list assignment with ";".
Files: src/ex_docmd.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2072
Problem: Vim9: list assign not well tested.
Solution: Test with different destinations. Fix white space error.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2073
Problem: Vim9: for with unpack only works for local variables.
Solution: Recognize different destinations.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2074
Problem: Vim9: using :normal from Vim9 script can't handle range.
Solution: Execute a :normal command in legacy script context. (closes #7401)
Files: src/structs.h, src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.2075
Problem: Error for const argument to mapnew().
Solution: Don't give an error. (closes #7400)
Files: src/list.c, src/testdir/test_filter_map.vim

Patch 8.2.2076
Problem: MS-Windows console: sometimes drops typed characters.
Solution: Do not wait longer than 10 msec for input. (issue #7164)
Files: src/os_win32.c

Patch 8.2.2077
Problem: Build failure with small features.
Solution: Add #ifdef.
Files: src/structs.h, src/ex_docmd.c

version9.txt — 3694

Patch 8.2.2078
Problem: Illegal memory access when using :print on invalid text. (Dhiraj

Mishra)
Solution: Check for more composing characters than supported. (closes #7399)
Files: src/message.c, src/testdir/test_utf8.vim

Patch 8.2.2079
Problem: Vim9: cannot put a linebreak before or after "in" of ":for".
Solution: Skip over linebreak.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2080
Problem: Vim9: no proper error message for using s:var in for loop.
Solution: Give a specific error.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2081
Problem: Vim9: cannot handle a linebreak after "=" in assignment.
Solution: Skip over linebreak. (closes #7407)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.2082
Problem: Vim9: can still use the deprecated #{} dict syntax.
Solution: Remove support for #{} in Vim9 script. (closes #7406, closes #7405)
Files: src/dict.c, src/proto/dict.pro, src/eval.c, src/vim9compile.c,

src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_popupwin.vim,
src/testdir/test_textprop.vim

Patch 8.2.2083
Problem: Vim9: crash when using ":silent!" and getting member fails.
Solution: Jump to on_fatal_error. (closes #7412)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.2084
Problem: CTRL-V U doesn't work to enter a Unicode character when

modifyOtherKeys is effective. (Ken Takata)
Solution: Add a flag to get_literal() for the shift key. (closes #7413)
Files: src/edit.c, src/proto/edit.pro, src/ex_getln.c, src/getchar.c,

src/normal.c, src/testdir/test_termcodes.vim

Patch 8.2.2085
Problem: Qt translation file is recognized as typescript.
Solution: Check the first line for "<?xml". (closes #7418)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2086
Problem: Libvterm tests are only run on Linux.
Solution: Use static libraries. (Ozaki Kiichi, closes #7419)
Files: .travis.yml, src/Makefile, src/libvterm/Makefile,

src/libvterm/t/run-test.pl

Patch 8.2.2087
Problem: Vim9: memory leak when statement is truncated.
Solution: Increment the number of local variables.
Files: src/vim9compile.c

version9.txt — 3695

Patch 8.2.2088
Problem: Vim9: script test sometimes fails.
Solution: Unlet variables.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2089
Problem: Libvterm test fails to build on Mac.
Solution: Adjust configure to remove a space between -L and the path that

follows.
Files: src/configure.ac, src/auto/configure

Patch 8.2.2090
Problem: Vim9: dict does not accept a key in quotes.
Solution: Recognize a key in single or double quotes.
Files: runtime/doc/vim9.txt, src/dict.c, src/proto/dict.pro,

src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2091
Problem: MS-Windows: build warnings.
Solution: Add a #pragma to suppress the deprecation warning. (Ken Takata)

Avoid using a non-ASCII character. (closes #7421)
Files: src/message.c, src/os_win32.c

Patch 8.2.2092
Problem: Vim9: unpredictable errors for script tests.
Solution: Use a different script file name for each run.
Files: src/testdir/vim9.vim, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_func.vim, src/testdir/test_quickfix.vim,
src/testdir/test_vim9_assign.vim

Patch 8.2.2093
Problem: Vim9: script test sometimes fails.
Solution: Do not find a script variable by its typval if the name was

cleared.
Files: src/vim9script.c

Patch 8.2.2094
Problem: When an expression fails getting the next command may be wrong.
Solution: Do not check for a next command after :eval fails. (closes #7415)
Files: src/eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2095
Problem: Vim9: crash when failed dict member is followed by concatenation.
Solution: Remove the dict from the stack. (closes #7416)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.2096
Problem: Vim9: command modifiers not restored after assignment.
Solution: Jump to nextline instead of using continue.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2097
Problem: Vim9: using :silent! when calling a function prevents aborting

that function.
Solution: Add emsg_silent_def and did_emsg_def.
Files: src/globals.h, src/message.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

version9.txt — 3696

Patch 8.2.2098
Problem: Vim9: function argument of sort() and map() not tested.
Solution: Add a couple of tests.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.2099
Problem: Vim9: some checks are not tested.
Solution: Add a few more tests. Give better error messages.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.2100
Problem: Insufficient testing for function range and dict.
Solution: Add a few tests. (Dominique Pellé, closes #7428)
Files: src/testdir/test_functions.vim, src/testdir/test_lambda.vim,

src/testdir/test_signals.vim, src/testdir/test_user_func.vim

Patch 8.2.2101
Problem: Vim9: memory leak when literal dict has an error and when an

expression is not complete.
Solution: Clear the typval and the growarray.
Files: src/dict.c, src/vim9compile.c

Patch 8.2.2102
Problem: Vim9: not all error messages tested.
Solution: Add a few test cases.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.2103
Problem: Vim9: unreachable code.
Solution: Remove the code to prepend s: to the variable name
Files: src/vim9compile.c

Patch 8.2.2104
Problem: Build problem with Ruby 2.7.
Solution: Adjust function declarations. (Ozaki Kiichi, closes #7430)
Files: src/configure.ac, src/auto/configure, src/if_ruby.c

Patch 8.2.2105
Problem: Sound test is a bit flaky.
Solution: Use WaitForAssert(). (Dominique Pellé, closes #7429)
Files: src/testdir/test_sound.vim

Patch 8.2.2106
Problem: TOML files are not recognized.
Solution: Match *.toml. (issue #7432)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2107
Problem: Vim9: some errors not tested.
Solution: Add tests. Fix getting the right error.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.2108
Problem: Vim9: no test to check for :let error.
Solution: Add a test. Rename tests from _let_ to _var_.
Files: src/testdir/test_vim9_assign.vim

Patch 8.2.2109

version9.txt — 3697

Problem: "vim -" does not work well when modifyOtherKeys is enabled and a
shell command is executed on startup.

Solution: Only change modifyOtherKeys when executing a shell command in raw
mode.

Files: src/os_unix.c

Patch 8.2.2110
Problem: Cannot use ":shell" when reading from stdin. (Gary Johnson)
Solution: Revert patch 8.2.1833.
Files: src/main.c

Patch 8.2.2111
Problem: GTK: Menu background is the same color as the main window.
Solution: Fix white space around the text in another way. (closes #7437,

closes #7427)
Files: src/gui_gtk_x11.c

Patch 8.2.2112
Problem: Running tests may leave some files behind.
Solution: Delete the right files. Fix a few typos. (Dominique Pellé,

closes #7436)
Files: src/testdir/test_filetype.vim, src/testdir/test_messages.vim,

src/testdir/test_mksession.vim

Patch 8.2.2113
Problem: MS-Windows GUI: crash after using ":set guifont=" four times.
Solution: Check for NULL pointer. (Ken Takata, closes #7434)
Files: src/gui_dwrite.cpp, src/testdir/test_gui.vim

Patch 8.2.2114
Problem: Vim9: unreachable code in assignment.
Solution: Remove impossible condition and code.
Files: src/vim9compile.c

Patch 8.2.2115
Problem: Vim9: some errors not tested for; dead code.
Solution: Add a test. Remove dead code.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2116
Problem: MS-Windows GUI: test for 'guifont' is incomplete.
Solution: Set 'renderoptions'. (Christian Brabandt)
Files: src/testdir/test_gui.vim

Patch 8.2.2117
Problem: Some functions use any value as a string.
Solution: Check that the value is a non-empty string.
Files: src/typval.c, src/proto/typval.pro, src/mbyte.c, src/filepath.c,

src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.2118
Problem: Dead code in the job support. (Dominique Pellé)
Solution: Define USE_ARGV before checking for it.
Files: src/job.c

Patch 8.2.2119
Problem: GTK3: status line background color is wrong.
Solution: Don't change the code for earlier GTK3 versions. (closes #7444)
Files: src/gui_gtk_x11.c

version9.txt — 3698

Patch 8.2.2120
Problem: Not all Perl functionality is tested.
Solution: Add a few more test cases. (Dominique Pellé, closes #7440)
Files: src/testdir/test_perl.vim

Patch 8.2.2121
Problem: Internal error when using \ze before \zs in a pattern.
Solution: Check the end is never before the start. (closes #7442)
Files: src/regexp_bt.c, src/regexp_nfa.c,

src/testdir/test_regexp_latin.vim

Patch 8.2.2122
Problem: Vim9: crash when sourcing vim9script early.
Solution: Use set_option_value() instead of setting p_cpo directly.

(closes #7441)
Files: src/scriptfile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2123
Problem: After using a complete popup the buffer is listed. (Boris

Staletic)
Solution: Make the buffer unlisted.
Files: src/popupmenu.c, src/testdir/test_popupwin.vim

Patch 8.2.2124
Problem: Vim9: a range cannot be computed at runtime.
Solution: Add the ISN_RANGE instruction.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2125 (after 8.2.2122)
Problem: Vim9: leaking memory.
Solution: Free the saved 'cpo' value.
Files: src/scriptfile.c

Patch 8.2.2126
Problem: Ruby: missing function prototype.
Solution: Add the prototype.
Files: src/if_ruby.c

Patch 8.2.2127
Problem: Vim9: executing user command defined in Vim9 script not tested.
Solution: Add a test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2128
Problem: There is no way to do something on CTRL-Z.
Solution: Add VimSuspend and VimResume autocommand events. (closes #7450)
Files: runtime/doc/autocmd.txt, src/autocmd.c, src/ex_docmd.c,

src/normal.c, src/testdir/test_suspend.vim, src/vim.h

Patch 8.2.2129
Problem: MS-Windows: Checking if a file name is absolute is slow.
Solution: Do not use mch_FullName(). (closes #7033)
Files: src/os_mswin.c

Patch 8.2.2130
Problem: Insert mode completion messages end up in message history.
Solution: Set msg_hist_off. (closes #7452)
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

version9.txt — 3699

Patch 8.2.2131
Problem: Vim9: crash when lambda uses same var as assignment.
Solution: Do not let lookup_local change lv_from_outer, make a copy.

(closes #7461)
Files: src/vim9compile.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/evalvars.c, src/proto/evalvars.pro,
src/testdir/test_vim9_func.vim

Patch 8.2.2132
Problem: Padding not drawn properly for popup window with title.
Solution: Draw the padding below the title. (closes #7460)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_longtitle_3.dump,
src/testdir/dumps/Test_popupwin_longtitle_4.dump

Patch 8.2.2133
Problem: Vim9: checking for a non-empty string is too strict.
Solution: Check for any string. (closes #7447)
Files: src/typval.c, src/proto/typval.pro, src/errors.h, src/filepath.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2134
Problem: Vim9: get E1099 when autocmd triggered in builtin function.
Solution: Check that did_emsg increased instead of checking that it changed.

(closes #7448)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.2135
Problem: Vim9: #{ still seen as start of dict in some places.
Solution: Remove check for { after #. (closes #7456)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.2136
Problem: Vim9: Using uninitialized variable.
Solution: Initialize "len" to zero. Clean up fnamemodify().
Files: src/filepath.c

Patch 8.2.2137
Problem: Vim9: :echo and :execute give error for empty argument.
Solution: Ignore an empty argument. (closes #7468)
Files: src/vim9compile.c, src/errors.h, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2138
Problem: Vim9: "exit_cb" causes Vim to exit.
Solution: Require white space after a command in Vim9 script. (closes #7467)

Also fix that Vim9 style heredoc was not always recognized.
Files: src/ex_cmds.h, src/ex_docmd.c, src/errors.h, src/userfunc.c,

src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_let.vim

Patch 8.2.2139
Problem: Vim9: unreachable code in assignment.
Solution: Don't check "new_local" when "has_index" is set. Add test for

wrong type of list index.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2140
Problem: Build failure with tiny features.

version9.txt — 3700

Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.2141
Problem: A user command with try/catch may not catch an expression error.
Solution: When an expression fails check for following "|". (closes #7469)
Files: src/eval.c, src/testdir/test_trycatch.vim,

src/testdir/test_vimscript.vim

Patch 8.2.2142
Problem: Memory leak when heredoc is not terminated.
Solution: Free heredoc_trimmed.
Files: src/userfunc.c

Patch 8.2.2143
Problem: Vim9: dead code in compiling :unlet.
Solution: Don't check for "!" a second time.
Files: src/vim9compile.c

Patch 8.2.2144
Problem: Vim9: some corner cases not tested.
Solution: Add a few tests.
Files: src/testdir/test_vim9_script.vim, src/testdir/test_vim9_cmd.vim

Patch 8.2.2145
Problem: Vim9: concatenating lists does not adjust type of result.
Solution: When list member types differ use "any" member type.

(closes #7473)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2146
Problem: Vim9: automatic conversion of number to string for dict key.
Solution: Do not convert number to string. (closes #7474)
Files: src/dict.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2147
Problem: Quickfix window title not updated in all tab pages.
Solution: Update the quickfix window title in all tab pages. (Yegappan

Lakshmanan, closes #7481, closes #7466)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.2148
Problem: Vim9: crash when user command doesn't match.
Solution: Adjust command index. (closes #7479)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2149
Problem: Popupwin test for latin1 sometimes fails.
Solution: Wait for the script to finish.
Files: src/testdir/test_popupwin.vim

Patch 8.2.2150
Problem: Github actions CI isn't used for all available platforms.
Solution: Update the github workflows. (Ozaki Kiichi, closes #7433)
Files: .coveralls.yml, .github/workflows/ci-windows.yaml,

.github/workflows/ci.yml, .travis.yml, README.md,
ci/build-snd-dummy.sh, ci/setup-xvfb.sh

Patch 8.2.2151
Problem: $dir not expanded when configure checks for moonjit.

version9.txt — 3701

Solution: Use double quotes instead of single quotes. (closes #7478)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2152
Problem: screenpos() does not include the WinBar offset.
Solution: Use W_WINROW() instead of directly using w_window. (closes #7487)
Files: src/move.c, src/testdir/test_cursor_func.vim

Patch 8.2.2153
Problem: Popupwin test for latin1 still fails sometimes.
Solution: Wait for the "cat" command to finish.
Files: src/testdir/test_popupwin.vim

Patch 8.2.2154
Problem: Popupwin test for terminal buffer fails sometimes.
Solution: Wait for the prompt to appear.
Files: src/testdir/test_popupwin.vim

Patch 8.2.2155
Problem: Warning from Github actions for code analysis.
Solution: Remove the "git checkout HEAD^2" block.
Files: .github/workflows/codeql-analysis.yml

Patch 8.2.2156
Problem: Github actions run on pushing a tag.
Solution: Don't run CI on tag push. Omit coveralls on pull-request.

(Ozaki Kiichi, closes #7489)
Files: .github/workflows/ci.yml, .github/workflows/codeql-analysis.yml

Patch 8.2.2157
Problem: Vim9: can delete a Vim9 script variable from a function.
Solution: Check the variable is defined in Vim9 script. (closes #7483)
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2158
Problem: CI on cirrus times out, coveralls doesn't always run.
Solution: Set timeout to 20 minutes. Adjust condition. (closes #7493)
Files: .cirrus.yml, .github/workflows/ci.yml

Patch 8.2.2159
Problem: Vim9: when declaring a list it is not allocated yet, causing a

following extend() to fail.
Solution: When fetching a variable value for a list or dict that is null

allocate the list or dict, so it can be used. (closes #7491)
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2160
Problem: Various typos.
Solution: Fix spelling mistakes. (closes #7494)
Files: src/bufwrite.c, src/cindent.c, src/cmdexpand.c, src/eval.c,

src/ex_cmds.c, src/feature.h, src/getchar.c, src/gui_haiku.cc,
src/gui_xmdlg.c, src/help.c, src/if_ole.cpp, src/insexpand.c,
src/list.c, src/map.c, src/memline.c, src/normal.c,
src/os_win32.c, src/search.c, src/term.c,
src/testdir/test_arglist.vim, src/testdir/test_autocmd.vim,
src/testdir/test_debugger.vim, src/testdir/test_increment.vim,
src/testdir/test_menu.vim, src/testdir/test_netbeans.vim,
src/testdir/test_popupwin.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_sort.vim,
src/testdir/test_terminal2.vim, src/testdir/test_terminal3.vim,

version9.txt — 3702

src/testdir/test_vartabs.vim, src/testdir/test_vimscript.vim,
src/textprop.c, src/userfunc.c, src/vim9.h, src/vim9compile.c,
src/vim9execute.c

Patch 8.2.2161
Problem: Arguments -T and -x not tested yet.
Solution: Add a test. (Dominique Pellé, closes #7490)
Files: src/testdir/test_startup.vim

Patch 8.2.2162
Problem: Vim9: Cannot load or store autoload variables.
Solution: Add ISN_LOADAUTO and ISN_STOREAUTO. (closes #7485)
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/dict.c,

src/eval.c, src/evalvars.c, src/proto/evalvars.pro,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2163
Problem: Crash when discarded exception is the current exception.
Solution: Compare the exception with current_exception. (closes #7499)
Files: src/ex_eval.c

Patch 8.2.2164
Problem: Vim9: autoload function doesn't work in script that starts with

an upper case letter.
Solution: Check for the autoload character. (closes #7502)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.2165
Problem: Vim9: assignment to dict member does not work.
Solution: Fix recognizing dict member. (closes #7484)
Files: src/ex_docmd.c, src/eval.c, src/evalvars.c, src/vim.h

Patch 8.2.2166
Problem: Auto format doesn't work when deleting text.
Solution: Make "x" trigger auto format. (closes #7504)
Files: src/ops.c, src/testdir/test_textformat.vim

Patch 8.2.2167
Problem: Vim9: assign test fails. (Elimar Riesebieter)
Solution: Adjust the test for dict assignment.
Files: src/testdir/test_vim9_assign.vim

Patch 8.2.2168
Problem: Vim9: error for assigning to dict of dict.
Solution: Remember the destination type. (closes #7506)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2169
Problem: Vim9: test leaves file behind.
Solution: Rename script files. (Dominique Pellé, closes #7511)

Use try/finally.
Files: src/testdir/test_vim9_script.vim, src/testdir/vim9.vim

Patch 8.2.2170
Problem: Vim9: a global function defined in a :def function fails if it

uses the context.
Solution: Create a partial to store the closure context. (see #7410)
Files: src/userfunc.c, src/proto/userfunc.pro, src/vim9execute.c,

src/structs.h, src/testdir/test_vim9_func.vim

version9.txt — 3703

Patch 8.2.2171
Problem: Valgrind warning for using uninitialized value.
Solution: Do not use "startp" or "endp" unless there is a match.
Files: src/regexp_nfa.c

Patch 8.2.2172
Problem: Vim9: number of arguments is not always checked. (Yegappan

Lakshmanan)
Solution: Check number of arguments when calling function by name.
Files: src/userfunc.c, src/proto/userfunc.pro, src/vim9execute.c,

src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.2173
Problem: Vim9: get internal error when assigning to undefined variable.
Solution: Add error message. (closes #7475)
Files: src/vim9compile.c, src/vim9execute.c, src/errors.h,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2174
Problem: Mac version doesn't specify the CPU architecture.
Solution: Add "arm64" or "x86_64". (Yee Cheng Chin, closes #7519)
Files: src/version.c

Patch 8.2.2175
Problem: Github actions: clang-11 handling suboptimal.
Solution: Separate step of installing clang-11. Get ubuntu release name

dynamically. (Ozaki Kiichi, closes #7514)
Files: .github/workflows/ci.yml

Patch 8.2.2176
Problem: Crash with a sequence of fold commands.
Solution: Bail out when there are no folds at all. Add a test (Dominique

Pellé) (closes #7515)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.2177
Problem: Pattern "^" does not match if the first character in the line is

combining. (Rene Kita)
Solution: Do accept a match at the start of the line. (closes #6963)
Files: src/regexp_nfa.c, src/testdir/test_regexp_utf8.vim

Patch 8.2.2178
Problem: Python 3: non-utf8 character cannot be handled.
Solution: Change the string decode. (Björn Linse, closes #1053)
Files: src/if_py_both.h, src/if_python.c, src/if_python3.c,

src/testdir/test_python3.vim, src/testdir/test_python2.vim

Patch 8.2.2179
Problem: Vim9: crash when indexing a dict with a number.
Solution: Add ISN_STOREINDEX. (closes #7513)
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h,

src/errors.h, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2180
Problem: Vim9: test for error after error is flaky.
Solution: Wait for job to finish instead of a fixed delay.
Files: src/testdir/test_vim9_script.vim

version9.txt — 3704

Patch 8.2.2181
Problem: Valgrind warnings for using uninitialized value.
Solution: Do not use "start" or "end" unless there is a match.
Files: src/regexp_nfa.c, src/regexp_bt.c

Patch 8.2.2182
Problem: Vim9: value of 'magic' is still relevant.
Solution: Always behave like 'magic' is on in Vim9 script (closes #7509)
Files: src/option.c, src/proto/option.pro, src/arglist.c, src/buffer.c,

src/cmdexpand.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c,
src/insexpand.c, src/normal.c, src/search.c, src/tag.c,
src/structs.h, src/globals.h, src/ex_cmds.h,
src/testdir/test_vim9_cmd.vim

Patch 8.2.2183
Problem: Vim9: value of 'edcompatible' and 'gdefault' are used.
Solution: Ignore these deprecated options in Vim9 script. (closes #7508)
Files: src/ex_cmds.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2184
Problem: Vim9: no error when using "2" for a line number.
Solution: Give an error message if the line number is invalid. (closes #7492)
Files: src/typval.c, src/evalfunc.c, src/testdir/test_vim9_builtin.vim,

src/testdir/test_cursor_func.vim

Patch 8.2.2185
Problem: BufUnload is not triggered for the quickfix dummy buffer.
Solution: Do trigger BufUnload. (Pontus Leitzler, closes #7518, closes #7517)

Fix white space around "=".
Files: src/quickfix.c, src/testdir/test_autocmd.vim

Patch 8.2.2186
Problem: Vim9: error when using 'opfunc'.
Solution: Do not expect a return value from 'opfunc'. (closes #7510)
Files: src/eval.c, src/proto/eval.pro, src/ops.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2187
Problem: Python 3 test fails sometimes. (Christian Brabandt)
Solution: Accept two SystemError messages.
Files: src/testdir/test_python3.vim

Patch 8.2.2188
Problem: Vim9: crash when calling global function from :def function.
Solution: Set the outer context. Define the partial for the context on the

original function. Use a refcount to keep track of which ufunc is
using a dfunc. (closes #7525)

Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9execute.c,
src/proto/vim9execute.pro, src/userfunc.c, src/proto/userfunc.pro,
src/structs.h, src/vim9.h, src/testdir/test_vim9_func.vim

Patch 8.2.2189
Problem: Cannot repeat a command that uses the small delete register.
Solution: Store the register name instead of the contents. (Christian

Brabandt, closes #7527)
Files: src/ops.c, src/register.c, src/testdir/test_registers.vim

Patch 8.2.2190
Problem: Vim9: crash when compiled with EXITFREE.
Solution: Check that df_ufunc is not NULL.

version9.txt — 3705

Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2191
Problem: Vim9: using wrong name with lambda in nested function.
Solution: Copy the lambda name earlier. (closes #7525)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2192
Problem: Codecov on github actions fails.
Solution: Revert to codecov script. (Ozaki Kiichi, closes #7529)
Files: Filelist, .github/workflows/ci.yml

Patch 8.2.2193
Problem: Vim9: can change constant in :def function.
Solution: Check if a variable is locked. (issue #7526)
Files: src/evalvars.c, src/proto/evalvars.pro, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2194
Problem: Vim9: cannot use :const or :final at the script level.
Solution: Support using :const and :final. (closes #7526)
Files: src/vim.h, src/evalvars.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.2195
Problem: Failing tests for :const.
Solution: Add missing check for ASSIGN_FINAL.
Files: src/eval.c, src/evalvars.c, src/testdir/test_vim9_func.vim

Patch 8.2.2196
Problem: :version output has extra spaces in compile and link command.
Solution: Adjust QUOTESED. (closes #7505)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2197
Problem: Assert arguments order reversed.
Solution: Swap the arguments. (Christian Brabandt, closes #7531)
Files: src/testdir/test_registers.vim

Patch 8.2.2198
Problem: ml_get error when resizing window and using text property.
Solution: Validate botline of the right window. (closes #7528)
Files: src/move.c, src/proto/move.pro, src/textprop.c,

src/testdir/test_textprop.vim

Patch 8.2.2199
Problem: First write after setting 'eol' does not have NL added. (Tomáš

Janoušek)
Solution: Only use b_no_eol_lnum when doing a binary write. (closes #7535)
Files: src/bufwrite.c, src/testdir/test_writefile.vim

Patch 8.2.2200
Problem: Vim9: lambda without white space around -> is confusing.
Solution: Require white space in a :def function. (issue #7503)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2201
Problem: Write file test fails on MS-Windows.
Solution: Force edit after setting 'fileformat'.

version9.txt — 3706

Files: src/testdir/test_writefile.vim

Patch 8.2.2202
Problem: Write file test still fails on MS-Windows.
Solution: Set fileformat with the :edit command
Files: src/testdir/test_writefile.vim

Patch 8.2.2203
Problem: Moodle gift files are not recognized.
Solution: Add a filetype pattern. (Delim Temizer)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2204
Problem: Vim9: using -> both for method and lambda is confusing.
Solution: Use => for lambda in :def function.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/userfunc.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.2205
Problem: Vim9: memory leak when parsing lambda fails.
Solution: Clear growarrays.
Files: src/userfunc.c

Patch 8.2.2206
Problem: :exe command line completion only works for first argument.
Solution: Skip over text if more is following. (closes #7546)
Files: src/eval.c, src/testdir/test_cmdline.vim

Patch 8.2.2207
Problem: Illegal memory access if popup menu items are changed while the

menu is visible. (Tomáš Janoušek)
Solution: Make a copy of the text. (closes #7537)
Files: src/popupmenu.c, src/testdir/test_popup.vim,

src/testdir/dumps/Test_popup_command_04.dump,
src/testdir/dumps/Test_popup_command_05.dump

Patch 8.2.2208
Problem: Vim9: after reloading a script variable index may be invalid.
Solution: When the sequence number doesn't match give an error for using a

script-local variable from a compiled function. (closes #7547)
Files: src/vim9.h, src/structs.h, src/errors.h, src/vim9compile.c,

src/vim9execute.c, src/scriptfile.c,
src/testdir/test_vim9_script.vim

Patch 8.2.2209
Problem: Vim9: return type of => lambda not parsed.
Solution: Parse and use the return type.
Files: src/vim9compile.c, src/userfunc.c, src/vim9type.c,

src/proto/vim9type.pro, src/vim9script.c, src/eval.c,
src/testdir/test_vim9_expr.vim

Patch 8.2.2210
Problem: Vim9: allocating a type to set TTFLAG_BOOL_OK.
Solution: Add t_number_bool.
Files: src/globals.h, src/vim9type.c, src/vim9compile.c

Patch 8.2.2211
Problem: MS-Windows: can't load Python dll if not in the path.
Solution: Use the InstallPath registry entry. (Kelvin Lee, closes #7540)
Files: src/if_python3.c

version9.txt — 3707

Patch 8.2.2212
Problem: Vim9: lambda with => does not work at the script level.
Solution: Make it work.
Files: src/eval.c, src/vim9type.c, src/userfunc.c,

src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.2213
Problem: Checking white space around -> is not backwards compatible.
Solution: Only check white space around =>.
Files: src/userfunc.c

Patch 8.2.2214
Problem: ":e#" does not give a warning for missing white space.
Solution: Adjust the check for white space. (closes #7545)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.2215
Problem: Vim9: `=expr` not recognized in global command.
Solution: Skip over pattern. (issue #7541)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2216
Problem: Vim9: range with missing colon can be hard to spot.
Solution: Include the start of the range in the error. (closes #7543)
Files: src/errors.h, src/ex_docmd.c, src/vim9compile.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2217
Problem: Vim9: command modifiers not restored in catch block.
Solution: Restore command modifiers. (closes #7542)
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2218
Problem: Vim9: failure if passing more arguments to a lambda than expected.
Solution: Only put expected arguments on the stack. (closes #7548)
Files: src/vim9execute.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2219
Problem: Vim9: method call with expression not supported.
Solution: Implement expr->(expr)().
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2220
Problem: Vim9: memory leak when parsing nested parenthesis.
Solution: Clear newargs.
Files: src/userfunc.c

Patch 8.2.2221
Problem: If <Down> is mapped on the command line 'wildchar' is inserted.
Solution: Set KeyTyped when using 'wildchar'. (closes #7552)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.2222
Problem: Vim9: cannot keep script variables when reloading.
Solution: Add the "noclear" argument to :vim9script.
Files: runtime/doc/vim9.txt, src/structs.h, src/scriptfile.c,

src/vim9script.c, src/ex_cmds.h, src/ex_docmd.c,
src/testdir/test_vim9_script.vim

version9.txt — 3708

Patch 8.2.2223
Problem: Vim9: Reloading marks a :def function as deleted.
Solution: Clear the function contents but keep the index.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2224
Problem: Vim9: crash if script reloaded with different variable type.
Solution: Check the type when accessing the variable.
Files: src/vim9execute.c, src/vim9compile.c, src/vim9.h, src/vim9type.c,

src/proto/vim9type.pro, src/errors.h, src/evalvars.c,
src/vim9script.c, src/proto/vim9script.pro,
src/testdir/test_vim9_script.vim

Patch 8.2.2225
Problem: Vim9: error when using :import in legacy script twice.
Solution: Make it possible to redefine an import when reloading.
Files: src/vim9script.c, src/proto/vim9script.pro, src/structs.h,

src/evalvars.c, src/vim9compile.c,
src/testdir/test_vim9_script.vim

Patch 8.2.2226
Problem: Vim9: script test fails.
Solution: Add missing change.
Files: src/scriptfile.c

Patch 8.2.2227
Problem: Vim9: recognizing lambda is too complicated.
Solution: Call compile_lambda() and check for NOTDONE.
Files: src/vim9compile.c, src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2228
Problem: Vim9: cannot use ":e #" because # starts a comment.
Solution: Support using %% instead of #.
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2229
Problem: build failure without the +eval feature.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.2230
Problem: Vim9: insert completion runs into error.
Solution: Insert colon before range. (closes #7556)
Files: src/insexpand.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2231
Problem: When "--remote file" is used "file" is not reloaded.
Solution: When a :drop command is used for a file that is already displayed

in a window and it has not been changed, check if it needs to be
reloaded. (closes #7560)

Files: src/ex_cmds.c, src/testdir/test_clientserver.vim

Patch 8.2.2232
Problem: Compiler error for falling through into next case.
Solution: Move FALLTHROUGH below the #endif
Files: src/ex_docmd.c

Patch 8.2.2233
Problem: Cannot convert a byte index into a character index.

version9.txt — 3709

Solution: Add charidx(). (Yegappan Lakshmanan, closes #7561)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/test_functions.vim

Patch 8.2.2234
Problem: Command line wildmenu test often fails with Unix GUI.
Solution: Skip the test where it is expected to fail.
Files: src/testdir/test_cmdline.vim

Patch 8.2.2235
Problem: Build failure with some Ruby versions.
Solution: Adjust the code for Ruby 3.0. (Ozaki Kiichi, closes #7564)
Files: ci/config.mk.clang.sed, src/if_ruby.c

Patch 8.2.2236
Problem: 'scroll' option can change when setting the statusline or tabline

but the option context is not updated.
Solution: Update the script context when the scroll option is changed as a

side effect. (Christian Brabandt, closes #7533)
Files: runtime/doc/options.txt, src/scriptfile.c,

src/testdir/test_options.vim, src/vim.h, src/window.c

Patch 8.2.2237
Problem: CI on Mac fails in sed command.
Solution: Set LC_ALL to "C". (Ozaki Kiichi, closes #7565)
Files: .github/workflows/ci.yml

Patch 8.2.2238
Problem: Vim9: cannot load a Vim9 script without the +eval feature.
Solution: Support Vim9 script syntax without the +eval feature.
Files: src/ex_docmd.c, src/vim9script.c, src/globals.h, src/main.c,

src/autocmd.c, src/buffer.c, src/structs.h, src/menu.c,
src/scriptfile.c, src/usercmd.c, src/proto.h, src/errors.h

Patch 8.2.2239
Problem: Vim9: concatenating lines with backslash is inconvenient.
Solution: Support concatenating lines starting with '|', useful for

:autocmd, :command, etc. (closes #6702)
Files: runtime/doc/vim9.txt, src/scriptfile.c, src/vim9script.c,

src/proto/vim9script.pro, src/vim9compile.c,
src/proto/vim9compile.pro, src/userfunc.c, src/structs.h,
src/testdir/test_vim9_cmd.vim

Patch 8.2.2240
Problem: Clientserver test fails if full path is used.
Solution: Ignore the path preceding the file name.
Files: src/testdir/test_clientserver.vim

Patch 8.2.2241
Problem: Build with Ruby and clang may fail.
Solution: Adjust configure and sed script. (Ozaki Kiichi, closes #7566)
Files: ci/config.mk.clang.sed, src/auto/configure, src/configure.ac

Patch 8.2.2242
Problem: Vim9: line continuation with bar does not work at script level.
Solution: Check for Vim9 script.
Files: src/structs.h, src/ex_docmd.c, src/userfunc.c, src/scriptfile.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2243

version9.txt — 3710

Problem: Crash when popup mask contains zeroes.
Solution: Check boundaries properly. (closes #7569)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.2244
Problem: Crash when making the window width of the not-current window

negative.
Solution: Make sure the window width is not negative. (closes #7568)
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.2.2245
Problem: Vim9: return value of winrestcmd() cannot be executed.
Solution: Put colons before each range. (closes #7571)
Files: src/evalwindow.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2246
Problem: Cursor keys not recognized at the hit-Enter prompt after executing

an external command.
Solution: Change the codes for the extra cursor keys. (closes #7562)

Tune the delays to avoid test flakiness.
Files: runtime/doc/term.txt, src/term.c, src/testdir/test_terminal3.vim

Patch 8.2.2247
Problem: VMS: various smaller problems.
Solution: Fix VMS building and other problems. (Zoltan Arpadffy)
Files: src/term.c, src/gui_gtk_vms.h, src/os_vms_conf.h, src/gui_x11.c,

src/Make_vms.mms, src/macros.h, src/gui.h, src/os_unix.h

Patch 8.2.2248
Problem: ASAN error on exit with GUI.
Solution: Check the window still has lines. (Christian Brabandt,

closes #7573)
Files: src/term.c

Patch 8.2.2249
Problem: Termcodes test is flaky when used over ssh with X forwarding.
Solution: Set 'mousetime' to a larger value. (Dominique Pellé, closes #7576,

closes #7563)
Files: src/testdir/test_termcodes.vim

Patch 8.2.2250
Problem: Vim9: sublist is ambiguous.
Solution: Require white space around the colon. (closes #7409)
Files: src/vim9compile.c, src/eval.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2251
Problem: Test failures in legacy script.
Solution: Check for Vim9 script.
Files: src/eval.c

Patch 8.2.2252
Problem: Vim9: crash when using lambda without return type in dict.
Solution: Without a return type use t_unknown. (closes #7587)
Files: src/vim9type.c, src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2253
Problem: Vim9: expr test fails.
Solution: Add missing assignment.
Files: src/userfunc.c

version9.txt — 3711

Patch 8.2.2254
Problem: Vim9: bool option type is number.
Solution: Have get_option_value() return a different value for bool and

number options. (closes #7583)
Files: src/option.h, src/option.c, src/proto/option.pro, src/evalvars.c,

src/if_mzsch.c, src/if_ruby.c, src/spell.c, src/typval.c,
src/vim9compile.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_cmd.vim

Patch 8.2.2255 (after 8.2.2254)
Problem: Tcl test fails.
Solution: Change option handling.
Files: src/if_tcl.c

Patch 8.2.2256
Problem: Vim9: cannot use function(after line break in :def function.
Solution: Check for "(" after "function". (closes #7581)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2257
Problem: Vim9: using -> for lambda is ambiguous.
Solution: Stop supporting ->, must use =>.
Files: src/eval.c, src/vim9compile.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2258
Problem: Not all OCaml related files are detected.
Solution: Update OCaml file type detection. (Markus Mottl, closes #7590)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2259
Problem: Test_Executable() fails when using chroot.
Solution: Ignore the difference between "sbin" and "bin".
Files: src/testdir/test_functions.vim

Patch 8.2.2260
Problem: Window resize test fails in very wide terminal.
Solution: Resize using the 'columns' option. (Vladimir Lomov, closes #7592)
Files: src/testdir/test_window_cmd.vim

Patch 8.2.2261
Problem: Vim9: boolean option gets string type.
Solution: Check for VAR_BOOL. (closes #7588)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2262
Problem: Vim9: converting bool to string prefixes v:.
Solution: Do not use the v: prefix.
Files: src/evalvars.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2263
Problem: Vim9: compilation error with try-catch in skipped block.
Solution: Do not bail out when generate_instr() returns NULL. (closes #7584)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

version9.txt — 3712

Patch 8.2.2264
Problem: Vim9: no error for mismatched :endfunc or :enddef.
Solution: Check for the mismatch. (issue #7582)
Files: src/errors.h, src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2265
Problem: Error message for missing endfunc/enddef is last line.
Solution: Report the line where the function starts. (closes #7582)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2266
Problem: Vim9: it can be hard to see where white space is missing.
Solution: Mention the text where the error was seen. (closes #7580)
Files: src/errors.h, src/eval.c, src/evalvars.c, src/userfunc.c,

src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2267
Problem: Vim9: cannot use unlet for a dict member.
Solution: Pass GLV_NO_DECL to get_lval(). (closes #7585)
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2268
Problem: Vim9: list unpack seen as declaration.
Solution: Check for "var". (closes #7594)
Files: src/vim9compile.c, src/evalvars.c, src/eval.c, src/vim.h,

src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2269
Problem: Not all :hardcopy code covered by tests.
Solution: Test more combinations. (Dominique Pellé, closes #7595)
Files: src/testdir/test_hardcopy.vim

Patch 8.2.2270
Problem: Warning for size_t to int conversion. (Randall W. Morris)
Solution: Add a type cast.
Files: src/vim9execute.c

Patch 8.2.2271
Problem: ml_get error when changing hidden buffer in Python.
Solution: Block updating folds. (closes #7598)
Files: src/evalbuffer.c, src/testdir/test_python3.vim

Patch 8.2.2272
Problem: Vim9: extend() can violate the type of a variable.
Solution: Add the type to the dictionary or list and check items against it.

(closes #7593)
Files: src/structs.h, src/evalvars.c, src/dict.c, src/list.c,

src/vim9script.c, src/proto/vim9script.pro, src/vim9compile.c,
src/vim9execute.c, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2273
Problem: Build failure.
Solution: Add missing changes to header file.
Files: src/vim9.h

Patch 8.2.2274
Problem: badge for Travis is outdated.
Solution: Update badge for move from travis-ci.org to travis-ci.com.
Files: README.md

version9.txt — 3713

Patch 8.2.2275
Problem: CTRL-C not recognized in Mintty.
Solution: Recognize the modifyOtherKeys code ending in "u". (Christian

Brabandt, closes #7575)
Files: src/ui.c

Patch 8.2.2276
Problem: List of distributed files is outdated.
Solution: Update the file list. Minor comment updates.
Files: Filelist, src/clipboard.c, src/fileio.c, src/option.c,

src/screen.c, src/testdir/test_signals.vim,
src/testdir/Make_vms.mms

Patch 8.2.2277
Problem: Missing backslash.
Solution: Add backslash.
Files: Filelist

Patch 8.2.2278
Problem: Falling back to old regexp engine can some patterns.
Solution: Do not fall back once [[:lower:]] or [[:upper:]] is used.

(Christian Brabandt, closes #7572)
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test_regexp_utf8.vim

Patch 8.2.2279
Problem: Vim9: memory leak with catch in skipped block.
Solution: Free the pattern if not used.
Files: src/vim9compile.c

Patch 8.2.2280
Problem: Fuzzy matching doesn't give access to the scores.
Solution: Return the scores with a third list. (Yegappan Lakshmanan,

closes #7596)
Files: runtime/doc/eval.txt, src/search.c,

src/testdir/test_matchfuzzy.vim

Patch 8.2.2281
Problem: Vim9: compiled "wincmd" cannot be followed by bar.
Solution: Check for bar after "wincmd". (closes #7599)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2282
Problem: Length check mismatch with argument of strncmp(). (Christian

Brabandt)
Solution: Adjust length check.
Files: src/ui.c

Patch 8.2.2283
Problem: Vim9: crash when lambda has fewer arguments than expected.
Solution: Don't check arguments when already failed. (closes #7606)
Files: src/vim9type.c, src/testdir/test_vim9_func.vim

Patch 8.2.2284
Problem: Vim9: cannot set an option to a boolean value.
Solution: Check for VAR_BOOL. (closes #7603)
Files: src/evalvars.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2285
Problem: Vim9: cannot set an option to a false.

version9.txt — 3714

Solution: For VAR_BOOL use string "0". (closes #7603)
Files: src/evalvars.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2286
Problem: Sort test fails when locale is Canadian English. (Neil H Watson)
Solution: Expect a different sort order. (closes #7609)
Files: src/testdir/test_sort.vim

Patch 8.2.2287
Problem: Sort test fails when locale is French Canadian.
Solution: Expect a different sort order. (Dominique Pellé, closes #7609)
Files: src/testdir/test_sort.vim

Patch 8.2.2288
Problem: Vim9: line break and comment not always skipped.
Solution: Skip over white space and then line break more consistently.

(closes #7610)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2289
Problem: Vim9: 'cpo' can become empty.
Solution: Use empty_option instead of an empty string. Update quickfix

buffer after restoring 'cpo'. (closes #7608)
Files: src/evalfunc.c, src/syntax.c, src/eval.c, src/quickfix.c,

src/evalbuffer.c, src/ex_eval.c, src/gui_motif.c, src/map.c,
src/testdir/test_quickfix.vim

Patch 8.2.2290
Problem: Vim9: unlet of global variable cannot be compiled.
Solution: Skip over variables that might be defined later. Give an error if

a subscript is found. (closes #7585)
Files: src/eval.c, src/vim9compile.c, src/vim.h,

src/testdir/test_vim9_assign.vim

Patch 8.2.2291
Problem: Vim9: cannot use "null" for v:null.
Solution: Support "null" like "true" and "false". (closes #7495)
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/evalvars.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.2292
Problem: Vim: expr test fails.
Solution: Add missing part of "null" support.
Files: src/eval.c

Patch 8.2.2293
Problem: Build failure with Motif. (Tony Mechelynck)
Solution: Use empty_option instead of empty_options.
Files: src/gui_motif.c

Patch 8.2.2294
Problem: VMS: a few remaining problems.
Solution: Add VMS specific changes. Add Lua support. (Zoltan Arpadffy)
Files: src/fileio.c, src/os_vms_conf.h, src/Make_vms.mms, src/macros.h,

src/os_vms.c, src/vim9execute.c, src/gui_xmebw.c, src/os_unix.h

Patch 8.2.2295
Problem: Incsearch does not detect empty pattern properly.
Solution: Return magic state when skipping over a pattern. (Christian

Brabandt, closes #7612, closes #6420)

version9.txt — 3715

Files: src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c, src/globals.h,
src/option.c, src/tag.c, src/proto/regexp.pro, src/regexp.c,
src/search.c, src/structs.h, src/vim9compile.c,
src/testdir/dumps/Test_incsearch_sub_01.dump,
src/testdir/dumps/Test_incsearch_sub_02.dump,
src/testdir/test_search.vim

Patch 8.2.2296
Problem: Cannot use CTRL-N and CTRL-P in a popup menu.
Solution: Use CTRL-N like <Down> and CTRL-P like <Up>. (closes #7614)
Files: runtime/doc/popup.txt, src/popupwin.c,

src/testdir/test_popupwin.vim

Patch 8.2.2297
Problem: Vim9: cannot set 'number' to a boolean value.
Solution: Use tv_get_bool(). (closes #7615)
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2298
Problem: Vim9: comment right after "(" of function not recognized.
Solution: Do not skip over white space before calling get_function_args().

(closes #7613)
Files: src/userfunc.c, src/proto/userfunc.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.2299
Problem: Vim9: invalid memory access making error message flaky.
Solution: Do not check cmd_argt for CMD_USER. (issue #7467)
Files: src/ex_docmd.c, src/vim9execute.c, src/errors.h,

src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2300
Problem: Vim9: wrong order on type stack when using dict.
Solution: Generate constants before a dict. (closes #7619)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2301
Problem: Vim9: cannot unlet a dict or list item.
Solution: Add ISN_UNLETINDEX. Refactor assignment code to use for unlet.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.2302
Problem: Vim9: using an option value may use uninitialized memory.
Solution: Clear v_lock. (closes #7620)
Files: src/typval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2303
Problem: Vim9: backtick expansion doesn't work for :foldopen.
Solution: Do recognize backtick expansion. (closes #7621)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2304
Problem: Vim9: no test for unletting an imported variable.
Solution: Add a test. Fix line number in error.
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2305
Problem: Vim9: "++var" and "--var" are silently accepted.
Solution: Give an error message.

version9.txt — 3716

Files: src/vim9compile.c, src/eval.c, src/proto/eval.pro,
src/testdir/test_vim9_expr.vim

Patch 8.2.2306
Problem: Vim9: when using function reference type is not checked.
Solution: When using a function reference lookup the type and check the

argument types. (issue #7629)
Files: src/userfunc.c, src/proto/userfunc.pro, src/eval.c, src/structs.h,

src/vim9type.c, src/proto/vim9type.pro, src/vim9compile.c,
src/vim9execute.c, src/evalvars.c, src/evalfunc.c,
src/testdir/test_vim9_func.vim

Patch 8.2.2307
Problem: A shell command in the vimrc causes terminal output.
Solution: Do not call starttermcap() after a shell command if the termcap

wasn't active before.
Files: src/ex_cmds.c

Patch 8.2.2308
Problem: Vim9: no error when assigning lambda to funcref without return

value.
Solution: Default return value to "any". (closes #7629)
Files: src/userfunc.c, src/vim9compile.c,

src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_func.vim

Patch 8.2.2309
Problem: 0o777 not recognized as octal.
Solution: Use vim_isodigit(). (Ken Takata, closes #7633, closes #7631)
Files: src/charset.c, src/testdir/test_eval_stuff.vim

Patch 8.2.2310
Problem: Vim9: winsaveview() return type is too generic.
Solution: use dict<number> instead of dict<any>. (closes #7626)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2311
Problem: Vim9: cannot assign to a variable that shadows a command modifier.
Solution: Check for assignment after possible command modifier.

(closes #7632)
Files: src/vim9compile.c, src/ex_docmd.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.2312
Problem: Build failure with Ruby 3.0 and 32 bits.
Solution: Add #ifdef. (closes #7638)
Files: src/if_ruby.c

Patch 8.2.2313
Problem: Vim9: using uninitialized field when parsing range. ":silent!" not

respected when parsing range fails.
Solution: Initialize ea.skip. On pattern failure handle it like an error.

(closes #7636)
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2314
Problem: Vim9: returning zero takes two instructions.
Solution: Add ISN_RETURN_ZERO.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_disassemble.vim

version9.txt — 3717

Patch 8.2.2315
Problem: Vim9: "enddef" as dict key misinterpreted as function end.
Solution: Check for following colon. (closes #7640)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2316
Problem: Vim9: cannot list a lambda function.
Solution: Support the <lambda>9 notation, like :disassemble. (closes #7634)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2317
Problem: Vim9: command modifier before list unpack doesn't work.
Solution: Only recognize "[" directly after the name. (closes #7641)
Files: src/ex_docmd.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2318
Problem: Vim9: string and list index work differently.
Solution: Make string index work like list index. (closes #7643)
Files: src/eval.c, src/proto/eval.pro, src/vim9execute.c, src/list.c,

src/proto/vim9execute.pro, src/testdir/test_vim9_expr.vim

Patch 8.2.2319
Problem: "exptype_T" can be read as "expected type".
Solution: Rename to "exprtype_T", expression type.
Files: src/eval.c, src/typval.c, src/proto/typval.pro, src/vim9compile.c,

src/proto/vim9compile.pro, src/vim9execute.c, src/structs.h,
src/vim9.h

Patch 8.2.2320
Problem: Vim9: no error for comparing bool with string.
Solution: Check for wrong types when comparing. (closes #7639)
Files: src/typval.c, src/errors.h, src/testdir/test_vim9_expr.vim

Patch 8.2.2321
Problem: Vim9: cannot nest closures.
Solution: Add the nesting level to ISN_LOADOUTER and ISN_STOREOUTER.

(closes #7150, closes #7635)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/structs.h,

src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.2322
Problem: Vim9: closure nested limiting to one level.
Solution: Add outer_T. Also make STOREOUTER work.
Files: src/vim9execute.c, src/vim9.h, src/structs.h,

src/testdir/test_vim9_func.vim

Patch 8.2.2323
Problem: Vim9: error when inferring type from empty dict/list.
Solution: When the member is t_unknown use t_any. (closes #7009)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2324
Problem: Not easy to get mark en cursor position by character count.
Solution: Add functions that use character index. (Yegappan Lakshmanan,

closes #7648)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/eval.c,

src/evalfunc.c, src/proto/eval.pro, src/tag.c,
src/testdir/test_cursor_func.vim, src/typval.c

version9.txt — 3718

Patch 8.2.2325
Problem: Vim9: crash if map() changes the item type.
Solution: Check that the item type is still OK. (closes #7652)

Fix problem with mapnew() on range list.
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/vim9compile.c,

src/list.c, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim

Patch 8.2.2326
Problem: Build error with +eval feature but without +spell.
Solution: Adjust #ifdef. (John Marriott)
Files: src/mbyte.c

Patch 8.2.2327
Problem: Debugging code included.
Solution: Remove the debugging code.
Files: src/vim9execute.c

Patch 8.2.2328
Problem: Some test files may not be deleted.
Solution: Add a delete() call, correct name. (Dominique Pellé, closes #7654)
Files: src/testdir/test_clientserver.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.2329
Problem: Not all ways Vim can be started are tested.
Solution: Add a test for different program names. (Dominique Pellé,

closes #7651)
Files: src/testdir/test_startup.vim

Patch 8.2.2330
Problem: Vim9: crash when using :trow in a not executed block.
Solution: Don't generate the instruction when skipping. (closes #7659)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2331
Problem: Vim9: wrong error when modifying dict declared with :final.
Solution: Do not check for writable variable when an index follows.

(closes #7657)
Files: src/vim9compile.c, src/structs.h, src/vim9script.c,

src/proto/vim9script.pro, src/evalvars.c,
src/testdir/test_vim9_assign.vim

Patch 8.2.2332
Problem: Vim9: missing :endif not reported when using :windo.
Solution: Pass a getline function to do_cmdline(). (closes #7650)
Files: src/vim9execute.c, src/structs.h, src/scriptfile.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2333
Problem: Vim9: warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize "res".
Files: src/vim9execute.c

Patch 8.2.2334
Problem: Pascal-like filetypes not always detected.
Solution: Improved Puppet, InstantFPC and Pascal detection. (Doug Kearns,

closes #7662)
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

runtime/scripts.vim, src/testdir/test_filetype.vim

version9.txt — 3719

Patch 8.2.2335
Problem: Vim9: "silent return" does not restore command modifiers.
Solution: Restore command modifiers before returning. (closes #7649)
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.2336
Problem: Vim9: it is not possible to extend a dictionary with different

item types.
Solution: Add extendnew(). (closes #7666)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/list.c, src/proto/list.pro, src/testdir/test_listdict.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.2337
Problem: Configure test for GTK only says "no". (Harm te Hennepe)
Solution: Hint that a -def package is needed. (closes #5229)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2338
Problem: Vim9: no error if using job_info() result wrongly.
Solution: Adjust return type on number of arguments. (closes #7667)
Files: src/evalfunc.c, src/globals.h, src/testdir/test_vim9_builtin.vim

Patch 8.2.2339
Problem: Cannot get the type of a value as a string.
Solution: Add typename().
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/vim9type.c, src/proto/vim9type.pro,
src/testdir/test_vimscript.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.2340
Problem: win_execute() unexpectedly returns number zero when failing.
Solution: Return an empty string. (closes #7665)
Files: src/evalwindow.c, src/testdir/test_vim9_builtin.vim,

src/testdir/test_execute_func.vim

Patch 8.2.2341
Problem: Expression command line completion shows variables but not

functions after "g:". (Gary Johnson)
Solution: Prefix "g:" when needed to a global function.
Files: src/evalfunc.c, src/evalvars.c, src/proto/evalvars.pro,

src/testdir/test_cmdline.vim

Patch 8.2.2342
Problem: "char" functions return the wrong column in Insert mode when the

cursor is beyond the end of the line.
Solution: Compute the column correctly. (Yegappan Lakshmanan, closes #7669)
Files: src/eval.c, src/evalfunc.c, src/testdir/test_cursor_func.vim

Patch 8.2.2343
Problem: Vim9: return type of readfile() is any.
Solution: Add readblob() so that readfile() can be expected to always

return a list of strings. (closes #7671)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/filepath.c, src/proto/filepath.pro,
src/testdir/test_vim9_builtin.vim

Patch 8.2.2344
Problem: Using inclusive index for slice is not always desired.

version9.txt — 3720

Solution: Add the slice() method, which has an exclusive index. (closes
#7408)

Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,
src/eval.c, src/proto/eval.pro, src/vim9execute.c,
src/proto/vim9execute.pro, src/list.c, src/proto/list.pro,
src/testdir/test_vim9_builtin.vim

Patch 8.2.2345
Problem: No focus events in a terminal.
Solution: Add the t_fd and t_fe termcap entries and implement detecting

focus events. (Hayaki Saito, Magnus Groß, closes #7673,
closes #609, closes #5526)

Files: runtime/doc/term.txt, src/optiondefs.h, src/term.c, src/term.h

Patch 8.2.2346
Problem: Codecov reports every little coverage drop.
Solution: Tolerate a 0.05% drop. Hide the appveyor config file. (Ozaki

Kiichi, closes #7678)
Files: .appveyor.yml, appveyor.yml, .codecov.yml

Patch 8.2.2347
Problem: Build failure without GUI.
Solution: Add #ifdef.
Files: src/term.c

Patch 8.2.2348 (after 8.2.2345)
Problem: No check for modified files after focus gained. (Mathias Stearn)
Solution: Call ui_focus_change().
Files: src/term.c, src/ui.c

Patch 8.2.2349
Problem: Vim9: cannot handle line break after parenthesis at line end.
Solution: Skip over line break. (closes #7677)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2350
Problem: Using "void" for no reason.
Solution: Use "char *".
Files: src/ex_docmd.c

Patch 8.2.2351
Problem: Vim9: error message for "throw" in function that was called with

"silent!".
Solution: Do not throw the exception when not caught or displayed.

(closes #7672)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.2352
Problem: If the focus lost/gained escape sequence is received twice it is

not ignored. (Christ van Willegen)
Solution: Adjust the logic to ignore the escape code.
Files: src/term.c

Patch 8.2.2353
Problem: Sparql files are not detected.
Solution: Add the sparql filetype. (closes #7679)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2354
Problem: Crash with a weird combination of autocommands.

version9.txt — 3721

Solution: Increment b_nwindows when needed. (closes #7674)
Files: src/ex_cmds.c, src/buffer.c, src/proto/buffer.pro,

src/testdir/test_autocmd.vim

Patch 8.2.2355
Problem: Stray test failure on Appveyor.
Solution: Finish insert command.
Files: src/testdir/test_autocmd.vim

Patch 8.2.2356
Problem: Vim9: ":put =expr" does not handle a list properly.
Solution: Use the same logic as eval_to_string_eap(). (closes #7684)
Files: src/vim9execute.c, src/eval.c, src/proto/eval.pro,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2357
Problem: Vim9: crash when parsing function return type fails.
Solution: Bail out and set return type to "unknown". (closes #7685)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2358
Problem: Wrong #ifdef for use_xterm_like_mouse().
Solution: Use FEAT_MOUSE_XTERM.
Files: src/term.c

Patch 8.2.2359
Problem: Strange test failure with MS-Windows.
Solution: Skip the system() call for now.
Files: src/testdir/test_autocmd.vim

Patch 8.2.2360
Problem: Test leaves file behind.
Solution: Delete the right file. (Dominique Pellé, closes #7689)
Files: src/testdir/test_filetype.vim

Patch 8.2.2361
Problem: Vim9: no highlight for "s///gc" when using 'opfunc'.
Solution: Reset 'lazyredraw' temporarily. (closes #7687)
Files: src/ex_cmds.c

Patch 8.2.2362
Problem: Vim9: check of builtin function argument type is incomplete.
Solution: Use need_type() instead of check_arg_type().
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/evalfunc.c,

src/proto/evalfunc.pro, src/vim9type.c, src/proto/vim9type.pro,
src/testdir/test_vim9_builtin.vim

Patch 8.2.2363
Problem: curpos() does not accept a string argument as before.
solution: Make a string argument work again. (Yegappan Lakshmanan,

closes #7690)
Files: src/evalfunc.c, src/testdir/test_cursor_func.vim

Patch 8.2.2364
Problem: Vim9: line break in lambda accesses freed memory.
Solution: Make a copy of the return type. (closes #7664)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2365
Problem: Vim9: no check for map() changing item type at script level.

version9.txt — 3722

Solution: Check the new value type.
Files: src/list.c, src/testdir/test_vim9_builtin.vim,

src/testdir/test_vim9_assign.vim

Patch 8.2.2366
Problem: When using ":sleep" the cursor is always displayed.
Solution: Do not display the cursor when using ":sleep!". (Jeremy Lerner,

closes #7688)
Files: runtime/doc/index.txt, runtime/doc/various.txt, src/ex_cmds.h,

src/ex_docmd.c, src/normal.c, src/proto/ex_docmd.pro, src/term.c,
src/testdir/Make_all.mak, src/testdir/test_sleep.vim

Patch 8.2.2367
Problem: Test failures on some less often used systems.
Solution: Adjust printf formats and types. (James McCoy, closes #7691)
Files: src/errors.h, src/evalfunc.c, src/list.c, src/vim9execute.c

Patch 8.2.2368
Problem: Insufficient tests for setting options.
Solution: Add a few tests. (Dominique Pellé, closes #7695)
Files: src/testdir/test_options.vim

Patch 8.2.2369
Problem: Vim9: functions return true/false but can't be used as bool.
Solution: Add ret_number_bool(). (closes #7693)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2370
Problem: Vim9: command fails in catch block.
Solution: Reset force_abort and need_rethrow. (closes #7692)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.2371
Problem: Vim9: crash when using types in :for with unpack.
Solution: Check for skip_var_list() failing. Pass include_type to

skip_var_one(). Skip type when compiling. (closes #7694)
Files: src/vim9compile.c, src/evalvars.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2372 (after 8.2.2371)
Problem: Confusing error message for wrong :let command.
Solution: Only check for type in Vim9 script.
Files: src/evalvars.c

Patch 8.2.2373
Problem: Vim9: list assignment only accepts a number index.
Solution: Accept "any" and do a runtime type check. (closes #7694)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2374
Problem: Accessing uninitialized memory in test_undo.
Solution: Do not look in typebuf.tb_buf if it is empty. (Dominique Pellé,

closes #7697)
Files: src/edit.c

Patch 8.2.2375
Problem: Test for RGB color skipped in the terminal.
Solution: Run the GUI if possible.
Files: src/testdir/test_highlight.vim

version9.txt — 3723

Patch 8.2.2376
Problem: Vim9: crash when dividing by zero in compiled code using

constants.
Solution: Call num_divide() and num_modulus(). (closes #7704)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2377
Problem: Vim9: crash when using a range after another expression.
Solution: Set the variable type to number. Fix using :put with a range and

the "=" register. (closes #7706)
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2378
Problem: Vim9: no error message for dividing by zero.
Solution: Give an error message. (issue #7704)
Files: src/errors.h, src/eval.c, src/vim9execute.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.2379
Problem: Finding spell suggestions twice if 'spellsuggest' contains number.
Solution: Only do internal suggestions once. (closes #7713)
Files: src/spellsuggest.c

Patch 8.2.2380
Problem: Vim9: occasional crash when using try/catch and a timer.
Solution: Save and restore "need_rethrow" when invoking a timer callback.

(closes #7708)
Files: src/time.c

Patch 8.2.2381
Problem: Vim9: divide by zero does not abort expression execution.
Solution: Use a "failed" flag. (issue #7704)
Files: src/eval.c, src/proto/eval.pro, src/evalvars.c, src/vim9compile.c,

src/testdir/vim9.vim, src/testdir/test_vim9_assign.vim

Patch 8.2.2382 (after 8.2.2381)
Problem: Build failure.
Solution: Add missing changes.
Files: src/vim9execute.c

Patch 8.2.2383
Problem: Focus escape sequences are not named in ":set termcap" output.
Solution: Add the names to the list. (closes #7718)
Files: src/misc2.c

Patch 8.2.2384
Problem: Turtle filetype not recognized.
Solution: Add a rule to detect turtle files. (closes #7722)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2385
Problem: "gj" and "gk" do not work correctly when inside a fold.
Solution: Move check for folding. (closes #7724, closes #4095)
Files: src/normal.c, src/testdir/test_fold.vim

Patch 8.2.2386
Problem: Vim9: crash when using ":silent! put".
Solution: When ignoring an error for ":silent!" rewind the stack and skip

ahead to restoring the cmdmod. (closes #7717)

version9.txt — 3724

Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.2387
Problem: Runtime type check does not mention argument index.
Solution: Add ct_arg_idx. (closes #7720)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.2388
Problem: No easy way to get the maximum or minimum number value.
Solution: Add v:numbermax and v:numbermin.
Files: src/evalvars.c, src/vim.h, src/testdir/test_eval_stuff.vim,

runtime/doc/eval.txt

Patch 8.2.2389
Problem: Test failure on a few systems.
Solution: Avoid that "char" value is negative.
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h

Patch 8.2.2390
Problem: Vim9: using positive offset is unexpected.
Solution: Use int8_T instead of char. (James McCoy)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c

Patch 8.2.2391
Problem: Memory leak when creating a global function with closure.
Solution: Create a separate partial for every instantiated function.
Files: src/userfunc.c, src/vim9execute.c

Patch 8.2.2392
Problem: Fennel filetype not recognized.
Solution: Detect with pattern and hashbang. (Chinmay Dalal, closes #7729)
Files: runtime/filetype.vim, runtime/scripts.vim,

src/testdir/test_filetype.vim

Patch 8.2.2393
Problem: Vim9: error message when script line starts with "[{".
Solution: Do not give an error for checking for end of list.
Files: src/dict.c, src/testdir/test_vim9_script.vim

Patch 8.2.2394
Problem: Vim9: min() and max() return type is "any".
Solution: Use return type "number". (closes #7728)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2395
Problem: Vim9: error for wrong type may report wrong line number.
Solution: Save and restore the line number when evaluating the expression.

(closes #7727)
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2396
Problem: Vim9: no white space allowed before "->".
Solution: Allow for white space. (closes #7725)
Files: src/ex_docmd.c, src/eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2397
Problem: Vim9: "%%" not seen as alternate file name for commands with a

version9.txt — 3725

buffer name argument.
Solution: Recognize "%%" like "#". (closes #7732)
Files: src/buffer.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2398 (after 8.2.2396)
Problem: Method test fails.
Solution: Adjust test for allowed white space.
Files: src/testdir/test_method.vim

Patch 8.2.2399 (after 8.2.2385)
Problem: Fold test fails in wide terminal.
Solution: Adjust the test. (Dominique Pelle, closes #7731, closes #7739)
Files: src/testdir/test_fold.vim

Patch 8.2.2400
Problem: Vim9: compiled functions are not profiled.
Solution: Add initial changes to profile compiled functions. Fix that a

script-local function was hard to debug.
Files: runtime/doc/repeat.txt, src/vim9.h, src/vim9compile.c,

src/vim9execute.c, src/userfunc.c, src/proto/vim9compile.pro,
src/structs.h, src/vim9type.c, src/debugger.c, src/ex_cmds.h,
src/ex_docmd.c, src/profiler.c, src/proto/profiler.pro,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_profile.vim

Patch 8.2.2401
Problem: Build fails without +profiling feature.
Solution: Add #ifdefs.
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h, src/structs.h,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2402
Problem: Some filetypes not detected.
Solution: Detect Ruby Signature and Puppet related files. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2403
Problem: Vim9: profiling if/elseif/endif not correct.
Solution: Add profile instructions. Fix that "elseif" was wrong.
Files: src/vim9compile.c, src/testdir/test_profile.vim,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2404
Problem: Vim9: profiling try/catch not correct.
Solution: Add profile instructions. Fix that "entry" did not rethrow an

exception.
Files: src/vim9compile.c, src/vim9execute.c, src/testdir/test_profile.vim

Patch 8.2.2405
Problem: Vim9: no need to allow white space before "(" for :def.
Solution: Give an error for stray white space. (issue #7734)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2406
Problem: Vim9: profiled :def function leaks memory.
Solution: Delete the profiled instructions.
Files: src/vim9compile.c

Patch 8.2.2407

version9.txt — 3726

Problem: Old jumplist code is never used.
Solution: Delete the dead code. (Yegappan Lakshmanan, closes #7740)
Files: src/mark.c

Patch 8.2.2408
Problem: MinGW: "--preprocessor" flag no longer supported.
Solution: Remove the flag, use the defaults. (Christopher Wellons,

closes #7741)
Files: src/GvimExt/Make_ming.mak, src/Make_cyg_ming.mak

Patch 8.2.2409
Problem: Vim9: profiling only works for one function.
Solution: Select the right instructions when calling and returning.

(closes #7743)
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h,

src/testdir/test_profile.vim

Patch 8.2.2410
Problem: Build failure without the +profiling feature.
Solution: Add dummy argument to macro.
Files: src/vim9.h

Patch 8.2.2411
Problem: Profile test fails on MS-Windows.
Solution: Do the profiling in a separate Vim command.
Files: src/testdir/test_profile.vim

Patch 8.2.2412
Problem: Not all fields in "cstack" are initialized which might cause a

crash.
Solution: Use CLEAR_FIELD().
Files: src/ex_docmd.c

Patch 8.2.2413
Problem: Crash when using :all while using a cmdline window. (Zdenek Dohnal)
Solution: Disallow :all from the cmdline window.
Files: src/arglist.c, src/ex_getln.c, src/testdir/test_arglist.vim

Patch 8.2.2414
Problem: Using freed memory when closing the cmdline window.
Solution: Check the window is still valid.
Files: src/ex_getln.c

Patch 8.2.2415
Problem: No way to check for the cmdwin feature, cmdline_hist is now always

enabled.
Solution: Add has('cmdwin') support. Skip arglist test on Windows

temporarily.
Files: runtime/doc/cmdline.txt, src/evalfunc.c,

src/testdir/test_autocmd.vim, src/testdir/test_arglist.vim,
src/testdir/test_cmdline.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_normal.vim, src/testdir/test_tabpage.vim,
src/testdir/test_termcodes.vim, src/testdir/test_window_cmd.vim

Patch 8.2.2416
Problem: May get stuck in command line window state.
Solution: Reset "cmdwin_type" when editing buffer fails. Make arglist test

pass on MS-Windows.
Files: src/ex_getln.c, src/testdir/test_arglist.vim

version9.txt — 3727

Patch 8.2.2417
Problem: Condition stack values may be used when not set.
Solution: Clear cs_script_var_len and cs_block_id just in case they get used

later. (issue #7733)
Files: src/ex_eval.c

Patch 8.2.2418
Problem: Color not changed if ModeMsg highlight is set in InsertEnter

autocmd event. (Paul Swanson)
Solution: Call highlight_changed() after triggering InsertEnter.

(closes #7751)
Files: src/edit.c

Patch 8.2.2419
Problem: Autocmd test was failing on MS-Windows with GUI.
Solution: Remove stray feedkeys().
Files: src/testdir/test_autocmd.vim

Patch 8.2.2420
Problem: Too many problems with using all autocommand events.
Solution: Disallow defining an autocommand for all events.
Files: src/autocmd.c, src/errors.h, src/testdir/test_autocmd.vim,

src/testdir/test_quickfix.vim, src/testdir/test_window_cmd.vim

Patch 8.2.2421
Problem: Double free when using autocommand with "argdel". (Houyunsong)
Solution: Add the arglist_locked flag.
Files: src/arglist.c, src/testdir/test_autocmd.vim

Patch 8.2.2422
Problem: Crash when deleting with line number out of range. (Houyunsong)
Solution: Avoid using a negative line number.
Files: src/normal.c, src/testdir/test_ex_mode.vim

Patch 8.2.2423 (after 8.2.2422)
Problem: Missing error message.
Solution: Add the error message.
Files: src/errors.h

Patch 8.2.2424
Problem: Some tests are known to cause an error with ASAN.
Solution: Add CheckNotAsan.
Files: src/testdir/check.vim, src/testdir/test_ins_complete.vim,

src/testdir/test_memory_usage.vim, src/testdir/test_ex_mode.vim

Patch 8.2.2425
Problem: Cursor on invalid line with range and :substitute.
Solution: Do not move the cursor when skipping commands. (closes #3434)
Files: src/ex_cmds.c, src/testdir/test_eval_stuff.vim

Patch 8.2.2426
Problem: Allowing 'completefunc' to switch windows causes trouble.
Solution: use "textwinlock" instead of "textlock".
Files: src/insexpand.c, src/testdir/test_ins_complete.vim,

src/testdir/test_popup.vim

Patch 8.2.2427
Problem: Can still switch windows for 'completefunc'.
Solution: Also disallow switching windows for other completions.
Files: src/insexpand.c, src/testdir/test_ins_complete.vim,

version9.txt — 3728

src/testdir/test_popup.vim

Patch 8.2.2428
Problem: FocusGained does not work when 'ttymouse' is empty.
Solution: Don't use the short mouse code if there is a longer matching code.

(closes #7755) Add a test.
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.2.2429
Problem: :goto does not work correctly with text properties. (Sam McCall)
Solution: Add a test. (Andrew Radev) Also use the text property size when

computing the remaining offset. (closes #5930)
Files: src/memline.c, src/testdir/test_textprop.vim

Patch 8.2.2430
Problem: :vimgrep expands wildcards twice.
Solution: Do not expand wildcards a second time.
Files: src/quickfix.c, src/arglist.c, src/testdir/test_quickfix.vim

Patch 8.2.2431
Problem: Warning for -fno-strength-reduce with Clang 11.
Solution: Adjust check for clang version number.
Files: src/configure.ac, src/auto/configure

Patch 8.2.2432
Problem: Libvterm tests are executed even when libtool doesn't work.
Solution: Only run libvterm tests if /usr/bin/gcc exists.
Files: src/Makefile

Patch 8.2.2433
Problem: Opening cmdline window gives error in BufLeave autocommand.
Solution: Reset cmdwin_type when triggering the autocommand.
Files: src/ex_cmds.c, src/testdir/test_cmdline.vim

Patch 8.2.2434
Problem: Vim9: no error when compiling str2nr() with a number.
Solution: Add argument type checks. (closes #7759)
Files: src/evalfunc.c, src/typval.c, src/proto/typval.pro,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2435
Problem: setline() gives an error for some types.
Solution: Allow any type, convert each item to a string.
Files: runtime/doc/eval.txt, src/evalbuffer.c, src/typval.c,

src/proto/typval.pro, src/debugger.c, src/vim9execute.c,
src/testdir/test_bufline.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.2436
Problem: Vim9 script test is a bit flaky.
Solution: Wait longer for exit callback.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2437
Problem: Deprecation warnings with default configuration.
Solution: Add -Wno-deprecated-declarations.
Files: src/configure.ac, src/auto/configure

Patch 8.2.2438
Problem: Out of bounds compiler warning.
Solution: Increase the size of uf_name.

version9.txt — 3729

Files: src/structs.h

Patch 8.2.2439
Problem: Not easy to figure out what packages to get when installing Vim on

a new Ubuntu system.
Solution: Mention explicit commands that are easy to follow.
Files: src/INSTALL

Patch 8.2.2440
Problem: Documentation based on patches is outdated.
Solution: Add changes to documentation in a patch.
Files: runtime/doc/arabic.txt, runtime/doc/autocmd.txt,

runtime/doc/change.txt, runtime/doc/channel.txt,
runtime/doc/cmdline.txt, runtime/doc/debugger.txt,
runtime/doc/develop.txt, runtime/doc/digraph.txt,
runtime/doc/editing.txt, runtime/doc/eval.txt,
runtime/doc/filetype.txt, runtime/doc/ft_sql.txt,
runtime/doc/gui.txt, runtime/doc/gui_w32.txt,
runtime/doc/gui_x11.txt, runtime/doc/hangulin.txt,
runtime/doc/helphelp.txt, runtime/doc/help.txt,
runtime/doc/if_lua.txt, runtime/doc/if_mzsch.txt,
runtime/doc/if_tcl.txt, runtime/doc/indent.txt,
runtime/doc/index.txt, runtime/doc/insert.txt,
runtime/doc/intro.txt, runtime/doc/map.txt, runtime/doc/mbyte.txt,
runtime/doc/message.txt, runtime/doc/mlang.txt,
runtime/doc/motion.txt, runtime/doc/netbeans.txt,
runtime/doc/options.txt, runtime/doc/os_dos.txt,
runtime/doc/os_haiku.txt, runtime/doc/os_unix.txt,
runtime/doc/os_vms.txt, runtime/doc/os_win32.txt,
runtime/doc/pattern.txt, runtime/doc/pi_getscript.txt,
runtime/doc/pi_logipat.txt, runtime/doc/pi_netrw.txt,
runtime/doc/pi_tar.txt, runtime/doc/pi_vimball.txt,
runtime/doc/pi_zip.txt, runtime/doc/popup.txt,
runtime/doc/print.txt, runtime/doc/quickfix.txt,
runtime/doc/quickref.txt, runtime/doc/recover.txt,
runtime/doc/remote.txt, runtime/doc/repeat.txt,
runtime/doc/rileft.txt, runtime/doc/sign.txt,
runtime/doc/spell.txt, runtime/doc/starting.txt,
runtime/doc/syntax.txt, runtime/doc/tabpage.txt,
runtime/doc/tagsrch.txt, runtime/doc/terminal.txt,
runtime/doc/term.txt, runtime/doc/testing.txt,
runtime/doc/textprop.txt, runtime/doc/tips.txt,
runtime/doc/todo.txt, runtime/doc/uganda.txt,
runtime/doc/undo.txt, runtime/doc/usr_02.txt,
runtime/doc/usr_03.txt, runtime/doc/usr_04.txt,
runtime/doc/usr_05.txt, runtime/doc/usr_07.txt,
runtime/doc/usr_08.txt, runtime/doc/usr_10.txt,
runtime/doc/usr_11.txt, runtime/doc/usr_20.txt,
runtime/doc/usr_22.txt, runtime/doc/usr_23.txt,
runtime/doc/usr_24.txt, runtime/doc/usr_27.txt,
runtime/doc/usr_30.txt, runtime/doc/usr_31.txt,
runtime/doc/usr_40.txt, runtime/doc/usr_41.txt,
runtime/doc/usr_42.txt, runtime/doc/usr_44.txt,
runtime/doc/usr_45.txt, runtime/doc/usr_46.txt,
runtime/doc/usr_90.txt, runtime/doc/usr_toc.txt,
runtime/doc/various.txt, runtime/doc/version5.txt,
runtime/doc/version6.txt, runtime/doc/version7.txt,
runtime/doc/version8.txt, runtime/doc/vi_diff.txt,
runtime/doc/vim9.txt, runtime/doc/visual.txt,
runtime/doc/windows.txt

version9.txt — 3730

Patch 8.2.2441
Problem: Vim9: extend() does not give an error for a type mismatch.
Solution: Check the type of the second argument. (closes #7760)
Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2442
Problem: Automatic GUI selection does not check for GTK 3.
Solution: Make SKIP_GTK3 empty for automatic GUI support. Set SKIP_GTK3 to

YES when checking for GTK2.
Files: src/configure.ac, src/auto/configure

Patch 8.2.2443
Problem: Vim9: no compile time error for wrong str2float argument.
Solution: Check argument type. (closes #7759)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2444
Problem: Vim9: compile error with combination of operator and list.
Solution: Generate constants before parsing a list or dict. (closes #7757)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2445
Problem: Vim9: no proper error for lambda missing return type.
Solution: Check for this error. (closes #7758)
Files: src/errors.h, src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2446
Problem: Setting 'term' empty has different error if compiled with GUI.
Solution: Insert "else". (closes #7766)
Files: src/optionstr.c, src/testdir/test_options.vim

Patch 8.2.2447
Problem: 'foldlevel' not applied to folds restored from session.
Solution: Set 'foldlevel' after creating the folds. (closes #7767)
Files: src/fold.c, src/testdir/test_mksession.vim

Patch 8.2.2448
Problem: Compilation error with Ruby 3.0.
Solution: Adjust #ifdefs and declaration. (Ken Takata, closes #7761)
Files: src/if_ruby.c

Patch 8.2.2449
Problem: Vim9: flatten() always changes the list type.
Solution: Disallow using flatten() and add flattennew().
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/list.c, src/proto/list.pro, src/errors.h, src/vim9compile.c,
src/testdir/test_flatten.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.2450
Problem: MS-Windows: ADS was not preserved if 'backupcopy' is "yes".
Solution: Copy ADS before truncating the file. (Ken Takata, closes #7762)
Files: src/bufwrite.c

Patch 8.2.2451
Problem: MS-Windows: Extended Attributes not preserved.
Solution: Preserve Extended Attributes when writing a file. (Ken Takata,

closes #7765)
Files: src/os_win32.c

version9.txt — 3731

Patch 8.2.2452
Problem: No completion for the 'filetype' option.
Solution: Add filetype completion. (Martin Tournoij, closes #7747)
Files: src/option.c, src/optiondefs.h, src/testdir/test_options.vim

Patch 8.2.2453
Problem: Vim9: a variable name with "->" in the next line doesn't work.
Solution: Recognize a variable name by itself. (closes #7770)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2454
Problem: Leading space can not be made visible.
Solution: Add "lead:" to 'listchars'. (closes #7772)
Files: runtime/doc/options.txt, src/drawline.c, src/globals.h,

src/message.c, src/screen.c, src/testdir/test_listchars.vim

Patch 8.2.2455
Problem: Vim9: key type that can be used for literal dict and indexing is

inconsistent.
Solution: Allow using number and bool as key for a literal dict. (#7771)
Files: runtime/doc/vim9.txt, src/dict.c, src/eval.c, src/vim9compile.c,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2456
Problem: Coverity warning for strcpy() into fixed size array.
Solution: Add a type cast to hopefully silence the bogus warning.
Files: src/userfunc.c

Patch 8.2.2457
Problem: Coverity warns for memory leak.
Solution: Free memory when out of memory.
Files: src/if_cscope.c

Patch 8.2.2458
Problem: Coverity warns for :retab using freed memory.
Solution: Use the updated line pointer when moving text properties.
Files: src/indent.c

Patch 8.2.2459
Problem: Coverity reports dead code.
Solution: Remove the dead code.
Files: src/eval.c

Patch 8.2.2460
Problem: Coverity warns for unused value.
Solution: Do not reset the return value to OK.
Files: src/vim9compile.c

Patch 8.2.2461
Problem: Coverity warns for unchecked return value.
Solution: Add "(void)" to avoid the warning.
Files: src/vim9execute.c

Patch 8.2.2462
Problem: Coverity warns for not checking for fseek() error.
Solution: Give an error message if fseek() fails.
Files: src/spellfile.c

Patch 8.2.2463

version9.txt — 3732

Problem: Using :arglocal in an autocommand may use freed memory.
(houyunsong)

Solution: Check if the arglist is locked.
Files: src/arglist.c, src/testdir/test_autocmd.vim

Patch 8.2.2464
Problem: Using freed memory if window closed in autocommand. (houyunsong)
Solution: Check the window still exists.
Files: src/ex_cmds.c, src/testdir/test_autocmd.vim

Patch 8.2.2465
Problem: Using freed memory in :psearch. (houyunsong)
Solution: Check the current window is still valid. Fix flaky test.
Files: src/search.c, src/testdir/test_autocmd.vim

Patch 8.2.2466
Problem: Max() and min() can give many error messages.
Solution: Bail out at the first error. (closes #1039, closes #7778)
Files: src/evalfunc.c, src/testdir/test_functions.vim

Patch 8.2.2467
Problem: Script generated by :mkview changes alternate file.
Solution: Only write :balt in the session file. (Harish Rajagopal,

closes #7779)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.2468
Problem: Not easy to get the full command name from a shortened one.
Solution: Add fullcommand(). (Martin Tournoij, closes #7777)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/ex_docmd.c, src/proto/evalfunc.pro,
src/testdir/test_cmdline.vim

Patch 8.2.2469
Problem: Confusing error if :winsize has a wrong argument.
Solution: Quote the argument in the error. (closes #2523)
Files: src/ex_docmd.c, src/testdir/test_excmd.vim

Patch 8.2.2470
Problem: Popup_getoptions() does not get textprop from other tab.
Solution: use win_valid_any_tab(). (closes #7786)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.2471
Problem: Popup_setoptions() does not set textprop in other tab.
Solution: use win_valid_any_tab(). (closes #7788)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.2472
Problem: Crash when using command line window in an autocommand.

(houyunsong)
Solution: Save and restore au_new_curbuf.
Files: src/ex_cmds.c, src/testdir/test_autocmd.vim

Patch 8.2.2473
Problem: Crash when leaving command line window triggers autocommand.

(houyunsong)
Solution: Make sure not to close the current window or buffer.
Files: src/ex_getln.c, src/testdir/test_autocmd.vim

version9.txt — 3733

Patch 8.2.2474
Problem: Using freed memory when window is closed by autocommand.

(houyunsong)
Solution: Check the window pointer is still valid.
Files: src/quickfix.c, src/testdir/test_autocmd.vim

Patch 8.2.2475
Problem: Autocommand tests hangs on MS-Windows.
Solution: Skip one test.
Files: src/testdir/test_autocmd.vim

Patch 8.2.2476
Problem: Using freed memory when using an autocommand to split a window

while a buffer is being closed.
Solution: Disallow splitting when the buffer has b_locked_split set.
Files: src/buffer.c, src/window.c, src/errors.h, src/structs.h,

src/popupwin.c, src/testdir/test_autocmd.vim

Patch 8.2.2477
Problem: Autocommand tests hang on MS-Windows.
Solution: Skip a couple of tests. Fix file name.
Files: src/testdir/test_autocmd.vim

Patch 8.2.2478
Problem: MS-Windows: backup files for plugins are loaded.
Solution: Do not use the alternate file name for files ending in "~".
Files: src/filepath.c

Patch 8.2.2479
Problem: set/getbufline test fails without the job feature.
Solution: Check whether the job feature is supported. (Dominique Pellé,

closes #7790)
Files: src/testdir/test_bufline.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.2480
Problem: Vim9: some errors for white space do not show context.
Solution: Include the text at the error.
Files: src/errors.h, src/dict.c, src/list.c, src/userfunc.c,

src/vim9compile.c, src/vim9script.c, src/vim9type.c

Patch 8.2.2481
Problem: Vim9: confusing error when variable arguments have a default

value.
Solution: Give a specific error message. (closes #7793)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2482
Problem: Build error.
Solution: Add new error message.
Files: src/errors.h

Patch 8.2.2483
Problem: Vim9: type error for malformed expression.
Solution: Check for end of command before checking type. (closes #7795)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2484
Problem: Vim9: Cannot use a comment starting with #{ after an expression.
Solution: Remove the check for "{" since #{ dictionaries are not supported.
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

version9.txt — 3734

Patch 8.2.2485
Problem: When sourcing a script again the script version isn't reset.
Solution: Set sn_version to one when sourcing a script again. Clear

sn_save_cpo properly. (closes #7608)
Files: src/scriptfile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2486
Problem: Vim9: some errors for white space do not show context.
Solution: Include the text at the error.
Files: src/errors.h, src/dict.c, src/list.c, src/userfunc.c,

src/vim9compile.c, src/vim9type.c

Patch 8.2.2487
Problem: Terminal shows garbage after double-wide character with a

combining character. (Kyoichiro Yamada)
Solution: Libvterm: do not add the width of the combining character to the

glyph width. (closes #7801)
Files: src/libvterm/src/state.c, src/testdir/test_terminal.vim,

src/testdir/dumps/Test_terminal_combining.dump

Patch 8.2.2488
Problem: json_encode() gives generic argument error.
Solution: Mention the type that can't be encoded. (issue #7802)
Files: src/json.c, src/errors.h, src/testdir/test_json.vim

Patch 8.2.2489
Problem: current buffer is wrong after deletebufline() fails to delete a

line in another buffer.
Solution: Restore the current buffer.
Files: src/evalbuffer.c, src/testdir/test_bufline.vim

Patch 8.2.2490
Problem: 'wrap' option is always reset when starting diff mode.
Solution: Add the "followwrap" item in 'diffopt'. (Rick Howe, closes #7797)
Files: runtime/doc/diff.txt, runtime/doc/options.txt, src/diff.c,

src/testdir/test_diffmode.vim

Patch 8.2.2491
Problem: Popup window for text property may show in first screen line.
Solution: If the text position is invisible do not show the popup window.

(closes #7807)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popup_prop_not_visible_01.dump,
src/testdir/dumps/Test_popup_prop_not_visible_02.dump,
src/testdir/dumps/Test_popup_prop_not_visible_03.dump

Patch 8.2.2492
Problem: Command line buffer name cannot be translated.
Solution: Add _(). (Gabriel Dupras, closes #7812)
Files: src/ex_getln.c

Patch 8.2.2493
Problem: Text property for text left of window shows up.
Solution: Check if the text property ends before the current column.

(closes #7806)
Files: src/drawline.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_textprop_nowrap_01.dump,
src/testdir/dumps/Test_textprop_nowrap_02.dump

version9.txt — 3735

Patch 8.2.2494
Problem: ":rviminfo!" clears most of oldfiles.
Solution: Add VIF_ONLY_CURBUF to read_viminfo(). (closes #1781)
Files: src/viminfo.c, src/vim.h

Patch 8.2.2495
Problem: Text jumps up and down when moving the cursor in a small window

with wrapping text and 'scrolloff' set.
Solution: Adjust the computation of w_skipcol. (partly by Ghjuvan Lacambre,

closes #7813)
Files: src/move.c, src/testdir/test_breakindent.vim

Patch 8.2.2496 (after 8.2.2495)
Problem: Insufficient testing for text jumping fix.
Solution: Add another test case.
Files: src/testdir/test_breakindent.vim

Patch 8.2.2497
Problem: No error when using more than one character for a register name.
Solution: In Vim9 script check for a single character string. (closes #7814)

Fix that VAR_BOOL and VAR_SPECIAL are not considered equal.
Files: src/errors.h, src/evalfunc.c, src/typval.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2498
Problem: No test for what 8.2.2494 fixes.
Solution: Add a simple change to test the fix. (closes #7818)
Files: src/testdir/test_viminfo.vim

Patch 8.2.2499
Problem: "vim -g --version" does not redirect output.
Solution: Reset gui.starting when showing version info. (closes #7815)
Files: src/main.c, src/testdir/test_version.vim

Patch 8.2.2500 (after 8.2.2499)
Problem: Build fails without the GUI feature.
Solution: Add #ifdef.
Files: src/main.c

Patch 8.2.2501
Problem: Not always clear where an error is reported.
Solution: Add the where_T structure and pass it around. (closes #7796)
Files: src/structs.h, src/vim9type.c, src/proto/vim9type.pro,

src/errors.h, src/evalvars.c, src/proto/evalvars.pro, src/eval.c,
src/proto/eval.pro, src/vim9execute.c, src/vim9script.c,
src/proto/vim9script.pro, src/dict.c, src/list.c,
src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2502
Problem: A few github actions are failing.
Solution: Install setuptools-rust. (closes #7823)
Files: .github/workflows/ci.yml

Patch 8.2.2503
Problem: Vim9: a caught error may leave something on the stack.
Solution: Drop items from the stack if needed. (closes #7826)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.2504
Problem: Vim9: crash when using an argument from a closure.

version9.txt — 3736

Solution: Check if gen_load_outer is NULL. (closes #7821)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2505
Problem: Vim9: crash after defining function with invalid return type.
Solution: Clear function growarrays. Fix memory leak.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2506
Problem: Vim9: :continue does not work correctly in a :try block
Solution: Add the TRYCLEANUP instruction. (closes #7827)
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2507
Problem: Github build may fail if Ubuntu 20.04 is used. Installing rust is

not needed.
Solution: Specify ubuntu-18.04 instead of latest. Update "pip" instead of

installing rust. (Ozaki Kiichi, closes #7820)
Files: .github/workflows/ci.yml

Patch 8.2.2508
Problem: Cannot change the character displayed in non existing lines.
Solution: Add the "eob" item to 'fillchars'. (closes #7832, closes #3820)
Files: runtime/doc/options.txt, runtime/doc/todo.txt,

runtime/doc/windows.txt, src/drawscreen.c, src/globals.h,
src/optiondefs.h, src/screen.c, src/testdir/test_display.vim

Patch 8.2.2509
Problem: Tests fail on s390 build.
Solution: Initialize trycmd_T.
Files: src/vim9execute.c

Patch 8.2.2510
Problem: Internal error when popup with mask is zero height or width.
Solution: Bail out if width or height is zero. (closes #7831)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.2511
Problem: Vim9: cannot use Vim9 script syntax in some places.
Solution: Add the :vim9cmd command modifier. Incompatible: Makes ":vim9"

mean ":vim9cmd" instead of ":vim9script".
Files: runtime/doc/vim9.txt, runtime/doc/repeat.txt, src/ex_docmd.c,

src/ex_cmds.h, src/structs.h, src/ex_cmdidxs.h, src/errors.h,
src/testdir/test_vim9_cmd.vim, src/testdir/test_cmdline.vim,
src/testdir/dumps/Test_wildmenu_1.dump,
src/testdir/dumps/Test_wildmenu_2.dump,
src/testdir/dumps/Test_wildmenu_3.dump,
src/testdir/dumps/Test_wildmenu_4.dump,
src/testdir/test_quickfix.vim

Patch 8.2.2512
Problem: Vim9: compiling error test sometimes fails.
Solution: use WaitForAssert() instead of sleeping for a bit. (Dominique

Pellé, closes #7837)
Files: src/testdir/term_util.vim, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.2513 (after 8.2.2511)

version9.txt — 3737

Problem: Vim9: missing part of :vim9cmd change.
Solution: Use command modifier in in_vim9script().
Files: src/vim9script.c

Patch 8.2.2514 (after 8.2.2511)
Problem: Vim9: build error in tiny version.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.2515
Problem: Memory access error when truncating an empty message.
Solution: Check for an empty string. (Dominique Pellé, closes #7841)
Files: src/message.c, src/message_test.c

Patch 8.2.2516
Problem: Test failure on s390. (analyses by James McCoy)
Solution: Only set the try_finally label when not skipping.
Files: src/vim9compile.c

Patch 8.2.2517
Problem: Vim9: fix for s390 not tested on other systems.
Solution: Add a test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2518
Problem: 'listchars' should be window-local.
Solution: Make 'listchars' global-local. (Yegappan Lakshmanan, Marco Hinz,

closes #5206, closes #7850)
Files: runtime/doc/options.txt, src/buffer.c, src/charset.c,

src/drawline.c, src/drawscreen.c, src/evalfunc.c, src/globals.h,
src/indent.c, src/message.c, src/misc1.c, src/option.c,
src/option.h, src/optiondefs.h, src/optionstr.c,
src/proto/screen.pro, src/screen.c, src/structs.h,
src/testdir/test_listchars.vim, src/testdir/test_listlbr.vim

Patch 8.2.2519
Problem: Vim9: no reason to keep strange Vi behavior.
Solution: ":3" and ":3|" both go to line 3. ":|" does not print the line.

(closes #7840)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.2520
Problem: Missing tests for 'listchars'.
Solution: Add a few more checks. (Yegappan Lakshmanan, closes #7854)
Files: src/testdir/test_listchars.vim

Patch 8.2.2521
Problem: Some compilers can't handle pointer initialization. (John

Marriott)
Solution: Use a local struct and assign it afterwards.
Files: src/screen.c

Patch 8.2.2522
Problem: Beancount filetype not recognized.
Solution: Add a detection rule. (Brian Ryall, closes #7859)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2523
Problem: Svelte filetype not recognized.
Solution: Add a detection rule. (Brian Ryall, closes #7858)

version9.txt — 3738

Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2524
Problem: Cannot change the characters displayed in the foldcolumn.
Solution: Add fields to 'fillchars'. (Yegappan Lakshmanan, Matthieu Coudron,

closes #7860)
Files: runtime/doc/options.txt, src/globals.h, src/mouse.c, src/screen.c,

src/testdir/test_display.vim

Patch 8.2.2525
Problem: Vim9: only local variables checked for a name.
Solution: Also check arguments and script variables. (closes #7838)
Files: src/vim9compile.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/testdir/test_vim9_cmd.vim

Patch 8.2.2526 (after 8.2.2525)
Problem: Build failure.
Solution: Change lookup_scriptvar() arguments.
Files: src/evalvars.c, src/proto/evalvars.pro

Patch 8.2.2527
Problem: Vim9: lambda return type is not determined at script level.
Solution: Compile the lambda to get the return type. (closes #7843)
Files: src/eval.c, src/vim.h, src/vim9.h,

src/testdir/test_vim9_assign.vim

Patch 8.2.2528
Problem: Vim9: crash when compiling lambda fails.
Solution: Bail out after compilation fails. (closes #7862)
Files: src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2529
Problem: Vim9: Not possible to use legacy and Vim9 script in one file.
Solution: Vim9: allow for "if false" before :vim9script. (closes #7851)
Files: runtime/doc/vim9.txt, src/ex_docmd.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2530
Problem: Vim9: not enough testing for profiling.
Solution: Add a test with nested functions and a lambda. Fix profiling

for calling a compiled function.
Files: src/profiler.c, src/proto/profiler.pro, src/userfunc.c,

src/vim9execute.c, src/testdir/test_profile.vim

Patch 8.2.2531
Problem: Vim9: the :k command is obscure.
Solution: Disallow using :k, can use :mark instead. (closes #7874)
Files: runtime/doc/vim9.txt, src/ex_docmd.c, src/vim9script.c,

src/vim9compile.c, src/ex_cmds.h, src/testdir/test_vim9_script.vim

Patch 8.2.2532
Problem: Vim9: confusing error if :k is used with a range.
Solution: Give an error about the range. (issue #7874)
Files: src/vim9script.c, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2533
Problem: Vim9: cannot use a range with :unlet.
Solution: Implement ISN_UNLETRANGE.
Files: src/errors.h, src/eval.c, src/evalvars.c, src/list.c,

version9.txt — 3739

src/proto/evalvars.pro, src/proto/list.pro, src/vim9.h,
src/vim9compile.c, src/vim9execute.c,
src/testdir/test_vim9_assign.vim

Patch 8.2.2534
Problem: Missing test coverage.
Solution: Improve test coverage for completion with different encodings,

mapset(), and term function failures. (Dominique Pellé,
closes #7877)

Files: src/testdir/test_edit.vim, src/testdir/test_maparg.vim,
src/testdir/test_terminal3.vim

Patch 8.2.2535
Problem: MS-Windows: cannot run all vim9 tests.
Solution: Make test_vim9 target work.
Files: src/Make_mvc.mak

Patch 8.2.2536
Problem: Coverity complains about unchecked return value.
Solution: Add (void).
Files: src/userfunc.c

Patch 8.2.2537
Problem: Vim9: crash when map() fails.
Solution: Clear typval before using it. (closes #7884)
Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2538
Problem: Crash when using Python list iterator.
Solution: Increment the list reference count. (closes #7886)
Files: src/if_py_both.h, src/testdir/test_python3.vim

Patch 8.2.2539
Problem: Vim9: return from finally block causes a hang.
Solution: Store both the finally and endtry indexes. (closes #7885)
Files: src/vim9execute.c, src/vim9compile.c, src/vim9.h,

src/testdir/test_vim9_script.vim,

Patch 8.2.2540
Problem: Vim9: no error for using script var name for argument.
Solution: Check for this error. (closes #7868)
Files: src/userfunc.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.2541
Problem: Popup_create() does not allow boolean for "cursorline".
Solution: Use dict_get_bool(). (issue #7869)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.2542
Problem: Highlight of char beyond line end is not correct. (Chuan Wei Foo)
Solution: Fix counting NUL as one cell. Draw one more character if the EOL

is part of the match. (closes #7883)
Files: src/match.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_hlsearch_1.dump,
src/testdir/dumps/Test_hlsearch_2.dump

Patch 8.2.2543
Problem: Vim9: a return inside try/catch does not restore exception state

properly.

version9.txt — 3740

Solution: When there is no ":finally" jump to ":endtry". (closes #7882)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.2544
Problem: Vim9: error for argument when checking for lambda.
Solution: Respect the skip flag. (closes #7887)
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2545
Problem: Errors and crash when terminal window is zero height. (Leonid V.

Fedorenchik)
Solution: Do not resize when width or height is zero. (closes #7890)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.2546
Problem: Typo in mouse key name.
Solution: Fix the typo. (issue #4725)
Files: src/misc2.c

Patch 8.2.2547
Problem: "%" command not accurate for big files.
Solution: Make it more accurate for files up to 21M lines. (Dominique Pellé,

closes #7889)
Files: src/normal.c

Patch 8.2.2548
Problem: May get stuck in the cmdline window using :normal.
Solution: Have nv_esc() return K_IGNORE.
Files: src/normal.c

Patch 8.2.2549
Problem: Crash after using "g:" in a for loop.
Solution: Increment the reference count. (closes #7892)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2550
Problem: Signal stack size is wrong with latest glibc 2.34.
Solution: Use sysconf(_SC_SIGSTKSZ) if available. (Zdenek Dohnal, closes

#7895)
Files: src/config.h.in, src/configure.ac, src/os_unix.c,

src/auto/configure

Patch 8.2.2551
Problem: MS-Windows: colors test file is not installed.
Solution: Also copy runtime/colors/tools. (Ken Takata, closes #7902)
Files: nsis/gvim.nsi

Patch 8.2.2552
Problem: Vim9: no reason to consider "{{{{{{{{" a command.
Solution: Just use "{". (issue #7904)
Files: src/ex_cmds.h

Patch 8.2.2553
Problem: Vim9: Cannot put "|" after "{".
Solution: Add the EX_TRLBAR flag. (issue #7904)
Files: src/ex_cmds.h, src/ex_eval.c

Patch 8.2.2554
Problem: Vim9: exporting a final is not tested.
Solution: Add a test.

version9.txt — 3741

Files: src/testdir/test_vim9_script.vim

Patch 8.2.2555
Problem: Vim9: missing test for 8.2.2553.
Solution: Add a simple test.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2556
Problem: Vim9: :import with "as" not fully supported.
Solution: Implement "as" for more cases.
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.2557
Problem: Compiler warning for shadowed variable.
Solution: Declare "p" only once.
Files: src/vim9script.c

Patch 8.2.2558
Problem: No error if a lambda argument shadows a variable.
Solution: Check that the argument name shadows a local, argument or script

variable. (closes #7898)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/userfunc.c,

src/vim9script.c, src/errors.h, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_script.vim

Patch 8.2.2559
Problem: MS-Windows: guifont test fails on Windows XP.
Solution: Check windowsversion().
Files: src/testdir/test_gui.vim

Patch 8.2.2560
Problem: Setting 'winminheigt' does not take tabline into account.
Solution: Subtract the tabline from the available height. (closes #7899)
Files: src/window.c, src/testdir/test_options.vim

Patch 8.2.2561
Problem: Not all textprop code is covered by tests.
Solution: Add a few more test cases. (Dominique Pellé, closes #7908)
Files: src/testdir/test_textprop.vim

Patch 8.2.2562
Problem: GUI: star register changed when 'clipboard' is "unnamedplus". (Ingo

Karkat)
Solution: Do not change the star register when 'clipboard' contains

"unnamedplus" and not "unnamed". (closes #1516)
Files: src/register.c

Patch 8.2.2563
Problem: Cannot use multibyte characters for folding in 'fillchars'.
Solution: Port pull request 11568 to Vim. (Yegappan Lakshmanan,

closes #7924)
Files: src/drawline.c, src/drawscreen.c, src/macros.h,

src/proto/screen.pro, src/screen.c, src/testdir/test_fold.vim,
src/testdir/test_profile.vim

Patch 8.2.2564
Problem: Focus events end Insert mode if 'esckeys' is not set.
Solution: Do not enable focus events when 'esckeys' is off. (closes #7926)
Files: src/term.c

version9.txt — 3742

Patch 8.2.2565
Problem: Vim9: "..=" not always recognized.
Solution: Do not consider "..=" to be string concatenation. (closes #7905)
Files: src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2566
Problem: Vim9: Function name is not recognized.
Solution: Change lookup_scriptvar() to also find function names.

(closes #7770)
Files: src/vim9script.c, src/evalvars.c, src/proto/evalvars.pro,

src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2567
Problem: Vim9: no error if variable is defined for existing function.
Solution: Check if name isn't already in use. (closes #7897)
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.2568
Problem: Second time a preview popup is opened highlight is not set.

(Gabriel Dupras)
Solution: Apply 'previewpopup' after getting the file. (closes #7928)
Files: src/tag.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_previewpopup_2.dump,
src/testdir/dumps/Test_popupwin_previewpopup_3.dump,
src/testdir/dumps/Test_popupwin_previewpopup_4.dump,
src/testdir/dumps/Test_popupwin_previewpopup_5.dump

Patch 8.2.2569
Problem: 'fillchars' "stl" and "stlnc" items must be single byte.
Solution: Accept multi-byte characters. (Christian Wellenbrock, Yegappan

Lakshmanan, closes #7927)
Files: runtime/doc/options.txt, src/buffer.c, src/macros.h, src/screen.c,

src/testdir/test_fold.vim, src/testdir/test_statusline.vim

Patch 8.2.2570
Problem: Tests fail when run as root.
Solution: Add a comment mentioning the expected failure. (issue #7919)
Files: src/testdir/test_edit.vim, src/testdir/test_excmd.vim,

src/testdir/test_help.vim, src/testdir/test_writefile.vim

Patch 8.2.2571
Problem: Test may leave file behind.
Solution: Delete the temporary file. Don't profile in the running Vim

instance.
Files: src/testdir/test_quickfix.vim, src/testdir/test_profile.vim

Patch 8.2.2572
Problem: Vim9: crash when getting the types for a legacy function.
Solution: Initialize the type list growarray. (closes #7929)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2573
Problem: Vim9: using invalid pointer for error message.
Solution: Use the right pointer. (closes #7921)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2574
Problem: Vim9: crash when calling partial with wrong function.
Solution: Check argument types of called function. (closes #7912)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

version9.txt — 3743

Patch 8.2.2575
Problem: Vim9: a function name with "->" in the next line doesn't work.
Solution: Recognize a function name by itself. (closes #7770)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2576
Problem: Vim9: defining a :func function checks for white space after a

comma in the arguments.
Solution: Only check for white space in a :def function. (closes #7930)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2577
Problem: Compiler warning for type conversion.
Solution: Add a typecast. (Mike Williams)
Files: src/drawline.c

Patch 8.2.2578
Problem: Lua cannot handle a passed in lambda.
Solution: Handle VAR_PARTIAL. (Prabir Shrestha, closes #7937, closes #7936)
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.2579
Problem: Vim9: crash in garbagecollect after for loop.
Solution: Do not set a reference in script item when the name was cleared.

(closes #7935)
Files: src/evalvars.c

Patch 8.2.2580
Problem: Vim9: checking vararg type is wrong when function is auto-loaded.
Solution: Use the member type. (closes #7933)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.2581
Problem: Vim9: sourcing Vim9 script triggers a redraw.
Solution: Do not let setting/restoring 'cpoptions' cause a redraw.

(closes #7920)
Files: src/vim.h, src/option.c, src/optionstr.c, src/scriptfile.c,

src/vim9script.c, src/testdir/test_vim9_script.vim,
src/testdir/dumps/Test_vim9_no_redraw.dump

Patch 8.2.2582 (after 8.2.2581)
Problem: Vim9: screendump test fails on MS-Windows.
Solution: Use :function instead of :def.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2583
Problem: Vim9: cannot compare result of getenv() with null.
Solution: Make the return type of getenv() "any". (closes #7943)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2584
Problem: Vim9: type error for assigning the result of list concatenation to

a list.
Solution: Do not consider concatenation result in a constant. (closes #7942)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2585
Problem: Vim9: illegal memory access.
Solution: Check byte right after "null", not one more.

version9.txt — 3744

Files: src/vim9compile.c

Patch 8.2.2586
Problem: Process id may be invalid.
Solution: Use sysinfo.uptime to check for recent reboot. (suggested by Hugo

van der Sanden, closes #7947)
Files: src/configure.ac, src/auto/configure, src/config.h.in,

src/memline.c, src/testing.c, src/globals.h,
src/testdir/test_recover.vim

Patch 8.2.2587 (after 8.2.2586)
Problem: Recover test fails on FreeBSD.
Solution: Check for Linux.
Files: src/testdir/check.vim, src/testdir/test_recover.vim

Patch 8.2.2588 (after 8.2.2586)
Problem: Build failure with tiny features.
Solution: Add #ifdef. Run recover test separately.
Files: src/memline.c, src/testdir/Make_all.mak, src/testdir/test_alot.vim

Patch 8.2.2589 (after 8.2.2586)
Problem: Recover test hangs in the GUI.
Solution: Add g:skipped_reason to skip a _nocatch_ test.
Files: src/testdir/runtest.vim, src/testdir/test_recover.vim

Patch 8.2.2590
Problem: Vim9: default argument value may cause internal error.
Solution: Hide later function arguments when compiling the expression.

(closes #7948)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2591
Problem: Poke files are not recognized.
Solution: Add a filetype entry. (Matt Ihlenfield)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2592
Problem: Code coverage could be improved.
Solution: Add a few more tests. (Dominique Pellé, closes #7957)
Files: src/testdir/test_fileformat.vim, src/testdir/test_normal.vim,

src/testdir/test_sleep.vim, src/testdir/test_textformat.vim,
src/testdir/test_viminfo.vim

Patch 8.2.2593
Problem: List of distributed files is incomplete.
Solution: Add a file and rename another.
Files: Filelist

Patch 8.2.2594
Problem: Alternate buffer added to session file even when it's hidden.
Solution: Check the 'buflisted' option. (closes #7951)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.2595
Problem: Setting 'winminheight' may cause 'lines' to change.
Solution: Also take minimal height of other tabpages into account. (#7899)
Files: src/window.c, src/testdir/test_options.vim

Patch 8.2.2596
Problem: :doautocmd may confuse scripts listening to WinEnter.

version9.txt — 3745

Solution: Do the current buffer last. (closes #7958)
Files: src/autocmd.c, src/testdir/test_autocmd.vim

Patch 8.2.2597
Problem: Vim9: "import * as" does not work at script level.
Solution: Implement using an imported namespace.
Files: src/vim.h, src/eval.c, src/evalvars.c, src/proto/evalvars.pro,

src/vim9execute.c, src/errors.h, src/vim9script.c,
src/proto/vim9script.pro, src/testdir/test_vim9_script.vim

Patch 8.2.2598
Problem: Vim9: :open does not need to be supported.
Solution: Do not support :open in Vim9 script.
Files: src/ex_docmd.c, src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.2599 (after 8.2.2597)
Problem: Build failure.
Solution: Add missing change.
Files: src/vim9compile.c

Patch 8.2.2600
Problem: Vim9: crash when putting an unknown type in a dictionary.

(Yegappan Lakshmanan)
Solution: Handle a NULL type pointer.
Files: src/vim9type.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2601
Problem: Memory usage test often fails on FreeBSD.
Solution: Increase multiplier for upper limit.
Files: src/testdir/test_memory_usage.vim

Patch 8.2.2602
Problem: Vim9: continue doesn't work if :while is very first command.

(Yegappan Lakshmanan)
Solution: Add one to the continue instruction index.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.2603
Problem: Vim9: no effect if user command is also a function.
Solution: Check for paren following. (closes #7960)
Files: src/evalvars.c, src/proto/evalvars.pro, src/ex_docmd.c,

src/proto/ex_docmd.pro, src/vim9compile.c,
src/testdir/test_vim9_cmd.vim

Patch 8.2.2604
Problem: GUI-specific command line arguments not tested.
Solution: Add tests for several arguments. (Dominique Pellé, closes #7962)
Files: src/testdir/test_startup.vim

Patch 8.2.2605
Problem: Vim9: string index and slice does not include composing chars.
Solution: Include composing characters. (issue #6563)
Files: runtime/doc/vim9.txt, src/vim9execute.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.2606
Problem: strchars() defaults to counting composing characters.
Solution: Add strcharlen() which ignores composing characters.
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/testdir/test_utf8.vim

version9.txt — 3746

Patch 8.2.2607
Problem: strcharpart() cannot include composing characters.
Solution: Add the {skipcc} argument.
Files: runtime/doc/eval.txt, src/evalfunc.c,

src/testdir/test_expr_utf8.vim

Patch 8.2.2608
Problem: Character input not fully tested.
Solution: Add more tests. (Yegappan Lakshmanan, closes #7963)
Files: src/testdir/test_functions.vim, src/testdir/test_messages.vim,

src/testdir/test_paste.vim, src/testdir/test_registers.vim,
src/testdir/test_undo.vim

Patch 8.2.2609
Problem: Test disabled on MS-Windows even though it should work.
Solution: Restore the condition for skipping the test. (Ken Takata,

closes #7970)
Files: src/testdir/test_startup.vim

Patch 8.2.2610
Problem: Mouse click test fails when using remote connection.
Solution: Use a larger 'mousetime'. (Dominique Pellé, closes #7968)
Files: src/testdir/test_selectmode.vim

Patch 8.2.2611
Problem: Conditions for startup tests are not exactly right.
Solution: Check for type of GUI instead of MS-Windows. (Ozaki Kiichi,

closes #7976)
Files: src/main.c, src/testdir/check.vim, src/testdir/test_startup.vim

Patch 8.2.2612
Problem: col('.') may get outdated column value.
Solution: Add a note to the help how to make this work and add a test for

it. (closes #7971)
Files: runtime/doc/map.txt, src/testdir/test_mapping.vim

Patch 8.2.2613 (after 8.2.2612)
Problem: New test throws exception.
Solution: Adjust the function cleanup.
Files: src/testdir/test_mapping.vim

Patch 8.2.2614
Problem: Vim9: function is deleted while executing.
Solution: increment the call count, when more than zero do not delete the

function but mark it as dead. (closes #7977)
Files: src/vim9execute.c, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2615 (after 8.2.2614)
Problem: Test is sourcing the wrong file.
Solution: Correct the file name.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2616
Problem: Vim9: if 'cpo' is changed in Vim9 script it may be restored.
Solution: Apply the changes to 'cpo' to the restored value.
Files: runtime/doc/vim9.txt, src/scriptfile.c,

src/testdir/test_vim9_script.vim

version9.txt — 3747

Patch 8.2.2617
Problem: Vim9: script variable in a block scope not found by a nested

function.
Solution: Copy the block scope IDs before compiling the function.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2618
Problem: Vim9: cannot use a normal list name to store function refs.
Solution: Allow a lower case name if it is indexed.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2619
Problem: Vim9: no test for return type of lambda.
Solution: Add a test.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.2620
Problem: Vim9: Using #{ for a dictionary gives strange errors.
Solution: Give an error when using #{ for a comment after a command.
Files: src/vim9compile.c, src/vim9script.c, src/proto/vim9script.pro,

src/errors.h, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2621
Problem: typval2type() cannot handle recursive structures.
Solution: Use copyID. (closes #7979)
Files: src/list.c, src/vim9script.c, src/vim9type.c,

src/proto/vim9type.pro, src/testdir/test_vimscript.vim

Patch 8.2.2622
Problem: GTK: error when starting up and -geometry is given. (Dominique

Pellé)
Solution: Use another function to get the monitor if the window has not been

created yet. (closes #7978)
Files: src/gui_gtk_x11.c, src/proto/gui_gtk_x11.pro, src/gui_beval.c,

src/gui_xim.c

Patch 8.2.2623
Problem: Some tests fail when run as root.
Solution: Use CheckNotRoot.
Files: src/testdir/test_edit.vim, src/testdir/test_excmd.vim,

src/testdir/test_help.vim, src/testdir/test_writefile.vim

Patch 8.2.2624
Problem: Atom files not recognized.
Solution: Recognize .atom as XML. (Kivin Locke, closes #7986)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2625
Problem: Rss files not recognized.
Solution: Recognize .rss as XML. (Kivin Locke, closes #7987)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2626
Problem: GTK3: error when starting up and -geometry is given. (Dominique

Pellé)
Solution: Use another function to get the monitor if the window has not been

created yet. (closes #7978)
Files: src/gui_gtk_x11.c

version9.txt — 3748

Patch 8.2.2627
Problem: No need to check for BSD after checking for not root.
Solution: Remove CheckNotBSD. (Ozaki Kiichi, closes #7989)
Files: src/testdir/test_excmd.vim, src/testdir/test_help.vim,

src/testdir/check.vim

Patch 8.2.2628
Problem: Vim9: #{ can still be used at the script level.
Solution: Give an error for #{ like in a :def function.
Files: src/eval.c, src/ex_docmd.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2629
Problem: Vim9: error for #{{ is not desired.
Solution: Adjust the checks. (closes #7990)
Files: src/errors.h, src/vim9script.c, src/ex_docmd.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.2630
Problem: Hard to see where a test gets stuck.
Solution: Print the executed test function. (Dominique Pellé, closes #7975)
Files: src/testdir/Makefile

Patch 8.2.2631
Problem: Commands from winrestcmd() do not always work properly. (Leonid V.

Fedorenchik)
Solution: Repeat the size commands twice. (closes #7988)
Files: src/evalwindow.c, src/testdir/test_window_cmd.vim

Patch 8.2.2632
Problem: Not all command line arguments are tested.
Solution: Add tests for -D and -serverlist. (Dominique Pellé, closes #7992)
Files: src/testdir/test_clientserver.vim, src/testdir/test_startup.vim

Patch 8.2.2633
Problem: Multi-byte 'fillchars' for folding do not show properly.
Solution: Handle multi-byte characters correctly. (Yegappan Lakshmanan,

closes #7983, closes #7955)
Files: src/screen.c, src/testdir/test_fold.vim

Patch 8.2.2634
Problem: 'tagfunc' does not indicate using a pattern.
Solution: Add the "r" flag. (Andy Massimino, closes #7982)
Files: runtime/doc/tagsrch.txt, src/tag.c, src/testdir/test_tagfunc.vim

Patch 8.2.2635
Problem: Vim9: cannot define an inline function.
Solution: Make an inline function mostly work.
Files: src/userfunc.c, src/errors.h, src/vim9compile.c, src/misc2.c,

src/proto/vim9compile.pro, src/testdir/test_vim9_expr.vim

Patch 8.2.2636 (after 8.2.2635)
Problem: Memory leak when compiling inline function.
Solution: Free the prefetched line.
Files: src/userfunc.c, src/vim9compile.c, src/structs.h, src/globals.h,

src/eval.c

Patch 8.2.2637
Problem: prop_remove() causes a redraw even when nothing changed.
Solution: Only redraw if a property was removed. (Dominique Pellé)

version9.txt — 3749

Files: src/textprop.c

Patch 8.2.2638
Problem: Cannot write a message to the terminal from the GUI.
Solution: Add :echoconsole and use it in the test runner. (issue #7975)
Files: runtime/doc/eval.txt, runtime/doc/index.txt, src/ex_cmds.h,

src/ex_cmdidxs.h, src/eval.c, src/ui.c, src/proto/ui.pro,
src/term.c, src/testdir/runtest.vim

Patch 8.2.2639 (after 8.2.2638)
Problem: Build failure when fsync() is not available.
Solution: Add #ifdef.
Files: src/ui.c

Patch 8.2.2640
Problem: screenstring() returns non-existing composing characters.
Solution: Only use composing characters if there is a base character.
Files: src/evalfunc.c, src/testdir/test_listchars.vim

Patch 8.2.2641
Problem: Display test fails because of lacking redraw.
Solution: Add a redraw command.
Files: src/testdir/test_display.vim

Patch 8.2.2642
Problem: Vim9: no clear error for wrong inline function.
Solution: Check for something following the "{".
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2643
Problem: Various code not covered by tests.
Solution: Add a few more test. (Yegappan Lakshmanan, closes #7995)
Files: src/testdir/test_edit.vim, src/testdir/test_functions.vim,

src/testdir/test_mapping.vim, src/testdir/test_termcodes.vim,
src/testdir/test_undo.vim

Patch 8.2.2644
Problem: prop_clear() causes a screen update even when nothing changed.
Solution: Only redraw when a property was cleared. (Dominique Pellé)
Files: src/textprop.c

Patch 8.2.2645
Problem: Using inline function is not properly tested.
Solution: Add test cases, esp. for errors. Minor code improvements.
Files: src/userfunc.c, src/errors.h, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.2646
Problem: Vim9: error for not using string doesn't mention argument.
Solution: Add argument number.
Files: src/filepath.c, src/typval.c, src/proto/typval.pro, src/errors.h,

src/mbyte.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2647
Problem: Terminal test sometimes hangs.
Solution: Wait for the shell to display a prompt.
Files: src/testdir/test_terminal.vim

Patch 8.2.2648
Problem: Terminal resize test sometimes hangs.

version9.txt — 3750

Solution: Wait for the shell to display a prompt and other output.
Files: src/testdir/test_terminal2.vim

Patch 8.2.2649
Problem: Vim9: some wincmd arguments cause a white space error.
Solution: Insert a space before the count. (closes #8001)
Files: src/window.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2650
Problem: Vim9: command modifiers not handled in nested function.
Solution: Keep function-local info in a structure and save it on the stack.
Files: src/vim9execute.c, src/vim9.h, src/testdir/test_vim9_func.vim

Patch 8.2.2651
Problem: Vim9: restoring command modifiers happens after jump.
Solution: Move the restore instruction to before the jump. (closes #8006)

Also handle for and while.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2652
Problem: Vim9: can use command modifier without an effect.
Solution: Give an error for a misplaced command modifier. Fix error message

number.
Files: src/vim9compile.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/ex_eval.c, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2653
Problem: Build failure.
Solution: Add missing changes.
Files: src/errors.h

Patch 8.2.2654
Problem: Vim9: getting a character from a string can be slow.
Solution: Avoid a function call to get the character byte size. (#8000)
Files: src/vim9execute.vim

Patch 8.2.2655
Problem: The -w command line argument doesn't work.
Solution: Don't set 'window' when set with the -w argument. (closes #8011)
Files: src/term.c, src/testdir/test_startup.vim

Patch 8.2.2656
Problem: Some command line arguments and regexp errors not tested.
Solution: Add a few test cases. (Dominique Pellé, closes #8013)
Files: src/testdir/test_regexp_latin.vim, src/testdir/test_startup.vim

Patch 8.2.2657
Problem: Vim9: error message for declaring variable in for loop.
Solution: Clear variables when entering block again. (closes #8012)
Files: src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.2658
Problem: :for cannot loop over a string.
Solution: Accept a string argument and iterate over its characters.
Files: runtime/doc/eval.txt, src/eval.c, src/vim9compile.c,

src/vim9execute.c, src/errors.h, src/testdir/test_vimscript.vim,
src/testdir/test_vim9_disassemble.vim,

version9.txt — 3751

src/testdir/test_vim9_script.vim

Patch 8.2.2659 (after 8.2.2658)
Problem: Eval test fails because for loop on string works.
Solution: Check looping over function reference fails.
Files: src/testdir/test_eval_stuff.vim

Patch 8.2.2660
Problem: Vim9: no error for declaration with trailing text.
Solution: Give an error. (closes #8014)
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2661
Problem: Leaking memory when looping over a string.
Solution: Free the memory.
Files: src/eval.c

Patch 8.2.2662
Problem: There is no way to avoid some escape sequences.
Solution: Suppress escape sequences when the --not-a-term argument is used.

(Gary Johnson)
Files: src/main.c, src/os_unix.c, src/testdir/test_startup.vim

Patch 8.2.2663
Problem: Vim9: leaking memory when inline function has an error.
Solution: Free the partially allocated function.
Files: src/userfunc.c

Patch 8.2.2664
Problem: Vim9: not enough function arguments checked for string.
Solution: Check in balloon functions. Refactor function arguments.
Files: src/typval.c, src/proto/typval.pro, src/filepath.c,

src/evalfunc.c, src/mbyte.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2665 (after 8.2.2664)
Problem: Test failures.
Solution: Check more specific feature. Add missing change.
Files: src/testdir/test_vim9_builtin.vim, src/evalbuffer.c

Patch 8.2.2666
Problem: Vim9: not enough function arguments checked for string.
Solution: Check in ch_logfile(), char2nr() and others.
Files: src/channel.c, src/evalfunc.c, src/filepath.c, src/eval.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2667
Problem: prop_find() cannot find item matching both id and type.
Solution: Add the "both" argument. (Naohiro Ono, closes #8019)
Files: runtime/doc/textprop.txt, src/testdir/test_textprop.vim,

src/textprop.c

Patch 8.2.2668
Problem: Vim9: omitting "call" for "confirm()" does not give an error.
Solution: Do not recognize a modifier followed by "(".
Files: src/ex_docmd.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2669
Problem: Command line completion does not work after "vim9".
Solution: Include the "9". (Naohiro Ono, closes #8025)
Files: src/cmdexpand.c, src/ex_docmd.c, src/testdir/test_cmdline.vim

version9.txt — 3752

Patch 8.2.2670
Problem: Vim9: error for append(0, text).
Solution: Check for negative number. (closes #8022)
Files: src/typval.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2671 (after 8.2.2670)
Problem: Error for line number in legacy script.
Solution: Check for number type.
Files: src/typval.c

Patch 8.2.2672
Problem: Vim9: cannot use :lockvar and :unlockvar in compiled script.
Solution: Implement locking support.
Files: src/vim9compile.c, src/errors.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.2673
Problem: Vim9: script-local funcref can have lower case name.
Solution: Require an upper case name.
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2674
Problem: Motif: cancelling the font dialog resets the font.
Solution: When no font is selected to not change the font. (closes #7825,

closes #8035) Fix compiler warnings.
Files: src/gui_x11.c, src/gui_motif.c

Patch 8.2.2675
Problem: Directory change in a terminal window shell is not followed.
Solution: Add the 'autoshelldir' option. (closes #6290)
Files: runtime/doc/options.txt, runtime/doc/quickref.txt,

runtime/optwin.vim, src/charset.c, src/feature.h, src/option.h,
src/optiondefs.h, src/terminal.c, src/testdir/check.vim,
src/testdir/test_terminal3.vim

Patch 8.2.2676
Problem: Missing error message.
Solution: Add new error message.
Files: src/errors.h

Patch 8.2.2677
Problem: Vim9: cannot use only some of the default arguments.
Solution: Use v:none to use default argument value. Remove

uf_def_arg_idx[], use JUMP_IF_ARG_SET. (closes #6504)
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/vim9execute.c,

src/userfunc.c, src/structs.h, src/vim9.h,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.2678
Problem: Test for 'autoshelldir' does not reset the option.
Solution: Reset the option after testing.
Files: src/testdir/test_terminal3.vim

Patch 8.2.2679
Problem: Winbar drawn over status line for non-current window with winbar

if frame is zero height. (Leonid V. Fedorenchik)
Solution: Do not draw the window if the frame height is zero. (closes #8037)
Files: src/drawscreen.c, src/testdir/test_winbar.vim,

src/testdir/dumps/Test_winbar_not_visible.dump

version9.txt — 3753

Patch 8.2.2680
Problem: Vim9: problem defining a script variable from legacy function.
Solution: Check if the script is Vim9, not the current syntax.

(closes #8032)
Files: src/vim9script.c, src/proto/vim9script.pro, src/evalvars.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2681
Problem: Vim9: test fails for redeclaring script variable.
Solution: It's OK to assign to an existing script variable in legacy.
Files: src/evalvars.c

Patch 8.2.2682
Problem: Vim9: cannot find Name.Func from "import * as Name". (Alexander

Goussas)
Solution: When no variable found try finding a function. (closes #8045)

Check that the function was exported.
Files: src/vim9compile.c, src/vim9script.c,

src/testdir/test_vim9_script.vim

Patch 8.2.2683
Problem: Build failure without the +eval feature.
Solution: Add #ifdef.
Files: src/vim9script.c

Patch 8.2.2684
Problem: Not enough folding code is tested.
Solution: Add more test cases. (Yegappan Lakshmanan, closes #8046)
Files: src/testdir/test_fold.vim, src/testdir/test_mksession.vim,

src/testdir/test_source.vim

Patch 8.2.2685 (after 8.2.2152)
Problem: Custom statusline not drawn correctly with WinBar.
Solution: Also adjust the column for the custom status line. (Yee Cheng

Chin, closes #8047)
Files: src/drawscreen.c, src/proto/drawscreen.pro, src/screen.c,

src/testdir/dumps/Test_winbar_not_visible_custom_statusline.dump,
src/testdir/test_winbar.vim

Patch 8.2.2686
Problem: Status line is not updated when going to cmdline mode.
Solution: Redraw status lines if 'statusline' is set and going to status

line mode. (based on patch from Justin M. Keyes et al.,
closes #8044)

Files: src/ex_getln.c, src/testdir/test_statusline.vim,
src/testdir/dumps/Test_statusline_mode_1.dump,
src/testdir/dumps/Test_statusline_mode_2.dump

Patch 8.2.2687
Problem: Vim9: cannot use "const" for global variable in :def function.
Solution: Do allow using :const for a global variable. (closes #8030)
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.2688
Problem: Vim9: crash when using s: for script variable.
Solution: Pass the end pointer. (closes #8045)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

version9.txt — 3754

Patch 8.2.2689
Problem: Tiny build fails.
Solution: Add #ifdef around use of p_stl.
Files: src/ex_getln.c

Patch 8.2.2690
Problem: PowerShell files are not recognized.
Solution: Recognize several PowerShell extension. (Heath Stewart,

closes #8051)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2691
Problem: Autoconf may mess up compiler flags.
Solution: Handle removing FORTIFY_SOURCE a bit better. (Vladimir Lomov,

closes #8049)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2692
Problem: Vim9: locked script variable can be changed.
Solution: Check for locked value. (closes #8031)
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2693
Problem: Vim9: locked script variable can be changed.
Solution: Check legacy script variable for being locked. (issue #8031)
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2694
Problem: When 'matchpairs' is empty every character beeps. (Marco Hinz)
Solution: Bail out when no character in 'matchpairs' was found.

(closes #8053) Add assert_nobeep().
Files: runtime/doc/testing.txt, runtime/doc/eval.txt, src/search.c,

src/testing.c, src/proto/testing.pro, src/evalfunc.c,
src/testdir/test_textformat.vim

Patch 8.2.2695
Problem: Cursor position reset with nested autocommands.
Solution: Only check and reset line numbers for not nested autocommands.

(closes #5820)
Files: src/autocmd.c, src/testdir/test_terminal.vim

Patch 8.2.2696
Problem: Lua test fails with Lua 5.4.3 and later.
Solution: Check for different error messages. (Yegappan Lakshmanan,

closes #8050)
Files: src/testdir/test_lua.vim

Patch 8.2.2697
Problem: Function list test fails.
Solution: Add missing function. (Yegappan Lakshmanan)
Files: runtime/doc/usr_41.txt

Patch 8.2.2698 (after 8.2.2696)
Problem: Lua test fails on MS-Windows.
Solution: Fall back to old method if "lua -v" doesn't work.
Files: src/testdir/test_lua.vim

Patch 8.2.2699
Problem: Lua test fails.
Solution: Fix condition. (Yegappan Lakshmanan, closes #8060)

version9.txt — 3755

Files: src/testdir/test_lua.vim

Patch 8.2.2700
Problem: Nested autocmd test fails sometimes.
Solution: Wait for the job to finish.
Files: src/testdir/test_terminal.vim

Patch 8.2.2701
Problem: Order of removing FORTIFY_SOURCE is wrong.
Solution: Use the more specific pattern first.
Files: src/configure.ac, src/auto/configure

Patch 8.2.2702
Problem: Compiler completion test fails when more scripts are added.
Solution: Add a more generic pattern.
Files: src/testdir/test_compiler.vim

Patch 8.2.2703
Problem: Vim9: memory leak when failing on locked variable.
Solution: Free the memory.
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2704
Problem: Adding a lot of completions can be a bit slow.
Solution: Use fast_breakcheck() instead of ui_breakcheck() when adding a

list of completions. (Ben Jackson, closes #8061)
Files: src/insexpand.c

Patch 8.2.2705
Problem: Vim9: misleading reported line number for wrong type.
Solution: Remember and use the line number at the start. (closes #8059)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2706
Problem: Vim9: wrong line number reported for boolean operator.
Solution: Use the line number before skipping over line break.

(closes #8058)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2707 (after 8.2.2704)
Problem: Adding a lot of completions can still be a bit slow.
Solution: Add the check for CP_FAST. (Ben Jackson)
Files: src/insexpand.c

Patch 8.2.2708
Problem: Test sometimes fails waiting for shell in terminal.
Solution: Use WaitForAssert() so we can see the actual job status. Use

Run_shell_in_terminal().
Files: src/testdir/term_util.vim, src/testdir/test_mksession.vim

Patch 8.2.2709
Problem: The GTK GUI has a gap next to the scrollbar.
Solution: Calculate the scrollbar padding for GTK. (closes #8027)
Files: src/gui_gtk.c

Patch 8.2.2710
Problem: Vim9: not all tests cover script and :def function.
Solution: Run tests in both if possible. Fix differences.
Files: src/eval.c, src/vim9compile.c, src/vim9execute.c,

src/testdir/vim9.vim, src/testdir/test_vim9_expr.vim

version9.txt — 3756

Patch 8.2.2711
Problem: "gj" in a closed fold does not move out of the fold. (Marco Hinz)
Solution: Add a check for being in a closed fold. (closes #8062)
Files: src/normal.c, src/testdir/test_fold.vim

Patch 8.2.2712
Problem: Memory leak when adding to a blob fails.
Solution: Clear the second typval before returning.
Files: src/eval.c

Patch 8.2.2713
Problem: Folding code not sufficiently tested.
Solution: Add a few more test cases. (Yegappan Lakshmanan, closes #8064)
Files: src/testdir/test_fold.vim

Patch 8.2.2714
Problem: Filetype pattern ending in star is too far up.
Solution: Move down to where patterns ending in star belong. (closes #8065)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2715
Problem: Vim9: tests fail without the channel feature. (Dominique Pellé)
Solution: Check for the channel feature. (closes #8063)
Files: src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.2716
Problem: The equivalent class regexp is missing some characters.
Solution: Update the list of equivalent characters. (Dominique Pellé,

closes #8029)
Files: src/regexp_bt.c, src/regexp_nfa.c,

src/testdir/test_regexp_utf8.vim

Patch 8.2.2717
Problem: GTK menu items don't show a tooltip.
Solution: Add a callback to show the tooltip. (Leonid V. Fedorenchik,

closes #8067, closes #7810)
Files: src/gui_gtk.c

Patch 8.2.2718
Problem: Vim9: no explicit test for using a global function without the g:

prefix.
Solution: Add a test case.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.2719
Problem: Vim9: appending to dict item doesn't work in a :def function.
Solution: Implement assignment with operator on indexed item.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2720
Problem: GTK menu tooltip moves the cursor.
Solution: Position the cursor after displaying the tooltip. Do not show the

tooltip when editing the command line.
Files: src/gui_gtk.c

Patch 8.2.2721
Problem: Vim9: cannot have a linebreak inside a lambda.
Solution: Compile the expression before the arguments.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

version9.txt — 3757

Patch 8.2.2722
Problem: Vim9: crash when using LHS with double index.
Solution: Handle lhs_dest which is "dest_expr". (closes #8068)

Fix confusing error message for missing dict item.
Files: src/vim9compile.c, src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2723 (after 8.2.2722)
Problem: Assignment test fails.
Solution: Adjust error number.
Files: src/testdir/test_let.vim

Patch 8.2.2724 (after 8.2.2722)
Problem: Vim9: concatenating to list in dict not tested.
Solution: Add a test. (issue #8068)
Files: src/testdir/test_vim9_assign.vim

Patch 8.2.2725
Problem: Vim9: message about compiling is wrong when using try/catch.
Solution: Store the compiling flag with the message. (closes #8071)
Files: src/ex_docmd.c, src/ex_eval.c, src/structs.h,

src/testdir/test_vim9_func.vim

Patch 8.2.2726
Problem: Confusing error message with white space before comma in the

arguments of a function declaration.
Solution: Give a specific error message. (closes #2235)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2727 (after 8.2.2726)
Problem: Function test fails.
Solution: Adjust expected error number.
Files: src/testdir/test_user_func.vim

Patch 8.2.2728
Problem: Special key names don't work if 'isident' is cleared.
Solution: Add vim_isNormalIDc() and use it for special key names.

(closes #2389)
Files: src/charset.c, src/proto/charset.pro, src/misc2.c,

src/testdir/test_mapping.vim

Patch 8.2.2729
Problem: Vim9: wrong error message for referring to legacy script variable.
Solution: Do allow referring to a variable in legacy script without "s:" if

it exists at compile time. (closes #8076)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2730
Problem: Coverity complains about not restoring character.
Solution: Also restore the character in case of an error.
Files: src/vim9compile.c

Patch 8.2.2731
Problem: Mac: SF symbols are not displayed properly.
Solution: Add custom range to list of double-width characters. (Yee Cheng

Chin, closes #8077)
Files: src/mbyte.c

Patch 8.2.2732
Problem: Prompt for s///c in Ex mode can be wrong.

version9.txt — 3758

Solution: Position the cursor before showing the prompt. (closes #8073)
Files: src/ex_cmds.c, src/testdir/test_ex_mode.vim

Patch 8.2.2733
Problem: Detecting Lua version is not reliable.
Solution: Add "vim.lua_version". (Ozaki Kiichi, closes #8080)
Files: runtime/doc/if_lua.txt, ci/if_ver-1.vim, src/if_lua.c,

src/testdir/test_lua.vim

Patch 8.2.2734
Problem: Vim9: cannot use legacy script-local var from :def function.
Solution: Do not insist on using "s:" prefix. (closes #8076)
Files: src/vim9compile.c, src/proto/vim9compile.pro,

src/testdir/test_vim9_expr.vim

Patch 8.2.2735
Problem: Vim9: function reference found with prefix, not without.
Solution: Also find function reference without prefix.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2736
Problem: Vim9: for loop over string is a bit slow.
Solution: Avoid using strlen().
Files: src/vim9execute.c

Patch 8.2.2737
Problem: Status line not updated when local 'statusline' option set.
Solution: Check the 'statusline' option of each window.
Files: src/ex_getln.c, src/testdir/test_statusline.vim,

src/testdir/dumps/Test_statusline_mode_1.dump,
src/testdir/dumps/Test_statusline_mode_2.dump

Patch 8.2.2738
Problem: Extending a list with itself can give wrong result.
Solution: Remember the item before where the insertion happens and skip to

after the already inserted items. (closes #1112)
Files: src/list.c, src/testdir/test_listdict.vim

Patch 8.2.2739
Problem: Vim9: a lambda accepts too many arguments at the script level.
Solution: Do not set uf_varargs in Vim9 script.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.2740
Problem: Vim9: lambda with varargs doesn't work.
Solution: Make "...name" work. Require type to be a list.
Files: src/userfunc.c, src/vim9compile.c, src/vim9execute.c,

src/errors.h, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2741
Problem: Vim9: Partial call does not check right arguments.
Solution: Adjust the offset for whether the partial is before or after the

arguments. (closes #8091)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2742
Problem: Vim9: when compiling a function fails it is cleared.
Solution: Keep the function lines, prevent execution with a different

version9.txt — 3759

status. (closes #8093)
Files: src/vim9compile.c, src/structs.h, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2743
Problem: Vim9: function state stuck when compiling with ":silent!".
Solution: Check for uf_def_status to be UF_COMPILING.
Files: src/vim9compile.c, src/message.c, src/globals.h,

src/testdir/test_vim9_func.vim

Patch 8.2.2744
Problem: Vim9: no way to explicitly ignore an argument.
Solution: Use the underscore as the name for an ignored argument.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/eval.c,

src/evalvars.c, src/errors.h, src/testdir/test_vim9_func.vim

Patch 8.2.2745 (after 8.2.2744)
Problem: Vim9: missing part of the argument change.
Solution: Add missing changes.
Files: src/userfunc.c

Patch 8.2.2746 (after 8.2.2745)
Problem: Check for duplicate arguments does not work.
Solution: Correct condition.
Files: src/userfunc.c

Patch 8.2.2747
Problem: Vim9: not always an error for too many function arguments.
Solution: Check for getting too many arguments.
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2748
Problem: Vim9: memory leak when calling :def function fails.
Solution: Jump to failed_early instead of returning.
Files: src/vim9execute.c

Patch 8.2.2749
Problem: Vim9: test for error can be a bit flaky.
Solution: Increase the wait time a bit.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.2750
Problem: Vim9: error for using underscore in nested function.
Solution: Do not consider "_" already defined. (closes #8096)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2751
Problem: Coverity warns for using NULL pointer.
Solution: Check for NULL in calling function.
Files: src/userfunc.c

Patch 8.2.2752
problem: coverity reports unreachable code.
Solution: Remove check for positive index.
Files: src/typval.c

Patch 8.2.2753
Problem: Vim9: cannot ignore an item in assignment unpack.
Solution: Allow using an underscore.

version9.txt — 3760

Files: runtime/doc/vim9.txt, src/vim.h, src/evalvars.c, src/eval.c,
src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2754
Problem: :sleep! does not always hide the cursor.
Solution: Add the cursor_is_asleep flag. (Jeremy Lerner, closes #8097,

closes #7998)
Files: src/drawscreen.c, src/ex_docmd.c, src/gui.c, src/proto/term.pro,

src/term.c

Patch 8.2.2755
Problem: Vim9: no error for using a number in a condition.
Solution: Also use ISN_COND2BOOL if the type is t_number_bool.

(closes #7644)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.2756
Problem: Vim9: blob index and slice not implemented yet.
Solution: Implement blob index and slice.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/eval.c,

src/blob.c, src/proto/blob.pro, src/testdir/test_vim9_expr.vim

Patch 8.2.2757
Problem: Vim9: blob tests for legacy and Vim9 script are separate.
Solution: Add CheckLegacyAndVim9Success(). Make blob index assign work.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/errors.h,

src/blob.c, src/proto/blob.pro, src/eval.c, src/ex_docmd.c,
src/testdir/vim9.vim, src/testdir/test_blob.vim

Patch 8.2.2758
Problem: Vim9: wrong line number for autoload function with wrong name.
Solution: Set and restore SOURCING_LNUM. (closes #8100)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2759
Problem: Vim9: for loop infers type of loop variable.
Solution: Do not get the member type. (closes #8102)
Files: src/vim9type.c, src/proto/vim9type.pro, src/list.c,

src/vim9script.c, src/proto/vim9script.pro, src/vim.h,
src/testdir/test_vim9_script.vim

Patch 8.2.2760
Problem: Vim9: no error for changing a for loop variable.
Solution: Make the loop variable read-only. (issue #8102)
Files: src/eval.c, src/evalvars.c, src/vim9compile.c, src/vim.h,

src/testdir/test_vim9_script.vim

Patch 8.2.2761
Problem: Using "syn include" does not work properly.
Solution: Don't add current_syn_inc_tag to topgrp. (Jaehwang Jerry Jung,

closes #8104)
Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.2.2762
Problem: Vim9: function line truncated when compiling.
Solution: Copy the line before processing it. (closes #8101)
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.2763

version9.txt — 3761

Problem: Vim9: cannot use type in for loop unpack at script level.
Solution: Advance over the type name.
Files: src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.2764
Problem: Memory leak when default function argument is allocated.
Solution: Free the expression result.
Files: src/userfunc.c, src/testdir/test_functions.vim

Patch 8.2.2765
Problem: Vim9: not all blob operations work.
Solution: Run more tests also with Vim9 script and :def functions. Fix what

doesn't work.
Files: src/eval.c, src/blob.c, src/proto/blob.pro, src/vim9execute.c,

src/errors.h, src/testdir/vim9.vim, src/testdir/test_blob.vim

Patch 8.2.2766 (after 8.2.2765)
Problem: Test failure.
Solution: Add change to Vim9 compilation error message.
Files: src/vim9compile.c

Patch 8.2.2767 (after 8.2.2765)
Problem: Compiler warning for unused argument.
Solution: Remove the argument.
Files: src/blob.c, src/proto/blob.pro, src/vim9execute.c, src/eval.c

Patch 8.2.2768
Problem: Vim9: memory leak with blob range error.
Solution: Jump to end instead of returning.
Files: src/vim9compile.c

Patch 8.2.2769
Problem: Modula-3 config files are not recognized.
Solution: Add filetype patterns. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2770
Problem: Vim9: type of loop variable is not used.
Solution: Parse and check the variable type. (closes #8107)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2771
Problem: Vim9: assignment not recognized if declaration was skipped.
Solution: Also recognized an assignment if the variable does not exist.

(closes #8108)
Files: src/ex_docmd.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2772
Problem: Problems when restoring 'runtimepath' from a session file.
Solution: Add the "skiprtp" item in 'sessionoptions'.
Files: runtime/doc/options.txt, src/session.c, src/optionstr.c,

src/option.h, src/vim.h, src/option.c,
src/testdir/test_mksession.vim

Patch 8.2.2773
Problem: PSL filetype not recognized.
Solution: Add a filetype pattern. (Daniel Kho, closes #8117)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2774

version9.txt — 3762

Problem: Vim9: cannot import an existing name even when using "as".
Solution: Do not check for an existing name when using "as". (closes #8113)
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.2775
Problem: Vim9: wrong line number used for some commands.
Solution: For :exe, :echo and the like use the line number of the start of

the command. When calling a function set the line number in the
script context.

Files: src/vim9compile.c, src/vim9execute.c, src/structs.h,
src/testdir/test_vim9_script.vim

Patch 8.2.2776
Problem: :mksession uses current value of 'splitbelow' and 'splitright'

even though "options" is not in 'sessionoptions'. (Maxim Kim)
Solution: Save and restore the values, instead of setting to the current

value. (closes #8119)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.2777
Problem: Vim9: blob operations not tested in all ways.
Solution: Run tests with CheckLegacyAndVim9Success(). Make blob assign with

index work.
Files: src/vim9compile.c, src/vim9execute.c, src/errors.h, src/blob.c,

src/proto/blob.pro, src/testdir/test_blob.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2778
Problem: Problem restoring 'packpath' in session.
Solution: Let "skiprtp" also apply to 'packpath'.
Files: runtime/doc/options.txt, src/option.c,

src/testdir/test_mksession.vim

Patch 8.2.2779
Problem: Memory access error in remove() for blob.
Solution: Adjust length for memmove().
Files: src/blob.c

Patch 8.2.2780
Problem: Vim9: for loop over blob doesn't work.
Solution: Make it work.
Files: src/vim9compile.c, src/vim9execute.c, src/testdir/test_blob.vim

Patch 8.2.2781
Problem: Add() silently skips when adding to null list or blob.
Solution: Give an error in Vim9 script. Allocate blob when it is NULL like

with list and dict.
Files: src/list.c, src/evalvars.c, src/vim9execute.c,

src/testdir/test_blob.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.2782
Problem: Vim9: blob operations not fully tested.
Solution: Make more blob tests run in Vim9 script. Fix filter(). Make

insert() give an error for a null blob, like add().
Files: src/list.c, src/testdir/test_blob.vim,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2783
Problem: Duplicate code for setting byte in blob, blob test may fail.
Solution: Call blob_set_append(). Test sort failure with "N".

version9.txt — 3763

Files: src/eval.c, src/testdir/test_blob.vim

Patch 8.2.2784
Problem: Vim9: cannot use \=expr in :substitute.
Solution: Compile the expression into instructions and execute them when

invoked.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/proto/vim9execute.pro, src/regexp.c, src/ex_cmds.c,
src/proto/ex_cmds.pro, src/globals.h,
src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2785
Problem: Vim9: cannot redirect to local variable.
Solution: Compile :redir when redirecting to a variable.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/errors.h,

src/evalvars.c, src/proto/evalvars.pro,
src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2786
Problem: Vim9: memory leak when using :s with expression.
Solution: Clean up the instruction list.
Files: src/vim9compile.c

Patch 8.2.2787
Problem: MS-Windows: crash when using :echoconsole.
Solution: Do not write a NUL when it's already there.
Files: src/os_win32.c

Patch 8.2.2788
Problem: Raku is now the only name what once was called perl6.
Solution: Adjust the filetype detection. (closes #8120)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2789
Problem: Vim9: using \=expr in :substitute does not handle jumps.
Solution: Start with instruction count zero. (closes #8128)
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2790 (after 8.2.2788)
Problem: filetype test fails
Solution: Also update the scripts detection
Files: runtime/scripts.vim

Patch 8.2.2791
Problem: Vim9: memory leak when using \=expr in :substitute.
Solution: Do not allocate a new instruction list.
Files: src/vim9compile.c

Patch 8.2.2792
Problem: Vim9: :disas shows instructions for default args but no text.
Solution: Show the expression test above the default argument instructions.

(closes #8129)
Files: src/vim9execute.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.2793
Problem: MS-Windows: string literals are writable with MSVC.
Solution: Add the /GF compiler flag. Make mch_write() safer. (Ken Takata,

closes #8133)

version9.txt — 3764

Files: src/Make_mvc.mak, src/os_win32.c

Patch 8.2.2794
Problem: Linux users don't know how to get ncurses.
Solution: Add the name of the package. (closes #8132)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2795
Problem: Coverity warns for not using return value.
Solution: Check the return value of compiling the substitute expression.
Files: src/vim9compile.c

Patch 8.2.2796
Problem: Vim9: redir to variable does not accept an index.
Solution: Make the index work.
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2797
Problem: Search highlight disappears in the Visual area.
Solution: Combine the search attributes. (closes #8134)
Files: src/drawline.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_hlsearch_visual_1.dump

Patch 8.2.2798
Problem: Vim9: redir to variable with append does not accept an index.
Solution: Make the appending work.
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2799
Problem: Vim9: type casts don't fully work at the script level.
Solution: Implement the missing piece.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2800
Problem: After a timer displays text a hit-enter prompt is given.
Solution: Reset msg_didany and need_wait_return. (closes #8136)
Files: src/drawscreen.c, src/testdir/test_timers.vim

Patch 8.2.2801
Problem: Free Pascal makefile not recognized.
Solution: Add the fpcmake filetype. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2802
Problem: Vim9: illegal memory access.
Solution: Check for comment before checking for white space. (closes #8142)
Files: src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.2803
Problem: Flicker when the popup menu has an info popup.
Solution: Avoid drawing over the popup when it's going to be redrawn in the

same position. (closes #8131) Also avoid redrawing the scrollbar.
Files: src/popupmenu.c, src/proto/popupmenu.pro, src/drawscreen.c,

src/globals.h

Patch 8.2.2804
Problem: Setting buffer local mapping with mapset() changes global mapping.
Solution: Only set the local mapping. (closes #8143)
Files: src/map.c, src/testdir/test_maparg.vim

version9.txt — 3765

Patch 8.2.2805
Problem: Vim9: cannot use legacy syntax in Vim9 script.
Solution: Add the :legacy command.
Files: src/ex_cmds.h, runtime/doc/vim9.txt, runtime/doc/index.txt

src/ex_cmdidxs.h, src/ex_docmd.c, src/structs.h, src/vim9script.c,
src/vim9compile.c, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_assign.vim

Patch 8.2.2806
Problem: Vim9: using "++nr" as a command might not work.
Solution: Do not recognize "++" and "--" in a following line as addition or

subtraction.
Files: src/vim9compile.c, src/ex_docmd.c, src/ex_cmds.h, src/ex_cmdidxs.h,

src/vim9script.c, src/proto/vim9script.pro, src/eval.c,
src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.2807
Problem: Build fails with tiny features.
Solution: Use a dummy function for ex_incdec().
Files: src/ex_docmd.c

Patch 8.2.2808
Problem: Vim9: increment and decrement not sufficiently tested.
Solution: Add assertions.
Files: src/testdir/test_vim9_assign.vim

Patch 8.2.2809
Problem: Vim9: :def function compilation fails when using :legacy.
Solution: Reset CMOD_LEGACY when compiling a function. (closes #8137)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2810
Problem: Vim9: crash when calling a function in a substitute expression.
Solution: Set the instructions back to the substitute expression

instructions. (closes #8148)
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2811
Problem: Vim9: error for missing white space doesn't say where it is

missing
Solution: Mention the command. (closes #8149)
Files: src/ex_docmd.c, src/errors.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.2812
Problem: Vim9: still crash when using substitute expression.
Solution: Put the instruction list in the stack frame. (closes #8154)
Files: src/vim9execute.c, src/vim9.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.2813
Problem: Cannot grep using fuzzy matching.
Solution: Add the "f" flag to :vimgrep. (Yegappan Lakshmanan, closes #8152)
Files: runtime/doc/quickfix.txt, src/ex_cmds.c, src/proto/search.pro,

src/quickfix.c, src/search.c, src/vim.h,
src/testdir/test_quickfix.vim

Patch 8.2.2814 (after 8.2.2812)
Problem: Vim9: unused variable. (John Marriott)
Solution: Adjust #ifdef.
Files: src/vim9execute.c

version9.txt — 3766

Patch 8.2.2815
Problem: Status line flickers when redrawing popup menu info.
Solution: Do not redraw the status line when the focus is in the popup

window. (issue #8144)
Files: src/popupmenu.c

Patch 8.2.2816
Problem: Vim9: comment below expression in lambda causes problems.
Solution: Use a single space for empty and comment lines. (closes #8156)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2817
Problem: Vim9: script sourcing continues after an error.
Solution: Make an error in any command in "vim9script" abort sourcing.
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.2818
Problem: No jump added to jumplist when opening terminal in current window.
Solution: Call setpcmark(). (closes #8158)
Files: src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.2819
Problem: Finishing an abbreviation with a multi-byte char may not work.
Solution: Escape K_SPECIAL in the typed character. (closes #8160)
Files: src/map.c, src/testdir/test_mapping.vim

Patch 8.2.2820
Problem: Session file may divide by zero.
Solution: Avoid writing divide by zero. (closes #8162)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.2821
Problem: MS-Windows: unnecessarily loading libraries when registering OLE.
Solution: Skip loading libraries when invoked with "-register".
Files: src/main.c, src/globals.h, src/os_win32.c

Patch 8.2.2822 (after 8.2.2821)
Problem: MS-Windows: unnecessarily loading libraries when unregistering OLE.
Solution: Also skip loading libraries when invoked with "-unregister". Run

Vim for README.txt with user privileges.
Files: src/main.c, nsis/gvim.nsi, nsis/README.txt

Patch 8.2.2823
Problem: MS-Windows: launching Vim from installer doesn't open README.
Solution: Adjust the quotes.
Files: nsis/gvim.nsi

Patch 8.2.2824
Problem: MS-Windows: build failure with MSVC.
Solution: Adjust the list of distributed files. Add hint about python.

Adjust path for reading runtime files.
Files: Filelist, src/testdir/shared.vim,

src/testdir/test_function_lists.vim

Patch 8.2.2825
Problem: Code in checkreadonly() not fully tested.
Solution: Add more tests. (Dominique Pellé, closes #8169)
Files: src/testdir/test_excmd.vim

version9.txt — 3767

Patch 8.2.2826
Problem: Compiler warnings for int to size_t conversion. (Randall W.

Morris)
Solution: Add type casts.
Files: src/map.c, src/quickfix.c

Patch 8.2.2827
Problem: Test file was not deleted.
Solution: Uncomment the delete() call. (Dominique Pellé, closes #8172)
Files: src/testdir/test_mksession.vim

Patch 8.2.2828
Problem: Coverity complains about not checking the rename() return value.
Solution: Add "(void)", can't do anything in case of a failure.
Files: src/fileio.c

Patch 8.2.2829
Problem: Some comments are not correct or clear.
Solution: Adjust the comments. Add test for cursor position.
Files: src/regexp_bt.c, src/regexp_nfa.c,

src/testdir/test_exec_while_if.vim,
src/testdir/test_substitute.vim

Patch 8.2.2830
Problem: Terminal colors are not updated when 'background' is set.
Solution: Call term_update_colors() for all terminals. (Marcin Szamotulski,

closes #8171, closes #8150)
Files: src/terminal.c, src/proto/terminal.pro, src/optionstr.c

Patch 8.2.2831
Problem: Vim9: expandcmd() not tested.
Solution: Add a test.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.2832
Problem: Operator cancelled by moving mouse when using popup. (Sergey

Vlasov)
Solution: Do not trigger an operator for a mouse move events. (closes #8176)
Files: src/normal.c

Patch 8.2.2833
Problem: Two key command cancelled by moving mouse when using popup.

(Sergey Vlasov)
Solution: Ignore K_MOUSEMOVE in plain_vgetc().
Files: src/getchar.c

Patch 8.2.2834
Problem: Vim9: :cexpr does not work with local variables.
Solution: Compile :cexpr.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/quickfix.c,

src/proto/quickfix.pro, src/testdir/test_quickfix.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2835 (after 8.2.2834)
Problem: Vim9: leaking memory in :cexpr.
Solution: Also free the command line copy.
Files: src/vim9compile.c

Patch 8.2.2836 (after 8.2.2834)

version9.txt — 3768

Problem: Build failure without the +quickfix feature. (John Marriott)
Solution: Add #ifdef.
Files: src/vim9compile.c, src/vim9execute.c, src/tag.c

Patch 8.2.2837
Problem: Various code lines not covered by tests.
Solution: Add test cases. (Dominique Pellé, closes #8178)
Files: src/testdir/test_excmd.vim, src/testdir/test_functions.vim,

src/testdir/test_options.vim, src/testdir/test_startup.vim,
src/testdir/test_syntax.vim, src/testdir/test_vim9_cmd.vim

Patch 8.2.2838
Problem: File extension .wrap not recognized.
Solution: Use dosini filetype for .wrap files. (Liam Beguin, closes #8177)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2839
Problem: Default redirection missing "ash" and "dash".
Solution: Recognize "ash" and "dash". (Natanael Copa, closes #8180)
Files: runtime/doc/options.txt, src/option.c

Patch 8.2.2840
Problem: Vim9: member operation not fully tested.
Solution: Add a few tests.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2841
Problem: MS-Windows: cursor in wrong position when 'lazyredraw' and

'statusline' are set.
Solution: Call compute_cmdrow(). (closes #8170, closes #8184)
Files: src/os_win32.c

Patch 8.2.2842
Problem: Vim9: skip argument to searchpair() is not compiled.
Solution: Add VAR_INSTR.
Files: src/structs.h, src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/proto/vim9execute.pro, src/eval.c, src/evalfunc.c, src/vim.h,
src/evalvars.c, src/typval.c, src/vim9type.c, src/testing.c,
src/viminfo.c, src/if_py_both.h, src/json.c,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.2843 (after 8.2.2842)
Problem: Vim9: skip argument to searchpairpos() is not compiled.
Solution: Handle like searchpair(). Also for search() and searchpos().
Files: src/vim9compile.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2844
Problem: Vim9: memory leak when using searchpair().
Solution: Free the v_instr field.
Files: src/typval.c

Patch 8.2.2845
Problem: MS-Windows: warning for signed/unsigned comparison.
Solution: Add type cast.
Files: src/terminal.c

Patch 8.2.2846
Problem: Vim9: "echo Func()" does not give an error for a function without

a return value.

version9.txt — 3769

Solution: Give an error. Be more specific about why a value is invalid.
Files: src/globals.h, src/errors.h, src/eval.c, src/evalfunc.c,

src/typval.c, src/vim9compile.c, src/vim9execute.c,
src/testdir/test_vim9_cmd.vim

Patch 8.2.2847
Problem: Perl not tested sufficiently.
Solution: Add test. Also test W17. (Dominique Pellé, closes #8193)
Files: src/testdir/test_arabic.vim, src/testdir/test_perl.vim

Patch 8.2.2848
Problem: Crash when calling partial.
Solution: Check for NULL pointer. (Dominique Pellé, closes #8202)
Files: src/eval.c, src/evalfunc.c, src/testdir/test_functions.vim,

src/testdir/test_listdict.vim

Patch 8.2.2849
Problem: Bufwrite not sufficiently tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8192)
Files: src/testdir/test_startup.vim, src/testdir/test_writefile.vim

Patch 8.2.2850
Problem: Recalling commands from history is not tested.
Solution: Add tests. (closes #8194)
Files: src/testdir/test_cmdline.vim

Patch 8.2.2851
Problem: Using <Cmd> mapping on the command line triggers CmdlineChanged.

(Naohiro Ono)
Solution: Jump to cmdline_not_changed if the command line didn't change.

(closes #8208)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.2852
Problem: Configure can add --as-needed a second time.
Solution: Only add --as-needed if not already there. (Natanael Copa,

closes #8189, closes #8181)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2853 (after 8.2.2851)
Problem: Window is not updated after using <Cmd> mapping.
Solution: So jump to cmdline_changed but skip autocommand.
Files: src/ex_getln.c

Patch 8.2.2854
Problem: Custom statusline cannot contain % items.
Solution: Add "%{% expr %}". (closes #8190)
Files: runtime/doc/options.txt, src/buffer.c, src/optionstr.c,

src/testdir/test_statusline.vim

Patch 8.2.2855
Problem: White space after "->" does not give E274.
Solution: Do not skip white space in legacy script. (closes #8212)
Files: src/eval.c, src/testdir/test_method.vim

Patch 8.2.2856
Problem: Get readonly error for device that can't be written to.
Solution: Check for being able to write first. (closes #8205)
Files: src/ex_cmds.c, src/testdir/test_writefile.vim

version9.txt — 3770

Patch 8.2.2857
Problem: Vim9: exception in ISN_INSTR caught at wrong level.
Solution: Set the starting trylevel in exec_instructions(). (closes #8214)
Files: src/vim9compile.c, src/vim9execute.c, src/globals.h,

src/testdir/test_vim9_builtin.vim

Patch 8.2.2858 (after 8.2.2857)
Problem: Test fails because of changed error message.
Solution: Adjust the expected error message.
Files: src/testdir/test_ex_mode.vim

Patch 8.2.2859 (after 8.2.2857)
Problem: Tcl test fails because of changed error message.
Solution: Adjust the expected error message.
Files: src/testdir/test_tcl.vim

Patch 8.2.2860
Problem: Adding a text property causes the whole window to be redrawn.
Solution: Use changed_lines_buf() to only redraw the affected lines.
Files: src/change.c, src/proto/change.pro, src/textprop.c

Patch 8.2.2861
Problem: Vim9: "legacy return" is not recognized as a return statement.
Solution: Specifically check for a return command. (closes #8213)
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h,

src/testdir/test_vim9_expr.vim

Patch 8.2.2862
Problem: Removing a text property causes the whole window to be redrawn.
Solution: Use changed_lines_buf() to only redraw the affected lines.
Files: src/textprop.c

Patch 8.2.2863 (after 8.2.2862)
Problem: Removing a text property does not redraw optimally.
Solution: Only redraw the lines that mithg actually have been changed.
Files: src/textprop.c

Patch 8.2.2864
Problem: Vim9: crash when using inline function.
Solution: Check for NULL pointer. Make using inline function work inside

lambda. (closes #8217)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.2865 (after 8.2.2864)
Problem: Skipping over function body fails.
Solution: Do not define the function when skipping.
Files: src/userfunc.c

Patch 8.2.2866
Problem: Vim9: memory leak when using inline function.
Solution: Remember what strings to free.
Files: src/userfunc.c, src/structs.h, src/eval.c

Patch 8.2.2867 (after 8.2.2866)
Problem: Build failure.
Solution: Add missing part of the change.
Files: src/globals.h

Patch 8.2.2868
Problem: Vim9: When executing a compiled expression the trylevel at start

version9.txt — 3771

is changed but not restored. (closes #8214)
Solution: Restore the trylevel at start.
Files: src/vim9execute.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2869
Problem: Using unified diff is not tested.
Solution: Test all cases also with unified diff. (issue #8197)
Files: src/testdir/test_diffmode.vim

Patch 8.2.2870
Problem: CmdlineChange event triggered twice for CTRL-R.
Solution: Return CMDLINE_NOT_CHANGED from cmdline_insert_reg().

(closes #8219)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.2871
Problem: Unnecessary VIM_ISDIGIT() calls, badly indented code.
Solution: Call skipdigits() on the next character. Improve indenting.

(Dominique Pellé, closes #8227)
Files: src/charset.c, src/evalfunc.c, src/ex_docmd.c, src/json.c,

src/ops.c, src/tag.c, src/vim9compile.c

Patch 8.2.2872
Problem: Python tests fail without the channel feature.
Solution: Add a feature check. (Dominique Pellé, closes #8226)
Files: src/testdir/test_python2.vim, src/testdir/test_python3.vim

Patch 8.2.2873
Problem: Not enough tests for writing buffers.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8229)
Files: src/testdir/test_buffer.vim, src/testdir/test_cmdline.vim,

src/testdir/test_functions.vim, src/testdir/test_writefile.vim

Patch 8.2.2874
Problem: MS-Windows: screen redraws too often.
Solution: Do not redraw when peeking for a character. (closes #8230,

closes #8211)
Files: src/os_win32.c

Patch 8.2.2875
Problem: Cancelling inputlist() after a digit does not return zero.
Solution: Always return zero when cancelling. (closes #8231)
Files: src/misc1.c, src/testdir/test_functions.vim

Patch 8.2.2876
Problem: Configure cannot detect Python 3.10.
Solution: Use sys.version_info. (closes #8233)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2877
Problem: Insufficient tests for popup menu rightleft.
Solution: Add tests. (Yegappan Lakshmanan, closes #8235)
Files: src/testdir/test_popup.vim,

src/testdir/dumps/Test_pum_rightleft_01.dump,
src/testdir/dumps/Test_pum_rightleft_02.dump,
src/testdir/dumps/Test_pum_scrollbar_01.dump,
src/testdir/dumps/Test_pum_scrollbar_02.dump

Patch 8.2.2878
Problem: Vim9: for loop list unpack only allows for one "_".

version9.txt — 3772

Solution: Drop the value when the variable is "_". (closes #8232)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2879
Problem: File extension .hsig not recognized.
Solution: Use Haskell filetype for .hsig files. (Marcin Szamotulski,

closes #8236)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2880
Problem: Unified diff fails if actually used.
Solution: Invoke :diffupdate in the test. Fix the check for working external

diff. (Ghjuvan Lacambre, Christian Brabandt, closes #8197)
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.2.2881
Problem: Various pieces of code not covered by tests.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8245)
Files: src/testdir/test_const.vim, src/testdir/test_functions.vim,

src/testdir/test_python2.vim, src/testdir/test_python3.vim,
src/testdir/test_user_func.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.2882
Problem: Vim9: memory leak when lambda has an error.
Solution: Free the list of argument types on failure.
Files: src/userfunc.c

Patch 8.2.2883
Problem: MS-Windows manifest file name is misleading.
Solution: Rename the file. (closes #8241)
Files: .gitignore, .hgignore, Filelist, Makefile, src/Make_cyg_ming.mak,

src/Make_mvc.mak, src/gvim.exe.mnf, src/vim.manifest, src/vim.rc

Patch 8.2.2884
Problem: Not enough cscope code is covered by tests.
Solution: Add a few test cases. (Dominique Pellé, closes #8246)
Files: src/testdir/test_cscope.vim

Patch 8.2.2885
Problem: searching for \%'> does not match linewise end of line. (Tim Chase)
Solution: Match end of line if column is MAXCOL. (closes #8238)
Files: src/regexp_nfa.c, src/regexp_bt.c, src/testdir/test_search.vim

Patch 8.2.2886
Problem: Various pieces of code not covered by tests.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8255)
Files: src/testdir/test_expr.vim, src/testdir/test_functions.vim,

src/testdir/test_listdict.vim, src/testdir/test_registers.vim,
src/testdir/test_user_func.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim

Patch 8.2.2887
Problem: Crash when passing null string to fullcommand().
Solution: Check for NULL pointer. (closes #8256)
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.2.2888
Problem: Vim9: "k" command recognized in Vim9 script.
Solution: Do not recognize "k" or "s" and "d" with flags.

version9.txt — 3773

Files: src/ex_docmd.c, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.2889
Problem: Typo and verbose comment in Makefiles.
Solution: Fix typo. Use @#. (Ken Takata, closes #8252)
Files: Makefile, src/testdir/Makefile

Patch 8.2.2890
Problem: Text property duplicated when data block splits.
Solution: Do not continue text prop from previous line. (closes #8261)
Files: src/memline.c, src/structs.h, src/testdir/test_textprop.vim

Patch 8.2.2891
Problem: Cannot build with Perl 5.34.
Solution: Add Perl_SvTRUE_common(). (Ozaki Kiichi, closes #8266,

closes #8250)
Files: src/if_perl.xs

Patch 8.2.2892
Problem: Error message contains random characters.
Solution: Pass the right pointer to error_white_both(). (closes #8272,

closes #8263)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2893
Problem: Multi-byte text in popup title shows up wrong.
Solution: Use the character width instead of the byte length. (Ralf Schandl,

closes #8267, closes #8264)
Files: src/popupwin.c, src/message_test.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_multibytetitle.dump

Patch 8.2.2894
Problem: MS-Windows: using enc_locale() for strftime() might not work.
Solution: Use wcsftime(). (Ken Takata, closes #8271)
Files: src/time.c

Patch 8.2.2895
Problem: Vim9: random characters appear in some error messages.
Solution: Pass the correct pointer. (closes #8277)
Files: src/eval.c, src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2896
Problem: Spellfile functionality not fully tested.
Solution: Add tests for CHECKCOMPOUNDPATTERN and COMMON. (Dominique Pellé,

closes #8270)
Files: src/testdir/test_spellfile.vim

Patch 8.2.2897
Problem: Vim9: can use reserved words at the script level.
Solution: Check variable names for reserved words. (closes #8253)
Files: src/vim9compile.c, src/vim9script.c, src/proto/vim9script.pro,

src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2898
Problem: QuitPre and ExitPre not triggered when GUI window is closed.
Solution: Call before_quit_autocmds(). (closes #8242)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/gui.c

Patch 8.2.2899

version9.txt — 3774

Problem: Appveyor script does not detect nmake failure.
Solution: Explicitly check for executable. (Ken Takata, closes #8281)
Files: ci/appveyor.bat

Patch 8.2.2900
Problem: QuitPre is triggered before :wq writes the file, which is

different from other commands.
Solution: Trigger QuitPre after writing the file. (closes #8279)
Files: src/ex_docmd.c, src/testdir/test_writefile.vim

Patch 8.2.2901
Problem: Some operators not fully tested.
Solution: Add a few test cases. (Yegappan Lakshmanan, closes #8282)
Files: src/testdir/test_cpoptions.vim, src/testdir/test_increment.vim,

src/testdir/test_normal.vim, src/testdir/test_virtualedit.vim,
src/testdir/test_visual.vim

Patch 8.2.2902
Problem: Spellfile functionality not fully tested.
Solution: Add tests for CIRCUMFIX, NOBREAK and others. (Dominique Pellé,

closes #8283)
Files: src/testdir/test_spellfile.vim

Patch 8.2.2903
Problem: Cursor position wrong on wrapped line with 'signcolumn'.
Solution: Don't add space for showbreak twice. (Christian Brabandt,

closes #8262)
Files: src/drawline.c, src/testdir/test_display.vim

Patch 8.2.2904
Problem: "g$" causes scroll if half a double width char is visible.
Solution: Advance to the last fully visible character. (closes #8254)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.2.2905
Problem: No error when defaults.vim cannot be loaded.
Solution: Add an error message. (Christian Brabandt, closes #8248)
Files: runtime/doc/starting.txt, src/errors.h, src/main.c,

src/testdir/test_startup.vim

Patch 8.2.2906 (after 8.2.2905)
Problem: ASAN reports errors for test_startup for unknown reasons.
Solution: Temporarily disable the new test.
Files: src/testdir/test_startup.vim

Patch 8.2.2907
Problem: Memory leak when running out of memory.
Solution: Free the allocated memory. (Dominique Pellé, closes #8284)
Files: src/term.c

Patch 8.2.2908
Problem: Crash when using a terminal popup window from the cmdline window.
Solution: Instead of checking cmdwin_type call cmdwin_is_active().

(closes #8286)
Files: src/terminal.c, src/errors.h, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_cmdwin_no_terminal.dump

Patch 8.2.2909
Problem: Build error with non-Unix system.
Solution: Always include limits.h.

version9.txt — 3775

Files: src/vim.h

Patch 8.2.2910
Problem: Test for cmdline window and terminal fails on MS-Windows.
Solution: Skip the test on MS-Windows.
Files: src/testdir/test_cmdline.vim

Patch 8.2.2911
Problem: Pattern "\%V" does not match all of block selection. (Rick Howe)
Solution: Use the value of vi_curswant. (closes #8285)
Files: src/regexp.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_hlsearch_block_visual_match.dump

Patch 8.2.2912
Problem: MS-Windows: most users expect using Unicode.
Solution: Default 'encoding' to utf-8 on MS-Windows. (Ken Takata,

closes #3907)
Files: runtime/doc/options.txt, src/mbyte.c, src/option.c, src/option.h,

src/testdir/test_writefile.vim

Patch 8.2.2913
Problem: MS-Windows conpty supports using mouse events.
Solution: When enabling the mouse enable mouse input and disable quick edit

mode. (Wez Furlong, closes #8280)
Files: src/os_win32.c

Patch 8.2.2914
Problem: Cannot paste a block without adding padding.
Solution: Add "zp" and "zP" which paste without adding padding. (Christian

Brabandt, closes #8289)
Files: runtime/doc/change.txt, runtime/doc/index.txt, src/normal.c,

src/register.c, src/vim.h, src/testdir/test_normal.vim,
src/testdir/test_visual.vim

Patch 8.2.2915
Problem: MS-Windows: when using "default" for encoding utf-8 is used.
Solution: Use the system encoding. (Ken Takata, closes #8300)
Files: src/mbyte.c, runtime/doc/options.txt

Patch 8.2.2916
Problem: Operators are not fully tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8290)
Files: src/ops.c, src/testdir/test_netbeans.vim,

src/testdir/test_normal.vim, src/testdir/test_visual.vim

Patch 8.2.2917
Problem: Spellfile functionality not fully tested.
Solution: Add tests for SFX with removal of characters, spelling

suggestions with NOBREAK and others. (Dominique Pellé,
closes #8293)

Files: src/testdir/test_spellfile.vim

Patch 8.2.2918
Problem: Builtin function can be shadowed by global variable.
Solution: Check for builtin function before variable. (Yasuhiro Matsumoto,

closes #8302)
Files: src/eval.c, src/testdir/test_functions.vim

Patch 8.2.2919
Problem: Using ":!command" does not work if the command uses posix_spawn().

version9.txt — 3776

Solution: Do not call ioctl() with TIOCSCTTY. (Felipe Contreras)
Files: src/os_unix.c

Patch 8.2.2920
Problem: Still a way to shadow a builtin function. (Yasuhiro Matsumoto)
Solution: Check the key when using extend(). (issue #8302)
Files: src/eval.c, src/dict.c, src/proto/dict.pro,

src/testdir/test_functions.vim

Patch 8.2.2921
Problem: E704 for script local variable is not backwards compatible.

(Yasuhiro Matsumoto)
Solution: Only give the error in Vim9 script. Also check for function-local

variable.
Files: src/dict.c, src/testdir/test_functions.vim

Patch 8.2.2922
Problem: Computing array length is done in various ways.
Solution: Use ARRAY_LENGTH everywhere. (Ken Takata, closes #8305)
Files: src/arabic.c, src/blowfish.c, src/cindent.c, src/cmdexpand.c,

src/cmdhist.c, src/dosinst.c, src/eval.c, src/evalfunc.c,
src/ex_docmd.c, src/fileio.c, src/gui_athena.c, src/gui_gtk_x11.c,
src/gui_haiku.cc, src/gui_photon.c, src/gui_w32.c,
src/gui_xmebw.c, src/hardcopy.c, src/help.c, src/highlight.c,
src/if_mzsch.c, src/macros.h, src/main.c, src/map.c, src/mbyte.c,
src/memline.c, src/menu.c, src/misc2.c, src/normal.c, src/ops.c,
src/option.c, src/optiondefs.h, src/os_win32.c, src/popupwin.c,
src/quickfix.c, src/regexp.c, src/screen.c, src/search.c,
src/syntax.c, src/term.c, src/terminal.c, src/time.c,
src/usercmd.c, src/version.c

Patch 8.2.2923
Problem: EBCDIC build is broken.
Solution: Move sortFunctions() to evalfunc.c. (Ken Takata, closes #8306)
Files: src/eval.c, src/evalfunc.c, src/proto/evalfunc.pro

Patch 8.2.2924
Problem: Superfluous extern declaration.
Solution: Delete the declaration. (Ken Takata, closes #8307)
Files: src/main.c

Patch 8.2.2925
Problem: Vim9: line continuation comment uses legacy syntax.
Solution: Check for #\ instead of "\. (closes #8295)
Files: src/scriptfile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2926
Problem: Vim9: no good error for using :legacy in a :def function.
Solution: Give an explicit error where :legacy is not working.

(closes #8309)
Files: src/vim9compile.c, src/errors.h, src/testdir/test_vim9_func.vim

Patch 8.2.2927
Problem: Test commented out because it fails with ASAN.
Solution: Only skip the test when running with ASAN.
Files: src/testdir/test_startup.vim

Patch 8.2.2928
Problem: The evalfunc.c file is too big.
Solution: Move float related functionality to a separate file. (Yegappan

version9.txt — 3777

Lakshmanan, closes #8287)
Files: Filelist, src/Make_ami.mak, src/Make_cyg_ming.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/eval.c, src/evalfunc.c, src/float.c, src/proto.h,
src/proto/eval.pro, src/proto/float.pro

Patch 8.2.2929
Problem: Accidentally enable tcl by default.
Solution: Revert change to Makefile
Files: src/Makefile

Patch 8.2.2930
Problem: When a popup is visible a mouse move my restart Visual mode.
Solution: Reset held_button when ending Visual mode. (closes #8318)
Files: src/mouse.c, src/proto/mouse.pro, src/normal.c

Patch 8.2.2931
Problem: Vim9: line continuation comment still uses legacy syntax in one

place.
Solution: Check for #\ instead of "\ earlier. (closes #8316)
Files: src/scriptfile.c, src/testdir/test_vim9_script.vim

Patch 8.2.2932 (after 8.2.2930)
Problem: Select mode test fails.
Solution: Do not always reset the held mouse button.
Files: src/mouse.c, src/normal.c, src/proto/normal.pro

Patch 8.2.2933
Problem: When 'clipboard' is "unnamed" zp and zP do not work correctly.
Solution: Pass -1 to str_to_reg() and fix computing the character width

instead of using the byte length. (Christian Brabandt,
closes #8301, closes #8317)

Files: src/clipboard.c, src/mbyte.c, src/register.c

Patch 8.2.2934 (after 8.2.2933)
Problem: ASAN error when using text from the clipboard.
Solution: Get width of each character.
Files: src/register.c

Patch 8.2.2935 (after 8.2.2934)
Problem: Calculating register width is not always needed. (Christian

Brabandt)
Solution: Only calculate the width when the type is MBLOCK.
Files: src/register.c

Patch 8.2.2936
Problem: Vim9: converting number to bool uses wrong stack offset. (Salman

Halim)
Solution: Include the offset in the 2BOOL command.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2937
Problem: Popup test fails if rightleft feature not enabled.
Solution: Check that the rightleft feature is available. (Dominique Pellé,

closes #8321)
Files: src/testdir/test_popup.vim

Patch 8.2.2938

version9.txt — 3778

Problem: After using motion force from feedkeys() it may not be reset.
Solution: Clear motion_force in clearop(). (closes #8323)
Files: src/normal.c, src/testdir/test_visual.vim

Patch 8.2.2939
Problem: GTK: righthand scrollbar does not show with split window.
Solution: Adjust padding when two scrollbars are used. (Matt Wozniski,

closes #8324)
Files: src/gui_gtk.c

Patch 8.2.2940
Problem: MS-Windows: cannot see the size of the text area when resizing the

gvim window.
Solution: Show a tooltip with the text size. (Ken Takata, closes #8326)
Files: src/gui_w32.c

Patch 8.2.2941
Problem: Vim9: using `=expr` does not handle a list of strings.
Solution: Convert a list to a string and escape each item. (closes #8310)
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2942
Problem: Vim9: internal error when calling function with too few arguments
Solution: Check for argument count to be too few. (closes #8325)
Files: src/errors.h, src/vim9execute.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.2943
Problem: Vim9: check for argument count ignores default values.
Solution: Take default argument values into account.
Files: src/vim9execute.c

Patch 8.2.2944
Problem: Vim9: no error when using job or channel as a string.
Solution: Be more strict about conversion to string. (closes #8312)
Files: src/typval.c, src/job.c, src/proto/job.pro, src/channel.c,

src/proto/channel.pro, src/eval.c, src/vim9execute.c,
src/testdir/test_vim9_builtin.vim

Patch 8.2.2945
Problem: Some buffer related code is not tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8320)
Files: src/termlib.c, src/testdir/test_excmd.vim,

src/testdir/test_recover.vim, src/testdir/test_swap.vim,
src/testdir/test_visual.vim

Patch 8.2.2946
Problem: Vim9: substitute expression cannot be a List in a :def function.
Solution: Use typval2string(). (closes #8330)
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.2947
Problem: Build failure without the channel feature.
Solution: Add back #ifdef. (John Marriott)
Files: src/eval.c

Patch 8.2.2948
Problem: Substitute() accepts a number but not a float expression.
Solution: Also accept a float. (closes #8331)
Files: src/typval.c, src/testdir/test_substitute.vim

version9.txt — 3779

Patch 8.2.2949 (after 8.2.2948)
Problem: Tests failing because there is no error for float to string

conversion.
Solution: Change the check for failure to check for correct result. Make

some conversions strict in Vim9 script.
Files: src/evalfunc.c, src/float.c, src/findfile.c, src/json.c,

src/filepath.c, src/testdir/test_eval_stuff.vim,
src/testdir/test_execute_func.vim,
src/testdir/test_float_func.vim, src/testdir/test_functions.vim,
src/testdir/test_listdict.vim, src/testdir/test_glob2regpat.vim

Patch 8.2.2950
Problem: Sound code not fully tested.
Solution: Add more sound tests. (Dominique Pellé, closes #8332)
Files: src/testdir/test_sound.vim

Patch 8.2.2951
Problem: Vim9: cannot use heredoc in :def function for :python, :lua, etc.
Solution: Concatenate the heredoc lines and pass them in the ISN_EXEC_SPLIT

instruction.
Files: src/userfunc.c, src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2952
Problem: Recover test fails on big endian systems.
Solution: Disable the failing test on big endian systems. (Yegappan

Lakshmanan, closes #8335)
Files: src/testdir/test_recover.vim, src/testdir/test_swap.vim

Patch 8.2.2953 (after 8.2.2951)
Problem: Vim9: leaking memory when using heredoc script.
Solution: Free the first line.
Files: src/vim9execute.c

Patch 8.2.2954
Problem: Short file name extension for Scala not recognized.
Solution: Recognize *.sc. (closes #8337)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2955
Problem: Vim9: using filter in compiled command does not work.
Solution: Generate EXEC including the command modifier.
Files: src/vim9compile.c, src/ex_docmd.c, src/ex_cmds.c,

src/proto/ex_cmds.pro, src/testdir/test_vim9_cmd.vim

Patch 8.2.2956
Problem: Vim9: need to plan for future additions.
Solution: Reserve commands for future use: :type, :class, :enum.
Files: src/ex_cmds.h, src/ex_cmdidxs.h

Patch 8.2.2957
Problem: Using getchar() in Vim9 script is problematic.
Solution: Add getcharstr(). (closes #8343)
Files: runtime/doc/eval.txt, src/evalfunc.c, src/getchar.c,

src/proto/getchar.pro, src/testdir/test_functions.vim

Patch 8.2.2958 (after 8.2.2957)
Problem: Function list test fails.
Solution: Add newly added function to the list. Fix typo.

version9.txt — 3780

Files: runtime/doc/usr_41.txt, src/testdir/test_function_lists.vim

Patch 8.2.2959
Problem: sound_playfile() is not tested on MS-Windows.
Solution: Make it work and enable the test. (Dominique Pellé, closes #8338)
Files: src/sound.c, src/testdir/test_sound.vim

Patch 8.2.2960
Problem: Swap file recovery not sufficiently tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8339)
Files: src/testdir/test_recover.vim

Patch 8.2.2961
Problem: Keys typed during a :normal command are discarded.
Solution: Concatenate saved typeahead and typed keys. (closes #8340)
Files: src/getchar.c, src/proto/getchar.pro, src/ex_docmd.c,

src/evalfunc.c, src/debugger.c, src/ui.c, src/proto/ui.pro

Patch 8.2.2962
Problem: MS-Windows command line arguments have wrong encoding.
Solution: Always use utf-8 in get_cmd_argsW(). (Ken Takata, closes #8347)
Files: src/os_win32.c

Patch 8.2.2963
Problem: GUI: mouse move may start Visual mode with a popup visible.
Solution: Add special code for mouse move. (closes #8318)
Files: src/vim.h, src/gui.c, src/keymap.h, src/term.c

Patch 8.2.2964
Problem: Vim9: hang when using space after ->. (Naohiro Ono)
Solution: Skip over white space to find the function name. (closes #8341)
Files: src/eval.c, src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.2965
Problem: Vim9: crash when calling function that failed to compile.
Solution: Fail when trying to call the function. (closes #8344)
Files: src/errors.h, src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.2966
Problem: ml_get errors after recovering a file. (Yegappan Lakshmanan)
Solution: Fix the cursor position after deleting lines.
Files: src/memline.c

Patch 8.2.2967
Problem: Vim9: crash when using two levels of partials.
Solution: Add outer_ref_T and use it in the execution context.
Files: src/structs.h, src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.2968 (after 8.2.2967)
Problem: Vim9: memory leak
Solution: Unreference pt_outer of partial.
Files: src/eval.c

Patch 8.2.2969
Problem: Subtracting from number option fails when result is zero. (Ingo

Karkat)
Solution: Reset the string value when using the numeric value.

(closes #8351)
Files: src/evalvars.c, src/testdir/test_vimscript.vim

version9.txt — 3781

Patch 8.2.2970
Problem: Python configure check uses deprecated command.
Solution: Use sysconfig instead of distutils if possible. (Zdenek Dohnal,

closes #8354)
Files: src/configure.ac, src/auto/configure

Patch 8.2.2971
Problem: Cannot yank a block without trailing spaces.
Solution: Add the "zy" command. (Christian Brabandt, closes #8292)
Files: runtime/doc/change.txt, runtime/doc/index.txt, src/normal.c,

src/ops.c, src/register.c, src/structs.h,
src/testdir/test_visual.vim

Patch 8.2.2972
Problem: "%bd" tries to delete popup window buffers, which fails. (Ralf

Schandl)
Solution: Do not try to delete a popup window buffer. (closes #8349)
Files: src/buffer.c, src/vim.h, src/testdir/test_popupwin.vim

Patch 8.2.2973
Problem: Fix for recovery and diff mode not tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8352)
Files: src/testdir/test_diffmode.vim, src/testdir/test_prompt_buffer.vim,

src/testdir/test_recover.vim

Patch 8.2.2974
Problem: Greek spell checking uses wrong case folding.
Solution: Fold capital sigma depending on whether it is at the end of a

word or not. (closes #299)
Files: src/spell.c, src/proto/spell.pro, src/spellfile.c,

src/spellsuggest.c

Patch 8.2.2975
Problem: Vim9: can only use an autoload function name as a string.
Solution: Load the autoload script when encountered. (closes #8124)
Files: src/vim9compile.c, src/evalvars.c, src/scriptfile.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2976 (after 8.2.2975)
Problem: Build failure without the +eval feature.
Solution: Add #ifdefs.
Files: src/scriptfile.c

Patch 8.2.2977
Problem: Crash when using a null function reference. (Naohiro Ono)
Solution: Check for an invalid function name. (closes #8367)
Files: src/eval.c, src/errors.h, src/testdir/test_functions.vim

Patch 8.2.2978 (after 8.2.2977)
Problem: Warning for uninitialized variable.
Solution: Set return value to FAIL.
Files: src/eval.c

Patch 8.2.2979
Problem: Not all options code is covered by tests.
Solution: Add more tests for options. (Yegappan Lakshmanan, closes #8369)
Files: src/testdir/test_edit.vim, src/testdir/test_excmd.vim,

src/testdir/test_help.vim, src/testdir/test_mksession.vim,
src/testdir/test_options.vim, src/testdir/test_vartabs.vim,
src/testdir/test_window_cmd.vim

version9.txt — 3782

Patch 8.2.2980
Problem: Popup window test is a bit flaky.
Solution: Add a redraw command.
Files: src/testdir/test_popupwin.vim

Patch 8.2.2981
Problem: Recovery test is not run on big-endian systems.
Solution: Make it work on big-endian systems. (James McCoy, closes #8368)
Files: src/testdir/test_recover.vim

Patch 8.2.2982
Problem: Vim9: future commands are not reserved yet.
Solution: Add commands to be implemented later. Make "this" a reserved

name.
Files: runtime/doc/vim9.txt, src/ex_cmds.h, src/ex_cmdidxs.h,

src/vim9script.c, src/testdir/test_vim9_assign.vim

Patch 8.2.2983
Problem: Vim9: an inline function requires specifying the return type.
Solution: Make the return type optional.
Files: src/eval.c, src/vim9compile.c, src/userfunc.c,

src/testdir/test_vim9_func.vim

Patch 8.2.2984 (after 8.2.2983)
Problem: Vim9: Test fails because of missing return statement.
Solution: When type is unknown set type to void.
Files: src/vim9compile.c

Patch 8.2.2985
Problem: Vim9: a compiled function cannot be debugged.
Solution: Add initial debugging support.
Files: src/vim9.h, src/vim9compile.c, src/proto/vim9compile.pro,

src/vim.h, src/eval.c, src/vim9execute.c, src/userfunc.c,
src/vim9type.c, src/testdir/test_debugger.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.2986
Problem: Build failure without the profile feature.
Solution: Add #ifdef.
Files: src/vim9compile.c

Patch 8.2.2987
Problem: Build failure with normal features.
Solution: Remove #define.
Files: src/vim9execute.c

Patch 8.2.2988
Problem: Vim9: debugger test fails.
Solution: Get the debugger instructions when needed.
Files: src/vim.h, src/vim9.h

Patch 8.2.2989
Problem: Vim9: memory leak when debugging a :def function.
Solution: Free the debug instructions.
Files: src/vim9compile.c

Patch 8.2.2990
Problem: Jupyter Notebook files are not recognized.
Solution: Recognize *.ipynb. (closes #8375)

version9.txt — 3783

Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.2991
Problem: Vim9: no completion for :vim9 and :legacy.
Solution: Expand argument as a command. (closes #8377)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.2992
Problem: Vim9: completion for :disassemble is incomplete.
Solution: Recognize the "debug" and "profile" arguments.
Files: src/cmdexpand.c, src/vim9execute.c, src/proto/vim9execute.pro,

src/vim.h, src/testdir/test_cmdline.vim

Patch 8.2.2993
Problem: 'fileencodings' default value should depend on 'encoding'. (Gary

Johnson)
Solution: When 'encoding' is "utf-8" use a different default value for

'fileencodings'.
Files: src/mbyte.c, src/option.c, src/proto/option.pro,

src/testdir/test_options.vim

Patch 8.2.2994
Problem: Various code is not fully tested.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8378)
Files: src/testdir/test_excmd.vim, src/testdir/test_mapping.vim,

src/testdir/test_modeline.vim, src/testdir/test_options.vim,
src/testdir/test_paste.vim, src/vim9compile.c

Patch 8.2.2995
Problem: Linker errors with dynamic Python 3.10.
Solution: Add a couple of library entries. (Zdenek Dohnal, closes #8381,

closes #8356)
Files: src/if_python3.c

Patch 8.2.2996
Problem: Vim9: when debugging cannot inspect local variables.
Solution: Make local variables available when debugging.
Files: src/vim9execute.c, src/proto/vim9execute.pro, src/vim9compile.c,

src/vim9.h, src/debugger.c, src/testdir/test_debugger.vim

Patch 8.2.2997 (after 8.2 2996)
Problem: Vim9: disassemble test fails.
Solution: Adjust expected output.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.2998 (after 8.2 2996)
Problem: Vim9: disassemble test fails.
Solution: Add missing call to lookup_debug_var().
Files: src/evalvars.c

Patch 8.2.2999
Problem: Balloon sometimes does not hide with GTK 3.
Solution: Also listen to GDK_LEAVE_NOTIFY. (Johannes Stezenbach)
Files: src/gui_beval.c

Patch 8.2.3000
Problem: Vim9: warning for uninitialized variable.
Solution: Add initialization. (John Marriott)
Files: src/vim9compile.c

version9.txt — 3784

Patch 8.2.3001
Problem: Vim9: memory leak when compilation fails.
Solution: Free the list of variable names.
Files: src/vim9compile.c

Patch 8.2.3002
Problem: Vim doesn't abort on a fatal Tcl error.
Solution: Change emsg() to iemsg(). (Dominique Pellé, closes #8383)
Files: src/if_tcl.c

Patch 8.2.3003
Problem: Vim9: closure compiled with wrong compile type.
Solution: Use COMPILE_TYPE() when calling a function. (closes #8384)
Files: src/vim9execute.c, src/testdir/test_debugger.vim

Patch 8.2.3004
Problem: Vim9: error for missing colon given while skipping.
Solution: Do not give the error when skipping. (closes #8385)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.3005
Problem: Vim9: using a void value does not give a proper error message.
Solution: Give a clear error message. (closes #8387)
Files: src/typval.c, src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3006
Problem: Crash when echoing a value very early. (Naruhiko Nishino)
Solution: Do not use a NUL to truncate the message, make a copy.

(closes #8388)
Files: src/message.c, src/testdir/test_startup.vim

Patch 8.2.3007 (after 8.2.3005)
Problem: Vim9: test for void value fails.
Solution: Adjust expected error. Do not make a copy of void.
Files: src/typval.c, src/testdir/test_functions.vim

Patch 8.2.3008 (after 8.2.3006)
Problem: Startup test may hang.
Solution: Add quit command in the script.
Files: src/testdir/test_startup.vim

Patch 8.2.3009 (after 8.2.3006)
Problem: Startup test may hang.
Solution: Do not run the test in the GUI.
Files: src/testdir/test_startup.vim

Patch 8.2.3010
Problem: Not enough testing for viminfo code.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #8390)
Files: src/register.c, src/testdir/test_fileformat.vim,

src/testdir/test_smartindent.vim, src/testdir/test_viminfo.vim

Patch 8.2.3011
Problem: Vim9: cannot get argument values during debugging.
Solution: Lookup names in the list of arguments. Put debug instruction

halfway for command.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_debugger.vim

version9.txt — 3785

Patch 8.2.3012
Problem: When 'rightleft' is set the line number is sometimes drawn

reversed.
Solution: Adjust how space is handled. (Christian Brabandt, closes #8389,

closes #8391)
Files: src/drawline.c, src/testdir/test_number.vim

Patch 8.2.3013
Problem: Vim: when debugging only the first line of a command using line

continuation is displayed.
Solution: Find the next command and concatenate lines until that one.

(closes #8392)
Files: src/vim9execute.c, src/testdir/test_debugger.vim

Patch 8.2.3014
Problem: Coverity warns for freeing static string.
Solution: Do not assign static string to pointer. (Dominique Pellé,

closes #8397)
Files: src/vim9execute.c

Patch 8.2.3015
Problem: Vim9: Assigning to @# requires a string. (Naohiro Ono)
Solution: Accent a number or a string. (closes #8396)
Files: src/vim9compile.c, src/vim9execute.c, src/globals.h,

src/testdir/test_vim9_assign.vim

Patch 8.2.3016
Problem: Confusing error when expression is followed by comma.
Solution: Give a different error for trailing text. (closes #8395)
Files: src/eval.c, src/testdir/test_let.vim,

src/testdir/test_eval_stuff.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_viminfo.vim,
src/testdir/test_vimscript.vim

Patch 8.2.3017
Problem: Vim9: debugger shows too many lines.
Solution: Truncate at a comment, "enddef", etc. (closes #8392)
Files: src/vim9execute.c, src/testdir/test_debugger.vim

Patch 8.2.3018
Problem: Formatting using quickfixtextfunc is lost when updating location

lists for different buffers. (Yorick Peterse)
Solution: Use the right window for the location list. (Yegappan Lakshmanan,

closes #8400, closes #8403)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.3019
Problem: Location list only has the start position.
Solution: Make it possible to add an end position. (thinca, closes #8393)
Files: runtime/doc/eval.txt, src/quickfix.c,

src/testdir/dumps/Test_quickfix_cwindow_1.dump,
src/testdir/dumps/Test_quickfix_cwindow_2.dump,
src/testdir/test_quickfix.vim, src/testdir/test_tagjump.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.3020
Problem: Unreachable code.
Solution: Remove the code. (closes #8406)
Files: src/ex_docmd.c

version9.txt — 3786

Patch 8.2.3021
Problem: Spaces allowed between option name and "!", "?", etc.
Solution: Disallow spaces in Vim9 script, it was not documented.

(closes #8408)
Files: src/option.c, src/testdir/test_vim9_script.vim

Patch 8.2.3022
Problem: Available encryption methods are not strong enough.
Solution: Add initial support for xchacha20. (Christian Brabandt,

closes #8394)
Files: .github/workflows/ci.yml, runtime/doc/eval.txt,

runtime/doc/options.txt, runtime/doc/various.txt,
src/INSTALLpc.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/auto/configure, src/blowfish.c, src/bufwrite.c,
src/config.h.in, src/configure.ac, src/crypt.c, src/crypt_zip.c,
src/errors.h, src/evalfunc.c, src/feature.h, src/fileio.c,
src/memline.c, src/option.c, src/optionstr.c,
src/proto/blowfish.pro, src/proto/crypt.pro,
src/proto/crypt_zip.pro, src/structs.h,
src/testdir/samples/crypt_sodium_invalid.txt,
src/testdir/test_crypt.vim, src/undo.c, src/version.c

Patch 8.2.3023
Problem: Vim9: arguments for execute() not checked at compile time.
Solution: Add a function to check the argument types.
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3024 (after 8.2.3023)
Problem: execute() function test fails.
Solution: Adjust test for different error.
Files: src/testdir/test_execute_func.vim

Patch 8.2.3025
Problem: Not enough tests for quickfix end_col and end_lnum.
Solution: Add a few more test cases. (Shane-XB-Qian, closes #8409)
Files: src/testdir/test_quickfix.vim

Patch 8.2.3026
Problem: Vim9: cannot set breakpoint in compiled function.
Solution: Check for breakpoint when calling a function.
Files: src/vim9execute.c, src/structs.h, src/vim.h, src/vim9.h,

src/debugger.c, src/testdir/test_debugger.vim

Patch 8.2.3027
Problem: Vim9: breakpoint in compiled function not always checked.
Solution: Check for breakpoint when calling compiled function from compiled

function.
Files: src/vim9execute.c, src/testdir/test_debugger.vim

Patch 8.2.3028
Problem: GUI mouse events not tested.
Solution: Add test_gui_mouse_event(). Add mouse tests. Also add a few

viminfo tests. (Yegappan Lakshmanan, closes #8407)
Files: runtime/doc/eval.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/proto/testing.pro,
src/testdir/test_gui.vim, src/testdir/test_viminfo.vim,
src/testing.c

Patch 8.2.3029

version9.txt — 3787

Problem: Vim9: crash when using operator and list unpack assignment.
(Naohiro Ono)

Solution: Get variable value before operation. (closes #8416)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c, src/ex_docmd.c,

src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3030
Problem: Coverity reports a memory leak.
Solution: Fix the leak and a few typos. (Dominique Pellé, closes #8418)
Files: src/crypt.c, src/errors.h

Patch 8.2.3031
Problem: No error if a function name starts with an underscore. (Naohiro

Ono)
Solution: In Vim9 script disallow a function name starting with an

underscore, as is mentioned in the help. (closes #8414)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3032
Problem: Build problems with MSVC, other crypt issues with libsodium.
Solution: Adjust MSVC makefile. Disable swap file only when 'key' is set.

Adjust error message used when key is wrong. Fix Coverity issues.
(Christian Brabandt, closes #8420, closes #8411)

Files: src/Make_mvc.mak, src/crypt.c, src/errors.h, src/fileio.c,
src/memline.c, src/proto/crypt.pro

Patch 8.2.3033
Problem: No error when using alpha delimiter with :global.
Solution: Check the delimiter like with :substitute. (closes #8415)
Files: src/ex_cmds.c, src/testdir/test_global.vim

Patch 8.2.3034
Problem: Installing packages on github CI sometimes fails.
Solution: Update package information first. (Christian Brabandt,

closes #8432)
Files: .github/workflows/ci.yml

Patch 8.2.3035
Problem: Vim9: crash when calling :def function with partial and return

type is not set.
Solution: When the return type is not set handle like the return type is

unknown. (closes #8422)
Files: src/vim9type.c, src/testdir/test_vim9_func.vim

Patch 8.2.3036
Problem: Vim9: builtin function arguments not checked at compile time.
Solution: Add more argument type specs. Check arguments to test_setmouse()

and test_gui_mouse_event(). (Yegappan Lakshmanan, closes #8425)
Files: src/evalfunc.c, src/testdir/test_assert.vim,

src/testdir/test_gui.vim, src/testdir/test_popupwin.vim,
src/testdir/test_vim9_builtin.vim, src/testing.c

Patch 8.2.3037
Problem: Configure reports libcanberra when checking for libsodium.
Solution: Adjust the message. (Ozaki Kiichi, closes #8435)
Files: src/configure.ac, src/auto/configure

Patch 8.2.3038
Problem: Amiga built-in version string doesn't include build date.

version9.txt — 3788

Solution: Add the build date if available. (Ola Söder, closes #8437)
Files: src/os_amiga.c

Patch 8.2.3039
Problem: Vim9: breakpoint at a comment line does not work.
Solution: Add the comment line number to the debug instruction.

(closes #8429)
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_debugger.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3040
Problem: GUI: dropping files not tested.
Solution: Add test_gui_drop_files() and tests. (Yegappan Lakshmanan,

closes #8434)
Files: runtime/doc/eval.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/gui.c,
src/proto/testing.pro, src/testdir/test_gui.vim, src/testing.c

Patch 8.2.3041
Problem: Detecting if the process of a swap file is running fails if the

process is owned by another user.
Solution: Check for the ESRCH error. (closes #8436)
Files: src/os_unix.c

Patch 8.2.3042 (after 8.2.3041)
Problem: Swap file test fails.
Solution: Check for a very high process ID instead of one, which should be

running.
Files: src/testdir/test_swap.vim

Patch 8.2.3043
Problem: Amiga: cannot get the shell size on MorphOS and AROS.
Solution: Use control sequences. (Ola Söder, closes #8438)
Files: src/os_amiga.c

Patch 8.2.3044
Problem: Amiga MorphOS and AROS: process ID is not valid.
Solution: Use FindTask to return something which is unique to all processes.

(Ola Söder, closes #8444)
Files: src/os_amiga.c

Patch 8.2.3045
Problem: Minor typos.
Solution: Fix the typos. (Christian Brabandt, closes #8441)
Files: src/VisVim/README_VisVim.txt, src/evalfunc.c, src/testdir/vim9.vim

Patch 8.2.3046
Problem: Amiga MorphOS: Term mode is set using DOS packets.
Solution: Use the same way of setting term mode on all next gen Amiga-like

systems. (Ola Söder, closes #8445)
Files: src/os_amiga.c

Patch 8.2.3047
Problem: Increment and decrement don't allow for next command.
Solution: Allow for comment and next command. (closes #8442)
Files: src/ex_cmds.h, src/vim9script.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3048
Problem: Strange error for white space after ++ command.

version9.txt — 3789

Solution: Check for white space explicitly. (closes #8440)
Files: src/vim9script.c, src/errors.h, src/vim9compile.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.3049
Problem: JSON patch file not recognized.
Solution: Recognize json-patch as json. (Kevin Locke, closes #8450)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3050
Problem: Cannot recognize elixir files.
Solution: Recognize Elixir-specific files. Check if an .ex file is Euphoria

or Elixir. (Austin Gatlin, closes #8401, closes #8446)
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

src/testdir/test_filetype.vim

Patch 8.2.3051
Problem: Vim9: for loop with one list variable does not work.
Solution: Use a separate flag for unpacking a list. (closes #8452)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3052
Problem: Vim9: "legacy call" does not work.
Solution: Do not skip "call" after "legacy". (closes #8454)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.3053
Problem: Vim9: cannot assign to @@ in :def function
Solution: Handle '@' like '"'. (closes #8456)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3054
Problem: Vim9: unpack assignment using "_" after semicolon fails.
Solution: Drop the expression result. (closes #8453)
Files: src/vim9compile.c, src/errors.h, src/testdir/test_vim9_assign.vim

Patch 8.2.3055
Problem: Strange error for assigning to "x.key" on non-dictionary.
Solution: Add a specific error message. (closes #8451)
Files: src/eval.c, src/errors.h, src/testdir/test_vim9_assign.vim,

src/testdir/test_listdict.vim, src/testdir/test_let.vim

Patch 8.2.3056
Problem: Vim9: using default value in lambda gives confusing error.
Solution: Pass "default_args" on the first pass to get the arguments.

(closes #8455)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3057
Problem: Vim9: debugger test fails with normal features and +terminal.

(Dominique Pellé)
Solution: Adjust the INSTRUCTIONS macro. (closes #8460)
Files: src/vim9.h

Patch 8.2.3058 (after 8.2.3056)
Problem: Vim9: cannot use ternary operator in parentheses.
Solution: Do not use "==" for a default argument value. (closes #8462)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3059 (after 8.2.3056)

version9.txt — 3790

Problem: Vim9: memory leak when using lambda.
Solution: Do not store the default value strings when skipping.
Files: src/userfunc.c

Patch 8.2.3060 (after 8.2.3056)
Problem: Vim9: cannot use ternary operator in parentheses.
Solution: Do not use "=~" for a default argument value. (closes #8462)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3061
Problem: Testing the shell option is incomplete and spread out.
Solution: Move shell tests to one file and increase coverage. (Yegappan

Lakshmanan, closes #8464)
Files: src/testdir/Make_all.mak, src/testdir/test_functions.vim,

src/testdir/test_options.vim, src/testdir/test_shell.vim,
src/testdir/test_system.vim

Patch 8.2.3062
Problem: Internal error when adding several text properties.
Solution: Do not handle text properties when deleting a line for splitting a

data block. (closes #8466)
Files: src/structs.h, src/memline.c, src/testdir/test_textprop.vim

Patch 8.2.3063
Problem: Crash when switching 'cryptmethod' to xchacha20 with an existing

undo file. (Martin Tournoij)
Solution: Disable reading undo file when decoding can't be done inplace.

(issue #8467)
Files: src/fileio.c, src/bufwrite.c

Patch 8.2.3064
Problem: Vim9: in script cannot set item in uninitialized list.
Solution: When a list is NULL allocate an empty one. (closes #8461)
Files: src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3065
Problem: Vim9: error when sourcing script twice and reusing a function

name.
Solution: Check if the function is dead. (closes #8463)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3066
Problem: Vim9: debugging lambda does not work.
Solution: Use the compile type of the function when compiling a lambda.

(closes #8412)
Files: src/vim9compile.c, src/testdir/test_debugger.vim

Patch 8.2.3067
Problem: Building fails with Athena. (Elimar Riesebieter)
Solution: Adjust #ifdefs and add the 'drop_file' feature.
Files: src/evalfunc.c, src/testing.c, src/testdir/test_gui.vim

Patch 8.2.3068
Problem: Unicode tables are slightly outdated.
Solution: Update the tables for Unicode release 13. (Christian Brabandt

closes #8430)
Files: runtime/tools/unicode.vim, src/mbyte.c

Patch 8.2.3069
Problem: Error messages are spread out.

version9.txt — 3791

Solution: Move some error messages to errors.h. Use clearer names.
Files: src/errors.h, src/globals.h, src/arglist.c, src/buffer.c,

src/channel.c, src/eval.c, src/evalfunc.c, src/evalvars.c,
src/evalwindow.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c,
src/filepath.c, src/fold.c, src/getchar.c, src/indent.c,
src/list.c, src/map.c, src/mark.c, src/normal.c, src/ops.c,
src/optionstr.c, src/popupwin.c, src/quickfix.c, src/spellfile.c,
src/textprop.c, src/typval.c, src/undo.c, src/userfunc.c,
src/vim9compile.c, src/window.c

Patch 8.2.3070
Problem: Not enough testing for shell use.
Solution: Add a bit more testing. (Yegappan Lakshmanan, closes #8469)
Files: src/testdir/test_shell.vim, src/testdir/test_startup.vim

Patch 8.2.3071
Problem: Shell options are not set properly for PowerShell.
Solution: Use better option defaults. (Mike Williams, closes #8459)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/os_dos.txt, src/fileio.c, src/misc2.c, src/option.c,
src/os_win32.c, src/testdir/test_shell.vim

Patch 8.2.3072
Problem: The "zy" command does not work well when 'virtualedit' is set to

"block". (Johann Höchtl)
Solution: Make endspaces zero. (Christian Brabandt, closes #8468,

closes #8448)
Files: src/register.c, src/testdir/test_visual.vim

Patch 8.2.3073
Problem: When cursor is moved for block append wrong text is inserted.
Solution: Calculate an offset. (Christian Brabandt, closes #8433,

closes #8288)
Files: src/ops.c, src/testdir/test_blockedit.vim,

src/testdir/test_visual.vim

Patch 8.2.3074
Problem: popup_atcursor() uses wrong position with concealing.
Solution: Keep w_wcol in conceal_check_cursor_line(). (closes #8476)
Files: src/screen.c, src/proto/screen.pro, src/normal.c, src/edit.c,

src/ui.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_atcursor_pos.dump

Patch 8.2.3075
Problem: Xxd always reports an old version string. (Åsmund Ervik)
Solution: Update the version string with the last known change date.

(Jürgen Weigert, closes #8475)
Files: src/xxd/xxd.c, src/testdir/test_xxd.vim

Patch 8.2.3076
Problem: Vim9: using try in catch block causes a hang.
Solution: Save and restore the ec_in_catch flag. (closes #8478)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.3077
Problem: Vim9: an error in a catch block is not reported.
Solution: Put the "in catch" flag in the try stack. (closes #8478)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.3078

version9.txt — 3792

Problem: Vim9: profile test fails.
Solution: Make throw in :catch jump to :finally.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_script.vim

Patch 8.2.3079
Problem: Powershell core not supported by default.
Solution: Set option defaults for "pwsh". (Mike Williams, closes #8481)
Files: runtime/doc/eval.txt, runtime/doc/options.txt,

runtime/doc/os_dos.txt, runtime/doc/os_win32.txt, src/fileio.c,
src/misc2.c, src/option.c, src/os_win32.c,
src/testdir/test_shell.vim

Patch 8.2.3080
Problem: Recover test fails on 32bit systems. (Ondřej Súkup)
Solution: Detect 32/64 bit systems. (Yegappan Lakshmanan, closes #8485,

closes #8479)
Files: src/testdir/test_recover.vim

Patch 8.2.3081
Problem: Cannot catch errors in a channel command.
Solution: Instead of skipping the error make it silent. (closes #8477)
Files: src/channel.c

Patch 8.2.3082
Problem: A channel command "echoerr" does not show anything.
Solution: Do not use silent errors when using an "echoerr" command.

(closes #8494)
Files: src/channel.c, src/testdir/test_channel.py,

src/testdir/test_channel.vim

Patch 8.2.3083
Problem: Crash when passing null string to charclass().
Solution: Bail out when string pointer is NULL. (Christian Brabandt,

closes #8498, closes #8260)
Files: src/mbyte.c, src/testdir/test_functions.vim

Patch 8.2.3084
Problem: Vim9: builtin function argument types are not checked at compile

time.
Solution: Add argument types. (Yegappan Lakshmanan, closes #8503)
Files: src/evalfunc.c, src/testdir/test_functions.vim,

src/testdir/test_glob2regpat.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.3085
Problem: JSONC files are not recognized.
Solution: Recognize .jsonc files. (Izhak Jakov, closes #8500)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3086
Problem: Vim9: breakpoint on "for" does not work.
Solution: Use the right line number in ISN_DEBUG. (closes #8486)
Files: src/vim9compile.c, src/testdir/test_debugger.vim

Patch 8.2.3087
Problem: Gemtext files are not recognized.
Solution: Recognize .gmi and .gemini files. (closes #8427)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3793

Patch 8.2.3088
Problem: With 'virtualedit' set to "block" Visual highlight is wrong after

using "$". (Marco Trosi)
Solution: Do not set w_old_cursor_lcol to MAXCOL. (closes #8495)
Files: src/drawscreen.c, src/testdir/test_visual.vim,

src/testdir/dumps/Test_visual_block_with_virtualedit.dump

Patch 8.2.3089
Problem: Garbage collection has useless code.
Solution: Bail out when aborting. (closes #8504)
Files: src/userfunc.c

Patch 8.2.3090
Problem: With concealing enabled and indirectly closing a fold the cursor

may be somewhere in a folded line.
Solution: Recompute the cursor position when the cursor line can be

concealed. (closes #8480)
Files: src/drawscreen.c

Patch 8.2.3091
Problem: Vim9: default argument expression cannot use previous argument
Solution: Correct argument index. (closes #8496)
Files: src/vim9compile.c, src/structs.h, src/testdir/test_vim9_func.vim

Patch 8.2.3092
Problem: Vim9: builtin function test fails without the +channel feature.
Solution: Check the +channel feature is supported. (Dominique Pellé,

closes #8507)
Files: runtime/doc/eval.txt, src/testdir/test_vim9_builtin.vim

Patch 8.2.3093
Problem: tablabel_tooltip test fails with Athena. (Dominique Pellé)
Solution: Skip the test when using Athena. (closes #8508)
Files: src/testdir/test_gui.vim, src/testdir/check.vim

Patch 8.2.3094
Problem: Test_popup_atcursor_pos() fails without the conceal feature.
Solution: Add a check for the conceal feature. (Dominique Pellé,

closes #8505)
Files: src/testdir/test_popupwin.vim

Patch 8.2.3095 (after 8.2.3088)
Problem: With 'virtualedit' set to "block" block selection is wrong after

using "$". (Marco Trosi)
Solution: Compute the longest selected line. (closes #8495)
Files: src/drawscreen.c, src/testdir/test_visual.vim,

src/testdir/dumps/Test_visual_block_with_virtualedit2.dump

Patch 8.2.3096
Problem: Temp files remain after running tests.
Solution: Delete the right files. (Dominique Pellé, closes #8509)
Files: src/testdir/test_debugger.vim, src/testdir/test_lambda.vim,

src/testdir/test_visual.vim

Patch 8.2.3097
Problem: Crash when using "quit" at recovery prompt and autocommands are

triggered.
Solution: Block autocommands when creating an empty buffer to use as the

current buffer. (closes #8506)

version9.txt — 3794

Files: src/buffer.c, src/testdir/test_swap.vim

Patch 8.2.3098
Problem: Popup window test is flaky on MS-Windows with GUI.
Solution: Skip the check in this situation.
Files: src/testdir/test_popupwin.vim

Patch 8.2.3099
Problem: Vim9: missing catch/finally not reported at script level.
Solution: Give an error. (closes #8487)
Files: src/structs.h, src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3100
Problem: Vim9: no error when using type with unknown number of arguments.
Solution: Do not ignore argument count of -1. (closes #8492)
Files: src/vim9type.c, src/evalfunc.c, src/proto/evalfunc.pro,

src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.3101
Problem: Missing function prototype for vim_round().
Solution: Add the prototype.
Files: src/proto/float.pro

Patch 8.2.3102 (after 8.2.3097)
Problem: Test for crash fix does not fail without the fix.
Solution: Adjust the test sequence. (closes #8506)
Files: src/testdir/test_swap.vim

Patch 8.2.3103 (after 8.2.3102)
Problem: Swap test may fail on some systems when jobs take longer to exit.
Solution: Use different file names.
Files: src/testdir/test_swap.vim

Patch 8.2.3104
Problem: Vim9: unspecified function type causes type error.
Solution: Don't check type when min_argcount is negative. (issue #8492)
Files: src/globals.h, src/vim9type.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3105
Problem: Vim9: type of partial is wrong when it has arguments.
Solution: Subtract arguments from the count. (issue #8492)
Files: src/vim9type.c, src/userfunc.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3106
Problem: Vim9: confusing line number reported for error.
Solution: Use the start line number for the store instruction.

(closes #8488)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3107
Problem: Vim9: error for arguments while type didn't specify arguments.
Solution: Do not update that type to check when no argument count is

specified. (closes #8492)
Files: src/userfunc.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3108
Problem: Test for remote_foreground() fails. (Elimar Riesebieter)
Solution: Check that $DISPLAY is set. (Christian Brabandt)
Files: src/testdir/check.vim, src/testdir/test_clientserver.vim,

version9.txt — 3795

src/testdir/test_vim9_builtin.vim

Patch 8.2.3109
Problem: Check for $DISPLAY never fails.
Solution: Use eval().
Files: src/testdir/check.vim

Patch 8.2.3110
Problem: A pattern that matches the cursor position is a bit complicated.
Solution: Use a dot to indicate the cursor line and column. (Christian

Brabandt, closes #8497, closes #8179)
Files: runtime/doc/pattern.txt, src/errors.h, src/regexp_bt.c,

src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 8.2.3111
Problem: Vim9: confusing error with extra whitespace before colon.
Solution: Check for colon after white space. (closes #8513)
Files: src/eval.c, src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3112 (after 8.2.3090)
Problem: With concealing enabled and indirectly closing a fold the cursor

may be somewhere in a folded line when it is not on the first line
of the fold.

Solution: Check if the cursor is somewhere in the folded text.
Files: src/drawscreen.c

Patch 8.2.3113
Problem: No error when for loop variable shadows script variable.
Solution: Check for the error. (closes #8512)
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3114
Problem: Amiga-like systems: build error checking for running process
Solution: Only build swapfile_process_running() on systems where it is

actually used. (Ola Söder, closes #8519)
Files: src/memline.c

Patch 8.2.3115
Problem: Coverity complains about free_wininfo() use.
Solution: Add a condition that "wip2" is not equal to "wip". (Neovim #14996)
Files: src/window.c

Patch 8.2.3116
Problem: Vim9: crash when debugging a function with line continuation.
Solution: Check for a NULL pointer. (closes #8521)
Files: src/vim9execute.c, src/testdir/test_debugger.vim

Patch 8.2.3117
Problem: Vim9: type not properly checked in for loop.
Solution: Have items() return a list of lists. Add runtime type checks.

(closes #8515)
Files: src/evalfunc.c, src/globals.h, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.3118
Problem: Vim9: "any" type not handled correctly in for loop.
Solution: Change compile time check into runtime check. (closes #8516)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3119

version9.txt — 3796

Problem: Compiler warning for unused argument.
Solution: Add UNUSED.
Files: src/evalfunc.c

Patch 8.2.3120
Problem: Crypt with sodium test fails on MS-Windows.
Solution: Make the tests pass. (closes #8428)
Files: src/testdir/test_crypt.vim

Patch 8.2.3121
Problem: 'listchars' "exceeds" character appears in foldcolumn. Window

separator is missing. (Leonid V. Fedorenchik)
Solution: Only draw the "exceeds" character in the text area. Break the

loop when not drawing the text. (closes #8524)
Files: src/drawline.c, src/testdir/test_listchars.vim,

src/testdir/dumps/Test_listchars_01.dump,
src/testdir/dumps/Test_listchars_02.dump,
src/testdir/dumps/Test_listchars_03.dump,
src/testdir/dumps/Test_listchars_04.dump,
src/testdir/dumps/Test_listchars_05.dump

Patch 8.2.3122
Problem: With 'nowrap' cursor position is unexpected in narrow window.

(Leonid V. Fedorenchik)
Solution: Put cursor on the last non-empty line. (closes #8525)
Files: src/move.c, src/testdir/test_listchars.vim,

src/testdir/dumps/Test_listchars_06.dump,
src/testdir/dumps/Test_listchars_07.dump

Patch 8.2.3123
Problem: Vim9: confusing error when using white space after option, before

one of "!&<".
Solution: Give a specific error. (issue #8408)
Files: src/errors.h, src/option.c, src/testdir/test_vim9_script.vim

Patch 8.2.3124
Problem: Vim9: no error for white space between option and "=9".
Solution: Check for extraneous white space. (issue #8408)
Files: src/option.c, src/testdir/test_vim9_script.vim

Patch 8.2.3125
Problem: Variables are set but not used.
Solution: Move the declarations to the block where they are used.

(closes #8527)
Files: src/regexp_nfa.c

Patch 8.2.3126
Problem: Vim9: for loop error reports wrong line number.
Solution: Save and restore the line number when evaluating the expression.

(closes #8514)
Files: src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3127
Problem: Vim9: no error when adding number to list of string.
Solution: Check the value type. (closes #8529)
Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3128
Problem: Vim9: uninitialized list does not get type checked.
Solution: Set the type when initializing the variable. (closes #8529)

version9.txt — 3797

Files: src/eval.c, src/evalvars.c, src/vim9script.c,
src/userfunc.c, src/proto/vim9script.pro,
src/testdir/test_vim9_builtin.vim

Patch 8.2.3129
Problem: Vim9: imported uninitialized list does not get type checked.
Solution: Get type from imported variable.
Files: src/eval.c, src/evalvars.c, src/vim9script.c,

src/proto/vim9script.pro, src/userfunc.c,
src/testdir/test_vim9_script.vim

Patch 8.2.3130
Problem: Vim9: import test fails.
Solution: Rename directory back to "import", use "p" to avoid an error when

the directory already exists.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.3131
Problem: MS-Windows: ipv6 channel test is very flaky in the GUI.
Solution: Skip the test.
Files: src/testdir/test_channel.vim

Patch 8.2.3132
Problem: Compiler warns for size_t to colnr_T conversion. (Randall W.

Morris)
Solution: Add a type cast.
Files: src/drawscreen.c

Patch 8.2.3133
Problem: Vim9: memory leak when add() fails.
Solution: Allocate listitem_T after type check.
Files: src/list.c

Patch 8.2.3134
Problem: Crash when using typename() on a function reference. (Naohiro Ono)
Solution: Initialize pointer to NULL. (closes #8531)
Files: src/vim9type.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3135
Problem: Vim9: builtin function arguments not checked at compile time.
Solution: Add more type checks. (Yegappan Lakshmanan, closes #8539)
Files: src/channel.c, src/errors.h, src/evalfunc.c, src/proto/typval.pro,

src/terminal.c, src/testdir/test_search.vim,
src/testdir/test_textprop.vim, src/testdir/test_vim9_builtin.vim,
src/testing.c, src/textprop.c, src/typval.c

Patch 8.2.3136
Problem: No test for E187 and "No swap file".
Solution: Add a test. (Dominique Pellé, closes #8540)
Files: src/testdir/test_cd.vim, src/testdir/test_swap.vim

Patch 8.2.3137
Problem: Vim9: no error when a line only has a variable name.
Solution: Give an error when an expression is evaluated without an effect.

(closes #8538)
Files: src/ex_eval.c, src/errors.h, src/vim9compile.c,

src/testdir/test_vim9_script.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.3138 (after 8.2.3137)

version9.txt — 3798

Problem: Debugger test fails.
Solution: Adjust eval command.
Files: src/testdir/test_debugger.vim

Patch 8.2.3139
Problem: Functions for string manipulation are spread out.
Solution: Move string related functions to a new source file. (Yegappan

Lakshmanan, closes #8470)
Files: Filelist, src/Make_ami.mak, src/Make_cyg_ming.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/eval.c, src/evalfunc.c, src/mbyte.c, src/misc1.c, src/misc2.c,
src/proto.h, src/proto/eval.pro, src/proto/evalfunc.pro,
src/proto/mbyte.pro, src/proto/misc1.pro, src/proto/misc2.pro,
src/proto/strings.pro, src/strings.c

Patch 8.2.3140 (after 8.2.3131)
Problem: MS-Windows: ipv6 channel test is very flaky also without the GUI.
Solution: Skip the test also without the GUI.
Files: src/testdir/test_channel.vim

Patch 8.2.3141
Problem: No error when using :complete for :command without -nargs.
Solution: Give an error. (Martin Tournoij, closes #8544, closes #8541)
Files: src/usercmd.c, src/errors.h, src/testdir/test_usercommands.vim

Patch 8.2.3142
Problem: Vim9: type check for has_key() argument is too strict.
Solution: Also allow for a number key argument. (closes #8542)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3143
Problem: Vim9: A lambda may be compiled with the wrong context if it is

called from a profiled function.
Solution: Compile the lambda with and without profiling. (closes #8543)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3144
Problem: Vim9: no error when using an invalid value for a line number.
Solution: Give an error if the string value is not recognized.

(closes #8536)
Files: src/errors.h, src/eval.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3145
Problem: Vim9: profile test fails without profile feature.
Solution: Check the profile feature is present.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.3146
Problem: Vim9: line number wrong for :execute argument.
Solution: Use the line number of the :execute command itself. (closes #8537)
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3147
Problem: Vim9: profiling does not work with a nested function.
Solution: Also compile a nested function without profiling. (closes #8543)

Handle that compiling may cause the table of compiled functions to
change.

Files: src/vim9compile.c, src/vim9execute.c,
src/testdir/test_vim9_script.vim

version9.txt — 3799

Patch 8.2.3148
Problem: Vim9: function arg type check does not handle base offset.
Solution: Take the base offset into account when checking builtin function

argument types.
Files: src/evalfunc.c, src/vim9compile.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.3149 (after 8.2.3141)
Problem: Some plugins have a problem with the error check for using

:command with -complete but without -nargs.
Solution: In legacy script only give a warning message.
Files: src/usercmd.c, src/message.c, src/proto/message.pro,

src/testdir/test_usercommands.vim

Patch 8.2.3150
Problem: Vim9: argument types are not checked at compile time.
Solution: Add more type checks. (Yegappan Lakshmanan, closes #8545)
Files: src/evalfunc.c, src/testing.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3151
Problem: Vim9: profiling fails if nested function is also profiled.
Solution: Use the compile type from the outer function. (closes #8543)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3152
Problem: Vim9: accessing "s:" results in an error.
Solution: Do not try to lookup a script variable for "s:". (closes #8549)
Files: src/evalvars.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3153
Problem: URLs with a dash in the scheme are not recognized.
Solution: Allow for a scheme with a dash, but not at the start or end.

(Tsuyoshi CHO, closes #8299)
Files: src/misc1.c, src/testdir/test_buffer.vim

Patch 8.2.3154
Problem: Vim9: some type checks for builtin functions fail.
Solution: Correct the type checks. (Yegappan Lakshmanan, closes #8551,

closes #8550)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3155
Problem: Some option related code not covered by tests.
Solution: Add a few test cases. (Dominique Pellé, closes #8552)
Files: src/testdir/test_options.vim, src/testdir/test_set.vim

Patch 8.2.3156
Problem: Vim9: term_getansicolors() test fails without +termguicolors.
Solution: Add a check for the feature. (Dominique Pellé, closes #8555)
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.3157
Problem: Crypt test may fail on MS-Windows.
Solution: Ignore "[unix]" in the file message. (Christian Brabandt,

closes #8561)
Files: src/testdir/test_crypt.vim

Patch 8.2.3158
Problem: Strange error message when using islocked() with a number.

(Yegappan Lakshmanan)

version9.txt — 3800

Solution: Check that the name is empty.
Files: src/evalfunc.c, src/testdir/test_functions.vim

Patch 8.2.3159
Problem: Cursor displayed in wrong position after deleting line.
Solution: When deleting lines do not approximate botline. (fixes #8559)
Files: src/change.c

Patch 8.2.3160
Problem: 'breakindent' does not work well for bulleted and numbered lists.
Solution: Add the "list" entry to 'breakindentopt'. (Christian Brabandt,

closes #8564, closes #1661)
Files: runtime/doc/options.txt, src/indent.c, src/structs.h,

src/testdir/test_breakindent.vim

Patch 8.2.3161
Problem: Vim9: no error when reltime() has invalid arguments.
Solution: Add an error. (closes #8562)
Files: src/time.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3162
Problem: Vim9: argument types are not checked at compile time.
Solution: Add more type checks. (Yegappan Lakshmanan, closes #8560)
Files: runtime/doc/channel.txt, src/clientserver.c, src/cmdhist.c,

src/errors.h, src/evalfunc.c, src/evalwindow.c, src/filepath.c,
src/globals.h, src/popupwin.c, src/proto/typval.pro, src/sign.c,
src/strings.c, src/terminal.c, src/testdir/test_normal.vim,
src/testdir/test_reltime.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_expr.vim, src/testing.c, src/textprop.c,
src/time.c, src/typval.c

Patch 8.2.3163
Problem: Location list window may open a wrong file.
Solution: Also update the qf_ptr field. (Wei-Chung Wen, closes #8565,

closes #8566)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.3164
Problem: MS-Windows: reported version lacks patchlevel, causing some update

tools to update too often. (Klaus Frank)
Solution: Add the patchlevel to the version. (Christian Brabandt)
Files: src/dosinst.c

Patch 8.2.3165
Problem: Vim9: in a || expression the error line number may be wrong.
Solution: Save and restore the line number when checking the type.

(closes #8569)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3166
Problem: Vim9: nested autoload call error overruled by "Unknown error".
Solution: Check need_rethrow before giving an "Unknown error".

(closes #8568)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.3167
Problem: Get E12 in a job callback when searching for tags. (Andy Stewart)
Solution: Use the sandbox only for executing a command, not for searching.

(closes #8511)
Files: src/tag.c

version9.txt — 3801

Patch 8.2.3168
Problem: Vim9: type error for constant of type any.
Solution: Do add a runtime type check if a constant has type any.

(closes #8570)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3169
Problem: Vim9: cannot handle nested inline function.
Solution: Check for nested inline function. (closes #8575)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_expr.vim

Patch 8.2.3170
Problem: Illegal memory access in test.
Solution: Check pointer is not before the start of the line.
Files: src/userfunc.c

Patch 8.2.3171
Problem: Another illegal memory access in test.
Solution: Check pointer is after the start of the line.
Files: src/userfunc.c

Patch 8.2.3172
Problem: MzScheme test fails. (Christian Brabandt)
Solution: Correct function name.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.3173
Problem: Vim9: argument types are not checked at compile time.
Solution: Add more type checks. (Yegappan Lakshmanan, closes #8581)
Files: src/diff.c, src/errors.h, src/evalfunc.c, src/globals.h,

src/job.c, src/proto/typval.pro, src/strings.c, src/terminal.c,
src/testdir/test_vim9_builtin.vim, src/typval.c

Patch 8.2.3174
Problem: Vim9: "legacy undo" finds "undo" variable.
Solution: Do not pass lookup function to find_ex_command(). (closes #8563)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3175
Problem: Vim9: using illegal pointer with inline function inside a lambda.
Solution: Clear eval_tofree_cmdline when advancing to the next line.

(closes #8578)
Files: src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.3176
Problem: Vim9: no type error for comparing number with string.
Solution: Add a runtime type check. (closes #8571)
Files: src/typval.c, src/errors.h, src/testdir/test_vim9_expr.vim

Patch 8.2.3177
Problem: Vim9: can not use "for _ in expr" at script level.
Solution: Skip assignment if the loop variable is "_".
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3178
Problem: Vim9: the file name of an :import cannot be an expression.
Solution: Accept an expression that results in a string. Do not support

:import in a function.

version9.txt — 3802

Files: runtime/doc/vim9.txt, src/vim9script.c, src/vim9compile.c,
src/testdir/test_vim9_script.vim

Patch 8.2.3179
Problem: Vim9: cannot assign to an imported variable at script level.
Solution: Lookup imported items when assigning.
Files: src/evalvars.c, src/errors.h, src/eval.c,

src/testdir/test_vim9_script.vim

Patch 8.2.3180
Problem: Vim9: memory leak when concatenating to an imported string.
Solution: Clear the destination.
Files: src/evalvars.c

Patch 8.2.3181
Problem: Vim9: builtin function test fails without channel feature.
Solution: Add feature checks. (Dominique Pellé, closes #8586) Make feature

checks more consistent.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.3182
Problem: Vim9: crash when using removing items from a constant list.

(Yegappan Lakshmanan)
Solution: When a list was allocated with items copy them.
Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3183
Problem: Duplicate error numbers.
Solution: Adjust the error numbers.
Files: src/errors.h, src/testdir/test_vim9_builtin.vim

Patch 8.2.3184
Problem: Cannot add a digraph with a leading space. It is not easy to list

existing digraphs.
Solution: Add setdigraph(), setdigraphlist(), getdigraph() and

getdigraphlist(). (closes #8580)
Files: runtime/doc/digraph.txt, runtime/doc/eval.txt,

runtime/doc/usr_41.txt, src/digraph.c, src/evalfunc.c,
src/ex_docmd.c, src/globals.h, src/errors.h,
src/proto/digraph.pro, src/testdir/test_digraph.vim

Patch 8.2.3185
Problem: Vim9: start of inline function found in comment line.
Solution: Do not check for inline function in comment line. (closes #8589)
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3186
Problem: Vim9: not all failures for import tested
Solution: Test more import failures
Files: src/errors.h, src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.3187
Problem: Vim9: popup timer callback is not compiled.
Solution: Compile the callback when creating the timer.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/popupwin.c

Patch 8.2.3188
Problem: Vim9: argument types are not checked at compile time.
Solution: Add several more type checks, also at runtime. (Yegappan

Lakshmanan, closes #8587)

version9.txt — 3803

Files: src/blob.c, src/channel.c, src/clientserver.c, src/cmdexpand.c,
src/cmdhist.c, src/dict.c, src/diff.c, src/errors.h, src/eval.c,
src/evalbuffer.c, src/evalfunc.c, src/evalvars.c,
src/evalwindow.c, src/filepath.c, src/globals.h, src/insexpand.c,
src/job.c, src/list.c, src/map.c, src/match.c,
src/proto/typval.pro, src/quickfix.c, src/search.c, src/sign.c,
src/strings.c, src/terminal.c, src/testdir/test_blob.vim,
src/testdir/test_gui.vim, src/testdir/test_vim9_builtin.vim,
src/testing.c, src/textprop.c, src/time.c, src/typval.c

Patch 8.2.3189
Problem: Vim9: error when using "try|".
Solution: Allow for "|" right after a command.
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.3190
Problem: Error messages are spread out.
Solution: Move error messages to errors.h and give them a clear name.
Files: src/globals.h, src/errors.h, src/buffer.c, src/debugger.c,

src/digraph.c, src/edit.c, src/ex_cmds.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_eval.c, src/gui.c, src/list.c, src/main.c,
src/map.c, src/match.c, src/quickfix.c, src/regexp.c,
src/regexp_bt.c, src/regexp_nfa.c, src/register.c, src/search.c,
src/session.c, src/spell.c, src/syntax.c, src/time.c,
src/userfunc.c, src/vim9execute.c, src/window.c

Patch 8.2.3191
Problem: Vim9: not enough code is tested.
Solution: Use CheckLegacyAndVim9Success() in more places. Fix uncovered

problems.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_listdict.vim

Patch 8.2.3192 (after 8.2.3190)
Problem: Build failure with small version (Tony Mechelynck).
Solution: Remove stray #ifdef.
Files: src/errors.h

Patch 8.2.3193
Problem: screenpos() is wrong when the last line is partially visible and

'display' is "lastline".
Solution: Also compute the position for a partially visible line.

(closes #8599)
Files: src/move.c, src/testdir/test_cursor_func.vim

Patch 8.2.3194
Problem: Vim9: argument types are not checked at compile time.
Solution: Add several more type checks, simplify some. (Yegappan

Lakshmanan, closes #8598)
Files: src/diff.c, src/evalbuffer.c, src/evalfunc.c, src/job.c,

src/proto/typval.pro, src/sign.c, src/terminal.c,
src/testdir/test_vim9_builtin.vim, src/typval.c

Patch 8.2.3195
Problem: Vim9: unclear error when passing too many arguments to lambda.
Solution: Pass the expression itself instead of "[expression]".

(closes #8604)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.3196

version9.txt — 3804

Problem: Vim9: bool expression with numbers only fails at runtime.
Solution: Check constant to be bool at compile time. (closes #8603)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3197
Problem: Error messages are spread out.
Solution: Move a few more error messages to errors.h.
Files: src/globals.h, src/errors.h, src/edit.c, src/ex_cmds.c,

src/ex_docmd.c, src/evalvars.c, src/option.c, src/quickfix.c,
src/regexp_bt.c, src/regexp_nfa.c, src/regexp.c, src/undo.c,
src/vim9compile.c, src/vim9script.c

Patch 8.2.3198
Problem: Cannot use 'formatlistpat' for breakindent.
Solution: Use a negative list indent. (Maxim Kim, closes #8594)
Files: runtime/doc/options.txt, src/indent.c,

src/testdir/test_breakindent.vim

Patch 8.2.3199
Problem: Vim9: execution speed can be improved.
Solution: Make the break counter static.
Files: src/vim9execute.c

Patch 8.2.3200
Problem: Vim9: hard to guess where a type error is given.
Solution: Add the function name where possible. (closes #8608)
Files: src/dict.c, src/proto/dict.pro, src/eval.c, src/list.c,

src/vim9compile.c, src/vim9execute.c, src/structs.h,
src/vim9type.c, src/proto/vim9type.pro, src/if_py_both.h,
src/errors.h, src/testdir/test_vim9_builtin.vim

Patch 8.2.3201 (after 8.2.3200)
Problem: Crash in test.
Solution: Initialize "where".
Files: src/eval.c, src/evalvars.c

Patch 8.2.3202
Problem: Vim9: tests are only executed for legacy script.
Solution: Run more tests also for Vim9 script. Fix uncovered problems.
Files: src/vim9execute.c, src/ex_docmd.c, src/testdir/test_listdict.vim

Patch 8.2.3203
Problem: Vim9: compiled string expression causes type error. (Yegappan

Lakshmanan)
Solution: Remove the string type from the stack.
Files: src/vim9compile.c, src/evalfunc.c

Patch 8.2.3204
Problem: Display garbled when 'cursorline' is set and lines wrap. (Gabriel

Dupras)
Solution: Avoid inserting lines twice. (closes #7255)
Files: src/drawscreen.c, src/testdir/test_cursorline.vim,

src/testdir/dumps/Test_cursorline_redraw_1.dump,
src/testdir/dumps/Test_cursorline_redraw_2.dump

Patch 8.2.3205
Problem: Coverity reports a null pointer dereference.
Solution: Change the logic to avoid Coverity gets confused.
Files: src/vim9compile.c

version9.txt — 3805

Patch 8.2.3206
Problem: Vim9: argument types are not checked at compile time.
Solution: Add several more type checks. (Yegappan Lakshmanan, closes #8611)
Files: runtime/doc/eval.txt, src/blob.c, src/cmdhist.c, src/dict.c,

src/errors.h, src/evalfunc.c, src/filepath.c, src/globals.h,
src/job.c, src/list.c, src/match.c, src/misc1.c, src/popupwin.c,
src/proto/typval.pro, src/sign.c, src/terminal.c,
src/testdir/test_blob.vim, src/testdir/test_vim9_builtin.vim,
src/typval.c

Patch 8.2.3207
Problem: Vim9: crash when compiling string fails. (Yegappan Lakshmanan)
Solution: Adjust the type stack length.
Files: src/vim9compile.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3208
Problem: Dynamic library load error does not mention why it failed.
Solution: Add the error message. (Martin Tournoij, closes #8621)
Files: src/globals.h, src/if_cscope.c, src/if_lua.c, src/if_mzsch.c,

src/if_perl.xs, src/if_python.c, src/if_python3.c, src/if_ruby.c,
src/if_tcl.c, src/mbyte.c, src/os_win32.c, src/proto/os_win32.pro,
src/terminal.c

Patch 8.2.3209
Problem: Vim9: lambda doesn't find block-local variable.
Solution: Adjust how a script-local variable is found. (closes #8614)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.3210
Problem: Vim9: searchpair() sixth argument is compiled. (Yegappan

Lakshmanan)
Solution: Only compile the fifth argument.
Files: src/vim9compile.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3211
Problem: Vim9: argument types are not checked at compile time.
Solution: Add several more type checks. Fix type check for matchaddpos().

(Yegappan Lakshmanan, closes #8619)
Files: src/channel.c, src/evalfunc.c, src/evalvars.c, src/if_cscope.c,

src/job.c, src/proto/typval.pro,
src/testdir/test_vim9_builtin.vim, src/time.c, src/typval.c

Patch 8.2.3212
Problem: Vim9: execution speed can be improved.
Solution: Use __builtin_expect() to have the compiler produce better code.

(Dominique Pellé, closes #8613)
Files: src/vim9execute.c

Patch 8.2.3213
Problem: NOCOMPOUNDSUGS entry in spell file not tested.
Solution: Add a test. (Dominique Pellé, closes #8624)
Files: src/testdir/test_spellfile.vim

Patch 8.2.3214
Problem: MS-Windows: passing /D does not set the install location.
Solution: Adjust how the installer uses $VIM. Update the documentation.

(Christian Brabandt, Ken Takata, closes #8605)
Files: nsis/gvim.nsi, runtime/doc/os_win32.txt

Patch 8.2.3215

version9.txt — 3806

Problem: Vim9: argument types are not checked at compile time.
Solution: Add several more type checks. Sort the argument lists.

(Yegappan Lakshmanan, closes #8626)
Files: src/change.c, src/evalfunc.c, src/filepath.c, src/sound.c,

src/testdir/test_gui.vim, src/testdir/test_vim9_builtin.vim,
src/testing.c

Patch 8.2.3216
Problem: Vim9: crash when using variable in a loop at script level.
Solution: Do not clear the variable if a function was defined.

Do not create a new entry in sn_var_vals every time.
(closes #8628)

Files: src/eval.c, src/ex_eval.c, src/vim9script.c, src/userfunc.c,
src/evalvars.c, src/structs.h

Patch 8.2.3217 (after 8.2.3216)
Problem: Build failure.
Solution: Add missing changes.
Files: src/globals.h

Patch 8.2.3218
Problem: When using xchacha20 crypt undo file is not removed.
Solution: Reset 'undofile' and delete the file. (Christian Brabandt,

closes #8630, closes #8467)
Files: src/bufwrite.c, src/crypt.c, src/proto/undo.pro,

src/testdir/test_crypt.vim, src/undo.c

Patch 8.2.3219
Problem: :find searches non-existing directories.
Solution: Check the path is not "..". Update help. (Christian Brabandt,

closes #8612, closes #8533)
Files: runtime/doc/editing.txt, src/findfile.c,

src/testdir/test_findfile.vim

Patch 8.2.3220
Problem: Test_term_setansicolors() fails in some configurations.
Solution: Check available features. (Dominique Pellé, closes #8636)
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.3221
Problem: Vim9: argument types are not checked at compile time.
Solution: Add several more type checks. (Yegappan Lakshmanan, closes #8632)
Files: src/evalfunc.c, src/popupwin.c, src/proto/typval.pro,

src/testdir/test_assert.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_script.vim, src/testing.c, src/typval.c

Patch 8.2.3222
Problem: Vim9: cannot use loop variable later as lambda argument.
Solution: When not in function context check the current block ID.

(closes #8637)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.3223
Problem: Vim: using {} block in autoloaded omnifunc fails.
Solution: Allow using {} block when text is locked. (closes #8631)
Files: src/ex_cmds.h, src/testdir/test_ins_complete.vim

Patch 8.2.3224
Problem: Cannot call script-local function after :vim9cmd. (Christian J.

Robinson)

version9.txt — 3807

Solution: Skip over "<SNR>123".
Files: src/vim9compile.c, src/eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3225
Problem: Incsearch highlighting is attempted halfway a mapping.
Solution: Only do incsearch highlighting if keys were typed or there is no

more typeahead.
Files: src/ex_getln.c

Patch 8.2.3226
Problem: New digraph functions use old naming scheme.
Solution: Use the digraph_ prefix. (Hirohito Higashi, closes #8642)
Files: runtime/doc/digraph.txt, runtime/doc/eval.txt,

runtime/doc/usr_41.txt, src/digraph.c, src/edit.c, src/errors.h,
src/evalfunc.c, src/proto/digraph.pro,
src/testdir/test_digraph.vim

Patch 8.2.3227
Problem: 'virtualedit' can only be set globally.
Solution: Make 'virtualedit' global-local. (Gary Johnson, closes #8638)
Files: runtime/doc/options.txt, src/buffer.c, src/change.c,

src/drawscreen.c, src/edit.c, src/misc2.c, src/normal.c,
src/ops.c, src/option.c, src/option.h, src/optiondefs.h,
src/optionstr.c, src/proto/option.pro, src/register.c,
src/structs.h, src/testdir/test_virtualedit.vim

Patch 8.2.3228
Problem: Cannot use a simple block for the :command argument. (Maarten

Tournoij)
Solution: Recognize a simple {} block. (issue #8623)
Files: runtime/doc/map.txt, src/misc2.c, src/proto/misc2.pro,

src/usercmd.c, src/testdir/test_usercommands.vim

Patch 8.2.3229
Problem: Vim9: runtime and compile time type checks are not the same.
Solution: Add more runtime type checks for builtin functions. (Yegappan

Lakshmanan, closes #8646)
Files: src/arglist.c, src/change.c, src/channel.c, src/cindent.c,

src/clientserver.c, src/cmdhist.c, src/dict.c, src/diff.c,
src/digraph.c, src/errors.h, src/eval.c, src/evalbuffer.c,
src/evalfunc.c, src/evalwindow.c, src/ex_docmd.c, src/ex_getln.c,
src/filepath.c, src/findfile.c, src/float.c, src/fold.c,
src/getchar.c, src/indent.c, src/insexpand.c, src/job.c,
src/json.c, src/list.c, src/mark.c, src/match.c, src/mbyte.c,
src/menu.c, src/misc1.c, src/move.c, src/popupwin.c,
src/proto/typval.pro, src/quickfix.c, src/search.c, src/sign.c,
src/sound.c, src/strings.c, src/terminal.c,
src/testdir/test_assert.vim, src/testdir/test_blob.vim,
src/testdir/test_execute_func.vim,
src/testdir/test_float_func.vim, src/testdir/test_functions.vim,
src/testdir/test_glob2regpat.vim, src/testdir/test_listdict.vim,
src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_script.vim, src/testing.c, src/textprop.c,
src/time.c, src/typval.c, src/undo.c

Patch 8.2.3230
Problem: Vim9: type error when function return type is not known yet.
Solution: When return type is unknown, use "any". (closes #8644)
Files: src/vim9compile.c, src/testdir/test_vim9_builtin.vim

version9.txt — 3808

Patch 8.2.3231
Problem: Build failure with small features.
Solution: Adjust #ifdef.
Files: src/errors.h

Patch 8.2.3232 (after 8.2.3229)
Problem: system() does not work without a second argument.
Solution: Do not require a second argument. (Yegappan Lakshmanan,

closes #8651, closes #8650)
Files: src/misc1.c, src/proto/typval.pro,

src/testdir/test_vim9_builtin.vim, src/typval.c

Patch 8.2.3233
Problem: prop_list() and prop_find() do not indicate the buffer for the

used type.
Solution: Add "type_bufnr" to the results. (closes #8647)
Files: runtime/doc/textprop.txt, src/testdir/test_textprop.vim,

src/textprop.c

Patch 8.2.3234
Problem: Crash when printing long string with Lua.
Solution: Remove lua_pop(). (Martin Tournoij, closes #8648)
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.3235
Problem: Cannot use lambda in {} block in user command. (Martin Tournoij)
Solution: Do not go over the end of the lambda.
Files: src/userfunc.c, src/testdir/test_usercommands.vim

Patch 8.2.3236
Problem: mode() does not indicate using CTRL-O in Select mode.
Solution: Use "vs" and similar. (closes #8640)
Files: runtime/doc/eval.txt, src/globals.h, src/misc1.c, src/normal.c,

src/testdir/test_functions.vim

Patch 8.2.3237
Problem: When a builtin function gives an error processing continues.
Solution: In Vim9 script return FAIL in get_func_tv().
Files: src/userfunc.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3238
Problem: Vim9: error message does not indicate the location.
Solution: Add the relevant text. (issue #8634)
Files: src/errors.h, src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3239
Problem: Vim9: no error using heredoc for a number variable.
Solution: Add a type check. (closes #8627)
Files: src/vim9compile.c, src/evalvars.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.3240
Problem: Lua print() does not work properly.
Solution: Put back lua_pop().
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.3241
Problem: Vim9: memory leak when function reports an error.
Solution: Clear the return value.
Files: src/userfunc.c

version9.txt — 3809

Patch 8.2.3242
Problem: Vim9: valgrind reports leaks in builtin function test.
Solution: Do not start a job.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.3243
Problem: MS-Windows: the "edit with multiple Vim" choice is not that

useful.
Solution: Change it to "Edit with multiple tabs". (Michael Soyka,

closes #8645)
Files: src/GvimExt/gvimext.cpp, src/GvimExt/gvimext.h

Patch 8.2.3244
Problem: Lua 5.3 print() with a long string crashes.
Solution: Use a growarray instead of a Lua buffer. (Yegappan Lakshmanan,

closes #8655)
Files: src/if_lua.c, src/misc2.c, src/proto/misc2.pro

Patch 8.2.3245
Problem: The crypt key may appear in a swap partition.
Solution: When using xchacha20 use sodium_mlock(). (Christian Brabandt,

closes #8657)
Files: src/buffer.c, src/crypt.c, src/errors.h, src/fileio.c,

src/memline.c, src/vim.h

Patch 8.2.3246
Problem: Memory use after free.
Solution: When clearing a string option set the pointer to "empty_option".
Files: src/option.c

Patch 8.2.3247
Problem: Using uninitialized memory when checking for crypt method.
Solution: Check the header length before using the salt and seed.
Files: src/fileio.c

Patch 8.2.3248
Problem: Vim9: error message for wrong input uses wrong line number.
Solution: Use the line number of the start of the command. (issue #8653)
Files: src/vim9script.c, src/testdir/test_vim9_script.vim

Patch 8.2.3249
Problem: Vim9: error for re-imported function with default argument.
Solution: Do not check argument type if it is still unknown. (closes #8653)
Files: src/vim9type.c, src/proto/vim9type.pro, src/vim9script.c,

src/vim.h, src/eval.c, src/vim9execute.c,
src/testdir/test_vim9_script.vim

Patch 8.2.3250
Problem: MS-Windows: cannot build with libsodium.
Solution: Change FEAT_SODIUM into HAVE_SODIUM. (Christian Brabandt,

closes #8668, closes #8663)
Files: src/Make_mvc.mak

Patch 8.2.3251
Problem: Listing builtin_gui as an available terminal is confusing.
Solution: Do not list builtin_gui. (Christian Brabandt, closes #8669,

closes #8661)
Files: src/term.c, src/testdir/test_termcodes.vim

version9.txt — 3810

Patch 8.2.3252
Problem: Duplicated code for adding buffer lines.
Solution: Move code to a common function. Also move map functions to map.c.

(Yegappan Lakshmanan, closes #8665)
Files: src/evalbuffer.c, src/evalfunc.c, src/map.c, src/proto/map.pro

Patch 8.2.3253
Problem: Channel test fails randomly.
Solution: Add a sleep after sending the "echoerr" command. (Michael Soyka)
Files: src/testdir/test_channel.vim, src/testdir/test_channel.py

Patch 8.2.3254
Problem: win_gettype() does not recognize a quickfix window.
Solution: Add "quickfix" and "loclist". (Yegappan Lakshmanan, closes #8676)
Files: runtime/doc/eval.txt, src/evalwindow.c, src/misc2.c,

src/testdir/test_quickfix.vim

Patch 8.2.3255
Problem: ci" finds following string but ci< and others don't.
Solution: When not inside an object find the start. (Connor Lane Smit,

closes #8670)
Files: src/search.c, src/testdir/test_textobjects.vim, src/textobject.c

Patch 8.2.3256
Problem: Executable test may fail on new Ubuntu system.
Solution: Consider /usr/bin/cat and /bin/cat the same.
Files: src/testdir/test_functions.vim

Patch 8.2.3257
Problem: Calling prop_find() with -1 for ID gives erroneous error. (Naohiro

Ono)
Solution: When passing -1 use -2. (closes #8674)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.3258
Problem: Error messages have the wrong text.
Solution: Adjust the error message.
Files: src/errors.h, src/typval.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3259
Problem: When 'indentexpr' causes an error the did_throw flag may remain

set.
Solution: Reset did_throw and show the error. (closes #8677)
Files: src/indent.c, src/ex_docmd.c, src/proto/ex_docmd.pro

Patch 8.2.3260
Problem: Build failure with small features.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.3261
Problem: Vim9: when compiling repeat(123, N) return type is number.
Solution: Make return type a string. (closes #8664)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3262
Problem: Build failure when ABORT_ON_INTERNAL_ERROR is defined.
Solution: Adjust how estack_len_before is used.
Files: src/ex_docmd.c

version9.txt — 3811

Patch 8.2.3263
Problem: Vim9: "..=" does not accept same types as the ".." operator.
Solution: Convert value to string like ".." does. (issue #8664)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.3264 (after 8.2.3263)
Problem: Vim9: assign test fails.
Solution: Add missing change.
Files: src/eval.c

Patch 8.2.3265
Problem: Smartcase does not work correctly in very magic pattern.
Solution: Take the magicness into account when skipping over regexp items.

(Christian Brabandt, closes #8682, closes #7845)
Files: src/search.c, src/testdir/test_search.vim

Patch 8.2.3266
Problem: Vim9: assignment with two indexes may check next line.
Solution: Limit the number of lines to avoid checking the next line when

assigning to a LHS subscript. (closes #8660)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3267
Problem: Vim9: crash when disassembling a function that uses a deleted

script variable.
Solution: Check the variable still exists. (closes #8683)
Files: src/vim9execute.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.3268
Problem: Cannot use a block with :autocmd like with :command.
Solution: Add support for a {} block after :autocmd. (closes #8620)
Files: runtime/doc/autocmd.txt, runtime/doc/map.txt, src/autocmd.c,

src/proto/autocmd.pro, src/usercmd.c, src/proto/usercmd.pro,
src/ex_docmd.c, src/vim.h, src/testdir/test_autocmd.vim

Patch 8.2.3269
Problem: Vim9: wrong argument check for partial. (Naohiro Ono)
Solution: Handle getting return type without arguments. Correct the minimal

number of arguments for what is included in the partial.
(closes #8667)

Files: src/evalfunc.c, src/vim9type.c, src/testdir/test_vim9_func.vim

Patch 8.2.3270
Problem: prop_find() finds property with ID -2.
Solution: Use a separate flag to indicate an ID was specified. (issue #8674)
Files: src/textprop.c

Patch 8.2.3271
Problem: Vim9: cannot use :command or :au with a block in a :def function.
Solution: Recognize the start of the block.
Files: src/userfunc.c, src/usercmd.c, src/ex_docmd.c,

src/proto/ex_docmd.pro, src/vim9compile.c,
src/testdir/test_vim9_script.vim

Patch 8.2.3272
Problem: Cannot use id zero with prop_find(). (Naohiro Ono)
Solution: Also accept id zero.
Files: src/textprop.c, src/testdir/test_textprop.vim

version9.txt — 3812

Patch 8.2.3273
Problem: Autocmd test fails.
Solution: Require white space before the "{" that starts a block.
Files: src/userfunc.c

Patch 8.2.3274
Problem: Macro for printf format check can be simplified.
Solution: Add ATTRIBUTE_FORMAT_PRINTF(). (Dominique Pellé, issue #8635)
Files: src/channel.c, src/gui_xim.c, src/if_mzsch.c, src/nbdebug.c,

src/nbdebug.h, src/netbeans.c, src/proto.h, src/term.c, src/vim.h,
src/vim9execute.c

Patch 8.2.3275
Problem: Optimizer can use hints about ga_grow() normally succeeding.
Solution: Use GA_GROW_FAILS() and GA_GROW_OK() in several places. (Dominique

Pellé, issue #8635)
Files: src/arglist.c, src/macros.h, src/vim9execute.c, src/vim9compile.c

Patch 8.2.3276
Problem: Vim9: exists() can only be evaluated at runtime.
Solution: Evaluate at compile time for option name literals. (closes #8437)
Files: src/vim9compile.c, src/evalfunc.c, src/proto/evalfunc.pro,

src/testdir/test_vim9_builtin.vim

Patch 8.2.3277 (after 8.2.3276)
Problem: Vim9: compiled has() does not work properly.
Solution: Fix check for has() vs exists().
Files: src/vim9compile.c

Patch 8.2.3278
Problem: Vim9: error when adding 1 to float.
Solution: Accept t_number_bool. (closes #8687)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3279
Problem: Vim9: cannot use block in cmdline window.
Solution: Add EX_CMDWIN to the CMD_block flags. (closes #8689)
Files: src/ex_cmds.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.3280
Problem: 'virtualedit' local to buffer is not the best solution.
Solution: Make it window-local. (Gary Johnson, closes #8685)
Files: runtime/doc/options.txt, src/buffer.c, src/drawscreen.c,

src/ops.c, src/option.c, src/option.h, src/optionstr.c,
src/structs.h, src/testdir/test_virtualedit.vim

Patch 8.2.3281
Problem: Vim9: TODO items in tests can be taken care of.
Solution: Update test for now working functionality. (closes #8694)
Files: src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.3282
Problem: Vim9: error about using -complete without -nargs is confusing.
Solution: Change the wording.
Files: src/usercmd.c, src/errors.h

Patch 8.2.3283
Problem: Julia filetype is not recognized
Solution: Add filetype detection. (Christian Clason, closes #8700)

version9.txt — 3813

Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3284
Problem: No error for insert() or remove() changing a locked blob.
Solution: Check a blob is not locked before changing it. (Sean Dewar,

closes #8696)
Files: src/blob.c, src/errors.h, src/eval.c, src/list.c,

src/proto/blob.pro, src/testdir/test_blob.vim,
src/testdir/test_eval_stuff.vim

Patch 8.2.3285
Problem: Scdoc filetype is not recognized.
Solution: Add filetype detection. (Gregory Anders, closes #8701)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3286
Problem: win_enter_ext() has too many boolean arguments.
Solution: use one flags argument with defined values.
Files: src/window.c

Patch 8.2.3287
Problem: Channel events not handled in BufEnter autocommand.
Solution: Decrement dont_parse_messages earlier. (Tim Pope, closes #8697)
Files: src/window.c, src/testdir/test_channel.vim

Patch 8.2.3288
Problem: Cannot easily access namespace dictionaries from Lua.
Solution: Add vim.g, vim.b, etc. (Yegappan Lakshmanan, closes #8693,

from NeoVim)
Files: runtime/doc/if_lua.txt, src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.3289 (after 8.2.3287)
Problem: Compiler warning for unused variable with small features.
Solution: Rearrange #ifdefs.
Files: src/window.c

Patch 8.2.3290
Problem: Vim9: compiling dict may use pointer after free and leak memory on

failure.
Solution: Pass a pointer to generate_PUSHS(). (Zdenek Dohnal, closes #8699)
Files: src/vim9compile.c

Patch 8.2.3291
Problem: Coverity warns for not checking return value.
Solution: If dict_add() fails give an error message.
Files: src/if_lua.c, src/testdir/test_lua.vim

Patch 8.2.3292
Problem: Underscore in very magic pattern causes a hang. Pattern with \V

are case sensitive. (Yutao Yuan)
Solution: Adjust condition for magicness and advance pointer. (Christian

Brabandt, closes #8707, closes #8704, closes #8705)
Files: src/search.c, src/testdir/test_search.vim

Patch 8.2.3293
Problem: Finding completions may cause an endless loop.
Solution: Use a better way to check coming back where the search started.

(Andy Gozas, closes #8672, closes #8671)
Files: src/insexpand.c, src/testdir/Make_all.mak,

src/testdir/test_ins_complete_no_halt.vim

version9.txt — 3814

Patch 8.2.3294
Problem: Lua: memory leak when adding dict item fails.
Solution: Free the typval and the dict item.
Files: src/if_lua.c

Patch 8.2.3295
Problem: 'cursorline' should not apply to 'breakindent'.
Solution: Make 'cursorline' apply to 'breakindent' and 'showbreak'

consistently. (closes #8684)
Files: src/drawline.c, src/testdir/dumps/Test_Xcursorline_19.dump,

src/testdir/dumps/Test_Xcursorline_20.dump,
src/testdir/dumps/Test_Xcursorline_21.dump,
src/testdir/dumps/Test_Xcursorline_22.dump,
src/testdir/dumps/Test_Xcursorline_23.dump,
src/testdir/dumps/Test_Xcursorline_24.dump,
src/testdir/dumps/Test_diff_with_cul_bri_01.dump,
src/testdir/dumps/Test_diff_with_cul_bri_02.dump,
src/testdir/dumps/Test_diff_with_cul_bri_03.dump,
src/testdir/dumps/Test_diff_with_cul_bri_04.dump,
src/testdir/test_cursorline.vim, src/testdir/test_diffmode.vim

Patch 8.2.3296
Problem: Vim9: cannot add a number to a float.
Solution: Accept a number if the destination is a float. (closes #8703)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3297
Problem: Cannot use all commands inside a {} block after :command and

:autocmd.
Solution: Do consider \n to separate commands. (closes #8620)
Files: runtime/doc/map.txt, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/ex_eval.c, src/proto/ex_eval.pro, src/eval.c, src/evalvars.c,
src/ex_cmds.c, src/syntax.c, src/userfunc.c, src/vim9compile.c,
src/vim9script.c, src/errors.h, src/testdir/test_autocmd.vim,
src/testdir/test_usercommands.vim

Patch 8.2.3298
Problem: Build failure with small features.
Solution: Add #ifdef.
Files: src/ex_docmd.c

Patch 8.2.3299
Problem: Vim9: exists() does not handle much at compile time.
Solution: Handle variable names. (closes #8688)
Files: src/vim9compile.c, src/evalfunc.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.3300
Problem: Lua: can only execute one Vim command at a time. Not easy to get

the Vim version.
Solution: Make vim.command() accept multiple lines. Add vim.version().

(Yegappan Lakshmanan, closes #8716)
Files: runtime/doc/if_lua.txt, src/evalfunc.c, src/if_lua.c,

src/proto/evalfunc.pro, src/testdir/test_lua.vim,
src/testdir/test_shell.vim

Patch 8.2.3301
Problem: Memory allocation functions don't have their own place.
Solution: Move memory allocation functions to alloc.c. (Yegappan

version9.txt — 3815

Lakshmanan, closes #8717)
Files: Filelist, src/Make_ami.mak, src/Make_cyg_ming.mak,

src/Make_mvc.mak, src/Make_vms.mms, src/Makefile, src/README.md,
src/alloc.c, src/misc2.c, src/proto.h, src/proto/alloc.pro,
src/proto/misc2.pro

Patch 8.2.3302
Problem: Coverity is not run from github.
Solution: Add a coverity script. (James McCoy, closes #8714)
Files: .github/workflows/coverity.yml, Filelist

Patch 8.2.3303
Problem: Some structures could be smaller.
Solution: Rearrange members to reduce size. (Dominique Pellé, closes #8725)
Files: src/structs.h, src/vim9.h, src/vim9execute.c

Patch 8.2.3304
Problem: Popup window title with wide characters is truncated.
Solution: Use vim_strsize() instead of MB_CHARLEN(). (Naruhiko Nishino,

closes #8721)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_multibytetitle.dump

Patch 8.2.3305
Problem: Vim9: :finally in skipped block not handled correctly.
Solution: Check whether :finally is in a skipped block. (Naruhiko Nishino,

closes #8724)
Files: src/ex_eval.c, src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3306
Problem: Unexpected "No matching autocommands".
Solution: Do not give the message when aborting. Mention the arguments in

the message. (closes #8690)
Files: src/autocmd.c,

Patch 8.2.3307
Problem: Vim9: :echoconsole cannot access local variables.
Solution: Handle like other :echo commands. (closes #8708)
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3308
Problem: Vim9: no runtime check for argument type if a function only has

varargs.
Solution: Also check argument types if uf_va_type is set. (closes #8715)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.3309
Problem: Vim9: divide by zero causes a crash.
Solution: Give an error message. (closes #8727)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3310
Problem: Vim9: unpack assignment does not mention source of type error.
Solution: Mention the argument number. (closes #8719)
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.3311

version9.txt — 3816

Problem: Vim9: check for DO_NOT_FREE_CNT is very slow.
Solution: Move to a separate function so it can be skipped by setting

$TEST_SKIP_PAT.
Files: src/testdir/test_vim9_expr.vim, src/testdir/runtest.vim

Patch 8.2.3312
Problem: Vim9: after "if false" line breaks in expression not skipped.
Solution: Do parse the expression. (closes #8723)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3313
Problem: Unused code in win_exchange() and frame_remove().
Solution: Remove the code. (closes #8728)
Files: src/window.c

Patch 8.2.3314
Problem: Behavior of exists() in a :def function is unpredictable.
Solution: Add exists_compiled().
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/errors.h, src/vim9compile.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3315
Problem: Cannot use single quote in a float number for readability.
Solution: Support single quotes like in numbers. (closes #8713)
Files: src/typval.c, src/float.c, src/proto/float.pro, src/json.c,

src/viminfo.c, src/testdir/test_float_func.vim

Patch 8.2.3316 (after 8.2.3315)
Problem: Float test fails.
Solution: Add missing change.
Files: src/evalfunc.c

Patch 8.2.3317
Problem: Vim9: No error for missing white space before return type.
Solution: Check for white space. (closes #8733)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3318
Problem: Vim9: cannot ignore quotes in number at the command line.
Solution: Use in_vim9script() so that after ":vim9" quotes are ignored.
Files: src/typval.c, src/testdir/test_float_func.vim

Patch 8.2.3319
Problem: Coverity action on github does not work.
Solution: Remove undefined $SRCDIR. (James McCoy, closes #8739)
Files: .github/workflows/coverity.yml

Patch 8.2.3320
Problem: Some local functions are not static.
Solution: Add "static". Move snprintf() related code to strings.c.

(Yegappan Lakshmanan, closes #8734)
Files: src/alloc.c, src/channel.c, src/dict.c, src/digraph.c, src/edit.c,

src/ex_docmd.c, src/getchar.c, src/job.c, src/list.c,
src/message.c, src/profiler.c, src/proto/channel.pro,
src/proto/dict.pro, src/proto/digraph.pro, src/proto/edit.pro,
src/proto/ex_docmd.pro, src/proto/getchar.pro, src/proto/job.pro,
src/proto/list.pro, src/proto/profiler.pro, src/proto/spell.pro,
src/proto/vim9compile.pro, src/proto/vim9script.pro,
src/proto/vim9type.pro, src/spell.c, src/strings.c,
src/vim9compile.c, src/vim9script.c, src/vim9type.c, src/window.c

version9.txt — 3817

Patch 8.2.3321
Problem: Some code is not tested.
Solution: Add some more tests. (Dominique Pellé, closes #8735)
Files: src/testdir/test_excmd.vim, src/testdir/test_writefile.vim

Patch 8.2.3322
Problem: Vim9: checking type of dict does not check member type.
Solution: When getting the type of a typval use dv_type and lv_type.

(closes #8732)
Files: src/vim9type.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3323
Problem: Help tag for exists_compiled() is wrong. (Maxim Kim)
Solution: Adjust the help tag.
Files: runtime/doc/eval.txt

Patch 8.2.3324
Problem: Vim9: Cannot use :silent with :endwhile.
Solution: Allow for using the :silent modifier. (closes #8737)
Files: src/ex_eval.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3325
Problem: Digraph test fails when LC_ALL is set to "C".
Solution: When restoring 'encoding' set it to "utf-8". (closes #8742)
Files: src/testdir/test_digraph.vim

Patch 8.2.3326
Problem: Vim9: no error passing an empty list of the wrong type.
Solution: Use ISN_SETTYPE also for "list<any>". (closes #8732)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.3327
Problem: No check for sysconf() failing.
Solution: If sysconf() fails use SIGSTKSZ for the signal stack size.

(Zdenek Dohnal, closes #8743)
Files: src/os_unix.c

Patch 8.2.3328
Problem: Coverity error for not checking return value.
Solution: Check value is not negative.
Files: src/spellfile.c

Patch 8.2.3329
Problem: v_lock not set when getting value of environment variable.
Solution: Set v_lock to zero.
Files: src/typval.c

Patch 8.2.3330
Problem: Coverity reports using uninitialized field.
Solution: Initialize the field early.
Files: src/tag.c

Patch 8.2.3331
Problem: Coverity warns for using value without boundary check.
Solution: Add a boundary check.
Files: src/viminfo.c

version9.txt — 3818

Patch 8.2.3332
Problem: Vim9: cannot assign to range in list.
Solution: Implement overwriting a list range.
Files: src/vim9compile.c, src/vim9execute.c, src/list.c,

src/proto/list.pro, src/eval.c, src/proto/eval.pro,
src/testdir/test_listdict.vim, src/testdir/test_vim9_assign.vim

Patch 8.2.3333
Problem: Vim9: not enough tests run with Vim9.
Solution: Run a few more tests in Vim9 script and :def function.
Files: src/testdir/test_listdict.vim, src/testdir/vim9.vim

Patch 8.2.3334
Problem: Vim9: not enough tests run with Vim9.
Solution: Run a few more tests in Vim9 script and :def function. Fix

islocked(). Fix error for locking local variable.
Files: src/evalfunc.c, src/vim9compile.c, src/testdir/test_listdict.vim

Patch 8.2.3335
Problem: Vim9: not enough tests run with Vim9.
Solution: Run a few more tests in Vim9 script and :def function. Fix that

items(), keys() and values() return zero for a NULL dict.
Make join() return an empty string for a NULL list. Make sort()
return an empty list for a NULL list.

Files: src/dict.c, src/list.c, src/testdir/test_listdict.vim,
src/testdir/vim9.vim

Patch 8.2.3336
Problem: Behavior of negative index in list change changed. (Naruhiko

Nishino)
Solution: Only change it for Vim9 script. (closes #8749)
Files: src/list.c, src/testdir/test_listdict.vim

Patch 8.2.3337
Problem: Completing "call g:" returns entries with just "g:". (Naohiro Ono)
Solution: Skip empty strings returned by get_user_func_name(). (closes #8753)
Files: src/evalfunc.c, src/testdir/test_cmdline.vim

Patch 8.2.3338
Problem: Vim9: no type check when assigning a list range. (Naohiro Ono)
Solution: Check the member type. (closes #8750)
Files: src/list.c, src/testdir/test_listdict.vim

Patch 8.2.3339
Problem: Vim9: cannot lock a member in a local dict.
Solution: Get the local dict from the stack and pass it to get_lval().
Files: src/eval.c, src/vim9execute.c, src/vim9compile.c, src/vim9.h,

src/globals.h, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3340 (after 8.2.3339)
Problem: Accessing uninitialized pointer.
Solution: Set pointer to NULL.
Files: src/eval.c

Patch 8.2.3341
Problem: Vim9: function call aborted despite try/catch. (Naohiro Ono)
Solution: Ignore error caught by try/catch. (closes #8755)
Files: src/evalvars.c, src/vim9execute.c, src/message.c, src/time.c,

src/globals.h, src/testdir/vim9.vim, src/testdir/test_vim9_func.vim

version9.txt — 3819

Patch 8.2.3342 (after 8.2.3341)
Problem: Test for :let errors fails.
Solution: Adjust the test and how to avoid a second error message.
Files: src/evalvars.c, src/testdir/test_let.vim

Patch 8.2.3343 (after 8.2.3342)
Problem: Vim9: autoload test fails.
Solution: Adjust the way the second message is avoided
Files: src/evalvars.c

Patch 8.2.3344 (after 8.2.3343)
Problem: Vimscript test fails.
Solution: Have test verify first error instead of second
Files: src/testdir/test_vimscript.vim

Patch 8.2.3345
Problem: Some code not covered by tests.
Solution: Add a few more tests. (Dominique Pellé, closes #8757)
Files: src/testdir/test_arglist.vim, src/testdir/test_cmdline.vim,

src/testdir/test_spellfile.vim, src/testdir/test_substitute.vim

Patch 8.2.3346
Problem: Vim9: no error for using "." for concatenation after ":vim9cmd".

(Naohiro Ono)
Solution: Check for Vim9 script syntax. (closes #8756)
Files: src/eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3347
Problem: Check for legacy script is incomplete. (Naohiro Ono)
Solution: Also check the :legacy modifier. Use for string concatenation

with "." and others (issue #8756)
Files: src/vim9script.c, src/proto/vim9script.pro, src/eval.c,

src/typval.c, src/evalvars.c, src/errors.h, src/ex_docmd.c,
src/testdir/test_vim9_cmd.vim

Patch 8.2.3348
Problem: line2byte() returns wrong value after adding textprop. (Yuto

Kimura)
Solution: Reduce the length by the size of the text property. (closes #8759)
Files: src/memline.c, src/testdir/test_textprop.vim

Patch 8.2.3349 (after 8.2.3347)
Problem: Eval test for scriptversion fails.
Solution: Fix off-by-one error.
Files: src/vim9script.c

Patch 8.2.3350 (after 8.2.3348)
Problem: Text properties test fails on MS-Windows.
Solution: Set fileformat to unix.
Files: src/testdir/test_textprop.vim

Patch 8.2.3351
Problem: Vim9: using a function by name may delete it. (Naohiro Ono)
Solution: Increment the reference count when using a function by name.

(closes #8760)
Files: src/evalvars.c, src/testdir/test_vim9_func.vim

Patch 8.2.3352
Problem: Vim9: error for nested :enddef has wrong line number.

version9.txt — 3820

Solution: Compute the line number.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3353
Problem: Vim9: type of argument for negate not checked at compile time.
Solution: Add a compile time check.
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3354
Problem: Build failure with +byte_offset but without +textprop. (John

Marriott)
Solution: Adjust the #ifdef.
Files: src/memline.c

Patch 8.2.3355
Problem: MS-Windows: compiler warning for 64-32 bit conversion.
Solution: Add type casts.
Files: src/memline.c

Patch 8.2.3356
Problem: Adding many text properties requires a lot of function calls.
Solution: Add the prop_add_list() function. (Yegappan Lakshmanan,

closes #8751)
Files: runtime/doc/eval.txt, runtime/doc/textprop.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/proto/textprop.pro,
src/testdir/test_textprop.vim, src/testdir/test_vim9_builtin.vim,
src/textprop.c

Patch 8.2.3357
Problem: Crash when 'virtualedit' is set and window is narrow.
Solution: Check that width is not zero. (closes #8767)
Files: src/misc2.c, src/testdir/test_number.vim

Patch 8.2.3358
Problem: Structurizr files are not recognized.
Solution: Recognize the file by contents. (Bastian Venthur, closes #8764)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3359
Problem: Vim9: error for type when variable is not set.
Solution: Give a specific error for a NULL function. (closes #8773)
Files: src/vim9type.c, src/errors.h, src/testdir/test_vim9_func.vim

Patch 8.2.3360
Problem: User function completion fails with dict function.
Solution: Do not stop sequencing through the list if user functions when

encountering an empty name. (Naohiro Ono, closes #8765,
closes #8774)

Files: src/evalfunc.c, src/testdir/test_cmdline.vim

Patch 8.2.3361
Problem: Vim9: crash with nested :while.
Solution: Handle skipping better. (Naruhiko Nishino, closes #8778)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3362
Problem: Buffer overflow when completing long tag name.
Solution: Allocate the buffer dynamically. (Gregory Anders, closes #8769)

version9.txt — 3821

Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.2.3363
Problem: When :edit reuses the current buffer the alternate file is set to

the same buffer.
Solution: Only set the alternate file when not reusing the buffer.

(closes #8783)
Files: src/ex_cmds.c, src/testdir/test_undo.vim,

src/testdir/test_cmdline.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.3364
Problem: Vim9: crash when :for is skipped.
Solution: Skip more code generation. (Naruhiko Nishino, closes #8777)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3365
Problem: Vim9: cannot use option for all operations.
Solution: Recognize more operations. (closes #8779)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/ex_docmd.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.3366
Problem: Vim9: debugging elseif does not stop before condition.
Solution: Move debug statement to after the jump. (closes #8781)
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.3367
Problem: Vim9: :@r executing a register is inconsistent.
Solution: Use "@r" as the start of an expression. (issue #8779)
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3368
Problem: Not all Racket files are recognized.
Solution: Also recognize .rktl and .rktd files. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3369
Problem: Auto formatting after "cw" leaves cursor in wrong spot.
Solution: Do not auto-format after the delete. (closes #8789)
Files: src/ops.c, src/testdir/test_textformat.vim

Patch 8.2.3370
Problem: Vim9: no check for white space before type in declaration.

(Naohiro Ono)
Solution: Check for white space like in a compiled function. (closes #8785)
Files: src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3371
Problem: Vim9: :$ENV cannot be followed by ->func() in next line.
Solution: Use "$ENV" as the start of an expression. (closes #8790)
Files: src/ex_docmd.c, src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3372
Problem: line2byte() value wrong when adding a text property. (Yuto Kimura)
Solution: Adjust length for text property. (closes #8772) Also fix it for

deleting a line.
Files: src/memline.c, src/testdir/test_textprop.vim

Patch 8.2.3373 (after 8.2.3372)

version9.txt — 3822

Problem: text property test fails on MS-Windows.
Solution: Set fileformat to "unix"
Files: src/testdir/test_textprop.vim

Patch 8.2.3374
Problem: Pyret files are not recognized.
Solution: Recognize .arr files as Pyret. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3375
Problem: Using uninitialized memory.
Solution: Initialize textprop_save_len.
Files: src/memline.c

Patch 8.2.3376
Problem: Vim9: no warning that "@r" does not do anything.
Solution: Give a "no effect" error. (closes #8779)
Files: src/ex_eval.c, src/proto/ex_eval.pro, src/vim9compile.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.3377
Problem: Vim9: :disass completion does not understand "s:".
Solution: Expand "s:" to a pattern. (closes #8780)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.3378
Problem: MS-Windows: completing environment variables with % is wrong.
Solution: Only complete environment variables with $. (Albert Liu,

closes #8791)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.3379
Problem: Crash when using NULL job.
Solution: Copy static string into buffer. (issue #8260)
Files: src/job.c, src/testdir/test_channel.vim

Patch 8.2.3380
Problem: Crash when using NULL string for funcref().
Solution: Check for NULL argument. (issue #8260)
Files: src/evalfunc.c, src/testdir/test_expr.vim

Patch 8.2.3381
Problem: Crash when using NULL list with sign functions.
Solution: Handle a NULL list like an empty list. (issue #8260)
Files: src/globals.h, src/testdir/test_signs.vim

Patch 8.2.3382
Problem: Crash when getting the type of a NULL partial.
Solution: Check for NULL. (closes #8260)
Files: src/vim9type.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3383
Problem: Vim9: completion for :disassemble adds parenthesis.
Solution: Don't add parenthesis. (Naohiro Ono, closes #8802)
Files: src/userfunc.c, src/testdir/test_cmdline.vim

Patch 8.2.3384
Problem: Cannot disable modeline for an individual file.
Solution: Recognize "nomodeline" in a modeline. (Hu Jialun, closes #8798)
Files: runtime/doc/options.txt, src/buffer.c,

version9.txt — 3823

src/testdir/test_modeline.vim

Patch 8.2.3385
Problem: Escaping for fish shell does not work properly.
Solution: Insert a backslash before a backslash. (Jason Cox, closes #8810)
Files: runtime/doc/eval.txt, src/strings.c, src/testdir/test_shell.vim

Patch 8.2.3386
Problem: Using uninitialized memory.
Solution: Initialize the rm_ic field. (Dominique Pellé, closes #8800)
Files: src/indent.c

Patch 8.2.3387
Problem: Compiler warning for non-static function.
Solution: Make the function static. (Dominique Pellé, closes #8816)
Files: src/strings.c

Patch 8.2.3388
Problem: fnamemodify('path/..', ':p') differs from using 'path/../'. (David

Briscoe)
Solution: Include the "/.." in the directory name. (closes #8808)
Files: src/os_unix.c, src/testdir/test_fnamemodify.vim

Patch 8.2.3389
Problem: Cannot stop insert mode completion without side effects.
Solution: Add CTRL-X CTRL-Z. (closes #8821)
Files: runtime/doc/index.txt, runtime/doc/insert.txt, src/insexpand.c,

src/testdir/test_ins_complete.vim

Patch 8.2.3390
Problem: Included xdiff code is outdated.
Solution: Sync with xdiff in git 2.33. (Christian Brabandt, closes #8431)
Files: src/diff.c, src/xdiff/README.txt, src/xdiff/xdiff.h,

src/xdiff/xdiffi.c, src/xdiff/xdiffi.h, src/xdiff/xemit.c,
src/xdiff/xemit.h, src/xdiff/xhistogram.c, src/xdiff/xinclude.h,
src/xdiff/xmacros.h, src/xdiff/xpatience.c, src/xdiff/xprepare.h,
src/xdiff/xtypes.h, src/xdiff/xutils.c, src/xdiff/xutils.h

Patch 8.2.3391
Problem: Crash with combination of 'linebreak' and other options.
Solution: Avoid n_extra to become negative. (Christian Brabandt,

closes #8817)
Files: src/drawline.c

Patch 8.2.3392
Problem: augroup completion escapes regexp pattern characters.
Solution: Do not escape the augroup name. (closes #8826)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.3393
Problem: Escaping for fish shell is skipping some characters.
Solution: Escape character after backslash if needed. (Jason Cox,

closes #8827)
Files: src/strings.c, src/testdir/test_shell.vim

Patch 8.2.3394
Problem: Filler lines are wrong when changing text in diff mode.
Solution: Don't change the filler lines on every change. Check

scrollbinding when updating the filler lines. (closes #8809)
Files: src/move.c, src/diff.c, src/testdir/test_diffmode.vim,

version9.txt — 3824

src/testdir/dumps/Test_diff_scroll_change_01.dump,
src/testdir/dumps/Test_diff_scroll_change_02.dump

Patch 8.2.3395
Problem: Vim9: expression breakpoint not checked in :def function.
Solution: Always compile a function for debugging if there is an expression

breakpoint. (closes #8803)
Files: src/vim9execute.c, src/proto/vim9execute.pro, src/debugger.c,

src/proto/debugger.pro, src/vim.h, src/vim9.h,
src/testdir/test_debugger.vim

Patch 8.2.3396
Problem: When libcall() fails invalid pointer may be used.
Solution: Initialize the string to NULL. (Yasuhiro Matsumoto, closes #8829)
Files: src/evalfunc.c

Patch 8.2.3397
Problem: No test for what 8.2.3391 fixes.
Solution: Add a test. (Yegappan Lakshmanan, closes #8828)
Files: src/testdir/test_breakindent.vim

Patch 8.2.3398
Problem: Html text objects are not fully tested.
Solution: Add tests for dbcs encoding and different number of backslashes.

(Dominique Pellé, closes #8831)
Files: src/testdir/test_textobjects.vim

Patch 8.2.3399
Problem: Octave files are not recognized.
Solution: Detect Octave files. (Doug Kearns)
Files: runtime/autoload/dist/ft.vim, runtime/doc/filetype.txt,

runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3400
Problem: ":z!" is not supported.
Solution: Make ":z!" work and add tests. (Dominique Pellé, closes #8836)

Use display height instead of current window height.
Files: runtime/doc/various.txt, src/ex_cmds.h, src/ex_cmds.c,

src/testdir/test_ex_z.vim

Patch 8.2.3401
Problem: Vim9: cannot use a negative count with finddir() and findfile().
Solution: Adjust the return type. (closes #8776)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3402
Problem: Invalid memory access when using :retab with large value.
Solution: Check the number is positive.
Files: src/indent.c, src/option.c, src/optionstr.c,

src/testdir/test_retab.vim

Patch 8.2.3403 (after 8.2.3402)
Problem: Memory leak for :retab with invalid argument.
Solution: Free the memory. Make error messages consistent.
Files: src/indent.c

Patch 8.2.3404
Problem: Vim9: no error for white space before "(".
Solution: Give an error, like in a compiled function.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

version9.txt — 3825

Patch 8.2.3405
Problem: Cannot have a comment line in a {} block of a user command.
Solution: Continue after the line break. (closes #8837)
Files: src/ex_docmd.c, src/testdir/test_usercommands.vim

Patch 8.2.3406
Problem: On some systems tests fail without _REENTRANT. (Elimar

Riesebieter)
Solution: Add -D_REENTRANT in configure. (closes #7402)
Files: src/configure.ac, src/auto/configure

Patch 8.2.3407
Problem: Using uninitialized memory with "let g:['bar'] = 2".
Solution: Initialize v_type of a new dict item.
Files: src/dict.c

Patch 8.2.3408
Problem: Can delete a numbered function. (Naohiro Ono)
Solution: Disallow deleting a numbered function. (closes #8760)
Files: src/userfunc.c, src/testdir/test_user_func.vim

Patch 8.2.3409
Problem: Reading beyond end of line with invalid utf-8 character.
Solution: Check for NUL when advancing.
Files: src/regexp_nfa.c, src/testdir/test_regexp_utf8.vim

Patch 8.2.3410
Problem: Crash with linebreak, listchars and large tabstop.
Solution: Account for different size listchars for a tab. (closes #8841)
Files: src/drawline.c, src/testdir/test_listlbr_utf8.vim

Patch 8.2.3411
Problem: Vim9: crash when using base name of import. (Naohiro Ono)
Solution: Check the import flags. (closes #8843)
Files: src/evalvars.c, src/errors.h, src/testdir/test_vim9_script.vim

Patch 8.2.3412 (after 8.2.3411)
Problem: Vim9: importing the wrong file.
Solution: Correct the file name. Delete the file afterwards.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.3413
Problem: Vim9: too many characters are allowed in import name.
Solution: Disallow ':' and '#', check for white space. (closes #8845)
Files: src/vim9script.c, src/errors.h, src/testdir/test_vim9_script.vim

Patch 8.2.3414
Problem: fullcommand() gives the wrong name if there is a buffer-local user

command. (Naohiro Ono)
Solution: Use a separate function to get the user command name.

(closes #8840)
Files: src/usercmd.c, src/proto/usercmd.pro, src/ex_docmd.c,

src/testdir/test_cmdline.vim

Patch 8.2.3415
Problem: Vim9: Not all function argument types are properly checked.
Solution: Add and improve argument type checks. (Yegappan Lakshmanan,

closes #8839)
Files: src/channel.c, src/digraph.c, src/evalfunc.c, src/terminal.c,

version9.txt — 3826

src/testdir/test_digraph.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.3416
Problem: Second error is reported while exception is being thrown.
Solution: Do not check for trailing characters when already aborting.

(closes #8842)
Files: src/userfunc.c, src/testdir/test_trycatch.vim

Patch 8.2.3417
Problem: Vim9: a failing debug expression aborts script sourcing.
Solution: Do not let expression failure abort script sourcing. (closes #8848)
Files: src/debugger.c, src/testdir/test_debugger.vim

Patch 8.2.3418
Problem: Garbage collection while evaluating may cause trouble.
Solution: Disable garbage collection while evaluating an expression.

(Christian Brabandt, issue #8848)
Files: src/eval.c

Patch 8.2.3419
Problem: A failing debug expression may make Vim unusable.
Solution: Suppress error messages. (closes #8848)
Files: src/debugger.c, src/testdir/test_debugger.vim

Patch 8.2.3420
Problem: _REENTRANT defined more than once.
Solution: Fix configure script. (Christian Brabandt, closes #8852)
Files: src/configure.ac, src/auto/configure

Patch 8.2.3421
Problem: A bit of code is not covered by tests.
Solution: Add a few more test cases. (Dominique Pellé, closes #8857)
Files: src/testdir/test_functions.vim, src/testdir/test_history.vim,

src/testdir/test_startup.vim

Patch 8.2.3422
Problem: Vim9: no failure if return type differs from returned variable.
Solution: Copy type when copying a list. (closes #8847)
Files: src/list.c, src/testdir/test_vim9_func.vim

Patch 8.2.3423
Problem: Vim9: list += list creates a new list in :def function.
Solution: Append to the existing list.
Files: src/structs.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.3424
Problem: A sequence of spaces is hard to see in list mode.
Solution: Add the "multispace" option to 'listchars'. (closes #8834)
Files: runtime/doc/options.txt, src/drawline.c, src/message.c,

src/screen.c, src/structs.h, src/testdir/test_listchars.vim

Patch 8.2.3425
Problem: Warning for using uninitialized variable.
Solution: Initialize it. (John Marriott)
Files: src/screen.c

Patch 8.2.3426
Problem: Crash when deleting a listener in a listener callback. (Naohiro

Ono)

version9.txt — 3827

Solution: Mark the listener and delete it later. (closes #8863)
Files: src/change.c, src/testdir/test_listener.vim

Patch 8.2.3427
Problem: Double free when list is copied.
Solution: Allocate the type when making a copy. (closes #8862)

Clear the type for flattennew(). Avoid a memory leak when
flattennew() fails.

Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3428
Problem: Using freed memory when replacing. (Dhiraj Mishra)
Solution: Get the line pointer after calling ins_copychar().
Files: src/normal.c, src/testdir/test_edit.vim

Patch 8.2.3429
Problem: Leaking memory when assigning to list or dict.
Solution: Free the list or dict type before overwriting it.
Files: src/vim9type.c, src/evalvars.c

Patch 8.2.3430
Problem: No generic way to trigger an autocommand on mode change.
Solution: Add the ModeChanged autocommand event. (Magnus Gross, closes #8856)
Files: runtime/doc/autocmd.txt, src/autocmd.c, src/edit.c,

src/ex_docmd.c, src/ex_getln.c, src/globals.h, src/misc1.c,
src/normal.c, src/proto/autocmd.pro, src/proto/misc1.pro,
src/testdir/test_edit.vim, src/vim.h

Patch 8.2.3431
Problem: Completion for :disas sorts local functions first.
Solution: Sort local functions last, like with :delfunc. (Naohiro Ono,

closes #8860)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.3432
Problem: Octave/Matlab filetype detection does not work properly.
Solution: Update the patterns used for matching. (Doug Kearns)
Files: runtime/autoload/dist/ft.vim, src/testdir/test_filetype.vim

Patch 8.2.3433
Problem: :delcommand does not take a -buffer option.
Solution: Add the -buffer option.
Files: runtime/doc/map.txt, src/usercmd.c, src/errors.h,

src/testdir/test_usercommands.vim

Patch 8.2.3434 (after 8.2.3430)
Problem: Function prototype for trigger_modechanged() is incomplete.
Solution: Add "void".
Files: src/proto/misc1.pro

Patch 8.2.3435
Problem: Vim9: dict is not passed to dict function.
Solution: Keep the dict used until a function call.
Files: src/vim9compile.c, src/vim9execute.c, src/vim9.h,

src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3436
Problem: Check for optional bool type has confusing return type.
Solution: Explicitly return OK.

version9.txt — 3828

Files: src/typval.c

Patch 8.2.3437
Problem: Compiler warnings for 32/64 bit usage.
Solution: Add type casts. (Mike Williams, closes #8870)
Files: src/screen.c, src/xdiff/xemit.c, src/xdiff/xutils.c

Patch 8.2.3438
Problem: Cannot manipulate blobs.
Solution: Add blob2list() and list2blob(). (Yegappan Lakshmanan,

closes #8868)
Files: runtime/doc/eval.txt, runtime/doc/usr_41.txt, src/blob.c,

src/errors.h, src/evalfunc.c, src/proto/blob.pro,
src/proto/typval.pro, src/testdir/test_blob.vim,
src/testdir/test_vim9_builtin.vim, src/typval.c

Patch 8.2.3439
Problem: Deleted lines go to wrong yank register.
Solution: Reset y_append when not calling get_yank_register(). (Christian

Brabandt, closes #8872)
Files: src/ops.c, src/proto/register.pro, src/register.c,

src/testdir/test_registers.vim

Patch 8.2.3440
Problem: Recover test fails if there is an old swap file.
Solution: Delete old swap files.
Files: src/testdir/test_recover.vim

Patch 8.2.3441
Problem: MS-Windows: vimtutor can't handle path with spaces.
Solution: Add double quotes. (Christian Brabandt, closes #8871)
Files: vimtutor.bat

Patch 8.2.3442
Problem: Vim9: || and && are not handled at compile time when possible.
Solution: When using constants generate fewer instructions.
Files: src/vim9.h, src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.3443
Problem: Vim9: memory leak when and/or fails.
Solution: Also clear the growarray when the length is zero.
Files: src/vim9compile.c

Patch 8.2.3444
Problem: concealed text not revealed when leaving insert mode. (Michael

Soyka)
Solution: Check if concealing changed when leaving insert mode.

(closes #8880)
Files: src/edit.c, src/testdir/test_conceal.vim,

src/testdir/dumps/Test_conceal_two_windows_07in.dump

Patch 8.2.3445
Problem: On Solaris longVersion may be declared twice. (Vladimir Marek)
Solution: Always declare longVersion in version.c
Files: src/globals.h, src/version.c

Patch 8.2.3446
Problem: Not enough tests for empty string arguments.
Solution: Add tests, fix type check. (Yegappan Lakshmanan, closes #8881)

version9.txt — 3829

Files: runtime/doc/sign.txt, runtime/doc/textprop.txt, src/sign.c,
src/testdir/test_blob.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.3447
Problem: A couple of declarations are not ANSI C.
Solution: Put argument type inside (). (Yegappan Lakshmanan, closes #8890)
Files: src/os_unix.h

Patch 8.2.3448
Problem: :endtry after function call that throws not found.
Solution: Do check for following :endtry if an exception is being thrown.

(closes #8889)
Files: src/userfunc.c, src/testdir/test_trycatch.vim

Patch 8.2.3449
Problem: Sort fails if the sort compare function returns 999.
Solution: Adjust value to -1 / 0 / 1. (Yasuhiro Matsumoto, closes #8884)
Files: src/list.c, src/testdir/test_sort.vim

Patch 8.2.3450
Problem: Coveralls action fails.
Solution: Disable it for now.
Files: .github/workflows/ci.yml

Patch 8.2.3451
Problem: Not all apache files are recognized.
Solution: Adjust the filetype pattern. (Zdenek Dohnal, closes #8882)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3452
Problem: MPD files are not recognized.
Solution: Recognize MPD files as XML. (Steven Penny, closes #8893)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3453
Problem: Autocmd not executed when editing a directory ending in a path

separator inside try block.
Solution: Return NOTDONE instead of FAIL. (closes #8885)
Files: src/fileio.c, src/testdir/test_autocmd.vim

Patch 8.2.3454
Problem: Using a count with "gp" leaves cursor in wrong position. (Naohiro

Ono)
Solution: Count the inserted lines. (closes #8899)
Files: src/register.c, src/testdir/test_put.vim

Patch 8.2.3455 (after 8.2.3454)
Problem: Using a count with "gp" leaves '] in wrong position. (Naohiro Ono)
Solution: Correct the mark position. (closes #8899)
Files: src/register.c, src/testdir/test_put.vim

Patch 8.2.3456
Problem: Vim9: Not all functions are tested with an empty string argument.
Solution: Add tests with empty strings. (Yegappan Lakshmanan, closes #8915)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3457
Problem: MS-Windows Vim9: test executed and fails.
Solution: Add extra check for not being on MS-Windows.
Files: src/testdir/test_vim9_script.vim

version9.txt — 3830

Patch 8.2.3458
Problem: Not all dictdconf files are recognized.
Solution: Adjust the pattern. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3459
Problem: Vim9: need more tests for empty string arguments.
Solution: Add more tests. Also use empty argument with menu_info() to get

the top-level menu names. (Yegappan Lakshmanan, closes #8925)
Files: runtime/doc/eval.txt, src/menu.c, src/testdir/test_menu.vim,

src/testdir/test_vim9_builtin.vim

Patch 8.2.3460
Problem: Some type casts are not needed.
Solution: Remove unnecessary type casts. (closes #8934)
Files: src/autocmd.c, src/buffer.c, src/debugger.c, src/getchar.c,

src/hardcopy.c, src/if_cscope.c, src/move.c, src/tag.c,
src/version.c

Patch 8.2.3461
Problem: Cannot distinguish Normal and Terminal-Normal mode.
Solution: Make mode() return "nt" for Terminal-Normal mode. (issue #8856)
Files: runtime/doc/eval.txt, src/misc1.c, src/testdir/test_functions.vim

Patch 8.2.3462
Problem: The ModeChanged event only uses one character for the new_mode and

old_mode values.
Solution: Pass one as first argument to mode(). (issue #8856)
Files: src/misc1.c, src/testdir/test_edit.vim

Patch 8.2.3463
Problem: Pattern matching with ModeChanged not tested.
Solution: Add a few more test lines. (issue #8856)
Files: src/testdir/test_edit.vim

Patch 8.2.3464
Problem: nginx files are not recognized.
Solution: Add several file patterns. (Chris Aumann, closes #8922)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3465
Problem: Cannot detect insert scroll mode.
Solution: Add "scroll" to complete_info(). (closes #8943)
Files: runtime/doc/eval.txt, src/insexpand.c, src/testdir/test_popup.vim

Patch 8.2.3466
Problem: Completion submode not indicated for virtual replace.
Solution: Add submode to "Rv". (closes #8945)
Files: runtime/doc/eval.txt, src/misc1.c, src/testdir/test_functions.vim

Patch 8.2.3467
Problem: CursorHoldI event interferes with "CTRL-G U". (Naohiro Ono)
Solution: Restore the flag for "CTRL-G U" after triggering CursorHoldI.

(closes #8937)
Files: src/edit.c, src/testdir/test_autocmd.vim

Patch 8.2.3468
Problem: Problem with :cd when editing file in non-existent directory. (Yee

Cheng Chin)

version9.txt — 3831

Solution: Prepend the current directory to get the full path. (closes #8903)
Files: src/os_unix.c, src/testdir/test_cd.vim

Patch 8.2.3469
Problem: Some files with json syntax are not recognized.
Solution: Add a few file patterns. (Emiliano Ruiz Carletti, closes #8947)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3470
Problem: Crash with error in :catch and also in :finally.
Solution: Only discard an exception if there is one. (closes #8954)
Files: src/ex_eval.c, src/testdir/test_trycatch.vim

Patch 8.2.3471
Problem: Crash when using CTRL-T after an empty search pattern.
Solution: Bail out when there is no previous search pattern. (closes #8953)
Files: src/ex_getln.c, src/testdir/test_search.vim

Patch 8.2.3472
Problem: Other crashes with empty search pattern not tested.
Solution: Add a few more test lines. (Dominique Pellé)
Files: src/testdir/test_search.vim

Patch 8.2.3473
Problem: Some files with tcl syntax are not recognized.
Solution: Add a few file patterns. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3474
Problem: Some places use "Vimscript" instead of "Vim script".
Solution: Consistently use "Vim script". (Hirohito Higashi, closes #8910)
Files: runtime/doc/if_lua.txt, src/getchar.c, src/if_lua.c

Patch 8.2.3475
Problem: Expression register set by not executed put command.
Solution: Do not set the register if the command is skipped. (closes #8909)
Files: src/ex_docmd.c, src/testdir/test_excmd.vim

Patch 8.2.3476
Problem: Renaming a buffer on startup may cause using freed memory.
Solution: Check if the buffer is used in a window. (closes #8955)
Files: src/buffer.c, src/testdir/test_startup.vim

Patch 8.2.3477 (after 8.2.3476)
Problem: Startup test fails on MS-Windows.
Solution: Skip the test if not on Unix.
Files: src/testdir/test_startup.vim

Patch 8.2.3478 (after 8.2.3470)
Problem: Still crash with error in :catch and also in :finally.
Solution: Only call finish_exception() once. (closes #8954)
Files: src/ex_eval.c, src/structs.h

Patch 8.2.3479
Problem: Crash when calling job_start with an invalid argument. (Virginia

Senioria)
Solution: Clear the first item in argv. (closes #8957)
Files: src/misc2.c, src/testdir/test_channel.vim

Patch 8.2.3480 (after 8.2.3478)

version9.txt — 3832

Problem: Test does not fail without the fix for a crash.
Solution: Write the bad code in a file and source it. (Dominique Pellé,

closes #8961)
Files: src/testdir/test_trycatch.vim

Patch 8.2.3481
Problem: Failures when char is unsigned.
Solution: Use int8_T. Make a CI run with unsigned char. (James McCoy,

closes #8936)
Files: src/structs.h, .github/workflows/ci.yml

Patch 8.2.3482
Problem: Reading beyond end of line ending in quote and backslash.
Solution: Check for non-NUL after backslash. (closes #8964)
Files: src/cindent.c, src/testdir/test_cindent.vim

Patch 8.2.3483
Problem: #ifdef for using sysinfo() is incomplete.
Solution: Also check for HAVE_SYSINFO. Make autoconf check use TRY_LINK.

(closes #8952)
Files: src/memline.c, src/configure.ac, src/auto/configure

Patch 8.2.3484
Problem: Crash when going through spell suggestions.
Solution: Limit the text length for finding suggestions to the original

length. Do not update buffers when exiting. (closes #8965)
Files: src/spellsuggest.c, src/clipboard.c,

src/testdir/test_spell_utf8.vim

Patch 8.2.3485
Problem: Python 3 test fails with Python 3.10.
Solution: Adjust expected error message. (zdohnal Dohnal, closes #8969)
Files: src/testdir/test_python3.vim

Patch 8.2.3486
Problem: Illegal memory access with invalid sequence of commands.
Solution: Do not call leave_block() when not in a try block. (closes #8966)

Reset did_emsg so that exception is shown as an error.
Files: src/ex_eval.c, src/testdir/test_trycatch.vim

Patch 8.2.3487
Problem: Illegal memory access if buffer name is very long.
Solution: Make sure not to go over the end of the buffer.
Files: src/drawscreen.c, src/testdir/test_statusline.vim

Patch 8.2.3488
Problem: Issue template is not easy to use.
Solution: Use a yaml template. (closes #8928)
Files: .github/ISSUE_TEMPLATE/bug_report.md,

.github/ISSUE_TEMPLATE/bug_report.yml

Patch 8.2.3489
Problem: ml_get error after search with range.
Solution: Limit the line number to the buffer line count.
Files: src/ex_docmd.c, src/testdir/test_search.vim

Patch 8.2.3490
Problem: Superfluous return statements.
Solution: Remove superfluous return statements from void functions.

(closes #8977)

version9.txt — 3833

Files: src/buffer.c, src/getchar.c, src/memline.c, src/move.c,
src/option.c

Patch 8.2.3491
Problem: xpm2 filetype detection is not so good.
Solution: Adjust the check for xpm2. (closes #8914)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3492
Problem: Crash when pasting too many times.
Solution: Limit the size to what fits in an int. (closes #8962)
Files: src/register.c, src/errors.h, src/testdir/test_put.vim

Patch 8.2.3493 (after 8.2.3492)
Problem: Large count test fails on MS-Windows.
Solution: Skip the test on MS-Windows.
Files: src/testdir/test_put.vim

Patch 8.2.3494
Problem: Illegal memory access in utf_head_off.
Solution: Check cursor position when reselecting the Visual area.

(closes #8963)
Files: src/normal.c, src/testdir/test_visual.vim

Patch 8.2.3495
Problem: GUI geometry startup test fails on some systems. (Drew Vogel)
Solution: Add tolerance to the size check. (closes #8815)
Files: src/testdir/test_startup.vim

Patch 8.2.3496
Problem: Crypt test fails on MS-Windows if xxd was not installed yet.
Solution: Use the just built xxd executable if it exists. (James McCoy,

closes #8929)
Files: src/testdir/test_crypt.vim

Patch 8.2.3497
Problem: Put test fails when run by itself.
Solution: Source check.vim. (Dominique Pellé, closes #8990)
Files: src/testdir/test_put.vim

Patch 8.2.3498
Problem: Recover test may fail on some systems.
Solution: Adjust the little endian and 64 bit detection. (James McCoy,

closes #8941)
Files: src/testdir/test_recover.vim

Patch 8.2.3499
Problem: GUI geometry startup test fails.
Solution: Check string values instead of numbers
Files: src/testdir/test_startup.vim

Patch 8.2.3500
Problem: Github CI fails to install clang.
Solution: Install llvm-11 explicitly. (Christian Brabandt, closes #8993)
Files: .github/workflows/ci.yml

Patch 8.2.3501
Problem: tmux filetype detection is incomplete
Solution: Also use tmux for files having text after .conf. (Eric Pruitt,

closes #8971)

version9.txt — 3834

Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3502 (after 8.2.2919)
Problem: Cannot enter password in shell command.
Solution: Revert patch 8.2.2919.
Files: src/os_unix.c

Patch 8.2.3503
Problem: Vim9: using g:pat:cmd is confusing.
Solution: Do not recognize g: as the :global command. Also for s:pat:repl.

(closes #8982)
Files: runtime/doc/vim9.txt, src/ex_docmd.c, src/ex_cmds.c, src/errors.h,

src/vim9compile.c, src/proto/vim9compile.pro,
src/testdir/test_vim9_cmd.vim

Patch 8.2.3504 (after 8.2.3503)
Problem: Vim9: warning for signed vs unsigned.
Solution: Add type cast.
Files: src/vim9compile.c

Patch 8.2.3505 (after 8.2.3503)
Problem: Vim9: build failure without the +eval feature.
Solution: Add #ifdef.
Files: src/ex_cmds.c

Patch 8.2.3506 (after 8.2.3503)
Problem: Vim9: special cases for "g" and "s" insufficiently tested.
Solution: Add a few more test cases.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.3507
Problem: Generating proto files may fail.
Solution: Define __attribute().
Files: src/Makefile

Patch 8.2.3508 (after 8.2.3503)
Problem: Vim9: bad separators for "g" and "s" insufficiently tested.
Solution: Add a few more test cases.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.3509
Problem: Undo file is not synced. (Sami Farin)
Solution: Sync the undo file if 'fsync' is set. (Christian Brabandt,

closes #8879, closes #8920)
Files: runtime/doc/options.txt, src/undo.c

Patch 8.2.3510
Problem: Changes are only detected with one second accuracy.
Solution: Use the nanosecond time if possible. (Leah Neukirchen,

closes #8873, closes #8875)
Files: runtime/doc/eval.txt, src/auto/configure, src/bufwrite.c,

src/config.h.in, src/configure.ac, src/fileio.c,
src/proto/fileio.pro, src/memline.c, src/netbeans.c,
src/structs.h, src/evalfunc.c, src/testdir/test_stat.vim

Patch 8.2.3511
Problem: Vim9: entry for loop variable is created every round.
Solution: Only create the entry once. (closes #8996)
Files: src/evalvars.c, src/vim9script.c

version9.txt — 3835

Patch 8.2.3512
Problem: Timestamp test fails on some systems.
Solution: Sleep for a short while.
Files: src/testdir/test_stat.vim

Patch 8.2.3513
Problem: Using freed memory when using a timer and searching. (Dominique

Pellé)
Solution: Allocated mr_pattern.
Files: src/search.c

Patch 8.2.3514
Problem: Autoread test with nanosecond time sometimes fails.
Solution: Mark the test as being flaky.
Files: src/testdir/test_stat.vim

Patch 8.2.3515
Problem: Nano time test fails on Mac and FreeBSD.
Solution: Also check nano time when not on Linux. (Ozaki Kiichi,

closes #9000)
Files: src/fileio.c

Patch 8.2.3516
Problem: Terminal window does not have transparent background when

'termguicolors' is used.
Solution: Fix the background color. (closes #2361, closes #9002)
Files: runtime/doc/terminal.txt, src/highlight.c, src/proto/terminal.pro,

src/terminal.c

Patch 8.2.3517
Problem: TextChanged does not trigger after TextChangedI.
Solution: Store the tick separately for TextChangedI. (Christian Brabandt,

closes #8968, closes #8932)
Files: src/buffer.c, src/bufwrite.c, src/edit.c, src/structs.h,

src/testdir/test_autocmd.vim

Patch 8.2.3518
Problem: Test_xrestore sometimes fails.
Solution: Mark the test as flaky. Move marking test as flaky to the test

instead of listing them in runtest.
Files: src/testdir/test_paste.vim, src/testdir/runtest.vim,

src/testdir/test_autocmd.vim, src/testdir/test_channel.vim,
src/testdir/test_clientserver.vim, src/testdir/test_diffmode.vim,
src/testdir/test_functions.vim, src/testdir/test_gui.vim,
src/testdir/test_mapping.vim, src/testdir/test_popup.vim,
src/testdir/test_quotestar.vim, src/testdir/test_reltime.vim,
src/testdir/test_terminal.vim, src/testdir/test_terminal2.vim,
src/testdir/test_timers.vim

Patch 8.2.3519
Problem: TOML files are not recognized.
Solution: Add filetype patterns for TOML. (Aman Verma, closes #8984)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3520
Problem: Cannot define a function for thesaurus completion.
Solution: Add 'thesaurusfunc'. (Yegappan Lakshmanan, closes #8987,

closes 8950)
Files: runtime/doc/insert.txt, runtime/doc/options.txt,

runtime/doc/quickref.txt, src/buffer.c, src/insexpand.c,

version9.txt — 3836

src/option.c, src/option.h, src/optiondefs.h, src/optionstr.c,
src/structs.h, src/testdir/test_edit.vim

Patch 8.2.3521 (after 8.2.3520)
Problem: Options completion test fails.
Solution: Add 'thesaurusfunc' to the results.
Files: src/testdir/test_options.vim

Patch 8.2.3522
Problem: Cannot use \x and \u when setting 'listchars'.
Solution: Support hex and unicode in hex form. (closes #9006)
Files: runtime/doc/options.txt, src/screen.c, src/charset.c,

src/testdir/test_listchars.vim

Patch 8.2.3523
Problem: Duplicated code in xxd.
Solution: Remove duplicated lines. (closes #8972)
Files: src/xxd/xxd.c

Patch 8.2.3524
Problem: GUI: ligatures are not used.
Solution: Add the 'guiligatures' option. (Dusan Popovic, closes #8933)
Files: runtime/doc/options.txt, src/gui.c, src/gui.h, src/gui_gtk_x11.c,

src/option.h, src/optiondefs.h, src/optionstr.c, src/errors.h,
src/proto/gui.pro, src/proto/gui_gtk_x11.pro,
src/testdir/test_gui.vim

Patch 8.2.3525
Problem: Option variable name does not match option name. (Christ van

Willegen)
Solution: Rename the variable.
Files: src/buffer.c, src/insexpand.c, src/option.c, src/optionstr.c,

src/structs.h

Patch 8.2.3526
Problem: Tests have clumsy check for X11 based GUI.
Solution: Add CheckX11BasedGui.
Files: src/testdir/check.vim, src/testdir/test_gui.vim,

src/testdir/test_gui_init.vim, src/testdir/setup_gui.vim

Patch 8.2.3527
Problem: Gcc complains about uninitialized variable. (Tony Mechelynck)
Solution: Initialize it.
Files: src/gui_gtk_x11.c

Patch 8.2.3528
Problem: 'thesaurus' and 'thesaurusfunc' do not have the same scope.
Solution: Make 'thesaurusfunc' global-local.
Files: runtime/doc/options.txt, runtime/doc/insert.txt,

src/optiondefs.h, src/option.h, src/option.c, src/structs.h,
src/insexpand.c, src/testdir/test_edit.vim

Patch 8.2.3529
Problem: Xxd usage output is incomplete.
Solution: Add "bytes" to "-g" flag. (Atsushi Sugawara, closes #8944)
Files: src/xxd/xxd.c

Patch 8.2.3530
Problem: ":buf \{a}" fails while ":edit \{a}" works.
Solution: Unescape "\{". (closes #8917)

version9.txt — 3837

Files: src/vim.h, src/cmdexpand.c, src/evalfunc.c, src/ex_getln.c,
src/proto/ex_getln.pro, src/normal.c, src/session.c,
src/terminal.c, src/vim9execute.c, src/testdir/test_cmdline.vim

Patch 8.2.3531 (after 8.2.3530)
Problem: Command line completion test fails on MS-Windows.
Solution: Do not test with "\{" on MS-Windows.
Files: src/testdir/test_cmdline.vim

Patch 8.2.3532
Problem: The previous '' mark is restored after moving the cursor to the

original jump position. (Tony Chen)
Solution: Forget the previous position after checking. (closes #8985)
Files: src/mark.c, src/testdir/test_marks.vim

Patch 8.2.3533
Problem: Inefficient code in xxd.
Solution: Don't use "p" when "hextype" is non-zero. (closes #9013)
Files: src/xxd/xxd.c

Patch 8.2.3534
Problem: Autoread test is a bit flaky.
Solution: Wait a brief moment before overwriting the file.
Files: src/testdir/test_stat.vim

Patch 8.2.3535
Problem: If-else indenting is confusing.
Solution: Add curly brackets and indent. (Dominique Pellé, closes #9010)
Files: src/drawscreen.c

Patch 8.2.3536
Problem: The do_highlight() function is way too long.
Solution: Split it into several functions. (Yegappan Lakshmanan,

closes #9011)
Files: src/highlight.c

Patch 8.2.3537
Problem: mode() does not return the right value in 'operatorfunc'.
Solution: Reset finish_op while calling 'operatorfunc'.
Files: src/ops.c, src/testdir/test_functions.vim

Patch 8.2.3538
Problem: Else-if indenting is confusing.
Solution: Add curly brackets. (Yegappan Lakshmanan, closes #9017)
Files: src/highlight.c

Patch 8.2.3539
Problem: GTK3: with 'rightleft' set scrollbar may move unintentionally.
Solution: Ignore events while moving the scrollbar thumb. (closes #8958)
Files: src/gui_gtk.c

Patch 8.2.3540
Problem: The mark '] is wrong after put with a count. (Naohiro Ono)
Solution: Use the right line number. (closes #8956)
Files: src/register.c, src/testdir/test_put.vim

Patch 8.2.3541
Problem: Compiler warning for unused variable in tiny version.
Solution: Add #ifdef. (John Marriott)
Files: src/highlight.c

version9.txt — 3838

Patch 8.2.3542
Problem: Too many comments are old style.
Solution: Change comments to // style. (closes #9021)
Files: src/buffer.c

Patch 8.2.3543
Problem: Swapname has double slash when 'directory' ends in double slash.

(Shane Smith)
Solution: Remove the superfluous slash. (closes #8876)
Files: src/memline.c, src/testdir/test_swap.vim

Patch 8.2.3544
Problem: Unix: may leak file descriptor when using a non-existing

directory.
Solution: Always close the file. (closes #9023)
Files: src/os_unix.c

Patch 8.2.3545
Problem: setcellwidths() may make 'listchars' or 'fillchars' invalid.
Solution: Check the value and give an error. (closes #9024)
Files: runtime/doc/eval.txt, src/optionstr.c, src/errors.h, src/mbyte.c,

src/testdir/test_utf8.vim

Patch 8.2.3546 (after 8.2.3545)
Problem: Build failure without the +eval feature.
Solution: Add #ifdef. (closes #9025)
Files: src/errors.h

Patch 8.2.3547
Problem: Opening the quickfix window triggers BufWinEnter twice. (Yorick

Peterse)
Solution: Only trigger BufWinEnter with "quickfix". (closes #9022)
Files: src/ex_cmds.c, src/vim.h, src/quickfix.c, src/buffer.c,

src/testdir/test_quickfix.vim

Patch 8.2.3548
Problem: GTK GUI crashes when reading from stdin.
Solution: Do not overwrite the NUL after the string. (closes #9028)
Files: src/gui_gtk_x11.c, src/testdir/test_gui.vim

Patch 8.2.3549
Problem: Mistakes in test comments.
Solution: Fix the comments. (closes #9029)
Files: src/testdir/test_autocmd.vim

Patch 8.2.3550
Problem: completion() does not work properly.
Solution: Set xp_line and add WILD_HOME_REPLACE. (Shougo Matsushita,

closes #9016)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.3551
Problem: Checking first character of url twice.
Solution: Only check once. (closes #9026)
Files: src/misc1.c

Patch 8.2.3552
Problem: Xxd revert does not handle end of line correctly.
Solution: Check for newline first. (closes #9034)

version9.txt — 3839

Files: src/xxd/xxd.c, src/testdir/test_xxd.vim

Patch 8.2.3553 (after 8.2.3552)
Problem: Xxd test fails on MS-Windows.
Solution: Split shell command in two.
Files: src/testdir/test_xxd.vim

Patch 8.2.3554
Problem: Xxd has various way to exit.
Solution: Add function to print error and exit. (closes #9035)
Files: src/xxd/xxd.c

Patch 8.2.3555
Problem: ModeChanged is not triggered on every mode change.
Solution: Also trigger on minor mode changes. (Maguns Gross, closes #8999)
Files: runtime/doc/autocmd.txt, src/autocmd.c, src/insexpand.c,

src/misc1.c, src/normal.c, src/terminal.c,
src/testdir/test_edit.vim

Patch 8.2.3556
Problem: Filler lines are incorrect for other window in diff mode after

making a change.
Solution: Copy filler lines from the current window. (closes #8809)
Files: src/diff.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_scroll_change_03.dump

Patch 8.2.3557
Problem: Vim9: cannot call imported funcref at script level.
Solution: Check for an imported function. (closes #9007)
Files: src/userfunc.c, src/testdir/test_vim9_script.vim

Patch 8.2.3558 (after 8.2.3557)
Problem: Vim9: asserting the wrong variable.
Solution: Don't use Foo, use Goo.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.3559
Problem: Loop variable recreated every time.
Solution: Keep the loop variable when looping.
Files: src/ex_eval.c

Patch 8.2.3560
Problem: Using freed memory with lambda.
Solution: Do not free lines early, keep them until the expression is

finished. (closes #9020)
Files: src/eval.c, src/proto/eval.pro, src/userfunc.c, src/vim9compile.c,

src/structs.h, src/globals.h, src/testdir/test_vim9_func.vim

Patch 8.2.3561
Problem: Cscope has a complicated way of giving an error message.
Solution: Use semsg(). (James McCoy, closes #9038)
Files: src/if_cscope.c

Patch 8.2.3562
Problem: Cannot add color names.
Solution: Add the v:colornames dictionary. (Drew Vogel, closes #8761)
Files: Filelist, READMEdir/README_extra.txt, nsis/gvim.nsi,

runtime/colors/README.txt, runtime/colors/lists/csscolors.vim,
runtime/colors/lists/default.vim, runtime/doc/eval.txt,
runtime/doc/gui_w32.txt, runtime/doc/message.txt,

version9.txt — 3840

runtime/doc/os_haiku.txt, runtime/doc/syntax.txt,
runtime/doc/usr_06.txt, src/Makefile, src/evalvars.c,
src/gui_haiku.cc, src/highlight.c, src/gui.c, src/job.c,
src/proto/highlight.pro, src/proto/term.pro, src/term.c,
src/vim.h, src/globals.h, src/errors.h,
src/testdir/test_highlight.vim

Patch 8.2.3563 (after 8.2.3562)
Problem: Build failure with +eval but without GUI or +termguicolors
Solution: Adjust #ifdef. (John Marriott)
Files: src/highlight.c

Patch 8.2.3564
Problem: Invalid memory access when scrolling without a valid screen.
Solution: Do not set VALID_BOTLINE in w_valid.
Files: src/move.c, src/testdir/test_normal.vim

Patch 8.2.3565
Problem: Makefile dependencies are outdated. (Gary Johnson)
Solution: Run "make depend" and add missing dependencies.
Files: src/Makefile

Patch 8.2.3566
Problem: Build failure on old systems when using nano timestamp.
Solution: Define _BSD_SOURCE, _SVID_SOURCE and _DEFAULT_SOURCE. (Gary

Johnson, closes #9054)
Files: src/vim.h

Patch 8.2.3567
Problem: CTRL-I in Insert mode is not tested
Solution: Add a test case. (Dominique Pellé, closes #8866)
Files: src/testdir/test_edit.vim

Patch 8.2.3568
Problem: Ctrl-hat test fails with Athena and Motif. (Elimar Riesebieter)
Solution: Run the test only with GTK. (Dominique Pellé, closes #9069)
Files: src/testdir/test_edit.vim

Patch 8.2.3569
Problem: Error for :let when vimrc is Vim 9 script.
Solution: Prepend :legacy in the code for converting arguments. (Christian

Brabandt, closes #9068, closes #9077)
Files: src/os_win32.c

Patch 8.2.3570
Problem: Test_very_large_count fails on 32bit systems.
Solution: Bail out when using 32 bit numbers. (closes #9072)
Files: src/testdir/test_put.vim

Patch 8.2.3571
Problem: Some unicode control characters are considered printable.
Solution: Make 0x2060 - 0x2069 not printable.
Files: src/mbyte.c

Patch 8.2.3572
Problem: Memory leak when closing window and using "multispace" in

'listchars'.
Solution: Free the memory. (closes #9071)
Files: src/window.c, src/testdir/test_listchars.vim

version9.txt — 3841

Patch 8.2.3573
Problem: Cannot decide whether to skip test that fails with 64 bit ints.

(closes #9072)
Solution: Add v:sizeofint, v:sizeoflong and v:sizeofpointer. Improve the

check for multiply overflow.
Files: runtime/doc/eval.txt, src/vim.h, src/evalvars.c, src/register.c,

src/testdir/test_put.vim

Patch 8.2.3574 (after 8.2.3573)
Problem: Divide by zero.
Solution: Don't check for overflow if multiplicand is zero.
Files: src/register.c

Patch 8.2.3575 (after 8.2.3574)
Problem: Overflow check still fails when sizeof(int) == sizeof(long).
Solution: Use a float to check the result.
Files: src/register.c

Patch 8.2.3576
Problem: Some functions are not documented for use with a method.
Solution: Add examples. Fix that sign_unplacelist() only takes one

argument. (Sean Dewar, closes #9081)
Files: src/evalfunc.c, runtime/doc/eval.txt

Patch 8.2.3577 (after 8.2.3574)
Problem: Overflow check fails with 32 bit ints.
Solution: Only test with 64 bit ints.
Files: src/testdir/test_put.vim

Patch 8.2.3578
Problem: Manipulating highlighting is complicated.
Solution: Add the hlget() and hlset() functions. (Yegappan Lakshmanan,

closes #9039)
Files: runtime/doc/eval.txt, runtime/doc/syntax.txt,

runtime/doc/usr_41.txt, runtime/doc/windows.txt, src/evalfunc.c,
src/highlight.c, src/proto/highlight.pro,
src/testdir/test_highlight.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.3579
Problem: CI sometimes fails for MinGW.
Solution: Use backslashes in HandleSwapExists(). (Christian Brabandt,

closes #9078)
Files: src/testdir/runtest.vim

Patch 8.2.3580
Problem: gj does not move properly with a wide character.
Solution: Move one to the right. (Christian Brabandt, closes #8702)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.2.3581
Problem: Reading character past end of line.
Solution: Correct the cursor column.
Files: src/ex_docmd.c, src/testdir/test_put.vim

Patch 8.2.3582
Problem: Reading uninitialized memory when giving spell suggestions.
Solution: Check that preword is not empty.
Files: src/spellsuggest.c, src/testdir/test_spell.vim

Patch 8.2.3583

version9.txt — 3842

Problem: The "gd" and "gD" commands do not update search stats. (Gary
Johnson)

Solution: Clear search stats.
Files: src/normal.c, src/testdir/test_search_stat.vim,

src/testdir/dumps/Test_searchstatgd_1.dump,
src/testdir/dumps/Test_searchstatgd_2.dump

Patch 8.2.3584
Problem: "verbose set efm" reports the location of the :compiler command.

(Gary Johnson)
Solution: Add the "-keepscript" argument to :command and use it when

defining CompilerSet.
Files: runtime/doc/map.txt, src/ex_cmds2.c, src/usercmd.c, src/ex_cmds.h,

src/testdir/test_compiler.vim

Patch 8.2.3585
Problem: Crash when passing float to "term_rows" in the options argument of

term_start(). (Virginia Senioria)
Solution: Bail out if the argument is not a number. (closes #9116)
Files: src/job.c, src/terminal.c, src/testdir/test_terminal.vim

Patch 8.2.3586 (after 8.2.3584)
Problem: Command completion test fails.
Solution: Add new argument to expected output
Files: src/testdir/test_usercommands.vim

Patch 8.2.3587 (after 8.2.3584)
Problem: Compiler test fails with backslash file separator.
Solution: Accept slash and backslash.
Files: src/testdir/test_compiler.vim

Patch 8.2.3588
Problem: Break statement is never reached.
Solution: Rely on return value of set_chars_option() not changing.

(closes #9103)
Files: src/optionstr.c

Patch 8.2.3589
Problem: Failure when the "term_rows" argument of term_start() is an

unusual value.
Solution: Limit to range of zero to 1000. (closes #9116)
Files: runtime/doc/terminal.txt, src/job.c, src/testdir/test_terminal.vim

Patch 8.2.3590
Problem: Test for v:colornames sometimes fails. (Dominique Pellé)
Solution: Check features. Clear v:colornames between tests. (Drew Vogel,

closes #9105, closes #9073)
Files: runtime/doc/eval.txt, src/highlight.c, src/proto/highlight.pro,

src/testdir/test_highlight.vim

Patch 8.2.3591
Problem: No event is triggered when closing a window.
Solution: Add the WinClosed event. (Naohiro Ono, closes #9110)
Files: runtime/doc/autocmd.txt, src/autocmd.c,

src/testdir/test_autocmd.vim, src/vim.h, src/window.c

Patch 8.2.3592
Problem: Test_hlset fails when terminal has many columns.
Solution: Set the number of columns to 80. (Dominique Pellé, closes #9101,

closes #9100)

version9.txt — 3843

Files: src/testdir/test_highlight.vim

Patch 8.2.3593
Problem: Directory is wrong after executing "lcd" with win_execute().
Solution: Correct the directory when going back to the original window.

(closes #9132)
Files: src/evalwindow.c, src/window.c, src/proto/window.pro,

src/testdir/test_execute_func.vim

Patch 8.2.3594
Problem: Xxd code is a bit difficult to understand.
Solution: Move some lines to a separate function. (closes #9037)
Files: src/xxd/xxd.c

Patch 8.2.3595
Problem: Check for signed overflow might not work everywhere.
Solution: Limit to 32 bit int. (closes #9043, closes #9067)
Files: src/getchar.c

Patch 8.2.3596
Problem: Crash when using :pedit in Vim9 script.
Solution: Move check for arguments to after checking there are arguments.

(Yegappan Lakshmanan, closes #9134, closes #9135)
Files: src/popupwin.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3597
Problem: Vim seems to hang when writing a very long text to a terminal

window.
Solution: Limit the amount of text based on 'termwinscroll'. (issue #9080)
Files: runtime/doc/options.txt, src/terminal.c

Patch 8.2.3598
Problem: RouterOS filetype is not recognized.
Solution: Add file and script patterns. (closes #9097)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3599
Problem: Not all gdbinit files are recognized.
Solution: Add "gdbinit". (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3600 (after 8.2.3598)
Problem: Filetype test fails.
Solution: Add missing change.
Files: runtime/scripts.vim

Patch 8.2.3601
Problem: Check for overflow in put count does not work well.
Solution: Improve the overflow check. (Ozaki Kiichi, closes #9102)
Files: src/register.c, src/testdir/test_put.vim

Patch 8.2.3602
Problem: Python3 test fails with Python 3.10 on MS-Windows.
Solution: Adjust the expected error. (Ken Takata, closes #9118)
Files: src/testdir/test_python3.vim

Patch 8.2.3603
Problem: Fish filetype not recognized.
Solution: Add a file pattern and match script line. (Doug Kearns)
Files: runtime/filetype.vim, runtime/scripts.vim,

version9.txt — 3844

src/testdir/test_filetype.vim

Patch 8.2.3604
Problem: Not all sudoers files are recognized.
Solution: Add a file pattern. (Doug Kearns, closes #1192)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3605
Problem: Cannot clear and unlink a highlight group with hlset() in a

single call.
Solution: Add the "force" option. (Yegappan Lakshmanan, closes #9117)
Files: runtime/doc/eval.txt, src/highlight.c,

src/testdir/test_highlight.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_cmd.vim

Patch 8.2.3606
Problem: File missing from list of distributed files.
Solution: Add the file.
Files: Filelist

Patch 8.2.3607
Problem: GTK3 screen updating is slow.
Solution: Remove some of the GTK3-specific code. (closes #9052)
Files: src/gui.h, src/gui_gtk_x11.c

Patch 8.2.3608
Problem: Users who type "q:" instead of ":q" are confused.
Solution: Add an autocmd to give a message that explains this is the

command-line window. (Egor Zvorykin, closes #9146)
Files: runtime/defaults.vim, src/testdir/test_autocmd.vim,

src/testdir/test_cmdline.vim

Patch 8.2.3609
Problem: Internal error when ModeChanged is triggered when v:event is

already in use.
Solution: Save and restore v:event if needed.
Files: src/misc1.c, src/proto/misc1.pro, src/testdir/test_edit.vim,

src/insexpand.c, src/structs.h, src/register.c

Patch 8.2.3610
Problem: Crash when ModeChanged triggered too early.
Solution: Trigger ModeChanged after setting VIsual.
Files: src/normal.c, src/testdir/test_edit.vim

Patch 8.2.3611
Problem: Crash when using CTRL-W f without finding a file name.
Solution: Bail out when the file name length is zero.
Files: src/findfile.c, src/normal.c, src/testdir/test_visual.vim

Patch 8.2.3612
Problem: Using freed memory with regexp using a mark.
Solution: Get the line again after getting the mark position.
Files: src/regexp.c, src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 8.2.3613
Problem: :find test fails.
Solution: Put length check inside if block.
Files: src/findfile.c

Patch 8.2.3614

version9.txt — 3845

Problem: zindex of popup windows not used when redrawing popup menu.
Solution: Check the zindex when redrawing the popup menu. (closes #9129,

closes #9089)
Files: src/popupmenu.c, src/popupwin.c, src/proto/popupmenu.pro,

src/screen.c, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_popupmenu_masking_1.dump,
src/testdir/dumps/Test_popupwin_popupmenu_masking_2.dump

Patch 8.2.3615
Problem: When re-formatting with an indent expression the first line of a

paragraph may get the wrong indent. (Martin F. Krafft)
Solution: Apply the correct indenting function for the first line.

(Christian Brabandt, closes #9150, closes #9056)
Files: src/textformat.c, src/testdir/test_indent.vim

Patch 8.2.3616
Problem: Arglist test does not clear the argument list consistently.
Solution: Call Reset_arglist(). (Shougo Matsushita, closes #9154)
Files: src/testdir/test_arglist.vim

Patch 8.2.3617
Problem: ":verbose pwd" does not mention 'autochdir' was applied.
Solution: Remember the last chdir was done by 'autochdir'. (issue #9142)
Files: src/globals.h, src/buffer.c, src/ex_docmd.c, src/window.c,

src/main.c, src/netbeans.c, src/os_win32.c,
src/testdir/test_autochdir.vim

Patch 8.2.3618
Problem: getcwd() is unclear about how 'autochdir' is used.
Solution: Update the help for getcwd(). Without any arguments always return

the actual current directory. (closes #9142)
Files: runtime/doc/eval.txt, src/filepath.c, src/testdir/test_cd.vim

Patch 8.2.3619
Problem: Cannot use a lambda for 'operatorfunc'.
Solution: Support using a lambda or partial. (Yegappan Lakshmanan,

closes #8775)
Files: runtime/doc/map.txt, runtime/doc/options.txt, src/ops.c,

src/option.c, src/optionstr.c, src/proto/ops.pro,
src/proto/option.pro, src/quickfix.c, src/testdir/test_normal.vim

Patch 8.2.3620
Problem: Memory leak reported in libtlib.
Solution: Call del_curterm() when cleaning up memory. Rename term.h to

termdefs.h to avoid a name clash.
Files: src/term.c, src/proto/term.pro, src/alloc.c, src/configure.ac,

src/auto/configure, src/config.h.in, src/Makefile,
src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms,
src/term.h, src/termdefs.h

Patch 8.2.3621 (after 8.2.3620)
Problem: Build failure.
Solution: Add missing change.
Files: src/vim.h

Patch 8.2.3622
Problem: "verbose pwd" shows confusing info when :lcd does not change

directory.
Solution: Clear last_chdir_reason also when the directory does not change.

(closes #9160)

version9.txt — 3846

Files: src/ex_docmd.c, src/testdir/test_autochdir.vim

Patch 8.2.3623
Problem: "$*" is expanded to "nonomatch".
Solution: Only add "set nonomatch" when using a csh-like shell. (Christian

Brabandt, closes #9159, closes #9153)
Files: src/os_unix.c, src/testdir/test_expand.vim

Patch 8.2.3624
Problem: When renaming a terminal buffer the status text is not updated.
Solution: Clear the cached status text when renaming a terminal buffer.

(closes #9162)
Files: src/buffer.c, src/terminal.c, src/proto/terminal.pro,

src/testdir/test_terminal.vim

Patch 8.2.3625
Problem: Illegal memory access when C-indenting.
Solution: Also set the cursor column.
Files: src/cindent.c, src/testdir/test_cindent.vim

Patch 8.2.3626
Problem: "au!" and "au! event" cannot be followed by another command as

documented.
Solution: When a bar is found set nextcmd.
Files: src/autocmd.c, src/testdir/test_autocmd.vim

Patch 8.2.3627
Problem: difficult to know where the text starts in a window. (Sergey

Vlasov)
Solution: Add the "textoff" entry in the result of getwininfo().

(closes #9163)
Files: runtime/doc/eval.txt, src/evalwindow.c,

src/testdir/test_bufwintabinfo.vim

Patch 8.2.3628
Problem: Looking up terminal colors is a bit slow.
Solution: Cache the terminal colors. (closes #9130, closes #9058)
Files: src/highlight.c, src/libvterm/include/vterm.h, src/option.c,

src/optionstr.c, src/popupwin.c, src/proto/terminal.pro,
src/structs.h, src/terminal.c, src/window.c,
src/testdir/test_terminal3.vim,
src/testdir/dumps/Test_terminal_color_MyTermCol.dump,
src/testdir/dumps/Test_terminal_color_MyTermCol_over_Terminal.dump,
src/testdir/dumps/Test_terminal_color_MyWinCol.dump,
src/testdir/dumps/Test_terminal_color_MyWinCol_over_group.dump,
src/testdir/dumps/Test_terminal_color_Terminal.dump,
src/testdir/dumps/Test_terminal_color_gui_MyTermCol.dump,
src/testdir/dumps/Test_terminal_color_gui_MyWinCol.dump,
src/testdir/dumps/Test_terminal_color_gui_Terminal.dump,
src/testdir/dumps/Test_terminal_color_gui_transp_MyTermCol.dump,
src/testdir/dumps/Test_terminal_color_gui_transp_MyWinCol.dump,
src/testdir/dumps/Test_terminal_color_gui_transp_Terminal.dump,
src/testdir/dumps/Test_terminal_color_transp_MyTermCol.dump,
src/testdir/dumps/Test_terminal_color_transp_MyWinCol.dump,
src/testdir/dumps/Test_terminal_color_transp_Terminal.dump,
src/testdir/dumps/Test_terminal_popup_MyPopupHlCol.dump,
src/testdir/dumps/Test_terminal_popup_MyTermCol_over_Terminal.dump,
src/testdir/dumps/Test_terminal_popup_MyWinCol.dump,
src/testdir/dumps/Test_terminal_popup_MyWinCol_over_group.dump,
src/testdir/dumps/Test_terminal_popup_gui_MyPopupHlCol.dump,

version9.txt — 3847

src/testdir/dumps/Test_terminal_popup_gui_MyTermCol.dump,
src/testdir/dumps/Test_terminal_popup_gui_MyWinCol.dump,
src/testdir/dumps/Test_terminal_popup_gui_Terminal.dump,
src/testdir/dumps/Test_terminal_popup_gui_transp_MyPopupHlCol.dump,
src/testdir/dumps/Test_terminal_popup_gui_transp_MyTermCol.dump,
src/testdir/dumps/Test_terminal_popup_gui_transp_MyWinCol.dump,
src/testdir/dumps/Test_terminal_popup_gui_transp_Terminal.dump,
src/testdir/dumps/Test_terminal_popup_transp_MyPopupHlCol.dump,
src/testdir/dumps/Test_terminal_popup_transp_MyTermCol.dump,
src/testdir/dumps/Test_terminal_popup_transp_MyWinCol.dump,
src/testdir/dumps/Test_terminal_popup_transp_Terminal.dump,
src/testdir/dumps/Test_terminal_wincolor_split_MyWinCol.dump,
src/testdir/dumps/Test_terminal_wincolor_split_MyWinCol2.dump

Patch 8.2.3629
Problem: Command completion in cmdline window uses global user commands,

not local commands for the window where it was opened from.
Solution: Use local commands. (closes #9168)
Files: src/ex_getln.c, src/proto/ex_getln.pro, src/evalvars.c,

src/usercmd.c, src/testdir/test_ins_complete.vim

Patch 8.2.3630
Problem: Printf() with %S does not handle multi-byte correctly.
Solution: Count cells instead of bytes. (closes #9169, closes #7486)
Files: src/strings.c, src/testdir/test_expr.vim

Patch 8.2.3631
Problem: "syntax enable" does not work properly in Vim9 context.
Solution: Also handle Vim9 context. (closes #9161)
Files: src/syntax.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3632
Problem: GTK3: undercurl does not get removed properly.
Solution: Set the cairo cursor first. (closes #9170)
Files: src/gui_gtk_x11.c

Patch 8.2.3633
Problem: Vim9: line number of lambda is off by one.
Solution: Add one to the line number. (closes #9083)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3634
Problem: Error for already defined function uses wrong line number.
Solution: Set SOURCING_LNUM before giving the error message. (closes #9085)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3635
Problem: GTK: composing underline does not show.
Solution: Include composing character in pango call. A few more

optimizations for ligatures. (Dusan Popovic, closes #9171,
closes #9147)

Files: src/gui_gtk_x11.c

Patch 8.2.3636
Problem: Coverity warns for unreachable code.
Solution: Remove unreachable else block.
Files: src/gui_gtk_x11.c

Patch 8.2.3637
Problem: Typos in test files.

version9.txt — 3848

Solution: Correct the typos. (Dominique Pellé, closes #9175)
Files: src/testdir/runtest.vim, src/testdir/test_debugger.vim,

src/testdir/test_diffmode.vim, src/testdir/test_edit.vim,
src/testdir/test_excmd.vim, src/testdir/test_flatten.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_normal.vim,
src/testdir/test_options.vim, src/testdir/test_python2.vim,
src/testdir/test_python3.vim, src/testdir/test_quickfix.vim,
src/testdir/test_recover.vim, src/testdir/test_spellfile.vim,
src/testdir/test_syntax.vim, src/testdir/test_termcodes.vim,
src/testdir/test_textobjects.vim, src/testdir/test_trycatch.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_viminfo.vim

Patch 8.2.3638
Problem: getcompletion() always passes zero as position to custom

completion function.
Solution: Pass the pattern length. (closes #9173)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.3639 (after 8.2.2922)
Problem: Line commented out accidentally.
Solution: Uncomment. (Volodymyr Kot, closes #9172)
Files: src/main.c

Patch 8.2.3640
Problem: Freeze when calling term_wait() in a close callback.
Solution: Set a "closing" flag to tell term_wait() to return. (closes #9152)
Files: src/channel.c, src/terminal.c, src/proto/terminal.pro,

src/testdir/test_terminal.vim

Patch 8.2.3641
Problem: Xxd code has duplicate expressions.
Solution: Refactor to avoid duplication. (closes #9185)
Files: src/xxd/xxd.c

Patch 8.2.3642
Problem: List of distributed files is outdated.
Solution: Rename term.h to termdefs.h.
Files: Filelist

Patch 8.2.3643
Problem: Header for source file is outdated.
Solution: Make the header more accurate. (closes #9186)
Files: src/map.c, src/getchar.c

Patch 8.2.3644
Problem: Count for 'operatorfunc' in Visual mode is not redone.
Solution: Add the count to the redo buffer. (closes #9174)
Files: src/normal.c, src/proto/normal.pro, src/ops.c,

src/testdir/test_normal.vim

Patch 8.2.3645
Problem: Vim9: The "no effect" error is not given for all registers.
Solution: Include any character following '@'. (closes #8779)
Files: src/ex_eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3646
Problem: Using <sfile> in a function gives an unexpected result.
Solution: Give an error in a Vim9 function. (issue #9189)
Files: src/scriptfile.c, src/errors.h, src/testdir/test_vim9_builtin.vim

version9.txt — 3849

Patch 8.2.3647
Problem: GTK: when using ligatures the cursor is drawn wrong.
Solution: Clear more characters when ligatures are used. (Dusan Popovic,

closes #9190)
Files: src/gui.c

Patch 8.2.3648
Problem: "verbose pwd" is incorrect after dropping files on Vim.
Solution: Set the chdir reason to "drop".
Files: src/gui.c

Patch 8.2.3649
Problem: Vim9: error for variable declared in while loop.
Solution: Do not keep the first variable. (closes #9191)
Files: src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3650
Problem: Vim9: for loop variable can be a list member.
Solution: Check for valid variable name. (closes #9179)
Files: src/vim9compile.c, src/dict.c, src/eval.c, src/evalvars.c,

src/proto/evalvars.pro, src/testdir/test_vim9_script.vim

Patch 8.2.3651
Problem: Vim9: no error for :lock or :unlock with unknown variable.
Solution: Give an error. (closes #9188)
Files: src/evalvars.c, src/errors.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.3652
Problem: Can only get text properties one line at a time.
Solution: Add options to prop_list() to use a range of lines and filter by

types. (Yegappan Lakshmanan, closes #9138)
Files: runtime/doc/textprop.txt, src/textprop.c,

src/testdir/test_textprop.vim

Patch 8.2.3653
Problem: Terminal ANSI colors may be wrong.
Solution: Initialize the color type. (closes #9198, closes #9197)
Files: src/terminal.c

Patch 8.2.3654
Problem: GTK: a touch-drag does not update the selection.
Solution: Add GDK_BUTTON1_MASK to the state. (Chris Dalton, close #9196,

closes #9194)
Files: src/gui_gtk_x11.c

Patch 8.2.3655
Problem: Compiler warning for using size_t for int.
Solution: Add a type cast. (Mike Williams, closes #9199)
Files: src/vim9compile.c

Patch 8.2.3656
Problem: Vim9: no error for an environment variable by itself.
Solution: Give a "without effect" error. (closes #9166)
Files: src/ex_eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3657
Problem: Vim9: debug text misses one line of return statement.
Solution: Add a line when not at a debug instruction. (closes #9137)
Files: src/vim9execute.c, src/testdir/test_debugger.vim

version9.txt — 3850

Patch 8.2.3658
Problem: Duplicate code in xxd.
Solution: Merge duplicated code. Add more tests. (closes #9192)
Files: src/xxd/xxd.c, src/testdir/test_xxd.vim

Patch 8.2.3659
Problem: Integer overflow with large line number.
Solution: Check for overflow. (closes #9202)
Files: src/errors.h, src/ex_docmd.c, src/testdir/test_excmd.vim

src/normal.c, src/testdir/test_normal.vim

Patch 8.2.3660 (after 8.2.3659)
Problem: Overflow check uses wrong number.
Solution: Divide by ten.
Files: src/normal.c

Patch 8.2.3661 (after 8.2.3659)
Problem: Test for put with large count fails.
Solution: Adjust the counts in the test.
Files: src/testdir/test_put.vim

Patch 8.2.3662
Problem: Illegal memory access if malloc() fails.
Solution: Check 'foldmethod' is not empty. (closes #9207)
Files: src/fold.c

Patch 8.2.3663
Problem: Using %S in printf() does not work correctly.
Solution: Fix the problem and add more tests. (closes #9208)
Files: src/strings.c, src/testdir/test_expr.vim

Patch 8.2.3664
Problem: Cannot adjust sign highlighting for 'cursorline'.
Solution: Add CursorLineSign and CursorLineFold highlight groups.

(Gregory Anders, closes #9201)
Files: runtime/doc/sign.txt, runtime/doc/syntax.txt, src/drawline.c,

src/highlight.c, src/optiondefs.h, src/popupwin.c,
src/proto/sign.pro, src/sign.c, src/structs.h, src/vim.h,
src/testdir/test_signs.vim

Patch 8.2.3665
Problem: Cannot use a lambda for 'tagfunc'.
Solution: Use 'tagfunc' like 'opfunc'. (Yegappan Lakshmanan, closes #9204)
Files: runtime/doc/options.txt, src/buffer.c, src/option.c,

src/optionstr.c, src/proto/tag.pro, src/structs.h, src/tag.c,
src/testdir/test_tagfunc.vim

Patch 8.2.3666
Problem: Libvterm is outdated.
Solution: Include patches from revision 769 to revision 789.
Files: Filelist, src/libvterm/Makefile, src/libvterm/doc/seqs.txt,

src/libvterm/include/vterm.h, src/libvterm/src/mouse.c,
src/libvterm/src/parser.c, src/libvterm/src/state.c,
src/libvterm/src/vterm.c, src/libvterm/src/vterm_internal.h,
src/libvterm/t/02parser.test, src/libvterm/t/17state_mouse.test,
src/libvterm/t/29state_fallback.test,
src/libvterm/t/40state_selection.test, src/libvterm/t/harness.c,
src/libvterm/t/run-test.pl, src/libvterm/vterm.pc.in,
src/terminal.c

version9.txt — 3851

Patch 8.2.3667
Problem: Building libvterm fails with MSVC.
Solution: Don't use C99 construct.
Files: src/libvterm/src/state.c

Patch 8.2.3668
Problem: Messages may be corrupted.
Solution: Use another buffer instead of IObuff. (Yegappan Lakshmanan,

closes #9195)
Files: src/highlight.c, src/testdir/test_highlight.vim

Patch 8.2.3669
Problem: Buffer overflow with long help argument.
Solution: Use snprintf().
Files: src/help.c, src/testdir/test_help.vim

Patch 8.2.3670
Problem: Error checks repeated several times.
Solution: Move the checks to functions. (closes #9213)
Files: src/xxd/xxd.c

Patch 8.2.3671
Problem: Restarting Insert mode in prompt buffer too often when a callback

switches windows and comes back. (Sean Dewar)
Solution: Do not set "restart_edit" when already in Insert mode.

(closes #9212)
Files: src/window.c, src/testdir/test_prompt_buffer.vim

Patch 8.2.3672 (after 8.2.3670)
Problem: Build failure with unsigned char.
Solution: Use int instead of char.
Files: src/xxd/xxd.c

Patch 8.2.3673
Problem: Crash when allocating signal stack fails.
Solution: Only using sourcing info when available. (closes #9215)
Files: src/globals.h, src/message.c

Patch 8.2.3674
Problem: When ml_get_buf() fails it messes up IObuff.
Solution: Return a local pointer. (closes #9214)
Files: src/memline.c

Patch 8.2.3675
Problem: Using freed memory when vim_strsave() fails.
Solution: Clear "last_sourcing_name". Check for msg_source() called

recursively. (closes #8217)
Files: src/message.c

Patch 8.2.3676
Problem: Unused runtime file.
Solution: Remove rgb.txt.
Files: runtime/rgb.txt

Patch 8.2.3677
Problem: After a put the '] mark is on the last byte of a multi-byte

character.
Solution: Move it to the first byte. (closes #9047)
Files: src/register.c, src/testdir/test_put.vim

version9.txt — 3852

Patch 8.2.3678 (after 8.2.3677)
Problem: Illegal memory access.
Solution: Ignore changed indent when computing byte offset.
Files: src/register.c

Patch 8.2.3679
Problem: objc file detected as Octave. (Antony Lee)
Solution: Detect objc by preprocessor lines. (Doug Kearns, closes #9223,

closes #9220)
Files: runtime/autoload/dist/ft.vim, src/testdir/test_filetype.vim

Patch 8.2.3680
Problem: Repeated code in xxd.
Solution: Change exit_on_ferror() to getc_or_die(). (closes #9226)
Files: src/xxd/xxd.c

Patch 8.2.3681
Problem: Cannot drag popup window after click on a status line. (Sergey

Vlasov)
Solution: Reset on_status_line. (closes #9221)
Files: src/mouse.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_drag_04.dump

Patch 8.2.3682
Problem: Vim9: assigning to a script variable drops the required type.
Solution: Lookup the type of the variable and use it. (closes #9219)
Files: src/evalvars.c, src/vim9script.c, src/proto/vim9script.pro,

src/testdir/test_vim9_assign.vim

Patch 8.2.3683
Problem: Vim9: cannot use `=expr` in :...do commands.
Solution: Add EX_EXPAND to the commands. (closes #9232)
Files: src/ex_cmds.h, src/testdir/test_vim9_cmd.vim

Patch 8.2.3684
Problem: Blockwise insert does not handle autoindent properly.
Solution: Adjust text column for indent. (closes #9229)
Files: src/ops.c, src/testdir/test_blockedit.vim

Patch 8.2.3685
Problem: Visual Studio project files are not recognized.
Solution: Use the xml file type. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3686
Problem: Filetype detection often mixes up Forth and F#.
Solution: Add a function to inspect the file contents. (Doug Kearns)
Files: runtime/autoload/dist/ft.vim, runtime/doc/filetype.txt,

runtime/doc/syntax.txt, runtime/filetype.vim, runtime/scripts.vim,
src/testdir/test_filetype.vim

Patch 8.2.3687
Problem: Blockwise insert does not handle autoindent properly when tab is

inserted.
Solution: Adjust text column for indent before computing column.

(closes #9229)
Files: src/ops.c, src/testdir/test_blockedit.vim

Patch 8.2.3688
Problem: The window title is not updated when dragging the scrollbar.

version9.txt — 3853

Solution: Call maketitle(). (Christian Brabandt, closes #9238, closes #5383)
Files: src/gui.c

Patch 8.2.3689
Problem: ex_let_one() is too long.
Solution: Split into multiple functions.
Files: src/evalvars.c

Patch 8.2.3690
Problem: Vim9: "filter #pat# cmd" does not work.
Solution: Do not see #pat# as a comment.
Files: src/ex_docmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3691
Problem: Build failure with small features.
Solution: Add #ifdef. (Dominique Pellé)
Files: src/gui.c

Patch 8.2.3692
Problem: Vim9: cannot use :func inside a :def function.
Solution: Make it work.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c, src/errors.h,

src/structs.h, src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3693
Problem: Coverity warns for possibly using a NULL pointer.
Solution: Check for NULL and give an error.
Files: src/vim9execute.c, src/errors.h

Patch 8.2.3694
Problem: Cannot use quotes in the count of an Ex command.
Solution: Add getdigits_quoted(). Give an error when misplacing a quote in

a range. (closes #9240)
Files: src/ex_docmd.c, src/charset.c, src/proto/charset.pro,

src/testdir/test_usercommands.vim

Patch 8.2.3695
Problem: Confusing error for missing key.
Solution: Use the actual key for the error. (closes #9241)
Files: src/eval.c, src/testdir/test_listdict.vim

Patch 8.2.3696
Problem: Vim9: error for invalid assignment when skipping.
Solution: Do not check white space when skipping. (closes #9243)
Files: src/evalvars.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3697
Problem: Cannot drag a popup without a border.
Solution: Add the "dragall" option. (closes #9218)
Files: runtime/doc/popup.txt, src/mouse.c, src/popupwin.c, src/vim.h,

src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_drag_05.dump,
src/testdir/dumps/Test_popupwin_drag_06.dump

Patch 8.2.3698
Problem: Match highlighting continues over breakindent.
Solution: Stop before the end column. (closes #9242)
Files: src/match.c, src/proto/match.pro, src/drawline.c,

src/testdir/test_match.vim,
src/testdir/dumps/Test_match_linebreak.dump

version9.txt — 3854

Patch 8.2.3699
Problem: The +title feature adds a lot of #ifdef but little code.
Solution: Graduate the +title feature.
Files: src/feature.h, src/alloc.c, src/arglist.c, src/autocmd.c,

src/buffer.c, src/bufwrite.c, src/change.c, src/drawscreen.c,
src/evalfunc.c, src/ex_cmds.c, src/ex_docmd.c, src/gui.c,
src/gui_gtk_x11.c, src/if_xcmdsrv.c, src/locale.c, src/main.c,
src/misc2.c, src/netbeans.c, src/option.c, src/optionstr.c,
src/os_amiga.c, src/os_mswin.c, src/os_unix.c, src/os_win32.c,
src/regexp.c, src/term.c, src/ui.c, src/version.c, src/window.c,
src/globals.h, src/option.h, src/optiondefs.h,
runtime/doc/options.txt, runtime/doc/various.txt

Patch 8.2.3700
Problem: Text property highlighting continues over breakindent.
Solution: Stop before the end column. (closes #9242)
Files: src/drawline.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_prop_linebreak.dump

Patch 8.2.3701
Problem: Vim9: invalid LHS is not possible.
Solution: Remove unreachable error message.
Files: src/vim9compile.c

Patch 8.2.3702
Problem: First key in dict is seen as curly expression and fails.
Solution: Ignore failure of curly expression. (closes #9247)
Files: src/typval.c, src/dict.c, src/testdir/test_listdict.vim

Patch 8.2.3703 (after 8.2.3686)
Problem: Most people call F# "fsharp" and not "fs".
Solution: Rename filetype "fs" to "fsharp".
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

src/testdir/test_filetype.vim

Patch 8.2.3704
Problem: Vim9: cannot use a list declaration in a :def function.
Solution: Make it work.
Files: runtime/doc/vim9.txt, src/vim9compile.c, src/errors.h,

src/testdir/test_vim9_assign.vim

Patch 8.2.3705
Problem: Cannot pass a lambda name to function() or funcref(). (Yegappan

Lakshmanan)
Solution: Handle a lambda name differently.
Files: src/userfunc.c, src/proto/userfunc.pro, src/evalfunc.c,

src/testdir/test_expr.vim

Patch 8.2.3706 (after 8.2.3700)
Problem: Text property highlighting is used on Tab.
Solution: Only set in_linebreak when not on a Tab. (closes #9242)
Files: src/drawline.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_prop_after_tab.dump

Patch 8.2.3707
Problem: Vim9: constant expression of elseif not recognized.
Solution: Set instruction count before generating the expression.
Files: src/vim9compile.c, src/testdir/test_vim9_disassemble.vim

version9.txt — 3855

Patch 8.2.3708 (after 8.2.3707)
Problem: Vim9: test fails with different error.
Solution: Correct the error number.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.3709
Problem: Vim9: backtick expression expanded when not desired.
Solution: Only expand a backtick expression for commands that expand their

argument. Remove a few outdated TODO comments.
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3710
Problem: Vim9: backtick expression expanded for :global.
Solution: Check the following command.
Files: runtime/doc/vim9.txt, src/vim9compile.c,

src/testdir/test_vim9_cmd.vim

Patch 8.2.3711
Problem: Vim9: memory leak when compiling :elseif fails.
Solution: Cleanup ppconst.
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3712
Problem: Cannot use Vim9 lambda for 'tagfunc'.
Solution: Make it work, add more tests. (Yegappan Lakshmanan, closes #9250)
Files: runtime/doc/options.txt, src/insexpand.c, src/option.c,

src/testdir/test_tagfunc.vim

Patch 8.2.3713
Problem: MS-Windows: No error message if vimgrep pattern is not matching.
Solution: Give an error message. (Christian Brabandt, closes #9245,

closes #8762)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.3714
Problem: Some unused assignments and ugly code in xxd.
Solution: Leave out assignments. Use marcro for fprintf(). (closes #9246)
Files: src/xxd/xxd.c

Patch 8.2.3715
Problem: Vim9: valgrind reports spurious problems for a test.
Solution: Move the test to the set that is known to fail.
Files: src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_fails.vim

Patch 8.2.3716
Problem: Vim9: range without a command is not compiled.
Solution: Add the ISN_EXECRANGE byte code.
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/vim9compile.c,

src/vim9execute.c, src/vim9.h,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3717
Problem: Vim9: error for constant list size is only given at runtime.
Solution: Give the error at compile time if possible.
Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3718
Problem: Compiler warns for unused variable without the +textprop feature.

version9.txt — 3856

(John Marriott)
Solution: Adjust #ifdefs.
Files: src/drawline.c

Patch 8.2.3719
Problem: MS-Windows: test sometimes runs into existing swap file.
Solution: Use a different file name.
Files: src/testdir/test_buffer.vim

Patch 8.2.3720
Problem: Vim9: Internal error when invoking closure in legacy context.
Solution: Give a more appropriate error message. (closes #9251)
Files: src/errors.h, src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.3721
Problem: Using memory freed by losing the clipboard selection. (Dominique

Pellé)
Solution: Check y_array is still valid after calling changed_lines().

(closes #9253)
Files: src/errors.h, src/register.c

Patch 8.2.3722
Problem: Amiga: superfluous messages for freeing lots of yanked text.
Solution: Assume that the machine isn't that slow these days.
Files: src/register.c

Patch 8.2.3723
Problem: When using 'linebreak' a text property starts too early.
Solution: Decrement "bcol" when looking for property start. (closes #9242)
Files: src/drawline.c, src/testdir/test_textprop.vim,

src/testdir/dumps/Test_prop_after_linebreak.dump

Patch 8.2.3724
Problem: Build error for missing error message in small build.
Solution: Correct #ifdef.
Files: src/errors.h

Patch 8.2.3725
Problem: Cannot use a lambda for 'completefunc' and 'omnifunc'.
Solution: Implement lambda support. (Yegappan Lakshmanan, closes #9257)
Files: runtime/doc/options.txt, src/buffer.c, src/insexpand.c,

src/option.c, src/optionstr.c, src/proto/insexpand.pro,
src/proto/tag.pro, src/proto/userfunc.pro, src/structs.h,
src/tag.c, src/userfunc.c, src/testdir/test_ins_complete.vim,
src/testdir/test_tagfunc.vim

Patch 8.2.3726
Problem: README file in a config directory gets wrong filetype.
Solution: Match README before patterns that match everything in a directory.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3727
Problem: In a gnome terminal keys are recognized as mouse events.
Solution: Only recognize DEC mouse events when four numbers are following.

(closes #9256)
Files: src/term.c, src/testdir/test_termcodes.vim

Patch 8.2.3728
Problem: Internal error when passing range() to list2blob().
Solution: Materialize the list first. (closes #9262)

version9.txt — 3857

Files: src/blob.c, src/testdir/test_blob.vim

Patch 8.2.3729
Problem: No support for squirrels.
Solution: Recognize nuts. (closes #9259)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3730
Problem: "/etc/Muttrc.d/README" gets filetype muttrc.
Solution: Move the Muttrc.d pattern down, add exception for *.rc files.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3731
Problem: "set! termcap" shows codes in one column, but not keys.
Solution: Also use one column for keys. (closes #9258)
Files: src/option.c, src/term.c, src/proto/term.pro,

src/testdir/test_set.vim

Patch 8.2.3732 (after 8.2.3731)
Problem: "set! termcap" test fails.
Solution: Account for keys without a t_xx entry.
Files: src/testdir/test_set.vim

Patch 8.2.3733
Problem: Vim9: using "legacy" before range does not work.
Solution: Skip over range before parsing command. (closes #9270)
Files: src/vim9compile.c, src/usercmd.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.3734
Problem: Vim9: crash when no pattern match found.
Solution: Check for error.
Files: src/vim9execute.c

Patch 8.2.3735
Problem: Cannot use a lambda for 'imactivatefunc'.
Solution: Add lambda support for 'imactivatefunc' and 'imstatusfunc'.

(Yegappan Lakshmanan, closes #9275)
Files: runtime/doc/options.txt, src/alloc.c, src/gui_xim.c,

src/optionstr.c, src/proto/gui_xim.pro,
src/testdir/test_iminsert.vim, src/testdir/test_ins_complete.vim

Patch 8.2.3736
Problem: Test fails without the channel feature. (Dominique Pellé)
Solution: Source the check.vim script. (closes #9277)
Files: src/testdir/test_vim9_fails.vim

Patch 8.2.3737
Problem: Test fails without the 'autochdir' option.
Solution: Check that the option is available. (Dominique Pellé, closes #9272)
Files: src/testdir/test_cd.vim

Patch 8.2.3738
Problem: Screen is cleared when a FocusLost autocommand triggers.
Solution: Do not redraw when at the hit-enter or more prompt. (closes #9274)
Files: src/misc1.c

Patch 8.2.3739
Problem: In wrong directory when using win_execute() with 'acd' set.
Solution: Restore the directory when returning to the window. (closes #9276)
Files: src/window.c, src/testdir/test_autochdir.vim

version9.txt — 3858

Patch 8.2.3740
Problem: Memory left allocated on exit when using Tcl.
Solution: Call Tcl_Finalize().
Files: src/if_tcl.c, src/proto/if_tcl.pro, src/alloc.c

Patch 8.2.3741
Problem: Using freed memory in open command.
Solution: Make a copy of the current line.
Files: src/ex_docmd.c, src/testdir/test_ex_mode.vim

Patch 8.2.3742
Problem: Dec mouse test fails without gnome terminfo entry.
Solution: Check if there is a gnome entry. Also fix 'acd' test on

MS-Windows. (Ozaki Kiichi, closes #9282)
Files: src/testdir/test_termcodes.vim, src/testdir/test_autochdir.vim

Patch 8.2.3743
Problem: ":sign" can add a highlight group without a name.
Solution: Give an error if the group name is missing. (closes #9280)
Files: src/sign.c, src/errors.h, src/testdir/test_signs.vim

Patch 8.2.3744
Problem: E854 is not tested; some spelling suggestions are not tested.
Solution: Add a couple of tests. (Dominique Pellé, closes #9279)
Files: src/testdir/test_options.vim, src/testdir/test_spell.vim

Patch 8.2.3745
Problem: Autochdir test fails without the +channel feature.
Solution: Remove the ch_logfile() call. (Dominique Pellé, closes #9281)
Files: src/testdir/test_autochdir.vim

Patch 8.2.3746
Problem: Cannot disassemble function starting with "debug" or "profile".
Solution: Check for white space following. (closes #9273)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.3747 (after 8.2.3743)
Problem: Cannot remove highlight from an existing sign. (James McCoy)
Solution: Only reject empty argument for a new sign.
Files: src/sign.c, src/testdir/test_signs.vim

Patch 8.2.3748 (after 8.2.3747)
Problem: Giving an error for an empty sign argument breaks a plugin.
Solution: Do not give an error.
Files: src/sign.c, src/errors.h, src/testdir/test_signs.vim

Patch 8.2.3749
Problem: Error messages are everywhere.
Solution: Move more error messages to errors.h and adjust the names.
Files: src/errors.h, src/regexp_bt.c, src/regexp.c, src/regexp_nfa.c,

src/globals.h, src/memfile.c, src/tag.c, src/getchar.c,
src/bufwrite.c, src/cmdexpand.c

Patch 8.2.3750
Problem: Error messages are everywhere.
Solution: Move more error messages to errors.h and adjust the names.
Files: src/globals.h, src/errors.h, src/blob.c, src/buffer.c,

src/channel.c, src/ex_docmd.c, src/job.c, src/list.c, src/mark.c,
src/misc1.c, src/os_unix.c, src/popupwin.c, src/register.c,

version9.txt — 3859

src/session.c, src/spellfile.c, src/term.c, src/userfunc.c

Patch 8.2.3751
Problem: Cannot assign a lambda to an option that takes a function.
Solution: Automatically convert the lambda to a string. (Yegappan

Lakshmanan, closes #9286)
Files: runtime/doc/options.txt, src/eval.c, src/proto/eval.pro,

src/evalvars.c, src/if_mzsch.c, src/if_ruby.c, src/if_tcl.c,
src/option.c, src/option.h, src/optiondefs.h,
src/proto/option.pro, src/spell.c, src/typval.c,
src/vim9compile.c, src/testdir/test_iminsert.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_tagfunc.vim

Patch 8.2.3752
Problem: Build error when using Photon GUI.
Solution: Adjust #ifdef. (closes #9288)
Files: src/beval.c

Patch 8.2.3753
Problem: Vim9: function unreferenced while called is never deleted.
Solution: Delete a function when no longer referenced.
Files: src/vim9execute.c, src/userfunc.c, src/proto/userfunc.pro

Patch 8.2.3754 (after 8.2.3615)
Problem: Undesired changing of the indent of the first formatted line.
Solution: Do not indent the first formatted line.
Files: src/textformat.c, src/testdir/test_indent.vim

Patch 8.2.3755
Problem: Coverity warns for using a buffer in another scope.
Solution: Declare the buffer in a common scope.
Files: src/evalvars.c

Patch 8.2.3756
Problem: might crash when callback is not valid.
Solution: Check for valid callback. (Yegappan Lakshmanan, closes #9293)
Files: src/insexpand.c, src/option.c, src/tag.c, src/job.c,

src/userfunc.c, src/testdir/test_iminsert.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_tagfunc.vim

Patch 8.2.3757
Problem: An overlong highlight group name is silently truncated.
Solution: Give an error if the name is too long. (closes #9289)
Files: src/errors.h, src/highlight.c, src/testdir/test_highlight.vim

Patch 8.2.3758
Problem: Options that take a function insufficiently tested.
Solution: Add additional tests and enhance existing tests. (Yegappan

Lakshmanan, closes #9298)
Files: src/testdir/test_ins_complete.vim, src/testdir/test_normal.vim,

src/testdir/test_tagfunc.vim

Patch 8.2.3759
Problem: Quickfix buffer becomes hidden while still in a window.
Solution: Check if the closed window is the last window showing the quickfix

buffer. (Yegappan Lakshmanan, closes #9303, closes #9300)
Files: src/quickfix.c, src/testdir/test_quickfix.vim, src/window.c

Patch 8.2.3760
Problem: Not automatically handling gnome terminal mouse like xterm.

version9.txt — 3860

Solution: Default 'ttymouse' to "xterm" and recognize Focus events.
(issue #9296)

Files: src/os_unix.c

Patch 8.2.3761
Problem: Focus change is not passed on to a terminal window.
Solution: If the current window is a terminal and focus events are enabled

send a focus event escape sequence to the terminal.
Files: src/ui.c, src/terminal.c, src/proto/terminal.pro,

src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_focus_1.dump,
src/testdir/dumps/Test_terminal_focus_2.dump

Patch 8.2.3762
Problem: If the quickfix buffer is wiped out getqflist() still returns its

number.
Solution: Use zero if the buffer is no longer present. (Yegappan Lakshmanan,

closes #9306)
Files: src/quickfix.c, src/testdir/test_quickfix.vim

Patch 8.2.3763
Problem: When editing the command line a FocusLost callback may cause the

screen to scroll up.
Solution: Do not redraw at the last line but at the same place where the

command line was before. (closes #9295)
Files: src/ex_getln.c, src/ui.c, src/beval.c, src/channel.c,

src/drawscreen.c, src/proto/drawscreen.pro, src/job.c,
src/popupwin.c, src/sound.c, src/terminal.c, src/time.c,
src/testdir/test_terminal.vim,
src/testdir/dumps/Test_terminal_focus_1.dump,
src/testdir/dumps/Test_terminal_focus_2.dump,
src/testdir/dumps/Test_terminal_focus_3.dump

Patch 8.2.3764
Problem: Cannot see any text when window was made zero lines or zero

columns.
Solution: Ensure there is at least one line and column. (fixes #9307)
Files: src/window.c, src/proto/window.pro, src/normal.c, src/edit.c,

src/testdir/test_window_cmd.vim

Patch 8.2.3765
Problem: Vim9: cannot use a lambda for 'opfunc' and others.
Solution: Convert the lambda to a string.
Files: src/vim9compile.c, src/vim9.h, src/vim9execute.c,

src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3766
Problem: Converting a funcref to a string leaves out "g:", causing the

meaning of the name depending on the context.
Solution: Prepend "g:" for a global function.
Files: src/eval.c, src/testdir/test_functions.vim

Patch 8.2.3767 (after 8.2.3766)
Problem: Crash when using NULL partial.
Solution: Check for NULL.
Files: src/eval.c

Patch 8.2.3768
Problem: timer_info() has the wrong repeat value in a timer callback.

version9.txt — 3861

(Sergey Vlasov)
Solution: Do not add one to the repeat value when in the callback.

(closes #9294)
Files: src/time.c, src/testdir/test_timers.vim

Patch 8.2.3769
Problem: Zig files are not recognized.
Solution: Add *.zig. (Gregory Anders, closes #9313)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3770
Problem: New compiler warnings from clang-12 and clang-13.
Solution: Adjust CI and suppress some warnings. (Ozaki Kiichi, closes #9314)
Files: .github/workflows/ci.yml, ci/config.mk.clang-12.sed,

src/os_unix.c, src/spellfile.c

Patch 8.2.3771
Problem: Vim9: accessing freed memory when checking type.
Solution: Make a copy of a function type.
Files: src/structs.h, src/evalvars.c, src/vim9script.c,

src/testdir/test_vim9_func.vim

Patch 8.2.3772
Problem: Timer info test fails on slow machine.
Solution: Use WaitForAssert().
Files: src/testdir/test_timers.vim

Patch 8.2.3773
Problem: Wrong window size when a modeline changes 'columns' and there is

more than one tabpage. (Michael Soyka)
Solution: Adjust the frames of all tabpages. (closes #9315)
Files: src/window.c

Patch 8.2.3774 (after 8.2.3773)
Problem: Test for command line height fails.
Solution: Use another way to handle window size change.
Files: src/structs.h, src/window.c

Patch 8.2.3775
Problem: Vim9: lambda compiled without outer context when debugging.
Solution: When compiling a lambda for debugging also compile it without.

(closes #9302)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.3776
Problem: When a tags file line is long a tag may not be found.
Solution: When increasing the buffer size read the same line again.
Files: src/tag.c, src/testdir/test_taglist.vim

Patch 8.2.3777
Problem: Spell file write error not checked.
Solution: Check writing the prefix conditions. (Bjorn Linse, closes #9323)
Files: src/spellfile.c

Patch 8.2.3778
Problem: Lambda debug test fails in some configurations.
Solution: Check feature in a legacy function.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.3779

version9.txt — 3862

Problem: Using freed memory when defining a user command from a user
command.

Solution: Do not use the command pointer after executing the command.
(closes #9318)

Files: src/usercmd.c, src/testdir/test_usercommands.vim

Patch 8.2.3780
Problem: ":cd" works differently on MS-Windows.
Solution: Add the 'cdhome' option. (closes #9324)
Files: runtime/doc/editing.txt, runtime/doc/options.txt,

runtime/doc/quickref.txt, runtime/optwin.vim, src/ex_docmd.c,
src/option.h, src/optiondefs.h, src/testdir/runtest.vim,
src/testdir/test_options.vim

Patch 8.2.3781
Problem: The option window script is outdated.
Solution: Add several changes.
Files: runtime/optwin.vim

Patch 8.2.3782
Problem: Vim9: no error if a function shadows a script variable.
Solution: Check the function doesn't shadow a variable. (closes #9310)
Files: src/userfunc.c, src/evalvars.c, src/vim.h,

src/testdir/test_vim9_script.vim

Patch 8.2.3783
Problem: Confusing error for using a variable as a function.
Solution: If a function is not found but there is a variable, give a more

useful error. (issue #9310)
Files: src/eval.c, src/userfunc.c, src/proto/userfunc.pro,

src/structs.h, src/vim9execute.c, src/testdir/test_functions.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_vim9_func.vim

Patch 8.2.3784
Problem: The help for options is outdated.
Solution: Include all the recent changes.
Files: runtime/doc/options.txt

Patch 8.2.3785
Problem: Running CI on macOS with gcc is not useful.
Solution: Only use clang. (Ozaki Kiichi, closes #9326) Also build with

normal features.
Files: .github/workflows/ci.yml

Patch 8.2.3786
Problem: Test fails because of using Vim9 syntax in legacy function.
Solution: Add "call".
Files: src/testdir/test_functions.vim

Patch 8.2.3787
Problem: No proper formatting of a C line comment after a statement.
Solution: Find the start of the line comment, insert the comment leader and

indent the comment properly.
Files: src/change.c, src/proto/change.pro, src/search.c,

src/proto/search.pro, src/cindent.c, src/edit.c, src/normal.c,
src/textformat.c, src/testdir/test_textformat.vim,
src/testdir/test_cindent.vim

Patch 8.2.3788
Problem: Lambda for option that is a function may be garbage collected.

version9.txt — 3863

Solution: Set a reference in the funcref. (Yegappan Lakshmanan,
closes #9330)

Files: src/eval.c, src/evalbuffer.c, src/evalvars.c, src/gui_xim.c,
src/insexpand.c, src/ops.c, src/proto/eval.pro,
src/proto/gui_xim.pro, src/proto/insexpand.pro, src/proto/ops.pro,
src/proto/tag.pro, src/quickfix.c, src/tag.c,
src/testdir/test_iminsert.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_normal.vim, src/testdir/test_quickfix.vim,
src/testdir/test_tagfunc.vim

Patch 8.2.3789
Problem: Test_window_minimal_size can fail on a slow machine.
Solution: Do not rely on timers firing at the expected time. (Ozaki Kiichi,

closes #9335)
Files: src/testdir/test_window_cmd.vim

Patch 8.2.3790
Problem: Test for term_gettitle() fails in some environments.
Solution: Make the digits after "VIM" optional. (Kenta Sato, closes #9334)
Files: src/testdir/test_terminal2.vim

Patch 8.2.3791
Problem: Build error with +cindent but without +smartindent.
Solution: Move declaration of "do_cindent". (John Marriott)
Files: src/change.c

Patch 8.2.3792
Problem: Setting *func options insufficiently tested.
Solution: Improve tests. (Yegappan Lakshmanan, closes #9337)
Files: src/testdir/test_iminsert.vim, src/testdir/test_ins_complete.vim,

src/testdir/test_normal.vim, src/testdir/test_quickfix.vim,
src/testdir/test_tagfunc.vim

Patch 8.2.3793
Problem: Using "g:Func" as a funcref does not work in script context

because "g:" is dropped.
Solution: Keep "g:" in the name. Also add parenthesis to avoid confusing

operator precedence. (closes #9336)
Files: src/evalvars.c, src/testdir/test_vim9_func.vim

Patch 8.2.3794
Problem: Vim9: cannot find script-local func using "s:". (Yegappan

Lakshmanan)
Solution: Skip the "s:".
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3795
Problem: Too many #ifdefs.
Solution: Graduate the jumplist feature.
Files: runtime/doc/various.txt, runtime/doc/motion.txt, src/feature.h,

src/buffer.c, src/change.c, src/evalfunc.c, src/ex_docmd.c,
src/mark.c, src/normal.c, src/undo.c, src/version.c,
src/viminfo.c, src/window.c, src/structs.h,
src/testdir/test_changelist.vim, src/testdir/test_jumplist.vim,
src/testdir/test_normal.vim

Patch 8.2.3796
Problem: The funcexe_T struct members are not named consistently.
Solution: Prefix "fe_" to all the members.
Files: src/structs.h, src/eval.c, src/list.c, src/regexp.c,

version9.txt — 3864

src/terminal.c, src/userfunc.c, src/vim9execute.c

Patch 8.2.3797
Problem: No good reason to limit the message history in the tiny version.
Solution: Always use 200.
Files: runtime/doc/message.txt, src/feature.h

Patch 8.2.3798
Problem: A :def callback function postpones an error message.
Solution: Display the error after calling the function. (closes #9340)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim,

src/testdir/dumps/Test_opfunc_error.dump

Patch 8.2.3799 (after 8.2.3798)
Problem: Edit test hangs or fails.
Solution: Do not rethrow an exception when inside try/catch.
Files: src/userfunc.c

Patch 8.2.3800
Problem: When cross compiling the output of "uname" cannot be set. (Ben

Reeves)
Solution: Use cache variables. (closes #9338)
Files: src/configure.ac, src/auto/configure

Patch 8.2.3801
Problem: If a terminal shows in two windows, only one is redrawn.
Solution: Reset the dirty row range only after redrawing all windows.

(closes #9341)
Files: src/terminal.c, src/proto/terminal.pro, src/drawscreen.c,

src/testdir/test_terminal.vim

Patch 8.2.3802
Problem: Terminal in two windows test fails on some systems.
Solution: Wait a bit between commands.
Files: src/testdir/test_terminal.vim

Patch 8.2.3803
Problem: Crash when 'writedelay' is set and using a terminal window to

execute a shell command.
Solution: Check that "tl_vterm" isn't NULL. (closes #9346)
Files: src/terminal.c

Patch 8.2.3804
Problem: Script context not set when copying 'swf' and 'ts'.
Solution: Use COPY_OPT_SCTX with the right argument. (closes #9347)
Files: src/option.c

Patch 8.2.3805
Problem: i3config files are not recognized.
Solution: Add patterns to match i3config files. (Quentin Hibon,

closes #7969)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3806
Problem: Terminal focus test fails sometimes.
Solution: Run the test function before others.
Files: src/testdir/test_terminal.vim

Patch 8.2.3807
Problem: Vim9: can call import with star directly.

version9.txt — 3865

Solution: Check that the import used star.
Files: src/userfunc.c, src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.3808
Problem: Vim9: obsolete TODO items
Solution: Remove the comments.
Files: src/vim9execute.c

Patch 8.2.3809
Problem: Vim9: crash when garbage collecting a nested partial. (Virginia

Senioria)
Solution: Set references in all the funcstacks. (closes #9348)
Files: src/vim9execute.c, src/proto/vim9execute.pro, src/structs.h,

src/eval.c, src/testdir/test_vim9_func.vim

Patch 8.2.3810
Problem: Vim9: expr4 test fails on MS-Windows.
Solution: Do not give an error for a missing function name when skipping.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3811
Problem: The opfunc error test fails on a slow machine.
Solution: Use WaitForAssert().
Files: src/testdir/test_vim9_func.vim

Patch 8.2.3812
Problem: Vim9: leaking memory in numbered function test.
Solution: Skip "g:" when checking for numbered function. Clean up after

errors properly.
Files: src/userfunc.c

Patch 8.2.3813
Problem: confusing error when using :cc without error list. (Gary Johnson)
Solution: Give the "no errors" error.
Files: src/ex_docmd.c, src/testdir/test_quickfix.vim

Patch 8.2.3814
Problem: .csx files and .sln files are not recognized.
Solution: Add filetype patterns. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3815
Problem: Vim9: cannot have a multi-line dict inside a block.
Solution: Do not split the command at a line break, handle NL characters

as white space.
Files: src/ex_docmd.c, src/charset.c, src/proto/charset.pro,

src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3816
Problem: Compiler warning for possible loss of data on MS-Windows.
Solution: Add type cast. (Mike Williams, closes #9349)
Files: src/userfunc.c

Patch 8.2.3817 (after 8.2.3815)
Problem: Vim9: Not using NL as command end does not work for :autocmd.
Solution: Only ignore NL for commands with an expression argument.
Files: src/ex_cmds.h, src/ex_docmd.c, src/testdir/test_usercommands.vim

Patch 8.2.3818
Problem: Cannot filter or map characters in a string.

version9.txt — 3866

Solution: Make filter() and map() work on a string. (Naruhiko Nishino,
closes #9327)

Files: runtime/doc/eval.txt, src/errors.h, src/list.c,
src/testdir/test_filter_map.vim

Patch 8.2.3819 (after 8.2.3818)
Problem: Test fails because error message changed.
Solution: Update screendumps.
Files: src/testdir/dumps/Test_popupwin_three_errors_1.dump,

src/testdir/dumps/Test_popupwin_three_errors_2.dump

Patch 8.2.3820
Problem: "vrc" does not replace composing characters, while "rc" does.
Solution: Check the byte length including composing characters.

(closes #9351)
Files: src/ops.c, src/testdir/test_visual.vim

Patch 8.2.3821
Problem: ASAN test run fails.
Solution: Use asan_symbolize-13 instead of asan_symbolize-11.
Files: .github/workflows/ci.yml

Patch 8.2.3822
Problem: Leaking memory in map() and filter(), cannot use a string argument

in Vim9 script.
Solution: Fix the leak, adjust the argument check, also run the tests as

Vim9 script. (Yegappan Lakshmanan, closes #9354)
Files: src/errors.h, src/evalfunc.c, src/list.c, src/proto/typval.pro,

src/testdir/test_filter_map.vim,
src/testdir/test_vim9_builtin.vim, src/typval.c

Patch 8.2.3823
Problem: Test for visual replace is in wrong function.
Solution: Move it to another function.
Files: src/testdir/test_visual.vim

Patch 8.2.3824
Problem: No ASAN support for MSVC.
Solution: Add ASAN support and fix a couple of uncovered problems. (Yegappan

Lakshmanan, closes #9357)
Files: src/Make_mvc.mak, src/findfile.c, src/os_mswin.c,

src/testdir/test_fnamemodify.vim

Patch 8.2.3825
Problem: Various comments could be improved.
Solution: Improve the comments.
Files: src/getchar.c, src/mbyte.c, src/regexp_nfa.c,

src/testdir/test_edit.vim, src/gui_motif.c

Patch 8.2.3826
Problem: Vim9: using "g:Func" as a funcref does not work in a :def

function.
Solution: Include "g:" in the function name. (closes #9336)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.3827
Problem: Huntr badge does not really fit in the list.
Solution: Move the link to Huntr to the issue template.
Files: Filelist, .github/ISSUE_TEMPLATE/bug_report.yml, README.md

version9.txt — 3867

Patch 8.2.3828
Problem: when opening a terminal from a timer the first typed character

is lost. (Virginia Senioria)
Solution: When opening a terminal while waiting for a character put K_IGNORE

in the input buffer.
Files: src/terminal.c, src/edit.c, src/testdir/test_terminal.vim

Patch 8.2.3829
Problem: No error when setting a func option to a script-local function.
Solution: Give an error if the name starts with "s:". (closes #9358)
Files: src/option.c, src/testdir/test_tagfunc.vim,

src/testdir/dumps/Test_set_tagfunc_on_cmdline.dump

Patch 8.2.3830
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/globals.h, src/errors.h, src/buffer.c, src/dict.c, src/diff.c,

src/digraph.c, src/eval.c, src/evalfunc.c, src/evalvars.c,
src/misc2.c, src/quickfix.c, src/typval.c, src/ui.c,
src/userfunc.c, src/vim9compile.c, src/vim9execute.c,
src/vim9type.c, src/window.c

Patch 8.2.3831
Problem: Opfunc test fails when missing feature changes function name.

(Dominique Pellé)
Solution: Check the relevant screen line instead of using a screendump.

(closes #9360)
Files: src/testdir/test_vim9_func.vim,

src/testdir/dumps/Test_opfunc_error.dump

Patch 8.2.3832 (after 8.2.3830)
Problem: Test fails because of changed error message.
Solution: Adjust the expected error message.
Files: src/testdir/test_vimscript.vim

Patch 8.2.3833
Problem: Error from term_start() not caught by try/catch.
Solution: save and restore did_emsg when applying autocommands. (Ozaki

Kiichi, closes #9361)
Files: src/autocmd.c, src/testdir/test_terminal3.vim

Patch 8.2.3834
Problem: Test_out_cb often fails on Mac.
Solution: Increase the timeout with every retry.
Files: src/testdir/test_channel.vim

Patch 8.2.3835
Problem: The inline-function example does not work.
Solution: Drop ":let". Add EX_EXPR_ARG to CMD_var. (issue #9352)
Files: runtime/doc/vim9.txt, src/ex_cmds.h,

src/testdir/test_vim9_expr.vim

Patch 8.2.3836
Problem: Vim9: comment after expression not skipped to find NL.
Solution: After evaluating an expression look for a newline after a #

comment.
Files: src/eval.c

Patch 8.2.3837

version9.txt — 3868

Problem: QNX: crash when compiled with GUI but using terminal.
Solution: Check gui.in_use is set. (Hirohito Higashi, closes #9363)
Files: src/autocmd.c

Patch 8.2.3838
Problem: Cannot use script-local function for setting *func options.
Solution: Use the script context. (Yegappan Lakshmanan, closes #9362)
Files: src/option.c, src/testdir/dumps/Test_set_tagfunc_on_cmdline.dump,

src/testdir/test_ins_complete.vim, src/testdir/test_normal.vim,
src/testdir/test_quickfix.vim, src/testdir/test_tagfunc.vim

Patch 8.2.3839
Problem: Using \z() with \z1 not tested for syntax highlighting.
Solution: Add a test. (Dominique Pellé, closes #9365)
Files: src/testdir/test_syntax.vim

Patch 8.2.3840
Problem: Useless test for negative index in check functions.
Solution: Remove the test for negative index. (Naruhiko Nishino,

closes #9364)
Files: src/typval.c

Patch 8.2.3841
Problem: Vim9: outdated TODO items, disabled tests that work.
Solution: Remove TODO items, run tests that work now. Check that a dict

item isn't locked.
Files: src/vim9execute.c, src/evalvars.c, src/errors.h, src/globals.h,

src/testdir/test_listdict.vim, src/testdir/test_vim9_assign.vim

Patch 8.2.3842
Problem: Vim9: can change locked list and list items.
Solution: Check that a list and list item isn't locked.
Files: src/vim9execute.c, src/testdir/test_listdict.vim

Patch 8.2.3843
Problem: Dep3patch files are not recognized.
Solution: Recognize dep3patch files by their location and content. (James

McCoy, closes #9367)
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

src/testdir/test_filetype.vim

Patch 8.2.3844
Problem: Vim9: no type error if assigning a value with type func(number) to

a variable of type func(string).
Solution: Use check_type_maybe(): return MAYBE if a runtime type check is

useful. (issue #8492)
Files: src/vim9type.c, src/proto/vim9type.pro, src/vim9compile.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.3845
Problem: Vim9: test fails when the channel feature is missing.
Solution: Check for the channel feature. (Dominique Pellé, closes #9368)
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.3846
Problem: No error when using control character for 'lcs' or 'fcs'.
Solution: Use char2cells() to check the width. (closes #9369)
Files: src/screen.c, src/testdir/test_display.vim,

src/testdir/test_listchars.vim

version9.txt — 3869

Patch 8.2.3847
Problem: Illegal memory access when using a lambda with an error.
Solution: Avoid skipping over the NUL after a string.
Files: src/eval.c, src/testdir/test_lambda.vim

Patch 8.2.3848
Problem: Cannot use reduce() for a string.
Solution: Make reduce() work with a string. (Naruhiko Nishino, closes #9366)
Files: runtime/doc/eval.txt, src/errors.h, src/evalfunc.c, src/list.c,

src/typval.c, src/proto/typval.pro, src/testdir/test_listdict.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.3849
Problem: Functions implementing reduce and map are too long.
Solution: Use a function for each type of value. Add a few more test cases

and add to the help. (Yegappan Lakshmanan, closes #9370)
Files: runtime/doc/eval.txt, src/list.c, src/testdir/test_listdict.vim

Patch 8.2.3850
Problem: Illegal memory access when displaying a partial.
Solution: Terminate the string with a NUL. (closes #9371)
Files: src/eval.c, src/testdir/test_messages.vim

Patch 8.2.3851
Problem: Vim9: overhead when comparing string, dict or function.
Solution: Call the intended compare function directly. Refactor to avoid

duplicated code.
Files: src/vim9execute.c, src/typval.c, src/proto/typval.pro

Patch 8.2.3852
Problem: Vim9: not enough tests.
Solution: Also run existing tests for Vim9 script. Make errors more

consistent.
Files: src/testdir/test_listdict.vim, src/eval.c, src/vim9compile.c,

src/errors.h

Patch 8.2.3853
Problem: Vim9: not enough tests.
Solution: Run more existing tests for Vim9 script.
Files: src/testdir/test_listdict.vim

Patch 8.2.3854
Problem: Vim9: inconsistent arguments for test functions.
Solution: When :def function and script have different arguments use a list

with two items instead of a separate function.
Files: src/testdir/vim9.vim, src/testdir/test_execute_func.vim,

src/testdir/test_float_func.vim, src/testdir/test_functions.vim,
src/testdir/test_glob2regpat.vim, src/testdir/test_listdict.vim,
src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.3855
Problem: Illegal memory access when displaying a blob.
Solution: Append a NUL at the end. (Yegappan Lakshmanan, closes #9372)
Files: src/blob.c, src/regexp_nfa.c, src/testdir/test_blob.vim,

src/testdir/test_messages.vim

Patch 8.2.3856

version9.txt — 3870

Problem: Vim9: not enough tests.
Solution: Run more expression tests also with Vim9. Fix an uncovered

problem.
Files: src/vim9compile.c, src/testdir/test_expr.vim, src/testdir/vim9.vim

Patch 8.2.3857
Problem: Vim9: inconsistent error for using function().
Solution: Use a runtime type check for the result of function().

(closes #8492)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3858
Problem: Vim9: not enough tests.
Solution: Add tests for :try/:catch and :redir. Add missing type check.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_cmd.vim

Patch 8.2.3859
Problem: Vim9: some code lines not tested.
Solution: Add a few specific tests.
Files: src/vim9compile.c, src/testdir/test_vim9_cmd.vim, src/errors.h,

src/testdir/test_vim9_script.vim

Patch 8.2.3860
Problem: Vim9: codecov struggles with the file size.
Solution: Split vim9compile.c into four files.
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9instr.c,

src/proto/vim9instr.pro, src/vim9expr.c, src/proto/vim9expr.pro,
src/vim9cmds.c, src/proto/vim9cmds.pro, src/vim9.h,
src/vim9execute.c, src/vim9script.c, src/proto.h,
src/Makefile, src/Make_ami.mak, src/Make_cyg_ming.mak,
src/Make_mvc.mak, src/Make_vms.mms

Patch 8.2.3861
Problem: List of distributed files is outdated.
Solution: Add new files.
Files: Filelist

Patch 8.2.3862
Problem: Crash on exit with EXITFREE and using win_execute().
Solution: Also save and restore tp_topframe. (issue #9374)
Files: src/evalwindow.c, src/testdir/test_execute_func.vim

Patch 8.2.3863 (after 8.2.3860)
Problem: Various build flags accidentally enabled.
Solution: Revert several lines in Makefile.
Files: src/Makefile

Patch 8.2.3864
Problem: Cannot disable requesting key codes from xterm.
Solution: Add the 'xtermcodes' option, default on.
Files: runtime/doc/options.txt, runtime/doc/term.txt, src/option.h,

src/optiondefs.h, src/term.c, runtime/optwin.vim

Patch 8.2.3865
Problem: Vim9: compiler complains about using "try" as a struct member.
Solution: Rename "try" to "tryref".
Files: src/vim9.h, src/vim9cmds.c, src/vim9execute.c, src/vim9instr.c

Patch 8.2.3866

version9.txt — 3871

Problem: Vim9: type checking global variables is inconsistent.
Solution: Use the "unknown" type in more places.
Files: src/globals.h, src/vim9expr.c, src/vim9instr.c, src/vim9cmds.c,

src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3867
Problem: Implementation of some list functions too complicated.
Solution: Refactor do_sort_uniq(), f_count() and extend() (Yegappan

Lakshmanan, closes #9378)
Files: src/list.c

Patch 8.2.3868 (after 8.2.3866)
Problem: Vim9: function test fails.
Solution: Add missing changes. Add test for earlier patch.
Files: src/vim9type.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.3869
Problem: Vim9: type checking for "any" is inconsistent.
Solution: Always use a runtime type check for using "any" for a more

specific type.
Files: src/vim9type.c, src/vim9compile.c, src/vim9expr.c,

src/testdir/test_vim9_func.vim

Patch 8.2.3870
Problem: MS-Windows: wrong working directory when opening two files with

right-click context menu. (Gabriel Dupras)
Solution: Use the working directory and pass it on to the process creation.

(Nir Lichtman, closes #9382, closes #8874)
Files: src/GvimExt/gvimext.cpp, src/GvimExt/gvimext.h

Patch 8.2.3871
Problem: List.c contains code for dict and blob.
Solution: Refactor to put code where it belongs. (Yegappan Lakshmanan,

closes #9386)
Files: src/blob.c, src/dict.c, src/list.c, src/proto/blob.pro,

src/proto/dict.pro, src/proto/list.pro, src/proto/strings.pro,
src/strings.c, src/structs.h, src/testdir/test_filter_map.vim,
src/testdir/test_listdict.vim, src/testdir/test_sort.vim

Patch 8.2.3872
Problem: Vim9: finddir() and uniq() return types can be more specific.
Solution: Adjust the return type.
Files: src/evalfunc.c, src/testdir/vim9.vim,

src/testdir/test_vim9_builtin.vim

Patch 8.2.3873
Problem: go.mod files are not recognized.
Solution: Check for the file name. (closes #9380)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3874
Problem: Cannot highlight the number column for a sign.
Solution: Add the "numhl" argument. (James McCoy, closes #9381)
Files: runtime/doc/options.txt, runtime/doc/sign.txt, src/drawline.c,

src/popupwin.c, src/proto/sign.pro, src/sign.c, src/structs.h,
src/testdir/test_signs.vim

Patch 8.2.3875
Problem: gcc complains about buffer overrun.
Solution: Use mch_memmove() instead of STRCPY(). (John Marriott)

version9.txt — 3872

Files: src/dict.c

Patch 8.2.3876
Problem: 'cindent' does not recognize inline namespace.
Solution: Skip over "inline" to find "namespace". (closes #9383)
Files: src/cindent.c, src/testdir/test_cindent.vim

Patch 8.2.3877
Problem: Function does not abort after a type error in compare
Solution: Check getting number fails. (closes #9384)
Files: src/typval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.3878
Problem: Vim9: debugger tries to read more lines than there are.
Solution: Check the number of lines. (closes #9394)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.3879
Problem: getreg() and getregtype() contain dead code.
Solution: Remove the needless check. (closes #9392) Also refactor to put

common code in a shared function.
Files: src/evalfunc.c

Patch 8.2.3880
Problem: Solution filter files are not recognized.
Solution: Add pattern *.slnf and use json. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3881
Problem: QNX: crash when compiled with GUI but using terminal.
Solution: Check the gui.in_use flag. (Hirohito Higashi, closes #9391)
Files: src/main.c

Patch 8.2.3882 (after 8.2.3879)
Problem: More duplicated code in f_getreginfo().
Solution: Also use getreg_get_regname(). (closes #9398)
Files: src/evalfunc.c

Patch 8.2.3883
Problem: Crash when switching to other regexp engine fails.
Solution: Check for regprog being NULL.
Files: src/ex_cmds.c

Patch 8.2.3884
Problem: Crash when clearing the argument list while using it.
Solution: Lock the argument list for ":all".
Files: src/arglist.c, src/testdir/test_arglist.vim

Patch 8.2.3885
Problem: Arglist test fails.
Solution: Adjust for locking the arglist for ":all".
Files: src/testdir/test_arglist.vim

Patch 8.2.3886
Problem: Can define autocmd for every event by using "au!".
Solution: Check if a command is present also for "au!".
Files: src/autocmd.c, src/testdir/test_autocmd.vim,

src/testdir/test_arglist.vim

Patch 8.2.3887

version9.txt — 3873

Problem: E1135 is used for two different errors.
Solution: Renumber one error.
Files: src/errors.h, src/testdir/test_mapping.vim

Patch 8.2.3888
Problem: The argument list may contain duplicates.
Solution: Add the :argdedeupe command. (Nir Lichtman, closes #6235)
Files: runtime/doc/editing.txt, runtime/doc/index.txt, src/arglist.c,

src/ex_cmdidxs.h, src/ex_cmds.h, src/proto/arglist.pro,
src/testdir/test_arglist.vim

Patch 8.2.3889
Problem: Duplicate code for translating script-local function name.
Solution: Move the code to get_scriptlocal_funcname(). (Yegappan Lakshmanan,

closes #9393)
Files: src/evalfunc.c, src/evalvars.c, src/option.c, src/userfunc.c,

src/proto/userfunc.pro, src/testdir/test_expr.vim,
src/testdir/test_normal.vim

Patch 8.2.3890
Problem: Vim9: type check for using v: variables is basic.
Solution: Specify a more precise type.
Files: src/evalvars.c, src/proto/evalvars.pro, src/vim9instr.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.3891
Problem: Github CI: workflows may overlap.
Solution: Cancel previous workflows when starting a new one. (Yegappan

Lakshmanan, closes #9400)
Files: .github/workflows/ci.yml, .github/workflows/codeql-analysis.yml

Patch 8.2.3892
Problem: When modifyOtherKeys is used CTRL-C is not recognized.
Solution: Check for uppercase C as well, fix minimum length.
Files: src/ui.c

Patch 8.2.3893
Problem: Vim9: many local variables are initialized with an instruction.
Solution: Initialize local variables to zero to avoid the instructions.
Files: src/vim9execute.c, src/vim9compile.c, src/vim9instr.c,

src/proto/vim9instr.pro, src/vim9cmds.c,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3894
Problem: Vim9: no proper type check for first argument of call().
Solution: Add specific type check.
Files: src/evalfunc.c, src/typval.c, src/proto/typval.pro,

src/errors.h, src/testdir/test_vim9_builtin.vim

Patch 8.2.3895
Problem: Vim9: confusing error when using function() with a number.
Solution: Check for a function or string argument.
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3896
Problem: Vim9: no test for nested function not available later.
Solution: Add a test.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.3897

version9.txt — 3874

Problem: Vim9: the second argument of map() and filter() is not checked at
compile time.

Solution: Add more specific type check for the second argument.
Files: src/evalfunc.c, src/globals.h, src/list.c,

src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_script.vim

Patch 8.2.3898
Problem: Vim9: not sufficient testing for variable initialization.
Solution: Add another test case.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.3899 (after 8.2.3897)
Problem: Vim9: test for map() on string fails.
Solution: Expect string return type.
Files: src/evalfunc.c

Patch 8.2.3900
Problem: It is not easy to use a script-local function for an option.
Solution: recognize s: and <SID> at the start of the expression. (Yegappan

Lakshmanan, closes #9401)
Files: runtime/doc/diff.txt, runtime/doc/fold.txt,

runtime/doc/options.txt, runtime/doc/print.txt, src/optionstr.c,
src/testdir/test_diffmode.vim, src/testdir/test_edit.vim,
src/testdir/test_fold.vim, src/testdir/test_gf.vim,
src/testdir/test_gui.vim, src/testdir/test_hardcopy.vim,
src/testdir/test_normal.vim

Patch 8.2.3901
Problem: Vim9: Cannot set 'cpo' in main .vimrc if using Vim9 script.
Solution: Do not restore 'cpo' at the end of the main .vimrc.
Files: runtime/doc/vim9.txt, runtime/doc/options.txt, src/scriptfile.c,

src/structs.h, src/testdir/test_vim9_script.vim

Patch 8.2.3902
Problem: Vim9: double free with nested :def function.
Solution: Pass "line_to_free" from compile_def_function() and make sure

cmdlinep is valid.
Files: src/vim9compile.c, src/userfunc.c, src/proto/userfunc.pro,

src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.3903
Problem: "gM" does not count tabs as expected.
Solution: Use linetabsize() instead of mb_string2cells(). (closes #9409)
Files: src/normal.c, src/testdir/test_normal.vim

Patch 8.2.3904
Problem: Vim9: skip expression type is not checked at compile time.
Solution: Add argument type checks.
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3905
Problem: Dockerfile using prefix name not recognized.
Solution: Recognize Dockerfile.*. (closes #9410)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3906
Problem: Vim9 help still contains "under development" warnings.
Solution: Remove the explicit warning.
Files: runtime/doc/vim9.txt

version9.txt — 3875

Patch 8.2.3907
Problem: Error messages are spread out.
Solution: Move error messages to errors.h. Avoid duplicates.
Files: src/userfunc.c, src/ex_cmds.c, src/viminfo.c, src/errors.h,

src/testdir/test_user_func.vim

Patch 8.2.3908
Problem: Cannot use a script-local function for 'foldtext'.
Solution: Expand "s:" and "<SID>". (Yegappan Lakshmanan, closes #9411)
Files: runtime/doc/fold.txt, src/optionstr.c, src/strings.c,

src/testdir/test_blob.vim, src/testdir/test_expr.vim,
src/testdir/test_filter_map.vim, src/testdir/test_fold.vim,
src/testdir/test_listdict.vim

Patch 8.2.3909
Problem: Containerfile using prefix name not recognized.
Solution: Recognize Containerfile.*.
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3910
Problem: When the compare function of sort() produces and error then sort()

does not abort.
Solution: Check if did_emsg was incremented.
Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3911
Problem: Vim9: type check for filter() does not accept unknown.
Solution: Also accept unknown for the return type. (closes #9413)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3912
Problem: The ins_complete() function is much too long.
Solution: Split it up into multiple functions. (Yegappan Lakshmanan,

closes #9414)
Files: src/insexpand.c

Patch 8.2.3913
Problem: Help for expressions does not mention Vim9 syntax.
Solution: Add the rules for Vim9 to the expression help. Rename functions

to match the help.
Files: runtime/doc/vim9.txt, runtime/doc/eval.txt, src/vim9expr.c

Patch 8.2.3914
Problem: Various spelling mistakes in comments.
Solution: Fix the mistakes. (Dominique Pellé, closes #9416)
Files: src/alloc.c, src/blowfish.c, src/buffer.c, src/cindent.c,

src/clipboard.c, src/diff.c, src/drawline.c, src/edit.c,
src/ex_cmds.c, src/ex_docmd.c, src/findfile.c, src/fold.c,
src/getchar.c, src/gui.c, src/gui_athena.c, src/gui_gtk.c,
src/gui_motif.c, src/gui_photon.c, src/gui_w32.c, src/gui_xmebw.c,
src/if_python.c, src/if_python3.c, src/if_xcmdsrv.c, src/main.c,
src/memline.c, src/menu.c, src/message.c, src/misc1.c, src/move.c,
src/option.c, src/os_amiga.c, src/os_mac.h, src/os_mac_conv.c,
src/os_mswin.c, src/os_unix.c, src/os_win32.c, src/os_win32.h,
src/quickfix.c, src/regexp_nfa.c, src/screen.c, src/scriptfile.c,
src/spell.c, src/spellfile.c, src/spellsuggest.c, src/strings.c,
src/term.c, src/terminal.c, src/testdir/test_debugger.vim,
src/testdir/test_source.vim, src/textformat.c, src/userfunc.c,
src/vim.h, src/vim9.h, src/vim9cmds.c, src/vim9execute.c,

version9.txt — 3876

src/winclip.c, src/window.c

Patch 8.2.3915
Problem: illegal memory access when completing with invalid bytes.
Solution: Avoid going over the end of the completion text.
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

Patch 8.2.3916
Problem: No error for passing an invalid line number to append().
Solution: In Vim9 script check for a non-negative number. (closes #9417)
Files: src/evalbuffer.c, src/textprop.c, src/errors.h, src/indent.c,

src/eval.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3917
Problem: The eval.txt help file is way too big.
Solution: Move the builtin function details to a separate file.
Files: runtime/doc/eval.txt, runtime/doc/builtin.txt,

runtime/doc/Makefile, runtime/doc/help.txt, runtime/doc/remote.txt

Patch 8.2.3918 (after 8.2.3916)
Problem: Function list test fails.
Solution: Adjust the test for the new location of the function list.
Files: src/testdir/test_function_lists.vim

Patch 8.2.3919
Problem: Vim9: wrong argument for append() results in two errors.
Solution: Check did_emsg. Also for setline(). Adjust the help for

appendbufline().
Files: runtime/doc/builtin.txt, src/evalbuffer.c, src/typval.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.3920
Problem: Restoring directory after using another window is inefficient.
Solution: Only restore the directory for win_execute(). Apply 'autochdir'

only when needed.
Files: src/evalwindow.c, src/testdir/test_autochdir.vim

Patch 8.2.3921
Problem: The way xdiff is used is inefficient.
Solution: Use hunk_func instead of the out_line callback. (Lewis Russell,

closes #9344)
Files: src/diff.c

Patch 8.2.3922
Problem: Cannot build with dynamic Ruby 3.1.
Solution: Add "_EXTRA" variables for CI. Add missing functions. (Ozaki

Kiichi, closes #9420)
Files: ci/config.mk.clang-12.sed, ci/config.mk.clang.sed,

ci/config.mk.sed, src/Makefile, src/auto/configure,
src/config.mk.in, src/configure.ac, src/if_ruby.c, src/vim.h

Patch 8.2.3923
Problem: Vim9: double free if a nested function has a line break in the

argument list.
Solution: Set cmdlinep when freeing the previous line.
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.3924
Problem: Vim9: no error if something follows :enddef in a nested function.
Solution: Give an error. Move common code to a function.

version9.txt — 3877

Files: src/userfunc.c, src/vim9compile.c, src/errors.h,
src/testdir/test_vim9_func.vim

Patch 8.2.3925
Problem: Diff mode confused by NUL bytes.
Solution: Handle NUL bytes differently. (Christian Brabandt, closes #9421,

closes #9418)
Files: src/diff.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_bin_01.dump,
src/testdir/dumps/Test_diff_bin_02.dump,
src/testdir/dumps/Test_diff_bin_03.dump,
src/testdir/dumps/Test_diff_bin_04.dump

Patch 8.2.3926 (after 8.2.3920)
Problem: Build failure without the 'autochdir' option. (John Marriott)
Solution: Add #ifdefs.
Files: src/evalwindow.c

Patch 8.2.3927
Problem: Vim9: double free when using lambda.
Solution: Don't free both cmdline and line_to_free.
Files: src/userfunc.c

Patch 8.2.3928
Problem: Heredoc test fails.
Solution: Correct order of function arguments.
Files: src/userfunc.c

Patch 8.2.3929
Problem: Using uninitialized variable.
Solution: Set the option flags to zero for a terminal option.
Files: src/option.c

Patch 8.2.3930
Problem: getcmdline() argument has a misleading type.
Solution: Use the correct type, even though the value is not used.
Files: src/ex_getln.c, src/proto/ex_getln.pro, src/ex_docmd.c,

src/normal.c, src/register.c, src/userfunc.c

Patch 8.2.3931
Problem: Coverity reports a memory leak.
Solution: Free memory in case of failure.
Files: src/diff.c

Patch 8.2.3932
Problem: C line comment not formatted properly.
Solution: If a line comment follows after "#if" the next line is not the end

of a paragraph.
Files: src/textformat.c, src/testdir/test_textformat.vim

Patch 8.2.3933
Problem: After ":cd" fails ":cd -" is incorrect.
Solution: Set the previous directory only after successfully changing

directory. (Richard Doty, closes #9419, closes #8983)
Files: src/ex_docmd.c, src/testdir/test_cd.vim

Patch 8.2.3934
Problem: Repeating line comment is undesired for "O" command.
Solution: Do not copy line comment leader for "O". (closes #9426)
Files: src/change.c, src/testdir/test_textformat.vim

version9.txt — 3878

Patch 8.2.3935
Problem: CTRL-U in Insert mode does not fix the indent.
Solution: Fix the indent when 'cindent' is set.
Files: src/edit.c, src/testdir/test_textformat.vim

Patch 8.2.3936
Problem: No proper test for maintaining change mark in diff mode.
Solution: Run the test with internal and external diff. (Sean Dewar,

closes #9424)
Files: src/testdir/test_diffmode.vim

Patch 8.2.3937
Problem: Insert mode completion function is too long.
Solution: Refactor into multiple functions. (Yegappan Lakshmanan,

closes #9423)
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

Patch 8.2.3938
Problem: Line comment start is also found in a string.
Solution: Skip line comments in a string.
Files: src/cindent.c, src/proto/cindent.pro, src/search.c,

src/testdir/test_textformat.vim

Patch 8.2.3939
Problem: MS-Windows: fnamemodify('', ':p') does not work.
Solution: Do not consider an empty string a full path. (Yegappan Lakshmanan,

closes #9428, closes #9427)
Files: src/os_mswin.c, src/testdir/test_fnamemodify.vim

Patch 8.2.3940
Problem: Match highlight disappears when doing incsearch for ":s/pat".
Solution: Only use line limit for incsearch highlighting. (closes #9425)
Files: src/match.c, src/testdir/test_match.vim,

src/testdir/dumps/Test_match_with_incsearch_1.dump,
src/testdir/dumps/Test_match_with_incsearch_2.dump

Patch 8.2.3941
Problem: SIGTSTP is not handled.
Solution: Handle SIGTSTP like pressing CTRL-Z. (closes #9422)
Files: runtime/doc/autocmd.txt, src/ex_docmd.c, src/os_unix.c,

src/proto/ex_docmd.pro, src/testdir/test_signals.vim

Patch 8.2.3942
Problem: Coverity reports a possible memory leak.
Solution: Free the array if allocation fails.
Files: src/insexpand.c

Patch 8.2.3943
Problem: Compiler warning from gcc for uninitialized variable.
Solution: Initialize variable. (closes #9429)
Files: src/diff.c

Patch 8.2.3944
Problem: Insert mode completion functions are too long.
Solution: Split up into multiple functions. (Yegappan Lakshmanan,

closes #9431)
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

Patch 8.2.3945

version9.txt — 3879

Problem: Vim9: partial variable argument types are wrong, leading to a
crash.

Solution: When adjusting the argument count also adjust the argument types.
(closes #9433)

Files: src/vim9type.c, src/userfunc.c, src/testdir/test_vim9_assign.vim

Patch 8.2.3946
Problem: When an internal error makes Vim exit the error is not seen.
Solution: Add the error to the test output.
Files: src/message.c, src/testdir/runtest.vim

Patch 8.2.3947
Problem: Unnecessary check for NULL pointer.
Solution: Remove the check. (closes #9434)
Files: src/ex_docmd.c

Patch 8.2.3948
Problem: Vim9: failure with partial with unknown argument count.
Solution: Do not copy argument types if there aren't any.
Files: src/vim9type.c

Patch 8.2.3949
Problem: Using freed memory with /\%V.
Solution: Get the line again after getvvcol().
Files: src/regexp.c, src/testdir/test_regexp_latin.vim

Patch 8.2.3950
Problem: Going beyond the end of the line with /\%V.
Solution: Check for valid column in getvcol().
Files: src/charset.c, src/testdir/test_regexp_latin.vim

Patch 8.2.3951
Problem: Vim9: memory leak when text after a nested function.
Solution: Free the function if text is found after "enddef".
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.3952
Problem: First line not redrawn when adding lines to an empty buffer.
Solution: Adjust the argument to appended_lines(). (closes #9439,

closes #9438)
Files: src/ex_cmds.c, src/testdir/test_excmd.vim

Patch 8.2.3953
Problem: Insert completion code is too complicated.
Solution: More refactoring. Move function arguments into a struct.

(Yegappan Lakshmanan, closes #9437)
Files: src/insexpand.c

Patch 8.2.3954
Problem: Vim9: no error for shadowing if script var is declared later.
Solution: Check argument names when compiling a function.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_assign.vim

Patch 8.2.3955
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/globals.h, src/debugger.c, src/ex_cmds.c,

src/help.c, src/sign.c, src/spellfile.c

version9.txt — 3880

Patch 8.2.3956
Problem: Duplicate assignment.
Solution: Remove the second assignment. (closes #9442)
Files: src/evalfunc.c

Patch 8.2.3957
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/globals.h, src/arglist.c, src/bufwrite.c,

src/evalvars.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,
src/help.c, src/scriptfile.c, src/usercmd.c, src/userfunc.c,
src/vim9cmds.c, src/vim9compile.c

Patch 8.2.3958
Problem: Build failure compiling xxd with "-std=c2x".
Solution: define _XOPEN_SOURCE. (Yegappan Lakshmanan, closes #9444)
Files: src/xxd/xxd.c

Patch 8.2.3959
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/autocmd.c, src/bufwrite.c, src/evalvars.c,

src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c, src/fileio.c,
src/getchar.c, src/gui.c, src/locale.c, src/map.c

Patch 8.2.3960
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/alloc.c, src/arglist.c, src/autocmd.c,

src/blob.c, src/blowfish.c, src/buffer.c, src/bufwrite.c

Patch 8.2.3961
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/globals.h, src/arglist.c, src/autocmd.c,

src/blob.c, src/bufwrite.c, src/channel.c, src/clipboard.c,
src/cmdexpand.c, src/debugger.c, src/dict.c, src/eval.c,
src/evalfunc.c, src/evalvars.c, src/evalwindow.c, src/ex_cmds.c,
src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c, src/fileio.c,
src/filepath.c, src/gui_gtk_x11.c, src/gui_haiku.cc,
src/gui_photon.c, src/gui_w32.c, src/gui_x11.c, src/highlight.c,
src/indent.c, src/insexpand.c, src/job.c, src/json.c, src/list.c,
src/map.c, src/mark.c, src/match.c, src/mbyte.c, src/menu.c,
src/message.c, src/misc2.c, src/ops.c, src/option.c,
src/optionstr.c, src/popupwin.c, src/quickfix.c, src/screen.c,
src/scriptfile.c, src/search.c, src/sign.c, src/spell.c,
src/spellfile.c, src/strings.c, src/syntax.c, src/terminal.c,
src/testing.c, src/textprop.c, src/time.c, src/userfunc.c,
src/vim9cmds.c, src/vim9execute.c, src/vim9script.c, src/window.c

Patch 8.2.3962 (after 8.2.3961)
Problem: Build fails for missing error message.
Solution: Add changes in missed file.
Files: src/regexp_bt.c

Patch 8.2.3963
Problem: Build failure with tiny and small features. (Tony Mechelynck)
Solution: Adjust #ifdefs.
Files: src/errors.h, src/message.c

version9.txt — 3881

Patch 8.2.3964
Problem: Some common lisp and scheme files not recognized.
Solution: Recognize *.asd as lisp and *.sld as scheme. (Alex Vear,

closes #9447)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3965
Problem: Vim9: no easy way to check if Vim9 script is supported.
Solution: Add has('vim9script').
Files: runtime/doc/vim9.txt, src/evalfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.3966
Problem: When using feedkeys() abbreviations may be blocked.
Solution: Reset tb_no_abbr_cnt when running out of characters.

(closes #9448)
Files: src/getchar.c, src/testdir/test_feedkeys.vim

Patch 8.2.3967
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/globals.h, src/feature.h, src/arglist.c,

src/autocmd.c, src/blob.c, src/bufwrite.c, src/channel.c,
src/cmdexpand.c, src/dict.c, src/diff.c, src/eval.c,
src/evalfunc.c, src/evalvars.c, src/ex_cmds.c, src/ex_docmd.c,
src/fileio.c, src/filepath.c, src/getchar.c, src/gui_gtk_x11.c,
src/gui_x11.c, src/hardcopy.c, src/help.c, src/highlight.c,
src/if_cscope.c, src/if_lua.c, src/if_mzsch.c, src/if_perl.xs,
src/if_python.c, src/if_python3.c, src/if_ruby.c, src/if_tcl.c,
src/if_xcmdsrv.c, src/indent.c, src/insexpand.c, src/job.c,
src/list.c, src/main.c, src/map.c, src/match.c, src/mbyte.c,
src/message.c, src/misc1.c, src/option.c, src/optionstr.c,
src/os_mswin.c, src/os_unix.c, src/os_win32.c, src/popupwin.c,
src/profiler.c, src/quickfix.c, src/scriptfile.c, src/search.c,
src/session.c, src/sign.c, src/spell.c, src/spellfile.c,
src/spellsuggest.c, src/syntax.c, src/tag.c, src/terminal.c,
src/testing.c, src/textprop.c, src/typval.c, src/userfunc.c,
src/vim9execute.c, src/vim9expr.c, src/vim9instr.c,
src/vim9script.c

Patch 8.2.3968
Problem: Build failure.
Solution: Add missing changes.
Files: src/strings.c, src/vim9compile.c

Patch 8.2.3969
Problem: Value of MAXCOL not available in Vim script.
Solution: Add v:maxcol. (Naohiro Ono, closes #9451)
Files: runtime/doc/builtin.txt, runtime/doc/eval.txt, src/evalvars.c,

src/testdir/test_cursor_func.vim, src/testdir/test_normal.vim,
src/testdir/test_put.vim, src/vim.h

Patch 8.2.3970
Problem: Error messages are spread out.
Solution: Move more errors to errors.h.
Files: src/errors.h, src/globals.h, src/buffer.c, src/bufwrite.c,

src/clientserver.c, src/cmdhist.c, src/dict.c, src/edit.c,
src/eval.c, src/evalfunc.c, src/evalvars.c, src/ex_cmds.c,
src/ex_docmd.c, src/ex_eval.c, src/ex_getln.c, src/gui_w32.c,
src/gui_x11.c, src/if_xcmdsrv.c, src/insexpand.c, src/json.c,

version9.txt — 3882

src/match.c, src/menu.c, src/option.c, src/optionstr.c,
src/os_mswin.c, src/quickfix.c, src/regexp_bt.c, src/regexp_nfa.c,
src/scriptfile.c, src/sign.c, src/spellfile.c, src/undo.c,
src/userfunc.c, src/vim9cmds.c, src/vim9compile.c,
src/vim9execute.c, src/vim9expr.c, src/window.c

Patch 8.2.3971
Problem: Build fails.
Solution: Use the right error message name.
Files: src/typval.c

Patch 8.2.3972
Problem: Error messages are spread out.
Solution: Move the last errors from globals.h to errors.h.
Files: src/errors.h, src/globals.h, src/eval.c, src/evalfunc.c,

src/evalvars.c, src/evalwindow.c, src/ex_eval.c, src/list.c,
src/match.c, src/menu.c, src/popupmenu.c, src/search.c,
src/vim9cmds.c, src/vim9expr.c

Patch 8.2.3973
Problem: Tiny build fails.
Solution: Adjust #ifdefs
Files: src/errors.h

Patch 8.2.3974
Problem: Vim9: LISTAPPEND instruction does not check for a locked list.
Solution: Check whether the list is locked. (closes #9452)
Files: src/vim9execute.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3975
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/clientserver.c, src/fileio.c, src/gui.c,

src/gui_beval.c, src/gui_w32.c, src/gui_x11.c, src/if_cscope.c,
src/if_xcmdsrv.c, src/os_mswin.c, src/sign.c, src/viminfo.c,
src/window.c

Patch 8.2.3976
Problem: FEARG_LAST is never used. (Dominique Pellé)
Solution: Remove FEARG_LAST and the related code.
Files: src/evalfunc.c

Patch 8.2.3977
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/change.c, src/clientserver.c, src/eval.c,

src/gui_xim.c, src/if_cscope.c, src/if_py_both.h, src/if_python.c,
src/if_python3.c, src/if_ruby.c, src/if_tcl.c, src/main.c,
src/mark.c, src/match.c, src/memfile.c, src/memline.c,
src/terminal.c, src/textprop.c, src/userfunc.c

Patch 8.2.3978
Problem: Build error when using dynamically loaded Python 3.
Solution: Adjust #ifdef.
Files: src/errors.h

Patch 8.2.3979
Problem: Vim9: the feature is not mentioned in the right places.
Solution: Add +vim9script to the help and :version output.
Files: runtime/doc/builtin.txt, runtime/doc/various.txt, src/version.c

version9.txt — 3883

Patch 8.2.3980
Problem: If 'operatorfunc' invokes an operator the remembered Visual mode

may be changed. (Naohiro Ono)
Solution: Save and restore the information for redoing the Visual area.

(closes #9455)
Files: src/ops.c, src/testdir/test_normal.vim

Patch 8.2.3981
Problem: Vim9: debugging a for loop doesn't stop before it starts.
Solution: Keep the DEBUG instruction before the expression is evaluated.

(closes #9456)
Files: src/vim9cmds.c, src/testdir/test_vim9_disassemble.vim

Patch 8.2.3982
Problem: Some lines of code not covered by tests.
Solution: Add a few more test cases. (Dominique Pellé, closes #9453)
Files: src/testdir/test_filter_map.vim, src/testdir/test_highlight.vim,

src/testdir/test_regexp_latin.vim, src/testdir/test_search.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.3983
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/ex_docmd.c, src/fileio.c, src/filepath.c,

src/findfile.c, src/hardcopy.c, src/memfile.c, src/memline.c,
src/menu.c, src/normal.c, src/regexp_bt.c

Patch 8.2.3984 (after 8.2.3981)
Problem: Debugger test fails.
Solution: Adjust the test for modified debugging of a for loop.
Files: src/testdir/test_debugger.vim

Patch 8.2.3985
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/findfile.c, src/fold.c, src/hardcopy.c,

src/highlight.c, src/map.c, src/message.c, src/normal.c,
src/option.c, src/os_amiga.c, src/os_unix.c, src/os_win32.c,
src/quickfix.c, src/regexp.c, src/register.c, src/search.c,
src/syntax.c, src/tag.c, src/term.c, src/typval.c, src/undo.c,
src/window.c

Patch 8.2.3986
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/evalvars.c, src/ex_cmds.c, src/ex_docmd.c,

src/fileio.c, src/fold.c, src/gui_x11.c, src/hardcopy.c,
src/help.c, src/highlight.c, src/if_cscope.c, src/json.c,
src/map.c, src/netbeans.c, src/popupwin.c, src/usercmd.c,
src/userfunc.c

Patch 8.2.3987
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/digraph.c, src/ex_eval.c, src/gui.c,

src/hardcopy.c, src/if_cscope.c, src/if_tcl.c, src/if_xcmdsrv.c,
src/mbyte.c, src/misc2.c, src/netbeans.c, src/option.c,
src/optionstr.c, src/quickfix.c, src/regexp.c, src/tag.c,
src/term.c, src/viminfo.c

version9.txt — 3884

Patch 8.2.3988 (after 8.2.3987)
Problem: Tiny build fails.
Solution: Fix misplaced #ifdef.
Files: src/errors.h

Patch 8.2.3989
Problem: Some insert completion code is not tested.
Solution: Add a few tests. Refactor thesaurus completion. (Yegappan

Lakshmanan, closes #9460)
Files: src/insexpand.c, src/testdir/test_edit.vim,

src/testdir/test_ins_complete.vim

Patch 8.2.3990
Problem: Testing wrong operator.
Solution: Test "g@" instead of "r_". (Naohiro Ono, closes #9463)
Files: src/testdir/test_normal.vim

Patch 8.2.3991
Problem: Vim9: error when extending dict<any> with another type that it was

initialized with.
Solution: Also set the type for dict<any> if the initializer has a more

specific type. (closes #9461)
Files: src/vim9compile.c, src/vim9type.c, src/vim9.h, src/eval.c,

src/list.c, src/vim9script.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_func.vim

Patch 8.2.3992
Problem: Wrong local-additions in the help with language mix.
Solution: Adjust how the local additions list is generated. (Hirohito

Higashi, closes #9464)
Files: src/help.c, src/testdir/test_help.vim

Patch 8.2.3993
Problem: When recording a change in Select mode the first typed character

appears twice.
Solution: When putting the character back into typeahead remove it from

recorded characters. (closes #9462)
Files: src/getchar.c, src/proto/getchar.pro, src/normal.c,

src/testdir/test_registers.vim

Patch 8.2.3994
Problem: Vim9: extend() complains about the type even when it was not

declared.
Solution: Only check the list or dict type when it was declared.
Files: src/list.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.3995
Problem: Not all sshconfig files are detected as such.
Solution: Adjust the patterns used for sshconfig detection. (David Auer,

closes #9322)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.3996
Problem: Vim9: type checking for list and dict lacks information about

declared type.
Solution: Add dv_decl_type and lv_decl_type. Refactor the type stack to

store two types in each entry.
Files: src/structs.h, src/dict.c, src/list.c, src/vim9type.c,

src/proto/vim9type.pro, src/vim9instr.c, src/proto/vim9instr.pro,

version9.txt — 3885

src/vim9compile.c, src/evalfunc.c, src/proto/evalfunc.pro,
src/evalbuffer.c, src/proto/evalbuffer.pro, src/vim9expr.c,
src/vim9cmds.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.3997
Problem: Vim9: not enough testing for extend() and map().
Solution: Add more test cases. Fix uncovered problems. Remove unused type

fields.
Files: src/structs.h, src/dict.c, src/list.c, src/vim9compile.c,

src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.3998
Problem: Asan error for adding zero to NULL.
Solution: Do not compute pointer if there are no entries.
Files: src/vim9type.c

Patch 8.2.3999
Problem: Redundant check for NUL byte.
Solution: Remove the check for a NUL byte. (closes #9471)
Files: src/ex_docmd.c

Patch 8.2.4000
Problem: Coverity warns for checking for NULL pointer after using it.
Solution: Remove check for NULL.
Files: src/help.c

Patch 8.2.4001
Problem: Insert complete code uses global variables.
Solution: Make variables local to the file and use accessor functions.

(Yegappan Lakshmanan, closes #9470)
Files: src/edit.c, src/getchar.c, src/globals.h, src/insexpand.c,

src/proto/insexpand.pro, src/search.c

Patch 8.2.4002
Problem: First char typed in Select mode can be wrong.
Solution: Escape special bytes in the input buffer. (closes #9469)
Files: src/getchar.c, src/testdir/test_utf8.vim

Patch 8.2.4003
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/channel.c, src/ex_docmd.c, src/ex_eval.c,

src/gui_at_fs.c, src/hardcopy.c, src/if_cscope.c, src/menu.c,
src/netbeans.c, src/optionstr.c, src/os_mswin.c, src/sign.c,
src/typval.c

Patch 8.2.4004
Problem: Old compiler complains about struct init with variable.
Solution: Set the struct member later. (John Marriott)
Files: src/evalfunc.c

Patch 8.2.4005
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/dict.c, src/eval.c, src/evalfunc.c,

src/evalvars.c, src/ex_cmds2.c, src/ex_docmd.c, src/ex_eval.c,
src/filepath.c, src/gui.c, src/gui_w32.c, src/hardcopy.c,
src/help.c, src/highlight.c, src/if_python.c, src/list.c,

version9.txt — 3886

src/misc1.c, src/normal.c, src/quickfix.c, src/regexp.c,
src/regexp_bt.c, src/regexp_nfa.c, src/typval.c, src/userfunc.c

Patch 8.2.4006
Problem: Vim9: crash when declaring variable on the command line.
Solution: Use a temporary type list. (closes #9474)
Files: src/eval.c, src/testdir/test_vim9_assign.vim

Patch 8.2.4007
Problem: Session does not restore help buffer properly when "options' is

missing from 'sessionoptions'.
Solution: Use a ":help" command to create the help window. (closes #9475,

closes #9458, closes #9472)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.4008
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/diff.c, src/digraph.c, src/evalfunc.c,

src/evalvars.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c,
src/insexpand.c, src/match.c, src/memline.c, src/menu.c,
src/ops.c, src/profiler.c, src/quickfix.c, src/regexp.c,
src/regexp_bt.c, src/regexp_nfa.c, src/register.c, src/spell.c,
src/spell.h, src/spellfile.c, src/strings.c, src/syntax.c,
src/typval.c, src/undo.c, src/userfunc.c

Patch 8.2.4009
Problem: Reading one byte beyond the end of the line.
Solution: Check for NUL byte first.
Files: src/vim9compile.c, src/ex_docmd.c, src/testdir/test_vim9_func.vim

Patch 8.2.4010
Problem: Error messages are spread out.
Solution: Move more error messages to errors.h.
Files: src/errors.h, src/crypt.c, src/diff.c, src/ex_docmd.c,

src/ex_getln.c, src/fileio.c, src/findfile.c, src/float.c,
src/gui.c, src/highlight.c, src/if_mzsch.c, src/if_py_both.h,
src/if_python.c, src/if_python3.c, src/insexpand.c, src/match.c,
src/memline.c, src/option.c, src/popupwin.c, src/regexp.c,
src/regexp_nfa.c, src/spellfile.c, src/strings.c, src/syntax.c,
src/textprop.c, src/typval.c, src/undo.c, src/usercmd.c,
src/userfunc.c, src/window.c

Patch 8.2.4011
Problem: Test fails because of changed error number.
Solution: Restore old duplicate error message.
Files: src/errors.h, src/match.c

Patch 8.2.4012
Problem: Error messages are spread out.
Solution: Move the last error messages to errors.h.
Files: src/errors.h, src/channel.c, src/clientserver.c, src/diff.c,

src/evalfunc.c, src/evalvars.c, src/ex_cmds2.c, src/ex_docmd.c,
src/gui_w32.c, src/help.c, src/if_mzsch.c, src/if_py_both.h,
src/if_python.c, src/job.c, src/json.c, src/list.c, src/option.c,
src/optionstr.c, src/quickfix.c, src/regexp.c, src/regexp_nfa.c,
src/register.c, src/scriptfile.c, src/sign.c, src/syntax.c,
src/tag.c, src/terminal.c, src/textprop.c, src/typval.c,
src/undo.c, src/userfunc.c, src/vim9compile.c, src/viminfo.c

version9.txt — 3887

Patch 8.2.4013
Problem: Build failure without the spell feature.
Solution: Adjust #ifdefs.
Files: src/errors.h

Patch 8.2.4014
Problem: Git and gitcommit file types not properly recognized.
Solution: Adjust filetype detection. (Tim Pope, closes #9477)
Files: runtime/filetype.vim, runtime/scripts.vim,

src/testdir/test_filetype.vim

Patch 8.2.4015
Problem: Build failure with tiny features. (Tony Mechelynck)
Solution: Adjust #ifdefs.
Files: src/errors.h

Patch 8.2.4016
Problem: Vim9: incorrect error for argument that is shadowing var.
Solution: Ignore variable that is not in block where the function was

defined.
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.4017
Problem: Gcc warns for misleading indent in Athena menu code.
Solution: Add curlies around the two statements. (Dominique Pellé,

closes #9480)
Files: src/gui_athena.c

Patch 8.2.4018
Problem: ml_get error when win_execute redraws with Visual selection.
Solution: Disable Visual area temporarily. (closes #9479)
Files: src/evalwindow.c, src/proto/evalwindow.pro, src/structs.h,

src/evalbuffer.c, src/proto/evalbuffer.pro, src/evalvars.c,
src/if_py_both.h, src/evalfunc.c,
src/testdir/test_execute_func.vim

Patch 8.2.4019
Problem: Vim9: import mechanism is too complicated.
Solution: Do not use the Javascript mechanism but a much simpler one.
Files: runtime/doc/vim9.txt, src/vim9script.c, src/proto/vim9script.pro,

src/errors.h, src/structs.h, src/eval.c, src/proto/eval.pro,
src/evalvars.c, src/proto/evalvars.pro, src/userfunc.c,
src/vim9expr.c, src/vim9compile.c, src/vim9execute.c,
src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_script.vim

Patch 8.2.4020 (after 8.2.4019)
Problem: Debugger test fails.
Solution: Fix import statement.
Files: src/testdir/test_debugger.vim

Patch 8.2.4021 (after 8.2.4019)
Problem: Missing part of the :import changes.
Solution: Add changes in vim9cmds.c.
Files: src/vim9cmds.c

Patch 8.2.4022
Problem: Two error messages in the wrong file.
Solution: Use the error message from errors.h.
Files: src/popupwin.c, src/usercmd.c

version9.txt — 3888

Patch 8.2.4023
Problem: Using uninitialized variable.
Solution: Initialize "ufunc" also when an item is not exported.
Files: src/vim9script.c

Patch 8.2.4024
Problem: Confusing error message if imported name is used directly.
Solution: Give a better error message.
Files: src/eval.c, src/proto/eval.pro, src/evalvars.c, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.4025
Problem: Error for import not ending in .vim does not work for .vimrc.
Solution: Check that .vim is the end. (closes #9484)
Files: src/vim9script.c, src/errors.h, src/testdir/test_vim9_script.vim

Patch 8.2.4026
Problem: ml_get error with specific win_execute() command. (Sean Dewar)
Solution: Check cursor and Visual area are OK.
Files: src/evalwindow.c, src/testdir/test_execute_func.vim

Patch 8.2.4027
Problem: Import test fails on MS-Windows.
Solution: Use a different directory name.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4028
Problem: ml_get error with :doautoall and Visual area. (Sean Dewar)
Solution: Disable Visual mode while executing autocommands.
Files: src/structs.h, src/autocmd.c, src/testdir/test_autocmd.vim

Patch 8.2.4029
Problem: Debugging NFA regexp my crash, cached indent may be wrong.
Solution: Fix some debug warnings in the NFA regexp code. Make sure log_fd

is set when used. Fix breakindent and indent caching. (Christian
Brabandt, closes #9482)

Files: src/indent.c, src/optionstr.c, src/regexp_nfa.c

Patch 8.2.4030
Problem: A script local funcref is not found from a mapping.
Solution: When looking for a function, also find a script-local funcref.

(closes #9485)
Files: src/evalvars.c, src/proto/evalvars.pro, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.4031
Problem: Crash in xterm with only two lines. (Dominique Pellé)
Solution: Only perform xterm compatibility test if possible. (closes #9488)
Files: src/term.c, src/testdir/test_startup.vim

Patch 8.2.4032
Problem: ATTRIBUTE_NORETURN is not needed.
Solution: Use NORETURN(). (Ozaki Kiichi, closes #9487)
Files: src/if_ruby.c, src/vim.h

Patch 8.2.4033
Problem: Running filetype tests leaves directory behind.
Solution: Delete the top directory. (closes #9483)
Files: src/testdir/test_filetype.vim

version9.txt — 3889

Patch 8.2.4034
Problem: Coverity warns for possibly using a NULL pointer.
Solution: Check v_partial is not NULL.
Files: src/vim9type.c

Patch 8.2.4035
Problem: Timer triggered at the debug prompt may cause trouble.
Solution: Do not trigger any timer at the debug prompt. (closes #9481)
Files: src/time.c

Patch 8.2.4036
Problem: Vim9: script test file is getting too long.
Solution: Split the import/export functionality to a separate file.
Files: src/testdir/test_vim9_script.vim, src/testdir/test_vim9_import.vim,

src/testdir/Make_all.mak

Patch 8.2.4037
Problem: Insert mode completion is insufficiently tested.
Solution: Add more tests. Fix uncovered memory leak. (Yegappan Lakshmanan,

closes #9489)
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

Patch 8.2.4038
Problem: Various code not used when features are disabled.
Solution: Add #ifdefs. (Dominique Pellé, closes #9491)
Files: src/alloc.c, src/buffer.c, src/charset.c, src/clipboard.c,

src/cmdhist.c, src/crypt.c, src/edit.c, src/eval.c,
src/evalbuffer.c, src/evalfunc.c, src/ex_docmd.c, src/globals.h,
src/gui_xim.c, src/hashtab.c, src/highlight.c, src/insexpand.c,
src/main.c, src/mark.c, src/message.c, src/misc1.c, src/misc2.c,
src/ops.c, src/option.c, src/option.h, src/optionstr.c,
src/register.c, src/scriptfile.c, src/tag.c, src/term.c,
src/typval.c, src/usercmd.c, src/userfunc.c, src/vim9script.c,
src/vim9type.c

Patch 8.2.4039
Problem: The xdiff library is linked in even when not used.
Solution: Use configure to decide whether xdiff object files are included.
Files: src/Makefile, src/config.mk.in, src/configure.ac,

src/auto/configure, src/feature.h

Patch 8.2.4040
Problem: Keeping track of allocated lines in user functions is too

complicated.
Solution: Instead of freeing individual lines keep them all until the end.
Files: src/alloc.c, src/proto/alloc.pro, src/vim9compile.c,

src/userfunc.c, src/proto/userfunc.pro, src/message.c,
src/usercmd.c, src/viminfo.c, src/testdir/test_vim9_func.vim

Patch 8.2.4041
Problem: Using uninitialized pointer.
Solution: Store "ht" when variable is in another script.
Files: src/evalvars.c

Patch 8.2.4042
Problem: Vim9: build error.
Solution: Use grow array instead of character pointer.
Files: src/vim9execute.c

Patch 8.2.4043

version9.txt — 3890

Problem: Using int for second argument of ga_init2().
Solution: Remove unnecessary type cast (int) when using sizeof().
Files: src/arglist.c, src/channel.c, src/cmdexpand.c, src/dict.c,

src/digraph.c, src/eval.c, src/evalfunc.c, src/evalvars.c,
src/evalwindow.c, src/ex_docmd.c, src/fileio.c, src/filepath.c,
src/findfile.c, src/fold.c, src/hardcopy.c, src/help.c,
src/job.c, src/list.c, src/menu.c, src/os_win32.c, src/register.c,
src/scriptfile.c, src/spellfile.c, src/spellsuggest.c,
src/strings.c, src/syntax.c, src/tag.c, src/terminal.c,
src/undo.c, src/usercmd.c, src/userfunc.c, src/vim9execute.c,
src/viminfo.c, src/window.c, src/if_py_both.h

Patch 8.2.4044
Problem: Vim9: no error when importing the same script twice.
Solution: Give an error, unless it is a reload.
Files: src/vim9script.c, src/errors.h, src/testdir/test_vim9_import.vim

Patch 8.2.4045
Problem: Some global functions are only used in one file.
Solution: Make the functions static. (Yegappan Lakshmanan, closes #9492)
Files: src/ex_getln.c, src/highlight.c, src/proto/ex_getln.pro,

src/proto/highlight.pro, src/proto/vim9compile.pro,
src/proto/vim9instr.pro, src/proto/window.pro, src/vim9compile.c,
src/vim9instr.c, src/window.c

Patch 8.2.4046
Problem: Some error messages not in the right place.
Solution: Adjust the errors file. Fix typo.
Files: src/errors.h, src/regexp_bt.c, src/typval.c,

Patch 8.2.4047
Problem: Depending on the build features error messages are unused.
Solution: Add #ifdefs. (Dominique Pellé, closes #9493)
Files: src/errors.h

Patch 8.2.4048
Problem: gcc complains about use of "%p" in printf.
Solution: Add (void *) typecast. (Dominique Pellé, closes #9494)
Files: src/if_py_both.h

Patch 8.2.4049
Problem: Vim9: reading before the start of the line with "$" by itself.
Solution: Do not subtract one when reporting the error.
Files: src/vim9expr.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4050
Problem: Vim9: need to prefix every item in an autoload script.
Solution: First step in supporting "vim9script autoload" and "import

autoload".
Files: runtime/doc/repeat.txt, runtime/doc/vim9.txt, src/structs.h,

src/errors.h, src/vim9script.c, src/scriptfile.c,
src/proto/scriptfile.pro, src/userfunc.c, src/eval.c,
src/evalvars.c, src/vim9compile.c, src/proto/vim9compile.pro,
src/vim9expr.c, src/testdir/test_vim9_script.vim

Patch 8.2.4051
Problem: Compiler complains about possibly uninitialized variable.
Solution: Add code to avoid a compiler warning. (John Marriott)
Files: src/scriptfile.c

version9.txt — 3891

Patch 8.2.4052
Problem: Not easy to resize a window from a plugin.
Solution: Add win_move_separator() and win_move_statusline() functions.

(Daniel Steinberg, closes #9486)
Files: runtime/doc/builtin.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/evalwindow.c, src/proto/evalwindow.pro,
src/testdir/test_window_cmd.vim

Patch 8.2.4053
Problem: Vim9: autoload mechanism doesn't fully work yet.
Solution: Define functions and variables with their autoload name, add the

prefix when calling a function, find the variable in the table of
script variables.

Files: src/structs.h, src/scriptfile.c, src/proto/scriptfile.pro,
src/vim9script.c, src/proto/vim9script.pro, src/userfunc.c,
src/evalvars.c, src/testdir/test_vim9_script.vim

Patch 8.2.4054 (after 8.2.4053)
Problem: Vim9 script test fails.
Solution: Add missing change.
Files: src/vim9compile.c

Patch 8.2.4055
Problem: Vim9: line break in expression causes v:errmsg to be filled.

(Yegappan Lakshmanan)
Solution: Do not give an error when skipping over an expression.
Files: src/userfunc.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4056
Problem: Vim9: memory leak when exporting function in autoload script.
Solution: Free the name if replacing it.
Files: src/scriptfile.c

Patch 8.2.4057
Problem: Vim9: not fully implementing the autoload mechanism.
Solution: Allow for exporting a legacy function. Improve test coverage.
Files: src/vim9script.c, src/testdir/test_vim9_import.vim,

src/testdir/test_vim9_script.vim

Patch 8.2.4058
Problem: Vim9: import test failure in wrong line.
Solution: Adjust line number.
Files: src/testdir/test_vim9_import.vim

Patch 8.2.4059
Problem: Vim9: an expression of a map cannot access script-local items.

(Maxim Kim)
Solution: Use the script ID of where the map was defined.
Files: src/getchar.c, src/map.c, src/proto/map.pro,

src/testdir/test_vim9_import.vim

Patch 8.2.4060
Problem: win_execute() is slow on systems where getcwd() or chdir() is

slow. (Rick Howe)
Solution: Avoid using getcwd() and chdir() if no local directory is used and

'acd' is not set. (closes #9504)
Files: src/evalwindow.c

Patch 8.2.4061
Problem: Codecov bash script is deprecated.

version9.txt — 3892

Solution: Use the codecov action. (Ozaki Kiichi, closes #9505)
Files: .github/workflows/ci.yml

Patch 8.2.4062
Problem: Match highlighting of tab too short.
Solution: Do not stop match highlighting if on a Tab. (Christian Brabandt,

closes #9507, closes #9500)
Files: src/drawline.c, src/testdir/test_match.vim,

src/testdir/dumps/Test_match_tab_linebreak.dump

Patch 8.2.4063
Problem: Vim9: exported function in autoload script not found. (Yegappan

Lakshmanan)
Solution: Use the autoload prefix to search for the function.
Files: src/userfunc.c, src/testdir/test_vim9_import.vim

Patch 8.2.4064
Problem: Foam files are not detected.
Solution: Detect the foam filetype by the path and file contents. (Mohammed

Elwardi Fadeli, closes #9501)
Files: runtime/filetype.vim, runtime/autoload/dist/ft.vim,

src/testdir/test_filetype.vim

Patch 8.2.4065
Problem: Computation overflow with large count for :yank.
Solution: Avoid an overflow.
Files: src/ex_docmd.c, src/testdir/test_excmd.vim

Patch 8.2.4066
Problem: Vim9: imported autoload script loaded again.
Solution: Do not create a new imported_T every time.
Files: src/vim9script.c, src/vim9compile.c,

src/testdir/test_vim9_import.vim

Patch 8.2.4067
Problem: Vim9: cannot call imported function with :call. (Drew Vogel)
Solution: Translate the function name. (closes #9510)
Files: src/userfunc.c, src/testdir/test_vim9_import.vim

Patch 8.2.4068 (after 8.2.4066)
Problem: Vim9: import test fails.
Solution: Add missing change.
Files: src/scriptfile.c

Patch 8.2.4069
Problem: Vim9: import test fails on MS-Windows.
Solution: Ignore case. Adjust test to avoid name that only differs in case.
Files: src/eval.c, src/scriptfile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4070
Problem: Using uninitialized memory when reading empty file.
Solution: Check for empty file before checking for NL. (Dominique Pellé,

closes #9511)
Files: src/filepath.c, src/testdir/test_eval_stuff.vim

Patch 8.2.4071
Problem: Vim9: no detection of return in try/endtry. (Dominique Pellé)
Solution: Check if any of the blocks inside try/endtry did not end in

return.
Files: src/vim9.h, src/vim9compile.c, src/vim9cmds.c,

version9.txt — 3893

src/testdir/test_vim9_script.vim

Patch 8.2.4072
Problem: Vim9: compiling function fails when autoload script is not loaded

yet.
Solution: Depend on runtime loading.
Files: src/vim9expr.c, src/vim9script.c, src/vim9instr.c,

src/vim9execute.c, src/testdir/test_vim9_import.vim

Patch 8.2.4073
Problem: Coverity warns for using NULL pointer.
Solution: Bail out when running out of memory. Check for running over end of

a string.
Files: src/userfunc.c,

Patch 8.2.4074
Problem: Going over the end of NameBuff.
Solution: Check length when appending a space.
Files: src/drawscreen.c, src/testdir/test_edit.vim

Patch 8.2.4075 (after 8.2.4073)
Problem: Test failures.
Solution: Change check for NULL pointer.
Files: src/userfunc.c

Patch 8.2.4076
Problem: Memory leak in autoload import.
Solution: Do not overwrite the autoload prefix.
Files: src/vim9script.c

Patch 8.2.4077
Problem: Not all Libsensors files are recognized.
Solution: Add "sensors.d/*" pattern. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4078
Problem: Terminal test for current directory not used on FreeBSD.
Solution: Make it work on FreeBSD. (Ozaki Kiichi, closes #9516) Add

TermWait() inside Run_shell_in_terminal() as a generic solution.
Files: src/testdir/test_terminal3.vim, src/testdir/term_util.vim,

src/testdir/test_terminal.vim, src/testdir/test_terminal2.vim,
src/testdir/test_mapping.vim

Patch 8.2.4079
Problem: MS-Windows: "gvim --version" didn't work when build with VIMDLL.
Solution: Adjust #ifdef. (Ken Takata, closes #9517)
Files: src/main.c

Patch 8.2.4080
Problem: Not sufficient test coverage for xxd.
Solution: Add a few more test cases. (Erki Auerswald, closes #9515)
Files: src/testdir/test_xxd.vim

Patch 8.2.4081
Problem: CodeQL reports problem in if_cscope causing it to fail.
Solution: Use execvp() instead of execl(). Merge the header file into the

source file. (Ozaki Kiichi, closes #9519)
Files: Filelist, src/Make_cyg_ming.mak, src/Make_mvc.mak,

src/Make_vms.mms, src/Makefile, src/if_cscope.c, src/if_cscope.h,
src/testdir/test_cscope.vim

version9.txt — 3894

Patch 8.2.4082
Problem: Check for autoload file name and prefix fails. (Christian J.

Robinson)
Solution: Only lower case the prefix on systems where the file name is not

case sensitive.
Files: src/scriptfile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4083
Problem: Vim9: no test for "vim9script autoload" and using script variable

in the same script.
Solution: Add a simple test. Fix uncovered problem.
Files: src/evalvars.c, src/testdir/test_vim9_import.vim

Patch 8.2.4084
Problem: Memory leak when looking for autoload prefixed variable.
Solution: Free the concatenated string.
Files: src/evalvars.c

Patch 8.2.4085
Problem: Vim9: no test for using import in legacy script.
Solution: Add a test.
Files: src/testdir/test_vim9_import.vim

Patch 8.2.4086
Problem: "cctx" argument of find_func_even_dead() is unused.
Solution: Remove the argument.
Files: src/userfunc.c, src/proto/userfunc.pro, src/vim9compile.c,

src/vim9instr.c, src/evalfunc.c, src/evalvars.c, src/testing.c,
src/vim9execute.c, src/vim9expr.c, src/vim9script.c,
src/vim9type.c

Patch 8.2.4087
Problem: Cannot test items from an autoload script easily.
Solution: Add the "autoload" value for test_override().
Files: runtime/doc/testing.txt, src/testing.c, src/globals.h,

src/vim9script.c, src/testdir/test_vim9_import.vim

Patch 8.2.4088
Problem: Xxd cannot output everything in one line.
Solution: Make zero columns mean infinite columns. (Erik Auerswald,

closes #9524)
Files: runtime/doc/xxd.1, runtime/doc/xxd.man, src/testdir/test_xxd.vim,

src/xxd/xxd.c

Patch 8.2.4089 (after 8.2.4078)
Problem: Terminal test for current directory fails on FreeBSD.
Solution: Skip the test.
Files: src/testdir/test_terminal3.vim

Patch 8.2.4090
Problem: After restoring a session buffer order can be quite different.
Solution: Create buffers first. (Evgeni Chasnovski, closes #9520)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.4091
Problem: Virtcol is recomputed for statusline unnecessarily.
Solution: Just use "w_virtcol". (closes #9523)
Files: src/buffer.c, src/testdir/test_statusline.vim

version9.txt — 3895

Patch 8.2.4092
Problem: macOS CI: unnecessarily doing "Install packages".
Solution: Only do "Install packages" for huge build. (Ozaki Kiichi,

closes #9521)
Files: .github/workflows/ci.yml

Patch 8.2.4093
Problem: Cached breakindent values not initialized properly.
Solution: Initialize and cache formatlistpat. (Christian Brabandt,

closes #9526, closes #9512)
Files: runtime/doc/options.txt, src/indent.c, src/option.c,

src/proto/option.pro, src/testdir/test_breakindent.vim

Patch 8.2.4094
Problem: 'virtualedit' is window-local but using buffer-local enum.
Solution: Use window-local enum. (closes #9529)
Files: src/option.h, src/optiondefs.h

Patch 8.2.4095
Problem: Sed script not recognized by the first line.
Solution: Recognize a sed script starting with "#n". (Doug Kearns)
Files: runtime/scripts.vim, src/testdir/test_filetype.vim

Patch 8.2.4096
Problem: Linux CI: unnecessarily installing packages
Solution: Only install packages for huge build. (Ozaki Kiichi,

closes #9530)
Files: .github/workflows/ci.yml

Patch 8.2.4097
Problem: Wrong number in error message on 32 bit system. (John Paul Adrian

Glaubitz)
Solution: Add type cast. (closes #9527)
Files: src/vim9compile.c

Patch 8.2.4098
Problem: Typing "interrupt" at debug prompt may keep exception around,

causing function calls to fail.
Solution: Discard any exception at the toplevel. (closes #9532)
Files: src/main.c

Patch 8.2.4099
Problem: Vim9: cannot use Vim9 syntax in mapping.
Solution: Add <ScriptCmd> to use the script context for a command.
Files: runtime/doc/map.txt, src/normal.c, src/getchar.c,

src/proto/getchar.pro, src/ex_getln.c, src/edit.c, src/terminal.c,
src/keymap.h, src/insexpand.c, src/misc2.c, src/ops.c,
src/testdir/test_vim9_import.vim

Patch 8.2.4100
Problem: Early return when getting the 'formatlistpat' value.
Solution: Remove the first line. (Christian Brabandt)
Files: src/option.c, src/testdir/test_breakindent.vim

Patch 8.2.4101
Problem: Warning for unused argument in tiny version.
Solution: Add "UNUSED".
Files: src/getchar.c

Patch 8.2.4102

version9.txt — 3896

Problem: Vim9: import cannot be used after method.
Solution: Recognize an imported function name. (closes #9496)
Files: src/eval.c, src/testdir/test_vim9_import.vim

Patch 8.2.4103
Problem: Vim9: variable declared in for loop not initialized.
Solution: Always initialize the variable. (closes #9535)
Files: src/vim9instr.c, src/proto/vim9instr.pro, src/vim9compile.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.4104
Problem: Vim9: lower casing the autoload prefix causes problems.
Solution: Always store the prefix with case preserved.
Files: src/scriptfile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4105
Problem: Translation related comment in the wrong place.
Solution: Move it back with the text. (Ken Takata, closes #9537)
Files: src/errors.h, src/ex_docmd.c

Patch 8.2.4106
Problem: Going over the end of the w_lines array.
Solution: Break out of the loop when "idx" is too big. (issue #9540)
Files: src/drawscreen.c

Patch 8.2.4107
Problem: Script context not restored after using <ScriptCmd>.
Solution: Also restore context when not in a script. (closes #9536)

Add the 'c' flag to feedkeys() to be able to test this.
Files: runtime/doc/builtin.txt, src/getchar.c, src/evalfunc.c,

src/testdir/test_mapping.vim

Patch 8.2.4108
Problem: Going over the end of the w_lines array.
Solution: Check not going over the end and limit to Rows. (issue #9540)
Files: src/drawscreen.c

Patch 8.2.4109
Problem: MS-Windows: high dpi support is outdated.
Solution: Improve High DPI support by using PerMonitorV2. (Ken Takata

closes #9525, closes #3102)
Files: src/gui.c, src/gui.h, src/gui_w32.c, src/vim.manifest

Patch 8.2.4110
Problem: Coverity warns for using NULL pointer.
Solution: Check "evalarg" is not NULL. Skip errors when "verbose" is false.
Files: src/eval.c

Patch 8.2.4111
Problem: Potential problem when map is deleted while executing.
Solution: Reset last used map pointer when deleting a mapping.
Files: src/map.c

Patch 8.2.4112
Problem: Function not deleted at end of test.
Solution: Delete the function.
Files: src/testdir/test_diffmode.vim

Patch 8.2.4113
Problem: Typo on DOCMD_RANGEOK results in not recognizing command.

version9.txt — 3897

Solution: Correct the typo. (closes #9539)
Files: src/vim.h, src/testdir/test_mapping.vim

Patch 8.2.4114
Problem: Vim9: type checking for a funcref does not work for when it is

used in a method.
Solution: Pass the base to where the type is checked.
Files: src/vim9type.c, src/proto/vim9type.pro, src/userfunc.c,

src/testdir/test_vim9_expr.vim

Patch 8.2.4115
Problem: Cannot use a method with a complex expression.
Solution: Evaluate the expression after "->" and use the result.
Files: src/eval.c, src/errors.h, src/testdir/test_vim9_expr.vim

Patch 8.2.4116
Problem: Vim9: cannot use a method with a complex expression in a :def

function.
Solution: Implement compiling the expression.
Files: src/vim9expr.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4117
Problem: Vim9: wrong white space error after using imported item.
Solution: Don't skip over white space. (closes #9544)
Files: src/eval.c, src/testdir/test_vim9_import.vim

Patch 8.2.4118
Problem: Using UNUSED for argument that is used.
Solution: Remove UNUSED.
Files: src/usercmd.c

Patch 8.2.4119
Problem: Build failure when disabling the channel feature.
Solution: Adjust #ifdef. (Dominique Pellé, closes #9545)
Files: src/misc2.c

Patch 8.2.4120
Problem: Block insert goes over the end of the line.
Solution: Handle invalid byte better. Fix inserting the wrong text.
Files: src/ops.c, src/testdir/test_visual.vim

Patch 8.2.4121
Problem: Visual test fails on MS-Windows.
Solution: Set 'isprint' so that the character used is not printable.
Files: src/testdir/test_visual.vim

Patch 8.2.4122
Problem: ":command Cmd" does not show custom completion argument.
Solution: Show the completion argument when using ":verbose".
Files: src/usercmd.c, src/testdir/test_usercommands.vim

Patch 8.2.4123
Problem: Complete function cannot be import.Name.
Solution: Dereference the function name if needed. Also: do not see

"import.Name" as a builtin function. (closes #9541)
Files: src/userfunc.c, src/eval.c, src/testdir/test_vim9_import.vim

Patch 8.2.4124
Problem: Vim9: method in compiled function may not see script item.
Solution: Make sure not to skip to the next line. (closes #9496)

version9.txt — 3898

Files: src/vim9expr.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4125
Problem: Completion tests fail.
Solution: Disable error messages while dereferencing the function name.
Files: src/eval.c

Patch 8.2.4126
Problem: Crash on exit when built with dynamic Tcl and EXITFREE is defined.

(Dominique Pellé)
Solution: Only call Tcl_Finalize() when initialized. (closes #9546)
Files: src/if_tcl.c

Patch 8.2.4127
Problem: Build failure without the +eval feature.
Solution: Add #ifdef.
Files: src/usercmd.c

Patch 8.2.4128
Problem: Crash when method cannot be found. (Christian J. Robinson)
Solution: Don't mix up pointer names.
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4129
Problem: Building with +sound but without +eval fails. (Dominique Pellé)
Solution: Disable canberra in tiny and small build. (closes #9548)
Files: src/configure.ac, src/auto/configure

Patch 8.2.4130
Problem: MS-Windows: MSVC build may have libraries duplicated.
Solution: Improve the MSVC Makefile. (Ken Takata, closes #9547)
Files: src/Make_mvc.mak

Patch 8.2.4131
Problem: Vim9: calling function in autoload import does not work in a :def

function.
Solution: When a variable is not found and a PCALL follows use a funcref.

(closes #9550)
Files: src/vim9execute.c, src/testdir/test_vim9_import.vim

Patch 8.2.4132
Problem: Vim9: wrong error message when autoload script can't be found.
Solution: Correct check for using autoload with wrong name.
Files: src/vim9script.c, src/testdir/test_vim9_import.vim

Patch 8.2.4133
Problem: output of ":scriptnames" goes into the message history, while this

does not happen for other commands, such as ":ls".
Solution: Use msg_outtrans() instead of smsg(). (closes #9551)
Files: src/scriptfile.c, src/testdir/test_scriptnames.vim

Patch 8.2.4134
Problem: MS-Windows: test for import with absolute path fails.
Solution: Handle path starting with slash as an absolute path.
Files: src/vim9script.c

Patch 8.2.4135
Problem: Vim9: ":scriptnames" shows unloaded imported autoload script.
Solution: Mark the unloaded script with "A". (closes #9552)
Files: runtime/doc/repeat.txt, src/scriptfile.c,

version9.txt — 3899

src/testdir/test_vim9_import.vim

Patch 8.2.4136
Problem: Vim9: the "autoload" argument of ":vim9script" is not useful.
Solution: Remove the argument. (closes #9555)
Files: runtime/doc/vim9.txt, runtime/doc/repeat.txt, src/vim9script.c,

src/errors.h, src/testdir/test_vim9_import.vim

Patch 8.2.4137
Problem: Vim9: calling import with and without method is inconsistent.
Solution: Set a flag that a parenthesis follows to compile_load_scriptvar().

Add some more tests. Improve error message.
Files: src/vim9expr.c, src/vim9execute.c, src/vim9script.c,

src/testdir/test_vim9_import.vim

Patch 8.2.4138
Problem: Vim9: no error for return with argument when the function does not

return anything.
Solution: Give an error for the invalid argument. (issue #9497)
Files: src/vim9cmds.c, src/testdir/test_vim9_func.vim

Patch 8.2.4139
Problem: Using freed memory if an expression abbreviation deletes the

abbreviation.
Solution: Do not access the pointer after evaluating the expression.
Files: src/map.c, src/testdir/test_mapping.vim

Patch 8.2.4140
Problem: maparg() does not indicate the type of script where it was defined.
Solution: Add "scriptversion".
Files: runtime/doc/builtin.txt, src/map.c, src/testdir/test_maparg.vim

Patch 8.2.4141 (after 8.2.4140)
Problem: Vim9 builtin functions test fails.
Solution: Add "scriptversion" item to maparg() result.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.4142
Problem: Build failure with normal features without persistent undo.
Solution: Adjust #ifdef. (closes #9557)
Files: src/fileio.c

Patch 8.2.4143
Problem: MS-Windows: IME support for Win9x is obsolete.
Solution: Remove the Win9x code. (Ken Takata, closes #9559)
Files: src/gui_w32.c

Patch 8.2.4144
Problem: Cannot load libsodium dynamically.
Solution: Support dynamic loading on MS-Windows. (Ken Takata, closes #9554)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak, src/buffer.c,

src/crypt.c, src/memline.c, src/proto/crypt.pro

Patch 8.2.4145
Problem: Confusing error when using name of import for a function.
Solution: Pass a flag to trans_function_name().
Files: src/vim.h, src/userfunc.c, src/proto/userfunc.pro, src/eval.c,

src/testdir/test_vim9_import.vim

Patch 8.2.4146

version9.txt — 3900

Problem: Vim9: shadowed function can be used in compiled function but not
at script level.

Solution: Also give an error in a compiled function. (closes #9563)
Files: src/vim9expr.c

Patch 8.2.4147
Problem: E464 does not always include the offending command.
Solution: Add another error message with "%s". (closes #9564)
Files: src/errors.h, src/vim9compile.c, src/ex_docmd.c,

src/testdir/test_vim9_script.vim

Patch 8.2.4148
Problem: Deleting any mapping may cause <ScriptCmd> to not set the script

context.
Solution: Only reset last_used_map if it is the deleted mapping.

(closes #9568)
Files: src/map.c, src/getchar.c, src/proto/getchar.pro,

src/testdir/test_mapping.vim

Patch 8.2.4149
Problem: Test override not restored, autocommand left behind.
Solution: Correct restoring test override. Delete autocommand afterwards.
Files: src/testdir/test_autocmd.vim, src/testdir/test_mapping.vim

Patch 8.2.4150
Problem: Coverity warns for using pointer after free.
Solution: Swap statements, even though using the pointer is no problem.
Files: src/map.c

Patch 8.2.4151
Problem: Reading beyond the end of a line.
Solution: For block insert only use the offset for correcting the length.
Files: src/ops.c, src/testdir/test_visual.vim

Patch 8.2.4152
Problem: Block insert with double wide character fails.
Solution: Adjust the expected output.
Files: src/testdir/test_utf8.vim

Patch 8.2.4153
Problem: MS-Windows: Global IME is no longer supported.
Solution: Remove the Global IME implementation. (Ken Takata, closes #9562)
Files: Filelist, runtime/doc/mbyte.txt, src/Make_mvc.mak, src/dimm.idl,

src/glbl_ime.cpp, src/glbl_ime.h, src/gui_w32.c, src/vim.h

Patch 8.2.4154
Problem: ml_get error when exchanging windows in Visual mode.
Solution: Correct end of Visual area when entering another buffer.
Files: src/window.c, src/testdir/test_visual.vim

Patch 8.2.4155
Problem: Translating strftime() argument results in check error.
Solution: Add gettext comment.
Files: src/time.c

Patch 8.2.4156
Problem: Fileinfo message overwrites echo'ed message.
Solution: Reset need_fileinfo when displaying a message. (Rob Pilling,

closes #9569)
Files: src/message.c, src/testdir/test_messages.vim,

version9.txt — 3901

src/testdir/dumps/Test_fileinfo_after_echo.dump

Patch 8.2.4157
Problem: Terminal test fails because Windows sets the title.
Solution: Add the "vterm_title" testing override and use it in the test.

(Ozaki Kiichi, closes #9556)
Files: runtime/doc/testing.txt, src/globals.h, src/terminal.c,

src/testing.c, src/testdir/test_terminal.vim

Patch 8.2.4158
Problem: MS-Windows: memory leak in :browse.
Solution: Free stuff before returning. (Ken Takata, closes #9574)
Files: src/gui_w32.c

Patch 8.2.4159
Problem: MS-Windows: _WndProc() is very long.
Solution: Move code to separate functions. (Ken Takata, closes #9573)
Files: src/gui_w32.c

Patch 8.2.4160
Problem: Cannot change the register used for Select mode delete.
Solution: Make CTRL-R set the register to be used when deleting text for

Select mode. (Shougo Matsushita, closes #9531)
Files: runtime/doc/visual.txt, src/globals.h, src/normal.c, src/ops.c,

src/testdir/test_selectmode.vim

Patch 8.2.4161
Problem: Vim9: warning for missing white space after imported variable.
Solution: Do not skip white space. (closes #9567)
Files: src/vim9expr.c, src/testdir/test_vim9_import.vim

Patch 8.2.4162
Problem: Vim9: no error for redefining function with export.
Solution: Check for existing function with/without prefix. (closes #9577)
Files: src/userfunc.c, src/scriptfile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4163
Problem: No error for omitting function name after autoload prefix.
Solution: Check for missing function name. (issue #9577)
Files: src/userfunc.c, src/testdir/test_vim9_import.vim

Patch 8.2.4164 (after 8.2.4162)
Problem: Error in legacy code for function shadowing variable.
Solution: Only give the error in Vim9 script.
Files: src/userfunc.c

Patch 8.2.4165
Problem: The nv_g_cmd() function is too long.
Solution: Move code to separate functions. (Yegappan Lakshmanan,

closes #9576)
Files: src/normal.c

Patch 8.2.4166
Problem: Undo synced when switching buffer in another window.
Solution: Do not sync undo when not needed. (closes #9575)
Files: src/buffer.c, src/testdir/test_timers.vim

Patch 8.2.4167
Problem: Vim9: error message for old style import.
Solution: Use another error message. Add a test.

version9.txt — 3902

Files: src/evalvars.c, src/errors.h, src/testdir/test_vim9_import.vim

Patch 8.2.4168 (after 8.2.4163)
Problem: Disallowing empty function name breaks existing plugins.
Solution: Allow empty function name in legacy script.
Files: src/userfunc.c, src/testdir/test_autoload.vim,

src/testdir/sautest/autoload/foo.vim

Patch 8.2.4169
Problem: MS-Windows: unnecessary casts and other minor things.
Solution: Clean up the MS-Windows code. (Ken Takata, closes #9583)
Files: src/gui_w32.c

Patch 8.2.4170
Problem: MS-Windows: still using old message API calls.
Solution: Call the "W" functions directly. (Ken Takata, closes #9582)
Files: src/gui_w32.c, src/os_mswin.c, src/os_win32.c, src/os_win32.h

Patch 8.2.4171
Problem: Cannot invoke option function using autoload import.
Solution: Expand the import to an autoload function name. (closes #9578)
Files: src/userfunc.c, src/evalvars.c, src/proto/evalvars.pro,

src/option.c, src/testdir/test_vim9_import.vim

Patch 8.2.4172
Problem: Filetype detection for BASIC is not optimal.
Solution: Improve BASIC filetype detection. (Doug Kearns)
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

src/testdir/test_filetype.vim

Patch 8.2.4173
Problem: Cannot use an import in 'foldexpr'.
Solution: Set the script context to where 'foldexpr' was set. (closes #9584)

Fix that the script context was not set for all buffers.
Files: src/eval.c, src/proto/eval.pro, src/fold.c, src/structs.h,

src/option.c, src/testdir/test_vim9_import.vim

Patch 8.2.4174
Problem: Vim9: can use an autoload name in normal script.
Solution: Disallow using an autoload name.
Files: src/userfunc.c, src/errors.h, src/testdir/test_vim9_import.vim

Patch 8.2.4175
Problem: MS-Windows: runtime check for multi-line balloon is obsolete.
Solution: Remove the obsolete code. (Ken Takata, closes #9592)
Files: src/evalfunc.c, src/gui_w32.c, src/proto/gui_w32.pro

Patch 8.2.4176
Problem: Vim9: cannot use imported function with call().
Solution: Translate the function name. (closes #9590)
Files: src/evalfunc.c, src/testdir/test_vim9_import.vim

Patch 8.2.4177
Problem: Vim9: autoload script not loaded after "vim9script noclear".
Solution: Check IMP_FLAGS_AUTOLOAD properly. (closes #9593)
Files: src/vim9compile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4178
Problem: Vim9: invalid error for return type of lambda when debugging.
Solution: Do not check the return type of a lambda. (closes #9589)

version9.txt — 3903

Files: src/vim9cmds.c

Patch 8.2.4179
Problem: 'foldtext' is evaluated in the current script context.
Solution: Use the script context where the option was set.
Files: src/fold.c, src/buffer.c, src/eval.c, src/proto/eval.pro,

src/findfile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4180
Problem: 'balloonexpr' is evaluated in the current script context.
Solution: Use the script context where the option was set.
Files: src/beval.c, src/option.c, src/proto/option.pro,

src/testdir/test_balloon.vim,
src/testdir/dumps/Test_balloon_eval_term_01.dump,
src/testdir/dumps/Test_balloon_eval_term_01a.dump,
src/testdir/dumps/Test_balloon_eval_term_02.dump

Patch 8.2.4181
Problem: Vim9: cannot use an import in 'diffexpr'.
Solution: Set the script context when evaluating 'diffexpr'. Do not require

'diffexpr' to return a bool, it was ignored anyway.
Files: src/evalvars.c, src/testdir/test_vim9_import.vim

Patch 8.2.4182 (after 8.2.4182)
Problem: Memory leak when evaluating 'diffexpr'.
Solution: Use free_tv() instead of clear_tv().
Files: src/evalvars.c

Patch 8.2.4183
Problem: Cannot use an import in 'formatexpr'.
Solution: Set the script context when evaluating 'formatexpr'.
Files: src/textformat.c, src/testdir/test_vim9_import.vim

Patch 8.2.4184
Problem: Cannot use an import in 'includeexpr'.
Solution: Set the script context when evaluating 'includeexpr'
Files: src/findfile.c, src/testdir/test_vim9_import.vim

Patch 8.2.4185
Problem: Cannot use an import in 'indentexpr'.
Solution: Set the script context when evaluating 'indentexpr'
Files: src/indent.c, src/testdir/test_vim9_import.vim

Patch 8.2.4186
Problem: Cannot use an import in 'patchexpr'.
Solution: Set the script context when evaluating 'patchexpr'. Do not

require 'patchexpr' to return a bool, it was ignored anyway.
Files: src/evalvars.c, src/testdir/test_vim9_import.vim

Patch 8.2.4187
Problem: Gnuplot file not recognized.
Solution: Recognize ".gnuplot". (closes #9588)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4188
Problem: Not all gitconfig files are recognized.
Solution: Add a few more patterns. (Tim Pope, closes #9597)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4189

version9.txt — 3904

Problem: MS-Windows: code for "old look" is obsolete.
Solution: Delete obsolete code. Use "MS Shell Dlg" font. (Ken Takata,

closes #9596)
Files: src/gui_w32.c

Patch 8.2.4190
Problem: All conceal tests are skipped without the screendumps feature.
Solution: Only skip the tests that use screendumps. (closes #9599)
Files: src/testdir/test_conceal.vim

Patch 8.2.4191
Problem: json5 files are not recognized.
Solution: Add a pattern for json5 files. (closes #9601)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4192
Problem: Cannot use an import in 'printexpr'.
Solution: Set the script context when evaluating 'printexpr'.
Files: src/evalvars.c, src/testdir/test_vim9_import.vim

Patch 8.2.4193
Problem: Cannot use an import in 'charconvert'.
Solution: Set the script context when evaluating 'charconvert'. Also expand

script-local functions in 'charconvert'.
Files: src/evalvars.c, src/optionstr.c, src/testdir/test_vim9_import.vim

Patch 8.2.4194
Problem: MS-Windows: code for calculating font size is duplicated.
Solution: Move the code to a function. (Ken Takata, closes #9603)
Files: src/gui_w32.c

Patch 8.2.4195
Problem: Resizing terminal may cause to behave like CTRL-Z.
Solution: Set "got_tstp" only when in_mch_suspend is set. (Dorian Bivolaru,

closes #9602, closes #9586)
Files: src/os_unix.c

Patch 8.2.4196
Problem: Various file types not recognized.
Solution: Add patterns to recognize more file types (closes #9607)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4197
Problem: Cannot use an import in the "expr" part of 'spellsuggest'.
Solution: Set the script context when evaluating "expr" of 'spellsuggest'.
Files: src/evalvars.c, src/testdir/test_vim9_import.vim

Patch 8.2.4198
Problem: Vim9: the switch for executing instructions is too long.
Solution: Move some code to separate functions.
Files: src/vim9execute.c

Patch 8.2.4199
Problem: MS-Windows: Support for MSVC before 2003 is not useful.
Solution: Remove the exceptions for MSVC 6.0. (Ken Takata, closes #9616)
Files: src/GvimExt/gvimext.h, src/ex_docmd.c, src/feature.h,

src/gui_w32.c, src/if_cscope.c, src/if_ole.cpp, src/if_ruby.c,
src/macros.h, src/os_mswin.c, src/os_win32.c, src/os_win32.h,
src/proto/os_win32.pro, src/time.c, src/vim.h

version9.txt — 3905

Patch 8.2.4200
Problem: Some tests do not clean up properly.
Solution: Delete created files. (Yegappan Lakshmanan, closes #9611)
Files: src/testdir/test_filetype.vim, src/testdir/test_messages.vim,

src/testdir/test_vim9_import.vim

Patch 8.2.4201
Problem: When using the GUI CTRL-Z does not stop gvim.
Solution: When using the GUI set SIGTSTP to SIG_DFL. (Andrew Maltsev,

closes #9570)
Files: src/os_unix.c

Patch 8.2.4202
Problem: Vim9: cannot export function that exists globally.
Solution: When checking if a function already exists only check for

script-local functions. (closes #9615)
Files: src/userfunc.c, src/proto/userfunc.pro, src/vim.h,

src/vim9compile.c, src/vim9instr.c,
src/testdir/test_vim9_import.vim

Patch 8.2.4203
Problem: Entering a character with CTRL-V may include modifiers.
Solution: Reset "mod_mask" when entering a character with digits after

CTRL-V. (closes #9610)
Files: src/edit.c, src/testdir/test_edit.vim

Patch 8.2.4204
Problem: screenpos() has non-zero row for invisible text.
Solution: Only add the window row when the text is visible. (closes #9618)
Files: src/move.c, src/testdir/test_cursor_func.vim

Patch 8.2.4205
Problem: The normal_cmd() function is too long.
Solution: Move parts to separate functions. (Yegappan Lakshmanan,

closes #9608)
Files: src/normal.c

Patch 8.2.4206
Problem: Condition with many "(" causes a crash.
Solution: Limit recursion to 1000.
Files: src/errors.h, src/eval.c, src/testdir/test_eval_stuff.vim

Patch 8.2.4207 (after 8.2.4206)
Problem: Recursion test fails with MSVC.
Solution: Use a smaller limit for MSVC.
Files: src/eval.c

Patch 8.2.4208
Problem: Using setbufvar() may change the window title.
Solution: Do not redraw when creating the autocommand window. (closes #9613)
Files: src/autocmd.c, src/testdir/test_functions.vim

Patch 8.2.4209
Problem: partial in 'opfunc' cannot use an imported function.
Solution: Also expand the function name in a partial. (closes #9614)
Files: src/evalvars.c, src/testdir/test_vim9_import.vim

Patch 8.2.4210 (after 8.2.4208)
Problem: Window title test fails in some configurations.
Solution: Only run the test if the title can be obtained.

version9.txt — 3906

Files: src/testdir/test_functions.vim

Patch 8.2.4211 (after 8.2.4208)
Problem: Window title test still fails in some configurations.
Solution: Use WaitForAssert().
Files: src/testdir/test_functions.vim

Patch 8.2.4212 (after 8.2.4208)
Problem: Window title test still fails in some configurations.
Solution: Explicitly set the 'title' option.
Files: src/testdir/test_functions.vim

Patch 8.2.4213
Problem: Too much code for supporting old MSVC versions.
Solution: Remove MSVC 2003 support. (Ken Takata, closes #9623)
Files: Filelist, src/INSTALLpc.txt, src/Make_mvc.mak, src/gui_w32.c,

src/msvcsetup.bat, src/os_win32.c

Patch 8.2.4214
Problem: Illegal memory access with large 'tabstop' in Ex mode.
Solution: Allocate enough memory.
Files: src/ex_getln.c, src/testdir/test_ex_mode.vim

Patch 8.2.4215
Problem: Illegal memory access when copying lines in Visual mode.
Solution: Adjust the Visual position after copying lines.
Files: src/ex_cmds.c, src/testdir/test_visual.vim

Patch 8.2.4216
Problem: Vim9: cannot use a function from an autoload import directly.
Solution: Add the AUTOLOAD instruction to figure out at runtime.

(closes #9620)
Files: src/vim9expr.c, src/vim9.h, src/vim9execute.c, src/vim9instr.c,

src/proto/vim9instr.pro, src/testdir/test_vim9_import.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4217
Problem: Illegal memory access when undo makes Visual area invalid.
Solution: Correct the Visual area after undo.
Files: src/undo.c, src/testdir/test_visual.vim

Patch 8.2.4218
Problem: Illegal memory access with bracketed paste in Ex mode.
Solution: Reserve space for the trailing NUL.
Files: src/edit.c, src/testdir/test_paste.vim

Patch 8.2.4219
Problem: Reading before the start of the line.
Solution: Check boundary before trying to read the character.
Files: src/register.c, src/testdir/test_visual.vim

Patch 8.2.4220
Problem: MS-Windows: some old compiler support remains.
Solution: Remove obsolete compiler support. (Ken Takata, closes #9627)
Files: src/Make_mvc.mak, src/vim.h

Patch 8.2.4221
Problem: Some functions in normal.c are very long.
Solution: Move code to separate functions. (Yegappan Lakshmanan,

closes #9628)

version9.txt — 3907

Files: src/normal.c

Patch 8.2.4222
Problem: MS-Windows: clumsy way to suppress progress on CI.
Solution: Check for "$CI" in the Makefile itself. (Ken Takata, closes #9631)
Files: .github/workflows/ci.yml, ci/appveyor.bat, src/Make_mvc.mak

Patch 8.2.4223
Problem: Long/int compiler warnings; function arguments swapped.
Solution: Add type casts. Swap arguments. (Ken Takata, closes #9632)
Files: src/alloc.c, src/eval.c, src/vim9script.c

Patch 8.2.4224
Problem: Vim9: no error when using a number for map() second argument
Solution: Disallow number to string conversion. (closes #9630)
Files: src/eval.c, src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4225
Problem: Vim9: depth argument of :lockvar not parsed in :def function.
Solution: Parse the optional depth argument. (closes #9629)

Fix that locking doesn't work for a non-materialize list.
Files: src/vim9cmds.c, src/evalvars.c, src/structs.h, src/evalfunc.c,

src/errors.h, src/vim9execute.c, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4226 (after 8.2.4224)
Problem: Filter-map test fails.
Solution: Only reject number argument in Vim9 script.
Files: src/eval.c

Patch 8.2.4227
Problem: Vim9: using "lockvar!" in :def function does not work.
Solution: Add "!" instead of "-1". (closes #9634)
Files: src/vim9cmds.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4228
Problem: No tests for clicking in the GUI tabline.
Solution: Add test functions to generate the events. Add tests using the

functions. (Yegappan Lakshmanan, closes #9638)
Files: runtime/doc/builtin.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/normal.c,
src/proto/testing.pro, src/testdir/test_diffmode.vim,
src/testdir/test_gui.vim, src/testdir/test_normal.vim,
src/testing.c

Patch 8.2.4229
Problem: Possible crash when invoking timer callback fails.
Solution: Initialize the typval. Give an error for an empty callback.

(closes #9636)
Files: src/time.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4230
Problem: MS-Windows: set_guifontwide() is included but won't work.
Solution: Include set_guifontwide() only for X11. (Ken Takata, closes #9640)
Files: src/gui.c

Patch 8.2.4231
Problem: Vim9: map() gives type error when type was not declared.
Solution: Only check the type when it was declared, like extend() does.

(closes #9635)

version9.txt — 3908

Files: src/list.c, src/evalfunc.c, src/vim9instr.c,
src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_assign.vim

Patch 8.2.4232 (after 8.2.4231)
Problem: Some compilers don't like a goto label without statement.
Solution: Return instead of using a goto.
Files: src/list.c

Patch 8.2.4233
Problem: Crash when recording and using Select mode.
Solution: When deleting the last recorded character check there is something

to delete.
Files: src/getchar.c, src/testdir/test_registers.vim

Patch 8.2.4234
Problem: test_garbagecollect_now() does not check v:testing as documented.
Solution: Give an error if v:testing is not set.
Files: src/testing.c, src/errors.h, src/testdir/test_functions.vim

Patch 8.2.4235
Problem: Invalid check for NULL pointer.
Solution: Remove the check.
Files: src/getchar.c

Patch 8.2.4236
Problem: Accessing freed memory.
Solution: Set the bh_curr pointer to NULL.
Files: src/getchar.c

Patch 8.2.4237
Problem: Record buffer wrong if character in Select mode was not typed.
Solution: Only delete the tail from the record buffer if the character was

typed. (closes #9650)
Files: src/normal.c, src/testdir/test_registers.vim

Patch 8.2.4238
Problem: *.tf file could be filetype "tf" or "terraform".
Solution: Detect the type from the file contents. (closes #9642)
Files: runtime/filetype.vim, runtime/autoload/dist/ft.vim,

src/testdir/test_filetype.vim

Patch 8.2.4239
Problem: Build fails with unusual configuration.
Solution: Adjust #ifdef. (closes #9651)
Files: src/testing.c

Patch 8.2.4240
Problem: Error for using flatten() in Vim9 script is unclear.
Solution: Add a remark to use flattennew().
Files: src/errors.h

Patch 8.2.4241
Problem: Some type casts are redundant.
Solution: Remove the type casts. (closes #9643)
Files: src/blob.c, src/buffer.c, src/channel.c, src/clientserver.c,

src/clipboard.c, src/drawline.c, src/drawscreen.c, src/edit.c,
src/evalfunc.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_eval.c,
src/fold.c, src/if_cscope.c, src/json.c, src/match.c,
src/memline.c, src/message.c, src/misc1.c, src/normal.c,

version9.txt — 3909

src/ops.c, src/option.c, src/optionstr.c, src/os_unix.c,
src/register.c, src/sign.c, src/spellfile.c, src/tag.c, src/ui.c,
src/undo.c, src/window.c

Patch 8.2.4242
Problem: Put in Visual mode cannot be repeated.
Solution: Use "P" to put without yanking the deleted text into the unnamed

register. (Shougo Matsushita, closes #9591)
Files: runtime/doc/visual.txt, src/normal.c, src/register.c,

src/testdir/test_visual.vim

Patch 8.2.4243
Problem: Lua tests fail with Lua 5.4.4.
Solution: Check messages like before Lua 5.4.3. (Jakub Kulík, closes #9652)
Files: src/testdir/test_lua.vim

Patch 8.2.4244
Problem: MS-Windows: warning from MSVC on debug build.
Solution: Adjust "/opt" options. Remove unused variables. Make variables

uppercase for consistency. (Ken Takata, closes #9647)
Files: src/Make_mvc.mak

Patch 8.2.4245
Problem: ":retab 0" may cause illegal memory access.
Solution: Limit the value of 'tabstop' to 10000.
Files: src/option.c, src/vim.h, src/indent.c,

src/testdir/test_options.vim

Patch 8.2.4246
Problem: One error message not in errors.h. (Antonio Colombo)
Solution: Move the message and rename.
Files: src/errors.h, src/if_perl.xs

Patch 8.2.4247
Problem: Stack corruption when looking for spell suggestions.
Solution: Prevent the depth increased too much. Add a five second time

limit to finding suggestions.
Files: src/spellsuggest.c, src/testdir/test_spell.vim

Patch 8.2.4248
Problem: No proper test for moving the window separator.
Solution: Add a test. Add comment in code. (closes #9656)
Files: src/window.c, src/testdir/test_window_cmd.vim

Patch 8.2.4249
Problem: The timeout limit for spell suggestions is always 5000 milli

seconds.
Solution: Add the "timeout" entry to 'spellsuggest'.
Files: runtime/doc/options.txt, src/spellsuggest.c,

src/testdir/test_spell.vim

Patch 8.2.4250
Problem: Channel out callback test is flaky on Mac.
Solution: Assign high priority to the test process. (Ozaki Kiichi,

closes #9653)
Files: src/testdir/test_channel_pipe.py, src/testdir/thread_util.py

Patch 8.2.4251
Problem: Vala files are not recognized.
Solution: Add the *.vala pattern. (closes #9654)

version9.txt — 3910

Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4252
Problem: Generating the normal command table at runtime is inefficient.
Solution: Generate the table with a Vim script and put it in a header file.

(Yegappan Lakshmanan, closes #9648)
Files: Filelist, runtime/doc/builtin.txt, runtime/doc/usr_41.txt,

src/Make_cyg_ming.mak, src/Make_mvc.mak, src/Make_vms.mms,
src/Makefile, src/create_nvcmdidxs.vim, src/evalfunc.c,
src/main.c, src/normal.c, src/nv_cmdidxs.h, src/proto/normal.pro

Patch 8.2.4253
Problem: Using freed memory when substitute uses a recursive function call.
Solution: Make a copy of the substitute text.
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.2.4254
Problem: Using short instead of int.
Solution: Use int. (closes #9658)
Files: src/if_cscope.c

Patch 8.2.4255
Problem: Theoretical computation overflow.
Solution: Perform multiplication in a wider type. (closes #9657)
Files: src/alloc.c, src/drawline.c, src/eval.c, src/evalfunc.c,

src/ex_docmd.c, src/hardcopy.c, src/list.c, src/memfile.c,
src/memline.c, src/popupwin.c

Patch 8.2.4256
Problem: MS-Windows: compiler warnings when compiled with /W4.
Solution: Small adjustments to the code. (Ken Takata, closes #9659)
Files: src/gui_w32.c, src/os_win32.c

Patch 8.2.4257
Problem: Vim9: finding global function without g: prefix but not finding

global variable is inconsistent.
Solution: Require using g: for a global function. Change the vim9.vim

script into a Vim9 script with exports. Fix that import in legacy
script does not work.

Files: src/vim9expr.c, src/evalfunc.c, src/eval.c, src/userfunc.c,
src/testdir/vim9.vim, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_import.vim,
src/testdir/test_vim9_script.vim, src/testdir/test_blob.vim,
src/testdir/test_execute_func.vim, src/testdir/test_debugger.vim,
src/testdir/test_expr.vim, src/testdir/test_filter_map.vim,
src/testdir/test_float_func.vim, src/testdir/test_functions.vim,
src/testdir/test_glob2regpat.vim, src/testdir/test_highlight.vim,
src/testdir/test_iminsert.vim, src/testdir/test_ins_complete.vim,
src/testdir/test_listdict.vim, src/testdir/test_mapping.vim,
src/testdir/test_normal.vim, src/testdir/test_popupwin.vim,
src/testdir/test_profile.vim, src/testdir/test_quickfix.vim,
src/testdir/test_tagfunc.vim, src/testdir/test_textprop.vim,
src/testdir/test_usercommands.vim

Patch 8.2.4258
Problem: Coverity warns for array overrun.
Solution: Restrict depth to MAXWLEN - 1.

version9.txt — 3911

Files: src/spellsuggest.c

Patch 8.2.4259
Problem: Number of test functions for GUI events is growing.
Solution: Use one function with a dictionary. (Yegappan Lakshmanan,

closes #9660)
Files: runtime/doc/builtin.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/proto/testing.pro,
src/testdir/test_gui.vim, src/testdir/test_vim9_builtin.vim,
src/testing.c

Patch 8.2.4260
Problem: Vim9: can still use a global function without g: at the script

level.
Solution: Also check for g: at the script level. (issue #9637)
Files: src/userfunc.c, src/proto/userfunc.pro, src/evalvars.c,

src/vim9expr.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_import.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_popupwin.vim,
src/testdir/dumps/Test_popupwin_scroll_11.dump,
src/testdir/dumps/Test_popupwin_scroll_12.dump

Patch 8.2.4261
Problem: Accessing invalid memory when a regular expression checks the

Visual area while matching in a string.
Solution: Do not try matching the Visual area in a string.
Files: src/regexp.c, src/testdir/test_help.vim

Patch 8.2.4262 (after 8.2.4261)
Problem: Some search tests fail.
Solution: Use a better way to reject searching for the Visual area.
Files: src/regexp.c

Patch 8.2.4263
Problem: No test for the GUI find/replace dialog.
Solution: Add a test function and a test. (Yegappan Lakshmanan,

closes #9662)
Files: runtime/doc/testing.txt, src/testdir/test_gui.vim, src/testing.c

Patch 8.2.4264
Problem: Vim9: can use old style autoload function name.
Solution: Give an error for old style autoload function name.
Files: src/errors.h, src/userfunc.c, src/testdir/test_vim9_import.vim,

src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim

Patch 8.2.4265 (after 8.2.4264)
Problem: Autoload tests fails.
Solution: Use export instead of name with #.
Files: src/testdir/sautest/autoload/auto9.vim,

src/testdir/test_autoload.vim, src/testdir/test_ins_complete.vim

Patch 8.2.4266
Problem: Compiler warning for uninitialized variable.
Solution: Initialize saved_did_emsg.
Files: src/userfunc.c

Patch 8.2.4267

version9.txt — 3912

Problem: Unused entry in keymap enum.
Solution: Remove the entry.
Files: src/keymap.h

Patch 8.2.4268
Problem: CI log output is long.
Solution: Group output in sections. (Ozaki Kiichi, closes #9670)
Files: .github/workflows/ci.yml

Patch 8.2.4269
Problem: Coverity warns for using a NULL pointer.
Solution: Check for "name" to not be NULL.
Files: src/userfunc.c

Patch 8.2.4270
Problem: Generating nv_cmdidxs.h requires building Vim twice.
Solution: Move the table into a separate file and use a separate executable

to extract the command characters. (Ozaki Kiichi, closes #9669)
Files: src/normal.c, src/nv_cmds.h, Filelist, runtime/doc/builtin.txt,

runtime/doc/usr_41.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,
src/Make_vms.mms, src/Makefile, src/create_nvcmdidxs.c,
src/create_nvcmdidxs.vim, src/evalfunc.c, src/proto/normal.pro

Patch 8.2.4271
Problem: MS-Windows: cannot build with Ruby 3.1.0.
Solution: Adjust the DLL name and include directory. (Ken Takata,

closes #9666)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.2.4272
Problem: Vim9 expr test fails without the channel feature. (Dominique

Pellé)
Solution: Remove "g:" before "CheckFeature". (closes #9671)
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.4273
Problem: The EBCDIC support is outdated.
Solution: Remove the EBCDIC support.
Files: src/ascii.h, src/charset.c, src/cindent.c, src/digraph.c,

src/edit.c, src/eval.c, src/evalfunc.c, src/ex_cmds.c,
src/feature.h, src/filepath.c, src/findfile.c, src/getchar.c,
src/gui.c, src/gui_motif.c, src/hardcopy.c, src/help.c,
src/macros.h, src/map.c, src/mark.c, src/misc2.c, src/normal.c,
src/ops.c, src/option.c, src/option.h, src/optiondefs.h,
src/os_unix.c, src/proto/evalfunc.pro, src/regexp.c,
src/regexp_bt.c, src/regexp_nfa.c, src/register.c, src/screen.c,
src/spell.c, src/strings.c, src/structs.h, src/term.c,
src/version.c, src/viminfo.c, src/testdir/test_edit.vim,
src/testdir/test_exec_while_if.vim, src/testdir/test_expr.vim,
src/testdir/test_gf.vim, src/testdir/test_regexp_utf8.vim

Patch 8.2.4274
Problem: Basic and form filetype detection is incomplete.
Solution: Add a separate function for .frm files. (Doug Kearns, closes #9675)
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

src/testdir/test_filetype.vim

Patch 8.2.4275
Problem: Cannot use an autoload function from a package under start.
Solution: Also look in the "start" package directory. (Bjorn Linse,

version9.txt — 3913

closes #7193)
Files: src/scriptfile.c, src/testdir/test_packadd.vim

Patch 8.2.4276
Problem: Separate test function for the GUI scrollbar.
Solution: Use test_gui_event(). (Yegappan Lakshmanan, closes #9674)
Files: runtime/doc/builtin.txt, runtime/doc/testing.txt,

runtime/doc/usr_41.txt, src/evalfunc.c, src/testing.c,
src/proto/testing.pro, src/testdir/test_gui.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.4277
Problem: Vim9: an import does not shadow a command modifier.
Solution: Do not accept a command modifier followed by a dot.
Files: src/ex_docmd.c, src/testdir/test_vim9_import.vim

Patch 8.2.4278
Problem: Build with Athena GUI fails. (Elimar Riesebieter)
Solution: Add #ifdef.
Files: src/testing.c

Patch 8.2.4279
Problem: Vim9: cannot change item type with map() after range().
Solution: Split the return type in current type and declared type.

(closes #9665)
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/vim9instr.c,

src/vim9type.c, src/proto/vim9type.pro,
src/testdir/test_vim9_builtin.vim

Patch 8.2.4280 (after 8.2.4279)
Problem: list-dict test crashes.
Solution: Check declared type for add().
Files: src/vim9expr.vim

Patch 8.2.4281
Problem: Using freed memory with :lopen and :bwipe.
Solution: Do not use a wiped out buffer.
Files: src/buffer.c, src/testdir/test_quickfix.vim

Patch 8.2.4282
Problem: Restricted mode requires the -Z command line option.
Solution: Use restricted mode when $SHELL ends in "nologin" or "false".

(closes #9681)
Files: runtime/doc/starting.txt, src/option.c,

src/testdir/test_restricted.vim

Patch 8.2.4283
Problem: Using a variable for the return value is not needed.
Solution: Return the value directly. (closes #9687)
Files: src/ex_docmd.c, src/misc2.c

Patch 8.2.4284
Problem: Old mac resources files are no longer used.
Solution: Delete the unused files. (Ozaki Kiichi, closes #9688)
Files: Filelist, src/Makefile, src/dehqx.py, src/infplist.xml,

src/os_mac.rsr.hqx, src/os_mac_rsrc/app.icns,
src/os_mac_rsrc/doc-txt.icns, src/os_mac_rsrc/doc.icns

Patch 8.2.4285
Problem: Vim9: type of item in for loop not checked properly.

version9.txt — 3914

Solution: Adjust the type checking. (closes #9683)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9cmds.c,

src/testdir/test_vim9_script.vim

Patch 8.2.4286
Problem: Vim9: strict type checking after copy() and deepcopy().
Solution: Allow type to change after making a copy. (closes #9644)
Files: src/eval.c, src/proto/eval.pro, src/dict.c, src/proto/dict.pro,

src/list.c, src/proto/list.pro, src/evalfunc.c, src/vim9execute.c,
src/vim9type.c, src/proto/vim9type.pro, src/evalvars.c,
src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_assign.vim

Patch 8.2.4287
Problem: Cannot assign empty list with any list type to variable with

specific list type.
Solution: Use unknown list type for empty list if the specified type is any.
Files: src/vim9type.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.4288
Problem: Preprocessor indents are inconsistent.
Solution: Fix preprocessor indents. (Ken Takata, closes #9691)
Files: src/arglist.c, src/change.c, src/ex_cmds.c, src/gui.c,

src/hashtab.c, src/indent.c, src/ops.c, src/os_win32.c

Patch 8.2.4289
Problem: Warnings reported by MSVC.
Solution: Rename variables and other fixes. (Ken Takata, closes #9689)
Files: src/cmdexpand.c, src/drawscreen.c, src/filepath.c, src/getchar.c,

src/menu.c, src/os_win32.c, src/version.c

Patch 8.2.4290
Problem: MS-Windows: using type casts for timer IDs.
Solution: Remove type casts and use the right type. (Ken Takata,

closes #9690) Remove old debug comments. Rename variables and
functions.

Files: src/gui_w32.c

Patch 8.2.4291
Problem: Error number used twice.
Solution: Renumber the errors.
Files: src/errors.h

Patch 8.2.4292 (after 8.2.4291)
Problem: Test fails.
Solution: Adjust the expected error number.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.4293
Problem: Vim9: when copying a list it gets type list<any> even when the

original list did not have a type.
Solution: Only set the type when the original list has a type. (closes #9692)
Files: src/list.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4294
Problem: MS-Windows: #ifdefs for Cygwin are too complicated.
Solution: Simplify the conditions. (Ken Takata, closes #9693)
Files: src/evalfunc.c, src/main.c, src/os_unix.c, src/os_win32.c,

src/os_win32.h

version9.txt — 3915

Patch 8.2.4295
Problem: Vim9: concatenating two lists may result in wrong type.
Solution: Remove the type instead of using list<any>. (closes #9692)
Files: src/list.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4296
Problem: Vim9: not all code covered by tests.
Solution: Add a few more tests for corner cases. Fix hang when single quote

is missing.
Files: src/vim9expr.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_cmd.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.4297
Problem: Vim9: not all code covered by tests.
Solution: Add a couple more tests.
Files: src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.4298
Problem: Divide by zero with huge tabstop value.
Solution: Reject tabstop value that overflows to zero.
Files: src/indent.c, src/testdir/test_vartabs.vim

Patch 8.2.4299
Problem: SafeState autocommand interferes with debugging.
Solution: Do not trigger SafeState while debugging. (closes #9697)
Files: src/main.c

Patch 8.2.4300 (after 8.2.4299)
Problem: Cannot build tiny version. (Tony Mechelynck)
Solution: Add #ifdef.
Files: src/main.c

Patch 8.2.4301
Problem: Vim9: type error for copy of dict.
Solution: Do not use dict<any> but no type. (closes #9696)
Files: src/dict.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4302
Problem: Vim9: return type of getline() is too strict.
Solution: Make the declared type list<any>. Also do this for other

functions returning a list of a specific type.
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4303
Problem: A few messages should not be translated.
Solution: Remove _(). (Dominique Pellé, closes #9702)
Files: src/syntax.c

Patch 8.2.4304
Problem: Vim9: slice() makes a copy but doesn't change the type.
Solution: Change the declared type like copy(). (closes #9696)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4305
Problem: Tex filetype detection fails.
Solution: Check value to be positive. (closes #9704)
Files: runtime/autoload/dist/ft.vim, src/testdir/test_filetype.vim

version9.txt — 3916

Patch 8.2.4306
Problem: No test for fixed perl filetype check.
Solution: Add a test. Sort test functions.
Files: src/testdir/test_filetype.vim

Patch 8.2.4307
Problem: A few more messages should not be translated.
Solution: Remove _().
Files: src/syntax.c

Patch 8.2.4308
Problem: Vim9: cannot list autoload function.
Solution: Don't give an error for using # when listing a function.

(closes #9703)
Files: src/userfunc.c, src/testdir/test_vim9_import.vim

Patch 8.2.4309
Problem: Vim9: crash when using a partial in the wrong context.
Solution: Don't use an NULL outer pointer. (closes #9706)
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim

Patch 8.2.4310
Problem: Vim9: constant list and dict get a declaration type other than

"any".
Solution: A constant list and dict have a declared member type "any".

(closes #9701)
Files: src/vim9instr.c, src/vim9type.c, src/proto/vim9type.pro,

src/testdir/test_vim9_builtin.vim

Patch 8.2.4311
Problem: Vim9: changing script variable type not caught at compile time.
Solution: Set the declared type.
Files: src/vim9instr.c, src/testdir/test_vim9_assign.vim

Patch 8.2.4312
Problem: No error for using :vim9script in a :def function.
Solution: Give an error when compiling.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.4313
Problem: Vim9: cannot change type of list after making a slice.
Solution: Adjust the declared member type. (closes #9696)
Files: src/vim9expr.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4314 (after 8.2.4312)
Problem: Test fails where lines are skipped.
Solution: Only give an error when not skipping commands.
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.4315
Problem: Put in Visual mode not fully tested.
Solution: Add a few more test cases. (closes #9708)
Files: src/testdir/test_visual.vim

Patch 8.2.4316
Problem: __CYGWIN32__ is not defined on 64 bit systems.
Solution: Update #ifdefs. (Ken Takata, closes #9709)
Files: src/main.c, src/os_unix.c, src/pty.c, src/vim.h

Patch 8.2.4317

version9.txt — 3917

Problem: MS-Windows: Vim exits when Python 3 initialisation fails.
Solution: Hook into the exit() function to recover from the failure.

(Ken Takata, closes #9710)
Files: runtime/doc/if_pyth.txt, src/if_python3.c, src/os_win32.c,

src/errors.h, src/proto/os_win32.pro

Patch 8.2.4318
Problem: Various comment and indent mistakes, returning wrong zero.
Solution: Fix the mistakes. Return NULL instead of FAIL.
Files: src/clientserver.c, src/eval.c, src/evalvars.c, src/vim9cmds.c,

src/window.c

Patch 8.2.4319
Problem: :put does not work properly in compiled function. (John Beckett)
Solution: Adjust the direction when using line zero.
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4320
Problem: Athena and Motif: when maximized scrollbar position is wrong.
Solution: Implement the scrollbar padding functions. (closes #9712)
Files: src/gui_athena.c, src/gui_motif.c

Patch 8.2.4321
Problem: Vim9: crash when using a funcref to a closure.
Solution: Copy pt_outer to the new partial. (closes #9714)
Files: src/evalfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.4322
Problem: Vim9: crash when using funcref with closure.
Solution: Keep a reference to the funcref that has the outer context.

(closes #9716)
Files: src/evalfunc.c, src/structs.h, src/eval.c, src/vim9execute.c,

src/testdir/test_vim9_func.vim

Patch 8.2.4323
Problem: Vim9: nested function name can start with "_".
Solution: Use same rule for function name for nested functions.

(closes #9713)
Files: src/vim9compile.c, src/testdir/test_vim9_func.vim

Patch 8.2.4324
Problem: Vim9: script-local function name can start with "_".
Solution: Check for leading capital after "s:". Correct error message.
Files: src/userfunc.c, src/errors.h, src/vim9compile.c,

src/testdir/test_vim9_func.vim

Patch 8.2.4325
Problem: 'wildmenu' only shows few matches.
Solution: Add the "pum" option: use a popup menu to show the matches.

(Yegappan Lakshmanan et al., closes #9707)
Files: runtime/doc/options.txt, src/vim.h, src/cmdexpand.c,

src/drawscreen.c, src/evalfunc.c, src/ex_getln.c, src/option.h,
src/optionstr.c, src/popupmenu.c, src/proto/cmdexpand.pro,
src/testdir/test_cmdline.vim,
src/testdir/dumps/Test_wildmenu_pum_01.dump,
src/testdir/dumps/Test_wildmenu_pum_02.dump,
src/testdir/dumps/Test_wildmenu_pum_03.dump,
src/testdir/dumps/Test_wildmenu_pum_04.dump,
src/testdir/dumps/Test_wildmenu_pum_05.dump,
src/testdir/dumps/Test_wildmenu_pum_06.dump,

version9.txt — 3918

src/testdir/dumps/Test_wildmenu_pum_07.dump,
src/testdir/dumps/Test_wildmenu_pum_08.dump,
src/testdir/dumps/Test_wildmenu_pum_09.dump,
src/testdir/dumps/Test_wildmenu_pum_10.dump,
src/testdir/dumps/Test_wildmenu_pum_11.dump,
src/testdir/dumps/Test_wildmenu_pum_12.dump,
src/testdir/dumps/Test_wildmenu_pum_13.dump,
src/testdir/dumps/Test_wildmenu_pum_14.dump,
src/testdir/dumps/Test_wildmenu_pum_15.dump,
src/testdir/dumps/Test_wildmenu_pum_16.dump,
src/testdir/dumps/Test_wildmenu_pum_17.dump,
src/testdir/dumps/Test_wildmenu_pum_18.dump,
src/testdir/dumps/Test_wildmenu_pum_19.dump,
src/testdir/dumps/Test_wildmenu_pum_20.dump,
src/testdir/dumps/Test_wildmenu_pum_21.dump,
src/testdir/dumps/Test_wildmenu_pum_22.dump,
src/testdir/dumps/Test_wildmenu_pum_23.dump,
src/testdir/dumps/Test_wildmenu_pum_24.dump,
src/testdir/dumps/Test_wildmenu_pum_25.dump,
src/testdir/dumps/Test_wildmenu_pum_26.dump,
src/testdir/dumps/Test_wildmenu_pum_27.dump,
src/testdir/dumps/Test_wildmenu_pum_28.dump,
src/testdir/dumps/Test_wildmenu_pum_29.dump

Patch 8.2.4326
Problem: "o" and "O" copying comment not sufficiently tested.
Solution: Add a test case. (closes #9718)
Files: src/testdir/test_textformat.vim

Patch 8.2.4327
Problem: May end up with no current buffer.
Solution: When deleting the current buffer to not pick a quickfix buffer as

the new current buffer.
Files: src/buffer.c, src/testdir/test_quickfix.vim

Patch 8.2.4328
Problem: Command line complete matches cleared when typing character.

(Dominique Pellé)
Solution: Only remove a popup menu if there is one.
Files: src/ex_getln.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_pum_30.dump,
src/testdir/dumps/Test_wildmenu_pum_31.dump

Patch 8.2.4329
Problem: No support for end line number and column in 'errorformat'.
Solution: Add %e and %k. (closes #9624)
Files: runtime/doc/quickfix.txt, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.2.4330
Problem: Vim9: no error if script imports itself.
Solution: Give an error when a script imports itself.
Files: src/vim9script.c, src/errors.h, src/testdir/test_vim9_import.vim

Patch 8.2.4331
Problem: Vim9: no test for existing script variable in block.
Solution: Add a test.
Files: src/testdir/test_vim9_func.vim

Patch 8.2.4332

version9.txt — 3919

Problem: Vim9: incomplete test for existing script variable in block.
Solution: Add a couple more tests. Fix uncovered problem.
Files: src/userfunc.c, src/vim9compile.c, src/proto/vim9compile.pro,

src/vim9script.c, src/vim9expr.c, src/testdir/test_vim9_func.vim

Patch 8.2.4333
Problem: cstack not always passed to where it is needed.
Solution: Pass cstack through functions.
Files: src/eval.c, src/vim9expr.c, src/vim9script.c,

src/proto/vim9script.pro, src/vim9compile.c,
src/proto/vim9compile.pro

Patch 8.2.4334
Problem: Command line popup menu not positioned correctly.
Solution: Also use vim_strsize() on the existing text. (Naruhiko Nishino,

closes #9727)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_pum_32.dump

Patch 8.2.4335
Problem: No autocommand event triggered before changing directory. (Ronnie

Magatti)
Solution: Add DirChangedPre. (closes #9721)
Files: runtime/doc/autocmd.txt, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/vim.h, src/autocmd.c, src/misc2.c,
src/testdir/test_autocmd.vim

Patch 8.2.4336
Problem: Using :filter for :scriptnames does not work. (Ben Jackson)
Solution: Call message_filtered(). (closes #9720)
Files: src/scriptfile.c, src/testdir/test_filter_cmd.vim

Patch 8.2.4337
Problem: Part of condition is always true.
Solution: Remove that part of the condition. (closes #9729)
Files: src/filepath.c

Patch 8.2.4338
Problem: An error from an expression mapping messes up the display.
Solution: When the expression results in an empty string return K_IGNORE.

In cmdline mode redraw the command line. (closes #9726)
Files: src/getchar.c, src/testdir/test_mapping.vim,

src/testdir/dumps/Test_map_expr_2.dump,
src/testdir/dumps/Test_map_expr_3.dump,
src/testdir/dumps/Test_map_expr_4.dump

Patch 8.2.4339
Problem: CTRL-A does not work properly with the cmdline popup menu.
Solution: Fix issues with CTRL-A. Add more tests for the cmdline popup

menu. Remove TermWait() before VeriryScreenDump(). Refactor the
cmdline popup code. (Yegappan Lakshmanan, closes #9735)

Files: src/cmdexpand.c, src/ex_getln.c, src/popupmenu.c,
src/testdir/screendump.vim, src/testdir/test_bufline.vim,
src/testdir/test_cmdline.vim, src/testdir/test_conceal.vim,
src/testdir/test_cursorline.vim, src/testdir/test_diffmode.vim,
src/testdir/test_display.vim, src/testdir/test_highlight.vim,
src/testdir/test_match.vim, src/testdir/test_popup.vim,
src/testdir/test_search_stat.vim, src/testdir/test_terminal.vim,
src/testdir/test_textprop.vim,
src/testdir/dumps/Test_wildmenu_pum_33.dump,

version9.txt — 3920

src/testdir/dumps/Test_wildmenu_pum_34.dump,
src/testdir/dumps/Test_wildmenu_pum_35.dump,
src/testdir/dumps/Test_wildmenu_pum_36.dump,
src/testdir/dumps/Test_wildmenu_pum_37.dump

Patch 8.2.4340
Problem: Amiga: mch_can_exe() is not implemented.
Solution: Implement mch_can_exe() for Amiga OS 4. (Ola Söder, closes #9731)
Files: src/os_amiga.c

Patch 8.2.4341
Problem: Command line not redrawn when finishing popup menu and the screen

has scrolled up.
Solution: Redraw the command line after updating the screen. (closes #9722)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_pum_38.dump

Patch 8.2.4342
Problem: CI will soon switch to other windows version.
Solution: Use "windows-2019" instead of "windows-latest". (Ozaki Kiichi,

closes #9740)
Files: .github/workflows/ci.yml

Patch 8.2.4343
Problem: When reloading not all properties are detected.
Solution: Add the "edit" value to v:fcs_choice. (Rob Pilling, closes #9579)
Files: runtime/doc/editing.txt, runtime/doc/eval.txt, src/fileio.c,

src/proto/fileio.pro, src/message.c, src/spellfile.c,
src/testdir/test_filechanged.vim

Patch 8.2.4344
Problem: Amiga: header file included twice.
Solution: Remove #include. (Ola Söder, closes #9733)
Files: src/memfile.c

Patch 8.2.4345
Problem: <amatch> is expanded like a file name for DirChangedPre.
Solution: Do not expand <amatch>. (closes #9742) Also for the User event.
Files: src/autocmd.c, src/testdir/test_autocmd.vim

Patch 8.2.4346
Problem: A custom statusline may cause Esc to work like Enter on the

command line when the popup menu is displayed.
Solution: Save and restore KeyTyped. (closes #9749)
Files: src/drawscreen.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_pum_39.dump

Patch 8.2.4347
Problem: In some build setups UNUSED is not defined.
Solution: Change the logic of how UNUSED is defined. (Ola Söder,

closes #9734)
Files: src/vim.h

Patch 8.2.4348
Problem: "legacy exe cmd" does not do what one would expect.
Solution: Apply the "legacy" and "vim9script" command modifiers to the

argument of ":execute".
Files: runtime/doc/vim9.txt, src/globals.h, src/eval.c, src/ex_docmd.c,

src/testdir/test_vim9_cmd.vim

version9.txt — 3921

Patch 8.2.4349
Problem: FileChangedShell test fails on MS-Windows.
Solution: Skip the test on MS-Windows.
Files: src/testdir/test_filechanged.vim

Patch 8.2.4350
Problem: FEAT_GUI_ENABLED defined but never used.
Solution: Remove the #define. (Ola Söder, closes #9732)
Files: src/vim.h

Patch 8.2.4351
Problem: No coverage is measured on MS-Windows CI.
Solution: Enable coverage on MS-Windows. (Ozaki Kiichi, closes #9750)
Files: .github/workflows/ci.yml

Patch 8.2.4352
Problem: ReScript files are not recognized.
Solution: Add the *.res and *.resi patterns. (Ananda Umamil, closes #9752)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4353
Problem: CI does not use the latest Lua and Python.
Solution: Use Lua 5.4.2 and Python 3.10. (closes #9744)
Files: .github/workflows/ci.yml

Patch 8.2.4354
Problem: Dynamic loading of libsodium not handled properly.
Solution: Fix has() and :version. Show an error message when loading fails.

Fix memory leaks. (Ken Takata, closes #9754)
Files: src/crypt.c, src/evalfunc.c, src/gui_dwrite.cpp, src/if_cscope.c,

src/os_win32.c, src/proto/crypt.pro, src/proto/os_win32.pro,
src/version.c

Patch 8.2.4355
Problem: Unnecessary call to check_colorcolumn().
Solution: Remove the call. (Sean Dewar, closes #9748)
Files: src/option.c, src/window.c

Patch 8.2.4356
Problem: Command line completion functions are very long.
Solution: Refactor into multiple functions. (Yegappan Lakshmanan,

closes #9753)
Files: src/cmdexpand.c

Patch 8.2.4357 (after 8.2.4348)
Problem: sticky command modifiers are too sticky.
Solution: Do not apply command modifiers to a sourced script. (closes #9751)
Files: src/scriptfile.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4358
Problem: Vim9: line number of exception is not set.
Solution: Set the line number before throwing an exception. (closes #9755)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.4359
Problem: crash when repeatedly using :retab.
Solution: Bail out when the line is getting too long.
Files: src/indent.c, src/testdir/test_retab.vim

Patch 8.2.4360

version9.txt — 3922

Problem: Vim9: allowing use of "s:" leads to inconsistencies.
Solution: Disallow using "s:" in Vim9 script at the script level.
Files: src/userfunc.c, src/proto/userfunc.pro, src/errors.h,

src/vim9compile.c, src/eval.c, src/testdir/vim9.vim,
src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim,
src/testdir/test_vim9_import.vim, src/testdir/test_vim9_script.vim

Patch 8.2.4361 (after 8.2.4360)
Problem: Vim9: some tests fail.
Solution: Fix the tests, mostly by removing "s:".
Files: src/testdir/test_expr.vim, src/testdir/test_functions.vim,

src/testdir/test_ins_complete.vim, src/testdir/test_normal.vim,
src/testdir/test_tagfunc.vim

Patch 8.2.4362
Problem: :retab may allocate too much memory.
Solution: Bail out when allocating more than MAXCOL bytes.
Files: src/indent.c

Patch 8.2.4363
Problem: MS-Windows: running out of memory for a very long line.
Solution: Use a 32 bit value for MAXCOL also when ints are 64 bits.
Files: src/vim.h

Patch 8.2.4364
Problem: MS-Windows: still running out of memory for a very long line.
Solution: Check for negative length.
Files: src/indent.c

Patch 8.2.4365 (after 8.2.4348)
Problem: sticky command modifiers are too sticky.
Solution: Do not apply command modifiers to a called function. (closes #9751)
Files: src/userfunc.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4366
Problem: Not enough tests for command line completion.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #9760)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim,

src/testdir/test_usercommands.vim

Patch 8.2.4367
Problem: Calling in_vim9script() multiple times.
Solution: Call it once and keep the result.
Files: src/userfunc.c, src/eval.c

Patch 8.2.4368
Problem: Amiga: a few compiler warnings.
Solution: Adjust #ifdefs. Add "UNUSED". (Ola Söder, closes #9756,

closes #9757)
Files: src/term.c, src/os_amiga.c

Patch 8.2.4369
Problem: Redundant #ifdef argument.
Solution: Remove unused MSWIN. (Ola Söder, closes #9758)
Files: src/feature.h

Patch 8.2.4370

version9.txt — 3923

Problem: MS-Windows: libsodium.dll not included with the installer.
Solution: Add the file to the installer if it exists. (Christian Brabandt,

closes #9762)
Files: nsis/gvim.nsi

Patch 8.2.4371
Problem: Vim9: can create a script variable from a legacy function.
Solution: Disallow creating a script variable from a function.
Files: src/evalvars.c, src/errors.h, src/testdir/test_vim9_script.vim

Patch 8.2.4372
Problem: Filetype detection from file contents is in legacy script.
Solution: Use a compiled function for filetype detection.
Files: runtime/scripts.vim, runtime/autoload/dist/script.vim

Patch 8.2.4373
Problem: Expression test fails.
Solution: Make the test work with latest Vim9 syntax.
Files: src/testdir/test_expr.vim

Patch 8.2.4374
Problem: Unreachable code.
Solution: Remove outdated code lines.
Files: src/vim9compile.c

Patch 8.2.4375
Problem: ctx_imports is not used.
Solution: Delete ctx_imports. Add missing dependency.
Files: src/vim9.h, src/vim9compile.c, src/proto/vim9compile.pro,

src/eval.c, src/evalfunc.c, src/evalvars.c, src/userfunc.c,
src/vim9expr.c, src/vim9script.c, src/Makefile

Patch 8.2.4376
Problem: Not enough tests for command line completion.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #9771)
Files: src/testdir/test_cmdline.vim, src/testdir/test_usercommands.vim

Patch 8.2.4377
Problem: CI steps for Windows are a bit unorganized.
Solution: Organize CI test steps on Windows. (Ozaki Kiichi, closes #9764)
Files: .github/workflows/ci.yml

Patch 8.2.4378
Problem: Incsearch highlight broken when calling searchcount() in 'tabLine'

function. (Mirko Palmer)
Solution: Save and restore the incsearch state. (Christian Brabandt,

closes #9763, closes #9633)
Files: src/search.c, src/testdir/test_search_stat.vim,

src/testdir/dumps/Test_searchstat_inc_1.dump,
src/testdir/dumps/Test_searchstat_inc_2.dump,
src/testdir/dumps/Test_searchstat_inc_3.dump

Patch 8.2.4379
Problem: An empty change is reported to a listener.
Solution: Do not report an empty change. (closes #9768) Remove unused

return value.
Files: src/undo.c, src/change.c, src/testdir/test_listener.vim

Patch 8.2.4380
Problem: Small differences between Chinese translation files.

version9.txt — 3924

Solution: Add rule for converting UTF-8 to gb2312. (closes #9773)
Files: src/po/Makefile, src/po/Make_all.mak

Patch 8.2.4381 (after 8.2.4380)
Problem: Translation file listed twice.
Solution: Remove one entry.
Files: src/po/Make_all.mak

Patch 8.2.4382 (after 8.2.4346)
Problem: A custom 'tabline' may cause Esc to work like Enter on the

command line when the popup menu is displayed.
Solution: Save and restore KeyTyped. (closes #9776)
Files: src/drawscreen.c, src/screen.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_pum_40.dump

Patch 8.2.4383
Problem: Vim9: unused code lines.
Solution: Rely on either "cctx" or "cstack" to not be NULL.
Files: src/vim9compile.c

Patch 8.2.4384
Problem: Vim9: error message not tested, some code not tested.
Solution: Add a couple of test cases. Give an error for a command modifier

without a command.
Files: src/errors.h, src/vim9compile.c, src/ex_docmd.c,

src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_cmd.vim

Patch 8.2.4385 (after 8.2.4384)
Problem: Cannot build tiny version.
Solution: Adjust #ifdefs.
Files: src/errors.h

Patch 8.2.4386 (after 8.2.4384)
Problem: Still cannot build tiny version.
Solution: Adjust #ifdefs.
Files: src/ex_docmd.c

Patch 8.2.4387
Problem: Command line completion doesn't always work properly.
Solution: Adjust triggering after a "|". Add more tests. (Yegappan

Lakshmanan, closes #9779)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.4388
Problem: Dead code in op_insert().
Solution: Remove condition and else block. (closes #9782)
Files: src/ops.c

Patch 8.2.4389
Problem: screenpos() does not handle a position in a closed fold.
Solution: Check if the position is inside a closed fold. (closes #9778)
Files: src/move.c, src/testdir/test_cursor_func.vim

Patch 8.2.4390
Problem: Vim9: list from declaration with inferred type does not set the

type on the value.
Solution: When inferring the type in a variable declaration also set the

type of the list or dictionary. (closes #9705) Do not set the
type when the member is "any".

Files: src/vim9compile.c, src/testdir/test_vim9_assign.vim,

version9.txt — 3925

src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4391
Problem: Command line executed when typing Esc in the GUI.
Solution: Move saving/restoring KeyTyped to build_stl_str_hl().

(closes #9783)
Files: src/buffer.c, src/screen.c

Patch 8.2.4392 (after 8.2.4002)
Problem: MS-Windows with VIMDLL: Escaping CSI is wrong.
Solution: Put back #ifdef. (Ken Takata, closes #9769)
Files: src/getchar.c

Patch 8.2.4393
Problem: Possible number overflow with nested folds.
Solution: Avoid a negative line number.
Files: src/fold.c

Patch 8.2.4394 (after 8.2.4392)
Problem: UTF8 select mode test fails on MS-Windows.
Solution: Revert the #ifdef change.
Files: src/getchar.c

Patch 8.2.4395
Problem: Some code lines not covered by tests.
Solution: Add a few more test cases. Fix getting more than one error for

invalid assignment.
Files: src/evalvars.c, src/errors.h, src/vim9compile.c,

src/testdir/test_vim9_assign.vim, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.4396 (after 8.2.4395)
Problem: Python3 test fails.
Solution: Remove "let".
Files: src/testdir/test_vim9_func.vim

Patch 8.2.4397
Problem: Crash when using many composing characters in error message.
Solution: Use mb_cptr2char_adv() instead of mb_ptr2char_adv().
Files: src/testing.c, src/testdir/test_assert.vim

Patch 8.2.4398
Problem: Some command completion functions are too long.
Solution: Refactor code into separate functions. Add a few more tests.

(Yegappan Lakshmanan, closes #9785)
Files: src/cmdexpand.c, src/ex_getln.c, src/usercmd.c,

src/proto/usercmd.pro, src/testdir/test_cmdline.vim

Patch 8.2.4399
Problem: Crash after ml_get error.
Solution: When returning "???" flush the line and set ml_line_lnum.
Files: src/memline.c

Patch 8.2.4400 (after 8.2.4394)
Problem: MS-Windows: cannot use the mouse in the console with VIMDLL.
Solution: use add_char2buf() instead of fix_input_buffer(). (closes #9784,

closes #9769)
Files: src/getchar.c

version9.txt — 3926

Patch 8.2.4401
Problem: Map listing does not clear the rest of the command line.
Solution: Call msg_clear_eos(). (closes #5623, closes #5962)
Files: src/map.c, src/testdir/test_mapping.vim,

src/testdir/dumps/Test_map_list_1.dump

Patch 8.2.4402
Problem: Missing parenthesis may cause unexpected problems.
Solution: Add more parenthesis is macros. (closes #9788)
Files: src/autocmd.c, src/charset.c, src/drawline.c, src/drawscreen.c,

src/evalfunc.c, src/fileio.c, src/fold.c, src/getchar.c,
src/highlight.c, src/memline.c, src/normal.c, src/quickfix.c,
src/regexp.c, src/search.c, src/sha256.c, src/spell.c,
src/spellfile.c, src/spellsuggest.c, src/syntax.c, src/window.c

Patch 8.2.4403
Problem: ml_get error with nested folds and deleting lines.
Solution: Correct the last line number before calling hasFoldingWin().
Files: src/change.c

Patch 8.2.4404
Problem: Vim9: some code not covered by tests.
Solution: Add a few specific test cases.
Files: src/vim9execute.c, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_import.vim

Patch 8.2.4405
Problem: Compiler warning for unused variable without the +folding feature.

(Tony Mechelynck)
Solution: Add #ifdef.
Files: src/change.c

Patch 8.2.4406
Problem: Expand functions use confusing argument names.
Solution: Rename "file" to "match". Refactor some completion code. Add a

few more tests. (Yegappan Lakshmanan, closes #9790)
Files: src/cmdexpand.c, src/testdir/test_usercommands.vim

Patch 8.2.4407
Problem: Vim9: some code not covered by tests.
Solution: Add more tests. Avoid giving two errors. Remove dead code.
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_cmd.vim, src/testdir/test_vim9_func.vim

Patch 8.2.4408
Problem: Vim9: some code not covered by tests.
Solution: Add a few more tests. Correct error message. Allow unlet on dict

with a number key.
Files: src/vim9execute.c, src/errors.h, src/testdir/test_vim9_assign.vim

Patch 8.2.4409
Problem: Vim9: some code not covered by tests.
Solution: Add a few more tests. Fix reported line number.
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.4410
Problem: Vim9: some code not covered by tests.
Solution: Add a few more tests. Remove dead code.
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_cmd.vim, src/testdir/test_vim9_expr.vim,

version9.txt — 3927

src/testdir/test_vim9_script.vim

Patch 8.2.4411
Problem: Bicep files are not recognized.
Solution: Match *.bicep files. (Dundar Goc, closes #9791)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4412
Problem: Translation cleanup script does not remove empty lines at end.
Solution: Remove empty lines at the end. (Ken Takata, closes #9794)
Files: src/po/cleanup.vim

Patch 8.2.4413
Problem: Vim9: Coverity warns for using NULL pointer.
Solution: Give an internal error when funcref function can't be found.
Files: src/vim9execute.c

Patch 8.2.4414
Problem: Solidity files are not recognized.
Solution: Add the *.sol pattern. (Dundar Goc, closes #9792)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4415
Problem: Function argument name conflicts with C++ keyword.
Solution: Rename the argument.
Files: src/usercmd.c, src/proto/usercmd.pro

Patch 8.2.4416
Problem: Vim9: using a script-local function requires using "s:" when

setting 'completefunc'.
Solution: Do not require "s:" in Vim9 script. (closes #9796)
Files: runtime/doc/options.txt, src/userfunc.c,

src/testdir/test_ins_complete.vim

Patch 8.2.4417 (after 8.2.4416)
Problem: Using NULL pointer.
Solution: Set offset after checking for NULL pointer.
Files: src/userfunc.c

Patch 8.2.4418
Problem: Crash when using special multi-byte character.
Solution: Don't use isalpha() for an arbitrary character.
Files: src/charset.c, src/proto/charset.pro, src/filepath.c,

src/testdir/test_autochdir.vim

Patch 8.2.4419
Problem: Illegal memory access when using exactly 20 highlights.
Solution: Add one more item in the array. (Brandon Richardson,

closes #9800)
Files: src/buffer.c, src/testdir/test_tabline.vim

Patch 8.2.4420
Problem: Menu translations are inconsistent.
Solution: Add a Makefile to convert between encodings. (Ada (Haowen) Yu,

closes #9801)
Files: runtime/lang/Makefile, runtime/lang/menu_af_af.latin1.vim,

runtime/lang/menu_ca_es.latin1.vim,
runtime/lang/menu_chinese_gb.936.vim,
runtime/lang/menu_chinese_taiwan.950.vim,
runtime/lang/menu_cs_cz.iso_8859-2.vim,

version9.txt — 3928

runtime/lang/menu_cs_cz.utf-8.vim,
runtime/lang/menu_czech_czech_republic.1250.vim,
runtime/lang/menu_czech_czech_republic.ascii.vim,
runtime/lang/menu_da.utf-8.vim,
runtime/lang/menu_de_de.latin1.vim,
runtime/lang/menu_eo.utf-8.vim,
runtime/lang/menu_es_es.latin1.vim,
runtime/lang/menu_fi_fi.latin1.vim,
runtime/lang/menu_fr_fr.latin1.vim,
runtime/lang/menu_hu_hu.iso_8859-2.vim,
runtime/lang/menu_hu_hu.utf-8.vim,
runtime/lang/menu_is_is.latin1.vim,
runtime/lang/menu_it_it.latin1.vim,
runtime/lang/menu_ja_jp.euc-jp.vim,
runtime/lang/menu_ja_jp.utf-8.vim,
runtime/lang/menu_japanese_japan.932.vim,
runtime/lang/menu_ko_kr.euckr.vim,
runtime/lang/menu_ko_kr.utf-8.vim,
runtime/lang/menu_nl_nl.latin1.vim,
runtime/lang/menu_no_no.latin1.vim,
runtime/lang/menu_pl_pl.iso_8859-2.vim,
runtime/lang/menu_pl_pl.utf-8.vim,
runtime/lang/menu_polish_poland.1250.vim,
runtime/lang/menu_pt_br.vim, runtime/lang/menu_pt_pt.vim,
runtime/lang/menu_ru.utf-8.vim,
runtime/lang/menu_ru_ru.koi8-r.vim,
runtime/lang/menu_ru_ru.utf-8.vim, runtime/lang/menu_ru_ru.vim,
runtime/lang/menu_sk_sk.iso_8859-2.vim,
runtime/lang/menu_sl_si.cp1250.vim,
runtime/lang/menu_sl_si.latin2.vim,
runtime/lang/menu_sl_si.utf-8.vim,
runtime/lang/menu_slovak_slovak_republic.1250.vim,
runtime/lang/menu_sr_rs.ascii.vim,
runtime/lang/menu_sr_rs.iso_8859-2.vim,
runtime/lang/menu_sr_rs.iso_8859-5.vim,
runtime/lang/menu_sr_rs.utf-8.vim,
runtime/lang/menu_sv_se.latin1.vim,
runtime/lang/menu_tr_tr.cp1254.vim,
runtime/lang/menu_tr_tr.iso_8859-9.vim,
runtime/lang/menu_tr_tr.utf-8.vim,
runtime/lang/menu_uk_ua.cp1251.vim,
runtime/lang/menu_uk_ua.koi8-u.vim,
runtime/lang/menu_uk_ua.utf-8.vim, runtime/lang/menu_vi_vn.vim,
runtime/lang/menu_zh_cn.utf-8.vim,
runtime/lang/menu_zh_tw.utf-8.vim

Patch 8.2.4421
Problem: Some installed files and directories have wrong permissions.
Solution: Adjust the Makefile and shell to set permissions. (closes #9793)
Files: src/Makefile, src/installman.sh

Patch 8.2.4422
Problem: Autochdir test fails on MS-Windows.
Solution: Expect another error on MS-Windows.
Files: src/testdir/test_autochdir.vim

Patch 8.2.4423
Problem: "make nvcmdidxs" fails.
Solution: Use "-S" instead of "-u" to source the script.
Files: src/Makefile

version9.txt — 3929

Patch 8.2.4424
Problem: ".gts" and ".gjs" files are not recognized.
Solution: Recognize Glimmer flavored typescript and javascript.

(closes #9799)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4425
Problem: map() function does not check function arguments at compile time.
Solution: Give an error if the arguments of a map() function are wrong.
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.4426
Problem: map() function on string and blob does not check argument types at

compile time.
Solution: Check string and blob argument types. Support "0z1234->func()".
Files: src/vim9compile.c, src/evalfunc.c, src/ex_docmd.c,

src/testdir/test_vim9_builtin.vim

Patch 8.2.4427
Problem: getchar() may return modifiers if no character is available.
Solution: Do not process modifiers when there is no character. (closes #9806)
Files: src/getchar.c, src/testdir/test_functions.vim

Patch 8.2.4428
Problem: Crash when switching tabpage while in the cmdline window.
Solution: Disallow switching tabpage when in the cmdline window.
Files: src/window.c, src/proto/window.pro, src/evalvars.c,

src/evalvars.c, src/usercmd.c

Patch 8.2.4429
Problem: Using script-local function from the wrong script when using a

partial. (Yegappan Lakshmanan)
Solution: Include the script ID in the partial name.
Files: src/userfunc.c, src/proto/userfunc.pro, src/evalfunc.c,

src/vim9type.c, src/testdir/test_vim9_import.vim

Patch 8.2.4430
Problem: GTK: crash when using 'guiligatures' and reading from stdin.
Solution: Make a copy of the message. (Amon Sha, closes #9719, closes #9814)
Files: src/fileio.c

Patch 8.2.4431
Problem: Unnecessary condition when assigning to a variable.
Solution: Remove the condition.
Files: src/evalvars.c

Patch 8.2.4432 (after 8.2.4428)
Problem: Cannot use settabvar() while the cmdline window is open.
Solution: Only give an error when actually switching tabpage.

(closes #9813)
Files: src/window.c

Patch 8.2.4433
Problem: CI: cannot see interface versions for MS-Windows.
Solution: List the interface versions. (Ken Takata, closes #9811)
Files: .github/workflows/ci.yml

Patch 8.2.4434

version9.txt — 3930

Problem: Duplicate check for cmdline window.
Solution: Remove the second check. (Sean Dewar, closes #9816)
Files: src/window.c

Patch 8.2.4435
Problem: Dead code in checking map() arguments. (Dominique Pellé)
Solution: Remove the first return statement. (closes #9815)
Files: src/evalfunc.c

Patch 8.2.4436
Problem: Crash with weird 'vartabstop' value.
Solution: Check for running into the end of the line.
Files: src/indent.c, src/testdir/test_vartabs.vim

Patch 8.2.4437
Problem: Vartabs test fails on MS-Windows.
Solution: Use iso8859-1 'encoding'. (Ken Takata, closes #9818)
Files: src/testdir/test_vartabs.vim

Patch 8.2.4438
Problem: Crash on exit when using cmdline window.
Solution: Reset "cmdwin_type" before exiting. (closes #9817)
Files: src/ui.c, src/testdir/test_exit.vim

Patch 8.2.4439
Problem: Accepting "iso8859" 'encoding' as "iso-8859-".
Solution: use "iso8859" as "iso-8859-1".
Files: src/mbyte.c, src/testdir/test_options.vim

Patch 8.2.4440
Problem: Crash with specific regexp pattern and string.
Solution: Stop at the start of the string.
Files: src/regexp_bt.c, src/testdir/test_regexp_utf8.vim

Patch 8.2.4441
Problem: Vim9: function argument of filter() not checked like map().
Solution: Also check the function argument of filter().
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4442 (after 8.2.4438)
Problem: Test for error reading input fails on MS-Windows.
Solution: Don't run the test on MS-Windows.
Files: src/testdir/test_exit.vim

Patch 8.2.4443 (after 8.2.4440)
Problem: Regexp pattern test fails on Mac.
Solution: Do not use a swapfile for the buffer.
Files: src/testdir/test_regexp_utf8.vim

Patch 8.2.4444
Problem: Beep caused by test. ASAN reports leaks.
Solution: Do not put a NL at the end of the script. Make the text work on

MS-Windows. Do not run the test with ASAN.
Files: src/testdir/test_exit.vim

Patch 8.2.4445
Problem: Exit test fails on MS-Windows anyway.
Solution: Skip the test on MS-Windows.
Files: src/testdir/test_exit.vim

version9.txt — 3931

Patch 8.2.4446
Problem: Vim9: cannot refer to a global function like a local one.
Solution: When g:name is not a variable but a function, use a function

reference. (closes #9826)
Files: src/vim9execute.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4447
Problem: Vim9: can still use s:var in a compiled function.
Solution: Disallow using s:var for Vim9 script. (closes #9824)
Files: runtime/doc/vim9.txt, src/vim9expr.c, src/vim9compile.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.4448 (after 8.2.4447)
Problem: Filetype detection is failing.
Solution: Do not use "s:" where it is no longer allowed.
Files: runtime/autoload/dist/ft.vim,

Patch 8.2.4449
Problem: vim9: function argument of sort() not checked at compile time.
Solution: Add a compile time check.
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4450 (after 8.2.4449)
Problem: List sort test fails.
Solution: Pass a valid "how" argument.
Files: src/testdir/test_listdict.vim

Patch 8.2.4451 (after 8.2.4450)
Problem: sort() fails when ignoring case.
Solution: Accept a number one argument in sort().
Files: src/evalfunc.c, src/testdir/test_listdict.vim

Patch 8.2.4452
Problem: Test for what 8.2.4436 fixes does not check for regression.
Solution: Set several options. (Ken Takata, closes #9830)
Files: src/testdir/test_vartabs.vim

Patch 8.2.4453
Problem: :helpgrep may free an option that was not allocated. (Yegappan

Lakshmanan)
Solution: Check if the value was allocated.
Files: src/option.c, src/proto/option.pro, src/quickfix.c,

src/testdir/test_quickfix.vim

Patch 8.2.4454
Problem: Resetting cmdwin_type only for one situation.
Solution: Reset cmdwin_type before closing windows. (closes #9822)
Files: src/ui.c, src/window.c, src/testdir/test_exit.vim

Patch 8.2.4455
Problem: Accepting one and zero for the second sort() argument is strange.
Solution: Disallow using one and zero in Vim9 script.
Files: runtime/doc/builtin.txt, src/evalfunc.c, src/list.c,

src/testdir/test_listdict.vim

Patch 8.2.4456
Problem: Terminal test may fail on some machines.
Solution: Increase wait time. (Zdenek Dohnal, closes #9834)
Files: src/testdir/test_terminal.vim

version9.txt — 3932

Patch 8.2.4457
Problem: The GPM library can only be linked statically.
Solution: Make it possible to load the GPM library dynamically. (Damien)
Files: runtime/doc/various.txt, src/config.h.in, src/configure.ac,

src/Makefile, src/evalfunc.c, src/feature.h, src/os_unix.c,
src/proto/os_unix.pro, src/version.c

Patch 8.2.4458
Problem: Vim9: compiling filter() call fails with funcref that has unknown

arguments.
Solution: Do not check the arguments if they are unknown at compile time.

(closes #9835)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4459
Problem: Vim9: compiling sort() call fails with a funcref that has unknown

arguments.
Solution: Do not check the arguments if they are unknown at compile time.

(closes #9835)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4460
Problem: Vim9: wrong error for defining dict function.
Solution: Explicitly check for trying to define a dict function.

(closes #9827)
Files: src/errors.h, src/userfunc.c, src/vim9compile.c,

src/testdir/test_vim9_func.vim

Patch 8.2.4461
Problem: MS-Windows: garbage characters on stdout with VIMDLL.
Solution: Don't call gui_focus_change() when about to quit. (Ken Takata,

closes #9840)
Files: src/gui_w32.c

Patch 8.2.4462
Problem: Not enough testing for quickfix code.
Solution: Add more tests. Fix uncovered problem. (Yegappan Lakshmanan,

closes #9839)
Files: src/quickfix.c, src/window.c, src/testdir/test_makeencoding.vim,

src/testdir/test_quickfix.vim

Patch 8.2.4463
Problem: Completion only uses strict matching.
Solution: Add the "fuzzy" item for 'wildoptions'. (Yegappan Lakshmanan,

closes #9803)
Files: runtime/doc/options.txt, src/buffer.c, src/cmdexpand.c,

src/option.c, src/option.h, src/optionstr.c,
src/proto/cmdexpand.pro, src/proto/option.pro,
src/proto/search.pro, src/search.c, src/structs.h,
src/testdir/gen_opt_test.vim, src/testdir/test_cmdline.vim

Patch 8.2.4464
Problem: Dtrace files are recognized as filetype D.
Solution: Add a pattern for Dtrace files. (Teubel György, closes #9841)

Add some more testing.
Files: runtime/autoload/dist/ft.vim, runtime/filetype.vim,

src/testdir/test_filetype.vim

Patch 8.2.4465
Problem: Fuzzy completion does not order matches properly.

version9.txt — 3933

Solution: Do not use regular expression match. (Yegappan Lakshmanan,
closes #9843)

Files: src/cmdexpand.c, src/search.c, src/testdir/test_cmdline.vim

Patch 8.2.4466
Problem: MS-Windows: illegal memory access in installer when using

"create-directories" as the final argument.
Solution: Check the argument count. (Cam Sinclair, closes #9844)
Files: src/dosinst.c

Patch 8.2.4467
Problem: Running filetype test leaves file behind.
Solution: Delete the file.
Files: src/testdir/test_filetype.vim

Patch 8.2.4468
Problem: Coverity warns for uninitialized struct member.
Solution: Set color.index to zero.
Files: src/terminal.c

Patch 8.2.4469
Problem: Coverity warns for uninitialized variable.
Solution: Set the value to zero.
Files: src/ex_getln.c

Patch 8.2.4470
Problem: Coverity warns for uninitialized variable.
Solution: Set can_spell to zero.
Files: src/drawline.c

Patch 8.2.4471
Problem: Coverity warns for uninitialized variable.
Solution: Set flags to zero.
Files: src/vim9cmds.c

Patch 8.2.4472
Problem: Coverity warns for use of a freed function name.
Solution: Only check an autoload name when is prefixed.
Files: src/userfunc.c

Patch 8.2.4473
Problem: Coverity warns for not checking return value of ftell().
Solution: Bail out if ftell() returns a negative value.
Files: src/spellfile.c

Patch 8.2.4474
Problem: Memory allocation failures not tested in quickfix code.
Solution: Add alloc IDs and tests. (Yegappan Lakshmanan, closes #9848)
Files: src/alloc.h, src/quickfix.c, src/vim.h,

src/testdir/test_quickfix.vim

Patch 8.2.4475
Problem: Fuzzy cmdline completion does not work for lower case.
Solution: Also use fuzzy completion for lower case input. (Yegappan

Lakshmanan, closes #9849)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.4476
Problem: Operator name spelled wrong.
Solution: Change trinary to ternary. (Goc Dundar, closes #9850)

version9.txt — 3934

Files: src/testdir/test_expr.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vimscript.vim

Patch 8.2.4477
Problem: Crash when using fuzzy completion.
Solution: Temporary fix: put back regexp. (closes #9851)
Files: src/cmdexpand.c

Patch 8.2.4478
Problem: Crash when using fuzzy completion.
Solution: Temporary fix: put back regexp. (closes #9852, closes #9851)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.4479
Problem: No fuzzy completion for maps and abbreviations.
Solution: Fuzzy complete maps and abbreviations. (Yegappan Lakshmanan,

closes #9856)
Files: src/cmdexpand.c, src/map.c, src/proto/map.pro, src/search.c,

src/testdir/test_cmdline.vim

Patch 8.2.4480
Problem: Suspending with CTRL-Z does not work on Android.
Solution: Do not handle SIGTSTP. (closes #9854)
Files: src/os_unix.c

Patch 8.2.4481
Problem: Cmdline popup menu not removed when 'lazyredraw' is set.
Solution: Temporarily reset 'lazyredraw' when removing the popup menu.

(closes #9857)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_pum_41.dump

Patch 8.2.4482
Problem: No fuzzy cmdline completion for user defined completion.
Solution: Add fuzzy completion for user defined completion. (Yegappan

Lakshmanan, closes #9858)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim

Patch 8.2.4483
Problem: Command completion makes two rounds to collect matches.
Solution: Use a growarray to collect matches. (Yegappan Lakshmanan,

closes #9860)
Files: src/buffer.c, src/cmdexpand.c, src/map.c,

src/testdir/test_cmdline.vim

Patch 8.2.4484
Problem: Vim9: some error messages are not tested.
Solution: Add a few more test cases. Delete dead code.
Files: src/vim9execute.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_expr.vim, src/testdir/test_vim9_func.vim

Patch 8.2.4485
Problem: Compiler warning for uninitialized variable.
Solution: Initialize the variable. (John Marriott)
Files: src/cmdexpand.c

Patch 8.2.4486
Problem: MS-Windows GUI: slow scrolling with maximized window.
Solution: Use a better way to check the window is on screen. (Ken Takata,

closes #9865)

version9.txt — 3935

Files: src/gui_w32.c

Patch 8.2.4487
Problem: Vim9: cannot compare with v:null.
Solution: Allow comparing anything with v:null. (closes #9866)
Files: src/vim9instr.c, src/typval.c, src/proto/typval.pro,

src/vim9.h, src/vim9execute.c, src/evalvars.c,
src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4488 (after 8.2.4487)
Problem: Build error with +eval but without +channel or +job.
Solution: Add #ifdef. (John Marriott)
Files: src/typval.c

Patch 8.2.4489 (after 8.2.4487)
Problem: Failing test for comparing v:null with number.
Solution: Allow comparing v:null with number in legacy script.

(Ken Takata, closes #9873) Also do this for float.
Files: src/typval.c, src/testdir/test_vimscript.vim

Patch 8.2.4490
Problem: Terminal focus reporting only works for xterm-like terminals.

(Jonathan Rascher)
Solution: Remove the "focus_mode" flag. (closes #9859)
Files: src/term.c

Patch 8.2.4491
Problem: MS-Windows makefile dependencies are outdated.
Solution: Update dependencies. (Ken Takata, closes #9876)
Files: src/Make_cyg_ming.mak, src/Make_mvc.mak

Patch 8.2.4492
Problem: No error if an option is given an invalid value with

":let &opt = val".
Solution: Give the error. (closes #9864)
Files: src/evalvars.c, src/testdir/test_options.vim

Patch 8.2.4493 (after 8.2.4492)
Problem: Options test fails in the GUI.
Solution: Do not save and restore 'term'.
Files: src/testdir/gen_opt_test.vim

Patch 8.2.4494
Problem: The find_tags() function is much too long.
Solution: Refactor the function. (Yegappan Lakshmanan, closes #9869)
Files: src/quickfix.c, src/tag.c, src/testdir/test_tagjump.vim

Patch 8.2.4495
Problem: Help test fails in 24 line terminal.
Solution: Use up to 23 lines for text.
Files: src/testdir/test_help.vim

Patch 8.2.4496 (after 8.2.4494)
Problem: Coverity gives warnings after tags code refactoring.
Solution: Avoid the warnings. (Yegappan Lakshmanan, closes #9882)
Files: src/tag.c

Patch 8.2.4497
Problem: Wrong color for half of wide character next to pum scrollbar.

version9.txt — 3936

Solution: Redraw the screen cell with the right color. (closes #9874)
Files: src/screen.c, src/testdir/test_ins_complete.vim,

src/testdir/dumps/Test_scrollbar_on_wide_char.dump

Patch 8.2.4498
Problem: Using <Plug> with "noremap" does not work.
Solution: Always remap <Plug>. (closes #9879, closes #9789)
Files: runtime/doc/map.txt, src/getchar.c, src/testdir/test_mapping.vim

Patch 8.2.4499
Problem: Vim9: at the script level declarations leak from try block to

catch and finally block.
Solution: End the block and start a new one. (closes #9883)
Files: src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.4500
Problem: Vim9: can declare a global variable on the command line.
Solution: Disallow declaring a variable on the command line. (closes #9881)
Files: src/errors.h, src/evalvars.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_script.vim,
src/testdir/dumps/Test_vim9_reject_declaration.dump

Patch 8.2.4501
Problem: With 'showbreak' set and after the end of the line the cursor

may be displayed in the wrong position.
Solution: Do not apply 'showbreak' after the end of the line. (closes #9884)
Files: src/charset.c, src/testdir/test_breakindent.vim,

src/testdir/dumps/Test_cursor_position_with_showbreak.dump

Patch 8.2.4502
Problem: In the GUI a modifier is not recognized for the key typed after

CTRL-X, which may result in a mapping to be used. (Daniel
Steinberg)

Solution: Recognize a modifier starting with CSI. (closes #9889)
Files: src/getchar.c, src/testdir/test_ins_complete.vim

Patch 8.2.4503
Problem: Vim9: there is no point in supporting :Print and :mode.
Solution: Do not recognize :Print and :mode as commands. (closes #9870)
Files: src/ex_docmd.c, src/testdir/test_vim9_script.vim

Patch 8.2.4504
Problem: When there is a partially matching map and modifyOtherKeys is

active a full map may not work.
Solution: Only simplify modifiers when there is no matching mapping.

(closes #8792)
Files: src/getchar.c, src/testdir/test_termcodes.vim

Patch 8.2.4505
Problem: Vim9: outdated "autocmd nested" still works.
Solution: Do not accept the :autocmd argument "nested" without "++" in Vim9

script.
Files: src/autocmd.c, src/errors.h, src/testdir/test_autocmd.vim

Patch 8.2.4506
Problem: "pattern not found" for :global is not an error message.
Solution: In Vim9 script make this an actual error, so that try/catch can be

used as expected.
Files: src/ex_cmds.c, src/errors.h, src/testdir/test_global.vim

version9.txt — 3937

Patch 8.2.4507 (after 8.2.4506)
Problem: Test fails because of new error message.
Solution: Avoid the test fails.
Files: src/testdir/test_vim9_cmd.vim

Patch 8.2.4508
Problem: Vim9: cannot assign to a global variable on the command line.
Solution: Allow using :vim9cmd for assignment on the command line.
Files: src/evalvars.c, src/testdir/test_vim9_script.vim,

src/testdir/dumps/Test_vim9_reject_declaration.dump,
src/testdir/dumps/Test_vim9_reject_declaration_1.dump,
src/testdir/dumps/Test_vim9_reject_declaration_2.dump

Patch 8.2.4509
Problem: Vim9: can declare a variable with ":va".
Solution: Disallow using ":va", require using ":var".
Files: src/evalvars.c, src/errors.h, src/vim9compile.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.4510
Problem: Vim9: shortening commands leads to confusing script.
Solution: In Vim9 script require at least ":cont" for ":continue", "const"

instead of "cons", "break" instead of "brea", "catch" instead of
"cat", "else" instead of "el" "elseif" instead of "elsei" "endfor"
instead of "endfo" "endif" instead of "en" "endtry" instead of
"endt", "finally" instead of "fina", "throw" instead of "th",
"while" instead of "wh".

Files: src/ex_cmds.h, src/ex_docmd.c, src/errors.h, src/evalvars.c,
src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.4511
Problem: Filetype test fails.
Solution: Change "endw" to "endwhile".
Files: runtime/autoload/dist/ft.vim

Patch 8.2.4512
Problem: The find_tags_in_file() function is much too long.
Solution: Refactor into multiple smaller functions. (Yegappan Lakshmanan,

closes #9892)
Files: Filelist, src/Makefile, src/quickfix.c, src/tag.c,

src/testdir/test83-tags2, src/testdir/test83-tags3,
src/testdir/test_tagjump.vim

Patch 8.2.4513
Problem: Window-local directory is not applied if 'acd' fails.
Solution: Don't call do_autochdir(). (closes #9891)
Files: src/window.c, src/testdir/test_autochdir.vim

Patch 8.2.4514
Problem: Vim9: some flow commands can be shortened.
Solution: Also require using the full name for ":return", ":enddef",

":continue", ":export" and ":import".
Files: src/ex_cmds.h, src/ex_docmd.c, src/errors.h, src/userfunc.c,

src/testdir/test_vim9_script.vim

Patch 8.2.4515
Problem: Old substitute syntax is still supported.
Solution: Disallow using backslash after ":s" in Vim9 script.
Files: src/ex_cmds.c, src/errors.h, src/testdir/test_substitute.vim

version9.txt — 3938

Patch 8.2.4516 (after 8.2.4515)
Problem: Build failure without the +eval feature.
Solution: Move error message outside of #ifdef.
Files: src/errors.h

Patch 8.2.4517
Problem: MS-Windows: cannot specify location of sodium library.
Solution: Allow for using a path for SODIUM. (Ken Takata, closes #9896)
Files: src/Make_cyg_ming.mak

Patch 8.2.4518
Problem: The binary tag search feature is always enabled.
Solution: Remove the #ifdefs. Add a few more tests. (Yegappan Lakshmanan,

closes #9893)
Files: src/evalfunc.c, src/feature.h, src/tag.c, src/version.c,

src/testdir/test_tagjump.vim, src/testdir/test_taglist.vim

Patch 8.2.4519
Problem: Vim9: Can still use ":fini" and ":finis" for ":finish".
Solution: Require using ":finish".
Files: src/ex_cmds.h, src/testdir/test_vim9_script.vim

Patch 8.2.4520
Problem: Using wrong highlight for cursor line number.
Solution: Take filler lines into account when using CursorLineNr.

(closes #9897)
Files: src/drawline.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_with_cursorline_number_01.dump,
src/testdir/dumps/Test_diff_with_cursorline_number_02.dump

Patch 8.2.4521 (after 8.2.4520)
Problem: Build failure without the +diff feature. (John Marriott)
Solution: Define filler+lines if not declaring it.
Files: src/drawline.c

Patch 8.2.4522 (after 8.2.4492)
Problem: GUI test fails with Motif. (Dominique Pellé)
Solution: Remove using an invalid value for 'guifontset'.
Files: src/testdir/test_gui.vim

Patch 8.2.4523
Problem: When gvim is started maximized the 'window' option isn't set

properly. (Christian J. Robinson)
Solution: Check if 'windows' was already set or not. (Ken Takata,

closes #9904)
Files: src/term.c

Patch 8.2.4524
Problem: MS-Windows: cannot build with some sodium libraries.
Solution: Make the DLL name configurable. Add build instructions.

(Ken Takata, closes #9905)
Files: src/INSTALLpc.txt, src/Make_cyg_ming.mak, src/Make_mvc.mak,

src/crypt.c

Patch 8.2.4525
Problem: Some GUI tests don't work on Athena.
Solution: Skip tests that won't work. (Yegappan Lakshmanan, closes #9902)
Files: src/testdir/test_gui.vim

Patch 8.2.4526

version9.txt — 3939

Problem: Vim9: cannot set variables to a null value.
Solution: Add null_list, null_job, etc.
Files: runtime/doc/vim9.txt, src/eval.c, src/proto/eval.pro,

src/vim9expr.c, src/vim9script.c, src/vim9instr.c,
src/vim9compile.c, src/vim9execute.c, src/vim9.h, src/vim9type.c,
src/evalvars.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_expr.vim

Patch 8.2.4527
Problem: The Athena GUI is old and does not work well.
Solution: Remove the Athena GUI from configure to find out who still wants

support for this GUI.
Files: src/configure.ac, src/auto/configure, src/Makefile

Patch 8.2.4528
Problem: Crash when using null_function for a partial.
Solution: Don't call fname_trans_sid() with NULL. (closes #9908)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.4529
Problem: Vim9: comparing partial with function fails.
Solution: Support this comparison. Avoid a crash. (closes #9909)

Add more test cases.
Files: src/vim9instr.c, src/userfunc.c, src/vim9type.c,

src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_vimscript.vim

Patch 8.2.4530
Problem: Making comparison with null work changes legacy behavior.
Solution: Only use the better comparison in Vim9 script. (closes #9910)
Files: src/typval.c, src/testdir/test_expr.vim

Patch 8.2.4531
Problem: LGTM warnings for condition always true and buffer size too small.
Solution: Remove the useless condition. Make the buffer larger. (Goc

Dundar, closes #9914)
Files: src/charset.c, src/term.c

Patch 8.2.4532
Problem: Suspending with CTRL-Z does not work on OpenBSD.
Solution: Adjust #ifdef for SIGTSTP. (Stuart Henderson, closes #9912)
Files: src/os_unix.c

Patch 8.2.4533
Problem: Vim9: no test that after assigning null the type is still checked.
Solution: Add a test.
Files: src/testdir/test_vim9_assign.vim

Patch 8.2.4534
Problem: Vim9: "is" operator with empty string and null returns true.
Solution: Consider empty string and null to be different for "is".
Files: src/typval.c, src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4535
Problem: Filename modifier ":8" removes the filename.
Solution: Use strncpy() instead of vim_strncpy(). (Christian Brabandt,

closes #9918, closes #8600)
Files: src/filepath.c, src/testdir/test_shortpathname.vim

version9.txt — 3940

Patch 8.2.4536 (after 8.2.4534)
Problem: Debugger test fails when breaking on expression.
Solution: Compare strings with "==" instead of "is".
Files: src/debugger.c

Patch 8.2.4537
Problem: Output from linter and language server shows up in git.
Solution: Add patterns to .gitignore. (Goc Dundar, closes #9925)
Files: .gitignore

Patch 8.2.4538
Problem: The find_tags_in_file() function is too long.
Solution: Refactor into smaller functions. (Yegappan Lakshmanan,

closes #9920)
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.2.4539
Problem: When comparing special v:none and v:null are handled the same when

compiling.
Solution: Pass more information so that v:none can be handled differently at

compile time. (issue #9923)
Files: src/vim9instr.c, src/vim9compile.c, src/globals.h,

src/testdir/test_vim9_expr.vim

Patch 8.2.4540
Problem: Line number for error is off by one.
Solution: Remember the line number of the comparison. (closes #9923)
Files: src/eval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4541
Problem: Crash in debugger when a variable is not available in the current

block.
Solution: Check for a NULL name. (closes #9926)
Files: src/vim9execute.c, src/testdir/test_debugger.vim

Patch 8.2.4542
Problem: Vim9: "break" inside try/catch not handled correctly.
Solution: First jump to :endtry. (closes #9927)
Files: src/vim9cmds.c, src/vim9.h, src/testdir/test_vim9_script.vim

Patch 8.2.4543
Problem: Coverity warning for refactored tag search code.
Solution: Avoid the warnings. Update comments. Add one more test case.

(Yegappan Lakshmanan, closes #9928)
Files: src/tag.c, src/testdir/test_tagjump.vim

Patch 8.2.4544
Problem: Coverity warnings for not using returned value.
Solution: Assign to vim_ignored.
Files: src/tag.c

Patch 8.2.4545
Problem: MS-Windows: the installed icon is low resolution.
Solution: Use a better icon. Install vim.ico. (Christian Brabandt,

closes #9931, closes #9930)
Files: Filelist, nsis/gvim.nsi, src/vim.ico, runtime/bitmaps/vim.ico

Patch 8.2.4546
Problem: Duplicate #undef.
Solution: Remove one #undef. (closes #9932)

version9.txt — 3941

Files: src/regexp_nfa.c

Patch 8.2.4547
Problem: The neXTaw GUI is old and does not work well.
Solution: Remove the neXTaw GUI from configure to find out who still wants

support for this GUI.
Files: src/configure.ac, src/auto/configure, src/Makefile

Patch 8.2.4548
Problem: Script-local function is deleted when used in a funcref.
Solution: Do not consider a function starting with "<SNR>" reference

counted. (closes #9916, closes #9820)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.4549
Problem: Cannot build with Motif and editres. (Tony Mechelynck)
Solution: Fix configure mistake.
Files: src/configure.ac, src/auto/configure

Patch 8.2.4550
Problem: Motif: cannot set the color of the scrollbar thumb.
Solution: Remove #ifdef.
Files: src/gui_motif.c

Patch 8.2.4551
Problem: When mapping <Esc> terminal codes are not recognized.
Solution: Specifically recognize a mapping with just <Esc> and check for

terminal codes even though there is no partial mapping.
(closes #9903)

Files: src/getchar.c, src/testdir/test_termcodes.vim

Patch 8.2.4552
Problem: In a :def function "put = expr" does not work.
Solution: Skip over white space. (closes #9936)
Files: src/vim9cmds.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4553
Problem: Linear tag search is a bit slow.
Solution: Remove a vim_ftell() call. (Yegappan Lakshmanan, closes #9937)
Files: src/tag.c, src/testdir/test_taglist.vim

Patch 8.2.4554
Problem: Vim9: using null values not sufficiently tested.
Solution: Add more tests. Fix uncovered problem.
Files: src/vim9type.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_func.vim

Patch 8.2.4555
Problem: getmousepos() returns the wrong column. (Ernie Rael)
Solution: Limit to the text size, not the number of bytes.
Files: src/mouse.c, src/testdir/test_functions.vim

Patch 8.2.4556
Problem: Test fails without the +job or +channel feature. (Dominique Pellé)
Solution: Adjust #ifdefs. Pass on skip flag. (closes #9942)
Files: src/eval.c, src/vim9compile.c

Patch 8.2.4557
Problem: Confusing comment about 'cursorlineopt'.
Solution: Adjust comment. (closes #9939) Add parenthesis around logical

version9.txt — 3942

OR.
Files: src/drawline.c

Patch 8.2.4558
Problem: Motif: using default colors does not work as expected.
Solution: Do not try to store the default colors, use the resources.

(closes #9933)
Files: src/gui_motif.c, src/gui.h

Patch 8.2.4559 (after 8.24555)
Problem: getmousepos() returns the screen column. (Ernie Rael)
Solution: Return the text column, as documented.
Files: src/mouse.c, src/testdir/test_functions.vim

Patch 8.2.4560
Problem: Suspending with CTRL-Z does not work on DragonFlyBSD.
Solution: Adjust #ifdef. (Ozaki Kiichi, closes #9943)
Files: src/os_unix.c

Patch 8.2.4561
Problem: Build failure with some combination of features. (John Marriott)
Solution: Adjust #ifdef.
Files: src/mouse.c

Patch 8.2.4562
Problem: Linear tag search is not optimal.
Solution: Improve linear tag search performance. (Yegappan Lakshmanan,

closes #9944)
Files: src/tag.c

Patch 8.2.4563
Problem: "z=" in Visual mode may go beyond the end of the line.
Solution: Adjust "badlen".
Files: src/spellsuggest.c, src/testdir/test_spell.vim

Patch 8.2.4564
Problem: Running test leaves file behind. (Dominique Pellé)
Solution: Run the profiling in a separate Vim instance. (closes #9952)
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4565
Problem: No command line completion for :breakadd and :breakdel.
Solution: Add completion for :breakadd and :breakdel. (Yegappan Lakshmanan,

closes #9950)
Files: runtime/doc/builtin.txt, src/cmdexpand.c, src/spellsuggest.c,

src/usercmd.c, src/vim.h, src/testdir/test_cmdline.vim,
src/testdir/test_writefile.vim

Patch 8.2.4566
Problem: Check for existing buffer in session file does not work for files

in the home directory.
Solution: Use fnamemodify(). (James Cherti, closes #9945) Add a test.
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.4567
Problem: Bracketed paste doesn't work well in Visual linewise mode.
Solution: Handle linewise Visual mode differently. (closes #9947)
Files: src/normal.c, src/testdir/test_paste.vim

Patch 8.2.4568

version9.txt — 3943

Problem: getmousepos() does not compute the column below the last line.
Solution: Also compute the column when the mouse is below the last line.

(Sean Dewar, closes #9946)
Files: src/mouse.c, src/testdir/test_functions.vim

Patch 8.2.4569
Problem: Coverity warning for not using a return value.
Solution: Add "(void)".
Files: src/popupwin.c

Patch 8.2.4570
Problem: No command line completion for :profile and :profdel.
Solution: Implement completion. (Yegappan Lakshmanan, closes #9955)
Files: src/cmdexpand.c, src/profiler.c, src/testdir/test_cmdline.vim,

src/testdir/test_profile.vim

Patch 8.2.4571
Problem: Not all gdb files are recognized.
Solution: Add a few more patterns for gdb. (Jade Lovelace, closes #9956)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4572
Problem: Vim9: return type "any" is sometimes changed to first returned

type. (Virginia Senioria)
Solution: Do not change the return type if declared as "any". (closes #9949)
Files: src/vim9cmds.c, src/testdir/test_vim9_func.vim

Patch 8.2.4573
Problem: A nested function (closure) is compiled for debugging without

context.
Solution: Check if a nested function is marked for debugging before

compiling it. Give an error when trying to compile a closure
without its context. (closes #9951)

Files: src/vim9compile.c, src/vim9execute.c, src/proto/vim9execute.pro,
src/vim9expr.c, src/errors.h

Patch 8.2.4574
Problem: Vim9: test for profiling fails.
Solution: Mark function for profiling earlier to avoid E1271.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4575
Problem: Vim9: test for profiling still fails.
Solution: Update flags for profiling and breakpoints when obtaining the

compile type. Do not set the FC_CLOSURE flag for a toplevel
function.

Files: src/vim.h, src/vim9compile.c, src/proto/vim9compile.pro,
src/eval.c, src/vim9execute.c, src/vim9expr.c, src/vim9instr.c,
src/vim9.h

Patch 8.2.4576
Problem: Vim9: error for comparing with null can be annoying.
Solution: Allow comparing anything with null. (closes #9948)
Files: src/vim9instr.c, src/typval.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4577
Problem: Message test is flaky. (Elimar Riesebieter)
Solution: Trigger the autocommand event only after startup is finished.
Files: src/testdir/test_messages.vim

version9.txt — 3944

Patch 8.2.4578
Problem: No warning when an autoload script for completion function has an

error.
Solution: Do not ignore errors when a function name is given with a dot or

'#' character. (closes #9958)
Files: src/eval.c, src/testdir/test_cmdline.vim

Patch 8.2.4579
Problem: Cannot use page-up and page-down in the command line completion

popup menu.
Solution: Check for to page-up and page-down keys. (Yegappan Lakshmanan,

closes #9960)
Files: src/cmdexpand.c, src/ex_getln.c, src/spellsuggest.c, src/vim.h,

src/testdir/test_cmdline.vim,
src/testdir/dumps/Test_wildmenu_pum_42.dump,
src/testdir/dumps/Test_wildmenu_pum_43.dump,
src/testdir/dumps/Test_wildmenu_pum_44.dump,
src/testdir/dumps/Test_wildmenu_pum_45.dump,
src/testdir/dumps/Test_wildmenu_pum_46.dump,
src/testdir/dumps/Test_wildmenu_pum_47.dump,
src/testdir/dumps/Test_wildmenu_pum_48.dump,
src/testdir/dumps/Test_wildmenu_pum_49.dump,
src/testdir/dumps/Test_wildmenu_pum_50.dump

Patch 8.2.4580
Problem: Vim9: incorrect error for shadowing variable.
Solution: Do not pass the context when compiling a referenced function.
Files: src/vim9expr.c, src/testdir/test_vim9_func.vim

Patch 8.2.4581
Problem: Null types not fully tested.
Solution: Add some more tests using null types.
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.4582
Problem: Useless code handling a type declaration.
Solution: Remove the code and give an error.
Files: src/eval.c, src/errors.h, src/testdir/test_vim9_script.vim,

src/testdir/dumps/Test_misplaced_type.dump

Patch 8.2.4583 (after 8.2.4582)
Problem: Screendump test fails.
Solution: Check that making a screendump is possible.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4584 (after 8.2.4578)
Problem: Error for using autoload function in custom completion.
Solution: Do not check for errors when using an autoload function.

(closes #9962)
Files: src/eval.c, src/testdir/test_cmdline.vim

Patch 8.2.4585
Problem: Cannot use keypad page-up/down for completion menu.
Solution: Recognize the keypad keys. (Yegappan Lakshmanan, closes #9963)
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.4586
Problem: Vim9: no error for using lower case name for "func" argument.

(Ernie Rael)
Solution: Check the name as soon as the type is known.

version9.txt — 3945

Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.4587
Problem: Vim9: double free after unpacking a list.
Solution: Make a copy of the value instead of moving it. (closes #9968)
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim

Patch 8.2.4588
Problem: Mapping with key code after other matching mapping does not work.
Solution: Change ">" to ">=". (closes #9903)
Files: src/getchar.c, src/testdir/test_termcodes.vim

Patch 8.2.4589
Problem: Cannot index the g: dictionary.
Solution: Recognize using "g:[key]". (closes #9969)
Files: src/ex_docmd.c, src/eval.c, src/vim9compile.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.4590
Problem: Vim9: range type check has wrong offset.
Solution: Adjust offset for CHECKTYPE. Remove other type check.
Files: src/vim9compile.c, src/vim9execute.c,

src/testdir/test_vim9_assign.vim

Patch 8.2.4591
Problem: Cursor line not updated when a callback moves the cursor.
Solution: Check if the cursor moved. (closes #9970)
Files: src/main.c, src/drawscreen.c, src/proto/drawscreen.pro,

src/testdir/test_cursorline.vim,
src/testdir/dumps/Test_cursorline_callback_1.dump

Patch 8.2.4592
Problem: Search continues after giving E1204.
Solution: Return failure after giving E1204. (closes #9972)
Files: src/regexp_nfa.c

Patch 8.2.4593
Problem: Unnecessary call to redraw_later().
Solution: Remove the call to redraw_later() in op_yank(). (closes #9971)
Files: src/register.c

Patch 8.2.4594
Problem: Need to write script to a file to be able to source them.
Solution: Make ":source" use lines from the current buffer. (Yegappan

Lakshmanan et al., closes #9967)
Files: runtime/doc/repeat.txt, runtime/doc/todo.txt, src/alloc.c,

src/digraph.c, src/eval.c, src/ex_cmds.h, src/scriptfile.c,
src/proto/scriptfile.pro, src/vim9script.c,
src/testdir/test_source.vim

Patch 8.2.4595
Problem: X11: using --remote-wait may keep the CPU busy.
Solution: Set the timeout for select() on every call. (Jacopo Secchiero,

closes #9973)
Files: src/if_xcmdsrv.c

Patch 8.2.4596
Problem: Installing tutor binary may fail.
Solution: Fix the dependency. (Sergei Trofimovich, closes #9978)
Files: src/Makefile

version9.txt — 3946

Patch 8.2.4597
Problem: LuaV_debug() not covered by tests.
Solution: Add a test. (Dominique Pellé, closes #9980)
Files: src/testdir/test_lua.vim

Patch 8.2.4598
Problem: Profile completion test sometimes fails.
Solution: Delete the .res file before running tests.
Files: src/testdir/runtest.vim

Patch 8.2.4599
Problem: GTK: get assertion errors when scrolling a split window.
Solution: Use GDK_IS_DRAWABLE() on the scrollbar window. (closes #9982)
Files: src/gui_gtk.c

Patch 8.2.4600
Problem: Vim9: not enough test coverage for executing :def function.
Solution: Add a few more tests. Fix inconsistencies.
Files: src/vim9execute.c, src/evalvars.c, src/proto/evalvars.pro,

src/testdir/test_listdict.vim, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_cmd.vim

Patch 8.2.4601
Problem: Vim9: not enough test coverage for executing :def function.
Solution: Add a few more tests.
Files: src/testdir/test_vim9_script.vim, src/testdir/test_vim9_func.vim,

src/testdir/test_vim9_cmd.vim

Patch 8.2.4602
Problem: Vim9: not enough test coverage for executing :def function.
Solution: Add a few more tests. Fix uncovered problem. Remove dead code.
Files: src/vim9execute.c, src/vim9.h, src/vim9instr.c,

src/proto/vim9instr.pro, src/vim9compile.c,
src/testdir/test_vim9_script.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.4603
Problem: Sourcing buffer lines is too complicated.
Solution: Simplify the code. Make it possible to source Vim9 script lines.

(Yegappan Lakshmanan, closes #9974)
Files: runtime/doc/repeat.txt, src/ex_docmd.c, src/proto/scriptfile.pro,

src/scriptfile.c, src/structs.h, src/testdir/test_source.vim

Patch 8.2.4604
Problem: Error for redefining a script item may be confusing.
Solution: Put quotes around the name.
Files: src/errors.h

Patch 8.2.4605
Problem: Error for arguments of remote_expr() even when the +clientserver

feature is not included.
Solution: Move #ifdef.
Files: src/clientserver.c

Patch 8.2.4606 (after 8.2.4605)
Problem: Test fails because of changed error message.
Solution: Update the expected error message
Files: src/testdir/test_vim9_import.vim

Patch 8.2.4607

version9.txt — 3947

Problem: Sourcing buffer lines may lead to errors for conflicts.
Solution: Add the ++clear argument. (Yegappan Lakshmanan, closes #9991)
Files: runtime/doc/repeat.txt, src/scriptfile.c, src/vim9script.c,

src/proto/vim9script.pro, src/testdir/test_source.vim

Patch 8.2.4608
Problem: getcompletion() does not work properly when 'wildoptions'

contains "fuzzy".
Solution: Do not use addstar(). (Yegappan Lakshmanan, closes #9992,

closes #9986)
Files: runtime/doc/builtin.txt, src/cmdexpand.c,

src/testdir/test_cmdline.vim

Patch 8.2.4609
Problem: :unhide does not check for failing to close a window.
Solution: When closing a window fails continue with the next one. Do not

try closing the autocmd window. (closes #9984)
Files: src/buffer.c, src/window.c, src/proto/window.pro,

src/testdir/test_autocmd.vim

Patch 8.2.4610
Problem: Some conditions are always true.
Solution: Remove the useless conditions. (closes #9993)
Files: src/clientserver.c, src/drawline.c, src/drawscreen.c,

src/ex_cmds.c, src/fileio.c, src/message.c, src/misc2.c,
src/ops.c, src/sign.c, src/spell.c, src/vim9cmds.c, src/window.c

Patch 8.2.4611
Problem: Typos in tests; one lua line not covered by test.
Solution: Fix typos. Add test case. (Dominique Pellé, closes #9994)
Files: src/testdir/test_breakindent.vim, src/testdir/test_crypt.vim,

src/testdir/test_cursorline.vim, src/testdir/test_digraph.vim,
src/testdir/test_gui.vim, src/testdir/test_lua.vim,
src/testdir/test_regexp_latin.vim, src/testdir/test_signals.vim,
src/testdir/test_spell.vim, src/testdir/test_statusline.vim,
src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim, src/testdir/test_vimscript.vim

Patch 8.2.4612
Problem: Vim9: cannot use a recursive call in a nested function. (Sergey

Vlasov)
Solution: Define the funcref before compiling the function. (closes #9989)
Files: src/vim9compile.c, src/vim9instr.c, src/proto/vim9instr.pro,

src/vim9expr.c, src/testdir/test_vim9_func.vim

Patch 8.2.4613
Problem: Return type of swapfile_unchanged() is wrong.
Solution: Use "int". (closes #10000 Yeah!)
Files: src/memline.c

Patch 8.2.4614
Problem: Redrawing too much when 'cursorline' is set and jumping around.
Solution: Rely on win_update() to redraw the current and previous cursor

line, do not mark lines as modified. (closes #9996)
Files: src/drawline.c, src/drawscreen.c, src/move.c, src/proto/move.pro,

src/option.c

Patch 8.2.4615
Problem: Mapping with escaped bar does not work in :def function. (Sergey

Vlasov)

version9.txt — 3948

Solution: Do not remove the backslash. (closes #10002)
Files: src/ex_docmd.c, src/proto/ex_docmd.pro, src/syntax.c,

src/vim9cmds.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4616
Problem: Vim9: Declarations in a {} block of a user command do not use Vim9

rules if defined in a legacy script. (Yegappan Lakshmanan)
Solution: Pretend the script is Vim9 script.
Files: src/usercmd.c, src/testdir/test_usercommands.vim

Patch 8.2.4617
Problem: No completion for :scriptnames.
Solution: Implement :scriptnames completion. (Yegappan Lakshmanan,

closes #10005)
Files: runtime/doc/builtin.txt, src/cmdexpand.c, src/ex_cmds.h,

src/scriptfile.c, src/usercmd.c, src/vim.h,
src/testdir/test_cmdline.vim, src/testdir/test_quickfix.vim

Patch 8.2.4618
Problem: Command line completion does not recognize single letter commands.
Solution: Use the condition from find_ex_command().
Files: src/ex_docmd.c

Patch 8.2.4619
Problem: Mapping is cancelled when mouse moves and popup is visible.
Solution: Only generate mouse moved events when a popup may use them.

(closes #10004)
Files: src/gui.c, src/globals.h, src/popupwin.c

Patch 8.2.4620 (after 8.2.4618)
Problem: Two letter substitute commands don't work. (Yegappan Lakshmanan)
Solution: Invert condition.
Files: src/ex_docmd.c

Patch 8.2.4621
Problem: Crash when using the tabline right-click menu.
Solution: Use XtPointer for XmNuserData. (closes #10009)
Files: src/gui_motif.c

Patch 8.2.4622
Problem: Vim9: Crash with :execute and :finish. (Sergey Vlasov)
Solution: Check for NULL. (closes #10011)
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.4623
Problem: Coverity warns for using uninitialized field.
Solution: Initialize the field to zero.
Files: src/ex_docmd.c

Patch 8.2.4624
Problem: Old Coverity warning for resource leak.
Solution: Close the file if memory allocation fails.
Files: src/diff.c

Patch 8.2.4625
Problem: Old Coverity warning for resource leak.
Solution: Call FreeWild() if expanding matches did not fail.
Files: src/help.c

Patch 8.2.4626

version9.txt — 3949

Problem: Visual area not fully updated when removing sign in Visual mode
while scrolling.

Solution: Adjust check for topline. (closes #10017)
Files: src/drawscreen.c, src/testdir/test_display.vim,

src/testdir/dumps/Test_display_scroll_update_visual.dump

Patch 8.2.4627
Problem: flatten() does not use maxdepth correctly.
Solution: Use a recursive implementation. (closes #10020)
Files: src/list.c, src/testdir/test_flatten.vim

Patch 8.2.4628
Problem: Not enough testing for 2/3 letter substitute commands.
Solution: Add more tests. (Yegappan Lakshmanan, closes #10019)
Files: src/testdir/test_cmdline.vim, src/testdir/test_substitute.vim

Patch 8.2.4629
Problem: flattennew() makes a deep copy unnecessarily.
Solution: Use a shallow copy. (issue #10012)
Files: src/list.c

Patch 8.2.4630
Problem: 'cursorline' not always updated with 'cursorlineopt' is

"screenline".
Solution: Call check_redraw_cursorline() more often. (closes #10013)
Files: src/normal.c, src/edit.c, src/testdir/test_cursorline.vim,

src/testdir/dumps/Test_cursorline_screenline_1.dump,
src/testdir/dumps/Test_cursorline_screenline_2.dump

Patch 8.2.4631
Problem: Crash when switching window in BufWipeout autocommand.
Solution: Put any buffer in the window to avoid it being NULL.

(closes #10024)
Files: src/window.c, src/buffer.c, src/testdir/test_autocmd.vim

Patch 8.2.4632
Problem: Using freed memory in flatten().
Solution: Clear typval after recursing into list.
Files: src/list.c

Patch 8.2.4633
Problem: Visual range does not work before command modifiers.
Solution: Move Visual range to after command modifiers.
Files: src/ex_docmd.c, src/testdir/test_source.vim

Patch 8.2.4634
Problem: Vim9: cannot initialize a variable to null_list.
Solution: Give negative count to NEWLIST. (closes #10027)

Also fix inconsistencies in comparing with null values.
Files: src/vim9instr.c, src/proto/vim9instr.pro, src/vim9.h,

src/vim9compile.c, src/vim9expr.c, src/vim9execute.c,
src/evalvars.c, src/typval.c, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4635 (after 8.2.4634)
Problem: Tests using null list or dict fail.
Solution: Only use the new rules for Vim9 script.
Files: src/evalvars.c

version9.txt — 3950

Patch 8.2.4636 (after 8.2.4633)
Problem: Not using Visual range.
Solution: Put the command pointer back to the range.
Files: src/ex_docmd.c

Patch 8.2.4637
Problem: Warning for using uninitialized variable. (Tony Mechelynck)
Solution: Initialize it.
Files: src/ex_docmd.c

Patch 8.2.4638
Problem: Superfluous check if a redraw is needed for 'cursorline'.
Solution: Remove check_redraw_cursorline(). (closes #10030, closes #10029)
Files: src/drawscreen.c, src/proto/drawscreen.pro, src/edit.c,

src/main.c, src/normal.c, src/move.c,
src/testdir/dumps/Test_cursorcolumn_callback_1.dump,
src/testdir/dumps/Test_relativenumber_callback_1.dump,
src/testdir/test_highlight.vim, src/testdir/test_number.vim

Patch 8.2.4639
Problem: Not sufficient parenthesis in preprocessor macros.
Solution: Add more parenthesis. (closes #10031)
Files: src/globals.h, src/gui.h, src/if_py_both.h, src/macros.h,

src/option.h, src/regexp.h, src/spell.h, src/structs.h, src/vim.h,
src/vim9.h

Patch 8.2.4640
Problem: Some boolean options use "long" instead of "int".
Solution: Adjust the type. (James McCoy, closes #10033)
Files: src/option.h

Patch 8.2.4641
Problem: May mark the wrong window for redrawing.
Solution: Use redraw_win_later(). (closes #10032)
Files: src/move.c

Patch 8.2.4642
Problem: Vim9: in :def function script var cannot be null.
Solution: Only initialize a script variable when not set to a null value.

(closes #10034)
Files: src/vim9execute.c, src/vim9type.c, src/globals.h, src/evalvars.c,

src/vim.h, src/vim9script.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4643
Problem: Vim9: variable may be locked unintentionally.
Solution: Clear "v_lock". (closes #10036)
Files: src/vim9execute.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4644
Problem: Redrawing too often when 'relativenumber' is set.
Solution: Only redraw when the cursor line changed. (Lewis Russell,

closes #10040)
Files: src/change.c, src/drawscreen.c, src/structs.h

Patch 8.2.4645
Problem: 'shortmess' changed when session does not store options.
Solution: Save and restore 'shortmess' if needed. (James Cherti,

closes #10037)
Files: src/session.c, src/testdir/test_mksession.vim

version9.txt — 3951

Patch 8.2.4646
Problem: Using buffer line after it has been freed in old regexp engine.
Solution: After getting mark get the line again.
Files: src/regexp_bt.c, src/testdir/test_regexp_latin.vim

Patch 8.2.4647
Problem: "source" can read past end of copied line.
Solution: Add a terminating NUL.
Files: src/scriptfile.c, src/testdir/test_source.vim

Patch 8.2.4648
Problem: Handling LSP messages is a bit slow.
Solution: Included support for LSP messages. (Yegappan Lakshmanan,

closes #10025)
Files: runtime/doc/channel.txt, src/channel.c, src/job.c, src/json.c,

src/proto/json.pro, src/structs.h, src/testdir/test_channel.vim,
src/testdir/test_channel_lsp.py

Patch 8.2.4649
Problem: Various formatting problems.
Solution: Improve the code formatting.
Files: src/mark.c, src/quickfix.c, src/regexp_nfa.c, src/register.c,

src/testdir/test_filechanged.vim, src/gui_athena.c,
src/gui_motif.c, src/os_unix.c

Patch 8.2.4650
Problem: "import autoload" only works with using 'runtimepath'.
Solution: Also support a relative and absolute file name.
Files: runtime/doc/vim9.txt, src/structs.h, src/scriptfile.c,

src/proto/scriptfile.pro, src/vim9script.c, src/vim9expr.c,
src/vim9.h, src/vim9execute.c, src/vim9instr.c,
src/proto/vim9instr.pro, src/vim.h, src/userfunc.c,
src/proto/userfunc.pro, src/testdir/test_vim9_import.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4651 (after 8.2.4650)
Problem: Test fails because path differs.
Solution: Only compare the tail of the path.
Files: src/testdir/test_vim9_disassemble.vim

Patch 8.2.4652 (after 8.2.4650)
Problem: Leaking memory if assignment fails.
Solution: Clear assigned value on failure.
Files: src/vim9execute.c

Patch 8.2.4653
Problem: "import autoload" does not check the file name.
Solution: Give an error if the file is not readable. (closes #10049)
Files: src/filepath.c, src/proto/filepath.pro, src/errors.h,

src/ex_cmds.c, src/ex_docmd.c, src/spellfile.c,
src/testdir/test_vim9_import.vim

Patch 8.2.4654 (after 8.2.4653)
Problem: Missing changes for import check.
Solution: Add missing changes.
Files: src/vim9script.c

Patch 8.2.4655
Problem: Command line completion popup menu positioned wrong when using a

terminal window.

version9.txt — 3952

Solution: Position the popup menu differently when editing the command line.
(Yegappan Lakshmanan, closes #10050, closes #10035)

Files: src/popupmenu.c, src/testdir/test_cmdline.vim,
src/testdir/test_terminal.vim,
src/testdir/dumps/Test_wildmenu_pum_term_01.dump

Patch 8.2.4656
Problem: Vim9: can't use items from "import autoload" with autoload

directory name.
Solution: Let sn_autoload_prefix overrule sn_import_autoload.

(closes #10054)
Files: src/structs.h, src/vim9instr.c, src/vim9expr.c, src/vim9script.c,

src/testdir/test_vim9_import.vim

Patch 8.2.4657
Problem: Errors for functions are sometimes hard to read.
Solution: Use printable_func_name() in more places.
Files: src/vim9execute.c, src/userfunc.c, src/proto/userfunc.pro,

src/vim9expr.c, src/eval.c, src/vim9instr.c, src/vim9type.c,
src/testdir/test_vim9_expr.vim

Patch 8.2.4658
Problem: Org-mode files are not recognized.
Solution: Add patterns to recognize "org" files. (closes #10046)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4659
Problem: Invalid memory access when using printable function name.
Solution: Adjust copied name length.
Files: src/userfunc.c

Patch 8.2.4660
Problem: Cursorcolumn is sometimes not correct.
Solution: Recompute the cursor column when entering Insert mode and the

cursor is on a character wider than a screen cell. (closes #10057)
Files: src/edit.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_cursorcolumn_insert_on_tab_1.dump,
src/testdir/dumps/Test_cursorcolumn_insert_on_tab_2.dump

Patch 8.2.4661
Problem: Coverity warning for using uninitialized variable.
Solution: Initialize variable to NULL.
Files: src/vim9expr.c

Patch 8.2.4662
Problem: No error for using out of range list index.
Solution: Check list index at script level like in compiled function.

(closes #10051)
Files: src/vim.h, src/evalvars.c, src/list.c, src/proto/list.pro,

src/eval.c, src/vim9execute.c, src/testdir/test_vim9_assign.vim

Patch 8.2.4663
Problem: Occasional crash when running the GUI tests.
Solution: Check that the line index is not too high. (closes #8681)
Files: src/screen.c

Patch 8.2.4664
Problem: Elvish files are not recognized.
Solution: Recognize .elv files. (Bruno Roque, closes #10058)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3953

Patch 8.2.4665
Problem: Popup with "minwidth" and scrollbar not updated properly.
Solution: Adjust the computation if the window width. (closes #10061)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_previewpopup_4.dump,
src/testdir/dumps/Test_popupwin_previewpopup_5.dump,
src/testdir/dumps/Test_popupwin_previewpopup_7.dump,
src/testdir/dumps/Test_popupwin_previewpopup_8.dump,
src/testdir/dumps/Test_popupwin_previewpopup_9.dump,
src/testdir/dumps/Test_popupwin_previewpopup_10.dump,
src/testdir/dumps/Test_popupwin_drag_minwidth_1.dump,
src/testdir/dumps/Test_popupwin_drag_minwidth_2.dump,
src/testdir/dumps/Test_popupwin_drag_minwidth_3.dump

Patch 8.2.4666
Problem: Vim9: assignment not recognized in skipped block.
Solution: When skipping assume identifier exists. (closes #10059)
Files: src/vim9compile.c, src/proto/vim9compile.pro, src/vim9cmds.c,

src/testdir/test_vim9_cmd.vim, src/testdir/test_vim9_script.vim

Patch 8.2.4667
Problem: expandcmd() fails on an error.
Solution: On failure return the command unmodified. (Yegappan Lakshmanan,

closes #10063)
Files: runtime/doc/builtin.txt, src/evalfunc.c,

src/testdir/test_expand.vim

Patch 8.2.4668
Problem: Buffer allocation failures insufficiently tested.
Solution: Add tests for memory allocation failures. (Yegappan Lakshmanan,

closes #10064)
Files: src/alloc.h, src/buffer.c, src/popupwin.c, src/window.c,

src/testdir/test_buffer.vim, src/testdir/test_swap.vim

Patch 8.2.4669
Problem: In compiled code len('string') is not inlined.
Solution: Compute the length at compile time if possible. (closes #10065)
Files: src/evalfunc.c, src/proto/evalfunc.pro, src/vim9expr.c,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.4670
Problem: Memory allocation failures for new tab page not tested.
Solution: Add tests with failing memory allocation. (Yegappan Lakshmanan,

closes #10067)
Files: src/alloc.h, src/blob.c, src/buffer.c, src/window.c,

src/testdir/test_blob.vim, src/testdir/test_buffer.vim,
src/testdir/test_tabpage.vim, src/testdir/test_window_cmd.vim

Patch 8.2.4671
Problem: 'wildignorecase' is sometimes not used for glob().
Solution: Also use 'wildignorecase' when there are no wildcards.

(closes #10066, closes #8350)
Files: src/filepath.c, src/testdir/test_functions.vim

Patch 8.2.4672
Problem: Using :normal with Ex mode may make :substitute hang.
Solution: When getting an empty line behave like 'q' was typed.

(closes #10070)
Files: src/ex_cmds.c, src/testdir/test_normal.vim

version9.txt — 3954

Patch 8.2.4673
Problem: Redrawing a vertically split window is slow when using CTRL-F and

CTRL-B.
Solution: When deciding on USE_REDRAW bail out if scrolling more than three

lines. (issue #8002)
Files: src/screen.c

Patch 8.2.4674
Problem: Cannot force getting MouseMove events.
Solution: Add the 'mousemoveevent' option with implementation for the GUI.

(Ernie Rael, closes #10044)
Files: runtime/doc/gui.txt, runtime/doc/options.txt,

runtime/doc/testing.txt, src/gui.c, src/option.h,
src/optiondefs.h, src/testing.c, src/testdir/test_gui.vim

Patch 8.2.4675
Problem: No error for missing expression after :elseif. (Ernie Rael)
Solution: Check for missing expression. (closes #10068)
Files: src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.4676 (after 8.2.4675)
Problem: Test fails with different error.
Solution: Add argument to :elseif.
Files: src/testdir/test_vimscript.vim

Patch 8.2.4677
Problem: The Athena GUI support is outdated.
Solution: Remove the Athena GUI code.
Files: Filelist, src/Makefile, src/proto.h, src/clipboard.c,

src/gui_athena.c, src/proto/gui_athena.pro, src/gui_at_sb.c,
src/gui_at_sb.h, src/gui_at_fs.c, src/gui_motif.c, src/evalfunc.c,
src/gui.c, src/gui_beval.c, src/gui_x11.c, src/if_mzsch.c,
src/main.c, src/menu.c, src/mouse.c, src/version.c, src/feature.h,
src/gui.h, src/structs.h, src/vim.h, src/testdir/gui_init.vim,
src/testdir/setup_gui.vim, src/testdir/test_clientserver.vim,
src/testdir/test_edit.vim, src/testdir/test_gui.vim,
src/testdir/test_highlight.vim, src/testdir/test_quotestar.vim,
src/testdir/test_startup.vim, runtime/doc/gui.txt,
runtime/doc/gui_x11.txt

Patch 8.2.4678
Problem: Vim9: not all code is tested.
Solution: Add a few more tests.
Files: src/vim9execute.c, src/testdir/test_vim9_script.vim,

src/testdir/test_vim9_import.vim, src/testdir/test_vim9_cmd.vim

Patch 8.2.4679
Problem: Cannot have expandcmd() give an error message for mistakes.
Solution: Add an optional argument to give errors. Fix memory leak when

expanding files fails. (Yegappan Lakshmanan, closes #10071)
Files: runtime/doc/builtin.txt, src/evalfunc.c, src/filepath.c,

src/testdir/test_expand.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.4680
Problem: Build failure without +postscript.
Solution: Use another error message.
Files: src/vim9execute.c, src/testdir/test_vim9_import.vim

Patch 8.2.4681

version9.txt — 3955

Problem: Build fails with a combination of features.
Solution: Remove #ifdef for alloc_clear_id(). (John Marriott)
Files: src/alloc.c

Patch 8.2.4682
Problem: Vim9: can use :unlockvar for const variable. (Ernie Rael)
Solution: Check whether the variable is a const.
Files: src/ex_docmd.c, src/evalvars.c, src/vim9script.c,

src/proto/vim9script.pro, src/eval.c, src/userfunc.c,
src/testdir/test_vim9_cmd.vim

Patch 8.2.4683
Problem: Verbose check with dict_find() to see if a key is present.
Solution: Add dict_has_key(). (Yegappan Lakshmanan, closes #10074)
Files: src/channel.c, src/dict.c, src/evalwindow.c, src/filepath.c,

src/highlight.c, src/json.c, src/match.c, src/popupwin.c,
src/proto/dict.pro, src/quickfix.c, src/search.c, src/sign.c,
src/tag.c, src/terminal.c, src/testing.c, src/textprop.c,
src/time.c

Patch 8.2.4684
Problem: Cannot open a channel on a Unix domain socket.
Solution: Add Unix domain socket support. (closes #10062)
Files: runtime/doc/channel.txt, src/channel.c, src/testdir/check.vim,

src/testdir/shared.vim, src/testdir/test_channel.py,
src/testdir/test_channel.vim, src/testdir/test_channel_unix.py,
src/testdir/test_cmdline.vim

Patch 8.2.4685
Problem: When a swap file is found for a popup there is no dialog and the

buffer is loaded anyway.
Solution: Silently load the buffer read-only. (closes #10073)
Files: runtime/doc/popup.txt, src/memline.c, src/popupwin.c, src/vim.h,

src/buffer.c, src/testdir/test_popupwin.vim

Patch 8.2.4686
Problem: Configure doesn't find the Motif library with Cygwin.
Solution: Check for libXm.dll.a. (Kelvin Lee, closes #10077)
Files: src/configure.ac, src/auto/configure

Patch 8.2.4687
Problem: "vimgrep /\%v/ *" may cause a crash.
Solution: When compiling the pattern with the old engine fails, restore the

regprog of the new engine instead of leaving it NULL.
(closes #10079)

Files: src/regexp.c

Patch 8.2.4688
Problem: New regexp engine does not give an error for "\%v".
Solution: Check for a value argument. (issue #10079)
Files: src/regexp_nfa.c, src/errors.h, src/regexp_bt.c,

src/testdir/test_regexp_latin.vim

Patch 8.2.4689
Problem: Using <Cmd> in a mapping does not work for mouse keys in Insert

mode. (Sergey Vlasov)
Solution: When reading the <Cmd> argument do not use the stuff buffer.

(closes #10080)
Files: src/getchar.c

version9.txt — 3956

Patch 8.2.4690
Problem: Channel tests fail on MS-Windows.
Solution: Check if the AF_UNIX attribute exists. (closes #10083)
Files: src/testdir/test_channel.py, src/testdir/test_channel_unix.py

Patch 8.2.4691 (after 8.2.4689)
Problem: Solution for <Cmd> in a mapping causes trouble.
Solution: Use another solution: put back CTRL-O after reading the <Cmd>

sequence.
Files: src/getchar.c

Patch 8.2.4692
Problem: No test for what 8.2.4691 fixes.
Solution: Add a test. Use a more generic solution. (closes #10090)
Files: src/getchar.c, src/mouse.c, src/testdir/test_mapping.vim

Patch 8.2.4693 (after 8.2.4688)
Problem: new regexp does not accept pattern "\%>0v".
Solution: Do accept digit zero.
Files: src/regexp_bt.c, src/regexp_nfa.c,

src/testdir/test_regexp_latin.vim

Patch 8.2.4694
Problem: Avoidance of #elif causes more preproc nesting.
Solution: Use #elif where it is useful. (Ozaki Kiichi, closes #10081)
Files: src/option.c, src/optiondefs.h, src/optionstr.c, src/version.c

Patch 8.2.4695
Problem: JSON encoding could be faster.
Solution: Optimize encoding JSON strings. (closes #10086)
Files: src/json.c, src/testdir/test_json.vim

Patch 8.2.4696
Problem: delete() with "rf" argument does not report a failure.
Solution: Return -1 if the directory could not be removed. (closes #10078)
Files: src/fileio.c, src/testdir/test_functions.vim

Patch 8.2.4697
Problem: Vim9: crash when adding a duplicate key to a dictionary.
Solution: Clear the stack item when it has been moved into the dictionary.

(closes #10087)
Files: src/vim9execute.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4698
Problem: Vim9: script variable has no flag that it was set.
Solution: Add a flag that it was set, to avoid giving it a value when used.

(closes #10088)
Files: src/structs.h, src/vim9script.c, src/vim9execute.c,

src/evalvars.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.4699
Problem: Hard to reproduce hang when reading from a channel.
Solution: Check for readahead before starting to wait. (closes #10093,

closes #7781, closes #6364)
Files: src/channel.c

Patch 8.2.4700
Problem: Buffer remains active if a WinClosed event throws an exception.
Solution: Ignore aborting() when closing the buffer. (closes #10097)

version9.txt — 3957

Files: src/window.c, src/testdir/test_autocmd.vim

Patch 8.2.4701
Problem: Kuka Robot Language files not recognized.
Solution: Recognize *.src and *.dat files. (Patrick Meiser-Knosowski,

closes #10096)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim,

runtime/autoload/dist/ft.vim

Patch 8.2.4702
Problem: C++ scope labels are hard-coded.
Solution: Add 'cinscopedecls' to define the labels. (Rom Praschan,

closes #10109)
Files: runtime/doc/indent.txt, runtime/doc/options.txt,

runtime/doc/quickref.txt, runtime/optwin.vim, src/buffer.c,
src/cindent.c, src/option.c, src/option.h, src/optiondefs.h,
src/optionstr.c, src/structs.h, src/testdir/test_cindent.vim

Patch 8.2.4703 (after 8.2.4702)
Problem: Memory leak in handling 'cinscopedecls'.
Solution: Free the memory before returning.
Files: src/cindent.c

Patch 8.2.4704
Problem: Using "else" after return or break increases indent.
Solution: Remove "else" and reduce indent. (Goc Dundar, closes #10099)
Files: src/fileio.c, src/memline.c, src/option.c, src/syntax.c

Patch 8.2.4705
Problem: reg_executing may not be cleared.
Solution: Reset reg_executing later. (closes #10111, closes #10110)
Files: src/ex_docmd.c, src/getchar.c, src/globals.h, src/structs.h,

src/testdir/test_registers.vim

Patch 8.2.4706
Problem: Buffer remains active if a WinClosed event throws an exception

when there are multiple tabpages.
Solution: Ignore aborting() when closing the buffer. (closes #10101)
Files: src/window.c, src/testdir/test_autocmd.vim

Patch 8.2.4707
Problem: Redrawing could be a bit more efficient.
Solution: Optimize redrawing. (closes #10105)
Files: src/change.c, src/edit.c, src/testdir/test_highlight.vim,

src/testdir/dumps/Test_cursorcolumn_insert_on_tab_3.dump

Patch 8.2.4708
Problem: PHP test files are not recognized.
Solution: Add the *.phpt pattern. (Julien Voisin, closes #10112)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4709
Problem: After :redraw the statusline highlight might be used.
Solution: Clear the screen attribute after redrawing the screen.

(closes #10108)
Files: src/ex_docmd.c

Patch 8.2.4710
Problem: Smart indenting does not work after completion.
Solution: Set "can_si". (Christian Brabandt, closes #10113, closes #558)

version9.txt — 3958

Files: src/edit.c, src/testdir/test_ins_complete.vim

Patch 8.2.4711
Problem: When 'insermode' is set :edit from <Cmd> mapping misbehaves.
Solution: Don't set "need_start_insertmode" when already in Insert mode.

(closes #10116)
Files: src/ex_cmds.c, src/testdir/test_edit.vim

Patch 8.2.4712
Problem: Only get profiling information after exiting.
Solution: Add "profile dump" and "profile stop". (Marco Hinz, Yegappan

Lakshmanan, closes #10107)
Files: runtime/doc/repeat.txt, src/profiler.c,

src/testdir/test_profile.vim

Patch 8.2.4713
Problem: Plugins cannot track text scrolling.
Solution: Add the WinScrolled event. (closes #10102)
Files: runtime/doc/autocmd.txt, src/autocmd.c, src/proto/autocmd.pro,

src/edit.c, src/gui.c, src/main.c, src/structs.h, src/vim.h,
src/window.c, src/proto/window.pro, src/testdir/test_autocmd.vim

Patch 8.2.4714
Problem: Using g:filetype_dat and g:filetype_src not tested.
Solution: Add a test. (Patrick Meiser-Knosowski, closes #10117)
Files: src/testdir/test_filetype.vim

Patch 8.2.4715
Problem: Vagrantfile not recognized.
Solution: Recognize Vagrantfile as ruby. (Julien Voisin, closes #10119)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4716
Problem: Memory allocation failure not tested when defining a function.
Solution: Add a test. (Yegappan Lakshmanan, closes #10127)
Files: src/alloc.c, src/alloc.h, src/proto/alloc.pro, src/userfunc.c,

src/testdir/test_user_func.vim, src/testdir/test_vim9_func.vim

Patch 8.2.4717
Problem: For TextYankPost v:event does not contain information about the

operation being inclusive or not.
Solution: Add "inclusive" to v:event. (Justin M. Keyes, Yegappan Lakshmanan,

closes #10125)
Files: runtime/doc/autocmd.txt, src/register.c,

src/testdir/test_autocmd.vim

Patch 8.2.4718
Problem: @@@ in the last line sometimes drawn in the wrong place.
Solution: Make sure the column is valid. (closes #10130)
Files: src/drawscreen.c, src/screen.c, src/testdir/test_display.vim

src/testdir/dumps/Test_display_lastline_1.dump,
src/testdir/dumps/Test_display_lastline_2.dump,
src/testdir/dumps/Test_display_lastline_3.dump,
src/testdir/dumps/Test_display_lastline_4.dump

Patch 8.2.4719
Problem: ">" marker sometimes not displayed in the jumplist.
Solution: If the buffer no longer exists show "-invalid-". (Christian

Brabandt, closes #10131, closes #10100)
Files: runtime/doc/motion.txt, src/mark.c, src/testdir/Make_all.mak,

version9.txt — 3959

src/testdir/test_alot.vim, src/testdir/test_jumplist.vim,
src/testdir/test_jumps.vim

Patch 8.2.4720
Problem: ABB Rapid files are not recognized properly.
Solution: Add checks for ABB Rapid files. (Patrick Meiser-Knosowski,

closes #10104)
Files: runtime/autoload/dist/ft.vim, runtime/doc/filetype.txt,

runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4721
Problem: Cooklang files are not recognized.
Solution: recognize *.cook files. (Goc Dundar, closes #10120)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4722
Problem: When a recording is ended with a mapped key that key is also

recorded.
Solution: Remember the previous last_recorded_len. (closes #10122)
Files: src/getchar.c, src/testdir/test_registers.vim

Patch 8.2.4723
Problem: The ModeChanged autocmd event is inefficient.
Solution: Avoid allocating memory. (closes #10134) Rename

trigger_modechanged() to may_trigger_modechanged().
Files: src/misc1.c, src/proto/misc1.pro, src/edit.c, src/ex_docmd.c,

src/ex_getln.c, src/insexpand.c, src/normal.c, src/terminal.c,
src/autocmd.c

Patch 8.2.4724
Problem: Current instance of last search pattern not easily spotted.
Solution: Add CurSearch highlighting. (closes #10133)
Files: runtime/doc/options.txt, runtime/doc/syntax.txt, src/highlight.c,

src/match.c, src/normal.c, src/optiondefs.h, src/structs.h,
src/vim.h, src/normal.c, src/testdir/test_search.vim,
src/testdir/dumps/Test_hlsearch_cursearch_multiple_line.dump,
src/testdir/dumps/Test_hlsearch_cursearch_single_line_1.dump,
src/testdir/dumps/Test_hlsearch_cursearch_single_line_2.dump,
src/testdir/dumps/Test_hlsearch_cursearch_single_line_3.dump

Patch 8.2.4725 (after 8.2.4724)
Problem: Unused variable in tiny build.
Solution: Add #ifdef.
Files: src/normal.c

Patch 8.2.4726
Problem: Cannot use expand() to get the script name.
Solution: Support expand('<script>'). (closes #10121)
Files: runtime/doc/cmdline.txt, src/errors.h, src/ex_docmd.c,

src/scriptfile.c, src/vim.h, src/testdir/test_expand.vim

Patch 8.2.4727
Problem: Unused code.
Solution: Remove code and add #ifdefs. (Dominique Pellé, closes #10136)
Files: runtime/doc/editing.txt, runtime/doc/eval.txt,

runtime/doc/vim9.txt, src/errors.h, src/option.c, src/search.c,
src/proto/search.pro

Patch 8.2.4728
Problem: No test that v:event cannot be modified.

version9.txt — 3960

Solution: Add a test. (closes #10139)
Files: src/testdir/test_autocmd.vim

Patch 8.2.4729
Problem: HEEx and Surface templates do not need a separate filetype.
Solution: Use Elixir for the similar filetypes. (Aaron Tinio, closes #10124)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4730
Problem: MS-Windows GUI: cannot use CTRL-/.
Solution: Handle the WM_KEYUP event. (Yasuhiro Matsumoto, closes #10141)
Files: src/gui_w32.c

Patch 8.2.4731
Problem: The changelist index is not remembered per buffer.
Solution: Keep the changelist index per window and buffer. (closes #10135,

closes #2173)
Files: src/buffer.c, src/evalfunc.c, src/structs.h,

src/testdir/test_changelist.vim

Patch 8.2.4732
Problem: Duplicate code to free fuzzy matches.
Solution: Bring back fuzmatch_str_free().
Files: src/search.c, src/proto/search.pro, src/cmdexpand.c

Patch 8.2.4733 (after 8.2.4729)
Problem: HEEx and Surface do need a separate filetype.
Solution: Revert 8.2.4729. (closes #10147)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4734
Problem: getcharpos() may change a mark position.
Solution: Copy the mark position. (closes #10148)
Files: src/eval.c, src/testdir/test_cursor_func.vim

Patch 8.2.4735
Problem: Quickfix tests can be a bit hard to read.
Solution: Use heredoc instead of strings and line continuation. (Yegappan

Lakshmanan, closes #10145)
Files: src/testdir/test_quickfix.vim

Patch 8.2.4736
Problem: Build problem for Cygwin with Motif.
Solution: Undefine ControlMask. (Kelvin Lee, closes #10152)
Files: src/mbyte.c

Patch 8.2.4737
Problem: // in JavaScript string recognized as comment.
Solution: Only check for linecomment if 'cindent' is set. (closes #10151)
Files: src/change.c, src/testdir/test_textformat.vim

Patch 8.2.4738
Problem: Esc on commandline executes command instead of abandoning it.
Solution: Save and restore KeyTyped when removing the popup menu.

(closes #10154)
Files: src/cmdexpand.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_wildmenu_with_pum_foldexpr_1.dump,
src/testdir/dumps/Test_wildmenu_with_pum_foldexpr_2.dump

Patch 8.2.4739

version9.txt — 3961

Problem: Accessing freed memory after WinScrolled autocmd event.
Solution: Check the window pointer is still valid. (closes #10156)

Remove the argument from may_trigger_winscrolled().
Files: src/window.c, src/proto/window.pro, src/edit.c, src/gui.c,

src/main.c, src/testdir/test_autocmd.vim

Patch 8.2.4740
Problem: When expand() fails there is no error message.
Solution: When 'verbose' is set give an error message.
Files: runtime/doc/builtin.txt, src/evalfunc.c,

src/testdir/test_expand.vim

Patch 8.2.4741 (after 8.2.4740)
Problem: Startup test fails.
Solution: Avoid an error for verbose expansion. Fix that the "0verbose"

command modifier doesn't work.
Files: runtime/syntax/syntax.vim, runtime/syntax/synload.vim,

src/structs.h, src/ex_docmd.c, src/testdir/test_excmd.vim

Patch 8.2.4742
Problem: There is no way to start logging very early in startup.
Solution: Add the --log argument. Include the date in the start message in

the log file. Avoid a duplicate message when forking. Log an
executed shell command.

Files: runtime/doc/starting.txt, runtime/doc/channel.txt,
src/main.c, src/channel.c, src/os_unix.c, src/os_win32.c,
src/testdir/test_startup.vim

Patch 8.2.4743
Problem: Clang 14 is available on CI.
Solution: Switch from clang 13 to 14. (closes #10157)
Files: .github/workflows/ci.yml

Patch 8.2.4744
Problem: A terminal window can't use the bell.
Solution: Add bell support for the terminal window. (closes #10178)
Files: runtime/doc/options.txt, src/gui_w32.c, src/option.h,

src/optionstr.c, src/terminal.c

Patch 8.2.4745 (after 8.2.4744)
Problem: Using wrong flag for using bell in the terminal.
Solution: Change to use BO_TERM.
Files: src/terminal.c, src/misc1.c

Patch 8.2.4746
Problem: Supercollider filetype not recognized.
Solution: Match file extensions and check file contents to detect

supercollider. (closes #10142)
Files: runtime/filetype.vim, runtime/autoload/dist/ft.vim,

src/testdir/test_filetype.vim

Patch 8.2.4747
Problem: No filetype override for .sys files.
Solution: Add g:filetype_sys. (Patrick Meiser-Knosowski, closes #10181)
Files: runtime/doc/filetype.txt, runtime/autoload/dist/ft.vim,

src/testdir/test_filetype.vim

Patch 8.2.4748
Problem: Cannot use an imported function in a mapping.
Solution: Recognize <SID>name.Func.

version9.txt — 3962

Files: runtime/doc/vim9.txt, src/term.c, src/vim9execute.c,
src/proto/vim9execute.pro, src/scriptfile.c,
src/testdir/test_vim9_import.vim

Patch 8.2.4749
Problem: <script> is not expanded in autocmd context.
Solution: Add the context to the pattern struct. (closes #10144)

Rename AutoPatCmd to AutoPatCmd_T.
Files: src/autocmd.c, src/proto/autocmd.pro, src/scriptfile.c,

src/structs.h, src/testdir/test_expand.vim

Patch 8.2.4750
Problem: Small pieces of dead code.
Solution: Remove the dead code. (Goc Dundar, closes #10190) Rename the

qftf_cb struct member to avoid confusion.
Files: src/ex_cmds.c, src/misc1.c, src/optionstr.c, src/quickfix.c

Patch 8.2.4751 (after 8.2.4748)
Problem: Mapping <SID>name.Func does not work for script in autoload

directory.
Solution: Use the # form for a script in the autoload directory.

(closes #10186)
Files: src/term.c, src/testdir/test_vim9_import.vim

Patch 8.2.4752
Problem: Wrong 'statusline' value can cause illegal memory access.
Solution: Properly check the value. (closes #10192)
Files: src/optionstr.c, src/testdir/test_options.vim

Patch 8.2.4753
Problem: Error from setting an option is silently ignored.
Solution: Handle option value errors better. Fix uses of N_().
Files: src/option.c, src/proto/option.pro, src/optionstr.c,

src/channel.c, src/crypt.c, src/diff.c, src/edit.c,
src/eval.c, src/evalfunc.c, src/evalvars.c, src/ex_cmds2.c,
src/ex_docmd.c, src/ex_getln.c, src/getchar.c, src/gui.c,
src/gui_gtk_x11.c, src/help.c, src/highlight.c, src/if_tcl.c,
src/main.c, src/memline.c, src/message_test.c,
src/popupmenu.c, src/quickfix.c, src/scriptfile.c, src/spell.c,
src/spellfile.c, src/term.c, src/undo.c, src/vim9script.c

Patch 8.2.4754
Problem: Still using cached values after unsetting some known environment

variables.
Solution: Take care of the side effects. (closes #10194)
Files: src/evalfunc.c, src/evalvars.c, src/misc1.c, src/proto/misc1.pro,

src/vim9execute.c, src/optionstr.c, src/testdir/test_environ.vim

Patch 8.2.4755
Problem: Cannot use <SID>FuncRef in completion spec.
Solution: Dereference a function name in another way. (closes #10197)
Files: src/eval.c, src/testdir/test_vim9_import.vim

Patch 8.2.4756 (after 8.2.4754)
Problem: Build error without the +eval feature.
Solution: Adjust #ifdefs.
Files: src/misc1.c

Patch 8.2.4757
Problem: List of libraries to suppress lsan errors is outdated.

version9.txt — 3963

Solution: Add another library. (closes #10201)
Files: src/testdir/lsan-suppress.txt

Patch 8.2.4758
Problem: When using an LSP channel want to get the message ID.
Solution: Have ch_sendexpr() return the ID. (Yegappan Lakshmanan,

closes #10202)
Files: runtime/doc/channel.txt, src/channel.c, src/evalfunc.c,

src/testdir/test_channel.vim

Patch 8.2.4759
Problem: CurSearch highlight does not work for multi-line match.
Solution: Check cursor position before adjusting columns. (closes #10133)
Files: src/structs.h, src/match.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_hlsearch_cursearch_multiple_line.dump,
src/testdir/dumps/Test_hlsearch_cursearch_multiple_line_1.dump,
src/testdir/dumps/Test_hlsearch_cursearch_multiple_line_2.dump,
src/testdir/dumps/Test_hlsearch_cursearch_multiple_line_3.dump,
src/testdir/dumps/Test_hlsearch_cursearch_multiple_line_4.dump,
src/testdir/dumps/Test_hlsearch_cursearch_multiple_line_5.dump

Patch 8.2.4760
Problem: Using matchfuzzy() on a long list can take a while.
Solution: Add a limit to the number of matches. (Yasuhiro Matsumoto,

closes #10189)
Files: runtime/doc/builtin.txt, src/search.c,

src/testdir/test_matchfuzzy.vim

Patch 8.2.4761
Problem: Documentation for using LSP messages is incomplete.
Solution: Update the documentation. (Yegappan Lakshmanan, closes #10206)
Files: runtime/doc/channel.txt

Patch 8.2.4762
Problem: Using freed memory when using synstack() and synID() in WinEnter.
Solution: Check using the syntax window. (closes #10204)
Files: src/syntax.c, src/testdir/test_syntax.vim

Patch 8.2.4763
Problem: Using invalid pointer with "V:" in Ex mode.
Solution: Correctly handle the command being changed to "+".
Files: src/ex_docmd.c, src/testdir/test_ex_mode.vim

Patch 8.2.4764
Problem: CI uses an older gcc version.
Solution: Use GCC 11. (closes #10185)
Files: .github/workflows/ci.yml, src/testdir/lsan-suppress.txt

Patch 8.2.4765
Problem: Function matchfuzzy() sorts too many items.
Solution: Only put matches in the array. (Yegappan Lakshmanan,

closes #10208)
Files: src/search.c

Patch 8.2.4766
Problem: KRL files using "deffct" not recognized.
Solution: Adjust the pattern used for matching. (Patrick Meiser-Knosowski,

closes #10200)
Files: runtime/autoload/dist/ft.vim, src/testdir/test_filetype.vim

version9.txt — 3964

Patch 8.2.4767
Problem: Openscad files are not recognized.
Solution: Add a filetype pattern. (Niklas Adam, closes #10199)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4768
Problem: CI: codecov upload sometimes does not work.
Solution: Use action v3 instead of v2. (closes #10209)
Files: .github/workflows/ci.yml

Patch 8.2.4769
Problem: Build warning with UCRT.
Solution: Adjust #ifdef for _wenviron. (John Marriott)
Files: src/evalfunc.c

Patch 8.2.4770
Problem: Cannot easily mix expression and heredoc.
Solution: Support `=expr` in heredoc. (Yegappan Lakshmanan, closes #10138)
Files: runtime/doc/eval.txt, src/evalvars.c, src/userfunc.c,

src/testdir/test_let.vim, src/testdir/test_vim9_assign.vim

Patch 8.2.4771
Problem: Coverity warns for not checking return value.
Solution: Check return value of rettv_dict_alloc().
Files: src/channel.c

Patch 8.2.4772
Problem: Old Coverity warning for not checking ftell() return value.
Solution: Check return value of fseek() and ftell().
Files: src/misc1.c

Patch 8.2.4773
Problem: Build failure without the +eval feature.
Solution: Use other error message. Avoid warnings.
Files: src/misc1.c, src/cindent.c, src/term.c

Patch 8.2.4774
Problem: Crash when using a number for lambda name.
Solution: Check the type of the lambda reference.
Files: src/eval.c, src/errors.h, src/testdir/test_lambda.vim

Patch 8.2.4775
Problem: SpellBad highlighting does not work in Konsole.
Solution: Do not keep t_8u defined for Konsole. Redraw when t_8u is reset.

(closes #10177)
Files: src/term.c

Patch 8.2.4776
Problem: GTK: 'lines' and 'columns' may change during startup.
Solution: Ignore stale GTK resize events. (Ernie Rael, closes #10179)
Files: src/gui_gtk_x11.c

Patch 8.2.4777 (after 8.2.4775)
Problem: Screendump tests fail because of a redraw.
Solution: Do not output t_8u before receiving termresponse. Redraw only

when t_8u is not reset and termresponse is received.
Files: src/term.c

Patch 8.2.4778
Problem: Pacman files use dosini filetype.

version9.txt — 3965

Solution: Use conf instead. (Chaoren Lin, closes #10213)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4779
Problem: lsan suppression is too version specific.
Solution: Leave out the version number. (Christian Brabandt, closes #10214)
Files: src/testdir/lsan-suppress.txt

Patch 8.2.4780
Problem: Parsing an LSP message fails when it is split.
Solution: Collapse the received data before parsing. (Yegappan Lakshmanan,

closes #10215)
Files: runtime/doc/channel.txt, src/channel.c,

src/testdir/test_channel.vim, src/testdir/test_channel_lsp.py

Patch 8.2.4781
Problem: Maxima files are not recognized.
Solution: Add patterns to detect Maxima files. (Doron Behar, closes #10211)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4782
Problem: Accessing freed memory.
Solution: Clear evalarg after checking for trailing characters.

(issue #10218)
Files: src/userfunc.c, src/testdir/test_lambda.vim

Patch 8.2.4783
Problem: Coverity warns for leaking memory.
Solution: Use another strategy freeing "theline".
Files: src/evalvars.c

Patch 8.2.4784
Problem: Lamba test with timer is flaky.
Solution: Adjust sleep time on retry.
Files: src/testdir/test_lambda.vim

Patch 8.2.4785
Problem: Visual mode not stopped early enough if win_gotoid() goes to

another buffer. (Sergey Vlasov)
Solution: Stop Visual mode before jumping to another buffer. (closes #10217)
Files: src/evalwindow.c, src/testdir/test_vim9_builtin.vim,

src/testdir/dumps/Test_win_gotoid_1.dump,
src/testdir/dumps/Test_win_gotoid_2.dump,
src/testdir/dumps/Test_win_gotoid_3.dump

Patch 8.2.4786 (after 8.2.4785)
Problem: Test for win_gotoid() in Visual mode fails on Mac.
Solution: Skip the test on MacOS.
Files: src/testdir/test_vim9_builtin.vim

Patch 8.2.4787
Problem: prop_find() does not find the right property.
Solution: Fix the scan order. (closes #10220)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.4788
Problem: Large payload for LSP message not tested.
Solution: Add a test with a large LSP payload. (Yegappan Lakshmanan,

closes #10223)
Files: src/channel.c, src/testdir/test_channel.vim,

version9.txt — 3966

src/testdir/test_channel_lsp.py

Patch 8.2.4789
Problem: The cursor may be in the in wrong place when using :redraw while

editing the cmdline.
Solution: When editing the command line let :redraw update the command line

too. (closes #10210)
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim,

src/testdir/dumps/Test_redraw_in_autocmd_1.dump,
src/testdir/dumps/Test_redraw_in_autocmd_2.dump

Patch 8.2.4790
Problem: Lilypond filetype not recognized.
Solution: Add patterns for lilypond. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4791
Problem: Autocmd events triggered in different order when reusing an empty

buffer.
Solution: Call buff_freeall() earlier. (Charlie Groves, closes #10198)
Files: src/buffer.c, src/testdir/test_autocmd.vim

Patch 8.2.4792
Problem: Indent operator creates an undo entry for every line.
Solution: Create one undo entry for all lines. (closes #10227)
Files: src/indent.c, src/testdir/test_indent.vim

Patch 8.2.4793
Problem: Recognizing Maxima filetype even though it might be another.
Solution: Remove *.mc and *.dem patterns from Maxima files
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4794
Problem: Compiler warning for not initialized variable.
Solution: Initialize the variable. (John Marriott)
Files: src/indent.c

Patch 8.2.4795
Problem: 'cursorbind' scrolling depends on whether 'cursorline' is set.
Solution: Always call validate_cursor(). (Christian Brabandt, closes #10230,

closes #10014)
Files: src/move.c, src/testdir/README.txt,

src/testdir/test_cursorline.vim,
src/testdir/dumps/Test_hor_scroll_1.dump,
src/testdir/dumps/Test_hor_scroll_2.dump,
src/testdir/dumps/Test_hor_scroll_3.dump,
src/testdir/dumps/Test_hor_scroll_4.dump

Patch 8.2.4796 (after 8.2.4795)
Problem: File left behind after running cursorline tests.
Solution: Uncomment the line that deletes the file.
Files: src/testdir/test_cursorline.vim

Patch 8.2.4797
Problem: getwininfo() may get outdated values.
Solution: Make sure w_botline is up-to-date. (closes #10226)
Files: src/evalwindow.c, src/testdir/test_bufwintabinfo.vim

Patch 8.2.4798
Problem: t_8u option was reset even when set by the user.

version9.txt — 3967

Solution: Only reset t_8u when using the default value. (closes #10239)
Files: src/term.c

Patch 8.2.4799
Problem: Popup does not use correct topline.
Solution: Also add one when firstline is negative. (closes #10229)
Files: src/popupwin.c, src/testdir/test_popupwin.vim

Patch 8.2.4800 (after 8.2.4798)
Problem: Missing test update for adjusted t_8u behavior.
Solution: Update and extend the test.
Files: src/testdir/test_termcodes.vim

Patch 8.2.4801 (after 8.2.4795)
Problem: Fix for cursorbind fix not fully tested.
Solution: Add another test case. (Christian Brabandt, closes #10240)
Files: src/testdir/test_cursorline.vim,

src/testdir/dumps/Test_hor_scroll_5.dump

Patch 8.2.4802
Problem: Test is not cleaned up.
Solution: Make test clean up after itself. Avoid NUL. (closes #10233)
Files: src/testdir/test_autocmd.vim

Patch 8.2.4803
Problem: WinScrolled not always triggered when scrolling with the mouse.
Solution: Add calls to may_trigger_winscrolled(). (closes #10246)
Files: src/mouse.c, src/testdir/test_autocmd.vim

Patch 8.2.4804
Problem: Expression in heredoc doesn't work for compiled function.
Solution: Implement compiling the heredoc expressions. (Yegappan Lakshmanan,

closes #10232)
Files: runtime/doc/eval.txt, src/evalvars.c, src/proto/evalvars.pro,

src/ex_getln.c, src/vim9compile.c, src/proto/vim9compile.pro,
src/testdir/test_vim9_assign.vim

Patch 8.2.4805
Problem: CurSearch used for all matches in current line.
Solution: Don't use the non-zero line count. (closes #10247)
Files: src/match.c, src/testdir/test_search.vim,

src/testdir/dumps/Test_hlsearch_cursearch_single_line_1.dump,
src/testdir/dumps/Test_hlsearch_cursearch_single_line_2.dump,
src/testdir/dumps/Test_hlsearch_cursearch_single_line_2a.dump,
src/testdir/dumps/Test_hlsearch_cursearch_single_line_2b.dump

Patch 8.2.4806
Problem: A mapping using <LeftDrag> does not start Select mode.
Solution: When checking for starting select mode with the mouse also do this

when there is typeahead. (closes #10249)
Files: src/normal.c

Patch 8.2.4807
Problem: Processing key events in Win32 GUI is not ideal.
Solution: Improve processing of key events. (closes #10155)
Files: src/gui_w32.c

Patch 8.2.4808
Problem: Unused item in engine struct.
Solution: Remove "expr". Add comment with tags.

version9.txt — 3968

Files: src/regexp.h

Patch 8.2.4809
Problem: Various things not properly tested.
Solution: Add various test cases. (Yegappan Lakshmanan, closes #10259)
Files: src/testdir/test_blob.vim, src/testdir/test_debugger.vim,

src/testdir/test_listdict.vim, src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_import.vim, src/testdir/test_vim9_script.vim

Patch 8.2.4810 (after 8.2.4808)
Problem: Missing changes in one file.
Solution: Also change the struct initializers.
Files: src/regexp.c

Patch 8.2.4811 (after 8.2.4807)
Problem: Win32 GUI: caps lock doesn't work.
Solution: Handle VK_CAPITAL. (closes #10260, closes #10258)
Files: src/gui_w32.c

Patch 8.2.4812
Problem: Unused struct item.
Solution: Remove "lines" match_T. Simplify the code. (closes #10256)
Files: src/match.c, src/structs.h

Patch 8.2.4813
Problem: Pasting text while indent folding may mess up folds.
Solution: Adjust the way folds are split. (Brandon Simmons, closes #10254)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.4814
Problem: Possible to leave a popup window with win_gotoid().
Solution: Give an error when trying to leave a popup window with

win_gotoid(). (closes #10253)
Files: src/evalwindow.c, src/testdir/test_terminal3.vim

Patch 8.2.4815 (after 8.2.4776)
Problem: Cannot build with older GTK version.
Solution: Use gtk_window_get_size() instead of gdk_window_get_width() and

gdk_window_get_height(). (Ernie Rael, closes #10257)
Files: src/gui_gtk_x11.c

Patch 8.2.4816
Problem: Still using older codecov app in some places of CI.
Solution: Use v3.1.0. (closes #10209)
Files: .github/workflows/ci.yml

Patch 8.2.4817
Problem: Win32 GUI: modifiers are not always used.
Solution: Handle more modifiers. (closes #10269)
Files: src/gui_w32.c

Patch 8.2.4818 (after 8.2 4806)
Problem: No test for what 8.2.4806 fixes.
Solution: Add a test. (closes #10272)
Files: src/testdir/test_mapping.vim

Patch 8.2.4819
Problem: Unmapping simplified keys also deletes other mapping.
Solution: Only unmap a mapping with m_simplified set. (closes #10270)
Files: src/map.c, src/testdir/test_mapping.vim

version9.txt — 3969

Patch 8.2.4820
Problem: No simple programmatic way to find a specific mapping.
Solution: Add getmappings(). (Ernie Rael, closes #10273)
Files: runtime/doc/builtin.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/map.c, src/proto/map.pro, src/testdir/test_maparg.vim

Patch 8.2.4821
Problem: Crash when imported autoload script was deleted.
Solution: Initialize local variable. (closes #10274) Give a more meaningful

error message.
Files: src/eval.c, src/vim9script.c, src/testdir/test_vim9_import.vim

Patch 8.2.4822
Problem: Setting ufunc to NULL twice.
Solution: Set ufunc to NULL in find_exported(). (closes #19275)
Files: src/eval.c, src/vim9script.c

Patch 8.2.4823
Problem: Concatenating more than 2 strings in a :def function is

inefficient.
Solution: Add a count to the CONCAT instruction. (closes #10276)
Files: src/vim9.h, src/vim9cmds.c, src/vim9compile.c, src/vim9execute.c,

src/vim9expr.c, src/vim9instr.c, src/proto/vim9instr.pro,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4824
Problem: Expression is evaluated multiple times.
Solution: Evaluate expression once and store the result. (closes #10278)
Files: src/map.c

Patch 8.2.4825
Problem: Can only get a list of mappings.
Solution: Add the optional {abbr} argument. (Ernie Rael, closes #10277)

Rename to maplist(). Rename test file.
Files: runtime/doc/builtin.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/map.c, src/proto/map.pro, src/testdir/test_maparg.vim,
src/testdir/test_map_functions.vim, src/testdir/Make_all.mak

Patch 8.2.4826
Problem: .cshtml files are not recognized.
Solution: Use html filetype for .cshtml files. (Julien Voisin, closes #10212)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4827
Problem: Typo in variable name. (Gabriel Dupras)
Solution: Rename the variable.
Files: src/map.c

Patch 8.2.4828
Problem: Fix for unmapping simplified key not fully tested.
Solution: Add a test case. (closes #10292)
Files: src/map.c, src/testdir/test_mapping.vim

Patch 8.2.4829
Problem: A key may be simplified to NUL.
Solution: Use K_ZERO instead. Use macros instead of hard coded values.

(closes #10290)
Files: src/getchar.c, src/misc2.c, src/testdir/test_termcodes.vim

version9.txt — 3970

Patch 8.2.4830
Problem: Possible endless loop if there is unused typeahead.
Solution: Only loop when the typeahead changed.
Files: src/channel.c

Patch 8.2.4831
Problem: Crash when using maparg() and unmapping simplified keys.
Solution: Do not keep a mapblock pointer. (closes #10294)
Files: src/map.c, src/testdir/test_map_functions.vim

Patch 8.2.4832
Problem: Passing zero instead of NULL to a pointer argument.
Solution: Use NULL. (closes #10296)
Files: src/getchar.c, src/term.c

Patch 8.2.4833
Problem: Failure of mapping not checked for.
Solution: Check return value of ins_typebuf(). (closes #10299)
Files: src/getchar.c, src/term.c, src/testdir/test_termcodes.vim

Patch 8.2.4834
Problem: Vim9: some lines not covered by tests.
Solution: Add a few more tests. Remove dead code.
Files: src/vim9execute.c, src/vim9instr.c, src/vim9.h,

src/testdir/test_vim9_expr.vim

Patch 8.2.4835
Problem: Vim9: some lines not covered by tests.
Solution: Add a few more tests. Fix disassemble output.
Files: src/vim9execute.c, src/testdir/test_vim9_cmd.vim,

src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4836
Problem: Vim9: some lines not covered by tests.
Solution: Remove dead code. Add disassemble tests.
Files: src/vim9execute.c, src/vim9.h,

src/testdir/test_vim9_disassemble.vim

Patch 8.2.4837 (after patch 8.2.0919)
Problem: Modifiers not simplified when timed out or using feedkeys() with

'n" flag.
Solution: Adjust how mapped flag and timeout are used. (closes #10305)
Files: src/getchar.c, src/testdir/test_paste.vim,

src/testdir/test_termcodes.vim

Patch 8.2.4838
Problem: Checking for absolute path is not trivial.
Solution: Add isabsolutepath(). (closes #10303)
Files: runtime/doc/builtin.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/filepath.c, src/proto/filepath.pro,
src/testdir/test_functions.vim

Patch 8.2.4839
Problem: Compiler warning for unused argument.
Solution: Add "UNUSED".
Files: src/gui_gtk_x11.c

Patch 8.2.4840
Problem: Heredoc expression evaluated even when skipping.

version9.txt — 3971

Solution: Don't evaluate when "skip" is set. (closes #10306)
Files: src/evalvars.c, src/testdir/test_let.vim

Patch 8.2.4841
Problem: Empty string considered an error for expand() when 'verbose' is

set. (Christian Brabandt)
Solution: Do not give an error for an empty result. (closes #10307)
Files: src/evalfunc.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

src/filepath.c, src/testdir/test_expand_func.vim

Patch 8.2.4842 (after 8.2.4841)
Problem: expand("%:p") is not empty when there is no buffer name.
Solution: When ignoring errors still return NULL. (closes #10311)
Files: src/ex_docmd.c, src/testdir/test_expand_func.vim

Patch 8.2.4843 (after 8.2.4807)
Problem: Win32 GUI: Treating CTRL + ALT as AltGr is not backwards

compatible. (Axel Bender)
Solution: Make a difference between left and right menu keys.

(closes #10308)
Files: src/gui_w32.c

Patch 8.2.4844
Problem: <C-S-I> is simplified to <S-Tab>.
Solution: Do not simplify CTRL if there is also SHIFT. (closes #10313)
Files: src/getchar.c, src/testdir/test_gui.vim

Patch 8.2.4845
Problem: Duplicate code.
Solution: Move code below if/else. (closes #10314)
Files: src/misc1.c

Patch 8.2.4846 (after 8.2.4844)
Problem: Termcodes test fails.
Solution: use CTRL-SHIFT-V to insert an unsimplified key. (closes #10316)
Files: runtime/doc/cmdline.txt, src/edit.c, src/getchar.c,

src/testdir/test_gui.vim

Patch 8.2.4847
Problem: Crash when using uninitialized function pointer.
Solution: Check for NULL pointer. (closes #10319, closes #10319)
Files: src/eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.4848
Problem: Local completion with mappings and simplification not working.
Solution: Fix local completion <C-N>/<C-P> mappings not ignored if keys are

not simplified. (closes #10323)
Files: src/getchar.c, src/testdir/test_popup.vim

Patch 8.2.4849
Problem: Gleam filetype not detected.
Solution: Add a pattern for Gleam files. (Mathias Jean Johansen,

closes #10326)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4850
Problem: Mksession mixes up "tabpages" and "curdir" arguments.
Solution: Correct logic for storing tabpage in session. (closes #10312)
Files: src/session.c, src/testdir/test_mksession.vim

version9.txt — 3972

Patch 8.2.4851
Problem: Compiler warning for uninitialized variable.
Solution: Use another variable to decide to restore option values.
Files: src/session.c

Patch 8.2.4852
Problem: ANSI color index to RGB value not correct.
Solution: Convert the cterm index to ANSI index. (closes #10321,

closes #9836)
Files: src/term.c

Patch 8.2.4853
Problem: CI with FreeBSD is a bit outdated.
Solution: Use 12.3 instead of 12.1. (closes #10333)
Files: .cirrus.yml

Patch 8.2.4854
Problem: Array size does not match usage.
Solution: Make array size 3 instead of 4. (Christian Brabandt, closes #10336)
Files: src/term.c

Patch 8.2.4855
Problem: Robot files are not recognized.
Solution: Add patterns for robot files. (Zoe Roux, closes #10339)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4856
Problem: MinGW compiler complains about unknown escape sequence.
Solution: Avoid using a backslash in path. (Christian Brabandt,

closes #10337)
Files: .github/workflows/ci.yml

Patch 8.2.4857
Problem: Yaml indent for multiline is wrong.
Solution: Adjust patterns. (closes #10328, closes #8740)
Files: runtime/indent/yaml.vim, runtime/indent/testdir/yaml.in,

runtime/indent/testdir/yaml.ok

Patch 8.2.4858
Problem: K_SPECIAL may be escaped twice.
Solution: Avoid double escaping. (closes #10340)
Files: src/highlight.c, src/misc2.c, src/proto/misc2.pro, src/term.c,

src/typval.c, src/testdir/test_eval_stuff.vim,
src/testdir/test_feedkeys.vim, src/testdir/test_functions.vim,
src/testdir/test_mapping.vim

Patch 8.2.4859
Problem: wget2 files are not recognized.
Solution: Add patterns to recognize wget2. (Doug Kearns)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

Patch 8.2.4860
Problem: MS-Windows: always uses current directory for executables.
Solution: Check the NoDefaultCurrentDirectoryInExePath environment variable.

(Yasuhiro Matsumoto, closes #10341)
Files: runtime/doc/builtin.txt, src/os_win32.c,

src/testdir/test_functions.vim

Patch 8.2.4861
Problem: It is not easy to restore saved mappings.

version9.txt — 3973

Solution: Make mapset() accept a dict argument. (Ernie Rael, closes #10295)
Files: runtime/doc/builtin.txt, src/errors.h, src/evalfunc.c, src/map.c,

src/typval.c, src/proto/typval.pro,
src/testdir/test_map_functions.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.4862
Problem: Vim9: test may fail when run with valgrind.
Solution: Wait longer for callback if needed.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4863
Problem: Accessing freed memory in test without the +channel feature.

(Dominique Pellé)
Solution: Do not generate PUSHCHANNEL or PUSHJOB if they are not

implemented. (closes #10350)
Files: src/vim9instr.c, src/errors.h, src/vim9compile.c,

src/testdir/test_vim9_script.vim

Patch 8.2.4864 (after 8.2.4863)
Problem: Vim9: script test fails.
Solution: Remove "if" around declaration.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4865
Problem: :startinsert right after :stopinsert does not work when popup menu

is still visible.
Solution: Use ins_compl_active() instead of pum_visible(). (closes #10352)
Files: src/edit.c, src/testdir/test_ins_complete.vim

Patch 8.2.4866
Problem: Duplicate code in "get" functions.
Solution: Use get_var_from() for getwinvar(), gettabvar(), gettabwinvar()

and getbufvar(). (closes #10335)
Files: src/evalvars.c

Patch 8.2.4867
Problem: Listing of mapping with K_SPECIAL is wrong.
Solution: Adjust escaping of special characters. (closes #10351)
Files: src/map.c, src/message.c, src/testdir/test_mapping.vim

Patch 8.2.4868
Problem: When closing help window autocmds triggered for the wrong window.
Solution: Figure out the new current window earlier. (closes #10348)
Files: src/window.c, src/testdir/test_help.vim

Patch 8.2.4869
Problem: Expression in command block does not look after NL.
Solution: Skip over NL to check what follows. (closes #10358)
Files: src/eval.c, src/proto/eval.pro, src/vim9script.c,

src/testdir/test_usercommands.vim

Patch 8.2.4870
Problem: Vim9: expression in :substitute is not compiled.
Solution: Use an INSTR instruction if possible. (closes #10334)
Files: src/evalfunc.c, src/regexp.c, src/vim9execute.c, src/vim9expr.c,

src/testdir/test_vim9_builtin.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4871

version9.txt — 3974

Problem: Vim9: in :def function no error for using a range with a command
that does not accept one.

Solution: Check for the command to accept a range. (closes #10330)
Files: src/vim9compile.c, src/testdir/test_vim9_script.vim

Patch 8.2.4872
Problem: Vim9: no error for using an expression only at the script level

when followed by an empty line.
Solution: Do not check the line number but whether something follows.

(closes #10357)
Files: src/ex_eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4873
Problem: Vim9: using "else" differs from using "endif/if !cond".
Solution: Leave the block and enter another one. (closes #10320)
Files: src/ex_eval.c, src/testdir/test_vim9_script.vim

Patch 8.2.4874
Problem: Win32 GUI: horizontal scroll wheel not handled properly.
Solution: Also handle WM_MOUSEHWHEEL. (closes #10309)
Files: src/gui_w32.c

Patch 8.2.4875
Problem: MS-Windows: some .exe files are not recognized.
Solution: Parse APPEXECLINK junctions. (closes #10302)
Files: src/os_mswin.c, src/proto/os_mswin.pro, src/os_win32.c,

src/os_win32.h, src/testdir/test_functions.vim

Patch 8.2.4876
Problem: MS-Windows: Shift-BS results in strange character in powershell.
Solution: Add K_S_BS. (Christian Brabandt, closes #10283, closes #10279)
Files: src/edit.c, src/keymap.h, src/term.c, src/testdir/shared.vim,

src/testdir/test_edit.vim

Patch 8.2.4877
Problem: MS-Windows: Using Normal colors for termguicolors causes problems.
Solution: Do not use Normal colors to set sg_gui_fg and sg_gui_bg.

(Christian Brabandt, closes #10317, closes #10241)
Files: src/highlight.c

Patch 8.2.4878
Problem: Valgrind warning for using uninitialized variable.
Solution: Initialize the type of newtv.
Files: src/strings.c

Patch 8.2.4879
Problem: Screendump test may fail when using valgrind.
Solution: Wait longer for the first screendump.
Files: src/testdir/test_vim9_builtin.vim, src/testdir/screendump.vim

Patch 8.2.4880
Problem: Vim9: misplaced elseif causes invalid memory access.
Solution: Check cs_idx not to be negative.
Files: src/ex_eval.c

Patch 8.2.4881
Problem: "P" in Visual mode still changes some registers.
Solution: Make "P" in Visual mode not change any register. (Shougo

Matsushita, closes #10349)
Files: runtime/doc/change.txt, runtime/doc/index.txt,

version9.txt — 3975

runtime/doc/visual.txt, src/normal.c, src/testdir/test_visual.vim

Patch 8.2.4882
Problem: Cannot make 'breakindent' use a specific column.
Solution: Add the "column" entry in 'breakindentopt'. (Christian Brabandt,

closes #10362, closes #10325)
Files: runtime/doc/options.txt, src/indent.c, src/structs.h,

src/testdir/test_breakindent.vim

Patch 8.2.4883
Problem: String interpolation only works in heredoc.
Solution: Support interpolated strings. Use syntax for heredoc consistent

with strings, similar to C#. (closes #10327)
Files: runtime/doc/eval.txt, src/errors.h, src/eval.c, src/evalvars.c,

src/proto/evalvars.pro, src/typval.c, src/proto/typval.pro,
src/vim9compile.c, src/proto/vim9compile.pro, src/vim9expr.c,
src/testdir/test_debugger.vim, src/testdir/test_expr.vim,
src/testdir/test_let.vim, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4884
Problem: Test fails without the job/channel feature. (Dominique Pellé)
Solution: Add condition.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4885 (after 8.2.4884)
Problem: Test fails with the job/channel feature.
Solution: Move check for job/channel separately.
Files: src/testdir/test_vim9_script.vim

Patch 8.2.4886
Problem: Vim9: redir in skipped block seen as assignment.
Solution: Check for valid assignment.
Files: src/ex_docmd.c, src/testdir/test_vim9_assign.vim

Patch 8.2.4887
Problem: Channel log does not show invoking a timer callback.
Solution: Add a ch_log() call.
Files: src/time.c

Patch 8.2.4888
Problem: Line number of lambda ignores line continuation.
Solution: Use the line number of where the arguments are. Avoid outputting

"..." twice. (closes #10364)
Files: src/userfunc.c

Patch 8.2.4889
Problem: CI only tests with FreeBSD 12.
Solution: Also test with FreeBSD 13. (closes #10366)
Files: .cirrus.yml

Patch 8.2.4890
Problem: Inconsistent capitalization in error messages.
Solution: Make capitalization consistent. (Doug Kearns)
Files: src/errors.h

Patch 8.2.4891
Problem: Vim help presentation could be better.
Solution: Add an imported file for extra Vim help support. Show highlight

names in the color they have.

version9.txt — 3976

Files: Filelist, runtime/import/dist/vimhelp.vim

Patch 8.2.4892
Problem: Test failures because of changed error messages.
Solution: Adjust the expected error messages.
Files: src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim,
src/testdir/test_vim9_func.vim, src/testdir/test_vim9_script.vim,
src/testdir/test_expand.vim, src/testdir/test_tcl.vim,
src/testdir/test_vimscript.vim

Patch 8.2.4893 (after 8.2.4891)
Problem: Distributed import files are not installed.
Solution: Add rules to Makefile and NSIS.
Files: src/Makefile, nsis/gvim.nsi

Patch 8.2.4894
Problem: MS-Windows: not using italics.
Solution: Use italics. Simplify the code. (closes #10359)
Files: src/term.c

Patch 8.2.4895
Problem: Buffer overflow with invalid command with composing chars.
Solution: Check that the whole character fits in the buffer.
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.2.4896 (after 8.2.4869)
Problem: Expression in command block does not look after NL when command is

typed.
Solution: Skip over NL also when not in a script. (closes #10358)
Files: src/eval.c, src/testdir/test_usercommands.vim

Patch 8.2.4897
Problem: Comment inside an expression in lambda ignores the rest of the

expression.
Solution: Truncate the line at the comment. (closes #10367)
Files: src/eval.c, src/testdir/test_lambda.vim

Patch 8.2.4898
Problem: Coverity complains about pointer usage.
Solution: Move code for increment/decrement.
Files: src/vim9compile.c

Patch 8.2.4899
Problem: With latin1 encoding CTRL-W might go before the start of the

command line.
Solution: Check already being at the start of the command line.
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.4900
Problem: Vim9 expression test fails without the job feature.
Solution: Add a check for the job feature. (Dominique Pellé, closes #10373)
Files: src/testdir/test_vim9_expr.vim

Patch 8.2.4901
Problem: NULL pointer access when using invalid pattern.
Solution: Check for failed regexp program.
Files: src/buffer.c, src/testdir/test_buffer.vim

Patch 8.2.4902

version9.txt — 3977

Problem: Mouse wheel scrolling is inconsistent.
Solution: Use the MS-Windows system setting. (closes #10368)
Files: runtime/doc/scroll.txt, src/gui_w32.c, src/mouse.c,

src/proto/mouse.pro, src/testing.c, src/testdir/test_gui.vim

Patch 8.2.4903
Problem: Cannot get the current cmdline completion type and position.
Solution: Add getcmdcompltype() and getcmdscreenpos(). (Shougo Matsushita,

closes #10344)
Files: runtime/doc/builtin.txt, runtime/doc/usr_41.txt, src/cmdexpand.c,

src/proto/cmdexpand.pro, src/evalfunc.c, src/ex_getln.c,
src/proto/ex_getln.pro, src/usercmd.c, src/proto/usercmd.pro,
src/testdir/test_cmdline.vim

Patch 8.2.4904
Problem: codecov includes MS-Windows install files.
Solution: Ignore dosinst.c and uninstall.c.
Files: .codecov.yml

Patch 8.2.4905
Problem: codecov includes MS-Windows install header file.
Solution: Ignore dosinst.h.
Files: .codecov.yml

Patch 8.2.4906
Problem: MS-Windows: cannot use transparent background.
Solution: Make transparent background work with 'termguicolors' and NONE

background color. (Yasuhiro Matsumoto, closes #10310, closes #7162)
Files: runtime/doc/options.txt, src/os_win32.c, src/term.c

Patch 8.2.4907
Problem: Some users do not want a line comment always inserted.
Solution: Add the '/' flag to 'formatoptions' to not repeat the comment

leader after a statement when using "o".
Files: runtime/doc/change.txt, src/option.h, src/change.c,

src/testdir/test_textformat.vim

Patch 8.2.4908
Problem: No text formatting for // comment after a statement.
Solution: format a comment when the 'c' flag is in 'formatoptions'.
Files: src/textformat.c, src/testdir/test_textformat.vim

Patch 8.2.4909
Problem: MODE_ enum entries names are too generic.
Solution: use CH_MODE_.
Files: src/structs.h, src/channel.c, src/job.c, src/terminal.c

Patch 8.2.4910
Problem: Imperfect coding.
Solution: Make code nicer.
Files: src/ex_getln.c

Patch 8.2.4911
Problem: The mode #defines are not clearly named.
Solution: Prepend MODE_. Renumber them to put the mapped modes first.
Files: src/vim.h, src/autocmd.c, src/buffer.c, src/change.c,

src/charset.c, src/cindent.c, src/clipboard.c, src/debugger.c,
src/digraph.c, src/drawline.c, src/drawscreen.c, src/edit.c,
src/evalfunc.c, src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c,
src/fileio.c, src/fold.c, src/getchar.c, src/globals.h, src/gui.c,

version9.txt — 3978

src/gui_gtk.c, src/gui_w32.c, src/gui_xim.c, src/indent.c,
src/insexpand.c, src/macros.h, src/main.c, src/map.c, src/menu.c,
src/message.c, src/misc1.c, src/misc2.c, src/mouse.c,
src/netbeans.c, src/normal.c, src/ops.c, src/option.c,
src/os_unix.c, src/os_win32.c, src/popupmenu.c, src/search.c,
src/tag.c, src/screen.c, src/term.c, src/terminal.c,
src/textformat.c, src/window.c

Patch 8.2.4912
Problem: Using execute() to define a lambda doesn't work. (Ernie Rael)
Solution: Put the getline function in evalarg. (closes #10375)
Files: src/eval.c, src/evalfunc.c, src/proto/evalfunc.pro,

src/testdir/test_vim9_func.vim

Patch 8.2.4913
Problem: Popup_hide() does not always have effect.
Solution: Add the POPF_HIDDEN_FORCE flag. (closes #10376)
Files: src/popupwin.c, src/vim.h, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popup_prop_not_visible_01a.dump,
src/testdir/dumps/Test_popup_prop_not_visible_01b.dump

Patch 8.2.4914
Problem: String interpolation in :def function may fail.
Solution: Do not terminate the expression. (closes #10377)
Files: src/vim9compile.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4915
Problem: Sometimes the cursor is in the wrong position.
Solution: When the cursor moved to another line, recompute w_botline.

(closes #9736)
Files: src/move.c

Patch 8.2.4916 (after 8.2.4915)
Problem: Mouse in Insert mode test fails.
Solution: Fix the test and check relevant positions.
Files: src/testdir/test_edit.vim

Patch 8.2.4917
Problem: Fuzzy expansion of option names is not right.
Solution: Pass the fuzzy flag down the call chain. (Christian Brabandt,

closes #10380, closes #10318)
Files: src/cmdexpand.c, src/option.c, src/proto/option.pro,

src/testdir/test_options.vim

Patch 8.2.4918
Problem: Conceal character from matchadd() displayed too many times.
Solution: Check the syntax flag. (closes #10381, closes #7268)
Files: src/drawline.c, src/testdir/test_matchadd_conceal.vim

Patch 8.2.4919
Problem: Can add invalid bytes with :spellgood.
Solution: Check for a valid word string.
Files: src/mbyte.c, src/spellfile.c, src/errors.h,

src/testdir/test_spell_utf8.vim

Patch 8.2.4920 (after 8.2.4902)
Problem: MS-Windows GUI: unused variables.
Solution: Delete the variables. (John Marriott)
Files: src/gui_w32.c

version9.txt — 3979

Patch 8.2.4921
Problem: Spell test fails because of new illegal byte check.
Solution: Remove the test.
Files: src/testdir/test_spell.vim

Patch 8.2.4922 (after 8.2.4916)
Problem: Mouse test fails on MS-Windows.
Solution: Set 'mousemodel' to "extend".
Files: src/testdir/test_edit.vim

Patch 8.2.4923
Problem: Test checks for terminal feature unnecessarily.
Solution: Remove CheckRunVimInTerminal. (closes #10383)
Files: src/testdir/test_matchadd_conceal.vim

Patch 8.2.4924
Problem: maparg() may return a string that cannot be reused.
Solution: use msg_outtrans_special() instead of str2special().

(closes #10384)
Files: src/message.c, src/option.c, src/testdir/test_map_functions.vim,

src/testdir/test_mapping.vim, src/testdir/test_options.vim

Patch 8.2.4925
Problem: Trailing backslash may cause reading past end of line.
Solution: Check for NUL after backslash.
Files: src/textobject.c, src/testdir/test_textobjects.vim

Patch 8.2.4926
Problem: #ifdef for crypt feature around too many lines.
Solution: Move code outside of #ifdef. (closes #10388)
Files: src/option.c

Patch 8.2.4927
Problem: Return type of remove() incorrect when using three arguments.
Solution: Use first argument type when there are three arguments.

(closes #10387)
Files: src/evalfunc.c, src/testdir/test_vim9_builtin.vim

Patch 8.2.4928
Problem: Various white space and cosmetic mistakes.
Solution: Change spaces to tabs, improve comments.
Files: src/bufwrite.c, src/channel.c, src/cindent.c, src/crypt.c,

src/debugger.c, src/digraph.c, src/edit.c, src/evalwindow.c,
src/ex_cmds.c, src/ex_docmd.c, src/ex_getln.c, src/fileio.c,
src/filepath.c, src/gui.c, src/highlight.c, src/indent.c,
src/insexpand.c, src/job.c, src/keymap.h, src/macros.h,
src/menu.c, src/misc1.c, src/misc2.c, src/mouse.c, src/move.c,
src/normal.c, src/ops.c, src/option.c, src/option.h, src/search.c,
src/session.c, src/spellsuggest.c, src/structs.h, src/tag.c,
src/term.c, src/terminal.c, src/textformat.c, src/typval.c,
src/ui.c, src/userfunc.c, src/vim.h, src/vim9.h,
src/vim9compile.c, src/vim9execute.c, src/window.c,
src/testdir/test_cursorline.vim, src/os_unix.c, src/if_lua.c,
src/if_py_both.h, src/os_amiga.c, src/os_win32.c, src/os_mswin.c,
src/os_vms.c, src/os_vms_conf.h

Patch 8.2.4929
Problem: Off-by-one error in statusline item.
Solution: Subtrace one less. (closes #10394, closes #5599)
Files: src/buffer.c, src/testdir/test_statusline.vim,

version9.txt — 3980

src/testdir/dumps/Test_statusline_hl.dump

Patch 8.2.4930
Problem: Interpolated string expression requires escaping.
Solution: Do not require escaping in the expression.
Files: runtime/doc/eval.txt, src/typval.c, src/proto/typval.pro,

src/dict.c, src/eval.c, src/evalvars.c, src/proto/evalvars.pro,
src/vim9compile.c, src/proto/vim9compile.pro, src/vim9expr.c,
src/vim9instr.c, src/alloc.c, src/proto/alloc.pro,
src/testdir/test_expr.vim, src/testdir/test_let.vim

Patch 8.2.4931
Problem: Crash with sequence of Perl commands.
Solution: Move PUTBACK to another line. (closes #10386)
Files: src/if_perl.xs

Patch 8.2.4932
Problem: Not easy to filter the output of maplist().
Solution: Add mode_bits to the dictionary. (Ernie Rael, closes #10356)
Files: runtime/doc/builtin.txt, src/map.c,

src/testdir/test_map_functions.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.4933
Problem: A few more capitalization mistakes in error messages.
Solution: Adjust capitalization. (Doug Kearns)
Files: src/errors.h

Patch 8.2.4934
Problem: String interpolation fails when not evaluating.
Solution: Skip the expression when not evaluating. (closes #10398)
Files: src/typval.c, src/evalvars.c, src/proto/evalvars.pro,

src/testdir/test_vim9_expr.vim

Patch 8.2.4935
Problem: With 'foldmethod' "indent" some lines are not included in the

fold. (Oleg Koshovetc)
Solution: Fix it. (Brandon Simmons, closes #10399, closes #3214)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.4936
Problem: MS-Windows: mouse coordinates for scroll event are wrong.
Solution: Convert coordinates to the text area coordinates. (closes #10400)
Files: src/gui_w32.c

Patch 8.2.4937 (after 8.2.4931)
Problem: No test for what 8.2.4931 fixes.
Solution: Add a test that triggers a valgrind error.
Files: src/testdir/test_perl.vim

Patch 8.2.4938
Problem: Crash when matching buffer with invalid pattern.
Solution: Check for NULL regprog.
Files: src/buffer.c, src/testdir/test_buffer.vim

Patch 8.2.4939
Problem: matchfuzzypos() with "matchseq" does not have all positions.
Solution: Also add a position for white space. (closes #10404)
Files: runtime/doc/builtin.txt, src/search.c,

src/testdir/test_matchfuzzy.vim

version9.txt — 3981

Patch 8.2.4940
Problem: Some code is never used.
Solution: Remove dead code. Add a few more test cases.
Files: src/vim9expr.c, src/proto/vim9expr.pro, src/vim9compile.c,

src/testdir/test_vim9_builtin.vim, src/testdir/test_vim9_expr.vim

Patch 8.2.4941
Problem: '[and '] marks may be wrong after undo.
Solution: Adjust the '[and '] marks if needed. (closes #10407, closes #1281)
Files: src/undo.c, src/testdir/test_undo.vim

Patch 8.2.4942
Problem: Error when setting 'filetype' in help file again.
Solution: Deal with text property type already existing. (closes #10409)
Files: runtime/import/dist/vimhelp.vim

Patch 8.2.4943
Problem: Changing 'switchbuf' may have no effect.
Solution: Handle 'switchbuf' in didset_string_options(). (Sean Dewar,

closes #10406)
Files: src/optionstr.c, src/testdir/test_options.vim

Patch 8.2.4944
Problem: Text properties are wrong after "cc". (Axel Forsman)
Solution: Pass the deleted byte count to inserted_bytes(). (closes #10412,

closes #7737, closes #5763)
Files: src/change.c, src/testdir/test_textprop.vim

Patch 8.2.4945
Problem: Inconsistent use of white space.
Solution: Use Tabs and Spaces consistently.
Files: src/os_amiga.c, src/if_py_both.h, src/os_win32.c, src/os_mswin.c,

src/os_vms.c, src/os_vms_conf.h

Patch 8.2.4946
Problem: Vim9: some code not covered by tests.
Solution: Add a few more test cases. Remove dead code.
Files: src/vim9expr.c, src/testdir/test_vim9_expr.vim,

src/testdir/test_vim9_builtin.vim

Patch 8.2.4947
Problem: Text properties not adjusted when accepting spell suggestion.
Solution: Adjust text properties when text changes. (closes #10414)
Files: src/spell.c, src/spellsuggest.c, src/testdir/test_textprop.vim

Patch 8.2.4948
Problem: Cannot use Perl heredoc in nested :def function. (Virginia

Senioria)
Solution: Only concatenate heredoc lines when not in a nested function.

(closes #10415)
Files: src/userfunc.c, src/testdir/test_vim9_func.vim

Patch 8.2.4949
Problem: Vim9: some code not covered by tests.
Solution: Add a few more test cases. Fix double error message.
Files: src/vim9expr.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4950
Problem: Text properties position wrong after shifting text.

version9.txt — 3982

Solution: Adjust the text properties when shifting a block of text.
(closes #10418)

Files: src/ops.c, src/testdir/test_textprop.vim

Patch 8.2.4951
Problem: Smart indenting done when not enabled.
Solution: Check option values before setting can_si. (closes #10420)
Files: src/indent.c, src/proto/indent.pro, src/change.c, src/edit.c,

src/ops.c, src/testdir/test_smartindent.vim

Patch 8.2.4952
Problem: GUI test will fail if color scheme changes.
Solution: Reduce the test for now.
Files: src/testdir/test_gui.vim

Patch 8.2.4953
Problem: With 'smartindent' inserting '}' after completion goes wrong.
Solution: Check the cursor is in indent. (closes #10420)
Files: src/indent.c, src/testdir/test_smartindent.vim

Patch 8.2.4954
Problem: Inserting line breaks text property spanning more than one line.
Solution: Check TP_FLAG_CONT_PREV and TP_FLAG_CONT_NEXT. (closes #10423)
Files: src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.4955
Problem: Text property in wrong position after auto-indent.
Solution: Adjust text property columns. (closes #10422, closes #7719)
Files: src/change.c, src/testdir/test_textprop.vim

Patch 8.2.4956
Problem: Reading past end of line with "gf" in Visual block mode.
Solution: Do not include the NUL in the length.
Files: src/normal.c, src/testdir/test_gf.vim

Patch 8.2.4957
Problem: Text properties in a wrong position after a block change.
Solution: Adjust the properties columns. (closes #10427)
Files: src/ops.c, src/testdir/test_textprop.vim

Patch 8.2.4958
Problem: A couple conditions are always true.
Solution: Remove the conditions. (Goc Dundar, closes #10428)
Files: src/evalfunc.c, src/quickfix.c

Patch 8.2.4959
Problem: Using NULL regexp program.
Solution: Check for regexp program becoming NULL in more places.
Files: src/buffer.c, src/testdir/test_buffer.vim

Patch 8.2.4960
Problem: Text properties that cross line boundary are not correctly updated

for a deleted line.
Solution: Correct computing location of text property entry. (Paul Ollis,

closes #10431, closes #10430)
Files: src/memline.c, src/testdir/test_textprop.vim

Patch 8.2.4961
Problem: Build error with a certain combination of features.
Solution: Adjust #if. (John Marriott)

version9.txt — 3983

Files: src/memline.c

Patch 8.2.4962
Problem: Files show up in git status.
Solution: Adjust the list of ignored files. Clean up more test files.

(Shane xb Qian, closes #9929)
Files: .gitignore, src/testdir/Makefile

Patch 8.2.4963
Problem: Expanding path with "/**" may overrun end of buffer.
Solution: Use vim_snprintf().
Files: src/filepath.c

Patch 8.2.4964
Problem: MS-Windows GUI: mouse event test is flaky.
Solution: Add a short delay after generating a mouse event.
Files: src/testdir/test_gui.vim

Patch 8.2.4965
Problem: GUI: testing mouse move event depends on screen cell size.
Solution: Multiply the row and column with the screen cell size.
Files: runtime/doc/testing.txt, src/testing.c, src/testdir/test_gui.vim

Patch 8.2.4966
Problem: MS-Windows GUI: mouse event test gets extra event.
Solution: Ignore one move event.
Files: src/testdir/test_gui.vim

Patch 8.2.4967 (after 8.2.4966)
Problem: MS-Windows GUI: mouse event test sometimes fails.
Solution: Ignore one move event only if there is an extra event.
Files: src/testdir/test_gui.vim

Patch 8.2.4968
Problem: Reading past end of the line when C-indenting.
Solution: Check for NUL.
Files: src/cindent.c, src/testdir/test_cindent.vim

Patch 8.2.4969
Problem: Changing text in Visual mode may cause invalid memory access.
Solution: Check the Visual position after making a change.
Files: src/change.c, src/edit.c, src/misc2.c, src/proto/misc2.pro,

src/testdir/test_visual.vim

Patch 8.2.4970
Problem: "eval 123" gives an error, "eval 'abc'" does not.
Solution: Also give an error when evaluating only a string. (closes #10434)
Files: src/ex_eval.c, src/testdir/test_vim9_cmd.vim

Patch 8.2.4971
Problem: Vim9: interpolated string seen as range.
Solution: Recognize an interpolated string at the start of a command line.

(closes #10434)
Files: src/ex_docmd.c, src/testdir/test_vim9_expr.vim

Patch 8.2.4972
Problem: Vim9: compilation fails when using dict member when skipping.
Solution: Do not generate ISN_USEDICT when skipping. (closes #10433)
Files: src/vim9expr.c, src/testdir/test_vim9_expr.vim

version9.txt — 3984

Patch 8.2.4973
Problem: Vim9: type error for list unpack mentions argument.
Solution: Mention variable. (close #10435)
Files: src/vim9.h, src/vim9execute.c, src/vim9instr.c,

src/proto/vim9instr.pro, src/vim9compile.c,
src/testdir/test_vim9_script.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4974
Problem: ":so" command may read after end of buffer.
Solution: Compute length of text properly.
Files: src/scriptfile.c, src/testdir/test_source.vim

Patch 8.2.4975
Problem: Recursive command line loop may cause a crash.
Solution: Limit recursion of getcmdline().
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.4976
Problem: Coverity complains about not restoring a saved value.
Solution: Restore value before handling error.
Files: src/vim9execute.c

Patch 8.2.4977
Problem: Memory access error when substitute expression changes window.
Solution: Disallow changing window in substitute expression.
Files: src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.2.4978
Problem: No error if engine selection atom is not at the start.
Solution: Give an error. (Christian Brabandt, closes #10439)
Files: runtime/doc/pattern.txt, src/errors.h, src/regexp_bt.c,

src/regexp_nfa.c, src/testdir/test_regexp_latin.vim

Patch 8.2.4979
Problem: Accessing freed memory when line is flushed.
Solution: Make a copy of the pattern to search for.
Files: src/window.c, src/testdir/test_tagjump.vim

Patch 8.2.4980
Problem: When 'shortmess' contains 'A' loading a session may still warn for

an existing swap file. (Melker Österberg)
Solution: Keep the 'A' flag to 'shortmess' in the session file.

(closes #10443)
Files: src/session.c, src/testdir/test_mksession.vim

Patch 8.2.4981
Problem: It is not possible to manipulate autocommands.
Solution: Add functions to add, get and set autocommands. (Yegappan

Lakshmanan, closes #10291)
Files: runtime/doc/autocmd.txt, runtime/doc/builtin.txt,

runtime/doc/usr_41.txt, src/autocmd.c, src/evalfunc.c,
src/proto/autocmd.pro, src/testdir/test_autocmd.vim,
src/testdir/test_vim9_builtin.vim

Patch 8.2.4982
Problem: Colors in terminal window are not 100% correct.
Solution: Use g:terminal_ansi_colors as documented. (closes #10429,

closes #7227 closes #10347)
Files: src/job.c, src/option.c, src/proto/term.pro,

version9.txt — 3985

src/terminal.c, src/proto/terminal.pro, src/term.c,
src/testdir/test_functions.vim, src/testdir/test_terminal.vim

Patch 8.2.4983 (after 8.2.4982)
Problem: Colors test fails in the GUI.
Solution: Reset g:terminal_ansi_colors.
Files: src/testdir/test_functions.vim

Patch 8.2.4984
Problem: Dragging statusline fails for window with winbar.
Solution: Fix off-by-one error. (closes #10448)
Files: src/mouse.c, src/testdir/test_winbar.vim

Patch 8.2.4985
Problem: PVS warns for possible array underrun.
Solution: Add a check for a positive value. (Goc Dundar, closes #10451)
Files: src/spell.c

Patch 8.2.4986
Problem: Some github actions are outdated.
Solution: Update CodeQl to v2, update checkout to v3. (closes #10450)
Files: .github/workflows/ci.yml, .github/workflows/codeql-analysis.yml,

.github/workflows/coverity.yml

Patch 8.2.4987
Problem: After deletion a small fold may be closable.
Solution: Check for a reverse range. (Brandon Simmons, closes #10457)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.4988
Problem: Textprop in wrong position when replacing multi-byte chars.
Solution: Adjust textprop position. (closes #10461)
Files: src/change.c, src/testdir/test_textprop.vim

Patch 8.2.4989
Problem: Cannot specify a function name for :defcompile.
Solution: Implement a function name argument for :defcompile.
Files: runtime/doc/vim9.txt, src/userfunc.c, src/proto/userfunc.pro,

src/vim9execute.c, src/ex_cmds.h, src/testdir/test_vim9_cmd.vim,
src/testdir/test_vim9_disassemble.vim

Patch 8.2.4990 (after 8.2.4989)
Problem: Memory leak when :defcompile fails.
Solution: Free fname when returning early.
Files: src/userfunc.c

Patch 8.2.4991
Problem: No test for what patch 8.1.0535 fixes.
Solution: Add a test. (closes #10462)
Files: src/testdir/test_fold.vim

Patch 8.2.4992 (after 8.2.4989)
Problem: Compiler warning for possibly uninitialized variable. (Tony

Mechelynck)
Solution: Initialize variable in the caller instead of in the function.
Files: src/userfunc.c, src/vim9execute.c

Patch 8.2.4993
Problem: smart/C/lisp indenting is optional, which makes the code more

complex, while it only reduces the executable size a bit.

version9.txt — 3986

Solution: Graduate FEAT_CINDENT, FEAT_SMARTINDENT and FEAT_LISP.
Files: runtime/doc/builtin.txt, runtime/doc/indent.txt,

runtime/doc/options.txt, runtime/doc/various.txt, src/feature.h,
src/buffer.c, src/change.c, src/cindent.c, src/charset.c,
src/edit.c, src/evalfunc.c, src/indent.c, src/insexpand.c,
src/main.c, src/mouse.c, src/ops.c, src/option.c, src/optionstr.c,
src/register.c, src/search.c, src/textformat.c, src/version.c,
src/option.h, src/optiondefs.h, src/structs.h, src/globals.h,
src/testdir/test_edit.vim

Patch 8.2.4994
Problem: Tests are using legacy functions.
Solution: Convert a few tests to use :def functions.
Files: src/testdir/test_cindent.vim

Patch 8.2.4995 (after 8.2.4992)
Problem: Still a compiler warning for possibly uninitialized variable.

(Tony Mechelynck)
Solution: Initialize variables.
Files: src/vim9execute.c

Patch 8.2.4996 (after 8.2.4969)
Problem: setbufline() may change Visual selection. (Qiming Zhao)
Solution: Disable Visual mode when using another buffer. (closes #10466)
Files: src/evalbuffer.c, src/testdir/test_bufline.vim

Patch 8.2.4997
Problem: Python: changing hidden buffer can cause the display to be messed

up.
Solution: Do not mark changed lines when using another buffer. (Paul Ollis,

closes #10437, closes #7972)
Files: src/if_py_both.h, src/testdir/test_python3.vim

Patch 8.2.4998
Problem: Vim9: crash when using multiple funcref().
Solution: Check if varargs type is NULL. (closes #10467)
Files: src/vim9type.c, src/testdir/test_vim9_func.vim

Patch 8.2.4999
Problem: Filetype test table is not properly sorted.
Solution: Sort by filetype. (Doug Kearns)
Files: src/testdir/test_filetype.vim

Patch 8.2.5000
Problem: No patch for documentation updates.
Solution: Update documentation files.
Files: runtime/doc/arabic.txt, runtime/doc/autocmd.txt,

runtime/doc/builtin.txt, runtime/doc/change.txt,
runtime/doc/channel.txt, runtime/doc/cmdline.txt,
runtime/doc/diff.txt, runtime/doc/digraph.txt,
runtime/doc/editing.txt, runtime/doc/eval.txt,
runtime/doc/filetype.txt, runtime/doc/fold.txt,
runtime/doc/ft_ada.txt, runtime/doc/ft_ps1.txt,
runtime/doc/ft_raku.txt, runtime/doc/ft_rust.txt,
runtime/doc/ft_sql.txt, runtime/doc/gui.txt,
runtime/doc/gui_w32.txt, runtime/doc/helphelp.txt,
runtime/doc/help.txt, runtime/doc/if_cscop.txt,
runtime/doc/if_lua.txt, runtime/doc/if_perl.txt,
runtime/doc/if_pyth.txt, runtime/doc/if_tcl.txt,
runtime/doc/indent.txt, runtime/doc/index.txt,

version9.txt — 3987

runtime/doc/insert.txt, runtime/doc/intro.txt,
runtime/doc/map.txt, runtime/doc/mbyte.txt,
runtime/doc/message.txt, runtime/doc/motion.txt,
runtime/doc/netbeans.txt, runtime/doc/options.txt,
runtime/doc/os_dos.txt, runtime/doc/os_vms.txt,
runtime/doc/os_win32.txt, runtime/doc/pattern.txt,
runtime/doc/pi_netrw.txt, runtime/doc/pi_zip.txt,
runtime/doc/popup.txt, runtime/doc/print.txt,
runtime/doc/quickfix.txt, runtime/doc/quickref.txt,
runtime/doc/remote.txt, runtime/doc/repeat.txt,
runtime/doc/rileft.txt, runtime/doc/scroll.txt,
runtime/doc/sign.txt, runtime/doc/spell.txt,
runtime/doc/sponsor.txt, runtime/doc/starting.txt,
runtime/doc/syntax.txt, runtime/doc/tabpage.txt,
runtime/doc/tagsrch.txt, runtime/doc/terminal.txt,
runtime/doc/term.txt, runtime/doc/testing.txt,
runtime/doc/textprop.txt, runtime/doc/tips.txt,
runtime/doc/todo.txt, runtime/doc/uganda.txt,
runtime/doc/undo.txt, runtime/doc/usr_02.txt,
runtime/doc/usr_04.txt, runtime/doc/usr_05.txt,
runtime/doc/usr_06.txt, runtime/doc/usr_08.txt,
runtime/doc/usr_09.txt, runtime/doc/usr_12.txt,
runtime/doc/usr_20.txt, runtime/doc/usr_29.txt,
runtime/doc/usr_40.txt, runtime/doc/usr_41.txt,
runtime/doc/usr_45.txt, runtime/doc/usr_46.txt,
runtime/doc/usr_50.txt, runtime/doc/usr_51.txt,
runtime/doc/usr_52.txt, runtime/doc/usr_90.txt,
runtime/doc/usr_toc.txt, runtime/doc/various.txt,
runtime/doc/version5.txt, runtime/doc/version6.txt,
runtime/doc/version7.txt, runtime/doc/version8.txt,
runtime/doc/version9.txt, runtime/doc/vi_diff.txt,
runtime/doc/vim9.txt, runtime/doc/visual.txt,
runtime/doc/windows.txt, runtime/doc/tags, runtime/doc/Makefile

Patch 8.2.5001
Problem: Checking translations affects the search pattern history.
Solution: Use "keeppatterns". (Doug Kearns)
Files: src/po/check.vim

Patch 8.2.5002
Problem: deletebufline() may change Visual selection.
Solution: Disable Visual mode when using another buffer. (closes #10469)
Files: src/evalbuffer.c, src/testdir/test_bufline.vim

Patch 8.2.5003
Problem: Cannot do bitwise shifts.
Solution: Add the >> and << operators. (Yegappan Lakshmanan, closes #8457)
Files: runtime/doc/eval.txt, src/errors.h, src/eval.c, src/structs.h,

src/vim.h, src/vim9execute.c, src/vim9expr.c,
src/testdir/test_expr.vim, src/testdir/test_vim9_disassemble.vim,
src/testdir/test_vim9_expr.vim

Patch 8.2.5004
Problem: Right shift on negative number does not work as documented.
Solution: Use a uvarnumber_T type cast.
Files: runtime/doc/eval.txt, src/eval.c, src/vim9expr.c,

src/vim9execute.c, src/charset.c, src/testdir/test_expr.vim

Patch 8.2.5005 (after 8.2.5003)
Problem: Compiler warning for uninitialized variable. (John Marriott)

version9.txt — 3988

Solution: Initialize the pointer to NULL.
Files: src/vim9expr.vim

Patch 8.2.5006 (after 8.2.5003)
Problem: Asan warns for undefined behavior.
Solution: Cast the shifted value to unsigned.
Files: src/eval.c, src/vim9expr.c, src/vim9execute.c

Patch 8.2.5007
Problem: Spell suggestion may use uninitialized memory. (Zdenek Dohnal)
Solution: Avoid going over the end of the word.
Files: src/spellsuggest.c, src/testdir/test_spell_utf8.vim

Patch 8.2.5008
Problem: When 'formatoptions' contains "/" wrongly wrapping a long trailing

comment.
Solution: Pass the OPENLINE_FORMAT flag.
Files: src/change.c, src/vim.h, src/textformat.c,

src/testdir/test_textformat.vim

Patch 8.2.5009
Problem: Fold may not be closable after appending.
Solution: Set the fd_small flag to MAYBE. (Brandon Simmons, closes #10471)
Files: src/fold.c, src/testdir/test_fold.vim

Patch 8.2.5010
Problem: The terminal debugger uses various global variables.
Solution: Add a dictionary to hold the terminal debugger preferences.
Files: runtime/doc/terminal.txt,

runtime/pack/dist/opt/termdebug/plugin/termdebug.vim

Patch 8.2.5011
Problem: Replacing an autocommand requires several lines.
Solution: Add the "replace" flag to autocmd_add(). (Yegappan Lakshmanan,

closes #10473)
Files: runtime/doc/autocmd.txt, runtime/doc/builtin.txt, src/autocmd.c,

src/testdir/test_autocmd.vim

Patch 8.2.5012
Problem: Cannot select one character inside ().
Solution: Do not try to extend the area if it is empty. (closes #10472,

closes #6616)
Files: src/textobject.c, src/testdir/test_textobjects.vim

Patch 8.2.5013
Problem: After text formatting the cursor may be in an invalid position.
Solution: Correct the cursor position after formatting.
Files: src/textformat.c, src/testdir/test_textformat.vim

Patch 8.2.5014
Problem: Byte offsets are wrong when using text properties.
Solution: Make sure text properties do not affect the byte counts.

(Paul Ollis, closes #10474)
Files: src/memline.c, src/textprop.c, src/testdir/test_textprop.vim

Patch 8.2.5015
Problem: Hoon and Moonscript files are not recognized.
Solution: Add filetype patterns. (Goc Dundar, closes #10478)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3989

Patch 8.2.5016
Problem: Access before start of text with a put command.
Solution: Check the length is more than zero.
Files: src/register.c, src/testdir/test_put.vim

Patch 8.2.5017
Problem: Gcc 12.1 warns for uninitialized variable.
Solution: Initialize the variable. (closes #10476)
Files: src/evalvars.c

Patch 8.2.5018
Problem: Vim9: some code is not covered by tests.
Solution: Delete dead code.
Files: src/vim9instr.c, src/proto/vim9instr.pro, src/vim9compile.c,

src/vim9expr.c,

Patch 8.2.5019
Problem: Cannot get the first screen column of a character.
Solution: Let virtcol() optionally return a list. (closes #10482,

closes #7964)
Files: runtime/doc/builtin.txt, src/evalfunc.c,

src/testdir/test_functions.vim, src/testdir/test_vim9_builtin.vim

Patch 8.2.5020
Problem: Using 'imstatusfunc' and 'imactivatefunc' breaks 'foldopen'.
Solution: Save and restore the KeyTyped flag. (closes #10479)
Files: src/gui_xim.c, src/testdir/test_iminsert.vim

Patch 8.2.5021
Problem: Build fails with normal features and +terminal. (Dominique Pellé)
Solution: Add #ifdefs. (closes #10484)
Files: src/terminal.c

Patch 8.2.5022
Problem: 'completefunc'/'omnifunc' error does not end completion.
Solution: Check if there was an error or exception. (closes #10486,

closes #4218)
Files: src/insexpand.c, src/testdir/test_ins_complete.vim

Patch 8.2.5023
Problem: Substitute overwrites allocated buffer.
Solution: Disallow undo when in a substitute command.
Files: src/normal.c, src/undo.c, src/testdir/test_substitute.vim

Patch 8.2.5024
Problem: Using freed memory with "]d".
Solution: Copy the pattern before searching.
Files: src/normal.c, src/testdir/test_tagjump.vim

Patch 8.2.5025
Problem: Vim9: a few lines not covered by tests.
Solution: Add a few tests.
Files: src/vim9script.c, src/testdir/test_vim9_assign.vim,

src/testdir/test_vim9_import.vim

Patch 8.2.5026
Problem: Vim9: a few lines not covered by tests.
Solution: Delete dead code. Add a few test cases. make "12->func()" work.
Files: src/vim9type.c, src/ex_docmd.c, src/proto/ex_docmd.pro,

version9.txt — 3990

src/vim9compile.c, src/testdir/test_vim9_assign.vim,
src/testdir/test_vim9_func.vim

Patch 8.2.5027
Problem: Error for missing :endif when an exception was thrown. (Dani

Dickstein)
Solution: Do not give an error when aborting. (closes #10490)
Files: src/ex_docmd.c, src/testdir/test_trycatch.vim

Patch 8.2.5028
Problem: Syntax regexp matching can be slow.
Solution: Adjust the counters for checking the timeout to check about once

per msec. (closes #10487, closes #2712)
Files: src/regexp_bt.c, src/regexp_nfa.c

Patch 8.2.5029
Problem: "textlock" is always zero.
Solution: Remove "textlock" and rename "textwinlock" to "textlock".

(closes #10489)
Files: runtime/doc/insert.txt, runtime/doc/tags, src/beval.c,

src/change.c, src/edit.c, src/errors.h, src/eval.c, src/ex_cmds.c,
src/ex_getln.c, src/proto/ex_getln.pro, src/globals.h,
src/indent.c, src/insexpand.c, src/map.c, src/register.c,
src/undo.c, src/window.c, src/testdir/test_edit.vim,
src/testdir/test_ins_complete.vim, src/testdir/test_popup.vim,
src/testdir/test_quickfix.vim

Patch 8.2.5030
Problem: autocmd_add() can only handle one event and pattern.
Solution: Support a list of events and patterns. (Yegappan Lakshmanan,

closes #10483)
Files: runtime/doc/builtin.txt, src/autocmd.c, src/errors.h,

src/testdir/test_autocmd.vim

Patch 8.2.5031
Problem: Cannot easily run the benchmarks.
Solution: Have "make benchmark" in the src directory work.
Files: src/Makefile, src/testdir/Makefile

Patch 8.2.5032
Problem: Python 3 test fails without the GUI.
Solution: Check the balloon_eval feature is available.
Files: src/testdir/test_python3.vim

Patch 8.2.5033 (after 8.2.5030)
Problem: Build error with +eval but without +quickfix. Warning for

uninitialized variable.
Solution: Adjust #ifdefs. (John Marriott)
Files: src/errors.h, src/autocmd.c

Patch 8.2.5034
Problem: There is no way to get the byte index from a virtual column.
Solution: Add virtcol2col(). (Yegappan Lakshmanan, closes #10477,

closes #10098)
Files: runtime/doc/builtin.txt, runtime/doc/usr_41.txt, src/evalfunc.c,

src/move.c, src/proto/move.pro, src/testdir/test_cursor_func.vim

Patch 8.2.5035
Problem: When splitting a window the changelist position moves.
Solution: Set the changelist index a bit later. (closes #10493)

version9.txt — 3991

Files: src/window.c, src/testdir/test_changelist.vim,
src/testdir/test_normal.vim

Patch 8.2.5036 (after 8.2.5028)
Problem: Using two counters for timeout check in NFA engine.
Solution: Use only one counter. Tune the counts based on guessing.
Files: src/regexp_nfa.c

Patch 8.2.5037
Problem: Cursor position may be invalid after "0;" range.
Solution: Check the cursor position when it was set by ";" in the range.
Files: src/ex_docmd.c, src/testdir/test_excmd.vim

Patch 8.2.5038
Problem: A finished terminal in a popup window does not show a scrollbar.
Solution: Show the scrollbar if the terminal job is finished. (closes

#10497)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_poptermscroll_1.dump,
src/testdir/dumps/Test_popupwin_poptermscroll_2.dump,
src/testdir/dumps/Test_popupwin_poptermscroll_3.dump

Patch 8.2.5039
Problem: Confusing error if first argument of popup_create() is wrong.
Solution: Give a more informative error.
Files: src/popupwin.c, src/testdir/test_popupwin.vim, src/errors.h,

src/testdir/dumps/Test_popup_settext_07.dump

Patch 8.2.5040
Problem: Scrollbar thumb in scrolled popup not visible.
Solution: Show at least one thumb character. (fixes 10492)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_13.dump

Patch 8.2.5041
Problem: Cannot close a terminal popup with "NONE" job.
Solution: Adjust the conditions for whether a job is running.

(closes #10498)
Files: src/buffer.c, src/terminal.c, src/proto/terminal.pro,

src/undo.c, src/testdir/test_popupwin.vim

Patch 8.2.5042
Problem: Scrollbar thumb in tall scrolled popup not visible.
Solution: Show at least one thumb character. (fixes 10492)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_scroll_13.dump

Patch 8.2.5043
Problem: Can open a cmdline window from a substitute expression.
Solution: Disallow opening a command line window when text or buffer is

locked.
Files: src/buffer.c, src/ex_getln.c, src/proto/ex_getln.pro,

src/window.c, src/testdir/test_substitute.vim

Patch 8.2.5044 (after 8.2.5043)
Problem: Command line test fails.
Solution: Also beep when cmdline win can't be opened because of locks.

Make the test not beep. Make the test pass on MS-Windows.
Files: src/ex_getln.c, src/testdir/test_substitute.vim

version9.txt — 3992

Patch 8.2.5045
Problem: Can escape a terminal popup window when the job is finished.
Solution: Only check for a finished job where it is relevant.

(closes #10253)
Files: src/popupwin.c, src/testdir/test_popupwin.vim,

src/testdir/dumps/Test_popupwin_poptermscroll_1.dump,
src/testdir/dumps/Test_popupwin_poptermscroll_2.dump,
src/testdir/dumps/Test_popupwin_poptermscroll_3.dump,
src/testdir/dumps/Test_popupwin_poptermscroll_4.dump

Patch 8.2.5046
Problem: vim_regsub() can overwrite the destination.
Solution: Pass the destination length, give an error when it doesn't fit.
Files: src/regexp.h, src/regexp.c, src/proto/regexp.pro, src/eval.c,

src/ex_cmds.c

Patch 8.2.5047
Problem: CurSearch highlight is often wrong.
Solution: Remember the last highlighted position and redraw when needed.
Files: src/globals.h, src/match.c, src/drawscreen.c, src/change.c,

src/testdir/test_search.vim,
src/testdir/dumps/Test_hlsearch_cursearch_changed_1.dump

Patch 8.2.5048
Problem: When using XIM the gui test may fail.
Solution: Only use --not-a-term when not using XIM.
Files: src/testdir/test_gui.vim

Patch 8.2.5049
Problem: Insufficient tests for autocommands.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #10507)
Files: src/autocmd.c, src/testdir/gen_opt_test.vim,

src/testdir/test_autocmd.vim, src/testdir/test_cmdline.vim

Patch 8.2.5050
Problem: Using freed memory when searching for pattern in path.
Solution: Make a copy of the line.
Files: src/search.c, src/testdir/test_tagjump.vim

Patch 8.2.5051
Problem: Check for autocmd_add() event argument is confusing.
Solution: Make the code more straightforward.
Files: src/autocmd.c

Patch 8.2.5052
Problem: CI checkout step title is a bit cryptic.
Solution: Add a better title. (closes #10509)
Files: .github/workflows/ci.yml, .github/workflows/coverity.yml,

.github/workflows/codeql-analysis.yml

Patch 8.2.5053
Problem: Cannot have a comment halfway an expression in an autocmd command

block.
Solution: When skipping over the NL also skip over comments. (closes #10519)
Files: src/eval.c, src/testdir/test_autocmd.vim

Patch 8.2.5054
Problem: No good filetype for conf files similar to dosini.
Solution: Add the confini filetype. (closes #10518)
Files: runtime/filetype.vim, src/testdir/test_filetype.vim

version9.txt — 3993

Patch 8.2.5055
Problem: Statusline is not updated when terminal title changes.
Solution: Redraw the status line when the title changes. (issue #10425)
Files: src/terminal.c

Patch 8.2.5056
Problem: The channel log only contains some of the raw terminal output.
Solution: Add the "o" flag to log all terminal output. Use it for "--log".
Files: runtime/doc/channel.txt, runtime/doc/starting.txt, src/main.c,

src/channel.c, src/vim.h, src/term.c, src/edit.c, src/normal.c,
src/optionstr.c

Patch 8.2.5057
Problem: Using gettimeofday() for timeout is very inefficient.
Solution: Set a platform dependent timer. (Paul Ollis, closes #10505)
Files: src/auto/configure, src/config.h.in, src/configure.ac,

src/drawscreen.c, src/errors.h, src/evalfunc.c, src/ex_cmds.c,
src/ex_getln.c, src/match.c, src/os_mac.h, src/os_macosx.m,
src/os_unix.c, src/os_win32.c, src/proto/os_unix.pro,
src/proto/os_win32.pro, src/proto/regexp.pro, src/quickfix.c,
src/regexp.c, src/regexp.h, src/regexp_bt.c, src/regexp_nfa.c,
src/screen.c, src/search.c, src/structs.h, src/syntax.c,
src/testdir/test_hlsearch.vim, src/testdir/test_search.vim,
src/testdir/test_syntax.vim

Patch 8.2.5058
Problem: input() does not handle composing characters properly.
Solution: Use mb_cptr2char_adv() instead of mb_ptr2char_adv().

(closes #10527)
Files: src/getchar.c, src/testdir/test_functions.vim

Patch 8.2.5059
Problem: Autoconf 2.71 produces many obsolete warnings.
Solution: Replace obsolete macros with non-obsolete ones, where the

functionality does not change. (issue #10528)
Files: src/configure.ac, src/auto/configure

Patch 8.2.5060 (after 8.2.5059)
Problem: Running configure fails.
Solution: Remove line break.
Files: src/configure.ac, src/auto/configure

Patch 8.2.5061
Problem: C89 requires signal handlers to return void.
Solution: Drop RETSIGTYPE and hard-code a void return value.
Files: src/configure.ac, src/auto/configure, src/if_cscope.c,

src/os_unix.c, src/pty.c, src/os_mac.h, src/os_vms_conf.h,
src/config.h.in, src/osdef1.h.in

Patch 8.2.5062
Problem: Coverity warns for dead code.
Solution: Remove the dead code.
Files: src/os_unix.c, src/match.c

Patch 8.2.5063
Problem: Error for a command may go over the end of IObuff.
Solution: Truncate the message.
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

version9.txt — 3994

Patch 8.2.5064
Problem: No test for what 8.1.0052 fixes.
Solution: Add a test. (closes #10531)
Files: src/getchar.c, src/testdir/test_mapping.vim

Patch 8.2.5065
Problem: Wrong return type for main() in tee.c.
Solution: Use "int" instead of "void". Remove unused variable.
Files: src/tee/tee.c

Patch 8.2.5066
Problem: Can specify multispace listchars only for whole line.
Solution: Add "leadmultispace". (Christian Brabandt, closes #10496)
Files: runtime/doc/options.txt, src/drawline.c, src/message.c,

src/screen.c, src/structs.h, src/window.c,
src/testdir/test_listchars.vim

Patch 8.2.5067
Problem: Timer_create is not available on every Mac system. (Hisashi T

Fujinaka)
Solution: Adjust #ifdef.
Files: src/os_unix.c

Patch 8.2.5068
Problem: Gcc 12.1 warning when building tee.
Solution: Change type to size_t. (John Marriott)
Files: src/tee/tee.c

Patch 8.2.5069
Problem: Various warnings from clang on MS-Windows.
Solution: Fix the code to avoid the warnings. (Yegappan Lakshmanan,

closes #10538)
Files: src/dosinst.c, src/fileio.c, src/gui_w32.c, src/os_mswin.c,

src/os_win32.c

Patch 8.2.5070
Problem: Unnecessary code.
Solution: Remove code that isn't needed. (closes #10534)
Files: src/message.c, src/screen.c

Patch 8.2.5071
Problem: With some Mac OS version clockid_t is redefined.
Solution: Adjust #ifdefs. (Ozaki Kiichi, closes #10549)
Files: src/os_mac.h

Patch 8.2.5072
Problem: Using uninitialized value and freed memory in spell command.
Solution: Initialize "attr". Check for empty line early.
Files: src/spell.c, src/testdir/test_spell_utf8.vim

Patch 8.2.5073
Problem: Clang on MS-Windows produces warnings.
Solution: Avoid the warnings. (Yegappan Lakshmanan, closes #10546)
Files: src/dosinst.c, src/dosinst.h, src/gui_dwrite.cpp, src/gui_w32.c,

src/iscygpty.c, src/libvterm/src/vterm_internal.h, src/mbyte.c,
src/os_win32.c, src/os_win32.h, src/term.c, src/xdiff/xinclude.h

Patch 8.2.5074
Problem: Spell test fails on MS-Windows.
Solution: Do not change 'encoding'

version9.txt — 3995

Files: src/testdir/test_spell_utf8.vim

Patch 8.2.5075
Problem: Clang gives an out of bounds warning.
Solution: adjust conditional expression (John Marriott)
Files: src/ui.c

Patch 8.2.5076
Problem: Unnecessary code.
Solution: Remove code and replace with function call. (closes #10552)
Files: src/drawline.c, src/getchar.c

Patch 8.2.5077
Problem: Various warnings from clang on MS-Windows.
Solution: Avoid the warnings. (Yegappan Lakshmanan, closes #10553)
Files: src/dosinst.c, src/dosinst.h, src/filepath.c, src/gui_w32.c,

src/misc1.c, src/os_win32.c

Patch 8.2.5078
Problem: Substitute test has a one second delay.
Solution: Use ":silent!". Add another test case. (closes #10558)
Files: src/testdir/test_substitute.vim

Patch 8.2.5079
Problem: DirChanged autocommand may use freed memory. (Shane-XB Qian)
Solution: Free the memory later. (closes #10555)
Files: src/ex_docmd.c, src/testdir/test_autocmd.vim

Patch 8.2.5080
Problem: When indenting gets out of hand it is hard to stop.
Solution: When line gets too long set got_int.
Files: src/indent.c

Patch 8.2.5081
Problem: Autocmd test fails on MS-Windows.
Solution: Set shellslash to get forward slashes.
Files: src/testdir/test_autocmd.vim

Patch 8.2.5082 (after 8.2.5080)
Problem: Retab test fails.
Solution: Disable the test for now.
Files: src/testdir/test_retab.vim

Patch 8.2.5083
Problem: Autocmd test still fails on MS-Windows.
Solution: Change backward to forward slashes.
Files: src/testdir/test_autocmd.vim

Patch 8.2.5084
Problem: When the GUI shows a dialog tests get stuck.
Solution: Add the --gui-dialog-file argument.
Files: runtime/doc/starting.txt, src/Make_mvc.mak, src/gui.c, src/main.c,

src/message.c, src/os_mswin.c, src/proto/gui.pro,
src/proto/main.pro, src/structs.h, src/testdir/Make_dos.mak,
src/testdir/Make_ming.mak, src/testdir/Makefile,
src/testdir/runtest.vim, src/testdir/shared.vim

Patch 8.2.5085
Problem: Gcc gives warning for signed/unsigned difference.
Solution: Use a different pointer type. (John Marriott)

version9.txt — 3996

Files: src/os_mswin.c

Patch 8.2.5086
Problem: CI runs on Windows 2019.
Solution: Switch to Windows 2022. (closes #10566)
Files: .github/workflows/ci.yml

Patch 8.2.5087
Problem: Cannot build with clang on MS-Windows.
Solution: Add support for building with clang. (Yegappan Lakshmanan,

closes #10557)
Files: src/GvimExt/Make_ming.mak, src/INSTALLpc.txt,

src/Make_cyg_ming.mak

Patch 8.2.5088
Problem: Value of cmod_verbose is a bit complicated to use.
Solution: Use zero for not set, value + 1 when set. (closes #10564)
Files: src/ex_docmd.c, src/ex_getln.c, src/globals.h, src/structs.h

Patch 8.2.5089
Problem: Some functions return a different value on failure.
Solution: Initialize the return value earlier. (Yegappan Lakshmanan,

closes #10568)
Files: src/autocmd.c, src/dict.c, src/evalfunc.c, src/list.c

Patch 8.2.5090
Problem: MS-Windows: vim.def is no longer used.
Solution: Delete vim.def. (Ken Takata, closes #10569)
Files: Filelist, Makefile, src/vim.def

Patch 8.2.5091
Problem: Terminal test fails with some shell commands.
Solution: Disable setting the window title. (closes #10530)
Files: src/testdir/test_terminal.vim

Patch 8.2.5092
Problem: Using "'<,'>" in Ex mode may compare unrelated pointers.
Solution: Set eap->cmd to "+" only later.
Files: src/ex_docmd.c

Patch 8.2.5093
Problem: Error message for unknown command may mention the command twice.

(Malcolm Rowe)
Solution: Add the did_append_cmd flag. (closes #10570)
Files: src/ex_docmd.c

Patch 8.2.5094
Problem: MS-Windows GUI: empty command may cause a dialog.
Solution: Delete the dialog file. Improve the message.
Files: src/testdir/runtest.vim, src/testdir/test_ex_mode.vim

Patch 8.2.5095
Problem: Terminal test still fails with some shell commands.
Solution: Disable setting the window title in the Vim instance running in a

terminal window. (closes #10530)
Files: src/testdir/test_terminal.vim

Patch 8.2.5096 (after 8.2.5095)
Problem: Terminal test still fails with some shell commands.
Solution: Add missing "call". (closes #10530)

version9.txt — 3997

Files: src/testdir/test_terminal.vim

Patch 8.2.5097
Problem: Using uninitialized memory when using 'listchars'.
Solution: Use the length returned by mb_char2bytes(). (closes #10576)
Files: src/message.c

Patch 8.2.5098
Problem: Spelldump test sometimes hangs.
Solution: Catch the problem of the spell file not being found to avoid

hanging in the download dialog.
Files: src/testdir/test_spell.vim

Patch 8.2.5099
Problem: Some terminal tests are not retried.
Solution: Mark terminal tests as flaky.
Files: src/testdir/test_terminal.vim

Patch 8.2.5100
Problem: Memory usage tests are not retried.
Solution: Mark memory usage tests as flaky.
Files: src/testdir/test_memory_usage.vim

Patch 8.2.5101
Problem: MS-Windows with MinGW: $CC may be "cc" instead of "gcc".
Solution: Set $CC if it is not matching "clang". (Yegappan Lakshmanan,

closes #10578)
Files: src/INSTALLpc.txt, src/Make_cyg_ming.mak

Patch 8.2.5102
Problem: Interrupt not caught in test.
Solution: Consider an exception thrown in the current try/catch when got_int

is set. Also catch early exit when not using try/catch.
Files: src/indent.c, src/testing.c, src/testdir/test_retab.vim,

src/testdir/runtest.vim

Patch 8.2.5103
Problem: Build fails with small features.
Solution: Add #ifdef. Skip test on MS-Windows.
Files: src/indent.c, src/testdir/test_retab.vim

Patch 8.2.5104 (after 8.2.5103)
Problem: Test hangs on MS-Windows.
Solution: Skip another test on MS-Windows.
Files: src/testdir/test_retab.vim

Patch 8.2.5105 (after 8.2.5104)
Problem: Test still hangs on MS-Windows.
Solution: Skip "nocatch" test the right way.
Files: src/testdir/test_retab.vim

Patch 8.2.5106
Problem: Default cmdwin mappings are re-mappable.
Solution: Make the default mappings not re-mappable. (closes #10580) Use

symbols for the first do_map() argument.
Files: src/vim.h, src/ex_getln.c, src/map.c, src/proto/map.pro,

src/digraph.c, src/netbeans.c

Patch 8.2.5107
Problem: Some callers of rettv_list_alloc() check for not OK. (Christ van

version9.txt — 3998

Willegen)
Solution: Use "==" instead of "!=" when checking the return value.
Files: src/evalbuffer.c, src/channel.c, src/cmdexpand.c, src/evalfunc.c,

src/evalwindow.c, src/insexpand.c, src/job.c, src/list.c,
src/map.c, src/menu.c, src/mouse.c, src/move.c, src/sign.c,
src/textprop.c, src/term.c, src/time.c

Patch 8.2.5108
Problem: Retab test disabled because it hangs on MS-Windows.
Solution: Also set got_int at the other place an overlong text is detected.
Files: src/indent.c, src/testdir/test_retab.vim

Patch 8.2.5109
Problem: Mode not updated after CTRL-O CTRL-C in Insert mode.
Solution: Set redraw_mode and use it. (closes #10581)
Files: src/main.c, src/normal.c, src/testdir/test_normal.vim,

src/testdir/dumps/Test_mode_updated_1.dump

Patch 8.2.5110
Problem: Icon filetype not recognized from the first line.
Solution: Add a check for the first line. (Doug Kearns)
Files: runtime/autoload/dist/script.vim, src/testdir/test_filetype.vim

Patch 8.2.5111
Problem: No test for --gui-dialog-file.
Solution: Add a test.
Files: src/testdir/test_gui.vim

Patch 8.2.5112 (after 8.2.5111)
Problem: Gui test hangs on MS-Windows.
Solution: Use "!start" to start Vim.
Files: src/testdir/test_gui.vim

Patch 8.2.5113
Problem: Timer becomes invalid after fork/exec, :gui gives errors. (Gabriel

Dupras)
Solution: Delete the timer befor forking. (closes #10584)
Files: src/os_unix.c, src/proto/os_unix.pro, src/gui.c

Patch 8.2.5114
Problem: Time limit on searchpair() does not work properly.
Solution: Set the time limit once instead of for each regexp. (closes #10562)
Files: src/search.c, src/evalfunc.c, src/testdir/test_search.vim

Patch 8.2.5115
Problem: Search timeout is overrun with some patterns.
Solution: Check for timeout in more places. Make the flag volatile and

atomic. Use assert_inrange() to see what happened.
Files: src/regexp_nfa.c, src/regexp_bt.c, src/regexp.c, src/os_unix.c,

src/proto/os_unix.pro, src/testdir/test_search.vim

Patch 8.2.5116
Problem: "limit" option of matchfuzzy() not always respected.
Solution: Remove "else". (Kazuyuki Miyagi, closes #10586)
Files: runtime/doc/builtin.txt, src/search.c,

src/testdir/test_matchfuzzy.vim

Patch 8.2.5117
Problem: Crash when calling a Lua callback from a :def function. (Bohdan

Makohin)

version9.txt — 3999

Solution: Handle FC_CFUNC in call_user_func_check(). (closes #10587)
Files: src/userfunc.c, src/testdir/test_lua.vim

Patch 8.2.5118
Problem: MS-Windows: sending a message to another Vim may hang if that Vim

is halted.
Solution: Add a timeout to serverSendToVim(). (Ken Takata, closes #10585)
Files: runtime/pack/dist/opt/editexisting/plugin/editexisting.vim,

src/os_mswin.c

Patch 8.2.5119
Problem: CI uses cache v2.
Solution: Use cache v3. (closes #10588)
Files: .github/workflows/ci.yml

Patch 8.2.5120
Problem: Searching for quotes may go over the end of the line.
Solution: Check for running into the NUL.
Files: src/textobject.c

Patch 8.2.5121
Problem: Interrupt test sometimes fails.
Solution: Use a different file name.
Files: src/testdir/test_interrupt.vim

Patch 8.2.5122
Problem: Lisp indenting my run over the end of the line.
Solution: Check for NUL earlier.
Files: src/indent.c, src/testdir/test_indent.vim

Patch 8.2.5123
Problem: Using invalid index when looking for spell suggestions.
Solution: Do not decrement the index when it is zero.
Files: src/spellsuggest.c, src/testdir/test_spell.vim

Patch 8.2.5124
Problem: When syntax timeout test fails it does not show the time.
Solution: Use assert_inrange().
Files: src/testdir/test_syntax.vim

Patch 8.2.5125
Problem: MS-Windows: warnings from MinGW compiler.
Solution: Use "volatile". (Yasuhiro Matsumoto, closes #10589) Initialize

variable.
Files: src/os_win32.c, src/proto/os_win32.pro, src/map.c

Patch 8.2.5126
Problem: Substitute may overrun destination buffer.
Solution: Disallow switching buffers in a substitute expression.
Files: src/ex_docmd.c, src/testdir/test_substitute.vim

Patch 8.2.5127
Problem: Using assert_true() does not show value on failure.
Solution: Use assert_inrange(). (closes #10593)
Files: src/testdir/test_channel.vim, src/testdir/test_hlsearch.vim

Patch 8.2.5128
Problem: Syntax highlighting disabled when using synID() in searchpair()

skip expression and it times out. (Jaehwang Jung)
Solution: Add the redrawtime_limit_set flag. (closes #10562)

version9.txt — 4000

Files: src/globals.h, src/drawscreen.c, src/syntax.c

Patch 8.2.5129
Problem: Timeout handling is not optimal.
Solution: Avoid setting timeout_flag twice. Adjust the pointer when

stopping the regexp timeout. Adjust variable name.
Files: src/os_unix.c, src/os_win32.c, src/regexp.c

Patch 8.2.5130
Problem: Edit test for mode message fails when using valgrind.
Solution: Use WaitForAssert(). Run beep test later.
Files: src/testdir/test_edit.vim

Patch 8.2.5131
Problem: Timeout implementation is not optimal.
Solution: Further improvements for timeouts. Add a test for searchpair()

timeout. (partly by Paul Ollis)
Files: src/configure.ac, src/auto/configure,

src/testdir/test_hlsearch.vim, src/testdir/test_search.vim

Patch 8.2.5132
Problem: :mkview test doesn't test much.
Solution: Save the view with the folds closed. (James McCoy, closes #10596)
Files: src/testdir/test_mksession.vim

Patch 8.2.5133
Problem: MacOS: build fails.
Solution: Remove "#if 0" from timer_delete().
Files: src/os_macosx.m

Patch 8.2.5134
Problem: Function has confusing name.
Solution: Rename tgetent_error() to invoke_tgetent().
Files: src/term.c

Patch 8.2.5135
Problem: Running configure gives warnings for main() return type.
Solution: Specify "int" return type. Avoid a few more warnings.
Files: src/configure.ac, src/auto/configure

Patch 8.2.5136
Problem: Debugger test fails when run with valgrind.
Solution: Wait longer when using valgrind.
Files: src/testdir/shared.vim, src/testdir/test_debugger.vim,

src/testdir/test_search.vim

Patch 8.2.5137
Problem: Cannot build without the +channel feature. (Dominique Pellé)
Solution: Add #ifdef around ch_log() calls. (closes #10598)
Files: src/os_unix.c, src/regexp_nfa.c, src/regexp_bt.c

Patch 8.2.5138
Problem: Various small issues.
Solution: Various small improvements.
Files: src/filepath.c, src/job.c, src/mark.c, src/move.c,

src/popupwin.c, src/testdir/test_filetype.vim

Patch 8.2.5139
Problem: TIME_WITH_SYS_TIME is no longer supported by autoconf.
Solution: Always include time.h.

version9.txt — 4001

Files: src/os_unix.h

Patch 8.2.5140
Problem: Seachpair timeout test is flaky.
Solution: Mark the test as flaky so it is retried.
Files: src/testdir/test_search.vim

Patch 8.2.5141
Problem: Using "volatile int" in a signal handler might be wrong.
Solution: Use "volatile sig_atomic_t".
Files: src/os_unix.c, src/proto/os_unix.pro, src/os_win32.c,

src/proto/os_win32.pro, src/regexp.c,

Patch 8.2.5142
Problem: Startup test fails if there is a status bar at the top of the

screen. (Ernie Rael)
Solution: Use a larger vertical offset in the test.
Files: src/testdir/test_startup.vim

Patch 8.2.5143
Problem: Some tests fail when using valgrind. Spurious leak reports.
Solution: Use WaitForAssert(). Avoid failing fork/exec. Skip tests where a

job is killed when running valgrind.
Files: src/testdir/test_iminsert.vim, src/testdir/test_popup.vim,

src/testdir/test_cscope.vim, src/testdir/test_channel.vim

Patch 8.2.5144
Problem: With 'lazyredraw' set completion menu may be displayed wrong.
Solution: When the popup menu is visible do not insert a screen line.

(closes #10601)
Files: src/screen.c

Patch 8.2.5145
Problem: Exit test causes spurious valgrind reports.
Solution: Skip test. Add CheckNotValgrind.
Files: src/testdir/test_exit.vim, src/testdir/check.vim,

src/testdir/test_channel.vim

Patch 8.2.5146
Problem: Memory leak when substitute expression nests.
Solution: Use an array of expression results.
Files: src/alloc.c, src/regexp.c, src/proto/regexp.pro,

src/errors.h, src/ex_cmds.c, src/testdir/test_substitute.vim

Patch 8.2.5147
Problem: Flaky test always fails on retry.
Solution: Delete the created function.
Files: src/testdir/test_search.vim

Patch 8.2.5148
Problem: Invalid memory access when using an expression on the command line.
Solution: Make sure the position does not go negative.
Files: src/ex_getln.c, src/testdir/test_cmdline.vim

Patch 8.2.5149 (after 8.2.5148)
Problem: Cannot build without the +eval feature. (Tony Mechelynck)
Solution: Add #ifdefs.
Files: src/ex_getln.c

Patch 8.2.5150

version9.txt — 4002

Problem: Read past the end of the first line with ":0;'{".
Solution: When on line zero check the column is valid for line one.
Files: src/ex_docmd.c, src/testdir/test_cmdline.vim

Patch 8.2.5151
Problem: Reading beyond the end of the line with lisp indenting.
Solution: Avoid going over the NUL at the end of the line.
Files: src/indent.c, src/testdir/test_lispwords.vim

Patch 8.2.5152
Problem: search() gets stuck with "c" and skip evaluates to true.
Solution: Reset the SEARCH_START option. (closes #10608)
Files: src/evalfunc.c, src/testdir/test_syntax.vim

Patch 8.2.5153
Problem: "make uninstall" does not remove colors/lists.
Solution: Add a line to the Makefile. (closes #10609)
Files: src/Makefile

Patch 8.2.5154
Problem: Still mentioning version8, some cosmetic issues.
Solution: Prefer mentioning version9, cosmetic improvements.
Files: src/version.c, src/if_tcl.c, src/regexp.c,

src/testdir/test_gui.vim, src/os_unix.c, Filelist, src/Makefile

Patch 8.2.5155
Problem: In diff mode windows may get out of sync. (Gary Johnson)
Solution: Avoid that the other window scrolls for 'cursorbind'.
Files: src/move.c, src/testdir/test_diffmode.vim,

src/testdir/dumps/Test_diff_scroll_1.dump,
src/testdir/dumps/Test_diff_scroll_2.dump

Patch 8.2.5156
Problem: Search timeout test often fails with FreeBSD.
Solution: Double the maximum time.
Files: src/testdir/test_search.vim

Patch 8.2.5157
Problem: MS-Windows GUI: CTRL-key combinations do not always work.
Solution: Handle special key combinations better. (closes #10613,

closes #10602, closes #10579)
Files: src/gui_w32.c

Patch 8.2.5158
Problem: TSTP and INT signal tests are not run with valgrind.
Solution: Sleep a bit longer. (closes #10614)
Files: src/testdir/test_signals.vim

Patch 8.2.5159 (after 8.2.5157)
Problem: Fix for CTRL-key combinations causes more problems than it solves.
Solution: Roll back the change.
Files: src/gui_w32.c

Patch 8.2.5160
Problem: Accessing invalid memory after changing terminal size.
Solution: Adjust cmdline_row and msg_row to the value of Rows.
Files: src/term.c

Patch 8.2.5161
Problem: Might still access invalid memory.

version9.txt — 4003

Solution: Add extra check for negative value.
Files: src/message.c

Patch 8.2.5162
Problem: Reading before the start of the line with BS in Replace mode.
Solution: Check the cursor column is more than zero.
Files: src/edit.c

Patch 8.2.5163
Problem: Crash when deleting buffers in diff mode.
Solution: Recompute diffs later. Skip window without a valid buffer.
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.2.5164
Problem: Invalid memory access after diff buffer manipulations.
Solution: Use zero offset when change removes all lines in a diff block.
Files: src/diff.c, src/testdir/test_diffmode.vim

Patch 8.2.5165
Problem: Import test fails because 'diffexpr' isn't reset.
Solution: Reset 'diffexpr'.
Files: src/testdir/test_vim9_import.vim

Patch 8.2.5166
Problem: Test for DiffUpdated fails.
Solution: Also accept a count of two.
Files: src/testdir/test_diffmode.vim

Patch 8.2.5167
Problem: get(Fn, 'name') on funcref returns special byte code.
Solution: Use the printable name.
Files: src/evalfunc.c, src/testdir/test_getvar.vim

Patch 8.2.5168
Problem: Cannot build with Python 3.11.
Solution: Adjust define for _PyObject_TypeCheck. (Zdenek Dohnal,

closes #10627)
Files: src/if_python3.c

Patch 8.2.5169
Problem: Nested :source may use NULL pointer.
Solution: Do not use the NULL pointer.
Files: src/eval.c, src/testdir/test_vimscript.vim

Patch 8.2.5170
Problem: Tiny issues.
Solution: Tiny improvements.
Files: src/misc1.c, src/screen.c, src/vim.h

Patch 8.2.5171
Problem: Dependencies and proto files are outdated.
Solution: Update dependencies and proto files. Avoid errors.
Files: src/Makefile, src/gui_w32.c, src/os_mswin.c, src/proto/buffer.pro,

src/proto/cmdexpand.pro, src/proto/getchar.pro,
src/proto/help.pro, src/proto/mbyte.pro, src/proto/option.pro,
src/proto/screen.pro, src/proto/syntax.pro,
src/proto/textformat.pro, src/proto/textobject.pro,
src/proto/time.pro, src/proto/gui_x11.pro, src/proto/if_tcl.pro,
src/proto/os_mswin.pro

version9.txt — 4004

Patch 8.2.5172
Problem: "make menu" still uses legacy script.
Solution: make menu generation script use Vim9 script, fix errors.
Files: runtime/makemenu.vim

==
VERSION 9.1 version-9.1 version9.1 vim-9.1

This section is about improvements made between version 9.0 and 9.1.
The release 9.1 is dedicated to Vim's Benevolent dictator for life
Bram-Moolenaar .

This release has hundreds of bug fixes, there are a few new features and there
are many minor improvements.

Vim9 classes

Support for classes and objects in a Vim9 script are added. This is described
in vim9-class . The following features are supported:

- Defining classes and instantiating objects
- Multiple constructors
- Class variables and methods
- Object variables and methods
- Public and protected access for variables and methods
- Constant and final object/class variables
- Extending classes (single inheritance)
- Interfaces
- Abstract classes
- Exporting classes

Support for creating a type alias for an existing type is added.

Virtual text

Support for adding virtual-text to a buffer is added. This is useful for
language server features (e.g. inlay hints)

Smooth Scroll

Support for scrolling text using screen lines instead of file lines is added.
Refer to the 'smoothscroll' option.

The EditorConfig (editorconfig-install) and the JSON formatting
(ft-json-plugin) plugins are included.

OpenVMS x86_64 platform port: http://www.polarhome.com/vim/

Other improvements new-other-9.1

- Support for undercurl (t_Ce), double underline (t_Us), dotted underline

(t_ds) and dashed underline (t_Ds) termcap entries and
highlight modes (highlight-term).

- The 'fillchars' option is now a global-local option and allows to
specify the character used for the last window line.

- The :vertical and :horizontal modifiers can be used with ":wincmd ="
command to equalize windows vertically or horizontally.

- :defer command to defer the execution of a function till the end of a
function.

- Support for closing a tab page using the middle mouse button.

version9.txt — 4005

http://www.polarhome.com/vim/

- Sound support in MacOS.
- The prop_remove() function can now remove multiple text properties.
- The items() function now supports a List or a String argument.
- The repeat() function now supports blob repeat.
- Command line completion support for :runtime command.
- Support for custom completion using getcompletion() .
- Command-line completion support for option values.
- Support for multiple "%=" items in 'statusline'.
- Support for the PmenuKind, PmenuKindSel, PmenuExtra and PmenuExtraSel

highlight groups.
- Text properties can override 'cursorline' highlight.
- Support for echoing messages in a popup window :echowindow .
- Control scroll behavior when splitting windows 'splitkeep'.
- Support for mouse scrolling in the MS-Windows console.
- Support for using different keyboard protocols 'keyprotocol'

(xterm modifyOtherKeys and Kitty terminal protocol (CSI u) support).
- Support for UTF-16 string index.
- Quickfix list items can have associated custom user data.
- reverse() supports reversing a string.
- 'switchbuf' is used by more commands.
- undotree() can be used with any buffer.
- printf() supports positional arguments.
- col() , charcol() and virtcol() can be used with different windows.
- Support for Python3 stable ABI (python-stable).
- Use jumplist like a stack 'jumpoptions'.
- Support for writing extended attributes in Linux (xattr).
- 'errorformat' supports parsing a buffer number ("%b").
- Support for building the python interface using Python 3.12.
- matchaddpos() is no longer limited to 8 positions.
- readblob() allows to read part of a file.
- 'shortmess' allows to suppress "scanning" messages.
- Add the XChaCha20v2 encryption method 'cryptmethod'.
- Add support for testing syntax files.
- Support "**" for filename expansion with bash using globstar setting.
- Add quadruple prime digraph using 4'.
- Better high dpi support on Windows.
- Various fixes for unsafe memory access, memory leaks, buffer overflows

and potential crashes.
- Termdebug: Support for the variables window (termdebug_variables_window),

moving up/down the stack frames (termdebug-frames) and setting temporary
breakpoints (:Tbreak).

- xxd: support for using colors in the hex dump output (xxd -R).
- xxd: reversing a bit dump (xxd -r).
- xxd: customize the variable name used in the C include output (xxd -n).

Changed changed-9.1

- The features ++builtin_terms , +cmdline_info , +cmdwin , +file_in_path ,

+float , +path_extra , +textobjects , +wildignore and +wildmenu are
available in all the builds.

- Support for Windows-XP is dropped.
- Support for VisVim is removed.
- The "small" and "big" builds are dropped in favor of "tiny" and "huge"

builds.
- Mention the detected 'keyprotocol' on ":verbose map" when listing mappings.
- The optional Content-Type header is removed from the LSP messages.
- charidx() returns the character length when the index is one more than the

last byte index.
- Ctrl-Q works like Ctrl-V in replace mode.
- popup_filter_menu() now wraps around.

version9.txt — 4006

- popup_create() now aborts on an error.
- g<End> now jumps to the last non-blank character.
- dot and hyphen are supported in highlight group names.
- executable() resolves symlinks on MS-Windows.
- Ruby 1.8 support is dropped.
- 'ttyfast' is always set.
- virtcol2col() returns the first byte for a multi-byte character.
- i_CTRL-O resets Select Mode.
- mode() returns more submodes.
- r with CTRL-C on a visual area replaces using CTRL-C consistently.
- The matchparen plugin no longer uses hard coded match id 3.
- The Statusline no longer uses hard coded values "^" and "=" if the

highlighting groups for the statusline have been cleared.
- 'maxfuncdepth' setting is also used for the maximum callback depth.
- Migrate to autoconf 2.71.
- Start using C99 feature (declare variable in for loops).

Added added-9.1

Various syntax, indent and other plugins were added.

Functions:

err_teapot() produce error 418 or 503
getbufoneline() get a single line from the specified buffer
getcellwidths() get character cell width overrides
getmouseshape() get name of the current mouse shape
getscriptinfo() get list of sourced vim scripts
indexof() index in a List or Blob of a true expression
instanceof() check if a variable is an instance of a given class
keytrans() translate internal key codes to be usable with :map
popup_findecho() get window ID for popup used for :echowindow
setcmdline() set the current command line
strutf16len() number of UTF-16 code units in a string
swapfilelist() list of existing swap files in 'directory'
test_mswin_event() generate an MS-Windows event for testing
utf16idx() UTF-16 index of a byte in a string

Autocommands:

TextChangedT after a change was made to the text in Terminal mode
WinResized after a window in the current tab page is resized

Commands:

:abstract define a Vim9 abstract class
:class start of a class specification
:defer call function when current function is done
:echowindow same as :echomsg, but use a popup window
:endinterface end of an interface specification
:endclass end of a class specification
:horizontal following window command works horizontally
:interface start of an interface specification
:public prefix for a class or object member
:static prefix for a class member or function
:this prefix for an object member
:type create a type alias

version9.txt — 4007

Options:

'endoffile' write CTRL-Z at end of the file
'jumpoptions' specifies how jumping is done
'keyprotocol' what keyboard protocol to use for what terminal
'lispoptions' changes how Lisp indenting is done
'showcmdloc' where to show (partial) command
'smoothscroll' scroll by screen lines when 'wrap' is set
'splitkeep' determines scroll behavior for split windows

==
PATCHES patches-9.1 bug-fixes-9.1

patches-after-9.0

The list of patches that got included since 9.0.0. This includes all the new
features, but does not include runtime file changes (syntax, indent, ftplugin,
documentation, etc.)

Note: authorship and the list of changed files is left out and only visible
through `git log` for each commit.

Patch 9.0.0001
Problem: Travis CI is no longer used.
Solution: Delete the Travis CI configuration. (Hugo Osvaldo Barrera,

closes #10636)

Patch 9.0.0002
Problem: Map functionality outside of map.c.
Solution: Move f_hasmapto() to map.c. Rename a function. (closes #10611)

Patch 9.0.0003
Problem: Functions are global while they could be local.
Solution: Add "static". Add a few tests. (Yegappan Lakshmanan,

closes #10612)

Patch 9.0.0004
Problem: Plural messages not translated properly.
Solution: Use ngettext() in a few more places. (Matvey Tarasov,

closes #10606)

Patch 9.0.0005
Problem: Hare files are not recognized.
Solution: Add a filetype pattern. (Hugo Osvaldo Barrera, closes #10630)

Patch 9.0.0006
Problem: Not all Visual Basic files are recognized.
Solution: Change detection of *.cls files. (Doug Kearns)

Patch 9.0.0007
Problem: No support for double, dotted and dashed underlines.
Solution: Add the termcap entries and highlight modes. (closes #9553)

Patch 9.0.0008
Problem: Cannot specify the variable name for "xxd -i".
Solution: Add the "-name" argument. (David Gow, closes #10599)

Patch 9.0.0009
Problem: Going past the end of a menu item with only modifier.

version9.txt — 4008

Solution: Check for NUL.

Patch 9.0.0010
Problem: Returning 0 for has('patch-9.0.0') is inconsistent.
Solution: Make it return 1. (closes #10640)

Patch 9.0.0011
Problem: Reading beyond the end of the line with put command.
Solution: Adjust the end mark position.

Patch 9.0.0012
Problem: Signature files not detected properly.
Solution: Add a function to better detect signature files. (Doug Kearns)

Patch 9.0.0013
Problem: Reproducing memory access errors can be difficult.
Solution: When testing, copy each line to allocated memory, so that valgrind

can detect accessing memory before and/or after it. Fix uncovered
problems.

Patch 9.0.0014
Problem: Missing part of the test override change.
Solution: Add the missing part.

Patch 9.0.0015
Problem: With EXITFREE defined terminal menus are not cleared.
Solution: Also clear terminal menus. Remove condition that is always true.

(closes #10641)

Patch 9.0.0016
Problem: Comparing line pointer for 'breakindent' is not reliable.
Solution: Make a copy of the line.

Patch 9.0.0017
Problem: Accessing memory beyond the end of the line.
Solution: Stop Visual mode when closing a window.

Patch 9.0.0018
Problem: Going over the end of the typeahead.
Solution: Put a NUL after the typeahead.

Patch 9.0.0019
Problem: Timers test not run where possible.
Solution: Adjust platform checks. (closes #10645)

Patch 9.0.0020
Problem: With some completion reading past end of string.
Solution: Check the length of the string.

Patch 9.0.0021
Problem: Invalid memory access when adding word with a control character to

the internal spell word list.
Solution: Disallow adding a word with control characters or a trailing

slash.

Patch 9.0.0022
Problem: Spell test fails.
Solution: Expect new error is given.

Patch 9.0.0023

version9.txt — 4009

Problem: On Solaris timer_create() exists but does not work.
Solution: Adjust the configure check to run the test program.

(closes #10647)

Patch 9.0.0024
Problem: May access part of typeahead buf that isn't filled.
Solution: Check length of typeahead.

Patch 9.0.0025
Problem: Accessing beyond allocated memory when using the cmdline window in

Ex mode.
Solution: Use "*" instead of "'<,'>" for Visual mode.

Patch 9.0.0026
Problem: Accessing freed memory with diff put.
Solution: Bail out when diff pointer is no longer valid.

Patch 9.0.0027
Problem: The command line test is getting quite big.
Solution: Move command line window tests to a separate file.

Patch 9.0.0028
Problem: MS-Windows: tests fail if there is a stray "runtime" directory.
Solution: Only use a "runtime" directory if it contains "defaults.vim".

Patch 9.0.0029
Problem: The bitmaps/vim.ico file is not in the distribution.
Solution: Add it back to the distribution. Adjust the build rules to have

it end up in the right place.

Patch 9.0.0030
Problem: Matchfuzzy test depends on path of current directory.
Solution: Use fnamemodify() to remove the path. (Robin Becker,

closes #10650)

Patch 9.0.0031
Problem: <cmod> of user command does not have correct verbose value.
Solution: Use the value from the command modifier. (closes #10651)

Patch 9.0.0032
Problem: In the quickfix window 'cursorline' overrules QuickFixLine

highlighting.
Solution: Combine the attributes. Add a test. (closes #10654)

Patch 9.0.0033
Problem: On a Belgian keyboard CTRL-[does not work.
Solution: Handle GDK_KEY_dead_circumflex. (Anton Sharonov, closes #10658)

Patch 9.0.0034
Problem: Spell tests do not always clear the word list.
Solution: Clear the word list in TearDown(). (closes #10659)

Patch 9.0.0035
Problem: Spell dump may go beyond end of an array.
Solution: Limit the word length.

Patch 9.0.0036
Problem: 'fillchars' cannot have window-local values.
Solution: Make 'fillchars' global-local. (closes #5206)

version9.txt — 4010

Patch 9.0.0037
Problem: Build error.
Solution: Add missing change.

Patch 9.0.0038
Problem: 'listchars' test fails.
Solution: Use window-local value after setting the global value

Patch 9.0.0039
Problem: Not all systems have GDK_KEY_dead_circumflex. (Hisashi T Fujinaka)
Solution: Add an #ifdef.

Patch 9.0.0040
Problem: Use of set_chars_option() is confusing.
Solution: Add "apply" argument to store the result or not. Merge similar

code.

Patch 9.0.0041
Problem: A couple of filetype patterns do not have "*" before "/etc".
Solution: Add the star. (Jonas Strittmatter, closes #10662)

Patch 9.0.0042
Problem: Missing change for filetype detection.
Solution: Include change to detect guile from shebang line.

Patch 9.0.0043
Problem: Insufficient testing for bracket commands.
Solution: Add a few more tests. (closes #10668)

Patch 9.0.0044
Problem: Typos in comments, wrapping lines.
Solution: Adjust comments. Wrap lines.

Patch 9.0.0045
Problem: Reading past end of completion with a long line and 'infercase'

set.
Solution: Allocate the string if needed.

Patch 9.0.0046
Problem: Reading past end of completion with duplicate match.
Solution: Check string length

Patch 9.0.0047
Problem: Using freed memory with recursive substitute.
Solution: Always make a copy for reg_prev_sub.

Patch 9.0.0048
Problem: Cursor in wrong column with mouse click after concealed text.
Solution: Store the text column when drawing text.

Patch 9.0.0049
Problem: Csv and tsv files are not recognized.
Solution: Add patterns fo csv and tsv files. (Leandro Lourenci,

closes #10680)

Patch 9.0.0050
Problem: Split else-of is confusing.
Solution: Join the lines. (closes #10696)

Patch 9.0.0051

version9.txt — 4011

Problem: Using CTRL-C with :append may hang Vim.
Solution: Reset got_int. (closes #10729, closes #10728)

Patch 9.0.0052
Problem: "zG" may throw an error if invalid character follows.
Solution: Pass the word length to valid_spell_word(). (Ken Takata,

closes #10737)

Patch 9.0.0053
Problem: E1281 not tested with the old regexp engine.
Solution: Loop over the values of 'regexp'. (Dominique Pellé, closes #10695)

Patch 9.0.0054
Problem: Compiler warning for size_t to int conversion.
Solution: Add type cast. (Mike Williams, closes #10741)

Patch 9.0.0055
Problem: Bitbake files are not detected.
Solution: Add bitbake filetype detection by file name and contents. (Gregory

Anders, closes #10697)

Patch 9.0.0056
Problem: Wrong line number reported when :cexpr fails in :def function.
Solution: Set line_number before executing :cexpr. (closes #10735)

Patch 9.0.0057
Problem: has('patch-xxx') returns true.
Solution: Check for digit. (closes #10751)

Patch 9.0.0058
Problem: Win32: cannot test low level events.
Solution: Add "sendevent" to test_gui_event(). (Yegappan Lakshmanan,

closes #10679)

Patch 9.0.0059
Problem: Test file has wrong name.
Solution: Rename the file. Various small fixes. (closes #10674)

Patch 9.0.0060
Problem: Accessing uninitialized memory when completing long line.
Solution: Terminate string with NUL.

Patch 9.0.0061
Problem: ml_get error with nested autocommand.
Solution: Also check line numbers for a nested autocommand. (closes #10761)

Patch 9.0.0062
Problem: Compiler warnings for signed/unsigned char.
Solution: Add type casts. (John Marriott)

Patch 9.0.0063
Problem: Too many type casts for dict_get functions.
Solution: Change the key argument from "char_u *" to "char *".

Patch 9.0.0064
Problem: Confusing error when using "q:" in command line window.
Solution: Check for the situation and give a better error message.

(closes #10756)

Patch 9.0.0065

version9.txt — 4012

Problem: Cross-compiling doesn't work because of timer_create check.
Solution: Use AC_CACHE_CHECK(). (Richard Purdie, closes #10777)

Patch 9.0.0066
Problem: Switching window unnecessarily when getting buffer options.
Solution: Do not switch window when getting buffer options. (closes #10767)

Patch 9.0.0067
Problem: Cannot show virtual text.
Solution: Initial changes for virtual text support, using text properties.

Patch 9.0.0068
Problem: Build fails with tiny features.
Solution: Add #ifdef.

Patch 9.0.0069
Problem: Leaking memory when using text prop with inserted text.
Solution: Clear the growarray with text.

Patch 9.0.0070
Problem: Using utfc_ptr2char_len() when length is negative.
Solution: Check value of length. (closes #10760)

Patch 9.0.0071
Problem: Command overlaps with printed text in scrollback.
Solution: Clear until end-of-line and use correct message chunk.

(closes #10765, closes #10764)

Patch 9.0.0072
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it. (John Marriott)

Patch 9.0.0073
Problem: Too many files recognized as bsdl.
Solution: Use pattern "*.bsd" instead of "*bsd". (Martin Tournoij,

closes #10783)

Patch 9.0.0074
Problem: Coverity warns for double free.
Solution: Reset cts_text_prop_count when freeing cts_text_props.

Patch 9.0.0075
Problem: Some compilers warn for using an uninitialized variable. (Tony

Mechelynck)
Solution: Initialize the variable.

Patch 9.0.0076
Problem: No test for what patch 8.1.1424 fixes.
Solution: Add a test. (closes #10789)

Patch 9.0.0077
Problem: When switching window in autocmd the restored cursor position may

be wrong.
Solution: Do not restore the cursor if it was not set. (closes #10775)

Patch 9.0.0078
Problem: Star register is changed when deleting and both "unnamed" and

"unnamedplus" are in 'clipboard'.
Solution: Make the use of the star register work as documented. (Ernie Rael,

closes #10669)

version9.txt — 4013

Patch 9.0.0079
Problem: Error in autoload script not reported for 'foldexpr'.
Solution: Reset "emsg_off" when auto-loading a script. (closes #10685)

Patch 9.0.0080
Problem: Compiler warning for size_t to int conversion.
Solution: Add type casts. (Mike Williams, closes #10795)

Patch 9.0.0081
Problem: Command line completion of user command may have duplicates.

(Dani Dickstein)
Solution: Skip global user command if an identical buffer-local one is

defined. (closes #10797)

Patch 9.0.0082
Problem: Cannot interrupt global command from command line.
Solution: Reset got_int in another place. (closes #10739)

Patch 9.0.0083
Problem: ModeChanged event not triggered when leaving the cmdline window.
Solution: Call may_trigger_modechanged(). (closes #10791)

Patch 9.0.0084
Problem: Using "terraform" filetype for .tfvars file is bad.
Solution: use "terraform-vars", so that different completion and other

mechanisms can be used. (Radek Simko, closes #10755)

Patch 9.0.0085
Problem: ":write" fails after ":file name" and the ":edit".
Solution: Reset BF_NOTEDITED when using ":edit". (closes #10790)

Patch 9.0.0086
Problem: Tabline is not redrawn when entering command line.
Solution: Set "redraw_tabline". (closes #10771)

Patch 9.0.0087
Problem: MS-Windows: CTRL-[on Belgian keyboard does not work like Esc.
Solution: Figure out what the key code means. (Anton Sharonov,

closes #10687, closes #10454)

Patch 9.0.0088
Problem: Pattern for detecting bitbake files is not sufficient.
Solution: Adjust the pattern. (Gregory Anders, closes #10743)

Patch 9.0.0089
Problem: Fuzzy argument completion doesn't work for shell commands.
Solution: Check for cmdidx not being CMD_bang. (Yegappan Lakshmanan,

closes #10769)

Patch 9.0.0090
Problem: No error when assigning bool to a string option with setwinvar().
Solution: Give an error (closes #10766)

Patch 9.0.0091
Problem: Duplicate error number.
Solution: Use unique error number.

Patch 9.0.0092
Problem: Plugins cannot change v:completed_item.

version9.txt — 4014

Solution: Make v:completed_item writeable. (Shougo Matsushita,
closes #10801)

Patch 9.0.0093
Problem: Sway config files are recognized as i3config.
Solution: Recognize swayconfig separately. (James Eapen, closes #10672)

Patch 9.0.0094
Problem: Cursor restored unexpected with nested autocommand.
Solution: Do not restore the cursor when it was moved intentionally.

(closes #10780)

Patch 9.0.0095
Problem: Conditions are always true.
Solution: Remove useless conditions. (closes #10802)

Patch 9.0.0096
Problem: Flag "new_value_alloced" is always true.
Solution: Remove "new_value_alloced". (closes #10792)

Patch 9.0.0097
Problem: Long quickfix line is truncated for :clist.
Solution: Allocate a buffer if needed.

Patch 9.0.0098
Problem: missing include file in timer_create configure check.
Solution: Include stdlib.h.

Patch 9.0.0099
Problem: Scrollback can be wrong after redrawing the command line.
Solution: Clear unfinished scrollback when redrawing. (closes #10807)

Patch 9.0.0100
Problem: Get hit-enter prompt for system() when '!' is in 'guioptions'.
Solution: Do not call wait_return() when not redrawing. (closes #3327)

Patch 9.0.0101
Problem: Invalid memory access in diff mode with "dp" and undo.
Solution: Make sure the line number does not go below one.

Patch 9.0.0102
Problem: Reading past end of line with insert mode completion.
Solution: Check text length.

Patch 9.0.0103
Problem: If running configure with cached results -lrt may be missing.
Solution: Use two cache variables, one without and one with -lrt.

(closes #10799) Swap checks to avoid adding -lrt unnecessarily.

Patch 9.0.0104
Problem: Going beyond allocated memory when evaluating string constant.
Solution: Properly skip over <Key> form.

Patch 9.0.0105
Problem: Illegal memory access when pattern starts with illegal byte.
Solution: Do not match a character with an illegal byte.

Patch 9.0.0106
Problem: Illegal byte regexp test doesn't fail when fix is reversed.
Solution: Make sure illegal bytes end up in sourced script file.

version9.txt — 4015

Patch 9.0.0107
Problem: Condition always has the same value.
Solution: Remove the condition.

Patch 9.0.0108
Problem: Configure check for timer_create may give wrong error.
Solution: Give a warning instead of an error.

Patch 9.0.0109
Problem: Writing over the end of a buffer on stack when making list of

spell suggestions.
Solution: Make sure suggested word is not too long. (closes #10812)

Patch 9.0.0110
Problem: Help tag generation picks up words in code examples.
Solution: Skip over examples. (Carlo Teubner, closes #10813)

Patch 9.0.0111
Problem: "nocombine" is missing from synIDattr().
Solution: Add "nocombine". (Muni Tanjim, closes #10816)

Patch 9.0.0112
Problem: MS-Windows: test fails because file already exists.
Solution: Wait a little while until the file is gone.

Patch 9.0.0113
Problem: has() is not strict about parsing the patch version.
Solution: Check the version more strictly. (Ken Takata, closes #10752)

Patch 9.0.0114
Problem: The command line takes up space even when not used.
Solution: Allow for 'cmdheight' to be set to zero. (Shougo Matsushita,

closes #10675, closes #940)

Patch 9.0.0115
Problem: When 'cmdheight' is zero pressing ':' may scroll a window.
Solution: Add the made_cmdheight_nonzero flag and set 'scrolloff' to zero.

Patch 9.0.0116
Problem: Virtual text not displayed if 'signcolumn' is "yes".
Solution: Set c_extra and c_final to NUL.

Patch 9.0.0117
Problem: Text of removed textprop with text is not freed.
Solution: Free the text when the property is removed. Reduce the array size

to ignore NULLs at the end.

Patch 9.0.0118
Problem: No test for what patch 9.0.0155 fixes.
Solution: Add a test. Fix typos. (closes #10822)

Patch 9.0.0119
Problem: Tiny chance that creating a backup file fails.
Solution: Check for EEXIST error. (Ken Takata, closes #10821)

Patch 9.0.0120
Problem: MS-Windows GUI: cannot use AltGr + Space.
Solution: Check for VK_MENU instead of VK_LMENU. (Anton Sharonov,

closes #10820, closes #10753)

version9.txt — 4016

Patch 9.0.0121
Problem: Cannot put virtual text after or below a line.
Solution: Add "text_align" and "text_wrap" arguments.

Patch 9.0.0122
Problem: Breakindent test fails.
Solution: Fix condition.

Patch 9.0.0123
Problem: Cannot build with small features.
Solution: Add #ifdef.

Patch 9.0.0124
Problem: Code has more indent than needed.
Solution: Use continue and return statements. (closes #10824)

Patch 9.0.0125
Problem: Cursor positioned wrong with virtual text after the line.
Solution: Clear cts_with_trailing.

Patch 9.0.0126
Problem: Expanding file names fails in directory with more than 255

entries.
Solution: Use an int instead of char_u to count. (John Drouhard,

closes #10818)

Patch 9.0.0127
Problem: Unused variable.
Solution: Remove the variable. (closes #10829)

Patch 9.0.0128
Problem: Coverity complains about possible double free.
Solution: Clear the pointer to avoid warnings.

Patch 9.0.0129
Problem: Compiler warning for int/size_t usage.
Solution: Add a type cast. (Mike Williams, closes #10830)

Patch 9.0.0130
Problem: Cursor position wrong when inserting around virtual text.
Solution: Update the cursor position properly.

Patch 9.0.0131
Problem: Virtual text with Tab is not displayed correctly.
Solution: Change any Tab to a space.

Patch 9.0.0132
Problem: Multi-byte characters in virtual text not handled correctly.
Solution: Count screen cells instead of bytes.

Patch 9.0.0133
Problem: Virtual text after line moves to joined line. (Yegappan

Lakshmanan)
Solution: When joining lines only keep virtual text after the last line.

Patch 9.0.0134
Problem: No test for text property with column zero.
Solution: Add a test. Add message to assert for no open popups.

version9.txt — 4017

Patch 9.0.0135
Problem: Comment about tabpage line above the wrong code.
Solution: Move the comment. (closes #10836)

Patch 9.0.0136
Problem: After CTRL-Left-mouse click a mouse scroll also has CTRL.
Solution: Reset orig_mouse_code also for wheel events. (closes #10840)

Patch 9.0.0137
Problem: Debugger test may fail when $CWD is very long.
Solution: Skip the test if the directory name is too long. (James McCoy,

closes #10837)

Patch 9.0.0138
Problem: Not enough characters accepted for 'spellfile'.
Solution: Add vim_is_fname_char() and use it for 'spellfile'.

Patch 9.0.0139
Problem: Truncating virtual text after a line not implemented.

Cursor positioning wrong with Newline in the text.
Solution: Implement truncating. Disallow control characters in the text.

(closes #10842)

Patch 9.0.0140
Problem: execute() does not use the "legacy" command modifier.
Solution: pass the command modifier in sticky_cmdmod_flags. (Kota Kato,

closes #10845)

Patch 9.0.0141
Problem: "delmenu" does not remove autocommands. Running menu test function

alone fails.
Solution: Delete autocommands Make sure there is at least one menu.

(closes #10848)

Patch 9.0.0142
Problem: Crash when adding and removing virtual text. (Ben Jackson)
Solution: Check that the text of the text property still exists.

Patch 9.0.0143
Problem: Cursor positioned after virtual text in empty line.
Solution: Keep cursor in the first column. (closes #10786)

Patch 9.0.0144
Problem: Text property cannot override 'cursorline' highlight.
Solution: Add the "override" flag to prop_type_add(). (closes #5533,

closes #8225).

Patch 9.0.0145
Problem: Substitute that joins lines drops text properties.
Solution: Move text properties of the last line to the new line.

Patch 9.0.0146
Problem: Missing part of change for "override" flag.
Solution: Add the missing change.

Patch 9.0.0147
Problem: Cursor positioned wrong after two text properties with virtual

text and "below" alignment. (Tim Pope)
Solution: Do not stop after a text property using MAXCOL. (closes #10849)

version9.txt — 4018

Patch 9.0.0148
Problem: A "below" aligned text property gets 'showbreak' displayed.
Solution: Do not use 'showbreak' before or in virtual text. (issue #10851)

Patch 9.0.0149
Problem: Test for fuzzy completion fails sometimes.
Solution: Use a more specific file name to minimize the chance of matching a

random directory name. (closes #10854)

Patch 9.0.0150
Problem: Error for using #{ in an expression is a bit confusing.
Solution: Mention that this error is only given for an expression.

Avoid giving the error more than once. (closes #10855)

Patch 9.0.0151
Problem: A "below" aligned text property does not work with 'nowrap'.
Solution: Start a new screen line to display the virtual text.

(closes #10851)

Patch 9.0.0152
Problem: Warning for unused argument in small build.
Solution: Add "UNUSED".

Patch 9.0.0153
Problem: No fold and sign column for virtual text with "below" align and

'nowrap'.
Solution: Go back to draw state WL_START when moving to the next line.

(closes #10851)

Patch 9.0.0154
Problem: Text properties wrong after splitting a line.
Solution: Check for text properties after the line. (closes #10857)

Patch 9.0.0155

Patch 9.0.0156
Problem: Giving E1170 only in an expression is confusing.
Solution: Give E1170 for any "#{ comment". (closes #10855)

Patch 9.0.0157
Problem: 'showbreak' displayed below truncated "after" text prop.
Solution: Suppress 'showbreak' when "after" prop doesn't wrap.

Patch 9.0.0158
Problem: With 'nowrap' "below" property not displayed correctly.
Solution: Adjust virtual text with 'nowrap', do not truncate.

Patch 9.0.0159
Problem: Cannot build with small features.
Solution: Check for E1170 only with FEAT_EVAL.

Patch 9.0.0160
Problem: Some diff mode tests fail.
Solution: Only advance "ptr" when a text property follows.

Patch 9.0.0161
Problem: Warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize line_attr_save.

Patch 9.0.0162

version9.txt — 4019

Problem: Text property "below" gets indent if 'breakindent' is set. (Tim
Pope)

Solution: Do not put indent before text property. (closes #10859)

Patch 9.0.0163
Problem: Text property not adjusted for text inserted with "p".
Solution: Adjust column and length of text properties.

Patch 9.0.0164
Problem: Using freed memory with put command.
Solution: Get byte offset before replacing the line.

Patch 9.0.0165
Problem: Looking up a text property type by ID is slow.
Solution: Keep an array of property types sorted on ID.

Patch 9.0.0166
Problem: When using text properties the line text length is computed twice.
Solution: If the text length was already computed don't do it again.

Patch 9.0.0167
Problem: Checking for text properties could be a bit more efficient.
Solution: Return early when there are no text properties. Update TODO

items.

Patch 9.0.0168
Problem: Cursor positioned wrong with two virtual text properties close

together. (Ben Jackson)
Solution: Add the original size, not the computed one. (closes #10864)

Patch 9.0.0169
Problem: Insufficient testing for line2byte() with text properties.
Solution: Add tests with a lot of text.

Patch 9.0.0170
Problem: Various minor code formatting issues.
Solution: Improve code formatting.

Patch 9.0.0171
Problem: Quickfix line highlight is overruled by 'cursorline'.
Solution: Reverse the combination of attributes. (closes #10654)

Patch 9.0.0172
Problem: Trying to allocate zero bytes.
Solution: Do not allocate the proptype array when there are none.

(closes #10867)

Patch 9.0.0173
Problem: Assert fails only on MS-Windows.
Solution: Disable the assert for now.

Patch 9.0.0174
Problem: No error for using "#{ comment" in a compiled function.
Solution: Make error checking for "#{" consistent. (closes #10855)

Patch 9.0.0175
Problem: Spell checking for capital not working with trailing space.
Solution: Do not calculate cap_col at the end of the line. (Christian

Brabandt, closes #10870, issue #10838)

version9.txt — 4020

Patch 9.0.0176
Problem: Checking character options is duplicated and incomplete.
Solution: Move checking to check_chars_options(). (closes #10863)

Patch 9.0.0177
Problem: Cursor position wrong with 'virtualedit' and mouse click after end

of the line. (Hermann Mayer)
Solution: Do not use ScreenCols[] when 'virtualedit' is active.

(closes #10868)

Patch 9.0.0178
Problem: Cursor position wrong with virtual text before Tab.
Solution: Use the byte length, not the cell with, to compare the column.

Correct tab size after text prop. (closes #10866)

Patch 9.0.0179
Problem: Cursor position wrong with wrapping virtual text in empty line.
Solution: Adjust handling of an empty line. (closes #10875)

Patch 9.0.0180
Problem: Stray logfile appears when running tests.
Solution: Remove ch_logfile() calls.

Patch 9.0.0181
Problem: Textprop test with line2byte() fails on MS-Windows.
Solution: Fix updating chunks in ml_delete_int().

Patch 9.0.0182
Problem: Quarto files are not recognized.
Solution: Recognize quarto files by the extension. (Jonas Strittmatter,

closes #10880)

Patch 9.0.0183
Problem: Extra space after virtual text when 'linebreak' is set.
Solution: Do not count virtual text when getting linebreak value.

(closes #10884)

Patch 9.0.0184
Problem: Virtual text prop highlight continues after truncation.
Solution: Recompute the length of attributes.

Patch 9.0.0185
Problem: Virtual text does not show if there is a text prop at same

position. (Ben Jackson)
Solution: Fix the sorting of properties. (closes #10879)

Patch 9.0.0186
Problem: Virtual text without highlighting does not show. (Ben Jackson)
Solution: Use a text property when it has highlighting or when it has text.

(closes #10878)

Patch 9.0.0187
Problem: Command line height changes when maximizing window height.
Solution: Do not change the command line height. (closes #10885)

Patch 9.0.0188
Problem: Strange effects when using virtual text with "text_align" and

non-zero column. (Martin Tournoij)
Solution: Give an error. (closes #10888)

version9.txt — 4021

Patch 9.0.0189
Problem: Invalid memory access for text prop without highlight.
Solution: Check for a valid highlight ID.

Patch 9.0.0190
Problem: The way 'cmdheight' can be made zero is inconsistent.
Solution: Only make 'cmdheight' zero when setting it explicitly, not when

resizing windows. (closes #10890)

Patch 9.0.0191
Problem: Messages test fails; window size incorrect when 'cmdheight' is

made smaller.
Solution: Properly cleanup after test with cmdheight zero. Resize windows

correctly when 'cmdheight' gets smaller.

Patch 9.0.0192
Problem: Possible invalid memory access when 'cmdheight' is zero. (Martin

Tournoij)
Solution: Avoid going over the end of w_lines[] when w_height is Rows.

(closes #10882)

Patch 9.0.0193
Problem: Search and match highlight interfere with virtual text highlight.

(Ben Jackson)
Solution: Check for match highlight after text properties. Reset and

restore search highlight when showing virtual text.
(closes #10892)

Patch 9.0.0194
Problem: Cursor displayed in wrong position after removing text prop. (Ben

Jackson)
Solution: Invalidate the cursor position. (closes #10898)

Patch 9.0.0195
Problem: Metafun files are not recognized.
Solution: Add filetype detection patterns.

Patch 9.0.0196
Problem: Finding value in list may require a for loop.
Solution: Add indexof(). (Yegappan Lakshmanan, closes #10903)

Patch 9.0.0197
Problem: Astro files are not detected.
Solution: Add a pattern to match Astro files. (Emilia Zapata, closes #10904)

Patch 9.0.0198
Problem: ml_get error when switching buffer in Visual mode.
Solution: End Visual mode when switching buffer. (closes #10902)

Patch 9.0.0199
Problem: Cursor position wrong with two right-aligned virtual texts.
Solution: Add the padding for right-alignment. (issue #10906)

Patch 9.0.0200
Problem: cursor in a wrong position if 'wrap' is off and using two right

aligned text props in one line.
Solution: Count an extra line for a right aligned text property after a

below or right aligned text property. (issue #10909)

Patch 9.0.0201

version9.txt — 4022

Problem: CursorLine highlight overrules virtual text highlight.
Solution: Let extra attribute overrule line attribute. (closes #10909)

Patch 9.0.0202
Problem: Code and help for indexof() is not ideal.
Solution: Refactor the code, improve the help. (Yegappan Lakshmanan,

closes #10908)

Patch 9.0.0203
Problem: Confusing variable name.
Solution: Use "prim_aep" instead of "spell_aep".

Patch 9.0.0204
Problem: indexof() may leak memory.
Solution: Free allocated values. (Yegappan Lakshmanan, closes #10916)

Patch 9.0.0205
Problem: Cursor in wrong position when inserting after virtual text. (Ben

Jackson)
Solution: Put the cursor after the virtual text, where the text will be

inserted. (closes #10914)

Patch 9.0.0206
Problem: Redraw flags are not named specifically.
Solution: Prefix "UPD_" to the flags, for UPDate_screen().

Patch 9.0.0207
Problem: Stacktrace not shown when debugging.
Solution: Set msg_scroll in msg_source(). (closes #10917)

Patch 9.0.0208
Problem: The override flag has no effect for virtual text. (Ben Jackson)
Solution: Make the override flag work. (closes #10915)

Patch 9.0.0209
Problem: Build error with small features.
Solution: Add #ifdef.

Patch 9.0.0210
Problem: 'list' mode does not work properly with virtual text.
Solution: Show the "$" at the right position. (closes #10913)

Patch 9.0.0211
Problem: Invalid memory access when compiling :lockvar.
Solution: Don't read past the end of the line.

Patch 9.0.0212
Problem: Invalid memory access when compiling :unlet.
Solution: Don't read past the end of the line.

Patch 9.0.0213
Problem: Using freed memory with error in assert argument.
Solution: Make a copy of the error.

Patch 9.0.0214
Problem: Splitting a line may duplicate virtual text. (Ben Jackson)
Solution: Don't duplicate a text property with virtual text. Make

auto-indenting work better. (closes #10919)

Patch 9.0.0215

version9.txt — 4023

Problem: Not passing APC_INDENT flag.
Solution: Pass the flag where it's needed.

Patch 9.0.0216
Problem: Undo earlier test sometimes fails on MS-Windows.
Solution: Use another file name.

Patch 9.0.0217
Problem: 'shellslash' works differently when sourcing a script again.
Solution: Use the name from the script item. (closes #10920)

Patch 9.0.0218
Problem: Reading before the start of the line.
Solution: When displaying "$" check the column is not negative.

Patch 9.0.0219
Problem: Cannot make a funcref with "s:func" in a def function in legacy

script.
Solution: Allow for using a lower case function name after "s:". (Kota Kato,

closes #10926)

Patch 9.0.0220
Problem: Invalid memory access with for loop over NULL string.
Solution: Make sure mb_ptr2len() consistently returns zero for NUL.

Patch 9.0.0221
Problem: Accessing freed memory if compiling nested function fails.
Solution: Mess up the variable name so that it won't be found.

Patch 9.0.0222
Problem: No good reason why text objects are only in larger builds.
Solution: Graduate +textobjects.

Patch 9.0.0223
Problem: Typo in diffmode test.
Solution: Fix the typo. (closes #10932)

Patch 9.0.0224
Problem: Using NULL pointer when skipping compiled code.
Solution: Check for skipping.

Patch 9.0.0225
Problem: Using freed memory with multiple line breaks in expression.
Solution: Free eval_tofree later.

Patch 9.0.0226
Problem: job_start() test may fail under valgrind.
Solution: Wait until the job is running.

Patch 9.0.0227
Problem: Cannot read error message when abort() is called.
Solution: Output a newline before calling abort().

Patch 9.0.0228
Problem: Crash when pattern looks below the last line.
Solution: Consider invalid lines to be empty. (closes #10938)

Patch 9.0.0229
Problem: Vim9: error message for missing type is not clear.
Solution: Mention the context. (issue #10944)

version9.txt — 4024

Patch 9.0.0230
Problem: No error for comma missing in list in :def function.
Solution: Check for missing comma. (closes #10943)

Patch 9.0.0231
Problem: Expanding "**" may loop forever with directory links.
Solution: Check for being interrupted. (closes #10946)

Patch 9.0.0232
Problem: Test with BufNewFile autocmd is flaky.
Solution: Use another file name.

Patch 9.0.0233
Problem: Removing multiple text properties takes many calls.
Solution: Pass a list to prop_remove(). (Ben Jackson, closes #10945)

Patch 9.0.0234
Problem: Cannot make difference between the end of :normal and a character

in its argument.
Solution: Add the "typebuf_was_empty" flag. (closes #10950)

Patch 9.0.0235
Problem: 'autoshelldir' does not work with chunked response.
Solution: Collect chunks before parsing OSC 7. (closes #10949)

Patch 9.0.0236
Problem: Popup menu not removed when 'wildmenu' reset while it is visible.
Solution: Do not check p_wmnu, only pum_visible(). (closes #10953)

Patch 9.0.0237
Problem: Mac: cannot build if dispatch.h is not available.
Solution: Add #ifdef. (Evan Miller, closes #10954)

Patch 9.0.0238
Problem: Shift-Tab shows matches on cmdline when 'wildmenu' is off.
Solution: Only show matches when 'wildmode' contains "list". (closes #10951)

Patch 9.0.0239
Problem: Build failure without the +wildmenu feature.
Solution: Move parenthesis.

Patch 9.0.0240
Problem: Crash when using ":mkspell" with an empty .dic file.
Solution: Check for an empty word tree.

Patch 9.0.0241
Problem: "make install" does not install shared syntax file. (James McCoy)
Solution: Install and uninstall the shared syntax files. (closes #10956)

Patch 9.0.0242
Problem: "make install" still fails. (Wilhelm Payne)
Solution: Also add the directory to installrtbase. (Dominique Pellé)

Patch 9.0.0243
Problem: Text properties "below" sort differently on MS-Windows.
Solution: Use the ID as a tie breaker. (closes #10958)

Patch 9.0.0244
Problem: Cannot easily get the list of sourced scripts.

version9.txt — 4025

Solution: Add the getscriptinfo() function. (Yegappan Lakshmanan,
closes #10957)

Patch 9.0.0245
Problem: Mechanism to prevent recursive screen updating is incomplete.
Solution: Add "redraw_not_allowed" and set it in build_stl_str_hl().

(issue #10952)

Patch 9.0.0246
Problem: Using freed memory when 'tagfunc' deletes the buffer.
Solution: Make a copy of the tag name.

Patch 9.0.0247
Problem: Cannot add padding to virtual text without highlight.
Solution: Add the "text_padding_left" argument. (issue #10906)

Patch 9.0.0248
Problem: Duplicate code in finding a script in the execution stack.
Solution: Reduce duplicate code. (closes #10961)

Patch 9.0.0249
Problem: No test for what 9.0.0234 fixes.
Solution: Add a test. (issue #10950)

Patch 9.0.0250
Problem: Slightly inconsistent error messages.
Solution: Make it "Using a Float". (closes #10959)

Patch 9.0.0251
Problem: Test output shows up in git.
Solution: Ignore the "failed" directory. (Yao-Ching Huang, closes #10969)

Patch 9.0.0252
Problem: Cursor in wrong place after virtual text.
Solution: Do not change the length of a virtual text property.

(closes #10964)

Patch 9.0.0253
Problem: A symlink to an autoload script results in two entries in the list

of scripts, items expected in one are actually in the other.
Solution: Have one script item refer to the actually sourced one.

(closes #10960)

Patch 9.0.0254
Problem: Typo in function name.
Solution: Rename the function. (closes #10971)

Patch 9.0.0255
Problem: Build failure without the eval feature.
Solution: Add #ifdef.

Patch 9.0.0256
Problem: Compiler warning for uninitialized variables.
Solution: Initialize the variables.

Patch 9.0.0257
Problem: "->" in ":scriptnames" output not tested yet.
Solution: Add a check.

Patch 9.0.0258

version9.txt — 4026

Problem: MS-Windows installer skips syntax/shared.
Solution: Use "File /r" in the installer script. (Ken Takata, closes #10972)

Patch 9.0.0259
Problem: Crash with mouse click when not initialized.
Solution: Check TabPageIdxs[] is not NULL.

Patch 9.0.0260
Problem: Using freed memory when using 'quickfixtextfunc' recursively.
Solution: Do not allow for recursion.

Patch 9.0.0261
Problem: bufload() reads a file even if the name is not a file name. (Cyker

Way)
Solution: Do not read the file when the buffer name is not a file name.

(closes #10975)

Patch 9.0.0262
Problem: Build failure without the +quickfix feature.
Solution: Add #ifdef.

Patch 9.0.0263
Problem: Too many #ifdefs.
Solution: Make some functions always available.

Patch 9.0.0264
Problem: CI still runs on Ubuntu 18.04.
Solution: Run CI on Ubuntu 20.04. (closes #10582)

Patch 9.0.0265
Problem: No good reason why the "gf" command is not in the tiny version.
Solution: Graduate the file_in_path feature.

Patch 9.0.0266
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.

Patch 9.0.0267
Problem: Coverity workflow still uses Ubuntu 18.04.
Solution: Use Ubuntu 20.04

Patch 9.0.0268
Problem: Build error without the +eval feature.
Solution: Remove #ifdef.

Patch 9.0.0269
Problem: getscriptinfo() does not include the version. Cannot select

entries by script name.
Solution: Add the "version" item and the "name" argument. (Yegappan

Lakshmanan, closes #10962)

Patch 9.0.0270
Problem: Some values of 'path' and 'tags' do not work in the tiny version.
Solution: Graduate the +path_extra feature.

Patch 9.0.0271
Problem: Using INIT() in non-header files.
Solution: Remove INIT(). (closes #10981)

Patch 9.0.0272

version9.txt — 4027

Problem: BufReadCmd not triggered when loading a "nofile" buffer. (Maxim
Kim)

Solution: Call readfile() but bail out before reading a file.
(closes #10983)

Patch 9.0.0273
Problem: Konsole termresponse not recognized.
Solution: Handle Konsole like libvterm, set 'ttymouse' to "sgr".

(closes #10990)

Patch 9.0.0274
Problem: Netrw plugin does not show remote files.
Solution: Do read a file when 'buftype' is "acwrite". (closes #10983)

Patch 9.0.0275
Problem: BufEnter not triggered when using ":edit" in "nofile" buffer.
Solution: Let readfile() return NOTDONE. (closes #10986)

Patch 9.0.0276
Problem: 'buftype' values not sufficiently tested.
Solution: Add and extend tests with 'buftype' values. (closes #10988)

Patch 9.0.0277
Problem: Coverity CI: update-alternatives not needed with Ubuntu 20.04.
Solution: Remove update-alternatives for Lua. (closes #10987)

Patch 9.0.0278
Problem: The +wildignore feature is nearly always available.
Solution: Graduate +wildignore for consistency.

Patch 9.0.0279
Problem: The tiny version has the popup menu but not 'wildmenu'.
Solution: Graduate the wildmenu feature.

Patch 9.0.0280
Problem: The builtin termcap list depends on the version.
Solution: Always include all termcap entries. Remove duplicate lines.

Patch 9.0.0281
Problem: Build failure without the +eval feature.
Solution: Add #ifdef.

Patch 9.0.0282
Problem: A nested timeout stops the previous timeout.
Solution: Ignore any nested timeout.

Patch 9.0.0283
Problem: Cannot complete "syn list @cluster".
Solution: Recognize and handle "list @". (Björn Linse, closes #10990)

Patch 9.0.0284
Problem: Using static buffer for multiple completion functions.
Solution: Use one buffer in expand_T.

Patch 9.0.0285
Problem: It is not easy to change the command line from a plugin.
Solution: Add setcmdline(). (Shougo Matsushita, closes #10869)

Patch 9.0.0286
Problem: Using freed memory when location list changed in autocmd.

version9.txt — 4028

Solution: Return QF_ABORT and handle it. (Yegappan Lakshmanan,
closes #10993)

Patch 9.0.0287
Problem: Irix systems no longer exist.
Solution: Remove references to Irix. (Yegappan Lakshmanan, closes #10994)

Patch 9.0.0288
Problem: When 'cmdheight' is zero some messages are not displayed.
Solution: Use a popup notification window.

Patch 9.0.0289
Problem: Invalid memory write.
Solution: Do not put NUL in a static string.

Patch 9.0.0290
Problem: Compiler warning for variable set but not used.
Solution: Add #ifdef.

Patch 9.0.0291
Problem: Test failing.
Solution: Run test with cmdheight=0 last.

Patch 9.0.0292
Problem: Test causes another test to fail.
Solution: Redraw to remove the popup window

Patch 9.0.0293
Problem: Messages window not hidden when starting a command line.
Solution: Hide the messages window. (closes #10996)

Patch 9.0.0294
Problem: Crash when 'cmdheight' is 0 and popup_clear() used.
Solution: Reset "message_win" when the message popup is cleared. Close the

popup when 'cmdheight' is non-zero. Add a screendump test.

Patch 9.0.0295
Problem: GUI drop files test sometimes fails.
Solution: Mark the test as flaky.

Patch 9.0.0296
Problem: Message in popup is shortened unnecessary.
Solution: Do not use 'showcmd' and 'ruler' for a message in the popup.

Set the timer when unhiding the message popup.

Patch 9.0.0297
Problem: Cursor position wrong after right aligned virtual text. (Iizuka

Masashi)
Solution: Take the width of the column offset into account. (closes #10997)

Also fix virtual text positioning.

Patch 9.0.0298
Problem: Compiler warning for size_t to int conversion.
Solution: Add a type cast. (Wilhelm Payne, closes #11000)

Patch 9.0.0299
Problem: Error messages for setcmdline() could be better.
Solution: Use more specific error messages. (Yegappan Lakshmanan,

closes #10995)

version9.txt — 4029

Patch 9.0.0300
Problem: 'cpoptions' tests are flaky.
Solution: Use a different file name for each test.

Patch 9.0.0301
Problem: The message window popup is delayed after an error message.
Solution: Do not set emsg_on_display when using the message window.

Patch 9.0.0302
Problem: CI for Coverity is bothered by deprecation warnings.
Solution: Ignore deprecation warnings. (closes #11002)

Patch 9.0.0303
Problem: It is not easy to get information about a script.
Solution: Make getscriptinfo() return the version. When selecting a specific

script return functions and variables. (Yegappan Lakshmanan,
closes #10991)

Patch 9.0.0304
Problem: WinScrolled is not triggered when only skipcol changes.
Solution: Add w_last_skipcol and use it. (closes #10998)

Patch 9.0.0305
Problem: CI lists useless deprecation warnings.
Solution: Ignore deprecation warnings. (closes #11003)

Patch 9.0.0306
Problem: Buffer write message is two lines in message popup window.
Solution: Overwrite message if "msg_scroll" is off.

Patch 9.0.0307
Problem: :echomsg doesn't work properly with cmdheight=0.
Solution: Improve scrolling and displaying.

Patch 9.0.0308
Problem: When cmdheight is zero the attention prompt doesn't show.
Solution: Do not use the message window for a prompt.

Patch 9.0.0309
Problem: Invalid memory access when cmdheight is zero.
Solution: Check index in w_lines is smaller than Rows.

Patch 9.0.0310
Problem: Output of :messages disappears when cmdheight is zero.
Solution: Do not use the messages window for :messages. Make Esc close the

messages window.

Patch 9.0.0311
Problem: Test for hit-Enter prompt fails.
Solution: Only reset cmdline_row when 'cmdheight' is zero.

Patch 9.0.0312
Problem: Test for cmdheight zero fails.
Solution: Do not close the messages window for CTRL-C.

Patch 9.0.0313
Problem: Using common name in tests leads to flaky tests.
Solution: Rename files and directories to be more specific.

Patch 9.0.0314

version9.txt — 4030

Problem: VDM files are not recognized.
Solution: Add patterns for VDM files. (Alessandro Pezzoni, closes #11004)

Patch 9.0.0315
Problem: Shell command is displayed in message window.
Solution: Do not echo the shell command in the message window.

Patch 9.0.0316
Problem: Screen flickers when 'cmdheight' is zero.
Solution: Redraw over existing text instead of clearing.

Patch 9.0.0317
Problem: When updating the whole screen a popup may not be redrawn.
Solution: Mark the screen and windows for redraw also when not clearing.

Also mark popup windows for redraw.

Patch 9.0.0318
Problem: Clearing screen causes flicker.
Solution: Do not clear but redraw in more cases. Add () to "wait_return".

Patch 9.0.0319
Problem: Godot shader files are not recognized.
Solution: Add patterns for "gdshader". (Maxim Kim, closes #11006)

Patch 9.0.0320
Problem: Command line type of CmdlineChange differs from getcmdtype().
Solution: Use the same type. (closes #11005)

Patch 9.0.0321
Problem: Cannot use the message popup window directly.
Solution: Add ":echowindow".

Patch 9.0.0322
Problem: Crash when no errors and 'quickfixtextfunc' is set.
Solution: Do not handle errors if there aren't any.

Patch 9.0.0323
Problem: Using common name in tests leads to flaky tests.
Solution: Rename files and directories to be more specific.

Patch 9.0.0324
Problem: MS-Windows: resolve() test fails.
Solution: Revert renaming the directory.

Patch 9.0.0325
Problem: MS-Windows: completion test fails.
Solution: Adjust directory prefix.

Patch 9.0.0326
Problem: Some changes for cmdheight=0 are not needed.
Solution: Revert resize behavior if height is greater than the available

space. (Shougo Matsushita, closes #11008)

Patch 9.0.0327
Problem: items() does not work on a list. (Sergey Vlasov)
Solution: Make items() work on a list. (closes #11013)

Patch 9.0.0328
Problem: OLD_DIGRAPHS is unused.
Solution: Remove OLD_DIGRAPHS. Also drop HPUX_DIGRAPHS.

version9.txt — 4031

Patch 9.0.0329
Problem: ":highlight" hangs when 'cmdheight' is zero.
Solution: Add to msg_col when using the message window. (closes #11014)

Patch 9.0.0330
Problem: Method tests fail.
Solution: Adjust for change of items().

Patch 9.0.0331
Problem: Cannot use items() on a string.
Solution: Make items() work on a string. (closes #11016)

Patch 9.0.0332
Problem: Overwrite check may block BufWriteCmd.
Solution: Do not use overwrite check when 'buftype' is "acwrite".

(closes #11011)

Patch 9.0.0333
Problem: Method test fails.
Solution: Adjust test for items() now working on string.

Patch 9.0.0334
Problem: Test does not properly clean up.
Solution: Fix typo in argument of delete(). (Dominique Pellé, closes #11010)

Patch 9.0.0335
Problem: Checks for Dictionary argument often give a vague error message.
Solution: Give a useful error message. (Yegappan Lakshmanan, closes #11009)

Patch 9.0.0336
Problem: Tests are flaky because of using a common file name.
Solution: Rename files and directories to be more unique.

Patch 9.0.0337
Problem: Flicker when resetting cmdline_row after updating the screen.
Solution: Do not update cmdline_row. (issue #11017)

Patch 9.0.0338
Problem: Return value of list_append_list() not always checked.
Solution: Check return value and handle failure.

Patch 9.0.0339
Problem: No check if the return value of XChangeGC() is NULL.
Solution: Only use the return value when it is not NULL. (closes #11020)

Patch 9.0.0340
Problem: The 'cmdheight' zero support causes too much trouble.
Solution: Revert support for 'cmdheight' being zero.

Patch 9.0.0341
Problem: mapset() does not restore <Nop> mapping properly.
Solution: Use an empty string for <Nop>. (closes #11022)

Patch 9.0.0342
Problem: ":wincmd =" equalizes in two directions.
Solution: Make ":vertical wincmd =" equalize vertically only and

":horizontal wincmd =" equalize horizontally only.

Patch 9.0.0343

version9.txt — 4032

Problem: ColorScheme autocommand triggered when colorscheme is not found.
(Romain Lafourcade)

Solution: Only trigger ColorScheme when loading the colorscheme succeeds.
(closes #11024)

Patch 9.0.0344
Problem: MS-Windows: background color wrong in Console.
Solution: Figure out the default console background color. (Yasuhiro

Matsumoto, issue #10310)

Patch 9.0.0345
Problem: Error message for list argument could be clearer.
Solution: Include the argument number. (Yegappan Lakshmanan, closes #11027)

Patch 9.0.0346
Problem: :horizontal modifier not fully supported.
Solution: Also use :horizontal for completion and user commands.

(closes #11025)

Patch 9.0.0347
Problem: MS-Windows: cannot set cursor shape in Windows Terminal.
Solution: Make cursor shape work with Windows Terminal. (Ken Takata,

closes #11028, closes #6576)

Patch 9.0.0348
Problem: MS-Windows: GUI mouse move event test is flaky.
Solution: Wait for a little while for the first move event.

Patch 9.0.0349
Problem: Filetype of *.sil files not well detected.
Solution: Inspect the file contents to guess the filetype.

Patch 9.0.0350
Problem: :echowindow does not work in a compiled function.
Solution: Handle the expression at compile time.

Patch 9.0.0351
Problem: Message window may obscure the command line.
Solution: Reduce the maximum height of the message window.

Patch 9.0.0352
Problem: using :echowindow in a timer clears part of message
Solution: Do not use msg_clr_eos().

Patch 9.0.0353
Problem: Missing entry in switch.
Solution: Add ISN_ECHOWINDOW.

Patch 9.0.0354
Problem: MS-Windows: starting a python server for test sometimes fails.
Solution: Increase the waiting time for the port.

Patch 9.0.0355
Problem: Check for uppercase char in autoload name is wrong, it checks the

name of the script.
Solution: Remove the check. (closes #11031)

Patch 9.0.0356
Problem: :echowindow sets the in_echowindow flag too early.
Solution: Set in_echowindow only when outputting the text. (Yasuhiro

version9.txt — 4033

Matsumoto, closes #11033)

Patch 9.0.0357
Problem: 'linebreak' interferes with text property highlight if there is

syntax highlighting.
Solution: Check the text prop attributes after combining with syntax

attributes. (closes #11035)

Patch 9.0.0358
Problem: 'breakindent' does not indent non-lists with

"breakindentopt=list:-1".
Solution: Adjust indent computation. (Maxim Kim, closes #11038)

Patch 9.0.0359
Problem: Error message for wrong argument type is not specific.
Solution: Include more information in the error. (Yegappan Lakshmanan,

closes #11037)

Patch 9.0.0360
Problem: Crash when invalid line number on :for is ignored.
Solution: Do not check breakpoint for non-existing line.

Patch 9.0.0361
Problem: Removing a listener may result in a memory leak and remove

subsequent listeners.
Solution: Init the "prev" pointer only once. (Yegappan Lakshmanan,

closes #11039)

Patch 9.0.0362
Problem: Expanding ":e %" does not work for remote files.
Solution: If the "%" or "#" file does not exist add the expansion anyway.

Patch 9.0.0363
Problem: Common names in test files causes tests to be flaky.
Solution: Use more specific names.

Patch 9.0.0364
Problem: Clang static analyzer gives warnings.
Solution: Avoid the warnings. (Yegappan Lakshmanan, closes #11043)

Patch 9.0.0365
Problem: File name used in test is unusual.
Solution: Rename it. (Dominique Pellé, closes #11044)

Patch 9.0.0366
Problem: Cannot use import->Func() in lambda. (Israel Chauca Fuentes)
Solution: Adjust how an expression in a lambda is parsed. (closes #11042)

Patch 9.0.0367
Problem: Coverity complains about dropping sign of character.
Solution: Add explicit type cast.

Patch 9.0.0368
Problem: Old Coverity warning for using NULL pointer.
Solution: Bail out if dictionary allocation fails.

Patch 9.0.0369
Problem: A failing flaky test doesn't mention the time.
Solution: Add the time for debugging. Improve error message.

version9.txt — 4034

Patch 9.0.0370
Problem: Cleaning up afterwards can make a function messy.
Solution: Add the :defer command.

Patch 9.0.0371
Problem: Compiler warning for uninitialized variable.
Solution: Initialize the variable. (John Marriott)

Patch 9.0.0372
Problem: MS-Windows: "%T" time format does not appear to work.
Solution: Use "%H:%M:%S" instead.

Patch 9.0.0373
Problem: Coverity warns for NULL check and unused return value.
Solution: Remove the NULL check, it was already checked earlier. Add (void)

to ignore the return value.

Patch 9.0.0374
Problem: Coverity still complains about dropping sign of character.
Solution: Add intermediate variable.

Patch 9.0.0375
Problem: The footer feature is unused.
Solution: Remove FEAT_FOOTER and code.

Patch 9.0.0376
Problem: Clang warns for dead assignments.
Solution: Adjust the code. (Yegappan Lakshmanan, closes #11048)

Patch 9.0.0377
Problem: Argument assignment does not work.
Solution: Skip over "=".

Patch 9.0.0378
Problem: Compiler warning for uninitialized variable. (Tony Mechelynck)
Solution: Initialize it.

Patch 9.0.0379
Problem: Cleaning up after writefile() is a hassle.
Solution: Add the 'D' flag to defer deleting the written file. Very useful

in tests.

Patch 9.0.0380
Problem: Deleting files in tests is a hassle.
Solution: Use the new 'D' flag of writefile().

Problem: Deleting files in tests is a hassle.
Solution: Use the new 'D' flag of writefile().

Patch 9.0.0381
Problem: Writefile test leaves files behind.
Solution: Fix the file names of files to be deleted. (Dominique Pellé,

closes #11056)

Patch 9.0.0382
Problem: Freeing the wrong string on failure.
Solution: Adjust the argument. Reorder the code.

Patch 9.0.0383

version9.txt — 4035

Problem: Coverity complains about unused value.
Solution: Use the value.

Patch 9.0.0384
Problem: Coverity still complains about using return value of getc().
Solution: Check for EOF.

Patch 9.0.0385
Problem: GUI: when CTRL-D is mapped in Insert mode it gets inserted.

(Yasuhiro Matsumoto)
Solution: Also recognize modifier starting with CSI. (closes #11057)

Patch 9.0.0386
Problem: Some code blocks are nested too deep.
Solution: Bail out earlier. (Yegappan Lakshmanan, closes #11058)

Patch 9.0.0387
Problem: repeating a <ScriptCmd> mapping does not use the right script

context.
Solution: When using a mapping put <SID>{sid}; in the redo buffer.

(closes #11049)

Patch 9.0.0388
Problem: The do_arg_all() function is too long.
Solution: Split the function in smaller parts. (Yegappan Lakshmanan,

closes #11062)

Patch 9.0.0389
Problem: Crash when 'tagfunc' closes the window.
Solution: Bail out when the window was closed.

Patch 9.0.0390
Problem: Cannot use a partial with :defer.
Solution: Add the partial arguments before the other arguments. Disallow

using a dictionary.

Patch 9.0.0391
Problem: Using separate delete() call instead of writefile() 'D' flag.
Solution: Use the writefile 'D' flag.

Patch 9.0.0392
Problem: Inverted condition is a bit confusing.
Solution: Remove the "!" and swap the blocks. (Ken Takata)

Patch 9.0.0393
Problem: Signals test often fails on FreeBSD.
Solution: Use separate files for Suspend and Resume. (Ken Takata,

closes #11065)

Patch 9.0.0394
Problem: Cygwin: multibyte characters may be broken in terminal window.
Solution: Adjust how to read and write on the channel. (Ken Takata,

closes #11063)

Patch 9.0.0395
Problem: Clang warnings for function prototypes.
Solution: Remove incomplete function prototypes. (closes #11068)

Patch 9.0.0396
Problem: :findrepl does not escape '&' and '~' properly.

version9.txt — 4036

Solution: Escape depending on the value of 'magic'. (closes #11067)

Patch 9.0.0397
Problem: :defer not tested with exceptions and ":qa!".
Solution: Test :defer works when exceptions are thrown and when ":qa!" is

used. Invoke the deferred calls on exit.

Patch 9.0.0398
Problem: Members of funccall_T are inconsistently named.
Solution: Use the "fc_" prefix for all members.

Patch 9.0.0399
Problem: Using :defer in expression funcref not tested.
Solution: Add a test. Fix uncovered problems.

Patch 9.0.0400
Problem: GUI test sometimes hangs on CI.
Solution: Delete a test file explicitly. (Ken Takata, closes #11072)

Patch 9.0.0401
Problem: CI uses older clang version.
Solution: Switch from clang 14 to 15. (closes #11066)

Patch 9.0.0402
Problem: Javascript module files are not recognized.
Solution: Recognize "*.jsm" files as Javascript. (Brett Holman,

closes #11069)

Patch 9.0.0403
Problem: 'equalalways' may be off when 'laststatus' is zero.
Solution: call last_status() before win_equal(). (Luuk van Baal,

closes #11070)

Patch 9.0.0404
Problem: Crash when passing invalid arguments to assert_fails().
Solution: Check for NULL string.

Patch 9.0.0405
Problem: Arguments in a partial not used by a :def function.
Solution: Put the partial arguments on the stack.

Patch 9.0.0406
Problem: Deferred functions not invoked when partial func exits.
Solution: Create a funccall_T when calling a :def function.

Patch 9.0.0407
Problem: matchstr() does match column offset. (Yasuhiro Matsumoto)
Solution: Accept line number zero. (closes #10938)

Patch 9.0.0408
Problem: GUI test sometimes fails on MS-Windows.
Solution: Make sure Vim is the foreground window. (Ken Takata, closes #11077)

Patch 9.0.0409
Problem: #{g:x} was seen as a curly-braces expression.
Solution: Do never see #{} as a curly-braces expression. (closes #11075)

Patch 9.0.0410
Problem: Struct member cts_lnum is unused.
Solution: Delete it.

version9.txt — 4037

Patch 9.0.0411
Problem: Only created files can be cleaned up with one call.
Solution: Add flags to mkdir() to delete with a deferred function.

Expand the writefile() name to a full path to handle changing
directory.

Patch 9.0.0412
Problem: Compiler warning for unused argument.
Solution: Add UNUSED.

Patch 9.0.0413
Problem: ASAN reports a memory leak.
Solution: Free the string received from the server. (Ken Takata,

closes #11080)

Patch 9.0.0414
Problem: matchstr() still does not match column offset when done after a

text search.
Solution: Only use the line number for a multi-line search. Fix the test.

(closes #10938)

Patch 9.0.0415
Problem: On MS-Windows some tests are flaky.
Solution: Add sleeps, disable swapfile, mark test as flaky. (Ken Takata,

closes #11082)

Patch 9.0.0416
Problem: ml_get error when appending lines in popup window.
Solution: Only update w_topline when w_buffer matches curbuf.

(closes #11074)

Patch 9.0.0417
Problem: Jsonnet files are not recognized.
Solution: Add a pattern for Jsonnet files. (Cezary Drożak, closes #11073,

closes #11081)

Patch 9.0.0418
Problem: Manually deleting temp test files.
Solution: Use the 'D' flag of writefile() and mkdir().

Patch 9.0.0419
Problem: The :defer command does not check the function argument count and

types.
Solution: Check the function arguments when adding a deferred function.

Patch 9.0.0420
Problem: Function went missing.
Solution: Add the function back.

Patch 9.0.0421
Problem: MS-Windows makefiles are inconsistently named.
Solution: Use consistent names. (Ken Takata, closes #11088)

Patch 9.0.0422
Problem: Not enough testing of the :all command.
Solution: Add more testing. (Yegappan Lakshmanan, closes #11091)

Patch 9.0.0423
Problem: "for" and "while" not recognized after :vim9cmd and :legacy.

version9.txt — 4038

(Emanuele Torre)
Solution: Recognize all the command modifiers. (closes #11087)

Add a test to check the list of modifiers.

Patch 9.0.0424
Problem: gitattributes files are not recognized.
Solution: Add patterns to match gitattributes files. (closes #11085)

Patch 9.0.0425
Problem: Autocmd test is a bit flaky on MS-Windows.
Solution: Add a bit more sleeping. (Ken Takata, closes #11095)

Patch 9.0.0426
Problem: Failed flaky tests reports only start time.
Solution: Also report the end time.

Patch 9.0.0427
Problem: Drupal theme files are not recognized.
Solution: Use php filetype for Drupl theme files. Remove trailing spaces.

(Rodrigo Aguilera, closes #11096)

Patch 9.0.0428
Problem: Autocmd test uses common file name.
Solution: Use unique name to reduce flakiness.

Patch 9.0.0429
Problem: Not all keys are tested for the MS-Windows GUI.
Solution: Add more key codes to the list. (Yegappan Lakshmanan,

closes #11097)

Patch 9.0.0430
Problem: Cannot use repeat() with a blob.
Solution: Implement blob repeat. (closes #11090)

Patch 9.0.0431
Problem: Current mode shows in message window.
Solution: Reset in_echowindow before redrawing. (issue #11094)

Patch 9.0.0432
Problem: Crash when using for loop variable in closure.
Solution: Check that the variable wasn't deleted. (issue #11094)

Patch 9.0.0433
Problem: Coverity warns for not checking allocation failure.
Solution: Check that allocating a list or blob succeeded.

Patch 9.0.0434
Problem: gitignore files are not recognized.
Solution: Add patterns for the gitignore filetype. (closes #11102)

Patch 9.0.0435
Problem: Compiler warning for uninitialized variable.
Solution: Initialize it.

Patch 9.0.0436
Problem: CI: running tests in parallel causes flakiness.
Solution: Reorganize the MS-Windows runs. (Ken Takata, closes #11101)

Patch 9.0.0437
Problem: No error when a custom completion function returns something else

version9.txt — 4039

than the expected list.
Solution: Give an error. (closes #11100)

Patch 9.0.0438
Problem: Cannot put virtual text above a line.
Solution: Add the "above" value for "text_align".

Patch 9.0.0439
Problem: Cursor wrong if inserting before line with virtual text above.
Solution: Add the width of the "above" virtual text to the cursor position.

(issue #11084)

Patch 9.0.0440
Problem: Crash when using mkdir() with "R" flag in compiled function.
Solution: Reserve a variable for deferred function calls. Handle more than

one argument.

Patch 9.0.0441
Problem: Closure in for loop test fails on some systems.
Solution: Do not wait for the ruler to show up. (issue #11106)

Patch 9.0.0442
Problem: Virtual text "above" doesn't handle line numbers.
Solution: Take the left column offset into account. (issue #11084)

Also make padding work.

Patch 9.0.0443
Problem: Blueprint files are not recognized.
Solution: Add a pattern for blueprint files. (Gabriele Musco, closes #11107)

Patch 9.0.0444
Problem: Trying to declare g:variable gives confusing error.
Solution: Give a better error message. (closes #11108)

Patch 9.0.0445
Problem: When opening/closing window text moves up/down.
Solution: Add the 'splitscroll' option. When off text will keep its

position as much as possible.

Patch 9.0.0446
Problem: Message window may be positioned too low.
Solution: Compute cmdline_row before computing the position.

Patch 9.0.0447
Problem: Using :echowin while at the hit-enter prompt causes problems.
Solution: Do not prompt for :echowin. Postpone showing the message window.

Start the timer when the window is displayed.

Patch 9.0.0448
Problem: SubRip files are not recognized.
Solution: Add a pattern for SubRip. (closes #11113)

Patch 9.0.0449
Problem: There is no easy way to translate a string with a key code into a

readable string.
Solution: Add the keytrans() function. (closes #11114)

Patch 9.0.0450
Problem: Return value of argument check functions is inconsistent.
Solution: Return OK/FAIL instead of TRUE/FALSE. (closes #11112)

version9.txt — 4040

Patch 9.0.0451
Problem: Virtual text "above" does not work with 'nowrap'.
Solution: Do wrap the line after. (closes #11084)

Patch 9.0.0452
Problem: Visual highlighting extends into virtual text prop.
Solution: Do not highlight what isn't actually selected. Fix ordering of

stored text props.

Patch 9.0.0453
Problem: On an AZERTY keyboard digit keys get the shift modifier.
Solution: Remove the shift modifier from digit keys. (closes #11109)

Patch 9.0.0454
Problem: Incorrect color for modeless selection with GTK.
Solution: Use simple inversion instead of XOR. (closes #11111)

Patch 9.0.0455
Problem: A few problems with 'splitscroll'.
Solution: Fix 'splitscroll' problems. (Luuk van Baal, closes #11117)

Patch 9.0.0456
Problem: Function called at debug prompt is also debugged.
Solution: Reset the debug level while entering the debug command.

(closes #11118)

Patch 9.0.0457
Problem: Substitute prompt does not highlight an empty match.
Solution: Highlight at least one character.

Patch 9.0.0458
Problem: Splitting a line with a text prop "above" moves it to a new line

below.
Solution: Keep an "above" text prop above the first line.

Patch 9.0.0459
Problem: Vim9: block in for loop doesn't behave like a code block.
Solution: Use a new block ID for each loop at the script level.

Patch 9.0.0460
Problem: Loop variable can't be found.
Solution: Adjust block_id of the loop variable each round.

Patch 9.0.0461
Problem: 'scroll' is not always updated.
Solution: Call win_init_size() at the right place.

Patch 9.0.0462
Problem: ASAN warning for integer overflow.
Solution: Check for tp_col to be MAXCOL.

Patch 9.0.0463
Problem: Command line test leaves directory behind.
Solution: Use the "R" flag on the first mkdir(). (Dominique Pellé,

closes #11127)

Patch 9.0.0464
Problem: With virtual text "above" indenting doesn't work well.
Solution: Ignore text properties while adjusting indent. (issue #11084)

version9.txt — 4041

Patch 9.0.0465
Problem: Cursor moves when cmdwin is closed when 'splitscroll' is off.
Solution: Temporarily set 'splitscroll' when jumping back to the original

window. (closes #11128)

Patch 9.0.0466
Problem: Virtual text wrong after adding line break after line.
Solution: Pass an "eol" flag to where text properties are adjusted.

(closes #11131)

Patch 9.0.0467
Problem: Build failure.
Solution: Add missing change.

Patch 9.0.0468
Problem: Execution stack underflow without the +eval feature. (Dominique

Pellé)
Solution: Add to execution stack without FEAT_EVAL. (closes #11135)

Patch 9.0.0469
Problem: Cursor moves if cmdwin is closed when 'splitscroll' is off.
Solution: Skip win_fix_cursor if called when cmdwin is open or closing.

(Luuk van Baal, closes #11134)

Patch 9.0.0470
Problem: In a :def function all closures in a loop get the same variables.
Solution: When in a loop and a closure refers to a variable declared in the

loop, prepare for making a copy of variables for each closure.

Patch 9.0.0471
Problem: No test for what patch 9.0.0469 fixes.
Solution: Add a test. (closes #11140)

Patch 9.0.0472
Problem: Virtual text "below" doesn't show in list mode.
Solution: Reset lcs_eol_one when displaying text property.

Patch 9.0.0473
Problem: fullcommand() only works for the current script version.
Solution: Add an optional argument for the script version.

Patch 9.0.0474
Problem: fullcommand() test failure.
Solution: Update function table.

Patch 9.0.0475
Problem: Not using deferred delete in tests.
Solution: Use deferred delete more often.

Patch 9.0.0476
Problem: Varargs does not work for replacement function of substitute().
Solution: Check the varargs flag of the function. (closes #11142)

Patch 9.0.0477
Problem: Missing dependency may cause crashes on incomplete build.
Solution: Add dependency.

Patch 9.0.0478
Problem: Test for 'splitscroll' takes too much time.

version9.txt — 4042

Solution: Only test some of the combinations. (Luuk van Baal, closes #11139)

Patch 9.0.0479
Problem: In a :def function all closures in a loop get the same variables.
Solution: Use a separate list of variables for LOADOUTER and SAVEOUTER.

Patch 9.0.0480
Problem: Cannot use a :def varargs function with substitute().
Solution: Use has_varargs(). (closes #11146)

Patch 9.0.0481
Problem: In a :def function all closures in a loop get the same variables.
Solution: Use a separate list of variables for LOADOUTER and STOREOUTER.

Not copied at end of loop yet.

Patch 9.0.0482
Problem: "g0" moves to wrong location with virtual text "above".
Solution: Compensate for the extra columns. (closes #11141) Also fix "g$"

Patch 9.0.0483
Problem: Illegal memory access when replacing in virtualedit mode.
Solution: Check for replacing NUL after Tab.

Patch 9.0.0484
Problem: In a :def function all closures in a loop get the same variables.
Solution: Add ENDLOOP at break, continue and return if needed.

Patch 9.0.0485
Problem: In a :def function all closures in a loop get the same variables.
Solution: Make a copy of loop variables used in a closure.

Patch 9.0.0486
Problem: Text scrolled with 'nosplitscroll', autocmd win opened and help

window closed.
Solution: Skip win_fix_scroll() in more situations. (Luuk van Baal,

closes #11150)

Patch 9.0.0487
Problem: Using freed memory with combination of closures.
Solution: Do not use a partial after it has been freed through the

funcstack.

Patch 9.0.0488
Problem: Cursor in wrong position with virtual text "above" and

'showbreak'.
Solution: Take the first character column into account. (closes #11149)

Patch 9.0.0489
Problem: Using "end_lnum" with virtual text causes problems.
Solution: Disallow using "end_lnum" with virtual text. (closes #11151)

Also disallow "end_col" and "length".

Patch 9.0.0490
Problem: Using freed memory with cmdwin and BufEnter autocmd.
Solution: Make sure pointer to b_p_iminsert is still valid.

Patch 9.0.0491
Problem: No good reason to build without the float feature.
Solution: Remove configure check for float and "#ifdef FEAT_FLOAT".

version9.txt — 4043

Patch 9.0.0492
Problem: Cmdwin test fails on MS-Windows.
Solution: Skip test on MS-Windows.

Patch 9.0.0493
Problem: Perl test fails.
Solution: Remove remaining FEAT_EVAL.

Patch 9.0.0494
Problem: Small build misses float function declarations.
Solution: Adjust #ifdefs.

Patch 9.0.0495
Problem: Closure doesn't work properly in nested loop.
Solution: Save variables up to the outer loop.

Patch 9.0.0496
Problem: No good reason to keep supporting Windows-XP.
Solution: Drop Windows-XP support. (Ken Takata, closes #11089)

Patch 9.0.0497
Problem: LyRiCs files are not recognized.
Solution: Add a pattern to detect LyRiCs files. (closes #11155)

Patch 9.0.0498
Problem: Various small issues.
Solution: Various small fixes.

Patch 9.0.0499
Problem: In :def function list created after const is locked.
Solution: Reset v_lock. (closes #11154)

Patch 9.0.0500
Problem: When quitting the cmdline window with CTRL-C it remains visible.
Solution: Redraw to avoid confusion. Adjust the error message.

(closes #11152) Adjust the cursor position after CTRL-C.

Patch 9.0.0501
Problem: Warning for using uninitialized value in mouse test.
Solution: Clear ScreenCols when allocating it. (Dominique Pellé)

Patch 9.0.0502
Problem: A closure in a nested loop in a :def function does not work.
Solution: Use an array of loopvars, one per loop level.

Patch 9.0.0503
Problem: Build failure.
Solution: Add missing changes.

Patch 9.0.0504
Problem: still a Build failure.
Solution: Add another missing changes. Avoid compiler warning.

Patch 9.0.0505
Problem: Various problems with 'nosplitscroll'.
Solution: Fix 'nosplitscroll' problems. (Luuk van Baal, closes #11166)

Patch 9.0.0506
Problem: Line number argument for :badd does not work.
Solution: Set the last cursor position in the new buffer. (closes #11161)

version9.txt — 4044

Patch 9.0.0507
Problem: Command line cleared when using :redrawstatus in CmdlineChanged

autocommand event.
Solution: Postpone the redraw. (closes #11162)

Patch 9.0.0508
Problem: When the channel test fails there is no clue why.
Solution: Add info about the job status. (Ken Takata, closes #11175)

Patch 9.0.0509
Problem: Confusing error for "saveas" command with "nofile" buffer.
Solution: Give a clearer error message. (closes #11171)

Patch 9.0.0510
Problem: Chatito files are not recognized.
Solution: Add a pattern for Chatito files. (closes #11174)

Patch 9.0.0511
Problem: Unnecessary scrolling for message of only one line.
Solution: Only set msg_scroll when needed. (closes #11178)

Patch 9.0.0512
Problem: Cannot redraw the status lines when editing a command.
Solution: Only postpone the redraw when messages have scrolled.

(closes #11170)

Patch 9.0.0513
Problem: May not be able to use a pattern ad the debug prompt.
Solution: Temporarily disable the timeout. (closes #11164)

Patch 9.0.0514
Problem: Terminal test sometimes hangs.
Solution: Add a bit more information to the test output. (issue #11179)

Patch 9.0.0515
Problem: Virtual text highlight starts too early when 'number' is set.
Solution: Set column offset when wrapping. (issue #11138)

Patch 9.0.0516
Problem: Virtual text "above" highlights gap after it.
Solution: Do not highlight the gap. (closes #11138)

Patch 9.0.0517
Problem: When at the command line :redrawstatus does not work well.
Solution: Only update the statuslines instead of the screen. (closes #11180)

Patch 9.0.0518
Problem: Virtual text highlight starts too early with 'nowrap' and 'number'

set.
Solution: Add the offset to the attribute skip count. (issue #11138)

Patch 9.0.0519
Problem: The win_line() function is much too long.
Solution: Move the code to draw the line number to a separate function.

Patch 9.0.0520
Problem: Declaring a loop variable at the start of a block is clumsy.
Solution: Declare the variable inside the loop in a few places to see if

this works.

version9.txt — 4045

Patch 9.0.0521
Problem: Compiler warns for unused argument in small version.
Solution: Add UNUSED.

Patch 9.0.0522
Problem: Build fails on Appveyor.
Solution: Select Visual Studio 2015 for the build tools.

Patch 9.0.0523
Problem: more compiler warnings for arguments in small version
Solution: Adjust #ifdefs.

Patch 9.0.0524
Problem: Build instructions for MS-Windows are outdated.
Solution: Remove instructions for old MSVC versions.

Patch 9.0.0525
Problem: Manually deleting temp test files.
Solution: Add the 'D' flag to writefile().

Patch 9.0.0526
Problem: MS-Windows: still some support for XP and old compilers.
Solution: Remove XP support and mention of old compilers. (Ken Takata,

closes #11183)

Patch 9.0.0527
Problem: Long sign text may overflow buffer.
Solution: Use a larger buffer. Prevent for overflow.

Patch 9.0.0528
Problem: MS-Windows: no batch files for more recent MSVC versions.
Solution: Add batch files for 2017, 2019 and 2022. (Ken Takata,

closes #11184)

Patch 9.0.0529
Problem: Appveyor setup contains outdated lines.
Solution: Remove outdated lines. (Ken Takata, closes #11182)

Patch 9.0.0530
Problem: Using freed memory when autocmd changes mark.
Solution: Copy the mark before editing another buffer.

Patch 9.0.0531
Problem: The win_line() function is much too long.
Solution: Move code to separate functions.

Patch 9.0.0532
Problem: Edit test is flaky when run under valgrind.
Solution: Send some text to the terminal to trigger a redraw.

Patch 9.0.0533
Problem: The win_line() function is much too long.
Solution: Move code to separate functions.

Patch 9.0.0534
Problem: Line number is displayed at virtual text "above".
Solution: Show the line number at the text line.

Patch 9.0.0535

version9.txt — 4046

Problem: Closure gets wrong value in for loop with two loop variables.
Solution: Correctly compute the number of loop variables to clear.

Patch 9.0.0536
Problem: CI: codecov action update available.
Solution: Update Codecov 3.1.0 to 3.3.1. (closes #11188)

Patch 9.0.0537
Problem: The do_set() function is much too long.
Solution: Move setting of a string option to a separate function.

Patch 9.0.0538
Problem: Manually deleting test temp files.
Solution: Add the 'D' flag to writefile().

Patch 9.0.0539
Problem: Long message test can be flaky.
Solution: Wait for more prompt instead of ruler.

Patch 9.0.0540
Problem: Assigning stack variable to argument confuses Coverity.
Solution: Use a local pointer, also makes the code simpler.

Patch 9.0.0541
Problem: Terminal pwd test fails with a very long path name.
Solution: Join two lines.

Patch 9.0.0542
Problem: MSVC build still has support for 2012 edition.
Solution: Drop MSVC 2012 support. (Ken Takata, closes #11191)

Patch 9.0.0543
Problem: Insufficient testing for assert and test functions.
Solution: Add a few more tests. (Yegappan Lakshmanan, closes #11190)

Patch 9.0.0544
Problem: Minor issues with setting a string option.
Solution: Adjust the code, add a test. (closes #11192)

Patch 9.0.0545
Problem: When a test is slow and CI times out there is no time info.
Solution: Add the elapsed time to the "Executing" message.

Patch 9.0.0546
Problem: Supporting Ruby 1.8 makes code complicated.
Solution: Drop Ruby 1.8 support, it is ancient. (Ken Takata, closes #11195)

Patch 9.0.0547
Problem: Looping over empty out_loop[] entries.
Solution: Store the array size.

Patch 9.0.0548
Problem: reduce() with a compiled lambda could be faster.
Solution: Call eval_expr_typval() instead of call_func() directly.

Patch 9.0.0549
Problem: Duplicated code in calling a :def function.
Solution: Simplify the code.

Patch 9.0.0550

version9.txt — 4047

Problem: Crash when closing a tabpage and buffer is NULL.
Solution: Adjust how autocommands are triggered when closing a window.

(closes #11198, closes #11197)

Patch 9.0.0551
Problem: Mode message is delayed when :echowin was used. (Maxim Kim)
Solution: Save and restore msg_didout in :echowin. (closes #11193)

Patch 9.0.0552
Problem: Crash when using NUL in buffer that uses :source.
Solution: Don't get a next line when skipping over NL.

Patch 9.0.0553
Problem: No error for "|" after "{" in lambda.
Solution: Check for invalid "|". (closes #11199)

Patch 9.0.0554
Problem: Using freed memory when command follows lambda.
Solution: Don't free what is still in use. (closes #11201)

Patch 9.0.0555
Problem: Scrolling with 'nosplitscroll' in callback changing curwin.
Solution: Invalidate w_cline_row in the right place. (Luuk van Baal,

closes #11185)

Patch 9.0.0556
Problem: Leaking memory with nested functions.
Solution: Free saved pointer.

Patch 9.0.0557
Problem: Valgrind reports possibly leaked memory.
Solution: Move the problematic test function to the "fails" test file to

avoid obscuring real memory leaks.

Patch 9.0.0558
Problem: Coverity warns for possibly using NULL pointer.
Solution: Only use "evalarg" when not NULL.

Patch 9.0.0559
Problem: Timer test may get stuck at hit-enter prompt.
Solution: Feed some more characters.

Patch 9.0.0560
Problem: Elapsed time since testing started is not visible.
Solution: Show the elapsed time while running tests.

Patch 9.0.0561
Problem: When a test gets stuck it just hangs forever.
Solution: Set a timeout of 30 seconds.

Patch 9.0.0562
Problem: HSL playlist files are not recognized.
Solution: Add a pattern to recognize HSL playlist files. (Benoît Ryder,

closes #11204)

Patch 9.0.0563
Problem: Timer_info() test fails.
Solution: Ignore test timeout timer. Don't use test_null_job() when not

available.

version9.txt — 4048

Patch 9.0.0564
Problem: A few tests keep failing on MacOS M1.
Solution: Add a test check CheckNotMacM1. Fix timer tests.

Patch 9.0.0565
Problem: Cscope test causes problems when code for test timeout timer is

included (even when commented out).
Solution: Disable part of the cscope test for now.

Patch 9.0.0566
Problem: Nim files are not recognized.
Solution: Add patterns for Nim files. (Nbiba Bedis, closes #11205)

Patch 9.0.0567
Problem: 'completeopt' "longest" is not used for complete().
Solution: Also use "longest" for complete(). (Bjorn Linse, closes #11206)

Patch 9.0.0568
Problem: Autocmd code is indented more than needed.
Solution: Break out sooner. (Yegappan Lakshmanan, closes #11208)

Also in user function code.

Patch 9.0.0569
Problem: Cannot easily get out when using "vim file | grep word".
Solution: Without changes let CTRL-C exit Vim. Otherwise give a message on

stderr. (closes #11209)

Patch 9.0.0570
Problem: CI for Windows is still using codecov action 3.1.0.
Solution: Use action 3.1.1. (closes #11212)

Patch 9.0.0571
Problem: MS-Windows: CTRL-C can make Vim exit.
Solution: Check the not-a-term argument.

Patch 9.0.0572
Problem: Insert complete tests leave a mapping behind.
Solution: Use a buffer-local mapping. (closes #11211)

Patch 9.0.0573
Problem: Outdated dependencies go unnoticed.
Solution: Use github Dependabot. (closes #11213)

Patch 9.0.0574
Problem: Timer garbage collect test hangs on Mac M1.
Solution: Properly check for Mac M1 and skip the test.

Patch 9.0.0575
Problem: The getchar() function behaves strangely with bracketed paste.
Solution: Do not handle paste-start in getchar(). (issue #11172)

Patch 9.0.0576
Problem: Unused loop variables.
Solution: Use a while loop instead. (closes #11214)

Patch 9.0.0577
Problem: Buffer underflow with unexpected :finally.
Solution: Check CSF_TRY can be found.

Patch 9.0.0578

version9.txt — 4049

Problem: One timer test fails on Mac M1.
Solution: Skip the test on Mac M1.

Patch 9.0.0579
Problem: Using freed memory when 'tagfunc' wipes out buffer that holds

'complete'.
Solution: Make a copy of the option. Make sure cursor position is valid.

Patch 9.0.0580
Problem: No CI running for MacOS on M1.
Solution: Add a cirrus CI task. (closes #11203)

Patch 9.0.0581
Problem: Adding a character for incsearch fails at end of line.
Solution: Only check cursor line number.

Patch 9.0.0582
Problem: Channel cwd test fails on Cirrus CI.
Solution: Also remove /private from the expected directory.

Patch 9.0.0583
Problem: Only recognizing .m3u8 files is inconsistent.
Solution: Also match .m3u files. (issue #11204)

Patch 9.0.0584
Problem: Cscope test with wrong executable name fails.
Solution: Use /bin/sh to execute the command. (Yegappan Lakshmanan)

Patch 9.0.0585
Problem: When long message test fails the error message is not visible.
Solution: Dump more lines.

Patch 9.0.0586
Problem: Missing change in test.
Solution: Add the test change.

Patch 9.0.0587
Problem: Unicode tables are outdated.
Solution: Update to Unicode release 15. (Christian Brabandt, closes #11220)

Patch 9.0.0588
Problem: MorphOS build is broken.
Solution: Add "-lm" to LDFLAGS and "-noixemul" to CFLAGS. (Ola Söder,

closes #11222)

Patch 9.0.0589
Problem: On AmigaOS4 the pid is available but the task address is used.
Solution: Use getpid(). (Ola Söder, closes #11224)

Patch 9.0.0590
Problem: After exiting Insert mode spelling is not checked in the next

line.
Solution: When spelling is enabled redraw the next line after exiting Insert

mode in case the spell highlight needs updating.

Patch 9.0.0591
Problem: Message window popup shows on only one tab page. (Naruhiko

Nishino)
Solution: Show the message window popup on all tab pages. (closes #11231)

version9.txt — 4050

Patch 9.0.0592
Problem: Display not cleared when scrolling back in messages, a background

color is set and t_ut is empty.
Solution: Clear to the end of the display if needed. (closes #8973)

Patch 9.0.0593
Problem: CI actions have too many permissions.
Solution: Restrict permissions to what is required. (closes #11223)

Patch 9.0.0594
Problem: Makefile error message causes a shell error.
Solution: Put the message in single quotes. (closes #11232)

Patch 9.0.0595
Problem: Extra newline in messages after a verbose shell message.
Solution: Output the newline with msg_putchar_attr(). (closes #11233)

Make it possible to filter a screendump before comparing it.

Patch 9.0.0596
Problem: CI on Mac M1 has the channel feature disabled.
Solution: Include the channel feature.

Patch 9.0.0597
Problem: Cannot close a tab page with the middle mouse button.
Solution: Support closing a tab page with the middle mouse button, like many

other programs. (closes #10746)

Patch 9.0.0598
Problem: Using negative array index with negative width window.
Solution: Make sure the window width does not become negative.

Patch 9.0.0599
Problem: Latexmkrc files are not recognized.
Solution: Use Perl filetype for latexmkrc files. (closes #11241)

Patch 9.0.0600
Problem: GYP files are not recognized.
Solution: Recognize GYP files. (closes #11242)

Patch 9.0.0601
Problem: Too much indent.
Solution: Return out early from a function. (Yegappan Lakshmanan,

close #11238)

Patch 9.0.0602
Problem: New TypeScript extensions are not recognized.
Solution: Recognize .mts and .cts files. (closes #11237)

Patch 9.0.0603
Problem: With 'nosplitscroll' folds are not handled correctly.
Solution: Take care of closed folds when moving the cursor. (Luuk van Baal,

closes #11234)

Patch 9.0.0604
Problem: Luacheckrc file is not recognized.
Solution: Use lua filetype for luacheckrc. (closes #11236)

Patch 9.0.0605
Problem: Dump file missing.
Solution: Add the missing dump file. (issue #11234)

version9.txt — 4051

Patch 9.0.0606
Problem: system() opens a terminal window when using the GUI and "!" is in

'guioptions'.
Solution: Do not use a terminal window when the SHELL_SILENT flag is used.

(closes #11202)

Patch 9.0.0607
Problem: Verbose echo message test fails on Mac OS.
Solution: Skip the test on Mac OS.

Patch 9.0.0608
Problem: With spell checking, deleting a full stop at the end of a line

does not update SpellCap at the start of the next line.
Solution: Update the next line when characters have been deleted. Also when

using undo.

Patch 9.0.0609
Problem: Blockedit test fails because of wrong indent.
Solution: Adjust the expected text temporarily

Patch 9.0.0610
Problem: Global interrupt test fails when run under valgrind.
Solution: Use TermWait().

Patch 9.0.0611
Problem: Tests delete files with a separate delete() call.
Solution: Use deferred delete.

Patch 9.0.0612
Problem: Blockedit test passes with wrong result.
Solution: Add a "vim9script" line to make indenting work.

Patch 9.0.0613
Problem: Running source tests leaves file behind.
Solution: Add the "D" flag to writefile(). (Dominique Pellé, closes #11243)

Also do this for other writefile() calls and drop delete().

Patch 9.0.0614
Problem: SpellFileMissing autocmd may delete buffer.
Solution: Disallow deleting the current buffer to avoid using freed memory.

Patch 9.0.0615
Problem: Using reduce() on a list from range() is a bit slow.
Solution: Avoid materializing the list.

Patch 9.0.0616
Problem: Spell test fails because error message changed.
Solution: Adjust expected error message.

Patch 9.0.0617
Problem: Calling function for reduce() has too much overhead.
Solution: Only call clear_tv() when needed.

Patch 9.0.0618
Problem: Calling function for reduce() has too much overhead.
Solution: Do not create a funccall_T every time.

Patch 9.0.0619
Problem: Too many delete() calls in tests.

version9.txt — 4052

Solution: Use deferred delete where possible.

Patch 9.0.0620
Problem: matchaddpos() can only add up to 8 matches.
Solution: Allocate the array of positions. (closes #11248)

Patch 9.0.0621
Problem: Filetype test leaves file behind.
Solution: Add deferred delete flag to writefile(). (Dominique Pellé,

closes #11249)

Patch 9.0.0622
Problem: matchaddpos() can get slow when adding many matches.
Solution: Update the next available match ID when manually picking an ID and

remove check if the available ID can be used. (idea by Rick Howe)

Patch 9.0.0623
Problem: Error for modifying a const is not detected at compile time.
Solution: Add TTFLAG_CONST and check for it in add() and extend().

Patch 9.0.0624
Problem: Leaking argument type array.
Solution: Add allocated memory to type_gap.

Patch 9.0.0625
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0626
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0627
Problem: "const" and "final" both make the type a constant. (Daniel

Steinberg)
Solution: Only have "const" make the type a constant.

Patch 9.0.0628
Problem: Coverity warns for not checking return value.
Solution: Check the return value and simplify the code.

Patch 9.0.0629
Problem: Get an error for using const only when executing.
Solution: Check for const at compile time for filter(), map(), remove(),

reverse(), sort() and uniq().

Patch 9.0.0630
Problem: In Vim9 script a numbered function cannot be called.
Solution: Do not require "g:" before a numbered function name.

(closes #11254)

Patch 9.0.0631
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0632
Problem: Calling a function from an "expr" option has too much overhead.
Solution: Add call_simple_func() and use it for 'foldexpr'

Patch 9.0.0633

version9.txt — 4053

Problem: FEAT_TITLE was removed but is still used.
Solution: Remove FEAT_TITLE. (Naruhiko Nishino, closes #11256)

Patch 9.0.0634
Problem: Evaluating "expr" options has more overhead than needed.
Solution: Use call_simple_func() for 'foldtext', 'includeexpr', 'printexpr',

"expr" of 'spellsuggest', 'diffexpr', 'patchexpr', 'balloonexpr',
'formatexpr', 'indentexpr' and 'charconvert'.

Patch 9.0.0635
Problem: Build error and compiler warnings.
Solution: Add missing change. Add type casts.

Patch 9.0.0636
Problem: Underline color does not work in terminals that don't send a

termresponse.
Solution: Do output t_8u if it was set explicitly. (closes #11253)

Patch 9.0.0637
Problem: Syntax of commands in Vim9 script depends on +eval feature.
Solution: Use same syntax with and without the +eval feature.

Patch 9.0.0638
Problem: Popup menu highlight wrong on top of preview popup. (Yegappan

Lakshmanan)
Solution: Also check for the popup menu in screen_line().

Patch 9.0.0639
Problem: Checking for popup in screen_char() is too late, the attribute has

already been changed.
Solution: Move check for popup to where screen_char() is called.

Patch 9.0.0640
Problem: Cannot scroll by screen line if a line wraps.
Solution: Add the 'smoothscroll' option. Only works for CTRL-E and CTRL-Y

so far.

Patch 9.0.0641
Problem: Missing part of the new option code.
Solution: Add missing WV_SMS.

Patch 9.0.0642
Problem: Breakindent test fails.
Solution: Correct logic for resetting need_showbreak.

Patch 9.0.0643
Problem: Smoothscroll test fails.
Solution: Check if skipcol changed.

Patch 9.0.0644
Problem: 'smoothscroll' is not copied to a new window on :split.
Solution: Copy the option value. Add a test.

Patch 9.0.0645
Problem: CTRL-Y does not stop at line 1. (John Marriott)
Solution: Stop at line 1 when 'smoothscroll' is not set. (closes #11261)

Patch 9.0.0646
Problem: with 'smoothscroll' set CTRL-E does not work properly when

'foldmethod' is set to "indent". (Yee Cheng Chin)

version9.txt — 4054

Solution: Merge the code for scrolling with folds and 'smoothscroll'.
(closes #11262)

Patch 9.0.0647
Problem: The 'splitscroll' option is not a good name.
Solution: Rename 'splitscroll' to 'splitkeep' and make it a string option,

also supporting "topline". (Luuk van Baal, closes #11258)

Patch 9.0.0648
Problem: When using powershell input redirection does not work.
Solution: Use a different shell command for powershell. (Yegappan

Lakshmanan, closes #11257)

Patch 9.0.0649
Problem: No indication when the first line is broken for 'smoothscroll'.
Solution: Show "<<<" in the first line.

Patch 9.0.0650
Problem: Some tests are failing.
Solution: Adjust for "<<<" showing up.

Patch 9.0.0651
Problem: Build fails without the +conceal feature.
Solution: Rename called function.

Patch 9.0.0652
Problem: 'smoothscroll' not tested with 'number' and "n" in 'cpo'.
Solution: Add tests, fix uncovered problem.

Patch 9.0.0653
Problem: BS and DEL do not work properly in an interactive shell. (Gary

Johnson)
Solution: Adjust the length for replaced codes.

Patch 9.0.0654
Problem: Breakindent test fails.
Solution: Temporarily accept wrong result.

Patch 9.0.0655
Problem: passing modifier codes to a shell running in the GUI. (Gary

Johnson)
Solution: Include modifier codes into the key and drop the modifiers.

Patch 9.0.0656
Problem: Cannot specify another character to use instead of '@' at the end

of the window.
Solution: Add "lastline" to 'fillchars'. (Martin Tournoij, closes #11264,

closes #10963)

Patch 9.0.0657
Problem: Too many #ifdefs.
Solution: Graduate the +cmdwin feature. Now the tiny and small builds are

equal, drop the small build. (Martin Tournoij, closes #11268)

Patch 9.0.0658
Problem: Tiny build fails on Mac OS.
Solution: Define FEAT_CLIPBOARD only for normal build.

Patch 9.0.0659
Problem: Wrong type of comment in SetSyn() function.

version9.txt — 4055

Solution: Use Vim9 comment. (closes #11278)

Patch 9.0.0660
Problem: Mapping with CTRL keys does not work in the GUI.
Solution: Recognize CSI next to K_SPECIAL. (closes #11275, closes #11270)

Patch 9.0.0661
Problem: Multi-byte "lastline" item in 'fillchars' does not work properly

when the window is two columns wide.
Solution: Compute the text length correctly. (closes #11280)

Patch 9.0.0662
Problem: Concealed characters do not work correctly.
Solution: Subtract boguscols instead of adding them. (closes #11273)

Patch 9.0.0663
Problem: Tests check for +cmdwin feature which is always present.
Solution: Remove the checks. (closes #11287)

Patch 9.0.0664
Problem: Bad redrawing with spell checking, using "C" and "$" in 'cpo'.
Solution: Do not redraw the next line when "$" is in 'cpo'. (closes #11285)

Patch 9.0.0665
Problem: Setting 'cmdheight' has no effect if last window was resized.
Solution: Do apply 'cmdheight' when told to. Use the frame height instead

of the cmdline_row. (closes #11286)

Patch 9.0.0666
Problem: Spacing-combining characters handled as composing, causing text to

take more space than expected.
Solution: Handle characters marked with "Mc" not as composing.

(closes #11282)

Patch 9.0.0667
Problem: ml_get error when 'splitkeep' is "screen". (Marius Gedminas)
Solution: Check the botline is not too large. (Luuk van Baal,

closes #11293, closes #11292)

Patch 9.0.0668
Problem: CI on Mac M1 only uses clang
Solution: Also run with gcc. (closes #11263)

Patch 9.0.0669
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0670
Problem: No space for command line when there is a tabline.
Solution: Correct computation of where the command line should be.

(closes #11295)

Patch 9.0.0671
Problem: Negative topline using CTRL-Y with 'smoothscroll' and 'diff'.

(Ernie Rael)
Solution: Only use 'smoothscroll' when 'wrap' is set.

Patch 9.0.0672
Problem: Cursor line only partly shows with 'smoothscroll' and 'scrolloff'

zero.

version9.txt — 4056

Solution: Do not use 'smoothscroll' when adjusting the bottom of the window.
(closes #11269)

Patch 9.0.0673
Problem: First line not scrolled properly with 'smoothscroll' and

'scrolloff' zero and using "k".
Solution: Make sure the cursor position is visible.

Patch 9.0.0674
Problem: Build error with tiny version.
Solution: Use PLINES_NOFILL macro.

Patch 9.0.0675
Problem: Search test screendump is outdated.
Solution: Update the screendump for improved display.

Patch 9.0.0676
Problem: CI on Mac M1 with gcc actually uses clang.
Solution: Remove the gcc task. (Ozaki Kiichi, closes #11297)

Patch 9.0.0677
Problem: Breakindent test accepts wrong result.
Solution: Fix the number column and adjust the expected text.

Patch 9.0.0678
Problem: Using exclamation marks on :function.
Solution: Use :func and :endfunc as usual.

Patch 9.0.0679
Problem: Tests failing with 'smoothscroll', 'number' and "n" in 'cpo'.
Solution: Do not count number column in topline if columns are skipped.

Patch 9.0.0680
Problem: Tests failing with 'breakindent', 'number' and "n" in 'cpo'.
Solution: Do count the number column in topline if 'breakindent' is set.

Patch 9.0.0681
Problem: "<<<" shows for 'smoothscroll' even when 'showbreak is set.
Solution: When 'showbreak' is set do not display "<<<".

Patch 9.0.0682
Problem: Crash when popup with deleted timer is closed. (Igbanam

Ogbuluijah)
Solution: Check the timer still exists. (closes #11301)

Patch 9.0.0683
Problem: Cannot specify a time for :echowindow.
Solution: A count can be used to specify the display time. Add

popup_findecho().

Patch 9.0.0684
Problem: Skipped :exe command fails compilation on MS-Windows.
Solution: Adjust return value when skipping.

Patch 9.0.0685
Problem: FORTIFY_SOURCE causes a crash in Vim9 script.
Solution: Use a pointer to the first char. (Yee Cheng Chin, closes #11302)

Patch 9.0.0686
Problem: The right ALT key does not work on some MS-Windows keyboards.

version9.txt — 4057

Solution: Adjust the modifiers based on GetKeyState(). (Anton Sharonov,
closes #11300)

Patch 9.0.0687
Problem: "export def" does not work in a nested block.
Solution: Do not handle "export" with a separate function but in the same

command stack. (closes #11304)

Patch 9.0.0688
Problem: Debugger does not display the whole command.
Solution: Set ea.cmd before checking for a breakpoint.

Patch 9.0.0689
Problem: Compiler warning for unused function.
Solution: Add #ifdef. (John Marriott)

Patch 9.0.0690
Problem: Buffer size for expanding tab not correctly computed.
Solution: Correctly use size of end character.

Patch 9.0.0691
Problem: lalloc(0) error in listchars test.
Solution: Skip generating text for tab if tab_len is zero.

Patch 9.0.0692
Problem: PoE filter files are not recognized.
Solution: Add a pattern to detect PoE filter files. (closes #11305)

Patch 9.0.0693
Problem: browse() first argument cannot be a bool.
Solution: Use tv_get_bool_chk() instead of tv_get_number_chk().

(closes #11308)

Patch 9.0.0694
Problem: No native sound support on Mac OS.
Solution: Add sound support for Mac OS. (Yee Cheng Chin, closes #11274)

Patch 9.0.0695
Problem: Failing check for dictionary type for const any.
Solution: Check for any type properly. (closes #11310)

Patch 9.0.0696
Problem: It is unclear if the +rightleft and +arabic features are actively

being used.
Solution: Disable the features, await feedback.

Patch 9.0.0697
Problem: Cursor in wrong position with Visual substitute.
Solution: When restoring 'linebreak' mark the virtual column as invalid.

(closes #11309, closes #11311)

Patch 9.0.0698
Problem: VisVim is outdated, does not work with current Visual Studio.
Solution: Remove VisVim. (Martin Tournoij)

Patch 9.0.0699
Problem: Tiny build fails.
Solution: Add #ifdef.

Patch 9.0.0700

version9.txt — 4058

Problem: There is no real need for a "big" build.
Solution: Move common features to "normal" build, less often used features

to the "huge" build. (Martin Tournoij, closes #11283)

Patch 9.0.0701
Problem: With 'smoothscroll' the cursor position s not adjusted in a long

line.
Solution: Move the cursor further up or down in the line.

Patch 9.0.0702
Problem: Incomplete testing cursor position after change with 'linebreak'

set.
Solution: Add a test and move test cases together. (closes #11313)

Patch 9.0.0703
Problem: Failing check for argument type for const any.
Solution: Check for any type properly. (closes #11316)

Patch 9.0.0704
Problem: CI runs "tiny" and "small" builds, which are the same.
Solution: Remove the "small" build. (Naruhiko Nishino, closes #11315)

Patch 9.0.0705
Problem: Virtual text truncation does not take padding into account.
Solution: Subtract the padding from the available space. (closes #11318)

Patch 9.0.0706
Problem: :help in a narrow window always opens at the top.
Solution: Respect 'splitbelow'. (closes #11319)

Patch 9.0.0707
Problem: With 'smoothscroll' and 'scrolloff' non-zero the cursor position

is not properly adjusted in a long line.
Solution: Move the cursor further up or down in the line.

Patch 9.0.0708
Problem: :confirm does not work properly for a terminal buffer.
Solution: Handle :confirm for a terminal buffer differently. (Yee Cheng

Chin, closes #11312)

Patch 9.0.0709
Problem: Virtual text "after" not correct with 'nowrap'.
Solution: Do not display "after" text prop on the next line when 'wrap' is

off.

Patch 9.0.0710
Problem: Quitting/unloading/hiding a terminal buffer does not always work

properly.
Solution: Avoid that ":q!" leaves an empty buffer behind. ":bunload!" also

kills the job and unloads the buffer. ":hide" does not unload the
buffer. (Yee Cheng Chin, closes #11323)

Patch 9.0.0711
Problem: SubStation Alpha files are not recognized.
Solution: Add patterns for SubStation Alpha files. (closes #11332)

Patch 9.0.0712
Problem: Wrong column when calling setcursorcharpos() with zero lnum.
Solution: Set the line number before calling buf_charidx_to_byteidx().

(closes #11329)

version9.txt — 4059

Patch 9.0.0713
Problem: <amatch> of MenuPopup event is expanded like a file name.
Solution: Do not expand <amatch> for MenuPopup. (closes #11328)

Patch 9.0.0714
Problem: With 'nowrap' two virtual text below not displayed correctly.
Solution: Set text_prop_follows before continuing. Correct for number

column. (closes #11333)

Patch 9.0.0715
Problem: Wrong argument for append() gives two error messages.
Solution: When getting an error for a number argument don't try using it as

a string. (closes #11335)

Patch 9.0.0716
Problem: With 'nowrap' virtual text "after" does not scroll left.
Solution: Skip part of the virtual text that is left of the window.

(closes #11320) Fix going beyond the last column of the window.

Patch 9.0.0717
Problem: Compiler warning for unused variable in tiny build.
Solution: Add #ifdefs.

Patch 9.0.0718
Problem: Extra empty line between two virtual text "below" when 'wrap' and

'number' are set.
Solution: Reset "before" when there is no text in the screen line.

(closes #11334)

Patch 9.0.0719
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0720
Problem: MS-Windows GUI may have pixel dust from antialiasing.
Solution: When a character changes also redraw the next one. (issue #8532)

Patch 9.0.0721
Problem: Virtual text "above" with padding not displayed correctly.
Solution: Take padding into account when truncating. (closes #11340)

Patch 9.0.0722
Problem: Virtual text "after" does not show with 'list' set.
Solution: Do not break out of the loop when another text prop follows.

(closes #11337)

Patch 9.0.0723
Problem: Extra empty line below virtual text when 'list' is set.
Solution: Do not reset lcs_eol_one but set text_prop_follows. (closes #11339)

Patch 9.0.0724
Problem: Closure in compiled function gets same variable in block.
Solution: At the end of a block to not always reset the variable count.

(issue #11094)

Patch 9.0.0725
Problem: Virtual text "after" wraps to next line even when 'wrap' is off

and 'list' is set.
Solution: Do not use the minimum width when 'wrap' is off. (issue #11336)

version9.txt — 4060

Patch 9.0.0726
Problem: Looping over list of lists and changing the list contents works in

Vim9 script, not in a compiled function.
Solution: Mark the loop variable final instead of const. (closes #11347)

Patch 9.0.0727
Problem: Help in the repository differs from patched version too much.
Solution: Make a patch for a few help files.

Patch 9.0.0728
Problem: extend() test fails.
Solution: Item is final, not const.

Patch 9.0.0729
Problem: The rightleft and arabic features are disabled.
Solution: Re-enable the features, some users want to use the functionality.

Patch 9.0.0730
Problem: Startup test fails with right-left feature.
Solution: Do not delete test file too early.

Patch 9.0.0731
Problem: clang-tidy configuration files are not recognized.
Solution: Recognize clang-tidy files as yaml. (closes #11350)

Patch 9.0.0732
Problem: No check for white space before and after "=<<". (Doug Kearns)
Solution: Check for white space in Vim9 script. (closes #11351)

Patch 9.0.0733
Problem: Use of strftime() is not safe.
Solution: Check the return value of strftime(). Use a larger buffer and

correctly pass the available space. (Dominique Pellé, closes
#11348)

Patch 9.0.0734
Problem: Cursor position invalid when scrolling with 'smoothscroll' set.

(Ernie Rael)
Solution: Add w_valid_skipcol and clear flags when it changes. Adjust

w_skipcol after moving the cursor.

Patch 9.0.0735
Problem: Breakindent and scrolloff tests fail.
Solution: Temporarily skip the assertions.

Patch 9.0.0736
Problem: Quickfix listing does not handle very long messages.
Solution: Use a growarray instead of a fixed size buffer. (Yegappan

Lakshmanan, closes #11357)

Patch 9.0.0737
Problem: Lisp word only recognized when a space follows.
Solution: Also match a word at the end of a line. Rename the test. Use a

compiled function to avoid backslashes.

Patch 9.0.0738
Problem: Cannot suppress completion "scanning" messages.
Solution: Add the "C" flag in 'shortmess'. (Bjorn Linse, closes #11354)

version9.txt — 4061

Patch 9.0.0739
Problem: Mouse column not correctly used for popup_setpos.
Solution: Adjust off-by-one error and handle Visual line selection properly.

(Yee Cheng Chin, closes #11356)

Patch 9.0.0740
Problem: prop_add_list() gives multiple errors for invalid argument.
Solution: Only give one error message.

Patch 9.0.0741
Problem: Cannot specify an ID for each item with prop_add_list(). (Sergey

Vlasov)
Solution: Add an optional fifth number to the item. (closes #11360)

Patch 9.0.0742
Problem: Reading past end of the line when compiling a function with

errors.
Solution: Do not return an invalid pointer. Fix skipping redirection.

Patch 9.0.0743
Problem: Starting cscope on Unix does not quote the arguments correctly.

(Gary Johnson)
Solution: Move the final quote after the arguments.

Patch 9.0.0744
Problem: In script in autoload dir exported variable is not found. (Doug

Kearns)
Solution: Find the variable with the "script#" prefix. (closes #11361)

Patch 9.0.0745
Problem: Wrong cursor position when using "gj" and "gk" in a long line.
Solution: Adjust computations for the cursor position and skipcol. Re-enable

tests that pass now, disable failing breakindent test.

Patch 9.0.0746
Problem: Breakindent test cases are commented out.
Solution: Adjust expected result to slightly different behavior. Correct

computations for cursor position.

Patch 9.0.0747
Problem: Too many #ifdefs.
Solution: Graduate the +cmdline_info feature. (Martin Tournoij,

closes #11330)

Patch 9.0.0748
Problem: Kitty may send key without modifiers with CSI u code.
Solution: Handle CSI u code without modifiers. (Trygve Aaberge,

closes #11364)

Patch 9.0.0749
Problem: Alloc/free of buffer for each quickfix entry is inefficient.
Solution: Use a shared grow array. (Yegappan Lakshmanan, closes #11365)

Patch 9.0.0750
Problem: Crash when popup closed in callback. (Maxim Kim)
Solution: In syntax_end_parsing() check that syn_block is valid.

Patch 9.0.0751
Problem: 'scrolloff' does not work well with 'smoothscroll'.
Solution: Make positioning the cursor a bit better. Rename functions.

version9.txt — 4062

Patch 9.0.0752
Problem: Rprofile files are not recognized.
Solution: Recognize Rprofile files as "r". (closes #11369)

Patch 9.0.0753
Problem: Some Ex commands are not in the help index.
Solution: Add the missing commands. Add a script to check all Ex commands

are in the help index. (Yee Cheng Chin, closes #11371)

Patch 9.0.0754
Problem: 'indentexpr' overrules lisp indenting in one situation.
Solution: Add "else" to keep the lisp indent. (issue #11327)

Patch 9.0.0755
Problem: Huge build on macos always fails on CI.
Solution: Temporarily disable the perl interface.

Patch 9.0.0756
Problem: No autocmd event for changing text in a terminal window.
Solution: Add TextChangedT. (Shougo Matsushita, closes #11366)

Patch 9.0.0757
Problem: Line number not visible with 'smoothscroll', 'nu' and 'rnu'.
Solution: Put the ">>>" after the line number instead of on top.

Patch 9.0.0758
Problem: "precedes" from 'listchars' overwritten by <<< for 'smoothscroll'.
Solution: Keep the "precedes" character.

Patch 9.0.0759
Problem: Huge build on macos does not use Perl.
Solution: Re-enable the Perl interface using "dynamic". (closes #11375)

Patch 9.0.0760
Problem: Display test for 'listchars' "precedes" fails.
Solution: Correct the expected result.

Patch 9.0.0761
Problem: Cannot use 'indentexpr' for Lisp indenting.
Solution: Add the 'lispoptions' option.

Patch 9.0.0762
Problem: Build failure.
Solution: Add missing change.

Patch 9.0.0763
Problem: MS-Windows: warning for using int for size_t.
Solution: Declare variable as size_t.

Patch 9.0.0764
Problem: Indent and option tests fail.
Solution: Change OP_INDENT. Add entry to options test table.

Patch 9.0.0765
Problem: With a Visual block a put command column may go negative.
Solution: Check that the column does not become negative.

Patch 9.0.0766
Problem: Too many delete() calls in tests.

version9.txt — 4063

Solution: Use deferred delete where possible.

Patch 9.0.0767
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0768
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0769
Problem: Too many delete() calls in tests.
Solution: Use deferred delete where possible.

Patch 9.0.0770
Problem: Quickfix commands may keep memory allocated.
Solution: Free memory when it's a bit much. (Yegappan Lakshmanan,

closes #11379)

Patch 9.0.0771
Problem: Cannot always tell the difference between tex and rexx files.
Solution: Recognize tex by a leading backslash. (Martin Tournoij,

closes #11380)

Patch 9.0.0772
Problem: The libvterm code is outdated.
Solution: Include libvterm changes from revision 790 to 801.

Patch 9.0.0773
Problem: Huge build on MacOS uses dynamic Perl.
Solution: Use built-in Perl, uninstall the brew one. (closes #11382)

Patch 9.0.0774
Problem: The libvterm code is outdated.
Solution: Include libvterm changes from revision 802 to 817. Revert some

changes made for C89.

Patch 9.0.0775
Problem: MS-Windows: mouse scrolling not supported in the console.
Solution: Add event handling for mouse scroll events. (Christopher

Plewright, closes #11374)

Patch 9.0.0776
Problem: MSVC can't have field name "small".
Solution: Rename small to smallfont.

Patch 9.0.0777
Problem: Code is indented too much.
Solution: Use an early return. (Yegappan Lakshmanan, closes #11386)

Patch 9.0.0778
Problem: Indexing of unknown const type fails during compilation.
Solution: Check for "any" properly. (closes #11389)

Patch 9.0.0779
Problem: lsl and lm3 file extensions are not recognized.
Solution: Add *.lsl and *.lm3 patterns. (Doug Kearns, closes #11384)

Patch 9.0.0780
Problem: 'scroll' value computed in unexpected location.

version9.txt — 4064

Solution: Compute 'scroll' when the window height is changed. (Luuk van
Baal, closes #11387)

Patch 9.0.0781
Problem: Workaround to rename "small" to "smallfont" is clumsy.
Solution: Undefine "small" after including windows.h. (Ken Takata)

Patch 9.0.0782
Problem: OpenVPN files are not recognized.
Solution: Add patterns for OpenVPN files. (closes #11391)

Patch 9.0.0783
Problem: ":!" doesn't do anything but does update the previous command.
Solution: Do not have ":!" change the previous command. (Martin Tournoij,

closes #11372)

Patch 9.0.0784
Problem: Text prop "above" not displayed correctly with 'number' and "n" in

'cpo'.
Solution: Draw the line number column until the line text is reached.

Patch 9.0.0785
Problem: Memory leak with empty shell command.
Solution: Free the allocated memory when bailing out.

Patch 9.0.0786
Problem: User command does not get number from :tab modifier.
Solution: Include the number. (closes #11393, closes #6901)

Patch 9.0.0787
Problem: MS-Windows: mouse scrolling in terminal misbehaves without dll.
Solution: Add #ifdef as a temporary solution. (Christopher Plewright,

closes #11392)

Patch 9.0.0788
Problem: ModeChanged autocmd not executed when Visual mode is ended with

CTRL-C.
Solution: Do not trigger the autocmd when got_int is set. (closes #11394)

Patch 9.0.0789
Problem: Dummy buffer ends up in a window.
Solution: Disallow navigating to a dummy buffer.

Patch 9.0.0790
Problem: Test for dummy buffer does not always produce the E86 error.
Solution: Do not check if the error is produced.

Patch 9.0.0791
Problem: At the hit-Enter prompt the End and Home keys may not work.
Solution: Use the special "@" code for End and Home, like it was done for

the cursor keys in patch 8.2.2246. (Trygve Aaberge, closes #11396)

Patch 9.0.0792
Problem: MS-Windows: compiler complains about unused function.
Solution: Add #ifdef. (John Marriott)

Patch 9.0.0793
Problem: MS-Windows: mouse scroll events only work with the dll.
Solution: Accept CSI codes for MS-Windows without the GUI. (Christopher

Plewright, closes #11401)

version9.txt — 4065

Patch 9.0.0794
Problem: There is no way to find out if an escape sequence with

modifyOtherKeys has been seen.
Solution: Add a notice with ":verbose map".

Patch 9.0.0795
Problem: readblob() always reads the whole file.
Solution: Add arguments to read part of the file. (Ken Takata,

closes #11402)

Patch 9.0.0796
Problem: Mapping test fails in some situations.
Solution: Find the line with the verbose information.

Patch 9.0.0797
Problem: Order of assert function arguments is reverted.
Solution: Swap the arguments. (closes #11399)

Patch 9.0.0798
Problem: Clang format configuration files are not recognized.
Solution: Use yaml for Clang format configuration files. (Marwin Glaser,

closes #11398)

Patch 9.0.0799
Problem: In compiled function ->() on next line not recognized.
Solution: Also check for "(". (closes #11405)

Patch 9.0.0800
Problem: Compiler complains about repeated typedef.
Solution: Remove one typedef.

Patch 9.0.0801
Problem: The modifyOtherKeys flag is set when it should not.
Solution: Do not handle special key codes with a modifier value above 16 as

a modifyOtherKeys value. (issue #11403)

Patch 9.0.0802
Problem: MS-Windows: cannot map console mouse scroll events.
Solution: Change CSI to K_SPECIAL when checking for a mapping. (Christopher

Plewright, closes #11410)

Patch 9.0.0803
Problem: readblob() cannot read from character device.
Solution: Use S_ISCHR() to not check the size. (Ken Takata, closes #11407)

Patch 9.0.0804
Problem: Crash when trying to divide the largest negative number by -1.
Solution: Handle this case specifically.

Patch 9.0.0805
Problem: Filetype autocmd may cause freed memory access.
Solution: Set the quickfix-busy flag while filling the buffer.

Patch 9.0.0806
Problem: 'langmap' works differently when there are modifiers.
Solution: Only apply 'langmap' to a character where modifiers have no

effect. (closes #11395, closes #11404)

Patch 9.0.0807

version9.txt — 4066

Problem: With 'smoothscroll' typing "0" may not go to the first column.
Solution: Recompute w_cline_height when needed. Do not scroll up when it

would move the cursor.

Patch 9.0.0808
Problem: jsonnet filetype detection has a typo.
Solution: Change "libjsonnet" to "libsonnet". (Maxime Brunet, closes #11412)

Patch 9.0.0809
Problem: Test for job writing to buffer fails.
Solution: Correct w_topline when deleting a buffer line.

Patch 9.0.0810
Problem: readblob() returns empty when trying to read too much.
Solution: Return what is available.

Patch 9.0.0811
Problem: Error if :echowin is preceded by a command modifier.
Solution: Do not give an error for range when there is a modifier.

(closes #11414)

Patch 9.0.0812
Problem: GUI mouse scrollwheel mappings don't work.
Solution: Add check for "gui.in_use". (Christopher Plewright, closes #11418)

Patch 9.0.0813
Problem: Kitty terminal is not recognized.
Solution: Recognize Kitty by the termresponse and then do not set

seenModifyOtherKeys, since Kitty doesn't support that.
(issue #11413)

Patch 9.0.0814
Problem: Aws config files are not recognized.
Solution: Use "confini" for aws config files. (Justin M. Keyes,

closes #11416)

Patch 9.0.0815
Problem: ":!" does not switch to the alternate screen.
Solution: For ":!" don't clear the previous command. (closes #11420,

closes #11409)

Patch 9.0.0816
Problem: CTRL-Z at end of file is always dropped.
Solution: Add the 'endoffile' option, like the 'endofline' option.

(closes #11408, closes #11397)

Patch 9.0.0817
Problem: Build error.
Solution: correct variable name.

Patch 9.0.0818
Problem: "!ls" does not work.
Solution: Do not free memory that is in use.

Patch 9.0.0819
Problem: Still a build error, tests are failing.
Solution: Correct recent changes. Add missing init for 'eof'.

Patch 9.0.0820
Problem: Memory leak with empty shell command.

version9.txt — 4067

Solution: Free the empty string.

Patch 9.0.0821
Problem: Memory leak with empty shell command.
Solution: Free the empty string.

Patch 9.0.0822
Problem: Crash when dragging the statusline with a mapping.
Solution: Check for valid window pointer. (issue #11427)

Patch 9.0.0823
Problem: Mouse drag test fails.
Solution: Only reset the mouse click flag when actually switching to another

tab page. Disable test that keeps failing.

Patch 9.0.0824
Problem: Crash when using win_move_separator() in other tab page.
Solution: Check for valid window in current tab page.

(closes #11479, closes #11427)

Patch 9.0.0825
Problem: Cannot drag an entry in the tabpage line.
Solution: Clear dragwin instead of got_click. (closes #11483,

closes #11482)

Patch 9.0.0826
Problem: If 'endofline' is set the CTRL-Z may be written in the wrong

place.
Solution: Write CTRL-Z at the end of the file. Update the help to explain

the possibilities better. (Ken Takata, closes #11486)

Patch 9.0.0827
Problem: The <Home> key in tmux doesn't work when 'term' is set to "xterm".

(Dominique Pellé)
Solution: Only use '@' in a termcap key entry for "1" when ";" follows.

(closes #11429)

Patch 9.0.0828
Problem: Various typos.
Solution: Correct typos. (closes #11432)

Patch 9.0.0829
Problem: Wrong counts in macro comment.
Solution: Update the value counts. (closes #11480)

Patch 9.0.0830
Problem: Compiling with Perl on Mac 12 fails.
Solution: Suppress infinite warnings. (closes #11499)

Patch 9.0.0831
Problem: Compiler warning for redefining HAVE_DUP.
Solution: Undefine HAVE_DUP if needed. (Ozaki Kiichi, closes #11484)

Patch 9.0.0832
Problem: Deprecation warning causes build failure.
Solution: Suppress deprecation warning. (closes #11503)

Patch 9.0.0833
Problem: Mac: no +sound feature in huge build.
Solution: Enable +sound in Mac huge build. (closes #11497)

version9.txt — 4068

Patch 9.0.0834
Problem: Warning for missing return type.
Solution: Add "int". (San James, closes #11496)

Patch 9.0.0835
Problem: The window title is not redrawn when 'endoffile' changes.
Solution: redraw the window title when 'endoffile' is changed. (Ken Takata,

closes #11488)

Patch 9.0.0836
Problem: Wrong error when using extend() with funcref.
Solution: Better check the variable type. (closes #11468, closes #11455)

Patch 9.0.0837
Problem: append() reports failure when not appending anything.
Solution: Only report failure when appending something. (closes #11498)

Patch 9.0.0838
Problem: Compiler warnings for unused variables.
Solution: Adjust #ifdef and remove unused variables. (John Marriott)

Patch 9.0.0839
Problem: Test may fail depending on sequence of events.
Solution: Accept error codes in either order. (Yee Cheng Chin,

closes #11510)

Patch 9.0.0840
Problem: Cannot change a slice of a const list. (Takumi KAGIYAMA)
Solution: Remove the const flag from the slice type. (closes #11490)

Patch 9.0.0841
Problem: deletebufline() does not always return 1 on failure.
Solution: Refactor the code to make it work more predictable. (closes #11511)

Patch 9.0.0842
Problem: Unicode range for Apple SF symbols is outdated.
Solution: Update to SF Symbols 4. (Yee Cheng Chin, closes #11474)

Patch 9.0.0843
Problem: VHS tape files are not recognized.
Solution: Add a filetype pattern. (Carlos Alexandro Becker, closes #11452)

Patch 9.0.0844
Problem: Handling 'statusline' errors is spread out.
Solution: Pass the option name to the lower levels so the option can be

reset there when an error is encountered. (Luuk van Baal,
closes #11467)

Patch 9.0.0845
Problem: Shell command with just space gives strange error.
Solution: Skip white space at start of the argument. (Christian Brabandt,

Shane-XB-Qian, closes #11515, closes #11495)

Patch 9.0.0846
Problem: Using assert_fails() may cause hit-enter prompt.
Solution: Set no_wait_return. (closes #11522)

Patch 9.0.0847
Problem: CI: not totally clear what MS-Windows version is used.

version9.txt — 4069

Solution: Show the Windows version. (Ken Takata, closes #11524)

Patch 9.0.0848
Problem: Help item for --log argument is not aligned nicely.
Solution: Add a Tab. (Ken Takata, closes #11521)

Patch 9.0.0849
Problem: Terminal mouse test is a bit flaky.
Solution: Add WaitFor() calls. (James McCoy closes #11519) Tune wait times

to reduce flakiness.

Patch 9.0.0850
Problem: MS-Windows Terminal has unstable color control.
Solution: Do not try to read the old command prompt colortable, use modern

VT sequences. (Christopher Plewright, closes #11450,
closes #11373)

Patch 9.0.0851
Problem: Terminal mouse test is still flaky.
Solution: Also use WaitForAssert().

Patch 9.0.0852
Problem: Crypt test is skipped if xxd is not found.
Solution: Find xxd where it was supposed to be build.

Patch 9.0.0853
Problem: Terminal mouse test is still flaky on MacOS M1.
Solution: Also wait for the file to have some contents.

Patch 9.0.0854
Problem: No proper test for what 9.0.0846 fixes.
Solution: Run test in a terminal so that the hit-enter prompt can show up.

(closes #11523)

Patch 9.0.0855
Problem: Comment not located above the code it refers to.
Solution: Move the comment. (closes #11527)

Patch 9.0.0856
Problem: MS-Windows: executable not found when running individual test.
Solution: Also look for vimd.exe. (Christopher Plewright, closes #11525)

Patch 9.0.0857
Problem: Selecting MSVC 2017 does not set $PLATFORM.
Solution: Use $VSCMD_ARG_TGT_ARCH. (Ken Takata, closes #11485)

Patch 9.0.0858
Problem: "!!sort" in a closed fold sorts too many lines.
Solution: Round to end of fold after adding the line count. (closes #11487)

Patch 9.0.0859
Problem: Compiler warning for unused variable.
Solution: Add #ifdef.

Patch 9.0.0860
Problem: MS-Windows: windres fails with clang 15.0.4.
Solution: Use llvm-windres. (John Marriott)

Patch 9.0.0861
Problem: Solution for "!!sort" in closed fold is not optimal.

version9.txt — 4070

Solution: Use a different range instead of the subtle difference in handling
a range with an offset. (issue #11487)

Patch 9.0.0862
Problem: Default value of 'endoffile' is wrong.
Solution: The default must be 'noendoffile'.

Patch 9.0.0863
Problem: col() and charcol() only work for the current window.
Solution: Add an optional winid argument. (Yegappan Lakshmanan,

closes #11466, closes #11461)

Patch 9.0.0864
Problem: Crash when using "!!" without a previous shell command.
Solution: Check "prevcmd" is not NULL. (closes #11487)

Patch 9.0.0865
Problem: Duplicate arguments are not always detected.
Solution: Expand to full path before comparing arguments. (Nir Lichtman,

closes #11505, closes #9402)

Patch 9.0.0866
Problem: No test for what patch 8.2.2207 fixes.
Solution: Add a test case. (closes #11531)

Patch 9.0.0867
Problem: Wildmenu redrawing code is spread out.
Solution: Refactor to move code together. (closes #11528)

Patch 9.0.0868
Problem: MS-Windows: after Vim exits console resizing does not work

properly.
Solution: Restore screen behavior checks for various WT and VTP

combinations. (Christopher Plewright, closes #11526,
closes #11507)

Patch 9.0.0869
Problem: Bogus error when string used after :elseif.
Solution: Do not consider a double quote the start of a comment.

(closes #11534)

Patch 9.0.0870
Problem: Get E967 when using text property in quickfix window. (Sergey

Vlasov)
Solution: Do not add an extra NUL and compute the text length correctly.

(closes #11513)

Patch 9.0.0871
Problem: Using freed memory when clearing augroup at more prompt.
Solution: Delay clearing augroup until it's safe. (closes #11441)

Patch 9.0.0872
Problem: Code is indented more than needed.
Solution: Return early. (Yegappan Lakshmanan, closes #11538)

Patch 9.0.0873
Problem: Using freed memory when executing mapclear at the more prompt.
Solution: Do not clear mappings while listing them. (closes #11438)

Patch 9.0.0874

version9.txt — 4071

Problem: Using freed memory when executing unmenu at the more prompt.
Solution: Do not clear menus while listing them. (closes #11439)

Patch 9.0.0875
Problem: Using freed memory when executing delfunc at the more prompt.
Solution: Check function list not changed in another place. (closes #11437)

Patch 9.0.0876
Problem: Code is indented more than needed.
Solution: Split ExpandEscape() in two. (Yegappan Lakshmanan, closes #11539)

Patch 9.0.0877
Problem: Using freed memory with :comclear while listing commands.
Solution: Bail out when the command list has changed. (closes #11440)

Patch 9.0.0878
Problem: Coverity warns for dead code.
Solution: Remove the dead code.

Patch 9.0.0879
Problem: Unnecessary nesting in makefile.
Solution: Join "else" and "ifeq". (Ken Takata, closes #11547)

Patch 9.0.0880
Problem: Preprocessor indenting is off.
Solution: Adjust preprocessor indentation. (Ken Takata, closes #11546)

Patch 9.0.0881
Problem: Cannot get the currently showing mouse shape.
Solution: Add getmouseshape().

Patch 9.0.0882
Problem: Using freed memory after SpellFileMissing autocmd uses bwipe.
Solution: Bail out if the window no longer exists.

Patch 9.0.0883
Problem: A silent mapping may cause dots on the command line.
Solution: Don't show dots for completion if they are not going to be removed

again. (closes #11501)

Patch 9.0.0884
Problem: Mouse shape remains in op-pending mode after failed change.
Solution: Reset finish_op and restore it. (closes #11545)

Patch 9.0.0885
Problem: Informational message has an error message number.
Solution: Use a message without an error number. (closes #11530)

Patch 9.0.0886
Problem: Horizontal mouse scroll only works in the GUI.
Solution: Make horizontal mouse scroll also work in a terminal.

(Christopher Plewright, closes #11448)

Patch 9.0.0887
Problem: Cannot easily try out what codes various keys produce.
Solution: Add a script to gather key code information, with an initial list

of codes to compare with.

Patch 9.0.0888
Problem: MS-Windows GUI: CTRL-] does not work on Swiss keyboard.

version9.txt — 4072

Solution: Check the key code and don't consider it as a dead key. (Aedin
Louis Xavier, closes #11556)

Patch 9.0.0889
Problem: Keycode check script has a few flaws.
Solution: Sort on terminal name. Ignore XTGETTCAP responses. Check for

version and status response. Update entries.

Patch 9.0.0890
Problem: No test for what patch 9.0.0827 fixes.
Solution: Add a test (still doesn't fail when fix is reverted).

Patch 9.0.0891
Problem: Virtual text below after match has wrong highlight.
Solution: Restore search_attr only after the virtual text.

(closes #11446)

Patch 9.0.0892
Problem: May redraw when not needed, causing slow scrolling.
Solution: Do not redraw when w_skipcol doesn't change. When w_skipcol

changes only redraw from the top. (issue #11559)

Patch 9.0.0893
Problem: 'smoothscroll' cursor calculations wrong when 'number' is set.
Solution: Correct the code that computes the width. (closes #11492)

Patch 9.0.0894
Problem: Virtual text property highlight ignores window background.
Solution: Combine text prop attribute with win_attr into extra_attr.

(closes #11462)

Patch 9.0.0895
Problem: File renamed twice in test; missing feature check.
Solution: Remove a rename() call. Add check for cryptv feature.

(closes #11564)

Patch 9.0.0896
Problem: Test for home key fails when 'term' is "tmux".
Solution: Only save termcap entries that exist. Adjust code for xHome to

what xterm uses. (closes #11566)

Patch 9.0.0897
Problem: Clinical Quality Language files are not recognized.
Solution: Add the "*.cql" pattern. (Matthew Gramigna, closes #11452)

Patch 9.0.0898
Problem: With 'smoothscroll' cursor is one screen line too far down. (Ernie

Rael)
Solution: Add a test that currently has the wrong result so that a fix can

be made. (issue #11436)

Patch 9.0.0899
Problem: The builtin terminals are in one long list.
Solution: Refactor into multiple lists and an index of the lists.

Patch 9.0.0900
Problem: Cursor moves too far with 'smoothscroll'.
Solution: Only move as far as really needed. (Yee Cheng Chin, closes #11504)

Patch 9.0.0901

version9.txt — 4073

Problem: Setting w_leftcol and handling side effects is confusing.
Solution: Use a function to set w_leftcol() and handle side effects.

Patch 9.0.0902
Problem: Some mouse scroll code is not in a good place.
Solution: Refactor the code. (Christopher Plewright, closes #11561)

Patch 9.0.0903
Problem: Key code checker doesn't check modifyOtherKeys resource.
Solution: Request the modifyOtherKeys resource value. Drop resource DCS

responses.

Patch 9.0.0904
Problem: Various comment and indent flaws.
Solution: Improve comments and indenting.

Patch 9.0.0905
Problem: Virtual text after the line wraps when 'wrap' is off.
Solution: Only set text_prop_follows when wrapping. (closes #11463)

Patch 9.0.0906
Problem: Mouse scroll code is not optimal.
Solution: Properly organise Normal mode, Insert mode and common code.

(Christopher Plewright, closes #11572)

Patch 9.0.0907
Problem: Restoring window after WinScrolled may fail.
Solution: Lock the window layout when triggering WinScrolled.

Patch 9.0.0908
Problem: With 'smoothscroll' cursor may end up in wrong position.
Solution: Correct the computation of screen lines. (Yee Cheng Chin,

closes #11502)

Patch 9.0.0909
Problem: Error message for layout change does not match action.
Solution: Pass the command to where the error is given. (closes #11573)

Patch 9.0.0910
Problem: Setting lines in another buffer may not work well.
Solution: Make sure the buffer being changed has a window. (issue #11558)

Patch 9.0.0911
Problem: With 'smoothscroll' set mouse click position may be wrong.
Solution: Adjust computations for w_skipcol. (Yee Cheng Chin, closes #11514)

Patch 9.0.0912
Problem: libvterm with modifyOtherKeys level 2 does not match xterm.
Solution: Adjust key code escape sequences to be the same as what xterm

sends in modifyOtherKeys level 2 mode. Check the value of
no_reduce_keys before using it.

Patch 9.0.0913
Problem: Only a change in the current window triggers the WinScrolled

event.
Solution: Trigger WinScrolled if any window scrolled or changed size.

(issue #11576)

Patch 9.0.0914
Problem: deletebufline() may move marks in the wrong window.

version9.txt — 4074

Solution: Find a window for the buffer being changed. (closes #11583)

Patch 9.0.0915
Problem: WinScrolled may trigger immediately when defined.
Solution: Initialize the fields in all windows. (closes #11582)

Patch 9.0.0916
Problem: getbufline() is inefficient for getting a single line.
Solution: Add getbufoneline().

Patch 9.0.0917
Problem: The WinScrolled autocommand event is not enough.
Solution: Add WinResized and provide information about what changed.

(closes #11576)

Patch 9.0.0918
Problem: MS-Windows: modifier keys do not work with mouse scroll events.
Solution: Use K_SPECIAL instead of CSI for the modifier keys. (Christopher

Plewright, closes #11587)

Patch 9.0.0919
Problem: Build failure with tiny features.
Solution: Adjust #ifdef's.

Patch 9.0.0920
Problem: Cannot find an import prefixed with "s:". (Doug Kearns)
Solution: Skip over the "s:". (closes #11585)

Patch 9.0.0921
Problem: Missing defined(PROTO) in #ifdef.
Solution: Adjust #ifdef so that proto works with different features.

Clean up some preprocessor indenting.

Patch 9.0.0922
Problem: Mermaid files are not recognized.
Solution: Add patterns for Mermaid. (Crag MacEachern)

Patch 9.0.0923
Problem: Second SIGWINCH signal may be ignored.
Solution: When set_shellsize() is busy when called then run the inner code

again when it's done. (issue #424)

Patch 9.0.0924
Problem: The first termcap entry of a builtin termcap is not used.
Solution: Remove increment that was previously skipping the KS_NAME entry.

Patch 9.0.0925
Problem: Two conditions are always false.
Solution: Remove the conditions. Update return value types to make clear

what could be returned. (closes #11593)

Patch 9.0.0926
Problem: Coverity warns for not using return value of dict_add().
Solution: When dict_add() fails then don't call hash_remove().

Patch 9.0.0927
Problem: Coverity warns for using a NULL pointer.
Solution: Check for memory allocation failure.

Patch 9.0.0928

version9.txt — 4075

Problem: Using Ruby LDFLAGS may cause build problems.
Solution: Do not add Ruby LDFLAGS to Vim's LDFLAGS. (Zdenek Dohnal,

closes #11592)

Patch 9.0.0929
Problem: Build failure with tiny version. (Tony Mechelynck)
Solution: Add #ifdef.

Patch 9.0.0930
Problem: Cannot debug the Kitty keyboard protocol with TermDebug.
Solution: Add Kitty keyboard protocol support to the libvterm fork.

Recognize the escape sequences that the protocol generates. Add
the 'keyprotocol' option to allow the user to specify for which
terminal what protocol is to be used, instead of hard-coding this.
Add recognizing the kitty keyboard protocol status.

Patch 9.0.0931
Problem: MS-Windows: mouse column limited to 223.
Solution: Use two bytes for each mouse coordinate. Add the mouse position

to scroll events. (Christopher Plewright, closes #11597)

Patch 9.0.0932
Problem: Oblivion files are not recognized.
Solution: Recognize Oblivion files and alike as "obse". (closes #11540)

Patch 9.0.0933
Problem: Kitty shows "already at oldest change" on startup.
Solution: When receiving the keyboard protocol state return the ignore key.

(closes #11601)

Patch 9.0.0934
Problem: Various code formatting issues.
Solution: Improve code formatting.

Patch 9.0.0935
Problem: When using dash it may not be recognize as filetype "sh".
Solution: Add checks for "dash". (Eisuke Kawashima, closes #11600)

Patch 9.0.0936
Problem: Wrong type for "isunnamed" returned by getreginfo().
Solution: Use VAR_BOOL instead of VAR_SPECIAL. (closes #11598)

Patch 9.0.0937
Problem: Forked repositories send out useless email.
Solution: When Coverity fails to run just ignore it. (Shane-XB-Qian,

closes #11604)

Patch 9.0.0938
Problem: MS-Windows: debug executable not found when running test.
Solution: Look for vimd.exe. (Christopher Plewright, closes #11602)

Patch 9.0.0939
Problem: Still using simplified mappings when using the kitty keyboard

protocol.
Solution: Use the kitty_protocol_state value to decide whether to use

simplified mappings. Improve how seenModifyOtherKeys is set and
reset.

Patch 9.0.0940
Problem: Crash when typing a letter in a terminal window. (Shane-XB-Qian)

version9.txt — 4076

Solution: Use the "vterm" variable instead of getting the terminal pointer
from the current buffer. (closes #11608)

Patch 9.0.0941
Problem: CI failures in sound dummy.
Solution: Temporarily disable building sound dummy. (closes #11610)

Patch 9.0.0942
Problem: Workflow Description Language files are not recognized.
Solution: Add a pattern for the "wdl" filetype. (Matt Dunford,

closes #11611)

Patch 9.0.0943
Problem: Pretending to go out of Insert mode when Esc is received has side

effects.
Solution: When the kitty keyboard protocol is enabled expect Esc to always

be the start of an escape sequence.

Patch 9.0.0944
Problem: 'cursorline' causes virtual text highlight to continue.
Solution: Save and restore line_attr. (closes #11588)

Patch 9.0.0945
Problem: Failures in the cursorline test.
Solution: Reset extra_attr only after a text property.

Patch 9.0.0946
Problem: CI: Error in Coverity flow is not reported.
Solution: Use another way to avoid errors in a forked repository. (Ken

Takata, closes #11609)

Patch 9.0.0947
Problem: Invalid memory access in substitute with function that goes to

another file.
Solution: Check for text locked in CTRL-W gf.

Patch 9.0.0948
Problem: 'ttyfast' is set for arbitrary terminals.
Solution: Always set 'ttyfast'. (closes #11549)

Patch 9.0.0949
Problem: Crash when unletting a variable while listing variables.
Solution: Disallow changing a hashtable while going over the entries.

(closes #11435)

Patch 9.0.0950
Problem: The pattern "_s\zs" matches at EOL.
Solution: Make the pattern "_s\zs" match at the start of the next line.

(closes #11617)

Patch 9.0.0951
Problem: Trying every character position for a match is inefficient.
Solution: Use the start position of the match ignoring "\zs".

Patch 9.0.0952
Problem: Eclipse preference files are not recognized.
Solution: Add a pattern to use "jproperties" for Eclipse preference files.

(closes #11618)

Patch 9.0.0953

version9.txt — 4077

Problem: Part of making search more efficient is missing.
Solution: Add the change in searchit().

Patch 9.0.0954
Problem: Cannot detect whether modifyOtherKeys is enabled.
Solution: Use XTQMODKEYS introduced by xterm version 377 to request the

modifyOtherKeys level. Update the keycode check results.

Patch 9.0.0955
Problem: Libvterm does not support the XTQMODKEYS request.
Solution: Implement the XTQMODKEYS request and response. Update the keycode

check results.

Patch 9.0.0956
Problem: Terminal tests fail when using key with modifier.
Solution: Use the modifyOtherKeys encoding when using RunVimInTerminal().

Patch 9.0.0957
Problem: Tests fail without the terminal feature.
Solution: Move functions to another utility script.

Patch 9.0.0958
Problem: Messages test is flaky.
Solution: Add a short delay.

Patch 9.0.0959
Problem: Error when using the "File Settings / Text Width" menu.
Solution: Use str2nr(). (closes #11624)

Patch 9.0.0960
Problem: Error when using the "Tools / Spelling / Find More Languages"

menu.
Solution: Remove "<SID>". Reset "g:menutrans_set_lang_to" when 'encoding'

changes. (closes #11625)

Patch 9.0.0961
Problem: Using deletebufline() may jump to another window.
Solution: Do not use a window where the buffer was only in the past.

(closes #11594)

Patch 9.0.0962
Problem: Virtual text below cannot be placed below empty lines.
Solution: Add one character. (James Alvarado, closes #11606, closes #11520)

Patch 9.0.0963
Problem: Function name does not match autocmd event name.
Solution: Rename "optionsset" to "optionset". (closes #11630)

Patch 9.0.0964
Problem: Status line of other window not redrawn when dragging it when

'splitkeep' is set to "screen".
Solution: Set w_redr_status earlier. (Luuk van Baal, closes #11635,

closes #11632)

Patch 9.0.0965
Problem: Using one window for executing autocommands is insufficient.
Solution: Use up to five windows for executing autocommands.

Patch 9.0.0966
Problem: Some compilers don't allow a declaration after a label.

version9.txt — 4078

Solution: Move the declaration to the start of the block. (John Marriott)

Patch 9.0.0967
Problem: Leaking memory from autocmd windows.
Solution: Free window when auc_win is not NULL.

Patch 9.0.0968
Problem: GUI mouse event test is a bit flaky.
Solution: Mark the test case as flaky. Move test function failure checks to

a separate test function.

Patch 9.0.0969
Problem: Matchparen highlight is not updated when switching buffers.
Solution: Listen to the BufLeave and the BufWinEnter autocmd events.

(closes #11626)

Patch 9.0.0970
Problem: Coverity warns for uninitialized variable.
Solution: Initialize "ren_ret".

Patch 9.0.0971
Problem: Escape sequences not recognized without the termresponse feature.
Solution: Recognize escape sequences to avoid display mess up.

Patch 9.0.0972
Problem: Build failure on some systems.
Solution: Adjust #ifdefs related to the termresponse feature.

Patch 9.0.0973
Problem: Kitty keyboard protocol key not decoded when it has an unsupported

modifier, such as NumLock.
Solution: Accept a key with any modifier. (closes #11638)

Patch 9.0.0974
Problem: Even when Esc is encoded a timeout is used.
Solution: Use K_ESC when an encoded Esc is found.

Patch 9.0.0975
Problem: Virtual text below an empty line is misplaced when 'number' is

set.
Solution: Adjust the computations. (closes #11629)

Patch 9.0.0976
Problem: Enabling the kitty keyboard protocol uses push/pop.
Solution: Use the start/stop codes to avoid unpredictable behavior.

Patch 9.0.0977
Problem: It is not easy to see what client-server commands are doing.
Solution: Add channel log messages if ch_log() is available. Move the

channel logging and make it available with the +eval feature.

Patch 9.0.0978
Problem: Build errors without the +channel feature. (John Marriott)
Solution: Adjust #ifdefs.

Patch 9.0.0979
Problem: ch_log() text can be hard to find in the log file.
Solution: Prepend "ch_log()" to the text.

Patch 9.0.0980

version9.txt — 4079

Problem: The keyboard state response may end up in a shell command.
Solution: Only request the keyboard protocol state when the typeahead is

empty, no more commands are following and not exiting. Add the
t_RK termcap entry for this.

Patch 9.0.0981
Problem: Build error in tiny version.
Solution: Add #ifdef.

Patch 9.0.0982
Problem: 'cursorline' not drawn before virtual text below.
Solution: Add the 'cursorline' attribute to the empty space. (closes #11647)

Patch 9.0.0983
Problem: Stray characters displayed when starting the GUI.
Solution: Add t_RK to the list of terminal options.

Patch 9.0.0984
Problem: GUI: remote_foreground() does not always work. (Ron Aaron)
Solution: For GTK use gtk_window_set_keep_above(). (issue #11641)

Patch 9.0.0985
Problem: When using kitty keyboard protocol function keys may not work.

(Kovid Goyal)
Solution: Recognize CSI ending in [ABCDEFHPQRS] also when the termcap

entries are not specified. (closes #11648)

Patch 9.0.0986
Problem: Build failure with tiny version.
Solution: Add #ifdef.

Patch 9.0.0987
Problem: File missing from list of distributed files.
Solution: Add logfile.pro to list of distributed files.

Patch 9.0.0988
Problem: Using feedkeys() does not show up in a channel log.
Solution: Add ch_log() calls and clean up the code.

Patch 9.0.0989
Problem: Popupwin test is more flaky on MacOS.
Solution: Use a longer wait time.

Patch 9.0.0990
Problem: Callback name argument is changed by setqflist().
Solution: Use the expanded function name for the callback, do not store it

in the argument. (closes #11653)

Patch 9.0.0991
Problem: Crash when reading help index with various options set. (Marius

Gedminas)
Solution: Do not set wlv.c_extra to NUL when wlv.p_extra is NULL.

(closes #11651)

Patch 9.0.0992
Problem: Vim9 script: get E1096 when comment follows return.
Solution: Adjust condition for return without expression. (closes #11654)

Patch 9.0.0993
Problem: Display errors when adding or removing text property type.

version9.txt — 4080

Solution: Perform a full redraw. Only use text properties for which the
type is defined. (closes #11655)

Patch 9.0.0994
Problem: Tests for empty prop type name fail.
Solution: Correct the error number.

Patch 9.0.0995
Problem: Padding before virtual text below is highlighted when 'number' and

'nowrap' are set.
Solution: Save and restore n_attr_skip. (closes #11643)

Patch 9.0.0996
Problem: If 'keyprotocol' is empty "xterm" still uses modifyOtherKeys.
Solution: Remove t_TI, t_RK and t_TE from the "xterm" builtin termcap and

let the default value of 'keyprotocol' add those.

Patch 9.0.0997
Problem: Coverity warns for dead code.
Solution: Don't use ASCII_ISUPPER() for a negative value.

Patch 9.0.0998
Problem: "gk" may reset skipcol when not needed.
Solution: Only reset skipcol if the cursor column is less.

Patch 9.0.0999
Problem: Memory may leak.
Solution: Free the sound callback function name if it was allocated.

Patch 9.0.1000
Problem: With 'smoothscroll' skipcol may be reset unnecessarily.
Solution: Check the line does actually fit in the window.

Patch 9.0.1001
Problem: Classes are not documented or implemented yet.
Solution: Make the first steps at documenting Vim9 objects, classes and

interfaces. Make initial choices for the syntax. Add a skeleton
implementation. Add "public" and "this" in the command table.

Patch 9.0.1002
Problem: Command list test fails.
Solution: Add commands added to the list.

Patch 9.0.1003
Problem: Tiny build fails.
Solution: Remove #ifdef from error message.

Patch 9.0.1004
Problem: Suspend test sometimes fails on MacOS.
Solution: Wait a short while for terminal responses.

Patch 9.0.1005
Problem: A failed test may leave a swap file behind.
Solution: Delete the swap file to avoid another test to fail. Use another

file name.

Patch 9.0.1006
Problem: Suspend test still sometimes fails on MacOS.
Solution: Wait a little while for terminal responses.

version9.txt — 4081

Patch 9.0.1007
Problem: There is no way to get a list of swap file names.
Solution: Add the swapfilelist() function. Use it in the test script to

clean up. Remove deleting individual swap files.

Patch 9.0.1008
Problem: Test for swapfilelist() fails on MS-Windows.
Solution: Only check the tail of the path. Mark a test as flaky.

Patch 9.0.1009
Problem: Test for catch after interrupt is flaky on MS-Windows.
Solution: Mark the test as flaky.

Patch 9.0.1010
Problem: Stray warnings for existing swap files.
Solution: Wipe out the buffer until it has no name and no swap file.

Patch 9.0.1011
Problem: ml_get error when using screenpos().
Solution: Give an error for the line number. (closes #11661)

Patch 9.0.1012
Problem: Tests may get stuck in buffer with swap file.
Solution: Bail out when bwipe! doesn't get another buffer.

Patch 9.0.1013
Problem: Suspend test often fails on Mac OS.
Solution: Make t_RP empty.

Patch 9.0.1014
Problem: Zir files are not recognized.
Solution: Add a pattern for Zir files. (closes #11664)

Patch 9.0.1015
Problem: Without /dev/urandom srand() seed is too predictable.
Solution: Use micro seconds and XOR with process ID. (Yasuhiro Matsumoto,

closes #11656)

Patch 9.0.1016
Problem: screenpos() does not count filler lines for diff mode.
Solution: Add filler lines. (closes 11658)

Patch 9.0.1017
Problem: Test for srand() fails on MS-Windows.
Solution: Do not expect the same result a second time.

Patch 9.0.1018
Problem: Suspend test still fails on Mac OS.
Solution: Make 'keyprotocol' empty.

Patch 9.0.1019
Problem: 'smoothscroll' and virtual text above don't work together.

(Yee Cheng Chin)
Solution: Skip virtual text above when w_skipcol is non-zero.

(closes #11665)

Patch 9.0.1020
Problem: Tests call GetSwapFileList() before it is defined.
Solution: Move the call to after defining the function. (Christopher

Plewright)

version9.txt — 4082

Patch 9.0.1021
Problem: Test trips over g:name.
Solution: Delete g:name after using it.

Patch 9.0.1022
Problem: Suspend test fails on Mac OS when suspending Vim.
Solution: Make 'keyprotocol' empty.

Patch 9.0.1023
Problem: MS-Windows: dynamic loading of libsodium doesn't work.
Solution: Add "randombytes_random". (Ken Takata, closes #11667)

Patch 9.0.1024
Problem: CI doesn't use the latest FreeBSD version.
Solution: Go from 12.3 to 12.4. (closes #11423)

Patch 9.0.1025
Problem: WinScrolled is not triggered when filler lines change.
Solution: Add "topfill" to the values that WinScrolled triggers on.

(closes #11668)

Patch 9.0.1026
Problem: type of w_last_topfill is wrong.
Solution: Use "int" instead of "linenr_T". (closes #11670)

Patch 9.0.1027
Problem: LGTM is soon shutting down.
Solution: Remove LGTM from CI. (closes #11671)

Patch 9.0.1028
Problem: Mouse shape test is flaky, especially on Mac OS.
Solution: Instead of starting all timers at the same time, start the next

one in the callback of the previous one. (Yee Cheng Chin,
closes #11673) Also use "bwipe!" instead of "close!" to avoid
swap files remaining.

Patch 9.0.1029
Problem: Autoload directory missing from distribution.
Solution: Add the autoload/zig directory to the list of distributed files.

Patch 9.0.1030
Problem: Using freed memory with the cmdline popup menu.
Solution: Clear the popup menu when clearing the matches. (closes #11677)

Patch 9.0.1031
Problem: Vim9 class is not implemented yet.
Solution: Add very basic class support.

Patch 9.0.1032
Problem: Test fails when terminal feature is missing.
Solution: Use CheckRunVimInTerminal.

Patch 9.0.1033
Problem: Tiny build fails because of conflicting typedef.
Solution: Remove one typedef.

Patch 9.0.1034
Problem: Reporting swap file when windows are split.
Solution: Close extra windows after running a test.

version9.txt — 4083

Patch 9.0.1035
Problem: Object members are not being marked as used, garbage collection

may free them.
Solution: Mark object members as used. Fix reference counting.

Patch 9.0.1036
Problem: Undo misbehaves when writing from an insert mode mapping.
Solution: Sync undo when writing. (closes #11674)

Patch 9.0.1037
Problem: lalloc(0) error for a class without members.
Solution: Don't allocate room for members if there aren't any.

Don't create the class if there was an error.

Patch 9.0.1038
Problem: Function name does not match what it is used for.
Solution: Include the modifier in the name. (closes #11679)

Patch 9.0.1039
Problem: Using a <Cmd> mapping CmdlineChanged may be triggered twice.
Solution: Count the number of times CmdlineChanged is triggered and avoid

doing it twice. (closes #116820

Patch 9.0.1040
Problem: Test for <Cmd> mapping with CmdlineChanged fails.
Solution: Put back the check for the cmdline length not changing.

Patch 9.0.1041
Problem: Cannot define a method in a class.
Solution: Implement defining an object method. Make calling an object

method work.

Patch 9.0.1042
Problem: ASAN gives false alarm about array access.
Solution: Use an intermediate pointer.

Patch 9.0.1043
Problem: Macro has confusing name and is duplicated.
Solution: Use one macro with an understandable name. (closes #11686)

Patch 9.0.1044
Problem: Setting window height using Python may cause errors.
Solution: When setting "curwin" also set "curbuf". (closes #11687)

Patch 9.0.1045
Problem: In a class object members cannot be initialized.
Solution: Support initializing object members. Make "disassemble" work on

an object method.

Patch 9.0.1046
Problem: Class method disassemble test fails on MS-Windows.
Solution: Do not match with a specific size.

Patch 9.0.1047
Problem: Matchparen is slow.
Solution: Actually use the position where the match started, not the

position where the search started. (closes #11644)

Patch 9.0.1048

version9.txt — 4084

Problem: With "screenline" in 'culopt' cursorline highlight is wrong.
Solution: Apply the priority logic also when "screenline is in 'culopt'.

(closes #11696)

Patch 9.0.1049
Problem: Crash when opening a very small terminal window.
Solution: Instead of crashing fix the cursor position. (closes #11697)

Patch 9.0.1050
Problem: Using freed memory when assigning to variable twice.
Solution: Make copy of the list type. (closes #11691)

Patch 9.0.1051
Problem: After a failed CTRL-W] next command splits window.
Solution: Reset postponed_split. (Rob Pilling, closes #11698)

Patch 9.0.1052
Problem: Using freed memory on exit when EXITFREE is defined.
Solution: Make a deep copy of the type. Make sure TTFLAG_STATIC is not set

in the copy.

Patch 9.0.1053
Problem: Default constructor arguments are not optional.
Solution: Use "= v:none" to make constructor arguments optional.

Patch 9.0.1054
Problem: Object member can't get type from initializer.
Solution: If there is no type specified try to use the type of the

initializer. Check for a valid type.

Patch 9.0.1055
Problem: Coverity warns for using uninitialized memory.
Solution: Clear the "lhs" field earlier.

Patch 9.0.1056
Problem: Leaking memory when disassembling an object method.
Solution: Free the typval of the class.

Patch 9.0.1057
Problem: Conflict between supercollider and scala filetype detection.
Solution: Do not check for "Class : Method", it can appear in both

filetypes. (Chris Kipp, closes #11699)

Patch 9.0.1058
Problem: String value of class and object do not have useful information.
Solution: Add the class name and for the object the member values.

Patch 9.0.1059
Problem: Build failure with some compilers that can't handle a

declaration directly after a "case" statement.
Solution: Add a block to put the declarations in.

Patch 9.0.1060
problem: Private and public object members are not implemented yet.
Solution: Implement private and public object members.

Patch 9.0.1061
Problem: Cannot display 'showcmd' somewhere else.
Solution: Add the 'showcmdloc' option. (Luuk van Baal, closes #11684)

version9.txt — 4085

Patch 9.0.1062
Problem: Some test function names do not match what they are doing.
Solution: Leave out user data for the test that is called "NoUserData".

(closes #11703)

Patch 9.0.1063
Problem: When using Kitty a shell command may mess up the key protocol

state.
Solution: Output t_te before t_TE. If t_te switches between the main and

the alternate screen then deactivating the key protocol by t_TE
should happen after switching screen. (issue #11705)

Patch 9.0.1064
Problem: Code for making 'shortmess' temporarily empty is repeated.
Solution: Add functions for making 'shortmess' empty and restoring it.

(Christian Brabandt, closes #11709)

Patch 9.0.1065
Problem: A shell command switching screens may still have a problem with

the kitty keyboard protocol.
Solution: Disable the kitty keyboard protocol both in the current and the

alternate screen, if there are indications it might be needed.
(issue #11705) Also fix naming.

Patch 9.0.1066
Problem: Test function name is wrong.
Solution: Rename to what is actually being tested. (closes #11712)

Patch 9.0.1067
Problem: In diff mode virtual text is highlighted incorrectly. (Rick Howe)
Solution: Do not use diff attributes for virtual text. (closes #11714)

Patch 9.0.1068
Problem: No information about whether requesting term codes has an effect.
Solution: Add ch_log() calls to report the effect of term code responses.

Avoid deleting an entry and then adding back the same one.

Patch 9.0.1069
Problem: Diff mode highlight fails for special characters.
Solution: Adjust condition for setting "diff_hlf".

Patch 9.0.1070
Problem: Reading beyond array size.
Solution: Only use name[0] and name[1], do not use "name" as a string.

Patch 9.0.1071
Problem: Codecov action version is too specific.
Solution: Only use "v3" to automatically use the latest stable version.

(closes #11720)

Patch 9.0.1072
Problem: screenpos() column result in fold may be too small.
Solution: Add space of 'number', sign column, etc. (closes #11715)

Patch 9.0.1073
Problem: Using "xterm-kitty" for 'term' causes problems.
Solution: Remove the "xterm-" part when 'term' is set from $TERM. Detect a

few kitty-specific properties based on the version response
instead of the terminal name.

version9.txt — 4086

Patch 9.0.1074
Problem: Class members are not supported yet.
Solution: Add initial support for class members.

Patch 9.0.1075
Problem: build fails if the compiler doesn't allow for a declaration right

after "case".
Solution: Add a block.

Patch 9.0.1076
Problem: ASAN complains about NULL argument.
Solution: Skip memmove() when there is nothing to move.

Patch 9.0.1077
Problem: Can add text property with negative ID before virtual text

property.
Solution: Remember that a text property with a negative ID was used and give

an appropriate error message. (closes #11725)
Fix index computation.

Patch 9.0.1078
Problem: With the +vartabs feature indent folding may use wrong 'tabstop'.
Solution: Use the "buf" argument instead of "curbuf".

Patch 9.0.1079
Problem: Leaking memory when defining a user command fails.
Solution: Free "compl_arg" when needed. (closes #11726)

Patch 9.0.1080
Problem: The "kitty" terminfo entry is not widespread, resulting in the

kitty terminal not working properly.
Solution: Go back to using "xterm-kitty" and avoid the problems it causes in

another way.

Patch 9.0.1081
Problem: Using "->" with split lines does not always work.
Solution: Avoid trying to get another line. (closes #11723)

Patch 9.0.1082
Problem: Some jsonc files are not recognized.
Solution: Add patterns for jsonc and move some from json to jsonc.

(closes #11711)

Patch 9.0.1083
Problem: Empty and comment lines in a class cause an error.
Solution: Skip empty and comment lines. (closes #11734)

Patch 9.0.1084
Problem: Code handling low level MS-Windows events cannot be tested.
Solution: Add test_mswin_event() and tests using it. (Christopher Plewright,

closes #11622)

Patch 9.0.1085
Problem: Compiler warns for uninitialized variable.
Solution: Initialize the variable. Remove unused function. (John Marriott)

Patch 9.0.1086
Problem: Display wrong in Windows terminal after exiting Vim.
Solution: Apply screen restore fix for Windows 11 also to Windows 10 builds.

(Christopher Plewright, closes #11713, closes #11706)

version9.txt — 4087

Patch 9.0.1087
Problem: Autocommand test sometimes fails.
Solution: Add a short delay. (James McCoy, closes #11737)

Patch 9.0.1088
Problem: Clang warns for unused variable.
Solution: Adjust #ifdef. (John Marriott)

Patch 9.0.1089
Problem: unnecessary assignment
Solution: Remove the assignment. (Luuk van Baal, closes #1136)

Patch 9.0.1090
Problem: FHIR Shorthand files are not recognized.
Solution: Add a pattern to detect FSH files. (Matthew Gramigna,

closes #11738)

Patch 9.0.1091
Problem: Assignment to non-existing member causes a crash. (Yegappan

Lakshmanan)
Solution: Give an error message and bail out when a member cannot be found.

Patch 9.0.1092
Problem: Search error message doesn't show used pattern.
Solution: Pass the actually used pattern to where the error message is

given. (Rob Pilling, closes #11742)

Patch 9.0.1093
Problem: Using freed memory of object member. (Yegappan Lakshmanan)
Solution: Make a copy of the object member when getting it.

Patch 9.0.1094
Problem: Compiler warning when HAS_MESSAGE_WINDOW is not defined.
Solution: Add UNUSED.

Patch 9.0.1095
Problem: Using freed memory when declaration fails. (Yegappan Lakshmanan)
Solution: After unreferencing an object set the reference to NULL.

Patch 9.0.1096
Problem: Reallocating hashtab when the size didn't change.
Solution: Bail out when the hashtab is already the desired size.

Patch 9.0.1097
Problem: Tests are failing.
Solution: Do clean up a hashtab when at the initial size.

Patch 9.0.1098
Problem: Code uses too much indent.
Solution: Use an early return. (Yegappan Lakshmanan, closes #11747)

Patch 9.0.1099
Problem: Trying to resize a hashtab may cause a problem.
Solution: Do not try to resize a hashtab before adding an item.

Patch 9.0.1100
Problem: A hashtab with many removed items is not cleaned up.
Solution: Re-hash a hashtab even when the size didn't change if too many

items were removed.

version9.txt — 4088

Patch 9.0.1101
Problem: Unused global variable.
Solution: Remove the variable. (closes #11752)

Patch 9.0.1102
Problem: Complicated use of #ifdef.
Solution: Simplify #ifdef use. (Ken Takata, closes #11745)

Patch 9.0.1103
Problem: jq files are not recognized.
Solution: Add detection of Jq files. (David McDonald, closes #11743)

Patch 9.0.1104
Problem: Invalid memory access when checking function argument types.
Solution: Do not check beyond the number of arguments. (closes #11755)

Patch 9.0.1105
Problem: Code is indented too much.
Solution: Use an early return. (Yegappan Lakshmanan, closes #11756)

Patch 9.0.1106
Problem: Not all postfix files are recognized.
Solution: Recognize main.cf.proto files. (closes #11732)

Patch 9.0.1107
Problem: Float constant not recognized as float.
Solution: Check the vartype instead of comparing with t_float.

(closes #11754)

Patch 9.0.1108
Problem: Type error when using "any" type and adding a number to a float.
Solution: Accept both a number and a float. (closes #11753)

Patch 9.0.1109
Problem: Leaking allocated type.
Solution: Reset the "static" flag in the allocated type copy.

Patch 9.0.1110
Problem: Build fails on Mac OS X 10.4/10.5 .
Solution: Check if the dispatch/dispatch.h header exists. (Evan Miller,

closes #11746)

Patch 9.0.1111
Problem: Termcap entries for RGB colors are not set automatically.
Solution: Always set the termcap entries when +termguicolors is enabled.

Patch 9.0.1112
Problem: test_mswin_event() can hang.
Solution: Add the "execute" argument to process events right away.

(Christopher Plewright, closes #11760)

Patch 9.0.1113
Problem: Users cannot easily try out a PR.
Solution: Add an "artifacts" section to the AppVeyor CI config. (Christian

Brabandt, closes #11762)

Patch 9.0.1114
Problem: CI does not use the latest Python version.
Solution: Switch from Python 3.10 to 3.11. (closes #11761)

version9.txt — 4089

Patch 9.0.1115
Problem: Code is indented more than needed.
Solution: Use an early return to reduce indenting. (Yegappan Lakshmanan,

closes #11758)

Patch 9.0.1116
Problem: Compiler may complain about an unused function.
Solution: Add #ifdef. (John Marriott)

Patch 9.0.1117
Problem: Terminfo entries for bracketed paste are not used.
Solution: Use the newly added terminfo entries for bracketed paste.

Correct mixup of output strings and key codes.

Patch 9.0.1118
Problem: Sporadic test failures when using a terminal window.
Solution: Adjust waiting times. (James McCoy, closes #11763)

Patch 9.0.1119
Problem: Type of arguments not checked when calling a partial.
Solution: Give an error for a wrong argument type. (closes #11753)

Patch 9.0.1120
Problem: Tex filetype detection not sufficiently tested.
Solution: Add more test cases for "tex" detection. (Jonas Strittmatter,

closes #11765)

Patch 9.0.1121
Problem: Cursor positioning and display problems with 'smoothscroll' and

using "zt", "zb" or "zz".
Solution: Adjust computations and conditions. (Yee Cheng Chin,

closes #11764)

Patch 9.0.1122
Problem: Class member access is not fully tested yet.
Solution: Add more tests.

Patch 9.0.1123
Problem: Class function not implemented yet.
Solution: Implement defining and calling a class function.

Patch 9.0.1124
Problem: Virtual text at a column position is truncated at the window edge.

(Yegappan Lakshmanan)
Solution: Do not truncated virtual text that is placed at a column.

Patch 9.0.1125
Problem: Memory leak when using class functions.
Solution: Clear and free the array with class functions.

Patch 9.0.1126
Problem: Bracketed paste can be enabled when pasted text is not recognized.
Solution: Output t_BE only when t_PS and t_PE are set.

Patch 9.0.1127
Problem: No error if function argument shadows class member.
Solution: Give an error for shadowing a class member.

Patch 9.0.1128

version9.txt — 4090

Problem: Build failure.
Solution: Add type cast. Add missing error messages.

Patch 9.0.1129
Problem: Sporadic Test_range() failure.
Solution: Clear typeahead. Move to a separate function. (issue #22771)

Patch 9.0.1130
Problem: Unexpected output when autoloading a script for an interactive

operation.
Solution: Reset "KeyTyped" while loading a script and when handling a nested

function. (closes #11773)

Patch 9.0.1131
Problem: Build failure without the +eval feature.
Solution: Move code inside #ifdef.

Patch 9.0.1132
Problem: Code is indented more than needed.
Solution: Use an early return to reduce indentation. (Yegappan Lakshmanan,

closes #11769)

Patch 9.0.1133
Problem: Error message names do not match the items.
Solution: Add "_str" when the text contains "%s".

Patch 9.0.1134
Problem: Comparing objects uses identity instead of equality.
Solution: Compare the object values.

Patch 9.0.1135
Problem: Missing function argument.
Solution: Add ignore case flag.

Patch 9.0.1136
Problem: Memory leak when getting class member type from expr.
Solution: Clear the expression result.

Patch 9.0.1137
Problem: Some conditions are always false.
Solution: Remove the useless conditions. (closes #11776)

Patch 9.0.1138
Problem: Crash when expecting varargs but it is something else.
Solution: Only use the member when the type is a list. (closes #11774)

Patch 9.0.1139
Problem: Cannot create a new object in a compiled function.
Solution: Compile the instructions to create a new object.

Patch 9.0.1140
Problem: Cannot call an object method in a compiled function.
Solution: Compile the instructions to invoke an object method.

Patch 9.0.1141
Problem: 'cursorcolumn' and 'colorcolumn' wrong after concealing and

wrapping line.
Solution: Reset "wlv.vcol_off" after each screen line. (Alexey Radkov,

closes #11777)

version9.txt — 4091

Patch 9.0.1142
Problem: Crash and/or memory leak when redefining function after error.
Solution: Clear pointer after making a copy. Clear arrays on failure.

(closes #11774)

Patch 9.0.1143
Problem: Invalid memory access with bad 'statusline' value.
Solution: Avoid going over the NUL at the end.

Patch 9.0.1144
Problem: Reading beyond text.
Solution: Add strlen_maxlen() and use it.

Patch 9.0.1145
Problem: Invalid memory access with recursive substitute expression.
Solution: Check the return value of vim_regsub().

Patch 9.0.1146
Problem: MS-Windows: various special keys and modifiers are not mappable.
Solution: Adjust the handling of keys with modifiers. (Christian Plewright,

closes #11768)

Patch 9.0.1147
Problem: Cannot access a class member in a compiled function.
Solution: Implement looking up a class member.

Patch 9.0.1148
Problem: Cmdline test fails in the GUI.
Solution: Skip the test when running in the GUI.

Patch 9.0.1149
Problem: Class members may be garbage collected.
Solution: Mark class members as being in use.

Patch 9.0.1150
Problem: :interface is not implemented yet.
Solution: Implement the basics of :interface.

Patch 9.0.1151
Problem: Build failure.
Solution: Add missing part of :interface change.

Patch 9.0.1152
Problem: Class "implements" argument not implemented.
Solution: Implement "implements" argument. Add basic checks for when a

class implements an interface.

Patch 9.0.1153
Problem: Build error with some compilers.
Solution: Clear pointer the right way.

Patch 9.0.1154
Problem: Coverity warns for dead code.
Solution: Remove condition that is always true.

Patch 9.0.1155
Problem: Cannot use a class as a type.
Solution: Accept a class and interface name as a type.

Patch 9.0.1156

version9.txt — 4092

Problem: Tests fail because of a different error message.
Solution: Don't give an error if a type name can't be found.

Patch 9.0.1157
Problem: "implements" only handles one interface name.
Solution: Handle a comma separated list of names. Check for duplicate

names.

Patch 9.0.1158
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11787)

Patch 9.0.1159
Problem: Extends argument for class not implemented yet.
Solution: Basic implementation of "extends".

Patch 9.0.1160
Problem: ASAN error for ufunc_T allocated with wrong size.
Solution: Make sure the size can always fit the struct.

Patch 9.0.1161
Problem: Coverity warns for using strcpy().
Solution: Call a function to set the function name.

Patch 9.0.1162
Problem: Configure does not handle all FORTIFY_SOURCE variants.
Solution: Also handle Fedora's default FORTIFY_SOURCE flags. (Zdenek Dohnal,

closes #11794)

Patch 9.0.1163
Problem: Compiler warning for implicit size_t/int conversion.
Solution: Add a type cast. (Mike Williams, closes #11795)

Patch 9.0.1164
Problem: Evaluating string expression advances function line.
Solution: Disable function lines while parsing a string expression.

(Hirohito Higashi, closes #11796)

Patch 9.0.1165
Problem: Tests using IPv6 sometimes fail.
Solution: Use getaddrinfo() and use try/catch. (James McCoy,

closes #11783)

Patch 9.0.1166
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11792)

Patch 9.0.1167
Problem: EditorConfig files do not have their own filetype.
Solution: Add the "editorconfig" filetype. (Gregory Anders, closes #11779)

Patch 9.0.1168
Problem: Code to enable/disable mouse is not from terminfo/termcap.
Solution: Request the "XM" entry and use it to set 'ttymouse' if possible.

Patch 9.0.1169
Problem: Some key+modifier tests fail on some AppVeyor images.
Solution: Adjust the tests for key movements and fix the revealed bugs.

version9.txt — 4093

(Christopher Plewright, closes #11798)

Patch 9.0.1170
Problem: LGTM badge no longer works.
Solution: Remove the LGTM badge. (closes #11799)

Patch 9.0.1171
Problem: Screen is not redrawn after using setcellwidths().
Solution: Redraw the screen when the cell widths have changed. (Yasuhiro

Matsumoto, closes #11800)

Patch 9.0.1172
Problem: When 'selection' is "exclusive" then "1v" is one char short.
Solution: Add one character when 'selection' is "exclusive". (closes #11791)

Patch 9.0.1173
Problem: Compiler warning for unused variable on non-Unix systems.
Solution: Move #ifdef. (John Marriott)

Patch 9.0.1174
Problem: Smali files are not recognized.
Solution: Add a pattern for Smali files. (Amaan Qureshi, closes #11801)

Patch 9.0.1175
Problem: The set_ref_in_item() function is too long.
Solution: Use a separate function for more complicated types. (Yegappan

Lakshmanan, closes #11802)

Patch 9.0.1176
Problem: smithy files are not recognized.
Solution: Add a pattern for Smithy files. (Chris Kipp, closes #11804)

Patch 9.0.1177
Problem: AppVeyor uses some older tools.
Solution: Switch to Visual Studio 2022 and Python 3.11. (Christopher

Plewright, closes #11793)

Patch 9.0.1178
Problem: A child class cannot override functions from a base class.
Solution: Allow overriding and implement "super".

Patch 9.0.1179
Problem: Not all errors around inheritance are tested.
Solution: Add more tests. Fix uncovered problems.

Patch 9.0.1180
Problem: Compiler warnings without the +job feature.
Solution: Adjust #ifdefs. (John Marriott)

Patch 9.0.1181
Problem: Class inheritance and typing insufficiently tested.
Solution: Add more tests. Implement missing behavior.

Patch 9.0.1182
Problem: go checksum files are not recognized.
Solution: Add the name of go checksum files. (Amaan Qureshi, closes #11803)

Patch 9.0.1183
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

version9.txt — 4094

closes #11805)

Patch 9.0.1184
Problem: Interface of an object is not recognized when checking type.
Solution: Use the interface implemented by an object.

Patch 9.0.1185
Problem: Using class from imported script not tested.
Solution: Add tests. Implement what is missing.

Patch 9.0.1186
Problem: Imported class does not work when used twice in a line.
Solution: Fix the type parsing.

Patch 9.0.1187
Problem: Test for using imported class fails.
Solution: Skip over rest of type.

Patch 9.0.1188
Problem: Return value of type() for class and object unclear.
Solution: Add v:t_object and v:t_class.

Patch 9.0.1189
Problem: Invalid memory access with folding and using "L".
Solution: Prevent the cursor from moving to line zero.

Patch 9.0.1190
Problem: AppVeyor runs much slower with MSVC 2022.
Solution: Go back to MSVC 2015. (Christopher Plewright, closes #11810)

Patch 9.0.1191
Problem: Some Bazel files are not recognized.
Solution: Add an extra Bazel pattern. (Keith Smily, closes #11807)

Patch 9.0.1192
Problem: No error when class function argument shadows a member.
Solution: Check for shadowing.

Patch 9.0.1193
Problem: Cannot map <Esc> when using the Kitty key protocol.
Solution: Add a non-simplified mapping for K_ESC. (closes #11811)

Patch 9.0.1194
Problem: Compiler warning for comparing pointer with int.
Solution: Change NULL to zero.

Patch 9.0.1195
Problem: Restoring KeyTyped when building statusline not tested.
Solution: Add a test. Clean up and fix other tests. (closes #11815)

Patch 9.0.1196
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11813)

Patch 9.0.1197
Problem: Dump file missing from patch.
Solution: Add missing dump file.

Patch 9.0.1198

version9.txt — 4095

Problem: Abstract class not supported yet.
Solution: Implement abstract class and add tests.

Patch 9.0.1199
Problem: Crash when using kitty and using a mapping with <Esc>.
Solution: Do not try setting did_simplify when it is NULL. (closes #11817)

Patch 9.0.1200
Problem: AppVeyor builds with an old Python version.
Solution: Switch from Python 3.8 to 3.11. (Christopher Plewright,

closes #11814)

Patch 9.0.1201
Problem: Assignment with operator doesn't work in object method.
Solution: Handle loading the object member. (closes #11820) Add a few more

tests.

Patch 9.0.1202
Problem: Crash when iterating over list of objects.
Solution: Do not make a copy of tt_member for object or class.

(closes #11823)

Patch 9.0.1203
Problem: Return type of values() is always list<any>.
Solution: Use the member type if possible. (issue #11822)

Patch 9.0.1204
Problem: Expression compiled the wrong way after using an object.
Solution: Generate constants before getting the type.

Patch 9.0.1205
Problem: Crash when handling class that extends another class with more

than one object members.
Solution: Correct pointer computations. (closes #11824)

Patch 9.0.1206
Problem: Testing with Python on AppVeyor does not work properly.
Solution: Fix typo. Move most lines to the .bat file. (Christopher

Plewright, closes #11828)

Patch 9.0.1207
Problem: Error when object type is expected but getting "any".
Solution: When actual type is "any" use a runtime type check.

(closes #11826)

Patch 9.0.1208
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11819)

Patch 9.0.1209
Problem: Getting interface member does not always work.
Solution: Convert the index on the interface to the index on the object.

(closes #11825)

Patch 9.0.1210
Problem: Compiler complains about declaration after label.
Solution: Move declaration to beginning of block (John Marriott)

Patch 9.0.1211

version9.txt — 4096

Problem: Storing value in interface member does not always work.
Solution: Convert the index on the interface to the index on the object.

Patch 9.0.1212
Problem: Cannot read back what setcellwidths() has done.
Solution: Add getcellwidths(). (Kota Kato, closes #11837)

Patch 9.0.1213
Problem: Adding a line below the last one does not expand fold.
Solution: Do not skip mark_adjust() when adding lines below the last one.

(Brandon Simmons, closes #11832, closes #10698)

Patch 9.0.1214
Problem: File left behind after running tests.
Solution: Delete the file. (Dominique Pellé, closes #11839)

Patch 9.0.1215
Problem: Using isalpha() adds dependency on current locale.
Solution: Do not use isalpha() for recognizing a URL or the end of an Ex

command. (closes #11835)

Patch 9.0.1216
Problem: Coverity warns for ignoring return value.
Solution: Break out of loop if function fails.

Patch 9.0.1217
Problem: Using an object member in a closure doesn't work.
Solution: Initialize lv_loop_depth. (closes #11840)

Patch 9.0.1218
Problem: Completion includes functions that don't work.
Solution: Skip functions that are not implemented. (Kota Kato,

closes #11845)

Patch 9.0.1219
Problem: Handling of FORTIFY_SOURCE flags doesn't match Fedora usage.
Solution: Adjust the "sed" patterns. (Zdenek Dohnal, closes #11847)

Patch 9.0.1220
Problem: Termcap/terminfo entries do not indicate where modifiers might

appear.
Solution: Add ";*" for function keys where modifiers are likely to be used.

Patch 9.0.1221
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11833)

Patch 9.0.1222
Problem: Terminal tests are flaky on MacOS.
Solution: Add TermWait() calls. (Yegappan Lakshmanan, closes #11852)

Patch 9.0.1223
Problem: Cannot use setcellwidths() below 0x100.
Solution: Also accept characters between 0x80 and 0x100. (Ken Takata,

closes #11834)

Patch 9.0.1224
Problem: Cannot call a :def function with a number for a float argument.
Solution: Accept a number as well, convert it to a float.

version9.txt — 4097

Patch 9.0.1225
Problem: Reading past the end of a line when formatting text.
Solution: Check for not going over the end of the line.

Patch 9.0.1226
Problem: Spurious empty line when using text properties and virtual text.
Solution: Do not set "text_prop_follows" when the other text property is not

virtual text. (closes #11846)

Patch 9.0.1227
Problem: No cmdline completion for :runtime.
Solution: Add completion for :runtime. (closes #11853, closes #11447)

Improve the resulting matches.

Patch 9.0.1228
Problem: Fuzzy menu completion is only tested in the GUI.
Solution: Make fuzzy menu completion test work without GUI.

(closes #11861)

Patch 9.0.1229
Problem: Cap'n Proto files are not recognized.
Solution: Add a pattern and the "capnp" filetype. (Amaan Qureshi,

closes #11862)

Patch 9.0.1230
Problem: Apache thrift files are not recognized.
Solution: Add a pattern for thrift files. (Amaan Qureshi, closes #11859)

Patch 9.0.1231
Problem: Completion of :runtime does not handle {where} argument.
Solution: Parse the {where} argument. (closes #11863)

Patch 9.0.1232
Problem: ColorTable saving and restoring does not work properly.
Solution: Restore ColorTable[16] usage. (Christopher Plewright,

closes #11836)

Patch 9.0.1233
Problem: search() loops forever if "skip" is TRUE for all matches.
Solution: Keep the position of the first match.

Patch 9.0.1234
Problem: The code style has to be checked manually.
Solution: Add basic code style checks in a test. Fix or avoid uncovered

problems.

Patch 9.0.1235
Problem: MS-Windows console: not flushing termguicolors.
Solution: Flush termguicolors. (Christopher Plewright, closes #11871)

Patch 9.0.1236
Problem: Code in same_leader() can be simplified.
Solution: Simplify code that is executed only once. (closes #11867)

Patch 9.0.1237
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11858)

version9.txt — 4098

Patch 9.0.1238
Problem: :runtime completion can be further improved.
Solution: Also complete the {where} argument values and adjust the

completion for that. (closes #11874)

Patch 9.0.1239
Problem: Cannot have a line break before an object member access.
Solution: Check for "." in next line. (closes #11864)

Patch 9.0.1240
Problem: Cannot access a private object member in a lambda defined inside

the class.
Solution: Go up the context stack to find the class. (closes #11866)

Patch 9.0.1241
Problem: Coverity warns for not checking function return value.
Solution: Explicitly ignore the return value.

Patch 9.0.1242
Problem: Code for :runtime completion is not consistent.
Solution: Make code for cmdline expansion more consistent. (closes #11875)

Patch 9.0.1243
Problem: :setglobal cannot use script-local function for "expr" option.
Solution: Use the pointer to the option value properly. (closes #11883)

Patch 9.0.1244
Problem: Cursor briefly displayed in a wrong position when pressing Esc in

Insert mode after autoindent was used.
Solution: Do not adjust the cursor position for assumed deleted white space

if text is following. (closes #11877)

Patch 9.0.1245
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11879)

Patch 9.0.1246
Problem: Code is indented more than necessary.
Solution: Use an early return where it makes sense. (Yegappan Lakshmanan,

closes #11887)

Patch 9.0.1247
Problem: Divide by zero with 'smoothscroll' set and a narrow window.
Solution: Bail out when the window is too narrow.

Patch 9.0.1248
Problem: Cannot export an interface. (Ernie Rael)
Solution: Add the EX_EXPORT flag to :interface. (closes #11884)

Patch 9.0.1249
Problem: Cannot export an abstract class. (Ernie Rael)
Solution: Add the EX_EXPORT flag to :abstract. (closes #11884)

Patch 9.0.1250
Problem: Cannot use an object method with :defer. (Ernie Rael)
Solution: Find the object method and generate code to call it.

(closes #11886)

Patch 9.0.1251

version9.txt — 4099

Problem: Checking returned value of ga_grow() is inconsistent.
Solution: Check for FAIL instead of "not OK". (Yegappan Lakshmanan,

closes #11897)

Patch 9.0.1252
Problem: MS-Windows: scrollback cropped off on Vim exit.
Solution: Don't call SetConsoleScreenBufferInfoEx when using the alternate

screen buffer. (Christopher Plewright, closes #11882)

Patch 9.0.1253
Problem: CI adds repository unnecessarily.
Solution: Remove the line from the workflow. (closes #11900)

Patch 9.0.1254
Problem: Calling a method on an interface does not work.
Solution: At runtime figure out what method to call. (closes #11901)

Patch 9.0.1255
Problem: Changing 'virtualedit' does not have immediate effect.
Solution: Correct how is checked for a changed value. (closes #11878)

Patch 9.0.1256
Problem: NetworkManager connection files are not recognized.
Solution: Add a pattern for NetworkManager connection files. (closes #11893)

Patch 9.0.1257
Problem: Code style is not check in test scripts.
Solution: Add basic code style check for test files.

Patch 9.0.1258
Problem: Code style test fails.
Solution: Adjust test files.

Patch 9.0.1259
Problem: Diffmode test fails.
Solution: Adjust expected result for adjusted indenting.

Patch 9.0.1260
Problem: Coverity warns for possible NULL pointer usage.
Solution: Change the condition.

Patch 9.0.1261
Problem: Elsa files are not recognized.
Solution: Add a pattern for Elsa files. (Amaan Qureshi, closes #11908)

Patch 9.0.1262
Problem: The did_set_string_option function is too long.
Solution: Split off functionality to individual functions. (Yegappan

Lakshmanan, Lewis Russell, closes #11904)

Patch 9.0.1263
Problem: KDL files are not recognized.
Solution: Add a pattern for KDL files. (Amaan Qureshi, closes #11898)

Patch 9.0.1264
Problem: Motif: compiler warning for unused argument.
Solution: Add "UNUSED".

Patch 9.0.1265
Problem: Using an interface method may give a compilation error.

version9.txt — 4100

Solution: Do not try to compile the body of a method of an interface.
(closes #11885)

Patch 9.0.1266
Problem: Error for space before ": type" is inconsistent.
Solution: Give E1059 in more places. (closes #11868)

Patch 9.0.1267
Problem: The did_set_string_option function is too long.
Solution: Further cleanup of handling string options. (Yegappan Lakshmanan,

Lewis Russell, closes #11920)

Patch 9.0.1268
Problem: .clangd and .stylelintrc files don't get a filetype.
Solution: Use yaml for .clangd and json for .stylelintrc files. (Mark

Skelton, closes #11916)

Patch 9.0.1269
Problem: Channel test often fails on Mac OS.
Solution: Increase the wait time from one to 15 milliseconds. (D. Ben

Knoble, closes #11894)

Patch 9.0.1270
Problem: Crash when using search stat in narrow screen.
Solution: Check length of message. (closes #11921)

Patch 9.0.1271
Problem: Using sizeof() and subtract array size is tricky.
Solution: Use offsetof() instead. (closes #11926)

Patch 9.0.1272
Problem: Typo in pattern for filetype detection.
Solution: Fix the typo. (closes #11924)

Patch 9.0.1273
Problem: "1v" may select block with wrong size. (Evgeni Chasnovski)
Solution: Compute "curswant" in the right line. (closes #11925)

Patch 9.0.1274
Problem: FIRRTL files are not recognized.
Solution: Add a pattern for FIRRTL files. (Amaan Qureshi, closes #11931)

Patch 9.0.1275
Problem: The code for setting options is too complicated.
Solution: Refactor the do_set() function. (Yegappan Lakshmanan, Lewis

Russell, closes #11932)

Patch 9.0.1276
Problem: Some mappings with Meta and Shift do not work.
Solution: Apply the Shift modifier to the key. (issue #11913)

Patch 9.0.1277
Problem: Cursor may move with autocmd in Visual mode.
Solution: Restore "VIsual_active" before calling check_cursor().

(closes #11939)

Patch 9.0.1278
Problem: go.work.sum files are not recognized.
Solution: Recognize go.work.sum files as the gosum filetype. (Amaan Qureshi,

closes #11940)

version9.txt — 4101

Patch 9.0.1279
Problem: Display shows lines scrolled down erroneously. (Yishai Lerner)
Solution: Do not change "wl_lnum" at index zero. (closes #11938)

Patch 9.0.1280
Problem: Insufficient testing for what 9.0.1265 fixes.
Solution: Add a couple of test cases. (issue #11885)

Patch 9.0.1281
Problem: Cadence files are not recognized.
Solution: Recognize Cadence files. (Janez Podhostnik, closes #11951)

Patch 9.0.1282
Problem: Ron files are not recognized.
Solution: Recognize Ron files. (Amaan Qureshi, closes #11948)

Patch 9.0.1283
Problem: The code for setting options is too complicated.
Solution: Refactor the do_set() function. (Yegappan Lakshmanan, Lewis

Russell, closes #11945)

Patch 9.0.1284
Problem: Compiler warnings for uninitialized variables. (Tony Mechelynck)
Solution: Add variable initializations.

Patch 9.0.1285
Problem: Various small problems.
Solution: Adjust white space and comments.

Patch 9.0.1286
Problem: Coverity warns for using a NULL pointer.
Solution: Bail out whan "varp" is NULL.

Patch 9.0.1287
Problem: With the Kitty key protocol Esc with NumLock cannot be mapped.
Solution: Also use K_ESC when there is a modifier. (closes #11811)

Patch 9.0.1288
Problem: FunC files are not recognized.
Solution: Recognize FunC files. (Amaan Qureshi, closes #11949)

Patch 9.0.1289
Problem: A newer version of clang can be used for CI.
Solution: Switch from clang-15 to clang-16. (closes #11577)

Patch 9.0.1290
Problem: CTRL-N and -P on cmdline don't trigger CmdlineChanged.
Solution: Jump to cmdline_changed instead of cmdline_not_changed.

(closes #11956)

Patch 9.0.1291
Problem: Move language files are not recognized.
Solution: Recognize Move language files. (Amaan Qureshi, closes #11947)

Patch 9.0.1292
Problem: :defer may call the wrong method for an object. (Ernie Rael)
Solution: When en object is from a class that extends or implements, figure

out the method to call at runtime. (closes #11910)

version9.txt — 4102

Patch 9.0.1293
Problem: The set_num_option() is too long.
Solution: Move code to separate functions. (Yegappan Lakshmanan,

closes #11954)

Patch 9.0.1294
Problem: The set_bool_option() function is too long.
Solution: Move code to separate functions. (Yegappan Lakshmanan,

closes #11964)

Patch 9.0.1295
Problem: The option initialization function is too long.
Solution: Move code to separate functions. (Yegappan Lakshmanan,

closes #11966)

Patch 9.0.1296
Problem: Calling an object method with arguments does not work. (Ernie

Rael)
Solution: Take the argument count into account when looking up the object.

(closes #11911)

Patch 9.0.1297
Problem: Wrong value for $LC_CTYPE makes the environ test fail.
Solution: Unset $LC_CTYPE when running tests. (closes #11963)

Patch 9.0.1298
Problem: Inserting a register on the command line does not trigger

incsearch or update hlsearch.
Solution: Have cmdline_insert_reg() return CMDLINE_CHANGED when appropriate

and handle it correctly. (Ken Takata, closes #11960)

Patch 9.0.1299
Problem: Change for triggering incsearch not sufficiently tested.
Solution: Add a test case. Simplify the code. (closes #11971)

Patch 9.0.1300
Problem: 'statusline' only supports one "%=" item.
Solution: Add support for multiple "%=" items. (TJ DeVries, Yegappan

Lakshmanan, closes #11970, closes #11965)

Patch 9.0.1301
Problem: Virtual text below empty line not displayed.
Solution: Adjust flags and computations. (closes #11959)

Patch 9.0.1302
Problem: On a Belgian keyboard CTRL-] does not work.
Solution: Translate CTRL-$ into CTRL-]. (closes #11831)

Patch 9.0.1303
Problem: Motif: scrollbar width/height wrong when maximized.
Solution: Set the width/height when creating the scrollbar. (closes #11946)

Patch 9.0.1304
Problem: "$" for 'list' option displayed in wrong position when there are

text properties.
Solution: Adjust logic for order of displayed items. (closes #11959)

Patch 9.0.1305
Problem: Cursor in wrong line with virtual text above.
Solution: Count extra line for text property above/below. (closes #11959)

version9.txt — 4103

Patch 9.0.1306
Problem: No regression test for solved problem of #11959.
Solution: Add a test, also with 'list' set. (closes #11959)

Patch 9.0.1307
Problem: Setting 'formatoptions' with :let doesn't check for errors.
Solution: Pass "errbuf" to set_string_option(). (Yegappan Lakshmanan,

closes #11974, closes #11972)

Patch 9.0.1308
Problem: The code for setting options is too complicated.
Solution: Refactor the code for setting options. (Yegappan Lakshmanan,

closes #11989)

Patch 9.0.1309
Problem: Scrolling two lines with even line count and 'scrolloff' set.
Solution: Adjust how the topline is computed. (closes #10545)

Patch 9.0.1310
Problem: 'splitkeep' test has failures.
Solution: Adjust expected cursor line position.

Patch 9.0.1311
Problem: Coverity warns for using a NULL pointer.
Solution: Use "empty_option" instead of NULL.

Patch 9.0.1312
Problem: Cursor position wrong when splitting window in insert mode.
Solution: Pass the actual mode to win_fix_cursor(). (Luuk van Baal,

closes #11999,

Patch 9.0.1313
Problem: Some settings use the current codepage instead of 'encoding'.
Solution: Adjust how options are initialized. (Ken Takata, closes #11992)

Patch 9.0.1314
Problem: :messages behavior depends on 'fileformat' of current buffer.
Solution: Pass the buffer pointer to where it is used. (Mirko Ceroni,

closes #11995)

Patch 9.0.1315
Problem: Escaping for completion of map command not properly tested.
Solution: Add a few test cases. (closes #12009)

Patch 9.0.1316
Problem: MS-Windows: vimfiles dir created with admin group.
Solution: Use ShellExecAsUser to create the vimfiles directory. (Christopher

Plewright, Ken Takata, closes #12000, closes #11888)

Patch 9.0.1317
Problem: Crash when using an unset object variable.
Solution: Give an error instead. (closes #12005)

Patch 9.0.1318
Problem: Code style test fails.
Solution: Remove trailing white space.

Patch 9.0.1319
Problem: PRQL files are not recognized.

version9.txt — 4104

Solution: Add a filetype pattern for PRQL files. (Matthias Queitsch,
closes #12018)

Patch 9.0.1320
Problem: Checking the type of a null object causes a crash.
Solution: Don't try to get the class of a null object. (closes #12005)

Handle error from calling a user function better.

Patch 9.0.1321
Problem: vimscript test fails where using {expr} syntax.
Solution: Only return FCERR_FAILED in call_user_func() for Vim9 script.

Patch 9.0.1322
Problem: Crash when indexing "any" which is an object.
Solution: Check the index is a number. Do not check the member type of an

object. (closes #12019)

Patch 9.0.1323
Problem: Build failure with +eval feature.
Solution: Add missing part for using funcerror_T.

Patch 9.0.1324
Problem: "gj" and "gk" do not move correctly over a closed fold.
Solution: Use the same code as used for "j"/"k" to go to the next/previous

line. (Luuk van Baal, closes #12007)

Patch 9.0.1325
Problem: 'colorcolumn' highlight wrong with virtual text above.
Solution: Adjust column of 'colorcolumn' for text property. (closes #12004)

Patch 9.0.1326
Problem: Relative line number not updated with virtual text above.
Solution: Adjust the row for the line number for virtual text above.

(closes #12004)

Patch 9.0.1327
Problem: Cursor in wrong position below line with virtual text below ending

in multi-byte character.
Solution: When checking for last character take care of multi-byte

character.

Patch 9.0.1328
Problem: Error when using "none" for GUI color is confusing.
Solution: Mention that the name should perhaps be "NONE". (closes #1400)

Patch 9.0.1329
Problem: Completion of map includes simplified ones.
Solution: Do not complete simplified mappings. (closes #12013)

Patch 9.0.1330
Problem: Handling new value of an option has a long "else if" chain.
Solution: Use a function pointer. (Yegappan Lakshmanan, closes #12015)

Patch 9.0.1331
Problem: Illegal memory access when using :ball in Visual mode.
Solution: Stop Visual mode when using :ball. (Pavel Mayorov, closes #11923)

Patch 9.0.1332
Problem: Crash when using buffer-local user command in cmdline window.

(Karl Yngve Lervåg)

version9.txt — 4105

Solution: Use the right buffer to find the user command. (closes #12030,
closes #12029)

Patch 9.0.1333
Problem: When redo'ing twice <ScriptCmd> may not get the script ID.
Solution: When "last_used_map" map is not set use "last_used_sid".

(closes #11930)

Patch 9.0.1334
Problem: Using tt_member for the class leads to mistakes.
Solution: Add a separate tt_class field.

Patch 9.0.1335
Problem: No test for bad use of spaces in help files.
Solution: Add checks for use of spaces in help files. Ignore intentional

spaces. (Hirohito Higashi, closes #11952)

Patch 9.0.1336
Problem: Functions without arguments are not always declared properly.
Solution: Use "(void)" instead of "()". (Yegappan Lakshmanan, closes #12031)

Patch 9.0.1337
Problem: Yuck files are not recognized.
Solution: Add a filetype pattern for yuck files. (Amaan Qureshi,

closes #12033)

Patch 9.0.1338
Problem: :defcompile and :disassemble can't find class method. (Ernie Rael)
Solution: Make a class name and class.method name work. (closes #11984)

Patch 9.0.1339
Problem: No test for :disassemble with class function.
Solution: Add a test.

Patch 9.0.1340
Problem: Coverity warns for using NULL pointer.
Solution: Check that lhs_type is not NULL.

Patch 9.0.1341
Problem: Build error with mzscheme but without GUI.
Solution: Adjust #ifdefs. (Ken Takata, closes #12042) Also fix function

argument.

Patch 9.0.1342
Problem: MS-Windows: linking may fail with space in directory name.
Solution: Add quotes. (closes #12050)

Patch 9.0.1343
Problem: Check for OSC escape sequence doesn't work.
Solution: Move square bracket to the right place. (Johan Mattsson,

closes #12048)

Patch 9.0.1344
Problem: Check for OSC escape sequence doesn't work.
Solution: Fix typo in index.

Patch 9.0.1345
Problem: Too many "else if" statements for handling options.
Solution: Add more functions to handle options. (Yegappan Lakshmanan,

closes #12051)

version9.txt — 4106

Patch 9.0.1346
Problem: Starlark files are not recognized.
Solution: Add patterns for Starlark files. (Amaan Qureshi, closes #12049)

Patch 9.0.1347
Problem: "gr CTRL-O" stays in Insert mode. (Pierre Ganty)
Solution: Do not set restart_edit when "cmdchar" is 'v'. (closes #12045)

Patch 9.0.1348
Problem: Un-grammar files are not recognized.
Solution: Add patterns for Un-grammar files. (Amaan Qureshi, closes #12034)

Patch 9.0.1349
Problem: "gr" with a count fails.
Solution: Break out of the loop only after using the count.

Patch 9.0.1350
Problem: CPON files are not recognized.
Solution: Add patterns for CPON files. (Amaan Qureshi, closes #12053)

Patch 9.0.1351
Problem: Dhall files are not recognized.
Solution: Add patterns for Dhall files. (Amaan Qureshi, closes #12052)

Patch 9.0.1352
Problem: "ignore" files are outdated.
Solution: Update "ignore" files. (Ken Takata, closes #12056)

Patch 9.0.1353
Problem: Too many "else if" statements to handle option values.
Solution: Add more functions to handle option value changes. (Yegappan

Lakshmanan, closes #12058)

Patch 9.0.1354
Problem: "gr CTRL-G" stays in virtual replace mode. (Pierre Ganty)
Solution: Prepend CTRL-V before control characters. (closes #12045)

Patch 9.0.1355
Problem: No error when declaring a class twice. (Ernie Rael)
Solution: Pass different flags when declaring the class. (closes #12057)

Patch 9.0.1356
Problem: Cannot cancel "gr" with Esc.
Solution: Make "gr<Esc>" do nothing. (closes #12064)

Patch 9.0.1357
Problem: Using null_object results in an internal error. (Ernie Rael)
Solution: Add instructions for pushing an object and class. (closes #12044)

Patch 9.0.1358
Problem: Compilation error with some compilers.
Solution: Avoid using "class" as member name.

Patch 9.0.1359
Problem: Too many "else if" statements in handling options.
Solution: Add more functions for handling option changes. (Yegappan

Lakshmanan, closes #12060)

Patch 9.0.1360

version9.txt — 4107

Problem: Cue files are not recognized.
Solution: Add patterns for Cue files. (Amaan Qureshi, closes #12067)

Patch 9.0.1361
Problem: extendnew() not sufficiently tested.
Solution: Add a few more test cases for extendnew(). (closes #12075)

Patch 9.0.1362
Problem: ml_get error when going to another tab. (Daniel J. Perry)
Solution: Do not call update_topline() if "curwin" is invalid.

(closes #11907)

Patch 9.0.1363
Problem: Crash when :def function has :break in skipped block. (Ernie Rael)
Solution: Don't generate a jump for a skipped :break. (closes #12077)

Patch 9.0.1364
Problem: Build error with older Mac OS.
Solution: Adjust #ifdef. (Yee Cheng Chin, closes #12074)

Patch 9.0.1365
Problem: Dead test code.
Solution: Remove code that depends on Farsi, which has been removed.

(closes #12084)

Patch 9.0.1366
Problem: Functions for setting options are in random order.
Solution: Sort functions alphabetically. (Yegappan Lakshmanan,

closes #12082)

Patch 9.0.1367
Problem: Divide by zero in zero-width window.
Solution: Check the width is positive.

Patch 9.0.1368
Problem: Bass files are not recognized.
Solution: Add patterns for Bass files. (Amaan Qureshi, closes #12088)

Patch 9.0.1369
Problem: Still some "else if" constructs for setting options.
Solution: Add a few more functions for handling options. (Yegappan

Lakshmanan, closes #12090)

Patch 9.0.1370
Problem: Crash when using a NULL object. (Ernie Rael)
Solution: Check for NULL and give an error message. (closes #12083)

Patch 9.0.1371
Problem: Ballooneval interferes with Insert completion.
Solution: Ignore mouse-move events when completing. (closes #12094,

closes #12092)

Patch 9.0.1372
Problem: Test for 'toolbariconsize' may fail.
Solution: Only test 'toolbariconsize' when it is supported. (James McCoy,

closes #12095)

Patch 9.0.1373
Problem: Wrong text displayed when using both 'linebreak' and 'list'.
Solution: Only set "c_extra" to NUL when "p_extra" is not empty. (Hirohito

version9.txt — 4108

Higashi, closes #12065)

Patch 9.0.1374
Problem: Function for setting options not used consistently.
Solution: Use a function for 'encoding' and terminal options. (Yegappan

Lakshmanan, closes #12099)

Patch 9.0.1375
Problem: Crash when getting member of obj of unknown class.
Solution: Check for NULL class and give an error message. (Ernie Rael,

closes #12096)

Patch 9.0.1376
Problem: Accessing invalid memory with put in Visual block mode.
Solution: Adjust the cursor column if needed.

Patch 9.0.1377
Problem: job_status() may return "dead" if the process parent changed.
Solution: Call mch_process_running() to check if the job is still alive.

Patch 9.0.1378
Problem: Illegal memory access when using virtual editing.
Solution: Make sure "startspaces" is not negative.

Patch 9.0.1379
Problem: Functions for handling options are not ordered.
Solution: Put functions in alphabetical order. (Yegappan Lakshmanan,

closes #12101)

Patch 9.0.1380
Problem: CTRL-X on 2**64 subtracts two. (James McCoy)
Solution: Correct computation for large number. (closes #12103)

Patch 9.0.1381
Problem: ACCESS_ names have a conflict with on some systems.
Solution: Rename by prepending VIM_. (Ola Söder, closes #12105)

Patch 9.0.1382
Problem: Failing test for strptime() doesn't show returned value.
Solution: Use assert_equal() instead of assert_true().

Patch 9.0.1383
Problem: xxd: combination of little endian and cols fails. (Aapo

Rantalainen)
Solution: Round up the space taken by the hex output. (closes #12097)

Patch 9.0.1384
Problem: Setting HOMEBREW_NO_AUTO_UPDATE is not needed with Homebrew

version 4.
Solution: Remove setting HOMEBREW_NO_AUTO_UPDATE. (closes #12008)

Patch 9.0.1385
Problem: g'Esc is considered an error.
Solution: Make g'Esc silently abandon the command. (closes #12110)

Patch 9.0.1386
Problem: Options test fails with some window width.
Solution: Adjust what text the test checks with. (closes #12111)

Patch 9.0.1387

version9.txt — 4109

Problem: Scrollbar test sporadically fails.
Solution: Mark the scrollbar test as flaky. (Christian Brabandt,

closes #12113)

Patch 9.0.1388
Problem: Amiga: not all builds use gethostname().
Solution: Use gethostname() for all builds except AROS. (Ola Söder,

closes #12107)

Patch 9.0.1389
Problem: Amiga: a couple of include files are included twice.
Solution: Remove duplicate includes. (Ola Söder, closes #12106)

Patch 9.0.1390
Problem: FOR_ALL_ macros are defined in an unexpected file.
Solution: Move FOR_ALL_ macros to macros.h. Add FOR_ALL_HASHTAB_ITEMS.

(Yegappan Lakshmanan, closes #12109)

Patch 9.0.1391
Problem: "clear" macros are not always used.
Solution: Use ALLOC_ONE, VIM_CLEAR, CLEAR_POINTER and CLEAR_FIELD in more

places. (Yegappan Lakshmanan, closes #12104)

Patch 9.0.1392
Problem: Using NULL pointer with nested :open command.
Solution: Check that ccline.cmdbuff is not NULL.

Patch 9.0.1393
Problem: Cairo files are not recognized.
Solution: Add a pattern for Cairo files. (Amaan Qureshi, closes #12118)

Patch 9.0.1394
Problem: Unx Tal files are not recognized.
Solution: Add a pattern for Unx Tal files. (Amaan Qureshi, closes #12117)

Patch 9.0.1395
Problem: Odin files are not recognized.
Solution: Add a pattern for Odin files. (Amaan Qureshi, closes #12122)

Patch 9.0.1396
Problem: sort(list, 'N') does not work in Vim9 script context.
Solution: Convert string to number without giving an error. (closes #12061)

Patch 9.0.1397
Problem: Highlight for popupmenu kind and extra cannot be set.
Solution: Add PmenuKind, PmenuKindSel, PmenuExtra and PmenuExtraSel

highlight groups and use them. (Gianmaria Bajo, closes #12114)

Patch 9.0.1398
Problem: Profile test repeats the headers many times.
Solution: Put the headers in script variables.

Patch 9.0.1399
Problem: Highlight test script has a few problems.
Solution: Rewrite the script in Vim9 syntax. (closes #10379)

Patch 9.0.1400
Problem: find_file_in_path() is not reentrant.
Solution: Instead of global variables pass pointers to the functions.

(closes #12093)

version9.txt — 4110

Patch 9.0.1401
Problem: Condition is always true.
Solution: Remove the condition. (closes #12139)

Patch 9.0.1402
Problem: Crash when using null_class.
Solution: Give an error when trying to use a null class.

Patch 9.0.1403
Problem: Unused variables and functions.
Solution: Delete items and adjust #ifdefs. (Dominique Pellé, closes #12145)

Patch 9.0.1404
Problem: Compilation error with some compilers.
Solution: Adjust array initialization. (John Marriott)

Patch 9.0.1405
Problem: Missing check for out-of-memory.
Solution: Check for alloc() returning NULL pointer. (closes #12149)

Patch 9.0.1406
Problem: ILE RPG files are not recognized.
Solution: Add patterns for ILE RPG files. (Andreas Louv, issue #12152)

Patch 9.0.1407
Problem: TableGen files are not recognized.
Solution: Add a pattern for TableGen files. (Amaan Qureshi, closes #12156)

Patch 9.0.1408
Problem: QMLdir files are not recognized.
Solution: Add a pattern for QMLdir files. (Amaan Qureshi, closes #12161)

Patch 9.0.1409
Problem: Racket files are recognized as scheme.
Solution: Recognize rackets files separately. (Gabriel Kakizaki,

closes #12164, closes #12162)

Patch 9.0.1410
Problem: MacOS: sed fails on .po files.
Solution: Set $LANG to "C". (Yee Cheng Chin, closes #12153)

Patch 9.0.1411
Problem: Accuracy of profiling is not optimal.
Solution: Use CLOCK_MONOTONIC if possible. (Ernie Rael, closes #12129)

Patch 9.0.1412
Problem: Pony files are not recognized.
Solution: Add a pattern for Pony files. (Amaan Qureshi, closes #12155)

Patch 9.0.1413
Problem: Compiler warning for unused variable.
Solution: Move variable declaration. (John Marriott)

Patch 9.0.1414
Problem: <M-S-x> in Kitty does not use the Shift modifier.
Solution: Apply the Shift modifier to ASCII letters. (closes #11913)

Patch 9.0.1415
Problem: Crystal files are not recognized.

version9.txt — 4111

Solution: Add a pattern for Crystal files. (Amaan Qureshi, closes #12175)

Patch 9.0.1416
Problem: Crash when collection is modified when using filter().
Solution: Lock the list/dict/blob. (Ernie Rael, closes #12183)

Patch 9.0.1417
Problem: ESDL files are not recognized.
Solution: Add a pattern for ESDL files. (Amaan Qureshi, closes #12174)

Patch 9.0.1418
Problem: The included xdiff code is a bit outdated.
Solution: Sync with the latest git xdiff code. (Yee Cheng Chin,

closes #12181)

Patch 9.0.1419
Problem: Lean files are not recognized.
Solution: Add a pattern for Lean files. (Amaan Qureshi, closes #12177)

Patch 9.0.1420
Problem: Build failure because SIZE_MAX is not defined.
Solution: Define SIZE_MAX when missing. (John Marriott)

Patch 9.0.1421
Problem: Nu files are not recognized.
Solution: Add a pattern for Nu files. (Amaan Qureshi, closes #12172)

Patch 9.0.1422
Problem: Sage files are not recognized.
Solution: Add a pattern for Sage files. (Amaan Qureshi, closes #12176)

Patch 9.0.1423
Problem: WebAssembly Interface Type files are not recognized.
Solution: Add a pattern for WIT files. (Amaan Qureshi, closes #12173)

Patch 9.0.1424
Problem: Unused macros are defined.
Solution: Remove the unused macros.

Patch 9.0.1425
Problem: "wat" and "wast" files are one filetype.
Solution: Add a separate filetype for "wat" files. (Amaan Qureshi,

closes #12165)

Patch 9.0.1426
Problem: Indent wrong after "export namespace" in C++.
Solution: Skip over "inline" and "export" in any order. (Virginia Senioria,

closes #12134, closes #12133)

Patch 9.0.1427
Problem: Warning for uninitialized variable. (Tony Mechelynck)
Solution: Add #ifdef.

Patch 9.0.1428
Problem: Cursor in wrong position when leaving insert mode.
Solution: Update the w_valid flags. Position the cursor also when not

redrawing. (closes #12137)

Patch 9.0.1429
Problem: Invalid memory access when ending insert mode.

version9.txt — 4112

Solution: Check if the insert_skip value is valid.

Patch 9.0.1430
Problem: Livebook files are not recognized.
Solution: Add a pattern for Livebook files. (Mathias Jean Johansen,

closes #12203)

Patch 9.0.1431
Problem: getscriptinfo() loops even when specific SID is given.
Solution: Only loop when needed. Give a clearer error message.

(closes #12207)

Patch 9.0.1432
Problem: Completion popup in wrong position with virtual text "above".
Solution: Adjust the column. (closes #12210)

Patch 9.0.1433
Problem: On some systems the Lua library is not found.
Solution: Check if a subdirectory for Lua exists. (closes #4475)

Patch 9.0.1434
Problem: Crash when adding package already in 'runtimepath'.
Solution: Change order for using 'runtimepath' entries. (closes #12215)

Patch 9.0.1435
Problem: Scrolling too many lines when 'wrap' and 'diff' are set.
Solution: Only scroll by screenlines for 'diff' when 'wrap' is not set.

(closes #12211)

Patch 9.0.1436
Problem: Cannot compare a typed variable with v:none.
Solution: Allow for "x is v:none" and "x isnot v:none". (issue #12194)

Patch 9.0.1437
Problem: Test fails with different error number.
Solution: Adjust the expected error.

Patch 9.0.1438
Problem: .fs files are falsely recognized as forth files.
Solution: Check 100 lines for something that looks like forth. (Johan

Kotlinski, closes #12219, closes #11988)

Patch 9.0.1439
Problem: Start Insert mode when accessing a hidden prompt buffer.
Solution: Call leaving_window() in aucmd_restbuf(). (Thorben Tröbst,

closes #12148, closes #12147)

Patch 9.0.1440
Problem: "rvim" can execute a shell through :diffpatch.
Solution: Disallow the shell "patch" command.

Patch 9.0.1441
Problem: MacOS: Python 3 using framework do not set dll name properly.
Solution: Use the framework prefix. (Yee Cheng Chin, closes #12189)

Patch 9.0.1442
Problem: mapset() does not restore non-script context.
Solution: Also accept negative sid. (closes #12132)

Patch 9.0.1443

version9.txt — 4113

Problem: Ending Insert mode when accessing a hidden prompt buffer.
Solution: Don't stop Insert mode when it was active before. (closes #12237)

Patch 9.0.1444
Problem: Crash when passing NULL to setcmdline(). (Andreas Louv)
Solution: Use tv_get_string() instead of using v_string directly.

(closes #12231, closes #12227)

Patch 9.0.1445
Problem: openSUSE: configure doesn't find the Motif library. (Tony

Mechelynck)
Solution: Also search in /usr/lib64.

Patch 9.0.1446
Problem: Unnecessary checks for the "skip" flag when skipping.
Solution: Remove the unnecessary checks. (closes #12254)

Patch 9.0.1447
Problem: Condition is always true.
Solution: Remove the useless condition. (closes #12253)

Patch 9.0.1448
Problem: Diff test fails on MacOS 13.
Solution: Install GNU diffutils. (Ozaki Kiichi, closes #12258)

Patch 9.0.1449
Problem: Test for prompt buffer is flaky.
Solution: Use WaitForAssert() instead of TermWait(). (Ozaki Kiichi,

closes #12247)

Patch 9.0.1450
Problem: MacOS: building fails if clock_gettime() is not available.
Solution: Add a configure check for clock_gettime(). (closes #12242)

Patch 9.0.1451
Problem: Unnecessary redrawing when 'showcmdloc' is not "last".
Solution: Redraw later when "showcmd_is_clear" is set. (Luuk van Baal,

closes #12260)

Patch 9.0.1452
Problem: Code using EVAL_CONSTANT is dead, it is never set.
Solution: Remove EVAL_CONSTANT. (closes #12252)

Patch 9.0.1453
Problem: Typos in source code and tests.
Solution: Fix the typos. (Dominique Pellé, closes #12217)

Patch 9.0.1454
Problem: Code indenting is confused by macros.
Solution: Put semicolon after the macros instead of inside. (Ozaki Kiichi,

closes #12257)

Patch 9.0.1455
Problem: C++ 20 modules are not recognized.
Solution: Add patterns to recognize C++ 20 modules as "cpp". (Ben Jackson,

closes #12261)

Patch 9.0.1456
Problem: Shortmess test depends on order of test execution.
Solution: Clear messages. (closes #12264)

version9.txt — 4114

Patch 9.0.1457
Problem: No regression test for what patch 9.0.1333 fixes.
Solution: Extend existing test to cover the fixed problem. (issue #11930)

Patch 9.0.1458
Problem: Buffer overflow when expanding long file name.
Solution: Use a larger buffer and avoid overflowing it. (Yee Cheng Chin,

closes #12201)

Patch 9.0.1459
Problem: Typo in name of type.
Solution: Change funccal_T to funccall_T. (closes #12265)

Patch 9.0.1460
Problem: Insufficient testing for getcmdcompltype().
Solution: Add a few more test cases. (closes #12268)

Patch 9.0.1461
Problem: Ruler not drawn correctly when using 'rulerformat'.
Solution: Adjust formatting depending on whether the ruler is drawn in the

statusline or the command line. (Sean Dewar, closes #12246)

Patch 9.0.1462
Problem: Recursively calling :defer function if it does :qa.
Solution: Clear the defer entry before calling the function. (closes #12266)

Patch 9.0.1463
Problem: Virtual text truncation only works with Unicode 'encoding'.
Solution: Convert the ellipsis character to 'encoding' if needed. (Hirohito

Higashi, closes #12233)

Patch 9.0.1464
Problem: Strace filetype detection is expensive.
Solution: Match with a cheap pattern first. (Federico Mengozzi,

closes #12220)

Patch 9.0.1465
Problem: Haiku build fails.
Solution: Do not include globals.h and proto.h twice. (Ozaki Kiichi,

closes #12273)

Patch 9.0.1466
Problem: Cannot use an object member name as a method argument.
Solution: Do not give an error for using an object member name for a method

argument. (Hirohito Higashi, closes #12241, closes #12225)
Fix line number for other argument error.

Patch 9.0.1467
Problem: Jenkinsfiles are not recognized as groovy.
Solution: Add a pattern for Jenkinsfiles. (closes #12236)

Patch 9.0.1468
Problem: Recursively calling :defer function if it does :qa in a compiled

function.
Solution: Clear the defer entry before calling the function. (closes #12271)

Patch 9.0.1469
Problem: Deferred functions not called from autocommands.
Solution: Also go through the funccal_stack. (closes #12267)

version9.txt — 4115

Patch 9.0.1470
Problem: Deferred functions invoked in unexpected order when using :qa and

autocommands.
Solution: Call deferred functions for the current funccal before using the

stack. (closes #12278)

Patch 9.0.1471
Problem: Warnings for function declarations.
Solution: Add argument types. (Michael Jarvis, closes #12277)

Patch 9.0.1472
Problem: ":drop fname" may change the last used tab page.
Solution: Restore the last used tab page when :drop has changed it.

(closes #12087)

Patch 9.0.1473
Problem: CI does not run sound tests.
Solution: Re-enable sound tests. Use "apt-get" instead of "apt". (Ozaki

Kiichi, closes #12280)

Patch 9.0.1474
Problem: CI runs with old version of Ubuntu and tools.
Solution: Update CI to more recent versions. (closes #11092)

Patch 9.0.1475
Problem: Busted configuration files are not recognized.
Solution: Recognize busted configuration files as Lua. (Craig MacEachern,

closes #12209)

Patch 9.0.1476
Problem: Lines put in non-current window are not displayed. (Marius

Gedminas)
Solution: Don't increment the topline when inserting just above it.

(closes #12212)

Patch 9.0.1477
Problem: Crash when recovering from corrupted swap file.
Solution: Check for a valid page count. (closes #12275)

Patch 9.0.1478
Problem: Filetypes for *.v files not detected properly.
Solution: Use the file contents to detect the filetype. (Turiiya,

closes #12281)

Patch 9.0.1479
Problem: Small source file problems; outdated list of distributed files.
Solution: Small updates to source files and list of distributed files.

Patch 9.0.1480
Problem: Using popup menu may leave text in the command line.
Solution: Clear the command line if the popup menu covered it. (Luuk van

Baal, closes #12286)

Patch 9.0.1481
Problem: Decrypting with libsodium may fail if the library changes.
Solution: Add parameters used to the encrypted file header. (Christian

Brabandt, closes #12279)

Patch 9.0.1482

version9.txt — 4116

Problem: Crash when textprop has a very large "padding" value. (Yegappan
Lakshmanan)

Solution: Avoid the "after" count to go negative.

Patch 9.0.1483
Problem: += operator does not work on class member.
Solution: Do not skip as if "this." was used. (Christian Brabandt,

closes #12263)

Patch 9.0.1484
Problem: Coverity warns for using invalid array index.
Solution: Add entry for Xchacha, even though it is not used.

Patch 9.0.1485
Problem: no functions for converting from/to UTF-16 index.
Solution: Add UTF-16 flag to existing functions and add strutf16len() and

utf16idx(). (Yegappan Lakshmanan, closes #12216)

Patch 9.0.1486
Problem: Parallel make might not work.
Solution: Add missing dependencies. (Samuel Dionne-Riel, closes #12288)

Patch 9.0.1487
Problem: Content-type header for LSP channel not according to spec.
Solution: Use "vscode-jsonrpc" instead of "vim-jsonrpc". (Yegappan

Lakshmanan, closes #12295)

Patch 9.0.1488
Problem: xchacha20v2 crypt header is platform dependent.
Solution: Avoid using "size_t". (Ozaki Kiichi, closes #12296)

Patch 9.0.1489
Problem: Crypt with libsodium is not tested on CI.
Solution: Configure testing with libsodium. (Ozaki Kiichi, closes #12297)

Patch 9.0.1490
Problem: The ModeChanged event may be triggered too often.
Solution: Only trigger ModeChanged when no operator is pending.

(closes #12298)

Patch 9.0.1491
Problem: Wrong scrolling with ls=0 and :botright split.
Solution: Add statusline before calling frame_new_height(). (closes #12299)

Patch 9.0.1492
Problem: Using uninitialized memory when argument is missing.
Solution: Check there are sufficient arguments before the base.

(closes #12302)

Patch 9.0.1493
Problem: Popup menu position wrong in window with toolbar.
Solution: Take the window toolbar into account when positioning the popup

menu. (closes #12308)

Patch 9.0.1494
Problem: Crash when recovering from corrupted swap file.
Solution: Bail out when the line index looks wrong. (closes #12276)

Patch 9.0.1495
Problem: GTK3: hiding the mouse pointer does not work. (Rory O’Kane)

version9.txt — 4117

Solution: Set alpha level to zero. (Kenny Stauffer, closes #12293,
closes #3256)

Patch 9.0.1496
Problem: Test restoring register with wrong value.
Solution: Correct name of variable. (closes #12310)

Patch 9.0.1497
Problem: The ruler percentage can't be localized.
Solution: Use a string that can be translated. (Emir Sari, closes #12311)

Patch 9.0.1498
Problem: In a terminal window the cursor may jump around. (Kenny Stauffer)
Solution: Do not move the cursor to the position for terminal-normal mode.

(closes #12312)

Patch 9.0.1499
Problem: Using uninitialized memory with fuzzy matching.
Solution: Initialize the arrays used to store match positions.

Patch 9.0.1500
Problem: The falsy operator is not tested properly.
Solution: Add a few more test cases. (closes #12319)

Patch 9.0.1501
Problem: Crash with nested :try and :throw in catch block.
Solution: Jump to :endtry before returning from function. (closes #12245)

Patch 9.0.1502
Problem: No test for deleting the end of a long wrapped line.
Solution: Add a test to check the right text is displayed. (Luuk van Baal,

closes #12318)

Patch 9.0.1503
Problem: Luau files are not recognized.
Solution: Add a patter for Luau files. (Amaan Qureshi, closes #12317)

Patch 9.0.1504
Problem: No error when calling remote_startserver() with an empty string.
Solution: Give an error for an empty string. (Hirohito Higashi,

closes #12327)

Patch 9.0.1505
Problem: Error when heredoc content looks like heredoc.
Solution: Handle curly expressions. (closes #12325)

Patch 9.0.1506
Problem: Line number not displayed when using 'smoothscroll'.
Solution: Adjust condition for showing the line number. (closes #12333)

Patch 9.0.1507
Problem: Assert message is confusing with boolean result. assert_inrange()

replaces message instead of adding it.
Solution: Don't put quotes around expected boolean value. Append message

for assert_inrange(). (closes #12342, closes #12341)

Patch 9.0.1508
Problem: Catch does not work when lines are joined with a newline.
Solution: Set "nextcmd" appropriately. (closes #12348)

version9.txt — 4118

Patch 9.0.1509
Problem: Error message lacks mentioning the erroneous argument.
Solution: Specify the argument that the error is for.

Patch 9.0.1510
Problem: Misleading variable name for error message.
Solution: Change "name" to "number". (closes #12345)

Patch 9.0.1511
Problem: Crash when using wrong arg types to assert_match().
Solution: Check for NULL pointer. (closes #12349)

Patch 9.0.1512
Problem: Inserting lines when scrolling with 'smoothscroll' set.
Solution: Adjust line height computation for w_skipcol. (Luuk van Baal,

closes #12350)

Patch 9.0.1513
Problem: Text scrolls unnecessarily when splitting and 'splitkeep' is not

"cursor".
Solution: Avoid resetting w_skipcol. (Luuk van Baal, closes #12334)

Patch 9.0.1514
Problem: Test waits unnecessarily long before checking screendump.
Solution: Remove TermWait() call.

Patch 9.0.1515
Problem: reverse() does not work for a String.
Solution: Implement reverse() for a String. (Yegappan Lakshmanan,

closes #12179)

Patch 9.0.1516
Problem: Cannot use special keys in <Cmd> mapping.
Solution: Do allow for special keys in <Cmd> and <ScriptCmd> mappings.

(closes #12326)

Patch 9.0.1517
Problem: MacOS: configure removes -O2 from $CFLAGS.
Solution: Only adjust $CFLAGS for gcc. (closes #12351)

Patch 9.0.1518
Problem: Search stats not always visible when searching backwards.
Solution: Do not display the top/bot message on top of the search stats.

(Christian Brabandt, closes #12322, closes #12222)

Patch 9.0.1519
Problem: Global 'filetype' is set when it is detected from the file content.
Solution: Set the local 'filetype' option value.

Patch 9.0.1520
Problem: Completion for option name includes all bool options.
Solution: Do not recognize the "noinv" prefix. Prefix "no" or "inv" when

appropriate.

Patch 9.0.1521
Problem: Failing redo of command with control characters.
Solution: Use AppendToRedobuffLit() for colon commands. (closes #12354)

Patch 9.0.1522
Problem: Some functions give two error messages.

version9.txt — 4119

Solution: Do not give a second error message. (closes #12352)

Patch 9.0.1523
Problem: Some error messages are not marked for translation.
Solution: Surround the messages in _(). (closes #12356)

Patch 9.0.1524
Problem: Passing -1 for bool is not always rejected.
Solution: Check for error in a better way. (closes #12358)

Patch 9.0.1525
Problem: 'smoothscroll' does not always work properly.
Solution: Do not reset w_skipcol after it was intentionally set. (Luuk van

Baal, closes #12360, closes #12199, closes #12323)

Patch 9.0.1526
Problem: Condition is always true.
Solution: Remove unnecessary condition. (closes #12359)

Patch 9.0.1527
Problem: Crash when using negative value for term_cols.
Solution: Check for invalid term_cols value. (Kenta Sato, closes #12362)

Patch 9.0.1528
Problem: Libsodium encryption is only used with "huge" features, even when

manually enabled through configure. (Tony Mechelynck)
Solution: Remove the condition on FEAT_HUGE.

Patch 9.0.1529
Problem: Code style test doesn't check for space after "if".
Solution: Add a test for space.

Patch 9.0.1530
Problem: Cursor moves to wrong line when 'foldmethod' is "diff". (Rick

Howe)
Solution: Adjust logic for scrolling. (Luuk van Baal, closes #12364,

closes #12218)

Patch 9.0.1531
Problem: Crash when register contents ends up being invalid.
Solution: Check "y_array" is not NULL.

Patch 9.0.1532
Problem: Crash when expanding "~" in substitute causes very long text.
Solution: Limit the text length to MAXCOL.

Patch 9.0.1533
Problem: Test for 'smoothscroll' is ineffective.
Solution: Change the order of testing "zb" and "zt". (Luuk van Baal,

closes #12366)

Patch 9.0.1534
Problem: Test for expanding "~" in substitute takes too long.
Solution: Disable the test for now.

Patch 9.0.1535
Problem: Test commented out in a wrong way.
Solution: Use legacy script comment character.

Patch 9.0.1536

version9.txt — 4120

Problem: CI: sound dummy stopped working.
Solution: Temporarily stop using sound dummy.

Patch 9.0.1537
Problem: Message for opening the cmdline window is not translated.
Solution: Add gettext() and scan the defaults script for text to be

translated. (closes #12371)

Patch 9.0.1538
Problem: :wqall does not trigger ExitPre. (Bart Libert)
Solution: Move preparations for :qall to a common function. (closes #12374)

Patch 9.0.1539
Problem: Typst filetype is not recognized.
Solution: Distinguish between sql and typst. (Gaetan Lepage, closes #12363)

Patch 9.0.1540
Problem: reverse() on string doesn't work in compiled function.
Solution: Accept string in argument type check. (Yegappan Lakshmanan,

closes #12377)

Patch 9.0.1541
Problem: CI: sound dummy is disabled.
Solution: Make sound dummy work again. (closes #12380)

Patch 9.0.1542
Problem: Line not fully displayed if it doesn't fit in the screen.
Solution: Do not reset s_skipcol if not needed. (Luuk van Baal,

closes #12376)

Patch 9.0.1543
Problem: Display errors when making topline shorter and 'smoothscroll' is

set.
Solution: Reset w_skipcol when the topline becomes shorter than its current

value. (Luuk van Baal, closes #12367)

Patch 9.0.1544
Problem: Recent glibc marks sigset() as a deprecated.
Solution: Use sigaction() in mch_signal() if possible. (Ozaki Kiichi,

closes #12373)

Patch 9.0.1545
Problem: Text not scrolled when cursor moved with "g0" and "h".
Solution: Adjust w_skipcol when needed. (Luuk van Baal, closes #12387)

Patch 9.0.1546
Problem: Some commands for opening a file don't use 'switchbuf'.
Solution: Use 'switchbuf' for more commands. (Yegappan Lakshmanan,

closes #12383, closes #12381)

Patch 9.0.1547
Problem: Coveralls workflow on CI is commented out.
Solution: Remove the Coveralls workflow. (closes #12389)

Patch 9.0.1548
Problem: CI: check in sound-dummy module may throw an error.
Solution: Check whether apt-cache can show the package description.

(Christian Brabandt, closes #12390)

Patch 9.0.1549

version9.txt — 4121

Problem: USD filetype is not recognized.
Solution: Add patterns for USD filetype. (Colin Kennedy, closes #12370)

Patch 9.0.1550
Problem: In cmdline window S-Tab does not select previous completion.

(Maxim Kim)
Solution: Add a mapping for S-Tab. (closes #12116)

Patch 9.0.1551
Problem: Position of marker for 'smoothscroll' not computed correctly.
Solution: Take 'list' and other options into account. (Luuk van Baal,

closes #12393)

Patch 9.0.1552
Problem: CI: sound-dummy module is not installed.
Solution: Invert using the result of the condition. (closes #12394)

Patch 9.0.1553
Problem: CI: using slightly outdated gcc version.
Solution: Use "brew" to get a more recent gcc version. (closes #12391)

Patch 9.0.1554
Problem: Code for handling 'switchbuf' is repeated.
Solution: Add a function to handle 'switchbuf'. (Yegappan Lakshmanan,

closes #12397)

Patch 9.0.1555
Problem: setcharsearch() does not clear last searched char properly.
Solution: Do not accept lastc_bytelen smaller than one. (closes #12398)

Patch 9.0.1556
Problem: Vim9: error for missing "return" after "throw".
Solution: Set had_return flag for "throw". (closes #12262)

Patch 9.0.1557
Problem: Test failures for unreachable code.
Solution: Add a test override to ignore unreachable code.

Patch 9.0.1558
Problem: Wrong error for unreachable code after :throw.
Solution: Adjust the error message.

Patch 9.0.1559
Problem: Function argument types not always checked and using v:none may

cause an error.
Solution: Check argument types once the function type is known. Do not give

an error for using v:none as an argument. (closes #12200)

Patch 9.0.1560
Problem: Win32: When 'encoding' is set $PATH has duplicate entries.
Solution: Only append the directory if it is not there yet. (Ken Takata,

closes #12400, closes #12372)

Patch 9.0.1561
Problem: Display wrong when moving cursor to above the top line and

'smoothscroll' is set.
Solution: Call adjust_skipcol() in more places and make it work better.

(Luuk van Baal, closes #12395)

Patch 9.0.1562

version9.txt — 4122

Problem: Mixing package managers is not a good idea.
Solution: Install gcc 13 with apt-get. (closes #12405)

Patch 9.0.1563
Problem: GTK3: window manager resize hints are incomplete.
Solution: Use NULL for second argument of gtk_window_set_geometry_hints().

(Kenny Stauffer closes #11055)

Patch 9.0.1564
Problem: Display moves up and down with 'incsearch' and 'smoothscroll'.
Solution: Do not check if w_skipcol changed. (Luuk van Baal, closes #12410,

closes #12409)

Patch 9.0.1565
Problem: Json lines files are not recognized.
Solution: Add a pattern to detect "jsonl" files. (issue #7520)

Patch 9.0.1566
Problem: Motif: GUI scrollbar test fails in 24 lines terminal.
Solution: Skip the part of the test that fails for now.

Patch 9.0.1567
Problem: Profiler calculation may be wrong on 32 bit builds.
Solution: Use 64 bit variable if possible. (Isao Sato, closes #12412)

Patch 9.0.1568
Problem: With 'smoothscroll' cursor may move below botline.
Solution: Call redraw_later() if needed, Compute cursor row with adjusted

condition. (Luuk van Baal, closes #12415)

Patch 9.0.1569
Problem: Cannot use "this.member" in lambda in class method.
Solution: Adjust check for reserved keyword. (Hirohito Higashi,

closes #12416, closes #12076, closes #12336)

Patch 9.0.1570
Problem: Some tests are slow.
Solution: Make a few test cases faster.

Patch 9.0.1571
Problem: RedrawingDisabled not used consistently.
Solution: Avoid RedrawingDisabled going negative. Set RedrawingDisabled in

win_split_ins(). (closes #11961)

Patch 9.0.1572
Problem: Error messages are not translated.
Solution: Add _().

Patch 9.0.1573
Problem: Error for function name has wrong line number.
Solution: Set the line number before giving the error.

Patch 9.0.1574
Problem: MS-Windows: list of translation input files incomplete.
Solution: Move the list of files to a common file. (closes #12426)

Patch 9.0.1575
Problem: "file N of M" message is not translated.
Solution: Make argument count message translatable. (close #12429)

version9.txt — 4123

Patch 9.0.1576
Problem: Users may not know what to do with an internal error.
Solution: Add a translated message with instructions.

Patch 9.0.1577
Problem: MS-Windows: context menu translations may be wrong.
Solution: Set the encoding before using gettext(). (Ken Takata,

closes #12441, closes #12431)

Patch 9.0.1578
Problem: SpellCap highlight not always updated when needed.
Solution: Handle updating line below closed fold and other situations where

only part of the window is redrawn. (Luuk van Baal, closes #12428,
closes #12420)

Patch 9.0.1579
Problem: Some error messages are not translated.
Solution: Add the N_() marker on messages. (closes #12427)

Patch 9.0.1580
Problem: CI: indent test hangs on FreeBSD.
Solution: Set 'nomore' when running the indent tests. (Ozaki Kiichi,

closes #12446)

Patch 9.0.1581
Problem: Translation does not work for plural argument.
Solution: Use PLURAL_MSG() for errors and with xgettext. (closes #12443)

Patch 9.0.1582
Problem: :stopinsert may not work in a popup close handler. (Ben Jackson)
Solution: Restore stop_insert_mode when appropriate. (closes #12452,

closes #12434)

Patch 9.0.1583
Problem: Get E304 when using 'cryptmethod' "xchacha20v2". (Steve Mynott)
Solution: Add 4th crypt method to block zero ID check. Avoid syncing a swap

file before reading the file. (closes #12433)

Patch 9.0.1584
Problem: Not all meson files are recognized.
Solution: Add "meson.options". (Liam Beguin, closes #12444)

Patch 9.0.1585
Problem: Weird use of static variables for spell checking.
Solution: Move the variables to a structure and pass them from win_update()

to win_line(). (Luuk van Baal, closes #12448)

Patch 9.0.1586
Problem: Checking translations gives an error for using two messages with

ngettext() that differ in "%" items.
Solution: Adjust the check script to tolerate omitting one "%" item.

Patch 9.0.1587
Problem: Corn config files are not recognized.
Solution: Add a pattern for Corn config files. (Jake Stanger, closes #12449)

Patch 9.0.1588
Problem: Incsearch not triggered when pasting clipboard register on the

command line.
Solution: Also set "literally" when using a clipboard register. (Ken Takata,

version9.txt — 4124

closes #12460)

Patch 9.0.1589
Problem: Filetype test contains too many special characters.
Solution: Use Vim9 syntax for a few things.

Patch 9.0.1590
Problem: Filetype test has trailing white space.
Solution: Remove trailing white space.

Patch 9.0.1591
Problem: Some "gomod" files are not recognized.
Solution: Check for "go.mod" file name before checking out the contents.

(Omar El Halabi, closes #12462)

Patch 9.0.1592
Problem: Not all timer tests are marked as flaky.
Solution: Set the flaky flag for all timer tests. (closes #12355)

Patch 9.0.1593
Problem: MS-Windows: assert error when compiled with debug mode.
Solution: Adjust arguments to setvbuf(). (Ken Takata, closes #12467)

Patch 9.0.1594
Problem: Some internal error messages are translated.
Solution: Consistently do not translate internal error messages.

(closes #12459)

Patch 9.0.1595
Problem: Line pointer becomes invalid when using spell checking.
Solution: Call ml_get() at the right places. (Luuk van Baal, closes #12456)

Patch 9.0.1596
Problem: :registers command does not work in sandbox.
Solution: Add flag to the command. (closes #12473)

Patch 9.0.1597
Problem: Cursor ends up below the window after a put.
Solution: Mark w_crow and w_botline invalid when changing the cursor line.

(closes #12465)

Patch 9.0.1598
Problem: screenchar(), screenchars() and screenstring() do not work

properly when 'encoding' is set to a double-byte encoding.
Solution: Fix the way the bytes of the characters are obtained.

(issue #12469)

Patch 9.0.1599
Problem: Cursor not adjusted when near top or bottom of window and

'splitkeep' is not "cursor".
Solution: Move boundary checks to outer cursor move functions, inner

functions should only return valid cursor positions. (Luuk van
Baal, closes #12480)

Patch 9.0.1600
Problem: screenpos() does not take w_skipcol into account.
Solution: Subtract w_skipcol from column. (closes #12486, closes #12476)

Patch 9.0.1601
Problem: Filetype detection fails for *.conf file without comments.

version9.txt — 4125

(Dmitrii Tcyganok)
Solution: Use "conf" filetype as a fallback for an empty .conf file.

(closes #12487, closes #12483)

Patch 9.0.1602
Problem: Stray character is visible if 'smoothscroll' marker is displayed

on top of a double-wide character.
Solution: When overwriting a double-width character with the 'smoothscroll'

marker clear the second half. (closes #12469)

Patch 9.0.1603
Problem: Display wrong when scrolling multiple lines with 'smoothscroll'

set.
Solution: Redraw when w_skipcol changed. (closes #12477, closes #12468)

Patch 9.0.1604
Problem: Errors from the codestyle test are a bit confusing.
Solution: Use assert_report() with a clearer message. Avoid a warning for

an existing swap file.

Patch 9.0.1605
Problem: Crash when calling method on super in child constructor. (Israel

Chauca Fuentes)
Solution: Clear the type list. (Ernie Rael, closes #12489, closes #12471)

Patch 9.0.1606
Problem: Using freed memory when 'foldcolumn' is set.
Solution: Save extra pointer to free it later. (closes #12492)

Patch 9.0.1607
Problem: screenpos() returns wrong row with diff filler lines.
Solution: Only add filler lines when appropriate. Also don't add the

'smoothscroll' marker when w_skipcol is zero. (closes #12485,
closes #12484)

Patch 9.0.1608
Problem: update_topline() is called twice.
Solution: Do not call update_topline() before curs_columns(). (Luuk van

Baal, closes #12495)

Patch 9.0.1609
Problem: Crash when an object indirectly references itself.
Solution: Avoid clearing an object while it is already being cleared.

(closes #12494)

Patch 9.0.1610
Problem: Display is wrong when 'smoothscroll' is set and scrolling multiple

lines.
Solution: Redraw with UPD_NOT_VALID when "skipcol" is or was set.

(closes #12490, closes #12468)

Patch 9.0.1611
Problem: v:maxcol can be changed in a :for loop.
Solution: Check for read-only loop variable. (closes #12470)

Patch 9.0.1612
Problem: "skipcol" not reset when using multi-byte characters.
Solution: Compare with w_virtcol instead of w_cursor.col. (closes #12457)

Patch 9.0.1613

version9.txt — 4126

Problem: Some make output gets picked up by 'errorformat'.
Solution: Ignore make output by default. (Gregory Anders, closes #12481)

Patch 9.0.1614
Problem: strlen() called too often for :spellrepall.
Solution: Store the result in a variable. (closes #12497)

Patch 9.0.1615
Problem: URL shortcut files are not recognized.
Solution: Add a pattern for URL shortcut files. (closes #12474)

Patch 9.0.1616
Problem: Quickfix text field is truncated.
Solution: Fix output of text field after pattern field in quickfix buffer.

(Shane Harper, closes #12498)

Patch 9.0.1617
Problem: charidx() and utf16idx() result is not consistent with byteidx().
Solution: When the index is equal to the length of the text return the

length of the text instead of -1. (Yegappan Lakshmanan,
closes #12503)

Patch 9.0.1618
Problem: Trace32 files are not recognized.
Solution: Add patterns for the t32 filetype. (Christoph Sax, closes #12505)

Patch 9.0.1619
Problem: The focus gained/lost escape sequences cause trouble for a

terminal where Vim does not expect them.
Solution: Always recognize the codes for focus gained/lost. (closes #12499)

Patch 9.0.1620
Problem: Nix files are not recognized from the hashbang line.
Solution: Add a hashbang check. (issue #12507)

Patch 9.0.1621
Problem: FILETYPE_FILE is defined to the same value multiple times. Same

for a few similar macros.
Solution: Define FILETYPE_FILE and others in feature.h only

Patch 9.0.1622
Problem: Filetype name t32 is a bit obscure.
Solution: Rename t32 to trace32. (Christoph Sax, closes #12512)

Patch 9.0.1623
Problem: The program to filetype translation is not exported.
Solution: Export Exe2filetype().

Patch 9.0.1624
Problem: Crash when calling object constructor from legacy script. (Israel

Chauca Fuentes)
Solution: Pass a pointer for "ufunc". (closes #12502)

Patch 9.0.1625
Problem: "super" is not considered a reserved name.
Solution: Add "super" to the list of reserved names. (closes #12515)

Patch 9.0.1626
Problem: Visual area not shown when using 'showbreak' and start of line is

not visible. (Jaehwang Jung)

version9.txt — 4127

Solution: Adjust "fromcol" for the space taken by 'showbreak'.
(closes #12514)

Patch 9.0.1627
Problem: No generic mechanism to test syntax plugins.
Solution: Add a syntax plugin test mechanism, using screendumps. Add a

simple test for "c".

Patch 9.0.1628
Problem: Syntax tests fail on FreeBSD.
Solution: Pass the Vim executable path with VIMPROG. (Ken Takata,

closes #12535) Adjust the paths.

Patch 9.0.1629
Problem: Having utf16idx() rounding up is inconvenient.
Solution: Make utf16idx() round down. (Yegappan Lakshmanan, closes #12523)

Patch 9.0.1630
Problem: "make clean" at the toplevel fails.
Solution: Clean the indent and syntax directories in a sub-shell. (Ben

Jackson, closes #12536, closes #12526)

Patch 9.0.1631
Problem: Passing a wrong variable type to an option gives multiple errors.
Solution: Bail out early on failure. (closes #12504)

Patch 9.0.1632
Problem: Not all cabal config files are recognized.
Solution: Add a couple of patterns. (Marcin Szamotulski, closes #12463)

Patch 9.0.1633
Problem: Duplicate code for converting float to string.
Solution: Use tv_get_string(). (closes #12521)

Patch 9.0.1634
Problem: Message is cleared when removing mode message (Gary Johnson).
Solution: Do not clear the command line after displaying a message.

Patch 9.0.1635
Problem: Error message is cleared when removing mode message.
Solution: Also reset flags when the message is further down.

Patch 9.0.1636
Problem: Expanding a pattern interferes with command line completion.
Solution: Set the file index only when appropriate. (closes #12519)

Patch 9.0.1637
Problem: Compiler warning for uninitialized variable.
Solution: Move the variable to an inner block and initialize it. (Christian

Brabandt, closes #12549)

Patch 9.0.1638
Problem: crypt tests hang and cause memory errors
Solution: Move variable to start of function.

Patch 9.0.1639
Problem: Build failure without the crypt feature.
Solution: Adjust #ifdefs

Patch 9.0.1640

version9.txt — 4128

Problem: Compiler warning for unused variables without the crypt feature.
Solution: Adjust #ifdefs

Patch 9.0.1641
Problem: The log file does not give information about window sizes.
Solution: Add a few log messages about obtaining the window size.

Patch 9.0.1642
Problem: Build failure with tiny features.
Solution: Add #ifdef's.

Patch 9.0.1643
Problem: Filetype detection fails if file name ends in many '~'.
Solution: Strip multiple '~' at the same time. (closes #12553)

Patch 9.0.1644
Problem: Not all filetype file name matches are tested.
Solution: Add more file names to test with. (Jonas Strittmatter,

closes #12569)

Patch 9.0.1645
Problem: zserio files are not recognized.
Solution: Add a pattern for zserio files. (Dominique Pellé,

closes #12544)

Patch 9.0.1646
Problem: CI: codecov may take a very long time to run.
Solution: Add a timeout. (Philip Heiduck, closes #12559)

Patch 9.0.1647
Problem: Insufficient testing for syntax plugins.
Solution: Add shell file examples. (Charles Campbell) Create a messages

file for easier debugging and reporting the test results.

Patch 9.0.1648
Problem: Result of syntax tests is hard to see.
Solution: List the failed tests.

Patch 9.0.1649
Problem: Syntax test failure causes script to abort.
Solution: Fix appending string to list.

Patch 9.0.1650
Problem: MS-Windows: default 'viewdir' may include read-only directory.
Solution: Use $HOME instead of $VIM for 'viewdir' default. (closes #12119)

Patch 9.0.1651
Problem: Unclear why syntax test fails on Mac.
Solution: Temporarily show the whole "messages" file.

Patch 9.0.1652
Problem: Unclear why syntax test fails on Mac.
Solution: Echo v:errors when it's not empty.

Patch 9.0.1653
Problem: Amiga: default 'viewdir' may not work.
Solution: Use "home:" instead of "$VIM". Add a test. (Christian Brabandt,

closes #12576)

Patch 9.0.1654

version9.txt — 4129

Problem: MS-Windows: test for default 'viewdir' fails.
Solution: Escape the pattern.

Patch 9.0.1655
Problem: Syntax test fails when Vim window is not tall enough.
Solution: Make sure each terminal window is closed.

Patch 9.0.1656
Problem: Syntax test fails when detected shell type differs.
Solution: Avoid using "/bin/sh", it depends on the system. Add a check that

the shell type detection is correct.

Patch 9.0.1657
Problem: One more syntax test depends on the system.
Solution: Use "dash" instead of "sh".

Patch 9.0.1658
Problem: Autoload files for "zig" are not installed.
Solution: Add install and uninstall rules in the makefile. (Christian

Brabandt, closes #12577, closes #12567)

Patch 9.0.1659
Problem: Termdebug: default highlight cleared when changing colorscheme.
Solution: Use a ColorScheme autocommand. (Christian Brabandt, closes #12566,

closes #12555)

Patch 9.0.1660
Problem: Error for using matchfuzzy() in Vim9 script returning a list of

dicts.
Solution: Make return type of matchfuzzy() list<any>. (Yegappan Lakshmanan,

closes #12574)

Patch 9.0.1661
Problem: BUCK files are not recognized.
Solution: Recognize BUCK files as "bzl". (Son Luong Ngoc, closes #12564)

Patch 9.0.1662
Problem: Crash when using a class member twice. (Christian J. Robinson)
Solution: Make a copy of the value.

Patch 9.0.1663
Problem: Termdebug on MS-Windows: some file names are not recognized.
Solution: Do not always change \t and \n. (Christian Brabandt,

closes #12565, closes #12560, closes #12550)

Patch 9.0.1664
Problem: Divide by zero when scrolling with 'smoothscroll' set.
Solution: Avoid using a negative width. (closes #12540, closes #12528)

Patch 9.0.1665
Problem: Empty CmdlineEnter autocommand causes errors in Ex mode.
Solution: Save and restore ex_pressedreturn. (Christian Brabandt,

closes # 12581, closes #12578)

Patch 9.0.1666
Problem: Compiler may warn for uninitialized variable.
Solution: Initialize this_props_len. (Christian Brabandt, closes #12599)

Patch 9.0.1667
Problem: Regression test doesn't fail when fix is reverted.

version9.txt — 4130

Solution: Add "n" to 'cpoptions' instead of using :winsize. (closes #12587,
issue #12528)

Patch 9.0.1668
Problem: PEM files are not recognized.
Solution: Add patterns to match PEM files. (closes #12582)

Patch 9.0.1669
Problem: Crash syncing swapfile in new buffer when using sodium crypt.

(James McCoy)
Solution: Add checks for sodium encryption. (Christian Brabandt,

closes #12591, closes #12585)

Patch 9.0.1670
Problem: Resetting local option to global value is inconsistent.
Solution: Handle "<" specifically for 'scrolloff' and 'sidescrolloff'.

(closes #12594)

Patch 9.0.1671
Problem: Termdebug: error with more than 99 breakpoints.
Solution: Use a different sign for breakpoint 100 and over. (closes #12589,

closes #12588)

Patch 9.0.1672
Problem: Tabline highlight wrong after truncated double width label.
Solution: Fill up half a double width character later. (closes #12614)

Patch 9.0.1673
Problem: Cannot produce a status 418 or 503 message.
Solution: Add err_teapot().

Patch 9.0.1674
Problem: Help for builtin functions is not sorted properly.
Solution: Put err_teapot() help in the right position.

Patch 9.0.1675
Problem: Test may run into timeout when using valgrind.
Solution: Use a longer timeout when using valgrind.

Patch 9.0.1676
Problem: Warning for buffer in use when exiting early.
Solution: Change file names to be able to see what buffer is in use when

exiting.

Patch 9.0.1677
Problem: Typo in syntax test input file.
Solution: Fix the typo and the expected dump files. (THARAK HEGDE,

closes #12635)

Patch 9.0.1678
Problem: Blade files are not recognized.
Solution: Add a pattern for Blade files. (closes #12650)

Patch 9.0.1679
Problem: Tests may leave leftover files around
Solution: Clean up tests and remove files

Patch 9.0.1680
Problem: sodium test fails in Github CI
Solution: Catch sodium_mlock() errors and do not error out

version9.txt — 4131

Patch 9.0.1681
Problem: Build Failure with Perl 5.38
Solution: Fix Build Failure

Patch 9.0.1682
Problem: crypt: sodium encryption is not portable
Solution: use little-endian byte order for sodium encrypted files

Patch 9.0.1683
Problem: need runtime files updated
Solution: merge various github PRs

Patch 9.0.1684
Problem: libvterm slightly outdated
Solution: Update libvterm from rev 818 to rev 839

Patch 9.0.1685
Problem: Python 3.11 interface throws deprecation warnings
Solution: ignore those warnings for gcc and clang

Patch 9.0.1686
Problem: undotree() only works for the current buffer
Solution: Add an optional "buffer number" parameter to undotree(). If

omitted, use the current buffer for backwards compatibility.

Patch 9.0.1687
Problem: mapset() not properly handling script ID
Solution: replace_termcodes() may accept a script ID

Patch 9.0.1688
Problem: cannot store custom data in quickfix list
Solution: add `user_data` field for the quickfix list

Patch 9.0.1689
Problem: python 3.12 produces warnings and fails test
Solution: Make use of raw strings in python3 tests

Patch 9.0.1690
Problem: popup_create() not aborting on errors
Solution: check for errors in arguments given and abort if an error

occurred

Patch 9.0.1691
Problem: wrong viewport restored for incsearch and smoothscroll
Solution: Save and restore skipcol as well

Patch 9.0.1692
Problem: Android not handling AI_V4MAPPED ai_flag
Solution: don't set AI_V4MAPPED flag when on Android, since

Android's getaddrinfo returns EAI_BADFLAGS if ai_flags
contains it

Patch 9.0.1693
Problem: Ctrl-Q not handled like Ctrl-V in replace mode
Solution: Handle Ctrl-Q like Ctrl-V

Patch 9.0.1694
Problem: wrong mapping applied when replaying a char search
Solution: Store a NOP after the ESC

version9.txt — 4132

Patch 9.0.1695
Problem: Crash with overlong textprop above
Solution: Consider only positive padding

Patch 9.0.1696
Problem: sodium_mlock may still fail in CI
Solution: Catch E1230 in testscript and skip test

Patch 9.0.1697
Problem: incsearch test not sufficient (after 9.0.1691)
Solution: add an additional test

Patch 9.0.1698
Problem: Test_map_restore_sid fails in GUI
Solution: Feed an unsimplified Ctrl-B

Patch 9.0.1699
Problem: compile warning for xdiff/xutils on MS-Windows
Solution: add explicit type cast from size_t to long

Patch 9.0.1700
Problem: Cannot compile with dynamic perl < 5.38 (after 9.0.1681)
Solution: Fix if_perl/dyn from perl 5.32 to 5.38

Patch 9.0.1701
Problem: vim9 crash when class member overridden
Solution: Use method_count field instead

Patch 9.0.1702
Problem: Undo test is flaky.
Solution: Apply filter and change time to "1 second ago" in both dumps.

Patch 9.0.1703
Problem: Vim9 Calling a method in an extended class fails
Solution: use method index directly

Patch 9.0.1704
Problem: Cannot use positional arguments for printf()
Solution: Support positional arguments in string formatting

Patch 9.0.1705
Problem: cursor position wrong when clicking on an unprintable char
Solution: Don't update prev_ptr when wlv.n_extra is not zero.

Patch 9.0.1706
Problem: typos in the xxd manpage
Solution: Fix typos and formatting

Patch 9.0.1707
Problem: Cannot wrap around in popup_filter_menu()
Solution: Allow to wrap around by default

Patch 9.0.1708
Problem: getcompletion() fails for user-defined commands
Solution: set context for completion function

Patch 9.0.1709
Problem: dynamic build with python 3.12 breaks
Solution: if_python3.c: Fix building dynamic Python3 interpreter

version9.txt — 4133

Patch 9.0.1710
Problem: sidescrolloff and scrolloff options work slightly

different than other global-local options
Solution: Make it behave consistent for all global-local options

Patch 9.0.1711
Problem: dead code in charset.c
Solution: remove it

Patch 9.0.1712
Problem: missing null check in object_clear()
Solution: Add null check of cl

Patch 9.0.1713
Problem: Github CI fails to load snd-dummy kernel module
Solution: Make installation of linux-modules-extra optional

Patch 9.0.1714
Problem: getcompletion() "cmdline" fails after :autocmd
Solution: Use set_cmd_context() instead of set_one_cmd_context().

Patch 9.0.1715
Problem: duplicate test in message_test.c
Solution: Remove duplicate test and make functions static

Patch 9.0.1716
Problem: Windows build with python 3.12 and clang fails
Solution: Remove the PyBool_Type function pointer for python 3.12

Patch 9.0.1717
Problem: virtcol2col returns last byte of a multi-byte char
Solution: Make it return the first byte for a multi-byte char

Patch 9.0.1718
Problem: dict-completion does not respect region
Solution: respect selected region in dict completion

Patch 9.0.1719
Problem: if_lua: crash for Lua functions invoked via Vim callbacks
Solution: Use Lua registry rather than upvalues for udata cache

Patch 9.0.1720
Problem: Vim9 class using wrong index for overridden method
Solution: Use correct index for overridden method

Patch 9.0.1721
Problem: Build failure on Windows with dynamic lua (after 9.0.1719)
Solution: move definition further down in if_lua

Patch 9.0.1722
Problem: wrong error messages when passing wrong types to count()
Solution: fix it

Patch 9.0.1723
Problem: Fix regression in {func} argument of reduce()
Solution: pass function name as string again

Patch 9.0.1724
Problem: vim9class constructor argument type checking bug

version9.txt — 4134

Solution: fix it

Patch 9.0.1725
Problem: Wrong cursor position when clicking after concealed text

with 'virtualedit'.
Solution: Store virtual columns in ScreenCols[] instead of text

columns, and always use coladvance() when clicking.

Patch 9.0.1726
Problem: incorrect heights in win_size_restore()
Solution: avoid restoring incorrect heights in win_size_restore()

Patch 9.0.1727
Problem: minor problems with the teapot()
Solution: remove the null check, update documentation

Patch 9.0.1728
Problem: missing winid argument for virtcol()
Solution: Add a {winid} argument to virtcol()

Patch 9.0.1729
Problem: screenpos() wrong result with w_skipcol and cpoptions+=n
Solution: Use adjust_plines_for_skipcol() instead of subtracting

w_skipcol.

Patch 9.0.1730
Problem: passing multiple patterns to runtime not working
Solution: prepend prefix to each argument separately

Patch 9.0.1731
Problem: blockwise Visual highlight not working with virtual text
Solution: Reset the correct variable at the end of virtual selection and

Check for double-width char inside virtual text.

Patch 9.0.1732
Problem: vimexpr: shadowing variable
Solution: Rename local variable

Patch 9.0.1733
Problem: CI: cannot cache linux-modules-extra
Solution: Enable caching and reduce failed downloads

Patch 9.0.1734
Problem: runtime completion fails for multiple args
Solution: Make it work

Patch 9.0.1735
Problem: Rename completion specific findex var
Solution: Move "findex" static variable to xp_selected in expand_T

Patch 9.0.1736
Problem: Github Actions times out after 20 minutes
Solution: Increase the timeout to 25 minutes

Patch 9.0.1737
Problem: Calling a base class method through an extended class fails
Solution: Create lookup table for member index in the interface to

to the member class implementing the interface

Patch 9.0.1738

version9.txt — 4135

Problem: Duplicate code to reverse a string
Solution: Move reverse_text() to strings.c and remove string_reverse().

Patch 9.0.1739
Problem: leftover files in libvterm
Solution: Fix cleaning of libvterm directory

Patch 9.0.1740
Problem: segfault when reading invalid viminfo file
Solution: Check the expected type in the viminfo file

Patch 9.0.1741
Problem: No type checking in interfaces
Solution: Implement member type check in vim9 interfaces

Patch 9.0.1742
Problem: Wrong curswant when clicking and the second cell of a

double-width char.
Solution: Don't copy virtcol of the first char to the second one.

Patch 9.0.1743
Problem: Parameter of gui_gtk:gui_mch_browse incorrectly marked as

UNUSED.
Solution: Remove UNUSED flag.

Patch 9.0.1744
Problem: Dead code in open_cmdwin()
Solution: Remove it

Patch 9.0.1745
Problem: Missing test coverage for blockwise Visual highlight with

virtual that starts with a double-width char.
Solution: Add a new virtual text to the test. Some other small fixes.

Patch 9.0.1746
Problem: vim9class compile error for char/char_u conversion
Solution: Correctly cast to (char *)

Patch 9.0.1747
Problem: screenpos() may cause unnecessary redraw.
Solution: Don't unnecessarily reset VALID_WROW flag.

Patch 9.0.1748
Problem: CI: cannot label issues automatically
Solution: Create CI labeler

Patch 9.0.1749
Problem: Text property highlight doesn't override a sign highlight over

a tab character
Solution: Let text_property override tab highlighting

Patch 9.0.1750
Problem: CI: fails because of changed error messages

(after: 9.0.1741)
Solution: Adjust expected error messages

Patch 9.0.1751
Problem: CI: labeler configuration not found

(after 9.0.1748)
Solution: set configuration path

version9.txt — 4136

Patch 9.0.1752
Problem: CI: Coveralls is no longer used
Solution: Remove .coveralls.yml

Patch 9.0.1753
Problem: can't move to last non-blank char
Solution: Make g<end> behave like that

Patch 9.0.1754
Problem: still ci breakage (after 9.0.1741)
Solution: fix remaining issue

Patch 9.0.1755
Problem: CI still fails with sodium mlock error
Solution: catch mlock failure

Patch 9.0.1756
Problem: failing cursorline sign test
Solution: only reset char attr, if cursorline

option is not set

Patch 9.0.1757
Problem: ex_class() function is too long
Solution: refactor it

Patch 9.0.1758
Problem: vim9 no class identifiers in stack dumps
Solution: Prefix class members in stack traces with the class name

followed by a dot.

Patch 9.0.1759
Problem: Visual highlight not working with cursor at end of screen line

and 'showbreak'.
Solution: Only update "vcol_prev" when drawing buffer text.

Patch 9.0.1760
Problem: vim9 class problem with new() constructor
Solution: Don't allow a return type for the new() class constructor.

Patch 9.0.1761
Problem: g<kEnd> behaves different from g<end>
Solution: Make g<kEnd> behave like g<End>

Patch 9.0.1762
Problem: Not able to get the virtual text property
Solution: Make prop_list() return virtual text and alignment

Patch 9.0.1763
Problem: crash when passing invalid buffer to undotree()
Solution: Use get_buf_arg() instead of tv_get_buf_from_arg().

Patch 9.0.1764
Problem: CI: label should not be set on all yml files
Solution: only set it for specific yml files in .github

Patch 9.0.1765
Problem: Error when cross-compiling Vim
Solution: use AC_CHECK_SIZEOF to find sizeof(wchar_t)

version9.txt — 4137

Patch 9.0.1766
Problem: Runtime: Missing QML support
Solution: Add QML support to Vim

Patch 9.0.1767
Problem: '.-' no allowed in highlight group names
Solution: Allow dot and hyphen characters in highlight group names

Patch 9.0.1768
Problem: Runtime: no support for bicep files
Solution: Add filetype support for bicepparam

Patch 9.0.1769
Problem: executable() ignoring symlinks on Windows
Solution: resolve reparse points

Patch 9.0.1770
Problem: lines disappear when modifying chars before virt text
Solution: take virtual text property length into account

Patch 9.0.1771
Problem: regex: combining chars in collections not handled
Solution: Check for following combining characters for NFA and BT engine

Patch 9.0.1772
Problem: Cursor is adjusted in window that did not change in size by

'splitkeep'.
Solution: Only check that cursor position is valid in a window that

has changed in size.

Patch 9.0.1773
Problem: cannot distinguish Forth and Fortran *.f files
Solution: Add Filetype detection Code

Patch 9.0.1774
Problem: no support for custom cmdline completion
Solution: Add new vimscript functions

Patch 9.0.1775
Problem: Wrong comparison in vim9type.c
Solution: Change condition to false

Patch 9.0.1776
Problem: No support for stable Python 3 ABI
Solution: Support Python 3 stable ABI

Patch 9.0.1777
Problem: patch 9.0.1771 causes problems
Solution: revert it

Patch 9.0.1778
Problem: if_py_both: code-style issue
Solution: add space

Patch 9.0.1779
Problem: Need more state() tests
Solution: Add a few more tests for operator pending mode and register

yank command

Patch 9.0.1780

version9.txt — 4138

Problem: Vim9 type not defined during object creation
Solution: Define type during object creation and not during class

definition, parse multi-line member initializers, fix lock
initialization

Patch 9.0.1781
Problem: Problems when setting bin/paste option
Solution: When setting binary/paste, remember that this also affects

depending options, so that :verbose set returns the right
location.

Patch 9.0.1782
Problem: prop_list() does not return text_padding_left
Solution: Store and return the text_padding_left value for text

properties

Patch 9.0.1783
Problem: Wrong display with wrapping virtual text or unprintable chars,

'showbreak' and 'smoothscroll'.
Solution: Don't skip cells taken by 'showbreak' in screen lines before

"w_skipcol". Combined "n_skip" and "skip_cells".

Patch 9.0.1784
Problem: redundant else in pum_set_selected()
Solution: Remove it

Patch 9.0.1785
Problem: wrong cursor position with 'showbreak' and lcs-eol
Solution: Add size of 'showbreak' before when 'listchars' "eol" is used.

Also fix wrong cursor position with wrapping virtual text on
empty line and 'showbreak'.

Patch 9.0.1786
Problem: Vim9: need instanceof() function
Solution: Implement instanceof() builtin

Patch 9.0.1787
Problem: Cannot build with latest luajit
Solution: adjust sed regexp and don't expect '-' in version output

Patch 9.0.1788
Problem: C4090 warnings in strings.c
Solution: Add type casts

Patch 9.0.1789
Problem: too early declaration of variable in pum_set_selected()
Solution: Move declaration to where it is actually used

Patch 9.0.1790
Problem: The Content-Type header is an optional header that some LSP

servers struggle with and may crash when encountering it.
Solution: Drop the Content-Type header from all messages, because we use

the default value anyway.

Patch 9.0.1791
Problem: No tests for the Termdebug plugin
Solution: Add some simple tests for the Termdebug plugin

Patch 9.0.1792
Problem: Normal mode "gM", "gj", "gk" commands behave incorrectly with

version9.txt — 4139

virtual text.
Solution: Use linetabsize() instead of linetabsize_str().

Patch 9.0.1793
Problem: obsolete macros in configure script
Solution: Remove those and start moving to autoconf 2.71

Patch 9.0.1794
Problem: autoconf: not correctly detecting include dirs
Solution: make use of python3 to generate includedirs

Patch 9.0.1795
Problem: Indentation issues
Solution: Fix code indentation issues.

Patch 9.0.1796
Problem: Vim9 problems with null_objects
Solution: Vim9 improve null_object usage

Patch 9.0.1797
Problem: Vimball/Visual Basic filetype detection conflict
Solution: runtime(vb): Improve Vimball and Visual Basic detection logic

Patch 9.0.1798
Problem: The 'syntax' option has no completion.
Solution: Add syntax option completion.

Patch 9.0.1799
Problem: Russian menu translation can be improved
Solution: update the Russian menu files

Patch 9.0.1800
Problem: Cursor position still wrong with 'showbreak' and virtual text

after last character or 'listchars' "eol".
Solution: Remove unnecessary w_wcol adjustment in curs_columns(). Also

fix first char of virtual text not shown at the start of a screen
line.

Patch 9.0.1801
Problem: Vim9 instanceof() fails in a def func
Solution: allow Objects in compile time check

Patch 9.0.1802
Problem: Multiline regex with Visual selection fails when Visual

selection contains virtual text after last char.
Solution: Only include virtual text after last char when getting full

line length.

Patch 9.0.1803
Problem: Cannot detect norg markup files
Solution: Add norg markup language detection

Patch 9.0.1804
Problem: Vim9: no support for private object methods
Solution: Add support for private object/class methods

Patch 9.0.1805
Problem: Vim9: problem compiling object method as function call arg
Solution: After a object/class method call, remove the object/class from

the stack.

version9.txt — 4140

Patch 9.0.1806
Problem: Vim9: bogus error on export
Solution: Don't error out when the export command is not executed

Patch 9.0.1807
Problem: runtime: crystal scripts not recognised
Solution: Filetype detect Crystal scripts by shebang line

Patch 9.0.1808
Problem: Termdebug: Typo in Termdebug test
Solution: fix the typos

Patch 9.0.1809
Problem: Termdebug test flaky
Solution: wait slightly longer

Patch 9.0.1810
Problem: camel-case spelling has issues with digits
Solution: Improve the camCase spell checking by taking digits

and caps into account

Patch 9.0.1811
Problem: still some issues with term_debug test
Solution: Use WaitForAssert()

Patch 9.0.1812
Problem: CI still fails with sodium_mlock error()
Solution: Catch and ignore E1230 error in test_crypt

Patch 9.0.1813
Problem: 'linebreak' is incorrectly drawn after 'breakindent'.
Solution: Don't include 'breakindent' size when already after it.

Patch 9.0.1814
Problem: Vim9 no error on duplicate object member var
Solution: detect duplicate members and error out

Patch 9.0.1815
Problem: pango_coverage_unref() deprecated in pango > 1.51
Solution: use g_object_unref() instead

Patch 9.0.1816
Problem: configure: sed uses non-portable regex
Solution: use '*' modifier instead of '\?' in regex

for luajit version detection

Patch 9.0.1817
Problem: configure: using obsolete AC_HEADER_STDC
Solution: Remove it and re-create configure

Patch 9.0.1818
Problem: dynamically linking perl is broken
Solution: Fix all issues

Patch 9.0.1819
Problem: Github CI too complex
Solution: CI: Tidy up matrix

Patch 9.0.1820

version9.txt — 4141

Problem: Rexx files may not be recognised
Solution: Add shebang detection and improve disambiguation of *.cls

files

Patch 9.0.1821
Problem: Vim9 constructors are always static
Solution: make the "static" keyword an error

Patch 9.0.1822
Problem: Vim9: no check for duplicate members in extended classes
Solution: Check for duplicate members in extended classes.

Fix memory leak.

Patch 9.0.1823
Problem: Autoconf 2.69 too old
Solution: Migrate to Autoconf 2.71

Patch 9.0.1824
Problem: Vim9: private members may be modifiable
Solution: prevent modification for def function

Patch 9.0.1825
Problem: Wrong cursor position with virtual text before a whitespace

character and 'linebreak'.
Solution: Always set "col_adj" to "size - 1" and apply 'linebreak' after

adding the size of 'breakindent' and 'showbreak'.

Patch 9.0.1826
Problem: keytrans() doesn't translate recorded key typed in a GUI
Solution: Handle CSI like K_SPECIAL, like in mb_unescape()

Patch 9.0.1827
Problem: xxd: no color support
Solution: Add color support using xxd -R

Patch 9.0.1828
Problem: Wrong cursor position with virtual text before double-width

char at window edge.
Solution: Check for double-width char before adding virtual text size.

Patch 9.0.1829
Problem: Vim9 missing access-checks for private vars
Solution: Use the proper check for private/readonly variable. Access

level for a member cannot be changed in a class implementing an
interface. Update the code indentation

Patch 9.0.1830
Problem: Vim9: crash when accessing a null object
Solution: Check accessing a NULL object in def function

Patch 9.0.1831
Problem: Vim9: failing null test
Solution: Use required public keyword

Patch 9.0.1832
Problem: xxd: reporting wrong version (after 9.0.1827)
Solution: Update version string

Patch 9.0.1833
Problem: runtime files may execute code in current dir

version9.txt — 4142

Solution: only execute, if not run from current directory

Patch 9.0.1834
Problem: Some problems with xxd coloring
Solution: Fix the following problems:

Patch 9.0.1835
Problem: Perl interface has problems with load PL_current_context
Solution: Fix Perl interface to load PL_current_context from library

Patch 9.0.1836
Problem: Wrong display with "above" virtual text and 'linebreak' or

'breakindent' and 'showbreak'.
Solution: Exclude size of "above" virtual text when calculating them.

Patch 9.0.1837
Problem: Vim9: class_member_type() can be optimized
Solution: class_member_type() provides more information;

safe an additional alloc()/free()

Patch 9.0.1838
Problem: Vim9: Cannot modify class member vars from def function
Solution: Add support for modifying class member variables from a def

function

Patch 9.0.1839
Problem: No Makefile rule to build cscope database
Solution: Add rule

Patch 9.0.1840
Problem: use-after-free in do_ecmd
Solution: Verify oldwin pointer after reset_VIsual()

Patch 9.0.1841
Problem: style: trailing whitespace in ex_cmds.c
Solution: remove it

Patch 9.0.1842
Problem: Need more accurate profiling
Solution: Improve profiling results

Patch 9.0.1843
Problem: xxd color test flaky
Solution: Filter unneeded lines

Patch 9.0.1844
Problem: doc helptags may not be up to date
Solution: Add CI jobs to verify helptags are updated

Patch 9.0.1845
Problem: xxd: Test_xxd_color start failing
Solution: Revert changes to dump file

Patch 9.0.1846
Problem: crash in fullcommand
Solution: Check for typeval correctly

Patch 9.0.1847
Problem: potential oob write in do_addsub()
Solution: don't overflow buf2, check size in for loop()

version9.txt — 4143

Patch 9.0.1848
Problem: buffer-overflow in vim_regsub_both()
Solution: Check remaining space

Patch 9.0.1849
Problem: CI error on different signedness
Solution: cast unsigned to int

Patch 9.0.1850
Problem: Vim9: wrong line number where options set
Solution: Set source line number earlier

Patch 9.0.1851
Problem: Virtual text at a column causes 'breakindent' and 'showbreak'

to be missing (after patch 9.0.1124).
Solution: Add check for "tp_col" in another place where TP_FLAG_WRAP is

checked.

Patch 9.0.1852
Problem: i_CTRL-O does not reset Select Mode
Solution: Reset select mode on CTRL-O in insert mode

Patch 9.0.1853
Problem: CI error on different signedness in regexp.c

(after patch 9.0.1848)
Solution: Cast strlen() call to int

Patch 9.0.1854
Problem: test_crash1() fails on CI
Solution: don't run Screendump test, verify that it doesn't crash

by running it through a shell command line, testing
the exit value and concatenating success cmd using '&&'

Patch 9.0.1855
Problem: mode() doesn't indicate command line for terminal
Solution: make it return 'ct' for command-line from Terminal mode

Patch 9.0.1856
Problem: issues with formatting positional arguments
Solution: fix them, add tests and documentation

Patch 9.0.1857
Problem: heap-use-after-free in is_qf_win()
Solution: Check buffer is valid before accessing it

Patch 9.0.1858
Problem: heap use after free in ins_compl_get_exp()
Solution: validate buffer before accessing it

Patch 9.0.1859
Problem: heap-use-after-free in bt_normal()
Solution: check that buffer is still valid

Patch 9.0.1860
Problem: CI: test_crash1() is flaky
Solution: Wait a bit longer

Patch 9.0.1861
Problem: xxd: issue when -R is specified several times

version9.txt — 4144

Solution: Fix command line parsing

Patch 9.0.1862
Problem: Vim9 Garbage Collection issues
Solution: Class members are garbage collected early leading to

use-after-free problems. Handle the garbage
collection of classes properly.

Patch 9.0.1863
Problem: wrong format specifiers in e_aptypes_is_null_str_nr
Solution: Fix the wrong format specifier

Patch 9.0.1864
Problem: crash with bt_quickfix1_poc when cleaning up

and EXITFREE is defined
Solution: Test if buffer is valid in a window, else close

window directly, don't try to access buffer properties

Patch 9.0.1865
Problem: Vim9: garbage collection may cause crash
Solution: validate that class members typeval is not null

Patch 9.0.1866
Problem: Undo is synced after character find.
Solution: Set no_u_sync when calling gotchars_nop().

Patch 9.0.1867
Problem: Vim9: access to interface statics possible
Solution: Prevent direct access to interface statics

Patch 9.0.1868
Problem: test_crash still fails for circle ci
Solution: give even more time to complete

Patch 9.0.1869
Problem: Coverity warns about uninitialized var
Solution: initialize it

Patch 9.0.1870
Problem: Vim9: disassemble does not show static
Solution: Show static flag

Patch 9.0.1871
Problem: Github CI does not run i386 job
Solution: Add a i386 architecture

Patch 9.0.1872
Problem: CI: test_crash() fails on CI
Solution: Skip test on BSD

Patch 9.0.1873
Problem: heap-buffer-overflow in vim_regsub_both
Solution: Disallow exchanging windows when textlock is active

Patch 9.0.1874
Problem: CI may fail in test_recover_empty_swap
Solution: Set directory option

Patch 9.0.1875
Problem: Vim9: improve test for disassemble + static

version9.txt — 4145

Solution: Add a Vim9 script disassemble test for an interface with
static members

Patch 9.0.1876
Problem: Vim9: parsing commands with newlines wrong
Solution: Accept a '\n' for parsing lists and command arguments

Patch 9.0.1877
Problem: missing test for patch 9.0.1873
Solution: add a test trying to exchange windows

Patch 9.0.1878
Problem: tests running sh have problems
Solution: Check that dash is installed

Patch 9.0.1879
Problem: Vim9: incorrect duplicate class member detection
Solution: Incorrect duplicate class member detection when variable names

have the same prefix. Not able to access class member variables
using an object. Fix coding style issues

Patch 9.0.1880
Problem: Vim9: Need more tests for inheritance
Solution: Add access tests and fixes.

Patch 9.0.1881
Problem: Test_crash fails on Mac
Solution: Skip test on Mac

Patch 9.0.1882
Problem: Trailing white space in tests
Solution: Delete it

Patch 9.0.1883
Problem: Vim9: Calling an interface method using a child object fails
Solution: Search methods of parent class

Patch 9.0.1884
Problem: Wrong order of arguments for error messages
Solution: Reverse order or arguments for e_aptypes_is_null_nr_str

Patch 9.0.1885
Problem: Vim9: no support for abstract methods
Solution: Add support for defining abstract methods in an abstract class

Patch 9.0.1886
Problem: Various Typos
Solution: Fix Typos

Patch 9.0.1887
Problem: Vim9: class members are accessible via object
Solution: Disable class member variable access using an object

Patch 9.0.1888
Problem: Vim9: Problem trying to invoke class method
Solution: Lookup the class method insider other classes

Patch 9.0.1889
Problem: Vim9 static tests fail
Solution: Fix tests, make CI happy ;)

version9.txt — 4146

Patch 9.0.1890
Problem: Vim9: lookup code for class/object repeated
Solution: Refactor and make use of lookup functions

Patch 9.0.1891
Problem: No runtime support for Mojo
Solution: Add basic filetype and syntax plugins

Patch 9.0.1892
Problem: CI: no FreeBSD 14 support
Solution: Drop support for FreeBSD 12, add FreeBSD 14

Patch 9.0.1893
Problem: CI: strptime test fails on BSD14
Solution: Skip the test

Patch 9.0.1894
Problem: CI: trailing white space in tests
Solution: clean up the trailing white space

Patch 9.0.1895
Problem: Vim9: finding method/member is inefficient
Solution: Use lookups

Patch 9.0.1896
Problem: "below" virtual text doesn't work with 'rightleft'.
Solution: Use column from right border with 'rightleft'.

Patch 9.0.1897
Problem: Vim9: confusing error with .= in compiled functions
Solution: Check in error condition, if .= was attempted and in that case

give a different error message.

Patch 9.0.1898
Problem: Vim9: restrict access to static vars and methods
Solution: Class members are accessible only from the class where they are

defined.

Patch 9.0.1899
Problem: potential buffer overflow in PBYTE macro
Solution: Check returned memline length

Patch 9.0.1900
Problem: Configure script uses non-portable == comparison
Solution: Use the standard and portable "=" instead

Patch 9.0.1901
Problem: win32: not correctly freeing environment
Solution: After we call GetEnvironmentStringsW, we should call

FreeEnvironmentStringsW

Patch 9.0.1902
Problem: Vim9: Coverity complains about dead code
Solution: Copy only object methods from the super class

to a subclass when extending a class. Fix
Coverity warning.

Patch 9.0.1903
Problem: Github Actions fails because snd-dummy modules missing

version9.txt — 4147

in current runner images
Solution: ignore modprobe error

Patch 9.0.1904
Problem: Cirrus-CI fails because we have used all credits
Solution: Remove FreeBSD 13.1 and MacOS M1

Patch 9.0.1905
Problem: FEAT_FLOAT no longer defined
Solution: Remove last existing FEAT_FLOAT ifdefs in

message_test

Patch 9.0.1906
Problem: Vim9: Interfaces should not support class methods and

variables
Solution: Make sure interface follow the interface specification

Patch 9.0.1907
Problem: No support for liquidsoap filetypes
Solution: Add liquidsoap filetype detection code

Patch 9.0.1908
Problem: undefined behaviour upper/lower function ptrs
Solution: Fix UBSAN error in regexp and simplify upper/lowercase

modifier code

Patch 9.0.1909
Problem: Vim9: problem calling class method from other class
Solution: Fix this problem, fix readonly object access, update error

messages.

Patch 9.0.1910
Problem: Mac OS X: missing sound support on older versions
Solution: Check Macro MAC_OS_X_VERSION_MIN_REQUIRED

Patch 9.0.1911
Problem: Vim9: segfault with null object and instanceof()
Solution: return early

Patch 9.0.1912
Problem: Cirrus-CI running out of credits
Solution: disable Cirrus-CI for now

Patch 9.0.1913
Problem: if_python: undefined behaviour for function pointers
Solution: Fix if_python undefined behavior for function pointer casts

Patch 9.0.1914
Problem: Vim9: few issues when accessing object members
Solution: When calling an object method, check for null object.

Accessing a Dict object member doesn't work.

Patch 9.0.1915
Problem: r_CTRL-C works differently in visual mode
Solution: Make r_CTRL-C behave consistent in visual mode

in terminal and Windows GUI

Patch 9.0.1916
Problem: Crash when allocating large terminal screen
Solution: Don't allow values > 1000 for terminal

version9.txt — 4148

screen columns and rows

Patch 9.0.1917
Problem: undefined behaviour with python function pointer
Solution: correctly cast function pointers from void

Patch 9.0.1918
Problem: No filetype detection for Authzed filetypes
Solution: Detect the *.zed file extension as authzed filetype

Patch 9.0.1919
Problem: Wrong curswant when clicking on empty line or with vsplits.
Solution: Don't check for ScreenCols[] before the start of the window

and handle empty line properly.

Patch 9.0.1920
Problem: Vim9: cannot write public var in nested object
Solution: Write variable in nested read-only object reference.

Also test write fails.

Patch 9.0.1921
Problem: not possible to use the jumplist like a stack
Solution: Add the 'jumpoptions' setting to make the jumplist

a stack.

Patch 9.0.1922
Problem: LSP server request message is misinterpreted as a response message
Solution: Check that the message does not have the "message" field

Patch 9.0.1923
Problem: curswant wrong on click with 've' and 'wrap' set
Solution: Add w_leftcol to mouse click column.

Patch 9.0.1924
Problem: LSP server message still wrongly handled (after 9.0.1922)
Solution: Handle 'method' messages properly, don't discard them, add

tests.

Patch 9.0.1925
Problem: if_python: still undefined behaviour with function pointer
Solution: fix remaining problems

Patch 9.0.1926
Problem: Vim9: not enough info in error message
Solution: Add class name, change member to variable, quote names

Patch 9.0.1927
Problem: patch 1916 (fixed terminal size) not optimal
Solution: Add defines to make it easier changeable later

Patch 9.0.1928
Problem: Vim9: constructor type checking bug
Solution: Fix class constructor regression

Patch 9.0.1929
Problem: runtime tests fail with tiny vim
Solution: check for tiny vim, run runtime tests in CI

even for tiny version

Patch 9.0.1930

version9.txt — 4149

Problem: compiler warnings with clang-17
Solution: Fix function prototypes and function pointer

Patch 9.0.1931
Problem: make test_compilers fails on ubuntu
Solution: set LC_ALL=C

Patch 9.0.1932
Problem: Vim9: error when using null object constructor
Solution: Check for a null object only when calling an object method

Patch 9.0.1933
Problem: Can change the type of a v: variable using if_lua.
Solution: Add additional handling of v: variables like :let.

Patch 9.0.1934
Problem: bwipe fails after switching window from aucmd_win.
Solution: Decrement b_nwindows after switching back to aucmd_win.

Patch 9.0.1935
Problem: Vim9: not consistent error messages
Solution: Make error messages more consistent. Use "variable" for

(object/class) member

Patch 9.0.1936
Problem: test: using wrong expected message in test_crypt
Solution: make use of single quotes

Patch 9.0.1937
Problem: missing test for mouse click + 'virtedit'
Solution: Add test for clicking after eol with 'virtualedit' and wrapped

line

Patch 9.0.1938
Problem: multispace wrong when scrolling horizontally
Solution: Update position in "multispace" or "leadmultispace" also in

skipped chars. Reorder conditions to be more consistent.

Patch 9.0.1939
Problem: still a problem when processing LSP RPC requests
Solution: When processing async LSP RPC requests, compare sequence

numbers only in response messages

Patch 9.0.1940
Problem: wrong upstream version in libvterm README
Solution: correct version to 839

Patch 9.0.1941
Problem: Memory leak detected (after 9.0.1928)
Solution: Free arg_objm in get_lambda_tv()

Patch 9.0.1942
Problem: Vim9: execution stack invalidated with null object
Solution: Check for a null object before adjusting the execution stack

Patch 9.0.1943
Problem: CI not run with clang-17
Solution: Update CI to use clang-17

Patch 9.0.1944

version9.txt — 4150

Problem: Vim9: function instruction pointer invalidated
Solution: Use the funcref index instead of the instruction pointer

Patch 9.0.1945
Problem: Vim9: missing support for ro-vars in interface
Solution: Support only read-only object variables in an interface,

add additional checks when parsing class definitions.

Patch 9.0.1946
Problem: filename expansion using ** in bash may fail
Solution: Try to enable the globstar setting

Patch 9.0.1947
Problem: Bash Expansion test fails on Windows/MacOS
Solution: Disable Test_glob_extended_bash for now

Patch 9.0.1948
Problem: Vim9: object variable "this." should only be used in

constructor
Solution: Disallow to this in normal object methods (other than

constructors)

Patch 9.0.1949
Problem: Vim9: allows reserved keywords as members
Solution: Disallow reserved keywords, disallow

duplicate object and class variables

Patch 9.0.1950
Problem: Vim9: error codes spread out
Solution: group them together and reserve 100

more for future use

Patch 9.0.1951
Problem: Vim9: hard to debug vim9_class errors from CI
Solution: Include the line number in assert_xxx() calls. Include the

entire error message in the tests. Fix the indentation in the
test file. Add tags for new error codes.

Patch 9.0.1952
Problem: Vim9: unused static field
Solution: remove it and simplify code

Patch 9.0.1953
Problem: Misplaced comment in errors.h
Solution: Move it up

Patch 9.0.1954
Problem: CI: change netrw label in labeller bot
Solution: Rename it to 'plugin-netrw'

Patch 9.0.1955
Problem: Vim9: lockvar issues with objects/classes
Solution: fix `get_lhs()` object/class access and avoid `SEGV`,

make error messages more accurate.

Patch 9.0.1956
Problem: Custom cmdline completion skips original cmdline when pressing

Ctrl-P at first match if completion function invokes glob().
Solution: Move orig_save into struct expand_T.

version9.txt — 4151

Patch 9.0.1957
Problem: termcap options should change on keyprotocol setting
Solution: Apply termcap entries when 'keyprotocol' changes

Patch 9.0.1958
Problem: cannot complete option values
Solution: Add completion functions for several options

Patch 9.0.1959
Problem: Vim9: methods parameters and types are covariant
Solution: Support contra-variant type check for object method arguments

(similar to Dart).

Patch 9.0.1960
Problem: Make CI checks more strict
Solution: Add -Wstrict-prototypes -Wmissing-prototypes to CI,

fix uncovered problems

Patch 9.0.1961
Problem: Cmdline completion for 'listchars' fields doesn't include

"multispace" and "leadmultispace" (after 9.0.1958).
Solution: Include "multispace" and "leadmultispace" in lcstab.

Patch 9.0.1962
Problem: No support for writing extended attributes
Solution: Add extended attribute support for linux

Patch 9.0.1963
Problem: Configure script may not detect xattr correctly
Solution: include sys/xattr instead of attr/xattr,

make Test_write_with_xattr_support() test
xattr feature correctly

Patch 9.0.1964
Problem: xattr support fails to build on MacOS X
Solution: Disable xattr support for MacOS X

Patch 9.0.1965
Problem: wrong auto/configure script
Solution: regenerate with autoconf 2.71

Patch 9.0.1966
Problem: configure prints stray 6 when checking libruby
Solution: redirect stdout to dev/null

Patch 9.0.1967
Problem: xattr errors not translated
Solution: mark for translation, consistently capitalize

first letter.

Patch 9.0.1968
Problem: cmdline completion should consider key option
Solution: Disable cmdline completion for key option, slightly

refactor how P_NO_CMD_EXPAND is handled

Patch 9.0.1969
Problem: buffer-overflow in trunc_string()
Solution: Add NULL at end of buffer

Patch 9.0.1970

version9.txt — 4152

Problem: win32: high-dpi support can be improved
Solution: implement WM_GETDPISCALEDSIZE

Patch 9.0.1971
Problem: macOS: FEAT_SOUND guard too restrictive
Solution: check for older macOS support properly

Patch 9.0.1972
Problem: win32: missing '**' expansion test (after v9.0.1947)
Solution: Add test for MS-Windows

Patch 9.0.1973
Problem: Clean up cmdline option completion code
Solution: Fix various minor problems

Patch 9.0.1974
Problem: vim9: using contra-variant type-checks (after v9.0.1959)
Solution: Use invariant type checking instead

Patch 9.0.1975
Problem: xattr: permission-denied errors on write
Solution: ignore those errors

Patch 9.0.1976
Problem: style: space before tab in optionstr.c
Solution: remove the space

Patch 9.0.1977
Problem: Vim9: object members can change type
Solution: Check type during assignment to object/class var

Patch 9.0.1978
Problem: No filetype detection for just files
Solution: Detect just files (*.just, justfile, etc)

Patch 9.0.1979
Problem: Cirrus CI disabled
Solution: re-enable Cirrus CI

Patch 9.0.1980
Problem: win32: issues with stable python ABI
Solution: if_python3,win32: Fix Python3 stable ABI

Patch 9.0.1981
Problem: Cannot scroll up in diff mode with many filler lines and zero

'scrolloff'.
Solution: Invalidate w_cline_row before calling comp_botline().

Patch 9.0.1982
Problem: vim9: clean up from v9.0.1955
Solution: Fix a few remaining issues, improve error message

Patch 9.0.1983
Problem: Scrolling non-current window using mouse is inconsistent

depending on 'scrollbind'/'scrolloff' and different from GUI
vertical scrollbar when 'cursorbind' is set.

Solution: Don't move cursor in non-current windows for 'cursorbind' if
cursor in the current window didn't move.

Patch 9.0.1984

version9.txt — 4153

Problem: CI: Test_open_delay*() fails on FreeBSD 14
Solution: Skip it on BSD

Patch 9.0.1985
Problem: CI: codecov is intrusive
Solution: disable codecov comments

Patch 9.0.1986
Problem: Vim9: accepting type-annotations
Solution: Reject type annotations outside of declarations.

Patch 9.0.1987
Problem: win32: font-size calculation can be improved
Solution: calculate font size before the window size

Patch 9.0.1988
Problem: Vim9: potential use-after-free for class members
Solution: Use the class-related grow array for storing the

member type instead of using a temporary type
list grow array

Patch 9.0.1989
Problem: Vim9: double error message given
Solution: Only give second error message, if ther

wasn't one given before

Patch 9.0.1990
Problem: strange error number
Solution: change error number,

add doc tag for E1507

Patch 9.0.1991
Problem: no cmdline completion for setting the font
Solution: enable it on Win32 and GTK builds

Patch 9.0.1992
Problem: segfault in exmode when redrawing
Solution: skip gui_scroll when exmode_active

Patch 9.0.1993
Problem: warning about unused function definition
Solution: add ifdefs

Patch 9.0.1994
Problem: inconsistent feature description
Solution: delete old mentioned feature sets small and big

Patch 9.0.1995
Problem: Invalid memory access when 'foldexpr' returns empty string.
Solution: Check for NUL.

Patch 9.0.1996
Problem: Cannot build with python312
Solution: Define wrapper types and functions for python 3.12

Patch 9.0.1997
Problem: Some unused code in move.c and string.c
Solution: Remove it

Patch 9.0.1998

version9.txt — 4154

Problem: xxd: cannot reverse a bit dump
Solution: implement reversing the bit dump using -b -r

Patch 9.0.1999
Problem: Vim9: some error messages can be improved
Solution: Mention the defining class for variable access error message

Patch 9.0.2000
Problem: Vim9: use-after-free in deep call stack
Solution: Get the objct pointer from execution stack

Patch 9.0.2001
Problem: Vim9: segfault with islocked()
Solution: Check that the lval pointer is not null for objects and

class variables

Patch 9.0.2002
Problem: Vim9: need cleanup of class related interface code
Solution: Remove the unused class variable and class method related code

for interfaces.

Patch 9.0.2003
Problem: xxd: compilation warning
Solution: initialize variables

Patch 9.0.2004
Problem: Missing test file
Solution: git-add the file to the repo

Patch 9.0.2005
Problem: partially revert patch v9.0.1997
Solution: add a comment, to make clear it's not used

Patch 9.0.2006
Problem: Vim9: need more tests
Solution: add additional disassembly tests

Patch 9.0.2007
Problem: Vim9: covariant parameter types allowed when assigning

functions
Solution: Enforce invariant type check for arguments and return value

when assigning a funcref

Patch 9.0.2008
Problem: test: undofile left behind
Solution: cleanup undofile

Patch 9.0.2009
Problem: cmdline-completion for comma-separated options wrong
Solution: Fix command-line expansions for options with filenames with

commas

Patch 9.0.2010
Problem: [security] use-after-free from buf_contents_changed()
Solution: block autocommands

Patch 9.0.2011
Problem: INI files not detected
Solution: detect uppercase .INI as dosini files

version9.txt — 4155

Patch 9.0.2012
Problem: Vim9: error message can be more accurate
Solution: Fix the error messages

Patch 9.0.2013
Problem: Unicode tables outdated
Solution: Update Unicode tables to v15.1 (released 23.09.2023)

Patch 9.0.2014
Problem: confusing ifdefs in if_<lang>.c
Solution: refactor ifndefs to #ifdefs

Patch 9.0.2015
Problem: Vim9: does not handle islocked() from a method correctly
Solution: Handle islocked() builtin from a method.

Patch 9.0.2016
Problem: Vim9: assignment operators don't work for class vars
Solution: implement it

Patch 9.0.2017
Problem: linebreak applies for leading whitespace
Solution: only apply linebreak, once we have found non-breakat chars in

the line

Patch 9.0.2018
Problem: complete_info() returns wrong index
Solution: Make order of 'info' in completion_info consistent

Patch 9.0.2019
Problem: Vim9: no support for funcrefs
Solution: Add support for object/class funcref members

Patch 9.0.2020
Problem: Vim9: islocked() needs more work
Solution: rework islocked() and remove sync_root

from get_lval()

Patch 9.0.2021
Problem: Coverity complains about change in charset (after v9.0.2017)
Solution: check pointer t at index 0

Patch 9.0.2022
Problem: When clicking in the middle of a TAB, getmousepos() returns

the column of the next char instead of the TAB.
Solution: Break out of the loop when the vcol to find is inside current

char. Fix invalid memory access when calling virtcol2col() on
an empty line.

Patch 9.0.2023
Problem: need more tests for :cq
Solution: Add more tests, including wraparound on linux

Patch 9.0.2024
Problem: no filetype detection for Debian sources
Solution: Add new deb822sources filetype

Patch 9.0.2025
Problem: no cmdline completion for ++opt args
Solution: Add cmdline completion for :e ++opt=arg and :terminal

version9.txt — 4156

[++options]

Patch 9.0.2026
Problem: win32: python3 dll loading can be improved
Solution: Load DLL from registry path

Patch 9.0.2027
Problem: Vim9: no support for bitwise operators in lambda funcs
Solution: move "evaluate" assignment a bit up in order to decide

to perform bitwise operations

Patch 9.0.2028
Problem: confusing build dependencies
Solution: clean them up, make them parallelizable

Patch 9.0.2029
Problem: Vim9: no support for partials using call()
Solution: Add support

Patch 9.0.2030
Problem: no max callback recursion limit
Solution: bail out, if max call recursion for callback functions

has been reached.

Patch 9.0.2031
Problem: `TextChangedI` can trigger on entering Insert mode if there

was previously a change not in Insert mode.
Solution: Make it trigger only when text is actually changed in Insert

mode.

Patch 9.0.2032
Problem: Cannot accurately get mouse clicking position when clicking on

a TAB or with virtual text.
Solution: Add a "coladd" field to getmousepos() result.

Patch 9.0.2033
Problem: gcc overflow-warning for f_resolve
Solution: use pointer p instead of pointer q[-1]

Patch 9.0.2034
Problem: don't try to copy SMACK attribute, when none exist
Solution: return early if SMACK extended attributes do not exist or

if they are not supported

Patch 9.0.2035
Problem: [security] use-after-free with wildmenu
Solution: properly clean up the wildmenu when exiting

Patch 9.0.2036
Problem: if_python: rework python3.12 build dependency

(after 9.0.1996)
Solution: use PyTuple_Size instead of inlining the Py_SIZE

into the Vim code base

Patch 9.0.2037
Problem: A few remaining cmdline completion issues with C-E/Y
Solution: Fix cmdline completion fuzzy/Ctrl-E/Ctrl-Y/options when not

used at the end

Patch 9.0.2038

version9.txt — 4157

Problem: Vim9: object method funcref not cleaned up after use
Solution: Clean up type stack after using object method funcref,

remove now longer used ISN_DEFEROBJ instruction

Patch 9.0.2039
Problem: completion shows current word after completion restart
Solution: remove the word being completed after completion restart

Patch 9.0.2040
Problem: trim(): hard to use default mask
Solution: Use default 'mask' when it is v:none

Patch 9.0.2041
Problem: trim(): hard to use default mask (partly revert v9.0.2040)
Solution: use default mask when it is empty

Patch 9.0.2042
Problem: Test_cq_zero_exmode fails without channel feature
Solution: Make the test check the channel feature

Patch 9.0.2043
Problem: Vim9: issue with funcref assignment and varargs
Solution: Fix funcref type checking

Patch 9.0.2044
Problem: Vim9: exceptions confuse deferred functions
Solution: save and restore exception state when calling deferred

functions

Patch 9.0.2045
Problem: tests: checking for swap files takes time
Solution: don't check for swap files when test has been skipped

Patch 9.0.2046
Problem: win32,python: warning that MS_WIN64 got re-defined
Solution: Do not define MS_WIN64, as it is no longer used

Patch 9.0.2047
Problem: perl: warning about inconsistent dll linkage
Solution: suppress warning

Patch 9.0.2048
Problem: python: uninitialized warning
Solution: initialize 'minor' always

Patch 9.0.2049
Problem: Vim9: not recognizing qualified class vars for infix ops
Solution: Drop the class type from the stack before generating the

CLASSMEMBER instruction

Patch 9.0.2050
Problem: Vim9: crash with deferred function call and exception
Solution: Save and restore exception state

Patch 9.0.2051
Problem: Vim9: wrong error for non-existing object var
Solution: mention object or class depending on whether

the var is an object or class variable.

Patch 9.0.2052

version9.txt — 4158

Problem: win32: using deprecated wsock32 api
Solution: Use winsock2 (ws2_32) consistently

Patch 9.0.2053
Problem: zig filetype detection test wrong
Solution: Remove .zir pattern, add new test for .zon pattern

Patch 9.0.2054
Problem: win32: iscygpty needs update
Solution: Update iscygpty to the latest version, make use iswascii()

API function

Patch 9.0.2055
Problem: Vim9: non-consistent error messages
Solution: make error messages more consistent with common structure

Patch 9.0.2056
Problem: no digraph for quadruple prime
Solution: add quadruple prime digraph using 4'

Patch 9.0.2057
Problem: Vim9: no strict type checks for funcrefs varargs
Solution: Perform strict type checking when declaring funcrefs

with vararg declaration, add tests

Patch 9.0.2058
Problem: tests: avoid error when no swap files exist
Solution: use unlet! so that no error message is reported

in case the variable does not exists

Patch 9.0.2059
Problem: outstanding exceptions may be skipped
Solution: When restoring exception state, process remaining outstanding

exceptions

Patch 9.0.2060
Problem: *.{gn,gni} files are not recognized
Solution: Detect some as gn filetype (without adding an extra filetype)

Patch 9.0.2061
Problem: not able to detect xkb filetypes
Solution: Detect files below /u/s/X11/xkb as xkb files (without adding

an extra filetype)

Patch 9.0.2062
Problem: Janet files are not recognised
Solution: Add filename and shebang detection (without

adding an extra filetype plugin)

Patch 9.0.2063
Problem: pacman hooks are detected as conf filetype
Solution: make it consistent to pacman.conf and detect those

hooks as confini

Patch 9.0.2064
Problem: cannot use buffer-number for errorformat
Solution: add support for parsing a buffer number using '%b' in

'errorformat'

Patch 9.0.2065

version9.txt — 4159

Problem: EXPAND flag set for filetype option
Solution: Remove P_EXPAND flag from the 'filetype' option

Patch 9.0.2066
Problem: xxd: corrupting files when reversing bit dumps
Solution: handle reversing bit dump slightly differently

Patch 9.0.2067
Problem: xxd: coloring was disabled on Cygwin
Solution: don't include WIN32

Patch 9.0.2068
Problem: [security] overflow in :history
Solution: Check that value fits into int

Patch 9.0.2069
Problem: possible to escape bracketed paste mode with Ctrl-C
Solution: Do not handle Ctrl-C specially when key_protocol

is in use, makes bracketed paste mode more robust

Patch 9.0.2070
Problem: [security] disallow setting env in restricted mode
Solution: Setting environment variables in restricted mode could

potentially be used to execute shell commands. Disallow this.

Patch 9.0.2071
Problem: objdump files not recognized
Solution: detect *.objdump files, add a filetype plugin

Patch 9.0.2072
Problem: Vim9: no nr2str conversion in list-unpack
Solution: Generate 2STRING instruction to convert dict index to string

Patch 9.0.2073
Problem: typo in quickfix.c comments
Solution: fix them

Patch 9.0.2074
Problem: Completion menu may be wrong
Solution: Check for the original direction of the completion menu,

add more tests, make it work with 'noselect'

Patch 9.0.2075
Problem: TextChangedI may not always trigger
Solution: trigger it in more cases: for insert/

append/change operations, and when
opening a new line,

Patch 9.0.2076
Problem: Vim9: No support for type aliases
Solution: Implement :type command

Patch 9.0.2077
Problem: CI fails because of trailing whitespace in test
Solution: Remove it

Patch 9.0.2078
Problem: several problems with type aliases
Solution: Check for more error conditions, add tests,

fix issues

version9.txt — 4160

Patch 9.0.2079
Problem: Not all Dart files detected
Solution: Add shebang filetype detection for Dart

Patch 9.0.2080
Problem: vim9_script test too large
Solution: split vim9 type alias test into

separate test file

Patch 9.0.2081
Problem: With 'smoothscroll' set, "w_skipcol" is not reset when unsetting

'wrap'. Resulting in incorrect calculation of the cursor position.
Solution: Reset "w_skipcol" when unsetting 'wrap'.

Patch 9.0.2082
Problem: test_channel may fail because of IPv6 config issues
Solution: Catch and skip the test, if getaddrinfo() fails with

'Address family not supported'

Patch 9.0.2083
Problem: Perl: xsubpp may be in non-standard location
Solution: Add --with-subpp configure option

Patch 9.0.2084
Problem: Vim9: abstract static methods are possible
Solution: Disallow abstract static methods

Patch 9.0.2085
Problem: Vim9: abstract can be used in interface
Solution: Disallow the use of abstract in an interface

Patch 9.0.2086
Problem: code cleanup for option callbacks needed
Solution: remove flag os_doskip, it's not necessary, as we can check,

whether an error message was returned

Patch 9.0.2087
Problem: build-failure in vim9class
Solution: reference correct error message,

disable non-failing test

Patch 9.0.2088
Problem: Vim9: still allows abstract static methods

(after v9.0.2084, v9.0.2085 and v9.0.2087)
Solution: Disallow abstract static methods

Patch 9.0.2089
Problem: sound_playfile() fails when using powershell
Solution: quote filename using doublequotes, don't escape filename,

because it doesn't use the shell

Patch 9.0.2090
Problem: complete_info() skips entries with 'noselect'
Solution: Check, if first entry is at original text state

Patch 9.0.2091
Problem: Vim9: cannot convert list to string using +=

(after 9.0.2072)
Solution: convert dict index to string later in compile_member()

version9.txt — 4161

Patch 9.0.2092
Problem: tests: failure in test_arabic
Solution: adjust the test for the changed arabic keymap

Patch 9.0.2093
Problem: Unsupported option causes rest of modeline test to be skipped.
Solution: Revert the change from patch 8.2.1432.

Patch 9.0.2094
Problem: Vim9: need more assignment tests
Solution: Add test for using different types in assignment, function

arguments and return values

Patch 9.0.2095
Problem: statusline may look different than expected
Solution: do not check for highlighting of stl and stlnc characters

Patch 9.0.2096
Problem: Vim9: confusing usage of private
Solution: clarify and use protected keyword instead

Patch 9.0.2097
Problem: No support for cypher files
Solution: Add cypher filetype detection

Patch 9.0.2098
Problem: No filetype support for xcompose files
Solution: Add filetype detection

Patch 9.0.2099
Problem: Terminal control codes¹ are sent even when silent

mode is on, causing the terminal to clear up
Solution: Block any terminal codes when silent mode is on

Patch 9.0.2100
Problem: CI: test_Termdebug fails
Solution: only test for a changed winlayout, if the window

width actually changed

Patch 9.0.2101
Problem: CI: test_termdebug may still fail
Solution: use term_wait() to make it more robust

Patch 9.0.2102
Problem: matchparen highlight not cleared in completion mode
Solution: Clear matchparen highlighting in completion mode

Patch 9.0.2103
Problem: recursive callback may cause issues on some archs
Solution: Decrease the limit drastically to 20

Patch 9.0.2104
Problem: wast filetype should be replaced by wat filetype
Solution: start using the official wat filetype name

Patch 9.0.2105
Problem: Skipcol is not reset when topline changed scrolling cursor to top
Solution: reset skipcol

version9.txt — 4162

Patch 9.0.2106
Problem: [security]: Use-after-free in win_close()
Solution: Check window is valid, before accessing it

Patch 9.0.2107
Problem: [security]: FPE in adjust_plines_for_skipcol
Solution: don't divide by zero, return zero

Patch 9.0.2108
Problem: [security]: overflow with count for :s command
Solution: Abort the :s command if the count is too large

Patch 9.0.2109
Problem: [security]: overflow in nv_z_get_count
Solution: break out, if count is too large

Patch 9.0.2110
Problem: [security]: overflow in ex address parsing
Solution: Verify that lnum is positive, before subtracting from

LONG_MAX

Patch 9.0.2111
Problem: [security]: overflow in get_number
Solution: Return 0 when the count gets too large

Patch 9.0.2112
Problem: [security]: overflow in shift_line
Solution: allow a max indent of INT_MAX

Patch 9.0.2113
Problem: Coverity warns for another overflow in shift_line()
Solution: Test for INT_MAX after the if condition, cast integer values

to (long long) before multiplying.

Patch 9.0.2114
Problem: overflow detection not accurate when adding digits
Solution: Use a helper function

Patch 9.0.2115
Problem: crash when callback function aborts because of recursiveness
Solution: correctly initialize rettv

Patch 9.0.2116
Problem: No test for defining sign without attribute
Solution: Add test for defining sign without attributes

Patch 9.0.2117
Problem: [security] use-after-free in qf_free_items
Solution: only access qfpnext, if it hasn't been freed

Patch 9.0.2118
Problem: [security]: avoid double-free
Solution: Only fee plain_font, when it is not the same as bold_font

Patch 9.0.2119
Problem: remove dead-condition in ex_class()
Solution: remove the extra condition

Patch 9.0.2120
Problem: un-used assignment in do_source_buffer_init

version9.txt — 4163

Solution: Remove it

Patch 9.0.2121
Problem: [security]: use-after-free in ex_substitute
Solution: always allocate memory

Patch 9.0.2122
Problem: [security]: prevent overflow in indenting
Solution: use long long and remove cast to (int)

Patch 9.0.2123
Problem: Problem with initializing the length of range() lists
Solution: Set length explicitly when it shouldn't contain any items

Patch 9.0.2124
Problem: INT overflow logic can be simplified
Solution: introduce trim_to_int() function

Patch 9.0.2125
Problem: File info disappears immediately when 'cmdheight' has just

decreased due to switching tabpage and 'shortmess' doesn't
contain 'o' or 'O'.

Solution: Make sure msg_row isn't smaller than cmdline_row.

Patch 9.0.2126
Problem: Unused assignments when checking the value of 'listchars'.
Solution: Loop only once when just checking the value. Add a test to

check that this change doesn't cause double-free.

Patch 9.0.2127
Problem: translation Makefiles can be improved
Solution: Modified and extended po-related Makefiles and

related files

Patch 9.0.2128
Problem: No runtime files for SWIG filetypes
Solution: Add syntax and filetype plugins for SWIG (Simplified Wrapper

Interface Generator) description files.

Patch 9.0.2129
Problem: [security]: use-after-free in call_dfunc()
Solution: Refresh dfunc pointer

Patch 9.0.2130
Problem: some errors with translation Makefiles
Solution: fix issues

Patch 9.0.2131
Problem: not all nushell files detected
Solution: use *.nu to detect nushell files

Patch 9.0.2132
Problem: Duplicate Netbeans Error Message
Solution: Remove duplicate message

Patch 9.0.2133
Problem: Cannot detect overstrike mode in Cmdline mode
Solution: Make mode() return "cr" for overstrike

Patch 9.0.2134

version9.txt — 4164

Problem: ml_get error when scrolling after delete
Solution: mark topline to be validated in main_loop

if it is larger than current buffers line
count

Patch 9.0.2135
Problem: No test for mode() when executing Ex commands
Solution: Add some test cases and simplify several other test cases.

Also add a few more test cases for ModeChanged.

Patch 9.0.2136
Problem: MSVC errorformat can be improved
Solution: parse error type and column number in MSVC errorformat

Patch 9.0.2137
Problem: Can't detect angular & mustache filetypes
Solution: Detect *.mustache as Mustache filetype;

detect *.component.html as html.angular filetype

Patch 9.0.2138
Problem: Overflow logic requires long long
Solution: Define vimlong_T data type to make life easier

for porters

Patch 9.0.2139
Problem: html.angular ft is problematic
Solution: partly revert v9.0.2137

Patch 9.0.2140
Problem: [security]: use-after-free in win-enter
Solution: validate window pointer before calling win_enter()

Patch 9.0.2141
Problem: [security]: buffer-overflow in suggest_trie_walk
Solution: Check n before using it as index into bytes array

Patch 9.0.2142
Problem: [security]: stack-buffer-overflow in option callback functions
Solution: pass size of errbuf down the call stack, use snprintf()

instead of sprintf()

Patch 9.0.2143
Problem: [security]: buffer-overflow in ex_substitute
Solution: clear memory after allocating

Patch 9.0.2144
Problem: Text properties causes wrong line wrapping to be drawn.
Solution: Find the index of the last text property that inserts text.

Patch 9.0.2145
Problem: Wrong scrolling in Insert mode with 'smoothscroll' at the

bottom of the window.
Solution: Don't use set_topline() when 'smoothscroll' is set.

Patch 9.0.2146
Problem: text-property without type errors when joining
Solution: count all text-properties, with or without type

before joining lines

Patch 9.0.2147

version9.txt — 4165

Problem: Type check tests fail without the channel feature
Solution: only run tests, when Vim was build with +channel

Patch 9.0.2148
Problem: Vim does not detect pacman.log file
Solution: Detect pacmanlogs and add syntax highlighting

Patch 9.0.2149
Problem: [security]: use-after-free in exec_instructions()
Solution: get tv pointer again

Patch 9.0.2150
Problem: Using int for errbuflen in option funcs
Solution: Use size_t for errbuflen in string option functions

Patch 9.0.2151
Problem: 'breakindent' is not drawn after diff filler lines.
Solution: Correct check for whether 'breakindent' should be drawn.

Patch 9.0.2152
Problem: Using type unknown for List/Dict containers
Solution: Use 'any' instead

Patch 9.0.2153
Problem: no support to build on OpenVMS
Solution: Add OpenVMS X86_64 platform port

Patch 9.0.2154
Problem: The options[] array is not sorted alphabetically.
Solution: Sort it alphabetically. Add a test. Avoid unnecessary loop

iterations in findoption().

Patch 9.0.2155
Problem: Vim9: type not kept when assigning vars
Solution: When assigning a List or a Dict value to a variable of type

'any', keep the type

Patch 9.0.2156
Problem: Vim9: can use typealias in an assignment
Solution: Generate errors when class/typealias involved in the rhs of an

assignment

Patch 9.0.2157
Problem: Vim9: incorrectly parses :def func definitions
Solution: check for more context when parsing function args

Patch 9.0.2158
Problem: [security]: use-after-free in check_argument_type
Solution: Reset function type pointer when freeing the function type

list

Patch 9.0.2159
Problem: screenpos() may crash with neg. column
Solution: validate and correct column

Patch 9.0.2160
Problem: instanceof() should use varargs as second arg
Solution: Modify `instanceof()` to use varargs instead of list

Patch 9.0.2161

version9.txt — 4166

Problem: Vim9: not able to use imported interfaces and classes
Solution: Detect imported class/interfaces names correctly

Patch 9.0.2162
Problem: Vim9: type documentation out-dated
Solution: Update documentation, fix typo in type alias

definition

Patch 9.0.2163
Problem: Vim9: type can be assigned to list/dict
Solution: Prevent assigning a `type` to a `list` or `dict`

Patch 9.0.2164
Problem: Vim9: can use type a func arg/return value
Solution: Check if using type as function argument or return value

Patch 9.0.2165
Problem: Vim9: can simplify arg type checking code
Solution: In `f_argcheck` array use `arg_any`, instead of NULL

Patch 9.0.2166
Problem: Memory leak in Configure Script when checking GTK
Solution: Free the allocated memory

Patch 9.0.2167
Problem: Vim9-script object/class variable declarations use syntax

that is inconsistent with the rest of the language.
Solution: Use :var to declare object and class variables.

Patch 9.0.2168
Problem: Moving tabpages on :drop may cause an endless loop
Solution: Disallow moving tabpages on :drop when cleaning up the arglist

first

Patch 9.0.2169
Problem: Vim9: builtin funcs may accept a non-value
Solution: Restrict builtin functions that accept `type`

Patch 9.0.2170
Problem: Vim9: no support for const/final class/objects vars
Solution: Support final and const object and class variables

Patch 9.0.2171
Problem: The options[] array is still not sorted alphabetically

(after: v9.0.2154), causing test failures
Solution: Sort the remaining items

Patch 9.0.2172
Problem: Vim9: compiling :defer may fail
Solution: compile defer, when ctx_skip is not SKIP_YES

Patch 9.0.2173
Problem: Vim9: Vim crashes when compiling a for statement with a

non-existing type
Solution: Error out when lhs_type is not null

Patch 9.0.2174
Problem: Vim9: segfault when assigning to type
Solution: do not clear typeval, add missing patch number

version9.txt — 4167

Patch 9.0.2175
Problem: Compiler warning for uninitialized var
Solution: initialize variable to NULL

Patch 9.0.2176
Problem: Compile error with Motif UI + mouse support (after v9.0.1262)
Solution: Use correct oldval option pointer

Patch 9.0.2177
Problem: Wrong cursor position when dragging out of window.
Solution: Don't use ScreenCols[] when mouse is not in current window.

Patch 9.0.2178
Problem: reg_executing() returns wrong result in :normal with range

when 'showcmd' is set (after 8.2.4705).
Solution: Reset "pending_end_reg_executing" when executing a register.

Patch 9.0.2179
Problem: no filetype detection for execline scripts
Solution: Add filetype detection for execline

Patch 9.0.2180
Problem: POSIX function name in exarg struct causes issues

on OpenVMS
Solution: Rename getline member in exarg struct to ea_getline,

remove isinf() workaround for VMS

Patch 9.0.2181
Problem: Vim9: missing error messages
Solution: Add one more error message

Patch 9.0.2182
Problem: Vim9: need a way to reserve future extension
Solution: reserve double underscore prefix for future use

(Yegappan Lakshmanan)

Patch 9.0.2183
Problem: Maximum callback depth is not configurable.
Solution: Revert patch 9.0.2103. Set 'maxfuncdepth' in test.

(zeertzjq)

Patch 9.0.2184
Problem: Vim9: inconsistent :type/:class messages
Solution: Update the Messages (Ernie Rael)

Patch 9.0.2185
Problem: Coverity complains about not checking return value

in compare_isn_not_values (after 9.0.2184)
Solution: cast return value to "(void)" to make intention clear

Patch 9.0.2186
Problem: LTCG compile error on Win/ARM64 for `write_chars()`
Solution: Explicitly initialise the storage to use data rather than BSS

(Saleem Abdulrasool)

Patch 9.0.2187
Problem: Visual selection isn't drawn with 'breakindent' when the line

doesn't fit in the window (Jaehwang Jung)
Solution: Adjust wlv->fromcol also for 'breakindent' (zeertzjq)

version9.txt — 4168

Patch 9.0.2188
Problem: cursor wrong after { in single line buffer

(Edwin Chan)
Solution: do not place the cursor at the end for a single

line buffer when moving backwards (Gary Johnson)

Patch 9.0.2189
Problem: Wrong display when 'breakindentopt' contains "sbr" and

'showbreak' and 'nobreakindent' are set.
Solution: Always reset wlv->need_showbreak regardless of the values of

'breakindent' and 'showbreak', as they aren't checked when
setting wlv->need_showbreak (zeertzjq)

Patch 9.0.2190
Problem: proto files need update
Solution: re-generate them

==
VERSION 9.2 version-9.2 version9.2 vim-9.2

This section is about improvements made between version 9.1 and 9.2
and is a work in progress.

Support for Wayland UI.

Vim9 script

Add support for internal builtin functions with vim9 objects, see
builtin-object-methods

Other improvements new-other-9.2

Changed changed-9.2

Added added-9.2

Various syntax, indent and other plugins were added.

Functions:

diff() diff two Lists of strings
foreach() apply function to List items
matchbufline() all the matches of a pattern in a buffer
matchstrlist() all the matches of a pattern in a List of strings
getregion() get a region of text from a buffer

Autocommands:

TermResponseAll after the terminal response to t_RV and others is
received

WinNewPre before creating a new window

Commands:

version9.txt — 4169

Options:

'winfixbuf' Keep buffer focused in a window

==
INCOMPATIBLE CHANGES incompatible-9.2

Improved/Different MS-Windows mapping support
w32-experimental-keycode-trans-strategy

==
IMPROVEMENTS improvements-9.2

Support for command-line completion of 'keymap' option values.

Support for compiling all the methods in a Vim9 class using :defcompile .

Support for alternate font highlighting using t_CF terminal code.

Support for Super key mappings in GTK using <D-Key>.

Improved visual highlighting.

Python3 support in OpenVMS.

==
COMPILE TIME CHANGES compile-changes-9.2

Support for building with Ruby 3.3.

Support for building Vim 9 in z/OS (MVS).

==
PATCHES patches-9.2 bug-fixes-9.2

patches-after-9.1

The list of patches that got included since 9.1.0. This includes all the new
features, but does not include runtime file changes (syntax, indent, ftplugin,
documentation, etc.)

version9.txt — 4170

os_390.txt For Vim version 9.1. Last change: 2019 Dec 07

VIM REFERENCE MANUAL by Ralf Schandl

zOS z/OS OS390 os390 MVS
This file contains the particulars for the z/OS UNIX version of Vim.

1. ASCII/EBCDIC dependent scripts zOS-has-ebcdic
2. Putty and Colors zOS-PuTTY
3. Motif Problems zOS-Motif
4. Bugs zOS-Bugs
5. Limitations zOS-limitations
6. Open source on z/OS UNIX zOS-open-source

Contributors:
The port to z/OS UNIX was done by Ralf Schandl for the Redbook mentioned
below.

Changes, bug-reports, or both by:

David Moore
Anthony Giorgio
and others

==
1. ASCII/EBCDIC dependent scripts OS390-has-ebcdic zOS-has-ebcdic

For the internal script language the feature "ebcdic" was added. With this
you can fix ASCII dependent scripts like this:

if has("ebcdic")
let space = 64

else
let space = 32

endif

==
2. PuTTY and Colors OS390-PuTTY zOS-PuTTY

If you see problems with syntax highlighting or screen corruptions when you
connect to z/OS using Putty, try the following:

- Configure Putty as "vt220" terminal (Connection->Data)
- Add the following 3 lines to your vimrc:

set t_AB=?[4%p1%dm
set t_AF=?[3%p1%dm
set t_CO=8

Note: ? is one character use <C-V><Esc> to enter it.

==
3. Motif Problems OS390-Motif zOS-Motif

Note: Seen with Vim 6.*, never tested since.

os_390.txt — 4171

It seems that in porting the Motif library to z/OS, a translation from EBCDIC
to ASCII for the accelerator characters of the pull-down menus was forgotten.
Even after I tried to hand convert the menus, the accelerator keys continued
to only work for the opening of menus (like <Alt-F> to open the file menu).
They still do not work for the menu items themselves (like <Alt-F>O to open
the file browser).

There is no solution for this yet.

==
4. Bugs OS390-bugs zOS-Bugs

- Vim will consistently hang when a large amount of text is selected in
visual block mode. This may be due to a memory corruption issue. Note that
this occurs in both the terminal and gui versions.

==
5. Limitations OS390-limitations zOS-limitations

- No binary search in tag files.
The program /bin/sort sorts by ASCII value by default. This program is
normally used by ctags to sort the tags. There might be a version of
ctags out there, that does it right, but we can't be sure. So this seems to
be a permanent restriction.

- The cscope interface (cscope) doesn't work for the version of cscope that
we use on our mainframe. We have a copy of version 15.0b12, and it causes
Vim to hang when using the "cscope add" command. I'm guessing that the
binary format of the cscope database isn't quite what Vim is expecting.
I've tried to port the current version of cscope (15.3) to z/OS, without
much success. If anyone is interested in trying, drop me a line if you
make any progress.

- No glib/gtk support. I have not been able to successfully compile glib on
z/OS UNIX. This means you'll have to live without the pretty gtk toolbar.

Disabled at compile time:
- Multibyte support (multibyte)
- Right-to-left mode (rileft)
- Farsi key map (Farsi)
- Arabic language support (Arabic)
- Spell checking (spell)

Never tested:
- Perl interface (perl)
- Hangul input (hangul)
- Encryption support (encryption)
- Langmap ('langmap')
- Python support (Python)
- Right-to-left mode ('rightleft')
- TCL interface (tcl)
...

==
6. Open source on z/OS UNIX OS390-open-source zOS-open-source

If you are interested in other Open Source Software on z/OS UNIX, have a
look at the following Redbook:

Mike MacIsaac et al

os_390.txt — 4172

"Open Source Software for z/OS and OS/390 UNIX"
IBM Form Number: SG24-5944-01
ISBN: 0738424633
http://www-03.ibm.com/systems/resources/servers_eserver_zseries_zos_unix_redbook_sg245944.pdf

Also look at:
http://www.redbooks.ibm.com
http://www-03.ibm.com/systems/z/os/zos/features/unix/
http://www-03.ibm.com/systems/z/os/zos/features/unix/library/IBM+Redbooks/index.html

--

os_390.txt — 4173

http://www-03.ibm.com/systems/resources/servers_eserver_zseries_zos_unix_redbook_sg245944.pdf
http://www.redbooks.ibm.com
http://www-03.ibm.com/systems/z/os/zos/features/unix/
http://www-03.ibm.com/systems/z/os/zos/features/unix/library/IBM+Redbooks/index.html

os_390.txt — 4174

os_amiga.txt For Vim version 9.1. Last change: 2010 Aug 14

VIM REFERENCE MANUAL by Bram Moolenaar

Amiga
This file contains the particularities for the Amiga version of Vim.
There is also a section specifically for MorphOS below.

NOTE: The Amiga code is still included, but has not been maintained or tested.

Installation on the Amiga:
- Assign "VIM:" to the directory where the Vim "doc" directory is. Vim will

look for the file "VIM:doc/help.txt" (for the help command).
Setting the environment variable $VIM also works. And the other way around:
when $VIM used and it is not defined, "VIM:" is used.

- With DOS 1.3 or earlier: Put "arp.library" in "libs:". Vim must have been
compiled with the +ARP feature enabled. Make sure that newcli and run are
in "C:" (for executing external commands).

- Put a shell that accepts a command with "-c" (e.g. "Csh" from Fish disk
624) in "c:" or in any other directory that is in your search path (for
executing external commands).

If you have sufficient memory you can avoid startup delays by making Vim and
csh resident with the command "rez csh vim". You will have to put
"rezlib.library" in your "libs:" directory. Under 2.0 you will need rez
version 0.5.

If you do not use digraphs, you can save some memory by recompiling without
the +digraphs feature. If you want to use Vim with other terminals you can
recompile with the TERMCAP option. Vim compiles with Manx 5.x and SAS 6.x.
See the makefiles and feature.h.

If you notice Vim crashes on some files when syntax highlighting is on, or
when using a search pattern with nested wildcards, it might be that the stack
is too small. Try increasing the stack size. In a shell use the Stack
command before launching Vim. On the Workbench, select the Vim icon, use the
workbench "Info" menu and change the Stack field in the form.

If you want to use different colors set the termcap codes:
t_mr (for inverted text)
t_md (for bold text)
t_me (for normal text after t_mr and t_md)
t_so (for standout mode)
t_se (for normal text after t_so)
t_us (for underlined text)
t_ue (for normal text after t_us)
t_ZH (for italic text)
t_ZR (for normal text after t_ZH)

Standard ANSI escape sequences are used. The codes are:
30 grey char 40 grey cell >0 grey background 0 all attributes off
31 black char 41 black cell >1 black background 1 boldface
32 white char 42 white cell >2 white background 2 faint
33 blue char 43 blue cell >3 blue background 3 italic
34 grey char 44 grey cell >4 grey background 4 underscore
35 black char 45 black cell >5 black background 7 reverse video
36 white char 46 white cell >6 white background 8 invisible
37 blue char 47 blue cell >7 blue background

os_amiga.txt — 4175

The codes with '>' must be the last. The cell and background color should be
the same. The codes can be combined by separating them with a semicolon. For
example to get white text on a blue background:

:set t_me=^V<Esc>[0;32;43;>3m
:set t_se=^V<Esc>[0;32;43;>3m
:set t_ue=^V<Esc>[0;32;43;>3m
:set t_ZR=^V<Esc>[0;32;43;>3m
:set t_md=^V<Esc>[1;32;43;>3m
:set t_mr=^V<Esc>[7;32;43;>3m
:set t_so=^V<Esc>[0;31;43;>3m
:set t_us=^V<Esc>[4;32;43;>3m
:set t_ZH=^V<Esc>[3;32;43;>3m

When using multiple commands with a filter command, e.g.
:r! echo this; echo that

Only the output of the last command is used. To fix this you have to group the
commands. This depends on the shell you use (that is why it is not done
automatically in Vim). Examples:

:r! (echo this; echo that)
:r! {echo this; echo that}

Commands that accept a single file name allow for embedded spaces in the file
name. However, when using commands that accept several file names, embedded
spaces need to be escaped with a backslash.

--
Vim for MorphOS MorphOS

[this section mostly by Ali Akcaagac]

For the latest info about the MorphOS version:
http://www.akcaagac.com/index_vim.html

Problems

There are a couple of problems which are not MorphOS related but more Vim and
UN*X related. When starting up Vim in ram: it complains with a nag requester
from MorphOS please simply ignore it. Another problem is when running Vim as
is some plugins will cause a few problems which you can ignore as well.
Hopefully someone will be fixing it over the time.

To pass all these problems for now you can either run:

vim <file to be edited>

or if you want to run Vim plain and enjoy the motion of Helpfiles etc. it then
would be better to enter:

vim --noplugins <of course you can add a file>

Installation

1) Please copy the binary 'VIM' file to c:
2) Get the Vim runtime package from:

ftp://ftp.vim.org/pub/vim/amiga/vim62rt.tgz

os_amiga.txt — 4176

http://www.akcaagac.com/index_vim.html
ftp://ftp.vim.org/pub/vim/amiga/vim62rt.tgz

and unpack it in your 'Apps' directory of the MorphOS installation. For me
this would create following directory hierarchy:

MorphOS:Apps/Vim/Vim62/...

3) Add the following lines to your s:shell-startup (Important!).

;Begin VIM
Set VIM=MorphOS:Apps/Vim/Vim62
Assign HOME: ""
;End VIM

4) Copy the '.vimrc' file to s:

5) There is also a file named 'color-sequence' included in this archive. This
will set the MorphOS Shell to show ANSI colors. Please copy the file to s:
and change the s:shell-startup to:

;Begin VIM
Set VIM=MorphOS:Apps/Vim/Vim62
Assign HOME: ""
Execute S:Color-Sequence
Cls
;End VIM

os_amiga.txt — 4177

os_amiga.txt — 4178

os_beos.txt For Vim version 9.1. Last change: 2020 Jun 07

VIM REFERENCE MANUAL by Bram Moolenaar

beos BeOS BeBox
This file used to contain particularities for the BeOS port of Vim.

The BeOS support was removed in patch 8.2.0849.

os_beos.txt — 4179

os_beos.txt — 4180

os_dos.txt For Vim version 9.1. Last change: 2006 Mar 30

VIM REFERENCE MANUAL by Bram Moolenaar

dos DOS
This file documents the common particularities of the MS-DOS and Win32
versions of Vim. Also see os_win32.txt and os_msdos.txt .

1. File locations dos-locations
2. Using backslashes dos-backslash
3. Standard mappings dos-standard-mappings
4. Screen output and colors dos-colors
5. File formats dos-file-formats
6. :cd command dos-:cd
7. Interrupting dos-CTRL-Break
8. Temp files dos-temp-files
9. Shell option default dos-shell
10. PowerShell dos-powershell

==
1. File locations dos-locations

If you keep the Vim executable in the directory that contains the help and
syntax subdirectories, there is no need to do anything special for Vim to
work. No registry entries or environment variables need to be set. Just make
sure that the directory is in your search path, or use a shortcut on the
desktop.

Your vimrc files ("_vimrc" and "_gvimrc") are normally located one directory
up from the runtime files. If you want to put them somewhere else, set the
environment variable $VIM to the directory where you keep them. Example:

set VIM=C:\user\piet
Will find "c:\user\piet_vimrc".
Note: This would only be needed when the computer is used by several people.
Otherwise it's simpler to keep your _vimrc file in the default place.

If you move the executable to another location, you also need to set the $VIM
environment variable. The runtime files will be found in "$VIM/vim{version}".
Example:

set VIM=E:\vim
Will find the version 8.2 runtime files in "e:\vim\vim82".
Note: This is _not_ recommended. The preferred way is to keep the executable
in the runtime directory.

If you move your executable AND want to put your "_vimrc" and "_gvimrc" files
somewhere else, you must set $VIM to where you vimrc files are, and set
$VIMRUNTIME to the runtime files. Example:

set VIM=C:\usr\piet
set VIMRUNTIME=E:\vim\vim82

Will find "c:\user\piet_vimrc" and the runtime files in "e:\vim\vim82".

See $VIM and $VIMRUNTIME for more information.

You can set environment variables for each user separately through the
System Properties dialog box. The steps to do that:
1. Type Windows Key + R to open the "Run" dialog box.
2. Enter "sysdm.cpl" and press the "OK" button. The "System Properties"

dialog box will open.

os_dos.txt — 4181

3. Select the "Advanced" tab and press the "Environment Variables..." button.
The "Environment Variables" dialog box will open.

4. Select an existing variable in the "User variables" list and press the
"Edit..." button to edit it. Or press the "New..." button to add a new
variable.

5. After you finished editing variables, press the "OK" button to save the
changes.

==
2. Using backslashes dos-backslash

Using backslashes in file names can be a problem. Vi halves the number of
backslashes for some commands. Vim is a bit more tolerant and does not remove
backslashes from a file name, so ":e c:\foo\bar" works as expected. But when
a backslash occurs before a special character (space, comma, backslash, etc.),
Vim removes the backslash. Use slashes to avoid problems: ":e c:/foo/bar"
works fine. Vim replaces the slashes with backslashes internally to avoid
problems with some MS-DOS programs and Win32 programs.

When you prefer to use forward slashes, set the 'shellslash' option. Vim will
then replace backslashes with forward slashes when expanding file names. This
is especially useful when using a Unix-like 'shell'.

==
3. Standard mappings dos-standard-mappings

The mappings for CTRL-PageUp and CTRL-PageDown have been removed, they now
jump to the next or previous tab page <C-PageUp> <C-PageDown>

If you want them to move to the first and last screen line you can use these
mappings:

key key code Normal/Visual mode Insert mode
CTRL-PageUp <M-N><M-C-D> H <C-O>H
CTRL-PageDown <M-N>v L$ <C-O>L<C-O>$

Additionally, these keys are available for copy/cut/paste. In the Win32
and DJGPP versions, they also use the clipboard.

Shift-Insert paste text (from clipboard) <S-Insert>
CTRL-Insert copy Visual text (to clipboard) <C-Insert>
CTRL-Del cut Visual text (to clipboard) <C-Del>
Shift-Del cut Visual text (to clipboard) <S-Del>
CTRL-X cut Visual text (to clipboard)

These mappings accomplish this (Win32 and DJGPP versions of Vim):

key key code Normal Visual Insert
Shift-Insert <M-N><M-T> "*P "-d"*P <C-R><C-O>*
CTRL-Insert <M-N><M-U> "*y
Shift-Del <M-N><M-W> "*d
CTRL-Del <M-N><M-X> "*d
CTRL-X <C-X> "*d

Or these mappings (non-Win32 version of Vim):

key key code Normal Visual Insert
Shift-Insert <M-N><M-T> P "-dP <C-R><C-O>"
CTRL-Insert <M-N><M-U> y
Shift-Del <M-N><M-W> d

os_dos.txt — 4182

CTRL-Del <M-N><M-X> d

When the clipboard is supported, the "* register is used.

==
4. Screen output and colors dos-colors

The default output method for the screen is to use bios calls. This works
right away on most systems. You do not need ansi.sys. You can use ":mode" to
set the current screen mode. See :mode .

To change the screen colors that Vim uses, you can use the :highlight
command. The Normal highlight group specifies the colors Vim uses for normal
text. For example, to get grey text on a blue background:

:hi Normal ctermbg=Blue ctermfg=grey
See highlight-groups for other groups that are available.

A DOS console does not support attributes like bold and underlining. You can
set the color used in five modes with nine terminal options. Note that this
is not necessary since you can set the color directly with the ":highlight"
command; these options are for backward compatibility with older Vim versions.
The 'highlight' option specifies which of the five modes is used for which
action.

:set t_mr=^V^[\|xxm start of invert mode
:set t_md=^V^[\|xxm start of bold mode
:set t_me=^V^[\|xxm back to normal text

:set t_so=^V^[\|xxm start of standout mode
:set t_se=^V^[\|xxm back to normal text

:set t_us=^V^[\|xxm start of underline mode
:set t_ue=^V^[\|xxm back to normal text

:set t_ZH=^V^[\|xxm start of italics mode
:set t_ZR=^V^[\|xxm back to normal text

^V is CTRL-V
^[is <Esc>
You must replace xx with a decimal code, which is the foreground color number
and background color number added together:

COLOR FOREGROUND BACKGROUND
Black 0 0
DarkBlue 1 16
DarkGreen 2 32
DarkCyan 3 48
DarkRed 4 64
DarkMagenta 5 80
Brown, DarkYellow 6 96
LightGray 7 112
DarkGray 8 128 *
Blue, LightBlue 9 144 *
Green, LightGreen 10 160 *
Cyan, LightCyan 11 176 *
Red, LightRed 12 192 *
Magenta, LightMagenta 13 208 *
Yellow, LightYellow 14 224 *
White 15 240 *

os_dos.txt — 4183

* Depending on the display mode, the color codes above 128 may not be
available, and code 128 will make the text blink.

When you use 0, the color is reset to the one used when you started Vim
(usually 7, lightgray on black, but you can override this. If you have
overridden the default colors in a command prompt, you may need to adjust
some of the highlight colors in your vimrc---see below).
This is the default for t_me.

The defaults for the various highlight modes are:
t_mr 112 reverse mode: Black text (0) on LightGray (112)
t_md 15 bold mode: White text (15) on Black (0)
t_me 0 normal mode (revert to default)

t_so 31 standout mode: White (15) text on DarkBlue (16)
t_se 0 standout mode end (revert to default)

t_czh 225 italic mode: DarkBlue text (1) on Yellow (224)
t_czr 0 italic mode end (revert to default)

t_us 67 underline mode: DarkCyan text (3) on DarkRed (64)
t_ue 0 underline mode end (revert to default)

These colors were chosen because they also look good when using an inverted
display, but you can change them to your liking.

Example:
:set t_mr=^V^[\|97m " start of invert mode: DarkBlue (1) on Brown (96)
:set t_md=^V^[\|67m " start of bold mode: DarkCyan (3) on DarkRed (64)
:set t_me=^V^[\|112m " back to normal mode: Black (0) on LightGray (112)

:set t_so=^V^[\|37m " start of standout mode: DarkMagenta (5) on DarkGreen
(32)

:set t_se=^V^[\|112m " back to normal mode: Black (0) on LightGray (112)

==
5. File formats dos-file-formats

If the 'fileformat' option is set to "dos" (which is the default), Vim accepts
a single <NL> or a <CR><NL> pair for end-of-line (<EOL>). When writing a
file, Vim uses <CR><NL>. Thus, if you edit a file and write it, Vim replaces
<NL> with <CR><NL>.

If the 'fileformat' option is set to "unix", Vim uses a single <NL> for <EOL>
and shows <CR> as ^M.

You can use Vim to replace <NL> with <CR><NL> by reading in any mode and
writing in Dos mode (":se ff=dos").
You can use Vim to replace <CR><NL> with <NL> by reading in Dos mode and
writing in Unix mode (":se ff=unix").

Vim sets 'fileformat' automatically when 'fileformats' is not empty (which is
the default), so you don't really have to worry about what you are doing.

'fileformat' 'fileformats'

If you want to edit a script file or a binary file, you should set the
'binary' option before loading the file. Script files and binary files may
contain single <NL> characters which Vim would replace with <CR><NL>. You can
set 'binary' automatically by starting Vim with the "-b" (binary) option.

os_dos.txt — 4184

==
6. :cd command dos-:cd

The ":cd" command recognizes the drive specifier and changes the current
drive. Use ":cd c:" to make drive C the active drive. Use ":cd d:\foo" to go
to the directory "foo" in the root of drive D. Vim also recognizes UNC names
if the system supports them; e.g., ":cd \\server\share\dir". :cd

==
7. Interrupting dos-CTRL-Break

Use CTRL-Break instead of CTRL-C to interrupt searches. Vim does not detect
the CTRL-C until it tries to read a key.

==
8. Temp files dos-temp-files

Only for the 16 bit and 32 bit DOS version:
Vim puts temporary files (for filtering) in the first of these directories
that exists and in which Vim can create a file:

$TMP
$TEMP
C:\TMP
C:\TEMP
current directory

For the Win32 version (both console and GUI):
Vim uses standard Windows functions to obtain a temporary file name (for
filtering). The first of these directories that exists and in which Vim can
create a file is used:

$TMP
$TEMP
current directory

==
9. Shell option default dos-shell

The default for the 'sh' ('shell') option is "command.com" on Windows 95 and
"cmd.exe" on Windows NT. If SHELL is defined, Vim uses SHELL instead, and if
SHELL is not defined but COMSPEC is, Vim uses COMSPEC. Vim starts external
commands with "<shell> /c <command_name>". Typing CTRL-Z starts a new command
subshell. Return to Vim with "exit". 'shell' CTRL-Z

If you are running a third-party shell, you may need to set the
'shellcmdflag' ('shcf') and 'shellquote' ('shq') or 'shellxquote'

('sxq') options. Unfortunately, this also depends on the version of Vim used.
For example, with the MKS Korn shell or with bash, the values of the options
should be:

DOS 16 bit DOS 32 bit Win32
'shellcmdflag' -c -c -c
'shellquote' "
'shellxquote' "

For Dos 16 bit this starts the shell as:
<shell> -c "command name" >file

For Win32 as:
<shell> -c "command name >file"

For DOS 32 bit, DJGPP does this internally somehow.

os_dos.txt — 4185

When starting up, if Vim does not recognise a standard Windows shell it checks
for the presence of "sh" anywhere in the 'shell' option. If it is present,
Vim sets the 'shellcmdflag' and 'shellquote' or 'shellxquote' options will be
set as described above.

==
10. PowerShell dos-powershell dos-pwsh

Vim supports PowerShell Desktop and PowerShell Core. PowerShell Desktop is
the version of PowerShell that is installed with Windows, while PowerShell
Core is a separate downloadable version that works cross-platform. To see
which version you are using then enter the following in a PowerShell prompt -
$PSVersionTable.PSEdition

If 'shell' includes "powershell" in the filename at startup then VIM sets
'shellcmdflag', 'shellxquote', 'shellpipe', and 'shellredir' options to the
following values:

'shellcmdflag' -Command
'shellxquote' "
'shellpipe' 2>&1 | Out-File -Encoding default
'shellredir' 2>&1 | Out-File -Encoding default

If 'shell' includes "pwsh" in the filename at startup then VIM sets
'shellcmdflag', 'shellxquote', 'shellpipe', and 'shellredir' options to the
following values:

'shellcmdflag' -c
'shellxquote' "
'shellpipe' >%s 2>&1
'shellredir' >%s 2>&1

If you find that PowerShell commands are taking a long time to run then try
with "-NoProfile" at the beginning of the 'shellcmdflag'. Note this will
prevent any PowerShell environment setup by the profile from taking place.

If you have problems running PowerShell scripts through the 'shell' then try
with "-ExecutionPolicy RemoteSigned -Command" at the beginning of
'shellcmdflag'. See online Windows documentation for more information on
PowerShell Execution Policy settings.

See option-backslash about including spaces in 'shellcmdflag' when using
multiple flags.

The 'shellpipe' and 'shellredir' option values re-encode the UTF-16LE output
from PowerShell Desktop to your currently configured console codepage. The
output can be forced into a different encoding by changing "default" to one of
the following:

unicode - UTF-16LE (default output from PowerShell 5.1)
bigendianunicode - UTF-16
utf8 - UTF-8
utf7 - UTF-7 (no BOM)
utf32 - UTF-32
ascii - 7-bit ASCII character set
default - System's active code page (typically ANSI)
oem - System's current OEM code page

Note The above multi-byte Unicode encodings include a leading BOM unless
otherwise indicated.

os_dos.txt — 4186

By default PowerShell Core's output is UTF-8 encoded without a BOM. If you
want to force the output of PowerShell Core into a different encoding then set
'shellredir' and 'shellpipe' to "2>&1 | Out-File -Encoding encoding" where
encoding is one of the following:

ascii - 7-bit ASCII character set
bigendianunicode - UTF-16BE
bigendianutf32 - UTF-32BE
oem - System's current OEM code page
unicode - UTF-16LE
utf7 - UTF-7
utf8 - UTF-8
utf8BOM - UTF-8, with BOM
utf8NoBOM - UTF-8, no BOM (default output from PowerShell Core)
utf32 - UTF-32

Since PowerShell Core 6.2, the Encoding parameter also supports specifying a
numeric ID of a registered code page (-Encoding 1251) or string names of
registered code pages (-Encoding "windows-1251"). The .NET documentation for
Encoding.CodePage has more information

os_dos.txt — 4187

os_dos.txt — 4188

os_haiku.txt For Vim version 9.1. Last change: 2020 May 13

VIM REFERENCE MANUAL by Bram Moolenaar

Haiku
This file contains the particularities for the Haiku version of Vim. For
matters not discussed in this file, Vim behaves very much like the Unix
os_unix.txt version.

Haiku is an open-source operating system inspired by BeOS, that specifically
targets personal computing.

1. General haiku-general
2. Compiling Vim haiku-compiling
3. The Haiku GUI haiku-gui
4. The $VIM directory haiku-vimdir
5. The $USER_SETTINGS_DIR

directory haiku-user-settings-dir
6. Drag & Drop haiku-dragndrop
7. Single Launch vs. Multiple

Launch haiku-launch
8. Fonts haiku-fonts
9. The meta key modifier haiku-meta

10. Mouse key mappings haiku-mouse
11. Color names haiku-colors
12. GUI Toolbar Images haiku-toolbar-images
13. Credits haiku-support-credits
14. Bugs & to-do haiku-bugs

1. General haiku-general

The default syntax highlighting mostly works with different foreground colors
to highlight items. This works best if you set your Terminal window to a
darkish background and light letters. Some middle-grey background (for
instance (r,g,b)=(168,168,168)) with black letters also works nicely.

2. Compiling Vim haiku-compiling

Vim can be compiled using the standard configure/make approach. Running
./configure without any arguments or passing --enable-gui=haiku, will compile
vim with the Haiku GUI support. Run ./configure --help , to find out other
features you can enable/disable.

Haiku uses "ncurses6" as its terminal library, therefore you need to have
"ncurses6_devel" package installed from HaikuDepot in order to configure
the Haiku build. Just append "--with-tlib=ncurses" to ./configure command.

Now you should use "make" to compile Vim, then "make install" to install it.
For seamless integration into Haiku, the GUI-less vim binary should be
additionally installed over the GUI version. Typical build commands are:

./configure --prefix=`finddir B_SYSTEM_NONPACKAGED_DIRECTORY` \
--datarootdir=`finddir B_SYSTEM_NONPACKAGED_DATA_DIRECTORY` \
--mandir=`finddir B_SYSTEM_NONPACKAGED_DIRECTORY`/documentation/man \
--with-tlib=ncurses

make clean

os_haiku.txt — 4189

make install

./configure --prefix=`finddir B_SYSTEM_NONPACKAGED_DIRECTORY` \
--datarootdir=`finddir B_SYSTEM_NONPACKAGED_DATA_DIRECTORY` \
--mandir=`finddir B_SYSTEM_NONPACKAGED_DIRECTORY`/documentation/man \
--with-tlib=ncurses \
--disable-gui

make clean
make install

3. The Haiku GUI haiku-gui

Normally Vim starts with the GUI if you start it as gvim or vim -g. The vim
version with GUI tries to determine if it was started from the Tracker instead
of the Terminal, and if so, uses the GUI anyway. However, the current detection
scheme is fooled if you use the command "vim - </dev/null".

Stuff that does not work yet:

- Mouse up events are not generated when outside the window. You can notice
this when selecting text and moving the cursor outside the window, then
letting go of the mouse button. Another way is when you drag the scrollbar
and do the same thing. Because Vim still thinks you are still playing with
the scrollbar it won't change it itself. There is a workaround which kicks
in when the window is activated or deactivated (so it works best with focus-
follows-mouse turned on).

- The cursor does not flash.

4. The $VIM directory haiku-vimdir

$VIM is the symbolic name for the place where Vim's support files are stored.
The default value for $VIM is set at compile time and can be determined with:

:version

The normal value is /boot/system/data/vim for Haikuports version,
/boot/system/non-packaged/data/vim for manual builds. If you don't like it
you can set the VIM environment variable to override this, or set 'helpfile'
in your .vimrc:

:if version >= 500
: set helpfile=~/vim/runtime/doc/help.txt
: syntax on
:endif

5. The $USER_SETTINGS_DIR directory haiku-user-settings-dir

$USER_SETTINGS_DIR is the symbolic name for the place where Haiku
configuration and settings files are stored.

The normal value is /boot/home/config/settings.

6. Drag & Drop haiku-dragndrop

You can drop files and directories on either the Vim icon (starts a new Vim
session, unless you use the File Types application to set Vim to be "Single

os_haiku.txt — 4190

Launch") or on the Vim window (starts editing the files). Dropping a folder
sets Vim's current working directory :cd :pwd . If you drop files or
folders with either SHIFT key pressed, Vim changes directory to the folder
that contains the first item dropped. When starting Vim, there is no need to
press shift: Vim behaves as if you do.

Files dropped set the current argument list. argument-list

7. Single Launch vs. Multiple Launch haiku-launch

As distributed Vim's Application Flags (as seen in the FileTypes preference)
are set to Multiple Launch. If you prefer, you can set them to Single Launch
instead. Attempts to start a second copy of Vim will cause the first Vim to
open the files instead. This works from the Tracker but also from the command
line. In the latter case, non-file (option) arguments are not supported.
Another drawback of the Single Launch is silent ignore of "Open With ..."
requests by vim instance that running as non-GUI application even GUI support
was compiled in. Vim instance running with GUI has no such problems.

NB: Only the GUI version has a BApplication (and hence Application Flags).
This section does not apply to the GUI-less version, should you compile one.

8. Fonts haiku-fonts

Set fonts with

:set guifont=DejaVu_Sans_Mono/Book/12

where the first part is the font family, the second part the style, and the
third part the size. You can use underscores instead of spaces in family and
style.

Best results are obtained with monospaced fonts. Vim attempts to use all
fonts in B_FIXED_SPACING mode but apparently this does not work for
proportional fonts (despite what the BeBook says).

To verify which encodings are supported by the current font give the

:digraphs

command, which lists a bunch of characters with their ISO Latin 1 encoding.
If, for instance, there are "box" characters among them, or the last character
isn't a dotted-y, then for this font the encoding does not work.

If the font you specify is unavailable, you get the system fixed font.

GUI Font Selection Dialog is available at giving the:

:set guifont=*

command.

9. The meta key modifier haiku-meta

The META key modifier is obtained by the left or right OPTION keys. This is
because the ALT (aka COMMAND) keys are not passed to applications.

os_haiku.txt — 4191

10. Mouse key mappings haiku-mouse

Vim calls the various mouse buttons LeftMouse, MiddleMouse and RightMouse. If
you use the default Mouse preference settings these names indeed correspond to
reality. Vim uses this mapping:

Button 1 -> LeftMouse,
Button 2 -> RightMouse,
Button 3 -> MiddleMouse.

If your mouse has fewer than 3 buttons you can provide your own mapping from
mouse clicks with modifier(s) to other mouse buttons. See the file
$VIM/macros/swapmous.vim for an example. gui-mouse-mapping

11. Color names haiku-colors

Vim has a number of color names built-in. Additional names can be defined in
v:colornames . See :colorscheme for details.

12. GUI Toolbar Images haiku-toolbar-images

Alternative set of toolbar images should be the PNG image of any height you
like. Image width is calculated to contain at least 32 buttons in one-row
cells.
The image should be stored under the name $VIRUNTIME/bitmaps/builtin-tools.png
More info about the buttons assignment are at builtin-tools .

13. Credits haiku-support-credits

Haiku port is based on work done for BeOS version by many people
- BeBox GUI support Copyright 1998 by Olaf Seibert;
- Ported to R4 by Richard Offer <richard@whitequeen.com> Jul 99;
- Those who contributed, not listed above but not forgotten;
- Haiku support by Siarzhuk Zharski <imker@gmx.li> Apr-Mai 2009.

All the changes and patches released under vim-license.

Thank you, all!

14. Bugs & to-do haiku-bugs

The port is under development now and far away from the perfect state. For bug
reports, patches and wishes, please use the Vim mailing list or Vim Github
repository.

Mailing list: https://www.vim.org/maillist.php
Vim Github repository: https://github.com/vim/vim

os_haiku.txt — 4192

https://www.vim.org/maillist.php
https://github.com/vim/vim

os_mac.txt For Vim version 9.1. Last change: 2019 Apr 21

VIM REFERENCE MANUAL by Bram Moolenaar et al.

mac Mac macintosh Macintosh

This file documents the particularities of the Macintosh version of Vim.

NOTE: This file is a bit outdated. You might find more useful info here:
http://macvim.org/

1. Filename Convention mac-filename
2. .vimrc and .vim files mac-vimfile
3. Standard mappings mac-standard-mappings
4. FAQ mac-faq
5. Known Lack mac-lack
6. Mac Bug Report mac-bug
7. Compiling Vim mac-compile
8. The darwin feature mac-darwin-feature

There was a Mac port for version 3.0 of Vim. Here are the first few lines
from the old file:

VIM Release Notes
Initial Macintosh release, VIM version 3.0
19 October 1994

Eric Fischer
<enf1@midway.uchicago.edu>, <eric@jcp.uchicago.edu>, <etaoin@uchicago.edu>
5759 N. Guilford Ave
Indianapolis IN 46220 USA

==
1. Filename Convention mac-filename

Starting with Vim version 7 you can just use the unix path separators with
Vim. In order to determine if the specified filename is relative to the
current folder or absolute (i.e. relative to the "Desktop"), the following
algorithm is used:

If the path start by a "/", the path is absolute
If the path start by a ":", the path is relative
If the path doesn't start by neither a "/" nor ":",

and a ":" is found before a "/" then the path is absolute

:e /HD/text
:e HD:text

Edit the file "text" of the disk "HD"
:e :src:main.c
:e src/main.c

Edit the file "main.c" in the folder "src" in the current folder
:e os_mac.c

Edit the file "os_mac.c" in the current folder.

You can use the $VIM and $VIMRUNTIME variable.

:so $VIMRUNTIME:syntax:syntax.vim

os_mac.txt — 4193

http://macvim.org/

==
2. .vimrc and .vim files mac-vimfile

It is recommended to use Unix style line separators for Vim scripts, thus a
single newline character.

When starting up Vim will load the $VIMRUNTIME/macmap.vim script to define
default command-key mappings.

On older systems files starting with a dot "." are discouraged, thus the rc
files are named "vimrc" or "_vimrc" and "gvimrc" or "_gvimrc". These files
can be in any format (mac, dos or unix). Vim can handle any file format when
the 'nocompatible' option is set, otherwise it will only handle mac format
files.

==
3. Standard mappings mac-standard-mappings

The following mappings are available for cut/copy/paste from/to clipboard.

key Normal Visual Insert Description
Command-v "*P "-d"*P <C-R>* paste text <D-v>
Command-c "*y copy Visual text <D-c>
Command-x "*d cut Visual text <D-x>
Backspace "*d cut Visual text

==
4. Mac FAQ mac-faq

On the internet: http://macvim.org/OSX/index.php#FAQ

Q: I can't enter non-ASCII character in Apple Terminal.
A: Under Window Settings, Emulation, make sure that "Escape non-ASCII

characters" is not checked.

Q: How do I start the GUI from the command line?
A: Assuming that Vim.app is located in /Applications:

open /Applications/Vim.app
Or:

/Applications/Vim.app/Contents/MacOS/Vim -g {arguments}

Q: How can I set $PATH to something reasonable when I start Vim.app from the
GUI or with open?

A: The following trick works with most shells. Put it in your vimrc file.
This is included in the system vimrc file included with the binaries
distributed at macvim.org .

let s:path = system("echo echo VIMPATH'${PATH}' | $SHELL -l")
let $PATH = matchstr(s:path, 'VIMPATH\zs.\{-}\ze\n')

==
5. Mac Lack mac-lack

In a terminal CTRL-^ needs to be entered as Shift-Control-6. CTRL-@ as
Shift-Control-2.

==
6. Mac Bug Report mac-bug

When reporting any Mac specific bug or feature change, please use the vim-mac
maillist vim-mac . However, you need to be subscribed. An alternative is to

os_mac.txt — 4194

http://macvim.org/OSX/index.php#FAQ

send a message to the current MacVim maintainers:

mac@vim.org

==
7. Compiling Vim mac-compile

See the file "src/INSTALLmac.txt" that comes with the source files.

==
8. The Darwin Feature mac-darwin-feature

If you have a Mac that isn't very old, you will be running OS X, also called
Darwin. The last pre-Darwin OS was Mac OS 9. The darwin feature makes Vim
use Darwin-specific properties.

What is accomplished with this feature is two-fold:

- Make Vim interoperable with the system clipboard.
- Incorporate into Vim a converter module that bridges the gap between some

character encodings specific to the platform and those known to Vim.

Needless to say, both are not to be missed for any decent text editor to work
nicely with other applications running on the same desktop environment.

As Vim is not an application dedicated only to macOS, we need an extra feature
to add in order for it to offer the same user experience that our users on
other platforms enjoy to people on macOS.

For brevity, the feature is referred to as "darwin" to signify it one of the
Vim features that are specific to that particular platform.

The feature is a configuration option. Accordingly, whether it is enabled or
not is determined at build time; once it is selected to be enabled, it is
compiled in and hence cannot be disabled at runtime.

The feature is enabled by default. For most macOS users, that should be
sufficient unless they have specific needs mentioned briefly below.

If you want to disable it, pass `--disable-darwin` to the configure script:

./configure --disable-darwin <other options>

and then run `make` to build Vim. The order of the options doesn't matter.

To make sure at runtime whether or not the darwin feature is compiled in, you
can use `has('osxdarwin')` which returns 1 if the feature is compiled in; 0
otherwise. For backward compatibility, you can still use `macunix` instead of
`osxdarwin`.

Notable use cases where `--disable-darwin` is turned out to be useful are:

- When you want to use x11-selection instead of the system clipboard.
- When you want to use x11-clientserver .

Since both have to make use of X11 inter-client communication for them to work
properly, and since the communication mechanism can come into conflict with
the system clipboard, the darwin feature should be disabled to prevent Vim
from hanging at runtime.

os_mac.txt — 4195

os_mac.txt — 4196

os_mint.txt For Vim version 9.1. Last change: 2020 Jul 14

VIM REFERENCE MANUAL by Jens M. Felderhoff

MiNT Atari
The Atari MiNT support was removed with patch 8.2.1215. It probably didn't
work at that time, since the code was old and not maintained.

Originally added by: Jens M. Felderhoff, e-mail: <jmf@infko.uni-koblenz.de>

os_mint.txt — 4197

os_mint.txt — 4198

os_msdos.txt For Vim version 9.1. Last change: 2016 Feb 26

VIM REFERENCE MANUAL by Bram Moolenaar

msdos ms-dos MSDOS MS-DOS
This file used to contain the particularities for the MS-DOS version of Vim.
MS-DOS support was removed in patch 7.4.1399. If you want to use it you will
need to get a version older than that. Note that the MS-DOS version doesn't
work, there is not enough memory. The DOS32 version (using DJGPP) might still
work on older systems.

os_msdos.txt — 4199

os_msdos.txt — 4200

os_os2.txt For Vim version 9.1. Last change: 2015 Dec 31

VIM REFERENCE MANUAL by Paul Slootman

os2 OS2 OS/2
This file used to contain the particularities for the OS/2 version of Vim.

The OS/2 support was removed in patch 7.4.1008.

os_os2.txt — 4201

os_os2.txt — 4202

os_qnx.txt For Vim version 9.1. Last change: 2005 Mar 29

VIM REFERENCE MANUAL by Julian Kinraid

QNX qnx

1. General qnx-general
2. Compiling Vim qnx-compiling
3. Terminal support qnx-terminal
4. Photon GUI photon-gui
5. Photon fonts photon-fonts
6. Bugs & things To Do

==

1. General qnx-general

Vim on QNX behaves much like other unix versions. os_unix.txt

2. Compiling Vim qnx-compiling

Vim can be compiled using the standard configure/make approach. If you want to
compile for X11, pass the --with-x option to configure. Otherwise, running
./configure without any arguments or passing --enable-gui=photon, will compile
vim with the Photon gui support. Run ./configure --help , to find out other
features you can enable/disable.

3. Terminal support qnx-terminal

Vim has support for the mouse and clipboard in a pterm, if those options
are compiled in, which they are normally.

The options that affect mouse support are 'mouse' and 'ttymouse' . When
using the mouse, only simple left and right mouse clicking/dragging is
supported. If you hold down shift, ctrl, or alt while using the mouse, pterm
will handle the mouse itself. It will make a selection, separate from what
vim's doing.

When the mouse is in use, you can press Alt-RightMouse to open the pterm menu.
To turn the mouse off in vim, set the mouse option to nothing, set mouse=

4. Photon GUI photon-gui

To start the gui for vim, you need to run either gvim or vim -g, otherwise
the terminal version will run. For more info - gui-x11-start

Supported features:
:browse command :browse
:confirm command :confirm
Cursor blinking 'guicursor'
Menus, popup menus and menu priorities :menu

popup-menu
menu-priority

Toolbar gui-toolbar
'toolbar'

os_qnx.txt — 4203

Font selector (:set guifont=*) photon-fonts
Mouse focus 'mousefocus'
Mouse hide 'mousehide'
Mouse cursor shapes 'mouseshape'
Clipboard gui-clipboard

Unfinished features:
Various international support, such as Farsi & Hebrew support,
different encodings, etc.

This help file

Unsupported features:
Find & Replace window :promptfind
Tearoff menus

Other things which I can't think of so I can't list them

5. Fonts photon-fonts

You set fonts in the gui with the guifont option
:set guifont=Lucida\ Terminal

The font must be a monospace font, and any spaces in the font name must be
escaped with a '\'. The default font used is PC Terminal, size 8. Using
'*' as the font name will open a standard Photon font selector where you can
select a font.

Following the name, you can include optional settings to control the size and
style of the font, each setting separated by a ':'. Not all fonts support the
various styles.

The options are,
s{size} Set the size of the font to {size}
b Bold style
a Use antialiasing
i Italic style

Examples:

Set the font to monospace size 10 with antialiasing
:set guifont=monospace:s10:a

Set the font to Courier size 12, with bold and italics
:set guifont=Courier:s12:b:i

Select a font with the requester
:set guifont=*

6. Bugs & things To Do

Known problems:
- Vim hangs sometimes when running an external program. Workaround:

put this line in your vimrc file:
set noguipty

Bugs:

os_qnx.txt — 4204

- Still a slight problem with menu highlighting.
- When using phditto/phinows/etc., if you are using a font that

doesn't support the bold attribute, when vim attempts to draw
bold text it will be all messed up.

- The cursor can sometimes be hard to see.
- A number of minor problems that can fixed. :)

Todo:
- Improve multi-language support.
- Options for setting the fonts used in the menu and toolbar.
- Find & Replace dialog.
- The clientserver features.
- Maybe tearoff menus.

- Replace usage of fork() with spawn() when launching external
programs.

os_qnx.txt — 4205

os_qnx.txt — 4206

os_risc.txt For Vim version 9.1. Last change: 2011 May 10

VIM REFERENCE MANUAL by Thomas Leonard

riscos RISCOS RISC-OS
The RISC OS support has been removed from Vim with patch 7.3.187.
If you would like to use Vim on RISC OS get the files from before that patch.

os_risc.txt — 4207

os_risc.txt — 4208

os_unix.txt For Vim version 9.1. Last change: 2022 Nov 25

VIM REFERENCE MANUAL by Bram Moolenaar

unix Unix
This file contains the particularities for the Unix version of Vim.

For compiling Vim on Unix see "INSTALL" and "Makefile" in the src directory.

The default help file name is "/usr/local/lib/vim/help.txt"
The files "$HOME/.vimrc" and "$HOME/.exrc" are used instead of "s:.vimrc" and
"s:.exrc". Additionally "/usr/local/etc/vimrc" is used first.
If "/usr/local/share" exists it is used instead of "/usr/local/lib".

Temporary files (for filtering) are put in "/tmp". If you want to place them
somewhere else, set the environment variable $TMPDIR to the directory you
prefer.

With wildcard expansion you can use '~' (home directory) and '$'
(environment variable).

fork spoon
For executing external commands fork()/exec() is used when possible, otherwise
system() is used, which is a bit slower. The output of ":version" includes
+fork when fork()/exec() is used, +system() when system() is used. This

can be changed at compile time.
(For forking of the GUI version see gui-fork .)

For historic reasons terminal updating under Unix is expected to be slow (e.g.
serial line terminal, shell window in suntools), the 'showcmd' and 'ruler'
options are off by default. If you have a fast terminal, try setting them
on:

set showcmd ruler

When using Vim in an xterm the mouse clicks can be used by Vim by setting
'mouse' to "a". If there is access to an X-server gui style copy/paste will
be used and visual feedback will be provided while dragging with the mouse.
If you then still want the xterm copy/paste with the mouse, press the shift
key when using the mouse. See mouse-using . Visual feedback while dragging
can also be achieved via the 'ttymouse' option if your xterm is new enough.

terminal-colors
To use colors in Vim you can use the following example (if your terminal
supports colors, but "T_Co" is empty or zero):

:set t_me=^[[0;1;36m " normal mode (undoes t_mr and t_md)
:set t_mr=^[[0;1;33;44m " reverse (invert) mode
:set t_md=^[[1;33;41m " bold mode
:set t_se=^[[1;36;40m " standout end
:set t_so=^[[1;32;45m " standout mode
:set t_ue=^[[0;1;36m " underline end
:set t_us=^[[1;32m " underline mode start

[the ^[is an <Esc>, type CTRL-V <Esc> to enter it]

For real color terminals the ":highlight" command can be used.

The file "tools/vim132" is a shell script that can be used to put Vim in 132
column mode on a vt100 and lookalikes.

os_unix.txt — 4209

os_unix.txt — 4210

os_vms.txt For Vim version 9.1. Last change: 2023 Dec 14

VIM REFERENCE MANUAL

VMS vms
This file contains the particularities for the VMS version of Vim.
You can reach this information file by typing :help VMS in Vim command
prompt.

1. Getting started vms-started
2. Download files vms-download
3. Compiling vms-compiling
4. Problems vms-problems
5. Deploy vms-deploy
6. Practical usage vms-usage
7. GUI mode questions vms-gui
8. Useful notes vms-notes
9. VMS related changes vms-changes

10. Authors vms-authors

==

1. Getting started vms-started

Vim (Vi IMproved) is a Vi-compatible text editor that runs on nearly every
operating system known to humanity. Now use Vim on OpenVMS too, in character
or X/Motif environment. It is fully featured and absolutely compatible with
Vim on other operating systems.

==

2. Download files vms-download

You can download the Vim source code by ftp from the official Vim site:
ftp://ftp.vim.org/pub/vim/

Or use one of the mirrors:
ftp://ftp.vim.org/pub/vim/MIRRORS

You can download precompiled executables from:
http://www.polarhome.com/vim/
ftp://ftp.polarhome.com/pub/vim/

To use the precompiled binary version, you need one of these archives:

vim-XX-exe-x86-gui.zip X86_64 GUI/Motif executables
vim-XX-exe-x86-term.zip X86_64 console executables
vim-XX-exe-ia64-gui.zip IA64 GUI/Motif executables
vim-XX-exe-ia64-gtk.zip IA64 GUI/GTK executables
vim-XX-exe-ia64-term.zip IA64 console executables
vim-XX-exe-axp-gui.zip Alpha GUI/Motif executables
vim-XX-exe-axp-gtk.zip Alpha GUI/GTK executables
vim-XX-exe-axp-term.zip Alpha console executables
vim-XX-exe-vax-gui.zip VAX GUI executables
vim-XX-exe-vax-term.zip VAX console executables

and of course (optional)
vim-XX-runtime.zip runtime files

os_vms.txt — 4211

ftp://ftp.vim.org/pub/vim/
ftp://ftp.vim.org/pub/vim/MIRRORS
http://www.polarhome.com/vim/
ftp://ftp.polarhome.com/pub/vim/

The binary archives contain: vim.exe, ctags.exe, xxd.exe files.

For GTK executables you will need GTKLIB that is available for
Alpha and IA64 platforms.

==

3. Compiling vms-compiling

See the file [.SRC]INSTALLVMS.TXT.

==

4. Problems vms-problems

The code has been tested under Open VMS 6.2 - 9.2 on Alpha, VAX, IA64 and
X86_64 platforms with the DEC C compiler. It should work without major problems.
If your system does not have some include libraries you can tune in the
OS_VMS_CONF.H file.

If you decided to build Vim with +perl, +python, etc. options, first you need
to download OpenVMS distributions of Perl and Python. Build and deploy the
libraries and change adequate lines in MAKE_VMS.MMS file. There should not be
a problem from Vim side.

Also GTK, XPM library paths should be configured in MAKE_VMS.MMS

Note: Under VAX it should work with the DEC C compiler without problems. The
VAX C compiler is not fully ANSI C compatible in pre-processor directives
semantics, therefore you have to use a converter program that will do the lion
part of the job. For detailed instructions read file INSTALLvms.txt

To build XXD.EXE, you should change to the subdirectory and build it separately.

CTAGS is not part of the Vim source distribution anymore, however the OpenVMS
specific source might contain CTAGS source files as described above.
You can find more information about CTAGS on VMS at
http://www.polarhome.com/ctags/

Advanced users may try some acrobatics in FEATURE.H file as well.

It is possible to compile with +xfontset +xim options too, but then you have
to set up GUI fonts etc. correctly. See :help xim from Vim command prompt.

You may want to use GUI with GTK icons, then you have to download and install
GTK for OpenVMS or at least runtime shareable images - LIBGTK from
polarhome.com
Post 7.2 Vim uses GTK2+ while the last GTK on OpenVMS is 1.2.10, therefore
the GTK build is no longer available.

For more advanced questions, please send your problem to Vim on VMS mailing
list <vim-vms@polarhome.com>
More about the vim-vms list can be found at:
http://www.polarhome.com/mailman/listinfo/vim-vms

==

5. Deploy vms-deploy

Vim uses a special directory structure to hold the document and runtime files:

os_vms.txt — 4212

http://www.polarhome.com/ctags/
http://www.polarhome.com/mailman/listinfo/vim-vms

vim (or wherever)
|- tmp
|- vim57
|----- doc
|----- syntax
|- vim62
|----- doc
|----- syntax
|- vim64
|----- doc
|----- syntax
vimrc (system rc files)
gvimrc

Use:

define/nolog VIM device:[path.vim]
define/nolog VIMRUNTIME device:[path.vim.vim60]
define/nolog TMP device:[path.tmp]

To get vim.exe to find its document, filetype, and syntax files, and to
specify a directory where temporary files will be located. Copy the "runtime"
subdirectory of the Vim distribution to vimruntime.

Logicals $VIMRUNTIME and $TMP are optional.

If $VIMRUNTIME is not set, Vim will guess and try to set up automatically.
Read more about it at :help runtime

If $TMP is not set, you will not be able to use some functions as CTAGS,
XXD, printing etc. that use temporary directory for normal operation.
The $TMP directory should be readable and writable by the user(s).
The easiest way to set up $TMP is to define a logical:

define/nolog TMP SYS$SCRATCH
or as:

define/nolog TMP SYS$LOGIN

==

6. Practical usage vms-usage

Usually, you want to run just one version of Vim on your system, therefore
it is enough to dedicate one directory for Vim.
Copy the whole Vim runtime directory structure to the deployment position.
Add the following lines to your LOGIN.COM (in SYS$LOGIN directory).
Set up the logical $VIM as:

$ define VIM device:<path>

Set up some symbols:

$! vi starts Vim in chr. mode.
$ vi*m :== mcr VIM:VIM.EXE

$!gvi starts Vim in GUI mode.
$ gv*im :== spawn/nowait mcr VIM:VIM.EXE -g

Please, check the notes for customization and configuration of symbols.

os_vms.txt — 4213

You may want to create .vimrc and .gvimrc files in your home directory
(SYS$LOGIN) to overwrite default settings.

The easiest way is just rename example files. You may leave the menu file
(MENU.VIM) and files vimrc and gvimrc in the original $VIM directory. It will
be the default setup for all users, and for users it is enough to just have
their own additions or resetting in their home directory in files .vimrc and
.gvimrc. It should work without problems.

Note: Remember, system rc files (default for all users) don't have a leading
".". So, system rc files are:

$VIM:vimrc
$VIM:gvimrc
$VIM:menu.vim

and user customized rc files are:

sys$login:.vimrc
sys$login:.gvimrc

You can check that everything is at the right place with the :version command.

Example LOGIN.COM:

$ define/nolog VIM DKA0:[UTIL.VIM81]
$ vi*m :== mcr VIM:VIM.EXE
$ gv*im:== spawn/nowait/input=NLA0 mcr VIM:VIM.EXE -g -GEOMETRY 80x40
$ set term/inq/ins ! inquire the terminal capabilities
$ set disp/create/node=192.168.10.202/trans=tcpip

Note: This set-up should be enough, if you are working on a standalone server or
clustered environment, but if you want to use Vim as an internode editor in
DECNET environment, it will satisfy as well.
You just have to define the "whole" path:

$ define VIM "<server_name>[""user password""]::device:<path>"
$ vi*m :== "mcr VIM:VIM.EXE"

For example:

$ define VIM "PLUTO::RF10:[UTIL.VIM]"
$ define VIM "PLUTO""ZAY mypass""::RF10:[UTIL.VIM]" ! if passwd required

You can also use the $VIMRUNTIME logical to point to the proper version of Vim
if you have installed more versions at the same time. If $VIMRUNTIME is not
defined Vim will borrow its value from the $VIM logical. You can find more
information about the $VIMRUNTIME logical by typing :help runtime as a Vim
command.

System administrators might want to set up a system wide Vim installation,
then add to the SYS$STARTUP:SYLOGICALS.COM

$ define/nolog/sys VIM device:<path>
$ define/nolog/sys TMP SYS$SCRATCH

And to the SYS$STARTUP:SYLOGIN.COM

$ vi*m :== mcr VIM:VIM.EXE

os_vms.txt — 4214

$ gv*im:== spawn/nowait/input=NLA0 mcr VIM:VIM.EXE -g -GEOMETRY 80x40

It will set up a normal Vim work environment for every user on the system.

IMPORTANT: Vim on OpenVMS (and on other case insensitive system) command line
parameters are assumed to be lowercase. In order to indicate that a command
line parameter is uppercase "/" sign must be used.

Examples:

vim -R filename ! means: -r List swap files and exit
vim -/r filename ! means: -R Readonly mode (like "view")
vim -u <vimrc> ! means: -u Use <vimrc> instead of any .vimrc
vim -/u <gvimrc> ! means: -U Use <gvimrc> instead of any .gvimrc

==

7. GUI mode questions vms-gui

OpenVMS is a real mainframe OS, therefore even if it has a GUI console, most
of the users do not use a native X/Window environment during normal operation.
It is not possible to start Vim in GUI mode "just like that". But anyhow it
is not too complicated either.

First of all: you will need an executable that is built with the GUI enabled.

Second: you need to have installed DECW/Motif on your VMS server, otherwise
you will get errors that some shareable libraries are missing.

Third: If you choose to run Vim with extra features such as GUI/GTK then you
need a GTK installation too or at least a GTK runtime environment (LIBGTK
can be downloaded from http://www.polarhome.com/vim/).

1) If you are working on the VMS X/Motif console:
Start Vim with the command:

$ mc device:<path>VIM.EXE -g

or type :gui as a command to the Vim command prompt. For more info :help
gui

2) If you are working on some other X/Window environment like Unix or a remote
X VMS console. Set up display to your host with:

$ set disp/create/node=<your IP address>/trans=<transport-name>

and start Vim as in point 1. You can find more help in VMS documentation or
type: help set disp in VMS prompt.
Examples:

$ set disp/create/node=192.168.5.159 ! default trans is DECnet
$ set disp/create/node=192.168.5.159/trans=tcpip ! TCP/IP network
$ set disp/create/node=192.168.5.159/trans=local ! display on the same node

Note: you should define just one of these.
For more information type $help set disp in VMS prompt.

3) Another elegant solution is XDM if you have installed on OpenVMS box.
It is possible to work from XDM client as from GUI console.

os_vms.txt — 4215

http://www.polarhome.com/vim/

4) If you are working on MS-Windows or some other non X/Window environment
you need to set up one X server and run Vim as in point 2.
For MS-Windows there are available free X servers as MIX, Omni X etc.,
as well as excellent commercial products as eXcursion or ReflectionX with
built-in DEC support.

Please note, that executables without GUI are slightly faster during startup
than with enabled GUI in character mode. Therefore, if you do not use GUI
features, it is worth to choose non GUI executables.

==

8. Useful notes vms-notes

8.1 Backspace/delete
8.2 Filters
8.3 VMS file version numbers
8.4 Directory conversion
8.5 Remote host invocation
8.6 Terminal problems
8.7 Hex-editing and other external tools
8.8 Sourcing vimrc and gvimrc
8.9 Printing from Vim
8.10 Setting up the symbols
8.11 diff and other GNU programs
8.12 diff-mode
8.13 Allow '$' in C keywords
8.14 VIMTUTOR for beginners
8.15 Slow start in console mode issue
8.16 Common VIM directory - different architectures

8.1 Backspace/delete

There are backspace/delete key inconsistencies with VMS.
:fixdel doesn't do the trick, but the solution is (without "<" in 'cpo'):

:inoremap <C-?> <C-H> " for terminal mode
:inoremap <C-H> " for gui mode

Read more in ch: 8.6 (Terminal problems).
(Bruce Hunsaker <BNHunsaker@chq.byu.edu> Vim 5.3)

8.2 Filters

Vim supports filters, i.e., if you have a sort program that can handle
input/output redirection like Unix (<infile >outfile), you could use

:map \s 0!'aqsort<CR>

(Charles E. Campbell, Jr. <cec@gryphon.gsfc.nasa.gov> Vim 5.4)

8.3 VMS file version numbers

Vim is saving files into a new file with the next higher file version
number, try these settings.

:set nobackup " does not create *.*_ backup files

os_vms.txt — 4216

:set nowritebackup " does not have any purpose on VMS. It's the
" default.

Recovery is working perfectly as well from the default swap file.
Read more with :help swapfile

(Claude Marinier <ClaudeMarinier@xwavesolutions.com> Vim 5.5, Zoltan Arpadffy
Vim 5.6)

8.4 Directory conversion

Vim will internally convert any unix-style paths and even mixed unix/VMS
paths into VMS style paths. Some typical conversions resemble:

/abc/def/ghi -> abc:[def]ghi.
/abc/def/ghi.j -> abc:[def]ghi.j
/abc/def/ghi.j;2 -> abc:[def]ghi.j;2
/abc/def/ghi/jkl/mno -> abc:[def.ghi.jkl]mno.
abc:[def.ghi]jkl/mno -> abc:[def.ghi.jkl]mno.

./ -> current directory

../ -> relative parent directory
[.def.ghi] -> relative child directory
./def/ghi -> relative child directory

Note: You may use <,> brackets as well (device:<path>file.ext;version) as
rf10:<user.zay.work>test.c;1

(David Elins <delins@foliage.com>, Jerome Lauret
<JLAURET@mail.chem.sunysb.edu> Vim 5.6)

8.5 Remote host invocation

It is possible to use Vim as an internode editor.
1. Edit some file from remote node:

vi "<server>""username passwd""::<device>:<path><filename>;<version>"

Example:
vi "pluto""zay passwd""::RF10:<USER.ZAY.WORK>TEST.C;1"

Note: syntax is very important, otherwise VMS will recognize more parameters
instead of one (resulting with: file not found)

2. Set up Vim as your internode editor. If Vim is not installed on your
host, just set up your IP address, the full Vim path including the server name
and run the command procedure below:

$ if (p1 .eqs. "") .OR. (p2 .eqs. "") then goto usage
$ set disp/create/node=<your_IP_here>/trans=tcpip
$ define "VIM "<vim_server>""''p1' ''p2'""::<device>:<vim_path>"
$ vi*m :== "mcr VIM:VIM.EXE"
$ gv*im :== "spawn/nowait mcr VIM:VIM.EXE -g"
$ goto end
$ usage:
$ write sys$output " Please enter username and password as a parameter."
$ write sys$output " Example: @SETVIM.COM username passwd"
$ end:

os_vms.txt — 4217

Note: Never use it in a clustered environment (you do not need it), loading
could be very-very slow, but even faster than a local Emacs. :-)

(Zoltan Arpadffy, Vim 5.6)

8.6 Terminal problems

If your terminal name is not known to Vim and it is trying to find the default
one you will get the following message during start-up:

Terminal entry not found in termcap
'unknown-terminal' not known. Available built-in terminals are:

builtin_gui
builtin_riscos
builtin_amiga
builtin_ansi
builtin_vt320
builtin_vt52
builtin_pcansi
builtin_win32
builtin_xterm
builtin_iris-ansi
builtin_debug
builtin_dumb

defaulting to 'vt320'

Try to force to inquire the terminal capabilities with:

$ set term/inquire

If the inquire did not help, the solutions is to define the default terminal name:

$! unknown terminal name. Let us use vt320 or ansi instead.
$! Note: it's case sensitive
$ define term "vt320"

Terminals from VT100 to VT320 (as V300, VT220, VT200) do not need any extra
keyboard mappings. They should work perfectly as they are, including arrows,
Ins, Del buttons etc., except Backspace in GUI mode. To solve it, add to
.gvimrc:

inoremap <BS>

Vim will also recognize that they are fast terminals.

If you're using Vim on remote host or through a very slow connection, you
might want to reset fast terminal option with:

set nottyfast " set terminal to slow mode

8.7 Hex-editing and other external tools

A very important difference between OpenVMS and other systems is that VMS uses
special commands to execute executables:

RUN <path>filename
MCR <path>filename <parameters>

os_vms.txt — 4218

OpenVMS users always have to be aware that the Vim command :! "just" drop them
to DCL prompt. This feature is possible to use without any problem with all
DCL commands, but if we want to execute some programs such as XXD, CTAGS, JTAGS,
etc. we're running into trouble if we follow the Vim documentation (see: help
xxd).

Solution: Execute with the MC command and add the full path to the executable.
Example: Instead of :%!xxd command use:

:%!mc vim:xxd

... or in general:
:!mc <path>filename <parameters>

Note: You can use XXD and CTAGS from GUI menu.

To customize ctags it is possible to define the logical $CTAGS with standard
parameters as:

define/nolog CTAGS "--totals -o sys$login:tags"

For additional information, please read :help tagsearch and CTAGS
documentation at http://ctags.sourceforge.net/ctags.html.

(Zoltan Arpadffy, Vim 5.6-70)

8.8 Sourcing vimrc and gvimrc

If you want to use your .vimrc and .gvimrc from other platforms (e.g. Windows)
you can get in trouble if you ftp that file(s): VMS has different end-of-line
indication.
The symptom is that Vim is not sourcing your .vimrc/.gvimrc, even if you say:

:so sys$login:.vimrc

One trick is to compress (e.g. zip) the files on the other platform and
uncompress it on VMS; if you have the same symptom, try to create the files
with copy-paste (for this you need both op. systems reachable from one
machine, e.g. an Xterm on Windows or telnet to Windows from VMS).

(Sandor Kopanyi, <sandor.kopanyi@mailbox.hu> Vim 6.0a)

8.9 Printing from Vim

To be able to print from Vim (running in GUI mode) under VMS you have to set
up $TMP logical which should point to some temporary directory and logical
SYS$PRINT to your default print queue.
Example:

$define SYS$PRINT HP5ANSI

You can print out the whole buffer or just the marked area.
More info under :help hardcopy

(Zoltan Arpadffy, Vim 6.0c)

os_vms.txt — 4219

http://ctags.sourceforge.net/ctags.html

8.10 Setting up the symbols

When I use gvim this way and press CTRL-Y in the parent terminal, gvim exits.
I now use a different symbol that seems to work OK and fixes the problem.
I suggest this instead:

$ GV*IM:==SPAWN/NOWAIT/INPUT=NLA0: MCR VIM:VIM.EXE -G -GEOMETRY 80X40

The /INPUT=NLA0: separates the standard input of the gvim process from the
parent terminal, to block signals from the parent window.
Without the -GEOMETRY, the gvim window size will be minimal and the menu
will be confused after a window-resize.

(Carlo Mekenkamp, Coen Engelbarts, Vim 6.0ac)

8.11 diff and other GNU programs

From 6.0 diff functionality has been implemented, but OpenVMS does not use
GNU/Unix like diff therefore built in diff does not work.
There is a simple solution to solve this anomaly. Install a Unix like diff
and Vim will work perfectly in diff mode too. You just have to redefine your
diff program as:

define /nolog diff <GNU_PATH>diff.exe

Another, more sophisticated solution is described below (8.12 diff-mode)
There are other programs such as patch, make etc that may cause the same
problems. At www.polarhome.com is possible to download an GNU package for
Alpha and VAX boxes that is meant to solve GNU problems on OpenVMS.
(Zoltan Arpadffy, Vim 6.1)

8.12 diff-mode

Vim 6.0 and higher supports Vim diff-mode (See new-diff-mode , diff-mode
and 08.7). This uses the external program 'diff' and expects a Unix-like
output format from diff. The standard VMS diff has a different output
format. To use Vim on VMS in diff-mode, you need to:

1 Install a Unix-like diff program, e.g. GNU diff
2 Tell Vim to use the Unix-like diff for diff-mode.

You can download GNU diff from the VIM-VMS website, it is one of the GNU
tools in http://www.polarhome.com/vim/files/gnu_tools.zip. I suggest to
unpack it in a separate directory "GNU" and create a logical GNU: that
points to that directory, e.g:

DEFINE GNU <DISK>:[<DIRECTORY>.BIN.GNU]

You may also want to define a symbol GDIFF, to use the GNU diff from the DCL
prompt:

GDIFF :== $GNU:DIFF.EXE

Now you need to tell Vim to use the new diff program. Take the example
settings from diff-diffexpr and change the call to the external diff
program to the new diff on VMS. Add this to your .vimrc file:

" Set up vimdiff options
if v:version >= 600

os_vms.txt — 4220

http://www.polarhome.com/vim/files/gnu_tools.zip

" Use GNU diff on VMS
set diffexpr=MyDiff()
function MyDiff()

let opt = ""
if &diffopt =~ "icase"

let opt = opt .. "-i "
endif
if &diffopt =~ "iwhite"

let opt = opt .. "-b "
endif
silent execute "!mc GNU:diff.exe -a " .. opt .. v:fname_in .. " " .. v:fname_new ..

\ " > " .. v:fname_out
endfunction

endif

You can now use Vim in diff-mode, e.g. to compare two files in read-only
mode:

$ VIM -D/R <FILE1> <FILE2>

You can also define new symbols for vimdiff, e.g.:

$ VIMDIFF :== 'VIM' -D/R
$ GVIMDIFF :== 'GVIM' -D/R

You can now compare files in 4 ways:

1. VMS diff: $ DIFF <FILE1> <FILE2>
2. GNU diff: $ GDIFF <FILE1> <FILE2>
3. VIM diff: $ VIMDIFF <FILE1> <FILE2>
4. GVIM diff: $ GVIMDIFF <FILE1> <FILE2>

(Coen Engelbarts, Vim 6.1)

8.13 Allow '$' in C keywords

DEC C uses many identifiers with '$' in them. This is not allowed in ANSI C,
and Vim recognises the '$' as the end of the identifier. You can change this
with the 'iskeyword' option.
Add this command to your .vimrc file:

autocmd FileType c,cpp,cs set iskeyword+=$

You can also create the file(s) $VIM/FTPLUGIN/C.VIM (and/or CPP.VIM and
CS.VIM) and add this command:

set iskeyword+=$

Now word-based commands, e.g. the '*'-search-command and the CTRL-]
tag-lookup, work on the whole identifier. (Ctags on VMS also supports '$' in
C keywords since ctags version 5.1.)

(Coen Engelbarts, Vim 6.1)

8.14 VIMTUTOR for beginners

The VIMTUTOR.COM DCL script can help Vim beginners to learn/make their first
steps with Vim on OpenVMS. Depending of binary distribution you may start it
with:

os_vms.txt — 4221

@vim:vimtutor

(Thomas.R.Wyant III, Vim 6.1)

8.16 Slow start in console mode issue

As GUI/GTK Vim works equally well in console mode, many administrators
deploy those executables system wide.
Unfortunately, on a remote slow connections GUI/GTK executables behave rather
slow when user wants to run Vim just in the console mode - because of X
environment detection timeout.

Luckily, there is a simple solution for that. Administrators need to deploy
both GUI/GTK build and just console build executables, like below:

|- vim73
|----- doc
|----- syntax

vimrc (system rc files)
gvimrc
gvim.exe (the renamed GUI or GTK built vim.exe)
vim.exe (the console only executable)

Define system symbols like below in for ex in LOGIN.COM or SYLOGIN.COM:

$ define/nolog VIM RF10:[UTIL.VIM73] ! where you VIM directory is
$ vi*m :== mcr VIM:VIM.EXE
$ gvi*m :== mcr VIM:GVIM.EXE
$! or you can try to spawn with
$ gv*im :== spawn/nowait/input=NLA0 mcr VIM:GVIM.EXE -g -GEOMETRY 80x40

Like this, users that do not have X environment and want to use Vim just in
console mode can avoid performance problems.

(Zoltan Arpadffy, Vim 7.2)

8.15 Common VIM directory - different architectures

In a cluster that contains nodes with different architectures like below:

$show cluster
View of Cluster from system ID 11655 node: TOR 18-AUG-2008 11:58:31
+---------------------------------+
| SYSTEMS | MEMBERS |
+-----------------------+---------|
| NODE | SOFTWARE | STATUS |
+--------+--------------+---------|
TOR	VMS V7.3-2	MEMBER
TITAN2	VMS V8.3	MEMBER
ODIN	VMS V7.3-2	MEMBER
+---------------------------------+

It is convenient to have a common VIM directory but execute different
executables.
There are several solutions for this problem:

Solution 1. All executables in the same directory with different names
This is easily done with the following script that can be added

os_vms.txt — 4222

to the login.com or sylogin.com:

$ if f$getsyi("NODE_HWTYPE") .eqs. "VAX"
$ then
$ say "VAX platform"
$ vi*m:== mcr vim:VIM.EXE_VAX
$ endif
$ if f$getsyi("NODE_HWTYPE") .eqs. "ALPH"
$ then
$ say "ALPHA platform"
$ vi*m :== mcr vim:VIM.EXE_AXP
$ endif
$ if f$getsyi("ARCH_NAME") .eqs. "IA64"
$ then
$ say "IA64 platform"
$ vi*m :== mcr vim:VIM.EXE_IA64
$ endif

Solution 2. Different directories:

$ if f$getsyi("NODE_HWTYPE") .eqs. "VAX"
$ then
$ say "VAX platform"
$ define/nolog VIM RF10:[UTIL.VAX_EXE] ! VAX executables
$ endif
$ if f$getsyi("NODE_HWTYPE") .eqs. "ALPH"
$ then
$ say "ALPHA platform"
$ define/nolog VIM RF10:[UTIL.AXP_EXE] ! AXP executables
$ endif
$ if f$getsyi("ARCH_NAME") .eqs. "IA64"
$ then
$ say "IA64 platform"
$ define/nolog VIM RF10:[UTIL.IA64_EXE] ! IA64 executables
$ endif
$! VIMRUNTIME must be defined in order to find runtime files
$ define/nolog VIMRUNTIME RF10:[UTIL.VIM73]

A good example for this approach is the [GNU]gnu_tools.com script from
GNU_TOOLS.ZIP package downloadable from http://www.polarhome.com/vim/

(Zoltan Arpadffy, Vim 7.2)

==

9. VMS related changes vms-changes

Version 9.0 (2023 Nov 27)
- Vim is ported to the X86_64 architecture

- IMPORTANT: because of the getline function name used in structs like in ex_cmds.h
on X86_64 the CRTL_VER is kept under 80500000 level. The proper solution would be
to rename the getline function to something else in the struct (and in all places
it is used) - and avoiding to use POSIX functions in structs, but this change would
impact on all other operating systems. (added to the VMS TODO list)
Read more about at https://forum.vmssoftware.com/viewtopic.php?f=38&t=8914&p=20049

- os_vms_conf.h includes have been reviewed for all architectures
- added support for the MODIFIED_BY define

Version 8.2 (2020 Feb 6)
- make all changes needed for clean compile build of v8.2 on VMS on all platforms

os_vms.txt — 4223

http://www.polarhome.com/vim/
https://forum.vmssoftware.com/viewtopic.php?f=38&t=8914&p=20049

- fix the call mkdir bug (vicente_polo@yahoo.es)
- test on VSI OpenVMS Alpha and Itanium platforms
- added LUA support
- added XPM support - Motif GUI with toolbar on all platforms
- XPM v3.4.11 libraries for IA64, AXP and VAX are added
- start integrating the new test scripts

Version 8.1 (2019 Jan 9)
- make necessary changes to build v8.1 on VMS
- GTK1.2.10 on VAX

Version 8.0 (2016 Nov 21)
- solve the 100% cpu usage issue while waiting for a keystroke
- correct the VMS warnings and errors around handling the INFINITY (used in json.c)
- minor VMS port related changes
- correct the make_vms.mms file for 8.0
- fix [.TESTDIR]make_vms.mms for 8.0

Version 7.4 (2013 Aug 10)
- Undo: VMS can not handle more than one dot in the filenames use "dir/name" -> "dir/_un_name"

add _un_ at the beginning to keep the extension
- correct swap file name wildcard handling
- handle iconv usage correctly
- do not optimize on vax - otherwise it hangs compiling crypto files
- fileio.c fix the comment
- correct RealWaitForChar
- after 7.4-119 use different functions lib$cvtf_to_internal_time because Alpha and VAX have

G_FLOAT but IA64 uses IEEE float otherwise Vim crashes
- guard against crashes that are caused by mixed filenames
- [TESTDIR]make_vms.mms changed to see the output files
- Improve tests, update known issues
- minor compiler warnings fixed
- CTAGS 5.8 +regex included

Version 7.3 (2010 Aug 15)
- CTAGS 5.8 included
- VMS compile warnings fixed - floating-point overflow warning corrected on VAX
- filepath completion corrected - too many chars were escaped in filename

and shell commands
- the following plugins are included into VMS runtime:

genutils 2.4, multiselect 2.2, multvals 3.1, selectbuf 4.3,
bufexplorer 7.1.7, taglist 4.5

- minor changes in vimrc (just in VMS runtime)
- make_vms.mms - HUGE model is the default
- [TESTDIR]make_vms.mms include as many tests possible
- modify test30 and test54 for VMS
- enable FLOAT feature in VMS port
- os_vms.txt updated

Version 7.2 (2008 Aug 9)
- VCF files write corrected
- CTAGS 5.7 included
- corrected make_vms.mms (on VAX gave syntax error)

Version 7.1 (2007 Jun 15)
- create TAGS file from menu

Version 7 (2006 May 8)
- Improved low level char input (affects just console mode)
- Fixed plugin bug

os_vms.txt — 4224

- CTAGS 5.6 included

Version 6.4 (2005 Oct 15)
- GTKLIB and Vim build on IA64
- colors in terminal mode
- syntax highlighting in terminal mode
- write problem fixed (extra CR)
- ESC and ESC sequence recognition in terminal mode
- make file changed to support new MMS version
- env variable expansion in path corrected
- printing problems corrected
- help text added for case insensitive arguments

Version 6.3 (2004 May 10)
- Improved vms_read function
- CTAGS v5.5.4 included
- Documentation corrected and updated

Version 6.2 (2003 May 7)
- Corrected VMS system call results
- Low level character input is rewritten
- Correction in tag and quickfix handling
- First GTK build
- Make file changes

- GTK feature added
- Define for OLD_VMS
- OpenVMS version 6.2 or older

- Documentation updated with GTK features
- CTAGS v5.5 included
- VMS VIM tutor created

Version 6.1 (2002 Mar 25)
- TCL init_tcl() problem fixed
- CTAGS v5.4 included
- GNU tools binaries for OpenVMS
- Make file changes

- PERL, PYTHON and TCL support improved
- InstallVMS.txt has a detailed description HOWTO build

- VMS/Unix file handling rewritten
- Minor casting and bug fixes

Version 6.0 (2001 Sep 28)
- Unix and VMS code has been merged

- separated "really" VMS related code
- included all possible Unix functionality
- simplified or deleted the configuration files
- makefile MAKE_VMS.MMS reviewed

- menu changes (fixed printing, CTAGS and XXD usage)
- fixed variable RMS record format handling anomaly
- corrected syntax, ftplugin etc files load
- changed expand_wildcards and expandpath functions to work more general
- created OS_VMS_FILTER.COM - DECC->VAXC pre-processor directive convert

script.
- Improved code's VAXC and new DECC compilers compatibility
- changed quickfix parameters:

- errormessage format to suite DECC
- search, make and other commands to suite VMS system

- updated and renamed MMS make files for Vim and CTAGS.
- CTAGS has been removed from source distribution of Vim but it will remain

in OpenVMS binary distributions.

os_vms.txt — 4225

- simplified build/configuration procedure
- created INSTALLvms.txt - detailed compiling instructions under VMS.
- updated test scripts.

Version 5.8 (2001 Jun 1)
- OS_VMS.TXT updated with new features.
- other minor fixes.
- documentation updated
- this version had been tested much more than any other OpenVMS version

earlier

Version 5.7 (2000 Jun 24)
- New CTAGS v5.0 in distribution
- Documentation updated

Version 5.6 (2000 Jan 17)
- VMS filename related changes:

- version handling (open everything, save to new version)
- correct file extension matching for syntax (version problem)
- handle <,> characters and passwords in directory definition
- handle internode/remote invocation and editing with passwords
- OpenVMS files will be treated case insensitive from now
- corrected response of expand("%:.") etc path related functions
(in one word: VMS directory handling internally)

- version command
- corrected (+,-) information data
- added compiler and OS version
- added user and host information
- resolving $VIM and $VIMRUNTIME logicals

- VMS port is in MAX_FEAT (maximum features) club with Unix, Win32 and OS/2.
- enabled farsi, rightleft etc. features
- undo level raised up to 1000

- Updated OS_VMS.MMS file.
- maximum features ON is default
- Vim is compilable with +perl, +python and +tcl features.
- improved MMK compatibility

- Created MAKEFILE_VMS.MMS, makefile for testing Vim during development.
- Defined DEC terminal VT320

- compatibility for VT3*0, VT2*0 and VT1*0 - ANSI terminals
backwards, but not VT340 and newer with colour capability.

- VT320 is default terminal for OpenVMS
- these new terminals are also fast ttys (default for OpenVMS).
- allowed dec_mouse ttym

- Updated files vimrc and gvimrc with VMS specific suggestions.
- OS_VMS.TXT updated with new features.

Version 5.5 (1999 Dec 3)
- Popup menu line crash corrected.
- Handle full file names with version numbers.
- Directory handling (CD command etc.)
- Corrected file name conversion VMS to Unix and v.v.
- Correct response of expand wildcards
- Recovery is working from this version under VMS as well.
- Improved terminal and signal handing.
- Improved OS_VMS.TXT

Version 5.4 (1999 Sep 9)
- Cut and paste mismatch corrected.
- Motif directories during open and save are corrected.

os_vms.txt — 4226

Version 5.3 (1998 Oct 12)
- Minor changes in the code
- Standard distribution with +GUI option

Version 5.1 (1998 Apr 21)
- Syntax and DEC C changes in the code
- Fixing problems with the /doc subdirectory
- Improve OS_VMS.MMS

Version 4.5 (1996 Dec 16)
- First VMS port by Henk Elbers <henk@xs4all.nl>

==

10. Authors vms-authors

OpenVMS documentation and executables are maintained by:
Zoltan Arpadffy <zoltan.arpadffy@gmail.com>
OpenVMS Vim page: http://www.polarhome.com/vim/

This document uses parts and remarks from earlier authors and contributors
of OS_VMS.TXT:

Charles E. Campbell, Jr. <cec@gryphon.gsfc.nasa.gov>
Bruce Hunsaker <BNHunsaker@chq.byu.edu>
Sandor Kopanyi <sandor.kopanyi@mailbox.hu>

os_vms.txt — 4227

http://www.polarhome.com/vim/

os_vms.txt — 4228

os_win32.txt For Vim version 9.1. Last change: 2023 Dec 04

VIM REFERENCE MANUAL by George Reilly

win32 Win32 MS-Windows
This file documents the idiosyncrasies of the Win32 version of Vim.

The Win32 version of Vim works on Windows 7, 8, 10 and 11. There are both
console and GUI versions.

If you have Windows XP or Vista then Vim 9.0 up to patch level 495 can be
used.

The 32 bit version also runs on 64 bit MS-Windows systems.

1. Known problems win32-problems
2. Startup win32-startup
3. Restore screen contents win32-restore
4. Using the mouse win32-mouse
5. Running under Windows 95 win32-win95
6. Running under Windows 3.1 win32-win3.1
7. Installation package win32-installer
8. Win32 mini FAQ win32-faq

Additionally, there are a number of common Win32 and DOS items:
File locations dos-locations
Using backslashes dos-backslash
Standard mappings dos-standard-mappings
Screen output and colors dos-colors
File formats dos-file-formats
:cd command dos-:cd
Interrupting dos-CTRL-Break
Temp files dos-temp-files
Shell option default dos-shell
PowerShell defaults dos-powershell

Win32 GUI gui-w32

Credits:
The Win32 version was written by George V. Reilly <george@reilly.org>.
The original Windows NT port was done by Roger Knobbe <RogerK@wonderware.com>.
The GUI version was made by George V. Reilly and Robert Webb.

For compiling see "src/INSTALLpc.txt". win32-compiling

WSL
When using Vim on WSL (Windows Subsystem for Linux) the remarks here do not
apply, `has('win32')` will return false then. In case you need to know
whether Vim is running on WSL you can use `exists('$WSLENV')`.

==
1. Known problems win32-problems

When doing file name completion, Vim also finds matches for the short file
name. But Vim will still find and use the corresponding long file name. For
example, if you have the long file name "this_is_a_test" with the short file
name "this_i~1", the command ":e *1" will start editing "this_is_a_test".

os_win32.txt — 4229

==
2. Startup win32-startup

Current directory win32-curdir

If Vim is started with a single file name argument, and it has a full path
(starts with "x:\"), Vim assumes it was started from the file explorer and
will set the current directory to where that file is. To avoid this when
typing a command to start Vim, use a forward slash instead of a backslash.
Example:

vim c:\text\files\foo.txt

Will change to the "C:\text\files" directory.

vim c:/text\files\foo.txt

Will use the current directory.

Term option win32-term

The only kind of terminal type that the Win32 version of Vim understands is
"win32", which is built-in. If you set 'term' to anything else, you will
probably get very strange behavior from Vim. Therefore Vim does not obtain
the default value of 'term' from the environment variable "TERM".

$PATH win32-PATH

The directory of the Vim executable is appended to $PATH. This is mostly to
make "!xxd" work, as it is in the Tools menu. And it also means that when
executable() returns 1 the executable can actually be executed.

Command line arguments win32-cmdargs

Analysis of a command line into parameters is not standardised in MS-Windows.
Vim and gvim used to use different logic to parse it (before 7.4.432), and the
logic was also depended on what it was compiled with. Now Vim and gvim both
use the CommandLineToArgvW() Win32 API, so they behave in the same way.

The basic rules are: win32-backslashes
a) A parameter is a sequence of graphic characters.
b) Parameters are separated by white space.
c) A parameter can be enclosed in double quotes to include white space.
d) A sequence of zero or more backslashes (\) and a double quote (")

is special. The effective number of backslashes is halved, rounded
down. An even number of backslashes reverses the acceptability of
spaces and tabs, an odd number of backslashes produces a literal
double quote.

So:
" is a special double quote
\" is a literal double quote
\\" is a literal backslash and a special double quote
\\\" is a literal backslash and a literal double quote
\\\\" is 2 literal backslashes and a special double quote
\\\\\" is 2 literal backslashes and a literal double quote
etc.

Example:

os_win32.txt — 4230

vim "C:\My Music\freude" +"set ignorecase" +/"\"foo\\" +\"bar\\\"

opens "C:\My Music\freude" and executes the line mode commands:
set ignorecase; /"foo\ and /bar\"

These rules are also described in the reference of the CommandLineToArgvW API:
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776391.aspx

win32-quotes
There are additional rules for quotes (which are not well documented).
As described above, quotes inside a file name (or any other command line
argument) can be escaped with a backslash. E.g.

vim -c "echo 'foo\"bar'"

Alternatively use three quotes to get one:
vim -c "echo 'foo"""bar'"

The quotation rules are:

1. A `"` starts quotation.
2. Another `"` or `""` ends quotation. If the quotation ends with `""`, a `"`

is produced at the end of the quoted string.

Examples, with [] around an argument:
"foo" -> [foo]
"foo"" -> [foo"]
"foo"bar -> [foobar]
"foo" bar -> [foo], [bar]
"foo""bar -> [foo"bar]
"foo"" bar -> [foo"], [bar]
"foo"""bar" -> [foo"bar]

==
3. Restore screen contents win32-restore

When 'restorescreen' is set (which is the default), Vim will restore the
original contents of the console when exiting or when executing external
commands. If you don't want this, use ":set nors". 'restorescreen'

==
4. Using the mouse win32-mouse

The Win32 version of Vim supports using the mouse. If you have a two-button
mouse, the middle button can be emulated by pressing both left and right
buttons simultaneously - but note that in the Win32 GUI, if you have the right
mouse button pop-up menu enabled (see 'mouse'), you should err on the side of
pressing the left button first. mouse-using

When the mouse doesn't work, try disabling the "Quick Edit Mode" feature of
the console.

==
5. Running under Windows 95 win32-win95

windows95 windows98 windowsme
Windows 95/98/ME support was removed in patch 8.0.0029 If you want to use it
you will need to get a version older than that.

==
6. Running under Windows 3.1 win32-win3.1

os_win32.txt — 4231

https://msdn.microsoft.com/en-us/library/windows/desktop/bb776391.aspx

win32s windows-3.1 gui-w32s win16
There was a special version of gvim that runs under Windows 3.1 and 3.11.
Support was removed in patch 7.4.1364.

==
7. Installation package win32-installer

A simple installer for windows is available at http://www.vim.org/download.php
(stable version) and nightly builds are also available at
https://github.com/vim/vim-win32-installer/releases/

The nightly builds include 32bit and 64bit builds, have most features enabled
and usually also contain an extra cryptographic signed installer, so Windows
will not complain.

To use the installer, simply run the exe file. The following switches are
also supported:

gvim_<version>.exe /S -> silent install without any dialogues
gvim_<version>.exe /D=C:\vim -> Install into directory c:\vim

-> /D must be the last argument
gvim_<version>.exe /S /D=c:\vim -> silent install into c:\vim

The default installation directory can alternatively be given by setting the
$VIM environment variable.

==
8. Win32 mini FAQ win32-faq

Q. How do I change the font?
A. In the GUI version, you can use the 'guifont' option. Example:

:set guifont=Lucida_Console:h15:cDEFAULT
In the console version, you need to set the font of the console itself.
You cannot do this from within Vim.

Q. How do I type dead keys on Windows NT?
A. Dead keys work on NT 3.51. Just type them as you would in any other

application.
On NT 4.0, you need to make sure that the default locale (set in the
Keyboard part of the Control Panel) is the same as the currently active
locale. Otherwise the NT code will get confused and crash! This is a NT
4.0 problem, not really a Vim problem.

Q. I'm using Vim to edit a symbolically linked file on a Unix NFS file server.
When I write the file, Vim does not "write through" the symlink. Instead,
it deletes the symbolic link and creates a new file in its place. Why?

A. On Unix, Vim is prepared for links (symbolic or hard). A backup copy of
the original file is made and then the original file is overwritten. This
assures that all properties of the file remain the same. On non-Unix
systems, the original file is renamed and a new file is written. Only the
protection bits are set like the original file. However, this doesn't work
properly when working on an NFS-mounted file system where links and other
things exist. The only way to fix this in the current version is not
making a backup file, by ":set nobackup nowritebackup" 'writebackup'

Q. I'm using Vim to edit a file on a Unix file server through Samba. When I
write the file, the owner of the file is changed. Why?

A. When writing a file Vim renames the original file, this is a backup (in
case writing the file fails halfway). Then the file is written as a new

os_win32.txt — 4232

http://www.vim.org/download.php
https://github.com/vim/vim-win32-installer/releases/

file. Samba then gives it the default owner for the file system, which may
differ from the original owner.
To avoid this set the 'backupcopy' option to "yes". Vim will then make a
copy of the file for the backup, and overwrite the original file. The
owner isn't changed then.

Q. How do I get to see the output of ":make" while it's running?
A. Basically what you need is to put a tee program that will copy its input

(the output from make) to both stdout and to the errorfile. You can find a
copy of tee (and a number of other GNU tools) at
http://gnuwin32.sourceforge.net or http://unxutils.sourceforge.net
Alternatively, try the more recent Cygnus version of the GNU tools at
http://www.cygwin.com Other Unix-style tools for Win32 are listed at
http://directory.google.com/Top/Computers/Software/Operating_Systems/Unix/Win32/
When you do get a copy of tee, you'll need to add

:set shellpipe=\|\ tee
to your _vimrc.

Q. I'm storing files on a remote machine that works with VisionFS, and files
disappear!

A. VisionFS can't handle certain dot (.) three letter extension file names.
SCO declares this behavior required for backwards compatibility with 16bit
DOS/Windows environments. The two commands below demonstrate the behavior:

echo Hello > file.bat~
dir > file.bat

The result is that the "dir" command updates the "file.bat~" file, instead
of creating a new "file.bat" file. This same behavior is exhibited in Vim
when editing an existing file named "foo.bat" because the default behavior
of Vim is to create a temporary file with a '~' character appended to the
name. When the file is written, it winds up being deleted.

Solution: Add this command to your _vimrc file:
:set backupext=.temporary

Q. How do I change the blink rate of the cursor?
A. You can't! This is a limitation of the NT console. NT 5.0 is reported to

be able to set the blink rate for all console windows at the same time.

:!start
Q. How can I asynchronously run an external command or program, or open a

document or URL with its default program?
A. When using :! to run an external command, you can run it with "start". For

example, to run notepad:
:!start notepad

To open "image.jpg" with the default image viewer:
:!start image.jpg

To open the folder of the current file in Windows Explorer:
:!start %:h

To open the Vim home page with the default browser:
:!start http://www.vim.org/

Using "start" stops Vim switching to another screen, opening a new console,
or waiting for the program to complete; it indicates that you are running a
program that does not affect the files you are editing. Programs begun
with :!start do not get passed Vim's open file handles, which means they do
not have to be closed before Vim.
To avoid this special treatment, use ":! start".
There are two optional arguments (see the next Q):

os_win32.txt — 4233

http://gnuwin32.sourceforge.net
http://unxutils.sourceforge.net
http://www.cygwin.com
http://directory.google.com/Top/Computers/Software/Operating_Systems/Unix/Win32/

/min the window will be minimized
/b no console window will be opened

You can use only one of these flags at a time. A second one will be
treated as the start of the command.

windows-asynchronously
Q. How do I avoid getting a window for programs that I run asynchronously?
A. You have three possible solutions depending on what you want:

1) You may use the /min flag in order to run program in a minimized state
with no other changes. It will work equally for console and GUI
applications.

2) You can use the /b flag to run console applications without creating a
console window for them (GUI applications are not affected). But you
should use this flag only if the application you run doesn't require any
input. Otherwise it will get an EOF error because its input stream
(stdin) would be redirected to \\.\NUL (stdout and stderr too).

3) Set the '!' flag in the 'guioptions' option 'go-!' . This will make Vim
run the "start" command inside Vims terminal window and not open a
console window.

Example for a console application, run Exuberant ctags:
:!start /min ctags -R .

When it has finished you should see file named "tags" in your current
directory. You should notice the window title blinking on your taskbar.
This is more noticeable for commands that take longer.
Now delete the "tags" file and run this command:

:!start /b ctags -R .
You should have the same "tags" file, but this time there will be no
blinking on the taskbar.
Example for a GUI application:

:!start /min notepad
:!start /b notepad

The first command runs notepad minimized and the second one runs it
normally.

windows-icon
Q. I don't like the Vim icon, can I change it?
A. Yes, place your favorite icon in bitmaps/vim.ico in a directory of

'runtimepath'. For example ~/vimfiles/bitmaps/vim.ico.

os_win32.txt — 4234

pi_getscript.txt For Vim version 9.1. Last change: 2017 Aug 01

GETSCRIPT REFERENCE MANUAL by Charles E. Campbell

Author: Charles E. Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
(remove NOSPAM from the email address)

GetLatestVimScripts-copyright
Copyright: (c) 2004-2012 by Charles E. Campbell glvs-copyright

The VIM LICENSE (see copyright) applies to the files in this
package, including getscriptPlugin.vim, getscript.vim,
GetLatestVimScripts.dist, and pi_getscript.txt, except use "getscript"
instead of "Vim". Like anything else that's free, getscript and its
associated files are provided *as is* and comes with no warranty of
any kind, either expressed or implied. No guarantees of
merchantability. No guarantees of suitability for any purpose. By
using this plugin, you agree that in no event will the copyright
holder be liable for any damages resulting from the use of this
software. Use at your own risk!

Getscript is a plugin that simplifies retrieval of the latest versions of the
scripts that you yourself use! Typing :GLVS will invoke getscript; it will
then use the <GetLatestVimScripts.dat> (see GetLatestVimScripts_dat) file to
get the latest versions of scripts listed therein from http://vim.sf.net/.

==
1. Contents glvs-contents glvs getscript

GetLatestVimScripts

1. Contents..: glvs-contents
2. GetLatestVimScripts -- Getting Started..........: glvs-install
3. GetLatestVimScripts Usage.......................: glvs-usage
4. GetLatestVimScripts Data File...................: glvs-data
5. GetLatestVimScripts Friendly Plugins............: glvs-plugins
6. GetLatestVimScripts AutoInstall.................: glvs-autoinstall
7. GetLatestViMScripts Options.....................: glvs-options
8. GetLatestVimScripts Algorithm...................: glvs-alg
9. GetLatestVimScripts History.....................: glvs-hist

==
2. GetLatestVimScripts -- Getting Started getscript-start

getlatestvimscripts-install

VERSION FROM VIM DISTRIBUTION glvs-dist-install

Vim 7.0 does not include the GetLatestVimScripts.dist file which
serves as an example and a template. So, you'll need to create
your own! See GetLatestVimScripts_dat .

VERSION FROM VIM SF NET glvs-install

NOTE: The last step, that of renaming/moving the GetLatestVimScripts.dist
file, is for those who have just downloaded GetLatestVimScripts.tar.bz2 for
the first time.

The GetLatestVimScripts.dist file serves as an example and a template for your
own personal list. Feel free to remove all the scripts mentioned within it;
the "important" part of it is the first two lines.

Your computer needs to have wget or curl for GetLatestVimScripts to do its work.

pi_getscript.txt — 4235

http://vim.sf.net/

1. if compressed: gunzip getscript.vba.gz
2. Unix:

vim getscript.vba
:so %
:q
cd ~/.vim/GetLatest
mv GetLatestVimScripts.dist GetLatestVimScripts.dat
(edit GetLatestVimScripts.dat to install your own personal
list of desired plugins -- see GetLatestVimScripts_dat)

3. Windows:
vim getscript.vba
:so %
:q
cd **path-to-vimfiles**/GetLatest
mv GetLatestVimScripts.dist GetLatestVimScripts.dat
(edit GetLatestVimScripts.dat to install your own personal
list of desired plugins -- see GetLatestVimScripts_dat)

==
3. GetLatestVimScripts Usage glvs-usage :GLVS

Unless it has been defined elsewhere,

:GLVS

will invoke GetLatestVimScripts(). If some other plugin has defined that
command, then you may type

:GetLatestVimScripts

The script will attempt to update and, if permitted, will automatically
install scripts from http://vim.sourceforge.net/. To do so it will peruse a
file,

.vim/GetLatest/GetLatestVimScripts.dat (unix)

or
..wherever..\vimfiles\GetLatest\GetLatestVimScripts.dat (windows)

(see glvs-data), and examine plugins in your [.vim|vimfiles]/plugin
directory (see glvs-plugins).

Scripts which have been downloaded will appear in the
~/.vim/GetLatest (unix) or ..wherever..\vimfiles\GetLatest (windows)
subdirectory. GetLatestVimScripts will attempt to automatically
install them if you have the following line in your <.vimrc>:

let g:GetLatestVimScripts_allowautoinstall=1

The <GetLatestVimScripts.dat> file will be automatically be updated to
reflect the latest version of script(s) so downloaded.
(also see glvs-options)

==
4. GetLatestVimScripts Data File getscript-data glvs-data

:GetLatestVimScripts_dat
The data file <GetLatestVimScripts.dat> must have for its first two lines

pi_getscript.txt — 4236

http://vim.sourceforge.net/

the following text:

ScriptID SourceID Filename

Following those two lines are three columns; the first two are numeric
followed by a text column. The GetLatest/GetLatestVimScripts.dist file
contains an example of such a data file. Anything following a #... is
ignored, so you may embed comments in the file.

The first number on each line gives the script's ScriptID. When you're about
to use a web browser to look at scripts on http://vim.sf.net/, just before you
click on the script's link, you'll see a line resembling

http://vim.sourceforge.net/scripts/script.php?script_id=40

The "40" happens to be a ScriptID that GetLatestVimScripts needs to
download the associated page, and is assigned by vim.sf.net itself
during initial uploading of the plugin.

The second number on each line gives the script's SourceID. The SourceID
records the count of uploaded scripts as determined by vim.sf.net; hence it
serves to indicate "when" a script was uploaded. Setting the SourceID to 1
insures that GetLatestVimScripts will assume that the script it has is
out-of-date.

The SourceID is extracted by GetLatestVimScripts from the script's page on
vim.sf.net; whenever it is greater than the one stored in the
GetLatestVimScripts.dat file, the script will be downloaded
(see GetLatestVimScripts_dat).

If your script's author has included a special comment line in his/her plugin,
the plugin itself will be used by GetLatestVimScripts to build your
<GetLatestVimScripts.dat> file, including any dependencies on other scripts it
may have. As an example, consider:

" GetLatestVimScripts: 884 1 :AutoInstall: AutoAlign.vim

This comment line tells getscript.vim to check vimscript #884 and that the
script is automatically installable. Getscript will also use this line to
help build the GetLatestVimScripts.dat file, by including a line such as:

884 1 :AutoInstall: AutoAlign.vim

assuming that such a line isn't already in GetLatestVimScripts.dat file.
See glvs-plugins for more. Thus, GetLatestVimScripts thus provides a
comprehensive ability to keep your plugins up-to-date!

In summary:

* Optionally tell getscript that it is allowed to build/append a
GetLatestVimScripts.dat file based upon already installed plugins:

let g:GetLatestVimScripts_allowautoinstall=1

* A line such as
" GetLatestVimScripts: 884 1 :AutoInstall: AutoAlign.vim

in an already-downloaded plugin constitutes the concurrence of the
plugin author that getscript may do AutoInstall. Not all plugins
may be AutoInstall-able, and the plugin's author is best situated
to know whether or not his/her plugin will AutoInstall properly.

pi_getscript.txt — 4237

http://vim.sf.net/
http://vim.sourceforge.net/scripts/script.php?script_id=40

* A line such as
884 1 :AutoInstall: AutoAlign.vim

in your GetLatestVimScripts.dat file constitutes your permission
to getscript to do AutoInstall. AutoInstall requires both your
and the plugin author's permission. See GetLatestVimScripts_dat .

GetLatestVimScripts_dat
As an example of a <GetLatestVimScripts.dat> file:

ScriptID SourceID Filename

294 1 :AutoInstall: Align.vim
120 2 Decho.vim
40 3 DrawIt.tar.gz
451 4 EasyAccents.vim
195 5 engspchk.vim
642 6 GetLatestVimScripts.vim
489 7 Manpageview.vim

Note: the first two lines are required, but essentially act as comments.

==
5. GetLatestVimScripts Friendly Plugins getscript-plugins glvs-plugins

(this section is for plugin authors)

If a plugin author includes the following comment anywhere in their plugin,
GetLatestVimScripts will find it and use it to automatically build the user's
GetLatestVimScripts.dat files:

src_id
v

" GetLatestVimScripts: ### ### yourscriptname
^

scriptid

As an author, you should include such a line in to refer to your own script
plus any additional lines describing any plugin dependencies it may have.
Same format, of course!

If your command is auto-installable (see glvs-autoinstall), and most scripts
are, then you may include :AutoInstall: just before "yourscriptname":

src_id
v

" GetLatestVimScripts: ### ### :AutoInstall: yourscriptname
^

scriptid

NOTE: The :AutoInstall: feature requires both the plugin author's and
the user's permission to operate!

GetLatestVimScripts commands for those scripts are then appended, if not
already present, to the user's GetLatest/GetLatestVimScripts.dat file. It is
a relatively painless way to automate the acquisition of any scripts your
plugins depend upon.

pi_getscript.txt — 4238

Now, as an author, you probably don't want GetLatestVimScripts to download
your own scripts atop your own copy, thereby overwriting your not-yet-released
hard work. GetLatestVimScripts provides a solution for this: put

0 0 yourscriptname

into your <GetLatestVimScripts.dat> file and GetLatestVimScripts will skip
examining the "yourscriptname" scripts for those GetLatestVimScripts comment
lines. As a result, those lines won't be inadvertently installed into your
<GetLatestVimScripts.dat> file and subsequently used to download your own
scripts. This is especially important to do if you've included the
:AutoInstall: option.

Be certain to use the same "yourscriptname" in the "0 0 yourscriptname" line
as you've used in your GetLatestVimScripts comment!

==
6. GetLatestVimScripts AutoInstall getscript-autoinstall

glvs-autoinstall

GetLatestVimScripts now supports "AutoInstall". Not all scripts are
supportive of auto-install, as they may have special things you need to do to
install them (please refer to the script's "install" directions). On the
other hand, most scripts will be auto-installable.

To let GetLatestVimScripts do an autoinstall, the data file's comment field
should begin with (surrounding blanks are ignored):

:AutoInstall:

Both colons are needed, and it should begin the comment (yourscriptname)
field.

One may prevent any autoinstalling by putting the following line in your
<.vimrc>:

let g:GetLatestVimScripts_allowautoinstall= 0

With :AutoInstall: enabled, as it is by default, files which end with

---.tar.bz2 : decompressed & untarred in .vim/ directory
---.vba.bz2 : decompressed in .vim/ directory, then vimball handles it
---.vim.bz2 : decompressed & moved into .vim/plugin directory
---.tar.gz : decompressed & untarred in .vim/ directory
---.vba.gz : decompressed in .vim/ directory, then vimball handles it
---.vim.gz : decompressed & moved into .vim/plugin directory
---.vba : unzipped in .vim/ directory
---.vim : moved to .vim/plugin directory
---.zip : unzipped in .vim/ directory

and which merely need to have their components placed by the untar/gunzip or
move-to-plugin-directory process should be auto-installable. Vimballs, of
course, should always be auto-installable.

When is a script not auto-installable? Let me give an example:

.vim/after/syntax/blockhl.vim

The <blockhl.vim> script provides block highlighting for C/C++ programs; it is

pi_getscript.txt — 4239

available at:

http://vim.sourceforge.net/scripts/script.php?script_id=104

Currently, vim's after/syntax only supports by-filetype scripts (in
blockhl.vim's case, that's after/syntax/c.vim). Hence, auto-install would
possibly overwrite the current user's after/syntax/c.vim file.

In my own case, I use <aftersyntax.vim> (renamed to after/syntax/c.vim) to
allow a after/syntax/c/ directory:

http://vim.sourceforge.net/scripts/script.php?script_id=1023

The script allows multiple syntax files to exist separately in the
after/syntax/c subdirectory. I can't bundle aftersyntax.vim in and build an
appropriate tarball for auto-install because of the potential for the
after/syntax/c.vim contained in it to overwrite a user's c.vim.

==
7. GetLatestVimScripts Options glvs-options

g:GetLatestVimScripts_wget
default= "wget"

This variable holds the name of the command for obtaining
scripts.

g:GetLatestVimScripts_options
default= "-q -O"

This variable holds the options to be used with the
g:GetLatestVimScripts_wget command.

g:GetLatestVimScripts_allowautoinstall
default= 1

This variable indicates whether GetLatestVimScripts is allowed
to attempt to automatically install scripts. Furthermore, the
plugin author has to have explicitly indicated that his/her
plugin is automatically installable (via the :AutoInstall:
keyword in the GetLatestVimScripts comment line).

g:GetLatestVimScripts_autoinstalldir
default= $HOME/.vim (linux)
default= $HOME/vimfiles (windows)

Override where :AutoInstall: scripts will be installed.
Doesn't override vimball installation.

g:GetLatestVimScripts_scriptaddr
default='http://vim.sourceforge.net/script.php?script_id='

Override this if your system needs
... ='http://vim.sourceforge.net/script/script.php?script_id='

==
8. GetLatestVimScripts Algorithm glvs-algorithm glvs-alg

The Vim sourceforge page dynamically creates a page by keying off of the
so-called script-id. Within the webpage of

http://vim.sourceforge.net/scripts/script.php?script_id=40

is a line specifying the latest source-id (src_id). The source identifier

pi_getscript.txt — 4240

http://vim.sourceforge.net/scripts/script.php?script_id=104
http://vim.sourceforge.net/scripts/script.php?script_id=1023
http://vim.sourceforge.net/scripts/script.php?script_id=40

numbers are always increasing, hence if the src_id is greater than the one
recorded for the script in GetLatestVimScripts then it's time to download a
newer copy of that script.

GetLatestVimScripts will then download the script and update its internal
database of script ids, source ids, and scriptnames.

The AutoInstall process will:

Move the file from GetLatest/ to the following directory
Unix : $HOME/.vim
Windows: $HOME\vimfiles

if the downloaded file ends with ".bz2"
bunzip2 it

else if the downloaded file ends with ".gz"
gunzip it

if the resulting file ends with ".zip"
unzip it

else if the resulting file ends with ".tar"
tar -oxvf it

else if the resulting file ends with ".vim"
move it to the plugin subdirectory

==
9. GetLatestVimScripts History getscript-history glvs-hist {{{1

v36 Apr 22, 2013 : * (glts) suggested use of plugin/**/*.vim instead of
plugin/*.vim in globpath() call.

* (Andy Wokula) got warning message when setting
g:loaded_getscriptPlugin

v35 Apr 07, 2012 : * (MengHuan Yu) pointed out that the script URL has
changed (somewhat). However, it doesn't work, and
the original one does (under Linux). I'll make it
yet-another-option.

v34 Jun 23, 2011 : * handles additional decompression options for tarballs
(tgz taz tbz txz)

v33 May 31, 2011 : * using fnameescape() instead of escape()
* *.xz support

v32 Jun 19, 2010 : * (Jan Steffens) added support for xz compression
v31 Jun 29, 2008 : * (Bill McCarthy) fixed having hls enabled with getscript

* (David Schaefer) the acd option interferes with vimballs
Solution: bypass the acd option

v30 Jun 13, 2008 : * GLVS now checks for existence of fnameescape() and will
issue an error message if it is not supported

v29 Jan 07, 2008 : * Bram M pointed out that cpo is a global option and that
getscriptPlugin.vim was setting it but not restoring it.

v28 Jan 02, 2008 : * improved shell quoting character handling, cygwin
interface, register-a bypass

Oct 29, 2007 * Bill McCarthy suggested a change to getscript that avoids
creating pop-up windows

v24 Apr 16, 2007 : * removed save&restore of the fo option during script
loading

v23 Nov 03, 2006 : * ignores comments (#...)
* handles vimballs

v22 Oct 13, 2006 : * supports automatic use of curl if wget is not
available

v21 May 01, 2006 : * now takes advantage of autoloading.
v20 Dec 23, 2005 : * Eric Haarbauer found&fixed a bug with unzip use;

unzip needs the -o flag to overwrite.

pi_getscript.txt — 4241

v19 Nov 28, 2005 : * v18's GetLatestVimScript line accessed the wrong
script! Fixed.

v18 Mar 21, 2005 : * bugfix to automatic database construction
* bugfix - nowrapscan caused an error

(tnx to David Green for the fix)
Apr 01, 2005 * if shell is bash, "mv" instead of "ren" used in

:AutoInstall:s, even though its o/s is windows
Apr 01, 2005 * when downloading errors occurred, GLVS was

terminating early. It now just goes on to trying
the next script (after trying three times to
download a script description page)

Apr 20, 2005 * bugfix - when a failure to download occurred,
GetLatestVimScripts would stop early and claim that
everything was current. Fixed.

v17 Aug 25, 2004 : * g:GetLatestVimScripts_allowautoinstall, which
defaults to 1, can be used to prevent all
:AutoInstall:

v16 Aug 25, 2004 : * made execution of bunzip2/gunzip/tar/zip silent
* fixed bug with :AutoInstall: use of helptags

v15 Aug 24, 2004 : * bugfix: the "0 0 comment" download prevention wasn't
always preventing downloads (just usually). Fixed.

v14 Aug 24, 2004 : * bugfix -- helptags was using dotvim, rather than
s:dotvim. Fixed.

v13 Aug 23, 2004 : * will skip downloading a file if its scriptid or srcid
is zero. Useful for script authors; that way their
own GetLatestVimScripts activity won't overwrite
their scripts.

v12 Aug 23, 2004 : * bugfix - a "return" got left in the distribution that
was intended only for testing. Removed, now works.

* :AutoInstall: implemented
v11 Aug 20, 2004 : * GetLatestVimScripts is now a plugin:

* :GetLatestVimScripts command
* (runtimepath)/GetLatest/GetLatestVimScripts.dat

now holds scripts that need updating
v10 Apr 19, 2004 : * moved history from script to doc
v9 Jan 23, 2004 : windows (win32/win16/win95) will use

double quotes ("") whereas other systems will use
single quotes ('') around the urls in calls via wget

v8 Dec 01, 2003 : makes three tries at downloading
v7 Sep 02, 2003 : added error messages if "Click on..." or "src_id="

not found in downloaded webpage
Uses t_ti, t_te, and rs to make progress visible

v6 Aug 06, 2003 : final status messages now display summary of work
("Downloaded someqty scripts" or
"Everything was current")

Now GetLatestVimScripts is careful about downloading
GetLatestVimScripts.vim itself!
(goes to <NEW_GetLatestVimScripts.vim>)

v5 Aug 04, 2003 : missing an endif near bottom
v4 Jun 17, 2003 : redraw! just before each "considering" message
v3 May 27, 2003 : Protects downloaded files from errant shell

expansions with single quotes: '...'
v2 May 14, 2003 : extracts name of item to be obtained from the

script file. Uses it instead of comment field
for output filename; comment is used in the
"considering..." line and is now just a comment!

* Fixed a bug: a string-of-numbers is not the
same as a number, so I added zero to them
and they became numbers. Fixes comparison.

pi_getscript.txt — 4242

==

pi_getscript.txt — 4243

pi_getscript.txt — 4244

pi_gzip.txt For Vim version 9.1. Last change: 2023 Nov 14

VIM REFERENCE MANUAL by Bram Moolenaar

Editing compressed files with Vim gzip bzip2 compress

1. Autocommands gzip-autocmd

The functionality mentioned here is a standard-plugin .
This plugin is only available if 'compatible' is not set.
You can avoid loading this plugin by setting the "loaded_gzip" variable:

:let loaded_gzip = 1

g:gzip_exec

For security reasons, one may prevent that Vim runs executables automatically
when opening a buffer. This option (default: "1") can be used to prevent
executing the executables command when set to "0":

:let g:gzip_exec = 0

==
1. Autocommands gzip-autocmd

The plugin installs autocommands to intercept reading and writing of files
with these extensions:

extension compression
*.Z compress (Lempel-Ziv)
*.gz gzip
*.bz2 bzip2
*.lzma lzma
*.xz xz
*.lz lzip
*.zst zstd

That's actually the only thing you need to know. There are no options.

After decompressing a file, the filetype will be detected again. This will
make a file like "foo.c.gz" get the "c" filetype.

If you have 'patchmode' set, it will be appended after the extension for
compression. Thus editing the patchmode file will not give you the automatic
decompression. You have to rename the file if you want this.

==

pi_gzip.txt — 4245

pi_gzip.txt — 4246

pi_logipat.txt Logical Patterns May 01, 2019

Author: Charles E. Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
Copyright: (c) 2004-2016 by Charles E. Campbell logiPat-copyright

The VIM LICENSE applies to LogiPat.vim and LogiPat.txt
(see copyright) except use "LogiPat" instead of "Vim"
No warranty, express or implied. Use At-Your-Own-Risk.

==
1. Contents logiPat logiPat-contents

1. Contents.................: logiPat-contents
2. LogiPat Manual...........: logiPat-manual
3. LogiPat Examples.........: logiPat-examples
4. Caveat...................: logiPat-caveat
5. LogiPat History..........: logiPat-history

==
2. LogiPat Manual logiPat-manual logiPat-man

logiPat-arg logiPat-input logiPat-pattern logiPat-operators
Boolean logic patterns are composed of

operators ! = not
| = logical-or
& = logical-and

grouping (...)
patterns "pattern"

logiPat-cmd
:LogiPat {boolean-logic pattern} :LogiPat

:LogiPat is a command which takes a boolean-logic
argument (logiPat-arg).

:LP {boolean-logic pattern} :LP
:LP is a shorthand command version of :LogiPat
(logiPat-cmd).

:LPE {boolean-logic pattern} :LPE
No search is done, but the conversion from the
boolean logic pattern to the regular expression
is performed and echoed onto the display.

:LogiPatFlags {search flags} LogiPat-flags
LogiPat uses the search() command. The flags
passed to that call to search() may be specified
by the :LogiPatFlags command.

:LPF {search flags} :LPF
:LPF is a shorthand version of :LogiPatFlags.

:let pat=LogiPat({boolean-logic pattern}) LogiPat()
If one calls LogiPat() directly, no search
is done, but the transformation from the boolean
logic pattern into a regular expression pattern
is performed and returned.

To get a " inside a pattern, as opposed to having it delimit
the pattern, double it.

pi_logipat.txt — 4247

==
3. LogiPat Examples logiPat-examples

LogiPat takes Boolean logic arguments and produces a regular
expression which implements the choices. A series of examples
follows:

:LogiPat "abc"
will search for lines containing the string :abc:

:LogiPat "ab""cd"
will search for lines containing the string :ab"cd:

:LogiPat !"abc"
will search for lines which don't contain the string :abc:

:LogiPat "abc"|"def"
will search for lines which contain either the string
:abc: or the string :def:

:LogiPat !("abc"|"def")
will search for lines which don't contain either
of the strings :abc: or :def:

:LogiPat "abc"&"def"
will search for lines which contain both of the strings
:abc: and :def:

:let pat= LogiPat('!"abc"')
will return the regular expression which will match
all lines not containing :abc: . The double quotes
are needed to pass normal patterns to LogiPat, and
differentiate such patterns from boolean logic
operators.

==
4. Caveat logiPat-caveat

The "not" operator may be fragile; ie. it may not always play well
with the & (logical-and) and | (logical-or) operators. Please try out
your patterns, possibly with :set hls, to insure that what is matching
is what you want.

==
5. LogiPat History logiPat-history

v4 Jun 22, 2015 * LogiPat has been picked up by Bram M for standard
plugin distribution; hence the name change

v3 Sep 25, 2006 * LP_Or() fixed; it now encapsulates its output
in \%(...\) parentheses

Dec 12, 2011 * :LPE added
* "" is mapped to a single " and left inside patterns

v2 May 31, 2005 * LPF and LogiPatFlags commands weren't working
v1 May 23, 2005 * initial release

pi_logipat.txt — 4248

==

pi_logipat.txt — 4249

pi_logipat.txt — 4250

pi_netrw.txt For Vim version 9.1. Last change: 2023 Jun 19

--
NETRW REFERENCE MANUAL by Charles E. Campbell
--

Author: Charles E. Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
(remove NOSPAM from Campbell's email first)

Copyright: Copyright (C) 2017 Charles E Campbell netrw-copyright
The VIM LICENSE applies to the files in this package, including
netrw.vim, pi_netrw.txt, netrwFileHandlers.vim, netrwSettings.vim, and
syntax/netrw.vim. Like anything else that's free, netrw.vim and its
associated files are provided *as is* and comes with no warranty of
any kind, either expressed or implied. No guarantees of
merchantability. No guarantees of suitability for any purpose. By
using this plugin, you agree that in no event will the copyright
holder be liable for any damages resulting from the use of this
software. Use at your own risk!

netrw
dav ftp netrw-file rcp scp
davs http netrw.vim rsync sftp
fetch network

==
1. Contents netrw-contents {{{1

1. Contents.. netrw-contents
2. Starting With Netrw................................... netrw-start
3. Netrw Reference....................................... netrw-ref

EXTERNAL APPLICATIONS AND PROTOCOLS................. netrw-externapp
READING... netrw-read
WRITING... netrw-write
SOURCING.. netrw-source
DIRECTORY LISTING................................... netrw-dirlist
CHANGING THE USERID AND PASSWORD.................... netrw-chgup
VARIABLES AND SETTINGS.............................. netrw-variables
PATHS... netrw-path

4. Network-Oriented File Transfer........................ netrw-xfer
NETRC... netrw-netrc
PASSWORD.. netrw-passwd

5. Activation.. netrw-activate
6. Transparent Remote File Editing....................... netrw-transparent
7. Ex Commands... netrw-ex
8. Variables and Options................................. netrw-variables
9. Browsing.. netrw-browse

Introduction To Browsing............................ netrw-intro-browse
Quick Reference: Maps............................... netrw-browse-maps
Quick Reference: Commands........................... netrw-browse-cmds
Banner Display...................................... netrw-I
Bookmarking A Directory............................. netrw-mb
Browsing.. netrw-cr
Squeezing the Current Tree-Listing Directory........ netrw-s-cr
Browsing With A Horizontally Split Window........... netrw-o
Browsing With A New Tab............................. netrw-t
Browsing With A Vertically Split Window............. netrw-v
Change File Permission.............................. netrw-gp
Change Listing Style.(thin wide long tree).......... netrw-i
Changing To A Bookmarked Directory.................. netrw-gb
Changing To A Predecessor Directory................. netrw-u

pi_netrw.txt — 4251

Changing To A Successor Directory................... netrw-U
Customizing Browsing With A Special Handler......... netrw-x
Deleting Bookmarks.................................. netrw-mB
Deleting Files Or Directories....................... netrw-D
Directory Exploring Commands........................ netrw-explore
Exploring With Stars and Patterns................... netrw-star
Displaying Information About File................... netrw-qf
Edit File Or Directory Hiding List.................. netrw-ctrl-h
Editing The Sorting Sequence........................ netrw-S
Forcing treatment as a file or directory............ netrw-gd netrw-gf
Going Up.. netrw--
Hiding Files Or Directories......................... netrw-a
Improving Browsing.................................. netrw-ssh-hack
Listing Bookmarks And History....................... netrw-qb
Making A New Directory.............................. netrw-d
Making The Browsing Directory The Current Directory. netrw-cd
Marking Files....................................... netrw-mf
Unmarking Files..................................... netrw-mF
Marking Files By Location List...................... netrw-qL
Marking Files By QuickFix List...................... netrw-qF
Marking Files By Regular Expression................. netrw-mr
Marked Files: Arbitrary Shell Command............... netrw-mx
Marked Files: Arbitrary Shell Command, En Bloc...... netrw-mX
Marked Files: Arbitrary Vim Command................. netrw-mv
Marked Files: Argument List......................... netrw-ma netrw-mA
Marked Files: Buffer List........................... netrw-cb netrw-cB
Marked Files: Compression And Decompression......... netrw-mz
Marked Files: Copying............................... netrw-mc
Marked Files: Diff.................................. netrw-md
Marked Files: Editing............................... netrw-me
Marked Files: Grep.................................. netrw-mg
Marked Files: Hiding and Unhiding by Suffix......... netrw-mh
Marked Files: Moving................................ netrw-mm
Marked Files: Printing.............................. netrw-mp
Marked Files: Sourcing.............................. netrw-ms
Marked Files: Setting the Target Directory.......... netrw-mt
Marked Files: Tagging............................... netrw-mT
Marked Files: Target Directory Using Bookmarks...... netrw-Tb
Marked Files: Target Directory Using History........ netrw-Th
Marked Files: Unmarking............................. netrw-mu
Netrw Browser Variables............................. netrw-browser-var
Netrw Browsing And Option Incompatibilities......... netrw-incompatible
Netrw Settings Window............................... netrw-settings-window
Obtaining A File.................................... netrw-O
Preview Window...................................... netrw-p
Previous Window..................................... netrw-P
Refreshing The Listing.............................. netrw-ctrl-l
Reversing Sorting Order............................. netrw-r
Renaming Files Or Directories....................... netrw-R
Selecting Sorting Style............................. netrw-s
Setting Editing Window.............................. netrw-C

10. Problems and Fixes.................................... netrw-problems
11. Debugging Netrw Itself................................ netrw-debug
12. History... netrw-history
13. Todo.. netrw-todo
14. Credits... netrw-credits

==
2. Starting With Netrw netrw-start {{{1

pi_netrw.txt — 4252

Netrw makes reading files, writing files, browsing over a network, and
local browsing easy! First, make sure that you have plugins enabled, so
you'll need to have at least the following in your <.vimrc>:
(or see netrw-activate)

set nocp " 'compatible' is not set
filetype plugin on " plugins are enabled

(see 'cp' and :filetype-plugin-on)

Netrw supports "transparent" editing of files on other machines using urls
(see netrw-transparent). As an example of this, let's assume you have an
account on some other machine; if you can use scp, try:

vim scp://hostname/path/to/file

Want to make ssh/scp easier to use? Check out netrw-ssh-hack !

So, what if you have ftp, not ssh/scp? That's easy, too; try

vim ftp://hostname/path/to/file

Want to make ftp simpler to use? See if your ftp supports a file called
<.netrc> -- typically it goes in your home directory, has read/write
permissions for only the user to read (ie. not group, world, other, etc),
and has lines resembling

machine HOSTNAME login USERID password "PASSWORD"
machine HOSTNAME login USERID password "PASSWORD"
...
default login USERID password "PASSWORD"

Windows' ftp doesn't support .netrc; however, one may have in one's .vimrc:

let g:netrw_ftp_cmd= 'c:\Windows\System32\ftp -s:C:\Users\MyUserName\MACHINE'

Netrw will substitute the host's machine name for "MACHINE" from the URL it is
attempting to open, and so one may specify

userid
password

for each site in a separate file: c:\Users\MyUserName\MachineName.

Now about browsing -- when you just want to look around before editing a
file. For browsing on your current host, just "edit" a directory:

vim .
vim /home/userid/path

For browsing on a remote host, "edit" a directory (but make sure that
the directory name is followed by a "/"):

vim scp://hostname/
vim ftp://hostname/path/to/dir/

See netrw-browse for more!

There are more protocols supported by netrw than just scp and ftp, too: see the
next section, netrw-externapp , on how to use these external applications with
netrw and vim.

pi_netrw.txt — 4253

PREVENTING LOADING netrw-noload

If you want to use plugins, but for some reason don't wish to use netrw, then
you need to avoid loading both the plugin and the autoload portions of netrw.
You may do so by placing the following two lines in your <.vimrc>:

:let g:loaded_netrw = 1
:let g:loaded_netrwPlugin = 1

==
3. Netrw Reference netrw-ref {{{1

Netrw supports several protocols in addition to scp and ftp as mentioned
in netrw-start . These include dav, fetch, http,... well, just look
at the list in netrw-externapp . Each protocol is associated with a
variable which holds the default command supporting that protocol.

EXTERNAL APPLICATIONS AND PROTOCOLS netrw-externapp {{{2

Protocol Variable Default Value
-------- ---------------- -------------

dav: g:netrw_dav_cmd = "cadaver" if cadaver is executable
dav: g:netrw_dav_cmd = "curl -o" elseif curl is available

fetch: g:netrw_fetch_cmd = "fetch -o" if fetch is available
ftp: g:netrw_ftp_cmd = "ftp"

http: g:netrw_http_cmd = "elinks" if elinks is available
http: g:netrw_http_cmd = "links" elseif links is available
http: g:netrw_http_cmd = "curl" elseif curl is available
http: g:netrw_http_cmd = "wget" elseif wget is available
http: g:netrw_http_cmd = "fetch" elseif fetch is available
http: g:netrw_http_put_cmd = "curl -T"
rcp: g:netrw_rcp_cmd = "rcp"

rsync: g:netrw_rsync_cmd = "rsync" (see g:netrw_rsync_sep)
scp: g:netrw_scp_cmd = "scp -q"

sftp: g:netrw_sftp_cmd = "sftp"
file: g:netrw_file_cmd = "elinks" or "links"

g:netrw_http_xcmd : the option string for http://... protocols are
specified via this variable and may be independently overridden. By
default, the option arguments for the http-handling commands are:

elinks : "-source >"
links : "-dump >"
curl : "-L -o"
wget : "-q -O"
fetch : "-o"

For example, if your system has elinks, and you'd rather see the
page using an attempt at rendering the text, you may wish to have

let g:netrw_http_xcmd= "-dump >"
in your .vimrc.

g:netrw_http_put_cmd: this option specifies both the executable and
any needed options. This command does a PUT operation to the url.

READING netrw-read netrw-nread {{{2

Generally, one may just use the URL notation with a normal editing

pi_netrw.txt — 4254

command, such as

:e ftp://[user@]machine/path

Netrw also provides the Nread command:

:Nread ? give help
:Nread "machine:path" uses rcp
:Nread "machine path" uses ftp w/ <.netrc>
:Nread "machine id password path" uses ftp
:Nread "dav://machine[:port]/path" uses cadaver
:Nread "fetch://[user@]machine/path" uses fetch
:Nread "ftp://[user@]machine[[:#]port]/path" uses ftp w/ <.netrc>
:Nread "http://[user@]machine/path" uses http uses wget
:Nread "rcp://[user@]machine/path" uses rcp
:Nread "rsync://[user@]machine[:port]/path" uses rsync
:Nread "scp://[user@]machine[[:#]port]/path" uses scp
:Nread "sftp://[user@]machine/path" uses sftp

WRITING netrw-write netrw-nwrite {{{2

One may just use the URL notation with a normal file writing
command, such as

:w ftp://[user@]machine/path

Netrw also provides the Nwrite command:

:Nwrite ? give help
:Nwrite "machine:path" uses rcp
:Nwrite "machine path" uses ftp w/ <.netrc>
:Nwrite "machine id password path" uses ftp
:Nwrite "dav://machine[:port]/path" uses cadaver
:Nwrite "ftp://[user@]machine[[:#]port]/path" uses ftp w/ <.netrc>
:Nwrite "rcp://[user@]machine/path" uses rcp
:Nwrite "rsync://[user@]machine[:port]/path" uses rsync
:Nwrite "scp://[user@]machine[[:#]port]/path" uses scp
:Nwrite "sftp://[user@]machine/path" uses sftp
http: not supported!

SOURCING netrw-source {{{2

One may just use the URL notation with the normal file sourcing
command, such as

:so ftp://[user@]machine/path

Netrw also provides the Nsource command:

:Nsource ? give help
:Nsource "dav://machine[:port]/path" uses cadaver
:Nsource "fetch://[user@]machine/path" uses fetch
:Nsource "ftp://[user@]machine[[:#]port]/path" uses ftp w/ <.netrc>
:Nsource "http://[user@]machine/path" uses http uses wget
:Nsource "rcp://[user@]machine/path" uses rcp
:Nsource "rsync://[user@]machine[:port]/path" uses rsync
:Nsource "scp://[user@]machine[[:#]port]/path" uses scp
:Nsource "sftp://[user@]machine/path" uses sftp

DIRECTORY LISTING netrw-trailingslash netrw-dirlist {{{2

pi_netrw.txt — 4255

ftp://[user@]machine[[:#]port]/path
http://[user@]machine/path
ftp://[user@]machine[[:#]port]/path
ftp://[user@]machine[[:#]port]/path
http://[user@]machine/path

One may browse a directory to get a listing by simply attempting to
edit the directory:

:e scp://[user]@hostname/path/
:e ftp://[user]@hostname/path/

For remote directory listings (ie. those using scp or ftp), that
trailing "/" is necessary (the slash tells netrw to treat the argument
as a directory to browse instead of as a file to download).

The Nread command may also be used to accomplish this (again, that
trailing slash is necessary):

:Nread [protocol]://[user]@hostname/path/

netrw-login netrw-password
CHANGING USERID AND PASSWORD netrw-chgup netrw-userpass {{{2

Attempts to use ftp will prompt you for a user-id and a password.
These will be saved in global variables g:netrw_uid and
s:netrw_passwd ; subsequent use of ftp will re-use those two strings,

thereby simplifying use of ftp. However, if you need to use a
different user id and/or password, you'll want to call NetUserPass()
first. To work around the need to enter passwords, check if your ftp
supports a <.netrc> file in your home directory. Also see
netrw-passwd (and if you're using ssh/scp hoping to figure out how

to not need to use passwords for scp, look at netrw-ssh-hack).

:NetUserPass [uid [password]] -- prompts as needed
:call NetUserPass() -- prompts for uid and password
:call NetUserPass("uid") -- prompts for password
:call NetUserPass("uid","password") -- sets global uid and password

(Related topics: ftp netrw-userpass netrw-start)

NETRW VARIABLES AND SETTINGS netrw-variables {{{2
(Also see:
netrw-browser-var : netrw browser option variables
netrw-protocol : file transfer protocol option variables
netrw-settings : additional file transfer options
netrw-browser-options : these options affect browsing directories
)

Netrw provides a lot of variables which allow you to customize netrw to your
preferences. One way to look at them is via the command :NetrwSettings (see
netrw-settings) which will display your current netrw settings. Most such

settings are described below, in netrw-browser-options , and in
netrw-externapp :

b:netrw_lastfile last file Network-read/written retained on a
per-buffer basis (supports plain :Nw)

g:netrw_bufsettings the settings that netrw buffers have
(default) noma nomod nonu nowrap ro nobl

g:netrw_chgwin specifies a window number where subsequent file edits
will take place. (also see netrw-C)
(default) -1

pi_netrw.txt — 4256

g:Netrw_funcref specifies a function (or functions) to be called when
netrw edits a file. The file is first edited, and
then the function reference (Funcref) is called.
This variable may also hold a List of Funcrefs.
(default) not defined. (the capital in g:Netrw...
is required by its holding a function reference)

Example: place in .vimrc; affects all file opening
fun! MyFuncRef()
endfun
let g:Netrw_funcref= function("MyFuncRef")

g:Netrw_UserMaps specifies a function or List of functions which can
be used to set up user-specified maps and functionality.
See netrw-usermaps

g:netrw_ftp if it doesn't exist, use default ftp
=0 use default ftp (uid password)
=1 use alternate ftp method (user uid password)

If you're having trouble with ftp, try changing the
value of this variable to see if the alternate ftp
method works for your setup.

g:netrw_ftp_options Chosen by default, these options are supposed to
turn interactive prompting off and to restrain ftp
from attempting auto-login upon initial connection.
However, it appears that not all ftp implementations
support this (ex. ncftp).

="-i -n"

g:netrw_ftpextracmd default: doesn't exist
If this variable exists, then any string it contains
will be placed into the commands set to your ftp
client. As an example:

="passive"

g:netrw_ftpmode ="binary" (default)
="ascii"

g:netrw_ignorenetrc =0 (default for linux, cygwin)
=1 If you have a <.netrc> file but it doesn't work and

you want it ignored, then set this variable as
shown. (default for Windows + cmd.exe)

g:netrw_menu =0 disable netrw's menu
=1 (default) netrw's menu enabled

g:netrw_nogx if this variable exists, then the "gx" map will not
be available (see netrw-gx)

g:netrw_uid (ftp) user-id, retained on a per-vim-session basis
s:netrw_passwd (ftp) password, retained on a per-vim-session basis

g:netrw_preview =0 (default) preview window shown in a horizontally
split window

=1 preview window shown in a vertically split window.
Also affects the "previous window" (see netrw-P)
in the same way.

The g:netrw_alto variable may be used to provide

pi_netrw.txt — 4257

additional splitting control:
g:netrw_preview g:netrw_alto result

0 0 :aboveleft
0 1 :belowright
1 0 :topleft
1 1 :botright

To control sizing, see g:netrw_winsize

g:netrw_scpport = "-P" : option to use to set port for scp
g:netrw_sshport = "-p" : option to use to set port for ssh

g:netrw_sepchr =\0xff
=\0x01 for enc == euc-jp (and perhaps it should be for

others, too, please let me know)
Separates priority codes from filenames internally.
See netrw-p12 .

g:netrw_silent =0 : transfers done normally
=1 : transfers done silently

g:netrw_use_errorwindow =2: messages from netrw will use a popup window
Move the mouse and pause to remove the popup window.
(default value if popup windows are available)

=1 : messages from netrw will use a separate one
line window. This window provides reliable
delivery of messages.

(default value if popup windows are not available)
=0 : messages from netrw will use echoerr ;

messages don't always seem to show up this
way, but one doesn't have to quit the window.

g:netrw_win95ftp =1 if using Win95, will remove four trailing blank
lines that o/s's ftp "provides" on transfers

=0 force normal ftp behavior (no trailing line removal)

g:netrw_cygwin =1 assume scp under windows is from cygwin. Also
permits network browsing to use ls with time and
size sorting (default if windows)

=0 assume Windows' scp accepts windows-style paths
Network browsing uses dir instead of ls
This option is ignored if you're using unix

g:netrw_use_nt_rcp =0 don't use the rcp of WinNT, Win2000 and WinXP
=1 use WinNT's rcp in binary mode (default)

PATHS netrw-path {{{2

Paths to files are generally user-directory relative for most protocols.
It is possible that some protocol will make paths relative to some
associated directory, however.

example: vim scp://user@host/somefile
example: vim scp://user@host/subdir1/subdir2/somefile

where "somefile" is in the "user"'s home directory. If you wish to get a
file using root-relative paths, use the full path:

example: vim scp://user@host//somefile
example: vim scp://user@host//subdir1/subdir2/somefile

pi_netrw.txt — 4258

==
4. Network-Oriented File Transfer netrw-xfer {{{1

Network-oriented file transfer under Vim is implemented by a vim script
(<netrw.vim>) using plugin techniques. It currently supports both reading and
writing across networks using rcp, scp, ftp or ftp+<.netrc>, scp, fetch,
dav/cadaver, rsync, or sftp.

http is currently supported read-only via use of wget or fetch.

<netrw.vim> is a standard plugin which acts as glue between Vim and the
various file transfer programs. It uses autocommand events (BufReadCmd,
FileReadCmd, BufWriteCmd) to intercept reads/writes with url-like filenames.

ex. vim ftp://hostname/path/to/file

The characters preceding the colon specify the protocol to use; in the
example, it's ftp. The <netrw.vim> script then formulates a command or a
series of commands (typically ftp) which it issues to an external program
(ftp, scp, etc) which does the actual file transfer/protocol. Files are read
from/written to a temporary file (under Unix/Linux, /tmp/...) which the
<netrw.vim> script will clean up.

Now, a word about Jan Minář's "FTP User Name and Password Disclosure"; first,
ftp is not a secure protocol. User names and passwords are transmitted "in
the clear" over the internet; any snooper tool can pick these up; this is not
a netrw thing, this is a ftp thing. If you're concerned about this, please
try to use scp or sftp instead.

Netrw re-uses the user id and password during the same vim session and so long
as the remote hostname remains the same.

Jan seems to be a bit confused about how netrw handles ftp; normally multiple
commands are performed in a "ftp session", and he seems to feel that the
uid/password should only be retained over one ftp session. However, netrw
does every ftp operation in a separate "ftp session"; so remembering the
uid/password for just one "ftp session" would be the same as not remembering
the uid/password at all. IMHO this would rapidly grow tiresome as one
browsed remote directories, for example.

On the other hand, thanks go to Jan M. for pointing out the many
vulnerabilities that netrw (and vim itself) had had in handling "crafted"
filenames. The shellescape() and fnameescape() functions were written in
response by Bram Moolenaar to handle these sort of problems, and netrw has
been modified to use them. Still, my advice is, if the "filename" looks like
a vim command that you aren't comfortable with having executed, don't open it.

netrw-putty netrw-pscp netrw-psftp
One may modify any protocol's implementing external application by setting a
variable (ex. scp uses the variable g:netrw_scp_cmd, which is defaulted to
"scp -q"). As an example, consider using PuTTY:

let g:netrw_scp_cmd = '"c:\Program Files\PuTTY\pscp.exe" -q -batch'
let g:netrw_sftp_cmd= '"c:\Program Files\PuTTY\psftp.exe"'

(note: it has been reported that windows 7 with putty v0.6's "-batch" option
doesn't work, so its best to leave it off for that system)

See netrw-p8 for more about putty, pscp, psftp, etc.

pi_netrw.txt — 4259

Ftp, an old protocol, seems to be blessed by numerous implementations.
Unfortunately, some implementations are noisy (ie., add junk to the end of the
file). Thus, concerned users may decide to write a NetReadFixup() function
that will clean up after reading with their ftp. Some Unix systems (ie.,
FreeBSD) provide a utility called "fetch" which uses the ftp protocol but is
not noisy and more convenient, actually, for <netrw.vim> to use.
Consequently, if "fetch" is available (ie. executable), it may be preferable
to use it for ftp://... based transfers.

For rcp, scp, sftp, and http, one may use network-oriented file transfers
transparently; ie.

vim rcp://[user@]machine/path
vim scp://[user@]machine/path

If your ftp supports <.netrc>, then it too can be transparently used
if the needed triad of machine name, user id, and password are present in
that file. Your ftp must be able to use the <.netrc> file on its own, however.

vim ftp://[user@]machine[[:#]portnumber]/path

Windows provides an ftp (typically c:\Windows\System32\ftp.exe) which uses
an option, -s:filename (filename can and probably should be a full path)
which contains ftp commands which will be automatically run whenever ftp
starts. You may use this feature to enter a user and password for one site:

userid
password

netrw-windows-netrc netrw-windows-s
If g:netrw_ftp_cmd contains -s:[path/]MACHINE, then (on Windows machines
only) netrw will substitute the current machine name requested for ftp
connections for MACHINE. Hence one can have multiple machine.ftp files
containing login and password for ftp. Example:

let g:netrw_ftp_cmd= 'c:\Windows\System32\ftp -s:C:\Users\Myself\MACHINE'
vim ftp://myhost.somewhere.net/

will use a file

C:\Users\Myself\myhost.ftp

Often, ftp will need to query the user for the userid and password.
The latter will be done "silently"; ie. asterisks will show up instead of
the actually-typed-in password. Netrw will retain the userid and password
for subsequent read/writes from the most recent transfer so subsequent
transfers (read/write) to or from that machine will take place without
additional prompting.

netrw-urls
+=================================+============================+============+
| Reading | Writing | Uses |
+=================================+============================+============+
DAV:		
dav://host/path		cadaver
:Nread dav://host/path	:Nwrite dav://host/path	cadaver
+---------------------------------+----------------------------+------------+		
DAV + SSL:		
davs://host/path		cadaver
:Nread davs://host/path	:Nwrite davs://host/path	cadaver
+---------------------------------+----------------------------+------------+

pi_netrw.txt — 4260

FETCH:		
fetch://[user@]host/path		
fetch://[user@]host:http/path	Not Available	fetch
:Nread fetch://[user@]host/path		
+---------------------------------+----------------------------+------------+		
FILE:		
file:///*	file:///*	
file://localhost/*	file://localhost/*	
+---------------------------------+----------------------------+------------+		
FTP: (*3)	(*3)	
ftp://[user@]host/path	ftp://[user@]host/path	ftp (*2)
:Nread ftp://host/path	:Nwrite ftp://host/path	ftp+.netrc
:Nread host path	:Nwrite host path	ftp+.netrc
:Nread host uid pass path	:Nwrite host uid pass path	ftp
+---------------------------------+----------------------------+------------+		
HTTP: wget is executable: (*4)		
http://[user@]host/path	Not Available	wget
+---------------------------------+----------------------------+------------+		
HTTP: fetch is executable (*4)		
http://[user@]host/path	Not Available	fetch
+---------------------------------+----------------------------+------------+		
RCP:		
rcp://[user@]host/path	rcp://[user@]host/path	rcp
+---------------------------------+----------------------------+------------+		
RSYNC:		
rsync://[user@]host/path	rsync://[user@]host/path	rsync
:Nread rsync://host/path	:Nwrite rsync://host/path	rsync
:Nread rcp://host/path	:Nwrite rcp://host/path	rcp
+---------------------------------+----------------------------+------------+		
SCP:		
scp://[user@]host/path	scp://[user@]host/path	scp
:Nread scp://host/path	:Nwrite scp://host/path	scp (*1)
+---------------------------------+----------------------------+------------+		
SFTP:		
sftp://[user@]host/path	sftp://[user@]host/path	sftp
:Nread sftp://host/path	:Nwrite sftp://host/path	sftp (*1)
+=================================+============================+============+

(*1) For an absolute path use scp://machine//path.

(*2) if <.netrc> is present, it is assumed that it will
work with your ftp client. Otherwise the script will
prompt for user-id and password.

(*3) for ftp, "machine" may be machine#port or machine:port
if a different port is needed than the standard ftp port

(*4) for http:..., if wget is available it will be used. Otherwise,
if fetch is available it will be used.

Both the :Nread and the :Nwrite ex-commands can accept multiple filenames.

NETRC netrw-netrc

The <.netrc> file, typically located in your home directory, contains lines
therein which map a hostname (machine name) to the user id and password you
prefer to use with it.

The typical syntax for lines in a <.netrc> file is given as shown below.

pi_netrw.txt — 4261

ftp://[user@]host/path
ftp://[user@]host/path
ftp://host/path
ftp://host/path
http://[user@]host/path
http://[user@]host/path

Ftp under Unix usually supports <.netrc>; ftp under Windows usually doesn't.

machine {full machine name} login {user-id} password "{password}"
default login {user-id} password "{password}"

Your ftp client must handle the use of <.netrc> on its own, but if the
<.netrc> file exists, an ftp transfer will not ask for the user-id or
password.

Note:
Since this file contains passwords, make very sure nobody else can
read this file! Most programs will refuse to use a .netrc that is
readable for others. Don't forget that the system administrator can
still read the file! Ie. for Linux/Unix: chmod 600 .netrc

Even though Windows' ftp clients typically do not support .netrc, netrw has
a work-around: see netrw-windows-s .

PASSWORD netrw-passwd

The script attempts to get passwords for ftp invisibly using inputsecret() ,
a built-in Vim function. See netrw-userpass for how to change the password
after one has set it.

Unfortunately there doesn't appear to be a way for netrw to feed a password to
scp. Thus every transfer via scp will require re-entry of the password.
However, netrw-ssh-hack can help with this problem.

==
5. Activation netrw-activate {{{1

Network-oriented file transfers are available by default whenever Vim's
'nocompatible' mode is enabled. Netrw's script files reside in your

system's plugin, autoload, and syntax directories; just the
plugin/netrwPlugin.vim script is sourced automatically whenever you bring up
vim. The main script in autoload/netrw.vim is only loaded when you actually
use netrw. I suggest that, at a minimum, you have at least the following in
your <.vimrc> customization file:

set nocp
if version >= 600

filetype plugin indent on
endif

By also including the following lines in your .vimrc, one may have netrw
immediately activate when using [g]vim without any filenames, showing the
current directory:

" Augroup VimStartup:
augroup VimStartup

au!
au VimEnter * if expand("%") == "" | e . | endif

augroup END

==
6. Transparent Remote File Editing netrw-transparent {{{1

pi_netrw.txt — 4262

Transparent file transfers occur whenever a regular file read or write
(invoked via an :autocmd for BufReadCmd , BufWriteCmd , or SourceCmd
events) is made. Thus one may read, write, or source files across networks
just as easily as if they were local files!

vim ftp://[user@]machine/path
...
:wq

See netrw-activate for more on how to encourage your vim to use plugins
such as netrw.

For password-free use of scp:, see netrw-ssh-hack .

==
7. Ex Commands netrw-ex {{{1

The usual read/write commands are supported. There are also a few
additional commands available. Often you won't need to use Nwrite or
Nread as shown in netrw-transparent (ie. simply use

:e URL
:r URL
:w URL

instead, as appropriate) -- see netrw-urls . In the explanations
below, a {netfile} is a URL to a remote file.

:Nwrite :Nw
:[range]Nw[rite] Write the specified lines to the current

file as specified in b:netrw_lastfile.
(related: netrw-nwrite)

:[range]Nw[rite] {netfile} [{netfile}]...
Write the specified lines to the {netfile}.

:Nread :Nr
:Nr[ead] Read the lines from the file specified in b:netrw_lastfile

into the current buffer. (related: netrw-nread)

:Nr[ead] {netfile} {netfile}...
Read the {netfile} after the current line.

:Nsource :Ns
:Ns[ource] {netfile}

Source the {netfile}.
To start up vim using a remote .vimrc, one may use
the following (all on one line) (tnx to Antoine Mechelynck)
vim -u NORC -N
--cmd "runtime plugin/netrwPlugin.vim"
--cmd "source scp://HOSTNAME/.vimrc"
(related: netrw-source)

:call NetUserPass() NetUserPass()
If g:netrw_uid and s:netrw_passwd don't exist,
this function will query the user for them.
(related: netrw-userpass)

:call NetUserPass("userid")
This call will set the g:netrw_uid and, if
the password doesn't exist, will query the user for it.

pi_netrw.txt — 4263

(related: netrw-userpass)

:call NetUserPass("userid","passwd")
This call will set both the g:netrw_uid and s:netrw_passwd.
The user-id and password are used by ftp transfers. One may
effectively remove the user-id and password by using empty
strings (ie. "").
(related: netrw-userpass)

:NetrwSettings This command is described in netrw-settings -- used to
display netrw settings and change netrw behavior.

==
8. Variables and Options netrw-var netrw-settings {{{1

(also see: netrw-options netrw-variables netrw-protocol
netrw-browser-settings netrw-browser-options)

The <netrw.vim> script provides several variables which act as options to
affect <netrw.vim>'s file transfer behavior. These variables typically may be
set in the user's <.vimrc> file: (see also netrw-settings netrw-protocol)

netrw-options

Netrw Options

Option Meaning
-------------- ---

b:netrw_col Holds current cursor position (during NetWrite)
g:netrw_cygwin =1 assume scp under windows is from cygwin

(default/windows)
=0 assume scp under windows accepts windows

style paths (default/else)
g:netrw_ftp =0 use default ftp (uid password)
g:netrw_ftpmode ="binary" (default)

="ascii" (your choice)
g:netrw_ignorenetrc =1 (default)

if you have a <.netrc> file but you don't
want it used, then set this variable. Its
mere existence is enough to cause <.netrc>
to be ignored.

b:netrw_lastfile Holds latest method/machine/path.
b:netrw_line Holds current line number (during NetWrite)
g:netrw_silent =0 transfers done normally

=1 transfers done silently
g:netrw_uid Holds current user-id for ftp.
g:netrw_use_nt_rcp =0 don't use WinNT/2K/XP's rcp (default)

=1 use WinNT/2K/XP's rcp, binary mode
g:netrw_win95ftp =0 use unix-style ftp even if win95/98/ME/etc

=1 use default method to do ftp

netrw-internal-variables
The script will also make use of the following variables internally, albeit
temporarily.

Temporary Variables

pi_netrw.txt — 4264

Variable Meaning
-------- ------------------------------------

b:netrw_method Index indicating rcp/ftp+.netrc/ftp
w:netrw_method (same as b:netrw_method)
g:netrw_machine Holds machine name parsed from input
b:netrw_fname Holds filename being accessed
--

netrw-protocol

Netrw supports a number of protocols. These protocols are invoked using the
variables listed below, and may be modified by the user.

Protocol Control Options

Option Type Setting Meaning
--------- -------- -------------- ---------------------------
netrw_ftp variable =doesn't exist userid set by "user userid"

=0 userid set by "user userid"
=1 userid set by "userid"

NetReadFixup function =doesn't exist no change
=exists Allows user to have files

read via ftp automatically
transformed however they wish
by NetReadFixup()

g:netrw_dav_cmd var ="cadaver" if cadaver is executable
g:netrw_dav_cmd var ="curl -o" elseif curl is executable
g:netrw_fetch_cmd var ="fetch -o" if fetch is available
g:netrw_ftp_cmd var ="ftp"
g:netrw_http_cmd var ="fetch -o" if fetch is available
g:netrw_http_cmd var ="wget -O" else if wget is available
g:netrw_http_put_cmd var ="curl -T"
g:netrw_list_cmd var ="ssh USEPORT HOSTNAME ls -Fa"
g:netrw_rcp_cmd var ="rcp"
g:netrw_rsync_cmd var ="rsync"
g:netrw_rsync_sep var ="/" used to separate the hostname

from the file spec
g:netrw_scp_cmd var ="scp -q"
g:netrw_sftp_cmd var ="sftp"

netrw-ftp

The g:netrw_..._cmd options (g:netrw_ftp_cmd and g:netrw_sftp_cmd)
specify the external program to use handle the ftp protocol. They may
include command line options (such as -p for passive mode). Example:

let g:netrw_ftp_cmd= "ftp -p"

Browsing is supported by using the g:netrw_list_cmd ; the substring
"HOSTNAME" will be changed via substitution with whatever the current request
is for a hostname.

Two options (g:netrw_ftp and netrw-fixup) both help with certain ftp's
that give trouble . In order to best understand how to use these options if
ftp is giving you troubles, a bit of discussion is provided on how netrw does
ftp reads.

pi_netrw.txt — 4265

For ftp, netrw typically builds up lines of one of the following formats in a
temporary file:

IF g:netrw_ftp !exists or is not 1 IF g:netrw_ftp exists and is 1
---------------------------------- ------------------------------

open machine [port] open machine [port]
user userid password userid password
[g:netrw_ftpmode] password
[g:netrw_ftpextracmd] [g:netrw_ftpmode]
get filename tempfile [g:netrw_extracmd]

get filename tempfile

The g:netrw_ftpmode and g:netrw_ftpextracmd are optional.

Netrw then executes the lines above by use of a filter:

:%! {g:netrw_ftp_cmd} -i [-n]

where
g:netrw_ftp_cmd is usually "ftp",
-i tells ftp not to be interactive
-n means don't use netrc and is used for Method #3 (ftp w/o <.netrc>)

If <.netrc> exists it will be used to avoid having to query the user for
userid and password. The transferred file is put into a temporary file.
The temporary file is then read into the main editing session window that
requested it and the temporary file deleted.

If your ftp doesn't accept the "user" command and immediately just demands a
userid, then try putting "let netrw_ftp=1" in your <.vimrc>.

netrw-cadaver
To handle the SSL certificate dialog for untrusted servers, one may pull
down the certificate and place it into /usr/ssl/cert.pem. This operation
renders the server treatment as "trusted".

netrw-fixup netreadfixup
If your ftp for whatever reason generates unwanted lines (such as AUTH
messages) you may write a NetReadFixup() function:

function! NetReadFixup(method,line1,line2)
" a:line1: first new line in current file
" a:line2: last new line in current file
if a:method == 1 "rcp
elseif a:method == 2 "ftp + <.netrc>
elseif a:method == 3 "ftp + machine,uid,password,filename
elseif a:method == 4 "scp
elseif a:method == 5 "http/wget
elseif a:method == 6 "dav/cadaver
elseif a:method == 7 "rsync
elseif a:method == 8 "fetch
elseif a:method == 9 "sftp
else " complain
endif

endfunction

The NetReadFixup() function will be called if it exists and thus allows you to

pi_netrw.txt — 4266

customize your reading process. As a further example, <netrw.vim> contains
just such a function to handle Windows 95 ftp. For whatever reason, Windows
95's ftp dumps four blank lines at the end of a transfer, and so it is
desirable to automate their removal. Here's some code taken from <netrw.vim>
itself:

if has("win95") && g:netrw_win95ftp
fun! NetReadFixup(method, line1, line2)

if method == 3 " ftp (no <.netrc>)
let fourblanklines= line2 - 3
silent fourblanklines .. "," .. line2 .. "g/^\s*/d"
endif

endfunction
endif

(Related topics: ftp netrw-userpass netrw-start)

==
9. Browsing netrw-browsing netrw-browse netrw-help {{{1

netrw-browser netrw-dir netrw-list

INTRODUCTION TO BROWSING netrw-intro-browse {{{2
(Quick References: netrw-quickmaps netrw-quickcoms)

Netrw supports the browsing of directories on your local system and on remote
hosts; browsing includes listing files and directories, entering directories,
editing files therein, deleting files/directories, making new directories,
moving (renaming) files and directories, copying files and directories, etc.
One may mark files and execute any system command on them! The Netrw browser
generally implements the previous explorer's maps and commands for remote
directories, although details (such as pertinent global variable names)
necessarily differ. To browse a directory, simply "edit" it!

vim /your/directory/
vim .
vim c:\your\directory\

(Related topics: netrw-cr netrw-o netrw-p netrw-P netrw-t
netrw-mf netrw-mx netrw-D netrw-R netrw-v)

The Netrw remote file and directory browser handles two protocols: ssh and
ftp. The protocol in the url, if it is ftp, will cause netrw also to use ftp
in its remote browsing. Specifying any other protocol will cause it to be
used for file transfers; but the ssh protocol will be used to do remote
browsing.

To use Netrw's remote directory browser, simply attempt to read a "file" with
a trailing slash and it will be interpreted as a request to list a directory:

vim [protocol]://[user@]hostname/path/

where [protocol] is typically scp or ftp. As an example, try:

vim ftp://ftp.home.vim.org/pub/vim/

For local directories, the trailing slash is not required. Again, because it's
easy to miss: to browse remote directories, the URL must terminate with a
slash!

If you'd like to avoid entering the password repeatedly for remote directory

pi_netrw.txt — 4267

listings with ssh or scp, see netrw-ssh-hack . To avoid password entry with
ftp, see netrw-netrc (if your ftp supports it).

There are several things you can do to affect the browser's display of files:

* To change the listing style, press the "i" key (netrw-i).
Currently there are four styles: thin, long, wide, and tree.
To make that change "permanent", see g:netrw_liststyle .

* To hide files (don't want to see those xyz~ files anymore?) see
netrw-ctrl-h .

* Press s to sort files by name, time, or size.

See netrw-browse-cmds for all the things you can do with netrw!

netrw-getftype netrw-filigree netrw-ftype
The getftype() function is used to append a bit of filigree to indicate
filetype to locally listed files:

directory : /
executable : *
fifo : |
links : @
sockets : =

The filigree also affects the g:netrw_sort_sequence .

QUICK HELP netrw-quickhelp {{{2
(Use ctrl-] to select a topic)

Intro to Browsing............................... netrw-intro-browse
Quick Reference: Maps......................... netrw-quickmap
Quick Reference: Commands..................... netrw-browse-cmds

Hiding
Edit hiding list.............................. netrw-ctrl-h
Hiding Files or Directories................... netrw-a
Hiding/Unhiding by suffix..................... netrw-mh
Hiding dot-files............................. netrw-gh

Listing Style
Select listing style (thin/long/wide/tree).... netrw-i
Associated setting variable................... g:netrw_liststyle
Shell command used to perform listing......... g:netrw_list_cmd
Quick file info............................... netrw-qf

Sorted by
Select sorting style (name/time/size)......... netrw-s
Editing the sorting sequence.................. netrw-S
Sorting options............................... g:netrw_sort_options
Associated setting variable................... g:netrw_sort_sequence
Reverse sorting order......................... netrw-r

netrw-quickmap netrw-quickmaps
QUICK REFERENCE: MAPS netrw-browse-maps {{{2

--- ----------------- ----
Map Quick Explanation Link
--- ----------------- ----

<F1> Causes Netrw to issue help
<cr> Netrw will enter the directory or read the file netrw-cr

pi_netrw.txt — 4268

 Netrw will attempt to remove the file/directory netrw-del
<c-h> Edit file hiding list netrw-ctrl-h
<c-l> Causes Netrw to refresh the directory listing netrw-ctrl-l
<c-r> Browse using a gvim server netrw-ctrl-r
<c-tab> Shrink/expand a netrw/explore window netrw-c-tab
- Makes Netrw go up one directory netrw--
a Cycles between normal display, netrw-a

hiding (suppress display of files matching g:netrw_list_hide)
and showing (display only files which match g:netrw_list_hide)

cd Make browsing directory the current directory netrw-cd
C Setting the editing window netrw-C
d Make a directory netrw-d
D Attempt to remove the file(s)/directory(ies) netrw-D
gb Go to previous bookmarked directory netrw-gb
gd Force treatment as directory netrw-gd
gf Force treatment as file netrw-gf
gh Quick hide/unhide of dot-files netrw-gh
gn Make top of tree the directory below the cursor netrw-gn
gp Change local-only file permissions netrw-gp
i Cycle between thin, long, wide, and tree listings netrw-i
I Toggle the displaying of the banner netrw-I
mb Bookmark current directory netrw-mb
mc Copy marked files to marked-file target directory netrw-mc
md Apply diff to marked files (up to 3) netrw-md
me Place marked files on arg list and edit them netrw-me
mf Mark a file netrw-mf
mF Unmark files netrw-mF
mg Apply vimgrep to marked files netrw-mg
mh Toggle marked file suffices' presence on hiding list netrw-mh
mm Move marked files to marked-file target directory netrw-mm
mp Print marked files netrw-mp
mr Mark files using a shell-style regexp netrw-mr
mt Current browsing directory becomes markfile target netrw-mt
mT Apply ctags to marked files netrw-mT
mu Unmark all marked files netrw-mu
mv Apply arbitrary vim command to marked files netrw-mv
mx Apply arbitrary shell command to marked files netrw-mx
mX Apply arbitrary shell command to marked files en bloc netrw-mX
mz Compress/decompress marked files netrw-mz
o Enter the file/directory under the cursor in a new netrw-o

browser window. A horizontal split is used.
O Obtain a file specified by cursor netrw-O
p Preview the file netrw-p
P Browse in the previously used window netrw-P
qb List bookmarked directories and history netrw-qb
qf Display information on file netrw-qf
qF Mark files using a quickfix list netrw-qF
qL Mark files using a location-list netrw-qL
r Reverse sorting order netrw-r
R Rename the designated file(s)/directory(ies) netrw-R
s Select sorting style: by name, time, or file size netrw-s
S Specify suffix priority for name-sorting netrw-S
t Enter the file/directory under the cursor in a new tab netrw-t
u Change to recently-visited directory netrw-u
U Change to subsequently-visited directory netrw-U
v Enter the file/directory under the cursor in a new netrw-v

browser window. A vertical split is used.
x View file with an associated program netrw-x
X Execute filename under cursor via system() netrw-X

pi_netrw.txt — 4269

% Open a new file in netrw's current directory netrw-%

netrw-mouse netrw-leftmouse netrw-middlemouse netrw-rightmouse
<leftmouse> (gvim only) selects word under mouse as if a <cr>

had been pressed (ie. edit file, change directory)
<middlemouse> (gvim only) same as P selecting word under mouse;

see netrw-P
<rightmouse> (gvim only) delete file/directory using word under

mouse
<2-leftmouse> (gvim only) when:

* in a netrw-selected file, AND
* g:netrw_retmap == 1 AND
* the user doesn't already have a <2-leftmouse>
mapping defined before netrw is autoloaded,

then a double clicked leftmouse button will return
to the netrw browser window. See g:netrw_retmap .

<s-leftmouse> (gvim only) like mf, will mark files. Dragging
the shifted leftmouse will mark multiple files.
(see netrw-mf)

(to disable mouse buttons while browsing: g:netrw_mousemaps)

netrw-quickcom netrw-quickcoms
QUICK REFERENCE: COMMANDS netrw-explore-cmds netrw-browse-cmds {{{2

:NetrwClean[!].. netrw-clean
:NetrwSettings.. netrw-settings
:Ntree.. netrw-ntree
:Explore[!] [dir] Explore directory of current file...... netrw-explore
:Hexplore[!] [dir] Horizontal Split & Explore............. netrw-explore
:Lexplore[!] [dir] Left Explorer Toggle................... netrw-explore
:Nexplore[!] [dir] Vertical Split & Explore............... netrw-explore
:Pexplore[!] [dir] Vertical Split & Explore............... netrw-explore
:Rexplore Return to Explorer..................... netrw-explore
:Sexplore[!] [dir] Split & Explore directory netrw-explore
:Texplore[!] [dir] Tab & Explore.......................... netrw-explore
:Vexplore[!] [dir] Vertical Split & Explore............... netrw-explore

BANNER DISPLAY netrw-I

One may toggle the displaying of the banner by pressing "I".

Also See: g:netrw_banner

BOOKMARKING A DIRECTORY netrw-mb netrw-bookmark netrw-bookmarks {{{2

One may easily "bookmark" the currently browsed directory by using

mb

.netrwbook
Bookmarks are retained in between sessions of vim in a file called .netrwbook
as a List , which is typically stored in the first directory on the user's
'runtimepath'; entries are kept in sorted order.

If there are marked files and/or directories, mb will add them to the bookmark
list.

netrw-:NetrwMB

pi_netrw.txt — 4270

Additionally, one may use :NetrwMB to bookmark files or directories.

:NetrwMB[!] [files/directories]

No bang: enters files/directories into Netrw's bookmark system

No argument and in netrw buffer:
if there are marked files : bookmark marked files
otherwise : bookmark file/directory under cursor

No argument and not in netrw buffer: bookmarks current open file
Has arguments : glob() s each arg and bookmarks them

With bang: deletes files/directories from Netrw's bookmark system

The :NetrwMB command is available outside of netrw buffers (once netrw has been
invoked in the session).

The file ".netrwbook" holds bookmarks when netrw (and vim) is not active. By
default, its stored on the first directory on the user's 'runtimepath' .

Related Topics:
netrw-gb how to return (go) to a bookmark
netrw-mB how to delete bookmarks
netrw-qb how to list bookmarks
g:netrw_home controls where .netrwbook is kept

BROWSING netrw-enter netrw-cr {{{2

Browsing is simple: move the cursor onto a file or directory of interest.
Hitting the <cr> (the return key) will select the file or directory.
Directories will themselves be listed, and files will be opened using the
protocol given in the original read request.

CAVEAT: There are four forms of listing (see netrw-i). Netrw assumes that
two or more spaces delimit filenames and directory names for the long and
wide listing formats. Thus, if your filename or directory name has two or
more sequential spaces embedded in it, or any trailing spaces, then you'll
need to use the "thin" format to select it.

The g:netrw_browse_split option, which is zero by default, may be used to
cause the opening of files to be done in a new window or tab instead of the
default. When the option is one or two, the splitting will be taken
horizontally or vertically, respectively. When the option is set to three, a
<cr> will cause the file to appear in a new tab.

When using the gui (gvim), one may select a file by pressing the <leftmouse>
button. In addition, if

* g:netrw_retmap == 1 AND (its default value is 0)
* in a netrw-selected file, AND
* the user doesn't already have a <2-leftmouse> mapping defined before

netrw is loaded

then a doubly-clicked leftmouse button will return to the netrw browser
window.

Netrw attempts to speed up browsing, especially for remote browsing where one
may have to enter passwords, by keeping and re-using previously obtained

pi_netrw.txt — 4271

directory listing buffers. The g:netrw_fastbrowse variable is used to
control this behavior; one may have slow browsing (no buffer re-use), medium
speed browsing (re-use directory buffer listings only for remote directories),
and fast browsing (re-use directory buffer listings as often as possible).
The price for such re-use is that when changes are made (such as new files
are introduced into a directory), the listing may become out-of-date. One may
always refresh directory listing buffers by pressing ctrl-L (see
netrw-ctrl-l).

netrw-s-cr
Squeezing the Current Tree-Listing Directory

When the tree listing style is enabled (see netrw-i) and one is using
gvim, then the <s-cr> mapping may be used to squeeze (close) the
directory currently containing the cursor.

Otherwise, one may remap a key combination of one's own choice to get
this effect:

nmap <buffer> <silent> <nowait> YOURKEYCOMBO <Plug>NetrwTreeSqueeze

Put this line in $HOME/ftplugin/netrw/netrw.vim; it needs to be generated
for netrw buffers only.

Related topics:
netrw-ctrl-r netrw-o netrw-p
netrw-P netrw-t netrw-v

Associated setting variables:
g:netrw_browse_split g:netrw_fastbrowse
g:netrw_ftp_list_cmd g:netrw_ftp_sizelist_cmd
g:netrw_ftp_timelist_cmd g:netrw_ssh_browse_reject
g:netrw_ssh_cmd g:netrw_use_noswf

BROWSING WITH A HORIZONTALLY SPLIT WINDOW netrw-o netrw-horiz {{{2

Normally one enters a file or directory using the <cr>. However, the "o" map
allows one to open a new window to hold the new directory listing or file. A
horizontal split is used. (for vertical splitting, see netrw-v)

Normally, the o key splits the window horizontally with the new window and
cursor at the top.

Associated setting variables: g:netrw_alto g:netrw_winsize

Related topics:
netrw-ctrl-r netrw-o netrw-p
netrw-P netrw-t netrw-v

Associated setting variables:
g:netrw_alto control above/below splitting
g:netrw_winsize control initial sizing

BROWSING WITH A NEW TAB netrw-t {{{2

Normally one enters a file or directory using the <cr>. The "t" map
allows one to open a new window holding the new directory listing or file in
a new tab.

If you'd like to have the new listing in a background tab, use gT .

pi_netrw.txt — 4272

Related topics:
netrw-ctrl-r netrw-o netrw-p
netrw-P netrw-t netrw-v

Associated setting variables:
g:netrw_winsize control initial sizing

BROWSING WITH A VERTICALLY SPLIT WINDOW netrw-v {{{2

Normally one enters a file or directory using the <cr>. However, the "v" map
allows one to open a new window to hold the new directory listing or file. A
vertical split is used. (for horizontal splitting, see netrw-o)

Normally, the v key splits the window vertically with the new window and
cursor at the left.

There is only one tree listing buffer; using "v" on a displayed subdirectory
will split the screen, but the same buffer will be shown twice.

Related topics:
netrw-ctrl-r netrw-o netrw-p
netrw-P netrw-t netrw-v

Associated setting variables:
g:netrw_altv control right/left splitting
g:netrw_winsize control initial sizing

BROWSING USING A GVIM SERVER netrw-ctrl-r {{{2

One may keep a browsing gvim separate from the gvim being used to edit.
Use the <c-r> map on a file (not a directory) in the netrw browser, and it
will use a gvim server (see g:netrw_servername). Subsequent use of <cr>
(see netrw-cr) will re-use that server for editing files.

Related topics:
netrw-ctrl-r netrw-o netrw-p
netrw-P netrw-t netrw-v

Associated setting variables:
g:netrw_servername : sets name of server
g:netrw_browse_split : controls how <cr> will open files

CHANGE LISTING STYLE (THIN LONG WIDE TREE) netrw-i {{{2

The "i" map cycles between the thin, long, wide, and tree listing formats.

The thin listing format gives just the files' and directories' names.

The long listing is either based on the "ls" command via ssh for remote
directories or displays the filename, file size (in bytes), and the time and
date of last modification for local directories. With the long listing
format, netrw is not able to recognize filenames which have trailing spaces.
Use the thin listing format for such files.

The wide listing format uses two or more contiguous spaces to delineate
filenames; when using that format, netrw won't be able to recognize or use
filenames which have two or more contiguous spaces embedded in the name or any
trailing spaces. The thin listing format will, however, work with such files.
The wide listing format is the most compact.

The tree listing format has a top directory followed by files and directories

pi_netrw.txt — 4273

preceded by one or more "|"s, which indicate the directory depth. One may
open and close directories by pressing the <cr> key while atop the directory
name.

One may make a preferred listing style your default; see g:netrw_liststyle .
As an example, by putting the following line in your .vimrc,

let g:netrw_liststyle= 3
the tree style will become your default listing style.

One typical way to use the netrw tree display is to:

vim .
(use i until a tree display shows)
navigate to a file
v (edit as desired in vertically split window)
ctrl-w h (to return to the netrw listing)
P (edit newly selected file in the previous window)
ctrl-w h (to return to the netrw listing)
P (edit newly selected file in the previous window)
...etc...

Associated setting variables: g:netrw_liststyle g:netrw_maxfilenamelen
g:netrw_timefmt g:netrw_list_cmd

CHANGE FILE PERMISSION netrw-gp {{{2

"gp" will ask you for a new permission for the file named under the cursor.
Currently, this only works for local files.

Associated setting variables: g:netrw_chgperm

CHANGING TO A BOOKMARKED DIRECTORY netrw-gb {{{2

To change directory back to a bookmarked directory, use

{cnt}gb

Any count may be used to reference any of the bookmarks.
Note that netrw-qb shows both bookmarks and history; to go
to a location stored in the history see netrw-u and netrw-U .

Related Topics:
netrw-mB how to delete bookmarks
netrw-mb how to make a bookmark
netrw-qb how to list bookmarks

CHANGING TO A PREDECESSOR DIRECTORY netrw-u netrw-updir {{{2

Every time you change to a new directory (new for the current session), netrw
will save the directory in a recently-visited directory history list (unless
g:netrw_dirhistmax is zero; by default, it holds ten entries). With the "u"

map, one can change to an earlier directory (predecessor). To do the
opposite, see netrw-U .

The "u" map also accepts counts to go back in the history several slots. For
your convenience, qb (see netrw-qb) lists the history number which may be
used in that count.

pi_netrw.txt — 4274

.netrwhist
See g:netrw_dirhistmax for how to control the quantity of history stack
slots. The file ".netrwhist" holds history when netrw (and vim) is not
active. By default, its stored on the first directory on the user's
'runtimepath' .

Related Topics:
netrw-U changing to a successor directory
g:netrw_home controls where .netrwhist is kept

CHANGING TO A SUCCESSOR DIRECTORY netrw-U netrw-downdir {{{2

With the "U" map, one can change to a later directory (successor).
This map is the opposite of the "u" map. (see netrw-u) Use the
qb map to list both the bookmarks and history. (see netrw-qb)

The "U" map also accepts counts to go forward in the history several slots.

See g:netrw_dirhistmax for how to control the quantity of history stack
slots.

CHANGING TREE TOP netrw-ntree :Ntree netrw-gn {{{2

One may specify a new tree top for tree listings using

:Ntree [dirname]

Without a "dirname", the current line is used (and any leading depth
information is elided).
With a "dirname", the specified directory name is used.

The "gn" map will take the word below the cursor and use that for
changing the top of the tree listing.

NETRW CLEAN netrw-clean :NetrwClean {{{2

With :NetrwClean one may easily remove netrw from one's home directory;
more precisely, from the first directory on your 'runtimepath' .

With :NetrwClean!, netrw will attempt to remove netrw from all directories on
your 'runtimepath' . Of course, you have to have write/delete permissions
correct to do this.

With either form of the command, netrw will first ask for confirmation
that the removal is in fact what you want to do. If netrw doesn't have
permission to remove a file, it will issue an error message.

netrw-gx
CUSTOMIZING BROWSING WITH A SPECIAL HANDLER netrw-x netrw-handler {{{2

(also see netrw_filehandler)

Certain files, such as html, gif, jpeg, (word/office) doc, etc, files, are
best seen with a special handler (ie. a tool provided with your computer's
operating system). Netrw allows one to invoke such special handlers by:

* when Exploring, hit the "x" key
* when editing, hit gx with the cursor atop the special filename

pi_netrw.txt — 4275

(latter not available if the g:netrw_nogx variable exists)

Netrw determines which special handler by the following method:

* if g:netrw_browsex_viewer exists, then it will be used to attempt to
view files. Examples of useful settings (place into your <.vimrc>):

:let g:netrw_browsex_viewer= "kfmclient exec"
or

:let g:netrw_browsex_viewer= "xdg-open"

If g:netrw_browsex_viewer == '-', then netrwFileHandlers#Invoke() will be
used instead (see netrw_filehandler).

If the viewer you wish to use does not support handling of a remote URL
directory, set g:netrw_browsex_support_remote to 0.

* for Windows 32 or 64, the URL and FileProtocolHandler dlls are used.
* for Gnome (with gnome-open): gnome-open is used.
* for KDE (with kfmclient) : kfmclient is used
* for Mac OS X : open is used.
* otherwise the netrwFileHandler plugin is used.

The file's suffix is used by these various approaches to determine an
appropriate application to use to "handle" these files. Such things as
OpenOffice (*.sfx), visualization (*.jpg, *.gif, etc), and PostScript (*.ps,
*.eps) can be handled.

The gx mapping extends to all buffers; apply "gx" while atop a word and netrw
will apply a special handler to it (like "x" works when in a netrw buffer).
One may also use visual mode (see visual-start) to select the text that the
special handler will use. Normally gx uses expand("<cfile>") to pick up the
text under the cursor; one may change what expand() uses via the
g:netrw_gx variable (options include "<cword>", "<cWORD>"). Note that

expand("<cfile>") depends on the 'isfname' setting. Alternatively, one may
select the text to be used by gx by making a visual selection (see
visual-block) and then pressing gx.

Associated setting variables:
g:netrw_gx control how gx picks up the text under the cursor
g:netrw_nogx prevent gx map while editing
g:netrw_suppress_gx_mesg controls gx's suppression of browser messages

netrw_filehandler

When g:netrw_browsex_viewer exists and is "-", then netrw will attempt to
handle the special file with a vim function. The "x" map applies a function
to a file, based on its extension. Of course, the handler function must exist
for it to be called!

Ex. mypgm.html x -> NFH_html("scp://user@host/some/path/mypgm.html")

Users may write their own netrw File Handler functions to
support more suffixes with special handling. See
<autoload/netrwFileHandlers.vim> for examples on how to make
file handler functions. As an example:

" NFH_suffix(filename)
fun! NFH_suffix(filename)
..do something special with filename..
endfun

pi_netrw.txt — 4276

These functions need to be defined in some file in your .vim/plugin
(vimfiles\plugin) directory. Vim's function names may not have punctuation
characters (except for the underscore) in them. To support suffices that
contain such characters, netrw will first convert the suffix using the
following table:

@ -> AT ! -> EXCLAMATION % -> PERCENT
: -> COLON = -> EQUAL ? -> QUESTION
, -> COMMA - -> MINUS ; -> SEMICOLON
$ -> DOLLAR + -> PLUS ~ -> TILDE

So, for example:

file.rcs,v -> NFH_rcsCOMMAv()

If more such translations are necessary, please send me email:
NcampObell@SdrPchip.AorgM-NOSPAM

with a request. (remove the embedded NOSPAM first)

Associated setting variable: g:netrw_browsex_viewer

netrw-curdir
DELETING BOOKMARKS netrw-mB {{{2

To delete a bookmark, use

{cnt}mB

If there are marked files, then mB will remove them from the
bookmark list.

Alternatively, one may use :NetrwMB! (see netrw-:NetrwMB).

:NetrwMB! [files/directories]

Related Topics:
netrw-gb how to return (go) to a bookmark
netrw-mb how to make a bookmark
netrw-qb how to list bookmarks

DELETING FILES OR DIRECTORIES netrw-delete netrw-D netrw-del {{{2

If files have not been marked with netrw-mf : (local marked file list)

Deleting/removing files and directories involves moving the cursor to the
file/directory to be deleted and pressing "D". Directories must be empty
first before they can be successfully removed. If the directory is a
softlink to a directory, then netrw will make two requests to remove the
directory before succeeding. Netrw will ask for confirmation before doing
the removal(s). You may select a range of lines with the "V" command
(visual selection), and then pressing "D".

If files have been marked with netrw-mf : (local marked file list)

Marked files (and empty directories) will be deleted; again, you'll be
asked to confirm the deletion before it actually takes place.

A further approach is to delete files which match a pattern.

pi_netrw.txt — 4277

* use :MF pattern (see netrw-:MF); then press "D".

* use mr (see netrw-mr) which will prompt you for pattern.
This will cause the matching files to be marked. Then,
press "D".

Please note that only empty directories may be deleted with the "D" mapping.
Regular files are deleted with delete() , too.

The g:netrw_rm_cmd , g:netrw_rmf_cmd , and g:netrw_rmdir_cmd variables are
used to control the attempts to remove remote files and directories. The
g:netrw_rm_cmd is used with files, and its default value is:

g:netrw_rm_cmd: ssh HOSTNAME rm

The g:netrw_rmdir_cmd variable is used to support the removal of directories.
Its default value is:

g:netrw_rmdir_cmd : ssh HOSTNAME rmdir

If removing a directory fails with g:netrw_rmdir_cmd, netrw then will attempt
to remove it again using the g:netrw_rmf_cmd variable. Its default value is:

g:netrw_rmf_cmd : ssh HOSTNAME rm -f

Related topics: netrw-d
Associated setting variable: g:netrw_rm_cmd g:netrw_ssh_cmd

netrw-explore netrw-hexplore netrw-nexplore netrw-pexplore
netrw-rexplore netrw-sexplore netrw-texplore netrw-vexplore netrw-lexplore

DIRECTORY EXPLORATION COMMANDS {{{2

:[N]Explore[!] [dir]... Explore directory of current file :Explore
:[N]Hexplore[!] [dir]... Horizontal Split & Explore :Hexplore
:[N]Lexplore[!] [dir]... Left Explorer Toggle :Lexplore
:[N]Sexplore[!] [dir]... Split&Explore current file's directory :Sexplore
:[N]Vexplore[!] [dir]... Vertical Split & Explore :Vexplore
:Texplore [dir]... Tab & Explore :Texplore
:Rexplore ... Return to/from Explorer :Rexplore

Used with :Explore **/pattern : (also see netrw-starstar)
:Nexplore............. go to next matching file :Nexplore
:Pexplore............. go to previous matching file :Pexplore

netrw-:Explore
:Explore will open the local-directory browser on the current file's

directory (or on directory [dir] if specified). The window will be
split only if the file has been modified and 'hidden' is not set,
otherwise the browsing window will take over that window. Normally
the splitting is taken horizontally.
Also see: netrw-:Rexplore

:Explore! is like :Explore, but will use vertical splitting.

netrw-:Hexplore
:Hexplore [dir] does an :Explore with :belowright horizontal splitting.
:Hexplore! [dir] does an :Explore with :aboveleft horizontal splitting.

netrw-:Lexplore

pi_netrw.txt — 4278

:[N]Lexplore [dir] toggles a full height Explorer window on the left hand side
of the current tab. It will open a netrw window on the current
directory if [dir] is omitted; a :Lexplore [dir] will show the
specified directory in the left-hand side browser display no matter
from which window the command is issued.

By default, :Lexplore will change an uninitialized g:netrw_chgwin
to 2; edits will thus preferentially be made in window#2.

The [N] specifies a g:netrw_winsize just for the new :Lexplore
window. That means that

if [N] < 0 : use N columns for the Lexplore window
if [N] = 0 : a normal split is made
if [N] > 0 : use N% of the current window will be used for the

new window

Those who like this method often also like tree style displays;
see g:netrw_liststyle .

:[N]Lexplore! [dir] is similar to :Lexplore, except that the full-height
Explorer window will open on the right hand side and an
uninitialized g:netrw_chgwin will be set to 1 (eg. edits will
preferentially occur in the leftmost window).

Also see: netrw-C g:netrw_browse_split g:netrw_wiw
netrw-p netrw-P g:netrw_chgwin
netrw-c-tab g:netrw_winsize

netrw-:Sexplore
:[N]Sexplore will always split the window before invoking the local-directory

browser. As with Explore, the splitting is normally done
horizontally.

:[N]Sexplore! [dir] is like :Sexplore, but the splitting will be done vertically.

netrw-:Texplore
:Texplore [dir] does a :tabnew before generating the browser window

netrw-:Vexplore
:[N]Vexplore [dir] does an :Explore with :leftabove vertical splitting.
:[N]Vexplore! [dir] does an :Explore with :rightbelow vertical splitting.

The optional parameters are:

[N]: This parameter will override g:netrw_winsize to specify the quantity of
rows and/or columns the new explorer window should have.
Otherwise, the g:netrw_winsize variable, if it has been specified by the
user, is used to control the quantity of rows and/or columns new
explorer windows should have.

[dir]: By default, these explorer commands use the current file's directory.
However, one may explicitly provide a directory (path) to use instead;
ie.

:Explore /some/path

netrw-:Rexplore
:Rexplore This command is a little different from the other Explore commands

as it doesn't necessarily open an Explorer window.

Return to Explorer

pi_netrw.txt — 4279

When one edits a file using netrw which can occur, for example,
when pressing <cr> while the cursor is atop a filename in a netrw
browser window, a :Rexplore issued while editing that file will
return the display to that of the last netrw browser display in
that window.

Return from Explorer
Conversely, when one is editing a directory, issuing a :Rexplore
will return to editing the file that was last edited in that
window.

The <2-leftmouse> map (which is only available under gvim and
cooperative terms) does the same as :Rexplore.

Also see: g:netrw_alto g:netrw_altv g:netrw_winsize

netrw-star netrw-starpat netrw-starstar netrw-starstarpat netrw-grep
EXPLORING WITH STARS AND PATTERNS {{{2

When Explore, Sexplore, Hexplore, or Vexplore are used with one of the
following four patterns Explore generates a list of files which satisfy the
request for the local file system. These exploration patterns will not work
with remote file browsing.

*/filepat files in current directory which satisfy filepat
**/filepat files in current directory or below which satisfy the

file pattern
*//pattern files in the current directory which contain the

pattern (vimgrep is used)
**//pattern files in the current directory or below which contain

the pattern (vimgrep is used)
<
The cursor will be placed on the first file in the list. One may then
continue to go to subsequent files on that list via :Nexplore or to
preceding files on that list with :Pexplore . Explore will update the
directory and place the cursor appropriately.

A plain
:Explore

will clear the explore list.

If your console or gui produces recognizable shift-up or shift-down sequences,
then you'll likely find using shift-downarrow and shift-uparrow convenient.
They're mapped by netrw as follows:

<s-down> == Nexplore, and
<s-up> == Pexplore.

As an example, consider

:Explore */*.c
:Nexplore
:Nexplore
:Pexplore

The status line will show, on the right hand side of the status line, a
message like "Match 3 of 20".

Associated setting variables:

pi_netrw.txt — 4280

g:netrw_keepdir g:netrw_browse_split
g:netrw_fastbrowse g:netrw_ftp_browse_reject
g:netrw_ftp_list_cmd g:netrw_ftp_sizelist_cmd
g:netrw_ftp_timelist_cmd g:netrw_list_cmd
g:netrw_liststyle

DISPLAYING INFORMATION ABOUT FILE netrw-qf {{{2

With the cursor atop a filename, pressing "qf" will reveal the file's size
and last modification timestamp. Currently this capability is only available
for local files.

EDIT FILE OR DIRECTORY HIDING LIST netrw-ctrl-h netrw-edithide {{{2

The "<ctrl-h>" map brings up a requestor allowing the user to change the
file/directory hiding list contained in g:netrw_list_hide . The hiding list
consists of one or more patterns delimited by commas. Files and/or
directories satisfying these patterns will either be hidden (ie. not shown) or
be the only ones displayed (see netrw-a).

The "gh" mapping (see netrw-gh) quickly alternates between the usual
hiding list and the hiding of files or directories that begin with ".".

As an example,
let g:netrw_list_hide= '\(^\|\s\s\)\zs\.\S\+'

Effectively, this makes the effect of a netrw-gh command the initial setting.
What it means:

\(^\|\s\s\) : if the line begins with the following, -or-
two consecutive spaces are encountered

\zs : start the hiding match now
\. : if it now begins with a dot
\S\+ : and is followed by one or more non-whitespace

characters

Associated setting variables: g:netrw_hide g:netrw_list_hide
Associated topics: netrw-a netrw-gh netrw-mh

netrw-sort-sequence
EDITING THE SORTING SEQUENCE netrw-S netrw-sortsequence {{{2

When "Sorted by" is name, one may specify priority via the sorting sequence
(g:netrw_sort_sequence). The sorting sequence typically prioritizes the
name-listing by suffix, although any pattern will do. Patterns are delimited
by commas. The default sorting sequence is (all one line):

For Unix:
'[\/]$,\<core\%(\.\d\+\)\=,\.[a-np-z]$,\.h$,\.c$,\.cpp$,*,\.o$,\.obj$,
\.info$,\.swp$,\.bak$,\~$'

Otherwise:
'[\/]$,\.[a-np-z]$,\.h$,\.c$,\.cpp$,*,\.o$,\.obj$,\.info$,
\.swp$,\.bak$,\~$'

The lone * is where all filenames not covered by one of the other patterns
will end up. One may change the sorting sequence by modifying the
g:netrw_sort_sequence variable (either manually or in your <.vimrc>) or by
using the "S" map.

pi_netrw.txt — 4281

Related topics: netrw-s netrw-S
Associated setting variables: g:netrw_sort_sequence g:netrw_sort_options

EXECUTING FILE UNDER CURSOR VIA SYSTEM() netrw-X {{{2

Pressing X while the cursor is atop an executable file will yield a prompt
using the filename asking for any arguments. Upon pressing a [return], netrw
will then call system() with that command and arguments. The result will be
displayed by :echomsg , and so :messages will repeat display of the result.
Ansi escape sequences will be stripped out.

See cmdline-window for directions for more on how to edit the arguments.

FORCING TREATMENT AS A FILE OR DIRECTORY netrw-gd netrw-gf {{{2

Remote symbolic links (ie. those listed via ssh or ftp) are problematic
in that it is difficult to tell whether they link to a file or to a
directory.

To force treatment as a file: use
gf

To force treatment as a directory: use
gd

GOING UP netrw-- {{{2

To go up a directory, press "-" or press the <cr> when atop the ../ directory
entry in the listing.

Netrw will use the command in g:netrw_list_cmd to perform the directory
listing operation after changing HOSTNAME to the host specified by the
user-prpvided url. By default netrw provides the command as:

ssh HOSTNAME ls -FLa

where the HOSTNAME becomes the [user@]hostname as requested by the attempt to
read. Naturally, the user may override this command with whatever is
preferred. The NetList function which implements remote browsing
expects that directories will be flagged by a trailing slash.

HIDING FILES OR DIRECTORIES netrw-a netrw-hiding {{{2

Netrw's browsing facility allows one to use the hiding list in one of three
ways: ignore it, hide files which match, and show only those files which
match.

If no files have been marked via netrw-mf :

The "a" map allows the user to cycle through the three hiding modes.

The g:netrw_list_hide variable holds a comma delimited list of patterns
based on regular expressions (ex. ^.*\.obj$,^\.) which specify the hiding list.
(also see netrw-ctrl-h) To set the hiding list, use the <c-h> map. As an
example, to hide files which begin with a ".", one may use the <c-h> map to

pi_netrw.txt — 4282

set the hiding list to '^\..*' (or one may put let g:netrw_list_hide= '^\..*'
in one's <.vimrc>). One may then use the "a" key to show all files, hide
matching files, or to show only the matching files.

Example: \.[ch]$
This hiding list command will hide/show all *.c and *.h files.

Example: \.c$,\.h$
This hiding list command will also hide/show all *.c and *.h
files.

Don't forget to use the "a" map to select the mode (normal/hiding/show) you
want!

If files have been marked using netrw-mf , then this command will:

if showing all files or non-hidden files:
modify the g:netrw_list_hide list by appending the marked files to it
and showing only non-hidden files.

else if showing hidden files only:
modify the g:netrw_list_hide list by removing the marked files from it
and showing only non-hidden files.
endif

netrw-gh netrw-hide
As a quick shortcut, one may press

gh
to toggle between hiding files which begin with a period (dot) and not hiding
them.

Associated setting variables: g:netrw_list_hide g:netrw_hide
Associated topics: netrw-a netrw-ctrl-h netrw-mh

netrw-gitignore
Netrw provides a helper function 'netrw_gitignore#Hide()' that, when used with
g:netrw_list_hide automatically hides all git-ignored files.

'netrw_gitignore#Hide' searches for patterns in the following files:

'./.gitignore'
'./.git/info/exclude'
global gitignore file: `git config --global core.excludesfile`
system gitignore file: `git config --system core.excludesfile`

Files that do not exist, are ignored.
Git-ignore patterns are taken from existing files, and converted to patterns for
hiding files. For example, if you had '*.log' in your '.gitignore' file, it
would be converted to '.*\.log'.

To use this function, simply assign its output to g:netrw_list_hide option.

Example: let g:netrw_list_hide= netrw_gitignore#Hide()
Git-ignored files are hidden in Netrw.

Example: let g:netrw_list_hide= netrw_gitignore#Hide('my_gitignore_file')
Function can take additional files with git-ignore patterns.

Example: let g:netrw_list_hide= netrw_gitignore#Hide() .. '.*\.swp$'
Combining 'netrw_gitignore#Hide' with custom patterns.

pi_netrw.txt — 4283

IMPROVING BROWSING netrw-listhack netrw-ssh-hack {{{2

Especially with the remote directory browser, constantly entering the password
is tedious.

For Linux/Unix systems, the book "Linux Server Hacks - 100 industrial strength
tips & tools" by Rob Flickenger (O'Reilly, ISBN 0-596-00461-3) gives a tip
for setting up no-password ssh and scp and discusses associated security
issues. It used to be available at http://hacks.oreilly.com/pub/h/66 ,
but apparently that address is now being redirected to some "hackzine".
I'll attempt a summary based on that article and on a communication from
Ben Schmidt:

1. Generate a public/private key pair on the local machine
(ssh client):

ssh-keygen -t rsa
(saving the file in ~/.ssh/id_rsa as prompted)

2. Just hit the <CR> when asked for passphrase (twice) for no
passphrase. If you do use a passphrase, you will also need to use
ssh-agent so you only have to type the passphrase once per session.
If you don't use a passphrase, simply logging onto your local
computer or getting access to the keyfile in any way will suffice
to access any ssh servers which have that key authorized for login.

3. This creates two files:
~/.ssh/id_rsa
~/.ssh/id_rsa.pub

4. On the target machine (ssh server):
cd
mkdir -p .ssh
chmod 0700 .ssh

5. On your local machine (ssh client): (one line)
ssh {serverhostname}
cat '>>' '~/.ssh/authorized_keys2' < ~/.ssh/id_rsa.pub

or, for OpenSSH, (one line)
ssh {serverhostname}
cat '>>' '~/.ssh/authorized_keys' < ~/.ssh/id_rsa.pub

You can test it out with
ssh {serverhostname}

and you should be log onto the server machine without further need to type
anything.

If you decided to use a passphrase, do:
ssh-agent $SHELL
ssh-add
ssh {serverhostname}

You will be prompted for your key passphrase when you use ssh-add, but not
subsequently when you use ssh. For use with vim, you can use

ssh-agent vim
and, when next within vim, use

:!ssh-add
Alternatively, you can apply ssh-agent to the terminal you're planning on
running vim in:

pi_netrw.txt — 4284

http://hacks.oreilly.com/pub/h/66

ssh-agent xterm &
and do ssh-add whenever you need.

For Windows, folks on the vim mailing list have mentioned that Pageant helps
with avoiding the constant need to enter the password.

Kingston Fung wrote about another way to avoid constantly needing to enter
passwords:

In order to avoid the need to type in the password for scp each time, you
provide a hack in the docs to set up a non password ssh account. I found a
better way to do that: I can use a regular ssh account which uses a
password to access the material without the need to key-in the password
each time. It's good for security and convenience. I tried ssh public key
authorization + ssh-agent, implementing this, and it works! Here are two
links with instructions:

http://www.ibm.com/developerworks/library/l-keyc2/
http://sial.org/howto/openssh/publickey-auth/

Ssh hints:

Thomer Gil has provided a hint on how to speed up netrw+ssh:
http://thomer.com/howtos/netrw_ssh.html

Alex Young has several hints on speeding ssh up:
http://usevim.com/2012/03/16/editing-remote-files/

LISTING BOOKMARKS AND HISTORY netrw-qb netrw-listbookmark {{{2

Pressing "qb" (query bookmarks) will list both the bookmarked directories and
directory traversal history.

Related Topics:
netrw-gb how to return (go) to a bookmark
netrw-mb how to make a bookmark
netrw-mB how to delete bookmarks
netrw-u change to a predecessor directory via the history stack
netrw-U change to a successor directory via the history stack

MAKING A NEW DIRECTORY netrw-d {{{2

With the "d" map one may make a new directory either remotely (which depends
on the global variable g:netrw_mkdir_cmd) or locally (which depends on the
global variable g:netrw_localmkdir). Netrw will issue a request for the new
directory's name. A bare <CR> at that point will abort the making of the
directory. Attempts to make a local directory that already exists (as either
a file or a directory) will be detected, reported on, and ignored.

Related topics: netrw-D
Associated setting variables: g:netrw_localmkdir g:netrw_mkdir_cmd

g:netrw_remote_mkdir netrw-%

MAKING THE BROWSING DIRECTORY THE CURRENT DIRECTORY netrw-cd {{{2

By default, g:netrw_keepdir is 1. This setting means that the current
directory will not track the browsing directory. (done for backwards

pi_netrw.txt — 4285

http://www.ibm.com/developerworks/library/l-keyc2/
http://sial.org/howto/openssh/publickey-auth/
http://thomer.com/howtos/netrw_ssh.html
http://usevim.com/2012/03/16/editing-remote-files/

compatibility with v6's file explorer).

Setting g:netrw_keepdir to 0 tells netrw to make vim's current directory
track netrw's browsing directory.

However, given the default setting for g:netrw_keepdir of 1 where netrw
maintains its own separate notion of the current directory, in order to make
the two directories the same, use the "cd" map (type cd). That map will
set Vim's notion of the current directory to netrw's current browsing
directory.

netrw-cd : This map's name was changed from "c" to cd (see netrw-cd).
This change was done to allow for netrw-cb and netrw-cB maps.

Associated setting variable: g:netrw_keepdir

MARKING FILES netrw-:MF netrw-mf {{{2
(also see netrw-mr)

Netrw provides several ways to mark files:

* One may mark files with the cursor atop a filename and
then pressing "mf".

* With gvim, in addition one may mark files with
<s-leftmouse>. (see netrw-mouse)

* One may use the :MF command, which takes a list of
files (for local directories, the list may include
wildcards -- see glob())

:MF *.c

(Note that :MF uses <f-args> to break the line
at spaces)

* Mark files using the argument-list (netrw-mA)

* Mark files based upon a location-list (netrw-qL)

* Mark files based upon the quickfix list (netrw-qF)
(quickfix-error-lists)

The following netrw maps make use of marked files:

netrw-a Hide marked files/directories
netrw-D Delete marked files/directories
netrw-ma Move marked files' names to arglist
netrw-mA Move arglist filenames to marked file list
netrw-mb Append marked files to bookmarks
netrw-mB Delete marked files from bookmarks
netrw-mc Copy marked files to target
netrw-md Apply vimdiff to marked files
netrw-me Edit marked files
netrw-mF Unmark marked files
netrw-mg Apply vimgrep to marked files
netrw-mm Move marked files to target
netrw-mp Print marked files
netrw-ms Netrw will source marked files
netrw-mt Set target for netrw-mm and netrw-mc

pi_netrw.txt — 4286

netrw-mT Generate tags using marked files
netrw-mv Apply vim command to marked files
netrw-mx Apply shell command to marked files
netrw-mX Apply shell command to marked files, en bloc
netrw-mz Compress/Decompress marked files
netrw-O Obtain marked files
netrw-R Rename marked files

One may unmark files one at a time the same way one marks them; ie. place
the cursor atop a marked file and press "mf". This process also works
with <s-leftmouse> using gvim. One may unmark all files by pressing
"mu" (see netrw-mu).

Marked files are highlighted using the "netrwMarkFile" highlighting group,
which by default is linked to "Identifier" (see Identifier under
group-name). You may change the highlighting group by putting something

like

highlight clear netrwMarkFile
hi link netrwMarkFile ..whatever..

into $HOME/.vim/after/syntax/netrw.vim .

If the mouse is enabled and works with your vim, you may use <s-leftmouse> to
mark one or more files. You may mark multiple files by dragging the shifted
leftmouse. (see netrw-mouse)

markfilelist global_markfilelist local_markfilelist
All marked files are entered onto the global marked file list; there is only
one such list. In addition, every netrw buffer also has its own buffer-local
marked file list; since netrw buffers are associated with specific
directories, this means that each directory has its own local marked file
list. The various commands which operate on marked files use one or the other
of the marked file lists.

Known Problem: if one is using tree mode (g:netrw_liststyle) and several
directories have files with the same name, then marking such a file will
result in all such files being highlighted as if they were all marked. The
markfilelist , however, will only have the selected file in it. This problem

is unlikely to be fixed.

UNMARKING FILES netrw-mF {{{2
(also see netrw-mf , netrw-mu)

The "mF" command will unmark all files in the current buffer. One may also use
mf (netrw-mf) on a specific, already marked, file to unmark just that file.

MARKING FILES BY LOCATION LIST netrw-qL {{{2
(also see netrw-mf)

One may convert location-list s into a marked file list using "qL".
You may then proceed with commands such as me (netrw-me) to edit them.

MARKING FILES BY QUICKFIX LIST netrw-qF {{{2
(also see netrw-mf)

One may convert quickfix-error-lists into a marked file list using "qF".
You may then proceed with commands such as me (netrw-me) to edit them.

pi_netrw.txt — 4287

Quickfix error lists are generated, for example, by calls to :vimgrep .

MARKING FILES BY REGULAR EXPRESSION netrw-mr {{{2
(also see netrw-mf)

One may also mark files by pressing "mr"; netrw will then issue a prompt,
"Enter regexp: ". You may then enter a shell-style regular expression such
as *.c$ (see glob()). For remote systems, glob() doesn't work -- so netrw
converts "*" into ".*" (see regexp) and marks files based on that. In the
future I may make it possible to use regexp s instead of glob()-style
expressions (yet-another-option).

See cmdline-window for directions on more on how to edit the regular
expression.

MARKED FILES, ARBITRARY VIM COMMAND netrw-mv {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the local marked-file list)

The "mv" map causes netrw to execute an arbitrary vim command on each file on
the local marked file list, individually:

* 1split
* sil! keepalt e file
* run vim command
* sil! keepalt wq!

A prompt, "Enter vim command: ", will be issued to elicit the vim command you
wish used. See cmdline-window for directions for more on how to edit the
command.

MARKED FILES, ARBITRARY SHELL COMMAND netrw-mx {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the local marked-file list)

Upon activation of the "mx" map, netrw will query the user for some (external)
command to be applied to all marked files. All "%"s in the command will be
substituted with the name of each marked file in turn. If no "%"s are in the
command, then the command will be followed by a space and a marked filename.

Example:
(mark files)
mx
Enter command: cat

The result is a series of shell commands:
cat 'file1'
cat 'file2'
...

MARKED FILES, ARBITRARY SHELL COMMAND, EN BLOC netrw-mX {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked-file list)

Upon activation of the 'mX' map, netrw will query the user for some (external)
command to be applied to all marked files on the global marked file list. The

pi_netrw.txt — 4288

"en bloc" means that one command will be executed on all the files at once:

command files

This approach is useful, for example, to select files and make a tarball:

(mark files)
mX
Enter command: tar cf mynewtarball.tar

The command that will be run with this example:

tar cf mynewtarball.tar 'file1' 'file2' ...

MARKED FILES: ARGUMENT LIST netrw-ma netrw-mA
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked-file list)

Using ma, one moves filenames from the marked file list to the argument list.
Using mA, one moves filenames from the argument list to the marked file list.

See Also: netrw-cb netrw-cB netrw-qF argument-list :args

MARKED FILES: BUFFER LIST netrw-cb netrw-cB
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked-file list)

Using cb, one moves filenames from the marked file list to the buffer list.
Using cB, one copies filenames from the buffer list to the marked file list.

See Also: netrw-ma netrw-mA netrw-qF buffer-list :buffers

MARKED FILES: COMPRESSION AND DECOMPRESSION netrw-mz {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the local marked file list)

If any marked files are compressed, then "mz" will decompress them.
If any marked files are decompressed, then "mz" will compress them
using the command specified by g:netrw_compress ; by default,
that's "gzip".

For decompression, netrw uses a Dictionary of suffices and their
associated decompressing utilities; see g:netrw_decompress .

Remember that one can mark multiple files by regular expression
(see netrw-mr); this is particularly useful to facilitate compressing and
decompressing a large number of files.

Associated setting variables: g:netrw_compress g:netrw_decompress

MARKED FILES: COPYING netrw-mc {{{2
(See netrw-mf and netrw-mr for how to mark files)

(Uses the global marked file list)

Select a target directory with mt (netrw-mt). Then change directory,
select file(s) (see netrw-mf), and press "mc". The copy is done
from the current window (where one does the mf) to the target.

pi_netrw.txt — 4289

If one does not have a target directory set with netrw-mt , then netrw
will query you for a directory to copy to.

One may also copy directories and their contents (local only) to a target
directory.

Associated setting variables:
g:netrw_localcopycmd g:netrw_localcopycmdopt
g:netrw_localcopydircmd g:netrw_localcopydircmdopt
g:netrw_ssh_cmd

MARKED FILES: DIFF netrw-md {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked file list)

Use vimdiff to visualize difference between selected files (two or
three may be selected for this). Uses the global marked file list.

MARKED FILES: EDITING netrw-me {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked file list)

The "me" command will place the marked files on the arglist and commence
editing them. One may return the to explorer window with :Rexplore .
(use :n and :p to edit next and previous files in the arglist)

MARKED FILES: GREP netrw-mg {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked file list)

The "mg" command will apply :vimgrep to the marked files.
The command will ask for the requested pattern; one may then enter:

/pattern/[g][j]
! /pattern/[g][j]
pattern

With /pattern/, editing will start with the first item on the quickfix list
that vimgrep sets up (see :copen , :cnext , :cprevious , :cclose). The :vimgrep
command is in use, so without 'g' each line is added to quickfix list only
once; with 'g' every match is included.

With /pattern/j, "mg" will winnow the current marked file list to just those
marked files also possessing the specified pattern. Thus, one may use

mr ...file-pattern...
mg /pattern/j

to have a marked file list satisfying the file-pattern but also restricted to
files containing some desired pattern.

MARKED FILES: HIDING AND UNHIDING BY SUFFIX netrw-mh {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the local marked file list)

The "mh" command extracts the suffices of the marked files and toggles their
presence on the hiding list. Please note that marking the same suffix
this way multiple times will result in the suffix's presence being toggled

pi_netrw.txt — 4290

for each file (so an even quantity of marked files having the same suffix
is the same as not having bothered to select them at all).

Related topics: netrw-a g:netrw_list_hide

MARKED FILES: MOVING netrw-mm {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked file list)

WARNING: moving files is more dangerous than copying them.
A file being moved is first copied and then deleted; if the
copy operation fails and the delete succeeds, you will lose
the file. Either try things out with unimportant files
first or do the copy and then delete yourself using mc and D.
Use at your own risk!

Select a target directory with mt (netrw-mt). Then change directory,
select file(s) (see netrw-mf), and press "mm". The move is done
from the current window (where one does the mf) to the target.

Associated setting variable: g:netrw_localmovecmd g:netrw_ssh_cmd

MARKED FILES: PRINTING netrw-mp {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the local marked file list)

When "mp" is used, netrw will apply the :hardcopy command to marked files.
What netrw does is open each file in a one-line window, execute hardcopy, then
close the one-line window.

MARKED FILES: SOURCING netrw-ms {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the local marked file list)

With "ms", netrw will source the marked files (using vim's :source command)

MARKED FILES: SETTING THE TARGET DIRECTORY netrw-mt {{{2
(See netrw-mf and netrw-mr for how to mark files)

Set the marked file copy/move-to target (see netrw-mc and netrw-mm):

* If the cursor is atop a file name, then the netrw window's currently
displayed directory is used for the copy/move-to target.

* Also, if the cursor is in the banner, then the netrw window's currently
displayed directory is used for the copy/move-to target.
Unless the target already is the current directory. In which case,
typing "mf" clears the target.

* However, if the cursor is atop a directory name, then that directory is
used for the copy/move-to target

* One may use the :MT [directory] command to set the target netrw-:MT
This command uses <q-args> , so spaces in the directory name are
permitted without escaping.

* With mouse-enabled vim or with gvim, one may select a target by using
<c-leftmouse>

pi_netrw.txt — 4291

There is only one copy/move-to target at a time in a vim session; ie. the
target is a script variable (see s:var) and is shared between all netrw
windows (in an instance of vim).

When using menus and gvim, netrw provides a "Targets" entry which allows one
to pick a target from the list of bookmarks and history.

Related topics:
Marking Files...................................... netrw-mf
Marking Files by Regular Expression................ netrw-mr
Marked Files: Target Directory Using Bookmarks..... netrw-Tb
Marked Files: Target Directory Using History....... netrw-Th

MARKED FILES: TAGGING netrw-mT {{{2
(See netrw-mf and netrw-mr for how to mark files)

(uses the global marked file list)

The "mT" mapping will apply the command in g:netrw_ctags (by default, it is
"ctags") to marked files. For remote browsing, in order to create a tags file
netrw will use ssh (see g:netrw_ssh_cmd), and so ssh must be available for
this to work on remote systems. For your local system, see ctags on how to
get a version. I myself use hdrtags, currently available at
http://www.drchip.org/astronaut/src/index.html , and have

let g:netrw_ctags= "hdrtag"

in my <.vimrc>.

When a remote set of files are tagged, the resulting tags file is "obtained";
ie. a copy is transferred to the local system's directory. The now local tags
file is then modified so that one may use it through the network. The
modification made concerns the names of the files in the tags; each filename is
preceded by the netrw-compatible URL used to obtain it. When one subsequently
uses one of the go to tag actions (tags), the URL will be used by netrw to
edit the desired file and go to the tag.

Associated setting variables: g:netrw_ctags g:netrw_ssh_cmd

MARKED FILES: TARGET DIRECTORY USING BOOKMARKS netrw-Tb {{{2

Sets the marked file copy/move-to target.

The netrw-qb map will give you a list of bookmarks (and history).
One may choose one of the bookmarks to become your marked file
target by using [count]Tb (default count: 1).

Related topics:
Copying files to target............................ netrw-mc
Listing Bookmarks and History...................... netrw-qb
Marked Files: Setting The Target Directory......... netrw-mt
Marked Files: Target Directory Using History....... netrw-Th
Marking Files...................................... netrw-mf
Marking Files by Regular Expression................ netrw-mr
Moving files to target............................. netrw-mm

MARKED FILES: TARGET DIRECTORY USING HISTORY netrw-Th {{{2

pi_netrw.txt — 4292

http://www.drchip.org/astronaut/src/index.html

Sets the marked file copy/move-to target.

The netrw-qb map will give you a list of history (and bookmarks).
One may choose one of the history entries to become your marked file
target by using [count]Th (default count: 0; ie. the current directory).

Related topics:
Copying files to target............................ netrw-mc
Listing Bookmarks and History...................... netrw-qb
Marked Files: Setting The Target Directory......... netrw-mt
Marked Files: Target Directory Using Bookmarks..... netrw-Tb
Marking Files...................................... netrw-mf
Marking Files by Regular Expression................ netrw-mr
Moving files to target............................. netrw-mm

MARKED FILES: UNMARKING netrw-mu {{{2
(See netrw-mf , netrw-mF)

The "mu" mapping will unmark all currently marked files. This command differs
from "mF" as the latter only unmarks files in the current directory whereas
"mu" will unmark global and all buffer-local marked files.
(see netrw-mF)

netrw-browser-settings
NETRW BROWSER VARIABLES netrw-browser-options netrw-browser-var {{{2

(if you're interested in the netrw file transfer settings, see netrw-options
and netrw-protocol)

The <netrw.vim> browser provides settings in the form of variables which
you may modify; by placing these settings in your <.vimrc>, you may customize
your browsing preferences. (see also: netrw-settings)

--- -----------
Var Explanation
--- -----------
g:netrw_altfile some like CTRL-^ to return to the last

edited file. Choose that by setting this
parameter to 1.
Others like CTRL-^ to return to the
netrw browsing buffer. Choose that by setting
this parameter to 0.
default: =0

g:netrw_alto change from above splitting to below splitting
by setting this variable (see netrw-o)
default: =&sb (see 'sb')

g:netrw_altv change from left splitting to right splitting
by setting this variable (see netrw-v)
default: =&spr (see 'spr')

g:netrw_banner enable/suppress the banner
=0: suppress the banner
=1: banner is enabled (default)

g:netrw_bannerbackslash if this variable exists and is not zero, the
banner will be displayed with backslashes

pi_netrw.txt — 4293

rather than forward slashes.

g:netrw_browse_split when browsing, <cr> will open the file by:
=0: re-using the same window (default)
=1: horizontally splitting the window first
=2: vertically splitting the window first
=3: open file in new tab
=4: act like "P" (ie. open previous window)

Note that g:netrw_preview may be used
to get vertical splitting instead of
horizontal splitting.

=[servername,tab-number,window-number]
Given a List such as this, a remote server
named by the "servername" will be used for
editing. It will also use the specified tab
and window numbers to perform editing
(see clientserver , netrw-ctrl-r)

This option does not affect the production of
:Lexplore windows.

Related topics:
g:netrw_alto g:netrw_altv
netrw-C netrw-cr
netrw-ctrl-r

g:netrw_browsex_viewer specify user's preference for a viewer:
"kfmclient exec"
"gnome-open"

If
"-"

is used, then netrwFileHandler() will look for
a script/function to handle the given
extension. (see netrw_filehandler).

g:netrw_browsex_support_remote
specify if the specified viewer supports a
remote URL. (see netrw-handler).

g:netrw_chgperm Unix/Linux: "chmod PERM FILENAME"
Windows: "cacls FILENAME /e /p PERM"
Used to change access permission for a file.

g:netrw_clipboard =1
By default, netrw will attempt to insure that
the clipboard's values will remain unchanged.
However, some users report that they have
speed problems with this; consequently, this
option, when set to zero, lets such users
prevent netrw from saving and restoring the
clipboard (the latter is done only as needed).
That means that if the clipboard is changed
(inadvertently) by normal netrw operation that
it will not be restored to its prior state.

g:netrw_compress ="gzip"
Will compress marked files with this
command

g:Netrw_corehandler Allows one to specify something additional
to do when handling <core> files via netrw's

pi_netrw.txt — 4294

browser's "x" command (see netrw-x). If
present, g:Netrw_corehandler specifies
either one or more function references
(see Funcref). (the capital g:Netrw...
is required its holding a function reference)

g:netrw_ctags ="ctags"
The default external program used to create
tags

g:netrw_cursor = 2 (default)
This option controls the use of the
'cursorline' (cul) and 'cursorcolumn'

(cuc) settings by netrw:

Value Thin-Long-Tree Wide
=0 u-cul u-cuc u-cul u-cuc
=1 u-cul u-cuc cul u-cuc
=2 cul u-cuc cul u-cuc
=3 cul u-cuc cul cuc
=4 cul cuc cul cuc
=5 U-cul U-cuc U-cul U-cuc
=6 U-cul U-cuc cul U-cuc
=7 cul U-cuc cul U-cuc
=8 cul U-cuc cul cuc

Where
u-cul : user's 'cursorline' initial setting used
u-cuc : user's 'cursorcolumn' initial setting used
U-cul : user's 'cursorline' current setting used
U-cuc : user's 'cursorcolumn' current setting used
cul : 'cursorline' will be locally set
cuc : 'cursorcolumn' will be locally set

The "initial setting" means the values of
the 'cuc' and 'cul' settings in effect when
netrw last saw g:netrw_cursor >= 5 or when
netrw was initially run.

g:netrw_decompress = { ".gz" : "gunzip" ,
".bz2" : "bunzip2" ,
".zip" : "unzip" ,
".tar" : "tar -xf"}

A dictionary mapping suffices to
decompression programs.

g:netrw_dirhistmax =10: controls maximum quantity of past
history. May be zero to suppress
history.
(related: netrw-qb netrw-u netrw-U)

g:netrw_dynamic_maxfilenamelen =32: enables dynamic determination of
g:netrw_maxfilenamelen , which affects

local file long listing.

g:netrw_errorlvl =0: error levels greater than or equal to
this are permitted to be displayed
0: notes
1: warnings

pi_netrw.txt — 4295

2: errors

g:netrw_fastbrowse =0: slow speed directory browsing;
never re-uses directory listings;
always obtains directory listings.

=1: medium speed directory browsing;
re-use directory listings only
when remote directory browsing.
(default value)

=2: fast directory browsing;
only obtains directory listings when the
directory hasn't been seen before
(or netrw-ctrl-l is used).

Fast browsing retains old directory listing
buffers so that they don't need to be
re-acquired. This feature is especially
important for remote browsing. However, if
a file is introduced or deleted into or from
such directories, the old directory buffer
becomes out-of-date. One may always refresh
such a directory listing with netrw-ctrl-l .
This option gives the user the choice of
trading off accuracy (ie. up-to-date listing)
versus speed.

g:netrw_ffkeep (default: doesn't exist)
If this variable exists and is zero, then
netrw will not do a save and restore for
'fileformat' .

g:netrw_fname_escape =' ?&;%'
Used on filenames before remote reading/writing

g:netrw_ftp_browse_reject ftp can produce a number of errors and warnings
that can show up as "directories" and "files"
in the listing. This pattern is used to
remove such embedded messages. By default its
value is:
'^total\s\+\d\+$\|
^Trying\s\+\d\+.*$\|
^KERBEROS_V\d rejected\|
^Security extensions not\|
No such file\|
: connect to address [0-9a-fA-F:]*
: No route to host$'

g:netrw_ftp_list_cmd options for passing along to ftp for directory
listing. Defaults:
unix or g:netrw_cygwin set: : "ls -lF"
otherwise "dir"

g:netrw_ftp_sizelist_cmd options for passing along to ftp for directory
listing, sorted by size of file.
Defaults:
unix or g:netrw_cygwin set: : "ls -slF"
otherwise "dir"

g:netrw_ftp_timelist_cmd options for passing along to ftp for directory

pi_netrw.txt — 4296

listing, sorted by time of last modification.
Defaults:
unix or g:netrw_cygwin set: : "ls -tlF"
otherwise "dir"

g:netrw_glob_escape ='[]*?`{~$' (unix)
='[]*?`{$' (windows
These characters in directory names are
escaped before applying glob()

g:netrw_gx ="<cfile>"
This option controls how gx (netrw-gx) picks
up the text under the cursor. See expand()
for possibilities.

g:netrw_hide Controlled by the "a" map (see netrw-a)
=0 : show all
=1 : show not-hidden files
=2 : show hidden files only
default: =1

g:netrw_home The home directory for where bookmarks and
history are saved (as .netrwbook and
.netrwhist).
Netrw uses expand() on the string.
default: the first directory on the

'runtimepath'

g:netrw_keepdir =1 (default) keep current directory immune from
the browsing directory.

=0 keep the current directory the same as the
browsing directory.

The current browsing directory is contained in
b:netrw_curdir (also see netrw-cd)

g:netrw_keepj ="keepj" (default) netrw attempts to keep the
:jumps table unaffected.

="" netrw will not use :keepjumps with
exceptions only for the
saving/restoration of position.

g:netrw_list_cmd command for listing remote directories
default: (if ssh is executable)

"ssh HOSTNAME ls -FLa"

g:netrw_list_cmd_options If this variable exists, then its contents are
appended to the g:netrw_list_cmd. For
example, use "2>/dev/null" to get rid of banner
messages on unix systems.

g:netrw_liststyle Set the default listing style:
= 0: thin listing (one file per line)
= 1: long listing (one file per line with time

stamp information and file size)
= 2: wide listing (multiple files in columns)
= 3: tree style listing

g:netrw_list_hide comma-separated pattern list for hiding files
Patterns are regular expressions (see regexp)

pi_netrw.txt — 4297

There's some special support for git-ignore
files: you may add the output from the helper
function 'netrw_gitignore#Hide() automatically
hiding all gitignored files.
For more details see netrw-gitignore .

Examples:
let g:netrw_list_hide= '.*\.swp$'
let g:netrw_list_hide= netrw_gitignore#Hide() .. '.*\.swp$'

default: ""

g:netrw_localcopycmd ="cp" Linux/Unix/MacOS/Cygwin
=expand("$COMSPEC") Windows
Copies marked files (netrw-mf) to target
directory (netrw-mt , netrw-mc)

g:netrw_localcopycmdopt ='' Linux/Unix/MacOS/Cygwin
=' \c copy' Windows
Options for the g:netrw_localcopycmd

g:netrw_localcopydircmd ="cp" Linux/Unix/MacOS/Cygwin
=expand("$COMSPEC") Windows
Copies directories to target directory.
(netrw-mc , netrw-mt)

g:netrw_localcopydircmdopt =" -R" Linux/Unix/MacOS/Cygwin
=" /c xcopy /e /c /h/ /i /k" Windows
Options for g:netrw_localcopydircmd

g:netrw_localmkdir ="mkdir" Linux/Unix/MacOS/Cygwin
=expand("$COMSPEC") Windows
command for making a local directory

g:netrw_localmkdiropt ="" Linux/Unix/MacOS/Cygwin
=" /c mkdir" Windows
Options for g:netrw_localmkdir

g:netrw_localmovecmd ="mv" Linux/Unix/MacOS/Cygwin
=expand("$COMSPEC") Windows
Moves marked files (netrw-mf) to target
directory (netrw-mt , netrw-mm)

g:netrw_localmovecmdopt ="" Linux/Unix/MacOS/Cygwin
=" /c move" Windows
Options for g:netrw_localmovecmd

g:netrw_maxfilenamelen =32 by default, selected so as to make long
listings fit on 80 column displays.

If your screen is wider, and you have file
or directory names longer than 32 bytes,
you may set this option to keep listings
columnar.

g:netrw_mkdir_cmd command for making a remote directory
via ssh (also see g:netrw_remote_mkdir)
default: "ssh USEPORT HOSTNAME mkdir"

g:netrw_mousemaps =1 (default) enables mouse buttons while
browsing to:
leftmouse : open file/directory

pi_netrw.txt — 4298

shift-leftmouse : mark file
middlemouse : same as P
rightmouse : remove file/directory

=0: disables mouse maps

g:netrw_nobeval doesn't exist (default)
If this variable exists, then balloon
evaluation will be suppressed
(see 'ballooneval')

g:netrw_sizestyle not defined: actual bytes (default)
="b" : actual bytes (default)
="h" : human-readable (ex. 5k, 4m, 3g)

uses 1000 base
="H" : human-readable (ex. 5K, 4M, 3G)

uses 1024 base
The long listing (netrw-i) and query-file
maps (netrw-qf) will display file size
using the specified style.

g:netrw_usetab if this variable exists and is non-zero, then
the <tab> map supporting shrinking/expanding a
Lexplore or netrw window will be enabled.
(see netrw-c-tab)

g:netrw_remote_mkdir command for making a remote directory
via ftp (also see g:netrw_mkdir_cmd)
default: "mkdir"

g:netrw_retmap if it exists and is set to one, then:
* if in a netrw-selected file, AND
* no normal-mode <2-leftmouse> mapping exists,

then the <2-leftmouse> will be mapped for easy
return to the netrw browser window.
example: click once to select and open a file,

double-click to return.

Note that one may instead choose to:
* let g:netrw_retmap= 1, AND
* nmap <silent> YourChoice <Plug>NetrwReturn

and have another mapping instead of
<2-leftmouse> to invoke the return.

You may also use the :Rexplore command to do
the same thing.

default: =0

g:netrw_rm_cmd command for removing remote files
default: "ssh USEPORT HOSTNAME rm"

g:netrw_rmdir_cmd command for removing remote directories
default: "ssh USEPORT HOSTNAME rmdir"

g:netrw_rmf_cmd command for removing remote softlinks
default: "ssh USEPORT HOSTNAME rm -f"

g:netrw_servername use this variable to provide a name for
netrw-ctrl-r to use for its server.
default: "NETRWSERVER"

pi_netrw.txt — 4299

g:netrw_sort_by sort by "name", "time", "size", or
"exten".
default: "name"

g:netrw_sort_direction sorting direction: "normal" or "reverse"
default: "normal"

g:netrw_sort_options sorting is done using :sort ; this
variable's value is appended to the
sort command. Thus one may ignore case,
for example, with the following in your
.vimrc:

let g:netrw_sort_options="i"
default: ""

g:netrw_sort_sequence when sorting by name, first sort by the
comma-separated pattern sequence. Note that
any filigree added to indicate filetypes
should be accounted for in your pattern.
default: '[\/]$,*,\.bak$,\.o$,\.h$,

\.info$,\.swp$,\.obj$'

g:netrw_special_syntax If true, then certain files will be shown
using special syntax in the browser:

netrwBak : *.bak
netrwCompress: *.gz *.bz2 *.Z *.zip
netrwCoreDump: core.\d\+
netrwData : *.dat
netrwDoc : *.doc,*.txt,*.pdf,

.pdf,.docx
netrwHdr : *.h
netrwLex : *.l *.lex
netrwLib : *.a *.so *.lib *.dll
netrwMakefile: [mM]akefile *.mak
netrwObj : *.o *.obj
netrwPix : *.bmp,*.fit,*.fits,*.gif,

.jpg,.jpeg,*.pcx,*.ppc
.pgm,.png,*.psd,*.rgb
.tif,.xbm,*.xcf

netrwTags : tags ANmenu ANtags
netrwTilde : *
netrwTmp : tmp* *tmp
netrwYacc : *.y

In addition, those groups mentioned in
'suffixes' are also added to the special

file highlighting group.
These syntax highlighting groups are linked

to netrwGray or Folded by default
(see hl-Folded), but one may put lines like

hi link netrwCompress Visual
into one's <.vimrc> to use one's own
preferences. Alternatively, one may
put such specifications into

.vim/after/syntax/netrw.vim.
The netrwGray highlighting is set up by
netrw when

* netrwGray has not been previously

pi_netrw.txt — 4300

defined
* the gui is running

As an example, I myself use a dark-background
colorscheme with the following in
.vim/after/syntax/netrw.vim:

hi netrwCompress term=NONE cterm=NONE gui=NONE ctermfg=10 guifg=green ctermbg=0 guibg=black
hi netrwData term=NONE cterm=NONE gui=NONE ctermfg=9 guifg=blue ctermbg=0 guibg=black
hi netrwHdr term=NONE cterm=NONE,italic gui=NONE guifg=SeaGreen1
hi netrwLex term=NONE cterm=NONE,italic gui=NONE guifg=SeaGreen1
hi netrwYacc term=NONE cterm=NONE,italic gui=NONE guifg=SeaGreen1
hi netrwLib term=NONE cterm=NONE gui=NONE ctermfg=14 guifg=yellow
hi netrwObj term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwTilde term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwTmp term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwTags term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwDoc term=NONE cterm=NONE gui=NONE ctermfg=220 ctermbg=27 guifg=yellow2 guibg=Blue3
hi netrwSymLink term=NONE cterm=NONE gui=NONE ctermfg=220 ctermbg=27 guifg=grey60

g:netrw_ssh_browse_reject ssh can sometimes produce unwanted lines,
messages, banners, and whatnot that one doesn't
want masquerading as "directories" and "files".
Use this pattern to remove such embedded
messages. By default its value is:

'^total\s\+\d\+$'

g:netrw_ssh_cmd One may specify an executable command
to use instead of ssh for remote actions
such as listing, file removal, etc.
default: ssh

g:netrw_suppress_gx_mesg =1 : browsers sometimes produce messages
which are normally unwanted intermixed
with the page.
However, when using links, for example,
those messages are what the browser produces.
By setting this option to 0, netrw will not
suppress browser messages.

g:netrw_tmpfile_escape =' &;'
escape() is applied to all temporary files
to escape these characters.

g:netrw_timefmt specify format string to vim's strftime().
The default, "%c", is "the preferred date
and time representation for the current
locale" according to my manpage entry for
strftime(); however, not all are satisfied
with it. Some alternatives:
"%a %d %b %Y %T",
" %a %Y-%m-%d %I-%M-%S %p"
default: "%c"

g:netrw_use_noswf netrw normally avoids writing swapfiles
for browser buffers. However, under some
systems this apparently is causing nasty
ml_get errors to appear; if you're getting
ml_get errors, try putting
let g:netrw_use_noswf= 0

in your .vimrc.

pi_netrw.txt — 4301

default: 1

g:netrw_winsize specify initial size of new windows made with
"o" (see netrw-o), "v" (see netrw-v),
:Hexplore or :Vexplore . The g:netrw_winsize

is an integer describing the percentage of the
current netrw buffer's window to be used for
the new window.
If g:netrw_winsize is less than zero, then

the absolute value of g:netrw_winsize will be
used to specify the quantity of lines or
columns for the new window.
If g:netrw_winsize is zero, then a normal

split will be made (ie. 'equalalways' will
take effect, for example).
default: 50 (for 50%)

g:netrw_wiw =1 specifies the minimum window width to use
when shrinking a netrw/Lexplore window
(see netrw-c-tab).

g:netrw_xstrlen Controls how netrw computes string lengths,
including multi-byte characters' string
length. (thanks to N Weibull, T Mechelynck)
=0: uses Vim's built-in strlen()
=1: number of codepoints (Latin a + combining

circumflex is two codepoints) (DEFAULT)
=2: number of spacing codepoints (Latin a +

combining circumflex is one spacing
codepoint; a hard tab is one; wide and
narrow CJK are one each; etc.)

=3: virtual length (counting tabs as anything
between 1 and 'tabstop' , wide CJK as 2
rather than 1, Arabic alif as zero when
immediately preceded by lam, one
otherwise, etc)

g:NetrwTopLvlMenu This variable specifies the top level
menu name; by default, it's "Netrw.". If
you wish to change this, do so in your
.vimrc.

NETRW BROWSING AND OPTION INCOMPATIBILITIES netrw-incompatible {{{2

Netrw has been designed to handle user options by saving them, setting the
options to something that's compatible with netrw's needs, and then restoring
them. However, the autochdir option:

:set acd
is problematic. Autochdir sets the current directory to that containing the
file you edit; this apparently also applies to directories. In other words,
autochdir sets the current directory to that containing the "file" (even if
that "file" is itself a directory).

NETRW SETTINGS WINDOW netrw-settings-window {{{2

With the NetrwSettings.vim plugin,
:NetrwSettings

will bring up a window with the many variables that netrw uses for its
settings. You may change any of their values; when you save the file, the
settings therein will be used. One may also press "?" on any of the lines for

pi_netrw.txt — 4302

help on what each of the variables do.

(also see: netrw-browser-var netrw-protocol netrw-variables)

==
OBTAINING A FILE netrw-obtain netrw-O {{{2

If there are no marked files:

When browsing a remote directory, one may obtain a file under the cursor
(ie. get a copy on your local machine, but not edit it) by pressing the O
key.

If there are marked files:

The marked files will be obtained (ie. a copy will be transferred to your
local machine, but not set up for editing).

Only ftp and scp are supported for this operation (but since these two are
available for browsing, that shouldn't be a problem). The status bar will
then show, on its right hand side, a message like "Obtaining filename". The
statusline will be restored after the transfer is complete.

Netrw can also "obtain" a file using the local browser. Netrw's display
of a directory is not necessarily the same as Vim's "current directory",
unless g:netrw_keepdir is set to 0 in the user's <.vimrc>. One may select
a file using the local browser (by putting the cursor on it) and pressing
"O" will then "obtain" the file; ie. copy it to Vim's current directory.

Related topics:
* To see what the current directory is, use :pwd
* To make the currently browsed directory the current directory, see

netrw-cd
* To automatically make the currently browsed directory the current

directory, see g:netrw_keepdir .

netrw-newfile netrw-createfile
OPEN A NEW FILE IN NETRW'S CURRENT DIRECTORY netrw-% {{{2

To open a new file in netrw's current directory, press "%". This map
will query the user for a new filename; an empty file by that name will
be placed in the netrw's current directory (ie. b:netrw_curdir).

If Lexplore (netrw-:Lexplore) is in use, the new file will be generated
in the g:netrw_chgwin window.

Related topics: netrw-d

PREVIEW WINDOW netrw-p netrw-preview {{{2

One may use a preview window by using the "p" key when the cursor is atop the
desired filename to be previewed. The display will then split to show both
the browser (where the cursor will remain) and the file (see :pedit). By
default, the split will be taken horizontally; one may use vertical splitting
if one has set g:netrw_preview first.

An interesting set of netrw settings is:

pi_netrw.txt — 4303

let g:netrw_preview = 1
let g:netrw_liststyle = 3
let g:netrw_winsize = 30

These will:

1. Make vertical splitting the default for previewing files
2. Make the default listing style "tree"
3. When a vertical preview window is opened, the directory listing

will use only 30% of the columns available; the rest of the window
is used for the preview window.

Related: if you like this idea, you may also find :Lexplore
(netrw-:Lexplore) or g:netrw_chgwin of interest

Also see: g:netrw_chgwin netrw-P 'previewwindow' CTRL-W_z :pclose

PREVIOUS WINDOW netrw-P netrw-prvwin {{{2

To edit a file or directory under the cursor in the previously used (last
accessed) window (see :he CTRL-W_p), press a "P". If there's only one
window, then the one window will be horizontally split (by default).

If there's more than one window, the previous window will be re-used on
the selected file/directory. If the previous window's associated buffer
has been modified, and there's only one window with that buffer, then
the user will be asked if s/he wishes to save the buffer first (yes,
no, or cancel).

Related Actions netrw-cr netrw-o netrw-t netrw-v
Associated setting variables:

g:netrw_alto control above/below splitting
g:netrw_altv control right/left splitting
g:netrw_preview control horizontal vs vertical splitting
g:netrw_winsize control initial sizing

Also see: g:netrw_chgwin netrw-p

REFRESHING THE LISTING netrw-refresh netrw-ctrl-l netrw-ctrl_l {{{2

To refresh either a local or remote directory listing, press ctrl-l (<c-l>) or
hit the <cr> when atop the ./ directory entry in the listing. One may also
refresh a local directory by using ":e .".

REVERSING SORTING ORDER netrw-r netrw-reverse {{{2

One may toggle between normal and reverse sorting order by pressing the
"r" key.

Related topics: netrw-s
Associated setting variable: g:netrw_sort_direction

RENAMING FILES OR DIRECTORIES netrw-move netrw-rename netrw-R {{{2

If there are no marked files: (see netrw-mf)

pi_netrw.txt — 4304

Renaming files and directories involves moving the cursor to the
file/directory to be moved (renamed) and pressing "R". You will then be
queried for what you want the file/directory to be renamed to. You may
select a range of lines with the "V" command (visual selection), and then
press "R"; you will be queried for each file as to what you want it
renamed to.

If there are marked files: (see netrw-mf)

Marked files will be renamed (moved). You will be queried as above in
order to specify where you want the file/directory to be moved.

If you answer a renaming query with a "s/frompattern/topattern/", then
subsequent files on the marked file list will be renamed by taking each
name, applying that substitute, and renaming each file to the result.
As an example :

mr [query: reply with *.c]
R [query: reply with s/^\(.*\)\.c$/\1.cpp/]

This example will mark all *.c files and then rename them to *.cpp
files. Netrw will protect you from overwriting local files without
confirmation, but not remote ones.

The ctrl-X character has special meaning for renaming files:

<c-x> : a single ctrl-x tells netrw to ignore the portion of the response
lying between the last '/' and the ctrl-x.

<c-x><c-x> : a pair of contiguous ctrl-x's tells netrw to ignore any
portion of the string preceding the double ctrl-x's.

WARNING:

Note that moving files is a dangerous operation; copies are safer. That's
because a "move" for remote files is actually a copy + delete -- and if
the copy fails and the delete succeeds you may lose the file.
Use at your own risk.

The g:netrw_rename_cmd variable is used to implement remote renaming. By
default its value is:

ssh HOSTNAME mv

One may rename a block of files and directories by selecting them with
V (linewise-visual) when using thin style.

See cmdline-editing for more on how to edit the command line; in particular,
you'll find <ctrl-f> (initiates cmdline window editing) and <ctrl-c> (uses the
command line under the cursor) useful in conjunction with the R command.

SELECTING SORTING STYLE netrw-s netrw-sort {{{2

One may select the sorting style by name, time, or (file) size. The "s" map
allows one to circulate amongst the three choices; the directory listing will
automatically be refreshed to reflect the selected style.

Related topics: netrw-r netrw-S
Associated setting variables: g:netrw_sort_by g:netrw_sort_sequence

pi_netrw.txt — 4305

SETTING EDITING WINDOW netrw-editwindow netrw-C netrw-:NetrwC {{{2

One may select a netrw window for editing with the "C" mapping, using the
:NetrwC [win#] command, or by setting g:netrw_chgwin to the selected window
number. Subsequent selection of a file to edit (netrw-cr) will use that
window.

* C : by itself, will select the current window holding a netrw buffer
for subsequent editing via netrw-cr . The C mapping is only available
while in netrw buffers.

* [count]C : the count will be used as the window number to be used
for subsequent editing via netrw-cr .

* :NetrwC will set g:netrw_chgwin to the current window

* :NetrwC win# will set g:netrw_chgwin to the specified window
number

Using
let g:netrw_chgwin= -1

will restore the default editing behavior
(ie. subsequent editing will use the current window).

Related topics: netrw-cr g:netrw_browse_split
Associated setting variables: g:netrw_chgwin

SHRINKING OR EXPANDING A NETRW OR LEXPLORE WINDOW netrw-c-tab {{{2

The <c-tab> key will toggle a netrw or :Lexplore window's width,
but only if g:netrw_usetab exists and is non-zero (and, of course,
only if your terminal supports differentiating <c-tab> from a plain
<tab>).

* If the current window is a netrw window, toggle its width
(between g:netrw_wiw and its original width)

* Else if there is a :Lexplore window in the current tab, toggle
its width

* Else bring up a :Lexplore window

If g:netrw_usetab exists and is zero, or if there is a pre-existing mapping
for <c-tab>, then the <c-tab> will not be mapped. One may map something other
than a <c-tab>, too: (but you'll still need to have had g:netrw_usetab set).

nmap <unique> (whatever) <Plug>NetrwShrink

Related topics: :Lexplore
Associated setting variable: g:netrw_usetab

USER SPECIFIED MAPS netrw-usermaps {{{1

One may make customized user maps. Specify a variable, g:Netrw_UserMaps ,
to hold a List of lists of keymap strings and function names:

pi_netrw.txt — 4306

[["keymap-sequence","ExampleUserMapFunc"],...]

When netrw is setting up maps for a netrw buffer, if g:Netrw_UserMaps
exists, then the internal function netrw#UserMaps(islocal) is called.
This function goes through all the entries in the g:Netrw_UserMaps list:

* sets up maps:
nno <buffer> <silent> KEYMAP-SEQUENCE
:call s:UserMaps(islocal,"ExampleUserMapFunc")

* refreshes if result from that function call is the string
"refresh"

* if the result string is not "", then that string will be
executed (:exe result)

* if the result is a List, then the above two actions on results
will be taken for every string in the result List

The user function is passed one argument; it resembles

fun! ExampleUserMapFunc(islocal)

where a:islocal is 1 if its a local-directory system call or 0 when
remote-directory system call.

netrw-call netrw-expose netrw-modify
Use netrw#Expose("varname") to access netrw-internal (script-local)

variables.
Use netrw#Modify("varname",newvalue) to change netrw-internal variables.
Use netrw#Call("funcname"[,args]) to call a netrw-internal function with

specified arguments.

Example: Get a copy of netrw's marked file list:

let netrwmarkfilelist= netrw#Expose("netrwmarkfilelist")

Example: Modify the value of netrw's marked file list:

call netrw#Modify("netrwmarkfilelist",[])

Example: Clear netrw's marked file list via a mapping on gu
" ExampleUserMap: {{{2
fun! ExampleUserMap(islocal)

call netrw#Modify("netrwmarkfilelist",[])
call netrw#Modify('netrwmarkfilemtch_{bufnr("%")}',"")
let retval= ["refresh"]
return retval

endfun
let g:Netrw_UserMaps= [["gu","ExampleUserMap"]]

10. Problems and Fixes netrw-problems {{{1

(This section is likely to grow as I get feedback)
(also see netrw-debug)

netrw-p1
P1. I use windows 95, and my ftp dumps four blank lines at the {{{2

end of every read.

See netrw-fixup , and put the following into your
<.vimrc> file:

pi_netrw.txt — 4307

let g:netrw_win95ftp= 1

netrw-p2
P2. I use Windows, and my network browsing with ftp doesn't sort by {{{2

time or size! -or- The remote system is a Windows server; why
don't I get sorts by time or size?

Windows' ftp has a minimal support for ls (ie. it doesn't
accept sorting options). It doesn't support the -F which
gives an explanatory character (ABC/ for "ABC is a directory").
Netrw then uses "dir" to get both its thin and long listings.
If you think your ftp does support a full-up ls, put the
following into your <.vimrc>:

let g:netrw_ftp_list_cmd = "ls -lF"
let g:netrw_ftp_timelist_cmd= "ls -tlF"
let g:netrw_ftp_sizelist_cmd= "ls -slF"

Alternatively, if you have cygwin on your Windows box, put
into your <.vimrc>:

let g:netrw_cygwin= 1

This problem also occurs when the remote system is Windows.
In this situation, the various g:netrw_ftp_[time|size]list_cmds
are as shown above, but the remote system will not correctly
modify its listing behavior.

netrw-p3
P3. I tried rcp://user@host/ (or protocol other than ftp) and netrw {{{2

used ssh! That wasn't what I asked for...

Netrw has two methods for browsing remote directories: ssh
and ftp. Unless you specify ftp specifically, ssh is used.
When it comes time to do download a file (not just a directory
listing), netrw will use the given protocol to do so.

netrw-p4
P4. I would like long listings to be the default. {{{2

Put the following statement into your .vimrc :

let g:netrw_liststyle= 1

Check out netrw-browser-var for more customizations that
you can set.

netrw-p5
P5. My times come up oddly in local browsing {{{2

Does your system's strftime() accept the "%c" to yield dates
such as "Sun Apr 27 11:49:23 1997"? If not, do a
"man strftime" and find out what option should be used. Then
put it into your .vimrc :

let g:netrw_timefmt= "%X" (where X is the option)

netrw-p6
P6. I want my current directory to track my browsing. {{{2

pi_netrw.txt — 4308

How do I do that?

Put the following line in your .vimrc :

let g:netrw_keepdir= 0

netrw-p7
P7. I use Chinese (or other non-ascii) characters in my filenames, {{{2

and netrw (Explore, Sexplore, Hexplore, etc) doesn't display them!

(taken from an answer provided by Wu Yongwei on the vim
mailing list)
I now see the problem. Your code page is not 936, right? Vim
seems only able to open files with names that are valid in the
current code page, as are many other applications that do not
use the Unicode version of Windows APIs. This is an OS-related
issue. You should not have such problems when the system
locale uses UTF-8, such as modern Linux distros.

(...it is one more reason to recommend that people use utf-8!)

netrw-p8
P8. I'm getting "ssh is not executable on your system" -- what do I {{{2

do?

(Dudley Fox) Most people I know use putty for windows ssh. It
is a free ssh/telnet application. You can read more about it
here:

http://www.chiark.greenend.org.uk/~sgtatham/putty/ Also:

(Marlin Unruh) This program also works for me. It's a single
executable, so he/she can copy it into the Windows\System32
folder and create a shortcut to it.

(Dudley Fox) You might also wish to consider plink, as it
sounds most similar to what you are looking for. plink is an
application in the putty suite.

http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter7.html#plink

(Vissale Neang) Maybe you can try OpenSSH for windows, which
can be obtained from:

http://sshwindows.sourceforge.net/

It doesn't need the full Cygwin package.

(Antoine Mechelynck) For individual Unix-like programs needed
for work in a native-Windows environment, I recommend getting
them from the GnuWin32 project on sourceforge if it has them:

http://gnuwin32.sourceforge.net/

Unlike Cygwin, which sets up a Unix-like virtual machine on
top of Windows, GnuWin32 is a rewrite of Unix utilities with
Windows system calls, and its programs works quite well in the
cmd.exe "Dos box".

(dave) Download WinSCP and use that to connect to the server.

pi_netrw.txt — 4309

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter7.html#plink
http://sshwindows.sourceforge.net/
http://gnuwin32.sourceforge.net/

In Preferences > Editors, set gvim as your editor:

- Click "Add..."
- Set External Editor (adjust path as needed, include

the quotes and !.! at the end):
"c:\Program Files\Vim\vim82\gvim.exe" !.!

- Check that the filetype in the box below is
{asterisk}.{asterisk} (all files), or whatever types
you want (cec: change {asterisk} to * ; I had to
write it that way because otherwise the helptags
system thinks it's a tag)

- Make sure it's at the top of the listbox (click it,
then click "Up" if it's not)

If using the Norton Commander style, you just have to hit <F4>
to edit a file in a local copy of gvim.

(Vit Gottwald) How to generate public/private key and save
public key it on server:

http://www.chiark.greenend.org.uk/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-gettingready
(8.3 Getting ready for public key authentication)

How to use a private key with 'pscp':

http://www.chiark.greenend.org.uk/~sgtatham/putty/0.60/htmldoc/Chapter5.html
(5.2.4 Using public key authentication with PSCP)

(Ben Schmidt) I find the ssh included with cwRsync is
brilliant, and install cwRsync or cwRsyncServer on most
Windows systems I come across these days. I guess COPSSH,
packed by the same person, is probably even better for use as
just ssh on Windows, and probably includes sftp, etc. which I
suspect the cwRsync doesn't, though it might

(cec) To make proper use of these suggestions above, you will
need to modify the following user-settable variables in your
.vimrc:

g:netrw_ssh_cmd g:netrw_list_cmd g:netrw_mkdir_cmd
g:netrw_rm_cmd g:netrw_rmdir_cmd g:netrw_rmf_cmd

The first one (g:netrw_ssh_cmd) is the most important; most
of the others will use the string in g:netrw_ssh_cmd by
default.

netrw-p9 netrw-ml_get
P9. I'm browsing, changing directory, and bang! ml_get errors {{{2

appear and I have to kill vim. Any way around this?

Normally netrw attempts to avoid writing swapfiles for
its temporary directory buffers. However, on some systems
this attempt appears to be causing ml_get errors to
appear. Please try setting g:netrw_use_noswf to 0
in your <.vimrc>:

let g:netrw_use_noswf= 0

netrw-p10
P10. I'm being pestered with "[something] is a directory" and {{{2

"Press ENTER or type command to continue" prompts...

The "[something] is a directory" prompt is issued by Vim,

pi_netrw.txt — 4310

not by netrw, and there appears to be no way to work around
it. Coupled with the default cmdheight of 1, this message
causes the "Press ENTER..." prompt. So: read hit-enter ;
I also suggest that you set your 'cmdheight' to 2 (or more) in
your <.vimrc> file.

netrw-p11
P11. I want to have two windows; a thin one on the left and my {{{2

editing window on the right. How may I accomplish this?

You probably want netrw running as in a side window. If so, you
will likely find that ":[N]Lexplore" does what you want. The
optional "[N]" allows you to select the quantity of columns you
wish the :Lexplore r window to start with (see g:netrw_winsize
for how this parameter works).

Previous solution:

* Put the following line in your <.vimrc>:
let g:netrw_altv = 1

* Edit the current directory: :e .
* Select some file, press v
* Resize the windows as you wish (see CTRL-W_< and

CTRL-W_>). If you're using gvim, you can drag
the separating bar with your mouse.

* When you want a new file, use ctrl-w h to go back to the
netrw browser, select a file, then press P (see CTRL-W_h
and netrw-P). If you're using gvim, you can press
<leftmouse> in the browser window and then press the
<middlemouse> to select the file.

netrw-p12
P12. My directory isn't sorting correctly, or unwanted letters are {{{2

appearing in the listed filenames, or things aren't lining
up properly in the wide listing, ...

This may be due to an encoding problem. I myself usually use
utf-8, but really only use ascii (ie. bytes from 32-126).
Multibyte encodings use two (or more) bytes per character.
You may need to change g:netrw_sepchr and/or g:netrw_xstrlen .

netrw-p13
P13. I'm a Windows + putty + ssh user, and when I attempt to {{{2

browse, the directories are missing trailing "/"s so netrw treats
them as file transfers instead of as attempts to browse
subdirectories. How may I fix this?

(mikeyao) If you want to use vim via ssh and putty under Windows,
try combining the use of pscp/psftp with plink. pscp/psftp will
be used to connect and plink will be used to execute commands on
the server, for example: list files and directory using 'ls'.

These are the settings I use to do this:

" list files, it's the key setting, if you haven't set,
" you will get a blank buffer
let g:netrw_list_cmd = "plink HOSTNAME ls -Fa"
" if you haven't add putty directory in system path, you should
" specify scp/sftp command. For examples:

pi_netrw.txt — 4311

"let g:netrw_sftp_cmd = "d:\\dev\\putty\\PSFTP.exe"
"let g:netrw_scp_cmd = "d:\\dev\\putty\\PSCP.exe"

netrw-p14
P14. I would like to speed up writes using Nwrite and scp/ssh {{{2

style connections. How? (Thomer M. Gil)

Try using ssh's ControlMaster and ControlPath (see the ssh_config
man page) to share multiple ssh connections over a single network
connection. That cuts out the cryptographic handshake on each
file write, sometimes speeding it up by an order of magnitude.
(see http://thomer.com/howtos/netrw_ssh.html)
(included by permission)

Add the following to your ~/.ssh/config:

you change "*" to the hostname you care about
Host *

ControlMaster auto
ControlPath /tmp/%r@%h:%p

Then create an ssh connection to the host and leave it running:

ssh -N host.domain.com

Now remotely open a file with Vim's Netrw and enjoy the
zippiness:

vim scp://host.domain.com//home/user/.bashrc

netrw-p15
P15. How may I use a double-click instead of netrw's usual single {{{2

click to open a file or directory? (Ben Fritz)

First, disable netrw's mapping with
let g:netrw_mousemaps= 0

and then create a netrw buffer only mapping in
$HOME/.vim/after/ftplugin/netrw.vim:

nmap <buffer> <2-leftmouse> <CR>
Note that setting g:netrw_mousemaps to zero will turn off
all netrw's mouse mappings, not just the <leftmouse> one.
(see g:netrw_mousemaps)

netrw-p16
P16. When editing remote files (ex. :e ftp://hostname/path/file), {{{2

under Windows I get an E303 message complaining that its unable
to open a swap file.

(romainl) It looks like you are starting Vim from a protected
directory. Start netrw from your $HOME or other writable
directory.

netrw-p17
P17. Netrw is closing buffers on its own. {{{2

What steps will reproduce the problem?
1. :Explore, navigate directories, open a file
2. :Explore, open another file
3. Buffer opened in step 1 will be closed. o

What is the expected output? What do you see instead?
I expect both buffers to exist, but only the last one does.

pi_netrw.txt — 4312

http://thomer.com/howtos/netrw_ssh.html
ftp://hostname/path/file

(Lance) Problem is caused by "set autochdir" in .vimrc.
(drchip) I am able to duplicate this problem with 'acd' set.

It appears that the buffers are not exactly closed;
a ":ls!" will show them (although ":ls" does not).

netrw-P18
P18. How to locally edit a file that's only available via {{{2

another server accessible via ssh?
See http://stackoverflow.com/questions/12469645/
"Using Vim to Remotely Edit A File on ServerB Only
Accessible From ServerA"

netrw-P19
P19. How do I get numbering on in directory listings? {{{2

With g:netrw_bufsettings , you can control netrw's buffer
settings; try putting
let g:netrw_bufsettings="noma nomod nu nobl nowrap ro nornu"

in your .vimrc. If you'd like to have relative numbering
instead, try

let g:netrw_bufsettings="noma nomod nonu nobl nowrap ro rnu"

netrw-P20
P20. How may I have gvim start up showing a directory listing? {{{2

Try putting the following code snippet into your .vimrc:
augroup VimStartup

au!
au VimEnter * if expand("%") == "" && argc() == 0 &&
\ (v:servername =~ 'GVIM\d*' || v:servername == "")
\ | e . | endif

augroup END
You may use Lexplore instead of "e" if you're so inclined.
This snippet assumes that you have client-server enabled
(ie. a "huge" vim version).

netrw-P21
P21. I've made a directory (or file) with an accented character, {{{2

but netrw isn't letting me enter that directory/read that file:

Its likely that the shell or o/s is using a different encoding
than you have vim (netrw) using. A patch to vim supporting
"systemencoding" may address this issue in the future; for
now, just have netrw use the proper encoding. For example:

au FileType netrw set enc=latin1

netrw-P22
P22. I get an error message when I try to copy or move a file: {{{2

error (netrw) tried using g:netrw_localcopycmd<cp>; it doesn't work!

What's wrong?

Netrw uses several system level commands to do things (see

g:netrw_localcopycmd , g:netrw_localmovecmd ,
g:netrw_mkdir_cmd).

You may need to adjust the default commands for one or more of
these commands by setting them properly in your .vimrc. Another

pi_netrw.txt — 4313

http://stackoverflow.com/questions/12469645/

source of difficulty is that these commands use vim's local
directory, which may not be the same as the browsing directory
shown by netrw (see g:netrw_keepdir).

==
11. Debugging Netrw Itself netrw-debug {{{1

Step 1: check that the problem you've encountered hasn't already been resolved
by obtaining a copy of the latest (often developmental) netrw at:

http://www.drchip.org/astronaut/vim/index.html#NETRW

The <netrw.vim> script is typically installed on systems as something like:

/usr/local/share/vim/vim8x/plugin/netrwPlugin.vim
/usr/local/share/vim/vim8x/autoload/netrw.vim

(see output of :echo &rtp)

which is loaded automatically at startup (assuming :set nocp). If you
installed a new netrw, then it will be located at

$HOME/.vim/plugin/netrwPlugin.vim
$HOME/.vim/autoload/netrw.vim

Step 2: assuming that you've installed the latest version of netrw,
check that your problem is really due to netrw. Create a file
called netrw.vimrc with the following contents:

set nocp
so $HOME/.vim/plugin/netrwPlugin.vim

Then run netrw as follows:

vim -u netrw.vimrc --noplugins -i NONE [some path here]

Perform whatever netrw commands you need to, and check that the problem is
still present. This procedure sidesteps any issues due to personal .vimrc
settings, .viminfo file, and other plugins. If the problem does not appear,
then you need to determine which setting in your .vimrc is causing the
conflict with netrw or which plugin(s) is/are involved.

Step 3: If the problem still is present, then get a debugging trace from
netrw:

1. Get the <Decho.vim> script, available as:

http://www.drchip.org/astronaut/vim/index.html#DECHO
or

http://vim.sourceforge.net/scripts/script.php?script_id=120

Decho.vim is provided as a "vimball"; see vimball-intro . You
should edit the Decho.vba.gz file and source it in:

vim Decho.vba.gz
:so %
:q

2. To turn on debug tracing in netrw, then edit the <netrw.vim>
file by typing:

pi_netrw.txt — 4314

http://www.drchip.org/astronaut/vim/index.html#NETRW
http://www.drchip.org/astronaut/vim/index.html#DECHO
http://vim.sourceforge.net/scripts/script.php?script_id=120

vim netrw.vim
:DechoOn
:wq

To restore to normal non-debugging behavior, re-edit <netrw.vim>
and type

vim netrw.vim
:DechoOff
:wq

This command, provided by <Decho.vim>, will comment out all
Decho-debugging statements (Dfunc(), Dret(), Decho(), Dredir()).

3. Then bring up vim and attempt to evoke the problem by doing a
transfer or doing some browsing. A set of messages should appear
concerning the steps that <netrw.vim> took in attempting to
read/write your file over the network in a separate tab or
server vim window.

Change the netrw.vimrc file to include the Decho plugin:

set nocp
so $HOME/.vim/plugin/Decho.vim
so $HOME/.vim/plugin/netrwPlugin.vim

You should continue to run vim with

vim -u netrw.vimrc --noplugins -i NONE [some path here]

to avoid entanglements with options and other plugins.

To save the file: under linux, the output will be in a separate
remote server window; in it, just save the file with

:w! DBG

Under a vim that doesn't support clientserver, your debugging
output will appear in another tab:

:tabnext
:set bt=
:w! DBG

Furthermore, it'd be helpful if you would type

:Dsep <command>

where <command> is the command you're about to type next,
thereby making it easier to associate which part of the
debugging trace is due to which command.

Please send that information to <netrw.vim>'s maintainer along
with the o/s you're using and the vim version that you're using
(see :version) (remove the embedded NOSPAM first)

NcampObell@SdrPchip.AorgM-NOSPAM

==

pi_netrw.txt — 4315

12. History netrw-history {{{1

v172: Sep 02, 2021 * (Bram Moolenaar) Changed "l:go" to "go"
* (Bram Moolenaar) no need for "b" in

netrw-safe guioptions
Nov 15, 2021 * removed netrw_localrm and netrw_localrmdir

references
Aug 18, 2022 * (Miguel Barro) improving compatability with

powershell
v171: Oct 09, 2020 * included code in s:NetrwOptionsSafe()

to allow 'bh' to be set to delete when
rather than hide when g:netrw_fastbrowse
was zero.

* Installed g:netrw_clipboard setting
* Installed option bypass for 'guioptions'

a/A settings
* Changed popup_beval() to popup_atcursor()
in netrw#ErrorMsg (lacygoill). Apparently
popup_beval doesn't reliably close the
popup when the mouse is moved.

* VimEnter() now using win_execute to examine
buffers for an attempt to open a directory.
Avoids issues with popups/terminal from
command line. (lacygoill)

Jun 28, 2021 * (zeertzjq) provided a patch for use of
xmap,xno instead of vmap,vno in
netrwPlugin.vim. Avoids entanglement with
select mode.

Jul 14, 2021 * Fixed problem addressed by tst976; opening
a file using tree mode, going up a
directory, and opening a file there was
opening the file in the wrong directory.

Jul 28, 2021 * (Ingo Karkat) provided a patch fixing an
E488 error with netrwPlugin.vim
(occurred for vim versions < 8.02)

v170: Mar 11, 2020 * (reported by Reiner Herrmann) netrw+tree
would not hide with the ^\..* pattern
correctly.

* (Marcin Szamotulski) NetrwOptionRestore
did not restore options correctly that
had a single quote in the option string.

Apr 13, 2020 * implemented error handling via popup
windows (see popup_beval())

Apr 30, 2020 * (reported by Manatsu Takahashi) while
using Lexplore, a modified file could
be overwritten. Sol'n: will not overwrite,
but will emit an E37 (although one cannot
add an ! to override)

Jun 07, 2020 * (reported by Jo Totland) repeatedly invoking
:Lexplore and quitting it left unused
hidden buffers. Netrw will now set netrw
buffers created by :Lexplore to 'bh' =wipe.

v169: Dec 20, 2019 * (reported by amkarthik) that netrw's x
(netrw-x) would throw an error when
attempting to open a local directory.

v168: Dec 12, 2019 * scp timeout error message not reported,
hopefully now fixed (Shane Xb Qian)

v167: Nov 29, 2019 * netrw does a save&restore on @* and @+.
That causes problems with the clipboard.
Now restores occurs only if @* or @+ have

pi_netrw.txt — 4316

been changed.
* netrw will change @* or @+ less often.
Never if I happen to have caught all the
operations that modify the unnamed
register (which also writes @*).

* Modified hiding behavior so that "s"
will not ignore hiding.

v166: Nov 06, 2019 * Removed a space from a nmap for "-"
* Numerous debugging statement changes

v163: Dec 05, 2017 * (Cristi Balan) reported that a setting ('sel')
was left changed

* (Holger Mitschke) reported a problem with
saving and restoring history. Fixed.

* Hopefully I fixed a nasty bug that caused a
file rename to wipe out a buffer that it
should not have wiped out.

* (Holger Mitschke) amended this help file
with additional g:netrw_special_syntax
items

* Prioritized wget over curl for
g:netrw_http_cmd

v162: Sep 19, 2016 * (haya14busa) pointed out two syntax errors
with a patch; these are now fixed.

Oct 26, 2016 * I started using mate-terminal and found that
x and gx (netrw-x and netrw-gx) were no
longer working. Fixed (using atril when
$DESKTOP_SESSION is "mate").

Nov 04, 2016 * (Martin Vuille) pointed out that @+ was
being restored with keepregstar rather than
keepregplus.

Nov 09, 2016 * Broke apart the command from the options,
mostly for Windows. Introduced new netrw
settings: g:netrw_localcopycmdopt
g:netrw_localcopydircmdopt
g:netrw_localmkdiropt
g:netrw_localmovecmdopt

Nov 21, 2016 * (mattn) provided a patch for preview; swapped
winwidth() with winheight()

Nov 22, 2016 * (glacambre) reported that files containing
spaces weren't being obtained properly via
scp. Fix: apparently using single quotes
such as with 'file name' wasn't enough; the
spaces inside the quotes also had to be
escaped (ie. 'file\ name').

* Also fixed obtain (netrw-O) to be able to
obtain files with spaces in their names

Dec 20, 2016 * (xc1427) Reported that using "I" (netrw-I)
when atop "Hiding" in the banner also caused
the active-banner hiding control to occur

Jan 03, 2017 * (Enno Nagel) reported that attempting to
apply netrw to a directory that was without
read permission caused a syntax error.

Jan 13, 2017 * (Ingo Karkat) provided a patch which makes
using netrw#Call() better. Now returns
value of internal routines return, for example.

Jan 13, 2017 * (Ingo Karkat) changed netrw#FileUrlRead to
use :edit instead of :read . I also
changed the routine name to netrw#FileUrlEdit.

Jan 16, 2017 * (Sayem) reported a problem where :Lexplore
could generate a new listing buffer and

pi_netrw.txt — 4317

window instead of toggling the netrw display.
Unfortunately, the directions for eliciting
the problem weren't complete, so I may or
may not have fixed that issue.

Feb 06, 2017 * Implemented cb and cB. Changed "c" to "cd".
(see netrw-cb , netrw-cB , and netrw-cd)

Mar 21, 2017 * previously, netrw would specify (safe) settings
even when the setting was already safe for
netrw. Netrw now attempts to leave such
already-netrw-safe settings alone.
(affects s:NetrwOptionRestore() and
s:NetrwSafeOptions(); also introduced
s:NetrwRestoreSetting())

Jun 26, 2017 * (Christian Brabandt) provided a patch to
allow curl to follow redirects (ie. -L
option)

Jun 26, 2017 * (Callum Howard) reported a problem with
:Lexpore not removing the Lexplore window
after a change-directory

Aug 30, 2017 * (Ingo Karkat) one cannot switch to the
previously edited file (e.g. with CTRL-^)
after editing a file:// URL. Patch to
have a "keepalt" included.

Oct 17, 2017 * (Adam Faryna) reported that gn (netrw-gn)
did not work on directories in the current
tree

v157: Apr 20, 2016 * (Nicola) had set up a "nmap <expr> ..." with
a function that returned a 0 while silently
invoking a shell command. The shell command
activated a ShellCmdPost event which in turn
called s:LocalBrowseRefresh(). That looks
over all netrw buffers for changes needing
refreshes. However, inside a :map-<expr> ,
tab and window changes are disallowed. Fixed.
(affects netrw's s:LocalBrowseRefresh())

* g:netrw_localrmdir not used any more, but
the relevant patch that causes delete() to
take over was #1107 (not #1109).

* expand() is now used on g:netrw_home ;
consequently, g:netrw_home may now use
environment variables

* s:NetrwLeftmouse and s:NetrwCLeftmouse will
return without doing anything if invoked
when inside a non-netrw window

Jun 15, 2016 * gx now calls netrw#GX() which returns
the word under the cursor. The new
wrinkle: if one is in a netrw buffer,
then netrw's s:NetrwGetWord().

Jun 22, 2016 * Netrw was executing all its associated
Filetype commands silently; I'm going
to try doing that "noisily" and see if
folks have a problem with that.

Aug 12, 2016 * Changed order of tool selection for
handling http://... viewing.
(Nikolay Aleksandrovich Pavlov)

Aug 21, 2016 * Included hiding/showing/all for tree
listings

* Fixed refresh (^L) for tree listings
v156: Feb 18, 2016 * Changed =~ to =~# where appropriate

Feb 23, 2016 * s:ComposePath(base,subdir) now uses

pi_netrw.txt — 4318

fnameescape() on the base portion
Mar 01, 2016 * (gt_macki) reported where :Explore would

make file unlisted. Fixed (tst943)
Apr 04, 2016 * (reported by John Little) netrw normally

suppresses browser messages, but sometimes
those "messages" are what is wanted.
See g:netrw_suppress_gx_mesg

Apr 06, 2016 * (reported by Carlos Pita) deleting a remote
file was giving an error message. Fixed.

Apr 08, 2016 * (Charles Cooper) had a problem with an
undefined b:netrw_curdir. He also provided
a fix.

Apr 20, 2016 * Changed s:NetrwGetBuffer(); now uses
dictionaries. Also fixed the "No Name"
buffer problem.

v155: Oct 29, 2015 * (Timur Fayzrakhmanov) reported that netrw's
mapping of ctrl-l was not allowing refresh of
other windows when it was done in a netrw
window.

Nov 05, 2015 * Improved s:TreeSqueezeDir() to use search()
instead of a loop

* NetrwBrowse() will return line to
w:netrw_bannercnt if cursor ended up in
banner

Nov 16, 2015 * Added a <Plug>NetrwTreeSqueeze (netrw-s-cr)
Nov 17, 2015 * Commented out imaps -- perhaps someone can

tell me how they're useful and should be
retained?

Nov 20, 2015 * Added netrw-ma and netrw-mA support
Nov 20, 2015 * gx (netrw-gx) on a URL downloaded the

file in addition to simply bringing up the
URL in a browser. Fixed.

Nov 23, 2015 * Added g:netrw_sizestyle support
Nov 27, 2015 * Inserted a lot of <c-u>s into various netrw

maps.
Jan 05, 2016 * netrw-qL implemented to mark files based

upon location-list s; similar to netrw-qF .
Jan 19, 2016 * using - call delete(directoryname,"d") -

instead of using g:netrw_localrmdir if
v7.4 + patch#1107 is available

Jan 28, 2016 * changed to using winsaveview() and
winrestview()

Jan 28, 2016 * s:NetrwTreePath() now does a save and
restore of view

Feb 08, 2016 * Fixed a tree-listing problem with remote
directories

v154: Feb 26, 2015 * (Yuri Kanivetsky) reported a situation where
a file was not treated properly as a file
due to g:netrw_keepdir == 1

Mar 25, 2015 * (requested by Ben Friz) one may now sort by
extension

Mar 28, 2015 * (requested by Matt Brooks) netrw has a lot
of buffer-local mappings; however, some
plugins (such as vim-surround) set up
conflicting mappings that cause vim to wait.
The "<nowait>" modifier has been included
with most of netrw's mappings to avoid that
delay.

Jun 26, 2015 * netrw-gn mapping implemted
* :Ntree NotADir resulted in having

pi_netrw.txt — 4319

the tree listing expand in the error messages
window. Fixed.

Jun 29, 2015 * Attempting to delete a file remotely caused
an error with "keepsol" mentioned; fixed.

Jul 08, 2015 * Several changes to keep the :jumps table
correct when working with
g:netrw_fastbrowse set to 2

* wide listing with accented characters fixed
(using %-S instead of %-s with a printf()

Jul 13, 2015 * (Daniel Hahler) CheckIfKde() could be true
but kfmclient not installed. Changed order
in netrw#BrowseX(): checks if kde and
kfmclient, then will use xdg-open on a unix
system (if xdg-open is executable)

Aug 11, 2015 * (McDonnell) tree listing mode wouldn't
select a file in a open subdirectory.

* (McDonnell) when multiple subdirectories
were concurrently open in tree listing
mode, a ctrl-L wouldn't refresh properly.

* The netrw:target menu showed duplicate
entries

Oct 13, 2015 * (mattn) provided an exception to handle
windows with shellslash set but no shell

Oct 23, 2015 * if g:netrw_usetab and <c-tab> now used
to control whether NetrwShrink is used
(see netrw-c-tab)

v153: May 13, 2014 * added another g:netrw_ffkeep usage {{{2
May 14, 2014 * changed s:PerformListing() so that it

always sets ft=netrw for netrw buffers
(ie. even when syntax highlighting is
off, not available, etc)

May 16, 2014 * introduced the netrw-ctrl-r functionality
May 17, 2014 * introduced the netrw-:NetrwMB functionality

* mb and mB (netrw-mb , netrw-mB) will
add/remove marked files from bookmark list

May 20, 2014 * (Enno Nagel) reported that :Lex <dirname>
wasn't working. Fixed.

May 26, 2014 * restored test to prevent leftmouse window
resizing from causing refresh.
(see s:NetrwLeftmouse())

* fixed problem where a refresh caused cursor
to go just under the banner instead of
staying put

May 28, 2014 * (László Bimba) provided a patch for opening
the :Lexplore window 100% high, optionally
on the right, and will work with remote
files.

May 29, 2014 * implemented :NetrwC (see netrw-:NetrwC)
Jun 01, 2014 * Removed some "silent"s from commands used

to implemented scp://... and pscp://...
directory listing. Permits request for
password to appear.

Jun 05, 2014 * (Enno Nagel) reported that user maps "/"
caused problems with "b" and "w", which
are mapped (for wide listings only) to
skip over files rather than just words.

Jun 10, 2014 * g:netrw_gx introduced to allow users to
override default "<cfile>" with the gx
(netrw-gx) map

Jun 11, 2014 * gx (netrw-gx), with 'autowrite' set,

pi_netrw.txt — 4320

will write modified files. s:NetrwBrowseX()
will now save, turn off, and restore the
'autowrite' setting.

Jun 13, 2014 * added visual map for gx use
Jun 15, 2014 * (Enno Nagel) reported that with having hls

set and wide listing style in use, that the
b and w maps caused unwanted highlighting.

Jul 05, 2014 * netrw-mv and netrw-mX commands included
Jul 09, 2014 * g:netrw_keepj included, allowing optional

keepj
Jul 09, 2014 * fixing bugs due to previous update
Jul 21, 2014 * (Bruno Sutic) provided an updated

netrw_gitignore.vim
Jul 30, 2014 * (Yavuz Yetim) reported that editing two

remote files of the same name caused the
second instance to have a "temporary"
name. Fixed: now they use the same buffer.

Sep 18, 2014 * (Yasuhiro Matsumoto) provided a patch which
allows scp and windows local paths to work.

Oct 07, 2014 * gx (see netrw-gx) when atop a directory,
will now do gf instead

Nov 06, 2014 * For cygwin: cygstart will be available for
netrw#BrowseX() to use if its executable.

Nov 07, 2014 * Began support for file://... urls. Will use
g:netrw_file_cmd (typically elinks or links)

Dec 02, 2014 * began work on having mc (netrw-mc) copy
directories. Works for linux machines,
cygwin+vim, but not for windows+gvim.

Dec 02, 2014 * in tree mode, netrw was not opening
directories via symbolic links.

Dec 02, 2014 * added resolved link information to
thin and tree modes

Dec 30, 2014 * (issue#231) :ls was not showing
remote-file buffers reliably. Fixed.

v152: Apr 08, 2014 * uses the 'noswapfile' option (requires {{{2
vim 7.4 with patch 213)

* (Enno Nagel) turn 'rnu' off in netrw
buffers.

* (Quinn Strahl) suggested that netrw
allow regular window splitting to occur,
thereby allowing 'equalalways' to take
effect.

* (qingtian zhao) normally, netrw will
save and restore the 'fileformat' ;
however, sometimes that isn't wanted

Apr 14, 2014 * whenever netrw marks a buffer as ro,
it will also mark it as nomod.

Apr 16, 2014 * sftp protocol now supported by
netrw#Obtain(); this means that one
may use "mc" to copy a remote file
to a local file using sftp, and that
the netrw-O command can obtain remote
files via sftp.

* added [count]C support (see netrw-C)
Apr 18, 2014 * when g:netrw_chgwin is one more than

the last window, then vertically split
the last window and use it as the
chgwin window.

May 09, 2014 * SavePosn was "saving filename under cursor"
from a non-netrw window when using :Rex.

pi_netrw.txt — 4321

v151: Jan 22, 2014 * extended :Rexplore to return to buffer {{{2
prior to Explore or editing a directory

* (Ken Takata) netrw gave error when
clipboard was disabled. Sol'n: Placed
several if has("clipboard") tests in.

* Fixed ftp://X@Y@Z// problem; X@Y now
part of user id, and only Z is part of
hostname.

* (A Loumiotis) reported that completion
using a directory name containing spaces
did not work. Fixed with a retry in
netrw#Explore() which removes the
backslashes vim inserted.

Feb 26, 2014 * :Rexplore now records the current file
using w:netrw_rexfile when returning via
:Rexplore

Mar 08, 2014 * (David Kotchan) provided some patches
allowing netrw to work properly with
windows shares.

* Multiple one-liner help messages available
by pressing <cr> while atop the "Quick
Help" line

* worked on ShellCmdPost, FocusGained event
handling.

* :Lexplore path: will be used to update
a left-side netrw browsing directory.

Mar 12, 2014 * netrw-s-cr : use <s-cr> to close
tree directory implemented

Mar 13, 2014 * (Tony Mechylynck) reported that using
the browser with ftp on a directory,
and selecting a gzipped txt file, that
an E19 occurred (which was issued by
gzip.vim). Fixed.

Mar 14, 2014 * Implemented :MF and :MT (see netrw-:MF
and netrw-:MT , respectively)

Mar 17, 2014 * :Ntree [dir] wasn't working properly; fixed
Mar 18, 2014 * Changed all uses of set to setl
Mar 18, 2014 * Commented the netrw_btkeep line in

s:NetrwOptionSave(); the effect is that
netrw buffers will remain as 'bt' =nofile.
This should prevent swapfiles being created
for netrw buffers.

Mar 20, 2014 * Changed all uses of lcd to use s:NetrwLcd()
instead. Consistent error handling results
and it also handles Window's shares

* Fixed netrw-d command when applied with ftp
* https: support included for netrw#NetRead()

v150: Jul 12, 2013 * removed a "keepalt" to allow ":e #" to {{{2
return to the netrw directory listing

Jul 13, 2013 * (Jonas Diemer) suggested changing
a <cWORD> to <cfile>.

Jul 21, 2013 * (Yuri Kanivetsky) reported that netrw's
use of mkdir did not produce directories
following the user's umask.

Aug 27, 2013 * introduced g:netrw_altfile option
Sep 05, 2013 * s:Strlen() now uses strdisplaywidth()

when available, by default
Sep 12, 2013 * (Selyano Baldo) reported that netrw wasn't

opening some directories properly from the
command line.

pi_netrw.txt — 4322

ftp://X@Y@Z//

Nov 09, 2013 * :Lexplore introduced
* (Ondrej Platek) reported an issue with
netrw's trees (P15). Fixed.

* (Jorge Solis) reported that "t" in
tree mode caused netrw to forget its
line position.

Dec 05, 2013 * Added <s-leftmouse> file marking
(see netrw-mf)

Dec 05, 2013 * (Yasuhiro Matsumoto) Explore should use
strlen() instead s:Strlen() when handling
multibyte chars with strpart()
(ie. strpart() is byte oriented, not
display-width oriented).

Dec 09, 2013 * (Ken Takata) Provided a patch; File sizes
and a portion of timestamps were wrongly
highlighted with the directory color when
setting `:let g:netrw_liststyle=1` on Windows.

* (Paul Domaskis) noted that sometimes
cursorline was activating in non-netrw
windows. All but one setting of cursorline
was done via setl; there was one that was
overlooked. Fixed.

Dec 24, 2013 * (esquifit) asked that netrw allow the
/cygdrive prefix be a user-alterable
parameter.

Jan 02, 2014 * Fixed a problem with netrw-based ballon
evaluation (ie. netrw#NetrwBaloonHelp()
not having been loaded error messages)

Jan 03, 2014 * Fixed a problem with tree listings
* New command installed: :Ntree

Jan 06, 2014 * (Ivan Brennan) reported a problem with
netrw-P . Fixed.

Jan 06, 2014 * Fixed a problem with netrw-P when the
modified file was to be abandoned.

Jan 15, 2014 * (Matteo Cavalleri) reported that when the
banner is suppressed and tree listing is
used, a blank line was left at the top of
the display. Fixed.

Jan 20, 2014 * (Gideon Go) reported that, in tree listing
style, with a previous window open, that
the wrong directory was being used to open
a file. Fixed. (P21)

v149: Apr 18, 2013 * in wide listing format, now have maps for {{{2
w and b to move to next/previous file

Apr 26, 2013 * one may now copy files in the same
directory; netrw will issue requests for
what names the files should be copied under

Apr 29, 2013 * Trying Benzinger's problem again. Seems
that commenting out the BufEnter and
installing VimEnter (only) works. Weird
problem! (tree listing, vim -O Dir1 Dir2)

May 01, 2013 * :Explore ftp://... wasn't working. Fixed.
May 02, 2013 * introduced g:netrw_bannerbackslash as

requested by Paul Domaskis.
Jul 03, 2013 * Explore now avoids splitting when a buffer

will be hidden.
v148: Apr 16, 2013 * changed Netrw's Style menu to allow direct {{{2

choice of listing style, hiding style, and
sorting style

pi_netrw.txt — 4323

==
13. Todo netrw-todo {{{1

07/29/09 : banner : g:netrw_banner can be used to suppress the
suppression banner. This feature is new and experimental,

so its in the process of being debugged.
09/04/09 : "gp" : See if it can be made to work for remote systems.

: See if it can be made to work with marked files.

==
14. Credits netrw-credits {{{1

Vim editor by Bram Moolenaar (Thanks, Bram!)
dav support by C Campbell
fetch support by Bram Moolenaar and C Campbell
ftp support by C Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
http support by Bram Moolenaar <bram@moolenaar.net>
rcp
rsync support by C Campbell (suggested by Erik Warendorph)
scp support by raf <raf@comdyn.com.au>
sftp support by C Campbell

inputsecret(), BufReadCmd, BufWriteCmd contributed by C Campbell

Jérôme Augé -- also using new buffer method with ftp+.netrc
Bram Moolenaar -- obviously vim itself, :e and v:cmdarg use,

fetch,...
Yasuhiro Matsumoto -- pointing out undo+0r problem and a solution
Erik Warendorph -- for several suggestions (g:netrw_..._cmd

variables, rsync etc)
Doug Claar -- modifications to test for success with ftp

operation

==
Modelines: {{{1

pi_netrw.txt — 4324

pi_paren.txt For Vim version 9.1. Last change: 2013 May 08

VIM REFERENCE MANUAL by Bram Moolenaar

Highlighting matching parens matchparen

The functionality mentioned here is a standard-plugin .
This plugin is only available if 'compatible' is not set.

You can avoid loading this plugin by setting the "loaded_matchparen" variable:
:let loaded_matchparen = 1

The plugin installs CursorMoved, CursorMovedI and WinEnter autocommands to
redefine the match highlighting.

:NoMatchParen :DoMatchParen
To disable the plugin after it was loaded use this command:

:NoMatchParen

And to enable it again:

:DoMatchParen

The highlighting used is MatchParen. You can specify different colors with
the ":highlight" command. Example:

:hi MatchParen ctermbg=blue guibg=lightblue

The characters to be matched come from the 'matchpairs' option. You can
change the value to highlight different matches. Note that not everything is
possible. For example, you can't highlight single or double quotes, because
the start and end are equal.

The syntax highlighting attributes are used. When the cursor currently is not
in a string or comment syntax item, then matches inside string and comment
syntax items are ignored. Any syntax items with "string" or "comment"
somewhere in their name are considered string or comment items.

The search is limited to avoid a delay when moving the cursor. The limits
are:
- What is visible in the window.
- 100 lines above or below the cursor to avoid a long delay when there are

closed folds.
- 'synmaxcol' times 2 bytes before or after the cursor to avoid a delay

in a long line with syntax highlighting.
- A timeout of 300 msec (60 msec in Insert mode). This can be changed with the

g:matchparen_timeout and g:matchparen_insert_timeout variables and their
buffer-local equivalents b:matchparen_timeout and
b:matchparen_insert_timeout.

If you would like the % command to work better, the matchit plugin can be
used, see matchit-install . This plugin also helps to skip matches in
comments. This is unrelated to the matchparen highlighting, they use a
different mechanism.

==

pi_paren.txt — 4325

pi_paren.txt — 4326

pi_spec.txt For Vim version 9.1. Last change: 2006 Apr 24

by Gustavo Niemeyer

This is a filetype plugin to work with rpm spec files.

Currently, this Vim plugin allows you to easily update the %changelog
section in RPM spec files. It will even create a section for you if it
doesn't exist yet. If you've already inserted an entry today, it will
give you the opportunity to just add a new item in today's entry. If you
don't provide a format string (spec_chglog_format), it'll ask you an
email address and build a format string by itself.

1. How to use it spec-how-to-use-it
2. Customizing spec-customizing

==
1. How to use it spec-how-to-use-it

The spec_chglog plugin provides a map like the following:

:map <buffer> <LocalLeader>c <Plug>SpecChangelog

It means that you may run the plugin inside a spec file by pressing
your maplocalleader key (default is '\') plus 'c'. If you do not have
spec_chglog_format set, the plugin will ask you for an email address

to use in this edit session.

Every time you run the plugin, it will check to see if the last entry in the
changelog has been written today and by you. If the entry matches, it will
just insert a new changelog item, otherwise it will create a new changelog
entry. If you are running with spec_chglog_release_info enabled, it will
also check if the name, version and release matches. The plugin is smart
enough to ask you if it should update the package release, if you have not
done so.

Setting a map spec-setting-a-map

As you should know, you can easily set a map to access any Vim command (or
anything, for that matter). If you don't like the default map of
<LocalLeader>c, you may just set up your own key. The following line
shows you how you could do this in your .vimrc file, mapping the plugin to
the <F5> key:

au FileType spec map <buffer> <F5> <Plug>SpecChangelog

Note: the plugin will respect your desire to change the default mapping
and won't set it.

This command will add a map only in the spec file buffers.

==
2. Customizing spec-customizing

The format string spec_chglog_format

You can easily customize how your spec file entry will look like. To do

pi_spec.txt — 4327

this just set the variable "spec_chglog_format" in your .vimrc file like
this:

let spec_chglog_format = "%a %b %d %Y My Name <my@email.com>"

Note that "%a %b %d %Y" is the most used time format. If you don't provide
a format string, when you run the SpecChangelog command for the first
time, it will ask you an email address and build the spec_chglog_format
variable for you. This way, you will only need to provide your email
address once.

To discover which format options you can use, take a look at the strftime()
function man page.

Where to insert new items spec_chglog_prepend

The plugin will usually insert new %changelog entry items (note that it's
not the entry itself) after the existing ones. If you set the
spec_chglog_prepend variable

let spec_chglog_prepend = 1

it will insert new items before the existing ones.

Inserting release info spec_chglog_release_info

If you want, the plugin may automatically insert release information
on each changelog entry. One advantage of turning this feature on is
that it may control if the release has been updated after the last
change in the package or not. If you have not updated the package
version or release, it will ask you if it should update the package
release for you. To turn this feature on, just insert the following
code in your .vimrc:

let spec_chglog_release_info = 1

Then, the first item in your changelog entry will be something like:

+ name-1.0-1cl

If you don't like the release updating feature and don't want to answer
"No" each time it detects an old release, you may disable it with

let spec_chglog_never_increase_release = 1

Good luck!!

pi_spec.txt — 4328

pi_tar.txt For Vim version 9.1. Last change: 2022 Oct 17

+====================+
| Tar File Interface |
+====================+

Author: Charles E. Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
(remove NOSPAM from Campbell's email first)

Copyright 2005-2017: tar-copyright
The VIM LICENSE (see copyright) applies to the files in this
package, including tarPlugin.vim, tar.vim, and pi_tar.txt. Like
anything else that's except use "tar.vim" instead of "VIM". Like
anything else that's free, tar.vim and its associated files are
provided *as is* and comes with no warranty of any kind, either
expressed or implied. No guarantees of merchantability. No
guarantees of suitability for any purpose. By using this plugin, you
agree that in no event will the copyright holder be liable for any
damages resulting from the use of this software. Use at your own risk!

==
1. Contents tar tar-contents

1. Contents.. tar-contents
2. Usage... tar-usage
3. Options... tar-options
4. History... tar-history

==
2. Usage tar-usage tar-manual

When one edits a *.tar file, this plugin will handle displaying a
contents page. Select a file to edit by moving the cursor atop
the desired file, then hit the <return> key. After editing, one may
also write to the file. Currently, one may not make a new file in
tar archives via the plugin.

:Vimuntar
VIMUNTAR

:Vimuntar [vimhome]

This command copies, if necessary, the tarball to the .vim or vimfiles
directory using the first writable directory in the 'runtimepath'
when no [vimhome] is specified. Otherwise, the [vimhome] argument
allows the user to specify that directory, instead.

The copy is done using the command in g:tar_copycmd , which is
cp for cygwin, unix, macunix
copy for windows (32, 95, 64, 16)

The extraction is done with the command specified with
g:tar_extractcmd , which by default is

"tar -xf"

:TarDiff
DIFFERENCING SUPPORT

:TarDiff [filename]

This command will attempt to show the differences between the tarball
version of a file and the associated file on the system. In order to
find that file on the system, the script uses the path associated with

pi_tar.txt — 4329

the file mentioned in the tarball. If the current directory is not
correct for that path, :TarDiff will fail to find the associated file.

If the [filename] is given, that that filename (and path) will be used
to specify the associated file.

PREVENTING LOADING

If for some reason you do not wish to use vim to examine tar'd files,
you may put the following two variables into your <.vimrc> to prevent
the tar plugin from loading:

let g:loaded_tarPlugin= 1
let g:loaded_tar = 1

==
3. Options tar-options

These options are variables that one may change, typically in one's
<.vimrc> file.

Default
Variable Value Explanation
g:tar_browseoptions "Ptf" used to get a list of contents
g:tar_readoptions "OPxf" used to extract a file from a tarball
g:tar_cmd "tar" the name of the tar program
g:tar_nomax 0 if true, file window will not be maximized
g:tar_secure undef if exists:

"--"s will be used to prevent unwanted
option expansion in tar commands.
Please be sure that your tar command
accepts "--"; Posix compliant tar
utilities do accept them.

if not exists:
The tar plugin will reject any tar
files or member files that begin with
"-"

Not all tar's support the "--" which is why
it isn't default.

g:tar_writeoptions "uf" used to update/replace a file

==
4. History tar-history

v31 Apr 02, 2017 * (klartext) reported that browsing encrypted
files in a zip archive created unencrypted
swap files. I am applying a similar fix
used on zip.vim to tar.vim: new buffers
are opened with :noswapfile .

May 16, 2017 * When the mouse option isn't empty, the
leftmouse can be used to select a file
in the tar-file listing.

v30 Apr 22, 2014 * .tgz files are ambiguous: they may have been
compressed with either gzip or bzip2. Tar.vim
disambiguates by using unix's "file" command.

Feb 18, 2016 * Changed =~ to =~# where appropriate
Feb 18, 2017 * Now also permits xz decompression

v28 Jun 23, 2011 * a few more decompression options (tbz tb2 txz)

pi_tar.txt — 4330

v27 May 31, 2011 * moved cygwin detection before g:tar_copycmd
handling

* inserted additional :keepj modifiers
* changed silent to sil! (:silent)

v26 Aug 09, 2010 * uses buffer-local instead of window variables
to hold tarfile name

* inserted keepj before 0d to protect jump list
v25 Jun 19, 2010 * (Jan Steffens) added support for xz

compression
v24 Apr 07, 2009 * :Untarvim command implemented

Sep 28, 2009 * Added lzma support
v22 Aug 08, 2008 * security fixes
v16 Jun 06, 2008 * tarfile:: used instead of tarfile: when

editing files inside tarballs. Fixes a
problem with tarballs called things like
c:\abc.tar. (tnx to Bill McCarthy)

v14 May 09, 2008 * arno caught a security bug
May 28, 2008 * various security improvements. Now requires

patch 299 which provides the fnameescape()
function

May 30, 2008 * allows one to view *.gz and *.bz2 files that
are in *.tar files.

v12 Sep 07, 2007 * &shq now used if not the empty string for
g:tar_shq

v10 May 02, 2006 * now using "redraw then echo" to show messages,
instead of "echo and prompt user"

v9 May 02, 2006 * improved detection of masquerading as tar file
v8 May 02, 2006 * allows editing of files that merely masquerade

as tar files
v7 Mar 22, 2006 * work on making tar plugin work across network

Mar 27, 2006 * g:tar_cmd now available for users to change
the name of the tar program to be used. By
default, of course, it's "tar".

v6 Dec 21, 2005 * writing to files not in directories caused
problems - fixed (pointed out by
Christian Robinson)

v5 Nov 22, 2005 * report option workaround installed
v3 Sep 16, 2005 * handles writing files in an archive back to

the archive
Oct 18, 2005 * <amatch> used instead of <afile> in autocmds
Oct 18, 2005 * handles writing to compressed archives
Nov 03, 2005 * handles writing tarfiles across a network

using netrw#NetWrite()
v2 * converted to use Vim7's new autoload feature

by Bram Moolenaar
v1 (original) * Michael Toren

(see http://michael.toren.net/code/)

==

pi_tar.txt — 4331

http://michael.toren.net/code/

pi_tar.txt — 4332

pi_vimball.txt For Vim version 9.1. Last change: 2016 Apr 11

Vimball Archiver

Author: Charles E. Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
(remove NOSPAM from Campbell's email first)

Copyright: (c) 2004-2015 by Charles E. Campbell Vimball-copyright
The VIM LICENSE (see copyright) applies to the files in this
package, including vimballPlugin.vim, vimball.vim, and pi_vimball.txt.
except use "vimball" instead of "VIM". Like anything else that's free,
vimball.vim and its associated files are provided *as is* and comes with
no warranty of any kind, either expressed or implied. No guarantees
of merchantability. No guarantees of suitability for any purpose. By
using this plugin, you agree that in no event will the copyright
holder be liable for any damages resulting from the use of this
software. Use at your own risk!

==
1. Contents vba vimball vimball-contents

1. Contents......................................: vimball-contents
2. Vimball Introduction..........................: vimball-intro
3. Vimball Manual................................: vimball-manual

MkVimball.....................................: :MkVimball
UseVimball....................................: :UseVimball
RmVimball.....................................: :RmVimball

4. Vimball History...............................: vimball-history

==
2. Vimball Introduction vimball-intro

Vimball is intended to make life simpler for users of plugins. All
a user needs to do with a vimball is:

vim someplugin.vba
:so %
:q

and the plugin and all its components will be installed into their
appropriate directories. Note that one doesn't need to be in any
particular directory when one does this. Plus, any help for the
plugin will also be automatically installed.

If a user has decided to use the AsNeeded plugin, vimball is smart
enough to put scripts nominally intended for .vim/plugin/ into
.vim/AsNeeded/ instead.

Removing a plugin that was installed with vimball is really easy:
vim
:RmVimball someplugin

This operation is not at all easy for zips and tarballs, for example.

Vimball examines the user's 'runtimepath' to determine where to put
the scripts. The first directory mentioned on the runtimepath is
usually used if possible. Use

:echo &rtp
to see that directory.

pi_vimball.txt — 4333

==
3. Vimball Manual vimball-manual

MAKING A VIMBALL :MkVimball
:[range]MkVimball[!] filename [path]

The range is composed of lines holding paths to files to be included
in your new vimball, omitting the portion of the paths that is
normally specified by the runtimepath ('rtp'). As an example:

plugin/something.vim
doc/something.txt

using
:[range]MkVimball filename

on this range of lines will create a file called "filename.vba" which
can be used by Vimball.vim to re-create these files. If the
"filename.vba" file already exists, then MkVimball will issue a
warning and not create the file. Note that these paths are relative
to your .vim (vimfiles) directory, and the files should be in that
directory. The vimball plugin normally uses the first 'runtimepath'
directory that exists as a prefix; don't use absolute paths, unless
the user has specified such a path.

If you use the exclamation point (!), then MkVimball will create the
"filename.vba" file, overwriting it if it already exists. This
behavior resembles that for :w .

If you wish to force slashes into the filename, that can also be done
by using the exclamation mark (ie. :MkVimball! path/filename).

The tip at http://vim.wikia.com/wiki/Using_VimBall_with_%27Make%27
has a good idea on how to automate the production of vimballs using
make.

MAKING DIRECTORIES VIA VIMBALLS g:vimball_mkdir

First, the mkdir() command is tried (not all systems support it).

If it doesn't exist, then if g:vimball_mkdir doesn't exist, it is set
as follows:

|g:netrw_localmkdir|, if it exists
"mkdir" , if it is executable
"makedir" , if it is executable
Otherwise , it is undefined.

One may explicitly specify the directory making command using
g:vimball_mkdir. This command is used to make directories that
are needed as indicated by the vimball.

CONTROLLING THE VIMBALL EXTRACTION DIRECTORY g:vimball_home

You may override the use of the 'runtimepath' by specifying a
variable, g:vimball_home.

vimball-extract
vim filename.vba

Simply editing a Vimball will cause Vimball.vim to tell the user to
source the file to extract its contents.

pi_vimball.txt — 4334

http://vim.wikia.com/wiki/Using_VimBall_with_%27Make%27

Extraction will only proceed if the first line of a putative vimball
file holds the "Vimball Archiver by Charles E. Campbell" line.

LISTING FILES IN A VIMBALL :VimballList

:VimballList

This command will tell Vimball to list the files in the archive, along
with their lengths in lines.

MANUALLY INVOKING VIMBALL EXTRACTION :UseVimball

:UseVimball [path]

This command is contained within the vimball itself; it invokes the
vimball#Vimball() routine which is responsible for unpacking the
vimball. One may choose to execute it by hand instead of sourcing
the vimball; one may also choose to specify a path for the
installation, thereby overriding the automatic choice of the first
existing directory on the 'runtimepath' .

REMOVING A VIMBALL :RmVimball

:RmVimball vimballfile [path]

This command removes all files generated by the specified vimball
(but not any directories it may have made). One may choose a path
for de-installation, too (see 'runtimepath'); otherwise, the
default is the first existing directory on the 'runtimepath' .
To implement this, a file (.VimballRecord) is made in that directory
containing a record of what files need to be removed for all vimballs
used thus far.

PREVENTING LOADING

If for some reason you don't want to be able to extract plugins
using vimballs: you may prevent the loading of vimball.vim by
putting the following two variables in your <.vimrc>:

let g:loaded_vimballPlugin= 1
let g:loaded_vimball = 1

WINDOWS vimball-windows

Many vimball files are compressed with gzip. Windows, unfortunately,
does not come provided with a tool to decompress gzip'ped files.
Fortunately, there are a number of tools available for Windows users
to un-gzip files:

Item Tool/Suite Free Website
---- ---------- ---- -------
7zip tool y http://www.7-zip.org/
Winzip tool n http://www.winzip.com/downwz.htm
unxutils suite y http://unxutils.sourceforge.net/
cygwin suite y http://www.cygwin.com/
GnuWin32 suite y http://gnuwin32.sourceforge.net/
MinGW suite y http://www.mingw.org/

pi_vimball.txt — 4335

==
4. Vimball History vimball-history {{{1

37 : Jul 18, 2014 * (by request of T. Miedema) added augroup around
the autocmds in vimballPlugin.vim

Jul 06, 2015 * there are two uses of tabc; changed to tabc!
34 : Sep 22, 2011 * "UseVimball path" now supports a non-full path by

prepending the current directory to it.
33 : Apr 02, 2011 * Gave priority to *.vmb over *.vba

* Changed silent! to sil! (shorter)
* Safed 'swf' setting (during vimball extraction,

its now turned off)
32 : May 19, 2010 * (Christian Brabrandt) :so someplugin.vba and

:so someplugin.vba.gz (and the other supported
compression types) now works

* (Jan Steffens) added support for xz compression
* fenc extraction was erroneously picking up the

end of the line number when no file encoding
was present. Fixed.

* By request, beginning the switchover from the vba
extension to vmb. Currently both are supported;
MkVimball, however, now will create *.vmb files.

Feb 11, 2011 * motoyakurotsu reported an error with vimball's
handling of zero-length files

Feb 18, 2016 * Changed =~ to =~# where appropriate
30 : Dec 08, 2008 * fnameescape() inserted to protect error

messaging using corrupted filenames from
causing problems

* RmVimball supports filenames that would
otherwise be considered to have "magic"
characters (ie. Abc[1].vba)

Feb 18, 2009 * s:Escape(), g:vimball_shq, and g:netrw_shq
removed (shellescape() used directly)

Oct 05, 2009 * (Nikolai Weibull) suggested that MkVimball
be allowed to use slashes in the filename.

26 : May 27, 2008 * g:vimball_mkdir usage installed. Makes the
$HOME/.vim (or $HOME\vimfiles) directory if
necessary.

May 30, 2008 * (tnx to Bill McCarthy) found and fixed a bug:
vimball wasn't updating plugins to AsNeeded/
when it should

25 : Mar 24, 2008 * changed vimball#Vimball() to recognize doc/*.??x
files as help files, too.

Apr 18, 2008 * RmVimball command is now protected by saving and
restoring settings -- in particular, acd was
causing problems as reported by Zhang Shuhan

24 : Nov 15, 2007 * g:vimball_path_escape used by s:Path() to
prevent certain characters from causing trouble
(defunct: fnameescape() and shellescape()
now used instead)

22 : Mar 21, 2007 * uses setlocal instead of set during BufEnter
21 : Nov 27, 2006 * (tnx to Bill McCarthy) vimball had a header

handling problem and it now changes \s to /s
20 : Nov 20, 2006 * substitute() calls have all had the 'e' flag

removed.
18 : Aug 01, 2006 * vimballs now use folding to easily display their

contents.
* if a user has AsNeeded/somefile, then vimball

will extract plugin/somefile to the AsNeeded/
directory

pi_vimball.txt — 4336

17 : Jun 28, 2006 * changes all \s to /s internally for Windows
16 : Jun 15, 2006 * A. Mechelynck's idea to allow users to specify

installation root paths implemented for
UseVimball, MkVimball, and RmVimball.

* RmVimball implemented
15 : Jun 13, 2006 * bugfix
14 : May 26, 2006 * bugfixes
13 : May 01, 2006 * exists("&acd") used to determine if the acd

option exists
12 : May 01, 2006 * bugfix - the 'acd' option is not always defined
11 : Apr 27, 2006 * VimballList would create missing subdirectories that

the vimball specified were needed. Fixed.
10 : Apr 27, 2006 * moved all setting saving/restoration to a pair of

functions. Included some more settings in them
which frequently cause trouble.

9 : Apr 26, 2006 * various changes to support Windows' predilection
for backslashes and spaces in file and directory
names.

7 : Apr 25, 2006 * bypasses foldenable
* uses more exe and less norm! (:yank :put etc)
* does better at insuring a "Press ENTER" prompt

appears to keep its messages visible
4 : Mar 31, 2006 * BufReadPost seems to fire twice; BufReadEnter

only fires once, so the "Source this file..."
message is now issued only once.

3 : Mar 20, 2006 * removed query, now requires sourcing to be
extracted (:so %). Message to that effect
included.

* :VimballList now shows files that would be
extracted.

2 : Mar 20, 2006 * query, :UseVimball included
1 : Mar 20, 2006 * initial release

==

pi_vimball.txt — 4337

pi_vimball.txt — 4338

pi_zip.txt For Vim version 9.1. Last change: 2023 Nov 05

+====================+
| Zip File Interface |
+====================+

Author: Charles E. Campbell <NcampObell@SdrPchip.AorgM-NOSPAM>
(remove NOSPAM from Campbell's email first)

Copyright: Copyright (C) 2005-2015 Charles E Campbell zip-copyright
The VIM LICENSE (see copyright) applies to the files in this
package, including zipPlugin.vim, zip.vim, and pi_zip.vim. except use
"zip.vim" instead of "VIM". Like anything else that's free, zip.vim
and its associated files are provided *as is* and comes with no
warranty of any kind, either expressed or implied. No guarantees of
merchantability. No guarantees of suitability for any purpose. By
using this plugin, you agree that in no event will the copyright
holder be liable for any damages resulting from the use of this
software. Use at your own risk!

==
1. Contents zip zip-contents

1. Contents.. zip-contents
2. Usage... zip-usage
3. Additional Extensions................................... zip-extension
4. History... zip-history

==
2. Usage zip-usage zip-manual

When one edits a *.zip file, this plugin will handle displaying a
contents page. Select a file to edit by moving the cursor atop
the desired file, then hit the <return> key. After editing, one may
also write to the file. Currently, one may not make a new file in
zip archives via the plugin.

COMMANDS
zip-x

x : extract a listed file when the cursor is atop it

OPTIONS

g:zip_nomax

If this variable exists and is true, the file window will not be
automatically maximized when opened.

g:zip_shq
Different operating systems may use one or more shells to execute
commands. Zip will try to guess the correct quoting mechanism to
allow spaces and whatnot in filenames; however, if it is incorrectly
guessing the quote to use for your setup, you may use

g:zip_shq
which by default is a single quote under Unix (') and a double quote
under Windows ("). If you'd rather have no quotes, simply set
g:zip_shq to the empty string (let g:zip_shq= "") in your <.vimrc>.

g:zip_unzipcmd
Use this option to specify the program which does the duty of "unzip".
It's used during browsing. By default:

let g:zip_unzipcmd= "unzip"

pi_zip.txt — 4339

g:zip_zipcmd
Use this option to specify the program which does the duty of "zip".
It's used during the writing (updating) of a file already in a zip
file; by default:

let g:zip_zipcmd= "zip"

g:zip_extractcmd
This option specifies the program (and any options needed) used to
extract a file from a zip archive. By default,

let g:zip_extractcmd= g:zip_unzipcmd

g:zip_exec
For security reasons, one may prevent that Vim runs executables
automatically when opening a buffer. This option (default: "1")
can be used to prevent executing the "unzip" command when set to
"0":

let g:zip_exec=0

PREVENTING LOADING

If for some reason you do not wish to use vim to examine zipped files,
you may put the following two variables into your <.vimrc> to prevent
the zip plugin from loading:

let g:loaded_zipPlugin= 1
let g:loaded_zip = 1

==
3. Additional Extensions zip-extension

Apparently there are a number of archivers which generate zip files that
don't use the .zip extension (.jar, .xpi, etc). To handle such files,
place a line in your <.vimrc> file:

au BufReadCmd *.jar,*.xpi call zip#Browse(expand("<amatch>"))

One can simply extend this line to accommodate additional extensions that
should be treated as zip files.

Alternatively, one may change g:zipPlugin_ext in one's .vimrc.
Currently (11/30/15) it holds:

let g:zipPlugin_ext= '*.zip,*.jar,*.xpi,*.ja,*.war,*.ear,*.celzip,
\ *.oxt,*.kmz,*.wsz,*.xap,*.docx,*.docm,*.dotx,*.dotm,*.potx,*.potm,
\ *.ppsx,*.ppsm,*.pptx,*.pptm,*.ppam,*.sldx,*.thmx,*.xlam,*.xlsx,*.xlsm,
\ *.xlsb,*.xltx,*.xltm,*.xlam,*.crtx,*.vdw,*.glox,*.gcsx,*.gqsx,*.epub'

==
4. History zip-history {{{1

v33 Dec 07, 2021 * *.xlam mentioned twice in zipPlugin
v32 Oct 22, 2021 * to avoid an issue with a vim 8.2 patch, zipfile: has

been changed to zipfile:// . This often shows up
as zipfile:/// with zipped files that are root-based.

v29 Apr 02, 2017 * (Klartext) reported that an encrypted zip file could
opened but the swapfile held unencrypted contents.
The solution is to edit the contents of a zip file
using the :noswapfile modifier.

v28 Oct 08, 2014 * changed the sanity checks for executables to reflect

pi_zip.txt — 4340

the command actually to be attempted in zip#Read()
and zip#Write()

* added the extraction of a file capability
Nov 30, 2015 * added *.epub to the g:zipPlugin_ext list
Sep 13, 2016 * added *.apk to the g:zipPlugin_ext list and

sorted the suffices.
v27 Jul 02, 2013 * sanity check: zipfile must have "PK" as its first

two bytes.
* modified to allow zipfile: entries in quickfix lists

v26 Nov 15, 2012 * (Jason Spiro) provided a lot of new extensions that
are synonyms for .zip

v25 Jun 27, 2011 * using keepj with unzip -Z
(consistent with the -p variant)

* (Ben Staniford) now uses
has("win32unix") && executable("cygpath")

before converting to cygwin-style paths
v24 Jun 21, 2010 * (Cédric Bosdonnat) unzip seems to need its filenames

fnameescape'd as well as shellquote'd
* (Motoya Kurotsu) inserted keepj before 0d to protect

jump list
v17 May 09, 2008 * arno caught a security bug
v15 Sep 07, 2007 * &shq now used if not the empty string for g:zip_shq
v14 May 07, 2007 * using b:zipfile instead of w:zipfile to avoid problem

when editing alternate file to bring up a zipfile
v10 May 02, 2006 * now using "redraw then echo" to show messages, instead

of "echo and prompt user"
* g:zip_shq provided to allow for quoting control for the

command being passed via :r! ... commands.
v8 Apr 10, 2006 * Bram Moolenaar reported that he received an error message

due to "Pattern not found: ^.*\%0c"; this was caused by
stridx finding a Name... at the beginning of the line;
zip.vim tried 4,$s/^.*\%0c//, but that doesn't work.
Fixed.

v7 Mar 22, 2006 * escaped some characters that can cause filename handling
problems.

v6 Dec 21, 2005 * writing to files not in directories caused problems -
fixed (pointed out by Christian Robinson)

v5 Nov 22, 2005 * report option workaround installed
v3 Oct 18, 2005 * <amatch> used instead of <afile> in autocmds
v2 Sep 16, 2005 * silenced some commands (avoiding hit-enter prompt)

* began testing under Windows; works thus far
* filetype detection fixed

Nov 03, 2005 * handles writing zipfiles across a network using
netrw#NetWrite()

v1 Sep 15, 2005 * Initial release, had browsing, reading, and writing

==

pi_zip.txt — 4341

pi_zip.txt — 4342

sponsor.txt For Vim version 9.1. Last change: 2023 Mar 24

VIM REFERENCE MANUAL by Bram Moolenaar

SPONSOR VIM DEVELOPMENT sponsor

Fixing bugs and adding new features takes a lot of time and effort. To show
your appreciation for the work and motivate Bram and others to continue
working on Vim please send a donation.

Since Bram does not need the money it will be used to help children in Uganda,
see uganda . Donations increase Bram's motivation to keep working on Vim!

For the most recent information about sponsoring look on the Vim web site:

http://www.vim.org/sponsor/

More explanations can be found in the sponsor-faq .

REGISTERED VIM USER register

You can become a registered Vim user by sending at least 10 euro. This works
similar to sponsoring Vim, see sponsor above. Registration was made
possible for the situation where your boss or bookkeeper may be willing to
register software, but does not like the terms "sponsoring" and "donation".

More explanations can be found in the register-faq .

VOTE FOR FEATURES vote-for-features

To give registered Vim users and sponsors an advantage over lurkers they can
vote for the items Bram should work on. How does this voting work?

1. You send at least 10 euro. See below for ways to transfer money
send-money .

2. You will be e-mailed a registration key. Enter this key on your account
page on the Vim website. You can easily create an account if you don't
have one yet.

3. You can enter your votes on the voting page. There is a link to that page
on your account page after entering a registration key. Your votes will
be counted for two years.

4. The voting results appear on the results page, which is visible for
everybody: http://www.vim.org/sponsor/vote_results.php

Additionally, once you have sent 100 euro or more in total, your name appears
in the "Vim hall of honour": http://www.vim.org/sponsor/hall_of_honour.php
But only if you enable this on your account page.

HOW TO SEND MONEY send-money

Credit card Through PayPal, see the PayPal site for information:

sponsor.txt — 4343

http://www.vim.org/sponsor/
http://www.vim.org/sponsor/vote_results.php
http://www.vim.org/sponsor/hall_of_honour.php

https://www.paypal.com/
The e-mail address for sending sponsorship money is:

donate@vim.org
The e-mail address for Vim registration is:

register@vim.org
Using Euro is preferred, other currencies are also accepted.
In Euro countries a bank transfer is preferred, this has lower
costs.

Other methods See iccf-donations .
Include "Vim sponsor" or "Vim registration" in the comment of
your money transfer. Send me an e-mail that mentions the
amount you transferred if you want to vote for features and
show others you are a registered Vim user or sponsor.

QUESTIONS AND ANSWERS sponsor-faq register-faq

Why should I give money?

If you do not show your appreciation for Vim then Bram will be less motivated
to fix bugs and add new features. He will do something else instead.

How much money should I send?

That is up to you. The more you give, the more children will be helped.
An indication for individuals that use Vim at home: 10 Euro per year. For
professional use: 30 Euro per year per person. Send at least 10 euro to be
able to vote for features.

What do I get in return?

Each registered Vim user and sponsor who donates at least 10 euro will be able
to vote for new features. These votes will give priority to the work on Vim.
The votes are valid for two years. The more money you send the more your
votes count votes-counted .

If you send 100 Euro or more in total you will be mentioned on the "Vim hall
of honour" page on the Vim web site. But only if you enable this on your
account page. You can also select whether the amount will be visible.

How do I become a Vim sponsor or registered Vim user?

Send money, as explained above send-money and include your e-mail address.
When the money has been received you will receive a unique registration key.
This key can be used on the Vim website to activate voting on your Vim
account. You will then get an extra page where you can vote for features and
choose whether others will be able to see that you donated. There is a link
to this page on your "My Account" page.

What is the difference between sponsoring and registering?

It has a different name. Use the term "registration" if your boss doesn't
like "sponsoring" or "donation". The benefits are the same.

sponsor.txt — 4344

https://www.paypal.com/

How can I send money?

See send-money . Check the web site for the most recent information:
http://www.vim.org/sponsor/

Why don't you use the SourceForge donation system?

SourceForge takes 5% of the donations for themselves. If you want to support
SourceForge you can send money to them directly.

I cannot afford to send money, may I still use Vim?

Yes.

I did not register Vim, can I use all available features?

Yes.

I noticed a bug, do I need to register before I can report it?

No, suggestions for improving Vim can always be given. For improvements use
the developer maillist , for reporting bugs see bugs .

How are my votes counted? votes-counted

You may vote when you send 10 euro or more. You can enter up to ten votes.
You can select the same item several times to give it more points. You can
also enter three counter votes, these count as negative points.

When you send 30 euro or more the points are doubled. Above 100 euro they
count four times, above 300 euro they count six times, above 1000 euro ten
times.

Can I change my votes?

You can change your votes any time you like, up to two years after you
sent money. The points will be counted right away.

Can I add an item to vote on?

Not directly. You can suggest items to vote on to Bram. He will consider
fitting your item into the list.

How about Charityware?

Currently the Vim donations go to uganda anyway. Thus it doesn't matter if
you sponsor Vim or ICCF. Except that Vim sponsoring will allow you to vote
for features.

I donated $$$, now please add feature XYZ!

sponsor.txt — 4345

http://www.vim.org/sponsor/

There is no direct relation between your donation and the work Bram does.
Otherwise you would be paying for work and we would have to pay tax over the
donation. If you want to hire Bram for specific work, contact him directly,
don't use the donation system.

Are the donations tax deductible?

That depends on your country. The donations to help the children in Uganda
are tax deductible in Holland, Germany, Canada and in the USA. See the ICCF
website http://iccf-holland.org/donate.html. You must send an e-mail to Bram
to let him know that the donation is done because of the use of Vim.

Can you send me a bill?

No, because there is no relation between the money you send and the work that
is done. But a receipt is possible.

sponsor.txt — 4346

http://iccf-holland.org/donate.html

vim_faq.txt Frequently Asked Questions

Last updated on: 12 December 2019

VIM FAQ by: Christian Brabandt <cb@256bit.org>

Frequently Asked Questions vim-faq Vim-FAQ

This Vim FAQ is created from the questions and answers posted to the
vim@vim.org user mailing list and the comp.editors newsgroup. There are
several ways to solve a problem in Vim. This FAQ gives one of those several
possibilities. You can explore the other ways using the information and
links given in this FAQ. The credit for the answers in this FAQ goes to
Peppe, Benji, Charles Campbell and numerous others. An online version of
this FAQ is available at https://vimhelp.org/vim_faq.txt.html

faq-index
INDEX

faq-general-information
SECTION 1 - GENERAL INFORMATION
faq-1.1 What is Vim?
faq-1.2 Who wrote Vim?
faq-1.3 Is Vim compatible with Vi?
faq-1.4 What are some of the improvements of Vim over Vi?
faq-1.5 Is Vim free?

faq-resources
SECTION 2 - RESOURCES
faq-2.1 Where can I learn more about Vim?
faq-2.2 Is there a mailing list available?
faq-2.3 Is there an archive available for the Vim mailing lists?
faq-2.4 Where can I get the Vim user manual in HTML/PDF/PS format?
faq-2.5 I have a "xyz" (some) problem with Vim. How do I determine if it is

a problem with my setup or with Vim?
faq-2.6 Where can I report bugs?
faq-2.7 Where can the FAQ be found?
faq-2.8 What if I don't find an answer in this FAQ?
faq-2.9 I have a patch for implementing a Vim feature. Where do I send the

patch?
faq-2.10 I have a Vim tip or developed a new Vim

syntax/indent/filetype/compiler plugin or developed a new script
or a colorscheme. Is there a public website where I can upload
this?

faq-availability
SECTION 3 - AVAILABILITY
faq-3.1 What is the latest version of Vim?
faq-3.2 Where can I find the latest version of Vim?
faq-3.3 What platforms does it run on?
faq-3.4 Where can I download the latest version of the Vim runtime files?

faq-help
SECTION 4 - HELP
faq-4.1 How do I use the help files?
faq-4.2 How do I search for a keyword in the Vim help files?
faq-4.3 I am getting an error message E123, what did I do wrong?
faq-4.4 Where can I read about the various modes in Vim?
faq-4.5 How do I generate the Vim help tags file after adding a new Vim

help file?
faq-4.6 Can I use compressed versions of the help files?

faq-editing-a-file
SECTION 5 - EDITING A FILE
faq-5.1 How do I load a file in Vim for editing?
faq-5.2 How do I save the current file in another name (save as) and edit

vim_faq.txt — 4347

https://vimhelp.org/vim_faq.txt.html

a new file?
faq-5.3 How do I change the current directory to the directory of the

current file?
faq-5.4 How do I write a file without the line feed (EOL) at the end of

the file?
faq-5.5 How do I configure Vim to open a file at the last edited location?
faq-5.6 When editing a file in Vim, which is being changed by an external

application, Vim opens a warning window (like the confirm dialog)
each time a change is detected. How do I disable this warning?

faq-5.7 How do I edit a file whose name is under the cursor?
faq-5.8 How do I reload/re-edit the current file?
faq-5.9 How do I autosave a file periodically?
faq-5.10 How do I open a file in read-only mode?
faq-5.11 How do I open a file for editing without saving the modifications

to the current file?
faq-5.12 How do I reduce the loading time for very large files in Vim?

faq-editing-multiple-files
SECTION 6 - EDITING MULTIPLE FILES
faq-6.1 How do I open multiple files at once from within Vim?
faq-6.2 How do I switch between multiple files/buffers in Vim?
faq-6.3 How do I open several files in Vim, with each file in a separate

window/tabpage?
faq-6.4 How do I configure Vim to autoload several files at once similar

to "work-sets" or "projects"?
faq-6.5 Is it possible to open multiple top level windows in a single

instance of Vim similar to Nedit or emacs?
faq-6.6 How do I browse/explore directories from within Vim?
faq-6.7 How do I edit files over a network using ftp/scp/rcp/http?

faq-backup
SECTION 7 - BACKUP
faq-7.1 When I edit and save files, Vim creates a file with the same name

as the original file and a "~" character at the end. How do I stop
Vim from creating this file (or) How do I disable the Vim backup
file feature?

faq-7.2 When I edit and save files, Vim creates a file with the same name
as the original file and a ".un~" extension at the end. How do I
stop Vim from creating this file (or) How do I disable the Vim
undofile feature.

faq-7.3 How do I configure Vim to store all the backup files in a
particular directory?

faq-7.4 When I save a file with Vim, the file permissions are changed.
How do I configure Vim to save a file without changing the file
permissions?

faq-buffers
SECTION 8 - BUFFERS
faq-8.1 I have made some modifications to a buffer. How do I edit another

buffer without saving the modified buffer and also without losing
the modifications?

faq-8.2 How do I configure Vim to auto-save a modified buffer when
switching to another buffer?

faq-8.3 How do I replace the buffer in the current window with a blank
buffer?

faq-8.4 Is there a keyboard shortcut to load a buffer by the buffer
number?

faq-8.5 How do I open all the current buffers in separate windows?
faq-8.6 How do I close (delete) a buffer without exiting Vim?
faq-8.7 When I use the command `:%bd` to delete all the buffers, not all

the buffers are deleted. Why?
faq-8.8 How do I display the buffer number of the current buffer/file?
faq-8.9 How do I delete a buffer without closing the window in which the

vim_faq.txt — 4348

buffer is displayed?
faq-8.10 How do I map the <Tab> key to cycle through and open all the

buffers?
faq-windows

SECTION 9 - WINDOWS
faq-9.1 What is the difference between a Vim window and a buffer?
faq-9.2 How do I increase the width of a Vim window?
faq-9.3 How do I zoom into or out of a window?
faq-9.4 How do I execute an ex command on all the open buffers or open

windows or all the files in the argument list?
faq-motion

SECTION 10 - MOTION
faq-10.1 How do I jump to the beginning (first line) or end (last line) of

a file?
faq-10.2 In insert mode, when I press the <Esc> key to go to command mode,

the cursor moves one character to the left (except when the
cursor is on the first character of the line). Is it possible to
change this behavior to keep the cursor at the same column?

faq-10.3 How do I configure Vim to maintain the horizontal cursor position
when scrolling with the <Page Up>, <Page Down>, etc keys?

faq-10.4 Some lines in a file are more than the screen width and they are
all wrapped. When I use the j, k keys to move from one line to
the next, the cursor is moved to the next line in the file
instead of the next line on the screen. How do I move from one
screen line to the next?

faq-10.5 What is the definition of a sentence, paragraph and section in
Vim?

faq-10.6 How do I jump to beginning or end of a sentence, paragraph or a
section?

faq-10.7 I have lines in a file that extends beyond the right extent of the
screen. How do I move the Vim view to the right to see the text
off the screen?

faq-10.8 How do I scroll two or more buffers simultaneously?
faq-10.9 When I use my arrow keys, Vim changes modes, inserts weird

characters in my document but doesn't move the cursor properly.
What's going on?

faq-10.10 How do I configure Vim to move the cursor to the end of the
previous line, when the left arrow key is pressed and the cursor
is currently at the beginning of a line?

faq-10.11 How do I configure Vim to stay only in insert mode (modeless
editing)?

faq-10.12 How do I display some context lines when scrolling text?
faq-10.13 How do I go back to previous cursor locations?

faq-searching-text
SECTION 11 - SEARCHING TEXT
faq-11.1 After I searched for a text with a pattern, all the matched text

stays highlighted. How do I turn off the highlighting
temporarily/permanently?

faq-11.2 How do I enter a carriage return character in a search pattern?
faq-11.3 How do I search for the character "^M"?
faq-11.4 How can I search/replace characters that display as "~R", "~S",

etc.?
faq-11.5 How do I highlight all the non-printable characters in a file?
faq-11.6 How do I search for whole words in a file?
faq-11.7 How do I search for the current word under the cursor?
faq-11.8 How do I search for a word without regard to the case (uppercase

or lowercase)?
faq-11.9 How do I search for words that occur twice consecutively?
faq-11.10 How do I count the number of times a particular word occurs in a

buffer?

vim_faq.txt — 4349

faq-11.11 How do I place the cursor at the end of the matched word when
searching for a pattern?

faq-11.12 How do I search for an empty line?
faq-11.13 How do I search for a line containing only a single character?
faq-11.14 How do I search and replace a string in multiple files?
faq-11.15 I am using the `:s` substitute command in a mapping. When a

search for a pattern fails, the map terminates. I would like the
map to continue processing the next command, even if the
substitute command fails. How do I do this?

faq-11.16 How do I search for the n-th occurrence of a character in a
line?

faq-11.17 How do I replace a tab (or any other character) with a hard
return (newline) character?

faq-11.18 How do I search for a character by its ASCII value?
faq-11.19 How do I search for long lines?
faq-11.20 How do I display all the lines in the current buffer that

contain a specified pattern?
faq-11.21 How do I search for a text string that spans multiple lines?
faq-11.22 How do I search for a pattern only within a range of lines

in a buffer?
faq-11.23 How do I clear the last searched pattern?
faq-11.24 Why does this pattern "a.\{-}p\@!" not match?
faq-11.25 How can I use "/" within a pattern, without escaping it?
faq-11.26 How can I operate on a search match?

faq-changing-text
SECTION 12 - CHANGING TEXT
faq-12.1 How do I delete all the trailing white space characters (SPACE

and TAB) at the end of all the lines in a file?
faq-12.2 How do I replace all the occurrences of multiple consecutive

space characters to a single space?
faq-12.3 How do I reduce a range of empty lines into one line only?
faq-12.4 How do I delete all blank lines in a file? How do I remove all

the lines containing only space characters?
faq-12.5 How do I copy/yank the current word?
faq-12.6 How do I yank text from one position to another position within a

line, without yanking the entire line?
faq-12.7 When I yank some text into a register, how do I append the text

to the current contents of the register?
faq-12.8 How do I yank a complete sentence that spans over more than one

line?
faq-12.9 How do I yank all the lines containing a pattern into a buffer?
faq-12.10 How do I delete all the lines in a file that do not contain a

pattern?
faq-12.11 How do I add a line before each line with "pattern" in it?
faq-12.12 Is there a way to operate on a line if the previous line

contains a particular pattern?
faq-12.13 How do I execute a command on all the lines containing a

pattern?
faq-12.14 Can I copy the character above the cursor to the current cursor

position?
faq-12.15 How do I insert a blank line above/below the current line

without entering insert mode?
faq-12.16 How do I insert the name of the current file into the current

buffer?
faq-12.17 How do I insert the contents of a Vim register into the current

buffer?
faq-12.18 How do I move the cursor past the end of line and insert some

characters at some columns after the end of the line?
faq-12.19 How to replace the word under the cursor (say: junk) with

"foojunkbar" in Vim?

vim_faq.txt — 4350

faq-12.20 How do I replace a particular text in all the files in a
directory?

faq-12.21 I have some numbers in a file. How do I increment or decrement
the numbers in the file?

faq-12.22 How do I reuse the last used search pattern in a `:substitute`
command?

faq-12.23 How do I change the case of a string using the `:substitute`
command?

faq-12.24 How do I enter characters that are not present in the keyboard?
faq-12.25 Is there a command to remove any or all digraphs?
faq-12.26 In insert mode, when I press the backspace key, it erases only

the characters entered in this instance of insert mode. How do I
erase previously entered characters in insert mode using the
backspace key?

faq-12.27 I have a file which has lines longer than 72 characters
terminated with "+" and wrapped to the next line. How can I
quickly join the lines?

faq-12.28 How do I paste characterwise yanked text into separate lines?
faq-12.29 How do I change the case (uppercase, lowercase) of a word or

a character or a block of text?
faq-12.30 How do I enter ASCII characters that are not present in the

keyboard?
faq-12.31 How do I replace non-printable characters in a file?
faq-12.32 How do I remove duplicate lines from a buffer?
faq-12.33 How do I prefix all the lines in a file with the corresponding

line numbers?
faq-12.34 How do I exchange (swap) two characters or words or lines?
faq-12.35 How do I change the characters used as word delimiters?

faq-completion-in-insert-mode
SECTION 13 - COMPLETION IN INSERT MODE
faq-13.1 How do I complete words or lines in insert mode?
faq-13.2 How do I complete file names in insert mode?
faq-13.3 I am using CTRL-P/CTRL-N to complete words in insert mode. How do

I complete words that occur after the just completed word?
faq-text-formatting

SECTION 14 - TEXT FORMATTING
faq-14.1 How do I format a text paragraph so that a new line is inserted

at the end of each wrapped line?
faq-14.2 How do I format long lines in a file so that each line contains

less than "n" characters?
faq-14.3 How do I join short lines to the form a paragraph?
faq-14.4 How do I format bulleted and numbered lists?
faq-14.5 How do I indent lines in insert mode?
faq-14.6 How do I format/indent an entire file?
faq-14.7 How do I increase or decrease the indentation of the current

line?
faq-14.8 How do I indent a block/group of lines?
faq-14.9 When I indent lines using the > or < key, the standard 8-tabstops

are used instead of the current 'tabstop' setting. Why?
faq-14.10 How do I turn off the automatic indentation of text?
faq-14.11 How do I configure Vim to automatically set the 'textwidth'

option to a particular value when I edit mails?
faq-14.12 Is there a way to make Vim auto-magically break lines?
faq-14.13 I am seeing a lot of ^M symbols in my file. I tried setting the

'fileformat' option to 'dos' and then 'unix' and then 'mac'.
None of these helped. How can I hide these symbols?

faq-14.14 When I paste some text into a Vim buffer from another
application, the alignment (indentation) of the new text is
messed up. How do I fix this?

faq-14.15 When there is a very long wrapped line (wrap is "on") and a line

vim_faq.txt — 4351

doesn't fit entirely on the screen it is not displayed at all.
There are blank lines beginning with "@" symbol instead of
wrapped line. If I scroll the screen to fit the line the "@"
symbols disappear and the line is displayed again. What Vim
setting control this behavior?

faq-14.16 How do I convert all the tab characters in a file to space
characters?

faq-14.17 What Vim options can I use to edit text that will later go to a
word processor?

faq-14.18 How do I join lines without adding or removing any space
characters?

faq-visual-mode
SECTION 15 - VISUAL MODE
faq-15.1 How do I do rectangular block copying?
faq-15.2 How do I delete or change a column of text in a file?
faq-15.3 How do I apply an ex-command on a set of visually selected lines?
faq-15.4 How do I execute an ex command on a column of text selected in

Visual block mode?
faq-15.5 How do I select the entire file in visual mode?
faq-15.6 When I visually select a set of lines and press the > key to

indent the selected lines, the visual mode ends. How can I
reselect the region for further operation? (or) How do I
re-select the last selected visual area again?

faq-15.7 How do I jump to the beginning/end of a visually selected region?
faq-15.8 When I select text with mouse and then press : to enter an ex

command, the selected text is replaced with the : character. How
do I execute an ex command on a text selected using the mouse
similar to the text selected using the visual mode?

faq-15.9 When I select a block of text using the mouse, Vim goes into
selection mode instead of Visual mode. Why?

faq-command-line-mode
SECTION 16 - COMMAND-LINE MODE
faq-16.1 How do I use the name of the current file in the command mode or

an ex command line?
faq-16.2 How do I edit the text in the Vim command-line effectively?
faq-16.3 How do I switch from Vi mode to Ex mode?
faq-16.4 How do I copy the output from an ex-command into a buffer?
faq-16.5 When I press the <Tab> key to complete the name of a file in the

command mode, if there are more than one matching file names,
then Vim completes the first matching file name and displays a
list of all matching filenames. How do I configure Vim to only
display the list of all the matching filenames and not complete
the first one?

faq-16.6 How do I copy text from a buffer to the command line and from the
command line to a buffer?

faq-16.7 How do I put a command onto the command history without executing
it?

faq-16.8 How do I increase the height of the command-line?
faq-viminfo

SECTION 17 - VIMINFO
faq-17.1 When I invoke Vim, I get error messages about illegal characters

in the viminfo file. What should I do to get rid of these
messages?

faq-17.2 How do I disable the viminfo feature?
faq-17.3 How do I save and use Vim marks/commands across Vim sessions?

faq-remote-editing
SECTION 18 - REMOTE EDITING
faq-18.1 How do I open a file with existing instance of gvim? What

happened to the Vim 5.x OpenWithVim.exe and SendToVim.exe files?
faq-18.2 How do I send a command to a Vim server to write all buffers to

vim_faq.txt — 4352

disk?
faq-18.3 Where can I get the documentation about the Vim remote server

functionality?
faq-options

SECTION 19 - OPTIONS
faq-19.1 How do I configure Vim in a simple way?
faq-19.2 How do I toggle the value of an option?
faq-19.3 How do I set an option that affects only the current

buffer/window?
faq-19.4 How do I use space characters for a Vim option value?
faq-19.5 Can I add (embed) Vim option settings to the contents of a file?
faq-19.6 How do I display the line numbers of all the lines in a file?
faq-19.7 How do I change the width of the line numbers displayed using the

'number' option?
faq-19.8 How do I display (view) all the invisible characters like space,

tabs and newlines in a file?
faq-19.9 How do I configure Vim to always display the current line and

column number?
faq-19.10 How do I display the current Vim mode?
faq-19.11 How do I configure Vim to show pending/partial commands on the

status line?
faq-19.12 How do I configure the Vim status line to display different

settings/values?
faq-19.13 How do I configure Vim to display status line always?
faq-19.14 How do I make a Vim setting persistent across different Vim

invocations/instances/sessions?
faq-19.15 Why do I hear a beep (why does my window flash) about 1 second

after I hit the Escape key?
faq-19.16 How do I make the "c" and "s" commands display a "$" instead of

deleting the characters I'm changing?
faq-19.17 How do I remove more than one flag using a single `:set` command

from a Vim option?
faq-mapping-keys

SECTION 20 - MAPPING KEYS
faq-20.1 How do I know what a key is mapped to?
faq-20.2 How do I list all the user-defined key mappings?
faq-20.3 How do I unmap a key?
faq-20.4 I am not able to create a mapping for the <xxx> key. What is

wrong?
faq-20.5 Why does mapping the <C-...> key not work?
faq-20.6 How do I map the numeric keypad keys?
faq-20.7 How do I create a mapping that works only in visual mode?
faq-20.8 How do I create a mapping that works only in normal and operator

pending mode (but not in visual mode)?
faq-20.9 In a Vim script, how do I know which keys to use for my mappings,

so that the mapped key will not collide with an already used key?
faq-20.10 How do I map the escape key?
faq-20.11 How do I map a key to perform nothing?
faq-20.12 I want to use the <Tab> key to indent a block of text and

<Shift-Tab> key to unindent a block of text. How do I map the keys
to do this? This behavior is similar to textpad, visual studio,
etc.

faq-20.13 In my mappings the special characters like <CR> are not
recognized. How can I configure Vim to recognize special
characters?

faq-20.14 How do I use the "|" to separate multiple commands in a map?
faq-20.15 If I have a mapping/abbreviation whose ending is the beginning of

another mapping/abbreviation, how do I keep the first from
expanding into the second one?

faq-20.16 Why does it take a second or more for Vim to process a key,

vim_faq.txt — 4353

sometimes when I press a key?
faq-20.17 How do I map a key to run an external command using a visually

selected text?
faq-20.18 How do I map the CTRL-I key while still retaining the

functionality of the <Tab> key?
faq-20.19 How do I define a map to accept a count?
faq-20.20 How can I make my normal mode mapping work from within Insert

Mode?
faq-abbreviations

SECTION 21 - ABBREVIATIONS
faq-21.1 How do I auto correct misspelled words?
faq-21.2 How do I create multi-line abbreviations?
faq-21.3 When my abbreviations are expanded, an additional space character

is added at the end of the expanded text. How do I avoid this
character?

faq-21.4 How do I insert the current date/time stamp into the file?
faq-21.5 How do I prevent an abbreviation from expanding in insert mode?

faq-record-and-playback
SECTION 22 - RECORD AND PLAYBACK
faq-22.1 How do I repeat an editing operation (insertion, deletion, paste,

etc)?
faq-22.2 How I record and repeat a set of key sequences?
faq-22.3 How do I edit/modify a recorded set of key sequences?
faq-22.4 How do I write recorded key sequences to a file?
faq-22.5 I am using register 0 to record my key sequences (i.e. q0

q). In the recorded key sequences, I am yanking some text. After
the first replay of the recorded key sequence, I am no longer
able to play it back.

faq-autocommands
SECTION 23 - AUTOCOMMANDS
faq-23.1 How do I execute a command when I try to modify a read-only file?
faq-23.2 How do I execute a command every time when entering a buffer?
faq-23.3 How do I execute a command every time when entering a window?
faq-23.4 From an autocmd, how can I determine the name of the file or the

buffer number for which the autocommand is executed?
faq-23.5 How do I automatically save all the changed buffers whenever Vim

loses focus?
faq-23.6 How do I execute/run a function when Vim exits to do some

cleanup?
faq-syntax-highlight

SECTION 24 - SYNTAX HIGHLIGHT
faq-24.1 How do I turn off/on syntax highlighting?
faq-24.2 How do I change the background and foreground colors used by Vim?
faq-24.3 How do I change the highlight colors to suit a dark/light

background?
faq-24.4 How do I change the color of the line numbers displayed when the

`:set number` command is used?
faq-24.5 How do I change the background color used for a Visually selected

block?
faq-24.6 How do I highlight the special characters (tabs, trailing spaces,

end of line, etc) displayed by the 'list' option?
faq-24.7 How do I specify a colorscheme in my .vimrc/.gvimrc file, so that

Vim uses the specified colorscheme every time?
faq-24.8 Vim syntax highlighting is broken. When I am editing a file, some

parts of the file is not syntax highlighted or syntax highlighted
incorrectly.

faq-24.9 Is there a built-in function to syntax-highlight the
corresponding matching bracket?

faq-24.10 How do I turn off the C comment syntax highlighting?
faq-24.11 How do I add my own syntax extensions to the standard syntax

vim_faq.txt — 4354

files supplied with Vim?
faq-24.12 How do I replace a standard syntax file that comes with the Vim

distribution with my own syntax file?
faq-24.13 How do I highlight all the characters after a particular column?
faq-24.14 How do I convert a source file (.c, .h, etc) with the Vim syntax

highlighting into a HTML file?
faq-24.15 How do I list the definition of all the current highlight

groups?
faq-24.16 How can I embed one syntax highlighting language into another

one?
faq-vim-script-writing

SECTION 25 - VIM SCRIPT WRITING
faq-25.1 How do I list the names of all the scripts sourced by Vim?
faq-25.2 How do I debug Vim scripts?
faq-25.3 How do I locate the script/plugin which sets a Vim option?
faq-25.4 I am getting some error/informational messages from Vim (possibly

when running a script), the messages are cleared immediately. How
do I display the messages again?

faq-25.5 How do I save and restore a plugin specific information across
Vim invocations?

faq-25.6 How do I start insert mode from a Vim function?
faq-25.7 How do I change the cursor position from within a Vim function?
faq-25.8 How do I check the value of an environment variable in the .vimrc

file?
faq-25.9 How do I check whether an environment variable is set or not from

a Vim function?
faq-25.10 How do I call/use the Vim built-in functions?
faq-25.11 I am using some normal mode commands in my Vim script. How do I

avoid using the user-defined mappings for these normal mode
commands and use the standard Vim functionality for these normal
mode commands?

faq-25.12 How do I get a visually selected text into a Vim variable or
register?

faq-25.13 I have some text in a Vim variable "myvar". I would like to use
this variable in a `:s` substitute command to replace a text
"mytext". How do I do this?

faq-25.14 A Vim variable (bno) contains a buffer number. How do I use this
variable to open the corresponding buffer?

faq-25.15 How do I store the value of a Vim option into a Vim variable?
faq-25.16 I have copied and inserted some text into a buffer from a Vim

function. How do I indent the inserted text from the Vim
function?

faq-25.17 How do I get the character under the cursor from a Vim script?
faq-25.18 How do I get the name of the current file without the extension?
faq-25.19 How do I get the basename of the current file?
faq-25.20 How do I get the output from a Vim function into the current

buffer?
faq-25.21 How do I call external programs from a Vim function?
faq-25.22 How do I get the return status of a program executed using the

`:!` command?
faq-25.23 How do I determine whether the current buffer is modified or

not?
faq-25.24 I would like to use the carriage return character in a normal

command from a Vim script. How do I specify the carriage return
character?

faq-25.25 How do I split long lines in a Vim script?
faq-25.26 When I try to "execute" my function using the `:execute Myfunc()`

command, the cursor is moved to the top of the current buffer.
Why?

faq-25.27 How do I source/execute the contents of a register?

vim_faq.txt — 4355

faq-25.28 After calling a Vim function or a mapping, when I press the "u"
key to undo the last change, Vim undoes all the changes made by
the mapping/function. Why?

faq-25.29 How can I call a function defined with s: (script local
function) from another script/plugin?

faq-25.30 Is it possible to un-source a sourced script? In other words,
reverse all the commands executed by sourcing a script.

faq-plugins
SECTION 26 - PLUGINS
faq-26.1 How do I set different options for different types of files?
faq-26.2 I have downloaded a Vim plugin or a syntax file or a indent file,

or a color scheme or a filetype plugin from the web. Where should
I copy these files so that Vim will find them?

faq-26.3 How do I extend an existing filetype plugin?
faq-26.4 How do I turn off loading the Vim plugins?
faq-26.5 How do I turn on/off loading the filetype plugins?
faq-26.6 How do I override settings made in a file type plugin in the

global ftplugin directory for all the file types?
faq-26.7 How do I disable the Vim directory browser plugin?
faq-26.8 How do I set the filetype option for files with names matching a

particular pattern or depending on the file extension?
faq-editing-program-files

SECTION 27 - EDITING PROGRAM FILES
faq-27.1 How do I enable automatic indentation for C/C++ files?
faq-27.2 How do I configure the indentation used for C/C++ files?
faq-27.3 How do I turn off the automatic indentation feature?
faq-27.4 How do I change the number of space characters used for the

automatic indentation?
faq-27.5 I am editing a C program using Vim. How do I display the

definition of a macro or a variable?
faq-27.6 I am editing a C program using Vim. How do I jump to the

beginning or end of a code block from within the block?
faq-27.7 When editing C++ files and when inserting new lines above or

below a comment (//) line, Vim automatically inserts the C++
comment character (//) at the beginning of the line. How do I
disable this?

faq-27.8 How do I add the comment character "#" to a set of lines at the
beginning of each line?

faq-27.9 How do I edit a header file with the same name as the
corresponding C source file?

faq-27.10 How do I automatically insert comment leaders while typing
comments?

faq-quickfix
SECTION 28 - QUICKFIX
faq-28.1 How do I build programs from Vim?
faq-28.2 When I run the make command in Vim I get the errors listed as the

compiler compiles the program. When it finishes this list
disappears and I have to use the `:clist` command to see the error
message again. Is there any other way to see these error
messages?

faq-28.3 How can I perform a command for each item in the
quickfix/location list?

faq-folding
SECTION 29 - FOLDING
faq-29.1 How do I extend the Vim folding support?
faq-29.2 When I enable folding by setting the 'foldmethod' option, all the

folds are closed. How do I prevent this?
faq-29.3 How do I control how many folds will be opened when I start

editing a file?
faq-29.4 How do I open and close folds using the mouse?

vim_faq.txt — 4356

faq-29.5 How do I change the text displayed for a closed fold?
faq-29.6 How do I store and restore manually created folds across

different Vim invocations?
faq-29.7 I have enabled syntax based folding. Why is Vim so slow?

faq-vim-with-external-applications
SECTION 30 - VIM WITH EXTERNAL APPLICATIONS
faq-30.1 Can I run a shell inside a Vim window?
faq-30.2 How do I pass the word under the cursor to an external command?
faq-30.3 How do I get the output of a shell command into a Vim buffer?
faq-30.4 How do I pipe the contents of the current buffer to an external

command and replace the contents of the buffer with the output
from the command?

faq-30.5 How do I sort a section of my file?
faq-30.6 How do I use Vim as a pager?
faq-30.7 How do I view Unix man pages from inside Vim?
faq-30.8 How do I change the diff command used by the Vim diff support?
faq-30.9 How do I use the Vim diff mode without folding?

faq-gui-vim
SECTION 31 - GUI VIM
faq-31.1 How do I create buffer specific menus?
faq-31.2 How do I change the font used by GUI Vim?
faq-31.3 When starting GUI Vim, how do I specify the location of the GVIM

window?
faq-31.4 How do I add a horizontal scrollbar in GVim?
faq-31.5 How do I make the scrollbar appear in the left side by default?
faq-31.6 How do I remove the Vim menubar?
faq-31.7 I am using GUI Vim. When I press the <Alt> key and a letter, the

menu starting with that letter is selected. I don't want this
behavior as I want to map the <Alt>-<key> combination. How do I do
this?

faq-31.8 Is it possible to scroll the text by dragging the scrollbar so
that the cursor stays in the original location?

faq-31.9 How do I get gvim to start browsing files in a particular
directory when using the `:browse` command?

faq-31.10 For some questions, like when a file is changed outside of Vim,
Vim displays a GUI dialog box. How do I replace this GUI dialog
box with a console dialog box?

faq-31.11 I am trying to use GUI Vim as the editor for my xxx application.
When the xxx application launches GUI Vim to edit a file, the
control immediately returns to the xxx application. How do I
start GUI Vim, so that the control returns to the xxx
application only after I quit Vim?

faq-31.12 Why does the "Select Font" dialog doesn't show all the fonts
installed in my system?

faq-31.13 How do I use the mouse in Vim command-line mode?
faq-31.14 When I use the middle mouse button to scroll text, it pastes the

last copied text. How do I disable this behavior?
faq-31.15 How do I change the location and size of a GUI Vim window?
faq-31.16 When splitting the Vim window vertically, Vim changes

the position.
faq-vim-on-unix

SECTION 32 - VIM ON UNIX
faq-32.1 I am running Vim in a xterm. When I press the CTRL-S key, Vim

freezes. What should I do now?
faq-32.2 I am seeing weird screen update problems in Vim. What can I do to

solve this screen/display update problems?
faq-32.3 I am using the terminal/console version of Vim. In insertmode,

When I press the backspace key, the character before the cursor
is not erased. How do I configure Vim to do this?

vim_faq.txt — 4357

faq-32.4 I am using Vim in a xterm. When I quit Vim, the screen contents
are restored back to the original contents. How do I disable
this?

faq-32.5 When I start Vim, it takes quite a few seconds to start. How do I
minimize the startup time?

faq-32.6 How can I make the cursor in gvim in unix stop blinking?
faq-32.7 How do I change the menu font on GTK Vim?
faq-32.8 How do I prevent CTRL-Z from suspending Vim?
faq-32.9 When I kill the xterm running Vim, the Vim process continues to

run and takes up a lot of CPU (99%) time. Why is this happening?
faq-32.10 How do I get the Vim syntax highlighting to work in a Unix

terminal?
faq-vim-on-ms-windows

SECTION 33 - VIM ON MS-WINDOWS
faq-33.1 In MS-Windows, CTRL-V doesn't start the blockwise visual mode.

What happened?
faq-33.2 When I press the CTRL-Y key, it acts like the CTRL-R key. How do

I configure Vim to treat CTRL-Y as CTRL-Y?
faq-33.3 How do I start GUI Vim in a maximized window always?
faq-33.4 After doing some editing operations, Vim freezes. The cursor

becomes an empty rectangle. I am not able enter any characters.
What is happening?

faq-33.5 I am using Windows XP, the display speed of maximized GVim is
very slow. What can I do to speed the display updates?

faq-33.6 What are the recommended settings for using Vim with cygwin?
faq-33.7 I am trying to use GNU diff with Vim diff mode. When I run the

diff from command line, it works. When I try to use the diff with
Vim it doesn't work. What should I do now?

faq-33.8 Is it possible to use Vim as an external editor for MS-Windows
Outlook email client?

faq-33.9 I am using Vim to edit HTML files. How do I start internet
explorer with the current file to preview the HTML file?

faq-33.10 I would like to use Vim with Microsoft Visual Studio. How do I
do this?

faq-33.11 Where do I place the _vimrc and _gvimrc files?
faq-33.12 Every time I save a file, Vim warns about the file being changed

outside of Vim. Why?
faq-printing

SECTION 34 - PRINTING
faq-34.1 How do I print a file along with line numbers for all the lines?
faq-34.2 How do I print a file with the Vim syntax highlighting colors?

faq-building-vim-from-source
SECTION 35 - BUILDING VIM FROM SOURCE
faq-35.1 How do I build Vim from the sources on a Unix system?
faq-35.2 How do I install Vim in my home directory or a directory other

than the default installation directory in Unix?
faq-35.3 How do I build Vim from the sources on a MS-Windows system?
faq-35.4 The Vim help, syntax, indent files are missing from my Vim

installation. How do I install these files?
faq-35.5 I have built Vim from the source and installed the Vim package

using "make install". Do I need to keep the Vim source directory?
faq-35.6 How do I determine the Vim features which are enabled at compile

time?
faq-35.7 Can I build Vim without the GUI support?
faq-35.8 When building Vim on a Unix system, I am getting "undefined

reference to term_set_winsize" error. How do I resolve this
error?

faq-35.9 Vim configure keeps complaining about the lack of gtk-config
while trying to use GTK 2.03. This is correct, since in GTK 2
they moved to using the generic pkg-config. I can get pkg-config

vim_faq.txt — 4358

to list the various includes and libs for gtk, but for some
reason the configure script still isn't picking this up.

faq-35.10 I did successfully download the sources and compiled Vim on
Unix. But feature ... still does not work. What is wrong and
how can I fix it?

faq-various
SECTION 36 - VARIOUS
faq-36.1 How do I edit binary files with Vim?
faq-36.2 How do I disable the visual error flash and the error beep?
faq-36.3 How do I display the ascii value of a character displayed in a

buffer?
faq-36.4 Can I use zero as a count for a Vim command?
faq-36.5 How do I disable the Vim welcome screen?
faq-36.6 How do I avoid the "hit enter to continue" prompt?
faq-36.7 How do I invoke Vim from command line to run a group of commands

on a group of files?
faq-36.8 How do I use a normal mode command from insert mode without

leaving the insert mode?
faq-36.9 How do I start Vim in insert mode?
faq-36.10 How do I use Copy and Paste with Vim?
faq-36.11 Why shouldn't I modify the files in the system runtime

directory?
faq-unicode

SECTION 37 - UNICODE
faq-37.1 Is it possible to create Unicode files using Vim?
faq-37.2 Which Vim settings are particularly important for editing Unicode

files?
faq-37.3 What is the 'encoding' option?
faq-37.4 How does Vim name the various Unicode encodings?
faq-37.5 How does Vim specify the presence or absence of a byte-order

mark?
faq-37.6 What is the 'fileencoding' option?
faq-37.7 What is the 'fileencodings' option?
faq-37.8 What is the 'termencoding' option?
faq-37.9 What is the 'bomb' option?
faq-37.10 Where can I find an example of a typical use of all these

options?
faq-37.11 How can I insert Unicode characters into a file using Vim?
faq-37.12 How can I know which digraphs are defined and for which

characters?

===
faq-1

SECTION 1 - GENERAL INFORMATION

faq-1.1
1.1. What is Vim?

Vim stands for Vi IMproved. It used to be Vi IMitation, but there are so
many improvements that a name change was appropriate. Vim is a text editor
which includes almost all the commands from the Unix program "Vi" and a lot
of new ones. All commands can be given with the keyboard. This has the
advantage that you can keep your fingers on the keyboard and your eyes on
the screen. For those who want it, there is mouse support and a GUI version
with scrollbars and menus.

Vim is an editor, not a word processor. A word processor is used mainly
to do layout of text. This means positioning it, changing the way it
appears on output. More often than not, the final document is meant to
be printed or typeset or what have you, in order to present it in a

vim_faq.txt — 4359

pleasing manner to others. Examples of word processors are Microsoft
Word, FrameMaker, and OpenOffice Writer.

An editor is simply for entering text. Any typesetting or laying out of the
document is secondary. With an editor, one's main concern is entering text,
not making the text look good. Examples of editors other than Vim and Vi
are Emacs, TextMate, Ultraedit and gedit. And Notepad.

For more information, read:

intro

faq-1.2
1.2. Who wrote Vim?

Most of Vim is based on Stevie and was written by Bram Moolenaar, with
contributions from too many people to mention here.

For more information, read:

author
credits

faq-1.3
1.3. Is Vim compatible with Vi?

Yes. Vim is very much compatible with Vi. You can use the "-C"
command-line flag to start Vim in Vi compatible mode:

$ vim -C

You can also use:

$ vim -u NONE

You can also set the 'compatible' option to enable Vi compatibility:

:set compatible

If you want to make sure, to start Vim in a 'nocompatible' mode to
original Vi, supply the -N command line argument:

$ vim -N

For more information, read:

-C
-N
'compatible'
compatible-default

faq-1.4
1.4. What are some of the improvements of Vim over Vi?

A short summary of the improvements of Vim over vi is listed below. The
list shows that Vim is a thoroughly modern and feature-packed editor.
Standard features of modern editors are implemented, and there is an equal
emphasis on general power-user features and features for programmers.

Features to modernise Vi:

vim_faq.txt — 4360

Multi-level undo

Allows you to set the number of times you can undo your changes in a
file buffer. You can also redo an undone change.
Also starting with version 7.3 Vim can permanently store your undo
information, so that you can undo your changes which you have done
in a previous editing session.

Tabs, Multiple windows and buffers

Each file can be displayed in its own window. You can move easily from
one window to another. Each file opened during a Vim session also has
an associated buffer and you can easily jump from one to the other.
Also like any modern GUI, Vim supports opening several files in tabs.
You can do batch processing for tabs, buffers, windows and the
argumentlist.

Flexible insert mode

Vim allows you to use the arrow keys while in insert mode to move
around in the file. No more hitting <Esc>, moving around, then hitting
`i' or `a'.

Macros

Vim has a facility which allows you to record a sequence of typed
characters and repeat them any number of times.

Visual mode

You can highlight sections of text and execute operations on this
section of text only.

Block operators

Allow selection and highlighting of rectangular blocks of text in
order do execute specific operations on them.

Online help system

You can easily find help on any aspect of using Vim. Help is displayed
in its own window.

Command-line editing and history

History allows you to use the arrow keys to repeat or search for a
command that has already been typed. Allows you to match the beginning
of a command with the beginning of another similar command in the
history buffer. You can also edit a command to correct typos or change
a few values.

Command line completion.

Using the <Tab> key, you can complete commands, options, filenames,
etc. as needed.

Horizontal scrolling.

Long lines can be scrolled horizontally (with or without the GUI).

vim_faq.txt — 4361

Unicode and internationalization improvements.

Vim is able to edit files in unicode encoding and uses internally an
utf-8 encoding. Additionally Vim can display text right to left
oriented.

Advanced user features:

Text formatting

With two keystrokes, you can format large sections of text, without
the use of external programs.

Completion in Insert mode

Vim provides several different possibilities to complete your text.
For example Vim can complete words while you are typing, by matching
the current word with other similar words in the file.

Jump tags

Just like in an internet browser, you can jump back to previous parts
of the text you were editing, and then forward again. Your brain is
thus free to edit instead of navigate.

Automatic commands

Commands automatically executed when reading or writing a file,
jumping to another buffer, etc.

Viminfo

Allows storing of the command line history, marks and registers in a
file to be read on startup. Therefore, you can recall old search
patterns, macros, etc., in a new Vim session.

Mouse support

The mouse is supported in an xterm and for MS-DOS. It can be used to
position the cursor, select the visual area, paste a register, etc.

Graphical User Interface (GUI)

There are several different graphical user interfaces available.
Also, it's very easy to add your own menus. Of course, console vim is
still supported, and very widely used.

Scripting language

Vim has a powerful scripting language so new commands can be created.
You can also use Perl, Python, TCL, Lua and Ruby to achieve the same
thing!

Plugins

Extra functionality implemented via vim commands (regular commands or
the scripting language) that is automatically loaded on startup.
Examples: file explorer, network editing, enhanced autocompletion,
syntax checks.

vim_faq.txt — 4362

More are being developed and shared on VimOnline all the time.

Syntax highlighting for many programming languages

Syntax highlighting (including concealing items) for hundreds of
programming languages is supported. Support for others can be
added.

Extended regular expressions

Vim supports extended regular expressions which are similar in
functionality to that of Perl regular expressions.

Integrated Spell checking

Spell checking has been integrated into Vim.

Diff mode

Vim can highlight the differences between two, three or four files.
Identical lines will be folded away and hidden.

Encryption using the blowfish algorithm

Vim allows to encrypt your files using the symmetric block cipher
blowfish as well as the swap file.

Extensive customizable

Vim can be tuned and customized to work like you want by setting
options. You can define your own commands, macros and even plugins
to extend its capabilities

Packages

Packages have been added to keep the installation of the growing
number of plugins manageable. This is a convenient way to get one
or more plugins, drop them in a directory and keep them updated.
Vim will load them automatically, or only when desired.

Programming performance features:

Edit-compile-edit speedup

You can compile within Vim and automatically jump to the location of
errors in the source code.

Indenting for many programming languages

C, C++, Java, Perl, XML and many other languages can be automatically
indented by vim while you type. Support for others can be added.

Searching for words in include files

Vim allows you to search for a match of the word under the cursor in
the current and included files.

Advanced text objects

Instantly select, delete, copy, indent, format, change case, or ...

vim_faq.txt — 4363

to all the text between (and), or { and }, or < and >, or [and
]. Or a word, sentence, or paragraph. Very powerful.

Folding

Certain parts of the text can be "folded" away. The best example is
the body of a function. You can get an overview of the code, and then
open the fold of the function whose detail you need to see.

ctags and cscope integration

Using these two powerful programs, you can jump to a definition of a
function from a calling instance of it, and use other tricks to
navigate source code.

Integration of several programming languages

If you find the internal scripting language not powerful enough, you
can extend Vim using Lua, Ruby, Tcl, Perl and Python 2 and 3.

Asynchronous I/O support

Vim uses jobs and channels to talk to other programs
asynchronously. This allows to have e.g. a compiler run in the
background and open the quickfix list as soon as it is finished to
fix warnings and errors.

Timers

Timers are asynchronous and can fire once or repeatedly to invoke a
function to do any work.

For more information, read:

vi-differences

faq-1.5
1.5. Is Vim free?

Vim is Charityware. There are no restrictions on using or copying Vim, but
the author encourages you to make a donation to charity. A document
explaining how to do so is included in the distribution.

For more information, read:

copyright

===
faq-2

SECTION 2 - RESOURCES

faq-2.1
2.1. Where can I learn more about Vim?

You can post your Vim questions to the vim@vim.org mailing list. You can
post your Vim development related questions to the vim-dev@vim.org mailing
list. Vim does not have a newsgroup of its own. But the appropriate
newsgroup to post to is comp.editors.

"VimOnline" is a web page that serves as a de facto homepage for vim,

vim_faq.txt — 4364

although the main purpose of it is to gather tips and scripts from
everywhere. Get involved! The URL is https://www.vim.org

Finally, read the Vi FAQ:

http://www.faqs.org/faqs/editor-faq/vi/part1/index.html

Finally, there are also some communities, where you can discuss features
or ask questions:

https://vi.stackexchange.com
https://vim.reddit.com

For more information, read:

mail-list
internet

faq-2.2
2.2. Is there a mailing list available?

There are several:

NAME DESCRIPTION
---------------- ---
vim-announce Announcements of new releases
vim General discussion
vim-dev Patches, bug reports, development discussions
vim-mac Macintosh discussion
vim-fr General discussion in French

Of these, only vim and vim-dev are of general interest. vim-announce is
read-only to most people, and its messages are sent to the other lists as
well. The remaining four are very low volume.

ACTION EMAIL SEND TO
---------------- --------------------------
To subscribe: <NAME>-subscribe@vim.org
To unsubscribe: <NAME>-unsubscribe@vim.org
To get help: <NAME>-help@vim.org

The available mailing lists are also mentioned here:

https://www.vim.org/maillist.php

faq-2.3
2.3. Is there an archive available for the Vim mailing lists?

Yes. Visit https://groups.yahoo.com/, where name is one of:
vimannounce, vim, vimdev, vim-fr, vim-mac, vim-vms.

Alternatively, visit www.gmane.org to find out about GMANE, which allows
you to access the mailing lists as though they were newsgroups. This
offers some convenience to those who wish to browse the history or casually
observe the current threads.

faq-2.4
2.4. Where can I get the Vim user manual in HTML/PDF/PS format?

You can download the HTML/PDF/PS format of the Vim user manual from:

vim_faq.txt — 4365

https://www.vim.org
http://www.faqs.org/faqs/editor-faq/vi/part1/index.html
https://vi.stackexchange.com
https://vim.reddit.com
https://www.vim.org/maillist.php
https://groups.yahoo.com/

https://vimdoc.sourceforge.net/

Note, the user manual from that page is currently pretty outdated. It's
best to either use the documentation that comes with vim or use the
online version at https://vimhelp.org

You can find a pdf version of the full English help, including this faq
(in letter, A4 and Ipad format) at:

https://nathangrigg.com/vimhelp/

This document is cross-referenced, so you can use the hyperlink
functionality.

faq-2.5
2.5. I have a "xyz" (some) problem with Vim. How do I determine if it is a

problem with my setup or with Vim? / Have I found a bug in Vim?

First, you need to find out, whether the error is in the actual runtime
files or any plugin that is distributed with Vim or whether it is a
simple side effect of any configuration option from your .vimrc or
.gvimrc. So first, start vim like this:

vim -u NONE -U NONE -N -i NONE

This starts Vim in nocompatible mode (-N), without reading your viminfo
file (-i NONE), without reading any configuration file (-u NONE for not
reading .vimrc file and -U NONE for not reading a .gvimrc file) or even
plugin.

In this invocation, try to reproduce your problem. If the error
persists, the chance is good you've found a bug in Vim (see also
Question 2.6. faq-2.6)

If the error does not occur when starting Vim this way, then the problem
is either related to some plugin of yours or some setting in one of your
local setup files. You need to find out, what triggers the error, you
try starting Vim this way:

vim -u NONE -U NONE -N

If the error occurs, the problem is your .viminfo file. Simply delete
the viminfo file then. If the error does not occur, try:

vim -u ~/.vimrc --noplugin -N -i NONE

This will simply use your .vimrc as configuration file, but not load any
plugins. If the error occurs this time, the error is possibly caused by
some configuration option inside your .vimrc file. Depending on the
length of your vimrc file, it can be quite hard to trace the origin
within that file.

The best way is to add `:finish` command in the middle of your .vimrc.
Then restart again using the same command line. If the error still
occurs, the bug must be caused because of a setting in the first half of
your .vimrc. If it doesn't happen, the problematic setting must be in
the second half of your .vimrc. So move the `:finish` command to the
middle of that half, of which you know that triggers the error and move
your way along, until you find the problematic option. If your .vimrc is

vim_faq.txt — 4366

https://vimdoc.sourceforge.net/
https://vimhelp.org
https://nathangrigg.com/vimhelp/

350 lines long, you need at a maximum 9 tries to find the offending line
(in practise, this can often be further reduced, since often lines
depend on each other).

If the problem does not occur, when only loading your .vimrc file, the
error must be caused by a plugin or another runtime file (indent
autoload or syntax script). Check the output of the `:scriptnames` command
to see what files have been loaded and for each one try to disable each
one by one and see which one triggers the bug. Often files that are
loaded by vim, have a simple configuration variable to disable them, but
you need to check inside each file separately.

You can also use the -V command line argument to get more debug
information to analyze the problem:

$ vim -V2logfile

You can increase the value passed to the -V argument to get more debug
information. By also specifying a logfile name, this makes sure, the
debug messages don't appear on the screen and won't disturb you when
trying to reproduce the problem.

For more information, read:

-u
-U
-N
-V
'verbose'
:verbose
:set-verbose

faq-2.6
2.6. Where can I report bugs?

First collect the required information using the following command:

:source $VIMRUNTIME/bugreport.vim

Now send the resulting text from the above command to the bugs@vim.org
e-mail address. There is also a public bug tracker available at
https://github.com/vim/vim/issues. A copy of each message there
will be forwarded to the Vim Development list.

The Vim Development mailing list (see Question 2.2 faq-2.2) is a good place to
discuss general bugs. If the bug you find is with syntax highlighting,
a runtime file, or some other "added feature" (i.e. not directly
programmed into vim), attempt to inform the maintainer of that feature.
His e-mail address will be mentioned at the top of the corresponding
runtime file.

For more information, read:

bug-reports

faq-2.7
2.7. Where can the FAQ be found?

The FAQ can be found at https://vimhelp.org/vim_faq.txt.html.

vim_faq.txt — 4367

https://github.com/vim/vim/issues
https://vimhelp.org/vim_faq.txt.html

It will be auto-generated from the source that is managed in the github
repository https://www.github.com/chrisbra/vim_faq (Patches are welcome).

The repository also includes the faq in different formats, e.g. manpage,
pdf file, html file, plain text version and a version in vim help format.

A slightly older version (which doesn't seem to get updated anymore) can
still be found at VimOnline (https://www.vim.org/).

faq-2.8
2.8. What if I don't find an answer in this FAQ?

This FAQ covers mainly Vim-specific questions. You may find more
information suitable for most Vi clones by reading the Vi FAQ. It is posted
regularly on comp.editors. You can also find a copy at

http://www.faqs.org/faqs/editor-faq/vi/part1/index.html

Also, since Vim has gathered so many features in the last few years,
successfully documenting the frequently asked questions here is a
near-impossible task. To make it possible, please email the maintainer if
you have a good question. A good question is one that you've tried to
answer yourself (remember, Vim has great documentation) but struggled.

faq-2.9
2.9. I have a patch for implementing a Vim feature. Where can I send this

patch?

You can send your patches to the Vim developer mailing list
vim-dev@vim.org.

For more information, read:

vim-dev

faq-2.10
2.10. I have a Vim tip or developed a new Vim syntax/indent/filetype/

compiler plugin or developed a new script or a colorscheme.
Is there a public website where I can upload this?

Yes. You can use the Vim Online website to upload your plugins/scripts,
colorschemes, etc. The site is at https://www.vim.org
Nowadays people also seem to share their plugins/runtime files at
github.

Tips can also be shared in the Wiki which you can find at

http://vim.wikia.com

===
faq-3

SECTION 3 - AVAILABILITY

faq-3.1
3.1. What is the latest version of Vim?

The latest version of Vim is 8.2 released on 12th December 2019.

The release history of different versions of Vim is below:

vim_faq.txt — 4368

https://www.github.com/chrisbra/vim_faq
http://www.faqs.org/faqs/editor-faq/vi/part1/index.html
https://www.vim.org
http://vim.wikia.com

VERSION RELEASE DATE
-------------- --------------------
Version 8.2 12th December, 2019
Version 8.1 17th May, 2018
Version 8.0 12th September, 2016
Version 7.4 10th August, 2013
Version 7.3 15th August, 2010
Version 7.2 9th August, 2008
Version 7.1 12th May, 2007
Version 7.0 8th May, 2006
Version 6.4 15th October, 2005
Version 6.3 8th June, 2004
Version 6.2 1st June, 2003
Version 6.1 24th March, 2002
Version 6.0 27th September, 2001
Version 5.8 31st May, 2001
Version 5.7 24th June, 2000
Version 5.6 16th January, 2000
Version 5.5 21st September, 1999
Version 5.4 26th July, 1999
Version 5.3 31st August, 1998
Version 5.2 24th August, 1998
Version 5.1 7th April, 1998
Version 5.0 19th February, 1998
Version 4.6 13th March, 1997
Version 4.5 17th October, 1996
Version 4.2 5th July, 1996
Version 4.0 29th May, 1996
Version 3.0 12th August, 1994
Version 2.0 21st December, 1993
Version 1.27 23rd April, 1993
Version 1.17 21st April, 1992
Version 1.14 2nd November, 1991

If you are interested in the old release history, check out the
vim-history git repository:
https://github.com/vim/vim-history
and especially for the release history:
https://github.com/vim/vim-history#release-history

For more information, read:

new-8
new-7
new-6
new-5
chnaged-8.2
changed-8.1
changed-7.4
changed-7.3
changed-7.2
changed-7.1

faq-3.2
3.2. Where can I find the latest version of Vim?

You can download the sources for the latest version of Vim from the
Github repository. The URL for this site is

https://github.com/vim/vim

vim_faq.txt — 4369

https://github.com/vim/vim-history
https://github.com/vim/vim-history#release-history
https://github.com/vim/vim

A mercurial mirror is also available:

https://bitbucket.org/vim-mirror/vim
http://hg.256bit.org/vim/
https://hg.osdn.net/view/vim/vim

Some users keep updated repositories for distributing latest binary
versions of Vim. You can find those repositories here:

http://vim.wikia.com/wiki/Where_to_download_Vim

faq-3.3
3.3. What platforms does it run on?

All Unix platforms.
All Windows platforms (XP and later).
Amiga, Atari, BeOS, Macintosh, MachTen, OS/2, RiscOS, VMS, IBM z/OS.

For MS-DOS support has been removed with the latest releases of Vim.
16-bit DOS: latest supported version 7.1
32-bit DOS: latest supported version 7.3

faq-3.4
3.4. Where can I download the latest version of the Vim runtime files?

You can download the latest version of the Vim runtime files (syntax files,
filetype plugins, compiler files, color schemes, documentation, indentation
files and keymaps) from the Vim github repository

https://github.com/vim/vim/tree/master/runtime

Another way of downloading the runtime files is this:

wget https://github.com/vim/vim/archive/master.tar.gz -O- |
tar zfx - vim-master/runtime/ --strip-components=1

See also:

https://www.vim.org/runtime.php

===
faq-4

SECTION 4 - HELP

faq-4.1
4.1. How do I use the help files?

Help can be found for all functions of Vim. In order to use it, use the
`:help` command. This will bring you to the main help page. On that first
page, you will find explanations on how to move around. Basically, you move
around in the help pages the same way you would in a read-only document.
You can jump to specific subjects by using tags. This can be done in two
ways:

* Use the CTRL-] command while standing on the name of a command
or option. This only works when the tag is a keyword.
<Ctrl-LeftMouse> and g<LeftMouse> work just like CTRL-].

* use the `:tag <subject>` command. This works with all characters.

vim_faq.txt — 4370

https://bitbucket.org/vim-mirror/vim
http://hg.256bit.org/vim/
https://hg.osdn.net/view/vim/vim
http://vim.wikia.com/wiki/Where_to_download_Vim
https://github.com/vim/vim/tree/master/runtime
https://www.vim.org/runtime.php

Use CTRL-T to jump back to previous positions in the help files. Use
`:q` to close the help window.

If you want to jump to a specific subject on the help pages, use
`:help {subject}` . If you don't know what to look for, try `:help index`
to get a list of all available subjects. Use the standard search keys to
locate the information you want.
You can abbreviate the `:help` command as `:h`.

For searching the help, see the next Question 4.2. faq-4.2

For more information, read:

online-help

faq-4.2
4.2. How do I search for a keyword in the Vim help files?

a) You can press the CTRL-D key after typing the help keyword to get a
list of all the help keywords containing the supplied pattern. You can
also use the meta characters like *, \+, etc to specify the help
search pattern:

:help init<C-D>
:help str*()<C-D>
:help '*indent<C-D>

b) You can press the <Tab> key after typing a partial help keyword to expand
to the matching keyword. You can continue to press the <Tab> key to see
other keyword matches.

c) From the help window, you can use the `:tag` command to search for
keywords. For example,

:tselect /window

This command will list all the help keywords containing the text
"window". You can select one from the list and jump to it.

d) You can use the `:helpgrep` command to search for the given text in
all the help files. The quickfix window will be opened with all the
matching lines.

For more information, read:

help-summary
c_CTRL-D
c_<Tab>
:tselect
:help
:helpgrep

faq-4.3
4.3. I am getting an error message E123, what did I do wrong?

You can get more information about the error and the error message using:

E123

vim_faq.txt — 4371

For more information, read:

error-messages

faq-4.4
4.4. Where can I read about the various modes in Vim?

You can get information about the different modes in Vim by reading

vim-modes

faq-4.5
4.5. How do I generate the Vim help tags file after adding a new Vim help

file?

You can use the `:helptags` command to regenerate the Vim help tag file
from within Vim. For example:

:cd $VIMRUNTIME/doc
:helptags .

To update all "doc" directories in your 'runtimepath', you can use

:helptags ALL

For more information, read:

:helptags
add-local-help

faq-4.6
4.6. Can I use compressed versions of the help files?

Yes. You can compress the help files and still be able to view them with
Vim. This makes accessing the help files a bit slower and requires the
"gzip" utility. Follow these steps to compress and use the Vim help files:

- Compress all the help files using "gzip doc/*.txt".

- Edit the "doc/tags" file and change the ".txt" to ".txt.gz" using
:%s=\(\t.*\.txt\)\t=\1.gz\t=

- Add the following line to your vimrc:
set helpfile={dirname}/help.txt.gz

Where {dirname} is the directory where the help files are. The gzip.vim
plugin supplied with the standard Vim distribution will take care of
decompressing the files. You must make sure that $VIMRUNTIME is set to
where the other Vim files are, when they are not in the same location as
the compressed "doc" directory.

Note, that the `:helpgrep` command does not work with compressed help pages.

For more information, read:

gzip-helpfile
'helpfile'
gzip
$VIMRUNTIME

vim_faq.txt — 4372

===
faq-5

SECTION 5 - EDITING A FILE

faq-5.1
5.1. How do I load a file in Vim for editing?

There are several ways to load a file for editing. The simplest is to
use the `:e` (:edit) command:

:e <filename>

You can also use the `:n` (:next) command to load files into Vim:

:n <filename(s)>

You can also use the `:args` command to load files into Vim:

:args <filename(s)>

For more information, read:

usr_07.txt
edit-files
:edit
:next_f
:args_f

faq-5.2
5.2. How do I save the current file in another name (save as) and edit a

new file?

You can use the `:saveas` command to save the current file in another name:

:saveas <newfilename>

Alternatively, you can also use the following commands:

:w <newfilename>
:edit #

You can also use the `:file` command, followed by `:w` command:

:file <newfilename>
:w

For more information, read:

07.7
:saveas
:file_f
:w

faq-5.3
5.3. How do I change the current directory to the directory of the current

file?

You can use the following command to change the current directory to the
directory of the current file:

vim_faq.txt — 4373

:cd %:p:h

To automatically change the current directory to the directory of the
current file, simply set the option 'autochdir'.

:set autochdir

For more information, read:

:cd
:lcd
filename-modifiers
autocommand
'acd'
getcwd()

faq-5.4
5.4. How do I write a file without the line feed (EOL) at the end of the

file?

You can turn off the 'eol' option and turn on the 'binary' option to write
a file without the EOL at the end of the file:

:set binary
:set noeol
:w

Alternatively, you can use:

:set noeol
:w ++bin

If you rather only like Vim not to write missing EOLs, you can reset the
'fixeol' option. This needs a Vim newer 7.4.785, so you should wrap this
in an if condition in your .vimrc like this:

if exists('+fixeol')
set nofixeol

endif

This has the advantage of avoiding the many side effects that the
'binary' option has.

For more information, read:

'endofline'
'fixeol'
'binary'
23.4

faq-5.5
5.5. How do I configure Vim to open a file at the last edited location?

Vim stores the cursor position of the last edited location for each buffer
in the '"' register. You can use the following autocmd in your .vimrc or
.gvimrc file to open a file at the last edited location:

au BufReadPost * if line("'\"") > 0 && line("'\"") <= line("$") |
\ exe "normal! g`\"" | endif

vim_faq.txt — 4374

Alternatively, you can simply source the vimrc_example.vim file, which is
distributed with Vim.

For more information, read:

'quote
last-position-jump
vimrc_example.vim

faq-5.6
5.6. When editing a file in Vim, which is being changed by an external

application, Vim opens a warning window (like the confirm dialog) each
time a change is detected. How do I disable this warning?

You can set the Vim 'autoread' option to automatically read the file again
when it is changed outside of Vim:

:set autoread

You can also use the following autocommand:

autocmd FileChangedShell *
\ echohl WarningMsg |
\ echo "File has been changed outside of vim." |
\ echohl None

For more information, read:

'autoread'
FileChangedShell
timestamp
:checktime

faq-5.7
5.7. How do I edit a file whose name is under the cursor?

You can use the gf command to edit a file whose name is under the cursor.
You can use the CTRL-W f command to edit the file in a new window and
finally you can use CTRL-W gf top open a new tab page that contains the
file name under the cursor.

For more information, read:

gf
CTRL-W_f
CTRL-W_gf
'isfname'
'path'
'suffixesadd'
'includeexpr'

faq-5.8
5.8. How do I reload/re-edit the current file?

You can use the `:edit` command, without specifying a file name, to reload
the current file. If you have made modifications to the file, you can use
`:edit!` to force the reload of the current file (you will lose your
modifications, but depending on your 'undoreload' settings, those
changes might be saved into the undo history).

vim_faq.txt — 4375

For more information, read:

:edit
:edit!
'confirm'
'undoreload'

faq-5.9
5.9. How do I autosave a file periodically?

Vim doesn't support auto-saving a file periodically.

For more information, read:

'updatetime'
CursorHold
swap-file

faq-5.10
5.10. How do I open a file in read-only mode?

You can open a file in read-only mode using the `:view` command:

:view <filename>

This command sets the 'readonly' option for the opened buffer. You can also
use the "-R" command-line option to open a file in read-only mode:

$ vim -R <filename>

You can also use the symbolic link executable "view" to open a file in
read-only mode from the command-line:

$ view <filename>

For more information, read:

07.6
'readonly'
'modifiable'
:view
:sview
view
-R
-M

faq-5.11
5.11. How do I open a file for editing without saving the modifications to

the current file?

You can open a file for editing without saving the modifications to the
current file and without losing the changes using one of the following
methods:

:split <new_filename>
:new <new_filename>

You can also set the 'hidden' option and edit a new file:

:set hidden

vim_faq.txt — 4376

:e <new_filename>

If you want to discard the changes made to the current file and load
another file for editing, then you can use the following command:

:e! <new_filename>

For more information, read:

:edit!_f
'hidden'
:split
:new

faq-5.12
5.12. How do I reduce the loading time for very large files in Vim?

You can use the following settings to reduce the loading time for
very large files in Vim:

:set lazyredraw
:set noswapfile
:set undolevels=-1
:set eventignore=all
:set nohidden
:set syntax=off

Note that the above settings will disable many Vim features including the
following: Swap files support for crash recovery, undo support, syntax
highlighting, filetype detection and other autocommand based features.

There is also the LargeFile plugin available at

https://www.vim.org/scripts/script.php?script_id=1506

which automatically sets these options, when working with large files
(it is configurable, what is considered to be a large file, by default,
it is 100MB).

===
faq-6

SECTION 6 - EDITING MULTIPLE FILES

faq-6.1
6.1. How do I open multiple files at once from within Vim?

Make a difference between args, buffers, tabs and windows. They are all
different things in VIM.

args is a list of arguments. Buffers are place to edit text, almost
always attached to a file but not necessarily. Window is a place for a
buffer and tab is set of windows, better name would be "layout".

There are several ways to open multiple files at once from within Vim. You
can use the `:next` command to specify a group of files:

:next f1.txt f2.txt
:next *.c

You can use the `:args` command to specify a group of files as arguments:

vim_faq.txt — 4377

https://www.vim.org/scripts/script.php?script_id=1506

:args f1.txt f2.txt
:args *.c

After loading the files, you can use the `:next` and `:prev` command to
switch between the files.

To execute command for all files in argument-list use `:argdo`

For more information, read:

07.2
:next
:args_f
argument-list

faq-6.2
6.2. How do I switch between multiple files/buffers in Vim?

To list all buffers use `:ls`, to list buffers without file attached to
(also known as unlisted buffers, ex. scratch buffer and help-window) use
`:ls!`

There are several ways to switch between multiple files. You can use the
`:buffer` command to switch between multiple files. You can also shorten
command as `:b` and use only part of the filename. For example,

:buffer file1
:buffer file2
:b e2

You can also use <TAB> after `:b` for autocompletion. Try also `:b`
followed by CTRL-D to see all available buffers. This works also for
`:e`.

You can also use the CTRL-^ key to switch between buffers. By specifying a
count before pressing the key, you can edit the buffer with that number.
Without the count, you can edit the alternate buffer by pressing CTRL-^

You can also use the `:e #` command to edit a particular buffer:

:e #5

To close a buffer use `:bd` -command.

To execute command for all files in buffer-list use `:bufdo`

For more information, read:

edit-files
:buffer
CTRL-^
alternate-file
22.4
07.3

faq-6.3
6.3. How do I open several files in Vim, with each file in a separate

window/tab?

vim_faq.txt — 4378

You can use the -o and -O Vim command line arguments to open multiple files
in separate horizontally or vertically split Vim windows. For example:

$ vim -o3 f1.txt f2.txt f3.txt

The above command will open the files f1.txt, f2.txt and f3.txt in three
separate horizontally split Vim windows.

$ vim -O3 f1.txt f2.txt f3.txt

The above command will open the files f1.txt, f2.txt and f3.txt in three
separate vertically split Vim windows.

$ vim -p f1.txt f2.txt f3.txt

The above command will open the files f1.txt, f2.txt and f3.txt in three
separate tab windows. The option 'tabpagemax' defines, how many tabpages
can be opened at the same time, by default it is set to 10.

For more information, read:

-o
-O
-p
startup-options
'tabpagemax'

faq-6.4
6.4. How do I configure Vim to autoload several files at once similar to

"work-sets" or "projects"?

You can use the `:mksession` and the `:mkview` commands to autoload several
files in Vim.

The `:mksession` command creates a Vim script that restores the current
editing session. You can use the `:source` command to source the file
produced by the mksession command.

The `:mkview` command creates a Vim script that restores the contents of
the current window. You can use the `:loadview` command to load the view
for the current file.

For more information, read:

21.4
21.5
views-sessions
'sessionoptions'
:mksession
:source
v:this_session
:mkview
:loadview
'viewdir'
buffers

faq-6.5
6.5. Is it possible to open multiple top level windows in a single instance

of Vim similar to Nedit or Emacs?

vim_faq.txt — 4379

No. It is currently not possible to open multiple top-level windows in a
single instance of Vim. This feature is in the todo list.

faq-6.6
6.6. How do I browse/explore directories from within Vim?

You can use the netrw.vim plugin, supplied with the standard Vim
installation, to browse/explore directories from within Vim. You can start
the file explorer using one of the following commands:

:e <directory>
:Explore
:Sexplore
:Vexplore
:Texplore

From the file explorer, you can browse through directories, rename, delete
and edit files.

For more information, read:

netrw.vim
22.1

faq-6.7
6.7. How do I edit files over a network using ftp/scp/rcp/http?

You can use the netrw.vim plugin, supplied with the standard Vim package,
to edit files over a network using ftp/scp/rcp/http. Using this plugin, Vim
will transparently load and save the files over ftp/scp/rcp/http. For
example, to edit a file over ftp, you can use the following command:

$ vim ftp://machine/path

For more information, read:

netrw.vim

===
faq-7

SECTION 7 - BACKUP

faq-7.1
7.1. When I edit and save files, Vim creates a file with the same name as

the original file and a "~" character at the end. How do I stop Vim
from creating this file? (or) How do I disable the Vim backup file
feature?

You have set the 'backup' option, so Vim creates a backup file when saving
the original file. You can stop Vim from creating the backup file, by
clearing the option:

:set nobackup

Note that, by default this option is turned off. You have explicitly
enabled the 'backup' option in one of the initialization files. You may
also have to turn off the 'writebackup' option:

:set nowritebackup

vim_faq.txt — 4380

For more information, read:

07.4
backup-table
'backup'
'writebackup'
'backupskip'
'backupdir'
'backupext'
'backupcopy'
backup

faq-7.2
7.2. When I edit and save files, Vim creates a file with the same name as

the original file and a "un~" extension at the end. How do I stop Vim
from creating this file (or) How do I disable the Vim undofile feature?

Vim 7.3 contains as new feature persistent undo, that is, undo information
won't be lost when quitting Vim and be stored in a file that ends with
".un~" You have set the 'undofile' option, so Vim creates an undo file when
saving the original file. You can stop Vim from creating the backup file,
by clearing the option:

:set noundofile

Note that, by default this option is turned off. You have explicitly
enabled the 'undofile' option in one of the initialization files. If you
want your undofiles to be stored only in a particular directory, you can
point the 'undodir' option to a directory that will contain all your
aggregated undofiles.

For more information, read:

'undodir'
'undofile'
undo-persistence

faq-7.3
7.3. How do I configure Vim to store all the backup files in a particular

directory?

You can configure Vim to store all the backup files in a particular
directory using the 'backupdir' option. For example, to store all the
backup files in the ~/backup directory, you can use the following command:

:set backupdir=~/backup

For more information, read:

07.4
'backupdir'
backup

faq-7.4
7.4. When I save a file with Vim, the file permissions are changed.

How do I configure Vim to save a file without changing the file
permissions?

This may happen, if the 'backupcopy' option is set to "no" or "auto". Note
that the default value for this option is set in such a way that this will

vim_faq.txt — 4381

correctly work in most of the cases. If the default doesn't work for you,
try setting the 'backupcopy' option to "yes" to keep the file permission
when saving a file:

:set backupcopy=yes

This applies, only if you have configured Vim to make a backup whenever
overwriting a file. By default, Vim will not backup files.

For more information, read:

'backupcopy'
backup
'backup'
'writebackup'

===
faq-8

SECTION 8 - BUFFERS

faq-8.1
8.1. I have made some modifications to a buffer. How do I edit another

buffer without saving the modified buffer and also without losing the
modifications?

You can set the 'hidden' option to edit a file without losing modifications
to the current file:

:set hidden

By setting the 'hidden' option, you can also save the modification history
(undo-history) for the buffer. Otherwise, as you switch between files, the
undo-history will be lost (unless you use persistent undofiles).

For more information, read:

'hidden'
hidden-quit
:hide

faq-8.2
8.2. How do I configure Vim to auto-save a modified buffer when switching

to another buffer?

You can set the 'autowrite' option to auto-save a modified buffer when
switching to another buffer:

:set autowrite

For more information, read:

'autowrite'
'autowriteall'
'hidden'

faq-8.3
8.3. How do I replace the buffer in the current window with a blank buffer?

You can use the `:enew` command to load an empty buffer in place of the
buffer in the current window.

vim_faq.txt — 4382

For more information, read:

:enew

faq-8.4
8.4. Is there a keyboard shortcut to load a buffer by the buffer number?

You can use the CTRL-^ command to load a buffer by specifying the buffer
number. For example, to load buffer number 5, you have to use the 5 CTRL-^
command.

For more information, read:

CTRL-^

faq-8.5
8.5. How do I open all the current buffers in separate windows?

You can use the `:ball` or `:sball` commands to open all the buffers
in the buffer list:

:ball

If you want all buffers to be opened in new tabs, simply prefix the `:tab`
command:

:tab :sball

For more information, read:

:ball

faq-8.6
8.6. How do I close (delete) a buffer without exiting Vim?

You can use any of `:bdelete`, `:bwipeout` or `:bunload` commands to
delete a buffer without exiting Vim. For example:

:bdelete file1

For more information, read:

:bdelete
:bwipeout
:bunload

faq-8.7
8.7. When I use the command `:%bd` to delete all the buffers, not all the

buffers are deleted. Why?

In the `:%bd` command, the "%" range will be replaced with the starting and
ending line numbers in the current buffer. Instead of using "%" as the
range, you should specify numbers for the range. For example, to delete all
the buffers, you can use the command `:1,9999bd`.

For more information, read:

:bd

vim_faq.txt — 4383

(This behaviour has been fixed with patch 7.4.530)

faq-8.8
8.8. How do I display the buffer number of the current buffer/file?

You can use 2<CTRL-G> command to display the buffer number for the current
file/buffer. Note the use of count before the CTRL-G command. If the count
is greater than 1, then Vim will display the buffer number.

You can also use the following command to display the current buffer
number:

:echo bufnr("%")

You can also include the "%n" field to the 'statusline' option to display
the current buffer number on the statusline.

For more information, read:

CTRL-G
bufnr()
:echo
'statusline'

faq-8.9
8.9. How do I delete a buffer without closing the window in which the

buffer is displayed?

You can use the following command to open the next buffer and delete
the current buffer.

:bnext | bdelete #

For more information, read:

:bnext
:bdelete
:buffers

faq-8.10
8.10. How do I map the <Tab> key to cycle through and open all the buffers?

You can use the following two map commands, to map the <Ctrl-Tab> key to open
the next buffer and the <Ctrl-Shift-Tab> key to open the previous buffer:

:nnoremap <C-Tab> :bnext<CR>
:nnoremap <S-C-Tab> :bprevious<CR>

Note, this might not work in the terminal version of Vim.

For more information, read:

:bnext
:bprevious

===
faq-9

SECTION 9 - WINDOWS

faq-9.1

vim_faq.txt — 4384

9.1. What is the difference between a Vim window and a buffer?

A Vim buffer is a file loaded into memory for editing. The original file
remains unchanged until you write the buffer to the file. A Vim window is a
viewport onto a buffer. You can use multiple windows on one buffer or
several windows on different buffers.

For more information, read:

usr_08.txt
22.4
windows-intro
Q_wi

faq-9.2
9.2. How do I increase the width of a Vim window?

You can increase the width of a Vim window using one of the following
commands:

:vert resize +N
:vert resize -N
:vert resize N

You can also use CTRL-W < or CTRL-W > or CTRL-W | commands.

For more information, read:

:vertical-resize
CTRL-W_>
CTRL-W_<
window-resize

faq-9.3
9.3. How do I zoom into or out of a window?

You can zoom into a window (close all the windows except the current
window) using the "<CTRL-W>o" command or the `:only` ex command.

You can use the "<CTRL-W>_" command or the `:resize` ex command to increase
the current window height to the highest possible without closing other
windows.

You can use the "<CTRL-W>|" command or the `:vertical resize` ex command to
increase the current window width to the highest possible without closing
other windows.

You can use the "<CTRL-W>=" command to make the height and width of all the
windows equal.

You can also set the following options to get better results with the above
commands:

Method 1:
Set the 'winminheight' option to 0:

:set winminheight=0

By default, this option is set to 1.
This option controls the minimum height of an inactive window (when it is

vim_faq.txt — 4385

not the current window). When the 'winminheight' option is set to 0, only
the status line will be displayed for inactive windows.

Method 2:
Set the 'noequalalways' option and set the 'winheight' option to a large
value (like 99999):

:set noequalalways
:set winheight=99999

Now, the active window will always open to its maximum size, while the
other windows will stay present, but shrunken to just a status line.

With any of the above mentioned methods, you cannot restore the window
layout after zooming into a window. If you want to restore the Vim window
layout after zooming into a window, you can use the ZoomWin plugin. You can
download this plugin from the Vim online website at:

https://www.vim.org/scripts/script.php?script_id=508

For more information, read:

CTRL-W_o
window-resize
'winminheight'
'equalalways'
'winheight'
08.3

faq-9.4
9.4. How do I execute an ex command on all the open buffers or open windows

or all the files in the argument list?

You can use the `:bufdo` command to execute an ex command on all the open
buffers. You can use the `:windo` command to execute an ex command on all
the open windows. You can use the `:argdo` command to execute an ex
command on all the files specified in the argument list. And finally you
can use the `:tabdo` command to execute an ex command in all open tab pages.

For more information, read:

:windo
:bufdo
:argdo
:tabdo
26.3

===
faq-10

SECTION 10 - MOTION

faq-10.1
10.1. How do I jump to the beginning (first line) or end (last line) of a

file?

You can use "G" command to jump to the last line in the file and the "gg"
command to jump to the first line in the file.

For more information, read:

vim_faq.txt — 4386

https://www.vim.org/scripts/script.php?script_id=508

G
gg

faq-10.2
10.2. In insert mode, when I press the <Esc> key to go to command mode, the

cursor moves one character to the left (except when the cursor is on
the first character of the line). Is it possible to change this
behavior to keep the cursor at the same column?

No. It is not possible to change this behavior. The cursor is always
positioned on a valid character (unless you have virtual-edit mode
enabled). So, if you are appending text to the end of a line, when you
return to command mode the cursor must drop back onto the last character
you typed. For consistency sake, the cursor drops back everywhere, even if
you are in the middle of a line.

You can use the CTRL-O or CTRL-\ CTRL-O command in insert mode to execute a
single ex command and return back to insert mode without moving the cursor
column.

For more information, read:

'virtualedit'
i_CTRL-O
i_CTRL-_CTRL-O

faq-10.3
10.3. How do I configure Vim to maintain the horizontal cursor position when

scrolling with the <Page Up>, <Page Down>, etc keys?

You can reset the 'startofline' option to keep the cursor at the same
horizontal location when scrolling text:

:set nostartofline

For more information, read:

'startofline'

faq-10.4
10.4. Some lines in a file are more than the screen width and they are all

wrapped. When I use the j, k keys to move from one line to the next,
the cursor is moved to the next line in the file instead of the next
line on the screen. How do I move from one screen line to the next?

You can use the gj and gk commands to move from one screen line to the
next/previous screen line. The j and k commands move the cursor from one
file line to the next file line. You can also avoid the line wrapping by
resetting the 'wrap' option:

:set nowrap

For more information, read:

gj
gk
'wrap'

You can use the following mappings:

vim_faq.txt — 4387

:map <Up> gk
:imap <Up> <C-o>gk
:map <Down> gj
:imap <Down> <C-o>gj
:noremap j gj
:noremap k gk

faq-10.5
10.5. What is the definition of a sentence, paragraph and section in Vim?

A sentence is defined as ending at a ".", "!" or "?" followed by either the
end of a line, or by a space (or two) or tab. Which characters and the
number of spaces needed to constitute a sentence ending is determined by
the 'joinspaces' and 'cpoptions' options.

A paragraph begins after each empty line, and also at each of a set of
paragraph macros, specified by the pairs of characters in the 'paragraphs'
option.

A section begins after a form-feed (<C-L>) in the first column and at each
of a set of section macros, specified by the pairs of characters in the
'sections' option.

For more information, read:

sentence
'joinspaces'
'cpoptions'
paragraph
section
word

faq-10.6
10.6. How do I jump to beginning or end of a sentence, paragraph or a

section?

You can use the following motion commands to jump to the beginning or end
of a sentence or a paragraph or a section:

motion position where
------ --------- -----------------
(beginning current sentence
) end current sentence
{ beginning current paragraph
} end current paragraph
[] end previous section
[[beginning current section
][end current section
]] beginning next section

Each of these motions can be preceded by a number which will extend the
jump forward (or backward).

For more information, read:

object-motions

faq-10.7
10.7. I have lines in a file that extends beyond the right extent of the

screen. How do I move the Vim view to the right to see the text off

vim_faq.txt — 4388

the screen?

You can use one of the following commands to horizontally scroll the screen
to the left or right:

cmd scroll to
--- --------------------------
zl scroll to the left
zh scroll to the right
zL scroll half a screenwidth to the left
zH scroll half a screenwidth to the right
zs scroll to position the cursor at the start of the screen
ze scroll to position the cursor at the end of the screen

You can use the g0 command to move the cursor to the first character of the
screen line and the g$ command to move the cursor to the last character of
the screen line without scrolling the screen.

For more information, read:

scroll-horizontal

faq-10.8
10.8. How do I scroll two or more buffers simultaneously?

You can set the 'scrollbind' option for each of the buffers to scroll them
simultaneously.

For more information, read:

'scrollbind'
scroll-binding
'scrollopt'
'cursorbind'

faq-10.9
10.9. When I use my arrow keys, Vim changes modes, inserts weird characters

in my document but doesn't move the cursor properly. What's going on?

There are a couple of things that could be going on: either you are using
Vim over a slow connection or Vim doesn't understand the key sequence that
your keyboard is generating.

If you are working over a slow connection (such as a 2400 bps modem), you
can try to set the 'timeout' or 'ttimeout' option. These options, combined
with the 'timeoutlen' and 'ttimeoutlen' options, may fix the problem.

The preceding procedure will not work correctly if your terminal sends key
codes that Vim does not understand. In this situation, your best option is
to map your key sequence to a matching cursor movement command and save
these mappings in a file. You can then `:source` the file whenever you work
from that terminal.

For more information, read:

'timeout'
'ttimeout'
'timeoutlen'
'ttimeoutlen'
:map

vim_faq.txt — 4389

vt100-cursor-keys

faq-10.10
10.10. How do I configure Vim to move the cursor to the end of the previous

line, when the left arrow key is pressed and the cursor is currently
at the beginning of a line?

You can add the "<" flag to the 'whichwrap' option to configure Vim to move
the cursor to the end of the previous line, when the left arrow key is
pressed and the cursor is currently at the beginning of a line:

:set whichwrap+=<

Similarly, to move the cursor the beginning of the next line, when the
right arrow key is pressed and the cursor is currently at the end of a
line, add the ">" flag to the 'whichwrap' option:

:set whichwrap+=>

The above will work only in normal and visual modes. To use this in insert
and replace modes, add the "[" and "]" flags respectively.

For more information, read:

'whichwrap'
05.7

faq-10.11
10.11. How do I configure Vim to stay only in insert mode (modeless

editing)?

You can set the 'insertmode' option to configure Vim to stay only in insert
mode:

:set insertmode

By setting this option, you can use Vim as a modeless editor. If you press
the <Esc> key, Vim will not go to the normal mode. To execute a single
normal mode command, you can press CTRL-O followed by the normal mode
command. To execute more than one normal command, you can use CTRL-L
followed by the commands. To return to insert mode, press the <Esc> key. To
disable this option, reset the 'insertmode' option:

:set noinsertmode

You can also start vim using the "evim" command or you can use "vim -y" to
use Vim as a modeless editor.

You can also start Vim in insert mode using the `:startinsert` ex command.

For more information, read:

'insertmode'
:startinsert
:stopinsert
i_CTRL-O
i_CTRL-L
evim
evim-keys

vim_faq.txt — 4390

faq-10.12
10.12. How do I display some context lines when scrolling text?

You can set the 'scrolloff' option to display a minimal number of screen
lines (context) above and below the cursor.

:set scrolloff=10

For more information, read:

'scrolloff'
'sidescrolloff'

faq-10.13
10.13. How do I go back to previous cursor locations?

You can go back to the cursor location before the latest jump using the ''
or `` command. You can use the CTRL-O command to go back to older cursor
positions and the CTRL-I command to go to the newer cursor positions in the
jump list.

For more information, read:

03.10
mark-motions
jump-motions

===
faq-11

SECTION 11 - SEARCHING TEXT

faq-11.1
11.1. After I searched for a text with a pattern, all the matched text

stays highlighted. How do I turn off the highlighting
temporarily/permanently?

The 'hlsearch' option controls whether all the matches for the last
searched pattern are highlighted or not. By default, this option is not
enabled. If this option is set in a system-wide vimrc file, then you can
turn off the search highlighting by using the following command:

:set nohlsearch

To temporarily turn off the search highlighting, use

:nohlsearch

You can also clear the search highlighting, by searching for a pattern that
is not in the current file (for example, search for the pattern "asdf").

You can use this mapping, to clear the search highlighting when
redrawing the window pressing CTRL-L

:nnoremap <silent> <C-L> <C-L>:nohls<CR>

For more information, read:

'hlsearch'
:nohlsearch

vim_faq.txt — 4391

faq-11.2
11.2. How do I enter a carriage return character in a search pattern?

You can either use "\r" or <CTRL-V><CTRL-M> to enter a carriage return
character in a pattern. In Vim scripts, it is better to use "\r" for the
carriage return character.

For more information, read:

sub-replace-special

faq-11.3
11.3. How do I search for the character ^M?

You can enter the ^M character in a search command by first pressing the
CTRL-V key and then pressing the CTRL-M key.

/^V^M

You can also use the "\r" character. In Vim scripts, "\r" is preferred.

For more information, read:

c_CTRL-V
using_CTRL-V
/\r

faq-11.4
11.4. How can I search/replace characters that display as "~R", "~S", etc.?

You can use the "ga" command to display the ASCII value/code for the
special character. For example, let us say the ASCII value is 142. Then you
can use the following command to search for the special character:

/^V142

where, ^V is entered by pressing CTRL-V.

For more information, read:

ga
using_CTRL_V
24.8

faq-11.5
11.5. How do I highlight all the non-printable characters in a file?

You can use the following commands and search pattern to highlight all the
non-printable characters in a file:

:set hlsearch
/\(\p\|$\)\@!.

For more information, read:

/\p
/bar
/$
/\(
/\@!

vim_faq.txt — 4392

'hlsearch'

faq-11.6
11.6. How do I search for whole words in a file?

You can search for whole words in a file using the \< and \> atoms. For
example:

/\<myword\>

The \< atom matches the beginning of the word and the \> atom matches the
end of the word.

For more information, read:

/\<
/\>

faq-11.7
11.7. How do I search for the current word under the cursor?

You can press the * key to search forward for the current word under the
cursor. To search backward, you can press the # key. Note that only whole
keywords will be searched using these commands.

For more information, read:

star
#
gstar
g#
03.8
search-commands

faq-11.8
11.8. How do I search for a word without regard to the case (uppercase or

lowercase)?

To always ignore case while searching for a pattern, set the 'ignorecase'
option:

:set ignorecase

To ignore case only when searching a particular pattern, use the special \c
directive:

/\c<pattern>

For more information, read:

'ignorecase'
/ignorecase
/\c

faq-11.9
11.9. How do I search for words that occur twice consecutively?

You can use one of the following search commands to locate words that occur
twice consecutively:

vim_faq.txt — 4393

/\(\<\w\+\)_s\+\1\>
/\(\<\k\+\)_s\+\1\>

The main difference is the use of "\w" and "\k", where the latter is based
on the 'iskeyword' option which may include accented and other language
specific characters.

For more information, read:

/\1
/\(
/\)
/\<
/\>
/\w
/\k
/\+
/_x
'iskeyword'

faq-11.10
11.10. How do I count the number of times a particular word occurs in a

buffer?

You can use the following set of commands to count the number of times a
particular word occurs in a buffer:

:let cnt=0
:g/\<your_word\>/let cnt=cnt+1
:echo cnt

This only counts the number of lines where the word occurs. You can also
use the following command:

:%s/\<word\>/&/gn

To count the number of alphabetic words in a file, you can use

:%s/\a\+/&/gn

To count the number of words made up of non-space characters, you can use

:%s/\S\+/&/gn

For more information, read:

count-items
word-count
v_g_CTRL-G
12.5
:s_flags

faq-11.11
11.11. How do I place the cursor at the end of the matched word when

searching for a pattern?

You can use the "e" offset to the search command to place the cursor at the
end of the matched word. For example

/mypattern/e

vim_faq.txt — 4394

For more information about search offsets, read:

search-offset
/

faq-11.12
11.12. How do I search for an empty line?

You can search for an empty line using:

/^$

or

/^\s*$

The latter also matches lines, that consist only of white space, while the
former only matches true empty lines. For more information, read:

/^
/$
/\s
/star
search-commands

faq-11.13
11.13. How do I search for a line containing only a single character?

You can search for a line containing only a single character using:

/^\s*\a\s*$

For more information, read:

/^
/\a
/\s
/star
/$

faq-11.14
11.14. How do I search and replace a string in multiple files?

You can use the `:argdo`, `:bufdo`, `:windo` or `:tabdo` commands to execute
an ex command on multiple files. For example:

:argdo %s/foo/bar/g|upd

For more information, read:

:argdo
:bufdo
:windo
:tabdo

faq-11.15
11.15. I am using the `:s` substitute command in a mapping. When a search

for a pattern fails, the map terminates. I would like the map to
continue processing the next command, even if the substitute command

vim_faq.txt — 4395

fails. How do I do this?

You can use the "e" flag to the substitute command to continue processing
other commands in a map, when a pattern is not found.

For more information, read:

:s_flags

faq-11.16
11.16. How do I search for the n-th occurrence of a character in a line?

To search for the n-th occurrence of a character in a line, you can prefix
the "f" command with a number. For example, to search for the 5th
occurrence of the character @ in a line, you can use the command 5f@. This
assumes the cursor is at the beginning of the line - and that this first
character is not the one your are looking for.

For more information, read:

f
F
t
T
;
,

faq-11.17
11.17. How do I replace a tab (or any other character) with a hard return

(newline) character?

You can replace a tab (or any other character) with a hard return (newline)
character using the following command:

:s/\t/\r/

Note that in the above command, if you use \n instead of \r, then the tab
characters will not be replaced by a new-line character.

For more information, read:

sub-replace-special
NL-used-for-Nul
CR-used-for-NL

faq-11.18
11.18. How do I search for a character by its ASCII value?

You can search for a character by its ASCII value by pressing CTRL-V
followed by the decimal or hexadecimal or octal value of that character in
the search "/" command. To determine the ASCII value of a character you
can use the `:ascii` or the "ga" command.

For example, to search for the ASCII character with value 188 (¼), you can
use one of the following search commands:

/<CTRL-V>188
/<CTRL-V>o274
/<CTRL-V>xBC
/<CTRL-V>u00bc

vim_faq.txt — 4396

You can also search for the character with the decimal/octal/hex number
using a collation [] like this:

/[\d188]
/[\o274]
/[\xbc]
/[\u00bc]

Alternatively, you can use the special atom \%d \%o \%x \%u:

/\%d188
/\%o274
/\%xbc
/\%u00bc

Or you use digraphs to enter the character. For example enter:

/CTRL-K14

to search for the above character.

For more information, read:

i_CTRL-V_digit
:ascii
ga
/\]
/\%d
digraphs

faq-11.19
11.19. How do I search for long lines?

You can search for long lines or lines containing more than a specific
number of characters using the Vim regular-expressions in the search
command. For example, to search for all the lines containing more than 80
characters, you can use one of the following commands:

/^.\{80}.\+$
/^.*\%>80c.*$
/^.*\%>80v.*$

For more information, read:

/\{
/\%c
/\%v

faq-11.20
11.20. How do I display all the lines in the current buffer that contain a

specified pattern?

You can use the following command to display all the lines in the current
buffer that contain a specified pattern:

:g/<pattern>/p

For example, the following command will display all the lines in the
current buffer that contain "vim":

vim_faq.txt — 4397

:g/vim/p

Since `:p` is the default command to be executed for the ex command `:g`, you
can also use:

:g/vim

If you also want the corresponding line numbers, then you can use the
following command:

:g/<pattern>/#

For more information, read:

:global
:print
:number

faq-11.21
11.21. How do I search for a text string that spans multiple lines?

You can search for a text string that spans multiple lines using the _x
regular expression atom. For example, to search for the text string "Hello
World", you can use the following search command:

/Hello_sWorld

This will match the word "Hello" followed by a newline character and then
the word "World" at the beginning of the next line. This will also match
the word "Hello" immediately followed by a space character and then the
word "World". When searching for the "Hello World" string, to include the
space characters at the end and beginning of the line, you can use the
following search command:

/Hello_s\+World

For more information, read:

27.8
pattern-atoms
/_
pattern-searches

faq-11.22
11.22. How do I search for a pattern within the specified range of lines

in a buffer?

You can search for a pattern within a range of lines using the \%>l
and \%<l regular expression atoms.

For example, to search for the word "white" between the lines 10 and 30 in
a buffer, you can use the following command:

/white\%>9l\%<31l

For more information, read:

/\%l

vim_faq.txt — 4398

faq-11.23
11.23. How do I clear the last searched pattern?

The last searched pattern is stored in the "/" register. You can clear
this register using the following command:

:let @/=""

To clear the last search pattern whenever a buffer is unloaded, you can use
the following command:

:autocmd BufUnload * let @/ = ""

For more information, read:

@/
:let-@
autocmd-searchpat
last-pattern

faq-11.24
11.24. Why does this pattern "a.\{-}p\@!" not match?

"\{-}" doesn't just mean "as few as possible", it means "as few as
possible to make the whole pattern succeed". If it didn't match the "p",
the whole pattern would fail (because of the "p\@!") so it does match
the "p". It is a longer match, but it is the shortest match that makes
the whole pattern succeed.

If you wanted "as few as possible regardless" you would use "\@>", which
basically divides a pattern up so that the pieces either side behave
independently. If the pattern were "a.\{-}\@>p\@!" then ".\{-}" would
always match nothing because that's the smallest match that can succeed
when there are not other restrictions. The whole pattern then would
behave the same as "ap\@!", i.e. it would match any "a" not followed by
a "p").

This means, it matches as few as possible "a"s without trying to keep
going until Vim finds the longest match. This means, it will still match
"ap".

faq-11.25
11.25. How can I use "/" within a pattern, without escaping it?

When using / to search for a pattern, you need to escape all "/" within
the pattern, because they would otherwise terminate the pattern. So you
can't directly search for /usr/share/doc/ but need to search for
\/usr\/share\/doc\/

The easiest solution around that, would be to use "?" to start a
backward search and afterwards use /<CR> to use the last search-pattern
in forward direction.

If you have a Vim, that has the eval-feature built in (which needs at
least a normal built or higher), you can also directly paste the pattern
into the search register:

:let @/ = '/usr/share/doc/'

Then use "n" to jump to the next occurrence.

vim_faq.txt — 4399

See also the help at

@/
/<CR>

faq-11.26
11.26. How can I operate on a search match?

The "gn" command makes it easy to operate on regions of text that match
the current search pattern. By default, it will search forward for the
last used search pattern and visually select the match. If the cursor is
already on the match, it will be visually selected. If you used the "gn"
command after an operator (e.g. "c" to change text), it will be applied
on the match.

If Visual mode is active before using gn, the visual selection will be
extended until the end of the next match.

The "gN" commands works similar but searches backwards.

This allows to repeat simple operations on each match. For example, you
might want to change each occurence of apples by peaches. So you search
using "/apple" then you can use "cgnpeach<Esc>" to replace the current
match by peach. Now you can use the dot "." command to redo the
replacement for the rest of the buffer.

See also the help at

gn
gN

===
faq-12

SECTION 12 - CHANGING TEXT

faq-12.1
12.1. How do I delete all the trailing white space characters (SPACE and

TAB) at the end of all the lines in a file?

You can use the `:substitute` command on the entire file to search and
remove all the trailing white space characters:

:%s/\s\+$//

For more information, read:

:%
:s
/\s
/\+
/$

faq-12.2
12.2. How do I replace all the occurrences of multiple consecutive space

characters to a single space?

You can use the following command to replace all the occurrences of
multiple consecutive space characters to a single space:

vim_faq.txt — 4400

:%s/ \{2,}/ /g

Alternatively use:

:%s/ \+/ /g

For more information, read:

:%
:s
/\{
:s_flags

faq-12.3
12.3. How do I reduce a range of empty lines into one line only?

You can use the following command to reduce a range of empty lines into one
line only:

:v/./.,/./-1join

The explanation for this command is below:

part description
----- --------------------------
:v/./ Execute the following command for all lines not

containing a character (empty lines).
., Use the current line as the start of the range of

lines.
/./ Use the line containing a character as the last line.
-1 Adjust the range of lines to end with the line before

the last line.
j Join the lines in the range.

Note that this will give an error message if the empty lines are at the end
of the file. To correct this, you have to add a temporary line at the end
of the file, execute the command and then remove the temporary line.

For more information, read:

:v
:join
cmdline-ranges
collapse

faq-12.4
12.4. How do I delete all blank lines in a file? How do I remove all the

lines containing only space characters?

To remove all blank lines, use the following command:

:g/^$/d

To remove all lines with only whitespace (spaces or tabs) in them, use the
following command:

:g/^\s\+$/d

To remove all the lines with only whitespace, if anything, use the
following command:

vim_faq.txt — 4401

:g/^\s*$/d

faq-12.5
12.5. How do I copy/yank the current word?

You can use the "yiw" (yank inner word without whitespace) command or the
"yaw" (yank a word with whitespace) command to copy/yank the current
word.

For more information, read:

04.6
04.8
iw
yank
text-objects
objects

faq-12.6
12.6. How do I yank text from one position to another position within a

line, without yanking the entire line?

You can specify a motion command with the yank operator (y) to yank text
from one position to another position within a line. For example, to yank
from the current cursor position till the next letter x, use yfx or Fx or
tx or Tx. To yank till the nth column, use n|. To yank till the next
occurrence of a "word", use /word. To do a yank till the nth column on
another line, first mark the position using the "ma" command, go to the
start of the yank position, and then yank till the mark using y`a (note the
direction of the quote)

For more information, read:

yank
motion.txt
04.6

faq-12.7
12.7. When I yank some text into a register, how do I append the text to

the current contents of the register?

When you specify the register for some operation, if you use the upper-case
for the register name, then the new text will be appended to the existing
contents. For example, if you have some text in the register "a". If you
want to append some new text to this, you have to use the "A" register
name. If you use the lowercase register name, then the contents of the
register will be overwritten with the new text.

For more information, read:

quote
quote_alpha
10.1

faq-12.8
12.8. How do I yank a complete sentence that spans over more than one line?

To yank a complete sentence that spans over more than one line you have to
use the yank operator followed by a motion command. For example:

vim_faq.txt — 4402

y)

From inside the sentence you can use "yi)" to yank the sentence.

For more information, read:

yank
{motion}
object-motions
04.6

faq-12.9
12.9. How do I yank all the lines containing a pattern into a buffer?

You can use the `:global` command to yank all the lines containing the
pattern into a register and then paste the contents of the register into
the buffer:

:let @a=''
:g/mypattern/y A

The first command, clears the contents of the register "a". The second
command copies all the lines containing "mypattern" into the register "a".
Note that the capital letter "A" is used to append the matched lines. Now
you can paste the contents of register "a" to a buffer using "ap command.

If you only want to collect all matches, you can use a different
approach. For that run the `:s` command with the flags "gn" so that it
won't actually change the buffer ("n" flag) but select each match ("g"
flag). Combining this with the "\=" part in the replacement part, you
can copy each match to e.g. a list. Altogether this looks like this:

:let list=[]
:%s/pattern/\=add(list, submatch(0))/gn

Now all matches will be in the list and you can post process them as
wanted.

For more information, read:

:g
:y
:let-register
quote_alpha
put
registers
:registers
sub-replace-\=

faq-12.10
12.10. How do I delete all the lines in a file that do not contain a

pattern?

You can use `:v` command to delete all the lines that do not contain a
pattern:

:v/pattern/d

or

vim_faq.txt — 4403

:g!/pattern/d

For more information, read:

:v
:g

faq-12.11
12.11. How do I add a line before each line with "pattern" in it?

You can use the following command to add a line before each line with
"pattern" in it:

:g/pattern/normal! Oi<line of text goes here>

Alternatively you can yank the line using the Y command and then insert the
line using the following command:

:g/pattern/put!

For more information, read:

:g
:put
insert
0

faq-12.12
12.12. Is there a way to operate on a line if the previous line contains a

particular pattern?

You can use the `:global` command to operate on a line, if the previous
line contains a particular pattern:

:g/<pattern>/+{cmd}

For more information, read:

:g
:range

faq-12.13
12.13. How do I execute a command on all the lines containing a pattern?

You can use the `:global` (:g) command to execute a command on all the
lines containing a pattern.

:g/my pattern/d

If you want to use a non-Ex command, then you can use the `:normal`
command:

:g/my pattern/normal {command}

Unless you want the normal mode commands to be remapped, consider using a
`:normal!` command instead (note the "!").

For more information, read:

vim_faq.txt — 4404

:global
:v
:normal

faq-12.14
12.14. Can I copy the character above the cursor to the current cursor

position?

In Insert mode, you can copy the character above the cursor to the current
cursor position by typing CTRL-Y. The same can be done with the
characters below the cursor by typing CTRL-E.

For more information, read:

i_CTRL-Y
i_CTRL-E

faq-12.15
12.15. How do I insert a blank line above/below the current line without

entering insert mode?

You can use the `:put` ex command to insert blank lines. For example, try

:put =''
:put! =''

For more information, read:

:put

faq-12.16
12.16. How do I insert the name of the current file into the current buffer?

There are several ways to insert the name of the current file into the
current buffer. In insert mode, you can use the <C-R>% or the
<C-R>=expand("%") command. In normal mode, you can use the `:put =@%`
command.

For more information, read:

i_CTRL-R
expand()
!!

faq-12.17
12.17. How do I insert the contents of a Vim register into the current

buffer?

In insert mode, you can use the <CTRL-R><register> command to insert the
contents of <register>. For example, use <CTRL-R>a to insert the contents
of register "a" into the current buffer.

In normal mode, you can use the `:put <register>` command to insert the
contents of <register>. For example, use the `:put d` command to insert
the contents of register "d" into the current buffer.

For more information, read:

i_CTRL-R
i_CTRL-R_CTRL-R

vim_faq.txt — 4405

i_CTRL-R_CTRL-O
i_CTRL-R_CTRL-P
:put

faq-12.18
12.18. How do I move the cursor past the end of line and insert some

characters at some columns after the end of the line?

You can set the 'virtualedit' option to move the cursor past the
end-of-line and insert characters in a column after the end-of-line. To
start the virtual mode, use

:set virtualedit=all

For more information, read:

'virtualedit'

faq-12.19
12.19. How to replace the word under the cursor (say: junk) with

"foojunkbar" in Vim?

There are several ways to do this. If the word is the first such word on
the line, use the following command:

:exe "s/".expand("<cword>")."/foo&bar/"

To match specifically you could use a more complex substitution like this:

:exe 's/\<'.expand("<cword>").'\%>'.(col(".")-1).'c\>/foo&bar/'

You can also use the command: ciwfoo<C-R>"bar<Esc>

For more information, read:

:substitute
expand()
col()
/\%c

faq-12.20
12.20. How do I replace a particular text in all the files in a directory?

You can use the `:argdo` command to execute the substitute command on all
the files specified as arguments:

:args *
:argdo %s/<your_text>/<replacement_text>/ge | update

For more information, read:

:args_f
:argdo
:s_flags

faq-12.21
12.21. I have some numbers in a file. How do I increment or decrement the

numbers in the file?

You can use the CTRL-A key to increment the number and the CTRL-X key to

vim_faq.txt — 4406

decrement the number. You can also specify the number to
increment/decrement from the number by specifying a count to the key. This
works for decimal, octal and hexadecimal numbers. You can change the base
used by Vim for this operation by modifying the 'nrformats' option.

For more information, read:

26.2
CTRL-A
CTRL-X
'nrformats'

faq-12.22
12.22. How do I reuse the last used search pattern in a `:substitute`

command?

To reuse the last used search pattern in a `:substitute` command, don't
specify a new search pattern:

:s/pattern/newtext/
:s//sometext/

In the second `:s` command, as a search pattern is not specified, the
pattern specified in the first `:s` command "pattern" will be used.

If you want to change the search pattern but repeat the substitution
pattern you can use the special right hand side, you can use the tilde
character:

:s/newpattern/~/

For more information, read:

:s
:&
:~
&
sub-replace-special

faq-12.23
12.23. How do I change the case of a string using the `:substitute`

command?

You can use special characters in the replacement string for a
`:substitute` command to change the case of the matched string. For
example, to change the case of the string "MyString" to all uppercase, you
can use the following command:

:%s/MyString/\U&/g

To change the case to lowercase, you can use the following command:

:%s/MyString/\L&/g

To change the case of the first character in all the words in the current
line to uppercase, you can use the following command:

:s/\<\(.\)\(\k*\)\>/\u\1\L\2/g

For more information, read:

vim_faq.txt — 4407

sub-replace-special
:substitute
/\U
/\L
/\u

faq-12.24
12.24. How do I enter characters that are not present in the keyboard?

You can use digraphs to enter characters that are not present in the
keyboard. You can use the `:digraphs` command to display all the currently
defined digraphs. You can add a new digraph to the list using the
`:digraphs` command.

For more information, read:

digraphs
'digraph'
24.9

faq-12.25
12.25. Is there a command to remove any or all digraphs?

No. The digraphs table is defined at compile time. You can only add new
ones. Adding a command to remove digraphs is on the todo list.

faq-12.26
12.26. In insert mode, when I press the backspace key, it erases only the

characters entered in this instance of insert mode. How do I erase
previously entered characters in insert mode using the backspace
key?

This is traditional vi behaviour. You can set the 'backspace' option to
erase previously entered characters in insert mode:

:set backspace=indent,eol,start

For more information, read:

'backspace'
i_backspacing

faq-12.27
12.27. I have a file which has lines longer than 72 characters terminated

with "+" and wrapped to the next line. How can I quickly join the
lines?

You can use the `:global` command to search and join the lines:

:g/+$/j

This will, however, only join every second line. A couple of more complex
examples which will join all consecutive lines with a "+" at the end are:

:g/+$/,/\(^\|[^+]\)$/j
:g/+$/mark a | .,/\(^\|[^+]\)$/s/+$// | 'a,.j

For more information, read:

vim_faq.txt — 4408

:g
:j
:mark

faq-12.28
12.28. How do I paste characterwise yanked text into separate lines?

You can use the `:put` command to paste characterwise yanked text into new
lines:

:put =@"

For more information, read:

:put
quote_=

faq-12.29
12.29. How do I change the case (uppercase, lowercase) of a word or a

character or a block of text?

You can use the "~" command to switch the case of a character.

You can change the case of the word under the cursor to uppercase using the
"gUiw" or "viwU" command and to lowercase using the "guiw" or "viwu"
command.

You can switch the case (upper case to lower case and vice versa) of the
word under the cursor using the "viw~" or "g~iw" command.

You can use the "gUgU" command to change the current line to uppercase and
the "gugu" command to change the current line to lowercase.

You can use the "g~g~" command to switch the case of the current line. You
can use the "g~{motion}" or "{Visual}~" commands to switch the case of a
block of text.

If you set 'tildeop' the "~" command behaves like an operator and expects
a motion command to act on. If you have

:set tildeop

and you want to change the case from the current cursor position to the end
of line, simply use "~$".

For more information, read:

case
'tildeop'

faq-12.30
12.30. How do I enter ASCII characters that are not present in the

keyboard?

You can enter ASCII characters that are not present in the keyboard by
pressing CTRL-V and then the ASCII character number. You can also use
digraphs to enter special ASCII characters.

For more information, read:

vim_faq.txt — 4409

i_CTRL-V_digit
digraphs
45.5

faq-12.31
12.31. How do I replace non-printable characters in a file?

To replace a non-printable character, you have to first determine the ASCII
value for the character. You can use the `:ascii` ex command or the "ga"
normal-mode command to display the ASCII value of the character under the
cursor.

You can enter the non-printable character by entering CTRL-V followed by
the decimal number 1-255 (with no leading zero), or by x and a hex number
00-FF, or by an octal number 0-0377 (with leading zero), or by u and a hex
number 0-FFFF, or by U and a hex number 0-7FFFFFFF

Another alternative is to use the `:digraphs` ex command to display the
digraphs for all characters, together with their value in decimal and
alpha. You can enter a non-printable character by entering CTRL-K followed
by two alphanumeric characters (a digraph).

For more information, read:

:ascii
i_CTRL-V
i_CTRL-V_digit
:digraphs

faq-12.32
12.32. How do I remove duplicate lines from a buffer?

You can use the following user-defined command to remove all the duplicate
lines from a buffer:

:command -range=% Uniq <line1>,<line2>g/^\%<<line2>l\(.*\)\n\1$/d

Add the above command to your .vimrc file and invoke `:Uniq` to remove all
the duplicate lines.

faq-12.33
12.33. How do I prefix all the lines in a file with the corresponding line

numbers?

You can prefix the lines in a file with the corresponding line number in
several ways. Some of them are listed below:

:%s/^/\=line('.'). ' '
:%s/^/\=printf('%5d ', line('.'))/
:%s/^/\=strpart(line('.').'. ', 0, 5)
:%s/^/\=strpart(' ', strlen(line('.'))).line('.').'. '

The last two commands will pad the line numbers with space characters. The
last command will right align the numbers and the command before that will
left align the numbers.

If you don't want to number consecutive lines but rather non-consecutive
regions, you can also use this idiom:

:let i = 1

vim_faq.txt — 4410

:g/TODO/s/^/\=printf('%2d.',i)|let i+=1

This first initializes the variable i with 1. In the next line, a `:g`
command is used to perform a substitute command only on lines, that
match "TODO". After the substitute command has taken place, the variable
i will be incremented by 1.

For more information, read:

sub-replace-special
line()
expr6
strpart()
printf()
:execute
:global

faq-12.34
12.34. How do I exchange (swap) two characters or words or lines?

You can exchange two characters with the "xp" command sequence. The "x"
will delete the character under the cursor and "p" will paste the just
deleted character after the character under the cursor. This will result
in exchanging the two characters.

You can exchange two words with the "deep" command sequence (start with the
cursor in the blank space before the first word).

You can exchange two lines with the "ddp" command sequence. The "dd" will
delete the current line and "p" will paste the just deleted line after the
current line. This will result in exchanging the two lines.

All of the above operations will change the " unnamed register.

You can use the `:m +` ex command to exchange two lines without changing the
unnamed register.

For more information, read:

x
p
dd
d
e
linewise-register
quotequote
:move

faq-12.35
12.35. How do I change the characters used as word delimiters?

Vim uses the characters specified by the 'iskeyword' option as word
delimiters. The default setting for this option is "@,48-57,_,192-255".

For example, to add ":" as a word delimiter, you can use

:set iskeyword+=:

To remove "_" as a word delimiter, you can use

vim_faq.txt — 4411

:set iskeyword-=_

For more information, read:

'iskeyword'
word

===
faq-13

SECTION 13 - COMPLETION IN INSERT MODE

faq-13.1
13.1. How do I complete words or lines in insert mode?

In insert mode, you can complete words using the CTRL-P and CTRL-N keys.
The CTRL-N command searches forward for the next matching keyword.
The CTRL-P command searches backwards for the next matching keyword.

In insert mode, you can use the CTRL-X CTRL-L command sequence to complete
lines that starts with the same characters as in the current line before
the cursor. To get the next matching line, press the CTRL-P or CTRL-N keys.
There are a lot of other keys/ways available to complete words in insert
mode.

Vim supports completion of the following items:

CTRL-X CTRL-L whole lines
CTRL-X CTRL-N keywords in the current file
CTRL-X CTRL-K words from a dictionary
CTRL-X CTRL-T words from a thesaurus
CTRL-X CTRL-I current and included files
CTRL-X CTRL-] tags
CTRL-X CTRL-F file names
CTRL-X CTRL-D macro definitions (also in included files)
CTRL-X CTRL-V Vim command line
CTRL-X CTRL-U User defined completion
CTRL-X CTRL-O Omni completion

User defined completions and omni completions are often set by filetype
plugins.

For more information, read:

24.3
ins-completion

faq-13.2
13.2. How do I complete file names in insert mode?

In insert mode, you can use the CTRL-X CTRL-F command sequence to complete
filenames that start with the same characters as in the current line before
the cursor.

For more information, read:

compl-filename

faq-13.3
13.3. I am using CTRL-P/CTRL-N to complete words in insert mode. How do I

complete words that occur after the just completed word?

vim_faq.txt — 4412

You can use CTRL-X CTRL-N and CTRL-X CTRL-P keys to complete words that are
present after the just completed word.

For more information, read:

i_CTRL-X_CTRL-P
i_CTRL-X_CTRL-N
ins-completion

===
faq-14

SECTION 14 - TEXT FORMATTING

faq-14.1
14.1. How do I format a text paragraph so that a new line is inserted at

the end of each wrapped line?

You can use the "gq" command to format a paragraph. This will format the
text according to the current 'textwidth' setting. An alternative would be
to use the "gw" command that formats like "gq" but does not move the
cursor.

Note that the gq operator can be used with a motion command to operate on a
range of text. For example:

gqgq - Format the current line
gqap - Format current paragraph
gwap - Format current paragraph (and don't move cursor)
gq3j - Format the current and the next 3 lines

For more information, read:

gq
gw
formatting
usr_25.txt
motion.txt

faq-14.2
14.2. How do I format long lines in a file so that each line contains less

than "n" characters?

You can set the 'textwidth' option to control the number of characters that
can be present in a line. For example, to set the maximum width of a line
to 70 characters, you can use the following command:

set textwidth=70

Now to break the long lines in a file to the length defined by the
'textwidth' option, you can use

:g/./normal gqq

For more information, read:

'textwidth'
gq

faq-14.3

vim_faq.txt — 4413

14.3. How do I join short lines to form a paragraph?

First, make sure the 'textwidth' option is set to a high value:

:set textwidth=99999

Next, join the short lines to form a paragraph using the command:

1GgqG

The above command will operate on the entire file. To do the formatting on
all paragraphs in a specific range, use:

:'a,'bg/\S/normal gq}

For more information, read:

gq
G
gqq

faq-14.4
14.4. How do I format bulleted and numbered lists?

You can configure Vim to format bulleted and numbered lists using the
'formatoptions' option. For example, you can format the list of the
following format:

- this is a test. this is a test. this is a test. this is a test.
this is a test.

into this format:

- this is a test. this is a test. this is a test. this is a test.
this is a test.

You can use the "n" flag in the 'formatoptions' to align the text.

:set fo+=n

With this option, when formatting text, Vim will recognize numbered lists.
For this option to work, the 'autoindent' option also must be set.

For more information, read:

'formatoptions'
fo-table
format-comments

faq-14.5
14.5. How do I indent lines in insert mode?

In insert mode, you can press the CTRL-T key to insert one shiftwidth of
indent at the start of the current line. In insert mode, you can use the
CTRL-D key to delete on shiftwidth of indent at the start of the current
line. You can also use the CTRL-O >> and CTRL-O << commands to indent the
current line in insert mode.

For more information, read:

vim_faq.txt — 4414

i_CTRL-T
i_CTRL-D
i_0_CTRL-D
i_CTRL-O
>>
<<

faq-14.6
14.6. How do I format/indent an entire file?

You can format/indent an entire file using the gg=G command, where

gg - Goto the beginning of the file
= - apply indentation
G - till end of file

For more information, read:

gg
=
G
'formatprg'
C-indenting

faq-14.7
14.7. How do I increase or decrease the indentation of the current line?

You can use the ">>" and "<<" commands to increase or decrease the
indentation of the current line.

For more information, read:

shift-left-right
>>
<<
'shiftwidth'

faq-14.8
14.8. How do I indent a block/group of lines?

You can visually select the group of lines and press the > or < key to
indent/unindent the lines. You can also use the following ex-command to
indent the lines

:10,20>

For more information, read:

shift-left-right
v_>
v_<
:<
:>

faq-14.9
14.9. When I indent lines using the > or < key, the standard 8-tabstops are

used instead of the current 'tabstop' setting. Why?

The number of spaces used when lines are indented using the ">" operator is
controlled by the 'shiftwidth' option. The 'tabstop' setting is only

vim_faq.txt — 4415

used, when the 'shiftwidth' option is zero.

:set shiftwidth=4

For more information, read:

'shiftwidth'
>>
'softtabstop'

faq-14.10
14.10. How do I turn off the automatic indentation of text?

By default, the automatic indentation of text is not turned on. Check the
configuration files (.vimrc, .gvimrc) for settings related to indentation.
Make sure the `:filetype indent on` command is not present. If it is
present, remove it. Also, depending on your preference, you may also want
to check the value of the 'autoindent', 'smartindent', 'cindent' and
'indentexpr' options and turn them off as needed.

For more information, read:

:filetype-indent-off
'autoindent'
'smartindent'
'cindent'
'indentexpr'

faq-14.11
14.11. How do I configure Vim to automatically set the 'textwidth' option

to a particular value when I edit mails?

You can use the "FileType" autocommand to set the 'textwidth' option:

autocmd FileType mail set tw=<your_value>

For more information, read:

:autocmd
FileType
usr_43.txt

faq-14.12
14.12. Is there a way to make Vim auto-magically break lines?

Yes. Set the 'textwidth' option to the preferred length for a line. Then
Vim will auto-magically break the newly entered lines. For example:

:set textwidth=75

For more information, read:

'textwidth'
ins-textwidth
'formatoptions'
fo-table
formatting

faq-14.13
14.13. I am seeing a lot of ^M symbols in my file. I tried setting the

vim_faq.txt — 4416

'fileformat' option to "dos" and then "unix" and then "mac". None of
these helped. How can I hide these symbols?

When a file is loaded in Vim, the format of the file is determined as
below:

- If all the lines end with a new line (<NL>), then the fileformat is
"unix".

- If all the lines end with a carriage return (<CR>) followed by a new line
(<NL>), then the fileformat is "dos".

- If all the lines end with carriage return (<CR>), then the fileformat is
"mac".

If the file has some lines ending with <CR> and some lines ending with <CR>
followed by a <NL>, then the fileformat is set to "unix".

You can change the format of the current file, by saving it explicitly in
dos format:

:w ++ff=dos

To display the format of the current file, use

:set fileformat?

The above behavior is also controlled by the 'fileformats' option. You can
try the following commands:

:set fileformats+=unix
:e <your_file>
:set fileformat=unix
:w

To remove the carriage return (<CR>) character at the end of all the lines
in the current file, you can use the following command:

:%s/\r$//

To force Vim to use a particular file format, when editing a file, you can
use the following command:

:e ++ff=dos filename

For more information, read:

'fileformats'
'fileformat'
file-formats
DOS-format-write
Unix-format-write
Mac-format-write
dos-file-formats
23.1
++ff

faq-14.14
14.14. When I paste some text into a Vim buffer from another application,

the alignment (indentation) of the new text is messed up. How do I
fix this?

vim_faq.txt — 4417

When you paste text into a GUI Vim using the mouse, Vim is able to
detect that you are pasting text. So all the indentation related
settings (like autoindent, smartindent, cindent, etc.) are ignored and
the text is pasted literally.

When pasting text into a Vim running in a terminal (like xterm) using
the mouse, Vim may not be able to detect that you are pasting text. This
depends on several things: the capability of the terminal to pass the
mouse events to Vim, Vim is compiled to handle mouse events and access
the clipboard, the DISPLAY variable is set properly, the Vim 'mouse'
option is set correctly.

If Vim is able to detect that you are pasting text using the mouse, then
the pasted text will be inserted literally.

If Vim is not able to detect that you are pasting using the mouse, then
it will see the pasted text as though you literally typed the text.
After the first line from the pasted text is inserted, when Vim
encounters the newline character, because of the indentation settings,
the next line will start indented. The spaces at the beginning of the
second line in the pasted text will be inserted leading to additional
indentation. This will be repeated for subsequent lines. So the pasted
text will be inserted with stair case indentation.

You can fix this problem in a terminal Vim in several ways:

1. Build Vim with the +mouse and +xterm_clipboard compile-time options.
The normal or big or huge build of Vim includes these options. Set
the 'mouse' option to either "a" or include "i". When pasting text
using the mouse, don't press the Shift key. This will work only if
Vim can access the X display. For more information, read the
following Vim help topics:

+feature-list
'mouse'
<MiddleMouse>
x11-selection
xterm-clipboard

1.1 Some Linux distributions build their terminal vim packages
without X support. This makes no sense and leaves many users
with the impression that Vim in terminal mode doesn't support
some operations such as properly pasting text with a mouse.

If your distribution includes gvim, which it almost certainly
does these days, the solutions to this include the following.

a) Start Vim as

gvim -v

b) Put this alias in your shell's configuration file, e.g.
~/.bashrc:

alias vim='gvim -v'

c) Put the following command in a file named "vim" and put that
file in your ~/bin directory:

gvim -v "$@"

vim_faq.txt — 4418

d) Link the distribution's gvim to ~/bin/vim with the following
command, which needs to be executed only once.

ln -s $(which gvim) ~/bin/vim

For c) and d), make sure that ~/bin precedes /usr/bin in your
PATH.

2. Paste the text using the CTRL-R CTRL-O * command. This will paste
the text literally without any automatic indentation. If you want to
paste the text and then fix the indentation, then you can use CTRL-R
CTRL-P *. These commands will work only if Vim can access the X
display. For more information, read the following Vim help topics:

i_CTRL-R_CTRL-O
i_CTRL-R_CTRL-P
quotestar

3. Set the 'paste' option before pasting the text. This option will
disable the effect of all the indentation related settings. Make
sure to turn off this option using `:set nopaste` after pasting the
text. Otherwise the Vim indentation feature will not work. Do not
permanently set the 'paste' option in your .vimrc file. If you are
going to repeat these steps often, then you can set the
'pastetoggle' option to a key. When you press the specified key,
the 'paste' option will be toggled. You can press the key once
before pasting the text and the press the key once after pasting
the text. Note that when the 'paste' option is set, all the
mappings and abbreviations are disabled. For more information,
read the following Vim help topics:

'paste'
'pastetoggle'

You can also refer to the following topics in the user manual:

04.7
09.3

faq-14.15
14.15. When there is a very long wrapped line (wrap is "on") and a line

doesn't fit entirely on the screen it is not displayed at all. There
are blank lines beginning with "@" symbol instead of wrapped line. If
I scroll the screen to fit the line the "@" symbols disappear and the
line is displayed again. What Vim setting control this behavior?

You can set the 'display' option to "lastline" to display as much as
possible of the last line in a window instead of displaying the "@"
symbols.

:set display=lastline

For more information, read:

'display'

faq-14.16
14.16. How do I convert all the tab characters in a file to space

characters?

vim_faq.txt — 4419

You can use the `:retab` command to update all the tab characters in the
current file with the current setting of 'expandtab' and 'tabstop'. For
example, to convert all the tabs to white spaces, use

:set expandtab
:retab

For more information, read:

:retab
'expandtab'
'tabstop'
25.3

faq-14.17
14.17. What Vim options can I use to edit text that will later go to a word

processor?

You can set the following options to edit text that will later go into a
word processor:

:set wrap
:set linebreak
:set textwidth=0
:set showbreak=>>>

You can use the "gk" and "gj" commands to move one screen line up and down.
For more information, read:

'wrap'
'linebreak'
'textwidth'
'showbreak'
gk
gj

faq-14.18
14.18. How do I join lines without adding or removing any space characters?

By default, when you join lines using the "J" or `:join` command, Vim will
replace the line break, leading white space and trailing white space with a
single space character. If there are space characters at the end of a line
or a line starts with the ")" character, then Vim will not add a space
character.

To join lines without adding or removing any space characters, you can use
the gJ or `:join!` commands.

For more information, read:

gJ
:join
J
10.5
'joinspaces'
'cpoptions'
'formatoptions'

===

vim_faq.txt — 4420

faq-15
SECTION 15 - VISUAL MODE

faq-15.1
15.1. How do I do rectangular block copying?

You can do rectangular block copying in Vim using the blockwise visual
mode. To start blockwise visual mode use the CTRL-V key. Move the cursor
using any of the motion commands and then use the y operator to yank to
visually selected text.

If CTRL-V does not work as expected, it may have been remapped to CTRL-Q by
the mswin.vim script which is often sourced by a vimrc on Windows machines
to mimic some common short cuts from other programs.

For more information, read:

04.4
blockwise-visual
visual-mode
Q_vi

faq-15.2
15.2. How do I delete or change a column of text in a file?

You can use the Vim block-wise visual mode to select the column of text and
apply an operator (delete, change, copy, etc) on it.

For more information, read:

visual-block
visual-operators

faq-15.3
15.3. How do I apply an ex-command on a set of visually selected lines?

When you select a range of lines in visual mode, the < register is set to
the start of the visual region and the > register is set to the end of the
visual region. You can use these registers to specify the range for an ex
command. After visually selecting the lines, press ":" to go to the command
mode. Vim will automatically insert the visual range '<,'>. You can run
any ex-command on the visual range.

For more information, read:

v_:
'<
'>

faq-15.4
15.4. How do I execute an ex command on a column of text selected in Visual

block mode?

All the ex commands operate on whole lines only. If you try to execute
an ex command on a column of text selected in visual block mode, Vim
will operate on all the selected lines (instead of the selected
columns). You can use the vis.vim or NrrwRgn plugin script from
https://www.vim.org scripts archive to do this.

For more information, read:

vim_faq.txt — 4421

https://www.vim.org

cmdline-ranges
10.3
cmdline-lines

faq-15.5
15.5. How do I select the entire file in visual mode?

You can select the entire file in visual mode using ggVG.

gg - go to the beginning of the file.
V - Start linewise visual mode
G - goto the end of the file.

For more information, read:

gg
linewise-visual
G

faq-15.6
15.6. When I visually select a set of lines and press the > key to indent

the selected lines, the visual mode ends. How can I reselect the
region for further operation? (or) How do I re-select the last
selected visual area again?

You can use the "gv" command to reselect the last selected visual area. You
can also use the marks '< and '> to jump to the beginning or the end of the
last selected visual area.

For more information, read:

gv
'<
'>

faq-15.7
15.7. How do I jump to the beginning/end of a visually selected region?

You can use the "o" command to jump to the beginning/end of a visually
selected region.

For more information, read:

v_o

faq-15.8
15.8. When I select text with mouse and then press : to enter an ex

command, the selected text is replaced with the : character. How do I
execute an ex command on a text selected using the mouse similar to
the text selected using the visual mode?

This will happen if you have configured Vim to use select mode instead of
Visual mode by setting the 'selectmode' option. Check the value of this
option:

:set selectmode?

This mode is known as selectmode and is similar to the visual mode. This
option is also automatically set when you use the "behave mswin" command.

vim_faq.txt — 4422

Select mode looks like visual mode, but it is similar to the selection mode
in MS-Windows.

For more information, read:

Select-mode
'selectmode'
09.4
:behave

faq-15.9
15.9. When I select a block of text using the mouse, Vim goes into

selection mode instead of Visual mode. Why?

The 'selectmode' option controls whether Select mode will be started when
selecting a block of text using the mouse. To start Visual mode when
selecting text using mouse, remove the "mouse" value from the 'selectmode'
option:

:set selectmode-=mouse

Note that by default, the 'selectmode' option will be set to empty, so that
always visual mode is used.

For more information, read:

'selectmode'
Select-mode
:behave

faq-15.10
15.10. How do I visually select the last copy/pasted text?

You can use the '[and '] marks to visually select the last copy/pasted
text. The '[mark is set to the beginning of the last changed/yanked text
and the '] mark is set to the end of the last changed/yanked text. To
visually select this block of text use the command '[v']

For more information, read:

'[
']
`a
v

===
faq-16

SECTION 16 - COMMAND-LINE MODE

faq-16.1
16.1. How do I use the name of the current file in the command mode or an

ex command line?

In the command line, the "%" character represents the name of the current
file. In some commands, you have to use `expand("%")` to get the filename:

:!perl %

Another example is to load the latex generated pdf file from the file you
are currently editing:

vim_faq.txt — 4423

:!xpdf %<.pdf

For more information, read:

:_%
cmdline-special
expand()

faq-16.2
16.2. How do I edit the text in the Vim command-line effectively?

You can use the command-line window for editing Vim command-line text. To
open the Vim command-line window use the "q:" command in normal mode. In
command-line mode, use the CTRL-F key. In this window, the command line
history will be displayed. You can use normal Vim keys/commands to edit any
previous/new command line. To execute a command line, press the
enter/return key.

In a similar vain, the search history can be edited with "q/" and "q?"
commands.

For more information, read:

cmdline-window

faq-16.3
16.3. How do I switch from Vi mode to Ex mode?

You can use the Q command to switch from Vi mode to Ex mode. To switch from
Ex mode back to the Vi mode, use the `:vi` command.

For more information, read:

Q
gQ
Ex-mode
:vi

faq-16.4
16.4. How do I copy the output from an ex-command into a buffer?

To copy the output from an ex-command into a buffer, you have to first get
the command output into a register. You can use the `:redir` command to get
the output into a register. For example,

:redir @a
:g/HelloWord/p
:redir END

Now the register "a" will contain the output from the ex command
`:g/HelloWord/p`. Now you can paste the contents of the register "a" into a
buffer. You can also send or append the output of an ex-command into a file
using the `:redir` command.

You can prefix the `:global` command with `:silent`, to avoid having the
lines printed to the screen.

To redirect the output from an ex-command to a file, you can use the
following set of commands:

vim_faq.txt — 4424

:redir > myfile
:g/HelloWord/p
:redir END

For more information, read:

:redir
:silent

faq-16.5
16.5. When I press the <Tab> key to complete the name of a file in the

command mode, if there are more than one matching file names, then
Vim completes the first matching file name and displays a list of all
matching filenames. How do I configure Vim to only display the list
of all the matching filenames and not complete the first one?

You can modify the 'wildmode' option to configure the way Vim completes
filenames in the command mode. In this case, you can set the 'wildmode'
option to "list":

:set wildmode=list

For more information, read:

'wildmode'

faq-16.6
16.6. How do I copy text from a buffer to the command line and from the

command line to a buffer?

To copy text from a buffer to the command line, after yanking the text from
the buffer, use "<CTRL-R>0" in the command line to paste the text. You can
also yank the text to a specific register and use CTRL-R <register> to
paste the text to the command line. You can use CTRL-R CTRL-W to paste the
word under the cursor in the command line.

To copy text from the command line into a buffer, you can paste the
contents of the : register using the ":p command. The most recently
executed command line is stored in the : register.

Another approach for copying and pasting text to and from the command line
is to open the command line window using q: from normal mode or CTRL-F from
the command-line mode. In the command line window you can use all the Vim
commands to edit the command line.

For more information, read:

c_CTRL-R
quote_:
cmdline-window

faq-16.7
16.7. How do I put a command onto the command history without executing it?

To put a command onto the command history without executing it, press the
<Esc> key to cancel the command.

An alternative solution, is to use the histadd() function like this:

vim_faq.txt — 4425

:call histadd(':', 'echo strftime("%c")')

For more information, read:

c_<Esc>
histadd()

faq-16.8
16.8. How do I increase the height of the command-line?

You can increase the height of the command-line by changing the 'cmdheight'
option:

:set cmdheight=2

For more information, read:

'cmdheight'
hit-enter
05.7

===
faq-17

SECTION 17 - VIMINFO

faq-17.1
17.1. When I invoke Vim, I get error messages about illegal characters in

the viminfo file. What should I do to get rid of these messages?

You can remove the $HOME/.viminfo or the $HOME/_viminfo file to get rid of
these error messages.

For more information, read:

viminfo-errors
viminfo-file-name
viminfo
21.3

faq-17.2
17.2. How do I disable the viminfo feature?

By default, the viminfo feature is disabled. If the viminfo feature is
enabled by a system-wide vimrc file, then you can disable the viminfo
feature by setting the 'viminfo' option to an empty string in your local
.vimrc file:

:set viminfo=""

For more information, read:

'viminfo'

faq-17.3
17.3. How do I save and use Vim marks/commands across Vim sessions?

You can save and restore Vim marks across Vim sessions using the viminfo
file. To use the viminfo file, make sure the 'viminfo' option is not empty.
To save and restore Vim marks, the 'viminfo' option should not contain the
"f" flag or should have a value greater than zero for the "f" option.

vim_faq.txt — 4426

You can also use the viminfo file to synchronize the commandline history
across different sessions using `:wvimfo` and `:rviminfo` commands together
with the FocusGained and FocusLost autocommands:

augroup viminfo
au!
au FocusLost * wviminfo
au FocusGained * rviminfo

augroup end

Note, this will only work reliably, when Vim can detect the FocusLost
and FocusGained autocommands correctly. This means it should work with
GVim but might depend on your terminal for konsole vim.

For more information, read:

21.3
viminfo
'viminfo'
:wviminfo
:rviminfo
FocusLost
FocusGained

===
faq-18

SECTION 18 - REMOTE EDITING

faq-18.1
18.1. How do I open a file with existing instance of gvim? What happened to

the Vim 5.x OpenWithVim.exe and SendToVim.exe files?

Starting with Vim6, the OLE version of OpenWithVim.exe and SendToVim.exe
Vim utilities are replaced by the new client-server feature. To open the
file j.txt with an existing instance of Gvim (MyVim), use:

$ gvim --servername MyVim --remote-silent j.txt

To list the server names of all the currently running Vim instances, use

$ vim --serverlist

To get more information about client-server feature, read

client-server

faq-18.2
18.2. How do I send a command to a Vim server to write all buffers to disk?

You can use the Vim remote server functionality to do this:

$ gvim --servername myVIM --remote-send "<C-\><C-N>:wall<CR>"

For more information, read:

client-server
CTRL-_CTRL-N
:wall

vim_faq.txt — 4427

faq-18.3
18.3. Where can I get the documentation about the Vim remote server

functionality?

You can get more information about the Vim remote server functionality by
reading

client-server

===
faq-19

SECTION 19 - OPTIONS

faq-19.1
19.1. How do I configure Vim in a simple way?

You can use the `:options` command to open the Vim option window:

:options

This window can be used for viewing and setting all the options.

For more information, read:

:options

faq-19.2
19.2. How do I toggle the value of an option?

You can prefix the option with "inv" to toggle the value of the option:

:set invignorecase
:set invhlsearch

You can also suffix the option with "!" to toggle the value:

:set ignorecase!
:set hlsearch!

For more information, read:

set-option

faq-19.3
19.3. How do I set an option that affects only the current buffer/window?

Some of the Vim options can have a local or global value. A local value
applies only to a specific buffer or window. A global value applies to all
the buffers or windows.

When a Vim option is modified using the `:set` command, both the global and
local values for the option are changed. You can use the `:setlocal`
command to modify only the local value for the option and the `:setglobal`
command to modify only the global value.

You can use the `:setlocal` command to set an option that will affect only
the current file/buffer:

:setlocal textwidth=70

vim_faq.txt — 4428

Note that not all options can have a local value. You can use `:setlocal`
command to set an option locally to a buffer/window only if the option is
allowed to have a local value.

You can also use the following command to set an option locally:

:let &l:{option-name} = <value>

For more information, read:

:setlocal
local-options

faq-19.4
19.4. How do I use space characters for a Vim option value?

To use space characters in a Vim option value, you have to escape the space
character. For example:

:set tags=tags\ /usr/tags

For more information, read:

option-backslash

faq-19.5
19.5. Can I add (embed) Vim option settings to the contents of a file?

You can use modelines to add Vim option settings to the contents of a file.
For example, in a C file, you can add the following line to the top or the
bottom of the file:

/* vim:sw=4: */

This will set the 'shiftwidth' option to 4, when editing that C file.
For this to work, the 'modeline' option should be set. By default, the
'modeline' option is set. An alternative example is given in this document
in the first line.

The 'modelines' settings specifies the number of
lines that will be checked for the Vim set commands.

For more information, read:

21.6
modeline
auto-setting
'modeline'
'modelines'

faq-19.6
19.6. How do I display the line numbers of all the lines in a file?

You can set the 'number' option to display the line numbers for all the
lines.

:set number

For more information, read:

vim_faq.txt — 4429

'number'

faq-19.7
19.7. How do I change the width of the line numbers displayed using the

'number' option?

You can set the minimum number of columns to be used for line numbering by
setting the 'numberwidth' option:

:set numberwidth=3

This set's the width for the line number to 3 digits, which is enough, if
your buffer contains less than 999 lines. However, if your current buffer
contains more lines than 999, the 'numberwidth' will be adjusted accordingly,
so that the maximum line number will fit on the screen.

faq-19.8
19.8. How do I display (view) all the invisible characters like space, tabs

and newlines in a file?

You can set the 'list' option to see all the invisible characters in your
file.

:set list

With this option set, you can view space characters, tabs, newlines,
trailing space characters and wrapped lines.

To not display the invisible characters (which is the default), you have to
reset the 'list' option:

:set nolist
(or)
:set list!

The `:set list!` command will toggle the current setting of the boolean
'list' option.

You can modify the 'listchars' option to configure how and which invisible
characters are displayed. For example, with the following command all the
trailing space characters will be displayed with a "." character.

:set listchars=trail:.

For more information, read:

'listchars'
'list'

faq-19.9
19.9. How do I configure Vim to always display the current line and column

number?

You can set the 'ruler' option to display current column and line number in
the status line:

:set ruler

For more information, read:

vim_faq.txt — 4430

'ruler'

faq-19.10
19.10. How do I display the current Vim mode?

You can set the 'showmode' option to display the current Vim mode. In
Insert, Replace and Visual modes, Vim will display the current mode on the
last line.

:set showmode

For more information, read:

'showmode'

faq-19.11
19.11. How do I configure Vim to show pending/partial commands on the

status line?

You can set the 'showcmd' option to display pending/partial commands in the
status line:

:set showcmd

For more information, read:

'showcmd'

faq-19.12
19.12. How do I configure the Vim status line to display different

settings/values?

You can set the 'statusline' option to display different values/settings in
the Vim status line.

For more information, read:

'statusline'
'laststatus'
'rulerformat'
'ruler'

faq-19.13
19.13. How do I configure Vim to display status line always?

You can set the 'laststatus' option to 2 to display the status line always.

:set laststatus=2

For more information, read:

'laststatus'

faq-19.14
19.14. How do I make a Vim setting persistent across different Vim

invocations/instances/sessions?

To make a Vim option setting persistent across different Vim instances, add
your setting to the .vimrc or .gvimrc file. You can also use the `:mkvimrc`
command to generate a vimrc file for the current settings.

vim_faq.txt — 4431

For more information, read:

save-settings
vimrc
gvimrc
vimrc-intro
:mkvimrc
initialization

faq-19.15
19.15. Why do I hear a beep (why does my window flash) about 1 second after

I hit the Escape key?

This is normal behavior. If your window flashes, then you've got the visual
bell on. Otherwise, you should hear a beep.

Vim needs a timeout to tell the difference between a simple escape and,
say, a cursor key sequence. When you press a key in normal mode (and even
in insert mode) and that key is the beginning of a mapping, Vim waits a
certain amount of time to see if the rest of the mapping sequence follows.
If the mapping sequence is completed before a given timeout period, the
mapping for that sequence of keys is applied. If you interrupt the mapping,
the normal actions associated with the keys are executed.

For example, if you have a mapping defined as `:imap vvv Vim is great!!`
and you type "vvv" quickly, the "Vim is great!!" will be inserted into your
text. But if you type "vv v" then that is what will put into your text.
This is also true if you type "vvv" too slowly where "too slowly" is longer
than the value for the timeout option. Setting the timeout option to a
larger value can help alleviate problems that appear when using function
keys over a slow line.

For more information, read:

'ttimeout'

faq-19.16
19.16. How do I make the "c" and "s" commands display a "$" instead of

deleting the characters I'm changing?

To make the "c" and "s" commands display a "$" instead of deleting the
characters, add the $ flag to the 'cpoptions' option:

:set cpoptions+=$

For more information, read:

'cpoptions'

faq-19.17
19.17. How do I remove more than one flag using a single `:set` command

from a Vim option?

You can remove more than one flag from a Vim option using a single `:set`
command, by specifying the flags in exactly the same order as they appear
in the option. For example, if you use the following command to remove the
"t" and "n" flags from the 'formatoptions' option:

:set formatoptions-=tn

vim_faq.txt — 4432

The "t" and "n" flags will be removed from the 'formatoptions' option, only
if the 'formatoptions' option contains these flags in this order: "tn".
Otherwise, it will not remove the flags. To avoid this problem, you can
remove the flags one by one:

:set formatoptions-=t formatoptions-=n

For more information, read:

:set-=

===
faq-20

SECTION 20 - MAPPING KEYS

faq-20.1
20.1. How do I know what a key is mapped to?

To see what a key is mapped to, use the following commands:

:map <key>
:map! <key>

You can also check the mappings in a particular mode using one of the
`:cmap`, `:nmap`, `:vmap`, `:imap`, `:omap`, etc commands.

To find out, where the key has been mapped, prefix the `:verbose` command:

:verbose :map <key>

For more information, read:

map-listing
map-overview

faq-20.2
20.2. How do I list all the user-defined key mappings?

You can list all the user-defined key mappings using:

:map

For more information, read:

map-listing

faq-20.3
20.3. How do I unmap a previously mapped key?

You can unmap a previously mapped key using the `:unmap` command:

:unmap <key>
:unmap! <key>

For mode specific mappings, you can use one of the these commands:

:nunmap
:vunmap
:ounmap

vim_faq.txt — 4433

:iunmap
:lunmap
:cunmap

The following command will fail to unmap a buffer-local mapped key:

:unmap <key>

To unmap a buffer-local mapped key, you have to use the <buffer> keyword in
the unmap command:

:unmap <buffer> <key>
:unmap! <buffer> <key>

For more information, read:

:unmap
map-modes
:map-local
mapleader

faq-20.4
20.4. I am not able to create a mapping for the <xxx> key. What is wrong?

1) First make sure, the key is passed correctly to Vim. To determine if
this is the case, put Vim in Insert mode and then hit CTRL-V (or
CTRL-Q if your CTRL-V is remapped to the paste operation (e.g. on
Windows if you are using the mswin.vim script file) followed by your
key.

If nothing appears in the buffer (and assuming that you have
'showcmd' on, ^V remains displayed near the bottom right of the Vim
screen), then Vim doesn't get your key correctly and there is nothing
to be done, other than selecting a different key for your mapping or
using GVim, which should recognise the key correctly.

2) Possibly, Vim gets your key, but sees it as no different than
something else. Say you want to map <Ctrl-Right>, then in Insert mode
hit CTRL-K followed by <Ctrl-Right>. If Vim displays <C-Right> it has
correctly seen the keystroke and you should be able to map it (by
using <C-Right> as your {lhs}). If it displays <Right> it has seen
the keystroke but as if you hadn't held <Ctrl> down: this means your
temrinal passes <Ctrl-Right> as if it were just <Right>. Anything else
means the key has been misidentified.

3) If the key is seen, but not as itself and not as some recognizable
key, then there is probably an error in the terminal library for the
current terminal (termcap or terminfo database). In that case

:set term?

will tell you which termcap or terminfo Vim is using. You can try to
tell vim, what termcode to use in that terminal, by adding the
following to your vimrc:

if &term == <termname>
set <C-Right>=<keycode>

endif

where <termname> above should be replaced by the value of 'term'

vim_faq.txt — 4434

(with quotes around it) and <keycode> by what you get when hitting
CTRL-V followed by <Ctrl-Right> in Insert mode (with nothing around
it). <C-Right> should be left as-is (9 characters). Don't forget that
in a `:set` command, white space is not allowed between the equal sign
and the value, and any space, double quote, vertical bar or backslash
present as part of the value must be backslash-escaped.

Now you should be able to see the keycode corresponding to the key
and you can create a mapping for the key using the following command:

:map <C-Right> <your_command_to_be_mapped>

For more information, read:

map-keys-fails
:map-special-keys
key-codes

faq-20.5
20.5. Why does mapping the <C-...> key not work?

The only <Ctrl>-<printable-key> chords which Vim can reliably detect
(because they are defined in the ASCII standard) are the following:

CTRL-@ 0x00 NUL
CTRL-A to CTRL-Z 0x01 to 0x1A
CTRL-a to CTRL-z 0x01 to 0x1A
CTRL-[0x1B ESC
CTRL-\ 0x1C
CTRL-] 0x1D
CTRL-^ 0x1E
CTRL-_ 0x1F
CTRL-? 0x7F DEL

Most of these, however, already have a function in Vim (and some are
aliases of other keys: CTRL-H and <BS>, CTRL-I and <Tab>, CTRL-M and <Enter>,
CTRL-[and <Esc>, CTRL-? and).

The "safest" keys to use in Vim for the {lhs} of a mapping are the F
keys, with or without Shift: <F2> to <F12> and <S-F1> to <S-F12>. (Some
OSes, including mine, intercept <Ctrl-Fn> and <Alt-Fn>, which never reach an
application program such as vim or gvim).

You can try other combinations of <Ctrl> + any key, but they may either
not work everywhere (e.g. the terminal might not pass that key to Vim,
or they might have unintended side effects (e.g. mapping <C-I> means
also to map <Tab>).

This is a known issue, that has been discussed and might be implemented
in the future to enable Vim to distinguish between various keys even in
console mode. (e.g.
https://groups.google.com/d/msg/vim_dev/2bp9UdfZ63M/sajb9KM0pNYJ)

faq-20.6
20.6. How do I map the numeric keypad keys?

First make sure that the numeric keypad keys are passed to Vim. Next, you
can use the following command to map the numeric keypad keys:

:map <kSomething> <your_command>

vim_faq.txt — 4435

https://groups.google.com/d/msg/vim_dev/2bp9UdfZ63M/sajb9KM0pNYJ

where, <kSomething> can be kHome, kEnd, kPageUp, kPageDown, kPlus, kMinus,
kDivide, kMultiply, kEnter, etc.

For more information, read:

key-codes
terminal-options

faq-20.7
20.7. How do I create a mapping that works only in visual mode?

You can create mappings that work only in specific modes (normal, command,
insert, visual, etc). To create a mapping that works only in the visual
mode, use the `:vmap` command:

:vmap <F3> <your mapping here>

This mapping will work in visual and select mode. If you want the map to
work only in visual mode (excluding select mode), use:

:xmap <F3> <your mapping here>

and to have the mapping only work in select mode (but not visual mode),
use:

:smap <F3> <your mapping here>

For more information, read:

:vmap
:xmap
:smap
map-modes
40.1

faq-20.8
20.8. How do I create a mapping that works only in normal and operator

pending mode (but not in visual mode)?

Using `:map` creates a mapping that works in normal, visual+select mode and
operator pending mode. You can use `:nmap` to have the mapping only work in
normal mode and `:vmap` to have the mapping only be defined for visual and
select mode or use `:omap` to have the mapping only defined in operator
pending mode.

But if you want to have a mapping defined, that works in both operator
pending mode and normal mode, but not in visual and select mode, you need
to first define the mapping using `:map` and afterwards delete the mapping
for visual and select mode:

:map <f3> <your mapping here>
:vunmap <f3>

faq-20.9
20.9. In a Vim script, how do I know which keys to use for my mappings, so

that the mapped key will not collide with an already used key?

Vim uses most of the keys in the keyboard. You can use the <leader> prefix

vim_faq.txt — 4436

in maps to define keys which will not overlap with Vim keys. For example:

:map <leader>S <C-W>s
:map <leader>j <C-W>j
:map <leader>k <C-W>k

where by default <leader> gets substituted with a backslash (\), so the
user would enter

\s
\j
\k

to invoke the above map commands. The user can change the mapleader
variable to be whatever they wanted:

:let mapleader = ","

When writing a plugin or other script, more often than not, it is advisable
to use `:noremap` instead of `:map` to avoid side effects from user defined
mappings.

For more information, read:

<Leader>
<LocalLeader>
write-plugin

faq-20.10
20.10. How do I map the escape key?

You can map the Escape key to some other key using the `:map` command. For
example, the following command maps the escape key to CTRL-O.

:map <C-O> <Esc>

faq-20.11
20.11. How do I map a key to perform nothing?

You can map a key to <Nop> to perform nothing when the key is pressed. For
example, with the following mappings, the <F7> key will do nothing when
pressed.

:map <F7> <Nop>
:map! <F7> <Nop>

For more information, read:

<Nop>
:map
:map!
map-modes

faq-20.12
20.12. I want to use the <Tab> key to indent a block of text and <Shift-Tab>

key to unindent a block of text. How do I map the keys to do this?
This behavior is similar to textpad, visual studio, etc.

Use the following mapping:

vim_faq.txt — 4437

:inoremap <S-Tab> <C-O><lt><lt>
:nnoremap <Tab> >>
:nnoremap <S-Tab> <lt><lt>
:vnoremap <Tab> >
:vnoremap <S-Tab> <lt>

Note, that the <S-Tab> mapping will work only if Vim receives the correct
key sequence. This is mostly the case with GUI Vim.

For more information, read:

:inoremap
:nnoremap
:vnoremap
<S-Tab>
i_CTRL-O
>>
<<
<lt>

faq-20.13
20.13. In my mappings the special characters like <CR> are not recognized.

How can I configure Vim to recognize special characters?

Check the value of the 'cpoptions' option:

:set cpoptions?

If this option contains the "<" flag, then special characters will not be
recognized in mappings. Remove the "<" flag from 'cpoptions' option:

:set cpo-=<

Also, check the value of the 'compatible' option:

:set compatible?

The 'compatible' option must be reset:

:set nocompatible

For more information, read:

'cpoptions'
'compatible'

faq-20.14
20.14. How do I use the "|" to separate multiple commands in a map?

You can escape the "|" character using backslash (\) to use "|" in a map.

:map _l :!ls \| more<CR>

You can also try the following command:

:map _l :!ls <bar> more<CR>

There are also other ways to do this.

For more information, read:

vim_faq.txt — 4438

map_bar

faq-20.15
20.15. If I have a mapping/abbreviation whose ending is the beginning of

another mapping/abbreviation, how do I keep the first from expanding
into the second one?

Instead of using the `:map lhs rhs` command, use the `:noremap lhs rhs`
command. For abbreviations, use "noreabbrev lhs rhs". The "nore" prefix
prevents the mapping or abbreviation from being expanded again.

For more information, read:

:noremap
:noreabbrev

faq-20.16
20.16. Why does it take a second or more for Vim to process a key,

sometimes when I press a key?

Make sure you have not defined a mapping for this key using the following
command:

:map <key>

If a mapping is defined for this key and the mapped key contains more than
one character, then Vim will wait for the next character to be pressed to
determine whether it is the mapped key or not. For example, if you have
mapped "ab", then if you press "a", Vim will wait for the next key to be
pressed. If the next key is "b", Vim will execute the mapped sequence.
Otherwise, Vim will proceed with the normal processing of "a" followed by
the next key. If the 'timeout' option is set (which is the default), then
Vim will timeout after waiting for the period specified with the
'timeoutlen' option (default is 1 second).

For more information, read:

map-typing
'timeoutlen'
'ttimeoutlen'
'timeout'
'ttimeout'
vt100-cursor-keys
slow-fast-terminal

faq-20.17
20.17. How do I map a key to run an external command using a visually

selected text?

You can the `:vmap` command to map a key in the visual mode. In the mapped
command sequence, you have to first yank the text. The yanked text is
available in the '"' register. Now, you can use the contents of this
register to run the external command. For example, to run the external
command "perldoc" on a visually selected text, you can use the following
mapping:

:vmap <F7> y:!exec "!perldoc '" . @" . "'"<CR>

If you want the mapping to work in the visual mode, but not with the

vim_faq.txt — 4439

highlighted text, you can use the following command:

:vmap <F7> :<C-U>!perldoc <cword><CR>

The above mapping will use the word under the cursor instead of the
highlighted text. Note the use of the <C-U> before invoking the "perldoc"
external command. The <C-U> is used to erase the range of text selected in
the visual mode and displayed on the command line. If the visual range is
not removed using <C-U>, then the output from the external command will
replace the visually selected text.

For more information, read:

:vmap
quote_quote
:let-register
c_CTRL-U
:!cmd

faq-20.18
20.18. How do I map the CTRL-I key while still retaining the functionality

of the <Tab> key?

The CTRL-I key and the <Tab> key produce the same keycode, so Vim cannot
distinguish between the CTRL-I and the <Tab> key. When you map the CTRL-I
key, the <Tab> key is also mapped (and vice versa). The same restriction
applies for the CTRL-[key and the <Esc> key.

For more information, read:

keycodes

faq-20.19
20.19. How do I define a map to accept a count?

Use the @= command to use an expression. For example,

nnoremap = @='3l'

Now you can specify a count to the "=" command.

complex-repeat

faq-20.20
20.20. How can I make my normal mode mapping work from within Insert

Mode?

Mappings in normal mode can be executed after CTRL-O from insert mode as
well but if there are more commands included in the mapping {rhs}, only the
first one will be executed in normal mode and the rest of {rhs} will be
printed literally in insert mode. One of ways to workaround this problem is
to make {rhs} be one command, via wrapping it to the function. For example:

function GetFontNameOfFirstChar()
normal! 0
echo getfontname()
endfunction

:nmap <F9> :call GetFontNameOfFirstChar()<CR>

vim_faq.txt — 4440

A more technical and detailed solution to this problem follows and can
be found at https://groups.google.com/group/vim_dev/msg/75f1f2dfc00908bb

Not every normal mode-mapping is automatically suitable for execution via
CTRL-O from within insert mode; you need to explicitly design your mappings
for that purpose.

The CTRL-O command allows execution of one normal mode command from
within insert mode, then returns to insert mode. If a normal mode mapping
concatenates multiple normal mode commands, this breaks down in temporary
normal mode and literally inserts the second part of the command into the
buffer instead. To support execution of normal mode mappings from within
insert mode, these strategies can be used:

1) Instead of concatenating multiple normal mode commands, use one `:normal`
mapping:

:nnoremap <silent> zC :<C-U>normal! zCVzC<CR>

2) Concatenate multiple Ex commands via <Bar> on the rhs:

:nnoremap zC :<C-U>call MyMap1()<Bar>call MyMap2()<CR>

3) Shadow normal mode mappings by insert mode mappings that
re-enter normal mode, then invoke the normal mode mapping:

:nnoremap <silent> <SID>MyMap2 :<C-U>call MyMap2()<CR>
:inoremap <silent> <script> <SID>MyMap2 <C-\><C-O><SID>MyMap2
:nnoremap <silent> <script> zC <SID>MyMap1<SID>MyMap2

4) Normal mode mappings that consist of multiple Ex command lines (and
where Ex commands cannot be concatenated via <Bar>) replace `:<C-U>`
with <SID>NM; the <SID>NM mapping enters normal mode for one ex command
line:

:nnoremap <silent> <SID>NM :<C-U>
:inoremap <silent> <SID>NM <C-\><C-O>:
:nnoremap <silent> <script> zC <SID>MyMap1<SID>NMcall MyMap2()<CR>

5) If none of the above is possible, at least force normal mode for
subsequent commands via CTRL-\ CTRL-N to avoid accidental insertion
of the remainder of the mapping.

:nnoremap zC zC<C-\><C-N>VzCzz

For more information, read:

i_CTRL-O
map_bar
i_CTRL-_CTRL-O
CTRL-_CTRL-N

===
faq-21

SECTION 21 - ABBREVIATIONS

faq-21.1
21.1. How do I auto correct misspelled words?

vim_faq.txt — 4441

https://groups.google.com/group/vim_dev/msg/75f1f2dfc00908bb

You can auto correct misspelled words using abbreviations. For example, the
following abbreviation can be used to correct "teh" with "the":

:abbreviate teh the

Vim supports abbreviations in insert mode, replace mode and command-line
mode.

For more information, read:

24.7
abbreviations
Q_ab

faq-21.2
21.2. How do I create multi-line abbreviations?

You can create multi-line abbreviations by embedding the "<CR>"
key code in the text:

iabbrev #c --------------<CR>-- Date:<CR>--<CR>---------

With the above abbreviation, when you type #c, it will be expanded to
the following text:

-- Date:
--

For more information, read:

abbreviations

faq-21.3
21.3. When my abbreviations are expanded, an additional space character is

added at the end of the expanded text. How do I avoid this character?

To avoid an additional space character at the end of the expanded text, you
can expand the abbreviation by pressing the CTRL-] key. The abbreviation
will be expanded without adding a space character at the end.

Another alternative is to use the following function and command:

function! Eatchar(pat)
let c = nr2char(getchar())
return (c =~ a:pat) ? '' : c

endfunction
command! -nargs=+ Iabbr execute "iabbr" <q-args> . "<C-R>=Eatchar('\\s')<CR>"

Now, define your abbreviations using the new "Iabbr" command instead of the
builtin `:iabbrev` command. With this command, after expanding the
abbreviated text, the next typed space character will be discarded.

For more information, read:

abbreviations

faq-21.4
21.4. How do I insert the current date/time stamp into the file?

vim_faq.txt — 4442

You can use the strftime() function to insert the current data/time stamp
in a file. For example, you can use the following abbreviation:

iabbrev dts <C-R>=strftime("%y/%m/%d %H:%M")<CR>

With this abbreviation, when you type dts in insert mode, it will be
expanded to the date/time stamp.

Some other forms of the above abbreviation are listed below:

iabbrev mdyl <C-R>=strftime("%a %d %b %Y")<CR>
iabbrev mdys <C-R>=strftime("%y%m%d")<CR>
iabbrev mdyc <C-R>=strftime("%c")<CR>
iabbrev hml <C-R>=strftime("%d/%m/%y %H:%M:%S")<CR>
iabbrev hms <C-R>=strftime("%H:%M:%S")<CR>

For more information, read:

strftime()
i_CTRL-R

faq-21.5
21.5. How do I prevent an abbreviation from expanding in insert mode?

You can prevent an abbreviation from expanding in insert mode by typing
CTRL-V before the character after the abbreviated word.

For more information, read:

abbreviations

===
faq-22

SECTION 22 - RECORD AND PLAYBACK

faq-22.1
22.1. How do I repeat an editing operation (insertion, deletion, paste,

etc)?

You can repeat the last editing operation using the "." command. This will
repeat the last simple change like a insert, delete, change, paste, etc.

For more information, read:

04.3
single-repeat
Q_re

faq-22.2
22.2. How I record and repeat a set of key sequences?

You can use the "q" command in normal mode to record a set of key sequences
and store it in a register. For example, in the normal mode you can press q
followed by a register name {0-9a-bA-Z"} to start the recording. To
end/stop the recording press q again. You can playback/repeat the recorded
key sequences by pressing @ followed by the register name. e.g. @a.

Another approach is to start Vim with the "-w" command-line argument.

vim_faq.txt — 4443

$ vim -w <file_name>

Vim will record all the characters typed in the session in the
specified file "file_name". You can use the recorded file with the "-s"
command line argument to play it back:

$ vim -s <file_name>

For more information, read:

10.1
recording
-w
-s

faq-22.3
22.3. How do I edit/modify a recorded set of key sequences?

The recorded key sequences are stored in a register. You can paste the
contents of the register into a Vim buffer, edit the pasted text and again
yank the text into the register. You can also use the `:let` command to
modify the register. For example:

:let @a = "iHello World\<Esc>"

For more information, read:

recording
10.1
:let-register
<>
'cpoptions'

faq-22.4
22.4. How do I write recorded key sequences to a file?

The recorded key sequences are stored in a register. You can paste the
contents of the register into a Vim buffer. Now you can save the buffer
into a file. You can also modify the pasted text and again yank into the
register to modify the recorded key sequence. For example, if you record a
set of key sequences using qa q. The recorded key sequences are
stored in the register "a". You can paste the contents of register "a"
using "ap.

For more information, read:

recording
10.1

faq-22.5
22.5. I am using register 0 to record my key sequences (i.e. q0 q).

In the recorded key sequences, I am yanking some text. After the
first replay of the recorded key sequence, I am no longer able to
play it back.

Register 0 contains the text from the last yank operation. In your recorded
key sequence, when the yank is performed, register 0 is overwritten with
the yanked text. So your recording stored in register 0 is lost. You have
to use some other register.

vim_faq.txt — 4444

For more information, read:

registers

===
faq-23

SECTION 23 - AUTOCOMMANDS

faq-23.1
23.1. How do I execute a command when I try to modify a read-only file?

You can use the FileChangedRO autocommand event to execute a command when a
read-only file is modified. For example, you can use this event to checkout a
read-only file:

:autocmd FileChangedRO * call MyCheckoutFunction()

For more information, read:

FileChangedRO

faq-23.2
23.2. How do I execute a command every time when entering a buffer?

You can use the BufEnter autocommand event to execute a command every time
when entering a buffer. For example:

:autocmd BufEnter *.c set formatoptions=croqt

For more information, read:

BufEnter

faq-23.3
23.3. How do I execute a command every time when entering a window?

You can use the WinEnter autocommand event to execute a command every time
when entering a window. For example:

:autocmd WinEnter *.c call MyFunction()

For more information, read:

WinEnter

faq-23.4
23.4. From an autocmd, how can I determine the name of the file or the

buffer number for which the autocommand is executed?

You can use the special words <afile> or <abuf> in an autocmd to get the
name of the file or the buffer number for which the autocommand is
executed.

For more information, read:

:<afile>
:<abuf>
:<amatch>

faq-23.5

vim_faq.txt — 4445

23.5. How do I automatically save all the changed buffers whenever Vim
loses focus?

You can define an autocommand for the FocusLost event which will save all
the modified buffers whenever Vim loses focus:

:autocmd FocusLost * wall

For more information, read:

FocusLost
:wall

faq-23.6
23.6. How do I execute/run a function when Vim exits to do some cleanup?

You can use VimLeave autocmd event to execute a function just before Vim
exits. For example,

:autocmd VimLeave * call MyCleanupFunction()

For more information, read:

VimLeave

===
faq-24

SECTION 24 - SYNTAX HIGHLIGHT

faq-24.1
24.1. How do I turn off/on syntax highlighting?

By default, the Vim syntax highlighting is turned off. To enable the syntax
highlighting, you can use one of the following commands:

:syntax enable

or

:syntax on

To disable the syntax highlighting, you can use the following command:

:syntax off

For more information, read:

06.1
06.4
:syntax-enable
:syntax-on
:syn-clear

faq-24.2
24.2. How do I change the background and foreground colors used by Vim?

Vim uses the "Normal" highlight group for the background and foreground
colors. To change the foreground/background colors, you have to modify the
"Normal" highlight group. For example, to set the background color to blue
and foreground color to white, you can use

vim_faq.txt — 4446

:highlight Normal ctermbg=blue ctermfg=white guibg=blue guifg=white

If you are using the Motif or the Athena version of the GUI Vim, then you
can modify the foreground and background resource names in the .Xdefaults
files to change the colors:

Vim.foreground: Black
Vim.background: Wheat

You can also use the "-foreground" and "-background" command-line arguments
to specify the foreground and background colors. These arguments are
supported only in the Motif or Athena versions:

$ gvim -foreground Black -background Wheat

For more information, read:

:highlight
.Xdefaults
-gui

faq-24.3
24.3. How do I change the highlight colors to suit a dark/light background?

You can set the 'background' option to either "dark" or "light" to change
the highlight colors to suit a dark/light background:

:set background=dark

For more information, read:

'background'
06.2

faq-24.4
24.4. How do I change the color of the line numbers displayed when the

`:set number` command is used?

The line numbers displayed use the LineNr highlighting group. To display
the current colors used, use

:hi LineNr

To change the color modify the LineNr highlight group. For example:

:hi linenr guifg=red guibg=black

This will give red numbers on a black background in GVIM.

For more information, read:

:highlight

faq-24.5
24.5. How do I change the background color used for a Visually selected

block?

You can modify the "Visual" highlight group to change the color used for a
visually selected block:

vim_faq.txt — 4447

:highlight Visual guibg=red

For more information, read:

:highlight
hl-Visual

faq-24.6
24.6. How do I highlight the special characters (tabs, trailing spaces, end

of line, etc) displayed by the 'list' option?

You can modify the "NonText" and "SpecialKey" highlight groups to highlight
the special characters displayed by the 'list' option:

:highlight NonText guibg=red
:highlight SpecialKey guibg=green

The "NonText" highlighting group is used for "eol", "extends" and
"precedes" settings in the 'listchars' option. The "SpecialKey"
highlighting group is used for the "tab" and "trail" settings.

For more information, read:

'listchars'
hl-NonText
hl-SpecialKey

faq-24.7
24.7. How do I specify a colorscheme in my .vimrc/.gvimrc file, so that Vim

uses the specified colorscheme every time?

You can specify the color scheme using the `:colorscheme` command in your
.vimrc or .gvimrc file:

colorscheme evening

For more information, read:

:colorscheme

faq-24.8
24.8. Vim syntax highlighting is broken. When I am editing a file, some

parts of the file is not syntax highlighted or syntax highlighted
incorrectly.

Vim doesn't read the whole file to parse the text for syntax highlighting.
It starts parsing wherever you are viewing the file. That saves a lot of
time, but sometimes the colors are wrong. A simple fix is refreshing the
screen using the CTRL-L key. Or scroll back a bit and then forward again.
You can also use the command:

:syntax sync fromstart

Note that this might considerably slow down the screen refreshing.

For more information, read:

:syn-sync
:syn-sync-first

vim_faq.txt — 4448

faq-24.9
24.9. Is there a built-in function to syntax-highlight the corresponding

matching bracket?

Yes. Vim includes the matchparen Plugin as standard plugin that is enabled
by default. Whenever the cursor moves over an item defined with the
'matchpairs' option, Vim will highlight the corresponding bracket using the
MatchParen highlighting group.

However, if the corresponding parenthesis is not visible in the current
window, the cursor won't jump to it.

The matchit plugin provides a similar function, that lets the cursor
jump to related items (e.g. "if", "else", "endif" items) and skips
matches in comments. This uses the % command to jump to corresponding
items. Though both plugins provide similar functions they are unrelated
and work differently.

For more information, read:

matchparen
'matchpairs'
matchit-install
matchit-intro

faq-24.10
24.10. How do I turn off the C comment syntax highlighting?

You can use the following command to turn off C comment syntax
highlighting:

:highlight clear comment

For more information, read:

ft-c-syntax

faq-24.11
24.11. How do I add my own syntax extensions to the standard syntax files

supplied with Vim?

You should not modify the syntax files supplied with Vim to add your
extensions. When you install the next version of Vim, you will lose your
changes. Instead you should create a file under the ~/.vim/after/syntax
directory with the same name as the original syntax file and add your
additions to this file.

For more information, read:

mysyntaxfile-add
'runtimepath'

faq-24.12
24.12. How do I replace a standard syntax file that comes with the Vim

distribution with my own syntax file?

You can replace a standard syntax file that comes with the Vim distribution
by creating a file with the same name as the original syntax file and
placing it in the vim runtime syntax (~/.vim/syntax) directory. For

vim_faq.txt — 4449

example, to replace the c.vim syntax file in a Unix system, place the new
c.vim in the ~/.vim/syntax directory. In a MS-Windows system, place the new
syntax file in the $HOME/vimfiles/syntax or $VIM/vimfiles/syntax directory.

For more information, read:

mysyntaxfile-replace
44.11
mysyntaxfile

faq-24.13
24.13. How do I highlight all the characters after a particular column?

You can use the `:match` command to highlight all the characters after a
particular column:

:match Todo '\%>75v.\+'

This will highlight all the characters after the 75th column.

You can also set the 'colorcolumn' option to highlight a particular
column:

:set colorcolumn=+2

which highlights 2 columns after the current 'textwidth' setting
(alternatively, you can use the exact column number).

For more information, read:

:match
/\%v
/\+
/.
'colorcolumn'

faq-24.14
24.14. How do I convert a source file (.c, .h, etc) with the Vim syntax

highlighting into a HTML file?

You can use the 2html.vim script to convert a source file into a HTML file
with the Vim syntax highlighting. Use the following command:

:TOhtml

For more information, read:

convert-to-HTML
:TOhtml

faq-24.15
24.15. How do I list the definition of all the current highlight groups?

You can list the definition of all the current highlight groups using the
`:highlight` (without any arguments) ex command.

For more information, read:

:highlight

vim_faq.txt — 4450

faq-24.16
24.16. How can I embed one syntax highlighting language into another one?

It is possible to include one syntax highlighting into another one,
however most of the currently deployed syntax highlighting scripts are
not prepared to be included into another syntax script.

You can however create your own custom script to define your own
regions, which will be highlighted with a different language.

See the wiki for a comprehensive solution:

http://vim.wikia.com/wiki/Different_syntax_highlighting_within_regions_of_a_file

For more information, read:

:syn-include
sh-awk

===
faq-25

SECTION 25 - VIM SCRIPT WRITING

faq-25.1
25.1. How do I list the names of all the scripts sourced by Vim?

You can use the `:scriptnames` command to list the names of all the scripts
sourced by Vim:

:scriptnames

For more information, read:

:scriptnames

faq-25.2
25.2. How do I debug Vim scripts?

Vim has built-in support for a primitive debugger to debug Vim plugins and
scripts. Using this debugger you can set breakpoints and step through the
plugin functions.

For more information, read:

debug-scripts
-D

faq-25.3
25.3. How do I locate the script/plugin which sets a Vim option?

You can use the `:verbose` command to locate the plugin/script which last
modified a Vim option. For example:

:verbose set textwidth?

For more information, read:

:set-verbose
:verbose

vim_faq.txt — 4451

http://vim.wikia.com/wiki/Different_syntax_highlighting_within_regions_of_a_file

faq-25.4
25.4. I am getting some error/informational messages from Vim (possibly

when running a script), the messages are cleared immediately. How do
I display the messages again?

You can use the `:messages` command to display the previous messages.

:messages

For more information, read:

:messages
:echoerr
:echomsg
message-history

faq-25.5
25.5. How do I save and restore a plugin specific information across Vim

invocations?

Vim will save and restore global variables that start with an uppercase
letter and don't contain a lower case letter. For this to work, the
'viminfo' option must contain the "!" flag. Vim will store the variables in
the viminfo file.

For more information, read:

'viminfo'
viminfo-file
variables

faq-25.6
25.6. How do I start insert mode from a Vim function?

You can use the `:startinsert` command to start the insert mode from inside
a Vim function.

For more information, read:

:startinsert

faq-25.7
25.7. How do I change the cursor position from within a Vim function?

You can use the cursor() function to position the cursor.

call cursor(lnum, col)

Alternatively, use the setpos() function:

call setpos('.', [bufnum, lnum, col, off])

which set's the cursor in the buffer bufnum to line lnum, column col and
offset for 'virtualedit'. You can use the getpos() function, to return a
list with these values, that can then be fed back to the setpos() function.

If you want to save and restore the viewpoint on a window, use the
winsaveview() and winrestview() function calls.

You can also use the following command to change the cursor position:

vim_faq.txt — 4452

exe "normal! " . lnum . "G" . col . "|"

For more information, read:

cursor()
bar
getpos()
setpos()
winsaveview()
winrestview()

faq-25.8
25.8. How do I check the value of an environment variable in the .vimrc

file?

You can use prefix the environment variable name with the "$" character to
use it from a Vim script/function. You can refer to the value of an
environment variable using the $env_var syntax:

if $EDITOR == 'vi'
endif

For more information, read:

expr-env

faq-25.9
25.9. How do I check whether an environment variable is set or not from a

Vim function?

You can use the exists() function to check for the existence of an
environment variable.

if exists("$MY_ENV_VAR")
endif

For more information, read:

exists()
expr-env

faq-25.10
25.10. How do I call/use the Vim built-in functions?

You can use the `:call` command to invoke a Vim built-in function:

:call cursor(10,20)

You can use the `:echo` command to echo the value returned by a function:

:echo char2nr('a')

You can use the `:let` command to assign the value returned by a function
to a variable:

:let a = getline('.')

To store the return value from a function into a Vim register, you can use
the following command:

vim_faq.txt — 4453

:let @a = system('ls')

The above command will store the output of the "ls" command into
the register "a".

For more information, read:

:call
:echo
:let
:let-register
user-functions
usr_41.txt

faq-25.11
25.11. I am using some normal mode commands in my Vim script. How do I

avoid using the user-defined mappings for these normal mode commands
and use the standard Vim functionality for these normal mode
commands?

You can use the `:normal!` command in your script to invoke a normal-mode
command. This will use the standard functionality of the normal mode
command and will not use the user-defined mapping.

For more information, read:

:normal

faq-25.12
25.12. How do I get the current visually selected text into a Vim variable

or register?

You can get the current visually selected text into a Vim variable by
yanking the text into Vim register and then assigning the contents of the
register into the variable:

:normal! gvy
:let myvar = @"

The above command copies the visually selected text into the variable
"myvar".

You can also use the command:

:normal! gv"*y

In the above command, gv reselects the last visually selected text and the
rest of the command copies the selected text into the * (clipboard)
register. Alternatively, you can set the "a" flag in the 'guioptions'
option to automatically copy a visually selected text into the * register.
To do this as part of a visual map, you can use a command similar to the
one shown below:

:vmap <F3> "*y:call ...

For more information, read:

gv

vim_faq.txt — 4454

:normal
:let-@
quotestar
clipboard
registers

faq-25.13
25.13. I have some text in a Vim variable "myvar". I would like to use this

variable in a `:s` substitute command to replace a text "mytext".
How do I do this?

You can use the `:execute` command to evaluate the variable:

:execute '%s/mytext/' . myvar . '/'

For more information, read:

:execute

You can also use "\=" in the substitute command to evaluate the variable:

:%s/mytext/\=myvar/

For more information, read:

sub-replace-special

faq-25.14
25.14. A Vim variable (bno) contains a buffer number. How do I use this

variable to open the corresponding buffer?

The `:buffer` command will not accept a variable name. It accepts only a
buffer number or buffer name. You have to use the `:execute` command to
evaluate the variable into the corresponding value. For example:

:execute "buffer " . bno

For more information, read:

:execute

faq-25.15
25.15. How do I store the value of a Vim option into a Vim variable?

You can prefix the option name with the "&" character and assign the option
value to a Vim variable using the `:let` command. For example, to store the
value of the 'textwidth' option into the Vim variable "old_tw", you can use
the following command:

:let old_tw = &tw

To explicitly save buffer local options, use the prefix "l:"

:let old_tw = &l:tw

If you want to explicitly select the global option, use the "g:" prefix to
the option name.

To do the opposite, to set the 'textwidth' option with the value stored in
the "old_tw" variable, you can use the following command:

vim_faq.txt — 4455

:let &tw = old_tw

For more information, read:

expr-option
:let-option

faq-25.16
25.16. I have copied and inserted some text into a buffer from a Vim

function. How do I indent the inserted text from the Vim function?

You can use the following command to format the just inserted text:

:normal '[=']

For more information, read:

'[
']
=
:normal

faq-25.17
25.17. How do I get the character under the cursor from a Vim script?

You can use the getline() function and use string index [] to get the
character:

:echo getline(".")[col(".") - 1]

In the above command, getline(".") returns the text in the current line.
The indexing of the string starts at zero, and you can get a single
character in a string by its index with the "string[index]" notation. The
col(".") returns the column of the cursor position; the adjustment is to
get the right character of the string. However, this does NOT work with
multibyte characters as this command only returns the byte index.

Alternatively, you can use the following sequence of commands to get the
character under the cursor:

normal! vy
let ch=@"

Note, that the above commands will change the '< and '> marks.

For more information, read:

getline()
col()
expr-[]

faq-25.18
25.18. How do I get the name of the current file without the extension?

You can get the name of the current file without the extension using:

:echo expand("%:r")

With some commands, you can use the file name modifiers directly:

vim_faq.txt — 4456

:cd %:p:h
:!gcc -o %:r.o %
:!xpdf %<.pdf

For more information, read:

filename-modifiers
expand()
cmdline-special
fnamemodify()

faq-25.19
25.19. How do I get the basename of the current file?

You can use the ":t" filename modifier to get the basename of the current
file:

:echo expand("%:t")

For more information, read:

filename-modifiers

faq-25.20
25.20. How do I get the output from a Vim function into the current buffer?

You can insert the return value from a function using the following command
in insert mode:

<C-R>=MyFunc()

Note, that this will only insert the return value of the function.

For more information, read:

i_CTRL-R
i_CTRL-R_CTRL-R
i_CTRL-R_CTRL-O
expression

faq-25.21
25.21. How do I call external programs from a Vim function?

There are several ways to call external programs from a Vim function. You
can use the builtin system() function to invoke external programs and get
the result:

:let output = system("ls")

You can also use "!" ex-command to run an external command.

For more information, read:

system()
:!
10.9

faq-25.22
25.22. How do I get the return status of a program executed using the `:!`

vim_faq.txt — 4457

command?

You can use the predefined Vim v:shell_error variable to get the return
status of the last run shell command.

For more information, read:

v:shell_error

faq-25.23
25.23. How do I determine whether the current buffer is modified or not?

You can check the value of the 'modified' option to determine whether the
current buffer is modified:

:set modified?

From a Vim script, you can check the value of the 'modified' option:

if &modified
echo "File is modified"

endif

For more information, read:

'modified'

faq-25.24
25.24. I would like to use the carriage return character in a normal

command from a Vim script. How do I specify the carriage return
character?

You can use the `:execute` command to specify the special (control)
character in a normal mode command:

:execute "normal \<CR>"
:execute "normal ixxx\<Esc>"

For more information, read:

:execute
expr-quote

faq-25.25
25.25. How do I split long lines in a Vim script?

You can split long lines in a Vim script by inserting the backslash
character ("\") at the start of the next line. For example,

set comments=sr:/*,mb:*,el:*/,
\://,
\b:#,
\:%,
\n:>,
\fb:-

For more information, read:

line-continuation

vim_faq.txt — 4458

faq-25.26
25.26. When I try to "execute" my function using the `:execute Myfunc()`

command, the cursor is moved to the top of the current buffer.
Why?

The `:execute` command runs the ex command specified by the argument.
In the case of the following command:

:execute Myfunc()

The call to Myfunc() will return 0. The `:execute` command will run
the ex command `:0`, which moves the cursor to the top of the file.
To call a Vim function, you should use the `:call` command instead of the
`:execute` command:

:call Myfunc()

For more information, read:

:call
:execute
:echo
user-functions
41.5
41.6
cmdline-lines

faq-25.27
25.27. How do I source/execute the contents of a register?

If you have yanked a set of Vim commands into a Vim register (for example
register "a"), then you can source the contents of the register using one
of the following commands:

:@a
or

:exe @a

For more information, read:

:@

faq-25.28
25.28. After calling a Vim function or a mapping, when I press the "u"

key to undo the last change, Vim undoes all the changes made by
the mapping/function. Why?

When you call a function or a mapping, all the operations performed by the
function/mapping are treated as one single operation. When you undo the
last operation by pressing "u", all the changes made by the
function/mapping are reversed.

For more information, read:

undo-redo
:map-undo

faq-25.29
25.29. How can I call a function defined with s: (script local function)

from another script/plugin?

vim_faq.txt — 4459

The s: prefix for a Vim function name is used to create a script local
function. A script local function can be called only from within that
script and cannot be called from other scripts. To define a function in a
script/plugin, so that it can be called from other plugins/scripts, define
the function without the s: prefix.

For more information, read:

script-variable
script-local
:scriptnames

faq-25.30
25.30. Is it possible to un-source a sourced script? In other words, reverse

all the commands executed by sourcing a script.

No. It is not possible to reverse or undo all the commands executed by
sourcing a script.

For more information, read:

:source

===
faq-26

SECTION 26 - PLUGINS

faq-26.1
26.1. How do I set different options for different types of files?

You can create filetype plugins to set different options for different
types of files. You should first enable filetype plugins using the command:

:filetype plugin on

A filetype plugin is a vim script that is loaded whenever Vim opens or
creates a file of that type. For example, to ensure that the 'textwidth'
option is set to 80 when editing a C program (filetype "c"), create one of
the following files:

~/.vim/ftplugin/c.vim (Unix)
%HOME%\vimfiles\ftplugin\c.vim (Windows)

with the following text in it:

setlocal textwidth=80

You can also use autocommands to set specific options when editing specific
type of files. For example, to set the 'textwidth' option to 75 for only
*.txt files, you can use the following autocmd:

autocmd BufRead *.txt setlocal textwidth=80

For more information, read:

filetype-plugin
add-filetype-plugin
:autocmd
40.3

vim_faq.txt — 4460

faq-26.2
26.2. I have downloaded a Vim plugin or a syntax file or a indent file, or

a color scheme or a filetype plugin from the web. Where should I copy
these files so that Vim will find them?

You can place the Vim runtime files (plugins, syntax files, indent files,
color schemes, filetype plugins, etc) under one of the directories
specified in the 'runtimepath' option. To determine the current value of
the 'runtimepath' option, use the following command:

:set runtimepath

For Unix systems, this is usually the "$HOME/.vim" directory. For MS-Windows
systems, this is usually the $VIM\vimfiles or $HOME\vimfiles directory.
Depending on the type of the runtime file, you have to place it under a
specific directory under the above runtime directory. The names of the
directories are listed below:

name description
---------- ------------------
colors/ color scheme files
compiler/ compiler files
doc/ documentation
ftplugin/ filetype plugins
indent/ indent scripts
keymap/ key mapping files
lang/ menu translations
plugin/ plugin scripts
syntax/ syntax files
tutor/ files for vimtutor

For more information, read:

your-runtime-dir
'runtimepath'
:runtime

faq-26.3
26.3. How do I extend an existing filetype plugin?

You can extend an existing filetype plugin by creating a file in the
after/ directory in any of the 'runtimepath' directories.

- for small changes to be done after (and in addition to) what is
already done by the ftplugin installed with Vim, use an after-directory,
as follows (replacing foobar by the 'filetype' of the concerned
files):

- For changes private to one user:
- on Windows:

$HOME/vimfiles/after/ftplugin/foobar.vim
- on Unix-like OSes:

$HOME/.vim/after/ftplugin/foobar.vim
- For changes affecting all users on the system:

$VIM/vimfiles/after/ftplugin/foobar.vim

- when replacing the whole filetype-plugin by a different version, or
when installing a new ftplugin for some filetype not yet supported by
Vim out of the box: use the same paths without the after/ in them. In

vim_faq.txt — 4461

that case you should place near the start of your plugin an "if...
finish... endif... let" block like the one in the plugins distributed
with Vim.

All the above paths are given in Vim terminology (which is similar to
Unix terminology, but is understood even by Vim for Windows); they don't
exist by default, so the first time you need them you will have to
create them using mkdir (on any OS including DOS/Windows) or md (on
DOS/Windows only). $VIM and, on DOS/Windows, $HOME, do not necessarily
exist outside Vim. If $HOME has no value (or no valid value) inside Vim,
you can use $VIM instead; but on any but possibly very old versions of
Windows, $HOMEDRIVE and $HOMEPATH are defined by the system, and if
$HOME is undefined at Vim startup, Vim will set it by expanding
$HOMEDRIVE$HOMEPATH before sourcing your vimrc. To know which values Vim
uses, you can type (in a running Vim):

:echo $VIM
:echo $HOME

If you placed the file in the after/ftplugin runtime directory, then Vim
will first source the existing filetype plugin file and then will source
the new file. If you placed the file in the $VIMRTUNTIME/ftplugin runtime
directory, then Vim will first source the new file and then will source the
existing filetype plugin file.

For more information, read:

ftplugin-overrule
filetype-plugin
add-filetype-plugin
'runtimepath'

faq-26.4
26.4. How do I turn off loading the Vim plugins?

You can reset the 'loadplugins' option to turn off loading the plugins:

:set noloadplugins

You can also specify the "--noplugin" command line argument to stop loading
the plugins:

$ vim --noplugin

For more information, read:

'loadplugins'
--noplugin
load-plugins

faq-26.5
26.5. How do I turn on/off loading the filetype plugins?

By default, Vim will not load the filetype plugins. You can configure Vim
to load filetype plugins using the command:

filetype plugin on

You can turn off loading the filetype plugins using:

vim_faq.txt — 4462

filetype plugin off

For more information, read:

:filetype-plugin-on
:filetype-plugin-off
:filetype

faq-26.6
26.6. How do I override settings made in a file type plugin in the global

ftplugin directory for all the file types?

You can use an autocommand triggered on the FileType event:

au Filetype * set formatoptions=xyz

This should at least be after "filetype on" in your vimrc. Best is to put
it in your "myfiletypefile" file, so that it's always last.

If you want to override a setting for a particular filetype, then create a
file with the same name as the original filetype plugin in the
~/.vim/after/ftplugin directory For example, to override a setting in the
c.vim filetype plugin, create a c.vim file in the ~/.vim/after/ftplugin
directory and add your preferences in this file.

For more information, read:

ftplugin-overrule
ftplugins
myfiletypefile

faq-26.7
26.7. How do I disable the Vim directory browser plugin?

To disable the directory browsing Vim plugin, add the following line to
your .vimrc file:

let g:loaded_netrw = 1

For more information, read:

netrw

faq-26.8
26.8. How do I set the filetype option for files with names matching a

particular pattern or depending on the file extension?

You can set the 'filetype' option for files with names matching a
particular pattern using an autocmd. For example, to set the 'filetype'
option to "c" for all files with extension ".x", you can use the following
autocmd:

autocmd! BufRead,BufNewFile *.x setfiletype c

A better alternative to the above approach is to create a filetype.vim file
in the ~/.vim directory (or in one of the directories specified in the
'runtimepath' option) and add the following lines:

" my filetype file

vim_faq.txt — 4463

if exists("did_load_filetypes")
finish

endif
augroup filetypedetect

au! BufRead,BufNewFile *.x setfiletype c
augroup END

For more information, read:

new-filetype
43.2
:setfiletype

===
faq-27

SECTION 27 - EDITING PROGRAM FILES

faq-27.1
27.1. How do I enable automatic indentation for C/C++ files?

You can enable file-type based indentation using:

:filetype indent on

If you want to only enable automatic C indentation, then use:

:set cindent

For more information, read:

'cindent'
C-indenting
filetype

faq-27.2
27.2. How do I configure the indentation used for C/C++ files?

You can configure the Vim C indentation by modifying the value of the
'cinoptions', 'cinkeys' and 'cinwords' options.

For more information, read:

'cindent'
'cinoptions'
'cinkeys'
'cinwords'
C-indenting
cinoptions-values
'smartindent'

faq-27.3
27.3. How do I turn off the automatic indentation feature?

By default, the automatic indentation is not turned on. You must have
configured Vim to do automatic indentation in either .vimrc or .gvimrc
files. You can disable automatic indentation using either,

:filetype indent off

or

vim_faq.txt — 4464

:set nocindent

Also, check the setting for the following options:

:set autoindent?
:set smartindent?
:set indentexpr?

For more information, read:

'cindent'
:filetype-indent-off
'autoindent'
'smartindent'
'indentexpr'

faq-27.4
27.4. How do I change the number of space characters used for the automatic

indentation?

You can modify the 'shiftwidth' option to change the number of space
characters used for the automatic indentation:

:set shiftwidth=4

For more information, read:

'shiftwidth'

faq-27.5
27.5. I am editing a C program using Vim. How do I display the definition

of a macro or a variable?

You can use the "[d" command to display the definition of a macro, "[i"
command to display the definition of a variable, "gd" to goto the local
declaration of a variable and "gD" to go to the global Declaration.

For more information, read:

[d
[i
gd
gD
include-search
29.4
29.5

faq-27.6
27.6. I am editing a C program using Vim. How do I jump to the beginning or

end of a code block from within the block?

You can use "[{" command to jump to the beginning of the code block and "]}"
to jump to the end of the code block from inside the block.

For more information, read:

[{
]}
various-motions

vim_faq.txt — 4465

faq-27.7
27.7. When editing C++ files and when inserting new lines above or below a

comment (//) line, Vim automatically inserts the C++ comment
character (//) at the beginning of the line. How do I disable this?

This automatic insertion of the comment leader (//) when new lines
are added is controlled by three flags in the 'formatoptions'
option: "c", "r" and "o". "c" enables auto-wrapping of comment
lines when typing extends beyond the right margin. "r" enables the
automatic insertion of the comment leader when <Enter> is pressed
while editing a comment line. "o" enables the automatic insertion
of the comment leader when a new line is opened above or below an
existing comment line by typing O or o in Normal mode.

You can stop Vim from automatically inserting the comment leader
when typing <Enter> within a comment or when opening a new line by
removing the "r" and "o" flags from 'formatoptions'.

:set formatoptions-=r
:set formatoptions-=o

The default filetype plugin for C and C++ files
($VIMRUNTIME/ftplugin/c.vim) adds the "r" and "o" flags to the
'formatoptions' option. If you want to override this for C++ files,
then you can add the above lines to the
~/.vim/after/ftplugin/cpp.vim file.

For more information, read:

formatoptions
30.6
format-comments
filetype-plugins
ftplugin-overrule

faq-27.8
27.8. How do I add the comment character "#" to a set of lines at the

beginning of each line?

First, select the first character in all the lines using visual block mode
(CTRL-V). Press "I" to start inserting characters at the beginning of the
line. Enter the comment character and then stop the insert mode by pressing
<Esc>. Vim will automatically insert the entered characters at the
beginning of all the selected lines.

For more information, read:

visual-block
blockwise-operators
v_b_I

faq-27.9
27.9. How do I edit a header file with the same name as the corresponding C

source file?

You can use the following command to edit a header file with the same name
as the corresponding C source file:

:e %:t:r.h

vim_faq.txt — 4466

You can use the following command to edit the file in a new split window:

:sp %:t:r.h

In the above commands, the percent sign expands to the name of the current
file. The `:t` modifier extracts the tail (last component) of the
filename. The `:r` modifier extracts the root of the filename. The .h is
appended to the resulting name to get the header filename.

Another approach is to use the following command:

:sfind %:t:r.h

This command will search for the header file in the directories specified
in the 'path' option.

For more information, read:

cmdline-special
filename-modifiers
:sfind
'path'

faq-27.10
27.10. How do I automatically insert comment leaders while typing comments?

To automatically insert comment leaders while typing comments, add the "r"
and "o" flags to the 'formatoptions' option.

:set formatoptions+=ro

You may also want to add the "c" flag to auto-wrap comments using the
'textwidth' option setting and the "q" flag to format comments with the
"gq" command:

:set formatoptions=croq

For more information, read:

30.6
format-comments
'comments'
fo-table

===
faq-28

SECTION 28 - QUICKFIX

faq-28.1
28.1. How do I build programs from Vim?

You can use the `:make` command to build programs from Vim. The `:make`
command runs the program specified by the 'makeprg' option.

For more information, read:

30.1
:make_makeprg
'makeprg'

vim_faq.txt — 4467

'makeef'
:make
quickfix

faq-28.2
28.2. When I run the make command in Vim I get the errors listed as the

compiler compiles the program. When it finishes this list disappears
and I have to use the `:clist` command to see the error message again.
Is there any other way to see these error messages?

You can use the `:copen` or `:cwindow` command to open the quickfix window
that contains the compiler output. You can select different error lines
from this window and jump to the corresponding line in the source code.

For more information, read:

:copen
:cwindow
quickfix

faq-28.3
28.3. How can I perform a command for each item in the quickfix/location

list?

Starting from Vim 7.4.858 Vim provides the new commands `:cfdo`, `:cdo`,
`:lfdo` and `:ldo.` They work by iterating over all items in the quickfix
list and performing a command on each. The difference is, that the `:lfdo`
and `:ldo` commands iterate over the location list entries, while the
`:cfdo` and `:cdo` commands operate on the items in the quickfix list. Also,
the `:cfdo` and `:lfdo` operate on all different files, while the `:cdo` and
`:ldo` commands operate on each item in the quickfix/location list.

For example you could vimgrep all C files in the current directory for a
search string "Foobar":

:vimgrep /Foobar/ *.c

and as this populates your quickfix list, you could simply replace all
occurences by using:

:cdo :%s/Foobar/Foobaz | upd

For more information, read:

:cfdo
:cdo

===
faq-29

SECTION 29 - FOLDING

faq-29.1
29.1. How do I extend the Vim folding support?

You can use the 'foldexpr' option to fold using a user specified function.
For example, to fold subroutines of the following form into a single line:

sub foo {
my $barf;
$barf = 3;

vim_faq.txt — 4468

return $barf;
}

You can use the following commands:

set foldmethod=expr
set foldexpr=MyFoldExpr(v:lnum)
fun! MyFoldExpr(line)

let str = getline(a:line)
if str =~ '^sub\>'

return '1'
elseif str =~ '^}'

return '<1'
else

return foldlevel(a:line - 1)
endif

endfun

For more information, read:

'foldexpr'
fold-expr

faq-29.2
29.2. When I enable folding by setting the 'foldmethod' option, all the

folds are closed. How do I prevent this?

You can set the 'foldlevelstart' option to a particular value to close only
folds above the specified value.

:set foldlevelstart=99

For more information, read:

'foldlevelstart'
'foldlevel'
fold-foldlevel

faq-29.3
29.3. How do I control how many folds will be opened when I start editing a

file?

You can modify the 'foldlevelstart' option to control the number of folds
that will be opened when you start editing a file. To start editing with
all the folds closed:

:set foldlevelstart=0

To start editing with all the folds opened, you can use

:set foldlevelstart=999

For more information, read:

'foldlevelstart'

faq-29.4
29.4. How do I open and close folds using the mouse?

You can click on the + and - characters displayed at the leftmost column to

vim_faq.txt — 4469

open and close fold. For this to work, you have to set the 'foldcolumn'
to a value greater than zero:

:set foldcolumn=2

For more information, read:

'foldcolumn'

faq-29.5
29.5. How do I change the text displayed for a closed fold?

You can use the 'foldtext' option to change the text displayed for a closed
fold.

For more information, read:

'foldtext'
fold-foldtext
'fillchars'

faq-29.6
29.6. How do I store and restore manually created folds across different

Vim invocations?

You can use the `:mkview` command to store manually created folds. Later,
you can use the `:loadview` command to restore the folds. For this to work,
the 'viewoptions' must contain "folds".

For more information, read:

28.4
:mkview
:loadview
'viewoptions'
'viewdir'
:mksession
'sessionoptions'

faq-29.7
29.7. I have enabled syntax based folding. Why is Vim so slow?

Syntax based folding is currently rather slow in Vim and will possibly
slow down Vim considerably. There is an issue in the todo list to fix
this, but the todo list is rather long and it may take a while until
this will be fixed.

You can find the issue in the todo list, if you read

todo.txt

followed by a search for "folding with 'foldmethod'"

A workaround is to temporarily set the foldmethod to manual while in
insert mode. This is described in the wiki at:

http://vim.wikia.com/wiki/Keep_folds_closed_while_inserting_text

===
faq-30

vim_faq.txt — 4470

http://vim.wikia.com/wiki/Keep_folds_closed_while_inserting_text

SECTION 30 - VIM WITH EXTERNAL APPLICATIONS

faq-30.1
30.1. Can I run a shell inside a Vim window?

Since Version 8.1 Vim comes with a terminal window included. It allows
to run a shell inside an ordinary Vim window (e.g. split) asynchronously
and interact with the shell using the normal Vim commands.

When the focus is in the terminal window, typed keys will be sent to
the job and is called terminal mode. You can click outside of the
terminal window to move keyboard focus elsewhere, alternatively one can
use CTRL-W to novigate between different Vim windows. To feed CTRL-W into the
terminal, one needs to use CTRL-W .

To map keys specifically for terminal mode, use the new `:tmap`
command. After typing CTRL-W the terminal window will switch to
Terminal-Normal mode (this can be used to move the cursor around, scroll
the window, etc. Just like normal mode).

To interact between the terminal and Vim, Vim implements several
interfaces using term_sendkeys(), terminal-api and the client-server
mechanism.

For more information, read:

terminal
mapmode-t
Terminal-Normal
terminal-communication

faq-30.2
30.2. How do I pass the word under the cursor to an external command?

You can use the special keyword <cword> to pass the word under the cursor
to an external command. For example:

:!dict <cword>

For more information, read:

:<cword>

faq-30.3
30.3. How do I get the output of a shell command into a Vim buffer?

You can use the `:r !` command to get the output of a shell command into a
Vim buffer. For example, to insert the output of the "ls" shell command,
you can use the following command:

:r !ls

To insert the output of the shell command above the first line use the
following command:

:0r !ls

For more information, read:

:r!

vim_faq.txt — 4471

faq-30.4
30.4. How do I pipe the contents of the current buffer to an external

command and replace the contents of the buffer with the output from
the command?

You can use the :! command to pipe the contents of the current buffer to an
external command and replace the contents of the buffer with the output
from the command. For example, to sort the contents of the current buffer,
using the Unix sort command, you can use the following command:

:%!sort

To sort only lines 10-20, you can use the following command

:10,20!sort

Also, if you want to pipe a buffer to an external command but not put the
results back in the buffer, you can use

:w !sort

The above command will pipe the entire buffer to the sort command. Note,
that the space between the "w" and the "!" is critical. To pipe only a
range of lines, you can use

:10,20w !sort

The above command will pipe the lines 10-20 to the sort command.

For more information, read:

:range!
10.9
:w_c

faq-30.5
30.5. How do I sort a section of my file?

You use the `:sort` command like this:

:5,100sort

Using the `:sort` command provides many options, you can sort numerical on
the first found decimal number using:

:%sort n

Or you can specify to sort on the text, starting at virtual column 8:

:%sort /.*\%8v/

Alternatively can pipe a section of the file to the Unix "sort" utility to
sort the file. For example:

:5,100!sort

You can also use a visual block, and use the "!sort" command on the
selected block.

vim_faq.txt — 4472

See also:
:sort
filter

faq-30.6
30.6. How do I use Vim as a pager?

You can use Vim as a pager using the $VIMRUNTIME/macros/less.sh shell
script, supplied as part of the standard Vim distribution. This shell
script uses the $VIMRUNTIME/macros/less.vim Vim script to provide less like
key bindings.

For more information, read:

less

faq-30.7
30.7. How do I view Unix man pages from inside Vim?

You can view Unix man pages, inside Vim, using the man.vim plugin supplied
as part of the standard Vim distribution. To use this plugin, add the
following line to your startup vimrc file:

runtime ftplugin/man.vim

You can also press the K key to run the program specified by the
'keywordprg' option with the keyword under the cursor. By default,
'keywordprg' is set to run man on the keyword under the cursor.

For more information, read:

ft-man-plugin
K
'keywordprg'

faq-30.8
30.8. How do I change the diff command used by the Vim diff support?

By default, the Vim diff support uses the 'diff' command. You can change
this by changing the 'diffexpr' option.

For more information, read:

diff-diffexpr
'diffexpr'

faq-30.9
30.9. How do I use the Vim diff mode without folding?

You can use the following command-line to start Vim with two filenames
and use the diff mode without folding:

$ vim -o file1 file2 "+windo set diff scrollbind scrollopt+=hor nowrap"

If you like vertically split windows, then replace "-o" with "-O".

For more information, read:

vimdiff

vim_faq.txt — 4473

===
faq-31

SECTION 31 - GUI VIM

faq-31.1
31.1. How do I create buffer specific menus?

Adding support for buffer specific menus is in the Vim TODO list. In the
mean time, you can try Michael Geddes's plugin, buffermenu.vim:

https://www.vim.org/scripts/script.php?script_id=246

faq-31.2
31.2. How do I change the font used by GUI Vim?

You can change the 'guifont' option to change the font used by GUI Vim. To
display the current value of this option, you can use

:set guifont?

You can add the displayed font name to the .vimrc file to use the font
across Vim sessions. For example, add the following line to the .vimrc file
to use Andale Mono font.

set guifont=Andale_Mono:h10:cANSI

For Win32, GTK and Photon version of Vim, you can use the following command
to bringup a dialog which will help you in changing the guifont:

:set guifont=*

You can also use the -font Vim command line option to specify the font used
for normal text.

For more information, read:

'guifont'
'guifontset'
'guifontwide'
font-sizes
-font
-boldfont
-italicfont
-menufont
-menufontset

faq-31.3
31.3. When starting GUI Vim, how do I specify the location of the GVIM

window?

You can use the "-geometry" command line argument to specify the location
of the GUI Vim window. For example:

$ gvim -geometry 80x25+100+300

For more information, read:

31.4
-geom

vim_faq.txt — 4474

https://www.vim.org/scripts/script.php?script_id=246

faq-31.4
31.4. How do I add a horizontal scrollbar in GVim?

You can enable the horizontal scrollbar by modifying the 'guioptions'
option:

:set guioptions+=b

For more information, read:

'guioptions'
gui-horiz-scroll

faq-31.5
31.5. How do I make the scrollbar appear in the left side by default?

You can add the "l" flag to the 'guioptions' option to make the scrollbar
appear in the left side.

:set guioptions+=l
:set guioptions-=r

For more information, read:

'guioptions'
gui-scrollbars

faq-31.6
31.6. How do I remove the Vim menubar?

You can remove the Vim menubar by removing the "m" flag from the
'guioptions' option:

:set guioptions-=m

For more information, read:

'guioptions'

faq-31.7
31.7. I am using GUI Vim. When I press the <Alt> key and a letter, the menu

starting with that letter is selected. I don't want this behavior as
I want to map the <Alt>-<key> combination. How do I do this?

You can use the 'winaltkeys' option to disable the use of the <Alt> key to
select a menu item:

:set winaltkeys=no

For more information, read:

'winaltkeys'
:simalt

faq-31.8
31.8. Is it possible to scroll the text by dragging the scrollbar so that

the cursor stays in the original location?

The way Vim is designed, the cursor position has to be in a visible spot in
normal, visual, select and insert mode. This cannot be changed without

vim_faq.txt — 4475

modifying Vim. When the scrollbar is used, the cursor will be moved so that
it is always visible. Another approach to solving this problem is to use
the Vim marks. You can mark the current cursor position using ma. Then
scroll to a different part of the text and jump back to the old position
using `a. You can also try the following suggestion from the Vim Online
website:

http://vim.wikia.com/wiki/VimTip320

For more information, read:

mark-motions

faq-31.9
31.9. How do I get gvim to start browsing files in a particular directory

when using the `:browse` command?

You can set the 'browsedir' option to the default directory to use for the
`:browse` command.

:set browsedir='<your_dir>'

For more information, read:

'browsedir'

faq-31.10
31.10. For some questions, like when a file is changed outside of Vim, Vim

displays a GUI dialog box. How do I replace this GUI dialog box with
a console dialog box?

You can set the "c" flag in the 'guioptions' option to configure Vim to use
console dialogs instead of GUI dialogs:

:set guioptions+=c

For more information, read:

'guioptions'

faq-31.11
31.11. I am trying to use GUI Vim as the editor for my xxx application.

When the xxx application launches GUI Vim to edit a file, the
control immediately returns to the xxx application. How do I start
GUI Vim, so that the control returns to the xxx application only
after I quit Vim?

You have to start GUI Vim with the "-f" (foreground) command line option:

$ gvim -f

By default, GUI Vim will disconnect from the program that started Vim. With
the '-f' option, GUI Vim will not disconnect from the program that started
it.

For more information, read:

gui-fork
-f

vim_faq.txt — 4476

http://vim.wikia.com/wiki/VimTip320

faq-31.12
31.12. Why does the "Select Font" dialog doesn't show all the fonts

installed in my system?

Vim supports only fixed width (mono-spaced) fonts. Proportional fonts are
not supported. In the "Select Font" dialog, only fixed width fonts will be
displayed.

For more information, read:

font-sizes
'guifont'

faq-31.13
31.13. How do I use the mouse in Vim command-line mode?

You can set the "c" flag in the 'mouse' option to use mouse in the Vim
command-line mode:

:set mouse+=c

For more information, read:

mouse-using
gui-mouse
09.2

faq-31.14
31.14. When I use the middle mouse button to scroll text, it pastes the

last copied text. How do I disable this behavior?

You can map the middle mouse button to <Nop> to disable the middle mouse
button:

:map <MiddleMouse> <Nop>
:map! <MiddleMouse> <Nop>

For more information, read:

gui-mouse-mapping
<Nop>

faq-31.15
31.15. How do I change the location and size of a GUI Vim window?

You can use the `:winpos` command to change the Vim window position. To
change the size of the window, you can modify the 'lines' and 'columns'
options.

For example, the following commands will position the GUI Vim window at the
X,Y co-ordinates 50,50 and set the number of lines to 50 and the number of
columns to 80.

:winpos 50 50
:set lines=50
:set columns=80

The arguments to the `:winpos` command specify the pixel co-ordinates of the
Vim window. The 'lines' and 'columns' options specify the number of lines
and characters to use for the height and the width of the window

vim_faq.txt — 4477

respectively.

For more information, read:

31.4
:winpos
'lines'
'columns'
GUIEnter

faq-31.16
31.16. When splitting the Vim window vertically, Vim changes the position.

This is a known problem. When you are splitting the Vim window, Vim will
try to draw a scrollbar. Since this changes the gui window, Vim tries to
resize its main window to keep the same position and this will cause Vim
to move its position. This happens on Windows with a multi-window setup or
a window that was "snapped" to a certain position.

A workaournd to this problem is, to remove gui scrollbars, e.g.

:set guioptions-=L

===
faq-32

SECTION 32 - VIM ON UNIX

faq-32.1
32.1. I am running Vim in a xterm. When I press the CTRL-S key, Vim

freezes. What should I do now?

Many terminal emulators and real terminal drivers use the CTRL-S key to
stop the data from arriving so that you can stop a fast scrolling display
to look at it (also allowed older terminals to slow down the computer so
that it did not get buffer overflows). You can start the output again by
pressing the CTRL-Q key.

When you press the CTRL-S key, the terminal driver will stop sending the
output data. As a result of this, it will look like Vim is hung. If you
press the CTRL-Q key, then everything will be back to normal.

You can turn off the terminal driver flow control using the "stty" command:

$ stty -ixon -ixoff

or, you can change the keys used for the terminal flow control, using the
following commands:

$ stty stop <char>
$ stty start <char>

faq-32.2
32.2. I am seeing weird screen update problems in Vim. What can I do to

solve this screen/display update problems?

You have to use a proper terminal emulator like xterm with correct TERM
settings (TERM=xterm) and a correct terminfo/termcap file.
For more information, read:

vim_faq.txt — 4478

'term'

faq-32.3
32.3. I am using the terminal/console version of Vim. In insertmode, When I

press the backspace key, the character before the cursor is not
erased. How do I configure Vim to do this?

You have to make sure that Vim gets the correct keycode for the backpspace
key. You can try using the command:

:fixdel

Make sure the TERM environment variable is set to the correct terminal
name. You can try using the "stty" command:

$ stty erase ^H

where, you have to enter the ^H character by pressing the CTRL-V key and
then the CTRL-H key. Also check the value of your 'backspace' setting.

For more information, read:

:fixdel
Linux-backspace
NetBSD-backspace
'backspace'

faq-32.4
32.4. I am using Vim in a xterm. When I quit Vim, the screen contents are

restored back to the original contents. How do I disable this?

The xterm has a capability called "alternate screen". If this capability
is present, vim switches to that alternate screen upon startup and back on
exit, thus restoring the original screen contents. To disable this
feature, add the following line to your .vimrc file:

:set t_ti= t_te=

For more information, read:

'restorescreen'
xterm-screens

faq-32.5
32.5. When I start Vim, it takes quite a few seconds to start. How do I

minimize the startup time?

This may be related to Vim opening the X display for setting the xterm
title and using the X clipboard. Make sure the DISPLAY variable is set to
point to the correct host. Try using the command line:

$ vim -X

This will prevent Vim from opening the X display. With this command-line
option, the X clipboard cannot be used and also Vim will not be able to
change the xterm title.

You can also set the 'clipboard' option to

:set clipboard=exclude:.*

vim_faq.txt — 4479

This has the same effect as using the -X command-line argument.

For more information, read:

-X
'clipboard'

If the clipboard is not the cause of the slow startup, it might be a
plugin that slows down Vim. In that case, you can use the --startuptime
argument to debug this further. You can do:

$ vim --startuptime vim_startup.log

and the timing will be written to the file vim_startup.log. For even
more advanced profiling, you can use the profiling feature, that is
available in huge builds of Vim. To do so, call Vim like this:

$ vim --cmd 'profile start profile.log' \
--cmd 'profile func *' \
--cmd 'profile file *' \
-c 'profdel func *' \
-c 'profdel file *' \
-c 'qa!'

After running this, you will have a file profile.log in your current
directory. To further analyse this, open the file profile.log and run:

" Open profile.log file in vim first
:let timings=[]
:g/^SCRIPT/call add(timings, [getline('.')[len('SCRIPT '):], matchstr(getline(line('.')+1), '^Sourced \zs\d\+')]+map(getline(line('.')+2, line('.')+3), 'matchstr(v:val, ''\d\+\.\d\+$'')'))
:enew
:call setline('.', ['count total (s) self (s) script']+map(copy(timings), 'printf("%5u %9s %8s %s", v:val[1], v:val[2], v:val[3], v:val[0])'))

For more information, read:

--startuptime
profiling

faq-32.6
32.6. How can I make the cursor in gvim in unix stop blinking?

You can modify the 'guicursor' option, to stop the cursor from blinking.
For example:

:set guicursor=a:blinkon0

For more information, read:

'guicursor'

faq-32.7
32.7. How do I change the menu font on GTK Vim?

You can modify the ~/.gtkrc file to change the menu font on GTK Vim. For
example:

style "default"
{ font ="smooth09" }
class "*" style "default"

vim_faq.txt — 4480

The last line changes the font of all widgets.

For more information, read:

gui-gtk

faq-32.8
32.8. How do I prevent CTRL-Z from suspending Vim?

You can map CTRL-Z to prevent the suspending. Here are some suggestions:

- Make CTRL-Z do nothing:

:map <C-Z> <Nop>

- Make CTRL-Z start a shell:

:map <C-Z> :shell<CR>

- Make CTRL-Z give an error message:

:map <C-Z> :"suspending disabled<CR>

For the last example, the double quote is necessary in order to keep the
message on the status line.

faq-32.9
32.9. When I kill the xterm running Vim, the Vim process continues to run

and takes up a lot of CPU (99%) time. Why is this happening?

When Vim is built with support for Python interface, you will have this
problem. This is a known problem with the python thread library and Vim. To
solve this problem, use a Vim binary built without the Python interface.

For more information, read:

+python
python

faq-32.10
32.10. How do I get the Vim syntax highlighting to work in a Unix terminal?

The easiest and simplest way to get Vim syntax highlighting is to use the
GUI version of Vim (GVIM). To get syntax highlighting to work in the
console/terminal version of Vim, you have to run a terminal emulator (like
Xfree86 xterm or rxvt or dtterm) that supports color. Note that if a
terminal emulator supports changing the background and foreground colors,
that does not mean that it also supports ANSI escape sequences for changing
the color. You can download the latest version of Xfree86 xterm from
https://invisible-island.net/xterm/xterm.html
You can download the latest version of rxvt from https://rxvt.org
You have to install the terminfo/termcap file that supports colors for the
terminal emulator. Also, set the TERM environment variable to the correct
name of the term that supports colors.

You can use the colortest.vim script supplied with the Vim runtime
package to test the color setup. To use this script, follow these steps:

:e $VIMRUNTIME/syntax/colortest.vim

vim_faq.txt — 4481

https://invisible-island.net/xterm/xterm.html
https://rxvt.org

:source %

For more information, read:

06.2
terminal-colors
termcap-colors
startup-terminal
xterm-color
colortest.vim

===
faq-33

SECTION 33 - VIM ON MS-WINDOWS

faq-33.1
33.1. In MS-Windows, CTRL-V doesn't start the blockwise visual mode. What

happened?

The mswin.vim script provides key mappings and options to make Vim behave
like a MS-Windows application. One of the keys mapped is CTRL-V which is
used for pasting text in MS-Windows applications. This will disable the use
of CTRL-V to start the blockwise visual mode. The mswin.vim script maps
CTRL-Q for staring the blockwise visual mode. So you can use CTRL-Q instead
of CTRL-V.

For more information, read:

CTRL-V
CTRL-V-alternative
CTRL-Q
10.5

faq-33.2
33.2. When I press the CTRL-Y key, it acts like the CTRL-R key. How do I

configure Vim to treat CTRL-Y as CTRL-Y?

The mapping of the CTRL-Y key to the CTRL-R key is done by the mswin.vim
script. The mswin.vim script maps CTRL-Y to make Vim behave like a standard
MS-Windows application. This is explained in `:help CTRL-Y`. You can either
comment out the line in mswin.vim that maps the CTRL-Y key or you can
remove the line in your .vimrc file that sources the mswin.vim script.

faq-33.3
33.3. How do I start GUI Vim in a maximized window always?

You can use the `:simalt` command to maximize the Vim window. You can use
the GUIEnter autocmd to maximize the Vim window on startup:

autocmd GUIEnter * simalt ~x

For more information, read:

:simalt
GUIEnter
gui-win32-maximized

faq-33.4
33.4. After doing some editing operations, Vim freezes. The cursor becomes

an empty rectangle. I am not able enter any characters. What is

vim_faq.txt — 4482

happening?

Most probably, you used the mouse wheel to scroll the text in Vim. There is
a known problem in using intellimouse mouse wheel with Vim. To avoid this
problem, disable Universal scrolling support for Vim.

For more information, read:

intellimouse-wheel-problems

faq-33.5
33.5. I am using Windows XP, the display speed of maximized GVim is very

slow. What can I do to speed the display updates?

This may be due to the fact that you have enabled 'Smooth edges of screen
fonts' in the display properties. Try turning off font smoothing or try
changing the smoothing method to "Standard".

faq-33.6
33.6. What are the recommended settings for using Vim with cygwin?

You may want to set the following shell related Vim settings:

:set shellcmdflag=-c
:set shellquote=
:set shellslash " Use the forward slash for expansion.
:set shellxquote=\"
:set shell=d:\cygwin\bin\bash.exe " Use the bash shell
:set shellpipe=2>&1| tee
:set shellredir=>%s 2>&1

faq-33.7
33.7. I am trying to use GNU diff with Vim diff mode. When I run the diff

from command line, it works. When I try to use the diff with Vim it
doesn't work. What should I do now?

There is a problem with using GNU diff with Vim. You can try using the
GNU diff.exe built by Ron Aaron from the following link:

http://www.mossbayeng.com/~ron/vim/builds.html
(This page no longer exists.)

faq-33.8
33.8. Is it possible to use Vim as an external editor for MS-Windows

Outlook email client?

You can use the "cubiclevim" COM Add-In to use Vim as an external editor
for MS-Windows Outlook email client. Visit the following URL for more
information:

https://sourceforge.net/projects/cubiclevim/

Note, that currently this works only with MS-Office 2000 and XP.

Also the plugin OutlookVim might be worth a look:

https://www.vim.org/scripts/script.php?script_id=3087

faq-33.9
33.9. I am using Vim to edit HTML files. How do I start internet explorer

vim_faq.txt — 4483

http://www.mossbayeng.com/~ron/vim/builds.html
https://sourceforge.net/projects/cubiclevim/
https://www.vim.org/scripts/script.php?script_id=3087

with the current file to preview the HTML file?

You can use the following command:

:!start c:\progra~1\intern~1\iexplore.exe file://%:p<CR>

faq-33.10
33.10. I would like to use Vim with Microsoft Visual Studio. How do I do

this?

You have to download and use the OLE version of Vim (for example:
gvim61ole.zip). This file also contains instructions on how to use Vim with
Visual Studio.

For more information, read:

MSVisualStudio

faq-33.11
33.11. Where do I place the _vimrc and _gvimrc files?

You can place the _vimrc and _gvimrc files under the directory pointed to
by the VIM environment variable. If you are sharing this system with other
users, then you can place the files in a directory and set the HOME
environment variable to this directory.

For more information, read:

$HOME-use
_vimrc

faq-33.12
33.12. Every time I save a file, Vim warns about the file being changed

outside of Vim. Why?

If you get the following warning message, every time you save a file:

WARNING: The file has been changed since reading it!!!
Do you really want to write to it (y/n)?

then this problem could be related to a bug in MS-Windows on the day
daylight saving time starts. Vim remembers the timestamp of the file after
it was written. Just before the next write the timestamp is obtained again
to check if the file was changed outside of Vim. This works correctly,
except on the day daylight saving time starts.

This problem will go away the next day after the day the daylight saving
time starts.

For more information, read:

W11

===
faq-34

SECTION 34 - PRINTING

faq-34.1
34.1. How do I print a file along with line numbers for all the lines?

vim_faq.txt — 4484

You can set the 'printoptions' option and use the `:hardcopy` command to
print your file:

:set printoptions=number:y
:hardcopy

For more information, read:

'printoptions'
:hardcopy

faq-34.2
34.2. How do I print a file with the Vim syntax highlighting colors?

You can use the `:hardcopy` command to print a file with the Vim syntax
highlighting colors. You can also convert your file to a HTML file using
the 2html.vim script and print the HTML file.

For more information, read:

syntax-printing
2html.vim
:hardcopy
printing

===
faq-35

SECTION 35 - BUILDING VIM FROM SOURCE

faq-35.1
35.1. How do I build Vim from the sources on a Unix system?

For a Unix system, follow these steps to build Vim from the sources:

- Download the source and run-time files archive (vim-##.tar.bz2) from the
ftp://ftp.vim.org/pub/vim/unix directory.

- Extract the archive using the bzip2 and tar utilities using the command:

$ bunzip2 -c <filename> | tar -xf -

- Alternatively, download the source from the git repository:
https://github.com/vim/vim/releases/

- Alternatively, download the source from the mercurial repository:
https://bitbucket.org/vim-mirror/vim/downloads/

- Run the "make" command to configure and build Vim with the default
configuration.

- Run "make install" command to install Vim in the default directory.

To enable/disable various Vim features, before running the "make" command
you can run the "configure" command with different flags to include/exclude
the various Vim features. To list all the available options for the
"configure" command, use:

$ configure --help

For more information, read:

install

faq-35.2

vim_faq.txt — 4485

ftp://ftp.vim.org/pub/vim/unix
https://github.com/vim/vim/releases/
https://bitbucket.org/vim-mirror/vim/downloads/

35.2. How do I install Vim in my home directory or a directory other
than the default installation directory in Unix?

To install Vim in a directory other than the default installation
directory, you have to specify the directory using the --prefix option
while running the configure script.

$./configure --prefix=/users/xyz

You can enable/disable various Vim feature by supplying different arguments
to the configure script. For more information about all these options, run:

$./configure --help

For more information, read:

install-home
install

faq-35.3
35.3. How do I build Vim from the sources on a MS-Windows system?

For a MS-Windows system, Vim can be built using either the Visual C++
compiler or the Borland C++ compiler or the Ming GCC compiler or the cygwin
gcc compiler. Follow these steps to build Vim from the sources for
MS-Windows:

- Download the source (vim##src.zip), runtime (vim##rt.zip) and the
extra (vim-##-extra.tar.gz) archives from the
ftp://ftp.vim.org/pub/vim/pc directory.

- Extract the archives into a directory (for example, c:\vimsrc)
- Alternatively, download the source from the git repository:

https://github.com/vim/vim/releases/
- Alternatively, download the source from the mercurial repository:

https://bitbucket.org/vim-mirror/vim/downloads/
- Depending on the installed compiler, you can use the corresponding

makefile to build the Vim sources. For Visual C++ use the
Make_mvc.mak makefile, for borland C++ use the Make_bc5.mak makefile,
for ming GCC use the Make_ming.mak makefile, for cygwin gcc use the
Make_cyg.mak makefile.

Depending on whether you want to build the GUI version of Vim or the
console version of Vim, you have to pass different arguments to the
makefiles. After successfully building the sources, you can copy the
vim.exe or gvim.exe file to the desired directory along with the files from
the runtime archive.

For more information, read:

install

faq-35.4
35.4. The Vim help, syntax, indent files are missing from my Vim

installation. How do I install these files?

The Vim help, syntax, indent and other runtime files are part of the Vim
runtime package. You need to download and install the Vim runtime package.
For example, for MS-Windows, the name of the Vim 6.1 runtime package is
vim61rt.zip.

For more information, read:

vim_faq.txt — 4486

ftp://ftp.vim.org/pub/vim/pc
https://github.com/vim/vim/releases/
https://bitbucket.org/vim-mirror/vim/downloads/

install

faq-35.5
35.5. I have built Vim from the source and installed the Vim package using

"make install". Do I need to keep the Vim source directory?

No. Once you have built and installed Vim in some directory other than the
original source directory (for example, /usr/bin or /usr/local/bin), then
you can remove the source directory.

faq-35.6
35.6. How do I determine the Vim features which are enabled at compile

time?

You can use the `:version` command to determine the Vim features that are
enabled at compile time. The features that are enabled will be prefixed
with a "+". The features that are not enabled will be prefixed with a "-".

If you want to test for a feature in a script, you can use the has()
function:

if has("menu")
" Set up some menus

endif

For more information, read:

:version
+feature-list
has()

faq-35.7
35.7. Can I build Vim without the GUI support?

Yes. You can build Vim by optionally enabling/disabling many of the
features including GUI.

For more information, read:

install

faq-35.8
35.8. When building Vim on a Unix system, I am getting "undefined reference

to term_set_winsize" error. How do I resolve this error?

You will get this error when the build process is not able to locate the
termlib, termcap or ncurses library. You have to install the ncurses-dev
package to resolve this error.

faq-35.9
35.9. Vim configure keeps complaining about the lack of gtk-config while

trying to use GTK 2.03. This is correct, since in GTK 2 they moved to
using the generic pkg-config. I can get pkg-config to list the
various includes and libs for gtk, but for some reason the configure
script still isn't picking this up.

Use the following shell script named gtk-config:

#!/bin/sh

vim_faq.txt — 4487

pkg-config gtk+-2.0 $1 $2

faq-35.10
35.10. I did successfully download the sources and compiled Vim on

Unix. But feature ... still does not work. What is wrong and
how can I fix it?

You should first check, that you are actually running your self compiled
Vim and not the system's provided version. So first check your $PATH
setting.

Depending on your compile options, some features might not be included in
your build of Vim. You can use the `:version` command to determine the Vim
features that are enabled at compile time. The features that are enabled
will be prefixed with a "+". The features that are not enabled will be
prefixed with a "-".

The easiest way to include all features is to build the huge version. To do
this, you have to specify the --with-features option while running the
configure script:

$./configure --with-features=huge

Nevertheless, a feature could still be disabled at compile time, if the
configure script can't find the required libraries for those features (e.g.
for clipboard integration, your Vim needs to be linked against the X11
development libraries).

There are several ways to install the required libraries:

1) On a Debian based distribution, you can use the package manager "apt"
to install all required dependencies. As superuser, run the command:

$ apt-get build-dep vim-gtk

This makes sure all required libraries needed to compile the vim-gtk
package will be installed. (This requires, that your sources list
contains deb-src entries. See your distribution manual on how to
enable this, if the above command did not work.)

2) In openSUSE you can use the package manager "zypper" to install all
required libraries. This requires, that there is a source version of
the package installable from a configured repository (which by
default is not the case). Use:

$ zypper search -t srcpackage vim

to find out, whether or not there exists a source version in the
repository. If there is none, you'll need to add a source repository.
For openSUSE 11.2 you could use, e.g.

$ zypper ar
http://download.opensuse.org/source/distribution/11.2/repo/oss/src-11.2

(one line)

Once you have a source version available in your repositories, use
this command to install all needed requirements:

$ zypper source-install --build-deps-only vim

vim_faq.txt — 4488

http://download.opensuse.org/source/distribution/11.2/repo/oss/src-11.2

3) On a Fedora/RedHat based system, you can use

$ yum-builddep vim-enhanced

4) Run configure with your options and watch for missing libraries:

$./configure --with-features=huge 2>&1 |tee logfile

This will run configure and record the output into the file "logfile".
You need to check the logfile for missing dependencies. Consider this
output:

checking --disable-gtktest argument... gtk test enabled
checking for pkg-config... /usr/bin/pkg-config
checking for GTK - version >= 2.2.0... no

Here you can see, that the gtk libraries are missing and therefore
no GTK gui version can't be build. So you need to install the GTK
library in your system, with your package manager or by compiling it
yourself. Then run the configure script again and check, that it
finds the library.

In theory, those provided dependencies by your distribution might still
lack some libraries, that are needed for features, that simply are not
enabled in your distribution and therefore those commands in 1-3 won't
install it. At the very least, this provides a jumping point and you need
to track down the required missing packages using method 4 from above. But
usually, this works good enough for most people and you won't have to
bother with the fourth method.

For more information, read:

:version
+feature-list

===
faq-36

SECTION 36 - VARIOUS

faq-36.1
36.1. How do I edit binary files with Vim?

You can set the following options to edit binary files in Vim:

:set binary
:set display=uhex

You can also use the "-b" command-line option to edit a binary file:

$ vim -b <binary_file_name>

You can also use the xxd utility (part of the Vim distribution) to edit
binary files.

For more information, read:

23.4
edit-binary
hex-editing

vim_faq.txt — 4489

-b
'binary'
'endofline'
'display'

faq-36.2
36.2. How do I disable the visual error flash and the error beep?

You can disable both the visual error flash and the error beep using the
following command:

:set visualbell t_vb=

For more information, read:

'visualbell'
'errorbells'
t_vb

faq-36.3
36.3. How do I display the ascii value of a character displayed in a

buffer?

You can use the "ga" command to display the ascii value of a displayed
character.

For more information, read:

ga
:ascii

faq-36.4
36.4. Can I use zero as a count for a Vim command?

You cannot use zero as a count for a Vim command, as "0" is a command on
its own, moving to the first column of the line.

For more information, read:

0
count

faq-36.5
36.5. How do I disable the Vim welcome screen?

You can disable the Vim welcome screen, by adding the "I" flag to the
'shortmess' option:

:set shortmess+=I

For more information, read:

:intro
'shortmess'

faq-36.6
36.6. How do I avoid the "hit enter to continue" prompt?

Vim will prompt you with the "hit enter to continue" prompt, if there are
some messages on the screen for you to read and the screen is about to be

vim_faq.txt — 4490

redrawn. You can add the "T" flag to the 'shortmess' option to truncate
all messages. This will help in avoiding the hit-enter prompt:

:set shortmess+=T

You can also increase the command height by setting the 'cmdheight' option:

:set cmdheight=2

For more information, read:

hit-enter
avoid-hit-enter
'shortmess'
'cmdheight'

faq-36.7
36.7. How do I invoke Vim from command line to run a group of commands on a

group of files?

There are several ways to invoke Vim from command line to run a group of
commands on a group of files. You can use a set of "-c" command line
options to specify a group of commands:

$ vim -c "<ex_command_1>" -c "<ex_command_2>" *.txt

Each of the ex-command specified with the "-c" command line option is
executed one by one sequentially. You can also use a single "-c" command
line option and the "|" character to separate the ex commands:

$ vim -c "<ex_command_1> | <ex_command_2>" *.txt

In the above command, if an ex command fails, then all the remaining ex
commands will not be executed.

For example, to replace "ABC" with "DEF" in a file from the command-line,
you can use the following command:

$ vim -c "%s/ABC/DEF/ge | update" myfile.txt

To replace "ABC" with "DEF" in multiple files from the command-line,
you can use the following command:

$ vim -c "argdo %s/ABC/DEF/ge | update" *.txt

You can store the group of commands into a file and use the "-s" command
line option to run the commands on a set of files. For example, if the
group of commands are stored in the file mycmds.txt, then you can use the
following command:

$ vim -s mycmds.txt *.pl

For more information, read:

-c
-s

faq-36.8
36.8. How do I use a normal mode command from insert mode without leaving

the insert mode?

vim_faq.txt — 4491

You can use a normal command from insert mode, without leaving the insert
mode, by first pressing the CTRL-O key and then follow that with a single
normal mode command.

To execute more than one normal mode command, press the CTRL-L key,
followed by any number of normal mode commands and then press <Esc> to get
back to the insert mode. (This only works, when the 'insertmode' option
is set).

For more information, read:

i_CTRL-O
i_CTRL-L

faq-36.9
36.9. How do I start Vim in insert mode?

You can start Vim in insert mode using the `:startinsert` ex command.

$ vim +startinsert myfile.txt

The above command will open the file "myfile.txt" and start insert mode
with the cursor in front of the first character on the first line. To open
the file and start appending after the last character on the last line,
you can use the following command:

$ vim + +startinsert! myfile.txt

For more information, read:

:startinsert

faq-36.10
36.10. How do I use Copy and Paste with Vim?

You should first check the output of the `:version` command and make
sure that +xterm-clipboard is present.

When running Vim in an xterm, you can either let Vim control the mouse
or let xterm control the mouse. This is configured by the 'mouse' option.

If the 'mouse' option is not set (or set to the default value), then Vim will
not control the mouse. You cannot move the Vim text cursor using the
mouse. When you select some text using the mouse, xterm will copy
it to the X11 cut buffer. When you press both the mouse buttons,
xterm will paste the text from the cut buffer.

If the 'mouse' option is set to "a" or some other value, then Vim controls
the mouse. The mode (normal or insert or visual, etc) in which Vim
controls the mouse is configured by the 'mouse' option. You can move
the Vim text cursor using the mouse. When you select some text,
the 'clipboard' option setting is used to determine whether to transfer
the selected text to the clipboard or not. The default setting is to
transfer the selected text to the clipboard. If you want to use the
xterm selection mechanism in this mode, then you can press the
<Shift> key. If you press <Shift> key when selecting text using the
mouse, then Vim doesn't control the mouse and xterm controls the
mouse.

vim_faq.txt — 4492

In the GUI mode, Copy and Paste should just work, depending on the 'mouse'
setting. For more information, read:

'clipboard'
x11-selection
clipboard
'go-a'
'mouse'
xterm-copy-paste
09.3

faq-36.11
36.11. Why shouldn't I modify the files in the system runtime directory?

Just be careful about modifying files under $VIMRUNTIME, which usually
is /usr/share/vim/vimXX (Unix) or C:\Program Files\vim\vimXX
(Windows) and XX being the version for which it applies, e.g. 73 for Vim
7.3.

One should generally avoid modifying those files because they may be
replaced during an upgrade of your Vim installation and your changes
will be lost. Also, if you upgrade to a new major or minor revision of
Vim (e.g., from 7.3 to 7.4), the new version of Vim will use a different
$VIMRUNTIME directory and while your changes won't be lost, they will be
ignored.

Consequently, take a look at

filetypes

for an explanation of several ways to modify Vim's response to
different filetypes and where to put those modifications so that
they will not be overwritten.

===
faq-37

SECTION 37 - UNICODE
Author: Tony Mechelynck <antoine.mechelynck AT belgacom.net>

faq-37.1
37.1. Is it possible to create Unicode files using Vim?

Yes. It may be more or less complicated depending on the keyboard and fonts
available to you, but it is always possible to encode any possible Unicode
codepoint (and some illegal ones) into a file. To create a Unicode file
using Vim, you should have compiled Vim with the "+multi_byte" compile-time
option. You can get more information about Unicode from the following
sites:

http://www.unicode.org
https://www.cl.cam.ac.uk/~mgk25/unicode.html

For more information, read:

multibyte
usr_45.txt

faq-37.2
37.2. Which Vim settings are particularly important for editing Unicode

files?

vim_faq.txt — 4493

http://www.unicode.org
https://www.cl.cam.ac.uk/~mgk25/unicode.html

The most important are the various "encoding" options, i.e., 'encoding',
'fileencoding', 'fileencodings' and 'termencoding'. The boolean option
'bomb' is also significant.

For more information, read:

'encoding'
'fileencoding'
'fileencodings'
'termencoding'
'bomb'

faq-37.3
37.3. What is the 'encoding' option?

Basically, the 'encoding' option defines how Vim will represent your data
internally. However, all Unicode encodings are represented internally as
utf-8 and converted (if necessary) when reading and writing.

For more information, read:

'encoding'

faq-37.4
37.4. How does Vim name the various Unicode encodings?

Utf-8 is called utf-8 or utf8; utf-16 is called ucs-2 or ucs2; utf-32 is
called ucs-4 or ucs4. Also, you may specify endianness (except for utf-8
which does not vary for endianness) by appending le for little-endian or be
for big-endian. If you create a file with an encoding of ucs-2 or ucs-4
without specifying endianness, Vim will use what is typical of your
machine.

For more information, read:

encoding-names
encoding-values
encoding-table

faq-37.5
37.5. How does Vim specify the presence or absence of a byte-order mark?

When reading a file, if the 'fileencodings' option includes "ucs-bom", Vim
will check for a byte-order mark. When writing a file, if the 'bomb' option
is set, Vim will write a byte-order mark on files whose encoding warrants
it.

For more information, read:

'fileencodings'
'bomb'

faq-37.6
37.6. What is the 'fileencoding' option?

The 'fileencoding' option defines the particular encoding which Vim will
use to write a file. If empty, then the value of the 'encoding' option is
the default.

vim_faq.txt — 4494

For more information, read:

'fileencoding'

faq-37.7
37.7. What is the 'fileencodings' option?

The 'fileencodings' option defines the heuristics used by Vim when opening
an existing file. It is a comma separated list of encodings. A special
name, "ucs-bom" is used to indicate that Vim should check for the presence
of a byte-order mark; however, it will not be recognised if it comes after
"utf-8". Normally, "ucs-bom" (if present) should be first in the list.

When Vim opens a file, it checks it against the encodings listed in
'fileencodings'. The first one that matches is used. If there is no match,
then Vim sets 'fileencoding' to the null string, i.e., the value of
'encoding' will be used.

For more information, read:

'fileencodings'
'encoding'

faq-37.8
37.8. What is the 'termencoding' option?

The 'termencoding' option defines how your keyboard encodes the data you
type. If empty, Vim assumes that it has the same value as 'encoding'.
Usually it should be set to something that matches your locale.

For more information, read:

'termencoding'
locale

faq-37.9
37.9. What is the 'bomb' option?

When reading a file with "ucs-bom" present in the 'fileencodings' option,
Vim will set the 'bomb' option on or off depending on the presence or
absence of a byte-order mark at the start of the file. When writing, Vim
will write a byte-order mark if the 'bomb' option is set. You may set or
unset it manually do make Vim write, or not write, the b.o.m.

For more information, read:

'bomb'

faq-37.10
37.10. Where can I find an example of a typical use of all these options?

There is a "tip", with explains them in different words with an example, at

http://vim.wikia.com/wiki/VimTip246

faq-37.11
37.11. How can I insert Unicode characters into a file using Vim?

Several methods are available:

vim_faq.txt — 4495

http://vim.wikia.com/wiki/VimTip246

- Characters present on your keyboard can be typed in the usual way, even
those which require a "dead-key" prefix, like (for instance) the
circumflex on French keyboards.

- Characters for which a digraph is defined can be typed as two characters
prefixed by CTRL-K.

- If you have set the 'digraph' option, you can enter the characters for
which a digraph is defined as <char1><BS><char2>.

- Any character can be entered by using a CTRL-V prefix (or CTRL-Q if
CTRL-V is remapped to paste from the clipboard).

For more information, read:

digraphs
'digraph'
i_CTRL-V_digit

faq-37.12
37.12. How can I know which digraphs are defined and for which characters?

First set the 'encoding' option properly (for instance, to utf-8), then use
the `:digraphs` command to list the currently defined digraphs.

Alternatively, the help file contains the complete set of all digraphs.
So you can easily search that list there.

For more information, read:

:digraphs
'encoding'
digraph-table

vim_faq.txt — 4496

! !! # #{} $ $HOME $HOME-use $HOME-windows $MYGVIMRC $MYVIMRC $VIM $VIM-use
$VIMRUNTIME $VIM_POSIX $quote % %:. %:8 %:S %:e %:gs %:h %:p %:r %:s %:t %:~
& ' '' '(') '. '0 '< '> 'A '['] '^ 'a 'acd' 'ai' 'akm' 'al' 'aleph'
'allowrevins' 'altkeymap' 'ambiwidth' 'ambw' 'anti' 'antialias' 'ap' 'ar'
'arab' 'arabic' 'arabicshape' 'ari' 'arshape' 'as' 'asd' 'autochdir'
'autoindent' 'autoprint' 'autoread' 'autosave' 'autoshelldir' 'autowrite'
'autowriteall' 'aw' 'awa' 'b:context_ignore_makefile' 'b:context_include'
'b:mp_metafun' 'background' 'backspace' 'backup' 'backupcopy' 'backupdir'
'backupext' 'backupskip' 'balloondelay' 'ballooneval' 'balloonevalterm'
'balloonexpr' 'bdir' 'bdlay' 'beautify' 'belloff' 'beval' 'bevalterm' 'bex'
'bexpr' 'bf' 'bg' 'bh' 'bin' 'binary' 'biosk' 'bioskey' 'bk' 'bkc' 'bl' 'bo'
'bomb' 'breakat' 'breakindent' 'breakindentopt' 'bri' 'briopt' 'brk'
'browsedir' 'bs' 'bsdir' 'bsk' 'bt' 'bufhidden' 'buflisted' 'buftype'
'casemap' 'cb' 'cc' 'ccv' 'cd' 'cdh' 'cdhome' 'cdpath' 'cedit' 'cf' 'cfu'
'ch' 'character' 'charconvert' 'ci' 'cin' 'cindent' 'cink' 'cinkeys' 'cino'
'cinoptions' 'cinscopedecls' 'cinsd' 'cinw' 'cinwords' 'clipboard' 'cm'
'cmdheight' 'cmdwinheight' 'cmp' 'cms' 'co' 'cocu' 'cole' 'colorcolumn'
'columns' 'com' 'comments' 'commentstring' 'compatible' 'complete'
'completefunc' 'completeopt' 'completepopup' 'completeslash' 'concealcursor'
'conceallevel' 'confirm' 'consk' 'conskey' 'copyindent' 'cot' 'cp' 'cpo'
'cpoptions' 'cpp' 'cpt' 'crb' 'cryptmethod' 'cscopepathcomp' 'cscopeprg'
'cscopequickfix' 'cscoperelative' 'cscopetag' 'cscopetagorder'
'cscopeverbose' 'csl' 'cspc' 'csprg' 'csqf' 'csre' 'cst' 'csto' 'csverb'
'cuc' 'cul' 'culopt' 'cursorbind' 'cursorcolumn' 'cursorline' 'cursorlineopt'
'cwh' 'debug' 'deco' 'def' 'define' 'delcombine' 'dex' 'dg' 'dict'
'dictionary' 'diff' 'diffexpr' 'diffopt' 'digraph' 'dip' 'dir' 'directory'
'display' 'dy' 'ea' 'ead' 'eadirection' 'eb' 'ed' 'edcompatible' 'ef' 'efm'
'ei' 'ek' 'emo' 'emoji' 'enc' 'encoding' 'endoffile' 'endofline' 'eof' 'eol'
'ep' 'equalalways' 'equalprg' 'errorbells' 'errorfile' 'errorformat'
'esckeys' 'et' 'eventignore' 'ex' 'expandtab' 'exrc' 'fcl' 'fcs' 'fdc' 'fde'
'fdi' 'fdl' 'fdls' 'fdm' 'fdn' 'fdo' 'fdt' 'fe' 'fen' 'fenc' 'fencs' 'fex'
'ff' 'ffs' 'fic' 'fileencoding' 'fileencodings' 'fileformat' 'fileformats'
'fileignorecase' 'filetype' 'fillchars' 'fixendofline' 'fixeol' 'fk' 'fkmap'
'fl' 'flash' 'flp' 'fml' 'fmr' 'fo' 'foldclose' 'foldcolumn' 'foldenable'
'foldexpr' 'foldignore' 'foldlevel' 'foldlevelstart' 'foldmarker'
'foldmethod' 'foldminlines' 'foldnestmax' 'foldopen' 'foldtext' 'formatexpr'
'formatlistpat' 'formatoptions' 'formatprg' 'fp' 'fs' 'fsync' 'ft'
'g:context_extra_options' 'g:context_ignore_makefile' 'g:context_include'
'g:mf_other_macros' 'g:mf_plain_macros' 'g:mf_plain_modes' 'g:mp_close_tag'
'g:mp_metafun' 'g:mp_mfplain_macros' 'g:mp_open_tag' 'g:mp_other_macros'
'g:mp_plain_macros' 'g:no_context_maps' 'g:no_mf_maps' 'g:no_mp_maps' 'gcr'
'gd' 'gdefault' 'gfm' 'gfn' 'gfs' 'gfw' 'ghr' 'gli' 'go' 'go-!' 'go-A' 'go-F'
'go-L' 'go-M' 'go-P' 'go-R' 'go-T' 'go-a' 'go-b' 'go-c' 'go-d' 'go-e' 'go-f'
'go-g' 'go-h' 'go-i' 'go-k' 'go-l' 'go-m' 'go-p' 'go-r' 'go-t' 'go-v' 'gp'
'gr' 'graphic' 'grepformat' 'grepprg' 'gtl' 'gtt' 'guicursor' 'guifont'
'guifontset' 'guifontwide' 'guiheadroom' 'guiligatures' 'guioptions' 'guipty'
'guitablabel' 'guitabtooltip' 'hardtabs' 'helpfile' 'helpheight' 'helplang'
'hf' 'hh' 'hi' 'hid' 'hidden' 'highlight' 'history' 'hk' 'hkmap' 'hkmapp'
'hkp' 'hl' 'hlg' 'hls' 'hlsearch' 'ht' 'ic' 'icon' 'iconstring' 'ignorecase'
'im' 'imactivatefunc' 'imactivatekey' 'imaf' 'imak' 'imc' 'imcmdline' 'imd'
'imdisable' 'imi' 'iminsert' 'ims' 'imsearch' 'imsf' 'imst' 'imstatusfunc'
'imstyle' 'inc' 'include' 'includeexpr' 'incsearch' 'inde' 'indentexpr'
'indentkeys' 'indk' 'inex' 'inf' 'infercase' 'insertmode' 'is' 'isf'
'isfname' 'isi' 'isident' 'isk' 'iskeyword' 'isp' 'isprint' 'joinspaces'
'jop' 'js' 'jumpoptions' 'key' 'keymap' 'keymodel' 'keyprotocol' 'keywordprg'
'km' 'kmp' 'kp' 'kpc' 'langmap' 'langmenu' 'langnoremap' 'langremap'
'laststatus' 'lazyredraw' 'lbr' 'lcs' 'linebreak' 'lines' 'linespace' 'lisp'
'lispoptions' 'lispwords' 'list' 'listchars' 'lm' 'lmap' 'lnr' 'loadplugins'
'lop' 'lpl' 'lrm' 'ls' 'lsp' 'luadll' 'lw' 'lz' 'ma' 'macatsui' 'magic'
'makeef' 'makeencoding' 'makeprg' 'mat' 'matchpairs' 'matchtime' 'maxcombine'

tags.txt — 4497

'maxfuncdepth' 'maxmapdepth' 'maxmem' 'maxmempattern' 'maxmemtot' 'mco' 'mef'
'menc' 'menuitems' 'mesg' 'mfd' 'mh' 'mis' 'mkspellmem' 'ml' 'mle' 'mls' 'mm'
'mmd' 'mmp' 'mmt' 'mod' 'modeline' 'modelineexpr' 'modelines' 'modifiable'
'modified' 'more' 'mouse' 'mousef' 'mousefocus' 'mousehide' 'mousem'
'mousemev' 'mousemodel' 'mousemoveevent' 'mouses' 'mouseshape' 'mouset'
'mousetime' 'mp' 'mps' 'msm' 'mzq' 'mzquantum' 'mzschemedll' 'mzschemegcdll'
'nf' 'noacd' 'noai' 'noakm' 'noallowrevins' 'noaltkeymap' 'noanti'
'noantialias' 'noar' 'noarab' 'noarabic' 'noarabicshape' 'noari' 'noarshape'
'noas' 'noasd' 'noautochdir' 'noautoindent' 'noautoread' 'noautosave'
'noautoshelldir' 'noautowrite' 'noautowriteall' 'noaw' 'noawa' 'nobackup'
'noballooneval' 'noballoonevalterm' 'nobeval' 'nobevalterm' 'nobin'
'nobinary' 'nobiosk' 'nobioskey' 'nobk' 'nobl' 'nobomb' 'nobreakindent'
'nobri' 'nobuflisted' 'nocdh' 'nocdhome' 'nocf' 'noci' 'nocin' 'nocindent'
'nocompatible' 'noconfirm' 'noconsk' 'noconskey' 'nocopyindent' 'nocp'
'nocrb' 'nocscoperelative' 'nocscopetag' 'nocscopeverbose' 'nocsre' 'nocst'
'nocsverb' 'nocuc' 'nocul' 'nocursorbind' 'nocursorcolumn' 'nocursorline'
'nodeco' 'nodelcombine' 'nodg' 'nodiff' 'nodigraph' 'noea' 'noeb' 'noed'
'noedcompatible' 'noek' 'noemo' 'noemoji' 'noendoffile' 'noendofline' 'noeof'
'noeol' 'noequalalways' 'noerrorbells' 'noesckeys' 'noet' 'noex'
'noexpandtab' 'noexrc' 'nofen' 'nofic' 'nofileignorecase' 'nofixendofline'
'nofixeol' 'nofk' 'nofkmap' 'nofoldenable' 'nofs' 'nofsync' 'nogd'
'nogdefault' 'noguipty' 'nohid' 'nohidden' 'nohk' 'nohkmap' 'nohkmapp'
'nohkp' 'nohls' 'nohlsearch' 'noic' 'noicon' 'noignorecase' 'noim' 'noimc'
'noimcmdline' 'noimd' 'noimdisable' 'noincsearch' 'noinf' 'noinfercase'
'noinsertmode' 'nois' 'nojoinspaces' 'nojs' 'nolangnoremap' 'nolangremap'
'nolazyredraw' 'nolbr' 'nolinebreak' 'nolisp' 'nolist' 'nolnr'
'noloadplugins' 'nolpl' 'nolrm' 'nolz' 'noma' 'nomacatsui' 'nomagic' 'nomh'
'noml' 'nomle' 'nomod' 'nomodeline' 'nomodelineexpr' 'nomodifiable'
'nomodified' 'nomore' 'nomousef' 'nomousefocus' 'nomousehide' 'nomousemev'
'nomousemoveevent' 'nonu' 'nonumber' 'noodev' 'noopendevice' 'nopaste' 'nopi'
'nopreserveindent' 'nopreviewwindow' 'noprompt' 'nopvw' 'noreadonly'
'norelativenumber' 'noremap' 'norestorescreen' 'norevins' 'nori'
'norightleft' 'norl' 'nornu' 'noro' 'nors' 'noru' 'noruler' 'nosb' 'nosc'
'noscb' 'noscf' 'noscrollbind' 'noscrollfocus' 'noscs' 'nosecure' 'nosft'
'noshellslash' 'noshelltemp' 'noshiftround' 'noshortname' 'noshowcmd'
'noshowfulltag' 'noshowmatch' 'noshowmode' 'nosi' 'nosm' 'nosmartcase'
'nosmartindent' 'nosmarttab' 'nosmd' 'nosmoothscroll' 'nosms' 'nosn' 'nosol'
'nospell' 'nosplitbelow' 'nosplitright' 'nospr' 'nosr' 'nossl' 'nosta'
'nostartofline' 'nostmp' 'noswapfile' 'noswf' 'nota' 'notagbsearch'
'notagrelative' 'notagstack' 'notbi' 'notbidi' 'notbs' 'notermbidi'
'notermguicolors' 'noterse' 'notextauto' 'notextmode' 'notf' 'notgc' 'notgst'
'notildeop' 'notimeout' 'notitle' 'noto' 'notop' 'notr' 'nottimeout'
'nottybuiltin' 'nottyfast' 'notx' 'noudf' 'noundofile' 'novb' 'novice'
'novisualbell' 'nowa' 'nowarn' 'nowb' 'noweirdinvert' 'nowfh' 'nowfw' 'nowic'
'nowildignorecase' 'nowildmenu' 'nowinfixheight' 'nowinfixwidth' 'nowiv'
'nowmnu' 'nowrap' 'nowrapscan' 'nowrite' 'nowriteany' 'nowritebackup' 'nows'
'noxtermcodes' 'nrformats' 'nu' 'number' 'numberwidth' 'nuw' 'odev' 'oft'
'ofu' 'omnifunc' 'op' 'open' 'opendevice' 'operatorfunc' 'opfunc' 'optimize'
'option' 'osfiletype' 'pa' 'packpath' 'para' 'paragraphs' 'paste'
'pastetoggle' 'patchexpr' 'patchmode' 'path' 'pdev' 'penc' 'perldll' 'pex'
'pexpr' 'pfn' 'ph' 'pheader' 'pi' 'pm' 'pmbcs' 'pmbfn' 'popt' 'pp'
'preserveindent' 'previewheight' 'previewpopup' 'previewwindow' 'printdevice'
'printencoding' 'printexpr' 'printfont' 'printheader' 'printmbcharset'
'printmbfont' 'printoptions' 'prompt' 'pt' 'pumheight' 'pumwidth' 'pvh' 'pvp'
'pvw' 'pw' 'pythondll' 'pythonhome' 'pythonthreedll' 'pythonthreehome' 'pyx'
'pyxversion' 'qe' 'qftf' 'quickfixtextfunc' 'quote 'quoteescape' 'rdt' 're'
'readonly' 'redraw' 'redrawtime' 'regexpengine' 'relativenumber' 'remap'
'renderoptions' 'report' 'restorescreen' 'revins' 'ri' 'rightleft'
'rightleftcmd' 'rl' 'rlc' 'rnu' 'ro' 'rop' 'rs' 'rtp' 'ru' 'rubydll' 'ruf'
'ruler' 'rulerformat' 'runtimepath' 'sb' 'sbo' 'sbr' 'sc' 'scb' 'scf' 'scl'

tags.txt — 4498

'scr' 'scroll' 'scrollbind' 'scrollfocus' 'scrolljump' 'scrolloff'
'scrollopt' 'scs' 'sect' 'sections' 'secure' 'sel' 'selection' 'selectmode'
'sessionoptions' 'sft' 'sh' 'shcf' 'shell' 'shellcmdflag' 'shellpipe'
'shellquote' 'shellredir' 'shellslash' 'shelltemp' 'shelltype' 'shellxescape'
'shellxquote' 'shiftround' 'shiftwidth' 'shm' 'shortmess' 'shortname'
'showbreak' 'showcmd' 'showcmdloc' 'showfulltag' 'showmatch' 'showmode'
'showtabline' 'shq' 'si' 'sidescroll' 'sidescrolloff' 'signcolumn' 'siso'
'sj' 'slm' 'sloc' 'slow' 'slowopen' 'sm' 'smartcase' 'smartindent' 'smarttab'
'smc' 'smd' 'smoothscroll' 'sms' 'sn' 'so' 'softtabstop' 'sol' 'sourceany'
'sp' 'spc' 'spell' 'spellcapcheck' 'spellfile' 'spelllang' 'spelloptions'
'spellsuggest' 'spf' 'spk' 'spl' 'splitbelow' 'splitkeep' 'splitright' 'spo'
'spr' 'sps' 'sr' 'srr' 'ss' 'ssl' 'ssop' 'st' 'sta' 'stal' 'startofline'
'statusline' 'stl' 'stmp' 'sts' 'su' 'sua' 'suffixes' 'suffixesadd' 'sw'
'swapfile' 'swapsync' 'swb' 'swf' 'switchbuf' 'sws' 'sxe' 'sxq' 'syn'
'synmaxcol' 'syntax' 't_#2' 't_#4' 't_%1' 't_%i' 't_&8' 't_8b' 't_8f' 't_8u'
't_@7' 't_AB' 't_AF' 't_AL' 't_AU' 't_BD' 't_BE' 't_CF' 't_CS' 't_CV' 't_Ce'
't_Co' 't_Cs' 't_DL' 't_Ds' 't_EC' 't_EI' 't_F1' 't_F2' 't_F3' 't_F4' 't_F5'
't_F6' 't_F7' 't_F8' 't_F9' 't_GP' 't_IE' 't_IS' 't_K1' 't_K3' 't_K4' 't_K5'
't_K6' 't_K7' 't_K8' 't_K9' 't_KA' 't_KB' 't_KC' 't_KD' 't_KE' 't_KF' 't_KG'
't_KH' 't_KI' 't_KJ' 't_KK' 't_KL' 't_PE' 't_PS' 't_RB' 't_RC' 't_RF' 't_RI'
't_RK' 't_RS' 't_RT' 't_RV' 't_Ri' 't_SC' 't_SH' 't_SI' 't_SR' 't_ST' 't_Sb'
't_Sf' 't_Si' 't_TE' 't_TI' 't_Te' 't_Ts' 't_Us' 't_VS' 't_WP' 't_WS' 't_XM'
't_ZH' 't_ZR' 't_al' 't_bc' 't_cd' 't_ce' 't_cl' 't_cm' 't_cs' 't_da' 't_db'
't_dl' 't_ds' 't_fd' 't_fe' 't_fs' 't_k1' 't_k2' 't_k3' 't_k4' 't_k5' 't_k6'
't_k7' 't_k8' 't_k9' 't_k;' 't_kB' 't_kD' 't_kI' 't_kN' 't_kP' 't_kb' 't_kd'
't_ke' 't_kh' 't_kl' 't_kr' 't_ks' 't_ku' 't_le' 't_mb' 't_md' 't_me' 't_mr'
't_ms' 't_nd' 't_op' 't_se' 't_so' 't_sr' 't_star7' 't_te' 't_ti' 't_ts'
't_u7' 't_ue' 't_us' 't_ut' 't_vb' 't_ve' 't_vi' 't_vs' 't_xn' 't_xs' 'ta'
'tabline' 'tabpagemax' 'tabstop' 'tag' 'tagbsearch' 'tagcase' 'tagfunc'
'taglength' 'tagrelative' 'tags' 'tagstack' 'tal' 'tb' 'tbi' 'tbidi' 'tbis'
'tbs' 'tc' 'tcldll' 'tenc' 'term' 'termbidi' 'termencoding' 'termguicolors'
'termwinkey' 'termwinscroll' 'termwinsize' 'termwintype' 'terse' 'textauto'
'textmode' 'textwidth' 'tf' 'tfu' 'tgc' 'tgst' 'thesaurus' 'thesaurusfunc'
'tildeop' 'timeout' 'timeoutlen' 'title' 'titlelen' 'titleold' 'titlestring'
'tl' 'tm' 'to' 'toolbar' 'toolbariconsize' 'top' 'tpm' 'tr' 'ts' 'tsl' 'tsr'
'tsrfu' 'ttimeout' 'ttimeoutlen' 'ttm' 'tty' 'ttybuiltin' 'ttyfast' 'ttym'
'ttymouse' 'ttyscroll' 'ttytype' 'tw' 'twk' 'tws' 'twsl' 'twt' 'tx' 'uc'
'udf' 'udir' 'ul' 'undodir' 'undofile' 'undolevels' 'undoreload'
'updatecount' 'updatetime' 'ur' 'ut' 'varsofttabstop' 'vartabstop' 'vb' 'vbs'
'vdir' 've' 'verbose' 'verbosefile' 'vfile' 'vi' 'viewdir' 'viewoptions'
'vif' 'viminfo' 'viminfofile' 'virtualedit' 'visualbell' 'vop' 'vsts' 'vts'
'w1200' 'w300' 'w9600' 'wa' 'wak' 'warn' 'wb' 'wc' 'wcm' 'wcr' 'wd'
'weirdinvert' 'wfh' 'wfw' 'wh' 'whichwrap' 'wi' 'wic' 'wig' 'wildchar'
'wildcharm' 'wildignore' 'wildignorecase' 'wildmenu' 'wildmode' 'wildoptions'
'wim' 'winaltkeys' 'wincolor' 'window' 'winfixbuf' 'winfixheight'
'winfixwidth' 'winheight' 'winminheight' 'winminwidth' 'winptydll' 'winwidth'
'wiv' 'wiw' 'wm' 'wmh' 'wmnu' 'wmw' 'wop' 'wrap' 'wrapmargin' 'wrapscan'
'write' 'writeany' 'writebackup' 'writedelay' 'ws' 'ww' 'xtermcodes' '{ '} (
) + ++bad ++bin ++builtin_terms ++edit ++enc ++ff ++nobin ++opt +ARP
+GUI_Athena +GUI_GTK +GUI_Motif +GUI_Photon +GUI_neXtaw +X11 +acl +arabic
+autochdir +autocmd +autoservername +balloon_eval +balloon_eval_term +browse
+byte_offset +channel +cindent +clientserver +clipboard +clipboard_working
+cmd +cmdline_compl +cmdline_hist +cmdline_info +cmdwin +comments +conceal
+cryptv +cscope +cursorbind +cursorshape +debug +dialog_con +dialog_con_gui
+dialog_gui +diff +digraphs +directx +dnd +emacs_tags +eval +ex_extra
+extra_search +farsi +feature-list +file_in_path +find_in_path +float
+folding +footer +fork +gettext +hangul_input +iconv +iconv/dyn
+insert_expand +ipv6 +job +jumplist +keymap +lambda +langmap +libcall
+linebreak +lispindent +listcmds +localmap +lua +lua/dyn +menu +mksession
+modify_fname +mouse +mouse_dec +mouse_gpm +mouse_gpm/dyn +mouse_jsbterm

tags.txt — 4499

+mouse_netterm +mouse_pterm +mouse_sgr +mouse_sysmouse +mouse_urxvt
+mouse_xterm +mouseshape +multi_byte +multi_byte_ime +multi_lang +mzscheme
+mzscheme/dyn +netbeans_intg +num64 +ole +packages +path_extra +perl
+perl/dyn +persistent_undo +popupwin +postscript +printer +profile +python
+python/dyn +python3 +python3/dyn +python3/dyn-stable +quickfix +reltime
+rightleft +ruby +ruby/dyn +scrollbind +signs +smartindent +sodium +sound
+spell +startuptime +statusline +sun_workshop +syntax +system()
+tag_any_white +tag_binary +tag_old_static +tcl +tcl/dyn +termguicolors
+terminal +terminfo +termresponse +textobjects +textprop +tgetent +timers
+title +toolbar +unix +user_commands +vartabs +vertsplit +vim9script +viminfo
+virtualedit +visual +visualextra +vreplace +vtp +wildignore +wildmenu
+windows +writebackup +xattr +xfontset +xim +xpm +xpm_w32 +xsmp
+xsmp_interact +xterm_clipboard +xterm_save , - -+ -+/ -+c -+reverse -+rv --
--- --clean --cmd --echo-wid --gui-dialog-file --help --literal --log
--nofork --noplugin --not-a-term --remote --remote-expr --remote-send
--remote-silent --remote-tab --remote-tab-silent --remote-tab-wait
--remote-tab-wait-silent --remote-wait --remote-wait-silent --role
--serverlist --servername --socketid --startuptime --ttyfail --version
--windowid -> -? -A -C -D -E -F -H -L -M -N -O -P -R -S -T -U -V -W -X -Z -b
-background -bg -boldfont -borderwidth -bw -c -d -dev -display -e -f -fg
-file -fn -font -foreground -g -geom -geometry -geometry-example -gui -h -i
-iconic -italicfont -l -m -menufont -menufontset -menuheight -mf -mh -n -nb
-o -p -q -qf -r -register -reverse -rv -s -s-ex -scrollbarwidth -silent -sw
-t -tag -u -ul -unregister -v -vim -w -w_nr -x -xrm -yXdefaults .aff
.dic .exrc .gvimrc .netrwbook .netrwhist .vimrc / /$ /. // //; /<CR> /[[.
/[[= /[\n] /[] /\ /\$ /\%# /\%#= /\%$ /\%'m /\%(/\%(\) /\%<'m /\%<c /\%<l
/\%<v /\%>'m /\%>c /\%>l /\%>v /\%C /\%U /\%V /\%[] /\%^ /\%c /\%d /\%l /\%o
/\%u /\%v /\%x /\& /\(/\(\) /\) /\+ /\. /\1 /\2 /\3 /\9 /\< /\= /\> /\? /\@!
/\@<! /\@<= /\@= /\@> /\A /\C /\D /\F /\H /\I /\K /\L /\M /\O /\P /\S /\U /\V
/\W /\X /\Z /\[] /\\ /\] /\^ /_ /_$ /_. /_A /_D /_F /_H /_I /_K /_L
/_O /_P /_S /_U /_W /_X /_[] /_^ /_a /_d /_f /_h /_i /_k /_l
/_o /_p /_s /_u /_w /_x /\a /\b /\bar /\c /\d /\e /\f /\h /\i /\k /\l
/\m /\n /\o /\p /\r /\s /\star /\t /\u /\v /\w /\x /\z(/\z(\) /\z1 /\z2 /\z3
/\z4 /\z5 /\z6 /\z7 /\z8 /\z9 /\ze /\zs /\{ /\{- /\~ /^ /_CTRL-G /_CTRL-L
/_CTRL-T /atom /bar /branch /character-classes /collection /concat /dyn
/ignorecase /magic /multi /ordinary-atom /pattern /piece /star /zero-width /~
0 01.1 01.2 01.3 01.4 02.1 02.2 02.3 02.4 02.5 02.6 02.7 02.8 03.1 03.10 03.2
03.3 03.4 03.5 03.6 03.7 03.8 03.9 04.1 04.10 04.2 04.3 04.4 04.5 04.6 04.7
04.8 04.9 05.1 05.2 05.3 05.4 05.5 05.6 05.7 05.8 05.9 06.1 06.2 06.3 06.4
06.5 06.6 07.1 07.2 07.3 07.4 07.5 07.6 07.7 08.1 08.2 08.3 08.4 08.5 08.6
08.7 08.8 08.9 09.1 09.2 09.3 09.4 0o 0x 10.1 10.2 10.3 10.4 10.5 10.6 10.7
10.8 10.9 11.1 11.2 11.3 11.4 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 1gD 1gd
20.1 20.2 20.3 20.4 20.5 21.1 21.2 21.3 21.4 21.5 21.6 22.1 22.2 22.3 22.4
23.1 23.2 23.3 23.4 23.5 24.1 24.10 24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9
25.1 25.2 25.3 25.4 25.5 26.1 26.2 26.3 26.4 27.1 27.2 27.3 27.4 27.5 27.6
27.7 27.8 27.9 28.1 28.10 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 29.1 29.2
29.3 29.4 29.5 2html.vim 30.1 30.2 30.3 30.4 30.5 30.6 31.1 31.2 31.3 31.4
31.5 32.1 32.2 32.3 32.4 40.1 40.2 40.3 41.1 41.10 41.11 41.12 41.2 41.3 41.4
41.5 41.6 41.7 41.8 41.9 42 42.1 42.2 42.3 42.4 43.1 43.2 44.1 44.10 44.11
44.12 44.2 44.3 44.4 44.5 44.6 44.7 44.8 44.9 45.1 45.2 45.3 45.4 45.5 50.1
50.2 50.3 51.1 51.2 51.3 51.4 52.1 52.2 52.3 52.4 52.5 8g8 90.1 90.2 90.3
90.4 90.5 : :! :!! :!cmd :!start :# :#! :$:% :& :&& :' :++ :, :-- :. :/
:0file :2match :3match ::. ::8 ::S ::e ::gs ::h ::p ::r ::s ::t ::~ :; :<
:<abuf> :<afile> :<amatch> :<cWORD> :<cexpr> :<cfile> :<client> :<cword>
:<script> :<sfile> :<sflnum> :<slnum> :<stack> := :> :? :@ :@: :@@ :AdaLines
:AdaRainbow :AdaSpaces :AdaTagDir :AdaTagFile :AdaTypes :Arguments :Asm
:Break :Cargo :Cbench :Cbuild :Cclean :Cdoc :Cfilter :Cinit :Cinstall :Clear
:CompilerSet :ConTeXt :ConTeXtJobsStatus :ConTeXtLog :ConTeXtStopJobs
:Continue :Cpublish :Crun :Cruntarget :Csearch :Ctest :Cupdate :DiffOrig
:DoMatchParen :Down :Evaluate :Explore :Finish :FixBeginfigs :Frame :GLVS

tags.txt — 4500

:Gdb :GetLatestVimScripts_dat :GnatFind :GnatPretty :GnatTags :Hexplore :LP
:LPE :LPF :Lexplore :Lfilter :LogiPat :Man :MkVimball :N :NetrwClean
:Nexplore :Next :NoMatchParen :Nr :Nread :Ns :Nsource :Ntree :Nw :Nwrite
:Over :P :Pexplore :Print :Program :Rexplore :RmVimball :Run :RustEmitAsm
:RustEmitIr :RustExpand :RustFmt :RustFmtRange :RustInfo :RustInfoClipboard
:RustInfoToFile :RustPlay :RustRun :RustTest :Sexplore :Source :Step :Stop
:TOhtml :TarDiff :Tbreak :Termdebug :TermdebugCommand :Texplore :Until :Up
:UseVimball :Var :Vexplore :VimballList :Vimuntar :Winbar :X :XMLent :XMLns
:[range] :\bar :_! :_# :_## :_#0 :_#< :_#n :_% :_%% :_%%% :_%%0 :_%%< :_%%n
:_%: :_%< :a :ab :abbreviate :abbreviate-<buffer> :abbreviate-local
:abbreviate-verbose :abc :abclear :abo :aboveleft :abstract :addd :al :all
:am :amenu :an :anoremenu :append :ar :arg :arga :argadd :argd :argded
:argdedupe :argdelete :argdo :arge :argedit :argglobal :arglocal :args
:args_f :args_f! :argu :argument :as :ascii :au :aug :augroup :augroup-delete
:aun :aunmenu :autocmd :autocmd-block :autocmd-verbose :b :bN :bNext :ba :bad
:badd :ball :balt :bar :bd :bdel :bdelete :be :behave :bel :belowright :bf
:bfirst :bl :blast :bm :bmodified :bn :bnext :bo :botright :bp :bprevious :br
:bre :brea :break :breaka :breakadd :breakd :breakdel :breakl :breaklist
:brewind :bro :browse :browse-set :bu :buf :bufdo :buffer :buffer-! :buffers
:bun :bunload :bw :bwipe :bwipeout :c :cN :cNext :cNf :cNfile :ca :cab
:cabbrev :cabc :cabclear :cabo :cabove :cad :cadd :caddbuffer :cadde
:caddexpr :caddf :caddfile :caf :cafter :cal :call :cat :catch :cb :cbe
:cbefore :cbel :cbelow :cbo :cbottom :cbuffer :cc :ccl :cclose :cd :cd- :cdo
:ce :center :cex :cexpr :cf :cfdo :cfi :cfile :cfir :cfirst :cg :cgetb
:cgetbuffer :cgete :cgetexpr :cgetfile :ch :change :changes :chd :chdir :che
:chec :check :checkpath :checkt :checktime :chi :chistory :cl :cla :class
:clast :cle :clearjumps :clist :clo :close :cm :cmap :cmap_l :cmapc
:cmapclear :cme :cmenu :cn :cne :cnew :cnewer :cnext :cnf :cnfile :cno :cnor
:cnorea :cnoreabbrev :cnoremap :cnoreme :cnoremenu :co :col :colder :colo
:colorscheme :com :comc :comclear :command :command-addr :command-bang
:command-bar :command-buffer :command-complete :command-completion
:command-completion-custom :command-completion-customlist :command-count
:command-keepscript :command-modifiers :command-nargs :command-range
:command-register :command-repl :command-verbose :comment :comp :compiler
:con :conf :confirm :cons :const :continue :cope :copen :copy :count_quit :cp
:cpf :cpfile :cprev :cprevious :cq :cquit :cr :crewind :cs :cscope :cstag :cu
:cun :cuna :cunabbrev :cunmap :cunme :cunmenu :cw :cwindow :d :de :debug
:debug-name :debugg :debuggreedy :def :defc :defcompile :defer :del :delc
:delcommand :delcr :delete :delf :delfunction :delm :delmarks :di :dif :diff
:diffg :diffget :diffo :diffoff :diffp :diffpatch :diffpu :diffput :diffs
:diffsplit :difft :diffthis :diffupdate :dig :digraphs :dis :disa
:disassemble :display :dj :djump :dl :dli :dlist :do :doau :doaut :doautoa
:doautoall :doautocmd :dp :dr :drop :ds :dsearch :dsp :dsplit :e :e# :ea
:earlier :ec :echo :echo-redraw :echoc :echoconsole :echoe :echoerr :echoh
:echohl :echom :echomsg :echon :echow :echowin :echowindow :edit :edit!
:edit!_f :edit_# :edit_f :el :else :elsei :elseif :em :emenu :en :end
:endclass :enddef :endenum :endf :endfo :endfor :endfunction :endif
:endinterface :endt :endtry :endw :endwhile :ene :ene! :enew :enew! :enum
:eval :ex :exe :exe-comment :execute :exi :exit :exp :export :exu :exusage :f
:fi :file :file_f :filename :files :filet :filetype :filetype-indent-off
:filetype-indent-on :filetype-off :filetype-overview :filetype-plugin-off
:filetype-plugin-on :filt :filter :fin :fina :final :finally :find :fini
:finish :fir :first :fix :fixdel :fo :fold :foldc :foldclose :foldd :folddo
:folddoc :folddoclosed :folddoopen :foldo :foldopen :for :fu :func-abort
:func-closure :func-dict :func-range :function :function-verbose :g :global
:go :goto :gr :grep :grepa :grepadd :gu :gui :gv :gvim :h :ha :hardcopy :help
:helpc :helpclose :helpf :helpfind :helpg :helpgrep :helpt :helptags :hi
:hi-clear :hi-default :hi-link :hi-normal :hi-normal-cterm :hide :highlight
:highlight-default :highlight-link :highlight-normal :highlight-verbose :his
:history :history-indexing :hor :horizontal :i :ia :iabbrev :iabc :iabclear

tags.txt — 4501

:if :ij :ijump :il :ilist :im :imap :imap_l :imapc :imapclear :ime :imenu
:imp :import :import-as :import-cycle :in :index :ino :inor :inorea
:inoreabbrev :inoremap :inoreme :inoremenu :insert :interface :intro :is
:isearch :isp :isplit :iu :iuna :iunabbrev :iunmap :iunme :iunmenu :j :join
:ju :jumps :k :kee :keep :keepa :keepalt :keepj :keepjumps :keepmarks :keepp
:keeppatterns :l :lN :lNext :lNf :lNfile :la :lab :labove :lad :laddb
:laddbuffer :laddexpr :laddf :laddfile :laf :lafter :lan :lang :language
:last :lat :later :lb :lbe :lbefore :lbel :lbelow :lbo :lbottom :lbuffer :lc
:lcd :lcd- :lch :lchdir :lcl :lclose :lcs :lcscope :ldo :le :left :lefta
:leftabove :leg :legacy :let :let%= :let+= :let-$:let-& :let-= :let-@
:let-environment :let-heredoc :let-option :let-register :let-unpack :let..=
:let.= :let/= :let=<< :letstar= :lex :lexpr :lf :lfdo :lfi :lfile :lfir
:lfirst :lg :lge :lgetb :lgetbuffer :lgete :lgetexpr :lgetfile :lgr :lgrep
:lgrepa :lgrepadd :lh :lhelpgrep :lhi :lhistory :list :ll :lla :llast :lli
:llist :lm :lma :lmak :lmake :lmap :lmap_l :lmapc :lmapclear :ln :lne :lnew
:lnewer :lnext :lnf :lnfile :lnoremap :lo :loadk :loadkeymap :loadview :loc
:lock :lockmarks :lockv :lockvar :lol :lolder :lop :lopen :lp :lpf :lpfile
:lprev :lprevious :lr :lrewind :ls :lt :ltag :lu :lua :luado :luafile :lunmap
:lv :lvimgrep :lvimgrepa :lvimgrepadd :lw :lwindow :m :ma :mak :make
:make_makeprg :map :map! :map-<buffer> :map-<expr> :map-<nowait>
:map-<script> :map-<silent> :map-<special> :map-<unique> :map-alt-keys
:map-arguments :map-buffer :map-cmd :map-cmd-key :map-commands
:map-expression :map-local :map-meta-keys :map-modes :map-nowait
:map-operator :map-script :map-silent :map-special :map-special-chars
:map-special-keys :map-super-keys :map-undo :map-unique :map-verbose :map_l
:map_l! :mapc :mapc! :mapclear :mapclear! :mark :marks :mat :match :me :menu
:menu-<script> :menu-<silent> :menu-<special> :menu-disable :menu-enable
:menu-script :menu-silent :menu-special :menut :menutrans :menutranslate :mes
:messages :mk :mkexrc :mks :mksession :mksp :mkspell :mkv :mkvi :mkvie
:mkview :mkvimrc :mo :mod :mode :move :mz :mzf :mzfile :mzscheme :n :nbclose
:nbkey :nbstart :ne :new :next :next_f :nm :nmap :nmap_l :nmapc :nmapclear
:nme :nmenu :nn :nnoremap :nnoreme :nnoremenu :no :no! :noa :noautocmd :noh
:nohlsearch :nor :nore :norea :noreabbrev :norem :noremap :noremap! :noreme
:noremenu :norm :normal :normal-range :nos :noswapfile :nu :number :nun
:nunmap :nunme :nunmenu :o :ol :oldfiles :om :omap :omap_l :omapc :omapclear
:ome :omenu :on :only :ono :onoremap :onoreme :onoremenu :op :open :opt
:options :ou :ounmap :ounme :ounmenu :ownsyntax :p :pa :packadd :packl
:packloadall :pc :pclose :pe :ped :pedit :perl :perld :perldo :po :pop :popu
:popup :pp :ppop :pr :pre :preserve :prev :previous :print :pro :prof :profd
:profdel :profile :promptfind :promptr :promptrepl :ps :psearch :ptN :ptNext
:pta :ptag :ptf :ptfirst :ptj :ptjump :ptl :ptlast :ptn :ptnext :ptp
:ptprevious :ptr :ptrewind :pts :ptselect :pu :public :put :pw :pwd
:pwd-verbose :py :py3 :py3do :py3file :pydo :pyf :pyfile :python :python3
:pythonx :pyx :pyxdo :pyxfile :q :qa :qall :quit :quita :quitall :quote :r
:r! :range :range! :range-closed-fold :range-offset :range-pattern :re :read
:read! :rec :recover :recover-crypt :red :redi :redir :redo :redr :redraw
:redraws :redrawstatus :redrawt :redrawtabline :reg :registers :res :resize
:ret :retab :retab! :retu :return :rew :rewind :ri :right :rightb :rightbelow
:ru :rub :ruby :rubyd :rubydo :rubyf :rubyfile :rundo :runtime :rv :rviminfo
:s :s% :sI :sIc :sIe :sIg :sIl :sIn :sIp :sIr :sN :sNext :s\= :s_# :s_I :s_c
:s_e :s_flags :s_g :s_i :s_l :s_n :s_p :s_r :sa :sal :sall :san :sandbox
:sargument :sav :saveas :sb :sbN :sbNext :sba :sball :sbf :sbfirst :sbl
:sblast :sbm :sbmodified :sbn :sbnext :sbp :sbprevious :sbr :sbrewind
:sbuffer :sc :scI :sce :scg :sci :scl :scp :scr :script :scripte
:scriptencoding :scriptnames :scriptv :scriptversion :scs :scscope :se
:search-args :set :set+= :set-! :set-& :set-&vi :set-&vim :set-= :set-args
:set-browse :set-default :set-inv :set-termcap :set-verbose :set= :set^=
:set_env :setf :setfiletype :setg :setglobal :setl :setlocal :sf :sfi :sfind
:sfir :sfirst :sg :sgI :sgc :sge :sgi :sgl :sgn :sgp :sgr :sh :shell :si :sic
:sie :sig :sign :sign-define :sign-fname :sign-jump :sign-list :sign-place

tags.txt — 4502

:sign-place-list :sign-undefine :sign-unplace :sil :silent :silent! :sim
:simalt :sin :sip :sir :sl :sl! :sla :slast :sleep :sleep! :sm :smagic :smap
:smap_l :smapc :smapclear :sme :smenu :smile :sn :snext :sno :snomagic :snor
:snore :snoremap :snoreme :snoremenu :so :sor :sort :source :source!
:source-range :source_crnl :sp :spe :spelld :spelldump :spellgood :spelli
:spellinfo :spellr :spellra :spellrare :spellrepall :spellu :spellundo
:spellw :spellwrong :split :split_f :spr :sprevious :sr :srI :src :sre
:srewind :srg :sri :srl :srn :srp :st :sta :stag :star :star-compatible
:star-visual-range :start :startgreplace :startinsert :startreplace :static
:stj :stjump :stop :stopi :stopinsert :sts :stselect :su :substitute
:substitute-repeat :sun :sunhide :sunm :sunmap :sunme :sunmenu :sus :suspend
:sv :sview :sw :swapname :sy :syn :syn-arguments :syn-case :syn-cchar
:syn-clear :syn-cluster :syn-conceal :syn-conceal-implicit :syn-concealends
:syn-contained :syn-containedin :syn-contains :syn-context
:syn-default-override :syn-define :syn-display :syn-enable :syn-end
:syn-excludenl :syn-ext-match :syn-extend :syn-file-remarks :syn-files
:syn-fold :syn-foldlevel :syn-include :syn-iskeyword :syn-keepend
:syn-keyword :syn-lc :syn-leading :syn-list :syn-manual :syn-match
:syn-matchgroup :syn-multi-line :syn-nextgroup :syn-off :syn-on :syn-oneline
:syn-pattern :syn-pattern-offset :syn-priority :syn-qstart :syn-region
:syn-reset :syn-skip :syn-skipempty :syn-skipnl :syn-skipwhite :syn-spell
:syn-start :syn-sync :syn-sync-ccomment :syn-sync-first :syn-sync-fourth
:syn-sync-linebreaks :syn-sync-maxlines :syn-sync-minlines :syn-sync-second
:syn-sync-third :syn-transparent :sync :syncbind :syntax :syntax-enable
:syntax-off :syntax-on :syntax-reset :syntime :t :tN :tNext :ta :tab :tabN
:tabNext :tabc :tabclose :tabd :tabdo :tabe :tabedit :tabf :tabfind :tabfir
:tabfirst :tabl :tablast :tabm :tabmove :tabn :tabnew :tabnext :tabo :tabonly
:tabp :tabprevious :tabr :tabrewind :tabs :tag :tags :tc :tcd :tcd- :tch
:tchdir :tcl :tcld :tcldo :tclf :tclfile :te :tearoff :ter :terminal :tf
:tfirst :th :this :throw :tj :tjump :tl :tlast :tlm :tlmenu :tln :tlnoremenu
:tlu :tlunmenu :tm :tma :tmap :tmap_l :tmapc :tmapclear :tmenu :tn :tnext
:tno :tnoremap :topleft :tp :tprevious :tr :trewind :try :ts :tselect :tu
:tunma :tunmap :tunmenu :type :u :un :una :unabbreviate :undo :undoj
:undojoin :undol :undolist :unh :unhide :unl :unlet :unlet-$
:unlet-environment :unlo :unlockvar :unm :unm! :unmap :unmap! :unme :unmenu
:unmenu-all :uns :unsilent :up :update :v :var :ve :ver :verb :verbose
:verbose-cmd :version :vert :vertical :vertical-resize :vglobal :vi :vie
:view :vim :vim9 :vim9cmd :vim9s :vim9script :vimgrep :vimgrepa :vimgrepadd
:visual :visual_example :viu :viusage :vm :vmap :vmap_l :vmapc :vmapclear
:vme :vmenu :vn :vne :vnew :vnoremap :vnoreme :vnoremenu :vs :vsplit :vu
:vunmap :vunme :vunmenu :w :w! :wN :wNext :w_a :w_c :w_f :wa :wall :wh :while
:wi :win :winc :wincmd :windo :winp :winpos :winsize :wn :wnext :wp
:wprevious :wq :wqa :wqall :write :write_a :write_c :write_f :wundo :wv
:wviminfo :x :xa :xall :xit :xm :xmap :xmap_l :xmapc :xmapclear :xme :xmenu
:xn :xnoremap :xnoreme :xnoremenu :xr :xrestore :xu :xunmap :xunme :xunmenu
:y :yank :z :z! :z# :~ ; < <2-LeftMouse> <3-LeftMouse> <4-LeftMouse> << <>
<A- <A-LeftMouse> <A-RightMouse> <BS> <Bar> <Bslash> <C- <C-Del> <C-End>
<C-Home> <C-Insert> <C-Left> <C-LeftMouse> <C-PageDown> <C-PageUp> <C-Right>
<C-RightMouse> <C-ScrollWheelDown> <C-ScrollWheelLeft> <C-ScrollWheelRight>
<C-ScrollWheelUp> <C-Tab> <CR> <CSI> <Char-> <Char> <Cmd> <CursorHold> <D-
<D-c> <D-v> <D-x> <Down> <Drop> <EOL> <End> <Enter> <Esc> <F10> <F11>
<F12> <F13> <F14> <F15> <F16> <F17> <F18> <F19> <F1> <F2> <F3> <F4> <F5> <F6>
<F7> <F8> <F9> <Help> <Home> <Ignore> <Insert> <Leader> <Left> <LeftDrag>
<LeftMouse> <LeftRelease> <LocalLeader> <M- <MiddleDrag> <MiddleMouse>
<MiddleRelease> <Mouse> <MouseDown> <MouseMove> <MouseUp> <NL> <Nop> <Nul>
<PageDown> <PageUp> <Plug> <Return> <Right> <RightDrag> <RightMouse>
<RightRelease> <S- <S-Del> <S-Down> <S-End> <S-F10> <S-F11> <S-F12> <S-F1>
<S-F2> <S-F3> <S-F4> <S-F5> <S-F6> <S-F7> <S-F8> <S-F9> <S-Home> <S-Insert>
<S-Left> <S-LeftMouse> <S-Right> <S-RightMouse> <S-ScrollWheelDown>
<S-ScrollWheelLeft> <S-ScrollWheelRight> <S-ScrollWheelUp> <S-Tab> <S-Up>

tags.txt — 4503

<S-xF1> <S-xF2> <S-xF3> <S-xF4> <SID> <SNR> <ScriptCmd> <ScrollWheelDown>
<ScrollWheelLeft> <ScrollWheelRight> <ScrollWheelUp> <Space> <Tab> <Undo>
<Up> <abuf> <afile> <amatch> <args> <bang> <buffer=N> <buffer=abuf> <cWORD>
<cexpr> <cfile> <character> <client> <count> <cword> <f-args> <k0> <k1> <k2>
<k3> <k4> <k5> <k6> <k7> <k8> <k9> <kDivide> <kEnd> <kEnter> <kHome> <kMinus>
<kMultiply> <kPageDown> <kPageUp> <kPlus> <kPoint> <line1> <line2> <lt>
<mods> <nomodeline> <q-args> <q-mods> <range> <reg> <register> <script>
<sfile> <sflnum> <slnum> <stack> <xCSI> <xDown> <xEnd> <xEnd>-xterm <xF1>
<xF1>-xterm <xF2> <xF2>-xterm <xF3> <xF3>-xterm <xF4> <xF4>-xterm <xHome>
<xHome>-xterm <xLeft> <xRight> <xUp> = == > >> >backtrace >bt >cont >down
>finish >frame >interrupt >next >quit >step >up >where ? ?<CR> ?? @ @/ @: @=
@@ @r A ACL ANSI-C ATTENTION Abbreviations Aleph Amiga Arabic Atari B BeBox
BeOS Blob Blobs Boolean Bram Bram-Moolenaar BufAdd BufCreate BufDelete
BufEnter BufFilePost BufFilePre BufHidden BufLeave BufNew BufNewFile BufRead
BufReadCmd BufReadPost BufReadPre BufUnload BufWinEnter BufWinLeave
BufWipeout BufWrite BufWriteCmd BufWritePost BufWritePre C C-editing
C-indenting C89 C99 COMSPEC CR-used-for-NL CTRL-6 CTRL-<PageDown>
CTRL-<PageUp> CTRL-A CTRL-B CTRL-C CTRL-D CTRL-E CTRL-F CTRL-G CTRL-H CTRL-I
CTRL-J CTRL-L CTRL-M CTRL-N CTRL-O CTRL-P CTRL-Q CTRL-R CTRL-T CTRL-U
CTRL-U-changed CTRL-V CTRL-V-alternative CTRL-W CTRL-W_+ CTRL-W_- CTRL-W_:
CTRL-W_< CTRL-W_<BS> CTRL-W_<CR> CTRL-W_<Down> CTRL-W_<Enter> CTRL-W_<Left>
CTRL-W_<Right> CTRL-W_<Up> CTRL-W_= CTRL-W_> CTRL-W_CTRL-B CTRL-W_CTRL-C
CTRL-W_CTRL-D CTRL-W_CTRL-F CTRL-W_CTRL-H CTRL-W_CTRL-I CTRL-W_CTRL-J
CTRL-W_CTRL-K CTRL-W_CTRL-L CTRL-W_CTRL-N CTRL-W_CTRL-O CTRL-W_CTRL-P
CTRL-W_CTRL-Q CTRL-W_CTRL-R CTRL-W_CTRL-S CTRL-W_CTRL-T CTRL-W_CTRL-V
CTRL-W_CTRL-W CTRL-W_CTRL-X CTRL-W_CTRL-Z CTRL-W_CTRL-] CTRL-W_CTRL-^
CTRL-W_CTRL-_ CTRL-W_F CTRL-W_H CTRL-W_J CTRL-W_K CTRL-W_L CTRL-W_P CTRL-W_R
CTRL-W_S CTRL-W_T CTRL-W_W CTRL-W_] CTRL-W_^ CTRL-W__ CTRL-W_b CTRL-W_bar
CTRL-W_c CTRL-W_d CTRL-W_f CTRL-W_g<Tab> CTRL-W_gF CTRL-W_gT CTRL-W_g]
CTRL-W_g_CTRL-] CTRL-W_gf CTRL-W_gt CTRL-W_g} CTRL-W_h CTRL-W_i CTRL-W_j
CTRL-W_k CTRL-W_l CTRL-W_n CTRL-W_o CTRL-W_p CTRL-W_q CTRL-W_r CTRL-W_s
CTRL-W_t CTRL-W_v CTRL-W_w CTRL-W_x CTRL-W_z CTRL-W_} CTRL-X CTRL-Y CTRL-Z
CTRL-_CTRL-G CTRL-_CTRL-N CTRL-] CTRL-^ CTRL-{char} Channel Channels
Chinese Class Cmd-event CmdUndefined Cmdline Cmdline-mode CmdlineChanged
CmdlineEnter CmdlineLeave CmdwinEnter CmdwinLeave ColorScheme ColorSchemePre
Command-line Command-line-mode CompleteChanged CompleteDone CompleteDonePre
ConPTY Contents Cscope CursorHold CursorHold-example CursorHoldI CursorIM
CursorMoved CursorMovedI D DOS DOS-format DOS-format-write Dict Dictionaries
Dictionary Dictionary-function DiffUpdated Digraphs DirChanged DirChangedPre
E E10 E100 E1001 E1002 E1003 E1004 E1005 E1006 E1007 E1008 E1009 E101 E1010
E1011 E1012 E1013 E1014 E1015 E1016 E1017 E1018 E1019 E102 E1020 E1021 E1022
E1023 E1024 E1025 E1026 E1027 E1028 E1029 E103 E1030 E1031 E1032 E1033 E1034
E1035 E1036 E1037 E1038 E1039 E104 E1040 E1041 E1042 E1043 E1044 E1047 E1048
E1049 E105 E1050 E1051 E1052 E1053 E1054 E1055 E1056 E1057 E1058 E1059 E106
E1060 E1061 E1062 E1063 E1064 E1065 E1066 E1067 E1068 E1069 E107 E1071 E1072
E1073 E1074 E1075 E1077 E1078 E1079 E108 E1080 E1081 E1082 E1083 E1084 E1085
E1087 E1088 E1089 E109 E1090 E1091 E1092 E1093 E1094 E1095 E1096 E1097 E1098
E1099 E11 E110 E1100 E1101 E1102 E1103 E1104 E1105 E1106 E1107 E1109 E111
E1110 E1111 E1112 E1113 E1114 E1115 E1116 E1117 E1118 E1119 E112 E1120 E1121
E1122 E1123 E1124 E1125 E1126 E1127 E1128 E1129 E113 E1130 E1131 E1132 E1133
E1134 E1135 E1136 E1138 E1139 E114 E1140 E1141 E1142 E1143 E1144 E1145 E1146
E1147 E1148 E1149 E115 E1150 E1151 E1152 E1153 E1154 E1155 E1156 E1157 E1158
E1159 E116 E1160 E1161 E1162 E1163 E1164 E1165 E1166 E1167 E1168 E1169 E117
E1170 E1171 E1172 E1173 E1174 E1175 E1176 E1177 E1178 E1179 E118 E1180 E1181
E1182 E1183 E1184 E1185 E1186 E1187 E1188 E1189 E119 E1190 E1191 E1192 E1193
E1194 E1195 E1196 E1197 E1198 E1199 E12 E120 E1200 E1201 E1202 E1203 E1204
E1205 E1206 E1207 E1208 E1209 E121 E1210 E1211 E1212 E1213 E1214 E1215 E1216
E1217 E1218 E1219 E122 E1220 E1221 E1222 E1223 E1224 E1225 E1226 E1227 E1228
E1229 E123 E1230 E1231 E1232 E1233 E1234 E1236 E1237 E1238 E1239 E124 E1240
E1241 E1242 E1243 E1244 E1245 E1246 E1247 E1248 E1249 E125 E1250 E1251 E1252

tags.txt — 4504

E1254 E1255 E1256 E1257 E1258 E1259 E126 E1260 E1261 E1262 E1263 E1264 E1265
E1266 E1267 E1268 E1269 E127 E1270 E1271 E1272 E1273 E1274 E1275 E1276 E1277
E1278 E1279 E128 E1280 E1281 E1282 E1283 E1284 E1285 E1286 E1287 E1288 E1289
E129 E1290 E1291 E1292 E1293 E1294 E1295 E1296 E1297 E1298 E1299 E13 E1300
E1301 E1302 E1303 E1304 E1305 E1306 E1307 E1308 E1309 E131 E1310 E1311 E1312
E1313 E1314 E1315 E1316 E1317 E1318 E1319 E132 E1320 E1321 E1322 E1323 E1324
E1325 E1326 E1327 E1328 E133 E1330 E1331 E1332 E1333 E1335 E1336 E1337 E1338
E1339 E134 E1340 E1341 E1342 E1343 E1344 E1345 E1346 E1347 E1348 E1349 E135
E1350 E1351 E1352 E1353 E1354 E1355 E1356 E1357 E1358 E1359 E136 E1360 E1361
E1362 E1363 E1364 E1365 E1366 E1367 E1368 E1369 E137 E1370 E1371 E1372 E1373
E1374 E1375 E1376 E1377 E1378 E1379 E138 E1380 E1381 E1382 E1383 E1384 E1385
E1386 E1387 E1388 E1389 E139 E1390 E1391 E1392 E1393 E1394 E1395 E1396 E1397
E1398 E1399 E140 E1400 E1401 E1402 E1403 E1405 E1406 E1407 E1408 E1409 E141
E1410 E1411 E1412 E1413 E142 E143 E144 E145 E146 E147 E148 E149 E15 E150
E1500 E1501 E1502 E1503 E1504 E1505 E1506 E1507 E1508 E1509 E151 E1510 E1511
E1512 E1513 E152 E153 E154 E155 E156 E157 E158 E159 E16 E160 E161 E162 E163
E164 E165 E166 E167 E168 E169 E17 E170 E171 E172 E173 E174 E175 E176 E177
E178 E179 E18 E180 E181 E182 E183 E184 E185 E186 E187 E188 E189 E19 E190 E191
E192 E193 E194 E195 E196 E197 E199 E20 E200 E201 E202 E203 E204 E205 E206
E207 E208 E209 E21 E210 E211 E212 E213 E214 E215 E216 E217 E218 E219 E22 E220
E221 E222 E223 E224 E225 E226 E227 E228 E229 E23 E230 E231 E232 E233 E234
E235 E236 E237 E238 E239 E24 E240 E241 E242 E243 E244 E245 E246 E247 E248
E249 E25 E250 E251 E252 E253 E254 E255 E257 E258 E259 E26 E260 E261 E262 E263
E264 E265 E266 E267 E268 E269 E27 E270 E271 E272 E273 E274 E275 E276 E277
E279 E28 E280 E282 E283 E284 E285 E286 E287 E288 E289 E29 E290 E292 E293 E294
E295 E296 E297 E298 E299 E30 E300 E301 E302 E303 E304 E305 E306 E307 E308
E309 E31 E310 E311 E312 E313 E314 E315 E316 E317 E318 E319 E32 E320 E321 E322
E323 E324 E325 E326 E327 E328 E329 E33 E330 E331 E332 E333 E334 E335 E336
E337 E338 E339 E34 E340 E341 E342 E343 E344 E345 E346 E347 E348 E349 E35 E350
E351 E352 E353 E354 E355 E356 E357 E358 E359 E36 E360 E362 E363 E364 E365
E366 E367 E368 E369 E37 E370 E371 E372 E373 E374 E375 E376 E377 E378 E379 E38
E380 E381 E382 E383 E384 E385 E386 E387 E388 E389 E39 E390 E391 E392 E393
E394 E395 E397 E398 E399 E40 E400 E401 E402 E403 E404 E405 E406 E407 E408
E409 E41 E410 E411 E412 E413 E414 E415 E416 E417 E418 E419 E42 E420 E421 E422
E423 E424 E425 E426 E427 E428 E429 E43 E430 E431 E432 E433 E434 E435 E436
E437 E438 E439 E44 E440 E441 E442 E443 E444 E445 E446 E447 E448 E449 E45 E450
E451 E452 E453 E454 E455 E456 E457 E458 E459 E46 E460 E461 E462 E463 E464
E465 E466 E467 E468 E469 E47 E470 E471 E472 E473 E474 E475 E476 E477 E478
E479 E48 E480 E481 E482 E483 E484 E485 E486 E487 E488 E489 E49 E490 E491 E492
E493 E494 E495 E496 E497 E498 E499 E50 E500 E501 E502 E503 E504 E505 E506
E507 E508 E509 E51 E510 E511 E512 E513 E514 E515 E516 E517 E518 E519 E52 E520
E521 E522 E523 E524 E525 E526 E527 E528 E529 E53 E530 E531 E532 E533 E534
E535 E536 E537 E538 E539 E54 E540 E542 E543 E544 E545 E546 E547 E548 E549 E55
E550 E551 E552 E553 E554 E555 E556 E557 E558 E559 E560 E561 E562 E563 E564
E565 E566 E567 E568 E570 E571 E572 E573 E574 E575 E576 E577 E579 E580 E581
E582 E583 E584 E585 E586 E587 E588 E589 E59 E590 E591 E592 E593 E594 E595
E596 E597 E598 E599 E60 E600 E601 E602 E603 E604 E605 E606 E607 E608 E609 E61
E610 E611 E612 E613 E614 E616 E617 E618 E619 E62 E620 E621 E622 E623 E624
E625 E626 E627 E628 E629 E63 E630 E631 E632 E633 E634 E635 E636 E637 E638
E639 E64 E640 E641 E642 E643 E644 E645 E646 E647 E648 E65 E650 E651 E652 E654
E655 E656 E657 E658 E659 E66 E660 E661 E662 E663 E664 E665 E666 E667 E668
E669 E67 E670 E671 E672 E673 E674 E675 E676 E677 E678 E679 E68 E680 E681 E682
E683 E684 E685 E686 E687 E688 E689 E69 E690 E691 E692 E693 E694 E695 E696
E697 E698 E699 E70 E700 E701 E702 E703 E704 E705 E706 E707 E708 E709 E71 E710
E711 E712 E713 E714 E715 E716 E717 E718 E719 E72 E720 E721 E722 E723 E724
E725 E726 E727 E728 E729 E73 E730 E731 E732 E733 E734 E735 E736 E737 E738
E739 E74 E740 E741 E742 E743 E744 E745 E746 E747 E748 E749 E75 E750 E751 E752
E753 E754 E755 E756 E757 E758 E759 E76 E760 E761 E762 E763 E764 E765 E766
E767 E768 E769 E77 E770 E771 E772 E773 E774 E775 E776 E777 E778 E779 E78 E780
E781 E782 E783 E784 E785 E786 E787 E788 E789 E79 E790 E791 E792 E793 E794

tags.txt — 4505

E795 E796 E797 E798 E799 E80 E800 E801 E802 E803 E804 E805 E806 E807 E808
E809 E81 E810 E811 E812 E813 E814 E815 E816 E817 E818 E819 E82 E820 E821 E822
E823 E824 E825 E826 E827 E828 E829 E83 E830 E831 E832 E833 E834 E835 E836
E837 E838 E84 E840 E841 E842 E843 E844 E845 E846 E847 E848 E849 E85 E850 E851
E852 E853 E854 E855 E856 E857 E858 E859 E86 E860 E861 E862 E863 E864 E865
E866 E867 E868 E869 E87 E870 E871 E872 E873 E874 E875 E876 E877 E878 E879 E88
E880 E881 E882 E883 E884 E885 E886 E887 E888 E889 E89 E890 E891 E892 E893
E894 E895 E896 E897 E898 E899 E90 E900 E901 E902 E903 E904 E905 E906 E907
E908 E909 E91 E910 E911 E912 E913 E914 E915 E916 E917 E918 E919 E92 E920 E921
E923 E924 E925 E926 E927 E928 E929 E93 E930 E931 E932 E933 E934 E935 E936
E937 E938 E939 E94 E940 E941 E942 E943 E944 E945 E946 E947 E948 E949 E95 E950
E951 E952 E953 E954 E955 E956 E957 E958 E959 E96 E960 E961 E962 E963 E964
E965 E966 E967 E968 E969 E97 E970 E971 E972 E973 E974 E975 E976 E977 E978
E979 E98 E980 E981 E982 E983 E984 E985 E986 E987 E988 E989 E99 E990 E991 E992
E993 E994 E995 E996 E997 E998 E999 EX EXINIT Elvis EncodingChanged Eterm Ex
Ex-mode ExitPre Exuberant_ctags F FALSE FAQ Farsi FileAppendCmd
FileAppendPost FileAppendPre FileChangedRO FileChangedShell
FileChangedShellPost FileEncoding FileExplorer FileReadCmd FileReadPost
FileReadPre FileType FileWriteCmd FileWritePost FileWritePre FilterReadPost
FilterReadPre FilterWritePost FilterWritePre Float FocusGained FocusLost
Folding FuncUndefined Funcref G GNOME GTK GTK+ GTK3 GUI GUI-X11 GUIEnter
GUIFailed GetLatestVimScripts GetLatestVimScripts-copyright
GetLatestVimScripts_dat Gnome H Haiku I ICCF IM-server IME Insert Insert-mode
InsertChange InsertCharPre InsertEnter InsertLeave InsertLeavePre Integer
Interface J Japanese Job Jobs K KDE KVim Kibaale Korean L Linux-backspace
List Lists LogiPat() LogiPat-flags Lua M MDI MS-DOS MS-Windows MSDOS
MSVisualStudio MVS Mac Mac-format Mac-format-write Macintosh Mark MenuPopup
MiNT ModeChanged Moolenaar MorphOS Motif Myspell MzScheme N N% N: N NFA
NL-used-for-Nul Neovim NetBSD-backspace NetBeans NetUserPass()
NoDefaultCurrentDirectoryInExePath None Normal Normal-mode Number Nvi O OS/2
OS2 OS390 OS390-Motif OS390-PuTTY OS390-bugs OS390-has-ebcdic
OS390-limitations OS390-open-source Object OffTheSpot OnTheSpot
Operator-pending Operator-pending-mode OptionSet OverTheSpot P PATHEXT PEP8
PHP_BracesAtCodeLevel PHP_IndentFunctionCallParameters
PHP_IndentFunctionDeclarationParameters PHP_autoformatcomment
PHP_default_indenting PHP_noArrowMatching PHP_outdentSLComments
PHP_outdentphpescape PHP_removeCRwhenUnix PHP_vintage_case_default_indent
Partial Pattern Perl Posix Python Q Q-command-changed QNX Q_ab Q_ac Q_ai Q_bu
Q_ce Q_ch Q_cm Q_co Q_ct Q_de Q_di Q_ed Q_et Q_ex Q_fl Q_fo Q_gu Q_in Q_km
Q_lr Q_ma Q_op Q_pa Q_qf Q_ra Q_re Q_sc Q_si Q_ss Q_st Q_sy Q_ta Q_tm Q_to
Q_ud Q_ur Q_vc Q_vi Q_vm Q_wi Q_wq QuickFixCmdPost QuickFixCmdPost-example
QuickFixCmdPre Quickfix QuitPre R RISC-OS RISCOS RemoteReply Replace
Replace-mode Root Ruby Russian S SHELL SQLGetType SQLSetType SafeState
SafeStateAgain Select Select-mode Select-mode-mapping Session
SessionLoad-variable SessionLoadPost ShellCmdPost ShellFilterPost SigUSR1
SourceCmd SourcePost SourcePre Special SpellFileMissing StdinReadPost
StdinReadPre String Sven-Guckes SwapExists Syntax T TCL TERM TOhtml-encoding
TOhtml-encoding-detect TOhtml-performance TOhtml-progress-color
TOhtml-uncopyable-text TOhtml-wrap-text TRUE TSQL TTpro-telnet Tab TabClosed
TabEnter TabLeave TabNew Tcl TermChanged TermResponse TermResponseAll
TermdebugStartPost TermdebugStartPre TermdebugStopPost TermdebugStopPre
Terminal-Job Terminal-Normal Terminal-mode TerminalOpen TerminalWinOpen
TextChanged TextChangedI TextChangedP TextChangedT TextYankPost Transact-SQL
U UTF-8 UTF8-xterm Uganda Unicode Unix Unix-format Unix-format-write User
UserGettingBored V VIMINIT VMS Vi View Vim9 Vim9-abstract-class Vim9-class
Vim9-class-member Vim9-class-overview Vim9-enum Vim9-script Vim9-simple-class
Vim9-type Vim9-using-interface VimEnter VimLeave VimLeavePre VimResized
VimResume VimSuspend Vimball-copyright Virtual-Replace-mode Visual
Visual-mode W W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 WORD WSL
WWW Win32 WinBar WinClosed WinEnter WinLeave WinNew WinNewPre WinResized

tags.txt — 4506

WinResized-event WinScrolled WinScrolled-event X X11 X11-icon
X11_mouse_shapes X1Drag X1Mouse X1Release X2Drag X2Mouse X2Release XIM XLFD Y
Y2K ZQ ZZ [[# [' [([++opt] [+cmd] [..] [/ [:alnum:] [:alpha:] [:backspace:]
[:blank:] [:cntrl:] [:digit:] [:escape:] [:fname:] [:graph:] [:ident:]
[:keyword:] [:lower:] [:print:] [:punct:] [:return:] [:space:] [:tab:]
[:upper:] [:xdigit:] [<MiddleMouse> [==] [D [I [M [P [S [[[] [_CTRL-D
[_CTRL-I [` [c [count] [d [f [i [m [p [pattern] [quotex] [range] [s [star [z
[{ \0]]#]'])]/]<MiddleMouse>]D]I]M]P]S][]]]_CTRL-D]_CTRL-I]`
]c]d]f]i]m]p]s]star]z]} ^ _ _exrc _gvimrc _vimrc ` `(`) `-expansion
`. `0 `< `= `> `A `[`] `^ `` `a `quote `{ `} a a' a(a) a4 a:0 a:000 a:1
a:firstline a:lastline a:var a< a> aB aW a[a] a` ab abandon abbreviations
abel.vim abs() abstract-method acos() active-buffer ada#Create_Tags()
ada#Jump_Tag() ada#Listtags() ada#Switch_Syntax_Option() ada#Word()
ada-compiler ada-ctags ada-extra-plugins ada-reference ada.vim add()
add-filetype-plugin add-global-plugin add-local-help add-option-flags
add-package add-plugin added-5.1 added-5.2 added-5.3 added-5.4 added-5.5
added-5.6 added-5.7 added-5.8 added-6.1 added-6.2 added-6.3 added-6.4
added-7.1 added-7.2 added-7.3 added-7.4 added-8.1 added-8.2 added-9.1
added-9.2 added-BeOS added-Mac added-VMS added-cmdline-args added-options
added-regexp added-various added-win32-GUI aff-dic-format after-directory
aleph alt alt-input alternate-file amiga-window and() anonymous-function
ant.vim ap apache.vim append() appendbufline() aquote arabic.txt arabicfonts
arabickeymap arg-functions argc() argidx() arglist arglist-position
arglist-quit arglistid() argument-list argv() argv-variable arrow_modifiers
as asin() asm.vim asm68k asmh8300.vim assert-functions-details assert-return
assert_beeps() assert_equal() assert_equalfile() assert_exception()
assert_fails() assert_false() assert_inrange() assert_match() assert_nobeep()
assert_notequal() assert_notmatch() assert_report() assert_true() at atan()
atan2() attr-list author auto-format auto-setting auto-shortname autocmd-<>
autocmd-buffer-local autocmd-buflocal autocmd-changes autocmd-define
autocmd-disable autocmd-events autocmd-events-abc autocmd-execute
autocmd-expand autocmd-functions autocmd-groups autocmd-intro autocmd-list
autocmd-nested autocmd-once autocmd-osfiletypes autocmd-patterns
autocmd-remove autocmd-searchpat autocmd-use autocmd.txt autocmd_add()
autocmd_delete() autocmd_get() autocmds-kept autocommand autocommand-events
autocommand-pattern autocommands autoformat autoload autoload-functions
avoid-hit-enter aw a{ a} b b: b:changedtick b:changelog_name
b:clojure_syntax_keywords b:clojure_syntax_without_core_keywords
b:current_syntax-variable b:netrw_lastfile b:rust_cargo_avoid_whole_workspace
b:rust_cargo_check_all_features b:rust_cargo_check_all_targets
b:rust_cargo_check_benches b:rust_cargo_check_examples
b:rust_cargo_check_tests b:rustfmt_autosave b:tex_stylish b:var b:yaml_schema
baan-folding baan-syntax baan.vim backslash backspace backspace-delete
backtick-expansion backup backup-changed backup-extension backup-table
balloon-eval balloon_gettext() balloon_show() balloon_split() bar bars
base_font_name_list basic.vim beep beos better-python-interface
beval_bufnr-variable beval_col-variable beval_lnum-variable
beval_text-variable beval_winid-variable beval_winnr-variable binary-number
bitwise-function bitwise-shift blob blob-concatenation blob-functions
blob-identity blob-index blob-literal blob-modification blob2list()
blockwise-examples blockwise-operators blockwise-put blockwise-register
blockwise-visual blowfish blowfish2 bold bom-bytes book bookmark books
boolean break-finally browse() browsedir() browsefilter bufadd() bufexists()
buffer-functions buffer-hidden buffer-list buffer-variable buffer-write
buffer_exists() buffer_name() buffer_number() buffers buffers-menu
buflisted() bufload() bufloaded() bufname() bufnr() bufwinid() bufwinnr()
bug-fixes-5 bug-fixes-6 bug-fixes-7 bug-fixes-8 bug-fixes-9 bug-fixes-9.1
bug-fixes-9.2 bug-reports bugreport.vim bugs builtin-function-details
builtin-function-list builtin-functions builtin-object-methods builtin-terms
builtin-tools builtin.txt builtin_terms byte-count byte2line() byteidx()

tags.txt — 4507

byteidxcomp() bzip2 c c.vim cW c_# c_## c_#< c_#n c_% c_%% c_%%%# c_%%< c_%%n
c_<BS> c_<C-Left> c_<C-R> c_<C-R>_<C-A> c_<C-R>_<C-F> c_<C-R>_<C-L>
c_<C-R>_<C-O> c_<C-R>_<C-P> c_<C-R>_<C-R> c_<C-R>_<C-W> c_<C-Right> c_<CR>
c_ c_<Down> c_<End> c_<Esc> c_<Home> c_<Insert> c_<Left> c_<LeftMouse>
c_<MiddleMouse> c_<NL> c_<PageDown> c_<PageUp> c_<Right> c_<S-Down>
c_<S-Left> c_<S-Right> c_<S-Tab> c_<S-Up> c_<Tab> c_<Up> c_BS c_CR c_CTRL-A
c_CTRL-B c_CTRL-C c_CTRL-D c_CTRL-E c_CTRL-F c_CTRL-G c_CTRL-H c_CTRL-I
c_CTRL-J c_CTRL-K c_CTRL-L c_CTRL-M c_CTRL-N c_CTRL-P c_CTRL-Q c_CTRL-R
c_CTRL-R_= c_CTRL-R_CTRL-A c_CTRL-R_CTRL-F c_CTRL-R_CTRL-L c_CTRL-R_CTRL-O
c_CTRL-R_CTRL-P c_CTRL-R_CTRL-R c_CTRL-R_CTRL-W c_CTRL-SHIFT-Q c_CTRL-SHIFT-V
c_CTRL-T c_CTRL-U c_CTRL-V c_CTRL-W c_CTRL-Y c_CTRL-[c_CTRL-_CTRL-G
c_CTRL-_CTRL-N c_CTRL-_e c_CTRL-] c_CTRL-^ c_CTRL-_ c_Del c_Down c_End
c_Esc c_Home c_Insert c_Left c_Right c_Up c_ansi_constants c_ansi_typedefs
c_comment_strings c_curly_error c_digraph c_function_pointers c_functions
c_gnu c_no_ansi c_no_bracket_error c_no_bsd c_no_c11 c_no_c99 c_no_cformat
c_no_curly_error c_no_if0 c_no_tab_space_error c_no_trail_space_error
c_no_utf c_space_errors c_syntax_for_h c_wildchar call() carriage-return case
catch-all catch-errors catch-interrupt catch-order catch-text cc ceil()
cfilter-plugin ch.vim ch_canread() ch_close() ch_close_in() ch_evalexpr()
ch_evalraw() ch_getbufnr() ch_getjob() ch_info() ch_log() ch_logfile()
ch_open() ch_read() ch_readblob() ch_readraw() ch_sendexpr() ch_sendraw()
ch_setoptions() ch_status() change-list-jumps change-name change-tabs
change.txt changed-5.1 changed-5.2 changed-5.3 changed-5.4 changed-5.5
changed-5.6 changed-5.7 changed-5.8 changed-6.1 changed-6.2 changed-6.3
changed-6.4 changed-7.1 changed-7.2 changed-7.3 changed-7.4 changed-8.1
changed-8.2 changed-9.1 changed-9.2 changelist changelog.vim changenr()
changetick changing channel channel-address channel-callback channel-close
channel-close-in channel-commands channel-demo channel-drop channel-functions
channel-functions-details channel-mode channel-more channel-noblock
channel-onetime-callback channel-open channel-open-options channel-raw
channel-timeout channel-use channel.txt char-variable char2nr() characterwise
characterwise-register characterwise-visual charclass() charcol()
charconvert_from-variable charconvert_to-variable charidx() charity charset
charset-conversion chdir() chill.vim chmod cindent() cinkeys-format cino-#
cino-(cino-) cino-+ cino-/ cino-: cino-= cino-> cino-C cino-E cino-J cino-L
cino-M cino-N cino-P cino-U cino-W cino-^ cino-b cino-c cino-e cino-f cino-g
cino-h cino-i cino-j cino-k cino-l cino-m cino-n cino-p cino-star cino-t
cino-u cino-w cino-{ cino-} cinoptions-values class class-compile
class-method clear-undo clearmatches() client-server client-server-name
clientserver clipboard clipboard-autoselect clipboard-autoselectml
clipboard-autoselectplus clipboard-exclude clipboard-html clipboard-unnamed
clipboard-unnamedplus clojure-indent close_cb closure cmdarg-variable
cmdbang-variable cmdline-arguments cmdline-changed cmdline-completion
cmdline-editing cmdline-history cmdline-lines cmdline-ranges cmdline-special
cmdline-too-long cmdline-window cmdline.txt cmdwin cmdwin-char cobol.vim
codeset coding-style col() coldfusion.vim collapse collate-variable
color-schemes color-xterm coloring colorscheme-override colortest.vim
command-attributes command-block command-line-functions command-line-window
command-mode compatible-default compile-changes-5 compile-changes-6
compile-changes-7 compile-changes-8 compile-changes-9 compile-changes-9.2
compiler-compaqada compiler-decada compiler-dotnet compiler-gcc compiler-gnat
compiler-hpada compiler-manx compiler-perl compiler-pyunit compiler-select
compiler-tex compiler-vaxada compl-current compl-define compl-dictionary
compl-filename compl-function compl-generic compl-keyword compl-omni
compl-omni-filetypes compl-spelling compl-stop compl-tag compl-thesaurus
compl-thesaurusfunc compl-vim compl-whole-line complete() complete-functions
complete-item-kind complete-items complete-popup complete-popuphidden
complete-script-local-functions complete-set-option complete_CTRL-E
complete_CTRL-Y complete_add() complete_check() complete_info()
complete_info_mode completed_item-variable completion-functions

tags.txt — 4508

complex-change complex-repeat compress conceal confirm() connection-refused
console-menus constructor context.vim control conversion-server
convert-to-HTML convert-to-XHTML convert-to-XML
convert_legacy_function_to_vim9 copy() copy-diffs copy-move copying copyright
cos() cosh() count count() count-bytes count-items count-variable
count1-variable cp-default cpo cpo-! cpo-# cpo-$ cpo-% cpo-& cpo-+ cpo--
cpo-. cpo-/ cpo-; cpo-< cpo-> cpo-A cpo-B cpo-C cpo-D cpo-E cpo-F cpo-H cpo-I
cpo-J cpo-K cpo-L cpo-M cpo-O cpo-P cpo-R cpo-S cpo-W cpo-X cpo-Z cpo-\ cpo-a
cpo-b cpo-bar cpo-c cpo-d cpo-e cpo-f cpo-g cpo-i cpo-j cpo-k cpo-l cpo-m
cpo-n cpo-o cpo-p cpo-q cpo-r cpo-s cpo-star cpo-t cpo-u cpo-v cpo-w cpo-x
cpo-y cpo-{ cpp.vim crash-recovery creating-menus credits crontab cs-find
cs7-problem cscope cscope-commands cscope-find cscope-howtouse cscope-info
cscope-intro cscope-limitations cscope-options cscope-suggestions
cscope-win32 cscope_connection() cscopepathcomp cscopeprg cscopequickfix
cscoperelative cscopetag cscopetagorder cscopeverbose csh.vim cspc csprg csqf
csre cst csto csverb ctags ctags-gone cterm-colors ctrl ctype-variable
curly-braces-function-names curly-braces-names curpos-visual
current-directory current-file current_compiler cursor() cursor-blinking
cursor-down cursor-functions cursor-left cursor-motions cursor-position
cursor-right cursor-up cursor_down cursor_left cursor_right cursor_up cw
cweb.vim cynlib.vim d daB daW dab dap dart.vim das date-functions dav davs
daw dd debug-gcc debug-highlight debug-leaks debug-minidump debug-mode
debug-scripts debug-signs debug-vim debug-vs2005 debug-win32 debug-windbg
debug.txt debugbreak() debugger-compilation debugger-features
debugger-support debugger.txt dec-mouse decada_members deepcopy()
default-constructor defaults.vim defaults.vim-explained define-function
definition-search definitions delete() delete-insert delete-menus
deletebufline() deleting demoserver.py design-assumptions design-compatible
design-decisions design-documented design-flexible design-goals
design-improved design-maintain design-multi-platform design-not
design-speed-size desktop.vim develop-spell develop-spell-suggestions
develop.txt development dgn dh diB diW dialog dialogs-added dib dict
dict-functions dict-identity dict-modification did_filetype() diff diff()
diff-diffexpr diff-func-examples diff-mode diff-options diff-original-file
diff-patchexpr diff-slow diff.txt diff.vim diff_filler() diff_hlID()
diff_translations digraph digraph-arg digraph-encoding digraph-table
digraph-table-mbyte digraph.txt digraph_get() digraph_getlist() digraph_set()
digraph_setlist() digraphs digraphs-changed digraphs-default digraphs-define
digraphs-use dip dircolors.vim dis disable-menus discard dist#vim dist#vim9
distribute-script distributed-plugins distribution diw dl do doc-file-list
docbk.vim docbksgml.vim docbkxml.vim docbook documentation-6 donate dos
dos-:cd dos-CTRL-Break dos-backslash dos-colors dos-file-formats
dos-locations dos-powershell dos-pwsh dos-shell dos-standard-mappings
dos-temp-files dosbatch.vim double-click download doxygen-syntax doxygen.vim
dp drag-n-drop drag-n-drop-win32 drag-status-line drop_file dtd.vim dtd2vim
dying-variable e easy echoraw() echospace-variable edit-a-file edit-binary
edit-dialogs edit-files edit-intro edit-no-break edit-paragraph-join
edit-window editing.txt editorconfig-install efm-%> efm-entries efm-ignore
eiffel.vim elixir.vim emacs-keys emacs-tags emacs_tags empty() encoding-names
encoding-table encoding-values encryption end end-of-file
enlightened-terminal environ() eol-and-eof erlang.vim err_buf err_cb err_mode
err_modifiable err_msg err_name err_teapot() err_timeout errmsg-variable
error-file-format error-messages errorformat errorformat-Jikes
errorformat-LaTeX errorformat-Perl errorformat-ant errorformat-changed
errorformat-jade errorformat-javac errorformat-multi-line
errorformat-separate-filename errorformats errors errors-variable escape
escape() escape-bar euphoria3.vim euphoria4.vim euro euro-digraph eval eval()
eval-examples eval-sandbox eval.txt event-variable eventhandler() eview evim
evim-keys evim.vim ex ex-cmd-index ex-edit-index ex-flags ex: except-autocmd
except-autocmd-Cmd except-autocmd-Post except-autocmd-Pre except-autocmd-ill

tags.txt — 4509

except-compat except-examine except-from-finally except-hier-param
except-several-errors except-single-line except-syntax-err
except-syntax-error exception-handling exception-variable exclusive
exclusive-linewise executable() execute() execute-menus exepath() exim
exists() exists_compiled() exiting exiting-variable exp() expand() expand-env
expand-environment-var expandcmd() expr expr-! expr-!= expr-!=# expr-!=?
expr-!~ expr-!~# expr-!~? expr-$' expr-$quote expr-% expr-&& expr-' expr-+
expr-- expr-. expr-.. expr-/ expr-< expr-<# expr-<< expr-<= expr-<=# expr-<=?
expr-<? expr-== expr-==# expr-==? expr-=~ expr-=~# expr-=~? expr-> expr->#
expr->= expr->=# expr->=? expr->> expr->? expr-[:] expr-[] expr-barbar
expr-entry expr-env expr-env-expand expr-function expr-is expr-is# expr-is?
expr-isnot expr-isnot# expr-isnot? expr-lambda expr-nesting expr-number
expr-option expr-option-function expr-quote expr-register expr-star
expr-string expr-unary-+ expr-unary-- expr-variable expr1 expr10 expr11 expr2
expr3 expr4 expr5 expr6 expr7 expr8 expr9 expression expression-commands
expression-syntax exrc extend() extendnew() extends extension-removal
extensions-improvements f f-args-example false false-variable falsy
falsy-operator faq farsi farsi.txt fasm.vim fast-functions
fcs_choice-variable fcs_reason-variable feature-list feedkeys() fetch
file-browser-5.2 file-formats file-functions file-pattern file-read
file-searching file-type file-types file_readable() fileencoding-changed
filename-backslash filename-modifiers filereadable() filetype filetype-detect
filetype-ignore filetype-overrule filetype-plugin filetype-plugins
filetype.txt filetypedetect-changed filetypes filewritable() filler-lines
filter filter() find-manpage find-replace finddir() findfile() fixed-5.1
fixed-5.2 fixed-5.3 fixed-5.4 fixed-5.5 fixed-5.6 fixed-5.7 fixed-5.8
fixed-6.1 fixed-6.2 fixed-6.3 fixed-6.4 fixed-7.1 fixed-7.2 fixed-7.3
fixed-7.4 flatten() flattennew() flexwiki.vim float-e float-functions
float-pi float2nr() floating-point-format floating-point-precision floor()
fmod() fname-variable fname_diff-variable fname_in-variable
fname_new-variable fname_out-variable fnameescape() fnamemodify() fo-/ fo-1
fo-2 fo-B fo-M fo-] fo-a fo-b fo-c fo-j fo-l fo-m fo-n fo-o fo-p fo-q fo-r
fo-t fo-table fo-v fo-w fold-behavior fold-colors fold-commands
fold-create-marker fold-delete-marker fold-diff fold-expr fold-foldcolumn
fold-foldlevel fold-foldtext fold-indent fold-manual fold-marker fold-methods
fold-options fold-syntax fold.txt foldclosed() foldclosedend()
folddashes-variable foldend-variable folding folding-functions foldlevel()
foldlevel-variable folds foldstart-variable foldtext() foldtextresult()
font-sizes fontset forced-motion foreach() foreground() fork form.vim
format-bullet-list format-comments format-formatexpr formatOtherKeys
formatting forth.vim fortran.vim freebasic.vim freebasic_no_comment_fold
freebasic_operators freebasic_space_errors freebasic_type_suffixes friendship
frombook ft-abel-syntax ft-ada-commands ft-ada-constants ft-ada-functions
ft-ada-indent ft-ada-omni ft-ada-options ft-ada-plugin ft-ada-syntax
ft-ada-variables ft-ant-syntax ft-apache-syntax ft-asciidoc-plugin
ft-asm-syntax ft-asm68k-syntax ft-asmh8300-syntax ft-aspperl-syntax
ft-aspvbs-syntax ft-awk-plugin ft-bash-syntax ft-basic-syntax ft-c-omni
ft-c-syntax ft-ch-syntax ft-changelog-plugin ft-changelog-syntax
ft-chill-syntax ft-clojure-indent ft-clojure-syntax ft-cobol-syntax
ft-coldfusion-syntax ft-context ft-context-commands ft-context-intro
ft-context-mappings ft-context-settings ft-cpp-syntax ft-csh-syntax
ft-css-omni ft-cweb-syntax ft-cynlib-syntax ft-dart-syntax ft-dash-syntax
ft-desktop-syntax ft-dircolors-syntax ft-docbk-syntax ft-docbksgml-syntax
ft-docbkxml-syntax ft-dosbatch-syntax ft-dtd-syntax ft-eiffel-syntax
ft-elixir-syntax ft-erlang-syntax ft-euphoria-syntax ft-flexwiki-syntax
ft-form-syntax ft-forth-syntax ft-fortran-indent ft-fortran-plugin
ft-fortran-syntax ft-freebasic-plugin ft-freebasic-syntax ft-fvwm-syntax
ft-gitcommit-plugin ft-gprof-plugin ft-groff-syntax ft-gsp-syntax
ft-haskell-syntax ft-html-indent ft-html-omni ft-html-syntax ft-htmlos-syntax
ft-ia64-syntax ft-inform-syntax ft-java-syntax ft-javascript-omni

tags.txt — 4510

ft-json-plugin ft-json-syntax ft-ksh-syntax ft-lace-syntax ft-lex-syntax
ft-lifelines-syntax ft-lisp-syntax ft-lite-syntax ft-lpc-syntax ft-lua-syntax
ft-mail-plugin ft-mail.vim ft-make-syntax ft-man-plugin ft-maple-syntax
ft-markdown-plugin ft-markdown-syntax ft-masm-syntax ft-mathematica-syntax
ft-matlab-indent ft-metafont ft-metafont-intro ft-metafont-mappings
ft-metafont-settings ft-metapost ft-metapost-commands ft-metapost-intro
ft-metapost-mappings ft-metapost-settings ft-mma-syntax ft-modula2-syntax
ft-moo-syntax ft-msql-syntax ft-n1ql-syntax ft-nasm-syntax ft-ncf-syntax
ft-nroff-syntax ft-ocaml-syntax ft-papp-syntax ft-pascal-syntax ft-pdf-plugin
ft-perl-syntax ft-php-indent ft-php-omni ft-php-syntax ft-php3-syntax
ft-phtml-syntax ft-plaintex-syntax ft-posix-syntax ft-postscr-syntax
ft-ppwiz-syntax ft-printcap-syntax ft-progress-syntax ft-ptcap-syntax
ft-python-indent ft-python-plugin ft-python-syntax ft-qf-plugin
ft-quake-syntax ft-r-indent ft-r-syntax ft-readline-syntax ft-rego-syntax
ft-rexx-syntax ft-rmd-plugin ft-rmd-syntax ft-rnoweb-plugin ft-rrst-plugin
ft-rrst-syntax ft-rst-plugin ft-rst-syntax ft-ruby-omni ft-ruby-syntax
ft-rust ft-scheme-syntax ft-sdl-syntax ft-sed-syntax ft-sgml-syntax
ft-sh-indent ft-sh-syntax ft-spec-plugin ft-spup-syntax ft-sql ft-sql-omni
ft-sql-syntax ft-sqlanywhere-syntax ft-sqlinformix-syntax ft-squirrel-syntax
ft-syntax-omni ft-tcsh-syntax ft-termcap-syntax ft-tex-plugin ft-tex-syntax
ft-tf-syntax ft-vb-syntax ft-verilog-indent ft-vhdl-indent ft-vim-indent
ft-vim-plugin ft-vim-syntax ft-xf86conf-syntax ft-xhtml-omni ft-xml-omni
ft-xml-syntax ft-xpm-syntax ft-yaml-indent ft-yaml-syntax ft-zimbu-plugin
ft-zsh-syntax ft_ada.txt ft_context.txt ft_mp.txt ft_ps1.txt ft_raku.txt
ft_rust.txt ft_sql.txt ftdetect ftp ftplugin ftplugin-docs ftplugin-name
ftplugin-overrule ftplugin-special ftplugins fullcommand() funcref()
function() function-argument function-key function-list
function-range-example function-search-undo function_key functions
fuzzy-matching fvwm.vim fvwm2rc fvwmrc g g# g$ g& g' g'a g+ g, g- g0 g8 g:
g:NetrwTopLvlMenu g:Netrw_UserMaps g:Netrw_corehandler g:Netrw_funcref
g:actual_curbuf g:actual_curwin g:ada#Comment g:ada#Ctags_Kinds
g:ada#DotWordRegex g:ada#Keywords g:ada#WordRegex g:ada_abbrev
g:ada_all_tab_usage g:ada_begin_preproc g:ada_default_compiler
g:ada_extended_completion g:ada_extended_tagging g:ada_folding
g:ada_gnat_extensions g:ada_line_errors g:ada_no_tab_space_error
g:ada_no_trail_space_error g:ada_omni_with_keywords g:ada_rainbow_color
g:ada_space_errors g:ada_standard_types g:ada_with_gnat_project_files
g:ada_withuse_ordinary g:cargo_makeprg_params g:cargo_shell_command_runner
g:clojure_align_multiline_strings g:clojure_align_subforms
g:clojure_discard_macro g:clojure_fold g:clojure_fuzzy_indent
g:clojure_fuzzy_indent_blacklist g:clojure_fuzzy_indent_patterns
g:clojure_maxlines g:clojure_special_indent_words g:clojure_syntax_keywords
g:colors_name g:decada g:decada.Error_Format g:decada.Make()
g:decada.Make_Command g:decada.Unit_Name() g:filetype_csh g:filetype_r
g:ftplugin_rust_source_path g:gnat g:gnat.Error_Format g:gnat.Find()
g:gnat.Find_Program g:gnat.Make() g:gnat.Make_Command g:gnat.Pretty()
g:gnat.Pretty_Program g:gnat.Project_File g:gnat.Set_Project_File()
g:gnat.Tags() g:gnat.Tags_Command g:gzip_exec g:html_charset_override
g:html_diff_one_file g:html_dynamic_folds g:html_encoding_override
g:html_end_line g:html_expand_tabs g:html_font g:html_hover_unfold
g:html_id_expr g:html_ignore_conceal g:html_ignore_folding g:html_line_ids
g:html_no_doc g:html_no_foldcolumn g:html_no_invalid g:html_no_links
g:html_no_modeline g:html_no_pre g:html_no_progress g:html_number_lines
g:html_pre_wrap g:html_prevent_copy g:html_start_line g:html_use_css
g:html_use_encoding g:html_use_input_for_pc g:html_use_xhtml
g:html_whole_filler g:netrw_altfile g:netrw_alto g:netrw_altv g:netrw_banner
g:netrw_bannerbackslash g:netrw_browse_split g:netrw_browsex_support_remote
g:netrw_browsex_viewer g:netrw_bufsettings g:netrw_chgperm g:netrw_chgwin
g:netrw_clipboard g:netrw_compress g:netrw_ctags g:netrw_cursor
g:netrw_cygwin g:netrw_dav_cmd g:netrw_decompress g:netrw_dirhistmax

tags.txt — 4511

g:netrw_dynamic_maxfilenamelen g:netrw_errorlvl g:netrw_fastbrowse
g:netrw_fetch_cmd g:netrw_ffkeep g:netrw_file_cmd g:netrw_fname_escape
g:netrw_ftp g:netrw_ftp_browse_reject g:netrw_ftp_cmd g:netrw_ftp_list_cmd
g:netrw_ftp_options g:netrw_ftp_sizelist_cmd g:netrw_ftp_timelist_cmd
g:netrw_ftpextracmd g:netrw_ftpmode g:netrw_glob_escape g:netrw_gx
g:netrw_hide g:netrw_home g:netrw_http_cmd g:netrw_http_put_cmd
g:netrw_http_xcmd g:netrw_ignorenetrc g:netrw_keepdir g:netrw_keepj
g:netrw_list_cmd g:netrw_list_cmd_options g:netrw_list_hide g:netrw_liststyle
g:netrw_localcopycmd g:netrw_localcopycmdopt g:netrw_localcopydircmd
g:netrw_localcopydircmdopt g:netrw_localmkdir g:netrw_localmkdiropt
g:netrw_localmovecmd g:netrw_localmovecmdopt g:netrw_maxfilenamelen
g:netrw_menu g:netrw_mkdir_cmd g:netrw_mousemaps g:netrw_nobeval g:netrw_nogx
g:netrw_preview g:netrw_rcp_cmd g:netrw_remote_mkdir g:netrw_rename_cmd
g:netrw_retmap g:netrw_rm_cmd g:netrw_rmdir_cmd g:netrw_rmf_cmd
g:netrw_rsync_cmd g:netrw_rsync_sep g:netrw_scp_cmd g:netrw_scpport
g:netrw_sepchr g:netrw_servername g:netrw_sftp_cmd g:netrw_silent
g:netrw_sizestyle g:netrw_sort_by g:netrw_sort_direction g:netrw_sort_options
g:netrw_sort_sequence g:netrw_special_syntax g:netrw_ssh_browse_reject
g:netrw_ssh_cmd g:netrw_sshport g:netrw_suppress_gx_mesg g:netrw_timefmt
g:netrw_tmpfile_escape g:netrw_uid g:netrw_use_errorwindow g:netrw_use_noswf
g:netrw_use_nt_rcp g:netrw_usetab g:netrw_win95ftp g:netrw_winsize
g:netrw_wiw g:netrw_xstrlen g:no_mail_maps g:no_plugin_maps g:plugin_exec
g:rust_bang_comment_leader g:rust_cargo_avoid_whole_workspace
g:rust_cargo_check_all_features g:rust_cargo_check_all_targets
g:rust_cargo_check_benches g:rust_cargo_check_examples
g:rust_cargo_check_tests g:rust_clip_command g:rust_conceal
g:rust_conceal_mod_path g:rust_conceal_pub g:rust_fold
g:rust_keep_autopairs_default g:rust_playpen_url g:rust_recommended_style
g:rust_shortener_url g:rust_use_custom_ctags_defs g:rustc_makeprg_no_percent
g:rustc_path g:rustfmt_autosave g:rustfmt_autosave_if_config_present
g:rustfmt_command g:rustfmt_emit_files g:rustfmt_fail_silently
g:rustfmt_options g:statusline_winid g:syntax_on g:tar_browseoptions
g:tar_cmd g:tar_copycmd g:tar_extractcmd g:tar_nomax g:tar_readoptions
g:tar_secure g:tar_writeoptions g:termdebug_config g:termdebugger
g:terminal_ansi_colors g:tex_comment_nospell g:tex_conceal g:tex_fast
g:tex_flavor g:tex_fold_enabled g:tex_isk g:tex_matchcheck g:tex_no_error
g:tex_nospell g:tex_stylish g:tex_subscripts g:tex_superscripts
g:tex_verbspell g:var g:vim_indent g:vim_indent_cont g:vimball_home
g:vimball_mkdir g:vimsyn_embed g:vimsyn_folding g:vimsyn_maxlines
g:vimsyn_minlines g:vimsyn_noerror g:yaml_schema g:zipPlugin_ext g:zip_exec
g:zip_extractcmd g:zip_nomax g:zip_shq g:zip_unzipcmd g:zip_zipcmd g; g<
g<Down> g<End> g<Home> g<LeftMouse> g<RightMouse> g<Tab> g<Up> g<kEnd> g? g??
g?g? g@ gD gE gF gH gI gJ gM gN gP gQ gR gT gU gUU gUgU gV g] g^ g_ g_CTRL-A
g_CTRL-G g_CTRL-H g_CTRL-] g` g`a ga garbagecollect() gd gdb gdb-version ge
gender-neutral get() get-ms-debuggers getbufinfo() getbufline()
getbufoneline() getbufvar() getcellwidths() getchangelist() getchar()
getcharmod() getcharpos() getcharsearch() getcharstr() getcmdcompltype()
getcmdline() getcmdpos() getcmdscreenpos() getcmdtype() getcmdwintype()
getcompletion() getcurpos() getcursorcharpos() getcwd() getenv()
getfontname() getfperm() getfsize() getftime() getftype() getimstatus()
getjumplist() getlatestvimscripts-install getline() getloclist()
getmarklist() getmatches() getmousepos() getmouseshape() getpid() getpos()
getqflist() getqflist-examples getreg() getreginfo() getregion()
getregion-notes getregtype() getscript getscript-autoinstall getscript-data
getscript-history getscript-plugins getscript-start getscriptinfo()
gettabinfo() gettabvar() gettabwinvar() gettagstack() gettext() getwininfo()
getwinpos() getwinposx() getwinposy() getwinvar() gex gf gg gh gi gj gk
glob() glob2regpat() global-ime global-local global-variable
global_markfilelist globpath() glvs glvs-alg glvs-algorithm glvs-autoinstall
glvs-contents glvs-copyright glvs-data glvs-dist-install glvs-hist

tags.txt — 4512

glvs-install glvs-options glvs-plugins glvs-usage gm gn
gnat#Insert_Tags_Header() gnat#New() gnat-xref gnat_members gnome-session go
gp gpm-mouse gq gqap gqgq gqq gr graphic-option-gone greek grep groff.vim
gross-national-happiness group-name gs gsp.vim gstar gt gtk-css
gtk-tooltip-colors gtk3-slow gu gugu gui gui-IME gui-clipboard gui-colors
gui-extras gui-font gui-fontwide gui-footer gui-fork gui-functions gui-gnome
gui-gnome-session gui-gtk gui-gtk-socketid gui-horiz-scroll gui-init gui-kde
gui-mouse gui-mouse-focus gui-mouse-mapping gui-mouse-modeless gui-mouse-move
gui-mouse-select gui-mouse-status gui-mouse-various gui-pty gui-pty-erase
gui-resources gui-scrollbars gui-selections gui-shell gui-shell-win32
gui-start gui-toolbar gui-vert-scroll gui-w32 gui-w32-cmdargs gui-w32-dialogs
gui-w32-printing gui-w32-start gui-w32-various gui-w32-windowid gui-w32s
gui-wayland gui-win32-maximized gui-x11 gui-x11-athena gui-x11-compiling
gui-x11-gtk gui-x11-kde gui-x11-misc gui-x11-motif gui-x11-neXtaw
gui-x11-printing gui-x11-start gui-x11-various gui.txt gui_running
gui_w32.txt gui_x11.txt guifontwide_gtk guifontwide_win_mbyte guu gv gview
gvim gvimdiff gvimrc gw gwgw gww gzip gzip-autocmd gzip-example gzip-helpfile
g~ g~g~ g~~ h haiku-bugs haiku-colors haiku-compiling haiku-dragndrop
haiku-fonts haiku-general haiku-gui haiku-launch haiku-meta haiku-mouse
haiku-support-credits haiku-toolbar-images haiku-user-settings-dir
haiku-vimdir hangul hangulin.txt has() has-patch has-python has-pythonx
has_key() haskell.vim haslocaldir() hasmapto() hebrew hebrew.txt help
help-buffer-options help-context help-curwin help-summary help-tags
help-translated help-writing help-xterm-window help.txt helphelp helphelp.txt
hex-editing hex-number hidden-buffer hidden-changed hidden-menus
hidden-options hidden-quit highlight-args highlight-changed highlight-clear
highlight-cterm highlight-ctermbg highlight-ctermfg highlight-ctermfont
highlight-ctermul highlight-default highlight-font highlight-groups
highlight-gui highlight-guibg highlight-guifg highlight-guisp highlight-start
highlight-stop highlight-term highlightID() highlight_exists()
highlighting-functions hist-names histadd() histdel() histget() histnr()
history history-functions hit-enter hit-enter-prompt hit-return hitest.vim
hjkl hl-ColorColumn hl-Conceal hl-CurSearch hl-Cursor hl-CursorColumn
hl-CursorIM hl-CursorLine hl-CursorLineFold hl-CursorLineNr hl-CursorLineSign
hl-DiffAdd hl-DiffChange hl-DiffDelete hl-DiffText hl-Directory
hl-EndOfBuffer hl-ErrorMsg hl-FoldColumn hl-Folded hl-Ignore hl-IncSearch
hl-LineNr hl-LineNrAbove hl-LineNrBelow hl-MatchParen hl-Menu
hl-MessageWindow hl-ModeMsg hl-MoreMsg hl-NonText hl-Normal hl-Pmenu
hl-PmenuExtra hl-PmenuExtraSel hl-PmenuKind hl-PmenuKindSel hl-PmenuSbar
hl-PmenuSel hl-PmenuThumb hl-PopupNotification hl-Question hl-QuickFixLine
hl-Scrollbar hl-Search hl-SignColumn hl-SpecialKey hl-SpellBad hl-SpellCap
hl-SpellLocal hl-SpellRare hl-StatusLine hl-StatusLineNC hl-StatusLineTerm
hl-StatusLineTermNC hl-TOhtmlProgress hl-TabLine hl-TabLineFill hl-TabLineSel
hl-Terminal hl-Title hl-ToolbarButton hl-ToolbarLine hl-Tooltip hl-User1
hl-User1..9 hl-User9 hl-VertSplit hl-Visual hl-VisualNOS hl-WarningMsg
hl-WildMenu hl-debugBreakpoint hl-debugPC hl-lCursor hlID() hlexists()
hlget() hlsearch-variable hlset() holy-grail home home-replace hostname()
how-do-i how-to howdoi howto howto.txt hpterm hpterm-color html-flavor
html-folding html-indent html-indenting html.vim htmlos.vim http i i' i(i)
i< i> iB iBus iW i[i] i_0_CTRL-D i_<BS> i_<C-End> i_<C-Home> i_<C-Left>
i_<C-PageDown> i_<C-PageUp> i_<C-Right> i_<CR> i_ i_<Down> i_<End>
i_<Esc> i_<F1> i_<Help> i_<Home> i_<Insert> i_<Left> i_<LeftMouse> i_<NL>
i_<PageDown> i_<PageUp> i_<Right> i_<S-Down> i_<S-Left> i_<S-Right>
i_<S-ScrollWheelDown> i_<S-ScrollWheelLeft> i_<S-ScrollWheelRight>
i_<S-ScrollWheelUp> i_<S-Up> i_<ScrollWheelDown> i_<ScrollWheelLeft>
i_<ScrollWheelRight> i_<ScrollWheelUp> i_<Tab> i_<Up> i_BS i_CTRL-<PageDown>
i_CTRL-<PageUp> i_CTRL-@ i_CTRL-A i_CTRL-B-gone i_CTRL-C i_CTRL-D i_CTRL-E
i_CTRL-F i_CTRL-G_<Down> i_CTRL-G_<Up> i_CTRL-G_CTRL-J i_CTRL-G_CTRL-K
i_CTRL-G_U i_CTRL-G_j i_CTRL-G_k i_CTRL-G_u i_CTRL-H i_CTRL-I i_CTRL-J
i_CTRL-K i_CTRL-L i_CTRL-M i_CTRL-N i_CTRL-O i_CTRL-P i_CTRL-Q i_CTRL-R

tags.txt — 4513

i_CTRL-R_- i_CTRL-R_= i_CTRL-R_CTRL-O i_CTRL-R_CTRL-P i_CTRL-R_CTRL-R
i_CTRL-SHIFT-Q i_CTRL-SHIFT-V i_CTRL-T i_CTRL-U i_CTRL-V i_CTRL-V_digit
i_CTRL-W i_CTRL-X i_CTRL-X_CTRL-D i_CTRL-X_CTRL-E i_CTRL-X_CTRL-F
i_CTRL-X_CTRL-I i_CTRL-X_CTRL-K i_CTRL-X_CTRL-L i_CTRL-X_CTRL-N
i_CTRL-X_CTRL-O i_CTRL-X_CTRL-P i_CTRL-X_CTRL-S i_CTRL-X_CTRL-T
i_CTRL-X_CTRL-U i_CTRL-X_CTRL-V i_CTRL-X_CTRL-Y i_CTRL-X_CTRL-Z
i_CTRL-X_CTRL-] i_CTRL-X_index i_CTRL-X_s i_CTRL-Y i_CTRL-Z i_CTRL-[
i_CTRL-_CTRL-G i_CTRL-_CTRL-N i_CTRL-_CTRL-O i_CTRL-] i_CTRL-^ i_CTRL-_
i_DEL i_Tab i_^_CTRL-D i_backspacing i_digraph i_esc i` ia64.vim ib iccf
iccf-donations icon-changed iconise iconize iconv() iconv-dynamic
ident-search idl-syntax idl.vim if_cscop.txt if_lua.txt if_mzsch.txt
if_ole.txt if_perl.txt if_pyth.txt if_ruby.txt if_sniff.txt if_tcl.txt
ignore-errors ignore-timestamp implements import-autoload import-legacy
import-map improved-autocmds-5.4 improved-quickfix improved-sessions
improved-viminfo improvements-5 improvements-6 improvements-7 improvements-8
improvements-9 improvements-9.2 in_bot in_buf in_io-buffer in_mode in_name
in_top inactive-buffer include-search inclusion inclusive incomp-small-6
incompatible-5 incompatible-6 incompatible-7 incompatible-8 incompatible-9
incompatible-9.2 indent() indent-expression indent.txt indentkeys-format
index index() index.txt indexof() info-message inform.vim informix
initialization inline-function input() inputdialog() inputlist()
inputrestore() inputsave() inputsecret() ins-completion ins-completion-menu
ins-expandtab ins-reverse ins-smarttab ins-softtabstop ins-special-keys
ins-special-special ins-textwidth insert insert() insert-index insert.txt
insert_expand inserting inserting-ex inserting-file insertmode-variable
install install-home install-registry instanceof() intel-itanium
intellimouse-wheel-problems interactive-functions interfaces-5.2
internal-error internal-variables internal-wordlist internet
interpolated-string interrupt() intro intro.txt inverse invert() ip iquote is
isabsolutepath() isdirectory() isinf() islocked() isnan() it italic items()
iw i{ i} j java-cinoptions java-indenting java.vim javascript-cinoptions
javascript-indenting job job-callback job-channel-overview job-close_cb
job-control job-drop job-err_cb job-err_io job-exit_cb job-functions
job-functions-details job-in_io job-noblock job-options job-out_cb job-out_io
job-start job-start-if-needed job-start-nochannel job-stoponexit job-term
job-timeout job_getchannel() job_info() job_setoptions() job_start()
job_status() job_stop() join() js_decode() js_encode() jsbterm-mouse json.vim
json_decode() json_encode() jtags jump-motions jumplist jumplist-stack
jumpto-diffs k kcc kde key-codes key-codes-changed key-mapping key-notation
key-variable keycodes keymap-accents keymap-file-format keymap-hebrew
keypad-0 keypad-9 keypad-comma keypad-divide keypad-end keypad-enter
keypad-home keypad-minus keypad-multiply keypad-page-down keypad-page-up
keypad-plus keypad-point keys() keytrans() kitty-keyboard-protocol
kitty-terminal known-bugs l l: l:var lCursor lace.vim lambda lang-variable
language-mapping language-server-protocol last-pattern last-position-jump
last_buffer_nr() latex-syntax lc_time-variable lcs-conceal lcs-eol
lcs-extends lcs-lead lcs-leadmultispace lcs-multispace lcs-nbsp lcs-precedes
lcs-space lcs-tab lcs-trail left-right-motions legacy-import len() less
letter lex.vim lhaskell.vim libcall() libcallnr() license lid lifelines.vim
limits line() line-continuation line-continuation-comment line2byte()
linefeed linewise linewise-register linewise-visual lisp.vim lispindent()
list list-concatenation list-functions list-identity list-index
list-modification list-repeat list2blob() list2str() listener_add()
listener_flush() listener_remove() lite.vim literal-Dict literal-string
lnum-variable load-plugins load-vim-script local-additions local-function
local-noglobal local-options local-variable local-variables
local_markfilelist locale locale-name localtime() location-list
location-list-file-window location-list-window log() log10() logiPat
logiPat-arg logiPat-caveat logiPat-cmd logiPat-contents logiPat-copyright
logiPat-examples logiPat-history logiPat-input logiPat-man logiPat-manual

tags.txt — 4514

logiPat-operators logiPat-pattern long-lines love lowercase lpc.vim lua
lua-blob lua-buffer lua-commands lua-dict lua-dynamic lua-eval lua-funcref
lua-list lua-luaeval lua-vim lua-vim-variables lua-window lua.vim luaeval() m
m' m< m> m[m] m` mac mac-bug mac-compile mac-darwin-feature mac-faq
mac-filename mac-lack mac-standard-mappings mac-vimfile macintosh macro
mail-list mail.vim maillist maillist-archive make.vim man.vim manpager.vim
manual-copyright map() map-<SID> map-CTRL-C map-ambiguous map-backslash
map-backtick map-bar map-comments map-empty-rhs map-error map-examples
map-keys-fails map-listing map-modes map-multibyte map-overview
map-precedence map-return map-self-destroy map-space_in_lhs map-space_in_rhs
map-table map-trailing-white map-typing map-which-keys map.txt map_CTRL-C
map_backslash map_bar map_empty_rhs map_return map_space_in_lhs
map_space_in_rhs maparg() mapcheck() maple.vim mapleader maplist()
maplocalleader mapmode-c mapmode-i mapmode-ic mapmode-l mapmode-n mapmode-nvo
mapmode-o mapmode-s mapmode-t mapmode-v mapmode-x mapnew() mapping
mapping-dict mapping-functions mapset() mark mark-functions mark-motions
markfilelist masm.vim match() match-highlight match-parens match-pattern
matchadd() matchaddpos() matcharg() matchbufline() matchdelete() matchend()
matchfuzzy() matchfuzzypos() matchit-install matchlist() matchparen
matchstr() matchstrlist() matchstrpos() matlab-indent matlab-indenting max()
maxcol-variable mbyte-IME mbyte-XIM mbyte-combining mbyte-composing
mbyte-conversion mbyte-encoding mbyte-first mbyte-fonts-MSwin mbyte-fonts-X11
mbyte-func mbyte-keymap mbyte-locale mbyte-options mbyte-terminal mbyte-utf8
mbyte.txt menu-changes-5.4 menu-examples menu-priority menu-separator
menu-shortcut menu-text menu-tips menu.vim menu_info() menus merge
message-history message.txt messages meta method mf.vim min() missing-options
mkdir() mlang.txt mma.vim mode() mode-Ex mode-cmdline mode-ins-repl
mode-replace mode-switching modeless-and-clipboard modeless-selection
modeline modeline-local modeline-version modifyOtherKeys modula2.vim
modula2_iso_allow_lowline modula2_iso_disallow_octals
modula2_iso_disallow_synonyms modula2_pim_allow_lowline
modula2_pim_disallow_octals modula2_pim_disallow_synonyms
modula2_r10_allow_lowline moo.vim more-compatible more-prompt more-variables
motif-intellimouse motion-count-multiplied motion.txt mouse-mode-table
mouse-overview mouse-reporting mouse-scrolling-off mouse-swap-buttons
mouse-using mouse_col-variable mouse_lnum-variable mouse_win-variable
mouse_winid-variable movement mp.vim ms-dos msdos msql.vim mswin.vim
multi-byte multi-lang multi-repeat multibyte multibyte-ime multibyte-input
multilang multilang-menus multilang-messages multilang-scripts
multiple-constructors myfiletypefile myscriptsfile mysql mysyntaxfile
mysyntaxfile-add mysyntaxfile-replace mzeval() mzscheme mzscheme-buffer
mzscheme-commands mzscheme-dynamic mzscheme-examples mzscheme-funcref
mzscheme-mzeval mzscheme-sandbox mzscheme-setup mzscheme-threads mzscheme-vim
mzscheme-vimext mzscheme-window n n1ql.vim nasm.vim navigation nb-commands
nb-events nb-functions nb-messages nb-protocol_errors nb-special nb-terms
ncf.vim netbeans netbeans-commands netbeans-configure netbeans-debugging
netbeans-download netbeans-integration netbeans-intro netbeans-keybindings
netbeans-messages netbeans-parameters netbeans-preparation netbeans-problems
netbeans-protocol netbeans-run netbeans-setup netbeans-support netbeans-xpm
netbeans.txt netreadfixup netrw netrw-% netrw-- netrw-:Explore
netrw-:Hexplore netrw-:Lexplore netrw-:MF netrw-:MT netrw-:NetrwC
netrw-:NetrwMB netrw-:Rexplore netrw-:Sexplore netrw-:Texplore
netrw-:Vexplore netrw-C netrw-D netrw-I netrw-O netrw-P netrw-P18 netrw-P19
netrw-P20 netrw-P21 netrw-P22 netrw-R netrw-S netrw-Tb netrw-Th netrw-U
netrw-X netrw-a netrw-activate netrw-bookmark netrw-bookmarks netrw-browse
netrw-browse-cmds netrw-browse-maps netrw-browser netrw-browser-options
netrw-browser-settings netrw-browser-var netrw-browsing netrw-c-tab netrw-cB
netrw-cadaver netrw-call netrw-cb netrw-cd netrw-chgup netrw-clean
netrw-contents netrw-copyright netrw-cr netrw-createfile netrw-credits
netrw-ctrl-h netrw-ctrl-l netrw-ctrl-r netrw-ctrl_l netrw-curdir netrw-d

tags.txt — 4515

netrw-debug netrw-del netrw-delete netrw-dir netrw-dirlist netrw-downdir
netrw-edithide netrw-editwindow netrw-enter netrw-ex netrw-explore
netrw-explore-cmds netrw-expose netrw-externapp netrw-file netrw-filigree
netrw-fixup netrw-ftp netrw-ftype netrw-gb netrw-gd netrw-getftype netrw-gf
netrw-gh netrw-gitignore netrw-gn netrw-gp netrw-grep netrw-gx netrw-handler
netrw-help netrw-hexplore netrw-hide netrw-hiding netrw-history netrw-horiz
netrw-i netrw-incompatible netrw-internal-variables netrw-intro-browse
netrw-leftmouse netrw-lexplore netrw-list netrw-listbookmark netrw-listhack
netrw-login netrw-mA netrw-mB netrw-mF netrw-mT netrw-mX netrw-ma netrw-mb
netrw-mc netrw-md netrw-me netrw-mf netrw-mg netrw-mh netrw-middlemouse
netrw-ml_get netrw-mm netrw-modify netrw-mouse netrw-move netrw-mp netrw-mr
netrw-ms netrw-mt netrw-mu netrw-mv netrw-mx netrw-mz netrw-netrc
netrw-newfile netrw-nexplore netrw-noload netrw-nread netrw-ntree
netrw-nwrite netrw-o netrw-obtain netrw-options netrw-p netrw-p1 netrw-p10
netrw-p11 netrw-p12 netrw-p13 netrw-p14 netrw-p15 netrw-p16 netrw-p17
netrw-p2 netrw-p3 netrw-p4 netrw-p5 netrw-p6 netrw-p7 netrw-p8 netrw-p9
netrw-passwd netrw-password netrw-path netrw-pexplore netrw-preview
netrw-problems netrw-protocol netrw-prvwin netrw-pscp netrw-psftp netrw-putty
netrw-qF netrw-qL netrw-qb netrw-qf netrw-quickcom netrw-quickcoms
netrw-quickhelp netrw-quickmap netrw-quickmaps netrw-r netrw-read netrw-ref
netrw-refresh netrw-rename netrw-reverse netrw-rexplore netrw-rightmouse
netrw-s netrw-s-cr netrw-settings netrw-settings-window netrw-sexplore
netrw-sort netrw-sort-sequence netrw-sortsequence netrw-source netrw-ssh-hack
netrw-star netrw-starpat netrw-starstar netrw-starstarpat netrw-start netrw-t
netrw-texplore netrw-todo netrw-trailingslash netrw-transparent netrw-u
netrw-updir netrw-urls netrw-usermaps netrw-userpass netrw-v netrw-var
netrw-variables netrw-vexplore netrw-windows-netrc netrw-windows-s
netrw-write netrw-x netrw-xfer netrw.vim netrw_filehandler netterm-mouse
network new() new-5 new-6 new-7 new-8 new-9 new-GTK-GUI new-MzScheme
new-Select-mode new-View new-argument-list new-buftype new-cmdwin
new-color-schemes new-colorschemes-9 new-commands new-commands-5.4
new-conceal new-debug-itf new-debug-mode new-debug-support
new-define-operator new-diff-mode new-encryption new-evim new-ex-commands-5.2
new-file-browser new-file-writing new-filetype new-filetype-5.4
new-filetype-plugins new-filetype-scripts new-folding new-functions-5.2
new-global-values new-highlighting new-indent-flex new-items-6 new-items-7
new-items-8 new-items-9 new-line-continuation new-location-list new-lua
new-manpage-trans new-map-expression new-map-select new-more-encryption
new-more-highlighting new-more-unicode new-multi-byte new-multi-lang
new-multibyte new-netrw-explore new-network-files new-omni-completion
new-onemore new-operator-mod new-options-5.2 new-options-5.4 new-other-8.2
new-other-9.1 new-other-9.2 new-perl-python new-persistent-undo new-plugins
new-popup-compl new-popup-window new-posix new-print-multibyte new-printing
new-python3 new-regexp-engine new-runtime-dir new-script new-script-5.4
new-scroll-back new-search-path new-searchpat new-session-files new-spell
new-style-testing new-tab-pages new-terminal-window new-text-properties
new-undo-branches new-unlisted-buffers new-user-defined new-user-manual
new-utf-8 new-vertsplit new-vim-script new-vim-script-8 new-vim-script-9
new-vim-server new-vimgrep new-vimscript-8.2 new-virtedit news nextnonblank()
no-eval-feature no-type-checking no_buffers_menu no_mail_maps no_plugin_maps
nocombine non-greedy non-zero-arg none-function_argument none-variable
normal-index not-compatible not-edited notation notepad nr2char() nroff.vim
null null-anomalies null-compare null-details null-variable null-variables
null_blob null_channel null_class null_dict null_function null_job null_list
null_object null_partial null_string number_relativenumber numbered-function
numbermax-variable numbermin-variable numbersize-variable o o_CTRL-V o_V
o_object-select o_v object object-const-variable object-empty()
object-final-variable object-len() object-motions object-select
object-string() objects obtaining-exted ocaml.vim octal octal-nrformats
octal-number old-style-testing oldfiles-variable ole-activation ole-eval

tags.txt — 4516

ole-gethwnd ole-interface ole-methods ole-normal ole-registration
ole-sendkeys ole-setforeground omap-info omni-sql-completion online-help
opening-window operator operator-doubled operator-pending-index
operator-variable option-backslash option-list option-summary
option-value-function option-window option_restore() option_save()
optional-function-argument options options-changed options-in-terminal
options.txt optwin or() oracle os2 os390 os_390.txt os_amiga.txt os_beos.txt
os_dos.txt os_haiku.txt os_mac.txt os_mint.txt os_msdos.txt os_os2.txt
os_qnx.txt os_risc.txt os_unix.txt os_vms.txt os_win32.txt other-features
out_buf out_cb out_io-buffer out_mode out_modifiable out_msg out_name
out_timeout p pack-add package-create packages packload-two-steps page-down
page-up page_down page_up pager papp.vim paragraph partial pascal.vim
patches-8 patches-8.1 patches-8.2 patches-9 patches-9.1 patches-9.2
patches-after-8.2 patches-after-9.0 patches-after-9.1 pathshorten() pattern
pattern-atoms pattern-delimiter pattern-multi-byte pattern-multi-items
pattern-multibyte pattern-overview pattern-searches pattern.txt
patterns-composing pdev-option peace penc-option perl perl-Append perl-Blob
perl-Buffer perl-Buffers perl-Count perl-Delete perl-DoCommand perl-Eval
perl-Get perl-GetCursor perl-Msg perl-Name perl-Number perl-Set
perl-SetHeight perl-SetOption perl-Windows perl-compiling perl-dynamic
perl-editing perl-overview perl-patterns perl-using perl.vim perleval()
persistent-undo pexpr-option pfn-option pheader-option photon-fonts
photon-gui php-comment php-indent php-indenting php.vim php3.vim phtml.vim
pi_getscript.txt pi_gzip.txt pi_logipat.txt pi_netrw.txt pi_paren.txt
pi_spec.txt pi_tar.txt pi_vimball.txt pi_zip.txt pkzip plaintex.vim plsql
plugin plugin-details plugin-filetype plugin-special plugin_exec
plugin_name.txt pmbcs-option pmbfn-option popt-option popup popup-buffer
popup-callback popup-close popup-examples popup-filter popup-filter-errors
popup-filter-mode popup-function-details popup-functions popup-intro
popup-mapping popup-mask popup-menu popup-menu-added popup-position
popup-props popup-scrollbar popup-terminal popup-textprop-pos popup-usage
popup-window popup-window-functions popup.txt popup_atcursor() popup_beval()
popup_beval_example popup_clear() popup_close() popup_create()
popup_create-arguments popup_dialog() popup_dialog-example
popup_filter_menu() popup_filter_yesno() popup_findecho() popup_findinfo()
popup_findpreview() popup_getoptions() popup_getpos() popup_hide()
popup_list() popup_locate() popup_menu() popup_menu-shortcut-example
popup_move() popup_notification() popup_setoptions() popup_settext()
popup_show() popupmenu-completion popupmenu-keys popupwin ports-5.2 ports-6
posix posix-compliance posix-screen-size postgresql postscr.vim
postscript-cjk-printing postscript-print-encoding postscript-print-trouble
postscript-print-util postscript-printing pow() ppwiz.vim press-enter
press-return prevcount-variable preview-popup preview-window prevnonblank()
print-intro print-options print.txt printf() printf-$ printf-% printf-B
printf-E printf-G printf-S printf-X printf-b printf-c printf-d printf-e
printf-f printf-g printf-o printf-s printf-x printing printing-formfeed
profile profiling profiling-variable progname-variable progpath-variable
progress.vim prompt-buffer prompt_getprompt() prompt_setcallback()
prompt_setinterrupt() prompt_setprompt() promptbuffer-functions pronounce
prop_add() prop_add_list() prop_clear() prop_find() prop_list() prop_remove()
prop_type_add() prop_type_change() prop_type_delete() prop_type_get()
prop_type_list() protected-method protected-variable ps1-about ps1-compiler
ps1-folding ps1-keyword ps1-syntax psql ptcap.vim pterm-mouse public-variable
pum_getpos() pumvisible() put put-Visual-mode py3eval() pyeval() python
python-.locked python-2-and-3 python-Dictionary python-Function python-List
python-VIM_SPECIAL_PATH python-_get_paths python-bindeval
python-bindeval-objects python-buffer python-buffers python-building
python-chdir python-command python-commands python-current python-dynamic
python-environment python-error python-eval python-examples python-fchdir
python-find_module python-foreach_rtp python-input python-options

tags.txt — 4517

python-output python-path_hook python-pyeval python-range python-special-path
python-stable python-stable-abi python-strwidth python-tabpage
python-tabpages python-vars python-vim python-vvars python-window
python-windows python.vim python2-directory python3 python3-directory
python3-stable-abi python3-version-variable python_x
python_x-special-comments pythonx pythonx-directory pyxeval() q
q-args-example q/ q: q? qf.vim qnx qnx-compiling qnx-general qnx-terminal
quake.vim quickfix quickfix-6 quickfix-ID quickfix-buffer
quickfix-changedtick quickfix-context quickfix-directory-stack
quickfix-error-lists quickfix-functions quickfix-gcc quickfix-index
quickfix-manx quickfix-parse quickfix-perl quickfix-size quickfix-title
quickfix-valid quickfix-window quickfix-window-ID quickfix-window-function
quickfix.txt quickref quickref.txt quote quote# quote% quote+ quote- quote.
quote/ quote0 quote1 quote2 quote3 quote4 quote9 quote: quote= quote_ quote_#
quote_% quote_- quote_. quote_/ quote_: quote_= quote_alpha quote_number
quote_quote quote_~ quotea quotecommandquote quoteplus quotequote quotes
quotes.txt quotestar quote~ r r.vim raku-unicode rand() random range()
raw-terminal-mode rcp read-in-close-cb read-messages read-only-share
read-only-variable read-stdin readblob() readdir() readdirex() readfile()
readline.vim recording recover.txt recovery recursive_mapping redo
redo-register reduce() ref reference reference_toc reg_executing()
reg_recording() regexp regexp-changes-5.4 register register-faq
register-functions register-variable registers rego.vim regular-expression
reload reltime() reltimefloat() reltimestr() remote.txt remote_expr()
remote_foreground() remote_peek() remote_read() remote_send()
remote_startserver() remove() remove-filetype remove-option-flags rename()
rename-files repeat() repeat.txt repeating replacing replacing-ex
reselect-Visual resolve() restore-cursor restore-position restricted-mode
retab-example rethrow reverse() rexx.vim rgb.txt rgview rgvim right-justify
rileft rileft.txt riscos rmd.vim rot13 round() rrst.vim rst.vim rsync ruby
ruby-blob ruby-buffer ruby-command ruby-commands ruby-dynamic ruby-evaluate
ruby-globals ruby-message ruby-rubyeval ruby-set_option ruby-vim ruby-window
ruby.vim ruby_fold ruby_foldable_groups ruby_minlines ruby_no_expensive
ruby_operators ruby_space_errors ruby_spellcheck_strings rubyeval() russian
russian-intro russian-issues russian-keymap russian-l18n russian.txt rust
rust-auto-pairs rust-commands rust-intro rust-mappings rust-settings
rust-syntastic rview rvim rxvt s s/\& s/\0 s/\1 s/\2 s/\3 s/\9 s/\<CR> s/\=
s/\E s/\L s/\U s/\\ s/\b s/\e s/\l s/\n s/\r s/\t s/\u s/\~ s:netrw_passwd
s:var s<CR> sandbox sandbox-option save-file save-settings scheme.vim scp
scratch-buffer screenattr() screenchar() screenchars() screencol()
screenpos() screenrow() screenstring() script script-here script-local
script-variable scriptnames-dictionary scriptout-changed scriptversion
scriptversion-1 scriptversion-2 scriptversion-3 scriptversion-4
scroll-binding scroll-cursor scroll-down scroll-horizontal scroll-insert
scroll-mouse-wheel scroll-region scroll-smooth scroll-up scroll.txt
scrollbind-quickadj scrollbind-relative scrolling scrollstart-variable
sdl.vim search() search()-sub-match search-commands search-offset
search-pattern search-range search-replace searchcount() searchdecl()
searchforward-variable searchpair() searchpairpos() searchpos() section
sed.vim self send-money send-to-menu sendto sentence server-functions
server2client() serverlist() servername-variable session-file set-option
set-spc-auto setbufline() setbufvar() setcellwidths() setcharpos()
setcharsearch() setcmdline() setcmdpos() setcursorcharpos() setenv()
setfperm() setline() setloclist() setmatches() setpos() setqflist()
setqflist-action setqflist-examples setqflist-what setreg() settabvar()
settabwinvar() settagstack() setting-guifont setting-guitablabel
setting-tabline setuid setwinvar() sftp sgml.vim sgr-mouse sh-awk sh-embed
sh.vim sha256() shell-window shell_error-variable shellescape() shift
shift-left-right shiftwidth() shm-A shm-C shm-F shm-I shm-O shm-S shm-T shm-W
shm-a shm-c shm-f shm-i shm-l shm-m shm-n shm-o shm-q shm-r shm-s shm-t shm-w

tags.txt — 4518

shm-x short-name-changed showing-menus sign-column sign-commands
sign-functions sign-functions-details sign-group sign-identifier sign-intro
sign-priority sign-support sign.txt sign_define() sign_getdefined()
sign_getplaced() sign_jump() sign_place() sign_placelist() sign_undefine()
sign_unplace() sign_unplacelist() signs simple-change simplify()
simulated-command sin() single-repeat sinh() sizeofint-variable
sizeoflong-variable sizeofpointer-variable skeleton skip_defaults_vim slice
slice() slow-fast-terminal slow-start slow-terminal socket-interface sort()
sorting sound-functions sound_clear() sound_playevent() sound_playfile()
sound_stop() soundfold() source-vim9-script space spec-customizing
spec-how-to-use-it spec-setting-a-map spec_chglog_format spec_chglog_prepend
spec_chglog_release_info special-buffers specifies speed-up spell
spell-ACCENT spell-AUTHOR spell-BAD spell-BREAK spell-CHECKCOMPOUNDCASE
spell-CHECKCOMPOUNDDUP spell-CHECKCOMPOUNDPATTERN spell-CHECKCOMPOUNDREP
spell-CHECKCOMPOUNDTRIPLE spell-CHECKSHARPS spell-CIRCUMFIX spell-COMMON
spell-COMPLEXPREFIXES spell-COMPOUND spell-COMPOUNDBEGIN spell-COMPOUNDEND
spell-COMPOUNDFIRST spell-COMPOUNDFLAG spell-COMPOUNDFORBIDFLAG
spell-COMPOUNDLAST spell-COMPOUNDMIDDLE spell-COMPOUNDMIN
spell-COMPOUNDPERMITFLAG spell-COMPOUNDROOT spell-COMPOUNDRULE
spell-COMPOUNDRULES spell-COMPOUNDSYLLABLE spell-COMPOUNDSYLMAX
spell-COMPOUNDWORDMAX spell-COPYRIGHT spell-EMAIL spell-FLAG spell-FOL
spell-FORBIDDENWORD spell-HOME spell-IGNOREEXTRA spell-KEEPCASE spell-KEY
spell-LANG spell-LEMMA_PRESENT spell-LOW spell-MAP spell-MAXNGRAMSUGS
spell-NAME spell-NEEDAFFIX spell-NEEDCOMPOUND spell-NOBREAK
spell-NOCOMPOUNDSUGS spell-NOSPLITSUGS spell-NOSUGFILE spell-NOSUGGEST
spell-ONLYINCOMPOUND spell-PFX spell-PFXPOSTPONE spell-PSEUDOROOT spell-RARE
spell-REP spell-SAL spell-SET spell-SFX spell-SLASH spell-SOFOFROM
spell-SOFOTO spell-SUGSWITHDOTS spell-SYLLABLE spell-SYLLABLENUM
spell-SpellFileMissing spell-TRY spell-UPP spell-VERSION spell-WORDCHARS
spell-aff-format spell-affix-chars spell-affix-comment spell-affix-flags
spell-affix-mbyte spell-affix-not-supported spell-affix-vim spell-cjk
spell-compound spell-dic-format spell-double-scoring spell-file-format
spell-functions spell-german spell-load spell-midword spell-mkspell
spell-quickstart spell-remarks spell-russian spell-sug-file spell-syntax
spell-wordlist-format spell-yiddish spell.txt spellbadword()
spellfile-cleanup spellfile.vim spellsuggest() split() splitfind splitview
sponsor sponsor-faq sponsor.txt spoon spup.vim sql-adding-dialects
sql-completion sql-completion-columns sql-completion-customization
sql-completion-dynamic sql-completion-filetypes sql-completion-maps
sql-completion-procedures sql-completion-static sql-completion-tables
sql-completion-tutorial sql-completion-views sql-dialects sql-macros
sql-matchit sql-navigation sql-object-motions sql-predefined-objects
sql-type-default sql-types sql.vim sqlanywhere sqlanywhere.vim sqlgettype
sqlinformix.vim sqlj sqlserver sqlsettype sqrt() squirrel.vim srand() sscanf
standard-plugin standard-plugin-list standout star starstar starstar-wildcard
start-of-file start-vimdiff starting starting-amiga starting.txt startup
startup-options startup-terminal state() static-tag status-line
statusmsg-variable stl-%{ str2float() str2list() str2nr() strcasestr()
strcharlen() strcharpart() strchars() strchr() strcspn() strdisplaywidth()
strftime() strgetchar() stridx() strikethrough string string()
string-functions string-match string-offset-encoding strlen() strpart()
strpbrk() strptime() strrchr() strridx() strspn() strstr() strtrans()
strutf16len() strwidth() style-changes style-compiler style-examples
style-functions style-names style-spaces style-various sub-menu-priority
sub-replace-\= sub-replace-expression sub-replace-special sublist submatch()
subscribe-maillist subscript substitute() substitute-CR substring suffixes
suspend swap-exists-choices swap-file swapchoice-variable
swapcommand-variable swapfile-changed swapfilelist() swapinfo() swapname()
swapname-variable sybase syn-sync-grouphere syn-sync-groupthere
syn-sync-linecont synID() synIDattr() synIDtrans() syncbind syncolor

tags.txt — 4519

synconcealed() synload-1 synload-2 synload-3 synload-4 synload-5 synload-6
synstack() syntax syntax-functions syntax-highlighting syntax-latex
syntax-loading syntax-printing syntax-tex syntax.txt syntax_cmd sys-file-list
sysmouse system() system-functions system-vimrc systemlist() s~ t t: t:var
t_#2 t_#4 t_%1 t_%i t_&8 t_8b t_8f t_8u t_@7 t_AB t_AF t_AL t_AU t_BD t_BE
t_CF t_CS t_CTRL-W_. t_CTRL-W_: t_CTRL-W_CTRL-C t_CTRL-W_CTRL-W t_CTRL-W_N
t_CTRL-W_gT t_CTRL-W_gt t_CTRL-W_quote t_CTRL-_CTRL-N t_CV t_Ce t_Co t_Cs
t_DL t_Ds t_EC t_EI t_F1 t_F2 t_F3 t_F4 t_F5 t_F6 t_F7 t_F8 t_F9 t_GP t_IE
t_IS t_K1 t_K3 t_K4 t_K5 t_K6 t_K7 t_K8 t_K9 t_KA t_KB t_KC t_KD t_KE t_KF
t_KG t_KH t_KI t_KJ t_KK t_KL t_PE t_PS t_RB t_RC t_RF t_RI t_RK t_RS t_RT
t_RV t_Ri t_SC t_SH t_SI t_SR t_ST t_Sb t_Sf t_Si t_TE t_TI t_Te t_Ts t_Us
t_VS t_WP t_WS t_XM t_ZH t_ZR t_al t_bc t_blob-variable t_bool-variable t_cd
t_cdl t_ce t_channel-variable t_ci t_cil t_cl t_class-variable t_cm t_cri
t_cs t_csc t_cv t_cvv t_da t_db t_dict-variable t_dl t_ds t_ed t_el t_f1
t_f10 t_f2 t_f3 t_f4 t_f5 t_f6 t_f7 t_f8 t_f9 t_fd t_fe t_float-variable t_fs
t_func-variable t_help t_il t_job-variable t_k1 t_k2 t_k3 t_k4 t_k5 t_k6 t_k7
t_k8 t_k9 t_k; t_kB t_kD t_kI t_kN t_kP t_kb t_kd t_ke t_kh t_kl t_kr t_ks
t_ku t_le t_list-variable t_mb t_md t_me t_mr t_ms t_nd t_none-variable
t_number-variable t_object-variable t_op t_se t_sf1 t_sf10 t_sf2 t_sf3 t_sf4
t_sf5 t_sf6 t_sf7 t_sf8 t_sf9 t_skd t_skl t_skr t_sku t_so t_sr t_star7
t_string-variable t_tb t_te t_ti t_tp t_ts t_ts_old t_typealias-variable t_u7
t_ue t_undo t_us t_ut t_vb t_ve t_vi t_vs t_xn t_xs tab tab-page
tab-page-commands tab-page-intro tab-page-other tabline-menu tabnew-autocmd
tabpage tabpage-variable tabpage.txt tabpagebuflist() tabpagenr()
tabpagewinnr() tag tag-! tag-binary-search tag-blocks tag-commands
tag-details tag-function tag-functions tag-highlight tag-matchlist
tag-old-static tag-overloaded tag-preview tag-priority tag-regexp tag-search
tag-security tag-skip-file tag-stack tagfiles() taglist() tags
tags-and-searches tags-file-changed tags-file-format tags-option tagsrch.txt
tagstack tagstack-examples tan() tanh() tar tar-contents tar-copyright
tar-history tar-manual tar-options tar-usage tcl tcl-beep tcl-buffer
tcl-buffer-append tcl-buffer-cmds tcl-buffer-command tcl-buffer-count
tcl-buffer-delcmd tcl-buffer-delete tcl-buffer-expr tcl-buffer-get
tcl-buffer-insert tcl-buffer-last tcl-buffer-mark tcl-buffer-option
tcl-buffer-set tcl-buffer-windows tcl-bugs tcl-command tcl-commands
tcl-dynamic tcl-ex-commands tcl-examples tcl-expr tcl-linenumbers tcl-misc
tcl-option tcl-output tcl-var-current tcl-var-lbase tcl-var-line tcl-var-lnum
tcl-var-range tcl-variables tcl-window tcl-window-buffer tcl-window-cmds
tcl-window-command tcl-window-cursor tcl-window-delcmd tcl-window-expr
tcl-window-height tcl-window-option tcsh-style tcsh.vim tear-off-menus
telnet-CTRL-] temp-file-name tempfile template tempname() term++close
term++open term-dependent-settings term-list term.txt term_dumpdiff()
term_dumpload() term_dumpwrite() term_getaltscreen() term_getansicolors()
term_getattr() term_getcursor() term_getjob() term_getline()
term_getscrolled() term_getsize() term_getstatus() term_gettitle()
term_gettty() term_list() term_scrape() term_sendkeys() term_setansicolors()
term_setapi() term_setkill() term_setrestore() term_setsize() term_start()
term_wait() termcap termcap-changed termcap-colors termcap-cursor-color
termcap-cursor-shape termcap-options termcap-title termdebug-commands
termdebug-communication termdebug-customizing termdebug-events
termdebug-example termdebug-frames termdebug-mappings termdebug-prompt
termdebug-starting termdebug-stepping termdebug-variables
termdebug_disasm_window termdebug_map_K termdebug_map_minus
termdebug_map_plus termdebug_popup termdebug_shortcuts termdebug_signs
termdebug_use_prompt termdebug_variables_window termdebug_wide
termdebug_winbar terminal terminal-api terminal-autoshelldir terminal-bufname
terminal-client-server terminal-close terminal-colors terminal-communication
terminal-cursor-style terminal-debug terminal-debugger terminal-diff
terminal-diffscreendump terminal-dumptest terminal-function-details
terminal-functions terminal-info terminal-job-index terminal-key-codes

tags.txt — 4520

terminal-mouse terminal-ms-windows terminal-options terminal-output-codes
terminal-resizing terminal-screendump terminal-session terminal-size-color
terminal-special-keys terminal-testing terminal-to-job terminal-typing
terminal-unix terminal-use terminal-window terminal.txt terminalprops()
terminfo termresponse-variable ternary test-functions test-functions-details
test_alloc_fail() test_autochdir() test_feedinput() test_garbagecollect_now()
test_garbagecollect_soon() test_getvalue() test_gui_event()
test_ignore_error() test_mswin_event() test_null_blob() test_null_channel()
test_null_dict() test_null_function() test_null_job() test_null_list()
test_null_partial() test_null_string() test_option_not_set() test_override()
test_refcount() test_setmouse() test_settime() test_srand_seed()
test_unknown() test_void() testing testing-support testing-variable
testing.txt tex-cchar tex-cole tex-conceal tex-error tex-folding
tex-matchcheck tex-math tex-morecommands tex-nospell tex-package tex-runon
tex-slow tex-stopzone tex-style tex-supersub tex-sync tex-verb tex.vim
text-functions text-objects text-objects-changed text-prop-changes
text-prop-functions text-prop-intro text-properties text-property-functions
textlock textprop textprop.txt tf.vim this_session-variable throw-catch
throw-expression throw-from-catch throw-variables throwpoint-variable
time-functions timer timer-functions timer_info() timer_pause() timer_start()
timer_stop() timer_stopall() timers timestamp timestamps tips tips.txt tmux
tmux-integration todo todo.txt toggle toggle-revins tolower() toolbar-icon
tooltips toupper() tr() trim() trojan-horse true true-variable trunc() truthy
try-conditionals try-echoerr try-finally try-nested try-nesting tutor
two-engines type() type-casting type-checking type-inference type-mistakes
typealias typename() u uganda uganda.txt undercurl underdashed underdotted
underdouble underline underline-codes undo undo-blocks undo-branches
undo-break undo-close-block undo-commands undo-persistence undo-redo
undo-remarks undo-tree undo-two-ways undo.txt undo_ftplugin undo_indent
undofile() undotree() unicode uniq() unix unlisted-buffer up-down-motions
uppercase urxvt-mouse use-visual-cmds useful-mappings usenet
user-cmd-ambiguous user-commands user-functions user-manual userfunc.txt
using-<Plug> using-menus using-scripts using-xxd using_CTRL-V usr_01.txt
usr_02.txt usr_03.txt usr_04.txt usr_05.txt usr_06.txt usr_07.txt usr_08.txt
usr_09.txt usr_10.txt usr_11.txt usr_12.txt usr_20.txt usr_21.txt usr_22.txt
usr_23.txt usr_24.txt usr_25.txt usr_26.txt usr_27.txt usr_28.txt usr_29.txt
usr_30.txt usr_31.txt usr_32.txt usr_40.txt usr_41.txt usr_42.txt usr_43.txt
usr_44.txt usr_45.txt usr_50.txt usr_51.txt usr_52.txt usr_90.txt usr_toc.txt
utf-8 utf-8-char-arg utf-8-in-xwindows utf-8-typing utf16idx() utf8 v v:
v:argv v:beval_bufnr v:beval_col v:beval_lnum v:beval_text v:beval_winid
v:beval_winnr v:char v:charconvert_from v:charconvert_to v:cmdarg v:cmdbang
v:collate v:colornames v:completed_item v:count v:count1 v:ctype v:dying
v:echospace v:errmsg v:errors v:event v:exception v:exiting v:false
v:fcs_choice v:fcs_reason v:fname v:fname_diff v:fname_in v:fname_new
v:fname_out v:folddashes v:foldend v:foldlevel v:foldstart v:hlsearch
v:insertmode v:key v:lang v:lc_time v:lnum v:maxcol v:mouse_col v:mouse_lnum
v:mouse_win v:mouse_winid v:none v:null v:numbermax v:numbermin v:numbersize
v:oldfiles v:operator v:option_command v:option_new v:option_old
v:option_oldglobal v:option_oldlocal v:option_type v:prevcount v:profiling
v:progname v:progpath v:python3_version v:register v:scrollstart
v:searchforward v:servername v:shell_error v:sizeofint v:sizeoflong
v:sizeofpointer v:statusmsg v:swapchoice v:swapcommand v:swapname v:t_TYPE
v:t_blob v:t_bool v:t_channel v:t_class v:t_dict v:t_float v:t_func v:t_job
v:t_list v:t_none v:t_number v:t_object v:t_string v:t_typealias
v:termblinkresp v:termrbgresp v:termresponse v:termrfgresp v:termstyleresp
v:termu7resp v:testing v:this_session v:throwpoint v:true v:val v:var
v:version v:versionlong v:vim_did_enter v:warningmsg v:windowid v_! v_$ v_:
v_< v_<BS> v_ v_<Esc> v_= v_> v_C v_CTRL-A v_CTRL-C v_CTRL-G v_CTRL-H
v_CTRL-O v_CTRL-R v_CTRL-V v_CTRL-X v_CTRL-Z v_CTRL-_CTRL-G v_CTRL-_CTRL-N
v_CTRL-] v_D v_J v_K v_O v_P v_R v_S v_U v_V v_X v_Y v_a v_a' v_a(v_a) v_a<

tags.txt — 4521

v_a> v_aB v_aW v_a[v_a] v_a` v_ab v_ap v_aquote v_as v_at v_aw v_a{ v_a}
v_b_< v_b_<_example v_b_> v_b_>_example v_b_A v_b_A_example v_b_C v_b_D v_b_I
v_b_I_example v_b_c v_b_r v_b_r_example v_c v_d v_g? v_gF v_gJ v_gN v_gV v_g]
v_g_CTRL-A v_g_CTRL-G v_g_CTRL-X v_g_CTRL-] v_gf v_gn v_gq v_gv v_gw v_i v_i'
v_i(v_i) v_i< v_i> v_iB v_iW v_i[v_i] v_i` v_ib v_ip v_iquote v_is v_it
v_iw v_i{ v_i} v_o v_object-select v_p v_r v_s v_u v_v v_x v_y v_zy v_~ vab
val-variable valgrind values() var-functions variable-categories
variable-scope variable-types variables various various-cmds
various-functions various-motions various.txt vb.vim vba verbose version-5.1
version-5.2 version-5.3 version-5.4 version-5.5 version-5.6 version-5.7
version-5.8 version-6.1 version-6.2 version-6.3 version-6.4 version-7.0
version-7.1 version-7.2 version-7.3 version-7.4 version-8.0 version-8.1
version-8.2 version-9.0 version-9.1 version-9.2 version-variable version4.txt
version5.txt version6.txt version7.0 version7.1 version7.2 version7.3
version7.4 version7.txt version8.0 version8.1 version8.2 version8.txt
version9.0 version9.1 version9.2 version9.txt versionlong-variable vi
vi-differences vi-features vi: vi_diff.txt vib view view-diffs view-file
views-sessions vim-7.4 vim-8 vim-8.1 vim-8.2 vim-9 vim-9.0 vim-9.1 vim-9.2
vim-additions vim-announce vim-arguments vim-changelog vim-default-editor
vim-dev vim-mac vim-modes vim-modes-intro vim-raku vim-script-intro
vim-script-library vim-security vim-use vim-variable vim.b vim.g vim.t vim.v
vim.vim vim.w vim7 vim8 vim9 vim9-access-modes vim9-autoload vim9-boolean
vim9-class vim9-classes vim9-const vim9-curly vim9-debug vim9-declaration
vim9-declarations vim9-differences vim9-export vim9-false-true vim9-final
vim9-func-declaration vim9-function-defined-later vim9-gotchas
vim9-ignored-argument vim9-import vim9-lambda vim9-lambda-arguments
vim9-line-continuation vim9-literal-dict vim9-mix vim9-namespace
vim9-no-dict-function vim9-no-shorten vim9-rationale vim9-reload
vim9-s-namespace vim9-scopes vim9-string-index vim9-types vim9-unpack-ignore
vim9-user-command vim9-variable-arguments vim9.txt vim9class.txt vim9script
vim: vim_announce vim_dev vim_did_enter-variable vim_mac vim_starting vim_use
vimball vimball-contents vimball-extract vimball-history vimball-intro
vimball-manual vimball-windows vimdev vimdiff vimfiles viminfo viminfo-!
viminfo-% viminfo-' viminfo-/ viminfo-: viminfo-< viminfo-@ viminfo-c
viminfo-encoding viminfo-errors viminfo-f viminfo-file viminfo-file-marks
viminfo-file-name viminfo-h viminfo-n viminfo-quote viminfo-r viminfo-read
viminfo-read-write viminfo-s viminfo-timestamp viminfo-write vimrc
vimrc-filetype vimrc-intro vimrc-option-example vimrc_example.vim
vimscript-version vimscript-versions vimtutor virtcol() virtcol2col()
virtual-text visual-block visual-change visual-examples visual-index
visual-mode visual-operators visual-repeat visual-search visual-start
visual-use visual.txt visualmode() vms vms-authors vms-changes vms-compiling
vms-deploy vms-download vms-gui vms-notes vms-problems vms-started vms-usage
vote-for-features votes-counted votes-for-changes vreplace-mode
vt100-cursor-keys vt100-function-keys w w32-clientserver
w32-experimental-keycode-trans-strategy w32-xpm-support w: w:current_syntax
w:quickfix_title w:var waittime warningmsg-variable wdl-syntax wdl.vim
white-space whitespace wildcard wildcards wildmenumode() win-scrolled-resized
win16 win32 win32-!start win32-PATH win32-backslashes win32-cmdargs
win32-colors win32-compiling win32-curdir win32-faq win32-gettext win32-gui
win32-hidden-menus win32-installer win32-mouse win32-open-with-menu
win32-popup-menu win32-problems win32-quotes win32-restore win32-startup
win32-term win32-vimrun win32-win3.1 win32-win95 win32s win_execute()
win_findbuf() win_getid() win_gettype() win_gotoid() win_id2tabwin()
win_id2win() win_move_separator() win_move_statusline() win_screenpos()
win_splitmove() winbufnr() wincol() window window-ID window-contents
window-exit window-functions window-move-cursor window-moving window-resize
window-size window-size-functions window-tag window-toolbar window-variable
windowid windowid-variable windows windows-3.1 windows-asynchronously
windows-icon windows-intro windows-starting windows.txt windows95 windows98

tags.txt — 4522

windowsme windowsversion() winheight() winid winlayout() winline() winnr()
winrestcmd() winrestview() winsaveview() winwidth() word word-count
word-motions wordcount() workbench workshop workshop-support workshop.txt
wrap-off write-compiler-plugin write-device write-fail write-filetype-plugin
write-library-script write-local-help write-permissions write-plugin
write-plugin-quickload write-quit write-readonly writefile() writing www x
x-input-method x-resources x11-clientserver x11-cut-buffer x11-selection
xattr xf86conf.vim xfontset xfree-xterm xim xim-input-style xiterm
xml-folding xml-omni-datafile xml.vim xor() xpm.vim xterm-8-bit xterm-8bit
xterm-blink xterm-blinking-cursor xterm-bracketed-paste xterm-clipboard
xterm-codes xterm-color xterm-command-server xterm-copy-paste
xterm-cursor-keys xterm-end-home-keys xterm-focus-event xterm-function-keys
xterm-kitty xterm-modifier-keys xterm-mouse xterm-mouse-wheel xterm-resize
xterm-save-screen xterm-screens xterm-scroll-region xterm-shifted-keys
xterm-terminfo-entries xterm-true-color y yaml.vim yank ye-option-gone
year-2000 your-runtime-dir yy z z+ z- z. z/OS z<CR> z<Left> z<Right> z= zA zC
zD zE zF zG zH zL zM zN zN<CR> zO zOS zOS-Bugs zOS-Motif zOS-PuTTY
zOS-has-ebcdic zOS-limitations zOS-open-source zP zR zW zX z^ za zb zc zd ze
zf zg zh zi zip zip-contents zip-copyright zip-extension zip-history
zip-manual zip-usage zip-x zj zk zl zm zn zo zp zr zs zsh.vim zt zuG zuW zug
zuw zv zw zx zy zz { {Visual} {address} {arglist} {aupat} {bufname}
{char1-char2} {event} {file} {group-name} {lhs} {motion} {move-around}
{offset} {register} {rhs} {server} {subject} {{{ {} } }}} ~

tags.txt — 4523

tags.txt — 4524

The text of this document is taken from the Vim help pages and the Vim FAQ.

The files are converted to pdf using X ELATEXwith the hyperref package. The con-
version script is written by Nathan Grigg, based on the HTML conversion script
written by Carlo Teubner.

For more information, see http://nathangrigg.net/vimhelp.

about this pdf — 4525

http://github.com/c4rlo/vimhelp/
http://nathangrigg.net/vimhelp

	Overview
	overview and quick reference
	Overview of the most common commands you will use

	User manual
	Table Of Contents
	Getting started
	About the manuals
	The first steps in Vim
	Moving around
	Making small changes
	Set your settings
	Using syntax highlighting
	Editing more than one file
	Splitting windows
	Using the GUI
	Making big changes
	Recovering from a crash
	Clever tricks

	Editing Effectively
	Typing command-line commands quickly
	Go away and come back
	Finding the file to edit
	Editing other files
	Inserting quickly
	Editing formatted text
	Repeating
	Search commands and patterns
	Folding
	Moving through programs
	Editing programs
	Exploiting the GUI
	The undo tree

	Tuning Vim
	Make new commands
	Write a Vim script
	Add new menus
	Using filetypes
	Your own syntax highlighted
	Select your language
	Advanced Vim script writing
	Write plugins
	Write larger plugins

	Making Vim Run
	Installing Vim

	Reference Manual
	General subjects
	general introduction to Vim; notation used in help files
	about using the help files
	alphabetical index of all commands
	how to do the most common editing tasks
	various tips on using Vim
	(error) messages and explanations
	remarks from users of Vim
	known problems and desired extensions
	development of Vim
	debugging Vim itself
	Vim distribution conditions and what to do with your money

	Basic editing
	starting Vim, Vim command arguments, initialisation
	editing and writing files
	commands for moving around
	scrolling the text in the window
	Insert and Replace mode
	deleting and replacing text
	Undo and Redo
	repeating commands, Vim scripts and debugging
	using the Visual mode (selecting a text area)
	various remaining commands
	recovering from a crash

	Advanced editing
	Command-line editing
	description of all options
	regexp patterns and search commands
	key mapping and abbreviations
	tags and special searches
	commands for using multiple windows and buffers
	commands for using multiple tab pages
	spell checking
	working with two to four versions of the same file
	automatically executing commands on an event
	expression evaluation, conditional commands
	Builtin functions
	Inter-process communication
	hide (fold) ranges of lines

	Special issues
	testing Vim and Vim scripts
	printing
	using Vim as a server or client
	using different terminals and mice
	Terminal window support
	popop window support
	Vim9 script commands and expressions

	Programming language support
	automatic indenting for C and other languages
	syntax highlighting
	Attaching properties to text for highlighting or other
	settings done specifically for a type of file
	commands for a quick edit-compile-fix cycle
	Ada (the programming language) support
	A Windows PowerShell syntax plugin for Vim
	The Raku programming language filetype
	Filetype plugin for Rust
	about the SQL filetype plugin

	Language support
	list of available digraphs
	multi-byte text support
	non-English language support
	right-to-left editing mode
	Arabic language support and editing
	Farsi (Persian) editing
	Hebrew language support and editing
	Russian language support and editing
	Hangul (Korean) input mode

	GUI
	Graphical User Interface (GUI)
	Win32 GUI
	X11 GUI

	Interfaces
	using Cscope with Vim
	Lua interface
	MzScheme interface
	Perl interface
	Python interface
	Tcl interface
	OLE automation interface for Win32
	Ruby interface
	Interface with a debugger
	NetBeans External Editor interface
	debugging signs

	Versions
	Main differences between Vim and Vi
	Differences between Vim version 3.0 and 4.x
	Differences between Vim version 4.6 and 5.x
	Differences between Vim version 5.7 and 6.x
	Differences between Vim version 6.4 and 7.x
	Differences between Vim version 7.4 and 8.x
	Differences between Vim version 8.2 and 9.0

	Remarks about specific systems
	OS/390 Unix
	Amiga
	BeOS and BeBox
	MS-DOS and MS-Windows NT/95 common items
	Haiku
	Macintosh
	Atari MiNT
	MS-DOS (plain DOS and DOS box under Windows)
	OS/2
	QNX
	RISC-OS
	Unix
	VMS
	MS-Windows 95/98/NT

	Standard plugins
	Downloading latest version of Vim scripts
	Reading and writing compressed files
	Logical Patterns
	Reading and writing files over a network
	Highlight matching parens
	Filetype plugin to work with rpm spec files
	Tar file explorer
	Create a self-installing Vim script
	Zip archive explorer

	Miscellaneous
	Sponsor Vim development, become a registered Vim user
	Frequently asked questions
	Index
	About this pdf

